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Foreword

Guido Altarelli was a leading figure in establishing the Standard Model as the
emerging description of the elementary particle world. Not only was he a master-
mind behind the success of the theory, but I would say that he really incarnated its
very essence. The same perfect synthesis of elegance, purity, and genius that defines
the Standard Model also characterised Guido’s scientific life. One of his most
striking qualities was always his ability to identify the essence of a physics problem,
to ask the right question, and to express the answer in a clear and penetrating way.
So it is no surprise that Guido was in high demand as a speaker for summary talks
at major conferences and as a lecturer in physics schools. Few others could match
his ability in giving lucid overviews of a field, focusing on the critical issues and
explaining in simple terms the most complicated concepts. His vision of the progress
of particle physics has been an illuminating guide for generations of physicists, both
theorists and experimentalists.

Guido Altarelli was born in Rome in 1941. After graduating from the university
La Sapienza in Rome in 1963, he followed his advisor, Raoul Gatto, to Florence.
There, he became part of the “Gattini”, as the Florentine group of Gatto’s students
was affectionately known, after a nickname coined by Sidney Coleman during a
Physics School at Erice. Besides Guido, the “Gattini” included some of today’s
most renowned Italian theoreticians such as Luciano Maiani, Giuliano Preparata,
Franco Buccella, Gabriele Veneziano, and Roberto Casalbuoni, all of them of the
same age within a year’s difference. Towards the end of the 1960s, the Florentine
group dispersed, as the various members left for different destinations. Guido went
to the United States, staying at New York University (1968–1969) and Rockefeller
University (1969–1970), where he worked on various aspects of strong interactions.

In 1970, he was appointed professor at La Sapienza in Rome. Those were
the years in which the Standard Model was taking shape, after the proof of
renormalisability by Veltman and ’t Hooft and the discovery of asymptotic freedom
by Gross, Wilczek, and Politzer. Then Guido turned his interests to the interplay
between the strong and weak interactions. In particular, he made seminal con-
tributions to the QCD corrections of non-leptonic weak interactions, proposing
them as an explanation for the observed �I D 1=2 rule. Together with Nicola
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vi Foreword

Cabibbo, Luciano Maiani, Giorgio Parisi, Guido Martinelli, Keith Ellis, and Roberto
Petronzio, Guido succeeded in bringing back to Rome the splendour of the time of
Enrico Fermi and the Via Panisperna boys. However, Guido’s most celebrated work
was not done in Rome. In 1977, he was in Paris, on leave at the École Normale
Supérieure, while Giorgio Parisi was at the Institut des Hautes Études Scientifiques.
Together, they wrote the famous paper “Asymptotic Freedom in Parton Language”,
which contains the QCD equation describing how parton densities vary with the
energy scale, known today as DGLAP or, more simply, the Altarelli–Parisi equation.

In 1987, Guido moved to the CERN Theory Division, still keeping academic
links with Rome, first teaching at La Sapienza and then at the University of Roma
Tre. His scientific output at CERN was remarkable. In 1988, after a surprising
result from the EMC measurement of the first moment of the polarised proton
structure function, he emphasised, together with Graham Ross, the role of the gluon
anomaly as a resolution of the apparent violation of quark model expectations. In
the early 1990s, in a series of papers with Riccardo Barbieri, Francesco Caravaglios,
and Stanislaw Jadach, he developed a model-independent parameterisation of new
physics effects in electroweak observables. These studies were extremely influential
in the interpretation of LEP data and are still used today for the construction of
realistic theories beyond the Standard Model. During the last period of his scientific
career, while continuing his research in QCD and the electroweak theory, Guido
pursued with great interest the physics of neutrinos, as a tool to infer information
about new structures coming from grand unified theories.

Besides his scientific contributions, Guido had a significant impact on CERN’s
experimental programme by bridging the activities between the theoretical and
experimental communities. A famous example goes back to the time in which
UA1 presented some unexpected mono-jet events, believed to be the first signal
of supersymmetry. In the midst of the general excitement, he realised that, although
any individual Standard Model process could not justify the data, when combined
together in the so-called Altarelli cocktail, they could give a more mundane expla-
nation of the observed excess. His sober scepticism prompted the experimentalists
to reconsider the Standard Model interpretation, and, eventually, his explanation
turned out to be the right one. Guido’s leading role in advising and guiding the
experimental community became even more prominent during the construction and
operation of LEP and, later, of the LHC.

These lecture notes are a beautiful example of Guido’s unique pedagogical
abilities and scientific vision. They give a clear and accurate account of our present
knowledge of the particle world, synthesised in the Standard Model. The reader is
led from the basic framework of gauge theories to the structure of QCD to weak
interactions and the Higgs sector, along a path which is a necessary prerequisite
for any researcher interested in particle physics and which actually corresponds to
the itinerary followed by Guido during his scientific life. Although today there are
several textbooks on the Standard Model, it is difficult to match these lecture notes
in terms of conciseness, clarity, and depth. These notes provide a unique resource
for researchers—theorists and experimentalists alike—who want to approach the
field, especially from the collider point of view, giving a global but complete picture
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of the Standard Model and bringing the reader up to the very frontier of present
knowledge.

The most touching aspect of these lecture notes is that reading them is just like
listening to Guido. His style was direct and essential, and his logical thinking was
always clear, profound, and focused on concepts rather than technicalities. From
these lecture notes, the reader will not only learn about the Standard Model but also
a way to approach physics. They are a faithful portrait of Guido, not only because
they cover the field of his vast scientific activity but also because they convey
his pragmatic and concrete vision of the world of physics. Guido’s intellectual
brilliance and physics intuition are perfectly reflected. They will be used regularly
by generations of physicists and will remain as a tribute to an original and creative
mind who did so much to shape the field of particle physics.

Geneva, Switzerland Gian Francesco Giudice
June 2016



Preface

When editing this material, most of which dates from 2013, we felt that it was not the
aim of this predominantly theoretical text to update the experimental data to the very
latest results. After all, what endures at the core of this material are the principles of
the Standard Model of particle physics, which Prof. Altarelli so skillfully elucidates.
Up-to-date results and values can easily be looked up in the open-access literature
which is now inherently part of high-energy physics.

Yet, the devil being typically in the details, we were confronted with plots
included by Prof. Altarelli of quite various degrees of “publishability”. Sometimes
they were taken from internal notes or unpublished proceedings. In those cases,
and depending most of the time on the preferences of the authors, they could be
published as such, had to be removed altogether, or had to be replaced by more up-
to-date figures, such as was the case with a few figures labelled “preliminary” by
the large collaborations.

In short, we would like to draw to the reader’s attention the fact that the references
to experimental data mostly form a snapshot in time as selected by Prof. Altarelli in
2013. Above all, we opted for a minimalistic upgrade in referencing so as to make
this exceptional material formally publishable with all permissions required in the
first place.

Last but not least, we gratefully acknowledge the support by Monica Pepe-
Altarelli for releasing this material and CERN for sponsoring the publication as
an open-access book. We further thank Stephen Lyle for the technical editing of the
manuscript.

Ann Arbor, MI, USA James Wells
Heidelberg, Germany Christian Caron

ix



Acknowledgements

I am very grateful to Giuseppe Degrassi, Ferruccio Feruglio, Paolo Gambino, Mario
Greco, Martin Grunewald, Vittorio Lubicz, Richard Ball, Keith Ellis, Stefano Forte,
Ashutosh Kotwal, Lorenzo Magnea, Michelangelo Mangano, Luca Merlo, Silvano
Simula, and Graham Watt for their help and advice.

This work has been partly supported by the Italian Ministero dell’Università e
della Ricerca Scientifica, under the COFIN programme (PRIN 2008), by the
European Commission, under the networks “LHCPHENONET” and “Invisibles”.

Geneva, Switzerland Guido Altarelli

xi



Contents

1 Gauge Theories and the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 An Overview of the Fundamental Interactions .. . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Architecture of the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Formalism of Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Application to QED and QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Quantization of a Gauge Theory .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Spontaneous Symmetry Breaking in Gauge Theories . . . . . . . . . . . . . . . 15
1.8 Quantization of Spontaneously Broken Gauge Theories:

R� Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 QCD: The Theory of Strong Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Non-perturbative QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Progress in Lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Chiral Symmetry in QCD and the Strong CP Problem . . . . 36

2.3 Massless QCD and Scale Invariance.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 The Renormalization Group and Asymptotic Freedom.. . . . . . . . . . . . . 44
2.5 More on the Running Coupling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.6 On the Non-convergence of Perturbative Expansions.. . . . . . . . . . . . . . . 55
2.7 eCe� Annihilation and Related Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7.1 ReCe� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7.2 The Final State in eCe� Annihilation . . . . . . . . . . . . . . . . . . . . . . . 59

2.8 Deep Inelastic Scattering .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.8.1 The Longitudinal Structure Function . . . . . . . . . . . . . . . . . . . . . . . 70
2.8.2 Large and Small x Resummations for Structure

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.8.3 Polarized Deep Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 74

xiii



xiv Contents

2.9 Hadron Collider Processes and Factorization . . . . . . . . . . . . . . . . . . . . . . . . 76
2.9.1 Vector Boson Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.9.2 Jets at Large Transverse Momentum .. . . . . . . . . . . . . . . . . . . . . . . 81
2.9.3 Heavy Quark Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.9.4 Higgs Boson Production .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.10 Measurements of ˛s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.10.1 ˛s from eCe� Colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.10.2 ˛s from Deep Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.10.3 Recommended Value of ˛s.mZ/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.10.4 Other ˛s.mZ/ Measurements as QCD Tests . . . . . . . . . . . . . . . . 94

2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3 The Theory of Electroweak Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 The Gauge Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3 Couplings of Gauge Bosons to Fermions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4 Gauge Boson Self-Interactions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5 The Higgs Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6 The CKM Matrix and Flavour Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.7 Neutrino Mass and Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.8 Quantization and Renormalization of the Electroweak Theory . . . . . 123
3.9 QED Tests: Lepton Anomalous Magnetic Moments . . . . . . . . . . . . . . . . . 126
3.10 Large Radiative Corrections to Electroweak Processes . . . . . . . . . . . . . . 129
3.11 Electroweak Precision Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.12 Results of the SM Analysis of Precision Tests . . . . . . . . . . . . . . . . . . . . . . . 135
3.13 The Search for the SM Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.14 Theoretical Bounds on the SM Higgs Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.15 SM Higgs Decays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.16 The Higgs Discovery at the LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.17 Limitations of the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



Chapter 1
Gauge Theories and the Standard Model

1.1 An Overview of the Fundamental Interactions

A possible goal of fundamental physics is to reduce all natural phenomena to
a set of basic laws and theories which, at least in principle, can quantitatively
reproduce and predict experimental observations. At the microscopic level all the
phenomenology of matter and radiation, including molecular, atomic, nuclear, and
subnuclear physics, can be understood in terms of three classes of fundamental
interactions: strong, electromagnetic, and weak interactions. For all material bodies
on the Earth and in all geological, astrophysical, and cosmological phenomena, a
fourth interaction, the gravitational force, plays a dominant role, but this remains
negligible in atomic and nuclear physics. In atoms, the electrons are bound to nuclei
by electromagnetic forces, and the properties of electron clouds explain the complex
phenomenology of atoms and molecules. Light is a particular vibration of electric
and magnetic fields (an electromagnetic wave). Strong interactions bind the protons
and neutrons together in nuclei, being so strongly attractive at short distances that
they prevail over the electric repulsion due to the like charges of protons. Protons and
neutrons, in turn, are composites of three quarks held together by strong interactions
occur between quarks and gluons (hence these particles are called “hadrons” from
the Greek word for “strong”). The weak interactions are responsible for the beta
radioactivity that makes some nuclei unstable, as well as the nuclear reactions that
produce the enormous energy radiated by the stars, and in particular by our Sun. The
weak interactions also cause the disintegration of the neutron, the charged pions,
and the lightest hadronic particles with strangeness, charm, and beauty (which are
“flavour” quantum numbers), as well as the decay of the top quark and the heavy
charged leptons (the muon �� and the tau £�). In addition, all observed neutrino
interactions are due to these weak forces.

All these interactions (with the possible exception of gravity) are described
within the framework of quantum mechanics and relativity, more precisely by a local
relativistic quantum field theory. To each particle, treated as pointlike, is associated

© The Author(s) 2017
G. Altarelli, Collider Physics within the Standard Model,
Lecture Notes in Physics 937, DOI 10.1007/978-3-319-51920-3_1
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2 1 Gauge Theories and the Standard Model

a field with suitable (depending on the particle spin) transformation properties
under the Lorentz group (the relativistic spacetime coordinate transformations). It
is remarkable that the description of all these particle interactions is based on a
common principle: “gauge” invariance. A “gauge” symmetry is invariance under
transformations that rotate the basic internal degrees of freedom, but with rotation
angles that depend on the spacetime point. At the classical level, gauge invariance
is a property of the Maxwell equations of electrodynamics, and it is in this context
that the notion and the name of gauge invariance were introduced. The prototype
of all quantum gauge field theories, with a single gauged charge, is quantum
electrodynamics (QED), developed in the years from 1926 until about 1950, which
is indeed the quantum version of Maxwell’s theory. Theories with gauge symmetry
in four spacetime dimensions are renormalizable and are completely determined
given the symmetry group and the representations of the interacting fields. The
whole set of strong, electromagnetic, and weak interactions is described by a gauge
theory with 12 gauged non-commuting charges. This is called the “Standard Model”
of particle interactions (SM). Actually, only a subgroup of the SM symmetry is
directly reflected in the spectrum of physical states. A part of the electroweak
symmetry is hidden by the Higgs mechanism for spontaneous symmetry breaking
of the gauge symmetry.

The theory of general relativity is a classical description of gravity (in the
sense that it is non-quantum mechanical). It goes beyond the static approximation
described by Newton’s law and includes dynamical phenomena like, for example,
gravitational waves. The problem of formulating a quantum theory of gravitational
interactions is one of the central challenges of contemporary theoretical physics.
But quantum effects in gravity only become important for energy concentrations in
spacetime which are not in practice accessible to experimentation in the laboratory.
Thus the search for the correct theory can only be done by a purely speculative
approach. All attempts at a description of quantum gravity in terms of a well defined
and computable local field theory along similar lines to those used for the SM
have so far failed to lead to a satisfactory framework. Rather, at present, the most
complete and plausible description of quantum gravity is a theory formulated in
terms of non-pointlike basic objects, the so-called “strings”, extended over much
shorter distances than those experimentally accessible and which live in a spacetime
with 10 or 11 dimensions. The additional dimensions beyond the familiar 4 are,
typically, compactified, which means that they are curled up with a curvature radius
of the order of the string dimensions. Present string theory is an all-comprehensive
framework that suggests a unified description of all interactions including gravity,
in which the SM would be only a low energy or large distance approximation.

A fundamental principle of quantum mechanics, the Heisenberg uncertainty
principle, implies that, when studying particles with spatial dimensions of order�x
or interactions taking place at distances of order�x, one needs as a probe a beam of
particles (typically produced by an accelerator) with impulse p & „=�x, where „ is
the reduced Planck constant („ D h=2�). Accelerators presently in operation, like
the Large Hadron Collider (LHC) at CERN near Geneva, allow us to study collisions



1.2 The Architecture of the Standard Model 3

between two particles with total center of mass energy up to 2E � 2pc . 7–14 TeV.
These machines can, in principle, study physics down to distances �x & 10�18 cm.
Thus, on the basis of results from experiments at existing accelerators, we can
indeed confirm that, down to distances of that order of magnitude, electrons, quarks,
and all the fundamental SM particles do not show an appreciable internal structure,
and look elementary and pointlike. We certainly expect quantum effects in gravity
to become important at distances �x � 10�33 cm, corresponding to energies up to
E � MPlanckc2 � 1019 GeV, where MPlanck is the Planck mass, related to Newton’s
gravitational constant by GN D „c=M2

Planck. At such short distances the particles that
so far appeared as pointlike may well reveal an extended structure, as would strings,
and they may be described by a more detailed theoretical framework for which the
local quantum field theory description of the SM would be just a low energy/large
distance limit.

From the first few moments of the Universe, just after the Big Bang, the
temperature of the cosmic background gradually went down, starting from kT �
MPlanckc2, where k D 8:617 � 10�5 eV K�1 is the Boltzmann constant, down to
the present situation where T � 2:725K. Then all stages of high energy physics
from string theory, which is a purely speculative framework, down to the SM
phenomenology, which is directly accessible to experiment and well tested, are
essential for the reconstruction of the evolution of the Universe starting from the
Big Bang. This is the basis for the ever increasing connection between high energy
physics and cosmology.

1.2 The Architecture of the Standard Model

The Standard Model (SM) is a gauge field theory based on the symmetry group
SU.3/

N
SU.2/

N
U.1/. The transformations of the group act on the basic fields.

This group has 8 C 3 C 1 D 12 generators with a nontrivial commutator algebra
(if all generators commute, the gauge theory is said to be “Abelian”, while the SM
is a “non-Abelian” gauge theory). SU.2/

N
U.1/ describes the electroweak (EW)

interactions [225, 316, 359] and the electric charge Q, the generator of the QED
gauge group U.1/Q, is the sum of T3, one of the SU.2/ generators and of Y=2,
where Y is the U.1/ generator: Q D T3 C Y=2. SU.3/ is the “colour” group of the
theory of strong interactions (quantum chromodynamics QCD [215, 234, 360]).

In a gauge theory,1 associated with each generator T is a vector boson (also called
a gauge boson) with the same quantum numbers as T, and if the gauge symmetry
is unbroken, this boson is of vanishing mass. These vector bosons (i.e., of spin 1)
act as mediators of the corresponding interactions. For example, in QED the vector
boson associated with the generator Q is the photon ”. The interaction between two
charged particles in QED, for example two electrons, is mediated by the exchange of

1Much of the material in this chapter is a revision and update of [32].
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one (or occasionally more than one) photon emitted by one electron and reabsorbed
by the other. Similarly, in the SM there are 8 gluons associated with the SU.3/ colour
generators, while for SU.2/

N
U.1/ there are four gauge bosons WC, W�, Z0, and

”. Of these, only the gluons and the photon ” are massless, because the symmetry
induced by the other three generators is actually spontaneously broken. The masses
of WC, W�, and Z0 are very large indeed on the scale of elementary particles, with
values mW � 80:4GeV and mZ � 91:2GeV, whence they are as heavy as atoms of
intermediate size, like rubidium and molybdenum, respectively.

In the electroweak theory, the breaking of the symmetry is of a particular type,
referred to as spontaneous symmetry breaking. In this case, charges and currents
are as dictated by the symmetry, but the fundamental state of minimum energy, the
vacuum, is not unique and there is a continuum of degenerate states that all respect
the symmetry (in the sense that the whole vacuum orbit is spanned by applying
the symmetry transformations). The symmetry breaking is due to the fact that the
system (with infinite volume and an infinite number of degrees of freedom) is found
in one particular vacuum state, and this choice, which for the SM occurred in the
first instants of the life of the Universe, means that the symmetry is violated in
the spectrum of states. In a gauge theory like the SM, the spontaneous symmetry
breaking is realized by the Higgs mechanism [189, 236, 243, 261] (described in
detail in Sect. 1.7): there are a number of scalar (i.e., zero spin) Higgs bosons with a
potential that produces an orbit of degenerate vacuum states. One or more of these
scalar Higgs particles must necessarily be present in the spectrum of physical states
with masses very close to the range so far explored. The Higgs particle has now
been found at the LHC with mH � 126GeV [341, 345], thus making a big step
towards completing the experimental verification of the SM. The Higgs boson acts
as the mediator of a new class of interactions which, at the tree level, are coupled in
proportion to the particle masses and thus have a very different strength for, say, an
electron and a top quark.

The fermionic matter fields of the SM are quarks and leptons (all of spin 1/2).
Each type of quark is a colour triplet (i.e., each quark flavour comes in three colours)
and also carries electroweak charges, in particular electric charges C2=3 for up-type
quarks and �1=3 for down-type quarks. So quarks are subject to all SM interactions.
Leptons are colourless and thus do not interact strongly (they are not hadrons) but
have electroweak charges, in particular electric charges �1 for charged leptons (e�,
�� and £�) and charge 0 for neutrinos (�e, �� and �£). Quarks and leptons are
grouped in 3 “families” or “generations” with equal quantum numbers but different
masses. At present we do not have an explanation for this triple repetition of fermion
families:

�
u u u �e
d d d e

�

;

�
c c c ��
s s s �

�

;

�
t t t �£
b b b £

�

: (1.1)

The QCD sector of the SM (see Chap. 2) has a simple structure but a very rich
dynamical content, including the observed complex spectroscopy with a large
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number of hadrons. The most prominent properties of QCD are asymptotic freedom
and confinement. In field theory, the effective coupling of a given interaction
vertex is modified by the interaction. As a result, the measured intensity of the
force depends on the square Q2 of the four-momentum Q transferred among the
participants. In QCD the relevant coupling parameter that appears in physical
processes is ˛s D e2s=4� , where es is the coupling constant of the basic interaction
vertices of quarks and gluons: qqg or ggg

�
see (1.28)–(1.31)

�
.

Asymptotic freedom means that the effective coupling becomes a function of
Q2, and in fact ˛s.Q2/ decreases for increasing Q2 and vanishes asymptotically.
Thus, the QCD interaction becomes very weak in processes with large Q2, called
hard processes or deep inelastic processes (i.e., with a final state distribution of
momenta and a particle content very different than those in the initial state). One
can prove that in four spacetime dimensions all pure gauge theories based on a non-
commuting symmetry group are asymptotically free, and conversely. The effective
coupling decreases very slowly at large momenta, going as the reciprocal logarithm
of Q2, i.e., ˛s.Q2/ D 1=b log.Q2=�2/, where b is a known constant and � is an
energy of order a few hundred MeV. Since in quantum mechanics large momenta
imply short wavelengths, the result is that at short distances (or Q > �) the potential
between two colour charges is similar to the Coulomb potential, i.e., proportional to
˛s.r/=r, with an effective colour charge which is small at short distances.

In contrast, the interaction strength becomes large at large distances or small
transferred momenta, of order Q < �. In fact, all observed hadrons are tightly
bound composite states of quarks (baryons are made of qqq and mesons of qNq),
with compensating colour charges so that they are overall neutral in colour. In fact,
the property of confinement is the impossibility of separating colour charges, like
individual quarks and gluons or any other coloured state. This is because in QCD the
interaction potential between colour charges increases linearly in r at long distances.
When we try to separate a quark and an antiquark that form a colour neutral meson,
the interaction energy grows until pairs of quarks and antiquarks are created from
the vacuum. New neutral mesons then coalesce and are observed in the final state,
instead of free quarks. For example, consider the process eCe� ! qNq at large center-
of-mass energies. The final state quark and antiquark have high energies, so they
move apart very fast. But the colour confinement forces create new pairs between
them. What is observed is two back-to-back jets of colourless hadrons with a number
of slow pions that make the exact separation of the two jets impossible. In some
cases, a third, well separated jet of hadrons is also observed: these events correspond
to the radiation of an energetic gluon from the parent quark–antiquark pair.

In the EW sector, the SM (see Chap. 3) inherits the phenomenological successes
of the old .V � A/ ˝ .V � A/ four-fermion low-energy description of weak
interactions, and provides a well-defined and consistent theoretical framework that
includes weak interactions and quantum electrodynamics in a unified picture. The
weak interactions derive their name from their strength. At low energy, the strength
of the effective four-fermion interaction of charged currents is determined by the
Fermi coupling constant GF. For example, the effective interaction for muon decay
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is given by

Leff D GFp
2

�N�	
˛.1 � 
5/	
��Ne
˛.1 � 
5/�e

�
; (1.2)

with [307]

GF D 1:166 378 7.6/� 10�5 GeV�2 : (1.3)

In natural units „ D c D 1, GF (which we most often use in this work) has
dimensions of (mass)�2. As a result, the strength of weak interactions at low energy
is characterized by GFE2, where E is the energy scale for a given process (E � m�
for muon decay). Since

GFE
2 D GFm

2
p.E=mp/

2 � 10�5.E=mp/
2 ; (1.4)

where mp is the proton mass, the weak interactions are indeed weak at low energies
(up to energies of order a few tens of GeV). Effective four-fermion couplings for
neutral current interactions have comparable intensity and energy behaviour. The
quadratic increase with energy cannot continue for ever, because it would lead to
a violation of unitarity. In fact, at high energies, propagator effects can no longer
be neglected, and the current–current interaction is resolved into current–W gauge
boson vertices connected by a W propagator. The strength of the weak interactions
at high energies is then measured by gW , the W–�–�� coupling, or even better, by
˛W D g2W=4� , analogous to the fine-structure constant ˛ of QED (in Chap. 3, gW is
simply denoted by g or g2). In the standard EW theory, we have

˛W D p
2GFm

2
W=� � 1=30 : (1.5)

That is, at high energies the weak interactions are no longer so weak.
The range rW of weak interactions is very short: it was only with the experimental

discovery of the W and Z gauge bosons that it could be demonstrated that rW is non-
vanishing. Now we know that

rW D „
mWc

� 2:5 � 10�16 cm ; (1.6)

corresponding to mW � 80:4GeV. This very high value for the W (or the Z) mass
makes a drastic difference, compared with the massless photon and the infinite range
of the QED force. The direct experimental limit on the photon mass is [307] m
 <
10�18 eV. Thus, on the one hand, there is very good evidence that the photon is
massless, and on the other, the weak bosons are very heavy. A unified theory of EW
interactions has to face this striking difference.

Another apparent obstacle in the way of EW unification is the chiral structure of
weak interactions: in the massless limit for fermions, only left-handed quarks and
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leptons (and right-handed antiquarks and antileptons) are coupled to W particles.
This clearly implies parity and charge-conjugation violation in weak interactions.

The universality of weak interactions and the algebraic properties of the elec-
tromagnetic and weak currents [conservation of vector currents (CVC), partial
conservation of axial currents (PCAC), the algebra of currents, etc.] were crucial
in pointing to the symmetric role of electromagnetism and weak interactions at a
more fundamental level. The old Cabibbo universality [120] for the weak charged
current, viz.,

Jweak
˛ D N�	
˛.1 � 
5/	C N�e
˛.1� 
5/e C cos �c Nu
˛.1 � 
5/d

C sin �c Nu
˛.1� 
5/s C � � � ; (1.7)

suitably extended, is naturally implied by the standard EW theory. In this theory
the weak gauge bosons couple to all particles with couplings that are proportional
to their weak charges, in the same way as the photon couples to all particles in
proportion to their electric charges. In (1.7), d0 D d cos �c C s sin �c is the weak
isospin partner of u in a doublet. The .u; d0/ doublet has the same couplings as the
.�e; `/ and .��; �/ doublets.

Another crucial feature is that the charged weak interactions are the only known
interactions that can change flavour: charged leptons into neutrinos or up-type
quarks into down-type quarks. On the other hand, there are no flavour-changing
neutral currents at tree level. This is a remarkable property of the weak neutral
current, which is explained by the introduction of the Glashow–Iliopoulos–Maiani
(GIM) mechanism [226] and led to the successful prediction of charm.

The natural suppression of flavour-changing neutral currents, the separate con-
servation of e, �, and � leptonic flavours that is only broken by the small neutrino
masses, the mechanism of CP violation through the phase in the quark-mixing
matrix [269], are all crucial features of the SM. Many examples of new physics tend
to break the selection rules of the standard theory. Thus the experimental study of
rare flavour-changing transitions is an important window on possible new physics.

The SM is a renormalizable field theory, which means that the ultraviolet
divergences that appear in loop diagrams can be eliminated by a suitable redefinition
of the parameters already appearing in the bare Lagrangian: masses, couplings, and
field normalizations. As will be discussed later, a necessary condition for a theory
to be renormalizable is that only operator vertices of dimension not greater than 4
(that is m4, where m is some mass scale) appear in the Lagrangian density L (itself
of dimension 4, because the action S is given by the integral of L over d4x and is
dimensionless in natural units such that „ D c D 1). Once this condition is added to
the specification of a gauge group and of the matter field content, the gauge theory
Lagrangian density is completely specified. We shall see the precise rules for writing
down the Lagrangian of a gauge theory in the next section.
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1.3 The Formalism of Gauge Theories

In this section we summarize the definition and the structure of a Yang–Mills gauge
theory [371]. We will list here the general rules for constructing such a theory. Then
these results will be applied to the SM.

Consider a Lagrangian density L Œ
; @	
� which is invariant under a D dimen-
sional continuous group � of transformations:


0.x/ D U.�A/
.x/ .A D 1; 2; : : : ;D/ ; (1.8)

with

U.�A/ D exp

�

ig
X

A

�ATA

�

� 1C ig
X

A

�ATA C � � � : (1.9)

The quantities �A are numerical parameters, like angles in the particular case of a
rotation group in some internal space. The approximate expression on the right is
valid for �A infinitesimal. Then, g is the coupling constant and TA are the generators
of the group � of transformations (1.8) in the (in general reducible) representation
of the fields 
. Here we restrict ourselves to the case of internal symmetries, so
the TA are matrices that are independent of the spacetime coordinates, and the
arguments of the fields 
 and 
0 in (1.8) are the same.

If U is unitary, then the generators TA are Hermitian, but this need not be the case
in general (although it is true for the SM). Similarly, if U is a group of matrices with
unit determinant, then the traces of the TA vanish, i.e., tr.TA/ D 0. In general, the
generators satisfy the commutation relations

ŒTA;TB� D iCABCT
C : (1.10)

For A;B;C; : : : ; up or down indices make no difference, i.e., TA D TA, etc. The
structure constants CABC are completely antisymmetric in their indices, as can be
easily seen. Recall that if all generators commute, the gauge theory is said to be
“Abelian” (in this case all the structure constants CABC vanish), while the SM is a
“non-Abelian” gauge theory.

We choose to normalize the generators TA in such a way that, for the lowest
dimensional non-trivial representation of the group � (we use tA to denote the
generators in this particular representation), we have

tr
�
tAtB

� D 1

2
ıAB : (1.11)
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A normalization convention is needed to fix the normalization of the coupling g and
the structure constants CABC. In the following, for each quantity f A, we define

f D
X

A

TAf A : (1.12)

For example, we can rewrite (1.9) in the form

U.�A/ D exp .ig�/ � 1C ig� C � � � : (1.13)

If we now make the parameters �A depend on the spacetime coordinates, whence
�A D �A.x	/; then L Œ
; @	
� is in general no longer invariant under the gauge
transformations UŒ�A.x	/�, because of the derivative terms. Indeed, we then have
@	


0 D @	.U
/ ¤ U@	
. Gauge invariance is recovered if the ordinary derivative
is replaced by the covariant derivative

D	 D @	 C igV	 ; (1.14)

where VA
	 are a set of D gauge vector fields (in one-to-one correspondence with the

group generators), with the transformation law

V0
	 D UV	U�1 � 1

ig
.@	U/U

�1: (1.15)

For constant �A, V reduces to a tensor of the adjoint (or regular) representation of
the group:

V0
	 D UV	U�1 � V	 C igŒ�;V	�C � � � ; (1.16)

which implies that

V 0C
	 D VC

	 � gCABC�
AVB

	 C � � � ; (1.17)

where repeated indices are summed over.
As a consequence of (1.14) and (1.15), D	
 has the same transformation

properties as 
 :

.D	
/
0 D U.D	
/ : (1.18)

In fact,

.D	
/
0 D .@	 C igV0

	/

0

D .@	U/
 C U@	
 C igUV	
 � .@	U/
 D U.D	
/ : (1.19)
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Thus L Œ
;D	
� is indeed invariant under gauge transformations. But at this stage
the gauge fields VA

	 appear as external fields that do not propagate. In order to
construct a gauge invariant kinetic energy term for the gauge fields VA

	, we consider

ŒD	;D��
 D ig
˚
@	V� � @�V	 C igŒV	;V��

�

 � igF	�
 ; (1.20)

which is equivalent to

FA
	� D @	V

A
� � @�VA

	 � gCABCV
B
	V

C
� : (1.21)

From (1.8), (1.18), and (1.20), it follows that the transformation properties of FA
	�

are those of a tensor of the adjoint representation:

F0
	� D UF	�U�1 : (1.22)

The complete Yang–Mills Lagrangian, which is invariant under gauge transforma-
tions, can be written in the form

LYM D �1
2
TrF	�F	� CL Œ
;D	
� D �1

4

X

A

FA
	�F

A	� CL Œ
;D	
� : (1.23)

Note that the kinetic energy term is an operator of dimension 4. Thus if L is
renormalizable, so also is LYM. If we give up renormalizability, then more gauge
invariant higher dimensional terms could be added. It is already clear at this stage
that no mass term for gauge bosons of the form m2V	V	 is allowed by gauge
invariance.

1.4 Application to QED and QCD

For an Abelian theory like QED, the gauge transformation reduces to UŒ�.x/� D
expŒieQ�.x/�, where Q is the charge generator (for more commuting generators,
one simply has a product of similar factors). According to (1.15), the associated
gauge field (the photon) transforms as

V 0
	 D V	 � @	�.x/ ; (1.24)

and the familiar gauge transformation is recovered, with addition of a 4-gradient of
a scalar function. The QED Lagrangian density is given by

L D �1
4
F	�F	� C

X

 

N .iD= � m / : (1.25)
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Here D= D D	
	, where 
	 are the Dirac matrices and the covariant derivative is
given in terms of the photon field A	 and the charge operator Q by

D	 D @	 C ieA	Q (1.26)

and

F	� D @	A� � @�A	 : (1.27)

Note that in QED one usually takes e� to be the particle, so that Q D �1 and the
covariant derivative is D	 D @	 � ieA	 when acting on the electron field. In the
Abelian case, the F	� tensor is linear in the gauge field V	, so that in the absence of
matter fields the theory is free. On the other hand, in the non-Abelian case, the FA

	�

tensor contains both linear and quadratic terms in VA
	, so the theory is non-trivial

even in the absence of matter fields.
According to the formalism of the previous section, the statement that QCD is

a renormalizable gauge theory based on the group SU.3/ with colour triplet quark
matter fields fixes the QCD Lagrangian density to be

L D �1
4

8X

AD1
FA	�FA

	� C
nfX

jD1
Nqj.iD= � mj/qj : (1.28)

Here qj are the quark fields with nf different flavours and mass mj, and D	 is the
covariant derivative of the form

D	 D @	 C iesg� ; (1.29)

with gauge coupling es. Later, in analogy with QED, we will mostly use

˛s D e2s
4�

: (1.30)

In addition, g� D P
A t

AgA	, where gA	, A D 1; : : : ; 8, are the gluon fields and tA

are the SU.3/ group generators in the triplet representation of the quarks (i.e., tA
are 3 � 3 matrices acting on q). The generators obey the commutation relations
ŒtA; tB� D iCABCtC, whereCABC are the completely antisymmetric structure constants
of SU.3/. The normalizations of CABC and es are specified by those of the generators
tA, i.e., TrŒtAtB� D ıAB=2

�
see (1.11)

�
. Finally, we have

FA
	� D @	g

A
� � @�gA	 � esCABCg

B
	g

C
� : (1.31)

Chapter 2 is devoted to a detailed description of QCD as the theory of strong
interactions. The physical vertices in QCD include the gluon–quark–antiquark
vertex, analogous to the QED photon–fermion–antifermion coupling, but also the
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3-gluon and 4-gluon vertices, of order es and e2s respectively, which have no
analogue in an Abelian theory like QED. In QED the photon is coupled to all
electrically charged particles, but is itself neutral. In QCD the gluons are coloured,
hence self-coupled. This is reflected by the fact that, in QED, F	� is linear in the
gauge field, so that the term F2	� in the Lagrangian is a pure kinetic term, while in
QCD, FA

	� is quadratic in the gauge field, so that in FA2
	� , we find cubic and quartic

vertices beyond the kinetic term. It is also instructive to consider a scalar version of
QED:

L D �1
4
F	�F	� C .D	
/

�.D	
/ � m2.
�
/ : (1.32)

For Q D 1, we have

.D	
/
�.D	
/ D .@	
/

�.@	
/C ieA	
�
.@	
/�
 � 
�.@	
/

�C e2A	A
	
�
 :

(1.33)

We see that for a charged boson in QED, given that the kinetic term for bosons
is quadratic in the derivative, there is a gauge–gauge–scalar–scalar vertex of order
e2. We understand that in QCD the 3-gluon vertex is there because the gluon is
coloured, and the 4-gluon vertex because the gluon is a boson.

1.5 Chirality

We recall here the notion of chirality and related issues which are crucial for the
formulation of the EW Theory. The fermion fields can be described through their
right-handed (RH) (chirality C1) and left-handed (LH) (chirality �1) components:

 L;R D Œ.1	 
5/=2� ; N L;R D N Œ.1˙ 
5/=2� ; (1.34)

where 
5 and the other Dirac matrices are defined as in the book by Bjorken and
Drell [102]. In particular, 
25 D 1, 
�5 D 
5. Note that (1.34) implies

N L D  
�
L
0 D  �Œ.1 � 
5/=2�
0 D N 
0Œ.1 � 
5/=2�
0 D N Œ.1C 
5/=2� :

The matrices P˙ D .1˙ 
5/=2 are projectors. They satisfy the relations P˙P˙ D
P˙, P˙P� D 0, PC CP� D 1. They project onto fermions of definite chirality. For
massless particles, chirality coincides with helicity. For massive particles, a chirality
C1 state only coincides with a C1 helicity state up to terms suppressed by powers
of m=E.

The 16 linearly independent Dirac matrices (� ) can be divided into 
5-even (�E)
and 
5-odd (�O) according to whether they commute or anticommute with 
5. For
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the 
5-even, we have

N �E D N L�E R C N R�E L .�E � 1; i
5; �	�/ ; (1.35)

whilst for the 
5-odd,

N �O D N L�O L C N R�O R .�O � 
	; 
	
5/ : (1.36)

We see that in a gauge Lagrangian, fermion kinetic terms and interactions of
gauge bosons with vector and axial vector fermion currents all conserve chirality,
while fermion mass terms flip chirality. For example, in QED, if an electron emits
a photon, the electron chirality is unchanged. In the ultrarelativistic limit, when
the electron mass can be neglected, chirality and helicity are approximately the
same and we can state that the helicity of the electron is unchanged by the photon
emission. In a massless gauge theory, the LH and the RH fermion components are
uncoupled and can be transformed separately. If in a gauge theory the LH and RH
components transform as different representations of the gauge group, one speaks
of a chiral gauge theory, while if they have the same gauge transformations, one has
a vector gauge theory. Thus, QED and QCD are vector gauge theories because, for
each given fermion,  L and  R have the same electric charge and the same colour.
Instead, the standard EW theory is a chiral theory, in the sense that  L and  R

behave differently under the gauge group (so that parity and charge conjugation non-
conservation are made possible in principle). Thus, mass terms for fermions (of the
form N L R + h.c.) are forbidden in the EW gauge-symmetric limit. In particular, in
the Minimal Standard Model (MSM), i.e., the model that only includes all observed
particles plus a single Higgs doublet, all  L are SU.2/ doublets, while all  R are
singlets.

1.6 Quantization of a Gauge Theory

The Lagrangian density LYM in (1.23) fully describes the theory at the classical
level. The formulation of the theory at the quantum level requires us to specify
procedures of quantization, regularization and, finally, renormalization. To start
with, the formulation of Feynman rules is not straightforward. A first problem,
common to all gauge theories, including the Abelian case of QED, can be realized
by observing that the free equations of motion for VA

	, as obtained from (1.21)
and (1.23), are given by

�
@2g	� � @	@�

�
VA� D 0 : (1.37)

Normally the propagator of the gauge field should be determined by the inverse
of the operator @2g	� � @	@� . However, it has no inverse, being a projector over
the transverse gauge vector states. This difficulty is removed by fixing a particular
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gauge. If one chooses a covariant gauge condition @	VA
	 D 0, then a gauge fixing

term of the form

�LGF D � 1

2�

X

A

j@	VA
	j2 (1.38)

has to be added to the Lagrangian (1=� acts as a Lagrangian multiplier). The free
equations of motion are then modified as follows:

�
@2g	� � .1 � 1=�/@	@�

�
VA� D 0 : (1.39)

This operator now has an inverse whose Fourier transform is given by

DAB
	�.q/ D i

q2 C i�

�

�g	� C .1� �/
q	q�
q2 C i�

�

ıAB ; (1.40)

which is the propagator in this class of gauges. The parameter � can take any value
and it disappears from the final expression of any gauge invariant, physical quantity.
Commonly used particular cases are � D 1 (Feynman gauge) and � D 0 (Landau
gauge).

