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PREFACE

This book is a slight extension of the third edition. Apart from some small
additions to various sections, it contains a new extended section on Calorons in
chapter 17, a topic that was only touched upon in the previous edition. Calorons
are finite temperature instantons in the pure non-abelian SU(2) and SU(3) gauge
theories, and have been the subject of intensive investigations in the past twelve
years. As has been shown analytically, they possess very interesting properties, and
appear to provide a connection between non-perturbative instanton like excitations,
vortices and monopoles. Because they are excitations of the pure non-abelian gauge
theories, they can also be studied in detail in ensembles of lattice gauge field config-
urations using conventional Monte Carlo methods, where their indirect role played
for the confinement problem becomes visible. As always we have tried to present
the material in a transparent way, avoiding mathematical details, which are quite
complex, as well as details in the simulations, which are in fact quite subtle.

Note from the author

We would be grateful if the reader would inform us about any errors he may find.
The e-mail address is: H.J.Rothe@web.de

Important corrections to this book which come to the authors attention, will
be posted on World-Wide Web at

http://www.thphys.uni-heidelberg.de/∼rothe h/LGT.html

vii

2021 © The Author(s). This is an Open Access chapter published by World Scientific Publishing Company, 
licensed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
https://doi.org/10.1142/9789814365871_fmatter
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PREFACE TO THE THIRD EDITION

Apart from minor modifications, this new edition includes a number of topics,
some of which are of great current interest. These concern in particular a discus-
sion in chapter 17 of instantons and calorons, and of the role played by vortices for
the confinement problem. Furthermore we have included in chapter 4 a section on
Ginsparg–Wilson fermions. In chapter 10 we have added a section on the pertur-
bative verification of the energy sum rule obtained in section 10.3. Some details of
the calculations have been delegated to an appendix. New sections have also been
added in chapters 14 and 15. In chapter 14 we come back to the Ginsparg–Wilson
discretization of the action and discuss the ABJ anomaly within this framework. In
the same chapter we also have included a detailed analysis of the renormalization of
the axial vector current in one-loop order, since it provides an instructive example
of how lattice regulated Ward identities can be used to determine the renormaliza-
tion constants for currents. In chapter 15 we have included a very general treatment
of the ABJ anomaly in QCD and show that in the continuum limit one recovers
the well known result, irrespective of the precise way in which the action has been
discretized.

Following our general principle which we have always tried to implement, we
have done our best to convey the main ideas in a transparent way as possible, and
have presented most of the non-trivial calculations in sufficient detail, so that the
reader can verify them without too much effort. As always we have only included
results of numerical calculations of pioneering work, be it in the early days of the
lattice formulation of gauge field theories, or in more recent days.

Finally, we want to thank W. Wetzel and I. O. Stamatescu for a number of very
fruitful discussions and constructive comments, and in particular Prof. Stamatescu
for providing me with some unpublished plots relevant to instantons on the lattice.

ix
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PREFACE TO THE SECOND EDITION

The objective of this extended edition of the book which appeared in 1992
remains the same as at that time. The book is intended to provide the reader
with the necessary theoretical background and computational tools in lattice gauge
theories, to enable him to follow the vast literature on this subject, and to carry
out research in this field. We have invested much effort in presenting the material
in a (hopefully) transparent way. Wherever possible we exemplified complex ideas
in simple models. Analytical calculations have been carried out in detail, so as to
acquaint the reader with the computational techniques.

Although the numerical computations have improved substantially since the
appearance of the first edition, we have refrained from including recent results in
this volume. Thus apart from a new section in chapter 17, where we discuss the
dual superconductor picture of confinement, the data we present is the same as in
the original volume. Our emphasis is on the early pioneering work which has been
the motor for subsequent investigations, and which at the same time demonstrates
the difficulties that physicist were confronted with (and still are) when carrying
out numerical simulations. This is in line with the introductory character of the
book. For more recent results the reader should confer the numerous conference
proceedings.

In this edition we have added a substantial amount of new material. In chapter
4 we have included an additional section where the fermion doubling problem is dis-
cussed in more detail. We have also added a chapter on lattice sum rules which have
played an important role in the past years in numerical simulations of the flux-tube
picture of confinement. Chapter 15, where we discuss the lattice Feynman rules for
QCD, now also includes a derivation of the expression for the four-gluon vertex,
which in the first edition had been kindly provided us by W. Wetzel. The original
chapter 17 on finite temperature field theory has been expanded significantly, and is
now replaced by chapters 18 and 19. Chapter 18 deals in detail with the thermody-
namics of some simple, exactly solvable, bosonic and fermionic systems formulated
within the path integral formalism. It provides the basis for a better understanding
of the lattice formulation of field theories, and allows us to point out some subtle
points which are not discussed in the literature. Chapter 19 is then devoted to fi-
nite temperature perturbation theory in the continuum and on the lattice. The first
part of this chapter treats the λφ3-theory in the continuum formulation, and, apart
from minor changes, contains the material covered in the first edition. Thereafter

xi
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we derive the finite temperature-finite chemical potential Feynman rules for QED
and QCD in the continuum and on the lattice, and apply them to calculate in detail
various quantities of interest. This will provide the reader with a sound knowledge of
the techniques used for carrying out perturbative computations at finite temperature
and chemical potential in the continuum and on the lattice.

The final chapter is devoted to non-perturbative QCD at finite temperature.
The main body of this chapter consists of the material of chapters 19 and 20 in the
original version, with minor modifications. We have included an additional section,
in which we implement the theoretical ideas introduced in the first two sections in
a simple lattice model. This model also serves to introduce the reader to a powerful
computational technique used in the literature to study lattice gauge theories for
strong coupling.

What we have not discussed at all is the electro-weak sector of the standard
model, and in particular lattice Higgs and Yukawa models. These models are treated
in detail in the recent book by I. Montvay and G. Münster (Quantum Fields on a
Lattice, Cambridge University Press (1994)), where the reader can also find a number
of topics not covered in this book.

Writing this extended version has taken up much of the time that I should
have spend with my family, and in particular with my children, who have asked
me so many times in vain to play with them. I am very grateful to all of them
for having had so much patience with me. I am also very grateful to T. Reisz and
R. Haymaker for their critical reading of some sections of the book and their very
helpful comments, and to P. Kaste for having checked a number of formulae.
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PREFACE TO THE FIRST EDITION

This book is based on a one year course I held at the University of Heidelberg
and on a series of lectures I gave at the “Autumn College on Techniques in Many-
Body Problems” at Lahore, Pakistan, in november of 1987. These lectures have
been published in the proceedings to this school by World Scientific (Rothe, 1989).
I was later encouraged by the editors of World Scientific to expand on the material
presented at the autumn college. This I have done in this book.

The purpose of my lectures at Lahore was to introduce lattice gauge theories
to young physicists who may not have the opportunity to attend a course on this
subject at their home universities. I had therefore kept the discussion as elementary
as possible, including only enough thechnical details to enable the reader to follow
the published literature on this subject. In this book I have expanded substantially
on the material presented at Lahore, and have included a number of technical details
which I felt would be very helpful to those readers who may want to carry out
research in this branch of elementary particle physics. I did, however, arrange the
material in such a way that those physicists who are mainly interested in getting
a bird eyes view on the subject can safely skip the technical parts, without the
danger of getting lost at a later stage. This concerns, in particular, the discussion in
sections 4 and 5 of chapter 4 on lattice fermions, and the weak coupling expansion in
lattice quantum chromodynamics (QCD), chapter 14. I have included this material
for the readers convenience, since it is not discussed in such detail in the literature.
I also decided to include a chapter on the path integral formalism, since the entire
book is based on the path integral approach to quantization, and I do not assume
that everybody is familiar with this formalism. Those readers that have never come
in touch with the path integral formulation of quantum field theory may find this
chapter a bit technical. However, the results we derive, of which we will make ample
use in this book, are very simple, and are easily understood by everybody.

This book is mainly addressed to graduate students interested in particle
physics. But it is also of interest to physicists actively engaged in research in the
field of lattice gauge theories, and who may want to get a more general view on this
subject. It assumes that the reader has a fair background in quantum field theory.
A moderate knowledge of the continuum formulation of quantum chromodynamics
would certainly be very helpful. Also physicists working in statistical mechanics may
profit from reading this book, since the lattice formulation of field theories resembles
closely that of complex statistical mechanical systems.

xiii
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The book is divided in two parts. In the first part, comprising chapters 1 to 16,
I discuss the zero temperature formulation of field theories on a space-time lattice,
and in particular QCD. They are the lattice analogues of the usual continuum field
theories discussed in standard text books. The second part, consisting of chapters 17
to 20, deals with finite temperature field theory. The emphasis will be on QCD, but
I shall use a scalar field theory to introduce the reader to a number of new concepts
which play an important role in finite temperature QCD.

Since the main goal of this book is to stimulate the readers interest in this fasci-
nating branch of elementary particle physics, I have taken an optimistic standpoint,
selecting some results of Monte Carlo calculations which illustrate the phenomena
in a particularily dramatic way. I did not attempt to present a critical analysis of
the results, and have left it to the reader to confer the original literature. Nor did
I attempt to give a complete list of references, which the reader can find in the
numerous proceedings to lattice conferences. More detailed discussions of most of
the topics presented in this book can be found in the proceedings to various schools.
An introduction to lattice gauge theories can also be found in the monograph by
M. Creutz: Quarks, Gluons and Lattices, published by Cambridge University Press
(1983).

Hopefully this book will stimulate some of the readers to carry out some re-
search in the field of lattice gauge theories. If so, I have achieved the purpose it has
been written for.

I like to take this opportunity to thank a number of colleages for their con-
structive criticisms and for having read several chapters of this book. In particular
I am grateful to A. Actor, I. Bender, D. Gromes, F. Karsch, K.H. Mütter, I.O. Sta-
matescu and W. Wetzel. I am especially grateful to W. Wetzel for having checked a
number of formulae, and for his extensive technical help in getting the manuscript
into its final form. I also want to express my gratitude to Mrs. U. Einecke, and
Mrs. M. Steiert for having typed so patiently the manuscript in TEX. Finally, I am
particularily thankful to my family, whose continued support has made this book
possible. In particular my children had to dispense of their father for many (!) hours.
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CHAPTER 1

INTRODUCTION

It is generally accepted that quantum field theory is the appropriate framework
for describing the strong, electromagnetic and weak interactions between elemen-
tary particles. As for the electromagnetic interactions, it has been known for a long
time that they are described by a quantum gauge field theory. But that the prin-
ciple of gauge invariance also plays a fundamental role in the construction of a
theory for the strong and weak interactions has been recognized only much later.
The unification of the weak and electromagnetic interactions by Glashow, Salam
and Weinberg was a major breakthrough in our understanding of elementary par-
ticle physics. For the first time one had been able to construct a renormalizable
quantum field theory describing simultaneously the weak and electromagnetic in-
teractions of hadrons and leptons. The “electro-weak” theory of Glashow, Salam
and Weinberg is based on a non-abelian SU(2) × U(1) gauge symmetry, which is
broken down spontaneously to the U(1) symmetry of the electromagnetic interac-
tions. This breaking manifests itself in the fact that, in contrast to the massless
photon, the particles mediating the weak interactions, i.e., the W+, W− and Z0

vector bosons, become massive. In fact they are very massive, which reflects the
fact that the weak interactions are very short ranged. The detection of these par-
ticles constituted one of the most beautiful tests of the Glashow-Salam-Weinberg
theory.

The fundamental fermions to which the vector bosons couple are the quarks and
leptons. The quarks, which are the fundamental building blocks of hadronic matter,
come in different “flavours”. There are the “up”, “down”, “strange”, “charmed”,
“bottom” and “top” quarks. The weak interactions can induce transitions between
different quark flavours. For example, a “u” quark can convert into a “d” quark
by the emission of a virtual W+ boson. The existence of the quarks has been con-
firmed (indirectly) by experiment. None of them have been detected as free parti-
cles. They are permanently confined within the hadrons which are built from the
different flavoured quarks and antiquarks. The forces which are responsible for the
confinement of the quarks are the strong interactions. Theoretical considerations
have shown, that the “up”, “down”, etc., quarks should come in three “colours”.
The strong interactions are flavour blind, but sensitive to colour. For this reason one
calls the theory of strong interactions Quantum Chromodynamics, or in short, QCD.
It is a gauge theory based on the unbroken non-abelian SU(3)-colour group (Fritzsch
and Gell-Mann, 1972; Fritzsch, Gell-Mann and Leutwyler, 1973). The number “3”
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reflects the number of colours carried by the quarks. Since there are eight generators
of SU(3), there are eight massless “gluons” carrying a colour charge which medi-
ate the strong interactions between the fundamental constituents of matter. By the
emission or absorption of a gluon, a quark can change its colour.

QCD is an asymptotically free theory (’t Hooft, 1972; Politzer, 1973; Gross and
Wilczek, 1973). Asymptotic freedom tells us that the forces between quarks become
weak for small quark separations. Because of this asymptotic freedom property it
was possible for the first time to carry out quantitative perturbative calculations of
observables in strong interaction physics which are sensitive to the short distance
structure of QCD.∗ In particular it allowed one to study the Bjorken scaling viola-
tions observed in deep inelastic lepton nucleon scattering at SLAC. QCD is the only
theory we know that can account for these scaling violations.

The asymptotic freedom property of QCD is intimately connected with the fact
that it is based on a non-abelian gauge group. As a consequence of this non-abelian
structure the coloured gluons, which mediate the interactions between quarks, can
couple to themselves. These self couplings, one believes, are responsible for quark
confinement. Since the coupling strength becomes small for small separations of the
quarks, one can speculate that the forces may become strong for large separations.
This could explain why these fundamental constituents of matter have never been
seen free in nature, and why only colour neutral hadrons are observed. A confir-
mation that QCD accounts for quark confinement can however only come from a
non-perturbative treatment of this theory, since confinement is a consequence of the
dynamics at large distances where perturbation theory breaks down.

Until 1974 all predictions of QCD were restricted to the perturbative regime.
The breakthrough came with the lattice formulation of QCD by Kenneth Wilson
(1974), which opened the way to the study of non-perturbative phenomena using
numerical methods. By now lattice gauge theories have become a branch of parti-
cle physics in its own right, and their intimate connection to statistical mechanics
make them of interest to elementary particle physicists as well as to physicists work-
ing in the latter mentioned field. Hence also those readers who are not acquainted
with quantum field theory, but are working in statistical mechanics, can profit from
a study of lattice gauge theories. Conversely, elementary particle physicists have
profited enormously from the computational methods used in statistical mechanics,
such as the high temperature expansion, cluster expansion, mean field approxima-
tion, renormalization group methods, and numerical methods.

∗For an early review see Politzer (1974).
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Once the lattice formulation of QCD had been proposed by Wilson, the first
question that physicists were interested in answering, was whether QCD is able to
account for quark confinement. Wilson had shown that within the strong coupling
approximation QCD confines quarks. As we shall see, however, this is not a justified
approximation when studying the continuum limit. Numerical simulations however
confirm that QCD indeed accounts for quark confinement.

There are of course many other questions that one would like to answer: does
QCD account for the observed hadron spectrum? It has always been a dream of
elementary particle physicists to explain why hadrons are as heavy as they are.
Are there other particles predicted by QCD which have not been observed exper-
imentally? Because of the self-couplings of the gluons, one expects that the spec-
trum of the Hamiltonian also contains states which are built mainly from “glue”.
Does QCD account for the spontaneous breakdown of chiral symmetry? It is be-
lieved that the (light) pion is the Goldstone Boson associated with a spontaneous
breakdown of chiral symmetry. How do the strong interactions manifest themselves
in weak decays? Can they explain the ∆I = 1/2 rule in weak non-leptonic pro-
cesses? How does hadronic matter behave at very high temperatures and/or high
densities? Does QCD predict a phase transition to a quark gluon plasma at suffi-
ciently high temperatures, as is expected from general theoretical considerations?
This would be relevant, for example, for the understanding of the early stages of the
universe.

An answer to the above mentioned questions requires a non-perturbative treat-
ment of QCD. The lattice formulation provides the only possible framework at
present to study QCD non-perturbatively.

The material in this book has been organized as follows. In the following chap-
ter we first discuss in some detail the path integral formalism in quantum mechanics,
and the path integral representation of Green functions in field theory. This formal-
ism provides the basic framework for the lattice formulation of field theories. If the
reader is well acquainted with the path integral method, he can skip all the sections
of this chapter, except the last. In chapters 3 and 4 we then consider the lattice
formulation of the free scalar field and the free Dirac field. While this formulation
is straight-forward for the case of the scalar field, this is not the case for the Dirac
field. There are several proposals that have been made in the literature for placing
fermions on a space-time lattice. Of these we shall discuss in detail the Wilson and
the Kogut-Susskind fermions, which have been widely used in numerical simula-
tions, and introduce the reader to Ginsparg-Wilson fermions, which have become of
interest in more recent times, but whose implementation in numerical simulations
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is very time consuming. In chapters 5 and 6 we then introduce abelian and
non-abelian gauge fields on the lattice, and discuss the lattice formulation of QED
and QCD.

Having established the basic theoretical framework, we then present in
chapter 7 a very important observable: The Wilson loop, which plays a fundamental
role for studying the confinement problem. This observable will be used in chapter 8
to calculate the static potential between two charges in some simple solvable models.
The purpose of that chapter is to verify in some explicit calculations that the inter-
pretation of the Wilson loop given in chapter 7, which may have left the reader with
some uneasy feelings, is correct. In chapter 9 we then discuss the continuuum limit
of QCD and show that this limit, which is realized at a critical point of the theory
where correlations lengths diverge, corresponds to vanishing bare coupling constant.
Close to the critical point the behaviour of observables as a function of the coupling
constant can be determined from the renormalization group equation. Knowledge of
this behaviour will be crucial for establishing whether one is extracting continuum
physics in numerical simulations.

Chapter 10 is devoted to the discussion of the Michael lattice action and energy
sum rules, which relate the static quark-antiquark potential to the action and energy
stored in the chromoelectric and magnetic fields of a qq̄-pair. These sum rules are
relevant for studying the energy distribution in the flux tube connecting a quark
and antiquark at large separations.

Chapters 11 to 15 are devoted to various approximation schemes. Of these,
the weak coupling expansion of correlation functions in lattice QCD is the most
technical one. In order not to confront the reader immediately with the most com-
plicated case, we have divided our presentation of the weak coupling expansion into
three chapters. The first one deals with a simple scalar field theory and merely
demonstrates the basic structure of Feynman lattice integrals. It also includes a
discussion of an important theorem proved by Reisz, which is the lattice version of
the well known power counting theorem for continuum Feynman integrals. In the
following chapter we then increase the degree of difficulty by considering the case
of lattice quantum electrodynamics (QED). Here several new concepts will be dis-
cussed, which are characteristic of a gauge theory. Readers having a fair background
in the perturbative treatment of continuum QED will be able to follow easily the
presentation. As an instructive application of lattice perturbation theory, we in-
clude in this chapter a 1-loop computation of the renormalization constant for the
axial vector current with Wilson fermions, departing from a lattice regularized Ward
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identity. Also included is a discussion of the ABJ-anomaly within the framework of
Ginsparg-Wilson fermions. The next chapter then treates the case of QCD, which
from the conceptional point of view is quite similar to the case of QED, but is tech-
nically far more involved. The Feynman rules are applied to the computation of the
ABJ anomaly which is shown to be independent of the form of the lattice regularized
action.

At this point we leave the analytic “terrain” and discuss in chapter 16 various
algorithms that have been used in the literature to calculate observables numeri-
cally. All algorithms are based on the concept of a Markov process. We will keep the
discussion very general, and only show in the last two section of this chapter, how
such algorithms are implemented in an actual calculation. Chapter 17 first summa-
rizes some earlier numerical results obtained in the pioneering days. Because of the
ever increasing computer power the numerical data becomes always more refined,
and we leave it to the reader to confer the numerous proceedings for more recent
results. We have however also included in this chapter some important newer devel-
opments which concern the vacuum structure of QCD and the dynamics of quark
confinement.

The remaining part of the book is devoted to the study of field theories at
finite temperature. It has been expected for some time that QCD undergoes a
phase transition to a quark-gluon plasma, where quarks and gluons are deconfined.
In chapter 18 we consider some simple bosonic and fermionic models, and discuss in
detail the path-integral representation for the thermodynamical partition function.
In particular we will construct such a representation for a simple fermionic system
which is exact for arbitrary time step, and point out some subtle points which are
not discussed in the literature. Chapter 19 is devoted to finite temperature pertur-
bation theory in the continuum and on the lattice. The basic steps leading to the
finite-temperature Feynman rules are first exemplified for a scalar field theory in
the continuum. We then extend our discussion to the case of QED and QCD in
the continuum as well as on the lattice and discuss in detail the temporal structure
of the free propagator for naive and Wilson fermions. The Feynman rules are then
applied to calculate the screening mass in QED and QCD in one-loop order, off
and on the lattice. These computations will at the same time illustrate the power
of frequency summation formulae, whose derivation has been relegated, in part, to
two appendices.

Chapter 20 is devoted to non-perturbative aspects of QCD at finite tempera-
ture. The lattice formulation of this theory is the appropriate framework for studying
the deconfinement and chiral phase transitions, and deviations of thermodynamical
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observables from the predictions of perturbation theory at temperatures well above
the phase transition. In this chapter we discuss how thermodynamical observables
are computed on the lattice, and introduce an order parameter (the Wilson line or
Polyakov loop) which characterizes the phases of the pure gauge theory. This order
parameter plays a central role in a later section, where we present some early Monte
Carlo data which gave strong support for the existence of a deconfinement phase
transition. The theoretical concepts introduced in this chapter are then implemented
in a simple lattice model which also serves to illustrate the power of the character
expansion, a technique which is used to study SU(N) gauge theories for strong
coupling. The remaining part of this chapter is devoted to the high temperature
phase of QCD which, as already mentioned, is expected to be that of a quark gluon
plasma.

The material covered in this book should enable the reader to follow the exten-
sive literature on this fascinating subject. What the reader will not have learned, is
how much work is involved in carrying out numerical simulations. A few paragraphs
in a publication will in general summarize the results obtained by several physicists
over many months of very hard work. The reader will only become aware of this by
speaking to physicists working in this field, or if he is involved himself in numerical
calculations. Although much progress has been made in inventing new methods for
calculating observables on a space time lattice, some time will still pass before one
has sufficiently accurate data available to ascertain that QCD is the correct theory
of strong interactions.
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CHAPTER 2

THE PATH INTEGRAL APPROACH TO QUANTIZATION

Since its introduction by Feynman (1948), the path integral (PI) method has
become a very important tool for elementary particle physicists. Many of the modern
developments in theoretical elementary particle physics are based on this method.
One of these developments is the lattice formulation of quantum field theories which,
as we have mentioned in the introduction, opened the gateway to a non-perturbative
study of theories like QCD. Since the path integral representation of Green functions
in field theory plays a fundamental role in this book, we have included a chapter
on the path integral method in order to make this monograph self-contained. In
the literature it is customary to derive the PI-representation of Green functions in
Minkowski space. But for the lattice formulation of field theories, we shall need
the corresponding representation for Green functions continued to imaginary time.
Usually a rule is given for making the transition from the real-time to the imaginary-
time formulation. This rule is not self-evident. Since we shall make use of it on several
occasions, we will verify the rule for the case of bosonic Green functions, by deriving
directly their path integral representation for imaginary time. What concerns the
fermionic Green functions, we will not derive the PI-representation from scratch,
but shall present strong arguments in favour of it.

In the following section, we first discuss the case of non-relativistic quantum
mechanics.∗ The results we shall obtain will be relevant in section 2, where we
derive the PI-representation of bosonic Green functions which are of interest to the
lattice formulation of quantum field theories involving Bose-fields. In section 3 we
then discuss the transfer matrix for bosonic systems. Green functions of fermionic
operators are considered in section 4.

As we shall see, the PI-representation of Green functions is only formally de-
fined for systems whose degrees of freedom are labeled by a continuous variable, as is
the case in field theory. One is therefore forced to regularize the path integral expres-
sions. In section 5 we discuss this problem on a qualitative level, and motivate the
introduction of a space-time lattice. This, as we shall comment on, corresponds

∗ For a comprehensive discussion of the PI-method in quantum mechanics in
the real-time formulation, the reader should confer the book by Feynman and Hibbs
(1965).
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in perturbation theory to a particular choice of regularization of Feynman
integrals.

2.1 The Path Integral Method in Quantum Mechanics

In the Hilbert space formulation of quantum mechanics, the states of the sys-
tem are described by vectors in a Hilbert space, and observables are represented
by hermitean operators acting in this space. The time evolution of the quantum
mechanical system is given by the Schrödinger equation, or equivalently by∗

|ψ(t)� = e−iH(t−t0)|ψ(t0)�, (2.1)

where H is the Hamiltonian. Thus if we know the state of the system at time t0,
(2.1) determines the state at a later time t. Let q = {qα} denote collectively the
coordinate degrees of freedom of the system and |q� the simultaneous eigenstates of
the corresponding operators {Qα}, i.e.,

Qα|q� = qα|q�, α = 1, . . . , n.

Then (2.1) implies the following equation for the wave function ψ(q, t) =
�q|ψ(t)�

ψ(q�, t�) =
∫

dqG(q�, t�; q, t)ψ(q, t),

where

G(q�, t�; q, t) = �q�|e−iH(t′−t)|q� (2.2)

is the Green function describing the propagation of the state |ψ(t)�, and where the
integration measure is given by

dq =
n∏

α=1

dqα.

A very important property of the Green function (2.2) is that it satisfies the following
composition law

G(t�, q�; q, t) =
∫

dq��G(t�, q�; q��, t��)G(q��, t��; q, t). (2.3)

This relation follows immediately by writing exp(−iH(t� − t)) = exp(−iH(t� −
t��)) exp(−iH(t�� − t)) in (2.2) and introducing a complete set of intermediate states

∗ We set � = 1 throughout this book.
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|q��� between the two exponentials. Using the property (2.3), Feynman derived a
path integral representation for the matrix element (2.2), which exhibits in a very
transparent way the connection between the classical and quantum theory. In clas-
sical physics the time evolution of the system is given by the Lagrange equations of
motion which follow from the principle of least action. To quantize the system, one
then constructs the Hamiltonian, and writes the equation of motion in terms of Pois-
son brackets. This provides the starting point for the canonical quantization of the
theory. By proceeding in this way, one has moved far away from the original action
principle. The path integral representation of Feynman reestablishes the connection
with the classical action principle. In the following we derive this representation for
the Green function (2.2) continued to imaginary time, t → −iτ , t� → −iτ �, since we
shall need it in the following section.

Consider the matrix element

�q�, t�|q, t� = �q�|e−iH(t�−t)|q�, (2.4)

where

|q, t� = eiHt|q�

are eigenstates of the Heisenberg operators

Qα(t) = eiHtQαe−iHt, (2.5)

i.e.,

Qα(t)|q, t� = qα|q, t�.

Inserting a complete set of energy eigenstates to the right and left of the exponential
in (2.4), we have that

�q�, t�|q, t� =
∑

n

e−iEn(t�−t)ψn(q�)ψ∗
n(q),

where ψn(q) = �q|En� is the eigenfunction of H with energy En. The sum over n

extends over the discrete as well as the continuous spectrum of the Hamiltonian.
This expression can now be continued to imaginary time. Making the replacements
t → −iτ , t� → −iτ �, we arrive at an expression which is dominated by the ground
state in the limit τ � − τ → ∞:

�q�, t�|q, t� t=−iτ
t�=−iτ �

=
∑

n

e−En(τ �−τ)ψn(q�)ψ∗
n(q).
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The right-hand side is just the matrix element �q�| exp(−H(τ � − τ))|q�. Hence, as
expected from (2.4), the Green function continued to imaginary times is given by

�q�, t�|q, t� t→−iτ
t�→−iτ �

= �q�|e−H(τ �−τ)|q�. (2.6)

To arrive at a path integral representation for the right-hand side of (2.6), we split
the time interval∗ [τ , τ �] into N infinitesimal segments of length � = (τ � − τ)/N . Let
τ1, τ2, . . . , τN−1 denote the intermediate times, i.e., τ < τ1 < τ2 < · · · < τ �. Then the
imaginary-time Green function can be obtained by a sequence of infinitesimal time
steps as follows,

�q�|e−H(τ �−τ)|q� = �q�|e−H(τ �−τN−1)e−H(τN−1−τN−2) . . . e−H(τ1−τ)|q�

=
∫ N−1∏

�=1

dq(�)�q�|e−H�|q(N−1)�

×�q(N−1)|e−H�|q(N−2)� · · · �q(1)|e−H�|q�, (2.7)

where

dq(�) =
∏
α

dq(�)
α .

Here |q(�)� denote the complete set of eigenstates which have been introduced in the
�’th intermediate time step.

In order to evaluate the matrix elements in (2.7), we must now specify the
structure of the Hamiltonian. Let us assume it to be of the form

H =
1
2

n∑
α=1

P 2
α + V (Q), (2.8)

where Pα are the momenta canonically conjugate to Qα. Making use of the Baker–
Campbell–Hausdorff formula,

eAeB = eA+B+ 1
2 [A,B]+...,

we conclude that exp(−H�) can be approximated for small � by

e−H� ≈ e−� 1
2

∑
α P 2

αe−�V (Q).

It follows that

�q(�+1)|e−H�|q(�)� ≈ �q(�+1)|e− �
2

∑
α P 2

α |q(�)�e−�V (q(�)).

∗ We shall henceforth refer to τ as “time”.
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To evaluate the remaining matrix element, we introduce a complete set of momentum
eigenstates to the right and left of exp

(
− �

2

∑
α P 2

α

)
. With

�q|p� =
n∏

α=1

1√
2π

eipαqα ,

we have that

�q(�+1)|e−H�|q(�)� ≈ e−�V (q(�))
∫ n∏

β=1

dp
(�)
β

2π

n∏
α=1

× exp

{
−�

[
1
2
p(�)

α

2 − ip(�)
α

(
q
(�+1)
α − q

(�)
α

�

)]}
.

Substituting this expression into (2.7) we arrive at the following approximate path
integral representation in phase space, valid for small �:

�q�|e−H(τ �−τ)|q� ≈
∫

DqDpe
ip

(�)
α

(
q
(�+1)
α −q

(�)
α

)
e−�H(q(�),p(�)), (2.9a)

where

q(0) = q, q(N) = q�, (2.9b)

DqDp =
n∏

β=1

N−1∏
�=1

dq
(�)
β

N−1∏
�=0

dp
(�)
β

2π
, (2.9c)

and

H(q(�), p(�)) =
n∑

α=1

1
2
p(�)

α

2
+ V (q(�)). (2.9d)

Notice that the number of momentum integrations exceeds that of the coordinates.
Actually, as the reader can readily verify, the above formula holds just as well

for any Hamiltonian of the form H(Q, P ) = T (P ) + V (Q), with T (P ) a polynomial
in the canconical momenta. For the case where T (P ) has the quadratic form given
in (2.8), we can also obtain a configuration space path integral representation, by
carrying out the Gaussian integration over the momenta. The following expression
is valid for infinitesimal time slices,

�q�|e−H(τ �−τ)|q� ≈
∫ N−1∏

��=1

n∏
α=1

dq
(��)
α√
2π�

e−
∑N−1

�=0 �LE(q(�),q̇(�)), (2.10a)

where

LE(q(�), q̇(�)) =
∑

α

1
2
q̇(�)2
α + V (q(�)), (2.10b)
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q̇(�)
α ≡ q

(�+1)
α − q

(�)
α

�
, (2.10c)

and q(0) ≡ q, q(N) ≡ q�. The subscript “E” on LE is to remind us that we are studying
the Green function in the “euclidean” formulation.∗ Let us interpret the right-hand
side of (2.10a). Consider an arbitrary path in q-space connecting the space-time
points (q, τ) and (q�, τ �), consisting of straight line segments in every infinitesimal
time interval. Let q(�) denote the set of coordinates of the system at time τ� (see
fig. (2-1)). To emphasize this correspondence let us set

q(�)
α = qα(τ�),

where τ0 ≡ τ , τN ≡ τ �. Then (2.10c) is the “euclidean velocity” in the time interval
[τ�, τ�+1] of a “particle” moving in an n-dimensional configuration space, and LE

is the discretized version of the classical Lagrangean in the euclidean formulation
(notice the “plus” sign between the kinetic term and the potential). The action
associated with the path depicted schematically in fig. (2-1) is given by

SE[q] =
N−1∑
�=0

�

[∑
α

1
2

(q̇α(τ�))
2 + V (q(τ�))

]
. (2.11)

This is the expression appearing in the argument of the exponential in (2.10a).
We therefore arrive at the following prescription for calculating the Green function
for imaginary time:

i) Divide the interval [τ , τ �] into infinitesimal segments of length � = (τ � − τ)/N .
ii) Consider all possible paths starting at q at time τ and ending at q� at time τ �.

Approximate these paths by straight-line segments as shown in fig. (2-1), and
calculate the action (2.11) for each path.

iii) Weigh each path with exp(−SE[q]) and sum these exponentials over all paths,
by integrating over all possible values of the coordinates at intermediate times.

iv) Multiply the resulting expression with (1/
√

2π�)nN , where n is the number of
coordinate degrees of freedom and take the limit � → 0, N → ∞, keeping the
product N� = (τ � − τ) fixed.

∗ In the following chapters, where we will study the PI-representation of field
theories in detail, the transition to imaginary time corresponds to formulating the
theories in euclidean space-time. We shall therefore refer in the following to the
imaginary-time formulation as the euclidean formulation.
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τ

τ′

q q′

Fig. 2-1 Path connecting the space-time points (q, τ) and (q′, τ ′)

contributing to the integral (2.11a).

The result of steps i) to iv) we formally denote by

(q�, τ �|q, τ) =
∫ q′

q

Dq e−SE [q], (2.12a)

where

SE[q] =
∫ τ ′

τ

dτ ��LE(q(τ ��), q̇(τ ��)), (2.12b)

and where, for later convenience, we have introduced the short-hand notation

(q�, τ �|q, τ) ≡ �q�|e−H(τ ′−τ)|q�, (2.12c)

in analogy to (2.4). This is the path integral expression we wanted to obtain. Notice
that because the paths are weighted with exp(−SE), important contributions to
(2.12a) are expected to come from those paths for which SE[q] takes values close to
the minimum, where

δSE[q] = 0.
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This is the principle of least action which leads to the classical euclidean equa-
tions of motion. Hence, within the path integral framework, the quantization of a
classical system amounts to taking into account fluctuations around the classical
path. In the euclidean formulation these fluctuations are exponentially suppressed
if SE ≥ 0. On the other hand, in the real time formulation, an analogous proce-
dure to the one followed above, leads to the following path integral representation
of (2.4):

�q�|e−iH(t′−t)|q� =
∫ q′

q

Dq eiS[q], (2.13)

where S[q] is the action for real time. The path integral (2.13) is defined in the
same way as before (see Feynman and Hibbs, 1965), but the paths are now weighted
with an oscillating function. For this reason this path integral representation is not
suited for numerical calculations. It is, however, a useful starting point for carrying
out semiclassical approximations, where one expands the action about a minimum
up to terms quadratic in the coordinates. For an instructive example the reader may
consult the paper by Bender et al. (1978), where the energy spectrum and eigen-
functions are calculated in the WKB approximation for a one-dimensional periodic
potential.

An exact evaluation of the path integral (2.12) or (2.13) is only possible in
a few cases. The standard example in the real time formulation is the harmonic
oscillator. It is discussed in detail in the book by Feynman and Hibbs (1965). The
Coulomb potential already provides a quite non-trivial example (Duru and Kleinert,
1979). It therefore may appear that the path integral method is of little practical
use. This is true for quantum mechanics, where more efficient methods are avail-
able to calculate scattering amplitudes, bound state energies and eigenfunctions.
But in field theory, we only know how to compute Green functions in perturba-
tion theory (except for some simple models which can be solved exactly). It is here
where physicists first became very interested in the path integral method, since it
allowed one to derive the Feynman rules for gauge theories like QCD in a very
straightforward way. This is, however, only one of the merits of the method. As
we have already pointed out, many of the modern developments in theoretical ele-
mentary particle physics are based on the path integral formalism. In the following
section we extend the above discussion to bosonic Green functions of interest in field
theory.
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2.2 Path Integral Representation of Bosonic Green Functions
in Field Theory

In quantum mechanics all physical information about the quantum system
is contained in the Green function (2.2). In field theory, on the other hand, this
information is stored in an infinite set of vacuum expectation values of time-ordered
products of Heisenberg field operators. The simplest such operator is the real scalar
field φ(x) ≡ φ(�x, t). Its time evolution is given by

φ(�x, t) = eiHtφ(�x, 0)e−iHt,

where H is the Hamiltonian of the system. The coordinates �x label the infinite
number of coordinate degrees of freedom of the system. They play the role of the
discrete index “α” labeling the Heisenberg operators Qα(t) defined in (2.5). The
Green functions of the scalar field are defined by

G(x1, x2, . . . , x�) = �Ω|T (φ(x1)φ(x2) . . . φ(x�)) |Ω�, (2.14)

where xi = (�xi, ti), and |Ω� denotes the ground state (vacuum) of the system whose
dynamics is determined by the Hamiltonian H. The time-ordering operation “T”
orders the operators from left to right according to descending time. The analogue
of (2.14) in our quantum mechanical example is evidently given by

Gα1α2...α�
(t1, t1, . . . , t�) = �E0|T (Qα1(t1)Qα2(t2) . . . Qα�

(t�))|E0�. (2.15)

Let us assume that we have ordered the operators in (2.15) according to descending
time from left to right; then

Gαaα2...α�
(t1, t1, . . . , t�) = �E0|Qα1(t1)Qα2(t2) . . . Qα�

(t�)|E0�,

(t1 > t2 > · · · > t�). (2.16)

We are interested in a path integral representation of (2.16) continued to imag-
inary times, ti → −iτi. It is this representation which we shall need to formulate
bosonic field theories on a lattice. The transition to imaginary times is made by
replacing the operators Qαi

(ti) by

Q̂αi
(τi) = eHτiQαi

e−Hτi . (2.17)

This corresponds to setting t = −iτ on the right-hand side of (2.5). The euclidean
version of (2.16) is therefore given by

�E0|Q̂α1(τ1)Q̂α2(τ2) . . . Q̂α�
(τ�)|E0�. (2.18)
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To derive a path integral representation for this ground state expectation value we
proceed in two steps. We first show that (2.18) can be extracted from the matrix
elements

(q�, τ �|Q̂α1(τ1)Q̂α2(τ2) . . . Q̂α�
(τ�)|q, τ)

≡ �q�|e−Hτ �
Q̂α1(τ1)Q̂α2(τ2) . . . Q̂α�

(τ�)eHτ |q�, (2.19)

by studying this expression for large positive and negative values of τ � and τ . We
then demonstrate that (2.19) has a path integral representation which is an (almost)
obvious generalization of (2.12a).

We begin with the first mentioned step. Inserting a complete set of energy
eigenstates to the left and right of the operators exp(Hτ) and exp(−Hτ �) in (2.19),
we have that

(q�, τ �|Q̂α1(τ1) . . . Q̂α�
(τ�)|q, τ)

=
∑
κ,κ�

e−Eκ�τ �
eEκτψκ�(q�)ψ∗

κ(q)�Eκ�|Q̂α1(τ1) . . . Q̂α�
(τ�)|Eκ�. (2.20)

Assuming that there exists an energy gap between the ground state and first excited
state, we therefore find that

(q�, τ �|Q̂α1(τ1) . . . Q̂α�
(τ�)|q, τ)

−→
τ �→∞
τ→−∞

e−E0(τ �−τ)ψ0(q�)ψ∗
0(q)�E0|Q̂α1(τ1) . . . Q̂α�

(τ�)|E0�. (2.21a)

Furthermore, replacing the Q̂αi
(τi)’s in this expression by the unit operator, we have

that

(q�, τ �|q, τ) −→
τ �→∞
τ→−∞

e−E0(τ �−τ)ψ0(q�)ψ∗
0(q). (2.21b)

From (2.21a,b) we are led to the following important statement:

(q�, τ �|Q̂α1(τ1) . . . Q̂α�
(τ�)|q, τ)

(q�, τ �|q, τ)
−→
τ �→∞
τ→−∞

�E0|Q̂α1(τ1) . . . Q̂α�
(τ�)|E0�. (2.22)

Notice that according to (2.22) we are free to choose for q = {qα} and q� = {q�
α}

any values as long as �q|E0� and �q�|E0� are different from zero! In other words,
the ground state wave function must have non-vanishing support at q and q�. Since
(2.22) actually holds for arbitrary time, τ1, . . . , τ�, it follows that a corresponding
expression holds for the time-ordered product of the operators, i.e.,

(q�, τ �|T (Q̂α1(τ1) . . . Q̂α�
(τ�))|q, τ)

(q�, τ �|q, τ)
−→
τ �→∞
τ→−∞

�E0|T (Q̂α1(τ1) . . . Q̂α�
(τ�))|E0�. (2.23)



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch02

The Path Integral Approach to Quantization 17

This completes the first step of our program. We now proceed with the second
step, and construct the path integral representation for the numerator appearing on
the left-hand side of (2.23). The PI-representation for the denominator has already
been obtained in the previous section. Our starting point, however, is not this nu-
merator, but the matrix element (2.19), with τ1 > τ2 > · · · > τ�. Let us first write
out the time dependence explicitly, by making use of the definition (2.17):

(q�, τ �|Q̂α1(τ1)Q̂α2(τ2) . . . Q̂α�
(τ�)|q, τ)

= �q�|e−H(τ �−τ1)Qα1e
−H(τ1−τ2)Qα2e

−H(τ2−τ3) . . .

× e−H(τ�−1−τ�)Qα�
e−H(τ�−τ)|q�.

We next insert a complete set of eigenstates of {Q̂α} to the right and left of each
of the operators Q̂αi

. These operators are diagonal in this representation. Let us
denote the integration variables associated with Q̂αi

collectively by q(i). Then

(q�, τ �|Q̂α1(τ1) . . . Q̂α�
(τ�)|q, τ)

=
∫ l∏

i=1

dq(i)(q�, τ �|q(1), τ1)q(1)
α1

(q(1), τ1|q(2), τ2)q(2)
α2

. . . q(�)
α�

(q(�), τ�|q, τ).

Inserting for (q(i), τi|q(j), τj), etc., the path integral expressions analogous to (2.12a)
one finds that

(q�, τ �|Q̂α1(τ1) . . . Q̂α�
(τ�)|q, τ)

=
∫ q�

q

Dqqα1(τ1) . . . qα�
(τ�)e−

∫ τ �
τ dτ ��LE(q(τ ��),q̇(τ ��)),

(τ � > τ1 > · · · > τ� > τ), (2.24)

where the path integral is calculated as follows:

i) Split the interval [τ , τ �] into N infinitesimal time intervals of length � = (τ � −
τ)/N .

ii) Consider all paths starting at q at time τ and ending at q� at time τ �. Approxi-
mate these paths by straight line segments in each infinitesimal time interval.

iii) Weigh each path with exp(−SE[q]), where SE[q] is the action defined in (2.11),
and with the product of the coordinates qα1 , . . . , qα�

at times τ1, . . . , τ�, respec-
tively. Sum the contributions over all paths by integrating over all possible values
of the coordinates at intermediate times.

iv) Multiply the resulting expression with (1/
√

2π�)nN , where n is the number of
degrees of freedom of the system, and take the limit � → 0, N → ∞, keeping
the product N� = τ � − τ fixed.
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In deriving the above expression we have assumed that τ � > τ1 > τ2 > · · · >

τ� > τ . Instead of (2.24) we can therefore also write

(q�, τ �|T
(
Q̂α1(τ1) . . . Q̂α�

(τ�)
)

|q, τ)

=
∫ q′

q

Dqqα1(τ1) . . . qα�
(τ�)e−

∫ τ ′
τ dτ ′′L(q(τ ′′),q̇(τ ′′)). (2.25)

But because of the definition of the T -product, we can now write the product of the
operators Q̂αi

(τi) in any order we wish. This symmetry under the exchange of any
two operators is reflected in the path integral, since the qα’s are ordinary commuting
variables.

We are now ready to write down the path integral expression for the right-hand
side of (2.23). Inserting the expressions (2.25) and (2.12a) into the left-hand side of
(2.23), and taking the indicated limit, we find that

�E0|T (Q̂α1(τ1) . . . Q̂α�
(τ�))|E0� =

∫
Dqqα1(τ1) . . . qα�

(τ�)e−SE [q]
∫

Dqe−SE [q]
,

(2.26a)

where (2.12b) is now replaced by

SE[q] =
∫ ∞

−∞
dτLE(q(τ), q̇(τ)). (2.26b)

SE is the euclidean action associated with the path q(τ). The integrals in (2.26a) are
carried out over all paths starting and ending at arbitrary points at times τ = −∞
and τ = +∞, respectively. This is true as long as the ground state wave function has
non-vanishing support at q and q�. In practical calculations the size of �q|E0� and
�q�|E0� is important. The reason is that in most cases of interest we cannot evaluate
the path integral analytically, but must recur to numerical methods. This forces one
to calculate the multiple integrals on finite time lattices. It is then essential that the
contributions to the sum in (2.20) coming from higher energy states are suppressed
as much as possible. When (2.26a) is calculated numerically one usually imposes
periodic boundary conditions, i.e., q = q�, and allows q to take arbitrary values.
This choice of boundary conditions turns out to be very convenient.

We now make some further comments about the path integral expression
(2.26a). The evaluation of the right-hand side demands that we first calculate the
multiple integrals on a time lattice with finite lattice spacing �, and then take the
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limit � → 0. Unfortunately, one can only carry out this program for path integrals
of the Gaussian type. As an example consider the following integral,

Iα1...α�
=

∫ N∏
i=1

dqiqα1qα2 . . . qα�
e− 1

2

∑
n,m qnMnmqm , (2.27)

where M is a real, positive definite symmetric matrix, and where the sum extends
over n, m = 1, . . . , N . This integral can be calculated as follows. Introduce the
generating functional

Z0[J ] =
∫ N∏

i=1

dqie
− 1

2

∑
nm qnMnmqm+

∑
n Jnqn . (2.28)

Then (2.27) is evidently given by

Iα1...α�
=

(
∂�Z0[J ]

∂Jα1∂Jα2 . . . ∂Jα�

)

J=0
. (2.29)

We therefore need to calculate the integral (2.28). This can be easily done by per-
forming an orthogonal transformation on the coordinates {qα} which diagonalizes
the matrix M . One then finds

Z0[J ] =
(2π)N/2
√

det M
e

1
2

∑
n,m JnM−1

nmJm , (2.30)

where M−1 is the inverse of the matrix M , and det M is the determinant of M .
This expression is very useful for carrying out a perturbative expansion of Green
functions in theories where the potential is a polynomial in the coordinates and can
be treated as a small perturbation. Thus suppose we want to calculate the integral

Kα1...α�
=

∫ N∏
i=1

dqiqα1qα2 . . . qα�
e−S[q], (2.31a)

where

S[q] =
1
2

∑
n,m

qnMnmqm + SI [q], (2.31b)

with SI [q] a polynomial in the coordinates {qn}. The integral (2.31a) is given by
(2.29), but with the generating functional (2.28) replaced by

Z[J ] =
∫ N∏

i=1

dqie
−S[q]+

∑
n Jnqn .
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Expanding exp(−SI [q]), we have that

Z[J ] =
∞∑

k=0

(−1)k

k!

∫ N∏
i=1

dqi(SI [q])ke− 1
2

∑
n,m qnMnmqm+

∑
n Jnqn .

This expression can also be written in the form

Z[J ] =
∞∑

κ=0

(−1)k

k!

(
SI

[
∂

∂J

])k

Z0[J ],

where SI [∂/∂J ] is obtained from SI [q] by making the replacements qn → ∂/∂Jn (n =
1, . . . , N) in the argument of SI , and where Z0[J ] is the generating functional (2.30).
The above formula allows us to compute the generating functional Z[J ] of the inter-
acting theory in every order of SI . This is the first comment we wanted to make. The
second comment concerns our earlier claim, that the path integral representation of
Green functions opens the possibility of studying field theories non–perturbatively.
The reason for this is the following. Consider the right-hand side of (2.26a). If the
action is bounded from below, then this expression has the form of a statistical
ensemble average, with a Boltzmann distribution given by exp(−SE[q]). This allows
us to use well-known statistical methods to calculate Green functions in theories
with a large number of degrees of freedom. The entire book is based on this simple
observation. Because of this similarity with statistical mechanics we shall speak of
the euclidean Green functions as correlation functions, and write (2.26) in the form

�qα1(τ1) . . . qα�
(τ�)� =

1
Z

∫
Dqqα1(τ1) . . . qα�

(τ�)e−SE [q], (2.32a)

where

Z =
∫

Dqe−SE [q]. (2.32b)

We want to point out, however, that the right-hand side of (2.32a) should not
be confused with a canonical ensemble average in classical statistical mechanics.
Nevertheless, we shall refer to (2.32b) as the partition function.

For reasons mentioned at the beginning of this chapter, we have concentrated
our attention on Green functions continued to imaginary times. The derivation of the
path integral representation for the real-time Green functions (2.15) can be found
in the review article by Abers and Lee (1973), and in most modern text books on
field theory. We only quote here the result:

�E0|T (Qα1(t1) . . . Qα�
(t�)) |E0� =

∫
Dq qα1(t1) . . . qα�

(t�)eiS[q]
∫

Dq eiS[q]
. (2.33)



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch02

The Path Integral Approach to Quantization 21

Here S[q] is the action whose variation leads to the equations of motion for real
times. In our quantum mechanical example S[q] is given by

S[q] =
∫ ∞

−∞
dt

[
1
2

∑
α

(
dqα

dt

)2

− V (q(t))

]
. (2.34)

The quantity appearing within brackets is the Lagrangean describing the dynamics
of the classical system. On the other hand, we have seen that the “euclidean” action
SE[q] has the form

SE[q] =
∫ ∞

−∞
dτ

[
1
2

∑
α

(
dqα

dτ

)2

+ V (q(τ))

]
, (2.35)

whose variation leads to the “euclidean” equations of motion. By comparing (2.35)
and (2.34), we see that SE[q] can be obtained from S[q] by the following formal rule:
Consider the action S[q]. Replace t by −iτ wherever t appears explicitly, and qα(t)
by qα(τ), where the coordinates are treated in both cases as real valued functions of
their arguments. Then

iS[q] −→
“t→−iτ”

−SE[q],

where “t → −iτ” stands for the above formal prescription. Of course we have only
proved this rule for systems, where the kinetic part of the Lagrangean is quadratic
in the velocities. For fermionic systems this is not the case, but the prescription is
still correct. Since we are usually given the action of the system for real times, the
above rule is useful for determining the form of the euclidean action that enters the
path integral expression (2.32a).

As we have demonstrated in this section, euclidean path integrals involve the
integration over real valued coordinates on an euclidean time lattice. A similar state-
ment holds for the PI–representation of Green functions defined for real times. The
difference between the two representation, merely resides in the structure of the
action. Thus in the real-time formulation the paths q(t) are weighted with a phase,
while the corresponding weight in the euclidean formulation can be interpreted as
a “Boltzmann factor”, if the action is a real valued functional of the coordinates,
bounded from below. This was the main point we wanted to demonstrate by deriving
directly the path integral representation for Green functions continued to imaginary
times.
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2.3 The Transfer Matrix

Consider the partition function (2.32b). For a system whose dynamics is dic-
tated by the Hamiltonian (2.8), Z has the following explicit form on a finite, periodic,
euclidean time-lattice:∗

Z =
∫ N−1∏

��=0

∏
β

dq
(��)
β√
2π�

e
−

∑N−1
�=0 �

[
∑n

α=1
1
2

(
q
(�+1)
α −q

(�)
α

�

)2

+V (q(�))

]

. (2.36)

Let us write this expression in the form

Z =
∫ N−1∏

��=0

dq(��)
N−1∏
�=0

Tq(�+1)q(�) , (2.37a)

where dq(�) ≡
∏

β dq
(�)
β , and

Tq(�+1)q(�) =
(

1
2π�

)n/2

e
−�

[
∑

α
1
2

(
q
(�+1)
α −q

(�)
α

�

)2

+V (q(�))

]

. (2.37b)

From (2.9) we see that

Tq(�+1)q(�) = �q(�+1)|e−H�|q(�)�. (2.38)

The matrix defined by (2.38) is the so-called transfer matrix. It describes the evo-
lution of the system in an infinitesimal timestep �. Actually, the more fundamental
definition of the partition function is given by (2.37a) , with the transfer matrix
defined in (2.38). This is evident from our discussion in the previous two sections,
where the matrix elements of exp(−�H) played a fundamental role.

Suppose now that we were given the transfer matrix. Can we extract from it
the Hamiltonian (2.8)? Indeed, this can be done by reversing the steps which led us
from �q(�+1)| exp(−H�)|q(�)� to (2.9).∗∗ We now give the details. The states |q(k)� are
simultaneous eigenstates of the coordinate operators Qα:

Qα|q(k)� = q(k)
α |q(k)�.

Let us introduce the momentum operators Pα canonically conjugate to Qα, which
satisfy the commutation relations

[Qα, Pβ] = iδαβ.

∗ I.e., q(0) and q(N) are identified.
∗∗ See e.g., Creutz (1977).
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Then exp(−iξ · P ), with ξ · P ≡
∑

α ξαPα, generates finite translations by ξ =
(ξ1, . . . , ξn):

e−iξ·P |q� = |q + ξ�.

Since

�q�|q� =
∏
α

δ(q�
α − qα),

we conclude that

�q(�+1)|e−iξ·P |q(�)� =
∏
α

δ(q(�+1)
α − q(�)

α − ξα). (2.39)

Now the matrix element (2.38) can also be written in the form

Tq(�+1)q(�) =
∫

dξ
∏
α

{
δ(q(�+1)

α − q(�)
α − ξα)e− 1

2�
ξ2
α
}
e−�V (q(�)),

where

dξ =
n∏

α=1

dξα√
2π�

.

By making use of the relation (2.39), this expression becomes

Tq(�+1)q(�) = �q(�+1)|
[∫

dξe− 1
2�

∑
α(ξ2

α+2i�ξαPα)
]

e−�V (Q)|q(�)�.

Performing the Gaussian integral we therefore find that

Tq(�+1)q(�) = �q(�+1)|e−�[∑α
1
2P 2

α+V (Q)]|q(�)�.

By comparing this expression with (2.38), we conclude that the Hamiltonian is given
by (2.8).

The above described procedure for constructing the Hamiltonian, given the
transfer matrix, will be relevant later on, when we discuss the lattice Hamiltonian of
a gauge theory. In the lattice formulation of field theories we are given the partition
function. By writing the partition function in the form (2.37a), the identification
(2.38) will allow us to deduce the lattice Hamiltonian.

2.4 Path Integral Representation of Fermionic Green Functions

So far we have considered quantum mechanical systems involving only bosonic
degrees of freedom. But the fundamental matter fields in nature are believed to carry
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spin 1/2. In contrast to the bosonic case these fields anticommute in the limit � → 0,
and hence become elements of a Grassmann algebra in this limit. We therefore expect
that the path integral representation of Green functions built from fermion fields
will involve the integration over anticommuting (Grassmann) variables.∗ We hence
begin this section with a discussion of how one differentiates and integrates functions
of Grassmann variables. The integration rules are then applied to calculate specific
integrals, which will play an important role throughout this book. The results we
shall obtain will give us a strong hint regarding the path integral representation of
fermionic Green functions in theories of interest for elementary particle physics. We
begin our discussion with some basic definitions.

Grassmann Algebra

The elements η1, . . . , ηN are said to be the generators of a Grassmann algebra,
if they anticommute among each other, i.e., if

{ηi, ηj} = ηiηj + ηjηi = 0, i, j = 1, . . . , N . (2.40)

From here it follows that

η2
i = 0. (2.41)

A general element of a Grassmann algebra is defined as a power series in the ηi’s.
Because of (2.41), however, this power series has only a finite number of terms:

f(η) = f0 +
∑

i

fiηi +
∑
i�=j

fijηiηj + · · · + f12...Nη1η2 . . . ηN . (2.42)

As an example consider the function

g(η) = e−
∑N

i,j=1 ηiAijηj .

It is defined by the usual power series expansion of the exponential. Since the terms
appearing in the sum - being quadratic in the Grassmann variables - commute among
each other, we can also write g(η) as follows

g(η) =
∏
i,j

e−ηiAijηj ,

∗ For a comprehensive discussion of the functional formalism for fermions the
reader may consult the book by Berezin (1966).
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or, making use of (2.41),

g(η) =
N∏

i,j=1
i�=j

(1 − ηiAijηj).

Next we consider the following function of a set of 2N -Grassmann variables which
we denote by η1, . . . , ηN , η̄1, . . . , η̄N :

h(η, η̄) = e−
∑

ij η̄iAijηj .

Proceeding as above, we now have that

h(η, η̄) =
N∏

i,j=1

(1 − η̄iAijηj).

Notice that in contrast to previous cases, this expression also involves diagonal
elements of Aij.

Integration Over Grassmann Variables

We now state the Grassmann rules for calculating integrals of the form

∫ N∏
i=1

dηif(η),

where f(η) is a function whose general structure is given by (2.42). Since a given
Grassmann variable can at most appear to the first power in f(η), the following
rules suffice to calculate an arbitrary integral [Berezin (1966)]:

∫
dηi = 0,

∫
dηiηi = 1.

(2.43a)

When computing multiple integrals one must further take into account that the
integration measures {dηi} also anticommute among themselves, as well as with
all ηj’s

{dηi, dηj} = {dηi, ηj} = 0, ∀i, j. (2.43b)

These integration rules look indeed very strange. But, as we shall see soon, they are
the appropriate ones to allow us to obtain a PI-representation of fermionic Green
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functions. As an example let us apply these rules to calculate the following integral:

I[A] =
∫ N∏

�=1

dη̄�dη�e
−

∑N
i,j=1 η̄iAijηj . (2.44)

We could have also denoted the Grassmann variables by η1, . . . , η2N , by setting
ηN+i = η̄i. But for reasons which will become clear later, we prefer the above nota-
tion. To evaluate (2.44), we first write the integrand in the form

e−
∑

i,j η̄iAijηj =
N∏

i=1

e−η̄i
∑N

j=1 Aijηj .

Since η̄2
i = 0, only the first two terms in the expansion of the exponential will

contribute. Hence

e−
∑

i,j η̄iAijηj = (1 − η̄1A1i1ηi1)(1 − η̄2A2i2ηi2) · · · (1 − η̄NANiN ηiN ), (2.45)

where a summation over repeated indices i�(� = 1, . . . , N) is understood. Now be-
cause of the Grassmann integration rules (2.43a), the integrand of (2.44) must in-
volve the product of all the Grassmann variables. We therefore only need to consider
the term

K(η, η̄) =
∑

i1,...,iN

ηi1 η̄1ηi2 η̄2 . . . ηiN η̄NA1i1A2i2 . . . ANiN , (2.46)

where we have set η̄kηik = −ηik η̄k to eliminate the minus signs appearing in (2.45).
The summation clearly includes only those terms for which all the indices i1, . . . , iN
are different. Now, the product of Grassmann variables in (2.46) is antisymmetric
under the exchange of any pair of indices i� and i�′ . Hence we can write expression
(2.46) in the form

K(η, η̄) = η1η̄1η2η̄2 . . . ηN η̄N

∑
i1...iN

�i1i2...iN A1i1A2i2 . . . ANiN ,

where �i1i2...iN is the �-tensor in N -dimensions. Recalling the standard formula for
the determinant of a matrix A, we therefore find that

K(η, η̄) = (det A)η1η̄1η2η̄2 . . . ηN η̄N .

We now replace the exponential in (2.44) by this expression and obtain

I[A] =

[
N∏

i=1

∫
dη̄idηiηiη̄i

]
det A = det A.
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Let us summarize our result for later convenience:
∫

D(η̄η)e−
∑N

i,j=1 η̄iAijηj = det A,

D(η̄η) =
N∏

�=1

dη̄�dη�.
(2.47)

There is another important formula we shall need, which is the analog of (2.30).
It will allow us to calculate integrals of the type

Ii1...i�i
�
1...i��

[A] =
∫

D(η̄η)ηi1 . . . ηi� η̄i�1
. . . η̄i��

e−
∑N

i,j=1 η̄iAijηj . (2.48)

Consider the following generating functional

Z[ρ, ρ̄] =
∫

D(η̄η)e−
∑

i,j η̄iAijηj+
∑

i(η̄iρi+ρ̄iηi), (2.49)

where all indices are understood to run from 1 to N , and where the “sources” {ρi}
and {ρ̄i} are now also anticommuting elements of the Grassmann algebra generated
by {ηi, η̄i, ρi, ρ̄i}. To evaluate (2.49) we first rewrite the integral as follows:

Z[ρ, ρ̄] =
[∫

D(η̄η)e−
∑

i,j η̄�
iAijη�

j

]
e

∑
i,j ρ̄iA

−1
ij ρi

where

η�
i = ηi −

∑
k

A−1
ik ρk,

η̄�
i = η̄i −

∑
k

ρ̄kA
−1
ki ,

and A−1 is the inverse of the matrix A. Making use of the invariance of the integration
measure under the above transformation∗ and of (2.47), we find that

Z[ρ, ρ̄] = det Ae
∑

i,j ρ̄iA
−1
ij ρj . (2.50)

Notice that in contrast to the bosonic case, this generating functional is proportional
to det A [instead of (det A)−1/2; see (2.30)].

∗ This is ensured by the Grassmann integration rules.
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Differentiation of Grassmann Variables

We now complete our discussion on Grassmann variables by introducing the
concept of a partial derivative on the space of functions defined by (2.42). Suppose
we want to differentiate f(η) with respect to ηi. Then the rules are the following:

i) If f(η) does not depend on ηi, then ∂ηi
f(η) = 0.

ii) If f(η) depends on ηi, then the left derivative ∂/∂ηi is performed by first bringing
the variable ηi (which never appears twice in a product!) all the way to the left,
using the anticommutation relations (2.40), and then applying the rule

∂

∂ηi

ηi = 1.

Correspondingly, we obtain the right derivative
←−
∂ /∂ηi by bringing the variable ηi

all the way to the right and then applying the rule

ηi

←−
∂

∂ηi

= 1.

Thus for example

∂

∂ηi

ηjηi = −ηj (i �= j),

or

η̄iηj

←−
∂

∂η̄i

= −ηj.

Notice that, because of the peculiar definition of Grassmann integration, we have
that ∫

dηif(η) =
∂

∂ηi

f(η).

Hence integration over ηi is equivalent to partial differentiation with respect to this
variable! Another property, which can be easily proved, is that

{
∂

∂ηi

,
∂

∂ηj

}
f(η) = 0.

Let us apply these rules to some cases of interest. Consider the function

E(ρ̄) = e
∑

j ρ̄jηj ,

where {ηi, ρ̄i} are the generators of a Grassmann algebra. If they were ordinary
c–numbers then we would have that

∂

∂ρ̄i

E(ρ̄) = ηiE(ρ̄)
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This result is in fact correct. To see this let us write E(ρ̄) in the form

E(ρ̄) =
∏

j

(1 + ρ̄jηj).

Applying the rules of Grassmann differentiation, we have that

∂

∂ρ̄i

E(ρ̄) = ηi

∏
j �=i

(1 + ρ̄jηj).

But because of the appearance of the factor ηi we are now free to include the extra
term 1 + ρ̄iηi in the above product. Hence we arrive at the above-mentioned naive
result. It should, however, be noted, that the order of the Grassmann variables in∑

i ρ̄iηi was important. By reversing this order we get a minus sign, and the rule is
not the usual one! By a similar argument one finds that

e
∑

j η̄jρj

←−
∂

∂ρi

= η̄ie
∑

j η̄jρj .

Let us now return to the generating functional defined in (2.49). Proceeding as
above one can easily show that

Ii1...i�;i�1...i��
[A] =

[
∂

∂ρ̄i1

. . .
∂

∂ρ̄i�

Z[ρ, ρ̄]
←−
∂

∂ρi�1

. . .

←−
∂

∂ρi��

]

ρ=ρ̄=0

, (2.51)

where the left-hand side has been defined in (2.48). By making use of the explicit
expression for Z[ρ, ρ̄] given in (2.50), one can calculate the right-hand side of (2.51).
Since we shall need this expression in later chapters, we will derive it here. To this
effect we first rewrite (2.50) as follows

Z[ρ, ρ̄] = det A
∏

i

eρ̄i
∑

j A−1
ij ρj = (det A)(1 + ρ̄i1A

−1
i1k1

ρk1)

· (1 + ρ̄i2A
−1
i2k2

ρk2) . . . (1 + ρ̄i�A
−1
i�k�

ρk�
)[· · · ], (2.52)

where the indices k1, . . . , k� are summed, and [. . .] stands for the remaining factors
not involving the variables ρ̄i1 , . . . , ρ̄i� . The only terms which contribute to the left
derivatives in (2.51) are those involving the product ρ̄i1 . . . ρ̄i� . Furthermore since we
will eventually set all “sources” ρi and ρ̄i equal to zero, we can replace [. . .] by 1.
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The contribution in (2.52), which is relevant when computing (2.51), is therefore
given by

Z̃[ρ, ρ̄] = det A
∑
{ki}′

ρ̄i1A
−1
i1k1

ρk1 . . . ρ̄i�A
−1
i�k�

ρk�
,

where all ki’s are different, and the “prime” on {ki}� indicates that the ki’s take only
values in the set (i�1, i

�
2, . . . , i

�
�), labeling the right derivatives in (2.51). Thus we can

write the above expression in the form

Z̃[ρ, ρ̄] = det A
∑

P

A−1
i1i′P1

A−1
i2i′P2

. . . A−1
i�i

′
P�

ρ̄i1ρi′P1
ρ̄i2ρi′P2

. . . ρ̄i�ρi′P�
,

(2.53a)

where the sum extends over all permutations

P :

(
i�1 i�2 . . . i��

i�P1
i�P2

. . . i�P�

)
. (2.53b)

Each of the products of Grassman variables appearing in the sum (2.53a) can be
put into the form

F
i′1i′2...i′�
i1i2...,i� ≡ ρ̄i1ρi′1

ρ̄i2ρi′2
. . . ρ̄i�ρi′�

by using the anticommutation rules for Grassmann variables. It follows that

Z̃[ρ, ρ̄] = (det A)

[∑
P

(−1)σP A−1
i1i′P1

. . . A−1
i�i

′
P�

]
F

i′1...i′�
i1...i�

(ρ, ρ̄),

where (−1)σP is the signum of the permutation (2.53b). We now apply the left and
right derivatives indicated in (2.51) to the above expression and obtain the following
important result:

∫
D(η̄η)ηi1 . . . ηi� η̄i′1

. . . η̄i′�
e−

∑
i,j η̄iAijηj

= ξ�(det A)
∑

P

(−1)σP A−1
i1i′P1

. . . A−1
i�i

′
P�

, (2.54)

where ξ� = (−1)�(�−1)/2. As a particular case of (2.54) we have that
∫

D(η̄η)ηiη̄je
−

∑
i,j η̄iAijηj = (det A)A−1

ij . (2.55)

Let us define the two-point correlation function

�ηiη̄j� =
∫

D(η̄η)ηiη̄je
−

∑
i,j η̄iAijηj

∫
D(η̄η)e−

∑
i,j η̄iAijηj

. (2.56)
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Then it follows from (2.47) and (2.55) that

ηiη̄j ≡ �ηiη̄j� = A−1
ij . (2.57)

We shall refer to (2.57) as a contraction. The generalization of (2.57) to arbitrary
“correlation” functions,

�ηi1 . . . ηi� η̄i′1
. . . η̄i′�

� =

∫
D(η̄η)ηi1 . . . ηi� η̄i′1

. . . η̄i′�
e−

∑
i,j η̄iAijηj

∫
D(η̄η)e−

∑
i,j η̄iAijηj

, (2.58)

follows from (2.54) and (2.47). One finds that

(2.59)

where the right-hand side stands for the sum of all possible pairwise contractions
(2.57) of the Grassmann variables, multiplied by a phase (−1)p, where p is the
number of transpositions required to place the contracted variables next to each
other in the form ηη̄.

This completes our discussion of Grassmann variables. Let us now answer the
question what all these exercises with Grassmann variables have to do with the path
integral representation of fermionic Green functions. To this effect let us consider
the simplest type of relativistic field theory involving only fermionic fields: the free
Dirac field. The corresponding action in Minkowski space is given by∗

SF [ψ, ψ̄] =
∫

d4xψ̄(x)(iγµ∂µ − M)ψ(x),

where γµ are the Dirac γ-matrices, and where the Lorentz index µ is summed. Let
us write this action in the form

SF =
∑
α,β

∫
d4xd4yψ̄α(x)Kαβ(x, y)ψβ(y),

where

Kαβ(x, y) = (iγµ∂µ − M)αβδ(4)(x − y).

∗ We assume the reader is familiar with the quantization of the free Dirac field.
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The two-point function (fermion propagator) is related to the inverse of the matrix
K as follows:

�Ω|T (Ψα(x)Ψ̄β(y))|Ω� = iK−1
αβ (x, y),

where the time-ordering operation “T” orders the operators from left to right ac-
cording to descending time, treating the operators Ψα and Ψ̄β as elements of a
Grassmann algebra. But we have just learned above how to compute the inverse of
a matrix by means of Grassmann integrals. Thus a naive application of the formulae
(2.56) and (2.57) leads to the following PI-expression for iK−1

αβ (x, y):

iK−1
αβ (x, y) =

∫
D(ψ̄ψ)ψα(x)ψ̄β(y)eiSF [ψ,ψ̄]

∫
D(ψ̄ψ)eiSF [ψ,ψ̄]

,

where the measure is formally defined by

D(ψ̄ψ) =
∏
α,x

dψ̄α(x)dψα(x),

and where ψ and ψ̄ are Grassmann-valued fields. The above observation suggests
that the PI-representation of Green functions involving an equal number of Dirac
fields of type Ψ and Ψ̄ is given in Minkowski space by∗

�Ω|T (Ψα1(x1) . . . Ψα�
(x�)Ψ̄β1(y1) . . . Ψ̄β�

(y�))|Ω�

=
∫

D(ψ̄ψ)ψα1(x1) . . . ψα�
(x�)ψ̄β1(y1) . . . ψ̄β�

(y�))eiSF [ψ,ψ̄]
∫

D(ψ̄ψ)eiSF [ψ,ψ̄]
. (2.60)

This is certainly true for the free Dirac field, as follows from a naive application of
formula (2.59), which is nothing but Wick’s theorem. But it is also true for theories
like QED or QCD, where the fermionic contribution to the action is again a bilinear
function in the fields ψ and ψ̄. In these theories, this fermionic contribution also
depends on a collection of bosonic variables (the gauge potentials) and the path
integral (2.60) gives the Green function evaluated in external gauge fields. When
quantum fluctuations of these fields are taken into account, the appearance of the
determinant of the matrix A in (2.55) (rather than 1/

√
det A, which is characteristic

of the bosonic case) will play a crucial role. This will become clear later on, when
we discuss these theories in detail.

∗ All other functions vanish because of the Grassmann integration rules. For a
derivation of the path integral expression for fermions from fundamental principles,
see Berezin (1966).
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As the reader will have noticed, we have not discussed the path integral rep-
resentation of fermionic Green functions continued to imaginary times. We shall do
this in chapter 4, using the rule derived in section 2 for Green functions involving
bosonic variables. In the case of the free Dirac theory, the correctness of this rule
can be checked explicitly by comparing the results obtained by the PI-method with
those derived using conventional canonical Hilbert space methods. In field theories
with interactions like QED or QCD, such a comparison can be made in perturbation
theory. The non-perturbative definition of the correlation functions in these theories
is assumed to be given by the PI expressions.

We close this section with a remark. In contrast to the bosonic case, we cannot
calculate numerically “ensemble averages” of products of Grassmann variables using
statistical methods. Nevertheless, we will still be able to study theories like QED
or QCD numerically. The reason is that, as we have just mentioned, the fermionic
contributions to the action in these theories is bilinear in the fields ψ and ψ̄. This
allows one to perform the Grassmann integrals and to recast the path integral ex-
pression for the euclidean correlation functions in the form of a statistical mechanical
ensemble average, with a new effective action. This action depends in a non-local
way on the bosonic fields to which the fermions are coupled. It is this non-locality
that makes numerical computations of correlation functions involving fermions very
time-consuming.

2.5 Discretizing Space-Time. The Lattice as a Regulator
of a Quantum Field Theory

As we have pointed out repeatedly in the previous sections, the path integral
expressions for Green functions have only a well-defined meaning for systems with
a denumerable number of degrees of freedom. In field theory, however, where one is
dealing with an infinite number of degrees of freedom, labeled by the coordinates �x

and, in general, by some additional discrete indices, the multiple integrals are only
formally defined. To give the path integrals a precise meaning, we will therefore
have to discretize not only time, but also space; i.e., we will be forced to introduce
a space-time lattice. Eventually we will have to remove again this lattice structure.
This is a quite non-trivial task. Those readers acquainted with the renormalization
program in continuum perturbation theory know that the renormalization of Green
functions first requires the regularization of the corresponding Feynman integrals
in momentum space. These integrals will then depend on one or more parameters
which are introduced in the regularization process (momentum cut-off, Pauli–Villars
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masses, dimensional regularization parameter). Since the effect of any regularization
procedure is to render the momentum integrations in Feynman integrals ultraviolet
finite, let us loosely say that the first step in the renormalization program consists
in the introduction of a momentum cutoff. If the original Feynman integrals are di-
vergent, then the regularized integrals will be strongly dependent on the cutoff. The
second step in the renormalization program now consists in defining renormalized
Green functions, which approach a finite limit as the cutoff is removed. This demands
that the bare parameters of the theory become cutoff dependent. This dependence
is determined by imposing a set of renormalization conditions, which merely state
that such quantities as the physical coupling strength measured at some momentum
transfer, and particle masses are to be held fixed as the cutoff is removed.

The above described renormalization program is carried out on the level of
Feynman integrals in momentum space. In the lattice approach this program can be
formulated without reference to perturbation theory. The first step (regularization)
consists in introducing a space-time lattice at the level of the path integral. This
regularization merely corresponds to defining what we mean by a path integral.
The second step of the renormalization program then corresponds to removing the
lattice structure. This amounts to studying the continuum limit. It is therefore not
surprising that the bare parameters of the theory will have to be tuned to the lattice
spacing in a very definite way depending in general on the dynamics, if physical
observables are to become insensitive to the underlying lattice structure. Thus if
the reader had some uneasy feelings about the way the infinities are removed in
conventional perturbation theory, he will probably feel much better after having read
this book. In this connection we also want to mention that within the perturbative
framework the introduction of a space-time lattice corresponds to a particular way of
regularizing Feynman integrals. As we shall see, this regularization does not amount
to the naive introduction of a momentum cutoff. Although the momentum space
integrals will indeed be cut off at a momentum of the order of the inverse lattice
spacing, the integrands of Feynman integrals will not have the usual structure, but
are modified in a non-trivial way. This is one of the reasons why lattice weak coupling
perturbation theory is so difficult. The other reason is that in the lattice formulation
of gauge theories, new interaction vertices pop up, which have no analogue in the
continuum formulation.

The appearance of a momentum cutoff in the lattice formulation is not surpris-
ing. Consider a function f(x) of a single continuous variable. If its absolute value is
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square integrable, then f(x) has the following Fourier representation:

f(x) =
∫ ∞

−∞

dk

2π
f̃(k)eikx. (2.61)

On the other hand, if x is restricted to a multiple of a “lattice spacing” a, i.e., x = na

with n an integer, then f(na) can be Fourier-decomposed as follows:

f(na) =
∫ π/a

−π/a

dk

2π
f̃a(k)eikna, (2.62)

where f̃a(−π/a) = f̃a(π/a). Hence the “momentum” integration is now restricted to
the so-called Brillouin zone (BZ) [−π/a, π/a]. f̃a(k) can be represented by a Fourier
series. The coefficient of exp(−ikna) is given by (2.62) multiplied by a:

f̃a(k) = a
∞∑

n=−∞
f(na)e−inka. (2.63)

The right-hand side is just the discretized version of the expression for f̃(k) obtained
by inverting (2.61). By setting f(na) = 1/2π in (2.63), we obtain a Fourier series
representation of the δ-function in the BZ,

δP (k) =
a

2π

∑
n

e−inka, (2.64)

where the subscript P stands for “periodic”. It emphasizes the fact that δP (k) has
non-vanishing support at k = 0 modulo 2nπ. The Dirac δ-function, δ(x − y), of
course becomes the Kronecker-δ (multiplied by 1/a) on the x-lattice:

δnm = a

∫ π/a

−π/a

dp

2π
eip(n−m)a. (2.65)

The above formulae are trivially extended to functions depending on an ar-
bitrary number of variables. In particular, in four space-time dimensions, all four
components of momenta will be restricted to the interval [−π/a, π/a]. Thus the in-
troduction of a lattice provides a momentum cutoff of the order of the inverse lattice
spacing.

We are now ready to embarque on the main task of this book, i.e., the for-
mulation of field theories on a space-time lattice. As a warm-up, we begin in the
following chapter with a very simple field theory: the free scalar field. Although the
lattice formulation will be trivial in this case, we will nevertheless learn a number
of important facts by studying it in detail.
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CHAPTER 3

THE FREE SCALAR FIELD ON THE LATTICE

Consider the classical field equation

(�� + M2)φ(x) = 0, (3.1)

where φ is a real field, �� is the d’Alembert operator, and x stands for the space-time
vector with components xµ(µ = 0, 1, 2, 3). This equation of motion follows from an
action principle, δS = 0, where

S = −1
2

∫
d4xφ(x)(�� + M2)φ(x) (3.2)

is the action associated with the Lagrangian density

L =
1
2
∂µφ∂µφ − 1

2
M2φ2.

In the quantum theory the coordinates q�x(t) ≡ φ(x) and momenta p�x(t) ≡ φ̇(x)
become operators, Φ(x) and Φ̇(x), satisfying canonical commutation relations. The
information about the quantum theory is contained in the Green functions

G(x, y, . . .) = �Ω|T (Φ(x)Φ(y) · · · )|Ω�, (3.3)

where |Ω� stands for the ground state of the system (physical vacuum) and T denotes
the time-ordered product of the operators Φ(x). These Green functions have a path
integral representation which can be formally obtained from (2.33) by making the
replacements Qα(t) → Φ(�x, t) and qα(t) → φ(�x, t):

G(x, y, . . .) =
∫

Dφφ(x)φ(y) · · · eiS[φ]
∫

DφeiS
. (3.4)

Here
∫

Dφ denotes the sum over all possible field configurations φ(x). The effects
arising from quantum fluctuations are contained in those contributions to the inte-
gral (3.4) coming from field configurations which are not solutions to the classical
equation of motion (3.1) and hence do not lead to a stationary action. Now for
reasons mentioned in chapter 2 we are interested in the analytic continuation of
(3.4) to imaginary times, x0 → −ix4, y0 → −iy4, etc. Let, from now on, x and y

denote the euclidean four vectors with components xµ and yµ (µ = 1, . . . , 4). It then
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follows from our discussion in chapter 2 that the Green functions (3.3) continued to
imaginary times have the following path integral representation

�φ(x)φ(y) . . .� =
∫

Dφ(φ(x)φ(y) . . .)e−SE [φ]
∫

Dφe−SE [φ]
, (3.5)

where we have made use of the notation for the euclidean Green functions, intro-
duced in chapter 2. The euclidean action SE[φ] appearing in (3.5) is obtained from
(3.2) by i) making the replacement x0 → −ix4 where-ever x0 appears explicitly,
ii) substituting for φ(�x, t) the (real valued!) field φ(x) = φ(�x, x4),* and iii) mul-
tiplying the resultant expression by −i. This leads to the following expression for
SE[φ],

SE[φ] =
1
2

∫
d4xφ(x)(−�� + M2)φ(x), (3.6a)

where �� denotes from now on the 4-dimensional Laplacean

�� =
4∑

µ=1

∂µ∂µ. (3.6b)

In passing to the imaginary time formulation, the Green functions take the form
of correlation functions of a statistical mechanical system defined by the partition
function

Z =
∫

Dφe−S[φ],

where the integration measure Dφ is formally defined by

Dφ =
∏
�x,x4

dφ(�x, x4).

So far the path integral (3.5) has not been given a precise mathematical meaning.
We do this now by introducing a space-time lattice with lattice spacing a. Every
point on the lattice is then specified by four integers which we denote collectively by
n ≡ (n1, n2, n3, n4). By convention the last component will denote euclidean time.
The transition from the continuum to the lattice is then effected by making the

* We are a bit sloppy in our notation: φ(�x, x4) is not obtained from φ(�x, t) by
substituting x4 for t, but denotes a real field which is a function of the euclidean
variables xµ(µ = 1, . . . , 4).
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following substitutions:

xµ → nµa,

φ(x) → φ(na),∫
d4x → a4

∑
n

, (3.7a)

��φ(x) → 1
a2 �̂�φ(na),

Dφ →
∏
n

dφ(na),

where the action of the dimensionless lattice Laplacean �̂� is defined by

�̂�φ(na) =
∑

µ

(φ(na + µ̂a) + φ(na − µ̂a) − 2φ(na)). (3.7b)

Here µ̂ ≡ êµ, where êµ is a unit vector pointing along the µ-direction.

We next want to obtain a path integral expression involving dimensionless
variables only. To this effect we scale the mass parameter M and the field φ ac-
cording to their “canonical” dimension. As seen from (3.6a) φ has the dimension of
inverse length (the same as M). Hence we define the dimensionless quantities M̂ and
φ̂n by

φ̂n = aφ(na),

(3.8)
M̂ = aM .

With (3.7) and (3.8) expression (3.5) translates into

�φ̂nφ̂m · · · � =
∫ ∏

� dφ̂�φ̂nφ̂m · · · e−SE [φ̂]

∫ ∏
� dφ̂�e−SE [φ̂]

, (3.9a)

where

SE = −1
2

∑
n,µ̂

φ̂nφ̂n+µ +
1
2
(8 + M̂2)

∑
n

φ̂nφ̂n, (3.9b)

and where the sum over µ extends over all positive and negative directions. Notice
that the lattice spacing no longer appears in these expressions! This is not partic-
ular to the free field theory considered here, for it is merely a consequence of the
fact that, measured in units of �, the action is dimensionless, which is true for any
theory.

It is important to realize that the form of the lattice action (3.9b) is not
unique, and that we have merely chosen the simplest one. Thus, a priori, the only
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requirement that any lattice action should fulfil is that it reproduces the correct
classical expression in the naive continuum limit.* Indeed, the scalar field is the
only case in which a simple prescription of the above type gives the correct lattice
action describing the quantum theory. Already the free Dirac theory will require a
more careful treatment!

Let us now consider the integral (3.9a) in more detail. Its structure is analogous
to that encountered in the statistical mechanics of a spin system with nearest neigh-
bour interactions. In the present case, however, the theory is easily solved since the
variables φ̂n are allowed to take on any real value. To carry out the integral (3.9a)
we rewrite the action (3.9b) in the form

SE =
1
2

∑
n,m

φ̂nKnmφ̂m, (3.10a)

where Knm is given by

Knm = −
∑
µ>0

[δn+µ̂,m + δn−µ̂,m − 2δnm] + M̂2δnm. (3.10b)

Consider the generating functional

Z0[J ] =
∫ ∏

�

dφ̂� e−SE [φ̂]+
∑

n Ĵnφ̂n . (3.11)

It can be easily calculated, since the (multiple) integral is of the Gaussian type.
Apart from an overall constant, which we shall always drop since it plays no role
when computing ensemble averages, we have that (cf. e.g., (2.28) and (2.30)

Z0[J ] =
1√

det K
e

1
2

∑
n,m JnK−1

nmJm . (3.12)

Here K−1 is the inverse of the matrix (3.10b), and det K is the determinant of K. By
differentiating (3.12) with respect to the sources we obtain any desired correlation
function. For our purpose it suffices to consider the 2-point function. From what we
have learned in chapter 2, we get

�φ̂nφ̂m� = K−1
nm. (3.13)

The inverse matrix K−1 is determined from the equation
∑

�

Kn�K
−1
�m = δnm, (3.14)

* I.e., scaling the variables with a appropriately, and letting a → 0.
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and is easily computed by working in momentum space, where δnm is given by

δnm =
∫ π

−π

d4k̂

(2π)4 eik̂·(n−m). (3.15)

We have introduced the “hat” on k̂ = (k̂1, . . . , k̂4) to emphasize that these variables
are dimensionless. Making use of the Fourier representation (3.15), one finds that
(3.10b) is given by

Knm =
∫ π

−π

d4k̂

(2π)4 K̃(k̂)eik̂·(n−m), (3.16a)

where

K̃(k̂) = 4
4∑

µ=1

sin2 k̂µ

2
+ M̂2. (3.16b)

Notice that the integration in (3.16a) is restricted to the Brillouin zone (BZ), −π ≤
k̂µ ≤ π. The inverse matrix (3.13) is now easily determined from (3.14) by making
the ansatz

K−1
nm =

∫ π

−π

d4k̂

(2π)4G(k̂)eik̂·(n−m),

and performing the sum over � using the expression (2.64) with (a = 1) for the
periodic delta function:

K−1
nm = �φ̂nφ̂m� =

∫ π

−π

d4k̂

(2π)4

eik̂·(n−m)

4
∑

µ sin2 k̂µ

2 + M̂2
. (3.17)

The right-hand side of this expression depends on the lattice sites n and m, and on
the dimensionless mass parameter M̂ . To make this explicit let us define

G(n, m; M̂) = �φ̂nφ̂m�.

Suppose we were given (3.17) and were asked to study its continuum limit in order
to extract the physical two-point correlation function, �φ(x)φ(y)�. The obvious thing
to try would be to introduce the lattice spacing by rescaling φ̂n and M̂ according to
(3.8), and to take the limit a → 0, holding M , φ, x = na and y = ma fixed. Hence
one must know which quantities are to be held fixed as one removes the lattice
structure! For example, in an interacting theory the mass parameter M would in
general be unphysical and cannot be held fixed as we let the lattice spacing go to
zero. In the present simple case, however, the naive procedure just described gives
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the correct continuum limit; i.e., we claim that the right-hand side of

�φ(x)φ(y)� = lim
a→0

1
a2G

(x

a
,
y

a
; Ma

)
(3.18)

approaches a finite limit, and reproduces the well-known result for the scalar two-
point function. For this to be the case, G(x/a, y/a; Ma) must clearly vanish in the
limit a → 0. From (3.17) one finds after a trivial change of integration variables
that

G
(x

a
,
y

a
; Ma

)
= a2

∫ π/a

−π/a

d4k

(2π)4

eik·(x−y)

∑
µ k̃2

µ + M2
(3.19a)

where k̃µ is given by

k̃µ =
2
a

sin
kµa

2
. (3.19b)

Since the integration in (3.19a) is restricted to the interval [−π
a
, π

a
], the integral will

be dominated by momenta which are small compared to the inverse lattice spacing;
hence we may set k̃µ → kµ. Taking the limit a → 0 we arrive at the well-known
result:

�φ(x)φ(y)� =
∫ ∞

−∞

d4k

(2π)4

eik·(x−y)

k2 + M2 . (3.20)

The above discussion has made explicit use of the lattice spacing. But suppose we
were not in the position of performing the continuum limit analytically, but must
rely on a numerical calculation of the path integral (3.9) where the lattice spacing
does not appear. What does it mean to study the continuum limit in such a case?
The idea is of course to make the lattice finer and finer with physics remaining the
same as we approach the continuum limit. Consider for example a physical correla-
tion length ξ. Decreasing the lattice spacing means increasing the correlation length
ξ̂ measured in lattice units. But ξ̂ may be controlled by the parameters on which the
theory depends! Thus, doubling ξ̂ by choosing these parameters appropriately, we
have cut down the lattice spacing by a factor of 1/2. Now what controles the corre-
lation length ξ̂ in our example is the dimensionless parameter M̂ . In the continuum
limit the correlation function (3.20) decays exponentially for large |x − y| with a
correlation length given by the inverse mass. Hence the corresponding correlation
length measured in lattice units, i.e., ξ̂ = 1

Ma
, diverges as a → 0! Thus from the point

of view of a statistical mechanical system described by the partition function (3.11)
with J = 0, the continuum limit is realized for M̂ → 0 at a critical point of the the-
ory! It is therefore evident that in any practical numerical calculation carried out on
a finite-size lattice we can never actually go to the continuum limit. How do we then
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decide whether we are extracting continuum physics? In principle the answer is very
simple: We must ensure that our lattice is fine enough (i.e., M̂ small enough in the
present case) so that physical quantities become insensitive to the lattice structure.
But quantities like �φ(x)φ(y)� are dimensioned, and we can only calculate dimen-
sionless objects! So we must consider dimensionless ratios of physical quantities. In
our case the simplest quantity is �φ(x)φ(y)�/M2; hence we must study the lattice
ratio �φ̂nφ̂m�/M̂2 for small values of M̂ , keeping M̂ |n − m| ≈ M |x − y| fixed. If for
sufficiently small M̂ this ratio becomes independent of M̂ , then our lattice is fine
enough and we are extracting continuum physics.

Admittedly the case of a free scalar field was a very simple one. Nevertheless it
has served to elucidate several ideas that go into a lattice formulation. In an inter-
acting theory the story will be certainly more complicated. But the main messages
of this chapter will remain.
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CHAPTER 4

FERMIONS ON THE LATTICE

In the preceding chapter we have shown that the lattice formulation of the free
scalar field theory poses no problems. The correct continuum limit was reached by
simply scaling all dimensionless variables appropriately with the lattice spacing a,
and taking the limit a → 0 holding physical quantities fixed. The purpose of these
lectures, however, is to arrive at a lattice formulation of QCD which describes the
interaction of quarks and gluons. Hence we must learn how to deal with fermions and
gauge fields on a lattice. While there is a clear-cut and elegant way of introducing
gauge fields on a space-time lattice, the situation regarding fermions is not so clear.
As we shall see, the difficulties arise already on the level of the free Dirac field. From
the psychological point of view it would therefore be preferable to discuss that part of
lattice gauge theories first which one believes to be well understood, and to introduce
lattice fermions at a later stage, since they are endowed with special problems not
encountered for bosonic fields. On the other hand, having discussed the scalar field,
it is only natural to attempt a similar naive formulation for the other kind of matter
field. Thus it is interesting that in the case of fermions the lattice forces us to deviate
from the naive type of prescription adopted in the previous chapter, in order to avoid
the so-called fermion “doubling” problem. Several proposals have been made in the
literature to get around this problem, and we shall discuss the two most popular ones.

4.1 The Doubling Problem

We begin by pointing out the difficulties one encounters when latticizing the
free Dirac field.

Consider first the Dirac equation in Minkowski space

(iγµ∂µ − M)ψ(x) = 0,

where γµ are 4×4 Dirac matrices satisfying the following anticommutation relations

{γµ, γν} = 2gµν ,

and ψ is a 4-component field, whose components we shall label by a Greek index
(α, β, etc.). The equation of motion for ψ and ψ̄(≡ ψ†γ0) follow from the independent
variation of the action

SF [ψ, ψ̄] =
∫

d4xψ̄(x)(iγµ∂µ − M)ψ(x)
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with respect to the fields ψ and ψ̄. In the quantum theory, ψ and ψ† become opera-
tors, Ψ and Ψ† satisfying the following canonical equal-time commutation relations

{Ψα(�x, t),Ψ†
β(�y, t)} = δαβδ(3)(�x − �y).

The path integral representation of the Green function*

�Ω|T (Ψα1(x1) . . .Ψα�
(x�)Ψ̄β1(y1) . . . Ψ̄β�

(y�))|Ω�

is given by (2.60), i.e.

�Ω|T (Ψα(x) . . . Ψ̄β(y) . . .)|Ω� =
∫

Dψ̄Dψψα(x) . . . ψ̄β(y) . . . eiSF∫
Dψ̄DψeiSF

.

The corresponding representation of the Green functions continued to imaginary
times is obtained by replacing iSF [ψ, ψ̄] by −S

(eucl.)
F [ψ, ψ̄], where S

(eucl.)
F is the

euclidean action, and identifying x, y etc. with the euclidean four-vectors. We denote
the euclidean Green functions by �ψα(x) . . . ψ̄β(y) . . .�. Then

�ψα(x) . . . ψ̄β(y) . . .� =
∫

Dψ̄Dψ(ψα(x) . . . ψ̄β(y) . . .)e−S
(eucl.)
F [ψ,ψ̄]

∫
Dψ̄Dψe−S

(eucl.)
F [ψ,ψ̄]

. (4.1)

The euclidean action can be obtained from SF by the prescription discussed in sec-
tion 2 of the previous chapter. But since in euclidean space the Lorentz group is
replaced by the rotation group in four dimensions, it is convenient to express the
action in terms of a new set of γ-matrices γE

µ (µ = 1, . . . , 4), satisfying the algebra

{γE
µ , γE

ν } = 2δµν .

With the hermitean choice γE
4 = γ0, γE

i = −iγi, the euclidean action then takes the
form

S
(eucl.)
F =

∫
d4xψ̄(x)(γE

µ ∂µ + M)ψ(x). (4.2)

Since from now on we shall be interested only in the euclidean formulation, we shall
drop any labels reminding us of this.

So far the path integrals in (4.1) are only formally defined, since x, y etc. are
continuous variables. So let us introduce a space-time lattice. The fields ψ and ψ̄

* Here xi, yi(i = 1, . . . , �) denote four vectors in Minkowski space.
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then live on the lattice sites na, where a is the lattice spacing, and the integration
measure is given by

Dψ̄Dψ =
∏
α,n

dψ̄α(na)
∏
β,m

dψβ(ma).

Next we rewrite (4.1) in terms of dimensionless lattice variables, by scaling M , ψ
and ψ̄ with a according to their canonical dimensions. This is achieved by making
the replacements

M → 1
a
M̂ ,

ψα(x) → 1
a3/2 ψ̂α(n),

(4.3a)
ψ̄α(x) → 1

a3/2
¯̂
ψα(n),

∂µψα(x) → 1
a5/2 ∂̂µψ̂α(n),

where ∂̂µ is the antihermitean lattice derivative defined by

∂̂µψ̂α(n) =
1
2
[ψ̂α(n + µ̂) − ψ̂α(n − µ̂)]. (4.3b)

Then the lattice version of (4.2) reads

SF =
∑
n,m
α,β

¯̂
ψα(n)Kαβ(n, m)ψ̂β(m), (4.4a)

where

Kαβ(n, m) =
∑

µ

1
2
(γµ)αβ[δm,n+µ̂ − δm,n−µ̂] + M̂δmnδαβ. (4.4b)

With this action the lattice correlation functions are given by the following
path integral expression

�ψ̂α(n) · · · ¯̂
ψβ(m) · · · � =

∫
D

¯̂
ψDψ̂ψ̂α(n) · · · ¯̂

ψβ(m) · · · e−SF

∫
D

¯̂
ψDψ̂e−SF

, (4.5a)

where the integration measure is defined by

D
¯̂
ψDψ̂ =

∏
n,α

d
¯̂
ψα(n)

∏
m,β

dψ̂β(m). (4.5b)
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The correlation functions (4.5a) can be obtained from the generating functional

Z[η, η̄] =
∫

D
¯̂
ψDψ̂e−SF +

∑
n,α[η̄α(n)ψ̂α(n)+ ¯̂

ψα(n)ηα(n)] (4.6)

by carrying out the appropriate differentiations with respect to the Grassmann-
valued sources ηα(n) and η̄α(n) (see chapter 2). The integral (4.6) can be performed
(cf. eqs. (2.49) and (2.50)) and we obtain

Z[η, η̄] = det Ke
∑

n,m,α,β η̄α(n)K−1
αβ (n,m)ηβ(m).

Hence the two-point function is given by

�ψ̂α(n) ¯̂
ψβ(m)� = K−1

αβ (n, m).

So far everything is quite analogous to the scalar case considered in the previous
chapter. In particular we want to emphasize that the lattice action (4.4) was ob-
tained by proceeding in the most naive way possible. Such a prescription was shown
to work in the case of the free scalar field. Hence there is no a priori reason why
it should fail to do so in the present case. But the fact is that it fails! To see this
let us compute the physical correlation function �ψα(x)ψ̄β(y)� by carrying out the
continuum limit in a manner analogous to the scalar case (cf. eq. (3.18)), i.e.

�ψα(x)ψ̄β(y)� = lim
a→0

1
a3Gαβ

(x

a
,
y

a
; Ma

)
,

where Gαβ(n, m, M̂) ≡ K−1
αβ (n, m). The factor 1/a3 arises from scaling the fields

according to (4.3a). The inverse matrix K−1
αβ (n, m), defined by

∑
λ,�

K−1
αλ (n, �)Kλβ(�, m) = δαβδnm,

can be easily calculated by proceeding as in the previous chapter, and one obtains

�ψα(x)ψ̄β(y)� = lim
a→0

∫ π/a

−π/a

d4p

(2π)4

[−i
∑

γµ
˜̃pµ + M ]αβ∑

µ
˜̃p
2
µ + M2

eip(x−y), (4.7a)

where ˜̃pµ is given by

˜̃pµ =
1
a

sin(pµa). (4.7b)

For ˜̃pµ → pµ the above integral would reduce to the well-known 2-point function
in the limit a → 0. Recall that in the scalar case, we had encountered a similar
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situation, but with an all important difference! The argument of the sine-function
in eq. (3.19b) is only half of that in (4.7b)! This makes a big difference and is the
origin of the so-called “fermion doubling” problem. While in the case of the scalar
field we could argue that k̃µ in (3.19a) can be replaced by kµ in the continuum limit,
such a replacement cannot be made in the present case. The reason for this is most
clearly seen by looking at fig. (4-1) where we have plotted ˜̃pµ as a function of pµ, for
pµ within the Brillouin zone. The straight line corresponds to ˜̃pµ = pµ. Within half
of the BZ the situation is analogous to that encountered in the scalar case: near
the continuum limit, the deviation from the straight line behaviour occurs only for
large momenta where pµ and ˜̃pµ are both of order 1/a.

π− /a π/a

pµ

pµ

≈

≈
p   = 1/aµ

Fig. 4-1 Plot of sin(pµa)/a versus pµ in the Brillouin zone. The

straight line corresponds to ˜̃pµ = pµ. The continuum limit is determined by

the momenta in the neighbourhood of pµ = 0 and pµ = ±π/a.

What destroys the correct continuum limit in the fermionic case are the zeros
of the sine-function in (4.7b) at the edges of the BZ. Thus there exist sixteen
regions of integrations in (4.7a), where ˜̃pµ takes a finite value in the limit a → 0.
Of these, fifteen regions involve high momentum excitations of the order of π/a

(and −π/a), which give rise to a momentum distribution function having the form
resembling that of a single particle propagator. Hence in the continuum limit, the
Green function (4.7a) receives contributions from sixteen fermion-like excitations in
momentum space, of which fifteen are pure lattice artefacts having no continuum
analog. In d space-time dimensions the number would be 2d; i.e. it doubles for each
additional dimension.

The “doubler” contributions, arising from momentum excitations near the cor-
ners of the Brillouin zone, are in fact essential for avoiding an apparent clash with a
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well known result in continuum QED. For vanishing fermion mass the QED action
is invariant under the global chiral transformation

ψ → eiθγ5ψ; ψ̄ → ψ̄eiθγ5 , (4.8)

where θ is a parameter, and γ5 = γ1γ2γ3γ4 is a hermitean matrix which anticom-
mutes with γµ(µ = 1, 2, 3, 4). Naively this implies the existence of a conserved axial
vector current. But because of quantum fluctuations this current has actually an
anomalous divergence [Adler (1969); Bell and Jackiw (1969)]. In a lattice regular-
ized theory, on the other hand, such a symmetry implies that this current is strictly
conserved for any lattice spacing. The way the lattice resolves this apparent puzzle,
consists in generating extra excitations (→ doublers) that have no analog in the
continuum, and which cancel the anomaly of the continuum theory arising from
momentum excitations around p̂ = 0 [Karsten and Smit (1981)].

Since the phenomenon of fermion doubling is a serious stumbling block in
constructing lattice actions involving fermions, we will look at it in more detail
in the following section.

4.2 A Closer Look at Fermion Doubling

Before we discuss the lattice Dirac propagator in more detail, it is instructive to
demonstrate the essence of the fermion doubling problem in some simple examples.
In particular we want to show that the origin of fermion doubling lies in the use of
the symmetric form for the lattice derivative.

(i) Example 1

Consider the following eigenvalue equation

−i
d

dx
f(x) = λf(x).

The solution is given by fλ(x) = fλ(0)eiλx. Next consider the discretized version of
this equation, where the derivative is replaced by the right “lattice” derivative. Let
f(n) be the value of f(x) at the lattice site x = na, where a is the lattice spacing.
Then

−i[f((n + 1)) − f(n)] = λ̂f(n),

where λ̂ is the eigenvalue measured in units of the lattice spacing, i.e. λ̂ = λa. The
equation can be solved immediately by iteration:

fλ̂(n) = en ln(1+iλ̂)fλ̂(0).
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In the continuum limit, which is obtained by setting n = x
a
, λ̂ = λa, and taking the

limit a → 0 with λ fixed, we recover the above solution.

Let us now consider a discretization which respects the hermiticity of the op-
erator i ∂

∂x
. This requires the use of the symmetric lattice derivative.

− i

2
[f((n + 1)) − f((n − 1))] = λ̂f(n). (4.9)

Thus our estimate of the derivative now involves twice the lattice spacing! As a
consequence one finds that for each eigenvalue λ̂ there exist two solutions to the
eigenvalue equation (4.8). Not both of the solutions can possess a continuum limit,
since the continuum eigenfunctions are non-degenerate. Indeed, equation (4.8) can
be solved with the Ansatz

fλ̂(n) = Ceip̂n,

where p̂ satisfies the equation
sin p̂ = λ̂.

For a given positive (negative) eigenvalue λ̂ this equation possesses two solutions
for p̂: one lying in the range 0 < p̂ < π

2 (−π
2 < p̂ < 0), and the other in the interval

π
2 < p̂ < π (−π < p̂ < −π

2 ). The corresponding eigenfunctions are given by

f̂
(1)
λ̂

(n) = Aei(arcsinλ̂)n, (4.10a)

f̂
(2)
λ̂

(n) = B(−1)ne−i(arcsinλ̂)n, (4.10b)

where
−π

2
< arcsin λ̂ <

π

2
. (4.10c)

The solution (4.10a) possesses a continuum limit which is realized by setting
n = x/a, λ̂ = λa, and taking the limit a → 0 with λ fixed. In this limit we re-
cover the solution to the original continuum eigenvalue equation. On the other hand
(4.10b) does not possess such a limit because of the factor (−1)n which alternates in
sign as one proceeds from one lattice site to the next. Notice that the origin of the
“doubler” solution (4.10b) is a consequence of having used the symmmetric form
for the lattice derivative. One might be tempted to merely ignore this solution. In
this case, however, our eigenfunctions would no longer constitute a complete set.

(ii) Example 2

Consider the Green function for the differential operator d
dt

+ M :
[

d

dt
+ M

]
G(t, t�) = δ(t − t�). (4.11)
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The general solution is given by

G(t, t�) = Ae−M(t−t′) + θ(t − t�)e−M(t−t′). (4.12)

Next consider the dimensionless discretized version of (4.11), where the derivative
is replaced by the symmetric lattice derivative:

∑
n′

[
1
2
(δn+1,n′ − δn−1,n′) + M̂δnn′

]
Ĝ(n�, m) = δnm. (4.13)

Here M̂ is the “mass” M measured in lattice units, i.e., M̂ = Ma. The most general
solution to the homogeneous equation reads:

Ĝ
(0)
M̂

(n, m) = Ae−(n−m)arsinhM̂ + B(−1)n−me(n−m)arsinhM̂ . (4.14)

Thus, when discretized, the homogeneous equation has an additional solution which,
because of the factor (−1)n−m, possesses no continuum limit. This limit is realized
for M̂ → 0, n, m → ∞ with M̂n = Mt and M̂m = Mt� fixed. The homogeneous
solution to (4.11) is then seen to correspond to the first term appearing on the rhs
of (4.14).

A particular solution to the inhomogeneous equation (4.13) can be obtained by
making the Fourier Ansatz

Ĝ
(part)
M̂

(n, m) =
∫ π

−π

dp̂

2π
Ĝ(p̂)eip̂(n−m).

Introducing this expression into (4.13) we obtain

Ĝ
(part)
M̂

(n, m) =
∫ π

−π

dp̂

2π
eip̂(n−m)

i sin p̂ + M̂
. (4.15)

The integral can be easily evaluated by introducing the variable z = eip̂. Then

Ĝ
(part)
M̂

(n, m) =
1
πi

∫

C

dz
zn−m

z2 + 2M̂z − 1
,

where integration is carried in the counterclockwise sense along a unit circle in the
complex z-plane centered at z = 0. For n − m ≥ 0 the integral is determined by
the residue of the pole at z = −M̂ +

√
1 + M̂2. On the other hand, for n − m < 0
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we can distort the integration contour to infinity, taking into account the pole at
z = −M̂ −

√
1 + M̂2, located outside the unit circle. One then finds that

Ĝ
(part)
M̂

(n, m) = θ(n − m)
e−(n−m)arsinhM̂

√
(1 + M̂2)

+ (−1)n−mθ(m − n)
e(n−m)arsinhM̂

√
(1 + M̂2)

(4.16)

where θ(0) = 1
2 . Note again, that only the first term on the rhs possesses a con-

tinuum limit. For lattice spacings small compared to 1
M

, i.e. for small M̂ , and
for fixed t = na and t� = ma, we have that

Ĝ
(part)
M̂

(
t

a
,
t�

a

)
≈ θ(t − t�)e−M(t−t�) + (−1)

t−t�
a θ(t� − t)eM(t−t�). (4.17)

While the second term is not defined for a → 0, the first term reproduces the
inhomogeneous solution to (4.11), given by the second term in (4.12).

The expression (4.17) could also have been obtained as follows, without actually
carrying out the integrals. Let us set p̂ = pa, M̂ = Ma, and t = na, t� = ma in
(4.15). Then

Ĝ
(part)
M̂

(
t

a
,
t�

a

)
=

∫ π
a

− π
a

dp

2π
eip(t−t�)

i
a
sin pa + M

. (4.18)

For a → 0 the relevant contributions to the integral come from momenta for which
sin pa ≈ O(a), i.e. from i) finite (dimensioned) momenta p, and ii) momenta close
to the corners of the Brillouin zone. Let us therefore decompose the integral (4.18)
as follows:

Ĝ
(part)
M̂

(
t

a
,
t�

a

)
=

∫ π
2a

− π
2a

dp

2π
eip(t−t�)

i
a
sin pa + M

+
∫ π

a

π
2a

dp

2π
eip(t−t�)

i
a
sin pa + M

+
∫ − π

2a

− π
a

dp

2π
eip(t−t�)

i
a
sin pa + M

.

Making the change of variables p = π
a

+ p� and p = −π
a

+ p� in the last two integrals,
respectively, one finds that

Ĝ
(part)
M̂

(
t

a
,
t�

a

)
=

∫ π
2a

− π
2a

dp

2π
eip(t−t�)

i
a
sin pa + M

+ (−1)
t−t�

a

∫ π
2a

− π
2a

dp

2π
eip(t−t�)

− i
a
sin pa + M

.

The integrations now extend over only one half of the Brillouin zone. For a → 0
the two integrals are therefore dominated by finite momenta p, for which sin pa is
of O(a). Hence for a → 0 we can replace sin pa by pa and obtain

Ĝ(part)
(

t

a
,
t�

a

)
−→
a→0

∫ ∞

−∞

dp

2π
eip(t−t�)

ip + M
− (−1)

t−t�
a

∫ ∞

−∞

dp

2π
eip(t−t�)

ip − M
,

which can be readily integrated to yield (4.17).
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The simple examples we discussed show how the discretization of an equation
can lead to a doubling of solutions. The “doubler”-like solutions manifested them-
selves in the appearance of a phase factor which changes sign as one proceeds from
one “lattice” site to the next. This is not only peculiar to the above examples. In fact
that doubler contributions to the Dirac propagator (4.7a) are expected to manifest
themselves in the same way. This we will show below.

(iii) Fermion Propagator

In the case of the fermion propagator one is confronted with matrix valued
integrals over four dimensional momentum space. The characteristic structure of
the “doublers” contributions to the Green function can nevertheless be easily ex-
hibited by proceeding in the way we have just described. Our starting point is the
expression (4.7a). To exhibit the effect of fermion doubling we decompose each of
the momentum integrations into the following two regions

(i) |pµ| <
π

2a
and

(ii)
π

2a
< |pµ| <

π

a
. (4.19)

After changes of variables similar to those we made before, the reader can easily
convince himself that the two-point function (4.7a) can be written in the form

�ψα(x)ψ̄β(y)� =
∑

p̄

eip̄·(n−m)
∫ π

2a

− π
2a

d4p

(2π)4

[−i
∑

δp̄µγµ
˜̃pµ + M ]αβ∑

µ
˜̃p
2
µ + M2

eip·(x−y),

(4.20a)

where x = na, y = ma, and

δp̄µ = eip̄µ . (4.20b)

The sum in (4.20a) runs over all possible sets of four-momenta p̄ (measured in
lattice units), labeling the 16 corners of the hypercube in the first quadrand in mo-
mentum space: (0, 0, 0, 0), (π, 0, 0, 0)···, (π, π, 0, 0)···, (π, π, π, 0)···, (π, π, π, π). The
dots stand for all possible permutations of the components. Notice that all the inte-
grations in (4.20a) extend over the reduced Brillouin zone [− π

2a
, π

2a
]. Of the sixteen

terms in the sum, only the term corresponding to p̄ = (0, 0, 0, 0) yields the familiar
result in the continuum limit. While the remaining 15 integrals also possess a contin-
uum limit, the phase factor exp[ip̄ · (n −m)] does not. The structure of these fifteen
integrals is the same as that corresponding to p̄ = (0, 0, 0, 0), except that each term
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is the Dirac propagator in a different representation of the gamma-matrices. Thus in
each of the integrals the sign of the gamma matrix γµ is reversed if p̄µ = π. The new
set of gamma matrices are related to the standard set by a similarity transformation.
Let us denote the matrices which induce these transformations by Tp̄:

Tp̄γµT −1
p̄ = δp̄µγµ. (4.21)

They have a different structure depending on the number of non-vanishing compo-
nents of p̄. Let T̃µ, T̃µν , T̃µνλ, T̃µνλρ (all indices distinct) stand for the matrices Tp̄

which induce a reversal of signs of those γ-matrices corresponding to the set of sub-
scripts. Their explicit form is given by T̃µ = γµγ5, T̃µν = γµγν , T̃µνλ = γµγνγλγ5, and
T̃µνλρ = γ5, where γ5 is the hermitean matrix: γ5 = γ1γ2γ3γ4. By the same reasoning
as that given in example ii), the propagator is found to take the following form close
to the continuum limit:

SF (x − y) ≈
∑

p̄

eip̄· x−y
a Tp̄

[∫ ∞

−∞

d4p

(2π)4

−i
∑

γµpµ + M∑
µ p2

µ + M2 eip·(x−y)

]
T −1

p̄

=
∑

p̄

Vp̄(x)S(0)
F (x − y)V −1

p̄ (y), (4.22a)

where

Vp̄(z) = eip̄· z
a Tp̄, (4.22b)

and

S
(0)
F (x − y) =

∫ ∞

−∞

d4p

(2π)4

[
−i

∑
γµpµ + M∑

µ p2
µ + M2

]
eip·(x−y) (4.22c)

is the continuum Feynman propagator.

The above structure of the correlation function is intimately connected with a
symmetry of the lattice action. Indeed one readily verfies that the gamma matrices
satisfy the following relation,

Vp̄(z)γµV
−1
p̄ (z ± µ̂a) = γµ.

As a consequence the lattice action

S =
1
2

∑
x

a4ψ̄(x)γµ[ψ(x + µ̂a) − ψ(x − µ̂a)] + M
∑

x

a4ψ̄(x)ψ(x)

is invariant under the transformation

ψ(x) → Vp̄(x)ψ(x),

ψ̄(x) → ψ̄(x)V −1
p̄ (x).
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In momentum space the action of the operator Vp̄ corresponds to a shift in the
momenta by p̄. Corresponding to the sixteen edges of the BZ there exist sixteen
such symmetry transformations. The fermion doubling phenomenon is a consequence
of the existence of these symmetry transformations.

Finally, let us take a look at how the doublers manifest themselves in the naive
lattice fermion two-point function for a massless field with definite chirality (as is
the case for the neutrino). This field is an eigenstate of the projection operator
PL = 1

2(1 − γ5). The two point function is given by

�ψL(x)ψ̄L(y)� = PL�ψ(x)ψ̄(y)�PR

where ψL(n) = PLψ(n), and PR = 1
2(1 + γ5). It therefore has the form

�ψL(x)ψ̄L(y)� = PL

∫
d4p

(2π)4

−iγµpµ

p2 eip·(x−y),

where we have made use of the fact that γ5 anticommutes with the γ-matrices γµ,
and that P 2

L = 1. On the other hand the corresponding lattice version is given by

�ψL(x)ψ̄L(y)�latt =
∑

p̄

eip̄· x−y
a PL

∫ π
2a

−π
2a

d4p

(2π)4Tp̄

[
−i

∑
γµ

˜̃pµ∑
µ

˜̃p
2
µ

]
T −1

p̄ eip·(x−y). (4.23)

Now one can easily verify that

Tp̄(1 − γ5)T −1
p̄ = (1 − �p̄γ5), (4.24a)

where

�p̄ =
∏
µ

δp̄µ . (4.24b)

Hence we can also write (4.23) in the form

�ψL(x)ψ̄L(y)� =
∑

p̄

eip̄· x−y
a Tp̄

[∫ π
2a

−π
2a

d4p

(2π)4

1
2
(1 − �p̄γ5)

−i
∑

γµ
˜̃pµ∑

µ
˜̃p
2
µ

eip·(x−y)

]
T −1

p̄ .

(4.25)

Since there are eight momenta p̄ for which �p̄ = 1, and eight momenta p̄ for which
�p̄ = −1, it follows that the sum involves sixteen integrals which in the continuum
limit have the form of eight left handed and eight right handed correlators in different
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representations of the γ-matrices. Fifteen of these integrals are however multiplied
by phase factors characteristic for the doubler contributions.

As we have already stressed, the origin of the doubling problem lies in the use
of the (antihermitean) symmetric form for the lattice derivative (4.3b). Thus while
our lattice scale is a, our estimate of the derivative involves twice the lattice spacing.
By using the right derivative

∂̂R
µ ψ̂(n) = ψ̂(n + µ̂) − ψ̂(n), (4.26a)

or left derivative

∂̂L
µ ψ̂(n) = ψ̂(n) − ψ̂(n − µ̂), (4.26b)

our estimate of the derivative would involve a distance which is just the lattice spac-
ing and the doubling problem would not occur. In this case the hermitean conjugate
of ∂̂L

µ would be −∂̂R
µ . A detailed analysis however shows that in the presence of inter-

actions the use of the left or right derivative gives rise, for example, to non-covariant
contributions to the fermion self energy and vertex function in QED which render
the theory non-renormalizable.*

That the doubling phenomenon must occur in a lattice regularization which
respects the usual hermiticity, locality and translational invariance requirements,
follows from a theorem by Nielsen and Ninomiya [Nielsen (1981)] which states that,
under the above assumptions, one cannot solve the fermion doubling problem with-
out breaking chiral symmetry for vanishing fermion mass.** This suggests that one
may get rid of the doubling problem at the expense of breaking chiral symmetry
explicitly on the lattice. A proposal in this direction was made originally by Wil-
son (1975), and is one of the two most popular schemes dealing with the doubling
problem.

* A very detailed study of the precise form of these non-covariant contribu-
tions has been carried out by Rothe and Sadooghi (1997). Actions using one side
lattice differences have been considered in the literature before, where by a suit-
able averaging procedure the correct continuum behaviour of the quantum theory
is restored. The reader may confer the references cited in the above mentioned
paper.

** For a simple derivation of the theorem, based on the Poincare–Hopf index
theorem, we refer the reader to the book by Itzykson and Drouffe (1989).
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4.3 Wilson Fermions

As we have emphasized in the last chapter, there are many different lattice
actions which have the same naive continuum limit, and we have merely chosen the
simplest one. We now exploit this ambiguity to modify the action (4.4) in such a
way that the zeros of the denominator in (4.7a) at the edges of the BZ are lifted
by an amount proportional to the inverse lattice spacing. This appears to be a
perfectly legitimate procedure. What will, however, be particular to it is that, while
one usually constructs the lattice action in accordance with the symmetries of the
classical theory, one is forced to break explicitly the chiral symmetry which the
original theory possesses for vanishing fermion mass. This is the price one has to
pay to eliminate the fermion doubling problem and to ensure the correct continuum
limit.

Let us now modify the action (4.4) by a term which vanishes in the naive
continuum limit and is not invariant under chiral transformations. As we shall see
below a second derivative term is a good candidate. Thus consider the action

S
(W )
F = SF − r

2

∑
n

¯̂
ψ(n)�̂�ψ̂(n), (4.27)

where r is the Wilson parameter and �̂� is the four-dimensional lattice Laplacean
defined by (3.7b) with a = 1. Setting ψ̂ = a3/2ψ and �̂� = a2��, we see that the
additional term in (4.27) vanishes linearly with a in the naive continuum limit.
Inserting for �̂�ψ̂(n) the expression analogous to (3.7b), the Wilson action can be
written in the form

S
(W )
F =

∑
n,m

¯̂
ψα(n)K(W )

αβ (n, m)ψ̂β(m), (4.28a)

where

K
(W )
αβ (n, m) = (M̂ + 4r)δnmδαβ

(4.28b)
− 1

2

∑
µ

[(r − γµ)αβδm,n+µ̂ + (r + γµ)αβδm,n−µ̂].

Notice that for r �= 0 this expression breaks chiral symmetry even for M̂ → 0.

The action (4.28) leads to the following two-point function of the continuum
theory

�ψα(x)ψ̄β(y)� = lim
a→0

∫ π/a

−π/a

d4p

(2π)4

[−iγµ
˜̃pµ + M(p)]αβ∑

µ
˜̃p
2
µ + M(p)2

eip·(x−y), (4.29a)
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where ˜̃pµ is given by (4.7b) and

M(p) = M +
2r
a

∑
µ

sin2(pµa/2). (4.29b)

From (4.29b) we see that for any fixed value of pµ, M(p) approaches M for a → 0.
Near the corners of the BZ, however, M(p) diverges as we let the lattice spac-
ing go to zero. This eliminates the fermion doubling problem, but at the expense
that the chiral symmetry of the original action (4.4) for M = 0 has been bro-
ken. This makes this scheme less attractive for studying such questions as spon-
taneous chiral symmetry breaking in QCD (which requires a fine tuning of the
parameter M̂). So let us turn to the discussion of an alternative scheme for putting
fermions on the lattice, known in the literature as the staggered fermion formulation
(Kogut and Susskind (1975); Susskind, 1977; Banks et al., 1977). In contradistinc-
tion to Wilson fermions one then speaks of Susskind, Kogut–Susskind, or staggered
fermions.

4.4 Staggered Fermions

As we have seen above, the fermion doubling problem owes its existence to
the fact that the function (4.7b) vanishes at the corners of the Brillouin zone. This
suggests the possibility of eliminating the unwanted fermion modes by reducing
the BZ, i.e. by doubling the effective lattice spacing. This could in principle be
accomplished if a) we were able to distribute the fermionic degrees of freedom
over the lattice in such a way that the effective lattice spacing for each type
of Grassmann variable is twice the fundamental lattice spacing, and b) if in the
naive continuum limit the action reduces to the desired continuum form. Hence let
us first take a look at the number of degrees of freedom required to double the
effective lattice spacing. To this end consider a d-dimensional space-time lattice
and subdivide it into elementary d-dimensional hypercubes of unit length. At each
site within a given hypercube place a different degree of freedom, and repeat this
structure periodically throughout the lattice. Then the effective lattice spacing has
been doubled for each degree of freedom. In fig. (4-2) we show the case of a 2-
dimensional lattice. Since there are 2d sites within a hypercube, but only 2d/2 com-
ponents of a Dirac field (in even space-time dimensions) we need 2d/2 different Dirac
fields to reduce the BZ by a factor of 1/2. In four space-time dimensions such a
prescription may therefore be appropriate for describing 22 different “flavoured” (i.e.
“up”, “down”, etc.) quarks. The corresponding Dirac fields we denote by ψf

α, where
f denotes the flavour and α the spinor index. The concrete realization of the above
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program is, however, not as simple as it sounds. Thus the sites of an elementary
hypercube will be occupied by certain linear combinations of the fields ψf

α chosen in
such a way that the lattice action reduces in the naive continuum limit to a sum of
free fermion actions, one for each of the quark flavours:

S
(stag)
f →

∫
d4x

∑
α,β,f

ψf
α(x)(γµ∂µ + M)αβψf

β(x). (4.30)

In a staggered-fermion formulation much of the work goes into the construction of
the quark fields from the different one-component fields populating the lattice sites
within an elementary hypercube, and into the study of the lattice symmetries.* In
the following we briefly describe the main steps involved in arriving at a staggered
fermion formulation, so that the reader will be acquainted with some expressions
occurring frequently in the literature. Our presentation will essentially follow the
work of Kluberg-Stern, Morel, Napoly and Petersson (1983). The technical details
are relegated to the next section.

Fig. 4-2 Distributing 2d degrees of freedom on a two dimensional (d = 2) lattice.

Consider the naive action (4.4) for a free Dirac field on the lattice:

S =
1
2

∑
n,µ

[ ¯̂ψ(n)γµψ̂(n + µ̂) − ¯̂
ψ(n)γµψ̂(n − µ̂)] + M̂

∑
n

¯̂
ψ(n)ψ̂(n). (4.31)

By making a local change of variables

ψ̂(n) = T (n)χ(n), (4.32)
ˆ̄ψ(n) = χ̄(n)T †(n),

* See e.g., Kluberg-Stern et al. (1983), Golterman (1986a), Jolicoeur, Morel, and
Petersson (1986), Kilcup and Sharpe (1987).
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where T (n) are unitary 2d/2 × 2d/2 matrices, one can “spin diagonalize” this expres-
sion by choosing the matrices T (n) in such a way that

T †(n)γµT (n + µ̂) = ηµ(n)1l, (4.33)

where ηµ are c-numbers (notice that different space-time points are involved!), and
1l is the unit matrix. The matrices

T (n) = γn1
1 γn2

2 · · · γnd
d (4.34)

satisfy (4.33) with the following phases ηµ(n):

ηµ(n) = (−1)n1+n2+···+nµ−1 , η1(n) = 1. (4.35)

Written in terms of the fields χ(n) and χ̄(n) the action (4.31) reads

S =
∑
n,α
µ

ηµ(n)χ̄α(n)∂̂µχα(n) + M̂
∑
n,α

χ̄α(n)χα(n),

where ∂̂µ is the lattice derivative defined in (4.3b). So far, of course, we have merely
rewritten (4.31). Now comes a crucial step. Since we have got rid of the Dirac matrix
γµ we can in principle let α run over any number of possible values, α = 1, 2, . . . , k.
The minimal choice is k = 1, so that we shall omit this index from now on. The
corresponding action

S
(stag.)
F =

1
2

∑
n,µ

ηµ(n)[χ̄(n)χ(n + µ̂) − χ̄(n)χ(n − µ̂)] + M̂
∑

n

χ̄(n)χ(n) (4.36)

now involves only one degree of freedom per lattice site, and the only remnants
of the original Dirac structure are the phases ηµ(n). The expression (4.36) is the
action of the staggered fermion formulation in the absence of interactions. For it
to be of physical relevance one must still show that in the continuum limit it may
be written in the form (4.30) where the flavoured Dirac field components ψf

α are
given as linear combinations of the one component fields living at the lattice sites
within an elementary hypercube. Hence for finite lattice spacing the space-time
coordinates of the fields ψf

α will be those labeling the position of the particular
hypercube considered. Let us look at the “reconstruction” problem in somewhat
more detail.

Consider a hypercube with origin at x̂µ = 2Nµ (Nµ integers); then the lattice
coordinates at the 2d sites within this hypercube are given by

r̂µ = 2Nµ + ρµ,



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch04

60 Lattice Gauge Theories

where ρµ = 0 or 1. This suggests the following relabeling of the fields χ(n)

χρ(N) ≡ χ(2N + ρ), (4.37)

and similarly for χ̄. Notice that N = (N1, . . . , Nd) now labels the space-time points
of a lattice with lattice spacing 2a, and that the (multi) index ρ labels the 2d

components of the new field χ. From these components one then constructs 2d/2

flavoured Dirac fields ψf (f = 1, . . . , 2d/2) with components ψf
α (α = 1, . . . , 2d/2), by

taking appropriate linear combinations:

ψ̂f
α(N) = N0

∑
ρ

(Tρ)αfχρ(N). (4.38a)

Here

Tρ = γρ1
1 γρ2

2 · · · γρd

d . (4.38b)

By choosing the normalization constant N0 in (4.38a) appropriately, the action (4.36)
then takes the following form in terms of the fields ¯̂

ψf and ψ̂f :

S
(stag)
F =

∑
f

∑
N

¯̂
ψ

f
(N)(γµ∂̂µ + M̂)ψ̂f (N) + · · · , (4.39)

where ∂̂µ is now the lattice derivative on the new (blocked) lattice, and where the
“dots” stand for terms which vanish in the naive continuum limit.* For finite lattice
spacing, however, these terms are no longer invariant under the full chiral group.
Nevertheless for M̂ = 0, (4.39) preserves a continuous U(1)×U(1) symmetry which
is a remnant of the original chiral symmetry group. Because of this, one can use the
staggered fermion formulation to study the spontaneous breakdown of this remaining
lattice symmetry, and the associated Goldstone phenomenon (zero mass excitation,
accompanying the spontaneous breakdown). This is a major advantage of staggered
fermions over the Wilson fermions discussed before. Of course the staggered formu-
lation has its drawbacks. Thus for example it can only be the lattice version of a
theory with 2d/2 degenerate quark flavours, whereas there is no restriction on the
flavour number in the Wilson formulation.

We close this section with a remark. Making use of the relation (4.38), one
can calculate correlation functions of flavoured quark fields, by taking appropriate

* See the following section.
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linear combinations of the χ-correlation functions. The latter are given by the fol-
lowing path integral expression

�χρ1(N1) · · · χ̄ρ�
(N�)� =

∫
Dχ̄Dχχρ1(N1) · · · χ̄ρ�

(N�)e−S
(stag)
F

∫
Dχ̄Dχe−S

(stag)
F

, (4.40a)

where

Dχ̄Dχ =
∏
ρ,N

dχ̄ρ(N)
∏
ρ′,N ′

dχρ′(N �). (4.40b)

This all sounds rather simple. Nevertheless, the details can become rather involved.
Thus one must make sure that the composite fields that one constructs to study the
properties of hadronic matter carry the correct quantum numbers in the continuum
limit. In particular one wants to know what are the flavour, spin, and parity contents
of the states excited by these operators. These are the problems which demand a
lot of effort. We shall not discuss them here. The interested reader may consult for
example the papers by Morel and Rodrigues (1984), Golterman and Smit (1985),
Golterman (1986b).

4.5 Technical Details of the Staggered Fermion Formulation

Having sketched the main ideas which go into the staggered formulation, we
now present some mathematical details. Should the reader not be interested in the
details for the moment, he may skip this and the following section and go on to the
next chapter without any danger of getting lost at a later stage.

Consider the action (4.36). As we have already pointed out, the coordinates
nµ of any lattice site may be written in the form nµ = 2Nµ + ρµ, where 2Nµ are
the coordinates labeling the hypercube to which the site belongs, and ρ is a vector
whose components are either one or zero. Since it follows from the definition (4.35)
that ηµ(2N + ρ) = ηµ(ρ), we can rewrite the action in the form

S
(stag.)
F =

1
2

∑
N ,ρ,µ

ηµ(ρ)χ̄(2N + ρ)[χ(2N + ρ + µ̂) − χ(2N + ρ − µ̂)]

(4.41)
+ M̂

∑
N ,ρ

χ̄(2N + ρ)χ(2N + ρ).

We next express (4.41) in terms of the 2d-component field defined in (4.37). To
this effect we must remember that the components of ρ are restricted to the values
one or zero. Hence we must exercise some care in rewriting the difference χ(2N +
ρ + µ̂) − χ(2N + ρ − µ̂) appearing in the expression (4.41). Consider for example
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χ(2N + ρ + µ̂). If ρ + µ̂ is a vector of type “ρ”, i.e. if the components of ρ + µ̂ are
either one or zero, then 2N + ρ + µ̂ labels a site within the hypercube with base
at r̂ = 2N . Hence in this case χ(2N + ρ + µ̂) can be identified with χρ+µ̂(N). On
the other hand if ρ + µ̂ is not a vector of type ρ, then ρ − µ̂ is such a vector, and
χ(2N +ρ+µ̂) = χρ−µ̂(N +µ̂). These conclusions can be summarized by the equation

χ(2N + ρ + µ̂) =
∑
ρ′

[δρ+µ̂,ρ′χρ′(N) + δρ−µ̂,ρ′χρ′(N + µ̂)], (4.42a)

where ρ� is understood to be a vector whose components are either one or zero.*
In a similar way one obtains that

χ(2N + ρ − µ̂) =
∑
ρ′

[δρ−µ̂,ρ′χρ′(N) + δρ+µ̂,ρ′χρ′(N − µ̂)]. (4.42b)

Inserting the expressions (4.42a,b) into (4.41), we obtain

S
(stag.)
F =

1
2

∑
N ,ρ,ρ′,µ

ηµ(ρ)χ̄ρ(N)[δρ+µ̂,ρ′ ∂̂L
µ χρ′(N)

(4.43a)

+ δρ−µ̂,ρ′ ∂̂R
µ χρ′(N)] + M̂

∑
N ,ρ

χ̄ρ(N)χρ(N),

where ∂̂L
µ and ∂̂R

µ are the left and right (block) derivatives analogous to (4.26a,b),
defined by

∂̂R
µ χ(N) = χ(N + µ̂) − χ(N),

(4.43b)

∂̂L
µ χ(N) = χ(N) − χ(N − µ̂).

Before proceeding, let us digress for a moment and calculate the 2-point corre-
lation function �χρ(N)χ̄ρ′(N �)� from the path integral expression (4.40). A quick way
of proceeding is to rewrite (4.43a) in momentum space by introducing the Fourier
transforms**

χρ(N) =
∫ π

−π

d4p̂

(2π)4 χ̃ρ(p̂)eip̂·N ,
(4.44)

χ̄ρ(N) =
∫ π

−π

d4p̂

(2π)4
¯̃χρ(p̂)e−ip̂·N ,

* It will be understood from now on, that vectors denoted by the symbol rho
(i.e. ρ, ρ�, etc.) have components restricted to these values.

** Here, and in the following we shall restrict ourselves to four space-time
dimensions.
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into (4.43a), and performing the sum over N using eq. (2.64). A simple calculation
yields

S
(stag.)
F =

∑
ρ,ρ′

∫ π

−π

d4p̂

(2π)4
¯̃χρ(p̂)Kρρ′(p̂)χ̃ρ′(p̂), (4.45a)

where

Kρρ′(p̂) =
∑

µ

iΓµ
ρρ′(p̂) sin

p̂µ

2
+ M̂δρρ′ , (4.45b)

Γµ
ρρ′(p̂) = eip̂·(ρ−ρ′)/2Γµ

ρρ′ , (4.45c)

and

Γµ
ρρ′ = [δρ+µ̂,ρ′ + δρ−µ̂,ρ′ ]ηµ(ρ). (4.45d)

Hence the Fourier representation of the χχ̄-correlation function is given by

�χρ(N)χ̄ρ′(N �)� =
∫ π

−π

d4p̂

(2π)4K−1
ρρ′(p̂)eip̂·(N−N ′). (4.46)

The inverse of the matrix (4.45b) can be easily calculated by making use of the
relation

{Γµ, Γν} = 2δµν1l, (4.47)

where 1l is the unit matrix.* This relation follows from the definition (4.45d) and
can be proved by making use of the following properties of the phases (4.35):

ηµ(ρ ± µ̂) = ηµ(ρ),

ηµ(ρ)ην(ρ + µ̂) = −ην(ρ)ηµ(ρ + ν̂), (µ �= ν).

From (4.47) and the definition of Γµ
ρρ′(p̂) given in (4.45c), it follows that for given

p̂, these matrices also satisfy anticommutation relations analogous to (4.47). Hence
the inverse of the matrix (4.45b) can be written down immediately:

K−1(p̂) =
−i

∑
µ Γµ(p̂) sin p̂µ

2 + M̂
∑

µ sin2 p̂µ

2 + M̂2
.

Because of the appearance of the factor 1/2 in the argument of the sine function
in the denominator, the integral (4.46) will be dominated for M̂ → 0 (i.e. in the
continuum limit) by the momenta in the immediate neighbourhood of p̂ = 0. Hence
no doubling problem of the type discussed before arises here. The same conclusion

* The Γµ’s therefore satisfy the same algebra as the Dirac matrices γµ.
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will then also hold for the quark correlation functions, since they can be constructed
from (4.46) by taking appropriate linear combinations.

After this intermezzo, let us return now to expression (4.43a), and express the
left and right derivatives (4.43b) in terms of the symmetric first and second block
derivatives, defined by

∂̂µχρ(N) =
1
2
(χρ(N + µ̂) − χρ(N − µ̂)),

�̂�µχρ(N) = χρ(N + µ̂) + χρ(N − µ̂) − 2χρ(N).

In terms of these derivatives, the action (4.43a) takes the form

SF =
1
2

∑
N ,ρ,ρ′

χ̄ρ(N)

[∑
µ

(
Γµ

ρρ′ ∂̂µ +
1
2
Γ5µ

ρρ′�̂�µ

)
+ 2M̂δρρ′

]
χρ′(N), (4.48a)

where Γµ
ρρ′ has been defined in (4.45d), and

Γ5µ
ρρ′ = (δρ−µ̂,ρ′ − δρ+µ̂,ρ′)ηµ(ρ). (4.48b)

The matrices Γµ and Γ5µ satisfy the same anticommutator algebra as the direct
products γµ ⊗ 1l and γ5 ⊗ γµγ5, respectively, where γ5 = γ1γ2γ3γ4; i.e., in addition
to (4.47) we have that

{Γµ, Γ5ν} = 0,

{Γ5µ, Γ5ν} = −2δµν1l.

