
INVENTORY ANALYTICS
OBP

ebook
ebook and OA edi� ons

also available

INVENTORY ANALYTICS

This volume provides a comprehensive and accessible introduc� on
to the theory and prac� ce of inventory control – a signifi cant
research area central to supply chain planning. The book outlines the
founda� ons of inventory systems and surveys prescrip� ve analy� cs
models for determinis� c inventory control. It further discusses
predic� ve analy� cs techniques for demand forecas� ng in inventory
control and also examines prescrip� ve analy� cs models for stochas� c
inventory control.

Inventory Analyti cs is the fi rst book of its kind to adopt a prac� cable,
Python-driven approach to illustra� ng theories and concepts via
computa� onal examples, with each model covered in the book
accompanied by its Python code. Origina� ng as a collec� on of self-
contained lectures, this volume is an indispensable resource for
prac� � oners, researchers, teachers, and students alike.

This is the author-approved edi� on of this Open Access � tle. As with
all Open Book publica� ons, this en� re volume is available to read for
free on the publisher’s website. Printed and digital edi� ons, together
with supplementary digital material, can also be found at h� p://www.
openbookpublishers.com

Cover image: Photo by Tiger Lily from Pexels, htt ps://www.pexels.com/photo/shelves-on-a-warehouse-4483608/
(front); Boat in Body of Water, htt ps://www.pexels.com/photo/business-cargo-cargo-container-city-262353/
(back). Cover Design by Anna Gatti .

 R
O

B
ER

TO R
O

SSI IN
V

E
N

T
O

R
Y A

N
A

LY
T

IC
S

ROBERTO ROSSI

To access digital resources including:
blog posts

videos
online appendices

and to purchase copies of this book in:
hardback

paperback
ebook editions

Go to:
https://www.openbookpublishers.com/product/1399

Open Book Publishers is a non-profit independent initiative.
We rely on sales and donations to continue publishing

high-quality academic works.

R O B E R T O R O S S I

I N V E N T O R Y A N A LY T I C S

O P E N B O O K P U B L I S H E R S

Copyright © 2021 Roberto Rossi

Author: Roberto Rossi Email: robros@gmail.com Website: https://gwr3n.github.io

This work is licensed under a Creative Commons Attribution 4.0 International License (https://
creativecommons.org/licenses/by/4.0).

Roberto Rossi, Inventory Analytics. Cambridge, UK: Open Book Publishers, 2021, https://doi.org/10.
11647/OBP.0252

Front cover image (https://www.pexels.com/photo/shelves-on-a-warehouse-4483608) by Tiger Lily,
back cover image (https://www.pexels.com/photo/business-cargo-cargo-container-city-262353) by
Pixabay; both images are covered by the Creative Commons Zero (CC0) license.

Book formatting based on the Tufte-Style Book latex template by The Tufte-LaTeX Developers (https:
//tufte-latex.github.io/tufte-latex); the template is covered by the Apache License (Version 2.0).

Figure (https://commons.wikimedia.org/wiki/File:Rhetoric-enthroned-invitation-antwerp-
landjuweel-1561.jpg) by Willem Silvius (1561), which appears at page 21, is in the public domain
(courtesy of Wikimedia Commons). Figure (https://wellcomecollection.org/works/n9t36cj2) by Pa-
ganino de Paganini (1494), which appears at page 22, is covered by the Creative Commons Attribution
4.0 International (CC BY 4.0) license (creativecommons.org/licenses/by/4.0) / cropped from original
(courtesy of Wellcome Collection). Figures (https://www.pexels.com/photo/alcohol-barrel-basement-
beer-434311) by Pixabay and (https://www.pexels.com/photo/photo-of-a-warehouse-3995414) by
Cleyder Duque, which appear at page 25, are covered by the Creative Commons Zero (CC0) license
(https://creativecommons.org/publicdomain/zero/1.0) and the Pexels License (https://www.pexels.
com/license), respectively. Figure 16 at page 41, originally published in [Harris, 1913], and Figure 30 at
page 55, originally published in [Taft, 1918], are both in the public domain (courtesy of HathiTrust).

Every effort has been made to identify and contact copyright holders and any omission or error will be
corrected if notification is made to the publisher.

While the publisher and author have used their best efforts in preparing this book, they make no rep-
resentations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales materials. The ad-
vice contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

Please direct all enquiries to the author.

ISBN Paperback: 978-1-80064-176-1
ISBN Digital (PDF): 978-1-80064-177-8
DOI: 10.11647/OBP.0252

mailto: robros@gmail.com
https://gwr3n.github.io
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.11647/OBP.0252
https://doi.org/10.11647/OBP.0252
https://www.pexels.com/photo/shelves-on-a-warehouse-4483608
https://www.pexels.com/photo/business-cargo-cargo-container-city-262353
https://tufte-latex.github.io/tufte-latex
https://tufte-latex.github.io/tufte-latex
https://commons.wikimedia.org/wiki/File:Rhetoric-enthroned-invitation-antwerp-landjuweel-1561.jpg
https://commons.wikimedia.org/wiki/File:Rhetoric-enthroned-invitation-antwerp-landjuweel-1561.jpg
https://wellcomecollection.org/works/n9t36cj2
creativecommons.org/licenses/by/4.0
https://www.pexels.com/photo/alcohol-barrel-basement-beer-434311
https://www.pexels.com/photo/alcohol-barrel-basement-beer-434311
https://www.pexels.com/photo/photo-of-a-warehouse-3995414
https://creativecommons.org/publicdomain/zero/1.0
https://www.pexels.com/license
https://www.pexels.com/license

Dedicated to my family and friends.

O R Ð M É R A F O R Ð I , O R Ð S L E I TA Ð I . V E R K M É R A F V E R K I , V E R K S L E I TA Ð I .

H ÁVA M Á L , 1 4 0 .

Contents

Preface 19

Introduction 21

Inventory Systems 23

Deterministic Inventory Control 37

Demand Forecasting 73

Stochastic Inventory Control 115

Multi-echelon Inventory Systems 151

Appendix 165

Bibliography 177

Index 183

List of Figures

1 This allegorical woodcut shows Rhetorica enthroned between Pru-
dentia and Inventio; Willem Silvius, Antwerp, 1561 (Image by Anony-
mous, Wikimedia, https://commons.wikimedia.org/wiki/File:
Rhetoric-enthroned-invitation-antwerp-landjuweel-1561.jpg,
public domain). 21

2 Dedication page of Pacioli’s “Tractatus de computis et scripturis;”
printed by Paganino de Paganini, Venice, 1494 (Courtesy of Well-
come Collection, https://wellcomecollection.org/works/n9t36cj2,
CC BY 4.0). 22

3 A warehouse. 25

4 A distribution center. 25

5 A simple inventory system; physical flows and information flows
are represented via solid and dashed lines, respectively. 26

6 TQM diagram shapes. 26

7 Simulating the behaviour of a warehouse in Python: inventory level
at the end of each period t ∈ {1, 20} when the initial inventory
level is 100. 28

8 Simulating the behaviour of a warehouse in Python: inventory level
at the end of each period t ∈ {1, 20} when the initial inventory
level is 50 and an order of size 50 is placed in period 10. 29

9 Simulating the behaviour of a warehouse in Python: inventory level
at the end of each period t ∈ {1, 20} when the initial inventory
level is 50 and an order of size 40 is placed in period 10. Observe
that, while the on hand inventory is zero at the end of period 19

and 20, the inventory level is negative. 29

10 Simulating the behaviour of a lean warehouse in Python. 30

11 A lean inventory system. 31

12 An inventory system subject to supplier lead time. 32

13 The DES flow diagram of an inventory system subject to supplier
lead time. 32

14 Simulating the behaviour of a warehouse in Python: inventory level
at the end of each period t ∈ {1, 20} when the initial inventory
level is 100. 34

15 Simulating the behaviour of a warehouse in Python: inventory level
and inventory position at the end of each period t ∈ {1, 20} when
the initial inventory level is 50, an order is scheduled at time 9, and
order the lead time is 1. 35

https://commons.wikimedia.org/wiki/File:Rhetoric-enthroned-invitation-antwerp-landjuweel-1561.jpg
https://commons.wikimedia.org/wiki/File:Rhetoric-enthroned-invitation-antwerp-landjuweel-1561.jpg
https://wellcomecollection.org/works/n9t36cj2

8

16 Harris’ manufacturing quantity curves from [Harris, 1913] (Cour-
tesy of HathiTrust, https://babel.hathitrust.org/cgi/pt?id=
uiug.30112079410665&view=1up&seq=141, public domain). 41

17 EOQ “sawtooth” inventory curve. 42

18 EOQ cost functions. 43

19 Simulating the behaviour of a warehouse in Python under a finer
discretisation of the simulation horizon (100 smaller period for each
original period). 45

20 EOQ sensitivity to variations of Q from Q∗. 46

21 EOQ sensitivity to K. 47

22 EOQ sensitivity to h. 47

23 EOQ inventory curve under production/delivery lag. 48

24 Behaviour of inventory over time for the numerical example pre-
sented in Listing 19, assuming L = 0.5. 48

25 All units quantity discounts. 51

26 EOQ total cost for all units quantity discounts. 51

27 Incremental quantity discounts. 52

28 EOQ total cost for incremental quantity discounts. 52

29 EOQ inventory curve under planned backorders. 53

30 Taft’s inventory curve from [Taft, 1918] (Courtesy of HathiTrust, https:
//hdl.handle.net/2027/iau.31858019851603?urlappend=%3Bseq=

302, public domain). 55

31 EPQ inventory curve. 55

32 EPQ inventory curve: “ramp up” and “depletion” phases. 56

33 Overall and item-wise, total relevant cost Ce
r(T) of the ELS prob-

lem instance in Example 13. 58

34 The optimal rotation schedule for the problem instance in Exam-
ple 13; solid areas denote production time. 58

35 The optimal rotation schedule for the problem instance in Exam-
ple 13 assuming all item setup times are equal to 0.1; solid areas
denote production time. 58

36 A JRP instance; note that beta = 1/Tb. 60

37 The optimal ordering plan for the JRP instance in Fig. 3. 60

38 Wagner-Whitin cost network. 61

39 Wagner-Whitin optimal solution as a shortest path. 62

40 The optimal ordering plan for the instance in Fig. 42. 65

41 The optimal ordering plan for the instance in Listing 45. 68

42 Line chart of the Dow Jones Industrial Average between Mon 3 Aug
2020 and Fri 14 Aug 2020; note that there are no readings during
the weekend, since the stock market is closed. 75

43 A standard Gaussian noise. 76

44 Forecasts for the last 40 periods by using the Moving Average method
with a window of size w = 32; the underpinning stochastic pro-
cess is a a Gaussian process with mean µ = 20 and standard de-
viation σ = 5. 78

45 Residual analysis for the Moving Average method: residuals. 79

46 Residual analysis for the Moving Average method: histogram. 80

https://babel.hathitrust.org/cgi/pt?id=uiug.30112079410665&view=1up&seq=141
https://babel.hathitrust.org/cgi/pt?id=uiug.30112079410665&view=1up&seq=141
https://hdl.handle.net/2027/iau.31858019851603?urlappend=%3Bseq=302
https://hdl.handle.net/2027/iau.31858019851603?urlappend=%3Bseq=302
https://hdl.handle.net/2027/iau.31858019851603?urlappend=%3Bseq=302

9

47 Residual analysis for the Moving Average method: autocorrelation
plot. 80

48 Residual analysis for the Moving Average method: Q-Q plot. 80

49 Naïve method forecasts for the last 40 periods of a random walk
with standard Gaussian noise. 81

50 Residual analysis for the Naïve method: residuals. 82

51 Residual analysis for the Naïve method: histogram. 83

52 Residual analysis for the Naïve method: autocorrelation plot. 83

53 Residual analysis for the Naïve method: Q-Q plot. 83

54 Drift forecasts in Python for a random walk with standard Gaus-
sian noise and drift c = 0.1. 85

55 Residual analysis for the Drift method: residuals. 85

56 Residual analysis for the Drift method: histogram. 86

57 Residual analysis for the Drift method: autocorrelation plot. 86

58 Residual analysis for the Drift method: Q-Q plot. 86

59 Seasonal Naïve forecasts in Python for a seasonal random walk with
standard Gaussian noise and m = 5 seasons. 88

60 Residual analysis for the Seasonal Naïve method: residuals. 88

61 Residual analysis for the Seasonal Naïve method: histogram. 89

62 Residual analysis for the Seasonal Naïve method: autocorrelation
plot. 89

63 Residual analysis for the Seasonal Naïve method: Q-Q plot. 89

64 Separating the available data into training and test data. 90

65 All forecasting methods surveyed so far applied to a seasonal ran-
dom walk with standard Gaussian noise and m = 5. 91

66 Estimation of the mean µ. Confidence intervals (α = 0.95) have
been computed for 100 replications of n = 30 realisations drawn
from a standard normal random variable. In 4 instances out of 100

(approx. 95%), the interval did not cover the true mean value µ =

0; these instances are marked in red. 93

67 Prediction intervals (α = 0.95) of a gaussian stochastic process
{Xt}, where, for all t, Xt is a normal random variable with µ =

10 and σ = 2. In 5 instances out of 100 (95%), a realisation did
not fall within the prediction interval; these instances are marked
in red. 94

68 Prediction intervals (α = 0.95) of a gaussian stochastic process
{Xt}, where, for all t, Xt is a normal random variable with unknown
µ and σ. In 4 instances out of 100 (approx. 95%), a realisation did
not fall within the prediction interval; these instances are marked
in red. 96

69 Naïve method forecasts and prediction intervals for the last 40 pe-
riods of a random walk with standard Gaussian noise. 97

70 Airline time series. 98

71 Airline time series: Box-Cox transformation (λ = 0.148). 98

72 Forecasts for the last 40 periods by using Simple Exponential Smooth-
ing with a smoothing parameter α = 0.5; the underpinning stochas-
tic process is a a Gaussian process with mean µ = 20 and stan-
dard deviation σ = 5. 100

73 Residual analysis for Simple Exponential Smoothing: residuals. 101

10

74 Residual analysis for Simple Exponential Smoothing: histogram. 102

75 Residual analysis for Simple Exponential Smoothing: autocorrela-
tion plot. 102

76 Residual analysis for Simple Exponential Smoothing: Q-Q plot. 102

77 Simple Exponential Smoothing forecasts and prediction intervals
for the last 40 periods of a Gaussian process with mean µ = 20
and standard deviation σ = 5. 103

78 Simple Exponential Smoothing forecasts and prediction intervals
for the last 40 periods of a random walk with standard Gaussian
noise. 103

79 Holt’s method: level and slope components of a random walk with
standard Gaussian noise and drift c = 0.1. 105

80 Holt’s method forecasts and prediction intervals for a random walk
with standard Gaussian noise and drift c = 0.1. 105

81 Holt-Winters’ method: level, slope, and seasonal components of
a seasonal random walk with standard Gaussian noise and m =

4. 107

82 Holt-Winters’ method forecasts and prediction intervals for a sea-
sonal random walk with standard Gaussian noise and m = 4. 107

83 Airline time series: Box-Cox transformation and seasonal differenc-
ing. 108

84 Fitting an AR(1) to a random walk: diagnostics. 110

85 Forecasts for periods 180, . . . , 200 for an AR(1) process fit to a ran-
dom walk. 110

86 Fitting an MA(2) model: inspecting the ACF. In this instance the
ACF is nonzero for the first two lags. 112

87 Forecasts for periods 180, . . . , 200 for an MA(2) process. 112

88 Airline time series: forecasts and prediction intervals obtained by
fitting an ARIMA(0, 1, 0) model. The fitted constant is c = 2.58;
the standard deviation of residuals is σ = 31.2. 113

89 The Newsvendor problem. 117

90 The Newsvendor problem: the cost function C(Q) and its compo-
nents uE[d−Q]+ and oE[Q− d]+. 118

91 Inverting the cumulative distribution F(x) of the demand to deter-
mine the order quantity Q∗ that ensures a given α service level. 119

92 Simulating the behaviour of a warehouse in Python subject to stochas-
tic demand: inventory level and inventory position at the end of
each period t ∈ {1, 20} when the initial inventory level is 10. De-
mand now follows a Poisson distribution with a rate of 10 units per
period. 122

93 The multi-period Newsvendor problem. 123

94 Simulating the base-stock policy in Example 31. 126

95 Simulating the base-stock policy in Example 31 under an order de-
livery lead time l = 1. If we simulate a large number of periods
(e.g. 500), we can observe that the average cost per period is now
higher (11.14) than that observed for the zero lead time case (4.97).
A positive lead time makes it more expensive to control the system. 127

96 Plot of miny∈[x,x+B] f (y). 128

11

97 An (s, S) policy. 129

98 K-convexity of Gn: let a, b > 0, pick two points (x− b, G(x− b))
and (x, G(x)), draw a straight line passing through them; then for
any x+ a, point (x+ a, G(x+ a)+K) lies above the straight line. 130

99 K-convexity of Gn: K + Gn(S) is greater than the value of Gn at
any local maximum x < S, thus there exists a unique value s such
that K + Gn(S) = Gn(s). 130

100 Cases considered in the proof of Theorem 1. 131

101 Execution of the algorithm for the instance in Listing 73. 135

102 Simulating the stationary (s, S) policy for the numerical example
in Listing 73. If inventory position falls below s at the beginning
of any given period, an order is issued to bring the inventory po-
sition up to S. 136

103 Scarf’s Gn(y) and Cn(x) functions for the first period of the instance
in Example 34, i.e. n = 4. The optimal order quantity Q for each
initial inventory level x is also plotted. 139

104 An (R, S) policy. 142

105 Simulating the stationary (s, Q) policy for the numerical example
in Listing 73. If inventory position falls below s at the beginning
of any given period, an order of size Q is issued. 144

106 Nelder-Mead execution path within the landscape of the expected
total cost of the (s, Q) policy for the example in Listing 73. 145

107 Edmundson-Madansky [Birge, 2011] (upper) piecewise linearisa-
tion (4 segments) of the complementary first order loss function
[Rossi et al., 2014b] for a standard normal random variable ζ. Note
that the maximum piecewise linearisation error is eW . 147

108 Simulating the (R, Q) policy for Example 37. 148

109 An (R, s, S) policy. 149

110 A serial inventory system comprising two installations: a warehouse
and a retailer; physical flows and information flows are represented
via solid and dashed lines, respectively. 153

111 A serial inventory system comprising two installations: DES flow
diagram. 156

112 A serial inventory system comprising two installations: behaviour
of the inventory level at installations W and R. 157

113 A serial inventory system comprising two installations: average cost
per period for different combination of Sr and Sw; the chosen com-
bination Sr = 74 and Sw = 59 appears to minimise the expected
total cost per period, or at least to be a solution close to the opti-
mal one. Observe that the cost function appears to be convex. 157

114 A serial inventory system comprising two installations: echelon stock
at installations W and R. 158

115 A serial inventory system comprising two installations: CR(y). 161

116 A serial inventory system comprising two installations: C(y). 161

117 An assembly system. 162

118 A distribution system. 162

119 A general multi-echelon system, in which installations can have mul-
tiple successors as well as predecessors. 163

12

120 A Bernoulli stochastic process. 167

121 A binomial stochastic process where n = 3, and its underpinning
Bernoulli stochastic process. 168

122 A Poisson stochastic process seen as an arrival process in terms of
interarrival times between successive events. 168

123 The dynamics of the queueing system. 170

124 The behaviour of the queue simulated in our numerical example. 170

125 DES flow diagram for the queueing system. 172

List of Tables

1 Costs incurred in each period t ∈ {1, 20} when the initial inven-
tory level is 0, orders are scheduled every 5 periods, and order the
lead time is 0. The fixed ordering cost is 100, the per unit inventory
holding cost is 1. 40

2 Problem parameters for the ELS problem instance. 57

3 Problem parameters for the JRP problem instance (yearly rates). 60

4 Dow Jones Industrial Average between Mon 3 Aug 2020 and Fri
14 Aug 2020. 75

5 Forecast accuracy metrics. 91

6 Forecast accuracy metrics for different forecasting methods applied
to a seasonal random walk with m = 5 seasons and standard Gaus-
sian noise. 92

7 Expressions of the n-step forecast distribution mean and standard
deviation. 97

8 Holt’s method fitted model parameters and Sum of Squared Errors
(SSE). 104

9 Holt-Winters’ method fitted model parameters and Sum of Squared
Errors (SSE). 106

10 Special cases of AR(1). 109

11 Restrictions to model parameters that ensures stationarity. 109

12 Optimal policy as illustrated in [Shaoxiang, 2004, p. 417]. 140

List of Listings

1 A warehouse in Python. 27

2 Plotting inventory in Python. 27

3 Simulating the behaviour of a warehouse in Python: the warehouse
initial inventory level is 100, the customer demand rate is 5 units
per period. 27

4 Revised for loop. 28

5 Simulating the behaviour of a lean warehouse in Python: the ware-
house initial inventory level is 0, the customer demand rate is 5 units
per period, and orders of size 5 are issued in every period. The to-
tal demand over the 20-period planning horizon is 100 units, the
system would therefore generate a profit of 100(p− c). 30

6 A priority queue in Python. 32

7 The extended Warehouse class that models both inventory level and
inventory position. 33

8 A DES engine in Python. 33

9 The CustomerDemand event. 34

10 Simulating the behaviour of a warehouse via DES in Python: the
warehouse initial inventory level is 100, the customer demand rate
is 5 units per period. 34

11 The Order event and the ReceiveOrder event. 35

12 Simulating the behaviour of a warehouse via DES in Python: the
warehouse initial inventory level is 50, the customer demand rate
is 5 units per period, an order is scheduled at time 9, and order the
lead time is 1. 35

13 The extended Warehouse class that models costs. 39

14 The EndOfPeriod event to record inventory holding costs. 40

15 Simulating the behaviour of a warehouse in Python: inventory level
and inventory position at the end of each period t ∈ {1, 20} when
the initial inventory level is 0; orders are scheduled periods 1, 5, 10,
and 15; and order the lead time is 0. The fixed ordering cost is 100,
the per unit inventory holding cost is 1. 40

16 The eoq class. 41

17 EOQ cost functions in Python. 43

18 Compute Q∗. 44

19 Numerical example 3. 44

16

20 Simulating the behaviour of a warehouse in Python: DES simulated
EOQ solution under a finer discretisation of the simulation hori-
zon (100 smaller period for each original period). 45

21 Method plot_inventory under a finer discretisation of the simu-
lation horizon (100 smaller period for each original period). 45

22 Compute sensitivity to variations of Q from Q∗. 46

23 Compute sensitivity to estimation errors for K and h. 47

24 Computing an optimal powers-of-two policy. 49

25 EOQ under quantity discounts. 50

26 EOQ under all units quantity discounts. 51

27 EOQ under incremental quantity discounts. 52

28 Planned backorder cost analysis. 54

29 Economic Production Quantity cost analysis. 55

30 Economic Lot Scheduling cost analysis. 57

31 The JRP in Python. 59

32 Solving the JRP by using ILOG CP Optimizer in Python. 60

33 The Wagner-Whitin base class. 61

34 Wagner-Whitin cycle cost analysis. 61

35 Wagner-Whitin dynamic programming problem setup. 62

36 Wagner-Whitin problem solution cost retrieval. 62

37 A Wagner-Whitin instance. 62

38 A Wagner-Whitin instance. 63

39 Wagner-Whitin problem with positive initial inventory. 63

40 Wagner-Whitin problem with planned backorders, problem instance. 64

41 Wagner-Whitin problem with planned backorders, cplex model. 65

42 A Wagner-Whitin with planned backorders problem instance. 65

43 Capacitated stochastic lot sizing, problem instance. 66

44 Capacitated lot sizing, cplex model. 67

45 Capacitated lot sizing problem instance. 67

46 Capacitated lot sizing, auxiliary classes. 69

47 Capacitated lot sizing, stochastic dynamic programming model (part
1 of 2). 69

48 Capacitated lot sizing, stochastic dynamic programming model (part
2 of 2). 70

49 Memoization utility. 71

50 Capacitated lot sizing, sample instance. 71

51 Sampling a Gaussian process in Python. 77

52 Plotting Moving Average forecasts in Python. 77

53 Sampling a random walk in Python. 81

54 Plotting Naïve forecasts in Python for a random walk with stan-
dard Gaussian noise. 82

55 Sampling a random walk with drift in Python. 84

56 Plotting Drift forecasts in Python for a random walk with standard
Gaussian noise and drift. 84

57 Sampling a seasonal random walk in Python. 87

58 Plotting Seasonal Naïve forecasts in Python for a seasonal random
walk with standard Gaussian noise and m = 5 seasons. 87

59 Simple Exponential Smoothing in Python. 100

17

60 Plotting Simple Exponential Smoothing forecasts in Python. 100

61 Plotting Simple Exponential Smoothing forecasts and prediction
intervals in Python. 103

62 Plotting Holt’s method forecasts and components in Python. 104

63 Plotting Holt-Winters’ method forecasts and components in Python. 106

64 Plotting Holt-Winters’ method forecasts and prediction intervals
in Python. 107

65 Sampling an MA(q) process. 111

66 Sampling an ARMA(0, q) process. 111

67 Fitting an ARIMA(0, 1, 0) to a time series reporting fluctuations in
air passenger numbers. 113

68 A Newsvendor instance. 118

69 Extending the Newsvendor class with service levels. 119

70 The plot_inventory function. 121

71 Simulating the behaviour of a warehouse in Python. To ensure repli-
cability, we leverage common random numbers [Kahn and Marshall,
1953]. 121

72 The ModifiedOrderUpTo class. 128

73 An instance of the stationary stochastic lot sizing problem. The ex-
ecution path is illustrated in Fig. 101. 135

74 A stochastic lot sizing problem instance solved under the (R, S) pol-
icy. The approximated expected total cost is 388.7. The optimal re-
plenishment plan prescribes orders in periods 1, 3, and 4; the as-
sociated order-up-to-levels are 67, 70, 48. Contrast this solution with
the optimal (s, S) policy and its cost (332.1) discussed for this ex-
ample at p. 139. 143

75 Plotting the queue length in Python. 170

76 A DES to model a queueing system in Python. 171

77 Simulating a queueing system in Python. 172

78 The Memoize class; memoization is a technique for storing the re-
sults of expensive function calls and returning the cached result
when the same inputs occur again. 174

79 State class. 174

Preface

Inventory control is a thriving research area that plays a pivotal
role, as a building block, in supply chain planning. For this reason,
it attracts the attention of both industry and academia.

Selected topics from inventory control are regularly covered in
academic programmes, at both undergraduate and graduate levels,
offered by business schools, industrial engineering, and applied
mathematics departments.

Problems faced by managers who engage with the challenges
posed by inventory systems are generally simple to state, but
complex to address. Obtaining good solutions to these problems
requires a blend of expertise drawn from a variety of quantitative
disciplines, such as operations research, economics, mathematics,
and statistics.

The majority of existing books in inventory control theory adopt,
in my view, an overly mathematical and abstract style of presenta-
tion. This style appeals to researchers in the area, but makes these
books often inaccessible to practitioners, as well as to some business
school researchers who have not received advanced mathematical
training such as that offered by applied mathematics, computer
science, or industrial engineering curricula. A book with a more
applied, hands-on focus is missing.

This work aims to fill this void. It is aimed at those who want to
learn the basics of modelling aspects of inventory control problems
without needing to resort to the technical literature; at those who,
despite lacking advanced mathematical training, want to access
seminal findings in this field, and to apply well-established models
by employing state-of-the-art solvers and modelling languages.

The book requires a working knowledge of Python; it is therefore
aimed at readers who have, at the very least, taken a basic Python
programming course. Apart from this, the book aims at stripping
mathematical results to the bare minimum while preserving suf-
ficient rigour, and at focusing on the practical relevance of these
results in the context of the implementation of solution methods for
problems typically faced by a manager who juggles with day-to-day
inventory control challenges.

20

The book is structured as follows. It first provides a general
introduction to inventory systems, followed by an overview of ba-
sic deterministic models. All these models are paired with their
respective Python implementation, which can be tested on moti-
vating examples that are presented throughout. After showcasing
established models in deterministic inventory control, the reader
is introduced to forecasting. Forecasting is often only briefly sur-
veyed in existing books on inventory control; with the readers often
directed to specialised textbooks, which are again often inacces-
sible to practitioners or individuals without suitable advanced
mathematical training. However, forecasting is a crucial aspect
of any practical inventory challenge. This work covers the most
well-known forecasting models in a hands-on and visually appeal-
ing manner. The introduction of forecast errors paves the way to
stochastic inventory control models, which are presented in the
following sections. Once more, the most well-known stochastic
inventory control policies are discussed in a hands-on fashion, with
supporting code snippets and motivating examples. The last chap-
ter briefly presents seminal results in the context of the control of
multi-echelon inventory systems. Finally, an appendix provides
the relevant formal backgrounds on a number of topics that are
leveraged throughout the main chapters.

Introduction

This book originates as a collection of self-contained lectures. These
lectures are divided into an introduction to inventory control,
which outlines the foundations of inventory systems; followed
by three chapters on deterministic inventory control, demand
forecasting, and stochastic inventory control.

Beside Inventory, the title of the book refers to Analytics. This
is nowadays a concept that has been inflated with a plethora of
meanings, so that it becomes difficult to understand exactly what
each of us means when we refer to it. The Cambridge Dictionary1 1 Cambridge Dictionary, https:

//dictionary.cambridge.org/

dictionary/english/analytics?

q=Analytics

defines Analytics as “a process in which a computer examines
information using mathematical methods in order to find useful
patterns.” However, this appears to be quite a restrictive definition
for our purposes.

To better understand the nature of Analytics, it is useful to ob-
serve that Analytics is often broken down into three parts: descrip-
tive, predictive, and prescriptive. Descriptive Analytics is concerned
with answering the question: “what happened?” Predictive Analyt-
ics is concerned with answering the question: “what will happen?”
Prescriptive Analytics is concerned with answering the question:
“how can we make it happen?” These are clearly complex questions
that cannot be answered by mere number crunching on a computer:
to answer these questions a decision maker must leverage soft as
well as hard skills.

Fig. 1 This allegorical woodcut
shows Rhetorica enthroned between
Prudentia and Inventio; Willem Silvius,
Antwerp, 1561 (Image by Anonymous,
Wikimedia, public domain).

Copyright © 2021 Roberto Rossi, CC BY 4.0
https://doi.org/10.11647/OBP.0252.06

Many tend to think that the Analytics phenomenon is a recent
development related to widespread availability of computing power.
However, in his work “De Inventione,” the Roman philosopher
Cicero states that “there are three parts to Prudence: Memory, Intel-
ligence, and Foresight.” It is clear that Memory is the skill required
to answer the question “what happened?”; Foresight, that required
to answer the question “what will happen?”; and Intelligence, that
required to answer the question “how can we make it happen?”
It appears then that Analytics is just a contemporary rebranding
of an art that has been known for millenia. Prudentia is the abil-
ity to govern and discipline oneself by the use of reason. Inventio
is the central canon of rhetoric, a method devoted to systematic
search for arguments. Incidentally, inventio also means inventory. In
fact, when a new argument is found, it is invented, in the sense of
“added to the inventory” of arguments. Prudentia and Inventio are
the foundations upon which the art of Rhetoric stands (Fig. 1).

https://dictionary.cambridge.org/dictionary/english/analytics?q=Analytics
https://dictionary.cambridge.org/dictionary/english/analytics?q=Analytics
https://dictionary.cambridge.org/dictionary/english/analytics?q=Analytics
https://dictionary.cambridge.org/dictionary/english/analytics?q=Analytics
https://doi.org/10.11647/OBP.0252.06

22

It must not surprise us then that Analytics plays a prominent
role in inventory management. Inventory management finds its
roots into the practice of late medieval and early Renaissance
merchants.2 The invention of double-entry bookkeeping (alla 2 Alfred Crosby. The measure of reality:

quantification and Western society,
1250-1600. Cambridge Univ. Pr., 1997.

Veneziana) is typically attributed to Frà Luca Pacioli (c. 1447 – 19

June 1517). Pacioli leveraged Johannes Gutenberg’s new technology
to disseminate and popularise accounting practices that had been
in use among Venetian merchants for a long time. However, Pacioli
did not simply disseminate existing practices, he reinterpreted
these practices within the framework of Cicero’s rethoric.3 In “De 3 Paolo Quattrone. Books to be

practiced: Memory, the power of the
visual, and the success of accounting.
Accounting, Organizations and Society,
34(1):85–118, 2009.

Inventione,” Cicero explains that there are five canons, or tenets,
of Rhetoric: Inventio (invention), Dispositio (arrangement), Elocutio
(style), Memoria (memory), and Pronuntiatio (delivery).

Fig. 2 Dedication page of Pacioli’s
“Tractatus de computis et scripturis;”
printed by Paganino de Paganini,
Venice, 1494 (courtesy of Wellcome
Collection).

Pacioli’s “Tractatus de computis et scripturis” (1494, Fig. 2), is
divided into two main sections: (i) the Inventory, and (ii) the Dispo-
sition — the influence of Cicero’s work is apparent. Pacioli writes:
“In order to conduct a business properly a person must: possess
sufficient capital or credit, be a good accountant and bookkeeper,
and possess a proper bookkeeping system.” In “the Inventory,”
Pacioli writes “The merchant must prepare a list of his inventory.
Items that are most valuable and easier to lose should be listed first.
[. . .] The inventory should be carried out and completed in a single
day. [. . .] The inventory is to include the day that the inventory was
taken, the place, and the name of the owner.”4 In contemporary

4 William A. Bernstein. Luca pacioli the
father of accounting. In The Air Force
Comptroller, volume 10(2) of Air Force
recurring publication 170-2, pages 44–45.
Office of the Comptroller, United
States Air Force, 1976.

terms, Pacioli describes a so-called “physical inventory,” the process
by which a business physically reviews its entire inventory — as
opposed to so-called “cycle counts,” which focus on specific subsets
of items. In “the Disposition,” Pacioli describes the necessary books
and rules to implement double-entry bookkeeping.5

5 Paolo Quattrone. Governing social
orders, unfolding rationality, and Jesuit
accounting practices. Administrative
Science Quarterly, 60(3):411–445, 2015.

Pacioli’s work represents a quantum leap in the realm of de-
scriptive inventory analytics, a discipline that would evolve into a
fundamental part of inventory management. However, no progress
was made in the realm of predictive and prescriptive inventory analyt-
ics until late 1800, when Edgeworth,6 in his “Mathematical Theory

6 Francis Y. Edgeworth. The mathemat-
ical theory of banking. Journal of the
Royal Statistical Society, 51(1):113–127,
1888.

of Banking,” used the central limit theorem to determine cash re-
serves needed to satisfy random withdrawals from depositors, thus
embedding a predictive probabilistic model within a prescriptive
mathematical model to support inventory control decisions.

From these early results, over the past 150 years, inventory
control has evolved into an independent discipline. The aim of this
book is to provide an introduction to this discipline.

After introducing the foundations of inventory systems, in chap-
ter “Deterministic Inventory Control” we survey prescriptive analyt-
ics models for deterministic inventory control, in chapter “Demand
Forecasting” we discuss predictive analytics techniques for demand
forecasting in inventory control, which originate in the realm of
time series analysis and forecasting. Finally, in chapters “Stochastic
Inventory Control” and “Multi-echelon Inventory Systems” we
survey prescriptive analytics models for stochastic inventory control.

https://doi.org/10.11647/OBP.0252.02
https://doi.org/10.11647/OBP.0252.03
https://doi.org/10.11647/OBP.0252.03
https://doi.org/10.11647/OBP.0252.04
https://doi.org/10.11647/OBP.0252.04
https://doi.org/10.11647/OBP.0252.05

Inventory Systems

Copyright © 2021 Roberto Rossi, CC BY 4.0
https://doi.org/10.11647/OBP.0252.01

https://doi.org/10.11647/OBP.0252.01

24 inventory analytics

Introduction

In this chapter, we first discuss key reasons for keeping inventory
in supply chain management, and strategies that can be adopted
to review inventory. We then introduce a simple inventory system
to motivate our discussion, we illustrate what costs need to be
considered while controlling inventory, and the impact of a supplier
lead time on the inventory system.

• The role of inventory in supply chain management p. 25

• A simple inventory system p. 26

• Inventory costs p. 30

• Deterministic supplier lead time p. 32

Topics

inventory systems 25

The role of inventory in supply chain management

A supply chain is a system of organisations, people, technology,
activities, information, and resources involved in moving a product
or service from supplier to customer.

Fig. 3 A warehouse.

Supply chain management is the management of this flow of
products and services; it encompasses the movement and storage of
raw materials, of work-in-process inventory, and of finished goods
from point of origin to point of consumption. Inventory systems,
such as warehouses (Fig. 3) and distribution centers (Fig. 4), are at
the heart of supply chain management. In the rest of this chapter
we focus on inventory systems and we discuss their nature.

There are three main reasons for keeping inventory: time,
uncertainty, and economies of scale.

Time. Moving goods along a
supply chain is time consuming,
e.g. after an order is placed, it
usually takes time (lead time)
to receive the goods. Inventory
can be used to ensure business
continuity during these delays.
If the lead time is known and
fixed, it can be addressed by
ordering goods in advance. It is
only when lead time is uncertain
that inventory becomes essential.

Uncertainty. Lead time, de-
mand, supply, and other supply
chain characteristics may be
subject to uncertainty; inventory
is then maintained as a buffer to
hedge against this uncertainty.

Economies of Scale. A pure
lean approach, i.e. “one unit at
a time at a place where a user
needs it, when (s)he needs it”
typically incurs lots of costs in
terms of logistics. Economies of
scale can be pursued via bulk
buying, movement, and stor-
ing; but they also come with
inventory as a side effect.

Reasons for keeping inventory

Inventory counts as a current asset on the balance sheet because, in
principle, it can be sold and turned into cash. However, inventory
ties up money that could serve for other purposes. Moreover, it
may require additional expense for its storage, e.g. warehouse rent,
and protection, e.g. insurance. Inventory may also cause significant
tax expenses, depending on particular countries’ laws regarding
depreciation of inventory.

Inventory review is the process by which a manager determines
inventory quantities on hand. There are two main review strategies
commonly adopted: continuous review and periodic review.

Continuous review operates by continuously recording receipt
and disbursement for every item of inventory. This is an expen-
sive and cumbersome strategy that is required for critical items
(so-called A-type) to minimize costly machine shut-downs and
customer complaints.

Periodic review requires a physical count (stock take) of goods on
hand at the end of a period. This is a simple strategy that concen-
trates records and adjustments mostly at the end of a period (e.g. a
week). It is widely used for items that are marginally important or
less important than A-type ones (so-called B-type and C-type).7

7 The process of classifying items into
different categories on the basis of
their importance is known as ABC
analysis; for a survey on this topic see
[van Kampen et al., 2012].

Fig. 4 A distribution center.

26 inventory analytics

A simple inventory system

In what follows, we shall consider the simplest inventory system
one may conceive (Fig. 5).

W
items flow

S
items flow

C

customer demandwarehouse orders

Fig. 5 A simple inventory system;
physical flows and information flows
are represented via solid and dashed
lines, respectively.The system comprises a warehouse (W) represented by means of a

triangle, which in Total Quality Management (TQM) diagrams (Fig.
6) is a commonly adopted symbol to denote inventory/storage.

The warehouse stocks a single item type, which in technical term
we refer to as stock keeping unit, or SKU in short.

The state of the warehouse is given by its inventory level.

Transport... Inboud... Storage Procedure Operation

Decision ... Decision ... Mulit in/o... Mulit in/o... External o....

System d... System su... System fu... Delay Connecto...

Store Inspection Selectabl... Work flo... Work flo...

TextText Text Text Text Text

Fig. 6 TQM diagram shapes.

The warehouse faces demand from customers (C), and can
satisfy this demand by issuing a sufficient number of items from its
inventory.

The warehouse can only meet demand if on hand inventory is
large enough.

Items can be ordered by the warehouse from a supplier (S) to
maintain a suitable inventory level.

Simulating a simple inventory system in Python

We next discuss how to model a supplier, a warehouse and a cus-
tomer in Python.

The warehouse is shown in Listing 1. This class embeds a
state variable i to track the warehouse inventory level. There
are four methods: order, to replenish inventory by a quantity Q;
on_hand_inventory, to inspect the on hand inventory;8 issue, to is-

8 Note that, while the inventory level
i may go negative to account for
backorders (i.e. orders that have not
been satisfied yet due to lack of stock),
the on hand inventory (the physical
stock in the warehouse) is always
nonnegative.

sue items from the warehouse and meet demand; and review_inventory,
to review and keep an account of inventory over time.

Inventory review is a key aspect of inventory management. In
the code, method review_inventory is called before and after an
order is issued in method order, and before and after inventory
is issued to meet demand in method issue. The method features
an argument time, to keep an account of the time at which the
inventory level has been inspected. Note that when the method is
called after inventory is issued to meet demand in method issue,

inventory systems 27

class Warehouse:
def __init__(self, inventory_level):

self.i = inventory_level
self.review_inventory(0)

def order(self, Q, time):
self.review_inventory(time)
self.i += Q
self.review_inventory(time) # orders are received at the beginning of a period

def on_hand_inventory(self):
return max(0, self.i)

def issue(self, demand, time):
self.review_inventory(time)
self.i = self.i-demand
self.review_inventory(time+1) # demand is realised at the end of a period

def review_inventory(self, time):
try:

self.levels.append([time, self.i])
self.on_hand.append([time, self.on_hand_inventory()])

except AttributeError:
self.levels, self.on_hand = [[0, self.i]], [[0, self.on_hand_inventory()]]

Listing 1 A warehouse in Python.

the argument is time+1; this is because we assume demand is
observed at the end of a period. In contrast, the argument is
simply time when the method is called after an order is received
in method order, because we assume orders are received at the
beginning of a period, before any demand is observed.

The customer and the supplier do not need to be explicitly
modelled as classes, since we will assume no lead time and an
infinite supply available upon ordering, and a constant source of
demand over our simulation horizon.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

def plot_inventory(values, label):

data
df=pd.DataFrame({’x’:

np.array(values)[:,0], ’fx’:
np.array(values)[:,1]})

plot
plt.xticks(range(len(values)),

range(1,len(values)+1))
plt.xlabel("t")
plt.ylabel("items")
plt.plot(’x’, ’fx’, data=df,

linestyle=’-’, marker=’o’,
label=label)

Listing 2 Plotting inventory in Python.

Example 1. We simulate operations of this simple inventory system by
leveraging the Python code in Listing 2 and Listing 3. The warehouse
initial inventory is 100 units. The customer demand rate is 5 unit per
period. We simulate N = 20 periods. The behaviour of the inventory level
at the end of each period is shown in Fig. 7. The system starts with 100
units of inventory at the beginning of period 1; 5 units of inventory are
consumed in every period; at the end of period 20 (or equivalently, at the
beginning of period 21), the system inventory level is 0.

initial_inventory = 100
w = Warehouse(initial_inventory)

demand_rate = 5 # customer demand rate per period

N = 20 # planning horizon length
for t in range(N):

w.issue(demand_rate, t)

plot_inventory(w.levels, "inventory level")
plt.legend()
plt.show()

Listing 3 Simulating the behaviour of
a warehouse in Python: the warehouse
initial inventory level is 100, the
customer demand rate is 5 units per
period.

28 inventory analytics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

0

20

40

60

80

100

ite
m
s

inventory level

Fig. 7 Simulating the behaviour of a
warehouse in Python: inventory level
at the end of each period t ∈ {1, 20}
when the initial inventory level is 100.

The system we have just simulated is an example of periodic
review inventory control. Inventory is reviewed at the end of each
period,9 after demand has been observed. Note that in this simula- 9 And hence also at the beginning

of the next period, since these two
instants coincides.

tion, we have relied on the inventory available at the beginning of
the planning horizon, and we have not issued any order.

Alternatively, we can set initial_inventory = 50 and issue an
order of size 50 at the beginning of period 10. To do so, we slightly
amend the code in Listing 3, by replacing the for loop as shown
in Listing 4. Note that, in period 10, when we place an order, we
review inventory (levels.append([t, w.inventory_level()]))
both before and after ordering. Finally, in every period, as before
we review inventory after demand has been observed, at the end of
period t (or equivalently, at the beginning of period t + 1, as these
two instants coincide).

for t in range(N):
if(t == 10):

w.order(50, t) # place an order of size 50 in period 10
w.issue(demand_rate, t)

Listing 4 Revised for loop.

In Fig. 8 we plot the behaviour of the system under this new con-
trol policy, which meets demand in periods 1, . . . , 10 by leveraging
the initial inventory, and meets demand in periods 11, . . . , 20, by
means of an order of size 50 in period 10.

Let us now assume that the order in period 10 has size 40 (Fig.
9). The order is clearly not sufficient to cover demand until the
end of the planning horizon. The closing inventory level at the
end of period 19 and 20 is now negative and equal to −5 and −10,
respectively: the system ran out of stock and we have observed a
stockout.

inventory systems 29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

0

10

20

30

40

50

ite
m
s

inventory level

Fig. 8 Simulating the behaviour of a
warehouse in Python: inventory level
at the end of each period t ∈ {1, 20}
when the initial inventory level is 50

and an order of size 50 is placed in
period 10.

When customer demand exceeds on hand inventory, the ware-
house manager may decide to lose or backorder a sale. In the
former case, we say that the inventory system operates under lost
sales; in the latter case, we say that the inventory system operates
under backorders. If a sale is backordered, the inventory level will
go negative to keep track of pending demand, which will be met
as soon as a suitable quantity is received from the supplier. An
inventory system may backorder all (full/complete backorders)
or only a part (partial backorders) of the demand that exceeds on
hand inventory.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

−10

0

10

20

30

40

50

ite
m
s

on hand inventory
inventory level

Fig. 9 Simulating the behaviour of a
warehouse in Python: inventory level
at the end of each period t ∈ {1, 20}
when the initial inventory level is 50

and an order of size 40 is placed in
period 10. Observe that, while the on
hand inventory is zero at the end of
period 19 and 20, the inventory level is
negative.

30 inventory analytics

Inventory costs initial_inventory = 0
w = Warehouse(initial_inventory)

demand_rate = 5

N = 20 # planning horizon length
for t in range(N):

w.order(5, t) # place an order of
size 5

w.issue(demand_rate, t)

plot_inventory(w.levels, "inventory
level")

plt.legend()
plt.show()

Listing 5 Simulating the behaviour
of a lean warehouse in Python: the
warehouse initial inventory level
is 0, the customer demand rate is 5

units per period, and orders of size 5

are issued in every period. The total
demand over the 20-period planning
horizon is 100 units, the system
would therefore generate a profit of
100(p− c).

