SPARSITY METHODS FOR
SYSTEMS AND CONTROL

MASAAKI NAGAHARA
The University of Kitakyushu, Japan

now

the essence of knowledge

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510
www.nowpublishers.com

sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

ISBN: 978-1-68083-724-7
E-ISBN: 978-1-68083-725-4
DOI: 10.1561/9781680837254

Copyright © 2020 Masaaki Nagahara

Suggested citation: Masaaki Nagahara. (2020). Sparsity Methods for Systems and Control. Boston—Delft:
Now Publishers

The work will be available online open access and governed by the Creative Commons
“Attribution-Non Commercial” License (CC BY-NC), according to https://creativecommons.org/

licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Table of Contents

Preface vii
Notation ix
Chapter 1 Introduction 1
1.1 Occam’s Razor. e 1

1.2 Group Testingouuinuiii i 3

1.3 Optimization with £ ENOMm . e 5
1.3.1 Signal Reconstructionc.ovuenentneniniiiiniienenenns 5

1.3.2 GeOphySiCs .. v ittt 6

1.3.3 Neural Networksouviiiiiii it 7

1.3.4 STATISTICS + v vt v e et et et e et e e e e et et e e aieeaaens 7

1.3.5 Signal Processingooiiiiiiiiiiiiiiiiiiii 7

1.4 Sparsity Methods for Systems and Control...................... 8

1.4.1 Minimum Fuel Control and L' Optimization.................. 8

1.4.2 Maximum Hands-off Control...................ocoiiiui.s.. 8

1.4.3 Discrete-valued Control..........ccooiiiiiiii ... 9

1.4.4 Robust Control and Rank Minimization 9

1.4.5 Resource-aware Control for Networked Control Systems 10

Part I Sparse Representation for Vectors

Chapter 2 What is Sparsity? 14
2.1 Redundant Dictionary..........cvuevuiniinniniineineenennnn. 15
2.2 Underdetermined Systems.c.cooiiiiiiiiiininna.. 18
23 The CONOM. ..\ vtt e e 20

2.4
2.5
2.6

Chapter
3.1

3.2
3.3
3.4

Chapter

4.1
4.2

4.3

4.4

4.5

4.6
Chapter

5.1
5.2

5.3

Table of Contents

Exhaustive Search i i 23
Sparse Representation for Functionsooooia.e. 26
Further Readings. 29
3 Curve Fitting and Sparse Optimization 31
Least Squares and Regularization..........................o... 31
3.1.1 Underdetermined System and Minimum ¢2-Norm Solution 31
3.1.2 Regression and Least Squares..........oovuvuenvnenenenenn... 33
3.1.3 Regularization o i 38
3.1.4 Weighted Ridge Regression...............ccooiiiiia.., 42
3.1.5 Summary of £2-Norm Optimizationoevee... 44
Sparse Polynomial and £'-norm Optimization 44
Numerical Optimization by CVX ...t 48
Further Readings..........cooouiiiiiii i 52
4 Algorithms for Convex Optimization 54
Basics of Convex Optimizationooviieineenenennen... 55
Proximal Operatoro.viiiiiiiiii i, 60
421 Definition .. veve s e 61
4.2.2 Proximal Algorithm..........o 62
4.2.3 Proximal Operator for Quadratic Function 63
4.2.4 Proximal Operator for Indicator Functions..................... 65
4.2.5 Proximal Operator for €1 Normcooviiiiiiiiiiinnnn. 66
Proximal Splitting Methods for £! Optimization 69
4.3.1 Douglas-Rachford Splitting Algorithm 70
4.3.2 Dpykstra-like Splitting Algorithm oL 72
Proximal Gradient Method for ¢! Regularization................ 73
44.1 Algorithm . ..o e 73
4.42 Convergence Analysis..........coooiiiiiiiiiiiiiiiiina... 75
Generalized LASSO and ADMMooiiiiiiiiiiiiien.. 78
4.5.1 Algorithmo e 78
4.5.2 Total Variation Denoisingooooiiiiiiiiiiiiiat, 81
Further Reading 83
5 Greedy Algorithms 86
€0 Optimizationiiiiitiiiiiiee e 86
Orthogonal Matching Pursuitoocoviii i, 90
5.2.1 Matching Pursuit (MP) ... 90
5.2.2 Orthogonal Matching Pursuit (OMP).................... ... 94
Thresholding Algorithm i, 97

5.3.1 Iterative Hard-thresholding Algorithm (IHT) 97

Table of Contents

5.4
5.5

Chapter
6.1

6.2

6.3

Part I1

Chapter
7.1

7.2
7.3
7.4

Chapter

8.1
8.2
8.3

8.4
8.5
8.6

8.7
8.8

5.3.2 Iterative s-sparse Algorithm o
5.3.3 Compressive Sampling Matching Pursuit (CoSaMP)
Numerical Example
Further Reading

6 Applications of Sparse Representation

Sparse Representations for Splines...............c.ooooiiia..
6.1.1 Solution by Projection Theorem................coooiiioat,
6.1.2 Sparse Representation...........ouuiiuiiiniiiiiiniinennn
Discrete-time Hands-off Control..............................
6.2.1 Feasible Control..........ouiiiiiii i
6.2.2 Maximum Hands-off Control......................ooiui.n,
6.2.3 Model Predictive Control........ccovviiiiiiiiiiiiieann...
Further Reading

Sparsity Methods in Optimal Control
7 Dynamical Systems and Optimal Control

Dynamical Systemoviiii i
7.1.1 State Equation..........o
7.1.2 Controllability and Controllable Set
7.1.3 Feasible Control and Minimum-time Control..................
7.1.4 Optimal Control and Pontryagin Minimum Principle...........
Minimum-time Controlottt
Minimum-time Control of Rocketccouu...

Further Reading o i i
8 Maximum Hands-off Control

L% Norm and SParsityvvvveeeeteeeeaeeaeaeeaannnnnnn.
Practical Benefits of Sparsity in Controlt
Problem Formulation of Maximum Hands-off

Control. . ..o
L'-optimal Controlovvieeieeetiiniiiiiiiiinnnns,
Equivalence Between L? and L' Optimal Controls..............
Existence of L%-Optimal Controlccccoeeeeen....
8.6.1 LP-Optimal Control................oiiiiiiiiiii,
8.6.2 Existence Theoremsoovviiiiiiiiiiiiiiiiiiiann..
Maximum Hands-off Control of Rocket
Further Reading o i

vi Table of Contents

Chapter 9 Numerical Optimization by Time Discretization 165
9.1 Time Discretizationccoueeintiiiiiiinnennnennn. 166

9.2 Controllability of Discretized Systems.....................o... 168

9.3 Reduction to Finite-dimensional Optimization.................. 169

9.4 Fast Algorithm by ADMM ..., 170

9.5 MATLAB Programs..........oovuiiuiiuiiiiiiiniiiiinnnnenn.. 175

9.6 FurtherReadingoooiiiiiiiiiiiii it 177
Chapter 10 Advanced Topics 178
10.1 Smooth Hands-off Control by Mixed L'/L? Optimization....... 178

10.2 Discrete-valued Control.o 181
10.2.1 Sum-of-Absolute-Values (SOAV) Optimization................. 182

10.2.2 Discreteness of SOAV-optimal Control.................oou... 184

10.3 Time-Optimal Hands-off Control................... ..o, 189

10.4 Further Readingo 192
References.......oooviiiiiiiiiiiiiiiiiiiii i 193

Preface

Scientists and engineers love simplicity. We prefer simple laws of nature like
Newton’s laws of motion to a complicated law with tens of equations, simple word
and phrases to explain the nature of life to books with hundreds of pages, and a
simple room just with a vessel with flowers to a colorful room full of furniture.
Simple is best.

But simple is not easy. It is rather very difficult. Simplification is probably the
most difficult problem of design. In this book, we will see how to solve this type
of problems in engineering. The idea is to introduce the sparsity. It makes the hard
problem solvable.

The method of sparsity becomes more and more popular in engineering, in
particular, in signal processing, machine learning, statistics, etc. It is known as
compressed sensing, compressive sampling, sparse representation, or sparse mod-
eling. More recently, this method has been applied to systems and control to
design resource-aware control systems. This book gives a comprehensive guide
to sparsity methods for systems and control, from standard sparsity methods in
finite-dimensional vector spaces (Part I) to optimal control methods in infinite-
dimensional function spaces (Part II).

The primary objective of this book is to give how to use sparsity methods for
several engineering problems. I omitted theoretical aspects of the sparsity meth-
ods, such as characterization of sparse solutions based on random matrix theory
and convergence of optimization algorithms. If you are interested in those theoret-
ical aspects, please refer to the references listed in the section titled “Further read-
ing” at the end of each chapter. Instead, I provide MATLAB programs by which
you can try sparsity methods by yourself. You will obtain deep understanding of

vii

viii Preface

sparsity methods by running these MATLAB programs. MATLAB programs and
other information on this book are found at

https://nagahara-masaaki.github.io/spm_en

The book is an English translation from the author’s book Sparse Modeling pub-
lished in 2017 by Corona Publishing, Japan. Also, the contents of this book have
been updated and added based on two university courses: Sparsity Methods for Sys-
tems and Control (SC637) taught at Indian Institute of Technology (IIT) Bombay
in 2018 during my sabbatical, and Sparse Modeling (M153F31) at The University
of Kitakyushu, Japan during 2018-2020. These courses are for graduate students,
but I believe undergraduate students can read with basic knowledge of linear algebra
and elementary calculus. Also, this book (especially Part IT) appeals to professional
researchers and engineers who are interested in applying sparsity methods to systems
and control. The courses start from finite-dimensional optimization (i.e. Part I) to
optimal control (Part II), but if you want to quickly know about the optimal con-
trol, you can omit Part I and directly start from Chapter 7 (Part II). Chapter 1 is an
introductory chapter, where I mainly mention the history of sparsity methods in
engineering. You can omit (or read later) Chapter 1 since this chapter is completely
independent of the other chapters.

Acknowledgment

I am grateful to Prof. Debasish Chatterjee for giving me the opportunity to teach a
course on this topic in IIT Bombay. This triggered me to write this book. I would
like to thank students who took my courses in II'T Bombay for finding a lot of typos
and mistakes not only in English grammar but also in equations and mathematical
proofs.

Masaaki Nagahara
Kitakyushu, Japan

https://nagahara-masaaki.github.io/spm_en

Notation

A finite-dimensional vector is represented in a bold face, e.g. , when the size of
the vector is greater than 2. For one-dimensional vectors, we do not use a bold face
and simply write like x, regarding as a scalar.

We denote by R” the set of n-dimensional real column vectors, and by R™*"
the set of m x n real matrices. The transpose of a vector & and a matrix A are
respectively denoted by " or AT. The i-th element of a vector @ and the (i, j)-th
element of a matrix A are respectively denoted by (x); and [A];;. We denote by Z
the set of integers and by N the set of natural numbers, thatis, N = {1, 2, 3, .. .}.

For a vector ¢ € R”, supp(x) denotes the support set of , that is, the set of
nonzero elements of € = [x1, ..., x,] € R":

supp(e) = {i € {1,...,n}: x; # 0}. 1)
The 9 norm of € R" is defined by
lzllo = #(supp()),)

where #(-) returns the number of elements of the argument set. The £” norm with
p > 1 is defined by

n 1/p
], £ [va} , (3)

i=1
and the £*° norm by

JAN
zlloo = _max - lx;]. 4)

1=

777777

In Part II, these norms will be denoted by [|x|| 40, || ||¢7, and ||| ¢ to distinguish
norms for continuous-time signals.

X Notation

For a vector x € R", and an index set S C {1, 2, ..., n}, we denote by x g the
restriction of & to S. If & = [x1, %2, ..., X1 and S = {i1, in, ..., ik} (1 < ij <
ip < --- <ir <n),then

x5 = [Xi,, Xiyy - - > Xi]| € RE, 5)
Also, for ® = [¢1, ¢, ..., Py] € R™*" Dy is defined as
(DS = [d)ila ¢i2a---,¢ik] ERka- (6)

The complement of a set S is denoted by S¢.
Let f : [0, T] = R be a measurable function with 7 > 0. The support of f is
denoted by supp(f) and defined by

supp(f) = {r € [0, T]: f(r) # O} @)
The L° norm of f is defined by
I fllo = #(supp(f)), (8)
where u is the Lebesgue measure over R. The L? norm with p > 1 is defined by
T 1/p
T PG o)
and the L* norm by
Iflloo = sup [f(D). (10)
te[0,7T]

We denote by L?(0, T') with p > 1 or p = 00 the set of functions with finite L”
norm.

For a function f : R" — R, the gradient V f is defined by

"
2 (LT e

- o x1 x2 xp

Vf (11)

We say a real-valued function f(n),n € N, is O(g(n)) if

f(n)
g(n)

lim sup < 00

n— 00

DOI: 10.1561/9781680837254.ch1

Chapter 1

Introduction

In this chapter, we briefly review the history of sparsity methods in science and
engineering. The chapter will motivate you to learn this topic. The content of this
chapter is independent of the other chapters, and readers interested in the techni-
cal aspects of sparsity methods can skip this chapter without much effect on their
understanding of the rest of the book.

1.1 Occam’s Razor

At the root of sparsity methods is the idea that one should not assume more
than is necessary to explain certain things. This is known as Occams razor,
also called the law of parsimony, developed by Ockham in the 14th cen-
tury. This idea was not invented by Ockham, but rather long before him, for
example, by Claudius Ptolemy (90AD-168AD) and Aristotle (384BC-322BC).
This is a very familiar concept to us, especially in Japan, where there is a
culture of Zen and Wabi/Sabi, which can be roughly translated as simple is
best.

There is a satirical depiction of the opposite of Occam’s razor, Rube Goldberg’s
machine. Figure 1.1 shows an example of Goldberg’s machine. The machine is

http://dx.doi.org/10.1561/9781680837254.ch1

Introduction

Rube Goldberg’s Inventions

Figure 1.1. Goldberg’s machine (self-operating napkin).

“self-operating napkin,” which automatically wipes off the dirt from the beard when

he drinks soup. This caricature depicts a machine that performs very simple actions

with extreme complexity, and satirizes the large-scale mechanization in the first half

of the 20th century. The machine runs as follows.

The man raises the spoon of soup (A) to his mouth.

The string (B) attached to the spoon (A) is pulled.

The ladle (C) moves.

Cracker (D) flies on the parrot (E).

The parrot (E) takes off after the cracker (D).

The perch (F) tilts.

The seeds (G) on the perch (F) spills out, and goes into the pail (H).
The string (I) is pulled by the extra weight in the pail.

It ignites the cigar lighter (J).

The fuse of the rocket (K) is lit and it takes off.

. The knife (L) attached to the rocket (K) cuts the string (M).
. The pendulum swings and the napkin (N) wipes the dirt from the

beard.

The Goldberg machine is obviously strange. However, in this highly technolo-

gized society, we might have created something like the Goldberg machine without

even realizing it. The sparsity method is therefore an essential technique to avoid
such a situation.

Group Testing 3

1.2 Group Testing

Group testing is one of the first attempts to apply a sparsity method to a scientific
problem. Group testing was proposed by Robert Dorfman in 1948 as a problem
of finding an infected person among a large number of patients in a small number
of blood tests [32]. For example, suppose that only one of eight patients is infected
with a disease, which can be detected by examining the blood. Now, we have eight
blood samples from the eight patients. Since blood testing is expensive and time-
consuming, we want to identify the infected person as few times as possible. In this
case, there is a good way to do this (see also Figure 1.2).

e (TEST 1) We first divide the blood of the eight patients into two groups of
four patients, and take a little bit of blood from each of the eight patients,
and mix it for each group. Since there is only one infected person, the blood
from either group will test positive.

e (TEST 2) Divide the group that tested positive into two groups of two
patients, and do the same thing. At this point, the number of suspicious per-
son has been narrowed down to two.

e (TEST 3) Finally, by examining the blood of the two individuals separately,
the infected person can be uniquely identified.

By this method, it is possible to identify an infected person in six tests, whereas
eight tests would be required for an individual blood test. In general, according to
the above method, if there is only one infected person among 27 people, we can

UBNEENE

positive E : E negative

.

TEST 1

negative

TEST 3 . DD .
positive negative

Figure 1.2. Group testing from eight blood samples.

positive

4 Introduction

identify the infected person in less than 27 tests. For example, for 1,024 patients,
only 20 tests are needed to identify the infected person. We can see that group
testing can dramatically reduce the number of tests compared to testing all patients’
blood individually. We would like to consider a sophisticated method like this in a
general situation where a few people in 100,000 for example are infected, instead of
examining the blood of 100,000 people individually. This is the problem of group
testing.

Now let us describe the problem of group testing in detail. Let 7 be the number
of people to be tested. Define a variable x; representing whether the i-th person

(i €{1,2,...,n})is infected or not as
A |1, if the i-th person is infected,
xX;i = . (1.1)
0, otherwise.
Define an n-dimensional binary vector that takes values of 0 or 1 as
z 2 [x1, 0, € {0, 1), (1.2)

where, {0, 1}" is the set of n-dimensional vectors whose elements are 0 or 1. The
problem here is to find this n-dimensional binary vector. Of course, if we examine
each one of them individually, we can determine the vector & with n tests, but here
we want to identify with a much smaller number of tests.

Let us consider a subset S of the set {1, 2, ..., n}. We define a function A that
returns 1 if there is an infected person in S and 0 otherwise as follows:

1, Y x> 1

0, otherwise.

AS) = i (1.3)

In group testing, a number of people are selected among n people to form a
group, and their blood is mixed to test for infection. We form m groups denoted
by 81,82, ..., Sp. Define vector y of the results of the tests for these groups,

A(Sl)a A(SZ)’ cees A(Sm)’ by
y 2 [AS), A(S2), ..., ASw)] | €10, 1}, (1.4)

Also, we define matrix @ € {0, 1}"*" by

1, ifieS;
D;; A[/ (1.5)

0, otherwise,

where @;; is the (i, j) element of ®.

Optimization with ¢! Norm 5

Now, we introduce the logical disjunction @ and the logical conjunction ® for
binary numbers defined as

060=0, 06pl=1, 1®0=1, 16l1=1

(1.6)
0®0=0, 0®1=0, 1®0=0, 1®1=1.

Then the relationship between the vector y of test results and x of infection is
represented as

dx =y, (1.7)

where the sum and product in this representation are taken as the logical disjunction
and logical conjunction. Since the goal is to dramatically reduce the number m of
tests, m is much smaller than the number of patients n. In this case, the above
equation (1.7) has infinitely many solutions in general (if solutions exist). This
means that we cannot uniquely determine the original only from (1.7). However,
if we assume that the number of infected people is much smaller than n, or vector
x is sparse (i.e., has very few nonzero elements), then we can formulate group
testing as the following optimization problem:

minimize |x||p subject to dx =y, (1.8)
ze(0,1)

where ||z||o denotes the €° norm, the number of nonzero elements in . We will
discuss the £° norm in detail in Chapter 2. The optimization problem is a combi-
natorial optimization problem or a binary optimization problem, and the computa-
tional burden increases exponentially as the size n increases. Dorfman’s paper [32]
proposes various methods for efficiently running group testing, and an increased
interest in this topic has emerged especially with the recent development of sparsity
methods. For recent methods, see, for example, [1, 3].

1.3 Optimization with ¢! Norm

As we will see in this book, £!-norm optimization is one of the most important
techniques for sparsity methods as approximation of £%-norm optimization.

1.3.1 Signal Reconstruction

The first study of optimization with the £! norm as a sparsity method is found in
the dissertation by Franklin Logan in 1965 [69]. Logan considered the problem of

signal reconstruction from noisy data. In his dissertation, he showed that £ ! horm

6 Introduction

G (w)] n(t)
\ w N A t
S — S

supp(G) supp(n)

Figure 1.3. Reconstruction from noisy signal f(¢) = g(¢) + n(¢): the Fourier transform G(w)
of g is band-limited in the frequency domain, and the noise n is localized in the time
domain.

minimization completely eliminates the noise when the original signal is band-
limited to a certain frequency and the noise is well localized (i.e., sparse) on the
time axis. More precisely, if we have noisy observation

f@)=g@®)+n@k), tr=0,1,2,... (1.9)

where the Fourier transform G(w) of g has its support on a low-frequency range,
and the support of n(t) is sufficiently short, then the £! optimization leads to per-
fect reconstruction of g from f. This is called Logan’s phenomenon. Figure 1.3
illustrates the signal assumptions (band limitation and sparsity) in Logan’s phe-
nomenon. The sparsity method by £!-norm minimization was then extended in
[31] to signal recovery when the original signal is sparse in the frequency domain
(i.e., the original signal may not necessarily a low-frequency signal).

1.3.2 Geophysics

In the field of geaphysics, sparsity methods by £! optimization have been proposed
since the 1970s. The structure of the strata can be estimated by generating artificial
earthquakes near the ground surface and observing the reflected waves. This is a
method called the reflection seismic survey. This is a problem of system identification
or an inverse problem, where the characteristics of the system is estimated from its
inputs and outputs. As shown in the left-hand diagram in Figure 1.4, we consider a
linear system R with input (wave by the artificial earthquake) u(#) and the output
(reflected wave) y(2).

The problem is to find the impulse response r(¢) of the system R from the
input/output data of u(¢) and y(¢). In the case of seismic reflection waves, the
impulse response 7 (¢) can be assumed to be localized in time (see the right-hand
figure in Figure 1.4). That is, the impulse response is sparse. From this, the £! regu-
larization was proposed to reconstruct the sparse impulse response [23, 100, 109].
These are other early studies that used the idea of sparsity.

Optimization with ¢! Norm 7

u(t) R y(t) ,\[\ A t

— Vv

Figure 1.4. Linear system R with input u(z) and output y(¢) (left), and its sparse impulse
response r(t) (right).

1.3.3 Neural Networks

In the field of neural networks, the idea of sparsity has also been investigated. Since
the 1980s, Masumi Ishikawa has been proposing a method to avoid overfitting
by introducing the ¢! norm regularization into the training of multilayer percep-
trons [58]. He proposed to sparsify the coupling weights of the network to avoid
overfitting. This is a method of machine learning that takes advantage of the human
brain’s ability to forget, which is called structure learning with forgetting. The method
can lead to an explainable structure of multilayer neural networks, which allows
people to understand the learning results. Also, the technique of dropout in recent
deep neural networks is based on a similar idea of sparsity [42, 106].

1.3.4 Statistics

In statistics, the method called LZASSO (Least Absolute Shrinkage and Selection
Operator) is the most famous method with sparsity. Let us consider polynomial
curve fitting from given data. If we can set many of the coefficients (parameters) to
zero, the terms with zero coefficients will not affect the estimation at all and we can
avoid overfitting. Such a method is called a shrinkage method in statistics. LASSO,
the shrinkage method with £! norm regularization, was proposed by Robert Tib-
shirani in 1996 [110]. The idea of LASSO has been extended to elastic net regu-
larization [119] with the sum of the ¢! norm and the squared £? norm as a reg-
ularized term, and group LASSO with the sum of weighted £? norms for grouped

vectors [116]. We will study LASSO in Chapter 3.

1.3.5 Signal Processing

The first research area where sparsity methods became a hot topic is signal pro-
cessing. A method called basis pursuit with € ! norm optimization to recover sparse
signals was proposed in 1994 by Chen and Donoho [21] at the 28th Asilomar
Conference on Signals, Systems, and Computers." In addition, the rozal variation

1. Later, this work was published as a journal article [20] with Saunders as a co-author.

8 Introduction

denoising, by using the £! norm of the difference of a signal was proposed in 1992
by Rudin ez al. [97]. More recently, Donoho ez al. proposed a new theory of sens-
ing and recovery called compressed sensing [30] in 2006, which is a theoretically
refined version of the basis pursuit. In the same year, Candes and Tao also pub-
lished a paper on this topic [16]. 2006 is the year that the current development
of compressed sensing began. Compressed sensing was a topic in the fields of sig-
nal processing and information theory at that time. However, the topic is now
widely attracting a lot of attention in various research fields including systems and
control.

1.4 Sparsity Methods for Systems and Control

Here we describe a brief history of sparsity methods for systems and control to
provide a motivation for studying the new research topic.

1.41 Minimum Fuel Control and L' Optimization

In the field of automatic control, sparsity has been recognized for a long time.
An example is the minimum fuel control, which is an optimal control that mini-
mizes the L' norm of control among feasible controls. The minimum fuel control
has been actively discussed in the field of control theory since the early 1960s [2].
At that time, the space race between the United States and the Soviet Union was
most heated, and the minimum fuel control has a background in the discussion
on how to reduce the fuel consumption of rockets from the earth to the moon,
for example. As we will see in Chapter 7, the minimum fuel control is a bang-
off-bang control that takes ternary values of £,y (the maximum amplitude that
the control can produce) or zero, under some assumptions. When the control
takes a value of zero, the rocket engages in inertial flight, and hence it can reduce
fuel consumption during this time. This is why the control is called minimum

fuel.

1.4.2 Maximum Hands-off Control

The L' -optimal minimum-fuel control is shown to be equivalent to the Lo—optimal
control (the sparsest control) in [82, 83] under the assumption of non-singularity.
The sparse control with minimum L® norm is called the maximum hands-off con-
trol. The mathematical properties of the maximum hands-off control was investi-
gated in [19, 55]. This has also been extended to time-optimal control [57], dis-
tributed control [52, 54], continuous control [85], and infinite-dimensional sys-
tems [51]. The maximum hands-off control will be discussed in Chapters 8-10.

Sparsity Methods for Systems and Control 9

Oscilloscope

Scope vertical input “ /

Scope
horizontal
input

=

Measurement of

Pushbuttons (4)
controlling gas jets

Figure 1.5. The rocket cockpit illustrated in 1960’s textbook [2]. The pilot just operates
the switches with the observation of the position and velocity of the rocket. This figure
is from [2, p. 608, Figure 7-62].

1.4.3 Discrete-valued Control

The ternary property of the minimum fuel control is also understood as discreteness.
It has been known since the 1960s that certain types of optimal control show such
discreteness of control. In fact, the classical textbook [2] states that the discrete-
valued control can be implemented as a few switches in the rocket cockpit (see
Figure 1.5). Of course, it is obvious that such a simple manual control would be
useless and dangerous to fly into space, and that an automatic control with a feed-
back mechanism is essential. However, the discrete-valued control expressed only
by switching on and off, is very important in recent resource-aware networked con-
trol systems, such as the Internet of Things (IoT) or Cyber-Physical Systems (CPS).
Discrete-valued control with the idea of sparsity was proposed in [53, 56]. In these
papers, the minimization of the sum of absolute values (SOAV) of the control to
enhance the discreteness. We will study the SOAV control in Section 10.2 of Chap-
ter 10.

1.4.4 Robust Control and Rank Minimization

The optimal control mentioned above requires a complete mathematical model of
the controlled object (e.g., a rocket). However, there should be uncertainties in the

10 Introduction

model and parameters in reality, and how to deal with them has been a major chal-
lenge in automatic control theory. Robust control, a theory of control systems design
that takes uncertainty into account, was actively studied in the 1980s, with H*
control theory being one of the most successful examples (see e.g. [117]). Some basic
problems in H* control boil down to the problem of finding a matrix satisfying
linear matrix inequalities (LMIs) [11, 33]. An LMl is a convex constraint, which can
be easily solved using convex optimization (especially the interior point method).
However, if you want to control a large-scale and high-dimensional system by a
simple and much lower-dimensional controller, or if you need to treat structured
uncertainties, the problem becomes LMIs with a matrix rank constraint (or rank
minimization), which is much more difficult to solve since the rank constraint is
non-convex.”
The rank minimization problem is in general described as

rr)l(in]ﬁmize rank(X) subject to M(X)+ Q = 0 (1.10)
c nxn
where M (X) is a linear function of X, Q is a matrix, and the inequality A > B
means A — B is positive semidefinite. It is easily shown that the matrix rank is the
number of non-zero singular values (i.e. the £° norm), and hence this is a problem
related to sparsity. As mentioned above, the £ norm is often approximated by the
¢! norm, and in this case, we minimize the sum of absolute values (i.e. the £! norm)
of the singular values. This is called the nuclear norm and denoted by || X||.. That
is, the rank minimization problem in (1.10) is approximated to the nuclear norm
minimization:

minimize ||X|« subject to M(X)+ Q =0 (1.11)

XERHXI’L

The pioneering work by Mesbahi and Papavassilopoulos [75] showed the equiv-
alence between (1.10) and (1.11). Interestingly, this was published in 1997 prior
to the theory of compressed sensing in 2000s. For the equivalence, they used the
property of Z matrix, which has not been considered in standard compressed sens-
ing theory. In this book, we do not deal with rank minimization. Readers who are
interested in rank minimization may refer to [73].

1.4.5 Resource-aware Control for Networked Control Systems

Sparsity methods have also been applied to networked control systems. A networked
control system is a feedback control system where the communication between the

2. The rank constraint can be equivalently transformed into a bilinear matrix inequality (BMI), which is also
difficult to solve.

Sparsity Methods for Systems and Control 1

A\ 4

Wireless network

A

SN ., M-

Figure 1.6. Networked control system.

controlled object and the controller is limited. Figure 1.6 shows an example of a
networked control system. In this system, sensor data from the drone is sent to the
computer (CPU) via a wireless communication network. Based on the information,
CPU updates the control values for the attitude, speed, and acceleration of the
drone, and returns the control commands to the drone via the network.

For networked control systems, sparsity methods play an important role to real-
ize resource-aware control that can significantly reduce the communication and com-
putational burden. In [39, 80, 81, 84, 86, 91], sparse control is proposed by using
¢! norm minimization for discrete-time systems, by which we can reduce the size of
control packets that are sent through rate-limited communication networks. These
are finite-horizon control and to obtain feedback control, we can adapt the receding
horizon control or the model predictive control formulations.

Minimum actuator placement is also an important sparsity method for resource-
aware control. This is to minimize the number of actuators (or control inputs) that
achieve a control objective (e.g. controllability). The problem has been discussed
in [50, 59, 90, 93, 95, 95, 111].

For state feedback control, the control gain matrix is also sparsified
[29, 67, 68, 76]. The obtained feedback controller is sparsely structured and the
design should achieve an optimal tradeoff between closed-loop performance and
sparsity. See a review paper [61] by Jovanovi¢ and Dhingra for detailed discussion
on this topic.

Sparse Representation
for Vectors

DOI: 10.1561/9781680837254.ch2

What is Sparsity?

In this chapter, we explain the notion of sparsity, and introduce sparse representa-
tion of vectors and functions. The notion introduced in this chapter is important
throughout this book, and hence do not omit this chapter.

-~ Key ideas of Chapter 2 ~

® Sparsity of a vector is measured by its £ norm.

® In sparse representation, a redundant dictionary of vectors is used.

¢ In sparse representation, the smallest number of vectors are automati-
cally chosen from a redundant dictionary that represent a given vector
(& optimization).

* The exhaustive search to solve £0 optimization requires computational
time that exponentially increases as the problem size increases.

N)

14

http://dx.doi.org/10.1561/9781680837254.ch2

Redundant Dictionary 15

2.1 Redundant Dictionary

Let us consider the three-dimensional vector space R?. The standard basis for R? is
formed with the following three unit vectors:

1 0 0
er=|(0f|, e=|[1|, es=|(0]. 2.1
0 0 1

By using this basis, any three-dimensional vector y € R? can be represented as

1
y=|y2| =yiel+ yer+ yses. (2.2)
Y3

In general, if you choose three linearly independent vectors @1, ¢2, and ¢3 from
R3, then they form a basis for R3. That is, for any vectory € R3, there exist unique
real numbers f1, f2, and f3 such that

Yy = P1o1 + fad2 + B33 (2.3)

holds. Moreover, if ¢1, ¢2, and ¢3 are unit vectors and orthogonal to each other,
that is,

1, i=j
T > .o
i > i) — i i — b} L, = 1:27 33 (24)
(i ¢]> (;bj i [0, i J
where (-, -) is the £2 inner product (see also Section 2.3). Then ¢1, ¢2, and ¢3 form
an orthonormal basis for R3, and the coefficients 1, f, and 3 can be obtained by
the inner product

Bi=w.¢))=0¢y, i=1223 (2.5)

Exercise 2.1. How do you obtain the coefficients f1, f2, and f3 in (2.3), when
¢1, @2, and @3 are linearly independent but they do not form an orthonormal
basis?

Let us consider another basis for R with the following three linearly indepen-
dent vectors:

1 1
pr=e+er=|1|, ¢pr=er+e3=|1|, Pp3=e3+e; =0
1 1

(2.6)

16 What is Sparsity?

Figure 2.1. 6 vectors ey, es, e3, ¢y, ¢, P3 in R.

Combining these with the unit vectors in (2.1), let us form a set of 6 vectors
{e1, ez, €3, @1, P2, @3}. Figure 2.1 shows these 6 vectors. With these vectors, con-
sider the following representation of vector y € R>:

3 3
y=> aiei+ Y figi. 2.7)
i=1 i=1

This is a redundant representation, and there are infinitely many solutions for a;

and f; (i = 1,2, 3) to satisfy (2.7). For example, for y = [y1, y2, y3]T, we have
two solutions
(a1, 02, a3, B1, P2, f3) = (1, 2, ¥3,0,0,0), (2.8)
and
(a1, a2, a3, B1, P2, B3) = (=y3, =y1, =¥2, Y1, Y2, ¥3). (2.9)

Now, let us consider a situation where the cost to keep the values of the non-zero
coefficients is very expensive due to an expensive memory device for example. Then
we want to minimize the number of non-zero coefficients to reduce the cost. Let
us consider a vector y € R? on the plane spanned by e and ¢,. For this vector,
we have the following solution:

y=uaiel + a2, (2.10)

This expression has smaller number of non-zero coefficients than (2.8). This is a
trivial example, and the cost of (2.10) is almost the same as that of (2.8). However,
if we can find just 10% non-zero coefficients for a 10° (one million) dimensional

Redundant Dictionary 17

vector, the cost will be dramatically reduced. Such a technology is often called data
compression, which is one of the biggest motivations of sparse representation.

Example 2.2. The four cardinal directions form a redundant system to represent a
direction in R?. We say for example “Go southwest” not “Go minus-north-minus-east”
although the two are mathematically equivalent.

Example 2.3. Imagine that you need to explain what an elephant is to a foreigner,
who cannot speak English but has a small dictionary with 3000 words but the word
‘elephant.” You might say “Elephant is the largest living land animal that has a long
nose, many of them live in African savanna...” then the foreigner will ask “What is
savanna?” since the word is not in the foreigners dictionary. But if the foreigner has a
large dictionary that has more than 1 million words, you just say “That is an elephant.”
Some English teachers say you need to memorize only these 3000 words for conversation,
but actually 3000 words are not enough at all for simple expression.

Let us formulate this problem of sparse representation in a general form. Let us

consider m-dimensional vector space R™, and a set of vectors {¢1, ¢, ..., ¢, } in
R™, where m < n. For a given vector y € R™, we find coefficients ay, a2, ..., an
such that
n
y=> aipi. (2.11)
i=1

We assume that m vectors in {¢1, @2, ..., @,} are linearly independent. We call
such a set of vectors {¢1, @2, ..., ¢n} a dictionary (recall Example 2.3), and the
elements @1, @2, ..., ¢, atoms.! Note that the size n of the dictionary is larger
than the size m of vector y. We call such a dictionary a redundant dictionary, or
over-complete dictionary.

Define a matrix ® and a vector « as

DE[p1 ¢ ... P eR™, 2| | eR" (2.12)
On
Then, the equation (2.11) can be equivalently written as

dx = y. (2.13)

1. We do not call them words.

18 What is Sparsity?

The matrix ® is called a dictionary matrix, or a measurement matrix. Since the
dictionary is redundant, the matrix @ is a fz¢ matrix, that is, the number of columns
is larger than the number of rows. Our problem is now described as follows:

Problem 2.4 (Sparse Representation). Given a vector y € R™ and a dictionary
{P1, P2, ..., D). Find the simplest representation of y that satisfies (2.13).

In the next section, we discuss this problem with a fat matrix.

2.2 Underdetermined Systems

Let us consider the following system of linear equations with unknowns x1, x2,
and x3:

X1+x+x3=3

2.14
x1—x3=0 ()

Now there are three unknowns and two equations, and it is easily seen that there
are infinitely many solutions. To represent all solutions, we use parametrization. All
solutions of (2.14) are parametrized as

Xy =t, xp=-2t+3, x3=t, (2.15)

where ¢t € R is a parameter. We call such a system of equations an underdetermined
system, where the number of unknowns is larger than the number of equations.
An underdetermined system is something like insufficient proofs for a detective
to determine one among many suspects. For a detective, say Conan Edogawa,” the
two proofs (equations) in (2.14) are insufficient and he should seek one more proof
to reveal the unique solution of the case. Thanks to his investigation, a proof was
found, which said ‘the criminal is the smallest one among the suspects.” This is actu-
ally a conclusive proof that can choose just one suspect. Let us find the smallest solu-
tion among the candidates in (2.15). We use the £ 2 horm as a measure of the size,
and we find the smallest £2-norm solution as follows. First, from (2.15), we have

I3 = x7 + x5 +x3
=12+ (=2t 4+3)% +12 (2.16)
=6(—1)>+3.

Then we can choose t = 1, and from (2.15), the solution is uniquely chosen as
(x1, x2,x3) = (1, 1, 1). Case closed.

2. See: https://en.wikipedia.org/wiki/Case_Closed

https://en.wikipedia.org/wiki/Case_Closed

Underdetermined Systems 19

Let us generalize the above discussion. We consider a system of linear equations
in a matrix form as

dx = y. (2.17)

For example, the system in (2.14) can be represented in the matrix form (2.17) with

X1
1 1 1 3
d)=|:1 0 _1], r=|x|, y= |:0] (2.18)

X3

We assume the size of matrix @ is m x n where m < n, that is, we consider an
underdetermined system of equations. We also assume that there are m column

vectors in {1, ..., ¢,} that are linearly independent. In other words, we assume
® has full row rank. Note that a matrix ® € R™*" is said to have full row rank if

@ is surjective, or
rank(®) = m. (2.19)

If rank(®) < m, then there exist redundant linear equations (i.e. there is at least
one equation that is a linear combination of other equations). For example, the
following system of equations

X1+x+x3=3
x1—x3=0 (2.20)
2x1+x, =3
is redundant and the rank is 2 < 3. We here assume such redundancy should be
eliminated beforehand.
If @ has full row rank, then for any vector y € R™, there exists at least one
solution & that satisfies the linear equation (2.17). Let denote by @ a particular

solution of (2.17).
Define the kernel (or null space) of matrix @ by

ker(®) £ {x € R" : dx = 0}. (2.21)

Note that ker(®) is a linear subspace in R", that is, if 1, €2 € ker(®), then
arx] +arxy € ker((D) for any ap, ap, € R.
Then, we introduce the dimension theorem in linear algebra.

