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Preface

This volume presents selected papers from the twelfth International Conference
on Spectral and High-Order Methods (ICOSAHOM’18) that was held in London,
United Kingdom, during the week of July 9–13th, 2018. These selected papers were
refereed by members of the scientific committee of ICOSAHOM, as well as by other
leading scientists.

The first ICOSAHOM conference was held in Como, Italy, in 1989 and marked
the beginning of an international conference series in Montpellier, France (1992);
Houston, TX, USA (1995); Tel Aviv, Israel (1998); Uppsala, Sweden (2001);
Providence, RI, USA (2004); Beijing, China (2007); Trondheim, Norway (2009);
Gammarth, Tunisia (2012); Salt Lake City, USA (2014); and Rio de Janeiro, Brazil
(2016).

ICOSAHOM has established itself as the main meeting place for researchers
with interests in the theoretical, applied, and computational aspects of high-order
methods for the numerical solution of partial differential equations.

With over 360 attendees, ICOSAHOM ’18 has been the largest edition of the
conference series to date. The program consisted of eight invited speakers across
the week from internationally renowned researchers, alongside 40 minisymposia
(of around 300 presentations) dedicated to specialized topics in high-order methods,
and approximately a further 90 contributed talks.

The content of these proceedings is organized as follows. First, contributions
from the invited speakers are included. The remainder of the volume consists of
refereed selected papers highlighting the broad spectrum of topics presented at
ICOSAHOM ’18.

The success of ICOSAHOM ’18 was ensured through generous contributions
and financial support of our sponsors: the Air Force Office of Scientific Research
(AFSOR); the Platform for Research in Simulation Methods (PRISM) platform
grant, funded by the Engineering and Physical Sciences Research Council (EPSRC);
Rolls-Royce Ltd.; and, finally, the Department of Aeronautics at Imperial College
London.

We would like to give special thanks to our local organizing committee for
their efforts in organizing and promoting the event. In particular, we would also
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vi Preface

like to thank Mr. Andrea Cassinelli for his organizational efforts leading up to the
conference, as well as the administrative staff of the Department of Aeronautics at
Imperial College London for their help in coordinating the logistics of the event. We
also thank the many student helpers for their advice, help, and support given to the
delegates during the event itself, who all contributed to the smooth running of the
event.

London, UK Spencer J. Sherwin
Exeter, UK David Moxey
London, UK Joaquim Peiró
London, UK Peter E. Vincent
Zürich, Switzerland Christoph Schwab
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Stability of Wall Boundary Condition
Procedures for Discontinuous Galerkin
Spectral Element Approximations
of the Compressible Euler Equations

Florian J. Hindenlang, Gregor J. Gassner, and David A. Kopriva

1 Introduction

The ingredients for a reliable numerical method for the approximation of partial
differential equations, e.g. one that will not blow up, include stable inter-element and
physical boundary condition implementations. The recognition that the discontinu-
ous Galerkin spectral element method (DGSEM) with Gauss-Lobatto quadratures
satisfies a summation-by-parts (SBP) operators [4, 7] has allowed for the analysis
of these schemes and to connect them with penalty collocation and SBP finite
difference schemes. For instance, in [5], we showed that a split form approximation
of the compressible Navier–Stokes equations was both linearly and entropy stable
provided that the boundary conditions were properly imposed.

The importance of stable boundary condition procedures for hyperbolic equa-
tions has long been studied, especially in relation to finite difference methods,
e.g. [3, 9, 10]. Only recently have they been studied for discontinuous Galerkin
approximations. In [12], the authors showed that the reflection approach is stable
when using an entropy conserving flux and an additional entropy stable dissipation

F. J. Hindenlang
Max Planck Institute for Plasma Physics, Garching, Germany
e-mail: florian.hindenlang@ipp.mpg.de
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4 F. J. Hindenlang et al.

term (EC-ES). In [2], the authors show that the reflection condition is stable if the
numerical flux is either the Godunov or HLL flux.

In this paper, we analyze both the linear and entropy stability of two types
of commonly used wall boundary condition procedures used with the DGSEM
applied to the compressible Euler equations. In both cases, wall boundary conditions
are implemented through a numerical flux. The boundary condition might be
implemented through a special wall numerical flux that includes the boundary
condition, or a fictitious external state applied to a Riemann solver approximation.
We show how to construct special wall numerical fluxes that are stable, and study
the behavior of the approximations. In particular, we show that the use of Riemann
solvers at the boundaries introduce numerical dissipation in an amount that depends
on the size of the normal Mach number at the wall.

2 The Compressible Euler Equations and the Wall Boundary
Condition

We write the Euler equations as

ut +
3∑

i=1

∂fi
∂xi
= 0. (1)

The state vector contains the conservative variables

u = [
� ��v E

]T = [
� �v1 �v2 �v3 E

]T
. (2)

In standard form, the components of the advective fluxes are

f1 =

⎡
⎢⎢⎢⎢⎢⎣

�v1

�v2
1 + p

�v1 v2

�v1 v3

(E + p)v1

⎤
⎥⎥⎥⎥⎥⎦

f2 =

⎡
⎢⎢⎢⎢⎢⎣

�v2

�v2 v1

�v2
2 + p

�v2 v3

(E + p)v2

⎤
⎥⎥⎥⎥⎥⎦

f3 =

⎡
⎢⎢⎢⎢⎢⎣

�v3

�v3 v1

�v3 v2

�v2
3 + p

(E + p)v3

⎤
⎥⎥⎥⎥⎥⎦
, (3)

Here, �, �v = (v1, v2, v3)
T , p, E are the mass density, fluid velocities, pressure and

total energy. We close the system with the ideal gas assumption, which relates the
total energy and pressure

p = (γ − 1)

(
E − 1

2
�
∥∥�v∥∥2

)
, (4)
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where γ denotes the adiabatic coefficient. For a compact notation that simplifies the
analysis, we define block vectors (with the double arrow)

↔
f = [

f1 f2 f3
]T

, (5)

so that the system of equations can be written in the compact form

ut + �∇x ·
↔
f = 0. (6)

The linear Euler equations are derived by linearizing about a constant mean state
(�̄, v̄1, v̄2, v̄3, p̄). We follow [11] for the symmetrization of the linearized equations,
with the constants

a =
√
γ − 1

γ
c̄, b = c̄√

γ
, c̄ =

√
γ p̄

�̄
, (7)

where c̄ is the sound speed of the constant mean state. The state variables become

u = [
�′ v1 v2 v3 p′

]T
, (8)

where �v is the velocity perturbation from the mean state, and we introduce

�′ = b
�̃

�̄
, p′ = 1

�̄a
p̃ − 1√

γ − 1
�′, (9)

which depend on the density and pressure perturbations �̃, p̃. The flux vectors are

fi = Aiu,
↔
f = �Au = (

A1x̂ + A2ŷ + A3ẑ
)

u, (10)

where [11]

A1 =

⎡

⎢⎢⎢⎢⎢⎣

v̄1 b 0 0 0
b v̄1 0 0 a

0 0 v̄1 0 0
0 0 0 v̄1 0
0 a 0 0 v̄1

⎤

⎥⎥⎥⎥⎥⎦
, A2 =

⎡

⎢⎢⎢⎢⎢⎣

v̄2 0 b 0 0
0 v̄2 0 0 0
b 0 v̄2 0 a

0 0 0 v̄2 0
0 0 a 0 v̄2

⎤

⎥⎥⎥⎥⎥⎦
, A3 =

⎡

⎢⎢⎢⎢⎢⎣

v̄3 0 0 b 0
0 v̄3 0 0 0
0 0 v̄3 0 0
b 0 0 v̄3 a

0 0 0 a v̄3

⎤

⎥⎥⎥⎥⎥⎦

(11)

are constant symmetric matrices.
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The linear equations have the property that the L2 norm of the solution over a
domain � is bounded by terms of the boundary data on ∂�, only. Let

〈v,w〉 =
∫

�

vT w dxdydz,
〈↔
f,
↔
g
〉
=
∫

�

3∑

i=1

fTi gi dxdydz. (12)

represent the L2 inner product of two state vectors v and w and two block vectors
↔
f

and
↔
g, respectively. Since the coefficient matrices are constant the product rule and

symmetry of �A implies

〈 �∇x ·
↔
f,u

〉
=
〈
�∇x ·

( �Au
)
,u
〉
=
〈
∇xu,

↔
f
〉
. (13)

Then it follows from Gauss’ law (integration by parts) that

〈 �∇x ·
↔
f,u

〉
= 1

2

∫

∂�

uT
↔
f · �ndS, (14)

where �n is the outward normal to the surface of �. The norm of the solution
therefore satisfies

d

dt
||u||2 = −

∫

∂�

uT
↔
f · �ndS. (15)

Replacing the boundary terms by boundary conditions leads to a bound on the
solution in terms of the boundary data. The argument of the boundary integral on
the right of (15) is

uT
↔
f · �n = uT

( �A · �n
)

u = 2
(
�b + ap

)
vn + (�̄v · �n)(�2 + |�v|2 + p2), (16)

where vn is the wall normal velocity, vn = �v · �n. Note that here, the mean flow must
be chosen such that the normal flow vanishes at the wall boundary �̄v · �n = 0, so that
the boundary condition makes physical sense.

Therefore, with the no penetration wall condition vn = 0 applied,

d

dt
||u||2 = 0, (17)

and the (energy) norm of the solution is bounded for all time by its initial value.
The nonlinear equations, on the other hand, satisfy a bound on the entropy that

depends only on the boundary data. For what follows, we assume that the solution
is smooth so that we don’t have to consider entropy generated at shock waves. We
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introduce the entropy density (scaled with (γ − 1) for convenience) as

s(u) = − �ς

(γ − 1)
, (18)

where ς = ln(p)− γ ln(�) is the physical entropy. (The minus sign is conventional
in the theory of hyperbolic conservation laws to ensure a decreasing entropy
function.) The entropy flux for the Euler equations is

�f ς (u) = �v s = − �ς �v
(γ − 1)

. (19)

Finally the entropy variables are

w = ∂s(u)
∂u

=
⎡
⎢⎣

γ−ς
γ−1 − β||�v||2,

2β�v
−2β

⎤
⎥⎦ , β = �

2p
. (20)

The entropy pair contracts the solution and fluxes, meaning that it satisfies the
relations

wT ut =
(
∂s

∂u

)T

ut = st (u), wT �∇x ·
↔
f = �∇x · �f ς . (21)

When we multiply (6) with the entropy variables and integrate over the domain,

〈
w(u),ut

〉+
〈
w(u), �∇x ·

↔
f
〉
= 0 . (22)

Next we use the properties of the entropy pair to contract (22) and use integration
by parts to get

〈
st (u), 1

〉 = −
〈 �∇x · �f ς, 1

〉
= −

∫

∂�

( �f ς · �n
)

dS (23)

showing that, in the continuous case, the total entropy in the domain can only change
via the boundary conditions.

In the case of a zero-mass flux boundary condition, with vn = �v · �n = 0, the
entropy is not changed by the slip-wall boundary condition, since

− �f ς · �n = �ς

(γ − 1)
vn = 0. (24)
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3 Stability Bounds for the DGSEM

The DGSEM is described in detail in [5] and elsewhere [1, 6]. We will only
quickly summarize the approximation here. The domain, � is subdivided into
non-overlapping, conforming, hexahedral elements. Each element is mapped to
the reference element E = [−1, 1]3. Associated with the transformation from the
reference element is a set of contravariant coordinate vectors, �ai , and transformation
Jacobian, J. Equation (6) transform to another conservation law on the reference
element as

Jut + �∇ξ ·
↔
f̃ = 0, (25)

where
↔
f̃ is the contravariant flux vector with components f̃i = J�ai ·↔f.

The approximation of (25) proceeds as follows: A weak form is created by taking
the inner product of the equation with a test function. The Gauss law is applied to
the divergence term to separate the boundary from the interior contributions. The
resulting weak form is then approximated: The solution vector is approximated by a
polynomial of degree N interpolated at the Legendre–Gauss–Lobatto points. In the
following, we will represent the true continuous solutions by lower case letter. Upper
case letters will denote their polynomial approximations, except for the density,
where the approximation is denoted by ρ. The volume fluxes are replaced by two-
point numerical fluxes. In the linear case, the two point fluxes are immediately
relatable to a split form of the equations. Integrals are replaced by Legendre–Gauss–
Lobatto quadratures. Finally, the boundary fluxes are replaced by a numerical flux.
See [5] and [8] for details.

The result is an approximation that is energy stable for the linearized equations if
at every quadrature point along a physical boundary the numerical flux F̃∗ satisfies
the bound [5]

UT

{
F̃∗ − 1

2

↔
F̃ · n̂

}
≥ 0, (26)

where
↔
F̃ is the polynomial interpolation of the contravariant flux from the interior, n̂

is the reference space outward normal direction, and U is the approximation of the
state vector. Since the contravariant fluxes are proportional to the normal fluxes [6],
we can change the condition (26) to

BL ≡ UT

{
F∗ − 1

2

↔
F · �n

}
≥ 0, (27)
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For entropy stability of the nonlinear equations, the boundary stability condition
shown in [5] is proportional to

BNL ≡WT

(
F∗ −

(↔
F · �n

))
+
( �F ς · �n

)
≥ 0, (28)

where �F ς is the polynomial interpolation of the entropy flux, �f ς , and W is the
interpolation of the entropy variables.

3.1 Linear Stability of Wall Boundary Condition
Approximations

To find linearly stable implementations of the wall condition vn = 0, one needs
only find a numerical flux that satisfies it and the condition (27). For the linear
equations, the approximation of the state vector is U = [ρ′ �V P ′]T and the normal
contravariant flux is proportional to

↔
F · �n = �A · �nU = [

bVn n1Q n2Q n3Q aVn

]T
, (29)

where Vn is the approximation of the normal velocity at the wall computed from the
interior, Q = bρ′ + aP ′, and (n1, n1, n3) are the three components of the physical
space normal vector, �n. The numerical flux can be expressed as

F∗ = �A · �nU∗ = [
bV ∗n n1Q

∗ n2Q
∗ n3Q

∗ aV ∗n
]T

. (30)

It then remains only to find Q∗ so that (27) is satisfied when the normal wall
condition V ∗n = 0 is applied. When we substitute the fluxes (29) and (30) into
(27),

BL = 1

2

{
Q
(
2V ∗n − Vn

)+ Vn

(
2Q∗ −Q

)} = 1

2

{
2QV ∗n + 2Vn

(
Q∗ −Q

)}

(31)

Substituting the wall boundary condition V ∗n = 0 yields the condition on Q∗ for
stability

Vn

(
Q∗ −Q

) ≥ 0. (32)

Neutral stability is thus ensured if ρ∗ and P ∗ are computed from the interior, i.e.
ρ∗ = ρ′, P ∗ = P ′ so that Q∗ = Q.

In practice, the boundary condition is also implemented through the use of
a Riemann solver and external state designed to imply the physical boundary
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condition to construct the numerical boundary flux. The exact upwind (ε = 1)
normal Riemann flux and the central flux (ε = 0) for the linear system of equations
is

F∗
(
U,Uext) = 1

2

{↔
F
(
U
) · �n+ ↔

F
(
Uext) · �n

}
− ε

2

∣∣A n

∣∣ (Uext − U
)
, (33)

where An ≡ �A · �n is the normal coefficient matrix. The external state is set by using
the interior values of the density and pressure and the negative of the value of the
normal velocity,

Uext =
[
ρ′

( �V − 2Vn�n
)

P ′
]T

. (34)

For ε = 0, using the central (averaged) numerical flux, the interior flux
contribution cancels and condition (27) reduces to

BL,0 = 1

2
UT AnUext =

[
ρ′ �V P ′

]

⎡

⎢⎢⎢⎢⎢⎣

0 n1b n2b n3b 0
n1b 0 0 0 n1a

n2b 0 0 0 n2a

n3b 0 0 0 n3a

0 n1a n2a n3a 0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

ρ′

�V − 2Vn�n

P ′

⎤

⎥⎥⎥⎥⎥⎦

= Q
(−V · �n)+ (

V · �n)Q = 0, (35)

which is neutrally stable, having no additional stabilizing dissipation. We note again,
that the mean state for the linearization is chosen such that the normal mean velocity
components are zero, resulting in the zeros on the diagonal of An.

Substituting the exact upwind flux where ε = 1 into (27) and rearranging,

BL,1 = −UT
∣∣∣A−n

∣∣∣Uext + 1

2
UT

∣∣An

∣∣U, (36)

where A−n = 1
2

(
An −

∣∣An

∣∣
)

is negative semidefinite. The second term is non-

negative, depends only on the interior state, and adds stabilizing dissipation. From
the matrix absolute value, the dissipation term is

UT
∣∣An

∣∣U = 1

c̄
Q2 + c̄3Ma2

n, (37)

where Man = Vn/c̄ is the normal Mach number. Stability depends, then, on the
value of the first term, which is where the boundary conditions are incorporated
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through the external state Uext written in (34). Then

UT
∣∣∣A−n

∣∣∣Uext = 1

2c̄
Q2 − c̄3

2
Ma2. (38)

Therefore, using the upwind numerical flux, (36) becomes

BL,1 = c̄3Ma2
n ≥ 0, (39)

as required. The amount of dissipation depends on how far the interior computed
normal velocity deviates from zero.

The combination of the reflective state and local Lax-Friedrichs flux is also
linearly stable. In that case the exact matrix absolute value is replaced by a diagonal
matrix,

∣∣An

∣∣ ≈ |λ|max I. The jump term is added to the central (averaged) flux so

BL,LF = −|λ|max

2
UT

(
Uext − U

) = c̄2|λ|maxMa2
n ≥ 0 (40)

Finally, a dissipative version of the direct numerical flux (30) can be formed by
looking at the reflective state approach. For instance, the equivalent to using the
Lax-Friedrichs flux is to choose ρ∗ = ρ′ and

P ∗ = P ′ + c̄3

a
|λ|maxMan. (41)

Then Q∗ = Q+ c̄3|λ|maxMan and

Vn

(
Q∗ −Q

) = c̄2|λ|maxMa2
n ≥ 0. (42)

A similar, though more complicated, modified P ∗ can be made to be equivalent to
the exact upwind flux.

3.2 Entropy Stability of Wall Boundary Condition
Approximations

As in the linear approximation, the wall boundary condition can be imposed for the
nonlinear equations either by directly specifying the numerical flux or by computing
it through a Riemann solver using a reflection external state that enforces the normal
wall condition implicitly. Note that in this section, the discrete variables (ρ, �V,P )

describe the full nonlinear state.
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For the nonlinear equations, we construct the numerical flux for a slip-wall as

(↔
F · �n

)∗ =
⎡
⎢⎣

0
P ∗ �n

0

⎤
⎥⎦ (43)

where we imposed Vn = 0 leading to a flux with no mass or energy transfer, and we
introduce a wall pressure P ∗, whose value will be chosen to ensure consistency and
stability.

After some manipulations, the discrete entropy stability condition (28) becomes

−ρVn
(

γ − ς

(γ − 1)
− β|| �V ||2

)

+2βVn
(
P ∗ − P − ρ|| �V ||2

)
+ 2βVn

(
ρE + P

)− ρςVn

(γ − 1)
=

−ρVn
(

γ

(γ − 1)
− β|| �V ||2

)
+ 2βVn

(
P ∗ + ρE − ρ|| �V ||2

)
=

ρVn

P

(
− γ

(γ − 1)
P + 1

2
ρ|| �V ||2 + P ∗ + P

(γ − 1)
− 1

2
ρ|| �V ||2

)
=

ρVn

(
P ∗
P
− 1

)
≥ 0

(44)

Therefore if we choose P ∗ = P , to be the internal pressure, the boundary flux
does not contribute to the total entropy, independent of the inner normal velocity
Vn. A value of P ∗ that leads to a dissipative boundary condition can be found either
through exact solution of the Riemann problem at the boundary, or through the use
of an external state and an approximate Riemann solver.

3.2.1 Exact Solution of the Riemann Problem

In [14] a symmetric 1D Riemann problem is exactly solved following Toro [13], to
get the wall pressure P ∗, accounting for the fact that Vn never vanishes discretely
and therefore the wall pressure should be different from the interior pressure. The
exact solution of the 1D Riemann problem reads as

(
P ∗
P

)

RP

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1+ γMan

(
(γ+1)

4 Man +
√(

(γ+1)
4 Man

)2 + 1

)
> 1 for Vn > 0

(
1+ 1

2 (γ − 1)Man
) 2γ

(γ−1) ≤ 1 for Vn ≤ 0

(45)

with the normal Mach number, Man = Vn

c
, and the sound speed c =

√
γ P

ρ
.
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As shown by Toro [13], the solution for the rarefaction has a limiting vacuum
solution for Man ≤ −2(γ − 1)−1. We will restrict our analysis to normal Mach
numbers yielding strictly positive pressure solutions only (Man > −5 for γ = 7

5 ).
It is easy to see that using P ∗ from (45), the entropy inequality (44) is still

satisfied for |Vn| �= 0, and the added entropy scales with the discrete value of Vn

at the boundary. Hence, for h → 0, the discrete boundary condition converges to
its physical counterpart, since Vn → 0. The choice of P ∗ from (45) appears to
stabilize under-resolved simulations, which can be now explained by the fact that
the boundary flux always adds entropy for |Vn| �= 0.

3.2.2 Using Approximate Riemann Solvers for the Boundary Flux

A well known strategy in finite volume methods is to mirror only the velocity of the
internal state and solve an approximate Riemann problem to get the boundary flux,
mostly just because of a simpler implementation, since an approximate Riemann
solver is already available and used for the fluxes between the elements. For DG
methods, see also, for example, [2] and [12] where reflection conditions are proved
to be entropy stable.

The mirror state is set so that the mass and energy flux are zero. Let the inner
state be labeled L and the outer R. then the inner and outer states that satisfy the
mirror condition are

UL =
[
ρ ρ �Vn E

]T
, UR =

[
ρ ρ( �V − 2Vn�n) E

]T
(46)

We show below under what conditions on the normal velocity Vn that the reflection
condition is entropy stable for the Lax-Friedrichs, HLL and HLLC, Roe and EC-ES
fluxes.

Lax-Friedrichs Flux

We start with the simplest approximate Riemann solver, the Lax-Friedrichs or
Rusanov flux, which reads as

(↔
F · �n

)∗
LF
= 1

2
�n ·

(↔
F(UL)+ ↔

F(UR)
)
− |λ|max

2
(UR − UL). (47)

Inserting the states from (46), we get

(↔
F · �n

)∗
LF
=

⎡

⎢⎢⎣

0

(ρV 2
n + P) �n

0

⎤

⎥⎥⎦−
λmax

2

⎡

⎢⎢⎣

0

−2ρVn�n
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0

(ρV 2
n + ρVnλmax + P) �n

0

⎤

⎥⎥⎦ .

(48)
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The maximum wave speed is normally approximated from the largest leftgoing and
rightgoing wave speed,

λmax = max(|V L
n | + cL, |V R

n | + cR) = |Vn| + c , since cL = cR = c ,

Vn = V L
n = −V R

n (49)

and thus gives a definition of P ∗

(
P ∗

P

)

LF
= 1+ γMan

(
Man + |Man| + 1

)

=
{

1+ γMan(2Man + 1) > 1 for Vn > 0
1+ γMan ≤ 1 for Vn ≤ 0

, (50)

which shows that the Lax-Friedrichs flux satisfies the entropy inequality (44).

HLL and HLLC Flux

The HLL flux [13] is written as

(↔
F · �n

)∗
HLL
= 1

SR − SL

(
�n ·

(
SR

↔
F(UL)− SL

↔
F(UR)

)
+ SLSR

(
UR − UL

))
.

(51)

The leftgoing and rightgoing wave speeds are SL = V L
n − cL = −V R

n − cR = −SR

and the HLL flux reduces to

(↔
F · �n

)∗
HLL
= 1

2
�n ·

(↔
F(UL)+ ↔

F(UR)
)
− SR

2

(
UR − UL

)
. (52)

If we would choose SR to be the maximum wave speed, the HLL flux would reduce
to the Lax-Friedrichs flux. However, with SR = V R

n + cR = −Vn + c, an even
simpler relation for P ∗ is found, which also satisfies the entropy inequality

(
P ∗

P

)

HLL
= 1+ γMan

{
> 1 for Vn > 0
≤ 1 for Vn ≤ 0

(53)

For the HLLC flux [13], one can show that since the Riemann problem is symmetric,
the approximate wave speed of the contact discontinuity is λ∗ = 0 and, choosing
SR = −Vn + c, HLLC reduces to the HLL flux.

(
P ∗

P

)

HLLC
= 1+ γMan =

(
P ∗

P

)

HLL
(54)
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Roe Flux

For the original Roe method without entropy fix [13], the mean values are

Ṽn =
√
ρLV L

n +
√
ρRV R

n√
ρL +√

ρR
= 0 , Ṽt1 = Vt1 , Ṽt2 = Vt2 ,

c̃ = c

√
1+ (γ − 1)

2
Ma2

n. (55)

After some manipulations,

(↔
F · �n

)∗
Roe
=
(↔

F · �n
)
+ λ̃1α̃1K̃1 =

(↔
F · �n

)
+ (−c̃)ρVn

c̃

⎡

⎢⎢⎢⎢⎢⎢⎣

1
−c̃
Vt1

Vt2
1
ρ
(ρE + P)

⎤

⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

0
(ρV 2

n + ρVnc̃ + P) �n
0

⎤
⎥⎦ . (56)

with λ̃1 = Ṽn − c̃ = −c̃, α1 = ρVn/c̃ and K̃1 from [13]. This leads again to a
definition of P ∗

(
P ∗

P

)

Roe
= 1+ γMan

(
Man +

√
1+ (γ − 1)

2
Ma2

n

)
, (57)

which fulfills the entropy inequality as long as

Man ≥ −
√

2

3− γ
, forγ = 7

5
Man > −1.12 . (58)

Thus, the Roe flux is entropy stable for shocks, but not for supersonic rarefactions.

EC-ES Fluxes

We can also apply an entropy conservative (EC) flux that is used for interior element
interfaces and add an entropy stable dissipation term (ES) to compute the boundary
flux via the mirrored states (46). This is exactly the strategy proposed in Parsani
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et al. [12] to get the boundary flux. Such an EC-ES flux is presented in Winters et al.
[15]

(↔
F · �n

)∗
ES
= ↔

FEC
(
UL,UR

) · �n− 1

2
D H

(
WR −WL

)
(59)

where D is a dissipation matrix and the matrix H �w� � �u� is carefully derived
from the left and right states. Details are given in [15], where two approaches for
the dissipation are distinguished. One is a Lax-Friedrichs-type dissipation, scaling
with the maximum eigenvalue λmax = |Vn|+c (referred to as ‘EC-LF’). The other is
a Roe-type dissipation computed via the eigenstructure of the matrix (D H) (referred
to as ‘EC-Roe’).

If we carefully insert the two mirrored boundary states into (59), we again get an
equation for the modified pressure

(
P ∗

P

)

EC-LF
= 1+ γMan

(|Man| + 1
)

(60)

for the Lax-Friedrichs-type dissipation and

(
P ∗

P

)

EC-Roe
= 1+ γMan (61)

for the Roe-type dissipation. Both approaches lead to an entropy stable boundary
flux when using a mirrored state. Note that the modified pressure of the EC-Roe
flux (61) exactly matches the one of the HLL flux (53).

4 Discussion

In the previous section we have shown conditions under which a specified wall
flux is stable. In the linear analysis, the central numerical flux adds no dissipation
and is neutrally stable. In the nonlinear analysis, entropy is not generated if the
numerical wall pressure is equal to the internal pressure, P ∗ = P ′. For upwinded
approximations, the amount of energy or entropy dissipation depends on the normal
Mach number. Since the boundary condition is only imposed weakly through the
numerical flux, the normal Mach number will not be exactly zero except in the
convergence limit. In fact, flow computations (especially steady state ones) are
usually initiated with an impulsive start, where the initial state is a uniform flow,
and the normal Mach number is not zero. This has proved over time to be very
robust in practice. The analysis above gives an explanation why.

In the linear analysis the dissipation due to imposing the boundary condition
is proportional to the square of the normal Mach number. With an impulsive
start initialization, this dissipation will be large. As the flow develops and the
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Fig. 1 Entropy contribution s (62) produced by the wall boundary flux. RP refers to the exact
Riemann problem (45), LF to (50), EC-LF to (60), HLL to (53) and Roe to (57). Plotted over the
normal Mach number ranges |Man| ≤ 5 on the top and restricted to |Man| ≤ 1 on the bottom

boundary condition is better enforced, the dissipation reduces, going away only as
the approximate solution converges.

A similar effect is observed for the use of the different approximate Riemann
solvers in the nonlinear analysis. In Fig. 1, we compare the entropy contribution

s = (ρc)Man

(
P ∗

P
− 1

)
(62)

for the different wall boundary fluxes, over a range of normal Mach numbers for
(ρc) = 1 and γ = 7/5. When the boundary condition is exactly fulfilled (Man = 0),
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the entropy contribution is zero. For low normal Mach numbers, all fluxes have the
same behavior. Compared to the exact Riemann problem (RP), the Lax-Friedrichs
flux and the EC-LF flux always produce more entropy whereas the HLL flux
produces less entropy for impinging velocities Man > 0. The results of HLLC
and EC-Roe fluxes are not plotted, as they coincide with the HLL flux. As shown
in the analysis, the Roe flux produces a negative entropy change for supersonic
rarefactions, implying that it is not suitable for all flow configurations.
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On the Order Reduction of Entropy
Stable DGSEM for the Compressible
Euler Equations

Florian J. Hindenlang and Gregor J. Gassner

1 Introduction

Discontinuous Galerkin spectral element collocation method (DGSEM) with either
Legendre-Gauss or Legendre-Gauss-Lobatto (LGL) nodes (see e.g. [14]) are among
the most efficient variants in the class of element based high order methods, such as
e.g. discontinuous Galerkin, flux reconstruction, or summation-by-parts (SBP) finite
differences. In particular, the LGL variant, starting in [9], turned out to be similar
to a SBP finite difference approximation with simultaneous-approximate-term tech-
nique (SAT). This relationship allowed to construct conservative skew-symmetric
approximations, e.g. [9, 10, 21], and later enabled DGSEM-LGL approximations
that are discretely entropy stable, e.g. [1, 3, 6, 8, 13, 17, 19, 20], and/or kinetic
energy preserving [12]. These novel variants of nodal split form DG methods feature
drastically increased non-linear robustness towards aliasing induced instabilities
and favourable properties regarding the simulation of unresolved turbulence, e.g.
[7, 23].

In addition to the very robust dissipative entropy stable versions, it is also
possible to construct virtually dissipation free variants by choosing appropriate
element interface numerical fluxes. These entropy conserving variants all show
an odd-even behavior when experimentally testing the order of convergence,
e.g. [9, 21], where the observed convergence order for even polynomial degrees
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N is N and for odd N is N + 1. Lately, a discussion emerged in the com-
munity, with interesting debates during the recent ICOSAHOM conference in
London, where researchers reported non-optimal convergence behavior of the
entropy stable DGSEM-LGL even with dissipative numerical surface fluxes, e.g.
[6].

This paper contributes to this discussion and presents results of an experimental
convergence order study for the compressible Euler equations with (1) the standard
DGSEM with either Gauss and LGL nodes, (2) the entropy stable DGSEM with
LGL nodes. For these nodal schemes, we test the convergence order with different
numerical surface fluxes and report the results depending on the Mach number of the
test case. The remainder of the paper is organized as follows: in the next section we
describe the numerical model for our numerical experiments, in Sect. 3 we present
our observed experimental convergence orders for different configurations and draw
our conclusion in Sect. 4.

2 Numerical Model

We consider the compressible Euler equations defined in the domain � ⊂ R
3

ut +
3∑

i=1

∂fi
∂xi
= 0. (1)

The state vector contains the conservative variables and the advective flux compo-
nents are

u =

⎡

⎢⎢⎣

�

�
→
v

E

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

�

�v1

�v2

�v3

E

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, f1=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

�v1

�v2
1 + p

�v1 v2

�v1 v3

(E + p)v1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, f2=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

�v2

�v2 v1

�v2
2 + p

�v2 v3

(E + p)v2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, f3=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

�v3

�v3 v1

�v3 v2

�v2
3 + p

(E + p)v3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)

Here, �, →v = (v1, v2, v3)
T , p, E are the mass density, fluid velocities, pressure and

total energy. We close the system with the ideal gas assumption, which relates the
total energy and pressure

p = (γ − 1)

(
E − 1

2
�
∥∥→v
∥∥2
)
, (3)

where γ denotes the adiabatic coefficient.
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For our discretization, we subdivide the domain into non-overlapping hexahedral
elements. For each element, we define a transfinite mapping to a unit reference space
and use this mapping to transform the Eq. (1) from physical to reference space. A
weak form is created by taking the inner product of the transformed equation with
a test function. We use integration-by-parts for the flux term and approximate the
resulting weak form as follows: the conservative variables are approximated by a
polynomial in reference space with degree N, interpolated at the Gauss or LGL
nodes. The volume fluxes are replaced by a standard interpolation of the non-linear
flux function at the same Gauss/LGL nodes (standard DGSEM-Gauss or DGSEM-
LGL), see e.g. [14]. For the LGL variant, we are also able to introduce the split
form volume integral based on entropy conserving and kinetic energy preserving
numerical volume fluxes (Split-DGSEM), e.g. [12] and [22], resulting in either the
entropy conserving or entropy stable DGSEM variants, depending on the choice of
numerical surface flux.

3 Convergence Results

In this section, we compare the convergence of the standard DGSEM and the
entropy conservative and entropy stable discretization for different choices of the
numerical flux and polynomial degrees N = 2, 3, 4, 5.

We choose the test case of a two-dimensional density wave, with a constant
pressure and transported with a constant velocity, which was proposed for one-
dimensional convergence tests in [4]. The density evolves as

�(x1, x2, t) = 1+ 0.1 sin
(
π
(
(x1 − v1t)+ (x2 − v2t)

))
(4)

with a prescribed velocity (v1, v2). The pressure is chosen as p = 1/γ with
γ = 1.4, so that the sound speed ranges between c = 0.95 . . .1.05. Thus, by
changing the velocity, we change the Mach number of the flow Ma = |→v|/c. Three
Mach numbers are chosen: Ma ≈ 0.2 with (v1, v2) = (0.1, 0.15), Ma ≈ 1.0 with
(v1, v2) = (0.7, 0.65) and Ma ≈ 3.5 with (v1, v2) = (2.5, 2.4). The experimental
order of convergence (EOC) is computed with the L2 error of the density at
t = 1.

The convergence study is performed with the open source, three-dimensional
curvilinear split-form DG framework FLUXO (www.github.com/project-fluxo). As
the test case is two-dimensional, we use fully periodic cartesian meshes of the
domain [−1, 1]3 with an equal number of elements in x- and y-directions and always
one element in z-direction. Note that h0 in the convergence tables refers to the
coarsest mesh level, which is 42 elements for N = 2, 3 (h0 = 1/2) and 22 elements
for N = 4, 5 (h0 = 1).

www.github.com/project-fluxo
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All simulation results are obtained with an explicit five stage, fourth order
accurate low storage Runge–Kutta scheme [2], where a stable time step is computed
according to the adjustable coefficient CFL ∈ (0, 1] the local maximum wave
speed, and the relative grid size, e.g. [11]. We made sure that the time integrator
did not influence the spatial convergence order, by adjusting the CFL number
accordingly.

3.1 Standard DGSEM

The convergence of the standard DGSEM with Gauss-Legendre nodes (DGSEM-
Gauss) and with Legendre-Gauss-Lobatto (DGSEM-LGL) is shown in Tables 1
and 2, for the three Mach numbers and two choices of the numerical flux,
namely the HLL (Harten, Lax, van Leer) flux and the Roe flux. The results
of the LLF (local Lax-Friedrichs) flux and the HLLC flux (HLL variant with
three waves, C for ‘contact’ wave) are reported in the Appendix, as the HLL
results are similar to LLF, and HLLC behaves exactly the same as Roe, see
Tables 4 and 5. Details on the properties and the implementation of the LLF, HLL,
HLLC, and Roe fluxes are found in the book of Toro [18] and the references
therein.

For the HLL flux and the low Mach number Ma = 0.2, we observe an odd-even
behavior with an order reduction for even polynomial degrees N = 2, 4. Also for
Ma = 1.0, the convergence for even degrees is slightly affected, whereas for the
high Mach number, all fluxes converge with full order. Comparing the L2 errors of
the finest mesh for HLL and Roe for the low Mach number, HLL is less accurate for
N = 2, 4 and more accurate for N = 3, 5.

All numerical fluxes are approximate Riemann solvers, but the LLF and HLL
only use the maximum wave speeds, whereas the HLLC and Roe also take the
contact wave into account, and therefore keep the full order of the scheme for all
Mach numbers for this test case.

3.2 Entropy Conservative and Entropy Stable DGSEM

Now, we investigate the order reduction of the entropy conservative and entropy
stable discretizations. Here, the standard DGSEM volume integral is replaced by
split-form formulation (Split-DGSEM) using a two-point entropy conservative and
kinetic energy preserving flux (ECKEP). If we choose the ECKEP flux at the
surface, we get an entropy-conserving scheme. For entropy stability, we can use the
LLF or HLL flux directly at the surface, or use the ECKEP flux and add a dissipation
term, which must still satisfy the entropy inequality condition. In Winters et al. [22],
such dissipation terms are carefully derived, using either only the maximum wave
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speed (LLF-type) or incorporating all waves (Roe-type), which we will refer to as
ECKEP-LLF and ECKEP-Roe fluxes.

In Table 3, we summarize the convergence of the dissipation-free ECKEP flux,
the HLL and ECKEP-Roe flux. The results for LLF and ECKEP-LLF fluxes are
found in the Appendix in Table 6, as they have the same convergence and error levels
as the HLL flux. As expected, the dissipation-free surface flux (ECKEP) produces
an order reduction for all Mach numbers for N = 3, 5, and for N = 2 full order is
not kept in the last refinement step.

If we simply use the HLL flux, we have an entropy stable scheme, but an order
reduction for N = 2, 4 can be observed for the low Mach number flow, analogously
to the standard DGSEM-LGL scheme. Interestingly, the odd-even behavior switches
between entropy conserving and entropy stable fluxes.

The ECKEP-Roe entropy stable flux accounts for all waves of the Riemann
problem and adjusts the dissipation for each wave accordingly, which gives full
order convergence for all Mach numbers.

4 Conclusions

In this work, we report the convergence of standard DGSEM Gauss and Gauss-
Lobatto schemes to entropy conservative (EC) and entropy stable (ES) DGSEM
schemes for the Euler equations, as there have been findings of order reduction for
EC and ES schemes. We choose a simple density transport test case on a periodic
domain and investigate the influence of the Mach number of the transport velocity.

The EC scheme is dissipation free and an order reduction is observed by the
convergence study presented here, confirming many similar observations found in
literature. We also confirm that the ES scheme can have an order reduction for
low Mach numbers, but only if the entropy stable numerical flux relies on simple
approximate Riemann solvers such as local Lax-Friedrichs or HLL. If all waves are
accounted for in the dissipation term of the entropy stable flux as presented in [22],
the full order is observed for all Mach numbers. In addition, we reproduce the same
behavior for the standard DGSEM Gauss and Gauss-Lobatto schemes, where the
LLF and HLL fluxes suffer from order reduction at low Mach number, and HLLC
and Roe fluxes have full order for all Mach numbers.

We want to emphasize that the present convergence study should be seen merely
as an observation, confirming that the numerical flux can have strong influence
on the convergence order for both the standard DGSEM and the entropy stable
DGSEM. Also, we stress that in our tests the order reduction is related to the form of
the dissipation term in the numerical surface flux and is not related to the insufficient
integration precision of the LGL-quadrature.

Based on the observations presented in this work, a possible explanation for the
loss of convergence for the density transport at low Mach numbers when using LLF
and HLL fluxes is the form of dissipation from the approximate Riemann solver.
In the case of the density transport, the exact solution follows the characteristic
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with velocity →v. However, the approximate Riemann solver LLF and HLL consider
only two waves with maximum velocity ∼ (|→v| + c) and do not consider the
contact wave with velocity →

v. Thus, the contact wave is dissipated proportional to
∼ (|→v| + c) and not to |→v|. For low Mach numbers, where c > |→v|, this causes
over-upwinding. Over-upwinding was discussed in [5, 15]. It is not intuitive at
first, but over-upwinding (over-penalization) can lead to a reduction of the in-built
dissipation of the DG scheme, getting wave-propagation characteristics similar to
a continuous Galerkin method [16]. This loss of in-built dissipation could be an
explanation for the even-odd behavior we observed. However, it is still unclear why
numerical surface fluxes with no in-built dissipation that are symmetric, e.g. EC flux,
lead to an odd-even behavior in the convergence order and why numerical surface
fluxes with over-upwinding, i.e. reduced dissipation due to over-penalization, cause
an opposite even-odd behavior. What supports the explanation is the recovery of full
convergence order for LLF and HLL when the difference in wave speed becomes
smaller for higher Mach numbers, i.e. no over-upwinding. In contrast to LLF and
HLL, the HLLC and Roe solvers take specifically the contact wave into account
and adjust the dissipation accordingly and thus avoid strong over-upwinding by
construction. In our tests, we always observe full convergence order for all Mach
numbers for HLLC and Roe.

Lastly we note that a convergence study using a manufactured solution technique
can be misleading, as full convergence order is found independent of the choice of
numerical flux. Hence, the introduction of a source term to balance the prescribed
solution overcomes possible deficiencies of the surface fluxes, showing the limit
of the manufactured solution technique in this context. In the Appendix, the
convergence results of a manufactured solution are reported.
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Appendix

Additional Convergence Results

In this section, we present additional convergence results of the density wave test
case for the DGSEM-Gauss and DGSEM-LGL with LLF and HLLC fluxes in
Table 4 and Table 5, and also the entropy stable schemes with LLF and ECKEP-
LLF fluxes in Table 6. The results for LLF-type fluxes behave like the HLL flux,
and for the HLLC flux like the Roe-type fluxes presented in Table 3.
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Manufactured Solution with Source Term

Here, we run a convergence test with the method of manufactured solutions. To do
so, we assume a two-dimensional solution of the form

u = [
� , �v1 , �v2 , �v3 , E

]T =
[
g , g , g , 0 , g2

]T

with g = g(x1, x2, t) = 0.5 sin(2π(x1 + x2 − t))+ 2.
(5)

Note that the average Mach number in the domain is Ma = 0.8. Inserting (5) into
the Euler equations, and using the fact that spatial and time derivatives are g′ =
∂x1g = ∂x2g = −∂tg, we get an additional residual

ut +
3∑

i=1

∂fi
∂xi
=

⎛

⎜⎜⎜⎜⎜⎝

g′
(3γ − 2)g′ + 2(γ − 1)gg′
(3γ − 2)g′ + 2(γ − 1)gg′

0
(6γ − 2)g′ + 2(2γ − 1)gg′

⎞

⎟⎟⎟⎟⎟⎠
(6)

To solve the inhomogeneous problem, we subtract the residual from the approximate
solution in each Runge–Kutta step. Moreover, we run the test case up to the final
time t=1.0.

In the convergence results for the standard DGSEM Gauss and Gauss-Lobatto,
we see that the LLF flux still leads to an order reduction for N = 2, 4,
whereas full order is found for the HLL, HLLC and Roe fluxes, see Tables 7
and 8.

In Table 9 the entropy conservative scheme shows again an order reduction for
N = 3, 5, and the LLF-Type dissipation too, for N = 2, 4, and for this test case, all
entropy stable schemes exhibit full order.
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A Review of Regular Decompositions
of Vector Fields: Continuous, Discrete,
and Structure-Preserving

Ralf Hiptmair and Clemens Pechstein

1 Introduction

For a bounded Lipschitz domain Ω ⊂ R
3 recall the classical L2-orthogonal

Helmholtz decompositions

L2(Ω) = ∇ H 1
0 (Ω)⊕H(div 0,Ω) = ∇ H 1(Ω)⊕H0(div 0,Ω) ,

see, e.g., [9, Ch. XI, Sect. I]. They can be used to derive decompositions of
(subspaces of) H(curl,Ω):

H0(curl,Ω) = ∇ H 1
0 (Ω)⊕ XN(Ω), XN(Ω) := H0(curl,Ω) ∩H(div 0,Ω),

H(curl,Ω) = ∇ H 1(Ω)⊕ XT (Ω), XT (Ω) := H(curl,Ω) ∩H0(div 0,Ω) .

If the domain Ω is convex then the respective complementary space, XN(Ω)

or XT (Ω), is continuously embedded in the space H1(Ω) of vector fields with
Cartesian components in H 1(Ω), cf. [1]. Then one can, for instance, write any
u ∈ H(curl,Ω) as

u = ∇ p + z, (1)
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with p ∈ H 1(Ω) and z ∈ H1(Ω). Since ‖∇ p‖L2(Ω) ≤ ‖u‖L2(Ω) one obtains
(using the continuous embedding) the stability property1

‖∇ p‖L2(Ω) + ‖z‖H1(Ω) ≤ C‖z‖H(curl,Ω) . (2)

A similar decomposition can be found for u ∈ H0(curl,Ω).
Generally, a decomposition of form (1) with the stability property (2) is called

regular decomposition, even if L2-orthogonality does not hold. Actually, it turns out
that (1)–(2) can be achieved even in cases where Ω is non-convex, in particular on
non-smooth domains, or in cases where Ω or its boundary have non-trivial topology;
only the L2-orthogonality has to be sacrificed, cf. [20].

Noting that ∇ H 1(Ω) is contained in the kernel of the curl operator and that—
under mild smoothness assumptions on the domain—the whole kernel is spanned by
∇ H 1(Ω) plus a finite-dimensional co-homology space [15, Sect. 4] one can achieve
a second decomposition,

u = h+ z , (3)

with h ∈ ker(curl|H(curl,Ω)) and z ∈ H1(Ω), where

‖h‖L2(Ω) ≤ C ‖u‖L2(Ω), ‖z‖H1(Ω) ≤ C ‖ curl u‖L2(Ω) . (4)

The second stability estimate states that if u is already in the kernel of the curl oper-
ator, then z is zero. Hence, (1) the operator mapping u to h is a projection onto the
kernel space and (2) the complement operator projects u to the function z of higher
regularity H1(Ω). For trivial topology of Ω and ∂Ω , the two decompositions (1)–
(2) and (3)–(4) coincide.

As a few among many more [17, Sect. 1.5], we would like to highlight two
important applications of these regular decompositions.

1. The second form (3)–(4), in the sequel called rotation-bounded decomposition,
can be used to show that the operator underlying a certain boundary value
problem for Maxwell’s equations is a Fredholm operator. The key point is
that the complement space of the kernel (from the view of the mentioned
projections) is H1(Ω) which is compactly embedded in L2(Ω), see e.g., [14, 16]
and references therein.

2. The first form (1)–(2), in the sequel called gradient-based decomposition, has
been used to generate stable three-term splittings of a finite element subspace
of H(curl,Ω), cf. [19–21, 23], which allows the construction of so-called
fictitious or auxiliary space preconditioners for the ill-conditioned system matrix
underlying the discretized Maxwell equations.

1Here and below C stands for a positive “generic constant” that may depend only on Ω , unless
specified otherwise.
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In both applications, it is desirable to obtain the decompositions for minimal
smoothness of the domain, e.g., Lipschitz domains, which are not necessarily
convex. Moreover, it is also desirable to go beyond decompositions of the entire
space H(curl,Ω) and extend them to subspaces for which the appropriate trace
vanishes on a “Dirichlet part” ΓD of the boundary. In this case traces of the two
summands should also vanish on ΓD.

In the present paper, we provide regular decompositions of both types for sub-
spaces of H(curl,Ω) (in Sect. 3) and H(div,Ω) (in Sect. 4) comprising functions
with vanishing trace on a part ΓD of the boundary ∂Ω for Lipschitz domains Ω

of arbitrary topology. In particular, Ω is allowed to have handles, and ∂Ω and ΓD

may have several connected components. The Dirichlet boundary ΓD must satisfy a
certain smoothness assumption that we shall introduce in Sect. 2. In addition to the
stability estimates (2) and (4), we show that the decompositions are stable even in
L2(Ω).

In the final part of the manuscript, in Sect. 5, we establish regular decompositions
of spaces of Whitney forms, which are lowest-order conforming finite element
subspaces of H(curl,Ω) and H(div,Ω), respectively, built upon simplicial trian-
gulations of Ω .

This note is based on [17] and is an abridged version of [18]. Please refer to this
latter preprint for complete proofs of the results quoted below.

2 Preliminaries

Since subtle geometric arguments will play a major role for parts of the theory, we
start with a precise characterization of the geometric setting: Let Ω ⊂ R

3 be an
open, bounded, connected Lipschitz domain.2 We write d(Ω) for its diameter. Its
boundary Γ := ∂Ω is partitioned according to Γ = ΓD ∪Σ ∪ ΓN , with relatively
open sets ΓD and ΓN . We assume that this provides a piecewise C1 dissection of
∂Ω in the sense of [12, Definition 2.2]. Sloppily speaking, this means that Σ is the
union of closed curves that are piecewise C1.

Under the above assumptions on Ω and ΓD, [12, Lemma 4.4] guarantees the
existence of an open Lipschitz neighborhood ΩΓ (“Lipschitz collar”) of Γ and of a
“bulge” ΥD ⊂ ΩΓ \Ω . We recall the properties of bulge domains from [12, Sect. 2,
Thm. 2.3], also stated in [17, Thm. 2.2]:

Theorem 1 (Bulge-Augmented Domain) There exists a Lipschitz domain ΥD ⊂
R

3\Ω , such that Υ D∩Ω = ΓD , Ωe := ΥD∪ΓD∪Ω is Lipschitz, d(Ωe) ≤ 2 d(Ω),
and Υ D ⊂ ΩΓ . Moreover, each connected component ΓD,k of ΓD corresponds to a
connected component ΥD,k of ΥD , and these have positive distance from each other.

2Strongly Lipschitz, in the sense that the boundary is locally the graph of a Lipschitz continuous
function.
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Let

H 1
ΓD

(Ω) := {u ∈ H 1(Ω) : (γ u)|ΓD = 0},
HΓD(curl,Ω) := {u ∈ H(curl,Ω) : (γ τu)|ΓD = 0},
HΓD(div,Ω) := {u ∈ H(div,Ω) : (γnu)|ΓD = 0} ,

denote the standard Sobolev spaces where the distributional gradient, curl, or
divergence is in L2 and where the pointwise trace γ u, the tangential trace γτu,
or the normal trace γnu, respectively, vanishes on the Dirichlet boundary ΓD , see
e.g. [3, 6, 26]. These space are linked via the de Rham complex,

KΓD (Ω)
id−→ H 1

ΓD
(Ω)

∇−→ HΓD(curl,Ω)
curl−→ HΓD(div,Ω)

div−→ L2(Ω),

(5)

where

KΓD (Ω) := {v ∈ H 1
ΓD

(Ω) : v = const} =
⎧
⎨

⎩
span{1}, if ΓD = ∅,
{0}, otherwise.

The range of each operator in (5) lies in the kernel space of the succeeding one, cf.
[3, Lemma 2.2]. We define

HΓD(curl 0,Ω) := {v ∈ HΓD(curl,Ω) : curl v = 0},
HΓD(div 0,Ω) := {v ∈ HΓD(div,Ω) : div v = 0}. (6)

Barring topological obstructions these kernels can be represented through poten-
tials: Let β1(Ω) denote the first Betti number of Ω (the number of “handles”) and
β2(Ω) the second Betti number (the number of connected components of ∂Ω minus
one). By the very definition of the Betti numbers as dimensions of co-homology
spaces we have

β1(Ω) = 0 �⇒ H(curl 0,Ω) = ∇ H 1(Ω), (7)

β2(Ω) = 0 �⇒ H(div 0,Ω) = curl H(curl,Ω), (8)

cf. [26]. We call Ω topologically trivial if β1(Ω) = β2(Ω) = 0.

3 Regular Decompositions and Potentials Related to H(curl)

Throughout we rely on the properties of Ω and ΓD as introduced in Sect. 2 and
use the notations from Theorem 1. We write C for positive “generic constants” and
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say that a constant “depends only on the shape of Ω and ΓD”, if it depends on the
geometric setting alone, but is invariant with respect to similarity transformations.
To achieve this the diameter of Ω will have to enter the estimates; we denote it by
d(Ω).

3.1 Gradient-Based Regular Decomposition of H(curl)

The following theorem is essentially [17, Thm. 2.1].

Theorem 2 (Gradient-Based Regular Decomposition of H(curl)) Let (Ω,ΓD)

satisfy the assumptions of Sect. 2. Then for each u ∈ HΓD(curl,Ω) there exist z ∈
H1

ΓD
(Ω) and p ∈ H 1

ΓD
(Ω) depending linearly on u such that

(i) u = z+ ∇ p,

(ii) ‖z‖0,Ω + ‖∇ p‖0,Ω ≤ C ‖u‖0,Ω ,

(iii) ‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω ≤ C‖ curl u‖0,Ω + 1

d(Ω)
‖u‖0,Ω ,

with constants depending only on the shape of Ω and ΓD, but not on d(Ω).

Remark 1 An early decomposition of a subspace of H(curl,Ω) ∩ H(div,Ω) into
a regular part in H1(Ω) and a singular part in ∇H 1(Ω) can be found in [4] and
in [5, Proposition 5.1], see also [7, Sect. 3] and references therein. Theorem 2
was proved in [14, Lemma 2.4] for the case of ΓD = ∂Ω and without the L2-
stability estimate, following [5, Proposition 5.1]. Pasciak and Zhao [28, Lemma 2.2]
provided a version for simply connected Ω and the case ΓD = ∂Ω with pure
L2-stability, but p is only constant on each connected component of ∂Ω (see also
Theorem 5 and Remark 3). This result was refined in [24, Thm. 3.1]. For the case
ΓD = ∅, [14, Lemma 2.4] gives a similar decomposition but ∇p must be replaced
by an element from H(curl 0,Ω) in general. Finally, Theorem 2 without the pure
L2-stability was proved in [20, Thm. 5.2].3

Remark 2 The constant C in Theorem 2 depends mainly on the stability constants
of key extension operators. If the bulge ΥD has multiple components ΥD,k , the final
estimate will depend on the relative distances between ΥD,k , ΥD,�, k �= � and the
ratios d(ΥD,k)/ d(Ω).

3This reference contains a typo which is easily identified when inspecting the proof: In general, z
cannot be estimated in terms of ‖ curl u‖0,Ω but one must use the full H(curl) norm.
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Remark 3 If ΓD = ∂Ω , one obtains only p ∈ H 1(Ω) being constant on each
connected component of ΓD but the improved bound

‖∇ z‖0,Ω + d(Ω)−1‖z‖0,Ω ≤ C ‖ curl u‖0,Ω .

Results on regular decompositions in this special case can be found in [24, 28].

3.2 Regular Potentials for Some Divergence-Free Functions

Let the domain Ω and the Dirichlet boundary part ΓD be as introduced in Sect. 2 and
let Γi , i = 0, . . . , β2(Ω), denote the connected components of ∂Ω , where β2(Ω) is
the second Betti number of Ω .

We define the space4

HΓD(div 00,Ω) :=
{

q ∈ HΓD(div 0,Ω) : 〈γnq, 1〉Γi = 0, i = 0, . . . , β2(Ω)
}
.

(9)

Above γn denotes the normal trace operator, and the duality pairing is that between
H−1/2(Γi) and H 1/2(Γi). If ΓD = ∅ we simply drop the subscript ΓD . Obviously,

HΓD(div 00,Ω) ⊂ H(div 00,Ω) .

The next result identifies the above space as the range of the curl operator.

Theorem 3 (Regular Potential of Range(curl)) Let (Ω,ΓD) be as in Sect. 2 and
assume in addition that each connected component ΥD,k of the bulge has vanishing
first Betti number, β1(ΥD,k) = 0. Then

HΓD(div 00,Ω) = curl HΓD(curl,Ω) = curl H1
ΓD

(Ω) ,

and for each q ∈ HΓD(div 00,Ω) there exists ψ ∈ H1
ΓD

(Ω) depending linearly on
q such that

curl ψ = q and ‖∇ ψ‖0,Ω + 1

d(Ω)
‖ψ‖0,Ω ≤ C ‖q‖0,Ω ,

where C depends only on the shape of Ω and ΓD , but not on d(Ω)

4Alternatively we can define HΓD
(div 00,Ω) as the functions in HΓD

(div 0,Ω) orthogonal to the
harmonic Dirichlet fields H(div 0,Ω) ∩H0(curl 0,Ω).
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Remark 4 For the case that ΓD = ∅, we reproduce the classical result

H(div 00,Ω) = curl H(curl,Ω) = curl H1(Ω),

see [11, Thm. 3.4]. In that case, Step 4 of the proof can be left out and ψ = w1
which is why div ψ = 0 in Ω . This property, however, is lost in the general case.

3.3 Rotation-Bounded Regular Decomposition of H(curl)

We can now formulate another new variety of regular decompositions, for which the
H1-component will vanish for curl-free fields.

Theorem 4 (Rotation-Bounded Regular Decomposition of H(curl) (I)) Let
(Ω,ΓD) be as in Sect. 2 and assume, in addition, that each connected component
ΥD,k of the bulge has vanishing first Betti number, β1(ΥD,k) = 0. Then, for
each u ∈ HΓD(curl,Ω) there exist z ∈ H1

ΓD
(Ω) and a curl-free vector field

h ∈ HΓD(curl 0,Ω), depending linearly on u such that

u = z+ h,

‖h‖0,Ω ≤ ‖u‖0,Ω + C d(Ω) ‖ curl u‖0,Ω,

‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω ≤ C ‖ curl u‖0,Ω ,

where C depends only on the shape of Ω and ΓD , but not on d(Ω).

Remark 5 The constant C in Theorem 4 depends essentially on the stability
constants of the divergence-free extension operator Ediv,0

Ωe and the (adapted) Stein

extension operator E∇,Stein
ΥD

.

Another stronger version of the rotation-bounded regular decomposition of
H(curl) gets rid of the assumptions on the topology of the Dirichlet boundary and
has improved stability properties (though with less explicit constants).

Theorem 5 (Rotation-Bounded Regular Decomposition of H(curl) (II)) Let
(Ω,ΓD) be as in Sect. 2. Then for each u ∈ HΓD(curl,Ω) there exist z ∈ H1

ΓD
(Ω)

and a curl-free h ∈ HΓD(curl 0,Ω) depending linearly on u such that

u = z+ h ,

‖z‖0,Ω + ‖h‖0,Ω ≤ C ‖u‖0,Ω ,

‖∇ z‖0,Ω + d(Ω)−1‖z‖0,Ω ≤ C ‖ curl u‖0,Ω ,

where C depends only on the shape of Ω and ΓD , but not on d(Ω).
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Remark 6 For the case ΓD = ∂Ω the result of the theorem is already proved by
Remark 3 since we obtain u = z+∇p with ∇p ∈ ∇H 1

0,const(Ω) = H0(curl,Ω).

Remark 7 We would like to emphasize that both in Theorems 2 and 5, the domain
Ω may be non-convex, non-smooth, and may have non-trivial topology: It may
have handles and its boundary may have multiple components. Also the Dirichlet
boundary ΓD may have multiple components, each of which with non-trivial
topology. Moreover, we have the pure L2(Ω)-stability in both theorems. In this
sense, the results of Theorems 2 and 5 are superior to those found, e.g., in [7,
Thm 3.4], [19] or the more recent ones in [8, Thm. 2.3], [22].

Remark 8 If Ω has vanishing first Betti number, β1(Ω) = 0, then HΓD(curl 0,Ω)

= ∇H 1
ΓD,const(Ω). Hence, we can split each u ∈ HΓD(curl,Ω) into z ∈ H1

ΓD
(Ω)

and ∇p with p ∈ H 1(Ω) being constant on each connected component of ΓD . If
ΓD is connected, then p ∈ H 1

ΓD
(Ω). Summarizing, if Ω has no handles and if ΓD

is connected, then we have the combined features of Theorems 2 and 5.

Finally, we mention that the regular decomposition theorems spawn projection
operators that play a fundamental role in the analysis of weak formulations of
Maxwell’s equations in frequency domain [14, Sect. 5].

Corollary 1 Let (Ω,ΓD) be as in Sect. 2. Then there exist continuous pro-
jection operators R : HΓD(curl,Ω) → H1

ΓD
(Ω) and N : HΓD(curl,Ω) →

HΓD(curl 0,Ω) such that R+ N = id and

‖Rv‖H1(Ω) + ‖Nv‖L2(Ω) ≤ C ‖v‖H(curl,Ω) ∀v ∈ H(curl,Ω),

where C is a constant independent of v. Moreover, F : HΓD(curl,Ω) →
HΓD(curl,Ω) defined by Fv := Rv− Nv is an isomorphism.

Remark 9 The L2-estimates from Theorem 4 then show that the corresponding
operator R can be extended to a continuous operator mapping from L2(Ω) to
L2(Ω).

4 Regular Decompositions and Potentials Related to H(div)

The developments of this section are largely parallel to those of Sect. 3 with some
new aspects concerning extensions and topological considerations.

4.1 Rotation-Based Regular Decomposition of H(div)

The following theorem is the H(div)-counterpart of Theorem 2.
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Theorem 6 (Rotation-Based Regular Decomposition of H(div)) Let (Ω,ΓD)

satisfy the assumptions made in Sect. 2. Then for each v ∈ HΓD(div,Ω) there exist
z ∈ H1

ΓD
(Ω) and q ∈ H1

ΓD
(Ω) depending linearly on v such that

v = z+ curl q,

‖z‖0,Ω + ‖ curl q‖0,Ω + 1

d(Ω)
‖q‖0,Ω ≤ C ‖v‖0,Ω ,

‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω + 1

d(Ω)
‖∇ q‖0,Ω ≤ C

(‖ curl v‖0,Ω + 1

d(Ω)
‖v‖0,Ω

)
,

with constant C depending only on the shape of Ω and ΓD , but not on d(Ω).

4.2 Regular Potential with Prescribed Divergence

The next result carries Theorem 3 over to H(div).

Theorem 7 (Regular Potentials for the Image Space of div) Let (Ω,ΓD) be as
in Sect. 2 and, in addition, assume that each connected component ΥD,k of the bulge
has a connected boundary, i.e., β2(ΥD,k) = 0. Then

L2(Ω) = div HΓD(div,Ω) = div H1
ΓD

(Ω).

Moreover, for each v ∈ L2(Ω) there exists q ∈ H1
ΓD

(Ω) depending linearly on v

such that, with a constant C depending on Ω and ΓD but not on d(Ω),

div q = v and ‖∇ q‖0,Ω + 1

d(Ω)
‖q‖0,Ω ≤ C ‖v‖0,Ω .

4.3 Divergence-Bounded Regular Decompositions of H(div)

We can now formulate other variants of regular decompositions of H(div) in analogy
to what we did in Sect. 3.3.

Theorem 8 (Divergence-Bounded Regular Decomposition of H(div) (I)) Let
(Ω,ΓD) be as in Sect. 2. In addition, assume that each connected component
ΥD,k of the bulge has a connected boundary, i.e., β2(ΥD,k) = 0. Then, for each
v ∈ HΓD(div,Ω) there exists z ∈ H1

ΓD
(Ω) and a divergence-free vector field
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h ∈ HΓD(div 0,Ω) depending linearly on v such that

v = z+ h, (10)

‖h‖0,Ω ≤ ‖v‖0,Ω + C d(Ω)‖ div v‖0,Ω , (11)

‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω ≤ C ‖ div v‖0,Ω , (12)

where C depends only on the shape of Ω and ΓD , but not on d(Ω).

The last variant of H(div) regular decomposition of H(div) dispenses with the
assumptions on the topology of the Dirichlet boundary and has better stability
properties than the splitting from Theorem 8 (though with less explicit constants).

Theorem 9 (Divergence-Bounded Regular Decomposition of H(div) (II)) Let
(Ω,ΓD) be as in Sect. 2. Then, for each v ∈ HΓD(div,Ω) there exists z ∈ H1

ΓD
(Ω)

and a divergence-free vector field h ∈ HΓD(div 0,Ω) depending linearly on v such
that

v = z+ h, (13)

‖z‖0,Ω + ‖h‖0,Ω ≤ ‖v‖0,Ω , (14)

‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω ≤ C ‖ div v‖0,Ω , (15)

where C depends only on the shape of Ω and ΓD , but not on d(Ω).

5 Discrete Counterparts of the Regular Decompositions

The discrete setting to which we want to extend the concept of regular decomposi-
tions is provided by finite element exterior calculus (FEEC, [2]) which introduces
finite element subspaces of H(curl) and H(div) as special instances of spaces of
discrete differential forms. In this section we confine ourselves to the lowest-order
case of piecewise linear finite element functions.

Throughout, we assume that (Ω,ΓD) is as in Sect. 2, and, additionally, that Ω is
a polyhedron and that ∂ΓD consists of straight line segments. All considerations take
for granted a shape-regular family of meshes {T h}h of Ω , consisting of tetrahedral
elements, and resolving ΓD in the sense that ΓD is a union of faces of some of the
tetrahedra.

The following finite element spaces will be relevant:

• the space W0
h,ΓD

(Ω) of H 1
ΓD

(Ω)-conforming piecewise linear Lagrangian finite
element functions,

• the space W1
h,ΓD

(Ω) of HΓD(curl,Ω)-conforming lowest order Nédélec ele-
ments, also known as edge elements,
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• the space W2
h,ΓD

(Ω) of HΓD(div,Ω)-conforming lowest order tetrahedral
Raviart-Thomas finite elements, aka, face elements,

• the space W0
h,ΓD

(Ω) := [W0
h,ΓD

(Ω)]3 of piecewise linear globally continuous
vector fields vanishing on ΓD .

Functions in W�
h,ΓD

(Ω), � = 1, 2, 3, are so-called Whitney forms, lowest-order
discrete differential forms of the first family as introduced in [13] and [2, Sect. 5].

5.1 Discrete Regular Decompositions for Edge Elements

Commuting projectors, also known as co-chain projectors, are the linchpin of FEEC
theory [2, Sect. 7], and it is not different with our developments. Thus, let

R0
h,ΓD
: H 1

ΓD
(Ω)→W0

h,ΓD
(Ω)

and R1
h,ΓD
: HΓD(curl,Ω)→W1

h,ΓD
(Ω)

denote the continuous, boundary-aware cochain projectors from [17, Sect. 3.2.6],
which extend the pioneering work [10] by Falk and Winther. These two linear
operators are projectors onto their ranges, they fulfill the commuting property

∇(R0
h,ΓD

ϕ) = R1
h,ΓD

(∇ ϕ) ∀ϕ ∈ H 1
ΓD

(Ω) , (16)

and local stability estimates

Theorem 10 ([17, Thm. 1.2]) For each vh ∈W1
0,ΓD

(Ω) there exists a continuous

and piecewise linear vector field zh ∈ W0
h,ΓD

(Ω), a continuous and piecewise

linear scalar function ph ∈ W0
h,ΓD

(Ω), and a remainder ṽh ∈ W1
0,ΓD

(Ω), all
depending linearly on vh, providing the discrete regular decomposition

vh = R1
h,ΓD

zh + ṽh +∇ ph

and satisfying the stability estimates

‖zh‖0,Ω + ‖∇ ph‖0,Ω + ‖̃vh‖0,Ω ≤ C ‖vh‖0,Ω , (17)

‖∇ zh‖0,Ω + ‖h−1̃vh‖0,Ω ≤ C
(‖ curl vh‖0,Ω + 1

d(Ω)
‖vh‖0,Ω

)
, (18)

where C is a generic constant that depends only on the shape of (Ω,ΓD), but not on
d(Ω), and on the shape regularity constant of T h(Ω). Above, h−1 is the piecewise
constant function that is equal to h−1

T on every element T .

Obviously, this is a discrete counterpart of the regular decomposition of H(curl)
from Theorem 2. The following theorem appears to be new and it corresponds to
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the rotation-bounded regular decomposition of Theorem 5. For the sake of brevity
define the discrete nullspace of the curl operator

N 1
h := {vh ∈W1

h,ΓD
(Ω) : curl vh = 0} . (19)

If Ω and ΓD have simple topology, Xh = ∇W0
h,ΓD

(Ω), but if the first Betti number
of Ω is non-zero, or if ΓD has multiple components, then a finite-dimensional co-
homology space has to be added [2, Sect. 5.6].

Theorem 11 (Rotation-Bounded Discrete Regular Decomposition for Edge Ele-
ments) For each vh ∈ W1

0,ΓD
(Ω) there exists a continuous and piecewise linear

vector field zh ∈ W0
h,ΓD

(Ω), an curl-free edge element function hh ∈ N 1
h , and a

remainder ṽh ∈ W1
0,ΓD

(Ω), all depending linearly on vh, providing the discrete
regular decomposition

vh = R1
h,ΓD

zh + ṽh + hh

and satisfying the stability bounds

‖zh‖0,Ω

‖hh‖0,Ω

‖̃vh‖0,Ω

⎫
⎪⎬

⎪⎭
≤ C ‖vh‖0,Ω ,

‖∇ zh‖0,Ω

‖h−1̃vh‖0,Ω

}
≤ C ‖ curl vh‖0,Ω ,

where C is a uniform constant that depends only on the shape of (Ω,ΓD), but not
on d(Ω), and on the shape regularity constant of T h(Ω).

We stress that the statements of Theorems 10 and 11 do not hinge on any
assumptions on the topological properties of Ω and ΓD .

5.2 Discrete Regular Decompositions for Face Elements

For face elements, the construction of a boundary-aware co-chain projection
operator

R2
h,ΓD
: HΓD(div,Ω)→W2

h,ΓD
(Ω)

that commutes with R1
h,ΓD

and the curl-operator has not yet been accomplished.
Fortunately, in the case ΓD = ∅, this operator is available from [10]. Thus, in the
following, we treat only the case ΓD = ∅ and just omit the subscript ΓD . Then,
from [10] we can borrow a linear operator R2

h : H(div,Ω)→W2
h(Ω) such that

curl R1
hu = R2

h curl u ∀u ∈ H(curl,Ω) . (20)

The next result takes Theorem 6 to the discrete setting.
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Theorem 12 (Discrete Regular Decomposition of W2
h(Ω)) For each vector field

vh in the lowest-order Raviart-Thomas space W2
h(Ω), there exists a continuous

and piecewise linear vector field zh ∈W0
h(Ω), a vector field qh in the lowest-order

Nédélec space W1
h(Ω), and a remainder ṽh ∈W2

h(Ω), all depending linearly on
vh, providing the discrete regular decomposition

vh = R2
hzh + ṽh + curl qh ,

and the stability estimates

‖zh‖0,Ω

‖ curl qh‖0,Ω + 1
d(Ω)
‖qh‖0,Ω

‖̃vh‖0,Ω

⎫
⎪⎬

⎪⎭
≤ C ‖vh‖0,Ω ,

‖∇ zh‖0,Ω

‖h−1̃vh‖0,Ω

}
≤ C‖ div vh‖0,Ω + 1

d(Ω)
‖vh‖0,Ω .

The constant C depends only on the shape of Ω , but not on d(Ω), and the shape-
regularity of T h(Ω).

Finally, we present a counterpart to the divergence-bounded regular decomposi-
tion of Theorem 9. For convenience we introduce the space of divergence-free face
element functions

N 2
h := {qh ∈W2

h(Ω) : div qh = 0} . (21)

Theorem 13 (Divergence-Bounded Discrete Regular Decomposition of
W2

h(Ω)) For each vector field vh in the lowest-order Raviart-Thomas space
W2

h(Ω), there exists a continuous and piecewise linear vector field zh ∈W0
h(Ω),

an element hh in the discrete divergence-free subspace N 2
h , and a remainder

ṽh ∈ W2
h(Ω), all depending linearly on vh, providing the discrete regular

decomposition

vh = R2
hzh + ṽh + hh

and the stability estimates

‖zh‖0,Ω

‖̃vh‖0,Ω

‖hh‖0,Ω

⎫
⎪⎬

⎪⎭
≤ C ‖vh‖0,Ω ,

‖∇ zh‖0,Ω

‖h−1̃vh‖0,Ω

}
≤ C ‖ div vh‖0,Ω .

The constants C depend only on the shape of Ω , but not on d(Ω), and the shape
regularity of T h(Ω).
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Remark 10 The result of Theorem 13 can be viewed as an improvement of the
decompositions in [25] which are elaborated for the case of essential boundary
conditions on ∂Ω .

Corollary 2 If the second Betti number of Ω vanishes, that is, if ∂Ω is connected,
then hh in Theorem 13 can be chosen as hh = curl qh with qh ∈W1

h(Ω) such that

vh = R2
hz+ ṽh + curl qh ,

with the bounds

‖zh‖0,Ω

‖̃vh‖0,Ω

‖ curl qh‖0,Ω

d(Ω)−1‖qh‖0,Ω

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
≤ C ‖vh‖0,Ω ,

‖∇ zh‖0,Ω

‖h−1ṽh‖0,Ω

}
≤ C ‖ div vh‖0,Ω .

Remark 11 The result of Corollary 2 is an improvement of [19, Lemma 5.2] which
assumes a domain Ω that is smooth enough to allow H 2-regularity of the Laplace
problem (2-regular case, for details see [19, Sect. 3]). This lemma is used in [27] in
a domain decomposition framework, where convex subdomains are assumed. With
our improved version, this assumption can be weakened considerably.

Acknowledgements The second author would like to thank Dirk Pauly (Essen) for enlightening
discussions.
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Model Reduction by Separation
of Variables: A Comparison Between
Hierarchical Model Reduction
and Proper Generalized Decomposition

Simona Perotto, Michele Giuliano Carlino, and Francesco Ballarin

1 Introduction

This paper is meant as a first attempt to compare two procedures which share
the idea of exploiting separation of variables to perform model reduction, albeit
with different purposes. Proper Generalized Decomposition (PGD) is essentially
employed as a powerful tool to deal with parametric problems in several fields
of application [3, 14, 23]. Parametrized models characterize multi-query contexts,
such as parameter optimization, statistical analysis or inverse problems. Here, the
computation of the solution for many different parameters demands, in general, a
huge computational effort, and this justifies the development of model reduction
techniques.

For this purpose, projection-based techniques, such as Proper Orthogonal
Decomposition (POD) or Reduced Basis methods, are widely used in the
literature [11]. The idea is to project the discrete operators onto a reduced space so
that the problem can be solved rapidly in the lower dimensional space. PGD adopts
a completely different way to deal with parameters. Here, parameters are considered
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as new independent variables of the problem, together with the standard space-time
ones [5]. Although the dimensionality of the problem is inevitably increased, PGD
transforms the computation of the solution for new values of the parameters into a
plain evaluation of the reduced solution, with striking computational advantages.

Hierarchical-Model (HiMod) reduction has been proposed to improve one-
dimensional (1D) partial differential equation (PDE) solvers for problems defined
in domains with a geometrically dominant direction, like slabs or pipes [6, 20].
The main applicative field of interest is hemodynamics, in particular the modeling
of blood flow in patient-specific geometries. Purely 1D hemodynamic models
completely drop the transverse dynamics, which, however may be locally important
(e.g., in the presence of a stenosis or an aneurism). HiMod aims at providing a
numerical tool to incorporate the transverse components of the 3D solution into
a conceptually 1D solver. To do this, the driving idea is to discretize main and
transverse dynamics in a different way. The latter are generally of secondary
importance and can be described by few degrees of freedom using a spectral approx-
imation, in combination, for instance, with a finite element (FE) discretization of the
mainstream.

The parametric version of HiMod (namely, HiPOD) is a more recent proposal [4,
13]. On the other hand, PGD is not so widely employed in a non-parametric setting,
despite its original formulation [12]. Nevertheless, for the sake of comparison, in
this paper we consider the non-parametric as well as the parametric versions of both
the HiMod and PGD approaches. The goal is to begin a preliminary comparative
analysis between the two methodologies, to highlight the respective weaknesses and
strengths. The main limit of PGD remains its inability to deal with non-Cartesian
geometries without losing the computational benefits arising from the separability
of the spatial coordinates. HiMod turns out to be more flexible from a geometric
viewpoint. On the other hand, PGD turns out to be extremely effective for parametric
problems thanks to the explicit expression of the PGD solution in terms of the
parameters, while HiPOD can be classified as a projection-based method with all
the associated drawbacks. In perspective, the ultimate goal is to merge HiMod with
PGD to emphasize the good features and mitigate the intrinsic limits of the two
methods taken alone.

2 The HiMod Approach

Hierarchical Model reduction proved to be an efficient and reliable method to
deal with phenomena characterized by dominant dynamics [10]. In general, the
computational domain itself exhibits an intrinsic directionality. We assume � ⊂ R

d

(d = 2, 3) to coincide with a d-dimensional fiber bundle, � = ⋃
x∈�1D

{x} × γx ,
where �1D ⊂ R denotes the supporting fiber aligned with the main stream, while
γx ⊂ R

d−1 is the transverse fiber at x ∈ �1D, parallel to the transverse dynamics.
For the sake of simplicity, we identify �1D with a straight segment, (x0, x1). We
refer to [15, 21] for the case where �1D is curvilinear. From a computational



Model Reduction by Separation of Variables: A Comparison Between HiMod and PGD 63

viewpoint, the idea is to exploit a map, � : � → �̂, transforming the physical
domain,�, into a reference domain, �̂, and to make explicit computations in �̂ only.
Typically, �̂ coincides with a rectangle in 2D, with a cylinder with circular section
in 3D. To define � , for each x ∈ �1D, we introduce the map, ψx : γx → γ̂d−1,
from fiber γx to the reference transverse fiber, γ̂d−1, so that the reference domain
coincides with �̂ = ⋃

x∈�1D
{x} × γ̂d−1. The supporting fiber is preserved by map

� , which modifies the lateral boundaries only.
We consider now the (full) problem to be reduced. Due to the comparative

purposes of the paper, we focus on a scalar elliptic equation, and, in particular, on
the associated weak formulation,

find u ∈ V : a(u, v) = F(v) ∀v ∈ V, (1)

where V ⊆ H 1(�), a(·, ·) : V × V → R is a continuous and coercive bilinear
form and F(·) : V → R is a continuous linear functional. To provide the HiMod
formulation for problem (1), we introduce the hierarchical reduced space

Vm =
{
vm(x, y) =

m∑

k=1

ṽk(x)ϕk(ψx(y)), with ṽk ∈ V h
1D, x ∈ �1D, y ∈ γx

}

(2)

for a modal index m ∈ N
+, where V h

1D ⊆ H 1(�1D) is a discrete space of dimension
Nh associated with a partition Th of �1D, while {ϕk}mk=1 denotes a modal basis of
functions orthogonal with respect to the L2(γ̂d−1)-scalar product. Index m sets the
hierarchical level of the HiMod space, being Vm ⊂ Vm+1, for any m. Concerning
V h

1D, we adopt here a standard FE space, although any discrete space can be
employed (see, e.g., [21], where an isogeometric discretization is used). Functions
in V h

1D have to include the boundary conditions on {x0} × γx0 and {x1} × γx1 ;
analogously, the modal functions have to take into account the boundary data along
the horizontal sides. In Sect. 4 further comments are provided about the selection of
the modal basis and of the modal index m. The HiMod formulation for problem (1)
thus reads

find uHiMod
m ∈ Vm : a(uHiMod

m , vm) = F(vm) ∀vm ∈ Vm. (3)

To ensure the well-posedness of formulation (3) and the convergence of the HiMod
approximation, uHiMod

m , to the full solution, u, we endow the HiMod space with a
conformity and a spectral approximability hypothesis, and we introduce a standard
density assumption on the discrete space V h

1D (see [20] for all the details).

The HiMod solution can be fully characterized by introducing a basis, {θl}Nh

l=1,
for the space V h

1D . Actually, each modal coefficient, ũk , of uHiMod
m can be expanded
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in terms of such a basis, so that, we obtain the modal representation

uHiMod
m (x, y) =

m∑

k=1

Nh∑

l=1

ũk,lθl(x)ϕk(ψx(y)). (4)

The actual unknowns of problem (3) become the mNh coefficients {ũk,l}m,Nh

k=1,l=1.
With reference to the Poisson problem, −u = f , completed with full homo-
geneous Dirichlet boundary data, the corresponding HiMod formulation, after
exploiting (4) in (3) and picking vm(x, y) = θi(x)ϕj (ψx(y)) with i = 1, . . . , Nh

and j = 1, . . . ,m, reduces to the system of mNh 1D equations in the mNh

unknowns {ũk,l}m,Nh

k=1,l=1,

m∑

k=1

Nh∑

l=1

ũk,l

[∫

�1D

(
r̂

1,1
jk (x)

dθl

dx
(x)

dθi

dx
(x)+ r̂

1,0
jk (x)

dθl

dx
(x)θi (x)+

+ r̂
0,1
jk

(x)θl(x)
dθi

dx
(x)+ r̂

0,0
jk

(x)θl(x)θi (x)

)]
dx =

∫

�1D

f̂j (x)θi (x) dx,

where r̂
a,b
jk (x) = ∫

γ̂d−1
r
a,b
jk (x, ŷ)|J | d ŷ with a, b = 0,1, J = det

(
D−1

2 (x,ψ−1
x (ŷ))

)

with D2 = D2(x,ψ
−1
x (ŷ)) = ∇yψx ,

r
0,0
jk (x, ŷ) = ϕ′k(ŷ)ϕ′j (ŷ)

(
D2

1 +D2
2

)
, r

0,1
jk (x, ŷ) = ϕ′k(ŷ)ϕj (ŷ)D1,

r
1,0
jk (x, ŷ) = ϕk(ŷ)ϕ′j (ŷ)D1, r

1,1
jk (x, ŷ) = ϕk(ŷ)ϕj (ŷ),

with D1 = D1(x,ψ
−1
x (ŷ)) = ∂ψx/∂x, and f̂j (x) =

∫
γ̂d−1

f (x,ψ−1
x (ŷ))ϕj (ŷ)

|J | d ŷ. Information associated with the transverse dynamics are lumped in the
coefficients {r̂a,bjk }, so that the HiMod system is solved on the supporting fiber, �1D.

Collecting the HiMod unknowns, by mode, in the vector uHiMod
m ∈ R

mNh , such that

uHiMod
m = [ũ1,1, ũ1,2, . . . , ũ1,Nh, ũ2,1, . . . , ũm,1, . . . , ũm,Nh ]T , (5)

we can rewrite the HiMod system in the compact form

AHiMod
m uHiMod

m = fHiMod
m , (6)

where AHiMod
m ∈ R

mNh×mNh and fHiMod
m ∈ R

mNh are the HiMod stiffness
matrix and right-hand side, respectively, with [fHiMod

m ]ji =
∫
�1D

f̂j (x)θi(x)dx, and

[AHiMod
m ]ji,kl = ∑1

a,b=0

∫
�1D

r̂
a,b
jk (x) d

aθl
dx

(x) d
bθi
dx

(x)dx. According to (5), for each
modal index j , between 1 and m, the nodal index, i, takes the values 1, . . . , Nh.
Thus, HiMod reduction leads to solve a system of order mNh, independently of the
dimension of the full problem (1).
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3 The PGD Approach

To perform PGD, we have to introduce on problem (1) a separability hypothesis
with respect to both the spatial variables and the data [5, 22]. Thus, domain � ⊂
R

d coincides with the rectangle �x × �y if d = 2, with the parallelepiped �x ×
�y × �z (total separability) or with the cylinder �x × �y (partial separability) if
d = 3, for �x , �y , �z ⊂ R and �y ⊂ R

2, being y = (y, z). In the following, we
focus on partial separability, since it is more suited to match HiMod reduction with
PGD. Analogously, we assume that the generic problem data, d = d(x, y, z), can
be written as d = dx(x)dy(y). The separability is inherited by the PGD space

Wm =
{
wm(x, y) =

m∑

k=1

wx
k (x)w

y
k (y), with wx

k ∈ Wx
h , w

y
k ∈ W

y
h , x ∈ �x, y ∈ �y

}
,

(7)

where Wx
h ⊆ H 1(�x) and W

y
h ⊆ H 1(�y;Rd−1) are discrete spaces, with

dim(Wx
h ) = Nx

h and dim(W
y
h ) = N

y
h , associated with partitions, Tx

h and Ty
h, of

�x and �y, respectively. In general, Wx
h and W

y
h are FE spaces, although, a priori,

any discretization can be adopted. It turns out that Wm is a tensor function space,
being Wm = Wx

h ⊗W
y
h ⊆ H 1(�x)⊗H 1(�y;Rd−1).

Index m plays the same role as in the HiMod reduction, setting the level of
detail for the reduced solution (see Sect. 4 for possible criteria to choose m). PGD
exploits the hierarchical structure in Wm to build the generic function wm ∈ Wm. In
particular, wm is computed as

wm(x, y) = wx
m(x)w

y
m(y)+

m−1∑

k=1

wx
k (x)w

y
k(y), (8)

where wx
k and w

y
k are assumed known for k = 1, . . . ,m − 1, so that the

enrichment functions, wx
m and w

y
m, become the actual unknowns. To provide

the PGD formulation for the Poisson problem considered in Sect. 2, we exploit
representation (8) for the PGD approximation, uPGD

m , and we pick the test function
as X(x)Y (y), with X ∈ Wx

h and Y ∈ W
y
h . The coupling between the unknowns, uxm

and u
y
m, leads to a nonlinear problem, which is tackled by means of the Alternating

Direction Strategy (ADS) [5]. The idea is to look for uxm and u
y
m, separately via a

fixed point procedure. We introduce an auxiliary index to keep trace of the ADS
iterations, so that, at the p-th ADS iteration we compute u

x,p
m and u

y,p
m starting

from the previous approximations, ux,gm and u
y,g
m for g = 1, . . . , p − 1, following a

two-step procedure. First, we compute u
x,p
m by identifying u

y
m with u

y,p−1
m , and by
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selecting Y (y) = u
y,p−1
m in the test function. This yields, for any X ∈ Wx

h ,

∫
�x

(
u
x,p
m

)′
X′dx

∫
�y

[
u

y,p−1
m

]2
dy+ ∫

�x
u
x,p
m Xdx

∫
�y

[(
u

y,p−1
m

)′]2
dy

= ∫
�x

f xXdx
∫
�y

f yu
y,p−1
m dy−∑m−1

k=1

∫
�x

(
uxk

)′
X′dx

∫
�y

u
y
ku

y,p−1
m dy

−∑m−1
k=1

∫
�x

uxkXdx
∫
�y

(
u

y
k

)′(
u

y,p−1
m

)′
dy,

(9)

where the separability of f is exploited (the dependence on the independent
variables, x and y, is omitted to simplify notation). Successively, we compute u

y,p
m ,

after setting uxm to u
x,p
m and choosing function X as to u

x,p
m in the test function, so

that we obtain, for any Y ∈ W
y
h ,

∫
�x

[(
u
x,p
m

)′]2
dx

∫
�y

u
y,p
m Ydy+ ∫

�x

[
u
x,p
m

]2
dx

∫
�y

(
u

y,p
m

)′
Y ′dy

= ∫
�x

f xu
x,p
m dx

∫
�y

f yYdy−∑m−1
k=1

∫
�x

(
uxk

)′(
u
x,p
m

)′
dx

∫
�y

u
y
kYdy

−∑m−1
k=1

∫
�x

uxku
x,p
m dx

∫
�y

(
u

y
k

)′
Y ′dy.

(10)

The algebraic counterpart of (9) and (10) is obtained by introducing a basis, Bx =
{θxα }N

x
h

α=1 and By = {θy
β}

N
y
h

β=1, for the space Wx
h and W

y
h , respectively, so that uqj (q) =

∑N
q
h

i=1 ũ
q
jiθ

q
i (q), u

q,s
m (q) = ∑N

q
h

i=1 ũ
q,s
mi θ

q
i (q), with q = x, y, s = p, p − 1, j =

1, . . . ,m − 1, and, likewise, X(x) = ∑Nx
h

α=1 x̃αθ
x
α (x) and Y (y) = ∑N

y
h

β=1 ỹβθ
y
β(y).

Thanks to these expansions and to the arbitrariness of X and Y , we can rewrite (9)
and (10) as

{[(
uy,p−1
m

)T
Myuy,p−1

m

]
Kx +

[(
uy,p−1
m

)T
Kyuy,p−1

m

]
Mx

}
ux,p
m =

[(
uy,p−1
m

)T fy
]
fx

− ∑m−1
k=1

{[(
uy,p−1
m

)T
Myuy

k

]
Kx +

[(
uy,p−1
m

)T
Kyuy

k

]
Mx

}
ux
k ,

(11)

and
{[(

ux,p
m

)T
Kxux,p

m

]
My +

[(
ux,p
m

)T
Mxux,p

m

]
Ky

}
uy,p
m =

[(
ux,p
m

)T fx
]
fy

−∑m−1
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{[(
ux,p
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)T
Kxux

k

]
My +

[(
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)T
Mxux

k

]
Ky

}
uy
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(12)

respectively, where vectors uq
j , uq,s

m ∈ R
N

q
h collect the PGD coefficients, being

[
uq

j

]
i
= ũ

q

ji ,
[
uq,s
m

]
i
= ũ

q,s

mi and i = 1, . . . , Nq

h , Kx , Mx ∈ R
Nx
h×Nx

h and Ky,

My ∈ R
N

y
h×Ny

h are the stiffness and mass matrices associated with x- and y-
variables, with

[
Kx

]
αl
= ∫

�x

(
θxα
)′(

θxl

)′
dx,

[
Ky

]
βs
= ∫

�y

(
θ

y
β

)′(
θ

y
s

)′
dy,

[
Mx

]
αl
=
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∫
�x

θxα θ
x
l dx,

[
My]

βs
= ∫

�y
θ

y
βθ

y
s dy, and where fx ∈ R

Nx
h , fy ∈ R

N
y
h , with

[
fx
]
l
= ∫

�x
f xθxl dx,

[
fy
]
s
= ∫

�y
f yθ

y
s dy, for α, l = 1, . . . , Nx

h , β, s = 1, . . . , Ny
h .

Systems (11) and (12) are solved at each ADS iteration, so that the computational
effort characterizing PGD is the one associated with the solution of two systems
of order Nx

h and N
y
h , respectively, for each ADS iteration. When a certain stopping

criterion is met (see the next section for more details), ADS procedure yields vectors
ux
m and uy

m which identify the enrichment functions uxm and u
y
m.

4 HiMod Reduction Versus PGD

Both HiMod reduction and PGD exploit the separation of variables and, according
to [5], belong to the a priori approaches, since they do not rely on any solution to the
problem at hand. Nevertheless, we can easily itemize features which distinguish the
two techniques. The most relevant ones concern the geometry of �, the selection of
the transverse basis and of the modal index, and the numerical implementation of
the two procedures. Pros and cons of the two methods are then here highlighted.

4.1 Domain Geometry

HiMod reduction and PGD advance precise hypotheses on the geometry of the
computational domain.

According to the HiMod approach, � is expected to coincide with a fiber
bundle and to be mapped into the reference domain, �̂, by a sufficiently regular
transformation. Actually, map � is assumed differentiable, while map ψx is required
to be a C1-diffeomorphism, for all x ∈ �1D [20]. These hypotheses introduce
some constraints, in particular, on the lateral boundary of � which, e.g., cannot
exhibit kinks. Additionally, geometries of interest in many applications, such as
bifurcations or, more in general, networks are ruled out from the demands on ψx

and � . An approach based on the domain decomposition technique is currently
under investigation as a viable way to deal with such geometries. The isogeometric
version of HiMod (i.e., the HIgaMod approach) will play a crucial role in view of
HiMod simulations for the blood flow modeling in patient-specific geometries [21].

The constraints introduced by PGD on the geometry of � are more restrictive.
The separability hypothesis leads to consider essentially only Cartesian domains.
This considerably reduces the applicability of PGD to practical contexts. Some
techniques are available in the literature to overcome this issue. For instance, in [9]
a generic domain is embedded into a Cartesian geometry, while in [7] the authors
introduce a parametrization map for quadrilateral domains.
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Overall, HiMod reduction exhibits a higher geometric flexibility with respect to
PGD, in its straightforward formulation. As discussed in Sect. 5, this limitation can
be removed when considering a parametric setting.

4.2 Modeling of the Transverse Dynamics

In the HiMod expansion, y-components, ϕk(ψx(y)), are selected before starting
the model reduction. This choice, although coherent with an a priori approach,
introduces a constraint on the dynamics that can be described, so that hints about the
solution trend along the transverse direction can be helpful to select a representative
modal basis. In the original proposal of the HiMod procedure, sinusoidal functions
are employed according to a Fourier expansion [6, 20]. This turns out to be a
reasonable choice when Dirichlet boundary conditions are assigned on the lateral
surface, �lat = {x} × ∂γx , of �. Legendre polynomials, properly modified to
include the homogeneous Dirichlet data and orthonormalized, are employed in [20]
as an alternative to a trigonometric expansion. Nevertheless, Legendre polynomials
require high-order quadrature rules to accurately compute coefficients {r̂a,bjk }.

In [1], the concept of educated modal basis is introduced to impose generic
boundary conditions on �lat. The idea is to solve an auxiliary Sturm-Liouville
eigenvalue problem on the transverse reference fiber γ̂d−1, to build a basis which
automatically includes the boundary values on �lat. The eigenfunctions of the
Sturm-Liouville problem provide the modal basis. A first attempt to generalize
the educated-HiMod reduction to three-dimensional (3D) cylindrical geometries is
performed in [10], where the Navier-Stokes equations are hierarchically reduced to
model the blood flow in pipes. This generalization is far from being straightforward
due to the employment of polar coordinates. To overcome this issue, we are
currently investigating the HIgaMod approach [21], which allows us to define the
transverse basis as the Cartesian product of 1D modal functions, independently of
the considered geometry.

Additionally, we remark that any modal basis can be precomputed on the
transverse reference fiber before performing the HiMod reduction, thanks to the
employment of map � . This considerably simplifies computations.

When applying PGD, y-components are unknown as the ones associated with x.
This leads to the nonlinear problems (9)–(10), thus loosing any advantage related
to a precomputation of the HiMod modal basis. On the other hand, PGD does not
constrain the transverse dynamic to follow a prescribed (e.g., sinusoidal) analytical
shape as HiMod procedure does. The educated-Himod reduction clearly is out of
this comparison, since the modal basis strictly depends on the problem at hand.

Finally, we observe that HiMod modes are orthonormal with respect to the
L2(γ̂d−1)-norm. This property is not ensured by PGD.

Concerning the selection of the modal index m in (2) and (7), as a first attempt,
both HiMod reduction and PGD resort to a trial-and-error approach, so that the
modal index is gradually increased until a check on the accuracy of the reduced
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solution is satisfied. For instance, in [6, 20] a qualitative investigation of the contour
plot of the HiMod approximation drives the choice of m. Concerning PGD, the
check on the relative enrichment

‖uxmuy
m‖L2(�)

‖ux1uy
1‖L2(�)

≤ TOLE, (13)

is usually employed, with TOLE a user-defined tolerance [5]. An automatic selection
of index m can yield a significant improvement. In [17, 19], an adaptive procedure
is proposed for HiMod, based on an a posteriori modeling error analysis. In
particular, the estimator in [17] is derived in a goal-oriented setting to control
a quantity of interest, and exploits the hierarchical structure (i.e., the inclusion
Vm ⊂ Vm+d , ∀m, d ∈ N

+) typical of a HiMod reduction. A similar modeling
error analysis is performed in [2] for PGD, although no adaptive algorithm is here
set to automatically pick the reduced model. Paper [19] generalizes the a posteriori
analysis in [17] to an unsteady setting, providing the tool to automatically select m
together with the partition Th along �1D and the time step.

Finally, HiMod allows to tune the modal index along the domain �, according
to the local complexity of the transverse dynamics. In particular, m can be varied
in different areas of � or, in the presence of very localized dynamics, in correspon-
dence with specific nodes of the partition Th. We refer to these two variants as to
piecewise and pointwise HiMod reduction, in contrast to a uniform approach, where
the same number of modes is adopted everywhere [16, 18]. This flexibility in the
choice of m is currently not available for PGD. Adaptive strategies to select the
modal index are available for the three variants of the HiMod procedure [17, 19].

4.3 Computational Aspects

From a computational viewpoint, HiMod reduction and PGD lead to completely
different procedures. Indeed, for a fixed value of m, we have to solve the only
system (6) of order mNh when applying HiMod, in contrast to PGD which demands
a multiple solution of systems (11)–(12) of order Nx

h and N
y
h , respectively because

of the fixed point and the enrichment algorithms. Thus, the direct solution of a single
system, in general of larger order, is replaced by an iterative solution of several and
smaller systems. This heterogeneity makes a computational comparison between
PGD and HiMod not so meaningful. We verify the reliability of the HiMod and
PGD procedures on a common test case, by choosing in (1) V = H 1

0 (�) with
� = (0, 5) × (0, 1), a(u, v) = ∫

�

[
μ∇u · ∇v + b · ∇u]d� for μ = 0.24, b =

[−5, 0]T , and F(v) = ∫
� f vd� with f (x, y) = 50

{
exp

[− ((x−2.85)/0.075
)2−

(
(y − 0.5)/0.075

)2] + exp
[ − (

(x − 3.75)/0.075
)2 − (

(y − 0.5)/0.075
)2]}. For

both the methods, we uniformly subdivide �1D into 285 subintervals. We set the
PGD discretization along y as well as the PGD and the HiMod index m in order
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Fig. 1 Qualitative comparison between a HiMod (left) and a PGD (right) approximations

to ensure the same accuracy, TOL, on the reduced approximations with respect to a
reference FE solution, computed on a 2500× 500 structured mesh. In particular, for
TOL = 8 · 10−3, we have to subdivide interval (0, 1) into 20 uniform subintervals,
and to set m to 6 and to 9 in the PGD and the HiMod discretization, respectively.
Sinusoidal functions are chosen for the HiMod modal basis. The ADS iterations are
controlled in terms of the relative increment, as

‖ux,pm u
y,p
m − u

x,p−1
m u

y,p−1
m ‖L2(�)

‖ux,pm u
y,p
m ‖L2(�)

≤ TOLFP, (14)

with TOLFP = 10−2. Figure 1 shows the reduced approximations (which are fully
comparable with the FE one, here omitted). The contourplots are very similar. The
coarse PGD y-discretization justifies the slight roughness of the PGD contourlines.

Another distinguishing feature between HiMod and PGD is the domain dis-
cretization. Indeed, HiMod requires only the partition Th along �1D, independently
of the dimension of �. No discretization is needed in the y-direction, although we
have to carefully select the quadrature nodes to compute coefficients {r̂a,bjk }. This
task becomes particularly challenging when dealing with polar coordinates [10].
With PGD to benefit of the computational advantages associated with a 1D
discretization, we are obliged to assume the full separability of �; actually, a partial
separability demands a 1D partition for �x , and a two-dimensional partition of �y.
As explained in Sect. 5, non-Cartesian domains require a 3D discretization of �.

Finally we analyze the interplay between the enrichment and the ADS iterations
in the PGD reduction. We investigate the possible relationship between TOLFP
in (14) and TOLE in (13), to verify if a small tolerance for the fixed point iteration
improves the accuracy of the PGD approximation, thus reducing the number of
enrichment steps. To do this, we adopt the same test case used above. Table 1
gathers the number of ADS iterations, #ITFP, the number, m, of enrichment steps,
and the CPU time1 (in seconds) demanded by the PGD procedure, for two different
values of TOLE and three different choices of TOLFP. In particular, in column #ITFP
we specify the number of ADS iterations required by each enrichment step. As
expected, there exists a link between the two tolerances, namely, when a higher
accuracy constrains the fixed point iteration, a smaller number of enrichment steps
is performed to ensure the accuracy TOLE.

1The computations have been run on a Intel Core i5 Dual-Core CPU 2.7 GHz 8 GB RAM
MacBook.
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Table 1 Quantitative analysis for PGD in terms of fixed point iterations and enrichment steps

TOLE = 2 · 10−2 TOLE = 8 · 10−3

#ITFP m CPU [s] #ITFP m CPU [s]

TOLFP = 10−1 {2, 2, 2} 3 0.099640 {2, 2, 2, 2, 2} 5 0.337861

TOLFP = 10−2 {4, 3} 2 0.046756 {4, 3, 2, 2, 4} 5 0.358555

TOLFP = 10−3 {5, 5} 2 0.077958 {5, 5, 2, 7} 4 0.341748

5 HiMod Reduction and PGD for Parametrized Problems

The actual potential of PGD becomes more evident when considering a parametric
setting, i.e., when problem (1) is replaced by the formulation

find u(μ) ∈ V : a(u(μ), v;μ) = F(v;μ) ∀v ∈ V, (15)

with μ a parameter, which may represent any data of the problem, e.g., the
coefficients of the considered PDE, the source term, a boundary value or the domain
geometry.

The technique adopted by PGD to deal with the parametric dependence in (15)
is very effective. Parameter μ is considered as an additional independent variable
which varies in a domain �μ [5]. Thus, the PGD space (7) changes into the new one

W
μ
m =

{
wm(x, y,μ) =

m∑

k=1

wx
k (x)w

y
k(y)w

μ
k (μ), with

wx
k ∈ Wx

h , w
y
k ∈ W

y
h , w

μ
k ∈ W

μ
h , x ∈ �x, y ∈ �y, μ ∈ �μ

}
,

(16)

with W
μ
h a discretization of the space L2(�μ;RQ), being Q the length of vector μ.

Generalizing the enrichment paradigm in (8), at the m-th step of the PGD approach
applied to problem (15) we have to compute three unknown functions, uxm, uy

m and
u

μ
m, by picking the test function as X(x)Y (y)Z(μ), with X ∈ Wx

h , Y ∈ W
y
h , Z ∈

W
μ
h . Functions uxm, uy

m, uμ
m are computed by ADS, which now coincides with a

three-step procedure. Thus, with reference to the Poisson problem,−∇·(μ∇u) = f

completed with full homogeneous Dirichlet boundary conditions and for μ ≡ μ,
we first compute u

x,p
m by identifying u

y
m and u

μ
m with the previous approximations,

u
y,p−1
m and u

μ,p−1
m , respectively and by selecting Y (y)Z(μ) = u

y,p−1
m u

μ,p−1
m in the
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test function. This leads to a linear system which generalizes (11), namely

[(
uμ,p−1
m

)T
Mμuμ,p−1

m

]

{[(
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m

)T
Myuy,p−1

m

]
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m

]
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}
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m
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m

)T fy
][(
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m

)T fμ
]
fx −∑m−1

k=1
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m
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Mμuμ

k

]

{[(
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m

)T
Myuy

k

]
Kx +

[(
uy,p−1
m

)T
Kyuy

k

]
Mx

}
ux
k ,

(17)

where Mμ ∈ R
N

μ
h ×Nμ

h is the mass matrix associated with the parameter μ, with
[
Mμ

]
ij
= ∫

�μ
μθ

μ
i θ

μ
j dμ for i, j = 1, . . . , Nμ

h and Bμ = {θμ
γ }N

μ
h

γ=1 a basis for the

space W
μ
h , fμ ∈ R

N
μ
h with

[
fμ
]
l
= ∫

�μ
f μθ

μ
l dμ for l = 1, . . . , Nμ

h after assuming

the separability f = f xf yf μ for the source term f , and where we employ the same
notation as in (11)–(12) to denote vectors uμ

w , uμ,s
m , with w = 1, . . . ,m − 1, s =

p,p−1, collecting the PGD coefficients associated with the basis Bμ. Analogously,
u

y,p
m is computed by solving the generalization of the linear system (12) given by
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m
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m
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My +
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after setting uxm = u
x,p
m , uμ

m = u
μ,p−1
m and X(x)Z(μ) = u

x,p
m u

μ,p−1
m for the PGD

test function. Finally, we have the additional linear system used to compute u
μ,p
m ,

{[(
ux,p
m

)T
Kxux,p

m

][(
uy,p
m

)T
Myuy,p

m

]
+
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ux,p
m

)T
Mxux,p
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][(
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Mμuμ,p
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[(
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)T fx
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)T fy
]
fμ −∑m−1

k=1

{[(
ux,p
m

)T
Kxux

k

][(
uy,p
m

)T
Myux

k

]

[(
ux,p
m

)T
Mxux

k

][(
uy,p
m

)T
Kyuy

k

]}
Mμuμ

k
,

obtained for uxm = u
x,p
m , uy

m = u
y,p
m and by selecting X(x)Y (y) = u

x,p
m u

y,p
m for the

test function. From a computational viewpoint, at each ADS iteration, we have to
solve now three linear systems of order Nx

h , Ny
h , Nμ

h , respectively.
We investigate the reliability of PGD on problem (15), for V = H 1

�in∪�up∪�down

(�) with � = (0, 3) × (0, 1), �in = {0} × (0, 1), �up = (0, 3) × {1}, �down =
(0, 3) × {0}, a(u, v) = ∫

�

[
μ∇u · ∇v + b · ∇u]d� with b = [2.5, 0]T and μ the

parameter to be varied in �μ = [1, 5], F(v) = ∫
�
f vd� with f = 1. The problem

is completed with mixed boundary conditions, namely a homogeneous Dirichlet
data on �up ∪�down, the non-homogeneous Dirichlet condition, u = uin with uin =
y(1−y), on�in and a homogeneous Neumann value on �out = {3}×(0, 1). We apply
the PGD reduction for m = 2, and we uniformly subdivide�x , �y , �μ, being Nx

h =
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Fig. 2 Qualitative comparison between the reference (left) and the PGD (right) solutions, for μ =
1 (top) and μ = 2.5 (bottom)

150, Ny
h = 50, Nμ

h = 500. The tolerance in (14) is set to 10−2. Figure 2 compares
the PGD approximation for μ = 1 and μ = 2.5 with a reference full solution
coinciding with a linear FE approximation computed on a 300 × 100 structured
mesh. The qualitative matching between the corresponding solutions is significant.
From a quantitative viewpoint, the L2(�)-norm of the relative error associated with
the PGD approximation does not vary significantly by increasingm, whereas a slight
error reduction is detected by increasing μ.

The parametric counterpart of the HiMod reduction, known as HiPOD, merges
HiMod with POD [4, 13]. HiPOD pursues a different goal with respect to PGD.
Indeed, for a new value, μ∗, of the parameter, PGD provides an approximation for
the full solution u(μ∗), while HiPOD approximates the HiMod solution associated
with μ∗. The offline/online paradigm of POD is followed also by HiPOD. The
peculiarity is that the offline step is now performed in the HiMod setting to contain
the computational burden typical of this stage and by relying on the good properties
of HiMod in terms of reliability-versus-accuracy balance. Thus, we choose P

different values, μ = μi with i = 1, . . . , P , for parameter μ, and we collect
the HiMod approximation for the corresponding problem (15) into the response
matrix, S = [

uHiMod
m (μ1),uHiMod

m (μ2), . . . ,uHiMod
m (μP )

] ∈ R
mNh×P , according to

representation (5). Successively, we define the null-average matrix

V = S− 1

P

P∑

i=1

[
uHiMod
m (μi ),uHiMod

m (μi ), . . . ,uHiMod
m (μi )

]
∈ R

mNh×P ,

and we apply the Singular Value Decomposition (SVD) to V, so that V = ���T ,
where � ∈ R

(mNh)×(mNh) and � ∈ R
P×P are the unitary matrices of the left- and

of the right-singular vectors of V, respectively while � = diag (σ1, . . . , σρ) ∈
R

(mNh)×P denotes the pseudo-diagonal matrix of the singular values of V, being
σ1 ≥ σ2 ≥ · · · ≥ σρ ≥ 0 and ρ = min(mNh, P ) [8]. The POD basis is identified
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by the first l left singular vectors, φi , of V, so that the reduced POD space is
V l

POD = span{φ1, . . . ,φl}, with dim(V l
POD) = l and l  mNh. In the numerical

assessment below, value l coincides with the smallest integer such that σ 2
l < ε, with

ε a prescribed tolerance.
The online phase of HiPOD approximates the HiMod solution to problem (15)

for a new value, μ∗, of the parameter by exploiting the POD basis instead of solving
system (6). This is performed via a projection step. After assembling the HiMod
stiffness matrix and right-hand side, AHiMod

m (μ∗) and fHiMod
m (μ∗), associated with

the new value of the parameter, we solve the POD system of order l

APOD(μ
∗)uPOD(μ

∗) = fPOD(μ
∗), (18)

where APOD(μ
∗) = (�l

POD)
T AHiMod

m (μ∗)�l
POD and fPOD(μ

∗) = (�l
POD)

T fHiMod
m

(μ∗) denote the POD stiffness matrix and right-hand side, respectively with �l
POD =

[φ1, . . . ,φl] ∈ R
(mNh)×l the matrix collecting the POD basis vectors. The HiMod

solution is thus approximated by vector �l
PODuPOD(μ

∗) ∈ R
mNh , i.e., after solving

a system of order l instead of mNh. Overall, HiPOD requires to solve P linear
systems of order mNh during the offline phase, additionally to a system of order l
in the online phase.

To check the performances of HiPOD, we adopt the test case used above for
PGD, for the same values of the parameters, μ∗ = 1 and μ∗ = 2.5. The reference
solution is the corresponding HiMod approximation computed by using m = 15
sinusoidal functions in the y-direction, and a linear FE discretization along the
mainstream based on a uniform subdivision of �1D into 50 subintervals. The
same HiMod discretization is adopted to build the response matrix. Concerning
the HiPOD approximation, we pick P = 100 by uniformly sampling the interval
[1, 5], and we select ε = 2.5 · 10−15. This choice sets the dimension of the POD
space to l = 8, so that we have to solve a system of order 8 instead of 750. The
contour plots in Fig. 3 qualitatively compare the HiMod solution with the HiPOD
approximation for l = 1. The correspondence between the two approximations
is good despite a single POD mode is employed (in such a case, system (18)

 =1

 =2.5

 =1

 =2.5

l = 1 l = 4
∗ = 1 4.06e-02 2.53e-06
∗ = 2 5 2.74e-03 1.11e-07

random 7.19e-03 2.65e-07

l = 6 l = 8
= 1 1.79e-09 5.58e-12
= 4.05e-10 1.21e-13

random 2.97e-10 3.66e-13

∗
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Fig. 3 Contour plots: comparison between the reference HiMod solution (left) and the HiPOD
approximation with l = 1 (right), for μ∗ = 1 (top) and μ∗ = 2.5 (bottom). Table: relative error
between HiMod and HiPOD solutions with respect to the L2(�)-norm
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reduces to a scalar equation). We do not provide the HiPOD approximations for
l = 8 since they qualitatively coincide with the corresponding HiMod solution.
The left panels can be additionally compared with the FE solutions in Fig. 2 to
verify the reliability of the HiMod procedure. Finally, the table in Fig. 3 gathers
the L2(�)-norm of the relative error between HiMod and HiPOD solutions, for four
different POD bases and for three choices of the viscosity (1, 2.5 and the average
over a sampling of 30 random values of μ). The error monotonically decreases for
larger and larger values of l, independently of the choice for μ. If we compare
the values for μ = 1 and for μ = 2.5 (one of the endpoints and the midpoint
of the sampling interval, respectively), we notice a higher accuracy (of about one
order of magnitude) for the latter choice. This is rather standard in projection-based
reduced order modeling [11]. Concerning the computational saving in terms of CPU
time, HiPOD method requires on averageO(10−3)[s] to be compared with O(10)[s]
demanded by HiMod, resulting in a speedup of 104.

Although PGD and HiPOD are not directly comparable due to the different
purpose they pursue, we highlight the main pros and cons of the two methods.
The explicit dependence of the approximation on the parameters makes PGD an
ideal tool to efficiently deal with parametric problems. For any new parameter,
a direct evaluation yields the corresponding PGD approximation. On the other
hand, HiPOD suffers of the drawbacks typical of the projection-based methods. The
main bottleneck is the assembling of the HiMod arrays involved in APOD(μ

∗) and
fPOD(μ

∗).
When PGD is applied to parametric problems, we recover the possibility to deal

with any geometric domain. In such a case, a partial separability is applied to the
problem, so that the space independent variables are kept together whereas param-
eters are separated. This approach clearly looses the computational advantages due
to space separability. On the contrary, HiPOD inherits the geometric flexibility of
the HiMod reduction, without giving up the spatial dimensional reduction of the
problem.
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Recurrence Relations for a Family of
Orthogonal Polynomials on a Triangle

Sheehan Olver, Alex Townsend, and Geoffrey M. Vasil

1 Introduction

In 1975, Koornwinder described a general procedure for constructing multivariate
orthogonal polynomials from univariate ones [4, §3.7.2]. The procedure allows for
the construction of seven classes of bivariate orthogonal polynomials from Jacobi
polynomials, some of which were previously known [9]. In this paper, we consider a
four-parameter variant of Koornwinder’s class IV polynomials (the four-parameter
variant was not constructed by Koornwinder) defined as [2]

P
(a,b,c,d)
n,k (x, y) = P

(2k+b+c+d+1,a)
n−k (2x − 1)(1− x)kP

(c,b)
k

(
−1+ 2y

1−x
)

= P̃
(2k+b+c+d+1,a)
n−k (x)(1− x)kP̃

(c,b)
k

(
y

1−x
)
,

(1)

where a, b, c > −1, n and k are integers such that n ≥ k ≥ 0, P (a,b)
k (x) is the

Jacobi polynomial of degree k [7, Table 18.3.1], and P̃
(a,b)
k is the Jacobi polynomial

of degree k shifted to have support on (0, 1). Koornwinder’s construction derives
the polynomials with d = 0, which we denote by P

(a,b,c)
n,k . The polynomials in (1)
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are orthogonal on the right-angled triangle {(x, y) : 0 < x < 1, 0 < y < 1 − x}
with respect to the weight function wa,b,c,d(x, y) = xayb(1− x − y)c(1− x)d .

The basis P (a,b,c)
n,k has been used extensively by the spectral element community,

see the overview in [3]. The recurrence relations we derive can be employed to
reduce partial differential operators to sparse matrices, enabling efficient solution of
linear partial differential equations defined on triangles, which will be the topic of a
future paper. This is analogous to the ultraspherical spectral method for solving
ordinary differential equations on bounded intervals [8]. A similar idea using a
hierarchy of Zernike polynomials, which are bivariate orthogonal polynomials on
the unit disk, is used in [13] to develop a sparse spectral method for solving
partial differential equations defined on the disk [13]. On the disk, polar coordinates
allow for radially symmetric partial differential operators to be reduced to ordinary
differential operators acting on Jacobi polynomials [13]. This simplification does
not translate to non-radially symmetric partial differential operators on the disk, nor
partial differential operators on the triangle.

Several of the formulae in this paper have already be derived by directly
employing recurrence relations satisfied by Jacobi polynomials [14]. Our approach
via ladder operators is a more systematic study that derives previously unreported
recurrence relations for P

(a,b,c)
n,k . We also hope to use ladder operators to derive

sparse recurrence relations for multivariate orthogonal polynomials built from
Jacobi polynomials on higher-dimensional simplices.

Throughout this paper, the recurrence relations hold for choices of the parameters
n, k, a, b, c, and d that make the Jacobi polynomials well-defined. Moreover, we
take P

(a,b)
−1 (x) = 0. Also, note that orthogonal polynomials remain orthogonal after

an affine transformation so the recurrence relations in this paper for (1) on a right-
angled triangle can be extended to any triangle, including triangles with the corners
permuted.

The paper is structured as follows. In the next section, we give 12 ladder operators
for Jacobi polynomials and use them to derive sparse recurrence relations for P (a,b)

n .
In Sect. 3 we give 24 ladder operators for (1) and write down the corresponding
sparse recurrence relations for P (a,b,c,d)

n,k . In Sect. 4, we use the ladder operators to
derive a collection of sparse recurrence relations for differentiation, conversion, and
multiplication that are satisfied by P

(a,b,c)
n,k . Section 5 applies these sparse recurrence

relations to efficiently calculating Laplacians of functions on the triangle.

2 Ladder Operators for Jacobi Polynomials

We give 12 ordinary differential operators that increment or decrement the param-
eters and degree of Jacobi polynomials by zero or one. Each ladder operator maps
P

(a,b)
n (x) to P

(ã,b̃)

ñ
(x), where |ñ− n| ≤ 1, |ã − a| ≤ 1, and |b̃ − b| ≤ 1.
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Definition 1 The following operators are ladder operators for Jacobi polynomials:

L1u = du
dx

L†
1u = ((1+ x)a − (1− x)b)u − (1− x2) du

dx

L2u = (a + b + n+ 1)u+ (1+ x) du
dx

L†
2u = (2a + (1− x)n)u− (1− x2) du

dx

L3u = (a + b + n+ 1)u− (1− x) dudx

L†
3u = (2b + (1+ x)n)u+ (1− x2) dudx

L4u = ((1+ x)a − (1− x)(b + n+ 1))u− (1− x2) dudx L†
4u = −nu+ (1+ x) dudx

L5u = ((1+ x)(a + n+ 1)− (1− x)b)u − (1− x2) dudx L†
5u = nu+ (1− x) dudx

L6u = bu+ (1+ x) dudx L†
6u = au − (1− x) dudx .

The notation for the ladder operators is chosen so that L†
sLsP

(a,b)
n and

LsL†
sP

(a,b)
n are scalar multiples of P

(a,b)
n for 1 ≤ s ≤ 6. These ladder operators

are carefully constructed to give rise to sparse recurrence relations for Jacobi
polynomials.

Lemma 1 The ladder operators give sparse recurrence relations for Jacobi poly-
nomials:

L1P
(a,b)
n = 1

2 (n+ a + b + 1)P (a+1,b+1)
n−1 L†

1P
(a,b)
n = 2(n+ 1)P (a−1,b−1)

n+1

L2P
(a,b)
n = (n+ a + b + 1)P (a+1,b)

n L†
2P

(a,b)
n = 2(n+ a)P (a−1,b)

n

L3P
(a,b)
n = (n+ a + b + 1)P (a,b+1)

n L†
3P

(a,b)
n = 2(n+ b)P (a,b−1)

n

L4P
(a,b)
n = 2(n+ 1)P (a−1,b)

n+1 L†
4P

(a,b)
n = (n+ b)P

(a+1,b)
n−1

L5P
(a,b)
n = 2(n+ 1)P (a,b−1)

n+1 L†
5P

(a,b)
n = (n+ a)P

(a,b+1)
n−1

L6P
(a,b)
n = (n+ b)P (a+1,b−1)

n L†
6P

(a,b)
n = (n+ a)P (a−1,b+1)

n .

Proof The relationship for L1 is a formula for the derivative of P
(a,b)
n (x) [7,

18.9.15] and relationship L†
1 is equivalent to [7, 18.9.16]. Six more follow from

expressing the left- and right-hand sides in terms of 2F1 functions using [7, 18.5.7]
and the reflection formula P (a,b)

n (x) = (−1)nP (b,a)
n (−x): L†

4 and L†
4 are equivalent

to [7, 15.5.3],L†
6 is equivalent to [7, 15.5.4],L4 and L5 are equivalent to [7, 15.5.5],

and L6 is equivalent to [7, 15.5.6].



82 S. Olver et al.

Fig. 1 Illustration of the 12 ladder operators for Jacobi polynomials in Definition 1

The relationship for L2 follows from combining [7, 18.9.5] and [7, 18.9.6]. The
relationships for L†

2 follows by writing

L†
2 = L†

1 + (n+ a + b)(1− x)

and then using [7, 18.9.5] and [7, 18.9.6]. Finally, L3 and L†
3 follow just as L2 and

L†
2, using the reflection formula.

Remark 1 We note that the first-order differential operators occurring in Lemma 1
form together an action of the Lie algebra sl(4) [1, 5, 6].

Figure 1 illustrates the ladder operators and how they increment or decrement the
parameters associated to a Jacobi polynomial.

The ladder operators can be easily adapted to the shifted Jacobi polynomials,
denoted by P̃

(a,b)
k , which are supported on (0, 1), with x in place of 1+ x, and no

factors of 2. The corresponding recurrence relations for P̃ (a,b)
k are the same as in

Lemma 1, except the multiplicative factors of 1
2 and 2 are replaced by 1.

3 Ladder Operators for P
(a,b,c,d)

n,k

The 12 ladder operators for the Jacobi polynomials in Sect. 2 allow us to derive 24
ladder operators for P

(a,b,c,d)
n,k . The ladder operators are carefully defined so that

they map P
(a,b,c,d)
n,k to a scalar multiple of P (ã,b̃,c̃,d̃)

ñ,k̃
, where the new parameters in

P
(ã,b̃,c̃,d̃)

ñ,k̃
are n, k, a, b, c or d , respectively, incremented or decremented by 0 or 1.

To highlight the symmetries of the right-angled triangle and make the recurrences
more convenient to write down, we define

z := 1− x − y and ∂
∂z
:= ∂

∂y
− ∂

∂x
,
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as in [14]. Now, the variables x, y, and z have the convenient property that any
affine transformation that maps the triangle onto itself has the effect of exchanging
the roles of x, y, and z.

Definition 2 The following operators are ladder operators for P (a,b,c,d)
n,k . The first

set of 12 are:

M0,1u = ∂u
∂y

M†
0,1u = (yc− zb)u− yz ∂u

∂y

M0,2u = (k + b + c + 1)u+ y ∂u
∂y

M†
0,2u =

(
c + k − yk

1−x
)
u− y

1−x z
∂u
∂y

M0,3u = (k + b + c + 1)u− x ∂u
∂y

M†
0,3u =

(
b + ky

1−x
)
u+ y

1−x z
∂u
∂y

M0,4u = (yc− z(b + k + 1))u− yz ∂u
∂y

M†
0,4u = − k

1−x u+ y
1−x

∂u
∂y

M0,5u = (y(c+ k + 1))u− zb − yz ∂u
∂y

M†
0,5u = k

1−x u+
(

1− y
1−x

)
∂u
∂y

M0,6u = cu− z ∂u
∂y

M†
0,6u = bu+ y ∂u

∂y
.