Consider a warehouse facing customer demand at a constant rate of
five units per period over a potentially infinite time horizon. Should
we keep inventory? If so, how much? It is not possible to provide
an answer to these two questions without further information on
the costs the warehouse manager faces, and on other operating
characteristics of the inventory system.

For instance, if every time the warehouse manager issues an
order of size Q > 0 to its supplier, the only cost involved in the
transaction is the per unit purchase cost v of an item; and if the
supplier delivers the quantity Q immediately — i.e. no delivery
lead time — then it is clear the warehouse manager should adopt a
lean control strategy: no inventory should be kept, and whenever
a demand unit materialises from the customer, the warehouse
manager should simply order one unit from the supplier and
meet the customer demand from the order quantity immediately
received. Assuming a selling price p > v, the system would
generate a profit p− c for every unit of demand met. The behaviour
of a lean warehouse in Python can be simulated via the code in
Listing 5 and it is shown in Fig. 10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

0

1

2

3

4

5

6

ite
m
s

inventory level

Fig. 10 Simulating the behaviour of a
lean warehouse in Python.

In essence, in a lean inventory system, the inventory manager Lean inventory management.

does away with inventory and, without holding any stock, acts as
an intermediary. The TQM diagram in Fig. 5 therefore takes the
new form shown in Fig. 11: the physical inventory originally repre-
sented as a triangle has been replaced by an ordering and demand
fulfilment process, represented via a rectangle with rounded edges.

inventory systems 31

ordering

items flow

S
items flow

C
customer demandwarehouse orders

Fig. 11 A lean inventory system.

The per unit purchase cost is hardly the only cost involved in
managing a warehouse. We next summarise other cost factors that
are often encountered by inventory managers.

Inventory review cost. This cost is charged when a phys-
ical inventory inspection takes place.

Fixed ordering cost. Independent of the size of the order,
it is charged every time an order is issued.

Per unit purchase cost. This is a cost that is propor-
tional to the number of items that are ordered.

Per unit inventory holding cost. This is a cost that
is charged for every unit carried forward in stock from one
period to the next in the planning horizon.

Fixed stockout/backorder penalty cost. This is a cost
that is charged every time the inventory level turns negative;
the associated units of demand that drove the inventory level
negative may be lost or backordered; this cost is independent
of the magnitude of the stockout observed.

Per unit stockout/backorder penalty cost. This is a
cost charged when a unit of demand is backordered or lost;
it is charged once, and if the unit of demand is backordered,
it is independent of the time it takes to fulfil it.

Per unit, per time period stockout/backorder

penalty cost. This is a cost that is charged when a unit of
demand is backordered; it is charged for every time period
the unit of demand remains short.

Inventory cost factors

If there are fixed costs — independent of the order quantity Q Lot sizing

— for placing an order with the supplier, e.g. cost of dispatching a
truck, and if we incur inventory holding costs, then we enter the
realm of lot sizing, and it becomes necessary to hold inventory.

32 inventory analytics

Deterministic supplier lead time

Consider the case in which the supplier is not able to deliver the
order quantity Q immediately, but will be able to deliver it after a
known and fixed lead time. What should we do?

orderingS
items flow

C
customer demandwarehouse orders

items flow

Fig. 12 An inventory system subject to
supplier lead time.

If it takes a 1-period lead time to receive an order from the sup-
plier, and we assume that all demand must be immediately satisfied
from on hand inventory, this means that at the beginning of the
planning horizon we must already hold at least 5 items in stock
— or equivalently we should expect to receive five correctly timed
outstanding orders from the supplier — otherwise the problem
would not admit a solution.

Moreover, as soon as we observe the first unit of demand, we
will have to immediately issue an order to replace the item we have
just sold. As in lean inventory management, under this strategy,
we do not need to hold inventory in the warehouse; this is be-
cause the inventory we need to run the system takes the form of
inbound outstanding orders, that is orders yet to be received from
our supplier — in TQM diagram notation, these are represented
via an inverted triangle (Fig. 12). The on hand inventory plus any
outstanding order, minus backorders, is a quantity called the in-
ventory position; as we will see, this quantity, which keeps track of
outstanding orders, will be useful to control our system.

To model an inventory system subject to deterministic supplier
lead time we must adopt a different strategy from that which we
previously followed. More specifically, we will adopt a Discrete
Event Simulation (DES) approach.

A priority queue is an abstract data structure (a data structure
defined by its behaviour) that is like a normal queue, but where
each item has a special key to quantify its priority. For instance,
airlines may give luggage on the conveyer belt based on the status
or ticket class of the passengers. Baggage tagged with priority or
business or first-class usually arrives earlier than other non-tagged
baggage. In Listing 6 we implement a simple priority queue.

from queue import PriorityQueue

events = PriorityQueue()

events.put((0.3, "Customer demand"))
events.put((0.5, "Customer demand"))
events.put((0, "Order"))
events.put((0.10, "Customer demand"))

while events:
print(events.get())

Will print events in the order:
(0, ’Order’)
(0.1, ’Customer demand’)
(0.3, ’Customer demand’)
(0.5, ’Customer demand’)

Listing 6 A priority queue in Python.

To model our DES system, in Listing 7 we extend the behaviour
of Warehouse to model both inventory level and inventory position.
A general-purpose DES loop implementing the flow diagram10 in 10 Arnold H. Buss. A tutorial on

discrete-event modeling with simula-
tion graphs. In C. Alexopoulos, I Kang,
W. R. Lilegdon, and D. Goldsman,
editors, Proceedings of the 1995 Winter
Simulation Conference ed., Arlington,
Virginia, 1995.

Fig. 13 is shown in Listing 8. The method start enters a while loop
that repeatedly extracts events from a priority queue and executes
them until the end of the simulation horizon. The method schedule

schedules an event after time_lag.

customer demand

end?

no

yes

start

stop

event

procedure

Fig. 13 The DES flow diagram of an
inventory system subject to supplier
lead time.

inventory systems 33

class Warehouse:
def __init__(self, inventory_level):

self.i = inventory_level
self.o = 0 # outstanding_orders

def receive_order(self, Q, time):
self.review_inventory(time)
self.i, self.o = self.i + Q, self.o - Q
self.review_inventory(time)

def order(self, Q, time):
self.review_inventory(time)
self.o += Q
self.review_inventory(time) # orders are received at the beginning of a period

def on_hand_inventory(self):
return max(0,self.i)

def issue(self, demand, time):
self.review_inventory(time)
self.i = self.i-demand
self.review_inventory(time+1) # demand is realised at the end of a period

def inventory_position(self):
return self.o+self.i

def review_inventory(self, time):
try:

self.levels.append([time, self.i])
self.on_hand.append([time, self.on_hand_inventory()])
self.positions.append([time, self.inventory_position()])

except AttributeError:
self.levels, self.on_hand = [[0, self.i]], [[0, self.on_hand_inventory()]]
self.positions = [[0, self.inventory_position()]]

Listing 7 The extended Warehouse

class that models both inventory level
and inventory position.

To model an inventory system subject to deterministic supplier
lead time, we will create different classes of events: orders, demand,
etc. We start with a generic EventWrapper in Listing 8, which is then
specialised into a CustomerDemand event in Listing 9.

from queue import PriorityQueue

class EventWrapper():
def __init__(self, event):

self.event = event

def __lt__(self, other):
return self.event.priority < other.event.priority

class DES():
def __init__(self, end):

self.events, self.end, self.time = PriorityQueue() , end, 0

def start(self):
while True:

event = self.events.get()
self.time = event[0]
if self.time < self.end:

event[1].event.end()
else:

break

def schedule(self, event: EventWrapper, time_lag: int):
self.events.put((self.time + time_lag, event))

Listing 8 A DES engine in Python.

The CustomerDemand event in Listing 9, when invoked via the
method end, generates a customer demand of 5 units at the ware-
house. Finally, the event reschedules itself with a delay of 1 time
period.

34 inventory analytics

class CustomerDemand:
def __init__(self, des: DES, demand_rate: float, warehouse: Warehouse):

self.d = demand_rate # the demand rate per period
self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.priority = 1 # denotes a low priority

def end(self):
self.w.issue(self.d, self.des.time)
self.des.schedule(EventWrapper(self), 1)

Listing 9 The CustomerDemand event.

initial_inventory = 100
w = Warehouse(initial_inventory)

N = 20 # planning horizon length
des = DES(N)

d = CustomerDemand(des, 5, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately
des.start()

plot_inventory(w.positions, initial_inventory + 10, "inventory position")
plot_inventory(w.levels, initial_inventory + 10, "inventory level")
plt.legend()
plt.show()

Listing 10 Simulating the behaviour
of a warehouse via DES in Python: the
warehouse initial inventory level is 100,
the customer demand rate is 5 units
per period.

In Listing 10 we show how to simulate the behaviour of a ware-
house via DES in Python for our previous numerical example. The
warehouse initial inventory level is 100, the customer demand
rate is 5 units per period, and the system is simulated for N = 20
periods. The result of the simulation is shown in Fig. 14 and, as
expected, it is identical to Fig. 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

0

20

40

60

80

100

ite
m
s

inventory position
inventory level

Fig. 14 Simulating the behaviour of a
warehouse in Python: inventory level
at the end of each period t ∈ {1, 20}
when the initial inventory level is 100.

Let us now reduce the initial inventory level to 50, and schedule
an order at time 10, for which the delivery lead time is 1 period.
To model an order, we create an Order event, to capture the deliv-
ery lead time, we create a ReceiveOrder event (Listing 11) that is
triggered by the Order event with a delay of lead_time periods.

inventory systems 35

class Order:
def __init__(self, des: DES, Q: float, warehouse: Warehouse, lead_time: float):

self.Q = Q # the order quantity
self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.lead_time = lead_time
self.priority = 0 # denotes a high priority

def end(self):
self.w.order(self.Q, self.des.time)
self.des.schedule(EventWrapper(ReceiveOrder(self.des, self.Q, self.w)),

self.lead_time)

class ReceiveOrder:
def __init__(self, des: DES, Q: float, warehouse: Warehouse):

self.Q = Q # the order quantity
self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.priority = 0 # denotes a high priority

def end(self):
self.w.receive_order(self.Q, self.des.time)

Listing 11 The Order event and the
ReceiveOrder event.

Finally, we set up the system and we simulate it via the code in
Listing 12. Fig. 15 illustrates the behaviour of the inventory level
and of the inventory position for this system. Because of the order
lead time, to prevent stockouts, it is necessary to anticipate the
ordering time by 1 period, which is the very same length of the lead
time.

N, initial_inventory = 20, 50 # planning horizon length and initial inventory
w, des = Warehouse(initial_inventory), DES(N)

d = CustomerDemand(des, 5, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately
o = Order(des, 50, w, 1)
des.schedule(EventWrapper(o), 9) # schedule an order of size 50 in period 9
des.start()

plot_inventory(w.positions, "inventory position")
plot_inventory(w.levels, "inventory level")
plt.legend()
plt.show()

Listing 12 Simulating the behaviour
of a warehouse via DES in Python: the
warehouse initial inventory level is 50,
the customer demand rate is 5 units
per period, an order is scheduled at
time 9, and order the lead time is 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

0

10

20

30

40

50

ite
m
s

inventory position
inventory level

Fig. 15 Simulating the behaviour of
a warehouse in Python: inventory
level and inventory position at the end
of each period t ∈ {1, 20} when the
initial inventory level is 50, an order is
scheduled at time 9, and order the lead
time is 1.

Deterministic Inventory Control

Copyright © 2021 Roberto Rossi, CC BY 4.0
https://doi.org/10.11647/OBP.0252.02

https://doi.org/10.11647/OBP.0252.02

38 inventory analytics

Introduction

In this chapter, we discuss inventory control in a deterministic
setting. We first discuss the cost factors that should be considered,
and we show how to model and simulate the system running costs.
We finally introduce prescriptive analytics models to determine the
economic lot size under a variety of settings.

• Accounting for costs p. 39

• The Economic Order Quantity (EOQ) p. 41

• Sensitivity to variations of the EOQ p. 46

• Incorrect estimation of ordering and holding costs p. 47

• The EOQ under a production/delivery lag p. 48

• Powers-of-two policies for the EOQ p. 49

• The EOQ under order quantity discounts:

all-units discounts and incremental discounts p. 50

• The EOQ under planned backorders p. 53

• The Economic Production Quantity (EPQ) p. 55

• The Economic Lot Scheduling (ELS) p. 56

• Joint Replenishments p. 59

• Time-varying demand: Dynamic Lot Sizing p. 61

• Planned backorders in Dynamic Lot Sizing p. 64

• Order capacity constraints in Dynamic Lot Sizing p. 66

Topics

deterministic inventory control 39

Accounting for costs

The simplest lot sizing instance one may conceive includes two cost
factors: a fixed ordering cost (K), which is charged every time an
order is issued, and it is a cost that is independent of the size of the
order; and a per unit inventory holding cost (h), which is charged
for every unit carried forward in stock from one period to the next
in the planning horizon. In the first instance, we will assume that
all demand must be met, hence the per unit item purchase cost can
be ignored for all practical purposes. The revised Warehouse class is
shown in Listing 13.

from collections import defaultdict

class Warehouse:
def __init__(self, inventory_level, fixed_ordering_cost, holding_cost):

self.i, self.K, self.h = inventory_level, fixed_ordering_cost, holding_cost
self.o = 0 # outstanding_orders
self.period_costs = defaultdict(int) # a dictionary recording cost in each

period

def receive_order(self, Q, time):
self.review_inventory(time)
self.i, self.o = self.i + Q, self.o - Q
self.review_inventory(time)

def order(self, Q, time):
self.review_inventory(time)
self.period_costs[time] += self.K # incur ordering cost and store it in a

dictionary
self.o += Q
self.review_inventory(time)

def on_hand_inventory(self):
return max(0,self.i)

def issue(self, demand, time):
self.review_inventory(time)
self.i = self.i-demand

def inventory_position(self):
return self.o+self.i

def review_inventory(self, time):
try:

self.levels.append([time, self.i])
self.on_hand.append([time, self.on_hand_inventory()])
self.positions.append([time, self.inventory_position()])

except AttributeError:
self.levels, self.on_hand = [[0, self.i]], [[0, self.on_hand_inventory()]]
self.positions = [[0, self.inventory_position()]]

def incur_holding_cost(self, time): # incur holding cost and store it in a
dictionary

self.period_costs[time] += self.on_hand_inventory()*self.h

Listing 13 The extended Warehouse

class that models costs.

To account for costs incurred by carrying over inventory from
one period to the next we need to define an EndOfPeriod event
(Listing 14) that is scheduled for the first time at the end of the first
period, and which reschedules itself to occur at the end of every
subsequent period.

40 inventory analytics

class EndOfPeriod:
def __init__(self, des: DES, warehouse: Warehouse):

self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.priority = 2 # denotes a low priority

def end(self):
self.w.incur_holding_cost(self.des.time)
self.des.schedule(EventWrapper(EndOfPeriod(self.des, self.w)), 1)

Listing 14 The EndOfPeriod event to
record inventory holding costs.

Example 2. We simulate operations of a simple inventory system by
leveraging the Python code in Listing 15. The warehouse initial inventory
is 0 units. The customer demand rate is 10 unit per period. We simulate
N = 20 periods. We order 50 units in periods 1, 5, 10, and 15; the
delivery lead time is 0 periods (i.e. no lead time). The fixed ordering cost is
100, the per unit inventory holding cost is 1. After simulating the system,
we find that the average cost per unit time is 40; costs incurred in each
period are shown in Table 1.

instance = {"inventory_level": 0, "fixed_ordering_cost": 100, "holding_cost": 1}
w = Warehouse(**instance)

N = 20 # planning horizon length
des = DES(N)

d = CustomerDemand(des, 10, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time = 0
o = Order(des, 50, w, lead_time)
for t in range(0,20,5):

des.schedule(EventWrapper(o), t) # schedule orders
des.schedule(EventWrapper(EndOfPeriod(des, w)), 0) # schedule EndOfPeriod

immediately

des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Average cost per period: "+ ’%.2f’ % (sum([w.period_costs[e] for e in

w.period_costs])/len(w.period_costs)))

plot_inventory(w.positions, "inventory position")
plot_inventory(w.levels, "inventory level")
plt.legend()
plt.show()

Listing 15 Simulating the behaviour
of a warehouse in Python: inventory
level and inventory position at the
end of each period t ∈ {1, 20} when
the initial inventory level is 0; orders
are scheduled periods 1, 5, 10, and
15; and order the lead time is 0. The
fixed ordering cost is 100, the per unit
inventory holding cost is 1.

Period 1 2 3 4 5 6 7 8 9 10

Cost 140 30 20 10 0 140 30 20 10 0

Period 11 12 13 14 15 16 17 18 19 20

Cost 140 30 20 10 0 140 30 20 10 0

Table 1 Costs incurred in each period
t ∈ {1, 20} when the initial inventory
level is 0, orders are scheduled every
5 periods, and order the lead time is 0.
The fixed ordering cost is 100, the per
unit inventory holding cost is 1.

deterministic inventory control 41

The Economic Order Quantity

Consider an inventory system subject to a constant rate of d units
of demand per time period. We shall assume that inventory is
continuously reviewed (continuous review) and that the order-
ing/production process is instantaneous, i.e. as soon as we order
a product or a batch of products, we immediately receive it. The
order quantity can take any nonnegative real value. There is a
proportional holding cost h per unit per time period for carrying
items in stock. All demand must be met on time, i.e. it cannot be
backordered.

Fig. 16 Harris’ manufacturing quantity
curves from [Harris, 1913] (Courtesy of
HathiTrust).

In absence of fixed costs associated with issuing an order or with
setting up production, since we face inventory holding costs, it is
clear that the best strategy to meet demand is to order/produce
a product as soon as demand for it materialises: a pure reactive
and lean strategy. In practice, however, firms do face fixed produc-
tion/setup costs. In this case, the optimal control strategy is less
obvious.

The problem of determining the “economic” order quantity11 11 Economic is used as a synonym of
optimal.(EOQ) in presence of fixed and variable production costs as well

as proportional inventory holding cost was first studied by Harris
at the beginning of the last century.12 For a historical perspective 12 Ford W. Harris. How many parts to

make at once. Factory, The Magazine of
Management, 10(2):135–136, 1913.

see [Erlenkotter, 1990]. Harris’ original “manufacturing quantity
curves” are shown in Fig. 16.

The elements of the problem are summarized in Listing 16.

class eoq:
def __init__(self, K: float, h: float, d: float, v: float):

"""
Constructs an instance of the Economic Order Quantity problem.

Arguments:
K {float} -- the fixed ordering cost
h {float} -- the proportional holding cost
d {float} -- the demand per period
v {float} -- the unit purchasing cost

"""
self.K, self.h, self.d, self.v = K, h, d, v

Listing 16 The eoq class.

In the EOQ, the demand is constant, we operate under continu-
ous review, and backorders are not allowed; hence, the following
property ensures one does not incur unnecessary holding costs.

Lemma 1 (Zero inventory ordering). Given an order quantity Q it is
optimal to issue an order as soon as the inventory level is zero.

The inventory level as a function of time is shown in Fig. 17: as
soon as inventory level hits zero, an order of size Q is immediately
received and inventory immediately starts decreasing at rate d unit
per period; the cycle repeats when inventory level hits zero again.

Definition 1 (Replenishment cycle). A replenishment cycle is the time
interval comprised within two consecutive orders.

42 inventory analytics

slope = -d

cycle length = Q/d
time

Q

0

in
v
e

n
to

ry
 l
e

v
e

l

Fig. 17 EOQ “sawtooth” inventory
curve.

Lemma 2 (Cycle length). The length of an EOQ replenishment cycle is

Q/d.

This is also known as the demand “coverage.”

Consider a replenishment cycle of length R periods, a demand
rate of d units/period and an order quantity Q = dR, which covers
exactly the demand over R periods.

Lemma 3 (Average inventory level). The average inventory level over
the cycle is Q/2.

Proof. ∫ R
0 (Q− dr)dr

R

=
d
Q

[
rQ− dr2

2

]Q/d

0

=
d
Q

[
(

Q2

d
− dQ2

2d2)− (0Q− 0)
]
= Q/2.

A key metric generally used to gauge inventory system perfor-
mance is the so-called Implied Turnover Ratio.

Definition 2 (Implied Turnover Ratio). The Implied Turnover Ratio
(ITR) represents the number of times inventory is sold or used in a time
period; this is expressed as average demand over average inventory

2d/Q.

This information is important because it measures how fast a
company is selling inventory and can be compared against industry
benchmarks.

Cost analysis

The total cost of a strategy that issues an order of size Q as soon
as the inventory level reaches zero can be expressed in terms of
ordering and holding cost per replenishment cycle

C(Q) =
K

Q/d
+ dv︸ ︷︷ ︸

ordering cost

+ h
Q
2

.︸︷︷︸
holding cost

(1)

deterministic inventory control 43

Since we operate under an infinite horizon and we assume that all
demand must be met, in our cost analysis we can safely ignore the
variable purchasing cost dv, which is constant and independent of
Q, and consider the total “relevant cost” Cr(Q) = C(Q)− dv. These
concepts are implemented in Listing 17.

class eoq:
def cost(self, Q: float) -> float:

return self.fixed_ordering_cost(Q) + self.variable_ordering_cost(Q) +
self.holding_cost(Q)

def relevant_cost(self, Q: float) -> float:
return self.fixed_ordering_cost(Q) + self.holding_cost(Q)

def fixed_ordering_cost(self, Q: float) -> float:
K, d = self.K, self.d
return K/(Q/d)

def variable_ordering_cost(self, Q: float) -> float:
d, v = self.d, self.v
return d*v

def holding_cost(self, Q: float) -> float:
h = self.h
return h*Q/2

Listing 17 EOQ cost functions in
Python.

In Fig. 18 we plot the different components that make up the
EOQ cost function as well as Cr(Q).

20 40 60 80 100
Q

0

20

40

60

80

100

Co
st

Total relevant cost
Ordering cost
Holding cost

Fig. 18 EOQ cost functions.

Lemma 4 (Convexity of relevant cost). Cr(Q) is convex.

Proof.

d2Cr(Q)

dQ
=

2Kd
Q3 > 0.

44 inventory analytics

Optimal solution

Since C(Q) is convex, its global minimum can be found via global
optimisation approaches readily available in software libraries such
as Python scipy. For instance, one may exploit Nelder-Mead13

13 John A. Nelder and Roger Mead. A
simplex method for function minimiza-
tion. The Computer Journal, 7(4):308–313,
1965.

algorithm as shown in Listing 18.

from scipy.optimize import minimize

class eoq:
def compute_eoq(self) -> float:

x0 = 1 # start from a positive EOQ
res = minimize(self.relevant_cost, x0, method=’nelder-mead’,

options={’xtol’: 1e-8, ’disp’: False})
return res.x[0]

Listing 18 Compute Q∗.

The analytical closed-form optimal solution to the EOQ prob-
lem, the so-called Economic Order Quantity Q∗ is shown in the
following Lemma.

Lemma 5 (Economic Order Quantity).

Q∗ =
√

2Kd/h. (2)

Proof. By exploiting convexity of Cr(Q), one sets its first derivative
to zero

−Kd
Q2 +

h
2
= 0

and obtains a closed form for the optimal order quantity.

The particular form of Q∗ allows us to make some observations:
as K increases we will issue larger orders; as h increases holding
inventory becomes more expensive and we order more frequently;
finally, as d increases the order quantity increases.

Lemma 6 (Relevant cost of ordering the Economic Order Quantity).

Cr(Q∗) =
√

2Kdh (3)

Proof. This is obtained by plugging Eq. 2 into Cr(Q).

Example 3. We consider the numerical example in Listing 19. Note that
this is the same instance considered in Example 2. After running the code
we obtain Q∗ = 44.72 and Cr(Q∗) = 44.72. The replenishment cycle
length is therefore Q∗/d = 4.472 periods.

instance = {"K": 100, "h": 1, "d": 10, "v": 2}
pb = eoq(**instance)
Qopt = pb.compute_eoq()
print("Economic order quantity: " + ’%.2f’ % Qopt)
print("Total relevant cost: " + ’%.2f’ % pb.relevant_cost(Qopt))

Listing 19 Numerical example 3.

The fact that Q∗ = Cr(Q∗) is a direct consequence of Lemma 6

and h = 1.

deterministic inventory control 45

Since we are operating under continuous review, although the
instance parameters are the same, the cost obtained by applying the
EOQ formula to the previous example is not directly comparable
to that obtained via the simulation presented in Listing 15, which
operates under periodic review. To address this issue, we need to
adopt a finer discretisation of the planning horizon. This is shown
in Listing 20 and in Listing 21. The cost of the simulated solution is
now 44.78, which is equivalent to that obtained from the analytical
solution. The behaviour of inventory over time is shown in Fig. 19.

instance = {"inventory_level": 0, "fixed_ordering_cost": 100,
"holding_cost": 1.0/100} # holding cost rescaled

w = Warehouse(**instance)

des = DES()

demand = 10/100 # discretise each period into 100 periods
Q = 44.72 # optimal EOQ order quantity
N = round(Q/demand)*10 # planning horizon length: simulate 10 replenishment cycles
des.schedule(EventWrapper(EndOfSimulation(des, w)), N) # schedule EndOfSimulation

d = CustomerDemand(des, demand, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time = 0
o = Order(des, Q, w, lead_time)
for t in range(0, N, round(Q/demand)):

des.schedule(EventWrapper(o), t) # schedule an order at the beginning of each
replenishment cycle

des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod at the
end of period 1

des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Average cost per period: "+ ’%.2f’ % (100*sum([w.period_costs[e] for e in

w.period_costs])/len(w.period_costs)))

plot_inventory_finer(w.positions, "inventory position")
plot_inventory_finer(w.levels, "inventory level")
plt.legend(loc=1)
plt.show()

Listing 20 Simulating the behaviour
of a warehouse in Python: DES
simulated EOQ solution under a finer
discretisation of the simulation horizon
(100 smaller period for each original
period).

def plot_inventory(values, label):

data
df=pd.DataFrame({’x’:

np.array(values)[:,0], ’fx’:
np.array(values)[:,1]})

plot
plt.xticks(range(0,len(values),200),

range(0,len(values)//100,2))
a tick every 200 periods

plt.xlabel("t")
plt.ylabel("items")
plt.plot(’x’, ’fx’, data=df,

linestyle=’-’, marker=’’,
label=label)

Listing 21 Method plot_inventory

under a finer discretisation of the
simulation horizon (100 smaller period
for each original period).

0 2 4 6 8 10121416182022242628303234363840424446
t

10

20

30

40

50

ite
m
s

inventory position
inventory level

Fig. 19 Simulating the behaviour of
a warehouse in Python under a finer
discretisation of the simulation horizon
(100 smaller period for each original
period).

46 inventory analytics

Sensitivity to variations of Q

Suppose management decides to order a quantity Q that differs
from Q∗. The following Lemma is important in order to understand
the sensitivity of the relevant cost to the choice of Q.

Lemma 7 (Sensitivity to Q∗). Let Q > 0

Cr(Q)

Cr(Q∗)
=

1
2

(
Q∗

Q
+

Q
Q∗

)
(4)

Proof.

Cr(Q)

Cr(Q∗)
=

Kd
Q
√

2Kd/h
+ h

Q
2
√

2Kd/h

=
1

2Q

√
2Kd

h
+ h

Q
2

√
h

2Kd

=
1
2

(
Q∗

Q
+

Q
Q∗

)
.

Sensitivity can be computed as shown in Listing 22.

class eoq:
def sensitivity_to_Q(self, Q:

float) -> float:
Qopt = self.compute_eoq()
return 0.5*(Qopt/Q+Q/Qopt)

Listing 22 Compute sensitivity to
variations of Q from Q∗.

There are two key observations: the sensitivity of the relevant
cost to the choice of Q only depends on Q and Q∗, not on the
specific values of problem parameters K and h; moreover, this
sensitivity is low.

Example 4. In Fig. 20 we plot Eq. 4 for the numerical example presented
in Listing 19. We can see that a difference of 10 units between Q∗ = 44.72
and Q = 34.72 only leads to a 3.22% cost increase.

−20 −10 0 10 20 30
Difference between Q and Q *

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Se
ns

iti
vi
ty

Fig. 20 EOQ sensitivity to variations of
Q from Q∗.

deterministic inventory control 47

Incorrect estimation of fixed ordering and holding costs

Suppose we incorrectly estimate the fixed ordering cost K as K′, by
leveraging once more Eq. 4 we obtain

Cr(Q′)
Cr(Q∗)

=
1
2

e

(√
K′

K

)

which implies that the cost of overestimating K is lower than that
of underestimating it. A similar analysis can be carried out for
the holding cost parameter; for which, however, the situation is
reversed: Cr(Q′)/Cr(Q∗) = 0.5

√
h/h′.

−40 −30 −20 −10 0 10 20 30 40
Difference between K ′ and K

1.000

1.005

1.010

1.015

1.020

1.025

1.030

Se
ns

iti
vi
ty

Fig. 21 EOQ sensitivity to K.

Sensitivity to K and h can be computed as shown in Listing 23.

class eoq:
def sensitivity_to_K(self, K: float)

-> float:
e = lambda x : x + 1/x
return 0.5*(e(np.sqrt(K/self.K)))

def sensitivity_to_h(self, h:
float) -> float:

e = lambda x : x + 1/x
return 0.5*(e(np.sqrt(self.h/h)))

Listing 23 Compute sensitivity to
estimation errors for K and h.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Difference between h ′ and h

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Se
ns
iti
vi
ty

Fig. 22 EOQ sensitivity to h.

Example 5. In the numerical example presented in Listing 19, if we
underestimate K by 40% we underestimate Cr(Q∗) by 0.5e(

√
0.6) =

0.0328, i.e. 3.28%; if we overestimate K by 40% we overestimate Cr(Q∗)
by 0.5e(

√
1.4) = 0.0141, i.e. 1.41% (Fig. 21). The analysis carried out on

h leads to Fig. 22.

48 inventory analytics

Production/delivery lag (lead time)

A key assumption in the EOQ problem formulation is that orders
are delivered immediately. We will now relax this assumption and
assume that orders are subject to a production/delivery lag of L
periods.

slope = -d

cycle length = Q/d
time

Q

0

in
v
e

n
to

ry
 l
e

v
e

l

lead time L

place order

reorder point = dL

Fig. 23 EOQ inventory curve under
production/delivery lag.

By observing the behaviour of the inventory curve in Fig. 23

it is easy to see that the optimal solution does not change. The
only adjustment required is to place an order L periods before the
inventory level reaches zero. To determine when it is time to issue
an order it is convenient to introduce the following definition.

Definition 3 (Reorder point). The reorder point r is the amount of
demand observed over the lead time L

r = dL.

Example 6. In the numerical example presented in Listing 19, assuming
L = 0.5, the reorder point is 5, which means an order is issued as soon as
inventory drops to 5 units. The behaviour of inventory over time is shown
in Fig. 24.

0 2 4 6 8 10121416182022242628303234363840424446
t

0

10

20

30

40

50

ite
m
s

inventory position
inventory level

Fig. 24 Behaviour of inventory over
time for the numerical example
presented in Listing 19, assuming
L = 0.5.

deterministic inventory control 49

Powers-of-two policies

The problem statement resembles an EOQ setting; however rather
than choosing an arbitrary optimal cycle length T, we are given
a base planning period Tb and we must choose an optimal cycle
length taking the form Tb2k, where k ∈ {0, . . . , ∞}. This is particu-
larly useful in settings in which we seek order coordination across a
range of stock keeping units.

Recall that Q∗ = dT∗, where T∗ denotes the optimal cycle length
of the EOQ. By substituting in Cr(Q) we can express the relevant
cost as a function F(T) of the replenishment cycle length T

F(T) =
K
T
+

hdT
2

.

Lemma 8 (Powers-of-two policy). Let Tb2k be a powers-of-two policy
with base planning period Tb, the optimal k is the smallest integer k
satisfying

F(Tb2k) ≤ F(Tb2k+1).

Proof. From Lemma 4 it immediately follows that F(T) is convex.

Lemma 9 (Powers-of-two bound). Let Tb be a base planning period, then

F(Tb2k)

F(T∗)
≤ 3

2
√

2
≈ 1.06.

Proof. From Eq. 4 we obtain

F(T)
F(T∗)

=
1
2

(
T∗

T
+

T
T∗

)
=

1
2

e
(

T∗

T

)
where e(x) = x + 1/x. Since

F(Tb2k) ≤ F(Tb2k+1)→
√

2
−1

T∗ ≤ Tb2k = T

F(Tb2k−1) > F(Tb2k)→ T = Tb2k ≤
√

2T∗,

therefore 1√
2
≤ T∗

T ≤
√

2 and

F(Tb2k)

F(T∗)
≤ 1

2
e
(

1√
2

)
=

1
2

e(
√

2) =
3

2
√

2
≈ 1.06.

An optimal powers-of-two policy can be computed as shown in
Listing 24.

class eoq:
def opt_powersoftwo_policy(self, T:

float) -> float:
K, d, h = self.K, self.d, self.h
rc = lambda t : K/t + h*d*t/2
k = 0
while rc(T*2**(k+1)) <

rc(T*2**k):
k += 1

return T*2**k

Listing 24 Computing an optimal
powers-of-two policy.

Example 7. In the numerical example presented in Listing 19, given a
base planning period Tb = 0.7, the ratio F(Tb2k)/F(T∗) = 1.025 ≤ 1.06;
hence the resulting powers-of-two policy is only 2.5% more expensive than
the optimal one.

50 inventory analytics

Quantity discounts

In several practical situations it is common to offer a discount on
the purchasing price when the order quantity is high enough. In
this problem setting we are given breakpoints b0, . . . , bT+1, where
b0 = 0 and bT+1 = ∞, and associated purchasing prices vk for
k = 1, . . . , T + 1, where purchasing price vk applies within the range
(bk−1, bk). The structure of an instance is illustrated in Listing 25.

class eoq_discounts(eoq):
def __init__(self, K: float, h: float, d: float, b: List[float], v: List[float]):

"""
Constructs an instance of the Economic Order Quantity problem.

Arguments:
K {float} -- the fixed ordering cost
h {float} -- the proportional holding cost as a percentage of purchase cost
d {float} -- the demand per period
b {float} -- a list of puchasing cost breakpoints
v {float} -- a list of decreasing unit purchasing costs where v[j] applies

in (b[j],b[j-1])
"""

self.K, self.h, self.d, self.b, self.v = K, h, d, b, v
self.b.insert(0, 0)
self.b.append(float("inf"))

def compute_eoq(self) -> float:
"""
Computes the Economic Order Quantity.

Returns:
float -- the Economic Order Quantity

"""

quantities = [minimize(self.cost,
self.b[j-1]+1,
bounds=((self.b[j-1],self.b[j]),),
method=’SLSQP’,
options={’ftol’: 1e-8, ’disp’: False}).x[0]

for j in range(1, len(self.b))]
costs = [self.cost(k) for k in quantities]
return quantities[costs.index(min(costs))]

Listing 25 EOQ under quantity
discounts.

We still observe the fixed ordering cost K and, as discussed, item
purchasing price takes different values depending on the size of
the order. Holding cost h, however, is no longer absolute and now
denotes a percentage of the purchasing price.

Listing 25 also embeds a method compute_eoq which computes
the economic order quantity. The total cost function is convex
within each interval (bk−1, bk); compute_eoq analyses each individ-
ual interval (bk−1, bk) separately and returns the optimal Q that
minimizes the total cost across all possible intervals. This solution
method works for any possible discount structure.

There are two types of discount strategies typically applied:
all-units discounts and incremental discounts.

In all-units discounts purchasing price vk applies to the entire
order quantity if this falls within the range (bk−1, bk).

In incremental discounts purchasing price vk only applies to
the fraction of order quantity that falls within within the range
(bk−1, bk).

deterministic inventory control 51

All-units discounts

Variable ordering cost as a function of the ordering quantity Q
(unit_cost), as well as variable ordering cost (co_variable) and in-
ventory holding cost (ch) per replenishment cycle can be computed
as shown in Listing 26.

class eoq_all_units(eoq_discounts):
def unit_cost(self, Q):

j = set(filter(lambda j:
self.b[j-1] <= Q <
self.b[j],
range(1,len(self.b)))).pop()

return self.v[j-1]*Q

def co_variable(self, Q):
j = set(filter(lambda j:

self.b[j-1] <= Q <
self.b[j],
range(1,len(self.b)))).pop()

return self.v[j-1]*self.d

def ch(self, Q: float) -> float:
j = set(filter(lambda j:

self.b[j-1] <= Q <
self.b[j],
range(1,len(self.b)))).pop()

h = self.h*self.v[j-1]
return h*Q/2

Listing 26 EOQ under all units
quantity discounts.

In this case, assuming Q ∈ [bj, bj+1), the total cost takes the form

C(Q) =
Kd
Q

+
hvjQ

2
+ vjd

Example 8. We consider the numerical example in Listing 19. However,
we consider all-units discounts with b = {0, 10, 20, 30, ∞} and associated
v = {5, 4, 3, 2}. The per unit purchasing cost as a function of the order
quantity Q is shown in Fig. 25. The total cost function is shown in Fig.
26. The economic order quantity is Q∗ = 31.6 and the total cost is
C(Q∗) = 83.2.

0 10 20 30 40 50
Q

20

40

60

80

100

Pe
r u

ni
t p

ur
ch

as
in
g
co

st

Fig. 25 All units quantity discounts.

10 15 20 25 30 35 40 45 50
Q

80

90

100

110

120

130

140

150

160

To
ta
l c

os
t

Fig. 26 EOQ total cost for all units
quantity discounts.

52 inventory analytics

Incremental discounts

Variable ordering cost as a function of the ordering quantity Q
(unit_cost), as well as variable ordering cost (co_variable) and in-
ventory holding cost (ch) per replenishment cycle can be computed
as shown in Listing 27.

class eoq_incremental(eoq_discounts):
def unit_cost(self, Q):

j = set(filter(lambda j:
self.b[j-1] <= Q <
self.b[j],
range(1,len(self.b)))).pop()

return sum([(self.b[k] -
self.b[k-1]) * self.v[k-1]
for k in range(1,j)]) + (Q
- self.b[j-1]) *
self.v[j-1]

def co_variable(self, Q):
j = set(filter(lambda j:

self.b[j-1] <= Q <
self.b[j],
range(1,len(self.b)))).pop()

cQ = sum([(self.b[k] -
self.b[k-1]) * self.v[k-1]
for k in range(1,j)]) + (Q
- self.b[j-1]) *
self.v[j-1]

return self.d*cQ/Q

def ch(self, Q: float) -> float:
j = set(filter(lambda j:

self.b[j-1] <= Q <
self.b[j],
range(1,len(self.b)))).pop()

cQ = sum([(self.b[k] -
self.b[k-1]) * self.v[k-1]
for k in range(1,j)]) + (Q
- self.b[j-1]) *
self.v[j-1]

h = self.h*cQ/Q
return h*Q/2

Listing 27 EOQ under incremental
quantity discounts.

In this case, the total cost takes the form

C(Q) =
Kd
Q

+
h c(Q)

Q Q

2
+

c(Q)

Q
d

where, assuming Q ∈ [bj, bj+1),

c(Q) =
j−1

∑
i=0

vi(bi+1 − bi) + vj(Q− bj).

Example 9. We consider the numerical example in Listing 19. However,
we consider all-units discounts with b = {0, 10, 20, 30, ∞} and associated
v = {5, 4, 3, 2}. The per unit purchasing cost as a function of the order
quantity Q is shown in Fig. 27. The total cost function is shown in Fig.
28. The economic order quantity is Q∗ = 39.9 and the total cost is
C(Q∗) = 130.

0 10 20 30 40 50
Q

0

20

40

60

80

100

120

140

160

Pe
r u

ni
t p

ur
ch

as
in
g
co

st

Fig. 27 Incremental quantity dis-
counts.

10 15 20 25 30 35 40 45 50
Q

130

140

150

160

170

To
ta
l c

os
t

Fig. 28 EOQ total cost for incremental
quantity discounts.

deterministic inventory control 53

Planned backorders in the EOQ

In this section we still consider an EOQ setting, but we relax the as-
sumption that all demand must be met on time. In other words, we
will allow demand to be backordered and met when the successive
replenishment arrives. The behaviour of the system is illustrated
in Fig. 29. The system resembles the classical EOQ. However, the
zero-inventory ordering property does not hold for this system.
Instead, an order will be issued when inventory reaches −S, the
planned backorder level. We therefore now have two decision to be
made: how much to order (Q) and how much to backorder (S).

slope = -d

cycle length = Q/d

time

Q - S

0

in
v
e
n
to

ry
 l
e
v
e
l

-S

Fig. 29 EOQ inventory curve under
planned backorders.

Cost analysis

Incurring backorders must be expensive, otherwise the optimal
policy would simply be to not order at all. More specifically, we
will charge a penalty cost p per unit backordered per period. The
total relevant cost then becomes

Cb
r (Q, S) =

Kd
Q︸︷︷︸

ordering

+ h
(Q− S)2

2Q︸ ︷︷ ︸
holding

+ p
S2

2Q︸ ︷︷ ︸
penalty

Lemma 10 (Holding cost reduction factor). Allowing backorders is
mathematically equivalent to reducing the holding cost rate by the factor
p/(p + h).

Proof. To prove this, it is convenient to let S = xQ, where x denotes
the fraction of backordered demand in a replenishment cycle.
Substitute in Cb

r (Q, S), take partial derivatives w.r.t. Q and x, and
set both partial derivatives to zero. Interestingly,

dCb
r (Q, S)
dx

= −hQ(1− x) + pQx = 0

admits solution
x∗ =

h
p + h

(5)

which is independent of Q. If we plug x∗ into Cb
r (Q, S), where

S = xQ, we then obtain

Cb
r (Q) =

hp
h + p

Q
2
+

Kd
Q

(6)

54 inventory analytics

which is the EOQ cost function in which the holding cost rate has
been reduced by the factor p/(p + h).

The planned backorder cost analysis can be implemented as
shown in Listing 28.

class eoq_planned_backorders:
def __init__(self, K: float, h: float, d: float, v: float, p: float):

"""
Constructs an instance of the Economic Order Quantity problem.

Arguments:
K {float} -- the fixed ordering cost
h {float} -- the proportional holding cost
d {float} -- the demand per period
v {float} -- the unit purchasing cost
p {float} -- the backordering penalty cost

"""
self.K, self.h, self.d, self.v, self.p = K, h, d, v, p

def relevant_cost(self, Q: float) -> float:
return self.co_fixed(Q)+self.ch(Q)+self.cp(Q)

def cost(self, Q: float) -> float:
return self.co_fixed(Q)+self.co_variable(Q)+self.ch(Q)+self.cp(Q)

def co_fixed(self, Q: float) -> float:
K, d= self.K, self.d
return K/(Q/d)

def co_variable(self, Q: float) -> float:
d, v = self.d, self.v
return d*v

def ch(self, Q: float) -> float:
h = self.h
x = self.h/(self.p+self.h)
return h*(Q-Q*x)**2/(2*Q)

def cp(self, Q: float) -> float:
p = self.p
x = self.h/(self.p+self.h)
return p*(Q*x)**2/(2*Q)

Listing 28 Planned backorder cost
analysis.

Optimal solution

We next characterize the structure of the optimal solution by build-
ing upon Lemma 10.

Lemma 11 (Optimal order quantity). The optimal order quantity is

Q∗ =

√
2Kd(h + p)

hp
(7)

Lemma 12 (Optimal fraction of backordered demand). The optimal
fraction of backordered demand in a replenishment cycle x∗ = h/(p + h).

Lemma 13 (Optimal cost).

Cb
r (Q

∗, x∗) =
√

2Kdhp/(h + p) (8)

The computation is similar to that presented in Listing 18.

Example 10. In the numerical example presented in Listing 19 we consider
a penalty cost p = 5; then Q∗ = 48.99, x∗ = 0.16, Cb

r (Q∗, x∗) = 40.82.

deterministic inventory control 55

Finite production rate: The Economic Production Quantity

In contrast to the previous section, we shall now relax the assump-
tion that the whole replenishment quantity Q is delivered at once at
the beginning of the planning horizon. This problem is known as
the Economic Production Quantity (EPQ).14 The quantity is instead

14 E. W. Taft. The most economical
production lot. The Iron Age, 101:
1410–1412, 1918.

delivered at a constant and finite production rate p > d, where d is
the demand rate. Taft’s original drawings are shown in Fig. 30. The
behaviour of the system is illustrated in Fig. 31.

Fig. 30 Taft’s inventory curve from
[Taft, 1918] (courtesy of HathiTrust).

slope = -d

cycle length = Q/d
time

Q

0in
v
e
n
to

ry
le

v
e
l

Q(1-d/p)

Q/p

slope = p - d

Fig. 31 EPQ inventory curve.

Like in the classical EOQ, the zero inventory ordering property
holds for this system. A replenishment occurs when inventory level
is zero. Production runs until the whole replenishment quantity
Q is delivered. While the replenishment quantity is delivered,
demand occurs at rate d, so inventory increases at a rate p− d for
Q/p time periods until it reaches a maximum level Q(1− d/p), and
then decreases at rate d over the rest of the replenishment cycle.

Cost analysis

By observing that the average inventory level is now Q(1− p/d)/2
we obtain the following expression for the total relevant cost

Cp
r (Q) =

dK
Q

+
hQ(1− p/d)

2
. (9)

The EPQ analysis can be computed as shown in Listing 29.

class epq:
def __init__(self, K: float, h:

float, d: float, v: float, p:
float):

"""
Constructs an instance of the

Economic Production
Quantity problem.

Arguments:
K {float} -- the fixed

ordering cost
h {float} -- the proportional

holding cost
d {float} -- the demand per

period
v {float} -- the unit

purchasing cost
p {float} -- the finite

production rate
"""
self.K, self.h, self.d, self.v,

self.p = K, h, d, v, p

def relevant_cost(self, Q: float)
-> float:

return
self.co_fixed(Q)+self.ch(Q)

def cost(self, Q: float) -> float:
return self.co_fixed(Q) +

self.co_variable(Q) +
self.ch(Q)

def co_fixed(self, Q: float) ->
float:

K, d= self.K, self.d
return K/(Q/d)

def co_variable(self, Q: float) ->
float:

d, v = self.d, self.v
return d*v

def ch(self, Q: float) -> float:
h = self.h
rho = self.p/self.d
return h*Q*(1-rho)/2

Listing 29 Economic Production
Quantity cost analysis.