While in an Abelian theory the gauge fixing term is all that is needed for a correct
quantization, in a non-Abelian theory the formulation of complete Feynman rules
involves a further subtlety. This is formally taken into account by introducing a
set of D fictitious ghost fields that must be included as internal lines in closed
loops (Faddeev–Popov ghosts [197]). Given that gauge fields connected by a
gauge transformation describe the same physics, there are clearly fewer physical
degrees of freedom than gauge field components. Ghosts appear, in the form of a
transformation Jacobian in the functional integral, in the process of elimination of
the redundant variables associated with fields on the same gauge orbit [14]. By
performing some path integral acrobatics, the correct ghost contributions can be
translated into an additional term in the Lagrangian density. For each choice of the
gauge fixing term, the ghost Lagrangian is obtained by considering the effect of an
infinitesimal gauge transformation V 0C

	 D VC
	 � gCABC�

AVB
	 � @	�

C on the gauge
fixing condition. For @	VC

	 D 0, one obtains

@	V 0C
	 D @	VC

	�gCABC@
	.�AVB

	/�@2�C D ��@2ıACCgCABCV
B
	@

	
�
�A ; (1.41)

where the gauge condition @	VC
	 D 0 has been taken into account in the last step.

The ghost Lagrangian is then given by

�LGhost D N�C�@2ıAC C gCABCV
B
	@

	
�
�A ; (1.42)
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where �A is the ghost field (one for each index A) which has to be treated as a scalar
field, except that a factor �1 has to be included for each closed loop, as for fermion
fields.

Starting from non-covariant gauges, one can construct ghost-free gauges. An
example, also important in other respects, is provided by the set of “axial” gauges
n	VA

	 D 0, where n	 is a fixed reference 4-vector (actually, for n	 spacelike, one
has an axial gauge proper, for n2 D 0, one speaks of a light-like gauge, and for n	
timelike, one has a Coulomb or temporal gauge). The gauge fixing term is of the
form

�LGF D � 1

2�

X

A

jn	VA
	j2 : (1.43)

With a procedure that can be found in QED textbooks [102], the corresponding
propagator in Fourier space is found to be

DAB
	�.q/ D i

q2 C i�

�

�g	� C n	qCn�q	
.nq/

� n2q	q�
.nq/2

�

ıAB : (1.44)

In this case there are no ghost interactions because n	V 0A
	 , obtained by a gauge

transformation from n	VA
	, contains no gauge fields, once the gauge condition

n	VA
	 D 0 has been taken into account. Thus the ghosts are decoupled and can

be ignored.
The introduction of a suitable regularization method that preserves gauge

invariance is essential for the definition and the calculation of loop diagrams and for
the renormalization programme of the theory. The method that is currently adopted
is dimensional regularization [334], which consists in the formulation of the theory
in n dimensions. All loop integrals have an analytic expression that is actually valid
also for non-integer values of n. Writing the results for n D 4 � � the loops are
ultraviolet finite for � > 0 and the divergences reappear in the form of poles at
� D 0.

1.7 Spontaneous Symmetry Breaking in Gauge Theories

The gauge symmetry of the SM was difficult to discover because it is well hidden in
nature. The only observed gauge boson that is massless is the photon. The gluons are
presumed massless but cannot be directly observed because of confinement, and the
W and Z weak bosons carry a heavy mass. Indeed a major difficulty in unifying the
weak and electromagnetic interactions was the fact that electromagnetic interactions
have infinite range .m
 D 0/, whilst the weak forces have a very short range,
owing to mW;Z 6D 0. The solution to this problem lies in the concept of spontaneous
symmetry breaking, which was borrowed from condensed matter physics.
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Fig. 1.1 The potential V D 	2M2=2 C �.M2/2=4 for positive (a) or negative 	2 (b) (for
simplicity, M is a 2-dimensional vector). The small sphere indicates a possible choice for the
direction of M

Consider a ferromagnet at zero magnetic field in the Landau–Ginzburg approxi-
mation. The free energy in terms of the temperature T and the magnetization M can
be written as

F.M;T/ ' F0.T/C 1

2
	2.T/M2 C 1

4
�.T/.M2/2 C � � � : (1.45)

This is an expansion which is valid at small magnetization. The neglect of terms of
higher order in M2 is the analogue in this context of the renormalizability criterion.
Furthermore, �.T/ > 0 is assumed for stability, and F is invariant under rotations,
i.e., all directions of M in space are equivalent. The minimum condition for F reads

@F=@Mi D 0 ;
�
	2.T/C �.T/M2

�
M D 0 : (1.46)

There are two cases, shown in Fig. 1.1. If 	2 & 0, then the only solution is M D 0,
there is no magnetization, and the rotation symmetry is respected. In this case the
lowest energy state (in a quantum theory the vacuum) is unique and invariant under
rotations. If 	2 < 0, then another solution appears, which is

jM0j2 D �	2=� : (1.47)

In this case there is a continuous orbit of lowest energy states, all with the same
value of jMj, but different orientations. A particular direction chosen by the vector
M0 leads to a breaking of the rotation symmetry.

For a piece of iron we can imagine bringing it to high temperature and letting it
melt in an external magnetic field B. The presence of B is an explicit breaking of the
rotational symmetry and it induces a nonzero magnetization M along its direction.
Now we lower the temperature while keeping B fixed. Both � and 	2 depend on the
temperature. With lowering T, 	2 goes from positive to negative values. The critical
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temperature Tcrit (Curie temperature) is where 	2.T/ changes sign, i.e.,	2.Tcrit/D0.
For pure iron, Tcrit is below the melting temperature. So at T D Tcrit iron is a solid.
Below Tcrit we remove the magnetic field. In a solid the mobility of the magnetic
domains is limited and a non-vanishing M0 remains. The form of the free energy
is again rotationally invariant as in (1.45). But now the system allows a minimum
energy state with non-vanishing M in the direction of B. As a consequence the
symmetry is broken by this choice of one particular vacuum state out of a continuum
of them.

We now prove the Goldstone theorem [228]. It states that when spontaneous
symmetry breaking takes place, there is always a zero-mass mode in the spectrum.
In a classical context this can be proven as follows. Consider a Lagrangian

L D 1

2
j@	
j2 � V.
/ : (1.48)

The potential V.
/ can be kept generic at this stage, but in the following we will be
mostly interested in a renormalizable potential of the form

V.
/ D �1
2
	2
2 C 1

4
�
4 ; (1.49)

with no more than quartic terms. Here by 
 we mean a column vector with real
components 
i (1 D 1; 2; : : : ;N) (complex fields can always be decomposed into
a pair of real fields), so that, for example, 
2 D P

i 

2
i . This particular potential

is symmetric under an N � N orthogonal matrix rotation 
0 D O
, where O is
an SO.N/ transformation. For simplicity, we have omitted odd powers of 
, which
means that we have assumed an extra discrete symmetry under 
 $ �
. Note that,
for positive 	2, the mass term in the potential has the “wrong” sign: according to
the previous discussion this is the condition for the existence of a non-unique lowest
energy state. Further, we only assume here that the potential is symmetric under the
infinitesimal transformations


 ! 
0 D 
 C •
 ; •
i D i•�At Aij 
j ; (1.50)

where •�A are infinitesimal parameters and t Aij are the matrices that represent the
symmetry group on the representation carried by the fields 
i (a sum over A is
understood). The minimum condition on V that identifies the equilibrium position
(or the vacuum state in quantum field theory language) is

@V

@
i
.
i D 
0i / D 0 : (1.51)
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The symmetry of V implies that

•V D @V

@
i
•
i D i•�A

@V

@
i
t Aij 
j D 0 : (1.52)

By taking a second derivative at the minimum 
i D 
0i of both sides of the previous
equation, we obtain that, for each A,

@2V

@
k@
i
.
i D 
0i /t

A
ij 


0
j C @V

@
i
.
i D 
0i /t

A
ik D 0 : (1.53)

The second term vanishes owing to the minimum condition (1.51). We then find

@2V

@
k@
i
.
i D 
0i /t

A
ij 


0
j D 0 : (1.54)

The second derivatives M2
ki D .@2V=@
k@
i/.
i D 
0i / define the squared mass

matrix. Thus the above equation in matrix notation can be written as

M2tA
0 D 0 : (1.55)

In the case of no spontaneous symmetry breaking, the ground state is unique, and
all symmetry transformations leave it invariant, so that, for all A, tA
0 D 0. On the
other hand, if for some values of A the vectors .tA
0/ are non-vanishing, i.e., there
is some generator that shifts the ground state into some other state with the same
energy (whence the vacuum is not unique), then each tA
0 ¤ 0 is an eigenstate
of the squared mass matrix with zero eigenvalue. Therefore, a massless mode is
associated with each broken generator. The charges of the massless modes (their
quantum numbers in quantum language) differ from those of the vacuum (usually
all taken as zero) by the values of the tA charges: one says that the massless modes
have the same quantum numbers as the broken generators, i.e., those that do not
annihilate the vacuum.

The previous proof of the Goldstone theorem has been given for the classical
case. In the quantum case, the classical potential corresponds to the tree level
approximation of the quantum potential. Higher order diagrams with loops intro-
duce quantum corrections. The functional integral formulation of quantum field
theory [14, 250] is the most appropriate framework to define and compute, in a
loop expansion, the quantum potential which specifies the vacuum properties of the
quantum theory in exactly the way described above. If the theory is weakly coupled,
e.g., if � is small, the tree level expression for the potential is not too far from the
truth, and the classical situation is a good approximation. We shall see that this is
the situation that occurs in the electroweak theory with a moderately light Higgs
particle (see Sect. 3.5).
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We note that for a quantum system with a finite number of degrees of freedom, for
example, one described by the Schrödinger equation, there are no degenerate vacua:
the vacuum is always unique. For example, in the one-dimensional Schrödinger
problem with a potential

V.x/ D �	
2

2
x2 C �

4
x4 ; (1.56)

there are two degenerate minima at x D ˙x0 D .	2=�/1=2, which we denote by
jCi and j�i. But the potential is not diagonal in this basis: the off-diagonal matrix
elements

hCjVj�i D h�jVjCi � exp .�khd/ D ı (1.57)

are different from zero due to the non-vanishing amplitude for a tunnel effect
between the two vacua given in (1.57), proportional to the exponential of minus the
product of the distance d between the vacua and the height h of the barrier, with k a
constant (see Fig. 1.2). After diagonalization the eigenvectors are .jCi C j�i/=p2
and .jCi � j�i/=p2, with different energies (the difference being proportional
to ı). Suppose now that we have a sum of n equal terms in the potential, i.e.,
V D P

i V.xi/. Then the transition amplitude would be proportional to ın and would
vanish for infinite n: the probability that all degrees of freedom together jump over
the barrier vanishes. In this example there is a discrete number of minimum points.
The case of a continuum of minima is obtained, still in the Schrödinger context, if
we take

V D 1

2
	2r2 C 1

4
�.r2/2 ; (1.58)

Fig. 1.2 A Schrödinger
potential V.x/ analogous to
the Higgs potential



20 1 Gauge Theories and the Standard Model

with r D .x; y; z/. The ground state is also unique in this case: it is given by a state
with total orbital angular momentum zero, i.e., an s-wave state, whose wave function
only depends on jrj, i.e., it is independent of all angles. This is a superposition of
all directions with the same weight, analogous to what happened in the discrete
case. But again, if we replace a single vector r, with a vector field M.x/, that is, a
different vector at each point in space, the amplitude to go from a minimum state in
one direction to another in a different direction goes to zero in the limit of infinite
volume. Put simply, the vectors at all points in space have a vanishingly small
amplitude to make a common rotation, all together at the same time. In the infinite
volume limit, all vacua along each direction have the same energy, and spontaneous
symmetry breaking can occur.

A massless Goldstone boson corresponds to a long range force. Unless the
massless particles are confined, as for the gluons in QCD, these long range forces
would be easily detectable. Thus, in the construction of the EW theory, we cannot
accept physical massless scalar particles. Fortunately, when spontaneous symmetry
breaking takes place in a gauge theory, the massless Goldstone modes exist, but they
are unphysical and disappear from the spectrum. In fact, each of them becomes the
third helicity state of a gauge boson that takes mass. This is the Higgs mechanism
[189, 236, 243, 261] (it should be called the Englert–Brout–Higgs mechanism,
because of the simultaneous paper by Englert and Brout). Consider, for example,
the simplest Higgs model described by the Lagrangian [243, 261]

L D �1
4
F2	� C ˇ

ˇ.@	 C ieA	Q/

ˇ
ˇ2 C 	2
�
 � �

2
.
�
/2 : (1.59)

Note the “wrong” sign in front of the mass term for the scalar field 
, which
is necessary for the spontaneous symmetry breaking to take place. The above
Lagrangian is invariant under the U.1/ gauge symmetry

A	 ! A0
	 D A	 � @	�.x/ ; 
 ! 
0 D exp

�
ieQ�.x/

�

 : (1.60)

For the U(1) charge Q, we take Q
 D �
, as in QED, where the particle is e�.
Let 
0 D v 6D 0, with v real, be the ground state that minimizes the potential and
induces the spontaneous symmetry breaking. In our case v is given by v2 D 	2=�.
Exploiting gauge invariance, we make the change of variables


.x/ !
�

v C h.x/p
2

�

exp

�

�i
�.x/

v
p
2

�

;

A	.x/ ! A	 � @	
�.x/

ev
p
2
: (1.61)
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Then the position of the minimum at 
0 D v corresponds to h D 0, and the
Lagrangian becomes

L D �1
4
F2	� C e2v2A2	 C 1

2
e2h2A2	 C p

2e2hvA2	 C L .h/ : (1.62)

The field �.x/ is the would-be Goldstone boson, as can be seen by considering only
the 
 terms in the Lagrangian, i.e., setting A	 D 0 in (1.59). In fact, in this limit
the kinetic term @	�@

	� remains but with no �2 mass term. Instead, in the gauge
case of (1.59), after changing variables in the Lagrangian, the field �.x/ completely
disappears (not even the kinetic term remains), whilst the mass term e2v2A2	 for

A	 is now present: the gauge boson mass is M D p
2ev. The field h describes the

massive Higgs particle. Leaving a constant term aside, the last term in (1.62) is now

L .h/ D 1

2
@	h@

	h � h2	2 C � � � ; (1.63)

where the dots stand for cubic and quartic terms in h. We see that the h mass term
has the “right” sign, due to the combination of the quadratic tems in h which, after
the shift, arise from the quadratic and quartic terms in 
. The h mass is given by
m2h D 2	2.

The Higgs mechanism is realized in well-known physical situations. It was
actually discovered in condensed matter physics by Anderson [58]. For a super-
conductor in the Landau–Ginzburg approximation, the free energy can be written
as

F D F0 C 1

2
B2 C 1

4m

ˇ
ˇ.r � 2ieA/


ˇ
ˇ2 � ˛j
j2 C ˇj
j4 : (1.64)

Here B is the magnetic field, j
j2 is the Cooper pair .e�e�/ density, and 2e and 2m
are the charge and mass of the Cooper pair. The “wrong” sign of ˛ leads to 
 6D 0

at the minimum. This is precisely the non-relativistic analogue of the Higgs model
of the previous example. The Higgs mechanism implies the absence of propagation
of massless phonons (states with dispersion relation ! D kv, with constant v).
Moreover, the mass term for A is manifested by the exponential decrease of B inside
the superconductor (Meissner effect). However, in condensed matter examples, the
Higgs field is not elementary, but rather a condensate of elementary fields (like for
the Cooper pairs).
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1.8 Quantization of Spontaneously Broken Gauge Theories:
R� Gauges

In Sect. 1.6 we discussed the problems arising in the quantization of a gauge theory
and in the formulation of the correct Feynman rules (gauge fixing terms, ghosts,
etc.). Here we give a concise account of the corresponding results for spontaneously
broken gauge theories. In particular, we describe the R� gauge formalism [14, 207,
250]: in this formalism the interplay of transverse and longitudinal gauge boson
degrees of freedom is made explicit and their combination leads to the cancellation
of the gauge parameter � from physical quantities. We work out in detail an Abelian
example that will be easy to generalize later to the non-Abelian case.

We go back to the Abelian model of (1.59) (with Q D �1). In the treatment
presented there, the would-be Goldstone boson �.x/ was completely eliminated
from the Lagrangian by a nonlinear field transformation formally identical to a
gauge transformation corresponding to the U.1/ symmetry of the Lagrangian. In that
description, in the new variables, we eventually obtain a theory with only physical
fields: a massive gauge boson A	 with mass M D p

2ev and a Higgs particle h with
mass mh D p

2	. This is called a “unitary” gauge, because only physical fields
appear. But if we work out the propagator of the massive gauge boson, viz.,

iD	�.k/ D �i
g	� � k	k�=M2

k2 � M2 C i�
; (1.65)

we find that it has a bad ultraviolet behaviour due to the second term in the
numerator. This choice does not prove to be the most convenient for a discussion
of the ultraviolet behaviour of the theory. Alternatively, one can go to a different
formulation where the would-be Goldstone boson remains in the Lagrangian, but
the complication of keeping spurious degrees of freedom is compensated by having
all propagators with good ultraviolet behaviour (“renormalizable” gauges). To this
end we replace the nonlinear transformation for 
 in (1.61) by its linear equivalent
(after all, perturbation theory deals with small oscillations around the minimum):


.x/ !
�

v C h.x/p
2

�

exp

�

�i
�.x/

v
p
2

�

�
�

v C h.x/p
2

� i
�.x/p
2

�

: (1.66)

Here we have only applied a shift by the amount v and separated the real and
imaginary components of the resulting field with vanishing vacuum expectation
value. If we leave A	 as it is and simply replace the linearized expression for 
,
we obtain the following quadratic terms (those important for propagators):

Lquad D �1
4

X

A

FA
	�F

A	� C 1

2
M2A	A

	

C1

2
.@	�/

2 C MA	@
	� C 1

2
.@	h/

2 � h2	2 : (1.67)
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The mixing term between A	 and @	� does not allow us to write diagonal mass
matrices directly. But this mixing term can be eliminated by an appropriate
modification of the covariant gauge fixing term given in (1.38) for the unbroken
theory. We now take

�LGF D � 1

2�
.@	A	 � �M�/2 : (1.68)

By adding �LGF to the quadratic terms in (1.67), the mixing term cancels (apart
from a total derivative that can be omitted) and we have

Lquad D �1
4

X

A

FA
	�F

A	� C 1

2
M2A	A

	 � 1

2�
.@	A	/

2

C1

2
.@	�/

2 � �

2
M2�2 C 1

2
.@	h/

2 � h2	2 : (1.69)

We see that the � field appears with a mass
p
�M and its propagator is

iD� D i

k2 � �M2 C i�
: (1.70)

The propagators of the Higgs field h and of gauge field A	 are

iDh D i

k2 � 2	2 C i�
; (1.71)

iD	�.k/ D �i

k2 � M2 C i�

�

g	� � .1� �/
k	k�

k2 � �M2

�

: (1.72)

As anticipated, all propagators have good behaviour at large k2. This class of gauges
are called “R� gauges” [207]. Note that for � D 1 we have a sort of generalization
of the Feynman gauge with a Goldstone boson of mass M and a gauge propagator:

iD	�.k/ D �ig	�
k2 � M2 C i�

: (1.73)

Furthermore, for � ! 1 the unitary gauge description is recovered, since the
would-be Goldstone propagator vanishes and the gauge propagator reproduces that
of the unitary gauge in (1.65). All � dependence present in individual Feynman
diagrams, including the unphysical singularities of the � and A	 propagators at
k2 D �M2, must cancel in the sum of all contributions to any physical quantity.

An additional complication is that a Faddeev–Popov ghost is also present in R�
gauges (while it is absent in an unbroken Abelian gauge theory). In fact, under an
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infinitesimal gauge transformation with parameter �.x/, we have the transformations

A	 ! A	 � @	�;


 ! .1 � ie�/

�

v C h.x/p
2

� i
�.x/p
2

�

;

so that

•A	 D �@	� ; •h D �e�� ; •� D e�
p
2

	

v C hp
2




: (1.74)

The gauge fixing condition @	A	 � �M� D 0 undergoes the variation

@	A
	 � �M� ! @	A

	 � �M� �
�

@2 C �M2

	

1C h

v
p
2


�

� ; (1.75)

where we have used M D p
2ev. From this, recalling the discussion in Sect. 1.6, we

see that the ghost is not coupled to the gauge boson (as usual for an Abelian gauge
theory), but has a coupling to the Higgs field h. The ghost Lagrangian is

�LGhost D N�
�

@2 C �M2

	

1C h

v
p
2


�

� : (1.76)

The ghost mass is seen to be mgh D p
�M and its propagator is

iDgh D i

k2 � �M2 C i�
: (1.77)

The detailed Feynman rules follow for all the basic vertices involving the gauge
boson, the Higgs, the would-be Goldstone boson, and the ghost, and are easily
derived, with some algebra, from the total Lagrangian including the gauge fixing
and ghost additions. The generalization to the non-Abelian case is in principle
straightforward, with some formal complications involving the projectors over the
space of the would-be Goldstone bosons and over the orthogonal space of the Higgs
particles. But for each gauge boson that takes mass Ma, we still have a corresponding
would-be Goldstone boson and a ghost with mass

p
�Ma. The Feynman diagrams,

both for the Abelian and the non-Abelian case, are listed explicitly, for example, in
the textbook by Cheng and Li [250].
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We conclude that the renormalizability of non-Abelian gauge theories, also in the
presence of spontaneous symmetry breaking, was proven in the fundamental work
by t’Hooft and Veltman [358], and is discussed in detail in [278].
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Chapter 2
QCD: The Theory of Strong Interactions

2.1 Introduction

This chapter is devoted to a concise introduction to quantum chromodynamics
(QCD), the theory of strong interactions [215, 234, 360] (for a number of dedicated
books on QCD, see [173], and also [33]). The main emphasis will be on ideas
without too many technicalities. As an introduction we present here a broad
overview of the strong interactions (for reviews of the subject, see, for example,
[29, 30]). Then some methods of non-perturbative QCD will be briefly described,
including both analytic approaches and simulations of the theory on a discrete
spacetime lattice. Then we shall proceed to the main focus of the chapter, that is, the
principles and applications of perturbative QCD, which will be discussed in detail.

As mentioned in Chap. 1, the QCD theory of strong interactions is an unbroken
gauge theory based on the colour group SU.3/. The eight massless gauge bosons
are the gluons gA	 and the matter fields are colour triplets of quarks qai (in different
flavours i). Quarks and gluons are the only fundamental fields of the Standard Model
(SM) with strong interactions (hadrons). The QCD Lagrangian was introduced
in (1.28)–(1.31) of Sect. 1.4. For quantization the classical Lagrangian in (1.28)
must be extended to contain gauge fixing and ghost terms, as described in Chap. 1.
The Feynman rules of QCD are listed in Fig. 2.1. The physical vertices in QCD
include the gluon–quark–antiquark vertex, analogous to the QED photon–fermion–
antifermion coupling, but also the 3-gluon and 4-gluon vertices, of order es and e2s
respectively, which have no analogue in an Abelian theory like QED.

Why SU.NC D 3/colour? The choice of SU.3/ as colour gauge group is unique in
view of a number of constraints:

• The group must admit complex representations because it must be able to
distinguish a quark from an antiquark [214]. In fact, there are meson states made
up of qNq but not analogous qq bound states. Among simple groups, this restricts
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Fig. 2.1 Feynman rules for QCD. Solid lines represent the quarks, curly lines the gluons, and
dotted lines the ghosts (see Chap. 1). The gauge parameter is denoted by �. The 3-gluon vertex is
written as if all gluon lines are outgoing

the choice to SU.N/ with N 
 3, SO.4N C 2/ with N 
 2
�
taking into account

the fact that SO.6/ has the same algebra as SU.4/
�
, and E.6/.

• The group must admit a completely antisymmetric colour singlet baryon made
up of three quarks, viz., qqq. In fact, from the study of hadron spectroscopy, we
know that the low-lying baryons, completing an octet and a decuplet of (flavour)
SU.3/ (the approximate symmetry that rotates the three light quarks u, d, and s),
are made up of three quarks and are colour singlets. The qqq wave function must
be completely antisymmetric in colour in order to agree with Fermi statistics.
Indeed, if we consider, for example, a N�CC with spin z-component +3/2, this
is made up of .u " u " u "/ in an s-state. Thus its wave function is totally
symmetric in space, spin, and flavour, so that complete antisymmetry in colour is
required by Fermi statistics. In QCD this requirement is very simply satisfied by
�abcqaqbqc, where a, b, c are SU.3/colour indices.

• The choice of SU.NC D 3/colour is confirmed by many processes that directly
measure NC. Some examples are listed here.
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Fig. 2.2 Comparison of the data on R D �.eCe� ! hadrons/=�point.eCe� ! �C��/ with the
QCD prediction (adapted from [306]). NC D 3 is indicated by the data points above �10GeV
(the bNb threshold) and �40GeV, where the rise due to the Z0 resonance becomes appreciable

The total rate for hadronic production in eCe� annihilation is linear in NC. More
precisely, if we consider R D ReCe� D �.eCe� ! hadrons/=�point.eCe� !
�C��/ above the bNb threshold and below mZ , and if we neglect small computable
radiative corrections (which will be discussed in Sect. 2.7), we have a sum of
individual contributions (proportional to Q2, where Q is the electric charge in units
of the proton charge) from qNq final states with q D u; c; d; s; b :

R � NC

	

2 � 4

9
C 3 � 1

9




� NC
11

9
: (2.1)

The data neatly indicate NC D 3, as can be seen from Fig. 2.2 [306]. The slight
excess of the data with respect to the value 11/3 is due to QCD radiative corrections
(see Sect. 2.7).

Similarly, we can consider the branching ratio B.W� ! e� N�/, again in the Born
approximation. The possible fermion–antifermion (f Nf ) final states are for f D e�,
��, £�, d, s (there is no f D b because the top quark is too heavy for bNt to
occur). Each channel gives the same contribution, except that for quarks we have
NC colours:

B.W� ! e� N�/ � 1

3C 2NC
: (2.2)

For NC D 3, we obtain B D 11% and the experimental number is B D 10:7%.
Another analogous example is the branching ratio B.£� ! e� N�e�£/. From the

final state channels with f D e�, ��, d, we find

B.£� ! e� N�e�£/ � 1

2C NC
: (2.3)
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For NC D 3, we obtain B D 20% and the experimental number is B D 18% (the
lower accuracy in this case is explained by the larger radiative and phase-space
corrections, because the mass of £� is much smaller than mW ).

An important process that is quadratic in NC is the rate � . 0 ! 2”/. This rate
can be reliably calculated from a theorem in field theory which has to do with the
chiral anomaly:

� . 0 ! 2”/ �
	
NC

3


2 ˛2m3
 0

32�3f 2 
D .7:73˙ 0:04/

	
NC

3


2
eV ; (2.4)

where the prediction is obtained for f  D .130:7 ˙ 0:37/MeV. The experimental
result is � D .7:7˙ 0:5/ eV, in remarkable agreement with NC D 3.

There are many more experimental confirmations that NC D 3. For example, the
rate for Drell–Yan processes (see Sect. 2.9) is inversely proportional to NC.

2.2 Non-perturbative QCD

The QCD Lagrangian in (1.28) has a simple structure, but a very rich dynamical
content. It gives rise to a complex spectrum of hadrons, implies the striking
properties of confinement and asymptotic freedom, is endowed with an approximate
chiral symmetry which is spontaneously broken, has a highly nontrivial topological
vacuum structure (instantons, U.1/A symmetry breaking, strong CP violation which
is a problematic item in QCD possibly connected with new physics, like axions, and
so on), and an intriguing phase transition diagram (colour deconfinement, quark–
gluon plasma, chiral symmetry restoration, colour superconductivity, and so on).

How do we get testable predictions from QCD? On the one hand there are non-
perturbative methods. The most important at present is the technique of lattice
simulations (for a recent review, see [272]): it is based on first principles, it has
produced very valuable results on confinement, phase transitions, bound states,
hadronic matrix elements, and so on, and it is by now an established basic tool.
The main limitation is from computing power, so there is continuous progress and
good prospects for the future.

Another class of approaches is based on effective Lagrangians, which provide
simpler approximations than the full theory, valid in some definite domain of
physical conditions. Typically at energies below a given scale L, particles with
mass greater than L cannot be produced, and thus only contribute short distance
effects as virtual states in loops. Under suitable conditions one can write down a
simplified effective Lagrangian, where the heavy fields have been eliminated (one
says “integrated out”). Virtual heavy particle short distance effects are absorbed
into the coefficients of the various operators in the effective Lagrangian. These
coefficients are determined in a matching procedure, by requiring that the effective
theory reproduce the matrix elements of the full theory up to power corrections.
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Chiral Lagrangians are based on soft pion theorems [362] and are valid for
suitable processes at energies below 1 GeV (for a recent, concise review, see [212]
and references therein). Heavy quark effective theories [178] are obtained by
expanding in inverse powers of the heavy quark mass and are mainly important
for the study of b and, to lesser accuracy, c decays (for reviews, see, for example,
[301]).

Soft-collinear effective theories (SCET) [84], are valid for processes where
quarks have energies much greater than their mass. Light energetic quarks not only
emit soft gluons, but also collinear gluons (a gluon in the same direction as the
original quark), without changing their virtuality. In SCET, the logs associated with
these soft and collinear gluons are resummed.

The approach using QCD sum rules [298, 325] has led to interesting results
but now appears not to offer much potential for further development. On the other
hand, the perturbative approach, based on asymptotic freedom, still remains the
main quantitative connection to experiment, due to its wide range of applicability to
all sorts of “hard” processes.

2.2.1 Progress in Lattice QCD

One of the main approaches to non-perturbative problems in QCD is by simulations
of the theory on a lattice, a technique initiated by K. Wilson in 1974 [366] which has
shown continuous progress over the last decades. In this approach the QCD theory
is reformulated on a discrete space time, a hypercubic lattice of sites (in the simplest
realizations) with spacing a and 4-volume L4. On each side, there are N sites with
L D Na. Over the years we have learned how to efficiently describe a field theory
on a discrete spacetime and how to implement gauge symmetry, chiral symmetry,
and so on (for a recent review see, for example, [272]).

Gauge and matter fields are specified on the lattice sites and the path integral is
computed numerically as a sum over the field configurations. Much more powerful
computers than in the past now allow for a number of essential improvements.
As one is eventually interested in the continuum limit a ! 0, it is important to
work with as fine a lattice spacing a as possible. Methods have been developed
for “improving” the Lagrangian in such a way that the discretization errors vanish
faster than linearly in a. A larger lattice volume (i.e., large L or N) is also useful
since the dimensions of the lattice should be as large as possible in comparison with
the dimensions of the hadrons to be studied. In many cases the volume corrections
are exponentially damped, but this is not always the case. Lattice simulation
is limited to large enough masses of light quarks: in fact, heavier quarks have
shorter wavelengths and can be accommodated in a smaller volume. In general,
computations are done for quark and pion masses heavier than in reality, and then
extrapolated to the physical values, but at present one can work with smaller quark
masses than in the past. One can also take advantage of the chiral effective theory
in order to control the chiral logs log.mq=4�f / and guide the extrapolation.
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A big step that has been taken recently, made possible by the availability of
more powerful dedicated computers, is the evolution from quenched (i.e., with no
dynamical fermions) to unquenched calculations. In doing this, an evident improve-
ment is obtained in the agreement between predictions and data. For example
[272], modern unquenched simulations reproduce the hadron spectrum quite well.
Calculations with dynamical fermions (which take into account the effects of virtual
quark loops) involve evaluation of the quark determinant, which is a difficult task.
Just how difficult depends on the particular calculation method. There are several
approaches (Wilson, twisted mass, Kogut–Susskind staggered, Ginsparg–Wilson
fermions), each with its own advantages and disadvantages (including the time it
takes to run the simulation on a computer). A compromise between efficiency and
theoretical purity is needed. The most reliable lattice calculations are today for 2C1
light quarks (degenerate up and down quarks and a heavier strange quark s). The first
calculations for 2C 1C 1 including charm quarks are starting to appear.

Lattice QCD is becoming increasingly predictive and plays a crucial role in
different domains. For example, in flavour physics it is essential for computing the
relevant hadronic matrix elements. In high temperature QCD the most illuminating
studies of the phase diagram, the critical temperature, and the nature of the phase
transitions are obtained by lattice QCD: as we now discuss, the best arguments to
prove that QCD implies confinement come from the lattice.

2.2.2 Confinement

Confinement is the property that no isolated coloured charge can exist. One only
sees colour singlet particles. Our understanding of the confinement mechanism has
much improved thanks to lattice simulations of QCD at finite temperatures and
densities (for reviews see, e.g., [85, 162, 199]). For example, the potential between
a quark and an antiquark has been studied on the lattice [256]. It has a Coulomb
part at short range and a linearly increasing term at long range:

VqNq � CF

�
˛s.r/

r
C � � � C �r

�

; (2.5)

where

CF D 1

NC

X

A

t At A D N2C � 1
2NC

(2.6)

with NC the number of colours (NC D 3 in QCD). The scale dependence of ˛s (the
distance r is Fourier-conjugate to the momentum transfer) will be explained in detail
later. The slope decreases with increasing temperature until it vanishes at a critical
temperature TC. Then above TC the slope remains zero, as shown in Fig. 2.3. The
value of the critical temperature is estimated to be around TC � 175MeV.
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Fig. 2.3 The potential between a quark and an antiquark computed on the lattice in the quenched
approximation [256]. The upper panel shows that the slope of the linearly rising term decreases
with temperature and vanishes at the critical temperature TC. At T � TC the slope remains at zero
(lower panel)

The linearly increasing term in the potential makes it energetically impossible
to separate a qNq pair. If the pair is created at one spacetime point, for example in
eCe� annihilation, and then the quark and the antiquark start moving away from
each other in the center-of-mass frame, it soon becomes energetically favourable
to create additional pairs, smoothly distributed in rapidity between the two leading
charges, which neutralize colour and allow the final state to be reorganized into two
jets of colourless hadrons that communicate in the central region by a number of
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“wee” hadrons with small energy. It is just like the familiar example of the broken
magnet: if you try to isolate a magnetic pole by stretching a dipole, the magnet
breaks down and two new poles appear at the breaking point.

Confinement is essential to explain why nuclear forces have very short range
while massless gluon exchange would be long range. Nucleons are colour singlets
and they cannot exchange colour octet gluons but only colourless states. The lightest
colour singlet hadronic particles are pions. So the range of nuclear forces is fixed by
the pion mass r ' m�1

  � 10�13 cm, since V � exp.�m r/=r.
The phase transitions of colour deconfinement and of chiral restoration appear to

happen together on the lattice [85, 162, 199, 272] (see Fig. 2.4). A rapid transition
is observed in lattice simulations where the energy density �.T/ is seen to increase
sharply near the critical temperature for deconfinement and chiral restoration
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Fig. 2.4 Order parameters for deconfinement (bottom) and chiral symmetry restoration (top), as
a function of temperature [85, 272]. On a finite lattice the singularities associated with phase
transitions are not present, but their development is indicated by a rapid rate of change. With
increasing temperature, the vacuum expectation value of the quark–antiquark condensate goes from
the finite value that breaks chiral symmetry down to zero, where chiral symmetry is restored. In a
comparable temperature range, the Wilson plaquette, the order parameter for deconfinement, goes
from zero to a finite value. Figure reproduced with permission. Copyright (c) 2012 by Annual
Reviews
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Fig. 2.5 The energy density divided by the fourth power of the temperature, computed on the
lattice with different numbers of sea flavours, shows a marked rise near the critical temperature
(adapted from [85] and [272]). The arrows on top show the limit for a perfect Bose gas (while the
hot dense hadronic fluid is not expected to be a perfect gas)
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Fig. 2.6 Left: a schematic view of the QCD phase diagram. Right: on the lattice the nature of the
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Figure reproduced with permission. Copyright (c) 2012 by Annual Reviews

(see Fig. 2.5). The critical parameters and the nature of the phase transition depend
on the number of quark flavours nf and on their masses (see Fig. 2.6). For example,
for nf D 2 or 2C1 (i.e., 2 light u and d quarks and 1 heavier s quark), TC � 175MeV
and �.TC/ � 0:5–1.0 GeV/fm3. For realistic values of the masses ms and mu;d, the
two phases are connected by a smooth crossover, while the phase transition becomes
first order for very small or very large mu;d;s. Accordingly, the hadronic phase and
the deconfined phase are separated by a crossover region at small densities and by
a critical line at high densities that ends with a critical point. Determining the exact
location of the critical point in T and 	B is an important challenge for theory and
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is also important for the interpretation of heavy ion collision experiments. At high
densities, the colour superconducting phase is also present, with bosonic diquarks
acting as Cooper pairs.

A large investment is being made in heavy ion collision experiments with the aim
of finding some evidence of the quark–gluon plasma phase. Many exciting results
have been found at the CERN SPS in the past few years, more recently at RHIC
and now at the LHC, in dedicated heavy ion runs [296] (the ALICE detector is
especially designed for the study of heavy ion collisions).

2.2.3 Chiral Symmetry in QCD and the Strong CP Problem

In the QCD Lagrangian (1.28), the quark mass terms are of the general form
[m N L R Ch:c:] (recall the definition of  L;R in Sect. 1.5 and the related discussion).
These terms are the only ones that show a chirality flip. In the absence of these
terms, i.e., for m D 0, the QCD Lagrangian would be invariant under independent
unitary transformations acting separately on  L and  R. Thus, if the masses of the
Nf lightest quarks are neglected, the QCD Lagrangian is invariant under a global
U.Nf/L

N
U.Nf/R chiral group.

Consider Nf D 2. Then SU.2/V corresponds to the observed approximate
isospin symmetry and U.1/V to the portion of baryon number associated with u
and d quarks. Since no approximate parity doubling of light quark bound states
is observed, the U.2/A symmetry must be spontaneously broken (for example,
no opposite parity analogues of protons and neutrons exist with a few tens of
MeV separation in mass from the ordinary nucleons). The breaking of chiral
symmetry is induced by the VEV of a quark condensate. For Nf D 2 this is
[NuLuRC NdLdRCh:c:]. A recent lattice calculation [208] has given for this condensate
the value Œ234˙ 18MeV]3 (in MS, Nf D 2C 1, with the physical ms value, at the
scale of 2 GeV). This scalar operator is an isospin singlet, so it preserves U.2/V, but
breaks U.2/A. In fact, it transforms like (1/2,1/2) under U.2/L

N
U.2/R, but is a

singlet under the diagonal group U.2/V.
The pseudoscalar mesons are obvious candidates for the would-be Goldstone

bosons associated with the breakdown of the axial group, in that they have the
quantum number of the broken generators: the three pions are the approximately
massless Goldstone bosons (exactly massless in the limit of vanishing u and d
quark masses) associated with the breaking of three generators of U.2/L

N
U.2/R

down to SU.2/V
N

U.1/V
N

U.1/A. The couplings of Goldstone bosons are very
special: in particular only derivative couplings are allowed. The pions as pseudo-
Goldstone bosons have couplings that satisfy strong constraints. An effective chiral
Lagrangian formalism [362] allows one to systematically reproduce the low energy
theorems implied by the approximate status of Goldstone particles for the pion, and
successfully describes QCD for energies at scales below �1GeV.
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The breaking mechanism for the remaining U.1/A arises from an even subtler
mechanism. A state in the �–�0 space cannot be the associated Goldstone particle
because the masses are too large [361] and the �0 mass does not vanish in the chiral
limit [367]. Rather, the conservation of the singlet axial current j	5 D P Nqi
	
5qi
is broken by the Adler–Bell–Jackiw anomaly [19]:

@	j
	
5 � I.x/ D Nf

˛s

4�

X

A

FA
	�

QFA	� D Nf
˛s

2�
Tr.F��

QF��/ ; (2.7)

recalling that F�� D P
FA
	�t

A and the normalization is Tr.t AtB/ D 1=2ıAB, with
FA
	� given in (1.31) and j	5 the u C d singlet axial current (the factor of Nf, in this

case Nf D 2, in front of the right-hand side takes into account the fact that Nf

flavours are involved), and

QFA
	� D 1

2
�	���F

A�� : (2.8)

An important point is that the pseudoscalar quantity I.x/ is a four-divergence. More
precisely, one can check that

Tr.F��
QF��/ D @	k	 ; (2.9)

with

k	 D �	���Tr

�

A�
	

F�� � 2

3
iesA�A�


�

: (2.10)

As a consequence the modified current Qj	5 and its associated charge QQ5 still appear
to be conserved, viz.,

@	Qj	5 D @	

�
j	5 � Nf

˛s

2�
k	
�

D 0 ; (2.11)

and could act as a modified chiral current and charge with an additional gluonic
component. But actually this charge is not conserved due to the topological structure
of the QCD vacuum (instantons) as discussed in the following (for an introduction,
see [308]).