The second set of 12 are:

M1,0u = k
1−x u+ ∂u

∂x
− y

1−x
∂u
∂y
,

M†
1,0u = (x(k + a + b + c + d + 1)− a)u− x(1− x) ∂u

∂x
+ xy ∂u

∂y

M2,0u = (n+ k + a + b + c + d + 2)u+ xk
1−x u+ x ∂u

∂x
− xy

1−x
∂u
∂y

M†
2,0u = (n+ k + b + c + d + 1− xn)u− x(1− x) ∂u

∂x
+ xy ∂u

∂y

M3,0u = (n+ a + b + c + d + 2)u− (1− x) ∂u
∂x
+ y ∂u

∂y

M†
3,0u = (a + xn)u+ x(1− x) ∂u

∂x
− xy ∂u

∂y

M4,0u = (x(n+ a + b + c + d + 2)− a − n+ k − 1)u− x(1− x) ∂u
∂x
+ xy ∂u

∂y

M†
4,0u = k

1−x u− nu+ x ∂u
∂x
− xy

1−x
∂u
∂y
, M5,0u = nu+ (1− x) ∂u

∂x
− y ∂u

∂y

M†
5,0u = x(n+ a + b + c + d + 2)u− au− x(1− x) ∂u

∂x
+ xy ∂u

∂y

M6,0u = au+ xk
1−x u+ x ∂u

∂x
− xy

1−x
∂u
∂y
,

M†
6,0u = (k + b + c + d + 1)u− (1− x) ∂u

∂x
+ y ∂u

∂y
.

The notation for the ladder operators is chosen so that the recurrence relations in
Theorem 1 are derived for Ms,0 (resp. M0,s) by applying Ls or L†

s to the first
(resp. second) Jacobi polynomial in P

(a,b,c,d)
n,k (x, y) for 1 ≤ s ≤ 6. Moreover,

we know that M†
s,0Ms,0P

(a,b,c,d)
n,k , M†

0,sM0,sP
(a,b,c,d)
n,k , Ms,0M†

s,0P
(a,b,c,d)
n,k , and

M0,sM†
0,sP

(a,b,c,d)
n,k are scalar multiples of P (a,b,c,d)

n,k for 1 ≤ s ≤ 6.
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The ladder operators in Definition 2 correspond to 24 sparse recurrence relations
for P (a,b,c,d)

n,k . To derive these recurrences, we first express the partial derivatives of
P

(a,b,c,d)
n,k as derivatives of shifted Jacobi polynomials.

Proposition 1 The following relationships hold:

P̃
(2k+b+c+d+1,a)
n−k (x)(1 − x)k

[
P̃

(c,b)
k

]′ (
y

1−x
)
= (1− x) ∂

∂y
P

(a,b,c,d)
n,k (x, y), (2)

[
P̃

(2k+b+c+d+1,a)
n−k

]′
(x)(1− x)k+1P̃

(c,b)
k

(
y

1−x
)
=
(
k + (1− x) ∂

∂x
− y ∂

∂y

)
P

(a,b,c,d)
n,k (x, y).

(3)

Proof The first relationship is immediate. The second relationship follows from the
chain-rule:

(1− x) ∂
∂x

(
f (x)(1 − x)kg

(
y

1−x
))
= f ′(x)(1− x)k+1g

(
y

1−x
)

− kf (x)(1 − x)kg(x)+ yf (x)(1− x)k−1g′
(

y
1−x

)

and an application of (2) to simplify the last term.

The 24 sparse recurrence relations for P
(a,b,c,d)
n,k are given in the following

theorem.

Theorem 1 Let t = a + b + c + d . The first set of 12 are:

M0,1P
(a,b,c,d)
n,k = (k + b + c+ 1)P (a,b+1,c+1,d)

n−1,k−1 M†
0,1P

(a,b,c,d)
n,k = (k + 1)P (a,b−1,c−1,d)

n+1,k+1

M0,2P
(a,b,c,d)
n,k = (k + b + c+ 1)P (a,b,c+1,d−1)

n,k M†
0,2P

(a,b,c,d)
n,k = (k + c)P

(a,b,c−1,d+1)
n,k

M0,3P
(a,b,c,d)
n,k = (k + b + c+ 1)P (a,b+1,c,d−1)

n,k M†
0,3P

(a,b,c,d)
n,k = (k + b)P

(a,b−1,c,d+1)
n,k

M0,4P
(a,b,c,d)
n,k = (k + 1)P (a,b,c−1,d−1)

n+1,k+1 M†
0,4P

(a,b,c,d)
n,k = (k + b)P

(a,b,c+1,d+1)
n−1,k−1

M0,5P
(a,b,c,d)
n,k = (k + 1)P (a,b−1,c,d−1)

n+1,k+1 M†
0,5P

(a,b,c,d)
n,k = (k + c)P

(a,b+1,c,d+1)
n−1,k−1

M0,6P
(a,b,c,d)
n,k = (k + c)P

(a,b+1,c−1,d)
n,k M†

0,6P
(a,b,c,d)
n,k = (k + b)P

(a,b−1,c+1,d)
n,k .

The second set of 12 are:

M1,0P
(a,b,c,d)
n,k = (n+ k + t + 2)P (a+1,b,c,d+1)

n−1,k

M†
1,0P

(a,b,c,d)
n,k = (n− k + 1)P (a−1,b,c,d−1)

n+1,k

M2,0P
(a,b,c,d)
n,k = (n+ k + t + 2)P (a,b,c,d+1)

n,k

M†
2,0P

(a,b,c,d)
n,k = (n+ k + t − a + 1)P (a,b,c,d−1)

n,k
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M3,0P
(a,b,c,d)
n,k = (n+ k + t + 2)P (a+1,b,c,d)

n,k

M†
3,0P

(a,b,c,d)
n,k = (n− k + a)P

(a−1,b,c,d)
n,k

M4,0P
(a,b,c,d)
n,k = (n− k + 1)P (a,b,c,d−1)

n+1,k

M†
4,0P

(a,b,c,d)
n,k = (n− k + a)P

(a,b,c,d+1)
n−1,k

M5,0P
(a,b,c,d)
n,k = (n+ k + t − a + 1)P (a+1,b,c,d)

n−1,k

M†
5,0P

(a,b,c,d)
n,k = (n− k + 1)P (a−1,b,c,d)

n+1,k

M6,0P
(a,b,c,d)
n,k = (n− k + a)P

(a−1,b,c,d+1)
n,k

M†
6,0P

(a,b,c,d)
n,k = (n+ k + t − a + 1)P (a+1,b,c,d−1)

n,k .

Proof We present the proof of M0,1P
(a,b,c,d)
n,k = (k + b + c + 1)P (a,b+1,c+1,d)

n−1,k−1 . By
the definition of P (a,b,c,d)

n,k in (1), the chain rule, and the relationship in (2), we have

∂
∂y
P

(a,b,c,d)
n,k (x, y) = P̃

(2k+b+c+d+1,a)
n−k (x)(1− x)k−1[P̃ (c,b)

k ]′
(

y
1−x

)

= (k + c + b + 1)P̃ (2k+b+c+d+1,a)
n−k (x)(1− x)k−1P̃

(c+1,b+1)
k−1

(
y

1−x
)
,

(4)

where the last equality comes from applyingL1 in Definition 1. The final expression
in (4) is equivalent to (k + b + c + 1)P (a,b+1,c+1,d)

n−1,k−1 . The manipulations for the
remaining recurrence relations are similar, except with different choices of the
operators Ls or L†

s and combinations of (2) and (3).

4 Sparse Recurrence Relations for P
(a,b,c)

n,k

We can combine the ladder operators in Sect. 3 to derive sparse recurrence relations
between P

(a,b,c)
n,k polynomials with different parameters and their partial derivatives.

These recurrence relations are analogous to many of the sparse recurrence relations
for Jacobi polynomials [7, §18.9].

4.1 Differentiation

The partial derivatives of P
(a,b,c)
n,k can be written in terms of Jacobi polynomials

on the triangle with incremented parameters, which is analogous to a recurrence
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relation for the derivative of a Jacobi polynomial [7, 18.9.15]. A similar recurrence
for P (a,b,c)

n,k can be found in [14, Prop. 4.6, 4.7, & 4.8].

Corollary 1 The following recurrence relations hold:

(2k + b + c+ 1) ∂
∂x

P
(a,b,c)
n,k = (n+ k + a + b + c + 2)(k + b + c + 1)P (a+1,b,c+1)

n−1,k

+ (k + b)(n+ k + b + c + 1)P (a+1,b,c+1)
n−1,k−1 ,

(5)

∂
∂y
P

(a,b,c)
n,k = (k + b + c + 1)P (a,b+1,c+1)

n−1,k−1 , (6)

(2k + b + c + 1) ∂
∂z
P

(a,b,c)
n,k = −(n+ k + a + b + c + 2)(k + b + c + 1)P (a+1,b+1,c)

n−1,k

+ (k + c)(n+ k + b + c + 1)P (a+1,b+1,c)
n−1,k−1 .

(7)

Proof The recurrence (5) follows from the fact that (M1,0M0,2 +M†
0,4M

†
6,0)u =

(2k + b + c + 1) ∂u
∂x

when d = 0. The relationship (6) is equivalent to the relation
given by M0,1 in Theorem 1 when d = 0. Finally, (7) follows from the fact that
(M1,0M0,3 −M†

0,5M
†
6,0)u = −(2k + b + c + 1) ∂u

∂z
.

The derivatives of weighted versions of P
(a,b,c)
n,k also satisfy sparse recurrence

relations, which are analogous to an expression for the derivative of a weighted
Jacobi polynomial [7, 18.9.16].

Corollary 2 The following recurrence relations hold:

−(2k + b + c + 1) ∂
∂x

(
xaybzcP

(a,b,c)
n,k

)
= xa−1ybzc−1

(
(k + c)(n− k + 1)P (a−1,b,c−1)

n+1,k

+ (k + 1)(n− k + a)P
(a−1,b,c−1)
n+1,k+1

)
,

∂
∂y

(
xaybzcP

(a,b,c)
n,k

)
= −(k + 1)xayb−1zc−1P

(a,b−1,c−1)
n+1,k+1 ,

(2k + b + c + 1) ∂
∂z

(
xaybzcP

(a,b,c)
n,k

)
= xa−1yb−1zc

(
(k + b)(n− k + 1)P (a−1,b−1,c)

n+1,k

− (k + 1)(n− k + a)P
(a−1,b−1,c)
n+1,k+1

)
.

Proof The first recurrence follows from

(M†
0,2M

†
1,0 +M0,4M6,0)u = (2k + b + c + 1)(cx − az− xz ∂

∂x
)u

= −(2k + b + c + 1)x1−az1−c ∂
∂x

(xazcu).

The second recurrence holds since

M†
0,1u = (cy − bz− yz ∂

∂y
)u = −y1−bz1−c ∂

∂x
(ybzcu).
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The third recurrence is derived from the fact that

(M†
0,3M

†
1,0 −M0,5M6,0)u = (2k + b + c + 1)(bx − ay + xy( ∂

∂y
− ∂

∂x
))u

= (2k + b + c + 1)x1−ay1−bz−c ∂
∂z
(xaybzcu).

4.2 Conversion

Recurrence relations for conversion allow us to express P
(a,b,c)
n,k in terms of Jacobi

polynomials on the triangle with different parameters. Here, we give the recurrence
relations that increment the parameters, which are analogues of [7, 18.9.3]. Similar
relations can be found in [14, Prop. 4.4].

Corollary 3 The following recurrence relations hold:

(2n+ a + b + c + 2)P (a,b,c)
n,k = (n+ k + a + b + c + 2)P (a+1,b,c)

n,k

+ (n+ k + b + c + 1)P (a+1,b,c)
n−1,k , (8)

(2n+ a + b + c + 2)(2k + b + c + 1)P (a,b,c)
n,k

= (n+ k + a + b + c + 2)(k + b + c + 1)P (a,b+1,c)
n,k

− (n− k + a)(k + b + c+ 1)P (a,b+1,c)
n−1,k + (k + c)(n+ k + b + c + 1)P (a,b+1,c)

n−1,k−1

− (k + c)(n− k + 1)P (a,b+1,c)
n,k−1 , (9)

(2n+ a + b + c + 2)(2k + b + c + 1)P (a,b,c)
n,k

= (n+ k + a + b + c + 2)(k + b + c + 1)P (a,b,c+1)
n,k

− (n− k + a)(k + b + c+ 1)P (a,b,c+1)
n−1,k − (k + b)(n+ k + b + c + 1)P (a,b,c+1)

n−1,k−1

+ (k + b)(n− k + 1)P (a,b,c+1)
n,k−1 . (10)

Proof The recurrence relation in (8) follows from the fact that (M30 +M50)u =
(2n+a+b+c+2)uwhen d = 0. Since (M2,0−M†

4,0)u = (2n+a+b+c+d+2)u

and (M†
2,0 −M4,0)u = (2n+ a + b + c + d + 2)(1− x)u, we obtain

(M0,2M2,0−M0,2M†
4,0−M†

0,4M
†
2,0+M†

0,4M4,0)u = (2k+b+c+1)(2n+a+b+c+d+2)u,

The recurrence relation (10) immediately follows. Similarly, (9) holds since

(M0,3M2,0−M0,3M†
4,0+M†

0,5M
†
2,0−M†

0,5M4,0)u = (2k+b+c+1)(2n+a+b+c+d+2)u.
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4.3 Multiplication

Recurrence relations for multiplication allow one to express xP (a,b,c)
n,k , yP (a,b,c)

n,k , and
zP

(a,b,c)
n,k in terms of a sum of Jacobi polynomials on the triangle with potentially

different parameters. The recurrences in Corollary 4 are analogous to the recurrence
relations for P (a,b)

n found in [7, 18.9.6].

Corollary 4 The following recurrence relations hold:

(2n+ a + b + c + 2)xP (a,b,c)
n,k = (n− k + a)P

(a−1,b,c)
n,k + (n− k + 1)P (a−1,b,c)

n+1,k ,

(11)

(2k + b + c + 1)(2n+ a + b + c + 2)yP (a,b,c)
n,k

= (k + b)(n+ k + b + c + 1)P (a,b−1,c)
n,k

− (k + 1)(n− k + a)P
(a,b−1,c)
n,k+1 − (k + b)(n− k + 1)P (a,b−1,c)

n+1,k

+ (k + 1)(n+ k + a + b + c + 2)P (a,b−1,c)
n+1,k+1 ,

(12)

(2k + b + c + 1)(2n+ a + b + c + 2)zP (a,b,c)
n,k

= (k + c)(n+ k + b + c + 1)P (a,b,c−1)
n,k

+ (k + 1)(n− k + a)P
(a,b,c−1)
n,k+1 − (k + c)(n− k + 1)P (a,b,c−1)

n+1,k

− (k + 1)(n+ k + a + b + c + 2)P (a,b,c−1)
n+1,k+1 .

(13)

Proof The recurrence relation in (11) follows from the fact that (M†
3,0+M†

5,0)u =
(2n+ a + b + c + d + 2)xu. Since

(M†
03M

†
20−M†

03M40+M05M20−M05M
†
40)u = (2k+b+c+1)(2n+a+b+c+d+2)yu

holds, we find that (12) is satisfied. Finally, (13) follows from

(M†
02M

†
20−M†

02M40+M04M
†
40−M04M20)u = (2k+b+c+1)(2n+a+b+c+d+2)zu.

Combining the recurrence relations in Corollaries 3 and 4, we can derive
expressions for xP

(a,b,c)
n,k , yP

(a,b,c)
n,k , and zP

(a,b,c)
n,k in terms of a sum of Jacobi

polynomials on the triangle with parameters (a, b, c). These are analogous to
the three-term recurrence relation for Jacobi polynomials [7, 18.9.2]. Since these
recurrence relations are long, we refer the reader to [2, pp. 80–81].
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4.4 Differential Eigenvalue Problems

The polynomials P (a,b,c)
n,k are eigenfunctions for second-order differential operators

(see [2, (5.3.4)] and [14, Prop. 4.11]), and the ladder operators in Sect. 3 make it
easy to derive this fact.

Theorem 2 The polynomial P (a,b,c)
n,k satisfies two second-order differential eigen-

problems:

zy ∂2

∂y2 P
(a,b,c)
n,k +((1+b)(1−x)−(2+b+c)y) ∂

∂y
P

(a,b,c)
n,k = −k(k+b+c+1)P (a,b,c)

n,k

and

x(1− x) ∂2

∂x2 P
(a,b,c)
n,k − 2xy ∂2

∂x∂y
P

(a,b,c)
n,k + y(1− y) ∂2

∂y2 P
(a,b,c)
n,k

+ (a + 1− (a + b + c + 3)x) ∂
∂x

P
(a,b,c)
n,k + (b + 1− (a + b + c + 3)y) ∂

∂y
P

(a,b,c)
n,k

= −n(n+ a + b + c + d + 2)P (a,b,c,d)
n,k (x, y).

Proof The first equation follows from

M0,1M†
0,1P

(a,b,c,d)
n,k (x, y) = k(k + b + c + 1)P (a,b,c,d)

n,k (x, y)

and the second from
⎡

⎣M0,1M†
0,1 − k(k + b + c + 1)

1− x
+M3,0M†

3,0 +M4,0M†
4,0

⎤

⎦P
(a,b,c,d)
n,k (x, y)

= (1+ a − k + n)(3+ t + 2n)P (a,b,c,d)
n,k (x, y).

5 Application: Calculating Laplacians

We can use the recurrence relationships in this paper to calculate partial derivatives
too. Slevinsky’s fast triangle transform [11] (which builds on his fast spherical
harmonic transform [10]) as implemented in the FastTransform multithreaded C
code [12] gives an efficient and stable routine for calculating the expansion coeffi-
cients on the triangle in O(d2 log2 d) operations, where d is the polynomial degree.
The partial derivative recurrences (see Corollary 1) show us how to calculate the
expansion coefficients of ∂p

∂x
and ∂p

∂y
with coefficients associated to the parameters

(a+1, b, c+1) and (a, b+1, c+1), respectively. Moreover, Corollary 3 informs us
how to convert from expansions with parameters (a, b, c) to (a+1, b, c), (a, b+1, c)
and (a, b, c + 1). We can combine these various recurrences relations to compute
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Fig. 2 Top: Error when evaluating the Laplacian of f (x, y) = cos(nxy/40) at (x, y) = (0.1, 0.2)
by expanding in degree N = (n + 1)(n + 2)/2 Jacobi polynomials on the triangle with
(a, b, c) = (0, 0, 0) and using the recurrences. Bottom: Execution times of (1) the fast transform,
(2) constructing the recurrences as 8 banded-block-banded matrices, and (3) applying the matrices

the coefficients of the Laplacian in the basis P
(2,2,2)
n,k in an optimal complexity of

O(N) = O(d2) operations, where d is the polynomial degree and N = d(d + 1)/2
is the total number of degrees of freedom.

For example, the Laplacian of f (x, y) = cos(nxy/40) can be computed by
first approximating f on the unit right-angled triangle to within machine precision
by a polynomial, and then employing various recurrence relationships to calculate
its Laplacian (Fig. 2). To do this efficiently, we store the recurrence relations
as banded-block-banded matrices to take advantage of fast banded matrix-vector
multiplication.
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6 Conclusion

We introduce ladder operators for systematically deriving sparse recurrence rela-
tions for differentiation, conversion, and multiplication of Jacobi and orthogonal
polynomials on the triangle. We use these recurrences to efficiently apply partial
differential operators, in particular for calculating Laplacians. The importance of
these relationships is that they allow general linear partial differential operators with
polynomial coefficients to be represented as sparse operators acting on orthogonal
polynomial expansions. This application will be the topic of a subsequent paper.
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Greedy Kernel Methods for Center
Manifold Approximation

Bernard Haasdonk, Boumediene Hamzi, Gabriele Santin,
and Dominik Wittwar

1 Introduction

Center manifold theory plays an important role in the study of the stability of
dynamical systems when the equilibrium point is not hyperbolic. It isolates the
complicated asymptotic behavior by locating the center manifold which is an
invariant manifold tangent to the subspace spanned by the eigenspace of eigenvalues
on the imaginary axis. Then, the dynamics of the original system will be essentially
determined by the restriction of this dynamics on the center manifold since the local
dynamic behavior “transverse” to this invariant manifold is relatively simple as it
corresponds to the flows in the local stable (and unstable) manifolds. In practice,
one does not compute the center manifold and its dynamics exactly since this
requires the resolution of a quasilinear partial differential equation which is not
easily solvable. In most cases of interest, an approximation of degree two or three
of the solution is sufficient. Then, the reduced dynamics on the center manifold can
be determined, its stability can be studied and then conclusions about the stability
of the original system can be obtained [1, 3, 4, 6, 8].

In this article, we use greedy kernel methods to construct a data-based approx-
imation of the center manifold. The present work is a preliminary study that is
intended to introduce our concept and algorithm, and to test it on some examples.
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2 Background

We consider a large dimensional dynamical system

ẋ = f (x), x ∈ D, (1)

where f : D → R
n is a continuously differentiable function over the domain

D ⊂ R
n such that 0 ∈ D. We are interested in the study of the behavior of the

system around an equilibrium point x ∈ D, i.e., f (x) = 0, possibly analyzing a
smaller dimensional system.

Without loss of generality, we may assume that the equilibrium is x = 0, and,
letting L = ∂ f

∂ x
(x)|x=0, we can rewrite (1) as

ẋ = f (x) = Lx +N(x),

with a suitable nonlinear component N , and denote as σR(L) the set of real parts of
the eigenvalues of L. A classical result relates the stability of the equilibrium with
the spectrum of L, and in particular it is known that if L has all its eigenvalues with
negative real parts, i.e., σR(L) ⊂ R<0, then the origin is asymptotically stable, and
if L has some eigenvalues with positive real parts, then the origin is unstable. If
instead σR(L) ⊂ R≤0, the linearization fails to determine the stability properties of
the origin, and thus the analysis of this situation requires to employ additional tools.

In this case, we can first use a linear change of coordinates to separate the zero
and the negative eigenvalues, i.e., we can rewrite (1) as

ẋ =L1x +N1(x, y)

ẏ =L2y +N2(x, y) (2)

where L1 ∈ R
d×d is such that σR(L1) = {0} and L2 ∈ R

m×m with m := n − d

is such that σR(L2) ⊂ R<0. The nonlinear functions N1 : Rd × R
m → R

d and
N2 : Rd × R

m → R
m are continuously differentiable. Intuitively, we expect the

stability of the equilibrium to only depend on the nonlinear term N1(x, y). This
intuition turns out to be correct, and indeed it can be properly formalized by means
of the center manifold theorem.

We start by recalling a sufficient condition for the existence of a center manifold.

Theorem 1 ([1]) If N1 and N2 are twice continuously differentiable and are such
that

Ni(0, 0) = 0,
∂Ni

∂x
(0, 0) = 0,

Ni

∂y
(0, 0) = 0, i = 1, 2,

and if the eigenvalues of L1 have zero real parts, and all the eigenvalues of L2 have
negative real parts, then there exists a neighbourhood Ω ⊂ R

d of the origin 0 ∈ R
d
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and a center manifold h : Ω → R
m for (2), i.e., y = h(x) is an invariant manifold

for (2),1 h is smooth, and

h(0) = 0, Dh(0) = 0. (3)

Under the assumptions of this theorem, using (2) we deduce that h satisfies the PDE

L2h(x)+ N2(x, h(x)) = Dh(x)
(
L1x +N1(x, h(x))

)
, (4)

and the following center manifold theorem ensures that there are smooth solutions
to this PDE. Moreover, it also allows to deduce the stability of the origin of the full
order system (2) from the stability of the origin of a reduced order system called the
center dynamics.

Theorem 2 (Center Manifold Theorem [1]) The equilibria x = 0, y = 0 of the
original dynamics is locally asymptotically stable (resp. unstable) if and only if the
equilibrium x = 0 of the center dynamics (dynamics on the center manifold)

ẋ = L1x +N1(x, h(x)), (5)

is locally asymptotically stable (resp. unstable).

In particular, this result guarantees that, after solving the PDE (4), the problem
of analyzing the stability properties of the system (2) reduces to analyzing the
nonlinear stability of the lower dimensional system (5). This second problem is of
smaller dimension and thus, provided the knowledge of h, the approach is attractive
to obtain information on the system (1) via a reduced model.

Moreover, we remark that an exact knowledge of h is not required for this
purpose, i.e., it is sufficient to have an approximate solution of the PDE (4). Indeed,
it is frequently sufficient to compute only the low degree terms of the Taylor series
expansion of h around x = 0, i.e., if (·)[k] is the degree k part of the Taylor series of
h, the approximation

h(x) ≈ h[1]x + h[2](x)+ h[3](x)+ . . .+ h[d−1](x) (6)

is sufficient to obtain an approximation of the dynamics of order εd as ‖x‖ ≤ ε.
The approximation (6) can be obtained by coefficient comparison, thus rewriting

1A differentiable manifold M is said to be invariant under the flow of a vector field X if for x ∈M,
Ft(x) ∈M for small t > 0, where Ft(x) is the flow of X.
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the PDE (4) as a set of algebraic equations as

L2h
[1] = h[1]L1

L2h
[2](x)+N

[2]
2 (x, h[1](x)) = ∂h[2]

∂x
(x)

(
L1x1 + N

[2]
1 (x, h[1](x))

)

L2h
[3](x)+

(
N2(x, h

[2](x))
)[2] = ∂h[2]

∂x
(x)

(
L1x +

(
N1(x, h

[2](x))
)[2])

. . . .

We remark that this methodology is valid for parameterized dynamical systems and
is used to study the stability of dynamical systems with bifurcations.

Nevertheless, even this approximated knowledge of h can be difficult to obtain in
practice for a general ODE. To overcome this limitation, and since an approximated
knowledge of the manifold is sufficient, our goal in this paper is to find a data-
based approximation of the center manifold. This approximation is based solely on
the knowledge of the splitting (1) and on the numerical computation of a set of
trajectories of the system, and it provides an approximation of h which can be used
to study the system stability.

3 Kernel Approximation

We want to build a surrogate model sh : Ω → R
m which approximates the center

manifold h on a suitable set Ω ⊂ R
d , in the sense that sh(x) ≈ h(x) for all x ∈ Ω .

This model is constructed in a data-based way, i.e., we assume some knowledge of
the map h on a finite set of input parameters, or training data. In practice, such values
are computed from high-fidelity numerical approximations, which will be discussed
in detail in the following.

The surrogate is based on kernel approximation, which allows the use of scattered
data, i.e., we do not require any grid structure on the set of training data. Moreover,
since the unknown function h is vector-valued, we employ here matrix-valued
kernels. Details on kernel-based approximation can be found e.g. in [9], and the
extension to the vectorial case is detailed e.g. in [5, 10]. We recall here only that a
positive definite matrix-valued kernel on Ω is a function K : Ω × Ω → R

m×m
such that K(x, y) = K(y, x)T for all x, y ∈ Ω and [K(xi, xj )]Ni,j=1 ∈ R

mN×mN is
positive semidefinite for any set {x1, . . . , xN } ⊂ Ω of pairwise distinct points, for
all N ∈ N. Associated to a positive definite kernel there is a unique Hilbert space
H of functions Ω → R

m, named native space, where the kernel is reproducing,
meaning that K(·, x)α is the Riesz representer of the directional point evaluation
δαx (f ) := αT f (x), for all α ∈ R

m, x ∈ Ω .
We consider here a twice continuously differentiable matrix-valued kernel k on

Ω , and we use a specific functional formulation for our approximation and a specific
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cost function, in order to construct a surrogate that is well suited for the particular
approximation task.

In detail, the approximant takes the form

sh(x) =
n1∑

i=1

K(x, x
(1)
i )αi +

n2∑

j=1

m∑

i=1

∂
(2)
i K(x, x

(2)
j )βi,j ,

with centers x
(1)
i ∈ X(1) =

{
x
(1)
1 , . . . , x

(1)
n1

}
, x

(2)
j ∈ X(2) =

{
x
(2)
1 , . . . , x

(2)
n2

}

and coefficient vectors αi, βi,j ∈ R
m. Here the superscript ∂(2) denotes that the

derivative with regards to the second kernel component is taken.
Subsequently, we assume to have a sufficient amount of data XN∗ =

{x1, . . . , xN∗ } and YN∗ = {y1, . . . , yN∗ } which, for example, is generated by
running a numerical scheme to compute discrete trajectories for different initial
values (x0, y0). For this step, we need to assume that the variable splitting (2) is
known in advance. Note that this is not a severe restriction, as for a general ODE (1)
the required state transformation can be determined by eigenvalue decomposition
of L.

Observe that we do not know if a data pair (xi, yi) lies on the center manifold,
i.e. if yi = h(xi) holds. We only know that the data converges asymptotically to the
center manifold as xi → 0. Thus, an interpolation-based surrogate which merely
interpolates the data on a given subset X ⊂ XN∗ seems ill-suited for our purposes.
Instead we consider another set of conditions to define the approximant. First, we
still require the conditions in (3) to be satisfied by our approximation. Moreover,
for the given subsets X = {x1, . . . , xN } and Y = {y1, . . . , yN }, we compute
our approximant by minimizing the following functional J : H → R under the
constraint s(0) = 0,Ds(0) = 0:

J (s) := ‖s‖2
H +

N∑

i=1

(s(xi)− yi)
T ωi(s(xi)− yi). (7)

Here ωi ∈ R
m×m is a positive definite weight matrix. It can be shown that (7) has a

unique minimizer sh (see [11]). In particular sh and its derivative Dsh have the form

sh(x) =
N+1∑

i=1

K(x, xi)αi +
m∑

i=1

∂
(2)
i K(x, 0)βi, (8)

Dsh(x) =
N+1∑

i=1

D(1)K(x, xi)αi +
m∑

i=1

D(1)∂
(2)
i K(x, 0)βi,
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where we set xN+1 := 0. The coefficient vectors αi, βi can be computed by solving
the system

(
A+W B

BT C

)(
α

β

)
=
(

Y

Z

)
, (9)

with

A := (
K(xi, xj )

)
i,j
∈ R

m(N+1)×m(N+1),

W := diag
(
ω−1

1 , . . . , ω−1
N , 0

)
∈ R

m(N+1)×m(N+1),

B :=
(
∂
(2)
j K(xi, 0)

)

i,j
∈ R

m(N+1)×m2
,

C :=
(
∂
(1)
i ∂

(2)
j k(0, 0)

)

i,j
∈ R

m2×m2
,

Y := (yT1 , . . . , yTn , 0)T ∈ R
m(N+1),

Z := 0 ∈ R
m2×m.

The weight matrices ωi can either be chosen manually, or a regularizing function
r : Ω → R

m×m can be prescribed such that ωi = r(xi) is symmetric and positive
definite. In our numerical examples in Sect. 4 we chose a constant regularization
function, i.e.

ωi = r(xi) = λIm

for some λ > 0. However, one might consider a more general approach, where the
weight increases as the data tends to the origin, i.e. ωi " ωj if ‖xi‖ ≤ ‖xj‖.

3.1 Greedy Approximation

If the technique of the previous section is used as it is, the surrogate (8) is given by
an expansion with N∗ terms, where N∗ is the number of points in the training set.
Therefore, the model evaluation might not be efficient enough if the model is built
using a too large dataset. Furthermore, the computation of the coefficients in (8)
requires the solution of the linear system (9), whose size again scales with the size
of the training set, and which can be severely ill-conditioned for non well-placed
points.

To mitigate both problems, we employ an algorithm that aims at selecting small
subsets XN , YN of points such that the surrogate computed with these sets is a
sufficiently good approximation of the one which uses the full sets. The algorithm
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selects the points in a greedy way, i.e., one point at a time is selected and added to
the current training set. In this way, it is possible to identify a good set without the
need to solve a nearly infeasible combinatorial problem.

The selection is performed using the P -greedy method of [2] applied to the kernel
K , such that the set of points is selected before the computation of the surrogate.
The number of points, and therefore the expansion size and evaluation speed, is
depending on a prescribed target accuracy εtol > 0. For details on the method
implementation and its convergence properties we refer to [7].

4 Numerical Examples

We test now our method on three different examples. In each of them, we specify
the setting and the parameters used to build the surrogate and visualize our
approximation to the center manifold. Additionally, we compute the pointwise
residual

r(x) = Dsh(x)
(
L1x +N1(x, sh(x))

)− (
L2sh(x)+N2(x, sh(x))

)
,

which measures how well the surrogate sh satisfies the ODE (4).
In all the three examples, the greedy algorithm is used to select a suitable subset

of the points, and in all cases the procedure is stopped with a prescribed εtol. In the
first two examples we set εtol := 10−15, while εtol := 10−10 is used in the last one.

4.1 Example 1

We consider the 2-dimensional system

ẋ = L1x +N1(x, y) = 0+ xy

ẏ = L2y +N2(x, y) = −y + x2.
(10)

We generate the training data by solving (10) with an implicit Euler scheme for
initial time t0 = 0, final time T = 1000 and with the time step Δt = 0.1. We
initiate the numerical procedure with initial values (x0, y0) ∈ {±0.8} × {±0.8} and
store the resulting data pairs in X and Y after discarding all data whose x-values are
not contained in the neighborhood [−0.1, 0.1] which results in N∗ = 38,248 data
pairs.

We run the greedy algorithm for the kernels k1(x, y) :=
(
1+ xy/2

)4 and

k2(x, y) = e−(x−y)2/2. This results in the sets X1 and X2 which contain 14 and
6 points, respectively. The corresponding approximations s1 and s2 for the constant
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Fig. 1 Approximations s1
and s2 of the center manifold
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Fig. 2 Residuals r1 and r2 of
the center manifold
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regularization function r ≡ 10−10 are plotted in Fig. 1 over the domain [−0.1, 0.1].
The pointwise residual is depicted in Fig. 2.

4.2 Example 2

We consider the 2-dimensional system

ẋ = L1x + N1(x, y) = 0− xy

ẏ = L2y + N2(x, y) = −y + x2 − 2y2.
(11)

The training data is generated the same way as in Example 1. We again use the
kernels k1 and k2. The greedy algorithm gives sets X1 and X2 of size 12 and 6,
respectively. The evaluation of the approximations s1 and s2 over the neighborhood
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Fig. 3 Approximations s1
and s2 of the center manifold
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Fig. 4 Residuals r1 and r2 of
the center manifold
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[−0.1, 0.1] can be seen in Fig. 3, while the respective pointwise residuals are plotted
in Fig. 4.

4.3 Example 3

We consider the (2+ 1)-dimensional system

ẋ = L1x +N1(x, y) =
(

0 −1
1 0

)(
x1

x2

)
+
(
x1y

x2y

)

ẏ = L2y +N2(x, y) = −y − x2
1 − x2

2 + y2.

(12)

We generate the training data in a similar fashion as before. We again use the
implicit Euler scheme with start time t = 0, final time T = 1000 and with time step
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Fig. 5 Approximations s1 and s2 of the center manifold and corresponding residuals r1 and r2

Δt = 0.1. The Euler method is performed for initial data (x0, y0) ∈ {±0.8}3 and the
resulting trajectories are stored in X and Y , where only data with x ∈ [−0.1, 0.1]2
was considered; this leads to N∗ = 78,796 data pairs. We use the kernels k1(x, y) =
(1 + xT y/2)4 and k2(x, y) = e−‖x−y‖22/2, and the greedy-selected sets have the
size 21 (for k1) and 25 (for k2), respectively. The approximations s1, s2 and their
corresponding residuals r1 and r2 computed over the domain [−0.1, 0.1]2. The
results can be seen in Fig. 5.

We remark that in all the three experiments both kernels give comparable results
in terms of error magnitude, and they both provide a good approximation of the
manifold.
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5 Conclusions

In this paper we introduced a novel algorithm to approximate the center manifold of
a given ODE using a data-based surrogate.

This algorithm computes an approximation of the manifold from a set of
numerical trajectories with different initial data. It is based on kernel methods,
which allow the use of the scattered data generated by these simulations as
training points. Moreover, an application-specific ansatz and cost function have been
employed in order to enforce suitable properties on the surrogate.

Several numerical experiments suggested that the present method can reach a
significant accuracy, and that it has the potential to be used as an effective model
reduction technique. It seems promising to apply this approach to high dimensional
systems as the approximation technique straightforwardly can be extended and is
less prone to the curse of dimensionality than grid-based approximation techniques.
An interesting extension would consist of determining the decomposition (2) in a
data-based fashion by suitable processing of the trajectory data.
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An Adaptive Error Inhibiting Block
One-Step Method for Ordinary
Differential Equations

Jiaxi Gu and Jae-Hun Jung

1 Introduction

General linear methods have been extensively studied for solving ODEs. Among the
large family of general linear methods the diagonally implicit multistage integration
methods (DIMSIMs) in [1] are the special cases, which exhibit considerable
potential for efficient implementation, providing the global error of the same order
as the local truncation error. In [2], it was demonstrated that finite difference
methods for PDEs can be constructed such that their convergence rates, or the order
of their global errors, are higher than the order of the truncation errors. Following
this idea, Ditkowski and Gottlieb devised the error inhibiting strategy in [3] by
inhibiting the lowest order term in the truncation error from accumulating over time
and thus showed that the global error of the scheme is one order higher than the local
truncation error. The form of the error inhibiting scheme is inspired by the work of
[7], where a block of s new step values is obtained at each step. The key idea of this
method is to construct a coefficient matrix that has the null space where the local
truncation error resides.

In this work, we further improved the original error inhibiting method
by introducing an additional free parameter used in the radial basis function
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(RBF) approximations. The main idea of the proposed method is to adopt
the free parameter in the reconstruction of the error inhibiting method and
to control it for further possible error cancellations. This results in a higher
order of convergence than the original method. One advantage is that the
proposed method does not need any additional conditions, so it is efficient to
implement.

The next section will review the explicit error inhibiting block one-step method.
In Sect. 3, we will explain the RBF interpolation. In Sect. 4, we show how the new
method can be derived followed by Sect. 5 where numerical results are provided
verifying that the convergence rate of the proposed method is increased by one
order. A brief conclusion and an outline of our future research are presented in
Sect. 6.

2 Error Inhibiting Block One-Step Method

Consider the initial value problem for the first-order ODE below

u′(t) = f (t, u(t)), t � a

u(a) = ua
(1)

where we assume f (t, u) is uniformly Lipschitz continuous in u and continuous in
t . We choose a value h for the step size and set tn = a + nh a discrete sequence in
the time domain. Denote the numerical approximation of the solution u(tn) by vn.

Define the solution vector Un by

Un =
[
un+ s−1

s
, · · · , un+ 1

s
, un

]T
,

where u
n+ j

s
= u(tn+jh/s) is the exact solution at t = tn + jh

s
for j = 0, · · · , s − 1.

The corresponding approximation vector Vn is defined as

Vn =
[
vn+ s−1

s
, · · · , vn+ 1

s
, vn

]T
.

In [3], the scheme is formulated as

Vn+1 = QVn (2)

where the operator Q is represented by the following

Q = A+ hBf
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and A,B ∈ R
s×s . There are 4 sufficient conditions imposed on the matrices A and

B in order to be error inhibiting:

1. rank(A) = 1.
2. The only non-zero eigenvalue of A is 1 and its corresponding eigenvector is

[1, · · · , 1]T .

3. A can be diagonalized.
4. The matrices A and B are constructed such that when the local truncation error

is multiplied by the discrete solution operator, we have

||Qτν || � O(h) · ||τν ||.

This is accomplished by requiring that the leading order term of the local
truncation error is in the eigenspace of A associated with the zero eigenvalue.

We derive those matrices of A and B with symbolic computation. As an example
of the derivation of the error inhibiting method, we consider the construction of the
scheme with s = 2. The solution vector is then

Un = [un+1/2, un]T ,

and the corresponding approximation vector is given by

Vn = [vn+1/2, vn]T .

In order to satisfy those conditions listed above we first select

A =
[

1− υ υ

1− υ υ

]
, (3)

which can be diagonalized as

A =
[

1− υ υ

1− υ υ

]
=
[
υ − 1 υ

υ − 1 υ − 1

][
1 0
0 0

][
−1 υ

υ−1
1 −1

]
. (4)

Then conditions 1, 2 and 3 are satisfied. Further suppose that

B =
[
b11 b12

b21 b22

]
. (5)
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Then

Vn+1 =
[

1− υ υ

1− υ υ

]
Vn + h

[
b11 b12

b21 b22

][
fn+1/2

fn

]
(6)

where fn+1/2 = f (tn+1/2, vn+1/2) and fn = f (tn, vn). The components of Vn+1
are

vn+3/2 = (1− υ)vn+1/2 + υvn + h(b11fn+1/2 + b12fn),

vn+1 = (1− υ)vn+1/2 + υvn + h(b21fn+1/2 + b22fn).

We write each difference equation in the form of error normalized by the step
size and then insert the exact solutions to the ODE into the difference equation.
Expanding un+3/2, un+1 and un+1/2 around t = tn in Taylor series gives the local
truncation error

τ n = (τn+1/2, τn)
T ,

where

τn+1/2 = 1

2
(2− 2b11 − 2b12 + υ)u′n +

1

8
(8− 4b11 + υ)u′′nh

+ 1

48
(26− 6b11 + υ)u(3)n h2 +O(h3),

(7)

τn = 1

2
(1− 2b21 − 2b22 + υ)u′n +

1

8
(3− 4b21 + υ)u′′nh

+ 1

48
(7− 6b21 + υ)u(3)n h2 +O(h3). (8)

Vanishing the coefficients of the constant term and the term h in (7) and (8), and
equating the quotient of the coefficient of the terms h2 in (7) and (8) to υ

υ−1 , the
condition 4 is satisfied.

Finally we have the desired scheme as in [3]

Vn+1 = 1

6

[
−1 7
−1 7

]
Vn + h

24

[
55 −17
25 1

][
fn+1/2

fn

]
, (9)

and correspondingly the local truncation error is 2nd order convergent as expected

τn = 23

576

[
7
1

]
u(3)n h2 +O(h3). (10)
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3 RBF Interpolation

Now we briefly explain the RBF interpolation in one dimension. Suppose that for
a domain � ⊂ R, a data set {(xi, ui)}Ni=0 is given where ui is the value of the
unknown function u(x) at x = xi ∈ �. We use the RBFs φ : � → R defined by
φi(x) = φ(|x − xi |, εi), where |x − xi| is the distance between x and xi and εi is
a free parameter. The reconstruction of a function, u(x), is then made by a linear
combination of RBFs

IRN u(x) =
N∑

i=0

λiφ(|x − xi|, εi ), (11)

where λi are the expansion coefficients to be determined. Using the interpolation
condition IRN u(xi) = ui, i = 0, · · · , N , we could find the expansion coefficients λi
by solving the linear system

⎡

⎢⎢⎢⎢⎣

φ(|x0 − x0|, ε0) φ(|x0 − x1|, ε1) · · · φ(|x0 − xN |, εN )

φ(|x1 − x0|, ε0) φ(|x1 − x1|, ε1) · · · φ(|x1 − xN |, εN )
...

...
...

φ(|xN − x0|, ε0) φ(|xN − x1|, ε1) · · · φ(|xN − xN |, εN )

⎤

⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎣

λ0

λ1
...

λN

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

u0

u1
...

uN

⎤

⎥⎥⎥⎥⎦
.

(12)

If we choose the multiquadric RBF with all the free parameters equal, then the
interpolation matrix, A, becomes a symmetric matrix with all diagonal entries 1,

A =

⎡
⎢⎢⎢⎢⎣

1
√

1+ ε2(x0 − x1)2 · · · √1+ ε2(x0 − xN)2
√

1+ ε2(x1 − x0)2 1 · · · √1+ ε2(x1 − xN)2

...
...

...√
1+ ε2(xN − x0)2

√
1+ ε2(xN − x1)2 · · · 1

⎤
⎥⎥⎥⎥⎦
.

(13)

Consider the case of three equally spaced nodes x0, x1, x2 with x0 < x1 < x2.
Let h be the grid spacing. Then the linear system becomes

⎡

⎢⎣
1

√
1+ ε2h2

√
1+ 4ε2h2√

1+ ε2h2 1
√

1+ ε2h2√
1+ 4ε2h2

√
1+ ε2h2 1

⎤

⎥⎦ ·
⎡

⎢⎣
λ0

λ1

λ2

⎤

⎥⎦ =
⎡

⎢⎣
u0

u1

u2

⎤

⎥⎦ . (14)
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By the closed-form expression for the RBF interpolant in [4],

IR2 u(x) =
2∑

i=0

ui

det(A)
det(Ai(x)). (15)

where Ai(x), a 3× 3 matrix, is obtained by replacing the ith row of A with the row
vector

[√
1+ ε2(x − x0)2

√
1+ ε2(x − x1)2

√
1+ ε2(x − x2)2

]
.

Differentiating the interpolant, we obtain the first-order derivative

d

dx
IR2 u(x) =

2∑

i=0

ui

det(A)
· d

dx
det(Ai(x)). (16)

We then estimate the derivative of u at x = x1 as we do in polynomial interpolation
for the central difference formula:

d

dx
IR2 u(x1) =

√
1+ 4ε2h2 + 1

4h
√

1+ ε2h2
(u2 − u0). (17)

By employing the Taylor expansion of the quotient on the right-hand side of (17),
we have

d

dx
IR2 u(x1) =

[
1

2h
+ ε2 h

4
+O(h3)

]
(u2 − u0). (18)

The main feature of the RBF method is that it contains a free parameter, ε, which
we could make use of to further inhibit the errors. In the following section, we will
show that using the parameter ε coupled with hp terms, where p � 2, we can
increase the order of local truncation error and further promote the order of global
error by adopting the error inhibiting scheme.

4 Construction of the Adaptive Error Inhibiting Scheme

Following the main feature of the RBF method explained in the preceding section,
we try to establish a similar explicit block one-step scheme that provides a higher
order of convergence by adding one more block of the free parameters ε1 and ε2
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coupled with hp term. With p = 3, we have

Vn+1 =
[

1− υ υ

1− υ υ

]
Vn + h

[
b11 b12

b21 b22

][
fn+1/2

fn

]
+ h3

[
0 ε1

0 ε2

][
fn+1/2

fn

]
. (19)

We measure the one-step error normalized by the step size as in Sect. 2. Expanding
un+3/2, un+1 and un+1/2 around t = tn in Taylor series again yields the local
truncation error

τn = [τn+1/2, τn]T ,

where

τn+1/2 = 1

2
(2− 2b11 − 2b12 + υ)u′n +

1

8
(8− 4b11 + υ)u′′nh +

(
−ε1u

′
n +

1

48
(26− 6b11 + υ)u

(3)
n

)
h2 + 1

384
(80− 8b11 + υ)u

(4)
n h3 +O(h4),

(20)

τn = 1

2
(1− 2b21 − 2b22 + υ)u′n +

1

8
(3− 4b21 + υ)u′′nh +

(
−ε2u

′
n +

1

48
(7− 6b21 + υ)u

(3)
n

)
h2 + 1

384
(15− 8b21 + υ)u

(4)
n h3 +O(h4).

(21)

Annihilating the first two terms in (20) and (21), and equating the quotient of the
coefficient of the terms h3 in (20) and (21) to υ

υ−1 , we have the scheme

Vn+1 = 1

7

[
−1 8
−1 8

]
Vn + h

28

[
64 −20
29 1

][
fn+1/2

fn

]
+ h3

[
0 ε1

0 ε2

][
fn+1/2

fn

]
.

(22)

We can easily check that the scheme (22) satisfies those four conditions in Sect. 2.
Further annihilating the coefficients of the term h2, we get the optimal values of ε1
and ε2:

ε1 = 47u(3)n

168u′n
, (23)

ε2 = 9u(3)n

224u′n
. (24)
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Our new scheme has the truncation error

τn = 55

2688

[
8
1

]
u(4)n h3 +O(h4). (25)

Note that in our new scheme, we need the value of u
(3)
n at each step. This higher

order derivative can be computed by repeated differentiation of the function f on
the right-hand side of (1) twice. However, we choose to estimate the third-order
derivative. For u′n, we use the given condition from (1), i.e. u′(t) = f (t, u(t)).

For the third-order derivative u
(3)
n , we employ the second-order central difference

formula for f ′′(t, u(t)) at t = tn as

u(3)n = f ′′(tn, un) ≈ 4(fn+1/2 + 2fn − fn−1/2)

h2 , (26)

where fn+1/2, fn and fn−1/2 are given values. For this computation, no additional
conditions are necessary. The truncation error is still third order accurate, O(h3),
as in (25), so by the error inhibiting strategy we end up with a global error that is
O(h4), which will soon be confirmed in the following section.

We conclude this section with a comparison of three methods. For DIMSIM of
type 3,

[
vn+2

vn+1

]
= 1

4

[
7 −3
7 −3

][
vn+1

vn

]
+ h

8

[
9 −7
−3 −3

][
fn+1

fn

]
,

two steps vn and vn+1 are employed to update the step vn+1 and obtain the step
vn+2.
For error inhibiting scheme,

[
vn+3/2

vn+1

]
= 1

6

[
−1 7
−1 7

][
vn+1/2

vn

]
+ h

24

[
55 −17
25 1

][
fn+1/2

fn

]
,

two steps vn and vn+1/2 are involved to generate the next two steps vn+1 and vn+3/2.
For our method (if we utilize (26) and substitute (23), (24) for respective ε1 and ε2
in (22) to avoid the zero denominator),

⎡

⎢⎣
vn+3/2

vn+1

vn+1/2

⎤

⎥⎦ = 1

7

⎡

⎢⎣
−1 8 0
−1 8 0
1 0 0

⎤

⎥⎦

⎡

⎢⎣
vn+1/2

vn

vn−1/2

⎤

⎥⎦+ h

168

⎡

⎢⎣
572 −496 188
201 −48 27

0 0 0

⎤

⎥⎦

⎡

⎢⎣
fn+1/2

fn

fn−1/2

⎤

⎥⎦ ,

we use previous three steps vn−1/2, vn and vn+1/2 to evolve the next two steps vn+1
and vn+3/2. In [5] the stability analysis has been done for the adaptive radial basis
function methods for IVPs and it has been shown that some adaptive methods have a
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better stability condition than the original ones. However, it seems that the adaptive
error inhibiting method is more computationally expensive than the original one
when the approximation of (26) is used.

5 Numerical Results

We start with the nonlinear first-order differential equation used in [3]

u′ = −u2, t � 0

u(0) = 1.
(27)

The exact solution of the example is u(t) = 1/(t+1). The left figure of Fig. 1 shows
the global errors at the time t = 1 versus N , the number of steps, in logarithmic
scale for the type-3 DIMSIM (blue), the original error inhibiting scheme (red) and
our proposed method (green). As seen in the figure, our proposed method is the
most accurate among those three methods and yields high order convergence which
is 4th order. Table 1 shows the convergence with N for (27). The type-3 DIMSIM
yields the 2nd order accuracy, the original error inhibiting scheme yields the 3rd
order accuracy and our proposed method yields the 4th order accuracy.

Next we consider the following problem used in [6] where the solution changes
rapidly between [−2, 2]

u′ = −4t3u2, t � −10

u(−10) = 1/10001.
(28)
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Fig. 1 Global error versus N in logarithmic scale. Left: (27). Right: (28). Blue: DIMSIM
(DIMSIM3) 2nd order. Red: error inhibiting scheme (EIS) 3rd order. Green: our proposed method
(EIS with h3) 4th order
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Table 1 Global error and order of convergence for u′ = −u2 with u(0) = 1

Method N Global error order

DIMSIM type-3 10 6.60E−3

20 1.60E−3 2.0702

40 3.82E−4 2.0402

80 9.41E−5 2.0208

160 2.34E−5 2.0105

320 5.82E−6 2.0053

Error inhibiting scheme 10 2.17E−4

20 2.89E−5 2.9118

40 3.73E−6 2.9536

80 4.74E−7 2.9763

160 5.97E−8 2.9880

320 7.50E−9 2.9940

Error inhibiting scheme with h3 term 10 2.71E−5

20 2.24E−6 3.5935

40 1.64E−7 3.7781

80 1.11E−8 3.8833

160 7.22E−10 3.9400

320 4.61E−11 3.9698

The exact solution is u(t) = 1/(t4 + 1). The right figure of Fig. 1 shows the global
errors at t = 0 versus N in logarithmic scale for the type-3 DIMSIM (blue), the
original error inhibiting method (red) and our proposed method (green). We verify
again that our proposed method is indeed the most accurate and yields the highest
order of convergence. Table 2 shows the convergence with N for (28). Although
the type-3 DIMSIM does not reveal the 2nd order accuracy in the beginning, it
eventually exhibits the order of accuracy as expected. The original error inhibiting
scheme is 3rd order accurate and our proposed method 4th order accurate.

6 Conclusions

In this note, we modified and improved the original error inhibiting block one-
step method proposed in [3] by introducing a free parameter. By exploiting the
parameter, the local truncation error is further reduced resulting in higher order of
the global error. It is numerically demonstrated that, with the proposed method, the
local truncation error is of the 3rd order and the global error of the 4th order. As
mentioned in Sect. 4, we will investigate the stability of the error inhibiting method
and our proposed method as well as relaxing the fourth constraint in error inhibiting
method in our future research.
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Table 2 Global error and order of convergence for u′ = −4t3u2 with u(−10) = 1/10001

Method N Global error Order

DIMSIM type-3 200 9.05E−1

400 7.24E−1 0.3221

800 4.07E−1 0.8293

1600 1.49E−1 1.4476

3200 4.24E−2 1.8158

6400 1.10E−2 1.9475

Error inhibiting scheme 200 1.86E−1

400 2.80E−2 2.7294

800 3.60E−3 2.9639

1600 4.50E−4 2.9965

3200 5.63E−5 3.0002

6400 7.03E−6 3.0005

Error inhibiting scheme with h3 term 200 1.14E−2

400 6.57E−4 4.1132

800 3.94E−5 4.0620

1600 2.41E−6 4.0307

3200 1.49E−7 4.0123

6400 9.91E−9 3.9122
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Hermite Methods in Time

Rujie Gu and Thomas Hagstrom

1 Introduction

Over the past decade a number of works have appeared which exploit the unique
properties of Hermite-Birkhoff interpolation in space to construct arbitrary-
order discretization methods for hyperbolic [1, 2, 4–7, 10, 14, 16–19] as well
as Schrödinger [3] equations. The precise form of the interpolant in a single cell,
which here we write in one dimension labelled t , is

u(t) ≈ Iu(t) ∈ Π2m+1, t ∈ (tj−1, tj ), (1)

dk

dtk
Iu(t�) = dku

dtk
(t�); k = 0, . . . ,m, � = j − 1, j, (2)

where Π2m+1 denotes the polynomials of degree 2m + 1. (In higher dimensions
one uses a tensor-product cell interpolant based on vertex data consisting of mixed
derivatives of order through m in each Cartesian coordinate.)

In contrast, there has been little work on analogous methods for time dis-
cretization. A recent exception is the manuscript by Liu et al. [15]. They develop
methods for second-order semilinear hyperbolic equations using interpolants of
the form (1)–(2) combined with a reformulation of the evolution problem using
exact solutions of the linear part. They demonstrate excellent long-time perfor-
mance.

The outline of the paper is as follows. In Sect. 2 we list a few properties of
piecewise Hermite-Birkhoff interpolation. In Sect. 3 we construct the time-stepping
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schemes and establish some basic results, with a few numerical experiments
described in Sect. 4.

2 Basic Properties of Hermite-Birkhoff Interpolation

Hermite interpolants have a number of interesting properties which make them very
attractive for the solution of differential equations; see, e.g., [2]. Here we will mainly
use the simplest. Precisely, for t ∈ (tj−1, tj ), the Peano representation of the local
error can be easily derived by noting that e = u−Iu solves the two point boundary
value problem

d2m+2e

dt2m+2
= d2m+2u

dt2m+2
,

dke

dtk
= 0, t = tj−1, tj , k = 0, . . .m. (3)

Thus

e(t) =
∫ tj

tj−1

Kj (t, s)
d2m+2u

dt2m+2
(s)ds, (4)

where the kernel Kj is the Green’s function for (3). Simple scaling arguments
combined with the transformation t = tj−1 + zhj then show that e = O(h2m+2

j )

where hj = tj − tj−1 is the time step. A fundamental feature of piecewise
Hermite interpolation is the following orthogonality property. For any functions
v(t), w(t)

∫ tj

tj−1

dm+1Iv

dtm+1 (t) · d
m+1

(
w −Iw

)

dtm+1 (t)dt = 0, (5)

which in particular implies that interpolation reduces the Hm+1 seminorm.

3 Time-Stepping Methods

We begin by considering the initial value problem for a first-order system ordinary
differential equations:

du

dt
= f (u, t), u(t0) = u0, u(t) ∈ R

d . (6)

Given a discrete time sequence tj > tj−1, j = 1, . . . , N , with time steps hj =
tj − tj−1 we write down the Picard integral formulation of the time evolution over
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a single step

u(tj ) = u(tj−1)+
∫ tj

tj−1

f (u(s), s)ds. (7)

The construction of our time integration formula proceeds in three steps. We denote
by vj the approximation to u(tj ).

1. Given vj−1 and assuming for the moment that vj is known, use the differential
equation to compute m scaled derivatives of its solution, V�(t), satisfying
V�(t�) = v�, � = j, j − 1. Setting

F�(t) = f (V�(t), t), (8)

these are recursively defined by the formula

dkV�

dtk
(t�) = dk−1F�

dtk−1 (t�), k = 0, . . .m. (9)

2. Construct the Hermite-Birkhoff interpolant of this data; that is the polynomial
Pj−1/2(t; vj−1, vj ) of degree 2m+ 1, satisfying

dkPj−1/2

dtk
(t�; vj−1, vj ) = dkV�

dtk
(t�); � = j − 1, j, k = 0, . . . ,m.. (10)

3. Approximate (7) by replacing u(t�) by v� and replacing the integral by a q + 1-
point quadrature rule with f evaluated at the Hermite interpolant:

vj = vj−1 + hj

q∑

k=0

wkf (Pj−1/2(tj,k; vj−1, vj )). (11)

4. Solve (11) for vj . Note that this is a system of d nonlinear equations for any m;
that is, unlike standard implicit Runge–Kutta methods, the size of the nonlinear
system is independent of the order.

We remark that we have not studied in detail the unique solvability of (11) in the
stiff case. In our numerical experiments we used the solution at the current time step
as an initial approximation for Newton iterations and simply accepted the solution
to which the iterates converged.

To emphasize the ideas we write down some specific examples of methods with
m = 1 and m = 2 making the simplifying assumption of autonomy; that is
f = f (u). The derivation of methods of arbitrary order is straightforward and the
formulas can be trivially obtained using software capable of symbolic computations.
To apply them at higher order one must evaluate higher derivatives of f , which is
also possible using automatic differentiation tools [11].
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Example (m = 1) Set

τ = t − tj−1

hj
.

Now the interpolant Pj−1/2(t; vj−1, vj ) is given by:

Pj−1/2(t; vj−1, vj ) =
3∑

k=0

akτ
k, (12)

where

a0 = vj−1, a1 = hjf (vj−1),

a2 = 3
(
vj − vj−1

)− hj
(
2f (vj−1)+ f (vj )

)
, (13)

a3 = −2
(
vj − vj−1

)+ hj
(
f (vj−1)+ f (vj )

)
.

We next introduce a quadrature rule which is exact for polynomials of degree
3. Possible choices include the 2-point Gauss-Legendre (14) rules, or the 3-point
Gauss-Radau (15) or Gauss-Lobatto rules. Note that by using two different rules we
obtain a possible error indicator. Here are the two different methods used below.
Note that the methods are identical if f is linear.

vj = vj−1 + hj

2

(
f
(
Pj−1/2(α−; vj−1, vj )

)+ f
(
Pj−1/2(α+; vj−1, vj )

))
,

(14)

vj = vj−1 + hj

36

(
β+f

(
Pj−1/2(γ−; vj−1, vj )

)+ β−f
(
Pj−1/2(γ+; vj−1, vj )

)

+4f
(
vj
))

, (15)

α± =
(

1± 1√
3

)
, γ± = 4±√6

10
, β± = 16±√6. (16)

A time step is executed by solving the nonlinear system, (14) or (15), for vj .

Example (m = 2) Now we also need the second time derivative of u,

d2u

dt2 =
d

dt
f (u) = J (u)f (u), (17)
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where J (u) is the Jacobian derivative. The Hermite interpolant can now be written:

Pj−1/2(t; vj−1, vj ) =
5∑

k=0

akτ
k, (18)

where

a0 = vj−1, a1 = hjf (vj−1), a2 =
h2
j

2
J (vj−1)f (vj−1), (19)

a3=10
(
vj−vj−1

)
−hj

(
6f (vj−1)+4f (vj )

)
+
h2
j

2

(
−3J (vj−1)f (vj−1)+J (vj )f (vj )

)
,

a4=−15
(
vj−vj−1

)
+hj

(
8f (vj−1)+7f (vj )

)
+
h2
j

2

(
3J (vj−1)f (vj−1)−J (vj )f (vj )

)
,

a5 = 6
(
vj−vj−1

)
−3hj

(
f (vj−1)+f (vj )

)
+
h2
j

2

(
−J (vj−1)f (vj−1)+J (vj )f (vj )

)
.

Again we can now use, for example, the 3-point Gauss-Legendre or 4-point
Gauss-Radau quadrature rules to produce the equation we must solve for vj .

3.1 Stability and Consistency

The consistency of the method is a straightforward consequence of its construction,
and its linear stability properties can also be established.

Theorem 1 Assume that the quadrature rule has positive weights and is exact for
polynomials of degree 2m + 1. Then the implicit Hermite method is A-stable and
accurate of order 2m+ 2.

Proof Assume that f is smooth and that u(t) ∈ C2m+2(0, T ). Using (4), standard
estimates for quadrature errors, and the Picard formula (7) we find for the truncation
error

τj = u(tj )− u(tj−1)

hj
−
∑

k

wkf (Pj−1/2(tj,k; u(tj−1), u(tj ))), (20)

|τj | = 1

hj

⏐⏐⏐⏐⏐⏐

∫ tj

tj−1

f (u(s))ds − hj
∑

k

wkf (Pj−1/2(tj,k; u(tj−1), u(tj )))

⏐⏐⏐⏐⏐⏐
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≤ 1

hj

⏐⏐⏐⏐⏐⏐

∫ tj

tj−1

f (u(s))ds − hj
∑

k

wkf (u(tj,k))

⏐⏐⏐⏐⏐⏐

+
⏐⏐⏐⏐⏐⏐

∑

k

wk

(
f (u(tj,k))− f (Pj−1/2(tj,k; u(tj−1), u(tj )))

)
⏐⏐⏐⏐⏐⏐

≤ Ch2m+2
j . (21)

Now consider the Dahlquist test problem, f (u) = λu. In this case all quadrature
rules which are exact for the Hermite interpolant produce the same method. As
interpolation is linear, we have that the coefficients of the interpolant are linear
combinations hkj λ

kvj−1 and hkj λ
kvj , k = 0, . . .m. The Picard integral then

increases the powers of hjλ by one so that the implicit system (11) can be rearranged
to:

Q+(hj λ)vj = Q−(hj λ)vj−1 ⇒ vj = Q−(hj λ)
Q+(hj λ)

vj−1, (22)

where Q±(hj λ) are polynomials of degree m+ 1. Consistency implies

ehj λ = Q−(hjλ)
Q+(hjλ)

+O
(
(hjλ)

2m+3
)
. (23)

The only rational function of the given degree with this accuracy is the diagonal
Padé approximant. We thus conclude that our methods are A-stable [12].#

4 Numerical Experiments

Our first experiments treat standard problems from the ode literature and are
restricted to the fourth and sixth order methods described above with either Gauss-
Legendre or Gauss-Radau quadrature. Our practical implementations employ the
classical Aitken algorithm adapted to Hermite interpolation to directly evaluate
Pj−1/2(tj,k, vj−1, vj ) and solve (11) using Newton’s method with the Jacobian of
the implicit system approximated by finite differences. For adaptive computations
we

1. Compute vj using the Gauss-Radau-based formulas,
2. Compute a residual, ρj , by substituting vj into the Gauss-Legendre-based

formulas.
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We then adjust the time step by the simple rule

hj+1 =
(

tol

ρj

)1/(2m+3)

hj , (24)

while also imposing a minimum time step.
Our final experiment examines the use of the method for evolving spectral

discretizations of initial-boundary value problems for the Schrödinger equation.

4.1 Arentsorf Orbit

We first consider the problem of computing a periodic solutions of the restricted
three-body problem which we reformulate as a first-order system of four variables:

d2y1

dt2 = y1 + 2
dy2

dt
− (1− μ)

y1 + μ
(
(y1 + μ)2 + y2

2

)3/2 − μ
y1 − (1− μ)

(
(y1 − (1− μ))2 + y2

2

)3/2 ,

d2y2

dt2 = y2 − 2
dy1

dt
− (1− μ)

y2
(
(y1 + μ)2 + y2

2

)3/2 − μ
y2

(
(y1 − (1− μ))2 + y2

2

)3/2 ,

μ = 0.012277471, y1(0) = .994,
dy1

dt
(0) = y2(0) = 0,

dy2

dt
(0) = −2.01585106379082 . . . , T = 17.06521656015796 . . . .

(For graphs of the solution see [13, Ch. II].)
We note that this problem is not considered to be stiff. The main difficulty is

a need for very small time steps when the orbits approach the singularities of
f . However, we use it to verify convergence at the design order when (woefully
inefficient) uniform time steps are employed and to test the utility of our naive time
step adaptivity algorithm.

Results for fixed (small) time steps are displayed in Table 1. We observe
that convergence is at design order and that the results for the two quadrature
formulas are comparable, though the fourth order Radau method is somewhat
more accurate than Gauss-Legendre with roles reversed at sixth order. The sixth
order methods are more accurate with larger time steps. The error is simply√
(y1(T )− y1(0))2 + (y2(T )− y2(0))2.
Results for adaptive computations with m = 2 are shown in Table 2. Obviously,

the adaptive methods lead to a very significant reduction in the number of time
steps; an accuracy of 10−7 is achieved with 264 steps of the adaptive method



126 R. Gu and T. Hagstrom

T
ab

le
1

C
on

ve
rg

en
ce

w
it

h
fix

ed
ti

m
e

st
ep

s
fo

r
th

e
A

re
nt

so
rf

or
bi

tp
ro

bl
em

G
au

ss
-L

eg
en

dr
e
m
=

1
G

au
ss

-R
ad

au
m
=

1
G

au
ss

-L
eg

en
dr

e
m
=

2
G

au
ss

-R
ad

au
m
=

2

h
E

rr
or

R
at

e
h

E
rr

or
R

at
e

h
E

rr
or

R
at

e
h

E
rr

or
R

at
e

5.
69

(−
4)

2.
30

(−
4)

5.
69

(−
4)

9.
65

(−
5)

8.
53

(−
4)

2.
98

(−
6)

8.
53

(−
4)

4.
46

(−
6)

4.
88

(−
4)

1.
24

(−
4)

4.
01

4.
88

(−
4)

5.
21

(−
5)

4.
00

6.
83

(−
4)

7.
82

(−
7)

6.
00

6.
83

(−
4)

1.
16

(−
6)

6.
03

4.
27

(−
4)

7.
26

(−
5)

4.
01

4.
27

(−
4)

3.
05

(−
5)

4.
00

5.
69

(−
4)

2.
62

(−
7)

6.
00

5.
69

(−
4)

3.
88

(−
7)

6.
02

3.
79

(−
4)

4.
53

(−
5)

4.
01

3.
79

(−
4)

1.
91

(−
5)

4.
00

4.
88

(−
4)

1.
04

(−
7)

6.
00

4.
88

(−
4)

1.
53

(−
7)

6.
01

3.
41

(−
4)

2.
97

(−
5)

4.
01

3.
41

(−
4)

1.
25

(−
5)

4.
00

4.
27

(−
4)

4.
66

(−
8)

6.
00

4.
27

(−
4)

6.
87

(−
8)

6.
01

3.
10

(−
4)

2.
03

(−
5)

4.
00

3.
10

(−
4)

8.
54

(−
6)

4.
00

3.
79

(−
4)

2.
30

(−
8)

6.
00

3.
79

(−
4)

3.
39

(−
8)

6.
01

2.
84

(−
4)

1.
43

(−
5)

4.
00

2.
84

(−
4)

6.
03

(−
6)

4.
00

3.
41

(−
4)

1.
22

(−
8)

6.
00

3.
41

(−
4)

1.
80

(−
8)

6.
00



Hermite Methods in Time 127

Table 2 Time steps and
error as a function of
tolerance for adaptive
solutions of the Arentsorf
problem with m = 2

Tol Error Steps

10−6 8.21(−3) 65

10−8 1.85(−5) 136

10−10 1.15(−8) 264
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10-2 time steps - tol=1.0e-08

Fig. 1 Solution and time step history for the van der Pol oscillator with tolerance 10−8

while 35,000 uniform steps are required. Due to the sensitivity of the problem, the
global error is much larger than the error tolerance, but is reduced in proportion to
it.

4.2 Van der Pol Oscillator

Our second example is the van der Pol oscillator problem, which again we rewrite
as a first order system:

d2y

dt2
= ε−1

(
(1− y2)

dy

dt
− y

)
, (25)

ε = 10−6, y(0) = 2,
dy

dt
(0) = 0.

We solve up to T = 11 using the adaptive method with m = 2. We plot the solution
and the time step histories for a tolerance of 10−10 in Fig. 1. Note that very small
steps are needed to resolve the fast transitions, while the problem is quite stiff in the
regions where y is nearly constant. Plots for the other tolerances tested, 10−6 and
10−10, are similar though the number of time steps required varies.
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Fig. 2 Left: Relative errors for NLS with various time steps and m = 3. Right: Relative errors for
NLS with h = .01 and varying m

4.3 Schrödinger Equation

Lastly, we apply the method to evolve a Fourier pseudospectral discretization of the
nonlinear Schrödinger equation. Precisely we consider the real problem

∂v

∂t
= −∂2w

∂x2
−
(
v2 +w2

)
w,

∂w

∂t
= ∂2v

∂x2
+
(
v2 +w2

)
v, (26)

for x ∈ (−8, 8), t ∈ (0, 3) with periodic boundary conditions ∂v
∂x
= ∂w

∂x
= 0 at

x = ±1. We approximate the periodization of the exact solitary wave solution

v(x, t) = √50 cos (rx − st) · sech(5(x − ct)),

w(x, t) = √50 sin (rx − st) · sech(5(x − ct)), (27)

with c = 2π , r = π , s = π2 − 25. We note that the amplitude of the solitary
wave is reduced by about 17 digits at a distance of 8 from its peak so that the
interaction with periodic copies is negligible over the simulation time. We use
512 Fourier modes in the computation of the derivatives and experiments show
that this is sufficient to represent the solitary wave to machine precision. The
implicit system was solved using Newton iterations each time step. In Fig. 2 we
present results for m = 3 (8th order) with varying time step and for m varying
from 1 to 5 (order 4 through 12) with h = 10−2. In both cases we observe
rapid convergence. We also tabulate the errors at the final time and calculate the
convergence rates when m = 3 in Table 3. The results are clearly consistent with
the design order.
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Table 3 Relative errors for
the Fourier pseudospectral
discretization of the NLS (26)
with solitary wave solution
(27)

m = 3 h = 0.01

h Error Rate m Error

3.0(−2) 4.0(−3) 1 1.2(−2)

2.0(−2) 6.7(−5) 10.1 2 5.0(−5)

1.5(−2) 4.9(−6) 9.1 3 1.8(−7)

1.0(−2) 1.8(−7) 8.1 4 8.6(−10)

7.5(−3) 2.2(−8) 7.3 5 1.2(−10)

6.0(−3) 3.2(−9) 8.7

5.0(−3) 9.4(−10) 6.8

5 Conclusions and Future Work

In conclusion, we have demonstrated that Hermite-Birkhoff interpolation can be
used to develop singly-implicit A-stable timestepping methods of arbitrary order. A
number of possible generalizations and improvements to the method are possible.
These include

1. Stability analysis for variable coefficient or nonlinear problems using the projec-
tion properties (5);

2. Improved time step/order adaptivity;
3. Preconditioning of the implicit system for applications to partial differen-

tial equations such as spectral/pseudospectral discretizations of equations of
Schrödinger type (e.g. integration preconditioners [8, 9]);

4. Development of IMEX schemes combining Hermite and Taylor polynomials.
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HPS Accelerated Spectral Solvers
for Time Dependent Problems: Part II,
Numerical Experiments

Tracy Babb, Per-Gunnar Martinsson, and Daniel Appelö

1 Introduction

In this chapter describes a highly computationally efficient solver for equations of
the form

κ
∂u

∂t
= Lu(x, t)+ h(u,x, t), x ∈ Ω, t > 0, (1)

with initial data u(x, 0) = u0(x). Here L is an elliptic operator acting on a fixed
domain Ω and h is lower order, possibly nonlinear terms. We take κ to be real or
imaginary, allowing for parabolic and Schrödinger type equations. We desire the
benefits that can be gained from an implicit solver, such as L-stability and stiff
accuracy, which means that the computational bottleneck will be the solution of a
sequence of elliptic equations set on Ω . In situations where the elliptic equation to
be solved is the same in each time-step, it is highly advantageous to use a direct (as
opposed to iterative) solver. In a direct solver, an approximate solution operator to
the elliptic equation is built once. The cost to build it is typically higher than the cost
required for a single elliptic solve using an iterative method such as multigrid, but
the upside is that after it has been built, each subsequent solve is very fast. In this
chapter, we argue that a particularly efficient direct solver to use in this context is a
method obtained by combining a multidomain spectral collocation discretization (a
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so-called “patching method”, see e.g. Ch. 5.13 in [3]) with a nested dissection type
solver. It has recently been demonstrated [1, 7, 12] that this combined scheme, which
we refer to as a “Hierarchial Poincaré–Steklov (HPS)” solver, can be used with very
high local discretization orders (up to p = 20 or higher) without jeopardizing either
speed or stability, as compared to lower order methods.

In this chapter, we investigate the stability and accuracy that is obtained when
combining high-order time-stepping schemes with the HPS method for solving
elliptic equations. We restrict attention to relatively simple geometries (mostly
rectangles). The method can without substantial difficulty be generalized to domains
that can naturally be expressed as a union of rectangles, possibly mapped via
curvilinear smooth parameter maps.

A longer version of this chapter with additional details is available at [2]. Also
note that the conclusions are deferred to Part II of this paper (same issue).

2 The Hierarchical Poincaré–Steklov Method

In this section, we describe a computationally efficient and highly accurate tech-
nique for solving an elliptic PDE of the form

[Au](x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,
(2)

where Ω is a domain with boundaryΓ , and where A is a variable coefficient elliptic
differential operator

[Au](x) = −c11(x)[∂2
1u](x)− 2c12(x)[∂1∂2u](x)− c22(x)[∂2

2u](x)
+ c1(x)[∂1u](x)+ c2(x)[∂2u](x)+ c(x) u(x)

with smooth coefficients. In the present context, (2) represents an elliptic solve
that is required in an implicit time-descretization technique of a parabolic PDE,
as discussed in Sect. 1. For simplicity, let us temporarily suppose that the domain Ω

is rectangular; the extension to more general domains is discussed in Remark 1.
Our ambition here is merely to provide a high level description of the method;

for implementation details, we refer to [1, 2, 7–9, 12, 13].

2.1 Discretization

We split the domain Ω into n1×n2 boxes, each of size h×h. Then on each box, we
place a p × p tensor product grid of Chebyshev nodes, as shown in Fig. 1. We use
collocation to discretize the PDE (2). With {xi}Ni=1 denoting the collocation points,
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Fig. 1 The domain Ω is split into n1 × n2 squares, each of size h × h. In the figure, n1 = 3 and
n2 = 2. Then on each box, a p × p tensor product grid of Chebyshev nodes is placed, shown for
p = 7. At red nodes, the PDE (2) is enforced via collocation of the spectral differentiation matrix.
At the blue nodes, we enforce continuity of the normal fluxes. Observe that the corner nodes (gray)
are excluded from consideration

the vector u that represents our approximation to the solution u of (2) is given simply
by u(i) ≈ u(xi ). We then discretize (2) as follows:

1. For each collocation node that is internal to a box (red nodes in Fig. 1), we
enforce (2) by directly collocating the spectral differential operator supported
on the box, as described in, e.g., Trefethen [15].

2. For each collocation node on an edge between two boxes (blue nodes in Fig. 1),
we enforce that the normal fluxes across the edge be continuous. For instance,
for a node xi on a vertical line, we enforce that ∂u/∂x1 is continuous across the
edge by equating the values for ∂u/∂x1 obtained by spectral differentiation of
the boxes to the left and to the right of the edge. For an edge node that lies on
the external boundary Γ , simply evaluate the normal derivative at the node, as
obtained by spectral differentiation in the box that holds the node.

3. All corner nodes (gray in Fig. 1) are dropped from consideration. For an elliptic
operator of the form (2) with c12 = 0, it turns out that these values do not
contribute to any of the spectral derivatives on the interior nodes, which means
that the method without corner nodes is mathematically equivalent to the method
with corner nodes, see [5, Sec. 2.1] for details. When c12 �= 0, one must in order
to drop the corner nodes include an extrapolation operator when evaluating the
terms involving the spectral representation of the mixed derivative ∂2u/∂x1∂x2.
This may lead to a slight drop in the order of convergence, but the difference is
hardly noticeable in practice, and the exclusion of corner nodes greatly simplifies
the implementation of the method.

Since we exclude the corner nodes from consideration, the total number of nodes
in the grid equals N = (p − 2)

(
p n1 n2 + n1 + n2

) ≈ p2 n1 n2. The discretization
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procedure described then results in an N × N matrix A. For a node i, the value of
A(i, :)u depends on what type of node i is:

A(i, :)u ≈

⎧
⎪⎨

⎪⎩

[Au](xi ) for any interior (red) node,
0 for any edge node (blue) not on Γ,

∂u/∂n for any edge node (blue) on Γ.

This matrix A can be used to solve BVPs with a variety of different boundary
conditions, including Dirichlet, Neumann, Robin, and periodic [12].

In many situations, a simple uniform mesh of the type shown in Fig. 1 is
not optimal, since the regularity in the solution may vary greatly, due to corner
singularities, localized loads, etc. The HPS method can easily be adapted to handle
local refinement. The essential difficulty that arises is that when boxes of different
sizes are joined, the collocation nodes along the joint boundary will not align. It is
demonstrated in [1, 5] that this difficulty can stably and efficiently be handled by
incorporating local interpolation operators.

2.2 A Hierarchical Direct Solver

A key observation in previous work on the HPS method is that the sparse linear
system that results from the discretization technique described in Sect. 2.1 is
particularly well suited for direct solvers, such as the well-known multifrontal
solvers that compute an LU-factorization of a sparse matrix. The key is to minimize
fill-in by using a so called nested dissection ordering [4, 6]. Such direct solvers
are very powerful in a situation where a sequence of linear systems with the
same coefficient matrix needs to be solved, since each solve is very fast once
the coefficient matrix has been factorized. This is precisely the environment
under consideration here. The particular advantage of combining the multidomain
spectral collocation discretization described in Sect. 2.1 is that the time required for
factorizing the matrix is independent of the local discretization order. As we will
see in the numerical experiments, this enables us to attain both very high accuracy,
and very high computational efficiency.

Remark 1 (General Domains) For simplicity we restrict attention to rectangular
domains in this chapter. The extension to domains that can be mapped to a union
of rectangles via smooth coordinate maps is relatively straight-forward, since the
method can handle variable coefficient operators [12, Sec. 6.4]. Some care must be
exercised since singularities may arise at intersections of parameter maps, which
may require local refinement to maintain high accuracy.

The direct solver described exactly mimics the classical nested dissection
method, and has the same asymptotic complexity of O(N1.5) for the “build” (or
“factorization”) stage, and then O(N logN) cost for solving a system once the
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coefficient matrix has been factorized. Storage requirements are also O(N logN).
A more precise analysis of the complexity that takes into account the dependence
on the order p of the local discretization shows [1] that Tbuild ∼ N p4 + N1.5, and
Tsolve ∼ N p2 +N logN .

3 Time-Stepping Methods

For high-order time-stepping of (1), we use the so called Explicit, Singly Diagonally
Implicit Runge–Kutta (ESDIRK) methods. These methods have a Butcher diagram
with a constant diagonal γ and are of the form

0 0

2γ γ γ

c3 a3,1 a3,2 γ

.

.

.
.
.
.

.

.

.
. . .

. . .

cs−1 as−1,1 as−1,2 as−1,3 · · · γ

1 b1 b2 b3 · · · bs−1 γ

b1 b2 b3 · · · bs−1 γ

ESDIRK methods offer the advantages of stiff accuracy and L-stability. They are
particularly attractive when used in conjunction with direct solvers since the elliptic
solve required in each stage involves the same coefficient matrix (I − hγL), where
h is the time-step.

In general we split the right hand side of (1) into a stiff part, F [1], that will
be treated implicitly using ESDIRK methods, and a part, F [2], that will be treated
explicitly (with a Butcher table denoted ĉ, Â, and b̂). Precisely we will use the
Additive Runge–Kutta (ARK) methods by Carpenter and Kennedy [11], of order 3,
4 and 5.

We may choose to formulate the Runge–Kutta method in terms of either solving
for slopes or solving for stage solutions. We denote these the ki formulation and the
ui formulation, respectively. When solving for slopes the stage computation is

kni = F [1](tn + ciΔt, un +Δt

s∑

j=1

aij k
n
j +Δt

s∑

j=1

âij l
n
j ), i = 1, . . . , s, (3)

lni = F [2](tn + ciΔt, un +Δt

s∑

j=1

aij k
n
j +Δt

s∑

j=1

âij l
n
j ), i = 1, . . . , s. (4)

Note that the explicit nature of (4) is encoded in the fact that the elements on the
diagonal and above in Â are zero. Once the slopes have been computed the solution
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at the next time-step is assembled as

un+1 = un +Δt

s∑

j=1

bjk
n
j +Δt

s∑

j=1

b̂j l
n
j . (5)

If the method is instead formulated in terms of solving for the stage solutions the
implicit solves take the form

uni = un +Δt

s∑

j=1

(
aijF

[1](tn + cjΔt, unj )+ âij F
[2](tn + cjΔt, unj )

)
,

and the explicit update for un+1 is given by

un+1 = un +Δt

s∑

j=1

bj (F
[1](tn + cjΔt, unj )+ F [2](tn + cjΔt, unj )).

The two formulations are algebraically equivalent but offer different advantages.
For example, when working with the slopes we do not observe (see experiments
presented in the second part of this paper) any order reduction due to time-dependent
boundary conditions (see e.g. the analysis by Rosales et al. [14]). On the other hand
and as discussed in some detail below, in solving for the slopes the HPS framework
requires an additional step to enforce continuity.

We note that it is generally preferred to solve for the slopes when implementing
implicit Runge–Kutta methods, particularly when solving very stiff problems where
the influence of roundoff (or solver tolerance) errors can be magnified by the
Lipschitz constant when solving for the stages directly.

Remark 2 The HPS method for elliptic solves was previously used in [10], which
considered a linear hyperbolic equation

∂u

∂t
= Lu(x, t), x ∈ Ω, t > 0,

where L is a skew-Hermitian operator. The evolution of the numerical solution can
be performed by approximating the propagator exp(τL) : L2(Ω)→ L2(Ω) via a
rational approximation

exp(τL) ≈
M∑

m=−M
bm(τL− αm)

−1.

If application of (τL− αm)
−1 to the current solution can be reduced to the solution

of an elliptic-type PDE it is straightforward to apply the HPS scheme to each term
in the approximation. A drawback with this approach is that multiple operators must
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be formed and it is also slightly more convenient to time step non-linear equations
using the Runge–Kutta methods we use here.

There are two modifications to the HPS algorithm that are necessitated by the use
of ARK time integrators, we discuss these in the next two subsections.

3.1 Neumann Data Correction in the Slope Formulation

In the HPS algorithm the PDE is enforced on interior nodes and continuity of the
normal derivative is enforced on the leaf boundary. Now, due to the structure of the
update formula (5), if at some time un has an error component in the null space of
the operator that is used to solve for a slope ki , then this will remain throughout the
solution process. Although this does not affect the stability of the method it may
result in loss of relative accuracy as the solution evolves. As a concrete example
consider the heat equation

ut = uxx, x ∈ [0, 2], t > 0, (6)

with the initial data u(x, 0) = 1−|x−1|, and with homogenous Dirichlet boundary
conditions. We discretize this on two leaves which we denote by α and β.

Now in the ki formulation, we solve several PDEs for the ki values and update
the solution as

un+1 = un +Δt

s∑

j=1

bjk
n
j .

Here, even though the individual slopes have continuous derivatives the kink in un

will be propagated to un+1. In this particular example we would end up with the
incorrect steady state solution u(x, t) = 1− |x − 1|.

Fortunately, this can easily be mitigated by adding a consistent penalization of
the jump in the derivative of the solution during the merging of two leaves (for
details see Section 4 in [1]). That is, if we denote the jump by [[·]] we replace the
condition 0 = [[T k + hk]] where T k is the derivative from the homogenous part
and hk is the derivative for the particular solution (of the slope) by the condition
[[T k+hk−Δt−1hu]] = 0. In comparison to [1] we get the slightly modified merge
formula

ki,3 =
(
Tα

3,3 − Tβ
3,3

)−1(Tβ
3,2ki,2 − Tα

3,1ki,1 + hk,β
3 − hk,α

3 − 1

Δt
(hu,α

3 − hu,β
3 )

)
,
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along with the modified equation for the fluxes of the particular solution on the
parent box

[
v1

v2

]
=

⎛

⎝
[

Tα
1,1 0

0 Tβ
2,2

]
+
[

Tα
1,3

Tβ
2,3

]
(
Tα

3,3 − Tβ
3,3

)−1[− Tα
3,1

∣∣ Tβ
3,2]

⎞

⎠
[

ki,1
ki,2

]
+

[
hk,α

1
hk,β

2

]
+
[

Tα
1,3

Tβ
2,3

]
(
Tα

3,3 − Tβ

3,3

)−1(hβ

3 − hα
3 −

1

Δt
(hu,α

3 − hu,β

3 )
)
.

Due to space we must refer to [1] for a detailed discussion of these equations.
Briefly, hk,α and hk,β above denote the spectral derivative on each child’s boundary
for the particular solution to the PDE for ki and are already present in [1]. However,
hu,α and hu,β , which denote the spectral derivative of un on the boundary from each
child box, are new additions.

The above initial data is of course extreme but we note that the problem persists
for any non-polynomial initial data with the size of the (stationary) error depending
on resolution of the simulation. We further note that the described penalization
removes this problem without affecting the accuracy or performance of the overall
algorithm.

Remark 3 Although for linear constant coefficient PDE it may be possible to project
the initial data in a way so that interior affine functions do not cause the difficulty
above, for greater generality, we have chosen to enforce the extra penalization
throughout the time evolution.

Remark 4 When utilizing the ui formulation in a purely implicit problem we do not
encounter the difficulty described above. This is because we enforce continuity of
the derivative in uns when solving

(I −ΔtγL)uns = un +ΔtL
( s−1∑

j=1

asju
n
j

)
+Δt

s−1∑

j=1

asjg(x, tn + cjΔt),

followed by the update un+1 = uns .

3.2 Enforcing Continuity in the Explicit Stage

The second modification is to the first explicit stage in the ki formulation. Solving a
problem with no forcing this stage is simply

kn1 = L(un).
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When, for example, L is the Laplacian, we must evaluate it on all nodes on the
interior of the physical domain. This includes the nodes on the boundary between
two leafs where the spectral approximation to the Laplacian can be different if
we use values from different leaves. The seemingly obvious choice, replacing
the Laplacian on the leaf boundary by the average, leads to instability. However,
stability can be restored if we enforce kn1 = L(un) on the interior of each leaf
and continuity of the derivative across each leaf boundary. Algorithmically, this is
straightforward as these are the same conditions that are enforced in the regular
HPS algorithm, except in this case we simply have an identity equation for k1 on the
interior nodes instead of a full PDE.

Although it is convenient to enforce continuity of the derivative using the regular
HPS algorithm it can be done in a more efficient fashion by forming a separate
system of equations involving only data on the leaf boundary nodes. In a single
dimension on a discretization with n leafs this reduces the work associated with
enforcing continuity of the derivative across leaf boundary nodes from solving n ×
(p− 1)− 1 equations for n× (p− 1)− 1 unknowns to solving a tridiagonal system
of equations n− 1 equations for n− 1 unknowns.

In two dimensions the system is slightly different, but if we have n×n leafs with
p × p Chebyshev nodes on each leaf then eliminating the explicit equations for the
interior nodes reduces the system to (p−2)×2n independent tridiagonal systems of
n−1 equations with n−1 unknowns for a total of (p−2)×2n× (n−1) equations
with (p − 2)× 2n× (n− 1) unknowns.

When the ui formulation is used for a fully implicit problem the intermediate
stage values still requires us to evaluate Lun, but this quantity only enters through
the body load in the intermediate stage PDEs. The explicit first stage in this
formulation is simply un1 = un. Furthermore, while we must calculate

un+1 = un +ΔtL
( s∑

j=1

asju
n
j

)
,

this is equivalent to uns since bj = asj and we simply take un+1 = uns .
When both explicit and implicit terms are present, we proceed differently. Now,

the values of uni look almost identical to the implicit case and we still avoid the
problem of an explicit “solve” in un1, but we also have

un+1 = un +Δt

s∑

j=1

bj (F
[1](tn + cjΔt, unj )+ F [2](tn + cjΔt, unj ))

The ESDIRK method has the property that bj = asj , but for the explicit Runge–
Kutta method we have bj �= âsj . When the explicit operator F [2] does not contain
partial derivatives we need not enforce continuity of the derivative and can simply
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reformulate the method as

un+1 = uns +Δt

s∑

j=1

(asj − âsj )F
[2](tn + cjΔt, unj )

4 Boundary Conditions

The above description for Runge–Kutta methods does not address how to impose
boundary conditions for a system of ODEs resulting from a discretization of a PDE.
In particular, the different formulations incorporate boundary conditions in slightly
different ways.

In this work we consider Dirichlet, Neumann, and periodic boundary conditions.
For periodic boundary conditions the intermediate stage boundary conditions are
enforced to be periodic for both formulations. As the ki stage values are approxi-
mations to the time derivative of u, the imposed Dirichlet boundary conditions for
x ∈ Γ are kni = ut (x, tn + ciΔt). When solving for ui one may attempt to enforce
boundary conditions using ui = u(x, t + ciΔt), x ∈ Γ . However, as demonstrated
in part two of this series and discussed in detail in [14], this results in order reduction
for time dependent boundary conditions.

In the HPS algorithm, Neumann or Robin boundary conditions are mapped to
Dirichlet boundary conditions using the linear Dirichlet to Neumann operator as
discussed for example in [1].
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On the Use of Hermite Functions
for the Vlasov–Poisson System

Lorella Fatone, Daniele Funaro, and Gianmarco Manzini

1 Introduction

A semi-Lagrangian spectral method has been proposed in [8] for the numerical
approximation of the nonrelativistic Vlasov–Poisson equations, which describe
the dynamics of a collisionless plasma of charged particles, coupled under the
effect of their own electric field. We assume for simplicity that the development
of the plasma is only due to electrons. Moreover, we just treat the case of a
1D-1V distribution function, defined in a phase space consisting of the two one-
dimensional independent variables x (space) and v (velocity). The approximation
introduced in [8] has been initially developed and tested on Fourier-Fourier periodic
discretizations, for both variables in the phase space. In the successive paper [9],
the approximation in the variable v has been approached with the help of Hermite
functions, i.e., Hermite polynomials multiplied by the Gaussian weight exp (−v2).

Semi-Lagrangian methods for plasma physics calculations were originally pro-
posed in [5, 18] and more recently in [6, 15, 16]. By this approach, at different times,
the solution is approximated at the nodes of a Cartesian grid covering the space-
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velocity domain. The solution at each space-velocity node is traced back along the
characteristic curve originating backward from that node. In [8] a high-order Taylor
expansion of the characteristic curves is used to trace back the solution in time,
which is then approximated by spectral interpolation. Such a method guarantees the
conservation of the main physical quantities (charge, mass, and momentum).

The first attempt in using Hermite polynomials to solve the Vlasov equation dates
back to the work [10], where the Hermite basis is used in the velocity variable to
describe a plasma in a physical state near the thermodynamic equilibrium. Within
this approach, exact discrete conservation laws can be constructed [7, 13, 14, 20,
21]. The weight function of the Hermite basis can be generalized by introducing
a parameter α in such a way that it becomes exp(−α2v2). A proper choice of this
parameter can significantly improve the convergence [2, 3, 19]. This fact was also
confirmed in earlier works on plasmas physics based on Hermite spectral methods
(see [11, 17] and more recently [4]).

The paper is organized as follows. In Sect. 2, we present the continuous model,
i.e., the 1D-1V Vlasov equation. In Sect. 3, we introduce the spectral approximation
in the phase space. In Sect. 4, we present the semi-Lagrangian schemes based on an
approximation of the characteristic curves coupled with a second-order backward
differentiation formula (BDF). In Sect. 5, we numerically assess the performance of
the method for a standard test case, and we show how the solution’s behavior can
be affected by the choice of a certain parameter β, acting on the location of Hermite
weight function.

2 The Continuous Model

We deal with the 1D-1V Vlasov equation defined in the domain � = �x × R, with
�x ⊆ R. The unknown f = f (t, x, v) denotes the probability of finding negative
charged particles at the location x with velocity v. This is solution of the problem

∂f

∂t
+ v

∂f

∂x
− E(t, x)

∂f

∂v
= 0, t ∈ (0, T ], x ∈ �x, v ∈ R. (1)

At time t = 0 we have the initial distribution f (0, x, v) = f̄ (x, v). The problem is
nonlinear, since the electric field E is coupled with f . Indeed, we set

∂E

∂x
(t, x) = 1− ρ(t, x) = 1−

∫

R

f (t, x, v)dv, (2)

where ρ denotes the electron charge density. System (1)–(2) in the unknowns f and
E is a simplification of the Vlasov–Poisson equations in two or three dimensional
space domains. Uniqueness of the solution is ensured by imposing that

∫

�x

E(t, x)dx = 0, which implies that
∫

�x

ρ(t, x)dx = |�x |, (3)
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where |�x | is the size of �x . We assume periodic boundary conditions in the
variable x and a suitable exponential decay at infinity for the variable v. After
integration and by using the boundary constraints, we obtain the conservation of
mass

d

dt

∫

�

f (t, x, v) dx dv = 0. (4)

When f and E are smooth enough, for a sufficiently small δ > 0, the local system
of characteristics associated with (1) is given by the curves (X(τ), V (τ )) solving

dX

dτ
= −V (τ),

dV

dτ
= E(τ,X(τ)), τ ∈]t − δ, t + δ[, (5)

with the condition that (X(t), V (t)) = (x, v) when τ = t . With this setting we have
in mind that for τ > 0 we proceed backward. Under suitable regularity assumptions,
there exists a unique solution of the Vlasov–Poisson problem (1)–(2) which is
formally obtained by propagating the initial condition along the characteristic curves
described by (5), i.e. we have

f (t, x, v) = f̄ (X(t), V (t)), (6)

where we recall that f̄ is the initial datum. By using the first-order approximation

X(τ) = x − v(τ − t), V (τ ) = v + E(t, x)(τ − t), (7)

the Vlasov equation is satisfied up to an error decaying as |τ − t|, for τ tending to t .

3 Phase-Space Discretization

We briefly recall the construction of the approximation method proposed in [8]. At
each point of a given grid, the new value of the discrete solution is set up to be equal
to the value obtained by going backward, by a suitably small amount, along the
local characteristic lines. The algorithm follows from a Taylor expansion of arbitrary
order, where the derivatives in the variable x and v are carried out with spectral
accuracy. In particular, for the variable x we consider the domain �x = [0, 2π[.
Given the positive integer N , we have the equispaced nodes xi = 2πi/N , i =
0, 1, . . . , N − 1. Regarding the direction v, when M is a given positive integer,
the nodes vj , j = 0, 1, . . . ,M − 1, are the zeros of HM , which is the Hermite
polynomial of degree M .

We introduce the polynomial Lagrangian basis functions for the x and v

variables, that are B
(N)
i (xn) = δin and B

(M)
j (vm) = δjm, where δij is the usual

Kronecker symbol. We recall that Hermite functions are obtained from Hermite
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polynomials after multiplication by the weight ω(v) = e−v2
. We also define the

discrete spaces

XN = span
{
B

(N)
i

}

i=0,1,...,N−1
, YN,M = span

{
B

(N)
i B

(M)
j ω

}
i=0,1,...,N−1
j=0,1,...,M−1

. (8)

Any function fN,M that belongs to YN,M can be represented as

fN,M(x, v) =
N−1∑

i=0

M−1∑

j=0

cij B
(N)
i (x) B

(M)
j (v) ω(v), (9)

where the coefficients of such an expansion are given by cij = fN,M(xi, vj ).

In the following, the matrices d(N,s)
ni and d

(M,s)
mj denote the s-th derivative of B(N)

i

evaluated at point xn and (B
(M)
j ω) evaluated at point vm

d
(N,s)
ni = dsB

(N)
i

dxs
(xn) and d

(M,s)
mj = ds

(
B

(M)
j ω

)

dvs
(vm). (10)

As a special case, we set d(N,0)
ni = δni , d

(M,0)
mj = δmj .

Now, let us assume that the one-dimensional function EN ∈ XN is known. Given
t > 0, by taking τ = t−t in formula (7), we define the new set of points x̃nm =
xn − vm t and ṽnm = vm + EN(xn)t . To evaluate a function fN,M ∈ YN,M at
the new points (x̃nm, ṽnm) through the coefficients cij , we use a Taylor expansion in
time. By omitting the terms in t of order higher than one, we get

B
(N)
i (x̃nm)

(
B

(M)
j ω

)
(ṽnm) ≈

δin δjmω(vm)− vm t δjm d
(N,1)
ni ω(vm)+ EN(xn)t δin d

(M,1)
mj . (11)

By substituting (11) in (9), we obtain the approximation

fN,M(x̃nm, ṽnm) =
N−1∑

i=0

M−1∑

j=0

cij B
(N)
i (x̃nm) B

(M)
j (ṽnm) ω(ṽnm)

≈ cnmω(vm)− vmω(vm)t

N−1∑

i=0

d
(N,1)
ni cim + EN(xn)t

M−1∑

j=0

d
(M,1)
mj cnj ,

(12)

which is the main building block for more advanced schemes.
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4 Discretization of the Vlasov Equation

Given the time instants tk = kt = k T /K for any integer k = 0, 1, . . . ,K , we
consider the approximation of the unknowns f and E of problem (1)–(2), given by

(
f
(k)
N,M(x, v), E

(k)
N (x)

)
�
(
f (tk, x, v), E(tk, x)

)
, x ∈ �x, v ∈ R, (13)

where the function f
(k)
N,M belongs to YN,M and the function E

(k)
N belongs to XN .

Concerning the density function, we define

ρ
(k)
N (x) =

∫

�v

f
(k)
N,M(x, v) dv � ρ(tk, x). (14)

Hence, at any time step k, we express f (k)
N,M in the following way

f
(k)
N,M(x, v) =

N−1∑

i=0

M−1∑

j=0

c
(k)
ij B

(N)
i (x) B

(M)
j (v)ω(v), (15)

where c
(k)
ij = f

(k)
N,M(xi, vj ). At time t = 0, we use the initial condition c

(0)
ij =

f (0, xi, vj ) = f̄ (xi, vj ).

Suppose that E(k)
N is given at step k. According to [8], we write

E
(k)
N (x) = −

N/2∑

n=1

1

n

[
â(k)n sin(nx)− b̂(k)n cos(nx)

]
, (16)

where the discrete Fourier coefficients â(k)n and b̂
(k)
n , n = 1, 2, . . . , N/2, are suitably

related to those of ρ(k)
N .

By taking τ = t − t in (7), we define x̃nm = xn − vm t and ṽnm =
vm + E

(k)
N (xn)t . The distribution function f is expected to remain constant along

the characteristics. The most straightforward discretization method is obtained by
advancing the coefficients according to the approximation

f
(k+1)
N,M (xn, vm) ≈ f

(k)
N,M(x̃nm, ṽnm). (17)

This states that the value of f
(k+1)
N,M , at the grid points and time step (k + 1)t ,

is assumed to correspond to the previous value at time kt , recovered by going
backwards along the characteristics. To compute ṽnm, we should use E

(k+1)
N (xn)

instead of E
(k)
N (xn). However, the distance between these two quantities is of the

order of t , so that the replacement has no practical effects on the accuracy of first-
order methods. Between each step k and the successive one, we need to update the
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electric field. This can be done by using the Gaussian quadrature formula in (14), so
obtaining

ρ
(k)
N (xi) =

M−1∑

j=0

1

ω(vj )
f
(k)
N,M(xi, vj ) wj =

M−1∑

j=0

1

ω(vj )
c
(k)
ij wj , (18)

where wj , for j = 1, . . . ,M − 1, are the quadrature weights. Afterwards, in order

to compute the new point-values E
(k+1)
N (xn) of the electric field, it is necessary to

integrate ρ
(k)
N . By using approximation (12) in (17), we end up with the first-order

explicit scheme of Euler type:

c(k+1)
nm = c(k)nm +t �(k)

nm, (19)

where

�(k)
nm = −vm

N−1∑

i=0

d
(N,1)
ni c

(k)
im + E

(k)
N (xn)

M−1∑

j=0

d
(M,1)
mj c

(k)
nj

1

ω(vm)
. (20)

The parameter t must satisfy a suitable CFL condition, which is obtained by
requiring that the point (x̃nm, ṽnm) falls inside the box ]xn−1, xn+1[×]vm−1, vm+1[.
A straightforward way to increase the time accuracy is to use a multistep discretiza-
tion scheme as the second-order accurate two-step BDF scheme. We have

f
(k+1)
N,M (xn, vm) ≈ 4

3
f
(k)
N,M(x̃nm, ṽnm)− 1

3
f
(k−1)
N,M ( ˜̃xnm, ˜̃vnm), (21)

where (x̃nm, ṽnm) is the point obtained from (xn, vm) going back of one step t

along the characteristic lines. Similarly, the point ( ˜̃xnm, ˜̃vnm) is obtained by going
two steps back along the characteristic lines, i.e., by using 2t instead of t when
computing x̃nm and ṽnm. Despite the fact that a BDF scheme is commonly presented
as an implicit technique, in our context (f constant along the characteristics) it
assumes the form of an explicit method. In terms of the coefficients, we end up with
the scheme

c(k+1)
nm = 4

3

(
c(k)nm +t �(k)

nm

)
− 1

3

(
c(k−1)
nm + 2t �(k−1)

nm

)

= 4

3
c(k)nm −

1

3
c(k−1)
nm + 2

3
t

⎡

⎣−vm
N−1∑

i=0

d
(N,1)
ni (2c(k)im − c

(k−1)
im )

+E(k)
N (xn)

M−1∑

j=0

d
(M,1)
mj (2c(k)nj − c

(k−1)
nj )

1

ω(vm)

⎤

⎦ . (22)
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From theoretical considerations and the experiments in [8], it turns out that the
above method is actually second-order accurate in t . Higher order schemes
can be obtained with similar principles. All the above schemes guarantee mass
conservation (see (4) for the continuous case), which is a crucial physical property.

For practical purposes, it is advisable to make the change of variable f (t, x, v) =
p(t, x, v) exp(−v2) in the Vlasov equation, so obtaining

∂p

∂t
+ v

∂p

∂x
− E(t, x)

[
∂p

∂v
− 2vp

]
= 0, t ∈ (0, T ], x ∈ �x, v ∈ R. (23)

At time step k, the function p(tk , x, v) is approximated by a function p
(k)
N,M(x, v) in

such a way that p(k)
N,Me−v2

belongs to the finite dimensional space YN,M .
A generalization consists in introducing a real parameter α and assuming that

the weight function is ω(v) = exp(−α2v2). The approximation scheme can be
easily adjusted by modifying nodes and weights of the Gaussian formula, through
a multiplication by suitable constants. The difficulty in the implementation is
practically the same, but, as observed in [9], the results are quite sensitive to the
variation of α.

5 Numerical Experiments

The numerical scheme here proposed is validated in the standard two-stream
instability benchmark test. We consider the Vlasov–Poisson problem (1)–(2) where
we set �x = [0, 4π[, �v = [−5, 5]. The initial solution is given by

f̄ (x, v) = 1

2a
√

2π

[
GR(v)+GL(v)

]
(1+ ε cos (κx)), (24)

where GR(v) = e−α2(v−β)2
and GR(v) = e−α2(v+β)2

are two Gaussians centered
symmetrically at the points v = ±β. The parameters for (24) are: a = 1/

√
8,

ε = 10−3, κ = 0.5, α = ᾱ = 2, β = β̄ = 1.
In all the experiments that follow, we integrate up to time T = 30 using the

second-order BDF scheme with a suitably small time step, in order to guarantee
stability and a good accuracy. In this way we can concentrate our attention to the
spectral approximation in the variable x and v. A study of the convergence rate in
time of the proposed numerical scheme can be found in [8]. First of all, in Fig. 1 we
show the results at time T = 30 of the solution recovered by the Fourier-Fourier
method, by choosing N = 25, M = 26 and time step equal to t = 0.00125.
This will be the referring figure for the successive comparisons. Besides we show
the corresponding time evolution of |â(k)1 |, the first Fourier mode of the electric

field E
(k)
N in (16). The behavior of this last quantity is predicted by theoretical
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Fig. 1 Two-stream instability test: approximated distribution function at time T = 30 obtained by
using the Fourier-Fourier method with N = 25, M = 26, t = 0.00125, and the corresponding
time evolution of the first Fourier mode of the electric field E

(k)
N , i.e. |â(k)1 | in (16)

considerations, and the slope of the “segment” starting at T = 15 agrees with the
expectancy [1, Chapter 5].

As done in [9], we perform a series of experiments using less degrees of freedom
than those actually necessary to resolve accurately the equation. In practice, we
set N = M = 24. In this way, we could for instance detect what happens by
varying the parameters α and β. Of course, if we increase the number of degrees
of freedom, the numerical solution improves and cannot be distinguished from the
referring one shown in Fig. 1. The purpose in [9] was to check what happens by
varying the parameter α in the Hermite weight exp (−α2v2). The conclusions are
that the approximate solution is very sensitive to the choice of α and that there
are values of α that perform better than others. In general these values are those
belonging to a neighbourhood of α = 1. Moreover, in [9], we note that keeping α

constantly equal to the value that better fits the initial datum (i.e. α = ᾱ = 2 for (24))
may create instability as time increases. For such motivations, since at the moment
a practical algorithm able to vary α in a dynamical way during the computations is
not available, in the numerical experiments that follow we fix α = 1, while play
with β.

Due to the particular initial condition, we adopt a two-species decomposition of
the Vlasov equation, where the distribution function is given by the sum of two
electron distribution functions, i.e., f = fR + fL. These distribution functions
refer to the two initial electron distributions, so that fR = pRGR and fL =
pLGL, where pL and pR are given polynomials. We consider the two systems of
electrons described by the distribution functions fL and fR at the initial time as
distinct plasma species that maintain their diversity throughout the whole numerical
simulation. Therefore, we can split the Vlasov equation into two equations that
are still of Vlasov type and are solvable independently, although they are coupled
through the same electric field, which depends on the total charge density. This
amounts to approximate two independent equations of the same type of that given
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Fig. 2 Two-stream instability test: approximated distribution function at time T = 30 obtained
by using the Fourier–Hermite method with N = M = 24, t = 0.01, α = 1 (left panel) and the
corresponding time evolution of the first Fourier mode of the electric field E

(k)
N , i.e. |â(k)1 | in (16)

(right panel) when β = 0.5 (top), β = 1 (center) and β = 1.5 (bottom)
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in (23), respectively shifted by ±β, i.e.

∂pR

∂t
+ (v − β)

∂pR

∂x
− E(t, x)

[
∂pR

∂v
− 2α2(v − β)pR

]
= 0, (25)

∂pL

∂t
+ (v + β)

∂pL

∂x
− E(t, x)

[
∂pL

∂v
− 2α2(v + β)pL

]
= 0. (26)

The two unknowns are then coupled through the density function as in (2).
The plots of Fig. 2 show the numerical distribution function at time T = 30

obtained by using the Fourier–Hermite method with N = M = 24, t = 0.01,
α = 1 and different values of the parameter β (i.e. β = 0.5, β = 1 and β = 1.5),
together with the corresponding time evolution of the (log of the) first Fourier mode
of the electric field E

(k)
N , i.e. |â(k)1 | in (16).

The distribution functions presented in the left column of Fig. 2 are visibly and
significantly different depending on β, while the first Fourier mode of the electric
field shown in the right column seems to be less affected. These differences practi-
cally confirm that the choice of the Hermite weight functions ω(v) = exp(−α2(v±
β)2) is a crucial aspect of the method (see also [11, 12, 17, 22]). This conclusion is
heuristic. Unfortunately, there is no space enough for a deeper quantitative analysis
in these pages. The question deserves however further investigation. Moreover, it
would be advisable to develop appropriate algorithms allowing for the automatic
adjustment of both parameters α and β during the time advancing procedure, in
order to optimize the performance.
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HPS Accelerated Spectral Solvers
for Time Dependent Problems: Part I,
Algorithms

Tracy Babb, Per-Gunnar Martinsson, and Daniel Appelö

1 Introduction

In this chapter, part two in a two part series, describes a sequence of numerical
experiments demonstrating the performance of a highly computationally efficient
solver for equations of the form

κ
∂u

∂t
= Lu(x, t)+ g(u, x, t), x ∈ Ω, t > 0, (1)

with initial data u(x, 0) = u0(x). Here L is an elliptic operator acting on a fixed
domain Ω and f is lower order, possibly nonlinear terms. We take κ to be real or
imaginary, allowing for parabolic and Schrödinger type equations.

The “Hierarchial Poincaré–Steklov (HPS)” solver has already been demonstrated
to be a highly competitive spectrally accurate solver for elliptic problems [1, 4, 7]
and has also been used together with a class of exponential integrators [5], to evolve
solutions to hyperbolic differential equations. As just mentioned, the focus here is
on differential equations in the form (1) whose discretization leads to stiff system
of ODE that can beneficially be advanced in time using Explicit, Singly Diagonally
Implicit Runge–Kutta (ESDIRK) methods. ESDIRK methods offer the advantages
of stiff accuracy and L-stability and are well suited for the HPS algorithm as they
only require a single matrix factorization. They are also easily combined with
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explicit Runge–Kutta method leading to so called Additive Runge–Kutta (ARK)
methods [6].

To this end we investigate the stability and accuracy that is obtained when
combining high-order time-stepping schemes with the HPS method for solving
elliptic equations. We restrict attention to relatively simple geometries (rectangles)
but note that the method can without difficulty be generalized to domains that can
be expressed as a union of rectangles, possibly mapped via curvilinear smooth
parameter maps.

The rest of this chapter is organized as follows. In Sect. 2 we present results
illustrating that the order reduction phenomena for DIRK methods observed in [8]
can be circumvented when formulating the time stepping in terms of slopes (with
boundary conditions differentiated in time) rather than formulating it in terms of
stage solutions. In Sect. 3 we present numerical results for Schrödingers equation in
two dimensions and in Sect. 4 we present numerical results for a nonlinear problem,
viscous Burgers’ equation in two dimensions. Finally, in Sect. 5 we summarize and
conclude. For a longer description of the method we refer to thee first part of this
paper and to [2].

2 Time Dependent Boundary Conditions

This section discusses time-dependent boundary conditions within the two different
Runge–Kutta formulations. In particular, we investigate the order reduction that has
been documented in [8] for implicit Runge–Kutta methods and earlier in [3] for
explicit Runge–Kutta methods.

In this first experiment, introduced in [8], we solve the heat equation in one
dimension

ut = uxx + f (t), x ∈ [0, 2], t > 0. (2)

We set the initial data, Dirichlet boundary conditions and the forcing f (t) so that
exact solution is u(x, t) = cos(t). This example is designed to eliminate the effect
of the spatial discretization, with the solution being constant in space and allows for
the study of possible order reduction near the boundaries.

We use the HPS scheme in space and use 32 leafs with p = 32 Chebyshev nodes
per leaf. We apply the third, fourth, and fifth order ESDIRK methods from [6]. We
consider solving for the intermediate solutions, or as we refer to it below “the ui
formulation” with the boundary condition enforced as uni = cos(tn + ciΔt). We
also consider solving for the stages, which we refer to as “the ki formulation” with
boundary conditions imposed as kni = − sin(x, tn + ciΔt).

Error reduction for time dependent boundary conditions has been studied both
in the context of explicit Runge–Kutta methods in e.g. [3] and more recently for
implicit Runge–Kutta methods in [8]. In [8] the authors report observed orders of
accuracy equal to two (for the solution u) for DIRK methods of order 2, 3, and 4 for
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Fig. 1 The error in solving (2). Results are for a third order ESDIRK. (a) Displays the single
step error which converges with fourth order of accuracy. (b) Displays the global error at t = 1
converging at third order. Both errors converge at one order higher than what is expected from the
analysis in [8]
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Fig. 2 The error in solving (2). Results are for a fifth order ESDIRK. (a) Displays the single
step error which converges with fourth order of accuracy. (b) Displays the global error at t = 1
converging at third order. Both errors converge at one order higher than what is expected from the
analysis in [8] but still lower than expected

the problem (2) discretized with a finite difference method on a fine grid (the spatial
errors are zero) using the ui formulation.

Figures 1 and 2 show the error for the third and fifth order ESDIRK methods,
respectively, as a function of x for a single step and at the final time t = 1. Figure 3
shows the maximum error for the third, fourth, and fifth order methods as a function
of time step Δt after a single step and at the final time t = 1.

In general, for a method of order p we expect that the single step error decreases
as Δtp+1 while the global error decreases as Δtp. However, with time dependent
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Fig. 3 The maximum error (here denoted l∞) in solving (2) for the third, fourth, and fifth order
ESDIRK methods for a sequence of decreasing time steps. (a, c) are errors after one time step and
(b, d) are the errors at time t = 1. The top row are for the ui formulation and the bottom row is for
the ki formulation. Note that the ki formulation is free of order reduction

boundary conditions implemented as uni = cos(tn+ ciΔt) the results in [8] indicate
that the rate of convergence will not exceed two for the single step or global error.

The results for the third order method (p = 3) displayed in Fig. 1 show that the
single step error decreases as Δtp+1 while the global error decreases as Δtp, which
is better than the results documented in [8]. However, we still see that a boundary
layer appears to be forming, but it is of the same order as the error away from the
boundary. The results for the fifth order method (p = 5) displayed in Fig. 2 show
that the single step error decreases as Δt4 while the global error decreases as Δt3,
which is still better than the results documented in [8]. However, the boundary layer
is giving order reduction from Δtp+1 for the single step error and Δtp for the global
error. We note that our observations differ from those in [8] but that this possibly
can be attributed to the use of a ESDIRK method rather than a DIRK method.

We repeat the experiment but now we use the ki formulation for Runge–Kutta
methods and for the boundary condition we enforce kni = − sin(tn + ciΔt). The
intuition here is that kni is an approximation to ut at time tn + ciΔt and we use
the value of ut for the boundary condition of kni . Intuitively we expect that the fact
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that we reduce the index of the system of differential algebraic equation in the ui
formulation by differentiating the boundary conditions can restore the design order
of accuracy.

In the previous examples the Runge–Kutta method introduced an error on the
interior while the solution on the boundary was exact. If the error on the boundary
is on the same order of magnitude as the error on the interior then the error in uxx is
of the correct order, but when the value of u is exact on the boundary it introduces
a larger error in uxx . In the ki formulation, for each intermediate stage we find
uxx = 0 and then kni = − sin(tn + ciΔt) on the interior and on the boundary. So
at a fixed time the solution is constant in x and a boundary layer does not form.
Additionally, the error is constant in x at any fixed time and for a method of order
p we obtain the expected behavior where the single step error decreases as Δtp+1

and the global error decreases as Δtp.
Figure 3 shows the maximum error for the third, fourth, and fifth order methods

as a function of time step Δt after a single step and at the final time t = 1. The results
show that the methods behave exactly as we expect. The single step error behaves as
Δtp+1 for the third and fifth order methods and Δtp+2 for the fourth order method.
The fourth order method gives sixth order error in a single step because the exact
solution is u(x, t) = cos(t), which has every other derivative equal to zero at t = 0
and for a single step we start at t = 0. The global error behaves as Δtp for each
method.

3 Schrödinger Equation

Next we consider the Schrödinger equation for u = u(x, y, t)

ih̄ut = − h̄2

2M
Δu+ V (x, y)u, t > 0, (x, y) ∈ [xl, xr ] × [yb, yt ],

u(x, y, 0) = u0(x, y).

(3)

Here we nondimensionalize in a way equivalent to setting M = 1, h̄ = 1 in the
above equation. We choose the potential to be the harmonic potential

V (x, y) = 1

2

(
x2 + y2

)
.

This leads to an exact solution

u(x, y, t) = Ae−it e−
(x2+y2)

2 , (4)

where we set A = 1/
√√

π and solve until t = 2π on the domain (x, y) ∈ [−8, 8]2.
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Fig. 4 Error in the Schrödinger equation as a function of leaf size. The exact solution is given in
Eq. (4)

Table 1 Estimated rates of
convergence for different
Runge–Kutta methods and
different orders of
approximation

p 4 6 8 10 12

ESDIRK3 2.59 5.73 7.72 9.69 11.47

ESDIRK4 1.89 6.47 7.82 9.76 11.69

ESDIRK5 1.84 4.42 7.69 9.71 11.48

The computational domain is subdivided into nx × ny panels with p × p points
on each panel. To begin, we study the order of accuracy with respect to leaf size. To
eliminate the effect of time-stepping errors we scale Δt = hp/qRK, where qRK is the
order of the Runge–Kutta method. In Fig. 4 we display the errors as a function of the
leaf size for p = 4, 6, 8, 10, 12, 16 and for the third and fifth order Runge–Kutta
methods (qRK = 3, 5). The rates of convergence are found for all three Runge–
Kutta methods and summarized in Table 1. As can be seen from the table, p = 4
appears to converge at second order, while for higher p we generally observe a rate
of convergence approaching to p.

In this problem the efficiency of the method is limited by the order of the
Runge–Kutta methods. However, as our methods are unconditionally stable we
may enhance the efficiency by using Richardson extrapolation to achieve a highly
accurate solution in time. We solve the same problem, but now we fix p = 12
and take 5 · 2n time steps, with n = 0, 1, . . . , 5. For the third order ESDIRK
method we use 60 × 60 leaf boxes. For the fourth order ESDIRK method we use
90×90 leaf boxes. For the fifth order ESDIRK method we use 120×120 leaf boxes.
Table 2 shows that we can easily achieve much higher accuracy by using Richardson
extrapolation.

Finally, we solve a problem without an analytic solution. In this problem the
initial data

u(x, y, t) = 3 sin(x) sin(y)e−(x2+y2),
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Table 2 Estimated errors at the final time after Richardson extrapolation

qRK /

extrapolations 0 1 2 3 4 5 6

3 1.32 (−1) 1.01 (−2) 1.27 (−4) 1.17 (−5) 6.98 (−8) 8.62 (−10) 7.40 (−6)

4 2.70 (−4) 6.46 (−6) 1.23 (−7) 2.95 (−10) 1.59 (−11) 3.70 (−14) 1.20 (−11)

5 1.28 (−3) 9.67 (−6) 6.30 (−8) 1.86 (−10) 4.11 (−13) 9.27 (−14) 5.08 (−11)

The notation d(−p) means d · 10−p

Table 3 Errors computed against a p and h refined solution

p/panels 2 4 8 16 32

8 1.11 (0) 1.39 (−1) 8.74 (−3) 1.50 (−4) 2.45 (−6)

Rate ∗ 3.00 3.99 5.87 5.92

10 5.87 (−1) 3.16 (−2) 4.62 (−4) 6.17 (−6) 5.21 (−8)

Rate ∗ 4.21 6.10 6.22 6.89

The errors are maximum errors at the final time t = 4. The notation d(−p) means d · 10−p

interacts with the weak and slightly non-symmetric potential

V (x, y) = 1− e−(x+0.9y)4
,

allowing the solution to reach the boundary where we impose homogenous Dirichlet
conditions.

We evolve the solution until time t = 4 using p = 8 and 10 and 2, 4, 8, 16 and
32 leaf boxes in each direction of a domain of size 12 × 12. The errors computed
against a reference solution with p = 12 and with 32 leaf boxes can be found in
Table 3.

In Fig. 5 we display snapshots of the magnitude of the solution at the initial time
t = 0, the intermediate times t ≈ 1.07, t ≈ 1.68 and at the final time t = 4.0.

4 Burgers’ Equation in Two Dimensions

As a first step towards a full blown flow solver we solve Burgers’ equation in two
dimensions using the additive Runge–Kutta methods described in the first part of
this paper. Precisely, we solve the system

ut + u · ∇u = εΔu, x ∈ [−π, π]2, t > 0, (5)

where u = [u(x, y, t), v(x, y, t)]T is the vector containing the velocities in the x

and y directions.
The first problem we solve uses the initial condition u = 5[−y, x]T exp(−3r2)

and the boundary conditions are taken to be no-slip boundary conditions on all sides.
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Fig. 5 Snapshots of the magnitude of the solution at the initial time (a) t = 0, the intermediate
times (b) t ≈ 1.07, (c) t ≈ 1.68 and at the final time (d) t = 4.0

We solve the problem using 24 × 24 leafs, p = 24, ε = 0.005, and the fifth order
ARK method found in [6]. We use a time step of k = 1/80 and solve until time
tmax = 5. The low viscosity combined with the initial condition produces a rotating
flow resembling a vortex that steepens up over time.

In Fig. 6 we can see the velocities at times t = 0.5 and t = 1. The fluid rotates
and expands out and eventually forms a shock like transition. This creates a sharp
flow region with large gradients resulting in a flow that may be difficult to resolve
with a low order accurate method. These sharp gradients can be seen in the two
vorticity plots in Fig. 6 along with the speed and vorticity plots in Fig. 7.

In our second experiment we consider a cross stream of orthogonal flows. We
use an initial condition of

u = [8y e
−36

(
y
2

)8

,−8xe
−36

(
x
2

)8

]T , (6)

and time independent boundary conditions that are compatible with the initial data.
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This initial horizontal velocity drops to zero quickly as we approach |y| = 0.5.
For |y| < 0.5 the exponential term approaches exp(0) and the velocity behaves like
u = 8y. The flow has changed slightly by t = 0.06, but we can see in Fig. 7 the
flow is moving to the right for y > 0 and the flow is moving the left for y < 0
and all significant behavior is in |y| < 0.5. A plot of the velocity v would show
similar behavior. We also use 24 × 24 leafs, p = 24, ε = 0.025, k = 1/200, and
tmax = 0.75. We show plots of the horizontal velocity u and the dilatation at time
t = 0.06 and t = 0.15. We only show plots before time t = 0.15 when the fluid
is hardest to resolve and we observe that after t = 0.15 the cross streams begin to
dissipate. This problem contains sharp interfaces inside x ∈ [−0.5, 0.5]2.