This suggests that Γµ and Γ5µ are unitarily equivalent to the above mentioned direct
products. If the second matrix in these products is interpreted to operate in flavour
space, while the first matrix acts in Dirac space, then (γµ ⊗ 1l)∂µ would be the
matrix version of the kinetic term in (4.30). This suggests that the fields ψf

α and
ψ̄f

α are related to χρ and χ̄ρ by the unitary transformation which brings Γµ and Γ5µ

into the form γµ ⊗ 1l and γ5 ⊗ γµγ5, respectively. We now construct this unitary
transformation. Because of the way the χ-fields had been introduced originally (cf.
eqs. (4.32) and (4.34)) and the appearance of the phase ηµ(ρ) (rather than ηµ(n))
in the definitions of Γµ and Γ5µ, it is not surprising that the transformation will
involve the matrix Tρ, defined by

Tρ = γρ1
1 γρ2

2 γρ3
3 γρ4

4 . (4.49)

Thus consider the following sixteen component fields

ψ̂αβ(N) = N0

∑
ρ

Uαβ,ρχρ(N), (4.50a)

¯̂
ψαβ(N) = N0

∑
ρ

χ̄ρ(N)U †
ρ,αβ, (4.50b)
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where N0 is a normalization constant to be determined later, and where

Uαβ,ρ =
1
2
(Tρ)αβ. (4.50c)

Since in four space-time dimensions α and β take the values one to four, and since
ρ = (ρ1, . . . , ρ4) runs over the sixteen sites within a hypercube, we see that U is a
16 × 16 square matrix whose rows are labeled by the double index αβ. Equations
(4.50a,b) can be readily inverted by noting that because the trace of any product of
distinct γ-matrices vanishes, Tρ satisfies the following orthogonality relation

Tr(T †
ρTρ′) = 4δρρ′ .

For the matrix U defined in (4.50c) this relation reads

(U †U)ρρ′ = δρρ′ ,

where (U †)ρ,αβ = U∗
αβ,ρ = 1

2(Tρ)∗
αβ. We hence obtain

χρ(N) =
1

N0

∑
α,β

U †
ρ,αβψ̂αβ(N),

χ̄ρ(N) =
1

N0

∑
α,β

¯̂
ψαβ(N)Uαβ,ρ.

Introducing these expressions into (4.48a), and making use of*

(UU †)αβ,α′β′ = δαα′δββ′ ,

we arrive at the following expression for the staggered fermion action in terms of
the “quark” fields ψ̂ and ¯̂

ψ:

S(stag.) =
1

2N2
0

∑
N ,α,β,α′,β′

¯̂
ψαβ(N)

{∑
µ

[
Λµ

αβ,α′β′ ∂̂µ

(4.51a)

+
1
2
Λ5µ

αβ,α′β′�̂�µ

]
+ 2M̂δαα′δββ′

}
ψ̂α′β′(N),

* This relation can be verified by using the following representation for the
γ-matrices in (4.49)

γi =

(
0 −iσi

iσi 0

)
, γ4 =

(
1l 0
0 −1l

)
,

where σi are the Pauli matrices, and 1l the 2 × 2 unit matrix.
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where

Λµ
αβ,α′β′ =

∑
ρ,ρ′

Uαβ,ρΓ
µ
ρρ′U

†
ρ′,α′β′ , (4.51b)

and

Λ5µ
αβ,α′β′ =

∑
ρ,ρ′

Uαβ,ρΓ
µ
5ρρ′U

†
ρ′,α′β′ . (4.51c)

Making use of the explicit representation of the γ-matrices given in the previous
footnote, one finds that

Λµ
αβ,α′β′ = (γµ)αα′δββ′ ,

Λ5µ
αβ,α′β′ = (γ5)αα′(tµt5)ββ′ ,

where tµ = γ∗
µ and t5 = γ5. Since in the naive continuum limit only the first and third

term in (4.51a) contribute to the action, it follows by comparing this expression with
(4.39) that α and β should be identified with the Dirac and flavour quark–degrees
of freedom, respectively. In (4.38a) we had made this fact explicit by writing the
field components in the form ψf

α, rather than ψ̂αβ. Accordingly, Λµ and Λ̃µ can be
written as the following direct products,

Λµ = γµ ⊗ 1l,

Λ5µ = γ5 ⊗ tµt5,

where the first matrix appearing on the right hand side acts in Dirac space, while
the second matrix acts in flavour space.

Finally, we must determine the normalization constant N0 in (4.51a). To this
effect we study the naive continuum limit of this expression by introducing the
dimensioned fields ψαβ and block derivatives ∂µ in the standard way; i.e., ψ = b−3/2ψ̂

and ∂µ = 1
b
∂̂µ. Here b is the lattice spacing of the blocked lattice. By choosing

N0 = 1/
√

2 the action (4.51a) then takes the form

S(stag.) =
∑
x,ρ,µ

b4ψ̄(x)[(γµ ⊗ 1l)∂µ

+
1
2
b(γ5 ⊗ tµt5)��µ]ψ(x) + 2M

∑
x

ψ̄(x)1l ⊗ 1lψ(x) (4.52)

where M = 1
b
M̂ and where the sum over x (= Nb) runs over all hypercubes of the

blocked lattice. In the naive continuum limit (b → 0) this expression reduces to the
form

S(stag.)−→
b→0

∑
f

∫
d4xψ̄f (x)

(∑
µ

γµ∂µ + M0

)
ψf (x)
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where M0 = 2M , and where ψαβ has been replaced by ψf
α. Notice that the appear-

ance of the mass 2M instead of M in eq. (4.52) is not surprising since we have scaled
M̂ with the lattice spacing of the blocked lattice. Thus M0 = 1

a
M̂ is the dimensioned

mass parameter of the original fine lattice.

Consider now the two point correlation function of the quark fields,
�ψf

α(N)ψf ′

α′(N �)�, where we have introduced the more suggestive notation ψf
α men-

tioned above. This two-point function can either be computed from the χ − χ̄ cor-
relation functions (4.46) by taking appropriate linear combinations, as dictated by
the eqs. (4.50a,b), i.e.,

�ψ̂f
α(N) ¯̂

ψf ′

α′(N �)� =
1
2

∑
ρ,ρ′

Uαf ,ρ�χρ(N)χ̄ρ′(N �)�U †
ρ′,α′f ′ ,

and multiplying the expression with b−3, or by inverting the matrix operator ap-
pearing within square brackets in eq. (4.52). This inversion is easiest done by going
to momentum space. Introducing the Fourier decompositions

ψ(Nb) =
∫ π/b

−π/b

d4p

(2π)4 ψ̃(p)eip·Nb,

ψ̄(Nb) =
∫ π/b

−π/b

d4p

(2π)4
¯̃ψ(p)e−ip·Nb

into (4.52), and making use of the relation
∑
N

b4ei(p−p′)·Nb = (2π)4δ
(4)
P (p − p�),

where δP is the periodic delta function, one finds that

S(stag.) =
∫ π/b

−π/b

d4p

(2π)4
¯̃ψ(p)

{∑
µ

[(γµ ⊗ 1l)
i

b
sin(pµb)

− 1
b
(1 − cos(pµb))γ5 ⊗ tµt5] + M0

}
ψ̃(p). (4.53)

The propagator in momentum space is given by the inverse of the matrix appearing
within curly brackets:

S(p) =

∑
µ

[
−i(γµ ⊗ 1l)1

b
sin pµb + 2

b
(γ5 ⊗ tµt5) sin2 pµb

2

]
+ M01l ⊗ 1l

∑
µ

4
b2

sin2 pµb

2 + M2
0

. (4.54)
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Notice that the denominator is the same as for the scalar field discussed in chapter 3.
In the naive continuum limit (b → 0), the above expression reduces to

S(p)−→
b→0

−i
∑

µ(γµ ⊗ 1l)pµ + M01l ⊗ 1l
p2 + M2

0
,

which is the correct fermion propagator describing four degenerate flavoured Dirac
particles. Because the denominator in (4.54) has the same structure as for the scalar
field, the two-point function �ψf

α(x)ψ̄f ′

α′(x)� obtained by Fourier transforming this
expression and taking the limit b → 0, is given by

�ψf
α(N)ψ̄f ′

β (N �)� =
∫ ∞

−∞

d4p

(2π)4Sαβ(p)δff ′eip·(N−N ′)b,

where

S(p) =
−iγ · p + M0

p2 + M2
0

.

Finally let us compare the expression (4.52) with the lattice action for four
flavoured Wilson fermions. Clearly, the generalization of eq. (4.27) (with SF defined
in (4.4)) to the case of four quark flavours is

S
(W )
F =

∑
n

a4ψ̄(n)

{∑
µ

[
(γµ ⊗ 1l)∂µ − ar

2
(1l ⊗ 1l)��µ

]
+ M1l ⊗ 1l

}
ψ(n). (4.55)

Thus the only difference between the Wilson and the staggered fermion actions,
consists in the matrix structure of the second derivative term. This term does not
contribute in the naive continuum limit, but is responsible for lifting the fermion
degeneracy. So why not choose the simpler (Wilson) version, which has the merit
that the number of quark flavours is not restricted? We only give a brief answer
to this question without going into details: In the naive continuum limit both
actions (4.52) and (4.55) possess a U(4) × U(4) (chiral) symmetry for M = 0.
This symmetry is broken in both cases by the second term. But whereas the
axial symmetry (involving the generator γ5 in Dirac space) is completely lost for
Wilson fermions, the staggered fermion action preserves a non-trivial piece of the
full chiral symmetry, whose generator is γ5 ⊗ t5. Under this abelian subgroup the
fields transform as follows

ψ(N) → eiα(γ5⊗t5)ψ(N),

ψ̄(N) → ψ̄(N)eiα(γ5⊗t5)
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where α is an arbitrary parameter which does not depend on N . For this reason
the staggered fermion formulation is more adequate for studying spontaneous chiral
symmetry breaking and the associated Goldstone phenomenon in theories like QCD
with massless quarks.

4.6 Staggered Fermions in Momentum Space

In the previous section the transition from a one-component field to a 2d-
component field χρ was carried out in configuration space. We now want to construct
an alternative lattice action by working in momentum space. As we shall see, this
action differs from (4.52) in several interesting respects. For some papers which are
of relevance to this section confer Sharatchandra, Thun and Weisz (1981), Van den
Doel and Smit (1983), Kluberg-Stern et al. (1983) and Golterman and Smit (1984).

Our starting point is again the action (4.36). Inserting for χ(n) and χ̄(n) the
Fourier decomposition analogous to (4.44), and writing the phase ηµ(n) as

ηµ(n) = ein·δ(µ)
,

where

δ(1) = (0, 0, 0, 0), δ(2) = (π, 0, 0, 0),

δ(3) = (π, π, 0, 0), δ(4) = (π, π, π, 0),

the action takes the following form in momentum space

S(stag.) =
∫ π

−π

d4p̂

(2π)4

∫ π

−π

d4p̂�

(2π)4
¯̂χ(p̂�)M(p̂�, p̂)χ̂(p̂). (4.56a)

Here

M(p̂, p̂�) = (2π)4

{∑
µ

δ
(4)
P (p̂ − p̂� + δ(µ))i sin p̂µ + M̂δ

(4)
P (p̂ − p̂�)

}
(4.56b)

and δP (k̂) is the periodic delta function. For the following discussion it is conve-
nient to extend the fields χ̂(p̂) and ¯̂χ(p̂) periodically with period 2π. Let us denote
the corresponding fields by φ̂(p̂) and ¯̂

φ(p̂), respectively. Because (4.56b) is itself 2π-
periodic, we can then shift the integration intervals [−π, π] by π/2. In fig. (4-3) we
show the new integration region for the case of two space-time dimensions.
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−π

−π

π

π

Fig. 4-3 The four quadrants of the shifted integration region (solid

lines).

Next, let us divide the new Brillouin zone, BZ �, into sixteen domains, whose
centers are the corners of the first quadrant in the original Brillouin zone. For two
dimensions these domains are shown in fig. (4-3). Because of the appearance of sin p̂µ

rather than sin p̂µ/2 in (4.56b), the χ − χ̄ correlation function will receive, in the
continuum limit, contributions from momenta in the immediate neighbourhood of
the above-mentioned corners. The momenta in the sixteen integration regions can
be parametrized as follows.

p̂µ = kµ + π(A)
µ (A = 1, . . . , 16),

where
−π/2 ≤ kµ ≤ π/2,

and π(A) are constant vectors, defined by

π(1) = (0, 0, 0, 0), π(2) = (π, 0, 0, 0), . . . , π(16) = (π, π, π, π).

The integral (4.56a) may then be written in the form

S(stag.) =
∑
A,B

∫ π/2

−π/2

d4k̂

(2π)4

d4k̂�

(2π)4
¯̂
φA(k̂�)MAB(k̂�, k̂)φ̂B(k̂), (4.57a)

where

MAB(k̂�, k̂) = (2π)4

{∑
µ

δ
(4)
P (k̂ − k̂� + π(B) − π(A) + δ(µ))eiπ

(B)
µ i sin k̂µ

(4.57b)

+ M̂δ
(4)
P (k̂ − k̂� + π(B) − π(A))

}
,
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and where we have introduced the 16-component (dimensionless) fields φ̂A(k̂) as
follows

φ̂A(k̂) ≡ φ̂(k̂ + π(A)). (4.57c)

This is the analog of (4.37) in the momentum space approach. Notice that the
integral (4.57a) now extends only over half the BZ. Because k̂ and k̂� are restricted
to the interval [−π/2, π/2], the periodic δ-functions appearing in (4.57b) can be
written in the form

δ
(4)
P (k̂ − k̂� + π(B) − π(A)) = δ(4)(k̂ − k̂�)δAB,

δ
(4)
P (k̂ − k̂� + π(B) − π(A) + δ(µ)) = ηµ

ABδ(4)(k̂ − k̂�)

where δ(k̂ − k̂�) has only support at k = k̂�, and where

ηµ
AB =

4∏
ν=1

1
2
(ei(π(B)

ν −π
(A)
ν +δ

(µ)
ν ) + 1).

This factor just expresses the fact that the 4-dimensional periodic δ-function only
has support in the integration domain given in (4.57a) if π

(B)
ν − π

(A)
ν + δ

(µ)
ν equals

zero or 2π for every component ν. Inserting these expressions into (4.57b), and
performing the integration over k̂� in (4.57a), one obtains

S
(stag.)
F =

∑
A,B

∫ π/2

−π/2

d4k

(2π)4
¯̂
φA(k̂)KAB(k̂)φ̂B(k̂), (4.58a)

where

KAB(k̂) = i
∑

µ

Γ̂µ
AB sin k̂µ + δABM̂ , (4.58b)

and

Γ̂µ
AB = eiπ

(B)
µ ηµ

AB. (4.58c)

These matrices satisfy the following anticommutation relations.

{Γ̂µ, Γ̂ν} = 2δµν1l.

Furthermore it can be shown that the Γ̂µ’s are unitarily equivalent to (γµ⊗1l). Hence
we can write (4.58a) in the form

S
(stag.)
F =

∫ π

−π

d4p̂

(2π)4
¯̂
Q(p̂)

[∑
µ

(γµ ⊗ 1l)2i sin
p̂µ

2
+ 2M̂1l ⊗ 1l

]
Q̂(p̂) (4.59)
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where we have rescaled the range of integration to the interval [−π, π]. This is,
at first sight, a surprising result, for the action is invariant for M̂ = 0 under the
transformations of the full U(4) ⊗ U(4) chiral group, and in particular under

Q̂ → eiαB(1l⊗TB)Q̂,
¯̂
Q → ¯̂

Qe−iαB(1l⊗TB)

and

Q̂ → eiβB(γ5⊗TB)Q̂,
¯̂
Q → ¯̂

QeiβB(γ5⊗TB),

for each generator TB in the Nf -dimensional flavour space. This U(4) ⊗ U(4) sym-
metry has however been gained at the expense of giving up the locality of the action
in configuration space. Indeed, the action (4.59) is a non-local function of the fields
Q̂(n) and ¯̂

Q(n), obtained by inverting the Fourier series

Q̂(p̂) =
∑

n

Q̂(n)e−ip̂·n,

¯̂
Q(p̂) =

∑
n

¯̂
Q(n)eip̂·n.

Substituting these expressions into (4.59), one finds that

S
(stag)
F =

∑
n,m

¯̂
Q(n)

[∑
µ

(γµ ⊗ 1l)(∆µ)nm + 2M̂1l ⊗ 1l

]
Q̂(m), (4.60a)

where

(∆µ)nm =
∫ π

−π

d4p̂

(2π)4 2i sin
p̂µ

2
eip̂·(n−m) (4.60b)

connects arbitrary sites along the µ-direction. The reason for this is the appearance
of the p̂µ/2 (instead of p̂µ) in the argument of the sine function. If p̂µ/2 were replaced
by p̂µ in (4.60b), then this expression would equal ∂̂µδnm = (δn+µ̂,m − δn−µ̂,m)/2 and
we would be left with an expression for the action involving only nearest neighbour
couplings of the fields.

The above discussion suggests that the fields Q̂(n) are related to the fields
ψ̂(n) by a non-local transformation. This is indeed the case. Thus the fields ψ̂(p̂)
and Q̂(p̂) appearing in (4.53) and (4.60a) are connected by a unitary transforma-
tion which depends on the momentum p̂ (see e.g., Kluberg-Stern et al. (1983).
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Because of this dependence, the field Q̂ at the lattice site N will be given by a
linear combination of the “quark” variables ψ̂ attached to lattices sites which are
arbitrarily far from n.

This concludes our discussion of staggered fermions. As the reader is probably
convinced by now, a thorough discussion of this subject, including all lattice sym-
metries, becomes quite technical. We believe, however, that the material presented
in the last two sections will enable the reader to follow the literature on this subject
without too much difficulties.

4.7 Ginsparg–Wilson Fermions. The Overlap Operator

Of the two lattice regularizations discussed above, only the Wilson fermions
allow one to study models with an arbitrary number of quark flavours. Wilson
fermions do however break the chiral symmetry of the continuum fermion action for
massless quarks. This makes it difficult to explore the regime of small quark masses
in numerical simulations and to study spontaneous chiral symmetry breaking on the
lattice. In fact, as we have already pointed out, the Nielsen–Ninomiya theorem tells
us that we cannot get around breaking the symmetry (4.8) of the (massless) fermion
action, unless we give up at least some important property, like e.g., locality.

But there is another way of breaking chiral symmetry on the lattice in a par-
ticular mild and controlled way. It was proposed a long time ago by Ginsparg and
Wilson (1982), but has not been seriously considered for 16 years. Ginsparg and Wil-
son had searched for a lattice Dirac operator by starting from a chirally symmetric
action and following a renormalization group blocking procedure, using a chirally
non-invariant Kernel. For Ginsparg–Wilson (GW) fermions the fermionic action is
of the form

Sferm =
∑
x,y

ψ̄(x)(D(x, y) + mδxy)ψ(y), (4.61)

where the “Dirac Operator” D(x, y) is a 4 × 4 matrix in Dirac space which breaks
the standard chiral symmmetry in a very special way. Since every lattice action must
possess the correct naive continuum limit, it follows that for a → 0 D(x, y) becomes
the usual continuum Dirac operator. While in the continuum, or in its naively dis-
cretized form, this operator anticommutes with γ5, the GW-Dirac operator satisfies
the following GW-relation,

γ5D + Dγ5 = aDRγ5D, (4.62)
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or

{γ5, D} = aDRγ5D, (4.63)

where R is a non singular and local operator proportional to the unit matrix
in Dirac space, and where D is a matrix whose rows and columns are labeled by a
spin and space-time index. Note that the rhs is of order a. From here one trivially
obtains that

{γ5, D−1} = aRγ5, (4.64)

which shows that the anticommutator {γ5, D−1} breaks chiral symmetry in a very
mild way.

A Dirac operator satisfying the GW relation does however not ensure the ab-
sence of species doubling. It was only in 1998 that an explicit expression for D
was given (Neuberger, 1998), which is free of doublers and local in a more general
sense (Hernandez, 1998). The Neuberger solution corresponds to choosing R to be
a (dimensionless) parameter (R = 1

M̂0
) and is given by

Dov =
M̂0

a

(
1 +

X√
X†X

)
, (4.65)

where X is the Wilson–Dirac operator with a negative mass term,

X = DW (−M̂0) =
∑

µ

1
2
γµ∂µ +

a

2
�� − M̂0

a
, (4.66)

with 0 < M̂0 < 2, and ∂µ the dimensioned symmetric lattice derivative.* In the
case where the fermions are coupled to gauge fields, X is replaced by an expression
depending on the gauge potentials in the way discussed in the following chapter.

The operator (4.65) is referred to as the overlap Dirac operator. It is not
the only Dirac operator respecting chiral symmetry for vanishing fermion mass.
In fact, the so called domain wall fermions of Kaplan (1992), and the exact fixed
point Dirac operator of Hasenfratz (1994/1998) are also solutions to the GW
relation with chiral symmetry. Furthermore, as has been shown in (Hasenfratz,
1998a), the fixed point Dirac operator satisfies an exact index theorem, which
is a lattice version of the Atiyah–Singer index theorem (Atiyah, 1971)** It had

* For M̂0 < 0 there exist no massless fermions, and for M̂0 > 2 doublers are
present (Niedermayer, 1999).

** In the continuum the Dirac operator for massless fermions in a smooth back-
ground gauge field carrying non-vanishing topological charge Q (see section (17.6))
possesses left and right-handed zero modes. The difference nL − nR in the number
of these zero modes equals the topological charge of the background field.
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been believed that all these operators, which were constructed from quite different
starting points, had not much in common. But actually they all turned out to satisfy
the GW relation.

The above “overlap construction” of the lattice Dirac operator is not the
only one. The “parametrized Fixed Point Dirac operator” of Hasenfratz et al.
(Hasenfratz, 2001) is an approximate solution to the GW relation with very good,
but not exact, chiral behaviour. The chiral symmetry can be made exact by using
it as input for X in the overlap construction (4.65). This allows one to use a
polynomial approximation to 1√

X†X
(Hasenfratz, 2002).

Clearly numerical simulations with GW-fermions are much more costly than
with Wilson fermions. So why is one so interested in GW-fermions? After all, they
also break the standard chiral symmetry (4.8). What makes them interesting in
particular, is that the GW-action still possesses an exact chiral symmetry which
differs from (4.8) by O(a) lattice artefacts, as was shown by Lüscher (1999a). And
this is true for the free theory as well as interacting case. The only thing that
matters is the bilinear structure of the action (4.61) in the fermion fields, and
that D satisfies the GW-relation. The emphasis above is on the word exact. The
existence of an exact chiral symmetry should allow one to study not only the regime
of small quark masses, but may possibly also resolve a long standing problem of
putting chiral gauge theories (like the electroweak theory) on the lattice.

The exact symmetry referred to above corresponds to the transformations

ψ → eiθγ5(1− a
2 D)ψ,

(4.67)
ψ̄ → ψ̄eiθγ5(1− a

2 D),

or infinitessimally

ψ → ψ� = ψ + δψ, ψ̄ → ψ̄� = ψ̄ + δψ̄, (4.68a)

where*

δψ(x) = i�γ5

[
(1 − a

2
D)ψ

]
(x),

δψ̄(x) = i�
[
ψ̄(1 − a

2
D)

]
(x)γ5. (4.68b)

* [(1− a
2D)ψ](x) stands for

∑
y(δxy− a

2D(x, y))ψ(y). Furthermore [ψ̄(1− a
2D)](x) =∑

y ψ̄(y)[δyx − a
2D(y, x)].
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One readily finds that the variation of the action is given by

δSferm = i�
∑

x

[
F (x) + 2mψ̄(x)γ5ψ(x) + ∆̄(x)

]
, (4.69a)

where
∑

x =
∑

n a4, and

F (x) = (ψ̄D)(x)γ5ψ(x) + ψ̄(x)γ5(Dψ)(x) − a(ψ̄D)(x)γ5(Dψ)(x), (4.69b)

∆̄(x) = −ma

2

[
(ψ̄D)(x)γ5ψ(x) + ψ̄(x)γ5(Dψ)(x)

]
. (4.69c)

We now note that
∑

x

F (x) =
∑
x,y

ψ̄(x)
[
{γ5, D} − aDγ5D

]
(x, y)ψ(y) ≡ 0, (4.70)

where we made use use of (4.63). Hence for m = 0 the action is invariant under
the global transformations (4.67), which verifies the observation made by Lüscher
(1998).

This is all we will say about GW-fermions at this point. We shall return to
them once more in chapter 14, when we discuss the ABJ axial anomaly.
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CHAPTER 5

ABELIAN GAUGE FIELDS ON THE LATTICE
AND COMPACT QED

5.1 Preliminaries

In 1971 F. Wegner studied a class of Ising models, where the global Z(2)
symmetry of the Hamiltonian was promoted to a local one. Although the models
did not possess a local order parameter, they did exhibit a phase transition. In con-
structing the models, Wegner (1971) introduced a number of important concepts
which turned out to play also a fundamental role in the lattice formulation of gauge
field theories like QED and QCD. In particular he was led to construct a non-local
gauge invariant order parameter, whose analog in QCD was later introduced by
K.G. Wilson (1974), and provides a criterium for confinement. In QCD this order
parameter is known under the name of Wilson loop, although the name “Wegner–
Wilson loop” would seem more appropriate. Nevertheless we shall adhere to the
general praxis and refer to it simply as Wilson-loop.

A common feature of the above mentioned theories is that they possess a local
symmetry. In the case of QED or QCD the local symmetry group is a continuous one.
The action in these theories is obtained by gauging the global symmetry of the free
fermionic action and adding a kinetic term for the gauge fields. In the continuum
formulation the construction principle is well known, and we will recapitulate it
below for the case of QED. The lattice version of the action can be obtained following
the same general type of reasoning, but it will differ in some important details from
the naive discretization.

Let us briefly review how one arrives at the gauge-invariant action in continuum
QED. The starting point is the action of the free Dirac field:

S
(0)
F =

∫
d4xψ̄(x)(iγµ∂µ − M)ψ(x).

This action is invariant under the transformation

ψ(x) → Gψ(x),

ψ̄(x) → ψ̄(x)G−1

where G is an element of the abelian U(1) group, i.e.,

G = eiΛ,
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with Λ independent of x (i.e., a global transformation). The next step consists in
requiring the action to be also invariant under local U(1) transformations with ψ(ψ̄)
transforming independently at different space-time points. This is accomplished by
introducing a four-vector potential Aµ(x) and replacing the ordinary four-derivative
∂µ by the covariant derivative Dµ, defined by

Dµ = ∂µ + ieAµ. (5.1)

The resulting new action

SF =
∫

d4xψ̄(iγµDµ − M)ψ, (5.2)

is then invariant under the following set of local transformations

ψ(x) → G(x)ψ(x),
(5.3a)

ψ̄(x) → ψ̄(x)G−1(x),

Aµ(x) → G(x)Aµ(x)G−1(x) − i

e
G(x)∂µG

−1(x), (5.3b)

where

G(x) = eiΛ(x). (5.3c)

In the present case, (5.3b) is just another form of writing the familiar transformation
law, Aµ → Aµ − 1

e
∂µΛ. Since Aµ and G commute, we could have written just as well

Aµ instead of GAµG
−1. In the non-abelian case to be considered later, however, this

will be the relevant structure of the gauge transformations. The crucial property
which ensures the gauge invariance of (5.2) is that, while Aµ transforms inhomoge-
neously, the transformation law for the covariant derivative (5.1) is homogeneous:

Dµ −→ GDµG
−1.

Having ensured the local gauge invariance of the action by introducing a four-vector
field Aµ, we now must add to the expression (5.2) a kinetic term which allows Aµ

to propagate. This term must again be invariant under the local transformations
(5.3c), and is given by the familiar expression

SG = −1
4

∫
d4xFµνF

µν , (5.4)

where Fµν = ∂µAν −∂νAµ is the gauge invariant field strength tensor. The full gauge
invariant action describing the dynamics of ψ, ψ̄ and Aµ is then given by

SQED = −1
4

∫
d4xF µνFµν +

∫
d4xψ̄(iγµDµ − M)ψ. (5.5)
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The Green functions of the corresponding quantum theory (QED) are (formally)
computed from the generating functional

Z[J , η, η̄] =
∫

DADψ̄DψeiSQED+i
∫

d4xJµAµ+i
∫

d4x(η̄ψ+ψ̄η) (5.6)

by differentiating this expression with respect to the sources Jµ(x), η(x) and η̄(x),
where ψ, ψ̄, η and η̄ are Grassmann-valued fields. The integral (5.6) may be given a
meaning within perturbation theory. For a non-perturbative formulation, however,
we should define the generating functional on a euclidean space-time lattice. Hence
let us do this here for QED and generalize it later to the more complicated case
of a non-abelian gauge theory. Our construction procedure will parallel very closely
the one described above and is based on the following two requirements: i) The
lattice action should be invariant under local U(1) transformations and ii) reduce
in the naive continuum limit to the classical continuum action.

Before we carry out this program, let us first obtain the euclidean version of
(5.4) and (5.2); to this effect we let x0 become purely imaginary (x0 → −ix4) and
replace at the same time A0 by +iA4; the prescription that A0 should be replaced
by +iA4 is made plausible by considering the case where Aµ is a pure gauge field
configuration: Aµ = ∂µΛ(x); thus the replacement x0 → −ix4 implies ∂0 → +i∂4.
With this formal substitution (5.4) becomes

SG → i

4

∫
d4xFµνFµν , (5.7)

where a sum over µ and ν (µ, ν = 1, 2, 3, 4) is understood. Hence exp(iSG) goes over
into an exponentially damped functional of Aµ (as it should).

The transition from (5.2) to the imaginary time formulation is also carried
out immediately by substituting the euclidean derivative ∂µ in eq. (4.2) by the
corresponding covariant derivative Dµ = ∂µ + ieAµ.* Hence the action (5.5) goes
over into iS(eucl), where

S
(eucl)
QED = S

(eucl)
G + S

(eucl)
F , (5.8a)

with

S
(eucl)
G =

1
4

∫
d4xFµνFµν , (5.8b)

S
(eucl)
F =

∫
d4xψ̄(γµDµ + M)ψ. (5.8c)

* Notice that the structure of the covariant derivative remains unchanged when
making the transition, since both ∂0 and A0 follow the rule: ∂0 → i∂4 and A0 → iA4.
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Here γµ (µ = 1, . . . , 4) are the euclidean γ-matrices introduced in chapter 4. Since
from here on we shall always work with the euclidean formulation, we shall drop in
the following any labeling reminding us of this.

5.2 Lattice Formulation of QED

We start our construction program of lattice QED by considering first the
lattice action for a free Dirac field. To parallel as closely as possible the steps in
the continuum formulation, we shall work with Wilson fermions, where every lattice
site may be occupied by all Dirac components ψα. The corresponding action is given
by (4.28) which, after making a shift in the summation variable, can be written in
the form

S
(W )
F = (M̂ + 4r)

∑
n

ψ̄(n)ψ(n)

−1
2

∑
n,µ

[ψ̄(n)(r − γµ)ψ(n + µ̂) + ψ̄(n + µ̂)(r + γµ)ψ(n)]. (5.9)

Here we have dropped the “hat” on the fermionic variables for simplicity. It will
be always evident from our notation, whether we are considering the dimensionless
lattice- or the dimensioned continuum formulation.

The action (5.9) is invariant under the global transformations

ψ(n) → Gψ(n),

ψ̄(n) → ψ̄(n)G−1,

where G is an element of the U(1) group. The next step of our program consists
in requiring the theory to be invariant under local U(1) transformations, with the
group element G depending on the lattice site. Let us denote it by G(n). Because
of the non-diagonal structure of the second term in eq. (5.9) (whose origin is
the derivative in the continuum formulation) we are forced to introduce new degrees
of freedom. Since the group elements G(n) do not act on the Dirac indices, it is suf-
ficient for the following argument to focus our attention on a typical bilinear term,
ψ̄(n)ψ(n + µ̂).

In the continuum formulation it is well known how such bilinear terms should
be modified in order to arrive at a gauge-invariant expression. Since according to
(5.3a) ψ̄(x)ψ(y) transforms as follows,

ψ̄(x)ψ(y) → ψ̄(x)G−1(x)G(y)ψ(y),
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we must include a factor depending on the gauge potential which compensates the
above gauge variation. This factor, known as the Schwinger line integral, is well
known, and is given by

U(x, y) = eie
∫ y

x dzµAµ(z), (5.10)

where the line integral is carried out along a path C connecting x and y and a
summation over µ is understood. Notice that U(x, y) is an element of the U(1)
group. Under a gauge transformation, Aµ → Aµ− 1

e
∂µΛ, (5.10) transforms as follows

U(x, y) → G(x)U(x, y)G−1(y), (5.11)

where G(x) is given by (5.3c). From the above considerations we conclude that the
following bilinear expression in the fermion fields ψ and ψ̄ is gauge-invariant:

ψ̄(x)U(x, y)ψ(y) = ψ̄(x)eie
∫ y

x dzµAµ(z)ψ(y). (5.12)

Suppose now that y = x + �. Then we conclude from (5.12) that ψ̄(x)ψ(x + �) and
ψ̄(x + �)ψ(x) must be modified as follows:

ψ̄(x)ψ(x + �) → ψ̄(x)U(x, x + �)ψ(x + �),

ψ̄(x + �)ψ(x) → ψ̄(x + �)U †(x, x + �)ψ(x),

where

U(x, x + �) = eie�·A(x)

and � · A =
∑

µ �µAµ.

The above considerations suggest that to arrive at a gauge-invariant expression
for the fermionic action on the lattice, we should make the following substitutions
in (5.9)

ψ̄(n)(r − γµ)ψ(n + µ̂) → ψ̄(n)(r − γµ)Un,n+µ̂ψ(n + µ̂), (5.13a)

ψ̄(n + µ̂)(r + γµ)ψ(n) → ψ̄(n + µ̂)(r + γµ)Un+µ̂,nψ(n), (5.13b)

where

Un+µ̂,n = U †
n,n+µ̂, (5.14)

and Un,n+µ̂ is an element of the U(1) gauge group. It can therefore be written in the
form

Un,n+µ̂ = eiφµ(n), (5.15)
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where φµ(n) is restricted to the compact domain [0, 2π]. The right-hand side of
(5.13a) and (5.13b) are now invariant under the following set of local transformations

ψ(n) → G(n)ψ(n),

ψ̄(n) → ψ̄(n)G−1(n),
(5.16)

Un,n+µ̂ → G(n)Un,n+µ̂G
−1(n + µ̂),

Un+µ̂,n → G(n + µ̂)Un+µ̂,nG−1(n),

Notice that in contrast to the matter fields discussed before, the group elements
Un,n+µ̂ live on the links connecting two neighbouring lattice sites; hence we will refer
to them as link variables and sometimes simply as links. Because of (5.14) they are
directed quantities, and we shall use the following graphical representation:

Making the substitutions (5.13) in eq. (5.9), we obtain the following gauge-invariant
lattice action for Wilson fermions

S
(W )
F [ψ, ψ̄, U ] = (M̂ + 4r)

∑
n

ψ̄(n)ψ(n)

−1
2

∑
n,µ

[ψ̄(n)(r − γµ)Un,n+µ̂ψ(n + µ̂) (5.17)

+ ψ̄(n + µ̂)(r + γµ)U †
n,n+µ̂ψ(n)].

Let us pause here for a moment and forget the arguments which led us to eq. (5.17).
By requiring that Un,n+µ̂ and Un+µ̂,n transform according to (5.16), this expression
represents a natural way of implementing U(1)-gauge invariance. That the link vari-
ables should be elements of the U(1) gauge group, follows from the requirement that
their gauge transforms must also be elements of U(1). One then would have to show
that in the continuum limit (5.17) can be cast into the form (5.8c) by establishing
a relation between the link variables and the vector potential Aµ(n). The procedure
would then be the following. The vector potential Aµ(n) at the lattice site n is real-
valued and carries a Lorentz index. The same is true for φµ(n), which parametrizes
the link variable (5.15). But φµ(n) takes only values in the interval [0, 2π], while the
values taken by the vector potential Aµ(x) in the continuum theory extends over
the entire real line. This is no problem, for we must remember that Aµ carries the
dimension of inverse length, while φµ is dimensionless. Let us therefore make the
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Ansatz φµ(n) = caAµ(n), where a is the lattice spacing, and c is a constant to be
determined. For a → 0 the range of Aµ will hence be infinite. With this ansatz it
is now a simple matter to check that by scaling M̂ , ψ and ψ̄ appropriately with a
(i.e., M̂ → aM , ψ → a3/2ψ, ψ̄ → a3/2ψ̄) and replacing Un,n+µ̂ for small values of
the lattice spacing by

Un,n+µ̂ ≈ 1 + icaAµ(n)

expression (5.17) reduces to (5.8c) in the naive continuum limit, if we choose c = e.
Because of this connection between Un,n+µ̂ and Aµ(n) we shall use from here on the
more suggestive notation

Uµ(n) ≡ Un,n+µ̂ = eieaAµ(n). (5.18)

With this identification* it is now an easy matter to verify that Uµ(n) transforms
as follows under gauge transformations

Uµ(n) → G(n)Uµ(n)G−1(n + µ̂) = eieaAG
µ (n),

where AG
µ (n) is a discretized version of Aµ(x) − 1

e
∂µΛ(x). Hence so far the lattice

action (5.17) with Aµ(n) defined by (5.18) satisfies the basic requirements stated at
the beginning of this chapter. To complete our construction of the lattice action for
QED, we must obtain the lattice version of (5.8b) which again should be strictly
gauge-invariant, and be a functional of the link variables only. Such gauge-invariant
functionals are easily constructed by taking the product of link variables around
closed loops on the euclidean space-time lattice. Furthermore, because of the local
structure of the integrand in (5.8b), it is clear that we should focus our attention
on the smallest possible loops. Hence we are led to consider the product of link
variables around an elementary plaquette, as shown in fig. (5-1). Let this plaquette
lie in the µ − ν plane. We then define

Uµν(n) = Uµ(n)Uν(n + µ̂)U †
µ(n + ν̂)U †

ν(n), (5.19)

where we have path-ordered the link variables. Although this path ordering is irrel-
evant in the abelian case considered here, it will become important when we study
QCD. Inserting the expression (5.18) into (5.19), one finds that

Uµν(n) = eiea2Fµν(n), (5.20)

* Of course, this identification of Aµ(n) with the vector potential is only strictly
correct in the continuum limit.
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Uµ(n)

Uν(n) Uν (n+µ)

Uµ(n+ν)
n+ν

n n+µ

n+µ+ν ∧  ∧

 ∧

 ∧

 ∧
 ∧

Fig. 5-1 The contribution Uµν(n) of an elementary plaquette with base

at n lying in the µν-plane.

where Fµν(n) is a discretized version of the continuum field strength tensor:

Fµν(n) =
1
a
[(Aν(n + µ̂) − Aν(n)) − (Aµ(n + ν̂) − Aµ(n))].

It then follows immediately from (5.20) that for small lattice spacing

1
e2

∑
n

∑
µ,ν

µ<ν

[
1 − 1

2
(Uµν(n) + U †

µν(n))
]

≈ 1
4

∑
n

µ,ν

a4Fµν(n)Fµν(n),

where the sum appearing on the left-hand side extends over the contributions coming
from all distinct plaquettes on the lattice.* Hence from now on we shall write the
lattice action for the gauge potential in the compact form

SG[U ] =
1
e2

∑
P

[
1 − 1

2
(UP + U †

P )
]

, (5.21)

where UP (plaquette variable) stands for the product of link variables around the
boundary of a plaquette “P” taken (say) in the counterclockwise direction.

At this point we want to mention an interesting property of the lattice formula-
tion. In contrast to the continuum formulation where the coupling constant e enters

* Notice that on the right-hand side of this equation the sum extends over all µ

and ν.
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linearly in the fermionic piece of the action (cf. eqs. (5.8c) and (5.1)), the coupling
now appears with an inverse power in the action for the gauge field! Thus on the
lattice, the strong coupling expansion turns out to be the natural one.

This completes the construction of the lattice action for QED. For Wilson
fermions it is given by

SQED[U , ψ, ψ̄] =
1
e2

∑
P

[
1 − 1

2
(UP + U †

P )
]

+ (M̂ + 4r)
∑

n

ψ̄(n)ψ(n)

−1
2

∑
n,µ

[ψ̄(n)(r − γµ)Uµ(n)ψ(n + µ̂)

+ ψ̄(n + µ̂)(r + γµ)U †
µ(n)ψ(n)]. (5.22)

The action (5.22) is to be used in a path-integral formulation, from which any correla-
tion function of the fermionic and link variables can be computed. This path integral
will involve an integration over all link variables Uµ(n), which, as we have empha-
sized, are elements of a unitary group. Hence the integration is to be performed over
the (compact) group manifold which in the present U(1) case is parametrized by
a single real angular variable restricted to the range [0, 2π].* Now we have made a
great effort in ensuring the exact gauge invariance of the action. Hence this gauge
invariance should not be destroyed in the integration process; i.e., we must de-
fine a gauge-invariant integration measure! This is quite trivial in the present case,
for under a gauge transformation the link variables are transformed according to
(5.16). But since G(n) is an element of the abelian U(1) group, a gauge transfor-
mation merely amounts to a site-dependent shift in the phase of Uµ(n). With the
parametrization Uµ(n) = eiφµ(n), the gauge-invariant measure to be used in a path
integral expression is therefore given by

DU ≡
∏
n,µ

dφµ(n), (5.23)

and correlation functions of the link variables and Dirac fields are computed from
the following path integral expression

�ψα(n) · · · ψ̄β(m) · · ·Uµ(N) · · · �

=
∫

DUDψ̄Dψ(ψα(n) · · · ψ̄β(m) · · ·Uµ(N) · · · )e−SQED∫
DUDψ̄Dψe−SQED

. (5.24)

* Since the integration range is compact, one also speaks of compact QED when
referring to the lattice formulation.
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These correlation functions depend on the parameters M̂ and e which enter
the expressions for the fermionic and gauge lattice actions (5.17) and (5.21). In
the interacting quantum theory defined by (5.24), these parameters can no longer
be identified with the physical fermion mass and charge, and must be viewed upon
as bare parameters, having no direct physical meaning. To emphasize this point, one
usually writes M0 and e0 instead of M and e. We have not done so in this chapter,
since we have merely constructed the lattice action starting from the free fermion
theory. In the following chapter, where we discuss the non-abelian case, we shall,
however, make use of this notation.

One other remark must be made. For the euclidean lattice action (5.22) to be
a bonafide candidate for defining a quantum theory, it must satisfy the criterion of
reflection positivity. Reflection positivity is a necessary ingredient for the existence of
a non-negative hermitean Hamiltonian, with a positive transfer matrix, and a Hilbert
space formulation. This is an important technical detail which we only mention here.
The action (5.22) can be shown to satisfy reflection positivity, which within the
continuum formulation was first discussed by Osterwalder and Schrader (1973). For
details the reader may consult the book by Montvay and Münster (1994), and in
particular the references quoted there.

This completes the formulation of lattice QED. As we have seen, the group
aspect has played a central role in the above discussion. In a lattice formulation it is
not the vector potential which emerges naturally in the process of gauging the free
Dirac theory, but rather the group elements Uµ(n) which live on the links connecting
two neighbouring sites. Thus the connection between lattice and continuum variables
is much more subtle than in the case of the matter fields. In fact one may easily
verify that a naive lattice translation of the minimal substitution rule ∂µ → Dµ

(see eq. (5.1)) will lead to a fermionic action SF which violates gauge invariance in
higher orders of the lattice spacing. For reasons we have already mentioned, however,
we have insisted on the strict gauge invariance of the lattice action.
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CHAPTER 6

NON ABELIAN GAUGE FIELDS ON THE LATTICE
COMPACT QCD

The lattice gauge theory we discussed in chapter 5 can be easily extended to
the case where the abelian group U(1) is replaced by a non-abelian unitary group.
Thus suppose that instead of a single free Dirac field we have N such fields ψa

(a = 1, . . . , N) of mass M0. Then the euclidean fermionic action, replacing (5.9), is
given by*

SF = (M̂0 + 4r)
�

n

N�
a=1

ψ̄a(n)ψa(n) − 1
2

�
n,µ

N�
a=1

[ψ̄a(n)(r − γµ)ψa(n + µ̂)

+ ψ̄a(n + µ̂)(r + γµ)ψa(n)]. (6.1)

This action is invariant under global unitary transformations in N dimensions, and
in particular under the non-abelian subgroup SU(N).** Introducing the following
N -component column and row vectors

˜
ψ =




ψ1

...
ψN


 ,

˜
ψ̄ = (ψ̄1, . . . , ψ̄N), (6.2)

these transformations read

˜
ψ(x) −→

˜
G

˜
ψ(x),

˜
ψ̄(x) −→

˜
ψ̄(x)

˜
G−1,

where
˜
G is an element of SU(N). We now want to generalize (5.22) to the non-

abelian case. This is straightforward. We only have to replace the Dirac fields ψ and ψ̄

by the N–component vectors (6.2) and the link variables Uµ(n) by the corresponding
group elements of SU(N) in the fundamental (N -dimensional) representation. Let
us denote the matrix-valued link variables by

˜
Uµ(n). They can be written in the form

˜
Uµ(n) = e

i

˜
φµ(n)

, (6.3)

* We omit the “hat” on the dimensionless fields ψ, ψ̄ since it is clear that we are
discussing the dimensionless formulation.

** This group consists of all unitary N × N matrices with determinant equal to
one.
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where
˜
φµ(n) is a hermitean matrix belonging to the Lie algebra of SU(N). Making

the above substitutions in (5.17), we obtain the gauged version of (6.1):

S
(W )
F = (M̂0 + 4r)

∑
n ˜

ψ̄(n)
˜
ψ(n)

− 1
2

∑
n,µ

[
˜
ψ̄(n)(r − γµ)

˜
Uµ(n)

˜
ψ(n + µ̂) (6.4)

+
˜
ψ̄(n + µ̂)(r + γµ)

˜
U †

µ(n)
˜
ψ(n)].

For the reasons stated at the end of chapter 5, we have now written M̂0 instead of
M̂ . Written out explicitly, a typical term in (6.4) reads

˜
ψ̄(n)(r − γµ)

˜
Uµ(n)

˜
ψ(n + µ̂) =

∑
α,β,a,b

ψ̄a
α(n)(r − γµ)αβ(

˜
Uµ(n))abψ

b
β(n + µ̂).

The action (6.4) is invariant under the following local transformations

˜
ψ(n) →

˜
G(n)

˜
ψ(n),

(6.5a)

˜
ψ̄(n) →

˜
ψ̄(n)

˜
G−1(n),

˜
Uµ(n) →

˜
G(n)

˜
Uµ(n)

˜
G−1(n + µ̂),

(6.5b)

˜
U †

µ(n) →
˜
G(n + µ̂)

˜
U †

µ(n)
˜
G−1(n).

Here
˜
G(n) is an element of SU(N) in the fundamental representation. It can there-

fore be written in the form

˜
G(n) = e

i

˜
Λ(n)

, (6.5c)

where
˜
Λ(n) is a hermitean matrix belonging to the Lie algebra of SU(N).

It is now a simple matter to construct the other piece of the action analogous to
(5.21). Clearly SG should be gauge-invariant. Since

˜
Uµ(n) transforms according to

(6.5b), the simplest gauge-invariant quantity one can build from the group elements

˜
Uµ(n), is the trace of the path ordered product of link variables along the boundary

of an elementary plaquette; this path-ordered product is the generalization of (5.19)
to the non-abelian case and reads:

˜
Uµν(n) =

˜
Uµ(n)

˜
Uν(n + µ̂)

˜
U †

µ(n + ν̂)
˜
U †

ν(n). (6.6)
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Notice that the trace, and the path-ordering of the links in (6.6) are important now,
since the group elements do not commute. In analogy to the abelian case discussed
in chapter 5 we now replace (5.21) by

SG = cTr
∑

n
µ<ν

[
1 − 1

2
(
˜
Uµν(n) +

˜
U †

µν(n))
]

, (6.7)

where c is a constant which will be fixed below.

So far we have merely extended the analysis in chapter 5, to the case of a non-
abelian group. Undoubtedly the lattice theory constructed in this way describes a
quite non-trivial system. But does it have any relevance for physics, and in particular
for elementary particle physics? To answer this question we must see whether it has
a chance of describing in the continuum limit an interesting field theory. To this
effect let us first fix the gauge group that we expect to be relevant for describing
the strong interactions of quarks and gluons. It has been known for a long time that
quarks (and antiquarks) must come in three “coloured” versions, (→ ψa, a = 1, 2, 3)
and that the observed strongly interacting particles (hadrons) are colour singulets
with respect to the group SU(3).* Hence we expect this group to be the one of
interest. Now any element

˜
Θ lying in the Lie algebra of SU(3) can be written in the

form

˜
Θ =

8∑
B=1

ΘB λB

2
,

where the eight group generators λB are usually chosen to be the (3× 3) Gell-Mann
matrices, satisfying the commutation relations**

[λA, λB] = 2i
8∑

C=1

fABCλC . (6.8)

Here fABC are the completely antisymmetric structure constants of the group,
corresponding to this choice of generators.

* These hadrons are built from different “flavoured” quarks (i.e., up, down,
strange, charm, top, bottom). Each of these quarks comes in three colours, and
they must be combined in such a way that the hadron transforms trivially under
SU(3). The reader who is not acquainted with these concepts, and is interested in
learning more about it, may consult the book by Close (1979).

** See e.g., the book quoted in the previous footnote.
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Let us now study the naive continuum limit of the action (6.4) for the case
N = 3, proceeding in a way analogous to the abelian case. To this effect we introduce
a dimensioned matrix valued lattice field

˜
Aµ(n) as follows,

˜
φµ(n) = g0a

˜
Aµ(n). (6.9)

Here φµ(n) is defined in (6.3), a is the lattice spacing, and g0 is a bare coupling
constant. Again we have written g0 instead of g to emphasize that in an interacting
theory this coupling constant is one of the bare parameters on which the action
depends. Since

˜
Aµ(n) is an element of the Lie algebra of SU(3) it is of the form

˜
Aµ(n) =

8∑
B=1

AB
µ (n)

λB

2
, (6.10)

where AB
µ (n) are eight real-valued vector fields corresponding to the eight generators

of SU(3). Inserting (6.9) into (6.3) and expanding the exponential to leading order
in a, one finds, after scaling M̂0,

˜
ψ and

˜
ψ̄ appropriately with the lattice spacing,

that (6.4) reduces to the following continuum action for a → 0:

S
(cont.)
F =

∫
d4x

˜
ψ̄(x)(γµ(∂µ + ig0

˜
Aµ) + M0)

˜
ψ(x).

Next we consider the naive continuum limit of eq. (6.7). To this end we define in

analogy to (5.20) the matrix-valued lattice field tensor
˜
Fµν by

˜
Uµν(n) = e

ig0a2

˜
Fµν(n)

. (6.11)

Clearly, the relation between
˜
Fµν(n) and

˜
Aµ(n) is now much more complicated

than in the abelian case. The reason is that the link variables appearing in the
product (6.6) are now matrices which do not commute. In order to arrive at the
connection between

˜
Fµν and

˜
Aµ, one needs to make use of the Baker-Campbell-

Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]+···, (6.12)

where the “dots” will in general involve an infinite number of terms. But be-
cause

˜
φµ(n) is proportional to the lattice spacing (cf. eq. (6.9)), one only needs
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to compute a few terms in the exponent of (6.12), when this formula is used to
calculate the product of link variables. By making use of such relations as

˜
φµ(n + ν) ≈

˜
φµ(n) + a∂ν

˜
φµ(n) + · · · ≈ g0a

˜
Aµ(n) + g0a

2∂ν
˜
Aµ(n) + · · · ,

one finds that

˜
Fµν−→

a→0˜
Fµν = ∂µ

˜
Aν − ∂ν

˜
Aµ + ig0[

˜
Aµ,

˜
Aν ]. (6.13)

This is the well-known expression for the matrix-valued field tensor in continuum
QCD. Since (6.13) is again an element of the Lie algebra, it can be written in the
form

˜
Fµν =

8∑
B=1

FB
µν

λB

2
. (6.14)

Making use of (6.8) and of the orthogonality relation of the Gell-Mann matrices,

Tr(λBλC) = 2δBC , (6.15)

one arrives at the following connection between the eight components of FB
µν and

AB
µ , defined in (6.14) and (6.10), respectively:

FB
µν = ∂µA

B
ν − ∂νA

B
µ − g0fBCDAC

µ AD
ν . (6.16)

Having motivated the introduction of the lattice field strength tensor
˜
Fµν according

to (6.11), we now compute SG in the naive continuum limit. Approximating (6.11)
for small lattice spacing by the first two non-trivial terms in the expansion of the
exponential and inserting this expression into (6.7), one finds that

SG −→ c
g2
0

2
S

(cont.)
G ,

where

S
(cont.)
G =

1
2
Tr

∫
d4x

˜
Fµν

˜
Fµν , (6.17)

and a sum over µ, ν is understood. This is the well-known gauge field action of QCD.
Hence we must choose c = 2/g2

0. The continuum field strength tensor for SU(N) has
the same form as given in (6.13) with

˜
Aµ an element of the Lie algebra of SU(N).

Following the same procedure as above one finds that the gauge part of the lattice
action is given for all N > 1 by

S
(SU(N))
G = β

∑
P

[
1 − Tr

2N
(
˜
UP +

˜
U †

P )
]

(6.18a)
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where

β =
2N
g2
0

. (6.18b)

As in the abelian case, the sum in (6.18a) extends over all distinct plaquettes on the
lattice, and we have introduced the notation

˜
UP for the path-ordered product (6.6)

of link variables around the boundary of a plaquette P . Both orientations for this
product are taken into account, thus ensuring the hermiticity of the action.

The action (6.18) is invariant under the local transformations (6.5b). Inserting
for

˜
Uµ(n) the expression

˜
Uµ(n) = e

ig0a

˜
Aµ(n)

, (6.19)

one finds that (6.5b) implies the following transformation law for
˜
Aµ in the contin-

uum limit:

˜
Aµ(x) →

˜
G(x)

˜
Aµ(x)

˜
G−1(x) − i

g0 ˜
G(x)∂µ

˜
G−1(x). (6.20)

This is the non–abelian analog of (5.3b).

For those readers not familiar with continuum QCD we want to make the
following remark. Using the relation (6.15), the expression (6.17) may be written in
the form

S
(cont.)
G =

1
4

∫
d4xFB

µνF
B
µν , (6.21)

where FB
µν is related to the coloured gauge potentials by (6.16). Hence, in contrast

to the abelian case, the pure gauge sector of QCD describes a highly non-trivial
interacting theory, which involves tripel and quartic interactions of the fields, AB

µ .
This is the reason why a study of the pure gauge sector of QCD is of great interest.
In fact, the self-couplings of the gauge potentials are believed to be responsible for
quark confinement. The first non-abelian gauge theory was proposed by Yang and
Mills (1954), and was based on SU(2). For this reason one usually refers to (6.18),
or (6.21), as the Yang–Mills action.

So far we have constructed the lattice action which possesses the desired naive
continuum limit. We must now define the quantum theory by specifying the path in-
tegral expression from which correlation functions may be computed. This expression
will be of the form (5.24) except that now ψα, ψ̄α and Uµ(n) will carry additional
colour indices corresponding to the three-coloured quarks lying in the fundamental
representation of SU(3). What concerns the integration measure DU on the other
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hand, it will now depend on the eight real variables parametrizing the group ele-
ments of SU(3), and the integration is to be performed over the group manifold.
For the same reasons mentioned before in connection with the abelian theory, this
integration measure must be gauge-invariant if quantum fluctuations are not to de-
stroy this important principle. Denoting by αA

� (A = 1, . . . , 8) the group parameters
on which the �’th link variable depends, the corresponding integration measure will
be of the form*

DU =
∏

�

J(α�)(dα�), (6.22a)

where α� stands for the set {αA
� }, and

(dα�) ≡
8∏

A=1

dαA
� . (6.22b)

The structure of the Jacobian J(α�) in (6.22a) is determined from the requirement
of gauge invariance. For our purpose it will suffice to know some of the standard
integrals involving polynomials of the link variables and we shall only list a few of
them without proof. A general rule, however, is the following: only those integrals
involving products of the link variables will give a non-vanishing contribution, for
which the direct product of the corresponding representations contains the identity
element. With dU� defined by

dU� ≡ J(α�)(dα�),

some useful SU(3) group integrals are:
∫

dU Uab = 0, (6.23a)

∫
dU Uab U cd = 0, (6.23b)

∫
dU Uab(U †)cd =

1
3
δadδbc, (6.23c)

∫
dU Ua1b1Ua2b2Ua3b3 =

1
3!

�a1a2a3 �b1b2b3 . (6.23d)

Here U stands generically for any given link variable. The general rules for evaluating
arbitrary integrals of the above type have been discussed by Creutz (1978).

* The integration measure DU is the so-called Haar measure. We will discuss this
measure in detail in chapter 15, where we shall require its explicit form in order to
perform the weak coupling expansion of lattice QCD.
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An arbitrary correlation function involving the fermionic and link variables can
be computed from the following path integral expression

�ψa1
α1

(n1) · · · ψ̄b1
β1

(m1) · · ·U cd
µ1

(k1) · · · �

=
1
Z

∫
DUDψ̄Dψψa1

α1
(n1) · · · ψ̄b1

β1
(m1) · · ·U cd

µ1
(k1)e−SQCD , (6.24a)

where

Z =
∫

DUDψ̄Dψe−SQCD , (6.24b)

and where SQCD is given by the sum of the actions (6.18) and (6.4) with N = 3. For
later convenience we summarize the results for QCD below:

SQCD = SG[U ] + S
(W )
F [U , ψ, ψ̄], (6.25a)

SG =
6
g2
0

∑
P

[
1 − Tr

6
(
˜
UP +

˜
U †

P )
]

, (6.25b)

S
(W )
F = (M̂0 + 4r)

∑
n ˜

ψ̄(n)
˜
ψ(n)

− 1
2

∑
n,µ

[
˜
ψ̄(n)(r − γµ)

˜
Uµ(n)

˜
ψ(n + µ̂) (6.25c)

+
˜
ψ̄(n + µ̂)(r + γµ)

˜
U †

µ(n)
˜
ψ(n)].

We have concentrated here on the case of Wilson fermions. The generalization of
the free staggered fermion action (4.36) to QCD is obvious. The fields χ and χ̄

become 3-component vectors in colour space and must be coupled to the matrix-
valued link variables in a gauge invariant way. Each lattice site can accomodate the
three colours. Denoting by

˜
χ the vector (χ1, χ2, χ3) in colour space, we have that

S
(stag.)
F =

1
2

∑
n,µ

ηµ(n)
˜
χ̄(n)(

˜
Uµ(n)

˜
χ(n + µ̂) −

˜
U †

µ(n − µ̂)
˜
χ(n − µ̂))

+ M̂0

∑
n

χ̄(n)χ(n). (6.26)

For each colour, the different Dirac and flavour components of the quark fields are
then constructed from the χ-variables at the sixteen lattice sites within a hypercube
in the way described in chapter 4.

This completes our construction program for lattice QCD. In the following
chapter we introduce an important observable which will play a central role in the
study of confinement later on.
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CHAPTER 7

THE WILSON LOOP AND THE STATIC
QUARK-ANTIQUARK POTENTIAL

One of the crucial tests of QCD is whether it accounts for the fact that isolated
quarks have never been seen in nature. It is generally believed that quark confine-
ment is a consequence of the non-abelian nature of the gauge interaction in QCD.
In contrast to QED where the field lines connecting a pair of opposite charges are
allowed to spread, one expects that the quarks within a hadron∗ are the sources of
chromoelectric flux which is concentrated within narrow tubes (strings) connecting
the constituents in the manner shown in fig. (7-1).

(a) (b)

Fig. 7-1 (a) Picture of a meson built from a quark and antiquark which

are held together by a string-like colour electric field; (b) corresponding

picture of a baryon built from three quarks.

Since the energy is not allowed to spread, the potential of a quark-antiquark
(qq̄) pair will increase with their separation, as long as vacuum polarization effects
do not screen their colour charge. For sufficiently large separations of the quarks, the
energy stored in the string will suffice to produce real quark pairs, and the system
will lower its energy by going over into a new hadronic state, consisting of colour
neutral hadrons. In fig. (7-2) we give a qualitative picture of this hadronization
process for the case when the quarks are bound within a meson (qq̄-system) or
baryon (qqq-system).

∗ We shall often refer to the constituents of hadrons simply as quarks, without
distinguishing explicitly between quarks and antiquarks.
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Fig. 7-2 Hadronization of the qq̄ and qqq systems as the quarks are pulled apart.

Once the colour charges of the quarks and antiquarks have been screened,
the remaining Van der Waals type interaction between the colour neutral hadrons
becomes the short-range interaction characteristic of the known hadronic world.
This picture of confinement can in principle be checked by computing, for example,
the non-perturbative potential between a static quark-antiquark pair. We now show
how this potential can be extracted from a path integral representation. To this
effect, it will be useful to first discuss some of the ideas involved within the context
of non-relativistic quantum mechanics, since our subsequent presentation of the field
theoretical case will be quite formal.

7.1 A Look at Non-Relativistic Quantum Mechanics

Consider a particle of mass m moving in a potential V (x) in one space dimen-
sion. Its propagation is described by the amplitude

K(x�, t; x, 0) = �x�|e−iHt|x�, (7.1)

where H = p2/2m + V (x). Next consider the static limit of (7.1); letting m → ∞,
the kinetic term in the Hamiltonian may be dropped and H can be replaced by the
potential. Hence (7.1) takes the simple form

K(x�, t; x, 0) −→
m→∞

δ(x − x�)e−iV (x)t. (7.2)

Continuing this expression to imaginary times (t → −iT ), we see that the poten-
tial V (x) may be determined from the exponential decay of (7.1) as a function of
euclidean time T . The δ-function appearing in (7.2) just tells us that an infinitely
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massive particle does not propagate. In fact the only change in the wave function
with time consists in the accumulation of a phase. Thus in the static limit the wave
function ψ(x, t) is a solution to the following equation

i∂tψ(x, t) = V (x)ψ(x, t),

which may immediately be integrated to give

ψ(x, t) = e−iV (x)tψ(x, 0). (7.3)

The phase exp(−iV ) is just the one appearing in eq. (7.2). To substantiate the
formal arguments given above, we illustrate the result (7.2) for the case of the one-
dimensional harmonic oscillator whose Hamiltonian is given by H = p2/2m+κx2/2.
The corresponding propagation kernel has the form∗

K(x�, t; x, 0) =
( mω

2πi sin ωt

)1/2
e

imω
2 sin ωt

[(x2+x�2) cos ωt−2xx�], (7.4)

where ω =
√

κ/m is the frequency of the oscillator. In order to extract the potential
from (7.4), we now take the limit m → ∞, holding κ (i.e. the potential) fixed. This
implies that ω must vanish like 1/

√
m. It is then a trivial matter to show that

K(x�, t; x, 0) −→
m→∞
κ fixed

[(
1

2πi�

)1/2

e
i(x−x�)2

2�

]
e− i

2 (V (x�)+V (x))t (7.5)

where � = t/m. In the limit � → 0 (m → ∞), the factor appearing within square
brackets just becomes δ(x − x�); hence we arrive at the result (7.2).

7.2 The Wilson Loop and the Static qq̄-Potential in QED

We now generalize this discussion to the case of a gauge field theory. To keep
things as simple as possible, we shall restrict us for the moment to the case of an
abelian U(1) gauge theory, and in particular to QED. Furthermore, we shall argue
entirely within the framework of the continuum formulation where the physical
picture is most transparent. Our presentation is based on the work by Brown and
Weisberger (1979), and on the review article by Gromes (1991).

∗ See e.g. Feynman and Hibbs (1965) for a derivation of (7.4) within the path
integral framework. We have set � = 1.
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Consider a heavy quark (Q) and antiquark (Q̄), which are introduced into the
ground state of a quantum system whose dynamics is described by the action (5.5).∗

We want to study the energy of this (infinitely) heavy pair when it is coupled to
the gauge potential in the usual minimal way. To this effect consider the following
gauge invariant state

|φαβ(�x, �y)� = Ψ̄(Q)
α (�x, 0)U(�x, 0; �y, 0)Ψ(Q)

β (�y, 0)|Ω�, (7.6)

where |Ω� denotes the ground state, and where, for arbitrary time U(�x, t; �y, t) is
defined by

U(�x, t; �y, t) = eie
∫ �y
�x dziAi(�z,t), (7.7)

with the line integral extending along the straight line path connecting �x and �y.
This phase ensures the gauge invariance of the state (7.6) which describes a quark
and antiquark located at �x and �y at time t = 0. In order to distinguish the heavy
quarks, serving as test charges, from the (light) dynamical quarks responsible for
the vacuum polarization effects referred to at the beginning of this chapter, we have
attached the label “Q” to the corresponding Dirac fields. The state (7.6) is not an
eigenstate of the Hamiltonean H. It serves however as a trial state to extract the
energy of the lowest eigenstate of H having a non-vanishing projection on |φαβ�.
This energy will be a function of the separation of the quark and antiquark, and is
the quantity that we are interested in. As in the case of our quantum mechanical
example we can extract this ground state energy by studying the propagation of the
state (7.6). But the procedure will not completely parallel the quantum mechanical
case. The difference is that whereas the state |�x�, whose propagation we have studied
there, becomes an eigenstate of the Hamiltonian H = p2/2m + V (x) in the infinite
mass limit, this is not true for the trial state (7.6). In the field–theoretic case, where
one is dealing with a system having an infinite number of degrees of freedom, there
will be many eigenstates of H which have a non-vanishing projection on (7.6); but
of all these states we are only interested in that state having the lowest energy. In
our quantum mechanical example we would be confronted with a similar situation if
we were studying the propagation of a particle of finite mass in the potential V (x).
In this case the state |x� is no longer an eigenstate of the Hamiltonian and the
propagation amplitude will no longer have the simple form (7.2). Instead, we must

∗ Although we are studying the U(1) gauge theory, we will refer to the charged
particles as quarks and antiquarks.
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consider its general spectral decomposition

K(x�, t; x, 0) =
∑

n

�x�|n��n|x�e−iEnt, (7.8)

where En are the eigenvalues of H = p2/2m + V (x), and |n� the corresponding
eigenstates. But from the structure of the right hand side of (7.8) we see that we can
extract the contribution of the state of lowest energy by studying the propagation
amplitude for large euclidean (t → −iT ) times:

K(x�, −iT ; x, 0)−→
T→∞

�x�|0��0|x�e−E0T .

This is the well-known Feynman–Kac formula. As an example consider the harmonic
oscillator, where K(x�, t; x, 0) is given by (7.4). Taking the above limit, holding the
mass fixed, one readily finds that E0 = 1

2ω. This is of course not the quantity that
we were interested in; but the example illustrates the point that in general we must
supplement the infinite mass limit with another limit involving the euclidean time.
Furthermore, the order of these limits is important! To extract the ground state
energy of a quark-antiquark pair, we must first study the propagation of the state
(7.6) in the infinite mass limit, and then examine the behaviour of the propagation
amplitude for large euclidean times. With this in mind, consider now the following
Green function describing the propagation of the state (7.6):

Gα′β′,αβ(�x �, �y �; �x, �y; t) = �Ω|T (Ψ̄(Q)
β′ (�y �, t)U(�y �, t; �x �, t)

×Ψ(Q)
α′ (x�, t)Ψ̄(Q)

α (�x, 0)U(�x, 0; �y, 0)Ψ(Q)
β (�y, 0))|Ω� (7.9)

where “T” is the time-ordering operator. Since in the limit of infinite quark masses,∗

the positions of the quark and antiquark are frozen, we expect that (7.9) will show
the following behaviour

Gα′β′,αβ(�x �, �y �; �x, �y; −iT ) −→
1)MQ→∞
2)T→∞

δ(3)(�x − �x �)δ(3)(�y − �y �)Cα′β′,αβ(�x, �y )e−E(R)T ,

(7.10)

where MQ is the quark (antiquark) mass, Cα′β′,αβ(�x, �y) is a function describing the
overlap of our trial state (7.6) with the ground state of the Hamiltonian in the
presence of the static pair, and E(R) is the ground state energy∗∗ of the static pair
separated by the distance R = |�x − �y|.

∗ Actually we shall keep the masses finite, in order to control any divergencies
that might arise.

∗∗ As we shall see in the next chapter, E(R) also includes self-energy effects
which need to be subtracted when calculating the interquark potential.
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The right-hand side of (7.9) has the (formal) path integral representation

Gα′β′,αβ =
1
Z

∫
DA Dψ Dψ̄ Dψ(Q)Dψ̄(Q)(ψ̄(Q)

β′ (�y �, t) . . . ψ
(Q)
β (�y, 0))eiS, (7.11)

where the expression within brackets stands for the quantity whose expectation value
we are calculating, Z is the normalization constant given by the integral (7.11) omit-
ting the above mentioned expression, and S is the action describing the dynamics
of the light and heavy quarks, and of the gauge potential:

S = SG[A] + SF [ψ, ψ̄, A] + SQ[ψ(Q), ψ̄(Q), A].

Here SG and SF are defined in (5.4) and (5.2) respectively, and∗

SQ[ψ(Q), ψ̄(Q), A] =
∫

d4xψ̄(Q)(x)(iγµDµ − MQ)ψ(Q)(x). (7.12)

Since this action is quadratic in the fields ψ(Q) and ψ̄(Q), one can immediately
perform the integration over these Grassmann variables in (7.11) (see chapter 2):

Gα′β′,α,β = − 1
Z

∫
DA Dψ Dψ̄

[
Sββ′(y, y�; A)Sα′α(x�, x; A)

−Sα′β′(x�, y�; A)Sβα(y, x; A)
]

·U(�x, 0; �y, 0)U(�y �, t; �x �, t) det K(Q)[A]eiSG+iSF .

(7.13)

Here x, y, x� and y� are the following four–component vectors

x = (�x, 0), y = (�y, 0),

x� = (�x�, t), y� = (�y �, t),
(7.14)

S(z, z�; A) is the Green function describing the propagation of a quark in the external
field Aµ,

[iγµ(∂µ + ieAµ(z)) − MQ]S(z, z�; A) = δ(3)(�z − �z �)δ(t − t�), (7.15)

and det K(Q)[A] is the determinant of the matrix

K
(Q)
αx,βy[A] = [iγµ(∂µ + ieAµ(x)) − MQ]αβδ(4)(x − y),

∗ Recall that we are still in Minkowski space. Hence γµ (µ = 0, 1, 2, 3) are the
usual Dirac matrices.
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arising from the integration over the heavy quark fields. In perturbation theory the
logarithm of this determinant is given by the sum of Feynman graphs consisting of a
fermion loop with an arbitrary number of fields Aµ attached to it. This determinant
approaches an (infinite) constant for MQ → ∞ which is however canceled by a
corresponding factor contained in Z. Hence in what follows we can set det K(Q) = 1.

For the same reasons as stated above, we can of course also perform the inte-
gration over the dynamical quark fields ψ and ψ̄ in eq. (7.13). This gives rise to a
similar determinant; but its dependence on the gauge potential can no longer be ig-
nored, since these fields have finite mass. It is this determinant which is responsible
for the vacuum polarization effects mentioned at the beginning of this chapter.

So far the result (7.13) holds for arbitrary quark mass MQ. We now want to
study this expression for MQ → ∞. Following Brown and Weisberger (1979), we
drop the spatial part of the covariant derivative, but keep its time component. Thus
gauge invariance is maintained in this approximation:

[iγ0(∂0 + ieA0(z)) − MQ]S(z, z�; A) = δ(4)(z − z�). (7.16)

Here the derivative acts on z. Equation (7.16) can be easily integrated. Making the
Ansatz

S(z, z�; A) = e
ie

∫ z′
0

z0
dt A0(�z,t)

Ŝ(z − z�) (7.17)

one finds that Ŝ(z − z�) satisfies a differential equation, which does not involve the
gauge potential:

(iγ0∂0 − MQ)Ŝ(z − z�) = δ(4)(z − z�). (7.18)

This equation can be readily solved by making a Fourier ansatz for Ŝ, and leads to
the following expression for (7.17):

iS(z, z�; A) = δ(3)(�z − �z �)eie
∫ z′

0
z0

dt A0(�z,t)
{

Θ(z0 − z�
0)

(
1 + γ0

2

)
e−iMQ(z0−z′

0)

+ Θ(z�
0 − z0)

(
1 − γ0

2

)
eiMQ(z0−z′

0)
}

.

(7.19)

This expression shows that the time evolution of the (infinitely) heavy quark fields
merely consists in the accumulation of a phase determined by A0 and the quark
mass. This is the statement analogous to (7.3) in our quantum mechanical example.
We next insert (7.19) into (7.13). Because of the appearance of the spatial delta
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function, which merely tells us that an infinitely heavy quark cannot propagate
in space, only the first term in eq. (7.13) contributes since �x �= �y. Recalling the
definitions of x, y, x� and y� given in eq. (7.14), one finds that

Gα′β′,αβ −→
MQ→∞

δ(3)(�x − �x �)δ(3)(�y − �y �)(P+)α′α(P−)ββ′e−2iMQt�eie
∮

dzµAµ(z)�,

(7.20a)

where

P± =
1
2
(1 ± γ0), (7.20b)

and where the line integral extends over a closed rectangular path with spatial and
temporal extension R = |�x − �y| and t, respectively, whose corners are located at
the points (7.14). The bracket � � denotes the ground state expectation value in the
absence of the static quark-antiquark source. It is formally given by

�eie
∮

dzµAµ(z)� =
∫

DA Dψ Dψ̄ eie
∮

dzµAµ(z)eiSQED∫
DA Dψ Dψ̄ eiSQED

, (7.21)

where SQED is the action defined in eq. (5.5).

Finally let us continue the expression (7.20) to imaginary times, t → −iT . This
is accomplished by replacing −iSQED in (7.21) by its euclidean counterpart (5.8),
and continuing the exponentials exp(−2iMQt) and exp(ie

∮
dzµAµ(z)) to imaginary

times. By writing out explicitely the contour integral, and recalling that A0 must
be replaced by iA4 in this continuation process, one finds that

[Gα′β′;αβ]t→iT −→
MQ→∞

δ(3)(�x − �x �)δ(3)(�y − �y �)(P+)α′α(P−)ββ′

· e−2MQT �WC [A]�eucl.,
(7.22a)

where

WC [A] = eie
∮

dzµAµ(z), (7.22b)

and

�WC [A]�eucl. =
∫

DA Dψ Dψ̄ WC [A]e−S
(eucl.)
QED

∫
DA Dψ Dψ̄ e−S

(eucl.)
QED

. (7.22c)

In (7.22b) the line integral is carried out along a rectangular contour C in euclidean
space time, with corners given by (�x, 0), (�y, 0), (�y, T ) and (�x, T ). This is the famous
Wilson loop.

Finally, to obtain the static quark-antiquark potential we must study the
behaviour of (7.22) for large euclidean times T . Comparing this expression with
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eq. (7.10), we see that the exponential factor exp(−2MQT ) just accounts for the
fact that the energy of the quark-antiquark system includes the rest mass of the
pair. Hence we expect that �WC [A]� behaves as follows for large T

W (R, T ) ≡ �WC [A]� −→
T→∞

F (R)e−E(R)T ,

where E(R) is the interaction energy of the static quark-antiquark pair separated
by a distance R, and F (R) reflects the overlap of our state (7.6) with the ground
state of the system in the presence of this pair. Hence we conclude that this energy
can be calculated as the following limit:

E(R) = − lim
T→∞

1
T

ln�WC [A]�. (7.23)

We want to emphasize the formal simplicity of the above result. To compute
the static interquark potential we “merely” need to calculate the expectation value
of a gauge invariant quantity built only from the gauge potential. Admittedly the
derivation of the result involved a bit of handwaving. Furthermore, we have used
a special trial state constructed from the quark fields and the string like operator
(7.7), with the line integral taken along a straight line path connecting the quark
and antiquark. Especially, in QED, where field lines are allowed to spread all over
space, we expect that there are other trial states which have a better overlap with
the ground state of the QED-Hamiltonian in the presence of a static source. But
also in QCD where the field lines are expected to be squeezed into a tube connecting
the two quarks, the use of other trial states can allow one to determine the potential
from Wilson loops with a relatively small temporal extension.∗

So far we have argued entirely within the continuum formulation where the
path integral (7.22c) only has a formal meaning. To define it, we must obtain the
lattice version of (7.22b) and (7.22c). This can be easily done. Thus on the lattice
the exponential of the line integral in (7.22b) just corresponds to the product of
the link variables (5.18) along the rectangular contour C shown in fig. (7-3). Let U�

denote such a link variable. Then we define the Wilson loop operator by∗∗

WC [U ] =
∏
�∈C

U� (7.24)

∗ See e.g., Griffith, Michael and Rakow (1983).
∗∗ In order not to introduce too many symbols, we use the same symbol W as

in the continuum formulation. The argument of W will tell us which formulation
we are talking about; notice also that in the abelian case the ordering of the link
variables is irrelevant.
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Its ground state expectation value

W (R̂, T̂ ) ≡ �WC [U ]� (7.25a)

is given by

W (R̂, T̂ ) =
∫

DUDψ̄DψWC [U ]e−SQED[U ,ψ,ψ̄]

∫
DUDψ̄Dψe−SQED[U ,ψ,ψ̄]

(7.25b)

where in the case of Wilson fermions, SQED is given by (5.22). Notice that W (R̂, T̂ )
is a function of the dimensionless ratios R̂ = R/a and T̂ = T/a, with a the lattice
spacing.

T

R

Fig. 7-3 Integration contour appearing in eq. (7.22b), relevant for calcu-

lating the static interquark potential.

On the basis of the arguments presented in this chapter, we now define the
energy of a static qq̄-pair measured in lattice units, Ê(R), by an expression analogous
to (7.23),

Ê(R̂) = − lim
T̂→∞

1
T̂

ln W (R̂, T̂ ), (7.26)

where, as we have pointed out before, Ê(R̂) will still contain R-independent self-
energy contributions, which have to be substracted when calculating the interquark
potential. Relation (7.26) will allow us to compute, at least in principle, the
interquark potential using numerical methods.
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7.3 The Wilson Loop in QCD

The non-abelian case can be treated in a very similar manner to that discussed
in the previous section. The starting point is again a state of the form (7.6), except
that now the Dirac fields are replaced by (6.2) with N = 3, and we must substitute
for U(�x, t; �y, t) the operator

˜
U(�x, t; �y, t) = P e

ig
∫ �y
�x dzi

˜
Ai(�z,t)

, (7.27)

where
˜
Ai(�z, t) is the matrix valued field defined in (6.10), and P denotes the path–

ordering operation. This path ordering is important to ensure the gauge invariance
of the state. Let us see why this is so.

Consider the following generalization of (7.27) to exponentials of line integrals
performed along an arbitrary path C connecting two different space-time points x

and y:

˜
U(x, y)C = P e

ig
∫ y

x dzµ

˜
Aµ(z)

. (7.28)

The path ordering in (7.28) is defined as follows: divide the path C into n infinites-
imal segments and let x1, x2, . . . , xn−1 denote the intermediate space–time points
going from x to y. Furthermore define dx� = x� − x�−1, with x0 and xn identified
with x and y, respectively. On each of the infinitesimal segments the exponential in
(7.28) can be approximated by the first term in the Taylor expansion. Then (7.28)
is given as the limit δx� → 0 of the ordered product of these (non-commuting)
expressions along the path from x to y:

˜
U(x, y)C = lim

dx�→0
[1 + ig

˜
Aµ(x0)dxµ

1 ] · · · [1 + ig
˜
Aµ(xn−1)dxµ

n]. (7.29)

Consider now an infinitesimal gauge transformation. According to (6.20),
˜
Aµ trans-

forms as

˜
Aµ(x) →

˜
Aµ(x) + i[

˜
θ(x),

˜
Aµ(x)] − 1

g
∂µ

˜
θ(x),

where
˜
θ(x) is an infinitesimal matrix belonging to the Lie–Algebra of SU(3). Up to

terms linear in dx� and
˜
θ(x) we have that

1 + ig
˜
Aµ(x�−1)dxµ

� → 1 + ig
˜
Aµ(x�−1)dxµ

�

− g[
˜
θ(x�−1),

˜
Aµ(x�−1)]dxµ

� (7.30)

− i

(
∂µ

˜
θ(x�−1)

)
dxµ

� .
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But (∂µ
˜
θ(x�−1))dxµ

� =
˜
θ(x�) −

˜
θ(x�−1). Hence up to leading order in θ, (7.30) can

also be written in the form

1 + igAµ(x�−1)dxµ
� → eiθ(x�−1)[1 + ig

˜
Aµ(x�−1)dxµ

� ]e−iθ(x�).

We therefore conclude that (7.29) transforms as follows under finite gauge
transformations

˜
U(x, y)C →

˜
G(x)

˜
U(x, y)

˜
G−1(y), (7.31)

where
˜
G(x) is an element of the gauge group. The transformation law (7.31) is the

analog of (5.11) for the non-abelian case. It guarantees that the state analogous to
(7.6) is gauge invariant.

On the lattice, the path ordered exponential (7.28) is just the ordered product
of link variables along a path connecting the lattice sites corresponding to x and y.
Let us denote these sites by n and m, respectively, and by CL a path on the lattice
connecting n and m. Then the transition from (7.28) to the lattice reads

˜
U(x, y)C →

˜
U(n, m)CL

=
∏

�∈CL
˜
U�, (path ordered), (7.32)

where
˜
U� denotes generically a link variable on CL. Since under gauge transforma-

tions the link variables transform according to (6.5b), it follows that the right–hand
side of (7.32) transforms according to

˜
U(n, m)CL

→
˜
G(n)

˜
U(n, m)CL

˜
G−1(m).

Taking for CL the Wilson loop, we conclude that

WC [U ] = Tr
∏

�∈CL
˜
U� (path ordered) (7.33)

is gauge invariant. This is the analog of (7.24). The corresponding expectation
value �WC [U ]� ≡ W (R̂, T̂ ), is then calculated as before according to a path integral
expression analogous to (7.25b):

W (R̂, T̂ ) =
∫

DUDψ̄Dψ WC [U ]e−SQCD[U ,ψ,ψ̄]

∫
DUDψ̄Dψe−SQCD[U ,ψ,ψ̄]

, (7.34)

where for Wilson fermions SQCD is the QCD action given by (6.25), and where DU

is the gauge-invariant measure discussed in chapter 6. The interquark potential is
then computed according to (7.26).
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The right-hand side of (7.34) can be written in a form which involves only
an integration over the link variables and hence will be suited for numerical, Monte
Carlo, calculations. Indeed, the fermionic contribution to the action, given in (6.25c),
is bilinear in the fermion fields and has the form∗

S
(W )
F [U , ψ, ψ̄] =

∑
n,m

ψ̄a
α(n)Knαa,mβb[U ]ψb

β(m), (7.35)

where (a, b) and (α, β) are colour and Dirac-spinor indices, respectively. Hence we
can immediately perform the Grassmann integration (see chapter 2) and obtain

�WC [U ]� =
∫

DU WC [U ]e−Seff [U ]
∫

DU e−Seff [U ]
, (7.36a)

where the effective action, Seff , is given by

Seff [U ] = SG[U ] − ln detK[U ]. (7.36b)

Here K[U ] is the matrix in Dirac, SU(3)-colour, and x-space defined in (7.35). In
the continuum formulation the matrix elements of K are given by∗∗

Kαx,βy[A] = (γµ(∂µ + ig0
˜
Aµ) + M0)

αβ

δ(4)(x − y).

The meaning of ln detK[A] is well known in perturbation theory. It is given by the
sum of Feynman diagrams consisting of a single fermion loop, with an arbitrary
number of external gluon fields attached to it. Hence this term gives rise to the
vacuum polarization effects, referred to at the beginning of this chapter. Ignoring
these effects amounts to setting detK = 1. This is the so-called quenched approxi-
mation. In this approximation one expects that the static qq̄-potential rises with the
separation of the quarks. This, as we have pointed out before, is a prerequisite for
the hadronization picture mentioned at the beginning of this chapter. Hence calcu-
lating the qq̄-potential in the quenched approximation is an important first check of
confinement.

The above analysis does not yield any information about the spin-dependent
forces between quarks since we have merely studied the static limit. To obtain
information about the spin-dependent terms in the potential, one must allow the

∗ The same is true for the staggered fermion action (6.26).
∗∗ For simplicity we use the same notation for the Wilson loop, fermionic matrix,

and effective action as above.
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quarks to propagate in space. This means that one has to take into account the
spatial part of the covariant derivative in the Dirac equation. This program has
been first carried out by Eichten and Feinberg (1981), who treat this term pertur-
batively. Alternative derivations of the results obtained by these authors have been
carried out subsequently by Peskin (1983), Gromes (1984), Barchielli, Montaldi and
Prosperi (1988). The reader may consult the recent review article by Gromes (1991)
for details on this subject.

Our above discussion has been quite formal. But simplified arguments based
on physical intuition often lead to the correct result. So let us verify our conclusions
at least within the framework of some simple models. After all, our understanding
of quark confinement will depend on our ability of calculating the non-perturbative
inter-quark potential, which — at the present state of the art — can only be deter-
mined by studying the expectation value of the Wilson loop numerically. Hence let
us get some confidence in this procedure by studying some solvable field theories.
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CHAPTER 8

THE QQ̄-POTENTIAL IN SOME SIMPLE MODELS

In this chapter we study the potential of a static qq̄ pair in two soluble models
within the quenched approximation: 1) QED in four space-time dimensions, and
2) compact (lattice) quantum electrodynamics in two dimensions (QED2). The latter
model will also provide us with another opportunity to study the continuum limit
and to compare our results with those obtained in a continuum calculation.

8.1 The Potential in Quenched QED

Consider the expectation value of the Wilson loop in QED. In the continuum
formulation it is formally given by eq. (7.22c). Performing the fermion integration,
we obtain

�WC [A]� =
∫

DA WC [A]e−Seff [A]
∫

DA e−Seff [A]
, (8.1a)

where

Seff [A] = SG[A] − ln det K[A], (8.1b)

SG[A] is given by (5.8b), and K[A] is a matrix in space-time and Dirac space:

Kxα,yβ[A] = [γµ(∂µ + ieAµ) + M ]αβδ(4)(x − y). (8.1c)

We now want to calculate the integral (8.1a) in the quenched approximation where
vacuum polarization effects, arising from the presence of dynamical fermions, are
neglected. This, as we have seen, amounts to setting det K = 1, and hence replacing
Seff by SG[A]. The latter action can be written in the following convenient form:

SG[A] = −1
2

∫
d4xAµ(x)ΩµνAν(x), (8.2a)

where

Ωµν = δµν�� − ∂µ∂ν , (8.2b)

and �� is the four-dimensional Laplacean. Hence in the quenched approximation
(q.a.) the expectation value of the Wilson loop is given by

�WC [A]�q.a. =
∫

DA e
1
2

∫
d4xAµΩµνAν+ie

∮
dzµAµ

∫
DA e

1
2

∫
d4xAµΩµνAν

. (8.3)
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Since the integrands in the above expression are exponentials of quadratic forms in
the potentials, the integrals can also be carried out in the continuum formulation.
Nevertheless, we cannot perform the Gaussian integration in the present form. The
reason for this is well known: because of the gauge invariance of the action (8.2)
the inverse of the operator Ωµν does not exist, since it annihilates all field configu-
rations Aµ which are pure gauge (i.e., of the form Aµ = ∂µΛ). This means that the
integrands appearing in (8.3) take the same value for all field configurations which
only differ from each other by a gauge transformation (notice that the closed line
integral is also gauge invariant). These gauge equivalent potentials define an orbit
for every given field strength Fµν , and the integration along any such orbit will give
rise to a divergent integral in the numerator and denominator of (8.3). The ratio,
however, will be finite. To show this, one must have a method for controlling this
infinity. An elegant procedure has been given by Faddeev and Popov and amounts
to selecting one representative field configuration from each set of gauge-equivalent
potentials.∗ This is done by imposing a gauge condition. Since we are computing the
expectation value of a gauge-invariant quantity, the choice of gauge is immaterial. A
particularly simple choice is the so-called Feynman gauge and amounts to making
the replacement

Ωµν −→ δµν��.

The Gaussian integrations in (8.3) may then be performed immediately and one
obtains

�eie
∮

dzµAµ� = e
e2
2

∮
dzµ

∮
dz′

νδµνD(z−z′), (8.4a)

where D(z − z�) is the Green’s function for the operator ��,

��D(z − z�) = δ(4)(z − z�) (8.4b)

i.e.,

D(x) = − 1
4π2

1
x2 . (8.4c)

Because the integrand in (8.4a) is proportional to δµν , the double integral will only
receive a contribution when z and z� are located on segments of the integration con-
tour which are parallel to each other. In fig. (8-1) we show various types of diagrams

∗ Those readers which are not familiar with the Fadeev–Popov trick may consult
the review article by Abers and Lee (1973) or any modern field theory book. In
chapter 15 we shall demonstrate this trick for lattice QCD.
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which contribute to the exponential (8.4a). Clearly the leading contribution for large
(euclidean) times comes from the diagrams shown in figs. (8-1a,d). Of these, however,
the latter one represents the self-energy contribution to the energy of the static qq̄

pair. It must therefore be subtracted when computing the inter-“quark” potential.
Hence the relevant diagram is that shown in fig. (8-1a). The corresponding integral
is easily evaluated and one obtains∗

�eie
∮

dzµAµ�subtr. = e
e2

4πR
Tf(R,T )

−→
T→∞

N e−V (R)T

where

f(R, T ) =
2
π

[
arctan

T

R
− R

2T
ln

(
1 +

T 2

R2

)]
.

Since f(R, T ) → 1 for T → ∞, we find that V (R) is just the usual Coulomb
potential.

Fig. 8-1 Diagrams contributing to the argument of the exponential in (8.4a).

The potential calculated from (8.3) does not include vacuum polarization ef-
fects. When one takes into account dynamical fermions (i.e., fermions of finite mass
coupled to the gauge potential), then one must also calculate diagrams containing
virtual fermion loops. These loops arise from the contribution of the determinant
of the operator K[A] = ∂/ + M + ieA/ to the effective action (8.1b).∗∗ As an exam-
ple let us calculate the leading order contribution of lndetK[A]. To this effect we
write lndetK[A] in the form Tr ln K[A], where the trace is taken with respect to the
space-time coordinates as well as Dirac spinor indices. Then

Tr ln K[A] = Tr ln
[
(∂/ + M)

(
1 +

1
∂/ + M

ieA/
)]

= c + Tr ln
(

1 +
1

∂/ + M
ieA/

)
, (8.5)

∗ See e.g., Kogut (1979).
∗∗ We use the standard notation b/ =

∑
µ γµbµ.
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where c = Tr ln(∂/ + M) is an irrelevant constant, which drops out when calculating
the ratio (8.1a). Expanding the logarithm in (8.5) in a formal series, one finds that
the leading contribution is of O(e2):∗

Tr ln K[A] = −1
2
Tr

[
1

∂/ + M
ieA/

1
∂/ + M

ieA/
]

+ O(e4).

The right-hand side stands for the following expression

1
2
Tr

[
1

∂/ + M
ieA/

1
∂/ + M

ieA/
]

=
(ie)2

2
TrD

∫
d4x

〈
x

∣∣∣∣
1

∂/ + M
A/

1
∂/ + M

A/
∣∣∣∣ x

〉

=
(ie)2

2

∫
d4x

∫
d4x�TrD

{〈
x

∣∣∣∣
1

∂/ + M

∣∣∣∣ x�
〉

A/(x�)
〈

x�
∣∣∣∣

1
∂/ + M

∣∣∣∣ x

〉
A/(x)

}
,

(8.6)

where TrD denotes the trace in the Dirac indices, and where
〈

x

∣∣∣∣
1

∂/ + M

∣∣∣∣ x�
〉

= SF (x − x�)

is the (euclidean) fermion propagator. From (8.5) and (8.6) we see that

Tr ln K[A] =
1
2

∫
d4xd4x�Aµ(x)Πµν(x − x�)Aν(x�) + O(e4), (8.7a)

where

Πµν(x − x�) = −(ie)2TrD{γµ(SF (x − x�)γνSF (x� − x)} (8.7b)

is the vacuum polarization tensor in one loop order. Substituting (8.7a) and (8.2a)
into (8.1b) we are led to the following expression for (8.1a) in the Feynman gauge,

�WC [A]� =
∫

DAeie
∮

dzµAµ(z)e
1
2

∫
d4xdex�Aµ(x)Ω̃µν(x−x�)Aν(x�)

∫
DAe

∫
d4xd4x�Aµ(x)Ω̃µν(x−x�)Aν(x�)

, (8.8a)

where

Ω̃µν(z) = Ωµν(z) + Πµν(z), (8.8b)

Ωµν(z) = δµν��δ(4)(z). (8.8c)

We now perform the Gaussian integrals in (8.8a) and obtain

�Wc[A]� = e
e2
2

∮
dzµ

∮
dz�

νΩ̃−1
µν (z−z�). (8.9)

∗ Furry’s theorem tells us that there are no contributions coming from an odd
number of external photon lines.
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Here Ω̃−1
µν is the inverse of the matrix (8.8b). It is defined by

∫
d4z��Ω̃µλ(z − z��)Ω̃−1

λν (z�� − z�) = δµνδ
(4)(z − z�),

and can be easily computed up to O(e2).

Ω̃−1
µν (x − y) = Ω−1

µν (x − y) −
∫

d4zd4z�Ω−1
µλ(x − z)Πλλ′(z − z�)Ω−1

λ′ν(z
� − y) + O(e4).

The two point correlation function of the gauge potential in O(eo) and O(e2) is given
by −Ω−1

µν and −Ω̃−1
µν , respectively. Hence in terms of Feynman diagrams the right

hand side of the above expression is given by:

x, µ x, µy, ν y, ν
+ + O(e4)

Thus a typical diagram contributing to (8.9) is that depicted in fig. (8-2).

Fig. 8-2 Vacuum polarization graph arising from the fermionic deter-

minant contributing to (8.9).

By carrying out the expansion of (8.5) to higher orders, we arrive at a sum of
one-fermion loop contributions with an arbitrary number of external photon lines
attached to it.

Unfortunately we are only able to compute the effects arising from dynam-
ical quarks analytically within the framework of perturbation theory. For a non-
perturbative treatment we are forced to recur to numerical methods. This, as we
shall see later on, turns out to be a quite non-trivial task.
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8.2 The Potential in Quenched Compact QED2

We now perform a similar calculation of the potential between two opposite
charges but starting from a lattice formulation. For this purpose we consider the
case of compact QED in 2 space-time dimensions, which, if we neglect dynamical
fermions, may be solved in closed form. The lattice action in the pure gauge sector
is given by∗

SG = β
∑

P

[
1 − 1

2
(UP + U †

P )
]

, (8.10)

where β is some parameter which, in analogy to (5.20), we shall relate to the
dimensionless bare coupling ê by

β =
1
ê2 , (8.11)

and where UP is given by the product of the link variables

Uµ(n) = eiθµ(n)

taken around an elementary plaquette “P” as discussed in chapter 5.

Next consider the expectation value of the Wilson loop (7.25b), with the con-
tour C having spatial and temporal extension given by R̂ and T̂ . In the quenched
approximation it is given by

�WC [U ]� =
∫

DU WC [U ]e−SG[U ]
∫

DU e−SG[U ]
. (8.12)

Since the link variables are elements of the abelian group U(1), it is evident that
WC [U ] can also be written as the product of the elementary Wilson loops (→ pla-
quette variables) contained within the region RC , bounded by the square contour
C, as shown in fig. (8-3).

WC [U ] =
∏

P∈RC

UP . (8.13)

Hence∗∗

�WC [U ]� =

∫
DU(

∏
P∈RC

UP )e
β
2

∑
P (UP +U†

P )

∫
DU e

β
2

∑
P (UP +U†

P )
. (8.14)

∗ Its structure is the same as that discussed in chapter 5 (see eq. (5.21)).
∗∗ We have dropped the constant term in the action (8.10) since it cancels in

the numerator and denominator of (8.12).
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eiθp

Fig. 8-3 Writing the Wilson loop (8.13) as a product of elementary

plaquette contributions. The dashed line stands for the original product of

link variables along the contour C.

To carry out this integral it is convenient to choose a gauge where all link vari-
ables pointing along the time direction are rotated to the unit element. This can
always be achieved by performing an appropriate gauge transformation under which
the link variables transform according to (5.16). Hence the contribution of a partic-
ular plaquette with origin at n = (n1, n2) will be of the form UP = exp(iθP ), where
θP is given by the difference of the phase-angles associated with two neighbouring
links lying on consecutive time slices:

θP = θ1(n1, n2) − θ1(n1, n2 + 1).

Making use of the periodic structure of the integrands in (8.14), one finds that

W (R̂, T̂ ) =
∏

P∈RC

∫ π

−π
dθP eiθP eβ cos θP

∫ π

−π
dθP eβ cos θP

, (8.15)

where W (R̂, T̂ ) = �WC [U ]�. Performing the integral (8.15) one obtains

W (R̂, T̂ ) =
(

I1(β)
I0(β)

)R̂T̂

, (8.16)

where In(β) are the modified Bessel functions of integer order. From (8.16) we read
off the qq̄ potential in units of the lattice spacing,

V̂ (R̂) = − lim
T̂→∞

1
T̂

ln W (R̂, T̂ ) = σ̂R̂, (8.17a)
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where

σ̂ = ln
(

I0(β)
I1(β)

)
(8.17b)

is the so-called string tension. Thus in the lattice formulation of quenched QED2

the potential rises linearly with the separation of the qq̄-pair and hence confines the
charged pair. This is the same behaviour found in continuum QED2 and is a con-
sequence of the two-dimensional nature of the problem. In fact, let us compute the
physical potential V (R) by taking the appropriate continuum limit of the lattice
version (8.17). Since continuum QED2 is a superrenormalizable theory we expect
that a simple rescaling of the variables with the lattice spacing a will suffice. This
rescaling, however, requires some care. Thus we must clarify first of all which quan-
tities must be kept fixed as we let the lattice spacing go to zero. Since the physical
potential has the dimension of inverse length, we must scale V̂ with the inverse
lattice spacing. Furthermore, R̂ is to be replaced by R/a; we therefore consider the
expression

V (R; β, a) ≡ 1
a2 σ̂(β)R. (8.18)

From (8.18) we see that if we keep β fixed as a → 0, then V diverges like 1/a2!
Therefore, this cannot be the correct continuum limit. So let us take a closer look at
the meaning of the bare coupling ê defined in (8.11) by studying the naive contin-
uum limit of (8.10) in the manner described in chapter 5. Making the replacement
UP → exp (iêa2Fµν) for a plaquette “P” lying in the µν-plane (see eq. (5.20)) and
expanding the exponential in powers of the lattice spacing squared, one finds that
the coupling constant in physical units, e, is related to ê by

e =
1
a
ê. (8.19)

This we could of course have guessed immediately, since the coupling constant in
QED2 carrys the dimension of a mass.

From the above discussion it is evident that (8.11) is a function of the lattice
spacing, and that the physical potential should be calculated as the following limit,∗

V (R, e) = lim
a→0

V (R, β(a), a) (8.20a)

∗ We have assumed that (8.19) is a physical coupling constant, which is to be
held fixed when performing the continuum limit. The fact that this limit turns out
to be finite, justifies a posteriori this assumption, and agrees with what is known
from the continuum theory.
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where

β(a) =
1

e2a2 . (8.20b)

Hence β diverges in the continuum limit! This makes it plausible why the lattice
formulation (8.12) reproduces the correct continuum limit, as we shall see below.
Thus it is evident that for large β the Boltzmann factor appearing in the integrand
of (8.12) will ensure that the integral is dominated by those link configurations for
which UP ≈ 1. Because of (5.20), this implies that the fluctuations in eFµν are small
compared to the inverse lattice spacing squared.

With these remarks let us now compute the continuum limit (8.20a). Inserting
in (8.17b) the following asymptotic expansions for I1(β) and I0(β), valid for large β,

I0(β) =
eβ

√
2πβ

(
1 +

1
8β

+ · · ·
)

,

I1(β) =
eβ

√
2πβ

(
1 − 3

8β
+ · · ·

)
,

one finds that

V (R) =
1
2
e2R.

This is the classical energy of a pair of opposite charges separated by a distance R,
for electrodynamics in one space dimension.

In the special case considered here, the energy of a qq̄-pair is a linear func-
tion of their separation for any coupling. In particular, in the strong coupling limit
(β → 0), the string tension (8.17b) is given by − ln(β/2). In a four-dimensional
gauge theory (without dynamical fermions), the confining nature of the potential
obtained in the strong coupling limit is a consequence of the fact that the flux lines
connecting the quark and antiquark are squeezed into narrow tubes (strings) along
the shortest path joining the qq̄-pair (see chapter 11). This string is not allowed to
fluctuate for ĝ0 → ∞. Fluctuations may, however, destroy confinement, when one
studies the continuum limit. In the above two-dimensional example, the persistence
of confinement in the continuum limit (ê0 → 0), is not surprising since in one-space
dimension there is no way the string can fluctuate. In QCD, however, there is no
a priori reason why confinement could not be lost in the continuum limit (which,
as we shall see, is also realized at vanishing bare coupling). Should it persist in this
limit, it must be a consequence of the non-trivial dynamics.

This completes our demonstration of how the potential of a static qq̄ pair may
be extracted by studying the expectation value of the Wilson loop for large euclidean
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times. In the simple examples considered, the calculation could be done exactly. In
general, however, we must rely on numerical methods and the starting point will be
the lattice version. In this respect the second case treated above exhibited already
some interesting features which we shall meet again when studying the continuum
limit of QCD. Thus we have seen that taking the continuum limit required β to
be a function of the lattice spacing. This functional dependence was very simple
in the case considered here, and we could actually determine it from dimensional
arguments alone. In the case of QCD, on the other hand, this dependence will not
be trivial, and will be determined from the short distance dynamics of QCD.
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CHAPTER 9

THE CONTINUUM LIMIT OF LATTICE QCD

9.1 Critical Behaviour of Lattice QCD and the Continuum Limit

In chapter 6 we constructed a lattice gauge theory based on the non-abelian
group SU(3) and have given arguments which suggest that in the continuum limit
it describes QCD. These arguments were based on the observation that the lattice
action (6.25) reduces to the correct expression in the naive continuum limit. But as
we have emphasized before, there exist an infinite number of lattice actions which
have the same naive continuum limit. We have merely chosen the simplest one, pro-
posed originally by Wilson.* There is, however, no a priori reason why any choice of
lattice action satisfying the above mentioned requirement will ensure that the theory
processes a continuum limit corresponding to QCD or some other field theory. For
this to be the case the lattice theory must exhibit first of all a critical region in
parameter space where correlation lengths diverge. To see this, let us consider the
case of a pure SU(3) gauge theory, which in the lattice formulation resembles a
statistical mechanical system described by the partition function**

Z =
∫

DU e
1

g2
0
Tr

∑
P (UP +U†

P )
. (9.1)

Suppose that this lattice theory possesses a continuum limit, and that we wanted
to extract from it the mass spectrum of the corresponding field theory by study-
ing the appropriate correlation functions for large euclidean times (see chapter 16
for more details). The largest correlation length is then determined by the lowest
mass in the problem. If the corresponding physical mass, m, is to be finite, then
the mass measured in lattice units, m̂, must necessarily vanish in the continuum
limit. This in turn implies that the correlation length measured in lattice units, ξ̂,
must diverge. Hence the continuum field theory can only be realized at a critical
point of the statistical mechanical system described by the partition function (9.1).

* One can make use of the ambiguity in the action to construct so-called“improved
actions”, which lead to a suppression of lattice artefacts contributing to observables
for finite lattice spacing. This allows one to extract continuum physics already for
larger lattice spacings (Symanzik, 1982 and 1983).

** We have dropped the constant term in the action (6.25b) since it is irrelevant
when calculating expectation values.
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This, of course, is to be expected, since only if the correlation lengths diverge does
the system loose its memory of the underlying lattice structure. It follows that if
the above system is not critical for any value of the coupling, it cannot possibly
describe QCD or any other continuum field theory.

Now studying a system near criticality means tuning the parameters accord-
ingly. In the case considered above, the only parameter is the bare coupling g0,
a dimensionless quantity which is void of any direct physical meaning. The cor-
relation length ξ̂ measured in lattice units will depend on this parameter. Hence
the continuum limit will be realized for g0 → g�

0, where correlation lengths
diverge:

ξ̂(g0) −→
g0→g�

0

∞. (9.2)

We want to emphasize that (9.2) followed from the general requirement that physical
quantities should be finite in the limit of zero lattice spacing a. To arrive at the
above conclusion we have implicitly introduced a scale from the outside, in terms
of which dimensioned observables can be measured.* This scale must clearly be
correlated with g0. The relationship between the two may in principle be determined
in the following way. Consider an observable Θ, such as the correlation length or
the string tension σ̂ defined in (8.17a), with mass dimension dΘ. Let Θ̂ denote the
corresponding lattice quantity which may in principle be determined numerically. Θ̂
will depend on the bare parameters of the theory (coupling, masses etc.) which in
the simple case considered here is just the dimensionless coupling g0. The existence
of a continuum limit then implies that

Θ(g0, a) =
(

1
a

)dΘ

Θ̂(g0) (9.3)

approaches a finite limit for a → 0, if g0 is tuned with a in an appropriate way, with
g0(a) approaching the critical coupling g�

0 defined in eq. (9.2):

Θ(g0(a), a) −→
a→0

Θphys.. (9.4)

Hence if the functional dependence of Θ̂ on g0 is known, we can determine g0(a)
from (9.3) for sufficiently small lattice spacing by fixing the left-hand side at its
physical value Θphys.. This determines g0 as a function of a(Θphys)1/dΘ . In the
case of the free scalar field and QED in two dimensions, dimensional arguments

* There exists a priori no such scale in a pure lattice formulation!
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alone determined the a-dependence of the bare parameters. In the present case,
however, we are faced with a quite nontrivial theory, and the answer is not so
simple.

The above discussion did not make use of any particular observable. From
(9.3) and (9.4) it may appear, however, that the functional dependence of g0(a) will
depend on the observable considered. For finite lattice spacing this will in fact be
true. For sufficiently small a, however, a universal function g0(a) should exist, which
ensures the finiteness of any observable. A corresponding statement is expected to
hold if the action depends on several parameters, (e.g., bare coupling constant and
quark masses).

We want to emphasize that it is not surprising that the bare parameters
will depend in general on the lattice spacing: by making the lattice finer and
finer (see fig. (9-1)), the number of lattice sites and links within a given physi-
cal volume increases. Hence if physics is to remain the same, the bare parame-
ters must be tuned to a in a way depending in general on the dynamics of the
theory.

Fig. 9-1 Making the lattice finer by tuning the coupling with the lattice

spacing so as to keep physics the same.

Suppose now that the lattice theory describes some field theory in the contin-
uum limit. How do we know whether it is QCD? And how do we know that we are
extracting continuum physics in a numerical calculation where we shall always be
forced to work on a modest-sized lattice, and hence also at finite lattice spacing?
Clearly a first requirement in any numerical calculations should be that the scales
which are relevant to the particular problem under investigation are large compared
to the lattice spacing, but small compared to the extension of the lattice. Thus on
the one hand correlation lengths measured in lattice units should be large; but on
the other hand, they are not allowed to exceed the lattice, whose size is limited by
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the available computer facilities! Hence we must have some clear signal which tells
us whether we are extracting continuum QCD, or merely performing an academic
exercise.

In the following we shall show that in the case of QCD one can actually de-
termine the functional dependence of g0 on the lattice spacing for sufficiently small
a. We shall restrict our discussion to the case discussed above, where the effects of
dynamical fermions are ignored and the action only depends on the bare coupling g0.
Having established the relation between the lattice spacing and g0, the dependence
of any lattice observable on the bare coupling near criticality will be known and can
be used as signal for testing the continuum in a numerical calculation performed on
a lattice of finite extent.

9.2 Dependence of the Coupling Constant on the Lattice
Spacing and the Renormalization Group β-Function

As we have pointed out above, we expect that close to the continuum limit
a single function g0(a) will ensure the finiteness of any observable. Hence we can
use any observable to determine the functional dependence of the bare coupling g0

on the lattice spacing. Consider in particular the static qq̄ potential discussed in
chapter 7. As we have seen, it can be deduced from the large time behaviour of
the expectation value of the Wilson loop. Within the quenched approximation this
potential, measured in lattice units, is a function of g0 and of R̂ = R/a, where R

is the physical separation of the quark–antiquark pair. At a finite, but small lattice
spacing the potential in physical units is then given by

V (R, g0, a) =
1
a
V̂

(
R

a
, g0

)
, (9.5)

where g0 must be tuned to a in such a way that for sufficiently small lattice spac-
ing (9.5) becomes independent of a. Hence V (R, g0, a) must satisfy the so-called
renormalization group (RG) equation

[
a

∂

∂a
− β(g0)

∂

∂g0

]
V (R, g0, a) = 0 (9.6a)

where

β(g0) = −a
∂g0

∂a
(9.6b)
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is the Callan–Symanzik β-function (Callan 1970; Symanzik 1970).* Thus if β(g0)
would be known, we could integrate (9.6b) to obtain g0(a). Of course, we cannot
calculate β(g0) exactly, but we may determine it in perturbation theory, where
(9.6a) must also hold in every order. In the continuum formulation this can e.g., be
accomplished by expanding the following expression for the potential

V (R, g0, a) = − lim
T→∞

1
T

ln
〈

Pe
ig0

∮
dzµ

˜
Aµ(z)

〉
(9.7)

in powers of the coupling constant g0, and inserting the expression into the RG
equation (9.6).

Fig. 9-2 Classes of diagrams contributing to the potential in order g4.

The lines connect to arbitrary points on the Wilson contour.

Because of the non-abelian nature of the gauge potential and the path ordering
prescription, the calculation is much more involved than in the abelian case. In
fig. (9-2) we show the diagrams contributing to (9.7) in order g4

0. On the lattice the
SU(N) potential has been computed by Kovacs (1982), and by Heller and Karsch
(1985) up to O(g4

0). Because of the complicated structure of the Feynman rules
(see chapter 15) these computations are quite involved. Up to the above order the
potential is given by**

V (R) ≈ −g2
0(a)
4πR

C2(F )
[
1 + g2

0(a)
11N
24π2 ln

(
7.501

R

a

)
+

1
4
g2
0(a)C2(F )

]
(9.8)

* Suppose we determine g0(a) by holding a hadron mass M fixed at its physical
value; then M = 1

a
M̂(g0(a)). Hence g0 is a function of Ma, and adg0/da = f(Ma) =

−β(g0(a)), where β(g0) is the lattice version of the Callan–Symanzik β-function.
** This expression differs from an earlier approximate calculation (Susskind 1976).
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where C2(F ) is the quadratic Casimir operator in the fundamental representation.
For SU(N) it is given by C2(F ) = N2−1

2N
. Next, we demonstrate how one may

use the perturbative expression (9.8) to determine the non-perturbative relation
between g0 and the lattice spacing a, which ensures that the full potential V becomes
independent of the lattice spacing for sufficiently small a. To this effect we first
determine the β-function to lowest order in g0 by inserting (9.8) into the RG equation
(9.6). One readily finds that for SU(N)

β(g0) ≈ − 11N
48π2 g3

0. (9.9)

This we expect to be a good approximation for sufficiently small bare coupling.
Because β(g0) is negative in the small coupling region, we conclude from eq. (9.6b)
that, when the lattice spacing is decreased, g0 will be driven towards the fixed
point g�

0 = 0, corresponding to a zero of the β-function. Hence, if for some value
of the lattice spacing, g0 (as determined from a fit to experimental data) turns out
to be small enough to validate (9.9), then this approximation will improve as we
decrease a, and the continuum limit will be realized at vanishing bare coupling!
This is asymptotic freedom as seen on the level of the bare coupling constant: as
we make the lattice finer and finer, and hence increase the number of sites within
a given physical volume, we must decrease the coupling accordingly to keep physics
the same.

Integrating eq. (9.6b) one now obtains a relation between g0 and a:*

a =
1

ΛL

e
− 1

2β0g2
0 , (9.10a)

where

β0 = 11N/48π2, (9.10b)

and ΛL is an integration constant with the dimension of a mass.

The above derivation of the β-function in leading order was based on the
perturbative expression for the potential (9.8) and the renormalization group

* We remind the reader that we have only considered the leading term in the
β-function. This term as well as that of order g5

0 determines the behaviour of
the theory near the RG-fixed point. Their structure is independent of the observ-
able that one uses to compute it; in the usual continuum language: The first two
coefficients of the perturbative β-function are independent of the renormalization
scheme.
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equation. An alternative procedure is to relate the bare coupling constant to
the renormalized coupling constant in perturbation theory. By holding the latter
fixed, while varying the lattice cutoff, one then obtains a perturbative expres-
sion for a∂g0/∂a, and hence the β-function. We feel, however, that the above ap-
proach (Kogut, 1983) is more transparent, since the potential has a direct physical
meaning.

Having obtained the β-function, let us now use the RG-equation (9.6) to obtain
an improved expression for the potential. This will not only be very instructive to
the reader, but will also serve to illustrate the basic ideas discussed in the previous
section.

Consider the potential as given by the right-hand side of (9.5). Inserting this
expression* into (9.6), one readily arrives at the following alternative RG-equation
in which the derivative ∂/∂a has been traded in favour of the physical separation of
the qq̄-pair:

[
R

∂

∂R
+ β(g0)

∂

∂g0

]
V (R, g0, a) = −V (R, g0, a).

If we define the dimensionless quantity

Ṽ (R, g0, a) = RV (R, g0, a), (9.11)

then Ṽ satisfies the following differential equation:
[
R

∂

∂R
+ β(g0)

∂

∂g0

]
Ṽ (R, g0, a) = 0. (9.12)

This is an interesting equation, for it tells us how an infinitesimal change in R can
be compensated by a corresponding change in the bare coupling constant, keeping
the lattice spacing fixed. In other words, any change in R can be absorbed into a (R-
dependent) redefinition of the coupling strength. Let us be more explicit. Suppose we
know V (R, g0, a) for some given separation R0 of the quark-antiquark pair. Question:
can we determine the potential for separations R = λR0?. Consider Ṽ (λR0, g0, a),
where Ṽ has been defined in (9.11). Then (9.12) leads to the following equation
involving dimensionless variables only:

[
λ

∂

∂λ
+ β(g0)

∂

∂g0

]
Ṽ (λR0, g0, a) = 0. (9.13)

* Our presentation parallels closely that of Kogut (1983).
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One now easily verifies that the solution to (9.13) is given by

Ṽ (λR0, g0, a) = Ṽ (R0, ḡ0(λ), a), (9.14)

where the “running” coupling constant ḡ0(λ) satisfies an equation analogous to
(9.6b):

λ
∂ḡ0

∂λ
= −β(ḡ0(λ)), (9.15)

with

ḡ0(1) = g0.

Inserting for β(g0) the expression (9.9), one finds upon integrating (9.15) that

λ = e
− 1

2β0

[
1

ḡ2
0(λ)

− 1
g2
0

]

, (9.16)

where β0 is given by (9.10b). Solving (9.16) for g2
0(λ), we obtain

ḡ2
0(λ) =

g2
0

1 − 2β0g2
0 ln λ

. (9.17)

Hence what concerns the dimensionless quantity (9.14), scaling R0 with a factor λ is
equivalent to replacing the bare coupling constant g0 by (9.17). The corresponding
statement for the interquark potential now follows immediately from (9.11):

V (λR0, g0, a) =
1

λR0
Ṽ (λR0, g0, a)

(9.18)

=
1
λ

V (R0, ḡ0(λ), a).

Let us now use this relation to obtain a renormalization-group improved expres-
sion for the potential, replacing the perturbative expression (9.8). This expression
suggests that we should normalize the potential as follows:

V (a, g0, a) = C
g2
0

4πa
.

It then follows from (9.18) that V (λa, g0, a) = Cḡ2
0(λ)/(4πλa). By choosing λ = R/a,

we therefore find that

V (R, g0, a) = C
ḡ2
0(R/a)
4πR

,
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which, upon substituting for ḡ2
0(R/a) the expression (9.17), becomes

V (R, g0, a) =
C

4πR

[
g2
0

1 − 2β0g2
0 ln

(
R
a

)
]

, (9.19a)

or

V (R, g0, a) = − C

4πR

1

2β0 ln
(

R
a
e

− 1
2β0g2

0

) . (9.19b)

Expanding the denominator in (9.19a) to leading order in g2
0, we recover eq. (9.8).

Furthermore, requiring V (R, g0, a) to be independent of a, we arrive at the non-
perturbative relation (9.10), as follows immediately from eq. (9.19b). Hence ΛL is
related to the strength of the potential V by

V (R) = − C

4πR

1
2β0 ln(RΛL)

.

In contrast to the lattice spacing, ΛL is a physical scale in terms of which dimensioned
quantities can be measured. Thus by construction the quantity

ΛL =
1
a

e
− 1

2β0g2
0 (9.20)

satisfies an equation analogous to (9.6) and hence is a renormalization group in-
variant quantity. Solving (9.20) for g0 we see that the bare coupling vanishes like
1/ ln(aΛL) as a → 0:

g2
0(a) = − 1

2β0 ln(aΛL)
.

For the sake of completeness we also give here the relation between g0 and the
lattice spacing, derived from the first two (universal) coefficients in the power series
expansion of the β-function for NF flavours of massless quarks:*

β(g0) = −β0 g3
0 − β1g

5
0, (9.21a)

β0 =
1

16π2

(
11 − 2

3
NF

)
, β1 =

1
(16π2)2

(
102 − 38

3
NF

)
, (9.21b)

* In one-loop order the β -function was computed by Gross and Wilczek (1973)
and by Politzer (1973); the computation to second order has been carried out by
Caswell (1974), Jones (1974), and Belavin and Migdal (1974).
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a =
1

ΛL

R(g0), (9.21c)

R(g0) = (β0g
2
0)

−β1/2β2
0 e

− 1
2β0g2

0 . (9.21d)

Let us pause here for a moment. Our renormalization group arguments have
shown that the potential is of the form

V (R) = −C
α(R)

R

where α(R) increases with increasing separation of the quark and antiquark:

α(R) =
g2
0

1 − 2β0g2
0 ln

(
R
a

) . (9.22)

Clearly this result can only be meaningful if R is larger than the lattice spacing,
but much smaller than the inverse lattice cutoff. For R = Λ−1

L the effective cou-
pling strength diverges! This behaviour is quite different from that encountered in
QED. Thus when a charge is inserted into the vacuum of QED it will polarize the
medium in such a way that the effective charge measured at a distance R is less
than the original charge. In QCD, on the other hand, the opposite phenomenon
takes place. The non-abelian couplings of the gauge potentials lead to antiscreening.
This suggests that for large separations of the quark and antiquark the interaction
may become strong. Unfortunately, we have no way at present to calculate the qq̄-
potential for large separations analytically, and we must take recourse to numerical
methods.

But how do we know whether we are extracting continuum physics when per-
forming calculations on finite (rather small!) lattices?. The answer to this question is
found in the relation (9.21c,d). This relation tells us how the bare coupling constant
controls the lattice spacing. Indeed, inserting (9.21c) into (9.3), the requirement
(9.4) implies that for g0 ≈ g�

0 = 0, Θ̂(g0) must behave as follows:

Θ̂(g0) ≈
g0→0

ĈΘ(R(g0))dΘ (9.23)

where ĈΘ is a dimensionless constant. Quantities behaving like (9.23) are said to
show “asymptotic scaling”. By studying the ratio Θ̂(g0)/(R(g0))dΘ as a function of
g0 in the scaling region one then determines the constant ĈΘ.

In an actual numerical calculation on a lattice of finite size there will exist in
general only a narrow region in coupling constant space where Θ̂(g0) scales according
to (9.23). This region is called the “scaling window”. Thus since the lattice spacing
is controlled by the bare coupling according to (9.21c,d), physics will no longer fit on
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the lattice if g0 (and hence a) becomes too small (→ finite size effects). On the other
hand, by increasing the bare coupling, the lattice may become too coarse to account
for fluctuations taking place on a small scale, and we are leaving the continuum
region. This is the reason for the narrow window.

Returning now to (9.23), we find upon inserting this expression together with
(9.21c) into (9.3), that the observable defined in (9.4) can be expressed in terms of
the lattice scale ΛL by

Θphys. = ĈΘ(ΛL)dΘ . (9.24)

This shows that physical quantities can be calculated in units of the undetermined
mass scale ΛL. Hence a lattice calculation can only determine dimensionless ratios
of physical quantities (e.g., ratios of particle masses).

A particularly interesting example is the string tension σ which is the coefficient
of the linearly rising part of the interquark potential. Measured in lattice units it
is only a function of the bare coupling: σ̂(g0). In physical units, however, it has the
dimension of (mass)2, so that the physical string tension is given by

σ = lim
a→0

1
a2 σ̂(g0(a)).

From the above discussion we hence conclude that for g0 → 0, σ̂(g0) must depend
as follows on g0

σ̂(g0) ≈ Ĉσ(R(g0))2, (9.25)

which in view of (9.21d) tells us that σ is a non-perturbative observable.

Finally we remark that the appearance of ΛL in a theory which a priori is free of
any scale (like the case considered here) is well known from perturbative continuum
QCD, where the necessity of renormalizing the theory also requires the introduction
of a scale ΛQCD. The numerical values of ΛL and ΛQCD are not the same and indeed
differ substantially (see chapter 15).

In the following chapter we will make use of scaling arguments of the type
discussed above, to derive a relation between the potential of a quark-antiquark
pair and the energy stored in the colour electric and magnetic field.
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CHAPTER 10

LATTICE SUM RULES

In chapter 7 we have shown that the static quark-antiquark potential can be
determined from the exponential decay of the expectation value of the Wilson loop
for large euclidean times. In the pure Yang-Mills theory we expect that this potential
rises linearly for large quark-antiquark separations, leading to quark confinement.
As we have already pointed out, this linear rise is believed to be due to the formation
of a narrow flux tube connecting the quark–antiquark pair, in which the colour field
energy is concentrated. The energy stored in the colour fields should match, after
subtracting the self energy contributions of the quark and antiquark, the interquark
potential, as determined from the Wilson loop. In order to be able to study the
distribution of the field energy surrounding the quark-antiquark pair we need a
non-perturbative expression for the field energy which is suited for Monte Carlo
simulations. To this effect we shall derive an energy sum rule which relates the
potential to the expectation value of an operator which can be identified with the
field energy of a quark-antiquark pair. The same line of reasoning leads to a similar
sum rule relating the mass of a glueball* to the energy stored in the chromoelectric
and magnetic fields. Such sum rules have been first obtained by Michael [Michael,
1987], and have been further discussed in [Rothe (1995a,b); Michael (1996)]. Before
deriving these sum rules it is instructive to illustrate the basic idea that goes into
their derivation in a simple quantum mechanical example. Although in principle we
can chose any potential for purposes of illustration, we prefer to be specific, and
consider the harmonic oscillator, where the sum rule can be checked exactly.

10.1 Energy Sum Rule for the Harmonic Oscillator

Consider the imaginary time Green function, �q�|e−Hτ |q�, whose path integral
representation has been discussed in chapter 2. By expanding |q� in a complete set of
energy eigenstates one immediately concludes that this matrix element is dominated
for large τ by the contribution of the ground state, i.e.,

�q�|e−Hτ |q� → ψ0(q�)ψ∗
0(q)e

−E0τ , (10.1)

* Glueballs constitute the particle spectrum of the pure SU(3) Yang–Mills theory.
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where ψ0 is the wave function with energy E0. By setting q� = q and integrating
over q we therefore have that

∫
dq�q|e−Hτ |q� −→

τ→∞
e−E0τ . (10.2)

Hence by studying the behaviour of the lhs for large euclidean times we can in princi-
ple extract the ground state energy. What we are interested in, however, is an expres-
sion which relates the ground state energy to an ensemble average of the kinetic and
potential energy. In the following we now illustrate the basic ideas for accomplishing
this program for the case of the harmonic oscillator whose Hamiltonian is given by

H =
p2

2m
+

1
2
κq2.

The first step in deriving an energy sum rule consists in expressing the imaginary
time Green function in (10.2) as a configuration space path integral. Proceeding as
in chapter two, the lhs of (10.2) is given for small time step � by

∫
dq�q|e−Hτ |q� ≈

( m

2π�

)N
2

∫ N−1∏
n=0

dqne
−S[q;m,κ,N ,�]|qN=q0 , (10.3a)

where

S[q; m, κ, N , �] =
N−1∑
n=0

�

[
1
2
m

(
qn+1 − qn

�

)2

+
1
2
κq2

n

]
, (10.3b)

and we have set q = q0. The euclidean time τ is given by N�. Notice that we did
not take the continuum limit (N → ∞, � → 0, with N� = τ fixed) on the rhs. For
sufficiently small �, and hence large N = τ

�
the rhs will be a good approximation to

the Green function. How small � has to be chosen to approximate continuum physics
will depend on the values of the dimensioned parameters m and κ which determine
the relevant scales in the problem. Now for a fixed non-vanishing value of �, the limit
τ → ∞ in (10.2) is realized for N → ∞. We are therefore led to the statement that

( m

2π�

)N
2

∫ N−1∏
n=0

dqne
−S[q;m,κ,N ,�]|qN=q0 −→

N→∞
e−Ê0N , (10.4)

where Ê0 = �E0 is the energy measured in units of the lattice spacing �. By scaling all
the dimensioned variables with � according to their canonical dimension, we arrive
at the following dimensionless lattice version of (10.4)

Ĝ(m̂, κ̂, N) −→
N→∞

e−Ê0(m̂,κ̂)N , (10.5a)
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where

Ĝ(m̂, κ̂, N) =
(

m̂

2π

)N
2

∫ N−1∏
n=0

dq̂ne
−Ŝ[q̂;m̂,κ̂,N ]|q̂N=q̂0 , (10.5b)

and

Ŝ[q̂; m̂, κ̂, N ] =
N−1∑
n=0

[
1
2
m̂(q̂n+1 − q̂n)2 +

1
2
κ̂q̂2

n)
]

. (10.5c)

Here m̂ = m� and κ̂ = �3κ are dimensionless parameters. In the continuum limit
m̂ → 0, κ̂ → 0 with m̂3

κ̂
= m3

κ
fixed. From (10.5) it follows that the energy measured

in lattice units can be computed as the following limit

Ê0(m̂, κ̂) = − lim
N→∞

1
N

ln Ĝ(m̂, κ̂, N) . (10.6)

Let us now repeat this excercise using another (fine) discretization �� = 1
ξ
�. Then the

path integral representation of the lhs of (10.2) will differ from that in (10.3a) in that
� and N are replaced by �� = 1

ξ
�, and N � = ξN (recall that N ��� = N� = τ). After

scaling all variables with the original lattice spacing � according to their canonical
dimensions (so that the values of the parameters m̂ and κ̂ are the same as before),
the new path integral expression for the lhs of (10.2) reads

Ĝ(m̂(ξ), κ̂(ξ), N �) =
[
m̂(ξ)
2π

]N′
2

∫ N ′−1∏
n=0

dq̂ne
−Ŝ[q̂,m̂(ξ),κ̂(ξ),N ′]|q̂N=q̂0 , (10.7a)

where

Ŝ[q̂, m̂(ξ), κ̂(ξ), N �] =
N ′−1∑
n=0

[
1
2
m̂(ξ)(q̂n+1 − q̂n)2 +

1
2
κ̂(ξ)q̂2

n

]
, (10.7b)

and
m̂(ξ) = ξm̂; κ̂(ξ) =

1
ξ
κ̂. (10.7c)

Hence the parameters m̂ and κ̂ have now acquired a ξ-dependence, which is very
simple in the present case. Certainly for ξ > 1 the above path integral expression
for the Green function is at least as good as the previous one, since we have made
the lattice even finer. For N � → ∞ (10.7a) will now behave like

Ĝ(m̂(ξ), κ̂(ξ), N �) −→
N ′→∞

e−Ê0(m̂(ξ),κ̂(ξ))N ′
. (10.8)

as follows from (10.5a). But for sufficiently small � we must have that Ĝ(m̂, κ̂, N) =
Ĝ(m̂(ξ), κ̂(ξ), ξN), where m̂ = m̂(1), κ̂ = κ̂(1). We hence conclude that

ξÊ0(m̂(ξ), κ̂(ξ)) = Ê0(m̂, κ̂), (10.9)
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i.e., the lhs must be independent of ξ. By taking the derivative of the lhs with respect
to ξ we therefore arrive at the following alternative equation for the ground state
energy

Ê0(m̂, κ̂) = −
[

∂Ê0(m̂(ξ), κ̂(ξ))
∂ξ

]

ξ=1

. (10.10)

But according to (10.8)

Ê0(m̂(ξ), κ̂(ξ)) = − lim
N ′→∞

1
N � ln Ĝ(m̂(ξ), κ̂(ξ), N �). (10.11)

Taking the derivative of (10.7a) with respect to ξ, making use of (10.7c), one there-
fore finds that (10.10) translates into

Ê0(m̂, κ̂) =
1
2

+ lim
N ′→∞

1
N �

N ′−1∑
n=0

〈
−1

2
m̂(q̂n+1 − q̂n)2 +

1
2
κ̂q̂2

n

〉
, (10.12a)

where generically

�O(q̂)� =
∫

Dq̂O(q̂)e−Ŝ

∫
Dq̂e−Ŝ

(10.12b)

with Ŝ the action (10.5c). The expression (10.12a) can be further simplified. Because
of the periodic boundary condition q̂0 = q̂N , we have compactified the imaginary
time direction. The value of the expectation value in (10.12a) will be independent
of the time slice labeled by n. Hence (10.12a) can be simplified to read

Ê0(m̂, κ̂) =
1
2

+
〈

−1
2
m̂ ˙̂q2

� +
1
2
κ̂q2

�

〉
, (10.13a)

where

˙̂q� = q̂�+1 − q̂�, (10.13b)

and � denotes some arbitrarily chosen temporal lattice site. For the ground state
energy measured in physical units, E0 = 1

�
Ê0, one then obtains

E0(m, κ) =
1
2�

+
〈

−1
2
mq̇2(τ) +

1
2
κq2(τ)

〉
, (10.14)

where all variables are now dimensionful, and where we have used the more sugges-
tive notation q(τ) instead of q�.

Equation (10.14) relates the ground state energy to an ensemble average of the
kinetic and potential energy, calculated with the Boltzmann distribution e−Ŝ. In the
euclidean version, however, the kinetic term is seen to yield a negative contribution!
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Although this is naively understood by recalling that the transition from real to
imaginary time will map 1

2(
dq
dt

)2 into −1
2(

dq
dτ

)2, the above result still looks surprising
at first sight. After all, the contribution of the kinetic energy should be positive. A
detailed calculation shows that �−1

2(
dq
dτ

)2� is itself divergent in the limit � → 0. The
divergence is cancelled by the first term in (10.14) and leaves a positive contribu-
tion, which has precisely the expected form.* The fact that the kinetic contribution
diverges does not come as a surprise. Looking at the integrand on the rhs of (10.3a)
we see that the width of the distribution in q�+1 − q� is only of O(

√
�), so that

�q̇2
� � = �(q�+1 − q�)2/�2� is expected to be of O(1

�
).

Since the appearance of the minus sign in front of the kinetic term is so charac-
teristic of the euclidean formulation, and, in fact, will pop up again when we discuss
the SU(N) gauge theory in the following section, it is instructive to derive the above
result for the kinetic contribution in an alternative way.

The energy E0 is given by the ground state expectation value of the Hamilto-
nian, i.e,

E0 =
〈

0
∣∣∣∣

1
2m

P 2 + V (Q)
∣∣∣∣ 0

〉
,

where P and Q are the momentum and coordinate operators, and |0� is the ground
state (or “physical vacuum” in the language of field theory). We are interested, in
particular, in expressing �0|P 2|0� as a euclidean path integral. To this effect consider
the (imaginary time) Heisenberg operator

Q(τ) = eHτQe−Hτ ,

and the corresponding conjugate momentum

P (τ) = eHτPe−Hτ .

They satisfy the canonical commutation relation

[Q(τ), P (τ)] = i.

The equation of motion for the operator Q(τ) reads

Q̇(τ) = eHτ [H, Q]e−Hτ = − i

m
P (τ).

* The cancellation will be demonstrated in section 4 of chapter 18 for the more
general case of a harmonic oscillator in contact with a heat bath, where a similar
energy sum rule holds.
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Since |0� is an eigenstate of the Hamiltonian it follows that �0|P 2|0� = �0|P 2(τ)|0�.
Consider now the ground state expectation value of the euclidean time ordered
product of Q(τ)Q(τ �). This time ordered product has a path integral representation,
given by (2.26a), i.e.,

�0|θ(τ − τ �)Q(τ)Q(τ �) + θ(τ � − τ)Q(τ �)Q(τ)|0�

=
1
Z

∫
Dq q(τ)q(τ �)e−

∫
dτ [ 12mq̇2+V (q)]

where

Z =
∫

Dq e−
∫

dτ [ 12mq̇2(τ)+V (q(τ))].

Taking the derivative* with respect to τ and τ � on both sides of this equation, and
making use of the fact that the operators Q(τ) commute for equal times, one finds,
after setting Q̇(τ) = − i

m
P (τ) that

− i

m
δ(τ − τ �)[Q(τ), P (τ)] − 1

m2 �0|T (P (τ)P (τ �))|0�

=
1
Z

∫
Dqq̇(τ)q̇(τ �)e−

∫
dτ [ 12mq̇2(τ)+V (q(τ))].

Since the operators appearing in the time ordered product commute, we can omit the
time ordering operation. Now on a discretized time lattice, the continuum δ-function
is replaced by (see eq. (2.65))

δ(τ − τ �) → 1
�
δnn′ =

∫ π
�

− π
�

dp4

2π
eip4(n−n′)�.

Hence setting τ = τ � (i.e. n = n�) implies δ(0) → 1
�
. After replacing the equal time

commutator of Q(τ) and P (τ) by “i”, we find that

1
2m

�0|P 2|0� =
1
2�

− 1
Z

∫
Dq

1
2
mq̇(τ)2e−

∫
dτ [ 12mq̇2(τ)+V (q(τ))].

Hence the kinetic contribution to E0 has precisely the form given by the first two
terms in (10.14)

* Of course when writing q̇(τ) within a path integral, we always mean its dis-
cretized version.
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10.2 The SU(N) Gauge Action on an Anisotropic Lattice

In the case of our quantum mechanical example, the dependence of the di-
mensionless parameters m̂ and κ̂ on the asymmetry parameter ξ = �

�′ was very
simple. In lattice gauge field theories the analogous parameter is given by ξ = a

aτ
,

where a and aτ are the spatial and temporal lattice spacings. On an isotropic
lattice aτ = a. The spatial lattice spacing now plays the role of the reference
“lattice spacing” � in our quantum mechanical example. The parameterization of
the SU(N) gauge action on an anisotropic lattice turns out to be more subtle than
in the quantum mechanical case, and does not follow from naive considerations
alone.