Theorem 2.5 (dimension theorem). For any matrix ® € R™*",
rank(®) + dim ker(®) = n (2.22)
holds.

20 What is Sparsity?

From the dimension theorem, the dimension of ker(®) is n — m. Since n > m,
the kernel, which is a linear subspace in R", has at least one dimension. That is,
there exist infinitely many vectors in ker(®). Then, all solutions of the linear equa-
tion (2.17) can be represented by the sum of a particular solution x¢ and a free
parameter z € ker(®), that is,

x=x9+ 2, =z € ker(®D). (2.23)
From this it follows that there exist infinitely many solutions of (2.17).

Exercise 2.6. Show that the vector in (2.23) is the solution of the
equation (2.17).

The problem of sparse representation (Problem 2.4) is to find a solution @ of
(2.17) that has the simplest representation, or the smallest number of non-zero
elements. Let us consider this problem more precisely in the next section.

2.3 The ¢ Norm

We here review the notion of a norm in a finite-dimensional vector space, and then
introduce the £ norm that defines the sparsity of a vector.
First, let us recall the definition of a norm in R”.

Definition 2.7. Anorm ||x| : R" — [0, 00) is a nonnegative function that satisfies
the following properties:

1. For any vector x € R" and any number a. € R, ||ax| = |a|||z]|.
2. Foramyzx,y € R, |z + yll < llzll + llyl.
3. |2 =0 & x =0.

A well-known norm in R” is the €2 norm (or the Euclidean norm). For a vector
x = [x1,x2,...,x,]" €R", the €2 norm is defined by

Il 2 \Jx? + 22+ +x2. (2.24)
The €% norm is also given by
lzll2 = V(x, x), (2.25)

where (-, -) is the €2 inner product (or Euclidean inner product) in R", defined by

(@, y) Ly => xiy. (2.26)
i=1

The ¢° Norm 21

Exercise 2.8. Confirm the £2 norm ||z ||> defined in (2.24) satisfies the three prop-
erties in Definition 2.7.

Not only the £? norm, we can define (infinitely) many norms for R”. A gener-
alization of the €2 norm in (2.24) is the €7 norm with p € [1, 00), defined by

n 1/p
], £ (Z |x,-|f’) : (2.27)
i=1

The most important norm in this book is the £ U norm with p = 1 in (2.27). The
¢! norm is described as the sum of the absolute values of the elements in a vector,
that is,

n
el =D lxl. (2.28)
i=1

The limit of (2.27) as p — 00 is called the £°° norm (or the maximum norm),
defined by

L2 max |x]. (2.29)
i=1,2,...,n

1]l oo

Exercise 2.9. Prove that for any « € R”,

[Zlloo = lim [lz|lp. (2.30)
p— 0

Figure 2.2 shows the contour curves that satisfy |||, = 1 for p = 1,2, and
oo in R?. The contour of the £ norm is a unit circle centered at the origin. The

€2

—_

x

-1

Figure 2.2. Contour curves (|||, = 1) of £Y (2, ¢ norms.

22 What is Sparsity?

contour of the £*° norm is a unit square centered at the origin, and touches the ¢ 2
circle at (1, 0), (0, 1), (=1, 0), and (0, —1). The shape of the contour of the £!
norm is very important for sparse representation. This diamond-shaped contour
has four corners on the x1 and x7 axes. This property gives an intuitive explanation
of the relation between ¢! norm and sparsity (see Section 3.2).

Now, let us define the £ norm. Consider a vector = [x1, X2, ..., x,] | € R”".
Define the support of x by

supp(z) = {i € {1,2,...,n} : x; #0}. (2.31)

The support of is the set of indices on which the elements of & are nonzero. By
using the support, the €9 7orm is defined by

lzllo = #(supp(x)), (2.32)

where #(supp(e)) is the number of elements in finite set supp(z). Namely, the £°
norm counts the number of nonzero elements in .

It is notable that the £ norm does not satisfy the first property in Definition 2.7.
For example, a nonzero vector & € R" has the same €% norm as 22. This implies
that

12zllo = llzllo # 2llzllo, (2.33)

whenever # 0. Strictly speaking, the £ norm is not a norm, and hence we
sometimes call it as €9 pseudo-norm or cardinality. However, we use the term “£°
norm” as often used in the literature. Note that by definition, the second and third
properties in Definition 2.7 hold, that is,

lz+yllo < llzllo + llyllo (2.34)
and
lxljo=0 < x =0. (2.35)

Finally, we define the sparsity of a vector by using the £° norm. A vector = €
R" is said to be sparse if the £° norm |z||o is sufficiently small compared to the
dimension n. The notion of sparsity is important in this book.

Exercise 2.10. Prove that for any =, y € R",

Iz +yllo < llzllo + llyllo (2.36)

holds.

Exhaustive Search 23

Exercise 2.11. Let «, y € R". When does the following equality hold?

lz+yllo = llzllo + llyllo- (2.37)

The problem of sparse representation Problem 2.4 is finding the sparsest solution
among infinitely many solutions of the linear equation in (2.17). This problem is
mathematically formulated by using the £° norm introduced above. That is, we
seek the smallest £°-norm solution for (2.17). This is formulated as a mathemarical
optimization problem as follows:

Problem 2.12 (Sparse representation). Given a vector y € R" and a full-row-
rank matrix ® € R™*" with m < n. Find the optimizer ©* of the optimization
problem:

minimize ||z|o subjectto dx =y. (2.38)
xeR"

We call this the £° optimization.

2.4 Exhaustive Search

In this section, we show a direct method to solve the ¥ optimization problem
(2.38), called an exhaustive search (or brute-force search). Let ¢; € R™ (i =
1,2,...,n) denote the i-th column vector in matrix @, that is,

OE[p1 P2 ... Pu] eR™. (2.39)

The following shows the procedure of the exhaustive search for (2.38).

1. Ify = 0, then output * = 0 as the optimal solution and quit. Otherwise,
proceed to the next step.
2. Find a vector « with ||z|lo = 1 that satisfies the equation y = ®z. That

s, set
0
X1 X 0
0 s NE
=1 .1, *T2= 0 yeees Ly = (2.40)
: : 0
0 0 Xn
and search x; e R (i = 1,2, ..., n) that satisfies

y=0x; = x;¢;. (2.41)

24 What is Sparsity?

If a solution exists for some i, output ** = «; as the solution and quit.
Otherwise, proceed to the next step.
3. Find a vector x with ||z|lo = 2 that satisfies the equation y = ®x. That

is, set
- - _xl — -
X1 0 0
X o :
zin2 | 0|, z32 0l ®-1aZ| 0 (2.42)
: : Xn—1
| 0 _(')_ S
and search x;, x; e R (i, j = 1,2, ..., n) that satisfies
Yy=0x;,; =x;p; +x;0;. (2.43)

If a solution exists for some i, j, then output £* = x; ; and quit. Otherwise,
proceed to the next step.
4. Do similar procedures for ||z|lo =k, k = 3,4, ..., m.

By this exhaustive search, you can obtain the optimal solution * (if it exists)
with finite number of steps (the worst case is k = m, where the optimal value is
lz*llo = m).

Next, we investigate the exhaustive search in detail. For a vector * =
[X1, %2, ..., %,]" and an index set § C {1,2, ..., n}, we denote by xs € R#(S)
the restriction of @ to the indices in S, where #(.S) is the number of elements in .
For example, for ¢ = [x1, x2, X3, X4, X5, x6]" and S = {1, 2, 5}, we have

X1
x5 = | x| e R (2.44)
X5

More generally, for ¢ = [x1, x2, .. ., X" and the index set

S={inis....it}, ke{l,2, ... n}, (2.45)
where 1 <i] <ip < --- < i < n, we have
Xi,
¢5 = xf e RF. (2.46)

x,-k

Exhaustive Search 25

Also, for matrix ® = [¢1, P2,...,¢P,] € R™ " with ¢p; € R™, i =
1,2,...,n and the index set in (2.45), we define

s = [¢i)> iy» - - . » Pi] € R™XK, (2.47)

Using this notation, we can formulate the exhaustive search algorithm for the £°
optimization (2.38) as follows: First check if y = 0. In this case, the solution is
x* = 0. Otherwise, take each subset S of the index set {1, 2, ..., n} from #(S) =
1 to #(S) = m, and solve the following equation

Yy = Ogxs. (2.48)

If there is a solution of (2.48), then using the solution g = [x;, ..., x,'k]T, set
x* = [x],x5,... ,x,’;]T where

i» €S8,
xp= 1t e (2.49)
0 i¢s.

This is the sparsest solution and we have || x*[|o = k. We summarize the exhaustive
search algorithm.

r Exhaustive search algorithm for £ 0 optimization (2.38) ~
1. Ify = 0 then output * = 0 and quit. Otherwise, proceed to the next
step.
2. k:=1

3. Foreach subset S C {1,2,...,n} with #(S) =k, do

¢ Check if equation y = ®gxg has a solution.
e If it exists, output * as in (2.49) and quit.

4. k :=k 4+ 1. Return to 3.

/

We should notice that with the exhaustive search method the computation time

to find a solution grows exponentially with problem size (i.e. m). For example, in
image processing, the dimension becomes millions or larger, and the exhaustive
search is not useful at all.

Exercise 2.13. For the optimization problem (2.38) of size m, compute the num-
ber of iterations at the worst case where the optimal solution &* has its £° norm as
lzllo = m. Then, let m = 100. Suppose that you can use a supercomputer that
can do one iteration of the exhaustive search algorithm in 10~!3 seconds. Compute
the total time needed to do the exhaustive search at the worst case.

26 What is Sparsity?

The above problem is also known as combinatorial optimization, which is in gen-
eral hard to solve for large-scale problems. In the following chapters, we investigate
efficient algorithms for such a hard problem of sparse optimization.

2.5 Sparse Representation for Functions

In this section, we discuss sparse representation for functions.

Let us consider the function space LZ(O, T), the space of all square integrable
functions on (0, T') in the sense of Lebesgue. That is, for any f € L?(0, T), the
L? norm is finite:

T
1fll2 2 /0 ()i < oo. (2.50)

In this space, we can define the L? inner product

T
(fog) 2 /O F (g0, 2.51)

where g(t) is the complex conjugate of g(¢). It is well-known that under the L?
inner product, the space L? becomes a Hilbert space.
Then let us consider an orthonormal basis {¢; : i € Z}in L*(0, T') that satisfies

.
<¢i,¢j>=5,-j=[rr=d (2.52)

0, otherwise.

Then, for any function f € L?(0, T), there exist a complex sequence {a; : i € Z}
such that

f= Z ai¢i> (2.53)

i=—00

where the convergence is in the sense of L2, that is,

— 0, (2.54)

N
”f— > aigi

2

Sparse Representation for Functions 27

as N — 00. The representation (2.53) is called Fourier series’ of f. Given f and
{¢i}, the coefficients are obtained by the inner product

T —_—
a = (f, i) = /0 FOE@r. (2.55)

Exercise 2.14. Prove that (2.55) holds.

A standard basis for L?(0, T') is the Fourier basis defined by
1.
(1) = —=“', el (2.56)
¢l() ﬁ
where j = «/—1 and w; = 27i/T. With this basis, the coefficients in (2.55) are

given as

T T
a; = % /0 F(Oeitdt = % /0 f@O)e M dr. (2.57)

For a sufficiently smooth function, the Fourier basis gives a good solution to rep-

resent the function with a finite number of coefficients by #runcation. That is, we
approximate function f as

N T
fv=> whi o= % /0 F@ye s, (2.58)

i=—N

Actually, this is optimal in the sense that fy minimizes the L? error

N
ENB-Ns - BN 2| f = D Bidi (2.59)
i=—N 2
among all coefficients {f_n, ..., SN}
Now, let us consider a rectangular function on LZ(O, 1) defined by

1, t € (0,1/2),
f) = ©.172) (2.60)

1, rell/21).

Figure 2.3 (left) shows this function. We can see that this function is discontinu-
ous. The Fourier coefficients of this function can be easily computed using (2.57).

3. This s also called as generalized Fourier series. Then, with the standard Fourier basis in (2.56), the series in
(2.53) is called the Fourier series.

28 What is Sparsity?

Fourier Coefficients

0.8 1 06
06
05t
04t
oz 1 04
0 o

-0.2

-0.4

-0.6
-0.8+

Figure 2.3. Discontinuous rectangular function f(¢r) (left) and absolute values of its
Fourier coefficients (right).

1.5 . 1.5
1 1
|
I
i
05 | 05
|
0 0
I
-0.5 I -05-
I
|
B) s M\ﬂ
15 | | | | m | | |
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1

Figure 2.4. Truncated Fourier series fy(t) with N =20 (left) and N = 100 (right).

In fact, we have

—3 . ifiisodd
@ = w0 BIEOCS (2.61)
0, otherwise.

Exercise 2.15. Show that the Fourier coefficients of the rectangular function in
(2.60) are given by (2.61).

Figure 2.3 (right) shows the absolute values of the coefficients with i = —20
to 20. We can see that the coefficients converge to zero as i goes to £00. Actually,
from (2.61), the coefficient sequence {a;} converges to zero as |i| — 00 with
convergence rate O (1/1).

This fact suggests us to truncate the coefficients with N to obtain the approxi-
mant fx(¢) in (2.58). Figure 2.4 shows the truncated Fourier series fi () in (2.58).

The left figure is f (¢) with N = 20. We see oscillations around the edges of
the rectangular function. When we increase N to N = 100, we obtain another

Further Readings 29

re(t) Aha(t) A p3(t) 4 1ba(t)
! 1 ¢ i 2 1 1 1 ¢
0 1 of 1 F of 1 g 0 1 31
2 : 4 2 4

Figure 2.5. Haar functions wy,y2, y3, and wy.

oscillative function in the right figure of Figure 2.4. This oscillation never dis-
appears around the edges for arbitrarily large but finite N. This is called Gibbs
phenomenon. To store the information of the rectangular function as Fourier coef-
ficients, you cannot truncate it but store all of the coefficients.

Let us consider another orthonormal basis in L?(0, 1) called Haar basis defined
by Haar functions

pi(t) 21, (2.62)
andfori =2" +k,k=1,2,...,2", m=0,1,2,...,
Vo re 27k = 1), 27N 2k - 1)),
pi(t) = 1 =v27, te 2712k — 1),27™k), (2.63)
0, otherwise.

Figure 2.5 shows Haar functions y1,y2, w3, and y4.

Then, if we adopt a redundant dictionary of bases consists of the Fourier basis
in (2.56) and the Haar basis. From this dictionary, we can simply represent the
rectangular function in (2.60) as

f(@) = ya2(t). (2.64)

That is, we need to store just one coefficient under the redundant basis. This is
the motivation to use a redundant dictionary and to obtain sparse representation
for functions. As shown above, sparse representation of functions is to sparsify the
coefficients in the Fourier series of a given function.

2.6 Further Readings

The notion of redundant dictionary and sparse optimization described in this chap-
ter is fundamental and important in this book. The redundant representation of

30 What is Sparsity?

vectors is related to frames and wavelets, for which readers can refer to nice books
by Strang and Nguyen [107] and by Mallat [72]. For fundamental theory of vector
spaces, called functional analysis, including norms, inner products, orthonormal
bases, and Fourier series, I recommend books by Young [115] and by Yamamoto
[114], which are written for scientists and engineers.

DOI: 10.1561/9781680837254.ch3

Chapter 3

Curve Fitting and Sparse Optimization

In this chapter, we study curve fitting to obtain a curve, or a function, from given
data, and how sparse optimization effectively works for this problem.

~ Key ideas of Chapter 3 ~

¢ Curve fitting is formulated as an optimization problem to choose one
solution among (infinitely many) candidates.

® Regularization is used for avoiding overfitting.

* Sparse optimization is reduced to £! optimization, which is convex and
efficiently solved by numerical optimization.

N J

3.1 Least Squares and Regularization

We begin with the least squares and regularization with simple examples.

3.11 Underdetermined System and Minimum ¢2-Norm Solution

Let us consider the linear equation
dx =y, (3.1)

31

http://dx.doi.org/10.1561/9781680837254.ch3

32 Curve Fitting and Sparse Optimization

where y € R” is a given vector, ® € R™*" is a given matrix, and € R” is an
unknown vector. We here assume m < n, and @ has full row rank, that is,

rank(®) = m. (3.2)

Under these assumptions, there exist infinitely many solutions of the equation (3.1).
Let us find the smallest £2-norm solution among them. This is formulated as an
optimization problem

1
minimize — || subject to Oz = y. (3.3)
xeR" 2

We call this problem the €2 optimization problem, and the solution the minimum
% -norm solution.

To solve this problem, we can use the method of Lagrange multipliers. First,
we define the Lagrange function, or simply Lagrangian, of the optimization prob-
lem (3.3) by

L(x,A) = %:ch + AT (0x — Y). (3.4)

The variable A € R™ is called the Lagrange multiplier.

Then, we can obtain the optimal solution of (3.3) by finding the stationary
point (x*, A*) of the Lagrange function L. By differentiating L by the variable x,
we have

Z—i = 8% (%wa +)\TCD:E) =z + O\ (3.5)
It follows that the stationary point (x*, A*) satisfies

z*+ 0T =0. (3.6)
Then differentiating L by X gives

oL

C ox— .
> x—1, (3.7)

and hence
Ox* —y = 0. (3.8)
From this and (3.6), we have

—0D A\ =y. (3.9)

Least Squares and Regularization 33

Since ® has full row rank, the matrix ®® " is nonsingular and has its inverse.
Therefore, from (3.9) we have

A= —(00 ")y, (3.10)
Assigning this to (3.6) gives the minimum ¢ 2_norm solution * as
¥ =0 (@0 ly. (3.11)

In summary, if we are given a full-row-rank matrix ® and a vector y, we can
compute the minimum ¢2-norm solution by the formula (3.11).

Exercise 3.1. Find the minimum ¢£2-norm solution of the following equation with
unknowns x| and xp:

aix; +axxy =1, (3.12)
where a1 and ap are nonzero real numbers.

Exercise 3.2. Let ® € R™*" Prove that ®® " is invertible if @ has full row rank.

3.1.2 Regression and Least Squares

Suppose we are given two-dimensional data

D = {(t1, y1), (t2, ¥2), - - - » (tms Ym)}- (3.13)

Let us consider a polynomial of order n — 1,
y = f(t) =ap 1" "+ -+ ayt + ao. (3.14)

Curve fitting is to find coefhicients ag, ai, ..., a,—1 with which the polynomial
curve has the best fit to the m-point data (see e.g. Figure 3.1). For example,
1,1, ..., ty are sampling instants, and y1, y2, ..., Y are temperature data from
a sensor at a portion. From these data, we often want to know the curve behind the
data. We call such data analysis the regression analysis or polynomial curve fitting.

ty t2 t3 14 ts

Figure 3.1. Interpolating polynomial.

34 Curve Fitting and Sparse Optimization

First, we consider an interpolating polynomial that interpolates the given
data as shown in Figure 3.1. The polynomial curve (3.14) goes through the
data points (3.13), and hence we have m linear equations with unknowns
An—1,An—2, . .., a1, do:

a1t 4yt arty +ap = 1,
a1t anati T ain +ag = o, 6519
an—1tl "+ apotl 2+ ity + ag = v
Define a matrix
A R T
n—1 n—2
o2 |2 7 LR (3.16)
gl gn=2 tm 1
and vectors
[an-1] V1
=2 y2
x = eR", y& | | eR" (3.17)
aj y.
L ao | "

Then the system of linear equations (3.15) can be represented in a matrix form:
®x = y. The matrix ® is known as a Vandermonde matrix, and if m = n, then ®
is a square matrix and its determinant is given by

dee(@)= [] G—tp)=@0—)t—86) tno1 —tn). (3.18)

l<i<j<m
It follows that if
t # tj, Vi, jsti#], (3.19)

then @ is nonsingular and has its inverse. Hence, the solution * of (3.15) is given
by using O ! as

¥ = o ly. (3.20)

Least Squares and Regularization 35

In summary, if one choose an (m — 1)-th order polynomial for m data points that
satisfy (3.19), then the coefficients of the interpolating polynomial can be uniquely
obtained by the formula (3.20).

Example 3.3. Let us consider the following data.

r |1 2 3 .. 14 15
y|l2 4 6 ... 28 30

The data are obtained from a linear relation y = 2¢. By using these 15 data
points, we find a 14th-order interpolating polynomial. Now, we use a useful com-
putational software, MATLAB, to compute the matrix inversion in (3.20). The
following is a code to obtain the coefficients.

MATLAB code for the coefficients of the interpolating polynomial.

%% Data

t =115;

y=2"t

%% Vandermonde matrix

Phi = vander(t);

%% Coefficients of interpolating polynomial
x = inv(Phi) * y’;

In this code, vander isa MATLAB function to compute the Vandermonde matrix
in (3.16). The vector variable y computed in the 3rd line is a row vector, and we
should transpose it in the last line (i.e. y’).

Running this code we obtain

X =
2.274746684520826e-24
-5.565271161256770e-21
9.137367918505765e-19
-9.452887691357992e-18
-3.658098129966092e-16
-1.608088662230500e-15
3.569367024169878e-14
-6.021849685566849e-13
5.346834086594754e-13
-1.267963511963899e-11
4.878586423728848e-11
2.088995643134695e-12
1.366515789413825e-10
1.999999999995282e+00
-4.014566457044566e-12

36 Curve Fitting and Sparse Optimization

70 ¢
60 |
50 |
40+
30+

20|

0 5 10 15
t

Figure 3.2. 14-th order interpolating polynomial with noisy data.

This result shows that the second value from the bottom is nearly 2, and the
other values are almost zero. That is, the coefficients are given by a; = 2 and
a; = 0 fori # 1, and the interpolating polynomial is y = 2¢. This is the right
solution. O

Usually, data include noise. Let us add Gaussian noise with zero mean and vari-
ance 0.5% to the data y in Example 3.3, and find the interpolating polynomial.
The obtained curve is shown in Figure 3.2. The interpolating polynomial exactly
goes through the data points, but the curve is significantly affected by noise, and
very different from the original relationship y = 2¢. Such a phenomenon is called
overfitting.

The reason of overfitting is that the order of the polynomial is too high. If we
previously know that the original curve is of first order, then we can assume a
first order polynomial (i.e. a line) y = a1t + ap, and find the coefficients ag
and a1 with which the line has the best fit to the data. If the data is noisy, it
is obviously impossible to obtain a line that goes through all the data points.
However, it is not a problem at all if the line does not interpolate the noisy
data.

Now, let us reformulate our problem of curve fitting for noisy data. We measure
the distance between the polynomial and the data points by the £2 norm (Euclidean
norm). For noisy data, we do not require the curve to go through the data points
since it is in general impossible. We find the curve that is as close to the data points
as possible. The optimization problem is described as follows:

1 2
minimize —|®x — , 3.21
nimize -0z — yl (3.21)

Least Squares and Regularization 37

where ® € R™*" is a Vandermonde matrix defined in (3.16). We call the opti-
mization in (3.21) the least squares method. If we assume n < m, that is, if the
order of the polynomial is less than m — 2, then the number of unknowns is
less than that of equations. In this case, the matrix @ is a zall matrix, and the
equation ®x = y has no solution in general. If the condition (3.19) holds,
it is easily shown that the solution of (3.21) uniquely exists. In fact, if (3.19)
holds, then the Vandermonde matrix ® has full column rank. Note that a matrix
O € R™*" is said to have full column rank if the n column vectors in @ are
linearly independent. In other words, ® € R™*" has full column rank iff ® is
injective, or

rank(®) = n. (3.22)
Then the unique solution of the optimization problem in (3.21) is given by
¥ =@ o) loTy. (3.23)

We call this the least squares solution. As the minimum ¢ 2_norm solution in (3.11),
the least squares solution is also given by a closed form.

Exercise 3.4. Prove that the solution of the optimization problem (3.21) is given

by (3.23).
Exercise 3.5. Let ¢; denote the i-th column vector in matrix ® € R™*", that is,
O=[d1 P2 ... ¢Pu]. (3.24)

Then define the residual between the data y and the optimal estimation ®x* with
(3.23) by

r&y— ox* (3.25)
Prove that the residual satisfies
(i,)y =0, Viell,2,...,n}. (3.26)
Also, by using this fact, show that the residual 7 is orthogonal to ®x*.

Example 3.6. Let us consider Example 3.3 with additive Gaussian noise with zero
mean and variance 0.5%. We assume the curve is a first-order polynomial modeled

38 Curve Fitting and Sparse Optimization

by y = ait + ap. A MATLAB code to obtain the least squares solution of this
problem is given as follows:

MATLAB code for least squares solution

%% Data

t =1.15;

y =2 *t+randn(1,15)*0.5;
%% Vandermonde matrix
Phi15 = vander(t);

Phi = Phi15(:,14:15);

%% Least squares solution
x = inv(Phi’ * Phi) * Phi’ * y’;

In this code, randn(1,15) is a MATLAB function that returns normally distributed
random numbers (i.e. Gaussian noise) with zero mean and variance 1 of size 1 x 15
(i.e. a row vector). The matrix variable Phi15 is a Vandermonde matrix of size 15 x
15, and in the 6th line we extract 14th and 15th columns, which are related to
coefficients a; and aq, to make matrix Phi of size 15 x 2. The result is shown
below.

X =
1.985404378030957e+00
1.359049380398556e-01

Figure 3.3 shows the line y = a1t + ag with these coefficients. While the 14-th
order interpolating polynomial implies overfitting, the least squares line shows a

good result. O

3.1.3 Regularization

As we have discussed in the previous section, one can avoid overfitting by the least
squares method with an appropriate order of the polynomial, which is less than the
number of data points. However, what can we do if we do not know the proper
order in advance? In this case, we can adopt regularization. Let us begin with a
simple example.

Example 3.7. Suppose that we are given a data set

D= {(tla yl)a(t25 y2)5"'a(tma ym)}a (3.27)

Least Squares and Regularization 39

40 1

1

:

|

30 ‘/‘v/.

1

>20 |
10

0, J

0 15

Figure 3.3. Least square solution (solid line) and 14-th order interpolating polynomial
(dashed curve).

which is generated from a sinusoid y = sin(t). We consider sampling instants
h=0 n=1,5=2,...,t11 = 10, (3.28)
and the points y1, y2, ..., y11 are obtained as
yi =sin(t;)) +¢€, i=1,2,...,11, (3.29)

where ¢; is Gaussian noise with zero mean and variance 0.22 added at time #; inde-
pendently. The following table shows the obtained data.

t; 0 1 2 3 4 5

yi | —0.0343 1.0081 0.8326 0.4047 —0.7585 —0.9285
t 6 7 8 9 10

yi | —0.2110 0.6626 0.8492 0.2761 —0.6962

Figure 3.4 shows the data points and the original sinusoidal curve.

For these data, let us find a 10-th order polynomial that interpolates the data
points by using (3.20). Figure 3.5 shows the result. Affected by the noise, the curve
is very oscillative and shows overfitting. We then take a 6-the order polynomial
and compute the least squares solution by (3.23). Figure 3.6 shows the result.
From this figure, we have a better fit than the interpolating function shown in
Figure 3.5. O

In the above example, the order 6 was chosen by computing curves of all orders
from 1 to 10, and comparing the reconstructed curve with the original sinusoid.
However, this can be done if we previously know the original sinusoid. This is impos-
sible in real applications. That is, we do not know the optimal order just from the
data in advance.

40 Curve Fitting and Sparse Optimization

1.5

-0.5¢ \ / h
// L4
N\
a4t N
1.5 ' ! : :
0 2 4 6 8 10

Figure 3.4. 11 data points from a sinusoid (dashed curve).

0 2 4 6 8 10
Figure 3.5. 10-th order interpolating polynomial (solid curve) and the original sinusoid
(dashed curve).

1.5

0 2 4 6 8 10
Figure 3.6. Least squares solution with 6-th order polynomial (solid curve) and the orig-
inal sinusoid (dashed curve).

Least Squares and Regularization 41

To see the difference between the 10-th order interpolating polynomial and the
6-th order least squares polynomial, we compare their coefficients. Let us denote
by x19 and xg, respectively, the 10-th and 6-th order polynomials. They are
obtained as

~ —0.0343

16.2400
—38.0984 [—0.0260]
37.8369 1.0636
—20.2842 0.3067

10 = 6.5035 |, x¢=|—0.5225], (3.30)

—1.3100 0.1426
0.1677 —0.0146
—0.0133 0.0005
0.0006 - B

| —0.0000 |

where the boldface numbers are the largest three elements in their absolute values.
We can observe that the boldface values in @1¢ are much larger than those in .
This is a cause of oscillation in the 10-th order interpolating curve.

From the above observation, we try to minimize both the squared error || dx —
y||% and the squared £2 norm ||ac||% of the coefficient vector & at the same time.
This is formulated as the following optimization problem:

minimize 2102 — I3 + 5 213 (3.31)
We call this optimization the regularized least squares, or ridge regression. The addi-
tional term %Hm ||% is called a regularization term, and the parameter A a regulariza-
tion parameter, which control the balance between the error in curve fitting and the
£2 norm of the coefficients.

As in the least squares solution, the solution of the regularized least squares in
(3.31) can be obtained in a closed form:

=1+ 0"O) oy, (3.32)
Exercise 3.8. Prove that the solution of (3.31) is given by (3.32).

Example 3.9. Here we consider an example of regularization. With the data given
in Example 3.7, we compute a 10-th order polynomial by the regularized least
squares. We take the regularization parameter 4 = 1, and compute the solution *

42 Curve Fitting and Sparse Optimization

_1 5 L L L L 1 J

0 2 4 6 8 10

Figure 3.7. Regularized least squares solution with 10th-order polynomial (solid curve)
and the original sinusoid (dashed curve).

by the formula (3.32). The obtained coefficients are as follows:

0.1448
0.2691
0.1865
0.0769
—0.0334
x*=| —0.0674 |. (3.33)
0.0386
—0.0085
0.0010
—0.0001
0.0000

The boldface values are the three largest elements in the absolute values. Compared
with the coefficients @19 in (3.30) of 10-th order interpolating polynomial, the
values in «* are much smaller. The curve with the regularized least squares is shown
in Figure 3.7. We can see that the 10-th order polynomial by the regularized least
squares shows a comparable accuracy to the 6-th order least squares solution. [J

3.1.4 Weighted Ridge Regression

Here we further consider the problem of polynomial interpolation. In the regular-
ized least squares, we minimize the cost function in (3.31) with the regularization
term ||z ||% This is to make the coefficient vector & not so large. Instead of this, we
consider the L? norm of the polynomial f(¢). The L? norm of a function £ (t),

Least Squares and Regularization 43
t € [t1, tyy] is defined as

tm
1fll 2 /1Lﬂﬂth (3.34)
51

Since f(¢) is a polynomial
n—1 .
F@&=> at, (3.35)
i=0

the L? norm can be computed as

tm n—I1 n—I1
5 . .
(AP =/ (Zait’) Zajtf dt
13l — P—
=0 j=0

n—1n—1 -
=3 > aa [
=5 (3.36)
n—1n—1 t,ln+j+l ti+]+1
_Zzala] + +1
i=0 j=0 i]
=z’ Qz,

where Q = [Q;;] is a matrix defined by

, i,j=0,1,...,n—1. (3.37)

Now, from the definition of L? norm, we have || f .2 > O for any polynomial f,
and || fl;2 = 0 if and only if f = 0. This means that for any € R", we have
' Qx >0andz' Qx = 0ifand only if £ = 0. That is, the matrix Q is positive
definite.

Now, we consider a regularization problem minimizing

1
§||CD:c—y||%+ IIfIILz— 1D — ylI + = II‘Pwllz, (3.38)

where W is a matrix that satisfies Q = W . This is called the weighted ridge
regression. The solution is obtained by

zr=(@ o+ 1¥"¥) loTy. (3.39)

44 Curve Fitting and Sparse Optimization

Table 3.1. Summary of optimization problems with ¢2 norm.

Problem Size Problem Solution
min €2 norm m<n mmin%||:l:||% st. 0z =y T (dd") 1y

least squares (LS) m > n mmin%ncbm —yl3 (@TO) Ty
regularized LS any ma;n%H(Dw —yl3+4lz13 @TGI+00T)y

=QI+0TD) Ty

Exercise 3.10. Prove that (3.39) is the solution of the optimization problem mini-

izing (3.38).
315 Summary of ¢£2-Norm Optimization
Now we summarize the curve fitting problem by (m — 1)-th order polynomial
y=f()=an-1t""" + anot" >+ +ait + ao, (3.40)
with data
D = {(t1, y1), (22, y2), - - -, (tms ym)}- (3.41)
Table 3.1 shows the summary.

Exercise 3.11. Prove that for any matrix ® € R™*" and any number 4 > 0,
matrices Al + ®® " and A1 + ® T ® are invertible and satisfy

o'+ 00H) ' =I+0 D) DT, (3.42)

3.2 Sparse Polynomial and ¢!-norm Optimization

Here we consider yet another example of curve fitting. Let us consider an 80-th
order polynomial

y=—941. (3.43)
From this polynomial, we sample data points with sampling instants
t1=0,60=01,13=02,...,t11 =1, (3.44)
to obtain

D = {(t1, 01), (t2, ¥2)5 - - (t11, y11)}s i = =120 4+ 1;. (3.45)

Sparse Polynomial and ¢!-norm Optimization 45

°
0.8 [
]
0.6 []
0.4 [
. |
0.2 |
]
(o] 2
0 0.2 0.4 0.6 0.8 1
Figure 3.8. Sparse polynomial y = —% + ¢ and sampled data.

Figure 3.8 shows the curve of the 80-th polynomial in (3.43) and the generated
data in (3.45).

We assume that the order of the original polynomial is previously known to be
at most 80. Then, can we reconstruct the original curve in (3.43) from the data
D? In this case, there are infinitely many interpolating polynomials with order at
most 80 that go through all the data points. In fact, the Vandermonde matrix ®
in (3.16) is a fat matrix of size 11 x 81, and since the condition (3.19) holds, ®
has full row rank and there exist infinitely many solutions of the linear equation
®x = y, where x is a column vector consisting of 81 unknown coefficients, and
Yy is a column vector consisting of data y1, y2, ..., y11. As mentioned in Section
3.1, we need additional proofs to obtain the unique solution.

Let us look again at the original 80-th order polynomial in (3.43). The coef-
ficients of this polynomial are all zero but two coefficients. In other words, the
coefficient vector * = (aso, az9, ..., ao) is sparse, that is, has small £° norm.
We call such a polynomial a sparse polynomial. We assume that the following fact
can be additionally used as our proof.

’ The original polynomial is sparse. ‘

Note that we can use the sparsity property of the original polynomial but the num-
ber of non-zero coefficients (i.e. ||&||g) is assumed to be unknown.

Borrowing the idea of the optimization mentioned in Section 2.3, we use the £°
norm as the cost function, and consider the following optimization problem:

minimize ||z|lp subjectto dx =y. (3.46)
xeR”

As mentioned in Section 2.4, this is quite hard to solve using the exhaustive search
method when the problem size is large.

46 Curve Fitting and Sparse Optimization

The key idea of sparse optimization is to use the £! norm

el =D Ixil (3.47)

i=l

instead of the £° norm. That is, we consider the following optimization problem
as relaxation of the ¢° optimization (3.46):

minimize ||z||; subjectto ®x =y. (3.48)
xreR”

We call this optimization the £ 1 optimization. The method to obtain a sparse vector
by the ¢! optimization is known as the basis pursuit.

The ¢! optimization problem in (3.48) is to find the smallest £!-norm vector on
a linear subspace {x € R" : ®x = y}. As illustrated in Figure 2.2 in Chapter 2,
the contour of the £! norm (||||; = ¢) is a diamond whose corners are on the axes.
The optimal solution of (3.48) is obtained (in the 2-dimensional case) by enlarging
the contour ||zl = ¢ from ¢ = 0 until the contour touches the linear subspace
{x € R? : dx = y}. As shown in Figure 3.9, the linear subspace {x € R? :
®x = y)} touches almost surely the £! contour on one of its corners. Since each
corner is on one of the axes, the optimal solution satisfies [|[z*|[p = 1 < 2, and
hence it is sparse. This is an intuitive explanation why minimizing £! norm gives a
sparse solution.

The relation between the ¢° and ¢! norms is intuitively understood as follows.
By definition, the £° norm can be rewritten as

n

lzlo = > Ix1°, (3.49)
i=1

€2

dxr =1y z* = (0,73)

€y

Figure 3.9. ¢! optimization in R?: the contour {z : | x| = ¢} touches the linear subspace
{x : ®x = y} on one of the corners that are on axes.

Sparse Polynomial and ¢!-norm Optimization 47

0)
\/

—1 0 1

Figure 3.10. Relation between |x| and |x|°.

where |x|° £ 1 if x # 0 and 0° £ 0. Figure 3.10 shows the graph of |x|°. From
this figure, it is easily seen that the £ 0 norm is non-convex. On the other hand, the
¢! norm

n

el =" Ix] (3.50)

i=1

is a sum of absolute values |x;|, which is convex as shown in Figure 3.10. The ¢!
norm is the best convex approximation of the £ norm in the sense that it has the
minimum exponent p = 1 among ¢” norms that are convex. Theoretically, the
£ norm is also understood as the convex relaxation of the £ norm. That is, the ¢!
norm is the second conjugate || - ||5* of || - [lo. See [112, Section 1.3] for details.

In the ¢! optimization problem in (3.48), the cost function ||||; is a convex
function of &, and the constraint set {z € R" : ®x = y} is a convex set. Therefore,
the problem is a convex optimization problem,' for which numerical optimization by
using a computer can give a numerical solution much faster than the exhaustive
search for the ¢° optimization in (3.46).

To obtain a sparse vector, we can also use the idea of regularization for sparse
optimization. In the case of noisy data, we can formulate the curve fitting as the £ 0
regularization described below:

1
minimize || Pz — yl3 + 2lzllo. (3.51)

xeR”

Unfortunately, this optimization is also a combinatorial problem, and hard to
solve if the problem size is large. Instead of the £ 0 norm for the regularization term,
we use the £! norm and consider the following optimization problem:

1
minimize —||®x — yl|3 4+ Az (3.52)
xeR" 2

1. For the mathematical definition of convexity and convex optimization, see Chapter 4.

48 Curve Fitting and Sparse Optimization

This is called ¢! regularization, or LASSO (Least Absolute Shrinkage and Selec-
tion Operator). The cost function in (3.52) is a convex function of @, and hence
the optimization is a convex optimization problem, which can also be solved very
efficiently.