5 Conclusion

In this two part series we have demonstrated that the spectrally accurate Hierarchial
Poincaré–Steklov solver can be easily extended to handle time dependent PDE
problems with a parabolic principal part by using ESDIRK methods. We have
outlined the advantages of the two possible ways to formulate implicit Runge–Kutta
methods within the HPS scheme and demonstrated the capabilities on both linear
and non-linear examples.

There are many avenues for future work, for example:

• Extension of the solvers to compressible and incompressible flows.
• Application of the current solvers to inverse and optimal design problems,

in particular for problems where changes in parameters do not require new
factorizations.
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High-Order Finite Element Methods
for Interface Problems: Theory and
Implementations

Yuanming Xiao, Fangman Zhai, Linbo Zhang, and Weiying Zheng

1 Introduction

The interface problems which involve partial differential equations having dis-
continuous coefficients across certain interfaces are often encountered in fluid
dynamics, electromagnetics and materials science. Because of the low global
regularity and the irregular geometry of the interface, the standard numerical
methods which are efficient for smooth solutions usually lead to loss in accuracy
across the interface.

For arbitrarily shaped interface �, it is known that optimal or nearly optimal
convergence rate can be recovered if body-fitted finite element meshes are used,
see e.g. [6, 8, 20, 29]. Here, by “body-fitted meshes” we mean an element of
the underlying mesh is required to intersect with the interface only through its
boundaries (Fig. 1). Unfortunately, when the geometry is complex, this usually leads
to a nontrivial interface meshing problem. Therefore, numerous modified finite
difference methods based only on simple Cartesian grids have been proposed in the
literature. We refer to the immersed boundary method [24], the immersed interface
method [17, 18], the ghost fluid method [21], and the references therein. In the
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Fig. 1 A body-fitted, shape
regular mesh

finite element setting, we refer to the work of the immersed finite element method
[7, 11, 19], the multiscale finite element method [9], the penalty finite element
method [1].

In the past decade, a combination of the extended finite element method (XFEM)
with the Nitsche scheme has become a popular discretization method. As the first
attempt, an unfitted finite element method was proposed in [13] which can be
viewed as a linear and consistent modification of [1]. This approach has motivated
a number of works, e.g., the unfitted finite element method [4, 5, 12], the Ghost
penalty method [2, 3], the unfitted discontinuous Galerkin methods [22]. Although
significant progresses in the error analyses of some methods have been made, the
development of high-order accurate unfitted FEMs with rigorous error analysis is
still challenging. We refer to the work of [14–16, 22, 27, 28] which claim high
order approximations. In [22], an hp-unfitted discontinuous Galerkin method for
Problem (1) was considered, and optimal h-convergence for arbitrary p was shown
for the two-dimensional case in the energy norm and in the L2-norm. With an
extra flux penalty term applied on the interface, [27] gave better hp a priori error
estimates in both two and three dimensions. In [15, 16], an isoparametric finite
element method with a high order geometrical approximation of level set domains
was presented. The analysis reveals optimal order error bounds with respect to h for
the geometry approximation and for the finite element approximation. In [14, 28],
various issues related to unfitted methods was addressed, including the dependence
of error estimates on the diffusion coefficients, the condition number of the discrete
system, and the choice of stabilization parameters.

The Nitsche-XFEM can be interpreted as applying interior penalty (IP) methods
on the interface, and our method falls into this category. The major step in our variant
is an appropriate choice of the mesh and geometry dependent weights in the average
(see (6)), which lead to trace and inverse inequalities for possibly degenerated sub-
elements (see (9)). We note that in our approach, the penalization is applied only
to the jump of the solution values across the interface (compared with the bilinear
form in [27]). The optimal h-convergence rate for arbitrary high-order discretization
in the energy and L2-norm are proved regardless of the dimension. We refer to [14–
16] for the similar estimates with respect to h and [27] for a refined version with
respect to both h and p.
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Efficient implementations of this method are then discussed in two aspects. We
first consider an optimal multigrid solver for the generated linear system. We use the
continuous FE space as a “background” subspace, with some smoothing operations
added near the interface, to formulate a nested geometrical multigrid method. We
prove the optimality of this special multiplicative multigrid method, which means
the method converges uniformly with respect to the mesh size, and is independent
of the location of the interface relative to the meshes. Since the assembling of the
stiffness matrix will require integration over curved surfaces and volumes, we then
implement a robust and arbitrarily high order numerical quadrature algorithm by
transforming surface and volume integrals into multiple 1-D integrals. The code for
the algorithm is freely available in the open source finite element toolbox Parallel
Hierarchical Grid (PHG) [26]. We also refer to [23, 25] for different approaches to
compute integrals on curved sub-elements and their curved boundaries.

The layout of this paper is as follows. In Sect. 2 we introduce the XFE spaces
and reformulate the interface problem (1) in DG schemes. The H 1- and L2- error
estimates of both schemes—which attain the optimal order of the convergence rate
in respect to mesh size h—are given. In Sect. 3, we give an optimal multigrid
method for the aforementioned DG-XFE schemes. Numerical examples for both
two and three dimensions are reported in Sect. 4, to illustrate the high accuracy of
the algorithm.

2 XFE and DG Schemes for Interface Problems

We consider the following elliptic interface problem for u: Let � = �1 ∪ � ∪ �2
be a bounded and convex polygonal or polyhedral domain in R

d, d = 2 or 3, where
�1 and �2 are two subdomains of � and are separated by a C2-smooth interface �

(see Fig. 2 for an illustration of a unit square that contains a circle as an interface),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (α(x)∇u) = f, in �1 ∪�2,[
α(x)∇u] = gN, on �,

[u] = gD, on �,

u = 0, on ∂�.

(1)

Here α(x) = αi, i = 1, 2, is a piecewise constant function on the partition �1∪�2.
Denote by {Th}, a family of conforming, quasi-uniform, and regular partitions

of � into triangles and parallelograms/tetrahedrons and parallelepipeds. As K is of
regular shape, there is a constant γ0 such that

hdK ≤ γ0|K|, ∀K ∈ Th. (2)

We define the set of all elements intersected by � as T�
h = {K ∈ Th : |K ∩�| �= 0}.

Each T�
h induces a partition of interface �, which we denote by E�

h = {eK : eK =
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Fig. 2 Domain
� = �1 ∪ � ∪�2 with an
unfitted mesh

Ω2

Ω1

K ∩ �,K ∈ T�
h }. For any K ∈ T�

h , let Ki = K ∩ �i denote the part of K in �i

and ni be the unit outward normal vector on ∂Ki with i = 1, 2. As � is of class C2,
it is easy to prove that (cf.[6, 31]) each interface segment/patch eK is contained in a
strip of width δ and satisfies

δ ≤ γ1h
2
K and |ni (x)− ni (y)| ≤ γ2hK, ∀x, y ∈ eK. (3)

We define the weighted average {·} and the jump [·] on e ∈ E�
h by

{v} = κ1v1 + κ2v2, [v] = v1n1 + v2n2, (4)

{q} = κ1q1 + κ2q2, [q] = q1 · n1 + q2 · n2. (5)

For the stability analysis of our schemes, we define (κ1, κ2) on each element as
follows:

κi =

⎧
⎪⎪⎨

⎪⎪⎩

0, if |Ki ||K | < c0hK,

1, if |Ki ||K | > 1− c0hK,
|Ki ||K | , otherwise .

(6)

Clearly, 0 ≤ κi ≤ 1 and κ1 + κ2 = 1 so that {·} is a convex combination along �.
Roughly speaking, we adopt the weight κi = |Ki ||K | suggested in [13] for general sub-

elements and we set κi = 0 for |Ki | < chd+1
K . Here, the user-defined constant c0 ≥

2γ0γ1 and γ0, γ1 are constants defined in (2) and (3), respectively. The dependence
of c0 on these generic constants is elaborated in Lemma 1.

Let χi be the characteristic function on �i with i = 1, 2. Given a mesh Th, let
Vh be the continuous piecewise polynomial function space of degree p ≥ 1 on the
mesh. Let V 0

h := Vh ∩ H 1
0 (�), V 1

h := V 0
h · χ1 and V 2

h := V 0
h · χ2. We define the

XFE space as V �
h = V 1

h + V 2
h .

Then, the DG-XFE method for the interface problem is: Find uh ∈ V �
h such that

Bh(uh, vh) = Fh(vh), ∀vh ∈ V �
h , (7)
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where

Bh(w, v) :=
∫

�1∪�2

α(x)∇w · ∇v −
∫

�

{α(x)∇w} · [v]

− β

∫

�

[w] · {α(x)∇v} +
∑

K∈T�
h

ηβ

hK

∫

K∩�
[w] · [v],

Fh(v) :=
∫

�

f v +
∫

�

gN(κ1v2 + κ2v1)

− β

∫

�

gD · {α(x)∇v} +
∑

K∈T�
h

ηβ

hK

∫

K∩�
gD · [v],

For ηβ sufficiently large, the norm corresponding to the bilinear form Bh(·, ·) is
uniformly equivalent to ‖ · ‖Bh , which is defined by

‖v‖2Bh
= |v|21,�1∪�2

+
∑

K∈T�
h

ηβh
−1
K ‖[v]‖2L2(eK)

+
∑

K∈T�
h

η−1
β hK‖{α(x)∇v}‖2L2(eK)

. (8)

The crucial component in regard to establishing this equivalence result and also
the stability of bilinear forms is the control on the weighted normal derivatives,
which is stated as a trace and inverse inequality in Lemma 1.

Lemma 1 ([27, 28]) Let γ0 and γ1 be constants defined in (2) and (3), respectively.
If we choose c0 ≥ 2γ0γ1 in the definition (6) of κ , there exists a positive constant h0
such that for all h ∈ (0, h0] and any interface segment/patch eK = K ∩ � ∈ E�

h ,
the following estimates hold on both sub-elements of K:

‖κ1/2
i vi‖L2(eK) ≤

C

h
1/2
K

‖vi‖L2(Ki)
, vi ∈ Pp(Ki), i = 1, 2. (9)

The coercivity and boundedness of Bh(·, ·) in its norm ‖ · ‖2
Bh

is then a direct
consequence of the Cauchy–Schwarz inequality.

Lemma 2 Let V = H 2(�1 ∪�2) and V (h) = V �
h + V , we have

Bh(w, v) ≤ Cb‖w‖Bh ‖v‖Bh, ∀w, v ∈ V (h), (10)

and

Bh(v, v) ≥ Cs‖v‖2
Bh

, ∀ v ∈ V �
h , (11)

provided the penalty parameter ηβ is chosen sufficiently large.
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The XFE space has optimal approximation quality for piecewise smooth func-
tions in Hp(�1 ∪ �2). The following theorem is proved in [28] as an analogue of
Cea’s lemma.

Theorem 1 Assume that the interface � is C2 smooth and that the solution of the
elliptic interface problem (1) satisfies u ∈ Hs(�1 ∪�2), where s ≥ 2 is an integer.
Let μ = min{p + 1, s}. The following error estimates hold for any h ∈ (0, h0]: If
ηβ is chosen sufficiently large (see (11)) and uh is the solution to the first scheme
of (7), then

‖u− uh‖Bh � hμ−1‖u‖Hs(�1∪�2), ∀ 0 < h ≤ h0. (12)

The hidden constants in the above estimates are dependent on the angle condition of
the mesh Th, the degree of the polynomials, the parameter in the scheme, and α(x),
but are independent of the location of the interface relative to the mesh. Here, the
constant h0 is from Lemma 1.

3 An Optimal Multigrid Method for (7)

In this section, we propose a two-level geometric multigrid solver of the finite
element problem (7). It is well known that the element K with a “small” cut (i.e.
|K ∩ �i |/|K|  1) would have adverse effect on the conditioning of the resulting
stiffness matrices (see e.g. [3]). Our approach is based on the general theory of the
successive subspace correction (SSC) method of solving on a linear vector space
Ṽ = ∑J

i=0 Vi with inner product (·, ·) the equation (Au, v) = (f, v), where
A : Ṽ → Ṽ is a symmetric positive definite operator.

We apply SSC for a relatively simple case of two subspaces (i.e. J = 2), that is,
Ṽ = V �

h = V1 ⊕ V2, with V1 = V 0
h and V2 = Ṽ �

h , where Ṽ �
h ⊂ V �

h is the space
of nodal basis functions that vanish on Ñh := {xj : |supp(ψj ) ∩ �| = 0}. With a
slight abuse of notation, the DG-XFE scheme induces a symmetric positive definite
operator Bh for β = 1. Let B̃h and B̃�

h be the restrictions of Bh on V 0
h and Ṽ �

h ,
respectively. Let R̃h : V 0

h → V 0
h be approximately an inverse of B̃h. We have this

two-level successive subspace correction method (Algorithm 1). The similar idea
has been employed in a special linear case in [32] and analyzed using the framework
given in [30, 33].

Algorithm 1 The multigrid method for (7)
Implement this iterative procedure until converge:

1. do subspace correction on V 0
h with an inexact solver R̃h;

2. do subspace correction on Ṽ �
h with an exact solver (B̃�

h )
−1.
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Obviously, Algorithm 1 defines an iterative method for solving Bhuh = fh.
Denote by Ah the iterator of the method, then the error contract property is
summarized as the following theorem.

Theorem 2 ([28]) Assume that ‖I − R̃hB̃h‖B̃h
� ρ < 1. Then Algorithm 1 is

uniformly convergent with respect to the mesh size with

‖I − AhBh‖2
Bh

� *

1− ρ2 +*
,

where * is a constant independent of h.

When Th is a shape-regular grid with a geometrical multilevel structure, then
a geometric multigrid process can be implemented on V 0

h , and the approximate
inverse R̃h of B̃h can be chosen to be the iterator of V -cycle multigrid method.

4 Numerical Tests

In this section, we present some initial results to demonstrate the high-order
accuracy and robustness of our method. A 2-D example was implemented in
MATLAB. The numerical experiment for a 3-D case was carried out in the open
source finite element toolbox PHG [26].

4.1 High-Order Numerical Quadratures on “cut” Elements

Assembling the local stiffness matrix and the corresponding RHS for K ∈ T�
h

requires integration over irregularly shaped manifolds:

I =
∫

K∩�i

u(x)dx and I =
∫

K∩�
u(x)d�, (13)

where � is defined by the zero level set of a piecewise smooth function.
Our implementation of (13) relies on a general-purpose and arbitrarily high

order numerical quadrature algorithm proposed in [10]. The basic idea is to choose
a local coordinate system with three orthogonal directions, decompose integrals
in (13) into multiple 1-D integrals along these directions, and use 1-D Gaussian
quadratures to compute these integrals. For 1-D Gaussian quadratures to work, the
local coordinate system should be suitably chosen according to properties of K and
� to prevent essential singularities from appearing in the 1-D integrands, and the
integration intervals are divided into subintervals at the non essential singularities
of the integrands. We note that the proposed algorithm only requires finding roots
of univariate nonlinear functions in given intervals and evaluating the integrand, the



174 Y. Xiao et al.

level set function, and the gradient of the level set function at given points. It can
achieve arbitrarily high order by increasing the orders of Gaussian quadratures, and
does not need extra a priori knowledge about the integrand and the level set function.

This algorithm has been implemented in the file src/quad-interface.c
and include/phg/quad-interface.h in PHG [26]. Extensive h− and
p−convergence tests have been performed in [10] and included in a sample code
test/quad_test2.c.

4.2 2-D Numerical Examples

Let domain � be the unit square (0, 1)2 and interface � be the zero level set of the
function ϕ(x) = (x1−0.5)2+(x2−0.5)2−1/7. The subdomain �1 is characterized
by ϕ(x) < 0 and �2 by ϕ(x) > 0. The domain � is partitioned into grids of squares
with the same size h. The exact solution is chosen as

u(x1, x2) =
{

1/α1 exp(x1x2), (x1, x2) ∈ �1,

1/α2 sin(πx1) sin(πx2), (x1, x2) ∈ �2.

The right-hand side can be computed accordingly.
We implement Algorithm 1, with V -cycle geometric multigrid based on the

unfitted gridTh playing as the coarse grid corrector. In each pre- and post-smoothing
stage of V -cycle iterator, we perform Gauss-Seidel for two times. We record the
numerical results in Table 1. In these examples, the initial guess is 0, and the
stopping criterion is

‖fh − Bhu
(k)
h ‖∞/‖fh − Bhu

(0)
h ‖∞ < 10−10.

From Table 1, we can see that the multigrid method converges uniformly with
respect to the mesh size, which confirms our theoretical results.

Table 1 Numerical performance of Algorithm 1 (2-D example)

h 2−2 2−3 2−4 2−5 2−6

α1 : α2 = 1 : 10 p = 1 #iter 7 10 10 11 12

p = 2 #iter 13 10 12 13 14

α1 : α2 = 10 : 1 p = 1 #iter 24 30 29 27 25

p = 2 #iter 24 23 22 21 20
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4.3 3-D Numerical Examples

The settings of this numerical experiment are as follows. The domain � = (0, 1)3.
The interfaces are two touched spheres of radius 0.1 centered at (0.4, 0.5, 0.5) and
(0.6, 0.5, 0.5). The exact solution is given by

u(x1, x2, x3) =
⎧
⎨

⎩
exp(x1 + x2 + x3), (x1, x2, x3) ∈ �1,

sin(x1) sin(x2) sin(x3), (x1, x2, x3) ∈ �2.

The discontinuous coefficient function is defined such that α1 = 1 and α2 = 100.
A convergence study is performed on a series of meshes generated by uniform

refinements of an initial mesh consisting of 6 congruent tetrahedra. Relative errors
and convergence rates of numerical solutions for Pp elements for p = 1, 2, 3 and 4
are listed in Table 2, with the quadrature order q = 2p + 3. The convergence rates
are optimal for both H 1(�)-errors (order p) and L2(�)-errors (order p+1). For the

Table 2 Errors and convergence orders of the numerical solutions (3-D example)

Number of Degrees of Relative H 1 error Relative L2 error

elements freedom Error Order Error Order

P1 element(p = 1, q = 2p + 3 = 5)

768 189 1.690e−01 – 1.686e−02 –

6144 1241 7.510e−02 1.17 3.403e−03 2.31

49,152 9009 3.514e−02 1.10 9.618e−04 1.82

393,216 68,705 1.658e−02 1.08 2.272e−04 2.08

3,145,728 536,769 8.145e−03 1.03 4.869e−05 2.22

P2 element(p = 2, q = 2p + 3 = 7)

768 1241 9.041e−03 – 4.150e−04 –

6144 9009 2.026e−03 2.16 4.323e−05 3.26

49,152 68,705 4.973e−04 2.03 5.171e−06 3.06

393,216 536,769 1.234e−04 2.01 6.413e−07 3.01

3,145,728 4,243,841 3.070e−05 2.01 7.965e−08 3.01

P3 element (p = 3, q = 2p + 3 = 9)

768 3925 2.175e−03 – 8.394e−05 –

6144 29,449 3.793e−05 5.84 5.864e−07 7.16

49,152 228,241 4.743e−06 3.00 3.683e−08 3.99

393,216 1,797,409 5.932e−07 3.00 2.321e−09 3.99

3,145,728 14,266,945 7.414e−08 3.00 1.456e−10 3.99

P4 element (p = 4, q = 2p + 3 = 11)

768 9009 2.971e−03 – 9.606e−05 –

6144 68,705 6.042e−07 12.26 7.560e−09 13.63

49,152 536,769 3.778e−08 4.00 2.380e−10 4.99

393,216 4,243,841 2.362e−09 4.00 7.481e−12 4.99
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time being, however, the design of multigrid solver for 3-D case is still on-going.
The computations for P1, P2 and P3 elements were done using the 64-bit double
precision and the linear systems were solved using MUMPS, but for P4 element, to
eliminate influences of roundoff errors, the computations were done using the 80-
bit extended double precision and the linear systems were solved using the GMRES
method with MUMPS in double precision as its preconditioner. The performance of
Algorithm 1 will be reported in a future work.
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Stabilised Hybrid Discontinuous
Galerkin Methods for the Stokes Problem
with Non-standard Boundary Conditions

Gabriel R. Barrenechea, Michał Bosy, and Victorita Dolean

1 Introduction

The interest of this paper is to discretise the Stokes problem with non-standard
boundary conditions. In [1], a hybrid discontinuous Galerkin (hdG) method was
proposed and analysed for this problem. The finite element method used was
the combination of BDM elements of order k for the velocity, and discontinuous
elements of order k − 1 for the pressure. In this paper we increase the order of
the pressure space to k, while keeping the order for the velocity space fixed as k.
Since this pair does not satisfy the inf-sup condition, a stabilisation term needs to be
added.

The stabilisation term referred to above can be built using a diversity of
approaches, but, roughly speaking, the stabilisation can be residual or non-residual.
In [8] the authors added a mesh-dependent term penalising the gradient of the pres-
sure to the formulation. Later, in [14] this method was restricted and reinterpreted
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as a Petrov–Galerkin scheme leading to the first consistent stabilised method, and
further developments were presented in the works [7] and [13]. For a review of
different residual stabilised finite element methods for the Stokes problem, see the
review paper [2].

Now, due to their nature, residual methods include unphysical couplings to the
formulation, and modify all the entries of the stiffness matrix. Hence, non-residual
methods where only a positive semi-definite term penalising the pressure is added
have also being proposed. Examples of this type of methods are the pressure
gradient projection [9] and local pressure gradient stabilisation [3]. The methods
just mentioned typically use two nested meshes in order to build the method. Thus,
to avoid this complication, the local pressure gradient stabilisation has been also
presented on the same mesh in [12]. Additionally, methods that use fluctuations of
the pressure gradient are not effective when the finite element space for pressure
is the piecewise constant space. The usual way to overcome this is to add pressure
jumps to the formulation, as it has been done, e.g., in [16]. These have been shown
to be very effective, but they do somehow temper with the data structure of the code.
To avoid this, the authors in [10] present an approach that is based on polynomial-
pressure-projection. This method works for low order of polynomials as was shown
in [4], and preserves symmetry of the original equation.

In the light of the discussion of the previous paragraphs, in this work we propose
a stabilised hdG method for the Stokes problem with non-standard boundary condi-
tions. The method is reminiscent of the Dorhmann–Bochev method (from [10]), but
uses the same velocity space used in the hdG method from [1].

1.1 Notations and Model Problem

Let � be an open polygonal domain in R
2 with Lipschitz boundary � := ∂�.

We use boldface font for tensor or vector variables e.g. u is a velocity vector field.
The scalar variables will be italic e.g. p denotes pressure scalar value. We define
the stress tensor σ := ν∇u − pI (where ν > 0 is the fluid viscosity and I is
the identity matrix) and the flux as σn := σ n. In addition, we denote normal and
tangential components as follows un := u · n, ut := u · t , σnn := σn · n, where n is
the outward unit normal vector to the boundary � and t is a vector tangential to �

such that n · t = 0.
For D ⊂ �, we use the standard L2(D) space with the following norm

‖f ‖2
D :=

∫

D

f 2 dx for all f ∈ L2(D).
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Let us define, for m ∈ N, the following Sobolev spaces

Hm(D) :=
{
v ∈ L2(D) : ∀ |α| ≤ m ∂αv ∈ L2(D)

}
,

H (div,D) :=
{
v ∈ [L2(D)]2 : ∇ · v ∈ L2(D)

}
,

where, for α = (α1, α2) ∈ N
2, |α| = α1 + α2, and ∂α = ∂ |α|

∂x
α1
1 ∂x

α2
2

. In addition, we

will use the standard semi-norm and norm for the Sobolev space Hm(D)

|f |2Hm(D) :=
∑

|α|=m
‖∂αf ‖2

D, ‖f ‖2
Hm(D) :=

m∑

k=0

|f |2
Hk(D)

∀ f ∈ Hm(D).

In this work, we consider the two dimensional Stokes problem with tangential-
velocity and normal-flux (TVNF) boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−νu + ∇p = f in �,

∇ · u = 0 in �,

σnn = g on �,

ut = 0 on �,

(1)

where u : �̄→ R
2 is the unknown velocity field, p : �̄ → R the pressure, ν > 0

the viscosity, which is considered to be constant, and f ∈ [L2(�)]2, g ∈ L2(�) are
given functions. The restriction to homogeneous Dirichlet conditions on ut is made
only to simplify the presentation.

Let
{
Th
}
h>0 be a regular family of triangulations of �̄ made of triangles. For

each triangulation Th, Eh denotes the set of its edges. In addition, for each of element
K ∈ Th, hK := diam(K), and we denote h := maxK∈Th

hK . We define following
Sobolev spaces on the triangulation Th and the set of all edges in Eh

L2(Eh) :=
{
v : v|E ∈ L2(E) ∀ E ∈ Eh

}
,

Hm(Th) :=
{
v ∈ L2(�) : v|K ∈ Hm(K) ∀ K ∈ Th

}
for m ∈ N,

with the corresponding broken norms.
Now we will introduce the finite element spaces that discretise the above spaces.

Let k ≥ 1. We start by introducing the velocity and pressure spaces. To discretise
the velocity u we use the Brezzi–Douglas–Marini space (see [5, Section 2.3.1]) of
order k ≥ 1 defined by

BDMk
h
:=

{
vh ∈ H (div,�) : vh|K ∈

[
Pk (K)

]2 ∀ K ∈ Th
}
.
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Associated to this space, we introduce the BDM projection +k : [H 1(�)]2 →
BDMk

h
defined in [5, Section 2.5]. The pressure is discretised using the following

space

Qk
h :=

{
qh ∈ L2 (�) : qh|K ∈ Pk (K) ∀ K ∈ Th

}
.

Associated to this space we define the local L2(K)-projection �k
K : L2(K) →

Pk (K) for each K ∈ Th defined as follows. For every w ∈ L2 (K), �k
K(w) is

the unique element of Pk (K) satisfying
∫
K �k

K(w)vhdx =
∫
K wvhdx ∀ vh ∈

Pk (K) , and we define the continuous projection �k|K = �k
K for all K ∈ Th.

The last ingredient needed in the method described below is a finite element
space associated to a family of Lagrange multipliers associated to the edges of the
triangulation. These multipliers will be denoted by ũ and are meant to approximate
the tangential trace of the velocity u on the edges of the triangulation. For this, and
in order to propose a discretisation with fewer degrees of freedom, we discretise the
Lagrange multiplier ũ using the space

Mk−1
h,0 :=

{
ṽh ∈ L2 (Eh

) : ṽh|E ∈ Pk−1 (E) ∀ E ∈ Eh, ṽh = 0 on �
}
.

Furthermore, we introduce for all E ∈ Eh the L2(E)-projection �k−1
E : L2 (E)→

Pk−1 (E) defined as follows. For every w̃ ∈ L2 (E), �k−1
E (w̃) is the unique element

of Pk−1 (E) satisfying
∫
E
�k−1

E (w̃)ṽh ds = ∫
E
w̃ṽh ds ∀ ṽh ∈ Pk−1 (E) , and we

denote �k−1 : L2
(
Eh
)→ Mk−1

h defined as �k−1|E := �k−1
E for all E ∈ Eh.

2 The Stabilised Method

Our approach is to write the discrete problem with the same degree of polynomials
for velocity and pressure spaces. In other words, denoting Vh := BDMk

h
×Mk−1

h,0 ,

we want to use the space Vh ×Qk
h, instead of Vh ×Qk−1

h as it was done in [1]. To
do this, we need the proper stabilisation term, because this choice of spaces does
not guarantee inf-sup stability.

The first ingredient in the definition of the stabilised method for (1) we use the
same bilinear forms as in [1], this is

a
((

wh, w̃h

)
,
(
vh, ṽh

)) :=
∑

K∈Th

(∫

K

ν∇wh : ∇vh dx

−
∫

∂K

ν
(
∂nwh

)
t

(
(vh)t − ṽh

)
ds + ε

∫

∂K

ν
(
(wh)t − w̃h

) (
∂nvh

)
t
ds
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+ν τ

hK

∫

∂K

�k−1( (wh)t − w̃h

)
�k−1( (vh)t − ṽh

)
ds

)

b
((

vh, ṽh
)
, qh

)
:= −

∑

K∈Th

∫

K

qh∇ · vh dx,

where ε ∈ {−1, 1} and τ > 0 is a stabilisation parameter. In addition, to compensate
for the non-inf-sup stability of the finite element spaces we have chosen, we
introduce the bilinear form

s
(
ph, qh

) := 1

ν

∫

�

(
ph − �k−1ph

) (
qh −�k−1qh

)
dx.

With these ingredients we can now present the finite element method analysed in
this work: Find

(
uh, ũh, ph

) ∈ Vh ×Qk
h such that for all

(
vh, ṽh, qh

) ∈ Vh ×Qk
h

A
((

uh, ũh, ph

)
,
(
vh, ṽh, qh

)) =
∫

�

f vh dx +
∫

�

g(vh)n ds, (2)

where

A
((

uh, ũh, ph

)
,
(
vh, ṽh, qh

)) :=a
((

uh, ũh
)
,
(
vh, ṽh

))+ b
((

vh, ṽh
)
, ph

)

+ b
((

uh, ũh
)
, qh

)
− s

(
ph, qh

)
.

2.1 Well-Posedness of the Discrete Problem

Let us consider the following norm on Vh (see [1, Lemma 3.2] for a proof that this
is actually a norm in Vh)

||| (wh, w̃h

) |||2 :=ν
∑

K∈Th

(
|wh|2H 1(K)

+ hK
∥∥∂nwh

∥∥2
∂K
+ τ

hK

∥∥∥�k−1( (wh)t − w̃h

)∥∥∥
2

∂K

)
.

The first step towards proving the stability of Method (2) is the following weak
inf-sup condition for b.

Lemma 1 There exist constants C1, C2 > 0, independent of hK and ν, such that

sup
(vh,ṽh)∈Vh

b
((

vh, ṽh
)
, qh

)

||| (vh, ṽh
) ||| ≥ C1

∥∥qh
∥∥
�
− C2

∥∥∥qh − �k−1qh

∥∥∥
�
∀qh ∈ Qk

h.

(3)
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Proof We consider an arbitrary qh ∈ Qk
h. Let �̃ be a convex, open, Lipschitz set

such that � ⊂ �̃, and let us consider following extension

q̂h :=
{
qh in �

0 in �̃ \� .

Let now φ be the unique weak solution of the problem
{
−φ = q̂h in �̃

φ = 0 on ∂�
.

Since �̃ is convex, then φ ∈ H 2(�̃). Then w := ∇φ|� belongs to [H 1(�)]2, and
for w̃ := wt ,

b
((

w, w̃
)
, qh

)
= ‖qh‖2

� ∀qh ∈ Qk
h. (4)

In addition, applying standard regularity results, see [5, Section 1.2], we get

‖w‖H 1(�) ≤ ‖∇φ‖H 1(�̃) ≤ c1‖qh‖�. (5)

In [1, Lemma 3.5] it is shown that there exists a Fortin operator 
 :
[
H 1 (�)

]2 →
Vh satisfying the following condition: for all v ∈ [H 1(�)]2 the following holds

b
((

v, ṽ
)
, qh

)
= b

(

 (v) , qh

) ∀ qh ∈ Qk−1
h , (6)

|||
 (v) ||| ≤ C
√
ν‖v‖H 1(�). (7)

Let
(
wh, w̃h

) := 
 (w), then thanks to (6), (4) and the continuity of b (see [1,
Lemma 3.3])

b
((

wh, w̃h

)
, qh

)
= b

((
w, w̃

)
, qh

)
− b

((
w − wh, w̃ − w̃h

)
, qh −�k−1qh

)

≥ ‖qh‖2
� − c2

√ ∑

K∈Th

|wh − w|2
H 1(K)

∥∥∥qh −�k−1qh

∥∥∥
�
.

Using the approximation properties of the BDM interpolation operator (see [5,
Preposition 2.5.1]) and (5)

b
((

wh, w̃h

)
, qh

)
≥
(

1

c1
‖qh‖� − c2c3

∥∥∥qh −�k−1qh

∥∥∥
�

)
|w|H 1(�)

≥
(
C1‖qh‖� − C2

∥∥∥qh −�k−1qh

∥∥∥
�

)
||| (wh, w̃h

) ||| ,
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where, in the last estimate we have used the stability of the Fortin operator 
 in the
||| · ||| norm (7). This proves the result with C1 = 1

C
√
νc1

and C2 = c2c3
C
√
ν

. %&
Before showing an inf-sup condition, we prove the continuity of bilinear form A.

Lemma 2 There exists a constantC > 0 such that, for all
(
wh, w̃h

)
,
(
vh, ṽh

) ∈ Vh

and rh, qh ∈ Qk
h, we have

∣∣∣∣A
((

wh, w̃h, rh
)
,
(
vh, ṽh, qh

))∣∣∣∣ ≤ C||| (wh, w̃h, rh
) |||h|||

(
vh, ṽh, qh

) |||h.
(8)

Proof We use the continuity of the bilinear forms (see [1, Lemma 3.3]) and the fact
that the projection is a bounded operator. %&
The final step towards stability is proving the inf-sup condition for bilinear form A.

Lemma 3 There exists β > 0 independent of hK such that for all
(
wh, w̃h, rh

) ∈
Vh ×Qk

h the following holds

sup
(vh,ṽh,qh)∈Vh×Qk

h

A
((

wh, w̃h, rh
)
,
(
vh, ṽh, qh

))

||| (vh, ṽh, qh
) |||h ≥ β||| (wh, w̃h, rh

) |||h. (9)

As a consequence, Problem (2) is well-posed.

Proof Let
(
wh, w̃h, rh

) ∈ Vh × Qk
h. The idea of the proof is to construct an

appropriate
(
vh, ṽh, qh

)
such that

A
((

wh, w̃h, rh
)
,
(
vh, ṽh, qh

)) ≥ c||| (wh, w̃h, rh
) |||h |||

(
vh, ṽh, qh

) |||h.

To achieve that we use coercivity of a (see [1, Lemma 3.4]), continuity of a (see [1,
Lemma 3.3]) and Lemma 2. For details see [6]. %&

2.2 Error Analysis

In this section we present the error estimates for the method. The addition of the
stabilising bilinear form s(·, ·) introduced a consistency error. However according
to [4], this should not be viewed as a serious flaw, as this consistency error can be
bounded in an optimal way. The following result is the first step towards that goal.

Lemma 4 Let
(
u, p

) ∈
[
H 1 (�) ∩H 2

(
Th
)]2 × L2 (�) be the solution of the

problem (1) and ũ = ut on all edges of Eh. If
(
uh, ũh, ph

) ∈ Vh ×Qk
h solves (2),
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then for all
(
vh, ṽh, qh

) ∈ Vh ×Qk
h the following holds

A
((

u− uh, ũ− ũh, p − ph

)
,
(
vh, ṽh, qh

)) = s
(
p, qh

)
. (10)

Next, we introduce the following norm

|||(u, ũ, p)|||h := |||(u, ũ)||| + 1√
ν
‖p‖�, (11)

and prove the following variant of Cea’s lemma [11, Lemma 2.28] for this stabilised
Stokes problem.

Lemma 5 Let
(
u, p

) ∈
[
H 1 (�) ∩H 2

(
Th
)]2 × L2 (�) be the solution of the

problem (1) and ũ = ut on all edges of Eh. If
(
uh, ũh, ph

) ∈ Vh ×Qk
h solves (2),

then there exists C > 0, independent of h and ν, such that

||| (u− uh, ũ− ũh, p − ph

) |||h ≤C inf
(vh,ṽh,qh)∈Vh×Qk

h

||| (u− vh, ũ− ṽh, p − qh
) |||h

+ C√
ν

∥∥∥p −�k−1p

∥∥∥
�
. (12)

Proof It is a combination of Lemmas 1, 2 and 3. For details see [6]. %&
Lemma 6 Let

(
u, p

) ∈
[
H 1 (�) ∩H 2

(
Th
)]2 × L2 (�) be the solution of the

problem (1) and ũ = ut on all edges of Eh. If
(
uh, ũh, ph

) ∈ Vh ×Qk
h solves (2),

then there exists C > 0, independent of h and ν, such that

||| (u− uh, ũ− ũh, p − ph

) |||h ≤ Chk

(
√
ν‖u‖Hk+1(Th) +

1√
ν
‖p‖Hk(Th)

)
.

Proof It is a combination of [1, Lemmas 3.8] and Lemma 5 with the local L2-
projection approximation [11, Theorem 1.103]. %&

3 Numerical Experiments

The computational domain is the unit square � = (0, 1)2. We present the results
for k = 1, that is the discrete space is given by BDM1

h
× M0

h,0 × Q1
h. We test

both the symmetric method (ε = −1) and the non-symmetric method (ε = 1). We
have followed the recommendation given in [15, Section 2.5.2] and taken τ = 6.
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We choose the right hand side f and the boundary condition g such that the exact
solution is given by

u = curl
[(

1− cos((1 − x)2)
)

sin(x2) sin(y2)
(

1− cos((1 − y)2)
)]

, p = tan(xy).

In Fig. 1a and b we depict the errors for both the symmetric and non-symmetric
cases, respectively. We can see that they not only validate the theory from Sect. 2.2,
but also perform an optimal h2 convergence rate for ‖u − uh‖�. Furthermore, we
observe an increased order of convergence for ‖p − ph‖�. In fact, the error seems
to decrease with O(h3/2), rather than the O(h) predicted by the theory.

To stress the last point made in the previous paragraph, in Table 1 we compare
the L2 error of the pressure (||p − ph||�) for hdG method introduced in [1] and
stabilised hdG method from Sect. 2. Columns ph ∈ Q0

h are associated with hdG
method and ph ∈ Q1

h with stabilised hdG ones. There, we confirm that the pressure
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Fig. 1 Convergence the stabilised method with k = 1. (a) Symmetric bilinear form (ε = −1).
(b) Non-symmetric bilinear form (ε = 1)

Table 1 Comparison of the error of the pressure ||p − ph||�
Symmetric bilinear form (ε = −1) Non-symmetric bilinear form (ε = 1)

h ph ∈ Q0
h ph ∈ Q1

h ph ∈ Q0
h ph ∈ Q1

h

2−1 0.152296 0.077228 0.159019 0.090624

2−2 0.082775 0.041790 0.084875 0.047488

2−3 0.042620 0.020500 0.043313 0.009449

2−4 0.021357 0.008338 0.021513 0.003516

2−5 0.010676 0.003083 0.010707 0.001269

2−6 0.005340 0.001105 0.005346 0.002171

2−7 0.002671 0.000392 0.002672 0.000453

2−8 0.001336 0.000139 0.001336 0.000161
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error for the stabilised version is much smaller than the one for the inf-sup stable
case, in addition to having an increased order of convergence.

4 Conclusion

In this work we have applied the idea introduced in [10] to stabilise the hdG
method proposed in [1] for the Stokes problem with TVNF boundary conditions.
The method adds a simple, symmetric, term to the formulation, and allowed us to
use a higher order pressure space, which, in turn, improved the pressure convergence
(although a proof of this fact is, in general, not available). This approach was
also applied to NVTF boundary conditions (see [6]) and can be used for other
discontinuous Galerkin methods that deal with Stokes or nearly incompressible
elasticity problems.

Future testing using higher order discretisations is needed to assess whether this
approach provides an increase of the convergence rate for the pressure. Thus, the
numerical tests with higher order of polynomials for discontinuous finite methods
is interest for further research to look for the improvement of the convergence.
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RBF Based CWENO Method

Jan S. Hesthaven, Fabian Mönkeberg, and Sara Zaninelli

1 Introduction

A broad range of physical phenomena can be described by hyperbolic conservation
laws of the form

ut + f (u)x = 0, (x, t) ∈ R×R+,

u(0) = u0,
(1)

with the conserved variables u : R × R+ → R
N and the flux function f : RN →

R
N . The nonlinear behavior of f can lead to complex solutions, most notably

shocks. It is well-known that high-order methods give good results for smooth data,
but for discontinuous ones spurious oscillations are introduced. A popular class of
methods to solve (1) is the finite volume method, which is based on a discretization
in space . . . < xi−1/2 < xi+1/2 < . . . and the average values ūi of its cells
Ci = [xi−1/2, xi+1/2]. It is defined by the semi-discrete scheme

dūi
dt
= −Fi+1/2 − Fi−1/2

Δx
, (2)

where the numerical flux term Fi+1/2 depends on the values {ūi−k, . . . , ūi+p−k}
with 0 ≤ k ≤ p − 1. For more details we refer the reader to [15, 20, 22].

The class of essentially nonoscillatory (ENO) methods, introduced by Harten et
al. [14], reduces spurious oscillations to a minimum. They are based on a monotone
numerical flux function F(u, v) and high-order accurate reconstruction si (x) for
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each cell i. The central idea is to choose the least oscillating interpolation function
si and define the numerical flux Fi+1/2 = F(u+i+1/2, u

−
i+1/2) with u±i+1/2 being

the evaluation of si+1 and si at the interface xi+1/2. Based on the ENO method,
Jiang and Shu [19] introduced the weighted ENO (WENO) method which considers
different interpolation polynomials, based on different stencils, and combines them
in a nonoscillatory manner to maximize the attainable accuracy. Further results on
ENO and WENO methods can be found in [10, 11, 16].

2 CWENO

The CWENO method is based on the WENO method and was introduced by Levy et
al. [23] as a third order method. Further analysis and generalization to higher orders
on general grids can be found in [6, 7].

Let us consider the standard semi-discrete formulation (2) with a monotone
flux function F(u, v). The goal is to construct a reconstruction Prec,i for each
cell Ci based on the stencil {Ci−k, . . . , Ci+k} for k ∈ N. In the smooth regions
the algorithm should choose a polynomial of degree 2k which interpolates the
central stencil ūi−k, . . . , ūi+k in the mean value sense. In case of a non-smooth
solution it chooses a polynomial of degree k on one stencil {Ci−k+l , . . . , Ci+l} that
avoids the discontinuity. Given the reconstruction, the high-order numerical flux is
Fi+1/2 = F(Prec,i+1(xi+1/2), Prec,i (xi+1/2)).

Specifically, let us consider Popt as the polynomial of degree 2k that interpolates
all data in the 2k + 1 stencil and the polynomials Pl of degree k that interpolate the
data on the stencil {Ci−k+l−1, . . . , Ci+l−1} for l = 1, . . . , k + 1. Furthermore, the
reconstruction depends on the choice of the positive real coefficients d0, . . . , dk+1 ∈
[0, 1] such that

∑k+1
l=0 dl = 1, d0 �= 0. Then, the reconstruction polynomial of degree

2k is

Prec(x) =
k+1∑

l=0

ωlPl(x), (3)

with

P0(x) = 1

d0

(
Popt (x)−

k+1∑

l=1

dlPl(x)
)
, (4)

and the nonlinear coefficients ωl that are defined as

ωl = αl∑k+1
i=0 αi

, αl = dl

(I [Pl] + ε̄)t
, (5)
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where I [Pl] indicates the smoothness of Pl , 1 ' ε̄ > 0 and t ≥ 2. A
classical indicator of smoothness in the cell C for a polynomial is the Jiang–Shu
indicator [19]

I [P ] =
∑

l>0

diam(C)2l−1
∫

C

( dl

dxl
P (x)

)2
dx. (6)

The choice of ε̄ is of importance: if it is too small, it might affect the order of
convergence. On the other hand if it is too big, spurious oscillations may occur.
Cravero et al. [7] show that the choice ε̄ = ε̂hp for p = 1, 2 leads to the maximal
order of convergence. As proposed in [7] we define the coefficients dj over the
temporary weights

d̂j = d̂k+2−j = j, 1 ≤ j ≤ k + 2

2
, (7)

and we choose d0 ∈ (0, 1) for the high-order polynomial. This gives us a possible
choice for the coefficients

dj = d̂j∑
i>0 d̂i

(1− d0). (8)

The main difference with respect to the classical WENO method is that for the
smooth case we are not constructing Popt out of the polynomials Pl , but we build it
independently by resolving an additional system of equations. This method has the
advantage that it is easier to generalize on general grids in high dimensions, while
maintaining high-order accuracy.

3 Radial Basis Functions

An alternative to the classical polynomial interpolation is the interpolation with
radial basis functions (RBF). RBFs were proposed in the seminal work by Hardy
[13]. They have been successfully applied in scattered data interpolation [4, 9, 17,
24, 27] and as a basis for a generalized finite difference method (RBF-FD) [5, 12].
The advantage is its flexibility in high dimensions and the possibility to reduce the
risk of ill-conditioned point constellations. Its disadvantage is the ill-conditioning
of the interpolation matrix for small grid sizes [8, 21, 26].

The RBF interpolation is based on a basis B, obtained from a univariate
continuous function φ : Rd → R, composed with the Euclidean norm centered
at the data points

φ(x − xj ) := φ(ε‖x − xj‖), (9)
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Table 1 Commonly used
RBFs with N �( ν > 0, k ∈ N

and ε > 0

RBF φ(r) Order

Infinitely smooth RBFs

Multiquadratics (1 + (εr)2)ν )ν*
Inverse multiquadratics (1 + (εr)2)−ν 0

Gaussians exp(−(εr)2) 0

Piecewise smooth RBFs

Polyharmonic splines r2k−d k

r2k−d log(r) k

with the shape parameter ε. Some common RBFs can be found in Table 1. Thus,
for given scattered data points X = (x1, . . . , xn)

T with xj ∈ R
d and corresponding

values f1, . . . , fn ∈ R we look for

s(x) =
n∑

j=1

ajφ(x − xj )+ p(x), (10)

with a polynomial p ∈ Πm−1(R
d), m ∈ N, the interpolation condition s(xj ) = fj

and the additional constraints

n∑

j=1

ajq(xj ) = 0, for all q ∈ Πm−1(R
d ), (11)

with the coefficients aj ∈ R for all j = 1, . . . , n.
The same concept can be applied in the case of cell-averages. We seek functions

s(x) =
n∑

j=1

ajλ
ξ
Cj

φ(x − ξ)+ p(x), p ∈ Πm−1(R
d), (12)

such that

λCj s = ūj , for all j = 1, . . . , n, (13a)

n∑

j=1

ajλC(p) = 0, for all C ∈ {C1, . . . , Cn}, (13b)

with the averaging operator λxCf (x) = 1
|C|

∫
C f (x)dx. A well-known problem with

RBFs is the high condition number of the interpolation matrix for small grid sizes
or small shape parameters [8, 21, 26]. This problem can be resolved by using the
vector-valued rational approximation method [28].
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4 RBF-CWENO

Methods combining RBFs and essentially nonoscillatory methods have been pro-
posed, e.g. RBFs with ENO [18, 25], RBFs with WENO [1–3]. The advantage of
the CWENO method over the WENO method is its flexibility on general grids and
its independence of the construction of a high-order interpolation function out of
lower order ones. This facilitates the use of the whole grid in smooth regions and is
important for non-polynomial interpolation functions which cannot be combined to
an higher order function.

We propose the RBF-CWENO method which works as the classical CWENO
method with the reconstruction function (3) and the weights (5), but as interpolation
function we use RBFs instead of polynomials. Since the problem of the ill-
conditioning can be solved by using the vector-valued rational approximation
method [28], the main challenge for RBF methods is the choice of the smoothness
indicator. For polyharmonic splines, Aboyar et al. [1] use the semi-norm of the
Beppo-Levi space and Bigoni et al. [3] use a modified version of the Jiang-Shu
indicator (6).

4.1 Smoothness Indicator

The smoothness indicator is the heart of the essentially nonoscillatory methods. We
consider one based on the one introduced by Bigoni and Hesthaven [3]

Ii [s] =
g+1∑

l=1

Δx2l−1
i

∫

Ci

(∂lp(x)
∂xl

)2
dx

+Δx
2g+1
i

∫

Ci

(
∂g+1

∂xg+1

[ g+1∑

j=1

ajλ
ξ
Cj

φ(‖x − ξ‖)
]
dx

)2

,

(14)

where the first part is the sum of the derivatives of the polynomial part and the
second term expresses the highest derivative of the RBF-part. The original Jiang-
Shu indicator applied to (12) would include the lower derivatives of the RBF-part
plus all mixed terms, but we find this to be less efficient. For simplicity the integrals
can be approximated with a simple mid-point rule.

We face again the problem of ill-conditioning when recovering the coefficients
ai . Numerical examples indicate that small shape parameter improve the accuracy,
but they do not affect the choice of the stencil using this smoothness indicator. Thus,
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we use a bigger shape parameter εR , that is smaller than the smallest distance to a
singularity

εR = 0.95( max
i,j≤N‖xi − xj‖)−1, (15)

which ensures the solvability of the system of equations [28].

5 Numerical Results

We now discuss the numerical results of the RBF-CWENO method and compare
it with the RBF-WENO method [3] and the classical ENO method [14]. All
methods are using the Lax-Friedrichs numerical flux and integration in time is done
using the SSPRK-5 method [15] with time step dt = CFL · Δx/λmax and the
maximal eigenvalue λmax of ∇uF . Furthermore, we use the vector-valued rational
approximation approach [28] to circumvent ill-conditioning of the interpolation
matrix and a shape parameter ε = 0.1. For the nonlinear weights (5) we choose
ε̄ = ε̂h2 with ε̂ = 0.1.

5.1 Linear Advection Equation

Let us consider the linear advection equation

ut + aux = 0, x ∈ [0, 1], (16)

with wave speed a = 1, initial condition u0(x) = sin(2πx) and periodic boundary
conditions [22]. Note that for k = 3 we expect the order of convergence to be 7,
therefore we use the reduced time step dt = CFL · Δx7/5/λmax to recover the
right order of convergence. The correct order of convergence of the RBF-CWENO
method is shown in Table 2 and it seems to be more accurate than the RBF-WENO
method.

5.2 Burger’s Equation

Considering the Burger’s equation

ut + 1

2
(u2)x = 0, x ∈ [0, 1], (17)
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Table 2 Convergence rates of RBF-CWENO using multiquadratics for the linear advection
equation at time t = 0.05

RBF-CWENO RBF-WENO

L1
h L2

h L∞h L2
h

k N Error Rate Error Rate Error Rate Error Rate

1 16 5.6409e−04 – 2.1702e−04 – 1.5903e−04 – 1.5754e−02 –

32 7.6612e−05 2.75 2.4817e−05 2.99 1.6221e−05 3.15 4.8924e−03 1.69

64 1.0082e−05 2.79 2.5297e−06 3.15 1.3561e−06 3.42 1.2608e−03 1.96

128 1.3812e−06 2.74 2.4032e−07 3.24 9.6982e−08 3.63 9.2931e−05 3.76

256 2.1322e−07 2.57 2.3289e−08 3.21 6.5703e−09 3.71 2.3008e−06 5.34

2 16 2.3796e−05 – 7.3671e−06 – 4.1241e−06 – 5.4401e−04 –

32 3.5783e−06 2.61 8.3093e−07 3.01 3.9675e−07 3.22 4.4938e−05 3.60

64 2.8691e−07 3.48 5.9366e−08 3.63 3.6940e−08 3.27 3.4787e−06 3.69

128 1.4563e−08 4.11 2.5775e−09 4.32 1.3965e−09 4.51 2.5956e−07 3.74

256 6.8835e−10 4.20 9.6168e−11 4.53 4.4249e−11 4.75 1.9221e−08 3.76

3 16 3.8815e−05 – 1.3319e−05 – 7.7293e−06 – 2.2578e−04 –

32 4.3423e−07 6.48 1.3452e−07 6.63 8.1494e−08 6.57 7.3483e−06 4.94

64 5.1821e−09 6.39 1.4750e−09 6.51 8.8273e−10 6.54 1.4075e−07 5.71

128 7.6636e−11 6.08 1.6792e−11 6.46 7.8655e−12 6.81 1.4510e−09 6.60

256 1.1554e−12 6.05 1.5855e−13 6.73 6.9487e−14 6.82 2.0120e−11 6.17

We use shape parameter ε = 0.1, CFL = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

x

u

h=1/16
h=1/32
h=1/64

h=1/128
Ref. sol.

Fig. 1 Burger’s equation at t = 0.3 with u0 = sin(2πx) solved by using RBF-CWENO method
with MQ interpolants of order k = 3

we analyze its robustness with respect to discontinuities. In Fig. 1 we report the
results performed with CFL = 0.5 at t = 0.3. We observe no oscillations around
the discontinuity at x = 0.5 and as expected an increasing accuracy for increasing
number of elements.
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5.3 Euler Equations

The one-dimensional Euler equations express conservation of mass, momentum and
the total energy. They can be described by the density ρ, the mass flow m, the energy
per unit volume E and the pressure p through

⎛

⎜⎝
ρ

m

E

⎞

⎟⎠

t

+

⎛

⎜⎜⎝

m
m2

ρ
+ p

m
ρ
(E + p)

⎞

⎟⎟⎠

x

= 0, (18)

with p = RρT = (γ − 1)(E − 1
2
m2

ρ
) for an ideal gas with the ratio of specific

heat γ = 1.4 [15]. For k = 3 we need to change the nonlinear weights (5) by using
ε̄ = ε̂h2 with ε̂ = 10−6 to avoid oscillations.

5.3.1 Sod’s Shock Tube Problem

The Sod’s shock tube problem describes two colliding gases in [0, 1] with different
densities given by the initial conditions

(ρ0,m0, p0) =
⎧
⎨

⎩
(1, 0, 1) if x < 0.5

(0.125, 0, 0.1) if x ≥ 0.5
. (19)

This results in a rarefaction wave followed by a contact and a shock discontinuity
which separates the domain into four domains with constant variables. The RBF-
CWENO method resolves it well, see Fig. 2. For k = 3, we observe minor

0.2 0.4 0.6 0.8

0.5

1

x

N=64
N=128
N=256

Ref. sol.

0.2 0.4 0.6 0.8

0.5

1

x

N=64
N=128
N=256

Ref. sol.

Fig. 2 Results for the Sod shock tube problem at t = 0.2 solved by using RBF-CWENO with MQ
interpolants of order k = 2, 3 on characteristic variables (left: k = 2, right: k = 3)
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Fig. 3 Results for the Euler shock entropy problem at t = 1.8 solved by using RBF-CWENO with
MQ interpolants of order k = 2 on characteristic variables (Left) and a comparison with WENO,
ENO2 and ENO5 for N = 256 cells (Right)

oscillations, but their amplitude decreases for increasing number of elements.
Furthermore, we observe the increasing accuracy for k = 3 compared to k = 2.

5.3.2 Shu–Osher Shock-Entropy Wave Interaction Problem

The Shu–Osher problem describes the interaction of a discontinuity with a low
frequency wave which introduces some high frequent waves. Its initial conditions
are

(ρ0,m0, p0) =
⎧
⎨

⎩
(3.857143, 2.629369, 10.33333) if x < −4

(1+ 0.2 sin(5x), 0, 1) if x ≥ −4
. (20)

In Fig. 3, we observe on the left side the increasing accuracy for increasing number
of elements for k = 2. On the right side we see its good approximative behaviour
compared to the existing methods ENO2, ENO5 and the corresponding WENO.
In particular we observe that the performance of the RBF-CWENO (k = 2) is
comparable to ENO5 and superior to WENO (k = 2).

6 Conclusion

In this work, we introduce the RBF-CWENO method that relies on the CWENO
method [23] and the use of radial basis functions for the interpolation. We develop
a smoothness indicator that is based on RBFs but works similarly to the one for
polynomials. Furthermore, we tackle the problem about the choice of the weight
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1' ε̄ > 0. For ε̄ = ε̂h2 with ε̂ = 0.1 we get the right order of convergence, but for
the 7th order method (k = 3) we choose ε̂ = 10−6 to reduce spurious oscillations
for the Euler equations.

Moreover, we should point out that the choice of the linear weight d0 can
influence the result; indeed if it is too close to 1 then the reconstruction almost
coincides with Popt, which can lead to spurious oscillations in case of discontinuous
solutions. We present multiple numerical examples to show the robustness of the
method.

We can conclude that the RBF-CWENO method works comparable to the
existing RBF-WENO and ENO methods in one dimension. The advantage of
RBFs is clearer when considering unstructured grids in higher dimensions where
polynomial reconstruction is complex.
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Discrete Equivalence of Adjoint
Neumann–Dirichlet div-grad
and grad-div Equations in Curvilinear
3D Domains

Yi Zhang, Varun Jain, Artur Palha, and Marc Gerritsma

1 Introduction

In R
d , given a bounded domain � with Lipschitz boundary ∂� and σ̂ n ∈

H−1/2(∂�) = tr H(div,�), ω ∈ H 1(�) solves the Neumann problem,

⎧
⎪⎨

⎪⎩

∂ω

∂n
= σ̂ n on ∂�

−div
(
grad ω

)+ ω = 0 in �

, (1)

if and only if σ ∈ H(div,�) which solves the Dirichlet problem,

⎧
⎨

⎩
σ · n = σ̂ n on ∂�

−grad (div σ )+ σ = 0 in �
, (2)

satisfies σ = grad ω [3]. This is obvious at the continuous level. The question is
whether we can find a set of finite dimensional function spaces such that σ h =
grad ωh holds if ωh and σ h solve the discrete Neumann and Dirichlet problems
respectively. The answer is yes.
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Throughout this paper, we restrict ourselves to R
3. We will first construct the

primal polynomial spaces and their algebraic dual representations, and then use
them to discretize problems (1) and (2) such that the identity σ h = grad ωh holds
at the discrete level in any curvilinear domain for any polynomial approximation
degree. This work extends [7, 9], where similar dual Neumann–Dirichlet problems
are considered, to 3-dimensional space. These primal spaces and their algebraic
dual representations can be ideal for the so-called mimetic or structure-preserving
discretizations [1, 4, 8, 11, 12]. Together with their trace spaces, they can be used
for the hybrid finite element methods which first decompose the domains into
discontinuous elements then connect them with Lagrange multipliers living in the
trace spaces [2, 13, 14].

The outline of this paper is as follows: In Sect. 2, we introduce the construction
of polynomial spaces and their algebraic dual representations. The discrete formu-
lations of the Neumann–Dirichlet problems and the proof of their equivalence at
the discrete level follow in Sect. 3. A 3-dimensional numerical test case is then
presented in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Function Spaces

2.1 Primal Polynomial Spaces

Let−1 = ξ i0 < ξi1 < · · · < ξi
I i
= 1, i = 1, 2, 3, being three partitionings of [−1, 1].

The associated Lagrange polynomials are

hj (ξ
i) =

I i∏

m=0,m�=j

ξ i − ξ im

ξ ij − ξ im
, j = 0, 1, · · · , I i .

They are polynomials of degree I i which satisfy the Kronecker delta property,
hj (ξ

i
k) = δjk . The associated edge functions can be derived as [6],

ej (ξ
i) = −

j−1∑

k=0

dhk(ξ i)

dξ i
, j = 1, 2, · · · , I i ,

which are polynomials of degree I i − 1. Edge functions also satisfy the Kronecker
delta property, but in the integral sense,

∫ ξ ik

ξ ik−1

ej (ξ
i) dξ i = δjk.
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Consider a reference domain �ref|ξ1,ξ2,ξ3 := [−1, 1]3. With the tensor product,

we can construct finite dimensional scalar function space PI 1,I 2,I 3
spanned by

polynomial basis functions

{
hi(ξ

1)hj (ξ
2)hk(ξ

3)
}
,

and vector-valued function space LI 1,I 2,I 3
spanned by polynomial basis functions

{
ei(ξ

1)hj (ξ
2)hk(ξ

3), hi(ξ
1)ej (ξ

2)hk(ξ
3), hi(ξ

1)hj (ξ
2)ek(ξ

3)
}
.

Let ωh ∈ PI 1,I 2,I 3
be

ωh =
I 1∑

i=0

I 2∑

j=0

I 3∑

k=0

wi,j,khi(ξ
1)hj (ξ

2)hk(ξ
3). (3)

Due to the way of constructing the edge functions, we can easy derive ρh =
grad ωh ∈ LI 1,I 2,I 3

,

ρh = grad ωh = (ρ1, ρ2, ρ3)
T,

where [6],

ρ1 =
I 1∑

i=1

I 2∑

j=0

I 3∑

k=0

(
wi,j,k −wi−1,j,k

)
ei(ξ

1)hj (ξ
2)hk(ξ

3),

ρ2 =
I 1∑

i=0

I 2∑

j=1

I 3∑

k=0

(
wi,j,k −wi,j−1,k

)
hi(ξ

1)ej (ξ
2)hk(ξ

3),

ρ3 =
I 1∑

i=0

I 2∑

j=0

I 3∑

k=1

(
wi,j,k −wi,j,k−1

)
hi(ξ

1)hj (ξ
2)ek(ξ

3).

Let ω, ρ be the vectors of expansion coefficients of ωh, ρh. We can obtain

ρ = E ω, (4)

where E is called the incidence matrix. The incidence matrix is very sparse, only
consists of ±1 as non-zero entries. If we squeeze, stretch or distort the domain, of
course, the polynomial basis functions change, but the incidence matrix will remain
the same. It only depends on the topology of the mesh and the numbering of the
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degrees of freedom. And it is exact. In other words, it introduces no extra error.
All these features make it an excellent discrete counterpart of the grad operator.
Examples of incidence matrices can be found in [8, 10–12].

For a comprehensive explanation of these polynomial basis functions, we refer
to [6]. In isogeometric analysis, tensor-product B-splines with similar properties
have been developed, see, for example [5]. For tetrahedral elements, an analogue
development can be found in [15].

From (3), we can derive the trace of ωh, for example, on the back boundary of

�ref, �b =
{
ξ1 = −1, ξ2, ξ3 ∈ [−1, 1]

}
,

trb ωh =
I 2∑

j=0

I 3∑

k=0

w0,j,kh0(−1)hj (ξ2)hk(ξ
3).

Let ωb be the vector of expansion coefficients of trb ωh. Clearly, there exists a linear
operator Nb such that

ωb = Nb ω.

The same processes can be done for other boundaries. If we collect the traces
of ωh on all boundaries and combine their vectors of expansion coefficients and
corresponding linear operators, we can eventually obtain

ωtr = N ω,

where the matrix N, like E, is sparse and only depends on the topology of the mesh
and the numbering of the degrees of freedom. Furthermore, it contains only 1 as
non-zero entries. An example of N can be found in [7]. Now, we can conclude that
the trace space, PI 1,I 2,I 3 = tr PI 1,I 2,I 3

, is given as

PI 1,I 2,I 3 := PI 2,I 3

−1 ∪ PI 2,I 3

1 ∪ PI 1,I 3

−1 ∪ PI 1,I 3

1 ∪ PI 1,I 2

−1 ∪ PI 1,I 2

1 ,

where PI 2,I 3

−1 is the space spanned by
{
h0(−1)hj (ξ2)hk(ξ

3)
}

, PI 2,I 3

1 is the

space spanned by
{
hI 1(1)hj (ξ2)hk(ξ

3)
}

and so on. Notice that the polynomial

basis functions in
{
h0(−1)hj (ξ2)hk(ξ

3)
}

are exactly the same as those in
{
hI 1(1)hj (ξ2)hk(ξ

3)
}

because h0(−1) = hI 1(1) = 1. But here we still distinguish

them because they represent basis functions at different boundaries.
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2.2 Algebraic Dual Polynomial Spaces

We first consider the space PI 1,I 2,I 3
. Let MP be the symmetric mass matrix, for

example,

MPi+j (I 1+1)+k(I 1+1)(I 2+1), l+m(I 1+1)+n(I 1+1)(I 2+1) :=
∫∫∫

�ref

hi(ξ
1)hj (ξ

2)hk(ξ
3)hl(ξ

1)hm(ξ
2)hn(ξ

3) dξ1dξ2dξ3.

The associated algebraic dual polynomial representations, or simply dual polyno-
mials, are linear combinations of the polynomial basis functions, or simply primal
polynomials, defined in the previous section,

[
h̃0,0,0(ξ

1, ξ2, ξ3), · · · , ˜hI 1,I 2,I 3(ξ1, ξ2, ξ3)
]

:=
[
h0(ξ

1)h0(ξ
2)h0(ξ

3), · · · , hI 1(ξ
1)hI 2(ξ

2)hI 3(ξ
3)
]
M
−1
P .

These dual polynomials are always well-defined. This is because the primal polyno-
mials are linearly independent. So the mass matrix MP is injective and surjective,

therefore invertible. Let the finite dimensional space spanned by
{
h̃i,j,k(ξ

1, ξ2, ξ3)
}

be denoted by P̃I 1,I 2,I 3

. We say P̃I 1,I 2,I 3

is the algebraic dual space of the primal

space PI 1,I 2,I 3
. Note that PI 1,I 2,I 3

and P̃I 1,I 2,I 3

actually represent the same space.
The change of basis functions only leads to a different representation. Therefore, we
also call the algebraic dual space a dual representation. Let M̃P be the mass matrix

of P̃I 1,I 2,I 3

, we can easily see that

M̃PMP = I, (5)

where I is the identity matrix. Similarly, we can derive the algebraic dual space

L̃I 1,I 2,I 3

of the primal space LI 1,I 2,I 3
. Let M̃L and ML be their mass matrices, we

have

M̃LML = I. (6)

If ρh ∈ LI 1,I 2,I 3
, σ h, whose vector of expansion coefficients σ satisfies

σ =ML ρ, (7)

will be the representation of ρh in the algebraic dual space L̃I 1,I 2,I 3

.
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To explain how the algebraic dual space of the trace space PI 1,I 2,I 3
is derived,

we take PI 2,I 3

−1 as example. We already know that PI 2,I 3

−1 is a space spanned by

primal polynomials
{
h0(−1)hj (ξ2)hk(ξ

3)
}

. With these primal polynomials, we can

compute its mass matrix, denoted by Mb. The dual polynomials are then computed
by

[
h̃0,0,0(−1, ξ2, ξ3), · · · , h̃0,I 2,I 3(−1, ξ2, ξ3)

]

=
[
h0(−1)h1(ξ

2)h1(ξ
3), · · · , h0(−1)hI 2(ξ

2)hI 3(ξ
3)
]
M
−1
b .

The algebraic dual space P̃I 2,I 3

−1 is spanned by dual polynomials
{
h̃0,j,k(−1, ξ2, ξ3)

}
.

The algebraic dual space of the trace space PI 1,I 2,I 3
eventually can be written as

P̃I 1,I 2,I 3 = P̃I 2,I 3

−1 ∪ P̃I 2,I 3

1 ∪ P̃I 1,I 3

−1 ∪ P̃I 1,I 3

1 ∪ P̃I 1,I 2

−1 ∪ P̃I 1,I 2

1 .

The divergence of σ h ∈ L̃I 1,I 2,I 3

can be done with the help of the boundary value
σ̂
h ∈ P̃I 1,I 2,I 3

. With vector proxies, it can be written as

div σ h = N
T σ̂

h − E
Tσ h. (8)

A detailed introduction of algebraic dual polynomial spaces is given in [9].

2.3 Function Spaces in Curvilinear Domains

So far, all polynomial spaces are defined only in the reference domain
�ref|ξ1,ξ2,ξ3 = [−1, 1]3. Consider an arbitrary domain � and a C1 diffeomorphism
� : �ref|ξ1,ξ2,ξ3 → �|x1,x2,x3 . In �, the primal polynomials change. Therefore, the
mass matrices will also change. But the process of constructing dual polynomials
does not change. And as we mentioned before, the metric-independent incidence
matrix E and the matrix N remain the same. The way of converting polynomials in
Cartesian domain into those in curvilinear domains follows the general coordinate
transformation process, for example, see [16].

From now on, notations mentioned in this section not only refer to the reference
domain �ref, but also refer to the physical domain �.
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3 Weak Formulations

3.1 Discrete Neumann Problem

With integration by parts, we can derive the weak formulation of the Neumann
problem, (1), written as: For given σ̂ ∈ H−1/2(∂�), find ω ∈ H 1(�) such that

(
grad ω, grad ω̄

)
L2 + (ω, ω̄)L2 = 〈

tr ω̄, σ̂
〉
, ∀ω̄ ∈ H 1(�). (9)

Note that on the right hand side, we use 〈·, ·〉 to represent the duality pairing between

tr ω̄ ∈ H 1/2(∂�) and σ̂ ∈ H−1/2(∂�). We use finite dimensional space PI 1,I 2,I 3

to approximate the space H 1(�) and use the algebraic dual trace space P̃I 1,I 2,I 3
to

approximate the space H−1/2(∂�). Then we obtain

(
grad ωh, grad ω̄h

)

L2
= ω̄h,T

E
T
MLE ωh,

(
ωh, ω̄h

)

L2
= ω̄h,T

MP ωh,

and
∫

∂�

tr ω̄h σ̂
h d� = ω̄h,T

N
T σ̂

h
,

which eventually leads to the discrete formulation of (9),

E
T
MLE ωh +MP ωh = N

T σ̂
h
. (10)

3.2 Discrete Dirichlet Problem

For the Dirichlet problem, (2), the weak formulation is given as: For given σ̂ ∈
H−1/2(∂�), find σ ∈ H(div,�), tr σ = σ̂ such that

(div σ , div σ̄ )L2 + (σ , σ̄ )L2 = 0, ∀σ̄ ∈ H0(div,�). (11)

We use algebraic dual space L̃I 1,I 2,I 3

to approximate H(div,�). With σ̂
h ∈

P̃I 1,I 2,I 3
given and (8), we obtain

(
div σ h, div σ̄ h

)

L2
= −σ̄ h,T

EM̃P
(
N

T σ̂
h − E

T σ h
)
,

and
(
σ h, σ̄ h

)

L2
= σ̄ h,T

M̃L σ h.
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Therefore, the discrete formulation of (11) is written as

EM̃PE
T σ h + M̃L σ h = EM̃PN

T σ̂
h
. (12)

3.3 Equivalence Between Discrete Formulations

Now it is time to check if the equivalence between (1) and (2) holds at the discrete
level. In other words, it is time to check if the statement that ωh solves (10) if and
only if σ h = grad ωh solves (12) is correct.

From (4) and (7), we know that σ h,

σ h =MLE ωh, (13)

is the vector representation of grad ωh in the dual space. If we insert (13) into (12),
we obtain

EM̃PE
T
MLE ωh + M̃LMLE ωh = EM̃PN

T σ̂
h
. (14)

From (10), we know that

E
T
MLE ωh = −MP ωh + N

T σ̂
h
. (15)

By inserting (15) into (14), we get

EM̃P
(
−MP ωh + N

T σ̂
h
)
+ M̃LMLE ωh = EM̃PN

T σ̂
h
. (16)

From (5) and (6), we know that (16) holds, which proves the equivalence.

If the equivalence holds, relation
∥∥∥ωh

∥∥∥
H 1(�)

=
∥∥∥σ h

∥∥∥
H(div,�)

should also be

satisfied. To prove this, we have

∥∥∥σ h
∥∥∥

2

H(div,�)

(8)= σ h,T
M̃L σ h +

(
N

T σ̂
h − E

Tσ h
)T

M̃P
(
N

T σ̂
h − E

Tσ h
)

(13)=
(
MLE ωh

)T
M̃L

(
MLE ωh

)

+
[
N

T σ̂
h − E

T
(
MLE ωh

)]T

M̃P

[
N

T σ̂
h − E

T
(
MLE ωh

)]

(10)= ωh,T
E

T
MLE ωh + ωh,T

MPM̃PMP ωh

=
∥∥∥ωh

∥∥∥
2

H 1(�)
,

where we constantly use (5) and (6) and the fact that mass matrices are symmetric.
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4 Numerical Test

Consider the mapping� which maps the Cartesian reference domain �ref|ξ1,ξ2,ξ3 :=
[−1, 1]3 into the physical domain �|x1,x2,x3 = [0, 1]3 by

xi = 1

2
+ 1

2

⎛

⎝ξ i + c
∏

j

sin(πξj )

⎞

⎠ , i = 1, 2, 3.

When the deformation coefficient c = 0, the domain � is Cartesian. Otherwise the
domain is curvilinear, meaning that a curvilinear coordinate system parametrizes �.
Examples of such curvilinear domains in R

2 are shown in Fig. 1.
A manufactured solution of the Neumann problem, (1), is

ωexact = ex
1 + ex

2 + ex
3
.

Clearly, σ exact = grad ωexact =
(
ex

1
, ex

2
, ex

3
)T

solves the Dirichlet problem, (2).

In the domains of different deformation coefficient c, with the boundary condi-
tion σ̂ = tr σ exact imposed, we solve the discrete formulations (10) and (12) using
Gauss–Lobatto–Legendre (GLL) polynomial spaces of degree I 1 = I 2 = I 3 = N .

The results of the L2-error of
(
σ h − grad ωh

)
are shown in Fig. 2 (Left) where

we can see that the relation σ h = grad ωh is preserved up to the machine precision.
With the growth of the polynomial degree, the error increases slowly because of
the accumulation of the machine error as the amount of degrees of freedom grows
significantly.

In Table 1, the results of the H 1-norm of ωh and H(div)-norm of σ h are

presented. It is shown that the relation
∥∥∥ωh

∥∥∥
H 1(�)

=
∥∥∥σ h

∥∥∥
H(div,�)

holds for all

polynomial degrees irrespective of whether we use the Cartesian domain, c = 0, or

Fig. 1 Curvilinear domains for c = 0.15 (Left) and c = 0.3 (Right) in R
2. The gray lines illustrate

the coordinate lines
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Fig. 2 The L2-error of
(
σ h − grad ωh

)
(Left) and the p-convergence of the H 1-error of ωh

(Right) for N = 2, 4, · · · , 20 and c = 0, 0.15, 0.3

Table 1 The H 1-norm of ωh and H(div)-norm of σh for polynomial degree N = 2, 4, · · · , 20
and deformation coefficient c = 0, 0.15, 0.3

c = 0 c = 0.15 c = 0.3

N

∥∥∥ωh
∥∥∥
H 1

∥∥∥σ h
∥∥∥
H(div)

∥∥∥ωh
∥∥∥
H 1

∥∥∥σ h
∥∥∥
H(div)

∥∥∥ωh
∥∥∥
H 1

∥∥∥σ h
∥∥∥
H(div)

2 6.0720702909 6.0720702909 5.8899445673 5.8899445673 6.7381947027 6.7381947027

4 6.0730653395 6.0730653395 6.0567452129 6.0567452129 5.8849807780 5.8849807780

6 6.0730653668 6.0730653668 6.0729332275 6.0729332275 6.0721137212 6.0721137212

8 6.0730653668 6.0730653668 6.0730647051 6.0730647051 6.0730525346 6.0730525346

10 6.0730653668 6.0730653668 6.0730653557 6.0730653557 6.0730648440 6.0730648440

12 6.0730653668 6.0730653668 6.0730653665 6.0730653665 6.0730653428 6.0730653428

14 6.0730653668 6.0730653668 6.0730653667 6.0730653667 6.0730653663 6.0730653663

16 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653667 6.0730653667

18 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653668

20 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653668

curvilinear domains, c = 0.15, 0.3. It is also seen that the results always converge to

the analytical value ‖ωexact‖H 1 =
∥∥∥σ h

∥∥∥
H(div)

= 6.0730653668.The p-convergence

for the H 1-error of ωh, therefore also for the H(div)-error of σ h, is shown in Fig. 2
(Right), which shows the exponential convergence of the method.

5 Conclusions

By constructing and using primal polynomial spaces and their algebraic dual
representations both in the domain and on the boundary, we successfully preserve
the equivalence of the div-grad Neumann problem and the grad-div Dirichlet
problem at the discrete level in 3-dimensional curvilinear domains. This suggests the
further usage of these spaces to structure-preserving methods and hybrid methods.
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A Conservative Hybrid Method for Darcy
Flow

Varun Jain, Joël Fisser, Artur Palha, and Marc Gerritsma

1 Introduction

Hybrid formulations [1, 3, 10] are classical domain decomposition methods which
reduce the problem of solving one global system to many small local systems. The
local systems can then be efficiently solved independently of each other in parallel.

In this work we present a hybrid mimetic spectral element formulation to solve
Darcy flow. We follow [8] which render the constraints on divergence of mass flux,
the pressure gradient and the inter-element continuity metric free. The resulting
system is extremely sparse and shows a reduced growth in condition number as
compared to a non-hybrid system.

This document is structured as follows: In Sect. 2 we define the weak formulation
for Darcy flow. The basis functions are introduced in Sect. 3. The evaluation of
weighted inner product and duality pairings are discussed in Sect. 4. In Sect. 5 we
discuss the formulation of discrete algebraic system. In Sect. 6 we present results
for a test case taken from [7].

V. Jain (�) · J. Fisser · A. Palha · M. Gerritsma
Faculty of Aerospace Engineering, TU Delft, Delft, The Netherlands
e-mail: V.Jain@tudelft.nl; A.PalhaDaSilvaClerigo@tudelft.nl; M.I.Gerritsma@tudelft.nl

© The Author(s) 2020
S. J. Sherwin et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2018, Lecture Notes in Computational Science
and Engineering 134, https://doi.org/10.1007/978-3-030-39647-3_16

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39647-3_16&domain=pdf
mailto:V.Jain@tudelft.nl
mailto:A.PalhaDaSilvaClerigo@tudelft.nl
mailto:M.I.Gerritsma@tudelft.nl
https://doi.org/10.1007/978-3-030-39647-3_16


216 V. Jain et al.

2 Darcy Flow Formulation

For � ∈ R
d , where d is the dimension of the domain, the governing equations for

Darcy flow, are given by,

⎧
⎨

⎩
u+ A ∇p = 0

∇ · u = f
in � and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂� = �D ∪ �N

p = p̂ on �D

u · n = ûn on �N

,

where, u is the velocity, p is the pressure, f the prescribed RHS term, A is a d × d

symmetric positive definite matrix, p̂ and ûn are the prescribed pressure and flux
boundary conditions, respectively.

2.1 Notations

For f, g ∈ L2 (�),
(
f, g

)
�

denotes the usual L2-inner product.
For vector-valued functions in L2 we define the weighted inner product by,

(u, v)A−1,� =
∫

�

(
u,A−1v

)
d� , (1)

where (· , ·) denotes the pointwise inner product.
Duality pairing, denoted by 〈·, ·〉�, is the outcome of a linear functional on

L2 (�) acting on elements from L2 (�).
Let �K be a disjoint partitioning of � with total number of elements K , and Ki

is any element in �K , such that, Ki ∈ �K . We define the following broken Sobolev
spaces [2], H

(
div;�K

) =∏
i H

(
div;Ki

)
, and H 1/2 (∂�K) =∏

i H
1/2 (∂Ki).

2.2 Weak Formulation

The Lagrange functional for Darcy flow is defined as,

L
(
u, p, λ; f ) = 1

2

∫
�K

uT
A
−1u d�K −

∫
�K

p
(∇ · u− f

)
d�K

+ ∫
∂�K\�D

λ (u · n) d� + ∫
�D

p̂ (u · n) d� − ∫
�N

λ
(
ûn

)
d�

.
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The variational problem is then given by: For given f ∈ L2 (�K), p̂ ∈ H 1/2(ΓD)

and ûn ∈ H−1/2(ΓN) find u ∈ H(div;�K), p ∈ L2 (�K), λ ∈ H
1
2 (∂�K), such

that,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(v,u)A−1,�K
− 〈∇ · v, p〉

�K
+ 〈

(v · n) , λ〉
∂�K \�D

= − 〈
v · n, p̂〉

�D
∀ v ∈ H(div;�K)

− 〈
q,∇ · u〉

�K
= − 〈

q, f
〉
�K

∀ q ∈ L2 (�K)

〈
μ, (u · n)〉

∂�K \�D
= 〈

μ, ûn

〉
�N

∀ μ ∈ H
1
2 (∂�K)

.

(2)

3 Basis Functions

3.1 Primal and Dual Nodal Degrees of Freedom

Let ξj , j = 0, 1, . . . , N , be the N + 1 Gauss–Lobatto–Legendre (GLL) points in
I ∈ [−1, 1

]
. The Lagrange polynomials hi(ξ) through ξj , of degree N , given by,

hi
(
ξ
) =

(
ξ2 − 1

)
L′N

(
ξ
)

N (N + 1)LN

(
ξi
) (

ξ − ξi
) ,

form the 1D primal nodal polynomials which satisfy, hi(ξj ) = δij .
Let ah and bh be two polynomials expanded in terms of hi

(
ξ
)
. The L2—inner

product is then given by,

(
ah, bh

)

I
= aTM(0)b , where M

(0)
i,j =

∫ 1

−1
hi(ξ) hj (ξ) dξ ,

and, a = [a0 a1 . . . aN ] and b = [
b0 b1 . . . bN

]
are the nodal degrees of freedom.

We define the algebraic dual degrees of freedom, ã, such that the duality pairing is
simply the vector dot product between primal and dual degrees of freedom,

〈
ah, bh

〉

I
= ãT b := aTM(0)b ⇒ ã =M

(0)a .

Thus, the dual degrees of freedom are linear functionals of primal degrees of
freedom.
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3.2 Primal and Dual Edge Degrees of Freedom

The edge polynomials, for the N edges between N + 1 GLL points
(
ξj−1, ξj

)
, of

polynomial degree N − 1, are defined as [4],

ej (ξ) = −
j−1∑

k=0

dhk
dξ

(ξ) , such that
∫ ξj

ξj−1

ei(ξ) = δij .

Let ph and qh be two polynomials expanded in edge basis functions. The inner
product in L2 space is given by,

(
ph, qh

)

I
= pT

M
(1)q , where M

(1)
i,j =

∫ 1

−1
ei(ξ) ej (ξ) dξ ,

and, p = [
p1 p2 . . . pN

]
and q = [

q1 q2 . . . qN

]
are the edge degrees of freedom.

As before, we define the dual degrees of freedom such that,

〈
ph, qh

〉

I
= p̃T q := pT

M
(1)q ⇒ p̃ =M

(1)p .

A similar construction can be used for dual degrees of freedom in higher dimen-
sions. For construction of the dual degrees of freedom in 2D see [8] and for 3D
see [9].

3.3 Differentiation of Nodal Polynomial Representation

Let ah
(
ξ
)

be expanded in Lagrange polynomials, then

d

dξ
ah

(
ξ
) = d

dξ

N∑

i=0

aihi
(
ξ
) =

N∑

i=1

(
ai − ai−1

)
ei
(
ξ
)
. (3)

Therefore, taking the derivative of a polynomial involves two steps: First, take the
difference of degrees of freedom; second, change of basis from nodal to edge [4].

4 Discrete Inner Product and Duality Pairing

For 2D domains, the higher dimensional primal basis are constructed using the
tensor product of the 1D basis.
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For the weak formulation (2) we expand the velocity uh in primal edge basis as,

uh
(
ξ, η

) =
N∑

i=0

N∑

j=1

uxi,j hi(ξ) ej (η) ı̂ +
N∑

i=1

N∑

j=0

uyi,j ei (ξ) hj (η) ĵ , (4)

where ux i,j denotes the flux,
∫

u · n, over the vertical edges and uy i,j
the flux over

the horizontal edges, see Fig. 1.

4.1 Weighted Inner Product

Using (1) and the expansions in (4), the weighted inner product is evaluated as,

(
vh,uh

)

A−1,�K

=
∑

Ki

vTKi
M

(1)
A−1,Ki

uKi ,

Fig. 1 Discretized domain for K = 3× 3, N = 3. The blue dots represent the pressure boundary
condition p̂, and the blue edges represent the velocity boundary condition ûn
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where, uKi are the degrees of freedom in element Ki , and

M
(1)
A−1,Ki

=
∫

Ki

⎛

⎝hi(ξ) ej (η)

ei(ξ) hj (η)

⎞

⎠
T

A
−1 (ξ, η

)
⎛

⎝hi(ξ) ej (η)

ei(ξ) hj (η)

⎞

⎠ dKi .

For mapping of elements please refer to [6].

4.2 Divergence of Velocity

Divergence of velocity, ∇ · uh, is evaluated using (3), but now for 2D,

∇ · uh = ∂
∂x

∑N
i=0

∑N
j=1 uxi,j hi(ξ)ej (η)+ ∂

∂y

∑N
i=1

∑N
j=0 uyi,j ei(ξ)hj (η)

=∑N
i,j=1

(
uxi,j − uxi−1,j + uyi,j − uyi,j−1

)
ei
(
ξ
)
ej
(
η
) .

(5)

For pressure we will use dual degrees of freedom. Therefore the weak constraint on
divergence of velocity is a duality pairing evaluated as,

〈
qh,∇ · uh

〉

�K

=
∑

Ki

q̃T
Ki

E
2,1 uKi ,

where E2,1 represents the discrete divergence operator. It is an incidence matrix that
is metric-free and topological, and remains the same for each element in �K . For an
extensive discussion on the incidence matrix, see for instance [6]. For an element of
degree N = 3,

E
2,1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 1 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 −1 0 0 1 0 0 0

0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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4.3 Connectivity Matrix

The connectivity matrix ensures continuity of the velocity flux across the elements.
λ is the interface variable defined between the elements, shown as red dots in Fig. 1.
λ acts as Lagrange multiplier that imposes the continuity constraint given by,

〈
μh,uh · n

〉

∂�K\�D

=
∑

K

μ̃T
Ki

N uKi = μ̃T
EN u ,

where N is the discrete trace operator. It is a sparse matrix that consists of 1, −1
and 0 only. For construction of N please refer to [5]. EN is the assembled N for all
elements. For, K = 2 × 2, N = 2, EN is shown in (6). The matrix size of EN is
8 × 64, but it has only 16 non-zero entities. It is an extremely sparse matrix that
is metric free and the location of ± valued entries depend only on the connection
between different elements.

EN =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

5 Discrete Formulation

Using the weighted inner product and duality pairings discussed in Sect. 4, we can
write the discrete form of weak formulation in (2) as,

⎡

⎣ B EN
T

EN 0

⎤

⎦

⎡

⎣X

λ

⎤

⎦ =
⎡

⎣F

0

⎤

⎦ , (7)
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where, B is an invertible block diagonal matrix given by,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
(1)
A−1,K1

E
2,1T

E
2,1 0

M
(1)
A−1,K2

E
2,1T

E
2,1 0

. . .
. . .

. . .
. . .

M
(1)
A−1,KK

E
2,1T

E
2,1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

EN is as given in (6), X = ∑
i

⎡

⎣u

p

⎤

⎦

Ki

, and F = ∑
i

⎡

⎣ p̂

f

⎤

⎦

Ki

, where f are the

expansion coefficients of f h
(
x, y

) =∑N
i,j fij ei (x) ej

(
y
)
.

In (8), the mass matrix M
(1)
A−1,Ki

is the only dense matrix and also the only
matrix that changes with each local element, Ki . EN is a sparse incidence matrix
for the global system and E

2,1 is a sparse incidence matrix for the local systems that
remains the same for each element.

Using the Schur complement method, the global system (7) can be reduced to
solve for λ, [1],

λ =
(
ENB

−1
EN

T
)−1 ·

(
ENB

−1F
)

. (9)

To evaluate λ in (9) we need B
−1 that can be calculated efficiently by taking inverse

of each block of B separately. This part is trivially parallelized. Once the λ is
determined the solution in each element, Ki , can be evaluated independent of each
other.

The system (9) solves for interface degrees of freedom between the elements and
will always be smaller than the full global system. For a comparison of the size of
λ system with full system see Table 1 (for 2D), and Table 2 (for 3D). On the left of
Tables 1 and 2 we see that, for constant K , increasing the order of polynomial basis
the growth in size of λ system is less than the growth in size of full system. Thus,
hybrid formulations are beneficial for high order methods where local degrees of
freedom of an element are much higher than interface degrees of freedom.
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Table 1 For 2D

N Full system λ only λ/full

5 825 60 0.07

10 3000 120 0.04

15 6525 180 0.03

20 11,400 240 0.02

25 17,625 300 0.02

K Full system λ only λ/full

400 15,480 2280 0.15

1600 62,160 9360 0.15

3600 140,040 21,240 0.15

6400 249,120 37,920 0.15

10,000 389,400 59,400 0.15

Left: Number of total unknowns as a function of N , for K = 3 × 3. Right: Number of total
unknowns as a function of the number of elements K , for N = 3

Table 2 For 3D

N Full system λ only λ/full

5 16,875 1350 0.08

10 121,500 5400 0.04

15 394,875 12,150 0.03

20 918,000 21,600 0.02

25 1,771,875 33,750 0.02

K Full system λ only λ/full

8000 1,285,200 205,200 0.16

64,000 10,324,800 1,684,800 0.16

216,000 34,894,800 5,734,800 0.16

512,000 82,771,200 13,651,200 0.16

1,000,000 161,730,000 26,730,000 0.17

Left: Number of total unknowns as a function of N , for K = 3 × 3 × 3. Right: Number of total
unknowns as a function of the number of elements K , for N = 3

On the right of Tables 1 and 2 we see that, for constant N , the λ system is smaller
than the full system, although the growth ratio of the size of λ and full systems do
not change significantly.

6 Results

In this section we present the results for a test problem from [7] by solving system
(7). The domain of the test problem is, � ∈ [0, 1

]2. The RHS term is defined as,

fex = ∇ · (−A∇pex) , where ,

A = 1
x2+y2+α

⎛

⎜⎝
10−3x2 + y2 + α

(
10−3 − 1

)
xy

(
10−3 − 1

)
xy x2 + 10−3y2 + α

⎞

⎟⎠ ; α = 0.1

pex = sin (2πx) sin
(
2πy

)
,

and Dirichlet boundary conditions are imposed along the entire boundary,�D = ∂�

and �N = ∅. We solve this problem on an orthogonal and a curved mesh, see Fig. 2.
The same problem was earlier addressed in [6], but for a method with continuous

elements and primal basis functions only. For the configuration K = 3× 3, N = 6,
we compare the sparsity structure of the two approaches in Fig. 3. On the left we see
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Fig. 2 Mesh configuration: K = 3× 3, N = 6. Left: orthogonal. Right: curved

Fig. 3 Sparsity plots K = 3×3, N = 6. Left: hybrid elements method. Right: continuous element
method

the hybrid formulation, and on the right we see the continuous elements formulation
[6]. The number of non zero entries are almost half in the hybrid formulation,
66,384, as compared to the continuous element formulation, 117,504. Here, the
sparsity is due to use of algebraic dual degrees of freedom and is not because of
hybridization of the scheme.

In Fig. 4, on the left we compare the growth in condition number, for the λ

system (9) with full continuous element system, for N = 7 on the curved mesh,
with increasing number of elements, K . We observe similar growth rates for hybrid
and continuous formulation, however the condition number for continuous elements

formulation is almost O
(

102
)

higher. On the right we see the growth in condition

number with increasing polynomial degree for K = 9 × 9 on the curved mesh. A
reduced growth rate in condition number for hybrid formulation is observed. Thus
hybrid formulations are beneficial for high order methods.
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2.4

2.1

4.7

2.7

Fig. 4 Growth in condition number for hybrid elements in dark line, and continuous elements in
dotted line. Left: h-refinement; Right: N-refinement. ‘c’ refers to the curved mesh

Fig. 5 L2-error in divergence of velocity: Left: h-refinement; Right: N-refinement. ‘o’ refers to
the orthogonal mesh and ‘c’ to the curved mesh

In Fig. 5 we show the L2-error for ‖∇ ·uh−f h‖. On the left side as a function of
element size, h = 1/

√
K , and on the right side as a function of polynomial degree

of the basis functions. In both cases the maximum error observed is of O
(

10−12
)

.

In Fig. 6, on the top two figures we show the error in the H
(
div;�) norm for

the velocity; and at the bottom two figures we show the error in L2 (�) norm for
the pressure. On the left we have h-convergence plots, and on the right we have
N-convergence plots. In all the figures, for the same number of elements, K , and
polynomial degree, N , the error is higher for the curved mesh.

On the left we see that the error decreases with the element size. The slope of
error rate of convergence is N , which is optimal for both curved and orthogonal
meshes. On the right we see exponential convergence of the error with increasing
polynomial degree of basis for both orthogonal and curved meshes.
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4

7

7

4

4

4

7

7

Fig. 6 Top row: error in H
(
div;�) norm for velocity; Bottom row: L2-error in pressure. Left:

h-refinement; Right: N-refinement. ‘o’ refers to the orthogonal mesh and ‘c’ to the curved mesh
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High-Order Mesh Generation Based on
Optimal Affine Combinations of Nodal
Positions

Mike Stees and Suzanne M. Shontz

1 Introduction

The advantage of high-order numerical methods for solving partial differential
equations is their higher degree of accuracy compared to low-order numerical
methods. A major hurdle in the usage of these methods in the presence of complex
geometries is the absence of robust high-order mesh generation methods [23]. In
other words, these methods need a high-order mesh that accurately captures the
features of the geometry to achieve their full potential [1, 10].

The typical approach for generating high-order meshes is to transform a coarse
linear mesh [2–6, 9, 11, 12, 14, 16, 17, 19–22, 24]. At a high-level, these trans-
formations usually consist of the following three steps: (1) the low-order mesh is
enriched with additional nodes; (2) the new nodes that lie along the boundary of
the mesh are moved to the true boundary; (3) the interior nodes are moved based
on the boundary deformation. The main challenge of these methods arises from
step (2). In particular, the curving of the elements along the boundary can result in
invalid mesh elements. With that in mind, these high-order mesh generation methods
use different approaches in step (3) in an effort to obtain a valid high-order mesh.
Methods for transforming the linear mesh usually fall into two groups. The first
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group of methods transform the mesh based on the solution to a partial differential
equation [3, 12, 14, 24]. The second group of methods are based on optimization of
an objective function [2, 4, 5, 9, 16–21].

In this paper, we describe an optimization-based approach for generating high-
order meshes based on affine combinations of nodal positions. The remainder of
this paper is organized as follows. In Sect. 2, we present our new method for high-
order mesh generation. In Sect. 3, we demonstrate the performance of our proposed
method on several aerospace engineering geometries. Finally, in Sect. 4, we offer
some concluding remarks and possible directions for our future work.

2 High-Order Mesh Generation Based on Affine
Combinations of Nodal Positions

In this section, we present our optimization-based method for high-order mesh
generation. Our proposed method uses affine combinations of nodal positions to
determine the movement of the interior nodes after deforming the boundary. Our
method consists of three steps. First, for each interior node in the high-order straight-
sided mesh, an optimization problem is solved to calculate a set of weights that
relates the interior node to its neighbors. Second, the boundary nodes are moved
to the true boundary. Third, the new positions of the interior nodes are calculated
by solving a linear system of equations using the weights and the new boundary
positions. In spirit, this method is similar to the weight-based method that we
proposed in [19] with two major differences. The first difference is that we propose
an affine combination of nodal positions in this work, as opposed to a convex
combination. This change allows us to remove the inequality constraint and log-
barrier term, leaving only the equality constraints. We also propose an alternative
objective function that when combined with the equality constraints allows us to
directly solve the optimization problem via a QR factorization. This change results
in simplified computational complexity and faster execution time.

To frame our discussion of the method, we introduce the following notation for
the 2D formulation of the problem; the 3D formulation is similar. Let the x- and
y-coordinates of the ith interior node be represented as (xi, yi). In addition, define
the x- and y-coordinates of the vertices adjacent to node i as {(xj , yj ) : j ∈ Ni},
where Ni is the set of neighbors of node i. For each interior node i, this information
can be represented as the following linear system, where wij are the weights:

∑

j∈Ni

wij xj = xi

∑

j∈Ni

wij yj = yi,
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where

Ni = {high-order nodes of the patch to which i belongs}.

There are several potential choices for the local neighboring set based on use
of the low-order nodes, high-order nodes, or both. We include only the high-
order nodes as neighbors, as only the high-order boundary nodes move during the
boundary deformations. Using either the low-order nodes or both the low- and
high-order nodes would dampen the effect the boundary deformation has on the
interior nodes, which might lead to tangling near the boundary. Including additional
nodes as neighbors would also result in a less sparse matrix when solving (7).
Another important consideration is that while the weight calculation is based on
only the local neighbors, the position of an interior node is indirectly affected by the
deformation of all the interior nodes through the solution of (7).

Adding the additional constraint that the weights sum to one results in the
following linear system Aw = b for finding an affine combination of the x- and
y-coordinates of the vertices adjacent to node i:

⎡
⎢⎢⎢⎣

x1 x2 . . . xn

y1 y2 . . . yn

1 1 . . . 1

⎤
⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

wi1

wi2

...

win

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

xi

yi

1

⎤
⎥⎥⎥⎦ ,

where n = |Ni |. Based on the set of neighbors, this linear system will be
underdetermined (i.e., A = m × n with m < n) in general. If we assume that A
has full rank, we can find one particular solution to our problem by requiring that
w has the smallest norm of any solution. This results in the following optimization
problem:

min
w
||w||22 (1)

subject to Aw = b. (2)

From the Karush–Kuhn–Tucker (KKT) theory [13], we know that the following
conditions must hold for a solution (w∗, λ∗) to our problem to be optimal:

∇wL(w∗, λ∗) = 0 (3)

Aw∗ − b = 0 (4)

λ∗(Aw∗ − b) = 0. (5)
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The Lagrangian of our problem is given by:

L(w, λ) = wT w − λT (Aw − b),

where λ are the Lagrange multipliers.
Using (3)–(5), we can find the following solution pair (w∗, λ∗) as follows:

∇wL(w, λ) = 2w − AT λ.

∇wL(w∗, λ∗) = 0⇒ w∗ = 1

2
AT λ∗.

Aw∗ − b = 0⇒ A(
1

2
AT λ∗)− b = 0.

λ∗ = 2(AAT )−1b

w∗ = 1

2
AT λ∗ = 1

2
AT 2(AAT )−1b = AT (AAT )−1b.

Although we have verified that (w∗, λ∗) is a stationary point, we cannot yet claim
that it is a minimum. To do so, we must investigate ∇2

wL(w∗, λ∗):

∇2
wL(w, λ) = 2I|Ni |×|Ni |

∇2
wL(w∗, λ∗) = 2I|Ni |×|Ni |.

From the second-order sufficient conditions, if w∗ satisfies (3)–(5) and the following
condition is satisfied:

zT∇2
wL(w∗, λ∗)z > 0, for all z ∈ C(w∗, λ∗), z �= 0, (6)

where C(w∗, λ∗) = {z | ∇wc(w
∗)T z = 0} is the critical cone and c(w) = Aw − b,

then our solution is a minimum. Since ∇2
wL(w∗, λ∗) is symmetric positive definite,

the inequality in (6) is satisfied for any choice of z. Thus we can conclude that our
solution w∗ is a minimum of (1)–(2).

Now that we have established that w∗ is our solution, we will discuss calculating
it via a reduced QR factorization. Suppose that AT = QR, where Qn×m,Rm×m is
upper triangular, and QTQ = Im×m. Substituting in the QR factorization of AT into
w∗, we get the following:

w∗ = A+b = AT (AAT )−1b = QR(RTQTQR)−1b = QR(RT R)−1b

= QRR−1R−T b = QR−T b.
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Rearranging this into linear system form, we have:

RTQTw∗ = b.

If we let t = QTw∗, then RT t = b and w∗ = Qt . Thus calculating w∗ involves a
QR decomposition of AT , solving the lower triangular system RT t = b by forward
substitution, and calculating the matrix-vector product Qt .

After calculating the weights, a boundary deformation is applied. The final step is
to solve for the new locations of the interior nodes [x̂I , ŷI ] by solving the following
global linear system:

AI [x̂I , ŷI ] = −AB[x̂B, ŷB], (7)

where x̂B and ŷB are the new x- and y-coordinates for the boundary nodes, and AI

and AB contain the weights for the interior nodes and boundary nodes, respectively.
In this global linear system, each row of the weight matrix corresponds to an
interior node with nonzero entries for the node’s neighbors and zero entries for
the remainder of the row. The resulting global weight matrix is very sparse with
irregular structure. In an effort to shift the nonzero entries closer to the diagonal, we
apply the sparse reverse Cuthill–McKee ordering provided in Matlab. In Fig. 1, we
show the matrix sparsity plots for the natural node ordering and the updated node
ordering for the first two examples in Sect. 3. After applying the matrix reordering,
the linear system is solved using a sparse LU factorization.

3 Numerical Experiments

In this section, we demonstrate the results from applying our method to generate
several high-order meshes. We use Gmsh [7, 8, 15, 21] to generate the initial straight-
sided high-order meshes. Our method then uses this mesh to calculate the weights
(step 1). Next, we curve the boundary nodes (step 2) using Gmsh. The positions of
the interior nodes in the resulting curved high-order mesh are then updated (step 3)
by our method. For each example, we show the mesh which results from our method
(with high-order nodes visible), the mesh element distortion for the curved boundary
mesh generated using Gmsh, and the distortion for the mesh resulting from our
method. When reporting the mesh distortion, we list the minimum distortion,
maximum distortion, average distortion computed over all elements (referred to as
Avg1 in figures), and average distortion computed over curved elements (referred
to as Avg2 in figures). The ideal distortion value is 1, indicating that the element
is straight. We also list the execution times needed for steps 1 and 3 of our method
(excluding I/O) in Table 1. The code was run using Matlab R2018a, and the wall-
clock execution times were measured on a machine with 16GB of RAM and a
Ryzen 7 1700 CPU. All mesh visualizations and distortion evaluations were done
using Gmsh. Our first example is a third-order mesh of a square region around
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Fig. 1 Sparsity plots for the first two examples in Sect. 3: (a and c) the nonzero entries using the
original node ordering; (b and d) the nonzero entries after applying the sparse reverse Cuthill–
McKee ordering

a NACA0012 airfoil. In Fig. 2a, b, we show the mesh resulting from our method
and a table of the mesh quality values as measured by the distortion metric. In this
example, our method increased the minimum distortion from 0.744 to 0.799, while
causing only minor changes in the average distortion.

In our second example, we extrude the NACA0012 airfoil and create a third-
order mesh of the resulting region. In Fig. 3a, b, we show the mesh resulting from
our method, and a table of the mesh quality values. For this example, our method
improved the minimum distortion by 0.125, increasing it from 0.317 to 0.442.
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Table 1 The number of elements and the wall clock times for steps 1 and 3 of our method
(excluding I/O) for each example

Execution time (s)

Example Number of elements Original ordering New reordering

NACA0012 airfoil 1312 11.51 3.61

Extruded NACA0012 airfoil 13,895 4826.09 958.14

Airbus A319 50,400 13,956.43 693.11

Fig. 2 NACA0012 airfoil
example: (a) the mesh
resulting from our method
and (b) the mesh quality as
measured by the element
distortion metric

(a)

Distortion
Example Min Max Avg1 Avg2

original mesh 0.744 1.000 0.999 0.994
resulting mesh 0.799 1.000 0.997 0.997

(b)

Fig. 3 Extruded NACA0012
airfoil example: (a) the mesh
resulting from our method
and (b) the mesh quality as
measured by the element
distortion metric

(a)

Distortion
Example Min Max Avg1 Avg2

original mesh 0.317 1.000 0.997 0.994
resulting mesh 0.442 1.000 0.995 0.995

(b)

Our third and final example is a second-order mesh of an Airbus A319 aircraft.
Unlike our previous examples, this geometry resulted in tangled elements after
curving the boundary. Although our method still increased the minimum quality,
it was not able to untangle the mesh. To address this, we applied the high-order
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Fig. 4 Airbus A319
example: (a) surfaces of the
mesh resulting from our
method; (b) a view of a cut
through the interior volume
mesh, and (c) the quality of
the mesh with only boundary
curving, the quality of the
mesh resulting from our
method, and the quality of
both meshes after applying
the regularization scheme
available in Gmsh

(a)

(b)

Distortion
Example Min Max Avg1 Avg2

original mesh –0.878 0.975 0.943 1.000
resulting mesh –0.449 0.970 0.970 1.000

original mesh after untangling 0.206 0.975 0.945 1.000
resulting mesh after untangling 0.211 0.971 0.970 1.000

(c)

regularization scheme available in Gmsh as a post-processing step. Aside from
changing the target Jacobian range to 0.3–2 and fixing the boundary nodes, all other
parameters were left at their default values. The untangling for the original mesh
took 14.14 s, while untangling the mesh resulting from our method required only
1.64 s. In Fig. 4a–c, we show the surfaces of the mesh resulting from our method,
a view of a cut through the interior volume mesh, and a table of the mesh quality
values. In Fig. 4c, we list the distortion for the mesh after curving the boundary,
the distortion for the mesh resulting from our method, and the distortions of both
meshes after applying the regularization scheme in Gmsh.

Aside from the third test case, all of these examples were relatively straightfor-
ward. In each case, our method increased the minimum distortion when compared
to only curving the nodes along the boundary. While additional testing is necessary
to confirm this, our results for the third example seem to indicate that our method
could be used to reduce the severity of the mesh tangling and thus simplify the work
for an untangling method during post-processing.
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4 Concluding Remarks and Future Work

We have presented a new optimization-based method for generating high-order
meshes. Our examples have shown that the proposed method based on affine
combinations of nodal positions tends to improve the quality of the most distorted
elements, while causing minor changes to the least distorted elements. While
our approach is optimization-based, we have demonstrated that the optimization
problem can be solved directly using a QR factorization as opposed to the typical
iterative optimization approach. This change results in lessened computational
complexity and reduced execution time.

As part of our future work, we will consider other definitions for the set of
neighbors of an interior node. We will also investigate other aspects of the linear
system including other node reordering schemes and solvers. Finally, we will apply
the untangling method that we proposed in [20] after extending it to 3D.
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Sparse Spectral-Element Methods for the
Helically Reduced Einstein Equations

Stephen R. Lau

1 Introduction

To model the inspiral and merger of binary objects (blackholes or neutron stars),
many researchers have been solving the Einstein equations numerically. Such sim-
ulation involves both the construction of gravitational initial data at time t0 and its
subsequent evolution to a final time tF ' t0. Interpretation of experimental detec-
tions of gravitational waves relies on numerical simulation. Moreover, detection
of weak signals is facilitated by statistical techniques alongside “template banks”
of numerically generated signals. We consider a nonstandard problem, solution
of the Einstein equations reduced by helical symmetry, as described by Beetle,
Bromley, Hernández, and Price (BBHP) [1, 2]. Heuristically, helical reduction is a
data+evolution synthesis. Although solutions to the BBHP equations are ultimately
unphysical, they may approximate the early phase of inspiral and serve as reduced
order models. Moreover, they may provide excellent “trial data” (the starting point
for the construction of t = t0 initial data). Finally, they would address bewitching
mathematical issues concerning exact helical symmetry in general relativity.

We consider a spectral element approach [3–8] for solving the BBHP equations.
Although the equations involve a mixed-typed operator L, we solve them via
relaxation using a Broyden-Krylov approach. The computational domain which
surrounds the compact objects is split into 11+ subdomains (blocks, spherical
shells, and cylindrical shells with classical spectral expansions thereon). To rapidly
solve the linear systems arising in our scheme, we have developed sparse modal
methods based on the application of spectral integration matrices, extending ideas
originally described in the 1990s by Coutsias, Hagstrom, Hesthaven, and Torres.
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We use preconditioned GMRES to solve these systems, with standard domain
decomposition methods. In addition, we have developed fast methods for inversion
of subdomain approximations of L, either via modal-based preconditioning or direct
schemes.

2 Background

This section first describes the helically reduced wave equation (HRWE), a model
for the helically reduced Einstein equations. Our HRWE description fixes ideas.

2.1 Helically Reduced Wave Equation

The wave equation is �ψ = 0, where � = −∂2
t + Δx. Assume that ψ rotates

rigidly with rate Ω . With the z-axis as the rotation axis, ψ then depends on
time t only through ϕ = φ − Ωt , where φ is the azimuthal angle. Via the
∂t → −Ω∂ϕ replacement, �ψ = 0 becomes the HRWE Lψ = 0, where
L = Δx̃ − Ω2(x̃∂ỹ − ỹ∂x̃ )

2 in terms of co-rotating coordinates (t̃, x̃, ỹ, z̃) =
(t, x cosΩt + y sinΩt, y cosΩt − x sinΩt, z).

We adopt a “2-center domain” D, a 3d ball with two smaller 3d balls excised
from it; see Fig. 1. Its boundary ∂D = ∂S−I ∪ ∂S−II ∪ ∂S+out is the union of two inner
spheres (the −’s) and one outer sphere (the +). We consider the mixed-type problem

Lψ = 0, ψ = f− on ∂S−I ∪ ∂S−II ,
(
∂r −Ω∂ϕ + r−1)ψ = f+ on ∂S+

out,

(1)
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Fig. 1 2-center domain decomposition. The left panel depicts the z-cross section of the inner sub-
domains with Sout suppressed. The right panel depicts all subdomains, although for visualization
the outer radius for Sout has been chosen rather small. In this work the blocks B2 and B4 are absent.
(a) Inner domain decomposition. (b) Double cross section
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with inner Dirichlet conditions and an outer radiation boundary condition on ψ . For
simplicity here, we have put on ∂S+out a simple Sommerfeld condition; in practice,
f+ is a nonlocal function of ψ enforcing an exact Dirichlet-to-Neumann map [4].

A class of solutions to (1) stems from Liénard-Wiechert potentials. Indeed,
consider Lψ = −16πγMδ(x̃ − x̃p). The “particle” location x̃p = (±a, 0, 0) is
the center of either ∂S−II or ∂S−I ; whence the equation is homogeneous on D. The
mass M and relativistic factor γ = (1 − v2)−1/2 are constants, with v = aΩ < 1
so the particle moves subluminally in the (t, x, y, z) frame. The retarded solution to
this problem is

ψ(x̃, ỹ, z) = ψ(ρ cosϕ, ρ sin ϕ, z) = 4γM

λ∓ vρ sin(ϕ +Ωλ)
=: γ 2 4M

R
. (2)

Evaluation of this expression involves a numerical component: solution of the fixed
point equation λ = [

z2 + ρ2 + a2∓ 2aρ cos(ϕ+Ωλ)
]1/2 for (the retarded time) λ.

2.2 Helically Reduced Einstein Equations

We consider the vacuum Einstein equations in Landau-Lifshitz form. Write the
(densitized contravariant) metric tensor as gμν = ημν − hμν , where ημν =
diag(−1, 1, 1, 1) is the flat metric and hμν is the metric perturbation. Assume the
harmonic gauge condition ∂νh

μν = 0. Then the vacuum Einstein equations can be
expressed as

�hμν = S
μνκβ
τφγ α(g)

∂hτφ

∂xκ

∂hγα

∂xβ
+ hαβ

∂2hμν

∂xα∂xβ
, (3)

where Sμνκβ
τφγ α(g) depends on gμν and its inverse gμν (but not on derivatives of either).

Einsteins equations are then a constrained system of 10 nonlinear wave equations.
The BBHP reduction of the Einstein equations is similar to the one outlined for

the wave equation. Technically, it assumes the existence of a Killing vector field,
but we give a brief and heuristic description of their approach. The challenge is
that the perturbations hμν themselves are not “helical scalars”; helical reduction is
therefore not tantamount to the replacement �hμν → Lhμν . However, BBHP have
introduced helical scalars ψA through which the reduction can be carried out. These
are

ψ(nn) = htt , ψ(n0) = √2htz, ψ(00) =
√

1
3

(
hxx + hyy + hzz

)

ψ(20) = −
√

1
6

(
hxx + hyy − 2hzz

)
, ψ(n1) = eiΩt

(− htx + ihty
)

ψ(21) = eiΩt
(− hxz + ihyz

)
, ψ(22) = e2iΩt

[ 1
2

(
hxx − hyy

)− ihxy
]
.

(4)
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These 4 real and 3 complex quantities contain the 10 degrees of freedom in the hμν .
We express this transformation as ψA = eiμ(A)ΩtMA

μνh
μν , where A runs over

the (tensor-spherical-harmonic) labels, and μ(A) is 0,1, or 2. Contraction of MA
μν

on (3), with subsequent helical reduction based on the action of � on ψA, yields

LψA − 2iμ(A)Ω2∂ϕψ
A + μ2(A)Ω2ψA =

hαβψA
,αβ − 2iμ(A)ΩhtβψA

,β − μ2(A)Ω2httψA +MA
μνS

μνκβ
τφγ α(g)h

τφ
,κh

γα
,β .

(5)

Here L is the operator appearing in the HRWE. Similar to the boundary conditions
appearing in (1), the boundary conditions we adopt for (5) are

ψA = (f A)− on ∂S−I ∪ ∂S−II ,
(
∂r −Ω∂ϕ + r−1)eiμ(A)ϕψA = (f A)+ on ∂S+

out.

(6)

Again for simplicity, here we have a Sommerfeld condition on ∂S+
out, but in practice

use a nonlocal outgoing condition based on an exact Dirichlet-to-Neumann map.
Price has written down the analog of (2) for linearized gravity, i.e. (5) when the

right-hand side of the equation is set to zero. This solution may be viewed as an exact
solution to �hμν = −16πT μν , where the stress energy tensor T μν corresponds to a
massive point particle in an eternal circular orbit (as discussed, such a point source
is excised from our domain D). Price’s solution is analogous to the electromagnetic
solution given by G. A. Schott, and it is given by the leading 1/R terms in the
appendix expressions (12). Unfortunately, ∂νhμν �= 0 for this solution.

3 Sparse Spectral Element Methods

This section summarizes our numerical methods. It is necessarily impressionistic,
as even an incomplete presentation of details would take too much space.

3.1 Overview

We split D into subdomains, here with the minimal configuration of 11 subdomains:
blocks B1,3,5; cylinders C1,2,3,4,5; an inner shell SI around “particle” I ; an inner
shell SII around “particle” II ; and an outer shell Sout. This corresponds to a “binary
blackhole” (BBH) domain with two excised inner balls. For a “binary neutron star”
(BNS) domain, we further split both SI and SII into two overlapping concentric
spheres (a stellar surface then resides in each overlap [8]), and fill in the excised
regions with two extra blocks B2,4. Figure 1 depicts a BNS domain. Pioneered by



Sparse Spectral-Element Methods for the Helically Reduced Einstein Equations 243

Pfeiffer et al. [9], such decompositions are used in the EllipticSolver of SpEC
[10].

The unknowns in our approach are the modal expansion coefficients associated
with subdomain expansions in terms of classical (Chebyshev, Fourier, and spherical
harmonic) basis functions. As described below, we make extensive use of integration
matrices to achieve sparse representations of the relevant operators. Before pre-
senting details, we first address how we handle the nonlinearities in (5). Let ψ̃A

(the vector of unknowns) be a concatenation of the modal coefficients from all 11
subdomains. Then, as sketched below, upon approximation (5) becomes

BLψ̃A =Bg̃A, (7)

where BL approximates the operator on the left-hand side of (5), with B repre-
senting the action of “integration preconditioning” (see below) on each subdomain.
For linearized gravity, with the right-hand side of (5) set to zero, the vector g̃A is
zero, save for select entries related to the inner Dirichlet values (f A)− of ψA on
∂S−I ∪ ∂S−II . For the full Einstein equations g̃A depends on ψ̃A, and its evaluation
relies on spectral analysis/synthesis (forward/backward transform) and numerical
differentiation on each subdomain. We then view

ψ̃A
k = (BL)−1Bg̃A(ψ̃B

k−1) (8)

as a fixed-point equation, accelerating its convergence with the Broyden algorithm.
This approach relies on approximation and inversion of the operator appearing on

the left-hand side of (5). Reference [4] is a detailed account of the case μ(A) = 0,
i.e. the HRWE. For μ(A) = 1 or 2, the operator mixes the UA and VA in ψA =
UA+ iVA. We have not yet described our treatment of this scenario, but note that it
relies on Schur-complement techniques. Here we describe only the μ(A) = 0 case.

3.2 Integration Preconditioning and Other Key Aspects

We use “integration preconditioning” [11] in order to achieve sparse linear
systems. Especially for the cylinders and inner shells, the details are formidable.
We convey the basic ideas with the Laplacian Δ, rather than L, on a
cube (suppressing tildes on the co-rotating coordinates). Let u(x, y, z) ≈∑Nx

i=0

∑Ny

j=0

∑Nz

k=0 ũijkTi(x)Tj (y)Tk(z) obey Δu = g on C = [−1, 1]3. An
approximation of the Poisson equation is

(
D2

x ⊗ Iy ⊗ Iz + Ix ⊗D2
y ⊗ Iz + Ix ⊗ Iy ⊗D2

z )̃u = g̃, (9)

with ũ the vector of ũijk with appropriate ordering, and D2 representing double
differentiation in the modal Chebyshev basis. Let B2[2] represent double integration
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in the modal basis, where the [2] indicates that the first two rows have all zero
entries. To (9) we apply the “preconditioner” B = B2

x[2] ⊗ B2
y[2] ⊗ B2

z[2], thereby
reaching

(
Ix[2]⊗B2

y[2] ⊗B2
z[2] +B2

x[2]⊗Iy[2]⊗B2
z[2] +B2

x[2]⊗B2
y[2]⊗Iz[2] )̃u = B̃g. (10)

The system (10) is sparse, and the number of empty rows (all 0’s) equals the number
of tau-conditions to be enforced, auxiliary equations enforcing, say, u|∂C = f .

“Integration preconditioning” of (9) results in the sparse system (10), but the
issue of condition number is subtle. Indeed, passage from (9) to (10) arguably
worsens conditioning. For this reason, integration preconditioning has been viewed
as bad for PDE; we call the technique integration sparsification. Conditioning
issues are then surmounted either by further genuine preconditioning on top of the
sparsification or fast direct solves. Our use of 2-center domains with sparse modal-
tau methods features: (a) sparse representation of L on subdomains; (b) “gluing”
of conforming and overlapping subdomains; (c) modal-based preconditioning of
subdomain solves; (d) “fast” direct-solves on blocks and Sout; (e) standard global
preconditioning; (f) low-rank treatment of stellar surfaces; (g) nonlocal domain
reduction.

3.3 Current Complexity Estimates

We aim to solve the linear systems (say approximating the HRWE or the Helmholtz
equation posed on the 2-center domain D) arising in our problems at demonstra-
bly sub-quadratic complexity; indeed, we believe that an order- 5

3 complexity is
achievable. This is the complexity associated with matrix-vector multiplication;
despite our sparse representations, the “gluing” of overlapping subdomains in
our decomposition of D prevents realization of a linear-complexity matrix-vector
product.

To document progress towards our goal, we summarize our current complexity
estimates associated with solution of the HRWE on each subdomain type. These
solves serve as part of our preconditioner for the global GMRES solution of the
HRWE on D. For this discussion, let N represent the total number of modes on a
given subdomain; e.g. N = (Nx + 1)(Ny + 1)(Nz + 1) for the block considered
above.

For Sout let M be the matrix which represents r2L (the r2 factor here is explained
in [4]) and includes inserted tau-vectors to enforce boundary conditions. Ignoring
tau-vectors, M is block diagonal in the spectral space of spherical harmonics
indexed by (�,m). View its elements as M�mk,�′m′k′ , where �mk is a “clumped
index’ and k, k′ are Chebyshev indices. Then, apart from tau-vectors,M�mk,�′m′k′ =
0, unless � = �′ and m = m′. Moreover, each (Nr + 1)× (Nr + 1) block M�mk,�mk′
is itself sparse and banded. While these desirable structures are somewhat spoiled



Sparse Spectral-Element Methods for the Helically Reduced Einstein Equations 245

by the tau-conditions, through the use of the Woodbury formula and band solvers,
for Sout we are able to directly invert M (i.e. solve the HRWE on Sout) at O(N) cost.

For the inner shells, SI and SII , our representation M of r2L is only block
banded. Indeed, the centers of these shells lie off the rotation axis, and r2L mixes
spherical harmonic modes. Its spectral representation [4] is remarkably complicated,
and relies on identities for spherical harmonics found in the treatise [12]. We solve
the HRWE on inner shells via preconditioned GMRES, with a modal block-Jacobi
preconditioner defined by inversion of the diagonal blocks M�mk,�mk′ . Apart from
tau-conditions, these blocks are again sparse and banded, and therefore amenable to
the fast methods alluded to in the last bullet. Construction and reuse of this block-
Jacobi preconditioner therefore has O(N) cost. Moreover, we have empirically
observed (see [4]) that such preconditioning yields low and essentially resolution
independent iteration counts. While more analysis is needed, from a practical
standpoint solution of the HRWE on an inner shell has an O(N) cost.

The situation on blocks is worse. Part of our global preconditioner for solving
the HRWE on D involves inversion of the Poisson problem on blocks as an
approximation to the HRWE (and inversion of the Helmholtz equation when the
spin index μ(A) �= 0). This works extremely well, likely due to the fact that
Ω  1 and the blocks are close to the rotation center. In any case, we solve
the Poisson/Helmholtz problem on a block via a direct approach [13] based on a
rank-augmenting generalization of the Woodbury formula. This direct method is
empirically well-conditioned and low-memory. Moreover, it has an O(N2) set-up
cost with a small constant, followed by an O(N4/3) cost for subsequent solves. If
possible, we hope to reduce the set-up cost to an O(N5/3) complexity.

The situation on cylinders is worst of all, although to date we have not
focused much attention on these subdomains. We solve the HRWE on cylinders
(or the collection of cylinders) via GMRES, with modal-based preconditioners
that empirically yield resolution-independent iteration counts. Application of the
preconditioner currently involves an O(N7/3) set-up cost, followed by an O(N5/3)

cost for subsequent solves. Here, we believe improvement is possible.

4 Numerical Tests

Our decomposition of D is from Table IV of [4], except here ∂Sout has rout = 15.
For that table ∂S−I has radius rI,min = 0.4 and center (x̃I = −0.9, 0, 0), and ∂S−II
has radius rII ,min = 0.3 and center (x̃II = 1.0, 0, 0). The coordinates X̃, Ỹ , Z̃ in
[4] are ỹ, z̃, x̃ here. The subdomain truncations (number of modes) adopted here are
nearly the same as those in [4]; however, here we only record the total number of
modes over all subdomains. Unless otherwise stated, Ω = 0.075, MI = 0.05, and
MII = 0.1.
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4.1 Comparison with Exact Solutions

Our first test uses PriceLG, the aforementioned solution for linearized gravity due
to Price. Here the solution is a superposition of two point-sources with the above
masses. Each source point’s contribution to the helical scalars is defined by the lead-
ing 1/R term in (12), and these expressions seed inner Dirichlet conditions on ∂S−

I ∪
∂S−

II . The outer boundary conditions are nonlocal conditions which are exact for this
solution. Table 1 lists errors for ψ(nn); errors for the other scalars are similar. These
are relative L2-errors (against the exact solution) computed on both B3 and Sout via
interpolation onto uniform reference grids. Since the problem is linear, each line of
table corresponds to a single GMRES solve performed in parallel on 10 nodes. For
the table middle about 0.4% of the matrix entries are nonzero. The last table line has
‖∂νhμν‖rms � (3.9420e-12,1.7310e-03,8.9752e-05,9.0076e-16), with the
rms calculation taken over the (relatively coarse) dual-nodal subdomain grids. The
first and last components of ∂νhμν vanish for the exact PriceLG solution.