The configuration where all gauge fields are zero AA
	 D 0 can be called

“the vacuum”. However, all configurations connected to AA
	 D 0 by a gauge

transformation must also correspond to the same physical vacuum. For example, in
an Abelian theory all gauge fields that can be written as the gradient of a scalar,
i.e., AA

	 D @	�.x/, are equivalent to AA
	 D 0. In non-Abelian gauge theories,

there are some “large” gauge transformations that are topologically nontrivial and
correspond to non-vanishing integer values of a topological charge, the “winding
number”. Taking SU.2/ for simplicity, although in QCD it could be any such
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subgroup of colour SU.3/, we can consider the following time-independent gauge
transformation:

˝1.x/ D x2 � d2 C 2id��x
x2 C d2

; (2.12)

where d is a positive constant. Note that˝�1
1 D ˝�

1 . Starting fromA� D .A0;Ai/ D
.0; 0/ (i D 1; 2; 3), with A� D P

Aa
	�

a=2 and recalling the general expression of a
gauge transformation in (1.15), the gauge transform of the potential by ˝1 is

A.1/j D � i

es

�rj˝1.x/
�
˝�1
1 .x/ : (2.13)

For the vector potential A.1/, which is a pure gauge and hence part of the “vacuum”,
the winding number n, defined in general by

n D ie3s
24�2

Z

d3xTr
�
Ai.x/Aj.x/Ak.x/

�
�ijk ; (2.14)

is equal to 1, i.e., n D 1. Similarly, for A.m/ obtained from ˝m = [˝1�
m, one has

n D m. Given (2.9), we might expect the integrated four-divergence to vanish, but
instead one finds

˛s

4�

Z

d4xTr.F��
QF��/ D ˛s

4�

Z

d4x @	k
	 D ˛s

4�

�Z

d3x k0

�C1

�1
D nC � n� ;

(2.15)

for a configuration of gauge fields that vanish fast enough on the space sphere at
infinity, and the winding numbers are n� at time t D 	1 (“instantons”).

From the above discussion it follows that in QCD all gauge fields can be
classified in sectors with different n: there is a vacuum for each n, jni, and˝1jni D
jn C 1i (not gauge invariant!). The true vacuum must be gauge invariant (up to a
phase) and is obtained as a superposition of all jni:

j�i D
C1X

�1
e�in� jni : (2.16)

In fact,

˝1j�i D
X

e�in� jn C 1i D ei� j�i : (2.17)

If we compute the expectation value of any operator O in the � vacuum, we find

h� jOj�i D
X

m;n

ei.m�n/� hmjOjni : (2.18)
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The path integral describing the O vacuum matrix element at � D 0 must be
modified to reproduce the extra phase, taking (2.15) into account:

h� jOj�i D
Z

dAd N d O exp

�

iSQCD C i�
˛s

4�

Z

d4xTr.F��
QF��/

�

: (2.19)

This is equivalent to adding a � term to the QCD Lagrangian:

LQCD D �
˛s

4�

Z

d4xTr.F��
QF��/ : (2.20)

The � term is parity (P) odd and charge conjugation (C) even, so it introduces
CP violation in the theory (and also time reversal (T) violation). A priori one
would expect Q� to be O.1/. But it would contribute to the neutron electric dipole
moment, according to dn.e�cm/ � 3 � 10�16 Q� . The strong experimental bounds
on dn, viz., dn.e�cm/ � 3 � 10�26 [307], imply that Q� must be very small, viz.,
Q� � 10�10. The so-called “strong CP problem” or “�-problem” consists in finding
an explanation for such a small value [263, 308]. An important point that is relevant
for a possible solution is that a chiral transformation translates � by a fixed amount.
By recalling (2.11), we have

ei• QQ5 j�i D j� � 2Nfıi : (2.21)

To prove this relation we first observe that QQ5 is not gauge invariant under ˝1,
because it involves k0 :

˝1
QQ5˝�1

1 D Q5 �˝12Nf
˛s

4�

�Z

d3x k0

�

˝�1
1 D QQ5 � 2Nf : (2.22)

It then follows that

˝1ei• QQ5 j�i D ˝1ei• QQ5˝�1
1 ˝1j�i D ei.��2Nfı/ei• QQ5 j�i ; (2.23)

which implies (2.21). Thus in a chiral invariant theory, one could dispose of � .
For this it would be sufficient for a single quark mass to be zero, and the obvious
candidate would be mu D 0. But apparently this possibility has been excluded [263].
For non-vanishing quark masses, the transformation m ! U�

LmUR needed to make
the mass matrix Hermitian (which implies 
5-free) and diagonal involves a chiral
transformation that affects � . Considering that U.N/ D U.1/

N
SU.N/ and that

for Hermitian m the argument of the determinant vanishes, i.e., arg det m D 0, the
transformation from a generic m0 to a real and diagonal m gives

arg det m D 0 D arg det U�
L C arg det m0 C arg det UR

D �2Nf.ıL � ıR/C arg det m0 : (2.24)
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From this equation one derives the phase ıR � ıL of the chiral transformation and
then, by (2.21), the important result for the effective � value:

�eff D � C arg det m0 : (2.25)

As we have seen the small empirical value of �eff poses a serious naturalness
problem for the SM. Among the possible solutions, perhaps the most interesting
option is a mechanism proposed by Peccei and Quinn [309]. One assumes that the
SM or an enlarged theory is invariant under an additional chiral symmetry U.1/PQ

acting on the fields of the theory. This symmetry is spontaneously broken by the
vacuum expectation value vPQ of a scalar field. The associated Goldstone boson, the
axion, is actually not massless, because of the chiral anomaly. The parameter � is
canceled by the vacuum expectation value of the axion field due to the properties of
the associated potential, also determined by the anomaly. Axions could contribute
to the dark matter in the Universe, if their mass falls in a suitable narrow range (for
a recent review, see, for example, [262]).

Alternative solutions to the �-problem have also been suggested. Some of them
can probably be discarded (for example, the idea that the up quark is exactly
massless), while others are still possible: for example, in supersymmetric theories,
if the smallness of � could be guaranteed at the Planck scale by some feature of
the more fundamental theory valid there, then the non-renormalization theorems of
supersymmetry would preserve its small value throughout the transition down to
low energy.

2.3 Massless QCD and Scale Invariance

As discussed in Chap. 2, the QCD Lagrangian in (1.28) only specifies the theory at
the classical level. The procedure for quantizing gauge theories involves a number
of complications that arise from the fact that not all degrees of freedom of gauge
fields are physical because of the constraints from gauge invariance which can be
used to eliminate the dependent variables. This is already true for Abelian theories
and one is familiar with the QED case. One introduces a gauge fixing term (an
additional term in the Lagrangian density that acts as a Lagrange multiplier in the
action extremization). One can choose to preserve manifest Lorentz invariance. In
this case, one adopts a covariant gauge, like the Lorentz gauge, and in QED one
proceeds according to the formalism of Gupta and Bleuler [102]. Or one can give
up explicit formal covariance and work in a non-covariant gauge, like the Coulomb
or the axial gauges, and only quantize the physical degrees of freedom (in QED the
transverse components of the photon field).

While this is all for an Abelian gauge theory, in the non-Abelian case some
additional complications arise, in particular the need to introduce ghosts for the
formulation of Feynman rules. As we have seen, there are in general as many ghost
fields as gauge bosons, and they appear in the form of a transformation Jacobian
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in the Feynman functional integral. Ghosts only propagate in closed loops and
their vertices with gluons can be included as additional terms in the Lagrangian
density, these being fixed once the gauge fixing terms and their infinitesimal gauge
transformations are specified. Finally, the complete Feynman rules can be obtained
in either the covariant or the axial gauges, and they appear in Fig. 2.1.

Once the Feynman rules are derived, we have a formal perturbative expansion,
but loop diagrams generate infinities. First a regularization must be introduced,
compatible with gauge symmetry and Lorentz invariance. This is possible in
QCD. In principle, one can introduce a cutoff K (with dimensions of energy), for
example, as done by Pauli and Villars [102]. But at present, the universally adopted
regularization procedure is dimensional regularization, which we will describe
briefly later on.

After regularization, the next step is renormalization. In a renormalizable theory
(which is the case for all gauge theories in four spacetime dimensions and for QCD
in particular), the dependence on the cutoff can be completely reabsorbed in a redef-
inition of particle masses, gauge coupling(s), and wave function normalizations.
Once renormalization is achieved, the perturbative definition of the quantum theory
that corresponds to a classical Lagrangian like (1.28) is completed.

In the QCD Lagrangian of (1.28), quark masses are the only parameters with
physical dimensions (we work in the natural system of units „ D c D 1). Naively,
we would expect massless QCD to be scale invariant. This is actually true at the
classical level. Scale invariance implies that dimensionless observables should not
depend on the absolute scale of energy, but only on ratios of energy-dimensional
variables. The massless limit should be relevant for the large asymptotic energy
limit of processes which are non-singular for m ! 0.

The naive expectation that massless QCD should be scale invariant is false in
the quantum theory. The scale symmetry of the classical theory is unavoidably
destroyed by the regularization and renormalization procedure, which introduce a
dimensional parameter into the quantum version of the theory. When a symmetry
of the classical theory is necessarily destroyed by quantization, regularization, and
renormalization one talks of an “anomaly”. So in this sense, scale invariance in
massless QCD is anomalous.

While massless QCD is not in the end scale invariant, the departures from scaling
are asymptotically small, logarithmic, and computable. In massive QCD, there are
additional mass corrections suppressed by powers of m=E, where E is the energy
scale (for processes that are non-singular in the limit m ! 0). At the parton level
(q and g), we can consider applying the asymptotic predictions of massless QCD to
processes and observables (we use the word “processes” for both) with the following
properties (“hard processes”):

• All relevant energy variables must be large:

Ei D ziQ ; Q � mj ; zi scaling variables O.1/ : (2.26)
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• There should be no infrared singularities (one talks of “infrared safe” processes).
• The processes concerned must be finite for m ! 0 (no mass singularities).

To have any chance of satisfying these criteria, processes must be as “inclusive” as
possible: one should include all final states with massless gluon emission and add
all mass degenerate final states (given that quarks are massless, qNq pairs can also be
massless if “collinear”, that is moving together in the same direction at a common
speed, the speed of light).

In perturbative QCD one computes inclusive rates for partons (the fields in the
Lagrangian, that is, in QCD, quarks and gluons) and takes them as equal to rates
for hadrons. Partons and hadrons are considered as two equivalent sets of complete
states. This is called “global duality”, and it is rather safe in the rare instance of
a totally inclusive final state. It is less so for distributions, like distributions in the
invariant mass M (“local duality”), where it can be reliable only if smeared over a
sufficiently wide bin in M.

Let us discuss infrared and collinear safety in more detail. Consider, for example,
a quark virtual line that ends up in a real quark plus a real gluon (Fig. 2.7). For the
propagator we have

propagator D 1

. p C k/2 � m2
D 1

2. p � k/ D 1

2EkEp
� 1

1 � ˇp cos �
: (2.27)

Since the gluon is massless, Ek can vanish and this corresponds to an infrared
singularity. Remember that we have to take the square of the amplitude and integrate
it over the final state phase space, resulting in this case with dEk=Ek. Indeed, we
get 1=E2k from the squared amplitude and d3k=Ek � EkdEk from the phase space.

Further, for m ! 0, ˇp D
q
1 � m2=E2p ! 1 and 1�ˇp cos � vanishes at cos � D 1,

leading to a collinear mass singularity.
There are two very important theorems on infrared and mass singularities.

The first one is the Bloch–Nordsieck theorem [103]: infrared singularities
cancel between real and virtual diagrams (see Fig. 2.8) when all resolution-
indistinguishable final states are added up. For example, for each real detector there
is a minimum energy of gluon radiation that can be detected. For the cancellation of
infrared divergences, one should add all possible gluon emission with a total energy
below the detectable minimum.

Fig. 2.7 The splitting of a
virtual quark into a quark and
a gluon
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Fig. 2.8 Diagrams contributing to the total cross-section eCe� ! hadrons at order ˛s. For
simplicity, only the final state quarks and (virtual or real) gluons are drawn

e+

e

γ, Z

Fig. 2.9 Total cross-section eCe� ! hadrons

The second one is the Kinoshita–Lee–Nauenberg theorem [265]: mass singu-
larities connected with an external particle of mass m are canceled if all degenerate
states (that is, with the same mass) are summed up. Hence, for a final state particle of
mass m, we should add all final states that have the same mass in the limit m ! 0,
including also gluons and massless pairs. If a completely inclusive final state is
taken, only the mass singularities from the initial state particles remain (we shall
see that they will be absorbed inside the non-perturbative parton densities, which
are probability densities for finding the given parton in the initial hadron).

Hard processes to which the massless QCD asymptotics may possibly apply
must be infrared and collinear safe, that is they must satisfy the requirements of
the Bloch–Nordsieck and the Kinoshita–Lee–Nauenberg theorems. We now give
some examples of important hard processes. One of the simplest hard processes is
the totally inclusive cross-section for hadron production in eCe� annihilation (see
Fig. 2.9), parameterized in terms of the already mentioned dimensionless observable
R D �.eCe� ! hadrons/=�point.eCe� ! �C��/. The pointlike cross-section in
the denominator is given by �point D 4�˛2=3s, where s D Q2 D 4E2 is the squared
total center of mass energy and Q is the mass of the exchanged virtual gauge boson.

At parton level, the final state is qNq C ng C n0q0 Nq0, and n and n0 are limited at
each order of perturbation theory. It is assumed that the conversion of partons into
hadrons does not affect the rate (it happens with probability 1). We have already
mentioned that, in order for this to be true within a given accuracy, averaging over
a sufficiently large bin of Q must be understood. The binning width is larger in the
vicinity of thresholds: for example, when one goes across the charm cNc threshold,
the physical cross-section shows resonance bumps that are absent in the smooth
partonic counterpart, which, however, gives an average of the cross-section.
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Fig. 2.10 Deep inelastic
lepto-production

N

θ

A very important class of hard processes is deep inelastic scattering (DIS):

l C N ! l0 C X ; l D e˙; �˙; �; N� : (2.28)

This has played, and still plays, a very important role in our understanding of QCD
and nucleon structure. For the processes in (2.28) (see Fig. 2.10), in the lab system
where the nucleon of mass m is at rest, we have

Q2 D �q2 D �.k � k0/2 D 4EE0 sin2
�

2
; m� D . p:q/ ; x D Q2

2m�
: (2.29)

In this case the virtual momentum q of the gauge boson is spacelike. x is the
familiar Bjorken variable. The DIS processes in QCD will be discussed extensively
in Sect. 2.8.

2.4 The Renormalization Group and Asymptotic Freedom

In this section we aim to provide a reasonably detailed introduction to the renor-
malization group formalism and the concept of running coupling, which leads to the
result that QCD has the property of asymptotic freedom. We start with a summary
of how renormalization works.

In the simplest conceptual situation imagine that we implement regularization of
divergent integrals by introducing a dimensional cutoff K that respects gauge and
Lorentz invariance. The dependence of renormalized quantities on K is eliminated
by absorbing it into a redefinition of m, the quark mass (for simplicity we assume a
single flavour here), the gauge coupling e (which can be e in QED or es in QCD),
and the wave function renormalization factors Z1=2q;g for q and g, using suitable
renormalization conditions (that is, precise definitions of m, g, and Z that can be
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implemented order by order in perturbation theory). For example, we can define
the renormalized mass m as the position of the pole in the quark propagator, and
similarly, the normalization Zq as the residue at the pole:

propagator D Zq
p2 � m2

C no-pole terms : (2.30)

The renormalized coupling e can be defined in terms of a renormalized 3-point
vertex at some specified values of the external momenta. More precisely, we
consider a one-particle irreducible vertex (1PI). We recall that a connected Green
function is the sum of all connected diagrams, while 1PI Green functions are the
sum of all diagrams that cannot be separated into two disconnected parts by cutting
only one line.

We now become more specific, by concentrating on the case of massless QCD.
If we start from a vanishing mass at the classical (or “bare”) level m0 D 0, the
mass is not renormalized because it is protected by a symmetry, namely, chiral
symmetry. The conserved currents of chiral symmetry are axial currents: Nq
	
5q.
Using the Dirac equation, divergence of the axial current gives @	.Nq
	
5q/ D
2mNq
5q. So the axial current and the corresponding axial charge are conserved in
the massless limit. Actually, the singlet axial current is not conserved due to the
anomaly, but since QCD is a vector theory, we do not have to worry about chiral
anomalies in the present context. As there are no 
5 factors around, the chosen
regularization preserves chiral symmetry as well as gauge and Lorentz symmetry,
and the renormalized mass remains zero. The renormalized propagator has the
form (2.30) with m D 0.

The renormalized coupling es can be defined from the renormalized 1PI 3-gluon
vertex at a scale �	2 (Fig. 2.11):

Vbare. p
2; q2; r2/DZVren. p

2; q2; r2/ ; Z D Z�3=2
g ; Vren.�	2;�	2;�	2/ ! es :

(2.31)

Fig. 2.11 Diagrams contributing to the 1PI 3-gluon vertex at the one-loop approximation level
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We could just as well use the quark–gluon vertex or any other vertex which
coincides with es0 in lowest order (even the ghost–gluon vertex, if we want). With a
regularization and renormalization that preserves gauge invariance, we can be sure
that all these different definitions are equivalent.

Here Vbare is what is obtained from computing the Feynman diagrams including,
for example, the 1-loop corrections at the lowest non-trivial order. Vbare is defined
as the scalar function multiplying the 3-gluon vertex tensor (given in Fig. 2.1),
normalized in such a way that it coincides with es0 in lowest order. Vbare contains
the cutoff K, but does not know about 	. Z is a factor that depends both on the
cutoff and on 	, but not on momenta. Because of infrared singularities, the defining
scale 	 cannot vanish. The negative value �	2 < 0 is chosen to stay away from
physical cuts (a gluon with negative virtual mass cannot decay). Similarly, in the
massless theory, we can define Z�1

g as the inverse gluon propagator (the 1PI 2-point
function) at the same scale �	2 (the vanishing mass of the gluon is guaranteed by
gauge invariance).

After computing all 1-loop diagrams indicated in Fig. 2.11, we have

Vbare. p
2; p2; p2/ D es0

	

1C c˛s0 log
K2

p2
C � � �




D
	

1C c˛s log
K2

�	2 C : : :




es0

	

1C c˛s0 log
�	2
p2




D Z�1
V es0

	

1C c˛s log
�	2
p2




D
	

1C d˛s log
K2

�	2 C � � �



es

	

1C c˛s log
�	2
p2




D Z�3=2
g Vren : (2.32)

Note the replacement of ˛s0 with ˛s in the second step, as we work at 1-
loop accuracy. Then we change es0 into es, given by e0 D Z�3=2

g ZVe, and this
implies changing c into d in the first bracket. The definition of es requires precise
specification of what is included in Z. For this, in a given renormalization scheme, a
prescription is fixed to specify the finite terms that go into Z, i.e., the terms of order
˛s that accompany logK2. Then Vren is specified and the renormalized coupling
is defined from it according to (2.31). For example, in the momentum subtraction
scheme we define Vren. p2; p2; p2/ D es CVbare. p2; p2; p2/�Vbare.�	2;�	2;�	2/,
which is equivalent to saying that, at 1-loop, all finite terms that do not vanish at
p2 D �	2 are included in Z.

A crucial observation is that Vbare depends on K, but not on 	, which is only
introduced when Z, Vren, and hence ˛s are defined. (From here on, for simplicity, we
write ˛ to indicate either the QED coupling or the QCD coupling ˛s.) Similarly, for
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a generic Green function G, we have more generally

Gbare.K
2; ˛0; p

2
i / D ZGGren.	

2; ˛; p2i / ; (2.33)

whence

dGbare

d log	2
D d

d log	2
.ZGGren/ D 0 ; (2.34)

or

ZG

	
@

@ log	2
C @˛

@ log	2
@

@˛
C 1

ZG

@ZG
@ log	2




Gren D 0 : (2.35)

Finally, the renormalization group equation (RGE) can be written as

�
@

@ log	2
C ˇ.˛/

@

@˛
C 
G.˛/

�

Gren D 0 ; (2.36)

where

ˇ.˛/ D @˛

@ log	2
(2.37)

and


G.˛/ D @ logZG
@ log	2

: (2.38)

Note that ˇ.˛/ does not depend on which Green function G we are considering.
Actually, it is a property of the theory and of the renormalization scheme adopted,
while 
G.˛/ also depends on G. Strictly speaking the RGE as written above is only
valid in the Landau gauge (� D 0). In other gauges, an additional term that takes
the variation of the gauge fixing parameter � into account should also be included.
We omit this term, for simplicity, as it is not relevant at the 1-loop level.

Suppose we want to apply the RGE to some hard process at a large scale Q,
related to a Green function G that we can always take to be dimensionless (by
multiplying by a suitable power of Q). Since the interesting dependence on Q will
be logarithmic, we introduce the variable t as

t D log
Q2

	2
: (2.39)

Then we can write Gren � F.t; ˛; xi/, where xi are scaling variables (we shall often
omit them in the following). In the naive scaling limit, F should be independent of
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t, according to the classical intuition that massless QCD is scale invariant. To find
the actual dependence on t, we must solve the RGE

�

� @

@t
C ˇ.˛/

@

@˛
C 
G.˛/

�

Gren D 0 ; (2.40)

with a given boundary condition at t D 0 (or Q2 D 	2), viz., F.0; ˛/.
We first solve the RGE in the simplest case, i.e., when 
G.˛/ D 0. This is not an

unphysical case. For example, it applies to

R D ReCe� D �.eCe� ! hadrons/

�point.eCe� ! �C��/
;

where the vanishing of 
 is related to the non-renormalization of the electric charge
in QCD (otherwise the proton and the electron charge would not exactly balance,
something we explain in Sect. 2.7). So we consider the equation

�

� @

@t
C ˇ.˛/

@

@˛

�

Gren D 0 : (2.41)

The solution is simply

F.t; ˛/ D FŒ0; ˛.t/� ; (2.42)

where the “running coupling” ˛.t/ is defined by

t D
Z ˛.t/

˛

1

ˇ.˛0/
d˛0 : (2.43)

Note that from this definition it follows that ˛.0/ D ˛, so that the boundary
condition is also satisfied. To prove that FŒ0; ˛.t/� is indeed the solution, we first
take derivatives with respect of t and ˛ (the two independent variables) of both sides
of (2.43). By taking d=dt we obtain

1 D 1

ˇ.˛.t//

@˛.t/

@t
: (2.44)

We then take d=d˛ and obtain

0 D � 1

ˇ.˛/
C 1

ˇ.˛.t//

@˛.t/

@˛
: (2.45)
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These two relations make explicit the dependence of the running coupling on t
and ˛:

@˛.t/

@t
D ˇ.˛.t// ; (2.46)

@˛.t/

@˛
D ˇ.˛.t//

ˇ.˛/
:

Using these two equations, one immediately checks that FŒ0; ˛.t/� is indeed the
solution.

Similarly, one finds that the solution of the more general equation (2.40) with

 6D 0 is given by

F.t; ˛/ D FŒ0; ˛.t/� exp
Z ˛.t/

˛


.˛0/
ˇ.˛0/

d˛0 : (2.47)

In fact the sum of the two derivatives acting on the factor FŒ0; ˛.t/� vanishes (as we
have just seen), and the exponential is by itself a solution of the complete equation.
Note that the boundary condition is also satisfied.

The important point is the appearance of the running coupling that determines
the asymptotic departures from scaling. The next step is to study the functional
form of the running coupling. From (2.46) we see that the rate of change of the
running coupling with respect to t is determined by the function ˇ. In turn, ˇ.˛/
is determined by the 	 dependence of the renormalized coupling through (2.37).
Clearly, there is no dependence of the basic 3-gluon vertex on 	 to lowest order
(order e). The dependence starts at 1-loop, that is at order e3 (one extra gluon has to
be emitted and reabsorbed). Thus we find that, in perturbation theory,

@e

@ log	2
/ e3 : (2.48)

Recalling that ˛ D e2=4� , we have

@˛

@ log	2
/ 2e

@e

@ log	2
/ e4 / ˛2 : (2.49)

Thus the behaviour of ˇ.˛/ in perturbation theory is

ˇ.˛/ D ˙b˛2.1C b0˛ C � � � / : (2.50)

Since the sign of the leading term is crucial in the following discussion, we stipulate
that b > 0 and we make the sign explicit in front.
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Let us make the procedure more precise for computing the 1-loop beta function
in QCD (or, similarly, in QED). The result of the 1-loop 1PI diagrams for Vren can
be written as

Vren D e

	

1C ˛B3g log
	2

�p2




: (2.51)

Vren satisfies the RGE

�
@

@ log	2
C ˇ.˛/

@e

@˛

@

@e
� 3

2

g.˛/

�

Vren D 0 : (2.52)

With respect to (2.36), the beta function term has been rewritten taking into account
the fact that Vren starts with e, and the anomalous dimension term arises from
a factor Z�1=2

g for each gluon leg. In general, for an n-leg 1PI Green function
Vn;bare D Z�n=2

g Vn;ren, if all external legs are gluons. Note that, in the particular case
of V D V3 that is used to define e, other Z factors are absorbed in the replacement
Z�1

V Z3=2g e0 D e. At 1-loop accuracy, we replace ˇ.˛/ D �b˛2 and 
g.˛/ D 

.1/
g ˛.

One thus obtains

b D 2

�

B3g � 3

2

.1/g

�

: (2.53)

Similarly, we can write the diagrammatic expression and the RGE for the 1PI
2-gluon Green function, which is the inverse gluon propagator˘ (a scalar function
after removing the gauge invariant tensor):

˘ren D
	

1C ˛B2g log
	2

�p2
C � � �




(2.54)

and
�

@

@ log	2
C ˇ.˛/

@

@˛
� 
g.˛/

�

˘ren D 0 : (2.55)

Notice that the normalization and the phase of ˘ are specified by the lowest order
term being 1. In this case the ˇ function term is negligible, being of order ˛2

(because˘ is a function of e only through ˛) and we obtain


.1/g D B2g : (2.56)

Thus, finally,

b D 2

	

B3g � 3

2
B2g




: (2.57)
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By direct calculation at 1-loop level, one finds

QED ˇ.˛/ � Cb˛2 C � � � ; b D
X

i

NCQ2i
3�

; (2.58)

whereNC D 3 for quarks andNC D 1 for leptons, and the sum runs over all fermions
of charge Qie that are coupled. One also finds

QCD ˇ.˛/ � �b˛2 C � � � ; b D 11NC � 2nf

12�
; (2.59)

where, as usual, nf is the number of coupled (see below) flavours of quarks (we
assume here that nf � 16, so that b > 0 in QCD).

If ˛.t/ is small, we can compute ˇ.˛.t// in perturbation theory. The sign in front
of b then decides the slope of the coupling: ˛.t/ increases with t (or Q2) if ˇ is
positive at small ˛ (QED), or ˛.t/ decreases with t (or Q2) if ˇ is negative at small
˛ (QCD). A theory like QCD in which the running coupling vanishes asymptotically
at large Q2 is said to be (ultraviolet) “asymptotically free”. An important result that
has been proven [145] is that, in four spacetime dimensions, all and only non-
Abelian gauge theories are asymptotically free.

Going back to (2.43), we replace ˇ.˛/ � ˙b˛2, do the integral, and perform
some simple algebra to find

QED ˛.t/ � ˛

1 � b˛t
(2.60)

and

QCD ˛.t/ � ˛

1C b˛t
: (2.61)

A slightly different form is often used in QCD. Defining 1=˛ D b log	2=�2
QCD, we

can write

˛.t/ � 1

1

˛
C bt

D 1

b log
	2

�2
QCD

C b log
Q2

	2

D 1

b log
Q2

�2
QCD

: (2.62)

The parameter	 has been traded for the parameter�QCD. We see that ˛.t/ decreases
logarithmically with Q2 and that one can introduce a dimensional parameter �QCD

that replaces 	. In the following we will often simply write � for �QCD. Note that
it is clear that � depends on the particular definition of ˛, not only on the defining
scale 	, but also on the renormalization scheme (see, for example, the discussion in
the next section). Through the parameter b, and in general through the function ˇ,
it also depends on the number nf of coupled flavours.
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It is very important to note that QED and QCD are theories with “decoupling”,
i.e., up to the scale Q, only quarks with masses m � Q contribute to the running of
˛. This is clearly very important, given that all applications of perturbative QCD so
far apply to energies below the top quark mass mt. For the validity of the decoupling
theorem [60], the theory in which all the heavy particle internal lines are eliminated
must still be renormalizable and the coupling constants must not vary with the mass.
These requirements are satisfied for the masses of heavy quarks in QED and QCD,
but they are not satisfied in the electroweak theory where the elimination of the
top would violate SU.2/ symmetry (because the t and b left-handed quarks are in a
doublet) and the quark couplings to the Higgs multiplet (hence to the longitudinal
gauge bosons) are proportional to the mass.

In conclusion, in QED and QCD, quarks with m � Q do not contribute to
nf in the coefficients of the relevant ˇ function. The effects of heavy quarks are
power suppressed and can be taken into account separately. For example, in eCe�
annihilation for 2mc < Q < 2mb, the relevant asymptotics is for nf D 4, while for
2mb < Q < 2mt, it is for nf D 5. Going across the b threshold, the ˇ function
coefficients change, so the slope of ˛.t/ changes. But ˛.t/ is continuous, whence�
changes so as to keep ˛.t/ constant at the matching point at Q � O.2mb/. The effect
on � is large: approximately�5 � 0:65�4, where �4;5 are for nf D 4; 5.

Note the presence of a pole at ˙b˛t D 1 in (2.60) and (2.61). This is called
the Landau pole, since Landau had already realised its existence in QED in the
1950s. For 	 � me (in QED), the pole occurs beyond the Planck mass. In QCD,
the Landau pole is located for negative t or at Q < 	 in the region of light hadron
masses. Clearly the issue of the definition and the behaviour of the physical coupling
(which is always finite, when defined in terms of some physical process) in the
region around the perturbative Landau pole is a problem that lies outside the scope
of perturbative QCD.

The non-leading terms in the asymptotic behaviour of the running coupling can
in principle be evaluated by going back to (2.50) and computing b0 at 2-loops and so
on. But in general the perturbative coefficients of ˇ.˛/ depend on the definition of
the renormalized coupling ˛ (the renormalization scheme), so one wonders whether
it is worthwhile to do a complicated calculation to get b0, if it must then be repeated
for a different definition or scheme. In this respect it is interesting to note that both b
and b0 are actually independent of the definition of ˛, while higher order coefficients
do depend on that. Here is the simple proof. Two different perturbative definitions
of ˛ are related by ˛0 � ˛.1C c1˛ C � � � /. Then we have

ˇ.˛0/ D d˛0

d log	2
D d˛

d log	2
.1C 2c1˛ C � � � /

D ˇ.˛/.1C 2c1˛ C : : :/

D ˙b˛2.1C b0˛ C � � � /.1C 2c1˛ C � � � /
D ˙b˛02.1C b0˛0 C � � � / ; (2.63)

which shows that, up to the first subleading order, ˇ.˛0/ has the same form as ˇ.˛/.
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In QCD (NC D 3), it has been shown that [131]

b0 D 153� 19nf

2�.33� 2nf/
: (2.64)

By taking b0 into account, one can write the expression for the running coupling at
next to the leading order (NLO):

˛.Q2/ D ˛LO.Q
2/

�

1 � b0˛LO.Q
2/ log log

Q2

�2
C � � �

�

; (2.65)

where ˛�1
LO D b logQ2=�2 is the LO result (actually at NLO, the definition of � is

modified according to b log	2=�2 D 1=˛ C b0 log b˛).
Summarizing, we started from massless classical QCD which is scale invariant.

But we have seen that the procedure of quantization, regularization, and renor-
malization necessarily breaks scale invariance. In the quantum QCD theory, there
is a scale of energy �. From experiment, this is of the order of a few hundred
MeV, its precise value depending on the definition, as we shall see in detail.
Dimensionless quantities depend on the energy scale through the running coupling,
which is a logarithmic function of Q2=�2. In QCD the running coupling decreases
logarithmically at large Q2 (asymptotic freedom), while in QED the coupling has
the opposite behaviour.

2.5 More on the Running Coupling

In the last section we introduced the renormalized coupling ˛ in terms of the
3-gluon vertex at p2 D �	2 (momentum subtraction). The Ward identities of
QCD then ensure that the coupling defined from other vertices like the Nqqg vertex
are renormalized in the same way and the finite radiative corrections are related.
But at present the universally adopted definition of ˛s is in terms of dimensional
regularization [333], because of computational simplicity, which is essential given
the great complexity of present day calculations. So we now briefly review the
principles of dimensional regularization and the definition of minimal subtraction
(MS) [335] and modified minimal subtraction (MS) [82]. The MS definition of
˛s is the one most commonly adopted in the literature, and values quoted for it
normally refer to this definition.

Dimensional regularization (DR) is a gauge and Lorentz invariant regularization
that consists in formulating the theory in D < 4 spacetime dimensions in order to
make loop integrals ultraviolet finite. In DR one rewrites the theory in D dimensions
(D is integer at the beginning, but then one realizes that the expression calculated
from diagrams makes sense for all D, except for isolated singularities). The metric
tensor is extended to a D � D matrix g	� D diag.1;�1;�1; : : : ;�1/ and 4-vectors
are given by k	 D .k0; k1; : : : ; kD�1/. The Dirac 
	 are f .D/ � f .D/ matrices and
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the precise form of the function f .D/ is not important. It is sufficient to extend
the usual algebra in a straightforward way like f
	; 
�g D 2g	;�I, where I is the
D-dimensional identity matrix, 
	
�
	 D �.D � 2/
� , or Tr.
	
�/ D f .D/g	� .

The physical dimensions of fields change in D dimensions, and as a consequence
the gauge couplings become dimensional eD D 	�e, where e is dimensionless, D D
4� 2�, and 	 is a mass scale (this is how a scale of mass is introduced in the DR of
massless QCD). In fact, the dimension of the fields is determined by requiring the
action S D R

dDxL to be dimensionless. By inserting terms like m N�� or m2
�

or e N�
	�A	 for L , the dimensions of the fields and couplings m, � , 
, A	, and e
are determined as 1, .D� 1/=2, .D� 2/=2, .D� 2/=2, and .4�D/=2, respectively.
The formal expression of loop integrals can be written for any D. For example,

Z
dDk

.2�/D
1

.k2 � m2/2
D � .2 � D=2/.�m2/D=2�2

.4�/D=2
: (2.66)

For D D 4 � 2�, one can expand using

� .�/ D 1

�
� 
E C O.�/ ; 
E D 0:5772 : : : : (2.67)

For some Green function G, normalized to 1 in lowest order (like V=e, with V the
3-gluon vertex function at the symmetric point p2 D q2 D r2, considered in the
previous section), we typically find, at the 1-loop level,

Gbare D 1C ˛0

	�	2
p2


� �

B

	
1

�
C log 4� � 
E




C A C O.�/

�

: (2.68)

In MS, one rewrites this as (diagram by diagram, a virtue of the method)

Gbare D ZGren;

Z D 1C ˛

�

B

	
1

�
C log 4� � 
E


�

;

Gren D 1C ˛

	

B log
�	2
p2

C A




: (2.69)

Here Z stands for the relevant product of renormalization factors. In the original MS
prescription, only 1=� was subtracted (and this clearly plays the role of a cutoff),
while log 4� and 
E were not. Later, since these constants always appear in the
expansion of � functions, it was decided to modify MS into MS. Note that the MS
definition of ˛ is different than that in the momentum subtraction scheme, because
the finite terms (those beyond logs) are different. In particular, the order ˛ correction
to Gren does not vanish at p2 D �	2.
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The third [337] and fourth [357] coefficients of the QCD ˇ function are also
known in the MS prescription (recall that only the first two coefficients are scheme-
independent). The calculation of the last term involved the evaluation of some
50,000 four-loop diagrams. Translated in numbers, for nf D 5, one obtains

ˇ.˛/ D �0:610˛2
�

1C 1:261 : : :
˛

�
C 1:475 : : :

�˛

�

�2 C 9:836 : : :
� ˛

�

�3 C � � �
�

:

(2.70)

It is interesting to remark that the expansion coefficients are of order 1 or 10 (only
for the last one), so that the MS expansion looks reasonably well behaved.

2.6 On the Non-convergence of Perturbative Expansions

It is important to keep in mind that, after renormalization, all the coefficients in the
QED and QCD perturbative series are finite, but the expansion does not converge.
Actually, the perturbative series is not even Borel summable (for reviews see, for
example, [31]). After the Borel resummation, for a given process, one is left with
a result that is ambiguous up to terms typically going as exp.�n=b˛/, where n is
an integer and b the absolute value of the first ˇ function coefficient. In QED, these
corrective terms are extremely small and not very important in practice. However,
in QCD, ˛ D ˛s.Q2/ � 1=b log.Q2=�2/ and the ambiguous terms are of order
.1=Q2/n, that is, they are power suppressed. It is interesting that, through this
mechanism, the perturbative version of the theory is somehow able to take into
account the power-suppressed corrections. A sequence of diagrams with factorial
growth at large order n is constructed by dressing gluon propagators by any number
of quark bubbles together with their gauge completions (renormalons). The problem
of the precise relation between the ambiguities of the perturbative expansion and the
power-suppressed corrections has been discussed in recent years, also for processes
without light cone operator expansion [31, 324].

2.7 eCe� Annihilation and Related Processes

2.7.1 ReCe�

The simplest hard process is

R D ReCe� D �.eCe� ! hadrons/

�point.eCe� ! �C��/
;
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Fig. 2.12 Diagrams for charge renormalization in QED at 1-loop (the blob in each diagram
represents the loop)

which we have already introduced. R is dimensionless and is given in perturbation
theory by1 R D NC

P
i Q

2
i F.t; ˛s/, where F D 1 C O.˛s/. We have already

mentioned that for this process the “anomalous dimension” function vanishes, i.e.,

.˛s/ D 0, because of electric charge non-renormalization by strong interactions.
Let us recall how this happens in detail.

The diagrams that are relevant for charge renormalization in QED at 1-loop are
shown in Fig. 2.12. The Ward identity that follows from gauge invariance in QED
requires the vertex (ZV) and the self-energy (Zf ) renormalization factors to cancel,
and the only divergence remains in Z
 , the vacuum polarization of the photon.
Hence, the charge is only renormalized by the photon vacuum polarization blob, and
it is thus universal (the same factor for all fermions, independent of their charge) and
not affected by QCD at 1-loop. It is true that at higher orders the photon vacuum
polarization diagram is affected by QCD (for example, at 2-loops we can exchange
a gluon between the quarks in the loop), but the renormalization induced by the
divergent logs from the vacuum polarization diagram remain independent of the
nature of the fermion to which the photon line is attached. The gluon contributions
to the vertex (ZV) and to the self-energy (Zf ) cancel, because they have exactly the
same structure as in QED, and there is no gluon contribution to the photon blob at
1-loop, so that 
.˛s/ D 0.

At the 1-loop level, the diagrams relevant for the computation of R are shown
in Fig. 2.13. There are virtual diagrams and also real diagrams with one additional
gluon in the final state. Infrared divergences cancel between the interference term of
the virtual diagrams and the absolute square of the real diagrams, according to the

1Actually, starting from order ˛2s , there are some “singlet” terms proportional to .
P

i Qi/
2. These

small terms are included in F by dividing and multiplying by
P

i Q
2
i .
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Fig. 2.13 Real and virtual diagrams relevant for the computation of R at 1-loop accuracy (the
initial eCe� has been omitted to make the drawing simpler)

Bloch–Nordsieck theorem. Similarly, there are no mass singularities, in agreement
with the Kinoshita–Lee–Nauenberg theorem, because the initial state is purely
leptonic and all degenerate states that can appear at the given order are included
in the final state. Given that 
.˛s/ D 0, the RGE prediction is simply given, as we
have already seen, by F.t; ˛s/ D FŒ0; ˛s.t/�. This means that, if we do, for example,
a 2-loop calculation, we must obtain a result of the form

F.t; ˛s/ D 1C c1˛s.1 � b˛st/C c2˛
2
s C O.˛3s / : (2.71)

In fact, taking into account the expression for the running coupling in (2.61), viz.,

˛s.t/ � ˛s

1C b˛st
� ˛s.1 � b˛st C � � � / ; (2.72)

Eq. (2.71) can be rewritten as

F.t; ˛s/ D 1C c1˛s.t/C c2˛
2
s .t/ C O.˛3s .t// D FŒ0; ˛s.t/� : (2.73)

The content of the RGE prediction is, at this order, that there are no ˛st and .˛st/2

terms (the leading log sequence must be absent), and the term of order ˛2s t has the
appropriate coefficient to be reabsorbed in the transformation of ˛s into ˛s.t/.