Consider the continuum action (6.17) for the pure SU(N) gauge theory. In the
temporal gauge, AB

4 = 0, where FB
4i = ∂4A

B
i it has the form

SG[A] =
∫

dτ

∫
d3x

1
2

∑
B,i

(ȦB
i (�x, τ))2 + SI [A],

where

SI [A] =
1
4

∫
dτ

∫
d3x

∑
i,j,B

FB
ij (�x, τ)FB

ij (�x, τ),

and “B” are the colour indices. In this gauge the action thus has a similar form as
that of a quantum mechanical system, except that we are dealing with a system
with an infinite number of degrees of freedom. A naive discretization of the degrees
of freedom, labeled by �x, and of the euclidean time integral, yields

SG[A] =
∑

n

aτa
3

{
1

2a2
τ

∑
i,B

[AB
i (�n, n4 + 1) − AB

i (�n, n4)]2 +
1
4

∑
i,j,B

FB
ij (n)FB

ij (n)

}
,

where AB
i (n) and FB

ij (n) are the potentials and colour-magnetic fields at the lattice
site n = (�n, n4). The discretized colour-magnetic contribution

∑
i,j,B FB

ij (n)FB
ij (n)

does not involve an explicit aτ -dependence. Having discretized the degrees of free-
dom, we have thereby introduced an additional scale, given by the spatial lattice
spacing. By scaling the potentials with this lattice spacing according to their canon-
ical dimension, i.e., introducing the dimensionless potentials ÂB

i = aAB
i , the above

action can be written in the form

SG =
∑

n

{
ξ

2
F̂B

i4 (n)F̂B
i4 (n) +

1
4ξ

F̂B
ij (n)F̂B

ij (n)
}

,

where F̂B
4i = aaτF

B
4i , F̂B

ij = a2FB
ij , and where a sum over repeated indices is now

understood. Written in terms of the field strengths, the expression appears to be
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gauge invariant. For finite lattice spacing this is however not the case. To ensure
gauge invariance for arbitrary lattice spacings, we must introduce the potentials in
the form of link variables, as discussed in chapter 6. The matrix valued fields strength
tensor F̂µν is then related to the plaquette variables by Uµν(n) ≈ exp[ig0F̂µν(n)]. One
then readily verifies that the following SU(N) action possesses the correct naive
continuum limit

SG[U ] =
2N
g2
0

1
ξ
Ps +

2N
g2
0

ξPτ , (10.15a)

where

Ps =
∑
Ps

[
1 − 1

2N
Tr(UPs + U †

Ps
)
]
, (10.15b)

Pτ =
∑
Pτ

[
1 − 1

2N
Tr(UPτ + U †

Pτ
)
]
. (10.15c)

Here UPs and UPτ are the spatial and temporal plaquette variables which are related
to the colour electric and magnetic fields. Notice that the ξ-dependence of the ki-
netic (electric) and potential (magnetic) term is the same as in the case of the
harmonic oscillator. This form for the action had been proposed by Engels et al.,
and by Kuti et al. [Engels (1981b), Kuti (1981)]. The naive ξ-dependence of the
above action is however too simple. The reason is that this action describes a com-
plicated interacting system. As a consequence of quantum fluctuations the couplings
associated with the temporal and spatial plaquettes must be separately tuned with
the spatial lattice spacing and the asymmetry parameter ξ to ensure that physical
observables become independent of a and ξ close to the continuum limit. Instead of
the spatial lattice spacing one can also choose the bare coupling constant g0 defined
on an isotropic lattice. We therefore consider the following more general form for
the action [Hasenfratz and Hasenfratz (1981b); Karsch (1982)],

SG[U ] = β̂sPs + β̂τPτ , (10.16a)

where

β̂s =
2N

g2
s(g0, ξ)

1
ξ
,

(10.16b)

β̂τ =
2N

g2
τ (g0, ξ)

ξ,

with gs(g0, ξ) and gτ (g0, ξ) satisfying the condition

gs(g0, 1) = gτ (g0, 1) = g0. (10.16c)
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Hence*

β̂σ −→
ξ→1

β̂ = 2N/g2
0.

Let us pause here for a moment and return to the case of the harmonic oscillator.
There the ξ-dependence of the action was absorbed into a mass and coupling pa-
rameter. This ξ-dependence was given by naive arguments alone: m̂(ξ) = ξm̂ and
κ̂(ξ) = 1

ξ
κ̂. Hence m̂(ξ) and κ̂(ξ) are functions of ξ and the dimensionless mass and

κ parameters m̂ = m̂(1) and κ̂ = κ̂(1). When taking the continuum limit, these
dimensionless parameters must be tuned with the lattice spacing � according to
m̂ = m� and κ̂ = �3κ, where m and κ are physical parameters which are held fixed
when taking the continuum limit. The naive ξ dependence of the parameters in the
quantum mechanical case correspond to the explicit ξ-dependence of the couplings
(10.16b), while the ξ-dependence of gs(g0, ξ) and gτ (g0, ξ) is a consequence of quan-
tum fluctuations. As has been shown by Karsch (1982), β̂s and β̂τ can be related
in the weak coupling limit (g0 → 0, or β̂ → ∞) to the coupling β̂ on an isotropic
lattice as follows

1
ξ
β̂τ (β̂, ξ) = β̂ + 2Ncτ (ξ) + O(β̂−1),

(10.17)

ξβ̂s(β̂, ξ) = β̂ + 2Ncs(ξ) + O(β̂−1),

where cσ(1) = 0, σ = s, τ . The ξ-dependence of the functions cσ(ξ) have been studied
in detail by this author. When taking the continuum limit at a fixed value of ξ, the
coupling constant g0 in (10.16b), defined on a isotropic lattice, must be tuned with
the spatial lattice spacing as dictated by the renormalization group. As we shall see
in the following sections, the ξ-dependence of the couplings gσ in (10.16b) will lead
to an energy sum rule for the qq̄-potential, and the glueball mass, which differs in
an important way from that which one would expect naively.

10.3 Sum Rules for the Static qq̄-Potential

Having parametrized the SU(N)-Yang–Mills action on an anisotropic lattice,
we can now proceed along similar lines as in section 2, to derive an energy sum rule
for the static quark–antiquark potential, which relates this quantity to the energy
stored in the chromoelectric and chromomagnetic fields of a quark–antiquark pair.
To guide the readers attention, let us briefly outline the general strategy we shall

* We have denoted β with a “hat”, in order not to confuse it with the renormal-
ization group β-function (9.6b) which will be relevant further below.
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follow. We first derive a sum rule for the static qq̄-potential in the pure SU(N) gauge
theory, which relates the potential to the action stored in the chromoelectric and
magnetic fields. For this we will only need to know the expression of the action on an
isotropic lattice, i.e., a lattice with equal spacings in the space and time directions.
This action sum rule will play an important role in our subsequent discussion of
the energy sum rule. For the derivation of the latter sum rule we shall need the
expression for the action on an anisotropic lattice, obtained in the previous section.
As in the case of the quantum mechanical example, the energy sum rule then follows
by requiring that in the continuum limit the potential calculated from a Wilson loop
on an anisotropic lattice should be independent of the anisotropy parameter ξ = a

aτ
.

The very same requirement, when applied to the special case of a confining, linearly
rising, potential leads to a “coupling constant sum rule” [Karsch (1982)], which
will allow us to confirm that the energy stored in the chromoelectric and magnetic
field matches the interquark potential. In particular, it will allow us to identify the
contribution to the field energy arising from the trace anomaly, which will be shown
to account for 1/2 of the field energy stored in the flux tube.

Let us briefly state what is meant by the trace anomaly. The colour-electric and
magnetic field energy density is given by T00, where Tµν is the energy momentum
tensor. On the classical level this tensor is traceless and symmetric. On the quantum
level, however, it is known from perturbation theory that quantum fluctuations give
rise to the so called trace anomaly: the energy momentum tensor Tµν is no longer
traceless. Now Tµν can be trivially decomposed into a traceless and trace part,

Tµν =
(

Tµν − 1
4
gµνT

)
+

1
4
gµνT , (10.18)

where T is the trace, T =
∑

µ T µ
µ . One therefore expects that in addition to the

naive field energy density (which is given by an expression analogous to that in
electrodynamics) the potential receives a contribution arising from the non-vanishing
trace of the energy momentum tensor. This trace is given in Minkowski space by
[Collins (1977)]

T (x) =
2β(g)

g
L(x), (10.19a)

where

L(x) =
1
4
FAµν(x)FA

µν(x). (10.19b)

A summation over repeated indices is always understood. β(g) = µ∂g/∂µ is the
β-function of the continuum SU(N)-gauge theory with µ the renormalization scale.
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Hence from (10.18), we expect that the interquark potential receives an anomalous
contribution having the form

Vanom(R) =
1
4

〈∫
d3x T (x)

〉

qq̄

=
β(g)
2g

〈∫
d3x L(x)

〉

qq̄

. (10.20)

In the euclidean formulation, the action density will be replaced by its euclidean
counterpart 1

4F
A

µν(x)FA
µν(x). Since the lattice provides a non-perturbative regu-

larization of the partition function, it is the appropriate framework for deriving a
non-perturbative expression for the contribution of the normal and anomalous part
of the field energy to the interquark potential. Originally it was C. Michael (1987)
who derived an action and energy sum rule for the qq̄-potential in an SU(N) gauge
theory. A more detailed discussion of these sum rules has been carried out in Rothe
(1995a,b) and will be presented below. As we shall see, the derivation is straightfor-
ward and leads in a very natural way to a decomposition of the field energy into a
normal and anomalous part.

(i) Action Sum Rule

Consider the ground state energy of a quark–antiquark pair separated by a
distance R̂. As always, quantities denoted with a “hat” are understood to be mea-
sured in units of the lattice spacing. The energy Ê0(R̂) can be calculated from the
expectation value of the Wilson loop according to

Ê0(R̂) = − lim
T̂→∞

1
T̂

ln�W (R̂, T̂ )�, (10.21a)

where

�W (R̂, T̂ )� =
∫

DUW (R̂, T̂ )e−SG∫
DUe−SG

. (10.21b)

Recall that W (R̂, T̂ ) is given by the trace of the path ordered product of link vari-
ables around a rectangular loop with R̂ and T̂ lattice spacings in the spatial and
euclidean time directions (Our notation here deviates from that in chapter 7). On
an isotropic lattice �W (R̂, T̂ )� is calculated with the action (10.15) with ξ = 1. This
action has the form

SG = β̂(Pτ + Ps) (10.22)

where β̂ = 2N
g2
0

for SU(N). The energy Ê0(R̂), defined by (10.21a), is a function

of R̂ and β̂ and includes the self-energy contributions of the quark and antiquark.
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Since these contributions do not depend on R̂, they can be eliminated by considering
the difference Ê0(R̂, β̂) − Ê0(R̂0, β̂), where R̂0 is some reference qq̄-separation. We
then define the qq̄ potential by

V̂ (R̂, β̂) = − lim
T̂→∞

1
T̂

[ln�W (R̂, T̂ )�]subtr. (10.23)

From here on we will always assume that such a subtraction has been carried out,
and shall drop the subscript “subtr” for simplicity. Following Michael (1987) we now
take the derivative of (10.23) with respect to β̂ and obtain

∂V̂ (R̂, β̂)
∂β̂

= lim
T̂→∞

1
T̂

�Pτ + Ps�qq̄−0, (10.24a)

where �O�qq̄−0 is defined generically by

�O�qq̄−0 =
�W (R̂, T̂ )O�
�W (R̂, T̂ )�

− �O�. (10.24b)

The rhs of this expression is the expectation value of the operator O in the qq̄-state
measured relative to the vacuum. In the limit T̂ → ∞, the rhs of (10.24a) can be
approximated by*

�Pσ�qq̄−0 ≈
T̂→∞

T̂ �P �
σ�qq̄−0, (10.25a)

where

P �
σ =

∑
P

[
1 − 1

2N
Tr(UPσ + U †

Pσ
)
]

nτ fixed,
(σ = τ , s) (10.25b)

is the contribution to Pσ arising from plaquettes located on a fixed time slice, and
with the Wilson loop extending from n4 = − T̂

2 to n4 = T̂
2 , with T̂ → ∞. This time

slice is conveniently chosen to be the n4 = 0 plane. Hence,

β̂
∂V̂ (R̂, β̂)

∂β̂
= β̂�P �

τ + P �
s�qq̄−0

(10.26)

−→
naive

a
∑

�x

a3 1
2
�E2(�x) + B2(�x)�qq̄−0,

where in the last step we have taken the naive continuum limit. E2 and B2 are the
square of the euclidean (!) colour electric and magnetic fields EA

i , and BA
i summed

* See the argument given by Michael (1987). Note that �P ��qq̄−0 is calculated with
a Wilson loop of very large extension in euclidean time.
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over i = 1,2,3, and colours. The expectation value 1
2�E2(�x) + B2(�x)� is not to be

confused with the Minkowski field energy. In fact, β̂(P �
τ + P �

s) is the contribution to
the action coming from a fixed time slice.

We next make use of the renormalization group to cast the lhs of (10.26) in
a form involving the potential and its derivative with respect to R̂. In the limit of
vanishing lattice spacing “a” we have that

1
a
V̂

(
R

a
, β̂(a)

)
−→
a→0

V (R), (10.27)

where V (R) is the interquark potential in physical units. The dependence of
β̂(a) = 2N/g2

0(a) on the lattice spacing is given, close to the continuum limit, by the
renormalization group relation (9.21c,d). The invariance of the lhs of (10.27) with
regard to changes in the lattice spacing leads to

∂β̂

∂lna

∂V̂ (R̂, β̂)

∂β̂
= V̂ (R̂, β̂) + R̂

∂V̂ (R̂, β̂)
∂R̂

,

where it is understood that this relation holds close to the continuum limit. Making
use of this expression, equation (10.26) takes the following form*

V̂ (R̂, β̂) + R̂
∂V̂ (R̂, β̂)

∂R̂
=

∂β̂

∂lna
�P �

τ + P �
s�qq̄−0. (10.28)

In the case of a confining potential, V̂ (R̂, β̂) = σ̂(β̂)R̂, this equation reduces to

2σ̂(β̂)R̂ =
∂β̂

∂lna
�P �

τ + P �
s�qq̄−0, (10.29)

while for a pure Coulomb-type potential the lhs of (10.28) vanishes. Thus in an
SU(N) gauge theory, where ∂β̂

∂lna
�= 0, the potential cannot be of the pure Coulomb

type.

(ii) Energy Sum Rule

Let us now turn to our second objective, and derive a sum rule, relating the
interquark potential to the field energy. This sum rule is obtained by requiring that a
lattice regularization involving different lattice spacings in the temporal and spatial
directions should lead to the same potential as that computed from an isotropic

* As was first noted by H.G. Dosch the action sum rule of Michael (1987) contained
an error (private communication).
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lattice. This is analogous to the requirement which in the case of our quantum
mechanical example led us to an energy sum rule for the ground state energy. Here
it is the ground state energy of a static quark–antiquark pair interacting via Young–
Mills fields.

Consider the expectation value of a Wilson loop on an isotropic lattice. The
expectation value is computed with the action (10.22). Next consider a Wilson loop
on an anisotropic lattice with the same physical extension in the spatial and temporal
directions. The expectation value must now be calculated with the ξ-dependent
action (10.16a,b), which we shall denote by S(ξ). Hence the number of lattice sites
in the euclidean time direction is now ξT̂ . Since both Wilson loops have the same
physical extension, their expectation values must be the same, if the lattice is fine
enough to approximate continuum physics. This leads to the requirement that

�W (R̂, T̂ )�S(1) = �W (R̂, ξT̂ )�S(ξ).

From (10.23) it then follows that*

V̂ (R̂, β̂) = ξṼ (R̂, βs(ξ), βτ (ξ)), (10.30a)

where

Ṽ (R̂, β̂s(ξ), β̂τ (ξ)) = − lim
T̂ ′→∞

1
T̂ �

ln�W (R̂, T̂ �)�S(ξ). (10.30b)

and

�W (R̂, T̂ )�S(ξ) =
∫

DU W (R̂, T̂ )e−[β̂s(ξ)Ps+β̂τ (ξ)Pτ ]

∫
DU e−[β̂s(ξ)Ps+β̂τ (ξ)Pτ ]

. (10.30c)

Clearly

Ṽ (R̂, βs(ξ), βτ (ξ))|ξ=1 = V̂ (R̂, β̂).

Equation (10.30a) implies that

d

dξ

[
ξṼ

(
R̂, βs(ξ), βτ (ξ)

)]
= 0. (10.31)

This equation is the basis for deriving the desired energy sum rule. From (10.30b,c)
one finds that

∂Ṽ

∂βσ

= �P �
σ�qq̄−0; σ = τ , s.

* We suppress the dependence of βσ on g0, or alternatively on a, on which the
coupling g0 depends, since it is held fixed in the analysis.
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Upon carrying out the differentiation (10.31), and then returning to the isotropic
lattice ξ = 1, we are led to the relation

V̂ (R̂, β̂) = −
��

∂β̂τ

∂ξ

�
�P �

τ �qq̄−0 +

�
∂β̂s

∂ξ

�
�P �

s�qq̄−0

�

ξ=1

.

Here V̂ (R̂, β̂) is the potential in lattice units computed on an isotropic lattice. This
expression can be written in the form

V̂ (R̂, β̂) = η−�−P �
τ + P �

s�qq̄−0 − η+�P �
τ + P �

s�qq̄−0, (10.32a)

where

η± =
1
2




�
∂β̂τ

∂ξ

�

ξ=1

±
�

∂β̂s

∂ξ

�

ξ=1


. (10.32b)

Consider the first term appearing on the rhs of (10.32a). In the continuum limit
g0 → 0 (or β̂ → ∞). From the weak coupling relations (10.17) one finds that

η− −→
β̂→∞

β̂. (10.33)

Hence

η−�−P �
τ + P �

s�qq̄−0 −→
β̂→∞

β̂�−P �
τ + P �

s�qq̄−0

(10.34)

−→
naive

a
�

�x

a3 1
2
�−E2(�x) + B2(�x)�qq̄−0,

where we have taken the naive continuum limit in the last step. This suggests that
the first term appearing on the rhs of (10.32a) is the (euclidean) lattice version
of the usual Minkowsky field energy of a quark–antiquark pair (measured relative
to the vacuum), coming from the traceless part of the energy momentum tensor.
Notice that just as in our quantum mechanical example, the contribution arising
from the “kinetic term”, involving the time like plaquettes (which is associated with
the electric field energy density), carries a negative sign in the euclidean formulation.

We now show that for the case of a linearly rising (confining) potential one
can actually determine what fraction of the potential is made from “ordinary” field
energy. By making use of the action sum rule (10.28), we can cast the energy sum
rule (10.32) in the form

V̂ (R̂, β̂) + η+
∂lna

∂β̂

�
V̂ (R̂, β̂) + R̂

∂V̂ (R̂, β̂)
∂R̂

�
= η−�−P �

τ + P �
s�qq̄−0. (10.35)



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch10

Lattice Sum Rules 145

The combination η+ defined in (10.32b) has been determined non-perturbatively by
Karsch (1982), by requiring that the string tension determined either from a space-
like or time like Wilson loop on an anisotropic lattice should yield the same result.
Karsch finds that

η+ = −1
4

∂β̂

∂ ln a
= −βL(g0)

2g0
β̂, (10.36a)

where

βL(g0) = −a
∂g0

∂a
(10.36b)

is the β-function discussed in chapter 9. Hence η+(∂ ln a/∂β̂) = −1/4, so that
(10.32a) becomes

V̂ (R̂, β̂) − 1
4

[
V̂ (R̂, β̂) + R̂

∂V̂ (R̂, β̂)
∂R̂

]
= η−�−P �

τ + P �
s�qq̄−0. (10.37)

For the case of a linearly rising (confining) potential this equation reduces to

1
2
V̂conf(R̂, β̂) = η−�−P �

τ + P �
s�qq̄−0, (10.38)

which, according to (10.34) suggests that the “normal” field energy accounts for
only one half of the interquark potential. The other half must therefore be provided
by the second term in (10.32a). If the first term in (10.32a) is the lattice version
of the semiclassical field energy, then the second term should be the contribution
coming from the trace anomaly. Thus making use of (10.36a) we have that

−η+�P �
τ + P �

s�qq̄−0 =
1
4

(
2βL

g0
�L̂�qq̄−0

)
, (10.39a)

where

L̂ = β̂(P �
τ + P �

s) (10.39b)

is the (dimensionless) lattice version of the euclidean continuum Lagrangian density
integrated over all space at a fixed time. The energy sum rule (10.32a) therefore
becomes

V̂ (R̂, β̂) = η−�−P �
τ + P �

s�qq̄−0 +
1
4

(
2βL

g0
�L̂�qq̄−0

)
.

The quantity (2βL/g0)L̂ in (10.40a) has the form of the anomalous contribution
to the Hamiltonian following from the trace anomaly as computed in lattice per-
turbation theory by Caracciolo, Menotti and Pelisetto (Caracciolo, 1992). For weak
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coupling the anomalous contribution to the potential (10.40), in physical units, takes
the form

Vanom(R, β̂(a), a) =
βL(g0)

2g0

∫
d3x

1
2
�[E2(x) + B2(x)]�qq̄−0. (10.41)

The rhs is a finite, renormalization group invariant expression. It can be expressed
in terms of a renormalized coupling constant g, and renormalized squared colour
electric and magnetic fields. The form remains the same, except that βL(g0)/g0 is
replaced by β(g)/g, where β(g) = µ∂g/∂µ is the continuum beta-function, with µ

the renormalization scale.* The right hand side of (10.41) then just becomes 1/4 of
the space integral of the trace anomaly (10.19) expressed in terms of the euclidean
fields.

Finally let us return to the action sum rule in the form (10.28). From (10.36a)
and (10.39b) we see that the rhs of (10.28) is directly related to the trace anomaly.
Thus we can write the action sum rule in the form

V̂ (R̂, β̂) + R̂
∂V̂ (R̂, β̂)

∂R̂
=

2βL

g0
�L̂�qq̄−0. (10.42)

The rhs of this equation is just the trace of the energy momentum tensor summed
over the spatial lattice sites at fixed (euclidean) time. Hence for a confining potential
of the form V̂conf = σ̂R̂ the second term appearing on the rhs of (10.40) yields, as
expected, just 1/2 of the potential.

10.4 Determination of the Electric, Magnetic and Anomalous
Contribution to the qq̄ Potential

The lattice energy sum rule has been checked in lattice perturbation theory
by Feuerbacher (2003a,b) up to O(g4

0). The computations are very involved. Some
technical details are given in Appendix A.

The reader may wonder: why check the sum rule? Is it not exact? While the ac-
tion sum rule (10.24a) is an identity following from the definition of the qq̄-potential
via the Wilson loop, the derivation of the energy sum rule (10.40) relies on a number
of input informations which, although quite plausible, are not self evident: i) The
structure of the action on an anisotropic lattice is taken to be given by (10.16).
This is the standard form of the action considered in the literature; ii) Close to the

* See e.g., Dosch et al. (1995).
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continuum limit the potential should become independent of the anisotropy of the
lattice, ξ, and satisfy (10.31). This must of course be so, if it is to be an observable.
It is however not self evident that this is indeed the case; iii) A perturbative check
of the sum rule requires a perturbative expression for η±. This expression has been
given by Karsch (Karsch, 1985). Hence checking the sum rule in perturbation theory
would not only confirm the presence of a contribution to the potential arising from
the trace anomaly of the energy momentum tensor, but also confirm indirectly the
perturbative relations obtained from other considerations in the literature. Having
checked the sum rule (at least in perturbation theory), one can extract the electric,
magnetic and anomalous contributions to the potential. To this effect let us first
write the energy sum rule (10.40) in the form

V̂ (R̂, β̂) = lim
T̂→∞

1
T̂

[
η−�−Pτ + Ps�qq̄−0 +

βL(g0)
2g0

β̂�Pτ + Ps�qq̄−0

]
,

(10.43a)

where we made use of the definition (10.39b), and, in accordance with (10.25a), we
have made the replacement

�P �
σ� = lim

T→∞

1
T

�Pσ�. (10.43b)

By combining this expression with the action sum rule (10.24a) one finds for SU(N)

Velec ≡ lim
T̂→∞

1
T

η−�−Pτ �qq̄−0 =
1
2
V +

1
4
g0βL(g0)

∂V̂

∂g2
0

+ η−
g4
0

4N
∂V̂

∂g2
0
,

Vmagn ≡ lim
T̂→∞

1
T

η−�Ps�qq̄−0 =
1
2
V +

1
4
g0βL(g0)

∂V̂

∂g2
0

− η−
g4
0

4N
∂V̂

∂g2
0
,

Vanom ≡ −1
2
g0βL(g0)

∂V̂

∂g2
0
, (10.44)

where, according to (10.17), and (10.32b), and making use of cτ (1) = cs(1) = 0
(see sec. 10.2),

η− =
2N
g2
0

+ N(c�
τ − c�

s) + O(g2
0). (10.45)

The derivatives c�
σ ≡ [dcσ(ξ)/dξ]ξ=1 have been determined by Karsch (1985).

Fig. 10-1, taken from Feuerbacher (2003) shows the electric, magnetic and
anomalous contributions to the SU(3) potential computed from (10.44) and the
expression (9.8). Notice that while the leading electric contribution to the potential
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Fig. 10-1 The next to leading order contributions, divided by g2
0 , of the

electric field energy (dashed), magnetic field energy (dot-dashed) and trace

anomaly (dotted) to the SU(3) qq̄ potential (solid line). The figure is taken

from Feuerbacher (2003a).

is of O(g2
0), the magnetic contribution is of O(g4

0), and same is true for the anomalous
part. Note also that in the perturbative regime the trace anomaly contributes sig-
nificantly only for small R̂, and that the electric and magnetic contributions are
of opposite sign, while in lattice simulations carried out in the non-perturbative
region for large quark–antiquark separations they are found to be of the same
sign. The solid curve in fig. (10-1) is the full potential in O(g4

0). This curve agrees
with that obtained from a perturbative calculation of the rhs of the energy sum
rule (10.43).

10.5 Sum Rules for the Glueball Mass

The interquark potential is not the only observable for which one can derive an
action and energy sum rule. In fact, the way the sum rules (10.40) and (10.42) were
derived, it is evident that similar expressions will hold for any observable which can
be determined from the exponential decay in euclidean time of the expectation value
of some operator. In the pure SU(N) gauge theory, such observables are the masses
of glueballs states, which are eigenstates of the SU(N) Hamiltonian. In numerical
simulations particle masses are determined from the exponential decay in euclidean
time of correlators of operators which excite the state of interest. In principle the
specific form of the operator is not important, as long as it excites states having a
non-vanishing projection onto the state of interest. In practice, however, a judicious
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choice needs to be made in order to enhance the signal in Monte Carlo calculations.
The anomalous contribution to the Hamiltonian, arising from the trace anomaly,
should also manifest itself in the energy and action sum rules for the glueball mass.
To determine the mass of a glueball with a given set of quantum numbers one
can construct such correlators from combinations of space-like Wilson loops located
at times − T̂

2 and T̂
2 , averaged over all spatial lattice sites to project out a zero-

momentum state [Michael (1987)]. Let us denote the corresponding operators by
G(−T̂ ) and G(T̂ ). The lowest glueball mass with non-vacuum quantum numbers is
then given by

M̂ = − lim
T̂→∞

1
T̂

ln�G(T̂ )G(−T̂ )�, (10.46)

which is the analog of (10.21a). Proceeding in exactly the same way as for the case
of the qq̄ potential one then arrives at the following action and energy sum rules for
the glueball mass [Rothe (1995b)],

M̂ =
2βL(g0)

g0
�L̂�1−0, (10.47a)

M̂ = η−�−P �
τ + P �

s�1−0 +
βL(g0)

2g0
�L̂�1−0, (10.47b)

where L̂ has been defined in (10.39b), and where the bracket �O�1−0 stands generi-
cally for the following correlator

�O�1−0 = lim
T̂→∞

�G(T̂ )OG(−T̂ )�
�G(T̂ )G(−T̂ )�

− �O�.

Notice that the energy sum rule (10.44b) has exactly the same form as for the
qq̄-potential given by (10.40). The form of the action sum rule (10.44a) however
differs from (10.42), since in the case of the glueball mass, there is no analog of the
derivative term. This manifests itself in that the contribution of the anomalous field
energy to the glueball mass accounts for only 1/4 of the glueball mass, as follows
immediately from (10.44a). This result is consistent with that obtained by Michael
(1996) for the contribution of the “normal field energy” to the glueball mass.

As we have seen in this chapter, the lattice formulation of the pure SU(N) gauge
theory on an anisotropic lattice has allowed us to derive in a straight forward way
a non-perturbative expression for the energy stored in the chromoelectric and mag-
netic fields of a static qq̄-pair and glueball, in which the contributions arising from
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the traceless and trace part of the energy momentum tensor are clearly exhibited.
In principle these sum rules provide us with an alternative way to determine the
string tension or glueball mass. But what is more important, these sum rules allow
us to obtain detailed information about the distribution of the field energy in a flux
tube connecting a static quark and antiquark. In most Monte Carlo simulations only
the action density has been measured with good precision, since it is more accessible
to Monte Carlo simulations (For a recent computation see Bali (1995)). The energy
density, on the other hand, including the anomalous contribution, has so far not
been studied in such detail in the literature.
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CHAPTER 11

THE STRONG COUPLING EXPANSION

In chapters 7 and 8 we have shown how the static qq̄-potential V (R) can be
determined by studying the expectation value of the Wilson loop for large euclidean
times. In QCD one believes that this potential confines quarks; more precisely, one
expects that for large separations of the quark-antiquark pair, V (R) rises linearly
with R up to distances where vacuum polarization effects, due to the presence of
dynamical fermions, screen the interaction. As we have seen, such a behaviour of the
potential cannot be generated within perturbation theory. For this reason, we have
no way (at present) to calculate it analytically, and hence are forced to determine it
numerically. On the other hand, analytic statements can be made in the strong cou-
pling region. Indeed, in the absence of dynamical fermions the structure of the action
(5.21) for QED, and (6.25b) for QCD suggests a natural expansion in powers of the
inverse coupling. This is the analog of the high temperature expansion in statistical
mechanics. In the following section we shall concentrate on the leading strong cou-
pling approximation to the static qq̄ potential, ignoring vacuum polarization effects.
As was first shown by Wilson (1974), this potential confines quarks. In fact it was
this observation which has stimulated the great interest in lattice gauge theories.

11.1 The qq̄-Potential to Leading Order in Strong Coupling

Consider the SU(N) lattice gauge theory in the pure gauge sector.∗ The cor-
responding lattice action is given by

S = −β
∑

P

SP + const.,

where

β = 2N/g2
0,

and∗∗

SP =
1

2N
Tr(

˜
UP +

˜
U †

P )

∗ We give the formulation for SU(N), since we are interested later also in the
case of SU(2).

∗∗ SP has been normalized in such a way that SP → 1 if UP → 1, i.e., close
to the continuum limit. The links Uµ(n) and plaquette variables UP lie in the N -
dimensional fundamental representation of SU(N).
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is the contribution to the action associated with a plaquette P (see chapter 6). The
corresponding partition function reads

Z =
∫

DU eβ
∑

P SP , (11.1)

and the expectation value of the Wilson loop with spatial and temporal extention
R̂ and T̂ , respectively, is given by

�WC [U ]� =
∫

DU WC [U ]
∏

P eβSP∫
DU

∏
P eβSP

, (11.2)

where WC [U ] is defined in (7.33). We next expand the exponential in (11.2) in powers
of the coupling β:

eβ
∑

P SP =
∏
P

[∑
n

βn

n!
(SP )n

]
. (11.3)

Since each plaquette in the expansion costs a factor β, the leading contribution, for
β → 0 to the numerator in (11.2) is obtained by paving the inside of the Wilson
loop with the smallest number of elementary plaquettes yielding a non-vanishing
value for the integral. Consider the case of SU(3). As is evident from the integration
rules (6.23), the relevant configuration is the one shown in fig. (11-1). Hence the
leading term in the strong coupling expansion of the numerator is proportional to
βÂ, where Â is the minimal area bounded by the rectangular contour C: Â = R̂T̂ . On
the other hand, the leading contribution to the denominator is obtained by making
the replacement exp(β

∑
SP ) → 1. Hence for small β, (11.2) will be proportional to(

β
6

)R̂T̂
.

Fig. 11-1 Leading contribution to �WC� in the strong coupling approx-

imation.
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The factor multiplying this expression may also be readily calculated by noting
that according to (6.23c) the colour indices of the link variables are identified at each
of the lattice sites, and that the integration over each pair of oppositely oriented
links yields a factor of 1/3. Now the number of link integrations for a given set of
colour indices is 2R̂T̂ +R̂+ T̂ . Hence there is a factor (1/3)2R̂T̂+R̂+T̂ coming from the
integrations. But there are three possible colours associated with the (R̂+1)(T̂ +1)
lattice sites. Consequently the factor multiplying (β/6)Â is given by (1/3)Â−1. We
hence conclude that in leading order of strong coupling

�Wc[U ]� ≈ 3
(

β

18

)R̂T̂

.

The qq̄-potential in the strong coupling limit is therefore given by

V̂ (R̂) = − lim
T̂→∞

1
T̂

ln�WC [U ]� = σ̂(g0)R̂, (11.4a)

where

σ̂ = − ln
(

β

18

)
(11.4b)

is the string tension measured in lattice units. Thus in the leading strong coupling ap-
proximation, QCD confines quarks: the expectation value of the Wilson loop exhibits
an area law behaviour, �WC� → exp(−σ̂R̂T̂ ). If this confining property persists into
the small coupling regime, where continuum physics is (hopefully) observed, then
σ̂(g0) must depend on g0 according to (9.25). In the one-loop approximation to the
β-function this dependence on g0 is given by

σ̂(g0) ≈
g0→0

Cσ e
− 1

β0g2
0 . (11.5)

Its explicitly known form provides us with a signal which will tell us whether we are
extracting continuum physics from a numerical calculation.

We want to point out that the same calculation performed for compact QED
would also have given a potential of the form (11.4a). But in QED we know that
this potential is given by the Coulomb law! Hence compact QED must exhibit at
least two phases. In fact it has been shown by Guth (1980), using an action of the
Villain form, that the lattice U(1) gauge theory possesses a weak coupling Coulomb
phase. That the strong coupling and weak coupling regions are separated by a phase
transition, has also been verified in numerical simulations. (see e.g., Lautrup and
Nauenberg, 1980). It is therefore important to check that in the case of QCD there
exists no such phase transition to a weak coupling regime.
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11.2 Beyond the Leading Approximation

Higher order corrections to the potential (11.4) can in principle be computed
by expanding the exponentials appearing in (11.2) in powers of the coupling β

and performing the corresponding (Haar) integrals over the link variables. As is
evident from the expansion (11.3), the contribution of order βn will involve (before
integration) all possible sets consisting of n plaquettes, including also multiples of
the same plaquette. To each oriented plaquette P in a given diagram we associate
a factor

(
β
6

)
Tr

˜
UP , or

(
β
6

)
Tr

˜
U †

P , depending on its orientation, and include a factor

1/n!, where n is the multiplicity of P . However, of all the possible sets contributing
to the sum (11.3), only a certain subset of plaquette configurations will survive the
integrations in (11.2) because of the integration rules (6.23).

Thus we are faced with two problems in computing higher order corrections to
the potential: i) enumerating all the diagrams contributing in a given order, and ii)
calculating the Haar integrals. As the reader can imagine, already the bookkeeping
problem associated with the first step will become non-trivial as we go to higher
and higher orders.

To keep the discussion as simple as possible, let us exemplify the method for
the two dimensional abelian model discussed in chapter 8. As we shall see it will
serve to illustrate the basic point we wish to make. Consider QED2 in the quenched
approximation. The partition function (11.1) has the form

Z =
∫

DU e
β
2

∑
P (UP +U†

P ), (11.6a)

where

UP = eiθP (11.6b)

is an element of the U(1) group associated with the plaquette P . The expectation
value of the Wilson loop is then given by (8.15). Expanding the exponentials ap-
pearing in the integrands of this expression in powers of the coupling β, one finds
that in the next to leading order the only plaquette configurations which contribute
to the numerator and denominator are those shown in fig. (11-2), since diagrams
containing any unpaired link will not contribute after performing the integrals over
the link variables.∗

∗ Notice that link variables of opposite orientations must appear paired.
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(a) (b)

(c) (d)

Fig. 11-2 Next to leading order contributions to �WC� in the strong

coupling expansion. Diagrams (a-c) contribute to the numerator (11.2),

while diagram (d) contributes to the denominator.

Hence we have three types of diagrams contributing to the numerator in this
non-leading order: i) diagrams where the inside of the Wilson loop contains a triple
of the same plaquette; the number of such diagrams is given by 3R̂T̂ ;∗ ii) diagrams
where a multiple plaquette is attached to the contour C, as shown in fig. (11-2b). The
number of these diagrams is Nc ≈ 4(R̂ + T̂ ); and finally iii) disconnected diagrams
of the type shown in fig. (11-2c). The number of such diagrams is approximately
given by 2(V̂ − R̂T̂ − Nc/2), where V̂ is the “volume” of the lattice. Since in the
U(1) case the group integrals are trivial, we obtain the following expression for the

∗ In counting the number of each type of diagram we must take into account
the various possible relative orientations of the multiple plaquettes. Thus the factor
3 arises from the expansion of (U + U †)3 = 3U †UU + · · · .
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numerator, including the leading contribution, (β/2)R̂T̂ :

N ≈
(

β

2

)R̂T̂
[
1 − 1

2!

(
β

2

)2

R̂T̂ +
(

β

2

)2

V̂

]
.

Consider now the denominator of (11.2). In next to leading order it is given by
the diagrams of the type shown in fig. (11-2d). Hence

Z ≈ 1 +
2
2!

(
β

2

)2

V̂ .

Taking the ratio N/Z, we see that to the order of approximation considered here,
we are left with the following expression for the Wilson loop:

�WC [U ]� ≈
(

β

2

)R̂T̂
[
1 − 1

2!

(
β

2

)2

R̂T̂

]
.

Hence we are led to the following expression for the static qq̄–potential,

V (R̂) = − lim
T̂→∞

1
T̂

ln�WC [U ]� = σ̂R̂,

where the string tension σ̂ is given in this approximation by

σ̂ = − ln
β

2
+

β2

8
. (11.7)

Notice that this potential is determined solely by connected plaquette configurations
attached to the minimal surface enclosed by the contour C.

The U(1) case discussed above is of course the simplest example we could
choose. Nevertheless, the number of connected and disconnected diagrams contribut-
ing to (11.2) will rapidly increase with the order. In particular, the occurrence of
multiples of a given plaquette will complicate the bookkeeping and the computation
of the Haar integrals in the non-abelian gauge theory. This latter difficulty may,
however, be avoided by making use of the so-called character expansion of the expo-
nential of the action. We again demonstrate the procedure for the case of quenched
QED2, where the character expansion is just the well-known Fourier-Bessel expan-
sion of exp(β cos θP ):

e
β
2 (UP +U†

P ) =
∞∑

ν=−∞
Iν(β)eiνθP . (11.8)
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Iν(β) is the modified Bessel function and exp(iνθP ) is the character of the plaquette
variable (11.6b) in the ν’th irreducible representation of the compact U(1) group.
Hence instead of having to deal with contributions to (11.3) arising from multiples
of the same plaquettes, every plaquette will now occur only once in the expansion
(11.8), but in all possible irreducible representations of the compact U(1) group.
But because of the orthogonality relations satisfied by exp(iνθ), only a few terms
in the sum (11.8) will contribute to (11.2). As an example let us derive the result
(11.7) using the expansion (11.8). Making use of the fact that in the present case
the Wilson loop can be written in the form (8.15), one finds upon inserting (11.8)
in (8.15), that the numerator N is given by∗

N =
∏

P∈Rc

∫ π

−π

dθP

2π

{
eiθP

∑
ν

Iν(β)eiνθP

} ∏
P �∈Rc

∫ π

−π

dθP

2π

∑
ν

Iν(β)eiνθP ,

where Rc denotes the region enclosed by the loop C. The integrals can be performed
immediately and one obtains

N = [I1(β)]R̂T̂ [I0(β)]V̂ −R̂T̂ .

The corresponding expression for the denominator in (8.15) reads:

Z =
∏

P∈V̂

∫ π

−π

dθP

2π

∑
ν

Iν(β)eiνθP

= [I0(β)]V̂ .

Hence the volume-dependent factor cancels in the ratio N/Z and we obtain the
exact result

�WC [U ]� =
(

I1(β)
I0(β)

)R̂T̂

(11.9)

which coincides with (8.17b). Now for small β we have that

I0(β) ≈ 1 +
(

β

2

)2

,

I1(β) ≈
(

β

2

) [
1 +

1
2!

(
β

2

)2
]

.

Inserting these expressions into (11.9), we come back to our result (11.7).

∗ We have normalized the integration measure so that
∫

dU = 1.
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The fact that we were able to solve the above problem to any order in β is
connected with the 2-dimensional abelian nature of the model. In four-dimensional
gauge theories more sophisticated methods are required for carrying out the strong
coupling expansion. The interested reader may consult the extensive work carried
out by Münster (1981) who has calculated the string tension for the case of an SU(2)
gauge theory up to twelvth order in β.

11.3 The Lattice Hamiltonian in the Strong Coupling Limit
and the String Picture of Confinement

We have seen in the previous sections that for strong coupling the pure SU(3)
gauge theory confines quarks. The usual picture of confinement is that the chromo-
electric flux linking a quark and antiquark is squeezed within a narrow tube (string)
carrying constant energy density. As a consequence, the energy of the system in-
creases linearly with the separation of the quarks. The purpose of this section is to
verify the string picture of confinement in the strong coupling approximation within
the framework of the Hamiltonian formulation as discussed originally by Kogut and
Susskind (1975).

In the continuum formulation, the Hamiltonian is the generator of infinitesimal
time translations and is obtained by a Legendre transformation from the Lagrangean
of the theory. Within the framework of the lattice formulation the natural way of
introducing the Hamiltonian is via the transfer matrix. In chapter 2 we defined
the transfer matrix for the case of a quantum mechanical system with generalized
coordinates qα(α = 1, . . . , n) by

Tq′q = �q�|e−�H |q�. (11.10)

Here H is the Hamiltonian of the system, which, in the particular example con-
sidered, had the form (2.8), and � is an infinitesimal time–step. The corresponding
transfer matrix was given by (2.37b). Expressed in terms of the transfer matrix, the
partition function (2.32b) took the form

Z =
∫ ∏

α,�′

dq(�′)
α

∏
�

Tq(�+1)q(�) (11.11)

where q(k) = {q
(k)
α } could be interpreted as the coordinates of the system at “time”

τk on the euclidean time lattice. We then discussed a method which allowed us
to construct the Hamiltonian from the knowledge of the transfer matrix. In this
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section, we want to apply this method to the case of a lattice gauge theory. To
this effect we will have to choose a gauge. The reason for this is the following.
In the lattice formulation of a gauge theory, the action is a function of the link
variables which live on all the links of the euclidean space-time lattice. Therefore
the action not only depends on the group parameters associated with the links
lying in fixed time slices, but also on those parametrizing the link variables that
live on links connecting sites at different times. We can, however, eliminate the
latter (bothersome) variables by choosing a gauge where all time-like oriented links∗

are replaced by the unit matrix. This can always be achieved by an appropriate
gauge transformation, and corresponds in the continuum formulation to choosing
the temporal gauge, A4(x) = 0. This we are allowed to do, since we are computing
a gauge-invariant observable, namely the Hamiltonian.

Of course, setting A4(x) = 0 does not fix the gauge completely. We are still
free to perform time-independent gauge transformations. This allows us to fix a
subset of the remaining link variables oriented along the space directions. The
variables that can be fixed by a time-independent gauge transformation are re-
stricted by the requirement that there exist no closed paths on the lattice along
which all the degrees of freedom are “frozen” (see Fig. (11-3)). This is obvious
since the trace of the path-ordered product of link variables along closed paths is
gauge-invariant.

Fig. 11-3 The temporal gauge corresponds to fixing the link variables on the solid lines to

unity. The dashed links can be fixed by time independent gauge transformations.

∗ Sometimes we use the word “link” instead of “link variable” if it is clear from
the context what is meant.
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That the temporal gauge is the appropriate one for constructing the Hamiltonian via
the transfer matrix is also strongly suggested by looking at the continuum action of
the pure SU(3) gauge theory. This action is given by (6.21), where FB

µν(B = 1, . . . , 8)
has been defined in (6.16). Setting A4 = 0, the action takes the following simple
form

SG[A] =
∫

dτ

∫
d3x

[
1
2

∑
i,B

(ȦB
i (�x, τ))2 +

1
4

∑
i,j,B

FB
ij (�x, τ)FB

ij (�x, τ)

]
,

where we have set x4 = τ and where ȦB
i denotes the “time”-derivative of AB

i . Notice
the striking similarity between the above expression and (2.11).

The lattice version of the action in the temporal gauge is of course more com-
plicated (see previous chapter). But the above observation suggests that also there
the action will acquire a structure which will allow us to write the partition function
in the form (11.11).

There is another important point that must be mentioned. By eliminating
the time component of the gauge potential in the action, we are loosing one of
“Maxwell’s” equations, namely Gauss’s law. Consider for simplicity continuum elec-
trodynamics in the absence of sources. The following discussion can be readily ex-
tended to the case of a non-abelian theory and to euclidean space-time. Let us not
fix the gauge. By varying the action with respect to the time component of the
potential, one arrives at the equation �∇ · �E(x) = 0, where �E is the electric field.
The components Ei are the momenta canonically conjugate to Ai. Let us denote the
corresponding operators in the quantized theory by πi. Then �∇ · �π(x) = 0 is a con-
straint for the canonical momenta. This constraint is lost when we set A4(x) = 0 in
the action, and must therefore be implemented on the states. In the temporal gauge
�∇·�π(x) is not constrained to vanish. But its time derivative still vanishes, as follows
from the time-dependent version of Ampère’s law. Now it can be easily shown that
the operators �∇ · �π(x) are the generators of infinitesimal time-independent gauge
transformations. Indeed, consider the following unitary operator

T [Λ] = e−i
∫

d3xΛ(�x)�∇·�π(x).

Because �∇ · �π is independent of the time, one finds, upon using the canonical com-
mutation relations of the momenta and gauge potentials, that

T [Λ]Ai(x)T [Λ]−1 = Ai(x) + ∂iΛ(�x).

Hence imposing Gauss’s law on the states is equivalent to restricting the phys-
ical states to be invariant under the residual group of time-independent gauge
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transformations. This observation will play an important role when we discuss the
energy spectrum of the Hamiltonian. In the presence of sources �∇·�π(x) is replaced by
�∇·�π(x)−ρ(x), where ρ is the charge density. This latter quantity, constructed from
the fermion fields, generates the corresponding transformations on the fermionic
variables.

After these remarks, we now turn to the construction of the lattice Hamiltonian
in a pure gauge theory. To keep the discussion as simple as possible, we will consider
the abelian U(1) theory discussed in chapter 5. This theory will already exhibit an
important feature encountered in the non-abelian case. For the derivation of the
lattice Hamiltonian in the SU(3) gauge theory, using the transfer matrix approach,
we refer the reader to the paper by Creutz (1977).

Our procedure for constructing the lattice Hamiltonian parallels the quantum
mechanical case discussed in chapter 2. The first step consists in identifying the
transfer matrix, and writing the partition function of the U(1) gauge theory in a
form analogous to (11.11). This is done by working in the temporal gauge. We then
obtain the Hamiltonian by studying the transfer matrix for infinitesimal temporal
lattice spacing. Since the spatial lattice spacing is to be kept fixed while taking
the temporal lattice spacing to zero, we must first rewrite the action (5.21) on an
asymmetric lattice. Following Creutz (1977) we take the U(1) action to be of the form

SG[U ] =
1

2g2ρ

∑
Pτ

[2 − (UPτ + U †
Pτ

)] +
ρ

2g2

∑
Ps

[2 − (UPs + U †
Ps

)],

(11.12)

where ρ = aτ/a, and where Ps and Pτ denote space-like and time-like oriented
plaquettes, respectively. This is the analog of (10.15) with ρ = 1/ξ. This action
possesses the correct naive continuum limit. We next choose the temporal gauge;
i.e., we set all the link variables associated with time-like links equal to one. Then
a plaquette variable with base (n, n4), lying in the i4-plane, is given by

Ui4(n) = = Ui(n, n4)U
†
i (n, n4 + 1)

= ei(θi(n,n4)−θi(n,n4+1)),

where the dashed lines stand for link variables that have been set equal to one in the
temporal gauge. The coordinate degrees of freedom of the system are labeled by the
spatial lattice site n and the spatial direction of the link variables. Let us collect
these labels into a single index α = (n, i) and set n4 = �. Furthermore, to parallel
our quantum mechanical example, we relabel the group parameters, parametrizing
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the link variables, as follows:

θ(�)
α ≡ θi(n, �).

Then the partition function associated with the action (11.12) can be written in a
form analogous to (11.11):

Z =
∫

DUe−SG[U ] =
∫ ∏

α,�′

dθ(�′)
α

∏
�

Tθ(�+1)θ(�) , (11.13a)

where

Tθ(�+1)θ(�) = e−aτ V [θ(�)]
∏
α

e
− 1

g2ρ
[1−cos(θ(�+1)

α −θ
(�)
α )], (11.13b)

with the potential V defined by

V [θ(�)] =
1

g2a

∑
Ps(�)

[
1 − 1

2
(UPs(�) + U †

Ps(�))
]

. (11.13c)

The sum extends over all plaquettes located on the �’th time slice. The potential
(11.13c) is therefore a function of the group parameters labeling the link variables
located on this time slice. We next introduce a set of commuting operators {Θα}
and simultaneous eigenstates of these by

Θα|θ� = θα|θ�,

�θ�|θ� =
∏
α

δ(θ�
α − θα).

The states |θ� are the analogue of |q� in the quantum mechanical example discussed
in chapter 2. Let Pα be the momentum canonically conjugate to Θα:

[Θα, Pβ] = iδαβ.

Then exp(−iξ · P ), with ξ · P =
∑

α ξαPα, generates translations by ξ:

e−iξ·P |θ� = |θ + ξ�.

From here, and the orthogonality of the states |θ� we conclude that

�θ(�+1)|e−iξ·P |θ(�)� =
∏
α

δ(θ(�+1)
α − θ(�)

α − ξα).
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Hence (11.13b) can also be written as follows

Tθ(�+1)θ(�) = �θ(�+1)|T |θ(�)�, (11.14a)

where

T =
∏
α

∫
dξαe

−iξαPα− 1
g2ρ

(1−cos ξα)
e−aτ V [Θ]. (11.14b)

To obtain the expression for the lattice Hamiltonian, we must now take the tem-
poral lattice spacing to zero, while keeping the spatial lattice spacing fixed. This
means that ρ = aτ/a approaches zero. But for small ρ the integrand in (11.14b) is
dominated by those values of ξα for which cos ξα ≈ 1. We are then allowed to replace
1 − cos ξα by ξ2

α/2. Performing the remaining Gaussian integral, we therefore find
that, apart from an irrelevant constant,

T = e−aτ ( g2

2a

∑
α P 2

α+V [Θ]).

The quantity appearing within brackets is the lattice Hamiltonian we were looking
for:

H =
g2

2a

∑
α

P 2
α + V [Θ]. (11.15)

In the coordinate representation the canonical momenta Pα are given by

Pα = −i
∂

∂θα

.

Recall that α stands collectively for the set (n, i), where n is the spatial location
of the lattice site and i is the direction of the link with base at n.∗ To make this
explicit, we shall write θi(n) instead of θα. Then the Hamiltonian (11.15) becomes

H = − g2

2a

∑
n,i

∂2

∂θi(n)2 + V [θ], (11.16a)

where V [θ] has the following structure:

V [θ] = − 1
2g2a

∑
Ps

( ) + const.

= − 1
2g2a

∑
(UUUU + h.c.) + const. (11.16b)

∗ From now on it will be understood that n and x denote spatial positions.
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Here UUUU denote the product of link variables along the boundary of a plaquette
on the spatial lattice. These link variables are parametrized by the angular variables
θi(n). Thus, the contribution of a plaquette lying in the ij-plane with base at n is
given by

ij
= eiθi(n)eiθj(n+êi)e−iθi(n+êj)e−iθj(n).

Before we proceed with the discussion of (11.16), let us establish the connection
with the Hamiltonian in the continuum formulation. To this effect we introduce the
gauge potentials in the by now familiar way:

θi(n) → agAi(x), x = na.

The Hamiltonian (11.16) then takes the following form in the continuum limit

H −→
a→0

−1
2

∫
d3x

∑
i

(
δ

δAi(x)

)2

+ Ṽ [A], (11.17a)

where

Ṽ [A] =
1
4

∑
i,j

∫
d3xFij(x)Fij(x) (11.17b)

is the contribution arising from the spatial plaquettes in (11.16b) and δ/δAi(x)
denotes the functional derivative with respect to Ai(x). Its action on Aj(y) is
defined by

δ

δAi(x)
Aj(y) = δijδ

(3)(x − y).

The right-hand side of (11.17a) is nothing but the familiar expression for the tem-
poral gauge-Hamiltonian in the so-called field representation, where the potentials
Ai(x) are ordinary functions of the spatial coordinates and where the components
Ei of the electric field (which are the momenta canonically conjugate to Ai) are rep-
resented by the functional derivative −iδ/δAi. This Hamiltonian acts on the space
of “wave functions”, which are functionals of the spatial components of the vector
potential. We therefore see that in the case of the U(1) gauge theory the kinetic part
of the lattice Hamiltonian has a structure which is similar to that of the continuum
formulation. There is, however, an important difference. While in the continuum
formulation the potentials can take arbitrary values, the group parameters θi(n)
take values in the interval [0, 2π]. The wave functions are single valued functions
of these variables. As a consequence the eigenvalue spectrum of the kinetic term in
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(11.16a) is discrete. As seen from (11.16a,b), it is this term which dominates the
Hamiltonian in the strong coupling limit:

H → H0 = − g2

2a

∑
n,i

∂2

∂θi(n)2 . (11.18)

This shows that in this limit the relevant contribution to the Hamiltonian comes
from the electric field.

Let us now study the eigenvalue spectrum of H0. The eigenfunctions of H0 are
given by

ψ{Ni(n)}[θ] =
∏
i,n

[Ui(n)]Ni(n), (11.19)

where

Ui(n) = eiθi(n)

is a link variable with base at n, pointing in the i’th spatial direction, and where
Ni(n) is the excitation number of the link connecting the sites n and n + êi. These
wave functions are normalized as follows:

∫ ∏
k,m

dθk(m)
2π

ψ∗
{Ni(n)}[θ]ψ{Nj(m)}[θ] = δ{Ni(n)},{Nj(m)}.

The energy associated with the state (11.19) is given by

E{Ni(n)} =
g2

2a

∑
i,n

(Ni(n))2. (11.20)

It must, however, be remembered that not all such states are physical. Thus we have
emphasized before that only gauge-invariant states belong to the physical Hilbert
space. Hence only wave functions built from products of link variables along one or
several closed loops have a physical meaning.

Let us consider a few states. The lowest energy state is the one where no link is
excited. The wave function of the next higher energy state is given by an elementary
plaquette variable located anywhere on the lattice. The energy associated with this
excitation is given according to (11.20) by 4(g2/2a), since there are four links on the
boundary of an elementary plaquette. By exciting larger loops or several loops, we
obtain states of increasing energy. In fig. (11-4) we show various types of excitations
on a two-dimensional spatial lattice.



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch11

166 Lattice Gauge Theories

Fig. 11-4 Two types of excitations on a two dimensional spatial lattice.

The above strong coupling picture gets modified when fermions are coupled
to the link variables. Suppose that we introduce into the pure gauge medium a
very heavy pair of opposite charges at the lattice sites n and m, respectively. Then
we can build a gauge-invariant state by connecting the two charges by a string
built from the product of link variables. The lowest energy state of the system is
obtained by exciting the links along the shortest path connecting the two charges.
Each excited link contributes an energy g2/2a. Consider, in particular, two charges
located on a straight line path on the lattice, as shown in fig. (11-5a). Their energy is
given by

E0 =
g2

2a
L̂, (11.21)

where L̂ is the separation of the pair measured in lattice units. Thus in the strong
coupling limit we have confinement already in the U(1) theory!

The above result was obtained in the strong coupling limit and in the absence
of dynamical (finite mass) fermions. The effect of the potential in (11.16) for finite
(but large) coupling can be calculated in perturbation theory. Clearly the states
discussed above are no longer eigenstates of the Hamiltonian when the potential
is turned on. In this case the string connecting the two charges will be allowed to
fluctuate. To see this consider the action of the potential on the state depicted in
fig. (11-5a). In particular consider the effect arising from those plaquettes in the
potential (11.16b) having a link in common with the string connecting the two
charges. In fig. (11-5b,c) we show the possibilities corresponding to overlapping flux
lines. The wave functions associated with these states are those constructed from
the link variables shown in fig. (11-5d,e), where the darkened line corresponds to a
doubly excited link. For finite coupling the lowest energy state of the charged pair
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(a)

(b) (c)

(d) (e)

+ .  . .

+ .  . .

Fig. 11-5 (a) Eigenstate of the Hamiltonian in the strong coupling

limit; (b,c) Configurations created by the action of the potential on the

state depicted in (a); (d,e) Corresponding link configurations from which the

wave functionals (11.19) are constructed. The darkened line in (e) denotes

a doubly excited link. The dots stand for the other three possible ways of

attaching the plaquettes on the three dimensional spatial lattice.

will include these (and many other) excitations. Thus the original rigid string begins
to fluctuate when the potential is turned on.

Let us compute the change in energy ∆E arising from fluctuations of the type
depicted in fig. (11-5d,e). They can be computed by standard perturbation theory:
Let |E0� denote the ground state of the qq̄-pair in the strong coupling limit, depicted
in fig. (11-5a), and |Ef� the eigenstate of H0 corresponding to link configurations of
the type shown in fig. (11-5d,e). Then

∆E =
∑
f �=0

|�E0|V |Ef�|2
E0 − Ef

, (11.22)

where the sum extends over all states |Ef� with the fluctuation taking place any-
where along the line connecting the two charges. The energy E0 is given by (11.21).
Furthermore, from (11.20) we obtain for the states of type d and e,

E
(d)
f =

g2

2a
(L̂ + 2),

E
(e)
f =

g2

2a
(L̂ + 6),
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irrespective of the location of the fluctuation. For all these states

�E(i)
f |V |E0� =

∫ ∏
α

dθα

2π
ψ(i)[θ]V [θ]ψ0[θ]

=
1

2g2a
.

The energy shift (11.22) is therefore given by

∆Eq̄q = −4
3

L̂

ag6 .

Hence in this (oversimplified) example, we arrive at the following expression for the
string tension measured in lattice units:

σ̂ =
g2

2

(
1 − 8

3g8

)
.

For the case of the pure SU(3) gauge theory, Kogut, Pearson, and Shigemitsu
(1981) have computed the string tension up to O(g−24). These computations (which
are quite non-trivial) suggest that the strong coupling expansion, when carried out
to sufficiently high orders, yields a string tension in the intermediate coupling region
which can be fitted at the low coupling end with the square of the function R(g)
defined in (9.21d). In the strong coupling regime the flux tube connecting the two
charges will have a finite width of the order of the lattice spacing. But as the coupling
is decreased, not only the width of the flux tube will increase, but also its shape will
eventually undergo strong changes. Furthermore, the number of string configurations
of a given length L̂ will increase dramatically with L̂.

Fig. 11-6 Breaking of the string due to pair production.
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In the presence of dynamical fermions this picture is further modified. Thus for
sufficiently large separations of the two charges, the system can lower its energy by
creating an oppositely charged pair connected by a string as shown in fig. (11-6).
This corresponds in the strong coupling approximation to the hadronization process
mentioned at the beginning of chapter 7. This concludes our discussion of the string
picture of confinement in the strong coupling Hamiltonian formulation. We have seen
that for strong coupling, the U(1) theory leads to a non-vanishing string tension.
This result is in agreement with that obtained by studying the Wilson loop. In the
continuum limit confinement should of course be lost. On the other hand, the SU(3)
gauge theory should still exhibit confinement in this limit. We have concentrated our
attention on the U(1) gauge theory since it allowed us to demonstrate in a simple
way how a string picture of confinement emerges in the strong coupling limit, if the
theory is compactified. The non-abelian case is of course more complicated but the
basic ideas are the same. For a discussion of the SU(3) gauge theory, the reader
may confer the paper by Creutz (1977).

Finally we want to mention that the construction of the lattice Hamiltonian
via the transfer matrix is not the only method. For an alternative procedure based
on canonical methods the reader may consult the review article by Kogut (1983)
or the lectures of this author given at the International School of Physics, Enrico
Fermi (Kogut, 1984).
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CHAPTER 12

THE HOPPING PARAMETER EXPANSION

The inclusion of fermions in lattice calculations is a very non-trivial problem.
In the pure gauge theory correlation functions can be calculated by Monte Carlo
methods (see chapter 16). Such methods cannot be applied directly to path integrals
involving Grassmann variables. To overcome this difficulty one must first integrate
out the fermions. The resulting path integral expression then only involves bosonic
variables and one can evaluate them, in principle, using statistical methods. But the
Boltzmann distribution is now determined by an effective action which is a non-local
function of the link variables. Not only that. When calculating fermionic correla-
tion functions, the ensemble average must be performed over expressions which are
themselves non-local functions of these variables. For this reason most of the nu-
merical calculations have been performed over many years in the pure gauge sector,
or in the so-called quenched approximation, where the effects of pair production
processes are neglected. Computations in full QCD were restricted to very small
lattices. With the advent of the supercomputers the situation has improved sub-
stantially, and numerical calculations with dynamical fermions performed on larger
lattices have become feasible. But the computer times required are still astronomical.

A brute-force numerical calculation does not provide us with much insight
into the detailed dynamics. One would therefore like to have some analytic way of
estimating the effects of dynamical fermions on physical observables. The hopping
parameter expansion (HPE) allows one at least to study these effects for large bare
lattice-masses of the quarks (it is therefore only useful far away from the continuum
limit). Furthermore, when combined with the strong coupling expansion, it also
provides us with a physical picture of how hadrons propagate on a lattice, and how
pair production processes influence the observables.

The purpose of this chapter is two-fold. We first want to show how the calcu-
lation of arbitrary correlation functions of the fermion fields and the link variables
can be reduced to a pure bosonic problem, which can in principle be handled by
numerical methods. This will be the subject of the following section. In section 2 we
then discuss the hopping parameter expansion of the two-point fermion correlation
function, and show how hadrons propagate on the lattice in a combined HPE and
strong coupling expansion. Section 3 is devoted to the hopping parameter expan-
sion of the effective action. This allows one to include the effects of pair production
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processes. Finally, in section 4 we demonstrate in some examples how the HPE
expansion respects the Pauli exclusion principle, which forbids that two identical
quarks (or antiquarks) can occupy the same lattice site.

12.1 Path Integral Representation of Correlation Functions
in Terms of Bosonic Variables

In the following we shall consider Wilson fermions of a single flavour. Let
A, B, C . . . be collective indices for the colour and Dirac degrees of freedom la-
beling the quark fields. Thus ψA, ψB will stand for ψa

α and ψ̄b
β, respectively. The

path integral representation of a general correlation function of the fermionic and
link variables is then given by

�ψA1(n1) · · ·ψAN
(nN)ψ̄B1(m1) · · · ψ̄BN

(mN)U c1d1
µ1

(k1) · · ·U cldl
µl

(kl)�

=

∫
DUD(ψ̄ψ)ψA1(n1) · · · ψ̄B1(m1) · · ·U c1d1

µ1
(k1) · · · e−SQCD[U ,ψ,ψ̄]

∫
DUD(ψ̄ψ)e−SQCD[U ,ψ,ψ̄]

(12.1a)

where∗

D(ψ̄ψ) =
∏
A,n

dψ̄A(n)dψA(n), (12.1b)

and where Uab
µ (n) denotes a matrix element of the link variables

˜
Uµ(n). Notice

that (12.1a) contains the same number of ψ and ψ̄ fields since all other correlation
functions vanish because of the Grassmann integration rules discussed in chapter
two.

Consider the fermionic contribution to SQCD. For Wilson fermions it is given
by (6.25c). Let us write this contribution in the form

S
(W )
F =

1
2κ

∑
n,m ˜

ψ̄(n)
˜
Knm[U ]

˜
ψ(m), (12.2a)

where

κ =
1

8r + 2M̂0
(12.2b)

∗ For later convenience we have chosen to write the measure in this form, rather
than Dψ̄Dψ. This has of course no influence on the ratio (12.1a), but eliminates
some unpleasant minus signs which would otherwise arise in intermediate steps of
the calculation.
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is the so-called hopping parameter (for reasons which will become clear below), and

˜
Knm are matrices in Dirac and colour space:

˜
Knm[U ] = δnm1l−κ

∑
µ>0

[(r − γµ)
˜
Uµ(n)δn+µ̂,m + (r + γµ)

˜
U †

µ(n− µ̂)δn−µ̂,m]. (12.2c)

Thus
˜
Knm is of the form

˜
Knm = δnm1l − κ

˜
Mnm[U ], (12.3a)

where the only non-vanishing matrices
˜
Mnm are those connecting neighbouring lat-

tice sites:

˜
Mn n+µ̂[U ] = (r − γµ)

˜
Uµ(n),

(12.3b)

˜
Mn n−µ̂[U ] = (r + γµ)

˜
U †

µ(n − µ̂).

The corresponding expressions for the matrix elements read:

(
˜
Mn,n+µ̂)αa,βb = (r − γµ)αβ(

˜
Uµ(n))ab,

(12.3c)
(
˜
Mn,n−µ̂)αa,βb = (r + γµ)αβ(

˜
U †

µ(n − µ̂))ab.

In the literature it is customary to eliminate the factor 1/2κ appearing in (12.2a)by
scaling the fermion fields with

√
2κ : ψ →

√
2κψ, ψ̄ →

√
2κψ̄. The corresponding

Jacobian in the fermion integration measure drops out in the ratio (12.1a). Hence by
eliminating the factor 1/2κ in (12.2a), the path integral expression (12.1) yields the
original correlation function multiplied by (1/2κ)N . With this in mind, the action
we shall be working with is given by

SQCD = SG[U ] + S
(W )
F [U , ψ, ψ̄], (12.4a)

where SG has been defined in (6.25b), and where

S
(W )
F =

∑
A,B

ψ̄A(n)KnA,mB[U ]ψB(m), (12.4b)

with
KnA,mB[U ] = δnmδAB − κ(

˜
Mnm)AB. (12.4c)

Here we have made use of the collective notation for the Dirac and colour indices
introduced above. Thus δAB ≡ δαβδab, and (

˜
Mnm)AB ≡ (

˜
Mnm)αa,βb. Using the fact

that (see chapter 2),

det K[U ] =
∫

D(ψ̄ψ)e−S
(W )
F [U ,ψ,ψ̄], (12.5)
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one readily verifies that (12.1a) can also be written in the form

�ψA1(n1) · · · ψ̄B1(m1) · · ·U c1d1
µ1

(k1) · · · �

=

∫
DU�ψA1(n1) · · · ψ̄B1(m1) · · · �SF

U c1d1
µ1

(k1) · · · det K[U ]e−SG[U ]

∫
DU det K[U ]e−SG[U ]

, (12.6a)

where �ψA1(n1) · · · ψ̄B1(m1) · · · �SF
is the purely fermionic correlation function in the

“external” field defined by the link variable configuration {Uµ(n)}; i.e.,

�ψA1(n1) · · · ψ̄B1(m1) · · · �SF
=

∫
D(ψ̄ψ)ψA1(n1) · · · ψ̄B1(m1) · · · e−S

(W )
F [U ,ψ,ψ̄]

∫
D(ψ̄ψ)e−S

(W )
F [U ,ψ,ψ̄]

.

(12.6b)
In the so-called quenched approximation (q.a.), where detK[U ] is replaced by a
constant, the correlation function (12.6a) is just the ensemble average of the external
field correlation function (12.6b) multiplied by the link variables appearing on the
left-hand side of eq.(12.6a), and averaged with the Boltzmann distribution of the
pure gauge theory, exp (−SG[U ]).

In chapter 2 we have shown that path integrals of the type (12.6b) can be
expressed in terms of products of the two-point correlation functions (2.57) according
to (2.59). A simple translation of these expressions to the path integral (12.6b) leads
to the following result:

�ψA1(n1) · · ·ψA�
(n�)ψ̄B1(m1) · · ·ψB�

(m�)�SF

=
∑
contr.

ψA1(n1) · · ·ψA�
(n�)ψ̄B1(m1) · · · ψ̄B�

(m�). (12.7)

The right-hand side is meant to be the sum over all possible complete contractions
of ψ − ψ̄ pairs,∗ where a contraction is defined generically by

ψA(n)ψ̄B(m) = K−1
nA,mB[U ]. (12.8)]

Hence in the quenched approximation we “only” need to compute the ensemble
average of products involving the two-point function (12.8) and the link variables
with a Boltzmann distribution corresponding to that of the pure gauge theory:

�ψA1(n1) · · · ψ̄B1(m1)U c1d1
µ1

(k1) · · · �q.a.

=

〈 ∑
contr.

(ψA1(n1) · · · ψ̄B1(m1) · · · )U c1d1
µ1

(k1) · · ·
〉

SG

, (12.9)

∗ For the precise meaning of the right-hand side of (12-7) see the discussion in
chapter 2 after eq. (2.59).



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch12

174 Lattice Gauge Theories

where � �SG
denotes the ensemble average taken with the Boltzmann factor of the

pure gauge theory. But neither the integral (12.6a) with detK = 1, nor K−1[U ]
alone, can be calculated in closed form, and we are forced in general to compute
these quantities numerically. We may, however, calculate (12.8) within the so-called
hopping parameter expansion. This we will do in the following section.

12.2 Hopping Parameter Expansion of the Fermion Propagator
in an External Field

Consider the matrix K defined in (12.4c).

K[U ] = 1 − κM [U ]. (12.10)

Its inverse is the fermion propagator for a given link-variable configuration. For small
κ (i.e., large bare quark mass M̂0)∗ we can expand K−1 in powers of the hopping
parameter as follows:

K−1 = (1 − κM)−1 =
∞∑

�=0

κ�M �.

The corresponding expression for the matrix elements of K−1 reads

K−1
nA,mB[U ] = δnmδAB + κ(

˜
Mnm)AB +

∞∑
�=2

κ�
∑
{ni}

(
˜
Mnn1

˜
Mn1n2 · · ·

˜
Mn�−1m)AB,

(12.11)
where the non-vanishing matrices

˜
Mnm have been given in (12.3b). It follows from

(12.11) and the fact that
˜
Mk� connects only nearest neighbours on the lattice, that

the contributions to K−1
nA,mB[U ] in order κ� can be computed according to the fol-

lowing rules:
i) Consider all possible paths of length � on the lattice starting at the lattice site

n occupied by ψA (open circles) and terminating at the site m occupied by ψ̄B

(black blobs). As shown in fig. (12-1), these paths may intersect each other, and
turn back on themselves, creating for example appendix-like structures.

ii) Associate with each link with base at k, and pointing in the ±µ direction, the
matrices

˜
Mk,k+µ̂ = (r − γµ)

˜
Uµ(k),

˜
Mk,k−µ̂ = (r + γµ)

˜
U †

µ(k − µ̂).

∗ We are thus necessarily away from the continuum limit, which is realized for
M̂0 → 0.
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iii) Take the ordered product of all these matrices along a path following the arrow
pointing from n to m, and take the AB-matrix element of this expression

iv) Sum over all possible paths leading from n to m.

The number of diagrams reduces drastically if we choose the Wilson parameter
to be r = 1, for in this case diagrams with appendices, such as shown in fig. (12-1c),
will not contribute. This is a consequence of the fact that (1 − γµ)(1 + γµ) = 0. In
the following we shall choose r = 1.

n, A

m, B

Fig. 12-1 Diagrams contributing to K−1
nA,mB [U ] in the hopping param-

eter expansion.

As an example let us calculate in order κ4 the correlation function describ-
ing the propagation of a colour-singlet scalar particle, consisting of a local qq̄-pair,
between two neighbouring lattice sites n, and n+ µ̂. Let us denote the corresponding
composite field by φ(n):

φ(n) ≡
∑
a,α

ψ̄a
α(n)ψa

α(n).

The correlation function of φ in the quenched approximation is given by:
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Consider the first term on the right-hand side which is the contribution describing
the propagation of a quark (and antiquark) between two neighbouring lattice sites:

��φ(m)φ(n)��q.a. = −
∑
A,B

�K−1
nA,mB[U ]K−1

mB,nA[U ]�SG
. (12.12)

Here m = n + µ̂, and A and B stand for the set (a, α) and (b, β), respectively. To
compute the contribution in order κ4 of (12.12), we must expand K−1 up to order
κ3. In fig. (12-2) we show, for the case of a two-dimensional lattice, the various paths
C1, C2, C3 of interest.

n, A n+µ, B

C1 C2

C3

^

Fig. 12-2 Diagrams contributing to K−1
nA,n+µ̂B [U ] up to order κ3.

The corresponding expressions obtained by applying the general rules stated
above with r = 1, then read

K−1
nA;n+µ̂B =

3∑
�=1

(
˜
ΓC�

)αβ(
˜
UC�

)ab

where

˜
ΓC1 = (1 − γµ),

˜
UC1 =

˜
Uµ(n)

and

˜
ΓC2 = (1 − γν)(1 − γµ)(1 + γν),

˜
UC2 =

˜
Uν(n)

˜
Uµ(n + ν̂)

˜
U †

ν(n + µ̂),

˜
ΓC3 = (1 + γν)(1 − γµ)(1 − γν),

˜
UC3 =

˜
U †

ν(n − ν̂)Uµ(n − ν̂)Uν(n + µ̂ − ν̂).
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n, A n+µ, B

Fig. 12-3 Diagrams contributing in order κ4 to the external field cor-

relation function (12.12).

(a) (b)

(c)

Fig. 12-4 (a) Diagrams contributing to an external field 4-point corre-

lation function; (b) contribution to the correlation function in the leading

strong coupling approximation; (c) type of diagrams contributing to (12.12)

in the limit β → 0.

Hence the relevant diagrams associated with the correlation function (12.12)
in order κ4 are those shown in fig. (12-3). Their contribution is obtained by taking
the product of the individual propagators K−1 making up the diagram.

So far we have considered quark-correlation functions evaluated for a given con-
figuration of the link variables. In the quenched approximation (detK[U ] → const.),
these correlation functions must still be weighted with a Boltzmann distribution of
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the pure gauge theory, i.e., with

PG[U ] =
e−SG[U ]

∫
DUe−SG[U ]

. (12.13)

It is instructive to calculate the ensemble average of some simple correla-
tion functions in leading order of the strong coupling approximation. Consider
for example the contribution of O(κ8) to the correlation function (12.12) depicted
in fig. (12-4a). This contribution must be averaged with the Boltzmann distri-
bution (12-13). Expanding the action SG according to (11.3), we see that the
leading contribution to the ensemble average is obtained by paving the mini-
mal area enclosed by the quark paths with plaquettes, each of which contributes
a factor β. This is shown in fig. (12-4b). Hence in the strong coupling limit
(β → 0), the quark–antiquark pair can only propagate as a local unit, as shown in
fig. (12-4c).

m

m′ n′

n

Fig. 12-5 Diagram contributing to the gauge invariant correlation func-

tion �ψ̄(m)U · · ·Uψ(n)ψ̄(n′)U · · ·Uψ(m′)� in order κ6, for the case where n

and m (n′ and m′) are neighbouring lattice sites.

On the other hand consider the propagation of an extended meson. Then we
must study correlation functions of a gauge-invariant composite field having the
following schematic structure

φqq̄ = ψ̄(m)
˜
U · · ·

˜
Uψ(n),

where
˜
U · · ·

˜
U denotes the matrix product of link variables along a path connecting

the lattice sites n and m. In fig. (12-5) we show a diagram contributing to the
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“meson” propagator

Γ = �ψ̄(m)
˜
U · · ·

˜
Uψ(n)ψ̄(n�)

˜
U · · ·

˜
Uψ(m�)�

in O(κ6) of the HPE, and O(β3) of the strong coupling expansion, for the case where
m and n (m� and n�) are neighbouring lattice sites. The dashed lines stand for the
product of link variables appearing in the above correlation function. Notice that the
“strings” connecting the quarks and antiquarks (dashed lines) are essential, since
the group integral over a single link variable vanishes. For the same reason a single
quark cannot propagate in any order of the HPE. This can be viewed as another
statement of confinement.

12.3 Hopping Parameter Expansion of the Effective Action

As we have just seen, we can in principle compute a general correlation function
in the quenched approximation by calculating the ensemble average of products of
fermionic two-point correlation functions and the link variables, with a Boltzmann
distribution given by (12.13). In full QCD, however, we must also include the
fermionic determinant, det K[U ], in (12.6a). This is equivalent to taking the en-
semble average with the following probability distribution

P [U ] =
e−Seff [U ]

∫
DUe−Seff [U ]

, (12.14a)

where the effective action, Seff , is defined by

Seff [U ] = SG[U ] − ln det K[U ]. (12.14b)

Correspondingly, (12.9) is now replaced by

�ψA1(n1) · · · ψ̄B1(m1) · · ·U c1d1
µ1

(k1) · · · �

=

〈 ∑
contr.

(ψA1(n1) · · · ψ̄B1(m1) · · · )U c1d1
µ1

(k1) · · ·
〉

Seff

.

We remark that it is not obvious that (12.14a) can be interpreted as a probability
distribution. For this to be the case one must show that ln detK[U ] is real and
bounded from above. That detK[U ] is real can be shown rather easily. We first
notice that K[U ] is not a hermitean matrix. From the definition (12.2c) and the
hermiticity of the γ-matrices, it follows that

K∗
mB,nA = δnmδαβδab − κ

∑
µ

[
(r + γµ)αβ(

˜
Uµ(n))abδn+µ̂,m

+ (r − γµ)αβ(
˜
U †

µ(n − µ̂))abδn−µ̂,m
]
,
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i.e.,

K∗
mB,nA �= KnA,mB.

In fact the hermitian adjoint of the matrix K is obtained from K by replacing γµ

by −γµ. This observation can be stated in the form

K† = γ5Kγ5,

where γ5 is a matrix in Dirac space which anticommutes with all γµ’s, and whose
square is the unit matrix. Since det K† = det γ5Kγ5 = det K, it follows that det K

is real. Furthermore it has been shown by Seiler (1982) that for κ < 1/8 (which is
realized for the usual choice of Wilson parameter r = 1) 0 < det K[U ] < 1. Hence
we can interpret the expression (12.14a) as a probability distribution.

In contrast to SG[U ], the effective action (12.14b) is a non-local function of
the link variables, and its numerical calculation demands an enormous amount of
computer time. Before the advent of supercomputers, one has therefore mainly con-
centrated on calculating fermionic correlation functions in the quenched approxima-
tion. This may be a reasonable approximation to estimate such quantities as hadron
masses. On the other hand, there are problems where vacuum polarization effects
play a crucial role. Thus for example the screening of the quark-antiquark potential
at large distances is due to processes involving the creation of quark-antiquark pairs.
These effects arise from the determinant of the fermionic matrix K[U ].

We now derive graphical rules for computing ln detK[U ] in the hopping pa-
rameter expansion. To this effect we first rewrite ln detK as follows

ln det K[U ] = Tr ln K[U ],

where “Tr” denotes the trace in the internal space as well as in space-time. Sub-
stituting for K[U ] the expression (12.10) and expanding the logarithm in powers of
κM , we have that∗

Tr ln K[U ] = −
∞∑

�=1

κ�

�
Tr(M �). (12.15)

∗ Actually, there is no contribution to the trace coming from � = 1, since
˜
Mnm

connects different lattice sites.
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To get a diagramatic representation of the sum in (12.15), we write out the space-
time trace explicitly:

Tr ln K[U ] = −
∞∑

�=2

κ�

�

∑
{ni}

tr
˜
Mn1n2

˜
Mn2n3 · · ·

˜
Mn�n1 , (12.16)

where “tr” now stands for the trace in the internal space. The non-vanishing matrices

˜
Mnm have been defined in (12.3b). From the structure (12.16) it follows immediately

that the contributions of order κ� can be associated with closed paths of length � on
the lattice with an arbitrary sense of circulation. These contributions are calculated
as follows. Consider a given closed geometrical contour C�0 on the lattice, with �0

the perimeter of the contour measured in lattice units. Because of the space-time
trace in (12.15) a path winding around the contour one or more times can start at
any one of the �0 lattice sites on C�0 . Hence each path is weighted with a factor �0.
A path tracing out the contour C�0 n times will however contribute in order κn�0 .
Hence the contribution to (12.16) associated with all possible paths on the closed
contour C�0 is given by

−
∞∑

n=1

κn�0

n
tr

˜
Mn

C�0
,

where
˜
MC�0

is the path ordered product of the matrices (12.3b) along the geo-

metrical contour C�0 . The rhs of (12.16) is now obtained by summing the above
expression over all possible geometrical contours of arbitrary shape, and arbitrary
perimeter:

Tr ln K[U ] = ln det K[u] = −
∑
�0

∑
{C�0}

∞∑
n=1

(κ�0)n

n
tr

˜
Mn

C�0
. (12.17)

From here we can further obtain an elegant expression for the determinant
itself [Stamatescu (1982, 1992)]. Thus (12.17) can also be written in the form

ln det K[U ] =
∑
�0

∑
{C�0}

tr ln(1 − κ�0

˜
MC�0

).

It therefore follows that

det K[U ] =
∏
�0

∏
{C�0}

det(1 − κ�0

˜
MC�0

). (12.18)
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Note that the determinant appearing in this expression is that of a finite matrix in
colour and Dirac space.

In fig. (12-6) we show some diagrams contributing to (12.17). As in the case
of the external field Green’s function discussed in section 2, they also include paths
passing through a given lattice site an arbitrary number of times, as well as paths
having appendix-like structures. As before these appendices do not contribute if the
Wilson parameter is chosen to be r = 1.∗

Fig. 12-6 Diagrams contributing to ln detK in the hopping parameter

expansion.

The above hopping parameter expansion for the effective action (12.14b) can
be combined with the corresponding hopping expansion for the fermionic correlation
function discussed in section 2. In those regions of parameter space where ln detK

and K−1 can be approximated by a few terms in the expansion (i.e., small hopping
parameter, or large M̂0), the computational effort is thereby drastically reduced.
In practice, however, where one is interested in working in the scaling region with
small quark masses, non-perturbative methods for computing K−1 and det K are
required.

The hopping parameter expansion can be used to obtain a qualitative picture
of the screening of the static quark–antiquark potential due to “pair-production”
processes (see e.g., Joos and Montvay, 1983). The following picture is very crude.
Within the framework of the strong coupling expansion, the Wilson loop will be
paved not only with the plaquettes arising from the action SG[U ], but also with
closed loops built from link variables, arising from the fermionic determinant. In
the HPE, these latter contributions come with a power of κ, determined by the

∗ In the continuum limit physics should be independent of the choice for r, as
long as r �= 0.
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Fig. 12-7 Contribution to �WC� coming from the fermionic determinant

(inside loop) which screens the qq̄ -potential in the strong coupling limit and

in lowest order of the hopping parameter expansion.

length of the loop. These different loop contributions will compete with each
other in determining the interquark potential. In particular, in the strong cou-
pling limit, β → 0, the Wilson loop will be paved with loops arising only from
the fermionic determinant. In fig. (12-7) we show a diagram which corresponds to
a dynamical quark and antiquark being created at the positions of the (infinitely)
heavy antiquark and quark, respectively. The contribution of this diagram is of
the form

�WC [U ]� ≈ κ2(R̂+T̂ ) = e(R̂+T̂ ) ln κ2
,

which shows that the dynamical qq̄-pair leads to screening of the heavy quark-
antiquark potential, which in this crude approximation is just a constant: Vqq̄ =
− ln κ2.

12.4 The HPE and the Pauli Exclusion Principle

In the previous sections we obtained graphical rules for calculating the two-
point fermion correlation function and the effective action in any order of the hopping
parameter expansion. In particular the rules for calculating the quark propagators
in a background field, corresponding to a given link-variable configuration, where
based on eq. (12.7), derived in chapter 2 using the concept of a generating functional.
We now want to rederive the results obtained above by applying the Grassmann
integration rules (discussed in chapter 2) directly to the path integral expressions for
the external field correlation function (12.6b) and the determinant of K[U ]. In this
way we shall demonstrate explicitly that the Pauli exclusion principle, which forbids
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that the same lattice site can be occupied by two identical quarks or antiquarks, is
satisfied.

Consider the exponential, exp(−SF ), in (12.6b) where SF is given by (12.4b).
Inserting for K the expression (12.10) and using the fact that bilinear expressions
in Grassmann variables behave like c-numbers under commutation, we have that

e−SF =
∏
n,A

e−ψ̄A(n)ψA(n)
∏

m,B,B′

µ̂

eκψ̄B(m)MmB,m+µ̂B′ψB′ (m+µ̂), (12.19)

where MmB,nB′ ≡ (
˜
Mmn)BB′ . Here, and in the following, the unit vector µ̂ can point

in the positive and negative directions. Now, since products of a given Grassmann
variable vanish, only the first two terms in the expansion of the exponentials (12.19)
will contribute; hence

e−SF =
∏
n,A

[1 + mA(n)]
∏

m,B,B′
µ

[1 + κdBB′(m, µ̂)], (12.20a)

where∗

mA(n) = ψA(n)ψ̄A(n), (12.20b)

dBB′(m, µ̂) = ψ̄B(m)MmB,m+µ̂B′ [U ]ψB′(m + µ̂). (12.20c)

For convenience we shall refer to (12.20b) and (12.20c) as “monomers” and “dimers”,
respectively. These names have also been used elsewhere in the literature, although
in a somewhat different way, and we apologize for borrowing these suggestive names
for our purpose.∗∗

According to (12.20), the basic elements appearing in the integrand of the nu-
merator and denominator of (12.6b) in any order of the hopping parameter expansion
are:

i) The quark (antiquark) fields ψA1(n1) · · · (ψ̄B1(m1) · · · ) of the correlation function
to be calculated. We denote these graphically by an open circle (ψ → o) and an
extended dot (ψ̄ → •) and shall refer to them as the external fields.

ii) Monomers, consisting of a quark and an antiquark located at the same lattice
site.

∗ Notice that we have interchanged the order of the Grassmann variables in
(12.20b). This gives rise to a minus sign.

∗∗ See e.g., Gruber and Kunz (1971); Rossi and Wolff (1984); Burkitt, Mütter and
Überholz (1987).
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iii) Dimers, consisting of a quark and antiquark located at neighbouring lattice sites
and joined by a string bit

˜
Uµ(n). We shall denote these graphically by

: dBB′(n, µ̂)

Hence the contributions to the integrand of (12.6b) of order κ� will consist of the
external fields mentioned in i) and a system of monomers and � dimers distributed
on the lattice. Of these only a subset of configurations will survive the fermion inte-
gration. Thus it follows immediately from the structure of the integration measure
(12.1b) and the fact that the only non-vanishing Grassmann integral is of the form

∫
dψ̄dψψψ̄ = −

∫
dψ̄dψψ̄ψ = 1, (12.21)

that every lattice site must be occupied by one, and only one, quark-antiquark pair
for every internal degree of freedom. This is the manifestation of the Pauli exclusion
principle! Since the internal indices of the qq̄-pairs associated with monomers are
automatically paired, it then follows that the degrees of freedom of the quark and
antiquarks associated with the external fields and dimers must also combine into
pairs at every lattice site. Thus the maximum number of such pairs at any site
cannot exceed the total number of degrees of freedom of the quarks. What concerns
the monomers, we can ignore them from now on, since their role is merely to fill in
those degrees of freedom which are not supplied by the external fields and dimers;∗

hence they are the “filling material” which ensures that the Grassmann integrals do
no vanish, and we shall not exhibit them in any diagram. (Notice that according
to the definition (12.20b) of mA each monomer merely contributes a factor +1,
as follows from the integration rule (12.21)). What concerns the denominator in
(12.6b), the same general criteria as discussed above apply, except that now the
integrand only receives contributions from monomers and dimers. Since this is the
simplest quantity to study, we shall discuss it first.

Consider the integral (12.5). In order κ� the only relevant contributions to the
integrand involve �-dimers distributed on the lattice in accordance with the princi-
ples mentioned above. In figs. (12-8) and (12-9) we show some typical configurations
in order κ4 and κ8. Consider first the diagram of fig. (12-8a). Since each lattice site
is only occupied by a single qq̄-pair, there is no restriction on the internal degrees

∗ Recall that monomers (and dimers) act like C-numbers under commutation with
any Grassmann variable.



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch12

186 Lattice Gauge Theories

of freedom labeling the pair. For a fixed choice of A1, . . . A4, the diagram gives the
following contribution to detK[U ]:

I
(a)
A1...A4

=
∫ 4∏

i=1

dψ̄Ai
(ni)dψAi

(ni) ψ̄A1(n1)
[
(
˜
Mn1n2)A1A2ψA2(n2)ψ̄A2(n2)

. . . ψA4(n4)ψ̄A4(n4)(
˜
Mn4n1)A4A1

]
ψA1(n1),

Except for the two fields, ψA1(n1) and ψ̄A1(n1), appearing on the right and left of
the square bracket, all others are grouped in the form ψψ̄. Upon integration each of
these pairs yields a factor +1. The remaining integral gives rise to the well-known
minus sign associated with a fermion loop. Hence

I
(a)
A1...A4

= −(
˜
Mn1n2)A1A2(

˜
Mn2n3)A2A3 . . . (

˜
Mn4n1)A4A1 .

Upon summing over all possible values of the internal degrees of freedom, we are led
to the diagram in fig. (12-8b), whose contribution is obtained by taking the trace of
the product of matrices (12.3b) along the closed path, and including a minus sign
for the fermion loop.

(a)

1

2

4

3

(b)

Fig. 12-8 (a) Dimer configuration contributing to det K in order κ4;

(b) corresponding diagram obtained by taking the trace.

Let us now take a look at the more complicated diagrams shown in
fig. (12-9a,b). Here we notice that the path to be followed is not unique. Thus with
the diagram in fig. (12-9a) we can associate the paths shown in fig. (12-10), while for
the diagram in fig. (12-9b) the possible paths are those depicted in fig. (12-11). The
possibility of associating different paths with a given diagram of dimers is clearly
connected with our ability to match the degrees of freedom of the qq̄ pairs at lattice
sites occupied by more than one qq̄-pair in different ways. Notice also that the var-
ious connected and disconnected paths associated with a given set of dimers differ
in the number of independent quark loops.
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(b)(a)

Fig. 12-9 Dimer configurations contributing to det K in order κ8.

(a) (b)

Fig. 12-10 The two possible paths which can be associated with the

dimer configuration depiced in fig. (12-9a).

Fig. 12-11 The two possible paths which can be associated with the

dimer configuration depicted in fig. (12.9b).

If we consider the contribution of any one of these closed paths obtained by
taking the trace of the ordered product of the matrices

˜
Mm,n±µ̂ along the path

with a given sense of circulation, then we are clearly violating the Pauli exclusion
principle, since several quarks (and antiquarks) at a given lattice site would be
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allowed to carry the same quantum numbers. But if we add the contributions of
the paths shown in fig. (12-10) (or fig. (12-11)), Pauli’s principle is restored! Thus
consider for example the two paths depicted in fig. (12-10a,b). For both of them, the
contributions violating Pauli’s principle correspond to the following qq̄ configurations
at the lattice site denoted by a cross:

AA

AA

But because the diagram in fig. (12-10b) contains an extra fermion loop, it will
receive an extra minus sign. Hence the configuration shown above will not con-
tribute in the sum. In general, diagrams contributing to the determinant consist
of a single loop, or of several closed loops (in contrast to ln detK which, as we
have seen, only involves simple closed paths). The contribution of each loop is cal-
culated by taking the trace of the ordered product of the matrices (12.3b) along
the path with a given sense of circulation and including a minus sign for every
fermion loop.

Let us now carry through a similar analysis for the numerator in (12.6b). For
definiteness sake we shall demonstrate the general ideas by studying the following
four-point correlation function:

ΓA1,A2;B1,B2(n1, n2; m1, m2; U) = 〈ψA1(n1)ψA2(n2)ψ̄B1(m1)ψ̄B2(m2)〉SF
. (12.22)

The relevant dimer configurations contributing to the numerator of the correspond-
ing path integral expression are given by the rules stated earlier in this section. In
fig. (12-12) we show some typical diagrams built from the external quark-antiquark
fields appearing in (12.22) and from a set of dimers. Depending on the way the
internal degrees of freedom of the qq̄-pairs are matched∗ we generate different sets
of diagrams consisting of paths connecting the external quarks and antiquarks, and
of closed loops which may, or may not, have links in common with these paths, as
shown in fig. (12-13). Once we have generated all possible sets of paths of a given
total length, there is no longer any need for restricting the sum over internal indices.

∗ Or equivalently, the way we follow the arrows through the diagram.
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n1, A1

n2, A2

(a) (b)

m1, B1

m2, B2

Fig. 12-12 Two possible dimer configurations which contribute to the

correlation function (12.22).

(a) (b)

(c) (d)

Fig. 12-13 Diagrams which can be associated with the dimer configu-

rations in fig. (12-12).
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The cancellation of those contributions violating Pauli’s principle in individual
diagrams, takes place between diagrams consisting of the same set of oriented links.
As we have seen, all these diagrams originate from the same dimer configuration.

Notice that the contributions shown in figs. (12-13a) and (12-13c) factorize into
a contribution of O(κ6), calculated according to the rules stated in section 2, and
a closed loop. This loop is cancelled by a corresponding contribution arising from
the denominator, i.e., from the fermionic determinant. In this way we recover the
results of section 2.

11

2

3
3 4

4

2

Fig. 12-14 Two diagrams generated from the same dimer configuration

shown in fig. 12-15, and which taken together ensure the Pauli principle.

There is another point which must be mentioned. Not only the minus sign
associated with fermion loops but also the signum of the permutation associated with
the contractions in (12.7) plays an important role in ensuring Pauli’s principle. Thus
consider e.g., the diagrams in fig. (12-14) generated from the dimer configuration
depicted in fig. (12-15). None of these diagrams contains a closed loop. Symbolically
their contributions are of the form

�1 M · · ·M �4 �3 M · · ·M �2

and

�1 M · · ·M �2 �3 M · · ·M �4

where the circles indicate the position of the external quark (antiquark) fields; hence,
according to our integration rules, one of the two diagrams receives an extra minus
sign ensuring the cancellation of Pauli-forbidden contributions at the lattice site
denoted by a cross.

For examples where the hopping parameter expansion has been used in a Monte
Carlo simulation see Hasenfratz and Hasenfratz (1981a), and Hasenfratz, Karsch and
Stamatescu (1983).
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3

1

2

4

Fig. 12-15 Dimer configuration which gives rise to the paths depicted

in fig. 12-14.

This concludes our discussion of the hopping parameter expansion. For a more
detailed study of the fermionic determinant in the HPE see Stamatescu (1982). In
the following three chapters we now study the lattice analog of the weak coupling
expansion in continuum field theory.
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CHAPTER 13

WEAK COUPLING EXPANSION (I).
THE Φ3-THEORY

13.1 Introduction

Weak coupling perturbation theory can be used in continuum QCD to in-
vestigate its short distance properties. The reason is that QCD is asymptotically
free. On the other hand, lattice QCD was invented to study non-perturbative phe-
nomena, like quark confinement, hadron masses, hadronic weak matrix elements,
etc.. So why should we be interested in studying weak coupling perturbation the-
ory in lattice QCD which, as the reader might expect, is much more involved than
in the continuum formulation? Because of the specific gauge invariant regulariza-
tion with a lattice cutoff, the lattice action will include so-called irrelevant vertices,
which have no analog in the continuum. Although these vertices vanish in the con-
tinuum limit, a finite number of them will actually contribute in a give order of
perturbation theory to the Green functions in the limit of vanishing lattice spac-
ing. Hence the number of Feynman diagrams that need to be considered is larger
than in the continuum formulation. But also the integrands of Feynman integrals
are now periodic functions of the momenta, and the usual power counting theo-
rems of the continuum formulation, needed for formulating a renormalization pro-
gram, do not apply. It is therefore not a priori clear that lattice gauge theories are
renormalizable.

Let us come back to the question of why we are interested in a perturbative
treatment of lattice gauge theories. By having introduced a space-time lattice to
regularize the quantum theory, one has manifestly broken Poincaré invariance. It is
therefore important to investigate whether this symmetry is restored in the contin-
uum limit. A non-perturbative analysis is very difficult. We can, however, get an
answer to this question within the framework of perturbation theory. On the other
hand there are symmetries of the classical continuum action which are known to
be broken on the quantum level. In this case one speaks of an anomaly. Clearly a
lattice formulation should correctly reproduce the anomalous behaviour of the quan-
tum theory. A typical example is the famous Adler–Bell–Jackiw (ABJ) anomaly in
continuum QED. For vanishing fermion masses the action possesses a (chiral) sym-
metry which, according to the Noether theorem, implies the conservation of the
vector and axial vector currents on the classical level. But on the quantum level it
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has been shown that there exists no regularization scheme in which both currents are
conserved. If one insists on the requirement that the current coupled to the gauge
field (i.e. the vector current) remains conserved on quantum level (we do not want
gauge invariance to be broken), then the axial current will no longer be conserved.
Its divergence can be calculated and is referred to in the literature as the Adler–
Bell–Jackiw anomaly (Adler, 1969; Bell and Jackiw, 1969). The question then arises
whether the lattice formulation of QED reproduces this result. At first sight there
appears to be a contradiction with what is known from the continuum formulation.
Thus the action with naive massless fermions is invariant under chiral transforma-
tions for any finite lattice spacing. Hence one expects that the vector and axial
vector currents remain conserved also for a → 0. This is indeed the case. Neverthe-
less there is no contradiction with the result obtained from continuum perturbative
theory, for we have seen that the action with naive fermions actually describes six-
teen fermion species. As has been shown by Karsten and Smit (1981), these sixteen
fermions give rise to contributions to the divergence of the axial vector current which
alternate in sign, and the theory exhibits not anomaly. On the other hand, by using
Wilson fermions, chiral symmetry is broken explicitly for any finite lattice spacing.
Although this symmetry is broken on the lattice by an “irrelevant” term of the
action, this term plays a crucial role when studying the continuum limit, and en-
sures that the ABJ-anomaly is correctly reproduced. In continuum QCD there exist
a similar anomaly in the axial flavour singlet current, which must be reproduced
correctly by lattice perturbation theory.

But there are also other questions for which one wants to have an answer,
and which are not connected with any symmetries. For example, the short distance
properties of QCD, which can be studied in continuum perturbation theory, involve
a scale, Λ, with the dimension of a mass, which determines the rate with which the
renormalized effective coupling constant decreases with decreasing separation of the
quarks. This scale can be measured in deep inelastic scattering experiments. On the
other hand we have seen that one encounters a similar mass-scale ΛL, when studying
the continuum limit of observables in the lattice formulation. The two scales, which
have been introduced in very different ways, are expected to be related. In this case
this would lead us to the interesting perspective that, given Λ and the quark masses,
QCD should be able to predict all physical phenomena.

The above examples do not exhaust the list of applications of weak coupling
perturbation theory on the lattice, which, for vanishing lattice spacing, should cor-
rectly reproduce all the perturbative results of the continuum theory. For finite
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lattice spacing, however, the continuum results will be modified by lattice artefacts.
By making use of the large freedom one has in choosing the lattice action (which,
a priori, is only required to reduce to its continuum form in the naive continuum
limit), one can construct so-called improved actions (Symanzik 1982, 1983) for which
these artefacts are reduced.* Non-perturbative calculations using these “improved
actions” are then expected to allow one to extract continuum physics already for
larger lattice spacings. This is important since in praxis one is forced to perform
numerical claculations on rather small lattices.

In this and the following two chapters we want to to provide the reader with the
basic framework for carrying out perturbative calculations on the lattice, stressing
the differences between continuum and lattice perturbation theory. We will not
discuss renormalization theory. Renormalization of lattice gauge theories is based on
the same general ideas familiar from the continuum formulation. But their practical
implementation is much more involved. The interested reader may consult the work
of Reisz (1988a,b), where the renormalization program for lattice gauge theories has
been studied in detail.

In this chapter we begin with a discussion of a scalar field theory. Our objective
is to demonstrate how the integrands of Feynman integrals are modified by lattice
artefacts. The φ3-theory is the simplest non-trivial example of such a field theory.
Our discussion, however, applies to any lattice field theory relevant to elementary
particle physics. Irrelevant vertices will play no role in our discussion. In the next
chapter we then consider the more complicated case of an abelian lattice gauge
theory. There we shall also have to deal with Feynman diagrams involving irrelevant
vertices. Finally, in chapter 15, we consider the case of lattice QCD. The weak
coupling expansion of Green functions in this theory is far more complicated than
in the φ3-theory and lattice QED because of its non-abelian nature. But having
prepared the ground in this and the following chapter, the reader will hopefully be
able to follow the material on the weak coupling expansion in lattice QCD, which
we will present in great detail.

* Confer also the lectures by Lüscher (1984). For an important example where
the program of Symanzik has been applied in the SU(2) and SU(3) gauge theories,
see e.g., Bernreuther and Wetzel (1983).
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13.2 Weak Coupling Expansion of Correlation Functions
in the φ3-Theory

Consider the following euclidean continuum action for a real scalar field:

S[φ] =
1
2

∫
d4xφ(x)(−�� + M2)φ(x) +

g0

3!

∫
d4x(φ(x))3.

Here �� is the four-dimensional Laplacean, M is the bare mass, and g0 is the bare
coupling constant carrying the dimension of a mass. As usual, the combinatorial
factor 3! has been introduced to simplify the Feynman rules. Introducing a space
time lattice, and scaling φ, ��, M and g0 with the lattice spacing a according to their
canonical dimension,* the lattice action takes the form

S[φ̂] =
∑
n,m

φ̂nKnmφ̂m +
ĝo

3!

∑
n

φ̂3
n,

where K is the matrix defined in (3.10b), and where n and m are 4-component vec-
tors labeling the lattice sites. Correlation functions of the fields φ̂n can be computed
from the generating functional

Z[Ĵ ] =
∫

Dφ̂e−S[φ̂]+
∑

Ĵnφ̂n

by differentiating this expression with respect to the currents Ĵn:**

�φ̂n1φ̂n2 . . . φ̂nl
� =

1
Z[0]

{
∂lZ[Ĵ ]

∂Ĵn1 . . . ∂Ĵnl

}

J=0

. (13.1)

As has been shown in section 2 of the second chapter, Z[Ĵ ] can be computed in
perturbation theory as follows:

Z[Ĵ ] = e−Sint[ ∂
∂Ĵ

]Z0[Ĵ ]

=
∞∑

N=0

1
N !

(
−Sint

[
∂

∂Ĵ

])N

Z0[Ĵ ], (13.2a)

* i.e., we define the dimensionless quantities φ̂ = aφ, M̂ = aM , �̂� = a2��, and
ĝ0 = ag0.

** Notice that the subscript on ni labels different four-component vectors, and is
not to be confused with the i’th coordinate of a lattice site.
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where

Sint[φ̂] =
ĝ0

3!

∑
n

φ̂3
n, (13.2b)

and Sint[∂/∂Ĵ ] is obtained from (13.2b) by making the replacement φ̂n → ∂/∂Ĵn.
Z0[Ĵ ] is the generating functional of the free theory, given by eq. (3.12), i.e.,

Z0[Ĵ ] =
1√

det K
e

1
2

∑
n,m ĴnK−1

nmĴm . (13.2c)

From (13.1) and (13.2) one derives the Feynman rules in the standard way. In
every given order of perturbation theory the contribution to the correlation function
(13.1) can be represented by a set of Feynman diagrams built from the interaction
vertices with coupling −ĝ0 and propagators ∆̂nm = K−1

nm, represented graphically as
follows:

There are two types of lines (propagators) associated with a general Feynman dia-
gram: a) lines that connect one of the external lattice sites appearing in the corre-
lation function with an interaction vertex, and b) lines connecting two vertices. We
shall refer to the former as external lines, and to the latter as internal lines.

n ml l′

(a) (b)

Fig. 13-1 (a) Diagram contributing to �φnφm� in O(g2
0); (b) Lines

emanating from the two vertices which must be contracted to form the

diagram in (a).

As an example consider the contribution of order g2
0 to the two-point correlation

function �φnφm� shown in Fig. (13-1a). It is given by*

�φ̂nφ̂m�(a) =
1
2
ĝ2
0

∑
l,l�

∆̂nlΠ̂ll�∆̂l�m, (13.3a)

* As always, we denote dimensionless (lattice) variables and functions with a
small hat.
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where

Π̂ll′ = (∆̂ll′)2. (13.3b)

The “symmetry factor” of 1/2 multiplying (13.3a) arises as follows. Let us count
the number of ways that the six lines emanating from the two vertices shown in
fig. (13-1b) can be connected to make up the diagram depicted in fig. (13-1a). There
are six ways of choosing the endpoint n. This leaves us with three possibilities for
choosing m. The number of possibilities to connect the four remaining lines is two.
Hence there are 6 · 3 · 2 = (3!)2 ways of building up the diagram. Now each vertex
yields a factor 1/3!. This leaves us with a factor of 1/2! arising from the second
order term in (13.2a). Let us now write the right-hand side of (13.3a) in momentum
space.

As we have learned in chapter 3, the free propagator ∆̂nm has the following
Fourier representation (cf. eq. (3.17))

∆̂nm =
∫ π

−π

d4k̂

(2π)4

eik̂·(n−m)

k̂2 + M̂2
, (13.4a)

where

k̂2 =
4∑

µ=1

k̂2
µ, (13.4b)

and

k̂µ = 2 sin
k̂µ

2
. (13.4c)

Notice that while k̂µ denotes the momentum measured in lattice units, k̂µ (with the
extended “hat”) denotes the dimensionless periodic function (13.4c). Because of the
appearance of the square of k̂µ in the integral (13.4a), the integrand is a periodic
function of k̂µ with periodicity 2π. Inserting the expression (13.4) into (13.3) and
performing the sum over l and l� using the representation (2.64) for the periodic
δ-function (with a = 1) one finds that

�φ̂nφ̂m� =
∫

BZ

d4k̂

(2π)4

d4k̂�

(2π)4 Ĝ(k̂, k̂�; M̂)eik̂·n−ik̂′·m, (13.5a)

where

Ĝ(k̂; k̂�; M̂) =
1

k̂2 + M̂2
Π̂(k̂, k̂�; M̂)

1

k̂�2 + M̂2
, (13.5b)
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and

Π̂(k̂, k̂′; M̂) =
ĝ2
0

2

∫

BZ

2∏
i=1

d4l̂i
(2π)4 [(2π)4]2δ(4)

P (k̂ − l̂1 − l̂2)δ
(4)
P (k̂′ − l̂1 − l̂2)

2∏
i=1

1

(l̂2i + M̂2)
.

(13.5c)

Here l̂i denote the “line” momenta carried by the internal lines of the momentum
space diagram corresponding to Fig. (13.1a). Notice that the general structure of the
expressions (13.5) is the same as that of the continuum formulation if k̂µ is replaced
by k̂µ, except that all the variables are expressed in lattice units. But because of
the appearance of the periodic δ-functions, momenta are conserved at the vertices
modulo 2nπ (n an integer). This is important, since, e.g., for certain values of k̂ and
l̂1 in the (first) BZ, the argument of δ

(4)
P (k̂ − l̂1 − l̂2) will vanish only for l̂2 in the

next BZ. Consider, for example, the integration in (13.5c) over l̂2. Then l̂2 is fixed
to be l̂2 = k̂ − l̂1 + 2Nπ, where the integer N is determined by the requirement that
l̂2 lies within the integration interval. But since the integrand is itself a periodic
function of the momenta, integrating over l̂2 is equivalent to setting l̂2 = k̂ − l̂1. In
other words, we can implement momentum conservation in the way familiar from
the continuum formulation. We are therefore left with the following expression for
(13.5c):

Π̂(k̂, k̂′; M̂) = (2π)4δ
(4)
P (k̂ − k̂′)Π̂(k̂, M̂),

where

Π̂(k̂, M̂) =
ĝ2
0

2

∫

BZ

d4q̂

(2π)4

1

[q̂2 + M̂2][ ̂(k − q)2 + M̂2]
,

and

̂(k − q)µ = 2 sin
[
1
2
(k̂ − q̂)µ

]
.

Let us next compute the contribution of the diagram in Fig. (13-1a) to the
physical correlation function �φ(x)φ(y)� by scaling all lattice variables appropriately
with a. Proceeding as in chapter 3, we introduce the dimensioned variables φ = φ̂/a,
x = na, y = ma, M = M̂/a, k = k̂/a, k′ = k̂′/a, q = q̂/a, as well as the
dimensioned coupling constant g0 = ĝ0/a, and study the behaviour of the integral
as the lattice spacing is decreased, keeping x, y, M and g0 fixed. One finds that
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formally*

�φ(x)φ(y)� = lim
a→0

∫ π/a

−π/a

d4k

(2π)4

d4k�

(2π)4G(k, k�; M , a)eik·xe−ik′·y, (13.6a)

where

G(k, k�; M , a) = (2π)4δ
(4)
P (k − k�)

[
1

k̃2 + M2
Π(k; M , a)

1
k̃2 + M2

]
, (13.6b)

and

Π(k; M , a) =
g2
0

2

∫ π/a

−π/a

d4q

(2π)4

1

[q̃2 + M2][ ˜(k − q)
2
+ M2]

. (13.6c)

Here the dimensioned variables denoted with a “tilde” are defined generically by

p̃µ =
2
a

sin
pµa

2
, (13.7a)

p̃2 =
4∑

µ=1

p̃2
µ. (13.7b)

The graphical representation of the quantity appearing within square brackets in
(13.6b) is given in fig. (13-2).

kk

k-q

q

Fig. 13-2 Contribution of O(g2
0) to the propagator in momentum space.

Let us summarize the important properties of the Fourier transform of the
correlation function (13.6a):

i) The general structure of G(k, k�; M , a) is the same as in the continuum formu-
lation, except that propagators are replaced by their lattice analogues,

∆(p) =
1

p̃2 + M2 , (13.8)

* Actually this limit does not exist and one must invoke renormalization before
taking it. We shall come back to this point later; here we are only interested in
discussing some formal aspects.
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and that the momentum integrations are carried out over the Brillouin zone:
[−π

a
, π

a
]4. Hence apart from these modifications the Feynman rules are the same

as those of the continuum formulation.
ii) In the limit a → 0 the lattice propagators reduce to those of the continuum

theory.
iii) G(k, k′; M , a) is a periodic function in each of the components of the momenta,

with periodicity 2π/a.
iv) The integrand of the lattice Feynman integral (13.6c) is a periodic function of

the loop momentum q, with periodicity 2π/a. Furthermore, it possesses a finite
continuum limit.

v) If the integrand of the lattice Feynman integral (13.6c) is replaced by its naive
continuum limit, then the resulting integral is given by the continuum Feynman
rules with a momentum cutoff π/a.

Although we have only discussed a particular example, these properties hold for
any Feynman diagram if we choose an appropriate set of loop integration variables.
A natural set of integration variables is obtained by identifying these with a subset
of the line momenta.* This is the choice we shall make in this and the following two
chapters. In fig. (13-3) we show such a natural choice of integration variable for a
diagram contributing to the two-point function in 0(g4

0).

kk

k-q k-q′

q-q′

q q′

Fig. 13-3 A natural choice for the loop integration variables.

Given a lattice Feynman integral having the above properties, we now want to
learn something about its continuum limit. In general this limit cannot be calcu-
lated by first evaluating the integrals for finite lattice spacing and then taking the
limit a → 0. But since the integrands are finite in this limit, one may expect that
under certain conditions, one can replace the integrands by their naive continuum
limit, and hence get rid of the periodic structure of the integrands which complicate

* See Reisz (1988c) for a discussion of more general integration variables.
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enormously the computations. The power counting theorem of Reisz (1988c), which
we discuss in the following section, will tell us when this can be done. It also plays
a central role for formulating a renormalization program.*

13.3 The Power Counting Theorem of Reisz

Consider a general lattice Feynman integral in the scalar φ3 theory. We assume
that we have scaled all variables with the lattice spacing a in an appropriate way so
that this integral is the lattice-regulated version of a continuum Feynman integral.**
Furthermore we assume that

a) all trivial integrations asociated with the conservation of energy and momenta
at the vertices have been performed, and

b) that the loop integration variables qi (i = 1, . . . , L) have been chosen in such
a way that the integrand is a periodic function in each component of qi, with
periodicity 2π/a. The domain of integration is the first BZ.

Let k and l denote collectively the set of momenta associated with the external
and internal lines of the diagram, respectively, and q the collection of independent
loop integration variables. A general Feynman integral in the φ3-theory then has the
following structure,

F (k; M , a) =
∫

BZ

L∏
i=1

d4qi

(2π)4

1
D(k, q; M , a)

,

where the integrand is given by a product of the propagators (13.8) associated with
the internal lines of the diagram:

D(k, q; M , a) =
I∏

i=1

(l̃2i (k, q) + M2).

Here I is the number of internal lines, and the µ’th component of l̃i is defined by an
expression analogous to (13.7a). With a natural choice of loop integration variables

* A summary can be found in the lectures by Lüscher at Les Houches (1988).
** In lattice gauge theories we shall also have to deal with Feynman integrals

which have no continuum analogue.
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li will then be of the form*

li(k, q) =
L∑

j=1

cijqj + Qj(k),

where cij are either ±1 or 0. We will be interested, however, in integrals of a more
general structure. The reason is the following: take for example the integral (13.6c).
It actually diverges logarithmically for a → 0. But by subtracting from it its con-
tribution at k = 0, we arrive at an expression which possesses a finite continuum
limit. We therefore decompose (13.6c) as follows:

Π(k; M , a) = Π(0, M , a) + Π̃(k, M , a) (13.9a)

where

Π̃(k, M , a) =
g2
0

2

∫

BZ

d4q

(2π)4

1
(q̃2 + M2)

[
1

(q̃ − k)2 + M2
− 1

q̃2 + M2

]
. (13.9b)

The first term appearing on the right-hand side of (13.9a) diverges in the limit
a → 0. This divergent constant can be absorbed into the bare mass parameter M in
the way familiar from continuum perturbation theory. The remaining integral will
be shown to possess a finite continuum limit. This integral has the following form

Π̃(k; M , a) =
g2
0

2

∫

BZ

d4q

(2π)4

N(k, q; M , a)
D(k, q; M , a)

, (13.10a)

where**

N(k, q; M , a) = q̃2 − (q̃ − k)2, (13.10b)

and

D(k, q; M , a) = (q̃2 + M2)2[(q̃ − k)2 + M2]. (13.10c)

But this is not the only motivation for studying integrals of a more general structure.
In lattice QED or QCD the integrals associated with Feynman diagrams will be
already of the type

IF (k; M , a) =
∫

BZ

L∏
i=1

d4qi

(2π)4

N(k, q; M , a)
D(k, q; M , a)

(13.11)

* We want to emphasize that it is important that the loop momenta are chosen in
such a way that the coefficients cij are integers. Only then does the power counting
theorem of Reisz apply for Feynman integrals involving an arbitrary number of loop
integrations. Such a choice is always possible.

** In the present case the numerator function N does not depend on M .
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before invoking any renormalization procedure.* We therefore are interested in an
answer to the following questions: a) When does the integral (13.11) possess a finite
continuum limit, and b) if so, what can we say about this limit?

These questions have been answered by Reisz (1988c), who proved a power
counting theorem for lattice theories, analogous to that familiar from continuum
perturbation theory. This theorem applies to integrals of the type (13.11) with N

and D satisfying the following requirements:

i) There exists an integer κ such that**

N(k, q; M , a) = a−κN̂(ka, qa; Ma) (13.12a)

where N̂ is a smooth function of the variables ka, qa, Ma. Furthermore, N̂ is
periodic in each component of the dimensionless loop momenta q̂ ≡ qa with
periodicity 2π, and a polynomial in Ma.

ii) The continuum limit of N(k, q; M , a) exists. We shall denote it by P (k, q; M):

lim
a→0

N(k, q; M , a) = P (k, q; M). (13.12b)

iii) The denominator D(k, q; M , a) is of the form

D(k, q; M , a) =
I∏

i=1

Di(li(k, q); Mi, a). (13.12c)

Furthermore, there exists a smooth function F̂i(l̂i; M̂i), which is periodic in l̂i with
periodicity 2π and a polynomial in M̂i, such that

Di(li; Mi, a) =
1
a2 F̂i(lia; Mia). (13.12d)

iv) The continuum limit of Di(li; Mi, a) exists and is given by

lim
a→0

Di(li; Mi, a) = l2i + M2
i . (13.12e)

v) There exist positive constants a0 and K such that

|Di(li; Mi, a)| ≥ K(l̃2i + M2
i ) (13.12f )

for every a < a0, and li in the BZ.

* If IF depends on several masses, then M stands collectively for all of them.
** Recall that k and q denote collective variables. To be general we also include

the case where several masses {Mi} ≡ M are involved.
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Notice that this condition is automatically satisfied for scalar particles. But for naive
fermions it is violated for momenta �i at the edges of the BZ. On the other hand, for
Wilson fermions, the denominator function appearing under the integral in (4.29a)
is given by

D(l; M , a) =
∑

µ

1
a2 sin2(lµa) + M(l)2,

where M(l) has been defined in (4.29b). Expressed in terms of the momenta
l̃µ, D(l; M , a) takes the following form for r = 1:

D(l; M , a) = (l̃2 + M2) + Mal̃2 +
a2

4

∑
µ�=ν

l̃2µl̃
2
ν .

Hence D(l, M , a) ≥ (l̃2 + M2) and (13.12f) is satisfied. Now if the integrand in
(13.11) has the properties (13.12) and if it satisfies the power counting theorem
of Reisz (which we discuss below), then a) the integral (13.11) possesses a finite
continuum limit, and b) this limit coincides with the expression obtained by re-
placing the integrand by its continuum limit, and sending the cutoff π/a to infin-
ity; i.e.,

lim
a→0

IF (k; M , a) =
∫ ∞

−∞

L∏
i=1

dqi

(2π)4

P (k, q; M)∏I
i=1(l

2
i + M2

i )
, (13.13)

where P (k, q; M) has been defined in (13.12b). This is a very nice result, for in this
case we get rid of the periodic structure of the integrand in (13.11) and are left with
an ordinary continuum Feynman integral.

We want to emphasize that the conditions i)–iv) are rather weak. In fact we
know of no example when they are not satisfied. On the other hand, condition v)
imposes a non-trivial constraint on the structure of the denominator for it implies
that for momenta li lying at the edges of the BZ, Di(li, Mi, a) must diverge like 1/a2

in the continuum limit. Hence naive fermions are excluded, while Wilson fermions
satisfy condition (13.12f). The following example illustrates the role played by this
condition.

Consider the one-dimensional integral

fN(a) =
∫ π/a

−π/a

dk
1

N2

a2 sin2 ka
N

+ M2
(13.14)
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where N = 1 or 2. For N = 2 the integrand is the one-dimensional analogue of the
scalar propagator (13.8). On the other hand for N = 1 the denominator in (13.14)
is the analogue of that encountered for naive fermions. Consider first the integral
which is obtained from (13.14) by replacing the integrand by its continuum limit
and sending the cutoff to infinity. Independent of the choice of N , the result is π/M .
Next let us calculate the integral exactly in the limit a → 0. To this end we make
use of the following integral representation for the integrand

1
x2 + M2 =

∫ ∞

0
dρe−(x2+M2)ρ,

where x2 = N2

a2 sin2 ka
N

= N2

2a2 (1 − cos 2ka
N

). Substituting this expression into (13.14),
one finds that for N = 1 or 2, the integral can be written in the form

fN(a) =
4πa

N2

∫ ∞

0
dye−(1+ 2a2M2

N2 )yI0(y), (13.15)

where I0(y) is the modified Bessel function. For large arguments, I0(y) behaves as
follows:

I0(y) −−−→
y→∞

1√
2πy

ey. (13.16)

Hence for any finite a the integral (13.15) exist. For a → 0, however, the integral
diverges, as it must, if (13.15) is to possess a finite limit. We can therefore calculate
this limit by substituting the right–hand side of (13.16) into (13.15). The resulting
integral can be immediately performed, and one obtains

fN(a) −−→
a→0

2
N

( π

M

)
.

Hence the result coincides with the one obtained in the naive approach for N = 2,
while it is twice as large for N = 1. This does not come as a surprise, since for
N = 1, and k within the BZ, sin ka not only vanishes for k = 0, but also at the
corner of the Brillouin zone. This is the analog of the familiar doubling problem!

The above example shows that even if a lattice integral, and its naive ap-
proximation, both possess a finite limit for a → 0, their continuum limits will not
necessarily coincide. In fact for N = 1 the denominator appearing in the integrand
of (13.14) violates condition (13.12f).

After these preliminaries, we are now in the position to discuss the power count-
ing theorem of Reisz, which applies to integrals having the form (13.11), with the
integrand satisfying conditions (13.12a–f). In order to establish the existence, or
non–existence, of the continuum limit, we need a definition for the lattice degree of
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divergence (LDD) analogous to that introduced in continuum perturbation theory
to study the convergence of Feynman integrals. But in contrast to the continuum
formulation, the LDD not only refers to the behaviour of the integrand for large
loop momenta, but it characterizes its behaviour under a simultaneous scale trans-
formation of the loop momenta and lattice spacing. This is connected with the
periodic structure of the integrand. Let us first introduce the lattice degree of diver-
gence for an integral involving a single loop momentum, and generalize the concept
afterwards.

Consider a function W (k, q; M , a) depending on a single loop momentum q.
Then according to Reisz (1988), the LDD is given by the exponent α defined by

W (k, λq; M , a/λ) ≈
λ→∞

W0(k, q; M , a)λα + O(λα−1). (13.17)

To make it explicit that the LDD is obtained by scaling q and a in such a way that
the product q̂ ≡ qa is held fixed, we shall use the following notation:

degrq̂W = α.

Applying this definition to the numerator and denominator functions, N and D,
of a one loop integral of the type (13.11) with L = 1, one finds that the LDD
of the integrand is given by degrq̂N − degrq̂D. The LDD of the corresponding in-
tegral (which includes the behaviour of the integration measure under the scale
transformation q → λq) is then defined by degrIF = 4 + degrq̂N − degrq̂D. The
power counting theorem of Reisz then states that if degrIF < 0, then the con-
tinuum limit of the lattice integral exists and coincides with its naive continuum
limit.

As an example consider the integral (13.10). A simple calculation shows that
degrq̂N = 1 and degrq̂D = 6, so that degrq̂Π̃ = −1. Hence the integral converges for
a → 0 to

Π̃(k; M , a) −−→
a→0

g2
0

2

∫ ∞

−∞

d4q

(2π)4

2q · k − k2

(q2 + M2)2[(q − k)2 + M2]
.

Consider next Feynman integrals involving L loop momenta q1, . . . , qL, where
L > 1. The overall LDD is obtained by scaling all these momenta with the same
factor λ, while reducing at the same time the lattice spacing by a factor 1/λ. But
even if this LDD is negative, the Feynman integral need not converge. The reason is
that divergencies may arise from integration regions, where only a subset of the line
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momenta becomes large, while the others are kept finite. Consider for example the
diagram depicted in fig. (13-3) for a fixed external momentum k. By keeping q, or q′,
or q-q′ fixed, large momenta are only allowed to flow in the loops of figs. (13-4a,b,c)
denoted by a solid line. In the remaining diagram, none of these momenta are kept
fixed.

k

(a) (b)

k k k

k

(c) (d)

k k k

Fig. 13-4 Diagrams displaying the four Zimmermann subspaces cor-

responding to holding (a) q, (b) q′, (c) q-q′ fixed or (d) none of these in

fig. 13-3. The solid lines can carry arbitrarily large loop momenta.

This defines four Zimmermann subspaces. To each of these subspaces we can
associate an LDD by studying the behaviour of the integral associated with the
diagrams obtained by omitting the propagators denoted by the dashed lines in
fig. (13-4), and fixing the momenta carried by these lines. Consider for example
the diagram depicted in fig. (13-4c). Let u be the momentum in the dashed line
which is held fixed. Then the relevant integral corresponding to this Zimmermann
subspace H is given by

I(H) =
∫

BZ

d4q

(2π)4

1

(q̃2 + M2)[(q̃ − u)2 + M2][(q̃ − k)2 + M2][( ˜q − k − u)2 + M2]
.

The LDD corresponding to the subspace H is obtained by scaling the loop vari-
able q and lattice spacing a with λ and 1/λ, respectively. This LDD is given by
degrHI(N) = −4.

The generalization of these ideas to Feynman integrals involving any number
of loop integration variables is straightforward: Given a Zimmermann subspace, we
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write the line momenta as a function of those momenta which are to be held fixed
and a set of loop momenta which are scaled with a common factor λ. At the same
time the lattice spacing is multiplied by λ−1. One then determines the LDD of the
integrand according to (13.17) where q now stands collectively for all momenta that
are integrated over the BZ. The LDD of the integral is obtained by including the
behaviour of the integration measure under the scale transformation q → λq.

Let us summarize the results of this section. For lattice integrals satisfying
the conditions (13.12a–f), the power counting theorem of Reisz makes the following
assertion:

Theorem

Let IF be a lattice Feynman integral of the form (13.11), which satisfies condi-
tions (13.12a–f). If the lattice degree of divergence for all Zimmermann subspaces
is negative, then the integral possesses a finite continuum limit given by (13.13).
Furthermore the right-hand side of (13.13) is absolutely convergent.

Let us apply this theorem to the integral (13.14). For N = 1 this theorem does
not apply since the integrand violates (13.12f). For N = 2 this condition is fulfilled.
Furthermore the degree of divergence of the denominator is 2. Hence the LDD of
f2(a) is −1, and the continuum limit is given by

lim
a→0

f2(a) =
∫ ∞

−∞
dk

1
k2 + M2 .

This agrees with our earlier observation.

For a proof of the above theorem we refer the reader to the work of Reisz
(1988c). As we have already mentioned, this theorem plays a central role in devel-
oping a renormalization program for lattice field theories. But it is clearly also very
useful for studying such problems as we have mentioned in the introduction, since it
allows us to replace all lattice integrals which satisfy the conditions of the theorem
by ordinary Feynman integrals whose symmetries are manifest.

This concludes our discussion of some of the basic lattice concepts which are
relevant to the perturbative study of any lattice field theory. In the following two
chapters we discuss lattice gauge theories which will be burdened by a number of
additional problems.
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CHAPTER 14

WEAK COUPLING EXPANSION (II). LATTICE QED

The scalar φ3-theory we discussed in the previous chapter was a good labora-
tory for introducing a number of important concepts in weak coupling perturbation
theory which are relevant to all lattice field theories of interest to elementary par-
ticle physics. We now extend our discussion to the case of lattice gauge theories,
which present some problems of their own. Since the perturbative treatment of lat-
tice QCD involves a number of technicalities arising from its non-abelian structure,
we will begin with a discussion of lattice QED, where the Feynman rules can be
easily derived.

As we shall see, the lattice regularization of a gauge field theory gives rise
to an infinite number of so-called “irrelevant” interaction vertices which vanish in
the limit of zero lattice spacing. Nevertheless, some of these vertices can contribute
to correlation functions in the continuum limit through divergent loop corrections.
For QED in a linear covariant gauge, these vertices originate only from the lattice
regulated action. The purpose of this chapter is to demonstrate i) how the structure
of the interaction vertex in the continuum formulation is modified by the lattice
regularization, and ii) to elucidate the role played by irrelevant vertices in cancelling
ultra-violet divergencies in lattice Feynman integrals, which cannot be removed by
renormalization.

14.1 The Gauge Fixed Lattice Action

In lattice QED, the link variables are elements of the abelian U(1) group.
Their parametrization in terms of a single angular variable is given by Uµ(n) =
exp(iφµ(n)). Correlation functions of the link variables and the fermion fields are
computed according to (5.24), where, because of the abelian nature of the link
variables the integration measure DU has the simple form (5.23).

Since we are dealing with a gauge theory, we will eventually be interested in
studying the ground state expectation value of gauge invariant functionals of the
dimensionless fields φ, ψ̂, and ¯̂

ψ. We denote these functionals by Γ[φ; ψ̂, ¯̂
ψ]. The

ground state expectation value of Γ is given by

〈Γ〉 =
1
Z

∫
DφD

¯̂
ψDψ̂Γ[φ, ψ̂, ¯̂

ψ]e−SQED[φ,ψ̂, ¯̂ψ], (14.1a)
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where

Z =
∫

DφD
¯̂
ψDψ̂e−SQED[φ,ψ̂, ¯̂ψ] (14.1b)

is the “partition” function for lattice QED, and SQED[φ, ψ̂, ¯̂
ψ] is the gauge invariant

action expressed in terms of the dimensionless fields φ, ψ̂, and ¯̂
ψ. For Wilson fermions

it is given by (5.22),* with the link and plaquette variables expressed in terms of
{φµ(n)}. One readily verifies that

SQED[φ, ψ̂, ¯̂
ψ] = SG[φ] + S

(W )
F [φ, ψ̂, ¯̂

ψ], (14.2a)

where**

SG[φ] =
1

2e2
0

∑
n,µ,ν

[1 − cos φµν(n)], (14.2b)

φµν(n) = ∂̂R
µ φν(n) − ∂̂R

ν φµ(n), (14.2c)

and

S
(W )
F [φ, ψ̂, ¯̂

ψ] = (M̂0 + 4r)
∑

n

¯̂
ψ(n)ψ̂(n)

− 1
2

∑
n,µ

[ ¯̂ψ(n)(r − γµ)eiφµ(n)ψ(n + µ̂) (14.2d)

+ ¯̂
ψ(n + µ̂)(r + γµ)e−iφµ(n)ψ̂(n)].

The action of the right lattice derivative, ∂̂R
µ , appearing in eq. (14.2c), is defined by

an expression analogous to (4.43b).

Because the coupling constant e0 occurs with an inverse power in (14.2b), one
naively expects that the integral (14.1) is dominated for small coupling by those
configurations φ lying in the immediate neighbourhood of the classical minimum
of SG.*** This minimum is realized for link configurations which are pure gauge,

* In chapter 5 we had supressed the “hat” on the Dirac fields, since we were only
interested in the dimensionless formulation.

** Here, and in the following, we shall use the same symbols for SQED, SG and
S

(W )
F , irrespective of whether they are considered to be functions of the link variables

Uµ(n), or the angular variables φµ(n) parametrizing these. The factor 1/2 multiply-
ing the sum in (14.2b) takes account of the fact that we are summing over all values
of µ and ν. Notice that there is no contribution coming from µ = ν.

*** We want to emphasize that this argument is only formal. Large quantum
fluctuations in the fields could turn out to play an important role, invalidating
perturbation theory.
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and therefore is degenerate. This degeneracy must be removed before performing
the weak coupling expansion, since otherwise one cannot define the free propagator
of the photon. In continuum perturbation theory this is a well-known fact. That it
is also true in the lattice formulation can be seen immediately by expanding (14.2b)
in powers of φµν , and looking at the quadratic contribution:

SG[φ] =
1

4e2
0

∑
n,µ,ν

φµν(n)φµν(n) + · · · .

Except for the factor 1/e2
0, this contribution has a structure analogous to that en-

countered in the continuum formulation. Hence the free propagator of the φµ-field
cannot be defined, since φµν vanishes for all configurations φ which are pure gauge:
φµ(n) = ∂̂R

µ Λ(n). The solution to this problem is well-known: we have to introduce a
gauge condition in (14.1) which selects from each gauge orbit a single representative.
Along each such orbit the integrands appearing in the numerator and denominator
of (14.1) are constants. This must be done in such a way that gauge invariant corre-
lation functions are not affected by the gauge fixing procedure for any finite lattice
spacing. An elegant way of introducing a gauge condition was proposed by Faddeev
and Popov, and is referred to in the literature as the Faddeev–Popov trick.* Since
we shall demonstrate this trick for a generalized Lorentz gauge later on when we
discuss the non-abelian theory (where the computations are non-trivial), we shall
only state here the result, which in the abelian case is very simple. Consider the
following generalized Lorentz gauge**

Fn[φ; χ] = ∂̂L
µ φµ(n) − χ(n) = 0, (14.3)

where χ is some given arbitrary field, ∂̂L
µ is the left lattice derivative defined by an

expression analogous to (4.26b). The reason for having introduced the left derivative
will become clear later on. Applying the Faddeev–Popov trick, one finds that the
above gauge condition can be implemented by merely introducing a set of δ-functions
in the integrands of (14.1a,b) which ensure that only those field configurations φµ

contribute to the integrals which satisfy (14.3). Hence (14.1a) can also be written
in the form

�Γ� =
∫

DφD
¯̂
ψDψ̂

∏
n δ(Fn[φ; χ])Γ[φ, ψ̂, ¯̂

ψ]e−SQED[φ,ψ̂, ¯̂ψ]

∫
DφD

¯̂
ψDψ̂

∏
n δ(Fn[φ; χ])e−SQED[φ,ψ̂, ¯̂ψ]

. (14.4)

* If the reader is not familiar with this trick in continuum field theory, he may
consult the review article by Abers and Lee (1973), or any modern field theory book.

** It will be understood from now on that repeated Lorentz indices are summed.
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Next we perform one further standard trick to get rid of the δ-functions. Since we
are calculating a gauge invariant correlation function, the choice of χ in (14.3) is
immaterial. We can therefore average the numerator and denominator in (14.4) over
χ with a Gaussian weight factor exp(− 1

2α

∑
n(χ(n))2). The resulting expression then

takes the form

�Γ� =
∫

DφD
¯̂
ψDψ̂Γ[φ, ψ̂, ¯̂

ψ]e−S
(tot)
QED[φ,ψ̂, ¯̂ψ]

∫
DφD

¯̂
ψDψ̂e−S

(tot)
QED[φ,ψ̂, ¯̂ψ]

, (14.5a)

where the “total” action S
(tot)
QED is given by

S
(tot)
QED[φ, ψ̂, ¯̂

ψ] = SG[φ] + S
(W )
F [φ, ψ̂, ¯̂

ψ] + SGF[φ], (14.5b)

SGF[φ] =
1
2α

∑
n

(
∂̂L

µ φµ(n)
)2

. (14.5c)

The subscript “GF” stands for “gauge fixing”.

So far the coupling constant occurs in that piece of the action depending only on
the link variables. Furthermore, it appears with an inverse power, which is peculiar
to the lattice formulation. In the continuum formulation, on the other hand, this
coupling constant enters linearly in the fermionic part of the action and not at
all in the kinetic term for the gauge field. To establish the connection between
the lattice and continuum action we must introduce a lattice scale a, and a set of
dimensioned gauge potentials and fermion fields. This is done in a way analogous
to that described in chapters 4 and 5. But since we want our discussion to parallel
as much as possible the continuum case, we shall use a slightly modified notation.
Let xµ = nµa be the coordinates of the lattice sites and ψ(x), ψ̄(x) and Aµ(x)
the dimensioned fermion fields and gauge potentials evaluated at these sites. The
action (14.2a) can be written as a functional of these fields by making the following
substitutions: ψ̂(n) → a3/2ψ(x), ¯̂

ψ(n) → a3/2ψ̄(x), φµ(n) → e0aAµ(x). Furthermore,
we define a dimensioned bare mass parameter M0 by M̂0 = aM0 and introduce the
following short–hand notation

∑
x

≡
∑

n

a4.