Our next test is SchwarzH, the Schwarzschild metric in harmonic coordinates:

htt = −1+ r−2(r +M)3/(r −M), hjk = r−2M2νj νk. (11)

Here the radius r and the direction cosines ν = (sin θ cosφ, sin θ sin φ, cos θ) are
chosen relative to a point (x0, y0, z0) = (-0.9+1.37e-3,-1.6854e-4,2.9985
e-3) which is off-center but close to the center of ∂S−I . The mass is M = 0.05, and
for this choice the horizon of the blackhole lies inside of (but is not concentric with)
∂S−I . For this test Ω = 0, and the exact solution (11) seeds inner Dirichlet boundary
conditions on both ∂S−I and ∂S−II . On ∂S+out rather than radiation conditions, we adopt
an inhomogeneous Neumann condition based on the exact solution. Table 2 lists

Table 1 PriceLG solution

Truncation Shell error Block error tGMRES iGMRES

23,114 1.1003e-05 4.6050e-06 0.50e-05 7
93,067 5.4950e-08 8.0179e-08 0.50e-07 5

271,197 4.7606e-10 2.7153e-10 0.50e-09 4
553,149 1.3446e-12 1.3198e-12 0.50e-11 4

Here relative L2 errors are listed only for ψ(nn). The lowest resolution run has zero initial iterate;
afterwards the initial iterate stems from the previous solution. Respectively, tGMRES and iGMRES
are the tolerance and iteration number for the GMRES solve

Table 2 SchwarzH solution

Truncation Shell error Block error tBROY iBROY

23,114 6.5414e-05 1.5238e-05 5.0e-05 6
93,067 1.7162e-06 3.3810e-07 5.0e-07 4

271,197 9.5944e-09 1.6022e-09 5.0e-09 4
553,149 1.1266e-11 3.6899e-12 5.0e-11 4

As for the PriceLG test, only errors for ψ(nn) are listed
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Table 3 Full GR with the same boundary conditions as PriceLG

Truncation Shell error (GR) Block error (GR) Residual iBROY

23,114 1.5303e-05 7.6669e-06 3.7429e-07 7
93,067 1.3194e-07 1.4670e-07 8.3651e-10 6

271,197 1.2266e-10 2.4074e-10 2.9149e-11 4
553,149 ––––– ––––– 4.0790e-13 4

errors with the same meanings as before. Now ‖∂νhμν‖rms for each μ is comparable
to the corresponding table errors; i.e. the gauge constraint converges to zero. Table 2
also lists the number iBROY of iterations performed by the Broyden solver to
achieve the tolerance tBROY. Each Broyden iteration itself involves a linear solve
via GMRES. Each GMRES tolerance is tBROY/10, the same as the corresponding
line in Table 1.

4.2 Gauge Constraint Tests

Our next two tests explore to what extent the gauge constraint ∂νhμν = 0 is satisfied
for the Einstein problem (5) and (6) in a binary scenario. For the first test we redo
the PriceLG test, except now with the Einstein equations. The inner and outer
boundary conditions are exactly as before. Table 3 again lists errors for ψ(nn) with
the same meanings as before. Errors are computed against the finest-resolution
numerical solution. The table also lists the L2-norm of the nonlinear residual.
The last table line has ‖∂νhμν‖rms � (3.2031e-03 5.1309e-03 4.5881e-03
4.6711e-03). That is, the gauge constraint does not converge to zero. Since the
harmonic gauge is not satisfied, we cannot view these as solutions to the Einstein
equations!

Presumably, the violation of the harmonic gauge in the preceding example
stems from the fact that ∂νh

μν �= 0 for the Price solution used to fix the inner
boundary conditions. Beetle, Bromley, and, Hernández, and Price have given a
refined set of inner boundary conditions, based on the near-field asymptotics of
a moving Schwarzschild blackhole and meant to improve on the point-particle
boundary conditions. The appendix lists (our understanding of) these conditions.
With the hope that these refined boundary will result in lower gauge errors, we have
performed the previous test with them. Convergence of the numerical solution is
similar, but ‖∂νhμν‖rms has comparable size and still does not converge to zero.

5 Conclusions and Acknowledgments

Our tentative conclusion for helically symmetric BBH models is that violation of
the gauge constraint stems from imperfect inner boundary conditions. We have also
found a persistent gauge error in our BNS models, despite being several orders of
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magnitude smaller in that context. The BNS model, with stars in place of excised
regions, involves no inner boundary conditions. We believe that in this context it is
the outer boundary conditions which give rise to the constraint violation. Likely, at
both the inner and outer boundaries some of the helical scalars need to be fixed using
the gauge constraint itself (similar to “constraint preserving boundary conditions”
used in evolution codes). The author is grateful for correspondence with Richard
H. Price, and for assistance from UNM’s Center for Advanced Research Computing.

Appendix: Beetle, Bromley, Hernández, and Price Inner
Boundary Conditions

This appendix lists expansions for the helical scalars which somewhat generalize
the ones in [1]. We need two expansions, one for a “particle” at (−aI , 0, 0), and one
at (aII , 0, 0). Each has its own mass MI,II . The top choice of ± or ∓ refers to II

and the bottom to I . For both aI and aII , we define v = aΩ , γ = (1 − v2)−1/2,
R = γ λ ∓ vγρ sin(ϕ + Ωλ), KR = −ρ cosϕ ± a cos(Ωλ) ± vγR sin(Ωλ), and
KI = ρ sin ϕ±a sin(Ωλ)∓vγR cos(Ωλ). For λ see after (2). Assuming M/R 1,
we have

ψ(nn) ∼ γ 2

(
4M

R
+ 7M2

R2

)
+ M2(λ− γR)2

R4 (12a)

ψ(n0) ∼ 0 ·
(

4M

R
+ 7M2

R2

)
+√2

M2(λ− γR)z
R4

(12b)

ψ(00) ∼ v2γ 2

√
3

(
4M

R
+ 7M2

R2

)
+ M2

[
λ2 − 2γ λR+ (2+ v2γ 2)R2]

√
3R4

(12c)

ψ(20) ∼ −v2γ 2

√
6

(
4M

R
+ 7M2

R2

)
− M2

[
λ2 − 3z2 − 2γ λR+ (2+ v2γ 2)R2]

√
6R4

(12d)

ψ(n1) ∼ ±ivγ 2eiΩλ

(
4M

R
+ 7M2

R2

)
+ M2(λ− γR)(KR + iKI )

R4
(12e)

ψ(21) ∼ 0 ·
(

4M

R
+ 7M2

R2

)
+ M2z(KR + iKI)

R4
(12f)

ψ(22) ∼ − 1
2v

2γ 2e2iΩλ

(
4M

R
+ 7M2

R2

)
+ M2

2R4

[
(KR)2 − (KI )2 + 2iKRKI

]
.

(12g)
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Worried about a possible sign discrepancy with the results in [1], we have also
considered (12a–g) with all correction terms (those with R4 in the denominator)
flipped by a sign.
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Spectral Analysis of Isogeometric
Discretizations of 2D Curl-Div Problems
with General Geometry

Mariarosa Mazza, Carla Manni, and Hendrik Speleers

1 Introduction

In this paper we focus on isogeometric Galerkin discretizations of the weighted
curl-div operator

Lα,βu := α∇ ×∇ × u− β∇∇ · u, 0 < α, β. (1)

This parameter-dependent operator appears in several problems, including the
Stokes equation and Maxwell equations [2]. Moreover, containing a weighting of
the curl and div operators, it captures the essential features of the so-called Alfvén-
like operator [14], which is of interest in magnetohydrodynamics [15]. We note
that Lα,β can be seen as a weighted Laplacian for vector fields (equivalently, Hodge
Laplace for 1-forms). Indeed, when α = β = 1, it is equal to the standard (negative)
vector Laplace operator, i.e.,

∇ ×∇ × u− ∇∇ · u = −∇2u.

We assume that (1) is defined on a sufficiently smooth domain� ∈ R
2 that can be

described through a geometry map G : [0, 1]2 → �, and we consider homogeneous
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Dirichlet (no-slip) boundary conditions, i.e., u = 0 on ∂�. This leads us to the
following variational formulation

(Lα,βu, v) = α(∇ × u,∇ × v)+ β(∇ · u,∇ · v), u, v ∈ (H 1
0 (�)

)2
. (2)

We refer the reader to [3, 15] for a discussion about well-posedness.
To find an approximate solution of the problem Lα,βu = f , with the stated

boundary conditions, we consider the variational formulation (2) in a finite dimen-
sional vector space Vh ⊂

(
H 1

0 (�)
)2, i.e.,

(Lα,βuh, vh) = α(∇ × uh,∇ × vh)+ β(∇ · uh,∇ · vh), uh, vh ∈ Vh. (3)

We focus on isogeometric analysis (IgA) as discretization technique, where the
approximation space Vh is chosen to be composed of vector fields whose compo-
nents are linear combinations of tensor-product B-splines mapped according to G.

The discretization (3) leads to solving linear systems, which turn out to be
severely ill-conditioned and require ad hoc fast solvers for a proper treatment
[4, 6, 15]. This requires a deep understanding of the spectral properties of the related
matrices. They depend on many factors: the problem parameters α, β, the basic curl
and div operators, the mesh-size, the degree of the B-spline approximation, and the
map G used to describe the geometry of the computational domain.

In this paper we provide a spectral study of these matrices using the theory of
(multilevel block) Toeplitz [13, 17, 19] and generalized locally Toeplitz [10–12]
sequences. More precisely, we show that such matrices admit a spectral distribution
which can be described in terms of a so-called spectral symbol. We determine this
spectral symbol and we reveal its dependence on the characteristic parameters of
the problem listed above. The spectral analysis presented in this paper extends the
results of [15] to the case of non-trivial geometry and relies on the spectral theory
developed for isogeometric discretizations of elliptic problems in [7, 8]. We also
refer the reader to [16] for a spectral analysis of the curl-curl operator.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
notations and definitions relevant for our spectral analysis, and we recall the basics
of B-splines. In Sect. 3 we detail the IgA discretization matrices and we perform a
spectral analysis of them. We numerically illustrate those results in Sect. 4. Finally,
we conclude the paper in Sect. 5.

2 Preliminaries

In this section we collect some preliminary tools on spectral analysis and IgA
discretizations. In particular, we recall the formal definition of spectral distribution
for a general matrix-sequence and the definition of (cardinal) B-splines.
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2.1 Spectral Distribution

Throughout the paper, we follow the standard convention for operations with multi-
indices (see e.g. [9, 18]). Given a multi-index n := (n1, . . . , nd) ∈ N

d , we say
n → ∞ if ni → ∞, i = 1, . . . , d . Let C0(C) be the set of continuous functions
F : C→ C with compact support.

Definition 1 Let f : D → C
s×s be a measurable matrix-valued function, defined

on a measurable set D ⊂ R
q with q ≥ 1, 0 < μq(D) < ∞, where μq is the

Lebesgue measure. Let {An}n be a matrix-sequence with dim(An) =: dn and dn →
∞ as n → ∞. Then, {An}n is distributed like the pair (f,D) in the sense of the
eigenvalues, denoted by {An}n ∼λ (f,D), if the following limit relation holds for
all F ∈ C0(C):

lim
n→∞

1

dn

dn∑

j=1

F(λj (An)) = 1

μq(D)

∫

D

∑s
i=1 F(λi(f (t)))

s
dt, (4)

where λj (An), j = 1, . . . , dn are the eigenvalues of An and λi(f ), i = 1, . . . , s are
the eigenvalues of f . We say that f is the (spectral) symbol of the matrix-sequence
{An}n.

If f is smooth enough and the matrix-size of An is sufficiently large, then the
limit relation (4) has the following informal meaning: a first set of dn/s eigenvalues
of An is approximated by a sampling of λ1(f ) on a uniform equispaced grid of the
domain D, a second set of dn/s eigenvalues of An is approximated by a sampling of
λ2(f ) on a uniform equispaced grid of the domain D, and so on, up to few outliers.

In general, understanding whether a matrix-sequence admits a symbol and how
to compute it is not an easy task. On the other hand, any “reasonable” approximation
of partial differential equations by local methods leads to matrix-sequences that are
in the so-called generalized locally Toeplitz (GLT) algebra, and so admit a symbol
[10–12]. The IgA discretization of our curl-div problem (3) fits in this frame.

2.2 B-Splines

For p ≥ 0 and n ≥ 1, consider the uniform knot sequence

ξ1 = · · · = ξp+1 := 0 < ξp+2 < · · · < ξp+n < 1 =: ξp+n+1 = · · · = ξ2p+n+1,

where ξi+p+1 := i
n

, i = 0, . . . , n. This knot sequence allows us to define n + p

B-splines of degree p. Let χI denote the characteristic function on the interval I .

Definition 2 The B-splines of degree p over a uniform mesh of [0, 1], consisting
of n intervals, are denoted by N

p

i : [0, 1] → R, i = 1, . . . , n + p, and defined
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recursively as follows: for 1 ≤ i ≤ n+ 2p,

N0
i (x) := χ[ξi ,ξi+1)(x);

for 1 ≤ k ≤ p and 1 ≤ i ≤ n+ 2p − k,

Nk
i (x) :=

x − ξi

ξi+k − ξi
Nk−1

i (x)+ ξi+k+1 − x

ξi+k+1 − ξi+1
Nk−1

i+1 (x),

where a fraction with zero denominator is assumed to be zero.

It is well known (see e.g. [1]) that the B-splines N
p
i , i = 1, . . . , n + p, form a

basis, and

N
p
i (0) = N

p
i (1) = 0, i = 2, . . . , n+ p − 1. (5)

The central B-splines N
p

i , i = p + 1, . . . , n, are uniformly shifted and scaled
versions of a single shape function, the so-called cardinal B-spline φp : R→ R,

φ0(t) := χ[0,1)(t), φp(t) := t

p
φp−1(t)+ p + 1− t

p
φp−1(t − 1), p ≥ 1.

More precisely, we have

N
p
i (x) = φp(nx − i + p + 1), i = p + 1, . . . , n.

The cardinal B-spline φp is a Cp−1 function which is locally supported on the
interval [0, p + 1].

Finally, we recall the definition of tensor-product B-splines.

Definition 3 The tensor-product B-splines of bi-degree p := (p1, p2) over a
uniform mesh of [0, 1]2, consisting of n := (n1, n2) intervals in each direction,
are denoted by N

p
i : [0, 1]2 → R, i = 1, . . . ,n + p, and defined as

N
p
i := N

p1
i1
⊗N

p2
i2

,

where 1 := (1, 1) and i := (i1, i2) ∈ N
2.

We define the tensor-product spline space Sp
n as

S
p
n := span

{
N

p
i : i = 2, . . . ,n + p − 1

}
. (6)

Note that all the elements of this space vanish at the boundary of [0, 1]2; see (5).
Hence, the space incorporates homogeneous Dirichlet boundary conditions.
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3 Spectral Analysis of Isogeometric Discretizations in 2D

Suppose that the physical domain � can be described by a global geometry map,
G := [G1,G2]T , G : �̂ → �, which is invertible in the parametric domain �̂ :=
[0, 1]2 and satisfies G(∂�̂) = ∂�. Let

Vh = span
{
φ
p,1
i1,i2

, φ
p,2
j1,j2
: il , jl = 2, . . . , n+ p − 1; l = 1, 2

}
, (7)

where

φ
p,1
i1,i2
:=

[
ϕi1,i2

0

]
, φ

p,2
j1,j2
:=

[
0

ϕj1,j2

]
,

and for kl ∈ {il, jl}, l = 1, 2,

ϕk1,k2(x1, x2) := ϕ̂k1,k2(G
−1(x1, x2)) = ϕ̂k1,k2(x̂1, x̂2), (x1, x2) = G(x̂1, x̂2).

Then, we set ϕ̂k1,k2 = N
p
k1
⊗ N

p
k2

, i.e., the tensor-product B-splines in (6). For
simplicity of notation, we have taken n1 = n2 = n and p1 = p2 = p. Also note
that

∇ϕk1,k2 = (JG)−T∇(Np
k1
⊗N

p
k2
)

= 1

det(JG)

⎡

⎣
∂G2
∂x̂2

(N
p
k1
)′ ⊗N

p
k2
− ∂G2

∂x̂1
N

p
k1
⊗ (N

p
k2
)′

− ∂G1
∂x̂2

(N
p

k1
)′ ⊗N

p

k2
+ ∂G1

∂x̂1
N

p

k1
⊗ (N

p

k2
)′

⎤

⎦ ,

where

JG :=
⎡

⎣
∂G1
∂x̂1

∂G1
∂x̂2

∂G2
∂x̂1

∂G2
∂x̂2

⎤

⎦ .

In the following, we start by discussing the coefficient matrices arising from
the IgA discretization of a generalized Poisson problem. Then, we construct the
coefficient matrices related to the IgA discretization of our curl-div problem (3)
using (7), and we perform a spectral analysis.

3.1 Matrices Related to a Generalized Poisson Problem

Let us focus on the following bivariate generalized Poisson operator:

LKu := −∇ ·K∇u, (8)
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where K : � → R
2×2, and consider homogeneous Dirichlet boundary conditions,

i.e., u = 0 on ∂�. From [8] we know that the Galerkin discretization of (8) using
one component of the space (7) leads to the coefficient matrix Ap,K

n,G defined by

[
Ap,K

n,G

]

i,j
:=

∫

�̂

[
∇(Np

j1+1 ⊗N
p

j2+1)
T KG ∇(Np

i1+1 ⊗N
p

i2+1)
]
| det(JG)|,

where

KG := (JG)−1K(G)(JG)−T .

It has been proved in [8] that such matrices admit a spectral distribution according
to Definition 1. To this end, let us define

Hp :=
[
sp ⊗mp ap ⊗ ap
ap ⊗ ap mp ⊗ sp

]
,

with

mp(θ) := φ2p+1(p + 1)+ 2
p∑

k=1

φ2p+1(p + 1− k) cos(kθ),

ap(θ) := −2
p∑

k=1

φ′2p+1(p + 1− k) sin(kθ),

sp(θ) := −φ′′2p+1(p + 1)− 2
p∑

k=1

φ′′2p+1(p + 1− k) cos(kθ).

Theorem 1 Let G be a regular geometry map, i.e., G ∈ C1([0, 1]2) and det(JG) �=
0 in [0, 1]2, and let K be a symmetric matrix. Then, the matrix-sequence {Ap,K

n,G }n
with n = (n, n) is distributed, in the sense of the eigenvalues, like the function

f
p,K

G (x̂, θ ) := [1 1] (| det(JG(x̂))|KG(x̂) ◦Hp(θ)
) [1 1]T , (9)

where x̂ ∈ [0, 1]2, θ ∈ [−π, π]2, and ◦ is the Hadamard matrix product.

We refer the reader to [8, 9] for a detailed discussion about the symbol (9).
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3.2 Matrices Related to Our Curl-Div Problem

We can reformulate (1) in 2D as

Lα,βu = α

⎡

⎢⎣
∂2u2
∂x1x2

− ∂2u1
∂x2

2
∂2u1
∂x1x2

− ∂2u2
∂x2

1

⎤

⎥⎦− β

⎡

⎢⎣
∂2u2
∂x1x2

+ ∂2u1
∂x2

1
∂2u1
∂x1x2

+ ∂2u2
∂x2

2

⎤

⎥⎦ , (10)

where u(x1, x2) := [u1(x1, x2), u2(x1, x2)]T . When discretizing the weak form (3)
using the space (7) we arrive at the 2× 2 block matrix

Ap,α,β

n,G := α

[
Ap,curl

n,11 Ap,curl
n,12

Ap,curl
n,21 Ap,curl

n,22

]
+ β

[
Ap,div

n,11 Ap,div
n,12

Ap,div
n,21 Ap,div

n,22

]
.

The blocks related to the curl-curl operator (∇ × ·,∇ × ·) are given by

[
Ap,curl

n,11

]

i,j
=
∫

�̂

[
− ∂G1

∂x̂2
(N

p
j1+1)

′ ⊗N
p
j2+1 + ∂G1

∂x̂1
N

p
j1+1 ⊗ (N

p
j2+1)

′
]

[
− ∂G1

∂x̂2
(N

p
i1+1)

′ ⊗N
p
i2+1 + ∂G1

∂x̂1
N

p
i1+1 ⊗ (N

p
i2+1)

′
] 1

| det(JG)| ,
[
Ap,curl

n,12

]

i,j
= −

∫

�̂

[
∂G2
∂x̂2

(N
p

j1+1)
′ ⊗N

p

j2+1 − ∂G2
∂x̂1

N
p

j1+1 ⊗ (N
p

j2+1)
′
]

[
− ∂G1

∂x̂2
(N

p

i1+1)
′ ⊗N

p

i2+1 + ∂G1
∂x̂1

N
p

i1+1 ⊗ (N
p

i2+1)
′
] 1

| det(JG)| ,
[
Ap,curl

n,22

]

i,j
=
∫

�̂

[
∂G2
∂x̂2

(N
p
j1+1)

′ ⊗N
p
j2+1 − ∂G2

∂x̂1
N

p
j1+1 ⊗ (N

p
j2+1)

′
]

[
∂G2
∂x̂2

(N
p
i1+1)

′ ⊗N
p
i2+1 − ∂G2

∂x̂1
N

p
i1+1 ⊗ (N

p
i2+1)

′
] 1

| det(JG)| ,

and Ap,curl
n,21 = Ap,curl

n,12 . Note that all those blocks are symmetric matrices. Similarly,
the blocks related to the div-div operator (∇·,∇·) are given by (see also (10))

Ap,div
n,11 = Ap,curl

n,22 , Ap,div
n,12 = Ap,div

n,21 = −Ap,curl
n,12 , Ap,div

n,22 = Ap,curl
n,11 .

In the next subsection we compute the symbol of the matrix-sequence {Ap,α,β

n,G }n.
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3.3 Spectral Symbol of Curl-Div Matrices Ap,α,β

n,G

We are now ready for the main contribution of the paper: we show that the matrix-
sequence {Ap,α,β

n,G }n admits a spectral distribution according to Definition 1. This
extends the symbol computation in [15] to the case of non-trivial geometry.

Theorem 2 Let G be a regular geometry map, i.e., G ∈ C1([0, 1]2) and det(JG) �=
0 in [0, 1]2. Then, the matrix-sequence {Ap,α,β

n,G }n with n = (n, n) is distributed, in
the sense of the eigenvalues, like the 2× 2 matrix-valued function

f
p,α,β

G (x̂, θ) := αf
p,curl
G (x̂, θ)+ βf

p,div
G (x̂, θ), (11)

where x̂ ∈ [0, 1]2, θ ∈ [−π, π]2, and

f
p,curl
G (x̂, θ) := 1

| det(JG(x̂))| JG(x̂) P Hp(θ) P
T (JG(x̂))T , P :=

[
0 1
−1 0

]
,

f
p,div
G (x̂, θ) := | det(JG(x̂))| (JG(x̂))−T Hp(θ) (JG(x̂))−1.

Proof From (10) it follows that the block Ap,curl
n,11 corresponds to the isogeometric

discretization of − ∂2u1
∂x2

2
. By means of a direct computation we can verify that

Theorem 1, with

K =
[

0 0
0 1

]
,

ensures that the matrix-sequence {Ap,curl
n,11 }n is distributed in the sense of the

eigenvalues like the entry (1, 1) of the matrix f
p,curl
G . The same argument (using

a suitable matrix K) can also be applied to the remaining blocks. Then, it can be
checked that all the considered blocks satisfy the hypotheses of [10, Theorem 5],
which implies that Ap,α,β

n,G is similar, via a proper permutation matrix, to a matrix

Tp,α,β

n,G such that the matrix-sequence {Tp,α,β

n,G }n has its symbol given by (11). %&
In the context of IgA, the geometry map G is expressed in terms of the same

B-spline basis as used for the discretization space. However, as can be seen from
the proof, the spectral result in the above theorem holds for any (smooth enough)
geometry map.

Finally, we remark that the p-dependence of the symbol in (11) is completely
captured by the matrix Hp(θ). As described in Sect. 3.1 this matrix also appears in
the symbol expression of a generalized Poisson problem; its properties have been
discussed in [5, 8].
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4 Numerical Example

In this section we numerically illustrate the spectral results obtained in Sect. 3.3,
using the same test problem as in [15, Sect. 5]. More precisely, we consider (3)
defined on a quarter of an annulus,

� = {(x1, x2) ∈ R
2 : r2 < x2

1 + x2
2 < R2, x1 > 0, x2 > 0}, r = 1, R = 4,

with

G(x̂1, x̂2) =

⎧
⎪⎨

⎪⎩

x1 = [r + x̂1(R − r)] cos
(
π
2 x̂2

)

x2 = [r + x̂1(R − r)] sin
(
π
2 x̂2

) , (x̂1, x̂2) ∈ [0, 1]2.

Let us fix n := (n, n) ∈ N
2, p := (p, p) ∈ N

2 and m ∈ N
2 such that m2 =

n+ p − 2. We start by defining two equispaced grids on [0, 1]2 and [0, π]2:

xj := j

m− 1
, θk := kπ

m− 1
, j , k = 0, . . . ,m− 1.

Then, we denote by *i the set of all evaluations of λi(f
p,α,β

G ) on � := {(xj , θk),
j , k = 0, . . . ,m − 1} for a fixed i ∈ {1, 2}. Note that it suffices to consider
only [0, π]2 because the symbol (11) is symmetric on [−π, π]2, and hence also
its eigenvalue functions.

In Fig. 1 we numerically check relation (11) by comparing the eigenvalues of
Ap,α,β

n,G with the values collected in * = {*1,*2}, ordered in ascending way, for
α = 1 and β = 0.1. We observe that, in a complete agreement with the theory,
the considered sampling of λi(f

p,α,β

G ), i = 1, 2, describes quite accurately the

behavior of the eigenvalues of Ap,α,β

n,G , also for relatively small matrix-sizes, up to
few outliers.

5 Conclusions

We have analyzed the spectral properties of matrix-sequences arising from isogeo-
metric Galerkin methods for weighted curl-div operators on general planar domains,
considering a non-trivial geometry map. More precisely, we have shown that an
(asymptotic) spectral distribution exists and it is compactly described by a 2 × 2
spectral symbol. In other words, the eigenvalues of the matrices we are dealing
with can be approximated accurately by a uniform sampling of the two eigenvalue
functions of the 2 × 2 symbol matrix. The symbol depends on the characteristic
parameters of the problem and on the geometry of the physical domain. Its formal
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Fig. 1 Comparison of the eigenvalues of Ap,α,β

n,G (open circle) with * = {*1,*2} collecting

uniform samples of λi(f
p,α,β

G ), i = 1, 2 (asterisk), ordered in ascending way, varying both n and
p, and fixing α = 1 and β = 0.1. (a) p = 3, n = 15. (b) p = 3, n = 35. (c) p = 4, n = 14. (d)
p = 4, n = 34. (e) p = 5, n = 13. (f) p = 5, n = 33
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structure nicely mimics the structure of the differential problem. The numerical
results show a very good matching between the true eigenvalues and the estimates
provided by the symbol, already for relatively small matrix-sizes.

The convergence of iterative solvers for linear systems strongly depends on the
spectral behavior of the corresponding coefficient matrices. Since the symbol gives a
precise description of the spectrum of the curl-div matrix Ap,α,β

n,G , it could be helpful
in the design of good preconditioners that lead to better performance than current
solution strategies, like the one in [15, Sect. 5].

Acknowledgements This work was partially supported by the INdAM research group GNCS,
by the MIUR-DAAD Joint Mobility 2017 Programme through the project “ATOMA”, and by the
MIUR Excellence Department Project awarded to the Department of Mathematics, University of
Rome Tor Vergata (CUP E83C18000100006).

References

1. de Boor, C.: A Practical Guide to Splines, Revised Edition. Springer, New York (2001)
2. Ciarlet, P.: Augmented formulations for solving Maxwell equations. Comput. Methods Appl.

Mech. Eng. 194, 559–586 (2005)
3. Costabel, M.: A coercive bilinear form for Maxwell’s equations. J. Math. Anal. Appl. 157,

527–541 (1991)
4. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Robust and optimal

multi-iterative techniques for IgA Galerkin linear systems. Comput. Methods Appl. Mech. Eng.
284, 230–264 (2015)

5. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Spectral analysis and
spectral symbol of matrices in isogeometric collocation methods. Math. Comput. 85, 1639–
1680 (2016)

6. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Symbol-based
multigrid methods for Galerkin B-spline isogeometric analysis. SIAM J. Numer. Anal. 55,
31–62 (2017)

7. Garoni, C., Manni, C., Pelosi, F., Serra-Capizzano, S., Speleers, H.: On the spectrum of
stiffness matrices arising from isogeometric analysis. Numer. Math. 127, 751–799 (2014)

8. Garoni, C., Manni, C., Serra-Capizzano, S., Sesana, D., Speleers, H.: Spectral analysis and
spectral symbol of matrices in isogeometric Galerkin methods. Math. Comput. 86, 1343–1373
(2017)

9. Garoni, C., Manni, C., Serra-Capizzano, S., Sesana, D., Speleers, H.: Lusin theorem, GLT
sequences and matrix computations: an application to the spectral analysis of PDE discretiza-
tion matrices. J. Math. Anal. Appl. 446, 365–382 (2017)

10. Garoni, C., Mazza, M., Serra-Capizzano, S.: Block generalized locally Toeplitz sequences:
from the theory to the applications. Axioms 7, 49 (2018)

11. Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Appli-
cations, vol. I. Springer Monographs. Springer, Berlin (2017)

12. Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Appli-
cations, vol. II. Springer Monographs. Springer, Berlin (2018)

13. Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications, 2nd edn. Chelsea, New York
(1984)

14. Jardin, S.C., Ferraro, N., Luo, X., Chen, J., Breslau, J., Jansen, K.E., Shephard, M.S.:
The M3D-C1 approach to simulating 3D 2-fluid magnetohydrodynamics in magnetic fusion
experiments. J. Phys. Conf. Ser. 125, 012044 (2008)



262 M. Mazza et al.

15. Mazza, M., Manni, C., Ratnani, A., Serra-Capizzano, S., Speleers, H.: Isogeometric analysis
for 2D and 3D curl-div problems: spectral symbols and fast iterative solvers. Comput. Methods
Appl. Mech. Eng. 344, 970–997 (2019)

16. Mazza, M., Ratnani, A., Serra-Capizzano, S.: Spectral analysis and spectral symbol for the
2D curl-curl (stabilized) operator with applications to the related iterative solutions. Math.
Comput. 88, 1155–1188 (2019)

17. Tilli, P.: A note on the spectral distribution of Toeplitz matrices. Linear Multilinear Algebra
45, 147–159 (1998)

18. Tyrtyshnikov, E.E.: A unifying approach to some old and new theorems on distribution and
clustering. Linear Algebra Appl. 232, 1–43 (1996)

19. Tyrtyshnikov, E.E., Zamarashkin, N.L.: Spectra of multilevel Toeplitz matrices: advanced
theory via simple matrix relationships. Linear Algebra Appl. 270, 15–27 (1998)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Performance of Preconditioners
for Large-Scale Simulations Using
Nek5000

N. Offermans, A. Peplinski, O. Marin, E. Merzari, and P. Schlatter

1 Introduction

The preconditioning of elliptic problems characterized by the propagation of
information at infinite speed over the domain is a numerically challenging task.
We study the case of the Poisson equation arising from the numerical resolution
of the incompressible Navier–Stokes equations by operator splitting. We consider
Nek5000, a code based on the spectral element method, as our framework. The
current preconditioning strategy is based on an additive Schwarz method, which
combines a domain decomposition method [5] and a so-called coarse grid problem
[10]. The first step consists in solving directly local overlapping Poisson problems
and is easily parallelizable. The second step corresponds to a Poisson-like problem
over the whole domain and is hard to scale because of its relatively low number of
degrees of freedom and the bottleneck induced by global communication.

A scalable solver for the coarse grid problem is critical to ensure strong scaling of
the code. Existing strategies include a direct solution method similar to a Cholesky
decomposition, called XXT [14], and an algebraic multigrid (AMG) solver [6].
While the first choice works well for relatively small problems (typically <100,000
spectral elements on <10,000 cores), the second option is preferred for large scale
simulations. The current AMG solver, which we will denote as the in-house AMG,
is fast and scales well [11]. It has been shown that the use of AMG can speed up
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large-scale simulations by up to 10%. In addition, the XXT has been designed for
optimal performance on a number of cores which is a power of 2, whereas the AMG
is insensitive to this parameter.

However, the AMG solver requires a setup phase, performed once for each mesh,
by an external and serial code. Besides inducing an unwanted overhead, it also
limits the use of the in-house AMG solver in the framework of mesh refinement,
which is the main motivation for this work. Therefore, we propose to replace the
in-house AMG by BoomerAMG, a parallel AMG solver for arbitrary unstructured
grids from the hypre library for linear algebra [1, 4, 8]. BoomerAMG offers a number
of parallel algorithms for the coarsening, interpolation and smoothing steps of the
AMG setup, to accommodate various types of problems, meshes and architectures.
The BoomerAMG solver will be tested in terms of scalability and time to solution.

Scaling tests for the BoomerAMG solver have been performed up to 4096 cores
by Baker et al. [1]. Matrices arising from the finite element and finite difference
discretizations of 2D and 3D scalar diffusion problems were considered. The authors
used HMIS coarsening and extended+i interpolation and showed that l1-scaled
Jacobi, l1-scaled Gauss-Seidel and Chebyshev smoothers are good choices for such
problems.

Weak scaling up to 125,000 cores has been presented in Ref. [2], where
BoomerAMG was used as a preconditioner for a conjugate gradient solver. The test
case considered is that of a 3D Laplace operator. The parameters for the AMG solver
were again HMIS coarsening, extended+i interpolation and symmetric hybrid
Gauss–Seidel for the smoother. Aggressive coarsening with multipass interpolation
was used on the finest grid, while the problem on the coarsest level was solved by
Gaussian elimination. The authors show the impact of additional parameters such
as the use of 64 bits for the integers or the use of an hybrid parallel strategy with
OpenMP and MPI.

In the present work, we use the BoomerAMG from hypre to precondition a
GMRES solver for the pressure equation arising from the spectral element dis-
cretization of the Navier–Stokes equations. We study strong scaling up to 131,072
cores on two different supercomputers: Mira, based on the IBM Blue Gene/Q
architecture, and Hazel Hen, a Cray XC40 system. The first test case considered
is the flow around a NACA4412 airfoil, which we use to identify a set of best
parameters for the BoomerAMG solver. A second test case is employed for a strong
scaling study: the turbulent flow in wire-wrapped pin bundles [3, 13].

The paper is organized as follows. In Sect. 2, we introduce the discretization
method and describe the preconditioning strategy and the hypre library. In Sect. 3,
we study which set of parameters gives the fastest time to solution for the problem
at hand. Using those parameters, we perform a strong scaling study for the flow
in wire-wrapped pin bundles in Sect. 4. We finish with conclusions and outlook in
Sect. 5
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2 Problem Description

Considering an operator splitting strategy to solve the Navier–Stokes equations, the
consistent pressure p is the solution to a Laplace problem of the form p = r . In
Nek5000, this equation is discretized using the spectral element method [7] and it
has been shown that it is well preconditioned by an overlapping additive Schwarz
method. The preconditioner combines local problems RT

k A−1
k Rk and a coarse grid

problem RT
0A−1

0 R0 and is expressed as

M−1 = RT
0A−1

0 R0 +
K∑

k=1

RT
k A−1

k Rk ,

where R0 and Rk are restriction operators, Ak are local stiffness matrices and K

is the total number of spectral elements. The matrix A0 corresponds to a Laplace
operator defined on the element vertices only. Because of its low number of degrees
of freedom and global extent, the scalability of the coarse grid problem is mostly
limited by communication and latency. We note that the term “coarse grid” here
refers to the fact that A0 is defined on the vertices of the spectral elements only.
The problem is therefore “coarse” in comparison to the solution fields, which
are expanded on the Gauss–Lobatto–Legendre points inside each spectral element
(typically order 10 quadrature points in each direction). When talking about the
different levels arising from the coarsening phase of the AMG setup, we will use
the term “coarse level” to avoid confusion.

As mentioned before, the solver of choice for large problems is currently an in-
house AMG, developed specifically for Nek5000 [6], whose main drawback is a
setup phase by an external and serial code. The default option for the setup step
of the in-house AMG is a Matlab code, which uses Ostrowski coarsening with
norm bound, a diagonal Chebyshev smoother, applied on the second branch of
the V-cycle only, and an energy-minimizing interpolation, all described in Ref. [9].
Other properties of the AMG include no smoothing on the finest level, a number of
smoothing steps predefined for each level during the setup phase and a coarsest level
made of one variable only. The good scalability of the in-house AMG is due to the
fact that it automatically chooses, at run time, the fastest communication strategy at
each level of the coarsening process, between three options: a pairwise exchange,
a crystal router method or an allreduce operation. Previous work has shown that,
when far from the strong scaling limit, the total time spent in the pressure solver is
typically 85–90% of the total computational time, including the time spent in the
coarse grid solver, which amounts to about 5–10% of that [11].

As an intermediate step in a previous work [12], the coarsening and interpolation
steps from this Matlab code have been transferred to BoomerAMG, while the
smoother and the solver were left unchanged. This “hybrid” serial setup was shown
to significantly reduce the setup time without affecting the rapidity and scalability
of the in-house AMG solver.
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In the present work, we completely replace the in-house AMG by BoomerAMG,
which allows for the whole AMG problem (setup + solver) to be performed
online and in parallel. The existing code requires only limited modifications. Local
contributions to the coarse grid operator are built on each process and then handed
over to BoomerAMG, which takes care of assembling the global operator and of
communication. If the operator possesses a nullspace, the solution is normalized
such that the mean of the solution entries is 0. Apart from that, the critical aspect
of switching to BoomerAMG is the choice of parameters for the setup and for the
solver that match the performance of the in-house AMG.

3 Optimal Parameter Selection

The choice of parameters for the BoomerAMG solver is done by testing a set of
parameters on a medium-sized test case and looking for the optimal combination.
We consider the turbulent flow around a NACA 4412 airfoil at Rec = 400,000
[13] on a mesh made of 253,980 elements, with polynomial order 11, and we run
the simulation for 30 timesteps. The best set of parameters is defined as the one
which minimizes the time to solution for the pressure equation. This is achieved by
balancing two competing aspects: the accuracy of the coarse grid solution and the
total number of iterations of the GMRES solver used for the pressure equation. Since
the AMG is used as a preconditioner, a high level of accuracy is not paramount.
Yet, it should be sufficient to ensure efficient preconditioning. Based on results
obtained with the in-house AMG, the initial error on the coarse grid problem should
be reduced by approximately one order of magnitude. While the in-house AMG is
designed to ensure that a given reduction in the error is attained at minimal cost, the
BoomerAMG is designed to ensure the maximum reduction in the error occurs at
a given cost. Therefore, the best choice of parameters for the BoomerAMG is case
dependent; here we optimize this choice in the case of large 3D simulations, when
the use of AMG is most relevant.

All tests are run on 4096 processors on the Blue Gene Mira at the Argonne
National Laboratory. We test a total of 96 combinations of the following param-
eters:

• Coarsening type: classical Ruge–Stueben (C1), Falgout (C2), PMIS (C3), HMIS
(C4), CGC (C5) and CGC-E (C6),

• Interpolation method: extended (I1) and extended+i (I2),
• Relaxation type: l1-Gauss–Seidel forward solve on the down cycle + backward

solve on the up cycle (R1), l1-scaled hybrid symmetric Gauss–Seidel (R2),
Chebyshev (R3) and l1-scaled Jacobi (R4),

• AMG strength threshold: 0.25 and 0.5.

We assign a letter and a number to each option which will be used to identify the
method when comparing the results.
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Table 1 Five best timings for the BoomerAMG with corresponding parameters as compared to the
in-house AMG

Run ID. AMG solver Coars. Intp. Relax. Thresh. No. pres. it. Pres. time (s) CGS time (s)

a in-house AMG – – – – 3737 666.06 31.51

b BoomerAMG C3 I2 R2 0.25 3677 719.77 94.93

c BoomerAMG C4 I2 R1 0.5 3762 734.35 95.11

d BoomerAMG C3 I1 R1 0.25 3839 746.28 94.7

e BoomerAMG C3 I2 R4 0.25 3814 747.04 99.28

f BoomerAMG C3 I2 R1 0.5 3866 756.48 100.13

3 V-cycles for the BoomerAMG. Total number of iterations for the pressure solver and timings are
reported for 30 timesteps

Table 2 Five best timings for the BoomerAMG with corresponding parameters as compared to
the in-house AMG

Run ID. AMG solver Coars. Intp. Smo. Thresh. No. pres. it. Pres. time (s) CGS time (s)

a in-house AMG – – – – 3737 666.06 31.51

d BoomerAMG C3 I1 R1 0.25 3752 675.52 38.09

c BoomerAMG C4 I2 R1 0.5 3786 683.65 41.0

b BoomerAMG C3 I2 R2 0.25 3877 698.44 40.31

f BoomerAMG C3 I2 R1 0.5 3990 721.03 44.35

e BoomerAMG C3 I2 R4 0.25 4476 803.74 46.24

1 V-cycle for the BoomerAMG. Total number of iterations for the pressure solver and timings are
reported for 30 timesteps

In all cases, we set a relative tolerance of 0.1 on the solution of the coarse grid
problem and a maximum of 3 V-cycles for the AMG. Moreover, the problem on
the coarsest level is solved by Gaussian elimination. Total timings and number of
pressure iterations for 30 timesteps are presented in Table 1 for the in-house AMG
and the five fastest combinations of parameters for the BoomerAMG. We assign
a letter to each run for comparison later. The time spent in the pressure solver is
reported for process 0 and the time spent in the coarse grid solver (CGS) is the
maximum value over all processors for a single run. Since an allocation on Mira is
always made of cores that are physically contiguous and isolated from the rest of
the network, the timings suffer little noise and uncertainty. We see that the number
of pressure iterations is on par with the in-house AMG, but the time spent in the
coarse grid solver is more that three times as much. As a result, the time spent in the
pressure solver is between 8 and 13% higher.

To accelerate the BoomerAMG solver, we set the maximum number of V-cycles
to 1, instead of 3, and perform another test using the optimal parameters. This
should significantly accelerate the resolution of the coarse grid solver but reduce the
accuracy of the solution, therefore increasing the number of pressure iterations. The
corresponding results are presented in Table 2. A surprising result comes from run
d, where the number of pressure iterations has actually decreased. Since this might
be the sign of an unstable solver, we discard this choice of parameters. The second
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best set of parameters corresponds to HMIS coarsening, extended+i interpolation,
l1-Gauss–Seidel forward solve on the down cycle+ backward solve on the up cycle
for the smoother and an AMG strength threshold of 0.5, which we use for the rest
of our simulations.

We also experimented with more aggressive non-Galerkin coarsening to change
the communication pattern on the largest AMG levels and reduce communication
time. However, this caused a drop of accuracy for the coarse grid solver and an
increase of iterations for the pressure solver, which led to slower overall timings as
a result.

We note that the time to setup the coarse grid problem, which includes building
the matrix A0 and performing the BoomerAMG setup, is negligible. In the present
configuration, it amounts to less than a second, whereas a single timestep takes
about 20 s. Since the setup is performed once at the beginning of the simulation, we
do not discuss the matter further. Furthermore, it is orders of magnitude lower than
the serial versions of the setup [12].

Further analysis of the results shows that the use of classical Ruge-Stueben,
Falgout, CGC or CGC-E significantly slows down the solver. Moreover, another
valid choice for the smoother could have been l1-scaled hybrid symmetric Gauss–
Seidel, whose speed is on par with our choice. Other relaxation methods, Chebyshev
and l1-scaled Jacobi, are also consistently slower. Finally, the choice of the
interpolation method does not have a significant impact and both methods give very
similar results.

4 Scaling Results

As is often the case with numerical simulations, we look for the fastest path to
solution for a given problem. Therefore, a strong scaling study, where the total
amount of work is fixed and the number of processes is increased, is a relevant
measure of the efficiency of the BoomerAMG. This is opposed to a weak scaling
analysis, where the amount of work per process is kept constant, which is not carried
out here.

We consider the turbulent flow inside a reactor assembly made of 61 wire-
wrapped pins, a configuration appearing in a nuclear reactor core [3]. The mesh
consists of 1,650,240 elements, uses polynomial order 7 and has a complex, fully
three-dimensional topology, making it a relevant test case for evaluating precondi-
tioning strategies. The initial velocity field is turbulent and we run the simulation
for 10 timesteps. Two series of tests were conducted on two supercomputers: Mira
and Hazel Hen. The number of compute nodes considered is 512, 1024, 2048, 4096
and 8192 on the former machine and 256, 512, 1024, 2048, 4096 on the latter one.
On both computers, the number of MPI processes per node is equal to the number of
available compute cores, i.e. 16 on Mira and 24 on Hazel Hen. We use our previous
defined optimal parameters for the setup of the BoomerAMG and we also include
non-Galerkin coarsening. A drop-tolerance of 0.05 for sparsification is set as default
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on all levels, with the exception of the five finest levels, which have respective drop-
tolerances of 0.0, 0.01, 0, 02, 0.03 and 0.04. This choice of parameters is motivated
by the fact that, unlike with the wing case, the time for the coarse grid solver is
reduced by about 25%, as tests on 6,144 cores on Hazel Hen have shown, without
impacting the number of pressure iterations.

First, let us mention that the setup time for the BoomerAMG solver is once again
negligible in comparison to the time for the entire simulation, requiring less than
3 s on any number of cores on any machine. It is also significantly lower than
reading the data of the in-house AMG, a serial process, which takes about 80–90 s.
Therefore, it does not represent a bottleneck and we do not investigate timings for
the setup phase in details.

Next, we present the strong scaling results, based on a single run per core count.
The reported value for the time spent in the pressure solver is the timing from core
0. The time spent in the coarse grid solver is measured on each processor and we
consider the maximum value among all processes. The average time per timestep for
the pressure solver on Mira is shown in Fig. 1, left plot. Unlike what was observed
for the wing simulation, the choice of AMG solver does not impact the number of
pressure iterations. The in-house AMG is slightly faster than the BoomerAMG on
all core counts and it seems to scale marginally better. Since all other timings are
the same, the reason is a faster coarse grid solver, as can be seen in Fig. 1, right
plot. The in-house AMG achieves a better performance because it optimizes the
communication process independently on each level of the AMG. On the coarsest
levels, it is able to take advantage of the fast allreduce operation offered by the
network of the Blue Gene architecture in hardware. On the finest levels, it picks up
the fastest method between a crystal-router strategy or a pairwise exchange.

On 131,072 cores, the actual speed up for the coarse grid solver is 3.11 and
the parallel efficiency is 0.194 for the in-house AMG, when the timings on 8,192
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Fig. 1 Rod-bundle test case on Mira, with 1,650,240 elements, leading to 12 or 13 elements per
core for the largest core count. AMG parameters: HMIS coarsening, extended+i interpolation, l1-
Gauss–Seidel forward solve on the down cycle + backward solve on the up cycle for the smoother
and an AMG strength threshold of 0.5. Left: time spent in the pressure solver; value for process 0,
averaged over the total number of timesteps. Right: time spent in the coarse grid solver; maximum
value over all processes, normalized by the total number of timesteps
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Fig. 2 Rod-bundle test case on Hazel Hen, with 1,650,240 elements, leading to 16 or 17 elements
per core for the largest core count. AMG parameters: HMIS coarsening, extended+i interpolation,
l1-Gauss–Seidel forward solve on the down cycle + backward solve on the up cycle for the
smoother and an AMG strength threshold of 0.5. Left: time spent in the pressure solver; value
for process 0, averaged over the total number of timesteps. Right: time spent in the coarse grid
solver; maximum value over all processes, normalized by the total number of timesteps

cores are used as references. These quantities are respectively 2.44 and 0.153 for
the BoomerAMG. As mentioned before, the network on Mira is characterized by
little noise and the uncertainty on the timings is low. Yet, these numbers are based
on a single run and are only indications.

The same timings on Hazel Hen are shown in Fig. 2. Unfortunately, the node
allocation on this machine can be scattered and the interconnect noise, which is
shared with the rest of the computer, can be high and unpredictable. Therefore, a
thorough analysis of the scaling results is not possible from a single run and the
data from Fig. 2 are only indicative. Nevertheless, the runs for each AMG solver on
the same number of cores are obtained using the same node allocation. This makes
a comparison between the two solvers on a given core count somewhat relevant.
In contrast to the results on Mira, the BoomerAMG is slightly faster than the in-
house AMG on most core counts; the exception is on 6144 cores, where the timings
are almost equal. Furthermore, it is quite clear that the coarse grid solver on Hazel
Hen does not scale at all. Indeed, the time spent in the coarse grid solver is almost
constant from the lowest amount of cores considered.

Based on the available data, we see that beyond 24,576 thousand cores, the time
spent in the coarse grid solver accounts for roughly half of the time spent in the
pressure solver. At that point, there is about 67 elements and 35,000 grid points
per core, which is consistent with the strong scaling limit on a similar computer as
identified in Ref. [11].
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5 Conclusions

We used the BoomerAMG solver from the hypre library for linear algebra to solve
a global coarse problem that is part of the preconditioner for the pressure equation
arising when time-integrating the Navier–Stokes equations. The set of parameters
for the BoomerAMG setup that leads to the lowest solver time for the pressure
equation is HMIS coarsening, extended+i interpolation, l1-Gauss–Seidel forward
solve on the down cycle + backward solve on the up cycle for the smoother and an
AMG strength threshold of 0.5. We also used non-Galerkin coarsening, with more
aggressive drop-tolerance on the coarser levels, to speed up the solver. This new
method replaces an existing AMG solver, which is fast and scales well but requires
a setup phase done externally in serial. Strong scaling was assessed for both AMG
solvers on a real large-scale test case on two supercomputers: an IBM Blue Gene/Q
(Mira) and a Cray XC40 (Hazel Hen). On Mira, the in-house AMG leads to a faster
pressure solver that the BoomerAMG on all core counts. The maximum difference
is about 10% on 131,072 cores. This is because the in-house AMG is able to take
advantage of the fast hardware allreduce operation on this machine at the coarsest
levels of the AMG solver; in that sense the present result was expected. On Hazel
Hen, however, the BoomerAMG is consistently faster than the in-house AMG and
we observe the strong scaling limit to be reached at about 24,576 cores. Overall,
the BoomerAMG is a valid alternative to the in-house AMG; both methods are close
in terms of performance and the BoomerAMG has the advantage to be set up online
and in parallel. In particular for modern architectures, the BoomerAMG is even faster
than the in-house AMG with obvious advantages in the setup phase. All the codes
developed in this work are available from the https://github.com/nicooff/nek5000/
tree/amg_hypre_c Github repository.

Future work will extend the use of BoomerAMG to mesh refinement, where an
online and parallel AMG setup phase is a requirement.
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Two Decades Old Entropy Stable Method
for the Euler Equations Revisited

Björn Sjögreen and H. C. Yee

1 Introduction, Objectives and Preliminaries

The two decades old high order central differencing via entropy splitting and
summation-by-parts (SBP) difference closure of Olsson and Oliger, Gerritsen and
Olsson, and Yee et al. [2, 7, 25] is revisited. The entropy splitting is a form of skew-
symmetric splitting in terms of the physical entropy of the nonlinear Euler flux
derivatives. Central differencing applied to the entropy splitting form of the Euler
flux derivatives together with SBP difference operators will, hereafter, be referred
to as entropy split schemes.

The objective is to prove for the first time, in the recent definition of entropy
stability based on the L2-energy-like norm estimate, that entropy splitting for
central schemes with SBP operators are entropy stable. The proof is to replace
the spatial derivatives by summation-by-parts (SBP) difference operators in the
entropy split form of the equations using the physical entropy of the Euler equations.
The numerical boundary closure follows directly from the SBP operator. No
additional numerical boundary procedure is required. In contrast, Tadmor-type
entropy conserving schemes [18] using mathematical entropies do not naturally
come with a numerical boundary closure. A generalized SBP operator has to be
developed [8]. Standard high order spatial central differencing as well as high order
central spatial DRP (dispersion relation preserving) spatial differencing is part of
the entropy stable methodology. An entropy split scheme satisfies the L2-energy
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norm estimate readily without an added numerical dissipation term for smooth
flows. For flows containing discontinuities the Yee et al. nonlinear filter approach
[10–12, 14, 15, 22–25] is employed at isolated computed locations. After each
full time step of the entropy split method to suppress spurious oscillations while
maintaining accuracy on the remaining flow field. Since the nonlinear filter step is
executed as an Euler time discretization at isolated location after the completion of
a full time step of the entropy stable central scheme, entropy conservation/stability
is valid almost everywhere. The efficiency and performance of the entropy stable
split schemes using the physical entropies are compared with Tadmor-type entropy
conservative method [18] using mathematical entropies for long time integration
of a 2D smooth flows and a 3D direct numerical simulation (DNS) of turbulence
with shocklets. It is found that Tadmor-type entropy conservative methods required
twice the CPU time than the entropy stable split schemes using the same order of the
central scheme. Comparisons among the three skew-symmetric splittings (entropy
splitting [19, 20, 25], Ducros et al. splitting [1] and the Kennedy and Grubber
splitting [5]) on their nonlinear stability and accuracy performance without added
numerical dissipations for smooth flows is included. See [16] for additional details
and comparison.

Remarks It is noted that the Hughes et al. formulation [4] using the Harten’s idea
[3] but solving the flow equations in nonconservative form in terms of the entropy
variables is completely different from the entropy split schemes. The entropy split
scheme solve the entropy splitting form of the Euler flux derivatives consisting of
a one parameter family of conservative and a non-conservative portions in terms of
the entropy variables. If the parameter satisfies the energy estimate, entropy stability
is immediate. The entropy split scheme has been generalized from a perfect gas to
a thermally perfect gas and gas flows consisting of linear combination of perfect
gases [21, 25]. In addition, these high order schemes have been formulated in time
varying deforming curvilinear grids with free-stream preservation [17, 21].

2 Entropy Splitting of the Euler Flux Derivatives

We consider the 3D equations of inviscid compressible gas dynamics

qt + fx + gx + hx = 0

with conserved variables q = (ρ ρu ρv ρw e)T and fluxes in an arbitrary direction
k = (k1 k2 k3) with |k|2 = 1, and

f̂ = k1f+ k2g+ k3h = (ρû ρuû+ k1p ρvû+ k2p ρwû+ k3p û(e+p))T , (1)

where û = k1u+k2v+k3w. The total energy is related to the pressure p by the ideal
gas law, e = p

γ−1+ 1
2ρ|u|2, where γ > 1 is a given constant, and |u|2 = u2+v2+w2.
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An entropy is a convex function, E(q), of the conserved variables that allows an
additional conservation law,

Et + Fx +Gy +Hz = 0, (2)

when the solution is smooth. The entropy fluxes in the x-, y-, and z-directions are
denoted by F , G, and H , respectively. The entropy variables are defined by v =
∇qE (the notation Eq for the gradient will sometimes be used). The convexity of
E ensures that these are well-defined. The Entropy conservation law (2) follows if
the relation vT ∂f

∂q = ∇qF for the x-direction fluxes, and similarly for the y- and z-
directions, holds. Moreover, the entropy variables symmetrize the equations; ∂f/∂v
is a symmetric matrix.

Harten [3] considered the class of entropies

E = −γ + α

γ − 1
ρ(pρ−γ )

1
α+γ , (3)

where α is a parameter. To ensure that E is convex, i.e., that the matrix Eq,q is
positive definite, α is required to satisfy α > 0 or α < −γ . The full range for α
was given in [25], while [3] only considered α > 0, and [2] used only the special
case α = 1 − 2γ from α < −γ . The corresponding entropy flux in the direction
k = (k1 k2 k3)

T is

F = ûE.

The entropy variables v = Eq are straightforwardly found to be

v = ρ

p
s

1
α+γ (− α

γ − 1

p

ρ
− 1

2
|u|2 u v w − 1)T , (4)

where s denotes pρ−γ . The conserved variables are homogeneous functions of the
entropy variables (4),

q(θv) = θβq(v), (5)

where β = (α + γ )/(1− γ ). From (5) it follows that

qvv = βq (6)

f̂vv = β f̂. (7)

See [3, 16] for the proof. The range of α, where Eq,q is positive definite, translates
to β satisfying β < − γ

γ−1 or β > 0.
Entropy splitting of the Euler flux derivative in the x-direction with the y- and

z-directions suppressed [2, 25] is written as a weighted sum of a conservative part,
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fx , and a non-conservative part, fvvx , as

fx = β

β + 1
fx + 1

β + 1
fvvx.

Replacing fx by this split flux derivative gives

qt + β

β + 1
fx + 1

β + 1
fvvx = 0. (8)

The entropy splitting weights the non-conservative portion of the flux derivative by
1

1+β . This means that the range β > 0 corresponds to a weight that is less than
1, whereas negative β leads, unphysically, to a weight that is greater than 1. The
global entropy conservation can be rewritten as an L2-like estimate. The entropy
time derivative can be rewritten as

d

dt
E(q) = 1

β + 1

d

dt
(vT (Eq,q)

−1v)

by using the homogeneity (5). Due to a page limit, see [16] for further discussion.
Note that it is necessary to bound the eigenvalues of E−1

q,q in order to make the L2-
like norm a valid estimate.

3 Semi-Discrete Entropy Split Discretization of the Euler
Equations

Consider the 1D compressible gas dynamic equations discretized on a domain a <

x < b by a uniform grid xj = (j − 1)Δx + a, j = 1, . . . , N , and grid spacing
Δx = (b − a)/(N − 1). Define the semi-discrete entropy split approximation

d

dt
qj + β

β + 1
Dfj + 1

β + 1
(fv)jDvj = 0, j = 1, . . . , N, (9)

where D is a SBP difference operator. With entropy split scheme, we will always
mean the entropy split form of Eqs. (8) discretized in space by a summation-by-
parts finite difference operator. The flux Jacobian matrix with respect to the entropy
variables, fv, is symmetric. The SBP scalar product is denoted by

(u, v)h = Δx

N∑

j=1

ωjuT
j vj ,
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where ωj > 0 are weights that are different from 1 only at a few points near the
boundaries. The operator D satisfies the SBP property

(Du, v)h = −(u,Dv)h − uT
1 v1 + uT

NvN, (10)

but is otherwise arbitrary. In the most common case D is a standard SBP centered
difference operator, but other operators are possible.

A zero velocity, u1 = 0, uN = 0, boundary condition is enforced, corresponding
to wall boundaries. Thanks to the SBP property of the difference approximation the
derivation of entropy conservation for the continuous problem can be carried over
to the discretization.

Theorem 1 The approximation (9) together with the boundary conditions u1 = 0
and uN = 0 conserve the global entropy in the sense that d

dt

∑N
j=1 ωjEj = 0.

A method is entropy dissipative, or “entropy stable”, if the computed solution
satisfies (2) with inequality,

Proof Denote

r = − β

β + 1
(v,Df)h − 1

β + 1
(v, (fv)Dv)h.

The scheme (9) can be written

d

dt
qj = P rj , (11)

where the projection P sets u1 = 0 and uN = 0. Because P 2 = P , applying P to
both sides of (11) gives that

d

dt
Pq = d

dt
q,

i.e., that Pq = q if the initial data satisfy the boundary conditions. For the entropy

d

dt
E = (v,qt )h = (v, P r)h = (v, r)h − (v, (I − P)r)h =

(v, r)h − (Pv, (I − P)r)h = (v, r)h, (12)

where we use that Pv = v. This is due to the second component of v is zero when
the x-velocity, u, is zero, and the orthogonality (Pv, (I − P)r)h = 0. The entropy
equation is now of the same form as for the continuous problem, but replacing with
integration-by-parts by summation-by-parts gives

d

dt
E(qj ) = −FN + F1.
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Entropy conservation follows by observing that F = uE, so that the boundary
conditions imply that F1 = FN = 0.

If the boundary conditions are periodic, no SBP modification of the difference
operator is needed. Entropy conservation is proved with periodic boundary condi-
tions by direct application of the same technique as above. It can be shown that
the result carries over directly to the semi-discrete approximation, since only time
derivatives are used in the proof. Hence, the L2-like estimate

d

dt

N∑

j=1

ωjvj (Eq,q)
−1
j vj = 0

is obtained for the approximation (9). It can be shown that Tadmor-type entropy
conservative discretization using the Harten entropy and high order central spatial
differencings are also entropy conservative methods. See Sjögreen and Yee [16] for
the proof.

4 Numerical Experiments

More extensive numerical experiments are reported in the extended version of
this paper [16]. Previous studies using SBP boundary closures for non-periodic
boundary conditions can be found in [25]. Here selected summary results are
presented.

Test Case 1: 2D Compressible Euler Simulation of Smooth Flow: Isentropic
Vortex Convection
The compressible Euler equations in two space dimensions are solved with initial
data

ρ(x, y) = (1− (γ − 1)β2

8γπ2 e1−r2
)

1
γ−1 (13)

u(x, y) = u∞ − β(y − y0)

2π
e(1−r2)/2 (14)

v(x, y) = v∞ + β(x − x0)

2π
e(1−r2)/2 (15)

p(x, y) = ρ(x, y)γ , (16)

where r2 = x2 + y2, β = 5, γ = 1.4, u∞ = 1, and v∞ = 0. The exact solution is
the initial data translated, u(x, t) = u0(x − u∞t, y − v∞t).

The computational domain is 0 ≤ x ≤ 18, 0 ≤ y ≤ 18 with periodic boundary
conditions. The center of the vortex is chosen to be (x0, y0) = (9, 9). The problem is
solved in time with the classical fourth-order accurate explicit Runge–Kutta method
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to time t = 72, which corresponds to four revolutions of the vortex across the
domain.

Comparisons of high order classical central split schemes with high order DRP
schemes with grid refinements are reported in [13]. Due a space limitation only
one grid with maximum and L2 error norm compared with the exact solution
is shown in Fig. 1. Here C08-DS represents eighth-order central differencing
applied to the Ducros et al. splitting form of the Euler flux derivatives. The
corresponding eighth-order entropy splitting, entropy conservative method and
Kennedy Grubber splitting are indicated by “C08-ES”, “C08-EC” and “C08-KGS”.
If the computed solutions by “C08-DS”, “C08-ES”, “C08-EC” and “C08-KGS” are
nonlinearly filtered by a dissipative portion of WENO7 (seventh-order weighted
essentially nonoscillatory spatial method) with an adaptive flow sensor, they are
indicated by C08-DS+WENO7FI, C08-ES+WENO7FI, C08-EC+WENO7FI, and
C08-KGS+WENO7FI [14, 15, 22–25]. For the smooth flow without any turbulent
structure, β = 1 for the entropy split scheme. The β parameter studies are reported
in [9, 16, 25]. In general, for compressible shock-free turbulence and turbulence with

Fig. 1 Inviscid 2D compressible vortex convection with 1002 grid points: comparison of
maximum-norm of error vs. time for C08-DS, C08-ES, C08-EC, and C08-KGS (left, top), and C08-
DS+WENO7FI, C08-ES+WENO7FI, C08-EC+WENO7FI, and C08-KGS+WENO7fFI (right
top). Bottom left and bottom right are the corresponding L2-norm of error vs. time
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shocklets, β lies somewhere in the range 1.5 < β < 2.5. In general, the optimal β
is problem dependent. A general conclusion is that β should not be very large or
below 1.

Other high resolution dissipative shock-capturing methods are also candidates
for the nonlinear filter approach as well as other optimal WENO or ENO methods.
However, with a good control of the numerical dissipation away from disconti-
nuities, there is no need to use the more complicated and more CPU intensive
shock-capturing methods. The non-split C08 without any added numerical dissipa-
tion diverges shortly after time evolution. Results by WENO5 or WENO7 are very
diffusive with large maximum or L2 errors. For this smooth long time integration
flow, entropy splitting is the most accurate method.

Test Case 2: 3D Isotropic Turbulence with Eddy Shocklets
The second numerical test problem computes decaying compressible isotropic
turbulence with eddy shocklets. For high enough turbulent Mach numbers weak
shocks (shocklets) develop from the turbulent motion. Here the initial turbulent
Mach number is 0.6. The Navier–Stokes equations are solved using γ = 1.4.
The computational domain is a cube with side length 2π and periodic boundary
conditions in all three directions. The initial datum is a random divergence free
velocity field, ui,0, i = 1, 2, 3, that satisfies

3

2
u2
rms,0 =

1

2
〈ui,0, ui,0〉 =

∫ ∞

0
E(k) dk

with energy spectrum

E(k) ∼ k4e−2(k/k0)
2
.

The computations were made with urms,0 = 1 and k0 = 4. The angular brackets
denote averaging over the entire computational domain. The density and pressure
fields are initially constant. The Taylor-scale Reynolds number, Reλ,0, is 100. See
[6] for definitions of the quantities and more details about the set up of the problem.
The simulation is run to the final time 4.

Figure 2 shows the comparison of two splitting methods (DS and KGS), ES
(entropy splitting and entropy stable) and EC (entropy conservative) using the same
nonlinear filter. The time evolution of the domain averaged kinetic energy (upper
left), enstrophy (upper right), temperature variance (lower left), and dilatation (lower
right) are compared. All four forms of the nonlinear filter method provide similar
resolution. All four schemes without the nonlinear filter are stable but not as accurate
as the nonlinear filter versions. Over all, DS splitting is slightly less CPU intensive
than ES. KGS skew-symmetric splitting is more CPU intensive than DS and ES. The
EC method is around two times more expensive than DS. In addition, as the order
of these methods increases, the gain in efficiency (CPU) by entropy split schemes
increases.
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Fig. 2 3D Isotropic turbulence problem with 643 grid points. Comparison of two splitting method
(DS and KGS), ES (entropy splitting and entropy stable) and EC (entropy conservative) using the
same nonlinear filter. Evolution of kinetic energy (upper left), enstrophy (upper right), temperature
variance (lower left), and dilatation (lower right) DNS computed on 2563 grid points and filtered
down to 643 resolution is considered as the reference solution

Although entropy split methods are not in conservation form but entropy
conservative, Sect. 4 showed that they perform well on problems with shocklets.
Over all, Extension of the entropy split scheme to other equations of state (non-
perfect gas) and the MHD can be found in the original 2000 Yee et al. [25] paper. The
entropies (3) can be used to construct entropy conserving schemes in conservative
form. See [16] for the derivation.

References

1. Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for
conservative skew-symmetric-like schemes in structured meshes: application to compressible
flows. J. Comput. Phys. 161, 114–139 (2000)

2. Gerritsen, M, Olsson, P.: Designing an efficient solution strategy for fluid flows. I. A stable high
order finite difference scheme and sharp shock resolution for the Euler equations. J. Comput.
Phys. 129, 245–262 (1996)

3. Harten, A: On the symmetric form of systems for conservation laws with entropy. J. Comput.
Phys. 49, 151 (1983)

4. Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for computational fluid
dynamics: K. Symmetric forms of the compressible Euler and Navier–Stokes equations and
the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986)

5. Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms Within the
Navier–Stokes equations. J. Comput. Phys. 227, 1676–1700 (2008)



282 B. Sjögreen and H. C. Yee

6. Kotov, D.V., Yee, H.C., Wray, A.A., Sjögreen, B., Kritsuk, A.G.: Numerical dissipation control
in high order shock-capturing schemes for LES of low speed flows. J. Comput. Phys. 307, 189–
202 (2016)

7. Olsson, P., Oliger, J.: Energy and maximum norm estimates for nonlinear conservation laws.
RIACS Technical Report 94.01, 1994

8. Roanocha, H.: Generalized summation-by-parts operators and variable coefficients. J. Comput.
Phys. 362, 20–48 2018. aXiv:1705.10541v2 [math.NA]

9. Sandham, N.D., Li, Q., Yee, H.C.: Entropy splitting for high-order numerical simulation of
compressible turbulence. J. Comput. Phys. 23, 307–322 (2002)

10. Sandham, N.D., Li, Q., Yee, H.C.: Entropy splitting for high-order numerical simulation of
compressible turbulence. J. Comput. Phys. 178(2), 307–322 (2002)

11. Sjögreen, B., Yee, H.C.: Multiresolution wavelet based adaptive numerical dissipation control
for high order methods. J. Sci. Comput. 20, 211–255 (2004)

12. Sjögreen, B., Yee, H.C.: On skew-symmetric splitting and entropy conservation schemes for
the Euler equations. In: Proceedings of the ENUMATH09. Uppsala University, Sweden (2009)

13. Sjögreen, B., Yee, H.C.: Accuracy consideration by DRP schemes for DNS and LES of
compressible flow computations. Comput. Fluids 159, 123–136 (2017)

14. Sjögreen, B., Yee, H.C.: Skew-symmetric splitting for multiscale gas dynamics and MHD
turbulence flows. In: Extended Version of Proceedings of ASTRONUM-2016. Monterey
(2018)

15. Sjögreen, B., Yee, H.C.: High order entropy conservative central schemes for wide ranges of
compressible gas dynamics and MHD flows. J. Comput. Phys. 364, 153–185 (2018)

16. Sjögreen, B., Yee, H.C.: Entropy stable method for Euler equations revisited: central differenc-
ing via entropy splitting and SBP. J. Sci. Comput. 81(3), 1359–1385 (2019)

17. Sjögreen, B., Yee, H.C., Vinokur, M.: On high order finite-difference metric discretizations
satisfying GCL on moving and deforming grids. J. Comput. Phys. 265 211–220 (2014)

18. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation
laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

19. Tauber, E., Sandham, N.D.: Comparison of three large-eddy simulations of shock-induced
turbulent separation bubbles. Shock Waves 19, 469–478 (2009)

20. Taylor, G., Green, A.: Mechanism of the production of small eddies from large ones. Proc. R.
Soc. Lond. A 158, 499–521 (1937)

21. Vinokur, M., Yee, H.C.: Extension of efficient low dissipation high-order schemes for 3D
curvilinear moving grids. Front. Comput. Fluid Dyn. 129–164 (2002); Also, Proceedings of
the Robert MacCormack 60th Birthday Conference (2000), Half Moon Bay, NASA/TM-2000-
209598

22. Yee, H.C., Sjögreen, B.: Development of low dissipative high order filter schemes for
multiscale Navier–Stokes and MHD systems. J. Comput. Phys. 225 910–934 (2007)

23. Yee, H.C., Sjögreen, B.: High order filter methods for wide range of compressible flow speeds.
In: Proceedings of the ICOSAHOM09. Trondheim (2009)

24. Yee, H. C., Sandham, N.D., Djomehri, M.J.: Low-dissipative high order shock-capturing
methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)

25. Yee, H.C., Vinokur, M, Djomehri, M.J.: Entropy splitting and numerical dissipation. J. Comput.
Phys. 162, 33–81 (2000)



Two Decades Old Entropy Stable Method for the Euler Equations Revisited 283

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


A Mimetic Spectral Element Method
for Free Surface Flows

L. Nielsen and B. Gervang

1 Introduction

In the last decades, CFD simulations of free surface flows have become a key tool
in engineering analysis in the design of marine structures. To be able to obtain
valid estimates of environmental stress on ship-wave hydrodynamics, offshore wind
turbines, wave energy converters, and offshore production systems the CFD tools
need to be able to account for non-linear wave-wave and wave-body interaction.
Traditionally free surface water simulation has been simulated using lower order
methods, however recently spectral element methods have been used [2]. In contrast
to earlier work, in the present article, we simulate 2D free surface waves using a
mimetic spectral element method. This ensures that the invariants of the system
mass, momentum, and energy are conserved throughout the simulation.

The governing equation for incompressible, Newtonian fluids is the Navier–
Stokes equation. Free surface waves can be assumed to be governed by an inviscid
and irrotational fluid flow. Assuming first the fluid to be inviscid we arrive at the
Euler equations,

ρ

[
∂u
∂t
+ u · ∇u

]
= −∇p + ρg,

together with the continuity equation

∇ · u = 0.
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Using the vector identity 1
2∇(u ·u) = (u ·∇)u+u× (∇×u) and using that the fluid

is irrotational (∇×u = 0), we can rewrite the momentum and continuity equations,

ρ
∂∇φ
∂t
= −ρ

2
∇|∇φ|2 −∇p − ρg, (1)

∇2φ = 0, (2)

where φ is a vector potential defined as u = ∇φ, φ = φ(x, z, t). We can now
rewrite the momentum equation as,

∇
[
ρ
∂φ

∂t
+ ρ

2
|∇φ|2 + p + ρgz

]
= 0,

which we can integrate in space to obtain the time dependent Bernoulli’s equation.

ρ
∂φ

∂t
+ ρ

2
|∇φ|2 + p + ρgz = C(t),

where C(t) is an arbitrary function of integration. We assign C(t) = 0 by recalling
that φ and φ+ ∫

C(t)dt yield exactly the same flow. Redefining φ and retaining the
symbol φ := φ + ∫

C(t)dt we obtain the time dependent Bernoulli’s equation for
the problem as,

ρ
∂φ

∂t
+ ρ

2
|∇φ|2 + p + ρgz = 0. (3)

The governing equations for inviscid and irrotational flows for an incompressible
fluid are stated through (2) and (3), where the unknowns are the velocity potential, φ,
and the pressure, p. Equations (2) and (3) together with proper boundary conditions
constitute a well-posed problem. The velocity potential, φ, can be solved from the
Laplace equation and then substituted into the Bernoulli’s equation to obtain the
pressure field.

1.1 Boundary Conditions

The physical domain is shown in Fig. 1, where the notations are also illustrated.
The fluid domain Ω ⊂ R, d = 2 is a bounded, connected domain with piecewise
bathymetry Γ b ⊂ R

d−1. The time domain is taken as T : t ≥ 0. The unknowns for
the problem become the velocity potential and the free surface elevation η(x, t) :
Γ FS × T −→ R. The pressure can hereafter be determined through (3).
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Fig. 1 Illustration of the physical domain with notation of the relevant quantities shown

Fig. 2 Computational domain

The unsteady kinematic and dynamic free surface boundary conditions are given
by Zakharov [8],

∂tη = −∂xη∂xφ̃ + ν̃(1+ ∂xη∂xη) ∈ Γ FS × T , (4)

∂t φ̃ = −gη − 1

2
((∂xφ̃)

2 − ν̃2(1+ ∂xη∂xη)) ∈ Γ FS × T , (5)

where ˜ signify functions defined only on the free surface. The vertical component of
the velocity ν̃ = ∂zφ|z=η is calculated by solving the Laplace problem (2) together
with the Zakharov boundary conditions (4) and (5) on the free surface. On the
bottom we have the no penetration condition,

∂zφ + ∂xh∂xφ = 0, for z = −h(x) on Γ b. (6)

On the inlet and outlet boundaries (Γ \Γ FS ∪ Γ b) the gradient of the velocity
potential is specified. The computational domain is shown in Fig. 2.

2 Discretization of Governing Equations

The developed method adopts elements from differential geometry. The unknowns
of our system are described by use of differential forms. In a three-dimensional
setting we are making use of four types of sub-manifolds: points, curves, surfaces,
and volumes, both as inner and outer oriented objects, see an example in Fig. 3. The
mimetic spectral element method uses an approach similar to the Galerkin method of
the finite element method where the numerical residual is weighted by an arbitrary
weight function. In contrast to the traditional finite element method the arbitrary
weight functions are taken from the dual space of the function space used by the
unknowns.
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Fig. 3 Three-dimensional dual De Rahm complex showing the four types of sub-manifolds and
their different orientations

2.1 Basis Functions

For the polynomial representation we use Lagrange polynomials li(x) and edge
polynomials ei(ξ), see [5]. The Lagrange polynomials are based on a Gauss-
Lobatto-Legendre (GLL) point distribution for the nodal values. The Lagrange
polynomials and edge polynomials satisfy the properties,

li (ξj ) =
{

1 if i = j

0 if i �= j,

∫

Lj

ei(ξ) =
{

1 if i = j

0 if i �= j,

and the edge polynomials are explicitly given in terms of the nodal Lagrange basis
functions li(x) as

ei(ξ) = −
i−1∑

k=1

dlk(ξi), (7)

where dlk(ξ) is the exterior derivative applied to the 0-form lk(ξ). This definition of
the edge polynomial also implies, see [4] and [5],

dli = ei − ei+1. (8)

2.2 Mimetic Discretization in 2D

If we let the 0-form φ(0) ∈ Λ0(M) be expanded as

φ
(0)
h =

N∑

i,j=0

φi,j li (ξ)lj (η), (9)



A Mimetic Spectral Element Method for Free Surface Flows 289

then we can write φ
(0)
h as a matrix-vector product

φ
(0)
h =

[
L⊗ L

]
φ =M(0) · φ, (10)

where Li,j = li(ξj ) and ξj are the Gauss-Lobatto-Legendre points, GLL points.
If we let the 1-form u(1) ∈ Λ1(M) be defined as

u(1) = uξ dξ + uη dη, (11)

we can expand uξ and uη using edge polynomials as,

u
ξ
h =

N∑

i=1

N∑

j=0

u
ξ
i,j ei (ξ)lj (η), (12)

u
η
h =

N∑

i=0

N∑

j=1

u
η
i,j li(ξ)ej (η). (13)

The discrete one-form u(1) can also be written as a matrix-vector product, where u
is evaluated in the GLL points,

u
(1)
h =

[[
L⊗ E

]
0

0
[
E⊗ L

]
]
·
[

uξ

uη

]
=M(1) · u, (14)

where Ei,j = ei(ξj ).
The 2-form P (2) ∈ Λ2(M) is expanded using only edge polynomials,

p
(2)
h =

N∑

i,j=1

pi,j ei(ξ)ej (η)⇒
[
E⊗ E

] · p =M(2) · p. (15)

The Laplace equation can be reformulated using a mixed formulation, see [1], where
the equilibrium equation and the constitutive relationship are separated into two
equations.

∇φ = u, ∇ · u = 0. (16)

Writing (16) using differential geometry for a 3-D geometry we obtain,

dφ(0) = u(1), (17)

dq(2) = 0(3), (18)

q(2) = 0u(1), (19)
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where we have utilized the Hodge star operator. The Hodge star operator is a map,
which maps p-forms onto (n − p)-forms, where n is the dimension of the domain,
Ω . Given a p-form, λ(p), the hodge star maps as follows:

0λ(p)(Ωn) = λ̃(n−p)(Ωn), (20)

where ˜ denotes the change of orientation of the new form. The Hodge star is also
the coupling between the outer oriented domain and the inner oriented dual space,
as seen in Fig. 3.

In 2-D, using differential geometry, equations (16) take the form,

dφ(0) = u(1), 0u(1) = q̃(1), dq̃(1) = 0̃(2). (21)

When the exterior derivative is applied to the balance equation of (21) we obtain,
see [5]

dq̃
(1)
h =

N∑

i,j=1

(q
ξ
i,j − q

ξ
i−1,j + q

η
i,j − q

η
i,j−1)ei(ξ)ej (η), (22)

where we have utilized (8). The equilibrium equation, the first equation in (21), is
equated to a zero valued 2-form. Expanding the last equation in (21) yields,

N∑

i,j=1

fi,j ei(ξ)ej (η) =
N∑

i,j=1

(q
ξ
ij − q

ξ
i−1j + q

η
ij − q

η
ij−1)ei(ξ)ej (η), (23)

where fi,j = 0. The basis can then be cancelled and we can rewrite (23) as,

f = E
(2,1)q, (24)

where E
(2,1) is an incidence matrix, only consisting of 0, 1 and −1. This matrix

relates the fluxes of q to the volume integral of the balance equation, see Fig. 4.
The first step in developing the discrete system is the formulation of the weak

form, where we make use of duality pairing between an arbitrary k-form, α(k), and

Fig. 4 Three-dimensional
representation of surface
fluxes making up the
divergence of a volume
integral
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an arbitrary (n− k)-form, β(n−k). The duality pairing is defines as,

〈
α(k), β̃(n−k)〉

Ωn
=
∫

Ωn

α(k) ∧ β̃(n−k). (25)

The pairing with the (n − k)-form, β(n−k), takes the role of a weight function in
traditional finite element analysis and lives in the dual space and carry the opposite
orientation. The result of duality pairing can also be represented as a matrix-vector
product,

βT · M̃(n−k),T ·W · J ·M(k) · α = βT ·M(k) · α, (26)

where W contains the Gauss weights and J is the Jacobian matrix. M(k) is a mass
matrix of the corresponding discretized k- and (n− k)-form pairing, and ˜( ) denotes
a matrix of opposite orientation.

Using Stokes generalized theorem [3] and applying integration by parts to the
balance equation (the last equation of (21)), we obtain.

∫

Ω

dq̃(1) ∧ α(0) =
∫

Ω

d
(
q̃(1) ∧ α(0)

)
−
∫

Ω

q̃(1) ∧ dα(0) (27)

=
∫

∂Ω

(
q̃(1) ∧ α(0)

)
−
∫

Ω

q̃(1) ∧ dα(0). (28)

Using duality pairing, an inner product projection for the term with the Hodge star
operator, the expansions in (9)–(15), and appropriate boundary conditions we can
set up the matrix system for the discrete Laplace operator as shown in (29).

⎡

⎢⎣
0 0 E

(1,0),T
M̃

(1)

0 M
(1)

M̃
(1)

M
(1)

E
(1,0)

M
(1) 0

⎤

⎥⎦ ·
⎡

⎢⎣
φ

u
q̃

⎤

⎥⎦ =
⎡

⎢⎣
0
0
0

⎤

⎥⎦ . (29)

Using the forward Euler scheme for the temporal term and pairing it with an
arbitrary 0-form, α̃(0), we can rewrite the Bernoulli’s equation as,

〈
(ρ(2) ∧ φ

(0)
n − φ

(0)
n−1

Δt
+ 1

2
ρ(2) ∧

(
i
dφ

(0)
n−1

dφ(0)
n

)
+ p(2) = −ρ(2) ∧ h(0) g)), α̃(0)

〉

Ω

.

(30)

The density is considered a 2-form, which leaves (30) Hodge invariant. The interior
product i is defined in [7]. The discrete version of (30) takes the form,

[
ρ
Δt
M

(2) + ρ
2 M

(2)
M

(1,1)
i M

(2)
]
·
[
φn

P

]
= −ρ g M

(2)h + ρ

Δt
M

(2)φn−1. (31)



292 L. Nielsen and B. Gervang

M
(1,1)
i is derived from the interior product of the two 1-forms in the convective term,

and contains information of φ from the previous time step and consequently has to
be updated at each new time step.

The simulation is initialized by first solving the Laplace equation with the
prescribed boundary conditions. The initial velocity potential φ on the free surface,
is set to φ̃(x, t = 0) = x, and the free surface height is set to η(x, t = 0) = 0. At
the following time steps, the Zakharov free surface equations are solved to obtain
new values of φ̃ as well as the free surface elevation, η.

3 Numerical Results

The method is first applied to a non-temporal problem without a free surface. The
geometry sketched in Fig. 5 contains a cylinder in the middle of a square. On the
horizontal walls of the square and the cylinder wall the no penetration condition is
applied. On the left vertical boundary a fully developed velocity profile is specified
and on the right vertical boundary a constant velocity potential is defined. The
velocity potential φ and streamlines are shown in the middle section of Fig. 5. In
the right part of Fig. 5 the pressure field is shown. Figure 6 shows that we obtain
spectral convergence for both unknowns.

Furthermore, the balance equation ∇ · u = 0 (conservation of mass) is satisfied
both globally and point-wise independent of polynomial order as shown in Fig. 7.

Next we apply the method to a temporal and free surface problem where we have
included a bump on the bottom boundary. The Zakharov free surface equations are
applied on the top horizontal boundary. In Fig. 8 the pressure field and the free
surface are plotted at t = 1,100,200.

Fig. 5 Left: multi-element mesh of the cylinder problem with corresponding boundary conditions.
Middle: solved velocity potential φ in black with corresponding streamlines in red. Right: Solved
pressure field from the Bernoulli equation
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Fig. 6 The two unknowns of the system, the velocity potential, φ, and the pressure field, P , are
shown to carry spectral convergence
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Fig. 7 The mass balance equation of (16) (∇ ·u = 0) is satisfied both globally and locally for any
order of the expanding polynomial

Fig. 8 Time progression of the pressure fields, P , at time steps t = 1, 100 and 200 are shown to
the left. To the right the height of free surface wave η is shown (a scaling factor of 10 is used)
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4 Discussion and Conclusion

Using an isoparametric, multi-element formulation the solution of the discretized
Laplace equation shows spectral convergence. In addition, we observe that mass is
conserved both globally and locally.

In (31), the discretized Bernoulli equation was kept Hodge-invariant, leaving the
equation metric free. This suggests that the fundamental invariant of the equation
is conserved. The Bernoulli equation conserves the total energy of the system.
However, in Fig. 9 it is observed that a small amount of energy is gained and lost in a
periodic manner. It is also observed that the mean energy is constant. It was possible
to time integrate over very long time periods without noticing any degradation of
data and we conclude that energy is conserved over long time periods even though
fluctuations were observed for short time periods. In the future we plan on using
a mimetic time integration scheme, which was used in [6], as well as the mimetic
spatial discretization that was used in the present work.
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Fig. 9 Potential and kinetic energy is summed for the entire system at every time step and plotted
against time
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Spectral/hp Methodology Study
for iLES-SVV on an Ahmed Body

Filipe F. Buscariolo, Spencer J. Sherwin, Gustavo R. S. Assi,
and Julio R. Meneghini

This work focuses on the correlation study between a computational and physical
model of an Ahmed Body with slant angle of 25◦, which generates a complex flow
behaviour over the slant and back, with two vortices being generated from the side
combined with separation on the slant. Physical results are from a wind tunnel test,
performed by Strachan et al. [12] considering moving ground and Reynolds number
of 1.7M, based on the length of the body.

CFD simulations were performed using the code Nektar++, which is an open
source, spectral/hp element high-order solver, which methodology combine both
mesh refinement (h), with higher polynomial order (p) for higher fidelity modelling.
It employs an implicit type turbulence model using a Spectral Vanish Viscosity
(iLES-SVV) model, which works as a filter for high frequencies. Same physical
test conditions and tunnel test section were also considered, over a total time of
4 convective lengths, with same Reynolds number of 1.7 Million from reference
experiments.

Considering the drag coefficient values for fully developed cases on the 5th and
6th polynomial order, the difference observed, compared with experimental results,
was a maximum difference of 16%, however the simulation does not consider the
upper support used in the experimental setup. Comparing the Spectral/hp element
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LES-SVV case from literature, the agreement with the experimental drag coefficient
has been improved, reducing the gap from 45 to 16%. For the lift coefficient the
maximum difference between the simulation results compared to experimental data
is only 3%. There is also a good agreement between the LDA measurements on
the end of the body with the results from the simulation. It is possible to observe
a more intense vortex core on the simulation results, as compared to experimental
data, which might well be explained by the upper support used to fix the Ahmed
body in experimental test, which weakens the vortices.

The methodology shows promising results against the open literature once an
appropriate validation study has been undertaken. Despite the relatively coarse
resolution adopted the results are encouraging. Having identified an appropriate
resolution, we will next consider other slant angles, to see how well these correlate
with the experimental studies.

1 Introduction

Among all automotive bluff bodies in literature, the most studied one is the Ahmed
Body. It was first proposed by Ahmed et al. [2], based on previous work from Morel
[7], which was the first to study the behavior of slanted bluff bodies. The Ahmed
body was designed to have shape similar to road vehicles and generate their main
flow features, such as stagnation and separation points. The main dimensions of the
Ahmed body are highlighted on Fig. 1.

Based on the results found by Ahmed et al. [2] on the variation of the slant
inclination angle, Huminic and Huminic [4] states that three different flow config-
urations are found: from 0 to 12.5◦, the airflow over the angled surface remains
fully attached before separating from the model when it reaches the vertical surface
of the back end. The flow from the angled section and the side walls produces a
pair of counter rotating vortices, which continue downstream; from 12.5 to 30◦,
the flow over the angled section becomes highly complex. Two increased counter-
rotating lateral vortices are shed from the sides of the angled section with increased
size, which affects the flow over the whole back end, causing a three-dimensional
wake. These vortices are also responsible for maintaining attached flow over angled
surface up to an angle of 30◦; from 30◦ and above, the flow is fully separated. There
remains though a weak tendency of the flow to turn around the side edge of the
model, a result of the relative separation positions of the flow over model top and
that over the backlight side edges.

Due to some limitations on the wind tunnel and resources, Ahmed performed
only force measurements on the bluff body during his experiments. In order to
better understand the flow phenomena on an Ahmed Body, Lienhart and Becker [6]
performed a study using Laser Doppler Anemometry (LDA), Hot-Wire Anemom-
etry (HWA) and static pressure measurements in order to investigate the flow and
turbulence structure around the Ahmed Body model for two slant angle conditions:
25 and 35◦. The main scope was to supply a detailed data set acquired under
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Fig. 1 Ahmed Body schematic drawing considering its main dimensions and 3D visualization

well-defined boundary conditions, similar to Ahmed first test, which considered a
Reynolds number of 4.29 Million based on the length and static floor, to be used as
reference data for numerical simulations.

Aiming to reproduce the real highway conditions of a vehicle, Strachan et al.
[12], performed an Ahmed Body wind tunnel test with moving road conditions and
both the aerodynamic forces and flow characteristics by time-averaged LDA were
recorded. The flow conditions were slightly different from the ones used on Ahmed
first test, by reducing the flow velocity to 25 m/s resulting in a Reynolds number of
Re = 1.7 Million based on its length and the supports on the ground were replaced
by a fixing system on the top of the tunnel, due to the rolling road simulation.

The Ahmed Body stands as one of the most used validation cases for CFD codes
employed for automotive applications. Simulations employing a Reynolds Averaged
Navier-Stokes (RANS) methodology are able to predict with good accuracy the
drag coefficient, even for cases with complex flow topology, such as the slant
angle of 25◦, with correlation factor of around 95% compared to experimental
results, however the flow physics does not agree, usually under-estimating the flow
features. Attempts considering more refined methodologies such as Detached Eddy
Simulations (DES) and Large Eddies Simulation (LES) provide better correlation
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with experiments when comparing the flow structures but aerodynamic quantities
values lose accuracy.

A trend that rose to improve the confidence level of CFD simulations was the
high-order or high-fidelity methods, such as the spectral/hp element method [5]. The
spectral/hp elemental method combines, according to Xu et al. [13], the advantages
of the spectral element method, in terms of the properties of accuracy and rapid
convergence, with those of the classical h-version finite element method, that allows
complex geometries to be effectively captured. It also provides an attractive higher-
precision approximation to solve partial differential equations.

One of the software that employs the spectral/hp element methodology is
Nektar++ [9]. Nektar++ is a cross-platform spectral/hp element framework which
aims to make high-order finite element methods accessible to the broader com-
munity. This is achieved by providing a structured hierarchy of C++ components,
encapsulating the complexities of these methods, which can be readily applied to a
range of application areas, as stated by Cantwell et al. [3]. It allows the use of high
complex solution such as implicit LES (iLES) using a Spectral Vanish Viscosity
(SVV) technique to stabilize the solution.

The latest achievements in the high-fidelity turbulence models around an Ahmed
Body with slant angle of 25◦ are summarized in the compilation work of Serre
et al. [11], in which a comparative analysis of recent simulations, conducted in
the framework of a French–German collaboration on LES of Complex Flows at
Reynolds number of 768,000. It compares the results obtained with different eddy-
resolving modelling approaches, with two LES on body-fitted curvilinear grids:
LES with Smagorinsky model and wall function (LES-NWM) and Wall-resolving
LES with dynamic Smagorinsky model (LES-NWR), a stabilized spectral method
known as iLES-SVV, similar to the one used in this present work, which is the
base of the Nektar++ code and a DES-SST approach on an unstructured grid with
element number ranging from 18.5 to 40 Million. Results of the flow field shows
good agreement with results measured by Lienhart and Becker [6] by a gap on the
drag coefficient values of 17% for the best case and 45% for the one using iLES-
SVV.

2 Objectives

The main objective of this work is to evaluate the aerodynamic behaviour in terms
of the drag and lift coefficients, considering an Ahmed Body with slant angle
of 25◦ using a spectral/hp elements method methodology as shown on Fig. 2. To
achieve this, we first present a mesh study, evaluating two different size refinements
referred as h-refinement for each of those, we employ three high-order surface mesh
values to improve curvature representation. As the spectral/hp element method has
also the possibility to improve the solution by increasing the polynomial order
and consequently the number of degrees of freedom, we also evaluated three high
polynomial orders for each mesh case, in a total of eighteen load cases.
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Fig. 2 Representation of the Ahmed Body with slant angle of 25◦

All load cases employ moving ground condition and Reynolds number of 1.7
Million, based on the length of the body. Due to the same conditions considered,
results are compared with experiments performed in the study of Strachan et al.
[12].

3 Spectral/hp iLES-SVV

In this work, Nektar++ is used to run an implicit LES simulation using spectral/hp
method. In this method, the domain is first divided into non-overlapping elements,
offering geometric flexibility and allows for local refinement. Simulations were
performed using the incompressible Navier–Stokes solver employing a velocity
correction scheme, combined with a Continuous Galerkin (CG) projection. More
details are presented by Cantwell et al. [3].

The mathematics behind Nektar++ basically considers the numerical solution of
partial differential equations (PDEs) of on a domain �, which may be geometrically
complex, for some solution u. Practically, � takes the form of a d-dimensional finite
element mesh consisting of elements Ki , embedded in a space of dimension dc, such
that d ≤ dc ≤ 3, with � = uiKi is an empty set or an interface between elements of
dimension dbar < d. The PDE problem is solved then in the weak sense, considering
that u|Ki must be smooth with at least a 1st-order derivative. Therefore is required
that u|Ki is in the Sobolev space W1,2(Ki) equivalent to H1 (Ki), according to
Adams [1]. For a continuous discretisation, we impose C0 continuity along element
interfaces.

We assume the solution can be represented as uδ(x) =
∑

n ûn�n(x), a weighted
sum of N trial functions�n(x) defined on � and the problem becomes that of finding
the coefficients ûn. The approximation uδ does not directly give unique choices for
the coefficients ûn. To achieve this, a restriction is placed on the residual so that its
L2 inner product, with respect to the test functions �n(x), is zero. For a Galerkin
projection it is chosen that the test functions are the same as the trial functions,
that is �n = �n. As outlined previously, to construct the global basis �n it is first
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considered the contributions from each element in the domain. Each Ki is mapped
from a standard reference space K is between [−1, 1] by a parametric mapping χe:
K becomes Ki given by x = χe(ξ), where K is one of the supported region shapes,
and ξ are d-dimensional coordinates representing positions in a reference element,
distinguishing them from x which are d-dimensional coordinates in the Cartesian
coordinate space.

The next step is to construct a local polynomial basis on each reference element
with which to represent solutions. For 3D regions, a tensorial basis may be used,
where the polynomial space is constructed as the tensor-product of one-dimensional
bases on segments, quadrilaterals or hexahedral regions.

Spectral/hp element discretisation generally lead to approximations that have low
dissipation and low dispersion per degree of freedom when compared to lower-
order methods. As stated by Xu et al. [13], in solving advection-diffusion equations
and nonlinear partial differential equations such as advection-dominated flows, at
marginal resolutions, oscillations appear that may render the computation unstable.
Artificial viscosity has been used in may discretisation methods to suppress wiggles
associated with high wavenumbers has been broadly and effectively used in
simulations using the Fourier method. A related concept is the so-called SVV,
which was originally proposed based on a second-order diffusion operator for
spectral Fourier methods. SVV has been explicitly regarded as a turbulent model
of implementing iLES under the assumption that the action of subgrid scales on the
resolved scales is equivalent to strictly dissipative action stated by Sagaut [10], even
though SVV is not explicitly designed as a subgrid-scale model. An example of a
1-D SVV kernel is:

Df =

⎧
⎪⎨

⎪⎩

0, p ≤ Pcut

exp

(
− (p−P 2)

(p−Pcut)2 , p > Pcut
(1)

where P is the total number of modes employed and Pcut is the cutoff polynomial
order. SVV with the kernel function Df can be regarded as a low-pass filter. We
see that the SVV dissipation added to the high mode numbers with respect to the
spectral element discretisation does indeed yield dissipation at the global high wave
number scales of the solution.

For this work, we employed a novel CG-SVV scheme with DGKernel, proposed
by Moura et al. [8] where he dissipation curves of CG of order p are match to those
of DG with order p − 2, eliminating non-smooth dissipation characteristics arising
from CG dissipation when considering high Reynolds number.
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4 Simulation Methodology

We first define the coordinate system as X the streamwise direction, Y the vertical
direction and Z the spamwise direction. The Ahmed Body length of 1.044 m is
defined as 1 AL. The virtual wind tunnel dimensions are 2.74 × 1.66 m for the
test section and total length of the domain of 4 AL, similar to Strachan et al. [12]
study. The Ahmed Body model back in placed on X = 0, inlet position at X = −2
AL and outlet position at X = 2 AL. A schematic setup is shown on Fig. 3.

In terms of boundary conditions, velocity was normalized to 1 in order to match
the Reynolds number previously stated and set as the inlet boundary condition. The
outlet was set as pressure high-order outlet condition and the floor was also set with
the same velocity of the free stream in order to reproduce the moving floor effect.
The top and outer side wall and the Ahmed Body wall are set as no slip condition
and a symmetry condition. Total simulated time is 7 convective lengths AL, which
means that the flow is able to cross the whole domain.

This study evaluates two mesh configuration considering different h-refinements
and referred as Original and Refined meshes and for each of those, three high-
order surface mesh settings: 4th, 5th, and 6th order, generating six different meshes.
All mesh files were generated by NekMesh, which is Nektar++ high-order mesh
generator. In both Original and Refined meshes, cases two refinement zones were
generated, where the first one, defined as the Ahmed Body refinement, ranges from
0.3 AL before the beginning of the geometry and 0.3 AL after the end of the body,
in a total length of 1.6 AL. The second refinement, defined as the Wake Refinement
region, intercepting the first refinement in 0.3 AL before the end of the body, to 1.3
AL after the end of the body, in order to fully capture the flow phenomena in the
separation region, with same total length of 1.6 AL, as illustrated on Fig. 4.

The Original Mesh has total number of elements for half model around 95,000.
For the Refined mesh, the boundary layer setup was the same and the dimensions

Fig. 3 Schematic representation of the boundary condition on the Ahmed Body simulation
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Fig. 4 Plane Z = 0 representation of mesh refinement regions. Ahmed Body Refinement region
highlighted in yellow and Wake Refinement region highlighted in black

Fig. 5 Plane Z =0 mesh refinement comparison between two h-refinement cases. (a) Original
mesh. (b) Refined mesh

were kept the same in terms of sizing. Refined mesh setup, giving a total of 310,00
elements. Details of both meshes are shown in Fig. 5.

Most of the commercial CFD code employ low order methods and the highest
order polynomial interpolation for the solutions usually seem is 3rd. The mesh
plays the major role for complex simulations such as LES, leading to elevate
number of elements to reach a reliable result. To make use of the flexibility of the
spectral/hp element methods, we proposed solutions considering polynomials with
order higher than 3rd within the previous mesh refinement studies as the higher order
polynomials increase the degrees of freedom and resolution of the mesh. For the
Nektar++ implicit LES simulations using the Incompressible Navier–Stokes solver
evaluated three different polynomial expansions, 4th, 5th and 6th orders, referred
here as P4, P5 and P6. In summary, 18 load cases were evaluated using HPC with
432 CPUs for each case.
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5 Results

5.1 Drag Coefficient Comparison Results

The drag coefficient for the 18 cases evaluated, considering 9 from the Original
mesh with 95,000 elements considering fourth, fifth and sixth polynomial order and
the Refined mesh case with 310,000 elements also considering fourth, fifth and sixth
polynomial order expansion, with maximum RMS and compared with experimental
results are shown on Fig. 6.

From Fig. 6 it is possible to observe that for the drag coefficient, P4 polynomial
expansion considering both mesh cases presented mean drag results around 35%
higher than the experimental results. For the P5 cases, considering again both
Original and Refined mesh cases, the error was reduced to 5% however results
change the trend from over-predicted to under-predicted when the mesh is refined
further. The cases considering P6 polynomial expansion presented the same trend
for both mesh cases, highlighting its consistency although the mean error when
compared to experiments increases to 16%.

5.2 Lift Coefficient Comparison Results

Similar to the drag coefficient graph, in Fig. 7 the lift coefficient for the all evaluated
cases is shown, considering Original and Refined meshes and fourth, fifth and
sixth polynomial order expansion. Maximum RMS is also plotted for all cases and
compared with experimental results from Strachan et al. [12].

Fig. 6 Drag coefficient for the 18 evaluated test cases. On the left, average values for Original
mesh, considering fourth, fifth and sixth polynomial expansions (P4, P5 and P6). On the right
average, values for Refined mesh, considering fourth, fifth and sixth polynomial expansions (P4,
P5 and P6)
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Fig. 7 Lift coefficient for the 18 evaluated test cases. On the left, average values for Original mesh,
considering fourth, fifth and sixth polynomial expansions (P4, P5 and P6). On the right average,
values for Refined mesh, considering fourth, fifth and sixth polynomial expansions (P4, P5 and P6)

Analyzing Fig. 7, we observe that the h-refinement from Original mesh to
Refined mesh lead to results closer to experimental values when adopting P4 as
the polynomial expansion basis. For both P5 and P6 polynomial expansions, lift
coefficient results present good agreement with experimental data, with maximum
mean error of 5%.

5.3 Flow Structure Comparison

In terms of the polynomial order expansions for the solution, combined with the
6th order surface mesh, the results present focus on the Refined mesh case, once
they improved the correlation for the P4 polynomial expansion within experimental
results and kept similar trend for P5 and consistent results for P6 in terms of drag
and lift coefficient prediction. An initial comparison in terms of flow structures is
present by the Q-Criterion of 350 coloured by pressure, comparing the Refined mesh
case, considering P4, P5 and P6 polynomial expansions in Fig. 8.

Fig. 8 Iso-Surface of Q-Criterion = 350 colored by pressure on the Ahmed Body with slant angle
of 25◦, considering Refined mesh and 6th order surface mesh for fourth, fifth and sixth polynomial
expansions (P4, P5 and P6)
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Fig. 9 Contour of Lambda 2 on the plane x/L = 0 on the back of the Ahmed Body with slant angle
of 25◦, considering Refined mesh and 6th order surface mesh for fourth, fifth and sixth polynomial
expansions (P4, P5 and P6)

From Fig. 8 it is possible to visualize that P4 is unable to define the vortex on
the side of the slant, explaining also the difference in terms of both drag and lift
coefficients, compared to experimental results. Results for P5 show the side vortex
clearly defined and P6 is also able to capture the lower vortex, detailed on the lower
image, which is not present in the studies considering the Ahmed Body, but they
are important to understand the behaviour with the moving floor. Figure 9 shows a
contour of Lambda 2 to illustrate the lower vortex detail on the plane x/L = 0, on the
back of the Ahmed Body.

We next focus only on the Refined mesh with 6th order surface mesh for P5 and
P6, once they were able to predict both lower and top vortices. Due to nature of
the wind tunnel with moving ground used by Strachan et al. [12], the model had
to be fixed on the top by a steam, which can be removed in the drag coefficient
calculations, however it might change the flow topology over the slant, as stated by
the authors themselves.

Comparing the plane x/L = 0.076 with the measurements of the flow velocity
on x direction U normalized by the free stream velocity of Lienhart and Becker [6]
with static floor without the steam on the upper portion with results of Strachan et
al. [12], it is possible to notice intensity changes in the U normalized velocity and
this is attributed by the last due to the upper support.

As the simulations do not included the upper support, but do include the moving
ground, the expected results are the top portion to be similar to Lienhart and Becker
[6] measurements and the lower part, correlated with measurements of Strachan
et al. [12], which both P5 and P6, proved to have good agreement in terms of
normalized U velocity, shown in Fig. 10.

Similar comparison is presented on Fig. 11 for the vortex intensity on the slant, on
the plane x/L = 0, on the back of the Ahmed Body for vertical velocity V normalized
by the free stream velocity. In this, the simulations close correlate to Lienhart and
Becker [6] study, due to the absence of the steam support but for this case, the higher
polynomial order expansion P6 is able to capture more scales than the P5 for the core
of the main vortex, highlighting the gain of resolution of the high-order simulations.
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Fig. 10 Contour of U velocity normalized by free stream velocity on the plane x/L = 0.076 of the
Ahmed Body with slant angle of 25◦, comparing LDA measurements of Lienhart and Becker [6]
with static floor without the steam (left), results of Strachan et al. [12] with moving floor and steam
support (middle left), Refined mesh and 6th order surface P5 (middle right) and Refined mesh and
6th order surface P6 (right)
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Fig. 11 Contour of V velocity normalized by free stream velocity on the plane x/L = 0 of the
Ahmed Body with slant angle of 25◦, comparing LDA measurements of Lienhart and Becker [6]
with static floor without the steam (left), results of Strachan et al. [12] with moving floor and steam
support (middle left), Refined mesh and 6th order surface P5 (middle right) and Refined mesh and
6th order surface P6 (right)

6 Conclusions

Within the advances in CFD codes, confidence level and computational power,
aerodynamic simulations are applied in almost every automotive company. The
reason is very simple: reduced development cost and time, which is an enormous
advantage in a competitive market.

High-fidelity simulations are becoming a reality for complex industrial cases in
order to improve resolution and results in a reliable response time, such as presented
for the Ahmed Body on this work.

On the meshing definition study, the surface mesh order seems not to influence
the results in terms of aerodynamic quantities, presenting similar trend for same



Spectral/hp Methodology Study for iLES-SVV on an Ahmed Body 309

polynomial order, as the Ahmed Body geometry has curved surfaces only on the
front portion.

Still on the mesh definition, as the h-refinement increases from Original to
Refined mesh, the drag coefficient values for P4 and P6 remains unchanged and P5
values switched from positive to negative. We conclude that consistency is shown
for P4 and P6 cases but P6 presented the most reliable results, with a maximum
deviation of 16%. For the lift coefficient, results for P4 improved as the h-refinement
increased and kept similar values for both P5 and P6, where the best agreement was
found for the case considering Refined mesh with 6th order surface mesh and P6 as
the polynomial expansion.

Flow structure results focus only the Refined 6th order surface mesh, where the
main expected features were captured by P5 and P6 cases. It was confirmed by those
two simulation cases that the lower portion has similar behaviour of the moving
ground test conducted by Strachan et al. [12], however the top portion close correlate
to Lienhart and Becker [6] experiments, as the simulation cases allow the body to
be fixed without the upper support used in the experiment. This fact might also
explain the difference from the simulation results with the literature experiments, as
the simulation allows idealized configurations.

For all simulation cases, half of the body is being simulated and a symmetry
plane is set on the middle portion. From Fig. 12, which shows the normalized U
velocity on a line of coordinate y/L=0.15 on the plane x/L = 0, we observe that
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Fig. 12 Normalized U velocity distribution over a line at coordinate y/L = 0.15 on the plane x/L
= 0 at the back of the Ahmed Body with slant angle of 25◦, comparing LDA measurements of P5
(red), P6 (orange), Lienhart and Becker [6] (dark green) and Strachan et al. [12] (light green)
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simulation has good agreement with experimental results, with a small distortion as
it gets closer to the symmetry plane.
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A High-Order Discontinuous Galerkin
Solver for Multiphase Flows

Juan Manzanero, Carlos Redondo, Gonzalo Rubio, Esteban Ferrer,
Eusebio Valero, Susana Gómez-Álvarez, and Ángel Rivero-Jiménez

1 Introduction

Multiphase flow is not a canonical problem, therefore different models can be found
in the literature. Volume Of Fluid (VOF) model [9] is amongst the simplest. It
defines a single set of momentum equations shared by all phases, whilst the volume
fraction (fraction of a particular infinitesimal control volume which is occupied by
each phase) is tracked throughout the domain following an advection equation.
Phase-field methods [11] conserve the simplicity of VOF whilst increasing the
physical meaning of the evolution equation of the fluids present in the simulation.
The volume fraction is substituted by a phase-field parameter, which identifies each
phase. In this work, the Cahn–Hilliard equation [4] is chosen to model the evolution
of the phase-field parameter.

The introduced model is discretised in space using a high-order discontinuous
Galerkin method. These methods have been gaining popularity for the discretisation
of conservation laws, such as the Navier–Stokes equations [5–7, 13, 16, 22, 26].
Specifically, we use a Discontinuous Galerkin Spectral Element Method (DGSEM)
[2] that allows the generation of provably stable schemes [8]. These schemes provide
enhanced robustness when compared to classical high-order methods [17–20].
As far as the temporal discretisation is concerned, we use an efficient implicit-
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explicit approach that permits maintaining the time step restriction of a typical
one phase Navier–Stokes solver. It should be noticed that similar approaches to
model multiphase flows have been proposed in the past, see for example [29],
where an algorithm to model N immiscible incompressible fluids with high-order
methods is described. However, according to the authors knowledge, this is the first
implementation using the DGSEM.

The rest of the paper is organised as follows: in Sect. 2 the governing equations
of the model are described. In Sect. 3 the numerical techniques to discretise the
described model are introduced. Finally, in Sect. 4 the results of two validation test
cases are shown.

2 Governing Equations

In this work we model multiphase flows with a phase field approach. The flow field
is modelled by means of the incompressible Navier–Stokes equations. The evolution
of each of the fluids is modelled with the Cahn–Hilliard equation, which defines a
phase field variable, φ ∈ [−1, 1], that identifies spatial coordinates occupied by
fluid 1, φ = −1, fluid 2, φ = 1, or an interface φ ∈ (−1, 1). The value of the
thermodynamic properties of the fluids at each spatial coordinate can be computed
as:

ρ(φ) = ρ1

(
1− φ

2

)
+ρ2

(
1+ φ

2

)
, η(φ) = η1

(
1− φ

2

)
+η2

(
1+ φ

2

)
, (1)

where ρi is the density of fluid i whilst ηi is the dynamic viscosity of fluid i. The
complete system is built considering first the momentum equation,

∂
(
ρv

)

∂t
+ ∇ · (ρvv

) = −∇p + 1

Re
∇ ·

(
η
(
∇v+ ∇vT

))
+ 3√

2εReCa
μ∇φ + 1

Fr2
ρeg,

(2)

with velocity v, static pressure p, Reynolds number Re = ρ1u0L
η1

(where uo is a

reference velocity whilst L is a reference length), Capillary number Ca = η1u0
σ

(where σ represents the surface tension), Froude number Fr = u0√
gL

, (where g

is the gravity acceleration) and eg is the gravity direction. Second, an artificial
compressibility method [25] is used to couple the divergence-free condition,

∂p

∂t
+ ρ0

ρ1

1

M2
0

∇ · v = 0, (3)
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where ρ0 = max
(
ρ1, ρ2

)
is a reference density, and M0 is the artificial compress-

ibility Mach number. Third, the Cahn–Hilliard equation for the phase field,

∂φ

∂t
+ ∇ · (φv

) = M∇2μ, μ = −φ + φ3 − ε2∇2φ, (4)

with M the mobility, and ε the interface width, the two free parameters of the
model. In (2) and (4), μ represents the chemical potential. Moreover, this equation
is designed to minimize the free-energy functional [4], F,

F(φ,∇φ) =
∫

�

(
1

4

(
1− φ

)2 (
1+ φ

)2 + 1

2
ε2|∇φ|2

)
dx. (5)

Note that the set of Eqs. (2)–(4) is written in non-dimensional form, where the
thermodynamic variables of fluid 1 are taken as reference values, e.g.,

ρ(φ) =
(

1− φ

2

)
+ ρ2

ρ1

(
1+ φ

2

)
, η(φ) =

(
1− φ

2

)
+ η2

η1

(
1+ φ

2

)
. (6)

The set (2)–(4) can be written as an advection-diffusion system:

∂u

∂t
+∇ · F(u) = ∇ · Fv(u, g)+ S(u, g), (7)

where u = (φ, ρv, p) is the state vector, g = (gφ, gv, gμ) = (∇φ,∇v,∇μ) is the
gradients vector, F(u) and Fv(u, g) are the inviscid and viscous fluxes respectively,
and S(u, g) is a source term,

F(u) =

⎡
⎢⎢⎣

φv
ρvv+ pI3

ρ0
ρ1

1
M2

0
v

⎤
⎥⎥⎦ ,Fv(u, g) =

⎡
⎢⎢⎣

gμ
η
(

gv + gTv
)

0

⎤
⎥⎥⎦ ,

S(u, g) =

⎡

⎢⎢⎢⎣

0
3√

2εReCa
μgφ + 1

Fr2ρeg

0

⎤

⎥⎥⎥⎦ . (8)

3 Numerical Methods

The numerical implementation of (2)–(4) is performed using a high-order discon-
tinuous Galerkin scheme for the spatial discretisation (DGSEM variant) and an
implicit-explicit Euler scheme for the time discretisation.
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3.1 Spatial Discretisation Using a Nodal Discontinuous
Galerkin Scheme (DGSEM)

Discontinuous Galerkin (DG) schemes (see [15]) are constructed by tessellating
the domain in non-overlapping elements, where the solution is approximated using
polynomials of an arbitrary order, N . In this particular implementation, we use a
nodal variant of the DG method, and we restrict ourselves to hexahedral elements.

In each element we approximate the solution using polynomials written in a set of
local spatial coordinates ξ = (ξ, η, ζ ) ∈ [−1, 1]3, which are related to the physical
space by a transfinite mapping,

x = (x, y, z) = X(ξ ) = X
(
ξ, η, ζ

)
. (9)

Using the local coordinates, we write the solution using tensor product Lagrange
polynomials,

u(x)
∣∣
E
≈ U(ξ ) =

N∑

i,j,k=0

Uijk(t)li (ξ)lj (η)lk(ζ ), (10)

where the time-dependent coefficients Uijk(t) are the nodal values of the solution
U , and lj (ξ) are the Lagrange polynomials based on a set of Gauss points {ξj }Nj=0.
To handle curvilinear geometries, we use a mapping X that transforms local and
physical spaces. With this mapping, we can construct covariant ai and contravariant
ai basis, and their associated Jacobian J , and metrics matrix M:

ai = ∂X(ξ)

∂ξi
, ai = ∇ξi = 1

J
aj × ak, J = ai ·

(
aj ∧ ak

)
, M = [Jaξ , Jaη, Jaζ ].

(11)

Following [14], we transform the system of Eqs. (7) to local coordinates,

∂

∂t

⎧
⎪⎨

⎪⎩

Jφ

Jρv
Jp

⎫
⎪⎬

⎪⎭
+∇ξ ·

⎧
⎪⎨

⎪⎩

MT vφ
MT ρvv+MT pI3

MT 1
M0

2 v

⎫
⎪⎬

⎪⎭
= ∇ξ ·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MMT gμ
1
Re

MT

(
η
(

gv + gTv
))

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+J

⎧
⎪⎨

⎪⎩

0
1

Fr2 ρeg + 3√
2ReCaε

μgφ
0

⎫
⎪⎬

⎪⎭
,

(12)

with gradients,

Jgv =M∇ξv, Jgφ =M∇ξφ, Jgμ =M∇ξμ, (13)
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and the chemical potential definition,

Jμ = −Jφ + Jφ3 − ε2∇ξ ·
(
MT gφ

)
. (14)

We obtain the DG scheme replacing the continuous solution by their polynomial
counterpart (10), then multiplying (12), written in compact form (7), by a polyno-
mial test function (with same order N as the solution) ϑ , and we integrate the result
in one element E = [−1, 1]3,

∫

E

Jϑ
∂U

∂t
+
∫

E

ϑ∇ξ · F(U) =
∫

E

ϑ∇ξ · Fv(U,G)+
∫

E

JϑS(U,G). (15)

Next, we integrate by parts the terms containing divergences, which yields
surface integrals. Since the solution is discontinuous at the inter-element faces, we
replace the surface flux by a numerical flux, F0,

∫

E

Jϑ
∂U

∂t
+
∫

∂E

ϑF0 · n̂dS −
∫

E

∇ξϑ · F =
∫

∂E

ϑF0
v · n̂dS

−
∫

E

∇ξϑ · Fv +
∫

E

JϑS(U,G), (16)

where ∂E represents the six surfaces of the element E. For the inviscid numerical
flux F0, we use the exact Riemann solver derived in [1], whilst for the viscous
numerical flux we use the Symmetric Interior Penalty (SIP) method [27], with the
penalty parameter value derived in [24] and recently discussed for the DGSEM
in [21]. In (16), n̂ is the surface outward normal vector in local coordinates. To
obtain the evolution equations for each nodal degree of freedom Uijk , we let
ϑ = li (ξ)lj (η)lk(ζ ), and compute the integrals using the Gauss quadrature points
(and weights {wi}) associated to the interpolation points (which provide an accuracy
of 2N + 1),

J ijk dU
ijk

dt
+F0

x

wi
(ξ, ηj , ζk)li (ξ)

∣∣∣∣
ξ=1

ξ=−1
+ F0

y

wj
(ξi , η, ζk)lj (η)

∣∣∣∣
η=1

η=−1

+ F0
z

wk
(ξi , ηj , ζ )lk(ζ )

∣∣∣∣
ζ=1

ζ=−1

−
N∑

m=0

(
wm

wi
DmiF

mjk
x + wm

wj
DmjF

imk
y + wm

wk
DmkF

ijm
z

)
=

F
0ijk
v,x

wi
(δiN − δi0)+

F
0ijk
v,y

wj
(δjN − δj0)+

F
0ijk
v,z

wk
(δkN − δk0)

−
N∑

m=0

(
wm

wi
DmiF

mjk
v,x + wm

wj
DmjF

imk
v,y +

wm

wk
DmkF

ijm
v,z

)
+ J ijkSijk,

(17)
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where F ijk = F(Uijk) and F
ijk
v = Fv(U

ijk,Gijk), being Gijk the nodal values
of the gradient G. The symbol δik represents the Kronecker delta. The derivation
matrix Dij is defined as Dij = l′j (ξi ). To compute the gradient G, we perform the
weak formulation of (13),

∫

E

J τ ·G =
∫

∂E

U0MT · τdS −
∫

E

U∇ξ ·
(
MT · τ

)
, (18)

where τ is an arbitrary vector test function (from the order N polynomials space).
Since we use the SIP method, we use solution averages to couple inter-element
fluxes, U0 = {{U}}. All the integrals involved in (18) are computed discretely similar
to those in (16), i.e.,

J ijkτdijkG
ijk
d = U0(ξ, ηj , ζk)Ja

ξ
d
(ξ, ηj , ζk)

wi
li (ξ)

∣∣∣∣
ξ=1

ξ=−1

+ U0(ξi , η, ζk)Ja
η
d (ξi , η, ζk)

wj
lj (η)

∣∣∣∣
η=1

η=−1
+ U0(ξi, ηj , ζ )Ja

ζ
d (ξi , ηj , ζ )

wk
lk(ζ )

∣∣∣∣
ζ=1

ζ=−1

−
N∑

m=0

(
wm

wi
Ja

ξ,ijk
d

DmiU
mjk + wm

wj
Ja

η,ijk
d

DmjU
imk + wm

wk
Ja

ζ,ijk
d

DmkU
ijm

)
.

(19)

The gradient nodal values Gijk
d are introduced in the viscous fluxes Fv(U

ijk,Gijk)

of (17) hence completing the discretisation of (16). Note that one needs to compute
gφ before computing μ and its gradient gμ.

3.2 Time Integration Using IMplicit–EXplicit (IMEX)
and Runge–Kutta Schemes

The time integration of (17) is performed with a combination of forward and
backwards Euler and explicit Runge–Kutta schemes. On the one hand, the Navier–
Stokes equations are integrated by means of a third order explicit Runge–Kutta
(RK3) scheme [28]. On the other hand, the Cahn–Hilliard equation is integrated
with a combination of explicit RK3 for the phase field advection, forward Euler for
the chemical free-energy, and backwards Euler for the interfacial energy,

φn+1 − φn

t
+∇ · (vφ)RK3 = ∇2

(
−φn + (

φn
)3 − ε2∇2φn+1

)
. (20)

The reason behind this choice, is that the numerical stiffness of the bi-Laplacian
(∇4φ) operator prevents from using an explicit method, as restricts the time-step t
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to unpractical values. We only treat implicitly the interfacial energy since it yields
a constant Jacobian matrix, represented by J∇2 . In particular, the linear system to
solve is,

[
J∇2 + I

t

]
φn+1 = φn

t
−∇ · (vφ)RK3 +∇2

(
−φn + (

φn
)3
)
. (21)

The Jacobian matrix is computed numerically (see [3]) and a LU factorisation is
performed only at the first time step. In each following iteration, the RHS of (21)
is computed and the linear system is solved by means of forward and backward
substitutions. Both the LU factorisation and the forward and backward substitutions
are performed with the library MKL-PARDISO [23].

4 Validation

The proposed methodology is tested with two test cases. First, the validity of
the discontinuous Galerkin discretisation of the Cahn–Hilliard equation is tested
with a benchmark spinodal decomposition problem [12]. Second, the validity of
the coupled Cahn–Hilliard/Navier–Stokes system is tested with a two dimensional
rising bubble test [10].

4.1 Spinodal Decomposition

This test problem considers an initial mixture of two fluids. These fluids are
immiscible, therefore they tend to separate to minimise their free energy (5). As
stated before, the geometry, initial condition and fluid parameters are taken from
[12]. In particular, the initial condition for this benchmark problem is:

φ(x, y) = −0.05
[
cos (0.105x)cos (0.11y)+ [

cos (0.13x)cos (0.087y)
]2

+ cos (0.025x − 0.15y)cos (0.07x − 0.02y)
]
.

(22)

The physical domain is a “T” shape with a total height of 120 units, a total width
of 100 units, and horizontal and vertical section widths of 20 units (Fig. 1). No-flux
boundary conditions are applied at the boundaries. Following [12] mobility is set
to M = 10, whilst the interface width is set to ε = 3.16. The physical domain is
discretised with an unstructured mesh of 326 elements and a polynomial order of
N = 4. For the time discretization, we use a time step t = 10−3.

Figure 1 shows qualitatively how the different phases separate, whilst Fig. 2
shows quantitatively the evolution of the total free energy with time. In Fig. 2
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Fig. 1 “T” domain for the spinodal decomposition. Initial condition (left figure) and evolution
with time (the right figure is the steady-state solution)

Fig. 2 Evolution of total free energy (5) with time

the results of this work are compared with those obtained in [12], validating the
proposed method.