At present the first four coefficients c1; : : : ; c4 have been computed in the MS
scheme. The references are as follows: for c2 [138], for c3 [230], and for c4 [74].
Clearly, c1 D 1=� does not depend on the definition of ˛s, but the cn with n 
 2 do.
The subleading coefficients also depend on the scale choice: if instead of expanding
in ˛s.Q/, we decide to choose ˛s.Q=2/, the coefficients cn n 
 2 will change. In
the MS scheme, for 
 exchange and nf D 5, which are good approximations for
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2mb � Q � mZ , one has

FŒ0; ˛s.t/� D 1C ˛s.t/

�
C 1:409 : : :

�
˛s.t/

�

�2
� 12:8 : : :

�
˛s.t/

�

�3

�80:0 : : :
�
˛s.t/

�

�4
C � � � : (2.74)

Similar perturbative results at 3-loop accuracy also exist for

RZ D � .Z ! hadrons/

� .Z ! leptons/
; R£ D � .£ ! �£ C hadrons/

� .£ ! �£ C leptons/
;

and so on. We will discuss these results in Sect. 2.10, where we deal with
measurements of ˛s.

The perturbative expansion in powers of ˛s.t/ takes into account all contributions
that are suppressed by powers of logarithms of the large scale Q2 (“leading twist”
terms). In addition, there are corrections suppressed by powers of the large scale Q2

(“higher twist” terms). The pattern of power corrections is controlled by the light-
cone operator product expansion (OPE) [112, 365], which leads (schematically) to

F D pert. C r2
m2

Q2
C r4

h0jTrŒF��F���j0i
Q4

C � � � C r6
h0jO6j0i

Q6
C � � � : (2.75)

Here m2 generically indicates mass corrections, for example from b quarks, beyond
the b threshold, while top quark mass corrections only arise from loops, vanish in
the limit mt ! 1, and are included in the coefficients like those in (2.74) and
the analogous ones for higher twist terms; F�� D P

A FA
	� t

A, O6 is typically a 4-
fermion operator, etc. For each possible gauge invariant operator, the corresponding
negative power of Q2 is fixed by dimensions.

We now consider the light-cone OPE in more detail. ReCe� � ˘.Q2/, where
˘.Q2/ is the scalar spectral function related to the hadronic contribution to the
imaginary part of the photon vacuum polarization T	� :

T	� D .�g	�Q
2 C q	q�/˘.Q

2/ D
Z

d4x exp i.q � x/h0jJ�	.x/J�.0/j0i

D
X

n

h0jJ�	.0/jnihnjJ�.0/j0i.2�/4ı4.q � pn/ : (2.76)

For Q2 ! 1, the x2 ! 0 region is dominant. The light cone OPE is valid to
all orders in perturbation theory. Schematically and dropping Lorentz indices for
simplicity, near x2 � 0, we have

J�.x/J.0/ D I.x2/C E.x2/
1X

nD0
cn.x

2/x	1 : : : x	n On
	1:::	n

.0/C less sing. terms :

(2.77)
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Here I.x2/, E.x2/, : : :, cn.x2/ are c-number singular functions and On is a string of
local operators. E.x2/ is the singularity of free field theory, while I.x2/ and cn.x2/
in the interacting theory contain powers of log .	2x2/. Some On are already present
in free field theory, while others appear when interactions are switched on. Given
that ˘.Q2/ is related to the Fourier transform of the vacuum expectation value of
the product of currents, less singular terms in x2 lead to power-suppressed terms in
1=Q2. The perturbative terms, like those in (2.73), come from I.x2/, which is the
leading twist term, and the dominant logarithmic scaling violations induced by the
running coupling are the logs in I.x2/.

2.7.2 The Final State in eCe� Annihilation

Experiments on eCe� annihilation at high energy provide a remarkable opportunity
for systematically testing the distinct signatures predicted by QCD for the structure
of the final state averaged over a large number of events. Typical of asymptotic
freedom is the hierarchy of configurations emerging as a consequence of the
smallness of ˛s.Q2/. When all corrections of order ˛s.Q2/ are neglected, one
recovers the naive parton model prediction for the final state: almost collinear
events with two back-to-back jets with limited transverse momentum and an angular
distribution 1 C cos2 � with respect to the beam axis (typical of spin 1/2 parton
quarks, while scalar quarks would lead to a sin2 � distribution). To order ˛s.Q2/,
a tail of events is predicted to appear with large transverse momentum pT � Q=2
with respect to a suitably defined jet axis (for example, the thrust axis, see below).
This small fraction of events with large pT consists mainly of three-jet events with
almost planar topology. The skeleton of a three-jet event, to leading order in ˛s.Q2/,
is formed by three hard partons qNqg, the third being a gluon emitted by a quark or
antiquark line. To order ˛2s .Q

2/, a hard perturbative non-planar component starts to
build up, and a small fraction of four-jet events qNqgg or qNqqNq appear, and so on.

Event shape variables defined from the set of 4-momenta of final state particles
are introduced to describe the topological structure of the final state energy flow in a
quantitative manner [154]. The best known event shape variable is thrust (T) [192],
defined as

T D max

P
i jpi � nTj
P

i jpij
; (2.78)

where the maximization is in terms of the axis defined by the unit vector nT : the
thrust axis is the axis that maximizes the sum of the absolute values of the longi-
tudinal momenta of the final state particles. The thrust T varies between 1/2, for a
spherical event, to 1 for a collinear (2-jet) event. Event shape variables are important
for QCD tests and measurements of ˛s, and also for more practical purposes, like
a laboratory for assessing the reliability of event simulation programmes and a tool
for the separation of signals and background.
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A quantitatively specified definition of jets and of the number of jets in one event
(jet counting) must be introduced for precise QCD tests and measurement of ˛s,
which must be infrared safe (i.e., not altered by soft particle emission or collinear
splittings of massless particles) in order to be computable at the parton level and
as insensitive as possible to the transformation of partons into hadrons (see, for
example, [294]). For eCe� physics, one can use a jet algorithm based on a resolution
parameter ycut and a suitable pair variable. For example [172],

yij D 2min.E2i ;E
2
j /.1 � cos �ij/

s
: (2.79)

Note that 1�cos �ij � �2ij=2, so that the relative transverse momentum k2T is involved
(hence, the name kT algorithm). The particles i; j belong to different jets for yij >
ycut. Clearly, the number of jets becomes a function of ycut, and in fact there are more
jets for smaller ycut.

Recently, motivated by the LHC experiments, there has been a flurry of improved
jet algorithm studies: it is essential that correct jet finding should be implemented
by LHC experiments for optimal matching of theory and experiment [185, 317].
In particular, existing sequential recombination algorithms like kT [132, 172] and
Cambridge/Aachen [174] have been generalized. In these recursive definitions, one
introduces distances dij between particles or clusters of particles i and j, and diB
between i and the beam (B). The inclusive clustering proceeds by identifying the
smallest of the distances and, if it is a dij, by recombining particles i and j, while if
it is diB, calling i a jet and removing it from the list. The distances are recalculated
and the procedure repeated until no i and j are left.

The extension relative to the kT [132] and Cambridge/Aachen [174] algorithms
lies in the definition of the distance measures:

dij D min.k2pTi ; k
2p
Tj /
�2

ij

R2
; (2.80)

where�2
ij D .yi � yj/2 C .
i �
j/2 and kTi, yi, and 
i are the transverse momentum,

rapidity, and azimuth of particle i, respectively. R is the radius of the jet, i.e., the
radius of a cone which, by definition, contains the jet. The exponent p fixes the
relative power of the energy versus geometrical (�ij) scales.

For p D 1, one has the inclusive kT algorithm. It can be shown in general that
for p 
 0 the behaviour of the jet algorithm with respect to soft radiation is rather
similar to that observed for the kT algorithm. The case p D 0 is special, and it
corresponds to the inclusive Cambridge/Aachen algorithm [174]. Surprisingly (at
first sight), taking p to be negative also yields an algorithm that is infrared and
collinear safe and has sensible phenomenological behaviour. For p D �1, one
obtains the recently introduced “anti-kT” jet-clustering algorithm [126], which has
particularly stable jet boundaries with respect to soft radiation and is suitable for
practical use in experiments.
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2.8 Deep Inelastic Scattering

Deep inelastic scattering (DIS) processes have played, and still play, a very
important role in our understanding of QCD and of nucleon structure. This set of
processes actually provides us with a rich laboratory for theory and experiment.
There are several structure functions Fi.x;Q2/ that can be studied, each a function
of two variables. This is true separately for different beams and targets and different
polarizations. Depending on the charges of ` and `0 [see (2.28)], we can have neutral
currents (
;Z) or charged currents in the `–`0 channel (Fig. 2.10). In the past, DIS
processes were crucial for establishing QCD as the theory of strong interactions and
quarks and gluons as the QCD partons.

At present DIS remains very important for quantitative studies and tests of
QCD. The theory of scaling violations for totally inclusive DIS structure functions,
based on operator expansion or diagrammatic techniques and renormalization group
methods, is crystal clear and the predicted Q2 dependence can be tested at each
value of x. The measurement of quark and gluon densities in the nucleon, as
functions of x at some reference value of Q2, which is an essential starting point
for the calculation of all relevant hadronic hard processes, is performed in DIS
processes. At the same time one measures ˛s.Q2/, and the DIS values of the running
coupling can be compared with those obtained from other processes. At all times
new theoretical challenges arise from the study of DIS processes. Recent examples
(see the following) are the so-called “spin crisis” in polarized DIS and the behaviour
of singlet structure functions at small x, as revealed by HERA data. In the following
we review the past successes and the present open problems in the physics of DIS.

The cross-section � � L	�W	� is given in terms of the product of a leptonic
(L	�) and a hadronic (W	�) tensor. While L	� is simple and easily obtained
from the lowest order electroweak (EW) vertex plus QED radiative corrections,
the complicated strong interaction dynamics is contained in W	� . The latter is
proportional to the Fourier transform of the forward matrix element between the
nucleon target states of the product of two EW currents:

W	� D
Z

d4y exp i.q � y/h pjJ�	.y/J�.0/jpi : (2.81)

Structure functions are defined starting from the general form of W	� , given
Lorentz invariance and current conservation. For example, for EW currents between
unpolarized nucleons, we have

W	� D
	

�g	� C q	q�
q2




W1.�;Q
2/C

	

p	 � m�

q2
q	


	

p� � m�

q2
q�



W2.�;Q2/

m2

� i

2m2
�	���p

�q�W3.�;Q
2/ :
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where variables are defined as in (2.28) and (2.29), and W3 arises from VA
interference and is absent for pure vector currents. In the limit Q2 � m2, with the
Bjorken variable x fixed, the structure functions obey approximate Bjorken scaling,
which is in fact broken by logarithmic corrections that can be computed in QCD:

mW1.�;Q
2/ ! F1.x/ ; �W2;3.�;Q

2/ ! F2;3.x/ : (2.82)

The 
–N cross-section is given by

d�


dQ2d�
D 4�˛2E0

Q4E

	

2 sin2
�

2
W1 C cos2

�

2
W2




; (2.83)

with Wi D Wi.Q2; �/, while for the �–N or N�–N cross-section one has

d��;N�

dQ2d�
D G2FE

0

2�E

	
m2W

Q2 C m2W


2 	

2 sin2
�

2
W1 C cos2

�

2
W2 ˙ E C E0

m
sin2

�

2
W3




;

(2.84)

with Wi for photons, and � and N� are all different, as we shall see in a moment.
In the scaling limit the longitudinal and transverse cross-sections are given by

�L � 1

s

�
F2.x/

2x
� F1.x/

�

; �RH;LH � 1

s

�
F1.x/˙ F3.x/

�
; �T D �RH C �LH ;

(2.85)

where L, RH, LH refer to the helicity 0, 1, �1, respectively, of the exchanged gauge
vector boson. For the photon case, F3 D 0 and �RH D �LH.

In the 1960s the demise of hadrons from the status of fundamental particles
to that of bound states of constituent quarks was the breakthrough that made
possible the construction of a renormalizable field theory for strong interactions.
The presence of an unlimited number of hadrons species, many of them with high
spin values, presented an obvious dead-end for a manageable field theory. The
evidence for constituent quarks emerged clearly from the systematics of hadron
spectroscopy. The complications of the hadron spectrum could be explained in terms
of the quantum numbers of spin 1/2, fractionally charged u, d, and s quarks. The
notion of colour was introduced to reconcile the observed spectrum with Fermi
statistics.

However, confinement, which forbids the observation of free quarks, was a
clear obstacle towards the acceptance of quarks as real constituents and not just
as fictitious entities describing some mathematical pattern (a doubt expressed even
by Gell-Mann at the time). The early measurements of DIS at SLAC dissipated
all doubts: the observation of Bjorken scaling and the success of Feynman’s “naive”
(not so much after all) parton model imposed quarks as the basic fields for describing
the nucleon structure (parton quarks).
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Fig. 2.14 Schematic diagram
for the interaction of the
virtual photon with a parton
quark in the Breit frame

–Q/2

+Q/2

Q

spin

In the language of Bjorken and Feynman, the virtual 
 (or, in general, any gauge
boson) sees the quark partons inside the nucleon target as quasi-free, because their
(Lorentz dilated) QCD interaction time is much longer than �
 � 1=Q, the duration
of the virtual photon interaction. Since the virtual photon 4-momentum is spacelike,
we can go to a Lorentz frame where E
 D 0 (Breit frame). In this frame q D
.E
 D 0; 0; 0;Q/ and the nucleon momentum, neglecting the mass m � Q, is
p D .Q=2x; 0; 0;�Q=2x/. We note that this gives q2 D �Q2 and x D Q2=2. p � q/,
as it should.

Consider the interaction of the photon with a quark (see Fig. 2.14) carrying a
fraction y of the nucleon 4-momentum: pq D yp (we are neglecting the transverse
components of pq which are of order m). The incoming parton with pq D yp absorbs
the photon and the final parton has 4-momentum p0

q. Since in the Breit frame the
photon carries no energy, but only a longitudinal momentum Q, the photon can
only be absorbed by those partons with y D x. Then the longitudinal component
of pq D yp is �yQ=2x D �Q=2, and can be flipped into CQ=2 by the photon.
As a result, the photon longitudinal momentum CQ disappears, the parton quark
momentum changes sign from �Q=2 to CQ=2 and the energy is not changed. So
the structure functions are proportional to the density of partons with fraction x of
the nucleon momentum, weighted by the squared charge.

Furthermore, recall that the helicity of a massless quark is conserved in a vector
(or axial vector) interaction (see Sect. 1.5). So when the momentum is reversed, the
spin must also flip. Since the process is collinear there is no orbital contribution, and
only a photon with helicity ˙1 (transverse photon) can be absorbed. Alternatively,
if partons were spin zero, only longitudinal photons would then contribute.

Using these results, which are maintained in QCD at leading order, the quantum
numbers of the quarks were confirmed by early experiments. The observation that
R D �L=�T ! 0 implies that the charged partons have spin 1/2. The quark charges
were derived from the data on the electron and neutrino structure functions:

Fep D 4

9
u.x/C 1

9
d.x/C � � � ; Fen D 4

9
d.x/C 1

9
u.x/C � � � ;

F�p D FN�n D 2d.x/C � � � ; F�n D FN�p D 2u.x/C � � � ;
(2.86)
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where F � 2F1 � F2=x and u.x/, d.x/ are the parton number densities in the proton
(with fraction x of the proton longitudinal momentum), which, in the scaling limit,
do not depend on Q2. The normalization of the structure functions and the parton
densities are such that the charge relations hold:

Z 1

0

�
u.x/ � Nu.x/�dx D 2 ;

Z 1

0

�
d.x/ � Nd.x/�dx D 1 ;

Z 1

0

�
s.x/ � Ns.x/�dx D 0 :

(2.87)

Furthermore, it was proven by experiment that, at values of Q2 of a few GeV2, in
the scaling region, about half of the nucleon momentum, given by the momentum
sum rule

Z 1

0

hX

i

�
qi.x/C Nqi.x/

�C g.x/
i
xdx D 1 ; (2.88)

is carried by neutral partons (gluons).
In QCD there are calculable log scaling violations induced by ˛s.t/. The parton

rules in (2.86) can be summarized in the schematic formula

F.x; t/ D
Z 1

x
dy

q0.y/

y
�point

�
x=y; ˛s.t/

�C O.1=Q2/ : (2.89)

Before QCD corrections �point D e2ı.x=y � 1/ and F D e2q0.x/ (here e denotes
the charge of the quark in units of the positron charge, i.e., e D 2=3 for the u
quark). QCD modifies �point at order ˛s via the diagrams of Fig. 2.15. From a direct
computation of the diagrams, one obtains a result of the following form:

�point
�
z; ˛s.t/

� ' e2
h
ı.z � 1/C ˛s

2�

�
tP.z/C f .z/

�i
: (2.90)

Note that the y integral in (2.89) is from x to 1, because the energy can only
be lost by radiation before interacting with the photon (which eventually wants
to find a fraction x, as we have explained). For y > x the correction arises from
diagrams with real gluon emission. Only the sum of the two real-gluon diagrams in
Fig. 2.15 is gauge invariant, so the contribution of one given diagram will be gauge
dependent. But in an axial gauge, which for this reason is sometimes also called the

Fig. 2.15 First order QCD corrections to the virtual photon–quark cross-section. (a) Tree level,
(b) vertex correction, (c) final-state radiation of one leg, (d) final-state radiation off the other leg
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“physical gauge”, the diagram of Fig. 2.15c, among real diagrams, gives the whole
t-proportional term at 0 < x < 1. It is obviously not essential to go to this gauge, but
this diagram has a direct physical interpretation: a quark in the proton has a fraction
y > x of the parent 4-momentum; it then radiates a gluon and loses energy down to
a fraction x, before interacting with the photon. The log arises from the virtual quark
propagator, according to the discussion of collinear mass singularities in (2.27). In
fact, in the massless limit, one has (k and h are the 4-momenta of the initial quark
and the emitted gluon, respectively):

propagator D 1

r2
D 1

.k � h/2
D �1
2EkEh

1

1 � cos �

D �1
4EkEh

1

sin2 �=2
/ �1

p2T
; (2.91)

where pT is the transverse momentum of the virtual quark. So the square of the
propagator goes like 1=p4T. But there is a p2T factor in the numerator, because in the
collinear limit, when � D 0 and the initial and final quarks and the emitted gluon
are all aligned, the quark helicity cannot flip (vector interaction), so that the gluon
should carry zero helicity, while a real gluon can only have ˙1 helicity. Thus the
numerator vanishes as p2T in the forward direction and the cross-section behaves as

� �
Z Q2 1

p2T
dp2T � logQ2 : (2.92)

Actually, the log should be read as logQ2=m2, because in the massless limit a
genuine mass singularity appears. In fact, the mass singularity connected with
the initial quark line is not cancelled, because we do not have the sum of all
degenerate initial states [265], but only a single quark. But in correspondence
with the initial quark, we have the (bare) quark density q0.y/ which appears in the
convolution integral. This is a non-perturbative quantity determined by the nucleon
wave function. So we can factorize the mass singularity in a redefinition of the quark
density: we replace q0.y/ ! q.y; t/ D q0.y/C�q.y; t/ with

�q.x; t/ D ˛s

2�
t
Z 1

x
dy

q0.y/

y
P.x=y/ : (2.93)

Here the factor of t is a bit symbolic: it stands for logQ2=m2, but what exactly we
put under Q2 depends on the definition of the renormalized quark density, which
also fixes the exact form of the finite term f .z/ in (2.90).

The effective parton density q.y; t/ that we have defined is now scale dependent.
In terms of this scale dependent density, we have the following relations, where we
have also replaced the fixed coupling with the running coupling according to the
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prescription derived from the RGE:

F.x; t/ D
Z 1

x
dy

q.y; t/

y
e2
�

ı

	
x

y
� 1




C ˛s.t/

2�
f

	
x

y


�

D e2q.x; t/C O
�
˛s.t/

�
;

d

dt
q.x; t/ D ˛s.t/

2�

Z 1

x
dy

q.y; t/

y
P

	
x

y




C O
�
˛s.t/

2
�
: (2.94)

We see that at lowest order we reproduce the naive parton model formulae for the
structure functions in terms of effective parton densities that are scale dependent.
The evolution equations for the parton densities are written down in terms of kernels
(the “splitting functions” [40]), which can be expanded in powers of the running
coupling. At leading order, we can interpret the evolution equation by saying that the
variation of the quark density at x is given by the convolution of the quark density at
y and the probability of emitting a gluon with fraction x=y of the quark momentum.

It is interesting that the integro-differential QCD evolution equation for densities
can be transformed into an infinite set of ordinary differential equations for Mellin
moments [234]. The Mellin moment fn of a density f .x/ is defined by

fn D
Z 1

0

dx xn�1f .x/ : (2.95)

By taking moments of both sides of the second equation in (2.94), and changing the
order of integration, one finds the simpler equation for the n th moment:

d

dt
qn.t/ D ˛s.t/

2�
Pnqn.t/ : (2.96)

To solve this equation we observe that it is equivalent to

log
qn.t/

qn.0/
D Pn

2�

Z t

0

˛s.t/dt D Pn

2�

Z ˛s.t/

˛s

d˛0

�b˛0 : (2.97)

To see the equivalence just take the t derivative of both sides. Here we used (2.46)
to change the integration variable from dt to d˛.t/ (denoted d˛0) and

ˇ.˛/ ' �b˛2 C � � � :

Finally, the solution is

qn.t/ D
�
˛s

˛s.t/

�Pn=2�b

qn.0/ : (2.98)
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The connection between these results and the RGE general formalism occurs via
the light cone OPE [recall (2.81) for W	� and (2.77) for the OPE of two currents].
In the case of DIS, the c-number term I.x2/ does not contribute, because we are
interested in the connected part of the matrix element h pj : : : jpi � h0j : : : j0i. The
relevant terms are

J�.x/J.0/ D E.x2/
1X

nD0
cn.x

2/x	1 : : : x	nOn
	1:::	n

.0/C less singular terms : (2.99)

A formally intricate but conceptually simple argument based on the analyticity
properties of the forward virtual Compton amplitude shows that the Mellin moments
Mn of structure functions are related to the individual terms in the OPE, in fact,
precisely to the Fourier transform cn.Q2/, which we will write as cn.t; ˛/, of
the coefficient cn.x2/ times a reduced matrix element hn from the operators On:
h pjOn

	1:::	n
.0/jpi D hnp	1 : : : p	n :

cnh pjOnjpi �! Mn D
Z 1

0

dx xn�1F.x/ : (2.100)

Since the matrix element of the products of currents satisfy the RGE, so do the
moments Mn. Hence, the general form of the Q2 dependence is given by the RGE
solution [see (2.47)]:

Mn.t; ˛/ D cnŒ0; ˛.t/� exp
Z ˛.t/

˛


n.˛
0/

ˇ.˛0/
d˛0hn.˛/ : (2.101)

At lowest order, in the simplest case, identifying Mn with qn, we have


n.˛/ D Pn

2�
˛ C � � � ; ˇ.˛/ D �b˛2 C � � � ; (2.102)

and

qn.t/ D qn.0/ exp
Z ˛.t/

˛


n.˛
0/

ˇ.˛0/
d˛0 D

�
˛s

˛s.t/

�Pn=2�b

qn.0/ ; (2.103)

which exactly coincides with (2.98).
Up to this point we have implicitly restricted our attention to non-singlet (under

the flavour group) structure functions. The Q2 evolution equations become non-
diagonal as soon as we take into account the presence of gluons in the target. In
fact, the quark which is seen by the photon can be generated by a gluon in the target
(Fig. 2.16). The quark evolution equation becomes:

d

dt
qi.x; t/ D ˛s.t/

2�
Œqi ˝ Pqq�C ˛s.t/

2�
Œg ˝ Pqg� ; (2.104)
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Fig. 2.16 Lowest order
diagram for the interaction of
the virtual photon with a
parton gluon

q

q

g

γ ∗

N

where we have introduced the shorthand notation

Œq ˝ P� D ŒP ˝ q� D
Z 1

x
dy

q.y; t/

y
P.x=y/ : (2.105)

It is easy to check that the convolution defined in this way is commutative, like an
ordinary product. At leading order, the interpretation of (2.104) is simply that the
variation of the quark density is due to the convolution of the quark density at a
higher energy times the probability of finding a quark in a quark (with the right
energy fraction) plus the gluon density at a higher energy times the probability of
finding a quark (of the given flavour i) in a gluon. The evolution equation for the
gluon density, needed to close the system,2 can be obtained by suitably extending the
same line of reasoning to a gedanken probe sensitive to colour charges, for example,

2The evolution equations are now often called the DGLAP equations (after Dokshitzer, Gribov,
Lipatov, Altarelli, and Parisi). The first article by Gribov and Lipatov was published in 1972 [233]
(even before the works by Gross and Wilczek and by Politzer!), and was followed in 1974 by a
paper by Lipatov [283] (these dates correspond to the publication in Russian). All these articles
refer to an Abelian vector theory (treated in parallel with a pseudoscalar theory). Seen from the
point of view of the evolution equations, these papers, in the context of the Abelian theory, ask
the right question and extract the relevant logarithmic terms from the dominant class of diagrams.
But from their formal presentation, the relation to real physics is somewhat hidden (in this respect
the 1974 paper by Lipatov makes some progress and explicitly refers to the parton model). The
article by Dokshitser [171] was exactly contemporary to that by Altarelli and Parisi [40]. It now
refers to the non-Abelian theory (with running coupling), and the discussion is more complete and
explicit than in the Gribov–Lipatov articles. But, for example, the connection to the parton model,
the notion of the evolution as a branching process, and the independence of the kernels from the
process are not emphasized.
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a virtual gluon. The resulting equation is of the form

d

dt
g.x; t/ D ˛s.t/

2�

"
X

i

.qi C Nqi/˝ Pgq

#

C ˛s.t/

2�
Œg ˝ Pgg� : (2.106)

The explicit form of the splitting functions in lowest order [40, 171, 233] can
be directly derived from the QCD vertices [40]. They are a property of the theory
and do not depend on the particular process the parton density is taking part in. The
results are as follows:

Pqq D 4

3

�
1C x2

.1 � x/C
C 3

2
ı.1� x/

�

C O.˛s/;

Pgq D 4

3

1C .1 � x/2

x
C O.˛s/;

Pqg D 1

2

�
x2 C .1 � x/2

�C O.˛s/;

Pgg D 6

�
x

.1� x/C
C 1 � x

x
C x.1 � x/

�

C 33 � 2nf

6
ı.1� x/C O.˛s/:

(2.107)

For a generic non-singular weight function f .x/, the “+” distribution is defined as

Z 1

0

f .x/

.1 � x/C
dx D

Z 1

0

f .x/� f .1/

1 � x
dx : (2.108)

The ı.1 � x/ terms arise from the virtual corrections to the lowest order tree
diagrams. Their coefficient can be simply obtained by imposing the validity of
charge and momentum sum rules. In fact, from the request that the charge sum
rules in (2.87) are not affected by the Q2 dependence, one derives

Z 1

0

Pqq.x/dx D 0 ; (2.109)

which can be used to fix the coefficient of the ı.1 � x/ terms of Pqq. Similarly, by
taking the t derivative of the momentum sum rule in (2.88) and requiring it to vanish
for generic qi and g, one obtains

Z 1

0

�
Pqq.x/C Pgq.x/

�
xdx D 0 ;

Z 1

0

�
2nfPqg.x/C Pgg.x/

�
xdx D 0 : (2.110)
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At higher orders, the evolution equations are easily generalized, but the calculation
of the splitting functions rapidly becomes very complicated. For many years the
splitting functions were only completely known at NLO accuracy [198], that is,
˛sP � ˛sP1 C ˛2s P2 C � � � . But in recent years, the NNLO results P3 were first
derived in analytic form for the first few moments, and then the full NNLO analytic
calculation, a really monumental work, was completed in 2004 by Moch et al. [292].

Beyond leading order, a precise definition of parton densities should be specified.
One can take a physical definition: for example, quark densities can be defined so
as to keep the LO expression for the structure function F2 valid at all orders, the
so-called DIS definition [42], and the gluon density can be defined starting from
FL, the longitudinal structure function. Alternatively, one can adopt a more abstract
specification, for example, in terms of the MS prescription. Once the definition of
parton densities is fixed, the coefficients that relate the different structure functions
to the parton densities at each fixed order can be computed. Similarly, the higher
order splitting functions also depend, to some extent, on the definition of parton
densities, and a consistent set of coefficients and splitting functions must be used at
each order.

The scaling violations are clearly observed by experiment (Fig. 2.17), and their
pattern is well reproduced by QCD fits at NLO (Figs. 2.18 and 2.19) [349].
These fits provide an impressive confirmation of a quantitative QCD prediction,
a measurement of qi.x;Q20/ and g.x;Q20/, at some reference value Q20 of Q2, and a
precise measurement of ˛s.Q2/.

2.8.1 The Longitudinal Structure Function

After SLAC established the dominance of the transverse cross-section it took
about 40 years to get meaningful data on the longitudinal structure function FL

[see (2.85)]! These data are an experimental highlight of recent years. They were
obtained by H1 at HERA [237]. The data are shown in Fig. 2.20. For spin 1/2
charged partons, FL vanishes asymptotically. In QCD FL starts at order ˛s.Q2/. At
LO the simple 30-year-old formula is valid (for Nf D 4) [39]:

FL.x;Q
2/ D ˛s.Q2/

2�
x2
Z 1

x

dy

y3

�
8

3
F2.y;Q

2/C 40

9
yg.y;Q2/

	

1 � x

y


�

:

(2.111)

The O.˛2s / [372] and O.˛3s / [293] corrections are now also known. One would not
have expected it to take such a long time to have a meaningful test of this simple
prediction! And in fact better data would be highly desirable. But how and when
they will be obtained is at present not clear at all.



2.8 Deep Inelastic Scattering 71

10210–1
10–3

10–2

10–1

102

103

104

105

106

107

1

10

10

Q2 (GeV2)

F
2(

x,
Q

2)
 *

 2
i x

x=0.75

x=0.85 (ix=1)

x=0.65

x=0.25

x=0.18

x=0.13

x=0.08

x=0.05

x=0.032

x=0.020

x=0.013

x=0.008

x=0.005

x=0.0032

x=0.002

x=0.0013
x=0.0008

x=0.0005

x=0.00032

x=0.0002

x=0.00013
x=0.00008

x=0.00005 Proton

H1+ZEUS
BCDMS
E665

SLAC
NMC

x=0.4

1 103 104 105 106

Fig. 2.17 A representative selection of data on the proton electromagnetic structure function Fp
2 ,

from collider (HERA) and fixed target experiments [307], clearly showing the pattern of scaling
violations. Figure reproduced with permission. Copyright (c) 2012 by American Physical Society

2.8.2 Large and Small x Resummations for Structure
Functions

At values of x either near 0 or near 1 (with Q2 large), those terms of higher order in
˛s, in both the coefficients or the splitting functions, which are multiplied by powers
of log 1=x or log .1 � x/ eventually become important and should be taken into
account. Fortunately, the sequences of leading and subleading logs can be evaluated
at all orders by special techniques, and resummed to all orders.

For x � 1 resummation [329], I refer to the recent papers [202, 211] (the latter
also involving higher twist corrections, which are important at large x), where a



72 2 QCD: The Theory of Strong Interactions

1

107

106

105

104

103

102

10–2

10–3

10–1

10

1

10

x = 0.65, i=0

x = 0.25, i=2

x = 0.18, i=3

x = 0.00032, i=17

x = 0.00005, i=21
x = 0.00008, i=20

x = 0.00013, i=19
x = 0.00020, i=18

x = 0.0005, i=16
x = 0.0008, i=15

HERAPDF1.0

HERA I NC e+p
Fixed Target

H1 and ZEUS

x = 0.0013, i=14
x = 0.0020, i=13

x = 0.0032, i=12
x = 0.005, i=11

x = 0.008, i=10
x = 0.013, i=9

x = 0.02, i=8

x = 0.032, i=7
x = 0.05, i=6

x = 0.08, i=5

x = 0.13, i=4

x = 0.40, i=1

102 103 104

Q2/ GeV2
105

s+ ,N
C

(x
,Q

2 )
 x

 2
i

r

Fig. 2.18 NLO QCD fit to the combined HERA data with Q2 � 3:5GeV2: �2=dof D 574=582

[349]

list of references to previous work can be found. More important is the small x
resummation because, the singlet structure functions are large in this domain of x
(while all structure functions vanish near x D 1). Here we briefly summarize the
small-x case for the singlet structure function, which is the dominant channel at
HERA, dominated by the sharp rise of the gluon and sea parton densities at small x.

The small x data collected by HERA can be fitted reasonably well, even at the
smallest measured values of x, by the NLO QCD evolution equations, so that there
is no dramatic evidence in the data for departures. This is surprising also in view of
the fact that the NNLO effects in the evolution have recently become available and
are quite large [292]. Resummation effects have been shown to resolve this apparent
paradox. For the singlet splitting function, the coefficients of all LO and NLO
corrections of order Œ˛s.Q2/ log 1=x�n and ˛s.Q2/Œ˛s.Q2/ log 1=x�n, respectively, are
explicitly known from the Balitski, Fadin, Kuraev, Lipatov (BFKL) analysis of
virtual gluon–virtual gluon scattering [191, 284]. But the simple addition of these
higher order terms to the perturbative result (with subtraction of all double counting)
does not lead to a converging expansion (the NLO logs completely override the LO
logs in the relevant domain of x and Q2).
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Fig. 2.19 More detailed view of the NLO QCD fit to a selection of the HERA data [349]
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A sensible expansion is only obtained by a proper treatment of momentum
conservation constraints, also using the underlying symmetry of the BFKL kernel
under exchange of the two external gluons, and especially, of the running coupling
effects (see the analysis in [49, 141] and references therein). In Fig. 2.21, we
present the results for the dominant singlet splitting function xPgg.x; ˛s.Q2// for
˛s.Q2/ � 0:2. We see that, while the NNLO perturbative splitting function deviates
sharply from the NLO approximation at small x, the resummed result only shows a
moderate dip with respect to the NLO perturbative splitting function in the region
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Fig. 2.21 Dominant singlet splitting function xPgg.x; ˛s.Q2// for ˛s.Q2/ � 0:2. The resummed
results from [49] (labeled ABF) and from [141] (CCSS), which are in good mutual agreement,
are compared with the LO, NLO, and NNLO perturbative results (adapted from [49] and [141])

of HERA data, and the full effect of the true small x asymptotics is only felt at much
smaller values of x. The related effects are not very important for most processes at
the LHC, but could become relevant for the next generation of hadron colliders.

2.8.3 Polarized Deep Inelastic Scattering

Polarized DIS is a subject where our knowledge is still far from satisfactory, in spite
of a great experimental effort (for recent reviews, see, for example, [24]). One major
question is how the proton helicity is distributed among quarks, gluons, and orbital
angular momentum:

1

2
�˙ C�g C Lz D 1

2
: (2.112)

Experiments with polarized leptons on polarized nucleons are sensitive to the
polarized parton densities �q D qC � q�, the difference of quark densities with
helicity plus and minus, in a proton with helicity plus. These differences are related
to the quark matrix elements of the axial current. The polarized densities satisfy
evolution equations analogous to (2.104) and (2.106), but with modified splitting
functions that were derived in [40] (the corresponding anomalous dimensions were
obtained in [22]).

Measurements have shown that the quark moment�˙ is small. This is the “spin
crisis” started by [65]: values from recent fits [104, 159, 244, 277, 303, 326] lie in



2.8 Deep Inelastic Scattering 75

the range�˙ � 0:2–0.3. In any case, it is a less pronounced crisis than it used to be
in the past. From the spin sum rule, one finds that either �g C Lz is relatively large
or there are contributions to �˙ at very small x, outside of the measured region.
Denoting the first moment of the net helicity carried by the sum q C Nq by �q, we
have the relations [104, 159]

a3 D �u ��d D .F C D/.1C �2/ D 1:269˙ 0:003 ; (2.113)

a8 D �u C�d � 2�s D .3F � D/.1C �3/ D 0:586˙ 0:031 ; (2.114)

where the F and D couplings are defined in the SU.3/ flavour symmetry limit, and
�2 and �3 describe the SU.2/ and SU.3/ breakings, respectively. From the measured
first moment of the structure function g1, one obtains the value of a0 D �˙ :

�1 D
Z

dx g1.x/ D 1

12

�

a3 C 1

3
.a8 C 4a0/

�

; (2.115)

with the result, at Q2 � 4GeV2,

a0 D �˙ D �u C�d C�s D a8 C 3�s � 0:25 : (2.116)

In turn, in the SU.3/ limit �2 D �3 D 0, one then obtains

�u � 0:82 ; �d � �0:45 ; �s � �0:11 : (2.117)

This is an important result! Given F, D, and �1, we know �u, �d, �s, and �˙
in the SU.3/ limit, which should be reasonably accurate. The x distribution of g1 is
known down to x � 10�4 on proton and deuterium, and the first moment of g1 does
not seem to get much from the unmeasured range at small x (also, theoretically, g1
should be smooth at small x [190]).

The value of �s � �0:11 from totally inclusive data and SU.3/ appears to be at
variance with the value extracted from single-particle inclusive DIS (SIDIS), where
one obtains a nearly vanishing result for �s in a fit to all data [159, 326] that leads
to puzzling results. There is, in fact, an apparent tension between the first moments
as determined by using the approximate SU.3/ symmetry and from fitting the data
on SIDIS (x 
 0:001) (in particular for the strange density). But the adequacy of
the SIDIS data is questionable (in particular the kaon data which fix �s) and so is
their theoretical treatment (for example, the application of parton results at too low
an energy and the ambiguities in the kaon fragmentation function).
�˙ is conserved in perturbation theory at LO (i.e., it does not evolve with

Q2). Regarding conserved quantities, we would expect them to be the same for
constituent and for parton quarks. But actually, the conservation of �˙ is broken
by the axial anomaly and, in fact, in perturbation theory beyond LO, the conserved
density is actually �˙ 0 D �˙ C �g.nf=2�˛s/ [41]. Note also that ˛s�g is
conserved in LO, that is�g � logQ2. This behaviour is not controversial, but it will
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be a long time before the log growth of �g is confirmed by experiment! However,
by establishing this behaviour, one would show that the extraction of �g from the
data is correct and that the QCD evolution works as expected.

If �g were large enough, it could account for the difference between partons
(�˙) and constituents (�˙ 0). From the spin sum rule it is clear that the log
increase should cancel between �g and Lz. This cancelation is automatic, as a
consequence of helicity conservation in the basic QCD vertices.�g can be measured
indirectly by scaling violations and directly from asymmetries, e.g., in SIDIS.
Existing measurements by HERMES, COMPASS, and at RHIC are still crude, but
show no hint of a large �g at accessible values of x and Q2. Present data, affected
by large errors (see, in particular, [303] for a discussion of this point) are consistent
[104, 159, 244, 277, 303, 326] with a sizable contribution of�g to the spin sum rule
in (2.112), but there is no indication that ˛s�g effects can explain the difference
between constituents and parton quarks.

2.9 Hadron Collider Processes and Factorization

There are three classes of hard processes: those with no hadronic particles in the
initial state, like eCe� annihilation, those initiated by a lepton and a hadron, like
DIS, and those with two incoming hadrons. The parton densities, defined and
measured in DIS, are instrumental to compute hard processes initiated by collisions
of two hadrons, like pNp (Tevatron) or pp (LHC). Suppose we have a hadronic process
of the form h1Ch2 ! XCall, where hi are hadrons and X is some triggering particle,
or pair of particles, or one or more jets which specify the large scale Q2 relevant for
the process, in general somewhat, but not much, smaller than s, the total centre-
of-mass squared mass. For example, X can be a W˙, or a Z, or a virtual photon
with large Q2 (Drell–Yan processes), or a jet with large transverse momentum
pT, or a quark–antiquark pair with heavy components (of mass M). By “all” we
mean a totally inclusive collection of hadronic particles. The factorization theorem
(FT) states that, for the total cross-section or some other sufficiently inclusive
distribution, we can write, apart from power-suppressed corrections, the expression
(see also Fig. 2.22)

�.s; �/ D
X

AB

Z

dx1dx2p1A.x1;Q
2/p2B.x2;Q

2/�AB.x1x2s; �/ : (2.118)

Here � D Q2=s is a scaling variable, piA are the densities for a parton of type A
inside the hadron hi, and �AB is the partonic cross-section for

parton A + parton B ! X C all0 :
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Fig. 2.22 Diagram for the
factorization theorem

A

B

parton

parton

a

b

fa/A

fb/B

σA

Here all0 is the partonic version of “all”, i.e., a totally inclusive collection of quarks,
antiquarks, and gluons. This result is based on the fact that the mass singularities
associated with the initial legs are of universal nature, so that one can reproduce
the same modified parton densities by absorbing these singularities into the bare
parton densities, as in DIS. Once the parton densities and ˛s are known from other
measurements, the prediction of the rate for a given hard process is obtained without
much ambiguity (e.g., from scale dependence or hadronization effects).