Optimal solution

As in the previous case, the optimal solution is simply a minor
modification of the classical EOQ solution

Lemma 14 (Economic Production Quantity).

Q∗ =

√
2Kd

h(1− d/p)
(10)

Lemma 15 (Optimal cost).

Cp
r (Q∗) =

√
2Kdh(1− d/p). (11)

The computation is similar to that presented in Listing 18.

Example 11. In the numerical example presented in Listing 19 we consider
a production rate p = 5; then Q∗ = 63.24 and Cp

r (Q∗) = 31.62.

56 inventory analytics

Production on a single machine: The Economic Lot Scheduling

Consider an EPQ problem, for the sake of convenience, we shall
divide a production cycle into two phases: the “ramp up” phase
and the “depletion” phase. As we have seen in the previous section,
a replenishment occurs when inventory level is zero. Production
runs until the whole replenishment quantity Q is delivered. While
the replenishment quantity is delivered, demand occurs at rate d,
so inventory increases at a rate p− d for Q/p time periods (“ramp
up” phase) until it reaches a maximum level Q(1 − d/p); and
then decreases at rate d over the rest of the replenishment cycle,
for Q(1− p/d)/d time periods (“depletion” phase). Observe that,
naturally, the cycle length is the sum of the length of these two
phases: Q(1− d/p)/d + Q/p = Q/d (Fig. 32).

Q/p

“ramp up”

Q(1-d/p)/d

“depletion”

Q(1-d/p)

Q

-dp-d

time

in
v
e

n
to

ry
 l
e

v
e

l

Fig. 32 EPQ inventory curve: “ramp
up” and “depletion” phases.

Assume now that the production facility requires a setup time
s (e.g. cleaning, maintenance) before a production run may start.
Let Q∗ be the EPQ (Lemma 14). If s ≤ Q(1− p/d)/d, the solution
is clearly feasible and optimal for the EPQ under setup time, since
production facility setup can occur during the “depletion” phase,
when the machine is idle, without affecting the “ramp up” phase.

Example 12. In the numerical example presented in Listing 19, consider
a production rate p = 5 and recall that d = 10; then Q∗ = 63.24, and
Q∗(1− p/d)/d = 3.162. If s ≤ 3.162, Q∗ remains the EPQ.

If, however, s > Q∗(1− p/d)/d, since the total relevant cost is
convex, then the EPQ can be computed by enforcing the condition
s = Q(1− p/d)/d. In other words, the optimal cycle length turns
out to be the cycle length that corresponds to a schedule in which
the machine is never idle: it is either producing during the “ramp
up” phase, or being setup during the “depletion” phase.

The general expression for the EPQ under setup time is then

Lemma 16 (Economic Production Quantity under setup time).

Q∗ = max

{√
2Kd

h(1− d/p)
, ds/(1− p/d)

}
. (12)

Having considered the production of a single item on on a single
machine with finite production capacity and setup time, we now
generalise our analysis to the production of n items on a single
machine with finite production capacity and item dependent setup
times.15 15 Jack Rogers. A computational ap-

proach to the economic lot scheduling
problem. Management Science, 4(3):
264–291, 1958.

Let pi > di be the constant and finite production rate of item
i, where di is the demand rate for item i. If we allow arbitrary
production schedules, a feasible solution exists if and only if
∑n

i=1 di/pi < 1; however, finding an optimal production sched-
ule is NP-hard and there is no closed form expression or efficient
algorithm readily available. We will therefore focus on determining
the best production cycle that contains a single run of each item.
This means the cycle lengths of the n items have to be identical.
Such a schedule is referred to as a rotation schedule.

deterministic inventory control 57

Rotation Schedule

Finding a rotation schedule when item setup costs Ki are inde-
pendent across items is no more difficult than solving the single
item problem. Let hi be the holding cost per period for item i and
consider a cycle of length T.

class els:
def __init__(self, p: List[float],

d: List[float], h:
List[float], s: List[float],
K: List[float]):

"""
Constructs an instance of the

Economic Lot Scheduling
problem.

Args:
p (List[float]): constant

production rates
d (List[float]): constant

demand rates
h (List[float]): inventory

holding costs
s (List[float]): set up times
K (List[float]): set up costs

"""
self.p, self.d, self.h, self.s,

self.K = p, d, h, s, K

def item_relevant_cost(self, T:
float, i: int) -> float:

return (self.h[i] * T *
self.d[i] *
(1-self.d[i]/self.p[i]))/2
+ self.K[i]/T

def relevant_cost(self, T: float):
return sum(

[self.item_relevant_cost(T,
i) for i in range(0,
self.n)])

def compute_els(self):
K = sum(self.K)
H = sum([(self.h[i] * self.d[i]

* (self.p[i] - self.d[i]))
/ (2*self.p[i]) for i in
range(0, self.n)])

return math.sqrt(K/H)

def compute_cycle_length(self,
T:float, i: int):

return T*self.d[i]/self.p[i]

def compute_max_inventory(self,
T:float, i: int):

return T*self.d[i]*(self.p[i] -
self.d[i])/self.p[i]

Listing 30 Economic Lot Scheduling
cost analysis.

Lemma 17. The average inventory level of item i during a cycle is
diT(1− di/pi)/2.

Proof. The length of the production run of item i in a cycle is
Tdi/pi. As we have seen, a production run for item i must start
only when inventory of item i is zero. During production (the
“ramp up” phase), the level increases at rate pi − di, until it reaches
level Tdi(pi − di)/pi. After production (the “depletion” phase),
inventory decreases at a rate di until it reaches zero and a new
production run starts.

Lemma 18. The total relevant cost per unit time is

Ce
r(T) =

n

∑
i=1

(
1
2

hidiT(1− di/pi) +
Ki
T

)
.

Proof. Follows from Lemma 17 and from the fact that the average
cost per unit time due to setups for item i is Ki/T.

Lemma 19. The optimal cycle length is

T∗ =

√√√√(n

∑
i=1

Ki

)/(
n

∑
i=1

hidi(pi − di)

2pi

)
.

Proof. Take the derivative of Ce
r(T) and set it to zero.

Example 13. Consider the instance illustrated in Table 2, in Fig. 33 we
plot Ce

r(T). The optimal cycle length is T∗ = 1.78. The rotation schedule
is illustrated in Fig. 34; and in Fig. 35 for positive setup times.

Item 1 2 3

dj 50 50 60

pj 400 400 500

hj 20 20 30

Kj 2000 2500 800

Table 2 Problem parameters for the
ELS problem instance.

The ELS analysis can be computed as shown in Listing 30.
If we include setup times si that are sequence independent, the

problem remains easy since the sum of the setup times will not
depend on the production sequence. If the sum of the setup times
is less than the idle time in the rotation schedule, the rotation sched-
ule obtained by ignoring setup times remains optimal. Otherwise,
as in the single item case, since the total relevant cost is convex, the
optimal cycle length can be found by forcing the idle time to be
equal to the sum of the setup times (Lemma 20).

58 inventory analytics

1 1.5 2 2.5 3
T

2000

3000

4000

5000

6000

7000

8000

Co
st

Total relevant cost
Total relevant cost item 1
Total relevant cost item 2
Total relevant cost item 3

Fig. 33 Overall and item-wise, total
relevant cost Ce

r (T) of the ELS problem
instance in Example 13.

inventory levels

0 1 2 3

0

30

60

90

time

idle time

cycle time

item 1

item 2

item 3

Fig. 34 The optimal rotation schedule
for the problem instance in Example
13; solid areas denote production time.

inventory levels

0 1 2 3

0

30

60

90

time

idle time
setup time

cycle time

item 1

item 2

item 3

Fig. 35 The optimal rotation schedule
for the problem instance in Example
13 assuming all item setup times
are equal to 0.1; solid areas denote
production time.

Lemma 20. If the sum of the setup times exceeds the idle time in the
rotation schedule, then

T∗ =

(
n

∑
i=1

si

)/(
1−

n

∑
i=1

di
pi

)
.

Proof. Follows from the convexity of total relevant cost Ce
r(T).

deterministic inventory control 59

Synchronising production: The Joint Replenishment Problem

The Joint Replenishment Problem (JRP) occurs when it becomes
necessary to synchronise production of multiple items.

Consider a continuous review inventory system comprising n
items. Let di be the demand rate for item i, and hi be the holding
cost per time period for item i. There are two types of fixed setup
costs: the major setup cost K0 for the system, and a minor setup
cost Ki for each item type. Essentially, every time production occurs,
the major setup cost K0 is incurred, regardless of how many types
of items are produced. Conversely, the minor setup cost Ki is
incurred at time t if and only if item type i is produced at that time.
The aim is to minimise the total cost per period.

Two questions must be answered to address the JRP:

• What is the optimal time T0 between major setups?

• What is the optimal production cycle length Ti for item i?

Lemma 21 (Zero inventory ordering). It is optimal to produce item i at
time t if and only if its inventory level is zero.

Lemma 22. The holding cost per time period for item i is Hi , hidi/2.

The JRP in its general form is an NP-hard problem16 and, there- 16 Esther Arkin, Dev Joneja, and
Robin Roundy. Computational
complexity of uncapacitated multi-
echelon production planning problems.
Operations Research Letters, 8(2):61–66,
1989.

fore, it is unlikely that an efficient algorithm to solve this problem
will be found.

class jrp:
def __init__(self, n:int, beta:int,

h:List[float], d:List[float],
K:List[float], K0:float):

"""An instance for the Joint
Replenishment Problem

Args:
n (int): the number of items
beta (int): the base planning

period
h (List[float]): holding cost

rate for item
d (List[float]): demand rate

for item
K (List[float]): fixed minor

setup cost for item
K0 (float): fixed major setup

cost.
"""
self.n, self.beta, self.h,

self.d, self.K = n, beta,
h, d, K

self.H = [0] + [0.5 * h[i] *
d[i] for i in range(0,n)]

self.K = [K0] + K
self.U = 30 # choose a number

sufficiently large

Listing 31 The JRP in Python.

Powers-of-two policies

We shall here focus on a restricted version of the original problem:
the JRP under a powers-of-two policy.17 For each item i, rather than 17 Peter Jackson, William Maxwell,

and John Muckstadt. The joint
replenishment problem with a powers-
of-two restriction. IIE Transactions, 17(1):
25–32, 1985.

choosing an arbitrary optimal cycle length Ti, we are given a base
planning period Tb — which is assumed sufficiently small, and
in particular, smaller than the cycle length of the most frequently
ordered item — and we must choose an optimal cycle length taking
the form Tb2k, where k ∈ {0, . . . , ∞}. This leads to the following
nonlinear programming model (problem Z).

Z : min
n

∑
i=0

Ki/Ti + HiTi (13)

Subject to,

Ti = MiTb i = 1, . . . , n, (14)

Ti ≥ T0 i = 1, . . . , n, (15)

Mi ∈ {2k|k = 0, 1, . . . , ∞}, (16)

where, for the sake of convenience, we let H0 , 0.
Now, relax constraint 14 in problem Z, and name the new prob-

lem obtained Ẑ.

Lemma 23. Ẑ is a lower bound among all feasible policies.

60 inventory analytics

Lemma 24. The solution to problem Z is no more than 6% more expensive
than the lower bound obtained via problem Ẑ.

Proof. Let TR
i , i = 0, . . . , n, be the optimal solution to the relaxed

problem Ẑ. By following a line of reasoning similar to that pre-
sented in Lemma 9, one first proves that the powers-of-two restric-
tion implies

1√
2
≤

T∗i
TR

i
≤
√

2, (17)

where T∗i is the optimal solution to the JRP under a powers-of-two
policy (problem Z), i = 0, . . . , n. The result then follows from Eq. 17

and from the convexity of the objective function of Ẑ.

The JRP can be modelled and solved by using ILOG CP Op-
timizer in Python as shown in Listing 31 and in Listing 32, the
solution leverages Constraint Programming18 to deal with the

18 Francesca Rossi, Peter van Beek,
and Toby Walsh, editors. Handbook
of Constraint Programming, volume 2

of Foundations of Artificial Intelligence.
Elsevier, 2006.nonlinear and discrete nature of the problem.

from docplex.cp.model import CpoModel
from typing import List
class jrp:

def solve(self):
mdl = CpoModel()

M = mdl.integer_var_list(self.n+1, 0, self.U, "M")
power = [2**i for i in range(0,self.U+1)]
T = mdl.integer_var_list(self.n+1, 0, power[self.U], "T")

mdl.add(mdl.element(power, M[i]) == T[i] for i in range(0,self.n+1))
mdl.add(T[i] >= T[0] for i in range(0,self.n+1))

mdl.minimize(mdl.sum(self.H[i]*T[i]/self.beta+self.K[i]/(T[i]/self.beta) for i
in range(0,self.n+1)))

print("Solving model....")
msol = mdl.solve(TimeLimit=10, agent=’local’, execfile=

’/Applications/CPLEX_Studio1210/cpoptimizer/bin/x86-64_osx/cpoptimizer’)
msol.print_solution() if msol else print("no solution") # Print solution

Listing 32 Solving the JRP by using
ILOG CP Optimizer in Python.

Example 14. Consider a base planning period Tb = 1/52 (e.g. a planning
on a weekly basis), and the problem parameters in Table 3. The total cost
of a powers-of-two policy is 25.3, the optimal solution is to order items
1, . . . , 4 every 27 = 128 weeks, and to order item 5 every 256 weeks.
The lower bound obtained by solving the relaxed problem Ẑ is 24.9, then
24.9 + 6% = 26.4; as expected, the total cost of a powers-of-two policy falls
within the bounds 25.3 ∈ (24.9, 26.4).

Item 0 1 2 3 4 5

dj - 2 2 2 2 2

hi 0 1 1 1 1 1

Ki 5 1 2 4 6 16

Table 3 Problem parameters for the
JRP problem instance (yearly rates).

instance = {"n": 5, "beta": 52,
"h":[1,1,1,1,1],
"d":[2,2,2,2,2],
"K":[1,2,4,6,16], "K0": 5}

jrp = jrp(**instance)
jrp.solve()

Fig. 36 A JRP instance; note that beta
= 1/Tb.

year
1 2 3 4 5 6 7 8 9 10

inventory level

2.46

4.92

item 1, 2, 3, 4

item 5

Fig. 37 The optimal ordering plan for
the JRP instance in Fig. 3.

deterministic inventory control 61

Time-varying demand: Dynamic Lot Sizing

While exploring variants of the EOQ problem we maintained the
assumption that demand rate is known and constant and that in-
ventory is reviewed continuously. Both these assumptions may
result unrealistic in practice. In fact, it is often the case that decision
maker operate under a “periodic review” setting in which inven-
tory can be reviewed — and orders issued — only at certain points
in time. This leads to a discretization of the planning horizon into
periods. Moreover, demand rate in practice is often not constant
and varies from period to period.

In their 1958 seminal work19 Wagner and Whitin explored the

19 Harvey M. Wagner and Thomson M.
Whitin. Dynamic version of the
economic lot size model. Management
Science, 5(1):89–96, 1958.

Dynamic Version of the Economic Lot Size Model. The so-called
Wagner-Whitin problem setting considers a finite planning horizon
comprising T periods. Demand dt may vary from one period
t to another. Unlike the EOQ inventory can only be reviewed
— an orders issued — at the beginning of each period. Like in
the Economic Order Quantity orders are received immediately
after being placed, there is a fixed cost K as well as variable cost
v for placing an order. There is a proportional cost h for carrying
one unit of inventory from one period to the next. Finally, all
demand must be met on time and the initial inventory is assumed
to be zero. It is safe to disregard the proportional ordering cost
because the planning horizon is finite and all demand must be met,
therefore this is in fact a constant. The Wagner-Whitin problem can
be modelled in Python as shown in Listing 33.

class WagnerWhitin:
def __init__(self, K: float, h:

float, d: List[float], I0:
float):

"""
Create an instance of a

Wagner-Whitin problem.

Arguments:
K {float} -- the fixed

ordering cost
h {float} -- the per unit

holding cost
d {List[float]} -- the demand

in each period
I0 {float} -- the initial

inventory level
"""
self.K, self.h, self.d, self.I0

= K, h, d, I0

Listing 33 The Wagner-Whitin base
class.

As in the EOQ, we leverage the concept of replenishment cycle.

Lemma 25. The cost associated with a replenishment cycle starting in
period i and ending in period j (included) is

c(i, j) = K + h
j

∑
k=i

(k− i)dk.

Costs c(i, j) can be computed as shown in Listing 34.

class WagnerWhitinDP:
def cycle_cost(self, i: int, j:

int) -> float:
’’’
Compute the cost of a

replenishment cycle
covering periods i,...,j

’’’
if i>j: raise Exception(’i>j’)

return self.K + self.h *
sum([(k-i)*self.d[k] for k
in range(i,j+1)])

Listing 34 Wagner-Whitin cycle cost
analysis.

We can then represent the problem as a Directed Acyclic Graph
(DAG) in which arcs represent all possible replenishment cycles
that can take place within our T-period planning horizon (Fig. 38)
and in which the cost associated with arc (i, j) is c(i, j− 1).

c(1, 4)

c(1, 5)

1 2 3 4 5 6

Fig. 38 Wagner-Whitin cost network.

62 inventory analytics

The traditional Wagner-Whitin shortest path algorithm can be
implemented in Python as shown in Listing 35.

from typing import List
import networkx as nx
import itertools

class WagnerWhitinDP(WagnerWhitin):
"""
Implements the traditional Wagner-Whitin shortest path algorithm.
"""
def __init__(self, K: float, h: float, d: List[float]):

super().__init__(K, h, d, 0)
self.graph = nx.DiGraph()
for i in range(0, len(self.d)):

for j in range(i+1, len(self.d)):
self.graph.add_edge(i, j, weight=self.cycle_cost(i, j-1))

Listing 35 Wagner-Whitin dynamic
programming problem setup.

It can be shown that determining the cost of an optimal plan is
equivalent to finding the shortest path in the aforementioned DAG.
This can be done efficiently, for instance by leveraging Dijkstra’s
algorithm.20

20 Edsger W. Dijkstra. A note on two
problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271,
1959.

The cost of an optimal plan and associated order quantities can
be retrieved as shown in Listing 36.

class WagnerWhitinDP:
def optimal_cost(self) -> float:

’’’
Compute the cost of an optimal solution to the Wagner-Whitin problem
’’’
T, cost, g = len(self.d), 0, self.graph
path = nx.dijkstra_path(g, 0, T-1)
path.append(len(self.d))
for t in range(1,len(path)):

cost += self.cycle_cost(path[t-1],path[t]-1)
return cost

def order_quantities(self) -> List[float]:
’’’
Compute optimal Wagner-Whitin order quantities
’’’
T, g = len(self.d), self.graph
path = nx.dijkstra_path(g, 0, T-1)
path.append(len(self.d))
qty = [0 for k in range(0,T)]
for t in range(1,len(path)):

qty[path[t-1]] = sum([self.d[k] for k in range(path[t-1],path[t])])
return qty

Listing 36 Wagner-Whitin problem
solution cost retrieval.

Example 15. We now consider the Wagner-Whitin problem shown
in Listing 37. The cost of an optimal plan is 110, and associated order
quantities in each period are {30, 0, 30, 40}. The optimal plan is visualised
as a shortest path in Fig. 39.

instance = {"K": 30, "h": 1,
"d":[10,20,30,40]}

ww = WagnerWhitinDP(**instance)
print("Cost of an optimal plan: ",

ww.optimal_cost())
print("Optimal order quantities: ",

ww.order_quantities())

Listing 37 A Wagner-Whitin instance.c(1, 2) = 50

c(3, 3) = 30 c(4, 4) = 30

1 2 3 4 5 Fig. 39 Wagner-Whitin optimal
solution as a shortest path.

deterministic inventory control 63

Positive initial inventory

Accounting for a positive initial inventory I0 only requires a small
modification to the DAG structure. Essentially, we must compute
cycle costs as follows:

c(i, j) =


hI0 + h ∑

j
k=i(k− i)dk if i = 1, ∑

j
k=1 dk ≤ I0;

∞ if i > 1, ∑
j
k=1 dk ≤ I0;

K + h ∑
j
k=i(k− i)dk otherwise.

Moreover, while retrieving order quantities, we should bear in mind
that we should issue an order in period t, only if I0 < ∑t

k=1 dk. Note
that if I0 exceeds the total demand over the planning horizon, then
clearly it is optimal to never place any order.

instance = {"K": 30, "h": 1,
"d":[10,20,30,40], "I0": 40}

ww = WagnerWhitinDP(**instance)
print("Cost of an optimal plan: ",

ww.optimal_cost())
print("Optimal order quantities: ",

ww.order_quantities())

Listing 38 A Wagner-Whitin instance.

A Wagner-Whitin instance with positive initial inventory is
shown in Listing 38. The amended Python code is presented in
Listing 39.

class WagnerWhitinDP(WagnerWhitin):
"""
Extension of the original Wagner-Whitin algorithm
to embed a nonnegative initial inventory.
"""

def __init__(self, K: float, h: float, d: List[float], I0: float):
super().__init__(K, h, d, I0)
self.graph = nx.DiGraph()
for i in range(0, len(self.d)):

for j in range(i+1, len(self.d)):
self.graph.add_edge(i, j, weight=self.cycle_cost(i, j-1))

def cycle_cost(self, i: int, j: int) -> float:
’’’
Compute the cost of a replenishment cycle covering periods i,...,j
when initial inventory is nonzero
’’’
if i>j: raise Exception(’i>j’)

if i == 0 and sum(self.d[0:j+1]) <= self.I0:
return self.h * sum([(k-i)*self.d[k] for k in range(i,j+1)]) + \

self.h * (j+1) * (self.I0-sum(self.d[0:j+1])) # cost no order
elif i > 0 and sum(self.d[0:j+1]) <= self.I0:

return sys.maxsize
else:

return self.K + self.h * \
sum([(k-i)*self.d[k] for k in range(i,j+1)]) # cost with order

def optimal_cost(self) -> float:
’’’
Compute the cost of an optimal solution to the Wagner-Whitin problem
’’’
T, cost, g = len(self.d), 0, self.graph
path = nx.dijkstra_path(g, 0, T-1)
path.append(len(self.d))
for t in range(1,len(path)):

cost += self.cycle_cost(path[t-1],path[t]-1)
return cost

def order_quantities(self) -> List[float]:
’’’
Compute optimal Wagner-Whitin order quantities
’’’
T, g = len(self.d), self.graph
path = nx.dijkstra_path(g, 0, T-1)
path.append(len(self.d))
qty = [0 for k in range(0,T)]
for t in range(1,len(path)):

qty[path[t-1]] = sum([self.d[k] for k in range(path[t-1],path[t])]) if
sum(self.d[0:path[t-1]+1]) > self.I0 else 0

return qty

Listing 39 Wagner-Whitin problem
with positive initial inventory.

64 inventory analytics

Planned backorders in Dynamic Lot Sizing

We consider an extension of the Wagner-Whitin problem setting in
which demand can be backordered from one period to the next.

Consider a finite planning horizon comprising T periods. De-
mand dt may vary from one period t to another. Inventory can
only be reviewed — an orders issued — at the beginning of each
period. Orders are received immediately after being placed, there is
a fixed cost K as well as variable cost v for placing an order. There
is a proportional cost h for carrying one unit of inventory from one
period to the next. There is a proportional backorder/penalty cost
p for every unit that is backordered at the end of a period. The
initial inventory is assumed to be equal to I0. This problem can be
modelled as follows.

min ∑
t∈T

δtK + vQt + hI+t + pI−t (18)

Subject to,

Qt ≤ Mδt t = 1, . . . , T (19)

I0 +
t

∑
k=0

(Qk − dk) = It t = 1, . . . , T (20)

It = I+t − I−t t = 1, . . . , T (21)

Qt, I+t , I−t ≥ 0 t = 1, . . . , T (22)

where M = ∑t∈T dt.
The Python code implementing this mathematical programming

model is presented in Listing 40 and in Listing 41.

http://ibmdecisionoptimization.github.io/docplex-doc/mp/creating_model.html
http://www-01.ibm.com/support/docview.wss?uid=swg27042869&aid=1
from docplex.mp.model import Model
import sys
sys.path.insert(0,’/Applications/CPLEX_Studio128/cplex/Python/3.6/x86-64_osx’)
from typing import List

class WagnerWhitinPlannedBackorders:
"""
A Wagner-Whitin problem with planned backorders.

H.M. Wagner and T. Whitin,
"Dynamic version of the economic lot size model,"
Management Science, Vol. 5, pp. 89-96, 1958
"""
def __init__(self, K: float, v: float, h: float, p: float, d: List[float], I0:

float):
"""
Create an instance of a Wagner-Whitin problem.

Arguments:
K {float} -- the fixed ordering cost
v {float} -- the per unit ordering cost
h {float} -- the per unit holding cost
p {float} -- the per unit backorder cost
d {List[float]} -- the demand in each period
I0 {float} -- the initial inventory level

"""

self.K, self.v, self.h, self.p, self.d, self.I0 = K, v, h, p, d, I0

Listing 40 Wagner-Whitin problem
with planned backorders, problem
instance.

deterministic inventory control 65

class WagnerWhitinPlannedBackordersCPLEX(WagnerWhitinPlannedBackorders):
"""
Model and solve the Wagner-Whitin problem as an MILP via CPLEX
"""
def model(self):

model = Model("Wagner Whitin planned backorders")

T, M = len(self.d), sum(self.d)
idx = [t for t in range(0,T)]

Decision variables
self.Q = model.continuous_var_dict(idx, name="Q")
I = model.continuous_var_dict(idx, lb=-M, name="I")
Ip = model.continuous_var_dict(idx, name="I^+")
Im = model.continuous_var_dict(idx, name="I^-")
delta = model.binary_var_dict(idx, name="delta")

Constraints
for t in range(0,T):

model.add_constraint(self.Q[t] <= delta[t]*M) # Eq. 14
model.add_constraint(self.I0 + model.sum(self.Q[k] - self.d[k] for k in

range(0,t+1)) == I[t]) # Eq. 15
model.add_constraint(I[t] == Ip[t]-Im[t]) # Eq. 16
model.add_constraint(self.Q[t] >= 0) # Eq. 17a
model.add_constraint(Ip[t] >= 0) # Eq. 17b
model.add_constraint(Im[t] >= 0) # Eq. 17c

model.minimize(model.sum(delta[t] * self.K + self.Q[t] * self.v + self.h *
Ip[t] + self.p * Im[t] for t in range(0,T))) # Eq. 13

model.print_information()
self.msol = model.solve()
if self.msol:

model.print_solution()
else:

print("Solve status: " + self.msol.get_solve_status() + "\n")

def order_quantities(self) -> List[float]:
"""
Compute optimal Wagner-Whitin order quantities
"""
return [self.msol.get_var_value(self.Q[t]) for t in range(0,len(self.d))]

def optimal_cost(self) -> float:
"""
Compute the cost of an optimal solution to the Wagner-Whitin problem
"""
return self.msol.get_objective_value()

Listing 41 Wagner-Whitin problem
with planned backorders, cplex model.

instance = {"K": 40, "v": 1, "h": 1,
"p": 2, "d":[10,20,30,40], "I0":
0}

p = WagnerWhitinPlannedBackordersCPLEX
(**instance)

p.model()

Listing 42 A Wagner-Whitin with
planned backorders problem instance.

The optimal ordering plan for the instance in Listing 42 is illus-
trated in Fig. 40.

t

It

1 2 3 4

0

Q2 = 60 Q4 = 40

Fig. 40 The optimal ordering plan for
the instance in Fig. 42.

66 inventory analytics

Order quantity capacity constraints in Dynamic Lot Sizing

We consider an extension of the Wagner-Whitin problem setting in
which capacity constraints are imposed on the order quantity in
each period.

Consider a finite planning horizon comprising T periods. De-
mand dt may vary from one period t to another. Inventory can only
be reviewed — an orders issued — at the beginning of each period.
The maximum order quantity in each period is C. Orders are re-
ceived immediately after being placed. There is a fixed cost K as
well as variable cost v for placing an order. There is a proportional
cost h for carrying one unit of inventory from one period to the
next. Finally, all demand must be met on time and the initial inven-
tory is assumed to be equal to I0. This problem can be modelled as
follows.

min ∑
t∈T

δtK + vQt + hIt (23)

Subject to,

Qt ≤ Cδt t = 1, . . . , T (24)

I0 +
t

∑
k=0

(Qk − dk) = It t = 1, . . . , T (25)

Qt, It ≥ 0 t = 1, . . . , T (26)

The Python code implementing this mathematical programming
model is presented in Listing 43 and in Listing 44.

from typing import List

class CapacitatedLotSizing:
"""
A capacitated lot sizing problem under capacity constraints.

M. Florian, J. K. Lenstra, and A. H. G. Rinnooy Kan.
Deterministic production planning: Algorithms and complexity.
Management Science, 26(7): 669-679, July 1980
"""
def __init__(self, K: float, v: float, h: float, d: List[float], I0: float, C:

float):
"""
Create an instance of the capacitated lot sizing problem.

Arguments:
K {float} -- the fixed ordering cost
v {float} -- the per unit ordering cost
h {float} -- the per unit holding cost
d {List[float]} -- the demand in each period
I0 {float} -- the initial inventory level
C {float} -- the order capacity

"""

self.K, self.v, self.h, self.d, self.I0, self.C = K, v, h, d, I0, C

Listing 43 Capacitated stochastic lot
sizing, problem instance.

The optimal ordering plan for the instance in Listing 45 is illus-
trated in Fig. 41.

deterministic inventory control 67

http://ibmdecisionoptimization.github.io/docplex-doc/mp/creating_model.html
http://www-01.ibm.com/support/docview.wss?uid=swg27042869&aid=1
from docplex.mp.model import Model
import sys
sys.path.insert(0,’/Applications/CPLEX_Studio128/cplex/Python/3.6/x86-64_osx’)

class CapacitatedLotSizingCPLEX(CapacitatedLotSizing):
"""
Solves the capacitated lot sizing problem as an MILP.
"""

def __init__(self, K: float, v: float, h: float, d: List[float], I0, C: float):
"""
Create an instance of the capacitated lot sizing problem.

Arguments:
K {float} -- the fixed ordering cost
v {float} -- the per unit ordering cost
h {float} -- the per unit holding cost
d {List[float]} -- the demand in each period
I0 {float} -- the initial inventory level

"""
super().__init__(K, v, h, d, I0, C)
self.model()

def model(self):
"""
Model and solve the capacitated lot sizing problem via CPLEX
"""

model = Model("Capacitated lot sizing")
T = len(self.d)
idx = [t for t in range(0,T)]
self.Q = model.continuous_var_dict(idx, name="Q")
I = model.continuous_var_dict(idx, lb=0, name="I")
delta = model.binary_var_dict(idx, name="delta")

for t in range(0,T):
model.add_constraint(self.Q[t] <= delta[t]*self.C)
model.add_constraint(self.I0 + model.sum(self.Q[k] - self.d[k] for k in

range(0,t+1)) == I[t])
model.add_constraint(self.Q[t] >= 0)
model.add_constraint(I[t] >= 0)

model.minimize(model.sum(delta[t] * self.K + self.Q[t] * self.v + self.h *
I[t] for t in range(0,T)))

model.print_information()
self.msol = model.solve()
if self.msol:

model.print_solution()
else:

print("Solve status: " + self.msol.get_solve_status() + "\n")

def order_quantities(self) -> List[float]:
’’’
Compute optimal capacitated lot sizing order quantities
’’’
return [self.msol.get_var_value(self.Q[t]) for t in range(0,len(self.d))]

def optimal_cost(self) -> float:
’’’
Compute the cost of an optimal solution to the capacitated lot sizing problem
’’’
return self.msol.get_objective_value()

Listing 44 Capacitated lot sizing, cplex
model.

instance = {"K": 40, "v": 1, "h": 1, "d":[10,20,30,40], "I0": 0, "C": 30}
CapacitatedLotSizingCPLEX(**instance)

Listing 45 Capacitated lot sizing
problem instance.

68 inventory analytics

t
1 2 3 4

0

It

10

20

30 C

Fig. 41 The optimal ordering plan for
the instance in Listing 45.

Computational complexity

The capacitated lot sizing problem is known to be NP-hard.21 This 21 Michael Florian, Jan K. Lenstra,
and Alexander H. G. Rinnooy Kan.
Deterministic production planning: Al-
gorithms and complexity. Management
Science, 26(7):669–679, 1980.

means that it is unlikely we will ever find an efficient solution
method to compute optimal replenishment plans. Apart from
the mathematical programming model presented in the previous
section, the problem can also be solved via dynamic programming.

Dynamic programming formulation

Consider the capacitated lot sizing problem,

• T is the number of periods;

• the state s is the initial inventory level in period t; therefore
St , {0, . . . , D}, for t = 1, ..., T, where D = ∑T

t=1 dt;

• the action a is the order quantity in period t; therefore As ,
{0, . . . , C} for any state s;

• the state transition function is simply gt(s, a) , s + a− dt;

• the immediate cost if action a ∈ As is taken in state s ∈ St, is

c(s, a) ,

K + av + h max(s + a− dt, 0) + M max(dt − s + a, 0) a > 0,

h max(s + a− dt, 0) + M max(dt − s + a, 0) otherwise,

where M is a large number;

• the functional equation is

ft(s) = min
a∈As

c(s, a) + ft+1(gt(s, a)) (27)

for which the boundary condition is fT+1(s) , 0 for all s ∈ ST+1.

The goal is to determine ft(s), where s denotes the initial inventory
level in the first period.

We next show how to model and solve the capacitated lot
sizing problem via dynamic programming22 in Python. 22 For more information on dynamic

programming refer to the Appendix.The State class (Listing 46), is used to capture a state of the
system. Note that we implement function __eq__ to ensure to states
can be compared with each other.

https://doi.org/10.11647/OBP.0252.07

deterministic inventory control 69

from typing import List

class State:
"""
The state of the inventory system.
"""

def __init__(self, t: int, I: float):
"""Instantiate a state

Arguments:
t {int} -- the time period
I {float} -- the initial inventory

"""

self.t, self.I = t, I

def __eq__(self, other):
return self.__dict__ == other.__dict__

def __str__(self):
return str(self.t) + " " + str(self.I)

def __hash__(self):
return hash(str(self))

Listing 46 Capacitated lot sizing,
auxiliary classes.

class CapacitatedLotSizingSDP(CapacitatedLotSizing):
"""
Solves the capacitated lot sizing problem as an SDP.
"""

def __init__(self, K: float, v: float, h: float, d: List[float], I0, C: float):
"""
Create an instance of the capacitated lot sizing problem.

Arguments:
K {float} -- the fixed ordering cost
v {float} -- the per unit ordering cost
h {float} -- the per unit holding cost
d {List[float]} -- the demand in each period
I0 {float} -- the initial inventory level

"""
super().__init__(K, v, h, d, I0, C)

initialize instance variables
self.T, min_inv, max_inv, M = len(d), 0, sum(d), 100000

lambdas
self.ag = lambda s: [x for x in range(0, min(max_inv-s.I, self.C+1))] # action

generator
self.st = lambda s, a, d: State(s.t+1, s.I+a-d) # state transition
L = lambda i,a,d : self.h*max(i+a-d, 0) + M*max(d-i-a, 0) # immediate

holding/penalty cost
self.iv = lambda s, a, d: (self.K+v*a if a > 0 else 0) + L(s.I, a, d) #

immediate value function

self.cache_actions = {} # cache with optimal state/action pairs

print("Total cost: " + str(self.f(self.I0)))
print("Order quantities: " + str([Q for Q in self.order_quantities()]))

def _compute_order_quantities(self):
’’’
Compute optimal capacitated lot sizing order quantities
’’’
I = self.I0
for t in range(len(self.d)):

Q = self.q(t, I)
I += Q - self.d[t]
yield Q

def order_quantities(self) -> List[float]:
return [Q for Q in self._compute_order_quantities()]

def optimal_cost(self) -> float:
’’’
Compute the cost of an optimal solution to the capacitated lot sizing problem
’’’
return self.f(self.I0)

Listing 47 Capacitated lot sizing,
stochastic dynamic programming
model (part 1 of 2).

70 inventory analytics

class CapacitatedLotSizingSDP(CapacitatedLotSizing):
"""
Solves the capacitated lot sizing problem as an SDP.
[...continues...]
"""

@memoize
def _f(self, s: State) -> float:

"""
Dynamic programming forward recursion.

Arguments:
s {State} -- the initial state

Returns:
float -- the cost of an optimal policy

"""
#Forward recursion
v = min(# optimal cost

[(self.iv(s, a, self.d[s.t])+ # immediate cost
(self._f(self.st(s, a, self.d[s.t])) if s.t < self.T-1 else 0)) # future

cost
for a in self.ag(s)]) # actions

opt_a = lambda a: (self.iv(s, a, self.d[s.t])+ # optimal cost
(self._f(self.st(s, a, self.d[s.t])) if s.t < self.T-1 else 0)) == v

q = [k for k in filter(opt_a, self.ag(s))] # retrieve best action list
self.cache_actions[str(s)]=q[0] if bool(q) else None # store an action in

dictionary
return v # return expected total cost

def f(self, level: float) -> float:
"""
Recursively solve the capacitated lot sizing problem
for an initial inventory level.

Arguments:
level {float} -- the initial inventory level

Returns:
float -- the cost of an optimal policy

"""

s = State(0,level)
return self._f(s)

def q(self, period: int, level:float) -> float:
"""
Retrieves the optimal order quantity for a given initial inventory level.

Arguments:
period {int} -- the initial period
level {float} -- the initial inventory level

Returns:
float -- the optimal order quantity

"""

s = State(period,level)
if not(str(s) in self.cache_actions):

self._f(s)
return self.cache_actions[str(s)]

Listing 48 Capacitated lot sizing,
stochastic dynamic programming
model (part 2 of 2).

To model this problem, we adopted a trick: it is clear that, since
inventory cannot be negative, given a period t and an initial inven-
tory level, some actions may be infeasible, therefore in general the
space of possible action As may not be equal to {0, . . . , C}. It may
be complex to determine what values a ∈ {0, . . . , C} are feasible
for a given state s. To overcome this difficulty, we allowed poten-
tially infeasible actions, but we associated a very high cost (the
large number M) to infeasible states in the immediate cost function
c(s, a).

deterministic inventory control 71

In dynamic programming, an optimal solution can be obtained
via forward recursion or backward recursion. In Listing 47 and
Listing 48 we present a solution based on forward recursion.

The action generator function, the state transition function, and
the immediate value function are conveniently captured in Python
via lambda expressions. A generic dynamic programming forward
recursion that leverages these lambda expressions is implemented
in function _f; this function is a direct implementation of Eq. 27.

Finally, the memoize class (Listing 49) is a decorator23 used to 23 Wikipedia Contributors. Python
syntax and semantics. Wikipedia, The
Free Encyclopedia. Available at: https:
//en.wikipedia.org/wiki/Python_

syntax_and_semantics#Decorators

tabulate function _f and make sure that, if ft(s) has been already
computed for a given state s, this computation does not happen
twice. This function leverages the __hash__ function of class State

to store and retrieve states stored in the cache.

import functools

class memoize(object):
"""
Memoization utility
"""

def __init__(self, func):
self.func, self.memoized, self.method_cache = func, {}, {}

def __call__(self, *args):
return self.cache_get(self.memoized, args, lambda: self.func(*args))

def __get__(self, obj, objtype):
return self.cache_get(self.method_cache, obj,

lambda: self.__class__(functools.partial(self.func, obj)))

def cache_get(self, cache, key, func):
try:

return cache[key]
except KeyError:

cache[key] = func()
return cache[key]

def reset(self):
self.memoized, self.method_cache = {}, {}

Listing 49 Memoization utility.

A sample instance is presented in Listing 50. The solution to this
instance is of course the same already illustrated in Fig. 41.

instance = {"K": 40, "v": 1, "h": 1, "d":[10,20,30,40], "I0": 0, "C": 30}
CapacitatedLotSizingSDP(**instance)

Listing 50 Capacitated lot sizing,
sample instance.

When the capacity is the same in every period, the problem
has polynomial O(T4) complexity.24

24 Michael Florian and Morton Klein.
Deterministic production planning
with concave costs and capacity
constraints. Management Science, 18(1):
12–20, 1971.

https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators
https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators
https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators

Demand Forecasting

Copyright © 2021 Roberto Rossi, CC BY 4.0
https://doi.org/10.11647/OBP.0252.03

https://doi.org/10.11647/OBP.0252.03

74 inventory analytics

Introduction

In this chapter, we discuss predictive analytics techniques for
demand forecasting in inventory control. The techniques surveyed
in this chapter originate in the realm of time series analysis and
forecasting. We first introduce the notion of time series, then we
survey a portfolio of time series models. We show how to fit these
models to data and how to generate forecasts, confidence, and
prediction bands.

• Time series p. 75

• Stationary demand & the Moving Average method p. 77

• The random walk & the Naïve method p. 81

• The random walk with drift & the Drift method p. 84

• The seasonal random walk & the Seasonal Naïve method
p. 87

• Forecast quality metrics p. 90

• Prediction Intervals p. 93

• Box-Cox transformations p. 98

• Simple Exponential Smoothing p. 99

• Double Exponential Smoothing (Holt’s method) p. 104

• Triple Exponential Smoothing (Holt-Winters’ seasonal
method) p. 106

• Differencing p. 108

• The Autoregressive (AR) model p. 109

• The Moving Average (MA) model p. 111

• The Autoregressive Integrated Moving Average (ARIMA)
model p. 113

• Practical considerations p. 114

Topics

demand forecasting 75

Time series

Definition 4. A time series is a series

{x1, x2, . . .}

of indexed data points.

Examples of time series include: hourly temperatures at a given
day/location, daily closing values of the Dow Jones Industrial
Average, quarterly gas meter readings for a given household, etc.

Example 16. In Table 4 we present a time series: the value at market close
of the Dow Jones index between Mon 3 Aug 2020 and Fri 14 Aug 2020.25 25 https://finance.yahoo.com/

Date Dow Jones

Mon 3 Aug 2020 26664.4
Tue 4 Aug 2020 26828.5
Wed 5 Aug 2020 27201.5
Thu 6 Aug 2020 27387.0
Fri 7 Aug 2020 27433.5
Mon 10 Aug 2020 27791.4
Tue 11 Aug 2020 27686.9
Wed 12 Aug 2020 27976.8
Thu 13 Aug 2020 27896.7
Fri 14 Aug 2020 27931.0

Table 4 Dow Jones Industrial Average
between Mon 3 Aug 2020 and Fri 14

Aug 2020.

Time series analysis aims at extracting statistics and/or other
information from time series data. The process typically starts with
a so-called exploratory analysis, which aims at summarising key
characteristics of time series data, often with visual methods, in
order to formulate and test hypotheses.

Example 17. In Fig. 42 we illustrate the behaviour of the Dow Jones
Industrial Average between Mon 3 Aug 2020 and Fri 14 Aug 2020.

2020-0
8-03

2020-0
8-05

2020-0
8-07

2020-0
8-09

2020-0
8-11

2020-0
8-13

Day

26600

26800

27000

27200

27400

27600

27800

28000
Dow Jones Industrial average

Fig. 42 Line chart of the Dow Jones
Industrial Average between Mon 3

Aug 2020 and Fri 14 Aug 2020; note
that there are no readings during the
weekend, since the stock market is
closed.

Time series forecasting leverages a model, e.g. a stochastic model,
to predict future values based on previously observed values.

A possible approach to time series analysis and forecasting is
to assume the time series is a realisation — i.e. an indexed set of
observed values — of a given stochastic process.26 26 Robert G. Gallager. Stochastic processes.

Cambridge Univ. Pr., 2013.
Definition 5. A stochastic process {Xt} is an indexed set of random
variables, where t ∈ T , and the set T used to index the random variables
is called the index set.

A stationary stochastic process is a stochastic process whose
unconditional joint probability distribution does not change when
shifted in time.

https://finance.yahoo.com/

76 inventory analytics

Definition 6. Let {Xt} be a stochastic process; and Ft,...,n(x) be the joint
cumulative distribution function of {Xt, Xt+1, . . . , Xt+n}, where n > 0.
{Xt} is stationary if Ft,...,n(x) = Ft+τ,...,n+τ(x), for all τ.

Lemma 26. A stochastic process {Xt} in which all Xt are independent and
identically distributed random variables is stationary.

Definition 7 (White noise). A stochastic process is said to be a white
noise if its constituting random variables each have a probability distribu-
tion with zero mean and finite variance, and are mutually independent.

Lemma 27. A white noise is stationary.

Definition 8 (Gaussian noise). A Gaussian noise is a white noise in
which all components follow a normal distribution with zero mean and the
same variance σ2.

Example 18 (Gaussian white noise). In Fig. 43 we illustrate 30
realisations of a standard Gaussian noise, i.e. σ2 = 1.

0 5 10 15 20 25 30
t

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

X t

Standard Gaussian noise Fig. 43 A standard Gaussian noise.

Time series analysis techniques that assume the existence of an
underpinning stochastic process may be divided into parametric
and non-parametric.

Parametric approaches assume that there exists an underlying
stationary stochastic process possessing a certain structure, which
can be described using a small number of parameters; the task is
then to estimate the parameters of the model that describes the
stochastic process.

Non-parametric approaches do not assume that the underpin-
ning stochastic process has any particular structure.

In what follows, we will focus on parametric approaches. Once
a model for the underlying stochastic process has been chosen, one
can carry out forecasting and predict the future behaviour of the
underlying stochastic process.

demand forecasting 77

Four simple forecasting methods

Behind a forecasting method there is often an underpinning work-
ing hypothesis that justifies it, and that motivates an underlying
stochastic model. In this section, we will focus on four simple
forecasting methods and on their underlying stochastic models.27 27 The four methods are: the Moving

Average method; the Naïve method;
the Drift method; and the Seasonal
Naïve method. It is often the case
that one of these simple methods
may be the best forecasting method
available for a given application;
alternatively, these methods may be
used as benchmarks.

Stationary demand & the Moving Average method

The working hypothesis here is that: “tomorrow will be roughly the
same as today.” This hypothesis leads to a (stationary) stochastic
process {Xt} in which all Xt are independent and identically dis-
tributed random variables. Moreover, it is customary to assume
forecast errors are normally distributed, therefore we will consider
a Gaussian process as the underpinning stochastic process. To char-
acterise this stochastic process, we must therefore know, or estimate,
the distribution of Xt, that is its mean µ and standard deviation
σ. In Listing 51 we show how to sample a Gaussian process with
given mean µ and standard deviation σ in Python.

def sample_gaussian_process(mu, sigma,
realisations):

np.random.seed(1234)
return np.random.normal(mu, sigma,

realisations)

Listing 51 Sampling a Gaussian
process in Python.