4.2 Rising Bubble

This test case considers a bubble of light fluid submerged in a heavy fluid, both
subjected to a gravitational field. Following [10] the initial configuration, see Fig. 3,
consists of a bubble of radius r = 0.25 centred at [0.5, 0.5] in a [1× 2] domain. A
no-slip boundary condition is used at the top and the bottom of the domain whilst
a free slip condition is enforced at the vertical walls. Following [10], the Reynolds
number is set to Re = 35 whilst σ and ε are set to 24.5 and 0.03125 respectively
(this gives a Eötvös numberEo = 10) whilst both density and viscosity ratios are set
to ρ1/ρ2 = μ1/μ2 = 10. The gravitational acceleration is g = 0.98. The problem
is discretised with 16× 32 elements with a polynomial order of N = 4, and a time
step t = 4 · 10−6.
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Fig. 3 Initial condition of the rising bubble test problem

Fig. 4 Evolution of the center of mass of the bubble with time

This test case is quantitively compared with the results of [10] in Fig. 4 with
satisfactory results. It should be mentioned that the benchmark results of [10] are
obtained with a sharp-interface model which may explain the small disagreement in
the evolution of the center of mass shown in Fig. 4.

5 Conclusions

A method to model incompressible two phases flows is introduced. The model
solves the incompressible Navier–Stokes equations coupled with the Cahn–Hilliard
equation to track the evolution of the different fluids. The model is discretised in
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space using a discontinuous Galerkin spectral element method (DGSEM) whilst an
efficient implicit-explicit approach is used to advance in time. The validity of the
model is shown with two test cases. A spinodal decomposition benchmark problem
is solved to validate the Cahn–Hilliard solver whilst a rising-bubble test problem is
solved to validate the coupled Cahn–Hilliard–Navier–Stokes system. Both test cases
are solved showing good agreement with the literature, and proving the accuracy and
robustness of the proposed method.
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High-Order Propagation of Jet Noise
on a Tetrahedral Mesh Using Large Eddy
Simulation Sources

M. A. Moratilla-Vega, V. Saini, H. Xia, and G. J. Page

1 Introduction

Due to the rapid expansion of the commercial aviation industry, authorities have
been tightening the legislation for aircraft noise. For instance, the European
Commission has set a 65% reduction goal of overall aircraft noise from the year
2000 to 2050 [1]. The noise generated by the jet exhaust is one of the main
contributors to the overall aircraft noise, especially during take-off [2]. Moreover, in
new generation ultra-high by-pass ratio turbofan engines the increased interaction
between the engine jet and the high-lift devices can potentially affect the noise field
[3]. Thus, our overall aim is to develop and investigate an accurate and efficient
method for the prediction of far-field jet noise in installed jet configurations.

Rapid growth in computing power during the last decades has enabled the use
of scale resolving numerical simulations for jet noise research at a reduced cost
than most experimental campaigns. Conventionally, 2nd-order numerical schemes
combined with surface integral techniques, particularly the Ffowcs Williams-
Hawkings (FW-H) method [4] have been widely adopted for predicting the far-field
noise, due to its simplicity and low cost. However, defining the envelope surface
used in the FW-H method is not always trivial in complex configurations [5], for
example, installed jets on aircraft wings. Also, the results may be overly sensitive
to the size, shape and location of these surfaces. Now, directly resolving the
Navier-Stokes (NS) equations for sufficiently accurate far-field jet noise results is
prohibitively expensive [6]. LES using finite volume 2nd-order accurate schemes
has proven to be reliable and robust for solving jets’ near field, but large numerical
dispersion and dissipation error makes them less suitable for the propagation of the
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sound waves to the far field. High-order methods provide more accurate propagation
due to their reduced numerical error but are insufficiently robust for simulating
complex jet flows. Therefore, we have used a coupled approach in which a finite
volume LES solver is used to obtain the acoustic sources, which are then transferred
to a high-order acoustic solver that propagates noise to the far-field.

The spectral/hp DG method [7] is capable of providing high-order accuracy
and handling mixed mesh elements types such as tetrahedra and hexahedra, thus
providing a potential solution to geometrically complex acoustic problems. The
solver based on this approach is AcousticSolver of the Nektar++ framework [8, 9].
The LES code HYDRA and acoustic code AcousticSolver have been coupled and
validated using hexahedral elements [10, 11]. A similar coupling strategy has been
used previously for jet noise [12] and combustion noise on tetrahedral grids [9].

In this paper, our focus is on two aspects: (1) estimates of mesh design for the
high-order solver using a canonical two-dimensional (2D) case and (2) comparison
of three-dimensional (3D) turbulent isolated jet-noise results on a tetrahedral
grid and a comparable hexahedral grid using the coupling approach. From the
perspective of our near future work, the tetrahedral grid results provide motivation
and parameters for the set-up of the coupled methodology for jet-flap interactions.

2 Numerical Methods and Solvers

In this section, the details of the high-order spectral/hp DG solver employed to solve
the APE equations are provided followed by a brief description of the LES code
that solves the filtered compressible NS equations. Finally, the coupling of the two
is briefly mentioned.

2.1 APE Solver

Equations for Propagation The acoustic perturbation equations (APE) solved here
are the ones proposed by Ewert and Schröder [6] in the APE-4 form. These
equations describe the transport of acoustic fluctuations in a linearized form, where
the source terms can be non-linear, and can be written as:

∂tp
′ + c2∇ ·

(
ρu′ + u

p′

c2

)
= c2qc, (1)

∂tu′ + ∇
(
u · u′)+∇

(
p′

ρ

)
= qm, (2)
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where p′, u are the acoustic pressure and acoustic velocity vector respectively and
c is the speed of sound. The time-averaged quantities are denoted by the over-bar
and acoustic fluctuations are primed. The left-hand side of (1) and (2) represents the
advection of waves in the mean flow. The right-hand side describes different sources
that may be present in a generic aeroacoustic problem.

Finally, the source terms, qc and qm are defined as:

qc = −∇ ·
(
ρ′u′

)′ + ρ

cp

Ds′

Dt
, (3)

qm = − (ω × u)′ + T ′∇s − s′∇T −
⎛

⎝∇
(
u′
)2

2

⎞

⎠
′
+
(∇ · τ

ρ

)′
. (4)

These terms are classified into four categories:

1. the non-linear terms: −∇ · (ρ′u′)′ and −(∇ (
u′
)2

/2)′,
2. the heat/entropy terms: (ρ/cp) · (Ds′/Dt) and T ′∇s − s′∇T ,
3. the viscous term: (∇ · τ/ρ)′ and
4. the vortical term, known as the Lamb vector, L′ = −(ω × u)′.

In this paper, only the Lamb vector L′ is considered as a source term because it is
the dominant contributor for isothermal applications with strong vortical motions
(shear layers and wakes), as demonstrated in [12, 13].

Numerical Solver The solver used for the above APE equations is called Acous-
ticSolver, which is part of the open-source Nektar++ framework [8]. The solver
employs a high-order, spectral/hp element method with a DG formulation [7]. In
short (for details see [9]), the present DG method works as follows:

1. The computational domain is divided into non-overlapping elements.
2. The governing equations are discretised in each element by a weighted sum of

basis functions where the coefficients of the expansion are the unknowns. In case
of tetrahedral elements, the basis functions are modified hierarchical Jacobi basis
[8].

3. The discretised equation is then multiplied by a test function (same as the
basis function) followed by integration over each element in order to obtain the
variational form of the governing equations.

4. The flux terms in the variational equation are responsible for communicating the
information across the elements. The interface fluxes are calculated using the
immediate left- and right-side values with a Riemann solver.

The scheme used here to solve the Riemann problem is a local Lax-Friederichs
scheme as defined in [9]. The temporal discretisation is performed using a 4th-order
Runge-Kutta scheme. A numerical sponge layer [14] is set up using source terms
to dampen out the outgoing acoustic waves smoothly, thus minimising reflections
from the boundaries of the domain.
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2.2 LES Solver

The LES is performed using the in-house code of Rolls-Royce plc., HYDRA [15]
that solves Favre-filtered unsteady compressible Navier-Stokes equations [10]. It
is a density-based, spatially 2nd-order accurate finite volume cell-vertex code used
for propulsion and turbomachinery applications. More details on the set-up of the
spatial scheme used can be found in [10]. For the temporal discretisation, a 2nd-
order, four-stage Runge-Kutta explicit algorithm is employed. The size of the time
step is chosen to keep the Courant number less than unity. The code is capable of
solving arbitrary mesh topologies which is beneficial for complex geometries. The
sub-grid scale model is chosen as σ -model [16] with model constant Cσ = 1.35
[17].

2.3 Coupling of Solvers

The 3D data from LES mesh is transferred and interpolated onto the APE mesh in
real time. The interpolation is necessary because two solvers have different meshes
designed specifically to capture flow and acoustics. The transfer-interpolation
process takes place in parallel. This is achieved using an MPI based coupling
strategy with the open-source library CWIPI [18]. More details on the coupling
mechanism are provided in Lackhove et al. [9] and Moratilla-Vega et al. [10]. Note
that larger time steps can be used for AcousticSolver since it is not restricted to
resolve the small flow structures.

3 Test Cases

Two cases are presented here. First, a canonical noise propagation case due to a
well-defined vortex-pair source run on AcousticSolver alone. A study of numerical
error by changing the mesh and polynomial expansion order (P) is performed. The
second case uses the mesh parameters from the first to propagate noise generated by
an isolated jet in an LES simulation. This case provides validation of the coupling
for a 3D turbulent jet noise case on a fully tetrahedral mesh. The results are then
compared to the ones obtained with the FW-H technique.

3.1 Spinning Vortex Pair

The case is an acoustic wave propagation problem in two dimensions where the
source is mathematically well-defined, as in the original work on APE [6]. The
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case is run with standalone AcousticSolver. The source is in the form of two-
point vortices at a distance of r0 from the origin, rotating with a circulation �. An
analytical solution of the induced acoustic field was found by Müller and Obermeier
[19] as:

p̃′ = ρ∞�4

64π3r4
0c

2∞
H

(2)
2 (kr), (5)

where, H
(2)
2 is the Hankel function of 2nd-order and second kind, the rotation

period is defined as T = 8π2r2
0/�; the angular velocity as ω = �/4πr2

0 and
the Mach number as Mr = �/4πr0c∞. The real part of Eq. (5) gives the pressure
fluctuations. Ewert and Schröder [6] found the source-term based on the Lamb
vector that represents the acoustic field for this case as:

qm = −
�2er (t)

8π2σ 2r0

2∑

i=1

(−1)i exp

(
−| r + (−1)ir0(5) |2

2σ 2

)
, σ ≈ r0, (6)

where, r = (x, y)T , r0 = r0er , er = (cos θ, sin θ)T and θ = ωt .
The computational domain considered is circular and extends to 250r0. The

source parameters are set as in [6] i.e. �/(c∞r0) = 1.6 and Mr = 0.1273.
Simulations are run until the pressure fluctuations reach r = 200r0 in order to
minimise the boundary effects. All the elemental meshes consist of triangles and a
modified hierarchical Jacobi polynomial basis [8].

First, a reference simulation with polynomial order 4 (P4) is run on a fine
uniform mesh. The resulting acoustic pressure field is plotted along a diagonal
line in Fig. 1a. The result from this simulation matches its analytical counterpart
well. Further comparisons are made with respect to this well-resolved P4 numerical
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140

Fig. 1 (a) Pressure field along x = y line, (b) solution points, and contours of the source term in
the source region and the pressure field in the propagation region
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Table 1 Details of the test cases run

Simulation Poly. order Nr ×Nθ ppw at r
r0
= 150 CPU cost

P4 (reference) 4 260 × 152 90 6.53

P1 1× coarse 1 64 × 76 5.20 1.00

P2 2× coarse 2 32 × 76 5.15 0.82

P4 4× coarse 4 15 × 76 5.00 0.68

Nr is the elements in the radial direction
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Fig. 2 Acoustic pressure and relative error comparison of the test cases. (a) Pressure along x=y
line. (b) Relative error (as moving average)

result, henceforth called as “P4 reference”. For the test cases, elemental meshes are
coarsened radially and the polynomial order is elevated in the propagation region,
such that, the solution points-per-wavelength (referred as “ppw”) distribution is
similar in the radial direction. The radial growth rate is kept∼1.023 with geometric
distribution in all the cases. In the source region, the mesh is kept the same with P1
expansion for all cases. This allows having a smooth transition of solution points
distribution when crossing from one region to the other. A sample P2 mesh and
contours are shown in Fig. 1b. Table 1 summarises the test runs.

Figure 2a compares the pressure fields in different test cases with the P4
reference. As expected, the P1 simulation shows a considerable reduction in the
amplitude. P2 and P4 preserve this quantity more accurately. For simplification,
we unify the dissipation and dispersion error by calculating the overall relative
error as a moving average (M.A.) over bins of ∼30r0. This is plotted in Fig. 2b.
For P1 and P2 simulations, a 2% error limit is reached around 50r0 (ppw∼ 9) and
85r0 respectively (ppw∼ 6.4). P4 simulations remain below this limit under the
present conditions (note ppw∼ 5 at 150r0). The values of ppw for different P agree
with those suggested in [20] and provide an estimate for mesh design in different
polynomial order setting.

Note that for the given ppw, mesh expansion rate and Riemann solver, we did
not observe reflections of the acoustic signals on the inter-element boundaries. A
caveat of the present study is that we calculate total numerical error here for brevity,
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however dissipation and dispersion error could be studied separately as done in [20]
on a one-dimensional advection study.

3.2 3D Turbulent Isolated Jet Noise

As a step forward towards noise prediction of installed jets, an isolated jet is
simulated using a tetrahedral mesh for AcousticSolver to verify the capabilities of
the present methodology for complex 3D cases. Note that the coupling is already
validated on a cylinder in cross flow and a cylinder-airfoil interaction case in [11].

Jet Flow The LES performed is described here briefly since the same is detailed
in [10]. An isothermal turbulent jet issuing from a circular cross-section nozzle at
Mach 0.9 and Reynolds number Re = 10,000 (based on jet bulk velocity Uj and
jet diameter Dj ) is considered. Following Shur et al. [21], the present LES domain
is cylindrical in shape and extends as x/Dj = [−5, 100] and r/Dj = [0, 50].
The mesh has 190 × 75 × 49 nodes in the axial, radial and azimuthal directions
respectively. It is refined in the shear layer development area and coarsened towards
the outer boundaries. Figure 3a shows a central cross-section of the LES mesh. The
inlet boundary condition is a total pressure profile.

Jet Acoustics The acoustics domain is cubical to facilitate control on mesh growth.
It extends as [−5, 40]Dj in streamwise direction and [−25, 25]Dj in transverse
directions. Noise propagation on two different grids is compared: fully hexahedral
(“hexa”) and fully tetrahedral (“tetra”). The former mesh consists of 107× 69× 69
elements in the streamwise and transverse directions respectively [10]. The tetra
grid is generated to give a similar distribution as the hexa mesh in the vicinity of the

(a) (b)

Fig. 3 Cross-section view through the centre of the jet nozzle. (a) LES mesh elements. (b)
AcousticSolver meshes
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jet, providing 300,000 elements in total. Figure 3b shows the two meshes where it
is seen that the nominal element size in the tetra mesh is slightly larger away from
the jet nozzle. Results on the hexa grid (P4) are available from [10] and calculations
are performed on the tetra grid in this study. The expansion type utilised is a P4
modified Jacobi basis [8]. A numerical sponge layer [14] of thickness 3Dj is applied
at the outer boundaries to avoid reflections of the outgoing waves. A factor of 3 in
time step size is used as compared to the compressible LES. In line with Sect. 3.1
and [20], a value of ppw∼ 5 is chosen for accurately resolving frequencies up to a
Strouhal number St = 0.9.

It is already demonstrated in [10] that the LES flow quantities are in acceptable
agreement with the high-order LES study of Shur et al. [21]. The noise propagation
is calculated using the FW-H method [4] in addition to the present coupled approach.
The nominal cut-off St for the integral surface defined is ∼0.3 based on the 22 ppw
criterion [6]. Figure 4 shows a visual comparison between the acoustic pressure
field computed by LES alone and coupled LES-APE (on two meshes). Figure 4a,
b qualitatively show that the coupled LES-APE has retained more acoustic content
(especially at higher frequencies) due to lower numerical error. This difference is
more pronounced in the direction perpendicular to the jet centre-line. Qualitatively
comparable results are obtained on the tetra mesh as depicted in Fig. 4c.

Figure 5 shows a quantitative comparison in terms of power-spectral-density
(PSD) at two observer locations at a distance of 120Dj . The PSD for FW-H is
calculated over the surface indicated by the dashed line in Fig. 4a (details in [10]).
Comparison is done with the LES of Shur et al. [21] and the experiment of Tanna
[22] (Re = 106, Mach = 0.9). As previously observed in Fig. 4, the difference
between FW-H and the present coupled approach is significant at higher frequencies.
For the 30◦ location, the tetra mesh results match the hexa results well. At 90◦

(a) (b) (c)

Fig. 4 Acoustic pressure field at the same time instant (in grayscale [−30, 30] Pa). (a) LES. (b)
LES-APE (hexa). (c) LES-APE (tetra)
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(a) (b)

Fig. 5 PSD at 120Dj at two observer locations with respect to the jet centre-line. (a) 30◦. (b) 90◦

location, there is an improvement of cut-off St from 0.3 to 0.8. A small discrepancy
is seen at 90◦ for St > 0.8 (close to the cut-off St = 0.9). This may be improved by
using a finer mesh in the far-field. Overall, the APE results are an improvement over
the present FW-H prediction in the high frequency domain. Moreover, the results
from the tetra mesh are comparable to ones from the hexa mesh. This implies that
the present methodology using tetra grids can be extended to more complex cases
(such as installed jets).

4 Conclusions

A spectral/hp code AcousticSolver (under Nektar++ framework) has been
employed for acoustic waves propagation. The favourable properties of this solver
are high-order accuracy and capability to handle unstructured mesh elements. A
study on a canonical test case with an analytical solution provided estimates for
designing the mesh for the jet application. For polynomial order expansion P4, 5
solution points-per-wavelength is found to provide a low overall error. This value
is close to the one reported in a related study [20]. These estimates are used to
design a tetrahedral mesh for prediction of noise from an isolated jet (Re = 104,
Mach = 0.9). The noise sources are calculated from a 2nd-order accurate finite
volume LES solver and interpolated onto AcousticSolver mesh on-the-fly for
noise propagation. The noise results thus obtained offer an improvement over the
traditional FW-H method due to high-order accuracy. The power-spectral-density
(PSD) results of the noise signal at two different locations relative to the jet nozzle
show that the PSDs obtained on the tetrahedral mesh agree with the ones obtained
on a slightly finer hexahedral mesh. Further improvements may be achieved by
refining the former mesh in the radial direction. These results are encouraging for
noise-prediction of more complex industrially relevant geometries such as installed
jets.
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Dynamical Degree Adaptivity
for DG-LES Models

M. Tugnoli, A. Abbà, and L. Bonaventura

1 Introduction

Discontinuous Galerkin spatial discretizations of compressible flows allow to
perform local degree adaptation (shortly, p-adaptation) in a very straightforward
way and almost without computational overhead, as shown e.g. in [6]. Dynamical
adaptation was also applied successfully to inviscid geophysical flows in [11, 12].
All the previous works relied however on a refinement criterion which essentially
estimates the L2 norm approximation error. In [10], we have argued that such a
criterion may not be optimal for LES and we have proposed a different, physically
based criterion that was shown to be more effective in a number of numerical
experiments. The goal of this work, which summarizes some of the results presented
in [9], is to extend the above approach to dynamical adaptation and to test the new
criterion also in a dynamically adaptive framework.

2 The DG-LES Approach and Its Numerical Implementation

The DG-LES model for compressible flows employed in this work, based on
a Local Discontinuous Galerkin (LDG) discretization of the viscous terms [3],
is fully described in [1], to which we refer for all the details on the model
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equations and numerical discretization approach. Here, only a short description
of the discretization elements necessary to introduce dynamical adaptivity will
be reported. On the computational domain � ⊂ R

3 a tessellation Th is defined,
composed of non overlapping simplicial elements. A discontinuous finite element
space Vh is defined as

Vh =
{
vh ∈ L2(�) : vh|K ∈ P

qK (K), ∀K ∈ Th

}
, (1)

where P
qK (K) denotes the space of polynomial functions of total degree qK . The

degree can vary arbitrarily from element to element, and the definition of a suitable
way to assign such polynomial degree will be discussed in the following. The
numerical approximation of the generic variable a can be expressed as

ah|K =
nφ(K)∑

l=0

a(l)φK
l , (2)

where φK
l are the basis functions on element K, a(l) are the modal coefficients of

the basis functions and nφ(K)+ 1 is the number of basis functions required to span
the polynomial space P

qK (K) of degree qK , defined in R
3 as:

nφ(K) = 1

6
(qK + 1)(qK + 2)(qK + 3)− 1 (3)

It is worth noting that the expression in (2) can be rewritten, thanks to the
hierarchical nature of the basis, as

ah|K =
qK∑

p=0

∑

l∈dp
a(l)φK

l , (4)

where d0 = {0} and dp =
{
l ∈ 1 . . . nφ(K) | φl ∈ P

p(K)\Pp−1(K)
}

is the set

of indices of the basis functions of degree p. Obtaining a more or less accurate
approximation can be done through increasing or decreasing the limit qK of the
sum over p. It is also worth noticing that the basis normalization implies that the
first coefficient of the polynomial expansion a(0) coincides with the mean value of
ah|K over K.

In the present DG-LES approach, as discussed extensively in [1], the LES
filtering operators are built directly into the DG discretization, in a spirit similar
to the VMS approach [4]. Considering +V : L2(�)→ V the L2 projector over the
subspace V ⊂ L2(�), defined by

∫

�

+Vu v dx =
∫

�

u v dx, ∀u, v ∈ V.
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it is possible to define the LES filtering · as the projection over the finite dimensional
solution subspace Vh in the following way:

a = +Vha. (5)

The application of the main LES filtering is purely formal, since it coincides with
the discretization of the equations. In this way, simply discretizing the equations
leads to solving them for the filtered quantities.

Another parameter to be defined is the filter characteristic dimension, ,
employed in the definition of all the eddy-viscosity based subgrid model. The
definition of the filter size is constant over each element, since the projection is
performed elementwise. While more refined definitions can be employed, see e.g.
[2], the simple definition

(K) = 3

√
V ol(K)

nφ(K)+ 1
(6)

was employed with success. For the time discretization, the five stages, fourth order
Strong Stability Preserving Runge-Kutta method proposed in [8] is employed. The
numerical implementation of the previously sketched approach is built in the solver
dg-comp using the finite elements toolkit FEMilaro [7].

A first attempt to introduce static p-adaptivity in a DG-LES framework has been
presented in [10]. In order to overcome the limitations of classical error estimations
in LES, a novel indicator based on the classical structure function

Dij =
〈[
ui(x + r, t)− ui(x, t)

] [
uj (x + r, t)− uj (x, t)

]〉
(7)

was proposed. Large values of the structure function calculated inside the element
denote a poorly correlated velocity field and the need of higher resolution, while
a low structure function value denotes a highly correlated velocity field, which is
an indication of a well resolved turbulent region or laminar conditions and of the
possibility to employ a lower resolution. However, most of the subgrid models
(and in particular the Smagorinsky model) perform adequately in a regime of
homogeneous isotropic turbulence, if the filter cut-off length is inside the inertial
range. Therefore, in such conditions excessive refinement is not necessary and one
can let the subgrid scale model simulate the turbulent dissipation. For this reason, the
contribution due to homogeneous isotropic turbulence is removed from the structure
function (7). This contribution, as discussed in detail in [10], can be written as

Diso
ij (r, t) = DNN(r, t)δij +

(
DLL(r, t)−DNN(r, t)

) rirj
r2 (8)
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where r = ‖r‖ and DLL,DNN are the longitudinal and transverse structure
functions, respectively. Once r is known, onlyDLL andDNN need to be determined.
The procedure to compute the error indicator can then be described as follows:

1. choose a pair of points defining x and r in K

2. compute the structure function Dij (K) based on x, r and the simulated velocity
field

3. compute DNN and DLL by a least square fit of (8) to the structure function values
within the element

4. define the degree adaptation indicator as:

IndSF (K) = √
Q(K) =

√∑

ij

[
Dij (K)−Dij (K)iso

]2
. (9)

The static adaptivity procedure presented in [10] is able to produce accurate
results with a significant reduction in computational cost. For the simulation of
transient phenomena, however, a dynamic adaptivity approach must be applied. The
goal of this work, which summarizes results presented in [9], is to extend the above
approach to dynamical adaptation, which was successfully employed in the inviscid
case in [11, 12].

In those papers, in which special time discretizations approaches were employed
that allow the use of very long time steps, the adaptation process was performed at
each time step. In the dynamically adaptive simulations presented here, instead,
which are carried out with a relatively small time step, the structure function
indicator IndSF (K) is computed every ni(K) time steps and the average of si (K)

subsequent values of this quantity is computed. Then, every ni(K) × si (K) time
steps, based on the resulting indicator value in each element, either the polynomial
degree is left unchanged or it is updated along with the solution representation.
Since the solution is expressed in terms of a hierarchical basis (4), when lowering
the polynomial degree, the contribution bound to the removed modes is simply
discarded, while when raising the polynomial degree the contribution of the newly
added mode is left to zero, to be populated when the integrals over the element and
faces couple the old modes with the newly introduced ones.

Notice that, in the present implementation, no dynamic load balancing has been
implemented for parallel runs. This means that, during the parallel execution,
the dynamic change of number of degrees of freedom could potentially lead to
unbalances between the load of different processors. At the moment the balancing is
generally executed using a static polynomial distribution. While avoiding excessive
unbalancing, this is definitely not the optimal approach and more effective load
balancing techniques will have to be investigated in the future.
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3 Dynamical Adaptivity Experiments

The proposed dynamic adaptation criterion has been tested in the simulation of a
isolated vortex superimposed on a uniform horizontal flow [5]. This simple test
has been chosen for the preliminary study reported here, in anticipation the more
complex tests already discussed in [9], in which the same isolated vortex impinges
on an obstacle. The DG-LES approach described in [1] was applied, as in [10],
with a standard Smagorinsky model for the subgrid stresses. A coarser and a finer
mesh have been employed, both based on fully unstructured tetrahedra of constant
characteristic length equal to lh = 1 and lh = 0.5, respectively. The indicator (9)
is computed every ni(K) = 2 time steps and si (K) = 10 subsequent values
are averaged, in order to adapt the resolution every 20 time steps. The sensitivity
analysis of the results with respect to these parameters has not yet been carried
out and will be the focus of future study. As in [10], two threshold values ε1, ε2
are used to determine p-refinement and p-derefinement. More specifically. the cells
with indicator values smaller than ε1 are assigned polynomial degree 2, those with
indicator values larger than ε2 are assigned polynomial degree 4, while the others are
polynomial degree 3. The threshold values employed are given by ε1 = 1 × 10−4,

ε2 = 1 × 10−2. Following [10], these values were chosen so as to achieve on
average a total number of degrees of freedom slightly smaller than that required
by a uniform degree simulation with p = 3. The dynamic adaptation procedure
is able to effectively increase the polynomial degree around the vortex and follow
it as it is advected downstream, leaving all the elements with no vortex activity at
the lowest resolution. A map of the polynomial degrees in the domain during the
advection of the vortex is shown in Fig. 1.

The profiles of velocity magnitude recorded during time, along the path of
the vortex, at different distances from the vortex starting point, employing the
coarsest mesh, are presented in Fig. 2. The simulations obtained at different uniform
polynomial orders are compared with the adaptive results. It can be observed that,
even at the highest uniform resolution of degree 4 the velocity profile is distorted
during the advection, due to the very limited grid resolution. However, the vortex
does not diffuse and dissipate excessively, as opposed to the low resolution uniform

Fig. 1 Polynomial degree values following the advected vortices on the (a) coarse and (b) fine
mesh; green color corresponds to polynomial degree 3, red color corresponds to polynomial
degree 4
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Fig. 2 Profiles of velocity magnitude recorded during time in the vortex path centreline at different
distances from vortex starting point, comparison of uniform degree simulations and dynamic
adaptive one on the coarse mesh

degree 2 simulation in which the vortex is quickly dissipated. The behaviour of the
adaptive simulation is generally mid way between the uniform degree 4 and the
uniform degree 3 results.

The comparison with the uniform high degree simulations can be more easily
observed in Fig. 3, which show the difference of the velocity magnitude profiles with
respect to the uniform degree 4 results, still for the coarse mesh case. In the locations
nearer to the starting position of the vortex the adaptive simulation appears close to
the degree 4 solution when the first part of the vortex is passing, while a slight
difference appears in the second part of the vortex, which is however always within
the error of the uniform degree 3 simulation. In the locations farther from the initial
starting point of the vortex, which sense the vortex passage after a longer advection
time, the adapted simulation is always very close to the uniform degree 4 solution.
It has to be noted that the average number of degrees of freedom of the adaptive
simulation is 41,488, which remain almost constant throughout the simulation. This
is 10.8% more than the 37,430 degrees of freedom needed for the uniform degree
2 solution, 44.6% less than the 74,860 degrees of freedom of the uniform degree 3
resolution, which is always outperformed by the adaptive one, and 68.3% less than
the uniform degree 4 simulation.

To correctly assess the effects of adaptivity in the case of the refined mesh,
we study the difference of the various results with respect to the uniform degree
4 one, presented in Fig. 4. The differences are generally very small, even for the
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Fig. 3 Difference of velocity magnitude with respect to the most refined simulation at uniform
degree 4, recorded during time in the vortex path centreline at different distances from vortex
starting point, on coarse mesh
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Fig. 4 Difference of velocity magnitude with respect to the most refined simulation at uniform
degree 4, recorded during time in the vortex path centreline at different distances from vortex
starting point, on fine mesh
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lowest resolution, however it is possible to note how the adaptive results are always
comparable to the uniform degree 3 results, and in many points better. Nonetheless,
the improvement created by the adaptivity is more limited than in the coarse case,
mainly due to the fact that the mesh by itself sufficient to resolve the vortex. In
this case the average number of degrees of freedom of the adaptive case is 170,470,
which is 5.7% more than the 161,320 degrees of freedom of the uniform degree 2
case, 47.2% less than the uniform degree 3 case and 70.0% less than the uniform
degree 4 case. Also the difference in vorticity profiles between the simulation at
uniform degree 4 and the lower resolution simulations are presented in Fig. 5 for
the coarse resolution and in Fig. 6 for the finer resolution. By comparing the results
at the two different resolution is possible to note also for the vorticity that, at the
finer resolution, the large scale phenomenon is correctly represented by almost
all polynomial degrees, with a minimal vorticity dissipation, while at the coarser
resolution only the higher polynomial degree, as well as the adaptive simulation,
avoid an excessive dissipation of vorticity.

At the coarser resolution, the difference of the adaptive simulations with respect
to the uniform degree 4 ones is smaller than the differences between the other
uniform degree simulations (Fig. 5), showing that with the adaptation is also
possible to obtain a better resolution of the vorticity profiles. The same is true also
at the finer resolution (Fig. 5). In the dynamically adaptive simulations spurious
acoustic waves seem to be produced by the dynamical adaptation process, see

Fig. 5 Difference of vorticity magnitude with respect to the most refined simulation at uniform
degree 4, recorded during time in the vortex path centreline at different distances from vortex
starting point, on coarse mesh
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Fig. 6 Difference of vorticity with respect to the most refined simulation at uniform degree 4,
recorded during time in the vortex path centreline at different distances from vortex starting point,
on fine mesh

Fig. 7 Pressure time derivative in the adaptive simulation of vortex advection on (a) coarse mesh,
(b) finer mesh, at time T = 4; in both plots, the represented quantity takes values in the interval
[−0.1, 0.1]

Fig. 7. These spurious disturbances were not observed in the dynamically adaptive
tests presented in [11, 12], which employed an implicit time discretization, thus
strongly damping these high frequency solution components. However, as it can
be seen inspecting the time series of the pressure values (not reported here due
to the limited space available), these disturbances decrease rapidly in amplitude
on the finer mesh and do not seem to propagate through the domain but rather
follow the advected vortex. This spurious feature warrants further investigation of
the dynamical adaptation approach if a correct approximation of acoustic waves is
desired.
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4 Conclusions

The novel degree adaptation criterion for LES simulations in adaptive DG frame-
works proposed in [10] and tested so far only in statically adaptive simulations has
been also employed in dynamically adaptive simulations. Numerical results in the
benchmark case of the advection of an isolated vortex have been presented. These
results are meant to be a preliminary for the study of more complex configurations in
which the same isolated vortex impinges on an obstacle. The presented results show
that the proposed criterion is also effective in the dynamical case. With a coarse
basic mesh resolution the effects of p-adaptivity are significant, leading to results
close to the ones obtained with the maximum resolution allowed to the polynomial
base, while when the mesh resolution is already suitable to represent the vortex even
with the lowest polynomial degrees the adaptivity leads anyway to accurate results,
but with an even higher reduction of the number of degrees of freedom with respect
to the non-adaptive solutions. In a subsequent work, the results obtained in [9] for
the case of the isolated vortex impinging on an obstacle will be presented, along
with other application to fully three-dimensional turbulent flows.
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A Novel Eighth-Order Diffusive Scheme
for Unstructured Polyhedral Grids Using
the Weighted Least-Squares Method

Duarte M. S. Albuquerque, Artur G. R. Vasconcelos, and Jose C. F. Pereira

1 Introduction

The numerical solution of transport phenomena in complex geometrical domains
is a subject of continuous development regarding three characteristics: accuracy,
robustness and efficiency. The geometrical complexity can be handled with different
grid topologies and the understanding of their issues is relevant for industrial
applications. High-order computation is a demanding issue, motivated by a potential
reduction of computational cost for complex computational fluid dynamics (CFD)
problems.

High-order accurate methods for unstructured grids have historically been
focused on hyperbolic equations, see e.g. Lê et al. [1]. Barth and Frederickson [2]
developed a high-order Finite Volume Methods (FVM) for the resolution of the
Euler equations, using a quadratic polynomial. The coupling of Euler system with
viscous terms, which requires diffusive schemes was achieved by Ollivier-Gooch et
al. [3].

In the last years, the development of high-order methods was applied for the
resolution of parabolic and elliptic problems in unstructured grids, see e.g. Boularas
et al. [4]. The range of possible applications varies from Poisson problems, see
Batty [5], heat transfer problems, see e.g. Chantasiriwan [6], diffusion equations
with variable coefficients, see Zhai [7], or discontinuous coefficients, see e.g. Clain
et al. [8].

Several polynomial reconstruction techniques applied to FVM can be high-
lighted: the fourth-order methods of Ollivier-Gooch et al. [9], Cueto-Felgueroso
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et al. [10], and Nogueira et al. [11], also sixth-order results have been reported by
Clain et al. [12]. The objective of this work is to extend the weighted least-squares
(WLS) method to very high-order schemes and polyhedral unstructured grids.

In terms of other applications with the weighted least-squares technique. Magal-
haes et al. [13] and Albuquerque et al. [14] have developed, respectively, relative and
absolute error estimators for second-order finite volume schemes with unstructured
grids. Martins et al. [15, 16] has created a third-order interpolation method with
divergence free constraint for immersed boundary applications, respectively, for
Cartesian and unstructured polyhedral grids.

The following manuscript is divided in four sections: in Sect. 2 the implemented
method for two dimensions is briefly described, in Sect. 3 the verification of
the implemented schemes, with Cartesian and perturbed grids, is carried out.
Section 4 shows the results for a case with irregular polyhedral and triangular grids
and proposes a novel method to treat the Neumann boundary conditions, Sect. 5
concludes the manuscript with a summary of the principal achievements of this
work.

2 Elliptical Operator for Unstructured Grids with the Least
Squares Technique

In this work, the Poisson equation will be solved, which is defined by:

∇ · ∇φ = ϕφ, (1)

where φ is the transported variable and ϕφ is the source term that is required when
using manufactured analytical solutions and it is equal to its own Laplacian. After
applying the classic Finite Volume method in a Poisson equation the following
equation is obtained:

∑

f∈F(P )

∑

g∈G(f )
∇φgwGg · Sf =

∫

CV

ϕφdV, (2)

where F (P ) is the set of faces of cell P , G
(
f
)

is the set of Gauss points of the face
f , Sf is the face normal vector and wG is the weight of Gauss-Legendre Quadrature.
The important part of this method is how the calculation of the face gradient ∇φg is
carried out at each Gauss point. This will be explained in the next subsection.

2.1 Polynomial Reconstructions

To obtain the gradients values at the integration points, a reconstruction of the
unknown primitive variable is performed at the face centroid, using a polynomial
expansion.
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Table 1 Number of terms of the Taylor expansion required for a pth order polynomial at two
dimensional (2D) cases

pth Order polynomial 1 3 5 7

Number of terms 3 10 21 36

The number of terms of the polynomial has to take into account the required
order of the scheme and it has the following form:

φR
f

(
x, y

) = C1 + C2
(
x − xf

)+ C3
(
y − yf

)+
+C4

(
x − xf

)2 + C5
(
x − xf

) (
y − yf

)+ C6
(
y − yf

)2 + · · · .
(3)

Expression (3) can be written in a more compact form, a vectorial one, as:

φR
f (x) = df (x) cf . (4)

where the subscript f refers that the reconstruction is made at the face f and

df (x) =
[
1,

(
x − xf

)
,
(
y − yf

)
,
(
x − xf

)2
,
(
x − xf

) (
y − yf

)
,
(
y − yf

)2
,

· · · ], xf = (
xf , yf

)
is the face centroid coordinates vector, x = (

x, y
)

is the coordinates vector of a point used for the reconstruction and cf =[
C1, C2, C3, C4, C5, C6, · · ·

]T are the reconstruction constants.
Table 1 lists the number of terms of the expansion for each polynomial used in

this work.
The order of accuracy of the numerical scheme is p + 1, consequently the linear

reconstruction will be second order accurate, the cubic reconstruction will be fourth
order accurate, the fifth polynomial will have sixth order accurate and finally the
seventh polynomial will be eighth order accurate. The numerical schemes will be
called of FLS

(
p + 1

)
according to the global order of the implemented method.

For each order a minimum number of Gauss points are required to maintain the
respective Quadrature order.

2.2 General Approach

The Weighted Least Squares (WLS) method is a technique used to solve overdeter-
mined problems, where there are more independent equations than unknowns.

Equation (4) results in a system of linear equations, which the form as:

Df cf = φs, (5)
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Fig. 1 Examples of different vertex neighbours order from the red face

where Df is a combination of df (x) for every point of the reconstruction resulting
in a matrix with ns × ncoef s entries. The cf is a column vector with ncoef s entries,
φs is a column vector with ns entries, ncoef s is the number of constants of the
pth polynomials and ns the size of the computational stencil, which is the set of
the computational values and points used in the reconstruction and is made of cell
neighbours of the face. Since ns > ncoef s , the problem is overdetermined and so the
WLS technique is used in order to minimize the weighted residual of the problem.

To solve this problem, specific stencils must be used for each scheme order. This
is done by using vertex neighbours according to the experience of the Authors in
a previous work [14]. Each successive order scheme requires an higher stencil to
respect the ns > ncoef s condition. Figure 1 shows examples of these stencils for a
regular polyhedral and triangular grid. Basically each successive vertex neighbours
(from 1 to 4) is used for a scheme with an even order accuracy. For example the
second order scheme only needs a first order of vertex neighbours from the face
marked in red.

Other details used in the global matrix construction Aij are described in the
work of Vasconcelos et al. [17]. Each line of the global matrix Aij corresponds
to the diffusive discretization of the cell i and has to consider the diffusive flux
integral for each face of the cell. This flux integral is computed from the polynomial
reconstruction centered in the respective face and which was described previously.
Finally the high-order diffusive fluxes can be written in the following matrix form:

Aij φj =
∑

f∈F(i)

⎛

⎜⎝
∑

g∈G(f )
wGgtfj

(
xg
)
φj

⎞

⎟⎠ · Sf , (6)

where F(i) is the set of faces from cell i, G(f ) is the set of Gauss-Legendre points
of face f , wGg is the weight, xg are the coordinates of each Gauss-Legendre point
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g and tfj is the contribution from cell j to the face f diffusive flux from the
reconstructed polynomial. The set of cells j is defined by the used stencil in the
polynomial reconstructed at each face f , globally each line i will have contributions
from all cells that result from the junction of sets from all faces of cell i.

3 Order Convergence Verification with Cartesian
and Perturbed Non-uniform Grids

A numerical test is performed in non-uniform grids with an certain imposed
displacement. This perturbation is done by moving randomly the grid lines in a
range between zero and a % (γ ) of the grid size from the Cartesian grid counterpart.
This perturbation can be done in either a positive or negative direction. The cells of
the grids are always squares and a reference grid without any perturbation is used,
i.e. a Cartesian one. For this case, the following analytical solution was used and
solved in a 1× 1 square domain:

φ
(
x, y

) = exp

⎛

⎝− (x − 0.5)2 + (
y − 0.5

)2

0.0175

⎞

⎠ , (7)

Table 2 lists the error ratios, r , between a grid with an imposed perturbation and
a regular one. Showing the ratio for both the mean and maximum error of the finest
grid at study. Particularly for the FLS6 and FLS8 schemes, the error could be one
order of magnitude greater than the obtained with the Cartesian grid. It is also shown
that an imposed perturbation up to 20% has a low numerical error penalization.

Figure 2 shows the convergence curves obtained but only with the FLS4 and
FLS8 schemes. It is possible to observe that the theoretical convergence orders is
achieved for every perturbed grid.

Figure 3 shows the error distribution for the FLS8 scheme with a Cartesian and
perturbed grid with γ = 30%. It is shown that the error distribution is severally
changed by the imposed perturbation at the grid.

Table 2 Ratio of mean and maximum error norms for all schemes between grids with an imposed
perturbation and a Cartesian one with 25,600 cells

FLS2 FLS4 FLS6 FLS8

γ% r1 r∞ r1 r∞ r1 r∞ r1 r∞
10 1.01 1.54 1.52 4.44 1.86 10.35 2.20 8.19

20 1.09 1.55 2.33 4.72 2.81 15.15 3.62 11.05

30 1.22 1.78 3.24 7.53 3.89 22.30 17.28 30.61
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Fig. 2 Convergence curves for the imposed perturbed grids with FLS4 and FLS8
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Fig. 3 Error distribution for FLS8 scheme and two grid with 25,600 cells: one without any
perturbation (left) and one with an imposed perturbation (right)

4 Results for Several Grid Types and with Neumann
Boundary Conditions

To verify the applicability of the proposed schemes to other grid types and Neumann
boundary conditions. The numerical verification was performed with an analytical
solution in a square domain,

[
0, 1

]
. A Neumann boundary condition were imposed

at the vertical faces and a Dirichlet boundary condition at the remaining ones.
Two different approaches were used when considering Neumann boundary

conditions. The first approach is the classic one, which consists in simply derivation
of the respective line from the least-squares matrix that represent the boundary face.
It will be defined as the general case (GC) approach.

The second approach which is new to the Author’s knowledge and it consists
on the multiplication of each line of the Df matrix referent to Neumann boundary
face, b, by the respective face area, Sb. That line will be written by ∇df (xb) Sb,
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instead of ∇df (xb)nb and the entry for the vector φf is given by ∇φbSb , instead
of ∇φbnb. Consequently, the problem will have the following aspect:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(
x1 − xf

) (
y1 − yf

) (
x1 − xf

)2 · · ·
1
(
x2 − xf

) (
y2 − yf

) (
x2 − xf

)2 · · ·
...

...
...

...
. . .

0 Sbx Sby 2
(
xb − xf

)
Sbx · · ·

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

C1

C2
...

Cncoef s

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2
...

∇φbSb

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where the line in the matrix separates the contribution of the stencil cells and
Dirichlet faces from the contribution of the Neumann faces of the current considered
stencil.

The goal of this operation is to ensure that the vector φs and each line of the
least-squares matrix Df have the same unit dimensions, something that does not
happen with the classic approach. This approach will be designed as dimensional
correction (DCN) for Neumann boundary condition.

Numerical tests were performed for two grid types: irregular polyhedral and
triangular grids. The analytical solution is given by:

φ
(
x, y

) = sin (3πx) sin
(
3πy

)
, (9)

where in the Neumann boundaries the face flux will be ∇φb · Sb �= 0.
Figure 4 shows the convergence curves to both approaches applied for all

schemes with the irregular polyhedral (left) and triangular grids (right). The solid
line represents the DCN approach and the dotted one represents the classic GC
approach. The results point out that the theoretical convergence order is always
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Fig. 4 Convergence curves of the mean error for mixed boundary conditions with irregular
polyhedral and triangular grids for all schemes. The dotted lines are the convergence curves for
the GC approach and the solid ones represent the convergence curves with the DCN approach
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Table 3 Comparison between the two approaches for a problem with an imposed Neumann BC
for all schemes applied to the irregular polyhedral grids

Polyhedral FLS2 FLS4 FLS6 FLS8

ncells href r1 r∞ r1 r∞ r1 r∞ r1 r∞
145 8.31E−02 1.12 1.65 0.97 1.40 0.92 1.48 1.11 0.96

545 4.34E−02 1.11 1.84 1.06 1.04 1.07 1.02 1.24 1.26

2113 2.22E−02 1.04 1.63 1.15 1.39 1.08 1.45 1.13 2.81

8321 1.12E−02 0.99 1.04 1.08 1.16 1.04 1.08 21.57 74.12

33,024 5.65E−03 0.98 1.10 1.04 1.12 1.02 1.04 178.69 261.82

Table 4 Comparison between the two approaches for a problem with an imposed not-null
Neumann BC for all schemes applied to the triangular grids

Triangular FLS2 FLS4 FLS6 FLS8

ncells href r1 r∞ r1 r∞ r1 r∞ r1 r∞
211 5.98E−02 2.24 2.85 1.80 1.51 1.44 1.25 0.88 0.91

899 2.91E−02 1.70 4.08 1.48 1.74 1.05 0.89 1.35 0.53

3638 1.45E−02 1.36 7.47 1.49 1.94 1.73 0.94 1.74 1.98

14,632 7.25E−03 1.10 7.91 1.42 1.68 2.30 0.95 190.13 297.64

58,698 3.62E−03 12.73 357.14 1.65 1.73 3.70 1.44 790.73 915.16

achieved for both grids and indicates that the DCN approach improves the schemes
performance, being more evident for the FLS2 and for FLS8 schemes, specially to
the last one. The behaviour of the finest grids are more stable with the DCN.

Table 3 lists the comparison of the two approaches used for the Neumann BC
for the irregular polyhedral grid, the comparison is made through the ratio between
both approaches and using the mean and maximum error norm, r is computed by:

ri = ‖e‖
GC
i

‖e‖DCN

i

, (10)

where i is the error norm used for the calculation.
The results show that the biggest decrease of the error occurs for the maximum

error. For the FLS8 scheme the error can be reduced up to 21 times, since the new
method avoids the truncation error issue presented in the GC and showed in Fig. 4.

Table 4 lists the comparison between the two approaches used for the Neumann
BC with the triangular grids. The results obtained allow to conclude that the major
decrease of the numerical error occurs for the maximum error, which can be reduced
almost one order of magnitude for the second-order scheme and to half with the
fourth-order scheme. For the sixth-order scheme the maximum error with this new
approach is slightly worse, almost 10%, than the general approach, however in terms
of mean error the gain is evident since the mean error is reduced to half with the
DCN approach. For the eighth-order scheme, it is possible to reduce the error in
about three orders of magnitude since it avoids the truncation error issue.
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5 Conclusions

Verifications tests have been performed for a new high-order scheme based on the
weighted least-squares technique and the Finite Volume method. The convergence
curves have showed an excellent behaviour indicating that the theoretical order is
achieved for all cases at study. Also the new reconstruction method is not very
sensitive to the imposed perturbations in the grid or either the topology of the cells.

Additionally, the results allowed the novel proposed approach to treat the
Neumann boundary conditions, improving the quality of the solution. These results
are the expected ones, since in the WLS problem the dimensions of the matrices are
identical to each other, when using this proposed approach.
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An Explicit Mapped Tent Pitching
Scheme for Maxwell Equations

Jay Gopalakrishnan, Matthias Hochsteger, Joachim Schöberl,
and Christoph Wintersteiger

1 Introduction

Electromagnetic waves propagate at the speed of light. Thus, the field at a certain
point in space and time depends only on field values within a dependency cone. A
tent pitching method introduces a special “causal” spacetime mesh that respects
this finite speed of propagation. It is not limited to Maxwell equations, but can
be applied to general hyperbolic equations. A tent pitching method requires a
numerical scheme to discretize the equation on that mesh. Discontinuous Galerkin
(DG) methods are of particular interest since they offer a systematic avenue to
build high order methods. For a given initial condition at the bottom of a tent,
the discrete equations may be solved within each individual tent, up to the tent
top. The computed solution at the tent top provides initial conditions for the tents
that follow later in time. This method is highly parallel, since many tents can be
solved independently. Methods using such tent-pitched meshes may be traced back
to [5, 7]. More recent works [1, 6, 8] develop Spacetime DG (SDG) methods within
tents by formulating local variational problems, for which linear systems are set up
and solved. Although these systems are local, the matrix size can grow rapidly with
the polynomial order, especially in four-dimensional spacetime tents. In this context
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it is natural to ask if one can develop explicit schemes (which usually perform well
under low memory bandwidth) that take advantage of tents.

A key ingredient to answer this question was presented in [2], where Mapped
Tent Pitching (MTP) schemes were introduced. The MTP discretization, which
proceeds by mapping tents to a spacetime cylinder, allows one to evolve the solution
either implicitly or explicitly within tents. The memory requirements of the explicit
MTP scheme are limited to what is needed for storing the spatial mesh, the solution
coefficients at one time step, and the topology of the tents.

In this work, we show that notwithstanding the above-mentioned advantages
of the explicit MTP scheme, one may lose higher order convergence if a naive
time stepping strategy (involving a standard explicit Runge-Kutta scheme) is used.
We then develop a new Taylor time-stepping for the local problems within tents.
Despite its simplicity, our numerical experiments show that it delivers optimal order
of convergence.

2 Mesh Generation by Tent Pitching

We start with a conforming spatial mesh consisting of elements T = {T } and
vertices V = {V }. We progress in time by defining a sequence of advancing fronts
τi . A front τi is given as a standard nodal finite element function on this mesh. It is
defined by storing the current time for every vertex of the mesh. We move from τi
to the next front τi+1 by moving one vertex forward in time, while keeping all other
vertices fixed. The spacetime domain between τi and τi+1 we call a tent. In Fig. 1,
the red domain is the tent between τi and τi+1.

Its projection to the spatial domain is exactly the vertex patch ωV around V of
the original mesh. The data to be stored for one tent are the bottom and top-times of
the central vertex, plus the times for all neighboring vertices.

Note that although the algorithm is described sequentially, it is highly parallel.
Vertices with graph-distance of at least two can be moved forward independently.
For example, in Fig. 1, all blue tents can be built and processed in parallel.

The distance for advancing a vertex is limited by the speed of light, a constraint
often referred to in the literature as the causality condition. Under this condition, the
Maxwell problem inside the tent is solvable using the initial conditions at the tent
bottom. Thus, the top boundary is an outgoing boundary and no boundary conditions
are needed there.

Fig. 1 Tent pitched spacetime mesh for a one-dimensional spatial mesh
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Note that the spatial mesh in Fig. 1 is refined towards the right boundary, which
leads to smaller tent heights at the right boundary. Hence, smaller time steps in
locally refined regions is a very natural feature of tent pitching methods.

3 The MTP Discretization

Now, we consider the discretization method for one tent domain K = {(x, t) : x ∈
ωV , ϕb(x) ≤ t ≤ ϕt(x))}, where ωV is the union of elements containing the vertex
V , and ϕb and ϕt are the bottom and top fronts, respectively, restricted to ωV . Our
aim is to numerically solve the Maxwell system on K , namely

∂tεE = ∇ ×H , ∂tμH = −∇ ×E , (1)

where boundary values for both fields are given at the tent bottom and ∇ = ∇x

denotes the spatial gradient.
The approach of MTP schemes is to map the tent domain to a spacetime cylinder

ωV × (0, 1) and solve the transformed equation there. The transformation from the
cylinder to the tent is denoted by Φ : ωV × (0, 1)→ K and is defined by Φ(x, t̂) =
(x, ϕ(x, t̂)) where

ϕ(x, t̂) = (1− t̂ )ϕb(x)+ t̂ϕt (x) .

It is similar to the Duffy transformation mapping a square to a triangle (see Fig. 2).
With the notation

skewE =
⎛
⎜⎝

0 Ez −Ey

−Ez 0 Ex

Ey −Ex 0

⎞
⎟⎠ ,

we can rephrase the curl operator as ∇ × E = div skewE, where the divergence
of the matrix function is taken row-wise. To simplify notation further, we define
u : K → R

6 by u = (E,H), and set g : K → R
6 and f : K → R

6×3 by

g(u) =
[
εE

μH

]
, f (u) =

[
− skewH

skewE

]
. (2)

Then (1) may be rewritten as the conservation law ∂tg(u) + divx f (u) = 0.
Furthermore, we define F(u) ∈ R

6×4 as

F(u) = [
f (u) g(u)

] =
[
− skewH εE

skewE μH

]
,
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Fig. 2 Tent mapped from a tensor product domain

which allows us to write Maxwell’s system (1) as the spacetime conservation law

divx,t F (u) = 0 . (3)

For each row of F , the spacetime divergence divx,t sums the spatial divergence of
the first three components with the time-derivative of the last component.

Now, we apply the Piola transformation to pull back F from the tent K to the
cylinder using the mapping Φ. The derivative of Φ and its transposed inverse are

Φ ′ =
[

I 0
∇ϕT δ

]
and (Φ ′)−T =

[
I −δ−1 ∇ϕ
0 δ−1

]
.

The Piola transform of F is F̂ (û)=P{F }= (detΦ ′)(F ◦Φ)(Φ ′)−T with û= u◦Φ.
Since the Piola transform provides an algebraic transformation of the divergence,
Eq. (3) is simply transformed to divx,t̂ F̂ (û) = 0 on the spacetime cylinder. Then,
inserting the Jacobian of Φ leads us to the transformed equation

∂t̂ (g(û)− f (û)∇ϕ)+ divx(δf (û)) = 0 , (4)

where δ(x) = ϕt(x) − ϕb(x) is the local height of the tent. Note that ∇ϕ is an
affine-linear function in quasi-time t̂ . Equation (4) describes the evolution of û along
quasi-time from t̂ = 0 to t̂ = 1. Details of the calculations are given in [2].

The next step is the space discretization of (4) by a standard discontinuous
Galerkin method. Let Vh ⊂ [L2]6 be the DG finite element space of degree p on T.
On each tent we search for û : [0, 1] → Vh such that

∫

ωV

∂t̂
[
g(û)− f (û)∇ϕ] vh −

∑

T⊂ωV

∫

T

δf (û)∇vh +
∑

F⊂ωV

∫

F

δfn(û
+, û−)�v� = 0

holds for all vh ∈ Vh and all t̂ ∈ [0, 1]. Only the restriction of Vh on the patch
ωV is used in this equation. The numerical flux fn(û

+, û−) depends on the positive
trace lims→0+ û(x + sn) and negative trace lims→0+ û(x − sn), where n is a unit
normal vector of arbitrary orientation to the face. The jump is defined as usual by
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�û� := û+ − û− and the mean value by {û} := 1
2 (û
+ + û−). One example is the

upwind flux [3, p. 434]

fn(û
+, û−) =

[
{Ĥ } × n+ �Êt �

−{Ê} × n+ �Ĥt�

]
,

with the tangential components Êt = −(Ê×n)×n and Ĥt = −(Ĥ×n)×n of Ê =
E◦Φ and Ĥ = H ◦Φ. Note that the local tent height δ enters the boundary integrals
as a multiplicative factor. At the outer boundary of the vertex patch we have δ = 0,
so the facet integrals on the outer boundary disappear. For the above semidiscrete
system, initial values for the tent problem are given finite element functions at the
tent bottom. The finite element solution on the tent top provides the initial conditions
for the next level tent. Therefore, no projection of initial values is needed when
propagating from one tent to the next.

After the semi-discretization, as usual, we are left to solve a system of N =
dimVh(ωV ) ordinary differential equations for U : [0, 1] → R

N ,

d

dt̂

[
MU

]
(t̂ )− AU(t̂) = 0 , t̂ ∈ (0, 1) , (5)

given U(0). The non-standard feature of (5) is that M is an affine-linear function
of the quasi-time t̂ (since our mapping enters the mass matrix M through ∇ϕ). The
matrix A is independent of t̂ . A straightforward approach is to substitute Y = MU

and solve

d

dt̂
Y − AM−1Y = 0 ,

instead of (5). Although first order convergence was observed with this strategy,
further numerical studies showed reduced order of convergence if the stage-order
of the Runge Kutta (RK) method is not high enough—see Fig. 3 (right). While the
implicit MTP schemes discussed in [2] do not show this problem, the issue remains
critical for explicit schemes. Thus, we propose to use a new type of explicit time-
stepping for time discretization, discussed next.

4 Structure-Aware Taylor Time-Stepping

Returning to the ordinary differential equation (5) and continuing to make the
substitution Y = MU , we now reconsider the previous equation as the following
differential-algebraic system:

d

dt̂
Y = AU , Y = MU . (6)
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We begin by subdividing the interval (0, 1) into m ∈ N smaller intervals of size 1
m

,
defined by (t̂i , t̂i+1) = ( i

m
, i+1

m
), for i ∈ N and 0 ≤ i ≤ m − 1. Recall that A is

independent of quasi-time t̂ , and M is an affine function of t̂ , i.e.,

M(t̂) = Mi + (t̂ − t̂i )M
′, t̂ ∈ (t̂i , t̂i+1)

where Mi = M(t̂i) and the derivative M ′ is a constant matrix. We want to design a
time-stepping scheme that is aware of this structure.

Consider the approximations to Y,U on (t̂i , t̂i+1) in the form of Taylor polyno-
mials Yi, Ui of degree q , defined by

Yi(t̂ ) =
q∑

n=0

(t̂ − t̂i )
n

n! Yi,n Ui(t̂) =
q−1∑

n=0

(t̂ − t̂i )
n

n! Ui,n , t̂ ∈ (t̂i , t̂i+1) ,

(7)

where Yi,n = Y
(n)
i (t̂i) and Ui,n = U

(n)
i (t̂i). To find these derivatives, we differentiate

both equations of (6) n times to get

Y (n+1)(t̂) = AU(n)(t̂ ) , n ≥ 0 ,

Y (n)(t̂) = M(t̂)U(n)(t̂)+ nM ′U(n−1)(t̂) , n ≥ 1 .

For the second equation we used Leibnitz’ formula (fg)(n) = ∑n
i=0

(
n
i

)
f (i)g(n−i),

and the fact that M is affine-linear. Evaluating these equations for the Taylor
polynomials Yi, Ui at t̂ = t̂i , we obtain a recursive formula for Yi,n and Ui,n in
terms of Ui,n−1, namely

Yi,n = AUi,n−1 , 1 ≤ n ≤ q ,

MiUi,n = Yi,n − nM ′Ui,n−1 , 1 ≤ n ≤ q − 1 ,
(8)

for all 0 ≤ i ≤ m − 1. Given Y0,0 = Y (t̂0), M0U0,0 = Y0,0, applying (8) with
i = 0 gives the approximate functions Y0(t̂), U0(t̂ ) in the first subinterval (t̂0, t̂1).
The recursive formulas are initiated for later subintervals at n = 0 by

Yi,0 = Yi−1(t̂i ), MiUi,0 = Yi,0 , 1 ≤ i ≤ m− 1 . (9)

After the final subinterval, we get Ym−1(tm), our approximation to Y (1). We
shall refer to the new time-stepping scheme generated by (8) as the q-stage SAT
(structure-aware Taylor) time-stepping.

Note that Ym−1(tm) is our approximation to Y = MU at the top of the tent. This
value is then passed to the next tent in time. The time dependence of M arises from
the time dependence of ∇ϕ. This gradient is continuous along spacetime lines of
constant spatial coordinates. Therefore, when passing from one element of a tent to
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the same element within the next tent in time, Y is continuous (since the solution U

is continuous). Of course, on flat fronts∇ϕ = ∇τ = 0, so there M is just a diagonal
matrix containing the material parameters.

To briefly remark on the expected convergence rate of a q-stage SAT time-
stepping, recall that due to the mapping of the MTP method we solve for û = u◦Φ,
which satisfies ∂n

t̂
û = δn(∂nt u) ◦ Φ. The causality condition implies that δ → 0 if

the mesh size h → 0. Thus we may expect the nth temporal derivative of û, and
correspondingly U(n), to go to zero at the rate O(hn). By using a q-stage SAT time-
stepping, we approximate the first q − 1 terms of the exact Taylor expansion of U .
Thus we expect the convergence rate to be O(hq), the size of the remainder term
involving U(q). The next section provides numerical evidence for this.

Before concluding this section, we should note that in (8) and (9), we tacitly
assumed that Mi is invertible. Let us show that this is indeed the case whenever the
causality condition (see Sect. 2) |∇ϕ| < √εμ is fulfilled. At any quasi-time t̂ , given
a ŵ = (ŵE, ŵH ) ∈ Vh whose coefficient vector in the basis expansion is W ∈ R

N ,
consider the equation M(t̂)U = W for the coefficient vector U of û ∈ Vh. This
equation, in variational form, is

∫

ωV

[g(û)− f (û)∇ϕ] · v̂ =
∫

ωV

(ŵE, ŵH ) · v̂, for all v̂ ∈ Vh. (10)

Let a(û, v̂) denote the left hand side of (10). To prove solvability of (10), it suffices
to prove that a(·, ·) is a coercive bilinear form on [L2]6 for any t̂ . By inserting
g(û) = [εÊ, μĤ ]T and f (û) = [− skew Ĥ , skew Ê]T into a(û, û),

a(û, û) =
∫

ωV

(εÊ − Ĥ × ∇ϕ) · Ê + (μĤ + Ê ×∇ϕ) · Ĥ

=
∫

ωV

εÊ · Ê + μĤ · Ĥ + 2(Ê × ∇ϕ) · Ĥ

≥
∫

ωV

εÊ · Ê + μĤ · Ĥ − 2
|∇ϕ|√
εμ

√
ε|Ê|√μ|Ĥ | ,

where we used the Cauchy-Schwarz inequality and inserted
√
ε and

√
μ to achieve

the desired scaling. By applying Young’s inequality and |∇ϕ| < √εμ,

a(û, û) ≥
∫

ωV

εÊ · Ê + μĤ · Ĥ − |∇ϕ|√
εμ

(εÊ · Ê + μĤ · Ĥ )

=
∫

ωV

(
1− |∇ϕ|√

εμ

)
(εÊ · Ê + μĤ · Ĥ ) ≥ C min (ε, μ)‖û‖2

L2
,

form some constant C > 0. Thus Mi is invertible and the SAT time-stepping is well
defined on all tents respecting the causality condition.
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One may exploit the specific details of the Maxwell problem to avoid the
assembly and the inversion of matrices Mi (as we have done in our implementation).
In fact, instead of (10), we can explicitly solve the corresponding exact undiscretized
equation obtained by replacing Vh by [L2]6 in (10). The solution û = (Ê, Ĥ ) in
closed form reads

Ê = 1

εμ− |∇ϕ|2
(
I − 1

εμ
∇ϕ∇ϕT

)
(μŵE + ŵH × ∇ϕ) ,

Ĥ = 1

εμ− |∇ϕ|2
(
I − 1

εμ
∇ϕ∇ϕT

)
(εŵH − ŵE ×∇ϕ) .

We then perform a projection of these into Vh to obtain the coefficients U(t̂i ).
For uncurved elements, this just involves the inversion of a diagonal mass matrix.
For the small number of curved elements, we use a highly optimized algorithm
which uses an approximation instead of the exact inverse mass matrix.

5 Numerical Results

The MTP discretization in combination with the SAT time-stepping on tents is
implemented within the Netgen/NGSolve finite element library. In this section
numerical results concerning accuracy as well as performance are reported.

5.1 Convergence Studies in Two Space Dimensions

We consider the model problem in two space dimensions

∂t εEz = ∂xHy − ∂yHx , ∂tμHx = −∂yEz , ∂tμHy = ∂xEz ,

on the spacetime cube [0, π]2 × [0,√2π]. Parameters are set ε = μ = 1 such
that speed of light is c = 1. Initial and boundary values are set such that the exact
solution is given by

Ez = sin(x) sin(y) cos (
√

2t) ,

Hx = − 1√
2

sin(x) cos(y) sin (
√

2t) ,

Hy = 1√
2

cos(x) sin(y) sin (
√

2t) .

Based on a spatial mesh with mesh size h, we generate a tent pitched mesh
such that the maximal slope |∇ϕ| is bounded by (2c)−1 and apply a discontinuous
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Fig. 3 Spatial L2 error of all field components over degrees of freedom (dof) for the (p+1)-stage
SAT time-stepping (left) and the classical Runge-Kutta (right)

Galerkin method in space using polynomials of order p, with 1 ≤ p ≤ 4. On each
cylinder we perform a (p+1)-stage SAT time-stepping with m = 2p intervals. The
spatial L2 error of all field components at the final time is reported in the left plot
of Fig. 3. We observe that the error goes to zero at the optimal rate of O(hp+1) until
we are close to machine precision.

In contrast, the right plot in Fig. 3 illustrates the previously mentioned loss of
convergence rates when the classical Runge-Kutta method is used. The convergence
rates stagnate at first order no matter what p is used. A similar behavior was also
observed for other explicit Runge-Kutta methods.

5.2 Large Scale Problem in Three Space Dimensions

As a second example we present a simulation on a domain similar to the resonator
shown in [4]. The geometry is given as body of revolution of smooth B-spline
curves. The mesh consisting of 489,593 curved tetrahedral elements is shown in
Fig. 4. Due to higher curvature the mesh is refined along the inner roundings, where
the ratio of the largest to the smallest element is approximately 5:1. We used a
Gaussian peak (located at the axis of revolution and the position of the fifth inner
rounding) for the electric field as initial data. The explicit MTP scheme with SAT
time-stepping then computed the solution at t = 260 using time slabs of height
1, with each slab composed of Ntents = 149,072 tents. On each tent we used a
(p+1)-stage SAT time-stepping with m = 2p intervals, where p denotes the spatial
polynomial order. With the spatial degrees of freedom Ndof,i of the ith tent and the
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Fig. 4 Tetrahedral mesh with 489 k curved elements, ratio of the largest to the smallest element of
approximately 5:1 and the Hy component of solution at t = 260 calculated with spatial polynomial
order p = 3

Table 1 Number of degrees of freedom and simulation times for spatial polynomial orders
p = 2, 3

p = 2 p = 3

Number of spatial dof 2.938 × 107 5.875 × 107

Number of spacetime dof per slab 1.908 × 109 7.632 × 109

Simulation time per slab 4.6 s 49.2 s

Total simulation time 20 min 3 h 33 min

This data was generated using a shared memory server with 4 E7-8867 CPUs with 16 cores each

number of stages q = p + 1, we obtain the total spacetime degrees of freedom per
time slab

Ntents∑

i=1

Ndof,i m q =
⎛

⎝
Ntents∑

i=1

Ndof,i

⎞

⎠ 2p(p + 1) .

The corresponding numbers of degrees of freedom and the simulation times are
shown in Table 1. In [4] a similar problem is solved using a discontinuous Galerkin
method with quadratic elements, combined with a polynomial Krylov subspace
method in time. Using 96 cores it took them 7:10 h to reach the final time. Our
simulation with polynomial order p = 3, which has a comparable number of
unknowns, took 3:33 h on 64 cores. This significant speed up is an illustration of
the capability of the new method. The Hy component of the obtained solution at
t = 260, using third order polynomials in space, is shown in Fig. 4.
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Viscous Diffusion Effects
in the Eigenanalysis of
(Hybridisable) DG Methods

Rodrigo C. Moura, Pablo Fernandez, Gianmarco Mengaldo,
and Spencer J. Sherwin

1 Introduction

When numerically solving partial differential equations, numerical errors are likely
to impact not only solution accuracy, but also the stability/robustness of the
computation. This is particularly the case in eddy-resolving approaches to turbulent
flows, such as large-eddy simulation (LES) and direct numerical simulation (DNS).
Also, in the so-called implicit LES / under-resolved DNS strategies [1], where
numerical error (specifically dissipation) provides small-scale regularisation in lieu
of a turbulence model, understanding the nature of numerical errors is crucial.
These typically appear in the form of dispersion and diffusion errors, where the
former distorts the solution, while the latter is responsible for its damping. A useful
framework for the assessment of such numerical errors is the eigensolution analysis
technique [2, 3].
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We present the first eigenanalysis of hybridisable discontinuous Galerkin (HDG)
methods. This is also one of the first studies to consider viscous diffusion effects in
the eigenanalysis of discontinuous SEM (spectral element methods), as it addresses
the advection-diffusion equation in one dimension. Focus is given to the temporal
analysis approach [2, 5], which is suited for problems with periodic boundary
conditions. The spatial analysis [3, 4], suited for inflow-outflow problems, will
be considered in subsequent studies. Here, we offer preliminary results on (i)
the effects of the Peclét number (a cell-based Reynolds number), and (ii) the
interplay between upwind (numerical) dissipation and viscous (physical) diffusion.
We highlight how these results improve upon our understanding and practice of
implicit LES / under-resolved DNS approaches.

We note that, although a non-modal eigenanalysis strategy better suited for turbu-
lence computations has been recently proposed [6], the present work will focus on
more fundamental aspects and follow therefore the classical eigenanalysis. Finally,
the results presented here are representative of a broader class of discontinuous
SEM, given the well established connections within this class—see e.g. [7].

This paper is organized as follows. Section 2 introduces the HDG discretisation
as applied to the linear advection-diffusion equation in one dimension. Section 3
details the temporal eigenanalysis framework and presents our preliminary results.
Finally, in Sect. 4, our conclusions are summarised and future research topics are
outlined.

2 HDG Discretisation

In one dimension, the linear advection-diffusion equation is given by

∂u

∂t
+ a

∂u

∂x
= μ

∂2u

∂x2
, (1)

where the advection velocity a and the viscosity μ are positive constants. This
equation can be written in conservation form through the flux function f (u, g) =
au− μg, as the system

∂u

∂t
+ ∂f

∂x
= 0 , (2)

g − ∂u

∂x
= 0 , (3)

where g is the auxiliary gradient variable. The discretisation procedure is similar to
that of traditional DG methods.
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After the (1D) physical domain is partitioned into non-overlapping elemental
regions � of size h, the numerical solution and its gradient are locally approximated
by polynomial expansions in the form

u|� =
P∑

j=0

ûj (t) φj (ξ) , g|� =
P∑

j=0

ĝj (t) φj (ξ) , (4)

where φj are polynomial basis functions of degree up to P , defined in the standard
domain �st = [−1, 1]. A linear mapping relation is assumed between the physical
coordinate x of element � and the coordinate ξ ∈ �st .

Multiplying Eqs. (2)–(3) by φi , integrating over element � and applying integra-
tion by parts leads respectively to

h

2

∫

�st

∂u

∂t
φi dξ +

(
f̃ φi

)⊕
0 =

∫

�st

f
∂φi

∂ξ
dξ , (5)

h

2

∫

�st

gφi dξ +
∫

�st

u
∂φi

∂ξ
dξ = (

ũφi

)⊕
0 , (6)

where 0 and ⊕ denote the left and right boundaries of element �, in that order. As
typical, expansions in (4) are to be inserted into (5)–(6), which are then required to
hold for i = 0, . . . , P . Note that the integrals above have been moved to �st and
interface quantities ũ and f̃ have been introduced. The state average ũ is peculiar to
HDG in that it represents a uniquely defined interface variable whose value stems
indirectly from the enforced continuity of the numerical flux f̃ . This continuity
ensures local conservation for HDG methods, regardless of the chosen flux formula.

For the advection-diffusion problem at hand, the interface fluxes on either side
of a given element (cf. Fig. 1, left diagram) can be taken in the form

f̃⊕ = f (̃u⊕, g⊕) − τ (̃u⊕ − u⊕) , (7)

f̃0 = f (̃u0, g0) − τ (u0 − ũ0) , (8)

Fig. 1 Notation adopted for
the element viewpoint (left)
and the interface viewpoint
(right)

u

u

Ω

Ω Ω

~ u~
u~ u~ u~

u

g g

u

R

R

R

L

L

L

L R

u

g
g

= =
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in which

u⊕ =
P∑

j=0

ûj φj (+1) , g⊕ =
P∑

j=0

ĝj φj (+1) , (9)

u0 =
P∑

j=0

ûj φj (−1) , g0 =
P∑

j=0

ĝj φj (−1) . (10)

Also, τ = β|a|+σ is a stabilisation constant combining an upwinding parameter β
and a penalty term σ that accounts for the partially diffusive character of the model
equation considered. This work however assumes σ = 0 as it focuses on advection-
dominated cases, which are typically stable without the penalty term σ , even within
the context of turbulence simulations [8].

Flux formulas (7)–(8) are inspired in Ref. [9]. In the case of pure advection (with
σ = 0), the interface solution variable becomes the simple average ũ = uL⊕ +uR0 of
the adjacent states from the left (L) and right (R) elements sharing the considered
interface. Under this case, it is also easy to show that the fluxes in (7)–(8) recover
those used in traditional DG methods, whereby HDG exactly reproduces DG. This
does not hold, however, when diffusion is taken into account, in which case ũ is
only implicitly defined from the flux continuity condition enforced at interfaces,
f̃ L⊕ = f̃ R0 , namely

aũ − μgL⊕ − τ
(
ũ− uL⊕

)
= aũ − μgR0 − τ

(
uR0 − ũ

)
, (11)

where gL⊕ and gR0 depend on values of ũ at two other interfaces via (6). The diagram
on the right-hand-side of Fig. 1 should help clarify the notation adopted.

Using vectors û = {û0, . . . , ûP }T and ĝ = {ĝ0, . . . , ĝP }T , the flux continuity
condition (11) becomes

ũ = 1

2

(
φ̂T⊕ûL + φ̂T0ûR

)
+ μ

2τ

(
φ̂T0ĝR − φ̂T⊕ĝL

)
, (12)

where φ̂⊕ = {φ̂0(+1), . . . , φ̂P (+1)}T and φ̂0 = {φ̂0(−1), . . . , φ̂P (−1)}T . Like-
wise, (6) can be written as

h

2
Mĝ + Dû = φ̂⊕ũ⊕ − φ̂0ũ0 , (13)

in which matrices M and D have been introduced, namely

Mi,j =
∫

�st

φiφj dξ , Di,j =
∫

�st

∂φi

∂ξ
φj dξ . (14)
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Finally, (5) becomes

h

2
M

dû

dt
+ φ̂⊕f̃⊕ − φ̂0f̃0 = aDû − μDĝ , (15)

with

f̃⊕ = aũ⊕ − μφ̂T⊕ĝ − τ (̃u⊕ − φ̂T⊕û) , (16)

f̃0 = aũ0 − μφ̂T0ĝ − τ (φ̂T0û− ũ0) . (17)

Note that (12) is a scalar equation written from the point of view of a given interface,
whereas (13) and (15) are vector equations written from the viewpoint of an arbitrary
element � of size h.

It is now convenient to eliminate ĝ and work with variables û and ũ alone. This
can be done by solving (13) for ĝ and substituting the resulting expression in both
(12) and (15). The former substitution leads, after some algebra, to
(
β + m⊕⊕ +m00

Pe

)
ũ − m0⊕

Pe
ũL0 −

m⊕0
Pe

ũR⊕ = φ̂T⊕BL⊕ûL + φ̂T0BR0ûR , (18)

where Pe = |a|h/μ denotes the Péclet number, for which a uniform mesh spacing
is assumed. Moreover, four scalar constants ‘m’ have been introduced, defined as

m⊕⊕ = φ̂T⊕M−1φ̂⊕ , m00 = φ̂T0M−1φ̂0 , m0⊕ = φ̂T⊕M−1φ̂0 , m⊕0 = φ̂T0M−1φ̂⊕ .
(19)

In addition, the following matrices appear in (18)

BL⊕ =
β

2
I + M−1D

Pe
, BR0 =

β

2
I − M−1D

Pe
. (20)

Note that (18) relates the solution vectors û of two adjacent elements (�L and �R)
with the three interface states ũ associated to the boundaries of these elements.

The second step consists in using ĝ from (13) into (15), not forgetting to take the
fluxes (16)–(17) into account. After some more algebra, one arrives at

h

2a
M

dû

dt
+ Aû = A⊕φ̂⊕ũ⊕ + A0φ̂0ũ0 , (21)

whose matrices now introduced are given by

A = β
(
�⊕⊕ +�00

)
+
(

2 Pe−1N − I
)
D , (22)

A⊕ =
(
β − 1

)
I + 2 Pe−1N , A0 =

(
β + 1

)
I − 2 Pe−1N , (23)
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where

�⊕⊕ = φ̂⊕ φ̂T⊕ , �00 = φ̂0 φ̂T0 , N =
(
�⊕⊕ −�00 −D

)
M−1 . (24)

Note that (21) links the solution vector û and its time derivative to the two interface
variables ũ at the boundaries of the considered element.

In the actual context of simulations, (21) would be first solved (analytically) for
û after an implicit time-stepping scheme is chosen. This is possible since it entails
expressing dû/dt in terms of û at the current as well as previous time levels. The
next step would be to insert the resulting expression for û into (18), from which a
scalar equation whose only unknowns are ũ at various interfaces is obtained. This
equation is finally used for the assembly of a global system given suitable boundary
conditions, which can be solved via direct or iterative techniques. Since the system’s
solution grants ũ for all interfaces, û can be obtained locally for each element from
the time-discrete version of (21). The reader is referred to [9] for the details of this
procedure. In this work, however, as we are interested in the eigenanalysis of HDG,
a different strategy is adopted, as outlined next.

3 Temporal Eigenanalysis

In the eigenanalysis of spectral element methods [2, 5], it is typical to assume wave-
like solutions in the form û ∝ exp[i(κx − ωt)], whereby ûL = û exp(−iκh) and
ûR = û exp(+iκh). Here, û is the solution vector of a “central” element, whereas ûL

and ûR refer to solution vectors of neighbouring elements from the left (L) and from
the right (R), respectively. For the HDG formulation, an additional assumption can
be made regarding a wave-like behaviour for ũ. We assume that ũL0 = ũ exp(−iκ ′h)
and ũR⊕ = ũ exp(+iκ ′h), where now ũ is the interface variable shared by two
adjacent elements, whereas ũL0 and ũR⊕ refer to interface variables at the nearest
interfaces from the left/right (L/R). This second assumption is only natural given
the connection between û and ũ. Actually, we now show that κ ′ = κ , which is not
surprising.

We start from (21) assuming wave-like behaviour for û, obtaining

(
−i ωh

2a
M + A

)
û = A⊕φ̂⊕ũ⊕ + A0φ̂0ũ0 , (25)

which uniquely defines û from ũ⊕ and ũ0. If the above is written for another
element, say, the adjacent element from the right (a translation x 2→ x + h), one
has

(
−i ωh

2a
M + A

)
û exp(iκh) = A⊕φ̂⊕ũ⊕ exp(iκ ′h)+ A0φ̂0ũ0 exp(iκ ′h) ,

(26)
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which then implies
(
−i ωh

2a
M + A

)
û

exp(iκh)

exp(iκ ′h)
= A⊕φ̂⊕ũ⊕ + A0φ̂0ũ0 =

(
−i ωh

2a
M + A

)
û ,

(27)

where (25) has been used on the right-hand side. Comparing the left- and right-
most expressions above leads to exp(iκ ′h) = exp(iκh), which means κ ′h = κh +
2nπ , for n integer. This phase ambiguity can be sorted out by the evaluation of the
x-derivative of (25) at x + h, given by

iκ

(
−i ωh

2a
M + A

)
û exp(iκh) = iκ ′

(
A⊕φ̂⊕ũ⊕ + A0φ̂0ũ0

)
exp(iκ ′h) ,

(28)

which yields κ ′ = κ . This last step about the phase is, however, not really
necessary to the eigenanalysis because only the complex exponential factors appear
throughout the relevant equations, hence knowing that exp(iκ ′h) = exp(iκh) is
sufficient.

In the remainder of the study, orthonormal Legendre basis functions are assumed,
whereby M = I . We note that numerical dispersion and diffusion eigencurves,
which are the focus of the study, do not change depending on the basis functions
adopted, provided that exact integrations are used in the spatial discretisation.

In the temporal analysis, an eigenvalue problem is set where, given a real-
valued wavenumber κ , multiple (P + 1) eigenvalues of the relevant eigenmatrix
are associated to admissible complex-valued numerical frequencies ω = ω(κ). The
procedure to obtain this eigenvalue problem is described below.

We begin from (18), assuming ũL0 = ũ exp(−iκh) and ũR⊕ = ũ exp(iκh), to find

ũ =
(
φ̂T⊕BL⊕ûL + φ̂T0BR0ûR

)
b−1 , (29)

with scalar b = b(κh; Pe, β) defined as

b = β +
[
m⊕⊕ +m00 −m⊕0 exp(iκh)−m0⊕ exp(−iκh)

]
Pe−1 . (30)

Then, (29) is used into (21), relating the solution vector û at a given element to the
state vectors of its left (ûL) and right (ûR) neighbours. From the wave-like behaviour
of û and the relations ûL = û exp(−iκh) and ûR = û exp(+iκh), one can arrive at

− i4h û = Z û , (31)

where 4 = ω/a and matrix Z = Z(κh; Pe, β) is given by

Z = 2b−1[A⊕�⊕0B0 exp(iκh)+ A0�0⊕B⊕ exp(−iκh)+
+A⊕�⊕⊕B⊕ + A0�00B0 − Ab] ,

(32)
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in which �⊕⊕ and �00 are given by (24), whereas

�⊕0 = φ̂⊕φ̂T0 , �0⊕ = φ̂0φ̂T⊕ . (33)

In (31), we have the desired eigenvalue problem of size P + 1, which thus supports
this same number of eigenvalues λj . These are related to the (normalised) numerical
frequencies 4j via

4jh = iλj {Z(κh)} . (34)

Typically, one of the eigenvalues represents the so-called primary eigenmode, while
the remaining ones can be regarded as secondary as they simply replicate the
behaviour of the primary mode on shifted wavenumber ranges. This formally allows
us to focus on the analysis of the primary eigenmode and on its dispersion and
diffusion eigencurves. The reader is referred to [2, 5] for the concepts relevant to
the separation of primary and secondary modes adopted in this work.

Once the primary mode is identified, the scheme’s numerical diffusion behaviour
can be assessed in wavenumber space through the imaginary part of 4∗h, where
the asterisk subscript denotes the primary mode from (34). Note that numerical
diffusion is especially relevant to turbulence computations as it impacts not only
accuracy, but also stability. Note that eigencurves are entirely defined by the
polynomial order P , the upwinding parameter β and, in case viscosity is present, the
normalised Péclet number Pe0 = |a| h̄/μ, with h̄ = h/(P +1). Standard upwinding
is here assumed.

Figure 2 depicts a comparison between HDG’s primary dissipation curves for
pure advection and for advection-diffusion at Pe0 = 100 for P = 1, 4 and 7. As
explained further below, this is about the lowest value of Pe0 one achieves (domain-
wise) in a turbulent flow computation. However, at this Pe0, viscous effects are
still somewhat weak in regular (linear-scale) plots of 4ih̄ vs. κh̄, where 4i is the
absolute value of 4 ’s imaginary part. This is especially true for P ≤ 4. Hence,
Fig. 2 also shows these plots in log-log scale, highlighting what happens at well-
resolved wavenumbers.

The log-log plots in Fig. 2 are revealing. They make clear that HDG’s numerical
diffusion follows the correct diffusive behaviour up to a certain wavenumber, here-
inafter named κc, beyond which upwind dissipation overcomes viscous diffusion.
The exact diffusive behaviour, as derived from our model problem, is given by

4ih̄ = (κh̄)2/ Pe0 or log10(4ih̄) = 2 log10(κh̄)− log10(Pe0) , (35)

showing that, as Pe0 increases, the reference line of exact diffusive behaviour shifts
downwards, reducing the value of κch̄. Also, for a given number of DOFs, i.e. fixed
h̄, increasing the discretisation order increases κc. This type of analysis reveals how
upwind dissipation and viscous diffusion complement each other, allowing also
for the estimation of the wavenumber κc after which upwinding dominates. The
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Fig. 2 Normalised numerical diffusion in bilinear (left) and log-log plots (right) for P = 1, P = 4
and P = 7 (top to bottom), with/without viscosity (dashed/full curve), the former considering
Pe0 = 100. The exact diffusive behaviour is shown as a dotted parabola/line (left/right plots)
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latter, though important for small-scale regularisation and stability, is not entirely
physical in the sense of subgrid-scale modelling. Hence, kc values could be used
as quality criteria for implicit LES / under-resolved DNS approaches based on
discontinuous SEM. For transitional flows, where small numerical dissipation is
particularly important, this kind of analysis might prove very useful. Although
specific estimates would be needed for different schemes, the analysis strategy
should be similar.

Finally, it is now explained why Pe0 = 100 is about the lowest Péclet value one
may find in a turbulent flow simulation. As candidates for very small Pe0, one could
think of the near-wall region of turbulent boundary layers, given the low velocity and
small mesh spacing in typical wall-resolved LES. For the viscous sublayer, where
u+ < 5, the streamwise Peclét number can be evaluated using wall quantities:

Pe0 = u(y) h̄

ν
= u+ h̄+

ν
uτ δν = u+ h̄+ , (36)

where by definition ν = uτ δν , being uτ the friction velocity and δν the associated
viscous lengthscale. Our argument is then concluded since 50 < x+ = h̄+ < 150
in typical wall-resolved LES or under-resolved DNS approaches, cf. e.g. [10].

4 Concluding Remarks

We presented a preliminary study of the numerical dispersion and diffusion
characteristics of HDG methods for linear advection-diffusion problems using
the temporal eigenanalysis technique. To the authors’ knowledge, this is the first
eigenanalysis of HDG methods, and also one of the first of such analyses of a
discontinuous SEM to consider viscous diffusion effects, cf. also [11].

It was shown that, for the range of Péclet numbers encountered in under-
resolved turbulence simulations, upwind (numerical) dissipation dominates viscous
(physical) diffusion in the smallest resolved scales. Only in the large scales,
the effect of viscous diffusion becomes significant. The wavenumber beyond
which upwind dissipation overcomes viscous diffusion, and its dependence on the
polynomial order, can be estimated through eigenanalysis, and this can be used as
quality criterion for LES and DNS in general, and for implicit LES/under-resolved
DNS in particular.

Future work includes further analysing the interplay between viscous and upwind
diffusion, investigating other numerical fluxes (e.g. over-upwinding β ' 1,
nearly central fluxes β ≈ 0, non-zero viscous stabilization σ �= 0), and testing
eigenanalysis against actual turbulence simulations. Finally, the dispersion-diffusion
characteristics of HDG methods for spatially developing simulations could be
investigated using spatial eigenanalysis techniques.
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Spectral Galerkin Method for Solving
Helmholtz and Laplace Dirichlet
Problems on Multiple Open Arcs

Carlos Jerez-Hanckes and José Pinto

1 Introduction

We seek solutions of Helmholtz and Laplace equations in a two-dimensional plane
after removing a finite collection of open finite curves—also called arcs. This
setting can be found in areas such as structural and mechanical engineering [2],
or biomedical imaging [11] to name a few. Such problems pose the following
challenges: (1) unbounded domains, which call for boundary integral methods with
carefully chosen radiation conditions; (2) singular behaviors of solutions near arc
endpoints; and (3) large number of degrees of freedom when the wavenumber or
number of arcs increase.

Our approach is to recast the problem as a system of boundary integral equations
defined on the arcs, so as to obtain an integral representation of the volume solution.
Well-posedness for a single arc was proven in [9], with an extension to the multiple
arcs case given in [5]. We will consider numerical approximations of the resulting
surface densities based on Galerkin-Bubnov discretizations of the corresponding
system of boundary integral equations.

In the present note, we start by briefly introducing a spectral scheme to account
for general arcs as well as for a wide wavenumber range. We show that significant
reduction in both memory consumption and computational work can be achieved by
an ad hoc matrix compression algorithm. Moreover, we establish detailed interde-
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pendencies between compression parameters and accuracy. Numerical experiments
validate our claims and point out further improvements.

2 Continuous Model Problem

Let the canonical domain (−1, 1)× {0} be denoted by �̂. We say that g : �̂ → C

is ρ-analytic if the function t 2→ g(t, 0) can be extended to an analytic function
on the Bernstein ellipse of parameter ρ > 1 (cf. [10, Chapter 8]). We say that
* ⊂ R

2 is a regular Jordan arc of class Cm, for m ∈ N, if it is the image of a
bijective parametrization, denoted by r = (r1, r2), such that its components are

Cm(�̂)-functions, r : �̂ → * and ‖r′(t)‖2 > 0, ∀ t ∈ �̂, where ‖·‖2 is the
Euclidean norm. Similarly, we define ρ-analytic arcs as those whose components
are ρ-analytic. Throughout, we will assume that for any * regular Jordan arc, there
exists an extension of * to *̃, which is a closed and keep the same regularity.

Consider a finite number M ∈ N of at least C1-arcs, written {�i}Mi=1, such that
their closures are mutually disjoint. Moreover, we assume that there are disjoint
domains �i whose boundaries are given by extensions ∂�i = �̃i , for i = 1, . . . ,M .
Let us define

� :=
M⋃

i=1

�i and � := R
2 \ �.

We say that� is of class Cm, m ∈ N, if each arc �i is of class Cm and analogously for
the ρ-analytic case. For i ∈ {1, . . . ,M}, let ri : �̂→ �i and gi : �i → C. We claim
that g = (g1, . . . , gM) is of class Cm(�) if gi ◦ ri ∈ Cm(�̂), for i ∈ {1, . . . ,M}. A
similar definition holds for the analytic case.

Let G ⊆ R
d , d = 1, 2, be an open domain. For s ∈ R, we denote by Hs(G)

the standard Sobolev spaces, by Hs
loc(G) their locally integrable counterparts [8,

Section 2.3], and by H̃−s(G) the corresponding dual spaces. The corresponding
duality product (when the dual space of L2(G) is identified with itself) is denoted
〈·, ·〉G. Finally, H̃ s〈0〉(G) refers to mean-zero spaces [5, Section 2.3]. We will also

make use of the following Hilbert space in R
2:

W(G) :=

⎧
⎪⎨

⎪⎩
U ∈ D∗(G) : U(x)√

1+ ‖x‖2
2 log(2+ ‖x‖2

2)

∈ L2(G),∇U ∈ L2(G)

⎫
⎪⎬

⎪⎭
,

where D∗(G) is the dual space of C∞(G) = ∩n>1Cn(G). For s ∈ R and for the
finite union of disjoint open arcs �, we define Cartesian product spaces as

H
s(�) := Hs(�1)×Hs(�2)× · · · ×Hs(�M).
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Spaces H̃s(�) and H̃
s
〈0〉(�) are defined similarly. Also, Hs(�̂) is to be understood as

the Cartesian product
∏M

i=1 H
s(�̂). Finally, given an open bounded neighborhood

Gi such that �i ⊂ ∂Gi , Dirichlet traces are defined as extensions to Hs(Gi), for
s ≥ 1/2, of the following operator (applied to smooth functions):

γ±i u(y) := lim
ε↓0

u(y± εni (y)),

where ni (y) is the unitary vector with direction (r ′i,2(t),−r ′i,1(t)) and t such that

r(t) = y. For a function u defined in an open neighborhood of �i such that γ+i u =
γ−i u, we denote γiu := γ±i u.

Problem 1 (Volume Problem) Let g ∈ H
1
2 (�) and κ ≥ 0. We seek U ∈ H 1

loc(�)

such that

−U − κ2U = 0 in �, (1)

γ±i U = gi for i = 1, . . . ,M, (2)

Condition at infinity(κ). (3)

The behavior at infinity (3) depends on κ in the following way: if κ > 0, we employ
the classical Sommerfeld condition [8, Section 3.9]. If κ = 0, we seek for solutions
U ∈ W(�). This last condition was discussed in detail in [5, Remarks 3.9, 4.2 and
4.5] with uniqueness proofs for κ ≥ 0 provided in [5, Propositions 3.8 and 3.10].

For κ ≥ 0, we can express U solution of Problem 1 as

U(x) =
M∑

i=1

(SLi [κ]λi)(x), ∀ x ∈ �, (4)

where

(SLi[κ]λi)(x) :=
∫

�i

Gκ(x, y)λi(y)d�i(y), ∀ x ∈ �,

denotes the single layer potential generated at a curve �i with Gκ the corresponding
fundamental solution, defined as in [8, Section 3.1]. It is direct from (4) that U

solves (1)–(2) in � (see [8, Theorem 3.1.1]). Also, it displays the desired behavior
at infinity as long as each λi lies in the right functional space [5, Section 4]. In order
to find the surface densities λi , we take Dirichlet traces γ±i of the SLj and impose
boundary conditions (2). This naturally defines of weakly singular boundary integral
operators:

Lij [κ] := 1

2

(
γ+i SLj [κ] + γ−i SLj [κ]

)
= γiSLj [κ],

and an equivalent boundary integral equation problem to Problem 1.
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Problem 2 (Boundary Integral Problem) Let g ∈ H
1
2 (�). For κ > 0, we seek

λ = (λ1, . . . , λM) ∈ H̃
− 1

2 (�) such that

L[κ]λ = g,

where L[κ] : H̃− 1
2 (�)→ H

1
2 (�) is a matrix operator with entries L[κ]ij = Lij [κ],

for i, j ∈ {1, . . .M}. If κ = 0, we seek λ ∈ H̃
− 1

2〈0〉 (�), given g in the dual space of
the aforementioned space.

Theorem 1 (Theorem 4.13 in [5]) For κ > 0, Problem 2 has a unique solution

λ ∈ H̃
− 1

2 (�), whereas for κ = 0 a unique solution exists in the subspace H̃
− 1

2〈0〉 (�).
Also, the following continuity estimate holds

‖λ‖
H̃
− 1

2 (�)
≤ C(�, κ)‖g‖

H
1
2 (�)

.

3 Spectral Discretization

We present a family of finite dimensional subspaces in H̃
− 1

2 (�) that can be used
to approximate the solution of Problem 2 (cf. [4, 6]). Let TN(�̂) denote the space
spanned by first kind Chebyshev polynomials, denoted by {Tn}Nn=0, of degree lower
or equal than N on �̂, orthogonal with the L2(−1, 1) inner product, under the weight
w−1 with w(t) := √1− t2. Now, let us construct elements pi

n = Tn ◦r−1
i over each

arc �i spanning the space TN(�i). For practical reasons, we define the normalized
space:

TN(�i) :=

⎧
⎪⎨

⎪⎩
p̄i ∈ C(�i) : p̄i

n :=
pi
n∥∥∥r′i ◦ r−1
i

∥∥∥
2

, pi
n ∈ TN(�i)

⎫
⎪⎬

⎪⎭
.

We account for edge singularities by multiplying the basis {p̄i
n}Nn=0 by a suitable

weight:

QN(�i) :=
{
qi
n := w−1

i p̄i
n : p̄i

n ∈ TN(�i)
}
,

wherein wi := w ◦ r−1
i . The corresponding basis for QN(�i) will be denoted

{qi
n}Nn=0. By Chebyshev orthogonality, we can easily define the mean-zero subspace

QN,〈0〉(�i) := QN(�i) \ Q0(�i), spanned by {qi
n}Nn=1. With these definitions, we
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set the discretization space for a Galerkin-Bubnov solution of Problem 2 as

HN [κ] :=
⎧
⎨

⎩

∏M
i=1 QN,〈0〉(�i) for κ = 0,

∏M
i=1 QN(�i) for κ > 0.

Problem 3 (Linear System) For κ > 0, let N ∈ N and g ∈ H
1
2 (�) be the same as

in Problem 2. Then, we seek coefficients u = (u1, . . . , uM) ∈ C
M(N+1), such that

L[κ]u = g.

Therein, we have defined the Galerkin matrix L[κ] ∈ C
M(N+1)×M(N+1) composed

of matrix blocks Lij [κ] ∈ C
(N+1)×(N+1) whose entries are

(Lij [κ])lm =
〈
Lij [κ]qj

m, q
i
l

〉

�i

=
〈
L̂ij [κ]w−1Tm,w

−1Tl

〉

�̂
.

There, L̂ij [κ] is the weakly-singular operator whose kernel is parametrized by ri , rj
and right-hand g = (g1, . . . , gM) ∈ C

M(N+1) with components

(gi )l =
〈
gi, q

i
l

〉

�i

=
〈
ĝi , w

−1Tl

〉

�̂
,

where ĝi = gi ◦ ri . The approximation λN ∈ HN [κ] is constructed as

(λN)i =
N∑

m=0

(ui )mq
i
m in �i, for all i ∈ {1, . . . ,M}.

For k = 0 we need g as in Problem 2; we also have u ∈ C
MN , and L[0] ∈ C

MN×MN

since the approximation space is HN [0]. By conformity and density of these spaces

in H̃
− 1

2 (�), one derives the following result:

Theorem 2 (Theorem 4.23 [4]) Let κ ≥ 0, m ∈ N with m > 2, � ∈ Cm, g ∈
Cm(�), and λ be the only solution of Problem 2. Then, there exists N0 ∈ N such
that for every N > N0 ∈ N there is a unique λN ∈ HN [κ] solution of Problem 3.
Moreover, the following error convergence rates hold

‖λ− λN‖
H̃
− 1

2 (�)
≤ C(�, κ)N−m+1.

Moreover, if � and g are ρ-analytic with ρ > 1, we have the following super-
algebraic convergence rates

‖λ− λN‖
H̃
− 1

2 (�)
≤ C(�, κ)ρ−N+2

√
N,

where C(�, κ) is a positive constant, which does not depend on N .
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Remark 1 Observe that the constants C(�, κ) and N0 depend on the geometry and
frequency. To the best of our knowledge previous convergence results for 2D arcs
are somehow limited. For intervals, the result was established in [6] whereas for
more general arc results are only obtained for the Laplace case [1]. Super-algebraic
convergence rates can be achieved by the method detailed in [3], though their
scheme is limited to intervals and to the case of elliptic problems (N0 = 0). More
complex cases are still an open problem.

4 Numerical Implementation and Compression Algorithm

Before fleshing out our proposed compression technique, we explain how L[κ] and
g of Problem 3 are computed. For the right-hand side, one must compute integrals
of the form:

∫ 1

−1
ĝ(t)w−1(t)Tl(t)dt, ∀ l ∈ N0,

which corresponds to Fourier-Chebyshev coefficients of ĝ(t) and can be approxi-
mated using the Fast Fourier Transform [10]. Computations for matrix terms Lij [κ]
are split into two groups: (a) cross-interactions, where test and trial functions
supports lie along curves �i , �j with i �= j ; and (b) self-interactions, where both
trial and test functions are defined on the same curve. As for cross-interactions the
integral kernel is smooth, we use the same computational procedure for the right-
hand side.

For self-interactions, the kernel function has a singularity that can be character-
ized as

Gk(r(t), r(s)) = (2π)−1 log |t − s|J0(k‖r(t)− r(s)‖2)+Gr(t, s), t �= s,

for t, s ∈ �̂, where J0 is the zeroth-order first kind Bessel function, and Gr is
a regular function. Thus, integration for the regular part is done as in the cross-
interaction case, while integrals with the first term as kernel are obtained by
convolution as integrals for log |t − s| are known (see [6, Remark 4.2]).

Yet, as κ increases, larger values of N will be required, and thus, the need
to compress the resulting matrix terms. As stated in [10, Chapters 7 and 8], the
regularity of a function controls the decay of its Fourier-Chebyshev coefficients.
Hence, as the entries of the matrix L[κ] are precisely such coefficients, for a smooth
kernel one observes fast decaying terms. This implies that we can select small
blocks to approximate the matrix and obtain a sparse approximation by discarding
the remaining entries, based on a predetermined tolerance ε > 0. Specifically,
the kernel function is smooth when we compute cross-interactions. Let the routine
Quadrature(l,m) compute the term (l,m) of this interaction matrix using a 2D
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Gauss-Chebyshev quadrature. Given a tolerance ε > 0, we minimize the number of
computations needed by performing the following binary search:

Matrix Compression Algorithm

INPUT: Tolerance (Tol), Max level of search (Lmax)
OUTPUT: Number of columns to use (Ncols)
INITIALIZE: Ncols = N, level = 0, a = 0, b = N
While{level < Lmax}

m = (a+b)/2
Tleft = m-1
Tcenter = m
Tright = m+1
Veft = abs(Quadrature(0,Teft))
Vcenter = abs(Quadrature(0,Tcenter))
Vright = abs(Quadrature(0,Tright))
If{Vright & Vcenter < 0.5*Tol} or {Vleft & Vcenter < 0.5*Tol}

b = m
Else

a = m
EndIF
level++

EndWhile
Ncols = b

The algorithm returns the minimum number of columns required, Ncols , by
searching in the first row the minimum index such that the matrix entries’ absolute
value is lower than ε. The binary search is restricted to a depth Lmax ∈ N. The
same procedure is used to estimate the number of rows, Nrows , by executing a
binary search in the first column. Once Ncols and Nrows are selected, we define
Nε := max{Nrows,Ncols} and compute the block of size Nε × Nε as in the full
matrix implementation.

The matrix compression percentage will strongly depend on the regularity of the
arcs involved. For ρ-analytic arcs, using [10, Theorem 8.1] we can prove the lower
bound:

Nε ≥ − log ε

2ϒ logρ
,

where ϒ is an upper bound for the absolute value of the kernel in the corresponding
Bernstein ellipse. However, since compression is done by a binary search, the bound
for the compression rate depends on Lmax as

Nε ≥ N

2Lmax
.
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Compression of self-interaction blocks does not follow the same ideas. In fact, these
blocks can be characterized as two perturbations over the canonical case, � = �̂ for
κ = 0, leading to a diagonal matrix. Namely, these are

1. A low frequency perturbation caused by the mapping ri : �̂ 2→ �, similar to the
cross-interaction case.

2. A frequency perturbation that creates banded matrices.

In order to reduce memory consumption—though not computational time—we
discard the entries of the self-interaction matrices lower than the given tolerance.

As expected, matrix compression induces an extra error as it perturbs the original
linear system solved by λN in Problem 3. We denote by Lε[k] the matrix generated
by the compression algorithm with tolerance ε, and define the matrix difference
Lε[k] := Lε[k] − L[k]. We seek to control the solution uε = u+u of

(L[k] +Lε [k])uε = g,

where u and g are the same as in Problem 3. In order to bound this error, we will
assume that, for every pair of indices (i, j) in the matrix L[k], we have,

|(Lε[k])ij | < ε. (5)

Theorem 3 Let N ∈ N be such there is only one λN solution of Problem 3. Then,
there is a constant C(�, κ) > 0, not depending on N , such that

‖u‖2

‖u‖2
≤
∣∣∣∣

Nε

C(κ, �) −Nε

∣∣∣∣ .

Proof By [7, Section 1.13.2] we have that

‖u‖2

‖u‖2
≤

∥∥Lε[k]
∥∥

2∥∥(L[k])−1
∥∥

2 −
∥∥Lε[k]

∥∥
2

,

and thus, we need to estimate
∥∥Lε [k]

∥∥
2 and

∥∥∥(L[k])−1
∥∥∥

2
. The bound for the first

term is direct from (5) and matrix norm definitions. By the classical bound of a
matrix inverse and the continuity of the associated boundary integral operator, it
holds that

∥∥∥L[k]−1g
∥∥∥

2
≥ ∥∥L[k]g∥∥−1

2 ≥ C(κ, Γ ),

from where the result follows directly. %&
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We can also estimate the error introduced by the compression algorithm in terms of
the energy norm. In order to do so, define (λε

N )i := ∑N
m=0(u

ε
i )mq

i
m in �i . By the

same arguments in the above proof, we obtain

∥∥λN − λε
N

∥∥
H̃
− 1

2 (�)
≤ C1(κ, �)

∥∥g
∥∥
H(�)

1
2

εN3/2

C2(κ, �)− εN
,

where g is the same that in Problem 2 and C1(κ, Γ ), C2(κ, Γ ) are two different
constants.

Remark 2 Our compression algorithm produces a faster and less memory demand-
ing implementation of the spectral Galerkin method at the cost of accuracy loss,
similar to fast multipole or hierarchical matrices methods. Moreover, once we have
compressed the matrix, we can implement a fast matrixvector product.

5 Numerical Results

To illustrate the above claims, Fig. 1 presents convergence results for different
wavenumbers, κ = 0, 25, 50, 100 for a configuration of M = 28 arcs. As the
chosen geometry and excitation are given by analytic functions, Theorem 2 predicts
exponential rate of convergence as observed numerically.

Table 1 provides matrix compression results for κ = 100 and for the same
geometry of Fig. 1. It presents the percentage of non-zero entries (%NNZ) and
relative errors as bounded in Theorem 3 as functions of the maximum level of binary

(a) Geometry (b) Convergence − 1
2 (Γ)-norm

0 50 100 150 200 250 300

N

10-10

10-5

100

E
rr

or

Fig. 1 (a) Smooth geometry withM = 28 open arcs parametrized as ri (t) = (ai t, ci sin(bi t)+di ),
with ai ∈ [0.14, 0.25], bi ∈ [0, 0.2], ci ∈ [1, 2], di ∈ [0, 20], t ∈ [−1, 1]. (b) Convergence results
for different wavenumbers and a planewave excitation along (1, 1). Errors computed against an
overkill solution using N = 660 per arc
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Table 1 Compression performance for κ = 100

Lmax = 2 Lmax = 3 Lmax = 4

Order % NNZ Rel. error % NNZ Rel. error % NNZ Rel. error

ε = 1e−6

5 65.24 5.05e−01 65.24 5.05e−01 65.24 5.05e−01

10 81.62 5.32e−01 81.62 5.32e−01 81.62 5.32e−01

20 89.41 2.33e−01 88.62 2.33e−01 88.31 2.33e−01

40 77.63 9.10e−04 70.63 9.10e−04 67.11 9.10e−04

60 45.25 2.02e−07 36.68 2.76e−07 33.36 3.31e−07

80 27.20 1.97e−07 21.97 3.17e−07 19.50 3.35e−07

ε = 1e−10

5 65.29 5.05e−01 65.29 5.05e−01 65.29 5.05e−01

10 81.68 5.32e−01 81.68 5.32e−01 81.68 5.32e−01

20 89.86 2.33e−01 89.59 2.33e−01 89.44 2.33e−01

40 83.46 9.10e−04 78.70 9.10e−04 76.28 9.10e−04

60 51.94 2.14e−09 44.87 3.19e−09 40.70 3.89e−09

80 33.86 2.31e−09 26.89 1.73e−08 23.78 1.73e−10

search (Lmax), tolerances (ε), and polynomial order per arc (Order). For low orders
(Order < 60), relative errors are quite large, and therefore, most of the matrix terms
are kept. This is due to an insufficient number of matrix entries to solve the problem
with good accuracy (see Fig. 1), rendering compression pointless. On the other hand,
once convergence is achieved, the compression error drastically decreases along
with the percentage of matrix terms stored.
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Explicit Polynomial Trefftz-DG Method
for Space-Time Elasto-Acoustics

H. Barucq, H. Calandra, J. Diaz, and E. Shishenina

1 Trefftz-DG Formulation for the Elasto-Acoustic Equation

Trefftz methods are particular finite element methods where the basis and test
functions are locally solutions to the partial differential equation that governs the
problem to be solved. Compared to the existing literature for solving frequency
problems, space-time Trefftz methods are still not widely used. One reason could be
that they require using space-time meshes [6, 12]. To our knowledge, few references
on Trefftz approximations of time-dependent wave equations are available and they
mainly address theoretical properties in the case of Acoustics and Electromagnetism
[4, 8, 10, 11]. They provide convergence and stability studies and some numerical
results are displayed by using plane wave bases in 1D+ time dimension. Numerical
in 2D+ time dimensions are proposed in [4] for electromagnetism. There are
also some studies devoted to the second-order formulation of the acoustic wave
equation approximated in Trefftz spaces by the mean of Lagrange multipliers [1, 13].
In [3], we have proposed a Trefftz-DG formulation for elasto-acoustic. The method
required the inversion of a huge sparse matrix. The goal of this paper is to show how
to derive a semi-explicit scheme, requiring only the inversion of a block-diagonal
matrix on each element of the mesh.
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In this section, following [10] and the framework therein, we propose a formula-
tion of the elasto-acoustic coupling reading as a first-order system. Here and further
the sub-scripts F and S corresponds to the acoustic (fluid) and elastodynamic (solid)
domains.

1.1 Elasto-Acoustic Equations

We introduce a space-time domain Q ≡ (�F ∪ �S) × I , where �F ⊂ R
d is a

bounded Lipschitz domain of dimension d filled with fluid, �S ⊂ R
d is a bounded

Lipschitz elastodynamic domain of dimension d filled with solid, and I ≡ [0, T ] is
the time interval. All medium parameters cF ≡ cF (x) and ρF ≡ ρF (x), standing
for the acoustic wave propagation velocity and fluid density respectively, as well
as the inverted stiffness tensor C−1(x) ≡ A(x) and the solid density ρS ≡ ρS(x),
are assumed to be piecewise constant and positive. We denote by �FS = �F ∩
�S the fluid-solid interface. The elasto-acoustic system of equations is based on
the coupling of the first-order acoustic equation, written in terms of velocity vF ≡
vF (x, t) and pressure p ≡ p(x, t) fields:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

c2
FρF

∂p

∂t
+ divvF = f in QF ,

ρF
∂vF
∂t
+∇p = 0 in QF ,

vF (·, 0) = vF 0, p(·, 0) = p0 in �F ,

vF · n�F = gF in ∂�F \�FS × I,

(1)

where n�F is the normal vector to ∂�F , the source term f ≡ f (x, t), the boundary
condition gF , the velocity vF 0 and the pressure p0 are the initial data, with the first-
order elastodynamic system, written in terms of velocity vS ≡ vS(x, t) and stress
tensor (symmetrical and positive) σ ≡ σ (x, t) fields:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
∂ σ

∂t
− ε(vS) = 0 in QS,

ρS
∂vS
∂t
− div σ = 0 in QS,

vS(·, 0) = vS0, σ (·, 0) = σ 0 in �S,

σn�S = gS in ∂�S\�FS × I,

(2)
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where n�S is the normal vector to ∂�S , the boundary condition gF , the velocity vS0
and the stress tensor σ 0 are the initial data. The transmission conditions between
the two systems (2) and (1) represent the continuity of velocity and stress normal
components �FS :

⎧
⎨

⎩
vF · n�FS = vS · n�FS at �FS,

− pn�FS = σn�FS at �FS.
(3)

The velocities aligned with the interface and the tangential stress remain uncon-
strained.

1.2 Space-Time Trefftz-DG Formulation

We introduce a non-overlapping space-time mesh Th on Q composed of space-time
Lipschitz elements KF ⊂ �F × I and KS ⊂ �S × I . We denote by TFh (resp.
TSh) the restriction of Th to the fluid (resp. solid) domain. Let nKF ≡ (nx

KF
, ntKF

)

be the outward-pointing unit normal vector on ∂KF , and nKS ≡ (nx
KS

, ntKS
) be

the outward-pointing unit normal vector on ∂KS . We assume that all medium
parameters are constant in KF and KS respectively. The mesh skeleton Fh ≡⋃
KF,S∈Th

∂KF,S can be decomposed into families of the internal FQ
h faces, the fluid-

solid FFS
h faces, the boundary FD

h faces, the initial and final time F0
h and FT

h

element faces respectively, as it shown in Fig. 1. We introduce the space Vh(Th)

as a subspace of L2(Q) defined by Vh(Th) =
{
φ ∈ L2(Q), φ|KF,S ∈ P

p(KF,S)
}
.

The unknowns (vFh, ph, vSh, σ h) are supposed to be in Vh(Th) ≡ Vh(TFh)
d ×

Vh(TFh)× Vh(TSh)
d × Vh(TSh)

d2
. We consider the test functions ωF , q , ωS , ξ in

Fig. 1 Example of
1D+ time mesh Th covering
Q. The internal element faces
FQ
h are represented by dotted

line, the element faces of
fluid-solid interface FFS

h —by
dash-dotted line, the
boundary element faces
FD
h —by thick line, the initial

F0
h and the final FT

h time
element faces—by double
and dashed line respectively

0

T

KF KS

ΩF ΩS
space domain

tim
e
I
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T(Th) for vF , p, vS and σ respectively, where the Trefftz space T(Th) is defined on
the mesh Th as follows:

T(Th) ≡
{
(ωF , q, ωS, ξ ) ∈ Vh(Th) s. t.

1

c2
F ρF

∂q

∂t
+ divωF = 0, ρF

∂ωF

∂t
+∇q = 0

∀KF ∈ TFh, and A
∂ ξ

∂t
− ε(ωS) = 0, ρS

∂ωS

∂t
− div ξ = 0 ∀KS ∈ TSh

}
.

This space is of Trefftz type since it is a subspace of the regular space Vh(Th)

composed of local solutions of the volumic governing equations (1) and (2) set in
each element KF and KS respectively.

As in the standard DG methods, the next step in order to obtain the variational
formulation consists in multiplying the equations of (1) by the test functions q and
ωF in T(Th), and the equations of (2) by the test functions ξ and ωS in T(Th)

respectively, and, as is standard in space-time DG methods, we integrate by parts
the obtained equations not only in space but also in time:

∑

KF

∫

∂KF

[ 1

c2
FρF

p̆hq ntKF
+ q v̂Fh · nx

KF
+ ρF v̆Fh · ωF ntKF

+ p̂hωF · nx
KF

]
ds+

∑

KS

∫

∂KS

[
A σ̆ h : ξ ntKS

− ξ v̂Sh · nx
KS
+ ρS v̆Sh · ωS n

t
KS
− σ̂ h : (ωS ⊗ nx

KS
)
]
ds =

∑

KF

∫

KF

f qdv. (4)

Thanks to the choice of test functions the left hand side of the above space-time
formulation contains only surface integrals. The numerical fluxes in time v̂Fh, p̂h,
v̂Sh, σ̂ h and in space v̆Fh, p̆h, v̆Sh, σ̆ h are defined in the standard DG notations
[2, 3, 7] as follows:

⎛

⎜⎜⎜⎜⎝

v̂Fh · nx
KF

p̂h

v̂Sh
σ̂ hnx

KS

⎞

⎟⎟⎟⎟⎠
≡

⎛

⎜⎜⎜⎜⎝

vSh · nx
KF
+ δ1(σ hnx

KF
+ phnx

KF
) · nx

KF

ph + α1(vFh · nx
KF
− vSh · nx

KF
)

vSh − δ1(σ hnx
KS
+ phnx

KS
)

−phnx
KS
+ α1(vFh · nx

KS
− vSh · nx

KS
)nx

KS

⎞

⎟⎟⎟⎟⎠
on FFS

h ,

(
v̂Fh · nx

KF

p̂h

)
≡
(
gF

ph + α1(vFh · nx
KF
− gF )

)
,

(
v̂Sh
σ̂ hnx

KS

)
≡
(

vSh − δ1(σ hnx
KS
− gS)

gS

)
on FD

h .
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(
v̂Fh

p̂h

)
≡
(
{{vFh}} + β1[[ph]]x
{{ph}} + α1[[vFh]]x

)
,

(
v̂Sh
σ̂ h

)
≡
(
{{vSh}} − δ1[[σ h]]x
{{ξ }} − γ1[[vFh]]x

)
on FQ

h ,

(
v̆Fh

p̆h

)
≡
(
{{vFh}} + α2[[vFh]]t
{ph}} + β2[[ph]]t

)
,

(
v̆Sh
σ̆ h

)
≡
(
{{vSh}} + γ2[[vFh]]t
{{σ h}} + δ2[[σ h]]t

)
on FQ

h ,

(
v̆Fh

p̆h

)
≡
(

vFh

ph

)
,

(
v̆Sh
σ̆ h

)
≡
(

vSh
σ h

)
on FT

h ,

(
v̆Fh

p̆h

)
≡
(
( 1

2 − α2)vFh + ( 1
2 + α2)vF0

( 1
2 − β2)ph + ( 1

2 + β2)p0

)
,

(
v̆Sh
σ̆ h

)
≡
(
( 1

2 − γ2)vSh + ( 1
2 + γ2)vS0

( 1
2 − δ2)σ h + ( 1

2 + δ2)σ 0

)
on F0

h,

Here, α1, α2, β1, β2, δ1, δ2, γ1, and γ2 are positive penalty parameters. As in
standard DG methods, a suitable choice of these penalty parameters allows one to
prove stability of the overall method. It is shown in [2, 3] that they contribute to
the accuracy and convergence of the numerical method. We refer to [2, 3] for more
details on the definition of the numerical fluxes.

Summing the contribution (4) of all elements KF ,KS ∈ Th, and introducing
the bilinear ATDG(· ; ·) and the linear �TDG

(·) forms for the left-hand side and the
right-hand side expressions respectively, we obtain the Trefftz-DG formulation for
the elasto-acoustic problem:

Seek (vFh, ph, vSh, σ h) ∈ T(Th) such that, for all (ωF , q, ωS, ξ ) ∈ T(Th)

it holds true:

ATDG

(
(vFh, ph, vSh, σ h); (ωF , q, ωS, ξ )

) = �TDG

(
ωF , q, ωS, ξ

)
.

(5)

The analysis of well-posedness of (5) is based on the coercivity and continuity
estimates of the bilinear and linear forms in mesh-dependent norms [2, 3]. The proof
is similar to the one given in [10] where the acoustic wave equation is addressed. In
Sect. 2 we provide the algorithm of the Trefftz-DG formulation (5), and we discuss
different analytical and numerical approaches for its optimization.

2 Implementation of the Algorithm

The numerical implementation of the Trefftz-DG formulation is different from the
standard DG ones which address the space and time integration separately. Standard
DG space integrations have the interesting feature of leading to a block-diagonal
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mass matrix and allow then the use of explicit time integration. The computational
costs thus depend on a CFL condition which sets the value of the time step as a
function of the space step. On the other hand, a naive implementation of Trefftz-
DG methods require performing a space-time integration which leads to invert a
sparse matrix whose size tends to be huge. It is thus not obvious that a crude
implementation of the Trefftz-DG algorithm does not generate additional cost as
compared to standard DG ones.

In this section we provide some important steps of implementation of Trefftz-DG
formulation (5) and discuss optimization techniques. The complete algorithm with
more numerical details can be found in [2, 3].

2.1 Change-Over Between the Time Slabs

To simplify the presentation, we assume here that we use the same order of
approximation on each cells, so that we have N

f
dof degrees of freedom on fluid

cells and Ns
dof degrees of freedom on solid cells. Once we have defined the discrete

approximation space, we can solve the problem inside each element KF and KS ,
communicating the corresponding values at the boundaries ∂KF and ∂KS by the
incoming and outgoing fluxes. Thus, the variational problem is represented by a
algebraic linear system, with a sparse matrix M , of size equals to the total number
of elements Nf,s

el multiplied by the number of degrees of freedom per element Nf,s
dof ,

that is N
f
el × N

f
dof + Ns

el × Ns
dof . When compared to the computational cost of

standard DG implementation, the corresponding Trefftz-DG cost is thus increased
and it is mainly due to the need of inverting the large-sized matrix. The most obvious
way to reduce the size of the matrix, which is classically used in most work on
space-time Trefftz method, is to consider time slabs. We restrict ourselves to the
case of cartesian meshes, but this methodology can also be applied to unstructured
meshed. An alternative is to use tent-pitched meshes that respect the causality,
this will be the topic of a future work. In order to optimize the execution of the
algorithm, we propose to divide the space-time domain Q into Nt elementary time
slabs Q1, Q2, . . . , QNt and to solve the problem slab by slab, considering the final
results, computed in the current time slab at time t , as initial values for the next
slab at time t + t (see Fig. 2). Thus the size of matrix inside each time slab is Nt

Fig. 2 Example of 1D+ time
mesh Th on Q decomposed
into Nt time slabs

KSKF

t0 = 0

T = Δt
t0 = Δt

T = 2Δt

T = N t Δt

ΩF ΩS

N
t
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times smaller, compared to the initial one. Moreover, if the medium parameters are
fixed in time, and the space discretization is preserved from slab to slab, the matrix
can be computed and inverted once, and then re-projected onto the next time slabs,
reducing thus the global numerical cost.

2.2 Polynomial Basis

One of the important advantages of Trefftz type methods is the flexibility in the
choice of basis functions provided they satisfy the Trefftz property locally in each
element. To perform the numerical simulations, we have extended the algorithm
proposed by Maciag in [9] for computing wave polynomials, solutions of the second
order transient wave equation, to the first order acoustic and elastodynamic systems
of dimension one and higher. It consists in computing a polynomial basis, defined in
the reference element, using Taylor expansions of generating exponential functions
which are local solutions of the initial system of equations. An example of space-
time wave polynomial basis for the first-order acoustic wave equation reads as
follows (approximation degree p=3, dimension of the physical space d = 1):

φ̂v
1 = 0 φ̂v

2 = 1 φ̂v
3 = x φ̂v

4 = cF t

φ̂
p

1 = −cF φ̂
p

2 = 0 φ̂
p

3 = −c2
F t φ̂

p

4 = −cF x

φ̂v
5 = − x2

2 −
c2
F t

2

2 φ̂v
6 = −cF xt φ̂v

7 = − x3

6 −
xc2

F t
2

2 φ̂v
8 = − c3

F t
3

6 − x2cF t
2

φ̂
p

5 = c2
F xt φ̂

p

6 = cF (
x2

2 +
c2
F t2

2 ) φ̂
p

7 = cF (
c3
F t3

6 + x2cF t
2 ) φ̂

p

8 = cF (
x3

6 +
xc2

F t
2

2 )

This basis contains the couples of polynomial functions (φ̂v· , φ̂
p· ), corresponding

to the velocity and pressure respectively, which are locally defined and satisfy the
Trefftz property inside each element of the mesh, and of degrees less or equal to p
(p = 0, 1, 2, 3) to provide an approximation of order p. By their construction, the
Trefftz basis functions are not attached to the coordinates of the degrees of freedom
inside the element, contrary to the Lagrange polynomials. Even if we compute only
surface integrals, we can evaluate the final approximation solution in any point of
the element refinement. We refer to [2] for more numerical details as well as for the
acoustic and elastodynamic basis examples of higher dimensions.