At least an NLO calculation of the reduced partonic cross-section �AB is needed
in order to correctly specify the scale, and in general also the definition of the parton
densities and of the running coupling in the leading term. The residual scale and
scheme dependence is often the most important source of theoretical error. It is
important to ask to what extent the FT has been proven? In perturbation theory up to
NNLO, it has been explicitly checked to hold for many processes: if corrections exist
we already know that they must be small (we stress that we are only considering
totally inclusive processes). At all orders, the most in-depth discussions have been
carried out in [146], in particular for Drell–Yan processes. The LHC experiments
offer a wonderful opportunity for testing the FT by comparing precise theoretical
predictions with accurate data on a wide variety of processes (for a recent review,
see, for example, [119]).

A great effort has been and is being devoted to the theoretical preparation and
interpretation of the LHC experiments. For this purpose very, difficult calculations
are needed at NLO and beyond because the strong coupling, even at the large
Q2 values involved, is not that small. Further powerful techniques for amplitude
calculations have been devised.

An interesting development at the interface between string theory and QCD
is twistor calculus. A precursor was the Parke–Taylor result in 1986 [305] on
the amplitudes for n incoming gluons with given ˙ helicities [91]. Inspired by
dual models, they derived a compact formula for the maximum non-vanishing
helicity-violating amplitude (with n � 2 plus and 2 minus helicities) in terms of
spinor products. In 2003, using the relation between strings and gauge theories in
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twistor space, Witten developed [368] a formalism in terms of effective vertices
and propagators that allows one to compute all helicity amplitudes. The method,
alternative to other modern techniques for the evaluation of Feynman diagrams
[163], leads to very compact results.

Since then, there has been rapid progress (for reviews, see [128]). The method
was extended to include massless external fermions [217] and also external EW
vector bosons [96] and Higgs particles [167]. The level attained is already important
for multijet events at the LHC. The study of loop diagrams came next. The basic idea
is that loops can be fully reconstructed from their unitarity cuts. First proposed by
Bern et al. [95], the technique was revived by Britto et al. [114] and then perfected
by Ossola et al. [304] and further extended to massive particles in [186]. For a
recent review of these new methods see [188].

In parallel with this, activity on event simulation has received a big boost
from preparations at the LHC (see, for example, the review [130]). Powerful
techniques have been developed to generate numerical results at NLO for processes
with complicated final states: matrix element calculation has been matched with
modeling of parton showers in packages like Black Hat [92] (on-shell methods
for loops), used in association with Sherpa [227] (for real emission), or POWHEG
BOX [299] or aMC@NLO [203], the automated version of the general framework
MC@NLO [206]. In a complete simulation, the matrix element calculation,
improved by resummation of large logs, provides the hard skeleton (with large pT

branchings), while the parton shower is constructed by a sequence of factorized
collinear emissions fixed by the QCD splitting functions. In addition, at low scales,
a model of hadronization completes the simulation. The importance of all the
components, matrix element, parton shower, and hadronization, can be appreciated
in simulations of hard events compared with Tevatron and LHC data. One can
say that the computation of NLO corrections in perturbative QCD has now been
completely automated.

A partial list of examples of recent NLO calculations in pp collisions, obtained
with these techniques is: W + 3 jets [187], Z, 
� + 3 jets [93], W, Z + 4 jets [94],
W + 5 jets [97], tNtbNb [113], tNt + 2 jets [100], tNt W [129], WW + 2 jets [289],
WWbNb [161], bNbbNb [232], etc. In the following we shall detail a number of the
most important and simplest examples, without any pretension to completeness.

2.9.1 Vector Boson Production

Drell–Yan processes which include lepton pair production via virtual 
 , W, or Z
exchange, offer a particularly good opportunity to test QCD. This process, among
those quadratic in parton densities with a totally inclusive final state, is perhaps
the simplest one from a theoretical point of view. The large scale is specified and
measured by the invariant mass squared Q2 of the lepton pair, which is not itself
strongly interacting (so there are no dangerous hadronization effects). The improved
QCD parton model leads directly to a prediction for the total rate as a function of
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s and � D Q2=s. The value of the LO cross-section is inversely proportional to the
number of colours NC, because a quark of given colour can only annihilate with an
antiquark of the same colour to produce a colourless lepton pair. The order ˛s.Q2/
NLO corrections to the total rate were computed long ago [42, 273] and found to be
particularly large, when the quark densities are defined from the structure function
F2 measured in DIS at q2 D �Q2. The ratio �corr=�LO of the corrected and the
Born cross-sections was called the K-factor [28], because it is almost a constant in
rapidity. More recently, the NNLO full calculation of the K-factor was completed in
a truly remarkable calculation [240].

Over the years the QCD predictions for W and Z production, a better testing
ground than the older fixed-target Drell–Yan experiments, have been compared with
experiments at CERN SpNpS and Tevatron energies and now at the LHC. Q � mW;Z

is large enough to make the prediction reliable (with a not too large K-factor)
and the ratio

p
� D Q=

p
s is not too small. Recall that, in lowest order, one has

x1x2s D Q2, so that the parton densities are probed at x values around
p
� . We

have
p
� D 0:13–0.15 (for W and Z production, respectively) at

p
s D 630GeV

(CERN SpNpS collider) and
p
� D 0:04–0.05 at the Tevatron. At the LHC at 8 TeV

or at 14 TeV, one has
p
� � 10�2 or � 6 � 10�3, respectively (for both W and

Z production). A comparison of the experimental total rates for W and Z with the
QCD predictions at hadron colliders [327] is shown in Fig. 2.23. It is also important
to mention that the cross-sections for di-boson production (i.e., WW, WZ, ZZ, W
 ,
Z
 ) have been measured at the Tevatron and the LHC and are in fair agreement with
the SM prediction (see, for example, the summary in [285] and references therein).
The typical precision is comparable to or better than the size of NLO corrections.

The calculation of the W=Z pT distribution is a classic challenge in QCD. For
large pT, for example pT � O.mW/, the pT distribution can be reliably computed in
perturbation theory, and this was done up to NLO in the late 1970s and early 1980s
[183]. A problem arises in the intermediate range �QCD � pT � mW , where the
bulk of the data is concentrated, because terms of order ˛s. p2T/ logm2W=p

2
T become

Fig. 2.23 Data vs. theory for W and Z production at hadron colliders [327] (included with
permission)
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of order 1 and should be included to all orders [330]. At order ˛s, we have

1

�0

d�0
dp2T

D .1C A/ı. p2T/C B

p2T
log

m2W
. p2T/C

C C

. p2T/C
C D. p2T/ ; (2.119)

where A, B, C, D are coefficients of order ˛s. The “+” distribution is defined in
complete analogy with (2.108):

Z p2T MAX

0

g.z/f .z/Cdz D
Z p2T MAX

0

�
g.z/� g.0/

�
f .z/dz : (2.120)

The content of this, at first sight mysterious, definition is that the singular “+” terms
do not contribute to the total cross-section. In fact, for the cross-section, the weight
function is g.z/ D 1 and we obtain

� D �0

"

.1C A/C
Z p2T MAX

0

D.z/dz

#

: (2.121)

The singular terms, of infrared origin, are present at the not completely inclusive
level, but disappear in the total cross-section. Solid arguments have been given [330]
to suggest that these singularities exponentiate. Explicit calculations in low order
support the exponentiation, and this leads to the following expression:

1

�0

d�0
dp2T

D
Z

d2b

4�
exp .�ib � pT/.1C A/ exp S.b/ ; (2.122)

with

S.b/ D
Z pT MAX

0

d2kT

2�

�
exp.ikT � b/ � 1�

	
B

k2T
log

m2W
k2T

C C

k2T




: (2.123)

At large pT the perturbative expansion is recovered. At intermediate pT the infrared
pT singularities are resummed (the Sudakov log terms, which are typical of vector
gluons, are related to the fact that for a charged particle in acceleration, it is
impossible not to radiate, so that the amplitude for no soft gluon emission is
exponentially suppressed). A delicate procedure for matching perturbative and
resummed terms is needed [43]. However, this formula has problems at small pT,
for example, because of the presence of ˛s under the integral for S.b/. Presumably,
the relevant scale is of order k2T. So it must be completed by some non-perturbative
ansatz or an extrapolation into the soft region [330].

All the formalism has been extended to NLO accuracy [64], where one starts
from the perturbative expansion at order ˛2s , and generalises the resummation to
include also NLO terms of order ˛s. p2T/

2 logm2W=p
2
T. The comparison with the data

is very impressive. Figure 2.24 shows the pT distribution as predicted in QCD (with
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Fig. 2.24 QCD predictions
for the W pT distribution
compared with recent D0 data
at the Tevatron
(
p
s D 1:8TeV) (adapted

from [64, 347])
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a number of variants that differ mainly in the approach to the soft region) compared
with some recent data at the Tevatron [347]. The W and Z pT distributions have also
been measured at the LHC and are in fair agreement with the theoretical expectation
[343].

The rapidity distributions of the produced W and Z have also been measured
with fair accuracy at the Tevatron and at the LHC, and predicted at NLO [55].
A representative example of great significance is provided by the combined LHC
results for the W charge asymmetry, defined as A � .WC �W�/=.WC CW�/, as a
function of the pseudo-rapidity � [340]. These data combine the ATLAS and CMS
results at smaller values of � with those of the LHCb experiments at larger � (in the
forward direction). This is very important input for the disentangling of the different
quark parton densities.

2.9.2 Jets at Large Transverse Momentum

Another simple and important process at hadron colliders is the inclusive production
of jets at high energy

p
s and transverse momentum pT. A comparison of the data

with the QCD NLO predictions [147, 180] in pp or pNp collisions is shown in
Fig. 2.25 [369]. This is a particularly significant test because the rates at different
centre-of-mass energies and, for each energy, at different values of pT, span many
orders of magnitude. This steep behaviour is determined by the sharp drop in the
parton densities with increasing x. Moreover, the corresponding values of

p
s and
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Fig. 2.25 Jet production cross-section at pp or pNp colliders, as a function of pT [369]. Theoretical
predictions are from NLO perturbative calculations with state-of-the-art parton densities with the
corresponding value of ˛s plus a non-perturbative correction factor due to hadronization and the
underlying event, obtained using Monte Carlo event generators (included with permission)

pT are large enough to be well inside the perturbative region. The overall agreement
of the data from ISR, UA1,2, STAR (at RHIC), CDF/D0, and now ATLAS/CMS,
is indeed spectacular. In fact, the uncertainties in the resulting experiment/theory
ratio, due to systematics and to ambiguities in the parton densities, the value of ˛s,
the scale choice, and so on, which can reach a factor of 2–3, are much smaller than
the spread of the cross-section values over many orders of magnitude.

Similar results also hold for the production of photons at large pT. The ATLAS
data [342], shown in Fig. 2.26, are in fair agreement with the theoretical predictions.
For the same process, a less clear situation was found with fixed target data. Here,
first of all, the experimental results show some internal discrepancies. Moreover, the
accessible values of pT being smaller, the theoretical uncertainties are greater.

2.9.3 Heavy Quark Production

We now discuss heavy quark production at colliders. The totally inclusive cross-
sections have been known at NLO for a long time [300]. The resummation of
leading and next-to-leading logarithmically enhanced effects in the vicinity of
the threshold region have also been studied [108]. The bottom production at
the Tevatron has represented a problem for some time: the total rate and the



2.9 Hadron Collider Processes and Factorization 83

Fig. 2.26 Single-photon production in pNp colliders as a function of pT [342] (included with
permission)

pT distribution of b quarks observed at CDF and D0 appeared in excess of the
prediction, up to the highest measured values of pT [83, 124]. But this is a
complicated problem, with different scales present at the same time:

p
s, pT, mb. The

discrepancy was finally explained by more carefully taking into account a number
of small effects from resummation of large logarithms, the difference between b
hadrons and b partons, the inclusion of better fragmentation functions, etc. [125].
At present the LHC data on b production are in satisfactory agreement with the
theoretical predictions (Fig. 2.27 [67]).

The top quark is really special: its mass is of the order of the Higgs VEV or its
Yukawa coupling is of order 1, and in this sense, it is the only “normal” case among
all quarks and charged leptons. Due to its heavy mass, it decays so fast that it has no
time to be bound in a hadron: thus it can be studied as a quark. It is very important to
determine its mass and couplings for different precision predictions of the SM. The
top quark may be particularly sensitive to new heavy states or have a connection to
the Higgs sector when we go beyond the SM theories.

Top quark physics has thus attracted much attention, both from the experimental
side, at hadron colliders, and from the theoretical point of view. In particular,
the top–antitop inclusive cross-section has been measured in pNp collisions at the
Tevatron [15], and now in pp collisions at the LHC [339, 346]. The QCD prediction
is at present completely known at NNLO [150]. Soft gluon resummation has also
been performed at NNLL [127]. The agreement between theory and experiment is
good for the best available parton density functions together with the values of ˛s
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Fig. 2.27 The b production pT distribution at the LHC [67]

Fig. 2.28 The tNt production cross-section at the LHC collider. Scale dependence of the total cross-
section at LO (blue), NLO (red), and NNLO (black) as a function of mtop (left) or

p
s (right) at the

LHC 8 TeV [150] (included with permission)

and mt measured separately (the top mass is measured from the invariant mass of
the decay products), as can be seen from Fig. 2.28 [150].

The mass of the top (and the value of ˛s) can be determined from the cross-
section, assuming that QCD is correct, and compared with the more precise value
from the final decay state. The value of the top pole mass derived in [27] from the
cross-section data, using the best available parton densities with the correlated value
of ˛s, is mpole

t D 173:3˙2:8GeV. This is to be compared with the value measured at
the Tevatron by the CDF and D0 collaborations, viz., mexp

t D 173:2˙ 0:9GeV. This
quoted error is clearly too optimistic, especially if one identifies this value with
the pole mass which it resembles. This error is only adequate within the specific
procedure used by the experimental collaborations to define their mass (including
Montecarlo, with assumptions about higher order terms, non-perturbative effects,
etc.). The problem is how to export this value to other processes. Leaving aside the
thorny issue of the precise relation between mexp

t with mpole
t , it is clear that there is

good overall consistency.
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The inclusive forward–backward asymmetry, AFB, in the tNt rest frame has been
measured by both the CDF [6] and D0 [9] collaborations, and found to be in excess
of the SM prediction, by about 2� [247]. For CDF the discrepancy increases at
large tNt invariant mass, and reaches about 2:5� for MtNt 
 450GeV. Recently, CDF
has obtained [7] the first measurement of the top quark pair production differential
cross-section as a function of cos � , with � the production angle of the top quark.
The coefficient of the cos � term in the differential cross-section, viz., a1 D 0:40˙
0:12, is found to be in excess of the NLO SM prediction, viz., 0:15C0:07

�0:03 , while
all other terms are in good agreement with the NLO SM prediction, and AFB is
dominated by this excess linear term. Is this a real discrepancy? The evidence is far
from compelling, but this effect has received much attention from theorists [321].
A related observable at the LHC is the charge asymmetry AC in tNt production. In
contrast to AFB, the combined value of AC reported by ATLAS [1] and CMS [144]
agrees with the SM, within the still limited accuracy of the data.

2.9.4 Higgs Boson Production

We now turn to the discussion of the SM Higgs inclusive production cross-section
(for a review and a list of references, see [165]). The most important Higgs
production modes are gluon fusion, vector boson fusion, Higgs strahlung, and
associated production with top quark pairs. Some typical Feynman diagrams for
these different modes are depicted in Fig. 2.29. The predicted rates are shown in
Fig. 2.30 [168].

The most important channel at the LHC is Higgs production via gCg ! H. The
amplitude is dominated by the top quark loop [216]. The NLO corrections turn out
to be particularly large [156], as can be seen in Fig. 2.31. Higher order corrections
can be computed either in the effective Lagrangian approach, where the heavy top
is integrated away and the loop is shrunk down to a point [182] (the coefficient
of the effective vertex is known to ˛4s accuracy [139]), or in the full theory. At the
NLO, the two approaches agree very well for the rate as a function of mH [270]. The
NNLO corrections have been computed in the effective vertex approximation [133]
(see Fig. 2.31). Beyond fixed order, resummation of large logs has been carried out
[134]. Further, the NLO EW contributions have been computed [20]. Rapidity (at
NNLO) [56] and pT distributions (at NLO) [158] have also been evaluated. At
smaller pT, the large logarithms [Log. pT=mH/�

n have been resummed in analogy
with what was done long ago for W and Z production [110]. For additional recent
works on Higgs physics at colliders, see, for example, [184].

So far we have seen examples of resummation of large logs. This is a very
important chapter of modern QCD. The resummation of soft gluon logs enter into
different problems, and the related theory is subtle. The reader is referred here to
some recent papers where additional references can be found [77]. A particularly
interesting related development has to do with the so-called non-global logs (see,
for example, [153]). If in the measurement of an observable some experimental cuts
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Fig. 2.29 Representative Feynman diagrams for the Higgs production cross-section mechanisms.
(a) Gluon fusion. (b) Vector boson fusion (V D W; Z). (c) Higgs strahlung from a Z boson (an
analogous diagram can be drawn for the W boson). (d) tNt associated production

Fig. 2.30 Production cross-sections at the LHC for a Higgs with mass MH � 125GeV for
different centre-of-mass energies [168]
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Fig. 2.31 Higgs gluon fusion cross-section in LO, NLO, and NLLO [57]. Figure reproduced with
permission. Copyright (c) 2005 by American Physical Society

are introduced, which is very often the case, then a number of large logs can arise
from the corresponding breaking of inclusiveness. It is also important to mention the
development of software for the automated implementation of resummation (see, for
example, [78]).

2.10 Measurements of ˛s

Very precise and reliable measurements of ˛s.mZ/ are obtained from eCe� colliders
(in particular LEP), from deep inelastic scattering, and from the hadron colliders
(Tevatron and LHC). The “official” compilation due to Bethke [99, 311], included
in the 2012 edition of the PDG [307], is reproduced here in Fig. 2.32. The agreement
among so many different ways of measuring ˛s is a strong quantitative test of
QCD. However, for some entries the stated error is taken directly from the original
works and is not transparent enough when viewed from the outside (e.g., the lattice
determination). In my opinion one should select a few of the theoretically cleanest
processes for measuring ˛s and consider all other ways as tests of the theory. Note
that, in QED, ˛ is measured from a single very precise and theoretically clean
observable (one possible calibration process is at present the electron g � 2 [242]).
The cleanest processes for measuring ˛s are the totally inclusive ones (no hadronic
corrections) with light cone dominance, like Z decay, scaling violations in DIS, and
perhaps £ decay (but for £ the energy scale is dangerously low). We will review
these cleanest methods for measuring ˛s in the following.
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Fig. 2.32 Left: Summary of measurements of ˛s.mZ/. The yellow band is the proposed average:
˛s.mZ/ D 0:1184˙0:0007. Right: Summary of measurements of ˛s as a function of the respective
energy scale Q. Figures from [99]

2.10.1 ˛s from eCe� Colliders

The totally inclusive processes for measuring ˛s at eCe� colliders are hadronic Z
decays (Rl, �h, �l, �Z) and hadronic £ decays. As we have seen in Sect. 2.7.1, for a
quantity like Rl we can write a general expression of the form

Rl D � .Z; £ ! hadrons/

� .Z; £ ! leptons/
� REW.1C ıQCD C ıNP/ ; (2.124)

where REW is the electroweak-corrected Born approximation, and ıQCD, ıNP are
the perturbative (logarithmic) and non-perturbative (power suppressed) QCD cor-
rections. For a measurement of ˛s (in the following we always refer to the MS
definition of ˛s) at the Z resonance peak, one can use all the information from Rl,
�Z D 3�l C �h C �inv, and �F D 12��l�F=.m2Z�

2
Z /, where F stands for h or l.

In the past, the measurement from Rl was preferred (taken by itself it leads to
˛s.mZ/ D 0:1226˙ 0:0038, a bit on the large side), but after LEP there is no reason
for this preference. In all these quantities ˛s enters through�h, but the measurements
of, say,�Z , Rl, and �l are really independent, as they are affected by entirely different
systematics: �Z is extracted from the line shape, and Rl and �l are measured at the
peak, but Rl does not depend on the absolute luminosity, while �l does. The most
sensitive single quantity is �l. It gives ˛s.mZ/ D 0:1183 ˙ 0:0030. The combined
value from the measurements at the Z (assuming the validity of the SM and the
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observed Higgs mass) is [268]

˛s.mZ/ D 0:1187˙ 0:0027 : (2.125)

Similarly, by adding all other electroweak precision tests (in particular mW), one
finds [350]

˛s.mZ/ D 0:1186˙ 0:0026 : (2.126)

These results have been obtained from the ıQCD expansion up to and including the
c3 term of order ˛3s . But by now the c4 term (NNNLO!) has also been computed
[74] for inclusive hadronic Z and £ decay. For nf D 5 and as D ˛s.mZ/=� , this
remarkable calculation of about 20,000 diagrams for the inclusive hadronic Z width
leads to the result

ıQCD D 1C as C 0:76264a2s � 15:49a3s � 68:2a4s C � � � : (2.127)

This result can be used to improve the value of ˛s.mZ/ from the EW fit given
in (2.126), which becomes

˛s.mZ/ D 0:1190˙ 0:0026 : (2.128)

Note that the error shown is dominated by the experimental errors. Ambiguities
from higher perturbative orders [328], from power corrections, and also from
uncertainties on the Bhabha luminometer (which affect �h;l) [157] are very small. In
particular, the fact of having now fixed mH does not decrease the error significantly
[73] (Grunewald, M., for the LEP EW Group, private communication). The main
source of error is the assumption of no new physics, for example, in the ZbNb vertex,
which may affect the �h prediction.

We now consider the measurement of ˛s.mZ/ from £ decay. R£ has a number of
advantages which, at least in part, tend to compensate for the smallness of m£ D
1:777GeV. First, R£ is maximally inclusive, more so than ReCe�.s/, because one
also integrates over all values of the invariant hadronic squared mass:

R£ D 1

�

Z m2£

0

ds

m2£

	

1 � s

m2£


2
Im˘£.s/ : (2.129)

As we have seen, the perturbative contribution is now known at NNNLO [74].
Analyticity can be used to transform the integral into one on the circle at jsj D m2£ :

R£ D 1

2�i

I

jsjDm2£

ds

m2£

	

1 � s

m2£


2
˘£.s/ : (2.130)
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Furthermore, the factor .1 � s=m2£/
2 is important to kill the sensitivity in the region

ReŒs� D m2£ where the physical cut and the associated thresholds are located.
However, the sensitivity to hadronic effects in the vicinity of the cut is still a non-
negligible source of theoretical error which the formulation of duality violation
models tries to decrease. But the main feature that has attracted attention to £ decays
for the measurement of ˛s.mZ/ is that even a rough determination of �QCD at a low
scale Q � m£ leads to a very precise prediction of ˛s at the scale mZ , just because
in logQ=�QCD the value of �QCD counts less and less as Q increases. The absolute
error in ˛s shrinks by a factor of about one order of magnitude in going from ˛s.m£/
to ˛s.mZ/.

Still it seems a little suspicious that, in order to obtain a better measurement
of ˛s.mZ/, we have to go down to lower and lower energy scales. And in fact, in
general, one finds that the decreased control of higher order perturbative and non-
perturbative corrections makes the apparent advantage totally illusory. For ˛s from
R£, the quoted amazing precision is obtained by taking for granted that corrections
suppressed by 1=m2£ are negligible. The argument is that, in the massless theory, the
light cone expansion is given by

ıNP D ZERO

m2£
C c4

hO4i
m4£

C c6
hO6i
m6£

C � � � : (2.131)

In fact there are no 2D Lorentz and gauge invariant operators. For example, TrŒg	g	�
[recall (1.12)] is not gauge invariant. In the massive theory, ZERO here is replaced
by the light quark mass-squared m2. This is still negligible if m is taken as a
Lagrangian mass of a few MeV. If on the other hand the mass were taken to be the
constituent mass of order�QCD, this term would not be negligible at all, and would
substantially affect the result [note that ˛s.m£/=� � 0:1 � .0:6GeV=m£/2 and
that �QCD for three flavours is large]. The principle that coefficients in the operator
expansion can be computed from the perturbative theory in terms of parton masses
has never really been tested (due to ambiguities in the determination of condensates)
and this particular case with a ZERO there is unique in making the issue crucial.
Many distinguished theorists believe the optimistic version. I am not convinced that
the gap is not filled up by ambiguities in O.�2

QCD=m
2
£/ from ıpert [45].

There is a vast and sophisticated literature on ˛s from £ decay. Unbelievably
small errors are obtained in one or the other of several different procedures and
assumptions that have been adopted to end up with a specified result. With time there
has been an increasing awareness of the problem of controlling higher orders and
non-perturbative effects. In particular, fixed order perturbation theory (FOPT) has
been compared with resummation of leading beta function effects in the so-called
contour-improved perturbation theory (CIPT). The results are sizeably different in
the two cases, and there have been many arguments in the literature about which
method is best.

One important piece of progress comes from the experimental measurement
of moments of the £ decay mass distributions, defined by modifying the weight
function in the integral in (2.129). In principle, one can measure ˛s from the
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sum rules obtained from different weight functions that emphasize different mass
intervals and different operator dimensions in the light cone operator expansion. A
thorough study of the dependence of the measured value of ˛s on the choice of the
weight function, and in general of higher order and non-perturbative corrections,
has appeared in [89], and the interested reader is advised to look at that paper and
the references therein.

We consider here the recent evaluations of ˛s from £ decay based on the NNNLO
perturbative calculations [74] and different procedures for estimating the different
kinds of corrections. From the papers given in [90], we obtain an average value and
error that agrees with the Erler and Langacker’s values as given in PDG 12 [307]:

˛s.m£/ D 0:3285˙ 0:018 ; (2.132)

or

˛s.mZ/ D 0:1194˙ 0:0021 : (2.133)

In any case, one can discuss the error, but what is true and remarkable is that the
central value of ˛s from � decay, obtained at very small Q2, is in good agreement
with all other precise determinations of ˛s at more typical LEP values of Q2.

2.10.2 ˛s from Deep Inelastic Scattering

In principle, DIS is expected to be an ideal laboratory for the determination of ˛s,
but in practice the outcome is still to some extent unsatisfactory. QCD predicts the
Q2 dependence of F.x;Q2/ at each fixed x, not the x shape. But the Q2 dependence is
related to the x shape by the QCD evolution equations. For each x bin, the data can be
used to extract the slope of an approximately straight line in d logF.x;Q2/=d logQ2,
i.e., the log slope. The Q2 span and the precision of the data are not very sensitive to
the curvature, for most x values. A single value of�QCD must be fitted to reproduce
the collection of the log slopes. For the determination of ˛s, the scaling violations of
non-singlet structure functions would be ideal, because of the minimal impact of the
choice of input parton densities. We can write the non-singlet evolution equations
in the form

d

dt
logF.x; t/ D ˛s.t/

2�

Z 1

x

dy

y

F.y; t/

F.x; t/
Pqq

	
x

y
; ˛s.t/




; (2.134)

where Pqq is the splitting function. At present, NLO and NNLO corrections are
known. It is clear from this form that, for example, the normalization error on the
input density drops out, and the dependence on the input is reduced to a minimum
(indeed, only a single density appears here, while in general there are quark and
gluon densities).
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Unfortunately, the data on non-singlet structure functions are not very accurate.
If we take the difference Fp � Fp in the data on protons and neutrons, experimental
errors add up and become large in the end. The F3�N data are directly non-singlet,
but are not very precise. Another possibility is to neglect sea and glue in F2 at
sufficiently large x. But by only taking data at x > x0, one decreases the sample
and introduces a dependence on x0 and an error from residual singlet terms. A
recent fit to non singlet structure functions in electron or muon production extracted
from proton and deuterium data, neglecting sea and gluons at x > 0:3 (error to be
evaluated), has led to the results [105]:

˛s.mZ/ D 0:1148˙ 0:0019.exp/C‹ .NLO/ ; (2.135)

˛s.mZ/ D 0:1134˙ 0:0020.exp/C‹ .NNLO/ : (2.136)

The central values are rather low and there is not much difference between NLO
and NNLO. The question marks refer to the uncertainties from the residual singlet
component at x > 0:3, and also to the fact that the old BCDMS data, whose
systematics has been questioned, are very important at x > 0:3 and push the fit
towards small values of ˛s.

When one measures ˛s from scaling violations in F2, measured with e or �
beams, the data are abundant, the statistical errors are small, the ambiguities from
the treatment of heavy quarks and the effects of the longitudinal structure function
FL can be controlled, but there is an increased dependence on input parton densities,
and most importantly a strong correlation between the result on ˛s and the adopted
parametrization of the gluon density. In the following we restrict our attention to
recent determinations of ˛s from scaling violations at NNLO accuracy, such as those
in [26, 254] which report the results:

˛s.mZ/ D 0:1134˙ 0:0011.exp/C‹ ; (2.137)

˛s.mZ/ D 0:1158˙ 0:0035 : (2.138)

In the first line the question mark refers to the issue of the ˛s–gluon correlation.
In fact, ˛s tends to slide towards low values (˛s � 0:113–0.116) if the gluon input
problem is not fixed. Indeed, in the second line, taken from [254], the large error
also includes an estimate of the ambiguity from the gluon density parametrization.
One way to restrict the gluon density is to use the Tevatron and LHC high pT jet
data to fix the gluon parton density at large x. Via the momentum conservation sum
rule, this also constrains the small x values of the same density. Of course, in this
way one has to go outside the pure domain of DIS. Further, the jet rates have been
computed at NLO only. In a simultaneous fit of ˛s and the parton densities from a
set of data which, although dominated by DIS data, also contains Tevatron jets and
Drell–Yan production, the result was [287]

˛s.mZ/ D 0:1171˙ 0:0014C‹ : (2.139)
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The authors of [287] attribute their higher value of ˛s to a more flexible parametriza-
tion of the gluon and the inclusion of Tevatron jet data, which are important to fix
the gluon at large x.

An alternative way to cope with the gluon problem is to drastically suppress the
gluon parametrization rigidity by adopting the neural network approach. With this
method, the following value was obtained, in [76], from DIS data alone, treated at
NNLO accuracy:

˛s.mZ/ D 0:1166˙ 0:0008.exp/˙ 0:0009.th/C‹ ; (2.140)

where the stated theoretical error is that quoted by the authors within their
framework, while the question mark has to do with possible additional systematics
from the method adopted. Interestingly, in the same approach, not much difference
is found by also including the Tevatron jets and the Drell–Yan data:

˛s.mZ/ D 0:1173˙ 0:0007.exp/˙ 0:0009.th/C‹ : (2.141)

We see that, when the gluon input problem is suitably addressed, the fitted value of
˛s is increased.

As we have seen there is some spread of results, even among the most recent
determinations based on NNLO splitting functions. We tend to favour determina-
tions from the whole DIS set of data (i.e., beyond the pure non-singlet case) and
with attention paid to the gluon ambiguity problem (even if some non DIS data
from Tevatron jets at NLO have to be included). A conservative proposal for the
resulting value of ˛s from DIS which emerges from the above discussion would be
something like

˛s.mZ/ D 0:1165˙ 0:0020 : (2.142)

The central value is below those obtained from Z and £ decays, but perfectly
compatible with those results.

2.10.3 Recommended Value of ˛s.mZ/

According to my proposal to calibrate ˛s.mZ/ from the theoretically cleanest and
most transparent methods, identified as the totally inclusive, light cone operator
expansion dominated processes, I collect here my understanding of the results:

• From Z decays and EW precision tests, i.e., (2.126):

˛s.mZ/ D 0:1190˙ 0:0026 : (2.143)

• From scaling violations in DIS, i.e., (2.142):

˛s.mZ/ D 0:1165˙ 0:0020 : (2.144)
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• From R£ (2.133):

˛s.mZ/ D 0:1194˙ 0:0021: (2.145)

If one wants to be on the safe side, one can take the average of Z decay and DIS,
i.e.,

˛s.mZ/ D 0:1174˙ 0:0016 : (2.146)

This is my recommended value. If one adds to the average the rather conservative
R£ value and error given above in (2.145), which takes into account the dangerously
low energy scale of the process, one obtains

˛s.mZ/ D 0:1184˙ 0:0011 : (2.147)

Note that this essentially coincides with the “official” average, with a moderate
increase in the error.

2.10.4 Other ˛s.mZ/ Measurements as QCD Tests

There are a number of other determinations of ˛s that are important because they
arise from qualitatively different observables and methods. Here I will give a few
examples of the most interesting measurements.

A classic set of measurements comes from a number of infrared-safe observables
related to event rates and jet shapes in eCe� annihilation. One important feature
of these measurements is that they can be repeated at different energies in the
same detector, like the JADE detector in the energy range of PETRA (most of the
intermediate energy points in the right-hand panel of Fig. 2.32 are from this class of
measurements) or the LEP detectors from LEP1 to LEP2 energies. As a result, one
obtains a striking direct confirmation of the running of the coupling according to the
renormalization group prediction. The perturbative part is known at NNLO [213],
and resummations of leading logs arising from the vicinity of cuts and/or boundaries
have been performed in many cases using effective field theory methods. The main
problem with these measurements is the possibly large impact of non-perturbative
hadronization effects on the result, and therefore on the theoretical error.

According to [99], a summarizing result that takes into account the central values
and the spread from the JADE measurements at PETRA, in the range 14–46 GeV, is

˛s.mZ/ D 0:1172˙ 0:0051 ;

while from the ALEPH data at LEP, in the range 90–206 GeV, the reported value
[164] is

˛s.mZ/ D 0:1224˙ 0:0039 :
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It is amazing to note that among the related works there are a couple of papers by
Abbate et al. [10, 11] where an extremely sophisticated formalism is developed
for the thrust distribution, based on NNLO perturbation theory with resummations
at NNNLL plus a data/theory-based estimate of non-perturbative corrections. The
final quoted results are unbelievably precise:

˛s.mZ/ D 0:1135˙ 0:0011 ;

from the tail of the thrust distribution [10], and

˛s.mZ/ D 0:1140˙ 0:0015 ;

from the first moment of the thrust distribution [11]. I think that this is a good
example of an underestimated error which is obtained within a given machinery
without considering the limits of the method itself.

Another allegedly very precise determination of ˛s.mZ/ is obtained from lattice
QCD by several groups [288] with different methods and compatible results. A
value that summarizes these different results is [307]

˛s.mZ/ D 0:1185˙ 0:0007 :

With all due respect to the lattice community, I think this small error is totally
unrealistic. But we have shown that a sufficiently precise measurement of ˛s.mZ/

can be obtained, viz., (2.146) and (2.147), by using only the simplest processes,
where the control of theoretical errors is maximal. One is left free to judge whether
a further restriction of theoretical errors is really on solid ground.

The value of � (for nf D 5) which corresponds to (2.146) is

�5 D 202˙ 18MeV ; (2.148)

while the value from (2.147) is

�5 D 213˙ 13MeV : (2.149)

� is the scale of mass that finally appears in massless QCD. It is the scale where
˛s.�/ is of order 1. Hadron masses are determined by �. Actually, the � mass
or the nucleon mass receive little contribution from the quark masses (the case of
pseudoscalar mesons is special, as they are the pseudo-Goldstone bosons of broken
chiral invariance). Hadron masses would be almost the same in massless QCD.
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2.11 Conclusion

We have seen that perturbative QCD based on asymptotic freedom offers a rich
variety of tests, and we have described some examples in detail. QCD tests are
not as precise as for the electroweak sector. But the number and diversity of such
tests has established a very firm experimental foundation for QCD as a theory of
strong interactions. The physics content of QCD is very large and our knowledge,
especially in the non-perturbative domain, is still very limited, but progress both
from experiment (Tevatron, RHIC, LHC, etc.) and from theory is continuing at a
healthy rate. And all the QCD predictions that we have been able to formulate and
to test appear to be in very good agreement with experiment.

The field of QCD appears to be one of great maturity, but also of robust vitality,
with many rich branches and plenty of new blossoms. I may mention the very
exciting explorations of supersymmetric extensions of QCD and the connections
with string theory (for a recent review and a list of references, see [166]). In
particular, N D 4 SUSY QCD (that is, with four spinor charge generators) has a
vanishing beta function and is loop-finite. In the limit NC ! 1 with � D e2sNC

fixed, planar diagrams are dominant. There is progress towards a solution of planar
N D 4 SUSY QCD. The large � limit corresponds by the AdS/CFT duality (anti-
de Sitter/conformal field theory), a string theory concept, to the weakly coupled
string (gravity) theory on AdS5 � S5 (the 10 dimensions are compactified in a 5-
dimensional anti-de Sitter space times a 5-dimensional sphere). By moving along
this very tentative route, one can transfer some results (assumed to be of sufficiently
universal nature) from the computable weak limit of the associated string theory to
the non-perturbative ordinary QCD domain. Further along this line of investigation,
there are studies of N D 8 supergravity, related to N D 4 SUSY Yang–Mills, which
has been proven finite up to four loops. It could possibly lead to a finite field theory
of gravity in four dimensions.
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Chapter 3
The Theory of Electroweak Interactions

3.1 Introduction

In this chapter, we summarize the structure of the standard EW theory1 and
specify the couplings of the intermediate vector bosons W˙ and Z and those
of the Higgs particle with the fermions and among themselves, as dictated by
the gauge symmetry plus the observed matter content and the requirement of
renormalizability. We discuss the realization of spontaneous symmetry breaking
and the Higgs mechanism. We then review the phenomenological implications of
the EW theory for collider physics, that is, we leave aside the classic low energy
processes that are well described by the “old” weak interaction theory (see, for
example, [148]).

For this discussion, we split the Lagrangian into two parts by separating the terms
with the Higgs field:

L D Lgauge C LHiggs : (3.1)

Both terms are written down as prescribed by the SU.2/
N

U.1/ gauge symmetry
and renormalizability, but the Higgs vacuum expectation value (VEV) induces the
spontaneous symmetry breaking responsible for the non-vanishing vector boson and
fermion masses.

1Some recent textbooks are listed in [276]. See also [34, 313].
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3.2 The Gauge Sector

We start by specifying Lgauge, which involves only gauge bosons and fermions,
according to the general formalism of gauge theories discussed in Chap. 1:

Lgauge D �1
4

3X

AD1
FA
	�F

A	� � 1

4
B	�B

	� C N Li
	D	 L C N Ri
	D	 R : (3.2)

This is the Yang–Mills Lagrangian for the gauge group SU.2/˝U.1/ with fermion
matter fields. Here

B	� D @	B� � @�B	 ; FA
	� D @	W

A
� � @�W

A
	 � g�ABC WB

	W
C
� ; (3.3)

are the gauge antisymmetric tensors constructed out of the gauge field B	 associated
with U.1/ and WA

	 corresponding to the three SU.2/ generators, while �ABC are the
group structure constants [see (3.5) and (3.6)], which, for SU.2/, coincide with the
totally antisymmetric Levi-Civita tensor, with �123 D 1 (recall the familiar angular
momentum commutators). The normalization of the SU.2/ gauge coupling g is
therefore specified by (3.3).

As discussed in Sect. 1.5, the standard EW theory is a chiral theory, in the sense
that  L and  R behave differently under the gauge group (so that parity and charge
conjugation non-conservation are made possible in principle). Thus, mass terms for
fermions (of the form N L R C h:c:) are forbidden in the symmetric limit. In the
following,  L;R are column vectors, including all fermion types in the theory that
span generic reducible representations of SU.2/˝ U.1/.

In the absence of mass terms, there are only vector and axial vector interactions
in the Lagrangian, and these have the property of not mixing  L and  R. Fermion
masses will be introduced, together with W˙ and Z masses, by the mechanism of
symmetry breaking. The covariant derivatives D	 L;R are given explicitly by

D	 L;R D
	

@	 C ig
3X

AD1
tAL;RW

A
	 C ig0 1

2
YL;RB	




 L;R ; (3.4)

where tAL;R and YL;R=2 are the SU.2/ and U.1/ generators, respectively, in the
reducible representations  L;R. The commutation relations of the SU.2/ generators
are given by

�
tAL; t

B
L

� D i�ABCt
C
L ;

�
tAR; t

B
R

� D i�ABCt
C
R : (3.5)
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We use the normalization in (1.11) [in the fundamental representation of SU.2/].
The electric charge generator Q (in units of e, the positron charge) is given by

Q D t3L C 1

2
YL D t3R C 1

2
YR : (3.6)

Note that the normalization of the U.1/ gauge coupling g0 in (3.4) is now specified
as a consequence of (3.6). Note also that tiR R D 0, given that, for all known quarks
and leptons,  R is a singlet. But in the following, we keep tiR R for generality, in
case one day a non-singlet right-handed fermion is discovered.