In the continuum limit
∑

x goes over into
∫

d4x. With these replacements (14.5b)
becomes*

S
(tot)
QED[A, ψ, ψ̄] = SG[A] + S

(W )
F [A, ψ, ψ̄] + SGF[A], (14.6a)

* In order not to introduce new symbols, we keep the old notation for the various
contributions to the action.
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where

SG[A] =
1

2e2
0a

4

∑
x,µ,ν

[1 − cos(e0a
2Fµν(x))], (14.6b)

S
(W )
F =

(
M0 +

4r
a

) ∑
x

ψ̄(x)ψ(x)

− 1
2a

∑
x,µ

[
ψ̄(x)(r − γµ)eie0aAµ(x)ψ(x + aµ̂) (14.6c)

+ ψ̄(x + aµ̂)(r + γµ)e−ie0aAµ(x)ψ(x)
]
,

SGF[A] =
1

2α0

∑
x

(∂L
µ Aµ(x))2. (14.6d)

Here we have introduced the arbitrary parameter α0 by setting α = e2
0α0. The lattice

field strength tensor appearing in (14.6b) is given by

Fµν(x) = ∂R
µ Aν(x) − ∂R

ν Aµ(x), (14.7)

and the action of the dimensioned “right” and “left” derivatives in (14.7) and (14.6d)
are defined by

∂R
µ f(x) =

1
a
(f(x + aµ̂) − f(x)), (14.8a)

∂L
µ f(x) =

1
a
(f(x) − f(x − aµ̂)). (14.8b)

The next step consists in expanding the action in powers of the bare coupling.
This gives rise to an infinite number of interaction terms contributing to SG and
S

(W )
F . Of these only those terms survive in the naive continuum limit which are

characteristic of the continuum formulation. Nevertheless, as we have pointed out,
we cannot simply ignore the irrelevant contributions when performing the weak
coupling expansion in a lattice regulated theory. In the following we include only
those “irrelevant” interaction vertices which vanish linearly with a in the naive
continuum limit.

Consider first the contribution to the action depending only on the link vari-
ables, i.e., SG. Expanding (14.6b) in powers of the lattice spacing one finds that

SG =
1
4

∑
x

Fµν(x)Fµν(x) + O(a4). (14.9)
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By making use of the relation*
∑

x

(∂R
µ f(x))g(x) = −

∑
x

f(x)∂L
µ g(x), (14.10)

we can rewrite (14.6b) up to terms vanishing like a4 as follows:

SG ≈ −1
2

∑
x

Aµ(x)(δµν�� − ∂R
µ ∂L

ν )Aν(x). (14.11a)

Here

�� =
∑

µ

∂R
µ ∂L

µ (14.11b)

is the hermitean lattice Laplacean in 4 space-time dimensions:

��f(x) =
1
a2

∑
µ

[f(x + aµ̂) + f(x − aµ̂) − 2f(x)].

Next, consider that piece of the action arising from gauge fixing δ-function, i.e.,
(14.6d). Using again relation (14.10) we have that

SGF = − 1
2α0

∑
x

Aµ(x)∂R
µ ∂L

ν Aν(x). (14.12)

Notice that because (14.6d) involves the left lattice derivative, the tensor structure
of (14.12) is the same as that appearing in (14.11a). Hence by combining (14.11a)
and (14.12), we arrive at the following contribution to S

(tot)
G quadratic in the gauge

potentials

S
(0)
G [A] =

1
2

∑
x,y

Aµ(x)Ωµν(x, y)Aν(y), (14.13a)

where

Ωµν(x, y) =
(

−δµν�� +
(

1 − 1
α0

)
∂R

µ ∂L
ν

)
δ
(4)
P (x − y). (14.13b)

Here δ
(4)
P (z) is the periodic δ-function

δ
(4)
P (z) =

∫

BZ

d4k

(2π)4 eik.z, z = na, (14.14)

where from now on BZ stands for the dimensioned Brillouin zone [−π/a, π/a].

* This relation follows immediately by introducing (14.8a) into the left-hand side
of (14.10), and making a shift in the summation variable. We assume here that
we are dealing with an infinite lattice, or with a finite lattice, with f(x) and g(x)
satisfying periodic boundary conditions.
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Finally, consider the fermionic contribution (14.6c). Expanding the link vari-
ables Uµ = exp(ie0aAµ) up to terms quadratic in the coupling, one finds that

S
(W )
F = S

(0)
F + S

(1)
F + S

(2)
F + O(a2), (14.15a)

where

S
(0)
F =

(
M +

4r
a

) ∑
x

ψ̄(x)ψ(x)

− 1
2a

∑
x,µ

[ψ̄(x)(r − γµ)ψ(x + aµ̂) + ψ̄(x + aµ̂)(r + γµ)ψ(x)]
(14.15b)

is the free fermion action expressed in terms of the dimensioned variables, and

S
(1)
F = −ie0

2

∑
x,µ

[ψ̄(x)(r − γµ)Aµ(x)ψ(x + aµ̂)

− ψ̄(x + aµ̂)(r + γµ)Aµ(x)ψ(x)], (14.15c)

S
(2)
F =

e2
0

4
a

∑
x,µ

[ψ̄(x)(r − γµ)A2
µ(x)ψ(x + aµ̂)

+ ψ̄(x + aµ̂)(r + γµ)A2
µ(x)ψ(x)]. (14.15d)

Collecting our results, we therefore find that the total action (14.6a) is given by

S
(tot)
QED[A, ψ, ψ̄] = S

(0)
G [A] + S

(0)
F [ψ, ψ̄] + Sint[A, ψ, ψ̄] + O(a2), (14.16a)

where

Sint[A, ψ, ψ̄] =
2∑

�=1

S
(�)
F [A, ψ, ψ̄] (14.16b)

is the contribution arising from the fermion-gauge-field interaction. From (14.15) we
see that Sint describes not only the interaction of a single photon with the Dirac
field, but also includes a contribution involving the coupling of two photons to the
fermions. Whereas the former contribution reduces in the naive continuum limit to
the familiar interaction term,

S(1) → ie0

∫
d4xψ̄(x)γµAµ(x)ψ(x),

the latter contribution, S
(2)
F , has no analog in the continuum and in fact vanishes

for a → 0. Nevertheless, as we shall see, it plays an important role in canceling
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divergent contributions to the vacuum polarization, which cannot be eliminated by
renormalizing the fields and bare parameters. This is not surprising, since these
vertices are a consequence of the lattice regularization which provides us with a
gauge invariant cutoff.*

14.2 Lattice Feynman Rules

Assuming that S
(tot)
QED can be approximated by (14.16), and that the integra-

tion range of Aµ in the path-integral expression for the correlation functions can
be extended to infinity,** the perturbative expansion of any correlation function in-
volving a product of the fermion fields ψ and ψ̄ and gauge potentials Aµ is obtained
in the way familiar from continuum perturbation theory. In any given order of the
coupling, the contributions to the correlation function can be represented in terms
of Feynman diagrams built from the free propagators of the gauge potential and the
fermion field, and from the interaction vertices. Their momentum space represen-
tations can be easily deduced by writing the action in momentum space. Consider
first the contribution (14.13). Introducing the following Fourier decomposition of
the fields

Aµ(x) =
∫

BZ

d4k

(2π)4 Ãµ(k)eik·x,

ψα(x) =
∫

BZ

d4p

(2π)4 ψ̃α(p)eip·x, (x = na) (14.17)

ψ̄α(x) =
∫

BZ

d4p

(2π)4
¯̃ψ(p)e−ip·x,

and making use of the relation (2.64), one readily finds that it can be written in the
form

S
(0)
G =

1
2

∫

BZ

d4k

(2π)4

d4k�

(2π)4 Ãµ(k�)
[
e−ik′

µ
a
2 Ωµν(k�, k)e−ikν

a
2

]
Ãν(k), (14.18a)

where

Ωµν(k�, k) = (2π)4δ
(4)
P (k + k�)Ωµν(k), (14.18b)

and

Ωµν(k) =
(

δµν k̃
2 −

(
1 − 1

α0

)
k̃µk̃ν

)
. (14.18c)

* In continuum perturbation theory it is well-known that Feynman integrals must
be regularized in a gauge invariant way.

** We know of no rigorous proof that this is a legitimate procedure.
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Here k̃µ is defined by an expression analogous to (13.7a). Notice that because of the
appearance of the phase factors in the integrand of (14.18a), the quantity within
square brackets is a periodic function in each component of the momenta with
periodicity 2π/a.

Next, consider the contribution S
(0)
F defined in (14.15b). Its decomposition in

momentum space is given by

S
(0)
F =

∫

BZ

d4p

(2π)4

d4p�

(2π)4
¯̃ψα(p�)Kαβ(p�, p)ψ̃β(p), (14.19a)

where

Kαβ(p�, p) = (2π)4δ
(4)
P (p − p�)Kαβ(p), (14.19b)

and

Kαβ(p) =
i

a

∑
µ

(γµ)αβ sin pµa + M(p)δαβ. (14.19c)

The momentum dependent mass M(p) has been defined in (4.29b).

Finally, one easily verifies that (14.15c) and (14.15d) have the following
momentum–space decomposition:

S
(1)
F = −

∫

BZ

d4k

(2π)4

d4p

(2π)4

d4p�

(2π)4
¯̃ψα(p�)Ãµ(k)ψ̃β(p)

×
[
ei(p−p′)µ

a
2 · Γ(1)

µ;αβ(p�, p, k)
]
, (14.20a)

Γ(1)
µ;α,β(p�, p, k) = (2π)4δP (p − p� + k)V (1)

µ;αβ(p + p�), (14.20b)

V
(1)
µ;αβ(q) = −ie0

[
(γµ)αβ cos

qµa

2
− irδαβ sin

qµa

2

]
; (14.20c)

S
(2)
F = − 1

2!

∫

BZ

d4k

(2π)4

d4k�

(2π)4

d4p

(2π)4

d4p�

(2π)4
¯̃ψα(p�)Aµ(k)Aν(k�)ψ̃β(p)

×
[
ei(p−p′)µ

a
2 Γ(2)

µν;αβ(p�, p, k�, k)
]
, (14.21a)

Γ(2)
µν;αβ(p, p�, k, k�) = (2π)4δ

(4)
P (p − p� + k + k�)V (2)

µν;αβ(p + p�), (14.21b)

V
(2)
µν;αβ(q) = −e2

0aδµν

[
rδαβ cos qµa

2 − i(γµ)αβ sin qµa

2

]
. (14.21c)
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Notice again, that because of the appearance of the phases, the quantities appearing
within square brackets in (14.20a) and (14.21a) are periodic functions in all com-
ponents of the momenta with periodicity 2π/a. Hence momentum conservation can
be implemented in the usual way. Accordingly, we can replace the phase factors in
(14.20a) and (14.21a) by exp(−ikµa/2) and exp(−i(k+k�)µa/2), respectively. These
phases can now be absorbed in the Fourier transforms of the gauge potentials, which
amounts to redefining the potentials at the midpoints of the links connecting two
neighbouring lattice sites. Although we could have avoided these phases right from
the start by Fourier decomposing Aµ(x) as follows

Aµ(x) =
∫

BZ

d4k

(2π)4
˜̃Aµ(k)eik·(x+aµ̂/2), (14.22)

we have nevertheless preferred to carry them along in order to exhibit the 2π/a–
periodic structure of the above mentioned expressions. But when computing the
contribution of a particular Feynman diagram one finds that the phases associated
with the interaction vertices, and the photon propagator (deduced from (14.18a))
cancel at each interaction vertex. The only phases that remain are those associated
with the gauge potentials appearing in the correlation function. Hence by Fourier
decomposing the correlation functions as follows,

�ψα1(x1) . . . ψαn(xn)ψ̄β1(y1) . . . ψ̄βn(yn)Aµ1(z1) . . . Aµ�
(z�)�

=
∫ n∏

i=1

d4pi

(2π)4

n∏
i=1

d4p�
i

(2π)4

�∏
j=1

d4kj

(2π)4 Γ̃α1...αnβ1...βnµ1...µ�
({pi}, {p�

i}, {kj})

× ei
∑n

i=1(pi·xi−p′
i·yi)ei

∑�
j=1 kj ·(zj+aµ̂j/2), (14.23)

we can calculate the contribution of a Feynman diagram to the correlation function
in momentum space, Γ̃α1...µ�

(p1, . . . k�), using the propagators and vertices deduced
from (14.18) to (14.21) ignoring the phases factors. The propagators of the gauge
potential and of the fermion field are given by the inverse of the matrices (14.18c)
and (14.19c), respectively, while the vertices are given by (14.20c) and (14.21c). In
the continuum limit V

(2)
µν;αβ(q) vanishes, and Vµν;αβ(q) reduces to the vertex function

of the continuum theory, i.e., −ie0(γµ)αβ.

Except for the fact that on the lattice we must also take into account “irrele-
vant” interaction vertices, the rules for computing the contribution of a particular
Feynman diagram are the same as in the continuum formulation. For finite lattice
spacing the corresponding Feynman integrals are however much more complicated
than those encountered in continuum perturbation theory, where the integrals are
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regularized a posteriori, and do not follow from a space–time regulated generating
functional.

We now summarize the rules for calculating the contribution of a Feynman
diagram to the correlation function Γ̃α1...µ�

(p1, . . . , k�) defined in (14.23).

i) To an internal fermion or photon line associate the propagators

p

k νµ

αβ

SF (p)αβ = K−1
αβ (p) =

[
−i

∑
µ

1
a
γµ sin pµa + M(p)∑

µ
1
a2 sin2 pµa + M2(p)

]

αβ

Dµν(k) = Ω−1
µν (k) =

1
k̃2

(
δµν − (1 − α0)

k̃µk̃ν

k̃2

)

ii) For the vertices insert the following expressions:

p, β p′, α

k, µ

−ie0(2π)4δ
(4)
P (p − p� + k)

×
[
(γµ)αβ cos

(
(p + p�)µa

2

)
− irδαβ sin

(
(p + p�)µa

2

)]

p, β

p′, α

k, µ

k′, ν

−e2
0(2π)4δ

(4)
P (p − p� + k + k�)aδµν

×
[
rδαβ cos

(
(p + p�)µa

2

)
− i(γµ)αβ sin

(
(p + p�)µa

2

)]

iii) For every closed fermion loop include a minus sign.
iv) Contract all Dirac indices following the fermion lines, and all Lorentz indices

following the photon lines.



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch14

220 Lattice Gauge Theories

(v) Integrate the internal momenta over the Brillouin zone with integration measures
having the generic form d4k/(2π)4.

As an example consider the vacuum polarization tensor πµν in order e2
0. In the

lattice regularized theory there are two diagrams that contribute. They are depicted
in fig. (14-1).

p-k

(a) (b)

p
p

k, µ

k, µ

k, ν

k, ν

Fig. 14-1 Diagrams contributing to the vacuum polarization tensor Πµν(k).

Applying the above Feynman rules, and performing the trivial integrations
associated with the (periodic) δ-functions, one finds that

Πµν(k, k′) = (2π)4δ
(4)
P (k + k′)Πµν(k), (14.24a)

where

Πµν(k) = Π(a)
µν (k) + Π(b)

µν , (14.24b)

Π(a)
µν (k) = −

∫

BZ

d4p

(2π)4 Tr
[
V (1)

ν (2p − k)SF (p)V (1)
µ (2p − k)SF (p − k)

]
,

(14.24c)

Π(b)
µν = −

∫

BZ

d4p

(2π)4 Tr
{
V (2)

µν (2p)SF (p)
}

. (14.24d)

Here V
(1)
µ and V

(2)
µν are the matrices in Dirac space whose matrix elements are given

by (14.20c) and (14.21c). The minus sign in (14.24c,d) takes into account rule iii)
given above. Applying the power counting theorem of Reisz discussed in chapter 13,
we conclude that the lattice degree of divergence of both integrals is 2. Hence they
diverge like 1/a2 in the continuum limit. If this divergence would persist after com-
bining the two integrals, then the theory would not be renormalizable, since there is
no mass-counterterm available to cancel this divergence. In continuum QED, where
only the diagram shown in fig. (14-1a) contributes, the corresponding Feynman inte-
gral is also superficially quadratically divergent. But because of the Ward identities,
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it actually only diverges logarithmically. This divergence can be eliminated by wave
function renormalization. On the other hand, the Ward identities, following from
gauge invariance on the lattice, are only satisfied after including the contribution
coming from the diagram depicted in fig. (14-1b); hence only then do we expect a
cancellation of unwanted divergencies. For vanishing bare fermion mass and Wilson
parameter r, this cancellation can be easily demonstrated (Kawai, Nakayama, and
Seo, 1981). We first isolate that part of Π(a)

µν and Π(b)
µν diverging like 1/a2 for a → 0

by decomposing these quantities as follows:

Π(i)
µν(k) = Π(i)

µν(0) +
[
Π(i)

µν(k) − Π(i)
µν(0)

]
,

where i = a or b. The quadratically divergent part is contained entirely in Π(i)
µν(0).

Performing the trace in (14.24c) one finds that

Π(a)
µν (0) = −e2

0

a2

∫ π

−π

d4p̂

(2π)4 Γµλνρ
sin p̂λ sin p̂ρ cos p̂µ cos p̂ν(∑

σ sin2 p̂σ

)2 , (14.25a)

where

Γµλνρ = Tr(γµγλγνγρ)

= 4(δµλδνρ − δµνδλρ + δµρδνλ).
(14.25b)

By carrying out the summation over the Lorentz indices one easily verifies that
(14.25a) is proportional to δµν and can be written in the form

Π(a)
µν (0) =

4e2
0

a2 δµν

∫ π

−π

d4p̂

(2π)4

[
cos2 p̂µ∑
λ sin2 pλ

+
1
2

sin(2p̂µ)
∂

∂p̂µ

1∑
λ sin2 pλ

]

=
4e2

0

a2 δµν

∫ π

−π

d4p̂

(2π)4

sin2 p̂µ∑
λ sin2 pλ

.
(14.26)

On the other hand, for r = M0 = 0, (14.24d) becomes

Π(b)
µν =

−e2
0

a2

∫ π

−π

d4p̂

(2π)4Tr

(
γµ

∑
λ γλ sin p̂λ∑
ρ sin2 p̂ρ

)
sin p̂µ,

which, upon making use of the relation tr(γµγν) = 4δµν , reduces to the negative of
(14.26). This simple example demonstrates the important role played by irrelevant
vertices in canceling divergences that cannot be removed by renormalization.

Let us summarize the lesson we have learned. The lattice provides us with
a gauge invariant regularization scheme. Although this gauge invariance is broken
by the gauge condition, the Faddeev–Popov procedure will leave gauge invariant
correlation functions unchanged, if we include the contributions of all irrelevant
vertices. This is true for finite lattice spacing. But when studying the continuum
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limit of correlation functions in a given order of weak coupling perturbation theory,
only a subset of these vertices need to be taken into account. These vertices will
ensure the renormalizability of the theory and the restauration of the continuum
space-time symmetries in the limit of vanishing lattice spacing.

14.3 Renormalization of the Axial Vector Current
in One Loop Order

When computing decays like π− → e + ν̄e, one needs to calculate the matrix
element �0|j5µ(0)|π−(�p)� = pµfπ, where fπ is the pion decay constant, and j5µ(x)
is the renormalized axial vector current. We must therefore know how the lattice
regularized bare current is renormalized. Here Ward identities will serve as guidelines
for determining the renormalization constants. It is instructive to compute these
constants in one-loop order perturbation theory.

Let us first exemplify the main idea for QED in the continuum. In the tree
graph approximation the axial vector current is j5µ|tree = ψ̄(x)γµγ5ψ(x). The one
loop correction to this current is given by the diagrams depicted in fig. (14-2). In
the limit of vanishing fermion mass the QED action is invariant under global γ5-
transformations,

ψ(x) → ei�γ5ψ(x),

ψ̄(x) → ψ̄(x)ei�γ5 . (14.27)

By performing an infinitessimal local γ5-transformation of the fermion fields
in the generating functional of Green functions (i.e., � becomes x-dependent), and
making use of the invariance of the measure, one easily derives a Ward identitiy for
an n-point vertex function with an the insertion of the divergence of the axial vector
current. In the continuum formulation of the path integral the Ward identity is only
formally defined. In a lattice regularization of the path integral, this Ward identity
is an exact statement, but needs, in general, to be renormalized as the cutoff (lattice
spacing) is removed. It is instructive to first derive this naive identity in continuum
QED in one-loop order directly for the diagram shown in fig. (14-2a). In momentum
space its divergence is given by

iqµΛ5µ(p, p�) = i(−ie)2qµ

∑
λ

∫
d4�

(2π)4

[
γλS0(p� + �)γµγ5S0(p + �)γλ

] 1
�2 , (14.28)

where q = p − p�, and S0 is the free fermion propagator S0 = (iγµqµ + m0)−1; m0 is
the bare fermion mass. Making use of the trivial identity

i(p − p�)µγµγ5 = 2m0γ5 − S−1
0 (p�)γ5 − γ5S

−1
0 (p), (14.29)
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(a)

(c)(b)

Fig. 14-2 Diagrams contributing in O(e2) to the axial vector (pseu-

doscalar) current in the continuum formulation. The cross stands for the

insertion of γµγ5 (γ5).

which is valid for arbitrary momentum �, one immediately verifies that

iqµΛ5µ(p, p�) = 2m0Λ5(p, p�) + γ5Σ(p) + Σ(p�)γ5. (14.30)

Here Σ(p) is the self-energy, and Λ5 is given by

Λ5(p, p�) = i(−ie)2
∑

λ

∫
d4�

(2π)4

[
γλS0(p� + �)γ5S0(p + �)γλ

] 1
�2 . (14.31)

The self energy is divergent and requires mass as well as wave function renormaliza-
tion. Mass and wave function renormalization as is dicated by QED in fact suffices to
render all the terms in (14.30) finite. This can be easily checked in the Pauli-Villars,
or dimensional regularization. The renormalized Ward identity for the corresponding
vertex function takes the form

iqµΓ5µ(p, p�)R = 2mΓ5(p, p�)R − S−1
F (p�)Rγ5 − γ5S

−1
F (p)R, (14.32)

where SF (q)R is the renormalized fermion propagator to one loop order, i.e., (iγ ·
p + m − ΣR(p))−1, and

Γ5µ(p, p�)R = Z2Γ5µ(p, p�),

Γ5(p, p�)R = ZP Γ5(p, p�),

m0 = Z−1
2 (m + δm). (14.33)
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In the one-loop approximation one finds that*

Z2 − 1 =
e2

8π2 ln
(m

Λ

)
,

ZP − 1 =
e2

2π2 ln
(m

Λ

)
, (14.34)

δm = m
e2

2π2 ln
(m

Λ

)
,

where Λ is a momentum cutoff. Equation (14.32) is the generalization of the tree
level Ward identity (14.29).

On the lattice the Ward identity (14.32) will be modified by terms which are
naively irrelevant, i.e., which vanish in the naive continuum limit. We shall refer to
them in the following simply as “irrelevant”. In particular it will involve a contri-
bution arising from a chiral symmetry breaking term in the action, which ensures
the absence of fermion doubling. For concreteness sake we will consider the case
of Wilson fermions. As we shall see, the irrelevant contribution referred to above
leads to an additional finite renormalization of the axial vector current (apart from
the QED wave function renormalization) in the continuuum limit. This problem
has been first discussed by Karsten and Smit (1981).** Here we dicuss it in some
detail.

To derive the lattice regularized Ward identity analogous to (14.32) we consider
the following lattice integral,

ZO =
∫

DUDψDψ̄ O(ψ, ψ̄)e−S, (14.35a)

where

O = ψα(y)ψ̄β(z), (14.35b)

and S is the lattice action for QED with Wilson fermions, (5.22). The fermionic
contribution can be written in the form

Sferm =
∑

x

ψ̄(x)
{

1
2
γµ(DR

µ [U ] + DL
µ [U ]) + m0

}
+ ∆S, (14.36a)

* We are neglecting finite contributions. It therefore corresponds to a minimal
substraction scheme.

** The renormalization of the axial vector current for different lattice realizations
of the current has been considered by Meyer (1983).
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where

∆S =
r

2
a

∑
x

ψ̄(x)DL
µ [U ]DR

µ [U ]ψ(x) (14.36b)

is the chiral symmetry breaking Wilson term which vanishes for a → 0, and

DR
µ [U ]ψ(x) =

1
a
[Uµ(x)ψ(x + aµ̂) − ψ(x)],

DL
µ [U ]ψ(x) =

1
a
[ψ(x) − U †

µ(x − aµ̂)ψ(x − aµ̂)], (14.37)

are the covariant right and left lattice derivatives. r is the Wilson parameter. Making
use of the invariance of the partition function (14.35a) under the following infinites-
simal local axial transformation of the fermion fields (i.e., a change of variables),*

δψ(x) = i�(x)γ5ψ(x),

δψ̄(x) = i�(x)ψ̄(x)γ5, (14.38)

where γ5 = iγ1γ2γ3γ4, and {γµ, γ5} = 0 for all µ, one is led to the identity

�OδS − δO� = 0. (14.39)

One then readily verifies that for Wilson fermions

δS = i
∑

x

�(x)[−∂L
µ j5

µ(x) + 2m0j5(x) + ∆(x)], (14.40)

where
∑

x =
∑

n a4, xµ = nµa (nµ ∈ Z), ∂L
µ denotes the left lattice derivative,

j5µ(x) =
1
2
[ψ̄(x)γµγ5Uµ(x)ψ(x + aµ̂) + ψ̄(x + aµ̂)γµγ5U

†
µ(x)ψ(x)] (14.41)

is the gauge invariant axial vector current, and

j5(x) = ψ̄(x)γ5ψ(x) (14.42)

is the pseudoscalar current. Furthermore

∆(x) = − r

2a

∑
µ

ψ̄(x)γ5[Uµ(x)ψ(x + aµ̂) + U †
µ(x − aµ̂)ψ(x − aµ̂) − 2ψ(x)]

− r

2a

∑
µ

[ψ̄(x − aµ̂)Uµ(x − aµ̂) + ψ̄(x + aµ̂)U †
µ(x) − 2ψ̄(x)]γ5ψ(x).

(14.43)

* The integration measure is invariant under this transformation.
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is the operator originating from the chiral symmetry breaking Wilson term (14.36b)
in the action. Finally, the variation δO in (14.39), with O given by (14.35b), is
given by

δO = i
∑

x

�(x)
∑

δ

[δxy(γ5)αδψδ(y)ψ̄β(z) + δxzψα(y)ψ̄δ(z)(γ5)δβ].

Since �(x) in (14.40) is an arbitrary infinitessimal function, one is led to the Ward
identity

�∂L
µ j5µ(x)ψα(y)ψ̄β(z)� = 2m0�j5(x)ψα(y)ψ̄β(z)� + �∆(x)ψα(y)ψ̄β(z)�

−
∑

δ

δxy(γ5)αδ�ψδ(y)ψ̄β(z)�

−
∑

δ

δxz�ψα(y)ψ̄δ(z)�(γ5)δβ. (14.44)

Notice that ∆ is an “irrelevant” operator which vanishes in the classical continuum
limit. It could however (and in fact does) play a relevant role on quantum level. In
the following we will consider (14.44) up to O(e2). To this order ∆ is given by

∆(x) ≈ − r

2a

∑
µ

{
ψ̄(x)γ5

[
1 + ieaAµ

(
x +

aµ̂

2

)

− e2a2

2!

(
Aµ

(
x +

aµ̂

2

))2
]

ψ(x + aµ̂)

+ ψ̄(x)γ5

[
1 − ieaAµ

(
x − aµ̂

2

)

− e2a2

2!

(
Aµ

(
x − aµ̂

2

))2
]

ψ(x − aµ̂)

+ h.c.
}

+
2r
a

∑
µ

ψ̄(x)γ5ψ(x). (14.45)

Hence up to O(e2),

∆(x) = −a
r

2

∑
µ

ψ̄(x)γ5��ψ(x) − a
r

2

∑
µ

��ψ̄(x)γ5ψ(x) + χ(x), (14.46)

where χ(x) is an “irrelevant” operator involving one and two photon fields. In mo-
mentum space the sum of the first two terms on the rhs of (14.46) become propor-
tional to Mr(p; a) + Mr(p′; a), where

Mr(q; a) =
2r
a

∑
µ

sin2 qµa

2
(14.47)

is the r-dependent part of the Wilson mass (4.29b).
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With the decomposition (14.46), the Ward identity (14.44) implies the following
relation between the axial vector and pseudoscalar vertex functions in momentum
space

iq̃µΓ5µ(p, p�; m0, a) = 2[M(p; m0, a) + M(p�; m0, a)]Γ5(p, p�; m0, a)

+ Γ(χ)
5 (p, p�; m0, a) − γ5S

−1
F (p; m0, a) − S−1

F (p�; m0, a)γ5,

(14.48)

where Γ(χ) is the two-point fermion vertex function with an insertion of the
χ-operator. M(q; m0, a) is the “Wilson” mass

M(q; m0, a) = m0 + Mr(q, a), (14.49)

and S−1
F is the inverse of the lattice regularized fermion propagator

S−1
F (p; m0, a) = iγµp̃µ + M(p; m0, a) − Σ(p; m0, a), (14.50a)

where

p̃µ =
1
a

sin pµa. (14.50b)

In one-loop order, Γ5µ and Γ5 are given by the sum of Feynman diagrams of the
form a − f and a, e, f , respectively, shown in fig. (14-3). The diagrams contributing
to the self-energy Σ(p) are those labeled by g and h. The Ward Identity (14.48) is
nothing but the generalization of the following tree-level lattice identity analogous
to (14.29):

sin

[(
p − p�

2

)

µ

a

]
Γ5µ(p, p�; m0, a)tree = 2[M(p; m0, a) + M(p�; m0, a)]γ5

− γ5S
−1
0 (p; m0, a) − S−1

0 (p�; m0, a)γ5,

(14.51a)

where

Γ5µ|tree = cos

[(
p + p�

2

)

µ

a

]
γµγ5. (14.51b)

In O(e2) we have the following relation between the one particle irreducible vertex
functions

iq̃µΛ5µ(p, p�; m0, a) = 2[M(p; m0, a) + M(p�; m0, a)]Λ5(p, p�; m0, a)

+ Λ(χ)
5 (p, p�; m0, a) + γ5Σ(p; m0, a) + Σ(p�; m0, a)γ5,

(14.52)
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(a) (b) (c)

(d) (e)

(g) (h)

(f)

Fig. 14-3 Lattice diagrams contributing in O(e2) to the Ward identity

(14.48). Diagrams b, c, d and h have no counterpart in the continuum.

Diagrams a–f contribute to Γ5µ. In this case the big dots stand for the

insertion of the axial vector vertices defined via the expansion of (14.41)

in powers of the gauge field. Diagrams contributing to Γ(χ)
5 are shown in

figs. b, c and d, where the big “dot” now stands for the insertion of the

vertices defined via (14.45) and (14.46). Only diagrams a, e, f contribute in

one loop order to Γ5(p, p′; a) because of the ultralocality of the pseudoscalar

current (14.42).

which is the lattice version of (14.30). Apart from the appearance of the Wilson
mass, it involves a naively “irrelevant” contribution Λ(χ)

5 . In the following we will
study in detail the renormalized version of the bare lattice Ward identitiy (14.48) to
one-loop order. Our emphasis will be placed on the role played by the above men-
tioned irrelevant contribution. The determination of the renormalization constants
involve some tedious, but straight forward calculations. They are extracted by Taylor
expanding the expressions for the vertex functions around vanishing momenta. Only
first order polynomials in the momenta need to be considered. The coefficients in
the expansion are in general complicated integral expressions, whose behaviour for
a → 0 can however be determined rather easily. We leave these computations as
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a lengthy exercise for the reader. In appendix B we have summarized the relevant
vertices in momentum space required for carrying out the computations.

Consider the lattice regularized Ward identity (14.48). Let Z
1/2
2 be the QED

wave function renormalization constant for the fermion fields. Multiplying (14.48)
by Z2 we have that

iq̃µZ2Γ5µ(p, p�; m0, a) − 2m0Z2Γ5(p, p�; m0, a) − Z2Γ
(∆)
5 (p, p�; m0, a)

= −γ5Z2S
−1
F (p; m0, a) − Z2S

−1
F (p�; m0, a)γ5, (14.53)

where

Z2Γ
(∆)
5 (p, p�; m0, a) = 2Z2[Mr(p; m0, a) + Mr(p�; m0, a)]Γ5(p, p�; m0, a)

+ Z2Γ
(χ)
5 (p, p�; m0, a). (14.54)

Diagrams contributing to Γ(χ)
5 are labeld by b, c, d in fig. (14-3). For the rhs of

(14.53) to be finite we must also perform a mass renormalization:

m0 = Z−1
2 (m + δm). (14.55)

Here m is a renormalized mass. With the definitions (14.47), (14.49), (14.50a) and
(14.55), we then have to one-loop order that

lim
a→0

Z2S
−1
F (p; m0, a) = iγµpµ + m − ΣR(p, m), (14.56)

where

ΣR(p; m) = lim
a→0

[Σ(p; m, a) − δm − i(Z2 − 1)γµp̃µ] (14.57)

is the renormalized self-energy. Z2 and δm are chosen such as to the render this
expression finite.

The in the limit a → 0 divergent parts of δm and Z2 can be computed by
Taylor expanding Σ(p; m, a) up to first order in the momentum. From the diagrams
g and h in fig. (14-3) one finds after some lenghty, but straightforward algebra that
the divergent parts are given by

δm =
C(0)

a
+

e2

2π2m ln(ma), (14.58a)

Z2 − 1 =
e2

8π2 ln(ma), (14.58b)
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where

C(ma) = re2
∫ π

−π

d4�̂

(2π)4

η(�̂)
˜̃�
2
[�̃2 + M̂2(�̂, ma)]

, (14.58c)

with

η(�̂) = �̃2 − 2
∑

ρ

sin2 �̂ρ

2

∑
σ

[
cos2

(
�̂σ

2

)
− r2 sin2

(
�̂σ

2

)]

− 4[�̃2 + M̂2(�̂, ma)] (14.58d)

and

˜̃�σ = 2 sin
�̂σ

2
,

�̃σ = sin �̂σ. (14.58e)

M̂(�̂, ma) is the Wilson mass (14.49), with m0 → m, measured in lattice units
(Quantities with a “hat” are measured in lattice units), and C(0) is a finite constant.
Hence to one loop order and a → 0 (14.55) is given by

m0 = m +
C(0)

a
+

3e2

8π2 ln(ma). (14.59)

In contrast to the continuum formulation, m0 involves a linearly divergent contribu-
tion proportional to the Wilson parameter. As we shall see this linear divergence will
be elliminated by a corresponding divergent contribution of the naively irrelevant
term Γ(χ)

5 in the Ward identity. The logarithmic divergent expressions Z2 − 1 and
δm are the lattice analog of the expressions in the continuum (14.34).

Consider now the lhs of (14.53). Since with the above choice of Z2 and δm

the rhs is finite for a → 0, so is the lhs. Consider first the contribution iq̃µZ2Γ5µ.
Since the highest “lattice degree of divergence” (LDD; see sec. 13.3) of the one
loop diagrams contributing to Γ5µ is zero, this expression is at most logarithmically
divergent. In one loop order we have that

iq̃µZ2Γ5µ(p, p�; m0, a) = iq̃µγµγ5 + iq̃µ[Λ5µ(p, p�; m, a) + (Z2 − 1)γµγ5]. (14.60)

Λ5µ denotes the contribution of the one-loop diagrams a − d shown in fig. (14-3).
Of all these diagrams only the triangle diagrams turns out to be (logarithmically)
divergent. We can extract the divergent part by studying the small a behaviour
of the corresponding lattice Feynman integral at zero external momenta. After
some lengthy, but straighforward algebra one finds that the quantity appearing
within square brackets in (14.60) is finite for a → 0. Consequently the remaining
(pseudoscalar) terms on the lhs of (14.53) are also finite, since the Ward Identity
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holds for arbitrary a. Consider first the contribution of 2[Mr(p, a) + Mr(p�, a)]Γ5 in
(14.54). Since the one-loop contribution to Γ5 has LDD = 0, and hence diverges at
most logarithmically, while Mr vanishes linearly with the lattice spacing, this term
will make no contribution in the continuuum limit. Next consider the contribution
of Z2Γ

(χ)
5 in (14.54). To O(e2) Z2Γ

(χ)
5 is just Γ(χ)

5 .* The corresponding Feynman dia-
grams b, c, d in fig. (14-3) have LDD = 1. We therefore decompose this term follows:

Γ(χ)
5 = T0Γ

(χ)
5 + (T1 − T0)Γ

(χ)
5 + (1 − T1)Γ

(χ)
5 , (14.61)

where Tn denotes the Taylor expansion in the momenta around p = p� = 0 up to n’th
order. The last term on the rhs has negative lattice degree of divergence and hence
possesses a finite continuum limit. This limit may be calculated by making use of
the Reisz theorem (see sec. 13.3). Since Γ(χ)

5 is a naively irrelevant contribution, this
term vanishes in the continuum limit. For T0Γ

(χ)
5 and (T1 − T0)Γ

(χ)
5 one then finds

after some lengthy algebra that

T0Γ
(χ)
5 = 2mz

(χ)
P γ5,

(T1 − T0)Γ
(χ)
5 = iz

(χ)
A qµγµγ5,

(14.62a)

where

z
(χ)
P = −C(ma)

ma
− 2r2e2

∫ π

−π

d4�̂

(2π)4

∑
σ sin2 �̂σ

2

˜̃�
2
[�̃2 + M̂2]

(14.62b)

and z
(χ)
A is finite. After a rather lengthy calculation its expression is found to be

z
(χ)
A (m̂) = e2

∫ π

−π

d4�̂

(2π)4

fσ(�̂)
˜̃�
2
[�̃2 + M̂2(�̂, m̂)]

+ e2
∫ π

−π

d4�̂

(2π)4

gσ(�̂)
˜̃�
2
[�̃2 + M̂2(�̂, m̂)]2

,

(14.62c)
where m̂ = ma,

fσ(�̂) = −2rM̂r(�̂) + 2r2 cos �̂σ

∑
λ

sin2 �̂σ

2
+ 2rM̂(�̂, m̂) sin2 �̂σ

2
, (14.62d)

gσ(�̂) = 2M̂r(�̂)

[
ησ(�̂) + r2

∑
λ

sin2 �̂λ

2

]
(r sin2 �̂σ − M̂(�̂, m̂) cos �̂σ)

+ r cos �̂σ(sin2 �̂σ −
∑

λ

sin2 �̂λ), (14.62e)

* Recall that χ is itself an operator of O(e). It arises from the expansion of the
fermionic contribution to the lattice action in powers of the gauge potentials, and
is a lattice artefact.
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with

M̂(�̂, m̂) = m̂ + 2r
∑

λ

sin2 �̂λ

2
, (14.62f )

and

ησ(�̂) = 2 cos2 �̂σ

2
−

∑
λ

cos2 �̂λ

2
. (14.62g)

As always, quantities with a “hat” are measured in lattice units. The continuum
limit corresponds to vanishing m̂ = ma. The above integrals are finite in this limit.

Summarizing we have that Z2Γ
(∆)
5 in (14.53) is given by

Z2Γ
(∆)
5 (p, p�) = 2mz

(χ)
P γ5 + iz

(χ)
A qµγµγ5 + · · ·, (14.63)

where the “dots” stand for terms vanishing in the continuum limit. Note that this
expression is completely local and has the form of possible counterterms for the
pseudoscalar and axial vector current. This will in fact be just the case.

Finally consider the contribution 2m0Z2Γ5(p, p�; m0, a) in (14.53), where m0 is
defined in terms of the renormalized mass m by (14.55). In the one-loop approxi-
mation it is given by

2m0Z2Γ5(p, p�; m0, a) = 2mγ5 + 2m
[
Λ5(p, p�; m, a) +

δm

m
γ5

]
, (14.64)

where the diagram contributing to Λ5 is shown in fig. (14-3a). Since Λ5(p, p�; m, a)
has LDD = 0, it diverges at most logarithmically for a → 0. But δm has a linearly
divergent part, so that (14.64) diverges even linearly for a → 0. Now comes an
important role played by the χ-term in (14.53). By combining (14.64) with (14.63),
and making use of (14.58a) and (14.58b), we have that for a → 0

2m0Z2Γ5(p, p�; m0, a) + Z2Γ(∆)(p, p�) ≈ 2m[Γ5(p, p�; m, a) + z̃P γ5] + iz
(χ)
A qµγµγ5,

(14.65a)
where

z̃P = z
(χ)
P +

δm

m
≈ e2

2π2 ln(ma). (14.65b)

This is precisely the lattice analog of the renormalization constant zP ≡ ZP − 1
in (14.34). Hence, after wave function and mass renormalization, the Ward identity
(14.53) reads as follows in the continuum limit

iqµΓ5µ(p, p�)R = 2mΓ5(p, p�)R + iz̄
(χ)
A qµγµγ5 − γ5S

−1
F (p) − S−1

F (p�)γ5, (14.66)
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where z̄
(χ)
A = z

(χ)
A (0) is a finite constant determined from (14.62c), and SF is the

renormalized propagator. The extra term iz̄
(χ)
A qµγµγ5 can be removed by a finite

renormalization of the axial vector current, so that the final form of the Ward
identity becomes

iqµΓ̄5µ(p, p�)R = 2mΓ5(p, p�)R − γ5S
−1
F (p) − S−1

F (p�)γ5, (14.67a)

where

Γ̄5µ(p, p�)R = lim
a→0

Z
(χ)
A

−1
Z2(ma)Γ5µ(p, p�; ma, a), (14.67b)

Γ5(p, p�)R = lim
a→0

ZP (ma)Γ5(p, p�; ma, a), (14.67c)

and Z
(χ)
A = 1+ z̄

(χ)
A , ZP = 1+ z̃P . Z2 and ZP are logarithmically divergent renormal-

ization constants having a form completely analogous to (14.34) of the continuum
formulation. Note that the linear divergent contribution T0Γ

(χ)
5 in (14.61) to the

Ward identity (14.53) played a crucial role in rendering the expression finite. This
term cancelled the linear divergent contribution arising from δm, which is a conse-
quence of the lattice regularization, and has no counterpart in the continuum. What
is new on the lattice, is that the axial vector current requires an additional finite
renormalization, in order that the Ward identity retains its naive structure after
renormalization. Thus QED renormalization alone does not suffice.

We have considered above the Ward identity relevant for studying the renor-
malization of the axial vector current. Ward identities involving the insertion of
the divergence of the axial vector current in more general Green functions can also
be readily be obtained. They can be best summarized by making use of functional
methods. Thus consider the generating functional of Green functions,

Z[η, η̄, J ] =
∫

DUDψDψ̄ e−S[U ,ψ,ψ̄]+Ssource , (14.68a)

where

Ssource =
∑

x

[η̄(x)ψ(x) + ψ̄(x)η(x) + Jµ(x)Uµ(x)]. (14.68b)

Making the infinitessimal change of variables ψ(x) → ψ(x) + δψ(x), ψ̄(x) → ψ̄(x) +
δψ̄(x), with δψ and δψ̄ given by (14.38), under which the measure is invariant, one
imediately concludes that

�δS − δSsource�η,η̄,J = 0, (14.69a)
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where, as before, δS is given by (14.40), and

δSsource = i
∑

x

�(x)[η̄(x)γ5ψ(x) + ψ̄(x)γ5η(x)]. (14.69b)

Expression (14.69a) can also be written as follows
∫

DUDψDψ̄

[
−∂L

µ j5µ(x) + 2m0j5(x) + ∆(x)

− η̄α(x)(γ5)αβ
∂

∂η̄β(x)
− ηβ(x)(γ5)αβ

∂

∂ηα(x)

]
e−S+Ssource = 0,

or compactly

�−∂L
µ j5µ(x) + 2m0j5(x) + ∆(x)�η,η̄,J = η̄(x)γ5

∂Z

∂η̄(x)
− ∂Z

∂η(x)
γ5η(x). (14.70)

By differentiating this expression with respect to the sources we generate Ward
identities involving the insertion of the divergence of the axial vector current in
arbitrary Green functions. The Ward identity we have discussed above follows by
differentiating (14.70) with respect to η and η̄ and setting thereafter η = η̄ = Jµ = 0.
A similar analysis as the one discussed above shows that Ward identities involving
the insertion of the divergence of the axial vector currrent in higher n-point functions
involving nF ≥ 2 external fermion lines and nA ≥ 1 gauge fields are finite and non-
anomalous upon QED renormalization.

14.4 The ABJ Anomaly

In continuum QED or QCD it is well known that Ward identities following
from gauge invariance play a very important role in securing the renormalizabilty of
these theories. In general, Ward identities relating different unrenormalized Green
functions are derived by considering local transformations of the fields in the gener-
ating functional. If the “naive” form of these identities retain their structure after
renormalization, then we say that the Ward identities are non-anomalous. If their
structure is not preserved (on account of quantum fluctuations) then one speaks of
anomalous Ward identities. Such a breakdown on quantum level can be desastrous,
for it may not allow the quantization of the theory. Thus e.g. in the case of the elec-
troweak theory it is important that the chiral symmetry of the classical action, in
the massless quark limit, remains unbroken on quantum level, since the gauge fields
are coupled to chiral currents which are the sources for the fields. An example of a
harmeless anomaly is the ABJ-anomaly (Adler 1969, Bell and Jackiw 1969), which
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plays an important role in the description of the electromagnetic decay π0 → 2γ.
The anomaly is harmless because it manifests itself in the divergence of a current
(the axial vector current) which is not the source for the gauge fields in QED or
QCD. How does this anomaly arise within the framework of a lattice regularized
gauge theory?

Let me first remind the reader of how the axial anomaly arises in continuum
QED. Consider first the partition function for continuum QED in an external gauge
field,

Z[A] =
∫

DψDψ̄ e−Sferm[A,ψ,ψ̄], (14.71)

where Sferm is the fermionic contribution to the action (5.8c). In the limit of
vanishing fermion mass this action is invariant under the global transformations
ψ(x) → exp(iαγ5)ψ(x) and ψ̄(x) → ψ̄(x) exp(iαγ5), where α is an x-independent
parameter. Next consider an infinitessimal local transformation with α → �(x). The
fermion measure in (14.71) is, at least formally, invariant under this transforma-
tion.* Let δSferm be the corresponding change of the action. Since the above local
transformations of the fermion fields just correspond to a change of variables, we
(naively) conclude that

�δSferm�A ≡ 1
Z

∫
DψDψ̄ δSferme−Sferm = 0. (14.72)

�δSferm�A is the expectation value of δSferm in a background gauge field. One readily
finds (after a partial integration) that

δSferm =
∫

d4x �(x)
[
2mψ̄(x)γ5ψ(x) − ∂µ(ψ̄(x)γµγ5ψ(x))

]
.

Since �(x) is an arbitrary function, it follows from (14.72) that

�∂µj5µ(x)�A = 2m�j5(x)�A, (naive), (14.73)

where j5µ = ψ̄γµγ5ψ. But actually this equation is violated because of quantum
fluctuations, as is demonstrated in any book on quantum field theory. The violation
is induced by the triangle graphs shown in fig. (14-4), each of which is linearly

* Actually, the integration measure needs to be regularized. As has been shown
by Fujikawa (Fujikawa, 1979) the ABJ anomaly can be viewed as a consequence of
having to regularize this measure.
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Fig. 14-4 Triangle diagrams which give rise to the ABJ anomaly in the

continuum.

divergent and therefore must be regularized. One then finds that (14.73) is modified
by an additional term as follows

〈∂µj5µ(x)〉A = 2m〈j5(x)〉A +
e2

16π2FµνF̃
µν , (14.74)

where F̃µν is the dual field strength tensor, F̃µν = 1
2�µνλρFλρ.

On the lattice the regularization is introduced already on the level of the parti-
tion function. Hence any considerations of the above type will leave us with equations
which are exact. One then may be left with an anomaly when the cutoff is removed,
i.e., upon taking the continuum limit.

In the continuum formulation of QCD (or QED) it is well known that different
gauge invariant regularization schemes all yield the same expression for the axial
anomaly. Any candidate for a lattice discretization of QED or QCD should also
reproduce the correct axial anomaly in the continuum limit. As we have seen in
chapter 2, a naive discretization of the fermionic action which is local, hermitean,
chirally symmetric for vanishing fermion mass, and having the correct continuum
limit, will necessarily lead to the fermion doubling problem. That this must be so
is a consequence of the Nielsen–Ninomyia theorem (1981). To avoid the problem
of species doubling, the chiral symmetry must be broken explicitely, if one refrains
from abandoning at least some of the other properties. As we have seen in chapter 5,
a simple way to accomplish this is to add to the naively discretized fermion action
a “Wilson term”, leading to (5.17), which ensures that in the limit of vanishing
lattice spacing the unwanted fermion modes acquire an infinite mass and hence
decouple. For Wilson fermions the axial anomaly has been first studied by Karsten
and Smit (Karsten, 1981). These authors showed that the origin of the anomaly was
an irrelevant term in the lattice Ward identity. The anomaly was also studied by
Rothe and Sadooghi (Rothe, 1998), using the small-a-expansion scheme of Wetzel
(1985). In the former reference it was shown that, in the limit of vanishing lattice
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spacing a, this naively irrelevant contribution is indeed given by the D → 4 limit of
the dimensionally regulated continuum triangle graph. These computations are very
involved and we do not present them here. Subsequently, the anomaly was studied
within a more general framework by Reisz and Rothe (Reisz 1999), where the action
is not assumed to have the form proposed by Wilson.

As we have pointed out in section (4.7), there is an even milder way of breaking
chiral symmetry on the lattice, proposed a long time ago by Ginsparg and Wilson
(1982). For Ginsparg–Wilson (GW) fermions the fermionic action is of the form

Sferm =
∑
x,y

ψ̄(x)(D(x, y) + mδx,y)ψ(y), (14.75)

where the “Dirac Operator” D(x, y) is a 4 × 4 matrix in Dirac space which breaks
chiral symmetry in a very special way. While the Dirac operator in the continuum,
or its naively discretized version, anticommutes with γ5, the GW-Dirac operator
satisfies the following GW-relation:

{γ5, D} = aDγ5D, (14.76)

where D is a matrix whose rows and columns are labeled by the a spin and space-
time index. It is a function of the link variables and can be expanded in terms of
the gauge potentials,

D(x, y) =
∑

n,µi,ai,xi

1
n!

D(n)
µ1···µn

(x, y|x1 · · ·xn)Aµ1(x1) · · ·Aµn(xn), (14.77)

where x denotes a lattice site. For Wilson fermions D(x, y) is a strictly local operator
connecting only neighbouring lattice sites, and with the gauge potentials living on
the corresponding links. On the other hand, the Dirac operator D(x, y) for GW-
fermions is non local in the sense that it connects arbitrary lattice sites and does
not involve only the gauge potentials at sites close to x. For the Neuberger solution
to (14.76), given by (4.65a) and (4.66), the non-locality arises from the inverse of
(A†A)1/2. Nevertheless, as has been shown by Hernandez et al. (Hernandez, 1999),
Neuberger’s Dirac operator is still local in the more general sense, that the Dirac
operator decays exponentially at large distances, with a decay rate proportional to
1/a. In the naive continuum limit we have of course that D(x, y) → γµDµ[A], where
Dµ[A] is the covariant derivative in the continuum.

In the following we shall discuss two alternative points of view of how the
ABJ anomaly is generated in the case of GW fermions. In the first approach we
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will make use of the observation made by Lüscher (1998), which was proven in
sec. 4.7, that the GW-action possesses an exact global axial-type symmetry for
vanishing fermion mass. As we have seen in sec. 4.7, this symmetry differes from the
standard one (4.8) by lattice artefacts. Associated with this symmetry is an axial
vector current which is conserved on classical level. Following a similar procedure
as in the continuum, we then derive a Ward identity and identify the anomalous
contribution (ABJ anomaly). Within this approach the anomaly will arise from
the non-invariance of the fermionic integration measure under the non-standard
local axial transformations. In the second approach we then consider the Ward
identity derived for standard local axial transformations under which the measure is
invariant, but the action is not. The ABJ anomaly now originates from the explicit
chiral symmetry breaking in the GW-action, and hence parallells the approach to
the anomaly in the case of Wilson fermions.

Approach 1
Consider the action (14.75), where D satisfies the GW-relation (14.76). The

GW-Dirac operator is a function of the link variables. This action is invariant for
m = 0 under the global infinitessimal transformations (4.68). Consider the case
where � in (4.68b) is a function of the space-time coordinates, i.e., a local trans-
formation:

ψ → ψ′ = ψ + δψ, ψ̄ → ψ̄′ = ψ̄ + δψ̄, (14.78a)

δψ(x) = i�(x)γ5

[(
1 − a

2
D

)
ψ

]
(x), (14.78b)

δψ̄(x) = i�(x)
[
ψ̄

(
1 − a

2
D

)]
(x)γ5. (14.78c)

One then readily verifies that the variation of the action is given by

δSferm = i
∑

x

�(x)
[
F (x) + 2mψ̄(x)γ5ψ(x) + ∆̄(x)

]
, (14.79)

where
∑

x =
∑

n a4. F (x) and ∆(x) are defined in (4.69b) and (4.69c), with F (x)
satisfying (4.70). Now according to the Poincare Lemma on the lattice (Lüscher,
1999b), (14.70) implies that there exists an axial vector current j5µ(x) such that

F (x) = −∂L
µ j5µ(x), (14.80)

where ∂L
µ is the left lattice derivative (the proof of this lemma is quite involved).

Since the GW-Dirac operator has the correct continuum limit, it follows that for
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a → 0, j5µ(x) → ψ̄(x)γµγ5ψ(x). With (14.80) we conclude that (14.79) is given by

δSferm = i
∑

x

�(x)[−∂L
µ j5µ(x) + 2mψ̄(x)γ5ψ(x) + ∆̄(x)]. (14.81)

In contrast to the case of Wilson fermions, where j5µ(x) is given by (14.41), we do
not know the explicit expression for the axial vector current. The last term on the
rhs is not responsible for the anomaly. In fact its external field expectation value
vanishes in the continuum limit. The anomaly arises from the non-invariance of the
fermionic measure under the variations (14.78). This leads to a Jacobian. Thus from
(14.78) we have that

δψ�(x)
δψ(y)

≡ B(x, y) =
[
1 + i�(x)γ5

(
1 − a

2
D

)]
(x, y).

The determinant of this matrix is given by

det B = eTr ln B ≈ 1 + Tr ln B.

Here the trace is carried out in Dirac, as well as in coordinate space. Hence the
Jacobian of the transformation is

J

[
δψ�

δψ

]
= det B = 1 − i

a

2

∑
x

�(x)trD(γ5D)(x, x),

where trD denotes the trace in Dirac space. A corresponding expression holds
for J [δψ̄�/δψ̄]. Consider now the partition function in a background link variable
configuration,

Z[U ] =
∫

DψDψ̄ e−Sferm[ψ,ψ̄,U ]. (14.82)

Making the infinitessimal change of variables (14.78) leaves this expression invariant.
Hence we conclude that (taking into account the Jacobian of the transformation)
that

�δSferm�U − ia
∑

x

�(x)trD(γ5D(x, x)) = 0. (14.83)

To arrive at the final form of the Ward identity we rewrite the contribution �∆̄(x)�U

to �δSferm� in (14.81) as follows: from (4.69c), �∆̄(x)�U is given in matrix notation
by*

�∆̄(x)�U =
am

2
trD

[
(D + m)−1Dγ5 + γ5D(D + m)−1

]
(x, x),

* We have dropped the explicit dependence of the Dirac operator on the link
variables, for simplicity.
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where we have made use of

�ψα(x)ψ̄β(y)�U = (D + m)−1
αβ(x, y) (14.84)

Making use of (D + m)−1D = 1 − m(D + m)−1 and trDγ5 = 0, we can further write

�∆̄(x)�U = −m2atrD(γ5(D + m)−1)(x, x) = m2a�ψ̄(x)ψ(x)�.

Hence the Ward identity (14.83) takes the form

�∂L
µ j5µ(x)�U = 2m�j5(x)�U − atrD(γ5D(x, x)), (14.85a)

where

j5(x) =
(
1 +

ma

2

)
ψ̄(x)γ5ψ(x). (14.85b)

The last term on the rhs of (14.85a) is an anomalous contribution and yields in the
continuum limit the ABJ anomaly (Hasenfratz, 1998: Lüscher, 1998a).

We now proceed to derive the above Ward identity from a more conventional
point of view which parallels the case of Wilson fermions.

Approach 2
Consider once again the action (14.75) and the partition function (14.82). Let

us carry out a change of variables (14.78a) induced by the standard local axial
transformations, where δψ and δψ̄ are given by (14.38). Under this transformation
the integration measure is invariant since trDγ5 = 0. The change in the action is
easily computed and now given by

δSferm = i
∑

x

�(x)
[
ψ̄(x)γ5(Dψ)(x) + (ψ̄D)(x)γ5ψ(x)

]

+ 2im
∑

x

�(x)ψ̄(x)γ5ψ(x). (14.86)

We now make use of the definition (4.69b) and of (14.80) to write this expression in
the form

δSferm = i
∑

x

�(x)[−∂L
µ j5µ(x) + 2mψ̄(x)γ5ψ(x) + a(ψ̄D)(x)γ5(Dψ)(x)].

(14.87)

Since the fermionic measure in (14.82) is invariant under the above local axial trans-
formations, the Ward identity now reads

�δSferm�U = 0. (14.88)
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Making use of (14.84), the expectation value of the last term in (14.87) can be
written in the form

a�(ψ̄D)(x)γ5(Dψ)(x)� = −atrD(γ5D(x.x))

−m2atrD

[
γ5(D + m)−1(x, x)

]
, (14.89)

where the last term is just m2a�ψ̄(x)γ5ψ(x)�U . Thus one arrives once again at the
anomalous Ward Identity (14.85).

We shall not discuss the anomalous contribution any further, since it has been
shown by Reisz and Rothe (Reisz 1999) that any lattice action satisfying some very
general conditions (which also hold for GW-fermions) will necessarily reproduce the
correct anomaly in the continuum limit. For the more complicated case of QCD we
will present a proof in section 6 of the following chapter.
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CHAPTER 15

WEAK COUPLING EXPANSION (III).
LATTICE QCD

Weak coupling perturbation theory in lattice QCD is much more involved than
in the U(1) gauge theory discussed in the previous section. The reasons for this
are the following: a) The lattice action is a complicated functional of the coloured
gauge potential; b) the gauge invariant integration measure associated with the link
variables depends non-trivially on the gauge fields, and c) the generalized covariant
gauge, analogous to that discussed in the abelian case, can no longer be implemented
in a trivial way. This latter feature is of course also true in continuum QCD. But
whereas there the Faddeev–Popov determinant, which emerges when the gauge is
fixed, can be represented in terms of an effective ghost–gauge field interaction which
is linear in the gauge potential, this is no longer true in lattice QCD.

The complexity of the expressions in perturbative lattice QCD, is a consequence
of the gauge invariant lattice regularization, which, as in the U(1) case, leads to an
infinite number of interaction vertices. But because of the non-abelian structure of
the theory, most of these vertices have a very complicated structure. Although in
the naive continuum limit only those vertices survive which are characteristic of the
continuum formulation, irrelevant contributions to the action do play an important
role when studying the continuum limit of Feynman integrals. Hence one must ex-
ercise great care in including all lattice artefacts in the action, which contribute
to the correlation functions in this limit. In this connection let us recall that the
whole point of the lattice formulation was that it provides a regularization scheme,
where gauge invariance is ensured for any finite lattice spacing. Only by including
all lattice artefacts we will therefore be ensured that for any finite lattice spacing
gauge invariant correlation functions will be independent of the choice of gauge,
and that the gauge fixed theory will possess a BRS-type symmetry, reflecting the
original gauge invariance of the theory before fixing the gauge. This is important
since this symmetry leads to Ward-identities which play an important role in de-
veloping a renormalization program. One therefore should abstain from making any
approximation when expressing the link-integration measure and Faddeev–Popov
determinant in terms of the gauge potentials before removing the lattice cutoff.
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In the following we shall set up the generating functional in a form which is
suited for performing the weak coupling expansion in lattice QCD. We then derive
lattice expressions for the propagators and vertices relevant for low order perturba-
tive calculations. We will however not discuss lattice Ward identities, nor renormal-
ization in this book. A detailed discussion of these topics can be found in the work
by Reisz (1988a,b).

15.1 The Link Integration Measure

In lattice QCD, the link variables are elements of SU(3) in the fundamental
representation.∗ They hence can be written in the form

Uµ(n) = eiφµ(n) (15.1a)

where φµ(n) is an element of the Lie-algebra of SU(3):

φµ(n) =
8∑

A=1

φA
µ (n)TA. (15.1b)

Here TA (A = 1, . . . , 8) are the generators of the group in the fundamental repre-
sentation. We chose them to be given by

TA =
λ

2

A

,

where λA are the Gell-Mann matrices introduced in chapter 6. From (6.8), and (6.15)
we have that

[TA, TB] = i
∑

C

fABCTC , (15.2a)

Tr(TATB) =
1
2
δAB. (15.2b)

Under a gauge transformation, the link variables transform according to

Uµ(n) → g(n)Uµ(n)g−1(n + µ̂),

∗ In contrast to the notation used in chapter 6, we shall not underline matrices
in colour space with a “twidle”. Except for the generators, all quantities carrying a
colour index will be c-numbers. Quantities without a colour index are matrix-valued.
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where g(n) and g(n + µ̂) are elements of SU(3). Correlation functions involving
the product of link variables and coloured quark fields are computed according to
(6.24), where DU is the gauge invariant measure associated with the link variables.
Our present objective is to express this integration measure in terms of the group
parameters φA

µ (n) defined in (15.1b). To this effect we first construct the invariant
measure associated with a single link variable, following Kawai et al. (1981).

Let U be an element of SU(3) with Lie algebra L. Then U can be written
in the form U = exp(iφ), with φ ∈ L. Consider the following bilinear differential
form

d2s = Tr(dU †dU), (15.3)

where dU = U(φ + dφ) − U(φ). It is invariant under left or right multiplication
of U with a group element of SU(3). Expressed in terms of the coordinates {φA},
parametrizing φ, (15.3) will have the form

d2s =
∑
A,B

gAB(φ)dφAdφB. (15.4)

This defines a metric, gAB(φ) on the group manifold. The gauge invariant integration
measure (Haar measure) is then given by

dµ(φ) =
√

det g(φ)
∏
A

dφA, (15.5)

where g(φ) is the matrix constructed from the elements gAB(φ). To calculate g(φ)
let us rewrite (15.3) as follows (Kawai et al. (1981)):

d2s = Tr{(U−1dU)†(U−1dU)}. (15.6)

As is shown in appendix C, U−1dU is an element of the Lie-algebra of SU(3) and
has the form

U−1dU = i
∑
A,B

TAMAB(−φ)dφB, (15.7a)

where

MAB(φ) =
(

1 − e−iΦ

iΦ

)

AB

, (15.7b)

Φ =
8∑

A=1

φAtA, (15.7c)
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and tA are the generators of SU(3) in the adjoint representation.∗ Their matrix
elements are given by

tABC = −ifABC , (15.8)

where fABC are the structure constants of the group appearing in (15.2a). The
generators tA satisfy the following orthogonality relation:

Tr(tAtB) = 3δAB. (15.9)

Inserting the expression (15.7a) into (15.6), and making use of (15.2b), one finds
that the metric gAB(φ), defined in (15.4) is given by

gAB(φ) =
1
2
(M †(φ)M(φ))AB

=
(

1 − cos Φ
Φ2

)

AB

. (15.10)

Hence g(φ) has the following power series expansion in terms of {φA}:

g(φ) =
1
2

+
∞∑

�=1

(−1)�

(2� + 2)!
(Φ)2�, (15.11)

where Φ has been defined in (15.7c). This is the expression we were looking for.
Notice that by construction, g(φ) is a non-negative hermitian matrix. Hence its
determinant is real and non-negative.

The invariant integration measure associated with a single link variable Uµ(n)
is obtained from (15.5) and (15.10) by replacing φA by φA

µ (n). Taking the product
of these measures we arrive at the desired expression for DU :

DU =

{∏
n,µ

√
det

[
1
2
M †(φµ(n))M(φµ(n))

]}
Dφ, (15.12a)

where

M(φµ(n)) =
1 − e−iΦµ(n)

iΦµ(n)
, (15.12b)

Φµ(n) =
∑

A

tAφA
µ (n), (15.12c)

∗ Capital letters always run from one to eight.
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and

Dφ =
∏

n,A,µ

dφA
µ (n). (15.12d)

We next rewrite (15.12) in a way which is convenient for later computation. Since
the determinant of g(φ) can also be written in the form exp(Tr ln g(φ)), we obtain
the following alternative expression for DU :

DU = e−Smeas[φ]Dφ, (15.13a)

where, apart from an irrelevant additive constant, Smeas[φ] is given by

Smeas[φ] = −1
2

∑
n,µ

Tr ln
[
2(1 − cos Φµ(n))

Φ2
µ(n)

]
. (15.13b)

The quantity appearing within square brackets is a polynomial in the matrix Φµ.
Smeas[φ] can also be written in the form

Smeas[φ] = −1
2

∑
n,µ

Tr ln[1 + N(φµ(n))], (15.14a)

where

N(φµ(n)) = 2
∞∑

�=1

(−1)�

(2� + 2)!
(Φµ)2�, (15.14b)

with Φµ defined in (15.12c). Notice the difference in the structure of the integration
measure (15.13) and its abelian U(1) counterpart, where DU is given by (5.23). In-
deed in the abelian case U−1dU = idφ, where φ is the single real variable parametriz-
ing U . Hence according to (15.6), the right-hand side is just given by (dφ)2.

Consider now the ground state expectation value of a gauge invariant func-
tional of the dimensionless fields φA

µ (n), ψ̂a
α(n), ¯̂a

αψ(n).∗ We denote this functional by

Γ[φ, ψ̂, ¯̂
ψ]. For the action we will take the standard Wilson form given in eqs. (6.25),

except that now we shall write SQCD[φ, ψ̂, ¯̂
ψ] instead of SQCD[U , ψ̂, ¯̂

ψ] to emphasize
that SQCD should be expressed in terms of the fields φA

µ . Writing the link integration

∗ Recall that while the capital letters A, B, . . . run from one to eight, small Latin
letters run from one to three, since the quark fields transform under the fundamental
representation of SU(3).
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measure in the form (15.13a), the ground state expectation value of Γ[φ, ψ̂, ¯̂
ψ] is

given by

�Γ[φ, ψ̂, ¯̂
ψ]� =

∫
DφD

¯̂
ψDψ̂Γ[φ, ψ̂, ¯̂

ψ]e−SQCD[φ,ψ̂, ¯̂ψ]−Smeas[φ]

∫
DφD

¯̂
ψDψ̂e−SQCD[φ,ψ̂, ¯̂ψ]−Smeas[φ]

. (15.15)

This expression is not yet suited for carrying out the weak coupling expansion. As
in the U(1) case considered in the previous chapter, we must still fix the gauge.∗

15.2 Gauge Fixing and the Faddeev–Popov Determinant

A popular choice for a local gauge condition which is linear in the fields φA
µ , and

respects the discrete lattice symmetries, is the following generalization of (14.3),∗∗

FA
n [φ; χ] = ∂̂L

µ φA
µ (n) − χA(n) = 0, (15.16)

where χA(n), A = 1, . . . 8, are some arbitrary given fields. We want to introduce this
gauge condition into the functional integral (15.15). This must be done in such a
way that expectation values of gauge-invariant observables are not affected by the
gauge-fixing procedure. Following the prescription given by Faddeev and Popov for
the continuum formulation, we consider the integral

∆−1
FP[φ; χ] =

∫
Dg

∏
n,A

δ(FA
n [gφ, χ]), (15.17)

where gφ denotes collectively the gauge transform of the group parameters {φA
µ (n)}

which parametrize the link variables Uµ(n). The above integral is carried out over the
gauge group manifold, with the integration measure Dg being given by the product
of the invariant Haar measures on SU(3) at every lattice site,

Dg =
∏
n

dµ(gn).

Because by definition of the Haar measure dµ(gg�) = dµ(g), it follows that ∆FP[φ; χ]
is gauge invariant:

∆FP[gφ; χ] = ∆FP[φ; χ].

∗ Within the framework of continuum perturbation theory, this is an obvious
requirement, since otherwise the gluon propagator cannot be defined. In a lattice
formulation Smeas[φ] includes a term quadratic in the fields φA

µ which is not gauge
invariant. But since it depends on the coupling, it must be treated as part of the
interaction.

∗∗ It will be always understood that repeated Lorentz indices are summed.
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We next introduce the identity

1 = ∆FP[φ; χ]
∫

Dg
∏
n,A

δ(FA
n [gφ; χ])

into the integrands of (15.15). Using the fact that Γ,SQCD, ∆FP, as well as the
integration measures DU = exp(−Smeas)Dφ and D

¯̂
ψDψ̂ are gauge invariant, we can

replace the fields φ, ψ̂, and ¯̂
ψ in these expressions by their gauge transforms gφ, gψ̂

and g ¯̂
ψ, respectively. A simple redefinition of the integration variables then leads to

the following alternative expression for (15.15):

�Γ[φ, ψ̂, ¯̂
ψ]� =

1
Z

∫
DφD

¯̂
ψDψ̂∆FP[φ; χ]

∏
n,A

δ(FA
n [φ; χ])

· Γ[φ, ψ̂, ¯̂
ψ]e−SQCD[φ,ψ̂, ¯̂ψ]−Smeas[φ],

(15.18a)

where the normalization constant Z is given by

Z =
∫

DφD
¯̂
ψDψ̂∆FP [φ; χ]

∏
n,A

δ(FA
n [φ, χ])e−SQCD[φ,ψ̂, ¯̂ψ]−Smeas[φ]. (15.18b)

We must now compute ∆FP[φ; χ]. But because of the gauge fixing δ–function appear-
ing in (15.18), we only need to know ∆FP[φ; χ] for field configurations φ satisfying
the gauge condition (15.16). Hence it suffices to calculate the integrand of (15.17)
for gφ in the infinitesimal neighbourhood of g = 1 with φ restricted by (15.16).
Accordingly, we must compute the change in the fields φA

µ (n) induced by an in-
finitesimal gauge transformation. In the continuum formulation the corresponding
change in the potentials AB

µ is a linear functional of the gauge fields. In a lattice reg-
ulated theory this is no longer true. Hence also ∆FP[φ; χ] will acquire a non-trivial
structure.

The response of φA
µ (n) to an infinitesimal gauge transformation has been cal-

culated in appendix D. Let δ(�)φ
A
µ (n) denote the change in φA

µ (n) induced by the
transformation, i.e.,

Uµ(n) → ei�(n)Uµ(n)e−i�(n+µ̂) = ei(φµ(n)+δ(�)φµ(n))

where �(m) are elements of the Lie algebra of SU(3) in the fundamental represen-
tation:

�(m) =
∑

A

TA�A(m).
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Then it has been shown in appendix D that

δ(�)φ
A
µ (n) = −

∑
B

D̂µ[φ]AB�B(n), (15.19a)

where

D̂µ[φ] = M−1 (φµ(n)) ∂̂R
µ + iΦµ(n). (15.19b)

M−1 (φµ(n)) is the inverse of the matrix (15.12b), and Φµ(n) has been defined in
(15.12c). The first few terms in the expansion of M−1 in powers of φµ(n) are given by

M−1 (φµ(n)) = 1 +
i

2
Φµ(n) − 1

12
(Φµ(n))2 + · · · . (15.19c)

The non-linear response of φA
µ (n) to an infinitesimal gauge transformation is due to

lattice artefacts. Indeed, making the replacement

φB
µ (n) → g0aAB

µ (x)

in (15.19), and using the more suggestive (continuum) notation �B(x) instead of
�B(n), one finds that

g0δ(�)A
B
µ (x) −→

a→0
−

∑
C

Dµ[A]BC�C(x),

where

Dµ[A] = ∂µ + ig0

∑
B

tBAB
µ (x)

is the matrix valued covariant derivative of the continuum formulation.
Let us now calculate the function FA

n [gφ, χ] in (15.17) for g in the neighborhood
of the identity, and for fields φA

µ (n) satisfying the gauge condition (15.16). Making
use of (15.19) one finds that

FA
n [gφ; χ] ≈

g≈1
−

∑
m,B

LnA,mB[φ]�B(m), (15.20a)

where

LnA,mB[φ] = ∂̂L
µ D̂µ[φ]ABδnm (15.20b)

is the analog of the matrix ∂µDµ[A]ABδ(4)(x − y) in the continuum formulation.
Note that according to (15.19b), D̂µ[φ] is a local function of the matrix valued field
Φµ(n), and that all lattice derivatives act on the lattice site “n”. We next introduce
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the expression (15.20a) into (15.17). Since for fields φA
µ (n) which satisfy the gauge

condition (15.16) the integral only receives a contribution for group elements g in
the immediate neighbourhood of the identity, we may replace the group integration
measure by

Dg →
∏
n,A

d�A(n).

The integral (15.17) can now be immediately performed and one finds that for field
configurations satisfying the gauge condition, ∆FP is independent of χ and given by

∆FP[φ] = det(−L[φ])

where L[φ] is the matrix defined in (15.20b). ∆FP is referred to in the literature as
the Faddeev–Popov determinant.

In principle we could incorporate the effect of ∆FP[φ] into an effective action by
setting ∆FP[φ] = exp(Tr ln(−L[φ])). We had adopted such a procedure in connection
with the link integration measure. But whereas Smeas[φ] is given by a sum over local
products of the fields φA

µ (n), this is not the case for Tr ln(−L[φ]).∗ To derive the
Feynman rules, however, we want to start from an action where the fields are coupled
locally. Hence we cannot incorporate the effect of the Faddeev–Popov determinant
into an effective action in the above mentioned way. Using a standard trick however,
we can circumvent this difficulty. Thus making use of the formula (2.47) we can
write det L[φ] in the form

det L[φ] =
∫ ∏

A,n

d¯̂cA(n)dĉA(n)e−SFP[φ,ĉ,¯̂c], (15.21a)

where

SFP[φ, ĉ, ¯̂c] = −
∑

A,B,n

¯̂cA(n)∂̂L
µ D̂µ[φ]AB ĉB(n). (15.21b)

The Grassmann valued fields ĉA(n) and ¯̂cA(n) (A = 1, . . . , 8) carry a colour but no
Dirac–index. They transform according to the adjoint representation of SU(3), and
are the lattice analogs of the famous Faddeev–Popov ghost fields.

Finally, we must get rid of the gauge fixing δ-functions in (15.18a,b). We do
this in the way described in chapter 14. Since the numerator and denominator in

∗ This non-local property is of course not peculiar to the lattice formulation.
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(15.18a) do not depend on the choice of the fields χA(n), we can average these
expressions over χA(n) with a Gaussian weight factor exp

[
− 1

2α

∑
n,A χA(n)χA(n)

]
.

Collecting the results obtained so far, we therefore find that (15.18) can be written
in the form∗

�Γ[φ, ψ̂, ¯̂
ψ]� =

∫
DφD

¯̂
ψDψ̂D¯̂cDĉΓ[φ, ψ̂, ¯̂

ψ]e−S
(tot)
QCD[φ,ψ̂, ¯̂ψ,ĉ,¯̂c]

∫
DφD

¯̂
ψDψ̂D¯̂cDĉe−S

(tot)
QCD[φ,ψ̂, ¯̂ψ,ĉ,¯̂c]

, (15.22a)

where the “total” action, S
(tot)
QCD, is given by

S
(tot)
QCD = SG[φ] + S

(W )
F [φ, ψ̂, ¯̂

ψ] + SGF[φ] + Smeas[φ] + SFP[φ, ĉ, ¯̂c].

(15.22b)

Here SG[φ] and S
(W )
F [φ, ψ̂, ¯̂

ψ] are given by (6.25b) and (6.24c) with the link variables
Uµ(n) replaced by exp(iφµ(n)), and SGF[φ] is the non-abelian analog of (14.5c):

SGF[φ] =
1
2α

∑
n,A

(
∂̂L

µ φA
µ (n)

)2
. (15.22c)

The expression (15.22a) provides the appropriate starting point for performing a
weak coupling expansion analogous to that described for the abelian case considered
in the previous chapter. We have gone quite a way to arrive at this expression. And
we still have to do some work to derive the Feynman rules from the generating
functional

Z[Ĵ , η̂, ¯̂η, ξ̂, ¯̂
ξ] =

∫
DφD

¯̂
ψDψ̂D¯̂cDĉe−S

(tot)
QCD[φ,ψ̂, ¯̂ψ,ĉ,¯̂c]

· e
∑

n

[
ĴA

µ (n)φA
µ (n)+¯̂ηa

α(n)ψ̂a
α(n)+ ¯̂

ψa
α(n)η̂a

α(n)+¯̂
ξA(n)ĉA(n)+¯̂cA(n)ξ̂A(n)

]
.

The reason is that the contribution of SG[φ] to SQCD, is a complicated functional of
the fields φA

µ and their derivatives. This is a consequence of the non-abelian character
of the link variables. In the continuum formulation this piece of the action gives rise
to triple and quartic interactions of the gluon fields. In the lattice formulation, on
the other hand, not only do these vertices get modified by lattice artefacts, but there
are also an infinite number of additional interaction vertices which contribute to the
correlation functions for finite lattice spacing. Only a finite number of these vertices,
however, contribute in the continuum limit in a given order of perturbation theory.

∗ In chapter 2 we had omitted the “hat” on ψ̂ and ¯̂
ψ for convenience.
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15.3 The Gauge Field Action

Consider the action (6.25b). It can be written in the form

SG[φ] =
1
g2
0
Tr

∑
n,µ,ν
µ�=ν

(1l − Uµν(n)) , (15.23)

where “1l” denotes the 3×3 unit matrix, and Uµν(n) is given by the ordered product
of link matrices around an elementary plaquette lying in the µν-plane:

Uµν(n) = eiφµ(n)eiφν(n+µ̂)e−iφµ(n+ν̂)e−iφν(n). (15.24)

Clearly,

U †
µν(n) = Uνµ(n). (15.25)

Since Uµν(n) is an element of SU(3) in the fundamental representation, it can be
written in the form

Uµν(n) = eiφµν(n), (15.26)

where φµν(n) is an element of the Lie algebra of SU(3) in the above mentioned
representation:

φµν(n) =
∑

A

φA
µν(n)TA. (15.27)

From (15.25) it follows that

φA
µν(n) = −φA

νµ(n).

Consider the trace of (1l − Uµν). Expanding (15.26) in powers of φµν , and recalling
that TrTA = 0, we have that

Tr(1l − Uµν) = Tr
{

1
2
(φµν)2 +

i

3!
(φµν)3 − 1

4!
(φµν)4 + · · ·

}
.

Because φµν = −φνµ, it follows that the cubic term will not contribute to the action.
Hence

SG[φ] =
1
g2
0

∑
n,µ,ν

Tr
{

1
2
(φµν(n))2 − 1

4!
(φµν(n))4 + · · ·

}
. (15.28)



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch15

Weak Coupling Expansion (III). Lattice QCD 253

The trace can be easily evaluated by making use of the following relations∗

Tr(TATB) =
1
2
δAB,

Tr(TATBTC) =
1
4
(dABC + ifABC),

Tr(TATBTCTD) =
1
12

δABδCD − 1
8
fABEfCDE +

1
8
dABEdCDE

+
i

8
(fABEdCDE + fCDEdABE),

which can be easily derived using the commutation relations (15.2a) and the follow-
ing expression for the anticommutator of TA and TB:

{TA, TB} =
1
3
δABI + dABCTC .

Written in terms of the fields φ1
µν , . . . , φ

8
µν , (15.28) becomes

SG[φ] =
1
g2
0

∑
n,µ,ν

[
1
4

∑
A

(φA
µν)

2 − 1
288

∑
A,B

(φA
µν)

2(φB
µν)

2

− 1
192

∑
A,B,...,E

dABEdCDEφA
µνφ

B
µνφ

C
µνφ

D
µν + · · ·

]
,

(15.29)

where we have suppressed the dependence of the fields on the lattice site. Next we
express the right-hand side of this expression in terms of the fields {φA

µ (n)} which,
apart from a factor g0, are the lattice analogues of the coloured gauge potentials.
To this effect we first derive a relation between φµν(n) and the matrix valued fields
φµ(n), φν(n + µ̂), φµ(n + ν̂) and φν(n) appearing in the product (15.24). We do this
by making repeated use of the Campbell–Baker–Hausdorff (CBH) formula, which
states the following: Let G be a Lie group with Lie algebra �L, and let B1 and B2 be
elements of �L. Consider the product exp(B1) exp(B2). It can be written in the form

eB1eB2 = eC(B1,B2), (15.30a)

with C(B1, B2) ∈ �L. According to CBH, C(B1, B2) is given by

C(B1, B2) =
∞∑

n=1

Cn(B1, B2), (15.30b)

∗ The tensor dABC is completely symmetric in the indices. Its components are
given by d118 = d228 = d338 = −d888 = 1/

√
3; d156 = d157 = −d247 = d256 = d344 =

d355 = −d366 = −d377 = 1/2; d448 = d558 = d668 = d778 = − 1
2
√

3
.
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where the contributions Cn(B1, B2) are determined by the following recursion rela-
tions:

C1(B1, B2) = B1 + B2,

(n + 1)Cn+1(B1, B2) =
1
2
[B1 − B2, Cn(B1, B2)]

+
∑
p≥1
2p≤n

k2p

∑
m1,...,m2p>0

m1+···+m2p=n

[
Cm1(B1, B2),

[
. . . ,

[
Cm2p(B1, B2), B1 + B2

]
· · ·

]]
.

(15.30c)

Here k2p are rational, and k2p(2p)! are the Bernoulli numbers. We now make
repeated use of this formula to calculate the product

eB1eB2eB3eB4 = eM(B)

where B stands collectively for B1, . . . , B4. Clearly

M =
4∑

i=1

Bi + O(B2).

Consider the case where exp(Bi) are elements of SU(N) in some matrix represen-
tation. Since M(B) is at least of O(B), and since Tr M = 0, it follows that if we
want to calculate Tr(1l − exp(M)) up to fourth order in the Bi’s,∗ we only need to
know M(B) up to O(B3). Hence we will also only need to know (15.30b) up to this
order. From (15.30c) one obtains

C(Bi, Bj) = Bi + Bj +
1
2
[Bi, Bj]

+
1
12

([Bi, [Bi, Bj]] + [Bj, [Bj, Bi]]) + · · · .

Making repeated use of this expression and of the Jacobi identity, one finds after
some algebra that M(B) can be written in the form

M(B) =
∑

i

Bi +
1
2

∑
i<j

[Bi, Bj] +
1
12

∑
i,j

[Bi, [Bi, Bj]]

+
1
6

∑
i<j<k

{[Bi, [Bj, Bk]] + [Bk, [Bj, Bi]]} + O(B4).
(15.31)

∗ This will suffice for our purposes.
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We now apply this formula to the matrix product (15.24), and obtain an expression
for (15.27), correct up to third order in the fields φµ:

φµν =
∑

i

θi +
i

2

∑
i<j

[θi, θj] −
1
12

∑
i,j

[θi, [θi, θj]]

−1
6

∑
i<j<k

{[θi, [θj, θk]] + [θk, [θj, θi]]} + · · · .
(15.32a)

Here the Lie-algebra valued fields θi are given by

θ1(n) = φµ(n),

θ2(n) = φν(n + µ̂) = φν(n) + ∂̂R
µ φν(n),

θ3(n) = −φµ(n + ν̂) = −φµ(n) − ∂̂R
ν φµ(n),

θ4(n) = −φν(n).

(15.32b)

For simplicity we have suppressed the dependence of φµν and θi in (15.32a) on the
lattice sites.

Consider for example the contribution of the first two terms appearing on the
right-hand side of (15.32a). Inserting the definitions (15.32b) one finds that

φµν = ∂̂R
µ φν − ∂̂R

ν φµ + i[φµ, φν ] + i([φµ, ∂̂R
µ φν ] − [φν , ∂̂R

ν φµ])

+
i

2
([φν , ∂̂R

µ φν ] − [φµ, ∂̂R
ν φµ]) (15.33)

− i

2
[∂̂R

µ φν , ∂̂R
ν φµ] + O(φ3).

Introducing the dimensioned (matrix valued) gauge potentials Aµ(x), and the field
strength tensor Fµν in the familiar way, i.e.,

φµ(n) → g0aAµ(x),

φµν(n) → g0a
2Fµν(x), (x = na)

we see that only the first two terms in (15.33) contribute to Fµν in the continuum
limit. Thus

Fµν(x) = ∂R
µ Aν(x) − ∂R

ν Aµ(x) + ig0 [Aµ(x), Aν(x)] + · · · ,

where ∂R
µ is the dimensioned right lattice derivative, and where the dots stand for

terms which vanish for a → 0. Hence in the continuum limit Fµν coincides with the
field strength tensor in QCD.
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We now return to eq. (15.32a). Decomposing the matrices θi as follows

θi =
∑

A

θA
i TA,

and making use of the relations (15.2), one finds that the colour components of the
field φµν , defined in (15.27), are given by

φA
µν(n) =

∑
i

θA
i (n) − 1

2

∑
i<j

θA
ij(n) +

1
12

∑
ij

θA
iij(n)

+
1
6

∑
i<j<k

[
θA

ijk(n) + θA
kji(n)

]
+ · · · ,

(15.34a)

where

θA
ij(n) =

∑
B,C

fABCθB
i (n)θC

j (n),

θA
ijk(n) =

∑
B,C,D,E

fABEfCDEθB
i (n)θC

j (n)θD
k (n),

(15.34b)

and where θA
i , . . . , θA

4 are related to the fields φA
µ , φA

ν and their derivatives by expres-
sions analogous to (15.32b):

θA
1 (n) = φA

µ (n),
θA
2 (n) = φA

ν (n) + ∂̂R
µ φA

ν (n),
θA
3 (n) = −φA

µ (n) − ∂̂R
ν φA

µ (n),
θA
4 (n) = −φA

ν (n).

(15.34c)

Inserting (15.34a) into (15.29) one arrives at the following expression for the action,
correct up to fourth order in the fields {θA

i }:∗

SG[φ] =
1
g2
0

∑
µ,ν
n

{1
4

∑
i,j

θA
i θA

j − 1
4

∑
i,j,k
j<k

θA
i θA

jk

+
1
16

∑
i<j
k<l

θA
ijθ

A
kl +

1
24

∑
i,j,k

θA
i θA

jjk

+
1
12

∑
i,j,k,l
j<k<l

θA
i

(
θA

jkl + θA
lkj

)
(15.35)

− 1
192

dABEdCDE

∑
i,j,k,l

θA
i θB

j θC
k θD

l

− 1
288

∑
i,j,k,l

θA
i θA

j θB
k θB

l

}
+ · · · .

∗ From now on it will be understood that also repeated colour indices are
summed.
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Here a sum over repeated colour indices is understood. The dependence on n, µ,
and ν of the quantity appearing within curly brackets is given implicitely by the
relations (15.32b).

Clearly, (15.35) is a complicated function of the fields {φA
µ } and their deriva-

tives. Most of the contributions are however lattice artefacts and do not survive
in the continuum limit.∗ This is easlily demonstrated. Introducing the definitions
(15.34b,c) into (15.35), and the dimensioned colour components of the vector
potentials according to

φB
µ (n) → g0aAB

µ (x), x = na, (15.36)

one has that ∑
i

θB
i (n) → g0a

2fB
µν(x),

where

fB
µν(x) = ∂R

µ AB
ν (x) − ∂R

ν AB
µ (x).

Hence the sum
∑

i θ
B
i actually vanishes with the second power of the lattice spacing.

It is therefore evident, that in the naive continuum limit only the first three terms
appearing on the right-hand side of (15.35) survive. For a → 0 their contribution
can be easily evaluated and yields the usual expression for the continuum action

SG−→
a→0

1
4

∫
d4xFB

µν(x)FB
µν(x),

where FB
µν(x) is the non-abelian field tensor defined in (6.16). On the other hand,

for finite lattice spacing, only the contributions quadratic and cubic in θA
i have a

simple form. We shall treat them in detail below.

15.4 Propagators and Vertices

(i) The Gluon Propagator

Consider first the contributions to (15.22b) arising from SG and SGF which are
quadratic in the fields φA

µ . Expressed in terms of the dimensioned gauge potentials
one readily finds that∗∗

S
(0)
G [A] =

1
2

∑
x,y

AB
µ (x)ΩBC

µν (x, y)AC
ν (y), (15.37a)

∗ This is true for the classical action. But on the quantum level, we cannot
simply ignore all these contributions, as we have pointed out repeatedly.

∗∗ We use the notation
∑

x =
∑

n a4, introduced in chapter 14. The procedure
for casting SG into the form (15.37) is the same as that described in this chapter.
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where

ΩBC
µν (x, y) = δBCΩµν(x, y), (15.37b)

and Ωµν is defined in (14.13b). Following the procedure discussed in chapter 14, we
can immediately write down the propagator for the gauge potential in momentum
space. To avoid the appearance of any superfluous phases, which will eventually
cancel in the Feynman rules,∗ we Fourier decompose the fields AB

µ (x) as follows

AB
µ (x) =

∫

BZ

d4k

(2π)4 ÃB
ν (k)eik·x+ikµa/2. (15.38)

Then the gluon propagator in k–space is given by

k

B, C, µ ν
=

1
k̃2

(
δµν − (1 − α0)

k̃µk̃ν

k̃2

)
δBC ,

where k̃µ is the lattice momentum defined by (13.7a).

(ii) The Two-Gluon Vertex

Consider next the contribution of Smeas[φ] quadratic in the gauge potential.
From (15.15) one finds, using (15.9), that

S(2)
meas[A] =

1
2!

g2
0

4a2

∑
x

AB
µ (x)AB

µ (x). (15.39)

This contribution is proportional to g2
0 and hence should be considered as part of

the interaction. What is striking about this contribution is, that it diverges like
1/a2 in the continuum limit!∗∗ In fact it has the typical structure of a mass-counter
term. This is indeed the role it plays in lattice perturbation theory where it serves
to eliminate quadratic “ultraviolet” (a → 0) divergences in Feynman integrals con-
tributing in O(g2

0) to the gluon self-energy. In this way the lattice provides its own
counterterms to ensure the renormalizability of the theory. This demonstrates in a
particularily drastic way, how important it is to include the effects of the lattice
cut-off in the integration measure.

The two-gluon vertex arising from (15.39) is given in momentum space by

k k ′

, B , Cµ ν
= −(2π)4δ

(4)
P (k + k�) g2

0
4a2 δµνδBC ,

∗ See the discussion in chapter 14.
∗∗ Since

∑
x ≡

∑
n a4, the contribution to Smeas arising from the Haar measure

associated with an individual link variable actually vanishes for a → 0.
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where δ
(4)
P (k + k�) is the periodic δ-function. Notice that we did not include the

factor 1/2! appearing in (15.39) in the definition of the vertex, conforming to usual
conventions.

(iii) The Three-Gluon Vertex

The contribution to SG involving three gauge fields is obtained from the second
term appearing on the right-hand side of (15.35).∗ Making the substitutions (15.34c)
and (15.36), and using the antisymmetry of the structure constants fABC under
exchange of any pair of indices, one finds that

S
(3)
G = g0

∑
x

fABC

(
AA

µ (x) +
a

2
∂R

ν AA
µ (x)

) (
∂R

µ AB
ν (x)

)
AC

λ (x)δλν .

Notice that this expression includes lattice artefacts vanishing linearly with a. It can
be written in a more symmetric form by making use of the antisymmetry and cyclic
symmetry of the structure constants fABC in A, B, C. Using the first mentioned
property we have that

S
(3)
G = −g0

2

∑
x

fABC

((
1 +

a

2
∂R

ν

)
AA

µ (x)
) (

AB
ν (x)

↔
∂R

µ AC
λ (x)

)
δλν ,

where the action of
↔
∂R

µ is defined by

g(x)
↔
∂R

µ f(x) = g(x)∂R
µ f(x) −

(
∂R

µ g(x)
)
f(x).

Next we cyclically permute the pair of indices (A, µ), (B, ν) and (C, λ) and obtain

S
(3)
G = −g0

3!

∑
x

fABC

{(
(1 +

a

2
∂R

ν )AA
µ (x)

) (
AB

ν (x)
↔
∂R

µ AC
λ (x)

)
δλν

+ cycl. perm.
}

. (15.40)

In this way, we have made manifest the Bose symmetry under the exchange of colour
and Lorentz indices. Notice that by having cyclically permuted simultaneously the
Lorentz and colour indices, the gauge potentials appearing in all three terms within
the curly bracket in (15.40) are labeled by the pairs (A, µ), (B, ν) and (C, λ).

∗ Notice that Smeas[φ] does not contribute in this order.



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch15

260 Lattice Gauge Theories

Let us calculate explicitly the 3-point gluon vertex, ΓABC
µνλ , in momentum space.

This vertex function is defined as follows

S
(3)
G [A] = − 1

3!

∑
x

∫
d4k

(2π)4

d4k�

(2π)4

d4k��

(2π)4 ÃA
µ (k)ÃB

ν (k�)ÃC
λ (k��)ΓABC

µνλ (k, k�, k��)

× ei(k+k′+k′′)·x. (15.41)

We represent ΓABC
µνλ (k, k�, k��) by the following diagram

k′, v ,B

k′′, λ , C

k, µ, A

Consider the explicit expression displayed on the right-hand side of (15.40). In

momentum space the operators 1 + a
2∂

R
ν and

↔
∂R

µ act multiplicatively as follows

(
1 +

a

2
∂R

µ

)
eik·x →

(
eikµ

a
2 cos

kµa

2

)
eik·x

eik·x
↔
∂R

µ eiq·x → i ˜(q − k)µe
i(k+q)·xei(k+q)µ

a
2 ,

(15.42)

where k̃�
µ and k̃��

µ are defined by an expression analogous to (13.7a). When the phase
factors appearing in (15.42) are combined with the overall phase exp[i(kµ + k�

ν +
k��

λ)a/2], arising from the definition of the Fourier transform (15.38), and use is made
of the fact that — because of the summation over x in (15.41) — the sum of the
momenta flowing into the vertex vanishes, one finds after some trivial trigonometric
algebra that

ΓABC
µνλ (k, k�, k��) = ig0(2π)4δ

(4)
P (k + k� + k��)fABC

[
˜(k�� − k�)µ cos

kνa

2
δνλ

+ ˜(k − k��)ν cos
k�

µa

2
δµλ + ˜(k� − k)λ cos

k��
µa

2
δµν

]
,

(15.43)

where ˜(p − q)µ stands for

˜(p − q)µ =
2
a

sin
[
(p − q)µ

2
a

]
.

−−→
a→0

(p − q)µ.
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Hence in the continuum limit, (15.43) reduces to the familiar expression of the
continuum formulation

ΓABC
µνλ (k, k�, k��) −−→

a→0
ig0(2π)4δ(4)(k + k� + k��)fABC [(k�� − k�)µδνλ

+ (k − k��)νδµλ + (k� − k)λδµν ].

(iv) The Four-Gluon Vertex

The computation of the four-gluon vertex (see fig. on page 245) from the fourth-
order contribution in {θa

i } to the action (given by the last five terms in (15.35)) is
quite tedious.∗ Making use of the definition (15.34b) and of

∑
i θ

A
i = ∂̂µφ

A
ν − ∂̂νφ

A
µ ,

following from (15.34c), as well as of the antisymmetry of fCDE under C ↔ D, this
contribution takes the form

(SG)A4 = S
(f)
G + S

(d)
G , (15.44a)

where

S
(f)
G =

1
4!

1
g2
0

∑
n

∑
µ,ν

∑
ABCDE

fABEfCDE

{
(∂̂R

µ φA
ν − ∂̂R

ν φA
µ )

[ ∑
j �=k

θB
j θC

j θD
k

+ 2
∑

j<k<l

θC
k (θB

j θD
l + θB

l θD
j )

]
(15.44b)

+
3
8

∑
i<j
k<l

(θA
i θB

j − θA
j θB

i )(θC
k θD

l − θC
l θD

k )

}

and

S
(d)
G = − 1

(4!)2

1
g2
0

∑
n

∑
µ,ν

∑
ABCDE

{
2
3
(δABδCD + δACδDB + δADδBC)

+ (dABEdCDE + dACEdDBE + dADEdBCE )
}

× (∂̂R
µ φA

ν − ∂̂R
ν φA

µ )(∂̂R
µ φB

ν − ∂̂R
ν φB

µ )(∂̂R
µ φC

ν − ∂̂R
ν φC

µ )(∂̂R
µ φD

ν − ∂̂R
ν φD

µ )

(15.44c)

where {θA
i } have been defined in terms of the gauge potentials in (15.34c). We have

suppressed the dependence of the fields on the lattice site n. The expression (15.44c)
has been written in a manifestly symmetric form under the exchange of any pair of
colour indices.

∗ The following derivation has also been carried out independently by P. Kaste.
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Consider first the expression (15.44b). We need to express the r.h.s. in terms
of the fields {θA

µ } and their derivatives according to (15.34c). This clearly generates
an anormous amount of terms which can be readily obtained by using a program
like “Mathematica”. The next step consists in classifying these terms according to
the number of identical Lorentz indices of the gauge potentials. A large number of
these terms can be combined by making use of the antisymmetry of the structure
constants under the exchange of any pair of indices, and of the invariance of the
individual contributions to the action under the exchange of µ and ν. Let us de-
note the contributions to S

(f)
G involving two, three, and four gauge potentials with

identical Lorentz indices by S
(f1)
G , S(f2)

G and S
(f3)
G , respectively.

Consider for example the contribution S(f2). After exploiting the above-
mentioned symmetries one finds at the end of the day that the (hundreds!) of terms
combine to

S
(f2)
G =

1
g2
0

∑
nµ,ν

∑
ABCDE

fABEfCDE

{
1
96

(φA
µ

↔
∂R

ν φB
µ )(φC

ν

↔
∂R

µ φD
ν )

+
1
4
φA

µ φB
ν φC

µ φD
ν +

1
2
φA

µ (∂̂R
µ φB

ν )φC
µ φD

ν

+
1
12

(∂̂R
ν φA

µ )(∂̂R
µ φB

ν )φC
µ φD

ν +
1
6
(∂̂R

ν φA
µ )φB

ν φC
µ (∂̂R

µ φD
ν )

− 1
48

(∂̂R
ν φA

µ )(∂̂R
µ φB

ν )(∂̂R
ν φC

µ )(∂̂R
µ φD

ν )
}

.

This expression can be written in an even more convenient form:

S
(f2)
G =

1
4g2

0

∑
n,µ,ν

∑
ABCDE

fABEfCDE

{[[(
1 +

1
2
∂̂R

ν

)
φA

µ

] [(
1 +

1
2
∂̂R

ν

)
φC

µ

]

− 1
4
(∂̂R

ν φA
µ )(∂̂R

ν φC
µ )

] [[(
1 +

1
2
∂̂R

µ

)
φB

ν

] [(
1 +

1
2
∂̂R

µ

)
φD

ν

]

−1
4
(∂̂R

µ φB
ν )(∂̂R

µ φD
ν )

]

− 1
12

(∂̂R
ν φA

µ )(∂̂R
µ φB

ν )(∂̂R
ν φC

µ )(∂̂R
µ φD

ν ) − 1
12

(φA
µ

↔
∂̂R

ν φC
µ )(φB

ν

↔
∂̂R

µ φD
ν )

+
1
24

(φA
µ

↔
∂̂R

ν φB
µ )(φC

ν

↔
∂̂R

µ φD
ν )

}
. (15.45)

Next we introduce the dimensional gauge potentials through the identification
φB

µ = g0aAB
µ , and Fourier decompose the fields AB

µ according to (15.38). Let k, q, r
and s denote the incoming momenta associated with the gauge potentials carrying
colour indices A, B, C and D, respectively. Making use of (15.42), one readily finds,
after carrying out the sum over n (which yields an energy momentum conserving
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δ-function), that

S
(f2)
G =

g2
0

4

∑
µνλρ

∑
ABCDE

∫

BZ

d4k

(2π)4

d4q

(2π)4

d4r

(2π)4

d4s

(2π)4fABEfCDE

×
{

δµλδνρ

[
cos

1
2
a(k − r)ν cos

1
2
a(q − s)µ +

1
12

a2(k̃ − r)ν(q̃ − s)µ

− 1
12

a4k̃ν q̃µr̃ν s̃µ

]
− 1

24
δµνδλρa

2(q̃ − k)λ(s̃ − r)µ

}
ÃA

µ (k)ÃB
ν (q)ÃC

λ (r)ÃD
ρ (s),

(15.46a)

where, generically,

k̃µ =
2
a

sin
1
2
akµ. (15.46b)

The term proportional to δµλδνρ can be written in a more symmetric form by making
use of the antisymmetry of fCDE under the exchange of C and D. The contribution
proportional to δµνδλρ is already invariant under the relabeling (C, λ, r) ↔ (D, ρ, s).
Adding to (15.46a) the expression with (C, λ, r) and (D, ρ, s) interchanged, and
dividing the result by 2, we obtain

S
(f2)
G = − 1

4 · 2

∑
µ,ν,λ,ρ

∑
ABCD

∫

BZ

d4k

(2π)4

d4q

(2π)4

d4r

(2π)4

d4s

(2π)4

× Γ(f2)ABCD
µνλρ (k, q, r, s)ÃA

µ (k)ÃB
ν (q)ÃC

λ (r)ÃD
ρ (s)

(15.47a)

where

Γ(f2)ABCD
µνλρ (k, q, r, s)

= − g2
0

∑
E

fABEfCDE

{
δµλδνρ

[
cos

1
2
a(k − r)ν cos

1
2
a(q − s)µ − 1

12
a4k̃ν q̃µr̃ν s̃µ

]

− δµρδνλ

[
cos

1
2
a(k − s)ν cos

1
2
a(q − r)µ − 1

12
a4k̃ν q̃µr̃µs̃ν

]}

+ TABCD
µνλρ (k, q, r, s) (15.47b)

and

TABCD
µνλρ (k, q, r, s) = −g2

0

∑
E

fABEfCDE

{
1
12

δµλδνρa
2(k̃ − r)ν(q̃ − s)µ

− 1
12

δµρδνλa
2(k̃ − s)ν(q̃ − r)µ (15.47c)

− 1
12

δµνδλρa
2(q̃ − k)λ(s̃ − r)µ

}
.



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch15

264 Lattice Gauge Theories

Let α, β, γ denote collectively the sets

α = (A, µ, k); β = (B, ν, q); γ = (C, λ, r); δ = (D, ρ, s). (15.48)

Then the expression (15.47b) is symmetric under the relabelings i) α ↔ β, ii) γ ↔ δ,
iii) α ↔ γ, β ↔ δ and iv) α ↔ δ, β ↔ γ. The full Bose symmetry of the contribution
S

(f2)
G to the four-gluon vertex function can now be incorporated if we add to (15.47b)

the expressions obtained by carrying out the permutations β ↔ γ, and β ↔ δ, and
dividing the result by 3. Then

S
(f2)
G = − 1

4!

∑
µνλρ

∑
ABCD

∫

BZ

d4k

(2π)4

d4q

(2π)4

d4r

(2π)4

d4s

(2π)4

{
Γ(f2)ABCD

µνλρ (k, q, r, s)

+

(
B q ν

C r λ

)
+

(
B q ν

D s ρ

)}
ÃA

µ (k)ÃB
ν (q)ÃC

λ (r)ÃD
ρ (s).

(15.49)

Having written S
(f2)
G in this symmetrized form, one finds, upon making use of
∑

E

[fABEfCDE + fACEfDBE + fADEfBCE] = 0,

following from the Jacobi identity for double commutators of the generators of the
group, that the last term in (15.47b), together with the permutations in (15.49) does
not contribute to (15.49)

Consider next the contributions S
(f3)
G and S

(f4)
G , with three and four Lorentz

indices of the gauge potentials identified. Making again use of the symmetries of
fABEfCDE one finds after a fair amount of work that they can be reduced to the
simple forms

S
(f3)
G = − 1

12g2
0

∑
n

∑
µ,ν

∑
ABCDE

fABEfCDE(φC
ν

↔
∂̂R

µ φD
ν )(∂̂R

ν φA
µ )

[(
1 +

1
2
∂̂R

µ

)
φB

ν

]

(15.50a)

and

S
(f4)
G = − 1

96g2
0

∑
n

∑
µ,ν

∑
ABCDE

fABEfCDE(φA
µ

↔
∂̂R

ν φB
µ )(φC

µ

↔
∂̂R

ν φD
µ ). (15.50b)

Going over to momentum space, one finds, making again use of (15.42) that

S
(f3)
G + S

(f4)
G = − 1

96

∑
µνλρ

∑
ABCD

∫

BZ

d4k

(2π)4

d4q

(2π)4

d4r

(2π)4

d4s

(2π)4

× Γ(f3+f4)ABCD
µνλρ (k, q, r, s)AA

µ (k)AB
ν (q)AC

λ (r)AD
ρ (s),

(15.51a)
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where

Γ(f3+f4)ABCD
µνλρ (k, q, r, s) = −g2

0

∑
E

fABEfCDE

[
8δνλδνρa

2(s̃ − r)µk̃ν cos
1
2
aqµ

+ δµνδµλδνρa
2
∑

σ

(q̃ − k)σ(s̃ − r)σ

]
. (15.51b)

While the second term in this expression is symmetric under the permutations: i)
γ ↔ δ, ii) α ↔ β, iii) α ↔ γ, β ↔ δ and iv) α ↔ δ, β ↔ γ, where α, β, γ, δ
stand for the collection of indices (15.48), the first term is only symmetric under
the exchange γ ↔ δ. We therefore add to it the corresponding expressions obtained
by implementing the permutations ii)–iv), making use of the symmetries of the
structure constants, and divide the result by 4.

S
(f3)
G + S

(f4)
G =

g2
0

8

∑
µνλρ

∑
ABCD

∫

BZ

d4k

(2π)4

d4q

(2π)4

d4r

(2π)4

d4s

(2π)4

∑
E

fABEfCDE

×
{

1
6
δνλδνρa

2(s̃ − r)µk̃ν cos
1
2
aqµ

−1
6
δµλδµρa

2(s̃ − r)ν q̃µ cos
1
2
akν

+
1
6
δµνδµρa

2(q̃ − k)λr̃ρ cos
1
2
asλ

−1
6
δµνδλµa

2(q̃ − k)ρs̃λ cos
1
2
arρ

+
1
12

δµνδµλδνρa
2
∑

σ

(q̃ − k)σ(s̃ − r)σ

}
ÃA

µ (k)ÃB
ν (q)AC

λ (r)AD
ρ (s).

(15.52)

The expression appearing within curly brackets is still not symmetric under all
permutations of the collective variables (15.48). To exhibit the full Bose symmetry
we add to it the corresponding expression obtained by the permutations appearing
in (15.49), and divide the result by a factor 3.

The remaining contribution (15.44c) to the action, expressed in Fourier space,
is obtained in a straightforward way. Combining it with that obtained above one is
then led to the following expression for the four-gluon contribution to the action

(SG)A4 = − 1
4!

∫

BZ

d4k

(2π)4

d4q

(2π)4

d4r

(2π)4

d4s

(2π)4

×
∑
µνλρ

∑
ABCD

ΓABCD
µνλρ (k, q, r, s)ÃA

µ (k)ÃB
ν (q)ÃC

λ (r)ÃD
ρ (s).

(15.53a)
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where∗

ΓABCD
µνλρ (k, q, r, s)

= − g2
0

[ ∑
E

fABEfCDE

{
δµλδνρ

[
cos

1
2
a(q − s)µ cos

1
2
a(k − r)ν − a4

12
k̃ν q̃µr̃ν s̃µ

]

− δµρδνλ

[
cos

1
2
a(q − r)µ cos

1
2
a(k − s)ν − a4

12
k̃ν q̃µr̃µs̃ν

]

+
1
6
δνλδνρa

2 ˜(s − r)µk̃ν cos
(

1
2
aqµ

)

−1
6
δµλδµρa

2 ˜(s − r)ν q̃µ cos
(

1
2
akν

)

+
1
6
δµνδµρa

2 ˜(q − k)λr̃ρ cos
(

1
2
asλ

)

−1
6
δµνδµλa

2 ˜(q − k)ρs̃λ cos
(

1
2
arρ

)

+
1
12

δµνδµλδµρa
2
∑

σ

˜(q − k)σ
˜(s − r)σ

}

+ (B ↔ C, ν ↔ λ, q ↔ r) + (B ↔ D, ν ↔ ρ, q ↔ s)

]

+
g2
0

12
a4

{
2
3
(δABδCD + δACδBD + δADδBC)

+
∑

E

(dABEdCDE + dACEdBDE + dADEdBCE )

}

×
{

δµνδµλδµρ

∑
σ

k̃σ q̃σr̃σs̃σ − δµνδµλk̃ρq̃ρr̃ρs̃µ

− δµνδµρk̃λq̃λs̃λr̃µ − δµλδµρk̃ν r̃ν s̃ν q̃µ − δνλδνρq̃µr̃µs̃µk̃ν

+ δµνδλρk̃λq̃λr̃µs̃µ + δµλδνρk̃ν r̃ν q̃µs̃µ + δµρδνλk̃ν s̃ν q̃µr̃µ

}
. (15.53b)

This concludes our discussion of the pure gluonic sector. We now proceed to the
analysis of the fermionic and ghost sectors.

(iv) Fermionic and Ghost Contributions

Consider first the contribution to (15.22b) arising from S
(W )
F [A, ψ̂, ¯̂

ψ]. For
Wilson fermions it is given by (6.4), where the link variables are replaced by (15.1a).
Expanding these in powers of φµ, and introducing the dimensional fermion fields and

∗ This is a corrected version of the expression given by Kawai et al. (1981).
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gauge potentials according to (4.3a) and (15.36), one obtains up to second order in
the gauge potentials AB

µ (x):

SF [ψ, ψ̄, A] = S
(0)
F [ψ, ψ̄] + S

(1)
F [A, ψ, ψ̄] + S

(2)
F [A, ψ, ψ̄], (15.54a)

where

S
(0)
F [ψ, ψ̄] =

(
M +

4r
a

) ∑
x

ψ̄a(x)ψa(x)

− 1
2a

∑
x,µ

[
ψ̄a(x)(r − γµ)ψa(x + aµ̂) + ψ̄a(x + aµ̂)(r + γµ)ψa(x)

]
,

(15.54b)

S
(1)
F [A, ψ, ψ̄] = −ig0

2

∑
x,µ

TB
ab

[
ψ̄a(x)(r − γµ)ψb(x + aµ̂)

− ψ̄a(x + aµ̂)(r + γµ)ψb(x)
]
AB

µ (x), (15.54c)

S
(2)
F [A, ψ, ψ̄] =

g2
0

2!
a

4

∑
x,µ,ν

{TB, TC}abδµν

× [ψ̄a(x)(r − γµ)ψb(x + aµ̂) + ψ̄a(x + aµ̂)(r + γµ)ψb(x)]AB
µ (x)AC

ν (x).

(15.54d)

A summation over the “quark” and gluon colour indices is understood.∗ Apart from
some group theoretical factors, and the fact that the fields now carry colour indices,
the structure of SF [A, ψ, ψ̄] is quite similar to that discussed in the abelian U(1)
case. Hence except for some obvious modifications, the structure of the fermion
propagator and gluon–fermion vertices will also be the same as those obtained in
the abelian case.

Finally, consider the contribution of the ghost fields to the action. It is given
by (15.21b), where D̂µ[φ] has been defined in (15.19b). By expanding the matrix
M−1(φµ) up to terms linear in φµ (cf. eq. (15.19c)), we include lattice artefacts
vanishing linearly with a in the naive continuum limit. Next we introduce the
dimensioned Faddeev–Popov ghost fields cA(x) and c̄A(x) according to∗∗

ĉA(n) → acA(x),
¯̂cA(n) → ac̄A(x).

∗ Recall that small latin letters run from one to three, while capital letters run
from one to eight.

∗∗ They carry the same dimension as the scalar field discussed in chapter 3.
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Then (15.21b) becomes

SFP [A, c, c̄] = −
∑

x

c̄A(x)δAB��cB(x)

−g0

∑
x

fABC c̄A(x)∂L
µ

[
AC

µ (x)(1 +
a

2
∂R

µ )cB(x)
]

− 1
2!

g2
0a

2

12

∑
x

δµν{tC , tD}AB(∂R
µ c̄A(x))(∂R

µ cB(x))AC
µ (x)AD

ν (x) + · · · ,

(15.55)

where we have made use of (15.8). By Fourier decomposing the quark and ghost fields
in a way analogous to (14.17), one readily derives from (15.54b–d) the propagators
and interaction vertices in momentum space. Except for some colour matrices, the
quark propagator and the gluon–quark interaction vertices have the same structure
as the corresponding expressions in the U(1)-gauge theory. Furthermore, from the
quadratic contribution to (15.55) we see immediately that the ghost propagator is
given by δAB/k̃2. The ghost–gluon interaction vertices in momentum space can also
be read off immediately from (15.55) by making use of the property (15.42). Below
we summarize the lattice propagators and vertices.

(i) Propagators and Vertices which Possess a Non-Vanishing Continuum Limit∗

k ν, Bµ, A 1
k̃2

(
δµν − (1 − α0)

k̃µk̃ν

k̃2

)
δAB

α, aβ, b

(
1

i
∑

µ
1
a
γµ sin pµa + M(p)

)

αβ

δab

B

k

A

1
k̃2

δAB

∗ For the definition of M(p) confer eq. (4.29b).
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p, β, b p′, α, a

k, µ, A

−ig0(2π)4δ
(4)
P (k + p − p′)

[
γµ cos

(
(p + p′)µa

2

)
− ir sin

(
(p + p′)µa

2

)]

αβ

TA
ab

k, µ, A

k′′, λ, Ck′, ν, B
ig0(2π)4δ

(4)
P (k + k′ + k′′)fABC

[
δνλ

˜(k′′ − k′)µ cos 1
2kνa

+δµλ
˜(k − k′′)ν cos 1

2k
′
λa + δµν

˜(k′ − k)λ cos 1
2k

′′
µa

]

p, B p′, A

k, µ, C
ig0(2π)4δ

(4)
P (k + p − p′)fABC p̃′

µ cos(pµa/2)

q, v, B r, λ, C

s, ρ, Dk, µ, A

(see eq. (15.53b))
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(ii) Vertices which Have No Continuum Analog

ν, Cµ, B

−(2π)4δ
(4)
P (k + k′)

g2
0

4a2 δµνδBC

p, β, b

p′, α, a

k, µ, A

k′, ν, B

−a

2
g2
0(2π)4δ

(4)
P (k + k′ + p − p′)δµν{TA, TB}ab

·
[
r cos

(
(p + p′)µa

2

)
− iγµ sin

(
(p + p′)µa

2

)]

αβ

p′, Ap, B

k, µ, C k′, ν, D

1
12

g2
0a

2(2π)4δ
(4)
P (k + k′ + p − p′){tC , tD}ABδµν p̃′

µp̃µ

Note that the factor 1
n! multiplying the contributions to the action involving

couplings with n-gluons have not been included in the expressions for the vertices.
The symmetry factor multiplying a Feynman integral is computed in the same way
familiar from continuum perturbation theory.

In contradistinction to continuum perturbation theory, there are, in general,
more diagrams to be considered when calculating a vertex function in a given order
of the coupling. Thus consider for example the diagrams contributing to the gluon
self energy in one-loop order. They are depicted in fig. (15-1). Their contributions
have been calculated by Kawai, Nakayama and Seo (1981).
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+ + +

Fig. 15-1 Diagrams contributing to the gluon self-energy in one-loop

order.

Each diagram contributes a quadratically divergent mass term. But when the
graphs are summed these divergencies are found to cancel! There is another re-
markable cancellation that occurs. When performing the calculation one encounters
non-covariant terms of the type p2

µδµν . But after summing all the contributions,
these terms cancel out and one is left with a transverse expression for the gluon self
energy, reflecting the gauge invariance of the theory!

Because of the complexity of lattice QCD Feynman rules (note that we have
only expanded the action up to O(g2

0)), and the periodic structure of the integrands
of Feynman integrals, perturbative calculations of more than one-loop contributions
become prohibitively difficult. In this connection the power counting theorem of
Reisz discussed in chapter 13 is of great help, for it allows one at least to take the
naive continuum limit in those cases where Feynman integrals satisfy the conditions
for which the theorem applies.

In the following two sections we will apply the knowledge we have acquired so
far to the computation of two important quantites: the ratio of two renormalization
group invariant scales, and the ABJ anomaly of the axial vector current within the
framework of QCD. As you shall see, the structure of this anomaly is, under very
general conditions on the action, independent of the lattice regularization. What
concerns the first mentioned quantity, we will not dwell on any technical details,
but merely discuss the problem on a qualitative level.
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15.5 Relation between ΛL and the Λ-Parameter
of Continuum QCD

In chapter 9 we have seen that in QCD with massless fermions, dimensioned
physical quantities, such as a hadron mass, or the string tension, can be calculated
in units of a lattice scale parameter ΛL, which determines the rate at which the
bare coupling constant g0 approaches the fixed point g∗

0 = 0 with decreasing lattice
spacing. A similar renormalization group invariant scale, ΛQCD, also occurs in con-
tinuum QCD. But there, ΛQCD determines how the renormalized coupling constant
g, defined, for example, as the value of the three or four-gluon vertex function at
some momentum scale µ, changes with µ. The connection between g and µ, which
ensures that physics does not depend on the choice of the renormalization point µ,
can be obtained by studying the response of g to an infinitesimal change in µ. This
response is measured by the following β-function

β(g) = µ
∂g

∂µ
. (15.56)

In two-loop order this β-function is given by

β = −β0g
3 − β1g

5 + · · · , (15.57)

where β0 and β1 have the same values as those appearing in the two-loop expansion
of the β-function considered in chapter 9 (cf. eq. (9.21b)). Because β0 > 0 the
renormalized coupling constant is driven to g → g∗ = 0 as µ → ∞. This is the
statement of asymptotic freedom. In the one-loop approximation to the β-function,
given by the first term on the right-hand side of (15.57), integration of (15.56) leads
to the following relation between g and µ:

1
µ

=
1

ΛQCD
e

− 1
2β0g2 . (15.58)

The value of the integration constant, ΛQCD, depends on the definition of the renor-
malized coupling constant. Because of the asymptotic freedom property of QCD this
scale can be measured in deep inelastic scattering processes, where the short dis-
tance dynamics can be described by renormalization group improved perturbation
theory. Its value is found to be of the order of 200 MeV. On the other hand we have
seen in chapter 9 that the connection between the bare coupling g0 and the lattice
spacing a, which ensures that physical observables remain unchanged as we remove
the lattice structure, is given in the one-loop approximation to the β-function by

a =
1

ΛL

e
− 1

2β0g2
0 . (15.59)
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The lattice scale ΛL, determined, for example, from a Monte Carlo calculation of
the string tension is of the order of a few MeV. To confirm that QCD involves only
a single scale which describes the large distance physics at quark separations of the
order of 1 fm, as well as the short distance physics taking place at separations of
0.1 fm or less, one must check whether ΛL, as determined from a measurement of,
say, the string tension, corresponds to the value of ΛQCD as obtained from deep
inelastic scattering data.

The first calculation relating the two scales has been performed by Hasenfratz
and Hasenfratz (1980) in the pure gauge theory. This calculation has been subse-
quently extended to the case of QCD with massless quarks by Kawai, Nakayama
and Seo (1981). The basic idea underlying these computations is the following.

Suppose we calculate an observable O in QCD with massless fermions. In the
lattice regulated theory the value of this observable depends on the bare coupling
constant g0 and the lattice spacing a:∗

O = O(g0, a, · · · ). (15.60)

Now for sufficiently small lattice spacing, g0 can be tuned to a in such a way that O

remains fixed as we remove the lattice structure. In the two-loop approximation to
the β-function this dependence is given by (9.21c,d). Hence g0 is a function of the
product aΛL : g0 = g0(aΛL). On the other hand, we can also eliminate the cutoff
dependence by introducing a renormalized coupling constant g in the way familiar
from continuum perturbation theory. This coupling constant depends on g0, the
renormalization scale µ, and the cutoff a. Since g is dimensionless, it will depend on
µ and a only through the product µa:

g = g(g0, µa). (15.61)

Solving this equation for g0, one obtains the bare coupling constant as a function of
g and µa:

g0 = g0(g, µa). (15.62)

Upon inserting (15.62) into (15.60) one arrives at an expression in which the depen-
dence on the lattice spacing has again been eliminated

O(g0(g, µa), a; · · · ) � O(g, µ; · · · ). (15.63)

∗ The “dots” stand for possible dependences on kinematical variables such as
momenta; for example, O could be a scattering matrix element.
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Now g can also be tuned to µ in such a way that the right-hand side of (15.63)
remains fixed as we change the renormalization point µ. In the one-loop approxima-
tion to the β-function (15.56) the dependence of g on µ is given by (15.58); hence
g = g(µ/ΛQCD). But both, the dependence of g0 on aΛL, and of the renormalized
coupling constant on µ/ΛQCD, are determined from a single equation, namely from
(15.61), or its inverse (15.62). Thus holding g0 and a fixed, we determine the µ de-
pendence of g. Alternatively, holding g and µ fixed we determine the a-dependence
of g0. This shows that ΛL and ΛQCD must be related. To obtain this relation one
calculates the right-hand side of (15.61) in perturbation theory. In the one-loop
approximation one obtains an expression of the form

g2 = g2
0 − 2β0g

4
0 ln

(µa

c

)
+ O(g6

0), (15.64)

where c is a constant. From here one readily verifies the one-loop expressions for
the β-functions (9.6b) and (15.56). Now to this order ΛQCD/ΛL, as determined from
(15.58) and (15.59) is given by

ΛQCD

ΛL

= µa e
−1
2β0

(
1

g2 − 1
g2
0

)

.

But from (15.64) it follows that

1
g2 − 1

g2
0

= 2β0 ln
(µa

c

)
+ O(g2

0).

We therefore conclude that
ΛQCD

ΛL

= c.

Hence the purpose of a perturbative computation consists in calculating the con-
stant c in (15.64). In the momentum subtraction scheme (MOM), Hasenfratz and
Hasenfratz (1980) have calculated the ratio ΛMOM/ΛL for the pure SU(3) gauge
theory. After a lengthy calculation they found that

ΛMOM

ΛL

= 83.5 (pure SU(3)).

In full QCD with massless quarks this value was found to change as follows (Kawai
et al., 1981)

ΛMOM

ΛL

= 105.7 (3 flavours),

ΛMOM

ΛL

= 117.0 (4 flavours).

These ratios are consistent with those determined from non-perturbative lattice
calculations (ΛL) and from the deep inelastic scattering data (ΛMOM).



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch15

Weak Coupling Expansion (III). Lattice QCD 275

15.6 Universality of the Axial Anomaly in Lattice QCD

In this section we study the ABJ anomaly in the divergence of the colour singlet
axial vector current in QCD, and show that not only for Wilson or Ginsparg–Wilson
fermions the well known anomaly is reproduced in the continuum limit, but that
the same result is obtained for any discretization of the action satisfying some very
general conditions. In the case of a U(1) gauge theory, this has been first shown to
be the case by Reisz and Rothe (1999). Here we discuss the case of SU(3) which has
been studied subsequently by Frewer and Rothe (2001). From the analysis it will be
evident that the same proof goes through for any SU(N) gauge theory. The main
steps we will follow are the following: we first discuss the general form of the lattice
axial vector Ward identity. As you will see, its precise structure, which depends on
the particular discretization of the lattice action, need not be known to compute
the anomaly. Only very general properties thereof are required. In fact, the entire
ambiguity in the lattice Ward identity, arising from different discretizations, will
reside in a contribution which vanishes in the naive continuum limit. Although its
structure depends on the way one has discretized the action, we will only make use
of quite general properties thereof to generate the anomaly.

General Structure of the Ward Identity

In the following all expressions will be written in terms of dimensioned variables.
We are interested in computing the anomalous contribution to the divergence of the
colour singlet axial vector current jµ5(x) = ψ̄(x)γ5γµψ(x) in an external gauge field,
where ψ(x) are 3-component fields in colour space.

Consider the fermionic contribution to the lattice action for QCD. It is of the
form (4.61), i.e.,

Sferm =
∑
x,y

ψ̄(x)(DU(x, y) + mδxy)ψ(y), (15.65)

where DU(x, y) is the Dirac operator (a matrix in Dirac-spin and colour space)
depending on the matrix valued link variables which we denote collectively by U .
As always

∑
x =

∑
n a4, where n labels the lattice sites. SU(3) colour indices will

be denoted in the following by small latin letters. The action is assumed to be gauge
invariant, and to possess the discrete symmetries of the continuum theory.∗ The

∗ The Dirac operator can always be decomposed into a chirally symmetric, and
a chiral symmetry breaking (sb) part as follows, D(x, y) = D(x, y)sym + D(x, y)sb,
where D(x, y)sym = 1

2 [D, γ5]γ5, and D(x, y)sb = 1
2{D, γ5}γ5. Any candidate for a

lattice action should possess the correct continuum limit. It therefore follows that
for a → 0, D(x, y)sym → γµDµ[A], where Dµ[A] is the covariant derivative, while
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Dirac operator, which is a function of the link variables, can be expanded in the
gauge potentials in the form

DU(x, y) =
∑

n,µi,ai,xi

1
n!

D(n)a1···an
µ1···µn

(x, y|x1 · · ·xn)Aa1
µ1

(x1) · · ·Aan
µn

(xn).

(15.66)

The next step consists in deriving a lattice Ward identity for the divergence of
the singlet axial vector current. This is achieved by performing in the partition
function the infinitessimal colour blind local axial transformation of the fermion
fields analogous to (14.38). Note that, since we do not specify the Dirac operator,
we have no other alternative to define a sensible axial transformation. Since the
measure is invariant under this transformation one is led again to the statement
(14.88). In the case of Wilson fermions the variation δSferm is given by (14.81), where
∆̄(x) is an irrelevant operator vanishing in the continuum limit. For different lattice
discretizations, j5µ(x) and ∆ will differ from (14.41) and (14.46) by terms which
vanish in the naive continuum limit. What concerns the axial anomaly, however,
the precise form of the various terms in (14.81) need not be known. This is quite
remarkable. In fact, as we shall see, any lattice discretization of the action S with
the following properties:

i) S has the correct continuum limit,
ii) S is gauge invariant,
iii) the Dirac operator is local,
iv) absence of species doubling,

reproduces the axial anomaly in the continuum limit. This anomaly arises from an
“irrelevant” (∆) term in the Ward identity, which, in view of what has been said
above, will necessarily have the form

�∂∗
µj5µ(x)�U = 2m�j5(x)�U + �∆�U , (15.67)

where j5µ(x) and j5(x) possess the correct continuum limit. Thus for Wilson
fermions, the Ward identity is of the above form (Rothe, 1998). Any other dis-
cretization of the action will differ only by lattice artefacts which can, in principle,
be absorbed into the ∆-term. The reader may ask: is there no way of avoiding such
a term? The answer is “no” as will be clear from our analysis.

D(x, y)sb vanishes in the continuum limit. It therefore also follows that for a → 0
D(x, y) → γµD[A], where Dµ[A] is the covariant derivative.
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Before proving the above assertion it is convenient to rewrite the Ward identity
(15.67) in terms of correlators in momentum space. Let O(x) stand for any of the
operators appearing in (15.67). Then �O(x)�U has the following formal expansion in
the gauge potentials

�O(x)�U =
∑
n≥2

1
n!

∑
{xi},{µi},{ai}

Γ(O)a1···an
µ1···µn

(x|x1, x2, · · · , xn)Aa1
µ1

(x1) · · ·Aan
µn

(xn),

(15.68)

where, because of the assumed symmetries of the action, the sum over n starts with
n = 2. The correlation functions Γ(O)a1···an

µ1···µn (x|x1, x2, · · · , xn) are symmetric under the
exchange of any pair of collective labels (xi, µi, ai). Defining the Fourier transform
of Γ(O)a1···an

µ1···µn (x|x1, x2, · · · , xn) by

Γ(O)a1···an
µ1···µn

(x|x1, · · · , xn) =
∫ π

a

− π
a

d4q

(2π)4 e−iq·x
n∏

i=1

d4ki

(2π)4 eiki·xiΓ̂(O)a1···an
µ1···µn

(q|k1, · · · , kn),

(15.69a)

where, by translational invariance,

Γ̂(O)a1···an
µ1···µn

(q|k1, · · · , kn) = δ(q −
n∑

i=1

ki)Γ̃(O)a1···an
µ1···µn

(k1, · · · , kn), (15.69b)

the Ward identity (15.67) translates as follows to momentum space,

−iq̃µΓ̃a1···an
5µ;µ1···µn

(k1, · · · , kn) = 2mΓ̃a1···an
5;µ1···µn

(k1, · · · , kn)

+ Γ̃(∆)a1···an
µ1···µn

(k1, · · · , kn),
(15.70a)

where

q̃µ = ei
qµa

2
2
a

sin
qµa

2
. (15.70b)

As we shall see further below, gauge invariance implies that every term in (15.67)
possesses a finite continuum limit. If in this limit the ∆-contribution is different from
zero, we are faced with an anomaly, since the divergence of the axial vector current
would not vanish in the chiral limit m → 0 (as it would, if the axial symmetry would
be implemented on quantum level). We now show that under the conditions i)–iv)
this is indeed the case, and moreover, that this limit is universal.

Let us first study the implications of the assumptions i)–iv). Clearly the first as-
sumption is a “must” and needs no further elaboration. Consider next assumption ii):

(ii) Gauge Invariance

Gauge invariance has strong implications. In fact the renormalizability of
QED or QCD relies heavily on gauge invariance. Gauge invariance tells us that
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if O(A, ψ, ψ̄) is a gauge invariant operator, then its external field expectation value
satisfies

FO[Aω] = FO[A], (15.71a)

where

FO[A] =
∫

DψDψ̄ O[A, ψ, ψ̄] e−S[A,ψ,ψ̄]
∫

DψDψ̄ e−S[A,ψ,ψ̄]
, (15.71b)

with Aω the gauge transformed potential. This can be readily verified by making
use of the gauge invariance of the fermionic measure. On the lattice the variation of
the gauge potentials induced by an infinitessimal gauge transformation is given by
(15.19) with φb

µ = gaAb
µ, i.e.,∗

δAa
µ(x) = [gfabcA

b
µ(x) − M−1

ac (gaAµ(x))∂R
µ ]�c(x), (15.72)

where fabc are the structure constants of SU(3), ∂R
µ is the dimensioned right lattice

derivative, and the matrix M is given by (15.12b), or the expansion (15.19c). Be-
cause of the structure of the rhs of (15.68), the Γ’s are symmetric functions under
permutations of the labels 1, · · · , n. Hence the variation can be written in the form

δωFO[A] =
∑
n≥2

n

n!

∑
{xi},{µi},{ai}

Γ(O)a1···an
µ1···µn

(x|x1, x2, · · · , xn)δAa1
µ1

(x1) · · ·Aan
µn

(xn).

Inserting for δAa1
µ1

the expression (15.72), and considering in turn the coefficients of
O(A2) and O(A3), one finds that (15.71a) implies that

∂L
µ1

Γ(O)a1a2
µ1µ2

(x|x1, x2) = 0, (15.73a)

and furthermore

∂L
µ1

Γ(O)a1a2a2
µ1µ2µ3

(x|x1, x2, x3) = g0fa1a2bΓ(O)ba3
µ2µ3

(x|x2, x3)δx1x2

− 1
2!

g0afa1a2b∂
L
µ2

(
δx1x2Γ

(O)ba3
µ2µ3

(x|x2, x3)
)

+ (2 ↔ 3).

(15.73b)

These relations can be readily translated to momentum space. Defining the Fourier
transform by (15.69), one finds that (15.73a) takes the form

(k̃∗
1)µ1Γ̃

(O)a1a2
µ1µ2

(k1, k2) = 0, (15.74)

∗ In the following we prefer to use small letters for the colour indices.
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where ∗ denotes complex conjugation, and where k̃µ is defined in an analogous way
to (15.70b). Because of Bose symmetry a corresponding statement holds for (k̃1)µ1

replaced by (k̃2)µ2 . The second identity (15.73b) reads as follows in momentum
space,

i(k̃∗
1)µ1Γ̃

(O)a1a2a3
µ1µ2µ3

(k1, k2, k3) = gfa1a2cΓ̃(O)ca3
µ2µ3

(k1 + k2, k3)

− ia
g

2!
fa1a2c(k̃∗

1)µ2Γ̃
(O)ca3
µ2µ3

(k1 + k2, k3)

+ (2 ↔ 3). (15.75)

Further relations connecting higher and lower order correlation functions follow from
the requirement of gauge invariance. We will however not require them to calculate
the anomaly.

(iii) Locality

Gauge invariance alone will of course not allow us to compute the axial anomaly.
But when combined with iii) and iv) (see p. 276) this will be possible. The point
is that if iii) and iv) hold, then the correlation functions will be analytic in the
momenta around vanishing momenta, and hence possess a Taylor expansion. This
has important consequences. Thus consider (15.74). Analyticity around {ki = 0}
tells us that

Γ̃(O)a1a2
µ1µ2

(k1, k2) = Γ̃(O)a1a2
µ1µ2

(0, 0) + C(O)a1a2
µ1µ2σ kσ

1 + C̃(O)a1a2
µ1µ2σ kσ

2 + · · ·

Because of Bose symmetry under the exchange k1 ↔ k2, µ1 ↔ µ2, a1 ↔ a2 we must
have that

C(O)a1a2
µ1µ2σ = C̃(O)a2a1

µ2µ1σ .

But since k1 and k2 are independent variables, it then follows from (15.74) that

Γ̃(O)a1a2
µ1µ2

(0, 0) = 0,

C̄(O)a2a1
µ2µ1σ = 0,

and therefore also

C(O)a2a1
µ2µ1σ = 0.

Summarizing we therefore conclude that

T1Γ̃(O)a1a2
µ1µ2

(k1, k2) = 0, (15.76)

where T1 denotes the Taylor expansion around zero momenta up to first order.
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Consider next eq. (15.75) evaluated for k2 = k3 = 0, and small k1. Because of
(15.76) the rhs is of O(k2

1). It therefore follows that

Γ̃(O)a1a2a3
µ1µ2µ3

(0, 0, 0) = 0. (15.77)

Relations (15.76) and (15.77) are weaker than those obtained from gauge invariance
in the case of QED (Reisz. 1999), where an analogous statement to (15.76) holds
for vertex functions involving an arbitrary number of gauge fields.