2.3 Inversion of the Matrix M Inside a Time Slab

The inversion of the matrix inside the time slab can be explicitly reduced to the
inversion of its block-diagonal component, which corresponds to the integration at
the bottom and top of the time slab (initial and final time faces F0

h and FT
h ), thanks

to the Taylor expansion formulas. More precisely, let us recall the expression for the
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bilinear form ATDG(· ; ·) from Sect. 1.2:

ATDG

(·; ·) ≡
∫

FT
h

+
∫

F0
h︸ ︷︷ ︸

A�
TDG

+
∫

FQ
h

+
∫

FD
h

+
∫

FFS
h︸ ︷︷ ︸

AI
T DG

.

It consists of A�
TDG(·; ·), that corresponds to the integration at the initial and

final time element faces of the time slab, and AI
TDG(·; ·), that corresponds to the

integration at the internal, boundary and fluid-solid element faces. Thus, the matrix
M can be represented by the sum of two matrices �M� and IMI corresponding
to A�

TDG and AI
TDG respectively, as follows:

M = �M� +IMI .

Here, � ∝ (x)d represents the area of the local faces in F0
h and FT

h , and I ∝
(x)d−1t represents the area of the local faces in FQ

h , FD
h and FFS

h respectively.
We refer to [2] for more details.

This decomposition is of particular interest since M� is block-diagonal, each
block corresponding to one element. Indeed, we have:

�M� +IMI =
(
�M�

)(
I+ I

�

M−1
� MI

)
=
(
�M�

)(
I+ κP

)
,

Here I is the identity matrix, κ ≡ I

�
∝ t

x
, and P ≡ M−1

� MI .
If ||κP || is sufficiently small, we can apply the Maclaurin formula in order to

obtain the polynomial expansion for M−1 as follows:

M−1 ≡ (
I+ κP

)−1(
�M�

)−1 = ( ∞∑

n=0

(−1)nκnPn
)(
�M�

)−1
.

This representation reduces the inversion of the sparse matrix M to the inversion
of its block-diagonal component M−1

� and the multiplication of the inverted block-
diagonal M� by the sparse MI . It provides an explicit way for solving the initial
linear system approximately. Even though it requires a CFL—type condition related
to value of ||κP ||, justifying the approximate solution of the system, it significantly
accelerates the algorithm execution.

In Table 1 we compare the numerical accuracy (L2-norm in time and space
of numerical error as a function of cell size x) of the TDG method in a 2D
homogeneous acoustic case for both the exact and approximate matrix inversions
as a function of the mesh size and of the number n of terms in the Taylor expansion.
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Table 1 Accuracy (L2-error in space and in time) of the solution when using the approximate
inversion with n = 3, 4, 5 and the exact inversion

n x = 10−2 x = 2 · 10−2 x = 5 · 10−2 x = 10−1

The approximate inversion (κ = 10−2). Accelerating factor ≈18 times

3 1.4166e−05 4.3741e−05 2.8780e−04 2.5772e−03

4 3.1623e−07 1.2656e−06 5.3868e−05 1.2674e−03

5 2.8903e−07 9.1744e−07 4.1029e−05 1.3010e−03
The exact inversion (κ = 10−2)

· 2.2540e−07 8.9583e−07 5.5811e−05 1.3004e−03

The accelerating factor is the ratio of the computational costs of the two methods for reaching the
same accuracy

3 Numerical Tests

For the numerical implementation of the Trefftz-DG method we have considered a
2D medium composed of two homogeneous rectangular layers: the acoustic one and
the elastodynamic one. We have set a source term at the fluid-solid interface, and two
receivers in the acoustic layer and in the elastodynamic one. The numerical signals
at both receivers have been validated with the analytical solutions computed with
Gar6more code [5]. In Fig. 3 we show the convergence of the numerical velocity
as a function of cell size for different degrees of approximation (p = 0, 1, 2, 3)
computed at receivers in (a) 2D acoustic layer and (b) 2D elastodynamic layer.
In each case, the convergence rate is higher than the corresponding approximation
degree. We refer to [2], where we provide more examples.

(a) (b)

Fig. 3 Convergence of numerical velocity in function of cell size x. (a) 2D acoustic layer. (b)
2D elastodynamic layer
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4 Conclusion

The Trefftz-DG methodology for solving the first order elasto-acoustic system has
demonstrated the important advantages, such as the use of degrees of freedom
evaluated at the element faces only, the flexibility in the choice of the basis functions
and the unconditional stability. However, in its initial form, it still shows some
limitations due to the space-time integration that leads to the representation of
the discrete system by a huge sparse matrix whose straightforward inversion is
very expensive, even when using time slabs. We find ourselves in a situation of
using an implicit scheme for solving the forward problem that risks to overload the
iterative process of the corresponding inverse problem in order to reconstruct very
large propagation domains. Fortunately, thanks to the decomposition of the matrix
by separating the time variables from the space ones, we could benefit from the
block-diagonal structure of the standard DG formulation ending up with an explicit
scheme, that is more convenient from the numerical point of view. The performed
numerical tests clearly illustrate the interest of the split version of discrete problem.
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An hp-Adaptive Iterative Linearization
Discontinuous-Galerkin FEM
for Quasilinear Elliptic Boundary Value
Problems

Paul Houston and Thomas P. Wihler

1 Introduction

In this article, we consider the a posteriori error analysis, in a natural mesh-
dependent energy norm, for a class of interior-penalty hp-version discontinuous
Galerkin finite element methods (DGFEMs) for the numerical solution of the
following quasilinear elliptic boundary value problem:

−∇ · (μ(x, |∇u|)∇u) = f in Ω, u = 0 on Γ. (1)

Here, Ω ⊂ R
2 is a bounded polygon with a Lipschitz continuous boundary Γ , and

f ∈ L2(Ω), where for an open set D ⊆ Ω , we signify by L2(D) the space of all
square integrable functions on D. Additionally, we assume that the nonlinearity μ

satisfies the following assumptions: (A1) μ ∈ C0(Ω × [0,∞)); (A2) there exist
positive constants mμ, Mμ such that mμ(t− s) ≤ μ(x, t)t −μ(x, s)s ≤ Mμ(t− s),
t ≥ s ≥ 0, x ∈ Ω̄ . We remark that, if μ satisfies (A2), there exist constants
β ≥ α > 0, such that for all vectors v,w ∈ R

2, and all x ∈ Ω ,

|μ(x, |v|)v − μ(x, |w|)w| ≤ β|v − w|,
α|v − w|2 ≤ (

μ(x, |v|)v − μ(x, |w|)w) · (v − w);
(2)
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see [14, Lemma 2.1]. For ease of notation, in the sequel, we will simply write μ(s)

instead of μ(x, s), thereby suppressing the explicit dependence of μ on x ∈ Ω .
The weak formulation of (1) is to find u ∈ H1

0(Ω) such that

A(u; u, v) = (f, v)L2(Ω) ∀v ∈ H1
0(Ω), (3)

where, given w ∈ H1
0(Ω), we define the bilinear form A(w; u, v) =∫

Ω μ(|∇w|)∇u · ∇v dx, u, v ∈ H1
0(Ω), as well as the L2(Ω)-inner product

(v,w)L2(Ω) =
∫
Ω
vw dx, v,w ∈ L2(Ω). Here, H1

0(Ω) is the standard Sobolev
space of first order, with zero trace along Γ , equipped with the norm ‖v‖H1

0(Ω) =
‖∇v‖L2(Ω), v ∈ H1

0(Ω). Under the assumptions (A1)–(A2) above, it is elementary
to show that the form A is strongly monotone and Lipschitz continuous in the sense
that

A(u; u, u− v)− A(v; v, u− v) ≥ α‖u − v‖2
H1

0(Ω)
∀u, v ∈ H1

0(Ω), (4)

and

|A(u; u, v)− A(w;w, v)| ≤ β‖u−w‖H1
0(Ω)‖v‖H1

0(Ω) ∀u, v,w ∈ H1
0(Ω),

respectively. From these properties, classical monotone operator theory implies
existence and uniqueness of a solution of (3); see, e.g., [17, Theorem 3.3.23].

The exploitation of automatic adaptive hp-refinement algorithms has the poten-
tial to compute numerical solutions to partial differential equations (PDEs) in
a highly efficient manner, often leading to exponential rates of convergence as
the underlying finite element space is enriched; see, e.g., [11, 16]. The key tool
required to design such strategies is the derivation of a posteriori estimates for
the Galerkin discretization errors; in recent years such bounds have been extended
to the context of linearization and/or linear solver errors, cf. [1, 2, 4, 5, 7, 9]. In
the present article we consider the derivation of an hp-version a posteriori error
bound for the DGFEM approximation of the second-order quasilinear elliptic PDE
problem stated in (1). To this end, we employ the interior penalty DGFEM proposed
in [10], cf. also [12], together with a discrete Kačanov iterative linearization
scheme, cf. [6]. Based on the analysis undertaken in [12], together with the use
of a suitable reconstruction operator, cf. [13, 15], we derive a fully computable
bound for the error, measured in terms of a suitable DGFEM energy norm, which
separately accounts for the three main sources of error: discretization, linearization,
and linear solver errors. On the basis of this a posteriori bound, we design and
implement an hp-adaptive refinement algorithm which automatically controls each
of these error contributions as the underlying finite element space is enriched.
Numerical experiments highlighting the practical performance of the proposed
adaptive strategy are presented.
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2 Iterative Discontinuous Galerkin Methods

2.1 Discrete hp-Discontinuous Galerkin Spaces

Let Th be a partition of Ω into disjoint open and shape-regular elements κ such that
Ω = ⋃

κ∈Th
κ . We assume that each κ ∈ Th is an affine image of a given master

element κ̂, which is either the open triangle {(x, y) : −1 < x < 1,−1 < y < −x})
or the open square (−1, 1)2 in R

2. By hκ we denote the element diameter of κ ∈ Th,
and nκ signifies the unit outward normal vector to κ . We allow Th to be 1-irregular,
i.e., each edge of any one element κ ∈ Th contains at most one hanging node
(which, for simplicity, we assume to be the midpoint of the corresponding edge).
In this context, we suppose that Th is regularly reducible (cf. [18, Section 7.1]
and [12]), i.e., there exists a shape-regular conforming (regular) mesh T̃h (consisting
of triangles and parallelograms) such that the closure of each element in Th is
a union of closures of elements of T̃h, and that there exists a constant C > 0,
independent of the element sizes, such that for any two elements κ ∈ Th and κ̃ ∈ T̃h

with κ̃ ⊆ κ we have hκ/hκ̃ ≤ C. Note that these assumptions imply that Th is of
bounded local variation, i.e., there exists a constant ρ1 ≥ 1, independent of the
element sizes, such that ρ−1

1 ≤ hκ6/hκ7 ≤ ρ1, for any pair of elements κ6, κ7 ∈ Th

which share a common edge e = ∂κ6 ∩ ∂κ7. Moreover, let us consider the set E
of all one-dimensional open edges of all elements κ ∈ Th. Further, we denote by
EI the set of all edges e ∈ E that are contained in the open domain Ω (interior
edges). Additionally, we introduce EB to be the set of boundary edges consisting of
all e ∈ E that are contained in Γ .

For any integer p ∈ N0, we denote by Pp(κ) the set of polynomials of total
degree p on κ . Similarly, when κ is a quadrilateral, we also consider Qp(κ), the
set of all tensor-product polynomials on κ of degree p in each coordinate direction.
To each κ ∈ Th we assign a polynomial degree pκ (local approximation order).
We collect the local polynomial degrees in a vector p = {pκ : κ ∈ Th}, and then
introduce the hp-DGFEM space

VDG(Th,p) = {v ∈ L2(Ω) : v|κ ∈ Spκ (κ) ∀κ ∈ Th} ,

with S being either P or Q. We shall suppose that the polynomial degree vector
p, with pκ ≥ 1 for each κ ∈ T, has bounded local variation, i.e., there exists a
constant ρ2 ≥ 1, independent of the local element sizes and p, such that, for any
pair of neighbouring elements κ6, κ7 ∈ Th, we have ρ−1

2 ≤ pκ6/pκ7
≤ ρ2.

We also define the L2-projection ΠTh,p : L2(Ω)→ VDG(Th,p) by

(ΠTh,pv − v,w)L2(Ω) = 0 ∀w ∈ VDG(Th,p).

Evidently, since functions in VDG(Th,p) do not need to be continuous, we have
that Πκ,pκ = ΠTh,p|κ , where, for κ ∈ Th, we let Πκ,pκ be the L2-projection
onto Spκ (κ).
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2.2 Nonlinear hp-DGFEM Formulation

Let κ6 and κ7 be two adjacent elements of Th, and x an arbitrary point on the
interior edge e ∈ EI given by e = (∂κ6 ∩ ∂κ7)

◦. Furthermore, let v and q

be scalar- and vector-valued functions, respectively, that are sufficiently smooth
inside each element κ6, κ7. Then, the averages of v and q at x ∈ e are given by
〈〈v〉〉 = 1/2(v|κ6 +v|κ7), 〈〈q〉〉 = 1/2(q|κ6+q|κ7), respectively. Similarly, the jumps of
v and q at x ∈ e are given by [[v]] = v|κ6 nκ6+v|κ7 nκ7 , [[q]] = q|κ6 ·nκ6+q|κ7 ·nκ7 ,
respectively. On a boundary edge e ∈ EB, we set 〈〈v〉〉 = v, 〈〈q〉〉 = q and [[v]] = vn,
with n denoting the unit outward normal vector on the boundary Γ .

Furthermore, we introduce the edge functions h, p ∈ L∞(E), which, for an edge
e ∈ E, are given by h|e := he and p|e = 〈〈p〉〉|e , with he denoting the length of e. In
addition, we define the discontinuity penalisation function σ ∈ L∞(E) given by σ =
γ p2h−1, where γ ≥ 1 is a (sufficiently large) constant. Then, we equip the DGFEM
space VDG(Th,p) with the DGFEM norm ‖v‖2

DG :=
∥∥∇Th

v
∥∥2

L2(Ω)
+ ∫

E σ |[[v]]|2 ds,
v ∈ VDG(Th,p), where ∇Th

is the element-wise gradient operator.
With this notation, following [10], we introduce the interior penalty DGFEM

discretization of (3) by: find uDG ∈ VDG(Th,p) such that

ADG(uDG; uDG, v) = (f, v)L2(Ω) ∀v ∈ VDG(Th,p), (5)

where, for given w ∈ VDG(Th,p), we define the DGFEM bilinear form

ADG(w;u, v) =
∫

Ω
μ(|∇Th

w|)∇Th
u · ∇Th

v dx

−
∫

E
〈〈μ(|∇Th

w|)∇Th
u〉〉 · [[v]]ds + θ

∫

EB
〈〈μ(h−1|[[w]]|)∇Th

v〉〉 · [[u]]ds

+
∫

EB
σ [[u]] · [[v]]ds, u, v ∈ VDG(Th,p),

where θ ∈ [−1, 1] is a method parameter. Referring to [10, Theorem 2.5], provided
that γ ≥ 1 is chosen sufficiently large (independent of the local element sizes and
of the polynomial degree distribution), the existence and uniqueness of the DGFEM
solution uDG ∈ VDG(Th,p) satisfying (5) is guaranteed.

Assumption 1 In the sequel, we suppose that there exists a computable a posteriori
error estimate of the form ‖u− uDG‖DG ≤ η(uDG, f ), where u ∈ H1

0(Ω) is the
solution of (1), and uDG is its hp-DGFEM approximation defined in (5).

Remark 1 In the article [12, Theorem 3.2] it has been proved that such a bound
does indeed exist. More precisely, we have that

‖u− uDG‖DG ≤ C

⎛

⎝
∑

κ∈Th

η2
κ +O(f, uDG)

⎞

⎠
1/2

=: η(uDG, f ), (6)
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where, the local error indicators ηκ , κ ∈ Th, are defined by

η2
κ := h2

κp
−2
κ ‖ΠTh,p−1(f + ∇ · (μ(|∇uDG)∇uDG))‖2

L2(κ)

+ hκp
−1
κ ‖ΠE,p−1([[μ(|∇uDG|)∇uDG]])‖2

0,∂κ\Γ + γ 2h−1
κ p3

κ‖[[uDG]]‖2
L2(∂κ)

,

(7)

and O(f, uDG) := ∑
κ∈Th

O(1)
κ +

∑
e∈EI O(2)

e is a data oscillation term. For κ ∈Th

and e∈EI, we haveO(1)
κ := h2

κp
−2
κ ‖(I−ΠTh,p−1)|κ(f+∇·(μ(|∇uDG|)∇uDG))‖2

0,κ ,

and O(2)
e := hep̄

−1
e ‖(I−ΠE,p−1)|e ([[μ(|∇Th

uDG|)∇Th
uDG]])‖2

0,e, where I denotes
a generic identity operator. Here, we write p − 1 := {pκ − 1}κ∈Th

. Additionally,
we denote by ΠE,p−1|e the L2-projector onto Pp̄e−1(e), where we let pe =
max{pκ6, pκ7}, with κ6, κ7 ∈ Th, e = ∂κ6∩∂κ7. Moreover,C > 0 in (6) is a constant
that is independent of the local element sizes, the polynomial degree vector p, and
the parameters γ and θ .

2.3 Iterative DGFEM

In order to provide a practical solution scheme for the nonlinear hp-DGFEM
system (5) we propose a linearization approach based on a discrete Kačanov
fixed point iteration, see, e.g., [6]. To this end, we begin by selecting an initial
guess u0

DG ∈ VDG(Th,p). Then, for n ≥ 1, given un−1
DG ∈ VDG(Th,p), we solve

the linear hp-DGFEM formulation, defined by

ADG(u
n−1
DG ; unDG, v) = (f, v)L2(Ω) ∀v ∈ VDG(Th,p), (8)

for unDG ∈ VDG(Th,p). We emphasize that, in actual computations, the linear sys-
tem (8) may be solved by an iterative algorithm, thereby generating an approximate
numerical solution ûnDG ∈ VDG(Th,p), with ûnDG ≈ unDG. This means that, in practice,
instead of computing the sequence {unDG}n≥0 obtained from the iteration (8), an
inexact sequence {̂unDG}n≥0 is generated such that

ADG(̂u
n−1
DG ; ûnDG, v) ≈ (f, v)L2(Ω) ∀v ∈ VDG(Th,p). (9)

From a mathematical view point, this (inexact) iterative linearization DGFEM
approach gives rise to three different sources of error:

1. Discretization error, which is expressed by the residual

ρn
DG := ADG(̂u

n
DG; ûnDG, ·)− (f, ·)L2(Ω). (10)
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2. Linearization error, which is given in terms of the residual ψn
DG ∈ VDG(Th,p):

(ψn
DG, v)L2(Ω) := ADG(̂u

n
DG; ûnDG, v) − ADG(̂u

n−1
DG ; ûnDG, v) ∀v ∈ VDG(Th,p).

(11)

We observe that, if (1) is linear, then we immediately obtain ψn
DG = 0.

3. Linear solver error, which is described by a residual λnDG ∈ VDG(Th,p):

(λnDG, v)L2(Ω) := ADG(̂u
n−1
DG ; ûnDG, v) − (f, v)L2(Ω) ∀v ∈ VDG(Th,p).

(12)

Note that, if (8) is solved exactly, then we have ûn−1
DG = un−1

DG and ûnDG = unDG, and
it follows that λnDG = 0.

Remark 2 Since VDG(Th,p) may not need to be continuous along element inter-
faces, the linearization and linear solver residuals ψn

DG and λnDG, respectively, can be
computed elementwise, i.e., in parallel, and, hence, at a low computational cost.

The aim of the analysis in the following section is to investigate the above
residuals, and then to provide a computable a posteriori error estimate for the
error ‖u− ûnDG‖DG between the solution u of (1) and ûnDG ∈ VDG(Th,p).

2.4 A Posteriori Error Estimation

In order to bound the residual ρn
DG in (10), we apply an elliptic reconstruction

technique along the lines of the works [13, 15], see also [7]. Specifically, we define
an auxiliary function ũn ∈ H1

0(Ω) to be the unique solution of the weak formulation

A(̃un; ũn, v) = (f + ψn
DG + λnDG, v)L2(Ω) ∀v ∈ H1

0(Ω),

where ψn
DG and λnDG are the linearization and linear solver residuals from (11)

and (12), respectively. Upon adding (11) and (12), we notice that

ADG(̂u
n
DG; ûnDG, v) = (f + ψn

DG + λnDG, v)L2(Ω) ∀v ∈ VDG(Th,p).

In particular, we observe that ûnDG is the DGFEM approximation of ũn based on
employing the (nonlinear) DGFEM scheme defined in (5). In particular, we may
exploit the a posteriori error estimate in Assumption 1 to infer the computable
bound

‖ũn − ûnDG‖DG ≤ η(̂unDG, f + ψn
DG + λnDG). (13)
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We now turn to bounding the elliptic reconstruction error u − ũn ∈ H1
0(Ω); to

this end, we first observe that ‖u − ũn‖DG = ‖u − ũn‖H1
0(Ω). Then, employing the

strong monotonicity property (4), and recalling the weak formulation (3), we obtain

α‖u− ũn‖2
DG ≤ A(u; u; u− ũn)− A(̃un; ũn, u− ũn)

= −(ψn
DG, u− ũn)L2(Ω) − (λnDG, u− ũn)L2(Ω).

Employing the Cauchy-Schwarz inequality, together with the Poincaré-Friedrichs
inequality, ‖v‖L2(Ω) ≤ CPF‖∇v‖L2(Ω) for all v ∈ H1

0(Ω), where CPF > 0 is a
constant, we deduce that

‖u− ũn‖DG ≤ Ψ n
DG +Λn

DG, (14)

where the linearization and linear solver residuals are given, respectively, by

Ψ n
DG := CPF/α

⎛

⎝
∑

κ∈Th

‖ψn
DG‖2

L2(κ)

⎞

⎠
1/2

, Λn
DG := CPF/α

⎛

⎝
∑

κ∈Th

‖λnDG‖2
L2(κ)

⎞

⎠
1/2

.

Summarizing the above analysis leads to the following result.

Theorem 1 Suppose that Assumption 1 is satisfied. Then, given a sequence of
(possibly inexact) DGFEM approximations {̂unDG}n≥0 ⊂ VDG(Th,p), cf. (9), for n ≥
1, the following a posteriori error bound holds:

‖u− ûnDG‖DG ≤ η(̂unDG, f + ψn
DG + λnDG)+ Ψ n

DG +Λn
DG.

Here, u is the analytical solution of (1), ψn
DG and λnDG are the residuals defined in (11)

and (12), respectively, and α > 0 is the constant occurring in (2) and (4).

Proof The result follows immediately upon application of the triangle inequality,
i.e., ‖u − ûnDG‖DG ≤ ‖u − ũn‖DG + ‖ũn − ûnDG‖DG, and inserting the bounds (13)
and (14).

Remark 3 We note that the above analysis naturally applies to other finite element
schemes, provided that Assumption 1 is satisfied.

2.5 Adaptive Iterative hp-DGFEM Procedure

In this section we introduce an automatic hp-refinement algorithm which ensures
that each of the three components of the error, namely discretization, linearization,
and linear solver, are controlled in a suitable fashion. To this end, we propose the
following strategy, cf. [9].
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Algorithm 1 Given a (coarse) starting mesh Th, with an associated (low-
order) polynomial degree distribution p, and an initial guess û0

DG ∈ VDG(Th,p).
Set n← 1.

1: Compute the DGFEM solution ûnDG from (9) based on employing an itera-
tive linear solver. Furthermore, evaluate the corresponding error indicators
η(̂unDG, f + ψn

DG + λnDG), Ψ
n

DG, and Λn
DG.

2: if

Ψ n
DG +Λn

DG ≤ Υ η(̂unDG, f + ψn
DG + λnDG) (15)

holds, for some given parameter Υ > 0, then hp-adaptively refine the space
VDG(Th,p); go back to step (1:) with the new mesh Th (and based on the
previously computed solution ûnDG interpolated on the refined mesh).

3: else, i.e., if (15) is not fulfilled, then set n ← n + 1, and perform another
linearization step by going back to (1:).

4: end if

In Step 2 of Algorithm 1, if (15) is fulfilled then the space VDG(Th,p) is
adaptively hp-refined based on first marking elements for refinement according
to the size of the local element indicators ηκ , cf. (7). To this end, we exploit the
maximal strategy whereby elements are marked for refinement which satisfy the
condition ηκ > 1/3 maxκ∈Th

ηκ . Secondly, once an element κ ∈ Th has been marked
for refinement, we undertake either local mesh subdivision or local polynomial
enrichment based on employing the hp-refinement criterion developed within the
article [8]. Finally, when (15) is not fulfilled, rather than determining which source
of error, i.e., the (computable) quantitiesΨ n

DG or Λn
DG from (11) and (12), respectively,

is dominant, we choose to always undertake a further linearization step, and hence
a further linear solver step is also computed, since this ensures that the most up to
date approximation ûnDG is employed at all times.

3 Application to Quasilinear Elliptic PDEs

In this section we present numerical experiments to highlight the performance of the
proposed iterative hp-refinement procedure outlined in Algorithm 1. To this end, we
set the interior penalty parameter constant γ to 10 and the steering parameter Υ to
1/4. The solution of the resulting set of linear equations is computed using an ILU(0)
preconditioned GMRES algorithm.

For the first numerical experiment, we let Ω = (0, 1)2 and define the nonlinear
coefficient as μ(|∇u|) = 2 + (1 + |∇u|)−1. The right-hand forcing function f

is selected so that the analytical solution to (1) is given by u(x, y) = x(1 −
x)y(1 − y)(1 − 2y)e−20(2x−1)2

. In Fig. 1 we present a comparison of the actual
error measured in terms of the energy norm versus the square root of the number of
degrees of freedom in VDG(Th,p). From Fig. 1a we clearly observe exponential
convergence of the proposed hp-refinement strategy as VDG(Th,p) in enriched.
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Furthermore, in Fig. 1b we plot the individual residual error indicators; for this
smooth problem, we notice that the discretization indicator (denoted as ηn in
the figure) is always dominant, while the linearization and linear solver residuals
(denoted as Ψ n and λn, respectively) are roughly of the same magnitude.

Secondly, we let Ω denote the L-shaped domain (−1, 1)2\[0, 1)×(−1, 0] ⊂ R
2

and select μ(|∇u|) = 1 + exp(−|∇u|2). By writing (r, ϕ) to denote the system
of polar coordinates, we choose the forcing function f and an inhomogeneous
boundary condition such that the analytical solution to (1) is u = r2/3 sin

(
2/3ϕ

)
,

cf. [3]. In Fig. 2 we now present a comparison of the actual error measured in terms
of the energy norm versus the third root of the number of degrees of freedom in
VDG(Th,p); as before we again attain exponential convergence of the proposed
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Fig. 1 Example 1. (a) Comparison of the DGFEM norm of the error and the a posteriori bound,
with respect to the square root of the number of degrees of freedom; (b) individual error estimators
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Fig. 2 Example 2. (a) Comparison of the DGFEM norm of the error and the a posteriori bound,
with respect to the third root of the number of degrees of freedom; (b) individual error estimators
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hp-refinement strategy as VDG(Th,p) is adaptively refined, though convergence
of the a posteriori error estimator is no longer monotonic. Indeed, from Fig. 2b,
we observe that once an hp-mesh refinement has been undertaken, then several
linearization/solver steps may be required to ensure that the numerical solution
has been computed to a sufficient accuracy before future refinements may be
undertaken.

4 Conclusions

In this article we have derived a computable hp-version a posteriori error bound
for the DGFEM approximation of a second-order quasilinear elliptic PDE problem,
whereby a discrete Kačanov iterative linearization scheme is employed. The
resulting computable upper bound directly takes into account discretization error,
as well as the errors stemming from linearization and the underlying linear solver.
Numerical experiments highlighting the performance of this bound within an
automatic hp-refinement algorithm are presented.

Acknowledgements TW acknowledges the support of the Swiss National Science Foundation
(SNF), Grant No. 200021_162990.
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Erosion Wear Evaluation Using
Nektar++
Manuel F. Mejía, Douglas Serson, Rodrigo C. Moura, Bruno S. Carmo,
Jorge Escobar-Vargas, and Andrés González-Mancera

1 Introduction

Wear is a common phenomenon on many machines and devices, it is characterised
by the removal or loss of material. Erosion wear is a particular wear process which
occurs when solid particles or droplets, carried by a fluid (liquid or gas), impact on
a solid surface [1]. Turbomachinery such as pumps, turbines and pipe accessories
(i.e. tees, elbows, nozzles, valves), are examples of elements affected by the erosion
wear, decreasing the performance and the lifetime. In many industrial sectors e.g.
energy and mining, and oil & gas; massive amounts of resources are used for
maintenance and replacement of affected parts [2–4]. Despite this phenomenon have
been broadly investigated [5–14] there are still unsolved challenges in establishing
the influence of small eddies during the erosion process leading to modest accuracy
levels in the simulation results.
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Due to the microscopic nature of erosion, the smallest scales in the flow play a
fundamental role in the complete process. One of the aspects which has not been
carefully studied in erosion wear modelling is the effect that the smaller eddies
and secondary flows have on the particles interactions with the surface. In general,
these secondary flows could not be represented using linear Reynolds Average
Navier Stokes (RANS) simulations, this is mainly because the Reynolds stress
imbalance is neglected and the secondary flow does not develop. As was mention
by Gross and Fasel [15], predictions of the secondary flow require non-linear
Reynolds stress, full Reynolds-stress models, Large Eddy Simulations (LES) or
Direct Numerical Simulation (DNS). Due to their relatively low computational cost,
RANS models often used to predict on erosion using CFD in industrial simulations.
The inclusion of smaller eddies and secondary flows in the simulation could be
a major breakthrough in the modelling of erosion process. In order to capture in
an accurate way the physics related with the small eddies and secondary flows, a
numerical technique capable to represent those processes, is needed. As emphasised
by Jacobs [16], the use of spectral methods could allow increased accuracy in the
simulation due to the potential to simulate a wider range of scales. With this in mind,
the purpose of this work is to assess the impact of higher resolution methods on the
prediction of erosion wear rate and distribution.

1.1 Spectral Methods

Several numerical techniques are used to solve Navier Stokes (NS) equations. Some
of them are finite differences, finite volumes and finite elements. Nevertheless, when
high accuracy is required the use of a lot of elements is needed in the modelling,
which significantly increase the computational cost [17, 18]. Hence novel methods
are subject of research to offer a better rate accuracy and computational cost.

Among novel numerical methods considered nowadays are spectral methods,
which have shown to be a powerful tool with high level of accuracy for solving
large problems in computational fluid dynamics (CFD), according to the available
literature, especially in the studies developed by Boyd [19], Canuto et al. [20–22],
Trefethen [23, 24] and Sherwin [25, 26]. Nektar++ is an open-source software
framework designed to support the development of high-performance scalable
solvers for partial differential equations using the spectral/hp element method[27].
High Order CFD methods have been receiving considerable attention in the past two
decades. Traditional CFD software could be replaced by high order code in many
applications in few years [28].

1.2 Particles Tracking

To the best of the authors’ knowledge, there is no work that uses high order
methods to evaluate erosion wear rate. This research aims to assess the impact of
higher resolution methods on the prediction of erosion wear rate and distribution. It
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comprises the solution of fluid flow using incompressible NS solver with implicit
LES modelling, the implementation of a Lagrangian particle tracking model and the
later data processing through traditional erosion rate models but using the available
high order information. This could allow the evaluation of traditional rate models
with more spatial resolution and accuracy.

The Lagrangian particle tracking model is based on one-way coupling approach,
that is the most simple case when just the iteration between the fluid and each
particle is taking into account in just one way. That means that the particles are
moved by the fluid but the fluid flow is not perturbed by the particles. Moreover, the
effects of the collision between particles are also neglected. The one-way coupling
model is valid for volume concentrations of particles lower than 10−6 [29, 30].

The problem of predicting particle motion in a fluid flow can be predicted by
solving an evolution equation in time:

d vp
d t
= F(u, ρ, ρp,Cd, . . .) ; d xp

d t
= vp (1)

where vp and xp are the particle velocity and position and F is a function of the
velocity of the fluid u, the density of the fluid ρ and particle density ρp, among
others.

To start, it is necessary to obtain the velocity on a certain point from the eulerian
velocity field. This process consists of finding the element containing the particle
and interpolating the velocity with the element information. In a higher-order
velocity element field, the use of linear interpolation is inaccurate and could vanish
the advantage won with the use of high order methods. On the other hand, using high
order interpolation could be computationally expensive. Therefore, special attention
to this procedure is required [16, 31, 32].

1.3 Erosion Wear Evaluation

Once the information about the collisions is complete, the erosion wear model is
used to predict the pattern of material removed. The general erosion equation, based
on the work of Finnie [33–38] can be presented as

W = kFsV
n
p f (θ) (2)

W is the erosion rate or material removed by collision, k is a wall material
dependent constant, Fs is the particle geometric factor, Vp and n are the collision
velocity and the velocity exponent, and f (θ) is a function of collision angle. Several
authors define these values for different materials configurations and test cases.
Three of the most used models, which include experimental results are the jet
impingement test [39–45], elbow erosion [46–49], and the works of the Wong et al.
[4, 46, 50, 51].
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2 Implementation

This section describes the implementation of erosion wear in Nektar++. To achieve
this objective is important to have in mind the partition of the problems into two
parts. The first one is the particle tracking as a filter within the Nektar++ incom-
pressible Navier Stokes solver. A filter in Nektar++ is a module for calculating a
variety of useful quantities from the field variables as the solution evolves in time
[27].

The second one is implemented as a FieldConvert module to evaluate the erosion
of each collision and generate the fields on the boundaries walls. FieldConvert is a
utility embedded in Nektar++ with the primary aim of allowing the user to work
with the Nektar++ output files, some of the modules within FieldConvert allow the
user to postprocess the output data [27].

2.1 Particles Tracking

The first step was the implementation of a ODE time solver. Several options are
available, but having into account the discrete time flow fields calculated with the
Navier Stokes incompressible solver, and to avoid the use of temporal interpolation,
the selected option was the Adams-Bashforth (AB) and Adams-Moulton (AM)
schemes.

The implementation was tested with a benchmark case presented in [31]. In this
model, the particle velocity is the fluid velocity at certain point and the evolution
equation is reduced to one equation; Eq. 1 is reduced to:

d xp
d t
= u (3)

To solve this system a Time-Marching Method was implemented, meaning that
the future values are evaluated using the present and past values of the variables.
Explicit AB and Implicit AM methods were implemented using first to fourth
integration order. The error values obtaining using AB and AM with different order
presents features from this kind of methods.

The next step was the implementation of the solid particles. In this case, the
momentum equation is evaluated on each particle, resulting:

d vp
d t
= Fd

(
u− vp

)+ g
ρp − ρ

ρp
; d xp

d t
= vp (4)

Fd = 3
4
CdRepρp

νd2
p

(5)
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Rep = (u−vp)dp
ν

(6)

Cd =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

24/Rep, Rep < 0.5

24/Rep

(
1+ 0.15Re0.687

p

)
, 0.5 < Rep < 1000

0.44, Rep > 1000

(7)

where Fd is the drag force, Rep is the Reynolds Number based on the diameter
of the particle, g is the gravity acceleration, and Cd is the drag force evaluated on
each particle.

Figure 1 shows a diagram of the evolution equation. Current position, velocities
and forces are evaluated to get the future positions (BP, OP) until the next position
is located outside of the domain (NP). When this happens, the evolution algorithm
stop and a function is used to evaluate the collision point (CP) and the position after
of collision (NP’) using the high order information about the walls.

2.2 Erosion Wear Evaluation

Erosion rate per collision (Eq. 2) has to be integrated over each element of the eroded
surface. For each particle collision, more material is removed from the surface,
the elemental erosion rate has to take into account this cumulative effect over the
surface.

As mentioned before, the set of parameters used in this work, has been based
on experimental data. One of the most used parameter set is the one proposed by
Erosion group of the University of Tulsa [38, 48, 52]. The erosion rate takes the
form of Eq. 2, Fs = 1 for sharp (angular), 0.53 for semi-rounded, or 0.2 for fully
rounded sand particles. Vp is the impact velocity and n = 1.73. The angle function
has the form:

f (θ) =
⎧
⎨

⎩
aθ2 + bθ, for θ ≤ φ

x cos2(θ) sin(wθ)+ y sin2(θ)+ z for θ > φ
(8)

Fig. 1 Evolution of particle tracking
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All the parameters and empirical constants depend on the material being eroded.
For velocity in ft/s, the steel-sand parameters are: a = 38.4, b = 22.7 φ = 1,
x = 0.3147, y = 0.03609, w = 0.2532 and z = 0 [53].

3 Test Case

To test the new feature in Nektar++, a Backward Facing Step (BFS) model was
developed based on the experimental setup of [30, 32, 54] showed in Fig. 2. In
the model developed in this work, the simulations were done with the addition of
gravitational effects on the −y direction. In original experiments the air at the inlet
is a well development turbulent flow (ū = 10.5 m/s), this is used a inlet condition
and, to complete the model, a zero pressure condition at the output. The additional
boundaries were set as walls. A zero velocity field was set as initial condition. The
particles used have a 70µm diameter and 8808 kg/m3 density.

Figure 3 (top) shows a snapshot of the velocity field when the statistically
stationary regime is reached (t = 8 s), next the particles are released and were
convected by the flow. Particular trajectories are shown in grey lines in Fig. 3
(bottom). In the same figure, results of the particle collision with the walls,
computed with Eq. 2, are also shown.

From the results presented Fig. 3, the typical BFS velocity profiles can be
recognised. It is important to note the details behind the step, the main flow
originates the secondary eddies and defines the limit of the recirculation zone
(x/H= 7 from the step) where backflow occurs. Additionally, interesting details
appear in between each main velocity flow ripple and the walls along the x-direction.

It is noteworthy that particle tracking is evaluated using a steady velocity field,
therefore the existence of several irregularities is expected, for instance, particle tra-
jectories inside recirculation zone. Erosion rate depends on the number of collisions
at specific points. It is a localised phenomenon that does not occur continuously in
the domain. Its distribution shows a strong dependence on the flow dynamics.

Fig. 2 Geometry of the Backward Facing Step setup. The initial velocity was set to get a Re =
18,600
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Fig. 3 BFS case results. Top: Velocity field at a statistically stationary condition. Bottom:
Distribution of the particles inside the flow (gray lines). The colours in the walls indicate the
location of the normalised erosion rate

4 Conclusion and Future Work

This work presented a method developed to asses the erosion wear rate using a
high-order (spectral) element based technique on a modified test case implemented
in Nektar++. The methodology proposed in this study have a potential to increase
the accuracy when solving this kind of problems. Future research activities are going
to be focused on the determination of accuracy improvements and optimisation of
the proposed methodology. Several more cases have to be tested to produce solid
conclusions about the implemented methodology, as well as a detailed comparison
with experimental test cases.

Despite the methodology implemented had several important simplifications,
as the use of one-way coupling and the few forces taken into account, allowed
quicker implementations and results. This work would be an interesting starting to
implement this kind of simulations using Nektar++. However, to run more realistic
cases, additional research efforts are required for the implementation of two-way
and four-way coupling and the effects of other forces over each particle.
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An Inexact Petrov-Galerkin
Approximation for Gas Transport
in Pipeline Networks

Herbert Egger, Thomas Kugler, and Vsevolod Shashkov

1 Introduction

The flow of gas in a horizontal pipeline of constant cross section is described by [2]

A∂tρ + ∂xm = 0 (1)

∂tm+ ∂x

(
m2

Aρ
+ Ap

)
= − λ

2D

|m|
Aρ

m. (2)

Here A andD are the cross section and diameter of the pipe, and λ is a dimensionless
friction parameter. The functions ρ, p, and m describe the density, pressure, and
mass flow rate of the gas. Under isothermal flow conditions, one has

p = c2ρ (3)

with constant c denoting the speed of sound. In practically relevant scaling regimes,
the nonlinear term on the left hand side of (2) is usually neglected, which can be
justified by an asymptotic analysis [2, 7]. Using this simplification and Eq. (3) to
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eliminate the density, one arrives at evolution problems of the general form

a∂tp + ∂xm = 0 (4)

b∂tm+ ∂xp = −dm (5)

where a and b are positive constants and d = d(p,m) denotes a state dependent
friction coefficient. For our analysis, we will consider d = d(x) as a function
depending only on space which can be justified, e.g., by linearization around a
steady state. Corresponding models for the gas flow on pipe networks are obtained
by coupling the flow equations for single pipes via algebraic conditions [9, 10]; see
below.

The discretization of (4)–(5) and its extension to pipeline networks has been
discussed intensively in the literature. In [9], a Galerkin approximation for (1)–(2)
with cubic Hermite polynomials is investigated numerically. The discretization of
transient gas flow models is also studied [2, 5, 8]. An entropy stable finite volume
method is proposed in [10], and an energy stable mixed finite element approximation
is investigated in [3]. Apart from [9], all methods discussed above are of lowest order
and no rigorous convergence analysis is given.

In this paper, we study the discretization of (4)–(5) by a Petrov-Galerkin
approach of potentially high order. The resulting scheme is shown to be stable
which allows us to prove order optimal convergence rates. By using an appropriate
functional analytic setting, the convergence results can be generalized almost
verbatim to pipeline networks. A hybridization strategy will be discussed that
facilitates the implementation and that allows to incorporate non-standard coupling
conditions. The proposed method formally also allow to treat nonlinear models of
gas transport and, in principle, high order convergence can be obtained in practically
relevant regimes.

2 Notation and Preliminaries

Let xL < xR and denote by Lp(xL, xR) and Wk,p(xL, xR), k ≥ 0 the standard
Lebesgue and Sobolev spaces. The scalar product and norm of L2(xL, xR) are
written as (v,w) and ‖v‖ = ‖v‖L2 . Other norms will be designated by subscripts.
We write Hk(xL, xR) = Wk,2(xL, xR) for the Hilbert spaces and define

H 1
0 = {v ∈ H 1(xL, xR) : v(xL) = v(xR) = 0} and H(div) = H 1(xL, xR)

for convenience. The reason for introducing the space H(div) will become clear
when considering networks, where the spaces H 1 and H(div) have different
continuity properties across junctions. By Lp(0, T ;X) and Wk,p(0, T ;X) we
denote the Bochner spaces of functions f : [0, T ] → X with values in X. The
value of f (t) may then itself be a function. In the following, we consider the linear
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system

a∂tp(x, t)+ ∂xm(x, t) = f (x, t), (6)

b∂tm(x, t)+ ∂xp(x, t)+ d(x)m(x, t) = g(x, t), (7)

for xL < x < xR and t > 0 with homogeneous boundary conditions

p(xL, t) = p(xR, t) = 0. (8)

Inhomogeneous and more general boundary conditions can be considered as well
and our analysis applies with minor modifications. We will assume that

(A1) a, b are positive constants, and
(A2) d ∈ L∞(xL, xR) with 0 < d ≤ d(x) ≤ d and constants d, d .

For given f, g ∈ L2(0, T ;L2(xL, xR)) and initial values p(0) ∈ H 1
0 , m(0) ∈

H(div), existence of a unique solution follows from semigroup theory. Any smooth
solution of problem (6)–(8) also satisfies p(t) ∈ H 1

0 , m(t) ∈ H(div), and

(a∂tp(t), q̃)+ (∂xm(t), q̃) = (f (t), q̃) (9)

(b∂tm(t), ṽ)+ (∂xp(t), ṽ)+ (dm(t), ṽ) = (g(t), ṽ) (10)

for all ṽ, q̃ ∈ L2(xL, xR) and all 0 < t < T . This variational characterization will
be the starting point for our discretization approach introduced in the next section.

3 Petrov-Galerkin Approximation

Let xL = x0 < x1 < . . . < xN = xR be a partition of the interval [xL, xR] into
elements Tn = [xn−1, xn]. We call Th := {Tn : 1 ≤ n ≤ N} the mesh and denote by
hn = |xn− xn−1| and h = maxn hn the local and global mesh size, respectively. Let

Pk(Th) := {v ∈ L2(xL, xR) : v|T ∈ Pk(T ) ∀T ∈ Th} (11)

be the space of piecewise polynomials on the mesh Th. We fix k ≥ 1 and search for
approximations for the solutions p(t), m(t) of problem (6)–(8) in the spaces

Qh = Pk(Th) ∩H 1
0 and Vh = Pk(Th) ∩H(div) (12)

of continuous piecewise polynomials with appropriate boundary conditions. As
finite dimensional test spaces for the variational problem (9)–(10), we choose

Q̃h = Pk−1(Th) and Ṽh = Pk−1(Th) (13)
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consisting of discontinuous piecewise polynomials of lower order k− 1. We denote
by Ikh : H 1(xL, xR) → Pk(Th) ∩ H 1(xL, xR) the H 1-projection operator, defined
by

(I kh v)(xk) = v(xk) for all 0 ≤ k ≤ N, (14)

and (∂xI
k
hv, ṽh) = (∂xv, ṽh) for all ṽh ∈ Pk−1(Th), (15)

and let πk−1
h : L2(xL, xR)→ Pk−1(Th) be the L2-orthogonal projection, satisfying

(πk−1
h v, ṽh) = (v, ṽh) for all ṽh ∈ Pk−1(Th). (16)

Note that both projection operators Ikh and πk−1
h can be defined locally on every

element. Moreover, they are mutually related to each other by the commuting
diagram property

∂xI
k
hv = πk−1

h ∂xv for all v ∈ H 1(xL, xR). (17)

For the approximation of problem (6)–(8), we then use the following approximation.

Problem 1 (Inexact Petrov-Galerkin Method) Find functionsph ∈H 1
0 (0,T ;Qh),

mh ∈ H 1(0, T ;Vh) with ph(0) = Ikhp(0) and mh(0) = Ikhm(0), and such that

(a∂tph(t), q̃h)+ (∂xmh(t), q̃h) = (f (t), q̃h) (18)

(b∂tmh(t), ṽh)+ (∂xph(t), ṽh)+ (dπk−1
h mh(t), ṽh) = (g(t), ṽh) (19)

for all q̃h ∈ Q̃h = Pk−1(Th) and ṽh ∈ Ṽh = Pk−1(Th), and for all 0 ≤ t ≤ T .

The well-posedness of this problem follows from the results of the next section.

4 Discrete Stability Estimates

We now derive some discrete stability estimates that yield well-posedness of the
semidiscrete method and that allow us to establish error estimates of optimal order.

Lemma 1 Let ph, mh denote a solution of Problem 1. Then

a‖πk−1
h ph(t)‖2 + b‖πk−1

h mh(t)‖2

≤ C(T )

(
a‖πk−1

h ph(0)‖2 + b‖πk−1
h mh(0)‖2 +

∫ t

0

1

a
‖πk−1

h f (s)‖2 + 1

b
‖πk−1

h g(s)‖2ds

)

with constant C(T ) ≤ CT and C independent of T and the solution.
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Proof Let us first note that (πk−1
h qh, π

k−1
h q) = (qh, π

k−1
h q) for all q ∈

H 1(xL, xR). By testing (18)–(19) with qh = πk−1
h ph(t) and vh = πk−1

h mh(t),
we then get

d

dt

(
a

2
‖πk−1

h ph(t)‖2 + b

2
‖πk−1

h mh(t)‖2
)

= (a∂tph(t), π
k−1
h ph(t))+ (b∂tmh(t), π

k−1
h mh(t))

= −(∂xmh(t), π
k−1
h ph(t))− (∂xph(t), π

k−1
h mh(t))− (dπk−1

h mh(t), π
k−1
h mh(t))

+ (πk−1
h f (t), πk−1

h ph(t))+ (πk−1
h g(t), πk−1

h mh(t)).

By identity (17), integration-by-parts, and the boundary conditions (8), one can
verify that (∂xmh(t), π

k−1
h ph(t)) + (∂xph(t), π

k−1
h mh(t)) = 0. Via Cauchy-

Schwarz and Young inequalities, and using positivity of d , we then obtain the
estimate

d

dt

(
a

2
‖πk−1

h
ph(t)‖2 + b

2
‖πk−1

h
mh(t)‖2

)

= −(dπk−1
h mh(t), π

k−1
h mh(t))+ (πk−1

h f (t), πk−1
h ph(t))+ (πk−1

h g(t), πk−1
h mh(t))

≤ α

2
(a‖πk−1

h ph(t)‖2 + b‖πk−1
h mh(t)‖2)+ 1

2α
(

1

a
‖πk−1

h f (t)‖2 + 1

b
‖πk−1

h g(t)‖2).

The Gronwall lemma and the choice α = 1/T finally yields the assertion. %&
Note that the above estimate does not yet give full control over the solution. A
repeated application, however, allows us to prove the following stability estimate.

Lemma 2 Let ph, mh denote a solution of Problem 1. Then

‖ph(t)‖2 + ‖mh(t)‖2

≤ C′(T )
(
‖πk−1

h
ph(0)‖2 + ‖πk−1

h
mh(0)‖2 + h‖πk−1

h
∂tph(0)‖2 + h‖πk−1

h
∂tmh(0)‖2

+
∫ t

0
‖πk−1

h
f (s)‖2 + ‖πk−1

h
g(s)‖2ds + h‖πk−1

h
∂t f (s)‖2 + h‖πk−1

h
∂t g(s)‖2

)

for all 0 ≤ t ≤ T with C′(T ) = C′T and C′ independent of T and of the solution.

Proof As a direct consequence of the Poincaré inequality, one has

‖ph‖ ≤ ‖πk−1
h ph‖ + h‖∂xph‖ and ‖mh‖ ≤ ‖πk−1

h mh‖ + h‖∂xmh‖.
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The first terms in these estimates are already covered by Lemma 1. From the two
Eqs. (18)–(19) with q̃h = ∂xmh(t) and ṽh = ∂xph(t), we further deduce that

‖∂xmh(t)‖2 ≤ (‖πk−1
h f (t)‖ + a‖πk−1

h ∂tph(t)‖)‖∂xmh(t)‖ and

‖∂xph(t)‖2 ≤ (‖πk−1
h g(t)‖ + b‖πk−1

h ∂tmh(t)‖ + d‖πk−1
h mh(t)‖)‖∂xph(t)‖.

Bounds for ‖πk−1
h ∂tph(t)‖ and ‖πk−1

h ∂tmh(t)‖ can be obtained by formally differ-
entiating (18)–(19) with respect to time and applying Lemma 1 for the resulting
system. A combination of the above estimates then yields the assertion of the
lemma. %&
Remark 1 Problem 1 formally amounts to a finite dimensional system of differential
algebraic equations. From the stability estimates of Lemma 2 and [6, Theorem 4.12],
one can deduce that this system is solvable for any choice of admissible initial
values. The semidiscretization is thus well-defined. Further note that the stability
constants in Lemma 1 and 2 are independent of the polynomial degree k.

5 Error Estimates

As usual, we decompose the error according to ‖p−ph‖ ≤ ‖p−Ikhp‖+‖Ikh p−ph‖
and ‖m − mh‖ ≤ ‖m − Ikhm‖ + ‖Ikhm − mh‖ into approximation and discrete
error components. The first part can be handled by the following estimates [11]. To
simplify notation, we assume that the mesh is quasi-uniform in the following.

Lemma 3 Let w ∈ Hs+1(Th), 0 ≤ s ≤ k. Then

‖w − Ikhw‖ ≤ C
(
h
k

)s+1 |w|s+1;h. (20)

For any w ∈ L2(xL, xR) ∩Hs(Th), 0 ≤ s ≤ k, one has

‖w − πk−1
h w‖ ≤ C

(
h
k

)s |w|s;h. (21)

Here Hs(Th) = {w ∈ L2(xL, xR) : w|T ∈ Hs(T )} is the space of piecewise smooth
functions and |w|s;h := (

∑
T ‖∂sxw‖2

L2(T )
)1/2 is the corresponding seminorm.

Moreover, the constant C in the estimates is independent of h and k.

Using Eqs. (9)–(10) and (18)–(19) characterizing the continuous and the discrete
solutions, one can see that the discrete error components p̂h(t) := Ikhp(t) − ph(t)

and m̂h(t) := Ikhm(t) − mh(t) satisfy Eqs. (18)–(19) with initial values p̂h(0) = 0
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and m̂h(0) = 0, and right hand sides given by

f̂ (t) := a(Ikh ∂tp(t) − ∂tp(t)) and

ĝ(t) := b(Ikh ∂tm(t)− ∂tm(t))+ d(πk−1
h Ikhm(t)−m(t)).

By the a-priori estimates of Lemma 2, one then obtains the following result.

Lemma 4 Let d ∈ P0(Th) be piecewise constant. Then for all 0 ≤ t ≤ T one has

‖Ikhp(t) − ph(t)‖2 + ‖Ikhm(t)−mh(t)‖2

≤ C′′(T )
(
h‖Ikh ∂tp(0)− ∂tp(0)‖2 + h‖Ikh ∂tm(0)− ∂tm(0)‖2

+
∫ t

0
‖Ikhm(s)−m(s)‖2 + ‖Ikh ∂tp(s) − ∂tp(s)‖2 + ‖Ikh ∂tm(s)− ∂tm(s)‖2

+ h‖Ikh ∂ttp(s)− ∂ttp(s)‖2 + h‖Ikh ∂ttm(s)− ∂ttm(s)‖2ds
)
,

with a constant C′′(T ) = C′′T and C′′ independent of h, k, T , and of the solution.

Proof We apply Lemma 2 for p̂h(t) = Ikhp(t)−ph(t) and m̂h(t) = Ikhm(t)−mh(t)

and then estimate the terms on the right hand side of the result step by step. By
definition of the initial values, we have p̂h(0) = m̂h(0) = 0. Moreover,

πk−1
h ∂tph(0) = πk−1

h f (0)− ∂xmh(0) = πk−1
h f (0)− ∂xI

k
hm(0)

= πk−1
h f (0)− πk−1

h ∂xm(0) = πk−1
h ∂tp(0),

where we used the definition of the initial value mh(0) in the second and (17)
in the third step. Thus ‖πk−1

h ∂t p̂h(0)‖ ≤ ‖Ikh ∂tp(0) − ∂tp(0)‖, and in a similar
manner, one can show ‖πk−1

h ∂t m̂h(0)‖ ≤ ‖Ikh ∂tm(0) − ∂tm(0)‖. This explains
the first two terms in the estimate in the lemma. The terms under the integral are
derived by estimating ‖πk−1

h f̂ (t)‖, ‖πk−1
h ĝ(t)‖ and the derivatives ‖πk−1

h ∂t f̂ (t)‖,
‖πk−1

h ∂t ĝ(t)‖ via the triangle inequality, and noting that

πk−1
h (dπk−1

h Ikhm(t)− dm(t)) = dπk−1
h (I khm(t)−m(t)),

where we used that d is piecewise constant. %&
Remark 2 A similar result can be proven for piecewise smooth d ∈ W 1,∞(Th) and
additional terms of the form ‖d−π0

hd‖‖πk−1
h p(t)−p(t)‖ arise. For d ∈ W 1,∞(Th),

the product of the two terms again has optimal approximation order.

By combination of the above estimates, we finally obtain the following result.
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Theorem 1 Let (A1)–(A2) hold and d ∈ W 1,∞(Th). Furthermore, let (p,m) be a
sufficiently smooth solution of (6)–(8). Then for all 0 ≤ t ≤ T , one has

‖p(t) − ph(t)‖ + ‖m(t)−mh(t)‖ ≤ C(u, p, T )
hk+1

kk
.

For sufficiently smooth solutions, the proposed method thus converges at optimal
order in h and at almost optimal order in the polynomial degree k.

6 Extension to Networks

We now illustrate that our method and the convergence results of the previous
section can be generalized easily to pipe networks. Let (V,E) denote a directed
graph with vertices v ∈ V and edges e ∈ E; see Fig. 1 for illustration. For any edge
e = (v1, v2), we define ne(v1) = −1 and ne(v2) = 1. The matrix N with entries
Nij = nej (vi) then is the incidence matrix of the graph. For any vertex v ∈ V, we
define E(v) = {e : e = (v, ·) or e = (·, v)}, and we set V0 = {v ∈ V : |E(v)| > 1}
and V∂ = {v ∈ V : |E(v)| = 1} which gives a decomposition V = V0 ∪V∂ into
interior and boundary vertices.

To every edge e, we associate a positive length �e, and we identify e with [0, �e]
in the sequel. This allows us to define spaces Lp(E) = {v : v|e ∈ Lp(e)} and
H 1(E) = {v ∈ Lp(E) : v|e ∈ H 1(e)} of, respectively, integrable and piecewise
smooth functions on the graph. The flow of gas in a pipe network is then described
as follows: On every edge e representing a pipe, we require that

ae∂tp
e + ∂xm

e = f e (22)

be∂tm
e + ∂xp

e + deme = ge, (23)

where f e = f |e denotes the restriction of a function f ∈ Lp(E) to one edge. The
equations for the individual pipes are coupled by algebraic conditions

∑
e∈E(v) m

e(v)ne(v) = 0 v ∈ V0 (24)

pe(v) = pe′ (v) v ∈ V0, e, e′ ∈ E(v) (25)

at the pipe junctions, and at the boundary vertices, we assume that

pe(v) = 0 v ∈ V∂ . (26)
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Fig. 1 Directed graph (V,E)
modeling the pipe network
topology used for numerical
tests v1 v2

v3

v4

v5 v6
e1

e 2

e3

e 4

e5

e 6

e7

Inhomogeneous and other types of boundary conditions can again be incorporated
with minor modifications. For the analysis of the problem, we now utilize the spaces

H 1
0 := {p ∈ H 1(E) : (25) and (26) are valid} (27)

H(div) := {m ∈ H 1(E) : (24) is valid} (28)

which are the natural generalization of those used for the analysis on a single pipe.
Any solution (p,m) of (22)–(26) then again satisfies p(t) ∈ H 1

0 , m(t) ∈ H(div),
and

(a∂tp(t), q̃)+ (∂xm(t), q̃) = (f (t), q̃) (29)

(b∂tm(t), ṽ)+ (∂xp(t), ṽ)+ (dm(t), ṽ) = (g(t), q̃) (30)

for all q̃ ∈ L2(E), ṽ ∈ L2(E), and all 0 < t < T . Here (v,w) =∑
e(v

e,we)e with
(ve,we)e =

∫
e v

ewedx denotes the scalar product on L2(E).

Remark 3 Let us note that (29)–(30) has exactly the same form as the variational
problem (18)–(19) on a single pipe. The inexact Petrov-Galerkin method and all
results derived in the previous sections therefore translate almost verbatim to the
network setting; let us refer to [4] for details and similar results for a different
method, and to Sect. 9 for numerical illustration.

7 Remarks on the Efficient Implementation

In the discretization of (29)–(30), also compare with (18)–(19), the continuity and
boundary conditions (24)–(26) are directly incorporated in the definition of the
spaces Qh ⊂ H 1

0 and Vh ⊂ H(div). For the implementation, it may be more
convenient to use larger spaces Qh,Vh ⊂ H 1(E), and to enforce some of the
boundary and coupling conditions (24)–(26) explicitly by additional equations.
Using the wording of [1], this approach of relaxing continuity conditions might
be called hybridization. Since the resulting method is algebraically equivalent to the
original scheme based on function spaces with incorporated coupling and boundary
conditions, all results of the previous sections apply verbatim also to the method
obtained after hybridization.
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8 Nonlinear Problems

The formal extension of the Petrov-Galerkin method to nonlinear problems is
straight-forward. The discrete variational formulation for (1)–(2), for instance, reads

(A∂tρh(t), q̃h)+ (∂xmh(t), q̃h) = 0

(∂tmh(t), ṽh)+ (∂x

(
mh(t)

2

Aρh(t)
+ Aph(t)

)
, ṽh) = −( λ

2D

|mh(t)|
Aρh(t)

πk−1
h mh(t), ṽh).

Numerical quadrature can be used in practice to facilitate the handling of the
nonlinear terms. We do not give a complete convergence analysis here, but instead,
we will demonstrate by numerical tests that for smooth solutions, the convergence
results of Theorem 1 remain valid, at least in the practically relevant case of
nonlinear friction.

9 Numerical Results

We now illustrate the theoretical results of Sect. 5 by numerical tests. For our
computations, we consider the pipe network depicted in Fig. 1. As a first test case,
we consider the linear problem (22)–(25) with inhomogeneous boundary conditions

p|v(t) = pv(t) v ∈ V∂ (31)

and we set pv1(t) = 1 and pv6(t) = 1 + 1
2 sin(πt) in the following. All pipes are

chosen of unit length � = 1 and the model parameters are set to a ≡ b ≡ d ≡ 1.
The simulation is started from a stationary state for the boundary values at initial
time. The results of the computations are summarized in the left column of Table 1.
As predicted by our theoretical results, we observe second order convergence.

We now repeat our numerical tests for the same network but with a semilinear

gas flow model resulting from (1)–(3) by dropping the nonlinear term ∂x(
m2

Aρ
) in

Table 1 Errors eh = (a‖ph(T )−ph/2(t)‖2+b‖mh(T )−mh/2(T )‖2)1/2 at time T = 10 obtained
with the Petrov-Galerkin approximation for the network problem with different gas flow models:
linear model (left), semilinear model (middle), and quasilinear model (right)

h Linear eoc Semilinear eoc Quasilinear eoc

0.10000 0.01936 – 0.02359 – 0.02534 –

0.05000 0.00482 2.00 0.00660 1.83 0.00693 1.87

0.02500 0.00120 2.00 0.00168 1.97 0.00200 1.79

0.01250 0.00030 2.00 0.00042 1.99 0.00076 1.40

0.00625 0.00008 2.00 0.00011 2.00 0.00036 1.09
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Fig. 2 Flow rates at boundary vertices v1 and v6 for linear, semilinear, and quasilinear flow models

Eq. (2). The model parameters are chosen as A = 1, c = 1, and λ/(2D) = 7/2; the
latter was selected such that average of the resulting mass flow was similar to that
of the linear model considered above. The computational results are depicted in the
middle column of Table 1. Also for this nonlinear friction model, we observe second
order convergence. These results can be explained theoretically in a similar way as
those for the linear case by using a perturbation argument. In the right column of
Table 1, we display the corresponding results for the quasilinear flow model (1)–
(3) with the same parameters as used in the semilinear case. Note that a decrease
in the convergence rates to first order is observed here. This is no surprise, since
our analysis heavily relied on the anti-symmetry of the spatial derivative terms in
(18)–(19), which is no longer valid for the quasilinear model (1)–(2).

In Fig. 2, we display the flow rates m|v at the boundary vertices v1 and v6 for the
three different gas flow models discussed above as function of time. The results are
in reasonable agreement. In summary, the semilinear model seems to yield the best
compromise between modelling errors and convergence order.
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New Preconditioners for Semi-linear
PDE-Constrained Optimal Control
in Annular Geometries

Lasse Hjuler Christiansen and John Bagterp Jørgensen

1 Introduction

Large-scale optimization problems that are constrained by partial differential
equations (PDEs) play a key role in various fields of science and engineering [2, 10].
As a challenge, the size and complexity of the PDE-constraints presents severe
computational difficulties that often prevent the use of general-purpose black-box
optimizers. As a consequence, cost efficient, specialized solvers become essential
[1, 3, 7, 8]. As a contribution in this direction, this paper demonstrates how to extend
seminal ideas of Shen [15–17] to construct fast and memory-efficient optimizers
for the class of semi-linear PDE-constrained optimization problems with non-linear
reaction kinetics

min
y, u∈Uad

1

2

∫

Ω

(y(x)− yd(x))
2dx + ρ

2

∫

Ω

u(x)2dx, (1a)

s.t. −Δy +G(y) = u in Ω. (1b)

The paper focuses on the specific cases of either homogeneous (1) Dirichlet or (2)
Neumann boundary conditions, where Ω ⊂ R

2 is an annular domain of the type

Ω := {(x, y) ∈ R
2| a ≤ x2 + y2 ≤ b}, 0 < a < b. (2)

For a given non-linear reaction term, G(·), and Tikhonov regularization parameter,
ρ > 0, the control problem (1) aims to determine the optimal state and control
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variables, (y∗, u∗), that minimize the objective (1a). Here the optimal solution must
belong to the set of feasible pairs, (y, u), that satisfy the PDE-constraints (1b) and
the additional admissibility condition, u ∈ Uad. To be concrete, this paper focuses
on the case of bi-lateral point-wise control constraints

Uad := {u ∈ L2(Ω) : ua ≤ u(x) ≤ ub a.e. in Ωd }. (3)

Point-wise bounds of the type (3) appear in a number of practical applications,
where the control must satisfy, e.g., operational limitations that are not naturally
captured by the underlying PDE (1b). In the limiting case, where ua := −∞ and
ub := ∞, the admissible set becomes Uad = L2(Ωd). This corresponds to the case
where the PDE (1b) constitutes the only constraint.

1.1 Main Contributions and Outline

This paper contributes to a recent series of efforts by the authors that seek
to construct fast, iterative solvers for a range of PDE-constrained optimization
problems by exploiting the properties of customized spectral bases [4–6]. This series
of work aims to introduce a high-order alternative to the widely-used constellation
of low-order finite-element methods and Schur-complement preconditioners that
currently predominates the literature on PDE control [12–14]. Previous efforts have
mainly considered distributed control of elliptic and parabolic non-linear diffusion-
reaction systems. The main focus has been on problems in rectangular domains,
where PDEs constitute the only constraints. As a natural extension, this paper
investigates how to modify the existing methods to account for (1) bound constraints
of the type (3) and (2) different geometries. For the sake of brevity, the paper restricts
attention to annular domains (2). However, with slight modifications, the approach
generalizes to cylindrical geometries of the type

ΩC := {(x, y, z) ∈ R
3| a ≤ x2 + y2 ≤ b, z ∈ (0, h)}, 0 < a < b. (4)

As the main contribution, this work proposes a collection of Poisson-like precon-
ditioners that are customized for efficient solution of the control problems (1) by a
semi-smooth Newton (SSN) strategy [9]. Similar to a traditional Newton method,
the SSN scheme solves (1) iteratively by finding a locally optimal solution to the
non-linear Karuhn-Kush-Tucker (KKT) optimality conditions by solving a sequence
of linearized, variable-coefficient subproblems. Direct solution of the subproblems
is often time consuming and requires considerable memory-allocation. To this end,
the new preconditioners are designed to promote efficient solution of the SSN
subproblems by appropriate Krylov subspace (KSP) methods. Following seminal
ideas of Shen [16], the preconditioners rely on fast direct solvers for constant-
coefficient problems that exploit (1) the structure of boundary-adapted spectral
bases and (2) the separable nature of annular domains. As the main feature, inversion
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of the preconditioners decouples to form to a sequence of independent 2×2 systems.
This implies that the preconditioners can be applied matrix-free and scale linearly
with the problem size. In addition, the independence of the 2 × 2 systems makes
the preconditioners amenable to parallelization. To establish proof-of-concept, a
numerical case study solves (1), where G(·) is given by a cubic non-linearity.
The results demonstrate computational efficiency and show that the preconditioners
respond well to different problem sizes, boundary conditions, point-wise bound
constraints and various choices of the regularization parameter, ρ > 0.

To establish the necessary background, Sect. 2 outlines how to solve the optimal
control problem (1) using the SSN scheme. Further, to motivate the contributions
of this paper, the section discusses some of the computational challenges that
arise from discretization of the associated linearized subproblems. These challenges
naturally leads to the construction of the new Poisson-like preconditioners in Sect. 3.
Section 4 presents numerical results, while Sect. 5 draws overall conclusions and
addresses future work.

2 Motivation: A Semi-smooth Newton Method

This paper solves the control problem (1) by a semi-smooth Newton strategy [9].
The SSN scheme seeks to generate a locally optimal solution, (y, u), by solving the
first-order necessary optimality system

−Δy +G(y)−H(p) = 0 in Ω, (5a)

−Δp +Gy(y)p + ϕy(y) = 0 in Ω. (5b)

Here the boundary conditions of the original problem (1) are preserved, Gy denotes
the Fréchet derivative of G with respect to the state variable, y, and the optimal
control satisfies u = H(p) = max(ua,min(ρ−1p(x), ub)). In the special case
Uad := L2(Ω), it can be shown that u = H(p) = ρ−1p [18]. In the concrete
case of annular domains (2), the system (5) can be recast to polar coordinates. To
this end, define the functions

Y (t, θ) := y(r(t) cos(θ), r(t) sin(θ)), P (t, θ) := p(r(t) cos(θ), r(t) sin(θ)),
(6)

where r(t) := b−a
2 (t+c), t ∈ [−1, 1], c = b+a

b−a . The optimality system then reads

−ΔtY + κG(Y )− κH(P) = 0 in QR (7a)

−ΔtP + κGY (Y )P + κϕY (Y ) = 0 in QR, (7b)
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where ΔtY :=
(
((t + c)Yt )t + 1

(t+c)Yθθ
)

, κ = (t+c)(b−a)2

4 and QR := [−1, 1] ×
[0, 2π). To solve the KKT conditions (7), the SSN scheme considers the system as
an operator equation F(y, p) = 0 and solves it by generating a recursive sequence
of iterates, xi := (Yi , Pi), 1 ≤ i ≤ k, where the next iterate, xk+1 := (Y, P ), is
found by solution of the linearized optimality conditions:

−ΔtY + C0(xk)Y − C1(xk)P = f (xk) in Ω, (8a)

−ΔtP + C0(xk)P + C2(xk)Y = g(xk) in Ω. (8b)

Here C0(xk) := κGY (Yk), C1(xk) := κHP (Pk), C2(xk) := κ(GYY (Yk)Pk +
ϕYY (Yk)) and

f (xk) := κ(GY (Yk)Yk −G(Yk)− (HP (Pk)Pk −H(Pk))), (9a)

g(xk) := κ(GYY (Yk)PkYk + ϕYY (Yk)Yk − ϕY (Yk)), (9b)

where Hp denotes the generalized Newton derivative of H with respect to the
adjoint variable, P, i.e.,

HP (P) = 1

ρ

⎧
⎨

⎩
1 if ua ≤ 1

ρ
P ≤ ub,

0 otherwise.
(10)

2.1 Numerical Challenges: Discretization of the SSN
Subproblems

As a numerical challenge, the SSN scheme relies on successive solution of coupled
PDEs in the form (8). Upon discretization, this leads to repeated solution of
large saddle-point problems. To illustrate the associated difficulties, consider a
spectral-Galerkin discretization of the linear subproblems (8). To this end, define
the boundary-adapted approximation spaces

VN := {v ∈ PN : av(±1)+bv′(±1) = 0}, FM := span{eik(·), M/2 ≤ k ≤ M/2−1}.
(11)

Let K := N ·M and define SK := VN × FM. The discrete Galerkin approximation
of (8) then seeks to find Y, P ∈ SK such that

〈(t + c)Yt , vt 〉 + 〈(t + c)−1Yθ , vθ 〉 + 〈C0Y − C1P, v〉 = 〈f, v〉 ∀v ∈ SK,

(12a)

〈(t + c)Pt , vt 〉 + 〈(t + c)−1Pθ , vθ 〉 + 〈C0P + C2Y, v〉 = 〈g, v〉 ∀v ∈ SK,

(12b)
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where 〈v,w〉 :=
∫ 2π

0

∫ 1

−1
vw dtdθ. To represent the approximate solutions, YN,M

and PN,M, consider the truncated series expansions

YN,M(t, θ) :=
M/2−1∑

k=−M/2

N−2∑

m=0

ŷl(k)mψm(t)e
ikθ , PN,M(t, θ) :=

M/2−1∑

k=−M/2

N−2∑

m=0

p̂l(k)mψm(t)e
ikθ ,

(13)

where l(k) := k + M
2 . Now, define the (N − 1)× (N − 1) matrices associated with

the basis {ψk}N−2
k=0 :

aij = 〈(c + t)ψ ′j , ψ ′i 〉, A = (aij )i,j=0..N−2, (14)

bij = 〈(c + t)−1ψj ,ψi〉, B = (bij )i,j=0..N−2. (15)

Note that appropriate choices of the basis functions {ψk}N−2
k=0 ∈ Vn will be

constructed in Sect. 3. Further, let Γ and Ξ denote the M ×M diagonal matrices
defined by

γmn = 〈ein(·), eim(·)〉 = 2πδmn, ξmn = mn〈ein(·), eim(·)〉 = 2πnmδmn, (16)

where δmn denotes the Kronecker delta. Finally, consider the (MN × 1) vectors

ŷ := (ŷ0, . . . , ŷM−1), ŷk = {ŷjk}N−2
j=0 , (17)

p̂ := (p̂0, . . . , p̂M−1), p̂k = {p̂jk}N−2
j=0 , (18)

Ĝ := (ĝ0, . . . , ĝM−1), ĝk = {〈g,ψj e
ik(·)〉}N−2

j=0 , (19)

F̂ := (f̂0, . . . , f̂M−1), f̂k = {〈f,ψj e
ik(·)〉}N−2

j=0 . (20)

The discretized linear subproblem (8) can then be written in matrix form

[
MC2 B+MC0

B+MC0 −MC1

]

︸ ︷︷ ︸
A

[
ŷ

p̂

]

︸ ︷︷ ︸
x

=
[
Ĝ

F̂

]

︸ ︷︷ ︸
b

, (21)

where B = Γ ⊗A+Ξ ⊗ B. Here the matrices MC�, � = 1, 2, 3 are defined by the
elements

(mc�)ij = 〈Ciψke
im(·), ψle

in(·)〉, (22)
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where i, j satisfy that

i = n(N − 1)+ (l + 1), j = m(N − 1)+ (k + 1), (23a)

0 ≤ k, l ≤ N − 2, 0 ≤ n,m ≤M − 1. (23b)

3 New Poisson-Like Preconditioners

As a significant challenge to the numerical solution of (7), the SSN scheme relies
on repeated solution of saddle-point problems (21) of dimension 2(N − 1)M ×
2(N − 1)M . Consequently, direct solution strategies often become computational
intractable. As a cost efficient alternative, the following introduces new precondi-
tioners that seek to accelerate the inner SSN subproblems (8) by using appropriate
Krylov subspace methods to solve the associated preconditioned linear systems

P−1
k Akxk = P−1

k bk. (24)

Concretely, this paper proposes approximative constraint preconditioners of the type

Pk =
[

M̂C2 B̂+ M̂C0

B̂+ M̂C0 −M̂C1

]
. (25)

Following ideas of traditional Poisson preconditioners, the new preconditioners
are constructed by approximating each block of the SSN subproblem (21) by the
matrices, B̂ and M̂c�, � = 0, 1, 2, that come from a spectral Galerkin discretization
of the corresponding constant-coefficient problem that determines Y, P ∈ SK such
that

〈CAYt , vt 〉 + 〈CBYθ , vθ 〉 + 〈C0Y − C1P, v〉 = 〈f, v〉 ∀v ∈ SK, (26a)

〈CAPt , vt 〉 + 〈CBPθ , vθ 〉 + 〈C0P + C2Y, v〉 = 〈g, v〉 ∀v ∈ SK, (26b)

where CA = c, CB = c

c2 − 1
and Ci = 1

2

(
max
Ω

Ci(xk)+min
Ω

Ci(xk)

)
, i =

0, 1, 2.
To be efficient, the new preconditioners crucially rely on carefully chosen basis

functions {ψk}N−2
k=0 for the discrete approximation space, VN (11). To this end, this

paper uses Fourier-like (FL) bases that were originally introduced by Shen and
Wang in the context of traditional initial-boundary-value problems [17]. As a key
property to construction of the preconditioners, the FL bases lead to diagonal mass-
and stiffness matrices, i.e.,

Mij = (〈ψj ,ψi〉)ij = λj δj,i , Sij = (〈∂tψj , ∂tψi〉)ij = δj,i . (27)
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The FL bases can be constructed as part of an offline preprocessing stage in two
steps:

1. Let {Lk(·)}Nk=0 be the Legendre polynomials. Then there exists a unique set of
coefficients {ak, bk}N−2

k=0 such that

φk := ck
(
Lk + akLk+1 + bkLk+2

) ∈ Vk+2, ck := (
√−bk(4k + 6))−1.

Furthermore, the mass matrix, MA = (〈φj , φi〉)ij , is penta-diagonal and
symmetric positive definite, whereas the stiffness matrix, SA = (〈∂xφj , ∂xφi〉)ij ,
becomes diagonal [15]. In the concrete cases of Dirichlet and Neumann boundary
conditions, the coefficients, {ak, bk}N−2

k=0 are given by respectively

ak = 0, bk = −1 and ak = 0, b0 = 1/2, bk = −k(k + 1)/((k + 2)(k + 3)).
(28)

2. The second step computes the diagonalization Λ = QTMAQ, where Q = (qij )

denotes the matrix of eigenvectors and {λi}N−2
i=1 are the associated eigenvalues.

Using the matrix Q, the FL basis can be constructed by the linear combinations:

ψk(x) =
N−2∑

j=0

qjkφj (x), 0 ≤ k ≤ N − 2. (29)

3.1 Efficient Inversion of the Preconditioners

As the main feature of the preconditioners, Pk, the following describes an efficient
inversion procedure that exploits the orthogonal structures of the FL bases (27). To
this end, consider the following preconditioning problem that is solved during each
iteration of the KSP method:

[
M̂C2 B̂+ M̂C0

B̂+ M̂C0 −M̂C1

]

︸ ︷︷ ︸
Pk

[
ŷk

p̂k

]

︸ ︷︷ ︸
zk

=
[
Ĝk

F̂ k

]

︸ ︷︷ ︸
Akxk

. (30)
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Note that (30) corresponds to the discrete first-order necessary optimality conditions
associated with the constant-coefficient optimal control problem (26). Hence, by
definition (22), it follows that

B̂ = CAΓ ⊗ S+ CBΞ ⊗M, M̂C� = C�Γ ⊗M, (31)

where Sij = (〈∂tψj , ∂tψi〉)ij and Mij = (〈ψj ,ψi 〉)ij . Further, by the orthogonal
properties of the Fourier bases (16), the matrices, Γ and Ξ , are diagonal. Therefore,
using the notation,

ŷkl = {ŷklm}N−2
m=0 , p̂k

l = {p̂k
lm}N−2

m=0 , Ĝk
l = {Ĝk

lm}N−2
m=0 , F̂ k

l = {F̂ k
lm}N−2

m=0 ,

it follows that the preconditioning problem (30) can be written as M independent
linear systems

[
2πC2M Σl

Σl −2πC1M

][
ŷkl
p̂k
l

]
=
[
Ĝk

l

F̂ k
l

]
, 0 ≤ l ≤M − 1, (32)

where Σl := CAS + (CBk(l)
2 + 2πC0)M. In addition, the properties of the FL

basis, {ψk}N−2
k=0 , implies that S and M become diagonal (29). Hence, the system

(32) reduces to M(N − 1) independent 2× 2 linear systems in the form

[
2πC2λm σnm

σnm −2πC1λm

][
ŷklm
p̂k
lm

]
=
[
Ĝk

nm

F̂ k
nm

]
, 0 ≤ l ≤ M − 1, 0 ≤ m ≤ N − 2,

(33)

where σlm := CA + (CBk(l)
2 + 2πC0)λm. By (33), it follows that the original

preconditioning problem (30) decouples into (N − 1)M independent 2 × 2
subsystems. As a consequence, the Poisson-like preconditioners (25) scale linearly
with the problem size and can be applied matrix-free.

4 Numerical Results

To investigate the potential of the Poisson-like preconditioners, the following case
study solves the control problem (1), where the reaction term is given by the cubic
non-linearityG(y) := y3. The corresponding problem serves as a recurring example
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in the control literature [18]. In this case study, the goal is to track the desired state
of the type

zd(r, θ) =
⎧
⎨

⎩
Z, (r, θ) ∈ [α, β] × [0, π/2] ∪ [π, π/3]
0, otherwise

, (34)

where a ≤ α < β ≤ b. The following example uses the parameters, Z =
4, a = 30, α = 40 and β = b = 60. The main purpose of the study is to
investigate efficiency and robustness of the preconditioners (25). To this end, the
study solves (1) for different choices of (1) problem size, (2) boundary conditions,
(3) regularization parameter, and (4) point-wise bound constraints of the type (3).1

As a benchmark reference, the results are compared to MATLABs state-of-the-art
direct solver. All computations are carried out in [11] on a 2.9 GHz Intel processor.
The SSN scheme is said to have converged when the 2-norm difference between
successive iterates is below η = 10−4. The KSP iterations are performed using the
MATLAB function GMRES with a tolerance of ε = 10−9. The direct solver relies
on MATLABs backslash command. Table 1 lists the results, where KSP iter
denotes the average number of KSP iterations required for each SSN step. Note
also that DOF denotes the number of degrees of freedom for each individual SSN
subproblem. Hence, the total degrees of freedom, DOFT , is therefore given by
#SSN steps × DOF. The results reflect some overall tendencies that generalize
to other choices of the parameters, Z, a, α, β and b. Firstly, the preconditioners
provide significant reductions in CPU-time compared to the direct strategy. In
particular, the results show that the non-linear control problem with up to DOFT =
875,000 unknowns can be solved in less than a minute using modest hardware.
Secondly, the preconditioners prove robust with respect to the problem size and
the choice of boundary conditions. Thirdly, as a drawback, the number of SSN
steps and KSP iterations increase as the point-wise bounds become more strict. The
authors suspect that these increases in SSN steps and KSP iterations are caused by
the combination of a decrease in regularity of the solution and an increase in non-
linearity of the KKT system (Fig. 1).

1By the choices of parameters, the study strives to provide a representative example of the general
tendencies of performance and robustness that can be expected from the preconditioners. To allow
for more diverse and elaborate experiments, the MATLAB source code of this study has been made
publicly available from https://github.com/LHCH-DK/PDE_Control_Annular.git.

https://github.com/LHCH-DK/PDE_Control_Annular.git
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Fig. 1 The computed states for (1) Dirichlet boundary conditions, (2) Neumann boundary
conditions and (3) the desired state for ua = −35, ub = 35, ρ = 10−4 . Note that both solutions
manage to approximate the desired state well, despite of the bound constraints

5 Conclusions and Outlook

This paper has proposed new Poisson-like preconditioners for semi-linear PDE-
constrained optimization problems with non-linear reaction kinetics and point-wise
bound constraints. The preconditioners specifically target problems in annular
domains. Inspired by [16], the new preconditioners exploit the orthogonal prop-
erties of customized, boundary-adapted spectral bases. This leads to matrix-free
preconditioners that scale linearly with the problem size. Numerical results have
demonstrated that the preconditioners lead to fast solution of large-scale opti-
mization problems with significant computational benefits compared to MATLABs
state-of-the-art direct methods. Furthermore, the preconditioners have proven to
be robust with respect to the problem size for both homogeneous Dirichlet and
Neumann boundary conditions. As a challenge, numerical experiments indicated
that the non-linearity of the problem increases as the point-wise bound constraints
become more strict. In turn, this leads to an increase in the number of SSN steps
and KSP iterations that are required to reach convergence. A future study seeks to
improve this situation by providing the SSN scheme with an educated starting guess
that uses a coarse-grid solution to a similar control problem with less restrictive
constraints.
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DIRK Schemes with High Weak Stage
Order

David I. Ketcheson, Benjamin Seibold, David Shirokoff, and Dong Zhou

1 Introduction

Runge-Kutta (RK) methods achieve high-order accuracy in time by means of
combining approximations to the solution at multiple stages. An s-stage RK scheme
can be represented via the Butcher tableau

c A

b T
=

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

.
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Throughout the whole paper we assume that c = Ae, where e is the vector of all
ones. The scheme’s stability function [12] R(ζ ) = 1+ ζbT (I − ζA)−1e measures
the growth un+1/un per step Δt , when applying the scheme to the linear model
equation u′(t) = λu, with ζ = λΔt .

A particular interest lies in the accuracy of the RK scheme for stiff problems,
i.e., problems in which a larger time step is chosen than the fastest time scale of the
problem’s dynamics. A standard stiff model problem [8] is the scalar linear ordinary
differential equation (ODE)

u′ = λ(u− φ(t)) + φ′(t) , (1)

with i.c. u(0) = φ(0) and Re λ ≤ 0. The true solution y(t) = φ(t) evolves on an
O(1) time scale. Hence, λ-values with large negative real part result in stiffness.
Considering a family of test problems (parametrized by λ), one can now establish
the scheme’s convergence via two different limits: (a) the non-stiff limit Δt → 0
and ζ → 0; and (b) the stiff limit Δt → 0 and ζ →−∞. A characteristic property
of most RK schemes is that, while the non-stiff limit recovers the scheme’s order
(as given by the order conditions [2, 5]), the error decays at a reduced order in
the stiff limit. This phenomenon is called “order reduction” (OR) [1, 3, 7, 10, 11]
and it manifests in various ways for more complex problems, including numerical
boundary layers [6]. The OR phenomenon can be seen by studying the RK scheme
applied to (1). The approximation error at time tn+1 reads [12, Chapter IV.15]

εn+1 = R(ζ ) εn + ζbT (I − ζA)−1δ n+1
s + δn+1 , (2)

where R(ζ ) is the growth factor, and

δ n+1
s =

∑

j≥2

Δt j

(j−1)! τ
(j)φ(j)(tn) , δn+1 =

∑

j≥1

Δt j

(j−1)!
(

b T c j−1 − 1
j

)
φ(j)(tn)

are the truncation errors incurred at the intermediate stages and at the end of the step,
respectively. Here, φ(j) denotes the j -th derivative of the solution, and the vectors

τ (j) = Ac j−1 − 1
j

c j , j = 1, 2, . . .

we call the stage order residuals or stage order vectors. The condition τ (η) = 0 for
0 ≤ η ≤ j appears often in the literature and is also referred to as the simplifying
assumption C(η) [12]. In (2), the step error δn+1 is of the formal order (in Δt)
of the scheme (due to the order conditions). Moreover, the growth factor carries
over (more or less, see [4]) the accuracy from one to the next step. Hence, the
critical expression for OR is the term involving the stage error δ n+1

s . Specifically,
the asymptotic behavior of the expression

g(j) = ζbT (I − ζA)−1τ (j) (3)
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matters. In the non-stiff limit (ζ  1), a Neumann expansion yields ζ(I −ζA)−1 =
ζ I + ζ 2A+ ζ 3A2 + . . . , leading to expressions b T A�τ (j) with � > 0. And in fact
the order conditions guarantee that bT A�τ (j) = 0 for 0 ≤ �+ j ≤ p − 1 to ensure
the formal order of the scheme.

Conversely, in the stiff limit we can treat ζ−1 as the small parameter and expand
ζ(I−ζA)−1 = −A−1(I−ζ−1A−1)−1 = −A−1−ζ−1A−2−ζ−2A−3−. . . , leading
to expressions bT A�τ (j) with � < 0. The order conditions do not imply that these
quantities vanish, and in general one may observe a reduced rate of convergence.

A key question is therefore whether additional conditions can be imposed on
the RK scheme that recover the scheme’s order in the stiff regime. A well-known
answer to the question is:

Definition 1 Let p̂ denote the order of the quadrature rule of an RK scheme. Let q̂
denote the largest integer such that τ (j) = 0 for 1 ≤ j ≤ q̂. The stage order of a
RK scheme is q = min(p̂, q̂).

Having stage order q implies that the error decays at an order of (at least) q in the
stiff regime (see also [12]). This work focuses particularly on diagonally-implicit
Runge-Kutta (DIRK) schemes, for which A is lower diagonal. A known drawback
of DIRK schemes is that they cannot have high stage order:

Theorem 1 The stage order of an irreducible DIRK scheme is at most 2. The stage
order of a DIRK scheme with non-singular A is at most 1.

Proof Since c = Ae, we have τ
(2)
1 = a11c1 − 1

2 (c1)
2 = 1

2 (a11)
2. Thus if A is

non-singular, one has τ (2) �= 0, so q ≤ 1. Consider now the case that a11 = c1 = 0,
and suppose that the method has stage order 3. The conditions τ

(2)
2 = τ

(3)
2 = 0

then imply a21 = a22 = c2 = 0, which would render the scheme reducible. Hence,
q ≤ 2. %&
Hence, while DIRK schemes possess an implementation-friendly structure (each
stage is a backward-Euler-type solve), their potential to avoid OR by means of high
stage order is limited. We therefore move to a weaker condition that can avoid OR
in some situations for higher order in the context of DIRK schemes.

2 Weak Stage Order

To avoid order reduction, the expressions g(j) in (3) need to vanish in the stiff limit.
In line with [9], we define the following criteria:

Definition 2 (Weak Stage Order) A RK scheme has weak stage order (WSO) q̃ if
there is an A-invariant subspace that is orthogonal to b and that contains the stage
order vectors τ (j) for 1 ≤ j ≤ q̃ .
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Theorem 2 (WSO Is the Most General Condition that Ensures g(j) = 0 for All
ζ > 0) Let coefficients A, b be given. Then g(j) = 0 for all ζ > 0 and 1 ≤ j ≤ q̃

if and only if the corresponding RK scheme has weak stage order q̃ .

Proof Let C(G) denote the column space of

G :=
[
τ (1), Aτ (1), A2τ (1), . . . , As−1τ (1), τ (2), Aτ (2), . . . , As−1τ (q̃)

]
.

From the Cayley-Hamilton theorem it follows that WSO q̃ is equivalent to

bT A�τ (j) = 0, 0 ≤ � ≤ s − 1, 1 ≤ j ≤ q̃ . (4)

�⇒ Because C(G) is A-invariant, C(G) is invariant under multiplication by (1−
ζA)−1, i.e. if v ∈ C(G) then for any ζ > 0, the product (1 − ζA)−1v ∈ C(G).
Since b is orthogonal to C(G), we have g(j) = 0 for all 1 ≤ j ≤ q̃.
⇐� If g(j) = 0, then ζ−1g(j) = bT (1 − ζA)−1τ (j) = 0 for all ζ > 0.

Differentiating both sides of this equation �-times, with respect to ζ , and taking
the limit as ζ → 0+, yields the conditions in Eq. (4). %&
Definition 3 (Weak Stage Order Eigenvector Criterion) A RK scheme satisfies
the WSO eigenvector criterion of order q̃e if for each 1 ≤ j ≤ q̃e, there exists μj

such that Aτ (j) = μjτ
(j), and moreover, b T τ (j) = 0.

The WSO eigenvector criterion of order q̃e implies WSO (of at least) q̃e. For a given
scheme, let p denote the classical order, q the stage order, and q̃ the weak stage
order. Then we have q̃ ≥ q and p ≥ q . Note however that a method with WSO
q̃ ≥ 1 need not even be consistent; order conditions must be imposed separately.

The WSO eigenvector criterion may serve to avoid OR because it implies that

g(j) = ζbT (1− ζμj )
−1τ (j) = ζ

1− ζμj

bT τ (j) ,

i.e., it allows one to “push” the stage order residuals past the matrix (1 − ζA)−1,
and then use b T τ (j) = 0. Note that the condition bT τ (j) = 0 that is required
in Definition 3 is actually automatically satisfied (due to the order conditions) if
p > q̃e (or p ≥ q̃e for stiffly accurate schemes).

It must be stressed that the concept of WSO (both criteria) is based on the linear
test equation (1), hence it is not clear to what extent WSO will remedy OR for
nonlinear problems or problems with time-dependent coefficients. In Sect. 4 we
numerically investigate some nonlinear test problems.

Finally, we present a limitation theorem on the WSO eigenvector criterion.

Theorem 3 DIRK schemes with invertible A have q̃e ≤ 3.

Proof Because the τ (j) only depend on A, the eigenvector relation in Definition 3
depends only on A, not on b. With A lower triangular, the first k components
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of τ (j) depend only on the upper k rows of A; and the same is true for the
eigenvector relation as well. Hence, for a scheme to have an A that allows for
the WSO eigenvector criterion of order q̃e, all upper sub-matrices of A must admit
the same, too. We can therefore study A row by row. The first component of τ (j)

equals (1− 1
j
)a

j

11, which is nonzero for j > 1. Hence, the first row of the equation

Aτ (j) = μj τ
(j) is equivalent to μj = a11. With that, we can move to the second

row of the equation, which reads

(1− 1
j
)a

j

11a21 + (a22−a11)
(
a
j−1
11 a21 + (a21+a22)

j−1a22 − 1
j
(a21+a22)

j
)
= 0 .

(5)

To determine the set of solutions (a11, a21, a22) of (5), we first observe that (5) is
homogeneous, i.e., if (a11, a21, a22) solves (5), then (μa11, μa21, μa22) solves (5)
as well for any μ ∈ R. It therefore suffices to consider the solutions of (5) in the
2D-plane ( a11

a21
, a22
a21

). Figure 1 shows the resulting solution curves for j ∈ {2, 3, 4}.
One class of solutions lies on the straight line of slope 1 passing through (1, 0).

Those schemes are equal-time methods, i.e., RK schemes that have c = νe, where
ν ∈ R is a constant. In fact, equal-time schemes satisfy the eigenvector relation for
all j . However, they are not particularly useful RK methods, because—among other
limitations—they are restricted to second order. This follows because the order 1
and 2 conditions require b T e = 1 and b T c = 1

2 . Thus ν = 1
2 , and b T c2 = ν2 = 1

4 ,
which contradicts the order 3 condition bT c2 = 1

3 . Note that the equal-time scenario
also covers the points at infinity in Fig. 1, i.e., the schemes with a21 = 0.
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Fig. 1 Curves of WSO orders 2, 3, and 4 as functions of the re-scaled parameters a11
a21

and a22
a21

. Left
panel: scale 10; right panel: scale 1. All orders are satisfied along the line of slope 1 going through
(1,0), corresponding to equal-time DIRK schemes. Moreover, there are two further points (other
than the origin), where orders 2 and 3 are satisfied. Neither of these two points satisfies order 4
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Non-equal-time schemes that satisfy (5) for j = 2 and j = 3 are the following
two points in the ( a11

a21
, a22
a21

) plane: P1 = (−4 + 3
√

2,
√

2 − 1) = (0.2426, 0.4142)

and P2 = (−(√2+1)(
√

2+2),−(√2+1)) = (−8.2426,−2.4142). None of these
two points satisfies (5) for j = 4 (green curve in Fig. 1). Therefore q̃e ≤ 3. %&

Among the two sets of solutions found in the proof, P1 implies that a11, a21, and
a22 all have the same sign, which is a desirable property. In contrast, P2 implies that
a21 < 0. Both WSO 3 schemes presented below correspond to the P1 solution.

3 DIRK Schemes with High Weak Stage Order

Imposing the classical order conditions [2, 5], together with the WSO eigenvector
relation (Definition 3), we determine RK schemes by searching the parameter
space of DIRK schemes (with all diagonal entries non-zero). A stiffly accurate
structure (bT equals the last row of A) is imposed, as is A-stability (verified by
evaluating the stability function R(ζ ) along the imaginary axis). Together this
implies that the resulting scheme is L-stable; i.e., it ensures that unresolved stiff
modes decay [5]. The number of stages is chosen so that the constraints admit
solutions. The optimization itself is carried out using MATLAB’s optimization
toolbox, using multiple local optimization algorithms included in the function
fmincon. An effort was made to minimize the L2 norm of the local truncation
error coefficients. However, in multiple cases the solver exhibited bad convergence
properties; so while the schemes below yield reasonable truncation errors, it should
not be expected that they are optimal. We find an order 3 scheme with WSO 2 (see
also [9]),

0.01900072890 0.01900072890
0.78870323114 0.40434605601 0.38435717512
0.41643499339 0.06487908412 −0.16389640295 0.51545231222
1 0.02343549374 −0.41207877888 0.96661161281 0.42203167233

0.02343549374 −0.41207877888 0.96661161281 0.42203167233

an order 3 scheme with WSO 3,

0.13756543551 0.13756543551
0.80179011576 0.56695122794 0.23483888782
2.33179673002 −1.08354072813 2.96618223864 0.44915521951
1 0.59761291500 −0.43420997584 −0.05305815322 0.88965521406

0.59761291500 −0.43420997584 −0.05305815322 0.88965521406
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and an order 4 scheme with WSO 3,

0.079672377876931 0.079672377876931 0 0 0 0 0
0.464364648310935 0.328355391763968 0.136009256546967 0 0 0 0
1.348559241946724 −0.650772774016417 1.742859063495349 0.256472952467792 0 0 0
1.312664210308764 −0.714580550967259 1.793745752775934 −0.078254785672497 0.311753794172585 0 0
0.989469293495897 −1.120092779092918 1.983452339867353 3.117393885836001 −3.761930177913743 0.770646024799205 0
1 0.214823667785537 0.536367363903245 0.154488125726409 −0.217748592703941 0.072226422925896 0.239843012362853
1 0.214823667785537 0.536367363903245 0.154488125726409 −0.217748592703941 0.072226422925896 0.239843012362853

4 Numerical Results

In this section we verify the order of accuracy of the schemes above and demonstrate
that WSO remedies order reduction for linear problems. We confirm that WSO p

is required for ODEs, and WSO p − 1 is required for PDE IBVPs. In addition, we
study the effect of WSO for two nonlinear problems.

4.1 Linear ODE Test Problem

We consider the linear ODE test problem (1) with the true solution φ(t) = sin(t +
π
4 ), the stiffness parameter λ = −104, and the initial condition u(0) = sin(π4 ).
The problem is solved using three 3rd order DIRK schemes (with WSO 1, 2, and
3) and two 4th order DIRK schemes (with WSO 1 and 3)1 up to the final time
T = 10. The convergence results are shown in Fig. 2. In the stiff regime where |ζ | =
|λ|Δt ' 1, first order convergence is observed for the WSO 1 schemes as expected,
the WSO 2 scheme improves the convergence rate to 2, and the WSO 3 schemes
exhibit 3rd order convergence. In addition to yielding better convergence orders in
the stiff regime, the schemes with higher WSO also turn out to yield substantially
smaller error constants in the non-stiff regime (Δt  1/|λ|). For comparison, we
also display a DIRK scheme with explicit first stage (EDIRK), that is, a11 = 0,
of stage order 2 (see Theorem 1). The left panel of Fig. 2 shows that the WSO 2
scheme exhibits the same convergence behavior as the stage order 2 EDIRK scheme
and performs equally well in terms of accuracy.

4.2 Linear PDE Test Problem: Schrödinger Equation

As a linear PDE test problem, we study the dispersive Schrödinger equation. The
method of manufactured solutions is used, i.e., the forcing, the boundary conditions
(b.c.) and initial conditions (i.c.) are selected to generate a desired true solution. The

1We do not construct an order 4 scheme with WSO 2, as we see no role for such a method.
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Fig. 2 Error convergence for linear ODE test problem (1). Left: 3rd order DIRK schemes with
WSO 1 (blue circles), WSO 2 (red triangles), WSO 3 (black squares), and a 3rd order EDIRK
scheme with stage order 2 (light red dots). Right: 4th order DIRK schemes with WSO 1 (blue
circles) and WSO 3 (red triangles)
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Fig. 3 Error convergence for the Schrödinger equation using 3rd order DIRK schemes with WSO
1 (left) and WSO 3 (middle), and a 4th order DIRK with WSO 3 (right)

spatial approximation is carried out using 4th order centered differences on a fixed
spatial grid of 10,000 cells. This renders spatial approximation errors negligible and
thus isolates the temporal errors due to DIRK schemes. The errors are measured in
the maximum norm in space.

We consider

ut = iω

k2 uxx for (x, t) ∈ (0, 1)× (0, 1.2], u = g on {0, 1} × (0, 1.2] , (6)

with the true solution u(x, t) = ei(kx−ωt), ω = 2π and k = 5. Figure 3 shows the
convergence orders of u, ux and uxx for 3rd order DIRK schemes with WSO 1 (left),
WSO 3 (middle) and a 4th order DIRK scheme with WSO 3 (right). For IBVPs,
spatial boundary layers are produced by RK methods, thus limiting the convergence
order in u to q̃ + 1, with an additional half an order loss per derivative when q̃ < p

[9]. As a result, the 4th order WSO 3 scheme recovers 4th order convergence in u

and improves the convergence in ux and uxx . When q̃ = p, the full convergence
order in u, ux and uxx is achieved, as seen in the middle panel in Fig. 3.
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Fig. 4 Error convergence for the viscous Burgers’ equation using 3rd order DIRK schemes with
WSO 1 (left), WSO 2 (middle) and WSO 3 (right)

4.3 Nonlinear PDE Test Problem: Burgers’ Equation

This example demonstrates that WSO avoids order reduction for certain nonlinear
IBVPs as well. We consider the viscous Burgers’ equation with pure Neumann b.c.

ut + uux = νuxx + f for (x, t) ∈ (0, 1)× (0, 1], ux = h on {0, 1} × (0, 1] .
(7)

Here ν = 0.1 and u(x, t) = cos(2 + 10t) sin(0.2 + 20x). The nonlinear implicit
equations arising at each time step are solved using a standard Newton iteration.
The choice of Neumann b.c. distinguishes this example from the one given in [9].
With Neumann b.c., the convergence order in u is limited to q̃ + 1.5 (half an order
better than with Dirichlet b.c.). Figure 4 shows that order reduction arises with the
stage order 1 scheme, and that the WSO 2 scheme recovers 3rd order convergence
for u and ux , and the 3rd order WSO 3 scheme yields 3rd order convergence for u,
ux and uxx .

4.4 Stiff Nonlinear ODE: Van der Pol Oscillator

This example illustrates that DIRK schemes with high WSO may not remove order
reduction for all types of nonlinear problems. Consider the Van der Pol oscillator

x ′ = y and y ′ = μ(1− x2)y − x , (8)

with i.c. (x(0), y(0)) = (2, 0), stiffness parameter μ = 500, and final time T = 10.
The nonlinear system at each time step is solved via MATLAB’s built-in nonlinear
system solver. The “exact” solution is computed using explicit RK4 with a time
step Δt = 10−6. In this case, the presented DIRK schemes with high WSO do not
improve the convergence rates in the stiff regime and they perform worse than the
WSO 1 scheme in terms of accuracy (see Fig. 5). On the other hand, an EDIRK with
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Fig. 5 Error convergence for Van der Pol’s equation. Left: 3rd order DIRK schemes with WSO 1
(blue circles), WSO 2 (red triangles) and WSO 3 (black squares). Right: 4th order DIRK schemes
with WSO 1 (blue circles) and WSO 3 (red triangles), and a 3rd order EDIRK scheme with stage
order 2 (black squares)

stage order 2 improves the rate of convergence in the stiff regime (see right panel
in Fig. 5). However, it does so, interestingly, by yielding larger errors for large time
steps.

5 Conclusions and Outlook

This study demonstrates that it is possible to overcome order reduction (OR) for
certain classes of problems in the context of DIRK schemes, even though these
are limited to low stage order. A specific weak stage order (WSO) “eigenvector”
criterion has been presented, analyzed, and applied to determine DIRK schemes
with WSO up to 3. The numerical results confirm that the schemes avoid OR for
linear problems and for some nonlinear problems in which the mechanism for order
reduction is linear (i.e., boundary conditions). The key limitation found herein is that
the eigenvector criterion cannot go beyond WSO 3 for DIRK schemes. Hence, a key
question of future research is how high WSO is admitted by the general criterion
in Definition 2. Another important future research task is to devise further DIRK
schemes that are truly optimized in terms of truncation error coefficients or other
criteria.
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Scheme for Evolutionary
Navier-Stokes-Fourier System with
Temperature Dependent Material
Properties Based on Spectral/hp
Elements

Jan Pech

1 Introduction

This work presents a numerical algorithm for the system of the Navier-Stokes
equations coupled with the balance of internal energy

ρ

(
∂v
∂t
+ v · ∇v

)
= −∇p + 1

Re
∇ · [2μD+ λ (∇ · v) I]+ fv (1a)

∂ρ

∂t
+∇ · (ρv) = m (1b)

∂T

∂t
+ v · ∇T = 1

Re Pr
∇ · (κ∇T )+ fT , (1c)

where v = [u, v,w]T is the velocity vector (by setting w = const. = 0 we restrict
to 2D problem), p is a variable related to the thermodynamic pressure,1 T denotes

the temperature, D = 1
2

[
∇v+ (∇v)T

]
is the symmetric part of the rate of strain

1We call thermodynamic pressure the variable acting in the equation of state, e.g. p = ρRT for
ideal gas. Quantities with physical units (superscript star) are normalized by its farfield values
(subscript infinity), e.g. v = v∗|v∗∞| , T =

T ∗
T ∗∞ , etc. The dimensionless pressure in (1a) is p =

p∗
ρ∗∞|v∗∞|2 .
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tensor, constant Re is the Reynolds number and constant Pr is the Prandtl number
(for sake of simplicity we set Re = Pr = 1 for the testing on exact solution).

The fluid is expected to be (calorically) perfect,2 Newtonian,3 whose heat flux
obeys the Fourier law.4 In system (1), we consider those fluids, which become
nonhomogeneous in variable temperature fields due to temperature dependence of
its material parameters, namely the density ρ = ρ(T ), dynamic viscosity μ = μ(T )

and thermal conductivity κ = κ(T ).
Instead of (1a), we solve

ρ

(
∂v
∂t
+ v · ∇v

)
= −∇p̃ + 1

Re
∇ ·

[
2μD− 2

3
μ (∇ · v) I

]
+ fv , (2)

where p̃ = p− μb∇ · v is mean or mechanical pressure, while μb = λ+ 2
3μ is the

bulk viscosity. Equation (2) has the same structure as (1a) while setting λ = − 2
3μ (or

equivalently μb = 0, c.f. Stokes hypothesis), but physical interpretation of pressure
changes.

Without loss of generality, solving (2) instead of (1a), we avoid specification of
the second viscosity coefficient λ.

The forcing terms fv , fT , may represent action of volumetric forces, e.g. gravity
or viscous heating, but m is set zero in most of realistic situations. In case of testing
of our algorithm on a given solution [ve, pe, Te]T, we construct the forcing terms
such, that Eqs. (2), (1b) and (1c) are satisfied.

Our computational scheme is developed for simulations based on the spec-
tral/hp element approximation in spatial coordinates. We use the polynomial
approximations of degree 15 in our tests, what eliminates the numerical error in
spatial coordinates and we are getting an overview of error production, which
belongs directly to the algorithm/discretisation in time. The high order spatial
approximations also naturally include approximations of higher-order derivatives,
what is utilized in the scheme.

The previous results from literature are, up to the authors knowledge, restrictions
of (1) setting at least one of the material parameters constant, the velocity field to be
divergence-free or modelling a stationary flow, see Table 1.

2Internal energy e of the calorically perfect fluids obeys e = cV T , where specific heat at constant
volume is independent of temperature (cV = const.).
3We use the term Newtonian fluid in a general sense for fluids, whose stress tensor is linearly
dependent on the strain rate tensor. However, the viscous part of the stress tensor is not traceless as
often expected if fluid is called Newtonian.
4The Fourier law relates the heat flux q to the thermal conductivity κ and the temperature gradient
∇T as q = −κ∇T .
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Table 1 Chosen results
concerning equation systems
with variable material
parameters

Eq. type ∇ · v μ κ ρ

[1] nonst. 0 μ(ρ) const. var.

[4, 5] nonst. 0 const. const. var.

[6] nonst. 0 var. const. const.

[9] stat. 0 μ(T ) κ(T ) const.

[10] nonst. 0 μ(T ) κ(T ) const.

[11, 12] stat. 0 μ(T ) κ(T ) const.

[13] nonst. �= 0 const. const. var.

[14] nonst. 0 μ(T ) κ(T ) const.

[16] nonst. 0 μ(T ) κ(T ) const.

Stationary and non-stationary models are denoted stat.
and nonst., unspecified variability of a property is
denoted var.

2 Algorithm

Our approach is inspired by the velocity-correction scheme with the high order
pressure boundary condition (HOPBC) proposed for the incompressible Navier-
Stokes equations in [7]. The constant property case, [7], is widely used for its
efficiency and was already extended to problems with variable viscosity in [6].
Its modification was used also to the incompressible Navier-Stokes-Fourier system
with temperature dependent viscosity and thermal conductivity in [10]. Efficiency
of the approach comes from the implicit-explicit (IMEX) formulation, which allows
decoupling of the system.

The main contribution of the present work, which is a continuation of [10], is
in extension to the problems with temperature dependent density. However, the
velocity divergence cannot be further neglected in the momentum balance, what
is the substantial difference from the previously discussed models and algorithms.

2.1 Decoupled System

We use the IMEX scheme in which the Backward difference formula (BDF) of order
Q approximates the temporal derivative and a consistent extrapolation is applied to
chosen terms (N)

∂u

∂t
= L(u)+N(u)

IMEX−−−−→ γ un+1 −∑Q−1
q=0 αqun−q

t
= Ln+1 +

Q−1∑

q=0

βqNn−q .

(3)

In (3), u is the searched solution, L denotes the terms solved implicitly, which we
expect to be constant in time. Subscript n + 1 (or operator in square brackets with
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subscript) denotes evaluation at time tn+1 = t0+(n+1)t , where t is the discrete
time step. Coefficients {αq}Q−1

q=0 , {βq}Q−1
q=0 and γ for particular Q can be found, e.g.,

in [10]. Henceforward, we use ‘∗’ in the superscript to denote extrapolation, N∗ ≡[
N
]∗ :=∑Q−1

q=0 βqNn−q .
The extrapolated terms are evaluated using data from previous time steps,

{Nn−q }Q−1
q=0 and {un−q}Q−1

q=0 , what allows separate/decoupled solution of the (gener-
alized) Navier-Stokes equations (2)–(1b) and the non-linear energy equation (1c).

Solution during one time step may be summarized to the scheme

1. Update μ, κ , ρ, ∇ · v, and HOPBC using already known values {vn−q}Q−1
q=0 ,

{Tn−q }Q−1
q=0 .

2. Solve the system of momentum and mass balance

(a) Solve the pressure-Poisson equation for p̃n+1
(b) Solve velocity-correction for vn+1

3. Solve the non-linear advection-diffusion problem for Tn+1.

2.2 Balance of Momentum and Mass

The scheme decouples solution of the Navier-Stokes system (2)–(1b) to the
pressure-Poisson equation and an elliptic equation for velocity. The equation for
pressure is derived as a projection to the irrotational space by application of the
divergence operator to (2)

∇2p = γ

t

([
∂ρ

∂t

]∗∗
−mn+1

)
− 1

Re

[∇μ · (∇ ×∇ × v)
]∗

+ ∇ ·
{

1

t
ρ∗v̂ + 1

Re

[
∇μ ·

(
∇v+ (∇v)T

)]∗

+ 1

Re

(
−2

3
[∇μ]∗[∇ · v]n+1 + 4

3
μ∗∇[∇ · v]n+1

)
+ fn+1

}
,

(4)

where we applied (1b), identities ∇ × ∇ × v = ∇∇ · v − ∇2v and ∇ · ∇× ≡ 0,
∂v/∂t was substituted by BDF and v̂ =∑Q−1

q=0 αqvn−q−t [v · ∇v]∗. The temporal
derivative of the density, which is extrapolated in (4), is approximated by Q-th order
BDF

[
∂ρ

∂t

]

n

≈ γρn −∑Q−1
q=0 αqρn−1−q
t

. (5)
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We denote the extrapolation of the derivative approximation by superscript ‘∗∗’.
Note, that we have to specify the initial value

[
∂ρ
∂t

]

0
or both ρ0, ρ−1 to initialise the

scheme of the lowest order Q = 1.
Our model assumes, that the density is entirely determined by the temperature

distribution. Then, the divergence of velocity, whose forward estimate, [∇ · v]n+1,
is required in (4), follows from (1b)

[∇ · v]n+1 ≈ 1

ρ∗

{
mn+1 −

[
v · ∇ρ]∗ −

[
∂ρ

∂t

]∗∗}
. (6)

The forward estimate of velocity divergence is the crucial step in the proposed
scheme.

HOPBC is the natural boundary condition for (4). It is derived as projection of
the momentum equation (2) to the direction of normal n to the domain boundary ∂�

∂p̃

∂n
= n·

⎧
⎨

⎩−ρ
∗
[
∂v
∂t

]∗∗
+
[
−ρv · ∇v + 1

Re

(
−μ∇ × ∇ × v+ ∇μ ·

[
∇v+ (∇v)T

])]∗

+ 1

Re

(
−2

3

[∇μ]∗ [∇ · v]n+1 + 4

3
μ∗∇ [∇ · v]n+1

)
+ fn+1

}

(7)

The forward estimate of velocity divergence follows from (6) again. Similarly to
(4), we approximate the acceleration term ∂v

∂t
by the BDF of Q-th order, whose

initialisation requires value
[
∂v
∂t

]

0
or both the values v0 and v−1. The problem of

initialisation of
[
∂v
∂t

]∗∗
and

[
∂ρ
∂t

]∗∗
is circumvented in many realistic simulations,

which begin from a constant fields.
The solution of (4) gives estimate/prediction of p̃n+1 and we can solve (2) as an

elliptic problem for vn+1. However, in the case of temperature dependent viscosity
and density, the algebraic system derived for operators with variable coefficients has
time dependent matrices, whose direct solution is inefficient. To preserve efficiency
of the scheme, we split such operators to the time independent part, which is solved
implicitly using a direct method and a variable part, which is extrapolated together
with the non-linear terms. We introduce material properties in form

μ = μ(T ) = μ̄+ μi, κ = κ(T ) = κ̄ + κi ,
1

ρ(T )
=
(

1

ρ

)
+
(

1

ρ

)

i

(8)

where μ̄ and κ̄ are time-independent, while μi = μi(x, t) and κi = κi(x, t). The
variable density ρ = ρ(T ) acts in our scheme as an inverse value, c.f. (10), so the
splitting is done accordingly.
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To demonstrate the splitting, we consider the second order operator with variable
viscosity and density

1

ρ(T )
∇ ·

[
μ(T ) (∇v)T

]
=
(

1

ρ

)
∇ ·

[
μ̄ (∇v)T

]
+
(

1

ρ

)

i

∇ ·
[
μ̄ (∇v)T

]

+ 1

ρ
∇ ·

[
μi (∇v)T

]
. (9)

Only the term with time independent operator
(

1
ρ

)
∇·
[
μ̄ (∇v)T

]
is solved implicitly,

while we apply extrapolation to terms containing variable parameters
(

1
ρ

)

i
and μi .

This approach is valid for μ̄ = μ̄(x), κ̄ = κ̄(x), resp.
(

1
ρ

)
=

(
1
ρ

)
(x), but if μ̄

is constant in space, the constant operator simplifies to
(
μ
ρ

)
∇2v (resp. ∇2v if the

properties are normalized to μ̄ = κ̄ = ρ̄ = 1, what is the case of (1), the balance
equations in form independent of physical units).

The final form of the equation for velocity becomes

∇2vn+1 − γ

t

ρ̄

μ̄
Revn+1 =

ρ̄

μ̄

{
−Re

γ

t
v̂+ 1

ρ∗
[

Re(∇p̃n+1 − fn+1)−
[
∇μ · [∇v + (∇v)T]

]∗

+ 2

3
[∇μ]∗[∇ · v]n+1 − 1

3
μ∗∇[∇ · v]n+1

]}

− (∇[∇ · v]n+1 − [∇ × ∇ × v]∗)
[
ρ̄

μ̄

(
1

ρ∗
)

i

μ∗ + 1

μ̄
μ∗i

]

.

(10)

2.3 Balance of Energy

The energy equation with temperature dependent thermal conductivity is strongly
non-linear. We split the diffusion operator to the time independent and the variable
part, following the technique shown for the velocity-correction (10). We set κ̄ = 1
for simplicity and the discretized energy equation (1c) gets form

∇2Tn+1 − γRe Pr

t
Tn+1 = RePr

(
− T̂

t
− fT n+1

)
− [∇ · κi∇T

]∗
, (11)
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where T̂ = ∑Q−1
q=0 αqTn−q − t

[
v · ∇T ]∗. Operator

(
∇2 − γRe Pr

t

)
is time

independent and allow inversion using a direct method, what results in good
performance in computations on long time intervals.

3 Temporal Convergence on Manufactured Solution
and Application

Our convergence tests are based on the method of manufactured solutions, alterna-
tive to estimates of numerical analysis on simplified system. This approach lacks
generality, because we always restrict to particular data and some representative of
the solution space, but we get rough convergence estimate for unrestricted equation
system (1), while proving also the correctness of method implementation.

As an exact solution, we take a smooth functions ve : � × (0 : T ) → R
n,

p̃e : �× (0 : T )→ R, Te : �× (0 : T )→ R

⎛

⎜⎝
ve
p̃e

Te

⎞

⎟⎠ =

⎛

⎜⎜⎜⎝

ue

ve

p̃e

Te

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

2 cos(πx) cos(πy) sin(t)
sin(πx) sin(πy) sin(t)

2 sin(πx) sin(πy) cos(t)
sin(x)sin(y)cos(t)

⎞

⎟⎟⎟⎠ (12)

and derive the forcing terms fv, m and fT such, that Eqs. (2), (1b), (1c) are
fulfilled (in all cases we set Re = Pr = 1). Divergence of velocity in (12)
is ∇ · ve = −πsin(πx)cos(πy)sin(t), variable in both the spatial and temporal
coordinates and with amplitude comparable with the solution itself. We choose
a computational domain � = [0:2] × [0.5:2.5] consisting of two elements � =
[0:1] × [0.5:2.5] ∪ [1:2] × [0.5:2.5]. Extent of � and form of the exact solution, is
inspired by [3], where the velocity-correction scheme of [7] was tested on a similar,
manufactured solution.

The incompressible Navier-Stokes equations define the pressure up to a constant
value and only the boundary condition for velocity is needed. In this sense, we set
the Dirichlet boundary condition for velocity on whole ∂�. However, the pressure-
Poisson equation (4) requires setting a boundary condition as a consequence of the
decoupling. We set HOPBC (7) at ∂� and solve the fully Neumann problem, which
defines the solution up to a constant value, which we set by fixing the solution to zero
in one of the grid points. The boundary condition for pressure is an artificial element
of the computational scheme and its existence is related to the splitting error. The
boundary condition for energy equation (11) is of Dirichlet type for whole ∂�.

We present the first and second order schemes in time in the convergence tests.
The technique is applicable to higher-order schemes as well. A multi step schemes
use data from multiple time steps, what complicates its initialisation. We apply
the first order BDF method for initialisation of the second order scheme. The first
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order scheme needs data of only one backward time step, but the time step must be
appropriately shortened.

As mentioned already, the acceleration in HOPBC (7) and the term ∂ρ
∂t

in (4)
require an initial value or one other backward value for proper initialisation also in
case of the first order scheme, what is in contradiction to standard initial conditions
for system (1), which require only the initial values. However, setting the correct
values for calculation of the first time step is crucial for the final accuracy of the
solution.

Finally, we trace appropriate norms of difference between the exact and com-
puted solutions on a set of computations with time steps t = t̃/2n,t̃ =
0.2, n = 0, . . . , 9 for t ∈ [0 : 1].

We use the power laws for approximation of dependence of material parameters
on temperature

μ(T ) = (αmT + 1.0)βm , κ(T ) = (αkT + 1.0)βk , ρ(T ) = (αrT + 1.0)βr .
(13)

The temporal convergence of the above scheme for αm = αk = αr = 0.1 , βm =
βk = βr = 2 is shown in Fig. 1.

A detail view of error production, Fig. 2, shows, that the dominant error
production arises at the grid point, which was used to set the unknown constant
for the Neumann problem.

The scheme was successfully applied in a 2D simulation of flow around the
heated cylinder and the results were compared with experimental data [15], where
the dependence of the vortex shedding frequency (Strouhal number St) on the wall
temperature of the cylinder, TW , was observed. Figure 3 shows the substantial
difference in results between the model neglecting the thermal expansion, [10], and
the present one. Fig. 4 shows value range and structure of velocity divergence in a
chosen realistic simulation.

Fig. 1 The temporal
convergence for the
Navier-Stokes-Fourier system
with temperature dependent
material properties. The
number of steps in BDF
Q = 1 or Q = 2, is denoted
by subscripts I1 and I2. The
label “Errors” refers to
||a − ae||L∞ , where a is the
computed function and ae the
exact value from (12), at
t = 1

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101

10−4 10−3 10−2 10−1 100

E
rr
or
s

Δt

p I 1
p I 2
u I 1
u I 2
TI 1
TI 2



Scheme for Navier-Stokes-Fourier System with Temperature Dependent Properties 473

Fig. 2 Test on manufactured
solution: difference
v_err = ve − v at the final
time t = 1 for computation
with Q = 2, t = 0.2/27,
c.f. Fig. 1. Polynomial
approximation of degree 15

Fig. 3 Frequency of the
vortex shedding (Strouhal no.
“St”) as dependent on the
normalized wall temperature
T ∗W in the flow around heated
cylinder (Re ≈ 121.2).
Comparison of the data from
[10] (ρ = const.) “const.”, the
present scheme with Q = 1
“ρ(T )”, experimental data of
[15] “exp.” and empirical
formula “emp.”[8]
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Fig. 4 Computed field of
divergence, div(v) = ∇ · v,
caused by the thermal
expansion in the flow around
heated cylinder (Re = 121.2,
TW/T∞ = 1.494), c.f. Fig. 3
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4 Conclusion

The numerical scheme proposed for the Navier-Stokes-Fourier system with variable
parameters allows to solve the highly complex mathematical model, which has an
impact to understanding the processes connected with the heat exchange, transport
and energy storage in fluids.

The computational scheme for a fluid flows influenced by temperature as mod-
elled by system (2), (1b), (1c) was developed and tested. The scheme was primarily
constructed for spatial discretisations based on spectral/hp finite elements and
presented results were obtained after implementation to the Nektar++ framework
[2], modified version 3.3.

We did not impose restrictions to the type of functional dependency of the
material parameters on temperature. Graph of error convergence in L∞ norm, Fig. 1,
results from testing on a manufactured solution and shows a good convergence
properties of the scheme, what is promising for applications.

Considered model neglects compressibility in the sense of direct dependence of
density on pressure, but the velocity field is not divergence free as a consequence of
the thermal expansion. A forward estimate of velocity divergence is needed in the
proposed scheme and its successful approximation is one of the main contributions
presented in this work. For these reasons, the scheme is unique among numerical
schemes based on the finite element approximations in space.

Proposed scheme is an extension of the efficient semi-implicit solver for
Incompressible Navier-Stokes system [7] and it is suitable for a fast and highly
accurate simulations of problems on long time intervals. The present results inspire
implementation of high order BDF schemes and extension of the solver to 3 spatial
coordinates.

Derivation of the scheme includes a number of sub-steps, whose detail descrip-
tion is beyond the scope of this article and will be published separately, together with
extension of the scheme for energy equation with variable density and further testing
of performance as dependent on various physical parameters in the equations.