In this section, we have introduced the important idea to approximate the £°
norm, which is non-convex and discontinuous, by the £! norm, which is convex.
A question is when the convex optimization problem (3.48), or (3.52) can give
the solution of the original £0 optimization (3.46), or (3.51). Very interestingly,
in many applications (e.g. signal/image processing), the solution of the ¢! norm
optimization is equivalent to (or sufficiently close to0) the £%-norm solution. In
fact, there exist many theorems for the equivalence between £° and £! optimiza-
tions. From these facts, ¢! optimization is often said to be sparse optimization.
For seeking sparse solutions, there also exist many methods other than ¢! opti-
mization, for example, greedy methods, which we will see in detail in Chapter 5,
or {P-norm optimization with p € (0, 1). In the next section, we will show
how to solve the ¢! optimization (3.48) or ¢ 1 regularization (3.52) by using
MATLAB.

3.3 Numerical Optimization by CVX

The optimization problems (3.48) and (3.52) are convex ones, and they can be
efficiently solved by numerical optimization. We here introduce a well-known soft-
ware for numerical convex optimization, CVX,” which is a free software running
on MATLAB.

Let us consider the 80-th order polynomial y = —80 4 ¢ in (3.43). From
this, we generate 11 data points as in (3.45), and we try to reconstruct the original
polynomial from these data.

First, we define the coefficient vector of the 80-th polynomial. The following is
a MATLAB code to do this.

%% Coefficient vector of the 80-th order polynomial
x_orig = [-1,zeros(1,78),1,07’;

2. http://cvxr.com/cvx/

http://cvxr.com/cvx/

Numerical Optimization by CVX 49

Next, by using MATLAB function polyval that returns the value of the polyno-
mial from the coefficient vector, we make a data set (3.45) as follows.

%% Data
t=0:0.1:1;
y = polyval(x_orig,t);

With the data, we find the 10-th order interpolating polynomial. For this, we

compute the Vandermonde matrix (3.16):

%% Vandermonde matrix
Phi = vander(t);

From this, we compute the coefficients of the interpolating polynomial by using

(3.20).

%% Coefficients of interpolating polynomial (10-th order)
X = inv(Phi) * y’;

Note that since y is a row vector, we take its transpose y’. Now, let us draw
the curve of the interpolating polynomial. We discretize the time axis into small
intervals, and draw the curve.

%% Draw curve
time = 0:0.01:1;
plot(time, polyval(x, time));

Figure 3.11 shows the result. In this case, the data are noiseless and there is no
oscillation due to overfitting. However, we can see a large gap in the range from
t=09tt =1.

Then, let us compute a curve by the regularized least squares (3.31) with a
10-th order polynomial. We choose the regularization parameter as 4 = 0.2, and
compute the coefficient by the formula (3.32).

50 Curve Fitting and Sparse Optimization

0.8+

0.61

0.4r

0.21

0

0 0.2 0.4 0.6 0.8 1

Figure 3.11. 10-th order interpolating polynomial (solid curve) and the original polynomial
y = =% 4+ ¢ (dashed curve).

0.8} |
0.6

0.4+

0.2°1
(
|
0® ‘ : °
0 0.2 0.4 0.6 0.8 1
Figure 3.12. 10-th order polynomial by regularized least squares (solid curve) and the
original polynomial y = —% + ¢ (dashed curve).

%% Regularized least squares
lambda = 0.2;
x = inv(lambda * eye(11) + Phi’ * Phi) * Phi’ * y’;

Figure 3.12 shows the result. The obtained curve has a poor fit to the original
curve y = —180 1.

Finally, we compute the curve by £! optimization (3.48). We assume that
we know the polynomial order is at most 80. In this case, the Vandermonde

Numerical Optimization by CVX 51

matrix (3.16) becomes a fat matrix of size 11 x 81. This matrix can be obtained as
follows.

%% Vandermode’s matrix

Phi=T[1;
for m = 0:80

Phi = [t"."m, Phil;
end

Define the coefficient vector @ and the data vector y as in (3.17), then the con-
dition for interpolation is described as

Ox = y. (3.53)

We seck the sparsest solution in the linear subspace {x € R¥ : ®dx = y} by
solving the £ 1 optimization problem in (3.48).

To solve the ¢! optimization problem, we use CVX on MATLAB. By using
CVX, the optimization problem can be very easily coded.

%% L1 optimization by CVX
cvx_begin
variable x(81)
minimize norm(x, 1)
subject to
Phi*x ==y’
cvx_end

You should compare this code with (3.48). You can write a code very intuitively
for an optimization problem. This is the strongest point of CVX. You can solve
many convex optimization problems other than the £! optimization in a similar
way. We recommend for beginners to use CVX to solve convex optimization prob-
lems.’

Let us draw the curve with the coefficients obtained by the £! optimization.
Figure 3.13 shows the curve. We can see that the obtained curve is almost the same

_ 480

as the original curve y = + t. This is the power of £! optimization. The

complete MATLAB program for £ 1 optimization is shown below. Enjoy!

3. CVXis also available in Python. See cvxopt.org for details.

52 Curve Fitting and Sparse Optimization

0.8
0.6
0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Figure 3.13. 80-th order polynomial by ¢! optimization (solid curve) and the original poly-
nomial y = —180 4+ (dashed curve).

3.4 Further Readings

For least squares, regularization and overfitting in curve fitting, I recommend to
read standard textbooks [8, 44] of machine learning. The least squares method
is deeply related to projection and generalized inverse, for which you can choose
a textbook of [43]. The mathematical theory and generalization of LASSO can
be found in [15, 40, 44, 45]. For the equivalence theorems between 9 and ¢!
optimizations, refer to text books [37, 38, 112].

MATLAB program for the coefficients by €' optimization using CVX.

clear

%% Polynomial coefficients
x_orig = [-1,zeros(1,78),1,07’;
%% Sampling

t=0:017

y = polyval(x_orig,t);

%% Data size

N = length(t);

M = N-1;

%% Vandermonde matrix
Phi_v = vander(t);

%% Interpolation polynomial with order 10
X_i = inv(Phi_v)*y’;

%% LASSO

Further Readings 53

% Order of polynomial
M_I = 80;
% Design matrix
Phi_I=[];
for m=0:M_|
Phi_l = [t"."m,Phi_I];
end
% CVX
cvx_begin
variable x(M_I+1)
minimize norm(x,1)
subject to

Phi_I*x ==y’
cvx_end
%% Plot
tt = 0:0.01:;
figure;
stem(t,y); hold on
plot(tt,polyval(x_orig,tt),-");
plot(tt,polyval(x,tt));

DOI: 10.1561/9781680837254.ch4

Chapter 4

Algorithms for Convex Optimization

In the previous chapter, we have seen that convex optimization such as £! optimiza-
tion is efficiently solved by using CVX on MATLAB. Such a tool is actually very
useful for small or middle scale problems. However, if you treat a very large-scale
problem like image processing, CVX might be insufficient. Moreover, if you want
to apply the sparsity method to control systems, you should compute sparse opti-
mization in real time (e.g. in a few msec) with a cheap device on which MATLAB
cannot be installed. In such cases, you should instead write an efficient algorithm
by yourself for your specific problem. This means that you should look into the
black box of the toolbox.

For this purpose, we review basics of convex optimization, and introduce effi-
cient algorithms for problems in sparse optimization.

~ Key ideas of Chapter 4 ~

¢ In convex optimization, a local minimum is a global minimum.

e (! optimization problems appeared in this book are convex optimiza-
tion.

e Proximal operators are used to derive fast algorithms for convex opti-
mization with non-differentiable £! norm and constraints.

- J

54

http://dx.doi.org/10.1561/9781680837254.ch4

Basics of Convex Optimization 55

4.1 Basics of Convex Optimization

We here review important facts in convex optimization. Let us begin with the def-
inition of a convex set.

Definition 4.1 (convex set). Let C be a subset of R". C is said to be a convex set if
the following inclusion

te+(1—-nHyeC 4.1)
holds for any vectors x,y € C and for any real numbert € [0, 1].

Figure 4.1 illustrates a convex set and a non-convex set (i.e. a set that is not convex).
In convex set C, the line segment between any two points and y in C lies com-
pletely in C. On the other hand, in a non-convex set, there exists a line segment
that partially lies outside of the set.

Exercise 4.2. Prove that if C and D are convex, then C N D is also convex.

In convex optimization, we often handle a function f : R" — R U {oo},
which takes values on extended real numbers R U {oo}. The following function is

an example:

@) = [0, if |z, < 1, .

oo, if|x|r > 1.

This function is called an indicator function, which will be explained in Sec-
tion 4.2.4.
The effective domain of a function f is defined by

dom(f) £ {x e R" : f(x) < o0). (4.3)

That is, the effective domain of a function f : R” — R U {oo} is a set in R” on
which f takes finite real values. For example, the effective domain of the indicator
function (4.2) is given by

dom(f) ={x e R" : lz[2 < 1}. (4.4)

C» &9

Figure 4.1. Convex set (left) and non-convex set (right).

56 Algorithms for Convex Optimization

T Y T Yy

Figure 4.2. Convex function (left) and non-convex function (right).

A function is said to be proper if its effective domain is non-empty, that is, there
exists at least one & € R” such that f(x) < co.
Now, let us define a convex function.

Definition 4.3 (convex function). Ler f : R" — R U {00} be a proper function.
The function f is said to be a convex function if the following inequality

fltz+ A =0y) <tf@@)+ 1 -1)f(y) (4.5)
holds for any vectors x,y € dom(f) and for any real numbert € [0, 1].

Figure 4.2 illustrates a convex function and a non-convex function, a function that is
not convex. By definition, if f is convex, the line segment between any two points
(z, f(x)) and (y, f(y)), where x, y € dom(f), lies above or on the graph of f.
On the other hand, if f is non-convex, there exists a line segment that partially lies
below the graph.

Exercise 4.4. Suppose that f and g are real-valued convex functions. Prove that
f 4+ g is also convex.

One more important property of a function is closedness. A function f : R —
R U {oo} is said to be closed if the sublevel set (or lower level set) {x € dom(f) :
f(x) < c}is aclosed set for any ¢ € R. The closedness of a function is also
understood by its epigraph. The epigraph epi(f) of function f is defined by

epi(f) £ {(z,1) e R" x R: & € dom(f), f(x) < t}. (4.6)

Figure 4.3 illustrates the epigraph of a function f. The epigraph of f is the region
above the graph on its effective domain. It is easily shown that a function f is closed
if and only if its epigraph is closed.

We can also perceive other properties of a function in terms of its epigraph. A
function is convex if and only if its epigraph is convex. A function is proper if and
only if its epigraph is non-empty. We summarize these facts in Table 4.1.

Basics of Convex Optimization 57

i

Figure 4.3. Epigraph epi(f) of function f.

Table 4.1. Function and its epigraph.

Function f Epigraph Epi(f)
convex convex set
closed closed set
proper non-empty set

Now, we formulate a convex optimization problem in a general form.

Convex optimization problem

Let f : R" = RU{oo} be a proper, closed, and convex function, and C C R”"
be a closed convex set. Then, a convex optimization problem is a problem to find
a vector * € R" that minimizes the function f(x) over the set C C R".

For the convex optimization, we use the following terminology in this book:

¢ The function f(x) is called a cost function or an objective function.
® The set C is called a constraint set or a feasible set.

® The entries of C are called feasible solutions.

e The inclusion € C is called a constraint

The above optimization problem is often described as follows:

minimize f(x) subjectto = € C. 4.7)
xeR”

In this expression, the optimization variable £ € R”" to be minimized is placed
under “minimize,” next to which the cost function f(z) is placed. The term “sub-
ject to” is sometimes abbreviated as “s.t.,” followed by the constraint « € C. The
term “minimize” in (4.7) is often abbreviated as “min” and simply described as

min f(x) s.t. « €C. (4.8)

xeR"

58 Algorithms for Convex Optimization

[R
minimize f(x) subject to x € C
TER"? S——

cost function constraint
min f(xz) minimum value
xeC

arg min f(x) minimizer (set)
NG xzeC)

Figure 4.4. Notation for optimization problem.

Also, we often write the constraint under “minimize” as
min f(x). (4.9)
xeC

Note that (4.9) usually means the minimum value of the optimization problem
(4.7), instead of an optimization problem. The set of minimizers (solutions) of the
optimization problem (4.7) is denoted using “arg” (abbreviation of argument) as

arg min f(x) £ {z*eC: f(x*) < f(®), VoeCNndom(f)}. (4.10)

xeC

Also, we often use the following expression

x* = argmin f(x). (4.11)
xeC
In this expression, “argmin” returns a minimizer, instead of the set of minimizers.
If the minimizer of the optimization problem (4.7) is unique, then this expression
may not cause any confusion. If not unique, (4.11) means that * is a minimizer
arbitrarily taken from the set of minimizers.
We summarize the definitions in Figure 4.4.
Then we define a local minimizer and a global minimizer of the optimization
problem (4.7). If there exists an open set B that contains a feasible solution & €

C Ndom(f) such that
f(@®) > f(®), VYxeBNC, (4.12)

then f () is called a local minimizer of the optimization problem (4.7). If a feasible
solution * € C satisfies

f(x) > f(x*), VxeCl, (4.13)

then x* is called a global minimizer of the optimization problem (4.7).

Basics of Convex Optimization 59

f(z)

r=x" T T
Figure 4.5. Local minimizer & and global minimizer x* with convex function (left)
and non-convex function (right).

One of the most important properties of convex optimization is that a local
minimizer is (if it exists) a global minimizer. Figure 4.5 illustrates this fact of convex
optimization. In this figure, for a convex function, the local minimizer & is also the
global minimizer *. On the other hand, for a non-convex function, they may not
coincide. In fact, the following theorem holds [13, Section 4.2.2].

Theorem 4.5. For a convex optimization problem (4.7), any local minimizer is (if it
exists) a global minimizer, and the set of global minimizers is a convex set.

By this theorem, an algorithm that outputs a local minimizer of a convex opti-
mization problem is automatically an algorithm for a global minimizer. For exam-
ple, a convex optimization problem with a differentiable and convex function f ()
and C = R" (unconstrained problem), a point & such that V f(x) = 0, where V f
is the gradient of f, is a local minimizer, and this is also a global minimizer. There-
fore, for an unconstrained convex optimization with a differentiable cost function,
an algorithm searching for a point satisfying V f(x) = 0 is an algorithm for a
global minimizer. This idea is very important to derive an efficient algorithm for

convex optimization.
Exercise 4.6. Find a convex function that has no local minimizer.
Exercise 4.7. Find a convex function that has infinitely many local minimizers.

Next, we consider the uniqueness of the minimizer. For this, we define strictly
and strongly convex functions.

Definition 4.8. Ler f : R" — R U {00} be a proper function. The function f is
said to be a strictly convex function if for any x,y € dom(f) C R" withx # y
andanyt € (0, 1),

f(t:n +(1 - t)y) <tf(®)+ (A —-1)f(y) (4.14)

60 Algorithms for Convex Optimization

Moreover, the function f is said to be a strongly convex function #f there exists f > 0
such that for any x,y € dom(f) C R" and anyt € [0, 1],

B

flz+ 0 -ny) <tf(@)+A-0)fly) -1~ t)Ellac —yl3 (415)

The constant f3 is called a modulus.
The following lemma is an important property of strongly convex functions.

Lemma 4.9. A function f : R" — RU{oo} is strongly convex with modulus f > 0
if and only if

f—@u% (4.16)

is convex.
Weierstrass extreme value theorem is also important in convex optimization.

Theorem 4.10 (Weierstrass extreme value theorem). Every continuous function
on a compact set attains its extreme values on that set.

Note that a subset in R” is compact if and only if it is closed and bounded.
The following theorem shows the existence and uniqueness of the minimizer of
a strongly convex function.

Theorem 4.11. Assume f : R" — R U {00} is a proper, closed, and strongly convex
Sfunction with modulus f > 0. Then [has the unique minimizer ** € dom(f).
That is, for all x € dom(f) such that x # x*,

f@) > f("). (4.17)

Moreover, for any x € dom(f), we have

B

ﬂ@zf@ﬂ+?m—ﬁﬁ. (4.18)

This theorem is used to define the proximal operator discussed in the next section.

FExercise 4.12. Prove Theorem 4.11.

4.2 Proximal Operator

We here introduce a powerful tool called the proximal operator for deriving efficient
algorithms to solve convex optimization problems.

Proximal Operator 61

4.21 Definition

The proximal operator of a function is defined as follows:

Definition 4.13 (proximal operator). For a proper, closed, and convex function
f:R" = RU {00}, and a real number y > 0, the proximal operator prox, , with
parameter 'y is defined by

' 1
prox, ;(v) £ argmin <f(m)+2—||az—v||%}. (4.19)
xzedom(f) v

First, we can easily show that the function
A 1 2
g(x) Zf(lf)-i'gllﬂ?—’vﬂz (4.20)

is a proper, closed, and strongly convex function with modulus f = 1/y (see
Definition 4.8). Therefore, from Theorem 4.11, the proximal operator (4.19) is
well-defined, that is, prox,, ;(v) uniquely exists for any v € R".

Exercise 4.14. Assume that f is a proper, closed, and convex function, y > 0,
and v € R". Prove that the function g(z) in (4.20) is proper, closed, and strongly
convex function with modulus f# = 1/y.

From (4.19), if we take y — 00, then the second term of (4.19) disappears and
the proximal operator becomes

proxe, r(v) = argmin f(z) = z7, (4.21)
xzedom(f)

where * is a minimizer of f(x). On the other hand, taking y — 0 eliminates
the first term of (4.19), and the proximal operator is reduced to

proxof(’v) = argmin |z — ’U||% =T¢c(v), C £ dom(f), (4.22)
| xedom(f)

where I1¢ is the projection operator on the set C. That s, I1¢ returns the closest point
in C measured by the ¢ 2 horm. Finally, if the parameter y satisfies0 < y < 00, the
proximal operator (4.19) is a mixture of the minimizer in (4.21) and the projection
operator in (4.22).

Figure 4.6 illustrates the proximal operator. By definition, if a point v is outside
the effective domain dom(f), then prox, ;(v) movesinto dom(f).Ifapointvisin
dom(f), then prox, ; (v) moves in dom(f), and approaches towards the minimizer
x* of f(x), with a step size determined by the value of y . Therefore, the effective
domain dom(f") is an znvariant set under the proximal operator prox, ;. Note that

62 Algorithms for Convex Optimization

minimum
projection

dom(f)

Figure 4.6. lllustration of proximal operator.

a set C is called an invariant set under an operator T if
xelC = Tx) el (4.23)
holds.

Exercise 4.15. Prove that the effective domain dom(f) is an invariant set under
the proximal operator prox, ;.

As illustrated in Figure 4.6, if v € dom(f), then the vector prox, ;(v) approaches
towards the minimizer * in the effective domain dom(f). That is, a proximal
operator works like a negative gradient in the effective domain. Note that the gradi-
ent cannot be defined for non-differentiable functions, while the proximal operator
has no such restriction.

4.2.2 Proximal Algorithm

From the invariance property of (4.23), we can consider an iterative algorithm
called the proximal algorithm for a minimizer * of function f:

Proximal algorithm

Initialization: give an initial vector [0] and positive numbers yg, 71, . ..
Iteration: fork =0, 1,2, ..., do

zlk+1] = proxm(x[k]). (4.24)

If you properly choose the parameter sequence {yi}, you can obtain one of the min-
imizers of f by the proximal algorithm. The convergence is shown in the following
theorem [7, Proposition 5.1.3]:

Proximal Operator 63

Theorem 4.16 (convergence of proximal algorithm). Suppose that the parameter
sequence {y} satisfies Y > O for all k and

o
> k= oo (4.25)
k=0

Then, the vector sequence {x |k} generated by the proximal algorithm (4.24) converges
to one of the minimizers of [for any initial vector x[0].

The theorem is based on the fact that a minimizer of f () is also a fixed point
of 1tsﬁ proximal operator prox, ;. Note that a fixed point of prox, , is a point that
satisfies

x = prox, f(:n). (4.26)

A fixed point is literally fixed under the operation by prox, ..
The proximal algorithm minimizes the strongly convex function

A 1
k(@) = f @)+ —llw - x[k]|3 (4.27)
Vi

at step k. In other words, the algorithm approximates a general convex function
f(x) by a strongly convex function at each step.

Also, it is often important to find a closed form of the proximal operator for an
efficient algorithm. A function for which the proximal operator (4.19) is obtained
in a closed form is sometimes called proximable. Let us see some proximable func-
tions in the following subsections.

4.2.3 Proximal Operator for Quadratic Function

Let us consider the following quadratic function
1
f(x) = E:UT(DQU —y'x, (4.28)

where @ is a positive-definite symmetric matrix. Note that a symmetric matrix @ is
said to be positive definite if the following inequality holds

x dx > 0, (4.29)

for every nonzero vector & € R”. Let us compute the proximal operator of the
quadratic function in (4.28). From the definition of the proximal operator in
(4.19), we have

. T 1 T
proxyf('v)=argm1n{§:c dxr —y :L'+Z(:c—'v) (:c—'v)}. (4.30)

xreR”

64 Algorithms for Convex Optimization

Since the function in (4.30) is differentiable, we can obtain the minimizer by setting
the gradient to be zero. After some calculations, we have the proximal operator in
a closed form:

1\ 1
prox, ;(v) = (CI) + ;I) (y + ;v) . (4.31)
Exercise 4.17. Prove that equation (4.31) holds.

An important application of this proximal operator is numerical matrix inver-
sion. The minimizer * of (4.28) is also the unique solution of linear equation

thatis, £* = q)_ly. Note that @ is invertible since @ is positive definite. Then, let
us assume that the condition number (the ratio of maximum and minimum eigen-
values of @, i.e., Amax (P)/Amin (P)) is very large so that the numerical computation
of the inverse is difficult. We call such a case //-conditioned. For an ill-conditioned
case, the proximal algorithm (4.24) is used to safely compute the inverse. From
(4.31), the proximal algorithm to obtain the minimizer of (4.28), which is also the
solution of (4.32), is given as follows:

~ Proximal algorithm for @~y ~

Initialization: give an initial vector [0] and a positive number y > 0
Iteration: fork =0, 1,2, ..., do

-1
zlk+1] = (d) + yll) (y + ylm[k])) (4.33)

If the positive number y is sufficiently small, then the condition number of matrix
® + (1/y)1 is relatively small, and the inversion can be easily computed numeri-
cally.

Also, if y is sufficiently small, we have

1 -1
(q>+;1) =y +7yD) '~y —yd). (4.34)
Then, the right-hand side of the proximal operator (4.31) becomes

1\ 1 1
(®+—1) (y+—v)%y(1—ycl))(y+—v)
Y Y Y

~v—y(dv-y)
=v—yVf).

(4.35)

Proximal Operator 65

C

Figure 4.7. Indicator function /¢ (x) on a closed interval C € R.

That is, if y is sufficiently small, the proximal algorithm (4.33) is approximately
the gradient descent algorithm

xlk+1]=x[k] —yVf(x[k]), k=0,1,2,... (4.36)
to find the minimizer of the quadratic function (4.28).

4.2.4 Proximal Operator for Indicator Functions

The indicator function of a non-empty set C C R” is defined by

I(as)é 0, ifxzel, (4.37)
¢ oo, if x &C. .

If the set C is non-empty, closed, and convex, then the indicator function I¢(x)
is a proper, closed, and convex function (to check this, draw the epigraph). For
example, the indicator function I¢(x) of a closed interval C on R is illustrated in
Figure 4.7. You can see that if C is a non-empty closed interval, the epigraph is a
non-empty, closed, and convex set.

Let us compute the proximal operator of the indicator function I¢. From the
definition (4.19), the proximal operator of I¢ is given by

. 1
prox, IC('U) = arg min {Ic(m) + Zﬂm — ’U||%}

xreR”

= argmin ||z — v|3 (4.38)
xeC

= I¢(v).

66 Algorithms for Convex Optimization

That is, the proximal operator of the indicator function I is the projection operator
II¢c onto the set C.

Exercise 4.18. Suppose that C C R" is a non-empty, closed, and convex set. Prove
that I1¢(v) is uniquely determined for any v € R".

4.2.5 Proximal Operator for ¢! Norm

Let us compute the proximal operator (4.19) for the £! norm:

f@) =zl = lxl, (4.39)

i=1

where x; is the i-th element of € R". From the definition of the proximal oper-
ator, we have

. 1
prox, |, (v) = argmin [Ilwlll + an - vll%]

xeR”
" (4.40)
: { 1 2
= argmin [xi] + =— (x; —v;) },
xeR” ; l 2)’ l l

where v; is the i-th element of v. This optimization can be reduced to element-wise
optimization, that is,

n n
. 1 . 1
a?;]léln; {lxz'l + Z(Xi —Ui)z} = ;;?elﬁ{lxil + Z(Xi - vi)Z}.

(4.41)
Therefore, we just solve the following scalar minimization problem:
Co. 1 2
minimize |x| 4+ —(x —v)~. (4.42)
xeR 2)/

The minimizer x* € R can be easily calculated, which is given by

v—Y, 1{:02)),
x"‘:Sy(D)é 0, if —y <v<y, (4.43)
v+y, ifo<—y.

Proximal Operator 67

Figure 4.8. Soft-thresholding operator S, (v).

The function S, (v) in (4.43) is called the soft-thresholding operator. Figure 4.8
shows the graph of the soft-thresholding operator.

Exercise 4.19. Show that the minimizer x* of the function
1
)2 |x]+ i v)? (4.44)

is given by (4.43). (Hint: divide the domain of f(x) in two intervals: x > 0 and
x < 0. Then, consider the three cases forv: v >y, —y <v <y,ando < —y).

By using the scalar-valued soft-thresholding operator, the proximal operator of
the £! norm is given by

[prox, ()], = S, (2), (4.45)

where []; denotes the i-th element of the vector in the square bracket. For a
simple expression, we extend the definition of the scalar-valued soft-thresholding
operator (4.43) to vectors. For a vector v € R”, we define the vector-valued soft-
thresholding operator S, (v) by

[Sy (U)]i £ Sy (Ui)a (446)

where [, (v)]; is the i-th element of S, (v). With this notation, the proximal
operator of the £ norm (4.45) is simply rewritten as

prox, 1, (@) =S, (). (4.47)

Exercise 4.20. Let Q € R"*" be an orthogonal matrix. Prove that the minimizer
x* € R" of the following function

Al
f@) = 210z = yli3 + Azl (4.48)

68 Algorithms for Convex Optimization

H,\(’U)/

/

Figure 4.9. Hard-thresholding operator H; (v).

is given by
z* = 5:(Q"y). (4.49)
Note that Q is orthogonal if and only if

00"=0"0=1 (4.50)

In summary, the proximal operator of the £! norm is the soft-thresholding oper-
ator S, (v). If the absolute value of an element v; in v is less than y, then the
element is set to be zero by the proximal operator. This is an important property
to understand why ¢! optimization gives a sparse solution.

The word ‘soft’ means that the operator is continuous (see Figure 4.8). We can
also define the hard-thresholding operator by

v, if |o| >4,
H,(v) = 4.51
1) [0, if o] < 4. @51

Figure 4.9 shows the graph of the hard thresholding operator. We can see from
this figure, the hard-thresholding operator is discontinuous. An interesting fact
is that the hard-thresholding operator is the proximal operator of the £° norm
with 4 = 4/2y. Strictly speaking, this is dubious since the proximal opera-
tor is defined for proper, closed, and convex functions (see Definition 4.13), but
the £° norm is not convex. However, the hard-thresholding operator is very use-
ful to derive efficient algorithms for £%-norm optimization. See Chapter 5 for
details.

Exercise 4.21. Compute the proximal operator (4.19) of the £ 0 norm, and show
that it is the hard-thresholding operator (4.51).

Proximal Splitting Methods for ¢! Optimization 69

4.3 Proximal Splitting Methods for ¢! Optimization

In this section, we derive an efficient algorithm based on proximal splitting to solve
the ¢! optimization:

minimize ||z|; subjectto Oz =1y, (4.52)

xeR”
where ® € R"*" andy € R" are given. We assume thatm < n and ® has full row
rank, that is, rank(®) = m. The cost function is the £ I horm, which is obviously a

proper, closed, and convex function. Then, let us consider the constraint. Denote
e set of vectors @« satisfying the constraint ®x = vy. That is,
by C the set of vect € R" sat g th traint @ That

c- {w eR": Ox = y} (4.53)
It is easy to prove that this set is a non-empty, closed, and convex set in R”.

Exercise 4.22. Show the cost function ||x||; in (4.52) is a proper, closed, and
convex function. Also, show the set C defined in (4.53) is a non-empty, closed, and
convex set in R”.

Then, consider the indicator function I¢ () for C:

Je@ = 1% if oz =y, (4.54)
0o, if dx #y.

By using this, the optimization problem in (4.52) is equivalently rewritten as

miniﬁlize lz|l1 + Ic(x). (4.55)
xeR"

Note that the functions ||z |1 and I¢(x) are both proper, closed, and convex func-
tions, and hence the sum of them, ||z ||1 + I¢ (), is also proper, closed, and convex.

Exercise 4.23. Suppose that two functions, f and g, are proper, closed, and con-
vex. Suppose also that dom(f) N dom(g) # @. Prove that f + g is also a proper,

closed, and convex function.

Note that for the optimization problem (4.55), we cannot obtain the proximal
operator of the cost function

f(@) = |zl + Ic(z), (4.56)

in a closed form. In other words, f(x) is not proximable. That is, we can-
not directly apply the proximal algorithm (4.25) to this problem. However, the

70 Algorithms for Convex Optimization

proximal operators of the two functions

fi@) £ llzll, folz) £ Ic(z) (4.57)

can be obtained as the soft-thresholding operator in (4.47) and the projection oper-
ator onto C defined in (4.38), respectively. The idea is to sp/it the cost function as
f = fi + f2, and write an algorithm using the proximal operators of fi and f>
separately. Algorithms designed by this idea are called proximal splitting algorithms.
For the problem (4.55), we introduce two proximal splitting algorithms.

4.3.1 Douglas-Rachford Splitting Algorithm
Let us consider the following optimization problem in a general form:

miniﬁ}lize fi(x) + fo(x), (4.58)

where f1 and f> are proper, closed, and convex functions. The Douglas-Rachford
splitting algorithm for (4.58) is given as follows:

-~ Douglas-Rachford splitting algorithm for (4.58) ~

Initialization: give an initial vector 2[0] and a parameter y > 0
Iteration: fork =0, 1,2, ... do

x[k + 1] = prox, ,, (z[k]) (4.59)

zlk +1] = z[k] + proxyfz(Z:c[k + 1] — z[k]) — x[k + 1] '

_ J
From the algorithm, we can derive an algorithm for our unconstrained problem

(4.55). In our case, fi(x) = ||x|l1 and fo(x) = I¢(x), for which the proximal

operators are given by

prox, f, (v) =S, (v), prox, r, (v) = ¢ (v). (4.60)
Then the Douglas-Rachford splitting algorithm for the ¢ 1 optimization problem
(4.52) is given as follows:
~ Douglas-Rachford splitting algorithm for £! optimization problem (4.52) —

Initialization: give an initial vector 2[0] and a parameter y > 0
Iteration: fork =0, 1,2, ... do

zlk + 1] = S, (z[k])

4.61
zlk + 1] = z[k] + e Qelk + 1] — z[k]) — x[k + 1] 4.61)
_ J

Proximal Splitting Methods for ¢! Optimization 71

In this algorithm, the projection operator Il¢ on the linear subspace C defined in

(4.53) is given by
He(w)=v+ O (@O ") ! (y — o). (4.62)
Note that ®® " is invertible since ® has full row rank.

Exercise 4.24. Show that the projection operator Il¢ for C defined in (4.53) is
given by (4.62).

The ¢! optimization problem (4.52) can be rewritten as a linear programming
problem, which can be efficiently solved by the well-known interior-point method
[47, Section 5.12.]. However, this method should solve a system of linear equations
at each step of the iteration, which takes in general non-negligible computational
time. On the other hand, the Douglas-Rachford algorithm in (4.61) only requires

* simple continuous mapping of the soft-thresholding function S,
® linear computation of matrix-vector multiplication and vector addition.

Thus, the Douglas-Rachford algorithm is efficient and easy to implement compared
to standard interior-point algorithms.

To consider the convergence of Douglas-Rachford splitting algorithm, we define
the relative interior ri(C) of a subset C C R" by

fiC) 2 {xeR":xeC and Je > 0, N (x) Naff(C) C C}, (4.63)
where N (x) is the € -neighborhood of x, that is,
Ne2{weR": |v—z| <€), (4.64)

and aff (C) is the affine hull of C, that is, the set of all affine sets containing C. Note
that the relative interior is different from the 7nterior of C that is defined by

intC) 2 {xeR":xeC and Je > 0, NV (x) C C}. (4.65)
For example, let us consider the disk
C={(x1,x,0) e R} : x? +x3 < 1}, (4.66)

on the x;-x; plane in R3. Then, the interior of C is empty by definition, while the
relative interior is

i(C) = {(x1,x2,0) e R? : x? +x3 < 1}. (4.67)

Now, we introduce the convergence theorem [25] for Douglas-Rachford split-
ting algorithm.

72 Algorithms for Convex Optimization

Theorem 4.25. Suppose that fi and f are proper, closed, and convex functions that
satisfy

ri(dom(f1)) Nri(dom(f2)) # 0. (4.68)
Also, suppose that
f1@) + f2(x) = 00 a5 [zl2 — oo. (4.69)

Then each sequence {x[k)}2) generated by Douglas-Rachford splitting algorithm con-
verges to a solution of the optimization problem (4.58).

4.3.2 Dykstra-like Splitting Algorithm

Here we consider the following optimization problem:
L 1 2
minimize f1(x) + f2(x) + <llz — v|3, (4.70)
xeR” 2

where f1 and f> are proper, closed, and convex functions. We apply Douglas-
Rachford splitting algorithm to this optimization by splitting the cost function into
fiand fo + %H - —v||3. Then an algorithm called Dykstra-like splitting algorithm

is obtained as follows.

-~ Dykstra-like splitting algorithm for (4.70) ~

Initialization: set £[0] = v and p[0] = q[0] = O; give a parameter y > 0
Iteration: fork =0, 1,2, ... do

zlk+1] = prox, , (xlk] + plk])

plk + 1] = x[k] + p[k] — z[k]
(4.71)
xlk + 1] = prox, 1, (z[k] + qlk])

qlk + 1] = z[k] + glk] — x[k + 1]
N J

An important application of Dykstra-like algorithm is to find the projection
of a point onto the intersection of two convex sets C; and C, namely to find
IIc,nc, (v). This is done by setting fi = I¢, and f> = I¢,, indicator functions
defined in (4.37), for the optimization problem (4.70). Since prox, e, = II¢c, and

Proximal Gradient Method for ¢! Regularization 73

prox, . = I1c,, the algorithm is given by

zlk + 1] = ¢, (zlk] + plk])

plk + 1] = x[k] + plk] — z[k]
z[k + 1] = ¢, (z[k] + qlk])

qlk + 1] = z[k] + qlk] — x[k + 1]

(4.72)

This is called Dykstras projection algorithm, proposed by Dykstra [14]." The name
“Dykstra-like splitting” is actually after this algorithm. The convergence theorem
is given as follows [25].

Theorem 4.26. Suppose that fi and f are proper, closed, and convex functions that
satisfy

dom(f1) Ndom(f2) # @. (4.73)

Then each sequence {x[k1}}2) generated by Dykstra-like splitting algorithm converges
to a solution of the optimization problem (4.70).

Compared to the assumptions in Theorem 4.25 for Douglas-Rachford splitting
algorithm, the assumption (4.73) is weaker.

4.4 Proximal Gradient Method for ¢! Regularization

We here consider an efficient algorithm for ¢! regularization (or LASSO):

1
minimize —[|®x — yl|3 + Al z|;. (4.74)

xeR” 2

We assume that ® € R™*", y € R, and 4 > 0 are already given.

4.41 Algorithm

In (4.74), the first term %H dx—y ||% and the second term 4||x||1 are both proper,
closed, and convex functions of «. Also, the proximal operator of the first term, a
quadratic function of @, is obtained in a closed form as described in Section 4.2.3
(see also Exercise 4.27 below). Hence, we can directly apply the Douglas-Rachford
splitting algorithm (4.59) to this problem.

1. Note that Dykstra for this algorithm is different from Dijkstra who found a famous algorithm for a shortest
path in a network.

74 Algorithms for Convex Optimization

Exercise 4.27. Show that the proximal operator of f(x) = %H(Dm — y||% is
given by

1 \! 1
prox, (v) = (cDTcD + ;1) (cDTy + ;v) . (4.75)

As we have seen before, the proximal operator is an “alternative” to the gradient
descent update as shown in (4.35). However, the first term %H Ox — yllg of (4.74)
is a quadratic function of &, which is differentiable. So, we can directly benefit from
the gradient of % |Px—y ||% itself for an algorithm instead of its proximal operator.
We here introduce an efficient algorithm using the gradient, which can be much
faster than the Douglas-Rachford splitting algorithm, along with an acceleration
method.

First, let us consider the following general problem:

miniﬁ}lize fi(x) + falx), (4.76)

where f] is a differentiable and convex function satisfying dom(f1) = R”,and f> is
a proper, closed, and convex function. Note that f5 is not necessarily differentiable,
for example an indicator function as in (4.37).

For the optimization problem, we introduce the proximal gradient algorithm,
which is given as follows:

Proximal gradient algorithm for (4.76)

Initialization: give an initial vector [0] and a real number y > 0
Iteration: fork =0, 1,2, ... do

[k + 1] = prox,, , (z[k] — 7 V fi(z[k])). (4.77)

In this algorithm, y > 0 is the szep size of the update. The function V fi(x) is the
gradient of fj atx € R".
We offer a geometrical interpretation of the proximal gradient algorithm. Let us

define

¢ (@) £ prox, p, (z =y V f1 (@). (4.78)

Then, from the definition of the proximal operator in (4.19), we have

1
@) =wgmin] 5 + |~ -y V@)]
zeR" 7

) . (4.79)
= argmin{fl(z; x)+ fr(z) + gﬂz - CC||%},

zeR"

Proximal Gradient Method for ¢! Regularization 75

Figure 4.10. Linear approximation f’l (z; x) of convex function fi(z) at x.

where

filziz) 2 fi(@) + Vi) (z — x). (4.80)

Note that ||V fi (m)ll% and fi(x) are constant for the minimization with z,
and hence ||V fi (ZB)”% is eliminated and fj(x) is added in (4.79). The func-
tion fi(z;x) is a linear approximation of fj(z) around the point x € R".
Figure 4.10 shows an example of the linear approximation for one dimensional
case. From (4.79), the function ¢ () is the proximal operator of the linearized
function fi(z;) plus f2(2), and the iteration (4.77) can be interpreted as the
proximal algorithm (4.24) for this approximated function.