The reason that (15.76) and (15.77) play an important role for the computation
of the anomaly, is that we shall derive an expression for the renormalized Ward
identity in the continuum limit using the momentum-subtraction scheme with finite
lattice spacing. We then have to show that the continuum limit of the potentially
anomalous contribution to the divergence of the axial vector current is universal
and given by the well known continuum expression. For this we will need to make
use of the power counting theorem of Reisz (see section (13.3)), which requires not
only that the lattice degree of divergence of all Zimmermann spaces of a Feynman
integral is negative but also that the free fermion propagator is free of doublers.
This is just our condition iv).

Universality of the ABJ Anomaly

We are now ready to prove our assertion. Our attention will be focused on
the “irrelevant” contribution of the ∆-term in (15.67), which should generate the
anomaly in the continuum limit. Because the expressions considered in the following
are lattice regularized, all operations are well defined. Furthermore, since we are
studying the Ward identity in an external background colour field, the only Feynman
graphs which contribute are diagrams involving an arbitrary number of external
gauge potentials attached to a fermion loop.

Consider the axial vector Ward identity (15.67). By power counting the ultra-
violet lattice degree of divergence (LDD) of Γ̃5µ and Γ̃5 is given by 3−n, where n is
the number of external gluon fields, while the LDD of Γ̃(∆) is 4−n. Hence the LDD
of Feynman integrals contributing to Γ(∆) is negative for graphs involving more than
4 external gauge fields. Their contributions thus vanish by the Reisz theorem (see
sec. 13.3) in the continuum limit, since ∆ is an irrelevant operator. We therefore
only need to consider the correlation functions Γ̃(∆)a1a2

µ1µ2 (k1, k2), Γ̃(∆)a1a2a3
µ1µ2µ3 (k1, k2, k3),

and Γ̃(∆)a1a2a3a4
µ1µ2µ3µ4 (k1, k2, k3, k4) with LDD = 2, 1 and 0, respectively. Let us decompose
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these vertex functions as follows

Γ̃(∆)a1a2
µ1µ2 (k1, k2) = (1 − T2)Γ̃

(∆)a1a2
µ1µ2 (k1, k2) + T1Γ̃

(∆)a1a2
µ1µ2 (k1, k2)

+ (T2 − T1)Γ̃
(∆)a1a2
µ1µ2 (k1, k2),

(15.78)

Γ̃(∆)a1a2a3
µ1µ2µ3

(k1, k2, k3) = (1 − T1)Γ̃(∆)a1a2a3
µ1µ2µ3

(k1, k2, k3) + T0Γ̃(∆)a1a2a3
µ1µ2µ3

(k1, k2, k3)

+ (T1 − T0)Γ̃(∆)a1a2a3
µ1µ2µ3

(k1, k2, k3), (15.79)

and

Γ̃(∆)a1a2a3a4
µ1µ2µ3µ4 (k1, k2, k3, k4) = (1 − T0)Γ̃

(∆)a1a2a3a4
µ1µ2µ3µ4 (k1, k2, k3, k4)

+T0Γ̃
(∆)a1a2a3a4
µ1µ2µ3µ4 (k1, k2, k3, k4),

(15.80)

where Tn denotes the Taylor expansion around vanishing momenta up to nth or-
der. By the Reisz theorem the first term appearing on the rhs of (15.78) to (15.80),
vanishes in the continuum limit, since it has negative LDD and ∆ is an irrelevant
operator. The respective second terms in (15.78) and (15.79) vanish by gauge in-
variance (cf. eqs. (15.76) and (15.77)). Hence we conclude that

lim
a→0

Γ̃(∆)a1a2
µ1µ2

(k1, k2) = lim
a→0

(T2 − T1)Γ̃(∆)a1a2
µ1µ2

(k1, k2), (15.81a)

lim
a→0

Γ̃(∆)a1a2a3
µ1µ2µ3

(k1, k2, k3) = lim
a→0

(T1 − T0)Γ̃(∆)a1a2a3
µ1µ2µ3

(k1, k2, k3), (15.81b)

lim
a→0

Γ̃(∆)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4) = lim
a→0

T0Γ̃(∆)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4). (15.81c)

Hence the contributions (15.81a) to (15.81c) are of second, first and zeroth order
in the gluon momenta, respectively. As we now show, the Ward identity allows us
to calculate the limits from the corresponding Taylor terms of continuum one-loop-
fermion diagrams involving two and one external gluon fields, with a γ5 insertion.
It then follows that the anomalous contribution is necessarily universal, i.e., it does
not depend on the particular form of the irrelevant term in the lattice Ward identity.

Consider first the rhs of (15.78). Applying the operation (T2−T1) to the (lattice
regularized) axial vector Ward identity (15.70) with n = 2, and making use of
(15.74), following from gauge invariance, we conclude that

(T2 − T1)Γ̃(∆)a1a2
µ1µ2

(k1, k2) = −2m(T2 − T1)Γ̃a1a2
5;µ1µ2

(k1, k2). (15.82)

The expression appearing on the rhs has negative LDD; hence its continuum limit
is given, according to the Reisz theorem, by applying the (T2 − T1) operation to
the integrand of the corresponding continuum Feynman integral, i.e. the triangle
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diagram. One then readily finds that (15.81a) is given by

lim
a→0

Γ̃(∆)a1a2
µ1µ2

(k1, k2) = − g2

4π2 δa1a2�µ1µ2σρ(k1)σ(k2)ρ. (15.83)

Consider next the rhs of (15.81b). Applying the (T1 − T0) operation to the Ward
identity (15.70) with n = 3, and making use of (15.77) (following again from gauge
invariance) one obtains

(T1 − T0)Γ̃(∆)a1a2a3
µ1µ2µ3

(k1, k2, k3) = −2m(T1 − T0)Γ̃a1a2a3
5;µ1µ2µ3

(k1, k2, k3). (15.84)

Since the LDD of the rhs is negative, its continuum limit is given by applying
the (T1 − T0) operation to the integrand of the continuum box Feynman diagram,
involving three vector vertices and a γ5 insertion. After some lengthy but straight
forward calculation one finds that

lim
a→0

Γ̃(∆)a1a2a3
µ1µ2µ3

(k1, k2, k3) = i
g3

4π2 �µ1µ2µ3σfa1a2a3qσ, (15.85)

where q = k1 + k2 + k3. Finally, consider (15.81c). Applying T0 to the Ward identity
(15.70) we obtain

lim
a→0

T0Γ̃(∆)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4) = −2m lim
a→0

T0Γ̃a1a2a3a4
5;µ1µ2µ3µ4

(k1, k2, k3, k4). (15.86)

Since the LDD of the vertex function on the rhs is again negative, the limit a → 0
can be calculated by applying T0 to the continuum pentagon graph involving a γ5

insertion. A simple calculation shows that (15.81c) is given by

lim
a→0

Γ̃(∆)a1a2a3a4
µ1µ2µ3µ4

(k1, k2, k3, k4) =
g4

4π2 [�µ1µ2µ3µ4Tr(T a1T a2T a3T a4) + perm.],

(15.87)

where T a are the SU(3) generators in the fundamental representation. Notice that
we have made constant use of the Ward Identity (15.70) which we know is true for
arbitrary finite lattice spacing.

The (continuum) correlation functions in coordinate space, corresponding to
(15.83), (15.85) and (15.87), are obtained by performing the Fourier transformation
(15.69), where the limits of integration now extend to infinity. The anomalous con-
tribution is then given by (15.68) with O → ∆, where the sum over the coordinates
are replaced by integrals. Only the two and three gluon vertex functions actually
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contribute to the anomaly, as can be shown by making use of the Jacobi identity.
One then easily verifies that the anomalous contribution to the (euclidean) axial
vector Ward identity takes the well-known form

A(x) = − g2

32π2 �µνλρF
a
µν(x)F a

λρ(x), (15.88a)

where

F a
µν(x) = ∂µA

a
ν(x) − ∂νA

a
µ(x) − gfabcA

b
µ(x)Ac

ν(x) (15.88b)

is the non-abelian field strength tensor.
We have seen above that the ∆-term in (15.67), although superficially linearly

divergent in the continuum limit, is actually finite in this limit, and a 4’th order
polynomial in gluon field. The other two terms in this gauge identity are also finite.
The reason is, that the latter have LDD = 1 and 0 for n = 2 and n = 3, respectively,
and negative LDD for n ≥ 4. Gauge invariance and locality of the Dirac operator, as
embodied in the statements (15.76) and (15.77), allows us to replace the n = 2 and
n = 3 vertex functions by the corresponding Taylor subtracted forms with negative
LDD. These possess a finite continuum limit.

This completes our discussion of lattice perturbation theory. All analytic meth-
ods discussed in the last five chapters have their own merits, but they cannot be
used to calculate non-perturbative observables in continuum QCD. One is therefore
forced to compute these observables numerically. In the following chapter we now
introduce the reader to various numerical methods that have been proposed in the
literature.
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CHAPTER 16

MONTE CARLO METHODS

16.1 Introduction

When one computes the expectation value of an observable in lattice QCD,
one is faced with the problem of having to perform a tremendously large number of
integrations. Thus suppose we want to compute the following ensemble average

�O� =
∫

DUO[U ]e−S[U ]
∫

DUe−S[U ]
(16.1)

where S[U ] is a real functional of the link variables bounded from below. Using a 104

space–time lattice, the number of link variables is approximately 4× 104. For the case
of SU(3), each of these link variables is a function of 8 real parameters; hence there
are 320000 integrations to be done. Using a mesh of only 10 points per integration,
it follows that the multiple integral will be approximated by a sum of 10320000 terms.
This example shows that we must use statistical methods to evaluate the ensemble
average (16.1). In fact, since most of the link configurations will have an action which
is very large, only a small fraction of them will make a significant contribution to
the integral (16.1). Hence an efficient way of computing the ensemble average would
consist in generating a sequence of link variable configurations with a probability
distribution given by the Boltzmann factor exp(−S[U ]). This is the technique of
“importance sampling”. If the sequence generated constitutes a representative set
of configurations, then the ensemble average �O� will be approximately given by the
following sum

�O� ≈ 1
N

N∑
i=1

O({U}i) (16.2)

where {U}i (i = 1, . . . , N) denote the link configurations generated.

For a few systems there is a simple method of generating field configurations
on the lattice with the desired probability. This method is called the heat–bath
algorithm. Let us demonstrate the basic idea of this algorithm by considering a
one-dimensional integral

�F � =
∫ b

a

dxF (x)P (x) (16.3a)
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where P (x) is a normalized probability distribution
∫ b

a

dxP (x) = 1. (16.3b)

Making the change of variable

y =
∫ x

a

dzP (z), (16.4)

(16.3) can be written in the form

�F � =
∫ 1

0
dyF̂ (y),

where

F̂ (y) = F (x(y)).

Hence the variable (16.4) is now distributed uniformly in the interval [0,1], and we
can generate for y a representative set of values with the help of a random number
generator. The crux of the whole matter is, of course, that one must be able to
evaluate analytically the integral (16.4) and to obtain x(y).

In praxis the right-hand side of (16.3a) is replaced by a multiple integral over
the degrees of freedom of the physical system of interest. In this case one usually ap-
plies the above method to each variable in turn, holding all the others fixed; i.e., each
variable is brought to equilibrium with a “heat bath reservoir”. For this reason it
is called the “heat bath algorithm”. Unfortunately, the method can be applied only
to a few systems of physical interest (for example, to the pure SU(2) gauge theory).
We shall therefore not dwell on it any further, and proceed to a discussion of other
algorithms which can be applied to general systems. But before we go into details,
let us first explain what the general strategy will be to calculate the expectation
value (16.1). We first need to construct an algorithm, that will generate a sequence
of configurations which will eventually be distributed with the desired probability.
Once the system has reached equilibrium we may use the thermalized configura-
tions to measure our observable. In praxis the number of such configurations will
be finite. But if the sequence generated by the algorithm constitutes a representa-
tive set, then the ensemble average (16.1) will be given approximately by the sum
(16.2). Furthermore, if the N measurements are statistically independent, then the
error in the mean will be of order 1/

√
N . In praxis, however, the configurations we

generate sequentially are not all statistically independent. Hence when computing



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch16

286 Lattice Gauge Theories

the statistical error, one must make sure to select only configurations which are
uncorrelated.

Summarizing, the procedure for calculating the ensemble average (16.1) is the
following: given a rule for generating a sequence of configurations, one first up-
dates the configurations a sufficiently large number of times until thermalization
is achieved. The number of steps required for thermalization will depend on 1)
the algorithm used, 2) the observable one is studying, and 3) on the values of the
bare parameters. Thus it becomes increasingly more difficult to generate a thermal-
ized ensemble as one approaches the continuum limit, where, as we have seen in
chapter 9, the theory must exhibit critical behaviour. Indeed, the number of steps
required increases with a power of the correlation length. This is known as critical
slowing down. A first check of whether the system has reached thermal equilibrium,
consists in choosing different starting configurations for generating the sequence.
In particular, we can start from a disordered (hot start) or an ordered (cold start)
configuration. Once the system is thermalized, it must have lost all memory of the
configuration we have started with, and expectation values of observables must ap-
proach the same values independent of the starting configuration. Again for a finite
set of configurations this will of course not be exactly true. But if the measurements
of various observables for different runs agree within the estimated statistical er-
rors, one has a good chance that the effects of the starting configuration have been
eliminated.

16.2 Construction Principles for Algorithms. Markov Chains

In this section we will discuss some general principles for constructing algo-
rithms which ensure that the sequence of configurations generated will constitute a
representative ensemble which can be used to measure the observables. In particular,
we shall be interested in the case where the above mentioned configurations are the
elements of a Markov chain generated by a Markov process. So let us first discuss
some elementary notions about Markov chains.∗ For simplicity we shall assume that
the configurations can be labeled by a discrete index. If they are labeled by continu-
ous variables then the summations will be replaced by integrals, with appropriately
chosen measures, and the probability of occurrence of a given configuration must be
replaced by a probability density.

∗ For a more detailed discussion, the reader may confer the books by Hammersley
and Handscomb (1975), Clarke and Disney (1985).
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Markov Chains

Let C1, C2, . . . denote a countable set of states of the system. For example,
in a pure lattice gauge theory, Ci (i = 1, 2, . . .) would correspond to different link
variable configurations on the lattice. Consider now a stochastic process in which
a finite set of configurations is generated one after the other according to some
transition probability P (Ci → Cj) ≡ Pij for going from configuration Ci to Cj. Let
Cτ1 , Cτ2 . . . be the configurations generated sequentially in this way. Because of the
probabilistic element built into this procedure, the state of the system at any given
(simulation) time will be a random variable, whose distribution will depend only
on the state preceding it, if the transition probability is independent of all states
except for its immediate predecessor (i.e., if it does not involve any past history).
This defines a Markov chain whose elements are the random variables mentioned
above. Now given a set of configurations {Cτi

} generated by the Markov process and
an observable O evaluated on this set of states, we can define a “time” average of
O taken over N elements of the Markov chain by

�O�N =
1
N

N∑
i=1

O(Cτi
). (16.5)

It is this quantity which we compute in praxis, and which we want to equal the en-
semble average corresponding to a given Boltzmann distribution. With this in mind
we shall therefore restrict the following discussion to so-called irreducible, aperiodic
Markov chains whose states are positive, since there exist important theorems about
such chains which are relevant for our problem. Let us first explain the terminology.

i) A chain is called irreducible if, starting from an arbitrary configuration Ci,
there exists a finite probability of reaching any other configuration Cj after a
finite number of Markov steps. In other words there exists a finite N such that

P
(N)
ij =

∑
{ik}

Pii1Pi1i2 . . . PiN−1j �= 0. (16.6)

ii) A Markov chain is called aperiodic if P
(N)
ii �= 0 for any N .

iii) A state is called positive if its mean recurrence time is finite. If p
(n)
ii is the

probability to get from Ci to Ci in n-steps of the Markov chain, without reaching
this configuration at any intermediate step, then the mean recurrence time of
Ci is given by

τi =
∞∑

n=1

np
(n)
ii .
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We now state some important results which hold for Markov chains satisfying
i) to iii):

Theorem 1

If the chain is irreducible and the states are positive and aperiodic, then the limit
N → ∞ of (16.6) exists, and is unique; in particular one can show that∗

lim
N→∞

P
(N)
ij = πj (16.7)

where {πj} are numbers which satisfy the following equations:
∑

j

πj = 1, πj > 0, (16.8a)

πj =
∑

i

πiPij. (16.8b)

Let us interprete these results. First of all eq. (16.7) states that the limit N → ∞
of P

(N)
ij is independent of the configuration used to start the Markov process. Fur-

thermore, eq. (16.8) states that the set {πi} is left unchanged when we update these
numbers with the transition probabilities {Pij}. But this, together with (16.8a), is
just the condition that the system is in equilibrium, with πi the probability of finding
the configuration Ci.

Theorem 2

If the chain is irreducible and its states are positive, and if

τ
(2)
i ≡

∞∑
n=1

n2p
(n)
ii < ∞

then the time average (16.5) approaches the ensemble average

�O� =
∑

i

πiO(Ci) (16.9)

with a statistical uncertainty of order O( 1√
N

).

The above theorems provide the basis for using a Markov process to calculate
the ensemble average (16.1). We must now determine the transition probabilities
that generate a Markov chain of configurations, which will eventually be distributed
with a given probability.

∗ See e.g., Hammersley and Handscomb (1975).
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Since we shall be interested in the case where the configurations are labeled
by a set of continuous variables we will drop from now on the discrete subscript on
Ci and use capital letters to denote an arbitrary configuration. Thus, for example
(16.8b) and (16.9) will be replaced by∗

Peq(C) =
∑
C′

Peq(C �)P (C � → C), (16.10a)

�O� =
∑

C

Peq(C)O(C), (16.10b)

where Peq(C) now denotes the probability density for finding the configuration C

at equilibrium, and P (C → C �) is the transition probability density for going from
C to C �. We will now show that for a Markov process to sample the distribution
exp(−S(C)), it is sufficient to require that the transition probability (density) sat-
isfies detailed balance:

e−S(C)P (C → C �) = e−S(C′)P (C � → C) (16.11)

for every pair C and C �. Notice that the transition probability P (C → C �) is not
a function of the variables labeling the configurations C and C �, but stands for a
rule which tells us how to select the next configuration in a Markov chain given the
configuration immediately preceeding it.

Consider the following probability density which we want to generate:

Peq(C) =
e−S(C)

∑
C e−S(C) . (16.12)

Making use of the normalization condition
∑
C′

P (C → C �) = 1, (16.13)

and assuming that P (C → C �) satisfies (16.11), we see that (16.10a) is also satis-
fied. Hence if the conditions of Theorem 1 are satisfied, then (16.12) is the unique
equilibrium distribution generated by the Markov process. In fact, it may be easily
shown that the deviation from equilibrium decreases with each Markov step. The
following proof is taken from Creutz (1983a).

∗ Actually, the sums must also be replaced by integrals with an appropriate
measure. But for the following discussion it is convenient to keep the summation
sign.
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Let PN(C) be the probability of finding the configuration C at the Nth step of
a Markov chain. If C0 is the configuration with which we start the Markov process,
then PN(C) is given by∗

PN(C) =
∑
{Ci}

P (C0 → C1)P (C1 → C2) . . . P (CN−1 → C), (16.14)

where each sum now runs over all possible configurations of the system. A useful
quantity which measures the deviation of PN(C) from equilibrium is

σN =
∑

C

|PN(C) − Peq(C)|. (16.15)

Consider the deviation σN+1. Since according to (16.14) the probability distribution
at the (N + 1)th step of the Markov chain is given by

PN+1(C) =
∑
C′

PN(C �)P (C � → C) (16.16)

we find, upon substituting (16.16) into the expression for σN+1, and making use of
the normalization condition (16.13), as well as detailed balance, eq. (16.11), that

σN+1 =
∑

C

|
∑
C′

(PN(C �)P (C � → C) − Peq(C))|

=
∑

C

|
∑
C′

(PN(C �)P (C � → C) − Peq(C)P (C → C �))|
(16.17a)

=
∑

C

|
∑
C′

(PN(C �) − Peq(C �))P (C � → C)|

≤
∑

C

∑
C′

|PN(C �) − Peq(C �)|P (C � → C),

or

σN+1 ≤ σN . (16.17b)

Consider the equality sign. Then it follows from the last two lines in eq. (16.17a)
that

∑
C

|
∑
C′

(PN(C �) − Peq(C �))P (C � → C)| =
∑
C,C′

|PN(C �) − Peq(C �)|P (C � → C).

∗ For finite N , PN(C) will depend on the initial configuration C0. We have
suppressed this dependence here.
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But if for all C and C � P (C → C �) �= 0 (i.e., the Markov chain is aperiodic),
then this equation can only be satisfied if PN(C) = Peq(C) for all C, since both
PN(C) and Peq(C) are normalized distributions. We therefore conclude that the
deviation σN decreases with each Markov step until we reach the desired equilibrium
distribution (16.12). This does not mean, however, that for every configuration C,
PN+1(C) is closer to Peq(C) than it was PN(C), as is evident from the definition
(16.15).

The requirement of detailed balance does not determine the transition proba-
bility uniquely, and one can use this freedom to invent “efficient” algorithms adapted
to the problem one is studying. In the following section we will give an example of
an algorithm which is quite effective for studying systems whose action is a local
function of the configuration space variables.

16.3 The Metropolis Method

This method was originally proposed by Metropolis et al. (1953) and is in
principle applicable to any system. Let us first state the rule for generating the
configurations in a sequence, and then prove that it satisfies detailed balance.

The rule: Let C be any configuration which is to be updated. We then suggest
a new configuration C � with a transition probability P0(C → C �) which only satisfies
the following microreversibility requirement:

P0(C → C �) = P0(C � → C). (16.18)

As an example consider the pure U(1) gauge theory. A particular configuration C is
then specified by the values of the link variables Uµ(n) = exp(iθµ(n)) for µ = 1, . . . , 4
and for all lattice sites n. We can then suggest a new configuration by just choosing
one of these link variables, and multiplying it by exp(iχ), where χ is a random num-
ber between −π and π.∗ Then (16.18) is clearly satisfied. Having suggested a config-
uration C �, we now must decide whether it should be accepted. Clearly the answer
must depend on the actions S(C) and S(C �), if the transition probability P (C → C �)
is to satisfy (16.11). The decision is made as follows: If exp(−S(C �)) > exp(−S(C)),
i.e., if the action has been lowered, then the configuration C � is accepted. On the
other hand, if the action has increased, one accepts the trial configuration only

∗ Of course we can also suggest a new configuration which differs from the previous
one in several link variables. But the usual procedure consists in updating only one
variable at a time, sweeping through the lattice systematically, or choosing the
variables in a more or less random way.
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with probability exp(−S(C �))/ exp(−S(C)). To this effect one generates a random
number R in the interval [0, 1] and takes C � as the new configuration if

R ≤ e−S(C′)

e−S(C) .

Otherwise C � is rejected, and we keep the old configuration. Notice that it is this
conditional acceptance which allows the system to increase its action. Thus while
the classical configurations correspond to minima of the action, the quantum system
is allowed to move away from the classical configuration. In this way the algorithm
builds in the quantum fluctuations.

We now show that this algorithm satisfies detailed balance. Making use of the
fact that the probability for the transition C → C � is the product of the proba-
bility P0(C → C �) for suggesting C � as the new configuration and the probability
of accepting it, we see that the Metropolis algorithm for P (C → C �) implies the
following statements:

If exp(−S(C �)) > exp(−S(C)), then

P (C → C �) = P0(C → C �),

and

P (C � → C) = P0(C � → C)
e−S(C)

e−S(C′) .

Since P0(C � → C) = P0(C → C �), we see that (16.11) is satisfied. On the other
hand:

If exp(−S(C �)) < exp(−S(C)), then

P (C → C �) = P0(C → C �)
e−S(C′)

e−S(C) ,

and

P (C � → C) = P0(C � → C),

and detailed balance holds again.

As we have already mentioned, this algorithm is used in general to update a
single variable at a time. The reader may ask, why not change all lattice variables
at once? The reason is that such an updating procedure would involve in general
large changes in the action. Hence the acceptance rate for those configurations where
the action has increased, will be very small, and the system will move only slowly
through configuration space. But the algorithm also becomes very slow for single
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variable updating, if the action depends non-locally on the coordinates, since in this
case the ratio exp(−S(C �))/ exp(−S(C)) will no longer be determined by the nearest
neighbour interactions. This is the problem we shall be confronted with when taking
fermions into account. Hence we shall need more efficient algorithms to handle such
situations, and which allow one to update the entire lattice at once. In the following
sections we will discuss some of the new algorithms which have been proposed in the
literature. They are arranged in chronological order, so that the reader can see how
these algorithms have improved in the past years, leading up to the so-called hybrid
Monte Carlo algorithm which is free of systematic errors, and suited for handling
systems described by a non-local action.

16.4 The Langevin Algorithm

The Langevin algorithm has been originally introduced by Parisi and Wu
(1981), and was proposed as an updating method in numerical simulations in full
QCD by Fukugita and Ukawa (1985) and Batrouni et al. (1985). In the following we
discuss this algorithm for a bosonic system consisting of a finite number of degrees
of freedom. Our presentation is based on the lectures of Toussaint (1988) and Negele
(1988).

Let qi (i = 1, . . . , N) denote the coordinates of a system with action S[q]. In
a pure gauge theory these are the link variables on the space-time lattice. We want
to obtain a rule for updating these coordinates in a numerical simulation which
satisfies the requirements of ergodicity and detailed balance. So let us think of these
coordinates as depending on a new time variable τ which, when discretized, labels
the elements of a Markov chain. Consider the following difference equation relating
the variables at “time” τn+1 = (n + 1)�L to those at τn = n�L:∗

qi(τn+1) = qi(τn) + �L

(
− ∂S[q]

∂qi(τn)
+ ηi(τn)

)
. (16.19)

Here {ηi(τn)} is a set of independent Gaussian distributed random variables which
probability distribution given by

P ({ηi(τn)}) =
∏

i

√
�l

4π
exp

[
−�L

4
ηi(τn)2

]
. (16.20)

In the limit �L → 0, eq. (16.19) becomes the Langevin equation:

dqi

dτ
= −∂S[q]

∂qi

+ ηi(τ). (16.21)

∗ �L is called the Langevin time step for reasons that will become clear below.
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Since the width of the distribution (16.20) is of order 1/
√

�L, the Gaussian noise
term in (16.19) is actually of order

√
�L. We can make this explicit by introducing

the new random variable η̃i(τn) = (
√

�L/2)ηi(τn). Then (16.19) take the form

qi(τn+1) = qi(τn) − (2�L)
1
2

∂S[q]
∂qi(τn)

+
√

2�Lη̃i(τn), (16.22)

where {η̃i(τn)} are now random variables distributed according to

P̃ (η̃(τn)) =

(∏
i

1√
2π

)
e−

∑
i

1
2 η̃i(τn)2 (16.23)

with variance

�η̃i(τn)η̃j(τm)� = δijδnm.

This form of the difference equation will be useful when discussing the hybrid molec-
ular dynamics algorithm later on.

Consider eq. (16.22).∗ It states that the probability for making the transition
from qi at “time” τn to q�

i at “time” τn+1 is the probability for η̃i (i = 1, 2, . . .) to
equal

√
2�L

1
2

∂S[q]
∂qi

+(q�
i −qi)/

√
2�L. Hence we conclude that the transition probability

P (q → q�) is given by

P (q → q�) = N0 exp

{
−1

2

∑
i

[
q�
i − qi√
2�L

+
1
2
√

2�L
∂S

∂qi

]2
}

, (16.24)

where N0 is a normalization constant. We now claim that in the limit �L → 0 this
transition probability satisfies detailed balance, i.e., that

e−S(q)P (q → q�) = e−S(q′)P (q� → q). (16.25)

Indeed, since q� − q is of O(
√

�L), it follows from (16.24) that

P (q → q�)
P (q� → q)

−→
�L→0

e−
∑

i(q
′
i−qi)∂S/∂qi

−→
�L→0

e−[S(q′)−S(q)].

We therefore conclude that in the limit �L → 0 the transition amplitude (16.24) sat-
isfies (16.25). For finite Langevin time steps, however, this algorithm leads to system-
atic errors which need to be controled. In praxis this means that the data obtained

∗ The following argument is based on the lectures by Negele (1988).
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using this algorithm must be extrapolated to �L → 0. Hence one is forced to generate
configurations for different Langevin time steps. This is very time-consuming. On
the other hand it is a simple algorithm which can be used to update all variables at
once without having to worry about acceptance rates, since it does not involve any
Metropolis acceptance test. The Langevin algorithm is therefore useful for treating
systems with a non-local action, like QCD with dynamical fermions.

This concludes our discussion of the Langevin algorithm which, like the Metro-
polis method, is applicable to arbitrary systems. Its main drawback is the systematic
error which is introduced by the finite Langevin-time step, �L, which in praxis one
would like to choose as large as possible to ensure that the system covers much of the
configuration space in a reasonable number of updating steps. A lot of effort has been
invested in the past few years to invent new algorithms which are more effective and
less subject to systematic errors. Most of these algorithms are modifications of the
so-called molecular dynamics (or microcanonical) method of Callaway and Rahman
(1982 and 1983). So let us first discuss this method.∗

16.5 The Molecular Dynamics Method

The basic idea of the molecular dynamics method is that the euclidean path
integral associated with a quantum theory can be written in the form of a parti-
tion function for a classical statistical mechanical system in four spatial dimensions
with a canonical Hamiltonian that governs the dynamics in a new “time” vari-
able (the simulation time). Invoking ergodicity, and making use of the fact that
in the thermodynamic limit the canonical ensemble average can be obtained from
the microcanonical ensemble average, computed at an energy determined by the
parameters of the system,∗∗ one can calculate the expectation values of observables
as time averages over “classical” trajectories. Hence, in the molecular dynamics ap-
proach, configurations are generated in a deterministic way, and the complexity of
the motion in four space dimensions gives rise to the quantum fluctuations in the
original theory of interest.

We now give the details. To keep the discussion as elementary as possible, we
will consider a scalar field theory, with an action S[φ; β] depending on the scalar field
φ and on some parameter β (e.g., a coupling constant).∗∗∗ Consider the expectation

∗ The microcanonical ensemble approach was also proposed by Creutz (1983b).
∗∗ In conventional statistical mechanics this energy would be fixed by the tem-

perature of the system.
∗∗∗ See Callaway and Rahman (1982) and (1983).
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value of an observable

〈O〉 =
1
Z

∫
DφO[φ]e−S[φ;β], (16.26a)

where

Z =
∫

Dφe−S[φ;β]. (16.26b)

We assume that we have introduced a space-time lattice to define the integral
(16.26). Hence the degrees of freedom of the system will be labeled by the coordi-
nates of the lattice sites which we denote collectively by “i”. Although the integral
(16.26) resembles that encountered in statistical mechanics, Z is not the partition
function of a classical Hamiltonian system. But one can cast it into such a form by
introducing a set of canonically conjugate momenta πi. Thus (16.26) can also be
written in the form

〈O〉 =
1
Z̄

∫
DφDπO[φ]e−H[φ,π;β], (16.27a)

where

H[φ, π; β] =
∑

i

1
2
π2

i + S[φ; β], (16.27b)

Z̄ =
∫

DφDπe−H[φ,π;β]. (16.27c)

and the integration measure is defined as usual:

DφDπ =
∏

i

dφidπi.

Clearly (16.27) coincides with the expression (16.26), since O does not depend on
the momenta. Hence, as advertised above, the quantum theory in four-dimensional
euclidean space-time resembles to a classical canonical ensemble in four spatial di-
mensions in contact with a heat reservoir. Notice that (16.27) is not to be confused
with the usual phase space representation of the path integral (16.26), whose struc-
ture is completely different, and involves the Hamiltonian of the system in three
space dimensions.

Having formulated our problem in terms of a classical statistical mechanical
system, we can now make use of known results to calculate the expectation value
(16.26a). In particular it is well known in statistical mechanics that in the thermody-
namic limit (where the number of degrees of freedom become infinite), the canonical
ensemble average can be replaced by the microcanonical ensemble average evaluated
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on an “energy” surface, which is determined by the parameters of the system. We
have put “energy” into quotation marks to emphasize that, in the present case, it
is the energy of a statistical mechanical system in four spatial dimensions. Hence,
according to (16.27b), the action of the quantum mechanical system is allowed to
fluctuate! This is the way how quantum fluctuations are taken into account. Let us
recall how one arrives at this result. At the same time, this will give us the con-
nection between the parameter β and the “energy” at which the microcanonical
ensemble average is to be calculated.

Consider the expectation value (16.27). It can be written in the form

�O�can(β) =
∫

DφDπO[φ]
∫

dEδ(H[φ, π; β] − E)e−E

∫
DφDπ

∫
dEδ(H[φ, π; β] − E)e−E

, (16.28)

where we have introduced the subscript “can” to emphasize that we are calculating
a canonical ensemble average. This quantity depends on β.

On the other hand, the microcanonical ensemble average �O�mic, evaluated for
a given β on the energy surface H = E, is given by

�O�mic(E, β) =
1

Zmic(E, β)

∫
DφDπO[φ]δ(H[φ, π; β] − E), (16.29a)

where

Zmic(E, β) =
∫

DφDπδ(H[φ, π; β] − E) (16.29b)

is the phase space volume at energy E. We now want to establish a connection be-
tween the two ensemble averages in the thermodynamic limit. Define the “entropy”
of the system by

s(E, β) = lnZmic(E, β). (16.30)

Introducing the definitions (16.29) and (16.30) into (16.28), one finds that this ex-
pression can be written in the form

�O�can(β) =
∫

dE�O�mic(E, β)e−(E−s(E,β))
∫

dEe−(E−s(E,β))
. (16.31)

Now comes the standard argument: when the number of degrees of freedom of the
system becomes very large, the exponentials appearing in the integrands of (16.31)
are strongly peaked about an energy Ē given implicitly by the equation

(
∂s(E, β)

∂E

)

E=Ē

= 1. (16.32)
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Hence in the thermodynamic limit we are led to the connection

〈O〉can(β) = [〈O〉mic]E=Ē(β), (16.33)

where β and Ē are related by (16.32). This relation is, however, not a useful one
for doing numerical calculations. A more adequate expression can be obtained by
making use of the equipartition theorem, which tells that the following equation
holds for each momentum πi:

〈
πi

∂H

∂πi

〉

mic
=

1
∂s/∂E

.

Inserting for H the expression (16.27b) and making use of (16.32), one finds that

[〈Tkin〉mic]E=Ē(β) =
N

2
, (16.34)

where Tkin =
∑

i π
2
i /2 is the kinetic energy, and N is the number of degrees of

freedom of the system. We have hence succeeded in rewriting (16.32) in terms of a
microcanonical ensemble average. But we are still left with the problem that given
β, Ē is only implicitly determined by (16.34). Fortunately this does not turn out to
be a major stumbling block; Ē can be adjusted to any prescribed value of β by the
heating/cooling procedure described by Callaway and Rhaman (1983).

A more familiar form of eq. (16.34) is obtained when the dependence of the
action on the parameter β is multiplicative, i.e., if∗

S[φ, β] = βV [φ].

In this case the expectation value (16.26) can be written as follows

〈O〉 =
1
Z̃

∫
DφDπO[φ]e−βH[φ,π],

where

H[φ, π] =
1
2

∑
i

π2
i + V [φ],

and

Z̃ =
∫

DφDπe−βH[φ,π].

∗ This is the case in gauge theories within the pure gauge field sector, where the
action is of the form S = βV [U ].
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By following the arguments presented above, one arrives at the following connection
between the canonical and microcanonical ensemble averages

�O�can(β) = �O�mic(Ē),

where
�O�mic(E) =

1
Zmic(E)

∫
DφDπO[φ]δ(H[φ, π] − E),

Zmic(E) =
∫

DφDπδ(H[φ, π] − E),

and β is related to Ē by

N

2β
= �Tkin�mic(Ē).

This is the familiar form of the equipartition theorem with β playing the role of the
inverse temperature.

With these remarks let us return to expression (16.33), and rewrite the right-
hand side in a convenient form for numerical calculations. Assuming that the motion
generated by the Hamiltonian (16.27b) is ergodic, we can use the Hamilton equations
of motion

φ̇i =
∂H[φ, π]

∂πi

, (16.35a)

π̇i = −∂H[φ, π]
∂φi

, (16.35b)

to generate a representative ensemble of phase-space configurations with constant
energy. Since the observables, whose expectation value we want to calculate, only
depend on the coordinates, the microcanonical ensemble average can then be re-
placed by a time average over φ(τ). We are therefore led to the following chain of
equations valid for ergodic systems in the thermodynamic limit,

�O�can(β) −→
therm. lim.

[�O�mic]E=Ē(β) −→
ergod.

lim
1
T

∫ T

0
dτO({φi(τ)}),

(16.36)

where the trajectory {φi(τ)} is a solution to

d2φi

dτ 2 = −∂S[φ]
∂φi

, (16.37)

subject to the initial conditions that it carries energy Ē.∗

∗ Because the motion is assumed to be ergodic, one can use any starting configu-
ration with this energy to integrate (16.37).
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Notice the difference in the structure of (16.37) and the Langevin equation
(16.21). While (16.37) is a deterministic set of coupled second order differential
equations, the Langevin equation is of first order an involves a stochastic variable.
It is instructive to compare the two equations when the times are discretized.∗

In the Langevin scheme the corresponding difference equations are given by (16.22).
Consider the naive discretization of (16.37). Using the symmetric version for the
discretized second derivative, φ̈i(τn) = [φi(τn+1)+φi(τn−1)−2φi(τn)]/(∆τ)2, we find
that

φi(τn+1) = φi(τn) − �2 1
2

∂S[φ]
∂φi(τn)

+ �πi(τn), (16.38a)

where � = ∆τ = τn+1 − τn is the microcanonical time step, and

πi(τn) =
1
2�

(φi(τn+1) − φi(τn−1)). (16.38b)

Notice the striking similiarity between (16.38a) and (16.22)! The discretized version
of the Langevin equation is obtained from (16.38a) by promoting the momenta πi

to random variables distributed according to (16.23), and identifying �L with �2/2.∗∗

In practical calculations, one integrates the Hamilton equations of motion
(16.35) using the so called “leapfrog” method (see section 6). Let us compare the
“distances” travelled in configuration space for the above-mentioned algorithms for
�L = �2/2. In the molecular dynamics case the distance covered after n steps is of
O(n�), while in the Langevin approach it is only O(

√
n�), because of its stochastic

nature. Hence the classical algorithm moves the system faster through configuration
space. But for this algorithm to be valid, a number of conditions had to be satisfied.
For one thing, eq. (16.33) only holds for systems with an infinite number of degrees
of freedom. This is clearly not the case in practical calculations where one is dealing
with rather small lattices. Furthermore, the last step in the chain (16.36) requires
the motion to be ergodic. But, in contrast to the Langevin approach, ergodicity
is not explicitly built into the molecular dynamics algorithm. This suggests that
one should look for a new algorithm which combines the good features of the two
methods.

∗ See e.g., Toussaint (1988).
∗∗ The fact that the Langevin time step is the square of the microcanonical time

step is not surprising, since the Langevin equation is of first order, while (16.37)
involves the second time derivative.
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16.6 The Hybrid Algorithm

A possible way of combining the stochastic Langevin approach and the micro-
canonical simulation into a new algorithm which takes into account ergodicity was
proposed by Duane (1985). This so-called hybrid algorithm is suggested by consid-
ering the molecular dynamics algorithm in the form (16.38a), which — as we have
pointed out before — becomes the discretized Langevin equation with time step
�L = �2/2, if the momenta {πi} are replaced by random variables with probability
density

P ({πi}) =

(∏
i

1√
2π

)
e−

∑
i

1
2π2

i . (16.39)

Notice that this is precisely the distribution of the momenta appearing in (16.27a)!
In fact, if the motion generated by the Hamiltonian (16.27b) is ergodic, then the
momenta would be eventually distributed according to (16.39).

This suggests that instead of integrating the Hamilton equations of motion
(16.35) along a single trajectory with given energy Ē, we interrupt this integra-
tion process once in a while and choose a new set of momenta with a probability
density given by (16.39). This corresponds to performing a Langevin step, which if
repeated many times builds in the ergodicity we want. At the same time one takes
advantage of the fact that because of the molecular dynamics steps the system will
move faster through configuration space than in the Langevin approach. Hence the
hybrid algorithm contains a new parameter: the frequency with which momenta
are refreshed. This parameter can be tuned to give the best results. In fact Duane
and Kogut (1986) have suggested that at each step of the updating procedure a
random choice is made between a molecular dynamics update with probability α

(which corresponds to relating the momenta in (16.38a) to φ according to (16.38b))
and a Langevin update with probability 1− α (which corresponds to replacing {πi}
by Gaussian distributed random numbers). If α is close to one, then the system
will move almost as fast through configuration space as in the molecular dynamics
case, but ergodicity may not be fully realized. On the other hand if α is close to
zero, ergodicity is ensured, but the system will move slower through configuration
space. The optimal choice for α will lie between these two extremes, and has to be
determined numerically.

After these qualitative remarks, we now demonstrate how this algorithm is
implemented in praxis. For simplicity we shall again study the case of a scalar field
theory.
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Consider the equations of motion in their Hamiltonian form (16.35). We want
to discretize them in the time with time step �. To this effect let us expand φi(τ + �)
and πi(τ + �) in a Taylor series up to order �2:

φi(τ + �) = φi(τ) + �φ̇i(τ) +
�2

2
φ̈i(τ) + O(�3),

(16.40)

πi(τ + �) = πi(τ) + �π̇i(τ) +
�2

2
π̈i(τ) + O(�3).

But from the Hamilton equations of motion we have that φ̇i = πi(τ), and φ̈i(τ) =
π̇i(τ) = −∂S/∂φi(τ), so that

π̈i(τ) = −
∑

j

∂2S

∂φi(τ)∂φj(τ)
πj(τ). (16.41)

In leading order the right-hand side of (16.41) is given by

∑
j

∂2S

∂φi(τ)∂φj(τ)
πj(τ) =

1
�

(
∂S

∂φi(τ + �)
− ∂S

∂φi(τ)

)
+ O(�).

Introducing the above expressions into (16.40) we find after some rearrangements
that

φi(τ + �) = φi(τ) + �

(
πi(τ) − �

2
∂S

∂φi(τ)

)
+ O(�3),

(
πi(τ + �) − �

2
∂S

∂φi(τ + �)

)
=

(
πi(τ) − �

2
∂S

∂φi(τ)

)
− �

∂S

∂φi(τ + �)
+ O(�3).

(16.42)

But the quantities appearing within brackets are the momenta evaluated at the
midpoint of the time intervals; hence up to O(�3), eqs. (16.42) are equivalent to the
following pair

φi(τ + �) = φi(τ) + �πi(τ + �/2), (16.43a)

πi

(
τ +

3
2
�

)
= πi

(
τ +

�

2

)
− �

∂S

∂φi(τ + �)
, (16.43b)

which, when iterated, amounts to integrating the Hamilton equations of motion
(16.35) according to the so-called leapfrog scheme: while the coordinates are evalu-
ated at times τn = n�, momenta (i.e., derivatives of φi) are calculated at the midpoint
of the time intervals.

In the hybrid algorithm the momenta are refreshed at the beginning of every
molecular dynamics chain. Suppose we want to start the leapfrog integration at
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time τ . Let {φi(τ)} be the coordinates at this time; then the momenta {πi(τ)} are
chosen from a Gaussian ensemble as described before. But to begin the iteration pro-
cess (16.43), we need to know πi(τ + �/2). We calculate this quantity by performing
a half–time step as follows

πi(τ + �/2) = πi(τ) − �

2
∂S[φ]
∂φi(τ)

+ O(�2), (16.44)

which means that we are making an error of O(�2). But this error is made only once
for each molecular dynamics trajectory generated, whose accumulated error after
1/� steps is also of order �2. Hence measurements of the observables will be correct
up to this order.

Before we summarize the steps required for updating the configurations {φi}
according to the hybrid algorithm, let us rewrite eqs. (16.43) and (16.44) in a way
appropriate for numerical calculations. Denoting by {φi(n)} and {πi(n)} the mo-
menta at time step n�, and by {π̃i(n)} the momenta at time (n+1/2)�, eqs. (16.43)
and (16.44) take the following form:

φi(n + 1) = φi(n) + �π̃i(n), (16.45a)

π̃i(n + 1) = π̃i(n) − �
∂S[φ]

∂φi(n + 1)
, (16.45b)

where

π̃i(n) = πi(n) − �

2
∂S[φ]
∂φi(n)

. (16.45c)

In a lattice formulation, all quantities appearing in (16.45) will be dimensionless.
The hybrid algorithm is then implemented by the following steps:

i) Choose the coordinate {φi} in some arbitrary way.
ii) Choose a set of momenta {πi} from the Gaussian ensemble (16.39).
iii) Perform the half step (16.45c) to start the integration process.
iv) Iterate eqs. (16.45a,b) for several time steps, and store the configurations gen-

erated in this way.
v) Go back to ii) and repeat the steps ii) to iv).

As has been shown by Duane and Kogut (1986), this algorithm generates
a sequence of configurations {φi} which are eventually distributed according to
exp(−S[φ]).

Suppose now that instead of refreshing the momenta only once in a while we
refresh them at each time step. In this case eq. (16.45b) plays no longer any role in
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generating the coordinates {φi}, which are now updated according to

φi(n + 1) = φi(n) − �2

2
∂S[φ]
∂φi(n)

+ �ηi(n),

where {ηi(n)}are independent Gaussian distributed random numbers. But this is
nothing but the Langevin equation with time step �2/2. Hence the hybrid method
differs only from the Langevin approach if the number of molecular dynamics steps
is larger than one.

This concludes our general discussion of the hybrid algorithm. For more details
the reader may confer to the lectures by Toussaint (1988).

16.7 The Hybrid Monte Carlo Algorithm

Although the hybrid algorithm is certainly an improvement over the previous
two we have discussed, there remains the problem of having to control the systematic
error introduced by the finite time step. In fact, of all the algorithms discussed so far,
only the Metropolis method was free of systematic errors. But as we have already
mentioned, this algorithm becomes very slow when updating configurations with an
action depending non-locally on the fields. On the other hand, the hybrid algorithm
allows one to update all variables at once, and hence is better suited for studying
systems with a non-local action (as is the case for QCD when fermions are included).
This suggests that one should try to eliminate the systematic error in the hybrid
algorithm by combining it with a Metropolis acceptance test.

Originally, this idea was proposed by Scalettar, Scalapino, and Sugar (1986) in
connection with the Langevin approach, and later applied to full QCD by Gottlieb
et al. (1987a). Subsequently Duane, Kennedy, Pendleton, and Roweth (1987) sug-
gested a similar modification of the hybrid algorithm. This modification consists
in introducing a Metropolis acceptance test between step iv) and v) of the hybrid
method discussed in the previous section. In other words, the phase space config-
urations generated at the end of each molecular dynamics chain, are used as trial
configurations in a Metropolis test with the Hamiltonian (16.27b), which plays the
role of the action in our discussion in section 16.3. For this reason this algorithm
is called the hybrid Monte Carlo algorithm. We now state the rules for updating
the configurations {φi} and then show that they generate a Markov chain satisfying
detailed balance:

i) Choose the coordinates {φi} in some arbitrary way.
ii) Choose the momenta {πi} from the Gaussian ensemble (16.39).



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch16

Monte Carlo Methods 305

iii) Calculate π̃ according to (16.45c).
iv) Iterate eqs. (16.45a,b) for some number of time steps. Let {φ�

i, π
�
i} be the last

configuration generated in the molecular dynamics chain, where π�
i is obtained

from π̃�
i according to (16.45c).

v) Accept {φ�
i, π

�
i} as the new configuration with probability

p = min{1, e−H[φ′,π′]/e−H[φ,π]},

where H is the Hamiltonian (16.27b).∗

vi) If the configuration {φ�
i, π

�
i} is not accepted, keep the old configuration {φi, πi},

and repeat the steps starting from (ii). Otherwise use the coordinates {φ�
i} to

generate a new configuration beginning with the second step.

Notice that if the Hamiltonian equations of motion could be integrated exactly,
then H would be constant along a molecular dynamics trajectory and the config-
uration would always be accepted by the Metropolis test. But for finite �, δH �= 0
and the Metropolis test eliminates the systematic error introduced by the finite
time step. Indeed, as has been shown by Duane et al. (1987), this algorithm leads
to a transition probability P (φ → φ�) which satisfies the detailed balance equation
(16.11) for an arbitrary time step �. Since the proof is rather simple, we will present
it here.

Let {φi} be the coordinates at the beginning of a molecular dynamics chain.
Consider in turn the various steps required for updating this configuration according
to the hybrid algorithm.

Step 1

Choose a set of momenta {πi} from a Gaussian ensemble with mean zero and
unit variance. The corresponding probability density is given by

PG(π) = N0e
− 1

2

∑
π2

i , (16.46)

where N0 is a normalization constant.

Step 2

Let the phase space configuration∗∗ (φ, π) evolve deterministically for N time
steps according to (16.45), including the half-time steps at the beginning and the

∗ We have suppressed here the dependence of H on the paramter β.
∗∗ For simplicity we suppress the subscript “i” on φi and πi.
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end of the molecular dynamics chain. Denote the configuration generated in this way
by (φ(N), π(N)). Here φ(N) and π(N) are functions of the starting configuration (φ, π).
But because (16.37) involves the second time derivative, the motion from φ → φ(N)

can be reversed by changing the sign of all momenta in the initial and final phase–
space configurations. Hence the probability for the transition (φ, π) → (φ�, π�) is the
same as that for going from (φ�, −π�) to (φ, −π): i.e.,

PM((φ, π) → (φ�, π�)) = PM((φ�, −π�) → (φ, −π)). (16.47)

The subscript “M” stands for “molecular dynamics”. Actually, since the system
evolves deterministically, the state (φ�, π�) generated by the molecular dynamics
chain will occur with unit probability. Hence, PM is a δ-function, ensuring that
(φ�, π�) evolved from (φ, π).

Step 3

Accept the configuration (φ�, π�) with probability

PA((φ, π) → (φ�, π�)) = min(1, e−H[φ′,π′]/e−H[φ,π]). (16.48)

By taking the product of the probability densities for these three steps, and inte-
grating over the momenta, we obtain the transition probability density P (φ → φ�):

P (φ → φ�) =
∫

DπDπ�PG(π)PM((φ, π) → (φ�, π�))PA((φ, π) → (φ�, π�)).

(16.49)

Consider next the product e−S(φ)P (φ → φ�) corresponding to the left-hand side
of eq. (16.11). Introducing the expression (16.46) into (16.49), this product can be
written in the form

e−S(φ)P (φ → φ�) =
∫

DπDπ�e−H[φ,π]PM((φ, π) → (φ�, π�))PA((φ, π) → (φ�, π�)).

(16.50)

But from the definition (16.48) it follows that

e−H[φ,π]PA((φ, π) → (φ�, π�)) = e−H[φ′,π′]PA((φ�, π�) → (φ, π)), (16.51)

which is the statement of detailed balance in phase space for the Metropolis accep-
tance test. Inserting this expression into (16.50), and making use of (16.47) and of
the fact that H[φ, π] = H[φ, −π], one finds that

e−S(φ)P (φ → φ�) = e−S(φ′)
∫

DπDπ�[PG(π�)PM((φ�, π�) → (φ, π))

×PA((φ�, π�) → (φ, π))] = e−S(φ′)P (φ� → φ).



January 4, 2012 12:34 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch16

Monte Carlo Methods 307

This is the relation we wanted to prove. The hybrid MC algorithm therefore
generates a Markov chain of configurations {φi} distributed eventually according
to exp(−S[φ]).

Since according to this algorithm entire field configurations are updated at once,
one may wonder whether one is not running into the same “acceptance” problems
mentioned in section 4. This could indeed be the case if � is not chosen sufficiently
small and/or the number of molecular dynamics steps is too large. Then the ac-
ceptance probability (16.48) will in general be small, and the algorithm will move
the system only slowly through configuration space. Fortunately, numerical “experi-
ments” show that even for small �, of the order of the time step needed in the hybrid
algorithm for extrapolating the data to � → 0, the system moves at least as fast
through configuration space as with the hybrid algorithm. But the great advantage
of the hybrid Monte Carlo method is that it is free of systematic errors arising from
the finite time step. Hence no extrapolation of the data is required, which for one
thing would be time-consuming, and furthermore a source of errors.

16.8 The Pseudofermion Method

The algorithms we have discussed in the previous sections can only be used to
calculate ensemble averages of functionals depending on c-number variables. They
can therefore not be applied directly to systems involving Grassmann fields. For
this reason, one must first integrate out the fermionic degrees of freedom before
performing a Monte Carlo calculation in QED or QCD. As we have pointed out
in chapter 12, this can always be done for any correlation function involving the
product of an arbitrary number of fermion fields, since the action is quadratic in the
Grassmann variables. In the following we will restrict our discussion to the case of
Wilson fermions. Then the ensemble average of O[U , ψ, ψ̄] is given by

�O� =
∫

DU�O�SF
e−Seff [U ]

∫
DUe−Seff [U ]

, (16.52a)

where

�O�SF
=

∫
Dψ̄DψO[U , ψ, ψ̄]e−S

(W )
F [U ,ψ,ψ̄]

∫
Dψ̄Dψe−S

(W )
F [U ,ψ,ψ̄]

, (16.52b)

can be expressed in terms of Green functions calculated in a background field
U = {Uµ(n)}, and where

Seff [U ] = SG[U ] − ln det K̃[U ]. (16.53)
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Here SG is the action of the pure gauge theory, and K̃[U ] is the matrix appearing
in the fermionic contribution to the action. For the case of QCD with Nf flavours
of mass-degenerate quarks, the matrix elements of K̃[U ] are given by

K̃nαaf ′,mβbf [U ] = Knαa,mβb[U ]δff ′ , (16.54a)

where Knαa,mβb[U ] is defined implicitly by (6.25c), i.e.,∗

Knαa,mβb[U ] = (M̂0 + 4r)δnmδαβδab

−1
2

∑
µ

[(r − γµ)αβ(Uµ(n))abδn+µ̂,m (16.54b)

+ (r + γµ)αβ(U †
µ(m))abδn−µ̂,m].

The index f(f �) in (16.54a) labels the flavour degrees of freedom, and n, α, a (m, β, b)
stand for the lattice site, and Dirac and colour degrees of freedom, respectively.
Let us denote the latter triple by a single collective index i. Then the fermionic
contribution to the action reads

S
(W )
F =

∑
i,j

ψ̄f ′

i Kij[U ]δf ′fψ
f
j ,

where Kij[U ] is flavour-independent. It therefore follows that

detK̃[U ] = (detK[U ])Nf . (16.55)

An important property of the matrix K[U ] is that its determinant is real, i.e.,
det K[U ] = det K†[U ], and that det K[U ] > 0 for values of the hopping parameter
κ = 1/(8r + 2M̂0) less than 1/8 (Seiler, 1982). We can therefore also write detK in
the form

det K[U ] =
√

det Q[U ], (16.56a)

where

Q[U ] = K†[U ]K[U ] (16.56b)

is now a positive, hermitean matrix. This will be important for the following
discussion. It follows from (16.55) and (16.56a) that (16.52a) is given by the en-
semble average of �O�SF

, defined in (16.52b), calculated with the Boltzmann factor
exp(−Seff), where

Seff [U ] = SG[U ] − Nf

2
ln det Q[U ]. (16.57)

∗ In chapter 6 we only considered the case of a single flavour.
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Suppose now that we use the Metropolis algorithm to update the link-variable
configurations. Then the Metropolis acceptance/rejection test requires us to cal-
culate the difference Seff [U �] − Seff [U ], where U denotes the original configuration
to be updated, and U � is the new suggested configuration. Hence we must calculate
the ratio

ρ(U , U �) =
det Q[U �]
det Q[U ]

. (16.58)

Although Q[U ] is a sparse (but large) matrix, since it is constructed from K[U ]
which only couples nearest neighbours, the exact computation of ρ(U , U �) is too
slow to be useful for updating link configurations on large lattices, and one must
look for a faster method for computing (16.58). Clever suggestions in this direction
were made in 1981 by Fucito, Marinary, Parisi and Rebbi (1981) and by Petcher
and Weingarten (1981).

The proposal of Fucito et al. was the following. Let δU denote the differ-
ence between the suggested link-variable configuration and the old configuration,
i.e., δU ≡ {δUµ(n)}, where δUµ = U �

µ(n) − Uµ(n). The corresponding change in
the matrix Q[U ] we denote by δQ: δQ = Q[U �] − Q[U ]. Then

ρ(U , U �) =
det(Q + δQ)

det Q
= det(1 + Q−1δQ). (16.59)

For small matrices Q−1δQ, this expression can be linearized in δQ:

ρ(U , U �) ≈ 1 + TrQ−1δQ. (16.60)

This is a reasonable approximation if the link-variables are updated one by one,
and if only small changes δU are allowed. Now the computation of the trace is easy.
But Q−1 must be evaluated at each updating step. This is very time consuming.
The usual procedure is therefore to use the same matrix Q−1[U ] for an entire sweep
through the lattice. This is consistent with the linearized approximation (16.60), but
may lead to large systematic errors, since the errors introduced at each updating step
can accumulate during a sweep. Even with this approximation the exact evaluation
of Q−1 on the link-variable configurations generated after each sweep through the
lattice is not feasable. But one may determine Q−1 approximately by noting that
its matrix elements are given by the following ensemble average

Q−1
ij = �φiφ

∗
j� =

∫
Dφ∗Dφ φiφ

∗
je

−
∑

i,j φ∗
i Qijφj

∫
Dφ∗Dφe−

∑
i,j φ∗

i Qijφj
. (16.61)
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Here φ and φ∗ are the so-called pseudofermionic (bosonic!) variables.∗ Because Q is
a positive hermitean matrix, the exponential appearing in (16.61) can be interpreted
as a Boltzmann factor. This is the reason why we have expressed detK[U ] in the
form (16.56a).

According to (16.61), one can calculate the inverse matrix Q−1 by a) generating
a complex set of pseudofermionic variables with probability density exp(−φ∗Qφ),
b) measuring the products φiφ

∗
j on each configuration generated, and c) taking the

ensemble average. Hence the main work consists in generating the configurations.

At the same time when Fucito et al. made their proposal, Petcher and
Weingarten (1981) made an alternative suggestion based on similar ideas. These
authors made use of the fact that the determinant of Q is given by the following
path integral expression over pseudofermionic variables

det Q =
1

det Q−1 =
∫

Dφ∗Dφe−
∑

i,j φ∗
i Q−1

ij φj .

As seen from (16.57), this is the relevant determinant for the case of two quark
flavours. The corresponding partition function can therefore be written in the
form

Z =
∫

DU det Q[U ]e−SG[U ]

(16.62)

=
∫

DUDφ∗Dφe−SG[U ]−
∑

i,j φ∗
i Q−1

ij [U ]φj .

This shows that to compute ensemble averages, one must generate configurations
with a non-local action. Hence the effectiveness of this method depends on the
efficiency of the algorithm for calculating the inverse of Q[U ].

Following the work of Fucito et al., Scalapino and Sugar (1981) pointed out
that in a local updating procedure, the computation of (16.58) is reduced to the
evaluation of the determinant of a small matrix. This can be easily seen. Consider
the logarithm of the ratio detK �/ det K ≡ det K[U �]/ det K[U ]:

ln
det K �

det K
= Tr ln(1 + K−1δK)

=
∞∑

N=1

(−1)
N

N+1

Tr(K−1δK)N .

∗ To every fermion degree of freedom there corresponds a pair of complex (bosonic)
variables.
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Now

Tr(K−1δK)N = Tr{K−1δKK−1δK . . . K−1δK}.

If only a single link-variable is changed in the updating procedure, then δK has only
non-vanishing matrix elements between two fixed nearest neighbour sites. Because
of the trace we only need to know K−1 in the subspace defined by δK �= 0. Let us
denote this matrix by K̂−1. Then

ln
det(K + δK)

det K
=

∞∑
N=1

(−1)
N

N+1

Tr(K̂−1δK)N

= Tr ln(1 + K̂−1δK)

= det(1 + K̂−1δK).

If the suggested configuration U + δU is accepted by the Metropolis test, then the
next updating step requires the knowledge of [K(U + δU)]−1 = (K + δK)−1 in the
appropriate new subspace. The inverse of the matrix K + δK can be calculated as
follows:

(K + δK)−1 =
1

1 + K−1δK
K−1

=
∞∑

N=0

(−1)N(K−1δK)NK−1

= K−1 − K−1δKK−1 + K−1δKK−1δKK−1 + . . . ,

or
(K + δK)−1 = K−1 − K−1[δK − δKK−1δK + . . .]K−1.

The matrix appearing within square brackets has only non-vanishing support in the
subspace mentioned before. Define

δM = δK − δKK−1δK + δKK−1δKK−1δK + . . .

Then

(K + δK)−1 = K−1 − K−1δMK−1, (16.63)

and

δM = δK(1 − K̂−1δK + K̂−1δKK̂−1δK + . . .)

= δK(1 + K̂−1δK)−1.

Hence one never has to calculate directly determinants or inverses of large matrices.
However, because after every change in a link variable the whole large inverse
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matrix must be updated according to (16.63), this algorithm is too slow to be
useful in Monte Carlo calculations, except when studying field theories in two
space-time dimensions, or four-dimensional field theories on very small lattices.
But it can serve to check the efficiency of other approximate algorithms, such as
those mentioned above, and for checking the results obtained by other approximate
methods.

Finally, we want to mention an interesting modification of the algorithm of
Fucito et al., proposed by Bhanot, Heller and Stamatescu (1983), which is not bur-
dened with the systematic errors arising from the neglect of higher order corrections
in δU . These authors suggested that one should compute the ratio (16.58) directly
using the pseudofermionic method. Since

1
det Q[U ]

=
∫

Dφ∗Dφe−
∑

i,j φ∗
i Qij [U ]φj

this ratio is given by the following expression

ρ(U , U �) =
∫

Dφ∗Dφe−φ†Qφ

∫
Dφ∗Dφe−φ†δQφe−φ†Qφ

, (16.64)

where δQ = Q� − Q, with Q� = Q[U �], Q = Q[U ]. To simplify the expression we
have used matrix notation. According to (16.64), ρ is given by the inverse of the
ensemble average of exp(−φ∗δQφ), calculated with the Boltzmann factor exp(−SQ),
where SQ = φ†Qφ is a local expression of the link variables:

ρ =
1

�exp(−φ†δQφ)�SQ

. (16.65a)

Alternatively, ρ is also given by

ρ = �exp(φ†δQφ)�SQ� , (16.65b)

where SQ� is the pseudofermion action for the suggested link-variable configuration
U �. How does one recover the result of Fucito et al.? Consider the expression (16.65b).
For small arguments of the exponential we can replace ρ by

ρ ≈ 1 +
∑
i,j

�φ∗
i φj�SQ

δQij,

or making use of (16.61)

ρ ≈ 1 + TrQ−1δQ.

This coincides with the approximation (16.60).
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The advantages of the method of Bhanot et al. are that i) one is not limited
to small changes in the link-variables; ii) the only errors introduced are statistical
and iii) the accuracy of the method can be estimated by computing the ratio of the
determinants either from (16.65a) or (16.65b).

This is all we want to say about the pseudofermion method. For details of
how this method is implemented in praxis the reader should confer the published
literature.

16.9 Application of the Hybrid Monte Carlo Algorithm
to Systems with Fermions

We conclude this chapter by giving an example of how the hybrid Monte Carlo
(HMC) algorithm of Duane et al. (1987) is implemented in gauge theories with
fermions. To keep the discussion simple, we will restrict ourselves to lattice QED
with two flavours of mass-degenerate Wilson fermions.

Before the HMC algorithm can applied to calculate a correlation function one
must first write the path integral expressions in the form of an ensemble average over
bosonic variables. This is done by proceeding in the way described in the previous
section. The relevant partition function is given by (16.62), where Q is the positive
hermitean matrix defined in (16.56b).

The next step consists in rewriting the partition function as a path integral in
phase space. To this effect one introduces the momenta π∗

i , πi and Pl canonically
conjugate to φi, φ∗

i and Al, where Al is the angular variable parametrizing a link
labeled by the collective index l.∗ The corresponding link variable we denote by Ul.
Defining the “Hamiltonian”

H =
1
2

∑
l

P 2
l +

∑
i

π∗
i πi + SG[U ] + SPF[U , φ, φ∗], (16.66)

where SFP is the pseudofermionic action

SPF =
∑
i,j

φ∗
i Q

−1
ij [U ]φj, (16.67)

∗ l stands for the coordinates of the lattice site n and the direction µ labeling a
particular link variable, and U� and A� are related by U� = exp(iA�).
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and SG is the action of the pure U(1) gauge theory defined in (5.21), the partition
function (16.62) can be written in phase space as follows

Z =
∫

DUDφDφ∗DPDπDπ∗e−H .

Recall that the Hamilton equation of motion derived from (16.66) describe the dy-
namics of a system in a new time τ , which is identified with the simulation time in
a Monte Carlo calculation. These equations are given by

φ̇i(τ) = πi(τ), (16.68a)

π̇i(τ) = −
∑

j

Q−1
ij [U ]φj(τ), (16.68b)

Ȧl(τ) = Pl(τ), (16.68c)

Ṗl(τ) = − ∂SG

∂Al(τ)
−

∑
i,j

φ∗
i (τ)

∂Q−1
ij [U ]

∂Al(τ)
φj(τ). (16.68d)

Expressed in terms of the link variables, (16.68c) becomes

U̇(τ) = iPl(τ)U(τ).

The derivative of Q−1 appearing in (16-68d) can be written in a more convenient
form by making use of the fact that Q is given by the product (16.56b), and that
∂(K−1K)/∂Al = ∂((K†−1K†)/∂Al = 0. One readily verifies that

∂Q−1

∂Al

= Q−1 ∂Q

∂Al

Q−1.

Introducing this expression into (16.68d), we see that the equations (16.68) are
equivalent to the following set:

ηi =
∑

j

Q−1
ij [U ]φj, (16.69a)

φ̇i = πi, (16.69b)

π̇i = −ηi, (16.69c)

U̇l = iPlUl, (16.69d)

Ṗl = −∂SG

∂Al

−
∑
i,j

η∗
i

∂Qij

∂Al

ηj, (16.69e)

In principle these equations are to be used in the molecular dynamics part of the
HMC algorithm (see section 7). But this is not what one does in practice, for there
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exists a faster way of generating a set of configurations in the pseudofermionic and
link variables. Thus consider the pseudofermionic action (16.67). The inverse of the
matrix Q is given by the product K−1(K†)−1. Hence this action can be written
in the form SPF =

∑
i ξ

∗
i ξi, where the vector ξ = (ξ1, ξ2, . . .) is constructed from

φ = (φ1, φ2, . . .) as follows

ξ = (K†[U ]−1)φ.

Now one can easily generate configurations in these new variables which are dis-
tributed according to exp(ξ†ξ). By calculating φ = K†[U ]ξ, one then obtains, for
fixed U = {Ul}, an ensemble of configurations in the pseudofermionic variables dis-
tributed according to exp(−φ†Q−1φ). Each of these configurations can be used as
an background field in a molecular dynamics chain for the link variables. This is
what one does in practice. Hence the implementation of the HMC algorithm goes
as follows:

i) Choose a starting link variable configuration.
ii) Choose Pl from a Gaussian ensemble with Boltzmann factor exp(−1

2

∑
l P

2
l ).

iii) Choose ξ to be a field of Gaussian noise.
iv) Calculate

φ = K†[U ]ξ.

v) Allow the link variables and the canonical momenta Pl to evolve deterministi-
cally according to (16.69d,e), where η = Q−1[U ]φ, with φ held fixed.

vi) Accept the new configuation (A�, P �) generated by the molecular dynamics
chain with probability

p = min

(
1,

e−H̃[A′,P ′]

e−H̃[A,P ]

)
,

where H̃ is the Hamiltonian governing the dynamics of the link variables in
the presence of a background field φ:

H̃[A, Pl] =
1
2

∑
l

P 2
l + SG[U ] +

∑
i,j

φ∗
i Q

−1
ij [U ]φj.

vii) Store the new configuration generated, or the old configuration, as dictated by
the Metropolis test.

viii) Return to ii).
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The step v) is realized using the leapfrog method, described in section 6. Thus
(16.69e) is written in the form

Pl

(
τ +

3�
2

)
= Pl

(
τ +

�

2

)
− �

[
∂SG

∂Al(τ + �)
+

∑
i,j

η∗
i (τ + �)

∂Qij

∂Al(τ + �)
ηj(τ + �)

]
,

where the first half step is calculated as described in section 6. On the other hand
the naive discretization of (16.69d) reads:

Ul(τ + �) = Ul(τ) + i�Pl

(
τ +

�

2

)
Ul(τ).

Link variables updated in this way would, however, not be elements of the U(1)
group. For this reason one discretizes (16.69d) as follows:

Ul(τ + �) = ei�Pl(τ+ �
2 )Ul(τ),

which for infinitesimal time steps is equivalent to the naive discretization.

The Hybrid Monte Carlo algorithm is the best algorithm available at present
for simulating dynamical fermions. It allows one to choose large time steps without
introducing any systematic errors. This is guaranteed by the Metropolis test. Since
in step v) the system is allowed to evolve according to the Hamilton equations of
motion, the only change in H will be due to the finite time-step approximation.
Hence most of the configurations generated will be accepted by the Metropolis test,
if the time step is not too large. This means that the system is moving fast through
configuration space. The algorithm is however rather slow, since it requires the
computation of the vector η = Q−1[U ]φ in step v). Furthermore, it is not clear how
to implement it for an odd number of quark flavours.
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CHAPTER 17

SOME RESULTS OF MONTE CARLO CALCULATIONS

We begin this chapter with an apology. As the reader can imagine, there has
been an enormous amount of activity within the computational sector of lattice
gauge theories since their invention in 1974. Most of the pioneering work has been
performed on small lattices. Since then many calculations have been improved by
working on larger and finer lattices, and by developing new computational tech-
niques. Clearly we cannot possibly do justice to all the different groups of physicists
who have made important contributions to this field. What we intend to do, is to
acquaint the reader with some of the questions that physicists have tried to get
an answer to, and to present some lattice calculations which illustrate the results
one has obtained, placing special emphasis on pioneering work. Thus any comments
should always be seen in the light of the Monte Carlo data obtained at that time.
For a critical analysis of the data we present the reader should consult the original
articles we cite. References to other contributions can be found in the proceedings
to the numerous lattice conferences.

17.1 The String Tension and the qq̄ Potential in the SU(3)
Gauge Theory

The string tension was defined in chapter 8 as the coefficient σ of the linearly
rising part of the potential for large separations of a quark–antiquark pair. It is the
force between a static quark and antiquark at infinite separation in the absence of
pair production processes. In a numerical calculation this force can only be measured
for relatively small qq̄-separations (in lattice units). Hence if the scale on which this
force is seen in nature is determined by the size of hadronic matter then one must
choose the lattice to be sufficiently coarse (i.e., the coupling g0 sufficiently large)
for the hadron, represented by the qq̄ system, to fit on it. But if the lattice is made
too coarse, one cannot expect to extract continuum physics, and the dimensionless
string tension σa2 will not exhibit the behaviour predicted by the renormalization
group. Thus one is faced in practice with a precarious situation: if one chooses too
small a lattice spacing (or coupling constant), then one cannot expect to see the
asymptotic form of the force on a lattice of small extent. On the other hand, if the
lattice spacing is too large, then one cannot expect to see continuum physics. Thus
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at best one can hope to measure the physical string tension in a narrow range of
the coupling constant. This is the so-called “scaling window”.

Let us now see how things look in practice. To this effect recall first of all that
the static qq̄-potential in lattice units can in principle be determined by calculating
the following limit:

V̂ (R̂) = − lim
T̂→∞

[
1
T̂

ln W (R̂, T̂ )
]

,

where W (R̂, T̂ ) is the expectation value of the Wilson loop with spatial and temporal
extension R̂ and T̂ , respectively. Since this expectation value is determined in general
from a MC calculation where neither R̂ nor T̂ are very large, V̂ (R̂) is not expected
to be of the form (8.17a). In fact, already the self-energy contributions to lnW (R̂, T̂ )
will be proportional to the perimeter R̂ + T̂ , and will compete with the area term
σR̂T̂ , for finite T̂ and R̂. Effects arising from terms proportional to the perimeter
can, however, be easily eliminated. Assuming that W (R̂, T̂ ) has the form

W (R̂, T̂ ) = e−σ̂R̂T̂−α̂(R̂+T̂ )+γ̂ , (17.1)

we can isolate the string tension σ̂ by studying the Creutz ratios

χ(R̂, T̂ ) = − ln

(
W (R̂, T̂ )W (R̂ − 1, T̂ − 1)
W (R̂, T̂ − 1)W (R̂ − 1, T̂ )

)
.

If the Wilson loop depends on R̂ and T̂ in the way given by (17.1), then χ(R̂, T̂ )
will be independent of these variables, and will coincide with the string tension.
In Fig. (17-1) we show the first MC data for the SU(2) string tension (black dots)
obtained by Creutz (1980) together with the results of the strong coupling expansion
carried out by Münster (1981) up to twelvth order in β = 4/g2

0. For comparison the
lowest order result for σ̂ in strong coupling has also been included. Notice that in the
narrow “window” 2.2 < β < 2.5 the MC data follow an exponential curve predicted
by the renormalization group; indeed, for the case of SU(2), the relation between
the lattice spacing a and the coupling g0 analogous to (9.20) is found to read as
follows:

a =
1

ΛL

R(g0)

where

R(g0) ≈ e−(3π2/11)β
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and∗

β = 4/g2
0.

0.1

1.0

− In

exp(− (β−2))

4
β

β

6π2

11
a2 σ

Fig. 17-1 The SU(2) string tension in lattice units as a function of

4/g2
0 . The dots are MC results of Creutz (1980). The solid curve is the

result of the cluster expansion carried out by Münster (1981).

Since the physical string tension σ has the dimension of (mass)2, σ̂(g0) must
behave as follows in the scaling region

a2σ = σ̂(g0) ≈ Ĉσ[R(g0)]2. (17.2)

This gives
√

σ in units of the (dimensioned) lattice parameter ΛL:

√
σ =

√
ĈσΛL. (17.3)

The constant
√

Ĉσ can be determined from the weak coupling fit to the Monte Carlo
data.

∗Recall that for SU(N), β was defined as β = 2N/g2
0. ΛL is of course not to be

identified with the corresponding lattice parameter in the SU(3) gauge theory.
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We want to point out that a lattice calculation can only determine a physical
observable in units of the lattice parameter ΛL; hence one can only calculate dimen-
sionless ratios of physical quantities. Alternatively one may use the experimentally
measured value for an observable (such as a hadron mass, string tension, etc.) to
determine the scale ΛL or the lattice spacing. For example solving Eq. (17.2) for a

we get

a =

√
Ĉσ

σ
R(g0). (17.4)

Since Ĉσ can be determined from a lattice calculation, (17.4) determines a in physical
units, once σ is known. Alternatively one can also use the mass of a hadron to
determine a as a function of g0. Let MH be some physical hadron mass (proton,
pion, etc.); then from dimensional arguments alone we know that in the scaling
region

M̂H = MHa = ĈH R(g0),

where ĈH can again be determined from a lattice calculation; solving for a we get

a =

(
ĈH

MH

)
R(g0).

SU(3)   64
101

100

10−1

10−2

 ΛO = (6±1) × 10−3 √K

− ln
18

(1.1)

(2.2)

(3.2)

(3.3)

β

0.0 2.0 4.0 6.0 8.0
β

10.0 12.0 14.0

(R
,T

)
χ

∧
∧

Fig. 17-2 Creutz ratios as a function of β = 6/g2
0 for the SU(3) gauge

theory. The figure is taken from Creutz and Moriarty (1982). The solid

curve is the string tension in the leading strong coupling approximation.
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Once the lattice spacing has been determined, one knows the physical extension
of the lattice used in a MC calculation performed at a fixed value of the coupling.
This gives us a handle of accessing the relevance of the lattice employed in studying
a particular phenomenon.

Similar calculations to the one just described have been performed subsequently
by Creutz and other authors for the case of SU(3). In Fig. (17-2) we show the
MC results of Creutz and Moriarty (1982) for the Creutz ratios constructed from
different Wilson loops at various values of β, together with the strong coupling result
in leading order. This calculation was carried out on a 64 lattice. From the figure it
appears that asymptotic scaling sets in for values of β slightly below 6.0. Subsequent
studies performed on larger lattices, however, indicated that scaling probably sets
in for β > 6.2.

So far we have only considered the string tension, i.e. the linearly rising piece of
the potential. For a proper determination of the string tension one should, however,
also include in the fit the behaviour of the potential at short distances. For small
separations of the qq̄-pair, the potential is expected to exhibit a Coulomb type
behaviour with a “running” coupling constant α depending logarithmically on the
distance scale. This is predicted by asymptotic freedom.

0.0

V
~

−1.0

−2.0

0.5 1.0 1.5 x

Fig. 17-3 MC data of Stack (1984) for the static qq̄-potential at various

qq̄ separations. V and R are measured essentially in units of
√

σ and 1/
√

σ.

The solid curve is a fit to the data based on the ansatz (17.5).

In Fig. (17-3) we show the results of a MC calculation performed by Stack
(1984) for the case of SU(3) on a 83×12 lattice, with β values (β = 6/g2

0) lying within
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the observed scaling window (6.0 < β < 7.0). The potential and the separation of
the qq̄ pair are measured essentially in units of

√
σ and 1/

√
σ. The solid line is a fit

to the data based on a linear combination of a Coulomb and linear potential of the
form

V (R) = −α

R
+ σR. (17.5)

A large scale simulation was carried out later on by de Forcrand (1986) on a 243×38
lattice at β = 6.3. Fig. (17-4) shows the results of the MC calculation, together with
a fit based on the form (17.5) for the potential. Similar results have been obtained
by the same author at β = 6.0 on a 174 lattice.

1
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Fig. 17-4 MC data for the qq̄-potential in the pure SU(3) gauge theory

obtained by de Forcrand (1986).

What is noteworthy is that a violation of asymptotic scaling was observed, and
that the string tension measured in units of ΛL (cf. Eq. (17.3)) was much lower than
that obtained in previous calculations (

√
σ/ΛL ≈ 92 at β = 6.0, and

√
σ/ΛL ≈ 79 at

β = 6.3). In fact, since the original determination of σ by Creutz and Moriarty, the
string tension measured in units of the lattice parameter ΛL, has kept decreasing.
The original value for

√
σ/ΛL was

√
σ/ΛL = 167. At the Berkeley conference (see

Hasenfratz, 1986) the value had decreased to about 90. This value was extracted
from measurements performed at rather small qq̄-separations (up to 8 lattice sites).
In a more recent calculation of the static qq̄-potential performed with high statistics
(Ding, Baillie and Fox, 1990) and for large separations of the quark and antiquark
(up to R = 12a) an even lower value was obtained:

√
σ/ΛL ≈ 77. Also the value

of the coupling α in Eq. (17.5) was found to be quite different from that obtained
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in previous simulations (α = 0.58 as compared to α ≈ 0.3). As Ding et al. point
out, their values compare favourably with those of Eichten et al. (1980) obtained
by fitting the (heavy quark) charmonium data with a Coulomb plus linear potential
ansatz. Since charmonium is built from heavy quarks, it is reasonable to describe this
system with a potential model. The values for the string tension

√
σ and coupling α

estimated by Eichten et al. were 420 MeV and 0.52, respectively. In a further paper
Ding (1990) also finds that the dimensionless ratio V/

√
σ, which according to to

(17.5) should be a function of
√

σR =
√

σ̂R̂, is independent of the couplings used
(β = 6.0, 6.1 and 6.2), as must be the case if one is in the scaling region. This is
shown in Fig. (17-5).

0
−2

−1

0

1

2

3

1 2

R√σ

V
/√

σ

:    =6.0β
:    =6.1β
:    =6.2β

Fig. 17-5 MC data of Ding et al. for the qq̄-potential obtained at

various couplings β = 6/g2
0 . All the points are seen to lie on a single

curve, indicating that one is in the scaling region. The figure is taken

from Ding (1990).

A potential which rises linearly with the separation of the quarks is what is
expected from a flux-tube picture of confinement. As we have mentioned in the
introduction of chapter 7, it is generally believed that the non-abelian nature of
the SU(3) gauge theory causes the flux, linking the quark and antiquark, to be
squeezed into a narrow tube. It is therefore of great interest to study the spatial
distribution of the energy density between two static sources, immersed into a pure
gluonic medium, in a Monte Carlo “experiment”. Early work in this direction has
been carried out by Fukugita and Niuya (1983) and by Flower and Otto (1985).
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More complete studies of this problem have been carried out by Sommer (1987 and
1988) for qq̄-separations up to four lattice units. For the case of the SU(2) gauge
theory, detailed Monte Carlo studies of the flux distribution for a quark-antiquark
pair have been reported by Haymaker et al. (1987–1992) and Bali et al. (1995). The
authors find that the energy and action density are indeed confined to a very narrow
region around the qq̄-axis. For more details the reader may consult section 17.7.

17.2 The qq̄-Potential in Full QCD

So far we have neglected the effects arising from pair production. These effects
arise from the fermionic determinant which must be included when updating the link
variable configurations. In the presence of dynamical quarks, quark-pair creation can
take place, which causes the flux tube connecting the static quark and antiquark to
break when the sources are pulled far enough apart. This is expected to occur when
the energy stored in the string becomes larger than 2M , where M is the constituent
quark mass. Thus the potential should flatten for large separations of the quark–
antiquark pair. But to observe this flattening, one needs to study large Wilson loops,
which is very difficult. Since simulations in full QCD are extremely time-consuming,
one is restricted to relatively small lattices, which do not allow one to study the
potential for very large separations of the quark and antiquark (this is especially
true for Wilson fermions since they involve a larger number of degrees of freedom
than Kogut–Susskind fermions). Hence to calculate the potential at large distances,
the lattice spacing must be chosen sufficiently large.

To identify screening effects due to quark-pair production processes, the full
QCD data should, however, not be compared with the quenched data at the same
value of the coupling. The reason is that part of the effects seen in numerical cal-
culations can be interpreted in terms of a shift in the gauge coupling. Such a shift
is expected, since when quarks are coupled to the gauge potential, vacuum polar-
ization effects will lower the effective coupling. The amount by which the coupling
is decreased will depend on the number of quark flavours. Also the relation be-
tween gauge coupling and lattice spacing is changed when dynamical fermions are
included. To compare the full QCD results with the quenched data one should there-
fore first get an estimate of how the coupling is renormalized by vacuum polarization
effects. The way that this is usually done in praxis is to determine the coupling in
the quenched theory for which the expectation value of a Wilson loop or a pla-
quette variable agrees with that obtained in the full theory for a fixed choice of
coupling.
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The first calculation of the interquark potential with Wilson fermions which
showed an impressive flattening of the potential for larger separations of the quark-
antiquark pair was carried out by de Forcrand and Stamatescu (1986).

V(R) = ( −     + σR )α
R

1−e−   R

Rµ
µ

no screening

Values
o = 5.35
x = 5.20

   = (400 Mev)2

a(5.20) = 0.25 fermi

= 0.90 ± 0.20 fermi
    = 0.21 ± 0.01

Input :

Fit      :

δ a/a =   0.1
β

0
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−0.1

0.1
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Fig. 17-6 MC data of Born et al. (1989) for the qq̄-potential in full

QCD with Kogut–Susskind fermions. The data has been fitted with the

screened potential (17.6). The neighbouring dotted lines show the shift in

the potential if the lattice spacing is changed by 10%.

The lattice used was however very small, and it could not be ruled out that
part of the screening observed was due to finite size (or temperature) effects. Kogut–
Susskind fermions allow one to use larger lattices. Fig. (17-6) shows the potential
in physical units obtained by Born et al. (1989) using Kogut–Susskind fermions.
The calculation was performed on a 123 × 24 lattice for two couplings, 6/g2

0 =
5.35 and 5.20. The lattice spacing was determined by measuring the ρ mass in the
same simulation. Hence a = M̂ρ/Mρ, where M̂ρ is the ρ mass in lattice units and
Mρ = 770 MeV is the physical ρ mass. These authors have parametrized the data
according to

V (R) =
(
−α

R
+ σR

) 1 − e−µR

µR
, (17.6)

where the string tension was fixed to be
√

σ = 400 MeV. The coupling and the
screening mass µ were then determined from the fit to be α = 0.21 ± 0.01 and
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µ−1 = 0.9 ± 0.2 fermi. Although the data appears to indicate that the qq̄ potential
has been screened, this need not be the case. The conclusion is very sensitive to
the lattice spacing. Thus by chosing a different lattice spacing, the data could also
be fitted with an unscreened potential. The authors point out, however, that the
change in lattice spacing required would be inconsistent with that determined from
the measurement of the ρ-mass in the same simulation. But since the measurement
of the ρ mass requires an extrapolation, no conclusive statement can be made.

We have mentioned two simulations which suggest that the potential is screened
at “large” distances due to the creation of qq̄-pairs from the vacuum. Not all the
simulations that have been carried out, however, confirm this screening picture (see
e.g. Gupta, 1989). Clearly to get an unambiguous signal for string-breaking at large
distances, one must be sure that the screening seen is not a short distance or finite
volume effect. For this the simulations have to be carried out on much larger lattices,
and at a smaller lattice spacing. In this case the observation of a flat potential
for large separations of the quark-antiquark pair would provide us with conclusive
evidence for string breaking.

17.3 Chiral Symmetry Breaking

A symmetry of the action is said to be spontaneously broken if it is not re-
spected by the ground state. If the transformations leaving the action invariant
form a continuous group, then this spontaneous breakdown is accompanied by the
appearance of massless particles, the so-called Goldstone bosons, which can propa-
gate over large distances, giving rise to long-range correlations. The number of such
Goldstone bosons equals the number of generators associated with the broken part
of the symmetry group.∗

In the limit of vanishing quark masses the pions observed in nature are believed
to be the Goldstone bosons associated with a spontaneous breakdown of chiral
symmetry. Let us illustrate what we mean by chiral symmetry for the case of an
abelian U(1) gauge theory. The continuum action for vanishing fermion mass has
the form

S =
1
4

∫
d4xFµνFµν +

∫
d4xψ̄γµ(∂µ + ieAµ)ψ.

∗In the case of a gauge theory, there exist important cases where these Goldstone
bosons do not appear, but are absorbed into the longitudinal degrees of freedom of
the gauge field (Higgs mechanism).
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Now the field ψ can always be decomposed into “left”- and “right”-handed parts as
follows:

ψ = ψR + ψL,

where

ψR = P+ψ, ψL = P−ψ,

P± =
1
2
(1 ± γ5); P 2

± = P±.

With

ψ̄R = ψ̄P−, ψ̄L = ψ̄P+,

the fermionic part of the action becomes

SF =
∫

d4xψ̄Lγµ(∂µ + igAµ)ψL

+
∫

d4xψ̄Rγµ(∂µ + igAµ)ψR.

This action is invariant under the following transformations

ψL −→ eiαψL, ψ̄L −→ e−iαψL ,

ψR −→ eiλψR, ψ̄R −→ e−iλψR,
(17.7)

where α and λ are arbitrary parameters. These transformations are elements of a
UR(1) × UL(1) group: the chiral group. Consider now the ground state expectation
value of ψ̄RψL, i.e., �ψ̄RψL�. ψ̄RψL transforms as follows under (17.7),

ψ̄RψL −→ eiΛψ̄RψL ,

where Λ = α − λ. If the transformations (17.7) are implemented by a unitary
operator, and if the ground state is left invariant under the action of this operator,
then �ψ̄RψL� must vanish. The same is true for �ψ̄LψR�. This need however not be
the case in a quantum theory involving an infinite number of degrees of freedom,
where the ground state may not be chirally invariant. Hence �ψ̄RψL� may in fact be
different from zero, implying that chiral symmetry has been broken spontaneously.

As we have just demonstrated, a good quantity for testing the spontaneous
breakdown of chiral symmetry is �ψ̄RψL�. Alternatively, �ψ̄ψ� = �ψ̄RψL� + �ψ̄LψR�
will also do the job, and is the quantity usually studied in the literature. Since ψ̄ψ

has the dimension of (length)−3, its expectation value in lattice units must have the
following dependence on the bare coupling constant in the scaling region

� ¯̂
ψψ̂� = Ĉψ̄ψ[R(g0)]3, (17.8)
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where R(g0) is given by Eq. (9.21d). The constant Ĉψ̄ψ can be determined from a
MC calculation. In physical units (17.8) then reads

�ψ̄ψ� = Ĉψψ̄Λ3
L

where ΛL is the lattice scale appearing in (9.21c).
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Fig. 17-7 MC data of Barkai, Moriarty and Rebbi (1985) for the chiral

condensate �ψ̄ψ� measured in lattice units, for various values of the dimen-

sionless bare quark mass. The solid curve is a fit to the data, and has been

extrapolated to the zero quark mass. The dashed line is a fit obtained by

leaving out the point denoted by a cross which is rather sensitive to finite

volume effects.

In Fig. (17-7) we show the quenched data for �ψ̄ψ� in lattice units as a func-
tion of the bare quark mass m̂q, obtained by Barkai, Moriarty and Rebbi (1985)
on a 163 × 32 lattice at β = 6.0. The non-vanishing extrapolated value of �ψ̄ψ� at
m̂q = 0 is a sign of spontaneous symmetry breaking. If in the limit of vanishing
quark mass the pion becomes the Goldstone boson associated with the breakdown
of chiral symmetry, then its mass should vanish linearly with √

mq. In Fig. (17-
8) we show the MC data of the above mentioned authors for M̂π as a function
of

√
m̂q. The linear fit extrapolates indeed to M̂π = 0 for vanishing quark mass.

The calculation was performed using staggered fermions. Staggered fermions have
been used also in most of the other computations of �ψ̄ψ� in the literature. The
reason is that, as we have seen in chapter 4, the action for Wilson fermions, (6.25c),
breaks chiral symmetry explicitly also for M̂0 → 0. Hence we cannot identify M̂0
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with a bare quark mass. A possible definition of the quark mass is however sug-
gested by the above made observation that Mπ should vanish for mq → 0. This
will occur for some critical value κc of the hopping parameter, corresponding to
some M̂0 = M̂c:

κc =
1

8r + 2M̂c

.

This suggests the definition m̂q = M̂0 − M̂c, or equivalently

m̂q =
1
2

(
1
κ

− 1
κc

)
. (17.9)
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Fig. 17-8 MC data of Barkai, Moriarty and Rebbi (1985) for the pion

mass as a function of the square root of the bare quark mass. Both masses

are measured in lattice units.

Hence in a formulation using Wilson fermions, one must first determine the
critical value of the hopping parameter where the pion mass vanishes, and then
study the “chiral condensate” �ψ̄ψ� in the limit κ → κc. In Fig. (17-9) we show
a somewhat later calculation of the pion mass (in lattice units) as a function of√

m̂q, performed by Bowler et al. (1988) on a 163 × 24 lattice, at β = 6.15. For
a quark mass of less than 0.01 the data deviate from the linear behaviour. The
above mentioned authors argue that this is probably due to finite-time effects which
becomes increasingly important as the quark mass is lowered.
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Fig. 17-9 Monte Carlo data of Bowler et al. (1988) for the pion mass

in lattice units as a function of the square root of the quark mass m̂q.

17.4 Glueballs

As we have pointed out in chapter 6, QCD in the pure gauge sector is a very non
trivial theory. We therefore expect that it posesses its own spectrum of bound states
built from the gluon fields. These bound states are called glueballs. If the theory
confines colour, then the glueballs must be colour singlets. Of course a realisitic
calculation, which can be confronted with experiment, should include the effects
arising from quarks. But one may hope that by studying the pure gauge sector one
obtains a first approximation to the true glueball bound state spectrum. If glueballs
are indeed predicted by QCD, then they must found experimentally, or QCD is ruled
out as the theory of strong interactions. It is therefore very important to calculate
the mass spectrum of the glueball states. The lattice formulation of QCD provides
us with this possibility.

The basic idea that goes into the computation of the glueball mass spectrum
is very simple. One first constructs a gauge invariant functional of the link variables
located on a fixed time slice of the four-dimensional lattice, carrying the quantum
numbers of the state one wishes to investigate. This functional is build from the
trace of the product of link matrices along closed loops on the lattice. From these
functionals one constructs zero momentum operators by summing the contributions
obtained by translating the loops over the entire spatial lattice. Furthermore, since
on the lattice we have only a cubic symmetry, but no rotational symmetry, the
zero momentum operator should transform under an irreducible representation of
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the cubic group. These representations couple only to certain angular momenta in
the continuum limit.∗ The lowest glueball state is expected to be that carrying the
quantum numbers of the vacuum (JPC = 0++), where P and C stands for parity
and charge conjugation. An example of a zero momentum operator coupling to the
spin zero state in the continuum limit is given by

O(τ) =
∑

�x,orient.

,

where the square denotes an elementary plaquette variable with base at (�x, τ), and
where the sum is carried out over all the positions and space orientations of the
plaquette located in a fixed time slice. This is the simplest operator one can use to
study a zero angular momentum glueball. In most calculations, however, other more
complicated loops have been considered as well. Let us assume that we have chosen
an operator O(τ) to study a particular glueball state. The lowest mass of a glueball
carrying the quantum numbers of O can then, in principle, be determined from the
behaviour of the correlation function �O(τ)O(0)� for large euclidean times. Indeed,
recalling that O(τ) = exp(Hτ)O(0) exp(−Hτ), where H is the Hamiltonian, one
has that

C(τ) =
∑

n

|�n|O�|2e−Enτ , (17.10)

where |O� denotes the state created by the operator O = O(0) from the vacuum,
and En is the energy of the n’th eigenstate of H (measured relative to the vacuum.)
In the large euclidean time limit, C(τ) is dominated by the lowest energy state
carrying the quantum numbers of O. If these quantum numbers happen to coincide
with that of the vacuum, then one is interested in the next higher energy state.
Hence one must first subtract the vacuum contribution in (17.10) before taking the
large euclidean time limit. This is accomplished by replacing O(τ) by O(τ)−�O(τ)�,
or equivalently, subtracting �O(τ)��O� from the correlation function. This yields the
connected correlation function. Then

C(τ)conn. −→
τ→∞

|�G|O�|2e−EGτ , (17.11)

∗For a detailed discussion of this problem the reader may confer the lectures of
Berg (Cargese 1983).
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where |G� denotes the lowest glueball state above the vacuum with the quantum
numbers of O. By studying the exponential decay of the correlation function for
large euclidean times, one then extracts the glueball mass of interest. This sounds
very simple indeed. But in praxis one is confronted with a number of serious prob-
lems. In fact, measuring the glueball masses is one of the most difficult tasks in
numerical simulations of the SU(3) gauge theory. The ideal situation would be that
the measured values of C(τ) would fall on a simple exponential curve, and that the
lattice is fine enough for the gluon mass to exhibit the scaling behaviour predicted
by the renormalization group. In particular, close to the continuum limit, the ratios
of different glueball masses should become independent of the coupling. To see a
single exponential would however require that we either are able to measure the
correlation function for very large times, or that |O� has only a projection on the
particular state of interest. This is certainly not the case in praxis. In the early days
of glueball computations the operator O was built from simple plaquettes or from a
linear combination of more complicated loops of different shapes and orientations.∗

The difficulty one encountered was that the signal was drowned within the statisti-
cal noise for times beyond two lattice spacings, even for the lightest glueball. One
of the problems was that the overlap of the glueball states with |O� was too small.
This overlap gets worse and worse as the lattice spacing is reduced. This is intu-
itively obvious since the physical extension of the glueball remains fixed, while the
local operator O, constructed from small loops, probes an ever smaller region of the
glue ball wave function as one decreases the lattice spacing. For this reason it is
only possible to obtain a reasonable signal on coarse lattices, where the state |O�
has a reasonable overlap with the glueball wave function. But even if the overlap is
enhanced for larger lattice spacings, the glueball mass measured in lattice units is
also increased, and hence the exponential in (17.11) leads to a stronger supression of
the correlation function. Clearly what one needs are operators which have a strong
overlap with the glueball state of interest for small lattice spacings. This would solve
both problems mentioned above, and at the same time allow one to probe the scal-
ing region. How important this is, is made evident by the observation that for local
operators the overlap decreases with the fifth power of the lattice spacing.∗∗ This
is clearly a disaster and makes it very hard to study continuum physics with local

∗For a review of early work see Berg (1983). For the earliest glueball calculations
see Berg (1980); Bhanot and Rebbi (1981); Engels et al. (1981a).

∗∗See the talk by Schierholz at Lattice 87 (Schierholz,1988), and the review talk
by van Baal and Kronfeld at Lattice 88 (1989).
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operators. After 1986 there have been several proposals for constructing non local
operators for which C(τ)/C(0) ≈ a (Berg and Billoire, 1986; Teper, 1986a; Albanese
et al., 1987; Kronfeld, Moriarty and Schierholz, 1988). The use of such (non-local,
smeared, or fuzzy) operators improves the signal to noise ratio dramatically, and al-
lows one to measure the correlation function of the 0++ and 2++ states for temporal
separations much larger than than in previous calculations. As an example we show
in Fig. (17-10) the 0++ and 2++ correlation functions obtained by Brandstaeter et al.
(Schierholz, 1989) at 6/g2

0 = 6.0 on a 164 lattice. A clear signal is obtained up to
t = 6 for the 0++ state, and up to t = 5 for the 2++ state.∗

Γ (t)
Γ (t)
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tt
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1

Fig. 17-10 MC data of Brandstaeter et al. for the (a) 0++ and (b) 2++

correlation function. The figure is taken from Schierholz (1989).

A particularily efficient prescription for constructing non local operators is that
proposed by Teper (1986a). Since this prescription is very simple and intuitive, we
describe it here. Teper constructs by an iterative method very complex non local
operators O consisting of an enormous number of elementary paths. The iterative

∗For details regarding the operator used, see Schierholz (1988).
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scheme involves only the link variables located in a fixed time slice, and goes as
follows. First one constructs so called fuzzy link variables associated with a path of
length 2 along an arbitrary µ direction and with base at an arbitrary point n, by
adding the contributions of the direct path and the spatial ”staples” (as Teper calls
them), as shown below:

= +

±ν, ν ≠ 4
ν ≠ µ

µ

ν (17.12)

At this level the contributions appearing on the right hand side are calculated from
the matrix products of the usual link variables. The result is the fuzzy “path” shown
on the left hand side. Let us denote (with Teper) the usual links variables by U

(0)
µ (n)

and the new fuzzy variable by U
(1)
µ (n); then

U (1)
µ (n) = U (0)

µ (n)U (0)
µ (n + µ̂)

+ U (0)
ν (n)U (0)

µ (n + ν̂)U (0)
µ (n + ν̂ + µ̂)U (0)†

ν (n + 2µ̂). (17.13)

In the next step of the iteration processes one replaces the link variables appearing
on the right hand side of (17.12) by the fuzzy links obtained in the first step. The
new fuzzy links U

(2)
µ (n) are now associated with a path joining the lattice site n

with n + 4µ̂ . At each step of the iteration process the length of the link increases
by a factor of 2. The N -th step of the iteration process is depicted in the following
figure, taken from Teper (1986):

Uµ
(N)(n)

Uµ
(N−1)(n+L

N−1
µ)

Uµ
(N−1)(n)

Uν
(N−1)(n)

^ Uµ
(N−1)(n+L

N−1
µ +L

N−1
ν)^ ^

Uµ
(N−1)(n+L

N−1
ν)^

Uν
(N−1)(n+2L

N−1
µ)^

= +

±ν, ν ≠ 4
ν ≠ µ

Here lN = 2N . Having generated at the N -th step the fuzzy “links” U
(N)
µ (n), one

can e.g. construct from these superplaquettes in a manner completely analogous to
the usual elementary plaquette:

= U
(N)
ij (n) = U

(N)
i (n)U (N)

j (n + lN î)U (N)†

i (n + lN ĵ)U (N)†

j (n)
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Hence loops of fuzzy links are now complicated objects when expressed in terms of
elementary paths. Note that the matrizes U

(N)
µ (n) are not group elements. Only in

the case of SU(2) these are proportional to a unitary matrix, with the proportionality
constant given by the determinant. But this is not of relevance here, since the aim is
to merely construct sufficiently complex operators, to ensure that they create states
having a large overlap with the glueball candidate of interest.

Because of the simplicity of the iterative scheme, one is now in the position
to increase the number of iteration steps with decreasing coupling in such a way,
that the size of the superplaquettes (or more complicated versions thereof) can
be adjusted to the increasing volume (in lattice units) occupied by the glueball
on the lattice. In this way one can achieve a large overlap of the operator with the
glueball wave function even for small lattice spacing. Michael and Teper (1989) have
applied the fuzzying prescription to the SU(3) gauge theory, and have calculated
the glueball masses for all the JPC states, using couplings 6/g2

0 ranging between 5.9
and 6.2, and spatial lattices with volumes in the range from 103 to 203. They find,
for example, that their fuzzy 0++ glueball operators have about 90% overlap with
the corresponding glueball ground state, and this at a coupling 6/g2

0 as large as 6.2.
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Fig. 17-11 Glueball masses in units of the square root of the string

tension calculated by Michael and Teper (1989). The masses in physical

units are given on the right hand scale and have been obtained using the

value of 440 MeV for the string tension.

Fig. (17-11) shows the mass spectrum obtained by these authors. The masses
in physical units are shown on the right hand scale. They have been obtained by
using the value

√
σ = 440 MeV for the string tension.
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The 0++ and 2++ glueball masses have so far been measured with greatest con-
fidence. They can be extracted by studying the correlation function of the following
operators: (see e.g., Ishikawa et al., 1983)

φ0++
(τ) = Re Tr

∑
�x

(U12(�x, τ) + U23(�x, τ) + U31(�x, τ)),

φ2++
(τ) = Re Tr

∑
�x

(U12(�x, τ) − U13(�x, τ)).

Here the “plaquette” variables Uij can be ordinary plaquette variables or fuzzy
superplaquette variables. Monte Carlo calculations performed with large lattice vol-
umes by several groups (see the review of Michael, 1990) agree that the mass ratio
m(2++)/m(0++) is about 1.5, while early calculations based on the study of correla-
tion functions of local operators, and 6/g2

0 < 6.0, suggested that this ratio is of the
order of one or less. The physical values of the glueball masses can be expressed in
terms of the string tension. Assuming a value of 420 MeV for the square root of the
string tension, taken from potential models for heavy quark bound states (Eichten
et al., 1980) the 0++ and 2++ masses reported by van Baal and Kronfeld at Lattice
88 (van Baal, 1989) were

m(0++) = 1370 ± 90 MeV,

m(2++) = 2115 ± 125 MeV.

The original value obtained by Berg and Billoire (1982) for the 0++ mass was 920±
310 MeV. This calculation had been carried out on a 43 × 8 lattice.

This concludes our discussion of the glueball mass spectrum. We now turn to
the discussion of the Monte Carlo simulations of the hadron mass spectrum.

17.5 Hadron Mass Spectrum

The lattice formulation of QCD gives us the possibility of answering one of the
most fundamental questions in elementary particle physics: what is the origin of the
masses of the strongly interacting particles observed in nature? QCD should be able
to predict the bound state spectrum of hadrons build from quarks and gluons, which
are permanently confined within the hadrons. The determination of the masses of the
lowest bound states with a given set of quantum numbers is based on the same ideas
as discussed in the previous section; i.e., the masses are extracted from the large
(euclidean) time behaviour of correlation functions for zero momentum operators
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carrying the appropriate quantum numbers to create the hadron of interest. For
local operators constructed from Wilson fermions the generic form is given by

Om(τ) =
∑

�x

Γ(m)
AB ψ̄A(�x, τ)ψB(�x, τ) (mesons),

Ob(τ) =
∑

�x

S
(b)
ABCψA(�x, τ)ψB(�x, τ)ψC(�x, τ) (baryons),

where we have used a continuum notation for convenience, and a summation over
the collective indices (Dirac, colour and flavour) is understood. The coefficients Γ(m)

AB

and S
(b)
ABC are chosen in such a way that the operators are colour neutral∗ (Γ(m)

AB ∝ δab

for mesons, and S
(b)
ABC ∝ �abc for baryons), and carry the quantum numbers (spin,

parity, etc.) of the hadron of interest. Thus, for example, operators that can be used
for studying the π+, ρ+, and proton are given by

Oπ+ =
∑

�x

d̄aγ5u
a; �Oρ+ =

∑
�x

d̄a�γua; (Op)α =
∑

�x

�abcua
α[ub

β(Cγ5)βδd
c
δ]

where u and d are the “up” and “down” quark fields, C is the charge conjuga-
tion matrix. The construction of the corresponding operators for Kogut–Susskind
fermions is more complicated and we will not consider them here.∗∗

For example, meson masses can be extracted by studying the behaviour of the
correlation functions

Γm(τ) = �O†
m(τ)Om(0)�

for large euclidean times. This correlation function can be written as a sum of ex-
pectation values of products of two external field quark propagators calculated with
a Boltzmann distribution exp(−Seff [U ]), where Seff [U ] has been defined in (12.14b).
In particular the pion correlation function for degenerate quark masses, describing
the propagation of a quark-antiquark from �x to �y, is given by

Cπ(τ) =
∑
�x,�y

�Tr(γ5
˜
K−1

�x,0;�y,τγ5
˜
K−1

�y,τ ;�xo)�Seff (17.14)

where K−1 is the quark propagator, i.e., the inverse of the matrix (12.2c). For
baryons the correlation function analogous to (17.14) will involve the product of
three quark propagators.

∗Here a, b, c are the colour indices of the Dirac fields.
∗∗See e.g., Morel and Rodrigues (1984); Golterman and Smit (1985); Golterman

(1986b).
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The procedure for calculating a correlation function is the following. Let us
assume that one has decided on a set of values for the parameters appearing in the
action, i.e., gauge coupling and quark masses in lattice units. The lattice size should
in principle be chosen large enough to easily accommodate the hadron whose mass
one wants to calculate. In particular, the extension of the lattice in the euclidean
time direction must be large enough to allow one to study correlation functions for
large euclidean times. This is important, since one does not want the measurements
to be contaminated by contributions coming from higher excited states carrying the
same quantum numbers of the hadron of interest. A priori, we do not know how
large the lattice must (at least) be chosen, since we do not know the lattice spacing.
In principle, this lattice spacing, which is controled by the gauge coupling, should be
small enough to allow one to extract continuum physics. The values for the coupling
constant and quark masses, and the linear extensions of the lattice used in numer-
ical simulations, will be limited by the available computer facilities. Having fixed
all these quantities, the next step consists in generating a set of link configurations
which, in the quenched approximation, are distributed according to exp(−SG[U ]),
and in full QCD are generated with the probability density detK(U) exp(−SG[U ]).
For each configuration one then computes the propagator K−1(U). It is this step
which makes the computations of fermionic correlation functions — already in the
quenched approximation — time-consuming. The algorithm most widely used to
calculate K−1(U) is the conjugate gradient method. Once one has calculated the
external field quark propagators, one constructs from these the hadron propagators,
and averages the expression over the ensemble of field configurations. For mesons
the ensemble average is carried out over products of two quark propagators, while
for baryons the average is taken over products of three quark propagators. Only un-
correlated field configurations should be used for calculating the ensemble averages
and the statistical errors. Thus for example in a local updating procedure, successive
configurations generated by a Markov chain will be highly correlated, since one is
changing only one, or a few links, at each updating step. Hence one must generate
many more configurations than are actually used to calculate the ensemble average.
In practice, only configurations separated by a fair number of sweeps through the
lattice are used for measuring the observable. Finally the lowest hadron mass is
extracted by studying the behaviour of the correlation function for large euclidean
times. This yields the mass in lattice units. If one is working close to the continuum
limit, then the ratios of different particle masses measured in lattice units should be
independent of the coupling (or equivalently the lattice spacing) and can be identi-
fied with the corresponding ratios of the masses measured in physical units. In an
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actual Monte Carlo simulation these ratios will in general differ substantially from
the experimentally measured values. The reason is that most calculations are per-
formed at unrealistically high quark masses, of the order of the strange quark mass.
Statistical fluctuations in the hadron propagators, which increase with decreasing
quark masses, do not allow one to simulate such hadrons as the π, ρ and nucleon,
for realistic dynamical bare (up and down) quark masses of the order of a few MeV.

Most earlier Monte Carlo simulations have been performed with degenerate
quark masses. Hence the output of the calculation depends on the values used for
the bare coupling constant, and on a single dimensionless quark mass. The quark
mass in physical units at which the MC calculation has been performed can then be
determined as follows. One calculates the masses of some hadrons such as the pion
and the ρ for several values of the bare quark mass m̂. One then fits the data for
M̂π and M̂ρ using the following ansatz which is motivated from current algebra:

M̂2
π = λπm̂, (17.15a)

M̂ρ = λρm̂ + βρ. (17.15b)
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Fig. 17-12 Example of a fit to the MC data for the pion and rho mass

with the ansatz (17.15). The figure is taken from Born et al. (1989).

In the case of Wilson fermions m̂ is related to the hopping parameter by (17.9).
Fig. (17-12), taken from Born et al. (1989), gives an example of a fit to the MC data
based on (17.15). From the fit one determines the coefficients λπ, λρ and βρ. The
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lattice spacing can then be determined by recalling that M̂π = Mπa, and M̂ρ = Mρa.
Thus by inserting for Mπ and Mρ their physical values, 140 MeV and 770 MeV, one
calculates from (17.15) the lattice spacing and the quark mass. This information can
be used to extract other hadron masses from Monte Carlo calculations. Assuming
that the lattice spacing is only a function of the bare coupling (which was held fixed
in the simulations performed at different quark masses) one then also knows the
quark masses in physical units at which the MC calculations have been performed.
The above way of proceeding involves an uncertainty in the extrapolation procedure.
Furthermore it is only justified in simulations of full QCD, and not in the quenched
approximation, since one does not know what the pion–rho mass ratio should be
when the effects of dynamical fermions are ignored. Although the coefficients λπ, λρ

and βρ in (17.15) are dependent on the value of the bare coupling constant used, the
ratio of hadrons masses should be independent of the coupling if one is working in
the scaling region. In order to be able to compare directly the results obtained by
various groups for Wilson and Kogut–Susskind fermions, and for different couplings
and quark masses, the Edinburgh group (Bowler et al. (1985)) have suggested that
one should exhibit, for example, the nucleon, pion, rho mass data as a plot of the
nucleon–rho mass ratio versus the pion–rho mass ratio. In the scaling region all the
data should then fall on a universal curve. This is the so-called Edinburgh plot. In
this way one can study the general trend of the nucleon–rho mass ratio as Mπ/Mρ

approaches the physical value.

The Quenched Approximation

The quenched approximation is not the real world, but it is important to obtain
reliable results, since only then can one determine how dynamical quarks influence
the mass spectrum. It may turn out that the effects of pair creation (and annihi-
lation) do not influence the hadron spectrum significantly. In fact, the success of
potential models in describing the spectrum of heavy quark bound states suggest
that at least for such bound states the effects arising from dynamical quarks can be
absorbed into a renormalization of the coupling constant. Unfortunately, only a cal-
culation in full QCD can provide us with an answer of how the quenched spectrum
is modified by the dynamical quarks.

The earliest MC calculation of the quenched hadron spectrum in the SU(3)
gauge theory date back to 1981 (Hamber and Parisi, 1981). Since then many groups
have performed such calculations on larger lattices and with smaller lattice spac-
ings using Wilson and Kogut–Susskind fermions. Up to 1988 the most ambitious
calculation with Wilson fermions had been carried out by de Forcrand et al. (1988)
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on a 243 × 48 lattice. These authors used special blocking techniques in order to
reduce the large number of degrees of freedom. Recall that for Wilson fermions ev-
ery lattice site can accommodate all internal degrees of freedom. This makes these
computations more demanding than those with staggered fermions. Fig. (17-13)
taken from the above mentioned reference, illustrates the general form of meson
correlation functions extracted from a Monte Carlo calculation performed on a pe-
riodic lattice in the time direction. The propagators displayed in Fig. (17-13) have
been fitted in the interval 15 < t < 24 with single mass exponentials symmetrized
about t = 24.
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Fig. 17-13 MC data for the pion and rho propagators, obtained by

Forcrand et al. (1988). The data has been symmetrized about t = 24.

The use of staggered fermions for computing the hadron mass spectrum poses
a problem, since for finite lattice spacing the staggered fermion action brakes flavour
symmetry (while Wilson fermions do not; see chapter 4). Already for this reason one
does not expect that results obtained with Wilson and Kogut–Susskind fermions will
agree, unless one is close to the continuum limit. And in fact, they did not agree for
a long time. This situation has improved substantially and the calculations using
Wilson and staggered fermions have given comparable results for 6/g2

0 > 6.0.∗

∗See the plenary talk by Gupta at lattice 89 (Gupta, 1990).
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Fig. (17-14), taken from Yoshie, Iwasaki and Sakai (1990), shows the quenched
results for the nucleon–rho mass ratio versus Mπ/Mρ reported prior to, or at the
Capri lattice conference in 1989. The solid (open) points correspond to calculations
performed with Wilson (Kogut–Susskind) fermions. The solid curve is obtained from
a phenomenological mass formula (Ono, 1978). The open point at the left lower end
of the curve corresponds to the experimental mass ratios. These data are from Barkai
et al. (1985), Gupta et al. (1987), Hahn et al. (1987), Bowler et al. (1988), Bacilieri
et al. (1988) and Iwasaki et al. (1989). The quark mass in all these calculations is,
however, unrealistically large.

As seen from the figure there is a general tendency for the nucleon–rho mass
ratio to drop as Mπ/Mρ decreases. The data of Iwasaki et al. agrees extremely
well with the phenomenological curve down to Mπ/Mρ ≈ 0.7. This calculation was
performed with Wilson fermions on a 163 × 48 lattice at 6/g2

0 = 5.85. At lattice
89, Yoshie, Iwasaki and Sakai (1990) presented new data with increased statistics,
including a calculation on a 243 × 60 lattice. They are shown in Fig. (17-15).
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Fig. 17-14 Plot of MN/Mρ versus Mπ/Mρ in quenched QCD. The solid

(open) points correspond to calculations performed with Wilson (Kogut–

Susskind) fermions. The figure, taken from Yoshie, Iwasaki and Sakai (1990),

summarizes the results reported prior to, or at the Capri lattice conference.

The data are seen to be consistent with the phenomenological curve down to
Mπ/Mρ = 0.52. One does however not expect that the quenched data (once it has
settled down) follows this curve all the way down to the physical mass ratios. At
some point the effects of light dynamical quarks must start to show up.
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Fig. 17-15 MC data of Yoshie, Iwasaki and Sakai (1990) for MN/Mρ

versus Mπ/Mρ.

We have only briefly discussed a few earlier measurements in quenched hadron
spectroscopy. As we have pointed out, the calculation of the hadron spectrum is a
difficult task, even in the quenched approximation. But even with precise numerical
data available, one has no way of comparing it with experimental values, since we
don’t know what the result of a quenched calculation should be. Only when the
effects of dynamical fermion are included, will we be able to answer the question
whether QCD has survived this important test for being the correct theory of strong
interactions. So let us take a look at some data that has been obtained including
dynamical quarks. We will again restrict ourselves to earlier pioneering work, and
leave it to the reader to confer the numerous proceedings for more recent data.

Hadrons in Full QCD

The quenched calculation of the hadron spectrum is already very time consum-
ing since one needs to evaluate the quark propagators on the ensemble of link con-
figurations distributed according to exp(−SG[U ]). In full QCD, however, one must
generate these configurations with the probability density detK[U ] exp(−SG[U ]).
Because of the appearance of the fermionic determinant, the times required for nu-
merical simulations of the hadron spectrum in full QCD are very (!) much larger than
in the quenched theory. For this reason the lattice volumes used are much smaller
than in the quenched case. To avoid strong finite size effects one is therefore forced
to work with lattice spacings which are much larger than those used in quenched
simulations. By 1990 one was still far away from being able to compute numbers
which can be confronted with experiment. Most of the calculations performed have
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served to test the various algorithms for handling dynamical fermions and to get a
qualitative idea of the effects arising from the presence of quark loops.
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Fig. 17-16 (a) The pion and (b) the ρ correlation functions obtained

by Fukugita et al. (1988) in full QCD with Wilson fermions, for various

values of the hopping parameter.

Calculations of the hadron mass spectrum in full QCD have been performed
with Wilson and Kogut Susskind fermions. The most widely used algorithms for
generating the link configurations have been the pseudofermion, Langevin, hybrid
molecular dynamics and hybrid Monte Carlo (see chapter 16). Of these algorithms
only the hybrid Monte Carlo is free of any systematic step size errors. As we have
seen in chapter 16, this is achieved by subjecting a suggested configuration generated
in a microcanonical step to a Metropolis acceptance/rejection test which eliminates
the systematic errors introduced by the finite time step. There are many technical
details that need to be discussed when simulating full QCD. We shall not discuss
them here, and refer the reader to the proceedings of lattice conferences, and the
literature cited there. Fig. (17-16), taken from Fukugita et al. (1988), gives a nice
example of the form of the correlation functions extracted in a numerical simula-
tion with Wilson fermions. The correlation functions were computed on a 93 × 36
lattice using the Langevin algorithm and show a clear exponential decay at larger
euclidean times. What concerns the Edinburgh plot, Fig. (17-17), taken from Laer-
mann et al. (1990), exhibits the results obtained in some recent calculations. The
dark points are those of Learmann et al. The triangles, squares and inverted trian-
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gles are the results of Gottlieb et al. (1988), Hamber (1989), and Gupta et al. (1989),
respectively.
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Fig. 17-17 Edinburgh plot showing the data of Gottlieb et al. (1988)

(triangles), Hamber (1989) (squares), Gupta et al. (1989) (inverted trian-

gles), and of Learmann et al. (1990) (dark points). The figure has been

taken from Learmann et al. (1990).

Notice that this plot includes several measurements of the hadron ratios which
are much closer to the experimental values (denoted by the cross) than in the
quenched case. Clearly the data is still much too inacurate to allow one to esti-
mate the effects of the dynamical quarks. So far there had been no definite signs
that quark loops modify the quenched results in a significant way (see also Bitar
et al., 1990; Campostrini et al., 1990). Even today the problem of determining
the hadron mass spectrum from lattice calculations in full QCD remains a very
challenging problem. Nevertheless, there has been substantial progress made, espe-
cially because of the available computer power. The effects of dynamical fermions
appear to be small. But the quark masses used in the simulations are still too
large.

17.6 Instantons

There is a general consensus among physicists that QCD accounts for quark
confinement. Although there exists no analytic proof of this assertion, lattice simu-
lations have demonstrated in a quite convincing manner that QCD confines quarks,
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and that the relevant degrees are to be identified within the pure Yang–Mills sector.
The role played by dynamical quarks seems to be mainly that of allowing for string
breaking, once the creation of a quark–antiquark pair is energetically favored at
some large enough separation of the quarks, where hadronization sets in. What
concerns the mechanism for quark confinement, however, this is a problem which
is still under intensive study. It is generally believed that the mechanism is to be
found in special Yang-Mills field configurations populating the QCD vacuum. Can-
didates for non-trivial field configurations which have been studied intensively in
the past years are instantons, and finite temperature versions thereof, the calorons,
as well as abelian magnetic monopoles and center vortices. Although the relevance
(if any) of instantons for quark confinement is quite unclear, there is no doubt that
they play an important role in determining the structure of the QCD vacuum. Fur-
thermore instantons provide a natural expanation for the observed chiral symmetry
breaking associated with confinement, and also provide a solution of the so called
U(1)-problem.∗ Because of this it appears plausible that they may, in one way or
another, play some role in the dynamics of quark confinement.

The instanton is a non-perturbative solution to the classical euclidean SU(2)
Yang–Mills equations of motion, carrying one unit of topological charge, and thus
corresponds to a special field configuration associated with a subgroup of SU(3). In
fact this subgroup plays a distinguished role, as emphasized e.g. by Shifman (1999).
The instanton solution was constructed by Belavin, Polyakov, Schwarz and Tyupkin
(Belavin 1975), and is refered to in the literature as the BPST instanton. Consider
the SU(2) euclidean Yang-Mills action,∗∗

SE =
1
4

∫
d4x F a

µν(x)F a
µν(x)

=
1
2
Tr

∫
d4x FµνFµν ≥ 0, (17.16)

where Fµν is the matrix valued SU(2) field strength tensor defined as in (6.13).
Consider further the following integral,

I± ≡ 1
8

∫
d4x (F a

µν ± F̃ a
µν)(F

a
µν ± F̃ a

µν), (17.17)

∗For more detailed discussions of instantons we refer the reader to Coleman (1985),
Polyakov (1987) and Shifman (1999).

∗∗Sums over repeated indices are always understood. For SU(2) the “color” indices
a run from 1 to 3.
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where F̃ a
µν is the dual field strength tensor, F̃ a

µν = 1
2�µνλρF

a
µν . Clearly

I± ≥ 0. (17.18)

Since F̃ a
µνF̃

a
µν = F a

µνF
a
µν , it follows that

SE = ∓8π2

g2 Q + I±, (17.19a)

where

Q =
g2

32π2

∫
d4x F a

µνF̃
a
µν =

g2

16π2

∫
d4x Tr(FµνF̃µν). (17.19b)

Since I± ≥ 0 and SE ≥ 0, we have that

SE ≥ 8π2

g2 |Q|. (17.20)

What makes this inequality interesting is that Q is a topologial invariant taking
integer values 0, ±1, ±2, · · · for all gauge fields with finite action. Finiteness of
(17.16) requires that the integrand vanishes faster than 1/|x|4 for |x| → ∞, or that
the leading contribution to

˜
Aµ(x) is pure gauge (cf. (6.20)),

˜
Aµ(x) −→

|x|→∞
− i

g
G(x)∂µG

−1(x) . (17.21)

In the case of SU(2), the unitary unimodular group elements G(x) have the form

G(x) = a4(x) + i�a(x) · �σ; a2
4 + �a2 = 1, (17.22)

where σi are the Pauli matrices. Field configurations satisfying (17.21) can be classi-
fied by a topological invariant taking positive and negative integer values, as we will
comment in more detail below. Configurations characterized by different values of
Q are not homotopic to each other, i.e. they cannot be continuously deformed into
each other without violating the finiteness of the action. In each sector characterized
by a given integer Q = n, the action satisfies

SE ≥ 8π2

g2 |n|. (17.23)

As follows from (17.18) the lower bound in (17.23) corresponds to self-dual, or anti-
self-dual field configurations,

F a
µν(x) = F̃ a

µν(x), (selfdual), (17.24a)
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F a
µν(x) = −F̃ a

µν(x). (anti-selfdual). (17.24)

Since the action (17.16) is non-negative, it follows from (17.19a) that for self-dual
solutions (i.e. I− = 0) Q is positive. For Q = 1 the solution is referred to in the
literature as an instanton. On the other hand for I+ = 0, Q must be negative. The
corresponding Q = −1 solution is referred to as an anti-instanton.

Before constructing the so called BPST instanton let us first demonstrate why
(17.19b) is an integer. There are different ways of showing this. The way we shall
proceed, will at the same time shed light on the relevance of instanton configurations
for the vacuum structure of the Yang–Mills theory.

Consider Q defined in (17.19b). One first shows that the integrand can be
written as a divergence:∗

Tr(FµνF̃µν) = ∂µKµ(x), (17.25a)

where

Kµ = 2�µνλρTr
[
Aν∂λAρ + i

2g
3

AνAλAρ

]
. (17.25b)

From here it follows that, if Kµ is regular within the domain of integration, then

Q =
g2

16π2

∫

S3∞

d3σ nµKµ(x), (17.26)

where d3σ is the 3-dimensional surface element of a sphere in four dimensions with
radius R → ∞ and normal nµ(x). Now (17.25a) is gauge invariant. A particularily
useful gauge for discussing the vacuum structure of the Yang–Mills theory is the
“temporal” gauge Ab

4(x) = 0. The reason is, that in this gauge the Yang–Mills
Hamiltonian takes a form quite similar to that familiar from Quantum Mechanics:

H =
∫

d3x

[
1
2
πa

i π
a
i +

1
4
F a

ijF
a
ij

]
, (17.27)

∗This can be shown by introducing the definition of Fµν given in (6.13) into
(17.19b), and making use of the antisymmetry of the �-tensor, and of the invariance
of the trace under cyclic permutations. Making further use of

�µνλρTr[(∂µAν)AλAρ] = �µνλρTr[Aν(∂µAλ)Aρ] = �µνλρTr[AνAλ(∂µAρ)]

=
1
3
�µνλρ∂µTr(AνAλAρ)

one then arrives at (17.25a).
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where the canonical momenta πa
i (x) = F a

4i(x) are subject to the Gauss law con-
straint,

�Dab · �πb = 0. (17.28)

Here D is the covariant derivative for SU(2),

(Di)ab = δab∂i + ig�abcA
c
i . (17.29)

Zero energy configurations (i.e., vacuum configurations) correspond to time inde-
pendent gauge transformations of the trivial vacuum configuration Ab

µ = 0, or in
matrix form

A
(vac)
i (�x) = − i

g
G(�x)∂iG

−1(�x). (17.30)

In the temporal gauge these are the type of configurations which are approached for
infinite times, ensuring the finiteness of the energy.

Consider now once more the topological charge (17.26), where S3
∞ is now re-

placed by the three dimensional surface of a box in four dimensions. In the “tempo-
ral” gauge Ab

4 = 0, the integrals over the surfaces with normal along the spacial di-
rections will not contribute because of the �-tensor in (17.25b) and the time indepen-
dence of the asymptotic (vacuum) fields. Only the surface integrals with positive and
negative oriented normals along the euclidean time direction will contribute, so that

Q = q+ − q− =
g2

16π2

{∫

x4=∞
d3x K4(x) −

∫

x4=−∞
d3x K4(x)

}
. (17.31)

For field configurations approaching vacuuum configurations (17.30) for x4 → ±∞
one has that

q± =
g2

16π2

∫

x4→±∞
d3σK4(x)

=
1

24π2

∫
d3x �ijkTr

[
(G±∂iG

−1
± )(G±∂jG

−1
± )(G±∂kG

−1
± )

]
. (17.32)

This can be readily shown. Thus consider, more generally, (17.25b) evaluated on a
vacuum configuration (17.21):

g2Kµ = −2�µνλρTr
[
(G∂νG

−1)∂λ(G∂ρG
−1)

+
2
3
(G∂νG

−1)(G∂λG
−1)(G∂ρG

−1)
]

. (17.33)

Now

∂λ(G∂ρG
−1) = (∂λG)(∂ρG

−1) + G∂λ∂ρG
−1.
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Because of the �-tensor in (17.33) the second term does not contribute. Writing

(∂λG)(∂ρG
−1) = (∂λG)G−1G(∂ρG

−1)

and making use of the identity

0 = ∂λ(GG−1) = (∂λG)G−1 + G(∂λG
−1)

one obtains

g2Kµ =
2
3
�µνλρTr[(G∂νG

−1)(G∂λG
−1)(G∂ρG

−1)] (17.34)

Setting µ = 4 we thus arrive at (17.32). If the group elements G(�x) are identified
at spacial infinity, then (17.32) is an integer (the so called winding number”). The
reason is that in this case, the three dimensional space becomes topologically equiv-
alent to the three dimensional surface of a sphere, i.e. to S3. On the other hand,
the group elements G(�x) are parametrized by (17.22). Hence G(�x) defines a map
S3 → S3. Homotopy theory tells us that such maps can be classified by a topological
invariant taking on integer values n = 0, ±1, ±2, . . . , where |n| gives the number of
times S3 in group space is covered as we sweep over S3 in coordinate space. The cor-
responding expression is given by (17.32).∗ A Q = 1 instanton will therefore connect
two vacuum configurations at x4 = ±∞ carrying different winding numbers, which
cannot be deformed continuously into each another. For this reason the instanton is
interpreted as describing tunneling between classical inequivalent vacua. In a semi-
classical approximation, the ground state of the quantum theory is then expected to
be a linear combination of the infinite number of possible vacua carrying arbitrary
winding numbers.∗∗

Let us now briefly discuss the construction of the BPST instanton.∗∗∗ The
temporal gauge is not the most convenient one for constructing the self dual solution.
Thus it is easier not to fix the gauge and to return to the expression (17.26) for the
topological charge, which is written as a surface integral over S3. Inserting the
asymptotic behaviour for the potentials (17.21), and making use of (17.34), Q takes
the form

Q =
1

24π2

∫

S3
d3σ nµ�µνλρTr{(G∂νG

−1)(G∂λG
−1)(G∂ρG

−1)}. (17.35)

∗We refer the reader to the literature quoted earlier for more details.
∗∗For a discussion of the connection between instantons and tunneling in

Minkowsky space the reader may confer the work of Bitar and Chang (Bitar 1978).
∗∗∗For further details see Belavin et al. (1975), Shifman (1999), Actor (1979).
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As we have just learned this quantity is an integer. The BPST instanton corresponds
to a group element G(x) which maps compactified R4 to the group element (17.22)
in a one-to-one way:

G(x) =
x4 + i�x · �σ

|x| (17.36)

where |x| = √
xµxµ. Thus aµ in (17.22) is identified with xµ. From (17.21) and the

definition Aµ =
�

b Ab
µ

σb

2 one then finds that for |x| → ∞

Aa
µ(x) ≈ 2

g
ηaµν

xν

x2 , (17.37)

where the ηaµν are the so called ’t Hooft symbols,

ηaµν =




�aµν ; µ, ν = 1, 2, 3
−δaν ; µ = 4
δaµ; ν = 4
0; µ = ν = 4.

(17.38)

Having constructed the asymptotic form for the gauge potentials, we now make the
following Ansatz for the Q = 1 instanton:

Aa
µ(x) =

2
g
f(x2)ηaµν

xν

x2 (17.39)

with the condition that f(x2) → 1 for |x| → ∞, and f(x2) ≈ x2 for |x| → 0. The
latter condition insures that the field is non-singular at the origen. The self dual
(BPST) solution is found to be

Aa
µ(x) =

2
g
ηaµν

(x − x0)ν

(x − x0)2 + ρ2 . (17.40)

The corresponding field strength reads

F a
µν(x) = −4

g
ηaµν

ρ2

((x − x0)2 + ρ2)2 , (17.41)

and the topological density is given by

Q(x) =
6
π2

ρ4

((x − x0)2 + ρ2)4 . (17.42)

Note that the solution (17.40) couples space-time and SU(2) colour indizes. To
actually see that the instanton solution connects different vacuum configurations
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of the Hamiltonian (17.27) carrying different winding numbers, one must of course
make a gauge transformation to the temporal gauge. Antiinstantons are obtained
from (17.40) by replacing ηaµν by η̄aµν = (−1)δµ4+δν4ηaµν .

Multi-instanton configurations in the Aa
4 = 0 gauge with topological number

larger than one connect vacua at x4 → ±∞ whose winding number differ by more
than one unit. These vacuum configurations can be easily constructed (see e.g. Cole-
man, 1985). Approximate solutions corresponding to widely separated instantons
(antiinstantons), as well as instanton–antiinstanton configurations, can of course be
written down immediately as a linear superposition.

The above BPS instantons are regular fields falling off like1
r

at spatial infin-
ity where they pick up their topological charge. An alternative expression has been
given by ’t Hooft (’t Hooft, 1977) by performing a singular gauge transformation on
the fields, which leaves the action density integrable. In the singular gauge the topo-
logical charge is generated from a singularity located at the center of the instanton.
The corresponding potentials are given by the simple expressions

Ãa(inst)
µ (x) = −1

g
η̄a

µν∂ν ln φ(x),

and

Ãa(anti-inst)
µ (x) = −1

g
ηa

µν∂ν ln φ(x),

where

φ(x) = 1 +
ρ2

(x − x0)2 .

Performing the differentiations the singularity can be made more explicit,

Ãa(inst)
µ (x) =

2
g
η̄a

µν

ρ2(x − x0)ν

(x − x0)2((x − x0)2 + ρ2)
.

Starting from the ansatz

Aa
µ(x) = −1

g
η̄a

µν∂ν ln W (x)

’t Hooft constructed self-dual solutions to the Yang–Mills equation carrying topo-
logical charge k as the following superposition∗

W (x) = 1 +
k∑

n=1

ρ2

(x − xn)2 .

∗This form of the multi-instanton solution will be relevant later when we discuss
calorons.
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The topological charge density is then given by

Q(x) = ±1
2
���� ln W ,

which is integrable expression (Jackiw, 1976).
The above multi-instanton solution with a fixed color orientation is however not

the most general solution to the self-dual Yang–Mills equations. The most general
solution for configurations with arbitrary topological charge for SU(N) and other
compact gauge groups, has been constructed by Atiyah, Hitchin, Drinfeld and Manin
(Athiyah, 1978) in an impressive mathematical work.

This completes our brief summary of the main concepts related to instantons
in the continuum formulation. One obvious question now arises: can we “see” these
instanton configurations on the lattice, and if so: what is their size distribution, and
their possible relevance for confinement. To see the instantons is not so easy, since in
a Monte Carlo simulation their structure will be blurred by quantum fluctuations.
Having generated a set of link-variable configurations we must therefore strip off
these fluctuations to see the underlying classical structure. This is called Cooling
(Berg, 1981; Teper, 1986a; Ingelfritz, 1986). The idea is the following: with a given
configuration {Uµ(x)} generated by a MC algorithm there is an associated euclidean
action. In the continuum this field configuration would belong to a given topological
sector, i.e, it would be characterized by a given integer, e.g. Q = 1. It would however
not in general correspond to a minimum of the action, but rather be a field configu-
ration which is a deformation of an underlying instanton configuration. To actually
see this underlying instanton one must smoothen the short range quantum fluctua-
tions, while keeping the long range physics unchanged. A way to proceed is to lower
the action of a configuration in a systematic way until it takes the value 8π2

g2 . Once
the action is minimized in the Q = 1 sector we are left in principle with a stable pure
instanton configuration. In praxis this is of course not true, since we have discretized
the action, and the above continuum arguments do not really apply. Because of lat-
tice artefacts, lattice instantons will never be true instantons. In particular lattice
instantons break in general scale invariance, i.e., the action depends on the size ρ

of the instanton (see Eq. (17.41)). The lattice manifests itself in that by cooling the
configurations too long, the system will eventually end up in the trivial vacuum,
i.e., the instanton has disappeared. One therefore needs to cool the system the right
amount to see the instanton. The situation can be improved by working with so
called “improved actions” where lattice artefacts have been eliminated up to higher
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orders in the lattice spacing. An important criterium for the identification of a Q = 1
instanton is that the topological charge of the cooled configuration should be unity
up to lattice artefacts, and that the charge density and action density should be pro-
portional with a proportionality factor given by g2

8π2 . Well separated multi-instanton
configurations should be describable by a superposition of instantons.