Moving Average. This method predicts that

X̂t+k , (xt−w+1 + . . . + xt)/t

for all k = 1, 2, . . .; where X̂t+k ≈ µ. In essence, the mean µ of all
future random variables is assumed to be equal to the average of
all historical realisations (Average method), or to the average of
the past w realisations (Moving Average method). The following
imports will be used throughout this section.

import math, statistics, scipy.stats as stats, statsmodels.api as sm
import numpy as np, pandas as pd
import matplotlib.pyplot as plt, pylab as py

We implement the Moving Average method in Python as follows.

def moving_average(series, w, t):
"""Forecasts elements t+1, t+2, ... of series
"""
forecasts = np.empty(t+1)
forecasts.fill(np.nan)
for k in range(1,len(series)-t):

forecasts = np.append(forecasts, series[t+1-w:t+1].mean())
return forecasts

def plot(realisations, forecasts,
window):

f = plt.figure(1)
plt.title("Moving Average

forecasts\n window size =
{}".format(window))

plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(forecasts, "g",
label="Moving Average
forecasts (\widehat{X}_t)")

plt.plot(realisations,
label="Actual values (x_t)")

plt.legend(loc="upper left")
plt.grid(True)
f.show()

Listing 52 Plotting Moving Average
forecasts in Python.

Example 19. Consider a stochastic process {Xt} where, for all t, random
variable Xt is normally distributed with mean µ = 20 and standard
deviation σ = 5; we sample 200 realisations from {Xt} and compute
forecasts for the last 40 periods by using the Moving Average method
with a window of size w = 32 (Fig. 44); Listing 52 illustrates the plot
function.

N, t, window = 200, 160, 32
realisations = pd.Series(sample_gaussian_process(20, 5, N), range(N))
forecasts = moving_average(realisations, window, t)
plot(realisations, forecasts, window)
py.show()

78 inventory analytics

Fig. 44 Forecasts for the last 40

periods by using the Moving Average
method with a window of size w = 32;
the underpinning stochastic process
is a a Gaussian process with mean
µ = 20 and standard deviation σ = 5.

Residuals Analysis. Recall that x1, x2, . . . , xT are the realisations
of X1, X2, . . . , XT . Consider realisations x1, x2, . . . , xt, and the one-
step forecast X̂t+1 given all previous realisations x1, x2, . . . , xt. For
the Moving Average method, the list of all one-step forecasts for
periods 1, . . . , T is computed as follows.

def moving_average_rolling(series, w):
return series.rolling(window=w).mean()

The residual et+1 = xt+1 − X̂t+1 represents the difference between
realisation xt+1 and its one-step forecast X̂t+1 based on all previ-
ous realisations x1, x2, . . . , xt. Residuals are what is left over after
fitting a time series model. Given the list of all one-step forecasts,
residuals can be computed as follows.

def residuals(realisations, forecasts):
return realisations - forecasts

Residuals reveal if a model has adequately captured the informa-
tion in the data. Let e = {e1, . . . , eT} be the residuals; a standard-
ized residual can be computed by dividing the residual by the
sample standard deviation of population e.

def standardised_residuals(realisations, forecasts):
residuals = realisations - forecasts
return (residuals) / statistics.stdev(residuals)

A good forecasting method will yield standardized residuals that have zero
mean and are uncorrelated; ideally, residuals must approximate as
closely as possible a standard Gaussian noise with constant vari-
ance (homoskedastic) over time periods. The following functions
can be used for an exploratory analysis of residuals.

def residuals_plot(residuals):
f = plt.figure(2)
plt.xlabel(’Period (t)’)
plt.ylabel(’Residual’)
plt.plot(residuals, "g", label="Residuals")
plt.grid(True)
f.show()

demand forecasting 79

def residuals_histogram(residuals):
f = plt.figure(3)
plt.xlabel(’Residual’)
plt.ylabel(’Frequency’)
num_bins = 30
plt.hist(residuals, num_bins, facecolor=’blue’, alpha=0.5, density=True)
x = np.linspace(-3, 3, 100)
plt.plot(x, stats.norm.pdf(x, 0, 1))
f.show()

def residuals_autocorrelation(residuals, window):
f = plt.figure(4)
plt.xlabel(’Time lag’)
plt.ylabel(’Autocorrelation’)
plt.acorr(residuals, maxlags=window) # autocorrelation of the residuals
f.show()

The following code can be used to carry out a residuals analysis
in Python for the Moving Average method.

N, window = 200, 32
realisations = pd.Series(sample_gaussian_process(20, 5, N), range(N))
forecasts = moving_average_rolling(realisations, window)
residuals = residuals(realisations[window:], forecasts[window:])
print("E[e_t] = "+str(statistics.mean(residuals)))
standardised_residuals = standardised_residuals(realisations[window:],

forecasts[window:])
residuals_plot(residuals)
residuals_histogram(standardised_residuals)
residuals_autocorrelation(residuals, None)
sm.qqplot(standardised_residuals, line =’45’)
py.show()

Residuals have mean −0.14, which is close to zero (Fig. 45).

25 50 75 100 125 150 175 200
Period (t)

−15

−10

−5

0

5

10

Re
sid

ua
l

Fig. 45 Residual analysis for the
Moving Average method: residuals.

The histogram in Fig. 46 suggests that residuals are approxi-
mately Gaussian. Fig. 47 reveals absence of residuals autocorre-
lation. Finally, the Q-Q plot (Fig. 48) appears to further support
normality of residuals. These results suggests that the model has
adequately captured the information in the data.

Besides analysing these property visually, one would generally
also carry out statistical tests to test significance of these hypothesis.
We direct the reader to the broader literature for more details.28

28 Rob J. Hyndman and George Athana-
sopoulos. Forecasting: Principles and
practice. OTexts, 2020.

80 inventory analytics

Fig. 46 Residual analysis for the
Moving Average method: histogram.

−150 −100 −50 0 50 100 150
Time lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co

rre
la
tio

n

Fig. 47 Residual analysis for the Mov-
ing Average method: autocorrelation
plot.

−3 −2 −1 0 1 2
Theoretical Quantiles

−3

−2

−1

0

1

2

Sa
m
pl
e
Qu

an
til
es

Fig. 48 Residual analysis for the
Moving Average method: Q-Q plot.

demand forecasting 81

Naïve method

The stochastic process of interest here is a random walk.

Definition 9. A random walk is a stochastic process {Xt} in which

Xt = Xt−1 + εt,

where stochastic process {εt} is a white noise.

Random walk models are widely used for non-stationary data,
particularly financial and economic data. They are often used when
the change (i.e. difference) between consecutive observations in
a given series appears to be a white noise: xt − xt−1 = εt. Key
characteristics of random walks are long periods of apparent trends
up or down, paired with sudden and unpredictable changes in
direction. Since future movements are unpredictable, and are
equally likely to be up or down, the best forecast available is the
last observation; this motivates the following forecasting method. In
Listing 53 we show how to sample a random walk in Python.

def sample_random_walk(X0,
realisations):

np.random.seed(1234)
errors = np.random.normal(0, 1,

realisations)
Xt = X0
for e in errors:

Xt = Xt + e
yield Xt

Listing 53 Sampling a random walk in
Python.

Naïve method. The Naïve method, predicts that

X̂t+k , xt.

for all k = 1, 2, . . .; in essence, the expected value of all future
random variables is assumed to be equal to the value of the last
observation. We next implement the Naïve method in Python.

def naive(series, t):
"""Forecasts periods t+1, t+2, ... of series
"""
forecasts = np.empty(len(series))
forecasts[:t+1] = np.nan
forecasts[t+1:] = series[t]
return forecasts

Fig. 49 Naïve method forecasts for the
last 40 periods of a random walk with
standard Gaussian noise.

Example 20. Let {Xt} be a random walk with standard Gaussian noise
{εt}; by leveraging the following code, we sample 200 realisations from
this process and compute the Naïve forecasts for the last 40 periods (Fig.
49). Listing 54 illustrates the plot function.

82 inventory analytics

N, t, window = 200, 160, 1
realisations = pd.Series(list(sample_random_walk(0, N)), range(N))
forecasts = naive(realisations, t)
plot(realisations, forecasts)
py.show()

def plot(realisations, forecasts):
f = plt.figure(1)
plt.title("Naive method")
plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(forecasts, "r",
label="Naive forecasts
(\widehat{X}_t)")

plt.plot(realisations, "b",
label="Actual values (x_t)")

plt.legend(loc="upper left")
plt.grid(True)
f.show()

Listing 54 Plotting Naïve forecasts
in Python for a random walk with
standard Gaussian noise.

Naïve method one-step forecasts can be computed as follows.

def naive_rolling(series):
return series.shift(periods=1)

By leveraging these forecasts, we carry out residuals analysis.

N, window = 200, 1
realisations = pd.Series(list(sample_random_walk(0, N)), range(N))
forecasts = naive_rolling(realisations)
residuals = residuals(realisations[window:], forecasts[window:])
print("E[e_t] = "+str(statistics.mean(residuals)))
standardised_residuals = standardised_residuals(realisations[window:],

forecasts[window:])
residuals_plot(residuals)
residuals_histogram(standardised_residuals)
residuals_autocorrelation(residuals, None)
sm.qqplot(standardised_residuals, line =’45’)
py.show()

Residuals have mean −0.009, which is close to zero (Fig. 50).

0 25 50 75 100 125 150 175 200
Period (t)

−3

−2

−1

0

1

2

Re
sid

ua
l

Fig. 50 Residual analysis for the Naïve
method: residuals.

The histogram in Fig. 51 suggests that residuals are approxi-
mately Gaussian. Fig. 52 reveals absence of residuals autocorre-
lation. Finally, the Q-Q plot (Fig. 53) appears to further support
normality of residuals.

demand forecasting 83

Fig. 51 Residual analysis for the Naïve
method: histogram.

−200 −150 −100 −50 0 50 100 150 200
Time lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co

rre
la
tio

n

Fig. 52 Residual analysis for the Naïve
method: autocorrelation plot.

−3 −2 −1 0 1 2
Theoretical Quantiles

−3

−2

−1

0

1

2

Sa
m
pl
e
Qu

an
til
es

Fig. 53 Residual analysis for the Naïve
method: Q-Q plot.

84 inventory analytics

Drift method

A model closely related to the random walk allows the differences
between consecutive observations to have a non-zero mean.

Definition 10. A random walk with drift is a stochastic process {Xt} such
that

Xt = c + Xt−1 + εt,

where stochastic process {εt} is a white noise, and c is the drift.

The “drift” represents the average change between consecutive
observations, that is

E[xt − xt−1] ≈ c + E[εt],

where E[εt] = 0, since {εt} is a white noise. If c is positive, {Xt}
will drift upwards; if c is negative, {Xt} will drift downwards. In
Listing 55 we sample a random walk with drift in Python.

def sample_random_walk(X0, c,
realisations):

np.random.seed(1234)
errors = np.random.normal(0, 1,

realisations)
Xt = X0
for e in errors:

Xt = c + Xt + e
yield Xt

Listing 55 Sampling a random walk
with drift in Python.

Drift method. The Drift method, predicts that

X̂t+k , xt + k/(t− 1)
t

∑
i=2

(xi − xi−1) = xt + k(xt − x1)/(t− 1)

for all k = 1, 2, . . .; this variant of the Naïve method allows the
forecasts to increase or decrease over time, where the amount of
change over time (the drift) is set to be the average change seen in
the historical data. In essence, this is equivalent to drawing a line
between the first and last observations, and extrapolating it into the
future. The Drift method can be implemented in Python as follows.

def drift(series, t):
"""Forecasts periods t+1, t+2, ... of series
"""
forecasts = np.empty(t+1)
forecasts.fill(np.nan)
x1 = series[0]
xt = series[t]
for k in range(1,len(series)-t):

xtk = xt+k*(xt-x1)/t
forecasts = np.append(forecasts, xtk)

return forecasts

def plot(realisations, forecasts):
f = plt.figure(1)
plt.title("Drift method")
plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(forecasts, "r",
label="Drift forecasts
(\widehat{X}_t)")

plt.plot(realisations, "b",
label="Actual values (x_t)")

plt.legend(loc="upper left")
plt.grid(True)
f.show()

Listing 56 Plotting Drift forecasts
in Python for a random walk with
standard Gaussian noise and drift.

Example 21. Let {Xt} be a random walk with drift c = 0.1 and standard
Gaussian noise {εt}; by leveraging the following code, we sample 200
realisations from this process and compute Drift forecasts for the last 40
periods (Fig. 54). Listing 56 illustrates the plot function.

N, t, window = 200, 160, 2
realisations = pd.Series(list(sample_random_walk(0, 0.1, N)), range(N))
forecasts = drift(realisations, t)
plot(realisations, forecasts)

Drift method one-step forecasts can be computed as follows.

def drift_rolling(series):
forecasts = np.empty(2)
forecasts.fill(np.nan)
for k in range(2,len(series)):

xk = drift(series[:k+1], k-1)[-1]
forecasts = np.append(forecasts, xk)

return forecasts

demand forecasting 85

Fig. 54 Drift forecasts in Python for a
random walk with standard Gaussian
noise and drift c = 0.1.

By leveraging these forecasts, we carry out residuals analysis.

N, window = 200, 2
realisations = pd.Series(list(sample_random_walk(0, 0.1, N)), range(N))
forecasts = pd.Series(list(drift_rolling(realisations)), range(N))
residuals = residuals(realisations[window:], forecasts[window:])
print("E[e_t] = "+str(statistics.mean(residuals)))
standardised_residuals = standardised_residuals(realisations[window:],

forecasts[window:])
residuals_plot(residuals)
residuals_histogram(standardised_residuals)
residuals_autocorrelation(residuals, None)
sm.qqplot(standardised_residuals, line =’45’)
py.show()

Residuals have mean −0.02, which is close to zero (Fig. 55).

0 25 50 75 100 125 150 175 200
Period (t)

−3

−2

−1

0

1

2

Re
sid

ua
l

Fig. 55 Residual analysis for the Drift
method: residuals.

The histogram in Fig. 56 suggests that residuals are approxi-
mately Gaussian. Fig. 57 reveals absence of residuals autocorre-
lation. Finally, the Q-Q plot (Fig. 58) appears to further support
normality of residuals.

86 inventory analytics

Fig. 56 Residual analysis for the Drift
method: histogram.

−200 −150 −100 −50 0 50 100 150 200
Time lag

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co

rre
la
tio

n

Fig. 57 Residual analysis for the Drift
method: autocorrelation plot.

−3 −2 −1 0 1 2
Theoretical Quantiles

−3

−2

−1

0

1

2

Sa
m
pl
e
Qu

an
til
es

Fig. 58 Residual analysis for the Drift
method: Q-Q plot.

demand forecasting 87

Seasonal Naïve method

A seasonal difference is the difference between an observation and
the previous observation from the same season, e.g. sales in Novem-
ber 2019 and sales in November 2020. A model closely related to
the random walk considers the case in which seasonal differences
in a given series appear to be a white noise. The stochastic process
of interest is then a seasonal random walk.

Definition 11. A seasonal random walk is a stochastic process {Xt} in
which

Xt = Xt−m + εt,

where m is the number of seasons, and {εt} is a white noise.

The differences xt − xt−m = εt are called “lag-m differences.”
Since stochastic process {εt} is a white noise, it follows that the
average lag-m difference is assumed to be zero, that is

E[xt − xt−m] ≈ E[εt] = 0.

In Listing 57 we show how to sample a seasonal random walk in
Python.

def sample_seasonal_random_walk(
realisations, m):

np.random.seed(1234)
errors = np.random.normal(0, 1,

realisations)
Xt = errors[:m]
for t in range(m,realisations):

Xt = np.append(Xt, Xt[t-m] +
errors[t])

return Xt

Listing 57 Sampling a seasonal
random walk in Python.

Seasonal Naïve method. The Seasonal Naïve method, predicts
that

X̂t+k , xt+k−m(b(k−1)/mc+1)

for all k = 1, 2, . . .; where m is the interval in periods between two
“seasons,” and bxc rounds x down to the closest integer; for in-
stance, assuming monthly data, the forecast for all future February
values is equal to the last observed February value. This variant of
the Naïve method allows seasonalities to be taken into account. The
Seasonal Naïve method can be implemented in Python as follows.

def seasonal_naive(series, m, t):
"""Forecasts periods t+1, t+2, ... of series
"""
forecasts = np.empty(len(series))
forecasts[:t+1] = np.nan
for k in range(t+1,len(series)):

forecasts[k] = series[k-m*((k-t-1)//m+1)]
return forecasts

def plot(realisations, forecasts):
f = plt.figure(1)
plt.title("Seasonal naive method")
plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(forecasts, "r",
label="Seasonal naive
forecasts (\widehat{X}_t)")

plt.plot(realisations, "b",
label="Actual values (x_t)")

plt.legend(loc="upper left")
plt.grid(True)
f.show()

Listing 58 Plotting Seasonal Naïve
forecasts in Python for a seasonal
random walk with standard Gaussian
noise and m = 5 seasons.

Example 22. Consider a stochastic process {Xt} that is a seasonal random
walk with m = 5 seasons and standard Gaussian noise {εt}; by leveraging
the following code, we sample 100 realisations from this process and
compute the Seasonal Naïve forecasts for the last 20 periods. (Fig. 59).
Listing 58 illustrates the plot function.

N, t, m = 100, 80, 5
realisations = pd.Series(list(sample_seasonal_random_walk(N, m)), range(N))
forecasts = seasonal_naive(realisations, m, t)
plot(realisations, forecasts)
py.show()

Seasonal Naïve method one-step forecasts can be computed as
follows.

88 inventory analytics

Fig. 59 Seasonal Naïve forecasts in
Python for a seasonal random walk
with standard Gaussian noise and
m = 5 seasons.

def seasonal_naive_rolling(series, m):
forecasts = np.empty(m)
forecasts.fill(np.nan)
for k in range(m,len(series)):

xk = seasonal_naive(series[:k+1], m, k-1)[-1]
forecasts = np.append(forecasts, xk)

return forecasts

By leveraging these forecasts, we carry out residuals analysis.

N, m = 100, 5
realisations = pd.Series(list(sample_seasonal_random_walk(N, m)), range(N))
forecasts = pd.Series(list(seasonal_naive_rolling(realisations, m)), range(N))
residuals = residuals(realisations[m:], forecasts[m:])
print("E[e_t] = "+str(statistics.mean(residuals)))
standardised_residuals = standardised_residuals(realisations[m:], forecasts[m:])
residuals_plot(residuals)
residuals_histogram(standardised_residuals)
residuals_autocorrelation(residuals, None)
sm.qqplot(standardised_residuals, line =’45’)
py.show()

Residuals have mean 0.04, which is close to zero (Fig. 60).

20 40 60 80 100
Period (t)

−3

−2

−1

0

1

2

Re
sid

ua
l

Fig. 60 Residual analysis for the
Seasonal Naïve method: residuals.

The histogram in Fig. 61 suggests that residuals are approxi-
mately Gaussian. Fig. 62 reveals absence of residuals autocorre-
lation. Finally, the Q-Q plot (Fig. 63) appears to further support
normality of residuals.

demand forecasting 89

Fig. 61 Residual analysis for the
Seasonal Naïve method: histogram.

−100 −75 −50 −25 0 25 50 75 100
Time lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co

rre
la
tio

n

Fig. 62 Residual analysis for the Sea-
sonal Naïve method: autocorrelation
plot.

−3 −2 −1 0 1 2
Theoretical Quantiles

−3

−2

−1

0

1

2

Sa
m
pl
e
Qu

an
til
es

Fig. 63 Residual analysis for the
Seasonal Naïve method: Q-Q plot.

90 inventory analytics

Evaluating forecasting accuracy

Residuals are important to gauge the suitability of a fitted model,
but they are not a reliable indication of how large true forecast
errors are likely to be. The accuracy of forecasts can only be de-
termined by considering how a model performs on new data that
were not used when fitting the model.

Training vs testing

In forecasting, it is common practice to separate available data into
training and test data. Training data are used to fit the forecasting
model, while test data are used to evaluate the accuracy of the
fitted model. Since test data are not used to fit the model, they
can be used to assess how well the model may perform while
forecasting new data.

A commonly adopted rule to separate training and test data
is the 80/20 rule: 80% of the available sample will be devote to
fitting the model, while the remaining 20% will be used to estimate
forecast error (Fig. 65).

Fig. 64 Separating the available data
into training and test data.

Forecast quality metrics

A forecast “error” is the difference between an observed value and
its forecast. A forecast error does not denote a mistake; instead, it
represents the random component of an observation.

Definition 12. A forecast error is computed as

êt+k , xt+k − X̂t+k,

where {x1, . . . , xt} is the training set and {xt+1, xt+2 . . .} is the test set.

Forecast errors are different from residuals. First, residuals are
calculated on the training set, while forecast errors are calculated
on the test set. Second, residuals are based on one-step forecasts,
while forecast errors can involve multi-step forecasts.

demand forecasting 91

We can measure forecasting accuracy by summarising forecast
errors in different ways as shown in Table 5.

Mean Absolute Error E[|et|] sklearn.metrics.mean_absolute_error

Mean Squared Error E[e2
t] sklearn.metrics.mean_squared_error

Root Mean Squared Error
√

E[e2
t] sqrt(mean_squared_error)

Mean Absolute Percentage Error 100 E[|et|/xt] mean_absolute_percentage_error

Table 5 Forecast accuracy metrics.

E[x] denotes the expected value of x, and the function to compute
the Mean Absolute Percentage Error is defined as follows.

def mean_absolute_percentage_error(y_true, y_pred):
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100}

Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE) are scale-dependent error mea-
sures. These measures cannot be used to make comparisons be-
tween series that involve different units, since forecast errors are
on the same scale as the data. MAE is popular as it is easy to both
understand and compute. A forecast method that minimises the
MAE will lead to forecasts of the median, while minimising the
RMSE will lead to forecasts of the mean. Consequently, the RMSE is
also widely used, despite being more difficult to interpret.

Mean Absolute Percentage Error (MAPE) is a percentage error
measure; it has the advantage of being unit-free, and is frequently
used to compare forecast performances between data sets. Unfortu-
nately, measures based on percentage errors have the disadvantage
of being infinite or undefined if the realised value of the series is
zero; and having extreme values if any realisation is close to zero.
Moreover, it assumes the unit of measurement has a meaningful
zero, and thus would not make sense if, say, we are measuring tem-
perature in Fahrenheit or Celsius, because the position of the zero is
arbitrary on these scales.

Fig. 65 All forecasting methods
surveyed so far applied to a seasonal
random walk with standard Gaussian
noise and m = 5.

92 inventory analytics

Example 23. Consider a stochastic process {Xt} that is a seasonal random
walk with m = 5 seasons and standard Gaussian noise {εt}; we sample
100 realisations from this process and compute forecasts for the last 20
periods using all methods surveyed so far: Moving Average, Naïve, Drift,
and Seasonal Naïve (Fig. 65). In Table 6 we report forecast accuracy
metrics for all methods surveyed so far. These have been computed by
using the following Python code.

training on 0..t
testing on t+1,...N

N, t, window, m, test_window = 100, 80, 5, 5, [81,100]
realisations = pd.Series(list(sample_seasonal_random_walk(N, m)), range(N))
sma_forecasts = moving_average(realisations, window, t)
naive_forecasts = naive(realisations, t)
drift_forecasts = drift(realisations, t)
seasonal_naive_forecasts = seasonal_naive(realisations, m, t)

methods = {
"Moving Average": sma_forecasts,
"Naive": naive_forecasts,
"Drift": drift_forecasts,
"Seasonal naive": seasonal_naive_forecasts}

print("MAE")
for k in methods:

print(k,end=’:\t’)
print(mean_absolute_error(realisations[t+1:],methods[k][t+1:]))

print("\nMSE")
for k in methods:

print(k,end=’:\t’)
print(mean_squared_error(realisations[t+1:],methods[k][t+1:]))

print("\nRMSE")
for k in methods:

print(k,end=’:\t’)
print(math.sqrt(mean_squared_error(realisations[t+1:],methods[k][t+1:])))

print("\nMAPE")
for k in methods:

print(k,end=’:\t’)
print(mean_absolute_percentage_error(realisations[t+1:],methods[k][t+1:]))

The Seasonal Naïve forecasting method is known to be the
optimal forecasting strategy for a seasonal random walk. MAE,
MSE, and RMSE reflect this; in fact, they return the lowest scores
for this method. However, MAPE scores are odd: not only they
are large, but they seem to suggest that a Naïve method is the
best performing forecasting strategy. This is due to the fact that
several realisations for the underpinning stochastic process are
close to zero; therefore, as previously mentioned, an MAPE will
return extreme values, which in this instance are unreliable. We
also know that there is no drift in the underpinning time series, and
in fact the Naïve method outperforms the Drift method according
to MAE, MSE, and RMSE. Performance of Moving Average and
Naïve method is mixed, and there is no clear winner.

MAE MSE RMSE MAPE

Moving Average 1.77 4.47 2.11 190

Naïve 1.75 6.58 2.56 109

Drift 1.79 7.00 2.64 119

Seasonal Naïve 1.52 3.63 1.90 236

Table 6 Forecast accuracy metrics for
different forecasting methods applied
to a seasonal random walk with m = 5
seasons and standard Gaussian noise.

demand forecasting 93

Prediction Intervals

Consider a time series {x1, x2, . . .}, and assume that this time series
has been generated by an underpinning stochastic process {Xt}.
Recall that the so-called Average method operates under the as-
sumption that random variables Xt are independent and identically
distributed. In other words, it is assumed that the mean µ of all fu-
ture random variables is equal to the mean of the random variables
from which historical realisations have been drawn.

A first question one may want to address is to estimate the value
of µ on the basis of past realisations. This question can be answered
via confidence interval analysis. Confidence intervals

Let {x1, x2, . . . , xn} be a set of n independent realisations drawn
from a random variable X with mean µ and variance σ2, both of
which are assumed to be unknown. Let

µ̄ = (x1 + x2 + . . . + xn)/n

be the sample mean, and

σ̄2 = n(n− 1)−1
√
(x2

1 + x2
2 + . . . + x2

n)/n− µ̄2

be the sample variance, where term n(n− 1)−1 is Bessel’s correc-
tion,29 which is necessary to obtain an unbiased estimate of the 29 Douglas C. Montgomery and

George C. Runger. Applied statistics and
probability for engineers. John Wiley and
Sons, 2014.

population variance from a finite sample of n observations.

Definition 13. The α confidence interval of the mean µ of X is

I(α) , (µ̄− zσ̄/
√

n, µ̄ + zσ̄/
√

n)

where z is the 1− (1− α)/2 quantile of the inverse t distribution with
n− 1 degrees of freedom.

Lemma 28. With confidence probability α, the α confidence interval of the
mean will cover the mean µ.

We next show a simple Python code to illustrate the concept of
confidence interval coverage (Fig. 66). 0 20 40 60 80 100

Replication

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(α)

Fig. 66 Estimation of the mean µ.
Confidence intervals (α = 0.95) have
been computed for 100 replications
of n = 30 realisations drawn from a
standard normal random variable. In
4 instances out of 100 (approx. 95%),
the interval did not cover the true
mean value µ = 0; these instances are
marked in red.

import math
import numpy as np
from scipy.stats import t
import statistics as s
import matplotlib.pyplot as plt

np.random.seed(1234)
replications = 100
n = 30
x = range(replications)
y = np.random.normal(0, 1, size=(replications, n)) # realisations
alpha = 0.95 # confidence level
z = t.ppf(1-(1-alpha)/2, n-1) # inverse t distribution
y_mean = [s.mean(y[r]) for r in range(replications)]
e = [z*s.stdev(y[r])/math.sqrt(n) for r in range(replications)]
ec = [’red’ if (y_mean[r]+z*s.stdev(y[r])/math.sqrt(n) < 0 or

y_mean[r]-z*s.stdev(y[r])/math.sqrt(n) > 0)
else ’black’ for r in range(replications)]

plt.errorbar(x, y_mean, yerr=e, ecolor=ec, fmt=’none’)
plt.grid(True)
plt.show()

94 inventory analytics

Whilst it is interesting to estimate the value of µ for a stationary
stochastic process, in forecasting what we would really like to know
is, given a set of past observations, the interval within which we
expect the next observation(s) to lie with a specified probability.
This interval is called the prediction interval. In particular, we talk Prediction intervals

about one-step prediction intervals, if we are forecasting one step
ahead; and of multi-step prediction intervals, if we are forecasting
multiple periods ahead.

Let us consider a stochastic process {Xt} such that, for all t, Xt

are independent and identically distributed (iid) normal random
variables with known mean µ and standard deviation σ.

Definition 14. The α prediction interval of a future realisation xn+1 of
random variable Xn+1 is

(µ− zσ, µ + zσ)

where z is the 1 − (1 − α)/2 quantile of an inverse standard normal
distribution.

Lemma 29. With probability α, a future realisation xn+1 of random
variable Xn+1 falls within this interval.

0 20 40 60 80 100
t

6

8

10

12

14

Xt

Fig. 67 Prediction intervals (α = 0.95)
of a gaussian stochastic process {Xt},
where, for all t, Xt is a normal random
variable with µ = 10 and σ = 2. In 5

instances out of 100 (95%), a realisation
did not fall within the prediction
interval; these instances are marked in
red.

We next show a simple Python code to illustrate the concept of
prediction interval coverage (Fig. 67).

from matplotlib import colors
import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt

np.random.seed(4321)
replications = 100
x = range(replications)
mu, sigma = 10, 2
y = np.random.normal(mu, sigma, replications) # realisations
alpha = 0.95 # confidence level
z = norm.ppf(1-(1-alpha)/2) # inverse standard normal distribution
plt.plot(x,[mu-z*sigma for k in x], color=’blue’, linestyle=’dashed’)
plt.plot(x,[mu+z*sigma for k in x], color=’blue’, linestyle=’dashed’)
ec = [’red’ if y[r]>mu+z*sigma or y[r]<mu-z*sigma

else ’blue’ for r in range(replications)]
plt.scatter(x,y,color=ec)
plt.grid(True)
plt.show()

It is worth observing that the α prediction interval of a future
realisation xt of random variable Xt is independent of t.30 30 Note that for some forecasting

methods, this will not necessarily be
the case.

Let us now assume that we are given {x1, x2, . . . , xn} realisations,
and that our aim is to compute the α prediction interval for a future
observation Xn+1 of stochastic process {Xt}. However, now µ and
σ are unknown and must be estimated from past realisations. A
possible heuristic may be to replace the unknown mean µ and stan-
dard deviation σ with the sample mean µ̄ and sample variance σ̄,
respectively; and then apply the approach just outlined. However,
the resulting intervals will not be prediction intervals, since future
realisations will not be guaranteed to fall in it according to the pre-
scribed probability α. We shall next see how to obtain prediction
intervals when mean µ and standard deviation σ are unknown.

demand forecasting 95

We shall begin by considering the case in which the mean µ is Unknown µ, known σ = 1

unknown and the standard deviation σ is known and equal to 1.

Lemma 30. Consider stochastic process {Xt} with unknown µ and σ = 1;
the α prediction interval of a future realisation xn+1 of random variable
Xn+1 given realisations {x1, x2, . . . , xn}

(µ̄− z
√

1 + 1/n, µ̄ + z
√

1 + 1/n)

where z is the 1 − (1 − α)/2 quantile of an inverse standard normal
distribution.

Proof. Observe that the sample mean µ̄ is normally distributed with
mean µ and standard deviation σ =

√
1/n, while the future ob-

servation Xn+1 is normally distributed with mean µ and standard
deviation 1. Then Xn+1 − µ̄ is normally distributed with mean 0 and
standard deviation σ =

√
1 + 1/n. The prediction distribution for

Xn+1 is therefore a normal distribution with mean µ̄ and standard
deviation σ =

√
1 + 1/n.

Next, we consider the case in which the mean µ is known and Known µ = 0, unknown σ

equal to zero, and the standard deviation σ is unknown.

Lemma 31. Consider stochastic process {Xn} with µ = 0 and unknown
σ; the α prediction interval of a future realisation xn+1 of random variable
Xn+1 given realisations {x1, x2, . . . , xn}

(−zs, zs)

where z is the 1− (1− α)/2 quantile of the inverse t distribution with
n− 1 degrees of freedom.

Proof. The sample variance s2 of {x1, x2, . . . , xn}, scaled by factor
(n− 1)/σ2, follows a χ2 distribution with n− 1 degrees of freedom,
while the future observation Xn+1 is normally distributed with
mean µ = 0 and variance σ2. If we take the ratio Xn+1/s, the two
terms σ cancel out, and what remains is known to follow a Stu-
dent’s t-distribution with n− 1 degrees of freedom. The prediction
distribution for Xn+1/s is therefore a Student’s t-distribution with
n− 1 degrees of freedom.

Finally, we consider the case in which both the mean µ and the Unknown µ, unknown σ

standard deviation σ are unknown.

Lemma 32. Consider stochastic process {Xt} with unknown µ and
unknown σ; the α prediction interval of a future realisation xn+1 of
random variable Xn+1 given realisations {x1, x2, . . . , xn}

(µ̄− zs
√

1 + 1/n, µ̄ + zs
√

1 + 1/n)

where z is the 1− (1− α)/2 quantile of the inverse t distribution with
n− 1 degrees of freedom.

Proof. The result follows by combining the two previous results
for unknown µ, known σ = 1; and known µ = 0, unknown σ.
This combination is possible because the sample mean and sample
variance of the normal distribution are independent statistics.

96 inventory analytics

0 20 40 60 80 100
t

−40

−20

0

20

40

60

Xt

Fig. 68 Prediction intervals (α = 0.95)
of a gaussian stochastic process {Xt},
where, for all t, Xt is a normal random
variable with unknown µ and σ. In
4 instances out of 100 (approx. 95%),
a realisation did not fall within the
prediction interval; these instances are
marked in red.

We next show a simple Python code to illustrate prediction
interval coverage for the case in which both the mean µ and the
standard deviation σ are unknown (Fig. 68).

import math
import numpy as np
import statistics as s
from statistics import mean
from scipy.stats import t
import matplotlib.pyplot as plt
from matplotlib import colors

np.random.seed(4321)
replications, mu, sigma = 100, 10, 2
x = range(replications)
y = np.random.normal(mu, sigma, replications) # realisations
alpha = 0.95 # confidence level
z = lambda n: t.ppf(1-(1-alpha)/2, n-1) # inverse t distribution
y_mean = [s.mean(y[0:r+1]) for r in range(replications)]
e = [z(r-1)*s.stdev(y[0:r+1])*math.sqrt(1+1/r)

if r > 2 else 30*sigma for r in range(replications)]
plt.errorbar(x[:-1], y_mean[:-1], yerr=e[:-1], fmt=’none’)
ec = [’red’ if y[1:][r]>y_mean[:-1][r]+e[:-1][r] or

y[1:][r]<y_mean[:-1][r]-e[:-1][r]
else ’blue’ for r in range(replications-1)]

plt.scatter(x[:-1], y[1:], color=ec)
plt.grid(True)
plt.show()

Observe that in Fig. 68 the size of the prediction intervals varies (in
particular, it shrinks) with the number of past realisations that are
available for the estimation.

We have shown how to compute prediction intervals for the case
in which we are forecasting a stationary stochastic process {Xt}
where, for all t, Xt is a normal random variable with unknown
µ and σ. This the stochastic process that underpins the Average
Method. Therefore the prediction intervals presented apply to the
Average method and the Moving Average method. Moreover, in
this specific case, at period t the prediction interval of a future reali-
sation xt+k of random variable Xt+k is independent of k. Therefore
one-step and multi-step prediction intervals coincide.

demand forecasting 97

Similarly to what we have seen for the Average method, it is
possible to derive prediction intervals for the other three bench-
mark methods previously presented: the Naïve method, the Sea-
sonal Naïve method, and the Drift method. Consider realisations
{x1, x2, . . . , xn}, let σ̄ be the residuals standard deviation computed
for a given method, and let σ̄k denote standard deviation of the
k-step forecast distribution. In Table 7 we summarise, for each
method, the expressions of the n-step forecast distribution mean
and standard deviation.

X̂n+k σ̄k

Average (x1 + . . . + xn)/n σ̄
√

1 + 1/n
Naïve xn σ̄

√
k

Seasonal Naïve xt+k−m(b(k−1)/mc+1) σ̄
√
b(k− 1)/mc+ 1

Drift xt + k(xt − x1)/(t− 1) σ̄
√

k(1 + k/n)

Table 7 Expressions of the n-step fore-
cast distribution mean and standard
deviation.

The following code amends function plot previously presented
for the Naïve method to display prediction intervals (Fig. 69).

def plot(realisations, forecasts, stdev, alpha):
f = plt.figure(1)
plt.title("Naive method")
plt.xlabel(’Period (t)’)
first, last = next(x for x, val in enumerate(forecasts) if ~np.isnan(val)),

len(forecasts)-1
plt.axvspan(first, last, alpha=0.2, color=’blue’)
plt.plot(forecasts, "r", label="Naive forecasts (\widehat{X}_t)")
plt.plot(realisations, "b", label="Actual values (x_t)")
z = t.ppf(1-(1-alpha)/2, len(realisations)-1) # inverse t distribution
plt.fill_between(range(first, last+1),

[forecasts[first+k]-z*stdev*math.sqrt(k) for k in range(last-first+1)],
[forecasts[first+k]+z*stdev*math.sqrt(k) for k in range(last-first+1)],
color=’r’, alpha=0.1)

plt.legend(loc="upper left")
plt.grid(True)
f.show()

N, t, window, alpha = 200, 160, 1, 0.95
realisations = pd.Series(list(sample_random_walk(0, N)), range(N))
forecasts = naive(realisations, t)
forecasts_roll = naive_rolling(realisations)
residuals = residuals(realisations[window:], forecasts_roll[window:])
plot(realisations, forecasts, s.stdev(res), alpha)
print("E[e_t] = "+str(s.mean(residuals)))
print("Stdev[e_t] = "+str(s.stdev(residuals)))
plt.show()

Fig. 69 Naïve method forecasts
and prediction intervals for the last
40 periods of a random walk with
standard Gaussian noise.

98 inventory analytics

Box-Cox transformations

If the time series show variation that increases or decreases with the
level of the series, then we can adopt logarithmic transformations or
power transformations to stabilise variation.

A family of transformation that includes both logarithms and
power transformations, is the family of Box-Cox transformations,31 31 George. E. P. Box and David R. Cox.

An analysis of transformations. Journal
of the Royal Statistical Society: Series B
(Methodological), 26(2):211–243, 1964.

which depend upon a parameter λ. Consider a time series y1, y2, . . .;
a Box-Cox transformation is defined as

wt =

log(yt) λ = 0

(yλ
t − 1)/λ otherwise

where wt are the elements of the transformed series.

0 20 40 60 80 100 120 140
Month

100

200

300

400

500

600

Monthly Airline Passenger Numbers 1949-1960, in thousands

Fig. 70 Airline time series.

Example 24. Consider the dataset of Monthly Airline Passenger Num-
bers32 1949-1960, in thousands, obtained via the following Python code

32 San Francisco Open Data portal,
https://data.sfgov.org/.

and shown in Fig. 70.

import statsmodels.api as sm, pandas as pd
import matplotlib.pyplot as plt

airpass = sm.datasets.get_rdataset("AirPassengers", "datasets")
plt.title("Monthly Airline Passenger Numbers 1949-1960, in thousands")
plt.plot(pd.Series(airpass.data["value"]))
plt.show()

We now apply Box-Cox transformation as follows, and let the
algorithm choose the best value of λ.

import scipy.stats as stats

airpass = sm.datasets.get_rdataset("AirPassengers", "datasets")
series, l = stats.boxcox(airpass.data["value"])
print("optimal lambda: "+str(l))
plt.plot(series)
plt.show()

The transformed series is shown in Fig. 71; the optimal value of
lambda chosen by the algorithm is λ = 0.148.

0 20 40 60 80 100 120 140
Month

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

Monthly Airline Passenger Numbers 1949-1960

Fig. 71 Airline time series: Box-Cox
transformation (λ = 0.148).

Having chosen a transformation, we forecast the transformed
data. Then, we need to reverse the transformation (or back-transform)
to obtain forecasts on the original scale. The reverse Box-Cox trans-
formation is given by

yt =

eyt λ = 0

(λwt + 1)1/λ otherwise.

In Python, this back-transformation is obtained via the following
code

from scipy.special import inv_boxcox

series = inv_boxcox(series, l)

The inverted series is identical to the original series in Fig. 70.

https://data.sfgov.org/

demand forecasting 99

Exponential Smoothing

Exponential smoothing was proposed in the late 1950s,33 and has 33 Robert G. Brown. Statistical forecasting
for inventory control. McGraw-Hill, 1959.motivated some of the most successful forecasting methods.

Simple Exponential Smoothing

Consider a stochastic process {Xt} and recall that, given realisa-
tions {x1, x2, . . . , xn}, the Average method predicts that

X̂n+k , (x1 + . . . + xn)/n

for all k = 1, 2, . . .; where X̂n+k ≈ µ. In essence, the mean µ of all
future random variables is assumed to be equal to the average of all
historical realisations.34 We can rewrite this expression as 34 We say that Simple Exponential

Smoothing has a “flat” forecast
function: all future forecasts take the
same value. Of course, this means the
method will only be suitable if the
time series has no trend or seasonal
component.

X̂n+k = α1x1 + α2x2 + . . . + αnxn,

where α1 = α2 = . . . = αn = 1/n. This evidences that all past
realisations are given equal weight in the computation.

Instead of weighting equally all past realisations, in Simple
Exponential Smoothing older realisations receive a weight that is
exponentially smaller than that assigned to more recent realisations.
Given realisations {x1, x2, . . . , xn}, the method predicts that

X̂n+k , αxn + (1− α)X̂n (28)

for all k = 1, 2, . . .; where X̂n is the previous forecast35 based on 35 X̂n is also referred to as “the level”
(or the smoothed value) of the series at
time n.

realisations {x1, x2, . . . , xn−1}; and 0 < α < 1 is the smoothing
parameter.

By expanding Eq. 28 for k = 1 we obtain

X̂2 = αx1 + (1− α)x0

X̂3 = αx2 + (1− α)X̂2

...

X̂n+1 = αxn + (1− α)X̂n

where x0 is an arbitrary constant denoting our initial estimate.
Finally,

X̂2 = αx1 + (1− α)x0

X̂3 = αx2 + (1− α)(αx1 + (1− α)x0)

= αx2 + α(1− α)x1 + (1− α)2x0

X̂4 = αx3 + (1− α)(αx2 + α(1− α)x1 + (1− α)2x0)

= αx3 + α(1− α)x2 + α(1− α)2x1 + (1− α)3x0

...

X̂n+1 =
n

∑
j=0

α(1− α)jxj + (1− α)nx0

Observe that term (1− α)nx0 vanishes for large n; and also that
α > α(1− α) > α(1− α)2 > . . .; this means older realisations receive
a weight that is exponentially smaller than that assigned to more
recent realisations.

100 inventory analytics

Based on the previous discussion, the stochastic process under-
pinning Simple Exponential Smoothing must be stationary, since
the time series being forecasted must have no trend or seasonal
component. This observation leads to the following hierarchy

Method Description

Average consider all past observations equally weighted
Moving Average consider only the most recent w observations, equally weighted
Simple Exponential Smoothing consider all past observations, older realisations receive a weight

exponentially smaller than that assigned to more recent realisations

The key difference between the Average method, and its two
variants (Moving Average & Simple Exponential Smoothing), is that
these variants implement “forgetting” in two different forms, and
thus try to discount past observations in one way or another. This
may be appropriate for forecasting stochastic processes that are
approximately stationary and/or change slowly over time.

We implement Simple Exponential Smoothing in Python as
shown in Listing 59.

def ses(series, alpha, x0, t):
"""Forecasts elements t+1, t+2, ...

of series
"""
forecasts = np.empty(len(series))
forecasts[0] = x0
for k in range(1,t+2):

forecasts[k] = alpha*series[k-1]
+ (1-alpha)*forecasts[k-1]

for k in range(t+2,len(series)):
forecasts[k] = forecasts[k-1]

forecasts[0:t] = np.nan
return forecasts

Listing 59 Simple Exponential Smooth-
ing in Python.

def plot(realisations, forecasts,
alpha):

f = plt.figure(1)
plt.title("Simple Exponential

Smoothing forecasts\n alpha =
{}".format(alpha))

plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(forecasts, "g",
label="Simple Exponential
Smoothing forecasts
(\widehat{X}_t)")

plt.plot(realisations,
label="Actual values (x_t)")

plt.legend(loc="upper left")
plt.grid(True)
f.show()

Listing 60 Plotting Simple Exponential
Smoothing forecasts in Python.

Example 25. Consider a stochastic process {Xt} where, for all t, random
variable Xt is normally distributed with mean µ = 20 and standard
deviation σ = 5; we sample 200 realisations from {Xt} and compute
forecasts for the last 40 periods by using Simple Exponential Smoothing
with α = 0.5 (Fig. 72); Listing 60 illustrates the plot function.

N, t, alpha, x0 = 200, 160, 0.5, 20
realisations = pd.Series(sample_gaussian_process(20, 5, N), range(N))
forecasts = ses(realisations, alpha, x0, t)
plot(realisations, forecasts, alpha)

Fig. 72 Forecasts for the last 40 pe-
riods by using Simple Exponential
Smoothing with a smoothing pa-
rameter α = 0.5; the underpinning
stochastic process is a a Gaussian pro-
cess with mean µ = 20 and standard
deviation σ = 5.

demand forecasting 101

Simple Exponential Smoothing method one-step forecasts can be
computed as follows.

def ses_rolling(series, alpha, x0):
forecasts = np.empty(len(series))
forecasts[0] = x0
for k in range(1,len(series)):

forecasts[k] = alpha*series[k-1] + (1-alpha)*forecasts[k-1]
return forecasts

By leveraging these forecasts, we carry out residuals analysis.

N, t, alpha, x0 = 200, 160, 0.5, 20
realisations = pd.Series(list(sample_random_walk(0, N)), range(N))
forecasts = ses_rolling(realisations, alpha, x0)
residuals = residuals(realisations, forecasts)
print("E[e_t] = "+str(statistics.mean(residuals)))
standardised_residuals = standardised_residuals(realisations, forecasts)
residuals_plot(residuals)
residuals_histogram(standardised_residuals)
residuals_autocorrelation(residuals, None)
sm.qqplot(standardised_residuals, line =’45’)
py.show()

Residuals have mean −0.018, which is close to zero (Fig. 73).