4.4.2 Convergence Analysis

Here we analyze the convergence of the proximal gradient algorithm. For this, we
define Lipschitz continuity. A function f : R"” — R”" is said to be Lipschitz con-
tinuous over R" if there exists a constant L > 0 such that the following inequality

If (@) — f@Wl2 < Lilz —yll2 (4.81)

holds for any vectors , y € R". When f is Lipschitz continuous, L is called a
Lipschitz constant, and the smallest L that satisfies (4.81) is called the best Lipschitz
constant.

Let us consider the optimization problem (4.76). We assume that the gradient
V f1 of f1 is Lipschitz continuous, that is, there exists L > 0 such that

IV fi(x) = Vfilyl2 < Llx—yl2, Vx,yeR" (4.82)

holds. Assume that the optimization problem (4.76) has an optimal solution x*.
Then we have [92, Section 4.2]

z" = ¢(x) = prox, , (" —y Vfi(z")). (4.83)

76 Algorithms for Convex Optimization

This implies that an optimal solution * of (4.70) is also a fixed point of map-
ping ¢ in (4.78). From this, the meaning of the iteration (4.77) is now clear; this
algorithm seeks the fixed point of ¢.

Exercise 4.28. Consider a continuous function ¢ : R" > R". Assume that there
exists an initial vector £[0] € R” such that the iteration

zlk + 1] = ¢(zlk]), k=0,1,2,... (4.84)

converges to £ € R". Prove that * is a fixed point of mapping ¢, that is, * =

¢ (x*) holds.
In fact, the following theorem holds [5].

Theorem 4.29. Assume the gradient V f1 is Lipschitz continuous over R", and L is
a Lipschitz constant satisfying (4.82). Assume also that the step size y satisfies

1
—. 4.8
y < 7 (4.85)

Then the sequence {x|k1} generated by the proximal gradient algorithm (4.77) con-
verges to a solution ©* of (4.76), and we have

lelk + 11 = 2|2 < llelk] —x*ll2, k=0,1,2,... (4.80)

Moreover, we have

L||lz[0] — z*||3

k=0,1,2,... 4.8
2k s s Lo &> s (7)

f(xlk]) — f(x¥) <
where f(x) = fi(x) + falx).

By this theorem, the convergence rate of the proximal gradient algorithm is
O(1/k). Note that this rate is much slower than /inear convergence (or first-order
convergence), with which the rate is O (r*) with |r| < 1.

Now, let us derive the proximal gradient algorithm of our ¢! regularization
(4.74). In our case, the two functions are

1
fi@) =510z -yl @) =ilzl, (4.88)
and the gradient of f1(x) is given by

Vfi(z) =0 (dx —y). (4.89)

Proximal Gradient Method for ¢! Regularization 77

Also, the proximal operator of fo(x) = A||z||; is the soft-thresholding operator
(see Section 4.2.5):

prox, ,, (v) =8, (v). (4.90)

From these, the proximal gradient algorithm for (4.74) is given as follows.
Proximal gradient algorithm (ISTA) for (4.74)

Initialization: give an initial vector [0] and parameter y > 0
Iteration: for k =0,1,2,...do

zlk + 11= S, (z[k] — y T (Dz[k] — y)). (4.91)

This algorithm is called the iterative shrinkage thresholding algorithm, or ISTA for
short. From (4.89), a Lipschitz constant of V f] is

L = 2 (® T D) = 0, (D) = || D, (4.92)

where Amax and omax respectively denote the maximum eigenvalue and the maxi-
mum singular value, and || ®@|| is a matrix norm defined by oymax(®). Note that if
® #£ 0, then ||®] > 0. From (4.85) in Theorem 4.29, if we choose y to satisfy

1

then a solution of the ¢! regularization (4.74) is obtained after the simple iteration
of (4.91).

Theorem 4.29 implies that the error by ISTA decreases at the rate of O(1/k).
We can then accelerate the algorithm by using not only x[k] but also the previous
x[k — 1] in the k-th step. The following algorithm is the accelerated iteration called
FISTA (Fast ISTA), which converges at the rate of 0(1/k2) [5, 118].

r Fast ISTA (FISTA) for (4.74) ~

Initialization: give initial vectors [0], 2[0], initial number #[0], and param-
etery >0
Iteration: fork = 0,1,2, ... do

[k + 11 =S, (2[k] — y @ (P2[k] - v)),

1+ /1 + 4t[k]?
2 b

tlk] —1
Ty 17 @+ 11— alk]).

tlk+1] =

(4.94)

zlk + 1] = x[k + 1] +

78 Algorithms for Convex Optimization

It is surprising that such simple modification leads to improvement of compu-
tational efficiency from O(1/k) to (1/k?). However, it is known that O (1/k?) is
optimal and one cannot accelerate the algorithm any further [92, Section 4.3].

4.5 Generalized LASSO and ADMM

In this section, we consider an extension of ¢! regularization, with a generalized
regularization term:

1
minimize —||®x — y||3 + A|¥x, (4.95)
xeR" 2

where ¥ is a matrix. We call this optimization problem the generalized LASSO. It ¥
is the identity matrix, this problem is reduced to the £ ! regularization in (4.74). A
problem is that the regularization term ||W||1 is in general not proximable, that
is, it is difficult to obtain a closed form of the proximal operator of ||¥x||1. There-
fore, we do not directly apply Douglas-Rachford splitting nor the proximal gradi-
ent method to this problem. In this section, we introduce an alternative splitting
method for this case.

4,51 Algorithm

Aside from the generalized LASSO in (4.95), let us consider a general optimization
problem:

minimize fi(x) 4+ f2(2) subjectto z = Yz, (4.96)
xzeR”, zeRP
where f1 : R" — RU{oo} and f> : R? — RU{0oo} are proper, closed, and convex
functions, and ¥ € RP*". The following algorithm, called Alrernating Direction
Method of Multipliers, or ADMDM for short, is an efficient algorithm to solve (4.906):
ADMM for (4.96)
e ™

Initialization: give initial vectors 2[0], v[0] € R”, and real number y > 0
Iteration: for k =0, 1,2, ... do

1
x[k + 1] := argmin [fl(x) + ZH%C — z[k] + v[k] \|2} . (497)

xeR"
z[k + 1] := prox, ,, (Yx[k + 1] + v[k]), (4.98)
vk + 1] := v[k] + Y[k + 1] — z[k + 1]. (4.99)

o)

Generalized LASSO and ADMM 79

To analyze this algorithm, we introduce the augmented Lagrangian:
Ly(@. 20 = fi@) + f(z) + AT (Yo - 2) + Zl¥o - 213, (4100

where A is a Lagrange multiplier and p is a positive constant. The term “aug-
mented” means that the function (4.100) is augmented from the usual Lagrangian

L(x,z,A) = fi(@) + fr(z2) + AT (Pzx — 2). (4.101)

by adding the term %II‘Pm — ZII%. Note that the augmented Lagrangian becomes
strongly convex with respect to variables « and z thanks to the additional term
LlIWx — 2|3 if ¥ T is positive definite.

Now, let y = p~! and v[k] 2 yA[k]. Then the ADMM algorithm

(4.97)—(4.99) can be rewritten in terms of augmented Lagrangian as

z[k + 1] = argmin L, (x, z[k], A[k]) (4.102)
xeR"

z[k + 1] = argmin L, (z[k + 1], 2, A[K]) (4.103)
z€eRP

Alk+ 11 =Alk]l+ p(Yx[k + 1] —2[k+1]), k=0,1,2,... (4.104)

Exercise 4.30. Show that the algorithm in (4.102)—(4.104) is equivalent to
(4.97)—(4.99) under the transformation y = p~!, v[k] = y A[k].

The important point of this algorithm is that the optimization for variables x,
z, and X is decoupled. The first step (4.102) is minimization of the augmented
Lagrangian for « with fixed 2 and A. The second step (4.103) is for z with fixed
x and A. The third step (4.103) is update for A using obtained « and z.

The following is a convergence theorem for the ADMM algorithm [12, 35]:

Theorem 4.31 (Convergence of ADMM). Consider the optimization problem in
(4.96). Assume that fi and f> are proper, closed, and convex functions. Assume also
that the Lagrangian (4.101) has a saddle point, that is, there exist x*, 2*, and X* such
that

L(z*,z*,) < L(z*, 2", \") < L(z, 2, \"), Ve, z,\ (4.105)

Then, the ADMM algorithm (4.97)—(4.99) satisfies the following convergence proper-

ties:

o The residual

rik] £ Ya[k] — z[k], k=0,1,2,... (4.106)

80 Algorithms for Convex Optimization

converges to O as k — o0. This implies that the iterates converges to a feasible
solution of (4.96).
o The objective value f1(x[k]) + f2(2[k]) converges to the optimal value

frE gt @)+ f). (4.107)
Y=z

o If Py g positive definite, then the sequence {(x[k], z[k])} converges to an
optimal solution (x*, 2*) of the optimization problem (4.96).

We can now derive the ADMM algorithm for the generalized LASSO (4.95).
First, since f1(x) = %Hd)a: — y||%, the minimization in (4.97) becomes

1 1
arg min {EHGD:B — yII% + 5”‘1‘33 — z[k] + ’U[k]“%}

xreR”

-1
= (cpT@ + llPT\P) ((I)Ty + yl‘I’T(z[k] - v[k])) .

Y
(4.108)
Exercise 4.32. Prove the equality in (4.108).
Next, since fa(x) = A|lz|1, the proximal operator in (4.98) is the soft-

thresholding function. In summary, the ADMM algorithm for the generalized
LASSO (4.95) is given as follows.

- ADMM for generalized LASSO (4.95)

\
Initialization: give initial vectors z[0], v[0] € R?, and real number y > 0
Iteration: fork =0, 1,2, ... do
T Lot (a7 LT
zk+1]=(DP' O+ -F'V¥Y O 'y+ —V¥' (z[k] —v[k])
14 Y
(4.109)
zlk + 11 =8, ; (Yxlk + 1] + v[k]) (4.110)
v[k + 1] = v[k] + Y[k + 1] — z[k + 1]. (4.111)
-)

If we compute the inverse matrix (O ® + y 'Y T¥) = ofiline (i.e. before
the iteration), the above ADMM algorithm just includes matrix-vector multipli-
cation, vector addition, and element-wise soft-thresholding. By this property, one
can implement this algorithm in a small device and execute very fast. Moreover, if

Generalized LASSO and ADMM 81
the matrix ® T ® + y “lgTyisa tridiagonal matrix, the linear equation

1
(CDTd)—I——‘PT‘P)m = (4.112)
Y

with unknown @ can be solved in O (n) [41, Section 4.3], and the first step (4.109)
can be computed very efficiently.

4.5.2 Total Variation Denoising

Here we consider total variation denoising for images, which can achieve noise
reduction and edge preserving at the same time. Let us assume we have a noisy
image Y € R™™"™, where each element in Y is the pixel value of the image of size
n x m. From 2D image data Y', we pull out each column vector, say y € R”", and
solve the following optimization problem, one by one:

n—1
L. 2
— 12 1= x| 4.113
mgelg}llze lz—yll5 + |xXi41 — xil ()

i=l

The first term is the £2 error between 2 and y for proximity to the data, while the
second term is the £! norm of the difference, called the total variation, for flatness
of the result. The optimization problem (4.113) is a special case of the generalized

LASSO (4.95) with ® = I (identity matrix) and

-1 1 0 0
N e e (4.114)
0 0 —1 1

We can directly exploit ADMM (4.109)—(4.111) for this problem. Moreover, the
matrix @ " @4y ~'W T ¥ is a tridiagonal matrix, and the algorithm can be executed
very fast as mentioned above.

The total variation, which is described by ||Wx||1, can be explained as a convex
approximation of the 0 total variation || ¥z||o. Minimizing the ¢ 0 total variation
leads to a sparse difference vector, and hence the optimization result can be maxi-
mally flat (i.e., the difference = 0 in all but a few pixels). A few nonzero differences
come from image edges. That is, we assume that there are just a few edges in an
image.

82 Algorithms for Convex Optimization

Original image Noisy image

Figure 4.11. Original image (left) and noisy image (right).

Restored image Restored image

R LR

Figure 4.12. Total variation denoising with 4 = 50 (left), 1 = 100 (right).

Now, we show the results of total variation denoising. Figure 4.11 shows the
original image and noisy image. The noise in the noisy image is so-called sa/t-and-
pepper noise with noise density 0.05. Roughly speaking, about 5% of the original
pixels are randomly replaced by black or white pixels.

From the noisy image, we remove noise by the total variation denoising. We use
the ADMM algorithm with y = 1. The maximum number of iterations in ADMM
is set to N = 500. For the 2-D image, we first run total variation denoising hor-
izontally and then vertically. That is, we run the algorithm twice for one image.
Figure 4.12 shows the results of denoising with 4 = 50 and 4 = 100. If you take
larger A, the variation between adjacent pixels will be smaller. Comparing images
with 4 = 50 and 2 = 100 in Figure 4.12, the image with 1 = 100 gives an
impression of more smoothness than that with 4 = 50. This effect is much more

Further Reading 83

Restored image

Figure 4.13. Result of total variation denoising with 1 = 200.

perceptible when 4 = 200. Figure 4.13 shows the result. The total variation term
is too strong in this case, and the restored image is now unacceptable.

In summary, to obtain a good result, you should carefully choose the parameter
A, which affects the quality of denoising. However, there is no general rule for
optimal 4, and you should choose 4 by trial and error.

MATLAB programs to do this example are available at the end of this chapter.
You can experiment the total variation denoising by yourself.

4.6 Further Reading

To study convex optimization deeply, you can choose a renowned book by
Boyd and Vandenberghe [13]. The PDF version of the book, lecture slides, and
MATALB/Python programs for exercises can be available in

http://web.stanford.edu/~boyd/cvxbook/

You can also choose a recent book by Bertsekas [7]. This book devotes much spaces
to recent algorithms such as the proximal gradient algorithms and ADMM. If you
need deep and mathematical knowledge of convex operation at a research level,
you can consult the book [4] by Bauschke and Combettes. For proximal splitting
algorithm, you can refer to [25, 92]. The book chapter [5] by Beck and Teboulle is
a nice introduction of ISTA and FISTA. For ADMM, you can read the book [12]
by Boyd et al.

84 Algorithms for Convex Optimization

MATLAB Programs

To run the main program, you need Image Processing Toolbox in MATLAB.

MATLAB program for Section 4.5.2 (Total variation denoising)

%% Read image

Img = imread(’cat.jpg’); % read image
X_orig = rgb2gray(Img); % Color to gray
[n,m] = size(X_orig); % Image size

%% Noise (salt & pepper)
Y = imnoise(X_orig,’salt & pepper’,0.05);

%% Display images
figure;
imshow(X_orig);
title("Original image”);
figure;

imshow(Y);
title('Noisy image’);

%% Denoising

% optimization parameter

lambda = 50;

% matrix Phi and Psi

Phi = eye(n);

Psi = -diag(ones(n,1))+diag(ones(n-1,D),1);

% ADMM iteration

gamma = 1; % step size parameter

N = 500; % number of iterations

X_res = zeros(n,m); % restored image

Z = zeros(n,m); V = zeros(n,m); % initial values

M = sparse(Phi"*Phi + (1/gamma)*Psi’*Psi); % sparse matrix

% vertical processing
Yv = double(Y);
W = Phi'*Yy;
for k=T:N
X = M\(W+gamma\Psi’*(Z-V));
P = Psi*X+V;
Z = soft_thresholding(gamma*lambda,P);
V=P-Z
end

% horizontal processing
W = rot90(X);
for k = 1N
X = M\(W+gamma\Psi'*(Z-V));
P = Psi*X+V;
Z = soft_thresholding(gamma*lambda,P);
V=P-2Z
end
X = rot90(X,3);

%% Result

figure;
imshow(uint8(round(X)));
title('Restored image’);

MATLAB Programs

MATLAB function for Soft-thresholding operator S; (v)

function sv = soft_thresholding(lambda,v)

[m,n] = size(v);
mn = m*n;
sv = zeros(m,n);

fori=1mn
if abs(v(i))<=lambda
sv(i) = 0;
else
sv(i) = v(i) - sign(v(i))*lambda;
end

end

85

DOI: 10.1561/9781680837254.ch5

Chapter 5

Greedy Algorithms

In the previous chapter, we have formulated the problem of sparse representation
as optimization problems with £! norm, for which there are efficient and fast algo-
rithms. The idea was to approximate the non-convex and discontinuous £° norm
by the convex ¢! norm. In this chapter, we consider alternative algorithms that
directly solve the £°-norm optimization by using the greedy method.

~ Key ideas of Chapter 5 ~

* Greedy algorithms are available to directly solve £ optimization.

¢ The greedy algorithms introduced in this chapter show the linear con-
vergence, which are much faster than the proximal splitting algorithms.

¢ A local optimal solution is obtained by a greedy algorithm, which is not

necessarily a global optimizer.

N J

5.1 ¢Y Optimization

Let us consider the following ¢° optimization problem:
minimize ||x|lo subjectto ®x =y, (5.1)
xzeR"

86

http://dx.doi.org/10.1561/9781680837254.ch5

{0 Optimization 87

where we assume @ € R”*" and y € R™ are given. To consider this optimization
problem, let us first define the mutual coberence of a matrix.

Definition 5.1. For a matrix ® = [¢1, ¢2, ..., P,] € R™" with ¢p; € R™,
i =1,2,...,n, wedefine the mutual coherence (@) by

2(@) 2 o~ [(Di, @)

: (5.2)
i,j;; n lpill2lld;ll2

The mutual coherence is the maximum value of the absolute value of the inner

product of ¢; /[|@ill2 and ¢} /||@;|l2. That is,
< i of >
loill2” Il

The value % is the cosine of the angle 6;; between two lines along with ¢;

and ¢ ;. If the angle is small (i.e. coherent), then this value is large (close to 1), and

(5.3)

p(®) = max
i,j=1,..,n
i#£]

if the angle is large (close to 90°, incoherent), then the value is almost 0. Figure 5.1
illustrates these properties. Hence, the mutual coherence is described as

u(®) = max |cost;jl. (5.4)
i,j=1,...,n
i#]

Roughly speaking, if the vectors ¢1, . . ., ¢, are uniformly spread in R™, then the
mutual coherence p(®) is small. On the other hand, if some vectors in the dic-
tionary are coherent like a tassel, then 1 (®) is large. Figure 5.2 shows dictionaries

with large ¢ (®) and small one.
From Cauchy-Schwartz inequality

Kz,)| < llzll2llyll2, Vo,y € R™, (5.5)

Figure 5.1. Angle 0;; between two lines along with ¢; and ¢;: coherent vectors (left)
and incoherent vectors (right).

88 Greedy Algorithms

P2 ¢, oB
¢3

v?s

Figure 5.2. Dictionary {¢1, ¢», ¢3} with large u(®) (left) and small u(®) (right).

the maximum value of the mutual coherence is 1. Since the equality in (5.5) holds
if and only if the two vectors @ and y are parallel, we have 1 (®) = 1 if and only
if there exist parallel vectors in {¢1, @2, ..., @,}. On the other hand, the mutual
coherence is always non-negative, and (@) = 0 if ® is a square orthogonal matrix.

By using the mutual coherence, we can characterize the solution of the £° opti-
mization (5.1) [37, Theorem 2.5]:

Theorem 5.2. If there exists a vector x € R" that satisfies linear equation ®x =y,
and

1 1
lzllo < 5 (1 + m) , (5.6)

then x is the sparsest solution of the linear equation.

By this theorem, let us consider properties of the solution(s) of the £° optimiza-
tion problem in (5.1).
First, let us assume u(®) < 1. That is, there are no parallel vectors in

{d1, D2, ..., dn}. Then, we have

1 1
E(Hﬂ@)) b o

and hence if there exists a 1-sparse solution « (i.e. ||z |lo = 1) of equation dx = y,
then this is the sparsest solution from Theorem 5.2. Now, we have

Yy =0x =x1¢01 +x2¢2 + -+ + X, P, (5.8)

and hence the 1-sparse solution is parallel to one of @1, ¢2, ..., ¢,. From this,
we find ¢; that is parallel to y. This is formulated as a problem to find an index
i €{1,2,...,n} that minimizes the error e(i) defined by

e(i) 2 min [x¢; — yll3. (5.9)
xeR

£% Optimization 89

If there exists « with ||x||o = 1, then there exists an index i € {1,2, ..., n} that
achieves e(i) = 0. Now, the minimum value of (5.9) can be easily obtained as
follows:

. . 2
e(i) = min |lx¢; — yl3
xeR

= min { (1, 61)x> = 201,) + (y,)}

xeR
2
.) (bi,y) , (biy)? (5.10)
= i j— + —
min 4[| ||2(x ||¢i||§) Iyl L
_ 2 _ <¢i, y>2
lyll5 TR

From this formula, we can find one index i * that satisfies e(i*) = O (if it exists) by
computing e(i) fori = 1,2, ..., n. Then we have

% A <¢i*, y)

yZX*qS'*a - s (511)
’ i+ 13
and the corresponding 1-sparse vector * is given by
i*
\2
z* =[0,...,0,x*,0,...,0]". (5.12)

This computation requires O (n) computational time at the worst case.
Let us generalize this observation. Assume that there exists a natural number k
that satisfies

w(®) < (5.13)

2k —1°
Then we have

%(1+$) > %(I—I—Zk—l):k. (5.14)
Assume also that there exists a k-sparse solution (i.e. ||z|lo < k) of the linear equa-
tion ®x = y. From Theorem 5.2, this is the sparsest solution. Then, the vector
y is a linear combination of k vectors in the dictionary {¢1, @2, ..., ¢,}. As we
have seen in Section 2.4 in Chapter 2 (p. 23), to find the k-sparse solution by the
exhaustive search, we need (Z) or O(Hk) computations, which cannot acceptable
in large scale problems.

For such problems, a method called the greedy method is available. This method

is an iterative method for a global solution, in which the locally optimal choice is

20 Greedy Algorithms

made at each stage. Although this method does not always give a global solution,
this method is a powerful tool for combinatorial problems. In the next section, we
introduce greedy algorithms for the £ optimization problem in (5.1).

5.2 Orthogonal Matching Pursuit

5.21 Matching Pursuit (MP)

First, we introduce the simplest greedy algorithm called mazching pursuit (MP for
short) to solve the ¢9 optimization problem in (5.1). This algorithm iteratively
seeks a 1-sparse vector that is a solution of a local £ optimization problem. As
mentioned above, a 1-sparse optimal vector is easily obtained with O (n) computa-
tions. Matching pursuit aims at finding a global solution by iterating such an easy
local optimization problem.

The algorithm of matching pursuit iteratively approximates the solution of linear
equation ®x = y by decreasing the residual r[k] = y — ®x[k] at each step. The
procedure is shown as follows:

1. Find a 1-sparse vector «[1] that minimizes ||®x — y||2.
2. Fork=1,2,3,...do

¢ Compute the residual r[k] = y — Ox[k]
® Find a 1-sparse vector * that minimizes | @z — r[k]||2 and set

xlk + 1] = x[k] + z*.
At the first step, we seek a 1-sparse vector [1] that minimizes ||®x — y||2. Let
x[1] be the non-zero element of x[1] and i[k] the corresponding index, that is,
i[1]
v T
z[11=[0,...,0,x[11,0,...,0] = x[1]eiy, (5.15)
where €;,1 € {1, ..., n} is the standard basis in R" defined by
e 21[0,...,0,1,0,....0]" e R". (5.16)
Then, from (5.10), i[1] and x[1] are easily obtained as

i[1] = argmin e(i)
ie{l,...,n}

. 2 <¢i9 y>2
= argmin q [|ly]l5 — 3
iel,...n) ldill5

Orthogonal Matching Pursuit 91

_ (i, y)?
= e
ie{l,...,n} illp (517)
1] = (¢i[1],y2)‘
ldirnll;
The residual is given by
r[l] =y — Ox[1] = y — x[1]di[1], (5.18)
and we have
y = x[1]¢ip + r[1]. (5.19)

We can easily check (see Exercise 5.3 below) that the residual vector r[1] is orthog-
onal to ¢;[1], and hence we have

lyl5 = Ix[1ipn 5 + L1115 (5.20)
If the residual ||7[1]]]2 is sufficiently small, then
g1 2 x[11gi = (1] (5.21)
is a good approximation of y. Figure 5.3 illustrates this observation.

Exercise 5.3. Prove that the residual vector 7[1] is orthogonal to ¢;{1}. Also prove
that the equation (5.20) holds.

At the second step, we seek a 1-sparse vector that is the best approximation of
the residual vector 7[1] in (5.18). The 1-sparse vector is easily obtained by (5.10)
with r[1] instead of y. Let [2] be the 1-sparse vector, x[2] its non-zero element,
and i[2] the corresponding index. Then we have

i, [l 2 ir1, Tl
i[2] = arg max (@i, rill)” [2]>) = (Pl [2]>. (5.22)

iefl,.ny N®ill3 lpirz1ll5

Yy
1
r[1]
® 50[1] 2
(o8

Figure 5.3. Vector g[1] = x[1]¢, with i[1] = 2 that is the best 1-sparse approximation of y.

The residual vector r[1] is orthogonal to ¢;.

92 Greedy Algorithms

The residual vector 7[2] is given by
r[2] = r[1] — ®z[2] = 7[1] — x[2]pi21, (5.23)
and from (5.19), we have
y = x[1ing + x[21¢ip) + 7[2]. (5.24)
It is easily shown that ¢;[2) and 7[2] are orthogonal to each other, and
Ir[1115 = llx[20eirll3 + e [21115. (5.25)
From this with (5.20), we have
lyll3 = IIx[1ipll3 + X211l + 21113 (5.26)
Now we obtain a 2-sparse vector

i[1] i[2]
\Y A\
2212 0,...,0,x[11,0,...,0,x[21,0,...,0] " = x[1le;n; + x[2leip),

(5.27)
which gives a 2-sparse approximation of y as
g12] = x [+ x[2] i) = Pz[2]. (5.28)
Figure 5.4 illustrates this.
If we continue the same procedure, we have at the k-th step
y = x[Lin + x[2ip) + - - - + x[kldipxg + rlk]. (5.29)
Define the k-sparse vector by
w[k] £ x[1lein) + x[2]eip) + - - - + x[kleip). (5.30)

Figure 5.4. Vector x[2]¢3; with i[2] = 3 that is the best 1-sparse approximation of the
residual vector r[1]. The residual vector r[2] is orthogonal to ¢3, and y = x[1]¢s + x[2]d3 +
7r[2] holds.

Orthogonal Matching Pursuit 93

Then the vector y is approximated by using this k-sparse vector as
gkl £ x[1 iy + x[21ip2) + - - - + x[k]pipr) = Pex[k]. (5.31)

If the residual r[k] approaches to 0 as k — 00, then we obtain an approximated
solution of the £° optimization problem in (5.1) by stopping the procedure at small
k. The exhaustive search requires O (nX) computations to obtain k-sparse vector,
while matching pursuit needs just O (nk) computations.

We summarize the algorithm of matching pursuit as follows:

~MP for 0 optimization (5.1) ~

Initialization: Set [0] = 0, »[0] =y, k =1
Iteration: while ||7[k]||2 > eps, do

(i, [k — 11)°
(k] := =
e T el
k] = (Difxy> Tk ; 1])’
||¢i[k]||2 (532)

k] := x[k — 1] + x[k]e;x,
rlk] :=rlk — 1] — x[k]®i[x),

k=k+1
NS J

In this algorithm, eps is the termination tolerance that should be fixed beforehand.

Exercise 5.4. Prove that the following equality holds at the k-th step in the MP
algorithm:

k
lyl3 = D lIxLilir 3 + k13, (5.33)
j=1

Moreover, show that if @1, ¢o, ..., ¢, are normalized, that is
lpill2 =1, Vie{l,2,...,n}, (5.34)

then the following equality holds:

k
Iyl = D Ix[i117 + e[kl (5.35)

j=1

The following theorem gives the convergence property of the MP
algorithm [71].

94 Greedy Algorithms

Theorem 5.5. Assume that dictionary {p1, @2, ..., @n} hasm linearly independent
vectors (i.e. rank(®) = m). Then there exists a constant ¢ € (0, 1) such that

Ir[k]I5 < cMllyll3, k=0,1,2,.... (5.36)
From this theorem, it follows that the residual 7[k] monotonically decreases and
lim r[k]=0 (5.37)

k— o0

holds.

The convergence rate in (5.30) is first order or linear, and the residual decreases
exponentially, that is, O(c®). This rate is much faster than FISTA in (4.94) (p-77)
for the ¢! regularization, which has O (1/k?) convergence.

5.2.2 Orthogonal Matching Pursuit (OMP)

We have seen that the residual 7[k] by the matching pursuit (MP) algorithm (5.32)
decreases very fast. However, in general, it does not always achieve r[k] = 0 in a
finite number of iterations, and the output vector x[k] for large k, or limy_; oo x[k]
may not be sparse. This is because MP may choose an index i[k] that was already
chosen in previous steps. Orthogonal Matching Pursuit (OMP) is an algorithm to
improve MP to achieve a finite number of iterations to obtain a sparse solution.
This is done by removing an index from candidates if it was once chosen. Let us
see the procedure of OMP precisely.
At the k-th step in MP, we choose the index by

(i, Tk — 1])?

rg max 5 , 0=y, k=1,2,... (5.38)
iefl,...n) pill5

To memorize indices that were chosen in the previous steps, we define the set S of
the chosen indices by k-th step as
Sk =Sk—1 U{ilkl}, So=0, k=1,2,... (5.39)
Also, let us define a linear subspace C of R™ spanned by vectors ¢;, i € S, thatis,
Ci & span{ep :i € Sy =1 D xigi :xi e R Y. (5.40)
€Sy

OMP approximates the vector y at each step by a vector in Ci, while MP approx-
imates it by just one vector @;[x]. More precisely, OMP chooses a vector y[k] in

Orthogonal Matching Pursuit 95

P

¢
? Cr = span{¢, : i € S}

Figure 5.5. The k-th step of OMP: find the best approximation g[k] of y in the linear
subspace Cr = span{¢; : i € S¢}. The residual vector r[k] = y — glk] is orthogonal to ;.

Ck that has the minimum ¢? distance from y. This is obtained by the orthogonal
projection of y onto Cg:

§lk] = arg min |v — y||5 = T¢, (v), (5.41)

’UECk

where Il¢, is the projection operator onto Ci. Figure 5.5 illustrates this projection
at the k-th step.
Using the restriction notation,' we can characterize the condition v € Ci as

v=" xip = Vs, &, (5.42)

€Sk

for some & € R¥. Note that #(Sk) = k holds as explained later. Then, the pro-
jection in (5.41) is obtained by finding the coefficients of gy[k] with respect to the
basis functions ¢;, i € S in Cg. That is, we find

- 1 -
Z[k] = argmin §||(I)Sk:12 - yll% (5.43)

zeRk
This is the least squares solution’
~ -1
B[k = (D§,Ps,)” PGy (5.44)

Note that the matrix (D:Srk g, isalways invertible (this will be explained later). Then
ylk] is given by

~ ~ —1
glk] = O dElk] = Os, (DG, Ps,)” O Y. (5.45)
Define the coefficient vector x[k] € R" with respect to ¢;, i € {1,2,...,n} by

(@lkl)g, = &Lk, (2[k]) 5 =0. (5.46)

1. For the restriction notation, see (2.45), (2.46), and (2.47) in Chapter 2 (p. 24).

2. For the least squares solution, see Section 3.1.2 in Chapter 3 and equation (3.23).

96 Greedy Algorithms

where S is the complement of Si. Then we have
gkl = dalk]. (5.47)
The residual vector 7[k] = y — §[k] is given by
ikl =y — glkl = {1 — @, (DF ©5,) " DL }y. (5.48)

It is easily shown that the residual vector r[k] is orthogonal to the linear subspace
Ck (see Figure 5.5), that is,

(v,r[k]) =0, Vv ecl. (5.49)

This means that any vector ¢; in Cx will never be chosen by the maximization at

the (k + 1)-th step:

. 2 _ 2
i+ 1] = argmax (@i, r[k])” (@i, r[k])

o B Agmax
ie(1,2,...ny l@ill5 ief1,2,..n) loill5
®i Cx

(5.50)

since (¢, r[k]) = 0 holds for any ¢p; € Cx, from (5.49). Also, we see that ¢;,
i € Sy are always linearly independent since @;[x+1] & Ck holds for any k, and
hence (ng—k ®g, is invertible. The name orthogonal matching pursuit comes from
this property of orthogonality.

We summarize the algorithm of OMP as follows.

~ OMP for ¢° optimization (5.1) ~
Initialization: Set 2[0] = 0, [0l =y, So =0,k =1
Iteration: while r[k] # 0 do
k= 11)2
i[k] := arg max M—ZD
iell,...n) loill5

Sk = Sk—1 U {i[k]},

b

F[k] == (0 @s,) ' ®L y,
(@[k])s, := FIK],
(@[kD)s; =0,

rlk] :=y — s, E[K],

(5.51)

k=k+1

Thresholding Algorithm 97

The following theorem shows that if there exists a sufficiently sparse solution of
the equation ®x = y, then OMP gives the solution of the £ optimization (5.1)
in a finite number of iterations [37, Theorem 4.3]:

Theorem 5.6. Assume that ® € R™*" is surjective, that is, rank(®) = m. Assume
also that there exists a vector © € R" such that ®x = y and

1 1
lzllo < 5(1 + m), (5.52)

where (@) is the mutual coherence of matrix ®. Then, this vector x is the unique
solution of the { 0 optimization (5.1), and OMP gives it in k = ||z||o steps.

We should note that at each step of OMP we need to compute the matrix inver-

sion of (<D:9rk (ng)_l d):srky. If the number k = ||z ||p in Theorem 5.6 is very large,
then this inversion may impose a heavy computational burden.

5.3 Thresholding Algorithm

In this section, we consider the following optimization problems:

1

minimize —|®x — y||% + Allxllo (5.53)
xeR" 2
1

minimize —|®x — y||% subject to |lz|lo < s (5.54)
xeR" 2

The first problem (5.53) is called the £ regularization, and the second problem
(5.54) is called the s-sparse approximation. Note that these optimization prob-
lems are non-convex and combinatorial. For these problems, we introduce efficient
greedy algorithms by borrowing the idea of the proximal gradient algorithm studied
in Chapter 4.

5.3.1 lterative Hard-thresholding Algorithm (IHT)

Let us consider the following optimization problem:
minimize f1(x) + f2(x), (5.55)
xeR”

where fj is a differentiable and convex function satisfying dom(f1) = R", and f>
is a proper, closed, and convex function. The proximal gradient algorithm for this

o8 Greedy Algorithms

H(,»(v)/

0 0

b

Figure 5.6. Hard-thresholding operator Hy(v).
is given by’
x[k + 1] = prox, ,, (z[k] — y V fi(z[k])). (5.56)

For the ¢° regularization of (5.53), we have

1
fi(z) & Sloz - yl3, flx) 2 Zlzlo. (5.57)

Although the function f> is not convex in this case, we thoughtlessly apply it to
the proximal gradient algorithm (5.56). Now, the proximal operator of f>(x) =
Allx|lo has a closed form, namely the hard-thresholding operator (see Figure 5.6)
defined by

D': |Di| EH’
ooy 2 1 5.58
[Hp(v)]i [0’ lo;)| <6, i=1,2,...,n, o2

with 6 = /2y A, that is,

prox, ;, (v) = H /377 (v). (5.59)

See Exercise 4.21, p. 68 for details. As shown in Figure 5.6, the hard-thresholding
operator rounds small elements (|v;| < €) to 0. Figure 5.7 illustrates this operation.
By using this operator, the proximal gradient algorithm for the ¢ regularization
(5.53) is given as follows.

IHT for £° regularization (5.53)

Initialization: Give an initial vector [0] and positive number y > 0.
Iteration: fork =0, 1,2, ... do

xlk + 1] = H sz (xlk] — y @7 (dz[k] — y)). (5.60)

This algorithm is called the iterative hard-thresholding algorithm (IHT).

3. See Section 4.4 (p. 73).

Thresholding Algorithm 99

Figure 5.7. Hard-thresholding operator Hy(v) rounds small elements (Jo;| < #) to O, where

0 =12y

For the convergence of the iterative hard-thresholding algorithm (5.60), the fol-
lowing theorem is proved in [9]:

Theorem 5.7. Assume that

1

4

holds where ||®|| is the maximum singular value of ®. Then the sequence
{z[O], [1], (2], .. .} generated by the iterative hard-thresholding algorithm (5.60)
converges to a local minimizer of the € 0 regularization (5.53). Moreover, the conver-
gence is first order, that is, there exists a constant ¢ € (0, 1) such that

lxlk + 11 —x*||> < cllx[k] — x|, k=0,1,2,..., (5.62)
where ¥ is a local minimizer.

The condition in (5.61) is very similar to the condition in (4.93) (p. 77) for the
proximal gradient algorithm for £! regularization. The convergence rate O (c¥) of
IHT is much faster than that of ISTA, O(1/k) or FISTA, O(1/k?). Note how-
ever that IHT just gives a local minimizer, which is not necessarily equivalent to a

global one.

5.3.2 lterative s-sparse Algorithm

Here we consider the s-sparse approximation (5.54). By using the indicator func-
tion (4.37) in Chapter 4 (p. 65), we rewrite the constrained problem of s-sparse
approximation (5.54) as an unconstrained optimization problem. Let us denote by
X the set of s-sparse vectors in R":

Sy 2 {x e Rzl < s (5.63)
Exercise 5.8. Show that X is a non-convex set.

The indicator function Iy for the set Xy is given by

0, llalo<s.
Is () = 5.64
L@ =1 0 2o > 5. 564

100 Greedy Algorithms

Figure 5.8. s-sparse operator H,(v) with s = 3: the 3 largest elements in magnitude are
unchanged and the other elements are set to 0. The numbers 1,2, 3 indicates the rank of
the absolute values of the elements.

By using this, the s-sparse approximation (5.54) is equivalently described by

1
minimize || Oz — yl3 + I, (z). (5.65)

xeR"

Note that since X is non-convex (see Exercise 5.8), the indicator function Iy, is
not a convex function. Anyhow, let us apply this to the proximal gradient algorithm
(5.56). To do this, we should compute the proximal operator of the indicator func-
tion Iy, which is equal to the projection onto the set ;. The projection is actually
obtained by

My, (v) = argmin & — v]l2 = H, (v), (5.66)

xreX;

where H;(v) is the s-sparse operator that sets all but the s largest (in magnitude)
elements of v to 0. Figure 5.8 illustrates this operation. Note that the projection is
in general not unique. If s largest elements are not uniquely determined, then they
can be chosen either randomly or based on a fixed ordering rule.