How is the cooling performed in praxis? Suppose we have generated a particular
configuration {Uµ(x)}. Let SE[U ] be the corresponding euclidean action. Consider
the variation of a single link δUµ(x) such that the action is lowered. In SU(2) a
link variable U is parametrized as in (17.22). The action SE is given by a sum over
plaquettes. A particular link variable U appears in all plaquettes having this link in
comon. Hence the action (6.18a) is of the form

SE = −βTr(UW ) + · · · , (17.43a)

where β = 2N
g2 for SU(N),

U = a4 + i�σ · �a, (17.43b)

and where the “dots” stand for contributions not containing U . W is a 2× 2 matrix
consisting of a sum of unitary matrices (staples). Hence W is not unitary. For SU(2)
we can however define a unitary matrix W̃ by

W̃ =
1√

det W
W . (17.44)

Then the action takes the form

SE = −β
√

det W Tr(UW̃ ) + · · · . (17.45)

Keeping all link variables other than U fixed, and hence also W̃ , we can minimize
the action by choosing

U = W̃−1. (17.46)

since UW̃ is an element of SU(2), whose trace is bounded from above by the trace
of the unit matrix. One now repeats the procedure by starting from this new con-
figuration and changes the value of another link variable such as to lower the action
even further. Sweeping in this way through the lattice one thus generates a new
configuration. The system can be further cooled by sweeping the lattice a number
of times. Each sweep correspond to a complete cooling step.

An expression for the topological charge density can be obtained e.g. by trans-
fering the expression Tr(FµνF̃µν) = 1

2�µνρλTr(FµνFµν), in (17.19b), to the lattice. A
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very natural definition was given by Peskin (1978). The most naive expression which
reproduces (17.19b) in the continuum limit is given by

Q = − 1
32π2

∑
n

∑
µνσρ

�µνσρTr(Uµν(n)Uσρ(n)).

With this definition, however, the charge density does not possess a definite parity.
This deficiency can be easily corrected for, by symmetrizing the above expression
with respect to µ → −µ, ν → −ν, etc. (Di Vecchia, 1981)

Q = − 1
24 · 32π2

∑
n

±4∑
{µνσρ}=±1

�µνσρ Tr(Uµν(n)Uσρ(n)). (17.47)

−µ

−ρ

−σ

nρ

σ

µ

−ν ν

Fig. 17-18 Wilson loop involving two orthogonal planes, as introduced

by Peskin (1978).

Fig. (17-18) shows the corresponding Wilson loop in Peskins definition of the
topological charge. In praxis one takes for both, the action density and topological
charge density, improved expressions whose lattice artefacts start only in O(a6).
This can be accomplished by constructing the lattice Fµν operator from linear com-
binations of (gauge invariant!) 1 × 1, 1 × 2 and higher Wilson loop operators (de
Forcrand, 1997; Garcia Perez, 1999). In Fig. (17-19) we show an example of a Q = 1
configuration as generated by a Monte Carlo algorithm with an improved action,
and the corresponding cooled configuation. For an instanton the action density, after
rescaling, should equal the topological charge density. The particular shape of the
cooled configuration is a consequence of the periodic structure.∗

∗Actually there exists no self-dual configurations on a hypertorus. To allow for a
stable Q = 1 configuration one must impose twisted boundary condtions (’t Hooft,
1981a). The reason that the Q = 1 instanton configuration nevertheless appears, is
that its size is fairly small compared to the extension of the lattice, and hence is not
very sensitive to the choice of boundary conditions.
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Fig. 17-19 Two-dimensional slice of the action density (top) and topo-

logical charge density (bottom) on a 244 lattice for a Q = 1 (a) uncooled

and (b) cooled configuration after 500 improved cooling steps. The figure is

taken from Wantz (2003).

In Fig. (17-20) we show the MC data for the profile of the action density
(circles) and topological charge density (squares) of an instanton configuration as a
function of euclidean time, obtained by summing the action and charge density over
the spacial lattice sites,

Ŝ(τ) =
∑

�x

S(�x, τ), (17.48a)

Q̂(τ) =
∑

�x

Q(�x, τ) , (17.48b)

Notice that the action density (17.48a), after rescaling, coincides with the topological
charge density (17.48b), as expected. The solid curve in Fig. (a) is the (periodic)
action and charge density for a Q = 1 instanton in the continuum.∗

A similar plot for a two Instanton configuration is shown in Fig. (17-21a). The
plot (b) in the same figure exhibits the integrated topological charge density, and
rescaled action as a function of the number of cooling steps. Special problems are

∗We are very grateful to I.O. Stamatescu for providing us with this and also the
following unpublished plots, extracted from the MC data of de Forcrand, Garcia-
Perez and Stamatescu (de Forcrand 1997).
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Fig. 17-20 MC data for the (periodic) action density (circles) and topo-

logical charge density (squares) for a Q = 1 instanton, summed over the

spacial lattice sites, as a function of euclidean time. The solid curve is the

corresponding continuum expression for an instanton width of ρ = 4, based

on a periodic version of (17.42). The dashed curve is obtained directly from

(17.42).
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Q
S

Fig. 17-21 (a) Similar plot as in Fig. 17-20 but for a two instanton

configuration. Fig. (b) gives the action and topological charge as a function

of the number of cooling steps. Action and charge are seen to agree after

150 steps. The figure was provided to us by I.O. Stamatescu.

encountered when studying instanton–antiinstanton configurations on the lattice.
Performing the same number of cooling steps as in the one instanton case destroys
these configurations. This is not surprising since they carry the topological charge of
the trivial vacuum configuration, whose action is lower than that corresponding to
a superposition of an instanton and antiinstanton. The latter is a metastable state
which upon cooling the system too long will decay into the trivial vacuum. This is
exhibited beautifully in Fig. (17-22). The plots have been extracted from the data
of Garcia-Perez et al. (1999).
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Fig. 17-22 Euclidean time profile of the topological charge density (17.48b) of an instanton-

antiinstanton configuration for different number of cooling steps. The dashed and solid lines are

fits with a periodic Ansatz consisting of a superposition of an instanton and antiinstanton. After

300 cooling steps the instanton-antiinstanton pair has dissappeared (boxes).

While the τ -profile of the charge density is fully consistent with an instanton-
antiinstanton configuration up to 100 cooling steps, the topological charge density
Q(τ) is seen to vanish for 300 cooling steps, indicating that one is left with a trivial
vacuum configuration. To keep the configuration alive for a larger number of cooling
steps, Garcia-Perez et al. (1999) have introduced a physical criterion which essen-
tially defines a cut off for the number of cooling steps, depending on the scale of
fluctuations to be smoothened by cooling.

As we have already emphasized, instantons are an important ingredient for the
structure of the Yang–Mills vacuum, and are believed to be the driving mechnism for
chiral symmetry breaking.∗ But do instantons have anything to do with confinement?
The instanton (17.40) is a field configuration at zero temperature where confinement
holds. In fact, as well see in chapter 20, Monte Carlo simulations show that quarks
are actually confined up to very high temperatures of the order of 1012 degrees!

Field configurations which carry a non-vanishing topological charge and are
self-dual, or anti-self-dual, solutions to the euclidean Yang–Mills equations, can be
constructed also at finite temperature. These are the so called calorons. We will

∗See e.g. the review by Schafer and Shuryak (Schafer, 1998).
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ellaborate on them in some detail in the last section of this chapter, after having
disscussed some possible confinement scenarios, such as the condensation of magnetic
monopoles, the dual superconductor picture of confinement and vortices.

17.7 Flux Tubes in qq̄ and qqq-Systems

In section 17.1 we have seen that Monte Carlo simulations of the pure SU(2)
and SU(3) gauge theories confirm the long standing expectation that the qq̄-
potential rises linearly with the separation of the quarks for large separations. For
small separations, asymptotic freedom predicts that the colour electric and mag-
netic fields should spread out in space in a similar way as for a dipole field in
QED, leading to a Coulomb-like potential with a logarithmic dependence of the
coupling constant on the qq̄ separation (see chapter 9). The absence of free quarks,
and the fact that meson resonances lie approximately on Regge trajectories, i.e.,
that there exists a linear relation between the angular momentum and the mass-
squared, can be explained if one assumes that a quark-antiquark pair is connnected
by a string (Goddard, 1973), with a constant string tension σ that is related to
the slope of the Regge trajectory α′ by 1/α′ = 2πσ. This suggests that the non-
perturbative dynamics at large distances squeezes the chromoelectric and magnetic
fields into narrow flux tubes connecting the quark-antiquark pair. Whether this is
indeed the case can in principle be checked by studying the distribution of the field
energy in a Monte Carlo simulation. Some early analytical work on the flux tube
behaviour has been carried out by Lüscher, Münster and Weisz (Lüscher, 1981), and
Adler (1983).

On the lattice the flux tube problem has been first studied by Fukugita and
Niuya (1983), followed by Flower and Otto (1985), Sommer (1987) and by Wosiek
and Haymaker (1987). Since then the numerical data has improved substantially
and there are now good indications that a flux tube is indeed formed for large
separations of the quark-antiquark pair. To study the evolution of the flux tube as
the qq̄ separation is increased is a major challenge, since it requires large lattices,
and special techniques for reducing fluctuations, and enhancing the projection onto
the ground state. Because of limited computer power the earlier calculations have
been restricted to rather small lattices. The energy (and action) density profiles for
SU(2) that were obtained e.g. by Haymaker et al. (1991, 1992) are consistent with
those obtained more recently by Bali et al. (1995), who have studied, in particular,
the distribution of the action density for quark-antiquark separations up to about
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1.9 fm. The electric and magnetic contributions to the action and energy densities are
determined by studying correlators of electric (space-time) plaquettes, and magnetic
(space-space) plaquettes with a Wilson loop. The correlators have the generic form
(10.24b). All authors find that the action density along the axis connecting the
quark–antiquark pair is much larger than the energy density, and that they fall off
fairly rapidly in the transverse direction. Fig. (17-23) shows this fall-off in a plane
perpendicular to the axis of the qq̄-pair at the midpoint, as measured by Haymaker
et al. (1992).∗
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Fig. 17-23 (a) Energy density and (b) action density distribution in a

plane midway between the qq̄-pair (Haymaker et al., 1992).

In Fig. (17-24) we show, as an example, the distribution of the energy and
action density between a qq̄-pair, obtained respectively by Haymaker et al. (1992)
and Bali et al. (1995). The peaks are the self energy contributions of the quark and
antiquark.

In contrast to the qq̄-potential, there have been only a few investigations of the
three quark potential before 1999 (Sommer, 1984; Flower, 1986; Thacker, 1888). Pos-
sible flux-tube configurations that have been envisaged for the three quark system
are the ∆ and Y -type flux tube configurations. The Y -tube configuration is illus-
trated in diagram (b) of Fig. (7-1). Within the string picture the classical ground
state of the three quarks is envisaged to be given by three strings emanating from the
quarks and meeting at a point whose position corresponds to the minmimal length
of the three strings. Thus one may expect to “see” a Y -type flux tube configuration
in a Monte Carlo simulation.

∗See also Haymaker et al. (1996).
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Fig. 17-24 (a) Energy density distribution between a qq̄ pair, obtained

by Haymaker et al. (1992); (b) Action density distribution, measured in

units of the string tension, for a qq̄ pair separated by about 1.35fm, at

β = 2.5 (Bali et al. (1995)).

As in the case of the qq̄-potential, the 3q-potential can be extracted by studying
the propagation in euclidean time of the corresponding gauge invariant 3-quark state

|qqq� = �a1a2a3U
a1b1
Γ1

Ua2b2
Γ2

Ua3b3
Γ3

q
(1)
b1

(�x1, 0)q(2)
b2

(�x2, 0)q(3)
b3

(�x3, 0)|0� , (17.49)

where the unitary matrices UΓ�
are the path ordered product of link variables along

the paths Γ�, � = 1, 2, 3 shown in Fig. (17-25), connecting the quarks to the “center”
ξ of the triangle with corners �x1, �x2 and �x3, for which the sum of the respective
distances is a minimum.

Γ1

Γ2

Γ3

Fig. 17-25 The 3-quark state at τ = 0. The heavy dots denote the

quarks, and the lines stand for the ordered product of link variables which

are tied together at the “center” by the �-tensor.

Specifically, one considers the following correlator∗

G(x1, x2, x3; y1, y2, y3)

= �a1a2a3�b1b2b3�0|q̄
(1)
d1

(y1)q̄
(2)
d2

(y2)q̄
(3)
d3

(y3)Ud1b1
Γ′

1
(y1, Y )

×Ud2b2
Γ′

2
(y2, Y )Ud3b3

Γ′
3

(y3, Y )Ua3c3
Γ3

(X, x3)Ua2c2
Γ2

(X, x2)

×Ua1c1
Γ1

(X, x1)q(3)
c3

(x3)q(2)
c2

(x2)q(1)
c1

(x1)|0� . (17.50)

∗This the lattice analog of the continuum Green function studied by Brambilla
et al. (1995).
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Here the 4-vectors xi (i = 1, 2, 3) and X have vanishing euclidean time components.
Furthermore, �yi = �xi with the time components of yi and Y all equal T . Γ�

� are the
paths obtained by a translation of the paths Γ� in the euclidean time direction by
T . By proceeding in a similar way as in the case of the QQ̄-potential, one is then
led to the following expression for the three quark potential

V3Q(�x1, �x2, �x3) = − lim
T→∞

1
T

ln�W3Q� , (17.51a)

where the gauge invariant 3-quark Wilson loop operator is given by

W3Q =
1
3!

�abc�a′b′c′Uaa′

Γa
U bb′

Γb
U cc′

Γc
(17.51a)

Here UΓa , UΓb
and UΓc are the path ordered product of the link variables along the

paths shown in Fig. (17-26).

Γb Γc

Γa

Fig. 17-26 The 3Q Wilson loop operator. A 3Q state created at time

τ = 0 propagates to τ = T , where it is annihilated.

The extraction of the potential via (17.51a) requires the evaluation of �W3Q�
for large euclidean times T. This poses of course the usual problems. Since the signal
is suppressed exponentially with T , it is important to enhance the projection onto
the ground state using a smearing technique, as described in sec. 17.4. Although the
question whether the flux tube structure is of the ∆ or Y -type is not yet settled,
newer data obtained by Takahashi et al. (2001–2003), and by Ichie et al. (2003)
support the Y -type flux tube picture.

In Fig. (17-27) we show the action density in the presence of three quarks,
obtained by Takahashi et al. in a MC simulation performed at β = 6.0 in quenched
QCD. The potential was fitted to the following conjectured Y-ansatz with a deviation
of only 1%:

V3Q(�r1,�r2,�r3) = −A3Q

∑
i<j

1
|�ri − �rj|

+ σ3QLmin + C3Q, (17.52)
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Fig. 17-27 Action density in the presence of 3 quarks, measured in a

MC simulation on a 163 × 32 lattice at β = 6.0 for SU(3). The figure is

taken from Takahashi et al. (2004).

where Lmin is the minimum length of the 3 strings. The authors also find that
σ3Q ≈ σ, where σ is the two-body string tension, and that A3Q ≈ 1

2AQQ̄. A recent
computation of the three quark potential in full QCD has been performed by Ichie
et al. (2003) in the “maximal abelian gauge” (see next section), and a similar flux
tube profile was obtained.

17.8 The Dual Superconductor Picture of Confinement

Having obtained good indications that a flux tube is formed as the qq̄-separation
is increased, the next question one would like to have an answer to, concerns the
dynamics responsible for the formation of the flux tube. It has been suggested a
long time ago by Nielsen and Olesen (1973), and by Kogut and Susskind (1974)
that confinement could be explained in a natural way if the QCD vacuum re-
acted to the application of a colour electric field, due to a quark–antiquark pair,
in much the same way as a superconductor reacts to the application of a magnetic
field. This could be achieved by adding to the gauge field an elementary charged
scalar (Higgs) field, which has however not been detected so far.∗ The dual super-
conductor mechanism of ’t Hooft (1976) and Mandelstam (1976) does not require
the introduction of such a field, but assumes that dynamically generated topolog-
ical excitations provide the persistent screening currents. Consider first a type I
superconductor. Its ground state corresponds to a condensation of Bose particles
(Cooper pairs). When an external magnetic field is applied, these Cooper pairs or-
ganize themselves to form persistent currents that expell the magnetic field, which
is only allowed to penetrate the superconducting material a distance given by the

∗The Higgs theory is the four-dimensional generalization of the Ginzburg–Landau
theory.
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London penetration depth (→ Meissner–Ochsenfeld effect). This is the case if the
applied magnetic field does not exceed a critical value. Beyond this critical value
superconductivity breaks down. In the superconducting state the currents only exist
in a thin surface layer determined by the London penetration depth. A quantita-
tive description of the relation between the surface currents and magnetic field is
given by the London equations,∗ which in a stationary state, can be summarized in
the Coulomb gauge by the following relation between the vector potential and the
current density,

�A = −λ2

c
�J , (17.53)

where λ = m∗/n∗e∗2, with m∗, n∗ and e∗ the mass, density and charge of the
Cooper pairs. By taking the curl of (17.53), assuming λ to be constant, one
obtains∗∗

�∇ × �J +
c

λ2
�B = 0. (17.54)

Combining this equation with Ampere’s law, �∇ × �B = �J/c leads to the equation
∇2 �B = 1

λ2
�B, which implies that the magnetic field decays in the interior of the super-

conductor with a skin depth λ (London penetration depth). Since the Cooper-pair
density is a function of the temperature, the same applies to λ. As one approaches
the critical temperature λ increases strongly, and the magnetic field begins to pen-
etrate more and more the superconductor. Clearly a superconductor of type I can
have no analog in the ground state of a Yang–Mills theory with the colour electric
field of a quark–antiquark pair squeezed into a narrow tube. In fact, such property
of the ground state (if true) suggests that it might actually be the dual analog of a

∗The London equations relating the electric, magnetic fields and the current in a
type I superconductor have the form

�B = −λ2

c
�∇ ×�j,

�E =
λ2

c2 ∂t
�j.

∗∗Our presentation is only qualitative. For a comprehensive discussion see e.g. the
book by Tinkham (1975).
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superconductor of type II. A type II superconductor also exhibits a Meissner phase
below a critical field strength Bc1 . The superconductivity is however not destroyed
as the applied field is increased beyond this critical value. Instead a new phase
appears (Shubnikov phase), in which the material is divided into normal and su-
perconducting regions. Magnetic flux can now penetrate the material (mixed state),
but only in narrow flux tubes (→ Abrikosov flux tubes) whose separation decreases
with increasing external field. The condition for this to happen (which implies that
the new state is favored energetically) is determined by the ratio of the London
penetration length λ to a new scale, the coherence length ξ. The coherence length
is a measure of how strongly the Cooper-pair density varies in space, and has been
introduced as a new parameter by Ginburg and Landau, whose theory is an exten-
sion of the London theory. Abrikosov (1957) found a solution to these equations in
which the flux tubes are arranged in a regular array, with each tube carrying one
unit of flux Φ0 = hc/e∗. The energetically most favorable configuration turns out to
be a triangular array. The relevant quantity which characterizes a superconductor of
type I or II is

κ =
λ

ξ
.

We have the following simple criterion:

κ <
1√
2

(Type I),

κ >
1√
2

(Type II).

For κ close to 1/
√

2 the system is in a mixed state consisting of the Meissner and
Shubnikov phase. In the Shubnikov phase, the flux tubes are trapped by circulating
persistent currents. This phase persists up to a critical magnetic field Bc2 > Bc1 .
Away from the superconducting-normal boundary, between the flux tubes, equation
(17.54) again holds. This equation can be modified to take into account the pres-
ence of the core (Tinkham, 1975). If C is a closed curve encycling the flux tube,
then

∫

S

d�S ·
(

�B +
λ2

c
�∇ × �J

)
= nΦ0. (17.55)

Note the appearance of Planck’s constant. Indeed, the magnetic flux within the
vortices, i.e., Φ =

∮
d�s · �A must be a multiple of Φ0 in order that the wave function of
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the Cooper pairs be single valued. For an extreme type II superconductor the region
of normal material consists of very thin filaments. The solution of the Ginzburg–
Landau equations found be Abrikosov corresponds to one unit of flux concentrated
in each of the vortices. Hence in the limit where the radius of the flux tube (taken
along the z-direction) goes to zero one has that

�B +
λ2

c
�∇ × �J = Φ0δ(�xT )êz. (17.56)

By analogy, if the QCD vacuum behaved like the dual version of a type II supercon-
ductor, one expects that the ground state consists of colour magnetic charges which
in the presence of a quark–antiquark pair would organize themselves into persisting
circulating magnetic currents which confine the colour-electric flux into narrow (dual
Abrikosov)-flux tubes. ’t Hooft (1981) has conjectured that the relevant degrees of
freedom responsible for the confinement are actually U(1) degrees of freedom defined
in the so called “maximal abelian gauge”, and that the condensate in non-abelian
gauge theories consists of U(1) Dirac monopoles. Since the U(1) lattice gauge theory
is also known to confine charges for strong coupling, it is of interest to first check
the above picture for the confinement mechanism in this theory. If the dual super-
conductor picture is correct, then for strong coupling the ground state should be
strongly populated by Dirac magnetic monopoles. As the coupling is reduced this
theory is known to undergo a transition to the Coulomb phase. In this phase the
ground state should no longer show a condensation of magnetic charges. This has
indeed been confirmed in numerical simulations by DeGrand and Toussaint (1980).
These authors showed that on the lattice there are objects that can be naturally
identified with Dirac monopoles. If a monopole is located inside an elementary spa-
tial cube on the lattice, then the enclosed magnetic charge can be determined by
measuring the total magnetic flux through the surface of this cube. The magnetic
flux through the surface of a plaquette lying in the ij-plane is directly related to the
phase of the plaquette variable

UPij
(n) = eiea2Fij(n) = eiφij(n),

where Fij is the component of the magnetic field in the direction perpendicular to
the ij-plane. The measurement of this flux however involves a subtle point, resulting
from the fact that UPij

(n) is a periodic function of φij(n). As we have seen in
chapter 5 the plaquette variable is given in the U(1) gauge theory by the product
of the oriented link variables around the boundary of the plaquette. A link variable
associated with a link pointing in the µ-direction, with base located at the lattice
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site n, is given by Uµ(n) = eiφµ(n), where −π < φµ(n) < π. Hence the product of
such variables around the boundary of a plaquette lying in the µν-plane is

UPµν (n) = eiφµν , (17.57a)

where

−4π < φµν < 4π. (17.57b)

For small angles φµν we can identify the space-space components of this quantity
with e× (the magnetic flux through the surface of the plaquette). On the other hand,
for large angles, the physical flux should be identified with φµν (mod 2nπ), since the
plaquette value remains unchanged by shifting φµν by a multiple of 2π. The electric
flux in the i-th direction through an elementary plaquette can be determined in a
similar way from the phase of the plaquette variable UPi4 .

Let us denote in the following the angle associated with a given plaquette P
simply by φP . We then decompose this angle as follows (DeGrand, 1980)

φP = φ̄P + 2πnP , (17.58a)

where

−π < φ̄P < π, (17.58b)

and nP are integers. Because of (17.57b), we then have that nP = 0, ±1, ±2. Now
it is clear that if we add up the plaquette angles φP of the six plaquettes bounding
an elementary cube we will get a vanishing result, since each link is common to
two plaquettes, and gives rise to the sum of two phases, equal in magnitude, but
of opposite sign. It therefore follows that the magnetic flux 1

e

∑
P φ̄P through the

closed surface S bounding the elementary cube is given by

M =
∑
P∈S

1
e
φ̄P = −2π

e

∑
P∈S

nP , (17.59)

where M is the magnetic charge enclosed by the surface. This charge is therefore a
multiple of 2π

e
.∗ If a magnetic monopole is located in an elementary volume, then

at least one of the plaquette angles must be larger in magnitude than π, so that
there is a Dirac string crossing the corresponding surface. By making a “large” gauge
transformation (e.g., a particular link variable is mapped out of the principle domain
[−π, π]) a Dirac string can be moved around. But the net number of such strings

∗We set � = c = 1, as is appropriate to the lattice formulation.
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leaving the elementary volume will not be affected by the gauge transformation.
Furthermore, it is clear, that the number of monopoles contained in a volume V is
given by the sum of the monopole numbers of the elementary boxes making up the
volume. The lattice simulations of DeGrand and Toussaint (DeGrand, 1980) have
shown that the majority of the configurations in the confined phase of the U(1)
theory correspond to pairs of monopoles and antimonopoles located in adjacent
boxes. Such a pair corresponds to the situation where only the plaquette angle
associated with the common face exceeds π (in absolute value).

The observation that monopoles are abundant in the confined phase of the U(1)
lattice gauge theory, and scarce in the deconfined phase, fulfills the first prerequisite
for a test of the dual type II superconductor picture of confinement.∗ But if this
picture is correct then one would also expect to “see” that when an oppositely
charged pair is introduced into the vacuum these monopoles organize themselves
to form persistent currents which squeeze the electric field into a narrow Abrikosov
flux tube connecting the pair. Let the two charges be located on the z-axis. Then
the magnetic supercurrents are expected to satisfy the dual version of the London
equation for an Abrikosov vortex (we have set � = c = 1),

Ez − λ̄2(�∇ ×�jM)z = nΦ̃0δ(�xT ) (17.60)

where Φ̃0 is obtained from Φ0 by replacing the electric charge of the Cooper pair
by the monopole charge qm = 2π

e
. The fluxoid density given by the left-hand side

vanishes everywhere except at the vortex. Consider a surface perpendicular to the
z-axis on which the two charges are located. If this axis passes through the surface,
then the electric flux through this surface is related to the circulation of the magnetic
current around the boundary of the surface by

∫

S

d�S · �E − λ̄2
∫

∂S

d�� ·�jM = nΦ̃0. (17.61)

If the surface is an elementary plaquette, then the line integral is roughly given by
the z-component of the curl of the magnetic current multiplied by the area of the
surface.

For the U(1) lattice gauge theory this equation has been first studied in detail
by Singh, Haymaker and Browne (Singh, 1993a), where λ̄ has been considered to be a

∗Di Giacomo et al. (2000) proposed a monopole creation operator, which serves
as an order parameter for studying the deconfinement phase transition.
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free parameter. These authors have chosen to define the ith component of the electric
field by a2Ei = 1

e
ImUP4i

, which takes account of the fact that the physical flux is
determined from the phase of the plaquette variable, modulo 2nπ. To check (17.61)
one also needs a lattice expression for the components of the magnetic current. They
are defined (DeGrand, 1980) in terms of the dual field tensor F̃µν = 1

2�µνλρFλρ by

j
(mag)
i = ∂νF̃νi.

Consider for example the first component of the current. It can be written in the
form

j
(mag)
1 = �∇ · �M1, (17.62)

where �M1 = (F43, F24, F32), and �∇ = (∂2, ∂3, ∂4). Integrating j
(mag)
1 over the volume

of an elementary cube with edges along the 2, 3 and 4 directions, is equivalent to
computing the flux of �M1 through the surface of this cube. Hence to compute the
three components of �jM one needs to calculate the flux through the surfaces of 3
cubes, having one edge directed along the time-axis. This computation is carried out
in a completely analogous way as described before for the magnetic flux. Hence by
construction the three components of the current, when measured in lattice units,
will be multiples of 2π

e
. To obtain �∇ ×�j(mag) one performs the discrete line integral

around the elementary square shown by the dotted lines in Fig. (17-28), where the
time direction of the 3-volumes determining the components of the currents has
been suppressed.

z

y

x

Fig. 17-28 The four elementary plaquettes shown in solid lines repre-

sent the four 3-volumes from which the components of the magnetic current

are determined. The-time direction has been suppressed. The discrete line

integral is performed along the dashed lines bounding the elementary square

shown by the dotted lines. The fig. is taken from Singh et al. (1993b).

Singh et al. (1993a) have measured the z-component of the electric field, and
of the curl of the magnetic current, in the presence of a qq̄ pair, by correlating these
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quantities with a Wilson loop located in the z − τ plane. The measurements were
carried out in a plane perpendicular to the z-axis located at the midpoint between
the two charges.
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Fig. 17-29 Dependence of (a) the electric flux, (b) the curl of the

monopoler current, and (c) of the fluxoid in the U(1) gauge theory at

β = 0.95 as a function of the perpendicular distance from the axis of the qq̄

pair. The dashed line is the expected electrical flux obtained from the contin-

uum equation (17.28) and the dual version of Ampere’s law: c�∇× �E = −�jM .

The fig. is taken from Singh et al. (1993a).

Fig. (17-29) shows the dependence of these quantities on the distance from the
axis. From their analysis the authors conclude that (17.60) is indeed satisfied with a
London penetration depth, given for β ≡ 1

e2 = 0.95, by λ̂ = 0.482 ± 0.008 (in lattice
units), and one unit of electric flux.

The above result is encouraging. But what one really wants to study is the
corresponding problem for the case of a non-abelian gauge theory. In the non-abelian
case the situation is far less clear. As we have already mentioned at the beginning
of this section, it is believed that the relevant degrees of freedom are actually U(1)
degrees of freedom. It has been suggested by ’t Hooft (1981) that these U(1) degrees
of freedom can be isolated by going to the so-called Maximal Abelian Gauge (MAG).
On the lattice the MAG has been first discussed by Kronfeld et al. (1987). Consider
for example the SU(2) gauge theory. An SU(2) link variable can be written in



March 1, 2012 10:29 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch17

Lattice Gauge Theories 371

the form

Uµ(n) =




�
1 − η2

µ(n)eiαµ(n) ηµ(n)eiψµ(n)

−ηµ(n)e−iψµ(n)
�

1 − η2
µ(n)e−iαµ(n)


 (17.63)

with ηµ(n) ≥ 0. Let {Uµ(n)} be some given link-variable configuration.

We want to make a gauge transformation such that for all link variables
the matrix is as diagonal as possible in the mean. Let us denote the trans-
formed parameters with a “tilde”. The transformed variables are given by Ũµ(n) =
G(n)Uµ(n)G−1(n + µ̂). These variables will of course again be of the form (17.63).
Then the above condition is equivalent to maximizing the quantity

R =
�
n,µ

Tr[σ3Ũµ(n)σ3Ũ
†
µ(n)]. (17.64)

The gauge transformation which maximizes this expression is not unique, since no
statement is made about the phases. Thus the value of (17.64) is left unchanged by
gauge transformations generated by the group elements

Ĝ(n) =

�
eiγ(n) 0

0 e−iγ(n)

�
. (17.65)

We can therefore restrict ourselves to gauge transformations of the type

Uµ(n) → G(n)Uµ(n)G−1(n + µ̂),

where

G(n) =

� �
1 − κ2(n) κ(n)eiδ(n)

−κ(n)e−iδ(n)
�

1 − κ2(n),

�
,

which is of the form G(n) = g0(n)1+ ig1(n)σ1 + ig2(n)σ2, with σi the Pauli matrices.
In the maximal abelian gauge the link variables take again the form (17.63), or
equivalently

Ũµ(n) =

��
1 − |ξµ(n)|2 ξµ(n)

−ξ∗
µ(n)

�
1 − |ξµ(n)|2

� �
uµ(n) 0

0 u∗
µ(n)

�
,

where uµ(n) = exp[iφµ(n)]. Under the residual gauge transformations, induced by
(17.65), ξµ(n) and uµ(n) transform as follows

ξµ(n) → e2iγ(n)ξµ(n), (17.66a)

uµ(n) → eiγ(n)uµ(n)e−iγ(n+µ̂). (17.66b)
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Notice that the variables uµ(n) transform like U(1) link variables under this gauge
transformations, while the transformation of ξµ(n) is local. Having obtained the
new link-variables from a given configuration in the maximal abelian gauge, the
relevant U(1) gauge degrees of freedom are identified with uµ(n), which, as we have
just seen, transform in the desired way under the remaining U(1) gauge group.
Monopoles are now identified by calculating the magnetic flux through the surface
of a 3-volume bounded by plaquette variables constructed from these variables. A
similar statement holds for the components of the magnetic current. These quantities
are then correlated with a Wilson loop constructed from the abelian link variables.
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Fig. 17-30 Profile of (a) the electric flux, (b) the curl of the monopole

current as a function of the perpendicular distance from the axis of the qq̄

pair at β = 2.4. The fig. is taken from Singh et al. (1993b).

Singh, Haymaker and Browne (Singh, 1993b) have measured the monopole
current and the electric field midway between an “quark–antiquark” pair and have
shown that the results are consistent with the dual Ginzburg–Landau model, which
is a generalization of the London theory that allows the magnitude of the condensate
density to vary in space. The results for the flux and curl of the current are shown
in Fig. (17-30). These results have been confirmed by Matsubara et al. (1994) with
better statistics. These authors have also studied the same problem in the SU(3)
gauge theory.

If monopoles defined in the MAG are the relevant degrees of freedom for con-
finement, then they must also account for the string tension in the full non-abelian
theory. For SU(2) this question has been first studied by Suzuki et al. (1990, 1994).∗

∗A more detailed analysis of isolating the monopole content in the light of the De
Grand–Toussaint prescription, discussed earlier, has been carried out by Shiba and
Suzuki (1994), and by Stack et al. (1994).
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A high precision MC measurement of the projected abelian string tension in SU(2)
was carried out by Bali et al. (1996). The authors find that the abelian monopoles
reproduce the full string tension within 5%. This is referred to in the literature as
abelian dominance.

17.9 Center Vortices and Confinement

As we have just seen, Monte Carlo simulations suggest that the mechanism of
confinement is the condensation of U(1) magnetic monopoles defined in the Maximal
Abelian Gauge. The abelian degrees of freedom in the MAG seem to contain almost
all the information regarding the long distance properties of the Yang–Mills theory
relevant to confinement. It seems, however, that the relevant degrees of freedom for
confinement can be reduced even further. When studying the deconfinement phase
transition at high temperatures (see chapter 20) one finds that this transition goes
along with a breakdown of the center symmetry.∗ Not only that: chiral symmetry
(see sec. 17.3) is restored at a critical temperature which in Monte Carlo simulations
is found to coincide with the deconfinement transition. Hence the relevant degrees of
freedom may be just be the center elements of the group. In the perturbative regime
the link variables are close to the unit element. The relevant group is therefore
SU(3)/Z(3). On the other hand the center elements correspond to large fluctuations
of the gauge fields of the order of 1/ga.

A possible mechanism of confinement, which has been conjectured already a
long time ago (’t Hooft, 1979; Mack, 1979; Ambjorn, 1980), and which has been
discussed intensively in the past years, is the condensation of center vortices.∗∗ An
example of a vortex in three spacial dimensions is a closed thin tube of magnetic
flux. Such a vortex can be thought of as the magnetic field generated by a toroidal
solenoid, in the limit of vanishing cross section. What is characteristic of such an
arrangement, is that the vector potential is pure gauge outside the torus and has
the form

�A(�x) =
F

4π
�∇Ω̃(C; �x), (17.67)

∗The action is invariant under local SU(3) transformations, and also under the
multiplication of the link variables on a fixed time slice by a center element of SU(3).
As we will see in chapter 20 this center symmetry is broken in the confined phase.
For SU(2) and SU(3) the center elements are given by (1, −1) and (exp(−2πi/3)1, 1,
exp(2πi/3)1), respectively, where 1 is the unit matrix.

∗∗For a recent review see e.g. Greensite, 2003.
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where F is the magnetic flux in the torus, and Ω̃(C; �x) is the solid angle subtended
by the contour C of the infinitely thin torus at the observation point �x. This solid
angle is a multivalued function, which changes by 4π along a closed contour piercing
the surface Σ bounded by C. Thus the vortex (17.67) is introduced by making an
a-periodic gauge transformation on the trivial vacuum configuration �A(�x) = 0:

�A(�x) = iG[C](�x)�∇G[C](�x)−1, (17.68a)

where

G[C](�x) = z
Ω̄(C;�x)

4π , (17.68b)

with

z = eiF . (17.68c)

If a loop C �, parametrized by �x(s) (0 ≤ s ≤ 1), winds through the hole of the torus,
then

G[C](�x(1)) = zG[C](�x(0)). (17.69)

In the above discussion Ω̄ is a multivalued function of �x. Alternatively one can
define a function Ω(�x) which is regular and single valued everywhere except on a
surface Σ whose boundary is the loop C. As �x crosses Σ, Ω jumps by ±4π. This
function is given by

Ω(Σ; �x) =
∫

Σ
df ��n(�x�) · �x − �x�

|�x − �x�|3

=
∫

Σ
df ��n(�x�) · �∇� 1

|�x − �x�| , (17.70)

where df � is the differential surface element, and �n(�x�) is the unit normal to the
surface Σ at the point �x�. When �n(�x�) and �x − �x� form an acute angle, this is
nothing but the standard integral representation of the solid angle subtended by C

at �x. This integral is discontinuous across the surface Σ, where it jumps by ±4π.∗

Now comes a subtle point. If one computes the rhs of (17.67) replacing Ω̃ by Ω,
this will not yield a gauge potential whose curl is the toroidal magnetic field. In

∗As a simple example the reader can consider the case of a circular loop in the
x-y plane, and an observation point lying on the z-axis. Writing the integrand of
(17.70) in cylindrical coordinates one readily finds the following dependence of the
solid angle on z: Ω(z) = 2πz√

R2+z2 − 2π�(z), where �(z) = 1 for z > 0, and �(z) = −1
for z < 0.
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fact, in this case, the corresponding expression is gauge equivalent to the trivial
configuration �A = 0. Indeed, the discontinuity of Ω(�x) can be smoothened across
the surface Σ. In this case the rhs of (17.67) with Ω̃ → Ω is a bonafide pure gauge
configuration, corresponding to a vanishing magnetic field everywhere. In order to
obtain the toroidal magnetic field the gradient in (17.67) or (17.68a) should not
operate on the discontinuity at the surface Σ. The following discussion is based
on work of Engelhardt and Reinhardt (1999), who considered vortices within the
continuum formulation of QCD.

The main goal is to isolate the contribution to �∇Ω arising from the above
mentioned discontinuity. Consider

∂iΩ = −
∫

Σ
df �n�

j∂
�
j∂

�
i

1
|�x − �x�| , (17.71)

where �n� ≡ �n(�x�), and, as always, sums over repeated indices are undertood. Making
the decomposition

∂i∂j = δij∇2 − (δij∇2 − ∂i∂j),

and use of the identity

δij∇2 − ∂i∂j = �ikm�j�m∂k∂�,

as well as of

∇2 1
|�x − �x�| = −4πδ(�x − �x�),

one finds that

∂iΩ = 4π
∫

Σ
df �n�

iδ(�x − �x�) +
∫

Σ
df ��n� · (�∇� × �Fi) (17.72a)

where

(�Fi)m = −
∑

k

�imk∂
�
k

1
|�x − �x�| . (17.72b)

Application of Stokes theorem leads to∗

1
4π

∂iΩ = Ai(Σ; �x) − ai(∂Σ, �x) (17.73a)

where

Ai(Σ; �x) =
∫

Σ
df �n�

iδ(�x − �x�) (17.73b)

∗This is the 3-dimensional analog of the decomposition carried out by Engelhardt
and Reinhard (1999) for the case of SU(N) gauge theories.
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and

ai(∂Σ, �x) =
∫

∂Σ
dx′

k �ik�∂
′
�D(�x − �x′), (17.73c)

with

D(�x − �x′) =
1

4π|�x − �x′| (17.73d)

satisfying

∇2D(�x − �x′) = −δ(�x − �x′). (17.73e)

Note that Ai(�x) has only a support on Σ. It is the contribution arising from the
discontinuity mentioned above. Accordingly, ignoring this contribution to (17.73a),
the relevant vortex vector potential is given by

�Avortex(�x) = −F�a(∂Σ, �x), (17.74)

which is now determined from the boundary of Σ, i.e. the location of the vortex. It
is referred to in the literature at the thin vortex. Let us compute the line integral of
the vortex field along a closed path C ′ piercing the surface Σ bounded by C n-times.
A simple calculation yields

∫

C′

�dx · �Avortex(�x) = −FL(C, C ′), (17.75a)

where

L(C, C ′) =
1
4π

∫

C

dxi

∫

C′
dyj �ijk

xk − yk

|�x − �y|3 (17.75b)

is the Gaussian linking number. This is, of course, the expected result for a toroidal
field configuration. As one can also verify, the magnetic field computed from the
curl of (17.74) is localized on C.

The configuration (17.74) is actually gauge equivalent to the so called ideal
vortex field (17.73b), which only has non-vanishing support on the surface of discon-
tinuity (Engelhardt, 1999). This can be seen as follows. Consider a gauge transfor-
mation generated by the inverse of the group element (17.68) with a single valued,
but discontinuous, angular variable Ω(�x). As already mentioned, one can imagine
the discontinuity across Σ to be smeared out over an small interval, so that Ω is
single valued and differentiable everywhere. After having performed the differenti-
ation (17.68a) this interval is taken to vanish. A (bonafide!) gauge transformation
on (17.74) carried out with this group element transforms the vortex field into the
gauge equivalent potential �A′

vortex = −F �A(Σ, �x), which now only has support on the
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surface of discontinuity. In this way one has eliminated the potential everywhere in
space, except at points located on this surface.

Let us now leave the continuum and turn to the lattice. As we have already
pointed out, it has been speculated for some time, that the relevant degrees of
freedom for confinement in QCD may be Z(3) degrees of freedom, and that confine-
ment is intimately connected with the condensation of Z(3) vortices. To expose the
relevant Z(3) content on the lattice one needs to carry out a “center projection”.
The idea is the same as for the abelian projection. One fixes a gauge, called the
maximal center gauge, or MCG, where the link variables take a form as close as
possible to Z(3) elements, and then replaces these variables by the respective center
elements. This is called “direct maximal center projection” or DMCP (Del Debbio,
1998). In terms of a concrete prescription this two step process reads as follows for
SU(2), where the link variables can be parametrized in the form (17.22). One first
makes a gauge transformation on a given link variable configuration U → U g which
maximizes the quantity

F [U ] =
∑
n,µ

(TrUµ(n))2 = 2
∑
n,µ

a4
2(n, µ),

where |a4(n, µ)| ≤ 1; i.e., one computes

max{g}
∑
n,µ

(TrU g
µ(n))2, (17.76)

where U g
µ(n) is the gauge transform of Uµ(n). This leaves one with configurations

which (on the average) are as close as possible to center elements. So far physics
(which resides in gauge invariant quantities) has not been changed. The approxima-
tion comes with the second step: the gauge fixed link configurations {Ũµ} are now
projected to Z(2) elements according to

Ũµ(n) → zµ(n) = sgn[TrŨµ(n)]. (17.77)

Del Debbio et al. (1997) have also proposed another way of performing the
center projection, where the maximal center gauge itself is reached in a two step
process. The first step consist in going into the maximal abelian gauge (MAG), and
performing the abelian projection. The remaining U(1) gauge symmetry is then fur-
ther reduced by performing an additional gauge transformation which brings the link
variables as close as possible to center elements. Center projection is then carried
out by replacing the link variables by the respective center elements. For SU(2), for
example, the U(1) matrix valued link variables, after abelian projection in the MAG,
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take the diagonal form diag(eiθµ(n), e−iθµ(n)). Under the residual gauge transforma-
tion (17.66b) we have that θµ(n) → θµ(n) + αµ(n). By a gauge transformation, the
configurations are now brought as close as possible to center elements by maximizing
the lattice average of

∑
n,µ cos2 θµ(n). This yields a set of U(1)-link variables Ũµ(n)

parametrized by {θ̃µ(n)}. Finally one carries out the center projection by making
the replacement

Ũµ(n) → sgn(cos θ̃µ(n)) (17.78)

This procedure is called indirect maximal center projection (IMCP) The IMCP has
the merit that one can identify the U(1) monopoles in the MAG, and study their
possible correlations with the center projected link variable configurations.

In either way of carrying out the center projection one is finally left with a
set of pure Z(2) link variable configurations, i.e. one has stripped off all quantum
fluctuations around the center elements.

How does one identify a so called P-vortex on the lattice? Consider again
SU(2) for simplicity. Consider also for simplicity a three dimensional lattice with
link configurations consisting only of Z(2) elements. Then a plaquette can only take
the values ±1. On a three dimensional spacial lattice this would determine the Z(2)-
magnetic flux (or center flux) through the surface of the plaquette. Consider now
the dual lattice consisting of the sites located at the center of the elementary cubes.
Then a non-vanishing flux through a plaquette on the original lattice (corresponding
to a center element −1), can be associated with a non-trivial Z(2) link on the dual
lattice, with the base located at the center of a cube and piercing this plaquette. In
the Z(2) scenario there is no arrow that can be attached to this link. Let ZP denote
the value of a plaquette P on the original lattice, and let V be the volume of an
elementary hypercube bounded by 6 elementary plaquettes. It then follows trivially
that

∏
P∈∂V

ZP = 1.

This is just a special case of the Bianchi identity,
∏

P∈∂V σP = 1, valid for U(1).
Here σP are the values of the plaquette variables bounding the volume V, computed
from the product of U(1) link variables with a sense of circulation determined, e.g.,
by the outward normal to ∂V . The links on the dual lattice, taking non-trivial values
in the center of SU(2) must therefore form closed loops in 3 dimensions.∗

∗In four dimensions the P -vortices are closed two-dimensional surfaces on the dual
lattice. The existence of such Z(2)-vortices are believed to signal also the existence



March 1, 2012 10:29 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch17

Lattice Gauge Theories 379

To elucidate some of the above ideas let us consider again SU(2) and a lattice in
two space time dimensions. In two dimensions vortices are pointlike, and associated
with sites on the dual lattice, located at the center of a plaquette with ZP = −1.

B

A

Fig. 17-31 Two vortices (heavy dots) on a two- dimensional lattice.

The figure shows a possible link variable Z(2) configuration. Links denoted

by heavy lines take the value −1. Correspondingly, shaded plaquettes take

the value −1. All other plaquettes take the trivial value +1.

In Fig. (17-31) we show two vortices located at A and B. Dotted (solid) lines
correspond to link variables taking the value +1 (−1). The plaquettes at A and B
take both the value −1, while all other plaquettes take the value +1. The non-trivial
links between the two vortices can be shifted around by performing an appropriate
center gauge transformation. Their location have therefore no physical significance.
Any Wilson loop which links with one of these vortices clearly yields a non trivial
center element −1. If both vortices pierce the W-loop, then its value will be +1.∗

The value of the Wilson loop functional (7.24) on a particular Z(2) configuration
can only take the values (−1)n, where n is the number of vortices piercing the area
of the Wilson loop bounded by C �. Hence the potential can be calculated from the
expectation value of this sign fluctuation.

Simulations of the SU(2) string tension using the Z(2) projected field config-
urations for the Wilson loop show that the full string tension is well reproduced. In
Fig. (17-32) we show the qq̄-potential calculated by Kovacs and Tomboulis (1998)
from the unprojected configurations, and from the sign average of the Wilson loop.

of “thick” vortices. Thick vortices are closed extended structures. They are expected
to be the relevant configurations that scale in the continuum limit, and to lead to
an area law behaviour for the Wilson loop.

∗This is the analog of the observation made earlier in conjuction with the toroidal
Aharonov–Bohm arrangement, except that there the vortex flux has a direction, and
vortices piercing the W-loop in opposite directions will not affect the Wilson loop
functional. Furthermore the center element is replaced by the U(1) flux dependent
element exp(iF ).
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Fig. 17-32 The static qq̄-potential for SU(2) computed from unpro-

jected configurations at β = 2.4 (squares), and from the sign average of the

Wilson loop. The figure is taken from Kovacs (1998).

If center vortices are indeed the relevant degrees of freedom for confinement,
then confinement should be lost when one removes configurations from the original
ensemble, which give rise to vortices after center projection. This may not be an
easy task to implement. In praxis it is easier to proceed as follows. After choosing
the maximal center gauge the field configuration is written in the form

Uµ(n) = Zµ(n)U ′
µ(n),

where Zµ(n) is the center element after projection. By calculating the W-loop with
the set of link variables U ′

µ(n) one effectively throws out the center vortices. The
result of following such a procedure for SU(2) is shown in Fig. (17-33), taken from
Langfeld (2004).

As seen from the figure, the string tension vanishes upon removal of the center
vortices. On the other hand the author finds that only 62% of the full SU(3) string
tension is recovered. Although many of the results obtained so far seem to point in
the right direction, looking at the detailed numerical simulations show that there
are many subtle problems such as e.g., the Gribov copy problem, the Casimir scaling
problem, and the dependence of the results on the gauge in which the configurations
are center projected. In this connection we only mention here, that center projected
vortices in the so called “Laplacian gauge” reproduce not only the SU(3) string
tension, but are also free of Gribov copies (Alexandrou, 2000; de Forcrand, 2001).
The question now arises: what is the quantum mechanical creation operator for
a vortex? Such an operator was introduced by ’t Hooft. To understand ’t Hooft’s
formulation it is useful to go back to our Aharonov − Bohm arrangement of an
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Fig. 17-33 The static qq̄-potential for SU(2) computed from unpro-

jected, and center projected configurations, as well as from ensembles with

the vortices removed. The figure is taken from Langefeld (2004).

infinitely thin toroidal solenoid, and construct a unitary operator which generates
the gauge transformation

�A(�x) → �AΩ(�x) = �A(�x) + �Avortex(�x). (17.79)

where �Avortex(�x) is given by (17.74). For this we must treat Ai as an operator. We
shall denote it in the following with a “hat”. Let π̂i(�x) be the momentum canonically
conjugate to Âi(�x). Making use of the operator relations

e−CBeC = B + [B, C],

and

eBeC = e[B,C]eCeB,

which are valid if [B, C] is a c-number, one readily verifies that

V̂ (C)Âi(�x)V̂ −1(C) = �̂
A(�x) + �Avortex(�x), (17.80a)

where

V̂ (C) = ei
∫

d3x
�̂
Avortex(�x)·�̂π(�x). (17.80b)

Consider now a Wilson loop. The W-loop functional (7.22b) evaluated on the gauge
transformed field configuration (17.80a) is given by

V̂ (C)Ŵ (C �)V̂ −1(C) = e−iF
∫

C′ d�z·a(�z)Ŵ (C �). (17.81)
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or, inserting for �a the explicit expression (17.73c) one readily verifies that

V̂ (C)Ŵ (C ′) = zL(C,C′)Ŵ (C ′)V̂ (C), (17.82)

where z = exp(iF ), and L(C, C ′) is the Gausssian linking number of the two loops

C ≡ ∂Σ and C ′, i.e. (17.70). When V̂ (C) is applied to an eigenstate | �A(�x)� of �̂
A(�x)

then it induces a “translation” of the field �A(�x) by (17.74), i.e.

V̂ (C)| �A(�x)� = | �A(�x) + �Avortex�, (17.83)

showing that a vortex has been created.
In 1978 ’t Hooft introduced a vortex creation operator V (C) defined in an

analogous way to (17.82), except that z is an element of the center of SU(N) (’t
Hooft, 1978). As was shown by ’t Hooft, the expectation value of this operator serves
as an order parameter for confinement. The area (perimeter) law for confinement
(deconfinement) of the temporal Wilson loop is replaced by a perimeter (area) law for
the ’t Hooft loop operator, respectively. The corresponding vortex creation operator
has been constructed by Reinhardt (2002) along the lines described above.

Let me close with some remarks. Monte Carlo calculations have shown that
both, U(1) monopoles, and center vortices can account for most part of the string
tension in an appropriate center gauge. Independent of the choice of gauge one finds
that if either the abelian monopoles or vortices are removed from the ensemble of
configurations, confinement is lost. Not only that: chiral symmetry breaking is also
lost. Although the various proposed mechanisms discussed in this and the previous
section seem to account for quark confinement, a clear picture unifying all these ob-
servations is still lacking. Of all the proposed mechanisms, the dual superconductor
picture of confinement is probably the closest to a dynamical picture leading to flux
tube formation. The vortex and monopole pictures may just be alternative views
of one and the same fundamental dynamics. Thus numerical simulations show that
vortices and U(1) monopole currents extracted in the indirect maximal center gauge
are correlated (Kovalenko, 2004). With these remarks we conclude our discussion of
this fascinating subject.

17.10 Calorons

Calorons are instantons at finite temperature, i.e., topological excitations car-
rying a Pontryagin charge. In the following we will not go into any analytical details,
since they involve a substancial mathematical machinery. We will limit ourselves to
highlight, without proof, some of their interesting properties, to present some results
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of Monte Carlo simulations aimed at detecting these objects on the lattice, and to
elucidate their possible role for quark confinement. There are many subtleties in-
volved in MC simulations which we shall not discuss, and we urge the reader to
confer the cited literature for details.

As we have seen in the previous sections, excitations of the vacuum correspond-
ing to the condensation of abelian magnetic monopoles and center vortices in the
maximal abelian and center gauges, appear to play an important role in the dy-
namics of quark confinement. In particular the QCD vacuum can be viewed as a
dual superconductor where magnetic monopoles have condensed. But what about
the instantons? It had been hoped for a long time that topology plays a key role
for understanding quark confinement. In fact, instantons appeared to be a natural
candidate for such topological excitations, since they provide an explanation for the
U(1)A anomaly (’t Hooft, 1976a), the non-perturbative gluon condensate (Shifman,
1979), and the violation of chiral symmetry (Callan 1978; Diakonov, 1984/1986).∗

Furthermore, as we shall see in chapter 20, numerical simulations show that chiral
symmetry, which is broken at low temperatures, is restored at high temperatures,
and in fact at the same critical temperature Tc where the deconfinement phase tran-
sition takes place. This suggests that there may exist, after all, a link between instan-
tons and quark confinement. One should therefore look into possible instanton-like
excitations at non-zero temperature carrying a topological charge, and study them
as the temperature is increased towards the deconfinement phase transition. These
excitations are self (anti-self) dual solutions to the Yang–Mills equations. Finite
action requires them to approach a pure gauge configuration at spatial infinity.

Finite temperature will be dealt with in the following chapters. But since its
implementation is rather simple, we summarize it here for our purposes. The parti-
tion function at finite temperature T = 1

β
is given by the usual euclidean partition

function with the only restriction that the euclidean time direction is compactified,
with the bosonic (fermionic) fields satisfying periodic (antiperiodic) boundary con-
ditions on the euclidean time interval 0 ≤ τ ≤ β. In particular, for bosonic fields,
A(x, τ + β) = A(x, τ). Hence the compactification radius decreases with increasing
temperature.

Instantons at finite temperature are called calorons. The simplest caloron which
is a solution to the self dual euclidean SU(2) Yang–Mills equations, and carries unit
topological charge, has been constructed by Harrington and Shepard (Harrington,

∗See also the review articles by Schaefer and Shuryak (1998) and by Diakonov
(2003).
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1978). In the ‘singular gauge’, where the topological charge is generated from a
singularity at the location of the periodic instanton, rather than at infinity (see
section 17.6), the potentials are given by∗

Aa
µ = −η̄a

µν∂ν ln φ,

where

φ(x) = 1 +
∞∑

n=−∞

ρ2

|�x − �x0|2 + (τ − τ0 − nβ)2

= 1 +
(

πρ2

β|�x − �x0|

)
sinh(2πβ−1|�x − �x0|)

cosh(2πβ−1|�x − �x0|) − cos(2πβ−1|τ − τ0|)
and η̄a

µν are the ’t Hooft symbols.∗ This caloron can be roughly viewed as a chain
of instantons with fixed color orientation and size ρ, aligned along the euclidean
time direction. Its action (8π2/g2) is independent of the temperature. For vanishing
temperature (β → ∞) it reduces to the usual instanton.

The Harrington–Shepard caloron is a solution to the Yang–Mills equations
with so called “trivial holonomy”, and appears to be irrelevant for the confinement
problem. The holonomy of a self-dual solution to the Yang–Mills equations is defined
by the behaviour of the Polyakov loop (or Wilson line) at spatial infinity. It was
introduced by Gross, Pisarski and Yaffe (Gross,1981) as one of the observables in
the classification of finite energy periodic fields. The Polyakov loop (to be discussed
in chapter 20) is defined in the continuum by the unitary expression

P(�x) = Pei
∫ β
0 dτA4(�x,τ), (17.84)

where in the case of a non-abelian field, A4 (the four component of the gauge po-
tential) is a matrix lying in the Lie algebra of the gauge group, satisfying periodic
boundary conditions on the compactified euclidean time interval. P stands for path
ordering (ensuring the unitarity of (17.84), and the bilinear transformation property
under gauge changes), and β is the inverse temperature. On the lattice (17.84) is
replaced by

P̂(�n) =
β̂∏

n4=1

U4(�n, n4),

∗Here, and in the following we shall absorb the coupling constant g into the gauge
field, to conform to the notation in the literature.

∗The anti-self-dual ’t Hooft tensor η̄a
µν is defined by: η̄a

µν = (−1)δµ4+δν4ηa
µν , where

ηa
µν ≡ ηaµν has been defined in Eq. (17.38). We have that η̄a

µν = −1
2�µναβ η̄a

αβ.



March 1, 2012 10:29 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch17

Lattice Gauge Theories 385

where β̂ is the inverse temperature measured in lattice units. The rhs is just the
(matrix) product of the time-like link variables along a closed path oriented along
the time direction. Two spatially separated Polyakov loops replace the role played
by the Wilson loop at zero temperature. Furthermore, as we shall see in chapter
20, the expectation value of the trace of P vanishes in the confined phase, and
differs from zero above the deconfinement phase transition. It therefore plays the
role of an order parameter. The Polyakov loop evaluated for field configurations
at spatial infinity — the so called holonomy — plays a central role in selecting
the field configurations which may be relevant for the confined/deconfined phase
of QCD (see comment further below). For SU(N) the holonomy is defined by the
set (µ1, µ2, . . . , µN) labeling the gauge invariant eigenvalues of the Polyakov loop at
spatial infinity:

lim
�x→∞

P(�x) = V HV −1,

where H is the matrix

H = diag(e2πiµ1 , e2πiµ2 , . . . , e2πiµN ), (17.85a)

and where
N∑

�=1

µ� = 0, (17.85b)

since P is an element of SU(N) with det P = 1. These eigenvalues can be ordered
so that µ1 ≤ µ2 ≤ · · · ≤ µN ≤ µN+1 ≡ µ1 + 1, where µN+1 has been introduced for
later convenience. The holonomy of a configuration is said to be trivial if H is an
element belonging to the center Z(N) of the gauge group SU(N). For SU(2) the
center elements are the 2 × 2 matrices 1 and −1, while for SU(3) they are given by
the 3×3 matrices 1, e2iπ/31, e−2iπ/31.∗ The corresponding µ�’s, ordered as above, are
given as follows:

H = 1 → {µ�} = (0, 0, 0),

H = e2iπ/31 → {µ�} = (−2/3, 1/3, 1/3),

H = e−2iπ/31 → {µ�} = (−1/3, −1/3, 2/3).

Trivial holonomy is expected to characterize configurations in the deconfined phase
where the center symmetry is broken (see chapter 20). Configurations where the µ�’s

∗The holonomy of the Harrington–Shepard caloron is trivial, since A4 → 0 for
|�x| → ∞, so that P approaches the unit matrix.
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do not belong to the above set, i.e., where H is not an element of the center, are said
to possess non-trivial holonomy and are expected to be relevant for understanding
the confined phase of QCD. Among these there exists a special set of equidistant
µ�’s for which Tr H = 0. For SU(3) they are given by µ1 = −1/3, µ2 = 0, µ3 = 1/3.
This set is referred to as the ”maximal non-trivial holonomy”. As already mentioned
above, a vanishing trace of the Polyakov loop expectation value is a criterium for
confinement.∗ Thus field configurations with a non-trivial holonomy may be relevant
for understanding the confinement of quarks.

Renewed interest in instantons at finite temperature, and in their possible role
for confinement arose after new caloron solutions had been contructed for SU(2) by
Lee and Lu (Lee, 1998) and by Kraan and van Baal (Kraan 1998) corresponding
to a non-trivial holonomy. They go under the name of KvBLL calorons. These so-
lutions are obtained by making use of the ADHM construction of multi-instantons
(Atiyah, 1978) and of the Nahm formalism (Nahm, 1984). Studying their tempera-
ture dependence reveals an interesting substructure (Kraan, 1998; Lee 1998), which
provides a possible link to the excitations discussed in sections (17.8) and (17.9),
and hence to the confinement problem. SU(N), Q = 1 KvBLL calorons consist of a
complicated superposition of N Bogomol’ny–Prasad–Sommerfeld (BPS) monopoles
(Prasad, 1975; Bogomol’ny, 1976) carrying fractional Pontryagin charges (which
characterize their 3-dimensional topology), and magnetic charge. The BPS monopole
itsef is a static, finite action, self-dual solution to the euclidean SU(2) Yang–Mills
equations (17.24) which possesses both, chromoelectric and chromomagnetic charges
(since it is a self-dual solution of the Yang–Mills equations), with the chromoelectric
and chromomagnetic fields decaying like 1

r2 at infinity. The name dyon is therefore
also frequently encountered in the literature.∗∗ The corresponding gauge potentials
are given by (Prasad, 1975)

Aa
4(�x)BPS =

x̂a

r
(ur coth(ur) − 1), (17.86a)

Aa
i (�x)BPS = �iab

x̂b

r

(
ur

sinh(ur)
− 1

)
, (17.86b)

∗For SU(2) the diagonalized Polyakov loop at spatial infinity is of the form H =
exp(2πiωτ3). This defines the holonomy parameter ω. Maximal non-trivial holonomy
corresponds to ω = 1/4, where tr H = 2 cos(2πω) = 0.

∗∗With respect to the maximal abelian subgroup the BPS-monopole possesses
purely magnetic charge. There are however self-dual solutions which possess both,
magnetic and electric charge with respect to the maximal abelian subgroup (Julia,
1975).
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where x̂a = xa/r and u is a scale parameter. An anti-self-dual solution to the Yang–
Mills equations is obtained by simply reversing the sign of the time component of
the gauge fields.∗ Anti-monopoles are also part of the scenario. For example, the
SU(2) KvBLL caloron with topological charge Q = 1 is built from a BPS monopole
and an anti-monopole with net vanishing magnetic charge.∗∗ For vanishing temper-
ature the positions of the two monopoles overlap to form a single lump. Similarily,
an SU(N) Q = 1 KvBLL caloron consists of N constituent monopoles with net
vanishing magnetic charge. Their masses are related to the holonomy parameters of
the configuration. With the holonomy parameteres {µn} ordered as above, the n-th
monopole can be assigned a mass mn = 8π2

β
(µn+1 −µn) (Kraan, 1998). Their masses

add up to 8π2

β
, i.e. the one-instanton action. The action density in the continuum

turns out to have the simple form (Kraan, 1998),

−1
2
trF 2(x) = −1

2
∂2∂2 log

[
1
2
tr(AN , . . . A1) − cos

(
2π
β

τ

)]
, (17.87a)

where

An(x) =
1
rn

(
rn |�yn − �yn+1|
0 rn+1

) (
cn sn

sn cn

)
, (17.87b)

and rn = |�x − �yn|, with the n-th monopole located at �yn. Furthermore rn+1 ≡ �y1,
and cn = cosh(2π

β
νnrn), sn = sinh(2π

β
νnrn), with νn = µn+1 − µn. The gauge field

has a far more complicated structure (Kraan, 1998). The following expression for
the matrix valued gauge potentials (elements of the Lie algebra of SU(2)) is taken
from (Lee, 1998):

Aµ(�x, x4) = C†
1Vµ(�r1; u)C1 + C†

2Vµ

(
�r2;

2π
β

− u

)
C2 + C†

1∂µC1 + C†
2∂µC2 + S†∂µS,

(17.88)

where

0 ≤ u ≤ 2π
β

.

∗The chromoelectric and magnetic fields decay like 1/r2 for �x → ∞, while Aa
4 →

ux̂a. Since the potentials are regular everywhere, this asymptotic behaviour leads to
a non-vanishing topological charge. In particular, for u = 2πβ−1, the BPS monopole
carries unit topological charge (Gross, 1981).

∗∗The KvBLL SU(2) caloron is an example of how gauge fields with non-vanishing
topological charge can be built from monopoles (Taubes, 1984).
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The dependence on the time coordinate x4 is contained in complicated expressions
for the 2 × 2 matrices C1, C2 and S defined in (Lee, 1998). Vµ(�x, u) is the BPS
monopole field (17.86), and �r1 and �r2 are the relative position vectors to the two
monopoles located at �x1 and �x2, i.e., �ri = �x − �xi (i = 1, 2) carrying topological
charges βu

2π
and 1 − βu

2π
. As shown in (Lee, 1998), the expression (17.88) describes

two magnetic monopoles of opposite charge (when well separated). Furthermore the
authors show that with ρ2 ≡ dβ/π held fixed, where d is the distance between
the two monopoles and ρ the instanton size parameter, one retrieves the standard
instanton in the limit of vanishing temperature (β → ∞). In Fig. (17-34) we show
the action density for an SU(2) KvBLL caloron with unit topological charge for
three temperatures increasing from left to right, as computed from (17.87).

Fig. 17-34 Action density of an SU(2) Q = 1 caloron at τ = 0 with

non-trivial holonomy, µ2 = −µ1 = 0.125, at three different temperatures

increasing from left to right. The figure is taken from (Kraan, 1998).

As the temperature increases, the constituent nature becomes clearly visible.
Fig. (17-35) shows a similar picture of the action densities for an SU(3) Q = 1
KvBLL caloron (Kraan, 1999)

Fig. 17-35 Action density of an SU(3) Q = 1 caloron with non-trivial

holonomy µ1 = −17/60,µ2 = −2/60,µ3 = 19/60, at three different tem-

peratures, increasing from bottom to top (Kraan, 1999).
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Higher charge KvBLL caloron solutions to the Yang–Mills equations have been
constructed using the ADHM-Nahm formalism (Bruckmann, 2004). SU(N) calorons
with topological charge Q consist of NQ monopole constituents. Fig. (17.36) shows
the action density for a charge 2 SU(2) caloron solution with maximal non trivial
holonomy, at a sufficiently high temperature, so that the constituent nature becomes
visible (right) (Bruckmann, 2004).

Fig. 17-36 Action density of an SU(2) Q = 2 caloron solution with

maximal non-trivial holonomy, in the plane of the constituents at τ = 0,

at a sufficiently high temperature, where the constituent nature becomes

clearly visible. Only part of the figure in (Bruckmann, 2004) is shown.

Hence in a Monte Carlo simulation, an important first signature for possible
SU(N) KvBLL calorons is that the constituents appear in multiples of N . The
detection of these lumps (especially at low temperatures where the constituents
have a strong overlap) is not simple. Cooling (or smearing) of the configurations
has been used to smoothen ultraviolet (short distance) quantum fluctuations, so as
to make the classical substructures visible (see section 17.6). At sufficiently high
temperatures the lumps become well separated and should manifest themselves in
localized distributions in the action and topological charge densities.

Detecting this lumpy structure in lattice simulations does, of course, not yet
identify the configurations with KvBLL calorons. First of all one must determine the
holonomy of the lattice field, and the topological charge density of the configuration
and its constituents. To determine the holonomy one computes the Polyakov loop
“far away” from where the caloron action is concentrated, i.e., in a region of “small”
action.

Having determined the holonomy one must next compute the topological charge
density whose simplest lattice version is given by (17.47).∗ Fig. (17-37) shows the
MC data for the topological charge density of an SU(2) KvBLL caloron candidate

∗This is the gluonic definition of the topological charge. A fermionic definition via
the zero modes of the Dirac operator will be given further below.
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obtained by Ilgenfritz et al. (Ilgenfritz, 2002) on a 163 ×4 lattice at 4/g2 = 2.2, after
cooling the lattice gauge field configurations down to an action plateau correspond-
ing to unit topological charge.
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Fig. 17-37 Two dimensional cuts for the topological charge density

of an SU(2) KvBLL lattice caloron candidate obtained on an 163 × 4

lattice at 4/g2 = 2.2 after cooling. The figure is taken from Ilgenfritz et al.

(Ilgenfritz, 2002).

In the case of the standard zero temperature instanton/antiinstanton discussed
in section 17.6, the zero mode of the massless Dirac operator in the external instanton
field, leads to a breakdown of chiral symmetry within an instanton/antiinstanton
liquid model for the vacuum (Ilgenfritz, 1981; Shuryak, 1982; Diakonov, 1984).∗

These zero modes turn out to play also an important role in identifying the con-
stituent structure of KvBLL calorons. According to the Atiyah-Singer index theorem
(Atiyah, 1971) the difference in number of the positive and negative chirality zero
modes N+ and N− of the chirally invariant massless Dirac operator (in the back-
ground of an external field) is related to the topological charge by Q = N− − N+.
In (Garcia-Perez, 1999a) the zero modes of the Dirac operator in the presence of a
KvBLL background field have been computed analytically for SU(2), and have led
to interesting signatures for identifyng KvBLL calorons on the lattice. Thus for a
Q = 1 SU(2) KvBLL caloron configuration, the zero mode density ψ†

0ψ0(x) (also
referred to in the literature as scalar density), calculated from the single zero mode
ψ0 of the Dirac operator,∗∗ with periodic or anti-periodic boundary conditions im-
posed in the euclidean time direction, is localized on one, and only one, of the two

∗See the review articles by Shuryak (1993) and by Schaefer and Shuryak (1998).
∗∗In an external instanton field there exists only one normalizable left handed

zero mode, and no right handed mode, in agreement with the Atiyah–Singer index
theorem.
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monopole constituents. Which of the two monopoles is singled out depends on the
boundary condition imposed.

Fig. (17-38) shows the zero mode densities obtained by Ilgenfritz et al. (Ilgen-
fritz, 2002) for the lattice configuration that led to the topological charge density
displayed in Fig. (17-37).
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Fig. 17-38 Scalar densities of the zero mode for an SU(2), Q = 1 lat-

tice caloron, corresponding to the topological charge density displayed in

Fig. (17-37), with periodic (left), and anti-periodic (right) boundary condi-

tions on ψ0. The lattice size is 163 × 4 (Ilgenfritz, 2002).

The zero mode is seen to visit only one of the constituents, depending on the
boundary conditions imposed on ψ0.

In (Garcia Perez, 1999a; Chernodub, 2000) the zero modes of the Dirac operator
were also computed analytically for more general boundary conditions of the form
ψ0(�x, τ + β) = e−2πiζψ0(�x, τ). By varying ζ, the (single) zero mode of a Q = 1
configuration will move to different places. In particular, the chiral fermion zero
mode is localized on the n-th monopole with mass 8π2

β
νn, if ζ lies in the range

µn < ζ < µn+1 and jumps when ζ = µn. This is shown in Fig. (17-39) for a Q = 1,
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Fig. 17-39 Topological charge density for a non-trivial SU(3) KvBLL

discretized continuum caloron solution in the confined phase (left), and

scalar densities obtained for ζ = 0.5 (middle) and ζ = 0.8 (right), The

figure is taken from (Gattringer, 2004).
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SU(3) discretized continuum KvBLL caloron solution for two values of ζ (right two
figures).∗ The figure on the left is the corresponding topological charge density of
the caloron which consists of three constituents (in contrast, the topological density
of a trivial caloron SU(3) Q = 1 consists of a single lump (Grattinger, 2004)). In
Fig. (17.40) we show a similar picture for the scalar densities, but for a MC generated
lattice configuration. The low lying eigenmodes have been computed using a chirally
improved (not excactly chiral) lattice operator, with anti-periodic (left) and periodic
(right) boundary conditions.
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Fig. 17-40 Scalar densities of the zero mode for a Q = 1 SU(3) KvBLL

lattice caloron in the confined phase, obtained with anti-periodic (left),

and periodic (right) boundary conditions imposed on ψ0, using a chirally

improved Dirac operator. The figure is taken from (Gattringer, 2003a).

This does however not yet prove that the two lumps correspond to SU(3) KvBLL
constituents.

So far we have considered the behaviour of the scalar densities for the case of
instantons with unit topological charge, where there exists only one (left handed)
zero mode of the Dirac operator in the instanton background field. In Fig. (17-41)
we now show the zero mode densities for an SU(2), Q = 2 caloron (off the lattice)
with maximal non-trivial holonomy, (left and right part of the figures). The figure
in the middle is the action density of the caloron (Bruckmann, 2005), where the
consitituents are not yet completely separated. Since its topological charge is 2, it
possesses 2 zero modes, but 4 constituent monopole/dyons. Depending on wether
periodic or anti-periodic boundary conditions are imposed on the two zero modes
visit distinct subsets of the constituents.

It has been stressed by Horvath et al. (Horvath, 2003/2004) that by using a
chirally improved lattice Dirac operator, and in particular the so called “overlap
Dirac operator”. the ultraviolet filtering of the modes, usually implemented in a

∗See also (Bruckmann, 2003a,b) and (Gattringer, 2003b).



March 1, 2012 10:29 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch17

Lattice Gauge Theories 393

Fig. 17-41 Densities for the two zero modes (enhanced by a factor

10π2) for a non-trivial SU(2) Q = 2 caloron (off the lattice) in the confined

phase, with maximal non-trivial holonomy. Depending on wether periodic

or anti-periodic boundary conditions are imposed on the zero modes, the

two zero modes visit distinct subsets of the constituents (left and right, re-

spectively). The action density in the middle is that depicted in Fig. (17-36).

The constituents are clearly visible, but not yet completely separated.The

figure is taken from (Bruckmann, 2004).

Monte Carlo simulation by cooling (or smearing), can be avoided. The usual Wilson
operator is not chirally symmetric. The overlap Dirac operator (Neuberger, 1998),
is a particular solution to the Ginsparg–Wilson relation (4.62) with R = 1

M̂0
,

D̂γ5 + γ5D̂ =
1

M̂0
D̂γ5D̂.

where D̂ is the Dirac operator measured in lattice units, which respects the Atiyah-
Singer index theorem for finite lattice spacing. It is hence optimally suited for calcu-
lating the chiral zero modes used as a probe for identifying calorons on the lattice.∗

The overlap Dirac operator, which has a rather long history (Narayan, 1993), is
given in lattice units by

D̂ov = M̂0(1 + V ),

∗While renormalization group considerations were used by Ginsparg and Wilson
to derive (4.62), the ”overlap Dirac operator” was found to satisfy the GW-relation
only a posteriori.
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where

V =
D̂W (−M̂0)√

D̂†
W (−M̂0)D̂W (−M̂0)

, V †V = 1

and D̂W (−M̂0) is the dimensionless Wilson–Dirac operator with a negative mass
term (see section 4.7)

D̂W (−M̂0) =
∑

µ

1
2
γµ∂̂µ +

1
2
�̂� − M̂0.

In terms of the overlap Dirac operator, the topological charge density can be ex-
pressed in the form (Niedermayer, 1999)

Q(x) = −tr
[
γ5

(
1 − 1

2M̂0
D̂ov(x, x)

)]
, (17.89)

where “tr” denotes the trace over color and spinor indices. In praxis the filtering
of the ultraviolet (short distance) fluctuations is accomplished by writing (17.89)
in terms of the eigenmodes of D̂ov/M̂0, with eigenvalues λ, and restricting the sum
to the near zero modes, which retain the information regarding the long distance
physics (Horvath, 2003):

Q(x) = −
∑

|λ|≤λcut

(
1 − λ

2

)
ψ†

0(x)γ5ψ0(x). (17.90)

The Atiyah–Singer index theorem is thereby still implemented exactly, since —
because of the nearly perfect chiral symmetry of the overlap operator — only the
true zero modes contribute to the total topological charge. Relation (17.90) is the so
called “fermionic” definition of the topological charge and requires no prior cooling
(or smoothening) of the MC configurations, in contrast to the gluonic definition
(17.47).

For future reference we note that with D̃ov ≡ D̂ov/M̂0, the unitarity of the
matrix V implies the relation

D̃ov + D̃†
ov = D̃ovD̃

†
ov,

which in turn implies that the eigenvalues of the overlap operator are located in the
complex plane on a circle with unit radius, centered at (1,0). This is the so-called
GW circle.

In the definition (17.90) no statement is made regarding the boundary condi-
tions satisfied by ψ0. In the case of SU(2) we have seen that in the Q = 1 sector



March 1, 2012 10:29 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch17

Lattice Gauge Theories 395

the (single) zero mode visits different constituents depending on wether periodic or
antiperiodic boundary conditions are imposed on ψ0. In the case of Q = 2 we have
two zero modes. Hence one may expect that, depending on the boundary condition
imposed, each zero mode will visit different pairs of constituents. This is shown in
Fig. (17-42) for the case of an SU(2) charge Q = 2 lattice discretized caloron solution
with maximal non-trivial holonomy, close to the deconfinement phase transition.
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Fig. 17-42 Topological charge density for an SU(2) lattice discretized

caloron solution with topological charge 2, computed from the fermionic defi-

nition (17.90) by imposing anti-periodic (left) and periodic (right) boundary

conditions on ψ0. Q(x) has been calculated from the 20 lowest eigenmodes of

the overlap Dirac operator. The topological charge density computed from

the gluonic definition (17.47) is shown on the lower left. It is well approx-

imated by the two fermionic densities. Of immediate interest is also the

Polyakov loop distribution (lower right) which takes positive and negative

values at the constituents. The figure is taken from (Bornyakov, 2007).

The full topological charge density, obtained from the gluonic definition (lower
left) is well approximated by the two fermionic topological charge densities. Also
shown is the Polyakov loop distribution (lower right) which will be of interest in the
following.

There is still other characteristic signal for KvBLL caloron configurations which
allows one to localize different constituents on the lattice even at low temperatures,
where the constituents are strongly overlaping. At low temperatures it is not possible
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to recognize the substructure of a caloron by merely looking at the action, topo-
logical charge, and scalar densities. The relevant observable is the Polyakov loop.
As has been shown in (Garcia Perez, 1999a,b), for SU(2) the Polyakov loop (17.84)
takes values +1 and −1 at the location of the constituents. In Figs. (17-43) we
show the Polyakov loop distribution L(�x) = 1

3TrP(�x) obtained by Ilgenfritz et al.
(Ilgenfritz, 2002) for a configuration generated in a MC simulation leading to the
topological charge density displayed in Fig. (17-37). Note the opposite sign peaks of
the Polyakov loop distribution, which is correlated with the peaks of the topological
charge density. A similar correlation is seen in the lower right part of Fig. (17-42)
for an SU)(3) caloron solution.
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Fig. 17-43 The Polyakov loop distribution L(�x) = 1
3TrP(�x) for a con-

figuration generated in a MC simulation leading to the topological charge

density displayed in Fig. (17-37). The figure is taken from (Ilgenfritz, 2002).

Consider next a situation where action and topological densities do not reveal
any substructure. Can one still detect the constituent nature? The following exam-
ple, taken from (Ilgenfritz, 2004), is not based on a MC generated configuration,
but on a discretized KvBLL caloron solution with maximal non-trivial holonomy
defined with respect to a Polyakov loop extending along the euclidean time direction,
and adapted to a 164 lattice The constituents have been placed along the z-axis, 8
lattice units appart.

Fig. (17-44) shows the profiles of the action density (s), the topological charge
density (q), and the Polyakov line distributions along the x, y, z and τ directions
(labeled by plx, ply, plz, plt). Inspite of the large separation of the constituents, the
action and topological charge densities do not reveal any constituent substructures.
The Polyakov line along the time direction is however sensitive to this substructure
which manifests iself as a double peak with opposite signs. No such double peak
structure is seen for any of the other Polyakov loops extending along the x, y, z,
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Fig. 17-44 Profiles of the action density (s), the topological charge

density (q), and the Polyakov line distributions along the x, y, z and τ di-

rections (labeled by plx, ply, plz, plt) for an SU(2) discretized continuum

KvBLL caloron adapted to a 164 lattice, with the constituents separated

by 8 lattice units. The figure is taken from (Ilgenfritz, 2004).

directions. This latter property has however not been confirmed by the above authors
in a MC simulation.

The sensitivity of the Polyakov loop to the presence of the KvBLL caloron con-
stituents manifests itself also in another way. A close look at the analytic solutions
obtained by Kraan and van Baal shows that at the positions of the constituents two
of the eigenvalues of the Polyakov loop coincide (van Baal, 2002). This allows one
to localize presicely the constituents also in lumps of action and topological charge
when the constitutents are not well separated.

So far we have exhibited properties of individual KvBLL caloron configurations
obtained either from an analytic expression, or from a MC generated ensemble after
some (delicate) cooling or smearing procedure. In (Ilgenfritz, 2005) the authors
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have looked in detail at a whole lattice ensemble of SU(3) configurations, and have
studied, in particular, the distribution in their holonomy, and in the number of
configurations within different topological charge sectors. For low topological charges
cooling led to different topological charge sectors where the self-duality equations
were minimally violated. For higher topological charges classical solutions could
not be found, but lumps of localized topological charge were observed, and their
correlation with peaks in the distribution of the Polyakov loop were studied. The
authors found that the Q �= 0 sector was dominated by non-trivial holonomy. In Fig.
(17-45) we show the distribution of the topological charge found by the authors.
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Fig. 17-45 Distribution of the topological charge in an MC generated

ensemble of SU(3) configurations with non-trivial holonomy, The Q = 0

sector has been excluded. The figure is taken from (Ilgenfritz, 2005).

In each topological sector the number of monopoles constituents was found
to be 3|Q|, as a expected for an SU(3) caloron, if the monopole positions were
determined by looking at the locations where two of the eigenvalues of the Polyakov
loop approached each other (in the continuum they would coincide).

We have concentrated our above discussion on the possible role played by
calorons for the confinement problem. We have seen that these topological exci-
tations exhibit well separated BPS monopoles at high enough temperatures. But
do these monopoles have anything to do with the abelian projected monopoles
in the maximal abelian gauge discussed in section (17.8) in connection with the
dual superconductor picture of confinement. As we have seen earlier, the abelian
monopoles account for about 90 percent of the string tension. If these monopoles
have anything to do with the constituents of calorons, then their removal should
leave one with a modified ensemble of configurations which carry no topological
charge. Furthermore, in the absence of topological excitations the massless Dirac
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operator in the continuum (or the overlap Dirac operator on the lattice) evaluated
in the modified background configurations, will possess no zero modes. This would
imply the absence of a chiral condensate 〈ψ̄ψ〉, since a non-vanishing condensate
requires the existence of zero modes (Banks, 1980).∗

Another question concerns the center vortices discussed in section (17.9). P-
vortices (ZN excitations localized on plaquettes) defined in the maximal center gauge
also appear to be relevant degrees of freedom for the confinement phase (de Forcrand,
2001), and account for most part of the string tension. This has led to the idea
of center dominance. The fact that both, abelian projected monopoles and center
vortices account separately for a large part of the string tension (although to a
different extent) suggests that they are related in some way. In fact, the abelian
projected monopoles are found to be embedded in P-vortices (Ambjorn, 2000; de
Forcrand 2001). This unifies the observed apparent separate dominance of both
types of topological ecxcitations. Hence the removal of center vortices should also
lead to a loss of confinement, topology and restore chiral symmetry. This has indeed
been found by Forcrand and D’Elia (Forcrand, 1999) at low temperatures (on a 164

lattice) and further confirmed by Gattnar et al. (Gattnar, 2005) who have studied
the spectrum of a chirally improved Dirac operator for 10 SU(2) MC generated
configurations with the center projected vortices removed.

original vortex-removed

−0.4
0.0 0.2

Re λ Re λ
0.4 0.0 0.2 0.4

−0.2

0.0

Im
 λ

0.2

0.4

Fig. 17-46 Distribution of the 50 smallest eigenvalues of a chirally im-

proved Dirac operator for 10 different SU(2) lattice configurations of the

original ensemble (left) and vortex removed ensemble (right). Each config-

uration is represented by a different symbol (Gattnar, 2005).

∗See the review article by Schaefer and Shuryak (1998).
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In Fig. (17-46) we show the distribution of the 50 smallest eigenvalues of the
chirally improved lattice Dirac operator for 10 different SU(2) lattice configurations
of the original ensemble (left) and vortex removed ensemble (right), following the
prescriptions given in (Del Debbio, 1998; de Forcrand, 1999) (see also section 17.9).
Each configuration is represented by a different symbol (Gattnar, 2005). The zero
modes are seen not to be strictly located on the Ginsparg–Wilson circle, but are
scattereed around it. Note that the removal of center vortices eliminates the (would
be) zero modes, and that the spectrum of eigenvalues (calculated with antiperiodic
fermionic boundary conditions) has developed a large gap.

More recently Bornyakov et al. (Bornyakov, 2008) have studied in detail what
happens to the zero mode spectrum of the overlap Dirac operator, if one removes
either the abelian projected monopoles in the MAG, or the vortices defined in the
maximal center gauge, from the lattice configurations close to the deconfinement
phase transition. This is shown in Fig. (17-47). Since the overlap Dirac operator is
an almost perfect chiral lattice operator, it is optimally suited for studying of what
happens to the calorons and to the quark condensate if one removes either one of
the above degrees of freedom. The loss of zero modes would then imply the loss of
topology, and a vanishing quark condensate.
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vortices

0.4

0.2

−0.2

−0.4

0

Im λN

Re λN

Q=1 Q=0 Q=0

0 0.05 0 0.05 0 0.05

Fig. 17-47 Effect on the eigenvalue spectrum of the lattice overlap

operator, upon removing either the monopoles or vortices. The panel on

the left shows the 20 lowest eigenvalues of the overlap Dirac operator for

a lattice configuration of the original ensemble, while the middle and right

panels show the shift of the spectrum away from zero after removing the

abelian monopoles or vortices. The figure is taken from (Bornyakov, 2008).

Only part of the figure is shown.
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This suggests that there exists a strong correlation between monopoles, vor-
tices and calorons. The zero modes dissappear completely from the spectrum of the
Dirac operator. Therefore configurations with non-vanishing topological charge will
also be absent in the modified ensemble (since the Atiyah–Singer index theorem is
implemented by the overlap operator). Hence, although calorons are not the mech-
anism of confinement, they may be a seed for confinement. In a model studied by
Diakonov, where the partition function at non-zero temperatures is approximated
by an ensemble of interacting dyons, the author shows that all known criteria for
confinement, and in particular the vanishing of the average Polyakov loop, and a
linear rising potential, are fullfilled, and that even the critical temperature for the de-
confinement phase transition is in good agreement with the lattice data (Diakonov,
2007). A semiclassical model of a dilute non-interacting gas of KvBLL calorons with
adjustable holonomy has also been developed by Gerhold et al. (Gerhold, 2007),
where the confinement/deconfinement phase transition can be modelled by varying
the holonomy. In the confined phase a linear rising potential is observed.∗

In this section we have only provided the reader with some highlights on
calorons and their possible role for confinement, without going into details. Clearly
the details are quite complex, and lattice simulations involve many subtle questions
which must be answered before any conclusions can be drawn with reasonable cer-
tainty. But the results of such simulations are encouraging and may eventually lead
to a picture of confinement unifying monopoles, vortices, and calorons.

∗See also Hofmann (2005) for an interesting alternative discussion of the caloron
ensemble in terms of an effective theory obtained by a spatial coarse graining pro-
cerdure.
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CHAPTER 18

PATH-INTEGRAL REPRESENTATION
OF THE THERMODYNAMICAL PARTITION FUNCTION FOR

SOME SOLVABLE BOSONIC AND FERMIONIC SYSTEMS

18.1 Introduction

So far we have studied the properties of hadronic matter at zero temperature.
As we have seen, numerical calculations have given strong support for quark con-
finement. Thus QCD accounts for the fact that isolated quarks have never been seen
in experiments performed in a normal environment. A natural question then arises
whether quark confinement persists when one is dealing with hadronic matter under
extreme conditions, such as at very high temperature or density.

It has been speculated already in the late seventies (Polyakov, 1978; Susskind,
1979) that there exists a phase transition from the low temperature regime, where
quarks and gluons are confined and chiral symmetry is broken, to a chirally sym-
metric phase, consisting of a quark–gluon plasma in which the colour charge of
quarks and gluons are Debye-screened. If such a plasma phase exists, then one
should be able to detect it in high energy ion collisions. Such laboratory experi-
ments could provide further tests of QCD as being the correct theory describing
the strong interactions. The study of QCD at high temperatures is also of cos-
mological interest, for hadronic matter at high temperatures and densities was
surely present in the early stages of the universe. Hence the study of QCD at
very high temperatures and/or densities is important for constructing models of
the universe.

Using renormalization group arguments, Collins and Perry (1975) have pointed
out that at high densities the effective coupling of quarks and gluons should be
small, and a perturbative description should be possible. The reason is that, when
hadrons overlap, the separation between quarks will be small, and their dynamics
will be determined by the asymptotic freedom property of QCD. But renormal-
ization group arguments also suggest that the quark–gluon coupling constant de-
creases with increasing temperature. Hence at sufficiently large temperatures one
might expect that thermodynamical observables can be computed in perturbation
theory.

Actually, physics at high temperatures turned out to be more complex than
originally expected. It was pointed out by Linde (1980) that the thermodynamics
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of massless Yang–Mills fields involves a severe infrared problem which leads to a
breakdown of perturbation theory beyond a given order, which depends on the ob-
servable considered. For the thermodynamical potential the breakdown is expected
to occur in 0(g6), where g is the QCD coupling constant. This failure of perturbation
theory is closely related to the fact that, in the presence of a heat bath, a screening
mass of 0(g2) is generated in the magnetic sector of QCD. Inspite of this “infrared
problem”, low-order perturbative calculations may still provide an adequate descrip-
tion of the thermodynamics of QCD at sufficiently large temperatures. At present,
however, this can only be checked by calculating thermodynamical observables nu-
merically, within the lattice formulation of QCD, and comparing the results with
the perturbative predictions. One must therefore learn how to compute Feynman
diagrams in finite temperature QCD.

Finite temperature continuum field theory has a long history. The pioneering
work was carried out by Matsubara (1955) within a non-relativistic context. The
development of perturbative methods for relativistic gauge field theories is, how-
ever, fairly new (Bernard, 1974; Weinberg, 1974; Dolan and Jackiw, 1974). We shall
discuss these methods in the following chapter. The purpose of this chapter is to
introduce the reader to a finite temperature formalism which will allow one to study
the thermodynamics of a relativistic field theory like QCD by Monte Carlo methods.

The central object which is of interest when studying the thermodynamics of a
system is the partition function. For simple systems, such as discussed in standard
lectures on statistical mechanics, this partition function can be computed exactly.
In the case of interacting field theories this is no longer possible and one has to recur
to perturbation theory. The starting point for such computations is usually the path
integral representation of the partition function. For non-interacting systems we can
write down such a path integral representation which can be calculated exactly, and
hence be checked against the expression obtained by other well established methods.
In this chapter we shall study such models involving bosonic as well as fermionic
degrees of freedom in quite some detail. This will give the reader some confidence in
the path integral approach to studying the thermodynamics of relativistic quantum-
mechanical systems.

18.2 Path Integral Representation of the Partition Function
in Quantum Mechanics

In chapter 2 we had derived a path integral representation for the imagi-
nary time Green function in quantum mechanics. This allows us to write down
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immediately a corresponding path-integral representation for the thermodynamical
partition function,

Z = Tr e−βH . (18.1)

Here H is the Hamiltonian, β = 1
kBT

, with T the temperature, and kB the Boltzmann
constant. For convenience we shall set kB equal to one in the following. Let n be
the number of degrees of freedom of the system, and |q� = |q1, q2, . . . , qn� denote the
simultaneous eigenstates of the coordinate operators Qi with eigenvalues qi. Then
(18.1) is given by

Z =
∫ n∏

α=1

dqα�q|e−βH |q�. (18.2)

The integrand has the phase-space path-integral representation (2.9) with τ � − τ

replaced by β, and with the coordinates at “time” τ = 0 and τ = β identified. The
partition function is obtained by integrating the expression over q (which we denote
by q(0) in the following)

Z = lim
N→∞
�→0

N�=β

∫
DqDp eiφ[q,p]e−

∑N−1
�=0 �H(q(�),p(�))|q(N)=q(0) , (18.3a)

where

DqDp =
N−1∏
�=0

∏
α

dq
(�)
α dp

(�)
α

2π
, (18.3b)

and

φ[q, p] =
N−1∑
�=0

∑
α

p(�)
α (q(�+1)

α − q(�)
α ). (18.3c)

The corresponding (formal) continuum form of this expression is given by

Z =
∫

per
Dq

∫
Dp e−

∫ β
0 dτ [

∑
α ipα(τ)q̇α(τ)−H(q(τ),p(τ))], (18.4)

where the subscript “per” (→ periodic) is to remind the reader that the coordinates
at “time” τ = 0 and τ = β are to be identified. Notice that only the coordinate
degrees of freedom are required to satisfy periodic boundary conditions.

There are three features which distinguish the above expression from the classical
partition function:

(i) The phase space measure involves coordinate and momentum variables associ-
ated with every euclidean time support on the discretized interval [0,β].
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(ii) The usual Boltzman factor is replaced by exp(−βH̄), where H̄ is the following
“time” average of the Hamiltonians defined at the discrete time supports: H̄ =
1
N

∑N−1
�=0 H(q(�), p(�)).

(iii) The phase-space measure is multiplied by a phase factor which depends on the
coordinates and momenta, and couples the coordinates at neighbouring lattice
sites on the time (temperature) axis.

Since the integrand in (18.3a) involves the phase eiφ[q,p], it cannot be interpreted
as a probability distibution in phase space. It is for this reason that the phase-
space path integral representation of thermodynamical observables (which can be
obtained from the derivatives of Z in the usual way) does not lend itself to Monte
Carlo simulations. But if the Hamiltonian is of the form (2.8), then by performing
the Gaussian integration over the momenta we are led to a configuration space-path
integral expression which is suited for such simulations:

Z =
∫

per
[dq]e−

∫ β
0 dτLE(q,q̇), (18.5a)

where

[dq] =
N−1∏
�=0

n∏
α=1

dq
(�)
α√

2π�
, (18.5b)

and LE is given by (2.10b), with q = q(0). Hence within the path-integral frame-
work, temperature is introduced by merely restricting the euclidean time to the
finite interval [0, β], and imposing periodic boundary conditions on the coordinate
degrees of freedom. This is truly a remarkable simple result. When (18.5) is gen-
eralized to field theories, this representation will provide the basis for computing
thermodynamical observables using well known numerical methods in statistical
mechanics.

18.3 Sum Rule for the Mean Energy

We now make use of the path integral representation of the partition function
to obtain an expression for the mean energy which is suitable for Monte Carlo sim-
ulations. Such simulations are carried out on finite lattices. In quantum mechanics
this lattice is one dimensional, with the lattice sites labeled by the discrete euclidean
time supports on the finite compactified time interval [0,β]. Let N be the number
of time steps of length �, with N� = β. To compute the mean energy we have to
differentiate the partition function with respect to temperature. We must therefore
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be able to vary the temperature in a continuous way. This can be easily done. By
keeping the number of lattice points in the euclidean time direction fixed, the tem-
perature can be varied by changing the lattice spacing �. Hence we can calculate the
mean energy by first computing

�E� = − 1
N

[
∂

∂�
ln Z

]

Nfixed
. (18.6)

and then taking the limit N → ∞, � → 0, with N� = β fixed. To keep our discussion
as simple as possible, we shall restrict ourselves in the following to systems with only
one coordinate degree of freedom. The generalization to several degrees of freedom
will be obvious.

Consider first the phase-space path-integral representation of the partition
function (18.3), for the case where the Hamiltonian is of the form H(q, p) = 1

2m
p2+

V (q):

Z =
∫

per
Dq

∫
Dp e

∑
n[ipn(qn+1−qn)−�( p2

n
2m

+V (qn))], (18.7a)

Here “n” now labels the discrete times on the interval [0,β] (i.e., it plays the role of
the superscript � in (18.3)), and

DqDp =
N−1∏
n=0

dqndpn

2π
. (18.7b)

The sum in the exponential extends from n = 0 to n = N − 1. In principle we could
immediately perform the Gaussian integration over the momenta and calculate the
mean energy according to (18.6). It is however instructive to keep, for the moment,
the partition function in the form (18.7). Notice that the phase-space integration
measure (18.7b) does not depend on �, which only appears in the exponential, mul-
tiplying the Hamiltonian.∗ Performing the differentiation in (18.6) we obtain

�E� =
1
N

N−1∑
�=0

〈〈
1

2m
p2

� + V (q�)
〉〉

, (18.8)

where ��O(q�, p�)�� stands generically for

��O(q�, p�)�� =
∫

DqDpO(q�, p�)e
∑N−1

n=0 [ipn(qn+1−qn)−�( p2
n

2m
+V (qn))]|qN=q0∫

DqDpe
∑N−1

n=0 [ipn(qn+1−qn)−�( p2
n

2m
+V (qn))]|qN=q0

. (18.9)

∗ In the configuration space representation, on the other hand, the measure
does depend on �.
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We have used a double-bracket notation, since the rhs of (18.9) does not have the
form of an ensemble average. For this reason the above expression is not suited for
numerical simulations using statistical methods, as we have already pointed out. A
convenient expression for the mean energy can however be obtained by expressing
the rhs of (18.8) in terms of configurations space path-integrals. To this effect let us
define the generating functional

Z[J ] =
∫

per
Dq

∫
Dp e

∑
n[ipn(qn+1−qn)−�( p2

n
2m

+V (qn))+pnJn]. (18.10)

The Gaussian integration over the momenta can be performed immediately, and
yields

Z[J ] =
( m

2π�

)N
2

∫ N−1∏
n=0

dqne
−

∑
n �[ 12m(q̇n− i

�
Jn)2+V (qn)]|qN=q0 , (18.11a)

where

q̇n = (qn+1 − qn)/�. (18.11b)

Notice that the normalization factor is �-dependent, and hence contributes to the
mean energy. For J = 0 this is the partition function in the configuration space path
integral representation:

Z =
( m

2π�

)N
2

∫ N−1∏
n=0

dqne
−

∑
n �[ 12m(

qn+1−qn
�

)2+V (qn)]|qN=q0 (18.12)

From (18.10), or equivalently from (18.11), we can calculate e.g. ��p���:

��p��� =
1
Z

(
∂

∂J�

Z[J ]
)

J=0
.

Using for Z the expression (18.11) we obtain

��p��� = im�q̇��, (18.13a)

where

�q̇�� =

∫
per Dq q̇�e

−S[q]

∫
per Dqe−S[q]

, (18.13b)

with

S[q] =
N−1∑
n=0

�

[
1
2
mq̇2

n + V (qn)
]

. (18.13c)



February 8, 2012 7:14 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch18

408 Lattice Gauge Theories

Notice that � � now has the form of a statistical average, since e−S/
∫

Dqe−S can
be interpreted as a probability distribution. Notice also that (18.13a) is the relation
one would have guessed naively, by starting from the continuum relation p = mdq

dt

in Minkowski space, and going over to imaginary times, by replacing d
dt

by i d
dτ

. In a
similar way one finds

��p2
��� =

1
Z

(
∂2

∂J2
�

Z[J ]
)

J=0

=
m

�
− m2�q̇2

� �. (18.14)

Hence the first term appearing on the right hand side of (18.8) is given by

1
N

N−1∑
�=0

〈〈
p2

�

2m

〉〉
=

1
2�

− 1
N

N−1∑
�=0

〈
1
2
mq̇2

�

〉
. (18.15)

Notice the minus sign in the second term on the right-hand side! The contribution
to the average energy arising from the kinetic part of the Hamiltonian is therefore
given by the configuration space path integral expression

�Ekin� =
1
2�

+
1
N

N−1∑
�=0

∫
per Dq (−1

2mq̇2
� )e

−S[q]

∫
per Dqe−S[q]

, (18.16)

while the contribution arising from the interaction is given by

�Epot� =
1
N

N−1∑
�=0

∫
per Dq V (q�)e−S[q]

∫
per Dqe−S[q]

. (18.17)

Of course the expression for the total mean energy �E� = �Ekin� + �Epot� could
also have been derived immediately from the partition function written in the form
(18.12), by performing the differentiation (18.6). For the case of the harmonic os-
cillator it has the same structure as that derived for the ground state energy in
chapter 10 (cf. eq. (10.14)), except that here the brackets denote ensemble av-
erages calculated at finite temperature, i.e., on a finite periodic euclidean-time
lattice.

18.4 Test of the Energy Sum Rule. The Harmonic Oscillator

In this section we want to clarify the role played by the (in the limit � → 0)
divergent contribution 1

2�
in the energy sum rule (18.16), and the minus sign



February 8, 2012 7:14 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch18

Path-Integral Representation of the Thermodynamical Partition Function 409

multiplying the “velocity” term, to ensure that the rhs of this expression gives a
finite positive result. We cannot prove this assertion in general, but we can at least
check it in a solvable quantum mechanical system. We will do this in this section for
the case of the harmonic oscillator in contact with a heat bath, for which we have
just shown that an analogous sum rule holds for the mean energy.

In the case of the harmonic oscillator V (q) = 1
2κq2.∗ For the computation

of the partition function it is convenient to introduce the potential in the path
integral expression as an average over two neighbouring time slices; i.e. we make the
replacement∗∗

V (qn) → 1
2
[V (qn) + V (qn+1)] =

1
4
κ(q2

n+1 + q2
n).

The partition function is then given, according to (18.12), by the following configu-
ration space path integral expression:

Z =
( m

2π�

)N
2

∫ N−1∏
n=0

dqne
−S[q]|qN=q0 , (18.18a)

where

S[q] =
N−1∑
n=0

�

[
1
2
m

(
qn+1 − qn

�

)2

+
1
4
κ(q2

n+1 + q2
n)

]
. (18.18b)

Although the evaluation of the integral (18.18a) can be found in text books, we will,
for completeness sake, present it here, following the method of Roepstorff (1994).∗∗∗

Since qN and q0 are identified in (18.18a), we can write the action S[q] in the form

1
λ

S[q] =
N−1∑
n=1

ξq2
n −

N−2∑
n=1

1
2
(qn+1qn + qnqn+1) + ξq2

0 − q0(qN−1 + q1), (18.19a)

where

λ =
m

�
; ξ = 1 + �2 κ

2m
. (18.19b)

∗ For later purposes it is convenient not to set κ = mω2 at this stage.
∗∗ In deriving the path integral representation we had chosen to approximate

e−�H by e−� p2

2m e−�V (q). We could have also chosen to write this product in reverse
order.

∗∗∗ See, e.g. also W. Ditrich and M. Reuter, “Classical and Quantum Dynamics,
Springer Verlag (1992).
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This action can be written in matrix form as follows

1
λ

S[q] =
1
2
qT Qq − qT b +

1
2
ξbT b, (18.20)

where Q is an (N − 1) × (N − 1) matrix with the non-vanishing entries given by

Q =




2ξ −1
−1 2ξ −1

−1 2ξ −1
−1 2ξ −1

· · ·
· · ·

−1 2ξ −1
−1 2ξ




(18.21)

and where q and b are the N − 1 component vectors

q = (q1, q2, q3, . . . , qN−1),

b = (q0, 0, 0, . . . , q0).
(18.22)

Completing squares, (18.20) can be cast into the form

1
λ

S[q] =
1
2
q̃T Qq̃ +

1
2
bT (ξ − Q−1)b, (18.23a)

where

q̃ = q − Q−1b,

q̃T = qT − bT Q−1.
(18.23b)

Inserting the expression for the action in (18.18a), and performing the integration
over the (N − 1)-dimensional vectors q̃ we obtain

Z =

�
λ

2π
1√

det Q

�
dq0 e− λ

2 bT (ξ−Q−1)b. (18.24)

We therefore must compute the determinant of Q and its inverse. We first compute
the determinant.

Let Dn be the determinant of an n × n matrix having the form (18.21). For
n = 1, D1 = 2ξ. Define D0 = 1. One then readily verifies that the following recursion
relation holds for n ≥ 1:

Dn+1 = 2ξDn − Dn−1.
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The difference equation, with D0 = 1 and D1 = 2ξ is solved by

Dn = cenρ + de−nρ,

where

ρ = ar cosh ξ. (18.25)

and

c =
eρ

2 sinh ρ
; d = − e−ρ

2 sinh ρ
.

For the determinant of Q one therefore finds that

det Q = DN−1 =
sinh Nρ

sinh ρ
. (18.26)

The other quantity we need to know is bT Q−1b. This can be easily calculated as
follows. Let Q−1b = a. We can compute the vector a by solving the inhomogeneous
equation Qa = b, where a = (a1, ·, ·, ·, aN−1) and b is the vector (18.22). Note that
except for the first and last rows, the structure of the remaining rows of the matrix
(18.21) is always the same. Hence Qa = b is equivalent to solving the following set
of equations

2ξa1 − a2 = q0

−an+2 + 2ξan+1 − an = 0, (n = 1, . . . , N − 3)

−aN−2 + 2ξaN−1 = q0

The second set of (recursion) relations can again be solved with the Ansatz

an = Cenρ + De−nρ,

where ρ is given by (18.25). The remaining two equations fix the coefficients C and
D. One finds that

C =
[

1 − e−Nρ

2 sinh Nρ

]
q0,

D = −
[

1 − eNρ

2 sinh Nρ

]
q0.

Now bT Q−1b = bT a, with b = (q0, 0, . . . , 0, q0). Hence bT Q−1b = q0(a1 + aN−1). One
then finds that

bT Q−1b =
2q2

0

sinh Nρ
[sinh(N − 1)ρ + sinh ρ].
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Since ξbT b = 2ξq2
0, we finally obtain

bT (ξ − Q−1)b = 2q2
0(v − w), (18.27a)

where

v =
sinh ρ

tanh Nρ
, (18.27b)

w =
sinh ρ

sinh Nρ
. (18.27c)

Inserting (18.27) in (18.24), and noting that according to (18.26) and (18.27c)
det Q = w−1, on finds, after performing the Gaussian integration over q0, that

Z =
1√
2

√
1

v
w

− 1
=

1√
2

1√
cosh Nρ − 1

. (18.28)

Let us first verify that in the continuum limit N → ∞, � → 0, N� = β fixed,
we obtain the correct expression for the partition function. Since ρ is given by
(18.25) with ξ defined in (18.19b), we have that for � → 0, ρ ≈ �

√
κ
m

. Hence
cosh Nρ → cosh βω, where ω =

√
κ
m

is the frequency of the oscillator, and we have
set β = N�. We therefore arrive at the correct expression for the partition function,

Z =
e− 1

2βω

1 − e−βω
, ω =

√
κ

m
.

From here we obtain the total mean energy

�E� =
ω

2
+

ω

eβω − 1
.

Let us now verify that the contributions to �E� arising from the kinetic and potential
term of the Hamiltonian are indeed given by (18.16) and (18.17). From (18.18) it
follows that

1
N

N−1∑
n=0

〈
1
2
mq̇2

n

〉
= − m

N�

[
∂

∂m
ln

( m

2π�

)− N
2

Z

]

κ fixed

=
1
2�

− m

N�

[
∂

∂m
ln Z

]

κ fixed
. (18.29)

Using for Z the expression (18.28), one finds, upon taking the derivative with respect
to m (for fixed κ) that (18.29) reduces in the continuum limit to

1
N

N−1∑
n=0

〈
1
2
mq̇2

n

〉
→ 1

2�
− 1

2
�E�.
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Note that the right hand side involves a piece which diverges like 1
2�

for � → 0, and a
finite term which is the negative of the mean kinetic energy of the harmonic oscillator
at temperature T . From (18.16) we therefore conclude that �Ekin� = 1

2�E�. Notice
that the minus sign appearing in the integral expression on the right hand side of
(18.16) was crucial for obtaining the correct expression for the mean kinetic energy.
The contribution of the potential (18.17) is obtained from (18.18) according to

�Epot� =
1
N

N−1∑
n=0

κ

4
�(q2

n+1 + q2
n)� = − 1

N�
κ

∂

∂κ
ln Z.

Making again use of the explicit expression (18.28) one then finds that in the con-
tinuum limit �Epot� = 1

2�E�, as expected.
The origin of the strange looking relation (18.16) is of course that the ther-

modynamic partition function is given by a euclidean path integral representation.
Hence �q̇2

n� is the ensemble average of the euclidean velocity squared. This ensemble
average is necessarily positive. The positivity is however only ensured by the term
1
2�

, which diverges in the continuum limit. This divergence is a consequence of the
fact that the width of the probability distribution in (qn+1 − qn)2 appearing in the
configuration space path integral (18.18) is only of the order of �, so that �( qn+1−qn

�
)2�

will be of O(1
�
).

18.5 The Free Relativistic Boson Gas in the Path Integral
Approach

In section 2 we have shown that for a quantum mechanical system, whose
dynamics is governed by a Hamiltonian of the form (2.8), the partition function is
given by the path integral expression (18.5), where the integral includes all paths
satisfying the periodic boundary conditions qα(β) = qα(0). The integration measure
Dq, defined in (18.5b), is seen to be dependent on the temperature, which, for fixed
N is controled by the temporal lattice spacing �. The formal translation of this
expression to the field theory of a free real scalar field φ(�x, τ) is immediate: qα(τ) is
replaced by φ�x(τ) =: φ(�x, τ), and the euclidean Lagrangean LE is now given by

LE[φ, φ̇] =
∫

d3xLE(φ, ∂µφ), (18.30a)

where LE is the Lagrangian density

LE =
1
2
∂µφ∂µφ +

1
2
M2φ2. (18.30b)
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Hence the path integral expression for the partition function (18.5) goes over to

Z0 = N
∫

per
Dφe−

∫ β
0 dτ

∫
d3xLE(φ,φ̇), (18.31a)

where formally

Dφ =
∏
�x,τ

dφ(�x, τ), (18.31b)

and N is a dimensioned normalization factor∗ playing the role of [ 1√
2π�

]nN in (18.5b).
The fields φ(�x, τ) are required to satisfy the periodic boundary condition

φ(�x, 0) = φ(�x, β). (18.32)

Hence the partition function is a weighted sum over all field configurations which
live on a euclidean space-time surface compactified along the time direction. In two
space-time dimensions this surface can be viewed as a cylinder with its axis along
the spatial direction. The radius of this cylinder becomes infinite in the limit of
vanishing temperature.

As we now show, the expression (18.31) reproduces the well known expression
for the grand canonical partition function of a gas of neutral bosons. Introducing the
dimensionless variables φ̂ = βφ, τ̂ = 1

β
x4, ξi = 1

β
xi and M̂ = βM , (18.31) becomes

Z0 =N̂
∫

Dφ̂e− 1
2

∫ 1
0 dτ̂

∫
d3ξφ̂(−�̂�+M̂2)φ̂, (18.33)

where N̂ is now dimensionless, and where we have made a partial integration in
the expression for the action. The fields φ̂(�ξ, τ̂) now satisfy the periodic boundary
conditions

φ̂(�ξ, 0) = φ̂(�ξ, 1). (18.34)

The Gaussian integral (18.33) can be immediately performed and yields the following
formal expression∗∗

Z0 =N̂ [det(−�̂� + M̂2)]−1/2, (18.35)

where the determinant of (−�̂� + M̂2) is defined as the product of the eigenvalues of
the operator in the space of functions satisfying the periodic boundary conditions

∗ Since the partition function is dimensionless, N carries the inverse dimension
of Dφ.

∗∗ Actually N̂ differs from the normalization constant appearing in (18.33) by
an irrelevant numerical factor.
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(18.34). Hence ln Z0 will involve the sum of the logarithms of the eigenvalues. To
calculate this sum it is convenient to enclose the system into a box of linear dimension
L and to impose also periodic boundary conditions in the spatial directions. The
normalized eigenfunctions of (−�̂� + M̂ 2) then have the form

fn,�m(�ξ, τ̂) =
1�
V̂

e2πinτ̂ei 2π
L̂

�m·�ξ

where L̂ = L
β
, V̂ = L̂3, and n and mi (i = 1, 2, 3) are integers. The eigenvalues of

(−�̂� + M̂ 2) are given by

λn,�m = (2π)2
�

n2 +
�m2

L̂2

�
+ M̂2.

For the logarithm of (18.35) we therefore obtain

ln Z0 = −1
2

�
n

�
�k

ln


n2 +

�
βE(�k)

2π

�2

 + ln N̂ , (18.36a)

where

E(�k) =
�

�k2 + M2, (18.36b)

and where the sum over �k extends over the discrete values

�k =
2π
L

�m. (18.36c)

Going back to the quantum mechanical case discussed in section 2, where the par-
tition function is given by (18.5), and scaling the integration variables according
to their canonical dimension with β, one finds that the contribution analogous to
ln N̂ is proportional to the number of degrees of freedom. Hence we expect that in
the present case ln N̂ = const. × V

�
d3k

(2π)3 . Since such a term merely gives rise to a
constant shift in the pressure, we shall drop it from here on.

Let us next replace the sum over discrete momenta in (18.36a) by an integral
in the standard way

�
�k

→ V

�
d3k

(2π)3 , (18.37)

which is valid in the large volume limit. Then

ln Z0 = −1
2
V

�
n

�
d3k

(2π)3 ln

�
n2 +

�
βE

2π

�2
�
. (18.38)
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Consider the sum over n of the logarithm.∗ Consider the following (also divergent)
sum

∞∑
n=−∞

ln(n2 + x2) = ln x2 + 2g(x), (18.39a)

where

g(x) =
∞∑

n=1

ln(n2 + x2), (18.39b)

and

x =
βE

2π
. (18.39c)

Whereas the right-hand side of (18.39b) diverges, its derivative

dg

dx
=

∞∑
n=1

2x
n2 + x2 (18.40)

is finite. The sum can be evaluated in closed form∗∗:
∞∑

n=1

2x
n2 + x2 = −π − 1

x
+

2π
1 − e−2πx

.

By integrating (18.40) we can determine g(x) up to a (divergent) constant. Inserting
the result into (18.39a) one then finds that

∞∑
n=−∞

ln

(
n2 +

(
βE

2π

)2
)

= βE + 2 ln(1 − e−βE) + C

where C is an integration constant. For (18.38) we therefore obtain (recall that we
dropped the last term in (18.36a))

ln Z0 = −V

∫
d3k

(2π)3 ln(1 − e−βE(�k)) − βV

2

∫
d3k

(2π)3E(�k) − CV

∫
d3k

(2π)3 .

The second and third term merely gives rise to a constant shift in the mean energy
density and pressure. Dropping these (irrelevant) terms we therefore find that the

∗ We follow here the method of Dolan and Jackiw (1974). For an alternative
procedure see Kapusta (1989).

∗∗ See e.g. “Table of Integrals, Series, and Products”, by I. S. Gradshteyn and
I. M. Ryzhik, Academic Press, New York and London (1965).
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thermodynamical potential Ω = − 1
βV

ln Z of an ideal gas of scalar neutral particles
is given by

Ω = − 1
βV

ln Z =
1
β

∫
d3k

(2π)3 ln(1 − e−βE). (18.41)

In the zero mass limit this expression reduces to

Ω = −π2

90
T 4, (M = 0) (18.42)

so that the energy density � = ∂(βΩ)/∂β and pressure p of an ideal gas of massless
scalar particles are given by the Stefan–Boltzmann law:

� =
π2

30
T 4,

p =
1
3
�.

18.6 The Photon Gas in the Path Integral Approach

Let us now consider the thermodynamics of a free photon gas within the path-
integral framework. The euclidean finite temperature action, replacing (5.8b), is
given by

S =
1
4

∫ β

0
dτ

∫
d3xFµν(x)Fµν(x), (18.43)

where Fµν = ∂µAν − ∂νAµ is the euclidean field strength tensor expressed in terms
of the gauge potentials. Naively one would write down the following path integral
expression for the partition function

Z = N
∫

per
DAe− 1

4

∫ β
0 dτ

∫
d3xFµν(x)Fµν(x), (18.44a)

where the gauge potentials are subject to the periodic boundary conditions

Aµ(�x, 0) = Aµ(�x, β). (18.44b)

Written in this form the integral (18.44a) diverges, since gauge field configurations
which are related by a gauge transformation are weighted with the same exponential
factor. The divergence can be isolated following the well known Fadeeev–Popov
procedure, by which a gauge condition is introduced into the path integral. The
following arguments are very formal, and we refer the reader to text books on field
theory for more details.
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Let us first write the partition function (18.44a) in the form

Z = N
∫

per
DAe

1
2

∫ β
0 dτ

∫
d3xAµ(x)(δµν��−∂µ∂ν)Aν(x), (18.45)

where we have made a partial integration in the action (18.43) expressed in terms
of the gauge potentials. Next define the following gauge invariant functional ∆[A]

1
∆[A]

=
∫

DΛ
∏
x

δ[∂µ(Aµ(x) − ∂µΛ(x)) − f(x)], (18.46)

where f(x) is some arbitrary periodic function. Note that Aµ(x) − ∂µΛ(x) is just a
gauge transform of the potential Aµ(x). We now rewrite the δ-function in the form∗

∏
x

δ[∂µ(Aµ − ∂µΛ) − f ] =
∏
x

δ

[
(−��)

(
Λ − 1

��(∂µAµ − f)
)]

=
1

det (−��)

∏
x

δ

[
Λ − 1

��(∂µAµ − f)
]

.

Performing the functional integral over Λ in (18.46) we therefore have that

∆[A] = det (−��).

∆[A] is the so called Faddeev–Popov determinant, which, although in the present
case is independent of the gauge potentials, cannot be ignored. In fact at finite tem-
perature, however, the determinant, which is given by the product of the eigenvalues
of −��, with the eigenfunctions satisfying periodic boundary conditions analogous to
(18.44b), is temperature dependent and hence is relevant for the thermodynamics
of the system. This is the main message we wanted to convey.

The next step consists in introducing the identity

1 = ∆[A]
∫

DΛ
∏
x

δ[∂µ(Aµ(x) − ∂µΛ(x)) − f(x)]

into the path integral (18.45). After making a change of variables A�
µ = Aµ − ∂µΛ,

and using the fact that the action as well as integration measure are invariant under
this transformation, one finds that

Z = N
[∫

DΛ
] ∫

per
DA det(−��)

∏
x

δ[∂µ(Aµ(x) − f(x)]

× e
1
2

∫ β
0 dτ

∫
d3xAµ(x)(δµν��−∂µ∂ν)Aν(x),

∗ We have chosen to factor out a −�� since the eigenvalues of this operator are
non negative.
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Here we have dropped the “prime” on A�
µ. The remaining steps leading to a

covariant gauge fixed expression for the partition function are standard. Since
the integral does not depend on the choice of f(x) we can multiply (18.46) by
exp[− 1

2α

∫
d4xf 2(x)] and then functionally integrate the expression over f(x) with

the measure Df =
∏

x df(x). After dropping the factor N [
∫

DΛ], since it should
not affect the thermodynamics, we are left with the expression

Z =
∫

per
DA det(−��)e

1
2

∫ β
0 dτ

∫
d3xAµ(x)(δµν��−(1− 1

α
)∂µ∂ν)Aν(x).

Choosing the Feynman gauge (α = 1), we therefore have that∗

Z = det(−��)
[
Ñ

∫

per
DA e− 1

2

∫ β
0 dτ

∫
d3xAµ(x)(−δµν��)Aν(x)

]
.

The path integral factorizes into four path integrals having the form characteristic
of a zero mass scalar neutral field. Hence we immediately conclude that

ln Z = ln

[
1√

det(−��)

]4

+ ln det(−��)

= 2 ln[det(−��)]−
1
2 .

Hence ln Z is just twice the corresponding expression for a massless scalar neu-
tral field. The factor two accounts for the fact that the photon has two transverse
polarizations. We therefore conclude that the partition function for the photon gas
is given by

ln Zphoton = 2 ln Z scalar
m=0

= −2V
∫

d3k

(2π)3 ln(1 − e−β|�k|), (18.47)

∗ The determinant could in principle be incorporated into an effective action
by introducing a set of Grassman fields (ghosts) c(x) and c̄(x). Then det(−��) =∫

DcDc̄ e
∫ β
0 d4xc̄(x)��c(x). Since the determinant is the product of the eigenvalues of

the operator −�� with the eigenfunctions satisfying periodic boundary conditions
in euclidean time, this integral is to be evaluated with the ghost fields subject to
the same boundary conditions. The relevance of the Faddeev–Popov determinant in
obtaining the correct form for the partition function has been discussed in detail
by Bernard (1974). The reader should consult this reference for a more general
discussion of the gauge-fixing problem for the thermodynamical partition function.
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and that the thermodynamical potential is just twice the expression (18.42), i.e.

Ω = −π2

45
T 4.

Summarizing, we have seen that the contribution of the Faddeev–Popov de-
terminant was essential in deriving this result. Omission of the ghost contribution
would have yielded a result which is twice as large. Furthermore it was important
that the ghost fields obeyed the same boundary conditions as the photon fields
which allowed for the cancellation of the unphysical degrees of freedom of the gauge
potentials.

18.7 Functional Methods for Fermions. Basics

Having discussed in detail the path integral representation of the thermody-
namical partition function in some simple bosonic theories, we now want to ex-
tend our discussion to the case of fermionic systems. A functional formalism which
allows one to derive a path integral representation of the partition function for
fermions is that of Berezin (1966).∗ In the following section we shall apply this for-
malism to a simple non-relativistic fermionic system, which allows us to derive a
path integral representation for the partition function which is exact for an arbi-
trary choice of time step. This example will illustrate some important points which
will be relevant when studying the thermodynamical properties of relativistic field
theories involving fermions on a lattice. In this section we will present the basic
formulae that we shall need, and check them in a simple model. For a detailed
discussion of the general functional formalism the reader may consult the book by
Berezin (1966).

Consider first a fermionic system whose Hilbert space only consists of the vac-
uum state, |0�, and the “one particle” state |1� = â†|0�, where |0� is annihilated
by â. The operators â†, and â satisfy the anticommutation relation {â, â†} = 1. All
other anticommutators vanish. An general operator Â, acting on this space, then
has the form

Â = K00 + K10â
† + K01â + K11â

†â. (18.48)

Note that the coefficients Kij are not the matrix elements of the operator in the
above mentioned basis. We have therefore denoted them with the symbol K. What
we will need is an expression for the trace of an operator, and of a product of

∗ See also Soper (1978).
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operators, in terms of an integral over Grassmann variables. This can be easily
achieved in our example. We first associate with the operator (18.48) the so-called
normal-form

Ã(a∗, a) = K00 + K10a
∗ + K01a + K11a

∗a, (18.49)

where a and a∗ are the generators of a Grassmann algebra, i.e., {a, a} = {a∗, a∗} =
{a, a∗} = 0. From the normal form, we construct the so called matrix-form

A(a∗, a) = ea∗aÃ(a∗, a). (18.50)

Since ea∗a = 1 + a∗a, one readily verifies that

A(a∗, a) = A00 + A10a
∗ + A01a + A11a

∗a,

where Aij are now the matrix elements of the operator Â in the basis |0� and
|1� = â†|0�. Making use of the Grassmann integration rules

∫
da∗a∗ =

∫
daa = 1;

∫
da =

∫
da∗ = 0 (18.51)

one finds that TrÂ = A00 + A11 is given by the following Grassmann integral

Tr Â =
∫

dada∗ea∗aA(a∗, a). (18.52)

To calculate the trace of a product of operators Ĉ = ÂB̂ we need an expression for
the matrix form of the operator Ĉ, in terms of the matrix forms of the operators Â

and B̂. One easily verfies for our simple example that

C(a∗, a) =
∫

dα∗dαe−α∗αA(a∗, α)B(α∗, a), (18.53)

where a, a∗, α, α∗, dα, dα∗, are all anticommuting variables.

All the above expression have been written in a form which generalize to the
case of a fermionic system with an arbitrary finite number of degrees of freedom. We
summarize the main expressions we shall need in the following sections, and refer
the reader to the book by Berezin (1966) for details.

Let âi and â†
i (i = 1, 2, . . . , k) be operators satisfying the anticommuation

relations

{âi, â
†
j} = δij,

{âi, âj} = {â†
i , â

†
j} = 0. (18.54)
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A general function of these operators can then be written in normal ordered form:

Â =
∑
n,m

∑
{ik},{jk}

K
(nm)
i1,i2,...,in;j1,j2,...,jm

â†
i1
â†

i2
· · · â†

in
âj1 âj2 · · · âjm , (18.55)

where the coefficients K
(nm)
i1,i2,...,in;j1,j2,...,jm

are separately antisymmetric in the indices
i1, i2, . . . , in and j1, j2, . . . , jm. By definition, n = 0, or m = 0 is understood to imply
that the corresponding contribution to the sum (18.55) does not contain operators
of the type â†

i or âi, respectively. A general state on which this operator acts is given
by a linear combination of the vacuum state |0�, which is annihilated by all the âi’s,
and the states â†

i1
· · · â†

in
|0� , where 1 ≤ n ≤ k.

We now associate with (18.55) a normal form, obtained by replacing the oper-
ators â†

i and âi by (anticommuting) Grassmann variables a∗
i and ai, respectively:

Ã(a∗, a) =
∑
n,m

∑
{ik},{jk}

K
(nm)
i1,i2,...,in;j1,j2,...,jm

a∗
i1
a∗

i2
· · · a∗

inaj1aj2 · · · ajm . (18.56)

The Grassmann variables a and a∗ appearing in the argument of Ã stand for the
collection of variables {a∗

i } and {ai}, respectively. The coefficients K
(nm)
i1,i2,...;j1,j2,... are

not the matrix elements of the operator Â in the above mentioned basis. From the
normal form, we can construct the matrix form in a way analogous to (18.50):

A(a∗, a) = e
∑

i a∗
i aiÃ(a∗, a). (18.57)

Given the matrix forms of two operators Â and B̂, the matrix form associated with
the product ÂB̂ = Ĉ can be computed as follows:

C(a∗, a) =
∫ ∏

j

dα∗
jdαje

−
∑

i α∗
i αiA(a∗, α)B(α∗, a), (18.58)

where a∗
i , ai, α∗

i , αi are now generators of an extended Grassmann algebra.

Knowledge of the matrix form of an operator allows us to compute its trace according
to

TrÂ =
∫ ∏

j

dajda∗
je

∑
i a∗

i aiA(a∗, a), (18.59)

which is the generalization of (18.52). This expression can also be written in the
form

TrÂ =
∫ ∏

j

da∗
jdaje

−
∑

i a∗
i aiA(a∗, −a). (18.60)
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Furthermore, using the Grassmann integration rules (18.51), one verifies that
∫ ∏

j

daj

∫ ∏
j

da∗
je

∑
i a∗

i (ai−bi)F (a, c) = F (b, c),

where again a, b, c stand for the collection of Grassmann variables {ai}, {bi}, {ci}.
Hence

δ(a, b) =
∫ ∏

j

da∗
je

∑
i a∗

i (ai−bi) (18.61)

acts as a δ-function.
As a simple application of the functional formalism, let us compute the grand

canonical partition function for a system whose dynamics is governed by the Hamil-
tonian

Ĥ =
∑

i

Eiâ
†
i âi, (18.62a)

with the chemical potential µ coupled to the number operator

N̂ =
∑

i

â†
i âi. (18.62b)

The partition function for this system is given by

Ξ(β, µ) = TrΩ̂, (18.63a)

where

Ω̂ = e−β(Ĥ−µN̂) = e−β
∑

i(Ei−µ)â†
i âi . (18.63b)

The exponential factorizes. Making use of the anticommutation relations (18.54) one
finds after some algebra that

Ω̂ = 1 +
k∑

�=1

∑
i1<i2<···<i�

ηi1 · · · ηi� â
†
i1

· · · â†
i�
âi� · · · âi1 ,

where

ηi = e−β(Ei−µ) − 1,

and where k is the number of degrees of freedom. The normal form associated with
Ω̂ is obtained by replacing the operators â†

i and âi by the corresponding Grassmann
variables a∗

i and ai. Making use of the fact that the square of a Grassmann variable
vanishes, it can be written in the form

Ω̃(a∗, a) = e
∑

i ηia
∗
i ai .
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The corresponding matrix form is then obtained according to (18.57):

Ω(a∗, a) = e
∑

i e−β(Ei−µ)a∗
i ai . (18.64)

Finally, (18.63a) is calculated from (18.59). For ln Ξ one obtains

ln Ξ(β, µ) =
∑

i

ln[1 + e−β(Ei−µ)], (18.65)

which is the correct expression for the partition function.

18.8 Path Integral Represenation of the Partition Function
for a Fermionic System valid for Arbitrary Time Step

We now use the functional formalism discussed in the previous section to derive
a path integral expression for the partition function (18.63), which holds for an
arbitrary finite “euclidean time”-step.

Consider the model whose Hamiltonian is given by (18.62a). To obtain a path
integral representation of the grand canonical partition function we split the interval
[0, β] into N intervals of length � = β/N , and write the partition function in the
form

Ξ = Tr(Ω̂�)N ,

where

Ω̂� = e−�
∑

i(Ei−µ)â†
i âi .

The matrix form of Ω̂� is given by (18.64) with β replaced by �,

Ω�(�a∗,�a) = e
∑

i e−�(Ei−µ)a∗
i ai , (18.66)

where, for notational reasons which will become clear below, we have denoted the
sets of Grassman variables {a∗

i } and {ai} by �a∗ and �a, respectively. We next calculate
the matrix form of Ω̂N

� by making repeated use of the product formula (18.58). Let us
label the integration variables with an extra index, which will be interpreted later as
labeling different time slices. Thus in the following �an denotes a set of k Grassmann
variables ai,n, i = 1, 2, . . . , k, where k is the number of degrees of freedom of the
system. A similar statement holds for �a∗

n. Then the matrix form of (Ω̂�)N is given by

Ω(�a∗
N ,�aN) =

∫ ∏
i

N−1∏
n=1

da∗
i,ndai,ne

−�a∗
n·�an

× [Ω�(�a∗
N ,�aN−1)Ω�(�a∗

N−1,�aN−2) . . . Ω�(�a∗
1,�a0)]�a0=�aN

,
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The trace of (Ω̂�)N is calculated according to (18.60):

Tr Ω̂ =
∫ ∏

i

da∗
i,Ndai,Ne−�a∗

N�aN Ω(�a∗
N , −�aN).

Writing out the components of �an and �a∗
n explicitely we are led to the following exact

path integral representation for the partition function,

Tr e−β(Ĥ−µQ̂) =
∫ N∏

n=1

∏
i

da∗
i,ndai,ne

−S({a∗
i,n},{ai,n})|ai,0=−ai,N , (18.67a)

where

S({a∗
i,n}, {ai,n}) =

N∑
n=1

∑
i

{a∗
i,n[ai,n − ai,n−1] + (1 − e−�(Ei−µ))a∗

i,nai,n−1}. (18.67b)

Notice that the path integral (18.67a) is to be calculated subject to the antiperiodic
boundary condition ai,0 = −ai,N . While the index “i” labels the degrees of freedom
of the system, the index “n” labels the different (euclidean) time slices.

The partition function can now be calculated by diagonalizing (18.67b). To
this end we introduce a new set of variables ãi,n and ã∗

i,n by the following unitary
transformation (we take N to be even),

ai,n =
N/2−1∑

�=−N/2

cn�ãi,�; a∗
i,n =

N/2−1∑
�=−N/2

c∗
n�ã

∗
i,�, (18.68a)

where

cn� =
1√
N

eiω̂�n. (18.68b)

and ω̂� are the Matsubara frequencies,

ω̂� =
(

2� + 1
N

)
π (fermions). (18.69)

The coefficients (18.68b) satisfy the relations

N/2−1∑
�=−N/2

c∗
n��cn� = δnn� ,

N∑
n=1

c∗
n�cn�� = δ��� . (18.70)

Notice that the antiperiodic boundary condition in (18.67a) has been incorporated
in the expansion (18.68a). Upon inserting (16.68a) into (18.67b), and performing
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the sum over n by making use of (18.70) one finds that

Tr Ω̂ =
∫ ∏

i

N
2 −1∏

�=− N
2

dã∗
i,�dãi,�e

−
∑

i,� ã∗
i,�ãi,�[1−e−�(Ei−µ)e−iω̂� ]

=
∏

i

N
2 −1∏

�=− N
2

{1 − e−�(Ei−µ)e−iω̂�}.

We therefore see that the chemical potential is introduced into the partition function
for µ = 0 by the simple substitution rule

ω̂� → ω̂� + iµ̂, (18.71)

where µ̂ = �µ is the chemical potential measured in lattice units. Combining the
positive and negative frequency parts, TrΩ̂ = Ξ can be written in the form

Ξ =
∏

i

N
2 −1∏
�=0

{1 + x2
i − 2xi cos ω̂�} =

∏
i

(1 + xN
i ), (18.72a)

where

xi = e−�(Ei−µ). (18.72b)

Upon setting �N = β, one recovers the result (18.65).
The path-integral representation (18.67) exhibits several interesting features

which deserve a comment:

i) As we have already mentioned, it is the exact path-integral expression for the
partition function (18.63) for every choice of � = β/N .

ii) An alternative expression for the path integral (which will turn out to be conve-
nient when we compare it with the lattice actions employed in numerical simula-
tions) is obtained by making the redefinitions ai,n → ai,n+1 and a∗

i,n → e−�µa∗
i,n.

This is always possible, since the a’s and the a∗’s are independent Grassmann
variables. One can then easily show that (18.67) can also be written in the form∗

Ξ =

[∏
i

eβµ

] ∫ N∏
n=1

∏
i

da∗
i,ndai,ne

−S({a∗
i,n},{ai,n})|ai,N+1=−ai,1 , (18.73a)

∗ Care must be taken of the fact that the integration measure for Grassmann
variables does not transform in the way one is used to from integrations over c-
number variables. Thus

∫
daeλa = λ

∫
dbeb.
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where

S({a∗
i,n}, {ai,n}) =

N∑
n=1

∑
i

{a∗
i,n[e−�µai,n+1 − ai,n] + (1− e−�Ei)a∗

i,nai,n}. (18.73b)

The only subtle point in obtaining this result concerns the integration measure.
The reader can convince himself that it can be still written in the form given in
(18.67a), by modifying the boundary conditions in the way exhibited in (18.73a).

iii) Still another form of the path-integral expression (18.73) can be obtained by
introducing the variables

a�
i,n = e−�µnai,n,

a�∗
i,n = e�µna∗

i,n, (18.74)

which leaves the measure unchanged. In this way one can eliminate the
µ-dependence in the action, and incorporate the chemical potential into the
boundary condition. Dropping the “prime” one then obtains that

Ξ = N
∫ N∏

n=1

∏
i

da∗
i,ndai,n[e−

∑
i,n{a∗

i,n(ai,n+1−ai,n)+(1−e−�Ei )a∗
i,nai,n}]ai,N+1=−e−βµai,1

(18.75a)

where

N =

[∏
i

eβµ

]
. (18.75b)

Note that the chemical potential now enters in the form of a boundary condition in
the combination βµ, which is independent of the chosen discretization. By expanding
e−�Ei in (18.75) up to leading order in � we can obtain an expression for the partition
function, valid in the continuum limit, which can be generalized to the case where
the Hamiltonian no longer has the simple form (18.62a),

Ξ = N lim
�→0

N→∞
N�=β

∫ N∏
n=1

∏
i

da∗
i,ndai,n

[
e−

∑
i,n{a∗

i,n(ai,n+1−ai,n)+�H(a∗
i,n,ai,n)}

]
ai,N+1=−e−βµai,1

(18.76a)

or equivalently

Ξ = N lim
�→0

N→∞
N�=β

∫ N∏
n=1

∏
i

da∗
i,ndai,n

[
e−

∑
i,n{a∗

i,n(e−�µai,n+1−ai,n)+�H(a∗
i,n,ai,n)}

]
ai,N+1=−ai,1

(18.76b)
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where

H(a∗
i,n, ai,n) = Eia

∗
i,n, ai,n (18.76c)

is the Hamiltonian “density” defined on the n’th time slice. In obtaining (18.76b) we
have again made a change of variables analogous to (18.74) in (18.76a). Expression
(18.76b) has a form which most closely resembles that used in lattice calculation.
Except for the overall factor multiplying the integral, the chemical potential is in-
troduced in the bilinear terms coupling neighbouring lattice sites in the euclidean
time direction in the way proposed by Kogut et al. [Kogut (1983c)], and Hasenfratz
and Karsch [Hasenfratz (1983)]:

a∗
i,nai,n+1 → a∗

i,ne
−µ̂ai,n+1, (18.77)

where µ̂ is the chemical potential measured in “lattice” units. As we have seen in
this section, this prescription follows naturally from the functional formalism.