0 25 50 75 100 125 150 175 200
Period (t)

−20

−15

−10

−5

0

5

10

15

Re
sid

ua
l

Fig. 73 Residual analysis for Simple
Exponential Smoothing: residuals.

The histogram in Fig. 51 suggests that residuals are approxi-
mately Gaussian. Fig. 52 reveals absence of residuals autocorre-
lation. Finally, the Q-Q plot (Fig. 53) appears to further support
normality of residuals.

Instead of reimplementing Simple Exponential Smoothing from
scratch, we can rely on Python library statsmodels.tsa.api, which
provides readily available apis for time series analysis.

from statsmodels.tsa.api import SimpleExpSmoothing

N, t, alpha, x0 = 200, 160, 0.5, 20
realisations = pd.Series(sample_gaussian_process(20, 5, N), range(N))
mod = SimpleExpSmoothing(realisations[:t+1]).fit(smoothing_level=alpha,

initial_level=x0, optimized=False)
forecasts = mod.forecast(N-(t+1)).rename(r’$\alpha=0.5$’)
plot(realisations, pd.Series(np.nan, range(t+1)).append(forecasts), alpha)
py.show()

This code produces exactly the same results illustrated in Fig. 72.

102 inventory analytics

Fig. 74 Residual analysis for Simple
Exponential Smoothing: histogram.

−200 −150 −100 −50 0 50 100 150 200
Time lag

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co

rre
la
tio

n

Fig. 75 Residual analysis for Simple
Exponential Smoothing: autocorrela-
tion plot.

−3 −2 −1 0 1 2
Theoretical Quantiles

−3

−2

−1

0

1

2

Sa
m
pl
e
Qu

an
til
es

Fig. 76 Residual analysis for Simple
Exponential Smoothing: Q-Q plot.

demand forecasting 103

By relying on a state space formulation,36 implemented in pack- 36 James Durbin and Siem Jan Koop-
man. Time series analysis by state space
methods. Oxford Univ. Pr., 2001.

age statsmodels.tsa.statespace.exponential_smoothing, we
derive prediction intervals (Fig. 77).

from statsmodels.tsa.statespace.exponential_smoothing import ExponentialSmoothing

N, t, alpha, x0 = 200, 160, 0.5, 20
realisations = pd.Series(sample_gaussian_process(20, 5, N), range(N))
mod = ExponentialSmoothing(realisations[:t+1], initialization_method=’known’,

initial_level=x0).fit(disp=False)
print(mod.summary())
forecasts = mod.get_forecast(N-(t+1))
forecasts_ci = forecasts.conf_int(alpha=0.05)
plot_ci(realisations, pd.Series(np.nan,

range(t+1)).append(forecasts.predicted_mean), forecasts_ci, alpha)
py.show()

Listing 61 illustrates the plot function.

def plot_ci(realisations, forecasts,
forecasts_ci, alpha):

f = plt.figure(1)
plt.title("Simple Exponential

Smoothing forecasts\n State
Space Model")

plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(forecasts, "g",
label="Simple Exponential
Smoothing forecasts
(\widehat{X}_t)")

plt.plot(realisations,
label="Actual values (x_t)")

t = next(x for x, val in
enumerate(forecasts) if
~np.isnan(val)) - 1

forecast_index = np.arange(t+1, t+1
+ len(forecasts_ci))

plt.fill_between(forecast_index,
forecasts_ci.iloc[:, 0],
forecasts_ci.iloc[:, 1],
color=’r’, alpha=0.1)

plt.legend(loc="upper left")
plt.grid(True)
f.show()

Listing 61 Plotting Simple Exponential
Smoothing forecasts and prediction
intervals in Python.

Fig. 77 Simple Exponential Smoothing
forecasts and prediction intervals
for the last 40 periods of a Gaussian
process with mean µ = 20 and
standard deviation σ = 5.In Fig. 78 we illustrate Simple Exponential Smoothing forecasts

and prediction intervals for a random walk with standard Gaussian
noise; these are similar to those obtained with the Naïve method.

realisations = pd.Series(list(sample_random_walk(0, N)), range(N))

Fig. 78 Simple Exponential Smoothing
forecasts and prediction intervals for
the last 40 periods of a random walk
with standard Gaussian noise.

104 inventory analytics

Double Exponential Smoothing (Holt’s method)

As previously discussed, Simple Exponential Smoothing has a “flat”
forecast function: all future forecasts take the same value, which
represents the “the level” (or the smoothed value) of the series. This
means the method will only be suitable if the time series has no
trend or seasonal component.

We shall next focus on time series featuring a linear trend, such
as the random walk with drift previously considered in the context
of the Drift method.

Holt extended37 Simple Exponential Smoothing to allow the 37 Charles C. Holt. Forecasting sea-
sonals and trends by exponentially
weighted moving averages. International
Journal of Forecasting, 20(1):5–10, 2004.

forecasting of a time series with a trend. In Holt’s method, given
past realisations {x1, x2, . . . , xt}, the forecast is defined as

X̂t+k , lt + kbt

where lt denotes an estimate of the level of the series at time t, and
bt denotes an estimate of the trend (slope) of the series at time
t. These level and trend estimates are obtained by means of the
following smoothing equations

lt = αxt + (1− α)(lt−1 + bt−1) (level equation)

bt = β(lt − lt−1) + (1− β)bt−1 (trend equation)

where 0 < α < 1 and 0 < β < 1 are the smoothing parameters
for the level and trend, respectively. Holt’s method is available in
library statsmodels.tsa.api and can be implemented as follows

def plot(realisations, forecasts):
f = plt.figure(1)
plt.title("Holt’s forecasts")
plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(forecasts, "g",
label="Holt’s forecasts
(\widehat{X}_t)")

plt.plot(realisations,
label="Actual values (x_t)")

plt.legend(loc="upper left")
plt.grid(True)
f.show()

def plot_components(fit):
f = plt.figure(1)
pd.DataFrame(np.c_[fit.level,

fit.trend]).rename(
columns={0:’level’,

1:’trend’}).plot(
subplots=True)

plt.xlabel(’Period (t)’)
f.show()

Listing 62 Plotting Holt’s method
forecasts and components in Python.

from statsmodels.tsa.api import Holt

N, t = 200, 160
realisations = pd.Series(list(sample_random_walk(0, 0.1, N)), range(N))
mod = Holt(realisations[:t+1]).fit(optimized=True)
params = [’smoothing_level’, ’smoothing_trend’, ’initial_level’, ’initial_trend’]
results=pd.DataFrame(index=["alpha","beta","l_0","b_0","SSE"] ,columns=["Holt’s"])
results["Holt’s"] = [mod.params[p] for p in params] + [mod.sse]
print(results)
forecasts = mod.forecast(N-(t+1)).rename(r’$\alpha=0.5$ and $\beta=0.5$’)
plot(realisations, pd.Series(np.nan, range(t+1)).append(forecasts))
plot_components(mod)
py.show()

where sample_random_walk is the function presented in Listing
55. Note that in some version of the library smoothing_trend and
initial_trend become smoothing_slope and initial_slope. List-
ing 62 illustrates the plot and plot_components functions.

Whilst it is possible to manually set values of model parameters,
function fit also allows to automatically estimate (optimized=True)
model parameters such as the initial level (l0) and the initial trend
(b0), as well as the two smoothing parameters α and β. Parameters
automatically estimated by the function are shown in Table 9.

Holt’s

α 0.797

β 0.000

l0 0.225

b0 0.148

SSE 151

Table 8 Holt’s method fitted model
parameters and Sum of Squared Errors
(SSE).

The level and slope components resulting from Holt’s decompo-
sition are shown in Fig. 79, which has been generated by function
plot_components.

Finally, prediction intervals can be obtained once more by
leveraging the state space formulation implemented in package
statsmodels.tsa.statespace.exponential_smoothing.

demand forecasting 105

Fig. 79 Holt’s method: level and slope
components of a random walk with
standard Gaussian noise and drift
c = 0.1.

def plot_ci(realisations, forecasts, forecasts_ci):
f = plt.figure(1)
plt.title("Holt’s forecasts\n State Space Model")
plt.xlabel(’Period (t)’)
first, last = next(x for x, val in enumerate(forecasts) if ~np.isnan(val)),

len(forecasts)-1
plt.axvspan(first, last, alpha=0.2, color=’blue’)
plt.plot(forecasts, "g", label="Holt’s forecasts (\widehat{X}_t)")
plt.plot(realisations, label="Actual values (x_t)")
t = next(x for x, val in enumerate(forecasts) if ~np.isnan(val)) - 1
forecast_index = np.arange(t+1, t+1 + len(forecasts_ci))
plt.fill_between(forecast_index, forecasts_ci.iloc[:, 0], forecasts_ci.iloc[:,

1], color=’r’, alpha=0.1)
plt.legend(loc="upper left")
plt.grid(True)
f.show()

N, t = 200, 160
realisations = pd.Series(list(sample_random_walk(0, 0.1, N)), range(N))
mod = ExponentialSmoothing(realisations[:t+1], trend=True,

initialization_method=’estimated’).fit(disp=False)
print(mod.summary())
forecasts = mod.get_forecast(N-(t+1))
forecasts_ci = forecasts.conf_int(alpha=0.05)
plot_ci(realisations, pd.Series(np.nan,

range(t+1)).append(forecasts.predicted_mean), forecasts_ci)
py.show()

The results are illustrated in Fig. 80.

Fig. 80 Holt’s method forecasts and
prediction intervals for a random walk
with standard Gaussian noise and drift
c = 0.1.

106 inventory analytics

Triple Exponential Smoothing (Holt-Winters’ seasonal method)

Holt’s method is not suitable if the time series features a seasonal
component. We shall here focus on time series featuring such com-
ponent. One of such series is the seasonal random walk previously
considered in the context of the Seasonal Naïve method.

Holt38 and Winters39 extended Holt’s method to capture a sea- 38 Charles C. Holt. Forecasting sea-
sonals and trends by exponentially
weighted moving averages. International
Journal of Forecasting, 20(1):5–10, 2004.
39 Peter R. Winters. Forecasting sales
by exponentially weighted moving
averages. Management Science, 6(3):
324–342, 1960.

sonal component. They discussed both additive and multiplicative
variants of their method. For the sake of brevity, we shall limit our
discussion to the additive method. In Holt-Winters’ method, given
past realisations {x1, x2, . . . , xt}, the forecast is defined as

X̂t+k , lt + kbt + st+k−mb(k−1)/mc

where bxc denotes the integer part of x, lt denotes an estimate of
the level of the series at time t, bt denotes an estimate of the trend
(slope) of the series at time t, and st denotes an estimate of the
seasonal component of the series at time t. We use m to denote the
frequency of the seasonality, that is the number of seasons in a year.
For example, for quarterly data m = 4, for monthly data m = 12.

Level, trend, and seasonal component estimates are obtained by
means of the following smoothing equations

lt = α(xt − st−m) + (1− α)(lt−1 + bt−1) (level equation)

bt = β(lt − lt−1) + (1− β)bt−1 (trend equation)

st = γ(xt − lt) + (1− γ)st−m (seasonal equation)

where 0 < α < 1, 0 < β < 1, 0 < γ < 1 are the smooth-
ing parameters for the level, trend, and seasonal component, re-
spectively. Holt-Winters’ method method is available in library
statsmodels.tsa.api and can be implemented as follows

def plot(realisations, forecasts):
f = plt.figure(1)
plt.title("Holt-Winters’ forecasts")
plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(realisations,
label="Actual values (x_t)")

plt.plot(forecasts, "g",
label="Holt-Winters’
forecasts (\widehat{X}_t)")

plt.legend(loc="upper left")
plt.grid(True)
f.show()

def plot_components(fit):
f = plt.figure(1)
pd.DataFrame(np.c_[fit.level,

fit.trend,
fit.season]).rename(

columns={0:’level’, 1:’trend’,
2:’seasonal’}).plot(
subplots=True)

plt.xlabel(’Period (t)’)
f.show()

Listing 63 Plotting Holt-Winters’
method forecasts and components in
Python.

from statsmodels.tsa.api import ExponentialSmoothing

N, t, m = 100, 80, 4
realisations = pd.Series(list(sample_seasonal_random_walk(N,m)), range(N))
mod = ExponentialSmoothing(realisations[:t+1], seasonal_periods=4, trend=’add’,

seasonal=’add’).fit(optimized=True)
params = [’smoothing_level’, ’smoothing_trend’, ’smoothing_seasonal’,

’initial_level’, ’initial_trend’]
results=pd.DataFrame(index=["alpha","beta","gamma","l_0","b_0","SSE"]

,columns=["Holt-Winters’"])
results["Holt-Winters’"] = [mod.params[p] for p in params] + [mod.sse]
print(results)
forecasts = mod.forecast(N-(t+1)).rename(r’$\alpha=0.5$ and $\beta=0.5$’)
plot(realisations, pd.Series(np.nan, range(t+1)).append(forecasts))
plot_components(mod)
py.show()

where sample_seasonal_random_walk is the function presented
in Listing 57. listing 63 illustrates the plot and plot_components

functions. Whilst it is possible to manually set values of model
parameters, function fit also allows to automatically estimate
(optimized=True) model parameters such as the initial level (l0) and
the initial trend (b0), as well as the three smoothing parameters α,
β, and γ. Parameters automatically estimated by the function are
shown in Table 9. The level and slope components resulting from
Holt-Winters’ decomposition are shown in Fig. 81, which has been
generated by function plot_components.

Holt-Winters’

α 0.000

β 0.000

γ 0.839

l0 2.48

b0 0.015

SSE 71.2

Table 9 Holt-Winters’ method fitted
model parameters and Sum of Squared
Errors (SSE).

demand forecasting 107

Fig. 81 Holt-Winters’ method: level,
slope, and seasonal components of a
seasonal random walk with standard
Gaussian noise and m = 4.

Finally, prediction intervals can be obtained once more by
leveraging the state space formulation implemented in package
statsmodels.tsa.statespace.exponential_smoothing (Fig. 82).

def plot_ci(realisations, forecasts,
forecasts_ci):

f = plt.figure(1)
plt.title("Holt-Winters’

forecasts\n State Space
Model")

plt.xlabel(’Period (t)’)
first, last = next(x for x, val in

enumerate(forecasts) if
~np.isnan(val)),
len(forecasts)-1

plt.axvspan(first, last, alpha=0.2,
color=’blue’)

plt.plot(realisations,
label="Actual values (x_t)")

plt.plot(forecasts, "g",
label="Holt-Winters’
forecasts (\widehat{X}_t)")

t = next(x for x, val in
enumerate(forecasts) if
~np.isnan(val)) - 1

forecast_index = np.arange(t+1, t+1
+ len(forecasts_ci))

plt.fill_between(forecast_index,
forecasts_ci.iloc[:, 0],
forecasts_ci.iloc[:, 1],
color=’r’, alpha=0.2)

plt.legend(loc="upper left")
plt.grid(True)
f.show()

Listing 64 Plotting Holt-Winters’
method forecasts and prediction
intervals in Python.

from statsmodels.tsa.statespace.exponential_smoothing import ExponentialSmoothing

N, t, m = 100, 80, 4
realisations = pd.Series(list(sample_seasonal_random_walk(N,m)), range(N))
mod = ExponentialSmoothing(realisations[:t+1], trend=’add’, seasonal=’add’,

initialization_method=’estimated’).fit(disp=False)
print(mod.summary())
forecasts = mod.get_forecast(N-(t+1))
forecasts_ci = forecasts.conf_int(alpha=0.05)
plot_ci(realisations, pd.Series(np.nan,

range(t+1)).append(forecasts.predicted_mean), forecasts_ci)
py.show()

Listing 64 illustrates the plot function.

Fig. 82 Holt-Winters’ method forecasts
and prediction intervals for a seasonal
random walk with standard Gaussian
noise and m = 4.

108 inventory analytics

ARIMA models

In practice, it is often the case that stochastic demands in different
periods are correlated; for instance, this may happen when we
only serve a few large customers, so that if demand is high at a
given period, one may expect demand in the following periods
to be lower (i.e. negatively correlated), because a high demand
may indicate that several customers have replenished their stock.
Autocorrelation, also known as serial correlation, is the correlation
of a signal with a delayed copy of itself as a function of delay.
Forecasting techniques that aim to describe autocorrelation in the
data have been developed by Box and Jenkins.40 40 George. E. P. Box and Gwilym M.

Jenkins. Time series analysis: Forecasting
and control. Holden-Day, 1976.

Differencing

We have seen in the section illustrating Box-Cox transformations
that logarithms and power transformations can help stabilising the
variance of a time series.

Conversely, differencing can help stabilise the mean of a time series
by removing changes in the level of a time series, and therefore
eliminating (or reducing) trend and seasonality.

A differenced time series y′t is the change between consecutive
observations in the original series, and can be written as

y′t = yt − yt−1.

When the differenced series is a white noise, the model for the
original series can be written as

yt − yt−1 = εt,

where εt is a white noise. By rearranging, we obtain yt = yt−1 + εt,
which suggests that the series is a realisation of a random walk.
If the differences have non-zero mean, say c, the series can be
expressed as yt = c + yt−1 + εt, that is as a random walk with drift.

A seasonal difference (or “lag-m difference”) is the difference
between an observation and the previous observation from the
same season. If seasonally differenced data appear to be white
noise, the series is a realisation of a seasonal random walk (Fig. 83).

0 20 40 60 80 100 120 140

200

400

600
Monthly Airline Passenger Numbers 1949-1960, in thousands

0 20 40 60 80 100 120 140

8

10

Box Cox Transformation

0 20 40 60 80 100 120
Period (t)

)250

0

250
Seasonall(differenced (=12)

Fig. 83 Airline time series: Box-
Cox transformation and seasonal
differencing.

import statsmodels.api as sm, pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as stats
from statsmodels.tsa.statespace.tools import diff

airpass = sm.datasets.get_rdataset("AirPassengers", "datasets")
fig, axs = plt.subplots(3)
axs[0].set_title(’Monthly Airline Passenger Numbers 1949-1960, in thousands’)
axs[0].plot(pd.Series(airpass.data["value"]))
series, l = stats.boxcox(airpass.data["value"])
axs[1].plot(series)
axs[1].set_title(’Box Cox Transformation’)
differenced = diff(series, k_diff=12)
axs[2].plot(differenced)
axs[2].set_title(’Seasonally differenced (m=12)’)
plt.xlabel(’Period (t)’)
fig.tight_layout()
plt.show()

demand forecasting 109

Autoregressive (AR) model

In an autoregression model, we forecast the variable of interest
using a linear combination of past values of the variable. The
term autoregression indicates that it is a regression of the variable
against itself.

Definition 15. An autoregressive model of order p, AR(p) in short, is
defined as

Xt , c +
p

∑
i=1

ϕiXt−i + εt,

where ϕ1, . . . , ϕp are the parameters of the model, c is a constant, and εt is
a white noise.

ϕ1 = 0 c = 0 white noise
ϕ1 = 1 c = 0 random walk
ϕ1 = 1 c 6= 0 random walk with drift

Table 10 Special cases of AR(1).
Note that the variance of the error term εt only affects the scale

of the series, not the patterns. By varying the parameters of the
model, we can obtain a wide range of different time series patterns,
some of which have been surveyed before (Table 10).

It is common to apply autoregressive models under the assump-
tion that the model underpinning the time series is stationary; for
this reason, some constraints on the values of the parameters are
required (Table 11). Typically, these constraints are automatically
enforced when a model is fit by an off-the-shelf software package.

AR(1) |ϕ1| < 1

AR(2) |ϕ1| < 1, |ϕ2| < 1,
|ϕ1 + ϕ2| < 1,
|ϕ2 − ϕ1| < 1

AR(p) roots of 1−∑
p
i=1 ϕizp−i

must lie outside the unit circle.

Table 11 Restrictions to model parame-
ters that ensures stationarity.

Example 26. Let {Xt} be a random walk with standard Gaussian noise
{εt}. We sample 200 realisations from this stochastic process as previously
shown in Listing 53. By leveraging statsmodels.tsa.ar_model.AutoReg

we fit an AR(1) model as follows.

import numpy as np, pandas as pd, statistics
from statsmodels.tsa.ar_model import AutoReg

N, t, p = 200, 180, 1
realisations = pd.Series(list(sample_random_walk(0, N)), range(N))
mod = AutoReg(realisations[0:t], p)
res = mod.fit()
print(res.summary())
print("Std residuals: "+str(statistics.stdev(res.resid)))

The result of the fitting procedure is the following.

AutoReg Model Results

==

Dep. Variable: y No. Observations: 180

Model: AutoReg(1) Log Likelihood -248.301

Method: Conditional MLE S.D. of innovations 0.969

Date: Mon, 22 Feb 2021 AIC -0.030

Time: 00:12:02 BIC 0.023

Sample: 1 HQIC -0.008

180

==

coef std err z P>|z| [0.025 0.975]

--

intercept 0.2950 0.126 2.340 0.019 0.048 0.542

y.L1 0.9327 0.027 34.319 0.000 0.879 0.986

Roots

===

Real Imaginary Modulus Frequency

AR.1 1.0721 +0.0000j 1.0721 0.0000

Std residuals: 0.9714322305049528

110 inventory analytics

statsmodels.tsa.ar_model.ar_select_order automatically
selects the order p of an AR(p) process that best fits the data.

from statsmodels.tsa.ar_model import ar_select_order

N, t, p, max_order = 200, 180, 1, 10
realisations = pd.Series(list(sample_random_walk(0, N)), range(N))
sel = ar_select_order(realisations[0:t], max_order)
res = sel.model.fit()
print(res.summary())
print("Std residuals: "+str(statistics.stdev(res.resid)))

In our example this leads to the same result (p = 1), that is an AR(1)
process. Fitting diagnostics can be obtained as follows.

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(16,9))
res.plot_diagnostics(fig=fig, lags=max_order)
plt.show()

The diagnostics for our example are shown in Fig. 84. The plots
illustrating standardised residuals, residual distribution histogram,
and Q-Q plot are similar to those previously presented. However,
the diagnostics here presented also include a “correlogram.”41 In 41 A correlogram (also called Auto

Correlation Function ACF Plot or
Autocorrelation plot) is a visual way
to show serial correlation in data that
changes over time.

this case, we see a spike at value 1 in the x-axis (which represents
the order p of the process), while values for x = 2, 3, . . . appear to
be random fluctuations that remain inside the confidence bands
illustrated and are not significantly different than 0. This suggests
that there is evidence of correlation between a period and the
previous one, as it is effectively the case in a random walk.

Fig. 84 Fitting an AR(1) to a random
walk: diagnostics.

Fig. 85 Forecasts for periods
180, . . . , 200 for an AR(1) process
fit to a random walk.

Finally, one can produce forecasts and prediction intervals by
using plot_predict (Fig. 85). The forecasts and prediction intervals
obtained are similar to those produced by the Naïve method for the
same example (Fig. 69).

res.plot_predict(start=t, end=N)
plt.plot(realisations[0:N], label="realisations")
plt.legend(loc="upper left")
plt.grid(True)
plt.show()

demand forecasting 111

Moving Average (MA) model

The Moving Average model specifies that the output variable de-
pends linearly on the current and various past values of a stochastic
error {εt}.

Definition 16. A Moving Average model of order q, MA(q) in short, is
defined as

Xt , µ + εt + θ1εt−1 + . . . + θqεt−q,

where µ is the mean of the series, θ1, . . . , θq are the parameters of the
model, and {εt} is a white noise.

In this model, Xt can be thought of as a weighted moving aver-
age of the past few forecast errors.

Lemma 33. The finite MA model is always stationary.

Lemma 34. Any stationary AR(p) model can be written as an MA(∞)
model.

Definition 17. An MA(q) model is invertible if it can be expressed as an
AR(∞) model.

For an MA(1) it is easy to show that the model is invertible if and
only if |θ| < 1; in fact, |θ| ≥ 1 means that more distant observations
have greater or equal influence on the current error than closer
ones — a situation that does not make much sense. Constraints
can be imposed on MA(q) model to ensure invertibility; these are
automatically enforced when a model is fit by a software package.

To sample from an MA(q) process we can leverage Listing 65.
Alternatively, statsmodels.tsa.arima_process.ArmaProcess com-
bines an AR(p) and an MA(q) to obtain a so-called ARMA(p, q)
process. By setting p = 0, an ARMA(p, q) process reduces to an
MA(q) process, which can be sampled (Listing 66).

def sample_MA_process(mu, theta,
realisations):

np.random.seed(1234)
errors = np.random.normal(0, 1,

realisations + len(theta))
theta = np.r_[1, theta][::-1]
for r in range(1,

min(len(theta),realisations+1)):
yield mu +

sum(np.multiply(theta[-r:],
errors[:r]))

for r in
range(realisations-len(theta)+1):

yield mu +
sum(np.multiply(theta,
errors[r:r+len(theta)]))

Listing 65 Sampling an MA(q) pro-
cess.

from statsmodels.tsa.arima_process
import ArmaProcess

def sample_ARMA0q_process(mu, theta,
realisations):

np.random.seed(1234)
dist = lambda size:

np.random.normal(0, 1, size)
arparams = np.array([])
maparams = np.array(theta)
include zero-th lag
arparams = np.r_[1, arparams]
maparams = np.r_[1, maparams]
arma_t = ArmaProcess(arparams,

maparams)
return

arma_t.generate_sample(nsample
= realisations, distrvs=dist)

Listing 66 Sampling an ARMA(0, q)
process.

Example 27. Let {Xt} be an MA(q) process subject to standard Gaussian
noise {εt}, q = 2, and parameters θ1 = 0.8 and θ2 = 0.2. We sample 200
realisations from this stochastic process.

By using statsmodels.api.tsa.ARMA we fit an MA(q) model.

import numpy as np, pandas as pd, statsmodels.api as sm, statistics

mu, theta, N, t, max_order = 0, [0.8,0.2], 200, 180, 10
realisations = pd.Series(list(sample_MA_process_ARMA(mu, theta, N)), range(N))
mod = sm.tsa.ARMA(realisations[0:t], order=(0, 2))
res = mod.fit()
print(res.summary())
print("Std residuals: "+str(statistics.stdev(res.resid)))

The result after fitting an MA(2) model is shown below.

112 inventory analytics

ARMA Model Results

==

Dep. Variable: y No. Observations: 180

Model: ARMA(0, 2) Log Likelihood -249.163

Method: css-mle S.D. of innovations 0.965

Date: Mon, 22 Feb 2021 AIC 506.326

Time: 00:27:11 BIC 519.098

Sample: 0 HQIC 511.505

==

coef std err z P>|z| [0.025 0.975]

--

const 0.0847 0.122 0.693 0.488 -0.155 0.324

ma.L1.y 0.6220 0.074 8.448 0.000 0.478 0.766

ma.L2.y 0.0820 0.081 1.015 0.310 -0.076 0.241

Roots

===

Real Imaginary Modulus Frequency

MA.1 -2.3137 +0.0000j 2.3137 0.5000

MA.2 -5.2682 +0.0000j 5.2682 0.5000

Std residuals: 0.967862299006029

While fitting the MA(q) model to the data, we assumed the order
q of the process was known. If this is not the case, one may analyse
the autocorrelation of the data. The autocorrelation function (ACF)
of an MA(q) process is zero at lag q + 1 and greater, thus it easy to
determine the correct value of q by inspecting the ACF (Fig. 86).

sm.graphics.tsa.plot_acf(realisations.values.squeeze(), lags=max_order)

The order of an ARMA(p, q) process can also be estimated via
the following function.

from statsmodels.tsa.stattools import arma_order_select_ic

order = arma_order_select_ic(realisations[0:t], ic=’aic’, max_ar = 5, max_ma = 5)
print(order.aic_min_order)

Fig. 86 Fitting an MA(2) model:
inspecting the ACF. In this instance the
ACF is nonzero for the first two lags.

Fig. 87 Forecasts for periods
180, . . . , 200 for an MA(2) process.

Finally, one can produce forecasts and prediction intervals by
using plot_predict (Fig. 87).

import matplotlib.pyplot as plt

res.plot_predict(start=t, end=N, plot_insample=False)
plt.plot(realisations[0:N], label="realisations")
plt.legend(loc="upper left")
plt.grid(True)
plt.show()

demand forecasting 113

Autoregressive Integrated Moving Average (ARIMA) model

ARIMA is an acronym for AutoRegressive Integrated Moving
Average (in this context, “integration” is the reverse of differencing).
The I (for “integrated”) indicates that the data values have been
replaced with the difference between their values and the previous
values, and this differencing process may have been performed
more than once.

Definition 18. An ARIMA(p, d, q) model can be written as

X′t , c + ϕ1y′t−1 + . . . + ϕpy′t−p + θ1εt−1 + . . . + θqεt−q + εt,

where c is a constant; X′t is the differenced stochastic process (note that the
process may have been differenced more than once); and {εt} is a white
noise. In an ARIMA(p, d, q) we define

p order of the autoregressive part;
d degree of first differencing involved;
q order of the moving average part.

The same stationarity and invertibility conditions that are used
for AR and MA models also apply to an ARIMA model.

Many of the models we have previously considered are special
cases of the ARIMA model, in particular

White noise ARIMA(0, 0, 0)
Random walk ARIMA(0, 1, 0) with no constant
Random walk with drift ARIMA(0, 1, 0) with a constant
Autoregression ARIMA(p, 0, 0)
Moving average ARIMA(0, 0, q)

import statsmodels.api as sm, pandas
as pd, statistics

from statsmodels.tsa.arima_model
import ARIMA

import matplotlib.pyplot as plt

N, t = 140, 136
airpass = sm.datasets.get_rdataset(

"AirPassengers", "datasets")
ts = pd.Series(airpass.data["value"])
ts = ts.astype(float)
model = ARIMA(ts[0:t], order=(0,1,0))
res = model.fit()
print(res.summary())
res.plot_predict(start=ts.index[3],

end=ts.index[-1], alpha=0.1)
plt.xlabel(’Period (t)’)
print("Std residuals:

"+str(statistics.stdev(res.resid)))
plt.show()

Listing 67 Fitting an ARIMA(0, 1, 0) to
a time series reporting fluctuations in
air passenger numbers.

Most software packages for time series analysis provide facilities
to automatically determine values of p, d, and q.

Example 28. We fit an ARIMA(0, 1, 0) to a time series reporting fluctua-
tions in air passenger numbers (Listing 67), and leverage the fitted model
to produce forecasts and prediction intervals (Fig. 88).

Fig. 88 Airline time series: forecasts
and prediction intervals obtained by
fitting an ARIMA(0, 1, 0) model. The
fitted constant is c = 2.58; the standard
deviation of residuals is σ = 31.2.

114 inventory analytics

Practical considerations

We conclude this chapter by emphasising the “ancillary” nature of
the predictive analysis carried out in this chapter. To be precise, any
predictive analysis is always ancillary to an associated prescriptive
analysis, which must necessarily be present, as

the only reason why we make predictions, is to act upon them.

While one may invest considerable time — and sometime have
fun — fiddling with models and data, contrasting forecast quality
metrics, and trying to determine the most appropriate model that
fits a given set of data; it is important to bear in mind that trying
to determine the best model that fits a given set of data is an ill-posed
problem. This is because any predictive model is instrumental to a
given purpose. Therefore a model that may be suitable to support a
given decision, may perform poorly (or simply become irrelevant) if
employed in the context of a different decision.

It becomes then clear that three elements are necessary to make
sure the problem we are dealing with is well-posed: the data, a
predictive model that captures salient features of the data, and the
associated prescriptive challenge, which is the decision making
problem which the predictive model aims to support.

As we have seen in the previous chapters, in inventory control
there are essentially three decisions that must be considered in
each period: when to review the inventory, when to place an order,
and how much to order. To determine answers to each of these
questions, one needs, to the very least, forecasts of the future level
— that is the mean value µ — of the customer demand per period;
these can be used in the context of deterministic decision support
models such as those we have considered in previous chapters. Ide-
ally, however, to enable probabilistic reasoning one is also interested
in obtaining an estimation of the forecast errors associated with these
estimates — that is the standard deviation σ of the model residuals,
which we have shown how to compute in this chapter.

In essence, no matter what forecasting model we adopt to predict
customer demand, what we aim to produce are two values: µt and
σt for each period t in our planning horizon. In the next section, we
will see how these estimates can then be used to build stochastic
decision support models to address specific challenges in the realm
of prescriptive inventory analytics.

Finally, it is important to point out that separating a given chal-
lenge into predictive and prescriptive subproblems is a convenient
divide and conquer strategy, which may however lead to suboptimal
decisions. Latest research in inventory control [see e.g. Rossi et al.,
2014a, Levi et al., 2015] aims at addressing these questions in an
integrated manner rather than independently.

Stochastic Inventory Control

Copyright © 2021 Roberto Rossi, CC BY 4.0
https://doi.org/10.11647/OBP.0252.04

https://doi.org/10.11647/OBP.0252.04

116 inventory analytics

Introduction

In this chapter, we discuss inventory control in a stochastic setting.
We first introduce the Newsvendor problem, which is the simplest
possible stochastic inventory system that can be conceived. Then
we survey service level constraints and penalty cost schemes that
can be adopted for modelling stochastic inventory systems. Next,
we show how to model and simulate a stochastic inventory sys-
tem running costs. Equipped with these notions, we extend the
Newsvendor problem to a multi-period setting. Central to stochas-
tic inventory theory is the notion of control policy. A control policy
is a rule that establishes when inventory should be reviewed and
orders issued, and how large an order should be. The rest of this
chapter is devoted to presenting a range of control policies that are
commonly adopted in inventory control and that can be used to
control a number of well-known inventory systems.

• The Newsvendor p. 117

• Service level constraints in inventory systems p. 119

• Simulating stochastic inventory systems p. 120

• The multi-period Newsvendor p. 123

• The base-stock policy p. 125

• The modified base-stock policy p. 128

• The (s, S) policy p. 129

• The modified (s, S) policy p. 140

• Nervousness of control p. 141

• The (R, S) policy p. 142

• The (s, Q) policy p. 144

• The (R, Q) policy p. 146

• The (R, s, S) policy p. 149

Topics

stochastic inventory control 117

The Newsvendor

The name of this model derives from its analogy to the problem
faced by a newsvendor who purchases newspapers at the beginning
of the day before attempting to sell them in the street. Arrow42

42 Kenneth J. Arrow. Studies in the
mathematical theory of inventory and
production. Stanford Univ. Pr., 1977.

attributes the development of the Newsvendor model to Edge-
worth,43 who used the central limit theorem to determine the

43 Francis Y. Edgeworth. The mathemat-
ical theory of banking. Journal of the
Royal Statistical Society, 51(1):113–127,
1888.

optimal cash reserves to satisfy random withdrawals from deposi-
tors.

The Newsvendor is the simplest stochastic inventory problem
one may conceive. It concerns a single item type over a planning
horizon that comprises a single period. There is a single oppor-
tunity to order, at the beginning of the period, to meet a random
demand d that follows a known cumulative distribution function
(CDF) F, and that is observed after the order is received (Fig. 89).

pmf(d)

single period time

in
v
e

n
to

ry

Q

random
 dem

and d

0

Fig. 89 The Newsvendor problem.

Items can be ordered at a purchasing cost c per unit; they are
sold at a selling price p per unit; and, if some items remain unsold
at the end of the day, their salvage value is s per unit. These pa-
rameters must satisfy s < c < p for the problem to make sense.

Purchasing cost c per unit
Selling price p per unit
Salvage value s per unit

Let Q denote the quantity ordered at the beginning of the period,

• the ordering cost is cQ;

• min(Q, d) units are sold at p per item; and

• max(Q− d, 0) units are salvaged at value s per item.

The profit function is

P(Q) , pE[min(Q, d)] + sE[max(Q− s, 0)]− cQ

where E denotes the expected value operator.
Observe that E[min(Q, d)] = E[d]− E[max(d−Q, 0)], then

P(Q) , p(E[d]− E[max(d−Q, 0)]) + sE[max(Q− d, 0)]− cQ
= (p− c)E[d]− pE[max(d−Q, 0)] + sE[max(Q− d, 0)]− cE[Q− d]
= (p− c)E[d]− (p− c)E[max(d−Q, 0)]− (c− s)E[max(Q− d, 0)]

since max(x, 0)−max(−x, 0) = x.
Term (p − c)E[d] is constant, therefore maximising P(Q) is

equivalent to minimising

C(Q) , (p− c)E[d−Q]+ + (c− s)E[Q− d]+ ≥ 0,

where [x]+ , max(x, 0).
In essence, if demand is less than Q, the decision maker faces a

so-called “overage” cost o , c− s per item. If demand exceeds Q,
she faces an opportunity cost equal to the missed profit u , p− c
per item, which we shall call “underage” cost.

Overage cost (o) c− s per unit
Underage cost (u) p− c per unit

118 inventory analytics

Consider a random variable ω with CDF F, and a scalar x.

Definition 19. E[ω− x]+ is the first order loss function.44 44 Roberto Rossi, S. Armagan Tarim,
Steven Prestwich, and Brahim Hnich.
Piecewise linear lower and upper
bounds for the standard normal first
order loss function. Applied Mathematics
and Computation, 231:489–502, 2014b.

Definition 20. E[x−ω]+ is the complementary first order loss function.

Lemma 35. E[ω− x]+ = E[x−ω]+ − (x− E[ω]).

Proof. See [Rossi et al., 2014b, Lemma 3].

As we will see, these two convex [Rossi et al., 2014b, Lemma 4]
functions play a key role in stochastic inventory control.

Lemma 36. C(Q) is convex.

Proof. The overage cost o and the underage cost u are positive; both
E[x− d]+ and E[d− x]+ are convex [Rossi et al., 2014b, Lemma 4];
and thus C(Q) is the sum of two convex functions (Fig. 90).

Fig. 90 The Newsvendor problem: the
cost function C(Q) and its components
uE[d−Q]+ and oE[Q− d]+.

Lemma 37. E[x−ω]+ =
∫ x
−∞ F(t)dt.

Proof. See [Rossi et al., 2014b, Lemma 2].

Lemma 38 (Critical fractile). Let Q∗ , min C(Q), then

Q∗ = F−1
(

u
o + u

)
,

where F−1 is the inverse cumulative distribution function of d. This is
known as the critical fractile solution.45 45 Kenneth J. Arrow, Theodore Harris,

and Jacob Marschak. Optimal inventory
policy. Econometrica, 19(3):250–272,
1951.

Proof. Rewrite

C(Q) = uE[d−Q]+ + oE[Q− d]+

= u(E[Q−ω]+ − (Q− E[ω])) + oE[Q− d]+

= (u + o)E[Q−ω]+ − u(Q− E[ω]).

We take the derivative of C(Q), and by applying Lemma 37, we
obtain C′(Q) = (u + o)F(Q) − u. Since C(Q) is convex (Lemma
39), to find its minimum we let C′(Q) = 0;46 and by inverting the 46 This is known as the “first order

condition.”cumulative distribution function F, we obtain the desired result.

If the random demand d is discrete, the global minimum can be
easily found by analysing the forward differences of C(Q).

instance = {"o" : 1, "u": 5, "mean" :
10, "std" : 2}

nb = Newsvendor(instance)
print("Q^*=" +

str(nb.crit_frac_solution()))
print("C(Q^*)=" +

str(nb.C(nb.crit_frac_solution())))
print(nb.optC())

Listing 68 A Newsvendor instance.

We next implement the Newsvendor in Python (Listing 68).

import scipy.integrate as integrate
from scipy.stats import norm
from scipy.optimize import minimize

class Newsvendor:
def __init__(self, instance):

self.mean, self.std, self.o, self.u = instance["mean"], instance["std"],
instance["o"], instance["u"]

def crit_frac_solution(self): # critical fractile
return norm.ppf(self.u/(self.o+self.u), loc=self.mean, scale=self.std)

def cfolf(self,Q): # complementary first order loss function
return integrate.quad(lambda x: norm.cdf(x, loc=self.mean, scale=self.std), 0,

Q)[0]

def C(self,Q): # C(Q)
return (self.o+self.u)*self.cfolf(Q)-self.u*(Q - self.mean)

def optC(self): # min C(Q)
return minimize(self.C, 0, method=’Nelder-Mead’)

stochastic inventory control 119

Service level constraints in inventory systems

In this section we survey the different types of service level con-
straints that are typically adopted in inventory control. While doing
so, we illustrate applications to the Newsvendor problem.

α service level (no stockout probability): this is defined
as the “probability of no stockout per order cycle.” In the case of
the Newsvendor problem, recall that the critical fractile solution is
defined as

Q∗ = F−1
(

u
o + u

)
.

But F−1 is the cumulative distribution of the demand, therefore if
we let α , u/(o + u), Q∗ becomes the order quantity that guarantees
a probability of no stockout per order cycle equal to α. Every choice
of u and o is therefore equivalent to a given α service level. Order
quantities ensuring an arbitrary α service level, can be obtained by
inverting the cumulative distribution of the demand (Fig. 91). 0.2

0.4

0.6

0.8

1.0

Q*

α

F(x)

Fig. 91 Inverting the cumulative
distribution F(x) of the demand to
determine the order quantity Q∗ that
ensures a given α service level.

β service level (fill rate): this is defined as the “expected
fraction of demand that can be satisfied immediately from stock on
hand.” The order quantity Q∗ that ensures a given β service level
can be easily computed by leveraging the complementary first order
loss function

E[Q∗ −ω]+

E[ω]
= β.

class Newsvendor:
...
def critical_fractile(self):

return self.u/(self.o+self.u)

def alpha(self, Q):
return norm.cdf(Q,

loc=self.mean,
scale=self.std)

def beta(self, Q):
return self.cfolf(Q)/self.mean

Listing 69 Extending the Newsvendor
class with service levels.

In Listing 69 we extend the Newsvendor class with α and β

service levels, which are the most commonly used in practice.

γ service level (ready rate): this is defined as the “expected
fraction of time with positive stock on hand.” We shall illustrate
this service level for a Newsvendor problem subject to Poisson
demand. As discussed in our Appendix on Poisson processes, the
inter-arrival times between two Poisson arrivals originating from
a Poisson process with mean λ follow an exponential distribution
with mean λ−1 (and thus rate parameter λ). The sum of n exponen-
tially distributed random variables with rate parameter λ follows
an Erlang distribution with shape parameter n and rate parameter
λ, whose mean is n/λ. Let Q∗ = n, the ready rate can be computed
as γ = Q∗/λ — essentially the sum of n inter-arrival times whose
expected value is the sought ready rate 0 ≤ γ ≤ 1. Intuitively, λ is
the expected number of poisson arrivals per period, hence Q/λ is
the expected fraction of a period required to observe Q arrivals.

Shortage costs. Finally, recall that in general, there are three
possible strategies for charging stockout/backorder penalty cost
in inventory systems: we may charge a fixed or per unit cost once,
when one or more units of demand are not met; or we may charge
this cost per unit of demand short per time period, until an order
arrives and such unit of demand is served.

https://doi.org/10.11647/OBP.0252.07

120 inventory analytics

Simulating stochastic inventory systems

In this section, we illustrate how to modify our discrete simulation
framework (p. 39) to accommodate a stochastic demand.

First, it is necessary to slightly modify the DES engine as follows.

class EventWrapper():
def __init__(self, event):

self.event = event
def __lt__(self, other):

return self.event.priority < other.event.priority

class DES():
def __init__(self, end):

self.events, self.end, self.time = PriorityQueue() , end, 0

def start(self):
while True:

event = self.events.get()
self.time = event[0]
if self.time <= self.end: # this is now <=

event[1].event.end()
else:

break

def schedule(self, event: EventWrapper, time_lag: int):
self.events.put((self.time + time_lag, event))

We also implement penalty cost accounting in class Warehouse;

class Warehouse:
def __init__(self, inventory_level, fixed_ordering_cost, holding_cost,

penalty_cost):
self.i, self.K, self.h, self.p = inventory_level, fixed_ordering_cost,

holding_cost, penalty_cost
self.o = 0 # outstanding_orders
self.period_costs = defaultdict(int) # a dictionary recording period costs

def receive_order(self, Q, time):
self.review_inventory(time)
self.i, self.o = self.i + Q, self.o - Q
self.review_inventory(time)

def order(self, Q, time):
self.review_inventory(time)
self.period_costs[time] += self.K # incur ordering cost and store it
self.o += Q
self.review_inventory(time)

def on_hand_inventory(self):
return max(0,self.i)

def backorders(self):
return max(0,-self.i)

def issue(self, demand, time):
self.review_inventory(time)
self.i = self.i-demand

def inventory_position(self):
return self.o+self.i

def review_inventory(self, time):
try:

self.levels.append([time, self.i])
self.on_hand.append([time, self.on_hand_inventory()])
self.positions.append([time, self.inventory_position()])

except AttributeError:
self.levels, self.on_hand = [[0, self.i]], [[0, self.on_hand_inventory()]]
self.positions = [[0, self.inventory_position()]]

def incur_end_of_period_costs(self, time): # incur holding and penalty costs
self._incur_holding_cost(time)
self._incur_penalty_cost(time)

def _incur_holding_cost(self, time): # incur holding cost and store it
self.period_costs[time] += self.on_hand_inventory()*self.h

def _incur_penalty_cost(self, time): # incur penalty cost and store it
self.period_costs[time] += self.backorders()*self.p

stochastic inventory control 121

and we modify the EndOfPeriod event accordingly

class EndOfPeriod:
def __init__(self, des: DES, warehouse: Warehouse):

self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.priority = 0 # denotes a high priority

def end(self):
self.w.incur_end_of_period_costs(self.des.time)
self.des.schedule(EventWrapper(EndOfPeriod(self.des, self.w)), 1)

To model a Poisson demand with rate λ units per period rather
than a deterministic demand of λ units per period, in line with
what we discuss in our Appendices on Poisson processes and on
Discrete Event Simulation (p. 170), we slightly modify method end

in class CustomerDemand as follows.

class CustomerDemand:
def __init__(self, des: DES, demand_rate: float, warehouse: Warehouse):

self.d = demand_rate # the demand rate per period
self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.priority = 2 # denotes a low priority

def end(self):
self.w.issue(1, self.des.time) # issue one unit of demand
self.des.schedule(EventWrapper(self), np.random.exponential(1/self.d)) #

schedule another demand with an exponentially distributed delay

Events Order and ReceiveOrder are now assigned a medium prior-
ity (self.priority = 1).