Exercise 5.9. Prove that equation (5.66) holds.

Let ys(v) denote the s-th largest elements of vector v € R". Then the
s-sparse operator H(v) can be represented by using the hard-thresholding opera-
tor (5.58) as

Hs(v) = Hy (v) (V). (5.67)

From this, the s-sparse operator is sometimes called as the hard-thresholding oper-
ator.

By using the s-sparse operator (5.66) as the proximal operator of the indicator
function 5, we obtain the proximal gradient algorithm (5.56) for the s-sparse
approximation (5.65).

Thresholding Algorithm 101

Iterative s-sparse algorithm for s-sparse approximation (5.54)

Initialization: Give an initial vector [0] and a positive number y > 0
Iteration: for k = 0,1,2, ... do

zlk + 11 = H,(zlk] — y @ (Dz[k] — y)). (5.68)

We call this algorithm the izerative s-sparse algorithm. Note that this is sometimes
called the iterative hard-thresholding algorithm (IHT).
For the iterative s-sparse algorithm, we have the following convergence theo-

rem [9].

Theorem 5.10. Assume that the matrix ® € R™*" is surjective, that is, rank(®) =
m, and the column vectors ¢;, i = 1,2, ..., n, are non-zero, that is,

lpillo >0, Vie{l,2,...,n}. (5.69)

Assume also that the constant y > 0 satisfies

1

l4

Then the sequence {x[0], x[1], x[2], . ..} generated by the s-sparse algorithm (5.68)
converges to a local minimizer of the s-sparse approximation problem (5.54). Moreover,
the convergence is first order, that is, there exists a constant ¢ € (0, 1) such that

where ¥ is a local minimizer.

5.3.3 Compressive Sampling Matching Pursuit (CoSaMP)

For the s-sparse approximation (5.54), we can extend the algorithm of OMP in
Section 5.2.2 with the s-sparse operator H. This algorithm is called the compressive
sampling matching pursuit (CoSaMP).

In the OMP algorithm (5.51), we first choose one index i[k] as

(@i, [k — 11)?

i[k] = arg max 5 (5.72)
iefl,...n) ldill5
Alternatively, CoSaMP chooses 2s largest values of
L[k — 1) : 2
i ll3 I ®ill2

102 Greedy Algorithms

and includes these 2s indices in the index set Sk, that is,

. 2
Sk = Sk—1 U supp | Has <L, rlk — 1]> . (5.74)
b ll2

As in OMP, we then find the projection of y onto the linear subspace Cy = {¢; :
i € S} Thatis,

~ -1
E[k] = (05, Ds,)” DL v. (5.75)
From this, we define an n-dimensional coefficient vector z[k] as

(&IK)),. i€ St

.76
0, i & S. 5.76)

(z[k]); = [
Note that the number of nonzero coefficients in z[k] is larger than 2s. We then
prune z[k] to an s-sparse vector x[k] as
x[k] = Hg(2[k]). (5.77)
Also, we update the index set Sk to
Sk = supp(x[k]). (5.78)

Finally, we obtain the CoSaMP algorithm to solve the s-sparse approxima-
tion (5.54).
~ CoSaMP algorithm for s-sparse approximation (5.54) ~

Initialization: Set [0] = 0, r[0] =y, Sp = @
Iteration: fork = 1,2, ... do

¢. 2
k] := su s —l, - .
(k] Pp[%2 (< 1o ”>)]

Sy = Sr—1 UT[Kk],
k] = (DS s,) ™ Ly,
(zlkD)s, = zlk], (5.79)
(z[k])s¢ =0,
x[k] := H (z[k]),
Sk = supp{z[k]},

rlk] .=y — O, x[k].
- J

For the convergence of the CoSaMP algorithm, see the original paper [88].

Numerical Example 103

5.4 Numerical Example

Here we solve sparse optimization numerically by using the greedy algorithms stud-

ied in this chapter. Let us consider the problem of curve fitting studied in Section
80

—t

3.3 (p. 48). with the sparse polynomial y = + t. The data are given as in

Section 3.3, the data points are given by
t=010-1), i=12,...,11, (5.80)

from which we reconstruct the 80-th order polynomial. Here we consider the fol-
lowing 6 algorithms:

¢! optimization considered in Section 3.3 (p. 48)
matching pursuit (MP)

orthogonal matching pursuit (OMP)

iterative hard-thresholding (IHT)

iterative s-sparse algorithm (ISS)

AN e

compressive sampling matching pursuit (CoSaMP)

The matrix ® € R1*81 g given by (3.106), which satisfies

1
0.012 < —— < 0.013, (5.81)
o)

and we choose the parameter y for IHT and ISS as

1
y =0.01 <0.012 < TR (5.82)
From Theorems 5.7 and 5.10, the condition (5.82) guarantees convergence to local
minimizers for IHT and ISS. We also choose A in the £° regularization problem as
A =0.001.

Figure 5.9 shows the coefficients obtained by the algorithms. The coefficients
are ordered from the highest degree to the lowest degree. We see that the ¢ 1 opti-
mization, MP, OMP, and CoSaMP give exact coefficients, while IHT and ISS show
incorrect reconstruction. To see this more precisely, we check the estimation error
r = y—®x*, where ™ is the obtained vector when the algorithm stops. Table 5.1
shows the error with the number of iterations required to achieve the error.

All but ¢! optimization stop the iteration when the error ||7[k]||2 is less than
107 or the number of iterations is larger than 10°.

IHT and ISS attained the maximum number of iterations 10°, and their errors
are much larger than those of the other methods. This is because they were trapped
into local minimizers. The other methods show fast convergence, among which

104 Greedy Algorithms

L1-OPT MP OMP

0.5 -0.5 0.5
10 10 10
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
IHT ISS COSAMP
1 @ 1 1
0.5 0.5 0.5
e T 0 O
-0.5 -0.5 -0.5
-1 -1 1@
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Figure 5.9. Estimation of sparse coefficients.

Table 5.1. Estimation error ||y — ®x*|, and number of iterations. IHT and ISS reached the

maximum number 10° of iterations.

Methods ¢! OPT MP OMP [HT ISS CoSaMP
Error 27x10710 91x107% 4.1 x 1071 0.0017 083 4.1 x 10~
Tterations 10 18 2 109 10° 3

OMP (2 iterations) and CoSaMP (3 iterations) especially present surprising results.
In view of the error and the number of iterations, OMP is the best method in this
case. It should be noted that greedy algorithms do not necessarily give a global
solution. OMP is the best in this case but in other cases, another method may be
the best. This depends on the problem and data, and we should adopt trial and

error to seek the best algorithm.

Further Reading 105

5.5 Further Reading

Basics of greedy algorithms can be found in [26, 62]. For the characterization of £°
optimality by using the mutual coherence, or the restricted isometry property (RIP),
which is not studied in this book, you can refer to [37, 38].

The matching pursuit (MP) was first proposed in [71], the orthogonal matching
pursuit in [28, 94]. For the iterative hard-thresholding algorithm and the iterative
s-sparse algorithm, see the paper [9]. The compressive sampling matching pursuit
(CoSaMP) was proposed in [88].

MATLAB function of MP
MP.m

function [x,nitr]=MP(y,Phi,EPS,MAX_ITER)
[m,n] = size(Phi);
x = zeros(n,1);
r=y;
k=0;
Phi_norm = diag(Phi’*Phi);
while (norm(r)>EPS) & (k < MAX_ITER)
p = Phi*r;
v = p./sqrt(Phi_norm);
[z,ik] = max(abs(Vv));
v2 = p./Phi_norm;
z = v2(ik);
x(ik) = x(ik)+z;
r = r-z*Phi(,ik);
k = k+1;
end
nitr=k;
end

106 Greedy Algorithms

MATLAB function of OMP
OMP.m

function [x,nitr]=OMP(y,Phi,EPS,MAX_ITER)
[m,n] = size(Phi);
x = zeros(n,1);
r=y;
k =0;
S = zeros(n,D);
Phi_norm = diag(Phi’*Phi);
while (norm(r)>EPS) & (k < MAX_ITER)
p = Phi*r;
v = p./sart(Phi_norm);
[z,ik] = max(abs(v));
S(k) = ik;
Phi_S = Phi(;,5(S>0));
X(S(S>0)) = pinv(Phi_S)*y;
r = y-Phi*x;
k = k+1;
end
nitr=k;
end

MATLAB function of hard-thresholding operator H; (v)
hard_thresholding.m

function hv = hard_thresholding(lambda,v)
[m,n]=size(v);
mn = m*n;
hv = zeros(m,n);
fori=Tmn
if abs(v(i))<=lambda
hv(i) = O;
else
hv(i) = v(i);
end
end
end

Further Reading 107

MATLAB function of the support of a vector
supp.m
function | = supp(x)

| = find(abs(x)>0)’;
end

MATLAB function of iterative hard-thresholding algorithm
IHT.m

function [x,nitr]=IHT(y,Phi,lambda,gamma,EPS,MAX_ITER)
[m,n] = size(Phi);
x = zeros(n,1);

r=y;
k =0;
while (norm(r)>EPS) & (k < MAX_ITER)

p = X + gamma * Phi’*r;

x = hard_thresholding(sgrt(2*lambda*gamma),p);

S = supp(x);
r = y-Phi(;,S)*x(S);
k = k+1;

end

nitr=k;

end

108

MATLAB function of s-sparse operator

S_sparse_operatorm

function y = s_sparse_operator(x,s)
[n,m]=size(x);
y=zeros(n,m);
[xs,indx]=sort(abs(x),1,’descend”);
indx_s = indx(1:s);
y(indx_s)=x(indx_s);

end

Greedy Algorithms

MATLAB function of iterative s-sparse algorithm

iterative_s_sparse.m

function [x,nitr]=iterative_s_sparse(y,Phi,s,gamma,EPS,MAX_ITER)
[m,n] = size(Phi);
x = zeros(n,1);
r=y,;
k =0;
while (norm(r)>EPS) & (k < MAX_ITER)
p = x + gamma * Phi’*r;
X = s_sparse_operator(p,s);
S = supp(x);
r = y-Phi(;,S)*x(S);
k = k+1;
end
nitr=k;
end

Further Reading

MATLAB function of CoSaMP
CoSaMP.m

function [x,nitr]=CoSaMP(y,Phi,s,EPS,MAX_ITER)
[m,n] = size(Phi);
x = zeros(n,1);
r=y;
k=0;
S=1I[1
Lambda = [];
Phi_norm = diag(Phi’*Phi);
while (norm(r)>EPS) & (k < MAX_ITER)
p = s_sparse_operator((Phi’*r)./sqrt(Phi_norm),2*s);
Ik = supp(p);
S = union(Lambda,lk);
Phi_S = Phi(;,S);
z = zeros(n,);
z(S) = pinv(Phi_S)*y;
X = s_sparse_operator(z,s);
Lambda = supp(x);
r = y-Phi_S*z(S);
k = k+1;
end
nitr=k;
end

109

MATLAB code for the simulation in Section 5.4

clear;
%% data
% polynomial coefficients
x_orig = [-1,zeros(1,78),1,07;
% sampling
t=0:017;
y = polyval(x_orig,t)’;
% data size
N = length(t);
M = N-1;
% Order of polynomial
M_I = length(x_orig)-1;
% Vandermonde matrix
Phi=[7;
for m=0:M_|
Phi = [t"."m,Phi];
end

110 Greedy Algorithms

%% Sparse modeling
% iteration parameters
EPS=1e-5; % if the residual < EPS then the iteration will stop
MAX_ITER=100000; % maximum number of iterations
% L1 by CVX
cvx_begin

variable x_[1(M_I+1)

minimize norm(x_I1,1)

subject to

Phi*x_I1 ==y

cvx_end
% Matching Pursuit
[X_mp,nitr_mp]=MP(y,Phi,EPS,MAX_ITER);
% OMP
[x_omp,nitr_omp]=0OMP(y,Phi,EPS,MAX_ITER);
% CoSaMP
s = length(supp(x_orig));
[x_cosamp,nitr_cosamp]=CoSaMP(y,Phi,s,EPS,MAX_ITER);
% IHT
lambda=0.007;
gamma=0.0T;
[x_iht,nitr_iht]=IHT(y,Phi,lambda,gamma,EPS,MAX_ITER);
% iterative s-sparse
gamma=0.07;
[x_iss,nitr_iss]=iterative_s_sparse(y,Phi,s,gamma,EPS,MAX_ITER);

DOI: 10.1561/9781680837254.ch6

Chapter 6

Applications of Sparse Representation

In this section, we introduce applications of sparse representation in a finite-
dimensional space for systems and control.

6.1 Sparse Representations for Splines

In this section, we consider curve fitting by using splines. As discussed in Chapter 3,
we consider the following two-dimensional data:

D= {(tla yl)a(tZ,)’Z)a---,(fm,)’m)}, (6.1)

where 0 < #) <t <--- <t = T are sampling times, and y1, y2, ..., Y are
obtained from the following observation:

Vi = y(l,-) +¢, i=1,2,....,m, (6.2)

where y is a function and ¢; is additive noise. The problem of curve fitting is to
estimate the unknown function y form data D.

In Chapter 3, we have assumed the function is a polynomial function, and shown
that with a fixed order of the polynomial, the problem becomes a convex optimiza-
tion. Here we seek a function among more general functions called sp/ines. Namely,

m

http://dx.doi.org/10.1561/9781680837254.ch6

12 Applications of Sparse Representation

we consider the following optimization problem:

m T
minimize E ly(t) — vil* + /1/ 15(t)|%dt, (6.3)
y

i=1 0

where we assume the second derivative ¥ is in L2(0, T). The first term is for the
fidelity of curve fitting to the data, and the second term is for the smoothness of the
curve. In general, if you increase the fidelity then the curve becomes less smooth,
and hence we need to control the trade-off between them to appropriately choose
the parameter 4 > 0.

Note that since y is not a finite-dimensional vector but a function, the problem is
an infinite-dimensional problem. However, to use techniques in Hilbert space theory,
the problem can be reduced to a finite-dimensional optimization problem. Let us
first show this in this section. For this, we introduce the formulation of control
theoretic splines [36, 108].

6.1.1 Solution by Projection Theorem

First, let us define

x1(t) £ y(0), x(0) £ 9(0), u() = (). (6.4)

Then, the optimization problem can be described as

uel?(0,T)

m T
minimize Z ly(%) — vil* + /1/0 lu(r)|dt
i=1

(6.5)
subject to &(r) = Az(t) + bu(r), y(t)=c'x(r), tel[0,T]

z(0)=0

where (1) £ [x1(7), x2(¢)] " and

[0 1 A [0 21
ae 0] we] es] »

Note that this formulation is for more general optimization than (6.3) by choosing
another set of (A, b,).
Define

T A(Z—T)b fFO<t<
I(z, 1) 2 Ig ¢ o MU stsT 6.7)

, otherwise

Sparse Representations for Splines 13

and
i) 21, 1), i=1,2,...,m. (6.8)
Then we have

T
y(ri)=<¢,-,u>Lz=/ Siudr, i=1,2.. .m (69
0

From this, the problem (6.5) becomes

m T
minimize Z|(¢,~,)2 — yi |2 + /1/ |u(t)|2dt. (6.10)
0

uel?(0,T) o1

Then, if we define z; £ (¢;, u) 2, the optimization problem is described as

m T
minimize E lzi — yi|2 + /1/ |M(f)|2df
. 0

i=1

ueL?(0,T) (6.11)
subjectto z; = (¢i, u);2, i=1,2,...,m.
Define a new Hilbert space H by
H=L*0,T) x R", 6.12)

with inner product

T
<[Z] , [:UM 2wz +/0 u(t)o(t)d. (6.13)

Then, consider a closed linear subspace M of H defined by

Mé“:ﬂeH:zi=(¢,-,u)Lz}, (6.14)

and a vector p € H defined by

p & [;ﬂ € H, (6.15)

where y = [y1, ¥2, ..., ym]' € R™. Then, for 7 = (u, z) € H, we have
m T
Ir—pl% =1 —yl-|2+z/0 u(o)dr, (6.16)
i=1

where || - || g is the norm induced by the inner product (-, -) g, that is

lr —plu ={r—p,7—pu. (6.17)

14 Applications of Sparse Representation

M+ +p

< *r* M

\/

Figure 6.1. Projection theorem: the projection of p onto M is given by »* € (M 4+ p) N M.

The optimization problem (6.11) is now rewritten as
minimize |7 — p||%1 subjectto r € M. (6.18)
reH

The minimizer is given by the projection of p € H onto the closed linear subspace
M C H.Let M+ denote the orthogonal complement of M in H. That is,

o[Lo Eer e

Then, from the projection theorem, the minimizer 7* is in the set (M Lipn
M (see [36, Section 2.3]). Figure 6.1 illustrates this property form the projection
theorem.

Now, let us characterize the set M+ +p. Take (v, w) € M*. Then, from (6.14),
for any (u, z) € M, we have

o={La)- L)

T
=sz+/1/ o(Hu(t)dt
0
(p1,u)2
(o, u)p2
= ’LUT L + /1(1), M)LZ (6,20)
<¢mau>L2

wi(¢i9u>L2 + /’{<Dau>L2

I

i=1

<,.

M =

w; P; +iv,u>

1 L2

Sparse Representations for Splines

This equation holds for any u € L?(0, T), and hence we have

m
Zu),‘¢i + Ao =0,
i=1
or
1 m
v = —Igwﬂﬁi.

From this, the subspace M1 can be represented by

ML — [[—% (- wi¢z} Cw eRm]’

w

and also we have

Mt 4p— H—%Z;ﬂ:l wi¢i:| :weR’"].

w+yY

15

(6.21)

(6.22)

(6.23)

(6.24)

Now, let us obtain the minimizer r* = (u*, z*) € (M* + p) N M of (6.18)

(see also Figure 6.1). First, since 7* € M, we have
Z;.k:(¢i,u*>L2, i:1,2,...,m.

Next, since 7* € M+ + P, we have

Inserting (6.26) into (6.25) gives

1

1 < -
Zl*:<¢l’_zzwj¢]> :—IZ ¢19¢J 2.
j:] L2]:1

From (6.27), we have

>JI»—~

m
z ¢la¢] Lz_wl+yla

or

A + G)w = — 1y,

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

116 Applications of Sparse Representation

where G is the Gram matrix defined by

(P1,01) (P1,P2) ... (D1, Pm)
(P2, b1) (P2, 92) ... (P2, Pm)

G = (6.31)
<¢ma ¢1> <¢ma ¢2> cee <¢ma ¢m>
Since 4 > 0, the matrix 2/ + G is non-singular, and hence
w=—-1AI+G) ly. (6.32)
Finally, from (6.26), we obtain the solution
* 1 $ —1
ut=— D [-GI+6)")¢
i=1
m
=> [+6)y),¢i (6.33)
i=1
= z a?gﬁl
i=1
where
ay
o= |=0UI+6)"y. (6.34)
Oy

The important point of the solution is that the optimal solution of the infinite-
dimensional optimization problem in (6.5) is describe as a finite number of spline
Sfunctions 1, . . ., P and the problem is reduced to computing the unknown coef-

ficients a}, ..., a,,. In other words, the original problem (6.5) is fundamentally a

> Ym
finite-dimensional optimization problem. Note that this property is generalized to
the representer theorem in statistical machine learning [104].
Finally, the optimal solution y* of the original optimization problem (6.3) is

given by

t T
v (1) =/ / u*(s)dsdr. (6.35)
0 JoO

Sparse Representations for Splines 17

6.1.2 Sparse Representation

From (6.33), the number of coefficients is equal to m, the number of data. If the
data is very big (i.e., m is very large), then we need many coefficients to repre-
sent the fitting curve y(t). Then, to use the idea of sparse representation, we can
reduce the number of coefficients. For this, we restrict the feasible solutions of the
optimization problem (6.10) to be

u(ty =D ui(0), (6.36)

i=1

where 71, . .., Z;m are unknown coefficients to be obtained. With this, we have

<¢ia”>L2=<¢iaZZj¢j> =sz<¢ia¢j>L2a (6.37)
Jj=1 L2

j=l1

and hence
(P1,u)p2
<¢2’:”>L2 e (6.38)
<¢ma.u>L2
and
i|<¢ia”>L2_)’i| =Gz —yl|*. (6.39)

i=1

Also, we have

T s T(mn "
i /0 ()Pt = /0 (Ezi¢i(r)) ;zmsj(r) di

m.om (6.40)
=1 izl)2

i=1 j=1
=)z Gz.

Therefore, under the assumption of (6.36), the optimization problem (6.10) is
rewritten as

minimize |Gz — y||> + 12 Gz. (6.41)
zeRm

18 Applications of Sparse Representation

Then, to promote the sparsity of 2, we add the £° norm as a regularization term:

minimize | Gz — ylI>+ 1z Gz + plzlo, (6.42)
zeRM

where p > 0 is the regularization parameter. As usual, we can adopt the £ I horm
as convex relaxation of the £° norm. The relaxed convex optimization problem is
described as follows:

mini}gﬂze IGz —yl?> + 22" Gz + pliz|. (6.43)
zeR™

This can be easily solved by the proximal gradient algorithm studied in
Section 4.4 (p. 73).

6.2 Discrete-time Hands-off Control

In this section, we introduce sparse control (or hands-off control) for discrete-time
systems.

6.2.1 Feasible Control

Let us consider a linear time-invariant system described by
xzlk + 11 = Ax[k] + bulk], k=0,1,2,...,n—1, (6.44)

where z[k] € R? is the state and u[k] € R is the control at time step k €
{0,1,2,...,n — 1}. The matrix A € R¥*¢ and the vector b € R? are assumed
to be exactly known. The number 7 is the horizon length of the system. We call the
difference equation (6.44) the szate equation.

Assume that the initial state [0] = & is given by state observation. Then the
control objective is to find a control sequence {u[0], u[1], ..., u[n — 1]} such that
the control drives the state [k] from [0] = £ to the origin, that is,

x[n] = 0. (6.45)

From the state equation (6.44), we have

k—1 k—1
zlk] = A*z[0] + D~ A buli] = A*¢+ > A buli], (6.46)
i=0 i=0

Discrete-time Hands-off Control 119

fork € {0, 1,...,n—1}. Then, the terminal constraint (6.45) can be described as

z[n] = A"€ + nil A" pyli] = A"E + du =0, (6.47)
i=0
where
u[0]
®=[A" b A"2b ... Ab b], u= u[:l] (6.48)
uln — 1]
Then the set of feasible controls that achieve (6.45) is given by
Un, &) 2 {ueR": A"¢ + du =0}. (6.49)
For the feasibility, we have the following lemma.
Lemma 6.1. Suppose n > d and the following matrix M is nonsingular:'
M2[b Ab ... Alb] e R (6.50)

Then the feasible set U(n, €) is non-empty for any & € RY.

Proof: Since n > d and the matrix M is non-singular, the matrix @ in (6.48) has
full row rank. It follows that @ is surjective and there exists at least one vector u
that satisfies ®u = —A"¢ for any £ € R, d

6.2.2 Maximum Hands-off Control

The optimal control is a problem to seek the optimal solution(s) that minimizes a
cost function among control vectors in U (1, §). A general form of the cost function
is given by

n—1

J(uw) =" L(xlk], ulk]), (6.51)

k=0

where the function L is called the szage cost function.
The linear quadratic control, or LQ control for short, has the following stage cost
function

L(x,u) =a'Qx +rlul?, (6.52)

1. The matrix M is called the controllability matrix, and the pair (A, b) is called controllable if M is non-singular.

120 Applications of Sparse Representation

where Q € RI*d s 4 positive semidefinite matrix, and » > 0. In this section, we
are interested in sparse control, also known as maximum hands-off control, which has
the following stage cost function:

L(z,u) = |ul°, (6.53)

with which the cost function is given by

n—1
J(w) =" [ulk]l” = [ullo. (6.54)
k=0

The optimization problem is then described as

miniﬁlize lullo subject to u € U(n, §). (6.55)
ueR"

As usual, we approximate the £° optimization by

minimize ||u||1 subject tou € U(n, §), (6.56)
ueR”

which is the £! optimization problem discussed in Section 4.3, which is efficiently
solved by Douglas-Rachford splitting algorithm (see Section 4.3.1).

Also one can consider the following cost function

n—1

T =" {2l Qalk] + 21utk]l} (6.57)

k=0

with positive semidefinite Q € R4%d and A > 0. Inserting (6.46) into (6.57), we
have

J(w) =u"Ru+2q" u+ Alul +c, (6.58)

for some R € R"*", g € R", and ¢ € R. For this optimization, we can apply the
ADMM algorithm discussed in Section 4.5.

6.2.3 Model Predictive Control

As discussed above, the control sequence u € R” is obtained by numerical opti-
mization with given initial state observation & € R?. Let denote by C the mapping
from the initial state £ € R4 to the optimal control sequence u € R”, that is,

u=C(). (6.59)

Discrete-time Hands-off Control 121

Then u = C(§) is a finite-horizon control (i.e., the control is applied to a plant
in a finite length of time), and this is open-loop control. Open-loop control is some-
thing like riding a bicycle with your eyes closed, which is very fragile against distur-
bances. To make the control system r0bust, you need to implement the control as
[feedback control, where the controller constantly observes the state and update the
control based on the latest state observation.

To implement feedback control from the finite-horizon control u = C(§), we
adopt the model predictive control (also known as receding horizon control).

The model predictive control is described as follows:

1. Observe the state x[k] at time k.
2. Compute the optimal control sequence

uolk]

u1k]
ulk] = : = C(x[k)). (6.60)

un—1lk]

3. Use the first element of w[k], that is, ug[k], as the control at time k.

From this, the control u[k] to the discrete-time plant (6.44) is obtained by
ulk] = uolkl =1 0 ... 0]C(w[k]). (6.61)

Figure 6.2 shows the block diagram of the feedback control system where P is the
plant.

The important thing we should do next is to study the szabilizy of the feedback
system. The closed-loop system in Figure 6.2 may exhibit instability, that is, [k]
may diverge, if we do not care about the stability. The instability is possible even
when P and C are both stable. Therefore, to prove the stability is very important
to design a feedback control system.

First, we define the value function V (§) of the optimal control problem (6.56) by

V(g = uéi}%ffg) lleells. (6.62)
ulk] = walk] [i
ulk]
[1,0,...,0] C e

Figure 6.2. Feedback control by model predictive control u(k] = C(x[k]). P is the plant
given by (6.44).

122 Applications of Sparse Representation

We have the following lemma:

Lemma 6.2. Assume that the controllability matrix M in (6.50) and the matrix A
in (6.44) are non-singular. Assume also thatn > d. Then the value function V (§) is
convex, continuous, and positive definite.

Exercise 6.3. Prove Lemma 6.2.
Now, we give a detailed definition of stability.

Definition 6.4. Let us consider the following discrete-time system
xzlk+ 1] = f(x[k]), k=0,1,2,... (6.63)

Suppose that there exists the unique sequence {[0], [11, . . .} satisfying (6.63) for any
initial state £[0] € RY. Suppose also that the origin is an equilibrium of the system,
namely, f(0) = O holds. Then the origin is said to be stable if for each € > 0 there
exists 0 > O such that

[2[0lll2 <d = llz[k]ll2 <€, Vk=0. (6.64)

The concept is very simple; the state trajectory {x[k]}72, starting out near the
origin will keep on staying near the origin and never diverge.
From (6.44) and (6.61), the closed-loop system is described as

xlk+ 1] = Az[k]+[1 0 ... 0]C(z[k]) £ f(x[k]). (6.65)

It is easily shown that the origin 0 is an equilibrium of this difference equation.
To show the stability of this equilibrium, Lyapunovs theorem is available.

Theorem 6.5. Suppose that there exists a function 'V : RIS R satisfying

V(0) = 0.

V(&) is continuous.

V(&) > 0 forany§ # 0.

V(xlk+1]) < V(x[k]) fork =0, 1,2, ..., for the state trajectory {x[k]} 72
of the system (6.63).

LA

Then the origin O is stable under the system equation (6.63).

A function V in Theorem 6.5 is called a Lyapunov function. The idea to prove the
stability of our system (6.65) is to show the value function (6.62) to be a Lyapunov
function. In fact, it is a Lyapunov function and we have the following theorem.

Theorem 6.6. Assume M and A are non-singular, and n > d. Then the origin is
stable under the system equation (6.65).

Discrete-time Hands-off Control 123

Proof: We prove the value function V() in (6.62) is a Lyapunov function of
(6.65). The properties 1 to 3 in Theorem 6.5 are directly from Lemma 6.2. We here

prove 4. Let
w k] 2 [ugtk] Wikl ... wi_ k1] = C(aik]), (6.66)

and define
alkl 2 [wilk] wilkl ... w’_,[k1,0]". (6.67)

Note that @[k] is a shifted control sequence by one time step of the optimal control
sequence w*[k] at time k. It is then easily shown that @[k] is a feasible control for
x[k + 1], that is,

alk] € U(n, z[k + 1]). (6.68)
In fact, since w*[k] € U(n, z[k]) we have
A'z[k + 1] + Oak]
= A"(Ax[k] + bu[k]) + A" Tbullk] + - - + Abu’_[k]

= A(A"z[k] + A" buf[k] + A" 2bui k] + - - + buli_ [k])

(6.69)
= A(A"x[k] + Ou*[k])
=Ax0
=0.
Then, from the optimality of the value function, we have
V(z[k + 11) = min{[|ull; : w € U(n, z[k + 1])}
< llalklll
= |ui k1 + [u3 k1] + - + |uy_ [K]] + |O]
n—1 (6.70)
= D> luf k]| — |uglK]]
i=0
= V(zlk]) — luglk]|
< V(xlk]),

fork=0,1,2,... O

124 Applications of Sparse Representation

6.3 Further Reading

The control theoretic smoothing spline was first proposed in [108]. The book [36]
is a nice reference for the smoothing spline. The convex optimization formulation
of constrained smoothing spline was considered in [78], and the sparse representa-
tion was proposed in [79].

The maximum hands-off control was first proposed in [83] for continuous-time
and discrete-time systems. Detailed discussions of maximum hands-off control for
continuous-time systems can be found in Part II of this book. The model predictive
control formulation was proposed in [80].

Part |l

Sparsity Methods in Optimal
Control

DOI: 10.1561/9781680837254.ch7

Chapter 7

Dynamical Systems and Optimal Control

We have studied the idea and algorithms of sparse optimization in Part I. In part 11,
we will extend the sparsity methods to dynamical systems. For this, we here review
basics of dynamical systems and optimal control, before we consider sparse control
in the subsequent chapters.

-~ Key ideas of Chapter 7 ~

¢ A dynamical system is modeled by a differential equation called the state-
space equation.

¢ We cannot control uncontrollable systems.

¢ Optimal control is the best control among feasible controls for a con-
trollable system.

N J

7.1 Dynamical System

A dynamical system is a system that depends on time. That is, a dynamical system
is a moving system. Dynamical systems are around us; industrial products such
as vehicles, airplanes, motors, electric circuits, etc, as well as movement of plane-
tary, change of weather, ant swarm, cell movement, fluctuations in stock prices and

126

http://dx.doi.org/10.1561/9781680837254.ch7

Dynamical System 127

spread of virus. Dynamical systems are important not only in engineering but also
in physics, biology, economics, and social science.

711 State Equation

In this book, we focus on a dynamical system that is described by a linear differential
equation:

z(t) = Az(t) + bu(t), >0, z(0)=¢eR?, 7.1)

where A € R¥*? b e R?, x(r) € RY, and u(r) € R. We call 2(¢) the state, and
u(t) the control. The state 2(0) = £ at time t = O is called the zn:tial state, and the
differential equation in (7.1) is called the state equation. The dynamical system in
(7.1) is controlled by the control u(t), and called a controlled object or a plant.

Exercise 7.1. Show that the solution of the differential equation (7.1) is given by

t
2(t) = eMe + / Abu(r)dr, ¢ >0, (7.2)
0

Example 7.2 (Rocket). Let us consider the control of a rocket in the outer space where
no friction nor gravity acts (see Figure 7.1). The rocket is accelerated by thrust from a
rocket engine. Let the mass of the rocket be m [kg]. We assume that the rocket can move
on 1-dimensional straight line. Let the position of the rocket at timet > 0 be r (t) with
initial position r(0) = &1, and initial velocity v(0) = 7(0) = & We denote the
thrust force by F(t). From the Newtons second law of motion, we have'

mi(t) = F@t), r0)=¢&, r(0)=26. (7.3)
m F(t) .
r(0) =& rocket

#0) =& r(t), ()

Figure 7.1. Rocket example.

1. Strictly speaking, the thrust of a rocket is obtained by emitting its mass (e.g. fuel) to the opposite direction,
and hence the model is not correct. That is, the mass m should be time-varying m () that decreases in time.
In this example, however, we assume that the mass of the rocket is sufficiently large and the variation can be
ignored.

128 Dynamical Systems and Optimal Control

Let us transform this differential equation into the state equation in (7.1). For this,
define the state x(t) by

a [x1@®)] & [r(®)
a2 [0 0] s

Then we have
o r@®] | x@ | _[01][{x1() 0
() = ['r'(t)] = [m—lF(r)] = [0 0] |:x2(t):| + [m—l] F@

Defining u(t) = F(t) and

A0 1 Al O 2|1
SR ee) el

we obtain the state equation of the form (7.1).

(7.5)

The system (7.3) or (7.5) is sometimes called the double integrator, since the
position 7 (t) is obtained by integrating F () twice.

Let us investigate the meaning of the state-space equation (7.1). Assume that
the initial state £(0) = &£ at time ¢t = 0 is obtained from observation by a
sensor attached to the system. The signal u(t) is called a control and we design
u(t) for t > 0 to realize a desired trajectory of the state x(f). In the rocket
control considered in Example 7.2, we design the thrust force u(t) = F(t) to
drive the rocket, for example, within time 7 > 0 from the earth (x(0) = §)
to the moon (7)) = 0 with minimum fuel consumption. This is a problem of
control.

If the control u(t) for t > 0 depends only on the initial state (0) = &,
then the control is called feedforward control. Instead, if the control u(t) for
t > 0 is determined a constant (or an intermittent) observation of the state
x(r) with 0 < 7 < t, then the control is called feedback control. Feedforward
control uses only one observation x(0) at time t = 0. This is, so to speak,
driving a bicycle (or a car) with eyes closed, while feedback control uses infor-
mation from the eyes which is always (or sometimes) open. From this obser-
vation, we can easily understand that feedforward control is very fragile against
uncertainties and disturbances. The feedback structure solves this fragility and
leads to robustness. However, we mainly consider feedforward control since it
gives clear mathematical structures of the optimal control. For feedback con-
trol implementation, one can adopt the receding horizon control, also known as

Dynamical System 129

X1

x(T)=0

Figure 7.2. State transfer problem: finding a control u(z), 0 < ¢+ < T that drives the state
from a given initial state (0) = £ to 0.

the model predictive control [70] as discussed in Section 6.2, or self-triggered
control [48].

7.1.2 Controllability and Controllable Set

We can consider many types of objectives of controlling the plant (7.1). For exam-
ple, we set several target points Z1,..., s to control the plant so that the state
x(t) pass approximately thorough these points at time t = T1, ..., Ty, that is
x(T;) ~ x;. This control is called trajectory generation, or trajectory planning. We
can also consider a control problem to keep the state (¢), t > 0 in a prescribed
set X' in the state space, that is, z(¢) € X forall ¢t > 0, assuming x(0) € X'. This
problem arises for example in keeping a drone hovering in a region.

In this book, we mainly focus on the problem of szate transfer. This problem is
finding a control u(#) that drives the state (¢) from a given initial state £ to the
origin 0 in a given time 7 > 0 (see also Figure 7.2).

First, we discuss the existence of the control. For this, we introduce the notion

of controllability.

Definition 7.3 (Controllability). We call the system (7.1) is controllable if for any
initial state x(0) = & € R, there exist a time T > 0 and a controlu(t),0 <t < T
such that the state x(t) in (7.1) is driven to the origin at timet = T, thatisx(T) = 0.

If the system is not controllable, then there exists an initial state that cannot be
achieved to the origin with any u(¢) in finite time. The controllability is a funda-
mental requirement for control systems, and in this book we always assume that
the system (7.1) is controllable.

Given a linear system, to check its controllability is an easy task. In fact, we have
the following theorem for the controllability:

130 Dynamical Systems and Optimal Control

Theorem 7.4. The dynamical system (7.1) is controllable if and only if any of the
Jollowing equivalent conditions is satisfied:

1. The following matrix called the controllability matrix
M=2[b Ab A% ... A‘7lb] (7.7)

is non-singular.
2. The following matrix called the controllability grammian

T
G(T) & / eAbbTeA s (7.8)
0

is non-singular for any T > 0.
3. Forany A € C,

rank [A — Al B] =d. (7.9)
4. For any left eigenvector v' of A,
v'b#£0. (7.10)

From this theorem, to check the controllability of the dynamical system (7.1) is
just to compute the determinant of the matrix M.

The controllability of the system (7.1) is completely determined by the matrix
pair (A, b). From this, we often say the pair (A, b) is controllable, which means the
system (7.1) is controllable.

Example 7.5. Let us consider the rocket model (7.5) and (7.6) in Example 7.2. The
controllability matrix is given by

M=[b Ab]= [(1) (1)] (7.11)

1t is easily shown that this matrix is non-singular. Thus, the system is controllable from
Theorem 7.4.

Note that if the dynamical system (7.1) is controllable, then for any initial state
£ e R4, any final state { € R4, and any time 7" > 0, there exist a control u(?),
0 <t < T that drives the state (¢) from x(0) = £ to x(T) = (.

Exercise 7.6. Prove the above fact.

In general, the shorter the time T > 0 is, the larger the magnitude and the
shorter the support of u(t) should be. The shape of u(¢) may approach to some-
thing like the Dirac’s delta when T approaches to zero. However, in real systems,

Dynamical System 131

the actuator cannot generate arbitrarily large magnitude of control, and there is
always a limit on the maximum magnitude (can you make a vehicle that moves at
1000km/h?). Hence, we assume the following limitation on u(t):

lu(®)| <1, Vvtel0,T]. (7.12)

We call a control that satisfies this constraint an admissible control. In (7.12), we
assume the maximum magnitude is normalized to one, but if the maximum mag-
nitude is Upax > 0 and the limitation is represented by

()] < Umax, VYVt €[0,T], (7.13)

then, we can redefine the vector b in the plant (7.1) as

b

/A
b= ,
Umax

(7.14)

then the limitation is reduced to (7.13).