Let us verify that the partition function (18.76b) yields the correct answer for
the mean energy, �E� and mean particle number �N�. By diagonalizing the action
as before one finds that

Ξ = lim
�→0

N→∞
N�=β

∏
i

N
2 −1∏

�=− N
2

eiω̂� [1 − (1 − �Ei)e−iω̂�+�µ].

Taking into account that the product includes as many positive as well as negative
frequencies, this expression can again be written in the form (18.72a) with xi =
(1 − �Ei)e�µ. Hence

ln Ξ =
∑

i

ln[1 + (1 − �Ei)Neβµ].

Upon setting � = β
N

, and taking the limit N → ∞, we recover the result (18.65).

For fixed N, the mean energy is given by (recall that βµ is to be held fixed),

�E� = − lim
�→0

N→∞
N�=β

1
N

[
∂

∂�
ln Ξ

]

�µfixed
. (18.78)

Hence

�E� = lim
�→0

N→∞
N�=β

∑
i

Ei

1 − β
N

Ei

1
(1 − β

N
Ei)−Ne−βµ + 1

=
∑

i

Ei

eβ(Ei−µ) + 1
.

(18.79a)
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A similar calculation for 〈N〉 yields

〈N〉 = lim
�→0

N→∞
N�=β

1
N�

∂

∂µ
ln Ξ =

∑
i

1
eβ(Ei−µ) + 1

. (18.79b)

As the reader will have noticed, the factor (18.75b) multiplying the integral in
(18.76a) was important for obtaining the correct answer. Ignoring it would not
influence the result for the mean energy, but would modify the expression (18.79b)
by the potentially divergent sum

∑
i = nf , where nf is the number of degrees of

freedom.

18.9 A Modified Fermion Action Leading to Fermion Doubling

We have seen in the previous section that the functional formalism for fermions
tells us that the kinetic (time-derivative) contribution to the action is discretized
using the right lattice derivative. The dependence on the chemical potential then
appears in the form of a µ-dependent boundary condition. Alternatively, the chem-
ical potential can be introduced into the action at µ = 0 according to the rule
(18.77). In this case the Grassmann variables satisfy antiperiodic boundary condi-
tions. Although the action in the latter formulation resembles that used in lattice
simulations, it actually differs from it in an essential way. When simulating rela-
tivistic field theories involving Dirac fermions on the lattice, one wants the action to
exhibit a hypercubic symmetry, which is the lattice remnant of the 0(4) symmetry
in the (euclidean) continuum formulation. The fermionic part of the action is there-
fore disretized using the symmetric form for the temporal (as well as spatial) lattice
derivative. In chapter 3, where we discussed the fermion propagator, we have seen
that using such a discretization leads to a serious problem: the fermion doubling
problem. Of course we also expect to see the contribution of the doublers in the
partition function. In fact, as we now show, the doubler contributions which arise
from the use of a symmetric lattice time-derivative manifest themselves in a non-
trivial way. This can be most clearly demonstrated for the non-relativistic fermionic
system considered in the previous sections. The manifestation of the doubers in the
relativistic case is more subtle and has been discussed by Bender et al. [Bender
(1993)].

The following partition function is a modification of (18.76b), where the ki-
netic term in the action (i.e., the “time”-derivative term) is modified in a way
which resembles that used in actual Monte Carlo simulations of lattice gauge field
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theories:

Ξ̃(β, µ) = lim
�→0

N→∞
Nβ fixed

��
i

eβµ

� � �
i

N�
n=1

da∗
i,ndai,n

× e
−

∑N
n=1 �

[∑
i a∗

i,n
(e−µ̂ai,n+1−eµ̂ai,n−1)

2�
+H(a∗

i,n,ai,n)
]

| ai,0=−ai,N
ai,N+1=−ai,1

. (18.80)

Here we have introduced the chemical potential into the symmetric time-derivative
at µ = 0 according to the Kogut–Hasenfratz–Karsch prescription [Kogut (1983c);
Hasenfratz (1983)]

a∗
i,nai,n+1 → a∗

i,ne
−µ̂ai,n+1,

a∗
i,nai,n−1 → a∗

i,ne
µ̂ai,n−1, (18.81)

where µ̂ = �µ is the chemical potential in lattice units. Because of the modified
kinetic term the anti-periodic boundary conditions in (18.76b) have now been re-
placed by ai,0 = −ai,N , and ai,N+1 = −ai,1. The integral can be performed by
diagonalizing the action in the manner described earlier. Making the change of vari-
ables (18.68), which incorporate the above antiperiodic boundary conditions, one
finds that

Ξ̃ =
�

i

N
2 −1�

�=− N
2

eµ̂[i sin(ω̂� + iµ̂) + �Ei].

From here we obtain for the mean energy

�E� = − 1
N

�
∂ ln Ξ̃

∂�

�

Nµ̂ fixed

= − 1
N

�
i

Ei




N
2 −1�

�=− N
2

f(ω̂�, Ei)


, (18.82a)

where

f(ω̂�, Ei) =
1

i sin(ω̂� + iµ̂) + �Ei

. (18.82b)

Note that the frequency sum is performed over the finite interval

−π +
π

N
< ω̂� < π − π

N
, (18.82c)

i.e., over frequencies lying within in the first Brillouin zone. This frequency sum can
be written as a contour integral by making use of the formula

1
N

N
2 −1�

�=− N
2

F (ω̂�) = − 1
2π

�

C

F (ω̂)
eiNω̂ + 1

, (18.83)
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where the contour C encloses the poles of the integrand in the complex ω̂-plane,
lying within the interval (18.82c), arising from the zeros of the denominator. The
integration is carried out in the counterclockwise sense. These poles are located at
ω̂ = ω̂�, where ω̂� has been defined in (18.69). The corresponding residues of the
integrand are given by R� = i

N
F (ω̂�). If F (ω̂) does not possess any singularities on

the real axis, then the above expression can also be written in the form

1
N

N
2 −1∑

�=− N
2

F (ω̂�) = − 1
2π

∫ π−i�

−π−i�

dω̂
F (ω̂)

eiNω̂ + 1
+

1
2π

∫ π+i�

−π+i�

dω̂
F (ω̂)

eiNω̂ + 1
. (18.84)

A more convenient form can be obtained by introducing the integration variable
z = eiω̂. Then

1
N

N
2 −1∑

�=− N
2

F (ω̂�) = − 1
2πi

∫

|z|=1+�

dz
F̃ (z)

z(zN + 1)
+

1
2πi

∫

|z|=1−�

dz
F̃ (z)

z(zN + 1)
, (18.85)

where F̃ (eiω̂) = F (ω̂), and where the integrations are performed on circles in the
complex z-plane, with radii |z| = 1 ± �, in the counterclockwise direction. If F̃ (z) is
a meromorphic function of z, satisfying |z|−N F̃ (z) → 0 for |z| → ∞, then we can
distort the integration contour in the first integral to infinity, taking into account
the contribution of the poles of F̃ (z) for |z| > 1. The second integral is just 2πi

times the sum of the residues of F̃ (z)
z

located inside the unit circle. Hence

1
N

N
2 −1∑

�=− N
2

F (ω̂�) =
∑

|zi|�=1

R(zi)
zN

i + 1
, (18.86a)

where

R(zi) = Reszi

[
F̃ (z)

z

]
. (18.86b)

We now use this expression to calculate the frequency sum in (18.82a). The position
of the poles of (18.82b) in the z-plane are given by

z± = [−�Ei ±
√

�2E2
i + 1 ]e�µ = ±e∓arsinh�Ei+�µ.

Making use of (18.86) one then finds that

�E� =
∑

i

Ei√
�2E2

i + 1

[
1

eN(arsinh�Ei+�µ) + 1
− 1

e−N(arsinh�Ei−�µ) + 1

]
.
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Upon taking the limits � → 0, N → ∞, with N� = β fixed, and making use of the
identity 1/(ex + 1) + 1/(e−x + 1) = 1, one obtains

�E� =
∑

i

Ei

[
1

eβ(Ei−µ) +
1

eβ(Ei+µ)

]
−

∑
i

Ei. (18.87)

This is an interesting result, for it deviates in a drastic way from (18.79a). Apart from
a potentially diverent additive contribution, the remaining two contributions resem-
ble those of a gas of particles and antiparticles! Hence (18.80) is not the path integral
representation of the partition function (18.63b). This example clearly demonstrates
that modifications in the action which are inconsistent with the general form dic-
tated by the functional formalism, can give rise to spurious unphysical contributions.
This is the case, although the actions appearing in (18.76b) and (18.80) differ for-
mally only by terms of O(�). Nevertheless they give rise to very different expressions
for the partition function. We had already been confronted with a similar situation
when we discussed the propagator for Wilson fermions in chapter 3. There the action
was modified by a so called irrelevant term, vanishing in the naive continuum limit.
When introduced into the path integral, however, the fermion doubling problem
disappears.

Whereas the doubler contributions to the partition function do possess a con-
tinuum limit, this is not true for Green functions, as we have already seen in chapter
3, and will be further demonstrated in section 9 of the following chapter, where we
discuss in detail the Dirac propagator for naive (and Wilson) fermions at finite
temperature and chemical potential.

18.10 The Free Dirac Gas. Continuum Approach

We have discussed in great detail the path integral representation of the parti-
tion function for a simple fermionic system, in order to point out some subtle points.
In this and the following section we now extend our discussion to the relativistic
case. In text books on finite temperature field theory the thermodynamical partition
function for a free Dirac gas is usually derived from its path integral representation
in the continuum, where such concepts as the right or left-derivative do not appear.
Nor does the expression for the partition function reflect the fact that in the dis-
cretized version the chemical potential is introduced into the bilinear terms in the
Grassmann variables coupling neighbouring sites along the euclidean time axis. In
lattice regularized gauge field theories, however, the chemical potential should be
introduced in the exponentiated form, discussed in the previous section, in order to
ensure the renormalizabilty of the theory. For completeness sake, we will include the
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discussion of the free Dirac gas within the continuum formulation in this section.
In the following section we then study the Dirac gas within the framework of the
lattice regularization.

Consider the Hamiltonian for a free Dirac field

H =
∫

d3xψ†(x)γ4[γj∂j + m]ψ(x), (18.88)

where γµ are the euclidean gamma matrices introduced in chapter 3, satisfying the
anticommutation relations {γµ, γν} = 2δµν . The charge operator is

Q =
∫

d3xψ†(x)ψ(x). (18.89)

Within the continuum approach the (formal) path integral representation of the
grand canonical partition function

Ξ = Tr{e−β(H−µQ)}, (18.90)

is given by

Ξ = N
∫

antip.
Dψ∗Dψ e−

∫ β
0 dτ

∫
d3x[ψ∗(x)γ4(∂/+m)ψ(x)−µψ∗(x)ψ(x)] (18.91)

where N is a dimensioned normalization factor. The subscript “antip.” is to re-
mind the reader that the Grassmann integration is to be performed with the
fields ψ satisfying antiperiodic boundary conditions in “time”. Notice that this
form for the partition function is formally obtained from (18.76b) by i) expand-
ing e−�µ to leading order in �, ii) replacing the Grassmann variables ai,n and a∗

i,n

by∗ ψα(�x, τ) and ψ∗
α(�x, τ), and approximating �µψ∗(�x, τ)ψ(�x, τ + �) by the local

form �µψ∗
α(�x, τ)ψα(�x, τ). This amounts to taking the naive continuum limit of the

discretized action.
The definition (18.91) is the usual starting point for discussing the thermo-

dynamics of a Dirac gas within the path integral framework (see e.g. Kapusta
(1989)). We now proceed as in the case of the free scalar field, and rewrite the
path integral in terms of dimensionless variables, by scaling the fields, space-time
coordinates, and the mass m with an appropriate power of β according to their
canonical dimensions. Thus introducing the dimensionless variables ψ̂ = β3/2ψ,

∗ Recall that (�x, α) label the degrees of freedom.
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ψ̂∗ = β2/3ψ∗, τ̂ = τ/β, x̂i = xi/β, µ̂ = βµ, m̂ = βm, the expression (18.91) takes
the form

Ξ = N̂
∫

antip.
Dψ̂∗Dψ̂e−

∫ 1
0 dτ̂

∫
d3x̂ψ̂∗(x)[∂̂τ −µ̂+Ĥ]ψ̂(x), (18.92a)

where

Ĥ = �α · ∇̂ + γ4m̂, (18.92b)

with �α = γ4�γ, is the Hamiltonian density measured in units of β−1, and N̂ is now a
dimensionless normalization factor. Since the integral (18.92a) is of the “Gaussian”
type, it can be performed immediately. As we have seen in chapter 2, the result is
just the determinant of the operator appearing within square brackets in (18.92a).
Hence

ln Ξ = ln N̂ + ln det(∂̂4 − µ̂ + Ĥ)

= ln N̂ + ln det[β(∂τ − µ + H)],

where H = �α · �∇ + γ4m is the dimensioned Hamiltonian density. The determi-
nant is given by the product of the eigenvalues of the operator acting in the
space of functions satisfying antiperiodic boundary conditions on the compacti-
fied euclidean time interval [0, β]. The eigenfunctions of ∂τ − µ + H have the form
exp(iω�τ) exp(i�p · �x)W (�p), where

ω� =
(2� + 1)π

β
(18.93)

are the dimensionful Matsubara frequencies corresponding to (18.69), and where
W (�p) are eigenvectors of the operator i�α · �p + γ4m. The eigenvalues are given by
±E(�p), where

E(�̂p) =
√

�p 2 + m2, (18.94)

and are two-fold degenerate, corresponding to the two possible spin projections.
Hence the eigenvalues of ∂τ − µ + H are given by

λ
(±)
�p,� = iω� − µ ± E(�p ). (18.95)

For the logarithm of the partition function we therefore obtain

ln Ξ = ln N̂ + 2
∑

�p

∑
�

{ln[β(iω� − µ + E(�p))] + (E → −E)},
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where � runs over all possible integers. As in the case of the scalar field, we have
enclosed the system into a box of finite volume to discretize the momenta. Collecting
the positive and negative frequency contributions we can write this expression in an
explicit real form:

ln Ξ = ln N̂ + 2
∑

�p

∞∑
�=0

(ln{[(2� + 1)π]2 + [β(E − µ)]2} + (E → −E)).

The frequency sum diverges. To extract the finite temperature and chemical poten-
tial dependent part let us write the logarithm in the form∗

ln{[(2� + 1)π]2 + [β(E − µ)]2} =
∫ [β(E−µ)]2

1
dy2 1

(2� + 1)2π2 + y2

+ ln[(2� + 1)2π2 + 1].

Dropping the irrelevant constant contribution, and performing the sum over � by
making use of

∞∑
�=0

1
(2� + 1)2π2 + y2 =

1
4y

tanh
y

2
.

One then finds that

ln Ξ = ln N̂ + 2V β

∫
d3p

(2π)3E(�p)

+ 2V
∫

d3p

(2π)3

{
ln(1 + e−β(E−µ)) + ln(1 + e−β(E+µ))

}
,

(18.96)

where we have replaced the formal sum over momenta by an integral according
to (18.37). Apart from the first two terms, this is the expression familiar from
statistical mechanics. The second term gives rise to a constant energy density shift
and is just the contribution of the negative energy states in the Dirac sea. In this
connection, recall that within the path integral approach, there is no normal ordering
prescription. Of course we also would expect to see a corresponding shift in the mean
charge density. In fact, comparison of the formal path integral expression (18.92a)
with (18.76a), where the normalization factor is given by (18.75b), suggests that
ln N̂ is given by

∑
i βµ, where i labels the (infinite) number of degrees of freedom.

Since
∑

i ≈ 2V
∫

d3p/(2π)3, one then easily verifies that the first term in (18.96)
gives rise to the expected contribution to the mean charge �Q� = 1

β
∂ ln Ξ
∂µ

, arising
from the Dirac sea.

∗ We follow here the method of Kapusta (1989).
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18.11 Dirac Gas of Wilson Fermions on the Lattice

Let us now consider a lattice regularized version of the partition function for the
Dirac field. Since we are interested in computing thermodynamical observables, we
must be able to vary the temperature and volume in a continuous way. Hence we need
an expression for the partition function formulated on an anisotropic space-time lat-
tice, i.e., with different temporal and spatial lattice spacings, aτ and a, respectively.
The partition function will then be given by a path integral over Grassmann vari-
ables living on the space-time lattice sites n = (�n, n4), where �n labels the coordinate
degrees of freedom and takes all possible integer values, while n4 runs over a finite
number of lattice sites, 1 ≤ n4 ≤ Nτ , where Nτaτ is the inverse temperature β. Since
Nτ is the inverse temperature measured in lattice units, we will use the more sug-
gestive notation β̂ in the following. The discretized version of the action having the
correct naive continuum limit is not unique. We shall take it to be of a form which is
consistent with the fermionic actions usually employed in Monte Carlo simulations
of gauge theories. This means that, first of all, the kinetic term has a structure
analogous to that appearing in the action of the expression (18.80). Secondly, the
spatial derivative appearing in the Hamiltonian (18.88) will also be discretized using
the symmetric lattice derivative, in order that the Hamiltonian be hermitean. With
this prescription the action appearing in the exponential in (18.80) translates into

SF =
β̂∑

n4=1

∑
�n

a3
{

ψ†(n)
1
2
[e−µ̂ψ(n + ê4) − eµ̂ψ(n − ê4)]

+ aτψ
†(n)[αj · ∂j + γ4m]ψ(n)

}
,

(18.97a)

where a summation over repeated indices is understood, and where

∂iψ(n) =
1
2a

[ψ(n + êi) − ψ(n − êi)] (18.97b)

is the symmetric lattice derivative of ψ(n), αj = γ4γj, with êi a unit vector pointing
in the i-th-direction. The action (18.97) can be written in an explicit dimensionless
form by scaling the fields ψ and ψ†, as well as the spatial derivatives and fermion
mass, with the spatial lattice spacing a according to their canonical dimension. The
corresponding dimensionless quantities will be denoted as usual with a “hat.” One
is then led to the following path integral representation of the partition function

Ξ = N̂
∫ ∏

�n,α

β̂∏
n4=1

dψ̂∗
α(n)dψα(n) e−SF | ψ̂(�n,0)=−ψ̂(�n,β̂)

ψ̂(�n,β̂+1)=−ψ̂(�n,1)

, (18.98a)
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where

SF =
∑

�n

β̂∑
n4=1

{
ψ̂†(n)

1
2
[e−µ̂ψ̂(n + ê4) − eµ̂ψ̂(n − ê4)] +

1
ξ
ψ̂†(n)[αj · ∂̂j + γ4m̂]ψ̂(n)

}
,

(18.98b)

and ξ = a
aτ

is the anisotropy parameter. The (dimensionless) lattice derivative ∂̂j

is defined by (18.97b) with a = 1. For a fixed number of temporal lattice sites the
temperature is now controled by the parameter ξ.

The action (18.98b) is expected to lead to fermion doubling. In particular, the
kinetic term does not have the form dictated by the functional formalism. In section
9 we had demonstrated in a non-relativistic model that such a choice for the kinetic
term leads to a non-trivial modification of the partition function. This is also the
case for the relativistic Dirac gas, as has been discussed by Bender et al. [Bender
(1993)].

The fermion doubling problem can be avoided by introducing a Wilson term.
For vanishing chemical potential and zero temperature, where the extension of the
lattice in the time direction is infinite, this Wilson term is given in (4.28), and
exhibits a hypercubic symmetry. This symmetry is the remnant of the O(4) sym-
metry in the continuum, and is broken down to a spatial cubic symmetry at finite
temperature due to the presence of the heat bath, as is evident from (18.98b).
The Wilson parameters multiplying the contributions involving the second time-and
space derivatives need therefore not be equal. The finite temperature parametriza-
tion of the Wilson term is ambiguous. The reason is that this (so called irrele-
vant) term vanishes linearly with the lattice spacing in the naive continuum limit.
Expression (18.98b) however suggests a parametrization, where the ratio of the
Wilson parameters associated with the temporal and spatial derivative contributions
is given by the assymmetry parameter ξ. Thus for vanishing chemical potential we
will take the Wilson term to be of the form

δS
(W )
F = −r

2

[∑
n

ψ̂†(n)γ4∂̂
2
4 ψ̂(n) +

1
ξ

∑
n,j

ψ̂†(n)γ4∂̂
2
j ψ̂(n)

]
, (18.99a)

where

∂̂2
µψ̂(n) = ψ̂(n + êµ) + ψ̂(n − êµ) − 2ψ̂(n) (18.99b)

is the discretized second derivative of ψ̂, and where it is understood from now on
that

∑
n =

∑
�n

∑β̂
n4=0. By expressing (18.99a) again in terms of the dimensioned

fields and second derivatives, one easily verifies that such a parametrization implies
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that the temporal and spatial derivative contributions vanish in the naive continuum
limit linearly with aτ and a, respectively.

The chemical potential is now introduced into (18.99) according to the
Hasenfratz Karsch–Kogut prescription [Hasenfratz (1983); Kogut (1983)]

ψ̂†(n)ψ̂(n + ê4) → ψ̂†(n)e−µ̂ψ̂(n + ê4),

ψ̂†(n)ψ̂(n − ê4) → ψ̂†(n)eµ̂ψ̂(n − ê4), (18.100)

which is the analog of (18.81). Then the fermion action (18.98b), supplemented by
the Wilson term (18.99a), takes the form:

S
(W )
F =

[
r +

1
ξ
(m̂ + 3r)

]∑
n

ψ̂†(n)γ4ψ̂(n)

− 1
2

∑
n

ψ̂†(n)γ4[(r − γ4)e−µ̂ψ̂(n + ê4) + (r + γ4)eµ̂ψ̂(n − ê4)] (18.101)

− 1
2ξ

∑
n,i

ψ̂†(n)γ4[(r − γi)ψ̂(n + êi) + (r + γi)ψ̂(n − êi)].

This is the generalization of (4.28) to finite temperature and chemical potential
(recall that ψ̄ = ψ†γ4). Notice that our finite temperature, finite chemical potential
parametrization has preserved the r ± γµ structure of the T = µ = 0 Wilson action
(4.28). We now diagonalize this action by Fourier decomposing the fields ψ̂(n) and
ψ̂†(n) as follows (we take β̂ = Nτ to be even)

ψ̂(n) =
1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3 ψ̃(p̂, ω̂�)ei(�̂p·�n+ω̂�n4),

ψ̂†(n) =
1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3 ψ̃†(p̂, ω̂�)e−i(�̂p·�n+ω̂�n4),

(18.102)

where ω̂� are the dimensionless Matsubara frequencies for fermions (18.69), with N

identified with β̂, i.e.,

ω̂� =
(2� + 1)π

β̂
. (18.103)

Notice that both, the frequencies and momenta, are restricted to the first Brillouin
zone. Making use of the relation

1

β̂

∑
�n

β̂∑
n4=1

ei(�̂p−�̂p ′)·�nei(ω̂�−ω̂�′ )n4 = δ��′(2π)3δ
(3)
P (�̂p − �̂p �), (18.104)
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where δ
(3)
P (�̂p − �̂p �) is the three dimensional version of the periodic δ-function (2.64),

the action takes the following form for r = 1,

SF =
1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3 ψ̃†(p̂, ω̂�)K(�̂p, ω̂�, ξ, µ̂)ψ̃(p̂, ω̂�),

where

K(�̂p, ω̂�, ξ, µ̂) = i sin(ω� + iµ̂) +
1
ξ
H(�̂p, ω̂�, ξ, µ̂),

H(�̂p, ω̂�, ξ, µ̂) =
∑

j

iαj sin p̂j + γ4M(�̂p, ω̂�, ξ, µ̂),

and

M(�̂p, ω̂�, ξ, µ̂) = M̂(�̂p) + 2ξ sin2
(

ω̂� + iµ̂

2

)
,

M̂(�̂p) = m̂ + 2
∑

j

sin2 p̂j

2
. (18.105)

The matrix K can be further diagonalized in Dirac space. Then the partition func-
tion is given by the product of the eigenvalues (which are two-fold degenerate)

λ± = i sin(ω� + iµ̂) ± 1
ξ
Ê(�̂p, ω̂�, ξ, µ̂),

where

Ê(�̂p, ω̂�, ξ, µ̂) =
√∑

j

sin2 p̂j + M2(�̂p, ω̂�, ξ, µ̂). (18.106)

Hence, formally, the logarithm of the partition function (ignoring an additive contri-
bution arising from the normalization factor in (18.98a)), which should not influence
the thermodynamics, is given by

ln Ξ = 2
π∑

�̂p=−π

β̂
2 −1∑

�=− β̂
2

ln
[
sin2(ω̂� + iµ̂) +

1
ξ2 Ê2(�̂p, ω̂�, ξ, µ̂)

]
, (18.107)

where the factor 2 accounts for the two spin degrees of freedom. Making the
replacement

π∑
�̂p=−π

→ V̂

∫ π

−π

d3p̂

(2π)3 , (18.108)
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valid in the large volume limit (V̂ is the volume measured in lattice units), we obtain

ln Ξ = 2V̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3 ln
[
sin2(ω̂� + iµ̂) +

1
ξ2 Ê2(�̂p, ω̂�, ξ, µ̂)

]
. (18.109)

From here we compute the mean energy (in lattice units) and mean charge

�Ê� =
1

β̂

[
∂ ln Ξ
∂ξ

]

ξ=1
, (18.110a)

�Q� =
1

β̂

[
∂ ln Ξ
∂µ̂

]

ξ=1
. (18.110b)

Consider for example the mean energy. Performing the indicated differentiation one
finds after some algebra that

�Ê� = 2
V̂

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3F (ω̂� + iµ̂, �̂p), (18.111a)

where

F (ω̂� + iµ̂, �̂p) = −2
Ê2(�̂p) + M̂(�̂p)[1 − cos(ω̂� + iµ̂)]

Ê2(�̂p) + 2[1 + M̂(�̂p)][1 − cos(ω̂� + iµ̂)]
, (18.111b)

with

Ê(�̂p) =
√∑

j

sin2 p̂j + M̂2(�̂p), (18.111c)

and M̂(�̂p) given by (18.105). The frequency sum of F (ω̂ + iµ̂, �̂p) in (18.111a) can
now be easily carried out by making use of either the summation formula (18.86)
or, even more conveniently, with the help of the summation formula (D.3) derived
in appendix D. The function analogous to g(ei(ω̂+iµ̂), {�̂pi}) in (D.1) is now defined
by g(ei(ω̂+iµ̂), �̂p) = F (ω̂ + iµ̂, �̂p). Correspondingly, g(z) in (D.3) is now given by

g(z) =
f(z)

[z − z+][z − z−]
,

where

f(z) = − 2
(1 + M̂)

[M̂z2 − 2(Ê2 + M̂)z + M̂ ],

z± = [κ(�̂p) ±
√

κ2(�̂p) − 1],
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and

κ(�̂p) = 1 +
Ê2(�̂p)

2(1 + M̂(�̂p))
. (18.112)

The rest of the calculation is straight forward. After performing the frequency sum
in (18.111a) one finds for the energy density measured in lattice units that

1
V̂

�Ê� = 2
∫ π

−π

d3p̂

(2π)3ρ(�̂p)Ê(�̂p)[ηF (�̂p) + η̄F (�̂p)] + const., (18.113a)

where

ρ(�̂p) =
1 + M̂(�̂p)/2

(1 + M̂(�̂p))
√

1 + M̂(�̂p) + (Ê(�̂p)/2)2
(18.113b)

is a function which approaches unity in the continuum limit. ηF (�̂p ) and η̄F (�̂p ) are
lattice versions of the Dirac distribution functions for particles and antiparticles:

ηF (�̂p) =
1

eβ̂[ln(κ+
√

κ2−1)−µ̂] + 1
, (18.114a)

η̄F (�̂p) =
1

eβ̂[ln(κ+
√

κ2−1)+µ̂] + 1
, (18.114b)

where κ has been defined in (18.112). The continuum limit is realized by setting
m̂ = ma, µ̂ = µa, β̂ = β

a
, and taking a → 0. In this limit we can replace κ2 by

1+ 1
2(�̂p

2
+m̂2).∗ One then finds that, apart from a temperature and chemical potential

independent contribution, the mean energy density in physical units reduces to

1
V

�E� = 2
∫ ∞

−∞

d3p

(2π)3E(�p )
[

1
eβ(E−µ) + 1

+
1

eβ(E+µ) + 1

]
. (18.115)

A similar calculation of the mean charge density yields

1
V

�Q� = 2
∫ ∞

−∞

d3p

(2π)3

[
1

eβ(E−µ) + 1
− 1

eβ(E+µ) + 1

]
. (18.116)

We close this section with a remark. If we had chosen to work with naive
fermions (i.e., no Wilson term) then the integrals (18.115) and (18.116) would have

∗ High momentum excitations, corresponding to finite �̂p do not contribute to
(18.113a) in the continuum limit, as can be easily verfied.
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been multiplied my an additional factor 24, arising from the doubler contributions.
Thus by only looking at the partition function, the “doublers” manifest themselves
in a rather trivial way. Our discussion in section 9 however suggests that this is
only so, because the Dirac field excites particle and antiparticle states. In fact by
studying separately the positive and negative energy contributions to the partition
function, one finds that in both, the positive as well as negative energy sectors, the
partition function resembles that of a gas of particles and antiparticles, except for an
overall factor 23 arising from the “doublers” associated with high-three-momentum
excitations at the corners of the Brillouin zone [Bender (1993)]. This agrees with
our findings in section 9, where we discussed the doubling problem in a simple
non-relativistic model.
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CHAPTER 19

FINITE TEMPERATURE PERTURBATION THEORY
OFF AND ON THE LATTICE

In the previous chapter we have studied in detail the path-integral represen-
tation of the partition function for some non-interacting bosonic, and fermionic
systems. Because of the Gaussian nature of the integrations we were able to calcu-
late the path integrals explicitely. In the presence of interactions this is in general
no longer possible and one has to recur either to perturbation theory, or evaluate
thermodynamical observables within the framework of a lattice regularized theory
by Monte Carlo methods. In this chapter we shall show how the euclidean Feynman
rules at zero temperature are modified when a relativistic system of interacting fields
is placed in contact with a heat bath. We will first demonstrate this for the case of
the λφ4 theory in the continuum formulation. As we shall see, the prescription for
making the transition from the zero-temperature, zero-chemical potential Feynman
rules to the T �= 0, µ �= 0 rules turns out to be very simple. The λφ4-theory is
considered in detail in the book by Kapusta (1989). We shall therefore only discuss
some elementary aspects of this theory, since it provides a simple laboratory for
studying the effects arising from the presence of a heat bath. The remaining part
of this chapter will then be devoted to gauge field theories at finite temperature
and chemical potential, both in the continuum as well as on the lattice. Although
the prescription for making the transition from the zero-temperature, zero-chemical
potential lattice Feynman rules to the T �= 0, µ �= 0 rules turns out again to be
very simple, the actual computation of lattice Feynman integrals at finite temper-
ature and chemical potential is more involved than in the continuum, as we shall
demonstrate in some sample calculations.

19.1 Feynman Rules for Thermal Green Functions
in the λφ4 Theory

Let φ(x) be a real scalar field whose dynamics is governed by a Hamiltonian
H. At zero temperature all physical information about the system is contained in
the ground state expectation value of time ordered products of the field operators
Φ(x). When the system is placed in contact with a heat bath, all possible energy
eigenstates of H are excited with a probabilty given by the Boltzmann factor. The
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thermal correlation functions are then defined by

�φ(x1) · · ·φ(xn)�β =
Tr[e−βHT (Φ(x1) · · · Φ(xn))]

Tr e−βH
, (19.1)

where xi = (�xi, τi), and Φ(x) are the field operators whose euclidean time dependence
is given by (2.17). By introducing a complete set of eigenstates of the Hamiltonian,
one readily verifies that in the limit of vanishing temperature (i.e., β = 1

T
→ ∞) the

rhs of (19.1) reduces to the correlation function (2.14). It is now easy to derive a
path-integral expression for (19.1) using the by now familiar techniques. We leave the
details to the reader and only quote here the result, which is valid if the Hamiltonian
density is given by the sum of a kinetic term, quadratic in the canonical momentum,
and an interaction depending only on the fields φ(x):

�φ(x1) · · ·φ(xn)�β =

∫
per Dφ φ(x1) · · ·φ(xn)e−S(β)[φ]

∫
per Dφe−S(β)[φ]

. (19.2a)

Here

S(β)[φ] =
∫ β

0
dτ

∫
d3xLE(φ, ∂µφ) (19.2b)

is the finite temperature action. The path integral is to be evaluated with the scalar
field satisfying the periodic boundary condition (18.32). The correlation functions
can be obtained from the generating functional

Z[J ] =
∫

per
Dφe−S(β)[φ]+

∫ β
0 dτ

∫
d3xJ(�x,τ)φ(�x,τ) (19.3)

in the usual way, by functionally differentiating this expression with respect to the
sources J(�x, τ). If the interacting part of S(β), which we denote by S

(β)
I [φ], is a

polynomial in the fields, we can also write (19.3) in the form

Z[J ] = e−S
(β)
I [ δ

δJ
]Z0[J ], (19.4a)

where

Z0[J ] =
∫

Dφe−S
(β)
0 [φ]+

∫ β
0 dτ

∫
d3xJ(�x,τ)φ(�x,τ) (19.4b)

is a path integral of the Gaussian type. Once Z0[J ] is known, Z[J ] can be computed
perturbatively by expanding the exponential in powers of the interaction.

For the φ4-theory the finite temperature action is given by

S(β)[φ] = S
(β)
0 [φ] + S

(β)
I [φ], (19.5a)
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where

S
(β)
0 [φ] =

1
2

∫

β

d4xφ(x)(−�� + M2)φ(x), (19.5b)

S
(β)
I [φ] =

λ

4!

∫

β

d4x(φ(x))4, (19.5c)

and x = (�x, τ). Here we have introduced the short-hand notation
∫

β

d4x =
∫ β

0
dτ

∫
d3x. (19.5d)

The factor 1/4! in (19.5c) has been introduced for later convenience. Since φ(x)
satisfies periodic boundary conditions, it has the following Fourier decomposition

φ(�x, τ) =
1
β

∑
�

∫
d3k

(2π)3 φ̃(ω�,�k)ei�k·�x+iω�τ , (19.6a)

where ω� are the Matsubara frequencies

ω� =
2π
β

� (bosons). (19.6b)

Here � takes all possible integers values. The factor 1/β has been inserted so that
φ̃ carries the same dimension as the corresponding field in the T = 0 formulation.
Since

∫ β

0
dτei(ω�−ω�′ )τ = βδ��′ , (19.7)

we can invert (19.6a):

φ̃(ω�,�k) =
∫ β

0
dτ

∫
d3xφ(�x, τ)e−iω�τ−i�k·�x. (19.8)

From (19.6a) and (19.8), we see that the finite temperature expressions follow from
those at T = 0 by making the substitutions

k4 → ω�,∫
dk4

2π
f(k4) → 1

β

∑
�

f(ω�), (19.9a)

and ∫
d4x →

∫

β

d4x. (19.9b)

Consider now the generating functional of the free theory defined in (19.4b). Since
the exponent in the integrand is quadratic in the fields, we can perform the
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integration and obtain

Z0[J ] = Z0[0]e
1
2

∫
β d4x

∫
β d4y J(x)∆(β)(x−y)J(y), (19.10)

where ∆(β)(x − y) is the inverse of the operator −�� + M2 (i.e., Green function) on
the space of functions satisfying the periodic boundary conditions (18.32). Hence
∆(β)(z) is periodic in the euclidean time direction,

∆(β)(�z, 0) = ∆(β)(�z, β)

and therefore has the following Fourier expansion

∆(β)(z) =
1
β

∑
�

∫
d3k

(2π)3 ∆̃(β)(ω�,�k)eiω�τ+i�k·�z. (19.11)

The propagator in momentum space, ∆̃(β)(ω�,�k), can be determined by inserting
this expression into the equation

(−�� + M2)∆(β)(z) = δ(�z)δP (τ),

where δP (τ) is the periodic δ-function

δP (τ) =
1
β

∑
�

eiω�τ . (19.12)

One finds that

∆̃(β)(ω�,�k) =
1

ω2
� + �k2 + M2

. (19.13)

The corresponding expression for ∆(β)(z) reads

∆(β)(z) =
1
β

∑
�

∫
d3k

(2π)3

eiω�τ+i�k·�z

ω2
� + �k2 + M2

. (19.14)

Comparing (19.13) and (19.14) with their zero temperature counterparts

∆̃(k) =
1

k2 + M2 , (19.15a)

∆(z) =
∫

d4k

(2π)4

eik·z

k2 + M2 , (19.15b)

where k = (�k, k4), and k2 = k2
4 + �k2, we see that they are related by the rules

(19.9a).
The temperature dependence of (19.14) is contained in the infinite sum over the

temperature dependent Matsubara frequencies (19.6b). The frequency summation
formula we shall derive below allows us to decompose ∆(β)(z) into a zero and a finite
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temperature contribution arising from the presence of the heat bath. Suppose we
want to calculate the sum

F (K) =
1
β

∑
�

f(ω�, K), (19.16)

where K stands collectively for all remaining variables on which the function f

may depend. Let us promote ω� to a continuous variable ω and define the function
f(ω, K). Suppose that f(ω, K) has no singularities on the real axis. Consider the
following function of the complex variable ω,

h(ω) =
iβ

eiβω − 1
. (19.17)

It has poles located at ω = 2π
β

� with unit residue. Then we can write the sum (19.16)
as follows,

F (K) =
1

2πiβ

∫

C

dω h(ω)f(ω, K), (19.18)

where C is the contour shown in fig. (19-1).

C−

C+

Fig. 19-1 Upper and lower branches of the contour C in eq. (19.18).

In the lower half plane (19.17) decreases exponentially for large imaginary parts
of ω. In the upper half plane, on the other hand, h(ω) is finite for Im(ω) → ∞.
Since we eventually want to close the contours at infinity, we shall make use of the
following alternative form for (19.17) on the upper C+-branch of C:

h(ω) = − iβ

e−iβω − 1
− iβ.

Then (19.18) can also be written as follows:

1
β

∑
�

f(ω�, K) =
1
2π

∫ ∞

−∞
dωf(ω, K) +

1
2π

∫ +∞−i�

−∞−i�

dω
f(ω, K)
eiβω − 1

+
1
2π

∫ +∞+i�

−∞+i�

dω
f(ω, K)
e−iβω − 1

. (19.19)
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If f(ω, K) is sufficiently well behaved for |ω| → ∞, so that we can close the
integration contours in the second and third integrals in the lower and upper half
planes at infinity, and if f(ω, K) is a meromorphic function of ω, then

1
β

∑
�

f(ω�; K) =
1
2π

∫ ∞

−∞
dωf(ω, K) + i

∑
Imω̄i>0

Rf (ω̄i)
e−iβω̄i − 1

− i
∑

Imω̄i<0

Rf (ω̄i)
eiβω̄i − 1

, (19.20)

where Rf (ω̄i) are the residues of f(ω̄i, K) at the poles whose positions we have
denoted by ω̄i.

As an application of (19.19) we derive the expression for the propagator in
Minkowski space, as the analytic continuation of the euclidean propagator (19.14)
to real times. An alternative derivation, has been given by Dolan and Jackiw (1974).

Consider the finite temperature expression (19.14) for the euclidean propagator.
The function f(ω, K) is now given by exp(iωτ)/(ω2+�k2+M2). Since |τ | is restricted
to the interval [0,β], we can close the contours in the second and third integrals in
(19.19) in the lower and upper half of the complex ω-plane, respectively, and obtain

∆(β)(z) =
∫

d4k

(2π)4

eik4τ+i�k·�z

k2 + M2

(19.21a)

+
∫

d3k

(2π)3

1
E

η(E) cosh(Eτ)ei�k·�z,

where
E =

√
�k2 + M2,

and
η(E) =

1
eβE − 1

(19.21b)

is the Bose–Einstein distribution function. In (19.21a) we have set ω = k4. Note
that the first integral is just the propagator for vanishing temperature.

We next continue this expression to real time by setting τ = it. Performing the
usual Wick rotation (k4 → −ik0) in the first integral one has that∗

∆(β)(z)
∣∣∣
τ=it

= i

∫
d4k

(2π)4

e−ik·z

k2 − M2 + i�

+ 2π
∫

d4k

(2π)4

1
2E

η(E)(δ(k0 − E) + δ(k0 + E))e−ik·z,

∗ The i�-prescription is that of the T = 0 field theory.
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where z = (�z, z0), k · z = k0z0 − �k · �z. Making use of the relation

δ(k2 − M2) =
1

2E
[δ(k0 + E) + δ(k0 − E)] (19.22)

we finally arrive at the following expression for the propagator in Minkowski space,

∆(β)
(Mink)(z) =

∫
d4k

(2π)4 ∆̃(β)
(Mink)(k)e−ik·z, (19.23a)

where

∆̃(β)
(Mink)(k) =

i

k2 − M2 + i�
+

2π
eβE − 1

δ(k2 − µ2). (19.23b)

The second term can be interpreted as the contribution arising from on-mass shell
particles in the heat bath.

The reader must be warned that (19.23) is not the propagator appearing in the
Feynman rules for real-time Green functions in an interacting theory. The real-time
Feynman rules are more complicated and require a doubling of degrees of freedom.∗

Having discussed in detail the generating functional of the free theory, we now
obtain the Feynman rules for the thermal Green functions (19.1) in the standard way
from the generating functional (19.4). This generating functional differs from that
at zero temperature in that the zero temperature propagator (19.15b) is replaced by
(19.14), and that the euclidean time integration is restricted to the interval [0,β].
It is therefore evident that the T �= 0 Feynman rules in coordinate space are obtained
from those at zero temperature by merely making the replacements

∆(z) → ∆(β)(z),
∫ ∞

−∞
dτ →

∫ β

0
dτ .

The corresponding rules in frequency-momentum space can also easily be obtained
by making use of the Fourier decomposition (19.14) and of the orthogonality relation
(19.7), which is the analog of

∫ ∞
−∞ dτ exp(ip4τ) = 2πδ(p4) at zero temperature. Thus

the integration over the space-time coordinates of a vertex leads to the appearance of
a factor β and a Kronecker-δ which enforces that the sum over Matsubara frequencies
flowing into the vertex equals the sum over frequencies flowing out of the vertex.

∗ See e.g., Niemi and Semenov (1984); Landsman and Weert (1987).



February 15, 2012 9:58 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch19

450 Lattice Gauge Theories

A thermal correlation function then has the form

G(z1, z2, . . .) =
∑
�1

1
β

∫
d3k1

(2π)3

∑
�2

1
β

∫
d3k2

(2π)3 · · ·

× G̃(ω�1 ,�k1; ω�2 ,�k2; . . .)
∏

i

eiω�i
τi+i�ki·�zi , (19.24)

where zi = (�zi, τi), and where ω�i
and ki are the incoming frequencies and mo-

menta associated with the external lines of a Feynman diagram. The Kernel
G̃(ω�1 ,�k1; ω�2 ,�k2; . . .) has the following structure

G̃(ω�1 ,�k1; ω�2 ,�k2; . . .) = β(2π)3δ∑
i ω�i

,0 δ(3)

(∑
i

�ki

)

× G(ω�1 ,�k1; ω�2 ,�k2; . . .) (19.25)

and is computed with the following Feynman rules:

i) To each line of the diagram, which we label by an index i (i = 1, 2, . . .), associate
a propagator

∆̃(β)(ω�i
,�ki) =

1

ω2
�i

+ �k2
i + M2

, (19.26)

where �ki is the momentum carried by the i-th line, and ω�i
is the corresponding

discrete energy, 2π�i/β.
ii) To each vertex assign the factor

− λ

4!
(2π)3δ( �K)βδω,0 , (19.27)

where ω and �K is the sum of the Matsubara frequencies and momenta flowing
into the vertex.

iii) Sum over all discrete energies of the internal lines, and integrate over the mo-
menta carried by these lines according to

∑
�

1
β

∫
d3k

(2π)3 . (19.28)

iv) Multiply the resulting expression with the factor, resulting from the number
of distinct ways one can build the diagram from the given number n of ver-
tices, and a factor 1

n! arising from the n-th order term in the expansion of
exp(−SI).
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x z z′ y

Fig. 19-2 Two-loop contribution to the propagator.

As an example consider the second order contribution to the propagator shown
in fig. (19-2):

D(β)(x, y) =
λ2

6

∫

β

d4z

∫

β

d4z′∆(β)(x − z)
[
∆(β)(z − z′)

]3∆(β)(z′ − y). (19.29)

The factor 6 arises as follows. There are eight possibilities to identify an external
line emanating from the two φ4-vertices with the space-time coordinates x. This
leaves us with 4 possibilities for choosing y. The remaining lines can then be tied
together in 3! ways. From the expansion of exp(−S

(β)
I ) to second order we get a factor

1/2!. This leaves us with a factor (4!)2/6. Finally we must multiply the expression
with (λ/4!)2.

Applying the above Feynman rules, the corresponding momentum-space rep-
resentation of (19.29) is given by

D̃(β)(ω�1 ,�k1; ω�2 ,�k2) = β(2π)3δω�1+ω�2 ,0δ
(3)(�k1 + �k2)D̄(β)(ω�1 ,�k1) (19.30a)

where

D̄(β)(ω�,�k) =
1

ω2
�1

+ �k2
1 + M2

[Π(β)(ω�1 ,�k1)]
1

ω2
�1

+ �k2
1 + M2

, (19.30b)

and where the self energy is given by

Π(β)(ω�1 ,�k1) =
λ2

6
1
β2

∑
�′,�′′

∫
d3k′

(2π)3

d3k′′

(2π)3

1

[ω2
�′ + �k′2 + M2][ω2

�′′ + �k′′2 + M2]

× 1

[(ω� − ω�′ − ω�′′)2 + (�k − �k′ − �k′′)2 + M2]
. (19.30c)

Notice that this latter expression could have been immediately obtained from the
corresponding zero temperature expression according to the rules (19.9a). The cor-
responding expression in coordinate space is then given according to (19.24).
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19.2 Generation of a Dynamical Mass at T �= 0

Having obtained the finite temperature Feynman rules, we are now want to study
some features of the λφ4-theory which arise from the presence of the heat bath.∗ The
first phenomenon we will consider is the generation of a dynamical mass at T �= 0.
As we shall see below, a temperature-dependent mass is generated already on the one-
loop level. To this order, only mass renormalization needs to be taken into account.
The relevant euclidean action, including the mass counterterm, is therefore given by

S[φ] =
1
2

∫

β

d4x φ(x)(−�� + M2)φ(x) + λ

∫

β

d4x [φ(x)]4 +
1
2
δM2

∫

β

d4x [φ(x)]2.

(19.31)

We have not included the factor 1
4! in the interaction term, since the formulae we shall

obtain then take a simpler form. The term proportional to δM2 is the contribution of
the mass counterterm. In lowest order perturbation theory the renormalized inverse
propagator is given in momentum space by

[∆(ω�,�k)]−1 = ω2
� + �k2 + M2 + π

(1)
R (T ), (19.32)

where π
(1)
R (T ) is the renormalized self-energy in the one-loop approximation:

π
(1)
R (T ) = −12 + δM2. (19.33)

We will determine δM2 below in such a way that M is the mass of the φ field at zero
temperature. The factor 12 multiplying the one-loop contribution arises as follows:
there are 6 ways of contracting two lines emanating from a φ4-vertex to form a loop,
and 2 possibilities for connecting the remaining lines to two points x and y in a
propagator. Hence the diagram is weighted with a factor 12. With the Feynman
rules given in the previous section, we otain for (19.33)

π
(1)
R (T ) = 12λ

∑
�

1
β

∫
d3k

(2π)3

1

ω2
� + �k2 + M2

+ δM2. (19.34)

The integral is infrared (IR) finite for M �= 0, but ultraviolet (UV) diver-
gent. This divergence is entirely contained in the zero-temperature contribution.∗∗

∗ Much of our discussion in this and the following section closely parallels that of
Kapusta (1989). We have included it here, since the problems we address to are also of
relevance in QCD.

∗∗ Since the presence of the heat bath should not affect the short distance be-
haviour of the correlation functions, we expect that thermal Green functions will
be ultraviolet finite once the theory has been renormalized at zero temperature. See
Norton and Cornwall (1975); Kislinger and Morley (1976, 1979).
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Indeed, carrying out the frequency sum, making use of the summation formula
(19.20), we can write (19.34) in the form

π
(1)
R (T ) = π

(1)
U (0) + 12λ

∫
d3k

(2π)3

1
E

1
eβE − 1

+ δM2,

where

π
(1)
U (0) = 12λ

∫
d4k

(2π)4

1
k2 + M2

is the unrenormalized self energy in one-loop order for vanishing temperature,
and E =

√
�k2 + M2. The second term appearing on the rhs is UV finite be-

cause of the appearance of the Bose–Einstein distribution function, and vanishes
for β → ∞, i.e., for T = 0. We therefore see that the UV-divergence is entirely
contained in the T = 0 contribution, which is renormalized in the standard way.
We first regulate the divergent integral by introducing a momentum cutoff Λ. By
choosing

δM2 = −12λ
∫ Λ d4k

(2π)4

1
k2 + M2 , (19.35)

we eliminate the above UV-divergence, and ensure that M is the physical mass of the
φ-field in one loop order at zero temperature. With this renormalization prescription,
we are thus led to the following expression for π

(1)
R (T ):

π
(1)
R (T ) = 12λ

∫
d3k

(2π)3

1
E

1
eβE − 1

. (19.36)

In the limit M → 0, this expression reduces to

π
(1)
R (T ) = λT 2 (M = 0). (19.37)

Hence at T �= 0 a dynamical mass is generated in one loop order.

19.3 Perturbative Expansion of the Thermodynamical Potential

Using the finite temperature Feynman rules derived in section 1 we can now
calculate perturbative corrections to the thermodynamical potential

Ω = − 1
βV

ln Z (19.38)

of a free gas of neutral spinless bosons. The partition function is given by

Z = N
∫

periodic
Dφe−S0[φ]−SI [φ] (19.39)
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where S0[φ] is the finite temperature action of the free field, and SI [φ] is the
interaction term. Here we have dropped for simplicity the superscript β in the action
S(β)[φ]. The normalization factor N carries the dimension of the inverse integration
measure.

The perturbative espansion of Z is obtained by expanding the exponential
exp(−SI) in (19.39) in powers of SI .∗ One easily verifies that

Z = Z0

[
1 +

∞∑
l=1

(−1)l

l!
�(SI)l�S0

]
, (19.40a)

where

Z0 = N
∫

Dφe−S0[φ] , (19.40b)

and

�Sl
I�S0 =

∫
Dφ(SI [φ])le−S0[φ]

∫
Dφe−S0[φ]

(19.40c)

is the expectation value of Sl
I [φ] calculated with the Boltzmann distribution of the

free theory. From (19.40a) we have that ln Z is given by

ln Z = ln Z0 +
∞∑

n=1

(−1)n+1

n

[ ∞∑
l=1

(−1)l

l!
�Sl

I�S0

]n

. (19.41)

The expectation value �Sl
I�S0 , which can be computed from the free generating

functional (19.4b), receives contributions from connected and disconnected Feynman
diagrams with no external lines. But only the former ones actually contribute to the
sum. This is expected since the free energy is an extensive quantity. In fact, as we
now show, (19.41) can also be written in the form

ln Z = ln Z0 +
∞∑
l=1

(−1)l

l!
�Sl

I�c
S0

, (19.42)

where the superscript “c” stands for “connected”. The proof of (19.42) goes as
follows.

Consider the ensemble average of a power of SI , i.e., �Sl
I�S0 . It is given by

the sum over all possible pairwise contractions (i.e., propagators) of all the fields

∗ Our following presentation closely parallels that of Kapusta (1989). We never-
theless include it here for completeness sake.
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appearing in Sl
I . Hence �Sl

I� can be decomposed into a sum of products of connected
components, each of which consists of one or more vertices. The contribution of a
connected component, consisting of n vertices, we denote by �Sn

I �c
S0

. Let an be the
number of times that this connected component appears in a particular product.
Since there are a total of l vertices, the products of connected components have
the form

�SI�a1
c �S2

I �a2
c · · · �Sk

I �ak
c , (19.43a)

where

a1 + 2a2 + · · · + kak = l, (19.43b)

and where for simplicity of notation we have now written �Sn
I �c instead of �Sn

I �c
S0

.
There are however, in general, several terms appearing in the decomposition of �Sl

I�S0

yielding identical contributions (19.43a), since it does not matter which collection
of n vertices are used to make up a particular product of connected components
(19.43a). Hence �Sl

I� will be of the form

�Sl
I� =

∑
k

∑
a1,a2,...,ak

Ca1a2···ak
�SI�a1

c �S2
I �a2

c · · · �Sk
I �ak

c δa1+2a2+···+kak−l,0, (19.44)

where the δ -function ensures that we pick up the contribution of order l. We now
compute the combinatorial factor Ca1a2···ak

. To this effect we first numerate the l

vertices making up Sl
I from 1 to l. Consider a particular partition of the l vertices into

connected components. By permuting the l vertices we generate l! sets of connected
components, all of which yield the same contribution to �Sl

I�. These sets are however
not all distinct, for the l! permutations also include those which merely permute the
an connected components of the type �Sn

I �c
S0

. These must not be counted as distinct.
We therefore must divide l! by a1!a2! · · · ak!. But there is another factor which must
be divided out. Recall, that the definition, �Sn

I �c
S0

includes all possible pairwise
contractions of the fields. Hence permutations of the vertices within a connected
component of order n are already included in the definition of �Sn

I �c
S0

. We therefore
must also divide by (1!)a1(2!)a2 · · · (k!)ak . Hence we conclude that the combinatorial
factor in (19.44) is given by

Ca1···ak
=

l!∏k
n=1 an!(n!)an

.
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Inserting this expression into (19.44), and carrying out the sum over l by making
use of the δ-function, we conclude that

∞∑
l=0

(−1)l

l!
�Sl

I�S0 =
∞∏

n=1

( ∞∑
an=0

1
an!

[
(−1)n

n!
�Sn

I �c
S0

]an
)

= e
∑∞

n=1
(−1)n

n! �Sn
I �c

S0 ,

where we have now again introduced the subscript S0. Hence, according to (19.40a),
ln Z is given by (19.42), which is the result we wanted to prove. The thermodynam-
ical potential (19.38) is therefore given by

Ω = Ω0 − 1
βV

∞∑
n=1

(−1)n

n!
�Sn

I �c
S0

. (19.45)

Let us now calculate the lowest perturbative correction of O(λ) to the ideal gas
formula (18.41), i.e.,

Ω(1) =
1

βV
�SI�S0 ,

for the case of the λφ4-theory, where SI [φ] (including the mass counter term) is
given by the last two terms in (19.31). The expectation value �SI�S0 is then given
by

�SI�S0 =
∫

β

d4x

{
3λ[∆(β)(0)]2 +

1
2
δM2∆(β)(0)

}
. (19.46)

Here ∆(β)(0) is the finite temperature propagator (19.14) evaluated for vanishing
argument. The factor 3 takes into account the three distinct ways in which the four
fields emanating from the vertex can be contracted to form a double loop. Because
the integrand in (19.46) does not depend on x, �SI�S0 is proportional to βV :

�SI�S0 = βV

[
3λ(∆(β)(0))2 +

1
2
δM2∆(β)(0)

]
. (19.47)

Let us next isolate the zero-temperature contribution to ∆(β)(0). According to
(19.21),

∆(β)(0) = ∆(0) +
∫

d3k

(2π)3

1
E

1
eβE − 1

, (19.48)

where ∆(0) is given by (19.15b) with z = 0. Introducing the decomposition
(19.48) into (19.47), and recalling that we had already determined δM2 to be
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given by (19.35), one finds that, apart from an irrelevant additive constant, the
O(λ)-correction to the thermodynamical potential is given by

Ω(1) =
1

βV
�SI� = 3λ

[∫
d3k

(2π)3

1
E

1
eβE − 1

]2

−→
M→0

λ

48
T 4. (19.49)

Combining this result for M = 0 with (18.42) we are therefore left with the following
expression valid up to O(λ):

Ω(β) = −
(

π2

90
− 1

48
λ

)
T 4; (M = 0).

From ln Z = −βV Ω we can calculate the mean energy �E� and pressure according to

�E� = − ∂

∂β
ln Z,

(19.50)

p =
1
β

∂

∂V
ln Z.

One then verifies that the mean energy density and pressure are lowered in O(λ).
In higher orders of perturbation theory one is in general faced, in the zero

mass limit, with infrared divergent integrals. By a partial resummation of higher
order Feynman diagrams with self energy insertions, the propagators in a diagram
of given order are replaced by massive propagators with a temperature dependent
mass, which in lowest order is given by (19.37). This eliminates the infrared diver-
gencies, but leads to a non-analytic behaviour in the coupling constant. The reader
may consult the book by Kapusta (1989), where the self energy and thermody-
namical potential is discussed in the so called “ring”-approximation. Here we shall
illustrate the problems one encounters by considering the contribution to the ther-
modynamical potential arising from a class of Feynman graphs which are not of the
ring type.

Consider the class of diagrams shown in fig. (19-3).
Suppose the diagram has N vertices. The number of propagators is 2N . Because

of energy (frequency)-momentum conservation there are only N + 1 independent
loop-momenta, and N+1 frequency sums. In the limit M → 0 the dominant infrared
divergence arises from that term in the sum over Matsubara frequencies where all
frequencies vanish. The corresponding contribution has the form

Ω(ω=0)
N ∼ λNTN+1

∫
d3k1 · · · d3kN+1

2N∏
l=1

1
�q2
l

, (19.51)
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Fig. 19-3 Generic diagram contributing to the thermodynamical pot-

ential, which is not of the “ring” type.

where “i” labels the frequencies and 3-momenta of the internal lines, and where
the ql’s are homogeneous linear combinations of the N + 1 integration variables.
The lowest order diagram corresponds to N = 3, and, by naive power counting,
is infrared convergent for M → 0. For N > 3 we are however faced with infrared
divergent integrals. We can eliminate the IR-divergencies by summing diagrams with
the same skeleton-structure as that depicted in fig. (19-3), but with an arbitrary
number of (renormalized) self energy insertions. This amounts to replacing the bare
propagators by, i.e., by

∆(ωni
,�ki) =

1

ω2
ni

+ �k2
i + πR

,

where the self energy πR depends in general not only on the temperature, but also
on the frequency and momentum carried by the line. Inserting for πR the expression
(19.37), valid in lowest order perturbation theory, and setting ωni

= 0, one therefore
has that (19.51) is replaced by

Ω(ω=0)
N ∼ λNTN+1

∫
d3k1 · · · d3kN+1

2N∏
l=1

1
�q2
l + m2(T )

, (19.52)

where m(T ) =
√

λT . This cures the infrared divergence. By scaling the momenta
with m(T ) one is therefore led to the conclusion that Ω receives a contribution of
the form

∼ λ3T 4
(

λT

m(T )

)N−3

(N ≥ 3). (19.53)

This is an interesting result, for it tells us that for m(T ) =
√

λT , the contribu-
tion to the thermodynamical potential is non-analytic in the coupling constant for
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N − 3 �= 2k (k a positive integer), and that it is of lower order than λN . Notice
that a naive perturbative expansion of the propagators in (19.52) would lead one to
conclude that the leading order contribution is of O(λN). This conclusion is however
incorrect, since each term in the expansion is IR-divergent for N > 3, with the di-
vergence getting worse as one proceeds to higher orders. The resummation of these
divergent contributions has thus led us to the above result.

Finally we remark that if the mass generated at T �= 0 had been of O(λT )
(rather than O(

√
λT )), then we would be faced with the problem that there are

an infinite number of non-trivial diagrams which contribute in O(λ3). As has been
pointed out by Linde (1980) such a computational barrier arises in QCD, and is
known there as the “infrared problem”.

19.4 Feynman Rules for QED and QCD at Non-Vanishing
Temperature and Chemical Potential in the Continuum

In section 1 we have shown for the φ4-theory, that the transition from the T = 0
Feynman rules to the rules at finite temperature is effected in a very simple way.
A temperature was introduced by merely compactifying the euclidean time direction,
and imposing periodic boundary conditions on the fields. Hence the prescriptions
given in section 1 apply to any bosonic theory. In the case of QED or QCD, where
the gauge potentials are coupled to the fermion fields, these prescriptions must be
supplemented by corresponding ones for the fermionic degrees of freedom. The ghost
degrees of freedom are subject to the same rules as the gauge potentials, as we have
already pointed out in chapter 18.

To keep our discussion general, we will allow also for a non-vanishing chemical
potential µ coupled to the fermion charge density. The corresponding actions for
QED and QCD have the form

S = SG +
∫

β

d4xψ̄(x)[γ4(∂4 − µ) + γi∂i + m]ψ(x)

+ ie

∫

β

d4xψ̄(x)γµAµ(x)ψ(x) + SGF + Sghost, (19.54)

where SG is the action for the gauge fields,
∫

β
has been defined in (19.5d), and

SGF and Sghost are the gauge fixing term and ghost contributions arising from the
Faddeev-Popov gauge fixing procedure. For QCD ψ and ψ̄ are three-component
colour vectors, and Aµ is the matrix valued field defined in (6.10). The fields Aµ(x)
satisfy the boundary condition

Aµ(�x, β) = Aµ(�x, 0). (19.55)
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The same is true for the ghost fields. The fermion fields, on the other hand, satisfy
antiperiodic boundary conditions in euclidean time, as we had shown in chapter 18.
This leads to a discretization of the fourth component of the fermion momentum,
p4 → ω−

� = 1
β
(2�+1)π, where ω−

� are the Matsubara frequencies for fermions (18.93).
We have denoted them here with a superscript “–” in order to distinguish them from
the Matsubara frequencies (19.6b) for bosons, which will henceforth be denoted by
ω+

� . From (19.54) we see that the chemical potential only appears in the kinetic term
of the fermionic fields in the combination ∂4 −µ, which in frequency space takes the
form i(ω−

� + iµ). It is thus evident that the chemical potential will only manifest
itself in the fermion propagator.

From the above discussion it is evident that the euclidean continuum Feyn-
man rules for QED and QCD at T �= 0, µ �= 0 in frequency-momentum
space follow immediately from those at T = µ = 0 by the following simple
prescriptions:

i) Consider the euclidean expressions for the propagators and vertices at T = µ = 0
in momentum space. They are obtained by taking the naive continuum limit of
the lattice expressions given in chapter 14 and 15. In particular for QCD they
are given by∗

P

β, b α, a

Fermion propagator [
−iγµpµ + m

p2 + m2

]

αβ

δab

k

A B

νµ

Gluon propagator

1
k2

[
δµν − (1 − α0)

kµkν

k2

]
δAB

∗ In the case of QED in a linear gauge, the vertices coupling three and four gauge
potentials, as well as the vertex involving the ghost fields are absent. The remaining
expressions for the propagators and photon-fermion vertex are obtained by omitting
the colour factors. The general prescription ii)-vi) given below therefore also hold
for QED.
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k

A B

Ghost propagator

1
k2 δAB

p, β, b p′, α, a

k, µ, A

Fermion-gluon vertex

−ig(2π)4δ(4)(k + p − p′)(γµ)αβ
λA

ab

2

p, B p′, A

k, µ, C

Ghost-gluon vertex

ig(2π)4δ(4)(k + p − p′)fABC (p′)µ

Three-gluon vertex

A, Aµ B, Bµ

C, Cµ

kA

kC

kB − ig(2π)4δ(4)(kA + kB + kC)
× fABC [δµAµB

(kA − kB)µC
+ c.p.]

Four-gluon vertex

A, Aµ
B, Bµ

D, DµC, Cµ

kA kB

kC kD

− g2(2π)4δ(4)(kA + kB + kC + kD)
× [fABEfCDE(δµAµC

δµBµD
− δµAµD

δµBµC
)

+ fACEfBDE(δµAµB
δµCµD

− δµAµD
δµBµC

)
+ fADEfCBE(δµAµC

δµBµD
− δµAµB

δµDµC
)]

ii) Replace the fourth component of the momentum associated with a photon or
ghost line as follows

k4 → ω+
� ; ω+

� =
2π�

β
, (19.56)

where � is an integer.
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iii) Replace the fourth component of the momentum associated with a fermion line
as follows

p4 → ω−
� + iµ; ω−

� =
(2� + 1)π

β
. (19.57)

iv) Integrations over the fourth component of momenta become infinite sums over
Matsubara frequencies

∫
dk4

2π
f(k4; · · · ) → 1

β

∑

ω+
�

f(ω+
� ; · · · ) (bosons),

(19.58)∫
dp4

2π
f(p4; · · · ) → 1

β

∑

ω−
�

f(ω−
� + iµ; · · · ) (fermions).

v) At each vertex implement energy momentum conservation by∗

β(2π)3δ

(∑
i

ω−
�i

+
∑

j

ω+
�j

)
δ(3)

(∑
i

�p(i) +
∑

j

�k(j)

)
, (19.59)

where i and j label the different three-momenta and Matsubara frequencies
flowing into the vertex.

vi) For every fermion or ghost loop include a minus sign.

The euclidean correlation functions are then given by

�ψα1(x1) · · ·ψαn(xn)ψ̄β1(y1) · · · ψ̄βn(yn)Aµ1(z1) · · ·Aµm(zm)�β,µ

=
∫

(−)

n∏
i=1

d4pi ·
∫

(−)

n∏
i=1

d4p�
i

∫

(+)

m∏
i=1

d4kiGα1···β1···µ1···({pj}, {p�
j}, {kj})

× ei
∑

i pi·xi+i
∑

i p�
i·yi+

∑
i iki·zi (19.60)

∗ To emphasize the analogy with the T = 0 formulation, we have also written
δ
(∑

i ω
−
�i

+
∑

j ω+
�j

)
instead of δ(∑

i ω−
�i

+
∑

j ω+
�j

)
,0
. Notice that since at each vertex two

fermion lines are coupled to the gauge potential, the sum over fermionic Matsubara
frequencies will add to a Matsubara frequency of the bosonic type.
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where we have suppressed the colour indices on the fields and the momentum-space
Green function (so that the expression also holds for QED), and have introduced
the compact notations

pi = (�pi, ω−
�i
); ki = (�ki, ω+

�i
), (19.61a)

∫

(±)
d4q =

1
β

∑

ω±
�

∫
d3q

(2π)3 . (19.61b)

Gα1···β1···µ1···({pj}, {p�
j}, {kj}) is the correlation function in frequency-momentum

space calculated with the above Feynman rules.
The Feynman integrals in QED or QCD at finite temperature will involve in

general sums over bosonic as well as fermionic Matsubara frequencies. The evaluation
of such sums for bosons has been discussed in section 1. We now derive the analog
of (19.19) and (19.20) for the case of fermions.

Consider the function

h(ω) = − iβ

eiβω + 1
.

This function possesses simple poles with unit residue located at ω = ω−
� . Assuming

that f(ω) has no singularities on the real axis one finds, proceeding in an analogous
way as in the bosonic case, that

1
β

∑
�

f(ω−
� ) =

∫ ∞

−∞

dω

2π
f(ω) − 1

2π

∫ ∞−i�

−∞−i�

dω
f(ω)

eiβω + 1

− 1
2π

∫ ∞+i�

−∞+i�

dω
f(ω)

e−iβω + 1
. (19.62)

The first integral is just the zero temperature (β → ∞) limit of the lhs. If f(ω) is
also a meromorphic function, and is sufficiently well behaved for |ω| → ∞, so that
we can close the integration contours in the last two integrals in the lower and upper
complex ω-planes, then (19.62) reduces to

1
β

∑
�

f(ω−
� ) =

∫ ∞

−∞

dω

2π
f(ω) + i

∑
Imω̄i<0

Rf (ω̄i)
eiβω̄i + 1

− i
∑

Imω̄i>0

Rf (ω̄i)
e−iβω̄i + 1

, (19.63)

where Rf (ω̄i) are the residues of f(ω) at the poles, whose location we have denoted
by ω̄i. This expression allows us, for example, to decompose one-loop Feynman
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integrals into a zero-temperature contribution and a contribution arising from the
presence of the heat bath.

19.5 Temporal Structure of the Fermion Propagator at T �= 0
and µ �= 0 in the Continuum

Consider the fermion Feynman propagator for QED in Minkowski space at
vanishing temperature and chemical potential,

S
(Mink)
F (z) =

∫
d4p

(2π)4

γµpµ + m

p2 − m2 + i�
e−ip·z, (19.64)

where γµ are the usual Dirac gamma-matrices satisfying the anticommutation rela-
tions {γµ, γν} = 2gµν , and p · z = p0z0 − �p · �z. SF (z) propagates positive (negative)
energy states in the forward (backward) direction in time. In the Dirac hole theory
the absence of a negative energy state is interpreted as an antiparticle with positive
energy. The correspondence between positive (negative) energy states and forward
(backward) propagation in time follows immediately from (19.64) by integrating
this expression over p0. The integrand possesses poles located at p0 = ±E where
E =

√
�p2 + m2. Depending on the sign of t ≡ z0, we can close the integration con-

tour at infinity in the upper or lower half of the complex p0-plane. One then finds
that

S
(Mink)
F (�z, t) =

∫
d3p

(2π)3 S̃
(Mink)
F (�p, t)ei�p·�z, (19.65a)

where

S̃
(Mink)
F (�p, t) = Λ+(�p)∆(+)(�p, t) + Λ−(�p)∆(−)(�p, t), (19.65b)

and

Λ±(�p) =
1

2iE
[±γ0E + γjpj + m], (19.65c)

∆(±)(�p, t) = θ(±t)e∓iEt, (19.65d)

E =
√

�p2 + M2.

The (±) superscripts denote the positive and negative energy contributions arising
from the poles at p0 = ±E. A similar decomposition holds for the euclidean fermion
propagator.∗ The purpose of this section is to study how the temporal structure of
this propagator is modified at finite temperature and chemical potential. Since the

∗ Although this correlation function no longer describes propagation, we never-
theless shall refer to it as a propagator.
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chemical potential controls the particle–antiparticle content, its effect on the tem-
poral structure will be different for the positive and negative energy contributions.
In section 9 we will repeat this exercise within the framework of the lattice regular-
ization for naive as well as Wilson fermions. Comparison with the continuum results
obtained below will shed further light on the nature of the “doubler” contributions
which we discussed in chapter 4.

The euclidean fermion propagator at finite temperature and chemical poten-
tial can be immediately written down using the prescriptions given in the previous
section:

S
(β,µ)
F (�z, τ) =

∫
d3p

(2π)3 S̃
(β,µ)
F (�p, τ)ei�p·�z, (19.66a)

where

S̃
(β,µ)
F (�p, τ) =

1
β

∑
�

Ŝ
(β,µ)
F (�p, ω−

� )eiω−
� τ , (19.66b)

and

Ŝ
(β,µ)
F (�p, ω−

� ) =
−iγE

4 (ω−
� + iµ) − iγE

i pi + m

(ω−
� + iµ)2 + E2(�p)

. (19.66c)

The γ-matrices have been denoted here with a superscript “E” (→ euclidean) in
order to distinguish them from the γ matrices appearing in (19.64). They are the γ

matrices which we have been working with in the euclidean formulation.
The frequency sum (19.66b) can be carried out by making use of the summation

formula (19.62). An even more convenient summation formula is given by (E.4)
in appendix E, where the first term on the rhs corresponds to the T = µ = 0
contribution.∗ One then finds that

S̃
(β,µ)
F (�p, τ) = Γ+(�p)∆(+)

(β,µ)(�p, τ) + Γ−(�p)∆(−)
(β,µ)(�p, τ), (19.67a)

where

Γ±(�p) =
1

2E
[
± γE

4 E − iγE
j pj + m

]
, (19.67b)

is the euclidean analog of Λ± in (19.65c), and where ∆(±)
(β,µ)(�p, τ) is given by

∆(+)
(β,µ)(�p, τ) = [θ(τ) − ηFD(E, µ)]e−(E−µ)τ ,

(19.67c)

∆(−)
(β,µ)(�p, τ) = [θ(−τ) − η̄FD(E, µ)]e(E+µ)τ .

∗ The reader can easily convince himself that this formula can also be applied to
the sum (19.66b) for |τ | ∈ [0, β].
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Here

ηFD(E, µ) =
1

eβ(E−µ) + 1
, η̄FD(E, µ) =

1
eβ(E+µ) + 1

(19.67d)

are the Fermi–Dirac distribution functions for particles and antiparticles. For µ = 0
and β → ∞ the expressions (19.67) reduce to the euclidean analog of (19.65).

Consider the particular case µ = 0, where particles and antiparticles contribute
with the same weight to the propagator. Then (19.66a) can be written in the form

S
(β,0)
F (�z, τ) =

∫
d4p

(2π)4

(−ipµγ
E
µ + m)

p2 + m2 eip4τ+i�p·�z

+
∫

d3p

(2π)3ηFD(E)
1
E

{
γE

4 E sinh(Eτ) + (iγE
j pj − m) cosh(Eτ)

}
,

(19.68a)

where

ηFD(E) =
1

eβE + 1
. (19.68b)

The first integral is just the T = 0 contribution, and is the euclidean version of
(19.64). Expression (19.68a) is the analog of (19.21a). Consider its analytic contin-
uation to real times, τ → it. Performing a Wick rotation, p4 → −ip0, one finds
that∗

S
(β,0)
F (z) → i

∫
d4p

(2π)4

(−γµpµ + m)
p2 − m2 + i�

eip·z

+
∫

d3p

(2π)3ηFD(E)
1
E

{
iγ0E sin(Et) + (γipi − m) cos(Et)

}
,

where we have now introduced the γ-matrices in Minkowski space, γ0 = γ4; γi =
iγi, satisfying {γµ, γν} = 2gµν . Expressing the trigonometric functions in terms of
exponentials, and making use of (19.22) and of the relation

δ(p0 − E) − δ(p0 + E) = 2E(�p)�(p0)δ(p2 − m2),

where �(p0) = θ(p0) − θ(−p0), and p2 = pµpµ, one finds, after making the change of
variable pµ → −pµ (in order to conform to usual conventions), that

S
(β,Mink)
F (z) =

∫
d4p

(2π)4 S̃
(β,Mink)
F (p)e−ip·z, (19.69a)

∗ Note that, after making the change of variables pµ → −pµ, the continuation to
real times of the T = µ = 0 contribution to the correlation function differs from
(19.64) by a factor “i”.
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where

S̃
(β,Mink)
F (p) =

i

p/ − m + i�
− 2π

eβE + 1
(p/ + m)δ(p2 − m2) (19.69b)

and p/ =
∑

µ γµpµ. This is however not the propagator which appears in the real-
time Feynman rules in an interacting theory. As in the bosonic case, the Feynman
rules for computing finite temperature real-time correlation functions are far more
complicated in the presence of interactions, and requires a doubling of degrees of
freedom [Landsman and Weert (1987), Niemi and Semenoff (1984)]. The Dirac prop-
agator in momentum space becomes a 2 × 2 matrix in the extended space, of which
the first diagonal component is given by (19.69b).

19.6 The Electric Screening Mass in Continuum QED
in One-Loop Order

As a less trivial application of the finite temperature, finite chemical potential
formalism, we derive an expression for the electric screening mass to one-loop order in
QED. The result will be compared in section 10 with the screening mass computed in
lattice perturbation theory. Let us first state what is meant by the electric screening
mass.

When an external static charge Q is introduced into an electrically neutral QED
plasma in thermal equillibrium, polarization of the medium will screen the Coulomb
potential of the charge, leading to a short range potential with a Debye screening
length given by the inverse screening mass. If the introduction of the external charge
can be treated as a small perturbation, then one can use the theory of linear response
(see e.g., Kapusta (1989)), to show that the screened Coulomb potential is given by

Φ(�r) = Q

∫
d3k

(2π)3

ei�k·�r

�k2 + Π(β,µ)
44 (0,�k)

, (19.70)

where Π(β,µ)
44 (0,�k) = Π(β,µ)

44 (ω = 0,�k) is the 44-component of the vacuum polariza-
tion tensor at finite temperature and chemical potential, evaluated for vanishing
Matsubara frequency. It is defined here as the negative of the one particle irre-
ducible diagrams with two external photon lines. At large distances the behaviour
of the integral is determined by contributions of momenta |�k| of O(1/r). Defining
the electric screening mass as the static infrared limit of Π(β,µ)

44 (0,�k),

m2
el = lim

�k→0
Π44(0,�k), (19.71)
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we have that

Φ(�r) −→
r→∞

Q

∫
d3k

(2π)3

ei�k·�r

�k2 + m2
el

=
Q

4π
e−melr

r
. (19.72)

Hence the static Coulomb potential of an external charge is screened exponentially
in the presence of a plasma.

We only mention here that the electric screening mass can also be computed in
a different way. As has been shown by Fradkin (1965) it can be related to the second
derivative of the pressure with respect to the electric charge chemical potential:

m2
el = e2 ∂2p

∂µ2 .

This is an interesting relation, since it allows one to compute m2
el for a neutral QED

plasma up to order e5, since the pressure is known to O(e3). For computations of
the electric screening mass using this relation, see Kapusta (1992).

In the following we compute the electric screening mass according to (19.71) in
one-loop order. Our presentation is adapted to be easily compared with the lattice
calculation given in section 10.

In the euclidean continuum formulation of QED, the vacuum polarization ten-
sor Πµν at finite temperature and chemical potential is given, using the rules dis-
cussed in section 4, in one-loop order by (see fig. (19-4))

Π(β,µ)
µν (ω+

�k
,�k) = (−ie)2 1

β

∑

ω−
�

∫
d3p

(2π)3 Tr
{

(−iγρ(p + k)ρ + m)γµ(−iγτpτ + m)γν

(p2 + m2)[(p + k)2 + m2]

}
,

(19.73a)

where

k4 = ω+
�k

; p4 = ω−
� + iµ . (19.73b)

p + k

p 

k, µ k, ν

Fig. 19-4 Diagram contributing to the vacuum polarization tensor in

O(g2).
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Performing the trace by making use of the relations

Tr(γµγν) = 4δµν (19.74)

Tr(γµγνγργλ) = 4(δµνδρλ − δµρδνλ + δµλδνρ),

expression (19.73a) takes the form

Π(β,µ)
µν (�k, ω+

�k
) = e2 1

β

∑

ω−
�

∫
d3p

(2π)3

Vµν(k, p)
(p2 + m2)[(p + k)2 + m2]

}
, (19.75a)

where
Vµν(k, p) = 8pµpν + 4(pµkν + kµpν) − 4(m2 + p2 + p · k)δµν . (19.75b)

For vanishing photon frequency this expression reduces to

Π(β,µ)
44 (0,�k) = −4e2 1

β

∞∑
�=−∞

∫
d3p

(2π)3

G2 − (ω−
� + iµ)2

[(ω−
� + iµ)2 + E2][(ω−

� + iµ)2 + F 2]
,

(19.76a)

where

E2 = �p2 + m2, F 2 = (�p + �k)2 + m2, G2 = �p · (�p + �k) + m2. (19.76b)

To perform the frequency sum we can in principle make use of the summation
formula (19.63), where the integral appearing on the rhs would however yield the
contribution at finite chemical potential and vanishing temperature. It is therefore
more convenient to use an alternative formula in which the T = µ = 0 (vacuum)
contribution is separated from the temperature and chemical potential dependent
part. Only the T = µ = 0 contribution will then need to be renormalized in the
standard way. The relevant summation formula is given by (E.4) in appendix E. The
function f(ω) in (E.1) has the following form in the present case (we only exhibit
the dependence on ω):

f(ω) =
G2 − ω2

(ω2 + E2)(ω2 + F 2)
.

A straightforward calculation yields

1
β

∞∑
�=−∞

f(ω−
� + iµ) =

∫ ∞

−∞

dω

2π
f(ω)

− G2 + E2

2E(F 2 − E2)

[
1

eβ(E+µ) + 1
+

1
eβ(E−µ) + 1

]
(19.77)

+
G2 + F 2

2F (F 2 − E2)

[
1

eβ(F+µ) + 1
+

1
eβ(F−µ) + 1

]
.



February 15, 2012 9:58 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch19

470 Lattice Gauge Theories

The first term on the rhs is the T = µ = 0 (vacuum) contribution to Π44(0,�k). It is ul-
traviolet divergent and is renormalized in the standard way, yielding no contribution
to the screening mass, as follows from Lorentz and gauge invariance. Hence we shall
concentrate on the matter part, given by the last two terms. The dependence on the
photon momentum �k is contained in the functions G and F . To compute the screen-
ing mass we must take the limit �k → 0. In this limit F → E, so that the denomina-
tors in (19.77) vanish. Setting F = E + �, and taking the limit � → 0, one finds that

m2
el = 2e2β

∫
d3p

(2π)3

{
eβ(E−µ)

[eβ(E−µ) + 1]2
+

eβ(E+µ)

[eβ(E+µ) + 1]2

}
. (19.78)

After carrying out the angular integration, this expression can be written in the
form

m2
el = − e2

π2

∫ ∞

0
dp p

√
p2 + m2 ∂

∂p
[ηFD(E, µ) + η̄FD(E, µ)].

where ηFD(E, µ) and η̄FD(E, µ) are the Fermi–Dirac distribution functions (19.67d).
After a partial integration we finally arrive at

m2
el =

e2

π2

∫ ∞

0

2p2 + m2
√

p2 + m2
[ηFD(E, µ) + η̄FD(E, µ)]. (19.79)

For vanishing temperature and finite chemical potential this expression reduces to

m2
el −→

T→0

e2

π2

∫ ∞

0
dp

2p2 + m2
√

p2 + m2
θ(|µ| −

√
p2 + m2).

Carrying out the integral one obtains

m2
el(T = 0) =

e2

π2µ
√

µ2 − m2 for |µ| > m

= 0 for |µ| < m.

Hence for |µ| > m there is also an electric screening mass generated at zero temper-
ature.

We close this section with a remark. In order to parallel the lattice calculation in
section 10, we have taken the limit �k → 0 before performing the angular integration.
This yields the form (19.78) for the screening mass, which has a direct analog on
the lattice. By performing first the angular integration (which cannot be carried out
analytically on the lattice) one finds that

Π(β,µ)
44 (0,�k) =

e2

π2

∫ ∞

−0
dp

p2
√

p2 + m2
[ηFD(E, µ) + η̄FD(E, µ)]

×
[
1 +

4(p2 + m2) − �k2

4p|�k|
ln

(
2p + |�k|
2p − |�k|

)]
,
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where p = |�p|. For |�k| → 0, the logarithm behaves like |�k|/p. Hence one is led to
(19.79).

19.7 The Electric Screening Mass in Continuum QCD
in One-Loop Order

The computation of the electric screening mass in QCD is more involved than
in QED. In one-loop order the vacuum polarization tensor receives contributions
from the four diagrams shown in fig. (19-5). The quark loop contribution has the
same form as in QED exept that there is an additional colour factor Tr(λA

2
λB

2 ) =
1
2δAB, arising from the gluon-quark vertices. Hence we immediately conclude that
the contribution of diagram (a) is related to that in QED (cf. eq. (19.75)) by

ΠAB
µν (ω+

n ,�k)(a) =
1
2
δAB[Πµν(ω+

n ,�k)]QED. (19.80)

where we have dropped the superscript (β, µ) for notational reasons. The remaining
diagrams (b,c,d) involve summations over bosonic Matsubara frequencies and hence
are expected to involve the Bose–Einstein distribution function. They do not depend
on the chemical potential. Hence by dimensional arguments their contribution to the
screening mass will be proportional to gT . Our objective is to compute the constant
multiplying gT . In the following we discuss in turn the contributions of diagrams b,
c, and d (Kaste, 1997).

(a) (b) (c) (d)

+ + +

p+k

p

kk
q+k

q

kk

q

q

k k

q+k

Fig. 19-5 Diagrams contributing to the vacuum polarization tensor.

Consider the diagram (b). The combinatorial factor which multiplies the finite
temperature Feynman integral, obtained with the prescriptions stated in section 4,
is calculated as follows: Consider the six lines emanating from the two vertices before
they are contracted to form the loop. Label the lines from 1 to 6. Then there are 6 ·3
possibilites to label the external lines of the diagram, and 2 possibilites to contract
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the remaining lines to form the loop. Thies yields a factor (3!)2. Each vertex receives
a factor 1

3! arising from the symmetrization of the 3-gluon interaction. Finally there is
a factor 1

2! associated with the second order contribution, arising from the expansion
of the exponential of the action. After some algebra one finds that in the Feynman
gauge

ΠAB
µν (ω+

n ,�k)(b) =
g2

2!
fACDfBCD

1
β

∑

ω+
�

∫
d3q

(2π)3

T
(b)
µν (q, k)

q2(q + k)2 , (19.81a)

where

T (b)
µν (q, k) = 2kµkν − 5(qµkν + kµqν) − 10qµqν

− δµν(2q2 + 2q · k + 5k2), (19.81b)

and a summation over repeated indices is understood. Here q2, k2 and q · k denote
the four dimensional euclidean scalar products, and it is always understood from
now on that

k4 = ω+
n ; q4 = ω+

� . (19.82)

Next consider the contribution of the diagram (c). The factor multiplying the
Feynman integral is given as follows: Take the 4 lines emanating from the vertex and
label them from 1 to 4. Then there are 4 · 3 possibilities to label the external lines
of the diagram. The remaining lines are then contracted to form the loop. Finally
there is a factor 1

4! arising from the symmetrization of the four-gluon contribution
to the action. One then readily verifies that in the Feynman gauge

ΠAB
µν (ω+

n ,�k)(c) = 3g2δµνfACDfBCD
1
β

∑

ω+
�

∫
d3q

(2π)3

1
q2 . (19.83)

Finally consider the contribution of the diagram (d). Since the ghost fields
are Grassmann valued, there is a minus sign associated with the loop. There is
only one possible way to contract the ghost-lines emanating from two vertices to
form the loop. Hence the combinatorial factor multiplying the Feynman integral
is determined by the two possibilities to label the external lines, and a factor 1

2!

associated with the second order diagram. Application of the Feynman rules then
yields

ΠAB
µν (ω+

n ,�k)(d) = g2fACDfBCD
1
β

∑

ω+
�

∫
d3q

(2π)3

(q + k)µqν

q2(q + k)2 .
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This expression can be cast into a symmetric form in µ and ν by noting that a
change of variables q → −q − k interchanges µ and ν. Hence

ΠAB
µν (ω+

n ,�k)(d) =
1
2
g2fACDfBCD

1
β

∑

ω+
�

∫
d3q

(2π)3

(q + k)µqν + (q + k)νqµ

q2(q + k)2 .

(19.84)

Combining the contributions (19.81), (19.83) and (19.84), and making use of the
relation

∑
C,D

fACDfBCD = 3δAB

one finds that

ΠAB
µν (ω+

n ,�k)(b+c+d) = δABΠµν(ω+
n ,�k)(b+c+d), (19.85a)

where

Πµν(ω+
n ,�k)(b+c+d) =

3
2
g2 1

β

∑

ω+
�

∫
d3q

(2π)3

Wµν(q, k)
q2(q + k)2 , (19.85b)

and∗

Wµν(q, k) = 2kµkν − 4(qµkν + qνkµ) − 8qµqν + δµν(4q2 + k2 + 10q · k) (19.85c)

As always, q4 and k4 are understood to be given by (19.82).
In the following we now restrict ourselves to the computation of the electric

screening mass,

m2
el = lim

�k→0
Π44(0,�k),

where Π44(ω+
n ,�k) is defined in (19.85a). For µ = ν = 4 and vanishing gluon-

frequency, (19.85b) takes the form

Π44(0,�k)(b+c+d) =
3
2
g2 1

β

∑

ω+
�

∫
d3q

(2π)3

4�q2 + �k2 + 10�q · �k − 4ω+
�

2

[ω+
�

2 + �q2][ω+
�

2 + (�q + �k)2]
.

The frequency sum can be calculated with the bosonic summation formula (19.20).
For the same reason as discussed in the previous section, we only need to consider
the contribution arising from the presence of the heat bath, i.e. the last two terms

∗ The expression for Wµν differs from that obtained by Gross et al. [Gross (1981)]
by a term which can be shown not to contribute to the integral (19.85b).
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in (19.20). The T = 0 (vacuum) integral does not contribute to the screening mass.
Performing the frequency sum in the above expression one then finds, after carrying
out the angular integration, that this contribution, which we denote by Π(β)

44 , is
given by

Π(β)
44 (0,�k)(b+c+d) = 3

g2

2π2

� ∞

0
dq q ηBE(q)



2 +

2q2 − �k2

2q|�k|
ln

�
2q + |�k|
2q − |�k|

�2


 ,

(19.86a)

where q = |�q|, and where

ηBE(q) =
1

eβ|�q| − 1
(19.86b)

is the Bose–Einstein distribution function. The corresponding contribution to the
electric screening mass is obtained by taking the limit �k → 0:

(m2
el)(b+c+d) =

6g2

π2

� ∞

0
dq q ηBE(q) = g2T 2. (19.87)

Combining this result with the contribution to the electric screening mass arising
from the diagram (a) in fig. (19-4), which, according to (19.80), is given by one half
of the screening mass (19.79) in QED, we conclude that

(m2
el)

QCD = g2T 2 +
g2

2π2

� ∞

0
dp

2p2 + m2
�

p2 + m2
[ηFD(E, µ) + η̄FD(E, µ)], (19.88)

where ηFD(E, µ) and η̄FD(E, µ) are the Fermi–Dirac distribution functions (19.67d).
We therefore see that an electric screening mass is also generated in the pure gluonic
sector, i.e. in the absence of quarks. For SU(N),

�
C,D fACDfBCD = NδAB, so that

the contribution of the pure gauge part to the screening mass is given by

(m2
el)gauge =

1
3
Ng2T 2 SU(N)

This concludes our discussion of QED and QCD at finite temperature and
chemical potential in the continuum formulation. In the remaining sections of this
chapter we now consider these theories within the framework of lattice regularized
perturbation theory.

19.8 Lattice Feynman Rules for QED and QCD at T �= 0
and µ �= 0

As we have seen, there is a simple prescription for making the transition from
the continuum Feynman rules at vanishing temperature and chemical potential, to
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the T �= 0, µ �= 0 rules. We now show that the finite temperature, finite chemical
potential lattice Feynman rules can be obtained from those given in chapters 14
and 15 by the same prescription, except that momentum integrations and sums
over Matsubara frequencies are restricted to the first Brillouin zone. This is not
completely obvious. In fact the simplicity of the prescription relies heavily on the
way the chemical potential is introduced in the lattice action. As will become clear
from the following arguments, it suffices to consider QED. The same prescriptions
then apply to QCD.

At zero temperature and chemical potential the lattice U(1) action for Wilson
fermions has the form (5.22), where the sum over plaquettes and lattice sites extend
over a lattice of infinite extent. At finite temperature the lattice is compactified in the
euclidean time direction, with the link variables satisfying the boundary condition

Uµ(�n, β̂) = Uµ(�n, 0), (19.89)

where β̂ is the inverse temperature measured in lattice units. The fermion fields
satisfy antiperiodic boundary conditions. Introducing the chemical potential into
the fermionic contribution to the action according to the Hasenfratz–Karsch–Kogut
prescription (18.100), the U(1) action, written in dimensionless variables, takes the
form∗

S
(β,µ)
QED =

1
e2

∑
P

[1 − 1
2
(UP + U †

P )] + (m̂ + 4r)
β̂∑

n4=1

∑
�n

¯̂
ψ(n)ψ̂(n)

− 1
2

β̂∑
n4=1

∑
�n

[ ¯̂ψ(n)(r − γ4)e−µ̂U4(n)ψ̂(n + ê4)

+ ¯̂
ψ(n + ê4)(r + γ4)eµ̂U †

4(n)ψ̂(n)]

− 1
2

β̂∑
n4=1

∑
�n,i

[ ¯̂ψ(n)(r − γi)Ui(n)ψ̂(n + êi)

+ ¯̂
ψ(n + êi)(r + γi)U

†
i (n)ψ̂(n)]. (19.90)

By introducing dimensioned parameters and fields according to µ̂ = µa, m̂ = ma,
β̂ = β/a, ψ̂ = a3/2ψ, ¯̂

ψ = a3/2ψ̄, Âµ = aAµ, and taking the naive continuum limit,
one recovers the continuum action, where the dependence on the chemical potential
only appears in the kinetic term of the fermionic action in the form given in (19.54).

∗ Recall that this prescription was suggested by our analysis in section 8 of chap-
ter 18.
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In weak coupling perturbation theory Uµ(n) is expanded as follows

Uµ(n) = 1 + ieÂµ(n) − 1
2!

e2Â2
µ(n) + · · · , (19.91)

where Âµ is the gauge potential in lattice units, i.e., Âµ = aAµ. From the struc-
ture of the lattice action (19.90) it is evident that the vertices generated by this
expansion will depend, for finite lattice spacing, on the chemical potential. Our ob-
jective is to find out just how the chemical potential enters in the momentum-space
Feynman rules. Although the answer is almost obvious, the following discussion will
nevertheless be helpful.

To derive the Feynman rules in momentum space, the fermion fields are Fourier de-
composed according to (18.102), while the Fourier expansion of the gauge potentials,
replacing (14.22), now reads

Âµ(n) =
1

β̂

β̂
2 −1∑

�=−β̂

∫ π

−π

d3k̂

(2π)3 Ãµ(k̂)eik̂·(n+êµ/2), (19.92a)

where

k̂4 := ω̂+
� =

2�π

β̂
(19.92b)

are the Matsubara frequencies (19.56) measured in units of the lattice spacing. For
reasons which we discussed in chapter 14, the gauge potentials have been defined
at the midpoints of the links connecting the lattice sites n and n + êµ. Since the
chemical potential only appears in the fermionic contribution to the action, we only
need to consider the last three terms in (19.90).

Consider first the contribution of O(e0). Making use of the completeness rela-
tion (18.104), it can be written as follows in frequency-momentum space,

[S(β,µ)
ferm ]O(e0) =

1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3
¯̃ψ(�̂p, ω̂−

� )K(β,µ)(�̂p, ω̂−
� )ψ̃(�̂p, ω̂−

� ), (19.93a)

where ω̂−
� are the Matsubara frequencies for fermions (18.69) with N = β̂, i.e.,

ω̂−
� =

(2� + 1)π

β̂
, (19.93b)
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here denoted with the superscript “–”, and where

K(β,µ)(�̂p, ω̂−
� ) = iγ4 sin(ω̂−

� + iµ̂) + iγj sin p̂j + M̂(�̂p, ω̂−
� + iµ̂), (19.93c)

M̂(�̂p, ω̂−
� + iµ̂) = M̂(�̂p) + 2r sin2

(
ω̂−

� + iµ̂

2

)
, (19.93d)

M̂(�̂p) = m̂ + 2r
∑

j

sin2 p̂j

2
. (19.93e)

A summation over repeated indices is always understood. The fermion propagator
in frequency-momentum space is given by the inverse of the matrix K(β,µ)(�̂p, ω̂−

� ),
i.e.,

S̃
(β,µ)
F (�̂p, ω̂−

� ) =
−iγ4 sin(ω̂−

� + iµ̂) − iγj sin p̂j + M̂(�̂p, ω̂−
� + iµ̂)

sin2(ω̂−
� + iµ̂) +

∑
j sin2 p̂j + M̂2(�̂p, ω̂−

� + iµ̂)
. (19.94)

From here we see that a finite temperature and chemical potential is introduced into
the T = µ̂ = 0 propagator, discussed in chapter 4, according to the substitution rule
p4 → ω̂−

� + iµ̂.
Consider next the contribution of O(eN). It involves N gauge potentials coupled

to the fermion fields. By Fourier expanding the fields as before, one readily verifies
that the contribution involving the fourth component of the gauge potential is given
by∗

[S(β,µ)
ferm ]A4

O(eN ) =
(ie)N

N !

β̂∑
n4=1

∑
�n

∫

(−)
d4p̂�

∫

(−)
d4p̂

∫

(+)

N∏
i=1

d4k̂i Λ(β,µ)
αβ (p̂�

4, p̂4, K̂4)

× ¯̃ψα(p̂�)ψ̃β(p̂)Ã4(k̂1) · · · Ã4(k̂N)ei(p̂−p̂′+K̂)·n, (19.95a)

where

Λ(β,µ)
αβ (p̂�

4, p̂4, K̂4) =
1
2

[
ei(p̂4+ K̂4

2 +iµ̂) − (−1)Ne−i(p̂′
4− K̂4

2 +iµ̂)
]
(γ4)αβ

− r

2

[
ei(p̂4+ K̂4

2 +iµ̂) + (−1)Ne−i(p̂′
4− K̂4

2 +iµ̂)
]
δαβ, (19.95b)

and where we have used the compact notation

∫

(±)
d4q̂f(�q, q4; · · · ) =

β̂
2 −1∑

�q= β̂
2

1

β̂

∫ π

−π

d3q̂

(2π)3f(�̂q, ω̂(±)
�q

; · · · ).), (19.95c)

∗ Vertices involving the spatial components of the gauge potentials are clearly not
affected by the chemical potential.



February 15, 2012 9:58 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch19

478 Lattice Gauge Theories

which is the lattice analog of (19.61b). The spatial and temporal components of
the four-component vector K̂ are given by the sum of the N photon momenta, and
Matsubara frequencies, respectively. Carrying out the summation over the lattice
sites, by making use of (18.104), we can write (19.95) as follows

[S(β,µ)
ferm ]A4

O(eN ) =
1

N !

∫

(−)
d4p̂�

∫

(−)
d4p̂

∫

(+)

N∏
i=1

d4k̂i Γ(β,µ)
αβ (p̂�, p̂, K̂)

× ¯̃ψα(p̂�)ψ̃β(p̂)Ã4(k̂1) · · · Ã4(k̂N),

where

Γ(β,µ)
αβ (p̂�, p̂, K̂) ≡ (ie)N β̂(2π)3δ(�̂p − �̂

p� + �̂
K)δω̂−

�p� −ω̂−
�p

−ω̂+
�K

,0V
(β,µ)
αβ

(
ω̂−

�p� + ω̂−
�p

2
+ iµ̂

)

and

V
(β,µ)
αβ (q) = (γ4)αβ[(ξ̄N cos q + iξN sin q) − rδαβ(ξN cos q + iξ̄N sin q)],

ξN =
1
2
[1 + (−1)N ]; ξ̄N =

1
2
[1 − (−1)N ].

We therefore see that for finite lattice spacing the vertices are µ-dependent, and
furthermore, that the chemical potential always appears in the combination ω̂−

�p
+iµ̂,

and ω̂−
�p� + iµ̂, as was the case in the continuum formulation. We emphasize that the

simplicity of this result is a consequence of the fact that the chemical potential
was introduced in the form e±µ̂ into those terms of the fermionic action at µ = 0,
coupling neighbouring lattice sites along the time direction.

In our discussion we have chosen to work with a manifestly dimensionless ac-
tion, where the lattice spacing does not appear, since this is the form of the ac-
tion used in Monte Carlo simulations. The Feynman rules given in chapters 14
and 15 involve explicitely the lattice spacing. From the above analysis it is evident
that the corresponding Feynman rules at finite temperature and chemical poten-
tial are obtained by the same prescriptions given in section 4, except that integrals
over three-momenta, and sums of Matsubara frequencies are restricted to the first
Brillouin zone. Since this result is a direct consequence of the periodic boundary
conditions satisfied by the link variables and fermion fields, and the fact that the
chemical potential was introduced in exponential form, it also applies to lattice
QCD.
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19.9 Particle–Antiparticle Spectrum of the Fermion
Propagator at T �= 0 and µ �= 0. Naive vs. Wilson
Fermions

In section 5 we have studied in detail the fermion two-point correlation function
at finite temperature and chemical potential in the continuum. We now carry out
a similar analysis on the lattice for naive as well as Wilson fermions. In the case
of Wilson fermions we of course expect to recover the results of section 5 in the
limit of vanishing lattice spacing. For naive fermions, on the other hand, we will be
confronted with the fermion doubling problem. In chapter 18 we had demonstrated
in a simple model that the “doublers” modify the correct partition function in a
quite non-trivial way. Their unphysical nature is exposed most clearly by looking at
the correlation function [Rothe (1995)], as we now show.

(i) Naive fermions

For naive fermions, (i.e., vanishing Wilson parameter r) the two-point fermion
correlation function at finite temperature and chemical potential is given by (19.94)
with M̂ replaced by m̂, i.e.,

Ŝ
(β,µ)
F (�̂p, ω̂−

� ) =
−iγ4 sin(ω̂−

� + iµ̂) − iγj sin p̂j + m̂

sin2(ω̂−
� + iµ̂) + Ê2(�̂p)

, (19.96a)

where

Ê(�̂p) =
√∑

j

sin2 p̂j + m̂2 (19.96b)

is the energy measured in lattice units. The (dimensionless) lattice analog of (19.66a)
thus reads

Ŝ
(β,µ)
F (�n, n4) =

∫ π

−π

d3p̂

(2π)3 S̃
(β,µ)
F (�̂p, n4)ei�̂p·�n, (19.97a)

where

S̃
(β,µ)
F (�̂p, n4) =

1

β̂

β̂
2 −1∑

�=− β̂
2

Ŝ
(β,µ)
F (�̂p, ω̂−

� )eiω̂−
� n4 . (19.97b)

Note that the momentum integrals and sum over Matsubara frequencies are now
restricted to the first Brillouin zone. The expression (19.97b) can be decomposed as
follows

S̃
(β,µ)
F (�̂p, n4) = Γ̂+(�̂p)D(+)

(β,µ)(�̂p, n4) + Γ̂−(�̂p)D(−)
(β,µ)(�p, n4) , (19.98a)
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where

Γ̂±(�̂p) =
1

2Ê(�̂p)
[±γ4Ê(�̂p) − iγj sin p̂j + m̂] (19.98b)

is the lattice analog of (19.67b), and

D(±)
(β,µ)(�̂p, n4) = ± 1

β̂

β̂
2 −1∑

�=− β̂
2

eiω̂−
� n4

i sin(ω̂−
� + iµ̂) ± Ê(�̂p)

. (19.98c)

The finite frequency sum can be evaluated by making use of the summation formula
(18.85). As an example consider D(+)

(β,µ)(�̂p, n4). Defining z = eiω, the function F̃ (z) in
(18.85) now has the form

F̃ (z) =
2eµ̂zn4+1

z2 + 2Eeµ̂z − e2µ̂
.

Hence the frequency sum in (19.98c) is given by

D(+)
(β,µ)(�̂p, n4) = −eµ̂

iπ

∫

|z|=1+�

dz
zn4

(zβ̂ + 1)(z − z+)(z − z−)

+
eµ̂

iπ

∫

|z|=1−�

dz
zn4

(zβ̂ + 1)(z − z+)(z − z−)
, (19.99a)

where
z+ = e−(Ê−µ̂); z− = −e(Ê+µ̂),

Ê = ar sinh Ê(�̂p). (19.99b)

The two circles |z| = 1 ± � enclose the zeros of zβ̂ + 1, located at the Matsubara
frequencies. The integrations are carried out in the counterclockwise sense. For |n4| ≤
β̂ (recall that euclidean time has been compactified), we can distort the contour in
the first integral to infinity, taking into account the poles located outside of the unit
circle. Hence the rhs of (19.99a) is twice the sum of the residues of the integrand
at the poles lying inside and outside of the unit circle, multiplied by eµ̂. For n4 < 0
these poles also include a pole of order |n4|. One then finds that D(+)

(β,µ)(�̂p, n4) can be
written in the form

D(+)
(β,µ)(�̂p, n4) = ∆̂(+)

(β,µ)(�̂p, n4) + (−1)n4∆̂(−)
(β,µ)(�̂p, n4) , (19.100a)

where

∆̂(+)
(β,µ)(�̂p, n4) = [θ(n4) − η̂FD(Ê , µ̂)]

e−(Ê−µ̂)n4

√
1 + Ê2

, (19.100b)

∆̂(−)
(β,µ)(�̂p, n4) = [θ(−n4) − ¯̂ηFD(Ê , µ̂)]

e(Ê+µ̂)n4

√
1 + Ê2

, (19.100c)
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and

η̂FD(Ê , µ̂) =
1

eβ̂(Ê−µ̂) + 1
,

(19.100d)

¯̂ηFD(Ê , µ̂) =
1

eβ̂(Ê+µ̂) + 1
,

are the lattice analogs of the Fermi–Dirac distribution functions (19.67d). For n4 = 0,
θ(0) := 1

2 . In a similar way one obtains

D(−)
(β,µ)(�̂p, n4) = ∆̂(−)

(β,µ)(�̂p, n4) + (−1)n4∆̂(+)
(β,µ)(�̂p, n4). (19.101)

Introducing the dimensioned variables τ = an4, p = p̂
a
, β = aβ̂ and µ = µ̂

a
, one

finds that (19.98b) and (19.100b–d) approach the continuum expressions (19.67b)
and (19.67c,d). We therefore see that the terms proportional to (−1)n4 impede the
propagator from having the correct continuum limit. These terms are the contribu-
tions of the doublers. They arise from the poles of the integrand in (19.99a) located
on the negative z-axis, and are pure lattice artefacts having no continuum analog.
The factor (−1)n4 , which changes sign as one proceeds from one lattice site to the
next in the euclidean time direction, is typical for the doubler contributions, as we
have already seen in chapter 4. From (19.100b,c) we see that

∆(±)
(β,µ)(�̂p, n4) = ∆(∓)

(β,−µ)(�̂p, −n4) .

Making use of this relation, D(±)
(β,µ)(�̂p, n4) can also be written in the form

D(±)
(β,µ)(�̂p, n4) = ∆(±)

(β,µ)(�̂p, n4) + (−1)n4∆(±)
(β,−µ)(�̂p, −n4),

which shows that, apart from the (non-trivial!) factor (−1)n4 , the admixture of
the doublers involves a reversal of the sign of the chemical potential as well as
of euclidean time. It is thus not surprising that when one computes the logarithm of
the partition function for a Dirac gas of naive fermions, one finds that it resembles
that of a gas of particles and antiparticles in both, the positive as well as negative
energy sectors [Bender et al. (1993)].

(ii) Wilson Fermions

Let us now see how the above results are modified for Wilson fermions. In
the following we will choose r = 1 for the Wilson parameter. The propagator in
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frequency-momentum space is given by (19.94) with r = 1 in (19.93d,e). Hence
(19.97b) is now replaced by

S̃
(β,µ)
F (�̂p, n4) =

1

β̂

β̂
2 −1∑

�=− β̂
2

F (�̂p, ω̂−
� ; n4), (19.102a)

where

F (�̂p, ω̂−
� ; n4) = Ŝ(β,µ)(�̂p, ω̂−

� )eiω̂−
� n4 , (19.102b)

Ŝ(β,µ)(�̂p, ω̂−
� ) =

−iγ4 sin(ω̂−
� + iµ̂) − iγj sin p̂j + M̃(�̂p, ω̂−

� + iµ̂)

sin2(ω̂� + iµ̂) +
∑

j sin2 p̂j + M̃2(�̂p, ω̂−
� + iµ̂)

, (19.102c)

and

M̃(�̂p, ω̂−
� + iµ̂) = M̂(�̂p) + 2 sin2

(
ω−

� + iµ̂

2

)
,

(19.102d)

M̂(�̂p) = m̂ + 2
∑

j

sin2 p̂j

2
.

The frequency sum in (19.102a) can again be performed by making use of (18.85).
Introducing the variable z = eiω̂, the function replacing F̃ (z) takes the form

F̃ (z, �̂p, n4) =
1
2γ4(z2e−2µ̂ − 1) + 1

2(ze
−µ̂ − 1)2 + (iγj sin p̂j − M̂(�̂p))ze−µ̂

e−2µ̂[1 + M̂(�̂p)](z − z+)(z − z−)
zn4 ,

where

z± = e±Ẽ+µ̂,

Ẽ = ln[K +
√

K2 − 1] = ar cosh K (19.103a)

and

K(�̂p) = 1 +
Ē2(�̂p)

2[1 + M̂(�̂p)]
, Ē(�̂p) =

√∑
j

sin2 p̂j + M̂2(�̂p). (19.103b)

Proceeding as before one then finds after some algebra that (19.102a) can be written
as follows

S̃
(β,µ)
F (�̂p, n4) = Γ̃+(�̂p)D̃(+)

(β,µ)(�̂p, n4) + Γ̃−(�̂p)D̃(−)
(β,µ)(�̂p, n4), (19.104a)
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where

Γ̃±(�̂p) =
1

2 sinh Ẽ
[±γ4 sinh Ẽ − iγj sin p̂j + m̂(�̂p)],

(19.104b)

m̂(�̂p) = m̂ + 2
∑

j

sin2 p̂j

2
− 2 sinh2 Ẽ

2
,

D̃(+)
β,µ (�̂p, n4) = [θ(n4) − η̂FD(Ẽ , µ̂)]

e−(Ẽ−µ̂)n4

1 + M̂(�̂p)
,

(19.104c)

D̃(−)
β,µ (�̂p, n4) = [θ(−n4) − ¯̂ηFD(Ẽ , µ̂)]

e(Ẽ+µ̂)n4

1 + M̂(�̂p)
,

and

η̂FD(Ẽ , µ̂) =
1

eβ̂(Ẽ−µ̂) + 1
,

(19.104d)

¯̂ηFD(Ẽ , µ̂) =
1

eβ̂(Ẽ+µ̂) + 1
.

are the lattice Fermi–Dirac distribution function for Wilson fermions. Notice that in
the case of Wilson fermions no terms proportional to (−1)n4 appear! In the contin-
uum limit we have that M̂(�̂p) → m̂,

√
K2 − 1 → Ê(�̂p), Ẽ → Ê(�̂p), and sin p̂j → p̂j

for finite physical momenta. For Wilson fermions these are in fact the only relevant
momenta contributing to the integral (19.97a). This can be readily seen. In the
continuum limit β̂ goes to infinity. Hence the integral only receives contributions
from momenta for which Ẽ goes to zero in this limit. Because of the momentum
dependent Wilson mass M̂(�̂p), only (dimensionless) momenta �̂p in the immediate
neighbourhood of �̂p = 0 contribute to the integral. Hence in the continuum limit the
expressions (19.104a-d) approach (19.67a-d), with the usual correspondence hold-
ing between particles (antiparticles) and forward (backward) propagation in time,
translated into the euclidean language.

19.10 The Electric Screening Mass for Wilson Fermions
in Lattice QED to One-Loop Order

In section 6 we had computed the electric screening mass in continuum QED
to one-loop order. We now repeat this calculation within the framework of lattice
regularized perturbation theory. The computation will be carried out for Wilson
fermions, where we expect to recover the result of section 6 in the continuum limit.
The calculations in this section are based on work carried out together with R. Pietig
(Pietig, 1994). A similar computation for naive fermions, carried out by this author
can be found in appendix G.
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The electric screening mass has been defined in (19.71) as the infrared limit of
the 44-component of the vacuum polarization tensor evaluated for vanishing photon
frequency. In lattice perturbation theory the vacuum polarization tensor in one-loop
order receives contributions from the two diagrams shown in fig. (19-6). Diagram (b)
has no continuum analog but is required by gauge invariance, which is implemented
on the lattice for arbitrary lattice spacing. In the following we shall choose r = 1 for
the Wilson parameter. This leads to a drastic simplification of the computations.
For finite lattice spacing the result for the screening mass will of course depend on
r, while in the continuum limit it is expected to be independent of this parameter.
The following computation is carried out in the dimensionless formulation, i.e., all
quantities are measured in lattice units.

(a) (b)

p+k

p

kk

q

Fig. 19-6 Diagrams contributing to the vacuum polarization tensor.

For r = 1 the fermion propagator in frequency-momentum space has the form
(19.102c,d). For vanishing temperature and chemical potential the vertices are those
given in chapter 14 with the lattice spacing a, and the Wilson parameter r replaced
by unity. The transition to finite temperature and finite chemical potential is ef-
fected in the by now familiar way: the fourth component of the photon momentum
is replaced by ω̂+

� , defined in (19.92b), and the fourth component of the fermion
momenta by ω̂−

� + iµ̂, with ω̂− defined in (19.93b). Finally, integrals over the fourth
component of momenta at T = 0 are replaced by finite frequency sums.

Consider first the contribution of the diagram (a) shown in fig. (19-6). For
vanishing photon frequency it contributes as follows to Π̂(β,µ)

44 (0,�k),

Π̂(β,µ)
44 (0, �̂k)(a) = (−ie)2

β̂
2 −1∑

�= β̂
2

1

β̂

∫ π

−π

d3p̂

(2π)3 Tr
{

[γ4 cos(ω̂−
� + iµ̂) − i sin(ω̂−

� + iµ̂)]

× Ŝ
(β,µ)
F (�̂p, ω̂−

� )[γ4 cos(ω̂−
� + iµ̂) − i sin(ω̂−

� + iµ̂)]Ŝ(β,µ)
F (ω̂−

� , �̂p + �̂
k)

}

(19.105)
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where Ŝ
(β,µ)
F (�̂q, ω̂−

� ) is given by (19.102c,d). Upon carrying out the trace in Dirac
space, making use of (19.74), and expressing the trigonometric functions in terms of
exponentials, one finds after some algebra that the above expression can be written
in the form

Π̂(β,µ)
44 (0, �̂k)(a) = −e2 1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3f (a)(ei(ω̂−
� +iµ̂); �̂p, �̂k), (19.106a)

where

f (a)(z; �̂p, �̂k) =
2(z4 + 1) − 2η(z3 + z) + 4ξGz2

∏4
i=1(z − zi)

. (19.106b)

and

η =
1

[1 + M̂(p̂)]
+

1

[1 + M̂(�̂p + �̂
k)]

,

(19.106c)

ξ =
1

[1 + M̂(�̂p)][1 + M̂(�̂p, �̂k)]
,

G = 1 +
∑

j

sin p̂j sin(p̂ + k̂)j . (19.106d)

The position of the poles of f (a)(z; �̂p, �̂k) are given by

z1 = eφ; z2 = e−φ,
(19.106e)

z3 = eψ; z4 = e−ψ,

with

φ = Ẽ(�̂p),
(19.106f )

ψ = Ẽ(�̂p + �̂
k),

with Ẽ(�̂q) defined in (19.103a,b). Note that

φ ←→
�̂p→−�̂p−�̂

k

ψ, (19.107)

while η, ξ and G are invariant under the transformation �p → −�p − �k. This will be
important further below.

The frequency sum in (19.106a) can in principle be again performed with
the help of the summation formula (18.85). A more convenient formula can be
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derived however, which is based on the observation that ω̂−
� always appears in the

combination ω̂−
� + iµ̂. The following formula is derived in Appendix F:

1

β̂

β̂
2 −1∑

l=− β̂
2

g(ei(ω̂−
l +iµ̂)) =

∑
i

Resz̄i

(
g(z)
z

)
1

eβ̂µ̂z̄β̂
i + 1

, (19.108)

where Resz̄i

g(z)
z

are the residues at the poles of g(z)/z, whose position we have
denoted by z̄i. We now apply this formula to calculate the (finite) frequency sum
in (19.106a). The function g(z) in (19.108) is now replaced (19.106b). It has simple
poles in z located at (19.106e) and a pole at z = 0. The evaluation of the residues

of f (a)(z; �̂p, �̂k)/z is straightforward. One finds

Resz1

(
f (a)(z)

z

)
= −Resz2

(
f (a)(z)

z

)
= h(φ, ψ, η, ξ, G),

Resz3

(
f (a)(z)

z

)
= −Resz4

(
f (a)(z)

z

)
= h(ψ, φ, η, ξ, G),

Res0

(
f (a)(z)

z

)
= 2,

where
h(φ, ψ, η, ξ, G) =

cosh 2φ − η cosh φ + ξG
sinh φ(cosh φ − cosh ψ)

. (19.109)

For simplicity we have suppressed the dependence of f (a)(z; �̂p, �̂k) on �̂p and �̂
k. Appli-

cation of (19.108) then yields

1

β̂

β̂
2 −1∑

l=− β̂
2

f (a)(ei(ω̂−
l +iµ̂); �̂p, �̂k) = 2 + h(φ, ψ, η, ξ, G)

[
1

eβ̂(φ+µ̂) + 1
− 1

e−β̂(φ−µ̂) + 1

]

+ h(ψ, φ, η, ξ, G)
[

1
eβ̂(ψ+µ̂) + 1

− 1
e−β̂(ψ−µ̂) + 1

]
.

(19.110)

To obtain Π̂(β,µ)
44 (0; k̂)(a), we must integrate this expression over �̂p, with �̂p ∈ [−π, π].

Noting that η, ξ and G are invariant under the transformation �̂p → −�̂p − �̂
k, and

making use of (19.107), as well as of the fact that the integrand in (19.106a) is a
periodic function in p̂i and k̂i, we can combine the last two contributions on the rhs
of (19.110) and obtain

Π̂(a)
44 (0, �̂k) = 2e2

∫ π

−π

d3p̂

(2π)3 [h(φ, ψ, η, ξ, G) − 1]

−2e2
∫ π

−π

d3p̂

(2π)3h(φ, ψ, η, ξ, G)[η̂FD(φ) + ¯̂ηFD(φ)]. (19.111a)
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where

η̂FD(φ) =
1

eβ̂(φ−µ̂) + 1
,

(19.111b)

¯̂ηFD(φ) =
1

eβ̂(φ+µ̂) + 1
,

are the lattice Fermi–Dirac distribution functions for particles and antiparticles.
Note that with the definition of φ, given in (19.106f), they coincide with those in
(19.104d).

We next compute the contribution to Π̂(β,µ)
44 (0, �̂k) of the Feynman diagram (b)

depicted in fig. (19-6). This diagram has no analog in the continuum. It is given by

Π̂(β,µ)
44 (0,�k)(b) = −2e2

2!
1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3 Tr
{
[cos(ω̂−

� + iµ̂)

−iγ4 sin(ω̂−
� + iµ̂)]Ŝ(β,µ)

F (�̂p, ω̂−
� )

}
. (19.112)

The factor 2 arises from the two possibilities to label the two external photon lines
emanating from the vertex, and the factor 1

2! from the expansion of the link variables
to second order in the gauge potentials. The first factor in the argument of the
trace is the finite temperature, finite chemical potential version of the vertex given
in chapter 14, measured in lattice units. Performing the trace and expressing the
trigonometric functions in terms of exponentials, one finds that

Π̂(β,µ)
44 (0, �̂k)(b) = −2e2 1

β̂

β̂
2 −1∑

�= β̂
2

∫ π

−π

d3p̂

(2π)3f (b)(ei(ω̂−
� +iµ̂), �̂p

)
(19.113a)

where

f (b)(z; �̂p) = − z2 − 2ρz + 1
(z − z1)(z − z2)

, (19.113b)

ρ =
1

1 + M̂(�̂p)
, (19.113c)

and where z1 and z2 have been defined in (19.106e). Making again use of the fre-
quency summation formula (19.108), one verifies that

Π̂(β,µ)
44 (0, �̂k)(b) = −2e2

∫ π

−π

d3p̂

(2π)3

(
coth φ − ρ

sinh φ
− 1

)

+ 2e2
∫ π

−π

d3p̂

(2π)3

(
coth φ − ρ

sinh φ

)
[η̂FD(φ) + ¯̂ηFD(φ)] (19.114)
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Combining this expression with (19.111a) one therefore finds that

Π̂(β,µ)
44 (0, �̂k) = Π̂(vac)

44 (0, �̂k) + 2e2
∫ π

−π

d3p̂

(2π)3H(φ, ψ, ρ, η, ξ, G)[η̂FD(φ) + ¯̂ηFD(φ)]

(19.115a)

where

H(φ, ψ, ρ, η, ξ, G) = coth φ − ρ

sinh φ
− h(φ, ψ, η, ξ, G). (19.115b)

and

Π̂(vac)
44 (0, �̂k) = −2e2

∫ π

−π

d3p̂

(2π)3H(φ, ψ, ρ, η, ξ, G) (19.115c)

is the T = µ = 0 contribution. As we now show, Π̂(vac)
44 (0, �̂k) vanishes in the limit

�̂
k → 0, and hence does not contribute to the screening mass.

Consider the function h(φ, ψ, η, ξ, G) defined in (19.109). It is singular for �̂
k → 0,

since in this limit ψ → φ. The singularity is however integrable. This can be seen as
follows. Since according to (19.107), and the statement following it

h(φ, ψ, η, ξ, G) −→
�̂p→−�̂p−�̂

k

h(ψ, φ, η, ξ, G) (19.116)

we can also write (19.115c) in the form

Π̂(vac)
44 (0, �̂k) = −2e2

∫ π

−π

d3p̂

(2π)3

(
coth φ − ρ

sinh φ

)
+ e2

∫ π

−π

d3p̂

(2π)3 h̃(φ, ψ, η, ξ, G),

(19.117a)

where

h̃(φ, ψ, η, ξ, G) = h(φ, ψ, η, ξ, G) + h(ψ, φ, η, ξ, G). (19.117b)

Although each term in this last expression is singular for �̂
k → 0 (ψ → φ), the sum

possesses a finite limit. Thus setting ψ = φ + � and taking the limit �̂
k → 0 (� → 0),

one verifies that

lim
�̂
k→0

h̃(φ, ψ, η, ξ, G) =
1

sinh2 φ
{− coth φ(cosh 2φ − 2ρ cosh φ + ρ2G0)

+ 2(sinh 2φ − ρ sinh φ)},

where G0 = G(�̂p, 0), with G(�̂p, �̂k) defined in (19.106d). From the definition of φ given
in (19.106f), with Ẽ defined in (19.103a,b), one finds that

G0 = G(�̂p, 0) =
1
ρ2 (2ρ cosh φ − 1).
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Hence

lim
�̂
k→0

h̃(φ, ψ, η, ξ, G) = 2
(

coth φ − ρ

sinh φ

)
. (19.118)

From (19.117a) we therefore conclude that

lim
�̂
k→0

Π̂(vac)
44 (0, �̂k) = 0.

This result is not unexpected, since for vanishing temperature and chemical poten-
tial it is well known in the continuum formulation, that Lorentz and gauge invariance
protects the photon from acquiring a mass. The screening mass is therefore deter-
mined by the finite temperature (f.T.), finite chemical potential contribution, given
by the integral in (19.115a). By making again use of the fact that φ ↔ ψ, when
�̂p → −�̂p − �̂

k, while η, ξ and G remain invariant under this change of variables, we
can write this contribution in the form

Π̂(β,µ)
44 (0, �̂k)f .T . = 2e2

∫ π

−π

d3p̂

(2π)3

(
coth φ − ρ

sinh φ

)
[η̂FD(φ) + ¯̂ηFD(φ)]

− e2
∫ π

−π

d3p̂

(2π)3{h(φ, ψ, η, ξ, G)[ηFD(φ) + ¯̂ηFD(φ)]

+ h(ψ, φ, η, ξ, G)[ηFD(ψ) + ¯̂ηFD(ψ)]}. (19.119)

Consider the second integral. It can be rewritten as follows
∫ π

−π

d3p̂

(2π)3{h̃(φ, ψ, η, ξ, G)[ηFD(ψ) + η̄FD(ψ)] + h(φ, ψ, η, ξ, G)∆η̂FD(φ, ψ)},

where h̃ has been defined in (19.117b), and

∆η̂FD = [η̂FD(φ) − η̂FD(ψ)] + [¯̂ηFD(φ) − ¯̂ηFD(ψ)].

According to (19.118), h̃ approaches a finite limit for �̂
k → 0. Hence the contribution

proportional to h̃ is cancelled by the first integral in (10.119). We therefore conclude
that

lim
�̂
k→0

Π̂(β,µ)
44 (0, �̂k) = −e2 lim

�̂
k→0

∫ π

−π

d3p̂

(2π)3h(φ, ψ, η, ξ, G)∆η̂FD(φ, ψ). (19.120)

We have now dropped the subscript “f.T.”, since in this limit only (19.119) con-
tributes to the screening mass. To calculate this limit we proceed as before and set
ψ = φ + �. One then finds that

∆η̂FD = �β̂NFD(φ) + O(�2), (19.121a)
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where

NFD(φ) =
eβ̂(φ+µ̂)

[eβ̂(φ+µ̂) + 1]2
+

eβ̂(φ−µ̂)

[eβ̂(φ−µ̂) + 1]2
. (19.121b)

From the definition of η and ξ given in (19.106c) it follows that for �̂
k → 0, η → 2ρ,

ξ → ρ2. One then verifies that for small � (or �̂
k → 0)

h(φ, φ + �, η, ξ, G) −→
�̂
k→0

−2
�

+ O(�0).

Inserting this expression and (19.121a) into (19.120) one therefore has that

m̂2
el(β̂, µ̂, m̂) = 2e2β̂

∫ π

−π

d3p

(2π)3

{
eβ̂(φ+µ̂)

[eβ̂(φ+µ̂) + 1]2
+

eβ̂(φ−µ̂)

[eβ̂(φ−µ̂) + 1]2

}
. (19.122)

Notice the similarity in structure of this expression with its continuum counterpart
(19.78). For the same reason as discussed in section 9, only momenta �̂p in the im-
mediate neighbourhood of �̂p = 0 contribute to the integral in the continuum limit.
But in this limit

β̂φ(�̂p) =
1
a
βẼ(�pa) −→

a→0
β
√

�p2 + m2,

where Ẽ(�̂p) has been defined in (19.103a,b). Hence

η̂FD(φ) −→
a→0

1

eβ(
√

�p2+m2+µ) + 1
,

¯̂ηFD(φ) −→
a→0

1

eβ(
√

�p2+m2−µ) + 1
.

The screening mass in physical units is now obtained as the following limit

m2
el = lim

a→0

1
a2 m̂2

el

(
β

a
, µa, ma

)
. (19.123)

Introducing in (19.122) the dimensioned momenta �p as new integration variables
one then verifies that one recovers the expression (19.78), or equivalently (19.79).

For naive fermions, on the other hand, one finds that (see appendix E)

(m̂2
el)naive = 4e2β̂

∫ π

−π

d3p̂

(2π)3

{
eβ̂(φ̂−µ̂)

[eβ̂(φ̂−µ̂) + 1]2
+

eβ̂(φ̂+µ̂)

[eβ̂(φ̂+µ̂) + 1]2

}
,
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where

φ̂ = ar sinh Ê(�̂p).

Notice that here φ̂ is just the function Ê(�̂p) we encountered when studying the lattice
fermion propagator for naive fermions (cf. eq. (19.99b)). The above expression for
the screening mass differs in two important respects from that for Wilson fermions:
First of all there is an extra factor 2 multiplying the integral. This factor arises from
the doubler contributions associated with frequency excitations lying in the second
half of the Brillouin zone, π

2 < ω̂−
� < π. Secondly, the function φ̂ now vanishes not

only for �̂p = 0, but also at the corners of the Brillouin zone, where one or more
components of �̂p take the values ±π. Hence the integral receives in the continuum
limit 23 identical contributions having the form of the “normal” contribution arising
from finite physical momenta, for which �̂p = pa is of O(a). Hence in the continuum
limit

(m2
el)naive = 16m2

el

where m2
el is given by (19.79).

19.11 The Electric Screening Mass for Wilson Fermions
in Lattice QCD to One-Loop Order

The computation of the electric screening mass in lattice QCD is more involved
than in QED. The following discussion is based on work carried out together with
P. Kaste (Kaste, 1997). In O(g2) the vacuum polarization tensor receives contribu-
tions from the seven diagrams shown in fig. (19-7). The last three diagrams have
no continuum analog but are required by gauge invariance. Diagram (g) is the con-
tribution arising from the non-abelian compact integration measure. The Feynman
integrals can be easily written down using the finite temperature, finite chemical
potential Feynman rules discussed in section 8. As in the continuum case, the con-
tribution of diagrams (a) and (e) to the vacuum polarization tensor is related to that
in QED by the relation (19.80). We therefore “only” need to consider the diagrams
involving gluon and ghost lines only, which do not depend on the chemical poten-
tial. Furthermore, they only involve sums over Matsubara frequencies of the bosonic
type. Since in the continuum limit the only dimensioned scale is the temperature,
their contribution to the screening mass will be of the form const. × gT . For finite
lattice spacing, however, the temperature dependence will of course be modified by
lattice artefacts. In the following we first consider diagrams (b-d) which have an
analog in the continuum. In all the expressions it will be understood that the fourth
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component of the momenta are Matsubara frequencies. The combinatorial factors
associated with each diagram are of course the same as those in the continuum
formulation.

+ + +

q+k q+k
q

q q

q qp

(a) (b) (c)

(e) (f) (g)

(d)

p+k

k k k k k k

Fig. 19-7 Diagrams contributing to the vacuum polarization tensor in

lattice QCD in O(g2).

Contribution of Diagram (b)

Using the Feynman rules discussed in section 8 one finds, after making use of∑
C,D fACDfBCD = 3δAB, that

Π̂AB
µν (ω̂+

n , �̂k)(b) = −3
2
g2δAB

∫

+
d4q̂

T̂
(b)
µν (q̂, k̂)

˜̂q2 ˜(q̂ + k̂)
2 , (19.124a)

where
∫

+ d4q̂ has been defined in (19.95c); ˜̂pµ and ˜̂p
2

are defined generically by

˜̂pµ = 2 sin
p̂µ

2
; ˜̂p2 =

∑
µ

˜̂p2
µ, (19.124b)

and

T̂ (b)
µν (q̂, k̂) =

{
˜(q̂ − k̂)µ

˜(q̂ + 2k̂)ν cos
(

1
2
(q̂ + k̂)ν

)
cos

1
2
q̂µ

− ˜(q̂ − k̂)µ
˜(2q̂ + k̂)ν cos

(
1
2
(q̂ + k̂)µ

)
cos

1
2
k̂µ

− ˜(2q̂ + k̂)µ
˜(q̂ + 2k̂)ν cos

1
2
q̂ν cos

1
2
k̂ν + (µ ↔ ν)

}
(19.124c)

+ δµν

{
˜(q̂ − k̂)

2

cos2
(

1
2
(q̂ + k̂)µ

)
+ ˜(q̂ + 2k̂)

2

cos2 1
2
q̂µ

}

+ ˜(2q̂ + k̂)µ
˜(2q̂ + k̂)ν

∑
σ

cos2 1
2
k̂σ.
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To compute the corresponding contribution to the electric screening mass we only
need to know Π̂44(k̂)(b) for vanishing gluon frequency. It is given by

Π̂AB
44 (0, �̂k)(b) =

3
2
g2δAB

1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3q̂

(2π)3f (b)(eiω̂+
� ; �̂q, �̂k), (19.125a)

where

f (b)(z; �̂q, �̂k) =
a(�̂k)(z2 − 1)2 − b(�̂q, �̂k)z(z + 1)2

∏4
i=1[z − z̄i]

, (19.125b)

and

a(�̂k) =
∑

j

cos2 k̂j

2
,

(19.125c)

b(�̂q, �̂k) =
1
4

[∑
j

˜(q̂ − k̂)
2

j +
∑

j

˜(q̂ + 2k̂)
2

j

]
.

The zeros of the denominator in (19.125b) are located at

z̄1 = eφ̃; z̄2 = e−φ̃,
(19.126a)

z̄3 = eψ̃; z̄4 = e−ψ̃,

where

φ̃ = arcosh H(�̂q),

ψ̃ = arcosh H(�̂q + �̂
k), (19.126b)

H(�̂p) = 1 + 2
∑

j

sin2 p̂j

2
.

The frequency sum can be calculated by making use of (F.5) in appendix F. After
some straight forward algebra one finds that

Π̂AB
44 (0, �̂k)(b) = 6g2δAB

∫ π

−π

d3q̂

(2π)3h(φ̃, ψ̃, a, b)η̂BE(φ̃)

+
3
2
g2δAB

{
a(�̂k) +

∫ π

−π

d3q̂

(2π)3 [h(φ̃, ψ̃, a, b) + h(ψ̃, φ̃, a, b)]
}

,

(19.127a)

where

h(φ̃, ψ̃, a, b) =
−a sinh2φ̃ + 1

2b[cosh φ̃ + 1]

sinhφ̃[cosh φ̃ − cosh ψ̃]
, (19.127b)
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and

η̂BE(φ̃) =
1

eβ̂φ̃ − 1
(19.127c)

is the lattice version of the Bose–Einstein distribution function. In obtaining this
result we have made use of the fact that

φ̃ ←→
�̂p→−�̂p−�̂

k

ψ̃ (19.128)

under the variable transformation �̂q → −�̂q − �̂
k, while a(�̂k) and b(�̂q, �̂k) are invariant

under this transformation. Note that the function (19.127b) is singular for �̂
k → 0,

since in this limit φ̃ → ψ̃. The singularity is however integrable as can be seen by
making use of (19.128) to write (19.127a) in the form

Π̂AB
44 (0, �̂k)(b) = 3g2δAB

∫ π

−π

d3q̂

(2π)3h(φ̃, ψ̃, a, b)∆η̂BE(φ̃, ψ̃)

+
3
2
g2δAB

{
a(�̂k) +

∫ π

−π

d3q̂

(2π)3 [h(φ̃, ψ̃, a, b)

+ h(ψ̃, φ̃, a, b)][1 + 2η̂BE(φ̃)]
}

, (19.129a)

where

∆η̂BE(φ̃, ψ̃) = η̂BE(φ̃) − η̂BE(ψ̃). (19.129b)

The limit �̂
k → 0 can now be easily be taken and one obtains the following contri-

bution to the electric screening mass

(m̂2
el)(b) =

3
2
g2

{
3 −

∫ π

−π

d3q̂

(2π)3

[
3 cothφ̃ +

1
2sinhφ̃

]
[1 + 2η̂BE(φ̃)]

}

+
15
2

g2β̂

∫ π

−π

d3q̂

(2π)3NBE(φ̃), (19.130a)

where

NBE(φ̃) =
eβ̂φ̃

[eβ̂φ̃ − 1]2
. (19.130b)

Contribution of Diagram (c)

This diagram involves the 4-gluon vertex (15.53b), which consists of types of
terms differing in the colour structure: terms involving the structure constants fABC ,
and terms involving the completely symmetric colour couplings dABC . We denote
the corresponding contributions to the vacuum polarization tensor by [ΠAB(k̂)(c)][f ]
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and [ΠAB(k̂))(c)][d], respectively. Consider first [ΠAB(k̂))(c)][f ]. It is given by

[
Π̂AB

µν (k̂)(c)

]
[f ]

=
3
4
g2δAB

∫

+
d4q̂

[T̂ (c)
µν (q̂, k̂)][f ]

˜̂q2
, (19.131a)

where
[
T̂ (c)

µν (q̂, k̂)
]

[f ]
=

1
6
δµν

{
24 cos q̂µ

∑
σ

cos k̂σ

− 12 cos2
(

1
2
(q̂ + k̂)µ

)
− 12 cos2

(
1
2
(q̂ − k̂)µ

)

+ 2˜̂q2
µ

[
˜̂
k2

µ −
∑

σ

˜̂
k2

σ

]
+ 4[ ˜(q̂ − k̂)µ + ˜(q̂ + k̂)µ]˜̂qµ cos

1
2
k̂µ

−
∑

σ

[ ˜(q̂ + k̂)
2

σ + ˜(q̂ − k̂)
2

σ]

}

+
1
3

{
[ ˜(q̂ + k̂)µ − ˜(q̂ − k̂)µ]˜̂kν cos

1
2
q̂µ + (µ ↔ ν)

}
. (19.131b)

For vanishing gluon frequency we have that

[
Π̂AB

44 (0, �̂k)(c)

]
[f ]

=
3
4
g2δAB

1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3q̂

(2π)3

[
f (c)(eiω̂+

� ; q̂, k̂)
]

[f ]
, (19.132a)

where
[
f (c)(z; �̂q, �̂k)

]
[f ]

=
−c(�̂k)(z2 + 1) + d(�̂k)(z − 1)2 + P (�̂q, �̂k)z

[z − z̄1][z − z̄2]
(19.132b)

and

c(�̂k) = 1 + 2
∑

j

cos k̂j,

d(�̂k) = 1 − 1
3

∑
j

˜̂
k

2

j , (19.132c)

P (�̂q, �̂k) = 2 +
1
6

∑
j

[ ˜(q̂ + k̂)
2

j + ˜(q̂ − k̂)
2

j ].