Also the results from application of the scheme to computations of a physically
realistic problem and comparison of its results with experimental data exhibit a good
coincidence and will be presented with detail description in a separate article.

Acknowledgements The author wishes to acknowledge the support of the research programme
no. 3 “Efficient energy conversion and storage” of the Strategy AV21 initiative of the Czech
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Implicit Large Eddy Simulations
for NACA0012 Airfoils Using
Compressible and Incompressible
Discontinuous Galerkin Solvers

Esteban Ferrer, Juan Manzanero, Andres M. Rueda-Ramirez,
Gonzalo Rubio, and Eusebio Valero

1 Introduction

High order Discontinuous Galerkin (DG) methods provide accurate solutions by
enabling arbitrarily high polynomial approximations inside each grid element. For
high order polynomials, the numerical errors are not distributed along all wave-
numbers but localised at high wave-numbers [1–5]. This characteristic of high order
methods results in very accurate simulations with low dissipative and dispersive
errors. Although this characteristic seems a-priori beneficial for well resolved
simulations, when computing under-resolved Large Eddy Simulations (LES), it can
prove difficult to obtain stable simulations. In implicit (or under-resolved) Large
Eddy Simulations (iLES), the smallest numerical eddies are larger than would have
been in a finer mesh, leading to numerical under-resolution (i.e. coarse grid or low
polynomial order) and aliasing [6]. Various methods have been proposed to stabilise
under-resolved computations with aliasing. Among others, split forms or skew
symmetric variants [7, 8]), localised interior penalty fluxes [9], over-integration [10–
12] or filtering [13] may be incorporated into the solver to stabilize the computations
and remove or alleviate the aliasing.

Contrarily to low order methods, high order methods do not have enough
inherent numerical dissipation in under-resolved simulations, to dissipate large flow
structures (when compared to Kolmogorov scales). Therefore, computation of iLES
flows using high order DG solvers require localised dissipative mechanisms to
dissipate flow structures close to cut-off size. In what follows, we compare two
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dissipative stabilising mechanisms that enable the simulation of turbulent under-
resolved flows. On the one hand, we use a compressible formulation with an
energy conserving split-form and dissipation through Roe fluxes [14]. On the other
hand, the incompressible solver uses the viscous discretisation through interior
penalty formulation to enhance stability [9]. We challenge both formulations with
a NACA0012 airfoil at various angles of attack in turbulent regimes, to explore
both accuracy and stability. We compare simulated results to experimental data and
simulations using low order methods (Xfoil and Ansys-Fluent).

2 Methodologies

We first introduce the two different mechanisms used to stabilise both compressible
and incompressible high order DG formulations. The explanation included here is
brief and aims only at introducing the fundamental concepts and motivating ideas.
Further details can be found in the following references by the authors [9, 14].

The 3D Navier-Stokes equations can be written as:

ut + ∇ · F e = ∇ · F v, (1)

where u is the vector of conservative variables u = (ρ, ρv1, ρv2, ρv3, ρe)
T in

compressible solvers. For incompressible solvers u = (v1, v2, v3)
T and Eq. (1) is

complemented with ∇ · u. Details on the definition of inviscid and viscous solvers
can be found in [9, 14]. To derive discontinuous Galerkin schemes, we consider
Eq. (1) for one mesh element el, multiply by a locally smooth test function φj , for
0 ≤ j ≤ P , where P is the polynomial degree, and integrate on el:

∫

el

utφj +
∫

el

∇ · F eφj =
∫

el

∇ · F vφj . (2)

We can now integrate by parts the inviscid fluxes, F e, integral to obtain a local weak
form of the equations (one per mesh element):

∫

el

ut φj +
∫

∂el

F e · nφj −
∫

el

F e · ∇φj =
∫

el

∇ · F vφj , (3)

where n is the normal vector at element boundaries ∂el. We replace discontinuous
fluxes at inter-element faces by a numerical inviscid flux, F ∗e , to obtain a weak form
for the equations for each element,

∫

el

ut · φj +
∫

∂el

F ∗e · nφj −
∫

el

F e · ∇φj =
∫

el

∇ · F vφj , (4)



ILES for NACA0012 Using DG Solvers 479

where, we have omitted the fluxes at external boundaries, for simplicity. This set of
equations for each element is coupled through the inviscid fluxes F ∗e and governs
flow behaviour. Note that one can proceed similarly and integrate by parts the
viscous terms (see [9, 15]), but here for simplicity we retain the volume integral.

∫

el

ut · φj +
∫

∂el

F ∗e · n︸ ︷︷ ︸
Riemann solver

φj −
∫

el

F e · ∇φj =
∫

el

( ∇ · F v︸ ︷︷ ︸
Viscous term

) · φj (5)

The non-linear inviscid and viscous terms that can be discretised to control
dissipation in the numerical scheme have been underlined.

Riemann solvers are the classic option to include numerical dissipation in
DG schemes [16, 17], since they naturally arise when discretising the non-linear
terms. Comparison of different fluxes for homogeneous turbulence can be found in
[14, 18]. A different option is to modify the viscous terms to enhance its dissipative
properties. The latter has been proposed in [9] using an increased penalty parameter
(compared to the minimum required to ensure coercivity of the scheme) when
discretising the viscous terms using a interior penalty formulation.

2.1 Compressible DGSEM Solver

The compressible solver uses conservative variables to solve the Navier-Stokes
equations. We use a particular nodal variant of DG methods: the Discontinuous
Galerkin Spectral Element Method (DGSEM), see for example [19]. In addition,
the compressible formulation is modified to be energy preserving [20]. The required
split-form necessitate Gauss–Lobatto points to cancel out boundary terms using the
summation-by-parts simultaneous-approximation-term property (SBP-SAT). The
interested reader is referred to [5, 20–22]. These energy conserving schemes
are designed to remain stable and energy conserving and consequently do not
necessitate additional localised numerical dissipation. Nonetheless, in this work we
introduce dissipation through Roe fluxes, to enhance robustness at high Reynolds
numbers. Additionally, viscous terms are discretised using the Bassi-Rebay 1 (BR1)
scheme, which is equivalent to the interior penalty formulation when using Gauss-
Lobatto points and hexahedral elements [23]. Let us note that this formulation for
the viscous fluxes is neutrally stable [24] and adds the minimum dissipation required
to achieve a stable scheme, whilst others may introduce some extra dissipation.
Other techniques are available to discretise second order derivatives and can be
found in the classic review by Arnold et al. [15].
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2.2 Incompressible DG-Fourier Solver

Flow solutions of the incompressible Navier-Stokes equations, are obtained from
the 3D unsteady high order h/p Discontinuous Galerkin-Fourier solver [9, 25–
28]. The solver uses a second order stiffly stable approach to discretise the NS
equations in time whilst spatial discretisation is provided by the discontinuous
Galerkin-Symmetric Interior Penalty formulation with modal basis functions in
the x-y plane. Here, x represents the streamwise flow direction and y is the
normal direction. Spatial discretisation in the z-direction (here defining the spanwise
airfoil length) is provided by a purely spectral method that uses Fourier series and
allows computation of spanwise periodic three-dimensional flows. Since high order
methods (e.g. discontinuous Galerkin and Fourier) are unable to provide enough
numerical dissipation to enable under-resolved high Reynolds computations (e.g. as
necessary in Large Eddy Simulations), we have adapted the original laminar version
of the solver to increase (controllably) the dissipation and enhance the stability in
under-resolved simulations [9]. This dissipative formulation has minimal impact on
well resolved flow regions and its implicit treatment does not restrict the use of
relatively large time steps, thus providing an efficient stabilization mechanism for
Large Eddy Simulations. The solver has been widely validated for a variety of flows,
including bluff body flows, airfoil and blade aerodynamics and vertical axis turbines
under static and rotating conditions [9, 25–30].

3 Numerical Results

This section considers a NACA0012 airfoil at Re = 1 × 104, Re = 1 × 105 and
Re = 1× 106 (based on the airfoil chord c) for a range of Angles of Attack (AoA):
0◦ ≤ AoA ≤ 10◦. In what follows we compare incompressible and compressible
simulations using polynomial orders P = 3 and P = 4. The averaged values have
been computed after the development of three dimensional flow. The compressible
solver uses a hexahedral mesh with 18,000 elements, which for P = 3 and 4 result
in 1.1 and 2.2 million degrees of freedom. The incompressible solver, uses a mixed
tri-quad 2D mesh and is expanded using Fourier in the homogeneous third direction
(here 16 Fourier modes). Depending on the angle of attack, the resulting meshes
include 0.6 to 1 million degrees of freedom. Meshes for the two solvers and for
AoA = 0◦ are depicted in Fig. 1. Finally, all the simulations are computed with both
DG solvers and consider a periodic spanwise lengths of Lz/c = 0.1. Note that we
have not observed significant differences in the results when increasing the spanwise
length. Statistics are accumulated during at least 40 convective time scales (based
on the airfoil chord) and starting after the turbulent flow has developed (typically an
initial transient of 10 convective time scales).
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b)a)

Fig. 1 Meshes for NACA0012 airfoil: (a) Hexahedral mesh for compressible solver and (b) mixed
tri-quad mesh for incompressible solver. Inset figures show high order polynomial mesh for order
P = 4

Fig. 2 NACA0012 airfoil at Re = 1 × 106, from left to right: AoA: 0◦, AoA: 5◦ and AoA: 10◦.
Simulations are obtained using the incompressible DG solver

3.1 Re = 1 × 106 and Various Angles of Attack

We start by illustrating the highest Reynolds number case, which is the most
challenging in terms of stability and robustness. To illustrate the range of the flow
behaviour at various AoAs, we show in Fig. 2, velocity contours for AoA: 0◦,5◦
and 10◦, computed using the incompressible DG solver. It can be seen that at
Re = 1×106 the flow remains attached for all angles, and that only mild separation
is seen near the trailing edge. We will see in the next section that at lower Reynolds
numbers this is not necessarily the case.

Figure 3 compares the aerodynamic coefficients with experimental data for
various angles of attack and the two solvers. Figure 3a shows the lift coefficient
against the AoA and Fig. 3b depicts the Lift-Drag Polar for Re = 1 × 106. We
observe very good agreement with experimental data for both solvers.
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Fig. 3 NACA0012 airfoil at Re = 1 × 106: (a) Lift coefficient vs angle of attack and (b) Lift-
Drag Polar. Compressible (comp.) and incompressible (incomp.) DG simulations are compared to
experimental data sets of Ladson [31], Gregory and O’Reilly [32], Abbot and Von Doenhoff [33]

3.2 AoA = 5◦ and Various Reynolds Numbers

Having shown the overall good performance in terms of aerodynamic quantities
at the most challenging Reynolds numbers, we now focus our attention on the
angle AoA = 5◦ and compare the usability of the solvers to study the NACA0012
boundary layer evolution.

First, we compare the aerodynamic coefficients for AoA = 5◦, and Reynolds
numbers Re = 1 × 105 and Re = 1 × 106, using the incompressible and
compressible solvers, both with polynomial order P = 3 and P = 4, in Table 1. We
observe good agreement for the highest polynomial order. Small discrepancies are
attributed to post-processing of statistics and lack of near wall resolution when
using P = 3, which influences mainly the drag coefficient and particularly viscous
drag. For completeness, we depict the flow evolution within the boundary layer
using both solvers in Fig. 4. It can be seen that detachment near the trailing edge
is similar for both solvers. Regarding transition to turbulence (represented by
fluctuations in velocity contour), both solvers capture transition on the suction side.
The compressible solver shows a transition location near the maximum thickness

Table 1 NACA0012 airfoil
at AoA = 5◦ for
Re = 1× 105 and
Re = 1× 106

Re = 1× 105 Re = 1× 106

Cl Cd Cl Cd

DG comp. P = 3 0.588 0.028 0.567 0.005

DG comp. P = 4 0.575 0.025 0.558 0.008

DG incomp. P = 3 0.484 0.028 0.538 0.017

DG incomp. P = 4 0.545 0.018 0.551 0.007

Comparison of Lift and Drag using the DG com-
pressible and DG incompressible solvers and two
polynomial orders P = 3 and P = 4
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Fig. 4 NACA0012 airfoil at Re = 1× 105 and AoA = 5◦ for P = 4: (a) Compressible DG solver.
(b) Incompressible DG solver

Fig. 5 NACA0012 airfoil at AoA: 5◦ for (a) Re = 1×104, (b) Re = 1×105 and (c) Re = 1×106.
Velocity magnitude isocontours and unstructured mesh details are included

(x/c ≈ 0.4), whilst the incompressible solver shows transition closer to the leading
edge (x/c ≈ 0.2). We have observed significant variations of the transition location
for the compressible solver when varying the polynomial order, that we have not
seen in the incompressible solver. Further studies are necessary to completely assess
the influence of discretisation in the transition location for the two solvers.

Second, we explore the pressure coefficient distribution along the airfoil profile
when varying the Reynolds number. We only depict results for the incompressible
DG solver since these are very similar to the results provided by the compressible
solver. Note that this is not surprising, since the lift coefficients at Re = 1 × 105

and Re = 1 × 106 are very similar for P = 4 at AoA = 5◦, see Table 1. Figure 5
shows velocity contours for Re = 1 × 104, Re = 1 × 105 and Re = 1 × 106 at
AoA = 5◦. It can be seen that for the lowest Reynolds, the boundary layer remains
laminar until it detaches after the maximum thickness, showing a highly unsteady
wake. When the Reynolds number increases, the boundary layer shows transition
to turbulence before the maximum thickness, as appreciated by the fluctuations and
small scales appearing in Fig. 5.

To quantify these results, we depict in Fig. 6, the pressure distribution (Cp) for the
three Reynolds numbers. In the top row, we show instantaneous Cp against averaged
for incompressible DG solver. In the bottom row, we compare mean Cp distributions
against Xfoil [34] (with critical N-factor Ncr = 1) and Fluent SST (fully turbulent
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simulation) [35]. At Re = 1 × 104, the top figure shows that the boundary layer
detaches before transition occurs and after the maximum thickness, as shown by the
velocity contours in Fig. 5. Since the flow detaches leading to a highly unsteady
wake, there is little hope that the averaged Cp captures the actual behaviour of
the boundary layer. This is why, in the bottom figure, the mean values obtained
using the incompressible DG solver do not agree with the mean Xfoil and Fluent
values that assume steady turbulent flow. At Re = 1 × 105 and At Re = 1 × 106,
the instantaneous Cp values (top row) show scattering in the data associated to
transition. This occurs close to the leading edge on the suction side, whilst it is
delayed towards the trailing edge on the pressure side. The bottom row shows that
the DG results compare very well to Xfoil when using a critical N = 1 (to set the
transition point close to the leading edge), whilst Fluent SST (fully turbulent) shows
lower Cp values associated to simulating the complete boundary layer as turbulent
(no laminar region). This results suggest that DG solvers using iLES approaches
(compressible and incompressible) can capture transitional behaviour in boundary
layers even when relatively coarse meshes are selected.

4 Conclusions

In this contribution, we have presented results for turbulent flows over a NACA0012
airfoil. High order discontinuous Galerkin formulations require localised dissipation
to remain stable for under-resolved turbulent flow conditions, often referred to as
implicit Large Eddy Simulations. Here we have presented compressible and an
incompressible DG formulations (with different stabilising mechanisms) that are
able to cope with high Reynolds number flows. Both DG formulations provide
aerodynamic coefficients and boundary layer information that compare favorably
to experimental data and well established low order solvers. We conclude that the
compressible and incompressible formulations included in this work can be very
useful in aeronautical applications.
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SAV Method Applied to Fractional
Allen-Cahn Equation

Xiaolan Zhou, Mejdi Azaiez, and Chuanju Xu

1 Introduction

The Allen-Cahn equation was originally introduced to describe the motion of anti-
phase boundaries in crystalline solids [1]. There have been a large body of work on
numerical analysis of Allen-Cahn equations (cf. [2–5] and the references therein).
We aim in this paper to use the SAV scheme, recently introduced and analyzed by
a number of researchers; see, e.g., [5] and the references therein, to approximate
the solution of the fractional version of the Allen-Cahn model. It consists in finding
φ : �× (0, T ] → R solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂φ
∂t
+ γ

(
(−)sφ + f (φ)

) = 0, ∀(x, t) ∈ �× (0, T ],
∇φ · n∣∣

∂�
= 0, ∀t ∈ (0, T ]

φ(t = 0) = φ0(x), ∀x ∈ �.

(1.1)

In the above, γ is a positive kinetic coefficient, s ∈ (0, 1), � ⊂ R
d is a bounded

domain, n is the outward normal, f (φ) = F ′(φ) with a given function F(φ) =
1

4ε2 (φ
2 − 1)2 being the Ginzburg-Landau double-well potential. The phase field φ
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is such that

φ =
⎧
⎨

⎩
1, phase 1,

−1, phase 2,

and ε represents the thickness of the smooth transition layer connecting the two
phases, which is small compared to the characteristic length of the system scale.
The homogeneous Neumann boundary condition implies that no mass loss occurs
across the boundary walls.

Among the different definitions of fractional Laplacians (see [6, 7] for a
quantitative assessment of new numerical methods as well as available state-of-the-
art methods for discretizing the fractional Laplacians problems), we choose in this
paper to focus on the fractional spectral definition. It is defined by

(−)su :=
∑

i∈N
aiλ

s
i ei,

where λi, ei are the eigenvalues and eigenfunctions of the Laplace operator − in
� with homogeneous Neumann boundary condition, i.e., they satisfy

⎧
⎪⎨

⎪⎩

−ei = λiei , x ∈ �,

∇ei · n
∣∣
∂�
= 0.

While, ai represents the projection of u on the direction ei , ai = (u, ei)L2
�

. The
spectral fractional Laplacian is nonlocal on the interior for noninteger s ∈ (0, 1).
We see that to compute the inner product ai = (u, ei)L2

�
, it suffices for u to

be defined on the interior of �. No information about u on the exterior Rd \ �
is required. Thus, from a conceptual viewpoint, in boundary value problems the
spectral fractional Laplacian can admit the same type of boundary conditions as the
standard, local Laplacian −. In this paper, we let � =] − 1, 1[2. Set u(x, t) =∑∞

n=1
∑∞

m=1 am,n(t)em,n(x), where em,n are the orthogonal eigenfunctions of the
Laplace operator with homogeneous Neumann boundary conditions and λm,n are
the corresponding eigenvalues. Then we define the spectral fractional Laplacian as,

(−)su(x, t) :=
∞∑

n=1

∞∑

m=1

λsm,nam,n(t)em,n(x), 0 < s < 1, ∀u ∈ Hs(�).

(1.2)
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Here

Hs(�) :=
{
u =

∞∑

n=1

∞∑

m=1

am,nem,n ∈ L2(�) : |u|s :=
( ∞∑

n=1

∞∑

m=1

λsm,na
2
m,n

)1/2
<∞

}
.

The rest of this paper in organized as follows. In Sect. 2, we present briefly the
spectral method by giving some notations and reminders. The fractional Laplace
operator and its possible applications is discussed in Sect. 3. To demonstrate the
applicability of the approximative fractional Laplacian for real applications, we
consider a fractional Allen-Cahn equation (FACE). Based on the scalar auxiliary
variable (SAV) approach, we construct an unconditionally second-order energy
stable BDF scheme (SAV/BDF2) for FACE. We present numerical results for a test
case as well as a benchmark example in Sect. 4.

2 Spatial Discretizations

We limit here the description of the spectral approximation to the introduction
of some notations and reminders (see [8, 9]). For complex domain, we can use
spectral element method [10]. Let � = {(ξi, ρi); 0 ≤ i ≤ N} denote the sets of
Gauss-Lobatto-Legendre quadrature nodes and weights associated to polynomials
of degree N . These quantities are such that on * :=] − 1,+1[

∀φ ∈ P2N−1(*),

∫ +1

−1
φ(ξ) dξ =

N∑

j=0

φ(ξj ) ρj , (2.1)

where PN(*) denotes the space of polynomials of degree ≤ N . We recall that the
nodes ξi (0 ≤ i ≤ N) are solution to (1 − x2)L′N(x) = 0, where LN denotes the
Legendre polynomial of degree N .

The canonical polynomial interpolation basis hi(x) ∈ PN(*) built on � is given
by the relationships:

hi(x) = − 1

N(N + 1)

1

LN(ξi)

(1− x2) L′N(x)

(x − ξi)
, −1 ≤ x ≤ +1, 0 ≤ i ≤ N,

(2.2)

with the elementary cardinality property

hi(ξj ) = δij , 0 ≤ i, j ≤ N, (2.3)

where δij is Kronecker’s delta symbol.
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In the sequel the phase field φ will be approximated in space variable by suitable
polynomial functions φN as follows

φN(x, t) =
N∑

i=0

N∑

j=0

αi,j (t)hi(x)hj (y). (2.4)

The L2-inner products involved in the calculation will be achieved using Gauss-
Lobatto-Legendre quadrature, which reads: for all continuous functions ϕ and ψ in
�̄,

(ϕ,ψ) ≈ (ϕ,ψ)N :=
N∑

i=0

N∑

j=0

ϕ(ξi)ψ(ξj )ρiρj . (2.5)

3 Scalar Auxiliary Variable (SAV) Approach for FACE

SAV approach was introduced in [4, 5] to solve gradient flows. The main purpose
of this section is to construct efficient unconditionally stable scheme based on this
approach for (1.1).

Throughout the paper, we assume there exists a constant C0 such that∫
�
F(φ)dx + C0 > 0. We first introduce a scalar auxiliary variable

r(t) :=
√∫

�

F(φ) dx + C0.

Then, we rewrite the phase-field equation (1.1) under an equivalent form as: find
φ : (0, T ] ×�→ R and r : (0, T ] → R, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂φ
∂t
= γμ, ∇φ · n∣∣

∂�
= 0,

μ = −(−)sφ − r(t)√∫
� F(φ)dx+C1

f (φ),

dr
dt = 1

2
√∫

� F(φ)dx+C1

∫
� f (φ)

∂φ
∂t

dx.

(3.1)

Theorem 3.1 If φ ∈ L2
(
(0, T ],H s(�)

)
, 0 < s < 1, is the solution of equations

(3.1), then we have the following energy dissipation law

d

dt

(
r2 + 1

2
|φ|2s

)
= −γ ‖μ‖2

0. (3.2)
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Proof Taking the inner product of the first two equations with μ, ∂φ
∂t

respectively,
and multiplying the third equation with 2r(t), then adding them together, We obtain

− γ ‖μ‖2
0 =

d

dt

(
r2)+ ((−)sφ, φt ). (3.3)

Let φ(x, t) =∑∞
m,n=1 am,n(t)em,n(x) and taking advantage of the orthogonality of

{em,n}, we verify

((−)sφ, φt ) =
∞∑

m,n=1

λsm,nam,n(t)a
′
m,n(t) =

1

2

d

dt

( ∞∑

m,n=1

λsm,na
2
m,n(t)

)
= 1

2

d

dt
|φ|2s .

(3.4)

Then combining (3.3) and (3.4) proves (3.2). %&
The energy law (3.2) means that the SAV approach (3.1) makes the modified

energy

H(φ) = r2 + 1

2
|φ|2s

decay in time.
Now we construct a second-order semi-implicit scheme for the system (3.1).

Given initial conditions φ0 = φ0, and let r0 =
√∫

�
F(φ0)dx + C0, find φn+1 ∈

Hs(�) and rn+1 ∈ R, n = 1, . . . , such that

3φn+1 − 4φn + φn−1

2t
= γμn+1 (3.5)

μn+1 = −(−)sφn+1 − rn+1

√∫
�
F
(
φ
n+1

)
dx + C0f

(
φ
n+1

) (3.6)

3rn+1 − 4rn + rn−1

2t
= 1

2

√∫
�
F
(
φ
n+1

)
dx + C0

∫

�

f
(
φ
n+1

) 3φn+1 − 4φn + φn−1

2t
dx

(3.7)

In the above, φ̄n+1 can be any explicit approximation of φ(tn+1) with an error of
O(t2). For instance, we may choose the following one

φ̄n+1 = 2φn − φn−1.
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Theorem 3.2 The scheme (3.5)–(3.7) is unconditionally stable in the sense that

1

t

(
H̃
[
(φn+1, rn+1), (φn, rn)

]− H̃ [(φn, rn), (φn−1, rn−1)]) ≤ −γ ‖μn+1‖2
0,

(3.8)

with the modified energy

H̃ [(φn+1, rn+1), (φn, rn)] = 1

4

(
|φn+1|2s + |2φn+1 − φn|2s

)
+ 1

2

(
(rn+1)2 + (2rn+1 − rn)2

)
.

(3.9)

Proof The result can be directly deduced from taking the inner product of the

first two equations (3.5) and (3.6) with μn+1 and 3φn+1−4φn+φn−1

2t
respectively, and

multiplying the third equation (3.7) with 2rn+1, then using the following identity:

2(ak+1, 3ak+1 − 4ak + ak−1) =‖ak+1‖2 + ‖2ak+1 − ak‖2 + ‖ak+1 − 2ak + ak−1‖2

− ‖ak‖2 − ‖2ak − ak−1‖2.
%&

3.1 Implementation

Besides its unconditional stability, a most remarkable feature of the above scheme is
that it can be solved very efficiently. Indeed, by inserting (3.6) and (3.7) into (3.5),
and let F̄n+1 := ∫

� F(φ̄n+1)dx + C0, we obtain

(
3

2γt
I + (−)s

)
φn+1 + (f (φ̄n+1), φn+1)

2F̄n+1
f (φ̄n+1) = gn, (3.10)

where

gn := 4φn − φn−1

2γt
−
(

4rn − rn−1

3
√
F̄n+1

− (f (φ̄n+1),
4φn+φn−1

3 )

2F̄n+1

)
f (φ̄n+1). (3.11)

We shall first determine (f (φ̄n+1), φn+1) from (3.10). To this end we multiply

(3.10) by
(

3
2γt

I + (−)s
)−1

and take the inner product by f (φ̄n+1) to get

(f (φ̄n+1), φn+1)+ (f (φ̄n+1), φn+1)

2F̄n+1
(f (φ̄n+1), βn+1) = (f (φ̄n+1), αn+1),

(3.12)
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with

αn+1 =
( 3

2γt
I + (−)s

)−1
gn, βn+1 =

( 3

2γt
I + (−)s

)−1
f (φ̄n+1).

(3.13)

Then, we have

(f (φ̄n+1), φn+1) = (f (φ̄n+1), αn+1)

1+ 1
2F̄n+1 (f (φ̄n+1), βn+1)

. (3.14)

Thus we obtain an expression to compute φn+1 by bringing back (3.14) into (3.10):

φn+1 = αn+1 − (f (φ̄n+1), αn+1)

2F̄n+1 + (f (φ̄n+1), βn+1)
βn+1. (3.15)

Finally we compute rn+1 through

rn+1 = 4rn − rn−1

3
+ (f (φ̄n+1), φn+1)− (f (φ̄n+1),

4φn−φn−1

3 )

2
√
F̄n+1

.

We now summarize the algorithm of the Scalar Auxiliary Variable approach/Semi-
Implicit Second-Order Scheme (3.5)–(3.7) as follows:

1. Set φ̄n+1 = 2φn − φn−1, F̄n+1 =
∫

�

F(φ̄n+1)dx + C0,

c̃0 = (f (φ̄n+1), 4φn − φn−1)/3, c̃1 = 4rn − rn−1

3
√
F̄n+1

− c̃0

2F̄n+1
,

gn = 4φn − φn−1

2γt
− c̃1f (φ̄n+1);

2. Solve
3

2γt
βn+1 + (−)sβn+1 = f (φ̄n+1);

3. Solve
3

2γt
αn+1 + (−)sαn+1 = gn;

4. Compute c̃2 = (f (φ̄n+1), βn+1), c̃3 = (f (φ̄n+1), αn+1), c̃4 =
c̃3/(2F̄n+1 + c̃2);

5. Compute φn+1 = αn+1 − c̃4β
n+1, rn+1 = 4rn − rn−1

3
+

(f (φ̄n+1), φn+1)− c̃0

2
√
F̄n+1

.
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4 Numerical Results and Discussion

In this section, we first present a numerical example to illustrate the efficiency of the
SAV scheme in terms of stability and accuracy. We then use the proposed scheme
to simulate a benchmark problem.

4.1 Test of the Convergence Order

In order to validate the proposed SAV/BDF2 scheme for the fractional phase-field
equation, we consider a fabricated forcing term so that the exact solution to (1.1) is
φ(x, t) = sin(t) cos(πx) cos(πy). In this test we set γ = 1, � =] − 1, 1[2, and the
nonlinear term is given by f (φ) = φ (φ2 − 1).

In the calculation we use polynomial degree 32×32 for the spatial discretization,
which is large enough so that the spatial discretization error is negligible compared
to the temporal error. Figure 1 shows the L2-errors at T = 1.0 in log-log scale as
a function of the time step size for several fractional orders. It is observed from
this figure that the convergence rate of the time stepping scheme is exactly second
order as expected for all tested values of s. It is worthy to mention that no numerical
instability was observed for all time step sizes used in the calculation. This implies
that the proposed scheme is unconditionally stable.

Fig. 1 L2-errors at T = 1.0
in log-log scale with respect
to the time step size t for
different fractional order s
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4.2 Benchmark Test

In this subsection, we apply the SAV/BDF2 scheme to the fractional version of a
classical benchmark problem (cf. [11]) that we describe below. Our main purpose
in this test is to demonstrate the applicability of the constructed method for the
FACE. We are particularly interested in numerically investigating the impact of the
fractional order on the evolution of the phase interface.

At the initial state, there is a circular phase interface of the radius R0 = 100 in
the rectangular domain ] − 128, 128[2. In other words, the initial condition is given
by

φ(x, 0) =
⎧
⎨

⎩
1, |x|2 < 1002,

−1, |x|2 ≥ 1002.

Such a circular interface is unstable and the driving force will make it shrink and
eventually disappear. It has been shown that in the limit that the radius of the circle is
much larger than the interfacial thickness, the velocity and the radius of the moving
interface are given (see [1]) by

V = dR

dt
= − 1

R
, R(t) =

√
R2

0 − 2t .

In the implementation we map the computational domain ] − 128, 128[2 to ] −
1, 1[2. Therefore actually we are led to solve the fractional Allen-Cahn equation
(1.1) with the coefficients γ = 1/1282 and ε = 0.0078. In the simulation, the space
resolution is set to N = 512, and the time step size is t = 0.1. The computed
radius R(t) for s = 1 using the SAV/BDF2 scheme is plotted in Fig. 2. We observe
that R(t) keeps monotonously decreasing and very close to the sharp interface limit
value. This confirms the accuracy of the proposed method, at least in the case s = 1.

Next we apply the proposed scheme to investigate the impact of the fractional
order on the radius behavior. In Fig. 3 we present the numerical radius evolution
for a number of the fractional orders. Specifically, Fig. 4 shows the circle shrinking
for fractional orders s = 1.0, 0.9, 0.8. It is clearly indicated that the radius decay
rate slow down when the fractional order decreases. However, for the time being
the physical meaning and mathematical explanation of this phenomena remain
unknown. We plan to address this issue in future work.
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Fig. 2 The evolution of radius R(t): comparison of the exact solution and numerical result in the
case s = 1

Fig. 3 Evolution of the radius for different fractional order s: impact of the order on the radius
decay rate



SAV Method Applied to Fractional Allen-Cahn Equation 499

(a) s=1

(b) s=0.9

(c) s=0.8

Fig. 4 Temporal evolution of a circular domain from left to right at times t =
1000, 2000, 3000, 4000, 5000, for fractional order s = 1 (a),0.9 (b), 0.8 (c), for the top, middle
and bottom rows, respectively
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A First Meshless Approach to Simulation
of the Elastic Behaviour of the
Diaphragm

Nicola Cacciani, Elisabeth Larsson, Alberto Lauro, Marco Meggiolaro,
Alessio Scatto, Igor Tominec, and Pierre-Frédéric Villard

1 Introduction

When intensive care patients are subjected to mechanical ventilation, this is part of
the life support. At the same time the ventilator causes damage to the muscles that
govern the normal breathing. Normally, the muscles contract when we inhale, and
air is pulled into the lungs. During controlled mechanical ventilation, the ventilator
instead pushes the air into the lungs that then exert a pressure on the muscles. The
function of the muscle tissue can deteriorate quite rapidly, leading to Ventilator
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Induced Diaphragmatic Dysfunction (VIDD) [2]. Because of this, the rehabilitation
process, including the weaning from the ventilator, is more difficult and takes longer.

The Individual Virtual Ventilator (INVIVE) project [5] aims to study the
mechanics of respiration through numerical simulation in order to learn more about
the onset of VIDD, and the factors that influence its progress in a patient. This
work is the first publication from the project and is a pilot study for the numerical
techniques that we plan to use.

The diaphragm is the main respiratory muscle. It has not been studied as much
in the literature as other muscles, and not with detailed models. However, there
are a few studies that uses continuum mechanical descriptions of the muscle tissue
and simulate its behaviour using FEM [6, 10]. The main drawbacks of the FEM
solvers are that they are time-consuming, and that meshing of complex geometries
can be difficult. We instead propose to use a meshfree RBF-FD method [4] for the
numerical simulation. Some of the potential advantages are that meshing can be
replaced with scattered node generation, which in some respects is easier, and allows
for a lot of flexibility; that it is easy to construct high-order accurate approximations
that can reduce the computational cost; and that the method is easy to implement
and modify, providing flexibility when performing experiments. The objectives of
the paper are

• to show the feasibility of using the RBF-FD method for this type of problems,
• to work with real medical data such that the results will be relevant,
• to investigate how the high aspect ratio of the geometry affects the simulation

and if this can be mitigated by using high aspect ratio node sets.

The paper is organized as follows: In Sect. 2 we describe the linear elasticity
equations in three dimensions. Section 3 briefly introduces the RBF-FD method.
The process from medical images to input data for the simulation is described in
Sect. 4, which is followed by Sect. 5 on Numerical experiments.

2 The Elasticity Equations

The constitutive relations that describe the real behaviour of muscle tissue are
non-linear. The displacement of the diaphragm is large, and should therefore also
be modeled by non-linear elasticity equations. For our final simulation tool, we
aim to solve the fully non-linear equations. However, for the initial development
of meshless numerical methods for the diaphragm simulations, we use a linear
elasticity test case.

2.1 The Linearized Equations of Motion

For the linear test problem, the following simplifying assumptions are made:
The relationship between stress and strain is linear, the material is isotropic and
homogeneous, and displacements are small.
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We define the displacement u(X) = (u1(X), u2(X), u3(X))T ∈ R
3 of the tissue

from the initial configurationX = (x, y, z)T ∈ R
3 to a later configurationX∗ ∈ R

3

as

u(X) = X∗ −X. (1)

The strain-displacement relationship for small displacements, ||∇u||  1, has the
form

ε = 1

2

[
∇u+ (∇u)T

]
, (2)

where the strain ε ∈ R
3×3 is a tensor. For a linear material, the constitutive relation

between the strain and the stress σ ∈ R
3×3 is characterized by the Lamé parameters

λ, and μ, leading to

σ = 2με + λtr(ε)I. (3)

In tissue mechanics, the acceleration is typically small compared with the forces,
and can be neglected. The equations of motion (Newton’s second law) can then be
written as

∇ · σ + f = 0, (4)

where f ∈ R
3 represents body forces. We assume that (4) holds for all points

X ∈ �, where � is the domain of interest, which for our problem is the diaphragm.
To close the problem formulation, we also need boundary conditions. The first type
is displacement boundary conditions

u = g, X ∈ �D. (5)

These are applied where the geometry is attached, for example where the diaphragm
is attached to the ribs and the spine. Traction boundary conditions are given in terms
of the stress as

σ · n = h, X ∈ �T . (6)

These represent forces applied to the surface of the domain of interest, such as the
pressure against the diaphragm from below generated by the abdominal compliance.
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2.2 The Lamé-Navier PDE Formulation

The Lamé-Navier equations gives the steady-state motion equation in terms of the
displacement field [13]. This means we are solving a system of three PDEs with
three unknowns. We rewrite (4) and (6) in terms of u using relations (2), (3), and the

identity tr
(
∇u+ (∇u)T

)
= 2(∇ · u) to get

(λ+ μ)∇(∇ · u)+ μ∇2u+ f = 0, u ∈ � (7)

u = g, u ∈ ∂�D (8)
[
λ(∇ · u)I + μ(∇u+ (∇u)T )

]
· n = h, u ∈ ∂�T (9)

When we later discretize the system, it is more convenient to work with the operators
and the displacement in component form. The two operators in the PDE (7) applied
to u expand to

∇(∇ · u) =
⎛
⎜⎝
∇xx ∇xy ∇xz

∇xy ∇yy ∇yz

∇xz ∇yz ∇zz

⎞
⎟⎠

⎛
⎜⎝
u1

u2

u3

⎞
⎟⎠ , ∇2u =

⎛
⎜⎝
L 0 0
0 L 0
0 0 L

⎞
⎟⎠

⎛
⎜⎝
u1

u2

u3

⎞
⎟⎠ ,

where L = ∇xx +∇yy + ∇zz. Rewriting the two terms in the traction condition (9)
in the same way yields

(∇ · u)I · n =
⎛

⎜⎝
n1∇x n1∇y n1∇z

n2∇x n2∇y n2∇z

n3∇x n3∇y n3∇z

⎞

⎟⎠

⎛

⎜⎝
u1

u2

u3

⎞

⎟⎠ ,

(∇u+ (∇u)T ) · n =
⎛

⎜⎝
T1x n2∇x n3∇x

n1∇y T2y n3∇y

n1∇z n2∇z T3z

⎞

⎟⎠

⎛

⎜⎝
u1

u2

u3

⎞

⎟⎠ ,

where Tiq = ni∇q + n1∇x + n2∇y + n3∇z.

3 The RBF-FD Numerical Method

In the RBF-FD method [4], scattered node stencil approximations are used for
representing the differential operators in the PDE and the boundary conditions. Let
X1, . . . , XN be a global set of node points, and let uij ≈ ui(Xj ). We collect the
unknown displacement values in the vectors Ui = (ui1, . . . , uiN )T . When we want
to approximate the result of a differential operator D applied to ui , we first find
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a local neighbourhood X
(j)

1 , . . . , X
(j)
n with local unknowns u

(j)

ik to the point Xj ,
where we want to evaluate the result. The stencil approximation then takes the form

Dui(Xj ) ≈
n∑

k=1

wku
(j)
ik . (10)

The weights are computed for each point in the global node set by solving a linear
system of size n×n, where the stencil size n N . In this work, we consider stencil
approximations where RBFs augmented by a polynomial basis are used. The small
linear systems then take the form

(
A P

PT 0

)(
w

γ

)
=
(
b

c

)
, (11)

where A(i, k) = φ(‖X(j)

k −X
(j)

i ‖), where φ(r) is an RBF, for i, k = 1, . . . , N , and

where P(i, k) = pk(X
(j)

i ), for i = 1, . . . , N and k = 1, . . . ,m. The polynomials
pk are chosen as the lowest degree monomial basis with dimension m, and m is
usually chosen such that a full basis for a certain maximum degree K is obtained.
The right hand side vectors are defined by b(i) = Dφ(Xj −X

(j)

i ) for i = 1, . . . , N ,
and c(i) = Dpi(Xj ) for i = 1, . . . ,m. The vector γ can be seen as a Lagrange
multiplier in this problem and is discarded. The stencil approximation is exact for
polynomials up to degree K as can be seen from the last block row in the system,
and it is also exact for the RBFs centered at the stencil nodes.

A global differentiation matrix D is assembled by inserting the weights corre-
sponding to Xj in the j th row of the matrix, and in the columns corresponding to

the global indices of the nodes X(j)

k in the local neighbourhood (Xj is normally one
of the points in the neighbourhood). Then we can compute

(Dui(X1), . . . ,Dui(XN))T ≈ DUi. (12)

When solving the PDE problem (7)–(9), u is replaced with the discrete field
variables, and the differential operators are replaced with the corresponding dif-
ferentiation matrices. The PDE operator is applied for interior node points, and the
boundary operators at boundary node points.

In recent work on RBF-FD methods it has been found that a combination of
polyharmonic spline RBFs φ(r) = |r|2k+1, k > 0 with polynomials up to degree
K has excellent approximation properties [1, 3]. The (asymptotic) convergence rate
is guided by the polynomial degree K , and oscillations near boundaries, which are
common both with pure RBF and pure polynomial approximations, are suppressed
as soon as K is large enough. In this work, we use the cubic polyharmonic spline

φ(r) = |r|3. (13)
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4 The Medical Image Input Data

The medical research questions are the motivation for the INVIVE project, and it
is important that the numerical simulations can emulate what is seen in the medical
image data. To start with, we use medical images to extract the real diaphragm
geometry. We also use image data to find the displacement of the diaphragm at
different times during the respiratory cycle. Later in the project medical image data
will also be used for validation of the numerical simulations.

4.1 Medical Image Acquisition

The type of medical image data that is available to us is thoracic 3-D CT images
acquired using a TOSHIBA Aquilion ONE CT scan machine. The images were
captured at Azienda Ospedaliera di Padova from adult patients that were subjected
to the CT scan for medical reasons (the CT scans were not performed only for
research). The images were made and are used in anonymous form. The computed
3-D images are associated with two specific times in the breathing cycle or,
equivalently, with two different states of lung inflation. The images have a pixel
size of 0.927× 0.927 mm2 and a slice thickness of 0.3 mm. They have a resolution
of 512× 512× 1500 that includes the thoracic and abdominal regions. Examples of
image views are shown in Fig. 1.

4.2 Converting Image Data to Mesh-Based Geometry Data

Automated segmentation methods are currently not able to identify the diaphragm
that is barely visible in the images. Therefore, the diaphragm was manually
segmented on a Wacom tablet using a method similar to the description in [14].
The segmentation time is roughly 6 h for one 3-D image. The manual segmentation

Fig. 1 Manual segmentation of the diaphragm. Red: diaphragm, yellow: lungs, blue: bones
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Fig. 2 Left: The initial 3D-mesh and the decimated mesh with 1000 vertices. Right: The sagittal
cut and centers of gravity (green)

method consists in following the organs that are known to surround the diaphragm
such as the bottom of the lungs, the top of the liver, and the inside of the ribs.
Figure 1 shows the result of the segmentation.

The labelized voxel data is then converted into a mesh with the marching cube
algorithm. It contains around 1.5 · 106 vertices due to the CT scan resolution. The
initial mesh is then decimated using Vorpaline [9], a fast and automatic method,
where the only input is the number of final points comprising the mesh. The initial
mesh and a decimated mesh are shown in Fig. 2.

Both when implementing the boundary conditions and for node generation, it is
necessary to be able to identify vertices belonging to different parts of the surface
of the geometry. Two relevant sections are the upper thoracic surface and the lower
abdominal surface. These correspond to two different pressure regions.

To separate the surface components, we employ the following algorithm: First the
whole diaphragm is separated into a left and right part. If we orient the diaphragm
such that the parameter t ∈ [tmin, tmax] describes a position from left to right, and
we let V (·) denote the volume of a convex region, we let C(·) denote the convex
hull of a node set, and we let �(t1, t2) be the part of the diaphragm that falls within
that range of t . Then we can find the sagittal cut tsep as the position that maximizes
the sum of the left and right volume

tsep = arg max
tmin,≤t≤tmax

V
(
C
({Xj |Xj ∈ �(tmin, t)}

))+V
(
C
({Xj |Xj ∈ �(t, tmax)}

))
.

The result is illustrated in the right panel of Fig. 2, where also the two centres of
gravity cL and cR , for the left and right part respectively, are indicated.

For each surface vertex Xj ∈ �i , for i = L,R, of the diaphragm, a vertex
location tag is given by the dot product between the diaphragm vertex normal nj
and the normalized vector vj = (Xj − ci)/‖Xj − ci‖ in the direction from the
center of gravity to the vertex.

tag(Xj ) =
⎧
⎨

⎩
thorax, if nj · vj ≥ 0

abdomen, otherwise
(14)
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Finally, to avoid artifacts, only the bigger connected component of tagged locations
is kept and disconnected parts the are changed to the other location.

4.3 Final Geometry Representation and Node Generation

Based on the OGr method [11, 12] and a least-squares RBF-partition of unity
method [7], the mesh-based geometry is smoothed and parametrized. The details
of this process are described in a forthcoming paper [8].

Scattered nodes sets of different resolutions are generated from the smoothed
geometry. A level set function inside the volume is used for anisotropic node
placement such that the resolution in the direction normal to the surface is higher
then along the surface.

4.4 A Test Problem with Real Displacements

We are still working with the analyses of the images shown in the previous
section. Therefore, we use an older data set with a bit lower resolutions for the
test case and the numerical experiments. We only have the end of inhalation
state segmented at this point. To define a realistic displacement function, we have
identified nine different landmarks on the diaphragm. There are four insertion
points of the diaphragm that we take as immobile. These are the left and right
transverse processes of the two lowest thoracic vertebra T11 and T12. The five
moving landmarks and their displacements are given in Table 1. We augment this
information by also requiring the extremal points of the lower edge of the diaphragm
to be immobile, and the thickness change from contracted to relaxed state at the
two domes to be 66%. We then interpolate the displacements at the augmented
landmarks by the |r|7 polyharmonic spline. The initial and displaced states are
shown in Fig. 3. As the first test problem, we solve for the interior displacement
given that the boundary displacement changes from the relaxed to the contracted
state.

Table 1 Displacements of five landmark points

Right costophrenic Left costophrenic Xiphoid

Right dome Left dome recess recess process

u1 −1.08 1.08 −1.08 −2.16 0

u2 4.32 4.32 0 −2.16 −1.08

u3 −2.50 −7.50 −2.50 −10.00 0
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Fig. 3 Initial node locations
(higher, red) and displaced
node locations (lower, blue),
using the constructed
displacement function for a
node set with N = 8404
nodes

5 Numerical Experiments

A main concern when solving the linear elasticity problem for the diaphragm is
the high aspect ratio of the geometry. The overall size of the diaphragm is around
30× 20× 15 cm, while the thickness is just a few mm. In the experiments we want
to test how important the resolution in the normal direction is for the results. Our
hypothesis is that it needs to be large enough to allow for a stencil with a similar
number of nodes in each dimension. That is, we need at least 3

√
n nodes in the normal

direction. We compare two cases, (i) using uniform node sets with similar distances
in the normal and tangential directions, and (ii) using node sets that are refined in
the normal direction according to the stencil size. Convergence is tested against a
reference solution computed at a higher resolution.

The left part of Fig. 4 shows the convergence of the displacements. The errors are
larger for case (i), and no convergence trend is observed for the largest stencil size.
The number of points in the normal direction increases gradually as N increases. For
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Fig. 4 Left: Convergence of the displacement against the reference solution for uniform nodes
(dashed) and nodes refined in the normal direction (solid) for n = 50, K = 3 (square), n = 78,
K = 4 (circle), and n = 120, K = 5 (x), where n is the stencil size and K is the order of
the polynomial basis augmenting the polyharmonic spline functions. Right: Convergence of the
stresses against the reference solution for n = 50. The slopes p, with −p indicating the order of
convergence are also shown
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case (ii), the errors are smaller, and convergence is observed in all cases. When using
polyharmonic splines in combination with polynomials, we expect the convergence
rate to be of order hK+1, where h is a measure of the node spacing and K is the
maximum degree of the polynomial terms [3]. However, for case (ii), we get the
same rate of convergence for all K . One reason can be that the normal refinement
is constant when the tangential refinement is increased. There may also be issues
concerning the smoothness of the node distribution and/or the solution.

In the right part of Fig. 4, we display the convergence of the functions in the
stress tensor, computed for the interior nodes for case (ii). The convergence rates are
similar to those of the displacement. This is also unexpected, as we would normally
expect a derivative of order � to converge as hK+1−� [3].

In Fig. 5, we show the components of the stress tensor, computed for the interior
nodes for case (ii). We can see that the magnitude of the stresses is large at the
domes where we enforce compression of the muscle.

6 Conclusions

We have developed a pipeline for converting CT image data into input data for
numerical simulation. The main bottleneck is the manual segmentation of the
diaphragm. One thing that will be investigated in future work is if a mapping from
a reference geometry can be used to simplify this step.

When the thin dimension is resolved with enough node points, the RBF-FD
approximations converge as the number of nodes increase. Also the stresses can
be computed with similar accuracy. This shows that it is possible to use this type of
discretization, but further work is needed on how to generate smooth non-uniform
node sets, and also on the implementation of more advanced test problems.
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An Explicit Hybridizable Discontinuous
Galerkin Method for the 3D
Time-Domain Maxwell Equations

Georges Nehmetallah, Stéphane Lanteri, Stéphane Descombes,
and Alexandra Christophe

1 Motivations and Objectives

The DGTD method is nowadays a very popular numerical method in the compu-
tational electromagnetics community. A lot of works are mostly concerned with
time explicit DGTD methods relying on the use of a single global time step
computed so as to ensure stability of the simulation. It is however well known
that when combined with an explicit time integration method and in the presence
of an unstructured locally refine mesh, a high order DGTD method suffers from a
severe time step size restriction. An alternative approach that has been considered
in [5, 7, 16] is to use a hybrid explicit-implicit (or locally implicit) time integration
strategy. Such a strategy relies on a component splitting deduced from a partitioning
of the mesh cells in two sets respectively gathering coarse and fine elements. The
computational efficiency of this locally implicit DGTD method depends on the size
of the set of fine elements that directly influences the size of the sparse part of the
matrix system to be solved at each time. Therefore, an approach for reducing the size
of the subsystem of globally coupled (i.e. implicit) unknowns is worth considering
if one wants to solve very large-scale problems.

A particularly appealing solution in this context is given by the concept of
hybridizable discontinuous Galerkin (HDG) method. The HDG method has been
first introduced by Cockbrun et al. in [4] for a model elliptic problem and has
been subsequently developed for a variety of PDE systems in continuum mechanics
[13]. The essential ingredients of a HDG method are a local Galerkin projection
of the underlying system of PDEs at the element level onto spaces of polynomials
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to parameterize the numerical solution in terms of the numerical trace; a judicious
choice of the numerical flux to provide stability and consistency; and a global jump
condition that enforces the continuity of the numerical flux to arrive at a global
weak formulation in terms of the numerical trace. The HDG methods are fully
implicit, high-order accurate and most importantly, they reduce the globally coupled
unknowns to the approximate trace of the solution on element boundaries, thereby
leading to a significant reduction in the degrees of freedom. HDG methods for the
system of time-harmonic Maxwell equations have been proposed in [9, 10, 14].
We have only developed the implicit HDG method for the time-domain Maxwell
equations [3]. In view of devising a hybrid explicit-implicit HDG method, a
preliminary step is therefore to elaborate on the principles of a fully explicit
HDG formulation. It happens that fully explicit HDG methods have been studied
recently for the acoustic wave equation by Kronbichler et al. [8] and Stanglmeier et
al. [15]. In [15] the authors present a fully explicit, high order accurate in both
space and time HDG method. In this paper we outline the formulation of this
explicit HDGTD, present numerical results including a preliminary assessment of its
superconvergence properties. We adopt a low storage Runge-Kutta scheme [2] for
the time integration of the semi-discrete HDG equations. This work is a first step
towards the construction of a hybrid explicit-implicit HDG method for time-domain
electromagnetics.

2 Problem Statement and Notations

We consider the system of 3D time-domain Maxwell equations on a bounded
polyhedral domain Ω ⊂ R

3

⎧
⎨

⎩
ε∂tE− curlH = −J, in Ω × [0, T ],
μ∂tH+ curlE = 0, in Ω × [0, T ], (1)

where the symbol ∂t denotes a time derivative, J the current density, T a final time,
E(x, t) and H(x, t) are the electric and magnetic fields. The dielectric permittivity
ε and the magnetic permeability μ are varying in space, time-invariant and both
positive functions. The boundary of Ω is defined as ∂Ω = Γm∪Γa with Γm∩Γa =
∅. The boundary conditions are chosen as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n× E = 0, on Γm × [0, T ],
n× E+ n× (n×H) = n× Einc + n× (n×Hinc)

= ginc, on Γa × [0, T ].
(2)
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Here n denotes the unit outward normal to ∂Ω and (Einc,Hinc) a given incident field.
The first boundary condition is often referred as a metallic boundary condition and
is applied on a perfectly conducting surface. The second relation is an absorbing
boundary condition and takes here the form of the Silver-Müller condition. It is
applied on a surface corresponding to an artificial truncation of a theoretically
unbounded propagation domain. Finally, the system is supplemented with initial
conditions: E0(x) = E(x, 0) and H0(x) = H(x, 0). For sake of simplicity, we omit
the volume source term J in what follows.

We introduce now the notations and approximation spaces. We first consider a
partition Th of Ω ⊂ R

3 into a set of tetrahedron. Each non-empty intersection of
two elements K+ and K− is called an interface. We denote by FI

h the union of all
interior interfaces of Th, by FB

h the union of all boundary interfaces of Th, and
Fh =FI

h ∪FB
h . Note that ∂Th represents all the interfaces ∂K for all K ∈ Th. As

a result, an interior interface shared by two elements appears twice in ∂Th, unlike in
Fh where this interface is evaluated once. For an interface F ∈ FI

h, F = K
+∩K−,

let v± be the traces of v on F from the interior of K±. On this interior face, we define
mean values as {v}F = (v++v−)/2 and jumps as �v�F = n+×v++n−×v− where
the unit outward normal vector to K is denoted by n±. For the boundary faces these
expressions are modified as {v}F = v+ and �v�F = n+ × v+ since we assume v is
single-valued on the boundaries. In the following, we introduce the discontinuous
finite element spaces and some basic operations on these spaces for later use. Let
PpK (K) denotes the space of polynomial functions of degree at most pK on the
element K ∈ Th. The discontinuous finite element space is introduced as

Vh =
{

v ∈
[
L2(Ω)

]3
such that v|K ∈

[
PpK (K)

]3
, ∀K ∈ Th

}
, (3)

where L2(Ω) is the space of square integrable functions on the domain Ω . The
functions in Vh are continuous inside each element and discontinuous across the
interfaces between elements. In addition, we introduce a traced finite element space

Mh =
{
η ∈

[
L2(Fh)

]3
such that η|F ∈

[
PpF (F )

]3

and
(
η · n) |F = 0, ∀F ∈ Fh

}
.

(4)

For two vectorial functions u and v in
[
L2(D)

]3
, we denote (u, v)D =

∫
D

u · v dx

provided D is a domain in R
3, and we denote < u, v >F=

∫
F

u · v ds if F is a
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two-dimensional face. Accordingly, for the mesh Th we have

(·, ·)Th
=

∑

K∈Th

(·, ·)K , 〈·, ·〉∂Th
=

∑

K∈Th

〈·, ·〉∂K ,

〈·, ·〉Fh
=

∑

F∈Fh

〈·, ·〉F , 〈·, ·〉Γa
=

∑

F∈Fh∩Γa

〈·, ·〉F .

We set vt = −n× (n× v) , vn = n (n · v) where vt and vn are the tangential and
normal components of v such as v = vt + vn.

3 Principles and Formulation of the HDG Method

Following the classical DG approach, approximate solutions (Eh,Hh), for all t ∈
[0, T ], are seeked in the space Vh × Vh satisfying for all K in Th

⎧
⎪⎨

⎪⎩

(
ε∂tEh, v

)
K
− (

curlHh, v
)
K
= 0, ∀v ∈ Vh,

(
μ∂tHh, v

)
K
+ (

curlEh, v
)
K
= 0, ∀v ∈ Vh.

(5)

Applying Green’s formula, on both equations of (5) introduces boundary terms
which are replaced by numerical traces Êh and Ĥh in order to ensure the connection
between element-wise solutions and global consistency of the discretization. This
leads to the global formulation for all t ∈ [0, T ]

⎧
⎪⎪⎨

⎪⎪⎩

(
ε∂tEh, v

)
K
− (

Hh, curlv
)
K
+
〈
Ĥh,n× v

〉

∂K
= 0, ∀v ∈ Vh,

(
μ∂tHh, v

)
K
+ (

Eh, curlv
)
K
−
〈
Êh,n× v

〉

∂K
= 0, ∀v ∈ Vh.

(6)

It is straightforward to verify that n×v = n×vt and< H,n×v >= − < n×H, v >.
Therefore, using numerical traces defined in terms of the tangential components Ĥt

h

and Êt
h, we can rewrite (6) as

⎧
⎪⎪⎨

⎪⎪⎩

(
ε∂tEh, v

)
K
− (

Hh, curlv
)
K
+
〈
Ĥt

h,n× v
〉

∂K
= 0, ∀v ∈ Vh,

(
μ∂tHh, v

)
K
+ (

Eh, curlv
)
K
−
〈
Êt
h,n× v

〉

∂K
= 0, ∀v ∈ Vh.

(7)

The hybrid variable Λh introduced in the setting of a HDG method [4] is here
defined for all the interfaces of Fh as

Λh := Ĥt
h, ∀F ∈ Fh. (8)
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We want to determine the fields Ĥt
h and Êt

h in each element K of Th by solving
system (7) and assuming that Λh is known on all the faces of an element K . We
consider a numerical trace Êt

h for all K given by

Êt
h = Et

h + τKn× (Λh −Ht
h) on ∂K, (9)

where τK is a local stabilization parameter which is assumed to be strictly positive.
We recall that n × Ht

h = n × Hh. The definitions of the hybrid variable (8) and
numerical trace (9) are exactly those adopted in the context of the formulation of
HDG methods for the 3D time-harmonic Maxwell equations [10–12, 14].

Following the HDG approach, when the hybrid variable Λh is known for all the
faces of the element K , the electromagnetic field can be determined by solving the
local system (7) using (8) and (9).

From now on we will note by ginc the L2 projection of ginc on Mh. Summing
the contributions of (7) over all the elements and enforcing the continuity of
the tangential component of Êh, we can formulate a problem which is to find
(Eh,Hh,Λh) ∈ Vh ×Vh ×Mh such that for all t ∈ [0, T ]

(
ε∂tEh, v

)
Th
− (

Hh, curlv
)
Th
+ 〈

Λh,n× v
〉
∂Th
= 0, ∀v ∈ Vh,

(
μ∂tHh, v

)
Th
+ (

Eh, curlv
)
Th
−
〈
Êt
h,n× v

〉

∂Th

= 0, ∀v ∈ Vh,
〈
�Êh�, η

〉

Fh

− 〈
Λh, η

〉
Γa
−
〈
ginc, η

〉

Γa

= 0, ∀η ∈Mh,

(10)

where the last equation is called the conservativity condition with which we ask the
tangential component of Êh to be weakly continuous across any interface between
two neighboring elements.

We now reformulate the system with numerical fluxes. We can deduce from the
third equation of (10) that

Λh =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

τK+ + τK−

(
2
{
τKHt

h

}
F
+ �Et

h�F

)
, if F ∈ FI

h,

1

τK
n× Et

h +Ht
h, if F ∈ Fh ∩ Γm,

1

τK + 1

(
τKHt

h + n× Et
h − ginc

)
. if F ∈ Fh ∩ Γa.

(11)

By replacing (11) in (9) we obtain Êt
h = Êt,+

h = Êt,−
h with

Êt
h =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τK+τK−

τK+ + τK−

(
2

{
1

τK
Et
h

}

F

− �Ht
h�F

)
, if F ∈ FI

h,

0, if F ∈ Fh ∩ Γm,

1

τK + 1

(
Et
h − τKn×Ht

h − τKn× ginc
)
. if F ∈ Fh ∩ Γa.

(12)
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Thus, the numerical traces (8) and (9) have been reformulated from the conserva-
tivity condition. This means that the conservativity condition is now included in the
new formulation of the numerical fluxes and can be neglected in the global system of
equations. Hence, the local system (6) takes the form of a classical DG formulation,
∀v ∈ Vh

⎧
⎪⎪⎨

⎪⎪⎩

(
ε∂tEh, v

)
K
− (

Hh, curlv
)
K
+
〈
Ĥt

h,n× v
〉

∂K
= 0,

(
μ∂tHh, v

)
K
+ (

Eh, curlv
)
K
−
〈
Êt
h,n× v

〉

∂K
= 0.

(13)

where the numerical fluxes are defined by (11) and (12).

Remark 3 Let YK = √εK/
√
μK be the local admittance associated to cell K and

ZK = 1/YK the corresponding local impedance. If we set τK = ZK in (11) and
1/τK = YK in (12), the obtained numerical traces coincide with those adopted in
the classical upwind flux DGTD method [6].

4 Numerical Results

In order to validate and study the numerical convergence of the proposed HDG
method, we consider the propagation of an eigenmode in a closed cavity (Ω
is the unit square) with perfectly metallic walls. The frequency of the wave is
f = √3/

√
2c0 where c0 is the speed of light in vacuum. The electric permittivity

and the magnetic permeability are set to the constant vacuum values. The exact
time-domaine solution is given in [6].

We start our study by assuming that the penalization parameter τ is equal to 1. In
order to insure the stability of the method, numerical CFL conditions are determined
for each value of the interpolation order pK . In our particular case we have εK and
μk are constant= 1 ∀K ∈ Th, so we have verified that, as we said in Remark 3, for
τ = 1, the values of CFL number correspond to the classical upwind flux-based DG
method. In Table 1 we summarize the maximum Δt obtained numerically to insure
the stability of the scheme

Given these values of Δt max, the L2-norm of the error is calculated for a
uniform tetrahedral mesh with 3072 elements which is constructed from a finite
difference grid with nx = ny = nz = 9 points, each cell of this grid yielding
6 tetrahedrons. The wave is propagated in the cavity during a physical time tmax
corresponding to 8 periods (as shown in Fig. 1). Figure 2 depicts a comparison of

Table 1 Numerically obtained values of Δt max

Interpolation order P1 P2 P3 P4

Δt max (s.) 0.32 × 10−9 0.19× 10−9 0.13 × 10−9 0.94 × 10−10
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Fig. 1 Time evolution of the
exact and the numerical
solution of Ex at point
A(0.25, 0.25, 0.25) with a P3
interpolation
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Fig. 2 Time evolution of the
L2-norm of the error for P4
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the time evolution of the L2-norm of the error between the solution obtained with
an HDG method and a classical upwind flux-based DG method for pK = 4. An
optimal convergence with order pK + 1 is obtained as shown in Fig. 3.

Now, we keep the same case than previously and we assess the behavior of the
HDG method for various values of the penalization parameter τ . We observe that
the time evolution of the electromagnetic energy for any order of interpolation, for
different values of the parameter τ �= 1 and when the Δt used is fixed to the values
defined in Table 1, the energy increases in time. In fact, It is necessary to decrease
the Δt max for each value of τ to assure the stability (see Table 2 and Fig. 4). For
this example, the optimal cost will be for the parameter τ = 1 (having the same cost
as an upwind flux for a DG method) otherwise we will spend more time to finish
our simulation. On Fig. 5, we show the time evolution of the L2-error for several
values of τ with respect to the maximal time step for the considered parameters.
In addition, Table 3 sums up numerical results in term of maximum L2 errors and
convergence rates. It appears that the order of convergence is not affected when the
stabilization parameter is varied from 1 (with their associated CFL conditions).
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Table 2 Numerically obtained values of the CFL number as a function of the stabilization
parameter τ for a P1 interpolation

τ 0.1 1.0 2.0 5.0 10.0

Δt max (s.) 0.31×10−10 3.2×10−10 1.7×10−10 0.66×10−10 0.32×10−10

Fig. 4 Variation of the Δt
max as a function of τ
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Fig. 5 Time evolution of the
L2-error as a function of τ
with a P3 interpolation
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Table 3 Maximum L2-errors and convergence orders

τ = 1.0

1/h P1, Δt = 0.16 × 10−09
P2, Δt = 0.99 × 10−10

P3, Δt = 0.66 × 10−10

1/4 8.29e−02 – 9.87e−03 – 9.34e−04 –

1/8 1.90e−02 2.13 1.34e−03 2.88 5.68e−05 4.04

1/16 4.74e−03 2.00 1.72e−04 2.97 3.46e−06 4.04

τ = 0.1

1/h P1, Δt = 0.16 × 10−10
P2, Δt = 0.96 × 10−11

P3, Δt = 0.66 × 10−11

1/4 2.14e−01 – 1.78e−02 – 2.19e−03 –

1/8 5.46e−02 1.97 2.85e−03 2.65 1.68e−04 3.70

1/16 1.18e−02 2.21 4.06e−04 2.81 1.14e−05 3.88

τ = 10.0

1/h P1, Δt = 0.16 × 10−10
P2, Δt = 0.96 × 10−11

P3, Δt = 0.68 × 10−11

1/4 1.74e−01 – 1.53e−02 – 1.68e−03 –

1/8 4.24e−02 2.04 2.23e−03 2.76 1.17e−04 3.84

1/16 9.4e−03 2.16 3.10e−04 2.87 7.81e−06 3.91
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5 Local Postprocessing

We define here, following the ideas of the local postprocessing developed in [1], new
approximations for electric and magnetic field and expect that both En∗

h and Hn∗
h

converge with order k + 1 in the Hcurl(Th)-norm, whereas En
h and Hn

h converge
with order k in the Hcurl(Th)-norm. To postprocess En∗

h we first compute an
approximation (pn

1,h,pn
2,h) ∈ V(K) × V(K) to the curl of E, p1(t

n) = ∇ × E(tn)

and the curl of H, p2(t
n) = ∇ ×H(tn) by locally solving the below system

(pn
1,h, v)K = (En

h,∇ × v)K − 〈Êt,n
h ,n× v〉∂K ∀v ∈ V(K)

and,

(pn
2,h, v)K = (Hn

h,∇ × v)K − 〈Ĥt,n
h ,n× v〉∂K ∀v ∈ V(K)

We then find (En∗
h ,Hn∗

h ) ∈ [Pk+1(K)]3 × [Pk+1(K)]3 such that

⎧
⎨

⎩
(∇ × En∗

h ,∇ ×W)K = (pn
h,1,∇ ×W)K, ∀W ∈ [Pk+1(K)]3,

(En∗
h ,∇Y )K = (En

h,∇Y )K ∀Y ∈Pk+2(K)

and,

⎧
⎨

⎩
(∇ ×Hn∗

h ,∇ ×W)K = (pn
h,2,∇ ×W)K, ∀W ∈ [Pk+1(K)]3,

(Hn∗
h ,∇Y )K = (Hn

h,∇Y )K ∀Y ∈Pk+2(K)

It is important to point out that we can compute En∗
h and Hn∗

h at any time step without
advancing in time. Hence, the local postprocessing can be performed whenever we
need higher accuracy at particular time steps. Numerical results given in Table 4
shows that a second order convergence rate is obtained for the post-processed
solution.

6 Conclusion

In this paper we have presented an explicit HDG method to solve the system of
Maxwell equations in 3D. The next step is to couple explicit and implicit HDG
methods to treat the case of a locally refined mesh.
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Table 4 Errors and orders of
convergence before and after
postprocessing

τ = 1.0

||E −Eh||Hcurl
||E −E∗h ||Hcurl

Pk 1/h Error Order Error Order

P1 1/4 9.30e−01 – 6.83e−01 –

1/6 5.84e−01 1.14 3.10e−01 1.95

1/8 4.34e−01 1.03 1.67e−01 2.15

P2 1/4 1.67e−01 – 4.28e−02 –

1/6 7.46e−02 1.98 1.19e−02 3.16

1/8 4.29e−02 1.92 4.90e−03 3.06

P3 1/4 2.30e−02 – 5.00e−03 –

1/6 7.10e−03 2.90 1.10e−03 3.79

1/8 3.00e−03 2.99 3.58e−04 3.84
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Entropy Conserving and Kinetic Energy
Preserving Numerical Methods
for the Euler Equations Using
Summation-by-Parts Operators

Hendrik Ranocha

1 Introduction

Considering the solution of hyperbolic conservation laws, high order methods
can be very efficient, providing accurate numerical solutions with relatively low
computational effort [21]. In order to make use of this accuracy, stability has to be
established. Mimicking estimates obtained on the continuous level via integration-
by-parts, summation-by-parts (SBP) operators [22, 37] can be used. In short, SBP
operators are discrete derivative operators equipped with a compatible quadrature
providing a discrete analogue of the L2 norm. The compatibility of discrete
integration and differentiation mimics integration-by-parts on a discrete level.
Combined with the weak enforcement of boundary conditions via simultaneous
approximation terms (SATs) [1], highly efficient and stable semidiscretisations can
be obtained at least for linear problems, see e.g. [6, 14, 39] and references cited
therein.

In recent years, there has been an enduring and increasing interest in the basic
ideas of SBP operators and their application in various frameworks including finite
volume (FV) [25, 26], discontinuous Galerkin (DG) [2, 4, 10, 11, 13, 20, 27, 28, 30],
and the recent flux reconstruction/correction procedure via reconstruction frame-
work [15, 16, 42] as described in [31, 32]. While there is only a limited amount
of well-posedness theory for nonlinear conservation laws, mimicking properties
such as entropy stability semidiscretely has received much interest. Building on the
seminal work of Tadmor [40, 41], entropy stability of second order schemes using
symmetric numerical fluxes has been investigated, resulting in well-defined proper-
ties that numerical fluxes have to satisfy in order to result in entropy conservative
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schemes. Decomposing general semidiscretisations into a non-dissipative central
part and an additional dissipative part, suitable artificial dissipation or filtering can
be added afterwards, cf. [7, 9, 38]. Second order methods based on symmetric
numerical fluxes can be extended to high order in a conservative way, cf. [4, 7, 28]
and [8, 23, 34–36].

Another property of numerical methods for the Euler equations that has received
much interest in the literature concerns the kinetic energy. A structural property
of numerical fluxes described by Jameson [18] has been used to construct so-
called kinetic energy preserving (KEP) numerical fluxes inter alia by Chandrashekar
[3]. However, schemes using these fluxes do not preserve the kinetic energy as
expected in numerical experiments by Gassner et al. [12]. They had to change the
discretisation of the pressure to reduce undesired changes of the kinetic energy.
However, this resulted in a loss of entropy conservation. Motivated by these results,
some analytical insights into this behaviour have been developed in [29, Section 7.4]
and will be presented here.

This chapter is structured as follows. At first, some basic results about SBP
operators and corresponding semidiscretisations of hyperbolic conservation
laws are reviewed in Sect. 2. Afterwards, the Euler equations are considered in
Sect. 3. After demonstrating that the property that has been used to characterise
numerical fluxes as KEP is not well-defined, the new concept of KEP numerical
methods is introduced. Moreover, a numerical flux that is both entropy
conservative and kinetic energy preserving in the new sense is developed.
Thereafter, results of a numerical experiment comparing entropy conservative
numerical fluxes are described in Sect. 4. Finally, a brief summary is given in
Sect. 5.

2 Discretisations Using Summation-by-Parts Operators

Consider the Euler equations in two space dimensions

∂t

⎛

⎜⎜⎜⎝

ρ

ρvx

ρvy

ρe

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
=u

+ ∂x

⎛

⎜⎜⎜⎝

ρvx

ρv2
x + p

ρvxvy

(ρe + p)vx

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
=f x(u)

+ ∂y

⎛

⎜⎜⎜⎝

ρvy

ρvxvy

ρv2
y + p

(ρe + p)vy

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
=f y(u)

= 0, (1)

where ρ is the density, v the velocity, e the specific total energy, and p the pressure.
For a perfect gas, p = (γ −1)

(
ρe− 1

2ρv
2
)
. The usual entropy is U = − ρs

γ−1 , where
s = logp − γ logρ is the specific (physical) entropy.

With the entropy fluxes Fj fulfilling ∂uU · ∂uf j = ∂uF
j , smooth solutions of

the Euler equations in d space dimensions satisfy ∂tU(u)+∑d
j=1 ∂jF

j (u) = 0 and
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the entropy inequality

∂tU(u)+
d∑

j=1

∂jF
j (u) ≤ 0 (2)

is used as additional admissibility criterion for weak solutions, cf. [5].
In order to discretise (1), the domain Ω is divided into several non-overlapping

sub-domains Ωl ⊆ Ω and SBP operators will be used on each element. SBP
operators consist of discrete derivative operators Dj , approximating the partial
derivative in direction j , and a symmetric and positive definite mass/norm matrix M ,
approximating the L2(Ωl) scalar product via uTMv = 〈u, v, 〉M ≈ 〈u, v, 〉L2(Ωl)

=∫
Ωl

u v. Moreover, an interpolation operator R approximates the restriction of
functions on Ωl to the boundary ∂Ωl and a symmetric and positive definite
boundary mass matrix B approximate the L2(∂Ωl) scalar product. Representing
the multiplication by the j -th component of the outer unit normal ν at ∂Ωl by the
diagonal matrix nj , the SBP property

MDj +DT
j M = RT BnjR (3)

has to be satisfied in order to mimic integration-by-parts discretely via

uTMDjv + uTDT
j Mv

︸ ︷︷ ︸
= uT RT BNjRv,
︸ ︷︷ ︸

≈ ≈︷ ︸︸ ︷∫

Ωl

u (∂j v)+
∫

Ωl

(∂ju) v =
︷ ︸︸ ︷∫

∂Ωl

u v nj .

(4)

Semidiscretisation of (1) will be constructed as follows. Each sub-domain Ωl ⊆
Ω is mapped onto a reference element and all computations are performed there.
On each element, the resulting semidiscretisation is of the form

∂tu+ VOL+ SURF = 0, (5)

where the volume terms VOL discretise the flux divergence in the interior of Ωl

and the surface terms SURF couple elements or impose boundary conditions.
Here, u is the vector of the nodal values of the numerical solution at specified
nodes ξi in Ωl and a collocation approach is used. Thus, nonlinear operations are
performed pointwise and the discrete fluxes f j are given by their nodal values
f
j
i = f j (ui) = f j (u(ξi)). As in (nodal) discontinuous Galerkin methods, the

surface terms will be built using numerical fluxes f num,j in the j -th coordinate
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direction as

SURF =
d∑

j=1

M−1RT Bnj
(
f num,j − Rf j

)
. (6)

Finally, the volume terms are constructed using symmetric (two-point) numerical
fluxes f vol,j (volume fluxes) that are consistent with f j as

VOLi =
d∑

j=1

∑

k

2(Dj )i,kf
vol,j (ui, uk), (7)

where VOLi is the volume term at ξi [7]. If f vol,j are smooth fluxes, the
discretisation (7) is of the same order of accuracy as the derivative matrices Dj

[4, 28]. Moreover, if the mass matrix M is diagonal, this approximation can be
written in a conservative form [7]. Finally, if the boundary operators RT BnjR are
also diagonal and f vol,j are entropy conservative in the sense of Tadmor [40, 41],
the semidiscretisation (5) is entropy conservative/stable across elements if the
numerical surface fluxes f num,j are entropy conservative/stable. Moreover, some
results on the kinetic energy can be transferred as well [12]. In the following, the
focus will lie on the fluxes f vol,j .

3 Euler Equations and Kinetic Energy

The kinetic energy Ekin = 1
2ρv

2 fulfils (for sufficiently smooth solutions)

∂tEkin + div
(1

2
ρv2v

)
+ v · gradp = 0. (8)

Jameson [18] investigated the kinetic energy in a one-dimensional semidiscrete
setting using finite volume methods. To simplify the notation, this setup will be used
in the following; its extension to multiple dimensions is straightforward. Jameson
proposed to mimic (8) semidiscretely by using numerical momentum fluxes of the
form f num

ρv = f num
ρv (u−, u+) = {{v}}f num

ρ +pnum, where {{v}} is the arithmetic mean
of v− and v+, f num

ρ is the numerical density flux, and pnum is a consistent numerical
approximation of the pressure. Later, this has been used as a kind of “definition” of
kinetic energy preserving (KEP) numerical fluxes, e.g. in [3, 12]. However, this is
not a well-defined concept, cf. [28, 29]. Indeed, every numerical momentum flux
can be written as

f num
ρv = {{v}}f num

ρ + (
f num
ρv − {{v}}f num

ρ

)
︸ ︷︷ ︸

=: pnum?

. (9)
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Since the numerical fluxes are consistent, pnum := f num
ρv − {{v}}f num

ρ is a
consistent approximation of the pressure. The insufficiency of the condition f num

ρv =
{{v}}f num

ρ + pnum is in accordance with observations of Gassner et al. [12]. They
investigated a Taylor-Green vortex problem and compared several numerical fluxes
for the Euler equations. There, numerical fluxes of the form f num

ρv = {{v}}f num
ρ +

pnum with pnum �= {{p}} resulted in a clear loss of kinetic energy compared to other
KEP fluxes using the arithmetic average pnum = {{p}} as approximation of the
pressure. They observed that “the discretisation of the pressure plays a crucial role
for the kinetic energy” and that the choice of the arithmetic average pnum = {{p}}
“seems to be important for the kinetic energy equation” [12, Section 4.2]. However,
they had no (theoretical) explanations for this observation.

3.1 New Approach to Kinetic Energy Preservation

By a heuristic argument, the balance law (8) may not be suitable in the incompress-
ible limit: Indeed, for smooth solutions, (8) can be rewritten as

∂tEkin + div
(1

2
ρv2v + pv

)
− p div v = 0, (10)

which becomes a conservation law for smooth solutions of the incompressible
Euler equations due to div(v) = 0 or an energy inequality similar to the entropy
inequality (2). Since the kinetic energy is plays a crucial role in the incompressible
limit [24], the second form (10) might be considered the “better” one. Thus, a
semidiscretisation mimicking this equation might be desirable near the incompress-
ible limit.

Definition 1 A numerical flux f num = (f num
ρ , f num

ρv , f num
ρe ) for the Euler equations

is called kinetic energy preserving (KEP), if the momentum flux can be written as
f num
ρv = {{v}}f num

ρ + {{p}}.
Definition 1 results in a well-defined concept of KEP numerical fluxes.

Theorem 1 (Corollary 7.5 of [29]) If a kinetic energy preserving numerical flux is
used in a semidiscrete FV method, the resulting semidiscrete kinetic energy equation
mimics both the conservative and the non-conservative terms of Eq. (10).

Proof (Sketch) Using the chain rule in a one dimensional finite volume setting, the
time derivative of the kinetic energy in cell i becomes

∂t

(1

2
ρv2

)

i
=− 1

Δxi

((1

2
ρv2v + pv

)num
(ui, ui+1)−

(1

2
ρv2v + pv

)num
(ui−1, ui)

)

+ pi

{{v}}i,i+1 − {{v}}i−1,i

Δxi
,

where
( 1

2ρv
2v + pv

)num
(ui, uj ) = vivj f

num
ρ (ui, uj )+ pivj+pj vi

2 . %&
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Using the momentum flux f num
ρv = {{v}}f num

ρ + {{p}} in the volume terms (7) in
one dimension, the arithmetic average of the pressure yields the volume term Dp,
i.e. a straightforward discretisation of ∂xp. Analogous results hold in multiple space
dimensions, cf. Sect. 2.

The kinetic energy preserving DG methods presented in [11, 27] use volume
terms corresponding to the numerical fluxes f num

ρ = {{ρv}}, f num
ρv = {{ρv}}{{v}} +

{{p}}, which are kinetic energy preserving in the sense of Definition 1.

3.2 Entropy Conservative and KEP Numerical Fluxes

Since entropy stability has received much interest and the entropy conservative
numerical fluxes of [3, 17] are not KEP in the sense of Definition 1, it is interesting
whether both concepts can be fulfilled simultaneously. The logarithmic mean
value {{ρ}}log = [[ρ]]/[[logρ]] has been proposed by Roe [33] in the context
of entropy conservative numerical fluxes and is described in [17]. Many useful
entropy conservative numerical density fluxes are of the form f num

ρ = {{ρ}}log{{v}},
e.g. the one presented in [3]. This form seems to be preferable, since positivity
preservation of the density can be achieved using local Lax-Friedrichs/Rusanov
dissipation operators [28, Section 6.2]. Using this ansatz for f num

ρ and Definition 1,
the following entropy conservative and kinetic energy preserving numerical flux
(f num,y analogously) has been constructed in [29, Section 7.4]

f num,x
ρ = {{ρ}}log{{vx}}, f num,x

ρvx
= {{vx}}f num,x

ρ + {{p}}, f num,x
ρvy

= {{vy}}f num,x
ρ ,

(11)

f num,x
ρe =

⎛

⎝{{ρ}}log

(
{{vx}}2+{{vy}}2−

{{v2
x + v2

y}}
2

)
+ 1

γ − 1

{{ρ}}log

{{ρ/p}}log
+{{p}}

⎞

⎠{{vx}}

− [[p]][[v]]
4

.

4 Numerical Results

Since the kinetic energy is an important quantity for the incompressible Euler
equations, a Taylor-Green vortex given by

ρ(t, x, y) = 1, vx(t, x, y) = sin(x) cos(y),

vy(t, x, y) = − cos(x) sin(y), p(t, x, y) = 100

γ
+ cos(2x)+ cos(2y)

4
,

(12)
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for (x, y) ∈ [0, 2π]2 with periodic boundary conditions is considered, which is
a stationary solution of the incompressible Euler equations. Using tensor product
Lobatto bases for polynomials of degree p = 5 on N = 16 elements per
coordinate direction, the numerical solutions have been computed in the time
interval t ∈ [0, 30] with the fourth order, ten-stage, strong stability preserving
Runge-Kutta method of [19]. The time step Δt has been chosen as Δt =
cfl min

{
Δx/(2p + 1)λ

}
, where λ is the greatest absolute value of the eigenvalues

of f ′ and the minimum is taken over all cells and nodes. As in [12], the given
numerical fluxes have been used for both the volume terms (7) and as surface fluxes
in (6), without additional dissipation.

The evolution of the entropy U and the kinetic energy Ekin using a CFL number
cfl = 0.9 for the entropy conservative fluxes of Ismail and Roe [17], Chandrashekar
[3], and the new flux (11) are visualised in Fig. 1. As can be seen there, the entropy
remains approximately constant and the kinetic energy oscillates uniformly until
t ≈ 20. Afterwards, the kinetic energy drops for the fluxes of [3, 17] and there is
a relative change of the entropy of order 10−5. Contrary, there is no visible change
for the new flux (11).

The entropy loss for the fluxes of Ismail and Roe [17] and Chandrashekar [3] is
caused by the time integration scheme, as can be seen in Fig. 2, where the time step
is reduced by an order of magnitude (cfl = 0.09). However, the behaviour of the
kinetic energy is nearly unchanged.

−4 ·10−2

−2 ·10−2

0

E
(t

)−
E

(0
)

E
(0

)

0 5 10 15 20 25 30

−2 ·10−5

−1 ·10−5

0

Time t

U
(t

)−
U

(0
)

|U
(0

) |

Numerical Flux of Chandrashekar
Numerical Flux of Ismail & Roe
New Numerical Flux (KEP & EC)

Fig. 1 Total entropy and kinetic energy of numerical solutions using different entropy conserva-
tive numerical fluxes with cfl = 0.9
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Fig. 2 Total entropy and kinetic energy of numerical solutions using different entropy conserva-
tive numerical fluxes with cfl = 0.09

5 Summary and Discussion

Using summation-by-parts operators, high order numerical schemes with specific
properties can be constructed using symmetric (two-point) numerical fluxes. While
several “kinetic energy preserving” methods have been proposed, they have been
characterised by a property of the numerical fluxes that is not well-defined. Such
numerical fluxes resulted in schemes that did not preserve the kinetic energy as
expected [12]. Here, a new approach to kinetic energy preservation inspired by
the incompressible Euler equations and developed in [29, Section 7.4] has been
described. This results in a well-defined property numerical fluxes have to satisfy
in order mimic the balance law for the kinetic energy more reliably. Moreover, new
entropy conservative numerical fluxes have been developed that are kinetic energy
preserving in the new sense.
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Multiwavelet Troubled-Cell Indication: A
Comparison of Utilizing Theory Versus
Outlier Detection

Mathea J. Vuik

1 Introduction

Solutions to nonlinear hyperbolic PDEs develop discontinuities in time. The
generation of spurious oscillations in such regions can be prevented by applying
a limiter in the troubled zones. In [16, 18], two different multiwavelet troubled-
cell indicators were introduced, one based on a parameter, the other using outlier
detection. We present this comparison in order to begin to understand in which
regime these tools are effective. In this paper, we investigate the effectiveness of
a different detection scheme, based on the theoretical detection of troubled cells
using multiwavelet approaches. It uses the cancelation property [6] and the theory
about thresholding [8]. This technique was originally used for a multiwavelet-
based adaptive strategy in combination with the DG method. However, we are
specifically interested in its application for troubled-cell indication. In the troubled
cells, the moment limiter is applied [11]. We demonstrate the performance of this
new indicator and show that it works very well when very fine meshes are used
(the asymptotic regime). For coarser meshes, it seems that the existing multiwavelet
troubled-cell indicators perform better.

The outline of this paper is as follows: in Sect. 2, some background information
about the multiwavelet theory is given. The existing multiwavelet troubled-cell indi-
cators, as well as the cancelation property and the derived thresholding technique are
described in Sect. 3. Numerical results are shown in Sect. 4, and some concluding
remarks are given in Sect. 5.
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2 Multiwavelets and DG

In this section, we consider the multiwavelet theory that is used to design the
different troubled-cell indicators. For the sake of brevity, we neglect discussion of
the DG scheme [4, 5], that is used in the computations.

The relation between the DG scheme and multiwavelets was shown in [16]. Any
global one-dimensional DG approximation of degree k can be written as

uh(x) = 2−
n
2

2n−1∑

j=0

k∑

�=0

u
(�)
j φn

�j (x),

where φn
�j are the scaling functions related to the orthonormal Legendre polynomi-

als. The corresponding multiwavelet decomposition is

uh(x) =
k∑

�=0

s0
�0φ�(x)+

n−1∑

m=0

2m−1∑

j=0

k∑

�=0

dm
�jψ

m
�j (x),

where s0
�0 are the scaling-function coefficients belonging to uh, and dm

�j are the
corresponding multiwavelet coefficients, [2, 16]. The multiwavelets ψ� have been
developed by Alpert [1].

3 Utilizing Multiwavelet Coefficients for Troubled-Cell
Indication

In this section, we show different troubled-cell indicators that utilize multiwavelet
coefficients. Note that, as the detectors are solely based on the underlying approx-
imation space, the ideas do not need to be modified in order to be applied to
other types of model problems than those included in this paper. First, the existing
indicators that use either a parameter or the boxplot method are presented. Next,
the cancelation property and thresholding technique are used to design a different
indication technique.

3.1 Boxplots for Outlier Detection

In [16, 17], we have shown that the coefficients dn−1
kj are very useful for troubled-

cell indication. With this knowledge, we have designed two different troubled-
cell indicators. The first indicator is the so-called parameter-based multiwavelet
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troubled-cell indicator [16]. Here, we detect an element as troubled when

|dn−1
kj | > C ·max{|dn−1

kj |, j = 0, . . . , 2n − 1}, C ∈ [0, 1]. (1)

The value of C is a useful tool to prescribe the strictness of the limiter.
Another option is to use outlier detection on the multiwavelet coefficients dn−1

kj

to detect the troubled cells [18]. Here, Tukey’s boxplot method [14] is applied
locally to prevent the need for a problem-dependent parameter. The different steps
are presented in Algorithm 1.

Algorithm 1 Outlier-detection algorithm using local vectors
Send in a suitable troubled-cell indication vector D.
Split this vector into local vectors, d.
for all local vectors do

Sort d to obtain ds .
Compute the quartiles Q1 and Q3.
Detect ds

j in the smallest 25% of ds if ds
j < Q1 − 3(Q3 −Q1), and ds

j in the biggest 25% of
ds if ds

j > Q3 + 3(Q3 −Q1).
end for
Ignore the detected outliers in the left half of the local region when they are not detected with
respect to the left-neighboring vector, and similarly test the detected coefficients in the right half
of the local region.

Outliers are the coefficients in the vector that are straying far out beyond the
others. In order to pick out certain coefficients as outliers, the outer fences are
constructed, which were originally defined by Tukey [14]. The outer fences of a
vector are [Q1 − 3(Q3 −Q1),Q3 + 3(Q3 − Q1)] (coefficients outside are called
extreme outliers). The coverage for this whisker length is 99.9998%, such that only
0.0002% of the data in a normally distributed vector is detected as an extreme outlier
(asymptotically) [9].

In our computations, we always use local vectors of length 16.

3.2 Cancelation Property

In this section, the cancelation property is stated and proved for the one-dimensional
case [6]. Here, we assume that the multiwavelets have M + 1 vanishing moments.
In our case, we have M = � + k [1, 15]. If the solution satisfies the continuity
requirement u|Imj ∈ CM+1(Imj ) (where Imj is the j -th element in level m), then

dm
�j ≤

1

(M + 1)! · ||u
(M+1)||L∞(Imj ) · 2(−m+1)(M+3/2), (2)

m = 0, . . . , n, j = 0, . . . , 2m − 1, � = 0, . . . , k.
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The proof uses a Taylor expansion of u about element center xmj : there exists a ξ

between x and xmj such that

u(x) = u(xmj )+u′(xmj )(x−xmj )+ . . .+
u(M)(xm

j
)

M ! (x−xmj )M + u(M+1)(ξ)

(M + 1)! (x−xmj )M+1.

Using that the first M + 1 moments of the multiwavelets vanish, we find

dm
�j = 〈u,ψm

�j 〉Imj =
〈
u(M+1)(ξ)

(M + 1)! (x − xmj )M+1, ψm
�j

〉

Imj

≤ 1

(M + 1)! ||u
(M+1)||L∞(Imj )〈(x − xmj )M+1, ψm

�j 〉Imj . (3)

Next, we use Cauchy-Schwarz’s inequality to find

〈(x−xmj )M+1, ψm
�j 〉Imj ≤ ||(x−xmj )M+1||L2(Imj ) · ||ψm

�j ||L2(Imj ) = ||(x−xmj )M+1||L2(Imj ),

because the multiwavelets are orthonormal. Using the notation Δxm for the element
size in level m, we have

||(x − xmj )M+1||L2(Imj ) ≤ (Δxm)M+1||1||L2(Imj ) = (Δxm)M+1√Δxm = (Δxm)M+3/2.

For the domain [−1, 1], we have Δxm = 2−m+1. This means that

||(x − xmj )M+1||L2(Imj ) ≤ 2(−m+1)(M+3/2),

which proves the cancelation property. It should be noticed that this result can be
generalized to general grid hierarchies and higher-dimensional problems [6, 10].

The next section contains a discussion of the thresholding technique for one-
dimensional multiwavelet expansions.

3.3 Thresholding of the Multiwavelet Coefficients

In this section, the thresholding technique for systems of conservation laws in
one dimension is explained, which is based on the cancelation property [8].
This technique is originally used for a multiwavelet-based adaptive strategy in
combination with the DG method. However, we are specifically interested in its
application for troubled-cell indication.



Multiwavelet Troubled-Cell Indication Comparisons 541

Following [8], the element In−1
j is detected as troubled if

max
�=0,...,k
r=1,2,3

⎛
⎜⎝

|dn−1
�j (r)|

max
{

maxj=0,...,2n−1 2(n−1)/2|sn0j (r)|, 1
}

⎞
⎟⎠ > εn−1

√
2Δx.

Here, the value r is related to the conserved quantity in a system of three PDEs.
The factor

√
2Δx (with Δx the DG mesh width) occurs because of a scaling

difference: the multiwavelets in [8] are scaled with respect to the L∞-norm, whereas
an L2-norm scaling is used in this paper. The level-dependent threshold value εn−1
is chosen as εn−1 = ε/2. The parameter ε can be chosen using two different
strategies [8]. The first option is to use the a priori strategy, which is based on the
balance between discretization errors and perturbation errors of adaptive meshes
[10]. If the solution contains discontinuities, then the a priori strategy leads to
ε = CΔx2. The second option is the heuristic approach, which is based on
numerous computations for practical applications [8]. This method is more efficient
since it is less pessimistic than the a priori strategy. For discontinuous solutions, the
heuristic approach uses ε = CΔx.

This yields detection of element In−1
j if

max
�=0,...,k
r=1,2,3

⎛

⎜⎝
|dn−1

�j (r)|
max

{
maxj=0,...,2n−1 2(n−1)/2|sn0j (r)|, 1

}

⎞

⎟⎠ >
1√
2
Δxβ+0.5C,

where β = 2 for the a priori strategy and β = 1 for the heuristic strategy. Note that
the multiwavelet coefficients are scaled by the cell average if this value is greater
than 1 in absolute value (to prevent division by zero).

The optimal choice of the parameter C depends on the problem, in particular on
the strength of the shock compared to the normal amplitude of the solution. The
smaller C is, the more elements are detected. In general, the value C = 1/(b − a)

should work for the domain [a, b] [8]. If C is chosen too small, then too many cells
are detected as troubled. For the adaptive strategy, this is not really problematic since
the approximation is usually more accurate on a finer grid. However, for troubled-
cell indication, it is important to detect the correct number of elements.

It should be noticed that this indicator is designed for very fine resolutions (since
the strategies use asymptotic arguments). For coarse meshes, smaller values of C

should be used, which are difficult to predict a priori.
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3.4 Generalized Grids

The algorithm for utilizing Alpert’s multiwavelets for a nonuniform grid is given in
[7]: the only difference with Alpert’s algorithm [1] is that no additional vanishing
moments are added. Multiwavelets for one-dimensional irregular meshes have been
designed in [12, 13]. It should be noticed that this construction is local, which
means that the resulting bases are depending on the level and the position unless
there is an affine mapping from the element to a reference element. This leads to
slower computations. On the other hand, the use of such multiwavelet space makes
it possible to decompose the DG approximation to a multiwavelet expansion exactly.
The multiwavelet coefficients will again become small if the underlying function is
smooth, and the mesh width between two neighboring elements is not varying too
much.

When coupled with a troubled-cell indication variable, it will be necessary to
include spatial information of the mesh in the algorithm using the element size.
Alternatively, one can use of a window-based technique [3]. A window is a fixed
length subsequence of the test sequence, which can be slid through the domain using
a sliding step. These issues and resulting numerics are discussed further in [15].

4 Numerical Results

In this section, the different multiwavelet troubled-cell indicators are applied to one-
dimensional problems based on the Euler equations of gas dynamics.

The results for the original multiwavelet troubled-cell indicators (both based on a
parameter, and based on outlier detection), can be seen in Figs. 1 and 2 (polynomial
degree 2, 128 elements for Sod’s and Lax’s shock tube, and 512 elements for the
blast-wave and Shu-Osher problem). The parameter-based technique performs well
if a suitable value for the problem-dependent parameter C is chosen. The outlier-
detection results are generally better than the original troubled-cell indicator using
an optimized parameter: both the weak and the strong shock regions were detected,
whereas smooth regions were not selected.

It is also possible to use the thresholding technique for multiwavelet coefficients
to detect troubled cells. It turns out that this indicator works very well as long
as an appropriate value for C is chosen, and the mesh is taken fine enough. The
results for the different test cases are visualized in Fig. 3 using the heuristic strategy
(polynomial degree 2, 1024 elements for all models). Here, we take the value
C = 1/(b − a) where [a, b] is the domain on which the test problem is defined.
Note that this thresholding technique is very accurate. However, many elements
should be used to meet the asymptotic properties of the indicator.
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Fig. 1 Time-history plot of detected troubled cells using the parameter-based multiwavelet
troubled-cell indicator, polynomial degree 2. (a) Sod’s shock tube, C = 0.1, 128 elements. (b)
Lax’s shock tube, C = 0.1, 128 elements. (c) Blast-wave problem, C = 0.05, 512 elements. (d)
Shu-Osher, C = 0.01, 512 elements

If the number of elements is taken smaller, then C should decrease to detect the
correct features. In that case, it is difficult to guess the correct value of C. Another
option is to use the a priori strategy for coarser meshes, see Fig. 4 (polynomial
degree 2, 128 elements for Sod’s and Lax’s shock tube, and 512 elements for the
blast-wave and Shu-Osher problem). If C = 1/(b − a) is used, then this approach
works well for Sod’s and Lax’s shock tube, but too many elements are detected for
the blast-wave and the Shu-Osher problem. Also here, the value of C should be
adapted to find the correct results.
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Fig. 2 Time-history plot of detected troubled cells using the outlier-detection multiwavelet
troubled-cell indicator, polynomial degree 2. (a) Sod’s shock tube, 128 elements. (b) Lax’s shock
tube, 128 elements. (c) Blast-wave problem, 512 elements. (d) Shu-Osher problem, 512 elements

5 Conclusions and Recommendations

In this paper, a new troubled-cell indicator was formed, based on the cancelation
property for multiwavelets and the derived thresholding technique. Inspection of
this technique reveals that it is very useful to design adaptive meshes [8]. For
troubled-cell indication, we found out that detection is very accurate as long as a
very fine mesh is used. For coarser meshes, it seems to be more useful to apply a
different detection method. Furthermore, it is not straightforward how to choose the
parameter C.

More research should be done to see in which way the cancelation property for
multiwavelet coefficients can be used for the accurate detection of troubled cells.
For example, it could be that this property also relates to the severity of the shocks.
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Fig. 3 Thresholding technique with heuristic approach: time-history plot of detected troubled
cells, 1024 elements, polynomial degree 2, C = 1/(b − a), with [a, b] the computational domain.
(a) Sod’s shock tube. (b) Lax’s shock tube. (c) Blast-wave problem. (d) Shu-Osher problem
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Fig. 4 Thresholding technique with a priori approach on coarser meshes: time-history plot of
detected troubled cells, polynomial degree 2, C = 1/(b−a), with [a, b] the computational domain.
(a) Sod’s shock tube, 128 elements. (b) Lax’s shock tube, 128 elements. (c) Blast-wave problem,
512 elements. (d) Shu-Osher problem, 512 elements
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An Anisotropic p-Adaptation Multigrid
Scheme for Discontinuous Galerkin
Methods

Andrés M. Rueda-Ramírez, Gonzalo Rubio, Esteban Ferrer,
and Eusebio Valero

1 Introduction

In recent decades, high-order discontinuous Galerkin (DG) methods have been
gaining increasing popularity for high-accuracy solutions of systems of conservation
laws, such as the compressible Euler and Navier-Stokes equations [5, 6, 22]. The
lack of a continuity constraint on element interfaces makes DG methods robust for
describing advection-dominated problems when an appropriate Riemann solver is
selected [5, 12, 22].

Multigrid methods speed up the iterative solution of large systems of equations
using coarse-grid representations (lower levels). Iterative methods (known as
smoothers in the multigrid community) are good at eliminating the high frequencies
of the error fast; therefore, when applied to coarse-grid representations, they also
reduce the low frequencies of the error. They have been broadly used in the high-
order community in recent years in the form of p-multigrid [2, 8] (where levels are
constructed using different polynomial orders) and hp-multigrid [14, 21] (where
both the order and size of the elements are changed). Two types of multigrid
methods can be found in the literature: linear and nonlinear multigrid. In our
work, we make use of the nonlinear multigrid scheme, also known as the Full
Approximation Scheme (FAS), since it enables the estimation of the truncation
error of coarse representations, as will be shown. The smoother can be either a
time-marching scheme (implicit or explicit), or an iterative method applied to the
linearized problem.
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Because of the allowed discontinuities on element interfaces, DG methods are
capable of handling non-conforming meshes with hanging nodes and/or different
polynomial orders efficiently [7, 13, 15]. It is possible to take advantage of this
feature to accelerate the computations through local adaptation strategies. Local
adaptation can be performed by subdividing or merging elements (h-adaptation) or
by enriching or reducing the polynomial order in certain elements (p-adaptation).
The main idea behind these methodologies is to reduce the number of degrees
of freedom (NDOF) while maintaining a high accuracy, which translates into
shorter computational times and reduced storage requirements. Furthermore, since
several 2D and 3D implementations of the DG methods use tensor-product basis
functions, it is possible to adapt the polynomial order in each coordinate direction
independently. In order to identify the localized regions that need increased or
decreased accuracy, an error estimator is commonly used.

There are several approaches to estimate the error and drive an adaptation
method. In this work, we focus on truncation error estimates since it has been shown
that a reduction of the truncation error controls the numerical accuracy of all func-
tionals [10], hence reducing the truncation error necessarily leads to a more accurate
lift and drag. The τ -estimation method [4] is a way to estimate the truncation error
locally that has been used to drive mesh adaptation strategies in low-order [9, 20]
and high-order methods [10, 17, 18]. The adaptation strategy consists in converging
a high order representation (reference mesh) to a specified global residual and then
performing a single error estimation followed by a corresponding mesh adaptation
process. Rueda-Ramírez et al. [19] developed a new method for estimating the
truncation error of anisotropic representations that is cheaper to evaluate than
previous implementations, and showed that it produces very accurate extrapolations
of the truncation error, which enables the use of coarser reference meshes.

In this work, we employ the anisotropic truncation error estimator developed
in [19] and the anisotropic p-adaptation method detailed in [18] to accelerate the
computation of the compressible steady viscous flow past a NACA0012 at angle of
attack 5◦, Re∞ = 200 based on the airfoil chord, and M∞ = 0.2. This particular
settings correspond to a steady laminar flow, but the proposed method can be directly
used with any steady solution (e.g. RANS). The paper is organized as follows: In
Sect. 2, we briefly describe the methods used in this paper. In Sect. 3, we compare
the performance of the proposed methods with traditional strategies for solving the
flow past a NACA0012 and show the speed-up advantages for different accuracies.
Finally, the conclusions are summarized in Sect. 4.

2 Methods

2.1 DG Method

We consider the approximation of systems of conservation laws,

∂tq+∇ ·F = s, (1)
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where q is the vector of conserved variables, F is the flux dyadic tensor, and s is
a source term. The domain Ω is partitioned in a mesh T = {e} consisting of K

non-overlapping elements Ωe. Multiplying equation (1) by a test function v and
integrating by parts over each subdomain Ωe yields the weak formulation:

∫

Ωe

∂tqvdΩe −
∫

Ωe

F · ∇vdΩe +
∫

∂Ωe

F · nvdσe =
∫

Ωe

svdΩe. (2)

Let q, s, F and v be approximated by piece-wise polynomial functions defined in
the space of L2 functions: VN = {vN ∈ L2(Ωe) : vN |Ωe ∈PN(Ωe) ∀ Ωe ∈ T },
where PN(Ωe) is the space of polynomials of degree at most N . The functions in
VN can be represented in each element as a linear combination of basis functions
φN
i ∈ PN(Ωe) (e.g. qN |Ωe = ∑

i QN
i φN

i ), where φN
i are usually tensor product

expansions. After some manipulations, the discontinuous Galerkin finite element
discretization system is obtained:

[M]∂tQN + F(QN) = [M]SN, (3)

where [M] is the mass matrix and F is a nonlinear operator, which are the assembled
global versions of the element-wise mass matrices and nonlinear operators:

[M]ei,j =
∫

Ωe

φiφjdΩe, (4)

Fe(Q)j =
NDOFe∑

i=1

[
−
∫

Ωe

FFFe
i · φi∇φjdΩe

]
+
∫

∂Ωe

F∗N
(

Q,Q−,n
)
φjdσe,

(5)

whereFFFe
i is the ith position of the vectorFFFe, which contains the value of Fe for all

the degrees of freedom of element e. In the rest of this paper, bold uppercase Roman
letters and bold Greek letters are used to note vectors spanning several degrees of
freedom, unless specified.

The numerical flux function F∗ allows to uniquely define the flux at the element
interfaces and to weakly prescribe the boundary data as a function of the conserved
variable on both sides of the boundary/interface and the normal vector. In the present
work, we use the scheme by Roe [16] as the advective Riemann solver and the
original scheme by Bassi and Rebay [1] (BR1) as the diffusive Riemann solver.

2.2 Full Approximation Scheme p-Multigrid

The Full Approximation Scheme (FAS) is a nonlinear version of the multigrid
method that is specially suited to solve systems of nonlinear equations [4]. Depart-
ing from Eq. (3) and defining the operator A(QN) = [M]−1F(QN), the steady-state
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problem of order P yields

A(QP ) = SP . (6)

After β1 sweeps of a smoother, a non-converged solution Q̃P is obtained that has
an associated discretization error εεεP = QP − Q̃P . The FAS multigrid procedure
consists in obtaining an approximation to the discretization error in a coarse grid of
order N and projecting it to the original problem of order P :

εεεP = IPNεεε
N = IPN(QN − INP Q̃P ), (7)

where IPN is an L2 projection operator N → P and QN is the solution to the coarse-
grid problem:

AN(QN) = SN, (8)

where the source term is defined as

SN = AN(INP Q̃P )+ INP
(

SP − AP (Q̃P )
)
. (9)

In practice, several p-multigrid levels are used in V- or W-cycles. The smoothing
steps that are performed when coarsening are called pre-smoothing sweeps, and the
ones performed when refining back are called post-smoothing sweeps. Furthermore,
QN is not obtained exactly in the coarse grids, but approximated using an iterative
method Q̃N → QN . In this work, we use a third order low-storage Runge-Kutta
(RK3) as the smoother and V-cycles.

2.3 τ -Based p-Adaptation

In this section we show how to drive an anisotropic p-adaptation procedure using
the truncation error, which is estimated in the multigrid procedure.

2.3.1 The Anisotropic τ -Estimation Method

The non-isolated truncation error of a discretization of order N is defined as

τN = RN(INq)− R(q), (10)

where q is the exact solution to the problem, IN is a discretizing operator, R
is the continuous partial differentiation operator, and RN is the discrete partial
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differentiation operator. From Eqs. (1) and (3):

R(q) = s−∇ ·F, (11)

RRRN(IIINq) = [M]SN − F(IIINq), (12)

where IIIN is an operator that samples the exact solution on the points that correspond
to the degrees of freedom of a representation of order N , and therefore Eq. (12)
corresponds to the sampled values of RN(INq).

Note that in steady cases, R(q) = 0 holds. Since the exact solution q is usually
not at hand, we utilize the quasi a-piori τ -estimation method, which approximates
the exact solution with the non-converged solution on a high-order grid q ≈ q̃P ,
where N < P . Therefore, the steady non-isolated truncation error estimation yields

τNP = RN(INP q̃P ) → τττNP = RRRN(INP Q̃P ) = [M]SN − F(INP Q̃P ). (13)

On the left side of the arrow is the estimation of the truncation error that lives
in the space VN , and on the right side is the sampled form of the truncation
error estimation on the points that correspond to the degrees of freedom. In a DG
representation, one can also define the isolated truncation error τ̂ as

τ̂̂τ̂τNP = R̂̂R̂RN(INP Q̃P ) = [M]SN − F̂(INP Q̃P ), (14)

where F̂ is the assembled version of the isolated nonlinear operator, defined
elementwise as

Fe(Q)j =
NDOFe∑

i=1

[
−
∫

Ωe

FFFe
i · φi∇φjdΩe

]
+
∫

∂Ωe

FN · nφjdσe. (15)

Note that Eq. (15) is (5) without substituting F by the numerical flux F∗. This
change eliminates the influence of the neighboring elements and boundaries on the
truncation error of each element. We drop the hat notation in the next statements
since they are valid for both the isolated and non-isolated truncation error.

The τ -estimation method can also be used with anisotropic representations, i.e.

τ
N1N2
P1P2

= RN1N2(IN1N2
P1P2

q̃P1P2), (16)

where Ni and Pi are the polynomial orders in the direction i of the analyzed
representation and the high-order reference solution, respectively, where Ni < Pi .
Additionally, Rueda-Ramírez et al. [19] showed that the truncation error of an
anisotropic representation can be estimated using directional components:

τN1N2 ≈ τ
N1N2
1 + τ

N1N2
2 ≈ τ

N1P2
P1P2

+ τ
P1N2
P1P2

, (17)
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where the directional components in discrete form are therefore,

τττ 1 = τττ
N1P2
P1P2

= [M]SN1P2 − [M]A(IN1P2
P1P2

Q̃P1P2), (18)

and that these directional components decrease exponentially with the polynomial
order in smooth solutions. Consequently, it is possible to use a semi-converged
solution q̃P1P2 to estimate τN1N2 (Ni < Pi) and then extrapolate the directional
components τi to obtain the values of τN1N2 for Ni > Pi . Figure 1a shows a
graphical representation of the truncation error τN1N2 as estimated with a semi-
converged solution of order P1 = P2 = 5.

2.3.2 The p-Adaptation Multigrid Scheme

It has been shown that the use of FAS p-multigrid methods speeds up the
computation of steady-state and unsteady solutions of the compressible Navier-
Stokes equations [2, 8]. In addition, Rueda-Ramírez et al. [18] showed that the
truncation error of an anisotropic representation can be inexpensively obtained
inside an anisotropic p-multigrid cycle that performs the coarsening in one coor-
dinate direction at a time. In fact, the second term of Eq. (18) is naturally
computed in an anisotropic multigrid for obtaining the coarse-grid source term
(Eq. (9)).

Therefore, we propose a p-adaptation multigrid scheme that makes use
of the multigrid as a solver, but also as an error estimator. Every time the
error is estimated, an anisotropic p-multigrid strategy is used to generate a
truncation error map for each element, like the one in Fig. 1a. Afterwards,
the polynomial orders in the different coordinate directions are selected for

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

(a)

10

20

30

40

50

60

(b)

Fig. 1 (a) Truncation error map for a specific element that shows log
∥∥∥τN1N2
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of degrees of freedom (the black boxes show the polynomial orders that achieve
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each element, such that a truncation error threshold τmax is achieved with the
minimum NDOF possible, as illustrated in Fig. 1b. In the simulations shown
in this paper, the reference representation, q̃P , is converged to a residual
τmax/10 before the p-adaptation stage, so that the truncation error is accurately
estimated down to τmax, as was shown necessary by Kompenhans et al.
[10].

3 Flow Past a NACA0012 Airfoil

In this section, we compare the performance of the proposed p-adaptation multi-
grid scheme with a uniformly adapted p-multigrid method (without local p-
adaptation) and a uniformly adapted RK3 method when solving the steady viscous
flow past a NACA0012 airfoil at angle of attack 5◦, Re∞ = 200 (L∞ =
Lchord) and M∞ = 0.2. This particular settings correspond to a steady laminar
flow, but the proposed method can be directly used with any steady solution
(e.g. RANS). An unstructured mesh of 2011 quadrilateral elements is employed
(Fig. 2).

In the cases where multigrid is employed, the RK3 scheme is used as the
iterative method (smoother), so that additional speed-ups are only due to the
methods exposed in Sect. 2. As in [18], a residual-based smoothing strategy is
performed. The minimum number of smoothing sweeps is β = 200 for the coarsest
multigrid level (N = 1) and β = 50 for any other level. After every β pre-
smoothing sweeps, the residual in the next (coarser) representation is checked. If∥∥∥RN

∥∥∥∞ < 1.2
∥∥∥RN−1

∥∥∥∞, the pre-smoothing is stopped; otherwise, β additional

x
-1 -0.5 0 0.5 1 1.5 2 2.5 3

p

18.46
18.36
18.26
18.16
18.06
17.96
17.86
17.76
17.66

Fig. 2 Pressure contours of the flow past a NACA0012 at angle of attack 5◦
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sweeps are performed. Similarly, the norm of the residual after the post-smoothing

is forced to be at least as low as it was after the pre-smoothing,
∥∥∥RN

post

∥∥∥∞ ≤
∥∥∥RN

pre

∥∥∥∞. If that condition is not fulfilled, additional β sweeps are taken until it

is.
The isolated truncation error estimate is used to drive the p-adaptation method

since it has been shown to provide better results than the non-isolated one [17–
19]. The conservative form (Eq. (1)) of the compressible Navier-Stokes equations is
discretized using the Discontinuous Galerkin Spectral Element Method (DGSEM)
[3, 12], which is a nodal (collocation) version of a DG method that uses Gauss points
as the solution nodes and quadrature points, obtaining diagonal mass matrices.
However, the methods that are exposed here can be applied to any DG scheme with
tensor-product basis functions.

In [18] it was explained that, when using the DGSEM in general 3D curved
meshes and p-nonconforming representations, the order of the mapping must be
at most M ≤ N/2 for the numerical representation to be free-stream preserv-
ing. For this reason, the use of a conforming algorithm was proposed, which
forces the polynomial orders to be conforming in the first layer of elements on
a curved boundary. The use of a conforming algorithm is necessary to retain
the well-known M ≤ N condition of the DGSEM [11]. In this work, we
use the conforming algorithm on the airfoil surface since it showed to produce
better results, although its use is not imperative as the considered test case is
2D.

For the uniformly adapted cases, the polynomial order is varied between N = 2
and N = 7. For the cases with local p-adaptation, a single-stage anisotropic
p-adaptation procedure is performed, and the minimum polynomial order after
adaptation is set to Nmin = 1, whereas the maximum polynomial order after
adaptation is set to Nmax = 7. The relative drag and lift errors of the adapted meshes
are assessed by comparing with a reference solution of order N = 8:

eN=8
drag =

|Cd − CN=8
d |

CN=8
d

, eN=8
lift = |Cd − CN=8

l |
CN=8
l

. (19)

Figure 3 shows a comparison between the errors obtained using the τ̂ -based
adaptation procedure and the ones using uniform p-refinement. As can be observed,
the number of degrees of freedom is substantially reduced for the same accuracy
when using the τ̂ -based p-adaptation. This reduction translates into a reduction
of the CPU-times. It is interesting to point out that, as the isolated truncation
error threshold τ̂max is decreased, the polynomial orders of the mesh tend to
the maximum specified polynomial order, Nmax = 7. Consequently, the lift and
drag coefficients also tends to CN=7

l . Using Fig. 3, it is possible to compute
a speed-up for different levels of accuracy. Table 1 summarizes the speed-up
calculations for the maximum level of accuracy that was achieved for the drag and
lift coefficients.
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(a) (b)

(c) (d)

Fig. 3 Relative error in the drag and lift coefficients for different methods for the flow past the
NACA0012 airfoil. The blue lines represent uniform refinement, and the red lines represent the
τ̂ -based p-adaptation procedure with Nmax = 7. (a) Drag error vs. DOFs; (b) lift error vs. DOFs;
(c) drag error vs. CPU-time; (d) lift error vs. CPU-time

Table 1 Computation times and speed-up for the different methods after converging until ‖r‖∞ <

10−9

Drag coefficient (edrag ≤ ×4.1 × 10−5) Lift coefficient (elift ≤ 2.4 × 10−5)

Method CPU-time [s] Time [%] Speed-up CPU-time [s] Time [%] Speed-up

RK3 1.95 × 107 100.00% 1.00 1.95×107 100.00% 1.00

FAS 2.36 × 106 12.10% 8.26 2.36×106 12.10% 8.26

FAS + p-
adaptation

1.21 × 106 6.20% 16.13 1.48×106 7.58% 13.19

Figure 4 shows the distribution of polynomial orders after the single-stage
adaptation procedure for a threshold of τmax = 5 × 10−4, which has related errors
of eN=8

drag = 4.10 × 10−5 and eN=8
lift = 7.31 × 10−5. As can be observed, the

elements that are enriched are mainly the ones on the boundary layer (specially
leading and trailing edge), and the zones of the wake where the element size changes
significantly.
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Naverage
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Fig. 4 Polynomial order distribution after the anisotropic p-adaptation. Naverage = (N1 + N2)/2

4 Conclusions

In this work, we have applied recently developed error estimators and anisotropic
p-adaptation methods in conjunction with multigrid solving strategies for solving
the compressible Navier-Stokes equations. In particular, we have shown that
the coupling of anisotropic truncation error-based p-adaptation methods with p-
multigrid schemes can speed up the computation of steady-state solutions of PDEs.
The achieved speed-up depends on the desired accuracy, being this method optimal
when high accuracy is required (low errors). In particular, a speed-up of 16.13
was achieved for the computation of the steady compressible viscous flow past
a NACA0012 airfoil at angle of attack 5◦ with respect to the uniformly adapted
representation without multigrid.
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A Spectral Element Reduced Basis
Method for Navier–Stokes Equations
with Geometric Variations

Martin W. Hess, Annalisa Quaini, and Gianluigi Rozza

1 Introduction and Motivation

Spectral element methods (SEM) use high-order polynomial ansatz functions to
solve partial differential equations (PDEs) in all fields of science and engineering,
see, e.g., [4–7, 12, 16] and references therein for an overview. Typically, an
exponential error decay under p-refinement is observed, which can provide an
enhanced accuracy over standard finite element methods at the same computational
cost. In the following, we assume that the discretization error is much smaller than
the model reduction error, small enough not to interfere with our results. In general,
this needs to be established with the use of suitable error estimation and adaptivity
techniques.

We consider the flow through a channel with a narrowing of variable height.
A reduced order model (ROM) is computed from a few high-order SEM solves,
which accurately approximates the high-order solutions for the parameter range
of interest, i.e., the different narrowing heights under consideration. Since the
parametric variations are affine, a mapping to a reference domain is applied without
further interpolation techniques. The focus of this work is to show how to use
simulations arising from the SEM solver Nektar++ [3] in a ROM context. In
particular, the multilevel static condensation of the high-order solver is not applied,
but the ROM projection works with the system matrices in local coordinates. See
[12] for further details. This is in contrast to our previous work [8], since numerical

M. W. Hess (�) · G. Rozza
SISSA mathLab, International School for Advanced Studies, Trieste, Italy
e-mail: mhess@sissa.it; gianluigi.rozza@sissa.it

A. Quaini
Department of Mathematics, University of Houston, Houston, TX, USA
e-mail: quaini@math.uh.edu

© The Author(s) 2020
S. J. Sherwin et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2018, Lecture Notes in Computational Science
and Engineering 134, https://doi.org/10.1007/978-3-030-39647-3_45

561

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39647-3_45&domain=pdf
mailto:mhess@sissa.it
mailto:gianluigi.rozza@sissa.it
mailto:quaini@math.uh.edu
https://doi.org/10.1007/978-3-030-39647-3_45


562 M. W. Hess et al.

experiments have shown that the multilevel static condensation is inefficient in a
ROM context. Additionally, we consider affine geometry variations. With SEM as
discretization method, we use global approximation functions for the high-order as
well as reduced-order methods. The ROM techniques described in this paper are
implemented in open-source project ITHACA-SEM.1

The outline of the paper is as follows. In Sect. 2, the model problem is defined and
the geometric variations are introduced. Section 3 provides details on the spectral
element discretization, while Sect. 4 describes the model reduction approach and
shows the affine mapping to the reference domain. Numerical results are given in
Sect. 5, while Sect. 6 summarizes the work and points out future perspectives.

2 Problem Formulation

Let � ∈ R
2 be the computational domain. Incompressible, viscous fluid motion

in spatial domain � over a time interval (0, T ) is governed by the incompressible
Navier-Stokes equations with vector-valued velocity u, scalar-valued pressure p,
kinematic viscosity ν and a body forcing f:

∂u
∂t
+ u · ∇u = −∇p + νu+ f, (1)

∇ · u = 0. (2)

Boundary and initial conditions are prescribed as

u = d on �D × (0, T ), (3)

∇u · n = g on �N × (0, T ), (4)

u = u0 in �× 0, (5)

with d, g and u0 given and ∂� = �D ∪ �N , �D ∩ �N = ∅. The Reynolds number
Re, which characterizes the flow [11], depends on ν, a characteristic velocity U ,
and a characteristic length L:

Re = UL

ν
. (6)

We are interested in computing the steady states, i.e., solutions where ∂u
∂t

vanishes. The high-order simulations are obtained through time-advancement, while
the ROM solutions are obtained with a fixed-point iteration.

1https://github.com/mathLab/ITHACA-SEM.

https://github.com/mathLab/ITHACA-SEM
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2.1 Oseen-Iteration

The Oseen-iteration is a secant modulus fixed-point iteration, which in general
exhibits a linear rate of convergence [2]. Given a current iterate (or initial condition)
uk , the next iterate uk+1 is found by solving linear system:

−νuk+1 + (uk · ∇)uk+1 +∇p = f in �,

∇ · uk+1 = 0 in �,

uk+1 = d on �D,

∇uk+1 · n = g on �N.

Iterations are typical stopped when the relative difference between iterates falls
below a predefined tolerance in a suitable norm, like the L2(�) or H 1

0 (�) norm.

2.2 Model Description

We consider the reference computational domain shown in Fig. 1, which is decom-
posed into 36 triangular spectral elements. The spectral element expansion uses
modal Legendre polynomials of the Koornwinder-Dubiner type of order p = 11
for the velocity. Details on the discretization method can be found in chapter 3.2
of [12]. The pressure ansatz space is chosen of order p − 2 to fulfill the inf-sup
stability condition [1, 20]. A parabolic inflow profile is prescribed at the inlet (i.e.,
x = 0) with horizontal velocity component ux(0, y) = y(3 − y) for y ∈ [0, 3]. At
the outlet (i.e., x = 8) we impose a stress-free boundary condition, everywhere else
we prescribe a no-slip condition.

The height of the narrowing in the reference configuration is μ = 1, from
y = 1 to y = 2. See Fig. 1. Parameter μ is considered variable in the interval
μ ∈ [0.1, 2.9]. The narrowing is shrunken or expanded as to maintain the geometry

Fig. 1 Reference computational domain for the channel flow, divided into 36 triangles
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Fig. 2 Full order, steady-state solution for μ = 1: velocity in x-direction (top) and y-direction
(bottom)

Fig. 3 Full order, steady-state solution for μ = 0.1: velocity in x-direction (top) and y-direction
(bottom)

symmetric about line y = 1.5. Figures 2, 3, and 4 show the velocity components
close to the steady state for μ = 1, 0.1, 2.9, respectively.

The viscosity is kept constant to ν = 1. For these simulations, the Reynolds
number (6) is between 5 and 10, with maximum velocity in the narrowing as
characteristic velocity U and the height of the narrowing characteristic length L.
For larger Reynolds numbers (about 30), a supercritical pitchfork bifurcation occurs
giving rise to the so-called Coanda effect [8, 9, 22], which is not subject of the
current study. Our model is similar to the model considered in [17, 18], i.e. an
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Fig. 4 Full order, steady-state solution for μ = 2.9: velocity in x-direction (top) and y-direction
(bottom)

expansion channel with an inflow profile of varying height. However, in [18] the
computational domain itself does not change.

3 Spectral Element Full Order Discretization

The Navier-Stokes problem is discretized with the spectral element method. The
spectral/hp element software framework used is Nektar++ in version 4.4.0.2 The
discretized system of size Nδ to solve at each step of the Oseen-iteration for fixed μ

can be written as
⎡

⎢⎣
A −DT

bnd B

−Dbnd 0 −Dint

B̃T −DT
int C

⎤

⎥⎦

⎡

⎢⎣
vbnd

p
vint

⎤

⎥⎦ =
⎡

⎢⎣
fbnd

0
fint

⎤

⎥⎦ , (7)

where vbnd and vint denote velocity degrees of freedom on the boundary and in
the interior of the domain, respectively, while p denotes the pressure degrees of
freedom. The forcing terms on the boundary and interior are denoted by fbnd and
fint , respectively. The matrix A assembles the boundary-boundary coupling, B the
boundary-interior coupling, B̃ the interior-boundary coupling, and C assembles
the interior-interior coupling of elemental velocity ansatz functions. In the case
of a Stokes system, it holds that B = B̃T , but this is not the case for the
Oseen equation because of the linearized convective term. The matrices Dbnd

2See www.nektar.info.

www.nektar.info
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and Dint assemble the pressure-velocity boundary and pressure-velocity interior
contributions, respectively.