Under the constraint (7.12), there may be an initial state £ that cannot be steered
to the origin by any admissible control u(¢) that satisfies (7.12) within time 7" > 0
even if the system is controllable. To discuss this, we introduce the notion of the
T -controllable set:

Definition 7.7 (T-Controllable Set). Fix T > 0. The set of initial states that can
be steered o the origin by some admissible control u(t), 0 < t < T is called the
T -controllable set. We denote this set by R(T).

Exercise 7.8. Prove that R(T') can be represented by

T
R(T) = {—/ e Mbu(r)dr - |u(r)] < 1, Vr € [0, T]}) (7.15)
0

For the T-controllable set, we have the following theorem:

Theorem 7.9. Forany T > O, the T -controllable set R(T) is a bounded, closed, and
convex set. Also, if T1 < T» then R(T1) C R(T3).

Exercise 7.10. Prove Theorem 7.9.

Figure 7.3 shows an illustration of a T-controllable set R(7') in R2. If an initial
state (0) = £ is in the T-controllable set R(T'), then there exists an admissible
control u(#), 0 < t < T that steers the state to €(7') = 0 in time T. If an initial
state is outside the set R(T'), then such control does not exist. We show an easy
example to illustrate this property.

Example 7.11. Let us consider control of a ball on an inclined plane shown in
Figure 7.4. Let x(t) denote the position of the ball on the x axis parallel to the slope.

132 Dynamical Systems and Optimal Control

€1

Figure 7.3. T-Controllable set R(T) in R2.

I

Figure 7.4. A ball on an inclined plane: m is the mass, g is the acceleration of gravity, 4 is
the angle of the slope, and F(r) is the force (i.e., control) applied to the ball.

The origin is set at the top of the slope. The control objective is to move the ball from the
initial position x(0) = & ro the origin within time T > 0, that is, x(T) = 0.
The differential equation of x (t) is given from Newton’s second law of motion.:

mi(t) = F(t) — mgsin6. (7.16)
Now, we assume
x(0)=-¢, x(0)=0, (7.17)
where & > 0. From (7.16), we have
x(t) = %/OIF(T)dT — gtsin€ + x(0), (7.18)
and

t s
x(t) = %/0 /0 F(tr)dtds — %gt2 sin@ + x(0)t + x(0). (7.19)

Dynamical System 133

Then, if there exists an admissible control {F (t) : 0 <t < T} such thar x(T) = 0,
then we have

1 [Ty 1
0=x(T) = Z/0 /0 F(r)dtds — EgT2 sinf — &, (7.20)

where we used the initial conditions in (7.17). From the above equation, we have

1 T K
‘EgTzsiné’—l—f S/ / |F(z)|dtds
0 0
T ps
5/ / | Fllodzds (7.21)
0 0
T2
= —|F
o 1 Flloos

where || F || oo is the L™ norm of function F defined by

IFlloo & sup |F(2)]. (7.22)
te[0,T7]

Since the variables m, g, T, and & are all positive, and sinQ is also positive,
we have

2
1F oo > mgsin9+Tif. (7.23)

On the other hand, since F is an admissible control, it should satisfy

[Flloo < 1. (7.24)
From (7.23) and (7.24), we have
2
1 > mgsinf + Tlf (7.25)
It follows that mg sin@ < 1 and
2
T | 2" s (7.26)
1 —mgsinf

From this, if the final time T is small such that T < T*, then there is no admissi-
ble control with time T that achieves x(T) = 0. Conversely, let T = T* and take

134 Dynamical Systems and Optimal Control

Ft)=1,0<t <T* Then from (7.19), we can easily compute that
x(T*) =0. (7.27)

Hence, F(t) = 1 is a solution with T = T*. Also, if T > T%, then if we choose
F(t) as

1, f 0<t<T*
F() = . . (7.28)
mgsinf, if T* <t <T,

then you can easily show that this is a solution with time T .

From this example, the time 7" is the threshold that determines the
T -controllability with a fixed initial state. The time T* is called the minimum time,
which is in general defined by

T*(&) £ inf{T >0: & e R(T)}. (7.29)

To consider the minimum time, we define the controllable set by the union of all

R(T) with T > 0, that is,
R £ Ur-oR(T). (7.30)

Even if the system is controllable, the controllable set R may not be R?. That
is, R may be a strict subset of R?. Then, if € ¢ R, then there exists no admissible
control on any finite time interval [0, T'] that achieves (7T') = 0. For this case,
we write 7*(§) = 00. Conversely, if £ € R then theset {T > 0: § € R(T)} is
non-empty, and the minimum time (7.29) is finite, that is, 7*(§) < oo.

Assume that £ € R. Then T*(€) < o0o. Let us consider T and T, such that

T, <T*) < 1. (7.31)
Then we have
R(Ty) Cc R(T*(&)) c R(T») C R. (7.32)

This inclusion relation is shown in Figure 7.5. From this figure, we have § € R(T>)
and £ & R(T1). This means that if the final time is greater than 7*(§), then there
exists a feasible control, while if it is less than T*(€), then there is no control. The
minimum time 7*(&) is the threshold for the controllability, that is, £ is on the
boundary of the T* (&§)-controllability set R(T*(£)). We will discuss the minimum
time further in the next subsection.

For a stable system, the minimum time always exists for any initial state. In fact,
we have the following theorem [49, Theorem 17.6]:

Dynamical System 135

Figure 7.5. Controllable sets R(T)) ¢ R(T*(€)) c R(T») c R, where T} < T*(&) < T.
The minimum time T*(&) is the threshold for the feasibility from the initial state, &.

Theorem 7.12. Assume that (A, b) is controllable. Assume also that A is stable,
that is,

MA)CC_2{zeC:Rez <0}, (7.33)

where L(A) is the set of eigenvalues of A. Then the controllable ser R is RY, and the
minimum time T*(€) is finite for any € € RY,
71.3 Feasible Control and Minimum-time Control

Fix T > 0 and assume (0) = & € R(T). Then by the definition of controllable
set in Definition 7.7, there exists an admissible control u(#) that steers the state
from x(0) to (T) = 0. We call such a control a feasible control. Let denote by
U(T, &) the set of feasible controls with initial state £ and final time T. This set
can be represented by

T
U, € = [u e L*0,T): &= —/0 e~ Abu(t)de, lu(t)| < 1,1 € [0, T]].
(7.34)

Exercise 7.13. Prove that the set of feasible controls is represented by (7.34).

136 Dynamical Systems and Optimal Control

It is easily shown that £ € R(T) if and only if there exists an admissible control u
such thatu € U(T, £). Hence the minimum time 7*(§) in (7.29) is formulated by

T*(€) = inf{T > 0: Ju, u e U(T, €)). (7.35)

From the discussion in the previous subsection, 7* (&) is finite if and only if § € R.
From this, if £ € R, then there exists a finial time 7 > 0 and an admissible control
u such that u € U(T, §), and hence the set of the right hand side of (7.35) is
non-empty.

Now we find the control that achieves this minimum time. That is, we consider
the following optimization problem:

minimize T subjectto u € U(T, §). (7.36)
u

The solution is called the minimum time control or the time-optimal control. The
minimum control exists if § € R or equivalently 7*(£) < 00. In fact, we have the
following lemma:

Theorem 7.14. Assume T*(&) < 00. Then there exists a minimum-time control

u* e U(T*(&), §). Moreover, for any T > T*(§), U(T, &) is non-empty.
Exercise 7.15. Prove Theorem 7.14.

71.4 Optimal Control and Pontryagin Minimum Principle

From Theorem 7.14, if € € R and T > T* (&), then the set of feasible controls
U(T, &) is non-empty, and in general U(T, &) has infinitely many elements. Opzi-
mal control is the optimal one with a given cost function among all feasible controls
inU(T,E).

The following is the formulation of the optimal control that is mainly considered
in this book:
- Optimal Control Problem (OPT)

\
For the plant modeled by

(1) = Ax(t) + bu(t), t>0, x(0)=E¢ecR?,
find an admissible control u (i.e. ||#||co < 1) that achieves
x(T) =0,

and minimizes the following cost function:

T
J(u):/0 L(u(t))dt.

Dynamical System 137

We here assume that the function L(u), called the szage cost function, is continuous
in u. We call the solution the optimal control. Note that the optimal control problem
can also be written by using the set of feasible controls U (T, &) as

minimize J(u) subjectto u € U(T, &). (7.37)
u

The minimum-time control (7.36) is the optimal control with L(u) = 1.

Let us assume that there exists an optimal control for the problem (OPT). We
here introduce Pontryagin’s minimum principle that gives necessary conditions for
the optimal control.

First, define the following function called Hamiltonian:

H'(z,p,u) 2 p (Az + bu) + nL), (7.38)

where n € {0, 1} is called the abnormal multiplier. The following theorem is Pon-
tryagin’s minimum principle.

Theorem 7.16 (Pontryagin’s Minimum Principle (PMP)). Assume that an opti-
mal control u* of the optimal control problem (OPT) exists. Let us denote by {x* (1) :
0 <t < T} the optimal state with the optimal control {u*(t) : 0 <t < T}, that is,

t
a;*(z)éeAngr/ A by*()dr, Vi e [0, T). (7.39)
0

Then there exist n € {0, 1} and the optimal costate {p*(¢) : 0 < t < T} that satisfy
the following conditions.

(non-triviality condition) 7he abnormal multiplier n and the optimal costate p*
satisfy the non-triviality condition:

17l + [Ip*lsc > 0. (7.40)

(canonical equation) 7%e following canonical equations hold
z*(t) = Ax* (1) + bu™ (1),
(7.41)
p'()=-ATp'(), Vrel0,TI.

The differential equation for p*(t) is called the adjoint equation.

2. See the solution formula (7.2) for the differential equation & = Az + bu.

138 Dynamical Systems and Optimal Control

(minimum condition) 7he optimal control u*(t) minimizes Hamiltonian at each
timet € [0, T). That is,

u*(r) = argmin H"(z*(t), p* (1), u), vVt €[0,T]. (7.42)

lul<1
(consistency) Hamiltonian satisfies
H”(:L'*(t), p*(t), u*(t)) =c, Vtel0,T], (7.43)

where c is a constant independent of t. If T is not fixed (as in the minimum-time
control), then

H'(x*(t), p* (1), u* (1)) =0, vt e][0,T]. (7.44)

Note that the canonical equation in (7.41) can be rewritten in terms of Hamil-
tonian H" as

& (1) = oH? (a: (), p* (1), u* (1))
(7.45)

p*(t) = _oHT (1: (), p* (1), u*(t)), Vtel0,T].

These equations are also called Hamilton’s canonical equations.

Pontryagin’s minimum principle is a powerful tool to analyze the optimal con-
trol (if it exists). For simple problems, we can obtain a closed form of the control
that satisfies the necessary conditions. We call this an extremal control. We should
note that an extremal control is not necessarily the optimal control. However, in
some cases, we can determine the optimal control from the minimum principle.
One example is shown in Section 7.3, the minimum-time control for the rocket
in Example 7.2. Before the example, we will formulate the minimum-time control
for general linear systems.

7.2 Minimum-time Control

Let us consider the following linear system:
z(t) = Az(t) + bu(t), >0, z(0)=¢eRe (7.46)

For this system, we consider the minimum-time control, which is given by the
optimal control (OPT) with the stage cost L(#) = 1. Then the Hamiltonian is
given by

H'(x,p,u) =p" (Az + bu) + . (7.47)

Minimum-time Control 139

Let us assume that the minimum-time control exists. Then from Pontryagin’s min-
imum principle, the optimal control u*(#) should satisfy

u*(t) = argmin H"(z*(¢), p*(t),u), Vt e[0,T*(&)], (7.48)
uel[—1,1]

where * (1) and p*(¢) are respectively the optimal state and costate by the optimal
control u*(t), and T* (&) is the minimum time. From this, we have

u*(t) = argmin p* (1) bu = —sgn(p*(r) ' b), (7.49)
ue[—1,1]

where sgn(-) is the sign function defined by

1, a>0
sgn(a) =
-1, a<0 (7.50)

sgn(a) € [-1,1], a=0.

If the function p* () T b is not zero for almost all 7 € [0, T*(€)], then the control
u* () takes values of only 1 for almost all ¢. Such a control is called a bang-bang
control.

Lemma 7.17. If (A, b) is controllable, then the function p* (1) " is not zero for
almost all t € [0, T*(£)].

Exercise 7.18. Prove Lemma 7.17.

For the minimum-time control problem, we have the following existence and
uniqueness theorems.

Theorem 7.19 (Existence). If the initial state § is in the controllable set R defined
in (7.30), then a minimum-time control exists.

Theorem 7.20 (Uniqueness). Assume that (A, b) is controllable. Then the
minimum-time control is (if it exists) unique.

Exercise 7.21. Prove Theorems 7.19 and 7.20.
The following corollary is easily proved from Theorems 7.12, 7.19, and 7.20.

Corollary 7.22. Assume that (A, b) is controllable and A is stable. Then for any
& € RY, the minimum-time control u* € U(£) uniquely exists.

140 Dynamical Systems and Optimal Control

7.3 Minimum-time Control of Rocket

Here we derive the minimum-time control of the rocket in Example 7.2 by using
Pontryagin’s minimum principle.

Now, from Example 7.5, the pair (A, b) is controllable. It is also easily seen that
A is stable since A has a multiple eigenvalue of 0. Therefore, from Theorem 7.22,
there uniquely exists the minimum-time control u*.

Let us define the optimal state and costate by

" xy (1) " P*(f)]
) =|"1""1, H=|"1"". 7.51
o=[i0] o2 .51
For simplicity, we assume the mass of the rocket m = 1.
Then the Hamiltonian H'(z, p, u) in (7.47) is given by
H'(x,p,u) =p' (Az +bu) + 1= pixa+ pou+n. (7.52)

The canonical equation (7.41) for the costate p*(¢) is given by

pi(t) =0,

- " (7.53)
py(t) = —pi ().

Let p7(0) = 7y and p5(0) = 7. Then the solution to the differential equation
(7.53) is given by

pi(t) =,

7.54
py(t) =mp —mt. ()

Since T is not fixed, from the condition (7.44), we have H"(x*(t), p*(t), u*) = 0.
That is,

pi()x5 () + p5(Hu* +n=0. (7.55)

If 71 = mp = 0, then pj(¢) = p3(t) = 0 from (7.54), and hence # = 0 from
(7.55). But this contradicts the non-triviality condition (7.40). Therefore, 71 # 0
or y # 0, that is p*(0) # 0.

Next, from (7.49), we have

u*(t) = —sgn(p*(t) "b) = —sgn(p3(1)). (7.56)

From (7.54), p5(t) is a linear function p5(t) = m2 — mt. Then we need to
check the following cases:

Minimum-time Control of Rocket

u*(t P2
1 (t |
2

t
0 0
-1
o % u* (t)
(i) (i)
) . u*(t)
T2 t 0 P (t)
0 p;(t) 9
- u*(t) !
(iii) (iv)

141

Figure 7.6. Costate p3 () = 7y — =1t and corresponding extremum control u*(r) from (7.56).

(i) m <0, 7 < 0with (71, 72) # (0, 0)
(i) 71 > 0,72 > 0 with (71, 72) # (0, 0)
(iii) T < 0, Ty > 0
(iv) T > 0, Ty < 0

Extremum controls given in (7.56) for the 4 cases are shown in Figure 7.6. From

this figure, it is easily shown that each extremum control takes its values of 1 for

almost all ¢, that is bang-bang. We note that the number of switching is at most

one from Figure 7.6.

Next, we compute the trajectory (t) when u(t) is constant (i.e. =1). From

(7.5), we have

x1() = x2(2), x1(0) =&,
X)) =u@®), x2(0)=47.

Ifu(r) = £1, then

1
x1(t) = iEIZ + &t + &,
x(t) =+t + &.

Eliminating the time variable # gives

1 1
x1(t) = :izixz(l)2 +&1 F 5522-

(7.57)

(7.58)

(7.59)

142 Dynamical Systems and Optimal Control

Figure 7.7. Flow of state (x;(¢),x2(¢)) by constant control u(r) = 1 (solid curve) and
u(t) = —1 (dashed curve).

That is, when the control u(¢) is constant +1, then the state (x1(¢), x2(¢)) moves
on the following parabolic curve:

1 1
X1 = EX% +51 - 54:22’ if ”(I) = 1’ (760)
1, 1,
x| = —Exz +§1 + 5529 if u(t) =-1 (761)

Figure 7.7 shows the flow of the state (x1(¢), x2(#)) by some of these parabolic
curves with directions of the state to move. Note that the parabolic curves defined
in (7.60) and (7.61) go through the point ({1, &2).

To achieve the terminal state (7)) = 0, the final trajectory must on the
parabolic curve that go through the origin:

1
X1 = —x%, ifu)=1,
) (7.62)
x| = ——x%, if u(t) =-—1.
2
From this, if there is no switching, that is, in the cases of (see Figure 7.7)
O u@)=1
Gi) u*(t) = —1
then, the initial state (&1, &) should be on the parabolic curve
7+ 2 {01, x) € R? 131 = x3/2, x <0} (7.63)

or

V- = {(xl,xz) e R? X = —x%/2, xy < 0}, (7.64)

Minimum-time Control of Rocket 143

_ T2
Y=Y+ Y-
L R
Ty
0
Ry
T+
Figure 7.8. Switching curve y =y, Uy_ and regions Ry and R_.

Figure 7.9. 4 cases of state trajectories from initial state (&, &) on the curve y..

Figure 7.8 shows the two curves y4 and y_. In fact, we can easily show that

e If the initial state ({1, &) is on the curve y4, then u*(t) = 1 is the unique
extremum control.

e If the initial state ({1, &2) is on the curve y_, then u*(¢) = —1 is the unique
extremum control.

The proof is shown below.

Assume (¢1,&) € y4. As mentioned above, there are 4 extremum controls
with (i)—(iv). Now, u*(t) = 1 is for the case (i). The point A in Figure 7.9 is the
initial point, and the state can reach the origin by #*(t) = 1 through the curve y .
However, for the other cases (ii), (iii), and (iv), the state never reaches the origin
from the initial point A. For the case (ii), by the control u* (t) = —1, the state starts
at A on the curve y” to the direction to C, and never reaches the origin. For the
case (iii), the state moves on the curve y” from A to C by the control u*(t) = —1,
which is switched to u*(t) = +1 at C. Then the state moves on the curve y/,

144 Dynamical Systems and Optimal Control

Ty

.............. B’ Y

Figure 7.10. State trajectories from initial points A and A’

which never reaches the origin. Finally, for the case (iv), the state starts from A to B
on the curve y/_ by the control u*(t) = +1, which is switched to u*(t) = —1 at B.
The state then moves from B on the curve y” to the indicated direction and never
reaches the origin. In summary, (i) u*(¢) = 1 is the unique extremum control, and
hence if the minimum-time control exists, this is actually the optimal control. The
same discussion can be applied for the initial state (£1, &) on the curve y_, and
the unique extremum control is u*(¢) = —1.
Next, let us consider the initial state (1, &) is outside the curve

7 £+ Uy- = {1, x2) € R txy = —xalal/2). (7.65)
Let us define two regions Ry and R_ divided by the curve y:

Ry 2 {(x1,x2) € R? 1 x) < —x2|x2]/2},

R_ 2 {(x1,x2) e R? : x| > —x2|x2|/2}.

(7.66)

Figure 7.8 shows these regions. We call the curve y the switching curve.

Now assume the initial state ({1, &) is at A in Ry as in Figure 7.10. From the
point A, the curve y _1_ defined in (7.60) is plotted. By a constant control u(t) = 1,
the state moves on the curve y | to the indicated direction from A. At some time, the
state touches the switching curve y_ at B, and the control is switched to u () = —1.
From B, the state goes on the switching curve to the origin. The control switched
from +1 to —1 is the control in (iii) in Figure 7.6. We can easily show that this is
the unique extremum control from any initial point in Ry, in a similar way to the
case where the initial state is on the curve y = y4 U y_.

Then, let us consider the initial state ({1,) € R— at A’ in Figure 7.10. First,
by the constant control u () = —1, the state moves on the curve y” from A’ to B’.
Then the control is switched from —1 to +1, and the state is steered to the origin

Further Reading 145

along the curve y. This control is for the case (iv) in Figure 7.6, and actually this
is the unique extremum solution.

In summary, the extremum control u* () of the minimum-time control problem
is given by

1, it z(r) € y+ UR4\ {0},
u*(t)y=1-1, if x(t) e y_UR_\ {0}, (7.67)
0, if () =0.

The control u*(t) depends on the state (t), and hence the control is a feedback
control, which changes its value (1 or 0) based on the observation of the state (7).

Exercise 7.23. Compute the minimum time 7*(§) from £ = (1, &) to the
origin, and the switching time when £ € Ry and § € R_.

7.4 Further Reading

For the basics of control theory with state-space formulations, I recommend a nice
book by Ogata [89]. For the controllable set, see [103]. The proof of Pontrya-
gin’s minimum principle is found in [66]. Pontryagin’s minimum principle is also
referred to as Pontryagin’s maximum principle, which is mathematically equivalent
to the minimum principle. The book by Clarke [24] is one of the most reliable
books on the Pontryagin’s maximum principle. For the minimum-time control, see

the classical books of [2, 49, 96].

DOI: 10.1561/9781680837254.ch8

Maximum Hands-off Control

In this chapter, we introduce a new optimal control problem called maximum
hands-off control, which is the sparsest control among all feasible controls.

- Key ideas of Chapter 8 ~

¢ Maximum hands-off control is described as L-optimal control.

e Under the assumption of non-singularity, L°-optimal control is equiva-
lent to L'-optimal control.

¢ Maximum hands-off control is a ternary signal that takes values of £1

and 0. Such a ternary control is called a bang-off-bang control.

N)

8.1 LY Norm and Sparsity

Here we introduce mathematical preliminaries for maximum hands-off control.
Define the support of a function u(t) on a finite interval [0, T'] by

supp(u) = {t € [0, T] : u(t) # 0}. (8.1)

By using the support, we define the L norm by the length of the support of func-
tion u, that is,

llullo = (supp(u)), (8.2)

146

http://dx.doi.org/10.1561/9781680837254.ch8

L% Norm and Sparsity 147

u(t)
O/\t to T t
S

Figure 8.1. The L norm of the function u(t) is t; + (T — 1).

where 1 (S) is the Lebesgue measure of a subset S C [0, T]. From this definition,
the L° norm of a continuous-time signal is the total length of time duration on
which the signal takes nonzero values.

Example 8.1. Let us consider a function u(t) in Figure 8.1. The function u(t) is zero
over the interval (1, 2], and the support set of u is

supp(u) = (0,11) U (12, T) C [0, T]. (8.3)
From this, the L° norm of u is
lullo = u(supp)) =t1 + (T — 1) =T — (12 — 11). (8.4)

In the above example, the value 5 —#; is the length of the interval [#1, #2] on which
u(t) = 0. If ||u|lo is much smaller than the total length T (i.e., |lu|lo < T), then
the signal is said to be sparse. This notion is an analogy of the sparsity of vectors
studied in Part I of this book.

Define
0, if u=0,
ul® 2 s (8.5)
1, ifu##0,
then the L? norm in (8.2) can be written as
T
o = [luoia. (5.6)

Note that the L? norm does not have the absolute homogeneous property (see
Definition 2.7, p. 20). In fact, if we take a non-zero scalar o such that |a| # 1,
then

llaullo = llullo # lelllulo. (8.7)

148 Maximum Hands-off Control

Note also that a sparse signal u(¢) on [0, 7] has a time duration whose length is
positive, on which the control u(t) is exactly zero. This means that the function
u(t) is not a real analytic function.' For example, a polynomial function

pO)=t"+ap_ 11" '+ +air +ag, (8.8)

a trigonometric function sin(wt) (@ # 0), an exponential function e, and their
sum or product are never sparse.

8.2 Practical Benefits of Sparsity in Control

Let us consider the sparse control signal u(t), t € [0, T'] shown in Figure 8.1. This
control signal is exactly zero on the time interval [t1, #2]. In an electromechanical
system, the control signal is transformed into a mechanical motion by an actuator.
An electric motor is an example, which transforms the control signal given as an
electric current into torque. Usually, an amplifier is attached between a controller
and an actuator to supply energy to the actuator enough to generate a mechanical
motion. Hence for actuation, we need not only a control signal but also enough
energy.

By using a sparse signal as in Figure 8.1, we can stop energy supply to the actu-
ator over the time interval [71, 2]. That is, we can save consumption of electric
power or fuel over this interval. We call such a control a hands-off control, which
is also known as gliding or coasting. This control strategy is actually used in prac-
tical control systems. A stop-start system [34, 64] in automobiles is an example
of hands-off control. It automatically shuts down the engine to avoid it idling for
a long duration of time. By this, we can reduce CO or CO2 emissions as well as
fuel consumption. Also in hybrid vehicles [17, 87, 105], the internal combustion
engine is stopped when the vehicle is at a stop or the speed is lower than a preset
threshold, and the electric motor is alternatively used. Other examples are found
in railway vehicles [18, 63] and free-flying robots [113]. Hands-off control is also
desirable for networked and embedded systems since the communication can be
stopped during a period of zero-valued control. This property is advantageous in
particular for wireless communications [60]. By these properties hands-off control
is also known as green control.

1. Afunction u(t) is said to be real analytic if it is an infinitely differentiable function such that the Taylor series
at any point fg € (0, T') converges to u(r) for ¢ in a neighborhood of 7o pointwise. See [98, Chapter 8] for
details.

Problem Formulation of Maximum Hands-off Control 149

8.3 Problem Formulation of Maximum Hands-off
Control

Let us consider the following linear time-invariant system:
z(t) = Az(t) + bu(t), >0, z(0)=¢eR?, (8.9)

For this system, we consider the optimal control problem (OPT) (p. 136) with the
stage cost function

L) = |ul’. (8.10)

Namely, we seek the optimal control that minimizes the L cost function

T
Jo() 2 ullo = /0 (), (8.11)

among all feasible controls. We call this problem an L°-0pzimal control problem or
a maximum hands-off control problem.

s LO—optimal control problem (L° OPT) ~

For the linear time-invariant system
() = Ax(t) + bu(t), t>0, x(0)=¢eR?,

find a control {u(¢) : t € [0, T]} with T > 0 that minimizes

Jo(u) = llullo = /OT lu()|°dt
subject to
x(T)=0,
and

lulloo < 1.

N J

We call the solution of this optimal control problem the Lo—optimﬂ[control, or the

maximum hands-off control.
The stage cost function (8.10) is discontinuous and non-convex, as shown in
Figure 8.2. By borrowing the idea of sparse representation to use the £! norm for

150 Maximum Hands-off Control

AL(U)
u
0 |ul
1] |ul
e
\9,
u
—1 0 1
Figure 8.2. Stage cost functions |«|” and || in L° and L' optimal control problems.

£° norm optimization, we introduce the following cost function with the L' norm:

T
Jmoéwm=é|wmm. (8.12)

As shown in Figure 8.2, the stage cost function |u| is an approximation of |ul©.
In fact, this approximation is mathematically explained as the convex relaxation.
That is, the L' norm ||u||; is the convex relaxation of |ju||o when [u|loo < 1. See
[112, Section 1.3.2] for details.

Now we formulate the L'-optimal control problem.

- Ll—optimal control problem (L'-OPT) ~N
For the linear time-invariant system
(1) = Az(t) + bu(t), t>0, z(0)=E¢eR,
find a control {u(¢) : t € [0, T]} with T > 0 that minimizes
T
hiw =l = [utoiar
subject to
x(T) =0,
and
lulloo < 1.
_ J

We call the solution of this optimal control problem the L'-optimal control. This

optimal control is also known as minimum fuel control, which was widely studied
in 60s for rocket control.

L'-optimal Control 151

The L'-optimal control (L'-OPT) is a convex optimization problem since the
stage cost L(u) = |u| is convex in u and the constraints are also convex. Although
the variable u is a function, which is a member of infinite dimensional function
space L*°(0, T'), the problem can be reduced to a finite-dimensional optimization
problem via time discretization studied in Chapter 9.

8.4 L'-optimal Control

Here we investigate properties of L! optimal control by using necessary conditions
from Pontryagin’s minimum principle.
For the Ll-optimal control problem (L'-OPT), the Hamiltonian is given by

H'(z,p,u) =p' (Az + bu) + nlul. (8.13)

We first consider the case 7 = 1 (the normal case). Let u* denote the L! optimal
control, and * and p* the associated optimal state and costate, respectively. From
the minimum condition in the minimum principle, we have

u*(t) = argmin H'(x* @), p* (1), u)

[u]<1

= argmin{p*(l‘)T(Am*(t) + b”) + |”|} (8.14)

lul<1

= argmin{p*(t)Tbu + |u|}

Ju| <1
Now from

p*) b+ Nu, ifu=>0
p*(t) "bu + |u| = () (8.15)
(p*(t)Tb — l)u, if u<0

we have the solution to the minimization problem in (8.14) as

u* (1) = —dez(p*(t)"b), (8.16)
where dez(-) is called the dead-zone function defined by

-1, if w<-1
dez(w) £ {0, if —l<w<l

1, if 1 <w

152 Maximum Hands-off Control

------ —1

Figure 8.3. Dead-zone function dez(w).

dez(w) € [-1,0], if w=—1
dez(w) € [0, 1], if w=1

(8.17)

Figure 8.3 shows the graph of the dead-zone function.
Exercise 8.2. Show that (8.10) is the solution to the minimization problem (8.14).

If there is a time interval (f1, £2) on which p*(t)Tb = %1 holds, then from
(8.17), we cannot uniquely determine u*(#) on this interval. We call such a time
interval a singular interval. If an L 1 -optimal control problem has a singular interval

whose length is positive, then we call the problem a singular problem. On the other
hand, if

u({t €10, T1:|p*()"bl =1}) =0 (8.18)

holds, then the L'-optimal control problem is said to be 7on-singular. The follow-
ing lemma gives a sufficient condition for the non-singularity.

Lemma 8.3. If(A, b) in (8.9) is controllable and A is nonsingular, then (8.18) holds
(i.e., the Ll—optz'ma[control problem is non-singular).

From now on, we say (A, b) is non-singular if (A, b) is controllable and A is non-
singular.

Exercise 8.4. Prove Lemma 8.3.
From Lemma (8.3), if (A, b) is non-singular, then we have
p*(t)"b # +1, foralmostall ¢ € [0, T]. (8.19)

Then, from (8.16) and (8.17), the Ll—optimal control takes values £1 or O for
almost all # in [0, T']. We call such a control a bang-off-bang control. Figure 8.4
illustrates the bang-off-bang property of L'-optimal control. We summarize this
property as a theorem.

L'-optimal Control 153

u(t)

Figure 8.4. L'-optimal control (bang-off-bang) u*(r) (top) and function p* () "b.
Theorem 8.5. Assume that (A, b) is non-singular. Then the L'-optimal control is
bang-off-bang (if it exists).

The bang-off-bang property is important to examine the relation between L!
and L? controls as shown in the next section.

Remark 8.6. The function p*(t) T b is given by
P ()b =(c""""p*(0) b =p"(0) e, (8.20)

from the adjoint equation for p*(t) in (7.41). Therefore the function p*(t)" b is con-

tinuous, and represented by

d
p*(0) e b = Z ci (t)e_’l"t, (8.21)
i=1

where A is the i-th eigenvalue of A and c;(t) is a polynomial with degrees up to d. It
Jfollows that the number of switching in u*(t) s finite, and the value changes between 1
and 0 or —1 and 0, and never changes between 1 and —1. Therefore, if u™(t) switches,
then there exists a time duration with positive length on which u*(t) = 0.

Finally, let us consider the case # = 0 (the abnormal case). The Hamiltonian is
given by

Hx,p,u) =p' (Az + bu). (8.22)

154 Maximum Hands-off Control

Then the optimal control u*(¢) satisfies

u*(t) = argmin H(z* (1), p*(t), u)
uel[—1,1]

= argmin p* (1) "bu
vel=L1l (8.23)
-1, if p*(t)"b >0,
=11, if p*(1)"b <0,

[—1,1], if p*(1)"b=0.

If (A, b) is controllable, then p*(t) "b # 0, and hence the control is bang-bang,
taking values of 1. With this control, the Ll—optimal value is

T
Ji(u™) :/0 lu*(t)|dt = T. (8.24)

Moreover, if T*(§) < T < 00, then there exists the minimum-time control

u*
time

the following control:

(t) to achieve (T*(§)) = 0. By using this minimum-time control, define

. [u:‘ime(t), if0<t<T*), 5.25)

0, i THE) <t <T.

It is easily shown that i is a feasible control, thatis i € U(T, £). Also, with this i,
we have

T T*(&)
(@) = /O a(0)ldt = /0 W (Oldr = T*(€) < T = J1).
(8.26)

Hence, the control u*(¢) can never be L' optimal, and hence the case 7 = 0 never
happens.

The abnormal case (7 = 0) happens when T = T*(§). In this case, the set
of feasible controls is U (T*(§), &) = {u}, .}, a singleton of the minimum-time
control, and hence the cost function is meaningless to choose a control from the
feasible set. In this book, we do not discuss the abnormal case any further.

8.5 Equivalence Between L? and L! Optimal Controls

In this section, we study the equivalence between L? and L' optimal controls.
The following theorem is a fundamental theorem for the equivalence.

Equivalence Between L? and L! Optimal Controls 155

Theorem 8.7. Assume that there exists an L' -optimal control that is bang-ofF-bang.
Then it is also L® optimal.

Proof: Define Jo(u) £ ||ullo and J; (1) = |lu| ;. From the assumption, there exists
an L!-optimal control u} that is bang-off-bang. Since u? is a feasible control, the
set of feasible controls U (T, &) is non-empty. Then, for any u € U(T, §) we have

T
J1(u) :/ lu(t)|dt :/ lu(t)|dt < / 1dt = Jo(u). (8.27)
0 supp(u) supp (1)

Since u] is bang-off-bang, we have

Ji(u)) = /T HOIE =/ ldt = Jo(u?). (8.28)
0 supp(u})
From (8.27) and (8.28), we have
Jo?) < Jo(w), Yu e U(T,), (8.29)
and hence] minimizes Jo(u). That is, u7 is also L0 optimal. O

From Theorem 8.5, if (A, b) is non-singular, then the Ll—optimal control is
bang-off-bang, that is, the optimal control u*(¢) takes values 0 or £1 for almost
all t € [0, T']. From this property, we can obtain the following theorem.

Theorem 8.8. Assume that there exists at least one L' -optimal control. Assume also
that (A, b) is non-singular. Then there exists at least one Lo-optimal control, and the
set of LO—optz'mal controls is equivalent to the set of L Y optimal controbs.

Proof: Let U4 and U be the sets of L% and L! optimal controls, respectively. From
the assumption, U is non-empty. Take u} € U arbitrarily. Then, from Theorem
8.5, uj is bang-off-bang. It follows from Theorem 8.7 that u] € I, and hence
Uy cU.

Then we prove Uy C U]. Take uy € Uy C U(T, &) arbitrarily. Take also
uj € U € U(T, &) independently. From (8.28) and the L! optimality of u7,
we have

Jo(up) = Ji(u}) < Ji(up). (8.30)
On the other hand, from (8.27) and the L° optimality of ug, we have

Ji(up) < Joug) < Jo(ui). (8.31)
From (8.30) and (8.31), we have

Jo(uy) = Ji(uy) < Ji(ugy) < Jo(ug) < Jo(uy). (8.32)

156 Maximum Hands-off Control

It follows that Ji(u}) = Ji(ug), and uy minimizes Jy (u). That is, we have ug €
U} and hence U5 C U]. O

8.6 Existence of L°-Optimal Control

Here we consider the existence of LO—optimal control.

8.6.1 L?7-Optimal Control

To consider the existence of L-optimal control, we introduce the L?-optimal con-
trol with p € (0, 1). The optimal control problem is described as follows:

L?-optimal control problem (L”-OPT)

4 N
For the linear time-invariant system
(1) = Ax(t) + bu(t), t>0, x(0)=¢ecR?,
find a control {u(¢) : t € [0, T]} with T > 0 that minimizes
T
o) =t} = [uorrar
with p € (0, 1), subject to
x(T) =0,
and
lulloo < 1.
o J

First, we prove an interesting relation between the L” norm” with p € (0, 1) and
the L% norm.

Lemma 8.9. Supposeu € L0, T). Then u is also in LP (0, T) forany p € (0, 1),
and

li P —) 8.
p;r8+llullp llullo (8.33)

Exercise 8.10. Prove Lemma 8.9.

2. Strictly speaking, the L? “norm” with p € (0, 1) is not a proper norm since the triangle inequality does not

always hold.

Existence of L%-Optimal Control 157

Now, let us look into the L?-optimal control with p € (0, 1). The Hamiltonian
is given by

H'(z,p,u) =p' (Az + bu) + nlu|’. (8.34)

Let us consider the normal case (# = 1). From the minimum condition in Pon-
tryagin’s minimum principle, we have

u*(t) = argmin H(x* (1), p* (1), u)
uel[—1,1]

= argmin{p*(Z)Tbu + |u|p}

uel[—1,1]
[—1, if p*()Tb> 1
(8.35)
0, if —1<p*(t)'b<1
=11, if p*(t)Tb < —1

{=1,0}, ifp*®)Tb=1
0.1, if pr()Tb=~1

From this, L”-optimal control is always bang-off-bang. We mention this in the
following theorem.

Theorem 8.11. The L?-optimal control with p € (0, 1) is bang-off-bang (if it
exists).

Also, it is shown that the set of L”-optimal control is equivalent to the set of LO-
optimal controls.

Theorem 8.12. Assume that there exists at least one L -optimal control with p €
(0, 1). Let Us and Uy, be the sets of L0 and LP optimal controls respectively. Then we
have

Uy =U,. (8.36)
Exercise 8.13. Prove Theorem 8.12.
From Theorems 8.11 and 8.12, we have the following theorem.
Theorem 8.14. The L-optimal control is bang-off-bang (if it exists).

The difference of Theorem 8.12 from Theorem 8.8 for the L!-optimal control
is that for the L? optimal control we do not need the assumption of the non-
singularity of (A, b). This is the key to prove the existence of L optimal control.

158 Maximum Hands-off Control

8.6.2 Existence Theorems

From Theorem 8.12, if we show the existence of L?-optimal control for some
p € (0, 1), then U is non-empty, and hence there exists at least one L-optimal
control. The following theorem is on the existence of L”-optimal control with
p> 07

Theorem 8.15. Suppose that the initial state § € R? and the time T > 0 are chosen
such that § € R(T). Then, then there exists an L -optimal control with p > 0.