3.3 Couplings of Gauge Bosons to Fermions

All fermion couplings of the gauge bosons can be derived directly from (3.2) and
(3.4). The charged W	 fields are described by W1;2

	 , while the photon A	 and weak
neutral gauge boson Z	 are obtained from combinations of W3

	 and B	. The charged-
current (CC) couplings are the simplest. One starts from the W1;2

	 terms in (3.2) and
(3.4), which can be written as

g.t1W1
	 C t2W2

	/ D g

�
1p
2
.t1 C it2/

1p
2
.W1

	 � iW2
	/C h:c:

�

D g

	
1p
2
tCW�

	 C h:c:




; (3.7)

where t˙ D t1 ˙ it2 and W˙ D .W1 ˙ iW2/=
p
2. By applying this generic relation

to L and R fermions separately, we obtain the vertex

V N  W D g N 
	
�
1p
2
tCL
1

2
.1 � 
5/C 1p

2
tCR
1

2
.1C 
5/

�

 W�
	 C h:c: (3.8)

Given that tR D 0 for all fermions in the SM, the charged current is pure V � A. In
the neutral current (NC) sector, the photon A	 and the mediator Z	 of the weak NC
are orthogonal and normalized linear combinations of B	 and W3

	 :

A	 D cos �WB	 C sin �WW3
	 ;

Z	 D � sin �WB	 C cos �WW3
	 ; (3.9)

whence

W3
	 D sin �WA	 C cos �WZ	 ;

B	 D cos �WA	 � sin �WZ	 : (3.10)
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Equations (3.9) define the weak mixing angle �W. We can rewrite the W3
	 and B	

terms in (3.2) and (3.4) as follows:

gt3W3
	 C 1

2
g0YB	 D �

gt3 sin �W C g0.Q � t3/ cos �W
�
A	

C�gt3 cos �W � g0.Q � t3/ sin �W
�
Z	 ; (3.11)

where (3.6) was also used for the charge matrix Q. The photon is characterized
by equal couplings to left and right fermions, with a strength equal to the electric
charge. Thus we immediately obtain

g sin �W D g0 cos �W D e ; (3.12)

so that

tan �W D g0=g : (3.13)

Once �W has been fixed by the photon couplings, it is a matter of simple algebra to
derive the Z couplings, with the result

V N  Z D g

2 cos �W

N 
	
�
t3L.1 � 
5/C t3R.1C 
5/� 2Q sin2 �W

�
 Z	 ; (3.14)

where V N  Z is a notation for the vertex. Once again, recall that in the minimal SM,
t3R D 0 and t3L D ˙1=2.

In order to derive the effective four-fermion interactions, which are equivalent at
low energies to the CC and NC couplings given in (3.8) and (3.14), we anticipate
that large masses, as observed experimentally, are provided for W˙ and Z by LHiggs.
For left–left CC couplings, when the square of the momentum transfer can be
neglected (in comparison with m2W ) in the propagator of Born diagrams with single
W exchange (see, for example, the diagram for� decay in Fig. 3.1), Eq. (3.8) implies

L C
eff ' g2

8m2W

� N 
	.1 � 
5/t
C
L  

�� N 
	.1 � 
5/t�L 
�
: (3.15)

By specializing further in the case of doublet fields, such as �e � e� or �	 �	�,
we obtain the tree-level relation of g with the Fermi coupling constant GF precisely

Fig. 3.1 Born diagram for �
decay
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measured from 	 decay [see (1.2) and (1.3)]:

GFp
2

D g2

8m2W
: (3.16)

Recalling that g sin �W D e, we can also cast this relation in the form

mW D 	Born

sin �W
; (3.17)

with

	Born D
	

�˛p
2GF


1=2
' 37:2802GeV ; (3.18)

where ˛ is the QED fine-structure constant .˛ � e2=4� D 1=137:036/.
In the same way, for neutral currents, in the Born approximation, (3.14) yields

the effective four-fermion interaction:

L NC
eff ' p

2 GF�0 N 
	Œ: : :� N 
	Œ: : :� ; (3.19)

where

Œ: : :� � t3L.1 � 
5/C t3R.1C 
5/� 2Q sin2 �W (3.20)

and

�0 D m2W
m2Z cos2 �W

: (3.21)

All couplings given in this section are valid at tree level, and are modified in higher
orders of perturbation theory. In particular, the relations between mW and sin �W

[(3.17) and (3.18)] and the observed values of � (� D �0 at tree level) in different
NC processes, are altered by computable EW radiative corrections, as discussed in
Sect. 3.11.

The partial width� .W ! Nf f 0/ is given in the Born approximation by the simplest
diagram in Fig. 3.2, and with tR D 0, one readily obtains from (3.8), in the limit of

Fig. 3.2 Diagrams for (a) the
W and (b) the Z widths in the
Born approximation



102 3 The Theory of Electroweak Interactions

neglecting the fermion masses and summing over all possible f 0 for a given f ,

� .W ! Nf f 0/ D NC
GFm3W
6�

p
2

D NC
˛mW

12 sin2 �W
; (3.22)

where NC D 3 or 1 is the number of colours for quarks or leptons, respectively, and
(3.12) and (3.16) have been used. Here and in the following expressions for the Z
widths, the one-loop QCD corrections for the quark channels can be absorbed in a
redefinition of NC:

NC ! 3
�
1C ˛s.mZ/=� C � � � � :

Note that the widths are particularly large because the rate already occurs at order
g2 or GF. The experimental values of the total W width and the leptonic branching
ratio (the average of e, �, and £ modes) are [307, 350] (see Sect. 3.11):

�W D 2:085˙ 0:042GeV ; B.W ! l�l/ D 10:80˙ 0:09 : (3.23)

The branching ratio B is in very good agreement with the simple approximate
formula, derived from (3.22):

B.W ! l�l/ � 1

2 � 3 � �1C ˛s.m2Z/=�
�C 3

� 10:8% : (3.24)

The denominator corresponds to the sum of the final states d0 Nu, s0 Nc, e� N�e, �� N�	,
£� N�£, where d0 and s0 are defined in (3.63).

For tR D 0, the Z coupling to fermions in (3.14) can be cast into the form

V N f f Z D g

2 cos�W

N f 
	
�
g f

V � g f
A
5

�
 f Z

	 ; (3.25)

with

g f
A D t3fL ; g f

V=g
f
A D 1 � 4jQf j sin2 �W ; (3.26)

and t3fL D ˙1=2 for up-type or down-type fermions. In terms of gA;V given in (3.26)
(the widths are proportional to g2V C g2A), for negligible fermion masses, the partial
width � .Z ! Nf f / in the Born approximation (see the diagram in Fig. 3.2) is given
by

� .Z ! Nf f / D NC
˛mZ

12 sin2 2�W

�
1C .1 � 4jQf j sin2 �W/

2
�

D NC�0
GFm3Z
24�

p
2

�
1C .1� 4jQf j sin2 �W/

2
�
; (3.27)
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where �0 D m2W=m
2
Z cos2 �W is given in (3.52). The experimental values of the total

Z width and the partial rates into charged leptons (average of e, �, and £), into
hadrons and into invisible channels are [307, 350]

�Z D 2:4952˙ 0:0023GeV ; �lCl� D 83:984˙ 0:086MeV ;

�h D 1744:4˙ 2:0MeV ; �inv D 499:0˙ 1:5MeV :
(3.28)

The measured value of the Z invisible width, taking radiative corrections into
account, leads to the determination of the number of light active neutrinos [307,
350]:

N� D 2:9840˙ 0:0082 ; (3.29)

well compatible with the three known neutrinos �e, �	, and �£. Hence, there exist
only the three known sequential generations of fermions (with light neutrinos), a
result which also has important consequences in astrophysics and cosmology.

At the Z peak, besides total cross-sections, various types of asymmetries have
been measured. The results of all asymmetry measurements are quoted in terms of
the asymmetry parameter Af , defined in terms of the effective coupling constants,
g f

V and g f
A, as

Af D 2
g f

Vg
f
A

gf2V C gf2A
D 2

g f
V=g

f
A

1C .g f
V=g

f
A/
2
; Af

FB D 3

4
AeAf : (3.30)

The measurements are the forward–backward asymmetry (Af
FB D 3AeAf =4), the tau

polarization (A£) and its forward–backward asymmetry (Ae) measured at LEP, and
also the left–right and left–right forward–backward asymmetry measured at SLC
(Ae and Af , respectively). Hence, the set of partial width and asymmetry results
allows the extraction of the effective coupling constants: widths measure .g2V C g2A/
and asymmetries measure gV=gA.

The top quark is heavy enough to be able to decay into a real bW pair, which is
by far its dominant decay channel. The next mode, t ! sW, is suppressed in rate by
a factor jVtsj2 � 1:7 � 10�3 [see (3.68)–(3.70)]. The associated width, neglecting
mb effects but including 1-loop QCD corrections in the limit mW D 0, is given by
(we have omitted a factor jVtbj2 that we set equal to 1) [253]

� .t ! bWC/ D GFm3t
8�

p
2

	

1�m2W
m2t


2	

1C2m
2
W

m2t


�

1�2˛s.mZ/

3�

	
2�2

3
�5
2




C � � �
�

:

(3.31)

The top quark lifetime is so short, about 0:5 � 10�24 s, that it decays before
hadronizing or forming toponium bound states.
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3.4 Gauge Boson Self-Interactions

The gauge boson self-interactions can be derived from the F	� term in Lgauge using
(3.9) and W˙ D .W1 ˙ iW2/=

p
2. Defining the three-gauge-boson vertex as in

Fig. 3.3 (with all incoming lines), we obtain

VW�WCV D igW�WCV

�
g	�.p � q/� C g	�.r � p/� C g��.q � r/	

�
; (3.32)

with V � ”;Z and

gW�WC” D g sin �W D e ; gW�WCZ D g cos �W : (3.33)

Note that the photon coupling to the W is fixed by the electric charge, as imposed by
QED gauge invariance. The ZWW coupling is larger by a factor of cot �W. This form
of the triple gauge vertex is very special: in general, there could be departures from
the above SM expression, even if we restrict to Lorentz invariant, electromagnetic
gauge symmetric, and C and P conserving couplings. In fact, some small corrections
are already induced by the radiative corrections. But, in principle, the modifications
induced by some new physics effect could be more important. The experimental
testing of the triple gauge vertices has been done in the past, mainly at LEP2 and at
the Tevatron [235], and now also at the LHC [319].

As a particularly important example, the cross-section and angular distributions
for the process eCe� ! WCW� have been studied at LEP2. In the Born
approximation, the Feynman diagrams for the LEP2 process are shown in Fig. 3.4
[46]. Besides neutrino exchange, which only involves the well established charged

Fig. 3.3 The 3- and 4-gauge boson vertices. The cubic coupling is of order g and the quartic
coupling of order g2

Fig. 3.4 Lowest order diagrams for eCe� ! WCW�
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Fig. 3.5 Measured
production cross-section for
eCe� ! WCW� compared
to the SM and fictitious
theories, not including
trilinear gauge couplings, as
indicated. From [281]

current vertex, the triple weak gauge vertices VW�WCV appear in the ” and Z
exchange diagrams. The Higgs exchange is negligible because the electron mass
is very small. The analytic cross-section formula in the Born approximation can
be found, for example, in [307] (in the section entitled Cross-section formulae for
specific processes). The experimental data are compared with the SM prediction in
Fig. 3.5. Within the present accuracy, the agreement is good. Note that the sum of
all three exchange amplitudes has a better high energy behaviour than its individual
components. This is due to cancellations among the amplitudes implied by gauge
invariance, connected to the fact that the theory is renormalizable (the cross-section
can be seen as a contribution to the imaginary part of the eCe� ! eCe� amplitude).

The quartic gauge coupling is proportional to g2�ABCWBWC�ADEWDWE. Thus in
the term with A D 3, we have four charged W particles. For A D 1 or 2, we have
two charged W particles and two W3 particles, each W3 being a combination of ”
and Z according to (3.10). With a little algebra the quartic vertex can be cast in the
form

VWWVV D igWWVV
�
2g	�g�� � g	�g�� � g	�g��

�
; (3.34)

where 	 and � refer to WCWC in the 4W vertex and to VV in the WWVV case, and

gWWWW D g2 ; gWW”” D �e2 ; gWW”Z D �eg cos�W ; gWWZZ D �g2 cos2 �W :

(3.35)

In order to obtain these results for the vertex, the reader must duly take into account
the factor of �1=4 in front of F2	� in the Lagrangian and the statistical factors which
are equal to 2 for each pair of identical particles (like WCWC or ””, for example).
As the quartic coupling is quadratic in g and hence small, it has not yet been possible
to test it directly.



106 3 The Theory of Electroweak Interactions

3.5 The Higgs Sector

We now turn to the Higgs sector of the EW Lagrangian [243]. Until recently, this
simplest realization of the EW symmetry breaking was a pure conjecture. But in July
2012 the ATLAS and CMS Collaborations at the CERN LHC announced [2, 135]
the discovery of a particle with mass mH � 126GeV that looks very much like
the long sought Higgs particle. More precise measurements of its couplings and the
proof that its spin is zero are necessary before the identification with the SM Higgs
boson can be completely established. But the following description of the Higgs
sector of the SM can now be read with this striking development in mind.

The Higgs Lagrangian is specified by the gauge principle and the requirement of
renormalizability to be

LHiggs D .D	
/
�.D	
/� V.
�
/� N L�  R
 � N R�

� L

� ; (3.36)

where 
 is a column vector including all Higgs fields which generally transforms as
a reducible representation of the gauge group SU.2/L ˝ U.1/. In the minimal SM,
it is just a complex doublet. The quantities � (which include all coupling constants)
are matrices that make the Yukawa couplings invariant under the Lorentz and gauge
groups. The potential V.
�
/, symmetric under SU.2/L ˝ U.1/, contains at most
quartic terms in 
 so that the theory is renormalizable:

V.
�
/ D �	2
�
 C 1

2
�.
�
/2 (3.37)

As discussed in Chap. 1, spontaneous symmetry breaking is induced if the minimum
of V , which is the classical analogue of the quantum mechanical vacuum state, is not
a single point but a whole orbit obtained for non-vanishing 
 values. Precisely, we
denote the vacuum expectation value (VEV) of 
, i.e., the position of the minimum,
by v (which is a doublet):

h0j
.x/j0i D v D
	
0

v




6D 0 : (3.38)

The reader should be careful that, for economy of notation, the same symbol is
used for the doublet and for the only nonzero component of the same doublet. The
fermion mass matrix is obtained from the Yukawa couplings by replacing 
.x/ by v :

M D N LM R C N RM
� L ; (3.39)

with

M D � v : (3.40)
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In the MSM, where all left fermions  L are doublets and all right fermions  R

are singlets, only Higgs doublets can contribute to fermion masses. There are
enough free couplings in � to ensure that a single complex Higgs doublet is indeed
sufficient to generate the most general fermion mass matrix. It is important to
observe that, by a suitable change of basis, we can always make the matrix M
Hermitian (so that the mass matrix is 
5-free) and diagonal. In fact, we can make
separate unitary transformations on  L and  R according to

 0
L D U L ;  0

R D W R ; (3.41)

and consequently,

M ! M 0 D U�MW : (3.42)

This transformation produces different effects on mass terms and on the structure of
the fermion couplings in Lsymm, because both the kinetic terms and the couplings
to gauge bosons do not mix L and R spinors. The combined effect of these unitary
rotations leads to the phenomenon of mixing and, generically, to flavour-changing
neutral currents (FCNC), as we shall see in Sect. 3.6.

If only one Higgs doublet is present, the change of basis that makes M diagonal
will at the same time diagonalize the fermion–Higgs Yukawa couplings. Thus, in
this case, no flavour-changing neutral Higgs vertices are present. This is not true,
in general, when there are several Higgs doublets. But one Higgs doublet for each
electric charge sector, i.e., one doublet coupled only to u-type quarks, one doublet
to d-type quarks, one doublet to charged leptons, and possibly one for neutrino
Dirac masses, would also be acceptable, because the mass matrices of fermions with
different charges are diagonalized separately. For several Higgs doublets in a given
charge sector, it is also possible to generate CP violation by complex phases in the
Higgs couplings. In the presence of six quark flavours, this CP violation mechanism
is not necessary. In fact, at the moment, the simplest model with only one Higgs
doublet could be adequate for describing all observed phenomena.

We now consider the gauge boson masses and their couplings to the Higgs. These
effects are induced by the .D	
/�.D	
/ term in LHiggs [see (3.36)], where

D	
 D
 

@	 C ig
3X

AD1
tAWA

	 C ig0Y
2
B	

!


 : (3.43)

Here tA and Y=2 are the SU.2/ ˝ U.1/ generators in the reducible representation
spanned by 
. Not only doublets, but all non-singlet Higgs representations can
contribute to gauge boson masses. The condition that the photon remain massless is
equivalent to the condition that the vacuum be electrically neutral:

Qjvi D
	

t3 C 1

2
Y




jvi D 0 : (3.44)
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We now explicitly consider the case of a single Higgs doublet:


 D
	

C

0




; v D
	
0

v




: (3.45)

The charged W mass is given by the quadratic terms in the W field arising from
LHiggs, when 
.x/ is replaced by v in (3.38). Recalling (3.7), we obtain

m2WW
C
	 W�	 D g2

ˇ
ˇtCv=

p
2
ˇ
ˇ2WC

	 W�	 ; (3.46)

whilst for the Z mass we get [recalling (3.9)–(3.11)]

1

2
m2ZZ	Z

	 D
ˇ
ˇ
ˇ
ˇ

	

gt3 cos �W � g0Y
2

sin �W




v

ˇ
ˇ
ˇ
ˇ

2

Z	Z
	 ; (3.47)

where the factor of 1/2 on the left-hand side is the correct normalization for the
definition of the mass of a neutral field. Using (3.44), relating the action of t3 and
Y=2 on the vacuum v, and (3.13), we obtain

1

2
m2Z D .g cos �W C g0 sin �W/

2jt3vj2 D g2

cos2 �W
jt3vj2 : (3.48)

For a Higgs doublet, as in (3.45), we have

jtCvj2 D v2 ; jt3vj2 D 1=4v2 ; (3.49)

so that

m2W D 1

2
g2v2 ; m2Z D g2v2

2 cos2 �W
: (3.50)

Note that by using (3.16), we obtain

v D 2�3=4G�1=2
F D 174:1GeV : (3.51)

It is also evident that, for Higgs doublets,

�0 D m2W
m2Z cos2 �W

D 1 : (3.52)

This relation is typical of one or more Higgs doublets and would be spoiled by the
existence of Higgs triplets, etc. In general,

�0 D
P

i

�
.ti/2 � .t3i /2 C ti

�
v2iP

i 2.t
3
i /
2v2i

; (3.53)
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for several Higgs bosons with VEVs vi, weak isospins ti, and z-components t3i .
These results are valid at the tree level and are modified by calculable EW radiative
corrections, as discussed in Sect. 3.11.

The measured values of the W (combined from the LEP and Tevatron experi-
ments) and Z masses (from LEP) are [307, 350]:

mW D 80:385˙ 0:015GeV ; mZ D 91:1876˙ 0:0021GeV : (3.54)

In the minimal version of the SM, only one Higgs doublet is present. Then the
fermion–Higgs couplings are in proportion to the fermion masses. In fact, from the
fermion f Yukawa couplings g
Nf f .NfL
fRCh:c:/, the mass mf is obtained by replacing

 by v, so that mf D g
Nf fv. In the minimal SM, three out of the four Hermitian fields
are removed from the physical spectrum by the Higgs mechanism and become the
longitudinal modes of WC;W�, and Z. The fourth neutral Higgs is physical and
should presumably be identified with the newly discovered particle at �126 GeV. If
more doublets are present, two more charged and two more neutral Higgs scalars
should be around for each additional doublet.

The couplings of the physical Higgs H can be simply obtained from LHiggs, by
making the replacement (the remaining three Hermitian fields correspond to the
would-be Goldstone bosons that become the longitudinal modes of W˙ and Z):


.x/ D
	

C.x/

0.x/




�!
	

0

v C H=
p
2




; (3.55)

so that .D	
/�.D	
/ D @	H/2=2C � � � , with the results

L ŒH;W;Z� D g2
vp
2
WC
	 W�	H C g2

4
WC
	 W�	H2

Cg2
v

2
p
2 cos2 �W

Z	Z
	H C g2

8 cos2 �W
Z	Z

	H2 : (3.56)

Note that the trilinear couplings are nominally of order g2, but the dimensionless
coupling constant is actually of order g if we express the couplings in terms of the
masses according to (3.50):

L ŒH;W;Z� D gmWW
C
	 W�	H C g2

4
WC
	 W�	H2

C gmZ

2 cos2 �W
Z	Z

	H C g2

8 cos2 �W
Z	Z

	H2 : (3.57)

Thus the trilinear couplings of the Higgs to the gauge bosons are also proportional
to the masses at fixed g [if instead GF is kept fixed then, by (3.16), g is proportional
to mW , and the Higgs couplings are quadratic in mW ]. The quadrilinear couplings
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are of order g2. Recall that, to go from the Lagrangian to the Feynman rules for the
vertices, the statistical factors must be taken into account. For example, the Feynman
rule for the ZZHH vertex is ig	�g2=2 cos2 �W.

The generic coupling of H to a fermion of type f is given after diagonalization
by

L ŒH; N ; � D gfp
2

N  H ; (3.58)

with

gfp
2

D mfp
2v

D 21=4G1=2F mf : (3.59)

The Higgs self-couplings are obtained from the potential in (3.37) by the replace-
ment in (3.55). From the minimum condition

v D
r
	2

�
; (3.60)

one obtains

V D �	2
	

v C Hp
2


2
C 	2

2v2

	

v C Hp
2


4
D �	

2v2

2
C	2H2C 	2p

2v
H3C 	2

8v2
H4 ;

(3.61)

The constant term can be omitted in our context. We see that the Higgs mass is
positive [compare with (3.37)] and is given by

m2H D 2	2 D 2�v2 : (3.62)

By recalling the value of v in (3.51), we see that, for mH � 126GeV, � is small,
in fact, �=2 � 0:13. Note that �=2 is the coefficient of 
4 in (3.37), and the Higgs
self-interaction is in the perturbative domain.

The difficulty in the Higgs search is due to the fact that it is heavy and coupled
in proportion to mass: it is a heavy particle that must be radiated by another heavy
particle. So a lot of phase space and luminosity are needed. At LEP2, the main
process for Higgs production was the Higgs strahlung process eCe� ! ZH shown
in Fig. 3.6 [181]. The alternative process eCe� ! H� N�, via WW fusion, also
shown in Fig. 3.6 [44], has a smaller cross-section at LEP2 energies, but would
become important, even dominant, in higher energy eCe� colliders, like the ILC or
CLIC (the corresponding ZZ fusion process has a much smaller cross-section). The
analytic formulae for the cross-sections of both processes can be found, for example,
in [46]. The direct experimental limit on mH from LEP2 was mH & 114GeV at 95%
confidence level. The phenomenology of the SM Higgs particle and its production
and detection at hadron colliders will be discussed in Sects. 3.13 and 3.16.
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Fig. 3.6 Higgs production diagrams in the Born approximation for eCe� annihilation: (a) The
Higgs strahlung process eCe� ! ZH, (b) the WW fusion process eCe� ! H� N�

3.6 The CKMMatrix and Flavour Physics

Weak charged current vertices are the only tree level interactions in the SM that
change flavour. For example, by emission of a WC, an up-type quark is turned into
a down-type quark, or a �l neutrino is turned into a l� charged lepton (all fermions
are left-handed). If we start from an up quark that is a mass eigenstate, emission of
a WC turns it into a down-type quark state d0 (the weak isospin partner of u) which
is not in general a mass eigenstate. The mass eigenstates and the weak eigenstates
do not coincide, and a unitary transformation connects the two sets:

D0 D
0

@
d0
s0
b0

1

A D V

0

@
d
s
b

1

A D VD ; (3.63)

where V is the Cabibbo–Kobayashi–Maskawa (CKM) matrix [121]. By analogy
with D, we let U denote the column vector of the three up-quark mass eigenstates.
Thus, in terms of mass eigenstates, the charged weak current of quarks is of the form

JC
	 / NU
	.1 � 
5/t

CVD ; (3.64)

where

V D U�
uUd : (3.65)

Here Uu and Ud are the unitary matrices that operate on left-handed doublets in the
diagonalization of the u and d quarks, respectively [see (3.41)]. Since V is unitary
(i.e., VV� D V�V D 1) and commutes with T2, T3 and Q (because all d-type quarks
have the same isospin and charge), the neutral current couplings are diagonal in both
the primed and the unprimed basis. [If the down-type quark terms in the Z current are
written in terms of weak isospin eigenvectors as ND0� D0, then by changing basis we
get NDV�� VD, andV and� commute because, as can be seen from (3.20),� is made
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of Dirac matrices and T3 and Q generator matrices.] It follows that ND0� D0 D ND� D.
This is the GIM mechanism [226], which ensures natural flavour conservation of
the neutral current couplings at the tree level.

For N generations of quarks, V is a N � N unitary matrix that depends on N2

real numbers (N2 complex entries with N2 unitarity constraints). However, the 2N
phases of up- and down-type quarks are not observable. Note that an overall phase
drops away from the expression of the current in (3.64), so that only 2N � 1 phases
can affect V . In total, V depends on N2�2NC1 D .N�1/2 real physical parameters.
Similar counting gives N.N � 1/=2 as the number of independent parameters in an
orthogonal N �N matrix. This implies that in V we have N.N � 1/=2mixing angles
and .N � 1/2 � N.N � 1/=2 D .N � 1/.N � 2/=2 phases: for N D 2, one mixing
angle (the Cabibbo angle �C) and no phases, for N D 3 three angles (�12, �13, and
�23) and one phase ', and so on.

Given the experimentally near-diagonal structure of V , a convenient parametriza-
tion is the one proposed by Maiani [286]. It can be cast in the form of a product
of three independent 2 � 2 block matrices (sij and cij are shorthands for sin �ij and
cos �ij):

V D
0

@
1 0 0

0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13ei'

0 1 0

�s13e�i' 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A : (3.66)

The advantage of this parametrization is that the three mixing angles are of different
orders of magnitude. In fact, from experiment we know that s12 � �, s23 � O.�2/,
and s13 � O.�3/, where � D sin �C is the sine of the Cabibbo angle, and, as an order
of magnitude, sij can be expressed in terms of small powers of �. More precisely,
following Wolfenstein [370], one can set

s12 � � ; s23 D A�2 ; s13e
�i
 D A�3.� � i�/ : (3.67)

As a result, by neglecting terms of higher order in �, one can write

V D
2

4
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

3

5 �
2

4
1� �2=2 � A�3.� � i�/

�� 1 � �2=2 A�2

A�3.1 � � � i�/ �A�2 1

3

5C O.�4/:

(3.68)

It has become customary to make the replacement �; � ! N�; N� with

� � i� D N� � i N�p
1 � �2

� . N� � i N�/
	

1C �2

2
C � � �




: (3.69)

The best values of the CKM parameters as obtained from experiment are
continuously updated in [344, 355] (a survey of the current status of the CKM
parameters can also be found in [307]). A Summer 2013 fit [355] led to the values
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Fig. 3.7 The unitarity
triangle corresponding to
(3.71)

(compatible values, within stated errors, are given in [344]):

� D 0:22535˙ 0:00065 ; A D 0:822˙ 0:012 ;

N� D 0:127˙ 0:023 ; N� D 0:353˙ 0:014 :
(3.70)

In the SM, the non-vanishing of the N� parameter [related to the phase ' in (3.66)
and (3.67)] is the only source of CP violation in the quark sector (we shall see that
new sources of CP violation very likely arise from the neutrino sector). Unitarity of
the CKM matrix V implies relations of the form

P
a VbaV�

ca D ıbc.
In most cases these relations do not imply particularly instructive constraints on

the Wolfenstein parameters. But when the three terms in the sum are of comparable
magnitude, we get interesting information. The three numbers which must add to
zero form a closed triangle in the complex plane (unitarity triangle), with sides of
comparable length. This is the case for the t–u triangle shown in Fig. 3.7 (or, what
is equivalent to a first approximation, for the d–b triangle):

VtdV
�
ud C VtsV

�
us C VtbV

�
ub D 0 : (3.71)

All terms are of order �3. For � D 0, the triangle would flatten down to vanishing
area. In fact, the area J of the triangle, of order J � �A2�6, is the Jarlskog invariant
[251] (its value is independent of the parametrization). In the SM, in the quark
sector, all CP violating observables must be proportional to J, hence to the area
of the triangle or to �. Its experimental value is J � .3:12˙ 0:09/� 10�5 [355].

Direct and by now very solid evidence for J being non-vanishing was first
obtained from the measurements of � and �0 in K decay. Additional direct evidence
has more recently been collected from experiments on B decays at beauty factories,
at the Tevatron and at the LHC (in particular by the LHCb experiment). Very
recently searches for CP violation in D decays (negative so far) have been reported
by the LHCb experiment [282]. The angles ˇ (the most precisely measured), ˛,
and 
 have been determined with fair precision. The angle measurements and
the available information on the magnitude of the sides, taken together, are in
good agreement with the predictions from the SM unitary triangle (see Fig. 3.8)
[344, 355]. Some alleged tensions are not convincing, either because of their poor
statistical significance or because of lack of confirmation from different potentially
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Fig. 3.8 Constraints in the N�; N� plane, including the most recent data inputs in the global CKM fit.
From [107] (with permission)

Fig. 3.9 Box diagrams describing K0– NK0 mixing at the quark level at 1-loop

sensitive experiments, or because the associated theoretical error estimates can be
questioned.

As we have discussed, due to the GIM mechanism, there are no flavour-changing
neutral current (FCNC) transitions at the tree level in the SM. Transitions with
j�Fj D 1; 2 are induced at one-loop level. In particular, meson mixing, i.e., M ! NM
off-diagonal j�Fj D 2mass matrix elements (withM D K, D, or B neutral mesons),
are obtained from box diagrams. For example, in the case of K0– NK0 mixing, the
relevant transition is Nsd ! sNd (see Fig. 3.9). In the internal quark lines, all up-type
quarks are exchanged. In the amplitude, two vertices and the connecting propagator
(with virtual four momentum p	) at one side contribute a factor (ui D u; c; t):

FGIM D
X

i

V�
uis

1

p= � mui
Vuid ; (3.72)



3.6 The CKM Matrix and Flavour Physics 115

which, in the limit of equal mui, is clearly vanishing due to the unitarity of the CKM
matrix V . Thus the result is proportional to mass differences.

For K0– NK0 mixing, the contribution of virtual u quarks is negligible due to the
small value of mu and the contribution of the t quark is also small due to the mixing
factors V�

tsVtd � O.A2�5/. The dominant c quark contribution to the real part of the
box diagram quark-level amplitude is approximately of the form (see, for example,
[176]):

ReHbox D G2F
16�2

m2cRe.V�
csVcd/

2�1O
�sD2 ; (3.73)

where �1 � 0:85 is a QCD correction factor and O�sD2 D NdL
	sLNsL
	dL is the
relevant 4-quark dimension-6 operator. The �1 factor arises from gluon exchanges
among the quark legs of the 4-quark operator. Indeed the coefficients of the
operator expansion, which arises when the heavy particles exchanged are integrated
away, obey renormalization group equations, and the associated logarithms can
be resummed. (The first calculation of resummed QCD corrections to weak non-
leptonic amplitudes was carried out in [209]. For a pedagogical introduction see,
for example, [116].) To obtain the K0– NK0 mixing amplitude, the matrix element
of O�sD2 between meson states must be taken, and this is parametrized by a “BK

parameter”, defined in such a way that BK D 1 for vacuum state insertion between
the two currents:

˝
K0jO�sD2j NK0˛ D 16

3
fKm

2
KBK ; (3.74)

where BK � 0:75 (this is the renormalization group independent definition, usually
denoted by OBK) and fK � 113MeV, the kaon pseudoscalar constant, are best
evaluated by QCD lattice simulations [348]. Clearly, additional non-perturbative
terms must be added to the charm parton contribution in (3.73), some of them of
O.m2K=m

2
c/, because the smallness of mc makes a completely partonic dominance

inadequate. In (3.73), the factor O.m2c=m
2
W/ is the “GIM suppression” factor [1=m2W

is hidden in GF according to (3.16)].
For B mixing the dominant contribution is from the t quark. In this case, the

partonic dominance is more realistic and the GIM factor O.m2t =m
2
W/ is actually

larger than 1. More recently D mixing has also been observed [53]. In the
corresponding box diagrams, down-type quarks are involved. But starting from
D � cNu, the b quark contribution is strongly suppressed by the CKM angles, given
that VcbV�

ub � O.�5C/. The masses of the d and s quarks are too small for a partonic
evaluation of the box diagram, and non-perturbative terms cannot be neglected. This
makes a theoretical evaluation of mixing and CP violation effects for D mesons
problematic.

All sorts of transitions with j�Fj D 1 are also induced at loop level. For example,
an effective vertex Z ! tNc, which does not exist at tree level, is generated at 1-loop
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Fig. 3.10 Examples of j�Fj D 1 transitions at the quark level at 1-loop: (a) Diagram for a Z ! tNc
vertex, (b) b ! s”, and (c) a “penguin” diagram for b ! seCe�

(see Fig. 3.10). Similarly, transitions involving photons or gluons are also possible,
like t ! cg or b ! s” (Fig. 3.10), or again b ! sg.

For light fermion exchange in the loop, the GIM suppression is also effective in
j�Fj D 1 amplitudes. For example, analogous leptonic transitions like � ! e”
or £ ! �” also exist, but in the SM are extremely small and out of reach for
experiments, because the tiny neutrino masses enter into the GIM suppression
factor. But new physics effects could well make these rare lepton flavour-violating
processes accessible to experiment. In fact, the present limits already pose stringent
constraints on models of new physics. Of particular importance is the recent bound
obtained by the MEG Collaboration at SIN, near Zurich, Switzerland, on the
branching ratio for � ! e”, viz., B.� ! e”/ . 5:7 � 10�13 at 90% [16].

The external Z, photon, or gluon can be attached to a pair of light fermions,
giving rise to an effective four-fermion operator, as in “penguin diagrams” like the
one shown in Fig. 3.10 for b ! slCl�. The inclusive rate B ! Xs” (here B stands
for Bd) with Xs a hadronic state containing a unit of strangeness corresponding to
an s quark, has been precisely measured. The world average result for the branching
ratio with E
 > 1:6GeV is [53]

B.B ! Xs”/exp D .3:55˙ 0:26/� 10�4 :

The theoretical prediction for this inclusive process is to a large extent free of
uncertainties from hadronization effects and is accessible to perturbation theory as
the b quark is heavy enough. The most complete result to order ˛2s is at present from
[86] (and references therein):

B.B ! Xs”/th D .2:98˙ 0:26/ � 10�4 :

Note that the theoretical value has recently become smaller than the experimental
value. The fair agreement between theory and experiment imposes stringent con-
straints on possible new physics effects.

Related processes are Bs;d ! �C��. These decays are very rare in the SM, their
predicted branching ratio being [117]

B.Bs ! �C��/�.3:35˙0:28/�10�9 ; B.Bd ! �C��/�.1:07˙0:10/�10�10 :
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These very small expected branching ratios result because these decays are FCNC
processes with helicity suppression in the purely leptonic final state (the decaying
meson has spin zero and the muon pair is produced by vector exchange in the SM).
Many models of new physics beyond the SM predict large deviations. Thus these
processes represent very stringent tests of the SM.

Recently, the LHCb and CMS experiments have reached the sensitivity to
observe the Bs mode. The LHCb result is [5]

B.Bs ! �C��/ D 2:9C1:1
�1:0 � 10�9 ;

and the same paper sets the bound

B.Bd ! �C��/ � 7:4 � 10�10 at 95% confidence level :

For the same decays, CMS has obtained [136]

B.Bs ! �C��/ D 3:0C1:0
�0:9 � 10�9 ;

and

B.Bd ! �C��/ � 11 � 10�10 at 95% confidence level :

The LHCb and CMS results have been combined [352] and give

B.Bs ! �C��/ D .2:9˙ 0:7/�9 ;

in good agreement with the SM, and

B.Bd ! �C��/ D 3:6C1:6
�1:4 � 10�10 ;

with the central value 1:7� above the SM. Another very demanding test of the SM
has been passed!

Among the exclusive processes of the b ! s type, much interest is at present
devoted to the channel B ! K��C�� [4, 106]. The differential decay distribution
depends on three angles and on the �C�� invariant mass squared q2. In general
12 C 12 form factors enter into the decay distribution (12 in B decay and 12 in
the CP conjugated NB decay), and many observables can be defined. By suitable
angular foldings and CP averages, the number of form factors is reduced. A
sophisticated theoretical analysis allows one to identify and study a number of
quantities that can be measured and are “clean”, i.e., largely independent of hadronic
form factor ambiguities [106]. For those observables most of the results agree
with the SM predictions (based on a Wilson operator expansion in powers of
1=mW and 1=mb, with coefficients depending on ˛s), but a few discrepancies are
observed. The significance, taking into account the number of observables studied
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and the theoretical ambiguities (especially in the estimate of 1=mb corrections), is
not compelling, but a substantial activity is under way on both the experimental and
the theoretical side (see, for example, [248]). Watch this space!

In conclusion, the CKM theory of quark mixing and CP violation has been
precisely tested in the last decade and turns out to be very successful. The expected
deviations from new physics at the EW scale have not yet appeared. The constraints
on new physics from flavour phenomenology are extremely demanding: when
adding higher dimensional effective operators to the SM, the flavour constraints
generically lead to powers of very large suppression scales � in the denominators
of the corresponding coefficients. In fact, in the SM, as we have discussed in
this section, there are very powerful protections against flavour-changing neutral
currents and CP violation effects, in particular through the smallness of quark
mixing angles. In this respect the SM is very special and, as a consequence, if there
is new physics, it must be highly non-generic in order to satisfy the present flavour
constraints.

Only by requiring new physics to share the SM set of protections can one reduce
the scale � down to O.1/ TeV. For example, the class of models with minimal
flavour violation (MFV) [152], where the SM Yukawa couplings are the only
flavour symmetry breaking terms also beyond the SM, have been much studied
and represent a sort of extreme baseline. Alternative, less minimal models that
are currently under study are based on a suitably broken U.3/3 or U.2/3 flavour
symmetry (the cube refers to the QL D uL; dL doublet and the two uR and dR

singlets, while U.3/ or U.2/ mix the three or the first two generations) [81].

3.7 Neutrino Mass and Mixing

In the minimal version of the SM, the right-handed neutrinos �iR, which have no
gauge interactions, are not present at all. With no �R, no Dirac mass is possible for
neutrinos. If lepton number conservation is also imposed, then no Majorana mass is
allowed either, and as a consequence, all neutrinos are massless. But at present, from
neutrino oscillation experiments, we know that at least two out of the three known
neutrinos have non-vanishing masses (for reviews, see, for example, [36]): the two
mass-squared differences measured from solar (�m212) and atmospheric oscillations
(�m223) are given by�m212 � 8� 10�5 eV2 and�m223 � 2:5� 10�3 eV2 [200, 201,
229].

Neutrino oscillations only measure jm2i j differences. Regarding the absolute
values of each mi we know that they are very small, with an upper limit of a fraction
of an eV, obtained from the following:

• Laboratory experiments, e.g., tritium “ decay near the end point, which gives
m� . 2 eV [307].

• Absence of visible neutrinoless double “ decay (0�““). From Ge76, it has been
shown that jmeej . 0:2–0.4 eV [21]. The range is from nuclear matrix element
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ambiguities and mee is a combination of neutrino masses (for a review, see, for
example, [373]). This result strongly disfavours, in a model-independent way,
the claimed observation of 0�““ decay in Ge76 decays [267]. From Xe136, one
obtains the combined result jmeej . 0:12–0.25 eV [69].

• Cosmological observations [175]. After the recent release of the Planck data, the
quoted bounds for˙m�, the sum of (quasi-)stable neutrino masses, span a range,
depending on the data set included and the cosmological priors, like˙m� . 0:98

or . 0:32 or . 0:23 [18] (assuming three degenerate neutrinos, these numbers
have to be divided by 3 in order to obtain the limit on individual neutrino masses).

If �iR are added to the minimal model and lepton number is imposed by hand,
then neutrino masses would in general appear as Dirac masses, generated by the
Higgs mechanism, as for any other fermion. But for Dirac neutrinos, to explain the
extreme smallness of neutrino masses, one should allow for very small Yukawa
couplings. However, we stress that, in the SM, baryon B and lepton L number
conservation, which are not guaranteed by gauge symmetries (although this is
the case for the electric charge Q), are understood as “accidental” symmetries.
In fact the SM Lagrangian should contain all terms allowed by gauge symmetry
and renormalizability, but the most general renormalizable Lagrangian (i.e., with
operator dimension d � 4), built from the SM fields, compatible with the SM gauge
symmetry, in the absence of �iR, is automatically B and L conserving. (However,
non-perturbative instanton effects break the conservation of BC L while preserving
B � L, as discussed in Sect. 3.8.)