We consider the same system simulated in Example 2.

def plot_inventory(values, label):
data
df=pd.DataFrame({’x’:

np.array(values)[:,0], ’fx’:
np.array(values)[:,1]})

plot
plt.xticks(range(len(values)),

range(1,len(values)+1))
plt.xlabel("t")
plt.ylabel("items")
plt.plot(’x’, ’fx’, data=df,

linestyle=’-’, marker=’’,
label=label)

Listing 70 The plot_inventory

function.

Example 29. We simulate operations of a simple inventory system by
leveraging the Python code in Listings 70 and 71. The warehouse initial
inventory is 10 units. The customer demand follows a Poisson distribution
with a rate of 10 unit per period. We simulate N = 20 periods. We order
50 units in periods 1, 5, 10, and 15; the delivery lead time is 1 period. The
fixed ordering cost is 100, the per unit inventory holding cost is 1.

np.random.seed(1234) # use common random numbers to ensure replicability
instance = {"inventory_level": 10, "fixed_ordering_cost": 100, "holding_cost": 1,

"penalty_cost": 5}
w = Warehouse(**instance)

N = 20 # planning horizon length
des = DES(N)

d = CustomerDemand(des, 10, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time = 1
o = Order(des, 50, w, lead_time)
for t in range(0,20,5):

des.schedule(EventWrapper(o), t) # schedule orders
des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod at the

end of the first period
des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Average cost per period: "+ ’%.2f’ % (sum([w.period_costs[e] for e in

w.period_costs])/len(w.period_costs)))

plot_inventory(w.positions, "inventory position")
plot_inventory(w.levels, "inventory level")
plt.legend(loc="lower right")
plt.show()

Listing 71 Simulating the behaviour
of a warehouse in Python. To ensure
replicability, we leverage common
random numbers [Kahn and Marshall,
1953].

122 inventory analytics

After simulating the system, we find that the average cost per
unit time is 51, this is higher than the cost (40) observed when
demand is deterministic and equal to λ per period. The behaviour
of the inventory system in terms of inventory level and inventory
position at the end of each period is shown in Fig. 92.

Fig. 92 Simulating the behaviour
of a warehouse in Python subject to
stochastic demand: inventory level
and inventory position at the end of
each period t ∈ {1, 20} when the initial
inventory level is 10. Demand now
follows a Poisson distribution with a
rate of 10 units per period.

We next use the discrete simulation code just presented to simu-
late a Newsvendor problem with o = 1, u = 5, and Poisson demand
with λ = 100.

def simulate_newsvendor():
instance = {"inventory_level": 0, "fixed_ordering_cost": 0, "holding_cost": 1,

"penalty_cost": 5}
w = Warehouse(**instance)

N = 1 # planning horizon length
des = DES(N)

d = CustomerDemand(des, 100, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time = 0
o = Order(des, 110, w, lead_time)
des.schedule(EventWrapper(o), 0) # schedule a single order at time 0
des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod with a

delay of one period

des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Total cost: "+ ’%.2f’ % (sum([w.period_costs[e] for e in w.period_costs])))

return sum([w.period_costs[e] for e in w.period_costs])

np.random.seed(1234)
replications = 1000
print("Simulated cost: " +str(sum([simulate_newsvendor() for k in

range(replications)])/replications))

By noting that a Poisson demand with λ = 100 is roughly equiva-
lent to a normally distributed demand with µ = 100 and σ = 10, by
using analytical results previously presented for the Newsvendor
model, we find that Q∗ = 110 and C(Q∗) = 14.99. The simulated
cost is 15.01, which closely approximates the analytical solution.

stochastic inventory control 123

The multi-period Newsvendor

This is a variant of the Newsvendor model in which the planning
horizon comprises T periods (Fig. 93). In each period t = 1, . . . , T,
we observe a random demand dt with known probability distribu-
tion. There is still a single opportunity to order, so that an order
quantity Q can be ordered only at the beginning of the planning
horizon. However, inventory overage (o , c − s) and underage
(u , p− c) costs are now incurred at the end of each period.

pmf(d1+d2)

period 1 time

in
v
e

n
to

ry

Q

0

pmf(d1) pmf(d1+d2+d3)

period 2 period 3

Fig. 93 The multi-period Newsvendor
problem.

Let Q denote the quantity ordered at the beginning of the period,
our goal is to minimise

C(Q) ,
T

∑
t=1

(p− c)E[d1..t −Q]+ + (c− s)E[Q− d1..t]
+ ≥ 0,

where [x]+ , max(x, 0); and d1..t , d1 + d2 + . . . + dt.

Lemma 39. C(Q) is convex.

Proof. For every t, function (p− c)E[d1..t −Q]+ + (c− s)E[Q− d1..t]
+

is equivalent to a traditional Newsvendor cost function; therefore
C(Q) is the sum of T convex functions.

Lemma 40 (Critical fractile). Let Q∗ , min C(Q), then

T

∑
t=1

F1..t(Q∗) =
Tu

o + u
, (29)

where F1..t is the cumulative distribution function of d1 + d2 + . . . + dt.
The optimal order quantity can be found by finding Q∗ that solves Eq. 29.

Proof. A proof of this result is provided in [Askin, 1981, p. 133].

Once more, if the random demand d is discrete, the global mini-
mum can be found by analysing the forward differences of C(Q).

The multi-period Newsvendor can be implemented in Python as
shown below.

124 inventory analytics

from itertools import accumulate
from scipy.stats import poisson
import scipy.integrate as integrate
from scipy.optimize import minimize

class MultiPeriodNewsvendor:
def __init__(self, instance):

self.mean, self.o, self.u = instance["mean"], instance["o"], instance["u"]

def cfolf(self, Q, d): # complementary first order loss function
return integrate.quad(lambda x: poisson.cdf(x, d), 0, Q)[0]

def folf(self,Q): # first order loss function
return self.cfolf(Q)-self.u*(Q - self.mean)

def C(self, Q): # C(Q)
return sum([(self.o+self.u)*self.cfolf(Q, d)-self.u*(Q - d) for d in

accumulate(self.mean)])

def optC(self): # min C(Q)
return minimize(self.C, 0, method=’Nelder-Mead’)

def verify_fractile_solution(self, Q):
T = len(self.mean)
critical_fractile = T*self.u/(self.u+self.o)
return sum([poisson.cdf(Q, d) for d in accumulate(self.mean)]) -

critical_fractile < 0.1

instance = {"o" : 1, "u": 5, "mean" : [10,10,10]}
nb = MultiPeriodNewsvendor(instance)
res = nb.optC()
print(res)
print("Verify critical fractile: "+str(nb.verify_fractile_solution(res.x[0])))

Example 30. We consider an instance comprising T = 3 periods. Demand
in each period t follows a Poisson distribution with λt = 10. After solving
this instance, the optimal order quantity is Q∗ = 30 and C(Q∗) = 43.30.
Q∗ has been obtained by using Nelder-Mead optimisation algorithm
[Nelder and Mead, 1965]. However, the cost also verifies via function
verify_fractile_solution that Q∗ is a solution to Eq. 29.

We can employ once more DES to simulate the cost of this inven-
tory system. The Python code is shown below.

def simulate_newsvendor():
instance = {"inventory_level": 0, "fixed_ordering_cost": 0, "holding_cost": 1,

"penalty_cost": 5}
w = Warehouse(**instance)

N = 3 # planning horizon length
des = DES(N)

d = CustomerDemand(des, 10, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time = 0
o = Order(des, 30, w, lead_time)
des.schedule(EventWrapper(o), 0) # schedule a single order at time 0
des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod with a

delay of one period
des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Total cost: "+ ’%.2f’ % (sum([w.period_costs[e] for e in w.period_costs])))

return sum([w.period_costs[e] for e in w.period_costs])

np.random.seed(1234)
replications = 10000
print("Simulated cost: " +str(sum([simulate_newsvendor() for k in

range(replications)])/replications))

The simulated value of C(Q∗) is 43.80, which is close to the result
previously obtained by using Nelder-Mead optimisation algorithm.

stochastic inventory control 125

The base-stock policy

We now consider the setting analysed in the multi-period Newsven-
dor problem, but we relax the single-order assumption. The aim is
then to control inventory of a single item type over a planning hori-
zon that comprises T periods. As in the multi-period Newsvendor
problem, we operate in a periodic-review setting. This means that
there is an opportunity to order at the beginning of each period
t, to meet a random demand dt that follows a known probability
distribution, which may differ from period to period; and that
inventory overage (also known as holding h) cost and inventory
underage (also known as backorder penalty cost p) are incurred at
the end of each period. Unmet demand at the end of each period is
carried over (backordered) to the next period, and met as soon as the
next replenishment arrives.

Since at the beginning of each period t, we have an opportunity
to replenish our stock, and since we incur no fixed cost for this, the
problem is essentially equivalent to solving a set of T independent
single-period Newsvendor problems.

Let It−1 be the closing inventory level at the end of period t− 1,
by leveraging the critical fractile solution presented in Lemma 38,
we define the order-up-to-level for period t as follows

St , F−1
t

(
p

h + p

)
,

where F−1
t is the inverse cumulative distribution function of dt. The

optimal action at the beginning of period t is therefore to order
Q∗t = max{St − It−1, 0}. In essence, at the beginning of period t, we
order-up-to St. This control policy is known as the base-stock policy.

Example 31. Let us consider a planning horizon comprising T = 5 periods.
Demand dt in each period t = 1, . . . , T follows a Poisson distribution with
mean λt = 10; for the sake of simplicity we here assume, without loss
of generality, that all λt are equal. Inventory holding cost is h = 1,
and inventory backorder penalty cost is p = 5. We solve five separate
Newsvendor problems, one for each period, we obtain St = 13, for all t.
The behaviour of the system when initial inventory is 10 is shown in Fig.
94

Simulating a base-stock policy only requires some minor adjust-
ments to our DES Python code. In particular, we shall replace the
Order class with the following OrderUpTo class.

class OrderUpTo:
def __init__(self, des: DES, S: float, warehouse: Warehouse, lead_time: float):

self.S = S # the order-up-to-level
self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.lead_time = lead_time
self.priority = 1 # denotes a medium priority

def end(self):
Q = self.S - self.w.inventory_position()
self.w.order(Q, self.des.time)
self.des.schedule(EventWrapper(ReceiveOrder(self.des, Q, self.w)),

self.lead_time)

126 inventory analytics

Fig. 94 Simulating the base-stock
policy in Example 31.

The problem can then be simulated as follows.

np.random.seed(1234)
instance = {"inventory_level": 10, "fixed_ordering_cost": 0, "holding_cost": 1,

"penalty_cost": 5}
w = Warehouse(**instance)

N = 5 # planning horizon length
des = DES(N)

d = CustomerDemand(des, 10, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time = 0
o = OrderUpTo(des, 13, w, lead_time)
for t in range(5):

des.schedule(EventWrapper(o), t) # schedule orders
des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod at the

end of the first period
des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Average cost per period: "+ ’%.2f’ % (sum([w.period_costs[e] for e in

w.period_costs])/len(w.period_costs)))

plot_inventory(w.positions, "inventory position")
plot_inventory(w.levels, "inventory level")
plt.legend(loc="lower right")
plt.show()

Lost sales. If we assume that unmet demand is lost at the end of
each period, as opposed to being backordered, the computation of
St does not change. However, the optimal action at the beginning of
period t is now to order Q∗t = max{St −max{It−1, 0}, 0}.

Positive order lead time. If an order is delivered after a posi-
tive lead time of l periods, the problem can be solved by leveraging
the solution to a multi-period Newsvendor over periods t, . . . , t + l
while computing the order-up-to-levels. In particular,

St ,

{
S
∣∣∣∣ T

∑
t=1

Ft..t+l(S) =
Tp

h + p

}
,

where Ft..t+l is the inverse cumulative distribution function of
dt + . . . , dt+l ; this accounts for the demand variability over lead time.

stochastic inventory control 127

To compute the associated optimal order quantity, first we need
to establish the order of events. We shall assume that, at the begin-
ning of a period, outstanding orders that are due to be delivered
in such period are received; then inventory is reviewed; and new
orders are issued. Let Ot denote the total outstanding order quan-
tity at the beginning of period t, when inventory is reviewed: these
are all the orders already issued, but not yet received. Define the
inventory position Pt , Ot + It−1, where It−1 is the inventory level
at the end of period t. Then the optimal action at the beginning of
period t is to order Q∗t = max{St − Pt, 0}.

Example 32. We consider the instance in Example 31 and set the order
delivery lead time to 1 period. By solving a multi-period Newsvendor over
a planning horizon of T = 2 periods with Poisson demand λt = 10 in each
of these, we obtain St = 20. The system behaviour is simulated in Fig. 95

Fig. 95 Simulating the base-stock
policy in Example 31 under an order
delivery lead time l = 1. If we simulate
a large number of periods (e.g. 500),
we can observe that the average cost
per period is now higher (11.14)
than that observed for the zero lead
time case (4.97). A positive lead time
makes it more expensive to control the
system.

np.random.seed(1234)
instance = {"inventory_level": 10, "fixed_ordering_cost": 0, "holding_cost": 1,

"penalty_cost": 5}
w = Warehouse(**instance)

N = 5 # planning horizon length
des = DES(N)
d = CustomerDemand(des, 10, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time = 1
o = OrderUpTo(des, 20, w, lead_time)
for t in range(N):

des.schedule(EventWrapper(o), t) # schedule orders
des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod at the

end of the first period
des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Average cost per period: "+ ’%.2f’ % (sum([w.period_costs[e] for e in

w.period_costs])/len(w.period_costs)))

plot_inventory(w.positions, "inventory position")
plot_inventory(w.levels, "inventory level")
plt.legend(loc="lower right")
plt.show()

128 inventory analytics

The modified base-stock policy

We now consider once more the setting analysed in the multi-
period Newsvendor problem, but in addition to relaxing the single-
order assumption, we assume that an order capacity constraint is in
place, so that at the beginning of each period, it is only possible to
order a quantity less or equal to B. SS-B

Fig. 96 Plot of miny∈[x,x+B] f (y).It is possible to show that the optimal policy to this periodic
review problem is a so-called modified base-stock policy in which, in
each period, we order up to the order-up-to-level St, or as close as
possible to it, given the ordering capacity.47 Therefore 47 Awi Federgruen and Paul Zipkin.

An inventory model with limited
production capacity and uncertain
demands I. The average-cost criterion.
Mathematics of Operations Research, 11

(2):193–207, 1986.

Q∗t = max{min{St − It−1, B}, 0}.

This result directly follows from the following lemma.

Lemma 41. Let f be convex, and S be a minimizer of f , then

min
y∈[x,x+B]

f (y) =


f (x) S ≤ x
f (S) S− B ≤ x ≤ S
f (x + B) x ≤ S− B

Proof. A proof (Fig. 96) is discussed in [Karush, 1959].

Example 33. We consider the instance in Example 31 and an ordering
capacity B = 13. The order-up-to-levels are not affected by the ordering
capacity, and they remain equal to St = 13, for all t.

The system can be once more simulated by making a few tweaks
to our DES code. In particular, we replace the OrderUpTo class with
the following ModifiedOrderUpTo class in Listing 72. Finally, we
amend the rest of the code as shown below.

class ModifiedOrderUpTo:
def __init__(self, des: DES, S:

float, warehouse: Warehouse,
lead_time: float, B: float):

self.S = S # the
order-up-to-level

self.w = warehouse # the
warehouse

self.des = des # the Discrete
Event Simulation engine

self.lead_time = lead_time
self.B = B
self.priority = 1 # denotes a

medium priority

def end(self):
Q = min(self.S -

self.w.inventory_position(),
self.B)

self.w.order(Q, self.des.time)
self.des.schedule(EventWrapper(

ReceiveOrder(self.des, Q,
self.w)), self.lead_time)

Listing 72 The ModifiedOrderUpTo

class.

np.random.seed(1234)
instance = {"inventory_level": 10, "fixed_ordering_cost": 0, "holding_cost": 1,

"penalty_cost": 5}
w = Warehouse(**instance)

N = 5 # planning horizon length
des = DES(N)
d = CustomerDemand(des, 10, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time, capacity = 0, 13
o = ModifiedOrderUpTo(des, 13, w, lead_time, capacity)
for t in range(N):

des.schedule(EventWrapper(o), t) # schedule orders
des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod at the

end of the first period
des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Average cost per period: "+ ’%.2f’ % (sum([w.period_costs[e] for e in

w.period_costs])/len(w.period_costs)))

plot_inventory(w.positions, "inventory position")
plot_inventory(w.levels, "inventory level")
plt.legend(loc="lower right")
plt.show()

If we simulate a large number of periods (e.g. 500), we can observe
that the average cost per period is now higher (6.25) than that
observed for the case in which the capacity costraint is absent (4.97).
An order capacity constraint makes it more expensive to control the
system.

stochastic inventory control 129

The (s, S) policy

We consider a single-item single-stocking location stochastic in-
ventory system subject to random demand. The planning horizon
is finite and comprises n periods — for convenience periods are
labelled in reverse order n, n − 1, . . . , 1. The probability density
function of the demand dt in period t is ft and its cumulative dis-
tribution function is Ft. The system operates under the following
cost structure: there is a purchasing or ordering cost c(x) for pur-
chasing x units of inventory; a holding cost h that is charged for
transferring one unit of inventory from one period to the next; and
a shortage cost p that charged for each unit short at the end of a
period. Unmet demand at the end of a period is backordered and
met as soon as the next replenishment arrives. We shall assume that
deliveries occurs only at the beginning of a period and that they are
instantaneous.

Let Cn(x) denote the expected total cost attained by an optimal
provisioning policy over periods n, . . . , 1 when the inventory at the
beginning of period n, before any order is placed, is x; then

Cn(x) , min
x≤y

{
c(y− x) + Ln(y) +

∫ ∞

0
Cn−1(y−ω) fn(ω)dω

}
;

where C0 , 0, and

Ln(y) ,
∫ y

0
h(y−ω) fn(ω)dω +

∫ ∞

y
p(ω− y) fn(ω)dω.

In what follows we shall concentrate on the case in which the
ordering cost takes the following structure

c(x) ,

{
0 x = 0,
K + vx x > 0.

In other words, we now have a fixed ordering cost component K,
which is incurred every time an order is placed, regardless of the
order size; and a variable ordering cost component v, which is
proportional to the size of the order.

The optimality of (s, S) policies

S

s

in
v

e
n

to
ry

 p
o

si
ti

o
n

time

Fig. 97 An (s, S) policy.

Scarf proved that, if Ln(y) is convex and ordering cost follows the
structure of c(x), the optimal policy is defined by a pair of critical
numbers (s, S) as follows: at the beginning of each period, if x < s
order S− x, otherwise, do not order (Fig 97). This control rule is
known as the (s, S) policy.48 48 Herbert E. Scarf. Optimality of (s, S)

policies in the dynamic inventory
problem. In K. J. Arrow, S. Karlin,
and P. Suppes, editors, Mathematical
Methods in the Social Sciences, pages
196–202. Stanford Univ. Pr., 1960.

We first introduce the following definition

Definition 21 (K-convexity). Let K ≥ 0, g(x) is K-convex if for all x,
a > 0, and b > 0,

K + g(x + a)− g(x)
a

≥ g(x)− g(x− b)
b

. (30)

130 inventory analytics

Scarf’s result is based on a study of function

Gn(y) , vy + Ln(y) +
∫ ∞

0
Cn−1(y−ω) fn(ω)dω.

Scarf proved that, if Ln(y) is convex, Gn(y) is K-convex and thus
satisfy the property in Definition 21.

For illustrative purposes (Fig. 98), it is worth rearranging terms
in Eq. 30 as follows

K + g(x + a) ≥ g(x) + a
g(x)− g(x− b)

b
.

y

x + a1

G(x + a1) + K

x + a2

G(x + a2) + K

x− b x

Gn(y)

Fig. 98 K-convexity of Gn: let a, b > 0,
pick two points (x− b, G(x− b)) and
(x, G(x)), draw a straight line passing
through them; then for any x + a, point
(x + a, G(x + a) + K) lies above the
straight line.

Without loss of generality, assume now Gn differentiable, and let
b→ 0; thus obtaining

K + Gn(x + a) ≥ Gn(x) + aG′n(x).

Consider all points x where G′n(x) = 0, these include all local
maxima of Gn. Let S be the global minimiser of Gn, it immediately
follows that K + Gn(S) is greater than the value of Gn at any local
maximum x < S (Fig. 99).

y

S

G(S) + KG(s)

s

G′n(x)

x

Gn(y)
Fig. 99 K-convexity of Gn: K + Gn(S)
is greater than the value of Gn at any
local maximum x < S, thus there
exists a unique value s such that
K + Gn(S) = Gn(s).

This means that, despite the fluctuations of Gn, there exists a
unique value s such that K + Gn(S) = Gn(s), where S , miny Gn(y).
In turn, this implies that an (s, S) policy is optimal.

This result, of course, hinges on K-convexity of Gn and Cn, which
must be proved.

stochastic inventory control 131

We first introduce three well-known properties (Lemma 42,
Lemma 43, and Lemma 44) of K-convex functions.

Lemma 42. 0-convexity is equivalent to ordinary convexity.

Lemma 43. If f and g are K-convex and M-convex, respectively, then
α f + βg is (αK + βM)-convex for α and β positive.

Lemma 44. If g is K-convex, then g(x + h) is K-convex for all h.

Scarf’s proof proceeds by induction. C0 , 0; L(y) is convex
and hence K-convex (Lemma 42); vy is linear and hence K-convex;
G1(y) is convex (Lemma 43) and hence K-convex (Lemma 42).
Assume that G2(y), . . . , Gn(y) are K-convex; to show that Gn+1(y)
is K-convex, it is sufficient to show that

∫ ∞
0 Cn(y− ω) fn(ω)dω is

K-convex; and by applying Lemma 43 and Lemma 44, it is sufficient
to show that Cn(x) is K-convex.

Theorem 1. Cn(x) is K-convex.

Proof. Observe that under an (s, S) policy, Cn(x) can be expressed
as follows

Cn(x) ,

{
K− vx + Gn(S) x ≤ s
−vx + Gn(x) x > s.

(31)

To prove that Cn(x) is K-convex, we analyse three possible cases
(Fig. 100) covering intervals within which x and x + a may lie.

Case 1

sm
x, x + a

Case 2 x x + a

Case 3 x, x + a

Fig. 100 Cases considered in the proof
of Theorem 1.

Case 1: x > s. In this region, Cn(x) is equal to a linear function plus
a K-convex function, hence it is K-convex.

Case 2: x < s < x + a. By applying Definition 21, Cn(x) is K-convex,
since K + Cn(x + a)− Cn(x)− aC′n(x) ≥ 0, that is

K + (−v(x + a) + Gn(x + a))− (K− vx + Gn(S))− a(−v + G′n(S)) ≥ 0

which is true, since Gn(x + a)− Gn(S) ≥ 0, for all x and a > 0, and
G′n(S) = 0, because S is the global minimiser of Gn.

Case 3: x < x + a < s. In this region, Cn(x) is linear.

Observe that this proof applies both to stationary and nonsta-
tionary demand. The proof can be also extended to the case of
a positive deterministic lead time; this extension is discussed in
[Scarf, 1960].

132 inventory analytics

Computing stationary (s, S) policy parameters

We consider a single-item single-stocking location stochastic inven-
tory system subject to stationary stochastic demand over an infinite
planning horizon and periodic review. The probability density func-
tion of the demand d in any given period is f and its cumulative
distribution function is F. The system operates under the follow-
ing cost structure: there is a purchasing or ordering cost c(x) for
purchasing x units of inventory; a holding cost h that is charged for
transferring one unit of inventory from one period to the next; and
a shortage cost p that charged for each unit short at the end of a
period. Unmet demand at the end of a period is backordered and
met as soon as the next replenishment arrives. We shall assume that
deliveries occurs only at the beginning of a period and that they are
instantaneous. The objective is to minimise the expected long run
average cost per period.

According to what was discussed in the previous section, an
(s, S) policy is optimal for this system. We shall now illustrate
how to compute optimal (s, S) policy parameters by following the
approach discussed by Zheng and Federgruen.49 49 Yu-Sheng Zheng and Awi Feder-

gruen. Finding optimal (s, S) policies
is about as simple as evaluating a
single policy. Operations Research, 39(4):
654–665, 1991.

At the beginning of any given period, if we have y units in stock,
the expected total holding and backordering costs can be expressed
as

G(y) , hE[y− d]+ + pE[d− y]+,

where E[y− d]+ and E[d− y]+ are the complementary first order
loss function and the first order loss function, respectively.

Definition 22. A replenishment cycle is the time between the placement of
two consecutive orders.

Observe that at the beginning of each replenishment cycle the
system “renews” itself, because the inventory position immediately
after an order is always equal to S. Let c(s, S) denote the expected
long run average cost per period of an (s, S) policy. By using the
reward-renewal theorem, Zheng and Federgruen express c(s, S) as
the expected cost per cycle divided by the expected cycle length.

For y > s, define k(s, y) as the expected total cost until the next
order is placed when the starting inventory position is equal to y
units. Let M(j) be the expected total time until an order is placed when
starting with s + j units. The expected long run average cost per
period of an (s, S) policy can be expressed as

c(s, S) =
k(s, S)

M(S− s)
.

We shall next find expressions for k(s, y) and M(j).

Lemma 45. Consider a discrete random demand d,

c(s, S) =
K + ∑S−s−1

j=0 m(j)G(S− j)

M(S− s)
,

where M(0) = 0; m(0) = (1− p0)
−1; m(j) = ∑

j
k=0 pkm(j − k), for

j = 1, 2, . . .; and pi is the probability that d = i, where i ≥ 0.50

50 Let ϕ(k) the probability mass func-
tion of the demand in a given period;
and ϕn(k) be the n-fold convolution of
ϕ(k). Define Φn(k) , ∑k

i=0 ϕn(i). Then
M(j) = ∑∞

i=1 Φi(j− 1) = ∑
j−1
k=0 m(k),

where m(j) = ∑∞
i=1 ϕi(j). These results

were originally presented in [Veinott
and Wagner, 1965].

stochastic inventory control 133

Proof. Both k(s, y) and M(j) satisfy the discrete renewal equations.
Therefore, for y > s

k(s, y) = G(y) + K
∞

∑
j=y−s

pj +
y−s−1

∑
j=0

pjk(s, y− j)

and, for j = 1, 2, . . .

M(j) = 1 +
j−1

∑
i=0

pi M(j− i).

From M(j) = ∑
j−1
k=0 m(k) It follows that, for j = 1, 2, . . .

M(j) = M(j− 1) + m(j− 1)

and therefore, for y > s

k(s, y) = K +
y−s−1

∑
j=0

m(j)G(y− j).

c(s, S) is unfortunately not convex. Zheng and Federgruen’s
efficient algorithm is based on the observation that c(s− 1, S) is a
convex combination of c(s, S) and G(s) (Lemma 46).

Lemma 46.
c(s− 1, S) = αnc(s, S) + (1− αn)G(s) (32)

where αn = M(n)/M(n + 1).

Proof. For the proof of this and of the following lemmas please
refer to [Zheng and Federgruen, 1991].

The following corollary immediately follows from Lemma 46.

Corollary 1. min{c(s, S), G(s)} ≤ c(s− 1, S) ≤ max{c(s, S), G(s)}.

By leveraging Lemma 46, one first determines necessary (Lemma
47) and sufficient (Lemma 48) conditions for s0 to be the optimal
reorder-level for a fixed order-up-to level S.

Lemma 47. If s0 is optimal for S, then c(s0, S) ≤ c(s, S) for all s.

Lemma 48. If G(s0 + 1) ≤ c(s0, S) ≤ G(s0), then s0 is optimal for S.

The following corollary can be used to find an optimal reorder
level for a given order-up-to-level.

Corollary 2. Given S, let s0 , max{y < y∗1 |c(y, S) ≤ G(y)}, then
Lemma 48 holds, and s0 is optimal for S.

Let
y∗1 , min{y|y = min

x
G(x)},

y∗2 , max{y|y = min
x

G(x)},

where −∞ < y∗1 ≤ y∗ ≤ y∗2 < ∞ — where y∗ is a minimum of G(x).
Next, we establish lower (s∗l) and upper (s∗u) bounds that apply to

an optimal reorder-level s∗.

134 inventory analytics

Let s∗l denote the smallest optimal reorder level.

Lemma 49. s∗l ≤ s̄ , y∗1 − 1.

Let s∗u denote the largest optimal reorder level.

Lemma 50. s0 ≤ s∗u, where s0 is the optimal reorder-level for some
arbitrary order-up-to level S.

Corollary 3. There exists an optimal reorder level s∗ such that

s0 ≤ s∗ ≤ s̄.

Note that the lower bound can be continuously improved as new
optimal reorder level s0 are found for new values of S.

Next, we establish lower (S
¯
) and upper (S̄) bounds that apply to

an optimal order-up-to level S∗.

Lemma 51. S
¯
, y∗2

Lemma 52. S̄ , max{y > S
¯
|G(y) < c∗}, where c∗ = c(s∗, S∗).

Corollary 4. There exists an optimal order-up-to level S∗ such that

S
¯
≤ S∗ ≤ S̄.

Corollary 5. S̄c , max{y > S
¯
|G(y) < c}, where c = c(s, S) is the

expected long run average cost per period of an arbitrary (s, S) policy.
Therefore, there exists an optimal order-up-to level S∗ such that

S
¯
≤ S∗ ≤ S̄ ≤ S̄c.

This corollary can be used to identify increasingly tighter upper
bounds for S∗ as increasingly better (s, S) policies are found.

For any fixed order up to level S let

c∗(S) , min
s<S

c(s, S).

Definition 23. S improves upon S0, if c∗(S) < c∗(S0).

Lemma 53. For a given order-up-to level S0 (≥ y∗1), let s0 (≤ y∗1) be
an optimal reorder-level. Then c∗(S) < c∗(S0) if and only if c(s0, S) <

c(s0, S0).

Thus, given a policy (s0, S0), we can easily identify an improving
S′ by simply comparing c(s0, S0) and c(s0, S′). If S′ improves upon
S0, then we want to find an optimal reorder-level s′ for S′.

Lemma 54. Assume that s0 ≤ s̄ is an optimal reorder-level for S0, and
that S′ improves upon S0, then there exists an optimal reorder-level s′ for
S′ with s′ ∈ {s0, . . . , s̄}.

The lemma therefore restricts the search for s′ to s0, . . . , s̄.
We next present Zheng and Federgruen’s algorithm to find an

optimal (s∗, S∗) policy. A sample instance is presented in Listing 73.

stochastic inventory control 135

Optimal policy: (6,40)
c(s*,S*) = 35.02

instance = {’mu’: 10, ’K’: 64, ’h’:
1., ’b’: 9.}

pb = ZhengFedergruen(**instance)
print(pb.findOptimalPolicy())

Listing 73 An instance of the station-
ary stochastic lot sizing problem. The
execution path is illustrated in Fig.
101.

S

s

Fig. 101 Execution of the algorithm for
the instance in Listing 73.

findOptimalPolicy: We enter the
algorithm with an initial (arbitrary)
order-up-to-level S0 = y∗, where
y∗ , minyG(y). We find an optimal
corresponding reorder level s0 by
decreasing s from y∗ with unit-sized
decrements until c(s, S0) <= G(s).
Optimality of s0 for S0 follows from
Corollary 2. We then search for the
smallest value of S that is larger
than S0 and improves upon S0. S is
increased with unit-sized increments.
A single comparison of c(s0, S) and
c(s0, S0) is sufficient to verify if a
given value of S improves upon S0

(Lemma 53). If S improves upon
S0, S0 is updated to S and the new
corresponding optimal reorder level
s0 is determined by incrementing
the old reorder level with unit-sized
increments until c(s, S0) > G(s + 1).
The existence of such a reorder level
s0, its optimality for the new value
S0, and the fact that s0 < y∗, are all
guaranteed by Lemma 54.

import numpy as np, functools
from scipy.stats import poisson
from inventoryanalytics.utils import memoize as mem

def expectation(f, x, p): # E[f(X)] = sum f(x_i) p_i
return np.dot(f(x),p)

class ZhengFedergruen(object):
"""
The stationary stochastic lot sizing problem.
"""
def __init__(self, mu, K, h, b):

"""
Constructs an instance of the stochastic lot sizing problem

Arguments:
mu {[type]} -- the expected demand
K {[type]} -- the fixed ordering cost
h {[type]} -- the proportional holding cost
b {[type]} -- the penalty cost

"""

self.K, self.h, self.b, self.mu = K, h, b, mu
self.p = poisson.pmf(np.arange(10*mu), self.mu) # set a safe upper bound for

the random variable support (e.g. 10 times the mean demand)

def G_L(self, y): # the one-period inventory cost
return self.b*np.maximum(0,-y) + self.h*np.maximum(0,y)

def G(self, y): # expected one period inventory cost
return expectation(self.G_L, y - np.arange(0, len(self.p)), self.p)

@memoize # see appendix on SDP for memoize class implementation
def m(self, j): # [Zheng and Federgruen, 1991] eq. 2a

if j == 0:
return 1./(1. - self.p[0])

else: # [Zheng and Federgruen, 1991] eq. 2b
res = sum(self.p[l]*self.m(j-l) for l in range(1,j+1))
res /= (1. - self.p[0])
return res

@memoize
def M(self, j): # [Zheng and Federgruen, 1991] eq. 2c

if j == 0:
return 0.

else:
return self.M(j-1) + self.m(j-1)

def k(self, s,y): # [Zheng and Federgruen, 1991] eq. 5
res = self.K
res += sum(self.m(j)*self.G(y-j) for j in range(y-s))
return res

def c(self, s,S): # [Zheng and Federgruen, 1991] eq. 3
return self.k(s,S)/self.M(S-s)

def findOptimalPolicy(self):

[Zheng and Federgruen, 1991] algorithm on Page 659
ystar = poisson.ppf(self.b/(self.b+self.h),self.mu).astype(int) #base stock

level, an arbitrary minimum of G
s = ystar - 1 # upper bound for s*
S_0 = ystar + 0 # lower bound for S*

#calculate the optimal s for S_0 by decreasing s until c(s,S_0) <= G(s)
while self.c(s,S_0) > self.G(s):

s -= 1
s_0 = s # optimal value of s for S_0
c0 = self.c(s_0,S_0) # expected long run average cost per period of (s_0,S_0)
S0 = S_0 # S0 = S^0 of the paper
S = S0 + 1
while self.G(S) <= c0:

if self.c(s,S) < c0: # S improves upon S0
S0 = S
while self.c(s,S0) <= self.G(s+1): # calculate the optimal s for S_0

s += 1
c0 = self.c(s,S0)

S += 1
self.s_star = s
self.S_star = S0
return s, S0

136 inventory analytics

The system can be once more simulated by making a few tweaks
to our DES code. In particular, we replace the OrderUpTo class with
the following InventoryReview class.

class InventoryReview:
def __init__(self, des: DES, s: float, S: float, warehouse: Warehouse, lead_time:

float, B: float):
self.s, self.S = s, S # the reorder point and the order-up-to-level
self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.lead_time, self.B = lead_time, B
self.priority = 1 # denotes a medium priority

def end(self):
if self.w.inventory_position() < self.s:

Q = min(self.S - self.w.inventory_position(), self.B)
self.w.order(Q, self.des.time)
self.des.schedule(EventWrapper(ReceiveOrder(self.des, Q, self.w)),

self.lead_time)
self.des.schedule(EventWrapper(self), 1) # schedule another review in 1 period

Finally, we amend the rest of the code as shown below.

np.random.seed(1234)
instance = {"inventory_level": 00, "fixed_ordering_cost": 64, "holding_cost": 1,

"penalty_cost": 9}
w = Warehouse(**instance)

N = 20 # planning horizon length
des = DES(N)
d = CustomerDemand(des, 10, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

lead_time, capacity, s, S = 0, 10000, 6, 40 # set a very large capacity
o = InventoryReview(des, s, S, w, lead_time, capacity)
des.schedule(EventWrapper(o), 0) # schedule an order immediately
des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod at the

end of the first period
des.start()

print("Period costs: "+str([w.period_costs[e] for e in w.period_costs]))
print("Average cost per period: "+ ’%.2f’ % (sum([w.period_costs[e] for e in

w.period_costs])/len(w.period_costs)))

plot_inventory(w.positions, "inventory position")
plot_inventory(w.levels, "inventory level")
plt.plot([S for k in range(N)], label="S")
plt.plot([s for k in range(N)], label="s")
plt.legend(loc="lower right")
plt.show()

The simulated average cost per period (34.8) approaches that
computed by Zheng and Federgruen’s algorithm (Fig. 102).

Fig. 102 Simulating the stationary
(s, S) policy for the numerical example
in Listing 73. If inventory position falls
below s at the beginning of any given
period, an order is issued to bring the
inventory position up to S.

stochastic inventory control 137

Computing nonstationary (s, S) policy parameters

Definition 24. A stochastic process {dt} is nonstationary if the distribu-
tion of dt varies with t, i.e. it is time-dependent.

We present a Stochastic Dynamic Programming algorithm for
computing optimal (st, St) policy parameters for the case in which
demand is nonstationary over a finite horizon. An introduction to
Stochastic Dynamic Programming is provided in the Appendix.

We first list the relevant imports.

from typing import List
import scipy.stats as sp
import json

We implement the state of the inventory system in class State.

class State:
"""
The state of the inventory system.

Returns:
[type] -- state of the inventory system

"""

def __init__(self, t: int, I: float):
self.t, self.I = t, I # time period t, and inventory level I

def __eq__(self, other):
return self.__dict__ == other.__dict__

def __str__(self):
return str(self.t) + " " + str(self.I)

def __hash__(self):
return hash(str(self))

Finally, we implement the Stochastic Dynamic Programming
algorithm in class StochasticLotSizing

class StochasticLotSizing:
"""
The nonstationary stochastic lot sizing problem.

Returns:
[type] -- A problem instance

"""

def __init__(self, K: float, v: float, h: float, p: float, d: List[float],
max_inv: float, q: float, initial_order: bool):

"""
Create an instance of StochasticLotSizing.

Arguments:
K {float} -- the fixed ordering cost
v {float} -- the proportional unit ordering cost
h {float} -- the proportional unit inventory holding cost
p {float} -- the proportional unit inventory penalty cost
d {List[float]} -- the demand probability mass function
taking the form [[d_1,p_1],...,[d_N,p_N]], where d_k is
the k-th value in the demand support and p_k is its
probability.

max_inv {float} -- the maximum inventory level
q {float} -- quantile truncation for the demand
initial_order {bool} -- allow order in the first period

"""

initialize instance variables
self.T, self.K, self.v, self.h, self.p, self.d, self.max_inv = len(d)-1, K, v,

h, p, d, max_inv

demand distributions
max_demand = lambda d: sp.poisson(d).ppf(q).astype(int) # max demand
pmf = lambda d, k : sp.poisson(d).pmf(k)/q # poisson pmf
self.pmf = [[[k, pmf(d, k)] for k in range(0, max_demand(d))] for d in self.d]

https://doi.org/10.11647/OBP.0252.07

138 inventory analytics

lambdas
if initial_order: # action generator

self.ag = lambda s: [x for x in range(0, max_inv-s.I)]
else:

self.ag = lambda s: [x for x in range(0, max_inv-s.I)] if s.t > 0 else [0]
self.st = lambda s, a, d: State(s.t+1, s.I+a-d) # state transition
L = lambda i,a,d : self.h*max(i+a-d, 0) + self.p*max(d-i-a, 0) # immediate

holding/penalty cost
self.iv = lambda s, a, d: (self.K if a > 0 else 0) + L(s.I, a, d) # immediate

value function

self.cache_actions = {} # cache with optimal state/action pairs

def f(self, level: float) -> float:
"""
Recursively solve the nonstationary stochastic lot sizing problem
for an initial inventory level.

Arguments:
level {float} -- the initial inventory level

Returns:
float -- the cost of an optimal policy

"""
s = State(0,level)
return self._f(s)

def q(self, period: int, level:float) -> float:
"""
Retrieves the optimal order quantity for a given initial inventory level.
Function :func:‘f‘ must have been called before using this method.

Arguments:
period {int} -- the initial period
level {float} -- the initial inventory level

Returns:
float -- the optimal order quantity

"""
s = State(period,level)
return self.cache_actions[str(s)]

@memoize # see appendix on SDP for memoize class implementation
def _f(self, s: State) -> float: # Scarf’s C_n(x) functional equation

"""
Dynamic programming forward recursion.

Arguments:
s {State} -- the initial state

Returns:
float -- the cost of an optimal policy

"""
#Forward recursion
v = min(

[sum([p[1]*(self.iv(s, a, p[0])+ # immediate cost
(self._f(self.st(s, a, p[0])) if s.t < self.T else 0)) # future cost

for p in self.pmf[s.t]]) # demand realisations
for a in self.ag(s)]) # actions

opt_a = lambda a: sum([p[1]*(self.iv(s, a, p[0])+
(self._f(self.st(s, a, p[0])) if s.t < self.T else 0))

for p in self.pmf[s.t]]) == v
q = [k for k in filter(opt_a, self.ag(s))] # retrieve best action list
self.cache_actions[str(s)]=q[0] if bool(q) else None # store action
return v # return expected total cost

def extract_sS_policy(self) -> List[float]:
"""
Extract optimal (s,S) policy parameters

Returns:
List[float] -- the optimal s,S policy parameters [...,[s_k,S_k],...]

"""
for i in range(-self.max_inv, self.max_inv):

self.f(i)
policy_parameters = []
for t in range(0, len(self.d)):

level = self.max_inv - 1
min_level = -self.max_inv
s = State(t, level)
while self.cache_actions.get(str(s), 0) == 0 and level > min_level:

level, s = level - 1, State(t, level - 1)
policy_parameters.append(

[level, level+self.cache_actions.get(str(s), 0)])
return policy_parameters

stochastic inventory control 139

Example 34. We consider an instance of the stochastic lot sizing problem
over a planning horizon comprising N = 4 periods. Demand in each
period follows a Poisson distribution with mean λt. The values of λt are
shown in the following table.

t 1 2 3 4

λt 20 40 60 40

The fixed ordering cost is K = 100, for the sake of simplicity the per
unit ordering cost is v = 0, holding cost is h = 1, and penalty cost is
p = 10.

The instance in Example 34 can be solved as follows.

instance = {"K": 100, "v": 0, "h": 1, "p": 10, "d": [20,40,60,40], "max_inv": 200,
"q": 0.9999, "initial_order": True}

lot_sizing = StochasticLotSizing(**instance)
t, I = 0, 0 # initial period, initial inventory level
print("Optimal policy cost: " + str(lot_sizing.f(i)))
print("Optimal order quantity: " + str(lot_sizing.q(t, i)))
print(lot_sizing.extract_sS_policy())

The optimal policy cost is 332.1 The optimal (st, St) policy parame-
ters for each period t are shown in the following table.

t 1 2 3 4

St 67 49 109 49

st 15 28 55 28

In Fig. 103 we plot Scarf’s Gn(y), and Cn(x) functions for the
first period of the instance in Example 34. The optimal order quan-
tity Q for each initial inventory level x is also plotted.

Fig. 103 Scarf’s Gn(y) and Cn(x)
functions for the first period of the
instance in Example 34, i.e. n = 4.
The optimal order quantity Q for each
initial inventory level x is also plotted.

Stochastic Dynamic Programming features a pseudo-polynomial
complexity, and can therefore only solve small instances. A more
efficient mathematical programming heuristic has been discussed in
[Xiang et al., 2018].

140 inventory analytics

The modified (s, S) policy

In this section, we consider the same problem addressed in [Scarf,
1960]: inventory of a single item subject to random demand must
be controlled over a planning horizon of n periods under fixed
ordering (K), holding (h), and backorder penalty (p) cost. However,
the manager now also faces order quantity capacity constraints: in
each period, the amount ordered cannot exceed a fixed quantity B.

The first to investigate this problem was Wijngaard.51 Wijngaard 51 Jacob Wijngaard. An inventory prob-
lem with constrained order capacity.
Technical report, TU Eindhoven, the
Netherlands, 1972.

conjectured that an optimal strategy may feature a so-called modified
(s, S) structure: if the inventory level is greater or equal to s, do not
order; otherwise, order up to S, or as close to S as possible, given
the ordering capacity.52 52 Note that a modified (s, S) policy

generally performs very well: it is
either optimal, or very close to optimal,
and thus it represents a valid heuristic
for this problem.

Unfortunately, both [Wijngaard, 1972] and [Shaoxiang and
Lambrecht, 1996] provided counterexamples that ruled out the
optimality of a modified (s, S) policy. These counterexamples are
fairly easy to produce by slightly amending the Stochastic Dynamic
Programming code for computing nonstationary (s, S) policy
parameters. In particular, the only change that is required concerns
the lambda expressions for the action generator

if initial_order: # action generator
self.ag = lambda s: [x for x in range(0, min(max_inv-s.I, B))]

else:
self.ag = lambda s: [x for x in range(0, min(max_inv-s.I, B)] if s.t > 0 else [0]

where B is the ordering capacity.53 53 Note that modified (s, S) policy
parameters can be extracted by using
the function extract_sS_policy

previously presented.

We hereby illustrate a numerical example originally presented in
[Shaoxiang and Lambrecht, 1996, p. 1015] and also investigated in
[Shaoxiang, 2004] under an infinite horizon.

Example 35. Consider a planning horizon of n = 20 periods and a
stationary demand d distributed in each period according to the following
probability mass function: Pr{d = 6} = 0.95 and Pr{d = 7} = 0.05.
Other problem parameters are K = 22, B = 9, h = 1 and p = 10 and
v = 1; however, note that for a stationary problem with a sufficiently
long horizon, v can be safely ignored. The authors also consider a discount
factor α = 0.9, which can be easily embedded in the code we presented.

In Table 12 we report the tabulated optimal policy as illustrated
in [Shaoxiang, 2004, p. 417]. It is easy to see that this policy does
not follow a modified (s, S) rule as defined above.

Starting inventory level -3 -2 -1 0 1 2 3 4 5 6 7

Optimal order quantity 9 8 7 9 8 7 9 8 7 0 0

Table 12 Optimal policy as illustrated
in [Shaoxiang, 2004, p. 417].