The linear system (7) is assembled in local degrees of freedom, resulting in
block matrices A,B, B̃, C,Dbnd and Dint , each block corresponding to a spectral
element. This allows for an efficient matrix assembly since each spectral element is
independent from the others, but makes the system singular. In order to solve the
system, the local degrees of freedom need to be gathered into the global degrees of
freedom [12].

The high-order element solver Nektar++ uses a multilevel static condensation
for the solution of linear systems like (7). Since static condensation introduces
intermediate parameter-dependent matrix inversions (such as C−1 in this case)
several intermediate projection spaces need to be introduced to use model order
reduction [8]. This can be avoided by instead projecting the expanded system (7)
directly. The internal degrees of freedom do not need to be gathered, since they
are the same in local and global coordinates. Only ansatz functions extending over
multiple spectral elements need to be gathered.

Next, we will take the boundary-boundary coupling across element interfaces
into account. Let M denote the rectangular matrix which gathers the local boundary
degrees of freedom into global boundary degrees of freedom. Multiplication of the
first row of (7) by MTM will then set the boundary-boundary coupling in local
degrees of freedom:

⎡
⎢⎣
MTMA −MTMDT

bnd MTMB

−Dbnd 0 −Dint

B̃T −DT
int C

⎤
⎥⎦

⎡
⎢⎣

vbnd
p

vint

⎤
⎥⎦ =

⎡
⎢⎣
MTMfbnd

0
fint

⎤
⎥⎦ . (8)

The action of the matrix in (8) on the degrees of freedom on the Dirichlet
boundary is computed and added to the right hand side. Such degrees of freedom
are then removed from (8). The resulting system can then be used in a projection-
based ROM context [13], of high-order dimension Nδ × Nδ and depending on the
parameter μ:

A(μ)x(μ) = f. (9)

4 Reduced Order Model

The reduced order model (ROM) computes accurate approximations to the high-
order solutions in the parameter range of interest, while greatly reducing the overall
computational time. This is achieved by two ingredients. First, a few high-order
solutions are computed and the most significant proper orthogonal decomposition
(POD) modes are obtained [13]. These POD modes define the reduced order
ansatz space of dimension N , in which the system is solved. Second, to reduce
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the computational time, an offline-online computational procedure is used. See
Sect. 4.1.

The POD computes a singular value decomposition of the snapshot solutions
to 99.99% of the most dominant modes [10], which define the projection matrix
U ∈ R

Nδ×N used to project system (9):

UTA(μ)UxN(μ) = UT f. (10)

The low order solution xN(μ) then approximates the high order solution as
x(μ) ≈ UxN(μ).

4.1 Offline-Online Decomposition

The offline-online decomposition [10] enables the computational speed-up of
the ROM approach in many-query scenarios. It relies on an affine parameter
dependency, such that all computations depending on the high-order model size
can be moved into a parameter-independent offline phase, while having a fast input-
output evaluation online.

In the example under consideration here, the parameter dependency is already
affine and a mapping to the reference domain can be established without using an
approximation technique such as the empirical interpolation method. Thus, there
exists an affine expansion of the system matrix A(μ) in the parameter μ as

A(μ) =
Q∑

i=1

:i(μ)Ai . (11)

The coefficients :i(μ) are computed from the mapping x = Tk(μ)x̂ + gk ,
Tk ∈ R

2×2, gk ∈ R
2, which maps the deformed subdomain �̂k to the reference

subdomain �k. See also [19, 21]. Figure 5 shows the reference subdomains �k for
the problem under consideration.

For each subdomain �̂k the elemental basis function evaluations are transformed
to the reference domain. For each velocity basis function u = (u1, u2), v =
(v1, v2),w = (w1, w2) and each (scalar) pressure basis function ψ , we can write
the transformation with summation convention as:

∫

�̂k

∂ û
∂x̂i

ν̂ij
∂ v̂
∂x̂j

d�̂k =
∫

�k

∂u
∂xi

νij
∂v
∂xj

d�k,

∫

�̂k

ψ̂∇ · ûd�̂k =
∫

�k

ψχij

∂uj

∂xi
d�k,

∫

�̂k

(û · ∇)v̂ · ŵd�̂k =
∫

�k

uiπij

∂vj

∂xi
wd�k,



568 M. W. Hess et al.

Fig. 5 Reference computational domain with subdomains �1 (green), �2 (yellow), �3 (blue), �4
(grey) and �5 (brown)

with

νij = Tii′ ν̂i′j ′Tjj ′ det(T )−1,

χij = πij = Tij det(T )−1.

The subdomain �5 (see Fig. 5) is kept constant, so that no interpolation of the
inflow profile is necessary. To achieve fast reduced order solves, the offline-online
decomposition expands the system matrix as in (11) and computes the parameter
independent projections offline, which are stored as small-sized matrices of the
order N × N . Since in an Oseen-iteration each matrix is dependent on the previous
iterate, the submatrices corresponding to each basis function are assembled and
then formed online using the reduced basis coordinate representation of the current
iterate. This is the same procedure used for the assembly of the nonlinear term in
the Navier-Stokes case [13].

5 Numerical Results

The accuracy of the ROM is assessed using 40 snapshots sampled uniformly over
the parameter domain [0.1, 2.9] for the POD and 40 randomly chosen parameter
locations to test the accuracy. Figure 6 (left) shows the decay of the energy of
the POD modes. To reach the typical threshold of 99.99% on the POD energy, it
takes 9 POD modes as RB ansatz functions. Figure 6 (right) shows the relative
L2(�) approximation error of the reduced order model with respect to the full order
model up to 6 digits of accuracy, evaluated at the 40 randomly chosen verification
parameter locations. With 9 POD modes the maximum approximation error is less
than 0.7% and the mean approximation error is less than 0.5%.

While the full-order solves were computed with Nektar++, the reduced-order
computations were done in ITHACA-SEM with a separate python code. To assess
the computational gain, the time for a fixed point iteration step using the full-
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Fig. 6 Left: Decay of POD mode energy. Right: Maximum (red) and mean (blue) relative L2(�)

error for the velocity over increasing reduced basis dimension

order system is compared to the time for a fixed point iteration step of the ROM
with dimension 20, both done in python. The ROM online phase reduces the
computational time by a factor of over 100. The offline time is dominated by
computing the snapshots and the trilinear forms used to project the advection terms.
See [13] for detailed explanations.

6 Conclusion and Outlook

We showed that the POD reduced basis technique generates accurate reduced order
models for SEM discretized models under parametric variation of the geometry.
The potential of a high-order spectral element method with a reduced basis ROM
is the subject of current investigations. See also [6]. Since each spectral element
comprises a block in the system matrix in local coordinates, a variant of the reduced
basis element method (RBEM) [14, 15] can be successfully applied in the future.
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Iterative Spectral Mollification
and Conjugation for Successive Edge
Detection

Robert E. Tuzun and Jae-Hun Jung

1 Introduction

Detection of edges is a fundamental problem in a variety of applications, including
image processing and the numerical solution of differential equations. In applica-
tions such as magnetic resonance imaging (MRI), it is required to construct images
from Fourier data. Let {f̂k|k = 0,±1,±2, · · · } be the set of Fourier coefficients of
f (x) ∈ L2[−π, π] given by

f̂k = 1

2π

∫ π

−π
f (x)e−ikxdx,

and let fN be the Fourier partial sum fN = ∑N
k=−N f̂ke

ikx. When the underlying
function is smooth and periodic, the Fourier reconstruction fN is accurate to spectral
accuracy, but when edges are present, the reconstruction is plagued by the Gibbs
phenomenon, also known as the Gibbs ringing in MRI applications.

Various methods have been proposed to address these issues and those methods
consist of edge detection followed by reconstruction. Thus, the determination of
edge locations is critical. Fourier concentration method has emerged over the past
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decade as a robust method for edge detection in a variety of circumstances and
applications [5, 6]. Essentially, a certain Fourier partial sum converges to the jump
function as the number of Fourier coefficients increases and this convergence
can be accelerated by what is known as concentration factors (functions). Use
of different types of concentration factors tends to impart trade-offs between
oscillations near jump discontinuities and significant non-zero concentration away
from them [2]. Several methods have been devised to address this issue, as well as
to treat special circumstances such as incomplete Fourier data and the presence of
noise [1, 4, 13, 15].

Thanks to the convergence property of the Fourier concentration to the jump
function, the concentration method detects edges with large concentrations. Where
the function is smooth, the concentration vanishes as the jump function vanishes as
N → ∞. In practice, the concentration method is designed to detect edges with
magnitudes larger than some given threshold, with the value of the used threshold
being problem dependent. The value of the threshold cannot be arbitrarily small;
otherwise, too many false edges can be detected. If the magnitude of weak edges
is much smaller than other edges, those edges are considered insignificant, but
for some cases weak edges are more important than strong edges. For example,
it was shown that in the segmentation of MRI of the knee, the cartilage is better
characterized by weak edges rather than strong edges for the separation from the
tibia and femur [11].

This note shows that an iterative approach based on the successive conjugation
and adaptive mollification can detect all edges without any prior threshold. This
approach is similar to the iterative method in the context of the radial basis
function method [3, 9, 10]. The iterative method is as follows: at each iteration
step, all previously found edges are smoothed by a local mollification and new
corresponding Fourier coefficients are computed. By applying conjugation and
mollification successively, one can distinguish real edges from fake edges. This
approach is useful and effective particularly for problems where the weak jump
can significantly affect the global solution of differential equations or images where
the interesting structure is represented by the weak edges [11].

In Sect. 2, a brief explanation of the Fourier concentration method is given. In
Sect. 3, the proposed iterative method is explained based on the adaptive filtering
method. The stopping criteria is also explained. Numerical examples with remarks
are given. In Sect. 4, a brief concluding remark is provided.

2 Edge Detection Using Fourier Concentration Method

Let [f ](x) = f (x+) − f (x−) denote the jump function of f (x) ∈ L2[−π, π],
where the superscripts + and − denote the limits taken from the right and
left, respectively. Given a finite set of Fourier coefficients, {f̂k}|k|≤N , the Fourier
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concentration method, developed in [5, 6], computes the concentration as a sum of
the form

Sσ
N [f ](x) = i

∑

|k|≤N
sgn(k)f̂kσ

( |k|
N

)
eikx (1)

where the σ(·) are known as concentration factors and sgn(k) is the sign function.
Given certain admissibility conditions [6], the sum converges to the jump function:

Sσ
N [f ](x) = [f ](x)+

⎧
⎪⎨

⎪⎩

O
(

logN
N

)
, d(x) ≤ logN

N

O
(

logN
(Nd(x))s

)
, d(x)' N−1

(2)

where d(x) denotes the distance to the nearest edge and s depends on the
concentration factor. Here we note that Eq. (2) shows that the concentration function
Sσ
N [f ](x) recovers the jump function of f (x) as N → ∞ and the convergence

may be slow. Equation (2) also implies that the absolute maximum value of the
concentration function Sσ

N [f ](x) converges to the maximum jump. Accordingly
we observe that strong jumps are relatively easier to detect than weak jumps. The
common types of concentration factors satisfying the admissibility conditions are
polynomial concentrations

σ(η) = pηp, p ≥ 1, (3)

where p is a positive integer and η = |k|/N and exponential concentration functions

σ(η) = Cηe1/(αη(η−1)), (4)

where α > 0 is an order and C is a normalization constant. Cutoffs for edge
detection, τ ∈ (0, 1], are with respect to the normalized concentration

Ŝ(y) = |Sσ
N [f ](y)|/max

y
{|Sσ

N [f ](y)|}

and the edge set, E, is defined as

E = {x|Ŝ(x) ≥ τ, x ∈ [−π, π]}. (5)

Several approaches have been developed for improving the concentration method.
We refer readers some to [1, 2, 4, 6, 7, 12, 13, 15, 16]. All these methods are basically
utilizing the edge map. Figure 1 is by the Fourier concentration method for f1(x)

f1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 π
4 ≤ x ≤ π

2
−2 π ≤ x ≤ 5

4π

mw
3
2π ≤ x ≤ 7

4π

0 otherwise

(6)
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Fig. 1 Edge detection for f1(x) with τ = 0.4. (a and b) with the polynomial concentra-
tion with p = 5. (c and d) with the exponential concentration with p = 12 for σ =
exp

[
−εM

(
1−

∣∣∣ k
N

∣∣∣
)p

]
and εM = 64. (a and c) Ŝ(y). (b and d) the detected edges marked

by red cross symbols. N = 128. The red cross in (b and d) indicates the edge locations found

where mw = 0.1. That is, the magnitude of the strong jump is 30 times the weakest.
As clearly shown in the figure, it is hard to detect the weak edge by looking at
the normalized Fourier concentration Ŝ(y), (a) and (c) in Fig. 1, although the weak
edges are clearly visible in (b) and (d) in Fig. 1.
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3 Iterative Concentration Method

As clearly seen in Fig. 1, the Fourier concentration method may fail to detect the
weak edge when the concentration of the weak edge is too small compared to the
strong edge. To find all edges, we propose to apply the Fourier concentration method
iteratively based on the local mollification using the local adaptive filtering method.

3.1 Local Adaptive Mollification

The local adaptive mollification is a key step for the iterative algorithm. Consider a
smooth function φ ∈ C∞0 [0, 2π] which is compactly supported such that

φε(x) = 1

ε
φ

(
x

ε

)
, (7)

where limε→0+ φε(x) = δ(x). Here δ(x) is the Dirac delta function. And further∫∞
−∞ φ(x)dx = 1. With these properties, the limit property is given by

lim
ε→0+

(φε ∗ f )(x) = f (0),

where (∗) operation denotes convolution. The parameter ε is free and it localizes
the convolution and is known as the localization factor. The parameter ε is a fixed
value for every x. Thus a global smoothing occurs everywhere including both the
nonsmooth and smooth areas. However, we only want to apply the mollification
locally to minimize the Gibbs oscillations near the jump. In order to achieve this,
we use a two-parameter family of the spectral mollifier introduced by Gottlieb and
Tadmor [8]. Consider the convolution of the Fourier partial sum fN(x) and the
mollifier φ. Then by the definition of fN (x) and φ we have

(φε ∗ fN(x)) = 1

2π

∫ 2π

0
φε(x − y)fN(y)dy

= 1

2π

∫ 2π

0
φε(x − y)(DN(y − z) ∗ f (z))(y)dzdy,

where DN is the Dirichlet kernel of degree N . The idea proposed in [8] is that one
changes the degree of the Dirichlet kernel with the localization parameter ε so that
the two-parameter family of the new mollifier is defined by

φp,ε(x) = 1

ε
ρ

(
x

ε

)
Dp

(
x

ε

)
, (8)
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where Dp is the Dirichlet kernel of degree p. Then for all s, the error is given by [8]

|φp,ε ∗ fN(x)− f (x)| ≤ C||ρ(s)||∞
[
N

(
1+ p

Nε

)s+1

+ p

(
2

p

)s

||f s ||L∞loc
]
,

(9)

where || · ||L∞loc = sup(x−επ,x+επ) | · |. The first term in the right hand side of the
above inequality is the truncation error and the second term is the regularization
error. As we see, the optimization of the error is determined by how the localization
parameter ε and the degree p are balanced. In [8] those parameters were chosen
such that ε = d

π
, where d is the distance to the nearest jump from the current

position. The order of the Dirichlet kernel is chosen such that spectral convergence
is achieved, say, p ≈ √N . Here we note that a modification of the two-parameter
mollifier for the enhancement of the convergence was proposed in [14], which was
designed to reduce the Gibbs oscillations while it provides a sharp reconstruction up
to the edge. Note that the adaptive mollifier was used to sharpen the concentration
map Ŝ in [2].

Our proposed iterative method is that once the edge is identified, the edge region
is first localized using the value of ε so that fN in the region away from the detected
edge is not affected by the mollification. This helps the next available edge to be
preserved through the mollification of fN if existent. Thus as in [8], the localization
factor is a function of the distance from the edge, d , i.e. ε = ε(d). Then we
adaptively mollify fN so that a heavy mollification using p is applied to reduce
the Gibbs oscillations near the edge. The limit property of p is given as p → 0 if
d → 0 and p→∞ if d → 2π . In this work, we use the local adaptive filtering for
the mollification.

3.2 Almost Automatic Stopping of the Iteration

To see the proposed method stops almost automatically, consider f (x) = x, x ∈
[−π, π] with the Fourier coefficients

f̂k = (−1)k
i

k
, k �= 0

and f̂0 = 0. There are two edges (x = ±π) and conjugation and local adaptive
filtering have the most effect at ±π . Therefore, by considering the local behavior
near ±π , we assume a constant order of filtering p and of conjugation q , with
functional forms of exp(−εM(1 − |k/N |)p) and exp(−εM |k/N |q), respectively.
By letting φp,ε and Cσ

N be the corresponding kernels and letting S and F denote
conjugation and filtering,

Cσ
N ∗ (φp,ε ∗ fN) ≈ φp,ε ∗ (Cσ

N ∗ fN )



Iterative Spectral Mollification and Conjugation for Successive Edge Detection 579

and after some simplification, we have

S[F [fN ]] = Cσ
N ∗ (φp,ε ∗ fN) ≈

N∑

k=−N,k �=0

(−1)k+1

k
exp

(
−ε

(
1− |k|

N

)p
)

× exp(−ε|k/N |q)eikx.

This has Fourier coefficients

Ŝ[F [fN ]] ≈ (−1)k+1

k
exp

(
−ε

(
1− |k|

N

)p
)

exp(−ε|k/N |q).

From the sharp localization and heavy filtering near ±π , we choose p, q −→ 0.
Then setting y = |k/N | yields

|Ŝ[F [fN ]]| ≈ 1

k
exp[−ε(yq)+ (1− y)p], k �= 0

which approaches 0 exponentially. Thus after all the edges are found through
iteration, the concentration decays exponentially small. Thus if the stopping criteria
η below is chosen small enough, e.g. η ∼ 10−10, the stopping of the iteration is
guaranteed

|S[F [fN ]]| ≤ η. (10)

3.3 Numerical Examples

We consider the case that the magnitude of the weak edge is highly small for the
function f1(x) in Eq. (6)

mw = 0.01.

Figure 2 shows how the iteration method finds edges. The order of the finding the
edges is from left to right (see red arrows). As shown in the figure, the iterative
method finds all edges even with mw = 0.01. It is interesting to observe that the
weakest edges are found in the 3rd and 7th iteration steps before all the strong edges
are found. Now we consider even smaller value of mw

mw = 0.001.
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Fig. 2 f1(x) with mw = 0.01 and successive edge detection. Left: Ŝ(y). Right: edges found in
each iteration marked by red cross symbols with the weak edges circled in green. Note that the
weak edges are almost invisible in the right figure of f1(x). Each figure in the left shows Ŝ(y) after
each iteration from left to right. Each figure in the right shows the actual function and detected
edges, from left to right

Figure 3 shows how the iteration method finds all edges. Figure 3 shows similar
result as in Fig. 2. As shown in the figure, the method is highly accurate and finds
all edges including the highly weak edges.

As an application to the solution of PDEs, namely the shock-density wave
interaction equation, we consider finding shocks in the density profile at t = 2 with
the total number of grid points N = 300 computed with the WENO-Z method used
in [9]. The left two figures of Fig. 4 show the edges (shocks) found by the Fourier
concentration method while the right figure shows the edges (shocks) found by the
iterative method. As shown in the figure, the iterative method find all the physical
shocks accurately while the Fourier concentration method misses some of shocks.

For two-dimensional examples, we consider a Shepp-Logan image with a faint
box added to comprise additional weak edges, and a brain image. To detect edges in
two dimensions, edges are detected slicewise in the x and y directions. The x and y

coordinates have a range of [−π, π]. For a 2Nx+1×2Ny+1 image, slices of f (x, y)
are taken at evenly spaced x and y with x = 2π/(2Nx+1) and y = 2π/(2Ny+
1), with −π included and π excluded. Within each slice, Fourier coefficients
are computed by partial Fourier expansion and the iterative method is applied
to find strong and weak edges. Calculation parameters for the two-dimensional
calculations were similar to those for the one-dimensional calculations. An edge
with a concentration magnitude at or above a fraction τ = 0.1 of the maximum
magnitude concentration was considered strong. To detect strong edges, trigono-
metric concentration factors with α = π were used. Figure 5 shows the edges found
by the proposed method for the Shepp-Logan image. As in the figure, the weak
edges (square box with magnitude of 0.01) are successfully found by the method.

Remarks First, the proposed method is affected by noise as the original Fourier con-
centration. Consider Eq. (6). Let f̂k(mw = 0) be the Fourier coefficients with mw =
0. Then f̂k(mw) = mw/8 for k = 0 and f̂k(mw) = mw

2πk

[
sin(7kπ/4)− sin(3kπ/2)

]

for k �= 0. The weak edge translates f̂k . Thus we expect that unless SNR is high
enough, |f̂k(mw = 0) − f̂k(mw)| becomes easily smaller than the noise as mw

decays. Figure 6 shows the concentration with mw = 0 (left), the concentration
with SNR = 20 (middle) and with SNR = 10. As in the figure, the weak edges are
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Fig. 4 The density ρ in y-axis versus the x-coordinate in x-axis at t = 1 for the shock-density
wave interaction and shocks (with cross symbols) found with different values of τ and p. Left two
figures: the Fourier concentration method. Right: the iterative method
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Fig. 5 Original image (left) and edges (right) detected for concentration followed by iterative
method on the Shepp-Logan image with a weak square edge of magnitude 0.01 added
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Fig. 6 Concentration in y-axis versus x. Left: without noise. Middle: SNR=20. Right: SNR=10

easily indistinguishable as SNR decreases. As the main objective of this research is
finding the weak edges, a proper noise reduction suitable for the proposed method
should be investigated in our future research. Second, the proposed method is to find
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Fig. 7 Left: edges with finite difference in the physical domain. Right: 3π
2 ≤ x ≤ 7π

4

the edges by f̂k . Figure 7 shows the edge detection in the physical domain, with the
forward difference, generated from the Fourier data (the left figure). The right figure
shows the plot in x ∈ 3π

2 ≤ x ≤ 7π
4 where the weak edges exist. As in the figures,

the weak edges are still hard to distinguish in the physical domain. Once the strong
edges are removed in the Fourier domain and switching back and forth from the
Fourier to physical domains, the weak edges are eventually found with the proposed
method.

Summary The following is the summary of the proposed iterative concentration
method. The procedure stops eventually with a non-zero value of η > 0 in
Eq. (10).

• Step 1: Find edge locations xo using the Fourier concentration method.
• Step 2: Apply the local filter near xo and find the new set of Fourier coefficients.
• Step 3: Find a new edge location yo where the normalized concentration Ŝ by
{f̂k} from Step 2 has the maximum.

• Step 4: Repeat Steps 2 and 3 until all the edges are found (the iteration stops once
all edges are found.)

4 Conclusion

We showed that the iterative approach of the Fourier concentration method can
detect all edges, which is not the case if the weak edges are too small. We showed
that the proposed method is able to detect weak edges 3000 times weaker than the
strongest edge, as long as the weak edges are well-separated from the stronger
edges without noise and that the proposed method find all weak edges in a PDE
application, namely the WENO calculation for the shock-density wave interaction.
The iterative method also shows that it stops almost automatically after all the edges
are found. Thus the proposed method is accurate and efficient.
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Small Trees for High Order Whitney
Elements

Ana Alonso Rodríguez and Francesca Rapetti

1 Introduction

We aim at determining in a constructive way, for the high order case, the finite
element solutions of gradφ = E, curl A = B, div D = ρ, namely, of the equations
linking the electric field E, the magnetic induction B, and the electric charge density
ρ, to their potentials φ, A and D, respectively. Stating the necessary and sufficient
conditions for assuring that a function defined in a bounded set Ω ⊂ R

3 is the
gradient of a scalar potential, the curl of a vector potential or the divergence of a
vector field is one of the most classical problem of vector analysis (see for example
[3, 6, 8]). We aim at providing an explicit and efficient procedure to construct a
finite element solution. For example, div-free fields, W, are implicitly characterized
in terms of a vector w of degrees of freedom of W by the algebraic constraint
Dw = 0, with D the matrix of the div operator between finite elements spaces.
The same fields, in the case of a domain with connected boundary, are explicitly
defined by w = R a, with no constraint on a, where R is the matrix of the curl
operator between finite elements spaces and a collects the degrees of freedom of the
vector potentials A. Similarly, one can wish to compute a vector potential a such
that R a = b, for a given field b verifying Db = 0. As explained in [5], these bases
can be constructed by the help of “trees” and “co-trees”, which are at the core of
this contribution. The case r = 0 is largely treated in the literature for different
types of topological domains (see for example [2]). In these pages, we develop the
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tree and co-tree approaches for r > 0 when fields in the high order Whitney spaces
are represented on the basis of their weights on small simplices [7, 9, 10]. With this
choice of degrees of freedom, the tree and co-tree concepts extend from r = 0 to
r > 0 straightforwardly.

2 Basic Concepts

Let Ω ⊂ R
3 be a bounded polyhedral domain with Lipschitz boundary ∂Ω and

M a simplicial mesh of Ω̄ . We denote by |A| the cardinality of the set A. For
0 ≤ k ≤ 3, let Δk(T ) (resp. Δk(M)) be the set of k-simplices of a mesh tetrahedron
T (resp. of the mesh M). Note that Δk(M) = ∪T ∈MΔk(T ). If Δ0(M) = {vi}i ,
with i = 1, . . . , Nv , being Nv = |Δ0(M)|, then each k-simplex S ∈ Δk(M) has
associated an increasing map mS : {0, . . . , k} → {1, . . . , Nv}. This map induces
an (inner) orientation on S (i.e., a way to run along S if k = 1, through S if k = 2,
in S if k = 3).

If we assign to each S ∈ Δk(M) a real number cS we can define the k-chain
c = ∑

S∈Δ0(M) cS S, i.e. a formal weighted sum of k-simplices S in M. One can
add k-chains, namely (c + c̃) =∑

S(cS + c̃S) S, and multiply a k-chain by a scalar
p, namely p c = ∑

S(p cS) S. The set of all k-chains in M, here denoted Ck(M),
is a vector space, in one-to-one correspondence with the set of real vectors c =
(cS)S∈Δk(M). Each k-simplex S ∈ Δk(M), can be associated with the elementary
k-chain c with entries cS = 1 and cS̃ = 0 for S̃ �= S. In the following we will use
the same symbol S to denote the oriented k-simplex and the associated elementary
k-chain.

The boundary operator ∂ takes a k-simplex S and returns the sum of all its
(k − 1)-faces f with coefficient 1 or −1 depending of whether the orientation
of the (k − 1)-face f matches or not with the orientation induced by that of the
simplex S on f . Since the boundary operator is a linear mapping from Ck(M) to
Ck−1(M), it can be represented by a matrix ∂ of dimension |Δk−1(M)|×|Δk(M)|,
which is rather sparse, gathering the coefficients 0, −1, or +1. Note that in three
dimensions, there are three nontrivial boundary operators acting, respectively, on
edges, triangles and tetrahedra: ∂1 represented by the matrix G8, ∂2 represented by
R8, and ∂3 represented by D8. To fully specify ∂ , we need to specify the boundary
of each simplex S. By definition, we have

∂1e =
∑

n∈Δ0(M)

Ge,n n, ∂2f =
∑

e∈Δ1(M)

Rf,e e, ∂3T =
∑

f∈Δ2(M)

DT ,f f,

for any e ∈ Δ1(M), any f ∈ Δ2(M) and any T ∈ Δ3(M). For e = [v0, v1],
f = [v0, v1, v2] and T = [v0, v1, v2, v3], we have, respectively,

∂1[v0, v1] = v0 − v1, ∂2[v0, v1, v2] = [v0, v1] − [v0, v2] + [v1, v2],
∂3[v0, v1, v2, v3] = [v0, v1, v2] − [v0, v1, v3] + [v0, v2, v3] − [v1, v2, v3].
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The subscript is removed when there is no ambiguity, since the operator needed
for a particular operation is indicated from the type of the operand (e.g., ∂3 when
∂ applies to tetrahedra). The notion of boundary can be extended to k-chains by
linearity, ∂c = ∂(

∑
S∈Δk(M) cS S) =∑

S∈Δk(M) cS ∂S.
We say that a k-chain c is closed if ∂kc = 0. Non-trivial closed k-chains are

called k-cycles and constitute the subspace Zk(M) = ker(∂k; Ck(M)). A k-chain
c is a boundary if it exists a (k + 1)-chain γ such that c = ∂k+1γ . The k-
boundaries constitute the subspace Bk(M) = ∂k+1Ck+1(M). From the property
∂∂ = 0, we know that boundaries are cycles but not all cycles are boundaries,
and we have Bk(M) ⊂ Zk(M). The quotient space Hk(M) = [Zk(M)/Bk(M)]
is the homology spaces of order k of the mesh M, and the Betti’s number bk =
rank [Hk(M)]. The presence of curl-free fields (resp. div-free fields) that are not the
gradient of a scalar field (resp. the curl of a vector field) is indicated from the fact
that b1 �= 0 (resp. b2 �= 0). We recall that Betti’s numbers are topological invariants
(i.e., they depend on the domain Ω up to a homeomorphism) and do not depend
on the mesh M on Ω̄ that is used to compute them (see [12] and an application in
[11]).

For the high order case, we need to introduce some concepts of relative
homology. Let Kk(M) be subspaces of Ck(M) with ∂kKk(M) ⊂ Kk−1(M). We
thus say that c ∈ Ck(M) is closed [moduloKk(M)] if ∂c ∈ Kk(M). A (k−1)-chain
c bounds [moduloKk(M)] if there exists a k-chain γ such that c−∂γ ∈ Kk−1(M).
We thus talk about relative homology groups.

A k-cochain w (over the mesh M) is a linear mapping from Ck(M) to R. They
are discrete analogues to differential forms. For k > 0, the exterior derivative of the
(k − 1)-form w is the k-form dw such that

∫
s

dw = ∫
∂s

w for all s ∈ Ck(M). With
this simple equation relating the evaluation of dw on a simplex s to the evaluation
of w on the boundary of this simplex, the exterior derivative is readily defined. We
can naturally extend the notion of evaluation of a differential form w on an arbitrary
chain by linearity:

∫
∑

i ci si
w =∑

i ci
∫
si
w. Thus

∫
∑

i ci si
dw =

∫

∂(
∑

i ci si )
w =

∫
∑

i ci ∂si
w =

∑

i

ci

∫

∂si

w.

The operator d is the dual of the boundary operator ∂ . As a corollary of the boundary
operator property ∂∂ = 0, we have that dd = 0. Since we used arrays of dimension
|Δk(M)| to represent a k-cochain, the operator d can be represented by a matrix
d of dimension |Δk(M)| × |Δk−1(M)|, 1 ≤ k ≤ 3. Again, we have one matrix
for the exterior derivative operator for each simplex dimension. When a metric is
introduced on the ambient affine space, the exterior derivative operator d stands for
grad, curl, div, according to the value of k from 1 to 3, and it is represented by,
respectively, G, R, D, the connectivity matrices of the mesh M.
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3 Small Simplices, Weights and Potentials

We introduce the multi-index α = (α0, . . . , αs) of s + 1 integers αi ≥ 0 and weight
|α| = ∑s

i=1 αi . The set of multi-indices α with s + 1 components and weight r is
denoted I(s + 1, r). We denote by vi the (Cartesian) coordinates of the node ni in
R

3. Given a multi-index α ∈ I(4, r), and a k-subsimplex S of T , the small simplex
{α, S} is the k-simplex that belongs to the small tetrahedron with barycenter at the
point of coordinates

∑3
i=0[( 1

4 + αi)vσ 0
T (i)
]/(r + 1), which is parallel and 1/(r + 1)-

homothetic to the (big) sub-simplex S of T . The notation {α, S} was first defined in
[9]. The set of small tetrahedra of order r+1 > 1 can be visualized starting from the
principal lattice Lr+1(T ) in the simplex T = {nσ 0

T (0)
nσ 0

T (1)
nσ 0

T (2)
nσ 0

T (3)
} defined as

Lr+1(T ) =
{

x ∈ T : λσ 0
T (i)

(x) ∈ {0, 1

r + 1
,

2

r + 1
, . . . ,

r

r + 1
, 1}, 0 ≤ i ≤ 3

}
.

and connecting its points by edges parallel to those of T . (See, e.g., Fig. 1.)
We denote by Λk(Ω) the space of all smooth differential k-forms on Ω .

The completion of Λk(Ω) in the corresponding norm defines the Hilbert space
L2Λk(Ω). Let P−r+1Λ

k(T ) be the space of so-called trimmed polynomial k-forms
of degree r + 1 on T , with r ≥ 0, (as in [7]), and we define

P−r+1Λ
k(M) = {ω ∈ HΛk(Ω) : ω|T ∈ P−r+1Λ

k(T ), T ∈M}

where HΛk(Ω) = {ω ∈ Λk(Ω) : dω ∈ Λk(Ω)} is a Hilbert space (see [4]).

Definition 1 The weights of a polynomial k-form u ∈ P−r+1Λ
k(T ), with 0 ≤ k ≤ 3

and r ≥ 0, are the scalar quantities
∫

{α,S}
u, (1)

on the small simplices {α, S} with α ∈ I(4, r) and S ∈ Δk(T ).

v3

v0

v1

v2

v3

v0

v1

v2

v3

v0

v1

v2

Fig. 1 From the principal lattice of degree r+1 = 3 in a tetrahedron T , we define a decomposition
of T into 10 small tetrahedra, 4 octahedra O and 1 reversed tetrahedron. Each face on ∂T is
decomposed into 6 small faces and 3 reversed triangles, in solid red line (Left)
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We now list some remarkable properties of the small simplices which are useful
in the tree construction.

Property 1 The weights (1) of a Whitney k-form u ∈ P−r+1Λ
k(T ) on all the small

simplex {α, S} of T are unisolvent, as stated in [7, Proposition 3.14]. The small
simplices can thus support the degrees of freedom for fields u ∈ P−r+1Λ

k(T ), with
0 ≤ k ≤ 3 and r ≥ 0. Since the result on unisolvence holds true also by replacing
T with F ∈ Δn−1(T ) then TrFu ∈ P−r+1Λ

k(F ) is uniquely determined by the
weights on small simplices in F . It thus follows that a locally defined u, with u|T ∈
P−r+1Λ

k(T ) and single-valued weights, is in HΛk(Ω). We thus can use the weights
on the small simplices {α, S} as degrees of freedom for the fields in the finite element
space P−r+1Λ

k(M) being aware that their number is greater than the dimension of
the space.

Property 2 The weights given in Definition 1 have a meaning as cochains and this
relates directly the matrix describing the exterior derivative with the matrix of the
boundary operator. The key point is the Stokes’ theorem

∫
C du = ∫

∂C u , where
u is a (k − 1)-form and C a k-chain. More precisely, if u ∈ P−r+1Λ

k(M) then
z = du ∈ P−r+1Λ

k+1(M) and

∫

{α,S}
z =

∫

{α,S}
du =

∫

∂{α,S}
u =

∑

{β,F }
B{α,S},{β,F }

∫

{β,F }
u

being B the boundary matrix with as many rows as small simplices of dimension k

and as many columns as small simplices of dimension k − 1. The small simplices
{α, S} inherit the orientation of the simplex S so the coefficient B{α,S},{β,F } is equal
to the coefficient BS,F of the boundary of the simplex S if β = α. This is
straightforward if dim(F ) > 0 and when dim(F ) = 0, providing that small nodes in
T are given in the notation {α, n} according to their position in the small simplices
when fragmented (see Fig. 1 in [1]).

Property 3 The generated (r+2
2 ) small faces on each face F of T , pave F together

with the (r+1
2 ) reversed triangles, denoted by ∇, contained in F . Similarly, the

generated (r+3
3 ) small tetrahedra contained in T pave T together with the (r+2

3 )

octahedra, denoted by O , and the (r+1
3 ) reversed tetrahedra, denoted by⊥, contained

in T , as shown in Fig. 1. Reversed octahedra and reversed tetrahedra are examples
of “holes” in T (see [9, 10]).

Property 4 Since homology is preserved by homotopy, in [10, Section 3.4], it is
discussed the fact that the relative homology (i.e., the homology [modulo the holes’
boundaries]), of the complex of small simplices is the same of the homology of
M. This property is fundamental to build the tree for high order potentials when
working with small simplices. The homology [modulo the holes’ boundaries] can be
translated in matrix notation, by showing that the boundary matrices associated with
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the small simplices, “modified” and “completed” (in a sense that we explain in the
next section) by the relations [10, Proposition 3.5] are incidence matrices of a graph.
To apply the theory presented in [10, Section 3.4] in a tetrahedron T ∈ Δ3(M), we
need to introduce, for r > 0, two sets K1 and K2 of chains generated by the small
simplices that belong to the boundary of some hole in T as follows:

• K1 are the chains generated by the boundary of the (r+1
2 ) reversed triangle∇ ⊂ F

and that for each F ∈ Δ2(T ), and the boundary of the three faces out of four on
the boundary ∂⊥ of each of the (r2) reversed tetrahedra⊥ in T ;

• K2 are the chains generated by 4 out of 8 faces of the (r+2
3 ) octahedra O in T .

The involved faces are the small faces belonging to the boundary ∂O privated of
∂O ∩ (Δ2(T ) ∪ ∂⊥).

The two sets K1 and K2 satisfy the property ∂K2 ⊂ K1, decisive to conclude that
the relative homology [modulo the holes’ boundaries] of the complex of the small
simplices is the same as the homology of the original mesh M [10].

4 Trees and Graphs

As stated in [12], a directed graph G consists of two sets N and A of nodes and
arcs, respectively, subjected to certain incidence relations, collected in the all-vertex
incidence matrix MG ∈ Z

|N |×|A| as follows:

MGn,a =

⎧
⎪⎨

⎪⎩

−1 , if a starts from n,

+1 , if a ends in n,

0 , if a does not contain n.

An incidence matrix M of the graph G is any sub-matrix of MG with |N | − 1 rows
and |A| columns. The node that corresponds to the row of MG that is not in M will
be indicated as the reference node of G. A graph G is connected if there is a path
between any two of its nodes. A tree T of a graph G is a connected acyclic subgraph
of G. A spanning tree Ts is a tree of G visiting all its nodes. Any connected graph
G admits a spanning tree Ts . We have now to particularize these notions for small
simplices. In each tetrahedron T of the oriented mesh M, we consider the small
mesh associated with Lr+1(T ) composed only of small tetrahedra, for a given r

uniform all over the mesh M. The union of the small meshes for all T ∈ Δ3(M) is
denoted Mall .

A (Primal) Small Tree for the Gradient Problem
For r = 0, the graph G1 has N = Δ0(M) and A = Δ1(M). The boundary matrix
G8 is the all-vertex incidence matrix of the graph G1. Extracting a spanning 1-tree
T 1
s from G1 is equivalent to finding in G8, minus one row, a submatrix of maximal

rank (see [11] for a suitable and easy way of constructing T ). For r > 0, we have
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0

1
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3

2

v
0

v

v

v
1

3

Fig. 2 (Left) The graph G1 and a spanning tree in thick line, for r = 1. (Right) A spanning tree
for r = 2 in a fragmented layout

to consider the new graph G1 with N = Δ0(Mall) and A = Δ1(Mall). Let G8all be
the all-vertex incidence matrix of this new graph G1. Note that G8all results from the
boundary operator ∂1 on the elementary 1-chains from Mall . Extracting a spanning
1-tree T 1

s from G1 is equivalent to finding in G8all , minus one row, a submatrix of
maximal rank. Example of spanning 1-tree T 1

s for r+1 = 2 in the right part of Fig. 2
and for r + 1 = 3 in Fig. 5 (fragmented visualization). Note that we can repeat this
construction in the two-dimensional case.

A (Dual) Small Tree for the Divergence Problem
For r = 0, the graph G2 is built on M∗, the so-called dual mesh of M, as follows.
Let us note that an internal face F ∈ Δ2(M) connects two adjacent tetrahedra
T1, T2 ∈ Δ3(M) whereas a boundary face Fb ∈ Δ2(M) connects a tetrahedron
Tb ∈ Δ3(M) and the boundary ∂Ω . We can construct the following connected
(dual) graph G2: the set of nodes, N , contains the barycenter of any tetrahedron
T ∈ Δ3(M) together with one additional exterior node representing ∂Ω ; the set of
arcs, A, contains any face F ∈ Δ2(M). For r = 0, the matrix D associated with the
boundary operator ∂3, acting on C3(M), is an incidence matrix of the (dual) graph
G2, with reference node the one corresponding to ∂Ω . Extracting a spanning tree
T 2
s from G2 is equivalent to finding in D a submatrix of maximal rank.

For r > 0, let R2 be the set of small faces chosen as follows: one small face for
each octahedron O contained in K2 (see the right side of Fig. 3 for the dashed small
face in R2 when r+1 = 2). To construct the graph G2 for r > 0 we need to consider
M∗

all, the dual mesh associated to Mall , where nodes are the small tetrahedra and
the arcs the small faces, apart from the ones in R2. To understand this, we can reason
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Fig. 3 The (dual) graph G2∗ associated with the small mesh Mall defined in a tetrahedron T for
r = 1: the black dots are the nodes, and curved lines the arcs (Left). The (dual) graph G2 obtained
from G2∗ by merging the nodes corresponding to barycenter of t0 = {(1, 0, 0, 0), T } and of O, thus
eliminating the arc associated with the shaded small face f O

u (Right)

as follows. For r > 0, we have one arc connecting two small tetrahedra, say t#, t◦,
when

• either t#, t◦ share the same small face f , i.e. ∂t# ∩ ∂t◦ = f ;
• or t#, t◦ have a small face on the boundary of the same octahedron O , i.e. f# =

∂t# ∩ ∂O and f◦ = ∂t◦ ∩ ∂O for the same octahedron O .

See an example of graph G2 for Mall (here M = {T }) in the left part of Fig. 3
for r + 1 = 2, where the node associated with the octahedron O is not a node in
the graph, but stands to indicate that the four small tetrahedra are connected one to
the other by one arc because they all have one small face on ∂O . Naming tk the
small tetra with a vertex in vk, k = 0, 3, and numbering first the 3 × 4 faces on
tk ∩ ∂T , called f k

i for i = 1, 2, 3, second those on ∂O (where fO
u , f O

� , f O
d , f O

r are
the small faces up, left, down, right of ∂O), we have

Dtmp =

∂T

t0

t1

t2

t3

O

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 −1

1 1 1 −1

1 1 1 −1

1 1 1 −1

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f 0
1 f 0

2 f 0
3 f 1

1 f 1
2 f 1

3 f 2
1 f 2

2 f 2
3 f 3

1 f 3
2 f 3

3 f O
u f O

� f O
d fO

r

Since the octahedron O is not part of the small mesh Mall , we have to imagine
that its node collapses with the node of one of its neighbouring small tetrahedron,
say t0 with a vertex in v0, and thus that the corresponding arc (i.e. the small face
fO
u = ∂t0 ∩ ∂O , the dashed one in the right part of Fig. 3) is eliminated. From a
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v0

v1

v3

v2

v2

v3

v1

v0

Fig. 4 Example of spanning tree in the (dual) graph G2, namely a selection of acyclic paths made
of arcs, visiting all the nodes of G2 (r = 1, Left and r = 2, Right)

matrix point of view, D is obtained by adding the line “O” in Dtmp to the line “t0”,
and eliminating f O

u , namely

D =

t0

t1

t2

t3

⎛

⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 −1

1 1 1 −1
1 1 1 −1

⎞

⎟⎟⎟⎠

f 0
1 f 0

2 f 0
3 f 1

1 f 1
2 f 1

3 f 2
1 f 2

2 f 2
3 f 3

1 f 3
2 f 3

3 f O
� fO

d fO
r

(in bold font, the submatrix of maximal rank in D for the spanning tree T 2
s illustrated

in Fig. 4, left part for r + 1 = 2). To repeat this construction in the two-dimensional
case, when T is a triangle, we have to consider the mesh Mall of small triangles
in T and the role of the core octahedra O is played by the reversed triangles ∇ ∈
T . The set R2 is replaced by R1, composed of one small edge for each reversed
triangle ∇ ∈ K1. In two dimensions we do not have reversed tetrahedra, therefore
no reversed triangles ∇⊥.

The construction of the spanning tree in Mall can be done by assembling that of
the geometrical mesh M, namely a spanning tree for the Whitney forms of lower
degree (blue lines in Fig. 5 (Right)), together with local contributions, one from
each element (green lines in Fig. 5 (Right)). Each local contribution results from one
fixed on a reference element which is mapped on the current element (respecting the
orientation). In Fig. 5 (Left), in green/red thick line we have marked the small edges
of a spanning tree in the graph G1, for r = 3, in the reference triangle. The red ones
belong to the spanning tree in the reference triangle, but they are in general omitted
in the spanning tree of Mall, (indeed, they appear only if they are covered by the
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0

1 2 1

2

3

4

5

6

7

Fig. 5 (Left) In thick colored line, the small edges of the graph G1, for r = 3, that compose a
spanning tree in a reference triangle. (Right) In thick blue line the contribution of the branches of
a spanning tree in a (2D) toy mesh M reported on Mall . In green, the contribution of the small
branches mapped from the green ones in the reference triangle. It is not necessary to report the red
ones since they are either covered by the blue ones or omitted. The co-tree is in black

blue tree). The small co-tree is in black. A similar construction can be repeated in
3D (both for k = 1 and k = 2) and it reflects the decomposition given, for instance,
in [13] (Sect. 5).
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Non-conforming Elements in Nek5000:
Pressure Preconditioning and Parallel
Performance

A. Peplinski, N. Offermans, P. F. Fischer, and P. Schlatter

1 Introduction

One of the most important concerns when solving numerically partial differential
equations is finding the optimal grid on which the solution will be computed.
Unfortunately in most cases it is not an easy task that could be determined in
advance without deep understanding of the studied problem. That is why self-
adapting algorithms like e.g. adaptive mesh refinement (AMR) have received
much attention in past decades and became an important part of many packages
for numerical modelling of fluid dynamics e.g. [9, 18]. The goal of AMR is to
control the computational error during the simulation by placing higher resolution
grids where it is needed. This makes the numerical modelling more robust, and
gives the possibility to increase the accuracy of numerical simulations at minimal
computational cost. The drawback is, however, increased solver complexity, and it
that can have negative effects on the parallel code performance, in particular related
to load balancing.

There are number of different AMR schemes, and in the context of the spectral
element method (SEM) [16], in which the discretisation is based on a decomposition
of the computational domain into a number of non-overlapping, high-order sub-
domains called elements, we can distinguish three different categories: The mesh
adaptation in this case can mean adjusting the (local) size of an element (r-
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refinement), changing the polynomial order in a particular element (p-refinement),
or splitting the element into smaller ones (h-refinement). In this work we concentrate
on an h-refinement framework and its implementation in Nek5000 [8], which is
a highly parallel and efficient SEM solver for the incompressible Navier–Stokes
equations. In its established version, Nek5000 only supports conformal elements at
constant polynomial order throughout the domain.

The present work was started within EU project CRESTA, where the non-
conforming solver for advection-diffusion problem was developed and the basic
AMR tasks were implemented using existing external libraries. As h-refinement
affects the element connectivity resulting in non-conforming meshes, a special grid
manager is required to perform local refinement/coarsening and to build globally
consistent meshes. For this task the p4est library [1] has been chosen, as it is
designed to manipulate domains composed of multiple, non-overlapping logical
cubic sub-domains, which can be represented by a recursive tree structure. This
library provides element connectivity information for the dual graph, which is later
manipulated by ParMETIS [10] producing a new element-to-processor mapping.
The final step of grid refinement/coarsening and redistribution is performed within
the non-conforming version of Nek5000, which utilises the so-called conforming-
space/nonconforming-mesh approach based on the previous work of Fischer et al.
[7, 11]. As the solver complexity grows special care has been taken to develop
efficient tools that can be used within AMR framework. A more detailed description
of them and the related scaling tests can be found in [17].

The goal of ExaFLOW is to extend results of CRESTA to the full incompressible
Navier–Stokes equations focusing on proper adaptation of the pressure precondi-
tioners for nonconforming SEM. Defining a robust parallel preconditioning strategy
has received much attention in past decades, as the linear sub-problem associated
with the divergence-free constraint (pressure-Poisson equation) can become very ill-
conditioned. In the context of SEM two possible approaches based on the additive
overlapping Schwarz method [4, 6] and the hybrid Schwarz-multigrid method [5, 12]
were proposed and implemented in Nek5000, leading to a significant reduction of
pressure iterations.

In the present paper, we discuss the modifications necessary to adapt Nek5000 for
the h-type AMR framework. The article is organised as follows. A short description
of SEM and pressure preconditioners is given in Sects. 2 and 3. The following
Sects. 4 and 5 describe the algorithmic modifications and parallel performance of
the code. Finally, Sect. 6 provides conclusion and future work.

2 SEM Discretisation of the Navier–Stokes Equations

We review briefly the discretisation of the incompressible Navier–Stokes equations
to introduce notation and point out algorithm parts that require modification. The
more in-depth derivation can be found in e.g. [4]. The temporal discretisation is
based on a semi-implicit scheme in which the nonlinear term is treated explicitly
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and the remaining unsteady Stokes problem is solved implicitly. To avoid spurious
pressure modes our spatial discretisation is based on the PN − PN−2 SEM,
where velocity and pressure spaces are spanned by Lagrangian interpolants on
the Gauss–Lobatto–Legendre (GLL) and Gauss–Legendre (GL) quadrature points,
respectively. Note that the basis for velocity is continuous across element interfaces,
whereas the basis for pressure is not. Assuming fn incorporates all nonlinear and
source terms treated explicitly at time tn, the matrix form of the Stokes problem
after applying the Uzawa decoupling reads:

[
H −t

β0
HB−1DT

0 E

](
un

p

)
=
(

Bfn + DT pn−1

g

)
, (1)

where

E = t

β0
DB−1DT (2)

is the Stokes Schur complement governing the pressure, p = pn − pn−1 is the
pressure update, and g is the inhomogeneity arising from Gaussian elimination.
In these equations H = − 1

Re
A + β0

t
B and D are the discrete Helmholtz and

divergence operators, respectively. β0, A and B denote here a coefficient from time
derivative, a discrete Laplacian and a diagonal mass matrix associated with the
velocity mesh. Applying the Uzawa decoupling we use the inverse mass matrix B−1

as approximation of the inverse Helmholtz operator H−1, giving rise to a splitting
error. Note that for this splitting method the diagonality of the mass matrix B is
crucial to avoid costly matrix inversion.

All operators H, A, B and E are symmetric positive definite (SPD) and can be
solved with a preconditioned conjugate gradient (PCG) method. Moreover, E has
properties similar to a Poisson operator, and is often referred to as a consistent
Poisson operator. The systems involving H and E are solved iteratively with E
being more challenging, and in the next section we will present the preconditioning
strategy for the pressure equation,

Ep = −Du . (3)

We close this section by shortly presenting the SEM operators. SEM introduces
a globally unstructured and locally structured basis by tessellating the domain into
K non-overlapping subdomains (deformed quadrilaterals), � = ⋃K

k=1 �k, and
representing functions in each subdomain in terms of tensor-product polynomials
on a reference subdomain �̂ = [−1, 1]d . In this approach every function or operator
is represented by its local counterparts, which in case of functions takes the form of
a sum over the subdomains

f (x) =
K∑

k=1

∑

i

f k
i hi(r) .
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Here, f k
i and hi are the nodal values of the function in �k and the base functions

in �̂, respectively, with i representing the natural ordering of nodes in �̂. Com-
bining the coefficients f k

i one can build global f and local f
L

representations
of the function. Each global degree of freedom occurs only once in the global
representation, but has multiple copies of faces, edges and vertices related to �k in
the local one. To enforce function continuity, the global-to-local mapping is defined
as the matrix–vector product f

L
= Qf , where Q is a binary operator duplicating

the basis coefficients in adjoining subdomains. The action QT f
L

sums multiple
contributions to the global degree of freedom from their local values. The assembled
global stiffness matrix A takes the form

(∇f,∇g) = f T Ag = f T QT ALQg,

where a block diagonal matrix AL is the unassembled stiffness matrix with each
diagonal block consisting of the local stiffness matrix Ak

ij =
∫

dhi
dx

dhj
dx

dx. In
practise, the global stiffness matrix is never formed explicitly, and the gather–scatter
operator QQT is used instead. This operator contains all information about element
connectivity.

3 Pressure Preconditioner

An efficient solution of Eq. (3) requires finding an SPD preconditioning matrix M−1

which can be inexpensively applied and which reduces the condition number of
M−1E. Preconditioners based on domain decomposition are a natural choice for
SEM as the data is structured within an element but is otherwise unstructured.

An overlapping additive Schwarz preconditioner for Eq. (3) was developed in
[4] based on linear finite element discretisation of Poisson operator. It combines
solutions of the local Poisson problems in overlapping subdomains RT

k Â−1
k Rk with

the coarse grid problem RT
0 Â−1

0 R0, which is solved on few degrees of freedom, but
covers the entire domain

M−1 = RT
0 Â−1

0 R0 +
∑

k

RT
k Â−1

k Rk.

For the local problems restriction and prolongation operators, Rk and RT
k , are

Boolean matrices that transfer data to and from the subdomain, and Âk is a local
stiffness matrix which can be inverted with e.g. a fast diagonalisation method. Note
that action of Rk and RT

k are similar to the gather–scatter operator QQT .
The coarse grid problem corresponds to the Poisson problem solved on the

element vertices only, with RT
0 being the linear operator interpolating the coarse

grid solution onto the tensor product array of GL points. Unlike in [4, 6], Â0 is
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defined using local SEM-based Neumann operators performing the projection of
local stiffness matrices Ak evaluated on the GLL quadrature points onto the set
of coarse base functions bi representing the linear finite element base on the GLL
grid. The coarse base functions are defined in �̂ as a tensor-product of the one-
dimensional linear functions. The local contribution to Â0 is given by bTi Akbj , and

the full Â0 is finally assembled by local-to-global mapping summing contributions
to the global degree of freedom from their local counterparts. Â0 is one of few
matrices formed explicitly in Nek5000.

On the other hand, the hybrid Schwarz-multigrid preconditioner is based on the
multiplicative Schwarz method, which for the two-level scheme takes the form,

M−1 = RT
0 Â−1

0 R0

⎡

⎣
∑

k

RT
k Â−1

k Rk

⎤

⎦ ,

and leads to the following two-level multigrid scheme,

(i) u1 =
∑

k

RT
k Â−1

k Rkg,

(ii) r = g − Au1,

(iii) e = RT
0 Â−1

0 R0r,

(iv) u = u1 + e,

where g, r , e and u are right-hand side, residual, coarse-grid error and solution of
equation Au = g, respectively. This method can be extended to a general multilevel
solver performing a full V cycle [5, 12]. Notice that by replacing step ii) with r = g

we obtain the additive Schwarz preconditioner.

4 Adaptation for Non-conforming Meshes

The important advantage of SEM in the context of AMR is its spatial decomposition
into elements that can easily be split into smaller ones, and use of the local repre-
sentation of the operators which decouples intra- and inter-element operations. As
h-type AMR using the conforming-space/nonconforming-mesh approach leaves the
approximation spaces unchanged, most of the tensor-product operations evaluated
element-by-element are preserved, limiting the changes in the algorithm.

The inter-element operations are mostly performed by the gather–scatter operator
QQT which has to be redefined to include spectral interpolation at the non-
conforming faces. Following [7] we consider a non-conforming face shared by
one low resolution element (parent) and two (in 3D four) high resolution elements
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(children). We introduce a local parent-to-child interpolation operator Jcp which is
a spectral interpolation operator with entries

(
Jcp

)
ij
= hj (ζ

cp

i ),

where ζ
cp

j represents the mapping of GLL points from the child face to its parent.
This operator is locally applied to give the desired nodal values on the child face,
after Q copies data form the parent to the children. Building a block-diagonal
matrix JL with local matrices Jcp one can redefine scatter JLQ and gather–scatter
JLQQT JTL operators, respectively. For more discussion see Fig. 6 and Sect. 4 in [7].

The next crucial modification is diagonalisation of the global mass matrix
QT BLQ (BL is a block-diagonal built of local mass matrices), whose inverse is
required in Eqs. (1) and (2). It is non-diagonal due to the fact that the quadrature
points in the elements along the non-conforming faces do not coincide. A diagonal-
isation procedure is given in [7] and consists of building the global vector b̃

b̃ := Bê = QT JTLBLêL,

and finally setting the lumped mass matrix B̃ij = δij b̃i . ê and êL denote here the
global and local vectors containing all ones.

The additive Schwarz preconditioner requires two significant modifications. The
first one is related to the assembly of the coarse grid operator Â0, which gets more
complex for non-conforming meshes. This is due to the fact that the non-conforming
mesh introduces hanging vertices located in the middle of faces or edges. These
hanging vertices are not global degrees of freedom and cannot be included in Â0.
To remove them from consideration one has to modify the set of local coarse base
functions bi , which are thus dependent on the shape of the refined region as well as
the position and orientation of the child face with respect to the parent one. Unlike
the conforming case, where all bi could be represented by a tensor product of two
or three linear functions, the non-conforming mesh requires 5 basic components in
two and 21 in three dimensions to assemble all the possible shapes of bi .

The last missing components are the restriction and prolongation operators,
Rk and RT

k , for the local Poisson problem. Taking into account the similarity
between these operators with QQT and following the previous development we
use an operator similar to JLQQT JTL, replacing JL with the interpolation operator
defined on the GL quadrature points. Although this choice seems to be optimal as
it preserves properties of the preconditioner and JTL is well defined, our numerical
experiments showed a significant increase of pressure iterations in some cases. It
was found to be caused by the noise introduced by JTL in the Schwarz operator.
To reduce this noise we replaced the transposed interpolation operator with the
inverse one, getting a significant reduction of iterations. Unfortunately, such a
preconditioner is no longer SPD and PCG cannot be used as an iterative solver
in this case. The other problem is the definition of J−1

L , as Jcp can be inverted for
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square matrices only, thus excluding p-refinement strategies. To avoid this problem
we define a child-to-parent interpolation operator Jpc with the entries

(
Jpc

)
ij
=
{
hj (ζ

pc

i ) if ζ pj ∈ ∂�p ∩ ∂�c

0 otherwise
,

where ∂�p and ∂�c are the parent and child common faces, ζ pj is a parent GLL

point at the face ∂�p, and ζ
pc
j represents the mapping of ζ pj to the child face ∂�c.

This operator is locally applied to give the desired nodal values on the child face,
before QT sums data form the children and the parent. Building block-diagonal
matrix J−1

L consisting of local matrices Jpc one can redefine the gather–scatter
JLQQT J−1

L operator such that it is appropriate for the pressure preconditioner.
In a similar way we modify the multiplicative Schwarz method, as it shares

a number of features with the additive one. In this case we distinguish between
Schwarz (acting at single level) and restriction (connecting different levels) opera-
tors and apply JLQQT J−1

L and JLQQT JTL to each of them, respectively. Unlike the
additive preconditioner, the hybrid one requires also the redefinition of the diagonal
weight matrix that indicates the number of sub-domains sharing a given node, and is
used to accommodate for overlapping regions. Its value is important as it reduces the
largest eigenvalue of the MA operator and defines the smoothing properties of the
additive Schwarz step (see [4] and the references therein). In the conforming case
its definition is straightforward, however the non-conforming case is more involved
as hanging nodes are not real degrees of freedom. In the current implementation
the information about node multiplicity on the non-conforming faces is hidden to
the parent element, so the parent element sees only one neighbour instead of two
(four in 3D). Although this choice gives a preconditioner that significantly reduces
the number of pressure iterations, its performance for the studied cases is slightly
worse than the performance of the additive Schwarz preconditioner. This can be
caused by a non-optimal value of the weight matrix, or by the fact that the hybrid
preconditioner is superior over the additive one for high-aspect ratio elements (that
are not present in our adaptive simulations).

5 Parallel Performance

The parallel performance test is based on the one of the ExaFLOW flagship
calculations, and consists of the turbulent flow around a NACA4412 wing section
with 5◦ angle of attack, at a Reynolds number based on inflow velocity U∞ and
chord length c of Rec = 200,000. It was previously studied in a series of well-
resolved large-eddy simulations conducted with the conforming Nek5000 version,
and discussed in detail in [19]. This flow configuration was chosen to illustrate the
significant benefit of using AMR, in particular when it comes to the farfield region
in the computational domain, but for this article we will only briefly discuss the
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Fig. 1 (a) Volume visualisation of that part of the domain covered by refinement levels higher than
one for the turbulent flow around a wing profile. The wing vicinity and wake region are resolved
and a colour indicates different refinement levels. (b) Strong scaling of the non-conforming
Nek5000 solver for the same case performed on Beskow. The plot shows the time per time step
as a function of node number. Each node consists of 32 cores

strong scaling results. We omit here a weak scaling test, as Nek5000 uses iterative
solvers and with the current example we cannot provide meaningful data.

The initial coarse and conforming mesh consisted of 2190 elements with
polynomial order N = 7 and was evolved for 7.2 time units c/U∞ to evolve
the refinement process using spectral error indicators [13, 14], and allowing for
6 refinements levels. The resulting non-conforming grid was built of 224,272
elements with 76.37 × 106 degrees of freedom, resolving the wing surface and
the wake, Fig. 1a. This final mesh was used to test the parallel performance of
the non-conforming solver using the petascale Cray XC40 system Beskow at PDC
(Stockholm). This system consists of 2060 nodes with 32 cores per node and 2.438
PFlops peak performance. We compare our results with the scaling tests of the
conforming Nek5000 presented in Offermans et al. [15]. The most relevant test in
this article is pipe flow at Reτ = 360 (upper-right plot in their Fig. 5), as it is similar
in size with the discussed wing case. We should mention here that our goal is not
to improve the parallel performance of the conforming code, but rather to retain
it despite of a work imbalance introduced by an additional operator in the direct
stiffness summation of the non-conforming solver.

To be able to compare to the conforming solver, we focus on the time evolution
loop only, excluding code initialisation, finalisation, mesh rebuilding within AMR
and I/O operations. The result of the strong scaling test is presented in Fig. 1b
showing the time per time step as a function of node count. This plot is almost
identical with the reference one in [15]. Both show slight super-linear scaling
between 32 and 256 nodes despite growing work imbalance for the non-conforming
solver. We also reach the strong scaling limit at around 256 nodes, which for the
conforming solver on Beskow was estimated to be between 30,000 and 50,000
degrees of freedom per core [15]. This shows that the parallel performance of
the non-conforming and conforming solvers is almost the same and proves the
efficiency of our implementation.
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The maximum number of the compute nodes used in the test was not set by
the parallel properties of the non-conforming Nek5000, but by the quality of the
domain partitioning provided by ParMETIS. Within ExaFLOW we developed a new
grid partitioning scheme for Nek5000 (not discussed in this paper) that takes into
account a core distribution among the nodes, and consists of two steps: inter- and
intra-node partitioning. Although this two-level partitioning scheme significantly
improves the efficiency of a coarse grid operations for XXT, especially during the
setup phase, it relies on the quality of an inter-node partitioning. If the first step gives
subdomains with disjoint graphs, the second step cannot be performed. We found
that the probability of getting disjoint graphs increases with decreasing number of
elements per node, virtually prohibiting the runs with less than 1000 elements per
node. However, this limit can differ between simulations. We note however that in
the standard production use of the solver this limitation is not critical, as according
to [15] it is usually close to the strong scaling limit of conforming Nek5000.

6 Conclusions

Within the ExaFLOW project we developed a fully functional SEM-based h-type
adaptive mesh refinement (AMR) solver for the incompressible Navier–Stokes
equations. This allows for much larger flow cases to be run at reduced cost, as the
high resolution grid is placed only in those region where it is needed. At the same
time the simulation quality is improved, as the computational error can be controlled
during the run.

We have optimised for non-conforming meshes the pressure preconditioners
based on the additive overlapping Schwarz and hybrid Schwarz-multigrid methods.
To achieve this we modified the base functions for the assembly of a coarse-grid
operator to remove hanging nodes, and redefined the direct stiffness summation
operator to include spectral interpolation at the non-conforming faces and edges.
We introduced two operators JLQQT JTL and JLQQT J−1

L for the different steps in
the pressure calculation. The last crucial modification was the diagonalisation of the
global mass matrix.

Using real flow cases we show our AMR implementation to be correct and effi-
cient. An important success is the fact that parallel performance of the conforming
and non-conforming solvers is very similar, despite the increased complexity of the
non-conforming one.

In the future we are going to investigate other definitions of the weight matrix for
the hybrid Schwarz-multigrid method, and to test different pressure preconditioners
based on the restricted additive Schwarz method [2, 3]. We are going as well to work
on the quality of the graph partition, as the two-level partitioning would not accept
disjoint graphs on the node’s subdomain.
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Sparse Approximation of Multivariate
Functions from Small Datasets Via
Weighted Orthogonal Matching Pursuit

Ben Adcock and Simone Brugiapaglia

1 Introduction

In recent years, a new class of approximation strategies based on compressive
sensing (CS) has been shown to be able to substantially lessen the curse of
dimensionality in the context of approximation of multivariate functions from
pointwise data, with applications to the uncertainty quantification of partial differ-
ential equations with random inputs. Based on random sampling from orthogonal
polynomial systems and on weighted �1 minimization, these techniques are able
to accurately recover a sparse approximation to a function of interest from a small-
sized datasets of pointwise samples. In this paper, we show the potential of weighted
greedy techniques as an alternative to convex minimization programs based on
weighted �1 minimization in this context.

The contribution of this paper is twofold. First, we propose a weighted orthog-
onal matching pursuit (WOMP) algorithm based on a rigorous derivation of the
corresponding greedy index selection strategy. Second, we numerically show that
WOMP is a promising alternative to convex recovery programs based on weighted
�1 minimization, thanks to its ability to compute sparse approximations with an
accuracy comparable to those computed via weighted �1 minimization, but with a
considerably lower computational cost when the target sparsity level (and, hence, the
number of WOMP iterations) is small enough. It is also worth observing here that
WOMP computes approximations that are exactly sparse, as opposed to approaches
based on weighted �1 minimization, which provide compressible approximations in
general.
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Brief Literature Review Various approaches for multivariate function approxi-
mation based on CS with applications to uncertainty quantification can be found
in [1, 3–6, 11–13, 17]. An overview of greedy methods for sparse recovery in CS
and, in particular of OMP, can be found in [7, Chapter 3.2]. For a general review
on greedy algorithms, we refer the reader to [15] and references therein. Some
numerical experiments on a weighted variant of OMP have been performed in the
context of CS methods for uncertainty quantification in [4]. Weighted variants of
OMP have also been considered in [10, 16], but the weighted procedure is tailored
for specific signal processing applications and the term “weighted” does not refer
to the weighted sparsity setting of [14] employed here. To the authors’ knowledge,
the weighted variant of OMP considered in this paper seems to have been proposed
here for the first time.

Organization of the Paper In Sect. 2 we describe the setting of sparse multivariate
function approximation in orthonormal systems via random sampling and weighted
�1 minimization. Then, in Sect. 3 we formally derive a strategy for the greedy
selection in the weighted sparsity setting and present the WOMP algorithm. Finally,
we numerically show the effectiveness of the proposed technique in Sect. 4 and give
our conclusions in Sect. 5.

2 Sparse Multivariate Function Approximation

We start by briefly introducing the framework of sparse multivariate function
approximation from pointwise samples and refer the reader to [3] for further details.

Our aim is to approximate a function defined over a high-dimensional domain

f : D→ C, with D = (−1, 1)d,

where d ' 1, from a dataset of pointwise samples f (t1), . . . , f (tm). Let ν be a
probability measure on D and let {φj }j∈Nd

0
be an orthonormal basis for the Hilbert

space L2
ν(D). In this paper, we will consider {φj }j∈Nd

0
to be a tensorized family of

Legendre or Chebyshev orthogonal polynomials, with ν being the uniform or the
Chebyshev measure on D, respectively. Assuming that f ∈ L2

ν(D) ∩ L∞(D), we
consider the series expansion

f =
∑

j∈Nd
0

xjφj .

Then, we choose a finite set of multi-indices * ⊆ N
d
0 with |*| = N and obtain the

truncated series expansion

f* =
∑

j∈*
xjφj .
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In practice, a convenient choice for * is the hyperbolic cross of order s, i.e.

* :=
⎧
⎨

⎩j ∈ N
d
0 :

d∏

k=1

(jk + 1) ≤ s

⎫
⎬

⎭ ,

due to the moderate growth of N with respect to d . Now, assuming we collect m 
N pointwise samples independently distributed according to ν, namely,

f (t1), . . . , f (tm), with t1, . . . , tm
i.i.d.∼ ν,

the approximation problem can be recasted as a linear system

Ax* = y + e, (1)

with x* = (xj )j∈* ∈ C
N , and where the sensing matrix A ∈ C

m×N and the
measurement vector y ∈ C

m are defined as

Aij := 1√
m
φj(ti ), yi := 1√

m
f (ti), ∀i ∈ [m], ∀j ∈ [N], (2)

with [k] := {1, . . . , k} for every k ∈ N. The vector e ∈ C
m accounts for the

truncation error introduced by * and satisfies ‖e‖2 ≤ η, where η > 0 is an a
priori upper bound to the truncation L∞(D)-error, namely ‖f − f*‖L∞(D) ≤ η. A
sparse approximation to the vector can be then computed by means of weighted �1

minimization.
Given weights w ∈ R

N with w > 0 (where the inequality is read compo-
nentwise), recall that the weighted �1 norm of a vector z ∈ C

N is defined as
‖z‖1,w := ∑

j∈[N] |zj |wj . We can compute an approximation x̂* to x* by solving
the weighted quadratically-constrained basis pursuit (WQCBP) program

x̂* ∈ arg min
z∈CN

‖z‖1,w, s.t. ‖Az− y‖2 ≤ η, (3)

where the weights w ∈ R
N are defined as

wj = ‖φj‖L∞(D). (4)

The effectiveness of this particular choice of w is supported by theoretical results
and it has been validated from the numerical viewpoint (see [1, 3]). The resulting
approximation f̂* to f is finally defined as

f̂* :=
∑

j∈*
(x̂*)jφj .
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In this setting, stable and robust recovery guarantees in high probability can be
shown for the approximation errors ‖f − f*‖L2

ν(D) and ‖f − f*‖L∞ν (D) under a
sufficient condition on the number of samples of the form m � sγ · polylog(s, d),
with γ = 2 or γ = log(3)/ log(2) for tensorized Legendre or Chebyshev poly-
nomials, respectively, hence lessening the curse of dimensionality to a substantial
extent (see [3] and references therein). We also note in passing that decoders such
as the weighted LASSO or the weighted square-root LASSO can be considered as
alternatives to (3) for weighted �1 minimization (see [2]).

3 Weighted Orthogonal Matching Pursuit

In this paper, we consider greedy sparse recovery strategies to find sparse approxi-
mate solutions to (1), as alternatives to the WQCBP optimization program (3). With
this aim, we propose a variation of the OMP algorithm to the weighted setting.

Before introducing weighted OMP (WOMP) in Algorithm 1, let us recall
the rationale behind the greedy index selection rule of OMP (corresponding to
Algorithm 1 with λ = 0 and w = 1). For a detailed introduction to OMP, we
refer the reader to [7, Section 3.2]. Given a support set S ⊆ [N], OMP solves the
least-squares problem

min
z∈CN

G0(z) s.t. supp(z) ⊆ S,

where G0(z) := ‖y − Az‖2
2. In OMP, the support S is iteratively enlarged by one

index at the time. Namely, we consider the update S ∪ {j }, where the index j ∈ [N]
is selected in a greedy fashion. In particular, assuming that A has �2-normalized
columns, it is possible to show that (see [7, Lemma 3.3])

min
t∈C G0(x + tej ) = G0(x)− |(A∗(y − Ax))j |2. (5)

This leads to the greedy index selection rule operated by OMP, which prescribes
the selection of an index j ∈ [N] that maximizes the quantity |(A∗(y − Ax))j |2.
We will use this simple intuition to extend OMP to the weighted case by replacing
the function G0 with a suitable function Gλ that takes into account the data-fidelity
term and the weighted sparsity prior at the same time.

Let us recall that, given a set of weights w ∈ R
N with w > 0, the weighted �0

norm of a vector z ∈ C
N is defined as the quantity (see [14])1

‖z‖0,w :=
∑

j∈supp(z)

w2
j .

1The term “norm” here is an abuse of language, but we will stick to it due to its popularity.
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Notice that when w = 1, then ‖ ·‖0,w = ‖·‖0 is the standard �0 norm. Given λ ≥ 0,
we define the function

Gλ(z) := ‖y − Az‖2
2 + λ‖z‖0,w. (6)

The tradeoff between the data-fidelity constraint and the weighted sparsity prior
is balanced via the choice of the regularization parameter λ. Applying the same
rationale employed in OMP for the greedy index selection and replacing G0 with
Gλ leads to Algorithm 1, which corresponds to OMP when λ = 0 and w = 1.

Algorithm 1 Weighted orthogonal matching pursuit (WOMP)
Inputs:

• A ∈ C
m×N : sampling matrix, with �2-normalized columns;

• y ∈ C
m: vector of samples;

• w ∈ R
N : weights;

• λ ≥ 0: regularization parameter;
• K ∈ N: number of iterations.

Procedure:

1. Let x̂0 = 0 and S0 = ∅;
2. For k = 1, . . . , K:

a. Find jk ∈ arg max
j∈[N]λ(xk−1, Sk−1, j), with λ as in (7);

b. Define Sk = Sk−1 ∪ {jk};
c. Compute x̂k ∈ arg min

v∈CN
‖Av − y‖2 s.t. supp(v) ⊆ Sk .

Output:

• x̂K ∈ C
N : approximate solution to Az = y.

Remark 1 The �2-normalization of the columns of A is a necessary condition to
apply Algorithm 1. If A does not satisfy this hypothesis, is suffices to apply WOMP
to the normalized system Ãz = y, where Ã = AM−1 andM is the matrix containing
the �2 norms of the columns of A on the main diagonal and zeroes elsewhere. The
approximate solution x̂K to Ãz = y computed via WOMP is then rescaled as Mx̂K ,
which approximately solves Az = y.

The following proposition justifies the weighted variant of OMP considered
in Algorithm 1. In order to minimize Gλ as much as possible, at each iteration,
WOMP selects the index j that maximizes the quantity λ(x, S, j) defined in (7).
The following proposition makes the role of the quantity λ(x, S, j) transparent,
generalizing relation (5) to the weighted case, under suitable conditions on A and x

that are verified at each iteration of Algorithm 1.
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Proposition 1 Let λ ≥ 0, S ⊆ [N], A ∈ C
m×N with �2-normalized columns, and

x ∈ C
N satisfying

x ∈ arg min
z∈CN

‖y − Az‖2 s.t. supp(z) ⊆ S.

Then, for every j ∈ [N], the following holds:

min
t∈C Gλ(x + tej ) = Gλ(x)−λ(x, S, j),

where Gλ is defined as in (6), λ : CN × 2[N] × [N] → R is defined by

λ(x, S, j) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
{
|(A∗(y − Ax))j |2 − λw2

j , 0
}

if j /∈ S

max
{
λw2

j − |xj |2, 0
}

if j ∈ S and xj �= 0

0 if j ∈ S and xj = 0.
(7)

Proof Throughout the proof, we will denote the residual as r := y − Ax.
Let us first assume j /∈ S. In this case, we compute

Gλ(x + tej ) = ‖y − A(x + tej )‖2
2 + λ‖x + tej‖0,w

= ‖r‖2
2 + |t|2 − 2 Re(t̄ (A∗r)j )+ λ(1− δt,0)w

2
j︸ ︷︷ ︸

=:h(t)

+λ‖x‖0,w,

where δx,y is the Kronecker delta function. In particular, we have

h(t) =
⎧
⎨

⎩
0 if t = 0

|t|2 − 2 Re(t̄ (A∗r)j )+ λw2
j if t ∈ C \ {0}.

Now, if (A∗r)j = 0, then h(t) is minimized for t = 0 and mint∈CG(x + tej ) =
G(x). On the other hand, if (A∗r)j �= 0, by arguing similarly to [7, Lemma 3.3], we
see that

min
t∈C\{0}h(t) = −|(A

∗r)j |2 + λw2
j ,

where the minimum is realized for some t ∈ C with |t| = |(A∗r)j | �= 0. In
summary,

min
t∈C h(t) = min

{
−|(A∗r)j |2 + λw2

j , 0
}
= −max

{
|(A∗r)j |2 − λw2

j , 0
}
,

which concludes the case j /∈ S.
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Now, assume j ∈ S. Since the vector xS = x|S ∈ C
|S| is a least-squares solution

to ASz = y, it satisfies A∗S(y − ASxS) = 0 and, in particular, (A∗r)j = 0. (Here,
AS ∈ C

m×|S| denotes the submatrix of A corresponding to the columns in S).
Therefore, arguing similarly as before, we have

G(x + tej ) = ‖r‖2
2 + |t|2 + λ(1− δt,−xj )w2

j︸ ︷︷ ︸
=:�(t)

+λ‖x − xj ej‖0,w.

Considering only the terms depending on t , it is not difficult to see that

min
t∈C �(t) = min{|xj |2, λw2

j }.

As a consequence, for every j ∈ S, we obtain

min
t∈C G(x + tej ) = ‖r‖2

2 + λ‖x − xj ej‖0,w +min{|xj |2, λw2
j }

= G(x)+min{|xj |2, λw2
j } − λ(1 − δxj ,0)w

2
j .

The results above combined with simple algebraic manipulations lead to the desired
result. %&

4 Numerical Results

In this section, we show the effectiveness of WOMP (Algorithm 1) in the sparse
multivariate function approximation setting described in Sect. 2. In particular, we
choose the weights w as in (4). We consider the function

f (t) = ln

⎛

⎝d + 1+
d∑

k=1

tk

⎞

⎠ , with d = 10. (8)

We let {φj }j∈Nd
0

be the Legendre and Chebyshev bases and ν be the respective

orthogonality measure. In Figs. 1 and 2 we show the relative L2
ν(D)-error of the

approximate solution x̂K computed via WOMP as a function of iteration K , for
different values of the regularization parameter λ in order to solve the linear system
Az = y, where A and y are defined by (2) and where the �2-normalization of the
columns of A is taken into account according to Remark 1. We consider λ = 0
(corresponding to OMP) and λ = 10−k, with k = 3, 3.5, 4, 4.5, 5. Here, * is the
hyperbolic cross of order s = 10, corresponding to N = |*| = 571. Moreover, we
consider m = 60 and m = 80. The results are averaged over 25 runs and the L2

ν(D)-
error is computed with respect to a reference solution approximated via least squares
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Fig. 1 Plot of the mean relative L2
ν(D)-error as a function of the number of iterations K of WOMP

(Algorithm 1) for different values of the regularization parameter λ for the approximation of the
function f defined in (8) and using Legendre polynomials. The accuracy of WOMP is compared
with those of QCBP and WQCBP

Fig. 2 The same experiment as in Fig. 1, with Chebyshev polynomials

and using 20N = 11,420 random i.i.d. samples according to ν. We compare the
WOMP accuracy with the accuracy obtained via the QCBP program (3) with η = 0
and WQCBP with tolerance parameter η = 10−8. To solve these two programs we
use CVX Version 1.2, a package for specifying and solving convex programs [8, 9].
In CVX, we use the solver ‘mosek’ and we set CVX precision to ‘high’.

Figures 1 and 2 show the benefits of using weights as compared to the unweighted
OMP approach, when the parameter λ is tuned appropriately. A good choice of λ for
the setting considered here seem to be between 10−4.5 and 10−3.5. We also observe
that WOMP is able to reach similar level of accuracy as WQCBP. An interesting
feature of WOMP with respect to OMP is its better stability. We observe than after
the m-th iteration, the OMP accuracy starts getting substantially worse. This can be
explained by the fact that when K approaches N , OMP tends to destroy sparsity by
fitting the data too much. This phenomenon is not observed in WOMP, thanks to its
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Fig. 3 Plot of the support size of x̂K as a function of the number of iterations K for WOMP
in the same setting as in Figs. 1 and 2, with Legendre (left) and Chebyshev (right) polynomials.
The larger the regularization parameter λ, the sparser solution (in the left plot, the curves relative
to λ = 10−4.5 and λ = 10−4 overlap. In the right plot, the same happens for λ = 10−4 and
λ = 10−3.5)

Table 1 Comparison of the computing times for WQCBP and K = 25 iterations of WOMP

WOMP with λ as below

Basis m QCBP WQCBP OMP 10−5 10−4.5 10−4 10−3.5 10−3

Legendre 60 1.9e−01 2.0e−01 1.6e−02 1.3e−02 1.2e−02 1.3e-02 1.2e−02 1.2e−02

Legendre 80 2.1e−01 2.1e−01 1.7e−02 1.5e−02 1.3e−02 1.4e−02 1.4e−02 1.3e−02

Chebyshev 60 1.9e−01 1.9e−01 1.5e−02 1.3e−02 1.2e−02 1.2e−02 1.2e−02 1.2e−02

Chebyshev 80 2.1e−01 2.1e−01 1.7e−02 1.5e−02 1.3e−02 1.4e−02 1.4e−02 1.4e−02

ability to keep the support of x̂k small via the explicit enforcement of the weighted
sparsity prior (see Fig. 3).

We show the better computational efficiency of WOMP with respect to the
convex minimization programs QCBP and WQCBP solved via CVX by tracking
the runtimes for the different approaches. In Table 1 we show the running times
for the different recovery strategies. The running times for WOMP are referred to
K = 25 iterations, sufficient to reach the best accuracy for every value of λ as shown
in Figs. 1 and 2. Moreover, the computational times for WOMP take into account
the �2-normalization of the columns of A (see Remark 1). WOMP consistently
outperforms convex minimization, being more than ten times faster in all cases. We
note that in this comparison a key role is played by the parameter K or, equivalently,
by the sparsity of the solution. Indeed, in this case, considering a larger value of
K would result is a slower performance of WOMP, but it would not improve the
accuracy of the WOMP solution (see Figs. 1 and 2).
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5 Conclusions

We have considered a greedy recovery strategy for high-dimensional function
approximation from a small set of pointwise samples. In particular, we have
proposed a generalization of the OMP algorithm to the setting of weighted
sparsity (Algorithm 1). The corresponding greedy selection strategy is derived in
Proposition 1.

Numerical experiments show that WOMP is an effective strategy for high-
dimensional approximation, able to reach the same accuracy level of WQCBP while
being considerably faster when the target sparsity level is small enough. A key role
is played by the regularization parameter λ, which may be difficult to tune due to
its sensitivity to the parameters of the problem (m, s, and d), and on the polynomial
basis employed. In other applications, where explicit formulas for the weights as (4)
are not available, there might also be a nontrivial interplay between λ and w. In
summary, despite the promising nature of the numerical experiments illustrated in
this paper, a more extensive numerical investigation is needed in order to study
the sensitivity of WOMP with respect to λ. Moreover, a theoretical analysis of the
WOMP approach might highlight practical recipe for the choice of this parameter,
similarly to [2]. This type of analysis may also help identifying the sparsity regime
where WOMP outperforms weighted �1 minimization, which, in turn, could be
formulated in terms of suitable assumptions on the regularity of f . These questions
are beyond the scope of this paper and will be object of future work.
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On the Convergence Rate
of Hermite-Fejér Interpolation

Shuhuang Xiang and Guo He

1 Introduction

For an arbitrarily given system of points

{x(n)1 , x
(n)
2 , . . . , x(n)n }∞n=1, (1)

Faber [3] in 1914 showed that there exists a continuous function f (x) in [−1, 1] for
which the Lagrange interpolation sequence Ln[f ] (n = 1, 2, . . .) is not uniformly
convergent to f in [−1, 1], where ωn(x) = (x − x

(n)
1 )(x − x

(n)
2 ) · · · (x − x

(n)
n )

Ln[f ](x) =
n∑

k=1

f (x
(n)
k )�

(n)
k (x), �

(n)
k (x) = ωn(x)

ω′n(x
(n)
k )(x − x

(n)
k )

. (2)

Whereas, based on the Chebyshev pointsystem

x
(n)
k = cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n, n = 1, 2, . . . , (3)
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Fig. 1 ‖H2n−1(f, x) − f (x)‖∞, ‖Ln(f, x) − f (x)‖∞ and ‖H ∗2n−1(f, x) − f (x)‖∞at x = −1 :
0.001 : 1 by using Chebyshev pointsystem (3) for f (x) = sin(x), f (x) = 1

1+25x2 and f (x) = |x|3,
respectively

Fejér [4] in 1916 proved that if f ∈ C[−1, 1], then there is a unique polynomial
H2n−1(f, x) of degree at most 2n − 1 such that limn→∞ ‖H2n−1(f ) − f ‖∞ = 0,
where H2n−1(f, x) is determined by

H2n−1(f, x
(n)
k ) = f (x

(n)
k ), H ′2n−1(f, x

(n)
k ) = 0, k = 1, 2, . . . , n. (4)

This polynomial is known as the Hermite-Fejér interpolation polynomial.
It is of particular notice that the above Hermite-Fejér interpolation polynomial

converges much slower compared with the corresponding Lagrange interpolation
polynomial at the Chebyshev pointsystem (3) (see Fig. 1).

To get fast convergence, the following Hermite-Fejér interpolation of f (x) at
nodes (1) is considered [6, 7]:

H ∗2n−1(f, x) =
n∑

k=1

f (x
(n)
k )h

(n)
k (x)+

n∑

k=1

f ′(x(n)k )b
(n)
k (x), (5)

where h
(n)
k (x) = v

(n)
k (x)

(
�
(n)
k (x)

)2
, b(n)k (x) = (x− x

(n)
k )

(
�
(n)
k (x)

)2
and v

(n)
k (x) =

1− (x − x
(n)
k )

ω′′n(x
(n)
k )

ω′n(x
(n)
k )

.

Fejér [5] and Grünwald [7] also showed that the convergence of the Hermite-
Fejér interpolation of f (x) also depends on the choice of the nodes. The pointsystem
(1) is called normal if for all n

v
(n)
k (x) ≥ 0, k = 1, 2, . . . , n, x ∈ [−1, 1], (6)

while the pointsystem (1) is called strongly normal if for all n

v
(n)
k (x) ≥ c > 0, k = 1, 2, . . . , n, x ∈ [−1, 1] (7)

for some positive constant c.
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Fejér [5] (also see Szegö [12, pp 339]) showed that for the zeros of Jacobi
polynomial P (α,β)

n (x) of degree n (α > −1, β > −1)

v
(n)
k (x) ≥ min{−α,−β} for − 1 < α ≤ 0,−1 < β ≤ 0, k = 1, 2, . . . , n and x ∈ [−1, 1].

For (strongly) normal pointsystems, Grünwald [7] showed that for every f ∈
C1(−1, 1), limn→∞ ‖H ∗2n−1(f ) − f ‖∞ = 0 if {x(n)k } is strongly normal satisfying

(7) and {f ′(x(n)k )} satisfies

|f ′(x(n)k )| < nc−δ for some given positive number δ, k = 1, 2, . . . , n = 1, 2, . . . ,

while limn→∞ ‖H ∗2n−1(f )− f ‖∞ = 0 in [−1+ ε, 1− ε] for each fixed 0 < ε < 1

if {x(n)k } is normal and {f ′(x(n)k )} is uniformly bounded for n = 1, 2, . . ..1

Moreover, Szabados [11] showed the convergence of the Hermite-Fejér interpo-
lation (5) at the Chebyshev pointsystem (3) satisfies

‖f −H ∗2n−1(f )‖∞ = O(1)‖f − p∗‖C1[−1,1] (8)

where p∗ is the best approximation polynomial of f with degree at most 2n−1 and
‖f − p∗‖C1[−1,1] = max0≤j≤1 ‖f (j) − p∗(j)‖∞.

Hermite-Fejér interpolation has plenty of use in computer geometry aided
geometric design with boundary conditions including derivative information. The
convergence rate under the infinity norm has been extensively studied in [5–
7, 11, 14]. The efficient algorithm on the fast implementation of Hermite-Fejér
interpolation at zeros of Jacobi polynomial can be found in [17].

In this paper, the following convergence rates of Hermite-Fejér interpolation
H ∗2n−1(f, x) at Gauss-Jacobi pointsystems are considered.

• If f is analytic in Eρ with |f (z)| ≤ M , then

‖f (x)−H ∗2n−1(f, x)‖∞ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O

(
4τnM[2nρ2 + (1− 2n)ρ]

(ρ − 1)2ρ2n

)
, γ ≤ 0,

O

(
n2+2γ [2nρ2 + (1− 2n)ρ]

(ρ − 1)2ρ2n

)
, γ > 0

, γ = max{α, β}

(9)

1In fact, Grünwald in [7] considered more general cases with any vector {d(n)
k } instead of

{f ′(x(n)k )}.
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where

τn =

⎧
⎪⎨

⎪⎩

O(n−1.5−min{α,β} logn), if − 1 < min{α, β} ≤ γ ≤ − 1
2

O(n2γ−min{α,β}− 1
2 ), if − 1 < min{α, β} ≤ − 1

2 < γ ≤ 0
O(n2γ ), if − 1

2 < min{α, β} ≤ γ

. (10)

• If f (x) has an absolutely continuous (r−1)st derivative f (r−1) on [−1, 1] for an
integer r ≥ 3, and a rth derivative f (r) of bounded variation Vr = Var(f (r)) <

∞, then

‖f (x)−H ∗2n−1(f, x)‖∞ =

⎧
⎪⎨

⎪⎩

O
(
n−r logn

)
, γ ≤ − 1

2 ,

O
(
n2γ−r+1

)
, γ > − 1

2 ,
(11)

while if f (x) is differentiable and f ′(x) is bounded on [−1, 1], then

‖f (x)−H ∗2n−1(f, x)‖∞ =

⎧
⎪⎨

⎪⎩

O
(
n−1 logn

)
, γ ≤ − 1

2 ,

O
(
n2γ

)
, γ > − 1

2 .

Comparing these results with

f (x)−H2n−1(f, x) =
⎧
⎨

⎩
O
(
n−1 logn

)
, if γ ≤ − 1

2

O(n2γ ), if γ > − 1
2

, (Vértesi [14]),

which is sharp and attainable (see Fig. 2), we see that H ∗2n−1(f, x) converges much
faster than H2n−1(f, x) for analytic functions or functions of higher regularities (see
Fig. 1). Particularly,H2n−1(f, x) diverges at Gauss-Jacobi pointsystems with γ ≥ 0,
whereas, H ∗2n−1(f, x) converges for functions analytic in the Bernstein ellipse or of
finite limited regularity.
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Fig. 2 ‖H2n−1(f, x) − f (x)‖∞ at x = −1 : 0.001 : 1 by using Gauss-Jacobi pointsystem for
f (x) = |x| with different α and β, respectively
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For simplicity, in the following we abbreviate x(n)k as xk , �(n)k (x) as �k(x), h
(n)
k (x)

as hk(x), and b
(n)
k (x) as bk(x). A ∼ B denotes there exist two positive constants c1

and c2 such that c1 ≤ |A|/|B| ≤ c2.

2 Main Results

Suppose f (x) satisfies a Dini-Lipschitz condition on [−1, 1], then it has the
following absolutely and uniformly convergent Chebyshev series expansion

f (x) =
∞∑

j=0

′cjTj (x), cj = 2

π

∫ 1

−1

f (x)Tj (x)√
1− x2

dx, j = 0, 1, . . . . (12)

where the prime denotes summation whose first term is halved, Tj (x) =
cos(j cos−1 x) denotes the Chebyshev polynomial of degree j .

Lemma 1

(i) (Bernstein [2]) If f is analytic with |f (z)| ≤ M in the region bounded by
the ellipse Eρ with foci ±1 and major and minor semiaxis lengths summing to
ρ > 1, then for each j ≥ 0,

|cj | ≤ 2M

ρj
. (13)

(ii) (Trefethen [13]) For an integer r ≥ 1, if f (x) has an absolutely continuous
(r − 1)st derivative f (r−1) on [−1, 1] and a rth derivative f (r) of bounded
variation Vr = Var(f (r)) <∞, then for each j ≥ r + 1,

|cj | ≤ 2Vr

πj (j − 1) · · · (j − r)
. (14)

Suppose −1 < xn < xn−1 < · · · < x1 < 1 in decreasing order are the roots of
P

(α,β)
n (x) (α, β > −1), and {wj }nj=1 are the corresponding weights in the Gauss-

Jacobi quadrature.

Lemma 2 For j = 1, 2, . . . , n, it follows

(x − xj )�j (x)=σn(−1)j

√
(1− x2

j )wj

2(α+β+1)/2

√
n!�(n + α + β + 1)

�(n+ α + 1)�(n+ β + 1)
P (α,β)
n (x),

(15)

where σn = +1 for even n and σn = −1 for odd n.
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Proof Let zn =
∫ 1
−1(1−x)α(1+x)β [P (α,β)

n (x)]2dx and Kn the leading coefficient

of P (α,β)
n (x). From Abramowitz and Stegun [1], we have

zn = 2α+β+1

2n+ α + β + 1
· �(n+ α + 1)�(n+ β + 1)

n!�(n+ α + β + 1)
, Kn = 1

2n
�(2n+ α + β + 1)

n!�(n+ α + β + 1)
.

Furthermore, by Szegö [12, (15.3.1)] (also see Wang et al. [15]), we obtain

(x − xj )�j (x) = 1

ω′n(xj )
ωn(x) = σn(−1)j

√
K2

n2n(1− x2
j )wj

2n(2n+ α + β + 1)zn
ωn(x)

= σn(−1)j

√
(1− x2

j )wj

zn(2n+ α + β + 1)
P (α,β)
n (x),

which implies the desired result (15). %&
Lemma 3 For j = 1, 2, . . . , n, it follows

(1− x2
j )wj = O

(
n−1

)
. (16)

Proof From wj = O

(
2α+β+1π

n

(
sin

θj
2

)2α+1 (
cos

θj
2

)2β+1
)

Szegö [12, (15.3.10)],

we see for xj = cos θj that (1−x2
j )wj = O

(
2α+β+3π

n

(
sin θj

2

)2α+3 (
cos θj

2

)2β+3
)

,

which derives the desired result. %&
Lemma 4 ([10, 16]) For t ∈ [−1, 1], let xm be the root of the Jacobi polynomial
P

(α,β)
n which is closest to t . Then for k = 1, 2, . . . , n, we have

�k(t) =
⎧
⎨

⎩
O
(
|k −m|−1 + |k −m|γ− 1

2

)
, k �= m

O(1) k = m
, γ = max{α, β}. (17)

Lemma 5 (Szegö [12, Theorem 8.1.2]) Let α, β be real but not necessarily greater
than −1 and xk = cos θk . Then for each fixed k, it follows

lim
n→∞ nθk = jk, (18)

where jk is the kth positive zero of Bessel function Jα .

Lemma 6 For k = 1, 2, . . . , n, it follows

vk(x) = 1− (x − xk)
ω′′n(xk)
ω′n(xk)

= O(n2). (19)
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Proof Note that P (α,β)
n (x) satisfies the second order linear homogeneous Sturm-

Liouville differential equation [12, (4.2.1)]

(1− x2)y ′′ + (β − α − (α + β + 2)x)y ′ + n(n+ α + β + 1)y = 0.

By ωn(x) = P
(α,β)
n (x)
Kn

, we get

ω′′n(xj )
ω′n(xj )

= −β − α − (α + β + 2)xj
1− x2

j

([12, (14.5.1)]). (20)

In addition, by Lemma 5 with xj = cos θj , we see that θ1 ∼ 1
n

. Similarly, by

P
(α,β)
n (−x) = (−1)nP (β,α)

n (x) we have θn ∼ 1
n

. These together yield

1

1− x2
1

= O(n2),
1

1− x2
n

= O(n2),
1

1− x2
j

≤ max

(
1

1− x2
1

,
1

1− x2
n

)
= O(n2)

and then by (20) it deduces the desired result. %&
Theorem 1 Suppose {xj }nj=1 are the roots of P (α,β)

n (x) with α, β > −1, then the
Hermite-Fejér interpolation (5) for f analytic in Eρ with |f (z)| ≤ M at {xj }nj=1
has the convergence rate (9).

Proof Since the Chebyshev series expansion of f (x) is uniformly convergent under
the assumptions, and the error of Hermite-Fejér interpolation (5) on Chebyshev
polynomials satisfies |E(Tj , x)| = |Tj(x) − H ∗2n−1(Tj , x)| = 0 for j =
0, 1, . . . , 2n− 1, then it yields

|E(f, x)| = |f (x)−H ∗2n−1(f, x)| = |
∞∑

j=0

cjE(Tj , x)| ≤
∞∑

j=2n

|cj ||E(Tj , x)|.
(21)

Furthermore, |E(Tj , x)| = |Tj (x)−∑n
i=1 Tj (xi)hi(x)−

∑n
i=1 T

′
j (xi)bi(x)|. In the

following, we will focus on estimates of |E(Tj , x)| for j ≥ 2n.
In the case γ ≤ 0: Notice that the pointsystem is normal which implies hi(x) ≥ 0

for all i = 1, 2, . . . , n and for all x ∈ [−1, 1],

1 ≡
n∑

i=1

hi(x) =
n∑

i=1

vi(x)�
2
i (x).

Then we have

|
n∑

i=1

Tj (xi)hi(x)| ≤
n∑

i=1

hi(x) = 1, j = 0, 1, . . . . (22)
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Additionally, by Lemma 2, it obtains for j = 2n, 2n+ 1, . . . that

|∑n
i=1 T

′
j
(xi)bi (x)|

= j |∑n
i=1 Uj−1(xi)(x − xi )�

2
i (x)|

= j

2(α+β+1)/2

√
n!�(n+α+β+1)

�(n+α+1)�(n+β+1) |P
(α,β)
n (x)

∑n
i=1 Uj−1(xi )

√
(1− x2

i )wi�i (x)|
= j

2(α+β+1)/2

√
n!�(n+α+β+1)

�(n+α+1)�(n+β+1) |P
(α,β)
n (x)

∑n
i=1 sin((j − 1) arccos(xi))

√
wi�i(x)|

= jO

(
|P (α,β)

n (x)|
√
‖{wi}ni=1‖∞*n

)

(Uj−1 is the second kind of Chebyshev polynomial of degree j − 1) since√
n!�(n+α+β+1)

�(n+α+1)�(n+β+1) is uniformly bounded in n for α, β > −1 due to

(n+ 1)!�(n+ α + β + 2)

�(n+ α + 2)�(n+ β + 2)
=
(

1− αβ

(n+ 1)2 + (α + β)(n+ 1)+ αβ

)

× n!�(n + α + β + 1)

�(n+ α + 1)�(n+ β + 1)
,

which implies n!�(n+α+β+1)
�(n+α+1)�(n+β+1) is uniformly bounded in n and then√

n!�(n+α+β+1)
�(n+α+1)�(n+β+1) is uniformly bounded. Here *n = maxx∈[−1,1]

∑n
i=1 |�i(x)| is

the Lebesgue constant. Then from

P (α,β)
n (x) =

{
O(n− 1

2 ), if max{α, β} ≤ − 1
2

O(nmax{α,β}), if max{α, β} > − 1
2

,

wi =
{
O(n−2−2 min{α,β}), if min{α, β} ≤ − 1

2
O(n−1), if min{α, β} > − 1

2

(see Szegö [12, pp 168, 354]) and

*n =
{
O(logn), if max{α, β} ≤ − 1

2

O(nmax{α,β}+ 1
2 ), if max{α, β} > − 1

2

([12, pp 338]),

we have

|
n∑

i=1

T ′j (xi)bi(x)| = jτn. (23)
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Then by (22) and (23), we find |E(Tj , x)| ≤ 2 + jτn < 2jτn for j ≥ 2n, and
consequently

|E(f, x)| = |f (x)−H ∗2n−1(f, x)| ≤
∞∑

j=2n

|cj ||E(Tj , x)| = 2τn

∞∑

j=2n

j |cj |,

which, directly following [18], leads to the desired result.
In the case γ > 0: From |E(Tj , x)| = |Tj(x) − ∑n

i=1 Tj (xi)hi(x) −∑n
i=1 T

′
j (xi)bi(x)|, by Lemmas 3 and 6 we obtain

n∑

i=1

|vi(x)|�2
i (x) = O

(
n2

∫ n

1
t2γ−1dt

)
= O(n2+2γ ),

and

Tj (x)−
n∑

i=1

Tj (xi)hi(x) = Tj (x)−
n∑

i=1

Tj (xi)vi(x)�
2
i (x) = O

(
n2+2γ

)
.

These together with

|∑n
i=1 T

′
j (xi)bi(x)|

= j

2(α+β+1)/2

√
n!�(n+α+β+1)

�(n+α+1)�(n+β+1) |P (α,β)
n (x)

∑n
i=1 sin((j − 1) arccos(xi))

√
wi�i(x)|

= jτn

and then |E(Tj , x)| = O
(
j2+2γ

)
for j ≥ 2n, similar to the above proof in the case

of γ ≤ 0, implies the desired result. %&
From the definition of τn, we see that when α = β = − 1

2 the convergence order
on n is the lowest. In addition, if f is of limited regularity, we have

Lemma 7 (Vértesi [14]) Suppose {xj }nj=1 are the roots of P
(α,β)
n (x), for every

continuous function f (x) we have

|H2n−1(f, x)− f (x)| = O(1)
n∑

j=1

⎡

⎣w
(
f ; j
√

1− x2

n

)
+w

(
f ; j

2|x|
n2

)⎤

⎦ j2γ̄−1,

(24)

where w(f ; t) = w(t) is the modulus of continuity of f (x), and γ̄ =
max

(
α, β,− 1

2

)
.

Theorem 2 Suppose {xj }nj=1 are the roots of P (α,β)
n (x) (α, β > −1), and f (x) has

an absolutely continuous (r − 1)st derivative f (r−1) on [−1, 1] for some r ≥ 3,
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and a rth derivative f (r) of bounded variation Vr < ∞, then the Hermite-Fejér
interpolation (5) at {xj }nj=1 has the convergence rate (11).

Proof Consider the special functional L(g) = En(g, x), where En(g, x) is defined
for ∀g ∈ C1([−1, 1]) by

En(g, x) = g(x)−
n∑

j=1

g(xj )vj (x)�
2
j (x)−

n∑

j=1

g′(xj )(x − xj )�
2
j (x). (25)

By the Peano kernel theorem for n ≥ r (see Peano [9] or Kowalewski [8]), En(f, x)

can be represented as

En(f, x) =
∫ 1

−1
f (r)(t)Kr (t)dt (26)

with Kr(t) = 1
(r−1)!L

(
(x − t)r−1+

)
for r = 3, 4, · · · , that is

Kr(t) = 1

(r − 1)!(x − t)r−1+ − 1

(r − 1)!
n∑

j=1

(xj − t)r−1+ vj (x)�
2
j (x)

− 1

(r − 1)!
n∑

j=1

(xj − t)r−2+ (x − xj )�
2
j (x),

where

(x − t)k−1+ =
{
(x − t)k−1, x ≥ t;
0, x < t.

(k ≥ 2), (x − t)0+ =
{

1, x ≥ t;
0, x < t.

(k = 1).

Moreover, noting that

1

(k − 2)!(x − u)k−2+ =
∫ 1

u

1

(k − 3)!(x − t)k−3+ (t)dt, k = 3, 4, · · · ,

we get the following identity

Ks−1(u) =
∫ 1

u

Ks−2(t)dt, s = 4, 5, · · · ,

where K2(t) is defined by

K2(t) = (x − t)1+ −
n∑

j=1

(xj − t)1+vj (x)�2
j (x)−

n∑

j=1

(xj − t)0+(x − xj )�
2
j (x).
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In addition, it can be easily verified that Ks(−1) = Ks(1) = 0 for s = 2, 3, . . ..
Since f (r) is of bounded variation, directly applying the similar skills of Theorem

2 and Lemma 4 in [16], we get

‖En(f, x)‖∞ ≤ Vr‖Kr+1‖∞, (27)

and

‖Ks+1‖∞ ≤ π

2n− s
sup
−1≤t≤1

|Ks(t)|, for s = 2, 3, · · · , (28)

respectively. Then from (27) and (28), we can obtain that

‖En(f, x)‖∞ ≤ πr−1Vr

(2n− 2)(2n− 3) · · · (2n− r))
‖K2‖∞. (29)

In addition, by Lemma 7, we have

‖(x − t)1+ −
n∑

j=1

(xj − t)1+vj (x)�2
j (x)‖∞ =

⎧
⎪⎨

⎪⎩

O
(

logn
n

)
, γ ≤ − 1

2

O
(
n2γ

)
, γ > − 1

2 ,
(30)

while by Lemmas 2–3, we get

|
n∑

j=1

(xj − t)0+(x − xj )�
2
j (x)| ≤

n∑

j=1

|(x − xj )�
2
j (x)| =

⎧
⎪⎨

⎪⎩

O
(

logn
n

)
, γ ≤ − 1

2

O
(
n2γ

)
, γ > − 1

2 .

(31)

Together (30) and (31), we can obtain the desired results by using

K2(t) =

⎧
⎪⎨

⎪⎩

O
(

logn
n

)
, γ ≤ − 1

2

O
(
n2γ

)
, γ > − 1

2 .
.

Finally, We use a function of analytic f (x) = 1
1+25x2 and a function of limited

regularity f (x) = |x|5 to show that the convergence rate of ‖f (x)−H ∗2n−1(f, x)‖∞
is dependent on α and β in Fig. 3.
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Fig. 3 ‖H ∗2n−1(f, x) − f (x)‖∞ at x = −1 : 0.001 : 1 by using Gauss-Jacobi pointsystem for

f (x) = 1
1+25x2 and f (x) = |x|5 with different α and β, respectively
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Fifth-Order Finite-Volume WENO
on Cylindrical Grids

Mohammad Afzal Shadab, Xing Ji, and Kun Xu

1 Introduction

The conventional WENO scheme is specifically designed for the reconstruction in
Cartesian coordinates on uniform grids [1]. The employment of Cartesian-based
reconstruction scheme on a cylindrical grid suffers from a number of drawbacks
[2, 3], e.g., in the original PPM paper, reconstruction was performed in volume
coordinates (than the linear ones) so that algorithm for a Cartesian mesh can be used
on a curvilinear mesh. However, the resulting interface states became first-order
accurate even for smooth flows [2]. Another example can be the volume average
assignment to the geometrical cell center of finite-volume than the centroid [2]. A
breakthrough in the field of high order reconstruction in cylindrical coordinates is
the application of the Vandermonde-like linear systems of equations with spatially
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varying coefficients [2]. It is reintroduced in the present work to build a basis for the
derivation of the high order WENO schemes.

The motivation for the present work is to develop a fifth-order finite-volume
WENO reconstruction scheme in the efficient dimension-by-dimension framework,
specifically aimed at regularly-spaced and irregularly-spaced grids in cylindrical
coordinates.

2 Finite-Volume Discretization in Curvilinear Coordinates

2.1 Evaluation of the Linear Weights

A non-uniform grid spacing with zone width Δξi = ξi+ 1
2
− ξi− 1

2
is considered

having ξ ∈ (x1, x2, x3) as the coordinate along the reconstruction direction and
ξ
i+ 1

2
denoting the location of the cell interface between zones i and i + 1. Let Q̄i

be the cell average of conserved quantity Q inside zone i at some given time, which
can be expressed in form of Eq. (1).

Q̄i = 1

ΔVi

∫ ξ
i+ 1

2

ξ
i− 1

2

Qi(ξ)
∂V

∂ξ
dξ & ΔVi =

∫ ξ
i+ 1

2

ξ
i− 1

2

∂V

∂ξ
dξ (1)

where the local cell volume ΔVi of ith cell in the direction of reconstruction given
in Eq. (1) and ∂V

∂ξ
is the one-dimensional Jacobian. Now, our aim is to find a pth

order accurate approximation to the actual solution by constructing a (p − 1)th
order polynomial distribution, as given in Eq. (2).

Qi(ξ) = ai,0 + ai,1(ξ − ξci )+ ai,2(ξ − ξci )
2 + . . .+ ai,p−1(ξ − ξci )

p−1 (2)

where ai,n corresponds to a vector of the coefficients which needs to be determined
and ξci can be taken as the cell centroid. However, the final values at the interface are
independent of the particular choice of ξci and one may as well set ξci = 0 [2]. Unlike
the cell center, the centroid is not equidistant from the cell interfaces in the case
of cylindrical-radial coordinates, and the cell averaged values are assigned at the
centroid [2]. Further, the method has to be locally conservative, i.e., the polynomial
Qi(ξ) must fit the neighboring cell averages, satisfying Eq. (3).

∫ ξ
i+s+ 1

2

ξ
i+s− 1

2

Qi(ξ)
∂V

∂ξ
dξ = ΔVi+sQ̄i+s for − iL ≤ s ≤ iR (3)

where the stencil includes iL cells to the left and iR cells to the right of the ith zone
such that iL+ iR+1 = p. Implementing Eqs. (1)–(2) in Eq. (3) along with a simple
mathematical manipulation leads to Eq. (4), which is the fundamental equation for
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reconstruction in cylindrical coordinates. For the detailed derivation, kindly refer to
[3].

⎛

⎜⎜⎝

βi−iL,0 . . . βi−iL,p−1
...

. . .
...

βi+iR,0 . . . βi+iR,p−1

⎞

⎟⎟⎠

T ⎛

⎜⎜⎝

w±i,−iL
...

w±i,iR

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1
...

(ξi± 1
2
− ξci )

p−1

⎞

⎟⎟⎠ (4)

where ‘±’ represents the positive and negative weights i.e. weights for
reconstructing right (+) and left (−) interface values respectively. Also, the grid
dependent linear weights (w±i,s) satisfy the normalization condition [2].

2.2 Optimal Weights

For the case of fifth-order WENO interpolation, the third order interpolated
variables are optimally weighed in order to achieve fifth-order accurate interpolated
values as given in Eq. (5) for the case of p = 3 [1].

q
(2p−1)±
i,0 =

p−1∑

l=0

C±i,lq
p±
i,l (5)

where C±i,l is the optimal weight for the positive/negative cases on the ith finite-
volume. So, Eq. (4) is used again to evaluate the weights for the fifth-order (2p−1 =
5) interpolation (iL = 2, iR = 2).

Linear and optimal weights are independent of the mesh size for standard
regularly-spaced grid cases. They can be evaluated and stored (at a nominal cost)
independently before the actual computation. Also, they conform to the original
WENO-JS [1] for the limiting case (R → ∞). The weights required for source
term and flux integration in one or more dimensions are given in [3].

2.3 Smoothness Indicators and the Nonlinear Weights

The mathematical definition of the smoothness indicator is given in Eq. (6) [1].

ISi,l =
p−1∑

m=1

∫ ξ
j+ 1

2

ξ
j− 1

2

(
dm

dξm
Qi,l (ξ)

)2

Δξ2m−1
i dξ, l = 0, . . . , p − 1 (6)

To evaluate the value of ISi,l , a third order polynomial interpolation on ith cell is
required using positive and negative reconstructed values by stencil Sl , as given in
Eq. (2). Finally, evaluating the values of the coefficient a’s and substituting their
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values in smoothness indicator formula (6) yields the grid-independent fundamental
relation (7). The nonlinear weight (ω±i,l ) for the WENO-C interpolation is defined in

Eq. (8) [1], where ε is chosen to be 10−6 [1, 3].

ISi,l = 4(39Q̄2
i − 39Q̄i(q

−
i,l + q+i,l)+ 10((q−i,l)

2 + (q+i,l)
2)+ 19q−i,lq

+
i,l) (7)

ω±i,l =
α±i,l

∑p−1
l=0 α±i,l

& α±i,l =
C±i,l

(ε + ISi,l )2
l = 0, 1, 2 (8)

The final interpolated interface values are evaluated from Eq. (9).

q
(2p−1)±
i =

p−1∑

l=0

ω
p±
i,l q

p±
i,l (9)

3 Stability Analysis of WENO-C for Hyperbolic
Conservation Laws

For WENO-C to be practically useful, it is crucial that it enables a stable discretiza-
tion for hyperbolic conservation laws when coupled with a proper time-integration
scheme. In this section, we analyze WENO-C scheme for model problems involving
smooth flow in 1D cylindrical-radial coordinates, based on a modified von Neumann
stability analysis [4]. We consider scalar advection equation (10) in 1D cylindrical-
radial coordinates.

∂Q

∂t
+ 1

(∂V/∂ξ)

∂

∂ξ

((
∂V

∂ξ

)
Qv

)
= 0 ξ ∈ [0,∞], t > 0 (10)

where Q is the conserved variable, (∂V/∂ξ) = ξ is the one-dimensional Jacobian in
cylindrical-radial coordinates. Boundary conditions are not considered in the present
approach to reduce the complexity of the analysis. Assuming a uniform grid with
ξi = iΔξ and ξi+1 − ξi = Δξ∀i and (i ± 1/2) denotes the boundaries of the finite-
volume i. In the finite-volume framework, Eq. (10) transforms into the conservative
scheme given in Eq. (11).

∂Q̄i

∂t
= − 1

ΔVi

(F̂i+1/2 − F̂i−1/2) (11)

where numerical flux F̂i+1/2 is the Lax-Friedrich flux, and Q̄i and Vi are given in
Eq. (1). For this particular problem, let v = 1 in Eq. (10). Therefore, only the values
on the left side of the interface are considered. Based on the von Neumann stability
analysis, the semi-discrete solution can be expressed as a discrete Fourier series. By
the superposition principle, only one term in the series can be used for analysis, as
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illustrated in Eq. (12).

Q̄i(t) = Q̂k(t)e
jiθk , where j = √−1 (12)

By substituting Eq. (12) in Eq. (11), we can separate the spatial operator L, as
given in Eq. (13).

L = − (F̂i+1/2 − F̂i−1/2)

ΔVi

= −[Q(∂V/∂ξ)]−i+1/2 − [Q(∂V/∂ξ)]−i−1/2

ΔVi

= −z(θk)Q̄i

Δξ

(13)

where the complex function z(θk) is the Fourier symbol. By substituting the values
of Q−i−1/2 and Q−i+1/2 using fifth-order positive weights of cells (i − 1) and i

respectively for a smooth solution, the value of z(θk) for WENO-C can be evaluated
using Eq. (14).

z(θk) = m+ 1

i(m+1) − (i − 1)(m+1)

+2∑

l=−2

[
w+i,l i

mejlθk −w+(i−1),l(i − 1)mej (l−1)θk

]

(14)

where m = 1 for cylindrical-radial coordinates. Using the same approach as given in
[4], we can plot the spatial spectrum {S : −z(θk) for θk ∈ [0, 2π]} and the stability
domain St for TVD-RK order 3. The maximum stable CFL number of this scheme
can be computed by finding the largest rescaling parameter σ̃ , so that the rescaled
spectrum still lies in the stability domain.

It can be observed from Fig. 1 that the spatial spectrums S of WENO-C differs
initially with the index numbers i due to the geometrical variation of the finite-
volume. However, the spectrums are the same for high index numbers (i), similar
to WENO-JS, as the fifth-order interpolation weights converge. Some regions
(i = 1, 2) require boundary conditions and thus, are not considered in the present
analysis. The values of CFL number for cylindrical-radial coordinates lie in between
1.45 and 1.52. As a final remark, it can be concluded that the proposed scheme is
A-stable with third or higher order of RK method with an appropriate value of CFL
number for this case.

4 Numerical Tests

In this section, several tests on Euler equations are performed to analyze the
performance of the WENO-C reconstruction scheme. Tests are performed on a
gamma law gas (γ = 1.4) in cylindrical coordinates to investigate the essentially
non-oscillatory property of WENO-C for discontinuous flows and the convex
combination property for smooth flows. For first-order and second-order (MUSCL)
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spatial reconstructions, Euler time marching and Maccormack (predictor-corrector)
schemes are respectively employed. For WENO-C, time marching is done with
TVD-RK order 3 for 1D cases and RK order 5 for the 2D case.

4.1 Acoustic Wave Propagation

A smooth problem involving a nonlinear system of 1D gas dynamical equations is
solved to test fifth-order accuracy of the spatial discretization scheme [3]. The Euler
equations in cylindrical-radial coordinates can be written in the form of Eq. (15).

∂

∂t

⎛

⎜⎝
ρ

ρu

E

⎞

⎟⎠+ 1

R

∂

∂R

⎛

⎜⎝
ρuR

(ρu2 + p)R

(E + p)uR

⎞

⎟⎠ =
⎛

⎜⎝
0

p/R

0

⎞

⎟⎠ (15)

where ρ is the mass density, u is the radial velocity, p is the pressure, and E is the
total energy. Equation (16) serves as the adiabatic equation of state.

E = p

γ − 1
+ 1

2
ρu2 (16)

The initial conditions are provided in Eq. (17) with the perturbation given in
Eq. (18). The interface flux is evaluated with Rusanov scheme [3].

ρ(R, 0) = 1+ εf (R), u(R, 0) = 0, p(R, 0) = 1/γ + εf (R) (17)

f (R) =
⎧
⎨

⎩

sin4(5πR)
R

if 0.4 ≤ R ≤ 0.6

0 otherwise
(18)

A sufficiently small perturbation with ε = 10−4 yields a smooth solution. The
interface flux is evaluated using Rusanov scheme with a CFL number of 0.3.

The initial perturbation splits into two acoustic waves traveling in opposite
directions. The final time (t = 0.3) is set such that the waves remain in the
domain and the problem is free from the boundary effects. The computational
domain of unity length is uniformly divided into N different zones i.e. N =
16, 32, 64, 128, 256. Although an exact solution known up to O(ε2) is known, the
solution on the finest mesh N = 1024 is taken as the reference. Figure 2 illustrate
the spatial variation of density at t = 0.3 inside the domain. From Table 1, it clear
that the scheme approaches the desired fifth-order accuracy.
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Fig. 2 Spatial profiles of density at t = 0.3 for acoustic wave propagation test in cylindrical-radial
coordinates

Table 1 L1 norm errors and
order of convergence table for
acoustic wave propagation
test

N ε(ρ) OL1

16 1.01E−05 –

32 4.91E−06 1.036

64 6.74E−07 2.865

128 3.24E−08 4.380

256 1.27E−09 4.670

4.2 Sedov Explosion Test

Sedov explosion test is performed to investigate code’s ability to deal with strong
shocks and non-planar symmetry [3]. The problem involves a self-similar evolution
of a cylindrical blastwave in a uniform grid (N = 100) from a localized
initial pressure perturbation (delta-function) in an otherwise homogeneous medium.
Governing equations are given in Eq. (15) and the fluxes are evaluated with Rusanov
scheme and GKS [5]. For the code initialization, dimensionless energy ε = 1
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is deposited into a small region of radius δ = 3ΔR. Inside this region, the
dimensionless pressure P

′
0 is given by Eq. (19).

P
′
0 =

3(γ − 1)ε

(m+ 2)πδ(m+1)
(19)

where m = 1 for cylindrical geometry. Reflecting boundary condition is employed
at the center (R = 0), whereas boundary condition at R = 1 is not required for this
problem. The initial velocity and density inside the domain are 0 and 1 respectively
and the initial pressure everywhere except the kernel is 10−5. As the source term is
very stiff, the CFL number is set to be 0.1. The final time is t = 0.05.

Figure 3 shows that the peak for WENO-C is higher for density and is closest to
the analytical value, similar to fifth-order finite difference version [3], but MUSCL
has higher offset peaks for pressure and velocity. GKS performs slightly better than
RS, as the peaks are slightly higher for all the cases.
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Fig. 3 Variation of density, velocity, and pressure with the radius for Sedov explosion test in
cylindrical-radial coordinates. Domain is restricted to R = 0.4 for the sake of clarity
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4.3 Modified 2D Riemann Problem in (R − z) Coordinates

The final test for the present scheme involves a modified 2D Riemann problem
in cylindrical (R − z) coordinates, as illustrated in Fig. 4 (top left). The problem
involves 2 contact discontinuities and 2 shocks as the initial condition, resulting
in the formation of a self-similar structure propagating towards the low density-
low pressure region (region 3). The governing equations in cylindrical (R − z)
coordinates are provided in Eq. (20).

The computations are performed until t = 0.2 with a CFL number of 0.5 on a
domain (R, z)=[0,1]×[0,1] divided into 500×500 zones. The boundary conditions
are symmetry at the center (except for the antisymmetric radial velocity) and
outflow elsewhere. HLL Riemann solver is used for flux evaluations. Rich small-
scale structures in the contact-contact region (region 1) can be observed from
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Fig. 4 Modified 2D Riemann problem in cylindrical (r − z) coordinates: schematic (top left),
density contours at t = 0.2 with first-order (top right), second-order MUSCL (bottom left), and
WENO-C (bottom right) reconstruction schemes
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Fig. 4 for WENO-C reconstruction, when compared with first and second-order
MUSCL reconstruction. Structures are highly smeared for the case of first-order
reconstruction.

∂

∂t

⎛
⎜⎜⎜⎝

ρ

ρvR

ρvz

ρe

⎞
⎟⎟⎟⎠+

1

R

∂

∂R

⎛
⎜⎜⎜⎝

ρvRR

(ρv2
R + p)R

ρvRvzR

(ρe + p)vRR

⎞
⎟⎟⎟⎠+

∂

∂z

⎛
⎜⎜⎜⎝

ρvz

ρvRvz

ρv2
z + p

(ρe + p)vz

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
p/R

0
0

⎞
⎟⎟⎟⎠ (20)

5 Conclusions

The fifth-order finite-volume WENO-C reconstruction scheme is proposed for
structured grids in cylindrical coordinates to achieve high order spatial accuracy
along with ENO transition. A grid independent smoothness indicator is derived
for this scheme. For uniform grids, the analytical values in cylindrical-radial
coordinates for the limiting case (R → ∞) conform to WENO-JS. Linear stability
analysis of the present scheme is performed using a scalar advection equation
in radial coordinates. Several tests involving smooth and discontinuous flows are
performed, which testify for the fifth-order accuracy and ENO property of the
scheme.
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