In the presence of �iR, this is no longer true, and the right-handed Majorana mass
term is allowed:

MRR D N�c
iRMij�jR D �T

iRCMij�jR ; (3.75)

where �c
iR D C N�T

iR is the charge-conjugated neutrino field and C is the charge
conjugation matrix in Dirac spinor space. The Majorana mass term is an operator of
dimension d D 3 with �L D 2. Since the �iR are gauge singlets, the Majorana mass
MRR is fully allowed by the gauge symmetry and a coupling with the Higgs is not
needed to generate this type of mass. As a consequence, the mass matrix entries Mij

do not need to be of the order of the EW symmetry breaking scale v, and could be
much larger. If one starts from the Dirac and RR Majorana mass terms for neutrinos,
the resulting mass matrix, in the L;R space, has the form

m� D
�
0 mD

mD M

�

; (3.76)

where mD and M are the Dirac and Majorana mass matrices [M is the matrix Mij in
(3.75)]. The corresponding eigenvalues are three very heavy neutrinos with masses
of order M and three light neutrinos with masses

m� D �mT
DM

�1mD ; (3.77)
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which are possibly very small if M is large enough. This is the see-saw mechanism
for neutrino masses [291]. Note that, if no �iR existed, a Majorana mass term could
still be built out of �jL. But �jL have weak isospin 1/2, being part of the left-handed
lepton doublet l. Thus, the left-handed Majorana mass term has total weak isospin
equal to 1 and needs two Higgs fields to make a gauge invariant term. The resulting
mass term, viz.,

O5 D .Hl/Ti �ij.Hl/j
M

C h:c:; (3.78)

with M a large scale (a priori comparable to the scale of MRR) and � a dimensionless
coupling generically of O.1/, is a non-renormalizable operator of dimension 5, first
pointed out by S. Weinberg [363]. The corresponding mass terms are of the order
m� � �v2=M, where v is the Higgs VEV, hence of the same generic order as the
light neutrino masses from (3.77). Note that, in general, the neutrino mass matrix
has the form

m� D �Tm�� ; (3.79)

as a consequence of the Majorana nature of neutrinos.
In conclusion, neutrino masses are believed to be small because neutrinos are

Majorana particles with masses inversely proportional to the large scale M of energy
where L non-conservation is induced. This corresponds to an important enlargement
of the original minimal SM, where no �R was included and L conservation
was imposed by hand (but this ansatz would be totally unsatisfactory because L
conservation is true “accidentally” only at the renormalizable level, but is violated
by non-renormalizable terms like the Weinberg operator and by instanton effects).
Actually, L and B non-conservation are necessary if we want to explain baryogenesis
and we have Grand Unified Theories (GUTs) in mind. It is interesting that the
observed magnitudes of the mass-squared splittings of neutrinos are well compatible
with a scale M remarkably close to the GUT scale, where L non-conservation is
indeed naturally expected. In fact, for m� �

p
�m2atm � 0:05 eV (see Table 3.1)

and m� � m2D=M with mD � v � 200GeV, we find M � 1015 GeV which indeed
is an impressive indication for MGUT.

Table 3.1 Fits to neutrino
oscillation data from [229]
(free fluxes, including short
baseline reactor data)

�m2sun .10
�5 eV2/ 7:45

C0:19
�0:16

�m2atm .10
�3 eV2/ 2:417˙ 0:013 (�2:410˙ 0:062)

sin2 �12 0:306˙ 0:012

sin2 �23 0:446˙ 0:007
L
0:587

C0:032
�0:037

sin2 �13 0:0229
C0:0020
�0:0019

ıCP .
ı/ 265

C56
�61

The results for both the normal and the inverse (in brack-
ets) hierarchies are shown
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In the previous section, we discussed flavour mixing for quarks. But clearly, given
that non-vanishing neutrino masses have been established, a similar mixing matrix
is also introduced in the leptonic sector. We assume in the following that there are
only two distinct neutrino oscillation frequencies, the atmospheric and the solar
frequencies (both of them now also confirmed by experiments where neutrinos are
generated on the Earth like K2K, KamLAND, and MINOS). At present the bulk
of neutrino oscillation data are well reproduced in terms of three light neutrino
species. However, some (so far not compelling) evidence for additional “sterile”
neutrino species (i.e., not coupled to the weak interactions, as demanded by the
LEP limit on the number of “active” neutrinos) are present in some data. We discuss
here 3-neutrino mixing, which is in any case a good approximate framework to
discuss neutrino oscillations, while for possible sterile neutrinos we refer to the
comprehensive review in [8].

Neutrino oscillations are due to a misalignment between the flavour basis, i.e.,
�0 � .�e; ��; �£/, where �e is the partner of the mass and flavour eigenstate e� in
a left-handed (LH) weak isospin SU.2/ doublet (similarly for �� and �£/) and the
mass eigenstates � � .�1; �2; �3/ [36, 280, 312]:

�0 D U� ; (3.80)

where U is the unitary �3 mixing matrix. Given the definition of U and the
transformation properties of the effective light neutrino mass matrix m� in (3.79),
viz.,

�0Tm��0 D �TUTm�U� ; UTm�U D Diag .m1;m2;m3/ � mdiag ; (3.81)

we obtain the general form of m� (i.e., of the light � mass matrix in the basis where
the charged lepton mass is a diagonal matrix):

m� D U�mdiagU
� : (3.82)

The matrix U can be parameterized in terms of three mixing angles �12, �23, and �13
(0 � �ij � �=2) and one phase ' (0 � ' � 2�) [122], exactly as for the quark
mixing matrix VCKM. The following definition of mixing angles can be adopted:

U D
0

@
1 0 0

0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13ei'

0 1 0

�s13e�i' 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A ; (3.83)

where sij � sin �ij and cij � cos �ij. In addition, if � are Majorana particles, we have
two more phases [101] given by the relative phases among the Majorana masses
m1, m2, and m3. If we choose m3 real and positive, these phases are carried by
m1;2 � jm1;2jei
1;2 . Thus, in general, nine parameters are added to the SM when
non-vanishing neutrino masses are included: three eigenvalues, three mixing angles,
and three CP violating phases.
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In our notation the two frequencies, �m2I =4E .I D sun; atm/, are parametrized
in terms of the � mass eigenvalues by

�m2sun � j�m212j ; �m2atm � j�m223j : (3.84)

where �m212 D jm2j2 � jm1j2 > 0 and �m223 D m23 � jm2j2. The numbering 1,2,3
corresponds to a definition of the frequencies and in principle may not coincide
with the ordering from the lightest to the heaviest state. “Normal hierarchy” is the
case where m3 is the largest mass in absolute value, otherwise one has an “inverse
hierarchy”.

Very important developments occurred in the data in 2012. The value of the
mixing angle �13 was shown to be non-vanishing and its value is now known to
fair accuracy. Several experiments were involved in the �13 measurement and their
results are reported in Fig. 3.11. The most precise result is from the Daya Bay reactor
experiment in China:

sin2 2�13 D 0:090˙0:012 ; or sin2 �13 D 0:023˙0:003 ; or �13 � 0:152˙0:010 :
(3.85)

Note that �13 is somewhat smaller but of the same order as the Cabibbo angle �C.
The present data on the oscillation parameters are summarized in Table 3.1 [229].
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Fig. 3.11 Reactor angle measurements, updated to the NUFACT13 Conference, August 2013
[259], from the experiments T2K [12], MINOS [17], DOUBLE CHOOZ [13], Daya Bay [54],
and RENO [23], for the normal (inverse) hierarchy. Figure credit: S. Jetter
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Neutrino mixing is important because it could in principle provide new clues
for the understanding of the flavour problem. Even more so since neutrino mixing
angles show a pattern that is completely different from that of quark mixing: for
quarks all mixing angles are small, while for neutrinos two angles are large (one
is still compatible with the maximal value) and only the third one is small. In
reality, it is frustrating that there has been no real illumination of the problem of
flavour. Models can reproduce the data on neutrino mixing in a wide range of
dynamical setups that goes from anarchy to discrete flavour symmetries (for reviews
and references see, for example, [35, 37, 50–52, 264]), but we have not yet been
able to single out a unique and convincing baseline for the understanding of fermion
masses and mixings. Despite many interesting ideas and the formulation of many
elegant models, the mysteries of the flavour structure of the three generations of
fermions have not yet been unveiled.

3.8 Quantization and Renormalization of the Electroweak
Theory

The Higgs mechanism gives masses to the Z, the W˙, and to fermions, while the
Lagrangian density is still symmetric. In particular the gauge Ward identities and the
symmetric form of the gauge currents are preserved. The validity of these relations
is an essential ingredient for renormalizability. In the previous sections, we have
specified the Feynman vertices in the “unitary” gauge, where only physical particles
appear. However, as discussed in Chap. 1, in this gauge the massive gauge boson
propagator would have a bad ultraviolet behaviour:

W	� D �g	� C q	q�=m2W
q2 � m2W

: (3.86)

A formulation of the standard EW theory with good apparent ultraviolet behaviour
can be obtained by introducing the renormalizable or R� gauges [14], in analogy
with the Abelian case discussed in detail in Chap. 1. One parametrizes the Higgs
doublet as
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; (3.87)

and similarly for 
�, where w� appears. The scalar fields w˙ and z are the pseudo-
Goldstone bosons associated with the longitudinal modes of the physical vector
bosons W˙ and Z. The R� gauge fixing Lagrangian has the form

�LGF D �1
�

ˇ
ˇ@	W	 � �mWw

ˇ
ˇ2 � 1

2�
.@	Z	 � �mZz/

2 � 1

2˛
.@	A	/

2 : (3.88)
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The W˙ and Z propagators, as well as those of the scalars w˙ and z, have exactly
the same general forms as for the Abelian case in (1.67)–(1.69), with parameters
� and �, respectively (and the pseudo-Goldstone bosons w˙ and z have masses
�mW and �mZ). In general, a set of associated ghost fields must be added, again
in direct analogy with the treatment of R� gauges in the Abelian case of Chap. 1.
The complete Feynman rules for the standard EW theory can be found in a number
of textbooks (see, for example, [137]).

The pseudo-Goldstone bosons w˙ and z are directly related to the longitudinal
helicity states of the corresponding massive vector bosons W˙ and Z. This
correspondence materializes in a very interesting “equivalence theorem”: at high
energies of order E, the amplitude for the emission of one or more longitudinal
gauge bosons VL (with V D W;Z) becomes equal (apart from terms reduced by
powers of mV=E) to the amplitude where each longitudinal gauge boson is replaced
by the corresponding Goldstone field w˙ or z [149]. For example, consider top
decay with a longitudinal W in the final state: t ! bWC

L . The equivalence theorem
asserts that we can compute the dominant contribution to this rate from the simpler
t ! bwC matrix element:

� .t ! bWC
L / D � .t ! bwC/

�
1C O.m2W=m

2
t /
�
: (3.89)

In fact, one finds

� .t ! bwC/ D h2t
32�

mt D GFm3t
8�

p
2
; (3.90)

where ht D mt=v is the Yukawa coupling of the top quark (numerically very close to
1), and we used 1=v2 D 2

p
2GF [see (3.51)]. If we compare with (3.31), we see that

this expression coincides with the total top width (i.e., including all polarizations for
the W in the final state), computed at tree level, apart from terms reduced by powers
of O.m2W=m

2
t /. In fact, the longitudinal W is dominant in the final state because

h2t � g2. Similarly, the equivalence theorem can be applied to find the dominant
terms at large

p
s for the cross-section eCe� ! WC

L W�
L , or the leading contribution,

in the limit mH � mV , to the width for the decay � .H ! VV/.
The formalism of the R� gauges is also very useful in proving that spontaneously

broken gauge theories are renormalizable. In fact, the non-singular behaviour of
propagators at large momenta is very suggestive of the result. Nevertheless, it is not
at all a simple matter to prove this statement. The fundamental theorem that a gauge
theory with spontaneous symmetry breaking and the Higgs mechanism is in general
renormalizable was proven by ’t Hooft and Veltman [278, 358].

For a chiral theory like the SM an additional complication arises from the
existence of chiral anomalies. But this problem is avoided in the SM because the
quantum numbers of the quarks and leptons in each generation imply a remarkable
(and, from the point of view of the SM, mysterious) cancellation of the anomaly,
as originally observed in [109]. In quantum field theory, one encounters an
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Fig. 3.12 Triangle diagram
that generates the ABJ
anomaly [19]

anomaly when a symmetry of the classical Lagrangian is broken by the process of
quantization, regularization, and renormalization of the theory. Of direct relevance
for the EW theory is the Adler–Bell–Jackiw (ABJ) chiral anomaly [19]. The
classical Lagrangian of a theory with massless fermions is invariant under U.1/
chiral transformations  0 D ei
5� (see also Sect. 2.2.3). The associated axial
Noether current is conserved at the classical level. But at the quantum level, chiral
symmetry is broken due to the ABJ anomaly and the current is not conserved. The
chiral breaking is produced by a clash between chiral symmetry, gauge invariance,
and the regularization procedure.

The anomaly is generated by triangular fermion loops with one axial and two
vector vertices (Fig. 3.12). For example, for the Z, the axial coupling is proportional
to the third component of weak isospin t3, while the vector coupling is proportional
to a linear combination of t3 and the electric charge Q. Thus in order for the chiral
anomaly to vanish, all traces of the form trft3QQg, trft3t3Qg, trft3t3t3g (and also
trftCt�t3g when charged currents are included) must vanish, where the trace is
extended over all fermions in the theory that can circulate in the loop. Now all of
these traces happen to vanish for each fermion family separately. For example, take
trft3QQg. In one family there are, with t3 D C1=2, three colours of up quarks with
charge Q D C2=3 and one neutrino with Q D 0 and, with t3 D �1=2, three colours
of down quarks with charge Q D �1=3 and one l� with Q D �1. Thus we obtain

trft3QQg D 1

2
� 3 � 4

9
� 1

2
� 3 � 1

9
� 1

2
� 1 D 0 :

This impressive cancellation suggests an interplay among weak isospin, charge, and
colour quantum numbers, which appears as a miracle from the point of view of the
low energy theory, but is in fact understandable from the point of view of the high
energy theory. For example, in Grand Unified Theories (GUTs) (for reviews, see, for
example, [315]) there are similar relations where charge quantization and colour
are related: in the 5 of SU.5/, we have the content .d; d; d; eC; N�/ and the charge
generator has a vanishing trace in each SU.5/ representation: the condition of unit
determinant, represented by the letter S in the SU.5/ group name, translates into zero
trace for the generators. Thus the charge of d quarks is �1=3 of the positron charge,
because there are three colours. A whole family fits perfectly in one 16 dimensional
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representation of SO.10/ which is anomaly free. So GUTs can naturally explain the
cancellation of the chiral anomaly.

An important implication of chiral anomalies together with the topological
properties of the vacuum in non-Abelian gauge theories is that the conservation
of the charges associated with baryon (B) and lepton (L) numbers is broken by
the anomaly [336], so that B and L conservation are actually violated in the
standard electroweak theory (but B � L remains conserved). B and L are conserved
to all orders in the perturbative expansion, but the violation occurs via non-
perturbative instanton effects [87] [The amplitude is proportional to the typical
non-perturbative factor exp.�c=g2/, with c a constant and g the SU.2/ gauge
coupling.] The corresponding effect is totally negligible at zero temperature T, but
becomes relevant at temperatures close to the electroweak symmetry breaking scale,
precisely at T � O.TeV/. The non-conservation of B C L and the conservation
of B � L near the weak scale plays a role in the theory of baryogenesis that
aims quantitatively at explaining the observed matter–antimatter asymmetry in the
Universe (for reviews and references, see, for example, [115]).

3.9 QED Tests: Lepton Anomalous Magnetic Moments

The most precise tests of the electroweak theory apply to the QED sector. Here
we discuss the anomalous magnetic moments of the electron and the muon that
are among the most precise measurements in the whole of physics. The magnetic
moment	 and the spin S are related by	 D �geS=2m, where g is the gyromagnetic
ratio (g D 2 for a pointlike Dirac particle). The quantity a D .g�2/=2measures the
anomalous magnetic moment of the particle. Recently there have been new precise
measurements of ae and a� for the electron [242] and the muon [297]:

aexp
e D 11 596 521 807:3.2:8/� 10�13 ; aexp

� D 11 659 208:9.6:3/� 10�10 :
(3.91)

The theoretical calculations in general contain a pure QED part plus the sum of
hadronic and weak contribution terms:

a D aQED C ahadronic C aweak D
X

i

Ci

�˛

�

�i C ahadronic C aweak : (3.92)

The QED part has been computed analytically for i D 1; 2; 3, while for i D 4 there
is a numerical calculation with an error (see, for example, [266] and references
therein). The complete numerical evaluation of i D 5 for the muon case was
published in 2012 [59] as a new and impressive achievement by Kinoshita and his
group. The hadronic contribution is from vacuum polarization insertions and from
light-by-light scattering diagrams (see Fig. 3.13). The weak contribution is from W
or Z exchange.
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Fig. 3.13 Hadronic contributions to the anomalous magnetic moment: vacuum polarization (left)
and light-by-light scattering (right)

For the electron case, the weak contribution is essentially negligible and the
hadronic term ahadronic

e � .16:82 ˙ 0:19/ � 10�13 does not introduce an important
uncertainty. As a result this measurement can be used to obtain the most precise
determination of the fine structure constant [59]:

˛�1 � 137:035 999 165 7.340/ ; (3.93)

In the muon case the experimental precision is less by about three orders of
magnitude, but the sensitivity to new physics effects is typically increased by a factor
.m�=me/

2 � 4 � 104. One mass factor arises because the effective operator needs
a chirality flip and the second because, by definition, one must factor out the Bohr
magneton e=2m. From the theory side, the QED term, using the value of ˛ from ae
in (3.93), and the weak contribution [151] are affected by small errors and are given
by

aQED
� D .116 584 718:853˙ 0:037/� 10�11 ; aweak

� D .154˙ 2:0/ � 10�11 ;
(3.94)

where all theoretical numbers are taken from [59].
The dominant ambiguities arise from the hadronic term. The lowest order (LO)

vacuum polarization contribution can be evaluated from the measured cross-sections
in eCe� ! hadrons at low energy via dispersion relations (the largest contribution
is from the    final state) [155, 239], with the result aLO

� � 10�11 D 6949 ˙
43. The higher order (HO) vacuum polarization contribution (from 2-loop diagrams
containing a hadronic insertion) is given by aHO

� � 10�11 D �98:4 ˙ 0:7 [239].
The contribution of the light-by-light (LbL) scattering diagrams is estimated to be
aLBL
� � 10�11 D 116˙ 40 [290]. Adding the above contributions, the total hadronic

result is reported as

ahadronic
� D .6967˙ 59/� 10�11 : (3.95)
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Fig. 3.14 Compilation of recently published results for a� (in units of 10�11) [245]: JN [252],
DHMZ [155], HLMNT [239]. Figure reproduced with permission. Copyright (c) 2012 by
American Physical Society

At face value, this would lead to a 2:9� deviation from the experimental value aexp
�

in (3.91):

aexp
� � ath.eCe�/

� D .249˙ 87/ � 10�11 : (3.96)

For a recent exchange on the significance of the discrepancy, see [88]. However, the
error estimate in the LBL term, mainly a theoretical uncertainty, is not compelling,
and it could well be somewhat larger (although probably not by so much as to make
the discrepancy completely disappear). A minor puzzle is the fact that, using the
conservation of the vector current (CVC) and isospin invariance, which are well
established tools at low energy, aLO

� can also be evaluated from £ decays. But the
results on the hadronic contribution from eCe� and from £ decay, nominally of
comparable accuracy, are still somewhat different (although the two are now closer
than in the past), and the g � 2 discrepancy would be attenuated if one took the
£ result (see Fig. 3.14, which refers to the most recent results). Since it is difficult
to find a theoretical reason for the eCe� vs £ difference, one must conclude that
there is something which is not understood either in the data or in the assessment of
theoretical errors. The prevailing view is to take the eCe� determination as the most
directly reliable, which leads to (3.96), but some doubts remain. Finally, we note
that, given the great accuracy of the a� measurement and the relative importance of
the non-QED contributions, it is not unreasonable that a first signal of new physics
would appear in this quantity.



3.10 Large Radiative Corrections to Electroweak Processes 129

3.10 Large Radiative Corrections to Electroweak Processes

Since the SM theory is renormalizable, higher order perturbative corrections can
be reliably computed. Radiative corrections are very important for precision EW
tests. The SM inherits all the successes of the old V � A theory of charged currents
and QED. Modern tests have focussed on neutral current processes, the W mass,
and the measurement of triple gauge vertices. For Z physics and the W mass,
the state-of-the-art computation of radiative corrections include the complete one-
loop diagrams and selected dominant multi-loop corrections. In addition, some
resummation techniques are also implemented, like Dyson resummation of vacuum
polarization functions and important renormalization group improvements for large
QED and QCD logarithms. We now discuss in more detail sets of large radiative
corrections which are particularly significant (for reviews of radiative corrections
for LEP1 physics, see, for example, [47], and for a more pedagogical description of
LEP physics, see [338]).

Even leaving aside QCD corrections, an important set of quantitative contribu-
tions to the radiative corrections arise from large logarithms, e.g., terms of the form

	
˛

�
ln
mZ

mfll


n

;

where fll is a light fermion. The sequences of leading and close-to-leading loga-
rithms are fixed by well-known and consolidated techniques (ˇ functions, anoma-
lous dimensions, penguin-like diagrams, etc.). For example, large logarithms from
pure QED effects dominate the running of ˛ from me, the electron mass, up to mZ .
Similarly, large logarithms of the form

	
˛

�
ln
mZ

	


n

also enter, for example, in the relation between sin2 �W at the scales mZ (LEP, SLC)
and 	, e.g., the scale of low-energy neutral-current experiments. Furthermore, large
logs from initial state radiation dramatically distort the line shape of the Z resonance,
as observed at LEP1 and SLC, and this effect was accurately taken into account for
the measurement of the Z mass and total width. The experimental accuracy on mZ

obtained at LEP1 is •mZ D ˙2:1MeV.
Similarly, a measurement of the total width to an accuracy •� D ˙2:3MeV has

been achieved. The prediction of the Z line shape in the SM to such an accuracy
posed a formidable challenge to theory, and it has been successfully met. For the
inclusive process eCe� ! f Nf X, with f 6D e (for a concise discussion, we leave
Bhabha scattering aside) and X including photons and gluons, the physical cross-
section can be written in the form of a convolution [47]:

�.s/ D
Z 1

z0

dz O�.zs/G.z; s/ ; (3.97)
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where O� is the reduced cross-section, G.z; s/ is the radiator function, which
describes the effect of initial-state radiation, and O� includes the purely weak
corrections, the effect of final-state radiation (of both photons and gluons), and also
non-factorizable terms (initial- and final-state radiation interferences, boxes, etc.)
which, being small, can be treated in lowest order and effectively absorbed in a
modified O� . The radiator function G.z; s/ has an expansion of the form

G.z; s/ D ı.1 � z/C ˛

�
.a11L C a10/C

�˛

�

�2
.a22L

2 C a11L C a20/

C � � � C
�˛

�

�n nX

iD0
aniL

i ; (3.98)

where L D ln.s=m2e/ ' 24:2 for
p
s ' mZ . All first- and second-order terms

are known exactly. The sequence of leading and next-to-leading logs can be
exponentiated (closely following the formalism of structure functions in QCD). For
mZ � 91GeV, the convolution displaces the peak by C110MeV, and reduces it
by a factor of about 0.74. The exponentiation is important in that it amounts to an
additional shift of about 14 MeV in the peak position with respect to the 1-loop
radiative correction.

Among the one-loop EW radiative corrections, a remarkable class of contribu-
tions are those terms that increase quadratically with the top mass. The sensitivity
of radiative corrections to mt arises from the existence of these terms. The quadratic
dependence on mt (and on other possible widely broken isospin multiplets from
new physics) arises because, in spontaneously broken gauge theories, heavy virtual
particles do not decouple. On the contrary, in QED or QCD, the running of ˛ and
˛s at a scale Q is not affected by heavy quarks with mass M � Q. According to
an intuitive decoupling theorem [60], diagrams with heavy virtual particles of mass
M can be ignored at Q � M, provided that the couplings do not grow with M and
that the theory with no heavy particles is still renormalizable. In the spontaneously
broken EW gauge theories, both requirements are violated.

First, one important difference with respect to unbroken gauge theories is in
the longitudinal modes of weak gauge bosons. These modes are generated by
the Higgs mechanism, and their couplings grow with masses (as is also the case
for the physical Higgs couplings). Second, the theory without the top quark is
no longer renormalizable since the gauge symmetry is broken because the .t; b/
doublet would not be complete (also the chiral anomaly would not be completely
cancelled). With the observed value of mt, the quantitative importance of the terms
of orderGFm2t =4�

2
p
2 is substantial but not dominant (they are enhanced by a factor

m2t =m
2
W � 5with respect to ordinary terms). Both the large logarithms and the GFm2t

terms have a simple structure and are to a large extent universal, i.e., common to a
wide class of processes. In particular, the GFm2t terms appear in vacuum polarization
diagrams which are universal (virtual loops inserted in gauge boson internal lines
are independent of the nature of the vertices on each side of the propagator) and
in the Z ! bNb vertex which is not. This vertex is specifically sensitive to the top
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quark which, being the partner of the b quark in a doublet, runs in the loop. Instead,
all types of heavy particles could in principle contribute to vacuum polarization
diagrams. The study of universal vacuum polarization contributions, also called
“oblique” corrections, and of top enhanced terms is important for an understanding
of the pattern of radiative corrections. More generally, the important consequence
of non-decoupling is that precision tests of the electroweak theory may a priori be
sensitive to new physics, even if the new particles are too heavy for their direct
production, but a posteriori no signal of deviation has clearly emerged.

While radiative corrections are quite sensitive to the top mass, they are unfortu-
nately much less dependent on the Higgs mass. In fact, the dependence of one-loop
diagrams on mH is only logarithmic, viz., � GFm2W log.m2H=m

2
W/. Quadratic terms

� G2Fm
2
H only appear at two-loop level [356] and are too small to be detectable.

The difference with the top case is that the splitting m2t � m2b is a direct breaking
of the gauge symmetry that already affects the 1-loop corrections, while the Higgs
couplings are “custodial” SU.2/ symmetric in lowest order.

3.11 Electroweak Precision Tests

For the analysis of electroweak data in the SM, one starts from the input parameters:
as is the case in any renormalizable theory, masses and couplings have to be
specified from outside. One can trade one parameter for another and this freedom
is used to select the best measured ones as input parameters. Some of them, ˛,
GF, and mZ , are very precisely known, as we have seen, and some others, mflight ,
mt, and ˛s.mZ/ are less well determined, while mH was largely unknown before
the LHC. In this section we discuss the EW fit without the new input on mH from
the LHC, in order to compare the limits so derived on mH with the LHC data. The
LHC results will be discussed in the following sections. Among the light fermions,
the quark masses are poorly known, but fortunately, for the calculation of radiative
corrections, they can be replaced by ˛.mZ/, the value of the QED running coupling
at the Z mass scale. The value of the hadronic contribution to the running, embodied
in the value of �˛.5/had.m

2
Z/ (see Fig. 3.15 [350]) is obtained through dispersion

relations from the data on eCe� ! hadrons at moderate centre-of-mass energies.
From the input parameters, one computes the radiative corrections to a sufficient
accuracy to match the experimental accuracy. One then compares the theoretical
predictions with the data for the numerous observables which have been measured
[351], checks the consistency of the theory, and derives constraints on mt, ˛s.mZ/,
and mH.

The basic tree level relations

g2

8m2W
D GFp

2
; g2 sin2 �W D e2 D 4�˛ ; (3.99)
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Fig. 3.15 Summary of
electroweak precision
measurements at high
Q2 [350]. The first block
shows the Z-pole
measurements. The second
block shows additional results
from other experiments: the
mass and the width of the W
boson measured at the
Tevatron and at LEP2, the
mass of the top quark
measured at the Tevatron, and
the contribution to ˛ of the
hadronic vacuum
polarization. The SM fit
results are also shown with
the corresponding pulls
(differences data and fits in
units of standard deviations)

Measurement Fit  Omeas−Ofit /σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

can be combined into

sin2 �W D �˛p
2GFm2W

: (3.100)

Still at tree level, a different definition of sin2 �W comes from the gauge boson
masses

m2W
m2Z cos2 �W

D �0 D 1 H) sin2 �W D 1 � m2W
m2Z

; (3.101)

where �0 D 1, assuming that there are only Higgs doublets. The last two relations
can be put into the convenient form

	

1 � m2W
m2Z



m2W
m2Z

D �˛p
2GFm2Z

: (3.102)
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Beyond tree level, these relations are modified by radiative corrections:

	

1 � m2W
m2Z



m2W
m2Z

D �˛.mZ/p
2GFm2Z

1

1��rW
;

m2W
m2Z cos2 �W

D 1C��m : (3.103)

The Z and W masses are to be precisely defined, for example, in terms of the pole
position in the respective propagators. Then in the first relation, the replacement of ˛
with the running coupling at the Z mass ˛.mZ/ makes �rW completely determined
at 1-loop by purely weak corrections (GF is protected from logarithmic running
as an indirect consequence of V � A current conservation in the massless theory).
This relation defines �rW unambiguously, once the meaning of mW;Z and ˛.mZ/ is
specified (for example, NM NS). In contrast, in the second relation, ��m depends on
the definition of sin2 �W beyond the tree level. For LEP physics sin2 �W is usually
defined from the Z ! 	C	� effective vertex. At the tree level, the vector and axial-
vector couplings g	V and g	A are given in (3.26). Beyond the tree level a corrected
vertex can be written down in terms of modified effective couplings. Then sin2 �W �
sin2 �eff is generally defined through the muon vertex:

g	V
g	A

D 1–4 sin2 �eff ; sin2 �eff D .1C�k/s20 ; s20c
2
0 D �˛.mZ/p

2GFm2Z
; g	2A D 1

4
.1C��/ :

(3.104)

We see that s20 and c20 are “improved” Born approximations (by including the
running of ˛) for sin2 �eff and cos2 �eff. Actually, since lepton universality is only
broken by masses in the SM, and is in agreement with experiment within the
present accuracy, the muon channel can in practice be replaced with the average
over charged leptons.

We can write a symbolic equation that summarizes the status of what has been
computed up to now for the radiative corrections �rW [70], �� [193], and �k
[71] (listing some recent work on each item from which older references can be
retrieved):

�rW ; ��;�k D g2.1C ˛s/C g2
m2t
m2W

.˛2s C ˛3s /C g4 C g4
m4t
m4W

˛s C g6
m6t
m6W

C � � � :
(3.105)

The meaning of this relation is that the one loop terms of order g2 are completely
known, together with their first order QCD corrections, while the second and third
order QCD corrections are only known for the g2 terms enhanced by m2t =m

2
W , the

two-loop terms of order g4 are completely known, and for�� alone, the terms g4˛s

enhanced by the ratio m4t =m
4
W and the terms g6 m6t

m6W
are also computed.
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In the SM, the quantities�rW ,��,�k, for sufficiently largemt, are all dominated
by quadratic terms in mt of order GFm2t . The quantity ��m is not independent and
can be expressed in terms of them. As new physics can more easily be disentangled
if not masked by large conventional mt effects, it is convenient to keep ��, while
trading �rW and �k for two quantities with no contributions of order GFm2t . One
thus introduces the following linear combinations (epsilon parameters) [48]:

�1 D �� ;

�2 D c20��C s20�rW
c20 � s20

� 2s20�k ; (3.106)

�3 D c20��C .c20 � s20/�k :

The quantities �2 and �3 no longer contain terms of orderGFm2t , but only logarithmic
terms in mt. The leading terms for large Higgs mass, which are logarithmic, are
contained in �1 and �3. To complete the set of top-enhanced radiative corrections
one adds �b, defined from the loop corrections to the ZbNb vertex. One modifies gbV
and gbA as follows:

gbA D �1
2

	

1C ��

2




.1C �b/ ;
gbV
gbA

D
1 � 4

3
sin2 �eff C �b

1C �b
: (3.107)

�b can be measured from Rb D � .Z ! bNb/=� .Z ! hadrons/ (see Fig. 3.15).
This is clearly not the most general deviation from the SM in the Z ! bNb vertex,
but �b is the quantity where the large mt corrections are located in the SM. Thus,
summarizing, in the SM one has the following “large” asymptotic contributions:

�1 D 3GFm2t
8�2

p
2

� 3GFm2W
4�2

p
2

tan2 �W ln
mH

mZ
C � � � ;

�2 D � GFm2W
2�2

p
2

ln
mt

mZ
C � � � ;

�3 D GFm2W
12�2

p
2

ln
mH

mZ
� GFm2W
6�2

p
2

ln
mt

mZ
C � � � ;

�b D � GFm2t
4�2

p
2

C � � � ; (3.108)

The �i parameters vanish in the limit where only tree level SM effects are kept
plus pure QED and/or QCD corrections. So they describe the effects of quantum
corrections (i.e., loops) from weak interactions. A similar set of parameters are the
S, T, U parameters [310]: the shifts induced by new physics on S, T, and U are
proportional to those induced on �3, �1, and �2, respectively. In principle, with no
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model dependence, one can measure the four �i from the basic observables of LEP
physics � .Z ! 	C	�/, A	FB, and Rb on the Z peak plus mW . With increasing model
dependence, one can include other measurements in the fit for the �i. For example,
one can use lepton universality to average the � with the e and £ final states, or
include all lepton asymmetries and so on. The present experimental values of the �i,
obtained from a fit of all LEP1-SLD measurements plus mW , are [142]

�1 � 103 D 5:6˙ 1:0 ; �2 � 103 D �7:8˙ 0:9 ;

�3 � 103 D 5:6˙ 0:9 ; �b � 103 D �5:8˙ 1:3 :
(3.109)

Note that the � parameters are of order a few 10�3 and are known with an accuracy
in the range 15–30%. These values are in agreement with the predictions of the SM
with a 126 GeV Higgs [142]:

�SM
1 � 103 D 5:21˙ 0:08 ; �SM

2 � 103 D �7:37˙ 0:03 ;

�SM
3 � 103 D 5:279˙ 0:004 ; �SM

b � 103 D �6:94˙ 0:15 :
(3.110)

All models of new physics must be compared with these findings and pass this
difficult test.

3.12 Results of the SM Analysis of Precision Tests

The electroweak Z pole measurements, combining the results of all the experiments,
plus the W mass and width and the top mass mt, are summarised in Fig 3.15, as of
March 2012 [350]. The primary rates are given by the pole cross-sections for the
various final states �0, and ratios thereof correspond to ratios of partial decay widths:

�0h D 12�

m2Z

�ee�h

� 2
Z

; R0l D �0h

�0l
D �h

�ll
; R0q D �qNq

�h
: (3.111)

Here �ll is the partial decay width for a pair of massless charged leptons. The partial
decay width for a given fermion species contains information about the effective
vector and axial-vector coupling constants of the neutral weak current:

�ff D Nf
C

GFm3Z
6
p
2�

�
g2af CAf C g2vf CVf

�C�ew=QCD ; (3.112)

where Nf
C is the QCD colour factor, CfA;Vgf are final-state QCD/QED correction

factors, also absorbing imaginary contributions to the effective coupling constants,
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gaf and gvf are the real parts of the effective couplings, and � contains non-
factorisable mixed corrections.

Besides total cross-sections, various types of asymmetries have been measured.
The results of all asymmetry measurements are quoted in terms of the asymmetry
parameter Af , defined in terms of the real parts of the effective coupling constants
gaf and gvf by

Af D 2
gvf gaf

g2vf C g2af
D 2

gvf=gaf

1C .gvf =gaf /2
; A0;fFB D 3

4
AeAf : (3.113)

The measurements are the forward–backward asymmetry (A0;fFB), the tau polarization
(A£) and its forward–backward asymmetry (Ae) measured at LEP, as well as the
left–right and left–right forward–backward asymmetry measured at SLC (Ae and
Af , respectively). Hence the set of partial width and asymmetry results allows the
extraction of the effective coupling constants.

The various asymmetries determine the effective electroweak mixing angle for
leptons with highest sensitivity (see Fig. 3.16). The weighted average of these
results, including small correlations, is

sin2 �eff D 0:23153˙ 0:00016 ; (3.114)

Note, however, that this average has a �2 of 11.8 for 5 degrees of freedom,
corresponding to a probability of a few %. The �2 is pushed up by the two most
precise measurements of sin2 �eff, namely those derived from the measurements of
Al by SLD, dominated by the left–right asymmetry A0LR, and measurements of the
forward–backward asymmetry A0;bFB measured in bNb production at LEP, which differ
by about 3� .

We now extend the discussion of the SM fit of the data. One can think of different
types of fit, depending on which experimental results are included or which answers
one wants to obtain. For example, in Table 3.2 we present in column 1 a fit of all Z
pole data plus mW and �W (this is interesting as it shows the value of mt obtained

Fig. 3.16 Summary of
sin2 �eff precision
measurements at high
Q2 [350]
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Table 3.2 Standard Model fits of electroweak data [350]

Fit 1 2 3

Measurements mW , �W mt mt, mW , �W

mt .GeV/ 178:1
C10:9
�7:8 173:2˙ 0:9 173:26 ˙ 0:89

mH .GeV/ 148
C237
�81 122

C59
�41 94

C29
�24

log ŒmH.GeV/� 2:17˙ C0:38 2:09˙ 0:17 1:97˙ 0:12

˛s.mZ/ 0:1190˙ 0:0028 0:1191˙ 0:0027 0:1185 ˙ 0:0026

mW .MeV/ 80381˙ 13 80363˙ 20 80377˙ 12

All fits use the Z pole results and �˛.5/had.m
2
Z/, as listed in Fig. 3.15. In addition, the measurements

listed at the top of each column are included in that case. The fitted W mass is also shown [350]
(the directly measured value is mW D 80 385˙ 15MeV)

indirectly from radiative corrections, to be compared with the value of mt measured
in production experiments), in column 2, a fit of all Z pole data plus mt (here it is
mW which is indirectly determined), and finally, in column 3, a fit of all the data
listed in Fig. 3.15 (which is the most relevant fit for constraining mH).

From the fit in column 1 we see that the extracted value of mt is in good
agreement with the direct measurement (see Fig 3.15). Similarly, we see that
the experimental measurement of mW is larger by about one standard deviation
with respect to the value from the fit in column 2. We have seen that quantum
corrections depend only logarithmically on mH. In spite of this small sensitivity,
the measurements are still precise enough to obtain a quantitative indication of the
mass range. From the fit in column 3 we obtain

log10mH .GeV/ D 1:97˙ 0:12 ; or mH D 94C29
�24 GeV :

This result on the Higgs mass is truly remarkable. The value of log10mH .GeV/
is compatible with the small window between � 2 and � 3 which is allowed, on
the one side, by the direct search limit mH > 114GeV from LEP2 [350], and on
the other side by the theoretical upper limit on the Higgs mass in the minimal SM,
mH . 600–800 GeV [320], to be discussed in Sect. 3.13.

Thus the whole picture of a perturbative theory with a fundamental Higgs is well
supported by the data on radiative corrections. It is important that there is a clear
indication for a particularly light Higgs: at 95% confidence level mH . 152GeV
(which becomes mH . 171GeV, including the input from the LEP2 direct search
result). This was quite encouraging for the LHC search for the Higgs particle.
More generally, if the Higgs couplings are removed from the Lagrangian, the
resulting theory is non-renormalizable. A cutoff � must be introduced. In the
quantum corrections, logmH is then replaced by log� plus a constant. The precise
determination of the associated finite terms would be lost (that is, the value of
the mass in the denominator in the argument of the logarithm). A heavy Higgs
would need some unfortunate accident: the finite terms, different in the new theory
from those of the SM, should by chance compensate for the heavy Higgs in a few
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key parameters of the radiative corrections (mainly �1 and �3, see, for example,
[48]). Alternatively, additional new physics, for example in the form of effective
contact terms added to the minimal SM Lagrangian, should accidentally do the
compensation, which again needs some sort of conspiracy.