Proof: Assume £ € R? and T > 0 satisfy & € R(T'). Then there exists a feasible
control u € U(T, &), and hence the feasible set U(T, §) is non-empty. Define

Iy Einf{llull, : u € UT, £)}. (8.37)

Since u € U(T, &) satisfies ||u|lco < 1, we have J, < oo Then, from the defini-
tion of J;, there exists a sequence {u;}jeny C U(T, &) such that

lurlly = J . (8.38)

lim
=00
Now, since u; € U(T, &), we have

lurllo < 1, (8.39)

and hence {u;}jeny C Boo = {u € L®(0,T) : |ulloo < 1}. It is known that
the unit ball By, is sequentially compact in the weak® topology of L*°(0, T') [74,
Theorem A.9]. That is, there exists a subsequence {u; }yecs, S C N, such that there

exists Uoo € Boo and

T
lim / F (@) (ur (1) — uoo())dt =0, (8.40)
I'—-00 Jo
forany f € L'(0, T). Now, since uy € U(T, &), we have
T
€= —/ e Mbuy(t)dt, VI €S. (8.41)
0

On the other hand, from (8.40) with f(¢) = e~ b, we have

T T
lim / e Mbuy(t)dt = / e Mbuo ()dt. (8.42)
0

I'—-00 Jo

3. To show the existence of Lo-optimal control, we just need to prove the existence of L”-optimal control with
p € (0, 1). However, Theorem 8.15 gives more general result.

Existence of L%-Optimal Control 159

That is,

T
€= — / e Mbuo (1)dt. (8.43)
0

Also since oo € Boo, we have ||t |loo < 1. Therefore, oo € U(T, &).
Next, let us define

T
Gy é/ ul/(t)psgn(uoo(t)p)dt. (8.44)
0

Similar to (8.40), for the sequence {ulp}leN C By and f(¢) = sgn(uoo(t)p), we
have

T T
lim 6y :/ uoo(t)psgn(uoo(t)p)dt:/ oo (1)1Pdt = llusollh. (8.45)
0 0

"> o0

On the other hand, we have
T
e /0 ()17 = = 7, (8.46)

as |’ — 00, and hence from (8.45), we have
luoolloe < Jp. (8.47)
Now, from (8.37), J» is the minimum value of [lu|}, over (T, €), and hence
luslly = J,. (8.48)

Thatis, uso € U(T, &) is an LP-optimal control. O
From Theorem 8.15 and Theorem 8.12, we have the following theorem.

Theorem 8.16 (Existence of L° optimal control). If€ € R(T), then there exists
an LO-optimal control.

The condition of § € R(T) is equivalentto § € Rand T > T*(£). Hence, we
have the following lemma.

Lemma 8.17. Let u™ be the Lo-aptimal control with & € R(T). Then |u*|o <
T*(%).

Proof: This is easily shown by considering a feasible control in (8.25). O

160 Maximum Hands-off Control

8.7 Maximum Hands-off Control of Rocket

Here we compute the maximum hands-off control of the rocket considered in
Example 7.2 (p. 127) in the previous chapter. We assume the mass m = 1 for
simplicity.

We now compute the L'-optimal control. From (8.13), the Hamiltonian with
n =1 is given by

0 1 0
H(x,p,u)=p' ([0 O}w+[1] u)+|u|=p1x1+pzu+lul, (8.49)

where p = (p1, p2). Let denote by u* the L'-optimal control, and x* = (x7, x3),
p* = (p}, p3) the associated optimal state and costate, respectively. From (8.16),
the L'-optimal control u*(t) satisfies

u* (1) = —dez(p5(1)), (8.50)

where dez(-) is the dead-zone function defined in (8.17) (see also Figure 8.3).
Then, the adjoint equation of the costate p* () becomes

. Tr .
- R AELa
py(1) 0 0] Lpy(® —pi ()
The solution of this differential equation is given by
pi)y=m, pyt)=my—mt, (8.52)
where
m1 = pi(0), w2 = p;(0). (8.53)

It follows from (8.52) that if 71 # O then p3(¢) is a first-order linear function of
t and hence pj; (¢) is monotone. Therefore, from (8.50) and the definition of the
dead-zone function (8.17), switching occurs at most twice, and the value changes
between —1 and 0, or between 0 and 1. From this observation, the Ll—optimal
control is given as follows (for details, refer to [2, Section 8.5]).

Define the following regions (see Figure 8.5).

y = {(xl,xz) e R?: X1 = —xz|x2|/2}
R, = {(xl,xz) R x> —x2/2, xy > 0}

Ry = {(xl,xz) eR?:x < —x%/Z, Xy > O}

Maximum Hands-off Control of Rocket 161

Y)

Ry Ry
Ll

Rs Ry

Figure 8.5. Curve y (thick solid line) and regions Ry, Ry, R3, and Ry.

R3; = {(xl,xz) e R?: X1 < x%/2, Xy < 0}

(8.54)
R4 = {(xl,xz) eR?: x| > x%/Z, Xy < 0}
Also, define the following two regions:
V_ = {(xl,xz) eR?*: —x2/2 — x1/x2 > T}
(8.55)

Vi = {(xl,m) eR?:xp/2 — x1/x2 > T}
Then, the L'-optimal control is given as follows:
1. If (¢1,&) € Ry or (&1, &) € RyM V_, then the optimal control is given by

-1, if0<t<n
u*(t) = 10, if 1 <t<t (8.50)
1, ifnh<t<T

where

T+&— (T - &) — 48 - 23

h=)
2 (8.57)
T +&+ (T - &) — 48 - 283
Hh = .
2

2. If (¢1,&) € Ry or (&1, &) € Ry N V4 then the optimal control is given by

1, if0<t<mn
u*(t) = 10, if3<t <t (8.58)
-1, fu<t<T

162

Maximum Hands-off Control

optimal control

—' optimal
- [2 nti
L* optimal P
0.5 > s |
7
-’
7
-
= e
=} 0 7
-,
-’
7
-’
-0.5 L~
e
7
-
e
-’
-1 -
0 1 2 3 4 5

time (sec)

Figure 8.6. L!-optimal control (solid line) and LZ-optimal control (dashed line).

where

T-&- [T +&7 a8 23

t3 — 2 ’
(8.59)
T—&+ (T +&) +48 — 283
14 = .
2
. If (&1, &) € y then the optimal control is given by
— , if0<t
Wt (1) = sgn(&2) 0= <&l (8.60)
0, if &)<t <T

. I (&1, &) € RaN(V-) or (&1, &) € RaN(V4)S,” then the control problem

is singular, and the optimal control cannot be uniquely determined from the
minimum principle.

Figure 8.6 shows the L'-optimal control with the final time 7 = 5 and the
initial state (¢1, &) = (1, 1) € R;. Figure 8.7 shows the associated optimal state
trajectory {(x](¢), x5(¢)) : 0 < t < 5}. In these figures, we also show the results
of L?-optimal control that minimizes the L? cost function

T
wM:A|meu (8.61)

among the feasible controls. From Figure 8.6, we can see that the L!-optimal con-

trol is sparse while the L2-optimal control is not. In fact, the L!-optimal control

4.

()¢ denotes the complement set.

Further Reading 163

state-space trajectory

—L" optimal

1 !
= =12 optimal

0.5+

X2
Cd

e -

x1

Figure 8.7. Optimal state trajectory (xj(t),x5()): L'-optimal control (solid line) and
L2%-optimal control (dashed line).

is bang-off-bang, and hence this is equivalent to Lo—optimal control. That is, the
L'-optimal control has the maximum length of time duration on which the control
is exactly zero. From (8.57), this time length is given by

[t1, 2] = [3 — v/10/2,3 + +/10/2] ~ [1.4189, 4.5811]. (8.62)

and the L norm of the L'-optimal control u* is [|u* || o = /10 ~ 3.1623. On this
time duration, the state trajectory (x (¢), x5 ()) is parallel to the x| axes. Since x1
is the portion and x2 is the velocity of the rocket, this state trajectory means that
the rocket moves at a constant velocity. The rocket consumes no fuel on this time
duration, and hence we can cut fuel consumptions and also we can reduce CO2
emissions, etc. That is, the control is green. It is clear that Lz—optimal control does
not have such a nice property of sparsity.

8.8 Further Reading

For the Ll—optimal control (minimum fuel control), the most detailed information
can be obtained from the classical book by Athans and Falb [2]. The equivalence
theorem between L° and L' optimal controls was first proved in [82, 83].

In this book, we consider only linear systems, but the equivalence holds for non-
linear systems of the following type:

z(t) = f(x@)) + g(x@))u(), >0 (8.63)

See [82, 83] for details.

164 Maximum Hands-off Control

Necessary conditions of the L°-optimal control are also obtained in [19] by the
non-smooth version of Pontryagin’s minimum (or maximum) principle [24]. For
the theory of L? spaces, see [65, 99, 114].

For feedback control implementation of maximum hands-off control, one can
adopt the model predictive control [55, 86] and the self-triggered control [83].

An interesting extension of maximum hands-off control is distributed control
for multi-agent systems discussed in [52].

DOI: 10.1561/9781680837254.ch9

Numerical Optimization by Time
Discretization

As we have seen in Section 8.7, the maximum hands-off control (or Ll—optimal
control) is obtained in a closed form when the plant is very simple as the double
integrator given in Example 7.2 (p. 127). However, for a general system

z(t) = Az(t) + bu(t), >0, z(0)=¢eR?, 9.1)

we need to rely on numerical computation to obtain the optimal control. In this
chapter, we introduce the method of time discretization to numerically obtain the
L'-optimal control.

-~ Key ideas of Chapter 9 ~

* By time discretization, the L!'-optimal control problem (L!'-OPT) is
reduced to a finite-dimensional £! optimization problem.

¢ In time discretization, the control is assumed to be piecewise constant
by a zero-order hold.

L e The reduced ¢! optimization can be efficiently solved by ADMM.
J

165

http://dx.doi.org/10.1561/9781680837254.ch9

166 Numerical Optimization by Time Discretization

9.1 Time Discretization

First, we discretize the time interval [0, T'] into n subintervals as
[0, T]1=1[0,h)U[h,2h)U---U[nh — h,nh], (9.2)

where & > 0 is the sampling time and n € N is the number of subintervals such
that T = nh.

On each subinterval, we assume the control u(¢) is constant. More precisely, we
assume the control is given by

u(t) = u(kh) = uglkl, telkh,(k+1h), k=0,1,2,....,n—1. (9.3)
This is the output of a zero-order hold of a discrete-time signal
ug = {ugl0], uqlll, ..., ualn — 17}, (94)

This assumption is actually reasonable for networked digital control systems where
control values are computed in a digital computer, transmitted through a wireless
communication network, and applied to an actuator through a D/A converter. The
zero-order hold is the simplest model of a D/A converter.

Let us compute the state transition under the zero-order assumption on the con-
trol. The solution to the state-space equation in (9.1) is given by (see Exercise 7.1

on p. 127)

1
x(t) = eA(”_t(’):D(to) +/ eA("_T)bu(T)dT, (9.5)

0]

where 0 < 19 < t;. Take
to=kh, t1=kh+h, ke{0,1,2,...,n—1} (9.6)

Then from (9.5) we have

kh+h
x(kh + h) = ez (kh) + / A0 by (1)d T
k 9.7)

h
= ez (kh) + / A Dbu(r + kh)dt.
0

Define

xylkl = x(kh), wuylkl = ukh), k=0,1,...,n—1, (9.8)

Time Discretization 167

and
xq[n] & x(T). (9.9)

From the zero-order-hold assumption (9.3), the control u(#) takes a constant value
ug[k] = u(kh) on the subinterval [kh, kh + h) as shown in Figure 9.1. Then from
(9.7) we have

h
zalk + 1] = eMayk] + (/ eA<h—f>bdt) uglkl. (9.10)
0

It follows that the differential equation (9.1) is transformed into the following dif-
ference equation:

xylk + 1] = Ageqlk] + bquglk], k=0,1,...,n—1, (9.11)

where
h
Aq 2 e, bdé/ eMbdr. 9.12)
0

Next, define the control vector

uq[0]

| watnl)

u
ud[n‘— 1]
By using this, the terminal state 2(T') is described as
x(T) = x4[n] = =€ + Qu, (9.14)

where

®2[A by ATy ... by], ¢ 2 AL (9.15)

J R)
§
0 h 2h

Figure 9.1. Zero-order hold output of discrete-time signal {ug4(k]}.

168 Numerical Optimization by Time Discretization

Exercise 9.1. Show the equation (9.14) by solving the difference equation (9.11).

9.2 Controllability of Discretized Systems

The discrete-time system (9.11) is called the zero-order-hold discretization or step-
invariant discretization of the continuous-time system (9.1). Figure 9.2 shows the
zero-order-hold discretization of (9.1). In this figure Hj, is the zero-order hold with
sampling time 4, which outputs a constant value ug[k] = u(kh) over [kh, (k +
h), k = 0,1,2,... (see Figure 9.1). Also, S), is the ideal sampler that outputs
the sampled value x4[k] = x(kh), k = 0, 1,2, ... of the continuous-time signal
x(1).

As discussed above, the discrete-time system from u4[k] to x4[k] in Figure 9.2
is a linear time-invariant discrete-time system as in (9.11). Then, under this dis-
cretization, the stability is preserved; if A is stable, that is, if the eigenvalues of A
have non-positive real parts then Aq is Schur stable, that is, the eigenvalues of A4
lie in the closed unit circle in C. This is easily shown from the spectral mapping
theorem: the set of the eigenvalues of Aq = e is given by {efh .., e*ah} where
A is the i-th eigenvalue of A.

On the other hand, we cannot say the controllability is not always preserved
under the zero-order-hold discretization. To discuss this, we introduce the concept
of pathological sampling.

Definition 9.2 (pathological sampling). Lez A(A) be the set of eigenvalues of A.
The sampling time h > 0 is said to be pathological if there exist A1, Ay € A(A) such
that

1. Li1# Ay
2. Reli =Re iy
3. there exists k € {£1, X2, ...} such that

21k
Imi, —Imiy, = % (9.16)

Intuitively, pathological sampling synchronizes an oscillation mode in the plant.
The following illustrates pathological sampling.

uqlk u x xqlk
dH» Hh 2 » &(t) = Ax(t) + bu(t) 2 » Sy, b dH»

Figure 9.2. Zero-order-hold discretization: continuous-time system @(r) = Az () + bu(t) is
discretized by zero-order hold H;, and ideal sampler S, with sampling time 4.

Reduction to Finite-dimensional Optimization 169

Example 9.3. Let us consider a linear system
yo)y ==y, y0)=0, yO0) =1 9.17)
Then the solution of this differential equation is given by
y(t) = sint. (9.18)
If we sample this output with sampling period h = w, then we have
y(kh) =sinkh =0, k=0,1,2,... 9.19)

This is an example of pathological sampling. The state-space representation of (9.17)

d [x1(2) 10 1 x1(2) x1(0) _To
dt |:X2(t):| B [—1 0:| |:x2(t):| ’ |:x2(0):| = [1] > (9.20)

where x1(t) £ y(t) and x2(t) = y(t). Then the matrix

is given by

0 1
A= |:_1 0] (9.21)
has two eigenvalues A+ = =j satisfying
2k
ImAy —Imi_=2= % (9.22)

with k = 1. Therefore, h = v is certainly pathological.

When the sampling is non-pathological, then the controllability is preserved as
shown in the following theorem.

Theorem 9.4. Assume that the sampling time h is non-pathological. Then (A, b) is
controllable if and only if (A4, by) is controllable.

The proof is found in [22].

9.3 Reduction to Finite-dimensional Optimization

Now we reduce the L'-optimal control problem (L'-OPT) (p. 150) into a finite-
dimensional ¢! optimization problem by the time discretization.

First, the constraint on the magnitude of control |[u|loc < 1 is equivalently
written by

luglkll <1, Vkel0,1,2,...,n—1}, (9.23)

170 Numerical Optimization by Time Discretization

under the zero-order-hold assumption (9.3). Let us denote by ||w| g the £°° norm
of a vector u (see (2.29) in Chapter 2). Then the above inequality is equivalent to

l[wllee < 1. (9.24)

Next, under the zero-order-hold assumption, the L' cost function becomes

T
i) = /O u()ldr

n—1

(k+1)h
=> / lu(t)|dt

k=0 kh

n=1 .(k+1)h
=3 / JualKkllds 029
0/ kh

n—1
= > luglkllh
k=0

= hllu| .

Now the Ll—optimal control problem (L' OPT) is reduced to the following
finite-dimensional ¢! optimization problem:

miniﬁlize lull;r subjectto @u = ¢, |lulleo < 1. (9.26)
ueR"

This optimization problem is a convex optimization since the cost function (£ !
norm) is a convex function, and the constraint set

CE{ueR": du=¢, |ufe <1} (9.27)

is a convex set in R". We can easily solve this problem by using CVX in MAT-
LAB (see Section 3.3 in Chapter 3, p. 51). A MATLAB program to solve the £ 1
optimization (9.26) using CVX is given in Section 9.5.

9.4 Fast Algorithm by ADMM

If the order d of the system and the number n for discretization are not so large,
you can obtain a solution easily by CVX. However, if you want to use the control in
a feedback loop, then you must solve the problem in real time. Also, in real systems,
the control algorithm should be implemented in a microcomputer, which often has

Fast Algorithm by ADMM

171

just a cheap computational ability and is hard to run CVX. In such a case, we need

to implement a fast and simple algorithm for the specific £! optimization problem

(9.26). For this purpose, we can use the efficient algorithms studied in Chapter 4.
In particular, we here use ADMM (Alternating Direction Method of Multipliers)

studied in Section 4.5 to solve (9.206).
First, define the unit ball C; C R” with the £*° norm by

CiefueR": |ulee <1}
Also, let C be a singleton of ¢ € RY, that is,
G = {¢).

Define the indicator functions of the sets C1 and C, respectively, by

0, if |w| o <1,
o) & e

oo, if [lullee > 1,

0, ifx=¢,
ICz(w) £ . C

oo, ifax#(.

Then the optimization problem (9.26) is equivalently described by

minimize {||lull, + Ic, (w) + Ic, (Pu)}.
ueR"

Next, define new variables zg, z; € R", z, € R? by
zo=2z1=u, z)=du.
Then the problem (9.32) becomes

minimize {||Z()||51 + Ic,(z1) + ICZ(Zz)} subject to z = Yu,
ueR", zeRY

where v £ 2n + d, and

20 1
z2 |z |eR’, Y2 |1 |eRX
))]

Defining two functions f1 and f2 by

fitw) 20, fr(z) £ |zollp + Ic, (1) + Ic, (22)

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)

(9.34)

(9.35)

(9.36)

172 Numerical Optimization by Time Discretization

we finally obtain the standard optimization problem for ADMM (see (4.96), p. 78):

mmlmlIZRf fi(w) + f2(z) subjectto z = Yu, (9.37)

uelR", ze

for which ADMM algorithm is given by (see Section 4.5.1, p. 78)

ulk + 1] := arg min {ﬁ (u) + —||‘Pu — zlk] + v[k]||§2] : (9.38)
ueR”

z[k + 1] := prox, ;, (Pulk + 1] + v[k]), (9.39)

vlk + 1] :=v[k] + Yulk + 1] — z[k + 1]. (9.40)

Let us compute the functions in (9.38)—(9.40). First, since f1 = 0, the first step
(9.38) is minimization of a quadratic function, and it is reduced to the following
linear equation:

ulk + 1] = argmin {— [¥u = 2lk1 + olk] HZ’

ueR” (941)
= "Y' (z[k] — v[k]).
Note that P TW =27 + @' D is non-singular and the matrix
M2y lyT (9.42)

can be computed off-line (i.e. outside the iteration).

The size of ¥ "W is n x n, and if the number n of time discretization is very
large, then the computation of the inversion may take large computational time.
In this case, we can adopt the matrix inversion lemma

x+uyny'=xT1_x"yoy-'+vx'oylvxl (9.43)

By this, the inverse matrix (¥ T ¥)~! can be rewritten as

1 1
@' l=r+o"To) ' =-1- 5c1>T(21 + 00 . (9.44)

2

This requires inversion of matrix 27 + OD" of sized x d, and if d < n then the
computational time can be significantly reduced.

Fast Algorithm by ADMM 173

sat(u)

-1

Figure 9.3. Saturation function sat(«) = sgn(u) min{|u|, 1}.

The second step (9.39) in ADMM algorithm can be split into three simple opti-
mization problems with variables 2o, z1, and 22 defined in (9.35). For the variable
20, we use the proximal operator of the ¢ 1 which is the soft-thresholding opera-
tor defined in (4.46) (see also Figure 4.8 on p .67), that is, the i-th element of

prox (u) is given by

7l
up =7y, Ui =7y,
[prox, ., ()], = S,)i = 10, luil <7, (9.45)
Ui + V. Ui < =7,

where u; is the i-th element of vector u.

For the variables 21 and 22, we need to compute the proximal operators of indi-
cator functions. From (4.38) (p. 65), the proximal operator of the indicator func-
tion on a closed and convex set C is given by the projection Il¢ onto C. Therefore,
the second step for variables 21 and 2z are reduced to I1¢, and Ig,.

The projection Il¢, is given by

sat(uy)
sat(uy)
e, (u) =) , sat(u) = sgn(u) min{|u|, 1}, (9.46)

sat(.un)

174 Numerical Optimization by Time Discretization

where the function sat(-) is called the saturation function. Figure 9.3 shows the graph
of the saturation function. The other projection I1¢, = ITj¢} is simply given by

Ie,(2) £ ¢. (9.47)

In summary, the second step for variable z is given by

Sy (ulk + 1] + vo[k])

zlk + 1] = | He, (ulk + 1] + v [k]) |, (9.48)
¢
where we split the vector v[k] as v = [’v(—)r , ’UIT, ’v;— 1T consistent with the split of

z in (9.35).
Now we obtain ADMM algorithm to solve the £ 1 optimization (9.20):

~ADMM algorithm to solve the ¢! optimization problem (9.26) —

Initialization: give initial vectors 2[0], v[0] € R", and real number y > 0
Iteration: fork =0, 1,2, ... do

ulk + 1] = M(z[k] — v[k]) (9.49)

Sy (ulk + 1] + volk])
zlk + 1] = | ¢, (ulk + 1]+ v1[k]) (9.50)
¢
vk+ 1] =v[k]l+Pulk+1]—2z[k+1], k=0,1,2,... (9.51)
_ J

In this algorithm, the matrix M in (9.49) is given by (9.42).

As mentioned in [12], ADMM algorithm is very fast and needs just some dozens
of iterations to obtain a solution with a sufficient precision. This property is very
important if you adapt the finite-horizon L' optimal control to the model predictive
control [70], where real-time computation is essential.

MATLAB Programs 175

9.5 MATLAB Programs

We show MATLAB programs to solve the ¢ 1 optimization problem (9.26). One is
a program using CVX. The other is an implementation of ADMM algorithm.

MATLAB program to solve £! optimization problem (9.26) via CVX

clear
%% System model
% Plant matrices
A =[0,1;0,0];
b =[O0
d = length(b); %system size
% initial states
x0 = [1;17;
% Horizon length
T=5;
%% Time discretization
% Discretization size
n =10000; % grid size
h = T/n; % discretization interval
% System discretization
[Ad,bd] = c2d(A,b,h);
% Matrix Phi
Phi = zeros(d,n);
v = bd;
Phi(;,end) = v;
for j = 1:n-1
v = Ad*v;
PhiC.,end-j) = v;
end
% Vector zeta
zeta = -Ad"n*x0;
%% Convex optimization via CVX
cvX_begin
variable u(n)
minimize norm(u,1)
subject to
Phi*u == zeta;
norm(u,inf) <=1;
cvx_end
%% Plot
figure;
plot(O:T/n:T-T/n,u);
titleCSparse control’);

176 Numerical Optimization by Time Discretization

MATLAB program to solve (9.26) with ADMM

clear
%% System model
% Plant matrices
A =[0,1;,0,0];
b =[01];
d = length(b); %system size
% initial states
x0 = [1;1];
% Horizon length
T=25;
%% Time discretization
% Discretization size
n =1000; % grid size
h = T/n; % discretization interval
% System discretization
[Ad,bd] = c2d(A,b,h);
% Matrix Phi
Phi = zeros(d,n);
v = bd;
PhiC,end) = v;
forj =1in-1
v = Ad*v;
Phi(;,end-j) = v;
end
% Vector zeta
zeta = -Ad"n*x0;
%% Convex optimization via ADMM
mu = 2*n+d;
Psi = [eye(n);eye(n);Phi];
M = (0.5*eye(n) - 0.5*Phi*inv(2*eye(d)+Phi*Phi’)*Phi)*Psi’;
sat = @(x) sign(x).*min(abs(x),D;
EPS = Tle-5;
MAX_ITER = 100000;
z = [zeros(2*n,1);zeta]; v = zeros(mu,D);
r = zeta;
k =0;
gamma = 0.05;
while (norm(r)>EPS) & (k < MAX_ITER)
u = M*(z-v);
z0 = soft_thresholding(gamma,u+v(1:n));
z1 = sat(u+v(n+1:2*n));
z2 = zeta;
z = [z0;z1;z2];
Vv = v + Psi*u - z;
r = Phi*u - zeta;
k=k+T1,
end
%% Plot
figure;
plot(0:T/n:T-T/n,u,’LineWidth’,2);
title(Sparse control’);

Further Reading 177

9.6 Further Reading

The time discretization discussed in this section is based on the fundamental theory
of sampled-data control, for which you can refer to a standard textbook by Chen
and Francis [22]. The concept of pathological sampling is also found in this book.

Instead of the time discretization method, one can also use the shooting method
for numerical computation of L'-optimal control. The shooting method is based
on the necessary conditions by Pontryagin’s minimum principle. For the shooting
method, see [10] for details.

DOI: 10.1561/9781680837254.ch10

Chapter 10

Advanced Topics

In this chapter, we introduce advanced topics in maximum hands-off control.

10.1 Smooth Hands-off Control by Mixed L'/L?
Optimization

As we studied in Chapter 8, the maximum hands-off control (the L-optimal con-
trol) is bang-off-bang (Theorem 8.14, p. 157), that is, it is a piecewise constant
function taking values of 1 or 0. This means that the maximum hands-off con-
trol is discontinuous; the control changes its value between 1 and 0, or 0 and —1 at
switching times. This is undesirable for some applications in which the actuators
cannot move abruptly. In this case, one may want to make the control continuous.
For this purpose, we add a regularization term to the L' cost J; (1) in the L' opti-
mal control problem (L'-OPT) (p. 150). That is, we consider the following cost
function:

1 T 1
Jia(u) = Alully + Enun% =/0 (llu(t)l + 5|u(r)|2)dt, (10.1)

where 4 > 0 is a fixed parameter.

178

http://dx.doi.org/10.1561/9781680837254.ch10

Smooth Hands-off Control by Mixed L'/L? Optimization 179

The idea to add the L2-norm term is borrowed by the elastic net regularization' in
compressed sensing [119]. The elastic net regularization promotes sparsity with the
grouping effect, where strongly correlated vectors are chosen at the same time. This
ensures that the solution is not overly sensitive to small changes in the observation.
From this idea, the L2 term in (10.1) enhances continuity of the solution.

With the cost function (10.1), we consider the following mixed L' Lz-optimal
control problem.

S— L'/L?-optimal control problem (L'/L?-OPT) —

For the linear time-invariant system
(1) = Ax(t) + bu(t), t>0, x(0)=¢eR?,

find a control {u(¢) : t € [0, T]} with T > 0 that minimizes

Jio(u) = Allully + %nun%
subject to
x(T)=0,
and

lulloo < 1.

NS J

To discuss properties of the L! / L?-optimal control, we give necessary conditions

of optimality by Pontryagin’s minimum principle.
The Hamiltonian function associated to (L'/L2-OPT) is given by

1
H'(z,p, u) =pT(Aa:+bu)+f1(/1IuI+Elulz). (10.2)

We do not consider the abnormal case (i.e., # = 0) and assume # = 1. Let u*(¢)
denote the optimal control and x*(f) and p*(¢) the resultant optimal state and
costate, respectively. Then we have the following result.

Lemma 10.1. The L' /L?-optimal control u*(t) satisfies

Wt (t) = —sat(Sg (p* (:)Tb)) , (10.3)

1. The name “elastic net” is meant to suggest a stretchable fishing net that retains all the big fish.

180 Advanced Topics

sat (Sx(v))

“A—1 -\ v
0 A A+l
~1

Figure 10.1. Saturated shrinkage function sat(S, (v)).

where S; (+) is the sofi-thresholding operator (see Section 4.2.5, p. 66) defined by

v+ 4 ifo < —A4,
S,(v) £ 10, if —A<o<2, (10.4)
v—4, ifl <o,

and sat(-) is the saturation function defined by

-1, ifo < -1,
sat() = Jo, f —1<ov <1, (10.5)
1, if1 <wo.

See Figure 10.1 for the graphs of sat(S, (v)) in (10.3).

Proof: From Pontryagin’s minimum principle, we have

1
u*(1) = argmin {(p*(t)Tb)u + Au| + 5|u|2]
ue[—1,1]

1, if p*)’b<—1—1
—(p*®Tb+ 1), if —A—-1<p*(t)'b<—1
=10, if —A<p*®)Tb< 2 (10.6)
—(p*®Tb—1), fi<p®)Tb<i+]l
[—1, ifA+1<p*()'d
= —sat(Sg (p*(t)Tb)) .
O

From Lemma 10.1, we have the following theorem.

Theorem 10.2 (Continuity). 7he Ll/Lz-optimal control u*(t) is continuous in t
over [0, T].

Discrete-valued Control 181

Proof: Define
i(p) 2 —sat(SA (pr)) . (10.7)

Since the composite function sat o S is continuous (see Figure 10.1), u(p) is also
continuous in p. It follows from Lemma 10.1 that the optimal control u* given in
(10.3) is continuous in p*. Hence, u*(t) is continuous, if p*(¢) is continuous in ¢
over [0, T]. In fact, from (8.20) (p. 153), p* (") Tbis given by

p*(t)'b=p*(0) e b, (10.8)

which is continuous in ¢ over R. O

Theorem 10.2 motivates us to use the L'/L? optimization in the L!/L2-
optimal control problem (L!/L2-OPT) for continuous hands-off control.

In general, the degree of continuity (or smoothness) and the sparsity of the con-
trol input cannot be optimized at the same time. The weight parameter 4 can be
used for trading smoothness for sparsity. Lemma 10.1 suggests that increasing the
weight 4 makes the L'/L? optimal control u*(t) sparser (see also Figure 10.1).
On the other hand, decreasing 4 smoothens u*(t).

Example 10.3. Let us consider the following linear system

0100 0

dx(t) 0010 0

7 =100 0 1 x(t) + 0 u(t). (10.9)
0 00O 1

We set the final time T = 10, and the initial and final states as
z(0) = [0.5,0.5,0.5,0.5]", x(10) = 0. (10.10)

Figure 10.2 shows the L/L? optimal control with weights /. = 1. The maximum
hands-off control is also illustrated. We can see that the L'/L?-optimal control is con-
tinuous but sufficiently sparse.

10.2 Discrete-valued Control

As we observed in Chapter 8, the maximum hands-off control (or the Lo—optimal
control) takes values in an alphaber’ {—1, 0, 1}. Such a control is called a discrete-
valued control, since the control takes a finite number of values. Discrete-valued

2. The word alphabet is borrowed from information theory [27]. An alphabet is a set of a finite number of
elements that are used to represent signals of interest.

182 Advanced Topics

_ Optimal Control

—L"/L2 optimal
-- L optimal

0.5+

-0.5

1
1
1
1
L L !
0 2 4 6 8 10
time (sec)

Figure 10.2. Maximum hands-off control (dashed) and L!/L%-optimal control (solid).

u(t)

Us

0
Ui

Figure 10.3. An example of discrete-valued control that takes three values of U;, U,
and Us.

control is important in networked control systems where the bandwidth of the
network is limited, since discrete-valued signals can be effectively compressed.

We here generalize the property of discreteness in maximum hands-off control
by the sum-of-absolute-values (SOAV) optimization.

10.2.1 Sum-of-Absolute-Values (SOAV) Optimization
Let us consider discrete-valued control for the linear time-invariant plant
z(t) = Az(@) + bu(t), t>0, z(0)=¢eR?, (10.11)
where the control u(t) takes N real numbers
U <U; <--- <Up. (10.12)

That is, we consider a discrete-valued control with alphabet {U1, Ua, ..., Un}.
Figure 10.3 shows an example of discrete-valued control. We then seek a discrete-
valued control that achieves (T) = 0, given the initial state (0) = § and the
control time T > 0.

Discrete-valued Control 183

A standard method to obtain discrete-valued control is to describe the problem
as a mixed-integer programming problem [6]. However, this method requires a lot
of computational time, which glows exponentially as the size of problem glows, and
hence this method is hard to apply for a large scale problem. Instead, we consider
convex relaxation of this optimization problem of discrete-valued control.

We first define the feasible controls that drive the state (¢) from the initial state
x(0) = & to the origin in time 7' > 0, satistying

Uy <ul)<Uy, Vtel0,T]. (10.13)

We denote by (T, £) the set of feasible controls. We assume that§ € R? and T >
0 are given such that U(T, &) is non-empty. For a feasible control u € U(T, §),
define the following cost function:

N
Jo) £ D" wjllu = Ujllo, (10.14)
j=1
where w1, wa, ..., wy are weights that satisfy
w; >0, wtwy+---+wy=1. (10.15)

Minimizing the cost function (10.14) may promote discreteness of the control
to take values in {Uy, . .., Un}. This can be explained as follows. A discrete-valued
control is a piecewise constant signal as shown in Figure 10.3. If u(¢) = U; for ¢ in
some time intervals with a positive length, then the function u(¢) — U is zero over
the intervals, and hence it is sparse. Namely, the L? norm of the function u — U;
should be smaller than T. If we choose the weights w1, ..., wy according to the
importance of the values Uy, . .., Uy and minimize the cost function (10.14), we
may obtain a discrete-valued feasible control.

The cost function (10.14) is discontinuous and non-convex, and hence it is dif-
ficult to directly obtain the optimal solution as in the case of L%-optimal control.
We then adopt the L' relaxation, that is, we use the L' norm instead of the L°
norm in (10.14):

N T N
Jl(M)éijHM—UjIIl:/ ijlu(t)—Ujldt (10.16)
j=1 0 j=1

We call this cost function the sum of absolute values or SOAV for short, and the
optimal control that minimizes the SOAV cost function the sum-of-absolute-values

184 Advanced Topics

optimal control or SOAV-optimal control. We describe the SOAV-optimal control
problem as follows:

) — SOAV-optimal control problem (SOAV-OPT) —

For the linear time-invariant system
z(t) = Az(t) + bu(t), >0, z(0)=¢eR?,

find a control {u(¢) : ¢t € [0, T]} that minimizes

N T N
H = willu - Ul =/O > w)lute) — Ujldr
j=1 j=1

subject to
z(T) =0,

and

Uy <u() <Un, Vtel0,T]
N J

10.2.2 Discreteness of SOAV-optimal Control

Here we show that the SOAV-optimal control is a discrete-valued control taking
values in {U1, ..., Uy} under some conditions.

Let u* € U(T, &) be an SOAV-optimal control minimizing the cost function
(10.16), that is,

u* = argmin Ji(u) subjectto u € U(T,E). (10.17)

For the optimal control problem (SOAV-OPT), we analyze the solution u™* by using
Pontryagin’s minimum principle.
The stage-cost function L(u) of the SOAV cost function (10.16) is given by

N
L) =D wjlu—1Ujl. (10.18)
j=l1

Figure 10.4 shows an example of function L(u). As shown in this figure, the
stage-cost function L(u) is a continuous and piecewise linear function. Also,
since the function L(u) is a convex combination of convex functions |u — U],
Jj=1,..., N, L(u) is convex in u. That is, the optimization problem in (SOAV-
OPT) is a convex optimization problem.

Discrete-valued Control 185

Ul U2 U3 U4 U5

Figure 10.4. Piecewise linear function L(u).

Then the Hamiltonian for (SOAV-OPT) is defined by

H'(x,p,u) = pT(Azc + bu) + nL(u)
N
:pT(A:I: + bu) + nijlu - Uj|.
j=1

(10.19)

Here we assume’ 7 = 1. Let * and p* be respectively the optimal state and costate
with the optimal control #*. From the minimum principle, we have

u*(1) = argmin {p*(1)"(Az*(t) + bu) + L)}

uelU;,Un]
(10.20)
= argmin {p* (1) "bu + L(u)}.
uel(Ur,Un]
Let us solve the minimization problem in (10.20).
Since the function L(u) is piecewise linear, L(#) can be written as
[ayu + b, u € [Uy, U2],
aru + by, u € [Up, Us],
L) = (10.21)
lan—1u +DN—1, u € [Un-1,Un],
where
k N
ax =2 wj= >, wj,
=1 j=k+1
/ = (10.22)

k N
bk:—ijUj+Z w;Uj, k=1,2,...,N—1.
=1 j=k+1

3. Ifn = 0, then the extremum solution is a bang-bang control that takes values of Uy or Uy, which is a
discrete-valued control.

186 Advanced Topics

Fixt € [0, T] and define & = p*(¢) b € R. Since L(u) is continuous, and the
following inequality

ap <ay <--- <an-i (10.23)

holds, we can compute the minimizer of

(a1 + a)u + by, u € [Uy, Usl,
B 2 au t Ly = | @ TP welln Ok 004
(an—1+a)u+by-1, uel[Un-1,Un],
foru € [Uy, UN].
(i) Ifa; +a > 0, then from (10.23) we have
O<aj+a<ay+a<---<ay_1+a, (10.25)

and the slopes (ax + a) of the linear functions in (10.24) are all positive.
See (i) of Figure 10.5. Hence we have

argmin h(u) = Uj. (10.26)
uelU;,Un]

U,y Ug Ug U4 U1 UQ Ug U4
(iii) (iv)

Figure 10.5. 4 cases of piecewise linear function h(u) = au + L(u).

Discrete-valued Control 187

(ii)

(iii)

(iv)

Ifap+a <0andags1+a >0k =1,..., N —2), then from (10.23)

we have
al+a<arta<---<a+a<0, (10.27)
and
O<apy14+a <agsr4+a <--- <any-1+a. (10.28)

The sign of the slopes of the linear functions in (10.24) changes from neg-
ative to positive at u = Uj41. See (ii) of Figure 10.5. Hence, we have

argmin h(u) = Ugy1. (10.29)
uelU;,Un]

Ifay_1 +a < 0, then we have
ata<ata<---<any_1+a <0, (10.30)

and the slopes (ax + @) in (10.24) are all negative. See (iii) of Figure 10.5.
Hence we have

argmin h(u) = Uy. (10.31)
uelU1,Un]

If there exists k € {1, 2, ..., N — 1} such that ax + a = 0, then the slope
becomes zero over the interval [Ug, Ug+1]. Hence we have

argmin h(u) = [Uk, Ugy1]. (10.32)
uelU;,Un]

In this case, we cannot determine the unique value for u* (7).