However, [Shaoxiang and Lambrecht, 1996, Shaoxiang, 2004] pro-
vided a partial characterisation of the optimal policy, and proved
that the optimal policy for this problem features a so-called X − Y
band structure: when initial inventory level is above Y, it is opti-
mal to not order; when initial inventory level is below X, where
Y− X ≤ B, it is optimal to order at full capacity.

stochastic inventory control 141

Nervousness of control

We consider once more the stochastic lot sizing problem addressed
in [Scarf, 1960]. The (s, S) policy is optimal in the sense that it min-
imises the expected total cost. However, this policy suffers from
high nervousness of the control action.54 Tunc et al. distinguish 54 Huseyin Tunc, Onur A. Kilic, S. Ar-

magan Tarim, and Burak Eksioglu. A
simple approach for assessing the cost
of system nervousness. International
Journal of Production Economics, 141(2):
619–625, 2013.

two types of nervousness of the control action: setup-oriented and
quantity-oriented. Setup-oriented nervousness is the degree by
which timing of next replenishment is unpredictable; quantity-
oriented nervousness is the degree by which quantity of next
replenishment is unpredictable.55 Tunc et al. argue that nervous- 55 While the (s, S) policy is cost op-

timal, the (R, Q) policy is the most
expensive strategy. The cost of static-
dynamic uncertainty strategies fall
in between these two limiting cases.
A comprehensive cost comparison
among all these strategies is presented
in [Dural-Selcuk et al., 2020, Ma et al.,
2020].

ness of control can be categorised in terms of three well-established
inventory control strategies: static uncertainty, dynamic uncertainty,
and static-dynamic uncertainty, which were originally discussed in
[Bookbinder and Tan, 1988], and which reflect extreme cases with
regard to the setup- and the quantity-oriented nervousness.

The dynamic uncertainty strategy is the (s, S) policy discussed (s, S) policy

in [Scarf, 1960]. In this strategy, at the beginning of each period, the
manager reviews the inventory, decides if an order has to be issued,
and the size of such order. In this strategy both timing of next
replenishment and its quantity are unpredictable, and the strategy
therefore features high setup- and quantity-oriented nervousness.

The static-dynamic uncertainty strategy can be implemented
in the form of two policies: the (R, S) policy and the (s, Q) policy.

In the (R, S) policy, at the beginning of the planning horizon, we (R, S) policy

fix once and for all the length R of all future replenishment cycles;
conversely, the size of an order is only computed at the beginning
of each replenishment cycle, as the quantity necessary to raise
the inventory position up to S. This strategy presents low setup-
oriented, and high quantity-oriented nervousness. It is particularly
suitable when order coordination across multiple SKUs is a concern,
e.g. when multiple SKUs are ordered from the same supplier.

In the (s, Q) policy, at the beginning of the planning horizon, (s, Q) policy

we fix once and for all the order quantities for all future periods;
conversely, whether an order is issued or not at any given period,
is determined by checking if the inventory position has fallen
below the reorder point s. The timing of future replenishment
periods is therefore uncertain. This strategy presents high setup-
oriented nervousness, and low quantity-oriented nervousness. It
is particularly suitable when predictability of order processing
workload is a concern, e.g. staff rostering for processing orders.

The static uncertainty strategy is known as the (R, Q) policy. (R, Q) policy

In this strategy, at the beginning of the planning horizon, we decide
once and for all the length R of all future replenishment cycles, and
the associated order quantities. This strategy presents low setup-
oriented nervousness, and low quantity-oriented nervousness.

142 inventory analytics

The (R, S) policy

We consider the same problem addressed in [Scarf, 1960]: inventory
of a single item subject to random demand must be controlled over
a planning horizon of n periods under fixed ordering (K), holding
(h), and backorder penalty (p) cost. We formulate the problem in
Python as follows.

from typing import List

class StochasticLotSizing:
"""
A stochastic lot sizing problem.
"""
def __init__(self, K: float, h: float, p: float, d: List[float], I0: float):

"""
Create an instance of the stochastic lot sizing problem.

Arguments:
K {float} -- the fixed ordering cost
h {float} -- the per unit holding cost
p {float} -- the per unit penalty cost
d {List[float]} -- the poisson demand rate in each period
I0 {float} -- the initial inventory level

"""

self.K, self.h, self.p, self.d, self.I0 = K, h, p, d, I0

However, we hereby adopt a static-dynamic uncertainty strategy
[Bookbinder and Tan, 1988] in the form of an (R, S) policy. Our aim
is to compute near optimal (R, S) policy parameters.

Definition 25. A replenishment cycle is the time interval i, . . . , j between
two consecutive orders occurring at time i and j + 1.

S
in

v
e

n
to

ry
 p

o
si

ti
o

n

time

R

Fig. 104 An (R, S) policy.

At the beginning of each replenishment cycle of length R, an
(R, S) policy raises the inventory position up to S (Fig. 104). Since
we operate under an order-up-to policy, the expected total cost
c(i, j) of a replenishment cycle spanning over periods i, . . . , j is the
expected total cost of a multi-period Newsvendor problem over the
same time interval. The solution to this problem has been already
discussed at p. 123. The relevant code is the following.

import scipy.integrate as integrate
from itertools import accumulate
from scipy.stats import poisson
from scipy.optimize import minimize

class MultiPeriodNewsvendor:
def __init__(self, mean, h, p):

self.mean, self.o, self.u = mean, h, p

def cfolf(self, Q, d): # complementary first order loss function
return integrate.quad(lambda x: poisson.cdf(x, d), 0, Q)[0]

def folf(self,Q): # first order loss function
return self.cfolf(Q)-self.u*(Q - self.mean)

def _C(self, Q): # C(Q)
return sum([(self.o+self.u)*self.cfolf(Q, d)-self.u*(Q - d) for d in

accumulate(self.mean)])

def optC(self): # min C(Q)
return minimize(self._C, 0, method=’Nelder-Mead’)

Given a planning horizon of n periods, we can precompute
the expected total cost c(i, j) of every replenishment cycle, for
i, j ∈ {1, . . . , n}. i < j.

stochastic inventory control 143

Once cycle costs have been precomputed, the optimal replenish-
ment plan can be easily determined by adopting the same strategy
used to solve the Dynamic Lot Sizing Problem in a deterministic
setting (p. 61). In particular, we represent our problem as a Di-
rected Acyclic Graph (DAG) in which arcs represent all possible
replenishment cycles that can take place within our n-period plan-
ning horizon. Approximating the expected total cost of an optimal
plan is equivalent to finding the shortest path in this DAG. This
can be done efficiently by leveraging Dijkstra’s algorithm [Dijkstra,
1959]. The relevant Python code is shown below and in Listing 74.

instance = {"K": 100, "h": 1, "p": 10,
"d":[20,40,60,40]}

ww = RS_DP(**instance)
print("Cost of an optimal plan: ",

ww.optimal_cost())
print("Optimal order-up-to-levels: ",

ww.order_up_to_levels())

Listing 74 A stochastic lot sizing
problem instance solved under the
(R, S) policy. The approximated
expected total cost is 388.7. The
optimal replenishment plan prescribes
orders in periods 1, 3, and 4; the
associated order-up-to-levels are 67,
70, 48. Contrast this solution with the
optimal (s, S) policy and its cost (332.1)
discussed for this example at p. 139.

For a stationary demand, the (R, S)
policy can be simulated by using a
DES code similar to that presented
for the (s, S) policy. However, in the
revised code, inventory reviews will
have to be scheduled in advance, at the
timings prescribed by the (R, S) policy.

import networkx as nx

class RS_DP(StochasticLotSizing):
"""
Implements the traditional shortest path algorithm with stochastic cycle costs.

James H. Bookbinder and Jin-Yan Tan. Strategies for the probabilistic lot-sizing
problem with service-level constraints. Management Science, 34(9):1096-1108, 1988.
"""

def __init__(self, K: float, h: float, p: float, d: List[float]):
"""
Create an instance of the stochastic lot sizing problem.
Initial inventory level assumed to be 0.

Arguments:
K {float} -- the fixed ordering cost
h {float} -- the per unit holding cost
p {float} -- the per unit penalty cost
d {List[float]} -- the demand in each period

"""
super().__init__(K, h, p, d, 0)

self.graph = nx.DiGraph()
for i in range(0, len(self.d)):

for j in range(i+1, len(self.d)):
self.graph.add_edge(i, j, weight=self.cycle_cost(i, j-1))

def cycle_cost(self, i: int, j: int) -> float:
’’’
Compute the expected total cost of a cycle covering periods i,...,j
when initial inventory is zero
’’’
if i>j: raise Exception(’i>j’)

return self.K + MultiPeriodNewsvendor(self.d[i:j+1], self.h,self.p).optC().fun

def optimal_cost(self) -> float:
’’’
Approximates the cost of an optimal solution
’’’
T, cost, g = len(self.d), 0, self.graph
path = nx.dijkstra_path(g, 0, T-1)
path.append(len(self.d))
for t in range(1,len(path)):

cost += self.cycle_cost(path[t-1],path[t]-1)
print("c("+str(path[t-1])+","+str(path[t]-1)+") =

"+str(self.cycle_cost(path[t-1],path[t]-1)))
return cost

def order_up_to_levels(self) -> List[float]:
’’’
Compute optimal order-up-to-levels
’’’
T, g = len(self.d), self.graph
path = nx.dijkstra_path(g, 0, T-1)
path.append(len(self.d))
qty = [0 for k in range(0,T)]
for t in range(1,len(path)):

qty[path[t-1]] = MultiPeriodNewsvendor(self.d[path[t-1]:path[t]],
self.h,self.p).optC().x[0]

return qty

Advanced mathematical programming heuristics are discussed in
[Tarim and Kingsman, 2006, Rossi et al., 2015, Tunc et al., 2018].

144 inventory analytics

The (s, Q) policy

We consider the same problem addressed in [Scarf, 1960]: inventory
of a single item subject to random demand must be controlled over
a planning horizon of n periods under fixed ordering (K), holding
(h), and backorder penalty (p) cost.

We hereby focus on a static-dynamic uncertainty strategy [Book-
binder and Tan, 1988] in the form of an (s, Q) policy. Our aim is to
compute near optimal (s, Q) policy parameters.

The DES code required to simulate an (s, Q) policy is essen-
tially identical to that used to simulate an (s, S) policy. The only
change required concerns the InventoryReview class, which must
be amended as follows to capture the fact that when inventory
position falls below s, we order a fixed quantity Q.56 56 Recall that in the (s, S) policy the

order quantity was dynamically
determined to bring the inventory
position up to S.

class InventoryReview:
def __init__(self, des: DES, s: float, Q: float, warehouse: Warehouse, lead_time:

float):
self.s, self.Q = s, Q # the reorder point and the order quantity
self.w = warehouse # the warehouse
self.des = des # the Discrete Event Simulation engine
self.lead_time = lead_time
self.priority = 1 # denotes a medium priority

def end(self):
if self.w.inventory_position() < self.s:

self.w.order(self.Q, self.des.time)
self.des.schedule(EventWrapper(ReceiveOrder(self.des, self.Q, self.w)),

self.lead_time)
self.des.schedule(EventWrapper(self), 1) # schedule another review in 1 period

Example 36. Consider the same instance57 presented in Listing 73. This 57 Instance parameters: µ = 10, K = 64,
h = 1, and p = 9.instance was solved using Zheng and Federgruen’s algorithm, which

produced an (s, S) policy with parameters s = 6 and S = 40 and an
expected total cost 35.02. We arbitrarily set (s, Q) policy parameters to
s = 6, and Q = 40;58 and simulate this policy (Fig. 108). The simulated 58 Q is thus set to the value of the

order-up-to-level under an optimal
(s, S) policy.

cost (35.6) is slightly higher than of an optimal (s, S) policy.

Fig. 105 Simulating the stationary
(s, Q) policy for the numerical example
in Listing 73. If inventory position falls
below s at the beginning of any given
period, an order of size Q is issued.

stochastic inventory control 145

Instead of setting arbitrary (s, Q) policy parameters, we may
want to find optimal ones. Unfortunately, computing optimal
(s, Q) policy parameters is a challenging task even under stationary
demand.59 We thus approximate this problem numerically using a 59 Advanced mathematical program-

ming heuristics for computing nonsta-
tionary (s, Q) policy parameters are
discussed in [Ma et al., 2020].

simulation-optimisation strategy [Jalali and Nieuwenhuyse, 2015].60

60 To simulate the cost of a given
pair of (s, Q) policy parameters, we
leverage our DES code; to optimise
over the space of all possible (s, Q)
policy parameter pairs we rely on
Nelder-Mead’s algorithm [Nelder and
Mead, 1965].

import matplotlib.pyplot as plt, numpy as np, pandas as pd
from scipy.optimize import minimize

class sQ:
def __init__(self, instance, demand, lead_time, N):

self.instance, self.demand, self.lead_time, self.N = instance, demand,
lead_time, N

def _run_DES(self, parameters):
s, Q = tuple(parameters)
np.random.seed(1234)
w = Warehouse(**self.instance)
des = DES(self.N)
d = CustomerDemand(des, self.demand, w)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately
o = InventoryReview(des, s, Q, w, self.lead_time)
des.schedule(EventWrapper(o), 0) # schedule an order immediately
des.schedule(EventWrapper(EndOfPeriod(des, w)), 1) # schedule EndOfPeriod at

the end of the first period
des.start()
return w

def simulate(self, parameters):
w = self._run_DES(parameters)
return (sum([w.period_costs[e] for e in w.period_costs])/len(w.period_costs))

instance = {"inventory_level": 0, "fixed_ordering_cost": 64, "holding_cost": 1,
"penalty_cost": 9}

demand, lead_time = 10, 0
N = 1000 # planning horizon length
sq = sQ(instance, demand, lead_time, N)
s, Q = 6, 40 # use optimal (s,S) policy parameters as initial solution for the

optimisation
m = "Nelder-Mead"
res = minimize(sq.simulate, [s,Q], method=m, options={"maxiter": 50})
print([m, list(res.x), res.fun])

Nelder-Mead’s algorithm converges to a solution in which s = 6,
and Q = 39;61 the expected total cost of this (s, Q) policy is 35.06 — 61 We have rounded the original

solution to the closest integer values
since demand follows a Poisson
distribution.

only slightly higher than that of an optimal policy. In Fig. 106 we
illustrate the execution path of the algorithm.

Fig. 106 Nelder-Mead execution path
within the landscape of the expected
total cost of the (s, Q) policy for the
example in Listing 73.

146 inventory analytics

The (R, Q) policy

We consider the same problem addressed in [Scarf, 1960]: inventory
of a single item subject to random demand must be controlled over
a planning horizon of n periods under fixed ordering (K), holding
(h), and backorder penalty (p) cost.

We hereby focus on a static uncertainty strategy [Bookbinder and
Tan, 1988] in the form of an (R, Q) policy. Since an (R, Q) policy
fixes both the timing and the quantity of replenishments at the
beginning of the planning horizon, it can be simulated using the
DES code presented at p. 120, when policy parameters are known.

To compute optimal (R, Q) policy parameters, we will formulate
the problem using stochastic programming. In particular, we ex-
press the model as a mixed-integer nonlinear programming model;
and we linearise it using techniques presented in [Rossi et al.,
2014b]. The resulting mixed-integer linear programming model can
be solved by using off-the-shelf mathematical programming solvers.

Consider a finite planning horizon comprising T periods. De-
mand dt is stochastic, and its distribution may vary from one
period t to another. We hereby restrict our discussion to a normally
distributed demand with mean E[dt] and standard deviation σ[dt]

in each period t. However the approach here presented can be
easily extended to generic distributions. Inventory can only be
reviewed — and orders issued — at the beginning of each period.
Orders are received immediately after being placed, there is a fixed
cost K for placing an order, a per unit cost h for carrying one unit
of inventory from one period to the next, and a per unit backo-
rder/penalty cost p for every unit that is backordered at the end
of a period. The initial inventory is assumed to be equal to I0. This
problem can be modelled as follows.

min ∑
t∈T

δtK + hE[I+t] + pE[I−t] (33)

Subject to,

δt = 0→ Qt = 0 t = 1, . . . , T (34)

I0 +
t

∑
k=0

(Qk − E[dk]) = E[It] t = 1, . . . , T (35)

E[It] = E[I+t]− E[I−t] t = 1, . . . , T (36)

E[I+t] = E

[
t

∑
i=1

(Qi − di)

]+
t = 1, . . . , T (37)

E[I−t] = E

[
t

∑
i=1

(di −Qi)

]+
t = 1, . . . , T (38)

Qt, E[I+t], E[I−t] ≥ 0 t = 1, . . . , T (39)

where the right hand sides of Eq. 37 and Eq. 38 are the complemen-
tary first order loss function (Definition 20) and the first order loss
function (Definition 19), respectively.

stochastic inventory control 147

Following the approach illustrated in [Rossi et al., 2014b], we
linearise Eq. 37 and Eq. 38 by means of W + 1 segments as follows.

E[I+t] ≥ E[It]
i

∑
k=1

pk −
i

∑
k=1

pkE[ωk|Ωk]σ[d1 + . . . + dt] + eWσ[d1 + . . . + dt] for i = 1, . . . , W

E[I+t] ≥ eWσ[d1 + . . . + dt]

E[I−t] ≥ −E[It] + E[It]
i

∑
k=1

pk −
i

∑
k=1

pkE[ωk|Ωk]σ[d1 + . . . + dt] + eWσ[d1 + . . . + dt] for i = 1, . . . , W

E[I+t] ≥ −E[It] + eWσ[d1 + . . . + dt]

where pk, E[ωk|Ωk], and eW are constants that are tabulated in
[Rossi et al., 2014b]; a sample linearisation is shown in Fig. 107.

−2 −1 0 1 2

0

0.5

1

1.5

2

Q

E(Q− ζ)+

piecewise linearisation
linearisation error

Fig. 107 Edmundson-Madansky [Birge,
2011] (upper) piecewise linearisation (4
segments) of the complementary first
order loss function [Rossi et al., 2014b]
for a standard normal random variable
ζ. Note that the maximum piecewise
linearisation error is eW .

The Python code implementing this mathematical programming
model is presented below.

import sys
from docplex.mp.model import Model
sys.path.insert(0,’/Applications/CPLEX_Studio1210/cplex/Python/3.7/x86-64_osx’)

http://ibmdecisionoptimization.github.io/docplex-doc/mp/creating_model.html
http://www-01.ibm.com/support/docview.wss?uid=swg27042869&aid=1

import math, networkx as nx, itertools
from typing import List

class RQ_CPLEX(StochasticLotSizing):
"""
Solves the RQ problem as an MILP.
"""
def __init__(self, K: float, h: float, p: float, d: List[float], std_d:

List[float], I0: float = 0):
"""
Create an instance of a RQ problem.

Arguments:
K {float} -- the fixed ordering cost
h {float} -- the per unit holding cost
d {List[float]} -- the demand in each period
I0 {float} -- the initial inventory level

"""
super().__init__(K, h, p, d, I0)
self.std_demand = std_d
self.W = 5 # 5 partitions, 6 piecewise segments
constant linearisation parameters from [Rossi et al., 2014]
self.prob = [0.1324110437406592, 0.23491250409192982, 0.26535290433482195,

0.23491250409192987, 0.13241104374065915] # p_k
self.E = [-1.6180463502161044, -0.6914240068499904, 0, 0.6914240068499903,

1.6180463502161053] # E[\omega_k|\Omega_k]
self.e = 0.022270929512393414 # e_W
self.model()

def model(self):
model = Model("RQ")
T = len(self.d)
idx = [t for t in range(0,T)]
self.Q = model.continuous_var_dict(idx, name="Q")
I = model.continuous_var_dict(idx, name="I") # E[I]
Ip = model.continuous_var_dict(idx, name="Ip") # E[I^+]
Im = model.continuous_var_dict(idx, name="Im") # E[I^-]
delta = model.binary_var_dict(idx, name="delta")

for t in range(T):
model.add_constraint(model.if_then(delta[t] == 0, self.Q[t] == 0))
model.add_constraint(self.I0 + model.sum(self.Q[k] - self.d[k] for k in

range(t+1)) == I[t])
model.add_constraint(I[t] == Ip[t] - Im[t])

for n in range(self.W): # complementary first order loss function
model.add_constraint(Ip[t] >= I[t] * sum(self.prob[k] for k in

range(n+1)) - sum([self.prob[k]*self.E[k] for k in range(n+1)]) *
math.sqrt(sum([self.std_demand[k]**2 for k in range(t+1)])) +
self.e * math.sqrt(sum([self.std_demand[k]**2 for k in
range(t+1)])))

model.add_constraint(Ip[t] >= self.e * math.sqrt(sum([self.std_demand[k]**2
for k in range(t+1)])))

148 inventory analytics

for n in range(self.W): # first order loss function
model.add_constraint(Im[t] >= -I[t] + I[t] * sum(self.prob[k] for k in

range(n+1)) - sum([self.prob[k]*self.E[k] for k in range(n+1)]) *
math.sqrt(sum([self.std_demand[k]**2 for k in range(t+1)])) +
self.e * math.sqrt(sum([self.std_demand[k]**2 for k in
range(t+1)])))

model.add_constraint(Im[t] >= -I[t] + self.e *
math.sqrt(sum([self.std_demand[k]**2 for k in range(t+1)])))

model.add_constraint(Ip[t] >= 0)
model.add_constraint(Im[t] >= 0)

model.minimize(model.sum(delta[t] * self.K + self.h * Ip[t] + self.p * Im[t]
for t in range(T)))

model.print_information()
self.msol = model.solve()
if self.msol:

model.print_solution()
else:

print("Solve status: " + self.msol.get_solve_status() + "\n")

def order_quantities(self) -> List[float]:
return [self.msol.get_var_value(self.Q[t]) for t in range(0,len(self.d))]

def optimal_cost(self) -> float:
return self.msol.get_objective_value()

instance = {"K": 300, "h": 1, "p": 20, "d":[100,100,100,100,100,100,100,100],
"std_d" : [10,10,10,10,10,10,10,10], "I0": 0}

ww = RQ_CPLEX(**instance)
print(ww.order_quantities())
print(ww.optimal_cost())

Fig. 108 Simulating the (R, Q) pol-
icy for Example 37. The simulated
total cost is 2063.04, which is close to
that estimated by the mathematical
programming model we presented.
Observe how the end of period inven-
tory at the end of each replenishment
cycle appears to increase as

√
t. If we

simulate this system for an infinite
number of periods, the expected total
cost per period will diverge and go
to infinity. An (R, Q) policy therefore
does not control the system in the
long run. To overcome this problem,
one can implement a “rolling horizon”
control strategy, in which the model
is solved for a finite time window, but
only the first order quantity Q∗1 in
the solution is taken into account and
actually implemented (or no order
is placed if Q∗1 = 0, i.e. if the initial
inventory I0 is sufficient). Then, after
a period has passed and demand has
been observed, inventory is reviewed,
the finite time window is “rolled” by
one period, the model is solved again,
and the process is repeated. When
implemented in the context of a rolling
horizon control strategy, the (R, Q)
policy becomes a competitive control
policy [Dural-Selcuk et al., 2020].

Example 37. We consider an instance over a planning horizon of T = 8
periods. Demand is normally distributed in each period with the following
mean and standard deviation.

t 1 2 3 4 5 6 7 8

µt 100 100 100 100 100 100 100 100

σt 10 10 10 10 10 10 10 10

Q∗t 223 0 209 0 207 0 206 0

Other problem parameters are: K = 300, h = 1, and p = 20. We solve
the problem using the mathematical programming model presented. The
expected total cost of the optimal solution is 1958, the associated order
plan (optimal order quantities Q∗t) is presented in the previous table.

stochastic inventory control 149

The (R, s, S) policy

We consider the same problem addressed in [Scarf, 1960]: inventory
of a single item subject to random demand must be controlled over
a planning horizon of n periods under fixed ordering (K), holding
(h), and backorder penalty (p) cost. However, we now also include a
cost W for reviewing inventory at the beginning of a period.

To control the system, we adopt a hybrid policy that blends the
stability of the (R, S) policy and the flexibility of the (s, S) policy.
Under an (R, s, S) policy, at the beginning of each replenishment
cycle of length R inventory is reviewed at a cost W, if the initial
inventory position is below the reorder threshold s, one should
issue an order and raise the inventory position up to S (Fig. 109).

S

in
v

e
n

to
ry

 p
o

si
ti

o
n

time

R

s

Fig. 109 An (R, s, S) policy.

To compute near optimal (R, s, S) policy parameters, one may
rely on a blend of two approaches previously presented [Visentin,
2020]: replenishment cycle lengths Rt and associated order-up-to-
positions St can be computed by leveraging the Python code in
Listing 74, which computes near optimal (R, S) policy parameters;
then, for each replenishment cycle, one may determine the asso-
ciated reorder threshold s by amending the Stochastic Dynamic
Programming algorithm for computing optimal (st, St) policy pa-
rameters presented at page 137, so that the order quantity can be
non-zero only at the beginning of each replenishment cycle. In both
cases, one should set the fixed ordering cost to K + W, so that the
review cost is taken into account while computing a reorder plan.

Example 38. We consider an instance of the stochastic lot sizing problem
over a planning horizon comprising N = 4 periods. Demand in each
period follows a Poisson distribution with mean λt. The values of λt are
shown in the following table.

t 1 2 3 4

λt 20 40 60 40

The review cost is W = 10, the fixed ordering cost is K = 100, for the
sake of simplicity the per unit ordering cost is v = 0, holding cost is h = 1,
and penalty cost is p = 10.

The optimal (Rt, st, St) policy cost for the instance presented in
Example 38 is 352.3; the optimal (Rt, st, St) policy parameters for
each period t are shown in the following table.

t 1 2 3 4

Review X X
St 67 109

st 46 86

A mathematical programming approach for computing (R, s, S)
policy parameters is discussed in [Visentin et al., 2021].

Multi-echelon Inventory Systems

Copyright © 2021 Roberto Rossi, CC BY 4.0
https://doi.org/10.11647/OBP.0252.05

https://doi.org/10.11647/OBP.0252.05

152 inventory analytics

Introduction

In this chapter, we briefly survey key aspects related to the control
of multi-echelon inventory systems. These are systems in which
multiple interconnected installations are present and must be
controlled jointly. We first introduce serial systems and associated
optimal control strategies; we show how to simulate these systems,
and how to compute optimal policy parameters. Finally, we survey
other possible multi-echelon inventory systems: assembly systems,
distribution systems, and general systems.

• Serial systems p. 153

• Assembly systems p. 162

• Distribution systems p. 162

• General systems p. 163

Topics

multi-echelon inventory systems 153

Serial systems

We shall consider a simple serial inventory system comprising two
installations: a warehouse W, and a retailer R (Fig. 110). This setup
was first investigated in [Clark and Scarf, 1960].

W R

customer demand

items flowitems flowitems flow

retailer orderswarehouse orders

S C

Fig. 110 A serial inventory system
comprising two installations: a ware-
house and a retailer; physical flows
and information flows are represented
via solid and dashed lines, respec-
tively.

The system operates in a periodic review setting. We assume
installation R faces a customer demand that is stochastic, Poisson
distributed with rate λ in each period, and independent across
periods. Demand that cannot be met immediately from stock
at installation R is backordered. Installation R replenishes from
installation W; while installation W replenishes from an infinite
outside supply S. Lead times are deterministic and equal to a given
(integer) number of periods. There are standard holding costs at
installations W and R, and a backorder/penalty cost at installation
R. For the time being, we will assume that no ordering/setup costs
are present.

At the beginning of each period, the order of events is as follows:

• installation W orders;

• the period delivery from the outside supplier S arrives at W;

• installation R orders from installation W;

• the period delivery from installation W arrives at installation R;

• the stochastic customer demand at installation R is realised;

• evaluation of holding and shortage costs.

We introduce the following notation:

li lead time at installation i ∈ {W, R};
hi holding cost per period at installation i ∈ {W, R};
b backorder/penalty cost per period (only charged at installation R);
Ii installation stock inventory level at installation i ∈ {W, R} just before period demand;
dn n-period stochastic demand, i.e. Poisson(nλ).

Our aim is to minimise the expected total holding and backorder-
ing cost per period.

Note that we only charge holding costs for stock on hand at the
installation, i.e. we do not charge holding costs on in-transit stock
between installation W and installation R, as it can be proved that
this cost (hWλlW) is not affected by the control policy.

154 inventory analytics

Simulating a serial system

We will simulate a simple serial inventory system comprising two
installations via DES. We first introduce our usual DES engine class.

import matplotlib.pyplot as plt, numpy as np, pandas as pd
from queue import PriorityQueue
from collections import defaultdict
from typing import List

class EventWrapper():
def __init__(self, event):

self.event = event

def __lt__(self, other):
return self.event.priority < other.event.priority

class DES():
def __init__(self, end):

self.events, self.end, self.time = PriorityQueue() , end, 0

def start(self):
while True:

event = self.events.get()
self.time = event[0]
if self.time <= self.end:

event[1].event.end()
else:

break

def schedule(self, event: EventWrapper, time_lag: int):
self.events.put((self.time + time_lag, event))

Next, we model our two installations: the warehouse W,

class Warehouse:
def __init__(self, inventory_level, holding_cost, lead_time):

self.i, self.h, self.lead_time = inventory_level, holding_cost, lead_time
self.o = 0 # outstanding_orders
self.period_costs = defaultdict(int) # a dictionary recording cost in each

period

def receive_order(self, Q, time):
self.review_inventory(time)
self.i, self.o = self.i + Q, self.o - Q
self.review_inventory(time)

def order(self, Q, time):
self.review_inventory(time)
self.o += Q
self.review_inventory(time)

def on_hand_inventory(self):
return max(0,self.i)

def backorders(self):
return max(0,-self.i)

def issue(self, demand, time):
self.review_inventory(time)
self.i = self.i-demand

def inventory_position(self):
return self.o+self.i

def review_inventory(self, time):
try:

self.levels.append([time, self.i])
self.on_hand.append([time, self.on_hand_inventory()])
self.positions.append([time, self.inventory_position()])

except AttributeError:
self.levels, self.on_hand = [[0, self.i]], [[0, self.on_hand_inventory()]]
self.positions = [[0, self.inventory_position()]]

def incur_end_of_period_costs(self, time): # incur holding and penalty costs
self._incur_holding_cost(time)

def _incur_holding_cost(self, time): # incur holding cost and store it in a
dictionary

self.period_costs[time] += self.on_hand_inventory()*self.h

multi-echelon inventory systems 155

and the retailer R.

class Retailer:
def __init__(self, inventory_level, holding_cost, penalty_cost, lead_time,

demand_rate):
self.i, self.h, self.p, self.lead_time, self.demand_rate = inventory_level,

holding_cost, penalty_cost, lead_time, demand_rate
self.o = 0 # outstanding_orders
self.period_costs = defaultdict(int) # a dictionary recording cost in each

period

def receive_order(self, Q, time):
self.review_inventory(time)
self.i, self.o = self.i + Q, self.o - Q
self.review_inventory(time)

def order(self, Q, time):
self.review_inventory(time)
self.o += Q
self.review_inventory(time)

def on_hand_inventory(self):
return max(0,self.i)

def backorders(self):
return max(0,-self.i)

def issue(self, demand, time):
self.review_inventory(time)
self.i = self.i-demand

def inventory_position(self):
return self.o+self.i

def review_inventory(self, time):
try:

self.levels.append([time, self.i])
self.on_hand.append([time, self.on_hand_inventory()])
self.positions.append([time, self.inventory_position()])

except AttributeError:
self.levels, self.on_hand = [[0, self.i]], [[0, self.on_hand_inventory()]]
self.positions = [[0, self.inventory_position()]]

def incur_end_of_period_costs(self, time): # incur holding and penalty costs
self._incur_holding_cost(time)
self._incur_penalty_cost(time)

def _incur_holding_cost(self, time): # incur holding cost and store it in a
dictionary

self.period_costs[time] += self.on_hand_inventory()*self.h

def _incur_penalty_cost(self, time): # incur penalty cost and store it in a
dictionary

self.period_costs[time] += self.backorders()*self.p

Finally, we model the relevant events, to which we assign priorities
in line with the order previously illustrated.

class CustomerDemand:
def __init__(self, des: DES, demand_rate: float, retailer: Retailer):

self.d = demand_rate # the demand rate per period
self.r = retailer # the retailer
self.des = des # the Discrete Event Simulation engine
self.priority = 5 # denotes a low priority

def end(self):
self.r.issue(1, self.des.time)
self.des.schedule(EventWrapper(self), np.random.exponential(1/self.d)) #

schedule another demand

class EndOfPeriod:
def __init__(self, des: DES, warehouse: Warehouse, retailer: Retailer):

self.w = warehouse # the warehouse
self.r = retailer # the retailer
self.des = des # the Discrete Event Simulation engine
self.priority = 0 # denotes a high priority

def end(self):
self.w.incur_end_of_period_costs(self.des.time-1)
self.r.incur_end_of_period_costs(self.des.time-1)
self.des.schedule(EventWrapper(EndOfPeriod(self.des, self.w, self.r)), 1)

156 inventory analytics

class OrderUpTo_Warehouse:
def __init__(self, des: DES, S: float, warehouse: Warehouse, retailer: Retailer):

self.S = S # the order-up-to-position
self.w = warehouse # the warehouse
self.r = retailer # the retailer
self.des = des # the Discrete Event Simulation engine
self.priority = 1 # denotes a medium priority

def end(self):
Q = self.S - self.w.inventory_position()
self.w.order(Q, self.des.time)
self.des.schedule(EventWrapper(ReceiveOrder_Warehouse(self.des, Q, self.w,

self.r)), self.w.lead_time)

class OrderUpTo_Retailer:
def __init__(self, des: DES, S: float, warehouse: Warehouse, retailer: Retailer):

self.S = S # the order-up-to-position
self.w = warehouse # the warehouse
self.r = retailer # the retailer
self.des = des # the Discrete Event Simulation engine
self.priority = 2 # denotes a medium priority

def end(self):
Q = self.S - self.r.inventory_position()
self.r.order(Q, self.des.time)
Q_available = min(Q, self.w.on_hand_inventory())
self.w.issue(Q, self.des.time)
self.des.schedule(EventWrapper(ReceiveOrder_Retailer(self.des, Q_available,

self.r)), self.r.lead_time)

class ReceiveOrder_Warehouse:
def __init__(self, des: DES, Q: float, warehouse: Warehouse, retailer: Retailer):

self.Q = Q # the order quantity
self.w = warehouse # the warehouse
self.r = retailer # the retailer
self.des = des # the Discrete Event Simulation engine
self.priority = 3 # denotes a medium priority

def end(self):
backorders = self.w.backorders()
self.w.receive_order(self.Q, self.des.time)
if backorders > 0:

q = min(self.Q, backorders)
self.des.schedule(EventWrapper(ReceiveOrder_Retailer(self.des, q, self.r)),

self.r.lead_time)

class ReceiveOrder_Retailer:
def __init__(self, des: DES, Q: float, retailer: Retailer):

self.Q = Q # the order quantity
self.r = retailer # the retailer
self.des = des # the Discrete Event Simulation engine
self.priority = 4 # denotes a medium priority

def end(self):
self.r.receive_order(self.Q, self.des.time)

customer demand

issue order

backorders at W?

yes

start

event

procedure

end of period

last period?

no

yes

stop

order-up-to W

order-up-to R

receive order W

receive order R

no

yes

on hand stock at W sufficient?

backorder at W

Fig. 111 A serial inventory system
comprising two installations: DES flow
diagram.

The simulate method runs the DES (Fig. 111). S_r represents the
order up to position for the retailer, and S_w represents the order
up to position for the warehouse, N is the number of periods to be
simulated.

def simulate(retailer, S_r, warehouse, S_w, N, plot):
np.random.seed(1234)
r, w = Retailer(**retailer), Warehouse(**warehouse)

des = DES(N)
d = CustomerDemand(des, r.demand_rate, r)
des.schedule(EventWrapper(d), 0) # schedule a demand immediately

o_r = OrderUpTo_Retailer(des, S_r, w, r)
o_w = OrderUpTo_Warehouse(des, S_w, w, r)
for t in range(N):

des.schedule(EventWrapper(o_r), t) # schedule orders
des.schedule(EventWrapper(o_w), t) # schedule orders

des.schedule(EventWrapper(EndOfPeriod(des, w, r)), 1) # schedule EndOfPeriod at
the end of the first period

des.start()

tc = sum([w.period_costs[e] for e in w.period_costs]) + sum([r.period_costs[e]
for e in r.period_costs])

return tc/N

multi-echelon inventory systems 157

Example 39. We consider the following instance: retailer holding cost
hr = 1.5, retailer backorder/penalty cost b = 10, retailer order leadtime
lr = 5, customer demand follows a Poisson distribution with rate λ = 10,
warehouse holding cost hw = 1, warehouse leadtime lw = 5. For the sake
of illustration we will set Sr = 74 and Sw = 59.

The previous example can be simulated as follows.

N = 10000 # planning horizon length
S_r, S_w = 74, 59
retailer = {"inventory_level": S_r, "holding_cost": 1.5, "penalty_cost": 10,

"lead_time": 5, "demand_rate": 10}
warehouse = {"inventory_level": S_w, "holding_cost": 1, "lead_time": 5}
print("Avg cost per period: "+ ’%.2f’ % simulate(retailer, S_r, warehouse, S_w, N))

The simulated average cost per period is 26.11. The behaviour of
the inventory level for periods 5, . . . , 14 is shown in Fig. 112.

in
v

e
n

to
ry

 le
v

e
l

in
v

e
n

to
ry

 le
v

e
l

Fig. 112 A serial inventory system
comprising two installations: be-
haviour of the inventory level at
installations W and R.

Order-up-to-positions at the retailer and warehouse have been
set arbitrarily to Sr = 74 and Sw = 59, respectively. However,
a manger would ideally like to set optimal values for Sr and Sw.
A naïve approach to computing optimal values for Sr and Sw is
the brute force approach, which explores all possible integer62 62 Since demand can only take integer

values, we can restrict the search to
integer combinations.

combinations of Sr and Sw (Fig. 113).

Fig. 113 A serial inventory system
comprising two installations: average
cost per period for different com-
bination of Sr and Sw; the chosen
combination Sr = 74 and Sw = 59
appears to minimise the expected
total cost per period, or at least to be
a solution close to the optimal one.
Observe that the cost function appears
to be convex.

158 inventory analytics

Computing optimal base-stock policy parameters

Instead of relying on the brute force approach, we here illustrate
an exact approach63 for computing optimal base-stock policy 63 Andrew J. Clark and Herbert Scarf.

Optimal policies for a multi-echelon
inventory problem. Management Science,
6(4):475–490, 1960.

parameters for serial inventory systems under stationary demand
and an infinite planning horizon. Without loss of generality, we
shall focus on the two-installations case; these results are easily
extended to an arbitrary number of installations.

Let Oi denote the outstanding orders64 at installation i in any 64 Outstanding orders are orders that
have been issued but not yet received
due to the delivery lead time.

given period; and recall the following definitions.
The on hand inventory at installation i is the positive part of the

installation stock inventory level Ii, i.e. max{Ii, 0} , [Ii]
+.

The installation stock inventory position Yi is defined as fol-
lows: Yi , Oi + Ii.

In their exact approach, Clark and Scarf leverage the concept
of echelon stock (Fig. 114) to compute optimal base-stock policy
parameters for serial inventory systems.

W R

customer demand

items flowitems flowitems flow

retailer orderswarehouse orders

S C

echelon stock at installation R

echelon stock at installation W

Fig. 114 A serial inventory system
comprising two installations: echelon
stock at installations W and R.In essence, an echelon stock tracks not just the installation stock, but

also the downstream stock of an item.
For an installation i that serves other downstream installations,65 65 Such as our installation W, the

warehouse.the echelon stock inventory position Ye
i is defined as follows.

Definition 26. The echelon stock inventory position is the installation
stock inventory position plus the sum of the installation inventory posi-
tions at all downstream installations.

Hence, e.g. Ye
W , YW + YR.

Corollary 6. For installations that do not have further downstream
installations they serve,66 the echelon stock inventory position is the same 66 Such as our installation R, the

retailer.as the installation stock inventory position.

Finally, the realised echelon stock inventory position is defined
as follows.

Definition 27. The realised echelon stock inventory position ye
i at instal-

lation i is equal to the echelon stock inventory position Ye
i minus those

outstanding orders, which are backordered at the installation upstream.67 67 Observe that if the retailer issues
an order of size Q at time t, receipt of
such a quantity at time t + lR is not
guaranteed, because the warehouse
may have backordered this request due
to lack of sufficient on hand stock.

Clearly, since the warehouse W replenishes from an infinite
supply S, its realised echelon stock inventory position is equal to its
echelon stock inventory position. While at the retailer R, these two
quantities may differ.

multi-echelon inventory systems 159

Recall that our aim is to minimise the expected total holding and
backordering cost per period; and that we only charge holding costs
for stock on hand at the installation, i.e. we do not charge holding
costs on in-transit stock between installation W and installation R.

We define the echelon holding cost ei = hi − hi−1 at installation
i, as the holding cost on the value added when going from instal-
lation i − 1 to installation i, where i − 1 denotes the installation
upstream to installation i. Clearly, eW = hW since the warehouse has
no upstream installation; while eR = hR − hW .

First, we should bear in mind that, since the system is stationary,
all periods are equal for the purpose of computing the expected
total cost per period.

For installation W we consider an order in period t, and costs at
the end of period t + lW . For installation R, we consider an order in
period t + lW , and costs at the end of period t + lW + lR.

Lemma 55. Consider period t + lW , the installation stock inventory on
hand at W, after serving the order received from installation R, is

[IW]+ = Ie
W − ye

R

and remains stable throughout the rest of the period.

Lemma 56. The average holding costs at installation W in period t + lW is

hWE[Ie
W − ye

R] = hWE[ye
W − dlW+1 − ye

R]

= hW(ye
W − (lW + 1)λ)− hWye

R
(40)

Lemma 57. The average holding and backordering costs at installation R
in period t + lW + lR are

hRE[ye
R − dlR+1]

+ + bE[dlR+1 − ye
R]

+

= hR(ye
R − (lR + 1)λ) + (hR + b)E[dlR+1 − ye

R]
+ (41)

Observe that the expected total period costs are a function of ye
R

and ye
W .

We now reallocate term −hWye
R from Eq. 40 to Eq. 41. By using

the fact that hR − hW = eR, we obtain

CW(ye
W) , hW(ye

W − (lW + 1)λ) (42)

CR(ye
R) , eRye

R − hR(lR + 1)λ + (hR + b)E[dlR+1 − ye
R]

+ (43)

where Eq. 42 is independent of ye
R, and Eq. 43 is independent of

ye
W .

Observe that L(y) , E[dlR+1 − y]+ is the first order loss function,
which is convex; and since L′(y) = F(y)− 1, where F is the cumu-
lative distribution of dlR+1 [Rossi et al., 2014b, Lemma 1], then the
optimal ŷe

R can be easily obtained from the first order condition

dCR(y)
dy

= eR + (hR + b)(F(y)− 1) = 0

that is, by solving

F(y) =
hW + b
hR + b

.

160 inventory analytics

From the definition of ye
W and ye

R, it follows that

ye
R ≤ Ie

W = ye
W − dlW+1.

If ye
W − dlW+1 ≥ ŷe

R, then ŷe
R is the value that minimises CR. However,

if ye
W − dlW+1 < ŷe

R, then ŷe
R cannot be attained, and the best possible

value that minimises CR(y) is y = ye
W − dlW+1, due to convexity

of CR. This means that the optimal policy is an (echelon stock)
base-stock policy with (echelon) order-up-to-position Se

R = ŷe
R.

Furthermore, this optimal policy at R is independent of ye
W .

Finally, we determine the optimal policy at W. We consider the
expected total cost C for the system, when an optimal policy is
implemented at R:

C(ye
W) , CW(ye

W) + CR(ŷe
R) +

∞

∑
ye

W−ŷe
R

(CR(ye
W − u)− CR(ŷe

R)) f (u)

︸ ︷︷ ︸
shortage costs at installation W

,

where f is the probability mass function of dlW+1, that is a Poisson
distributed random variable with rate (lW + 1)λ. The last term of C
can be interpreted as the shortage costs at installation W induced
by its inability to deliver on time to installation R.

Function C is convex, and therefore can be easily minimised.
Let ŷe

W be the global minimum of C, since supplier S has infinite
capacity, the optimal policy at W is an (echelon stock) base-stock
policy with (echelon) order-up-to-position Se

W = ŷe
W .

Finally, observe that it is easy to switch from an echelon to an in-
stallation base-stock policy, by bearing in mind that the installation
order-up-to-position SW = Se

W − Se
R.

We next present a Python implementation of these results.

import math, matplotlib.pyplot as plt
from scipy.stats import poisson

cost at the retailer
def C_R(y, e_R, h_R, b, L_R, demand_rate):

M = round(6*math.sqrt((L_R+1)*demand_rate)+(L_R+1)*demand_rate) # safe upper
bound: 6 sigma

return y*e_R-h_R*(L_R+1)*demand_rate+(h_R+b)*sum([(d-y)*poisson.pmf(d,
(L_R+1)*demand_rate) for d in range(y,M)])

retailer (echelon) order-up-to-position
def compute_y_R(h_W, h_R, b, L_R, demand_rate):

return poisson.ppf((h_W + b)/(h_R + b), (L_R+1)*demand_rate)

expected total cost C for the serial system, when an optimal policy is
implemented at R

def C(y, e_R, h_R, b, L_R, h_W, L_W, demand_rate):
y_R = int(compute_y_R(h_W, h_R, b, L_R, demand_rate))
CW = h_W*(y - (L_W+1)*demand_rate)
CR = C_R(y_R, e_R, h_R, b, L_R, demand_rate)
M = round(6*math.sqrt((L_W+1)*demand_rate)+(L_W+1)*demand_rate)
s = sum([(C_R(y-d, e_R, h_R, b, L_R, demand_rate) - CR)*poisson.pmf(d,

(L_W+1)*demand_rate) for d in range(y-y_R,M)])
return CW + CR + s

warehouse (echelon) order-up-to-position
def compute_y_W(e_R, h_R, b, L_R, h_W, L_W, demand_rate, initial_value):

y, c = initial_value, C(initial_value, e_R, h_R, b, L_R, h_W, L_W, demand_rate)
c_new = C(y + 1, e_R, h_R, b, L_R, h_W, L_W, demand_rate)
while c_new < c:

c = c_new
y = y + 1
c_new = C(y + 1, e_R, h_R, b, L_R, h_W, L_W, demand_rate)

return y

multi-echelon inventory systems 161

We consider once more the instance in Example 39. The optimal
solution can be obtained as follows.

retailer = {"holding_cost": 1.5, "penalty_cost": 10, "lead_time": 5, "demand_rate":
10}

warehouse = {"holding_cost": 1, "lead_time": 5}

h_W, h_R = warehouse["holding_cost"], retailer["holding_cost"]
e_W = h_W
e_R = h_R - e_W
b, demand_rate = retailer["penalty_cost"], retailer["demand_rate"]
L_R, L_W = retailer["lead_time"], warehouse["lead_time"]

initial_value = 100
ye_R = compute_y_R(h_W, h_R, b, L_R, demand_rate)
ye_W = compute_y_W(e_R, h_R, b, L_R, h_W, L_W, demand_rate, initial_value)
print("y^e_R="+str(ye_R))
print("y^e_W="+str(ye_W))
print("y_W="+str(ye_W-ye_R))
print("C(y^e_W)="+str(C(ye_W, e_R, h_R, b, L_R, h_W, L_W, demand_rate)))

The solution is ŷe
R = Se

R = SR = 74, ŷe
W = Se

W = 133, ŷW =

Se
W − Se

R = Sw = 59; and has a cost C(ŷe
W) = 26.36. This is

indeed the same solution we previously considered. In Fig. 115 we
plot CR(y); in Fig. 116 we plot the expected total cost C(y) for the
system.

y

CR(y)

Fig. 115 A serial inventory system
comprising two installations: CR(y).