To the list of precision tests of the SM, one should add the results on low energy
tests obtained from neutrino and antineutrino deep inelastic scattering (NuTeV
[353]), parity violation in Cs atoms (APV [274]), and the recent measurement of the
parity-violating asymmetry in Moller scattering [354]. When these experimental
results are compared with the SM predictions, the agreement is good except
for the NuTeV result, which differs by three standard deviations. The NuTeV
measurement is quoted as a measurement of sin2 �W D 1 � m2W=m

2
Z from the ratio

of neutral to charged current deep inelastic cross-sections from �� and N�� using the
Fermilab beams. But it has been argued, and it is now generally accepted, that the
NuTeV anomaly probably simply arises from an underestimation of the theoretical
uncertainty in the QCD analysis needed to extract sin2 �W. In fact, the lowest order
QCD parton formalism upon which the analysis has been based is too crude to match
the experimental accuracy.

When confronted with these results, the SM performs rather well on the whole,
so that it is fair to say that no clear indication for new physics emerges from the
data. However, as already mentioned, one problem is that the two most precise
measurements of sin2 �eff from ALR and Ab

FB differ by about 3� . In general, there
appears to be a discrepancy between sin2 �eff measured from leptonic asymmetries,
denoted .sin2 �eff/l, and from hadronic asymmetries, denoted .sin2 �eff/h. In fact,
the result from ALR is in good agreement with the leptonic asymmetries measured
at LEP, while all hadronic asymmetries, though their errors are large, are better
compatible with the result of Ab

FB. These two results for sin2 �eff are shown in
Fig. 3.17 [210]. Each of them is plotted at the mH value that would correspond
to it given the central value of mt. Of course, the value for mH indicated by each
sin2 �eff has a horizontal ambiguity determined by the measurement error and the
width of the ˙1� band for mt.

Even taking this spread into account, it is clear that the implications for mH are
significantly different. One might imagine that some new physics effect could be
hidden in the ZbNb vertex. For instance, for the top quark mass there could be other
non-decoupling effects from new heavy states or a mixing of the b quark with some
other heavy quark. However, it is well known that this discrepancy is not easily
explained in terms of any new physics effect in the ZbNb vertex. A rather large change
with respect to the SM of the b quark right-handed coupling to the Z is needed
in order to reproduce the measured discrepancy (in fact, a � 30% change in the
right-handed coupling), an effect too large to be a loop effect, but which could be
produced at the tree level, e.g., by mixing of the b quark with a new heavy vector-
like quark [140], or some mixing of the Z with ad hoc heavy states [170]. But then
this effect should normally also appear in the direct measurement of Ab performed at
SLD using the left–right polarized b asymmetry, even within the moderate accuracy
of this result. The measurements of neither Ab at SLD nor Rb confirm the need for
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such a large effect (recently a numerical calculation of NLO corrections to Rb [204]
appeared at first to indicate a rather large result, but in the end the full correction
turned out to be rather small). Alternatively, the observed discrepancy could simply
be due to a large statistical fluctuation or an unknown experimental problem. As a
consequence of this problem, the ambiguity in the measured value of sin2 �eff is in
practice greater than the nominal error, reported in (3.114), obtained from averaging
all the existing determinations, and the interpretation of precision tests is less sharp
than it would otherwise be.

We have already observed that the experimental value of mW (with good
agreement between LEP and the Tevatron) is a bit high compared to the SM
prediction (see Fig. 3.18). The value of mH indicated by mW is on the low side,
just in the same interval as for sin2 � lept

eff measured from leptonic asymmetries.
In conclusion, the experimental information on the Higgs sector, obtained from

EW precision tests at LEP1 and 2 and the Tevatron can be summarized as follows.
First, the relation M2

W D M2
Z cos2 �W in (3.52), modified by small, computable

radiative corrections, has been demonstrated experimentally. This relation means
that the effective Higgs (be it fundamental or composite) is indeed a weak isospin
doublet. The direct lower limit mH & 114:5GeV (at 95% confidence level) was
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Fig. 3.18 The data for mW

are plotted vs mt [350]
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obtained from searches at LEP2. When compared to the data on precision EW tests,
the radiative corrections computed in the SM lead to a clear indication of a light
Higgs, not too far from the direct LEP2 lower bound. The upper limit for mH in the
SM from the EW tests depends on the value of the top quark mass mt. The CDF
and D0 combined value after Run II is at present mt D 173:2 ˙ 0:9GeV [350].
As a consequence, the limit on mH from the LEP and Tevatron measurements is
rather stringent [350]: mH < 171GeV (at 95% confidence level, after including the
information from the 114.5 GeV direct bound).

3.13 The Search for the SM Higgs

The Higgs problem is really central in particle physics today. On the one hand,
the experimental verification of the Standard Model (SM) cannot be considered
complete until the structure of the Higgs sector has been established by experiment.
On the other hand, the Higgs is also related to most of the major problems of particle
physics, like the flavour problem and the hierarchy problem, the latter strongly
suggesting the need for new physics near the weak scale (something that so far
has not been found). In its turn, the discovery of new physics could throw light on
the nature of dark matter. It was already clear before the LHC that some sort of
Higgs mechanism is at work. The W or the Z with longitudinal polarization that we
observe are not present in an unbroken gauge theory (massless spin-1 particles, like
the photon, are transversely polarized): the longitudinal degrees of freedom for the
W or the Z are borrowed from the Higgs sector and hence provide evidence for it.

Furthermore, it has been precisely established at LEP that the gauge symmetry is
unbroken in the vertices of the theory: all currents and charges are indeed symmetric.
Yet there is obvious evidence that the symmetry is instead badly broken in the
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masses. Not only do the W and the Z have large masses, but the large splitting of, for
example, the t–b doublet shows that even a global weak SU.2/ is not at all respected
by the fermion spectrum. This is a clear signal of spontaneous symmetry breaking
and the implementation of spontaneous symmetry breaking in a gauge theory is via
the Higgs mechanism.

The big questions are about the nature and the properties of the Higgs particle(s).
The search for the Higgs boson and for possible new physics that could accompany it
was the main goal of the LHC from the start. On the Higgs the LHC should answer
the following questions: do some Higgs particles exist? And if so, which ones: a
single doublet, more doublets, additional singlets? SM Higgs or SUSY Higgses?
Fundamental or composite (of fermions, of WW, or other)? Pseudo-Goldstone
bosons of an enlarged symmetry? A manifestation of large extra dimensions (fifth
component of a gauge boson, an effect of orbifolding or of boundary conditions, or
other)? Or some combination of the above, or something so far unthought of? By
now we have a candidate Higgs boson that really looks like the simplest realization
of the Higgs mechanism, as described by the minimal SM Higgs. In the following
we first consider the a priori expectations for the Higgs sector and then the profile
of the Higgs candidate discovered at the LHC.

3.14 Theoretical Bounds on the SM Higgs Mass

A strong argument indicating that the solution of the Higgs problem may not be
too far away (that is, either discovering the Higgs or finding the new physics
that complicates the picture) is the fact that, in the absence of a Higgs particle
or any alternative mechanism, violations of unitarity appear in some scattering
amplitudes at energies in the few TeV range [279]. In particular, amplitudes
involving longitudinal gauge bosons (those most directly related to the Higgs sector)
are affected. For example, at tree level, in the absence of Higgs exchange and for
s � m2Z , one obtains

A.WC
L W�

L ! ZLZL/no Higgs � i
s

v2
: (3.115)

In the SM this unacceptable large energy behaviour is quenched by the Higgs
exchange diagram contribution

A.WC
L W�

L ! ZLZL/Higgs � �i
s2

v2.s � m2H/
: (3.116)

Thus the total result in the SM is

A.WC
L W�

L ! ZLZL/SM � �i
sm2H

v2.s � m2H/
; (3.117)
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which at high energies saturates at a constant value. To be compatible with unitarity
bounds, one needs m2H < 4�

p
2=GF or mH < 1:5TeV. This is an important theorem

that guarantees that either the Higgs boson(s) or new physics or both must be present
in the few TeV energy range.

It is well known that, as described in [241] and references therein, in the SM
with only one Higgs doublet an upper bound on mH (with mild dependence on mt

and the QCD coupling ˛s) is obtained from the requirement that the perturbative
description of the theory remains valid up to a large energy scale � where the SM
model breaks down and new physics appears. Similarly, a lower bound on mH can be
derived from the requirement of vacuum stability [38, 123, 323] (or, in milder form,
a requirement of moderate instability, compatible with the lifetime of the Universe
[160, 249]). The Higgs mass enters because it fixes the initial value of the quartic
Higgs coupling � in its running up to the large scale �. We now briefly recall the
derivation of these limits.

The upper limit on the Higgs mass in the SM is clearly important for an a priori
assessment of the chances of success for the LHC as an accelerator designed to
solve the Higgs problem. One way to estimate the upper limit [241] is to require
that the Landau pole associated with the non-asymptotically free behaviour of the
�
4 theory does not occur below the scale �. The running of �.�/ at one loop is
given by

d�

dt
D 3

4�2

�
�2 C 3�h2t � 9h4t C small gauge and Yukawa terms

�
; (3.118)

with the normalization such that at t D 0, � D �0 D m2H=2v
2, from the minimum

condition in (3.60), and the top Yukawa coupling is given by h0t D mt=v. The initial
value of � at the weak scale increases with mH and the derivative is positive at large
� because of the positive �2 term (the �'4 theory is not asymptotically free), which
overwhelms the negative top Yukawa term. Thus, if mH is too large, the point where
� computed from the perturbative beta function becomes infinite (the Landau pole)
occurs at too low an energy. Of course, in the vicinity of the Landau pole the 2-loop
evaluation of the beta function is not reliable. Indeed, the limit indicates the frontier
of the domain where the theory is well described by the perturbative expansion.
Thus the quantitative evaluation of the limit is only indicative, although it has been
to some extent supported by simulations of the Higgs sector of the EW theory on
the lattice. For the upper limit on mH, one finds [241]

mH . 180GeV for� � MGUT–MPlanck ; mH . 0:5–0:8TeV for � � 1TeV :

(3.119)

As for a lower limit on the SM Higgs mass, a possible instability of the Higgs
potential VŒ
� is generated by the quantum loop corrections to the classical
expression for VŒ
�. At large 
 the derivative V 0Œ
� could become negative and
the potential would become unbound from below. The one-loop corrections to VŒ
�
in the SM are well known and change the dominant term at large 
 according to
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�
4 ! .� C 
 log
2=�2/
4. This one-loop approximation is not enough in this
case, because it fails at large enough 
, when 
 log
2=�2 becomes of order 1.
The renormalization group improved version of the corrected potential leads to the
replacement �
4 ! �.�/
04.�/, where �.�/ is the running coupling and 
0.	/ D

 exp

R t

.t0/dt0, with 
.t/ an anomalous dimension function, t D log�=v, and

v the vacuum expectation value v D .2
p
2GF/

�1=2. As a result, the positivity
condition for the potential amounts to the requirement that the running coupling
�.�/ should never become negative.

A more precise calculation, which also takes into account the quadratic term in
the potential, confirms that the requirement of positive �.�/ leads to the correct
bound down to scales � as low as � 1TeV. We see that, for mH small and mt fixed
at its measured value, � decreases with t and can become negative. If one requires �
to remain positive up to � D 1016–1019 GeV, then the resulting bound on mH in the
SM with only one Higgs doublet, obtained from a recent state-of-the-art calculation
[118, 160] is given by

mH .GeV/ > 129:6C 2:0

�
mt .GeV/ � 173:35

0:7

�

� 0:5
˛s.mZ/ � 0:1184

0:0007
˙ 0:3 :

(3.120)

The estimate of the ambiguity associated with mt can be questioned: is the definition
of mass as measured at the Tevatron relevant for this calculation [25]? Note that this
limit is avoided in models with more Higgs doublets. In that case the limit, applies
to some average mass, but the lightest Higgs particle can be well below, as is the
case in the minimal SUSY extension of the SM (MSSM).

In conclusion, for mt � 173GeV, only a small range of values for mH is allowed,
viz., 130 < mH <� 180GeV, if the SM holds and the vacuum is absolutely stable
up to an energy scale� � MGUT or MPlanck. For Higgs masses below this range, one
can still have a domain where the SM is viable because the vacuum can be unstable,
but with a lifetime longer than the age of the Universe [111, 118, 160]. We shall
come back to this later (see Fig. 3.21).

3.15 SM Higgs Decays

The total width and the branching ratios for the SM Higgs as a function of mH are
given in Fig. 3.19 [169]. Since the couplings of the Higgs particle are proportional
to masses, when mH increases, the Higgs particle becomes strongly coupled. This
is reflected in the sharp rise of the total width with mH. For mH in the range 114–
130 GeV, the width is below 5 MeV, much less than the widths of the W or the
Z, which have a comparable mass. The dominant channel for such a Higgs is
H ! bNb. In the Born approximation, the partial width into a fermion pair is given
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Fig. 3.19 Left: The total width of the SM Higgs boson as a function of the mass. Right: The
branching ratios of the SM Higgs boson as a function of the mass (solid line fermions, dashed line
bosons) [169]

by [169, 238]

� .H ! f Nf / D NC
GF

4�
p
2
mHm

2
f ˇ

3
f ; (3.121)

where ˇf D .1 � 4m2f =m
2
H/
1=2. The factor of ˇ3 appears because parity requires the

fermion pair to be in a p-state of orbital angular momentum for a scalar Higgs (with
parity P D C1). This factor would be ˇ for a pseudoscalar Higgs boson. We see
that the width is suppressed by a factor m2f =m

2
H (the Higgs coupling is proportional

to the fermion mass) with respect to the natural size GFm3H for the width of a particle
of mass mH decaying through a diagram with only one weak vertex.

A glance at the branching ratios shows that the branching ratio into £ pairs is
larger by more than a factor of 2 with respect to the cNc channel. This is at first sight
surprising because the colour factor NC favours the quark channels and the masses
of £ leptons and D mesons are quite similar. This is due to the fact that the QCD
corrections replace the charm mass at the scale of charm with the charm mass at the
scale mH, which is lower by about a factor of 2.5. The masses run logarithmically in
QCD, similarly to the coupling constant. The corresponding logs are already present
in the 1-loop QCD correction, which amounts to the replacement

m2q �! m2q

"

1C 2˛s

�

 

log
m2q
m2H

C 3

2

!#

� m2q.m
2
H/ :
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The Higgs width increases sharply as the WW threshold is approached. For decay
into a real pair of V bosons, with V D W;Z, one obtains in the Born approximation
[169, 238]

� .H ! VV/ D GFm3H
16�

p
2
ıVˇV .1� 4x C 12x2/ ; (3.122)

where ˇV D p
1 � 4x with x D m2V=m

2
H and ıW D 2, ıZ D 1. Well above threshold,

the VV channels are dominant and the total width, given approximately by

�H � 0:5 TeV
� mH

1 TeV

�3
; (3.123)

becomes very large, signalling that the Higgs sector is becoming strongly interact-
ing, if we recall the upper limit on the SM Higgs mass in (3.119). The VV dominates
over the tNt because of the ˇ threshold factors, which disfavour the fermion channel,
and at large mH, by the cubic versus linear behaviour with mH of the partial widths
for VV versus tNt. Below the VV threshold, the decays into virtual V particles is
important: VV� and V�V�. Note in particular the dip in the ZZ branching ratio just
below the ZZ threshold. This is due to the fact that the W is lighter than the Z
and the opening of its threshold depletes all other branching ratios. When the ZZ
threshold is also passed, the ZZ branching fraction then comes back to the ratio of
approximately 1:2 with the WW channel (just the number of degrees of freedom,
i.e., two Hermitian fields for the W, one for the Z). The decay channels into ””, Z”,
and gg proceed through loop diagrams, with the contributions from W (only for ””
and Z” ) and from fermion loops (for all) (Fig. 3.20).

We reproduce here the results for � .H ! ””/ and � .H ! gg/ [169, 238]:

� .H ! ””/ D GF˛
2m3H

128�3
p
2

ˇ
ˇ
ˇ
ˇAW.�W/C

X

f

NCQ
2
f Af .�f /

ˇ
ˇ
ˇ
ˇ

2

; (3.124)

� .H ! gg/ D GF˛
2
s m

3
H

64�3
p
2

ˇ
ˇ
ˇ
ˇ

X

fDQ

Af .�f /

ˇ
ˇ
ˇ
ˇ

2

; (3.125)

Fig. 3.20 Typical one-loop diagrams for Higgs decay into ””, Z”, and for only the quark loop, gg
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where �i D m2H=4m
2
i and

Af .�/ D 2

�2

�
� C .� � 1/f .�/� ; AW.�/ D � 1

�2

�
2�2 C 3� C 3.2� � 1/f .�/� ;

(3.126)

with

f .�/ D

8
ˆ̂
<̂

ˆ̂
:̂

arcsin2
p
� for � � 1 ;

�1
4

 

log
1C p

1 � ��1

1 � p
1� ��1 � i�

!2

for � > 1 :
(3.127)

For H ! ”” (as well as for H ! Z”), the W loop is the dominant contribution
at small and moderate mH. We recall that the ”” mode is a possible channel for
Higgs discovery only for mH near its lower bound (i.e., for 114 < mH < 150GeV).
In this domain of mH, we have � .H ! ””/ � 6–23 KeV. For example, in the
limit mH � 2mi, or � ! 0, we have AW.0/ D �7 and Af .0/ D 4=3. The
two contributions become comparable only for mH � 650GeV, where the two
amplitudes, still of opposite sign, nearly cancel. The top loop is dominant among
fermions (lighter fermions are suppressed by m2f =m

2
H modulo logs), and as we have

seen, it approaches a constant for large mt. Thus the fermion loop amplitude for
the Higgs would be sensitive to effects from very heavy fermions. In particular, the
H ! gg effective vertex would be sensitive to all possible very heavy coloured
quarks (of course, there is no W loop in this case, and the top quark gives the
dominant contribution in the loop). As discussed in Chap. 2, the gg ! H vertex
provides one of the main production channels for the Higgs boson at hadron
colliders, while another important channel at present is WH associate production.

3.16 The Higgs Discovery at the LHC

On 4 July 2012 at CERN, the ATLAS and CMS Collaborations [341, 345]
announced the observation of a particle with mass around 126 GeV that, within
the present accuracy, does indeed look like the SM Higgs boson. This is a great
breakthrough which, by itself, already makes an adequate return for the LHC
investment. With the Higgs discovery, the main building block for the experimental
validation of the SM is now in place. The Higgs discovery is the last milestone in the
long history (some 130 years) of the development of a field theory of fundamental
interactions (apart from quantum gravity), starting with the Maxwell equations
of classical electrodynamics, going through the great revolutions of relativity and
quantum mechanics, then the formulation of quantum electrodynamics (QED) and
the gradual buildup of the gauge part of the Standard Model, and finally completed
with the tentative description of the electroweak (EW) symmetry breaking sector of
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the SM in terms of a simple formulation of the Englert–Brout–Higgs mechanism
[189].

The other extremely important result from the LHC at 7 and 8 TeV center-of-
mass energy is that no new physics signals have been seen so far. This negative
result is certainly less exciting than a positive discovery, but it is a crucial new input
which, if confirmed in the future LHC runs at 13 and 14 TeV, will be instrumental
in redirecting our perspective of the field. In this section we summarize the relevant
data on the Higgs signal as they are known at present, while the analysis of the data
from the 2012 LHC run is still in progress.

The Higgs particle has been observed by ATLAS and CMS in five channels ””,
ZZ�, WW�, bNb, and £C£�. If we also include the Tevatron experiments, especially
important for the bNb channel, the combined evidence is by now totally convincing.
The ATLAS (CMS) combined values for the mass, in GeV=c2, are mH D 125:5˙0:6
(mH D 125:7˙0:4). This light Higgs is what one expects from a direct interpretation
of EW precision tests [73, 142, 350]. The possibility of a “conspiracy” (the Higgs
is heavy, but it falsely appears to be light because of confusing new physics effects)
has been discarded: the EW precision tests of the SM tell the truth and in fact,
consistently, no “conspirators”, namely no new particles, have been seen around.

As shown in the previous section, the observed value of mH is a bit too low for
the SM to be valid up to the Planck mass with an absolutely stable vacuum [see
(3.120)], but it corresponds to a metastable value with a lifetime longer than the
age of the universe, so that the SM may well be valid up to the Planck mass (if
one is ready to accept the immense fine-tuning that this option implies, as discussed
in Sect. 3.17). This is shown in Fig. 3.21, where the stability domains are shown
as functions of mt and mH, as obtained from a recent state-of-the-art evaluation of
the relevant boundaries [118, 160]. It is puzzling to find that, with the measured
values of the top and Higgs masses and the strong coupling constant, the evolution
of the Higgs quartic coupling ends up in a narrow metastability wedge at very high
energies. This criticality looks intriguing, and is perhaps telling us something.
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In order to be sure that this is the SM Higgs boson, one must confirm that the
spin-parity is 0C and that the couplings are as predicted by the theory. It is also
essential to search for possible additional Higgs states, such as those predicted in
supersymmetric extensions of the SM. As for the spin (see, for example, [179]),
the existence of the H ! ”” mode proves that the spin cannot be 1, and must
be either 0 or 2, in the assumption of an s-wave decay. The bNb and £C£� modes
are compatible with both possibilities. With large enough statistics the spin-parity
can be determined from the distributions of H ! ZZ� ! 4 leptons, or WW� !
4 leptons. Information can also be obtained from the HZ invariant mass distributions
in the associated production [179]. The existing data already appear to strongly
favour a JP D 0C state against 0�, 1C=�, or 2C [68]. We do not expect surprises
on the spin-parity assignment because, if different, then all the Lagrangian vertices
would be changed and the profile of the SM Higgs particle would be completely
altered.

The tree level couplings of the Higgs are proportional to masses, and as a
consequence are very hierarchical. The loop effective vertices to ”” and gg, g
being the gluon, are also completely specified in the SM, where no states heavier
than the top quark exist and contribute in the loop. This means that the SM Higgs
couplings are predicted to exhibit a very special and very pronounced pattern (see
Fig. 3.22) which would be extremely difficult to fake by a random particle. In fact,
only a dilaton, a particle coupled to the energy–momentum tensor, could come close
to simulating a Higgs particle, at least for the H tree level couplings, although
in general there would be a common proportionality factor in the couplings. The
hierarchy of couplings is reflected in the branching ratios and the rates of production
channels, as can be seen in Fig. 3.23. The combined signal strengths (which, modulo
acceptance and selection cut deformations, correspond to 	 D �Br=.�Br/SM) are
obtained as 	 D 0:8 ˙ 0:14 by CMS and 	 D 1:30 ˙ 0:20 by ATLAS. Taken
together these numbers constitute a triumph for the SM!

Within the somewhat limited present accuracy (October 2013), the measured
Higgs couplings are in reasonable agreement (at about a 20% accuracy) with the

Fig. 3.22 Predicted
couplings of the SM Higgs
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and its production cross-sections at the LHC for various center-of-mass energies (right) [168]

sharp predictions of the SM. Great interest was excited by a hint of an enhanced
Higgs signal in ””, but if we put the ATLAS and CMS data together, the evidence
appears now to have evaporated. All included, if the CERN particle is not the SM
Higgs, it must be a very close relative! Still it would be really astonishing if the
H couplings were exactly those of the minimal SM, meaning that no new physics
distortions reach an appreciable level of contribution.

Thus, it becomes a firm priority to establish a roadmap for measuring the H
couplings as precisely as possible. The planning of new machines beyond the LHC
has already started. Meanwhile strategies for analyzing the already available and the
forthcoming data in terms of suitable effective Lagrangians have been formulated
(see, for example, [222] and references therein). A very simple test is to introduce
a universal factor multiplying all H N  couplings to fermions, denoted by c, and
another factor a multiplying the HWW and HZZ vertices. Both a and c are 1 in the
SM limit. All existing data on production times branching ratios are compared with
the a- and c-distorted formulae to obtain the best fit values of these parameters (see
[72, 194, 218] and references therein). At present this fit is performed routinely by
the experimental collaborations [66, 260], each using its own data (see Fig. 3.24).
But theorists have not refrained from abusively combining the data from both
experiments and the result is well in agreement with the SM, as shown in Fig. 3.25
[194, 218].

Actually, a more ambitious fit in terms of seven parameters has also been
performed [194] with a common factor like a for couplings to WW and ZZ, three
separate c-factors ct, cb, and c£ for u-type and d-type quarks and for charged leptons,
and three parameters cgg, c”” , and cZ” for additional gluon–gluon, ”–” and Z–”
terms, respectively. In the SM a D ct D cb D c� D 1 and cgg D c”” D cZ” D 0.
The present data allow a meaningful determination of all seven parameters which
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Fig. 3.24 Measured H couplings compared with the SM predictions by the CMS [260] (2016
updated version, included with permission) and ATLAS [66] collaborations (earlier 2013 version,
when these lectures were written, included with permission). For a 2016 update of the ATLAS plot,
see [3]
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turns out to be in agreement with the SM [194]. For example, in the MSSM, at
the tree level, a D sin .ˇ � ˛/, for fermions the u- and d-type quark couplings are
different: ct D cos˛= sinˇ and cb D � sin ˛= cosˇ D c£. At the tree level (but
radiative corrections are in many cases necessary for a realistic description), the ˛
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angle is related to the A, Z masses and to ˇ by tan 2˛ D tan 2ˇ.m2A�m2Z/=.m
2
ACm2Z/.

If ct is enhanced, cb is suppressed. In the limit of large mA, a D sin .ˇ � ˛/ ! 1.
In conclusion it really appears that the Higgs sector of the minimal SM, with

good approximation, is realized in nature. Apparently, what was considered just
as a toy model, a temporary addendum to the gauge part of the SM, presumably
to be replaced by a more complex reality and likely to be accompanied by new
physics, has now been experimentally established as the actual realization of the
EW symmetry breaking (at least to a very good approximation). If the role of the
newly discovered particle in the EW symmetry breaking is confirmed, it will be the
only known example in physics of a fundamental, weakly coupled, scalar particle
with vacuum expectation value (VEV). We know many composite types of Higgs-
like particles, like the Cooper pairs of superconductivity or the quark condensates
that break the chiral symmetry of massless QCD, but the Higgs found at the LHC
is the only possibly elementary one. This is a death blow not only to Higgsless
models, to straightforward technicolor models, and to other unsophisticated strongly
interacting Higgs sector models, but actually a threat to all models without fast
enough decoupling, in the sense that, if new physics comes in a model with
decoupling, the absence of new particles at the LHC helps to explain why large
corrections to the H couplings are not observed.

3.17 Limitations of the Standard Model

No signal of new physics has been found, either by direct production of new
particles at the LHC, or in the electroweak precision tests, or in flavour physics.
Given the success of the SM, why are we not satisfied with this theory? Once
the Higgs particle has been found, why don’t we declare particle physics closed?
The reason is that there are both conceptual problems and phenomenological
indications for physics beyond the SM. On the conceptual side the most obvious
problems are that quantum gravity is not included in the SM and that the famous
hierarchy (or naturalness or fine-tuning) problem remains open. Among the main
phenomenological hints for new physics we can list coupling unification, dark
matter, neutrino masses (discussed in Sect. 3.7), baryogenesis, and the cosmological
vacuum energy. At accelerator experiments, the most plausible departure from the
SM is the muon anomalous magnetic moment which, as discussed in Sect. 3.9,
shows a deviation by about 3 � , but some caution should be applied since a large
fraction of the uncertainty is of theoretical origin, in particular that due to the
hadronic contribution to light–light scattering [245].

The computed evolution with energy of the effective SM gauge couplings clearly
points towards the unification of the electroweak and strong forces (GUTs) at scales
of energy MGUT � 1015–1016 GeV [315], which are close to the scale of quantum
gravity, MPlanck � 1019 GeV. The crossing of the three gauge couplings at a single
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Fig. 3.26 Renormalisation of the SM gauge couplings g1 D p
5=3gY , g2, g3, of the top, bottom,

and £ couplings (yt , yb, y£), of the Higgs quartic coupling �, and of the Higgs mass parameter m.
In the figure, yb and y£ are not easily distinguished. All parameters are defined in the NMNS scheme
[118]

point is not perfect in the SM and is much better in the supersymmetric extensions
of the SM. But still the matching is sufficiently close in the SM (see Fig. 3.26,
[118]) that one can imagine some atypical threshold effect at the GUT scale to
fix the apparent residual mismatch. One is led to imagine a unified theory of all
interactions, also including gravity (at present superstrings [231] provide the best
attempt at such a theory).

Thus GUTs and the realm of quantum gravity set a very distant energy horizon
that modern particle theory cannot ignore. Can the SM without new physics be
valid up to such high energies? One can imagine that some obvious problems of
the SM could be postponed to the more fundamental theory at the Planck mass. For
example, the explanation of the three generations of fermions and the understanding
of fermion masses and mixing angles can be postponed. But other problems must
find their solution in the low energy theory. In particular, the structure of the SM
could not naturally explain the relative smallness of the weak scale of mass, set by
the Higgs mechanism at v � 1=

p
GF � 250GeV, where GF is the Fermi coupling

constant. This so-called hierarchy problem [219] is due to the instability of the
SM with respect to quantum corrections. In fact, nobody can believe that the SM is
the definitive, complete theory but, rather, we all believe it is only an effective low
energy theory.

The dominant terms at low energy correspond to the SM renormalizable
Lagrangian, but additional non-renormalizable terms should be added which are
suppressed by powers (modulo logs) of the large scale �, where physics beyond
the SM becomes relevant (for simplicity we write down only one such scale of new
physics, but there could be different levels). The complete Lagrangian takes the
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general form

L DO.�4/CO.�2/L2CO.�/L3CO.1/L4 CO.1=�/L5 CO.1=�2/L6 C � � � :
(3.128)

Here LD are Lagrangian vertices of operator dimension D. In particular L2 D ˚�˚

is a scalar mass term, L3 D N�� is a fermion mass term (which in the SM only
appears after EW symmetry breaking), L4 describes all dimension-4 gauge and
Higgs interactions,L5 is the Weinberg operator [363] (with two lepton doublets and
two Higgs fields) which leads to neutrino masses (see Sect. 3.7), and L6 includes
4-fermion operators (among others). The first line in (3.128) corresponds to the
renormalizable part (that is, what we usually call the SM). The baseline power of
the large scale � in the coefficient of each LD vertex is fixed by dimensions. A
deviation from the baseline power can only be naturally expected if some symmetry
or some dynamical principle justifies a suppression. For example, for the fermion
mass terms, we know that all Dirac masses vanish in the limit of gauge invariance
and only arise when the Higgs VEV v breaks the EW symmetry. The fermion masses
also break chiral symmetry. Thus the fermion mass coefficient is not linear in �
modulo logs, but actually behaves as v log�. An exceptional case is the Majorana
mass term of right-handed neutrinos �R, MRR N�c

R�R , which is lepton number non-
conserving but gauge invariant (because �R is a gauge singlet). In fact, in this case
one expects MRR � �. As another example, proton decay arises from a 4-fermion
operator in L6, suppressed by 1=�2, where in this case � could be identified with
the large mass of lepto-quark gauge bosons that appear in GUTs.

The hierarchy problem arises because the coefficient of L2 is not suppressed by
any symmetry. This term, which appears in the Higgs potential, fixes the scale of
the Higgs VEV and of all related masses. Since empirically the Higgs mass is light,
(and by naturalness, it should be of O.�/, we would expect �, i.e., some form of
new physics, to appear near the TeV scale. The hierarchy problem can be put in very
practical terms (the “little hierarchy problem”): loop corrections to the Higgs mass
squared are quadratic in the cutoff �, which can be interpreted as the scale of new
physics.

The most pressing problem is from the top loop. With m2h D m2bare C ım2h, the top
loop gives

ım2hjtop � � 3GF

2
p
2�2

m2t�
2 � �.0:2�/2 : (3.129)

If we demand that the correction not exceed the light Higgs mass observed by
experiment (that is, we exclude an unexplained fine-tuning), � must be close,
� � O.1 TeV/. Similar constraints also arise from the quadratic � dependence
of loops with exchanges of gauge bosons and scalars, which, however, lead to less
pressing bounds. So the hierarchy problem strongly indicates that new physics must
be very close (in particular the mechanism that quenches or compensates the top
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loop). The restoration of naturalness would occur if new physics implemented an
approximate symmetry implying the cancellation of the �2 coefficient. Actually,
this new physics must be rather special, because it must be very close, while its
effects are not yet clearly visible, either in precision electroweak tests (the “LEP
paradox” [80]), or in flavour-changing processes and CP violation.

It is important to note that, although the hierarchy problem is directly related
to the quadratic divergences in the scalar sector of the SM, the problem can
actually be formulated without any reference to divergences, directly in terms of
renormalized quantities. After renormalization, the hierarchy problem is manifested
by the quadratic sensitivity of 	2 to the physics at high energy scales. If there is
a threshold at high energy, where some particles of mass M coupled to the Higgs
sector can be produced and contribute in loops, then the renormalized running mass
	 will evolve slowly (i.e., logarithmically according to the relevant beta functions
[195]) up to M and there, as an effect of the matching conditions at the threshold,
rapidly jump to become of order M (see, for example, [79]). In fact, in Fig. 3.26, we
see that, under the assumption of no thresholds, the running Higgs mass m evolves
slowly, starting from the observed low energy value, up to very high energies. In the
presence of a threshold at M one needs a fine-tuning of order 	2=M2 in order to fix
the running mass at low energy to the observed value.

Thus for naturalness either new thresholds appear endowed with a mechanism for
the cancellation of the sensitivity or they had better not appear at all. But certainly
there is the Planck mass, connected to the onset of quantum gravity, which sets
an unavoidable threshold. One possible point of view is that there are no new
thresholds up to MPlanck (at the price of giving up GUTs, among other things) but,
miraculously, there is a hidden mechanism in quantum gravity that solves the fine-
tuning problem related to the Planck mass [221, 322]. For this one would need
to solve all phenomenological problems, like dark matter, baryogenesis, and so on,
with physics below the EW scale. Possible ways to do so are discussed in [322].
This point of view is extreme, but allegedly not yet ruled out.

The main classes of orthodox solutions to the hierarchy problem are:

• Supersymmetry [302]. In the limit of exact boson–fermion symmetry, quadratic
bosonic divergences cancel so that only log divergences remain. However, exact
SUSY is clearly unrealistic. For approximate SUSY (with soft breaking terms
and R-parity conservation), which is the basis for most practical models, �2 is
essentially replaced by the splitting of SUSY multiplets,�2 � m2SUSY�m2ord, with
mord the SM particle masses. In particular, the top loop is quenched by partial
cancellation with s-top exchange, so the s-top cannot be too heavy. After the
bounds from the LHC, the present emphasis is to build SUSY models where
naturalness is restored not too far from the weak scale, but the related new
physics is arranged in such a way that it would not have been visible so far. The
simplest ingredients introduced in order to decrease the fine tuning are either the
assumption of a split spectrum with heavy first two generations of squarks (for
some recent work along this line see, for example, [271]) or the enlargement of
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the Higgs sector of the MSSM by adding a singlet Higgs field (see, for example,
[196] on next-to-minimal SUSY SM or NMSSM) or both.

• A strongly interacting EW symmetry-breaking sector. The archetypal model
of this class is technicolor, where the Higgs is a condensate of new fermions
[332]. In these theories there is no fundamental scalar Higgs field, hence no
quadratic divergences associated with the 	2 mass in the scalar potential. But this
mechanism needs a very strong binding force, �TC � 103�QCD. It is difficult to
arrange for such a nearby strong force not to show up in precision tests. Hence,
this class of models was abandoned after LEP, although some special classes
of models have been devised a posteriori, like walking TC, top-color assisted
TC, etc. [246] (for reviews see, for example, [275]). But the simplest Higgs
observed at the LHC has now eliminated another score of these models. Modern
strongly interacting models, like little Higgs models [63] [in these models extra
symmetries allow mh 6D 0 only at two-loop level, so that � can be as large as
O.10 TeV/], or composite Higgs models [223, 258] (where non-perturbative
dynamics modifies the linear realization of the gauge symmetry and the Higgs
has both elementary and composite components) are more sophisticated. All
models in this class share the idea that the Higgs is light because it is the pseudo-
Goldstone boson of an enlarged global symmetry of the theory, for example
SO.5/ broken down to SO.4/. There is a gap between the mass of the Higgs
(similar to a pion) and the scale f where new physics appears in the form of
resonances (similar to the �, etc.). The ratio � D v2=f 2 defines a degree of
compositeness that interpolates between the SM at � D 0 up to technicolor
at � D 1. Precision EW tests impose � < 0:05–0.2. In these models the bad
quadratic behaviour from the top loop is softened by the exchange of new vector-
like fermions with charge 2/3, or even with exotic charges like 5/3 (see, for
example, [143, 295]).

• Extra dimensions [62, 314] (for pedagogical introductions, see, for example,
[331]). The idea is that MPlanck appears very large, or equivalently that gravity
appears very weak, because we are fooled by hidden extra dimensions, so that
either the real gravity scale is reduced down to a lower scale, even possibly down
to O.1 TeV/ or the intensity of gravity is redshifted away by an exponential
warping factor [314]. This possibility is very exciting in itself and it is
really remarkable that it is compatible with experiment. It provides a very rich
framework with many different scenarios.

• The anthropic evasion of the problem. The observed value of the cosmological
constant � also poses a tremendous, unsolved naturalness problem [205]. Yet
the value of� is close to the Weinberg upper bound for galaxy formation [364].
Possibly our Universe is just one of infinitely many bubbles (a multiverse) contin-
uously created from the vacuum by quantum fluctuations. Different physics takes
place in different universes according to the multitude of string theory solutions
[177] (� 10500). Perhaps we live in a very unlikely universe, but the only one
that allows our existence [61, 220, 318]. Personally, I find the application of the
anthropic principle to the SM hierarchy problem somewhat excessive. After all,
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one can find plenty of models that easily reduce the fine tuning from 1014 to 102:
why make our universe so terribly unlikely? If we add, say, supersymmetry to the
SM, does the universe become less fit for our existence? In the multiverse, there
should be plenty of less finely tuned universes where more natural solutions are
realized and which are still suitable for us to live in them. By comparison, the
case of the cosmological constant is very different: the context is not as fully
specified as the one for the SM (quantum gravity, string cosmology, branes in
extra dimensions, wormholes through different universes, and so on). Further,
while there are many natural extensions of the SM, so far there is no natural
theory of the cosmological constant.

It is true that the data impose a substantial amount of apparent fine tuning, and our
criterion of naturalness has certainly failed so far, so that we are now lacking a
reliable argument to tell us where precisely the new physics threshold is located. On
the other hand, many of us remain confident that some new physics will appear not
too far from the weak scale.

While I remain skeptical I would like to sketch here one possibility of how
the SM can be extended in agreement with the anthropic idea. If we completely
ignore the fine-tuning problem and only want to reproduce, in a way compatible
with GUTs, the most compelling data that demand new physics beyond the SM, a
possible scenario is the following. The SM spectrum is completed by the recently
discovered light Higgs and there is no other new physics in the LHC range
(how sad!). In particular there is no SUSY in this model. At the GUT scale
of MGUT 
 1016 GeV, the unifying group is SO.10/, broken at an intermediate
scale, typically Mint � 1010–1012 down to a subgroup like the Pati–Salam group
SU.4/

N
SU.2/L

N
SU.2/R or SU.3/

N
U.1/

N
SU.2/L

N
SU.2/R [98]. Note

that, in general, unification in SU.5/ would not work because we need a group
of rank larger than 4 to allow for (at least) two-step breaking: this is needed, in
the absence of SUSY, to restore coupling unification and to avoid a too fast proton
decay. An alternative is to assume some ad hoc intermediate threshold to modify the
evolution towards unification [224].

The dark matter problem is one of the strongest pieces of evidence for new
physics. In this model it should be solved by axions [262, 263, 309]. It must
be said that axions have the problem that their mass has to be fixed ad hoc to
reproduce the observed amount of dark matter. In this respect, the WIMP (weakly
interacting massive particle) solution, like the neutralinos in SUSY models, is much
more attractive. Lepton number violation, Majorana neutrinos, and the see-saw
mechanism give rise to neutrino mass and mixing. Baryogenesis occurs through
leptogenesis [115]. One should one day observe proton decay and neutrino-less beta
decay. None of the alleged indications for new physics at colliders would survive (in
particular, even the claimed muon g�2 [297] discrepancy should be attributed, if not
to an experimental problem, to an underestimate of the theoretical uncertainties, or
otherwise to some specific addition to the above model [257]). This model is in line
with the non-observation of the decay � ! e” at MEG [16], of the electric dipole
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moment of the neutron [75], etc. It is a very important challenge to experiment to
falsify such a scenario by establishing firm evidence for new physics at the LHC or
at some other “low energy” experiment.

In 2015 the LHC will restart at 13–14 TeV and in the following years should
collect a much larger statistical sample than available at present at 7–8 TeV. From
the above discussion it is clear that it is extremely important for the future of particle
physics to know whether the extraordinary and unexpected success of the SM,
including the Higgs sector, will continue, or whether clear signals of new physics
will finally appear, as we very much hope.
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