In summary, the SOAV optimal control u*(¢) satisfies the following:

(U, if—a <p*(®)Tb
U,, if —ay < p*(t)Tb < —aj

u* () = { : (10.33)

Uy—1, if —an—1 <p*(®)Tb < —ay—
[Uv, ifp*()Tb < —ay_

u*(t) € [U, Uxr), ifp ()" b=—ar, k=1,2,...,N—1 (10.34)

From (10.34), if

p)'b#—ar, k=1,2,...,N—1 (10.35)

188 Advanced Topics

holds for almost all ¢ € [0, T], then we can see that u*(¢) takes discrete-values in
{Uy, ..., Uy} for almost all ¢ € [0, T]. Let us consider a sufficient condition for
this.

We see that (10.35) holds for almost all # € [0, T'] if and only if

p({tel0,T1:p*(1) b= —ar}) =0 (10.36)

fork = 1,2,..., N — 1. We say the SOAV optimal control is non-singular if
(10.36) holds. Then we have the following theorem:

Theorem 10.4. Assume that the SOAV optimal control is non-singular. Then the opti-
mal control u*(t) takes values in {Uy, . .., Un} for almost allt € [0, T'].

For the non-singularity, we have the following theorem.
Theorem 10.5. Assume that the pair (A, b) is non-singular." Assume also that
k N
Dwi#E D w; (10.37)
j=1 j=k+1
holds fork = 1,2, ..., N — 1. Then the SOAV optimal control is non-singular.
Exercise 10.6. Prove Theorem 10.5.

The condition (10.37) in Theorem 10.5 is a sufficient and necessary condition
for the slopes of the linear functions in (10.24) to be nonzero.

Example 10.7. Let us consider a design example of SOAV-optimal control. We consider
the 4-th order plant given in (10.9) in Example 10.3. The final time T = 10 and the
initial and final states are the same as (10.10).

The alphabet is given by {—1, —0.5,0,0.5, 1}, that is, N = 5 and

U =-1,U,=-05,U3=0, Uy =0.5, Us = 1. (10.38)

The weights in the cost function (10.106) are set as

1
W] =Wy =W3 = W4 = W5 = 5 (10.39)

Figure 10.6 shows the obtained SOAV-optimal control. In this figure, the max-
imum hands-off control (L'-optimal control) discussed in Chapter 8 and the

4. The pair (A, b) is said to be non-singular if the pair (A, b) is controllable and A is non-singular.

Time-Optimal Hands-off Control 189

L T
|
1
i
i
0.5 =
/ N
/ Y
7 N
7 Y
> . >
= 0 ! \ ’
1 \ ’
> ’
1 ~
!/ -
0571 ——SOAV
,' ==L optimal
-=|2 optimal
1]
1 L L.
0 2 4 6 8 10
time (sec)

Figure 10.6. SOAV-optimal control (solid), L'-optimal control (dashed), and L2-optimal
control (dotted).

Lz—optimal control’ that minimizes the L2 norm

T
J(u) = / lu(r)|dt (10.40)
0

are also shown. Note that the L!-optimal control is bang-off-bang and takes values
of £1 and 0. On the other hand, the L2—optimal control is a smooth control. The
SOAV-optimal control is between them. It takes discrete values in the alphabet
{—1,-0.5,0,0.5, 1}, that is a quantization of the L2—optimal control.

Figure 10.7 shows the state variables x1 (), ..., x4(¢) in the state 2(¢) and the
SOAV-optimal control. We can see that by the obtained discrete-valued control
u(t), all the state variables converge to the origin in the time T = 10. Note that this
cannot be possible when one uses a quantized version of the L2-optimal control by a
static quantizer; there should be quantization errors that perturb the state trajectory.

10.3 Time-Optimal Hands-off Control

In this section, we consider an optimal control that takes account of sparsity
and time-optimality at the same time. Let us consider the following linear time-
invariant system:

z(t) = Az(t) + bu(t), >0, z(0)=¢eR% (10.41)

5. The Lz-optimal control is also known as minimum energy control [2, Section 6-18].

190 Advanced Topics

state variables x(t) and control u(t)

time (sec)

Figure 10.7. State variables x (), ..., x4(r) and the SOAV-optimal control u(z), t € [0, 10].

The control objective is to drive the state to the origin. Here we do not fix the final
time 7. As in the minimum-time control in Chapter 7, the final time 7 is also an
optimization variable.

First, we consider the feasibility of the control. For the system (10.41), a control
u is said to be feasible if there exists a finite time 7" > 0 such that by {u(?) : ¢ €
[0, T']} satisfying

lu(®)| <1, Vvtel0,T], (10.42)

the state x(¢) in (10.41) is steered from x(0) = £ to &(T) = 0. From the defi-
nition of the controllable set R in (7.30) (p. 134), there exists a feasible control if
the initial state & is in the controllable set R. Therefore, we assume § € R. Using
the feasible set U(T, &) with fixed T > O (see Section 7.1.3), the set of all feasible

controls is given by

uE) = Ju. . (10.43)

T>0

Next, we formulate the optimal control problem. We seck a feasible control u €
U(€) that minimizes the L° norm of u and the response time 7 at the same time.
For this, we consider the following cost function:

Jo(u) = Allullo + T, (10.44)

where 4 > 0 is a weight parameter for a trade-off between the two requirements. As
usual, we relax the L norm in (10.44) by the L' norm |Ju||1, namely, we consider
the following cost function:

Ji(u) £ Aully + T, (10.45)

Time-Optimal Hands-off Control 191

Now we formulate our problem.

— Ll—time—optimal control problem (L'-T-OPT) —

For the linear time-invariant system
z(t) = Az(t) + bu(t), t>0, x(0)=¢&eR?,
find a control {u(¢) : t € [0, 00)} that minimizes
Ji(w) = Aulli +T
subject to
z(T) =0,
and

ulloo < 1.

N J

We call the optimal solution the L'-time-optimal control.

The existence theorem for the L!-time-optimal control is proved similarly to the
time-optimal control (Theorem 8.15, p. 158).

Theorem 10.8. For any initial state € € R, there exists at least one L' -time-optimal
control.

You can find the proof in [57].
The Hamiltonian for (L'-T-OPT) is given by

H'(z,p,u) =p' (Az + bu) + n(A|u| + 1) (10.46)

We do not consider the abnormal case (# = 0) and assume # = 1. Then the
optimal control u* () of (L'-T-OPT) satisfies

u*(t) = argmin H'(x,p,u) = arg min {p*(t)Tbu + i|u|} (10.47)
ue[—1,1] ue[—1,1]
From this, we have

1, if p*()Tb < =1,

u*(t) =140, if —A<p*()'b<2,
—1, if 2 <p*(n)'b, (10.48)

u(1) € 10,11, if p*(0) b =—4,

u*(t) € [-1,0], if p*(t)" b= 2.

192 Advanced Topics

If p*(1)Tb = +4 holds only on sets of measure zero (i.e., if p* NOTb # £
almost all ¢+ € [0, T'], then the Ll—time—optimal control is bang-off-bang. From
Lemma 8.3, we have the following theorem:

Theorem 10.9. Assume that the pair (A, b) is non-singular. Then the L'-time-
optimal control is bang-off-bang (if it exists).

This theorem along with Theorem 10.8 leads to the following equivalence theorem:

Theorem 10.10. Assume & € R and the pair (A, b) is non-singular. Then the L'-
time-optimal control is equivalent to the Lo-time-optimal control that minimizes the
cost function (10.44).

10.4 Further Reading

The smooth hands-off control by the mixed L'/L? optimization was first pro-
posed in [83]. Another formulation for smooth hands-off control by the CLOT
(Combined L-One and Two) norm was also proposed in [85]. The CLOT norm is
defined by

lullcLor = Allully + A2llull2, (10.49)

with parameters A1 > 0 and A2 > O such that 41 + 42 = 1. Compared with
the mixed L'/L? cost function in (10.1), the L? term in the CLOT norm is not
squared. The CLOT-optimal control is also continuous but sparser than the mixed
L'/L?-optimal control in (L'/L?-OPT).

The SOAV optimal control has been proposed in [53, 56]. The idea of
SOAV cost function was first proposed in [77] for discrete-valued signal recon-
struction. The SOAV optimization was then applied to digital communications
[46, 101, 102].

The L'-time-optimal control was first proposed in [57].

References

[1] M. Aldridge, L. Baldassini, and O. Johnson, “Group testing algorithms:
Bounds and simulations,” IEEE Trans. Inf. Theory, vol. 60, no. 6, pp. 3671—
3687, Jun. 2014.

[2] M. Athans and P. L. Falb, Optimal Control. Dover Publications, 2007, an
unabridged republication of the work published by McGraw-Hill in 1966.

[3] G. K. Atia and V. Saligrama, “Boolean compressed sensing and noisy group
testing,” [EEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1880—-1901, Mar. 2012.

[4] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer, 2011.

[5] A. Beck and M. Teboulle, “Gradient-based algorithms with applications to
signal-recovery problems,” in Convex Optimization. Cambridge University
Press, 2010.

[6] A. Bemporad and M. Morari, “Control of systems integrating logic, dynam-
ics, and constraints,” Automatica, vol. 35, pp. 407—427, 1999.

[7] D. Bertsekas, Convex Optimization Algorithms. Athena Scientific, 2015.

[8] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[9] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approx-
imations,” Journal of Fourier Analysis and Applications, vol. 14, no. 5,
pp- 629-654, 2008.

[10] H. Bock and K. Plitt, “A multiple shooting algorithm for direct solution
of optimal control problems*,” IFAC Proceedings Volumes, vol. 17, no. 2,
pp- 1603-1608, 1984.

[11] S. Boyd, L. E. Ghaoui, e. Feron, and V. Balakrishnan, Linear Matrix Inequal-
ities in System and Control Theory. SIAM, 1994.

193

194 References

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed opti-
mization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1,
pp. 1-122, 2011.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[14] J. P. Boyle and R. L. Dykstra, “A method for finding projections onto the
intersection of convex sets in Hilbert spaces,” in Advances in Order Restricted
Statistical Inference, Lecture Notes in Statistics, R. Dykstra, T. Robertson, and
E T. Wright, Eds. New York: Springer, 1986, vol. 37.

[15] P Bithlmann and S. van de Geer, Statistics for High-Dimensional Data.
Springer, 2011.

[16] E.]. Candes and T. Tao, “Near-optimal signal recovery from random projec-
tions: Universal encoding strategies?” IEEE Trans. Inf. Theory, vol. 52, no. 12,
pp- 5406-5425, Dec. 2006.

[17] C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proc.
IEEE, vol. 95, no. 4, pp. 704718, Apr. 2007.

[18] C. Chang and S. Sim, “Optimising train movements through coast control
using genetic algorithms,” IEE Proceedings-Electric Power Applications, vol.
144, no. 1, pp. 65-73, 1997.

[19] D. Chatterjee, M. Nagahara, D. E. Quevedo, and K. M. Rao, “Character-
ization of maximum hands-off control,” Systems & Control Letters, vol. 94,
pp- 31-36, 2016.

[20] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by
basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33-61, Aug. 1998.

[21] S. Chen and D. Donoho, “Basis pursuit,” in Signals, Systems and Computers,
Conference Record of the Twenty-Eighth Asilomar Conference on, vol. 1, Oct.
1994, pp. 41-44.

[22] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems. Springer,
1995.

(23]]J. E Claerbout and F. Muir, “Robust modeling with erratic data,” Geophysics,
vol. 38, no. 5, pp. 826-844, 1973.

(24] E. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,
ser. Graduate Texts in Mathematics. Springer, London, 2013, vol. 264.

[25] P L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal pro-
cessing,” in Fixed-Point Algorithms for Inverse Problems in Science and Engi-
neering. New York, NY: Springer New York, 2011, pp. 185-212.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. MIT Press, 2009.

References 195

[27] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Wiley—Interscience, 2006.

(28] G. M. Davis, S. G. Mallat, and Z. Zhang, “Adaptive time-frequency decom-
positions,” Optical Engineering, vol. 33, no. 7, pp. 2183-2191, 1994.

[29] N. K. Dhingra, M. R. Jovanovi¢, and Z. Luo, “An ADMM algorithm for
optimal sensor and actuator selection,” in 53rd IEEE Conference on Decision
and Control, 2014, pp. 4039-4044.

[30] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289-13006, Apr. 2006.

[31] D. L. Donoho and P. B. Stark, “Uncertainty principles and signal recovery,”
SIAM Journal on Applied Mathematics, vol. 49, no. 3, pp. 906-931, 1989.

(32] R. Dorfman, “The detection of defective members of large populations,”
Ann. Math. Statist., vol. 14, no. 4, pp. 436440, 12 1943.

[33] G.-R. Duan and H.-H. Yu, LMIs in Control Systems. CRC Press, 2013.

(34] B. Dunham, “Automatic on/off switching gives 10-percent gas saving,”
Popular Science, vol. 205, no. 4, p. 170, Oct. 1974.

[35] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method
and proximal point algorithm for maximal monotone operators,” Math. Pro-
gram., vol. 55, pp. 293-318, 1992.

[36] M. B. Egerstedt and C. E Martin, Control Theoretic Splines: Optimal Control,
Statistics, and Path Planning. Princeton University Press, 2009.

[37] M. Elad, Sparse and Redundant Representations. Springer, 2010.

[38] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sens-
ing. Birkhiuser, 2013.

[39] M. Gallieri and J. M. Maciejowski, “Ca50 MPC: Smart regulation of over-
actuated systems,” in Proc. Amer. Contr. Conf., Jun. 2012, pp. 1217-1222.

(40] C. Giraud, Introduction to High-Dimensional Statistics. CRC Press, 2015.

[41] G. H. Golub and C. E V. Loan, Matrix Computations, 4th ed. Johns Hopkins
University Press, 2012.

(42] 1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

(43] D. A. Harville, Matrix Algebra From a Statistician’s Perspective. Springer,
1997.

(44] T. Hastie, R. Tibshirani, and]. Friedman, The Elements of Statistical Learning.
Springer, 2009.

[45] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Spar-
sity: The Lasso and Generalizations. CRC Press, 2015.

[46] R. Hayakawa and K. Hayashi, “Discreteness-aware approximate message
passing for discrete-valued vector reconstruction,” IEEE Trans. Signal Pro-

cess., vol. 66, no. 24, pp. 64436457, 2018.

196 References

[47] K. Hayashi, M. Nagahara, and T. Tanaka, “A user’s guide to compressed
sensing for communications systems,” /EICE Trans. on Communications, vol.
E96-B, no. 3, pp. 685-712, Mar. 2013.

[48] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction
to event-triggered and self-triggered control,” in 2012 [EEE 51st [EEE Con-
ference on Decision and Control (CDC), Dec. 2012, pp. 3270-3285.

[49] H. Hermes and]. P. Lasalle, Functional Analysis and Time Optimal Control.
Academic Press, 1969.

[50] T. Ikeda and K. Kashima, “Sparsity-constrained controllability maximiza-
tion with application to time-varying control node selection,” IEEE Control
Systems Letters, vol. 2, pp. 321-326, 2018.

[51] T. Ikeda and K. Kashima, “On sparse optimal control for general linear sys-
tems,” [EEE Trans. Autom. Control, vol. 64, no. 5, pp. 2077-2083, 2019.

[52] T. Ikeda, M. Nagahara, and K. Kashima, “Maximum hands-off distributed
control for consensus of multi-agent systems with sampled-data state obser-
vation,” [EEE Trans. Control Netw. Syst., vol. 6, no. 2, pp. 852-862, Jun.
2019.

(53] T. Ikeda, M. Nagahara, and S. Ono, “Discrete-valued control of linear time-
invariant systems by sum-of-absolute-values optimization,” [EEE Trans.
Autom. Control, vol. 62, no. 6, pp. 2750-2763, 2017.

[54] T. Ikeda, D. Zelazo, and K. Kashima, “Maximum hands-off distributed
bearing-based formation control,” in 2019 IEEE 58th Conference on Deci-
sion and Control (CDC), 2019, pp. 4459-4464.

[55] T. Ikeda and M. Nagahara, “Value function in maximum hands-off control
for linear systems,” Automatica, vol. 64, pp. 190-195, 2016.

[56] ——, “Discrete-valued model predictive control using sum-of-absolute-
values optimization,” Asian _Journal of Control, vol. 20, no. 1, pp. 196-206,
2018.

[57] ——, “Time-optimal hands-off control for linear time-invariant systems,”

Automatica, vol. 99, pp. 54-58, 2019.

[58] M. Ishikawa, “Structural learning with forgetting,” Neural Netw., vol. 9,
no. 3, pp. 509-521, Apr. 1996.

[59] A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas, “Minimal reach-
ability is hard to approximate,” IEEE Trans. Autom. Control, vol. 64, no. 2,
pp. 783789, 2019.

[60] D. Jeong and W. Jeon, “Performance of adaptive sleep period control for
wireless communications systems,” [EEE Trans. Wireless Commun., vol. 5,

no. 11, pp. 3012-3016, Nov. 2006.

References 197

[61] M. R. Jovanovi¢ and N. K. Dhingra, “Controller architectures: Tradeoffs
between performance and structure,” European Journal of Control, vol. 30,
pp- 76 — 91, 2016, 15th European Control Conference, ECC16.

[62] N. Karumanchi, Data Structures and Algorithms Made Easy, 2nd ed. Career-
Monk, 2011.

[63] E. Khmelnitsky, “On an optimal control problem of train operation,” /EEE
Trans. Autom. Control, vol. 45, no. 7, pp. 1257-1266, 2000.

[64] R. Kirchhoff, M. Thele, M. Finkbohner, P. Rigley, and W. Settgast, “Start-
stop system distributed in-car intelligence,” ATZextra worldwide, vol. 15,
no. 11, pp. 52-55, Jan. 2010.

[65] E. Kreyszig, Introductory Functional Analysis with Applications. Wiley, 1989.

[66] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise
Introduction. Princeton University Press, 2012.

[67] E Lin, M. Fardad, and M. R. Jovanovi¢, “Augmented Lagrangian approach
to design of structured optimal state feedback gains,” IEEE Trans. Autom.
Control, vol. 56, no. 12, pp. 2923-2929, 2011.

[68] E Lin, M. Fardad, and M. R. Jovanovi¢, “Design of optimal sparse feed-
back gains via the alternating direction method of multipliers,” /EEE Trans.
Autom. Control, vol. 58, no. 9, pp. 2426-2431, 2013.

[69] B. E Logan, “Properties of high-pass signals,” Ph.D. dissertation, Columbia
University, 1965.

[70] J. M. Maciejowski, Predictive Control with Constraints. Prentice-Hall, 2002.

[71] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictio-
naries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, Nov.
1993.

[72] S. Mallat, A Waveletr Tour of Signal Processing: The Sparse Way, 3rd ed. Aca-
demic Press, 2008.

[73] 1. Markovsky, Low Rank Approximation. Springer, 2012.

[74] R. Martin, K. L. Teo, and M. D’Incalci, Optimal Control of Drug Adminis-
tration in Cancer Chemotherapy. Singapore: World Scientific, 1994.

[75] M. Mesbahi and G. P. Papavassilopoulos, “On the rank minimization prob-
lem over a positive semidefinite linear matrix inequality,” JEEE Trans. Autom.
Control, vol. 42, no. 2, pp. 239-243, Feb. 1997.

[76] U. Miinz, M. Pfister, and P. Wolfrum, “Sensor and actuator placement for
linear systems based on H and Hy optimization,” /EEE Trans. Autom. Con-
trol, vol. 59, no. 11, pp. 2984-2989, 2014.

[77]1 M. Nagahara, “Discrete signal reconstruction by sum of absolute values,”
IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1575-1579, Oct. 2015.

198 References

[78] M. Nagahara and C. E Martin, “Monotone smoothing splines using general
linear systems,” Asian Journal of Control, vol. 5, no. 2, pp. 461-468, Mar.
2013.

[79] ——, “L' control theoretic smoothing splines,” IEEE Signal Process. Lett.,
vol. 21, no. 11, pp. 1394-1397, Nov. 2014.

[80] M. Nagahara, T. Matsuda, and K. Hayashi, “Compressive sampling for
remote control systems,” IEICE Trans. on Fundamentals, vol. E95-A, no. 4,
pp. 713-722, Apr. 2012.

[81] M. Nagahara and D. E. Quevedo, “Sparse representations for packetized pre-
dictive networked control,” in /FAC 18th World Congress, Aug.—Sept. 2011,
pp. 84-89.

[82] M. Nagahara, D. E. Quevedo, and D. Nesi¢, “Maximum hands-off control
and L! optimality,” in 52nd IEEE Conference on Decision and Control (CDC),
Dec. 2013, pp. 3825-3830.

[83] ——, “Maximum hands-off control: a paradigm of control effort minimiza-
tion,” J[EEE Trans. Autom. Control, vol. 61, no. 3, pp. 735-747, 2016.

[84] M. Nagahara, D. Quevedo, and J. Ostergaard, “Sparse packetized predictive
control for networked control over erasure channels,” IEEE Trans. Autom.
Control, vol. 59, no. 7, pp. 1899-1905, Jul. 2014.

[85] M. Nagahara, D. Chatterjee, N. Challapalli, and M. Vidyasagar, “CLOT
norm minimization for continuous hands-off control,” Automatica, vol. 113,
p. 108679, 2020.

[86] M. Nagahara,]. Ostergaard, and D. E. Quevedo, “Discrete-time hands-off
control by sparse optimization,” EURASIP Journal on Advances in Signal Pro-
cessing, vol. 2016, no. 1, pp. 1-8, 2016.

[87] M. Nalbach, A. Korner, and S. Kahnt, “Active engine-off coasting using 48V:
Economic reduction of COy emissions,” in 1 7th International Congress ELIV,
Oct. 2015, pp. 41-51.

[88] D. Needell and J. A. Tropp, “CoSaMP: iterative signal recovery from incom-
plete and inaccurate samples,” Appl. Comput. Harmonic Anal., vol. 26, no. 3,
pp. 301-321, 2008.

[89] K. Ogata, Modern Control Engineering, Sth ed. Pearson, 2009.

[90] A. Olshevsky, “Minimal controllability problems,” /EEE Trans. Control
Netw. Syst., vol. 1, no. 3, pp. 249-258, 2014.

[91] S. K. Pakazad, H. Ohlsson, and L. Ljung, “Sparse control using sum-of-
norms regularized model predictive control,” in 52nd IEEE Conference on
Decision and Control, 2013, pp. 5758-5763.

[92] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in
Optimization, vol. 1, no. 3, pp. 123-231, 2013.

References 199

[93] E Pasqualetti, S. Zampieri, and FE Bullo, “Controllability metrics, limita-
tions and algorithms for complex networks,” IEEE Trans. Control Netw. Syst.,
vol. 1, no. 1, pp. 40-52, 2014.

[94] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pur-
suit: Recursive function approximation with applications to wavelet decom-
position,” in Proc. the 27th Annual Asilomar Conf. on Signals, Systems and
Computers, Nov. 1993, pp. 40—44.

[95] S. Pequito, S. Kar, and A. P. Aguiar, “A framework for structural input/output
and control configuration selection of large-scale systems,” IEEE Trans.
Autom. Control, vol. 61, no. 2, pp. 303-318, Feb. 2016.

[96] L.S. Pontryagin, Mathematical Theory of Optimal Processes. CRC Press, 1987,
vol. 4.

[97] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D, vol. 60, p. 259-268, 1992.

(98] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, 1976.

[99] ——, Real and Complex Analysis, 3rd ed. McGraw-Hill, 2005.

[100] E Santosa and W. W. Symes, “Linear inversion of band-limited reflection
seismograms,” SIAM Journal on Scientific and Statistical Computing, vol. 7,
no. 4, pp. 1307-1330, 1986.

[101] H. Sasahara, K. Hayashi, and M. Nagahara, “Symbol detection for faster-
than-Nyquist signaling by sum-of-absolute-values optimization,” /EEE Sig-
nal Process. Lett., vol. 23, no. 12, pp. 1853-1857, 2016.

[102] ——, “Multiuser detection based on MAP estimation with sum-of-absolute-
values relaxation,” IEEE Trans. Signal Process., vol. 65, no. 21, pp. 5621—
5634, 2017.

[103] H. Schittler and U. Ledzewicz, Geometric Optimal Control. Springer, 2012.

(104] B. Scholkopf and A. J. Smola, Learning with Kernels. The MIT Press, 2002.

[105] P. Shakouri, A. Ordys, P. Darnell, and P. Kavanagh, “Fuel efficiency by coast-
ing in the vehicle,” International Journal of Vehicular Technology, vol. 2013,
p. 14,2013,

[106] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014.

[107] G. Strang and T. Nguyen, Wavelets and Filter Banks, 2nd ed. Wellesley-
Cambridge Press, 1996.

[108] S. Sun, M. B. Egerstedt, and C. E Martin, “Control theoretic smooth-
ing splines,” IEEE Trans. Autom. Control, vol. 45, no. 12, pp. 2271-2279,
Dec. 2000.

[109] H. L. Taylor, S. C. Banks, and J. E McCoy, “Deconvolution with the £
norm,” Geophysics, vol. 44, no. 1, pp. 39-52, 1979.

200 References

[110] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” /. R.
Statist. Soc. Ser. B, vol. 58, no. 1, pp. 267-288, 1996.

[111] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal actu-
ator placement with bounds on control effort,” /EEE Trans. Control Netw.
Syst., vol. 3, no. 1, pp. 67-78, 2016.

[112] M. Vidyasagar, An Introduction to Compressed Sensing. SIAM, 2019.

[113] G. Vossen and H. Maurer, “On L!-minimization in optimal control and
applications to robotics,” Optimal Control Applications and Methods, vol. 27,
no. 6, pp. 301-321, 2006.

[114] Y. Yamamoto, From Vector Spaces to Function Spaces: Introduction to Func-
tional Analysis with Applications. SIAM, 2012.

[115] N. Young, An Introduction to Hilbert Space. Cambridge University Press,
1988.

[116] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society: Series B (Statisti-
cal Methodology), vol. 68, no. 1, p. 49-67, Feb. 2006.

[117] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Pearson,
1995.

[118] M. Zibulevsky and M. Elad, “L1-L2 optimization in signal and image pro-
cessing,” IEEE Signal Process. Mag., vol. 27, pp. 76-88, May 2010.

[119] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),
vol. 67, no. 2, pp. 301-320, Apr. 2005.

Index

abnormal multiplier, 137

adjoint equation, 137

admissible control, 131

ADMM, 78, 171

alphabet, 181

Alternating Direction Method of
Multipliers, 78

atom, 17

augmented Lagrangian, 79

bang-bang control, 139, 154

bang-off-bang control, 8, 152, 157

basis pursuit, 7, 46

best Lipschitz constant, 75

bilinear matrix inequality (BMI), 10

binary optimization problem, 5

brute-force search, 23

canonical equation, 137

cardinality (of a vector), 22

closed function, 56

coasting, 148

combinatorial optimization, 5, 26

compressive sampling matching pursuit,
101

condition number, 64

consistency (of Hamiltonian), 138

constraint, 57

201

constraint set, 57

control, 127

control theoretic splines, 112
controllability grammian, 130
controllability matrix, 119, 130
controllable, 119, 129
controlled object, 127

convex function, 56

convex optimization problem, 47, 57
convex relaxation, 47, 150
convex set, 55

CoSaMP, 101

cost function, 57

curve fitting, 31, 33

CVX, 48

data compression, 17
dead-zone function, 151
dictionary, 17

dictionary matrix, 18
dimension theorem, 19
discrete-time system, 118
discrete-valued control, 181
discreteness, 9

double integrator, 128
Douglas-Rachford splitting algorithm, 70
dropout, 7

202

Dykstra-like splitting algorithm, 72
dynamical system, 126
effective domain, 55

elastic net regularization, 7, 179
epigraph, 56

Euclidean inner product, 20
Euclidean norm, 20

exhaustive search, 23, 89
extended real numbers, 55
extremal control, 138

fat matrix, 18

feasible control, 135, 183
feasible set, 57

feasible solutions, 57

feedback control, 121, 128, 145
feedforward control, 128
first-order convergence, 76, 94
FISTA, 77

fixed point, 63, 76

Fourier basis, 27

Fourier series, 27

frame, 30

free parameter, 20

full column rank, 37

full row rank, 19

generalized LASSO, 78
geophysics, 6

Gibbs phenomenon, 29
gliding, 148

global minimizer, 58
Goldberg’s machine, 1

gradient, x, 59

gradient descent algorithm, 65
greedy method, 89

green control, 148

H® control, 10

Haar basis, 29

Haar function, 29

Hamilton’s canonical equations, 138

Hamiltonian, 137

Index

hands-off control, 148

hard-thresholding operator, 68, 98, 100

horizon length, 118

IHT, 98, 101

ill-conditioned, 64

indicator function, 65, 171

initial state, 127

injective, 37

interior, 71

interpolating polynomial, 34

invariant set, 61

inverse problem, 6

ISTA, 77

iterative s-sparse algorithm, 101

iterative hard-thresholding algorithm, 98,
101

iterative shrinkage thresholding algorithm,
77

kernel, 19

L norm, x, 133

{*° norm, ix, 21

L0 norm, 146

£9 norm, ix, 22

L%-optimal control, 149

LO%-optimal control problem, 149

£0 optimization, 23, 86

9 pseudo-norm, 22

¢ regularization, 47, 97

£ norm, 21, 46

L'-optimal control, 150

L'-optimal control problem, 150

! optimization, 46

! regularization, 48, 73

L! -time-optimal control, 191

L? inner product, 26

£? inner product, 20

L? norm, 26

£2 norm, 20

{2 optimization, 32

L? norm, x

Index

¢P norm, ix, 21

LP-optimal control, 156
Lagrange function, 32

Lagrange multiplier, 32
Lagrangian, 32, 79

LASSO, 7, 48,73

law of parsimony, 1

least squares method, 37

least squares solution, 37

linear convergence, 76, 94

linear matrix inequality (LMI), 10
linear quadratic control, 119
Lipschitz constant, 75

Lipschitz continuity, 75

local minimizer, 58

Logan’s phenomenon, 6

logical conjunction, 5

logical disjunction, 5

lower level set, 56

LQ control, 119

Lyapunov function, 122
Lyapunov’s theorem, 122
matching pursuit (MP), 90, 93
matrix inversion lemma, 172
maximum eigenvalue, 77
maximum hands-off control, 8, 120, 149
maximum norm, 21

maximum singular value, 77
measurement matrix, 18

method of Lagrange multipliers, 32
minimum condition (of Hamiltonian), 138
minimum €?-norm solution, 32
minimum energy control, 189
minimum fuel control, 8, 150
minimum time, 136

minimum time control, 136
model predictive control, 11, 121
mutual coherence, 87

networked control systems, 10

neural networks, 7

203

noise, 36

non-convex function, 56
non-convex set, 55

non-singular problem, 152
non-singularity of (4, b), 152, 188
non-triviality condition, 137

norm, 20

nuclear norm, 10

nuclear norm minimization, 10
null space, 19

numerical optimization, 47
objective function, 57

Occam’s razor, 1

open loop control, 121

optimal control, 137

optimal costate, 137

optimal state, 137

orthogonal complement, 114
orthogonal matching pursuit (OMP), 94
orthogonal matrix, 68
orthonormal basis, 15
over-complete dictionary, 17
overfitting, 36

particular solution, 19

pathological sampling, 168

plant, 127

polynomial curve fitting, 33
Pontryagin’s minimum principle, 137
positive definite, 43, 63

projection, 61, 66, 95, 114

proper function, 56

proximable function, 63

proximal algorithm, 62

proximal gradient algorithm, 74, 97
proximal operator, 61

proximal splitting algorithm, 70
pruning, 102

quadratic function, 63

receding horizon control, 11, 121

redundant dictionary, 17

204

reflection seismic survey, 6

regression analysis, 33

regularization, 38

regularization parameter, 41

regularization term, 41

regularized least squares, 41

relative interior, 71

representer theorem, 116

residual, 37, 90

resource-aware control, 11

restricted isometry property, 105

ridge regression, 41

RIP, 105

robust control, 10

robustness (of feedback control),
128

s-sparse approximation, 97

s-sparse operator, 100

salt-and-pepper noise, 82

saturation function, 174, 180

shooting method, 177

sign function, 139

signal reconstruction, 5

singular, 162

singular interval, 152

singular problem, 152

SOAY, 183

SOAV-optimal control, 184

soft-thresholding operator, 67, 180

sparse control, 120

sparse polynomial, 45

sparse representation, 17

sparsity (of a function), 147

sparsity (of a vector), 22, 45

spline, 111

stability, 122

stage cost function, 119, 137

Index

standard basis, 15, 90

state, 127

state equation, 118, 127

state transfer, 129

step size, 74

step-invariant discretization, 168

strictly convex function, 59

strongly convex function, 60, 63

structure learning with forgetting, 7

sublevel set, 56

sum of absolute values, 183

sum of absolute values (SOAV), 9

sum-of-absolute-values optimal control,
184

support (of a function), x, 146

support (of a vector), ix, 22

surjective, 19

switching curve, 144

system identification, 6

T -controllable set, 131

tall matrix, 37

termination tolerance, 93

time-optimal control, 136

total variation, 81

total variation denoising, 8, 81

trajectory generation, 129

trajectory planning, 129

tridiagonal matrix, 81

uncertainty, 9

underdetermined system, 18

value function, 121

Vandermonde matrix, 34

wavelet, 30

weighted ridge regression, 43

Z matrix, 10

zero-order hold, 166, 168

zero-order-hold discretization, 168

	Copyright
	Table of Contents
	Preface
	Notation
	Chapter 1 Introduction
	1.1 Occam's Razor
	1.2 Group Testing
	1.3 Optimization with 1 Norm
	1.3.1 Signal Reconstruction
	1.3.2 Geophysics
	1.3.3 Neural Networks
	1.3.4 Statistics
	1.3.5 Signal Processing

	1.4 Sparsity Methods for Systems and Control
	1.4.1 Minimum Fuel Control and L1 Optimization
	1.4.2 Maximum Hands-off Control
	1.4.3 Discrete-valued Control
	1.4.4 Robust Control and Rank Minimization
	1.4.5 Resource-aware Control for Networked Control Systems

	Part I Sparse Representation for Vectors
	Chapter 2 What is Sparsity?
	2.1 Redundant Dictionary
	2.2 Underdetermined Systems
	2.3 The 0 Norm
	2.4 Exhaustive Search
	2.5 Sparse Representation for Functions
	2.6 Further Readings

	Chapter 3 Curve Fitting and Sparse Optimization
	3.1 Least Squares and Regularization
	3.1.1 Underdetermined System and Minimum 2-Norm Solution
	3.1.2 Regression and Least Squares
	3.1.3 Regularization
	3.1.4 Weighted Ridge Regression
	3.1.5 Summary of 2-Norm Optimization

	3.2 Sparse Polynomial and 1-norm Optimization
	3.3 Numerical Optimization by CVX
	3.4 Further Readings

	Chapter 4 Algorithms for Convex Optimization
	4.1 Basics of Convex Optimization
	4.2 Proximal Operator
	4.2.1 Definition
	4.2.2 Proximal Algorithm
	4.2.3 Proximal Operator for Quadratic Function
	4.2.4 Proximal Operator for Indicator Functions
	4.2.5 Proximal Operator for 1 Norm

	4.3 Proximal Splitting Methods for 1 Optimization
	4.3.1 Douglas-Rachford Splitting Algorithm
	4.3.2 Dykstra-like Splitting Algorithm

	4.4 Proximal Gradient Method for 1 Regularization
	4.4.1 Algorithm
	4.4.2 Convergence Analysis

	4.5 Generalized LASSO and ADMM
	4.5.1 Algorithm
	4.5.2 Total Variation Denoising

	4.6 Further Reading

	Chapter 5 Greedy Algorithms
	5.1 0 Optimization
	5.2 Orthogonal Matching Pursuit
	5.2.1 Matching Pursuit (MP)
	5.2.2 Orthogonal Matching Pursuit (OMP)

	5.3 Thresholding Algorithm
	5.3.1 Iterative Hard-thresholding Algorithm (IHT)
	5.3.2 Iterative s-sparse Algorithm
	5.3.3 Compressive Sampling Matching Pursuit (CoSaMP)

	5.4 Numerical Example
	5.5 Further Reading

	Chapter 6 Applications of Sparse Representation
	6.1 Sparse Representations for Splines
	6.1.1 Solution by Projection Theorem
	6.1.2 Sparse Representation

	6.2 Discrete-time Hands-off Control
	6.2.1 Feasible Control
	6.2.2 Maximum Hands-off Control
	6.2.3 Model Predictive Control

	6.3 Further Reading

	Part II Sparsity Methods in Optimal Control
	Chapter 7 Dynamical Systems and Optimal Control
	7.1 Dynamical System
	7.1.1 State Equation
	7.1.2 Controllability and Controllable Set
	7.1.3 Feasible Control and Minimum-time Control
	7.1.4 Optimal Control and Pontryagin Minimum Principle

	7.2 Minimum-time Control
	7.3 Minimum-time Control of Rocket
	7.4 Further Reading

	Chapter 8 Maximum Hands-off Control
	8.1 L0 Norm and Sparsity
	8.2 Practical Benefits of Sparsity in Control
	8.3 Problem Formulation of Maximum Hands-off Control
	8.4 L1-optimal Control
	8.5 Equivalence Between L0 and L1 Optimal Controls
	8.6 Existence of L0-Optimal Control
	8.6.1 Lp-Optimal Control
	8.6.2 Existence Theorems

	8.7 Maximum Hands-off Control of Rocket
	8.8 Further Reading

	Chapter 9 Numerical Optimization by Time Discretization
	9.1 Time Discretization
	9.2 Controllability of Discretized Systems
	9.3 Reduction to Finite-dimensional Optimization
	9.4 Fast Algorithm by ADMM
	9.5 MATLAB Programs
	9.6 Further Reading

	Chapter 10 Advanced Topics
	10.1 Smooth Hands-off Control by Mixed L1/L2 Optimization
	10.2 Discrete-valued Control
	10.2.1 Sum-of-Absolute-Values (SOAV) Optimization
	10.2.2 Discreteness of SOAV-optimal Control

	10.3 Time-Optimal Hands-off Control
	10.4 Further Reading

	References
	Index