C(y)

y

Fig. 116 A serial inventory system
comprising two installations: C(y).

162 inventory analytics

Assembly systems

An assembly system is a multi-echelon production line in which
end products are manufactured from more basic components. An
example of an assembly system is shown in Fig. 117.

A1

A2

A3

A4

A5

items flow
S1

items flow
S2

items flow

items flow

items

flow

items

flow

items flow
S3

items flow
C

Fig. 117 An assembly system.

Every assembly system can be transformed into an equivalent
serial system,68 therefore dealing with assembly systems is no more 68 Kaj Rosling. Optimal inventory

policies for assembly systems under
random demands. Operations Research,
37(4):565–579, 1989.

difficult than dealing with its equivalent serial system.

Distribution systems

A distribution system is a multi-echelon inventory system in which
a given product is distributed from a supply to a number of down-
stream installations, in order to serve some sources of demand. An
example of a distribution system is shown in Fig. 118.

W1

R3

W2

R1

R2

items flow

items
 flow

items

 flow

items flow

items flow
S

items flow
C1

items flow
C2

items flow
C3

Fig. 118 A distribution system.

Distribution systems are difficult to control. The difficulty stems
from the fact that, when inventory is scarce, upstream installations
must decide how to allocate this scarce resource optimally to serve
demand coming from their downstream installations. Possible
stock allocation strategies may include: first-come first-serve, stock
balancing, or priority-based. The structure of the optimal control
policy is generally not known for these systems; it is therefore
customary to fix a control policy (e.g. base-stock policy) and an
allocation strategy (e.g. first-come first-serve), and then compute op-
timal or near-optimal policy parameters under these assumptions.

A well-known distribution system that has been widely studied

multi-echelon inventory systems 163

in the literature is the one-warehouse multiple-retailers system, The one-warehouse multiple-retailers
systemwhich comprises a single upstream installation (the warehouse) that

serves directly several downstream installations (the retailers). It is
common to use Clark and Scarf’s approach for tackling this system.
However, this approach is no longer exact. The underpinning
approximation consists in allowing the warehouse to implement
negative allocations at its downstream installations. This means the
total stock at the retailers can be optimally “reshuffled” between
sites at any period. This technique was illustrated in [Clark and
Scarf, 1960]. A well-known heuristic approach for this system is the
so-called METRIC, which was originally introduced in [Sherbrooke,
1968]. A computationally expensive exact approach, the “projection
algorithm,” to tackle the one-warehouse multiple-retailers system
was introduced in [Axsäter, 1990].

General systems

General systems take the form illustrated in Fig. 119.

W1

R2

W2

H1

R1

items flow

items

 flow

items

 flow

items flow

items flow
S

items flow

items flow
C2

items flow
C3

items flow

C1

Fig. 119 A general multi-echelon
system, in which installations can
have multiple successors as well as
predecessors.

Due to their very general structure, it is difficult to derive prop-
erties and/or insights on the nature and structure of the optimal
control policy for such systems.

For instance, consider the following difficulty: in production
it is common to assemble multiple components into a final or
intermediate product. In the case of serial and assembly systems,
this complication is only apparent. In these systems, a component
can only be part of a given item. Therefore we can always redefine
the unit of measure: e.g. if a given item contains two units of a
given component, we can define two units of this component to be
the new unit. However, this is not possible in general multi-echelon
system such as the one in Fig. 119. To see this, consider installation
H1, where H denotes a “hybrid” installation that can serve as a
retailer but also as a warehouse. H1 can sell components directly
to customers C1, or it may supply these components to R1. It may
happen that the product manufactured by R1 contains two units
of the component supplied by H1. In this case, it is clear it is not
possible to avoid the difficulty by redefining the unit.

Appendix

Copyright © 2021 Roberto Rossi, CC BY 4.0
https://doi.org/10.11647/OBP.0252.07

https://doi.org/10.11647/OBP.0252.07

166 inventory analytics

Introduction

In this Appendix, we provide relevant formal background on Pois-
son processes, Discrete Event Simulation, and Stochastic Dynamic
Programming.

• Poisson processes p. 167

• Discrete Event Simulation p. 170

• Stochastic Dynamic Programming p. 173

Topics

appendix 167

Poisson processes

In this section we discuss the nature and properties of Poisson
processes. A typical example of an experiment

that can be modelled via a Bernoulli
random variable is the toss of a coin;
assuming the coin is fair, then p = 0.5.

Definition 28. A Bernoulli random variable takes value 1 with probability
p, and 0 with probability q , p− 1.

Definition 29. A Bernoulli stochastic process is a collection {X1, X2, . . .}
of Bernoulli random variables.

1

0
1 5 10 15 20 t

Xt

Fig. 120 A Bernoulli stochastic pro-
cess.In Fig. 120 we illustrate the dynamics of a Bernoulli process.

Let X be a binomial random variable,
its probability mass function is then

Pr(X = k) =
(

n
k

)
pkqn−k ;

its cumulative distribution function is

F(x) =
x

∑
k=0

(
n
k

)
pkqn−k .

Definition 30. A binomial random variable with parameters n and p is the
sum of n Bernoulli random variables with parameters p.

Definition 31. A binomial stochastic process is a collection {X1, X2, . . .}
of Binomial random variables.

In Fig. 121 we illustrate the dynamics of a binomial process.
In inventory control, consider a series of time periods and a

setting in which in each time period it is possible to observe at
most one unit of demand with probability p. A Bernoulli random
variable models the occurrence of one unit of demand in any given
period. A binomial random variable models the total demand
observed in a sequence of n independent periods.

Let X be a Poisson random variable, its
probability mass function is then

Pr(X = k) =
λke−λ

k!
;

its cumulative distribution function is

F(x) =
x

∑
k=0

λke−λ

k!
.

Definition 32. A Poisson random variable with parameters λ is the
limiting case of a binomial random variable when n = ∞ and np = λ.

A Poisson random variable therefore models a system with a
large number of possible events, each of which is rare; events occur
with a known constant mean rate λ and independently of the time
since the last event occurred.

Unfortunately, it is difficult to interpret a Poisson process in a
way similar to that used for a binomial process. In fact, units of
demand may occur at arbitrary positive times, and the probability
p of a unit of demand at any particular instant is infinitely small.
This means that there is no very clean way of describing a Poisson
process in terms of the probability of an arrival at any given instant.

168 inventory analytics

1

0

1

3

2

1 2 5

t

t

Xt

Xt

binomial

Bernoulli

Fig. 121 A binomial stochastic process
where n = 3, and its underpinning
Bernoulli stochastic process.It is more convenient to define a Poisson process variable in

terms of the sequence of interarrival times, X1, X2, . . ., which are
defined to be independently and identically distributed random
variables.

interarrival time

customer arrival customer arrival

Fig. 122 A Poisson stochastic process
seen as an arrival process in terms of
interarrival times between successive
events.

Definition 33. An arrival process {S1, S2, . . .} is a sequence of increasing
random variables, that is 0 < S1 < S2 < . . ., which are called arrival
epochs. In this process, random variable Xi , Si+1 − Si, which is called
the interarrival time between event i and event i + 1, is a positive random
variable, that is Pr(Xi ≤ 0) = 0.

Condition Pr(Xi ≤ 0) = 0 effectively means that events cannot
occur simultaneously.

Definition 34. A renewal process is an arrival process for which the
sequence of interarrival times is a sequence of independent and identically
distributed random variables.

Let X be an exponential random vari-
able, its probability density function
is

f (x) = λe−λx ;

its cumulative distribution function is

F(x) = 1− eλx .

Definition 35. A Poisson process is a renewal process in which the
interarrival intervals follow an exponential distribution; i.e. for some real
λ > 0, each Xi has the probability density function f (x) = λe−λx.

The parameter λ is called the rate of the process; for any interval
of size t, λt is the expected number of arrivals in that interval. Thus
λ is called the arrival rate of the process.

appendix 169

Definition 36. A random variable X possesses the memoryless property if
it is positive, i.e. Pr(X ≤ 0) = 0, and for every s ≥ 0 and t ≥ 0

Pr(X ≥ s + t|X > s) = Pr(X ≥ t). (44)

Lemma 58. A continuous (resp. discrete) random variable X is exponential
(resp. geometric) if and only if it possesses the memoryless property.

Proof. This proof will only cover the continuous case.
To show that (→) if X is exponential, then it possesses the memo-

ryless property, observe that

Pr(X ≥ s + t|X > s) =
Pr(X ≥ s + t ∩ X > s)

Pr(X > s)

=
Pr(X ≥ s + t)

Pr(X > s)

=
e−λ(s+t)

e−λs

= e−λt

= Pr(X ≥ t)

We next show that (←) if X possesses the memoryless property,
then it is exponential. Observe that Pr(X ≥ s + t|X > s)Pr(X ≥ s) =
Pr(X ≥ s + t), then

Pr(X ≥ s + t) = Pr(X ≥ t)Pr(X ≥ s). (45)

Let h(x) = ln(Pr(X ≥ x)) and observe that since Pr(X ≥ x) is
nonincreasing in x, h(x) is also. Moreover, Eq. 45 implies that h(s +
t) = h(s) + h(t) for all s ≥ 0 and t ≥ 0. These two statements imply
that h(x) must be linear in x, and Pr(X ≥ x) must be exponential in
x.

Let X be the waiting time until some given arrival, then Eq. 44

states that, given that the arrival has not occurred by time t, the
distribution of the remaining waiting time (given by x on the left
side of Eq. 44) is the same as the original waiting time distribution
(given on the right side of Eq. 44), i.e. the remaining waiting time
has no “memory” of previous waiting.

From Definition 35 and Lemma 58, it immediately follows that
the portion of a Poisson process starting at an arbitrary time t > 0
is a probabilistic replica of the process starting at 0; that is, the
time until the first arrival after t is an exponentially distributed
random variable with parameter λ, all subsequent arrivals are
independent of this first arrival and of each other, and all have the
same exponential distribution.

Lemma 59. Let X and Y be independent Poisson random variables with
rates λX and λY, respectively; then X + Y is a Poisson random variable
with rate λX + λY.

Proof. Let Z = X + Y and λ = λX + λY, then Pr(Z = z) =

∑z
j=0 Pr(X = j)Pr(Y = z− j) = e−λ

z! ∑z
j=0 (

z
j)λ

j
Xλ

z−j
Y = e−λ

z! (λX + λY)
z.

The last step, which was obtained by using binomial expansion,
concludes the proof: Pr(Z = z) = e−λ

z! λz.

170 inventory analytics

Discrete Event Simulation

A queueing system is a generic model that captures a variety of
real-world scenarios: ticket offices, call centers, etc.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

def plot_queue(values, label):

data
df=pd.DataFrame({’x’:

np.array(values)[:,0], ’fx’:
np.array(values)[:,1]})

plot
plt.xticks(range(len(values)),

range(1,len(values)+1))
plt.ylim(min(np.array(values)[:,1]),

max(np.array(values)[:,1]))
plt.xlabel("t")
plt.ylabel("customers")
plt.plot(’x’, ’fx’, data=df,

linestyle=’-’, marker=’o’,
label=label)

Listing 75 Plotting the queue length in
Python.

We consider a single teller who provides a service requiring a
certain service time to be completed; customers arrive randomly
and, if the teller is already busy, wait in a queue. The dynamics of
the system are shown in Fig. 123.

customer arrival customer arrival

service time

end of customer service Fig. 123 The dynamics of the queue-
ing system.

The queue displays the behaviour shown in Fig. 124.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

cu
st
om

er
s

queue length

Fig. 124 The behaviour of the queue
simulated in our numerical example.

Discrete Event Simulation (DES) is a modelling framework
that can be used to model queueing systems. The DES model for
the queueing system previously described is captured by the flow
diagram69 in Fig. 125. 69 Arnold H. Buss. A tutorial on

discrete-event modeling with simula-
tion graphs. In C. Alexopoulos, I Kang,
W. R. Lilegdon, and D. Goldsman,
editors, Proceedings of the 1995 Winter
Simulation Conference ed., Arlington,
Virginia, 1995.

The queue is the scarce resource modelled by class Queue: it
features a push method and a pop method to add and remove
customers. It also features a review_queue method to record the
length of the queue at a given point in time.

The DES engine is captured in class DES. The engine comprises
a method start that initates the loop by which the engine extracts
events from the event stack events, and executes method end of for
each of them. Finally, the engine comprises a method schedule to
schedule an event after a given time lag.

appendix 171

from queue import PriorityQueue

#############################
QUEUEING SYSTEM
#############################

class Queue:
def __init__(self, initial_size):

self.s = 0
self.levels = [[0, self.s]]

def push(self):
self.s += 1

def pop(self):
self.s -= 1

def queue_empty(self):
return self.s == 0

def review_queue(self, time):
self.levels.append([time, self.s]) # review queue

#########################
DES ENGINE
#########################

class Event():
pass

class EventWrapper():
def __init__(self, event):

self.event = event

def __lt__(self, other):
return self.event.priority < other.event.priority # low numbers denote high

priority

class DES():
def __init__(self, end):

self.events, self.end, self.time = PriorityQueue() , end, 0

def start(self):
while True: # cycle until self.time < self.end

event = self.events.get() # extract an event
self.time = event[0]
if self.time < self.end:

event[1].event.end() # call method end() for the event
else:

break

def schedule(self, event: EventWrapper, time_lag): # schedule an event
self.events.put((self.time + time_lag, event))

##########################
EVENTS
##########################

class CustomerArrival(Event):
def __init__(self, des: DES, service_time: float, arrival_rate: float, queue:

Queue):
self.des, self.t, self.r, self.q = des, service_time, arrival_rate, queue
self.priority = 1 # lowest priority

def end(self):
self.q.review_queue(self.des.time)
if self.q.queue_empty():

self.des.schedule(EventWrapper(EndOfCustomerService(self.des, self.t,
self.q)), self.t)

self.q.push()
self.q.review_queue(self.des.time)
self.des.schedule(EventWrapper(self), np.random.exponential(1.0/self.r)) #

schedule another arrival

class EndOfCustomerService(Event):
def __init__(self, des: DES, service_time: float, queue: Queue):

self.des, self.t, self.q = des, service_time, queue
self.priority = 0 # highest priority

def end(self):
self.q.review_queue(self.des.time)
self.q.pop()
if not(self.q.queue_empty()):

schedule end of customer service after self.t time periods
self.des.schedule(EventWrapper(EndOfCustomerService(self.des, self.t,

self.q)), self.t)
self.q.review_queue(self.des.time)

Listing 76 A DES to model a queueing
system in Python.

172 inventory analytics

customer arrival end of service

end?

no

remove customer
from queue

add customer
to queue

teller busy?

no

yes

customers waiting
in the queue?

yes
yes

start

stop

event

procedure Fig. 125 DES flow diagram for the
queueing system.

Events are necessary to properly capture the dynamics of the sys-
tem. Event is an empty class capturing a generic event, EventWrapper
is a wrapper class that allows us to express relative priorities be-
tween event types. For instance, suppose that in an inventory
system with no stock available, an order receipt event is scheduled
at the same time as a customer demand, which event should be
processed first? The field priority in each event class allows us to
break such a tie.

There are two main events we need to consider: CustomerArrival
and EndOfCustomerService. CustomerArrival models the random
arrival of a customer. The end method schedules an EndOfCustomerService

event if the queue is empty, otherwise it increments the number of
customers in the queue. Finally, it triggers a new CustomerArrival

event after a time interval exponentially distributed with rate
parameter equal to customer_arrival_rate. The end method
of EndOfCustomerService event, decrements the number of cus-
tomers in the queue, and if the queue is not empty, triggers another
EndOfCustomerService event after customer_service_time time
periods.

The Python code for simulating our example is shown in Listings
75, 76, and 77. After running the code, we find that the mean queue
length is 1.75 customers (standard deviation: 0.93) and that the
maximum observed queue length over the simulation horizon is 4

customers.

np.random.seed(1234) # set a random seed to ensure replicability
q = Queue(0) # create an empty queue
N = 20 # simulation horizon
des = DES(N)
customer_service_time, customer_arrival_rate = 1, 1
d = CustomerArrival(des, customer_service_time, customer_arrival_rate, q)
des.schedule(EventWrapper(d), 0) # schedule the first arrival
des.start()

print("Mean queue length:\t"+ ’%.2f’ % np.average(np.array(q.levels)[:,1]))
print("St. dev. queue length:\t"+ ’%.2f’ % np.std(np.array(q.levels)[:,1]))
print("Max queue length:\t"+ ’%.2f’ % max(np.array(q.levels)[:,1]))

plot_queue(q.levels, "queue length")
plt.legend()
plt.show()

Listing 77 Simulating a queueing
system in Python.

appendix 173

Stochastic Dynamic Programming

Dynamic Programming is a framework for modeling and solv-
ing sequential decision making problems. The framework was
originally introduced by Bellman in his seminal book Dynamic
Programming70 to deal with multistage decision processes under un- 70 Richard Bellman. Dynamic Program-

ming. Princeton Univ. Pr., 1957.certainty. The framework takes a “functional equation” approach to
the discovery of optimum policies. Although originally devised to
deal with problems of decision making under uncertainty, dynamic
programming can also solve deterministic problems.

To model and solve a problem via dynamic programming, one
has to specify:

• a planning horizon comprising n periods;

• the finite set St of possible states in which the system may be
found in period t, for t = 1, ..., n;

• the finite set As of possible actions that may be taken in state
s ∈ St;

• the state transition function gt : St × As → St+1 that identifies
the state s′ ∈ St+1 towards which the system transitions if action
a ∈ As is taken in state s ∈ St;

• the immediate cost (resp. profit) ct(s, a) incurred if action a ∈ As

is taken in state s ∈ St of period t;

• the functional equation ft(s) denoting the minimum total cost
(resp. maximum total profit) incurred over periods t, t + 1, . . . , T
when the system is in state s ∈ St at the beginning of period t.

Without loss of generality in what follow we will consider a cost
minimisation setting.

In Deterministic Dynamic programming one usually deals
with functional equations taking the following structure

ft(s) = min
a∈As

ct(s, a) + ft+1(gt(s, a)),

where the boundary condition of the system is fT+1(s) , 0, for all
s ∈ ST+1. Let the initial state of the system at the beginning of the
first period be s, the goal is to determine fn(s).

Given the current state s and the current action a in period t, we
know with certainty the cost during the current stage and — thanks
to the state transition function gt — the future state towards which
the system transitions.

In practice, however, even if we know the state of the system
at the beginning of the current stage as well as the decision taken,
the state of the system at the beginning of the next stage and the
current period reward are often random variables that can only be
observed at the end of the current stage.

174 inventory analytics

Stochastic dynamic programming deals with problems in
which the current period reward and/or the next period state are
random, i.e. with multi-stage stochastic systems. The decision
maker’s goal is to maximise expected (discounted) reward over
a given planning horizon. In their most general form, stochastic
dynamic programs deal with functional equations taking the follow-
ing structure

ft(s) = min
a∈As

ct(s, a) + α ∑
j∈St+1

pa
sj ft+1(j).

where

• ct(s, a) is the expected immediate cost (resp. profit) incurred if
action a ∈ As is taken in state s ∈ St of period t;

• α is the discount factor;

• pa
sj be the transition probability from state s ∈ St towards state

j ∈ St+1, when action a ∈ Ai is taken;

• ft(s) is the minimum expected total cost (resp. maximum total
profit) that can be attained during stages t, t + 1, . . . , n, if the
system is in state s at the beginning of period t.

Let the initial state of the system at the beginning of the first period
be s, once more the goal is to determine fn(s).

import functools

class memoize(object):

def __init__(self, func):
self.func = func
self.memoized = {}
self.method_cache = {}

def __call__(self, *args):
return self.cache_get(

self.memoized, args,
lambda: self.func(*args))

def __get__(self, obj, objtype):
return self.cache_get(

self.method_cache, obj,
lambda: self.__class__(

functools.partial(
self.func, obj)))

def cache_get(self, cache, key,
func):

try:
return cache[key]

except KeyError:
cache[key] = func()
return cache[key]

def reset(self):
self.memoized = {}
self.method_cache = {}

Listing 78 The Memoize class; memo-
ization is a technique for storing the
results of expensive function calls and
returning the cached result when the
same inputs occur again.

Example 40. Consider a 3-period inventory control problem. At the be-
ginning of each period the firm should decide how many units of a product
should be produced. If production takes place for x units, where x > 0, we
incur a production cost c(x). This cost comprises both a fix and a variable
component: c(x) = 0, if x = 0; c(x) = 3 + 2x, otherwise. Production
in each period cannot exceed 4 units. Demand in each period takes two
possible values: 1 or 2 units with equal probability (0.5). Demand is ob-
served in each period only after production has occurred. After meeting
current period’s demand holding cost of $1 per unit is incurred for any
item that is carried over from one period to the next. Because of limited
capacity the inventory at the end of each period cannot exceed 3 units.
All demand should be met on time (no backorders). If at the end of the
planning horizon (i.e. period 3) the firm still has units in stock, these can
be salvaged at $2 per unit. The initial inventory is 1 unit.

The problem described in the previous example can be imple-
mented in Python as shown in the InventoryControl class below.
Additional classes used are shown in Listing 78 and Listing 79. The
following code captures the instance described.

instance = {"T": 3, "K": 3, "v": 2, "h": 1, "s": 2, "pmf": [[(1, 0.5),(2, 0.5)] for
i in range(0,3)], "C": 3}

ls = InventoryControl(**instance)
t = 0 # initial period
i = 1 # initial inventory level
print("f_1("+str(i)+"): " + str(ls.f(i)))
print("b_1("+str(i)+"): " + str(ls.q(t, i)))

class State:
’’’the state of the inventory system
’’’

def __init__(self, t: int, I:
float):

’’’state constructor

Arguments:
t {int} -- time period
I {float} -- initial inventory

’’’
self.t, self.I = t, I

def __eq__(self, other):
return self.__dict__ ==

other.__dict__

def __str__(self):
return str(self.t) + " " +

str(self.I)

def __hash__(self):
return hash(str(self))

Listing 79 State class.

appendix 175

To implement Stochastic Dynamic
Programming in Python we make
extensive use of lambda expressions
(also known as Anonymous functions)
to define: the function that generates
the set of feasible actions for a given
state, the state transition function that
determines the future state given a
present state and an action, and the
immediate value function for an action
taken in a given state.

class InventoryControl:
’’’the inventory control problem

Returns:
[type] -- [description]

’’’

def __init__(self, T:int, K: float, v: float, h: float, s: float, pmf:
List[List[Tuple[int, float]]], C: float):

’’’inventory control problem constructor

Arguments:
T {int} -- periods in planning horizon
K {float} -- fixed ordering cost
v {float} -- per item ordering cost
h {float} -- per item holding cost
s {float} -- per item salvage value
pmf {List[List[Tuple[int, float]]]} -- probability mass function
C {float} -- capacity of the warehouse

’’’

self.max_demand = max([max(i, key=lambda x: x[0])[0] for i in pmf])
self.min_demand = min([min(i, key=lambda x: x[0])[0] for i in pmf])
self.max_order_qty = C + self.min_demand

initialize instance variables
self.T, self.K, self.v, self.h, self.s, self.pmf, self.warehouseCapacity = T,

K, v, h, s, pmf, C

lambdas
self.ag = lambda s: [i for i in range(max(self.max_demand - s.I, 0),

min(self.max_order_qty - s.I, self.max_order_qty)
+ 1)] # action generator

self.st = lambda s, a, d: State(s.t+1, s.I+a-d) # state transition
L = lambda i,a,d : self.h*max(i+a-d, 0) # immediate holding cost
S = lambda i,a,d : self.s*max(i+a-d, 0) # immediate salvage value
self.iv = lambda s, a, d: ((self.K + self.v*a if a > 0 else 0) +

L(s.I, a, d) -
(S(s.I, a, d) if s.t == T - 1 else 0)) # immediate value function

self.cache_actions = {} # cache with optimal
state/action pairs

def f(self, level: List[float]) -> float:
s = State(0,level)
return self._f(s)

def q(self, period: int, level: List[float]) -> float:
s = State(period,level)
return self.cache_actions[str(s)]

@memoize
def _f(self, s: State) -> float:

#Forward recursion
v = min(

[sum([p[1]*(self.iv(s, a, p[0])+ # immediate cost
(self._f(self.st(s, a, p[0])) if s.t < self.T - 1 else 0)) #

future cost
for p in self.pmf[s.t]]) # demand realisations

for a in self.ag(s)]) # actions

opt_a = lambda a: sum([p[1]*(self.iv(s, a, p[0])+
(self._f(self.st(s, a, p[0])) if s.t < self.T - 1 else 0))

for p in self.pmf[s.t]]) == v
q = [k for k in filter(opt_a, self.ag(s))] # retrieve best action

list
self.cache_actions[str(s)]=q[0] if bool(q) else None # store an action in

dictionary

return v # return expected total
cost

Markov decision processes
71 represent a special class of 71 Martin L. Puterman. Markov decision

processes: Discrete stochastic dynamic
programming. J. Wiley & Sons, 1994.

stochastic dynamic programs in which the underlying stochas-
tic process is a stationary process that features the Markov property.

Bibliography

Esther Arkin, Dev Joneja, and Robin Roundy. Computational
complexity of uncapacitated multi-echelon production planning
problems. Operations Research Letters, 8(2):61–66, 1989.

Kenneth J. Arrow. Studies in the mathematical theory of inventory and
production. Stanford Univ. Pr., 1977.

Kenneth J. Arrow, Theodore Harris, and Jacob Marschak. Optimal
inventory policy. Econometrica, 19(3):250–272, 1951.

Ronald G. Askin. A procedure for production lot sizing with
probabilistic dynamic demand. AIIE Transactions, 13(2):132–137,
1981.

Sven Axsäter. Simple solution procedures for a class of two-echelon
inventory problems. Operations Research, 38(1):64–69, 1990.

Richard Bellman. Dynamic Programming. Princeton Univ. Pr., 1957.

William A. Bernstein. Luca pacioli the father of accounting. In The
Air Force Comptroller, volume 10(2) of Air Force recurring publication
170-2, pages 44–45. Office of the Comptroller, United States Air
Force, 1976.

John Birge. Introduction to stochastic programming. Springer, 2011.

James H. Bookbinder and Jin-Yan Tan. Strategies for the probabilis-
tic lot-sizing problem with service-level constraints. Management
Science, 34(9):1096–1108, 1988.

George. E. P. Box and David R. Cox. An analysis of transformations.
Journal of the Royal Statistical Society: Series B (Methodological), 26(2):
211–243, 1964.

George. E. P. Box and Gwilym M. Jenkins. Time series analysis:
Forecasting and control. Holden-Day, 1976.

Robert G. Brown. Statistical forecasting for inventory control. McGraw-
Hill, 1959.

Arnold H. Buss. A tutorial on discrete-event modeling with
simulation graphs. In C. Alexopoulos, I Kang, W. R. Lilegdon,
and D. Goldsman, editors, Proceedings of the 1995 Winter Simulation
Conference ed., Arlington, Virginia, 1995.

178 inventory analytics

Andrew J. Clark and Herbert Scarf. Optimal policies for a multi-
echelon inventory problem. Management Science, 6(4):475–490,
1960.

Alfred Crosby. The measure of reality: quantification and Western
society, 1250-1600. Cambridge Univ. Pr., 1997.

Edsger W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

Gozdem Dural-Selcuk, Roberto Rossi, Onur A. Kilic, and S. Arma-
gan Tarim. The benefit of receding horizon control: Near-optimal
policies for stochastic inventory control. Omega, 97:102091, 2020.

James Durbin and Siem Jan Koopman. Time series analysis by state
space methods. Oxford Univ. Pr., 2001.

Francis Y. Edgeworth. The mathematical theory of banking. Journal
of the Royal Statistical Society, 51(1):113–127, 1888.

Donald Erlenkotter. Ford Whitman Harris and the Economic Order
Quantity model. Operations Research, 38(6):937–946, 1990.

Awi Federgruen and Paul Zipkin. An inventory model with limited
production capacity and uncertain demands I. The average-cost
criterion. Mathematics of Operations Research, 11(2):193–207, 1986.

Michael Florian and Morton Klein. Deterministic production
planning with concave costs and capacity constraints. Management
Science, 18(1):12–20, 1971.

Michael Florian, Jan K. Lenstra, and Alexander H. G. Rin-
nooy Kan. Deterministic production planning: Algorithms and
complexity. Management Science, 26(7):669–679, 1980.

Robert G. Gallager. Stochastic processes. Cambridge Univ. Pr., 2013.

Ford W. Harris. How many parts to make at once. Factory, The
Magazine of Management, 10(2):135–136, 1913.

Charles C. Holt. Forecasting seasonals and trends by exponentially
weighted moving averages. International Journal of Forecasting, 20(1):
5–10, 2004.

Rob J. Hyndman and George Athanasopoulos. Forecasting: Princi-
ples and practice. OTexts, 2020.

Peter Jackson, William Maxwell, and John Muckstadt. The joint
replenishment problem with a powers-of-two restriction. IIE
Transactions, 17(1):25–32, 1985.

Hamed Jalali and Inneke Van Nieuwenhuyse. Simulation optimiza-
tion in inventory replenishment: A classification. IIE Transactions,
47(11):1217–1235, 2015.

bibliography 179

Herman Kahn and Andy W. Marshall. Methods of reducing sample
size in Monte Carlo computations. Journal of the Operations Research
Society of America, 1(5):263–278, 1953.

William Karush. A theorem in convex programming. Naval Research
Logistics Quarterly, 6(3):245–260, 1959.

Retsef Levi, Georgia Perakis, and Joline Uichanco. The data-driven
newsvendor problem: New bounds and insights. Operations
Research, 63(6):1294–1306, 2015.

Xiyuan Ma, Roberto Rossi, and Thomas Welsh Archibald. MILP
approximations for non-stationary stochastic lot-sizing under
(s,Q)-type policy, 2020. URL https://arxiv.org/abs/2009.06976.

Douglas C. Montgomery and George C. Runger. Applied statistics
and probability for engineers. John Wiley and Sons, 2014.

John A. Nelder and Roger Mead. A simplex method for function
minimization. The Computer Journal, 7(4):308–313, 1965.

Martin L. Puterman. Markov decision processes: Discrete stochastic
dynamic programming. J. Wiley & Sons, 1994.

Paolo Quattrone. Books to be practiced: Memory, the power of the
visual, and the success of accounting. Accounting, Organizations and
Society, 34(1):85–118, 2009.

Paolo Quattrone. Governing social orders, unfolding rationality,
and Jesuit accounting practices. Administrative Science Quarterly, 60

(3):411–445, 2015.

Jack Rogers. A computational approach to the economic lot
scheduling problem. Management Science, 4(3):264–291, 1958.

Kaj Rosling. Optimal inventory policies for assembly systems under
random demands. Operations Research, 37(4):565–579, 1989.

Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook
of Constraint Programming, volume 2 of Foundations of Artificial
Intelligence. Elsevier, 2006.

Roberto Rossi, Steven Prestwich, S. Armagan Tarim, and Brahim
Hnich. Confidence-based optimisation for the newsvendor problem
under binomial, Poisson and exponential demand. European Journal
of Operational Research, 239(3):674–684, 2014a.

Roberto Rossi, S. Armagan Tarim, Steven Prestwich, and Brahim
Hnich. Piecewise linear lower and upper bounds for the stan-
dard normal first order loss function. Applied Mathematics and
Computation, 231:489–502, 2014b.

Roberto Rossi, Onur A. Kilic, and S. Armagan Tarim. Piecewise
linear approximations for the static–dynamic uncertainty strategy
in stochastic lot-sizing. Omega, 50:126–140, 2015.

https://arxiv.org/abs/2009.06976

180 inventory analytics

Herbert E. Scarf. Optimality of (s, S) policies in the dynamic
inventory problem. In K. J. Arrow, S. Karlin, and P. Suppes, editors,
Mathematical Methods in the Social Sciences, pages 196–202. Stanford
Univ. Pr., 1960.

Chen Shaoxiang. The infinite horizon periodic review problem with
setup costs and capacity constraints: A partial characterization of
the optimal policy. Operations Research, 52(3):409–421, 2004.

Chen Shaoxiang and Marc Lambrecht. X-Y band and modified (s,
S) policy. Operations Research, 44(6):1013–1019, 1996.

Craig C. Sherbrooke. Metric: A multi-echelon technique for
recoverable item control. Operations Research, 16(1):122–141, 1968.

E. W. Taft. The most economical production lot. The Iron Age, 101:
1410–1412, 1918.

S. Armagan Tarim and Brian G. Kingsman. Modelling and com-
puting (Rn, Sn) policies for inventory systems with non-stationary
stochastic demand. European Journal of Operational Research, 174(1):
581–599, 2006.

Huseyin Tunc, Onur A. Kilic, S. Armagan Tarim, and Burak
Eksioglu. A simple approach for assessing the cost of system
nervousness. International Journal of Production Economics, 141(2):
619–625, 2013.

Huseyin Tunc, Onur A. Kilic, S. Armagan Tarim, and Roberto
Rossi. An extended mixed-integer programming formulation
and dynamic cut generation approach for the stochastic lot-sizing
problem. INFORMS Journal on Computing, 30(3):492–506, 2018.

Tim J. van Kampen, Renzo Akkerman, and Dirk Pieter van Donk.
SKU classification: A literature review and conceptual framework.
International Journal of Operations & Production Management, 32(7):
850–876, 2012.

Arthur F. Veinott and Harvey M. Wagner. Computing optimal (s, S)
inventory policies. Management Science, 11(5):525–552, 1965.

Andrea Visentin. Computing policy parameters for stochastic inventory
control using stochastic dynamic programming approaches. PhD thesis,
University College Cork, 2020.

Andrea Visentin, Steven Prestwich, Roberto Rossi, and S. Arma-
gan Tarim. Computing optimal (R, s, S) policy parameters by a
hybrid of branch-and-bound and stochastic dynamic program-
ming. European Journal of Operational Research, 2021.

Harvey M. Wagner and Thomson M. Whitin. Dynamic version of
the economic lot size model. Management Science, 5(1):89–96, 1958.

Jacob Wijngaard. An inventory problem with constrained order
capacity. Technical report, TU Eindhoven, the Netherlands, 1972.

bibliography 181

Peter R. Winters. Forecasting sales by exponentially weighted
moving averages. Management Science, 6(3):324–342, 1960.

Mengyuan Xiang, Roberto Rossi, Belen Martin-Barragan, and
S. Armagan Tarim. Computing non-stationary (s, S) policies using
mixed integer linear programming. European Journal of Operational
Research, 271(2):490–500, 2018.

Yu-Sheng Zheng and Awi Federgruen. Finding optimal (s, S)
policies is about as simple as evaluating a single policy. Operations
Research, 39(4):654–665, 1991.

Index

(R, Q) policy, 141, 146

(R, S) policy, 141, 142

(R, s, S) policy, 149

(s, Q) policy, 141, 144

(s, S) policy, 129, 141

K-convexity, 129

α service level (no stockout probabil-
ity), 119

β service level (fill rate), 119

γ service level (ready rate), 119

ABC analysis, 25

action, 173

all-units discounts, 51

Analytics, 21

ARIMA models, 108

arrival epoch, 168

arrival process, 168

assembly systems, 162

autocorrelation, 108

autocorrelation function (ACF), 112

autoregression, 109

Autoregressive (AR) model, 109

Autoregressive Integrated Moving
Average (ARIMA) model, 113

Average method, 96

backorders, 26, 29

base planning period, 49

base-stock policy, 125

Bernoulli random variable, 167

Bernoulli stochastic process, 167

Bessel’s correction, 93

binomial random variable, 167

binomial stochastic process, 167

Box-Cox transformations, 98

capacitated lot sizing problem, 66

capacity constraints (order quantity),
66, 128, 140

complementary first order loss
function, 118, 146

confidence intervals, 93

Constraint Programming, 60

continuous review, 25, 41, 59

control policy, 28, 116

correlated demand, 108

correlogram, 110

critical fractile solution, 118

customer demand, 26

descriptive analytics, 21

descriptive inventory analytics, 22

differenced time series, 108

differencing, 108

Dijkstra’s algorithm, 143

Directed Acyclic Graph (DAG), 61,
143

discount factor, 174

discounting, 174

Discrete Event Simulation (DES), 32,
120, 170

discrete renewal equations, 133

discretisation of the planning hori-
zon, 45

distribution systems, 162

divide and conquer, 114

Drift method, 84

Dynamic Lot Sizing, 61

Dynamic Programming (DP), 68, 173

dynamic uncertainty strategy, 141

echelon stock, 158

echelon stock base-stock policy, 160

Economic Order Quantity, 41

Economic Production Quantity, 55

Economics Lot Scheduling, 56

economies of scale, 25

Edmundson-Madansky bound, 147

events, 32

expected immediate cost (profit), 174

expected long run average cost per
period, 132

exploratory analysis, 75

Exponential Smoothing, 99

finite production capacity, 56

finite production rate, 55

first order condition, 118, 159

first order loss function, 118, 146, 159

fixed ordering cost, 31, 39, 129, 142,
144, 146, 149

flat forecast function, 104

forecast error, 90

forecasting accuracy, 90

forward differences, 118

functional equation, 173

Gaussian noise, 76

general multi-echelon systems, 163

holding cost, 31, 39, 129, 132, 142,
144, 146, 149

Holt’s method, 104

Holt-Winters’ seasonal method, 106

homoskedasticity, 78

hypothesis testing, 79

immediate cost, 173

Implied Turnover Ratio, 42

inbound outstanding orders, 32

incremental discounts, 52

induction, 131

installation, 153

installation stock, 158

installation stock base-stock policy,
160

interarrival time, 168

inventory, 25

inventory control, 22

inventory level, 26

inventory position, 32

inventory review, 25, 26

inventory review cost, 31

inventory system, 26

item dependent setup times, 56

Joint Replenishment Problem, 59

lambda expressions, 175

lead time, 30, 32, 48, 126

lean inventory management, 30, 32

level component of the time series,
104

linear trend, 104

184 inventory analytics

logarithmic transformation, 98

lost sales, 29, 126

lot sizing, 31

MAE, see Mean Absolute Error
major setup cost, 59

MAPE, see Mean Absolute Percent-
age Error

Markov decision processes, 175

Markov property, 175

Mathematical Programming, 66, 139,
143, 145, 146, 149

Mean Absolute Error, 91

Mean Absolute Percentage Error, 91

Mean Squared Error, 91

mean stabilisation, 108

memoization, 174

memoryless property, 169

METRIC, 163

minor setup cost, 59

modified (s, S) policy, 140

modified base-stock policy, 128

Moving Average (MA) model, 111

Moving Average method, 77

MSE, see Mean Squared Error
multi-echelon inventory systems, 151

multi-period Newsvendor, 123

multi-step prediction intervals, 94

multiple items, 59

Naïve method, 81

Nelder-Mead’s algorithm, 124, 145

nervousness of control, 141

Newsboy, 117

Newsvendor, 117, 122

non-parametric time series analysis,
76

nonstationary (s, S) policy, 137

nonstationary stochastic process, 137

on hand inventory, 26, 158

one-step forecasts, 82

one-step prediction intervals, 94

one-warehouse multiple-retailers
system, 163

opportunity cost, 117

optimality of (s, S) policies, 129

order of an ARMA(p, q) process, 112

order of events, 127

order-up-to policy, 142

ordering cost, 129, 132

outstanding orders, 158

overage cost, 117

Pacioli, L., 22

parametric time series analysis, 76

penalty cost, 31, 132, 142, 144, 146,
149

per unit purchase cost, 30, 31

periodic review, 25, 28, 61, 153

piecewise linearisation, 147

planned backorders (EOQ), 53

planned backorders (Wagner-
Whitin), 64

planning horizon, 173

Poisson process, 168

Poisson processes, 167

Poisson random variable, 167

positive initial inventory (Wagner-
Whitin), 63

power transformation, 98

powers-of-two policies, 49, 59

prediction intervals, 93, 94, 104, 107

predictive analytics, 21

predictive inventory analytics, 22

prescriptive analytics, 21

prescriptive inventory analytics, 22,
114

priority queue, 32

production on a single machine, 56

production synchronisation, 59

production/delivery lag, 48

profit function, 117

projection algorithm, 163

purchasing cost, 117, 129, 132

Q-Q plot, 79

quantity discounts, 50

quantity-oriented nervousness, 141

queueing system, 170

random walk, 81

random walk with drift, 84

realised echelon stock inventory
position, 158

reasons for keeping inventory, 25

renewal process, 168

replenishment cycle, 41, 61, 132, 142

residuals analysis, 78

reward-renewal theorem, 132

RMSE, see Root Mean Squared Error
rolling horizon control, 148

Root Mean Squared Error, 91

rotation schedule, 57

salvage value, 117

scale-dependent error measures, 91

seasonal component of the time
series, 104, 106

seasonal difference, 87, 108

Seasonal Naïve method, 87

seasonal random walk, 87, 106

selling price, 30, 117

sensitivity analysis (EOQ), 46, 47

sequential decision making, 173

serial correlation, 108

serial system, 153

service level constraints, 119

setup time, 56

setup-oriented nervousness, 141

shortage cost, 31, 119, 129, 132, 142,
144, 146, 149

shortest path reformulation for the
Dynamic Lot Sizing, 61

significance testing, 79

Simple Exponential Smoothing, 99

simulation-optimisation, 145

smoothing equations, 104, 106

smoothing parameters, 104

state, 173

state of the inventory system, 137

state space formulation, 103, 107

state transition function, 173

state variable, 26

static uncertainty strategy, 141, 146

static-dynamic uncertainty strategy,
141, 142, 144

stationary (s, S) policy, 132

stationary stochastic process, 75

Stochastic Dynamic Programming
(SDP), 137, 173

stochastic inventory control, 116

stochastic process, 75

stochastic programming, 146

stock allocation strategies, 162

stock keeping unit (SKU), 26

supply chain, 25

supply chain management, 25

test data, 90

time, 25

time series, 75

time series analysis, 75

time series forecasting, 75

Total Quality Management diagram,
26

training data, 90

transition probability, 174

trend component of the time series,
104

uncertainty, 25

underage cost, 117

variance stabilisation, 98

Wagner-Whitin problem, 61

warehouse, 26

weighted moving average, 111

white noise, 76

zero inventory ordering, 41, 55, 59

INVENTORY ANALYTICS
OBP

ebook
ebook and OA edi� ons

also available

INVENTORY ANALYTICS

This volume provides a comprehensive and accessible introduc� on
to the theory and prac� ce of inventory control – a signifi cant
research area central to supply chain planning. The book outlines the
founda� ons of inventory systems and surveys prescrip� ve analy� cs
models for determinis� c inventory control. It further discusses
predic� ve analy� cs techniques for demand forecas� ng in inventory
control and also examines prescrip� ve analy� cs models for stochas� c
inventory control.

Inventory Analyti cs is the fi rst book of its kind to adopt a prac� cable,
Python-driven approach to illustra� ng theories and concepts via
computa� onal examples, with each model covered in the book
accompanied by its Python code. Origina� ng as a collec� on of self-
contained lectures, this volume is an indispensable resource for
prac� � oners, researchers, teachers, and students alike.

This is the author-approved edi� on of this Open Access � tle. As with
all Open Book publica� ons, this en� re volume is available to read for
free on the publisher’s website. Printed and digital edi� ons, together
with supplementary digital material, can also be found at h� p://www.
openbookpublishers.com

Cover image: Photo by Tiger Lily from Pexels, htt ps://www.pexels.com/photo/shelves-on-a-warehouse-4483608/
(front); Boat in Body of Water, htt ps://www.pexels.com/photo/business-cargo-cargo-container-city-262353/
(back). Cover Design by Anna Gatti .

 R
O

B
ER

TO R
O

SSI IN
V

E
N

T
O

R
Y A

N
A

LY
T

IC
S

ROBERTO ROSSI

	Preface
	Introduction
	Inventory Systems
	Introduction
	The role of inventory in supply chain management
	A simple inventory system
	Inventory costs
	Deterministic supplier lead time

	Deterministic Inventory Control
	Introduction
	Accounting for costs
	The Economic Order Quantity
	Quantity discounts
	Planned backorders in the EOQ
	Finite production rate: The Economic Production Quantity
	Production on a single machine: The Economic Lot Scheduling
	Synchronising production: The Joint Replenishment Problem
	Time-varying demand: Dynamic Lot Sizing
	Planned backorders in Dynamic Lot Sizing
	Order quantity capacity constraints in Dynamic Lot Sizing

	Demand Forecasting
	Introduction
	Time series
	Four simple forecasting methods
	Naïve method
	Drift method
	Seasonal Naïve method
	Evaluating forecasting accuracy
	Prediction Intervals
	Box-Cox transformations
	Exponential Smoothing
	ARIMA models

	Stochastic Inventory Control
	Introduction
	The Newsvendor
	Service level constraints in inventory systems
	Simulating stochastic inventory systems
	The multi-period Newsvendor
	The base-stock policy
	The modified base-stock policy
	The (s,S) policy
	The modified (s,S) policy
	Nervousness of control
	The (R,S) policy
	The (s,Q) policy
	The (R,Q) policy
	The (R,s,S) policy

	Multi-echelon Inventory Systems
	Introduction
	Serial systems
	Assembly systems
	Distribution systems
	General systems

	Appendix
	Introduction
	Poisson processes
	Discrete Event Simulation
	Stochastic Dynamic Programming

	Bibliography
	Index