Performing the frequency sum in (19.132a) one finds that

[Π̂AB
44 (0, �̂k)(c)][f ] =

3
4
g2δAB

{
−c(�̂k) + d(�̂k)

+
∫ π

−π

d3q̂

(2π)3

[
(c − d)coth φ̃ +

(
d − 1

2
P

)
1

sinhφ̃

]
[1 + 2η̂BE(φ̃)]

}
.

(19.133)
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Taking the limit �̂
k → 0 one obtains the following expression for the screening mass

(m̂2
el)

(c)
[f ] =

1
2
g2

[
− 9 +

1
2

∫ π

−π

d3q̂

(2π)3

[
17coth φ̃ +

1
sinh φ̃

]
[1 + 2η̂BE(φ̃)]

]
. (19.134)

Consider next the contribution [ΠAB(k̂)(c)][d]. It is given by

[
Π̂AB

µν (k̂)(c)

]
[d]

= −1
2
g2δAB

∫

+
d4q̂

[T̂ (c)
µν (q̂, k̂)][d]

˜̂q2
, (19.135a)

where
[
T̂ (c)

µν (q̂, k̂)
]

[d]
=

1
12

(
20
3

+ d(A)
) {

δµν

(∑
σ

˜̂q2
σ
˜̂
k2

σ + ˜̂q2
µ

∑
σ

˜̂
k2

σ

)

−˜̂q2
µ
˜̂
kµ

˜̂
kν − ˜̂q2

ν
˜̂
kµ

˜̂
kν

}
. (19.135b)

Here d(A) is defined by

8∑
E,F=1

[dAFEdBFE + dBFEdAFE + dFFEdABE] = d(A)δAB.

For vanishing gluon frequency expression (19.135a) can be written in the form

[
Π̂AB

44 (0, �̂k)(c)

]
[d]

= −1
2
g2δAB

1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3q̂

(2π)3

[
f (c)(eiω̂+

� ; �̂q, �̂k)
]

[d]
, (19.136a)

where

[
f (c)(z; �̂q, �̂k)

]
[d]

=
1
12

(
20
3

+ d(A)
)

K(�̂k)(z − 1)2 − L(�̂q, �̂k)z
[z − z̄1][z − z̄2]

, (19.136b)

and

K(�̂k) =
∑

j

˜̂
k2

j ,
(19.136c)

L(�̂q, �̂k) =
∑

j

˜̂q2
j
˜̂
k2

j .

Performing the frequency sum one obtains
[
π̂AB

44 (0, �̂k)(c)

]
[d]

= g2δAB
1
24

(
20
3

+ d(A)
)

×
{

−K +
∫ π

−π

d3q̂

(2π)3

[
K coth φ̃ −

K + 1
2L

sinh φ̃

]
[1 + η̂BE(φ)]

}
.
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Since K(�̂k) and L(�̂q, �̂k) vanish for �̂
k → 0, it does not contribute to the screening

mass, i.e.,

[(m̂el)c][d] = 0. (19.137)

Contribution of Diagram (d)

The only other diagram possessing an analog in the continuum is the ghost
loop shown in fig. (19-7d). Its contribution is given by

Π̂AB
µν (k̂)(d) =

3
2
g2δAB

∫

+
d4q̂

T̂
(d)
µν (q̂, k̂)

˜̂q
2 ˜(q̂ + k̂)

2 , (19.138a)

where

T̂ (d)
µν (q̂, k̂) = ˜̂qµ

˜(q̂ + k̂)ν cos
(

1
2
(q̂ + k̂)µ

)
cos

1
2
q̂ν + (µ ↔ ν). (19.138b)

For vanishing gluon frequency we have that

Π̂AB
44 (0, �̂k)(d) =

3
2
g2δAB

1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3q̂

(2π)3f (d)(eiω̂+
� ; �̂q, �̂k), (19.139a)

where

f (d)(z; �̂q, �̂k) = −1
2

(z2 − 1)2

∏4
i=1[z − z̄i]

. (19.139b)

Performing the frequency sum one finds that

Π̂AB
44 (0, �̂k)(d) =

3
4
g2δAB

{
−1 +

∫ π

−π

d3q̂

(2π)3 [g(φ̃, ψ̃) + g(ψ̃, φ̃)]

+ 4
∫ π

−π

d3q̂

(2π)3 g(φ̃, ψ̃)η̂BE(φ̃)
}

, (19.140a)

where

g(φ̃, ψ̃) =
sinh φ̃

cosh φ̃ − cosh ψ̃
. (19.140b)

This function is again singular for �̂
k → 0. To compute the limit we proceed as

discussed earlier and write (19.140a) in the form

Π̂AB
44 (0, �̂k)(d) =

3
4
g2δAB

{
− 1 +

∫ π

−π

d3q̂

(2π)3 [g(φ̃, ψ̃) + g(ψ̃, φ̃)][1 + 2η̂BE(φ̃)]

+ 2
∫ π

−π

d3q̂

(2π)3 g(φ̃, ψ̃)∆η̂BE(φ̃, ψ̃)
}

,



February 15, 2012 9:58 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch19

498 Lattice Gauge Theories

where ∆η̂BE(φ̃) has been defined in (19.129b). Taking the infrared limit one obtains
for the contribution of diagram (d) to the electric screening mass:

(m̂2
el)(d) =

3
4
g2

{
−1 +

∫ π

−π

d3q̂

(2π)3 [1 + 2η̂BE(φ̃)] coth φ̃

− 2β̂
∫ π

−π

d3q̂

(2π)3NBE(φ̃)
}

, (19.141)

with NBE(φ̃) defined in (19.130b). Combining the results (19.130a), (19.137),
(19.134), and (19.141), we therefore find that those diagrams possessing a contin-
uum analog yield the following contribution to the electric screening mass for finite
lattice spacing

(m̂2
el)(b+c+d) = g2

{
−3

4
+

1
2

∫
d3q̂

(2π)3

(
coth φ̃ − 1

sinh φ̃

)
[1 + 2η̂BE]

}

+ 6g2β̂

∫
d3q̂

(2π)3NBE(φ̃). (19.142)

As we now show, the remaining diagrams (f) and (g), which are a consequence of
the lattice regularization, precisely cancel the first term in (19.142).

Contribution of Diagram (f)

This contribution is given by

[Π̂AB
µν ](f) =

1
2
g2δABδµν

∫

+
d4q̂

˜̂q
2
µ

˜̂q
2 . (19.143)

For vanishing gluon frequency and µ = ν = 4 this expression reduces to

(Π̂AB
44 )(f) =

1
2
g2δAB

1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3q̂

(2π)3f (f)(eiω̂+
� ), (19.144a)

where

f (f)(z) =
(z − 1)2

[z − z̄1][z − z̄2]
. (19.144b)

The corresponding contribution to the screening mass is found to be

(m̂2
el)(f) =

1
2
g2

{
1 −

∫ π

−π

d3q̂

(2π)3 [coth φ̃ − 1
sinh φ̃

][1 + 2η̂BE(φ̃)]
}

. (19.145)
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Contribution of Diagram (g)
Finally, the contribution of diagram (g) to the screening mass (arising from the

link-integration measure) is trivially given by

(m̂2
el)(g) =

1
4
g2. (19.146)

From (19.145) and (19.146) we see that their sum just cancels the first term appear-
ing on the rhs of (19.142) leaving us with the following simple expression for the
contribution to the screening mass arsing from diagrams containing only gluon and
ghost lines:

(m̂2
el)G = 6g2β̂

∫ π

−π

d3q̂

(2π)3NBE(φ̃). (19.147)

The corresponding expression for the dimensioned screening mass squared is given
in the continuum limit (19.123) by

(m2
el)G = lim

a→0
6g2β

∫ π
a

− π
a

d3q

(2π)3

e
1
a
βφ̃(�qa)

[e
1
a
βφ̃(�qa) − 1]2

=
3
π2 g2β

∫ ∞

0
dqq2 eβq

[eβq − 1]2
,

where q = |�q|. After a partial integration this expression takes the form

(m2
el)G =

6
π2 g2T 2

∫ ∞

0
dx

x

ex − 1
.

Making use of the formula
∫ ∞

0
dx

xα−1

ex − 1
= Γ(α)ζ(α),

where Γ(α) is the Euler Gamma-function, and ζ(α) the Riemann Zeta-function, we
finally obtain

(m2
el)G = g2T 2. (19.148)

Including the contribution of diagrams (a) and (e) to the screening mass (which are
just one-half of the expressions obtained in the previous section for the screening
mass in QED) we therefore have that

m̂2
el(β̂, µ̂, m̂) = g2β̂

∫ π

−π

d3p

(2π)3

{
eβ̂(φ+µ̂)

[eβ̂(φ+µ̂) + 1]2
+

eβ̂(φ−µ̂)

[eβ̂(φ−µ̂) + 1]2

}

+6g2β̂

∫ π

−π

d3q̂

(2π)3

eβ̂φ̃

[eβ̂φ̃ − 1]2
(lattice) (19.149)
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where φ and φ̃ have been defined in (19.106f) and (19.126b). In the continuum limit
this expression reduces to

m2
el =

g2

2π2

∫ ∞

0
dp

2p2 + m2
√

p2 + m2
[ηFD(E, µ)

+ η̄FD(E, µ)] + g2T 2 (continuum). (19.150)

In lattice simulations of the pure gauge theory the electric screening mass is
extracted from correlators of Polyakov loops or from the long distance behaviour
of the gluon propagator [see e.g., Irbäck (1991), Heller (1995)]. In these simula-
tions the number of lattice sites Nτ ≡ β̂ is fixed and the temperature is varied
by varying the lattice spacing a = 1

TNτ
. If the lattice expression for the (dimen-

sioned) screening mass is to approximate the continuum, then the lattice spacing
must be small compared to all physical length scales in the problem. Hence we must
have that a � 1

T
, a � 1

m
and a � 1

µ
. This implies, that ma = (m

T
) 1

Nτ
� 1, or

Nτ � m
T

. Similarily we must have that Nτ � µ
T
. For Nτ fixed, the electric screen-

ing mass in physical units, divided by the temperature, is given by [mel]latt/T =
Nτm̂el(Nτ , (µ/T )N−1

τ , (m/T )N−1
τ ), while in the continuum limit (Nτ → ∞) this

ratio is just a function of m/T and µ/T . In fig. (19-8) we have plotted the ratio
(mel)latt/(mel)con as a function of m

T
and µ

T
for Nτ = 8, 16. In the parameter range

considered the deviation from unity is seen to be at most 1.7% for Nτ = 16, and
10% for Nτ = 8.

(a) (b)
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Fig. 19-8 Dependence of [mel]latt/[mel]cont on m
T and µ

T for (a) Nτ = 8,

and (b) Nτ = 16.

The deviations are mainly due to the fermion loop contribution as seen from
fig. (19-9), where we have plotted [mel]latt/[mel]cont for the pure SU(3) gauge theory
for various values of Nτ . The solid line is drawn to guide the eye. This ratio only
depends on the number of lattice sites Nτ . As seen from the figure the deviation
from the continuum is very small for Nτ ≥ 8. For Nτ = 8, and Nτ = 16, it is about
2%, and 0.4%, respectively.
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Fig. 19-9 Dependence of the pure gluonic contribution to [mel]latt/[mel]con

on the number of lattice sites Nτ . The solid line is drawn to guide the eye.

19.12 The Infrared Problem

When we discussed the λφ4-theory we have seen that a mass of O(λ) was
generated in the presence of a heat bath. As we have just seen a similar phenomenon
is encountered in QCD, except that there the situation is more complex. Because
the heat bath singles out a preferred reference frame the vacuum polarization tensor
is no longer Lorentz covariant, but only covariant under spatial rotations. Hence
different screening masses can be generated in the electric and magnetic sectors.

The generation of a magnetic screening mass turns out to pose a serious prob-
lem, although the appearance of an infrared cutoff in the magnetic sector is in prin-
ciple quite welcome. The problem is that the contribution to the magnetic screening
mass of O(gT ) is found to vanish. The higher-order perturbative contributions are
infrared divergent, and one is therefore forced to sum an infinite set of diagrams
to calculate the mass in lowest order. In principle this could give rise to a mag-
netic screening mass of O(gαT ) where 1 < α < 2. In fact, a computation carried
out by Kajantie and Kapusta (1982) based on the self-consistent solution of an
approximated Schwinger–Dyson equation for the gluon self-energy in the temporal
(AB

0 = 0) gauge, suggested that gluons acquire a magnetic screeing mass-squared of
order g3T 2. This could have cured the IR-problem pointed out by Linde (1980). The
non-analytic structure in g2 reflects the original IR-divergences in the perturbative
expansion. The above mentioned work, however, has been subsequently questioned
by several authors (Baker and Li, 1983; Toimela, 1985). If the magnetic screening
mass is of O(g2T ) then one is stuck with a serious computational impass. Consider,
for example, the contribution to the free energy arising from diagrams involving
only four-gluon couplings. Since the four-gluon interaction vertex is dimensionless
the same general argument as given for the case of the φ4 theory leads to an expres-
sion similar to (19.53), except for an important difference: the four-gluon coupling
is of order g2. Hence the contribution to the thermodynamical potential arising
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from a diagram containing N such vertices is now given by (19.53) with λ replaced
by g2:

ΩN(T ) ∼ g6T 4
(

g2T

m(T )

)N−3

.

If we substitute for m(T ) the magnetic screening mass mM(T ), which we assume to
be of O(g2T ), then an infinite set of diagrams contribute to O(g6). Even if we could
calculate the contributions from the individual diagrams (which we cannot) their
sum could very well diverge. But the situation is even worse. For a similar reason
the magnetic screening mass itself cannot be computed even in lowest order. (Gross,
Pisarski and Yaffe, 1981).

What we have just described is the notorious infrared problem in QCD. Being
unable to estimate higher order corrections to the free energy, one could take the
pessimistic point of view that perturbation theory can tell us nothing about the ther-
modynamical properties of QCD, even at high temperatures, where renormalization
group arguments suggest that the coupling becomes small (Collins and Perry, 1975).
It may however turn out that MC calculations confirm the early expectations that at
sufficiently high temperatures the non-perturbative corrections to thermodynamical
observables are small. In section 8 of chapter 20 we shall present some numerical
results which give us some insight into this problem.

We now briefly summarize the results obtained in the literature for the contri-
butions of O(g2) and O(g3) to the thermodynamical potential Ω of an SU(N) gauge
theory with Nf flavours and at zero chemical potential.

The correction of O(g2) requires the calculation of a set of two-loop diagrams
involving gluon, quark, and ghost fields (Kapusta, 1979). The zero temperature
renormalization prescriptions are sufficient to eliminate all ultraviolet divergencies.
After subtracting the vacuum contributions, these diagrams make a finite contribu-
tion to Ω:

Ω2 =
g2T 4

144
(N2 − 1)

(
N +

5
4
Nf

)
.

In fourth and higher orders of the coupling one encounters infrared divergencies.
These become more and more severe with increasing number of loops. By summing
the infrared divergent contributions one therefore expects to encounter corrections
of lower order than g4. Indeed, summing the ring diagrams of the type depicted in
fig. (19-10), where the shaded blobs stand for the gluon self-energy in O(g2), Kapusta
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(1979) finds that there is an O(g3) correction to the thermodynamical potential:

Ω3 = −g3T 4

12π
(N2 − 1)

[
1
3

(
N +

Nf

2

)]3/2

.

This is the so-called plasmon term. It arises from those interactions which give the
gluon an electric screening mass at one loop level.

+

+

= + +

Fig. 19-10 Ring diagrams which when summed give rise to a contribu-

tion of O(g3) to the thermodynamical potential.

Concluding, we are left with the following somewhat disappointing situation in
QCD: while the electric screening mass is of O(gT ), the magnetic screening mass
is expected to be of O(g2T ), but cannot be computed. As a consequence, the ther-
modynamical potential can at best be calculated up to fifth order. If one is lucky,
non-perturbative effects do not play an important role, and the potential obtained
by analytic means suffices to describe the thermodynamics of QCD at very high
temperatures, where the coupling is expected to be small. The only way to test this
is to compute thermodynamical observables numerically by starting from the lattice
formulation of QCD.
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CHAPTER 20

NON-PERTURBATIVE QCD AT FINITE TEMPERATURE

In the remaining part of the book we want to study the behaviour of hadronic
matter at finite temperature as predicted by QCD. Here are some questions that
one would like to have an aswer to: i) Does QCD predict a phase transition from
a low temperature confining phase, where chiral symmetry is broken, to a high
temperature phase where quarks and gluons are deconfined, and chiral symmetry
is restored? ii) If so, what is the critical transition temperature and the nature of
the phase transition? Is it of first or second order? iii) What is the nature of the
high temperature phase? Is it that of a quark–gluon plasma where the interactions
of quarks are Debye-screened? iv) Does perturbation theory provide an adequate
description of the thermodynamical properties at very high temperatures? v) What
is a possible signal for plasma formation in heavy ion collisions?

The non-perturbative framework provided by the lattice formulation of QCD
allows us, at least in principle, to obtain an answer to the above questions. In the
following four sections we will set up the theoretical framework which provides the
basis for studying a possible deconfining phase transition. The theoretical ideas in-
troduced will be exemplified in a simple lattice model in section 5. In sections 6–8
we then present some Monte Carlo results on this transition, and on the high tem-
perature phase of QCD. As always, we shall restrict ourselves to early pioneering
work, and we leave it to the reader to confer the numerous proceedings for more
recent results. Finally in section 9, we discuss some possible signatures for plasma
formation in heavy ion collisions.

20.1 Thermodynamics on the Lattice

For the computation of thermodynamical observables, like the mean energy,
pressure and entropy, we need a non-perturbative expression for the partition func-
tion. From what we have learned in the previous chapters we immediately conjecture
that the partition function is given by

ZQCD =
∫

DUDψDψ̄e−S
(β,µ)
QCD [U ,ψ,ψ̄]. (20.1)

For Wilson fermions, S
(β,µ)
QCD [U , ψ, ψ̄] is the finite-temperature, finite chemical po-

tential action having the form (19.90), where ψ and Uµ are vectors and matrices
in colour space, and 1

e2 is replaced by 6
g2
0
. The link variables and Dirac fields are

subjected to periodic and antiperiodic boundary conditions, respectively.
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Consider for example the implementation of the antiperiodic boundary condi-
tions on the fermionic degrees of freedom, i.e.,

ψ̂(�n, 1) = −ψ̂(�n, β̂ + 1),
¯̂
ψ(�n, 1) = − ¯̂

ψ(�n, β̂ + 1).
(20.2)

The only contribution to the action which is sensitive to these boundary conditions,
is the fermionic contribution involving the link variables pointing along the time
direction. By implementing these conditions, this piece of the action becomes a
function of the Grassmann variables located on the time slices n4 = 1, . . . , β̂, and
can be written in matrix form as follows,

β̂�
n4,m4=1

�
�n

¯̂
ψ(�n, n4)Mn4m4(�n)ψ̂(�n, m4),

where M(�n) is a β̂ × β̂ matrix with the non-vanishing entries given by

M(�n) =




ζ y(�n, 1) −ȳ(�n, β̂)
ȳ(�n, 1) ζ y(�n, 2)

ȳ(�n, 2) ζ y(�n, 3)
·

·
−ȳ(�n, β̂) ȳ(�n, β̂ − 1) ζ




.

Here

ζ = m̂ + 4r,

and

y(�n, n4) = −1
2
(r − γ4)e−µ̂U4(n),

ȳ(�n, n4) = −1
2
(r + γ4)eµ̂U †

4(n).

The fermionic contribution to the action can therefore be written in the form

S̃
(β,µ)
F =

β̂�
n4,m4=1

�
�n,�m

¯̂
ψ(�n, n4)K�n,n4;�m,m4 [U ]ψ̂(�m, m4),

and the Grassmann integration in (20.1) extends over the independent variables
ψ̂(�n, n4) and ¯̂

ψ(�n, n4) with n4 = 1, . . . , β̂. The Grassmann integral just yields the
determinant of the matrix K, so that

Z =
�

per
DU e−SG[U ]+ln det K[U ]. (20.3)
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Note that we did not bother to fix a gauge. The integral will therefore include field-
configurations which are related by a gauge transformation. Since the group-volume
for a compact group is finite, (20.3) is a well defined expression for any finite lattice
as is used in Monte Carlo simulations.*

Given the partition function, one can proceed to study the behaviour of thermo-
dynamical observables as a function of the temperature, and to determine the critical
properties of the theory. For example, the existence of a discontinuity in the energy
density (latent heat) or a jump in an order parameter would tell us that the tran-
sition is first order. Of course, in practice all calculations are carried out on lattices
having finite spatial extensions. Hence one can only hope to see a rapid change in
these quantities near the transition temperature. Looking for metastable states and
hysteresis effects will further help one to determine the order of the transition.

In the following we will restrict ourselves to the pure SU(N) Yang–Mills theory.
Then the partition function has the form

Z =
∫

per
DU e−SG[U ]. (20.4)

Because of the non-abelian structure of the action, this theory is quite non-trivial.
In fact, as we have seen in chapter 17, the pure SU (3) Yang–Mills theory con-
fines a static quark–antiquark pair at low temperatures. The question is whether
confinement persists as the temperature is raised, or whether there exists a criti-
cal temperature where deconfinement sets in. To answer this question we need a
non-perturbative expression for such observables as the mean energy density, and
pressure.

The energy density and pressure are obtained from the partition function in
the usual way:

� = − 1
V

∂

∂β
(ln Z)V ,

p =
1
β

∂

∂V
(ln Z)β.

(20.5)

* Recall that in perturbation theory we were forced to fix the gauge. The gauge
condition was implemented in the path integral by introducing a judisciously chosen
factor 1. One was then led to a gauge fixed path-integral expression where the
field configurations are weighted with an effective action involving the logarithm
of the Faddeev–Popov determinant. Apart from an overall group-volume factor,
which plays no role for the thermodynamics, the gauge fixed partition function was
completely equivalent to the non-gauge fixed expression.
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These expressions must be translated on the lattice into expectation values of
gauge-invariant expressions constructed from the link variables. Since according to
(20.5) we are to keep the physical volume or temperature fixed while varying, re-
spectively, the temperature or volume, we must be able to vary independently the
extension of the lattice in the time and space directions. For a given lattice, this
can be done by choosing different lattice spacings a and aτ along the space and
time directions. In the continuum limit physics should of course be independent
of the lattice regularization. Here we shall only use the anisotropic formulation to
calculate the derivatives in (20.5). The resulting expressions are then evaluated for
a = aτ = a.

The action on an anisotropic lattice has already been constructed in chapter 10.
It is given by (10.16a,b), with Ps and Pτ defined in (10.15b,c). At finite temperature
the lattice has a finite physical extension in the euclidean time direction, and the link
variables satisfy periodic boundary conditions. Note that the couplings associated
with the time-like and space-like plaquettes depend on the spatial lattice spacing, as
well as on the anisotropy parameter. This dependence is a consequence of quantum
fluctuations, while the explicit dependence of the action on ξ is that dictated by
naive arguments alone. If aτ is the lattice spacing in the temporal direction, then
the inverse temperature is given by Nτaτ , where Nτ is the number of lattice sites
along the temporal direction. Of course in a numerical simulation the number of
lattice sites in the spatial direction, Ns, will also be finite. The spatial extension
of the lattice in physical units should however be large enough for finite volume
effects to be negligible. In particular it should be large compared with the largest
correlation length which is determined by the lowest glueball mass. A finite tem-
perature then implies that the extension of the lattice in the temporal direction
will be necessarily smaller than its linear spatial extensions. Given the action on
an anisotropic lattice, we can now vary the temperature by keeping Nτ fixed, and
varying the temporal lattice spacing. Hence the mean energy density and pressure
can be calculated according to

� =
�E�
V

= − 1
NτN3

s a3

[
∂ ln Z(a, aτ )

∂aτ

]

aτ=a

,

p =
1

3NτN3
s a3

[
∂ ln Z(a, aτ )

∂a

]

aτ=a

,

where we have returned to an isotropic lattice after having performed the differen-
tiation. Here ln Z is considered to be a function of the spatial and temporal lattice
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spacings a and aτ . These expressions can also be written in the form

� =
1

NτN3
s a4

∂ ln Z(a, ξ)
∂ξ

|ξ=1,

p =
1

3a4NτN3
s

[
a
∂ ln Z(a, ξ)

∂a
+ ξ

∂ ln Z(a, ξ)
∂ξ

]

ξ=1
,

where the partition function is now considered to be a function of the spatial lattice
spacing a and the asymmetry parameter ξ. From (20.4) it then follows that

� =
1

NτN3
s a4

〈
−∂SG

∂ξ

〉

ξ=1
, (20.6a)

� − 3p =
1

NτN3
s a3

〈
∂SG

∂a

〉

ξ=1
. (20.6b)

The derivatives can be readily calculated from the expression (10.16) for the action,
where g0 is the coupling defined on an isotropic lattice, whose dependence on the
spatial lattice spacing is dictated by (9.21c,d). For SU (3) one finds that [Engels
et al. (1982)]

� =
1

NτN3
s a4

6
g2
0(a)

[�Ps − Pτ � − g2
0(a)�csPs + cτPτ �], (20.7a)

where Ps and Pτ have been defined in (10.15a,b), and where

cσ =
(

∂g−2
σ (a, ξ)
∂ξ

)

ξ=1
. (20.7b)

For the difference � − 3p one obtains

� − 3p = − 1
NτN3

s a4

2
g0

(
a
∂g0(a)

∂a

)
�SG�ξ=1. (20.8)

In obtaining the above expressions, we have made use of the relations

gσ(a, 1) = g0(a),(
∂gσ(a, ξ)

∂a

)

ξ=1
= ∂g0(a)

∂a
.

(20.9)

Notice that (20.8) tells us that the difference �− 3p is proportional to the derivative
of the bare coupling with respect to the lattice spacing. For a noninteracting ideal
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gas of massless vector particles the right-hand side of (20.8) therefore vanishes, since
in the absence of interactions g0 does not depend on a.

Let us now return to expression (20.8). It may be used to obtain a formula for
the latent heat produced in a first order deconfinement phase transition (which is
expected to be seen in the pure SU(3) gauge theory). The reason is that the pressure
should vary continuously in the transition region, while, in the limit of infinite
spatial lattice volume, � will exhibit a discontinuity at the critical temperature. On
a finite lattice this discontinuity will of course be smoothed out, and therefore only
manifest itself as a rapid change in �. But if the pressure varies continuously in the
transition region, then the discontinuity in � (latent heat) is determined from (20.8)
to be

∆� =
1
a4

1
N3

s Nτ

12
g3
0
β(g0)∆�P�, (20.10)

where P = Ps + Pτ , and β(g0) = −a∂g0/∂a is the β-function (9.6b). For small
coupling β(g0) is given by (9.21a,b) with NF = 0. Inserting this expression into
(20.10) we are left with the following formula for ∆�:

∆� = − 1
a4

12
N3

s Nτ

(
11

(4π)2 +
102

(4π)4 g2
0 + · · ·

)
∆�P�. (20.11)

Hence ∆�, measured in units of a−4 can be obtained directly in a MC-simulation.
To obtain ∆� measured in physical units, we must eliminate the lattice spacing a in
favour of the physical lattice scale ΛL, which is a renormalization group invariant.
The relevant relation is given by (9.21c,d). Inserting the expression for a into (20.11),
we obtain

∆�

Λ4
L

= − 12
N3

s Nτ

(
11g2

0

16π2

) 204
121

(
11

(4π)2 +
102

(4π)4 g2
0 + · · ·

)
e

32π2

11g2
0 ∆�P�. (20.12)

Hence by measuring the discontinuity in �P� at the (first order) phase transition,
for a given value of the bare coupling, one can determine ∆� in units of the lattice
parameter. The above relation holds of course only close to the continuum limit.

20.2 The Wilson Line or Polyakov Loop

At zero temperature, the potential of a static quark–antiquark pair can be
determined by studying the ground state expectation value of the Wilson loop for
large euclidean times. At finite temperatures the lattice has a finite extension in
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the time direction, and the Wilson loop no longer plays this role. The question
therefore arises which is the corresponding object to be considered when studying
QCD at finite temperature. To this effect we notice that, because of the periodic
structure of the lattice, we can also construct gauge-invariant quantities by tak-
ing the trace of the product of link variables along topologically non-trivial loops
winding around the time direction. In fig. (20-1) we show a two-dimensional picture
of the simplest loop we can construct, located at some spatial lattice site �n. Con-
sider the following expression, constructed from the link variables located on this
loop,

L(�n) = Tr
β̂∏

n4=1

U4(�n, n4). (20.13)

This expression is invariant under periodic gauge transformations:

U4(�n, n4) → G(�n, n4)U4(�n, n4)G−1(�n, n̂4 + 1),

G(�n, 1) = G(�n, β̂ + 1).

L(�n) is referred to in the literature as the Wilson line, or Polyakov loop. As we
now show, its expectation value has a simple physical interpretation. The argument
given below is only qualitative. For a more detailed discussion we refer the reader
to the work of McLerran and Svetitsky (1981). To keep the presentation as simple
as possible, we will consider the U(1) gauge theory in the absence of dynamical
fermions. Furthermore we shall use the continuum formulation.

Nτ

Fig. 20-1 Two-dimensional picture of a loop winding around the time

direction.

Consider the partition function of the system consisting of an infinitely heavy
quark coupled to a fluctuating gauge potential.

Z =
∑

s

�s|e−βH |s�. (20.14)
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The sum over s extends over all states of the form Ψ†(�x, 0)|s��, where Ψ†(�x, 0) creates
a quark located at �x and at time x4 = 0 when acting on the states |s�� which do not
contain the heavy quark. Using the fact that exp(−βH) generates euclidean time
translations by β, we can write (20.14) in the form

Z = N
∑

s′

�s�|Ψ(�x, 0)e−βHΨ†(�x, 0)|s��

= N
∑

s′

�s�|e−βHΨ(�x, β)Ψ†(�x, 0)|s��,
(20.15)

where N takes into account the normalization of the quark state. But in the static
limit the dependence of Ψ(�x, β) on β is determined by*

(∂τ − ieA4(�x, τ))Ψ(�x, τ) = 0.

Hence

Ψ(�x, β) = eie
∫ β
0 dτA4(�x,τ)Ψ̄(�x, 0).

Inserting this result into (20.15), we are left with an expression involving the operator
Ψ(�x, 0)Ψ†(�x, 0). This operator describes the creation and destruction of a heavy
quark at the same space time point. It merely gives rise to an (infinite) constant
which is cancelled by the normalization factor N . A more careful treatment, similar
to that presented in chapter 7, shows that (20.15) can be replaced by

Z = Tr(e−βHL(�x)), (20.16a)

where

L(�x) = eie
∫ β
0 dτA4(�x,τ) (20.16b)

is the U(1) continuum analogue of the Wilson line (20.13), and where the trace is
performed over the states of the pure gauge theory. The corresponding path integral
representation of (20.16a) is therefore given by

Z =
∫

DA L(�x)e−S
(β)
G [A], (20.17)

where SG[A] is the finite temperature gauge field action, and where the integration
extends over all fields Aµ(x) satisfying periodic boundary conditions. Notice that

* This corresponds to neglecting the contribution of the kinetic term and of the
vector potential in the Dirac equation. We have dropped the mass term since it gives
merely rise to an exponential factor.
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L(�x) is invariant under periodic gauge transformations. In the non-abelian case the
potential A4 is a Lie algebra-valued matrix, and (20.16b) must be replaced by the
trace in colour space of the corresponding time-ordered expression. From (20.17)
we conclude that the free energy of the system with a single heavy quark, measured
relative to that in the absence of the quark is given by

e−βFq = �L� =
1
V

∑
�x

�L(�x)�, (20.18)

where V is the spatial volume of the lattice. In writing the last equality we have
made use of the translational invariance of the vacuum. On the lattice, the left-hand
side of (20.18) is replaced by exp(−β̂F̂q), where β̂ and F̂q are the inverse temperature
and the free energy measured in lattice units.

The Polyakov loop resembles the world line of a static quark in a Wilson loop.
This suggests that the free energy of a static quark and antiquark located at �x = �na

and �y = �ma, with a the lattice spacing, can be obtained from the correlation function
of two such loops with base at �n and �m, and having opposite orientations (see
fig. (20-2)):

Γ(�n, �m) = �L(�n)L†(�m)�. (20.19)

Fig. 20-2 Two Polyalov loops, winding around the time direction, used

to measure the qq̄-potential.

Indeed, by the same type of arguments which led to the connection between the
Wilson loop and the static qq̄-potential in chapter 7, but with T now replaced by
β, one can show that (20.19) is related to the free energy F̂qq̄(�n, �m) of a static
quark-antiquark pair, measured relative to that in the absence of the qq̄ pair, as
follows:

Γ(�n, �m) = e−β̂F̂qq̄(�n,�m). (20.20)
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Assuming that Γ(�n, �m) satisfies clustering, we have that

�L(�n)L†(�m)� −→
|�n−�m|→∞

|�L�|2. (20.21)

From here we conclude that if �L� = 0, then the free energy increases for large |�n−�m|
with the separation of the quarks. We interpret this as signalizing confinement.

�L� = 0 (confinement). (20.22)

On the other hand, if �L� �= 0, then the free energy of a static quark–antiquark
pair approaches a constant for large separations. In the absence of vacuum po-
larization effects, arising from dynamical quark, we interpret this as signalizing
deconfinement:

�L� �= 0 (deconfinement in the pure gauge theory). (20.23)

The qq̄ potential in the deconfined phase is obtained by dividing (20.20) by |�L�|2,
which removes the self-energy contributions of the individual quarks, i.e.,

e−β̂Vqq̄(R̂) =
�L(�n)L†(�m)�

|�L�|2 , (20.24)

where R̂ = |�n − �m|.

The above connection between the expectation value of the Wilson line and
the free energy of a heavy quark was “derived” assuming that no quarks of finite
mass coupled to the gauge potential. But this connection also holds when we include
dynamical fermions. This is borne out by a more careful treatment, where one first
considers the partition function including “light” and heavy quarks, and then takes
the infinite mass limit for the heavy quarks. In this way one finds that the free
energy Fq is again related to �L� by (20.18), except that now the expectation value
is calculated with the finite temperature action involving the dynamical fermions
[McLerran and Svetitsky (1981)].

According to (20.22) and (20.23), the expectation value of the Wilson line
evaluated in a pure gluonic medium serves as an order parameter for distinguishing
a confined from a deconfined phase in the pure SU(3) gauge theory. In statistical
mechanics, phase transitions are usually associated with a breakdown of a global
symmetry. We now show that this is also expected to be true in the SU(3) gauge
theory.
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20.3 Spontaneous Breakdown of the Center Symmetry
and the Deconfinement Phase Transition

The lattice action of the pure SU (3) gauge theory is not only invariant under
periodic gauge transformations, but also possesses a further symmetry which is not
shared by the Wilson line. Consider the elements of SU(3) belonging to the center
C of the group.* They are given by exp(2πil/3) ∈ Z(3) where l = 0, 1, 2. Clearly
the action (10.16) is invariant if we multiply all time-like oriented link variables
U4 between two neighbouring spatial sections of the lattice by an element of the
center

U4(�n, n4) → zU4(�n, n4),

where z ∈ C. But the Wilson line is not invariant since it contains one link variable
which transforms non-trivially:

L(�n) → zL(�n).

Now if the ground state of the quantum system respects the symmetry of the classical
action, then link configurations related by the center symmetry will occur with
the same probability. Thus the same number of configurations will yield the values
Ll = e2πil/3L(l = 0, 1, 2) for the Wilson line. Since

∑
l exp(2πil/3) = 0, it follows that

the expectation value of the Wilson line must vanish. But this we had interpreted
as signalizing confinement. Hence we expect that the center symmetry is realized
in the low temperature, confining phase of the pure SU (3) gauge theory. On the
other hand, if �L� �= 0, then the center symmetry is necessarily broken. We hence
expect that a deconfinement phase transition is accompanied by a breakdown of
the center symmetry and that the phases of the Polyakov loops cluster around
any one of the Z(3) roots. As we shall see in section 6, this is borne out by MC
calculations. That the Z(3) symmetry plays a crucial role in the confinement problem
has been suggested some time ago by Svetitsky and Yaffe (1982). These authors
argued that the critical behaviour of the SU (3) gauge theory is that of an Z(3)
spin model. Since this model exhibits a first-order phase transition, one also expects
that a deconfinement phase transition in the pure SU (3) gauge theory, is of first
order.

The above considerations applied only to the pure gauge sector, or equivalently
in the infinite quark mass limit. The case of infinitely heavy quarks is of course

* The center C of a group G consists of all elements z for which zgz−1 = g, with
g ∈ G.
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unphysical. Nevertheless the study of the pure SU (3) gauge theory provides us with
important information regarding the role played by the non-abelian gauge field for
quark confinement. As we have pointed out before, one generally believes that quark
confinement is a consequence of the non-abelian self-couplings of the gauge potential.
At low temperatures, this non-abelian coupling is expected to lead to the formation
of a flux tube (→ string) connecting the quark and antiquark. The energy stored
in the string is proportional to its length which is of the order of the separation of
the quark and antiquark pair. As the temperature is increased, the string begins to
fluctuate more and more, its length now being larger than the separation between
the quarks. At the same time the number of possible string configurations with a
given length will increase. That is, the entropy will start competing with the energy
carried by the string. At sufficiently large temperature, the system may then prefer
to form networks of flux tubes to which the quark and antiquark are attached to.
Thus above some critical temperature a new phase may be formed, consisting of
huge networks of flux tubes (Patel, 1984). The energy of such a configuration will
be roughly the same, no matter where the quark and antiquark are hooked onto a
network. This corresponds to deconfinement. When dynamical quarks are coupled
to the gauge potentials, then flux tubes can break. The probability for this to occur
increases with decreasing quark mass. This is also true for the single flux tube
connecting the quark and antiquark at low temperatures. In both cases the forces
between the quarks get screened. But whereas the screening at low temperatures is
due to pair production processes along the single string connecting the two quarks,
the breakdown of the network in the presence of light dynamical quarks resembles
more the Debye screening in a plasma.

Finally we want to mention that a fermionic contribution to the action breaks
the center symmetry explicitly. Hence the expectation value of the Wilson line need
not vanish in the confining phase. In this case the free energy of a qq̄ pair approaches
a finite constant for infinite separations, which is consistent with the expectation
that the force between two quarks is screened by vacuum polarization effects.

20.4 How to Determine the Transition Temperature

When studying QCD at finite temperature in a Monte Carlo simulation one
must first decide on the spatial and temporal extension of the lattice to be used. In
principle, the spatial volume should be chosen large enough so that finite volume
effects do not play an important role. For a given set of lattice sites the linear physical
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extension of the lattice will depend on the lattice spacing, and hence on the value
of the bare coupling constant. Again, in principle, this coupling should be taken
small enough to approximate continuum physics. Let Ns be the number of lattice
sites along any one of the three spatial directions. It then follows from the euclidean
space-time symmetry of the path integral formulation that for lattices with temporal
extent Nτ > Ns physics should be insensitive to the periodic boundary conditions
in the time direction — if it is not sensitive to the finite spatial volume. Hence such
a choice of lattice is appropriate for studying QCD at “zero” temperatures.* On
the other hand, to study QCD at high temperatures, the temporal extension of the
lattice must be much smaller than in the space directions. This is the reason why
Monte Carlo computations are carried out on lattices with Nτ < Ns. For a given
lattice spacing a the physical temperature is given by

T =
1

Nτa
.

Thus the temperature can be varied by either changing Nτ (then the temperature
varies in a discontinuous way), or by varying the lattice spacing, which can be done
by changing the coupling g0. In principle the best way of proceeding would be to
introduce two types of couplings which allow one to vary the lattice spacing in the
temporal direction without changing the spatial volume of the lattice. But if this
volume is large enough for finite volume effects to be negligible (which they are not
in general) then a single coupling constant should suffice.

To determine the critical temperature at a phase transition one studies the tem-
perature dependence of an order parameter, and of such thermodynamical quantities
as the energy density, specific heat, etc.. If the QCD coupling 6/g2

0 is large enough,
then the lattice spacing is related to the bare coupling constant by (9.21c,d) and
the temperature is given by

T =
ΛL

NτR(g0)
.

Let gc be the critical coupling at which the phase transition takes place. Then the
critical temperature is given by

Tc =
ΛL

NτR(gc)
. (20.25)

* Actually, the temperature is never really zero on a lattice with finite temporal
extension.
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To test whether one is really determining a physical transition temperature, one
should repeat the simulation for lattices of different temporal extensions, determine
gc in each case (gc will of course depend on the choice of Nτ ) and check that

NτR(gc(Nτ )) = const. (20.26)

Another way of obtaining the transition temperature in physical units is to measure
some other observable, such as a hadron mass. Since the critical temperature and
hadron mass in lattice units are given by T̂c = Tca and m̂H = mHa, where mH is
the physical hadron mass, it follows that T̂c/m̂H = Tc/mH . Hence the temperature
in physical units is given by

Tc =

(
T̂c

m̂H

)
mH .

As we shall see in section 6 there exists strong evidence that QCD undergoes a
deconfinement phase transition at high temperatures. If so, this would be an inter-
esting prediction of this theory which, if confirmed by experiment, would constitute
an important test of QCD as being the correct theory of strong interactions.

20.5 A Two-Dimensional Model. Test of Theoretical Concepts

In the previous sections we have introduced a number of important concepts
which are relevant for studying the thermodynamics of a pure gauge theory. Since
our discussion has been in part quite formal, it is instructive to check the theoretical
ideas in a solvable model. The simplest lattice model one can consider is the U(1)
gauge theory in one time and one space dimension. This theory will confine a qq̄-pair,
since in one space dimension the field energy cannot spread out in space. In this
section we will use the compact U(1) gauge theory as a toy model to calculate the
following quantities: i) the expectation value of the Polyakov loop, ii) the expectation
value of two oppositely oriented Polyakov loops (which is related to the free energy
of a static qq̄-pair), and iii) the ensemble average of the electric field energy density
stored in the string connecting an oppositely charged pair. We will compute these
quantities using the character expansion, in order to illustrate at the same time a
technique which is relevant for strong coupling expansions in SU(N) lattice gauge
theories.* For the simple model we consider the calculations could actually be carried
out without making use of this sophisticated method.

* See e.g., Migdal (1975); Drouffe and Zuber (1983); Munster (1981); Wolf (1993).
The character expansion has been used by Rusakov (1990) to compute observables
in U(N) gauge theories on arbitrary two-dimensional manifolds.
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The basic idea of the character expansion is the following. In a lattice gauge
theory the pure gauge part of the action has the form

SG[U ] = κ̂
∑

P

F (UP ),

where UP are the plaquette variables, and F (UP ) is a real valued function of the
plaquette variables which is invariant under gauge transformations, F (g−1UP g) =
F (UP ), with g an element of the unitary gauge group G. We have denoted the
coupling by κ̂, instead of β̂, which we reserve for the inverse temperature measured
in lattice units. Since exp(−κ̂F (UP )) is a class function on G it can be expanded
in terms of irreducible characters (traces of irreducible representations) of UP as
follows

exp(−κ̂F (UP )) =
∑

ν

dνλν(κ̂)χν(UP ), (20.27)

where ν labels the irreducible representations of G, χν is the character of UP in the
ν’th irreducible representation, and dν is the dimension of the representation. For a
real class function F (U), conjugate representations χν and χν̄ contribute with the
same weight in (20.27). The plaquette variables UP must be chosen with a conven-
tional orientation. The convention chosen is immaterial, for changing the convention
merely replaces UP by U †

P , and hence the representation “ν” by its conjugate “ν̄”.
Below we list some important formulae which we will need for our discussion.

Let V , W , V1, Ω1, etc. be elements of a compact unitary group G, and dV the
normalized Haar measure on G (i.e.,

∫
DV = 1), satisfying

dV = dV −1 = d(V W ); W ∈ G. (20.28)

Then the following relations hold:*
∫

dV χν(V )χν′(V †) = δνν′ , (20.29a)
∫

dV χν1(V1V )χν2(V
†V2) =

1
dν1

δν1ν2χν1(V1V2), (20.29b)
∫

dV χν(V Ω1V
†Ω2) =

1
dν

χν(Ω1)χν(Ω2). (20.29c)

* Making use of (20.28), these formulae are seen to hold also if V denotes a
product of link variables and dV , the corresponding product of Haar measures.
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From the character expansion (20.27), and the orthogonality relation (20.29a) it
follows that

λν(κ̂) =
1
dν

∫
dUχν(U †)e−κ̂F (U). (20.30)

In the case where G = U(1), the irreducible representations are one dimensional,
and the characters are given by* χν(U) = eiνθ, where ν is an integer. The U(1)
action has the form (see (8.10))

SG[U ] = κ̂
∑

P

[
1 − 1

2
(UP + U †

P )
]

= κ̂
∑

P

[1 − cos θP ], (20.31)

where κ̂ = 1
ê2 , with ê the charge e measured in lattice units, i.e., ê = ea. θP is the

sum of the phases of the directed link variables around a plaquette P . The Haar
measure, normalized to unity, is given by dU = dθ/2π. When calculating the expec-
tation value of an observable we can replace the Boltzmann factor exp(−κ̂SG[U ])
by

∏
P exp(κ̂ cos θP ). Then

�O� =
∫

DUO[U ]
∏

P eκ̂f(UP )
∫

DU
∏

P eκ̂f(UP )
, (20.32a)

where

f(UP ) = cos θP . (20.32b)

Accordingly, eq. (20.27) is replaced in the U(1) gauge theory by

eκ̂f(UP ) =
∑

ν

Iν(κ̂)χν(UP ), (20.33)

where the coefficients have been calculated from (20.30) with κ̂F (U), dU and χν(U)
replaced by −κ̂ cos θ, dθ/2π and exp(iνθ), respectively. Iν(κ̂) is the modified Bessel
function of order ν.

Consider two plaquettes P1 and P2 having a link in common. With each pla-
quette there is a factor exp(κ̂f(UP )) asssociated with it. The character expan-
sion allows us to perform the integration over the common link-variable, which
we denote by V . This is also the case for non-abelian gauge theories, where this

* For SU(2) the link variables in the fundamental representation can be
parametrized in form U = cos θ

2 + i�σ · �n sin θ
2 , where σi are the Pauli matrices

and �n a unit vector. The Haar measure and characters are given in this case by
dU = 1

8π2 sin2 θ
2dθdΩ and χν(U) = sin(j+1/2)θ

sin θ
2

, where j takes integer or half integer
values.
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method acquires its real power. For the U(1) gauge theory the integral of interest is
given by

∫
dV eκ̂f(UP1 )eκ̂f(UP2 ) =

∑
ν1ν2

Iν1(κ̂)Iν2(κ̂)
∫

dV χν1(UP1)χν2(UP2).

Let Ω1 and Ω2 denote the path ordered products* of link variables along the solid
and dottet paths shown in fig. (20-3). Then UP1 = Ω1V and UP2 = V †Ω2.

V V †
Ω1 Ω2

Fig. 20-3 Two plaquettes which are glued together at the common link.

Making use of (20.29b) with dν = 1, one obtains
∫

dV eκ̂f(UP1 )eκ̂f(UP2 ) =
∑

ν

[Iν(κ̂)]2χν(U∂P12),

where U∂P12 is the “path ordered” product of link variables around the boundary
of the area covered by the two plaquettes. This area, measured in lattice units,
equals the power of the coefficient Iν(κ̂). Proceeding in this way, one can carry out
successively the integration over all link variables lying inside of a simply connected
two-dimensional lattice of area A, bounded by a simple closed contour ∂A. The
result is the K-functional [Migdal (1975)],

KA(U∂A) =
∑

ν

[Iν(κ̂)]Âχν(U∂A), (20.34)

where U∂A = Ω0Ω�ΩβΩ is the path ordered product of link variables around the
boundary of the lattice shown in fig. (20-4), and Â is the number of plaquettes
in the domain bounded by ∂A. This expression holds for a lattice bounded by an
arbitrarily shaped contour.

The only other K-functional we shall need is that associated with a lattice with
a hole, depicted in fig. (20-5a). We shall denote this functional by KA,o, where Â is
the number of plaquettes bounded by the two closed curves. It is obtained by glueing

* Of course in the abelian case path ordering is irrelevant. We shall nevertheless
use this language and always write the product of link variables in the path ordered
form, as would be required in the non-abelian case.
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Ω′Ω

Ωβ

Ω0

Fig. 20-4 All link variables except for those on the boundary of the lat-

tice have been integrated out. The corresponding K-functional only depends

on the path ordered product of the link-variables along the boundary.

together the K-functionals for the two sufaces without holes, shown in fig. (20-5b),
along the common links. Hence

KA,o =
∫

dV1dV2KA1(U∂A1)KA2(U∂A2).

Ω Ω1 Ω2ω

A
∧

V †
2

V †
1

ω

A1 V1 A2

V2

1 ω2

(a) (b)

Fig. 20-5 Two surfaces without holes which are glued together along

the common links.

Written out explicitely we have that

KA,o =
∑
ν1ν2

[Iν1(κ̂)]Â1 [Iν2(κ̂)]Â2

∫
dV1dV2χν1(Ω1V2ω1V1)χν2(V

†
1 ω2V

†
2 Ω2).

Making use of (20.29b) with dν = 1, we can perform the integral over V1 and obtain

KA,o =
∑

ν

[Iν(κ̂)]Â
∫

dV2χν(Ω1V2ω1ω2V
†
2 Ω2).

This integral is of the form (20.29c).* Hence

KA,o(Ω, ω) =
∑

ν

[Iν(κ̂)]Âχν(Ω)χν(ω), (20.35)

* In the non-abelian case one makes use of the invariance of the character (trace)
under cyclic permutations of the matrix valued group elements.



February 8, 2012 7:15 Lattice Gauge Theories: An Introduction (4th Edition) 11in x 8in b1271-ch20

522 Lattice Gauge Theories

where Ω and ω are the products of the link variables along the closed contours shown
in fig. (20-5a). As we shall see, all other K-functionals which we will need can be
obtained from (20.34) and (20.35). These K-functionals will depend on i) the link
variables living on the boundary of the lattice, and ii) the link variables on which
the observable depends whose expectation value we want to calculate.

At finite temperature the lattice has a finite extension in the euclidean time
direction, given by the inverse temperature β, and the link variables at times τ = 0
and τ = β are identified. For the time-like oriented link variables on the spatial
boundary of the lattice one can, for example, impose periodic, or free boundary
conditions. Let ΓL denote the set of unconstrained variables on the boundary of
the lattice, and Γ the set of variables on which the observable O depends. The
corresponding finite temperature K-functional we denote generically by K(β)(ΓL, Γ).
Then the expectation value (20.32a) will be given by

〈O〉 =
∫

DΓLDΓ O[Γ]K(β)(ΓL, Γ)∫
DΓLK(β)(ΓL)

, (20.36a)

where

K(β)(ΓL) =
∫

DΓK(β)(ΓL, Γ). (20.36b)

Having set up the general framework, we now proceed to some concrete calculations.

(i) The Polyakov Loop

Consider the expectation value of a Polyakov loop (or Wilson line) in the ν = 1
representation, i.e.,

〈L〉 = 〈χ1(UΓ)〉,

where UΓ denotes the (path ordered) product of link variables along a closed loop Γ
winding around the compactified surface along the temperature axis. To calculate
this expectation value we must evaluate the numerator and denominator in (20.32a).

Consider first the denominator. The relevant finite-temperature K-functional is
obtained from (20.34) by identifying Ω†

β with Ω0 in U∂A = Ω0Ω�ΩβΩ (see fig. (20-4)),
and integrating the expression over Ω0, making use of (20.29c) with dν = 1. One
then finds that

K
(β)
A (Ω, Ω�) =

∑
ν

[Iν(κ̂)]Âχν(Ω)χν(Ω�). (20.37)

This is the K-functional associated with the surface shown in fig. (20-6).
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Ω Ω′

Fig. 20-6 Lattice which is compactified along the temperature axis.

The corresponding finite temperature K-functional only depends on the

path ordered products of link variables Ω and Ω′.

We next must decide what type of boundary conditions we want to impose on
the link variables at the ends of the cylinder. Imposing periodic boundary conditions,
i.e., identifying Ω and Ω�†, and integrating the expression over Ω, fig. (20-6) is glued
together to the torus. Making use of (20.29a) the corresponding K-functional is
given by

K
(β,torus)
A = Z(torus) =

∑
ν

[Iν(κ̂)]Â, (20.38)

which is just the denominator of (20.32a).
If instead of toroidal boundary conditions we impose free spatial boundary con-

ditions, then integrating (20.37) over Ω and Ω� projects out the trivial representation.
Hence

K
(β,free)
A = Zfree = [I0(κ̂)]Â. (20.39)

Zfree is just the denominator of (20.32a) for free spatial boundary conditions.
Consider next the numerator of (20.32a), or of (20.36a) with O[Γ] replaced by

χ1(UΓ). The relevant K-functional is that associated with fig. (20-7a). It is given
by the product of the K-functionals associated with the two surfaces shown in
fig. (20-7b):

K
(β)
A1A2

= K
(β)
A1

(Ω, UΓ)K(β)
A2

(U †
Γ, Ω�). (20.40)

Imposing the periodic boundary condition Ω�† = Ω, and integrating over Ω, we
obtain

K
(β,torus)
A1A2

(UΓ, U †
Γ) =

∑
[Iν(κ̂)]Âχν(UΓ)χν(U

†
Γ),

where Â is the total area of the lattice, measured in lattice units. The expectation
value of the Polyakov loop 〈L〉 = 〈χ1(UΓ)〉 is now given by

〈L〉(torus) =
1

Z(torus)

∫
DUΓχ1(UΓ)K(β,torus)

A1,A2
(UΓ, U †

Γ).
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Ω Ω UΓ U†
ΓΩ′ Ω′

(a) (b)

Fig. 20-7 (a) All link variables except for those living on the closed

contours are integrated out. The corresponding K-functional is given by

product of the K-functionals associated with the two surfaces shown in (b).

A pictorial representation of the numerator is given in fig. (20-8). Evaluation of the
integral yields

�L�torus =
1

Z(torus)

∑
ν

[Iν(κ̂)]ÂDν
1ν ,

where the Wigner coefficient Dk
rr′ is defined by

Dk
rr′ =

∫
dUχr(U)χr′(U)χk(U †)

= δk,r+r′ (for U(1)).
(20.41)

Hence

�L�torus = 0,

which according to the criterium (20.22) implies confinement. This is of course ex-
pected to be the case in one space dimension, as we have pointed out at the begin-
ning of this section. As the reader can readily verify, the same result is obtained by
imposing free boundary conditions.

χ1(UΓ)

Fig. 20-8 Fig. (20-7b) glued together to a torus. Also shown is the

insertion of a Polyakov loop.
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In order to keep the following disussion as simple as possible, we will choose
free boundary conditions from now on.

(ii) The Free Energy of Static qq̄-Pair

According to (20.20) the free energy of a qq̄ pair, measured relative to the
vacuum, is related to the expectation value of two oppositely oriented Wilson lines by

F̂qq̄(R̂, β̂) = − 1

β̂
ln�LnL

†
n′�, (20.42a)

where R̂ = |n − n�|, and

Ln = χ1(UΓ); L†
n′ = χ1(U

†
Γ′). (20.42b)

Here UΓ and U †
Γ′ denote the product of link variables along the two closed paths

shown in fig. (20.9a), located at the spatial lattice sites n and n� of the two
charges.

Ω Ω′
A1 A2 A3

UΓ UΓ′
UΓ

† UΓ
†

′

(a) (b)

Fig. 20-9 (a) Two oppositely oriented Polyakov loops winding around

the compactified lattice; (b) The relevant K-functional is given by the prod-

uct of the K-functionals associated with the 3 surfaces.

For free spatial boundary conditions the relevant K-functional is given by the prod-
uct of the K-functionals associated with the three surfaces in fig. (20-9b), integrated
over Ω and Ω�,

K
(β,free)
A1A2A3

=
∫

dΩdΩ�K
(β)
A1

(Ω, UΓ)K(β)
A2

(U †
Γ, UΓ′)K(β)

A3
(U †

Γ′ , Ω�).

Making use of the expression (20.37), the integral can be readily performed and one
obtains

K
(β,free)
A1A2A3

(U †
Γ, UΓ′) = [I0(κ̂)]Â1+Â3

∑
ν

[Iν(κ̂)]Â2χν(U
†
Γ)χν(UΓ′).
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The expectation value in (20.42a) is then given by

�LnL
†
n′� =

1
Z(free)

∫
dUΓdUΓ′χ1(UΓ)χ1(U

†
Γ′)K(β,free)

A1A2A3
(U †

Γ, UΓ′).

The integral can be evaluated immediately by making use of the orthogonality re-
lation (20.29a) and of (20.39):

�LnL
†
n′� =

(
I1(κ̂)
I0(κ̂)

)Â2

. (20.43)

where Â2 is the number of plaquettes enclosed by the two Polyakov loops. According
to (20.42a), the free energy of a static oppositely charge pair is therefore given in
lattice units by

F̂qq̄(R̂, κ̂) =
(

ln
I0(κ̂)
I1(κ̂)

)
R̂. (20.44)

The right hand side coincides with the expression we derived in chapter 8 for the
qq̄-potential at zero temperature (cf. eq. (8.17)) . This is not surprising, since in one
space dimension the string connecting the charged pair cannot fluctuate. From our
discussion in chapter 8 it therefore follows immediately that in the continuum limit
(κ̂ = 1

ê2 = 1
e2a

→ ∞) the free energy, measured in physical units, is given by

Fqq̄(R) =
1
2
e2R. (20.45)

Hence in this model the qq̄-system is confined.

(iii) Energy Sum Rule

In the following we first derive an energy sum rule which relates the mean
energy of a static quark–antiquark pair to the field energy stored in the string. The
sum rule is then evaluated using the character expansion.

Consider the partition function for a static qq̄ pair:

Zqq̄ =
∫

DULnL
†
n′e

−SG = Z0�LnL
†
n′�

where Z0 =
∫

DUe−SG . The mean energy, measured relative to the vacuum, is then
given by

�E� = − ∂

∂β
ln�LnL

†
n′�.
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To evaluate the rhs we must be able to vary the temperature in a continuous way.
Since β = β̂aτ , where aτ is the lattice spacing in the euclidean time direction, we
can vary the temperature by varying aτ , keeping the number of lattice spacings
β̂ in the temporal direction fixed. To calculate the β-derivative we must therefore
first evaluate the expectation value �LnL

†
n′� on an anisotropic lattice. From our

discussion in section 2 of chapter 10 it is evident that the finite temperature action
on an anisotropic lattice is given for our U(1) model by

S(β)[U ; ξ] = κ̂ξ
∑

P

[1 − Re UP ], (20.46)

where ξ = a
aτ

, with a the spatial lattice spacing. Since the naive continuum limit of
this action is that of a free theory, we do not expect that the coupling κ̂ must be
tuned with the lattice spacings a and aτ when taking the continuum limit (as was
the case for the non-abelian theory). The mean energy, measured in lattice units is
therefore given by

�Ê� =
1

β̂

(
∂

∂ξ
ln�LnL

†
n′�

)

ξ=1
. (20.47a)

where

�LnL
†
n′� =

∫
DULnL

†
n′e−κ̂ξ

∑
P [1−Re UP ]

∫
DU e−κ̂ξ

∑
P [1−Re UP ] . (20.47b)

In (20.47a) we have returned to an isotropic lattice after differentiation. Performing
the differentiation in ξ we obtain

�Ê� =
κ̂

β̂
�−P�qq̄−0, (20.48a)

where

P =
∑

P

[1 − Re UP ], (20.48b)

and

�P�qq̄−0 =
�LnL

†
n′P�

�LnL
†
n′�

− �P�. (20.48c)

In the naive continuum limit P → 1
2

∫
d2xF12F12. In one space dimension the field

tensor Fµν has only one non-vanishing component, F12, corresponding to the elec-
tric field. One of the objectives of this calculation will be to confirm that the
euclidean formulation, with this minus sign in (20.48a), gives the expected answer
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for the mean energy. A similar expression had been obtained in chapter 10 for the
contribution of the electric field to the energy sum rule in the pure SU(3) gauge
theory.

Because of translational invariance in the euclidean time direction, we can also
write (20.48a) in the form

�Ê� = κ̂�−P ��qq̄−0, (20.49)

where P � denotes the contribution to (20.48b) arising from plaquettes located on a
fixed time slice. From here we infer that the energy density, as probed by a plaquette,
is given in lattice units by

�Ê� = κ̂

[
�LnL

†
n′ReUP �

�LnL
†
n′�

− �ReUP �
]

. (20.50)

The expectation values are calculated on an isotropic lattice according to (20.32).
For free spatial boundary conditions �LnL

†
n′� is given by (20.43). The relevant

K-functional for evaluating �LnL
†
n′Re UP � before imposing free spatial boundary con-

ditions, is given by the product of i) the K-functionals associated with the surfaces
with areas A1 and A3 in fig. (20-10), ii) the K-functional associated with the surface
A2, where the window has the size of a single plaquette, and iii) the K-functional of
a single plaquette, whose Fourier Bessel expansion is given by (20.33). The finite-
temperature K-functional associated with the surface A2 is obtained from (20.35) in
the by now familiar way. One readily finds that

K
(β)
A2,o =

∑
ν

[Iν(κ̂)]Â2χν(U
†
Γ)χν(UΓ′)χν(U

†
P ). (20.51)

Ω Ω′

A1
A2 A3

UΓ UΓ′UΓ
† UP

†
UΓ

†
′

Fig. 20-10 The K-functional relevant for the computation of �LnL†
n′

Re UP � is given, before imposing spatial boundary conditions, by the prod-

uct of the K-functionals associated with the three surfaces with areas A1,

A2, and A3, and the K-functional for a single plaquette.
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Hence the K-functional associated with fig. (20-10), integrated over Ω and Ω� (→ free
boundary conditions) is given by

K
(β,free)
A1A2A3A4

= [I0(κ̂)]Â1+Â3

[∑
ν2

[Iν2(κ̂)]Â2χν2(U
†
P )χν2(U

†
Γ)χν2(UΓ′)

]

×
∑
ν4

Iν4(κ̂)χν4(UP ).

This K-functional has to be folded with

LnL
†
n′Re UP = χ1(UΓ)χ1(U

†
Γ′)

1
2
[χ1(UP ) + χ1(U

†
P )].

One then finds that

�LnL
†
n′Re UP � =

1
2

(
I1(κ̂)
I0(κ̂)

)Â2 ∑
ν4

(
Iν4(κ̂)
I0(κ̂)

)
(D1

1ν4
+ Dν4

11
∗),

where the Wigner coefficients have been defined in (20.41). Hence

〈
LnL

†
m

1
2
(UP + U †

P )
〉

=
1
2

(
I1(κ̂)
I0(κ̂)

)Â2
(

1 +
I2(κ̂)
I0(κ̂)

)
.

This result is also valid if the plaquette touches a Wilson line. Dividing this ex-
pression by (20.43), with Â2 replaced by Â2 + 1 (i.e., the area enclosed by the two
Polyakov loops, including the area of the window), we obtain

〈
LnL

†
m

1
2(UP + U †

P )
〉

�LnL
†
m�

=
I0(κ̂) + I2(κ̂)

2I1(κ̂)
. (20.52)

The reader will have noticed that in obtaining this expression we have probed the
field energy with a plaquette placed in between the Wilson lines. It can be shown
that the corresponding expectation value with a plaquette placed outside the area
bounded by the two Polyakov loops vanishes.

Finally, let us compute the expectation value of ReUP in (20.50). The relevant
K-functional is given by the product of i) the K-functional (20.51) with Â2 = Â−1,
integrated over UΓ and UΓ′ (→ free boundary conditions), and ii) the K-functional
for a single plaquette is given by (20.33). One then finds that

�Re UP � =
1

Zfree
[I0(κ̂)]Â

∑
ν

Iν(κ̂)
I0(κ̂)

∫
DU P

1
2
[χ1(UP ) + χ1(U

†
P )]χν(UP )
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or

�Re UP � =
I1(κ̂)
I0(κ̂)

. (20.53)

Here we have made use of the fact that χν(U †) = χ−ν(U), and I−ν(κ̂) = Iν(κ̂).
Taking the difference of (20.52) and (20.53), we obtain the mean energy density in
lattice units

�Ê� = κ̂
I0(κ̂) + I2(κ̂)

2I1(κ̂)
− κ̂

I1(κ̂)
I0(κ̂)

. (20.54)

In the continuum limit κ̂ → ∞. Expanding the ratio of modified Bessel functions in
powers of 1

κ̂
one finds that each of the two terms in the above expression is singular

in this limit. The singular parts however cancel in the difference, and after setting
κ̂ = 1

e2a2 , one finds that the mean energy per unit length, measured in physical units,
i.e., E = Ê

a2 , is given by e2/2, or

�E� =
1
2
e2R.

Notice that the mean energy coincides with the free energy (20.45). This is particular
to the simple model we have considered, where the free energy does not depend on
the temperature.

The expression (20.54) could also have been derived directly from (20.48a).
Thus on an anisotropic lattice �LnL

†
n′� is given by (20.43) with κ̂ replaced by ξκ̂

(as follows from the form of the action (20.46)). Performing the differentiation in
(20.47a) one readily verifies that one recovers the result (20.54). But our work has not
been in vain, for it served to test some subtle points we mentioned in chapter 10.
Thus it not only served to test the energy sum rule, but in particular the minus
sign in (20.49a), which is typical for the euclidean formulation, as we have already
seen in chapter 10. There is another lesson we have learned. As we have mentioned
above both terms in (20.54) diverge in the continuum limit, but their difference is
finite. We had encountered a similar situation in chapter 18, when we discussed the
energy sum rule for the harmonic oscillator. Hence the computation of the electric
field energy density from correlators of plaquette variables with two Wilson lines,
and averaged plaquette variables, involves, close to the continuum limit, taking the
difference of two large numbers of the same order of magnitude. This may be a
serious stumbling block for numerical simulations. These are the main messages we
wanted to convey.
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20.6 Monte Carlo Study of the Deconfinement Phase
Transition in the Pure SU(3) Gauge Theory

Numerical simulations of the pure SU(3) gauge theory at finite temperature
have been carried out since the early eighties.* Since then much effort has been
invested in studying the deconfinement phase transition, which is expected to be
associated with a breakdown of the Z(3) center symmetry, and which had been
predicted by Polyakov (1978) and Susskind (1979). Svetitsky and Yaffe (1982) then
conjectured that the phase transition should be first order. The order parameter
which distinguishes the two phases is the expectation value of the Wilson line (or
Polyakov loop). When quarks are coupled to the gauge fields the action is no longer
Z(3) symmetric and the Wilson line no longer plays the role of an order parame-
ter. But at least for large quark masses, such as those of the “charmed”, “bottom”
and “top” quarks, it is still expected to show a rapid variation across the transition
region. QCD with only heavy quarks is however not the theory one is ultimately
interested in. In the real world we also have the light “up” and “down” quark,
and a heavier “strange” quark. Of these, at least the “up” and “down” quarks, are
expected to influence the phase transition in a decisive way. Thus in the limit of
vanishing quark masses, the continuum action possesses a chiral symmetry. This
symmetry is broken in the low temperature phase and is expected to be restored at
sufficiently high temperatures (Pisarski and Wilczek, 1984). The order parameter
which characterizes the two phases in the zero quark mass limit is the chiral con-
densate 〈ψ̄ψ〉. It now replaces the Wilson line which tests the center symmetry in
the pure gauge theory.

In this section we present some early numerical results of lattice calculations
which strongly support the above mentioned expectations that the deconfinement
phase transition is of first order. Clearly, it is impossible to discuss the numerous
contributions made in the literature , and to present a critical analysis of the results.
But this is also not the purpose of this section. Our objective is to stimulate the
readers interest in this subject. To this end we shall select a few representative results
of early Monte Carlo simulations. Hence the figures we present, do not represent the
best numerical data available today, and we apologize to the many physicists that
have made important contributions in this field, and whom we do not mention here

* Of course many calculations have also been performed in the pure SU(2) gauge
theory, which is much easier to simulate.
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explicitly. The reader should confer the proceedings for more recent results, and the
original articles cited for a critical assessment of the numerical results presented here.

After these general remarks, let us now first take a look at what Monte Carlo
“experiments” tell us about the phase transition in the pure SU(3) gauge theory,
i.e., in the infinite quark mass limit. In particular we are interested in establishing
the nature of the transition (if it exists), and the critical temperature at which the
phase transition takes place.

In the infinite volume limit a first order deconfinement phase transition should
show up as a discontinuity in the Wilson line and energy density. The latent heat
associated with the transition tells us how much energy has to be pumped into the
system to produce the new state of matter. On a finite lattice any discontinuous
behaviour of an observable will be smoothed out, but a rapid variation across the
transition region should still be seen. Such a variation would however not exclude
the possibility that the transition is second order. There are several characteristic
features of a first order phase transition: i) the coexistence of phases at the crit-
ical temperature. In a Monte Carlo calculation this should manifest itself in the
more or less frequent flip of the system between the “ordered” and “disordered”
phases. The frequency with which these flipps occur will depend on the lattice vol-
ume used, decreasing with increasing volume, since the system will tend to remain
in either of the two metastable states for a longer simulation time; ii) On a fi-
nite lattice the critical coupling 6/g2

0 at which the phase transition occurs should
show a specific finite size scaling behaviour. In particular, for a first order phase
transition, the location of the transition is expected to be shifted by an amount
proportional to 1/V , where V is the spatial volume of the lattice.; iii) additional
information about the nature of the transition can be obtained from the finite size
scaling analysis of the peak and width in the specific heat or the susceptibility
of the Polyakov loop, which should show a specific dependence on the volume.*
Thus, if the transition is first order, then the height and width in the suscepti-
bility of the order parameter is expected to increase linearly with the volume and
shrink like 1/V , respectively.** Studying the response of thermodynamical observ-
ables to a change in lattice volume is probably the best method to establish the
order of the phase transition. But it is very time consuming. In most simulations
one has therefore looked for signs of metastable states. Such states are however not

* The susceptibility of the Polyakov loop is defined by χ = V (�(Re L)2�−�Re L�2).
** The scaling behaviour of first-order phase transitions has been discussed e.g., by

Imry (1980); Fisher and Berker (1982); Binder and Landau (1984).
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easily detected, especially if one is working on small lattices, since the flips between
different thermodynamical states cannot be clearly disentangled from the statistical
fluctuations.

What concerns the measurement of the transition temperature Tc, there are
different ways one can proceed. If the transition is first order, and the spatial lat-
tice volume large enough, then localizing the (smoothed out) discontinuity in the
energy density or order parameter should suffice to determine Tc. Alternatively, one
may test the Z(3) symmetry directly by looking at the distribution of the real and
imaginary parts of Polyakov loops, measured on a large number of link configura-
tions, as a function of the temperature. In the Z(3) symmetric phase, configurations
related by the Z(3) symmetry should occur with equal probability. On the other
hand, in the Z(3) broken phase the system will spend substantial simulation time
in one of the three vacua, before tunnelling between the vacua will restore the Z(3)
symmetry.

After these general remarks, let us now take a look at some specific examples
of early Monte Carlo calculations.

< L >

0.3

0.2

0.1

80 82 84 86 88 90
T / ΛL T / ΛL

0
100

86
200 300

1

2

3

4

5

ε /T4

Fig. 20-11 MC data of Celic et al. (1983) showing (a) the hysteresis

pattern for the order parameter, and (b) the temperature dependence of

the energy density in the phase transition region.

First evidence for the existence of a first order phase transition in the pure
SU(3) gauge theory came from computer simulations dating back to 1981 (Kajantie,
Montonen and Pietarinen, 1981).* In the first few years most of the calculations were

* For a review of early calculations see Cleymans et al. (1986).
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performed on lattices of small spatial volume. The observation of hysteresis effects,
of coexisting states, and of rapid changes in the energy density and Polyakov loop
suggested that the transition is of first order. In fig. (20-11) we show data obtained
by Celic, Engels and Satz (1983) exibiting the hysteresis pattern for the order pa-
rameter, and the energy density as a function of the temperature measured on a
83 × 3 lattice. These data are suggestive of a first order phase transition. The la-
tent heat was found to be ∆� = (3.75 ± 0.25)T 4

c . Using Monte Carlo data for the
string tension available at that time, the critical temperature in physical units was
determined to be Tc = 208 ± 20 MeV.*

As another example we show in fig. (20-12) later data obtained by Kogut et al.
(1985) for the averaged Wilson line and the energy density on a 63×2 lattice. Notice
that both quantities exhibit a very steep variation in the transition region at the
same value of the coupling (and therefore also temperature).
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Fig. 20-12 (a) The Wilson line and (b) the gluon energy density as a

function of the coupling 6/g2
0 . The figure is taken from Kogut et al. (1985).

* For other early calculations of the latent heat see e.g., Kogut et al. (1983b);
Svetitsky and Fucito (1983).
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In both examples the lattices are however still too small to allow one to be sure
that one is seeing continuum physics. Strong evidence that the SU(3) gauge theory
does indeed exhibit a first order phase transition came from numerical calculations
performed by Gottlieb et al. (1985) on lattices with varying temporal extent, ranging
between Nτ = 8 and Nτ = 16. These authors performed long Monte Carlo runs at
different couplings, and measured the real and imaginary parts of the Polyakov loop
averaged over the spatial lattice for each configuration generated after every ten
sweeps. The results for the largest lattice they have used (193 × 14) are shown in
fig. (20-13a).
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Fig. 20-13 (a) Scatter plots of the Polyakov loop (raw data) obtained

by Gottlieb et al. (1985) for 6/g2
0 = 6.45, 6.475 and 6.5, exhibiting the

transition from the confined to the deconfined phase; (b) Scatter plot of the

same data as in (a), where always five successive measurements have been

averaged.

The averaged Polyakov loop is denoted by P. fig. (20-13b) shows the same data,
where always five successive measurements have been averaged. In the figures labeled
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by (α) the system is in the deconfined phase, with the data distributed more or less
uniformely around the origin. The figures labeled by (β) show the coexistence of the
deconfined and confined phases, while the figures labeled by (γ) correspond to the
Z(3) broken phase, with the data clustering around a non-vanishing expectation
value of the Polyakov loop. Notice that the transition from the Z(3) symmetric
to the Z(3) broken phase occurs within the narrow interval 6.45 < 6/g2

0 < 6.5.*
For another choice of lattice the critical coupling will of course be different. To
test whether one is extracting continuum physics, one must check whether relation
(20.26) holds. If so, the critical temperature in units of the renormalization group
invariant scale, ΛL, is given by (20.25).
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Fig. 20-14 The critical temperature measured in units of the lattice

parameter calculated on lattices with temporal extensions Nτ = 2, 4, 6

(Kennedy et al. 1985) and Nτ = 8, 10, 12 and 14 (Gottlieb et al. 1985).

Asymptotic scaling appears to set in for 6/g2 > 6.15.

Figure (20-14) shows the results for Tc/ΛL obtained by these authors for various
choices of Nτ ranging between Nτ = 8 and Nτ = 14. The data at Nτ = 2, 4, and
6 (first three points) are earlier results obtained by Kennedy et al. (1985). The
plateau observed for 6/g2

0 > 6.15 strongly suggests that one is extracting continuum

* Recall that varying the coupling corresponds to varying the lattice spacing and
hence the temperature.
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physics.* This need however not be so. Just like the first two points in the figure,
when considered by themselves, could have suggested that scaling sets in already for
6/g2

0 = 5.1, it could happen that the plateau observed in the range 6.15 < 6/g2
0 < 6.5

does not correspond to scaling but is followed by a scaling violating behaviour similar
to that observed for 5.1 < 6/g2

0 < 5.7. To obtain the temperature in physical units
one must eliminate the lattice scale parameter. This can be done by measuring
another physical quantity such as the string tension. Then Tc = (T̂c/

√
σ̂)

√
σ, where

T̂c and σ̂ are the critical temperature and string tension measured in lattice units.
Using the value 400 MeV for the square root of the string tension one finds that
Tc = 250 MeV.

Further evidence for a first order phase transition came from measurements
of the latent heat on large spatial lattices, and from the observation of metastable
states. A nice example is provided by a Monte Carlo simulation of Brown et al.
(1988) performed on a 243 × 4 lattice.
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Fig. 20-15 MC data of Brown et al. (1988) for the sum of the energy

density and pressure measured in units of T 4 plotted versus 6/g2
0 for a

243 × 4 lattice. The solid points have been obtained by dividing the events

in a single MC run, showing flip-flop behaviour, by hand into confined and

deconfined parts.

One of the quantities which has been measured by these authors is the sum of the
energy density and pressure measured in units of T 4. Since the pressure should vary

* In fact, Gottlieb et al. used the measurement of Tc to determine the coupling
at which scaling sets in.
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continuously across the transition region, a measurement of the discontinuity in
(� + p)/T 4 yields directly the latent heat in units of T 4.

Figure (20-15) shows the behaviour of (� + p)/T 4 in the transition region, as
obtained by Brown et al. on a 243 × 4 lattice. In the same Monte Carlo experiment
the coexistence of the two phases at the critical temperature was also clearly seen.
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Fig. 20-16 Evolution of (� + p)/T 4 (a) and the argument of the

Polyakov loop (b) on a 243 ×4 lattice as a function of the simulation time.

The solid horizontal lines are MC data showing that the system resides in

one of the three vacua with broken Z(3) symmetry. In the remaining time

intervals the system is in the Z(3) symmetric confining phase. The figure

is taken from Brown et al. (1988).

In figs. (20-16a,b) taken from Brown et al. (1988), we show the evolution of
(�+ p)/T 4 and of the argument of the Polyakov loop as a function of the simulation
time at the phase transition. The values for (�+p)/T 4 obtained by dividing the events
in a single Monte Carlo run -showing flip-flop behaviour- by hand into confined
and deconfined parts are displayed in fig. (20-15) by the dark dots. As seen from
fig. (20-16b), the “time” evolution of the argument of the Polyakov loop also displays
the Z(3) symmetric phase as well as the three vacua with broken Z(3) symmetry in
which the system remains for longer simulation times. The observation of coexisting
phases allows one to determine the discontinuity indirectly from fig. (20-15). The
authors find that ∆�/T 4 = 2.54 ± 0.12.

Fukugita, Okawa and Ukawa (1989) have analyzed in a very large-scale simu-
lation the finite size dependence of the flip-flop behaviour at the phase transition,
and of the peak and width in the susceptibility of the Polyakov loop on lattices for
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spatial volumes ranging between 83 and 363, and fixed temporal extension, Nτ = 4.
They found, in particular, that on a 243 ×4 lattice and at a coupling 6/g2

0 = 5.6925,
the system “appears to stay in one phase over (1 − 3) × 104 sweeps before flipping
to the other phase”. The average duration between flip-flops was found to increase
strongly with the lattice volume and to be consistent with that expected for a first
order phase transition. Furthermore the volume dependence of the height and width
of the susceptibility of the Polyakov loop also turned out to be consistent with the
predictions for a first order phase transition, increasing linearly with the volume,
and shrinking like 1/V , respectively.

The detailed studies that have been carried out so far strongly support that
the deconfinement phase transition in the pure SU(3) gauge theory is of first order.*
This is a very nice result. But the SU(3) gauge theory is not the real world. The
next step therefore consists in including the effect of dynamical (finite mass) quarks.

20.7 The Chiral Phase Transition

Let us now ask what happens to the phase transition when we couple dy-
namical quarks to the gauge potentials. For sufficiently large quark masses it is
reasonable to expect that the presence of quarks will not influence the results ob-
tained in the pure gauge theory very much. A realistic simulation, however, should
be performed with “up” and “down” quarks with a bare mass of the order of a few
MeV, and a heavier “strange” quark with a bare mass about twenty times larger.
The influence of the heavy “charmed”, “top”, and “bottom” quarks on the phase
transition can very likely be ignored. This may also to be true for the “strange”
quark. Hence as a first approximation one would like to study the case of QCD with
two light, roughly degenerate, quarks. This case is interesting, since the chiral phase
transition is expected to be driven by the light quarks. But also the case of four
degenerate low mass quarks is interesting from the theoretical point of view, since
there exist general arguments (Pisarski and Wilczek, 1984) predicting a first order
chiral symmetry restoring phase transition for three or more flavours of massless
quarks.

The majority of the Monte Carlo simulations have been carried out with Kogut-
Susskind fermions. The reason for this is the following. As we have seen in chapter 4,
the staggered fermion action possesses a continuous axial flavour symmetry in

* There had been some doubts regarding this raised by the APE collaboration
(Bacilieri et al., 1989).
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the limit of vanishing quark masses. This allows one to study spontaneous chiral
symmetry breaking and the associated Goldstone phenomenon without having to
tune any parameters, as would be required in the case for Wilson fermions. Thus
in the case of staggered fermions the chiral limit just corresponds to setting the
quark masses to zero. On the other hand, for Wilson fermions chiral symme-
try is broken explicitely by the fermionic action, and the chiral limit is realized
at a critical value of the hopping parameter κ, corresponding to vanishing pion
mass (see section 3 of chapter 17). This critical value can however only be de-
termined by generating ensembles of gauge field configurations at different values
of κ, and extrapolating the data to κcrit.. This turns out to be a quite non-trivial
and time consuming problem. In addition one is faced with the problem that the
number of degrees of freedom for Wilson fermions is much larger than for Kogut-
Susskind fermions. Consequently, simulations with Wilson fermions have been per-
formed on much smaller lattices than those employed for staggered fermions. For
these reasons, staggered fermions are more convenient for studying the chiral phase
transition.

By 1991, numerous calculations with dynamical fermions had already been
performed on lattices with a spatial extension up to 16 lattice sites, and temporal
extention Nτ = 4, 6, 8. In most simulations the quarks have been taken to have the
same mass. The general scenario that emerged was the following. As the quark mass
is decreased from m̂ = ∞, the first-order deconfinement phase transition weakens,*
and even seems to disappear for intermediate quark masses. As the quark masses
are decreased further, the transition gathers eventually again in strength and, in the
case of three or four quark flavours, exhibits characteristics of a first order phase
transition for sufficiently small quark masses. Clear signals of metastable states have
been observed.** In the case of two quark flavours the transition turned out to be
much weaker.

Let us now look at some Monte Carlo simulations. As in the case of the pure
SU(3) gauge theory we have selected only a few representative early examples which
will hopefully stimulate the reader to further reading.

In the early days, before the advent of the supercomputers and the development
of more refined algorithms for including the effects of the fermionic determinant

* See for example Hasenfratz, Karsch, and Stamatescu (1983); Fukugita and
Ukawa (1986).

** See for example: Gavai, Potvin and Sanielevici (1987), and Gottlieb et al.
(1987b).
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in numerical simulations, physicists have studied the temperature dependence of
the chiral condensate �ψ̄ψ� and of the quark and gluon internal energies in the
quenched approximation. In fig. (20-17) we show early results obtained by Kogut
et al. (1983a) for the chiral condensate and the Wilson line. The chiral condensate
was computed from the fermion propagator by taking the limit of vanishing bare
fermion mass.
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Fig. 20-17 MC data of Kogut et al. (1983a) for the chiral order

parameter and the expectation value of the Wilson line as a function of

6/g2
0 in quenched QCD. The calculations were performed on a (a) 83 × 2

and (b) 83 × 4 lattice.

Notice that there exists only a single transition region across which both parameters
show a very rapid variation. Since the fermionic determinant was neglected in this
calculation, the sharp rise in the Wilson line corresponds to the deconfinement phase
transition in a pure gluonic medium. A similar strong variation has been observed
at the same transition temperature separately in the fermion and gluon internal
energies (see e.g., Kogut et al., 1983b).

Until the mid-eighties, simulations including dynamical fermions were still in
an exploratory stage. Early results for the Wilson line and chiral condensate for four
light flavours showed again a strong variation of both quantities at the same critical
temperature (Polonyi et al., 1984). Since then many simulations, using different
algorithms, quark masses, and larger lattices have been performed. In fig. (20-18)
we show the data for the Wilson line and chiral condensate obtained by Karsch,
Kogut, Sinclair and Wyld (1987) for four degenerate light quarks, using the hybrid
algorithm. The results suggest a first order chiral phase transition. Notice that the
Wilson line, although it is not an order parameter in full QCD, still rises steeply
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across the transition region. This suggests that the mechanism for deconfinement in
the presence of dynamical fermions is that responsible for the restauration of chiral
symmetry.
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Fig. 20-18 The chiral order parameter (triangles) and the expectation

value of the Wilson line (dots) calculated by Karsch et al. (1987) on an

83 × 4 lattice for QCD with staggered fermions.

Most of the simulations have been carried out with two or four flavours of
mass-degenerate quarks. For some earlier simulations of the more realistic case of
two equal light quarks and a heavier strange quark see e.g., Kogut and Sinclair
(1988), Brown et al. (1990), and more recently Karsch and Laermann (1994), where
again chiral symmetry restauration was found to take place at the same critical
temperature where deconfinement sets in. This critical temperature was determined
to be TC ≈ 173 MeV.

In the following we will take a look at some Monte Carlo studies of the high
temperature phase, emphasizing, as always, the earlier pioneering work. We shall say
nothing about the full phase diagram of QCD in the temperature-chemical potential
plane, which is the subject of intensive current research. Monte Carlo simulations
with a non-vanishing chemical potential are problematic, since the fermion determi-
nant associated with the lattice action (19.90) is complex. Recall that the logarithm
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of this determinant contributes to the effective action. Hence a direct implementation
of Monte Carlo techniques with a Boltzmann factor e−Seff is not possible. In princi-
ple one could write det K = | det K|eiΓ, and only include | det K| into the effective
action. Denote this action by S̃eff . The ensemble average of an observable can then
be trivially written in the form

�O� =
�OeiΓ�
�eiΓ� ,

where the expectation values on the rhs are now calculated with the (phase
quenched) action S̃eff . The trouble with this formula is, that in actual numerical
simulations the fluctuation of the phase eiΓ makes this procedure impracticable.
These fluctuations grow with the lattice volume leading to large cancellations among
contributions to the numerator, as well as to the denominator. As a consequence an
enormous number of configurations are required to achieve any reasonable accuracy.
A number of proposals have however been made to circumvent this problem. For
references to earlier attempts the reader can confer the article by Fodor and Katz
(Fodor, 2002).*

20.8 Some Monte Carlo Results on the High Temperature
Phase of QCD

The confirmation that quarks are confined in hadronic matter at low tempera-
tures, and the (strongly suggested) existence of a phase transition at temperatures
of the order of 1012 Kelvin, are the two most spectacular predictions of lattice QCD.
Such a transition would probably have occured about 10−6 seconds after the big
bang. It has been speculated for some time that the high temperature phase is
that of a quark-gluon plasma (QGP), where hadronic matter is disolved into its
constituents. The possibility of implementing the QCD phase transition in the lab-
oratory has become feasable within the past decade through heavy ion collisions
carried out at ultrarelativistic energies. In these collisions the initial kinetic energy
is deposited in a very short time interval in a small spatial region, creating matter
with densities 10 to 100 times that of ordinary nuclear matter. Ion beams of 197Ag,
with 11.4 GeV per nucleon have been produced in 1992 by the AGS accelerator at
Brookhaven National Laboratory. At the CERN SPS accelerator beams of ions as
heavy as 32S have been obtained with energies up to 160 GeV per nucleon. The

* For more recent proposals see (Fodor, 2002; Allton, 2002; de Forcrand, 2002;
Anagnostopoulos, 2002).
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verification that a quark–gluon plasma is actually formed in such collisions is a very
non trivial problem since it requires an unambiguous signature for its formation.
For this a detailed understanding of the dynamics of a plasma is necessary. Lattice
calculations can only provide us at present with bulk quantities like the mean energy
density, entropy and pressure, but not with the expected particle yields, momentum
spectra, etc., at freeze out.

If the high temperature phase is indeed that of a quark-gluon plasma con-
sisting of a weakly interacting gas of quarks and gluons, as is suggested by renor-
malization group arguments (Collins and Perry, 1975), then one would expect that
the energy density and pressure are approximately that of an ideal gas of quarks
and gluons, and that the interquark potential is Debye screened. But because of
the severe infrared divergencies encountered in perturbation theory, the behaviour
of these observables in the deconfined phase could very well turn out to be non
perturbative even at very high temperatures. The only way to estimate the non
perturbative effects is to calculate the above quantities numerically. In the following
we will take a look at some early Monte Carlo simulations of the high temper-
ature phase of QCD. We will be very brief, and present here only a few results
without going into details. Most of the material in this section has been taken
from the review article by Karsch published by World Scientific (1990), where the
reader can also find an extensive list of references to the work published on this
subject.

Energy Density and Pressure Above Tc

Early Monte Carlo calculations performed in the pure SU(3) gauge theory
showed that above the critical temperature the energy density approached very
quickly the Stefan–Boltzmann limit for a free gluon gas. An example is shown in
fig. (20-11). This behaviour of the energy density has also been confirmed in later
calculations performed on larger lattices.

On the other hand, it has been found that the pressure approaches the Stefan–
Boltzman limit only slowly. Figure (20-19) taken from the above mentioned review
by Karsch, shows the Monte Carlo data for the energy density and pressure ob-
tained by Attig et al. (unpublished), (dots and triangles), and Brown et al. (1988),
(squares), on a 123 × 4 lattice and 243 × 4 lattice, respectively. The numerical
results are compared with the perturbative prediction (dashed horizontal lines)
of Heller and Karsch (1985) for a 123 × 4 lattice. As seen from this figure, the
energy density agrees rather well with (lattice) perturbation theory already at
temperatures slightly above Tc, while the pressure rises only slowly above the phase
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transition and approaches the perturbative prediction at best for temperatures
above 3Tc. As we will see below, however, the approach of the energy density
to the Stefan–Boltzmann limit is probably much slower than it appears in the
figure.

1

0.5

1.0

P/PSB
ε/εSB

2

T/Tc

3

O(g0)

O(g2)

Fig. 20-19 Energy density and pressure in units of the ideal gas values

as a function of T/Tc. The dots and triangles are data of Attig et al.

(unpublished), and the squares are data of Brown et al. (1988). The lines

are drawn to guide the eye. The figure is taken from Karsch (1990).

Note that the pressure seems to be negative slightly above Tc. In a high statistics
simulation performed on a lattice with spatial volume 163, Deng (1989) has studied,
in particular, the behaviour of the pressure just above the phase transition. The
results are shown in fig. (20-20), where we also display, for comparison, the data
obtained by this author for the energy density.

As seen from fig. (20-20b), the pressure is not only negative slightly above Tc

but also appears to be discontinuous at the phase transition. Hence the extraction
of the latent heat from a measurement of the discontinuity in (� + p) , or (� − 3p),
which assumes that the pressure is continuous at the phase transition, will lead to
wrong conclusions. Engels et al. (1990) have subsequently discussed the origin of
the problem. As we have seen in section 1, the energy density and pressure can
be obtained from the expectation value of plaquette variables, if one knows the
derivatives of the bare gauge coupling with respect to the spatial and temporal
lattice spacings, as and aτ , evaluated at as = aτ . In most simulations, the thermo-
dynamical quantities have been extracted by assuming that the above mentioned
derivatives can be approximated by their leading order weak coupling expressions.
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Fig. 20-20 MC data of Deng (1989) for (a) the energy density and (b) the pressure, measured

in units of T 4, as a function of 6/g2
0 . The calculation was performed on a 163 × 4 lattice.

But for the couplings at which the MC calculations are performed, these derivatives
actually deviate substantially from the low order perturbative results (Burgers et al.,
1988).

The above mentioned authors have therefore used an alternative, non perturba-
tive, procedure for calculating the pressure. The basic idea is to calculate this quan-
tity from the relation p = −f , where f is the free energy density: f = −T (ln Z)/V .*
Of course the free energy cannot be computed directly in a Monte Carlo simulation
(which only allows one to calculate expectation values). But its derivative with re-
spect to the coupling λ = 6/g2

0 can be calculated since −λ∂ ln Z/∂λ = �SG�, where
SG is the gauge action.**

By integrating this equation one then obtains, apart from an additive constant,
the free energy, and hence the pressure, as a function of the coupling (and therefore
also of the temperature). The free energy was normalized by subtracting the vacuum
contribution at zero temperature (actually, the temperature is never really zero on
a finite periodic lattice). By proceeding in this way one circumvents the problem of
having to compute derivatives of the bare coupling constant. Figure (20-21) shows
the pressure as a function of 6/g2

0 obtained by these authors (solid line) together
with the MC data of of Deng (1989) and Brown et al. (1988). The pressure is seen
to be positive everywhere and continuous at the phase transition.

* This relation assumes that the system is homogenous. The authors discuss the
validity of this assumption in their paper.

** Recall that we are still discussing the case of a pure SU(3) gauge theory.
In order to avoid any confusion with the inverse temperature, β = 1/T , we have
denoted the coupling 6/g2

0 by λ and not by β as is usually done in the literature.
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Fig. 20-21 The pressure in units of T 4 obtained by Engels et al. (1990)

in the pure SU(3) gauge theory (solid line) together with the MC data of

Deng (1989) and Brown et al. (1988) based on the perturbative expressions

for the β-function.

The above authors have also calculated the energy density, which — as seen
from eq. (20.8) — requires the knowledge of the β-function. For couplings 6/g2

0 < 6.1
this β-function (which can be obtained from a Monte Carlo renormalization group
analysis), deviates considerably from that given by the perturbative expression
(9.21a,b). By using the non-perturbative β-function, and their results for the pres-
sure, the authors find that the energy density approaches the Stefan-Boltzmann limit
much slower that originally believed, and that the “discontinuity” at the phase tran-
sition is much weaker than that suggested by the data displayed in fig. (20-19). This
is shown in fig. (20-22).

So far we have only considered the pure SU(3) gauge theory. For full QCD there
exists no such detailed analysis. Simulations with dynamical fermion indicated that
the behaviour of the energy density and pressure (obtained by using the leading
order perturbative expressions for the derivatives of the bare coupling constant)
is similar to that encountered in the pure gauge theory. Again the energy density
was found to rise steeply in the transition region, approaching rapidly the ideal
gas value (from above), while the pressure was found to rise only slowly above the
critical temperature.

As an example we show in fig. (20-23), taken from the above mentioned review
by Karsch, the energy density and pressure as a function of the coupling 6/g2

0 for
QCD with two light quarks. The data shown is that of Gottlieb et al., (1987).
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Fig. 20-22 The energy density in units of T 4 obtained by Engels et al.

(1990) as a function of 6/g2
0 (solid line). The calculation is based on the

results for the pressure shown in fig. (20.22) and on a non-perturbative

expression for the β-function. The MC data are from Brown et al. (1988),

and Deng (1989).
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Fig. 20-23 Energy density and pressure in units of T 4 as a function of

6/g2
0 for QCD with two flavours. The data is from Gottlieb et al. (1987).

In contradistinction to the pure SU(3) gauge theory, the pressure, due to the quarks
and gluons, appears to be positive everywhere and continuous at the phase transi-
tion. The same behaviour was also observed in a simulation carried out by Kogut
and Sinclair (1990) with four dynamical light quarks. The partial pressure due to
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the gluons was however found to be negative in the vicinity of the phase transition,
just as in the pure SU(3) gauge case.

This concludes our discussion of the energy density and pressure in the high
temperature phase of QCD. Let us now take a brief look at the static quark-antiquark
potential above the critical temperature.

The qq̄-Potential Above Tc

In the presence of a quark gluon plasma the static qq̄-potential is expected
to be Debye screened. The screening mass is determined, in a way analogous to
that for an ordinary plasma, from the zero momentum limit of the time compo-
nent of the vacuum polarization tensor evaluated at zero frequency. In one loop
order the electric screening mass is given by (19.88). In two loop order one is faced
with infrared divergencies, and an infinite number of graphs need to be summed to
yield an infrared finite result (Toimela, 1985). Hence one can only trust the low-
est order perturbative result. The lattice formulation of QCD provides us with
the possibility to study the qq̄-potential non perturbatively. The results of the
Monte Carlo simulations can then be compared with the low order perturbative
calculations.

There are several qq̄-potentials that can be studied, since the quark–antiquark
pair can be in a singlet or an octet state. We denote these potentials by V1(R, T )
and V8(R, T ), and identify them with the free energy of the system:

(Tr e−H/T )(l) = e−Vl(R,T )/T .

Here the trace is taken over all states of the system with a heavy qq̄ pair in the
singlet (l = 1) or octet (l = 8) state, separated by a distance R. We now define the
thermal average of the colour singlet and octet quark–antiquark potential V (R, T )
by taking the average of the above expression over the two possible states weighted
with their degeneracy:

e−V (R,T )/T =
1
9
(e−V1(R,T )/T + 8e−V8(R,T )/T ).

The colour averaged potential can be extracted from the following correlation func-
tion of two Polyakov loops (McLerran and Svetitsky, 1981),

e−V (R,T )/T =
�Tr L(�0)Tr L†(�R)�

�|L|�2 ,

where

L =
1

N3
s

∑
�x

Tr L(�x)
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is the Polyakov loop averaged over the N3
s spatial lattice sites. By normalizing the

correlation function in this way, one eliminates divergent self-energy contributions
to the potential. For a detailed discussion of the singlet and octet potentials we refer
the reader to the paper by Nadkarni (1986), and to the review article by Karsch
cited before. Here we only make some general remarks.

Perturbation theory predicts that the singlet and octet potentials are related
by

V1(R, T )
V8(R, T )

= −8 + O(g4),

where

V1(R, T ) = −g2(T )
3π

1
R

e−mE(T )R

in leading order. Hence the singlet potential is attractive, while the octet potential is
repulsive. Their relative strength is such that the colour averaged potential behaves
like [exp(−2mE(T )R)]/R2.

The determination of the screening mass from Monte Carlo simulations is very
difficult since one needs to study the behaviour of the correlation functions over
a large range of separations of the quark and antiquark. But for large separations
the signal tends to get drowned in the statistical noise. And this situation worsens
with increasing temperature, since the screening mass is expected to increase with
temperature. For this reason the region slightly above the phase transition, which
is more accessible to numerical computations, has been studied in greatest detail.
Knowledge of the potential in this region is in fact of great importance, since for
temperatures just above Tc a quark gluon plasma may have been formed in the
experiments performed at CERN, involving the high energy collisions of heavy nuclei
(Abreu et al., 1988). A strongly screened potential would inhibit the formation
of bound states with a large radius. The suppression of such bound states could
(possibly) be used as a signal for plasma formation. What numerical simulations
tell us is that close to the critical temperature the colour averaged potential can
actually be well approximated by a simple screened Coulomb form with an effective
screening mass. It is therefore non-perturbative in this region. There exists however
some evidence that for temperatures well above the critical temperature the colour
averaged potential, as well as the potentials in the singlet and octet channels, aquire
the Debye screened form predicted by perturbation theory. This is supported, in
particular, by a high statistics calculation of Gao (1990) performed on a 243 × Nτ
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lattice, with Nτ = 4, 6, and 16 . This author found good indications that perturbative
behaviour sets in at temperatures T > 3.5Tc.

20.9 Some Possible Signatures for Plasma Formation

In the previous sections we have seen that there are strong indications from
lattice calculations that at high temperatures QCD undergoes a phase transition
to a new state of matter, the quark gluon plasma. Such a plasma is expected to
be formed in very high energy collisions of heavy nuclei. It is therefore important
to look for a unambiguous experimental signal for plasma formation. Our following
discussion of a possible signature will be more than incomplete and is mainly in-
tended to stimulate the reader to confer the extensive literature on this fascinating
subject. For earlier comprehensive reviews the reader may consult the book “Quark–
Gluon Plasma 2” published by World Scientific (1995), and the review article by
Meyer-Ortmanns (1996).

Of the signatures that have been considered in the literature we have chosen
to discuss in greatest detail the “J/Ψ suppression”, proposed by Matsui and Satz
(1986), because of its simplicity, and because it has been the trigger for many sub-
sequent investigations. This signature has been the subject of much dispute, since
it is believed not to provide an unambiguous signal for plasma formation. Other
signatures have been intensively discussed since then, and we shall only mention
them briefly at the end.

Many years ago Matsui and Satz (1986) made an interesting proposal for a pos-
sible signal of plasma formation. These authors had emphasized that, because the
qq̄-potential is Debye screened in a deconfining medium, the formation of qq̄-bound
states will be strongly influenced by the presence of a quark–gluon plasma if the
screening length (which can be estimated from lattice calculations) is sufficiently
small. This led them to predict that the formation of the J/ψ (a 3S1 c̄c-bound
state with a mass of 3.1 GeV) should be strongly suppressed in high energy nucleus–
nucleus collisions if a hot quark–gluon plasma is formed. Since the µ+µ− decay of
the J/ψ provides a very clear experimental signal for its formation, and since the
mechanism for background muon pair production is fairly well understood, this reso-
nance appears to be a good candidate for studying the properties of the deconfining
medium.

Experiments involving high energy collisions of heavy nuclei performed at
CERN (Abreu et al. (1988); Grossiord (1989); Baglin (1989)) have shown that J/ψ

formation is substantially suppressed for small transverse momenta of the J/ψ, and
for large values of the total transverse energy released in the collisions. The plasma
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hypothesis is able to account for the observed suppression pattern. But if J/ψ sup-
pression is to be an unambiguous signal for plasma formation, then one must rule
out the possibility that other more conventional mechanisms can also explain the
observed effects. In fact, following the pioneering work of Matsui and Satz, several
authors have pointed out that inelastic scattering of the J/ψ in a dense nuclear
medium can also lead to substantial suppression (see e.g., Gavin, Gyulassy and
Jackson, 1988; Gerschel and Hüfner, 1988). Nuclear absorption alone, however, does
not suffice to reproduce the experimental data. But by including also initial state
interactions, one is able to obtain results compatible with the observed J/ψ sup-
pression pattern. (Gavin and Gyulassy, 1988; Hüfner, Kurihara and Pirner, 1988;
Blaizot and Ollitraut, 1989).

In the following we shall take the point of view that a plasma has been formed
in the heavy ion experiments performed at CERN, and that the observed J/ψ sup-
pression pattern is due to Debye screening in a plasma. For a review of other possible
suppression mechanisms see Blaizot and Ollitraut (1990).

What is so attractive about the plasma hypothesis is that it gives a simple
qualitative explanation of the effects observed in the NA38 experiments. That a
plasma could have been formed is not out of this world. The above mentioned
collaboration has studied, in particular, the J/ψ production in collisions of oxygen
and sulfur at 200 GeV/nucleon incident on a uranium target. A rough (may be too
optimistic) estimate of the energy density deposited in the collisions (Satz, 1990)
yields the value � = 2.8 GeV/fm3. From lattice calculations one estimates the energy
density required for deconfinement to be 2–2.5 GeV/fm3. From these estimates one
can at least conclude that the formation of the plasma in the above collision process
cannot be excluded. But, given the uncertainties in the estimates, one must accept
the possibility that a plasma has not been formed.

In the plasma picture, J/ψ suppression is not a consequence of individual colli-
sions between nucleons in the projectile and target nuclei, but is the result of a col-
lective property of the medium, i.e., the existence of a Debye-screened qq̄ potential.
The details of the suppression pattern will, however, depend on the characteristics
of the plasma formed in the collision, such as its spatial extension, temperature,
hydrodynamical expansion etc.. But independent of such details one can make the
following general statement: since the screening length decreases with increasing
temperature, the influence of the plasma on bound state formation should become
more pronounced with increasing temperature. Hence there should exist a Debye
temperature TD above which the potential is so short-ranged that it can no longer
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bind a given quark–antiquark pair. This temperature will depend on the particular
pair considered.

For temperatures below the transition to the quark–gluon plasma the static
qq̄-potential is of the form

V (r) = −α

r
+ σr, (20.55)

where σ is the temperature dependent string tension, and α the temperature de-
pendent coupling constant. From renormalization group arguments α is expected
to decrease with increasing temperature. At the critical temperatur Tc, the string
tension vanishes, and above Tc the colour singlet potential is expected to be replaced
by a Debye screened Coulomb potential of the form

V (r) = −α

r
e−r/rD(T ), (20.56)

where rD(T ) is the Debye screening length, which can be estimated from lattice
calculations. In the WKB approximation one can determine the minimum screening
radius r

(min)
D for which the potential (20.6) can still accommodate a bound state of

a quark and antiquark with zero angular momentum and radial excitation number
n (Blaizot and Ollitraut, 1987):

r
(min)
D (T ) =

n2π�2

2mα.
(20.57)

Here m is the mass of the quarks. The J/ψ resonance is a 3S1 bound state of a c

and c̄ quark with n = 1. Inserting in (20.57) some typical values for the charmed
quark mass, mc, and coupling constant α(mc ≈ 1.37 GeV, α ≈ 0.5) determined
from spectrum calculations (Quigg and Rosner, 1979; Eichten et al., 1980), one
obtains that r

(min)
D ≈ 0.45 fm. The actual value is however expected to be larger,

since the effective coupling constant decreases with increasing temperature. Making
use of the estimates for rD(T ) obtained from lattice calculations, one is led to the
expectation that the J/ψ cannot be formed already at temperatures slightly above
the deconfinement phase transition. Other resonances like the ψ�, which also decays
into a µ+µ− pair, but have a larger binding radius than the J/ψ should be suppressed
already at a lower temperature.

Let us now follow the fate of a cc̄ pair, which is expected to be produced within
a very small space-time volume in the early state of the collision process before the
plasma had the time to form. Because of the large mass of the charmed quarks,
it is unlikely that the cc̄-pair is produced within the plasma. Thus the creation of
charmed quarks at temperature T should be suppressed by the Boltzmann factor
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exp(−mcT ).* In the absence of a quark–gluon plasma the c and c̄ quarks would
begin to separate and combine to form a J/ψ once their separation has reached
the binding radius of the J/ψ (which is about 0.2 − 0.5 fm). The time required for
this binding process to take place in the rest frame of the quark pairs is called the
formation time τ0. It can be estimated from the radius of the J/ψ and the average
radial momentum of the charmed quarks in the J/ψ bound state. In addition to
the formation time there are two other important time scales which are relevant for
discussing the fate of the c̄c-system: the time required for a plasma to be formed
in the collision process, and the time required for the plasma temperature to drop
below TD, where Debye-screening is no longer effective in inhibiting J/ψ formation.
This cooling process is associated with an expansion of the plasma whereby the
central hot region shrinks with time. Hence to study the fate of a c̄c-pair we must
follow their motion through the dense nuclear medium taking into account the hy-
drodynamical expansion of the system.** This is a complicated problem and one
must resort to simple model calculations.*** But the general qualitative features of
J/ψ suppression can be deduced without performing any explicit calculation. The
general scenario is the following.

Let us assume that the c̄c-pair is produced before a plasma has been formed.
If the c and c̄ quarks find themselves in a deconfining medium by the time they
could form a J/ψ, then the J/ψ will not be formed. Hence the c and c̄ quarks
will eventually leave the hot plasma region and combine with other non-charmed
quarks (of which there are many around) to form charmed particles (→ open charm).
The number of c̄c-pairs which are still trapped within the plasma by the time their
separation is of the order of the bound state radius of the J/ψ will depend on various
factors. First of all, if the c̄c-system carries sufficiently large transverse momentum
pT , then it will be able to escape the hot plasma region before having reached the
bound state radius of the J/ψ. Hence normal J/ψ formation will be possible. These
J/ψ’s decay subsequently into a µ+µ− pair, which can be easily detected in the
experiment. Hence for sufficiently large pT , J/ψ formation should not be suppressed
at all. But just how large pT must be for this to be the case depends on the plasma
life time and on the region occupied by the hot plasma in the course of its expansion.

* See e.g., the review of Satz in “Quark–Gluon Plasma”, edited by R.C. Hwa
(World Scientific, 1990).

** Unless they have already escaped the critical region by the time the plasma
has been formed. In this case the plasma will not affect J/ψ formation.

*** See the review by Karsch in the reference given in the previous footnote.
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Thus if the plasma lifetime is sufficiently short, then even J/ψ’s with low transverse
momentum should not be suppressed. But the plasma lifetime is a function of the
initial temperature. And the initial temperature depends on the energy deposited
in the collision. The higher the energy density �, the higher the initial temperature,
and hence the plasma life time. If the initial temperature of the plasma is high
enough, it will take a longer time to cool below the critical temperature TD where
Debye screening no longer is effective. Now a measure for the energy deposited in a
collision is the total transverse energy ET released in the event. This energy tells us
how violent the collision was. Hence for a given initial spatial extension of the hot
plasma, we expect that the screening mechanism will become more effective as ET

is increased.
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Fig. 20-24 Dilepton spectrum in oxygen–uranium collisions for two

transverse energy cuts observed by the NA38 collaboration at CERN (Abreu

et al., 1988). The figure is taken from the review by Satz (1990).

Let us now look at the experimental situation. Formation of the J/ψ should
show up as a peak in the invariant mass M of the µ+µ− pairs at the mass of the
J/ψ. In fig. (20-24) we show the dilepton spectrum in oxygen–uranium collisions
obtained by the NA38 collaboration at CERN (Abreu et al., 1988) for two trans-
verse energy cuts. This figure is taken from the review by Satz cited earlier. To
exhibit the suppression of the J/ψ at larger transverse energies, the fitted µ+µ−
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continuum* in the ET < 33 GeV and ET > 81 GeV data (arising from other pro-
cesses than the decay of the J/ψ, ψ� etc.) have been matched.

Figure (20-25) shows the dependence of the ratio of the number of J/ψ events to
the number of continuum events Nψ/Nc as a function of the transverse energy. The
figure is taken from the review of Kluberg (1988). The ratio is seen to decrease by
about a factor of 2 between the lowest and highest transverse energy bins considered.
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Fig. 20-25 Ratio of the number of J/ψ events to the number of con-

tinuum events, in oxygen–uranium collisions, as a function of the transverse

energy. The figure is taken from the review by Kluberg (1988).

As we have pointed out earlier, the formation of a plasma should also lead to
stronger J/ψ suppression for smaller transverse momenta of the J/ψ’s. This effect
has been clearly seen by the NA38 collaboration.

In fig. (20-26) we show the pT dependence of the ratio of J/ψ events in the
highest transverse energy bin, to the number of events in the lowest ET bin. The
figure is taken from Abreu et al., (1988), and shows the expected decrease in the J/ψ

* There are several sources for background µ+µ− production which need to be
considered in detail in order to determine the actual strength of the observed effect.
In particular one requires detailed information about the dependence of the produc-
tion rate on the transverse energy and momentum of the background µ+µ− pairs
before one can acertain that the observed effect is not due to an enhancement of
µ+µ− production in the continuum. For a discussion of this problem see the reviews
of Satz and of Blaizot and Ollitrault (1990).
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Fig. 20-26 Ratio of J/ψ events in the highest transverse energy bin to

the number of events in the lowest ET bin as a function of the transverse

momentum. The data is from Abreu et al. (1988).

suppression for increasing transverse momenta of the J/ψ. Model calculations based
on the plasma hypothesis show that one can get reasonable quantitative agreement
with the experimental data.
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Fig. 20-27 Ratio R(pT ) of the number of events in the highest trans-

verse energy bin to the number of events in the lowest transverse energy

bin as a function of the transverse momentum of the J/ψ. The solid lines

are the results obtained by Hüfner, Kurihara and Pirner (1988). The pT de-

pendence is due to initial state interactions. The data is from Abreu et al.

(1988).

But, as we have already mentioned, a large amount of J/ψ suppression can also
be obtained assuming that the J/ψ disintegrates due to inelastic scattering processes
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in a dense nuclear medium. By including also the effects arising from initial state
interactions, one can obtain a pT -dependence of the J/ψ suppression compatible with
the experimental data (Gavin and Gyulassy, 1988; Hüfner, Kurihara and Pirner,
1988; Blaizot and Ollitraut, 1989). As an example we show in fig. (20-27) the results
obtained by Hüfner, Kurihara and Pirner (1988) for the ratio of the number of
high ET to low ET events as a function of the transverse momentum in oxygen–
uranium and sulfur–uranium collisions. The data are from Abreu et al. (1988). In
their analysis gluon multiple scattering was the dominant mechanism for the pT

distribution of the J/ψ in nuclear collisions. As seen from the figure, the agreement
with the experimental data is quite good. Hence one does not know which of the
scenarios for J/ψ suppression (if any) is correct. Probably, J/ψ suppression is a
result of the interplay of several different mechanisms.

We close this chapter with a very brief discussion of two other proposals made
in the literature for a possible signature of the formation of a quark–gluon plasma.
For details the reader should consult the book mentioned at the beginning of this
section, and the review article by Meyer-Ortmanns (1996). The main objective is, as
always, to look for features of particle spectra which are sensitive to their production
in a deconfined medium.

Dilepton Production

It has been argued already many years ago that dilepton production could
provide a clean signal for the formation of a QGP.* Since leptons only interact
electromagnetically or weakly they can escape from the dense nuclear matter with-
out further rescattering, and therefore carry the information about their production
at all stages of the collision process, from the initial hadronic phase, through the evo-
lution of the plasma until freeze-out. There are several mechanisms for dilepton pro-
duction which are operative in different kinematical regions. At high invariant masses
(larger than 2–2.5 GeV) we have Drell–Yan production due to parton-antiparton an-
nihilation, and lepton pairs originating from the decay of different hadrons. These
processes are well understood. Low mass dileptons (with an invariant mass less
than 1 GeV) are mainly produced from the decay of neutral mesons. If they origi-
nate at the late stage of the collision process, where the system has cooled down,
then they carry no information about the hot and dense matter in a plasma. On
the other hand suppression lepton pairs in the low mass region could be interpreted
as being due to the melting of the ρ and φ within the plasma. Candidates for a

* For a review see Ruuskanen (1992).
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signal of plasma formation are the thermal leptons with an invariant mass in the
intermediate mass region. They originate from parton collisions in a hot and dense
medium and their spectrum is sensitive to the temperature of the plasma at the
time of their formation, as well as to the nature of the phase transition, close to
Tc (Cleymans et al. (1987)). A typical observable is the differential multiplicity per
invariant mass-squared, transverse momentum and rapidity interval. The prediction
of the dilepton spectrum is carried out within the hydrodynamical framework, and
involves several assumptions and approximations (see e.g., the review by Meyer-
Ortmanns (1996)).

Strangeness Production

It was predicted already some time ago that the production of strange hadrons
should be enhanced in heavy ion collisions [Rafelsky (1981)]. Such an enhancement
was observed for example for the ratio K+/π+ [Abbott et al. (1990)]. The mecha-
nism for strangeness production is quite different in a quark–gluon plasma (where
strange quark pairs are produced from a very dense medium of quarks and gluons)
and in a gas of hadrons (where hadrons with opposite strangeness are produced in
inelastic hadron–hadron collisions). Although the observed enhancement of strange
particles is consistent with the idea that a QGP has been formed, there are nu-
merous assumptions that go into predicting this enhancement, and the involved
sources of possible systematic errors may be difficult to control [see e.g., the re-
view by Meyer-Ortmanns (1996)]. The problem is that because strange particles
interact strongly, the accumulation of strangeness proceeds throughout all stages of
the collision process, from the very beginning to the very end. In fact the observed
K+/π+ enhancement can also be be explained in a more conventional way. That
strangeness could play a crucial role in the search for a signature of QGP formation
had been advocated by many physicists. It has also been proposed that the forma-
tion of a quark–gluon plasma in heavy ion collisions could lead to the production of
exotic droplets of stable or metastable strange quark matter, consisting of approx-
imately equal numbers of strange, “up”, and “down” quarks [Greiner et al. (1987)].
For a review we refer the reader to the book “Quark–Gluon Plasma 2” mentioned
earlier.

But what does experiment tell us? The Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory began its operation in 2000. Two ion beams are
brought to collision with a center of mass energy of 200 GeV per Nucleon. Whatever
the precise implications of the results may turn out to be, it appears that one
statement can be made rather safely: the data strongly suggest that the phenomena
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observed in the nuclear collisions reflect collective behaviour. The energy density
deposited in the early stage of the collision has been estimated to be 20 GeV/fm3,
which exceeds the theoretical estimate given earlier by far. May be we are in for
many more surprises once sufficient precise data is available from RHIC.

Much can be said about the very important problem of finding an unambigous
signal for the formation of quark–gluon plasma. We have only taken here a glimpse
at a few of the proposals made in the literature so far. Several other signals, like
direct photons, jet production, hadron mass modifications in hot dense media have
also been discussed. But a definite signature for plasma formation is still waiting to
be found. Clearly, the experimental verification of the existence of a quark–gluon
plasma would be the most spectacular prediction of lattice QCD.
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The energy sum rule (10.40) has been checked in lattice perturbation theory by
Feuerbacher (2003a,b) up to O(g4

0). In this appendix we give a few technical details
which are useful for carrying out the very extensive computations. In the following
all quantities are understood to be measured in lattice units, i.e., we suppress the
“hat” on the dimensioned quantities.

The first step in verifying the energy sum rule consists in making use of the
exact action sum rule (10.24a) to cast the energy sum rule in a form which minimizes
the computational effort.

With the definition (10.39b) the energy sum rule (10.30) takes the form

V̂ (R̂, T̂ ) = lim
T̂→∞

1
T̂

[
η−�−Pτ + Ps�qq̄−0 +

βL(g0)
2g0

β̂�Pτ + Ps�qq̄−0

]
, (A.1)

where �O�qq̄−0 has been defined in (10.24b), and where, in accordance with (10.25a),
we have made the replacement

�P �
σ�qq̄−0 = lim

T→∞

1
T

�Pσ�qq̄−0 (A.2)

Next we make the decomposition �−Pτ + Ps� = −�Pτ + Ps� + 2�Ps�. Then (A.1)
takes the following form for SU(N),

V̂ (R̂, T̂ ) = lim
T̂→∞

1
T̂

[
− g2

0

2N
η−�S�qq̄−0 +

g2
0

N
η−�Ss�qq̄−0 +

βL(g0)
2g0

�S�qq̄−0

]
(A.3)

where S is the action (10.22) on an isotropic lattice, and Ss is the contribution to
the action arising from the spacial plaquettes only. This form of the energy sum
rule is particularily convenient, since one can make use of the exact action sum rule
(10.24a)∗ to express limT→∞(�S�qq̄−0/T ) in terms of the potential and derivatives
thereof. Thus the action sum rule can be rewritten in the form

lim
T̂→∞

1
T̂

�S�qq̄−0 = −g2
0
∂V̂

∂g2
0
. (A.4)

The energy sum rule (for SU(N)) then becomes equivalent to the following
statement

V̂ − η−
g4
0

2N
∂V̂

∂g2
0

+
βL(g0)

2g0
g2
0
∂V̂

∂g2
0

= lim
T̂→∞

1
T̂

η−
g2
0

N
�Ss�qq̄−0. (A.5)

∗ Recall that the action sum rule follows directly from the definition of the
potential via the Wilson loop.
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Since the leading contribution to the potential is of O(g2
0), and since the same is

true for �Sσ�qq̄−0 (σ = τ , s), as we shall see below, we only need to know η− up to
O(g0

0). Now up to O(g0
0) η− is given by (Karsch 1982),

η− =
2N
g2
0

+ cN (A.6)

where c has been determined by this author as a function of the anisotropy (which
here is set equal to 1).

The potential has been calculated in lattice perturbation theory up to O(g4
0) by

Kovacs (1982), and by Heller and Karsch (1985), and is given by (9.8). To compute
the connected correlator

�Ss�qq̄−0 =
�SsW �
�W � − �Ss� (A.7)

up to this order, we must expand the action and the Wilson loop in powers of the
coupling. Consider first the expansion of the Wilson loop, normalized for SU(N)
conveniently as follows,

W [U ] =
1
N

Tr
∏
�∈C

U�, (A.8)

where C is a rectangular loop, and U� denotes the matrix valued link variable as-
sociated with the link labeled by �. Written in terms of the gauge potentials we
have

U� = eig0A� . (A.9)

The expansion of W [U ] has the form

W = 1 − g2
0ω

(2) − g3
0ω

(3) − g4
0ω

(4) + O(g4). (A.10)

Note that because of the trace in (A.8) there is no O(g0) term.∗ Since (A.10) starts
with the unit element, the leading term in W which contributes to (A.7) is of O(g2

0).
We therefore only need to expand Ss up to this order:

Ss = S(0)
s + g0S

(1)
s + g2

0S
(2)
s + O(g3

0). (A.11)

∗ Expanding the product of the link variables in (A.8) in powers of the coupling,
the leading term is just given by the sum of gauge potentials associated with the
links along the Wilson loop. For SU(N) (N ≥ 2) these are elements of a Lie algebra
with vanishing trace.
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The perturbative computation of the (gauge invariant) rhs of (A.5) is done most
conveniently in the Feynman gauge. Since we are computing expectation values of
operators which are at least of O(g2

0), the “Boltzmann” factor in the path integral
expressions can replaced by e−Seff , where

Seff = S + g2
0S

(2)
FP + g2

0S
(2)
meas + O(g3

0). (A.12)

Here S
(2)
FP and S

(2)
meas are the contributions arising from the Faddeev–Popov deter-

minant (associated with the gauge fixing), and from the integration measure (see
chapter 15). Up to O(g2

0) the Boltzmann factor eSeff can be expanded as follows

eSeff ≈ eS(0)

(
1 + g0S

(1) + g2
0

[
1
2
(S(1))2 + S(2) + S

(2)
FP + S(2)

meas

])
.

Then up to O(g4
0) �Ss�qq̄−0 is given by (Feuerbacher, 2003)

�Ss�qq̄−0 = −g2
0�S(0)

s ω(2)�con + g4
0�S(0)

s S(2)ω(2)�con

− 1
2
�S(0)

s (S(1))2ω(2)�con + g4
0�S(0)

s S
(2)
FPω(2)�con

+ g4
0�S(0)

s S(2)
measω

(2)�con + g4
0�S(1)

s S(1)ω(2)�con (A.13a)

− g4
0�S(2)

s ω(2)�con + g4
0�S(0)

s S(1)ω(3)�con

− g4
0�S(0)

s ω(4)�con − g4
0�S(1)

s ω(3)�con

− g4
0�S(0)

s ω(2)�con�ω(2)� + O(g6
0),

where, generically

�Oω(n)�con ≡ �Oω(n)� − �O��ω(n)� (A.13b)

and S(0) is the free action. The subsript “con” stands for “connected.” Note that all
expectation values are now calculated with the Boltzmann factor exp(−S(0)). Note
also that g0S

(1) and g2
0S

(2) are the contributions to the action of the 3 and 4-gluon
vertex (see chap. 15). For a perturbative calculation one must express the above
expectation values in terms of expectation values of products of gauge potentials
living on the links of the lattice. Consider e.g., the Wilson loop whose expansion
determines the ω(n)’s in (A.10),

WC =
1
N

Tr
∏
�∈C

eig0A� =
1
N

Tr eBC (A.14)

where BC is again an element of the Lie-algebra of SU(N), and where the product
of the exponentials is ordered along the contour C in the counterclockwise sense.
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The index � = 1, 2, 3 · · · · labels the successive links along the contour. Making
repeated use of the Campbell–Baker–Hausdorff formula, the exponent BC will be
given by the sum of

∑
l∈C Bl and higher order commutators in the Bl’s, where

B� = ig0A�. Hence every term in this expansion will be an element of the Lie-
algebra and therefore traceless. For this reason we only need to know BC up to
order g3

0 in order to calculate the contribution to the Wilson loop up to order g4
0.

We had already made use of this when expanding the plaquette contributions to
the action in section (15.3). In particular we had made use of (15.31) to calculate
the argument of the exponential associated with an elementary plaquette. In fact,
this formula remains valid for an arbitrary product of link variables. Thus one can
easily convince oneself that if (15.31) holds for the product eB1eB2 · · · eBn ≡ eMn , it
also holds for eMneBn+1 . An alternative form for (15.31) has be used by Feuerbacher
(2003). To keep in the spirit of this author we will make use of it below. Up to O(g3

0)
the exponent BC in (A.14), expressed in terms of the gauge potentials, is given by

BC = ig0

∑
l

Al − 1
2
g2
0

∑
l1<l2

[Al1 , Al2 ] −
i

4
g3
0

∑
l1<l2<l3

[[Al1 , Al2 ], Al3 ]

− i

12
g3
0

∑
(l1,l2)<l3

[Al1 , [Al2 , Al3 ]] −
i

12
g3
0

∑
l1<l2

[[Al1 , Al2 ], Al3 ] + O(g4
0).

(A.15)

Expanding the exponential (A.14) one finds that the coefficients ω� in (A.10) are
given as follows for SU(N) (Heller, 1985),

ω(2) =
1

4N

(∑
l

AB
l

)2

,

where B = 1, . . . , N , and

ω(3) =
i

6N
Tr

(∑
l

Al

)2

+
i

2N
Tr

(∑
l

Al

∑
l1<l2

[Al1 , Al2 ]

)
,
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ω(4) = − 1
24N

Tr

��
l

Al

�4

− 1
8N

Tr

��
l1<l2

[Al1 , Al2 ]

�2

− 1
4N

Tr

��
l

Al

�
l1<l2<l3

[[Al1 , Al2 ], Al3 ]

�

− 1
12N

Tr


�

l

Al

�
(l1,l2)<l3

[Al1 , [Al2 , Al3 ]]


 (A.16)

− 1
12N

Tr

��
l

Al

�
l1<l2

[[Al1 , Al2 ], Al2 ]

�

− 1
4N

Tr




��
l

Al

�2 �
l1<l2

[Al1 , Al2 ]


.

In perturbation theory the expectation values in (A.13a) involve propagators con-
necting sites located on the Wilson loop and on the boundary of spacial plaquettes,
modified by 3- and 4-gluon interactions arising from Seff . In fig. (A-1) we show
relevant diagrams contributing to (A.13a). The figure is taken from Feuerbacher
(2003).

The evaluation of the terms in (A.13a) is evidently quite non trivial, and
requires substancial gymnastics. When computing the expectation values in (A.13a)
one is confronted with various types of partial sums involving gauge potentials liv-
ing on the square contour of the Wilson loop. In the following we give two simple
examples demonstrating the technicalities involved.

Example 1

Consider e.g., the sum over potentials along the square contour of a Wilson
loop. Let N0 denote the base point of the Wilson loop with spacial and temporal
extent R and T (measured in lattice units). The sum of interest has the form

�
�∈C

A� =
R−1�
n=0

(Aµ(N0 + nµ̂) − Aµ(N0 + T ν̂ + nµ̂)

+
T−1�
n=0

(Aν(N0 + Rµ̂ + nν̂) − Aν(N0 + nν̂)). (A.17)
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Fig. A-1 Connected diagrams contributing to �Ss�qq̄−0, with

�Ss�qq̄−0 given by (A.13a), in next to leading order (Feuerbacher,

2003b).

Fourier decomposing the potentials as follows∗

Aµ(N) =
∫

BZ

d4p

(2π)4 Ã(p)eip·(N+ µ̂
2 ), (A.18)

and making use of the identity

R−1∑
n=0

ei(npµ+ pµ
2 ) = eiR

pµ
2

sin
(
R pµ

2

)

sin
(pµ

2

) (A.19)

one readily finds that the above sum can be written in the form

∑
�∈CW

A� = −2i
∫

d4pAα(p)eip·(n0+R µ̂
2 +T ν̂

2 ) sin(Tpν/2) sin(Rpµ/2)

·
(

δαµ
1

sin(pµ/2)
− δαν

1
sin(pν/2)

)
,

(A.20)

∗ Recall that the potentials are evaluated at the midpoints of the links (see
chapter 14).
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where µ �= ν. Note that the argument of the exponential involves the lattice site
located at the center of the loop.

Example 2

As another example consider the restricted sum
∑

�1<�2
[A�1 , A�2 ], where �1 and

�2 label the potentials along the Wilson loop in an ordered way. A convenient way
for evaluating this sum is the following: a) choose, in turn, �1 to correspond to points
on the four sides of the loop; b) for every such choice sum over all �2 associated with
the remaining sides (thus satisfying �2 > �1); c) finally consider the contributions
where �1 and �2 correspond, in turn, to points lying on the same line element of the
Wilson loop C. One then readily sees that

∑
�1<�2

[A�1 , A�2 ] =
4∑

k=1

Tk (A.21)

where

T1 =

[
R−1∑
n=0

Aµ(N0 + nµ̂),
T−1∑
n′=0

(Aν(N0 + Rµ̂ + n�ν̂) − Aν(N0 + n�ν̂))

]

−
[

R−1∑
n=0

Aµ(n0 + nµ̂),
R−1∑
n′=0

Aµ(N0 + T ν̂ + n�µ̂)

]

+

[
R−2∑
n=0

Aµ(N0 + nµ̂),
R−1∑

n′=n+1

Aµ(N0 + n�µ̂)

]
,

T2 =

[
T−1∑
n=0

Aν(N0 + Rµ̂ + nν̂), −
R−1∑
n′=0

Aµ(N0 + T ν̂ + n�µ̂)

]

+

[
T−1∑
n=0

Aν(N0 + Rµ̂ + nν̂), −
T−1∑
n′=0

Aν(N0 + n�ν̂)

]
(A.22)

+

[
T−2∑
n=0

Aν(N0 + Rµ̂ + nν̂),
T−1∑

n′=n+1

Aν(N0 + Rµ̂ + n�ν̂)

]
,

T3 =

[
−

R−1∑
n=0

Aµ(N0 + T ν̂ + nµ̂), −
T−1∑
n′=0

Aν(N0 + n�ν̂)

]

+

[
−

R−1∑
n=1

Aµ(N0 + T ν̂ + nµ̂), −
n−1∑
n′=0

Aµ(N0 + T ν̂ + n�µ̂)

]
,

T4 =

[
−

T−1∑
n=1

Aν(N0 + nν̂), −
n−1∑
n′=0

Aν(N0 + n�ν̂)

]
.
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The corresponding Fourier integral expressions for Tk can now be obtained making
use of (A.17). Thus for example one readily finds that

R−1∑
n=0

T−1∑
n′=0

[Aµ(N0 + nµ̂), Aν(N0 + Rµ̂ + n�ν̂)] =
∫

BZ
(dp)(dp�)[Aµ(p), Aν(p�)]

× ei(p+p′)·(N0+R µ̂
2 +T ν̂

2 )eip′
µ

R
2 e−ipν

T
2
sin(pµ

R
2 ) sin(p�

ν
T
2 )

sin(pµ

2 ) sin(p′
ν

2 )
.

Clearly, restricted multiple sums of double commutators of the gauge potentials,
lead to expressions which are far more complicated. Major simplifications however
result when one considers the limit T → ∞, which is of interest when checking the
energy sum rule. Furthermore, a large number of lattice integrals can be calculated
almost analytically. In evaluating the integrals extensive use is made of the cubic
lattice symmetry, and of partial integration. This is demonstrated by the following
examples taken from Feuerbacher (2003). All relations hold in d dimensions.

Consider the following integral which vanishes by construction.
∫

BZ

ddp

(2π)d

∂

∂pµ

sin(pµ)
p̃2 = 0

where

p̃µ = 2 sin
(

1
2
pµ

)

and

p̃2 =
d∑

µ=1

p̃2
µ.

By performing the differentiation in the integrand one is readily led to

∫

BZ

ddp

(2π)d

(
1 − 1

2 p̃
2
µ

p̃2 − 2
p̃2

µ − 1
4 p̃

4
µ

(p̃2)2

)
= 0.

Because of the cubic symmetry we can replace p̃2
µ by 1

d
p̃2. One therefore finds that

∫

BZ

ddp

(2π)d

p̃4
µ

(p̃2)2 =
4 − 2d

d
∆0 +

1
d
, (A.23a)

where

∆0 =
∫

BZ

ddp

(2π)d

1
p̃2 . (A.23b)
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This integral can be reduced to a one-dimensional integral as follows: We first write
(A.22b) in the form

∆0 =
∫ ∞

0
dt

∫

BZ

ddp

(2π)d
exp

(
−4t

d∑
µ=4

sin2
(pµ

2

))

=
∫ ∞

0
dt

(∫ π

−π

dp

2π
exp

(
−4t sin2

(p

2

)))d

=
∫ ∞

0
dt e−8t

(∫ π

−π

dp

2π
e−2t cos(p)

)d

=
1
2

∫ ∞

0
dte−dtId

0 (t),

(A.23c)

where

I0(t) =
1
2π

∫ π

−π

dx e−t cos x (A.23d)

is the Bessel function. This integral can be easily evaluated numerically.
Another trivial integral is given e.g., by

1 =
∫

BZ

ddp

(2π)d

(p̃2)2

(p̃2)2 .

Using the cubic symmetry of the lattice we can also write it in the form

1 = d

∫

BZ

ddp

(2π)d

p̃4
µ

(p̃2)2 + d(d − 1)
∫

BZ

ddp

(2π)d

p̃2
µp̃

2
ν

(p̃2)2 ,

where µ �= ν. Making use of (A.21a) one therefore has that

∫

BZ

ddp

(2π)d

p̃2
µp̃

2
ν

(p̃2)2 =
2d − 4

d(d − 1)
∆0; µ �= ν. (A.24)

There are many further lattice integrals that can be evaluated with similar tech-
niques. For the readers convenience we present some further useful integrals taken
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from Feuerbacher (2003a):
∫

BZ

ddp

(2π)d

p̃2
µ

(p̃2)3 =
1
d
∆1,

∫

BZ

ddp

(2π)d

(p̃2
µ)2

(p̃2)3 =
1
2d

∆0 − 1
d
∆1,

∫

BZ

ddp

(2π)d

p̃2
µp̃

2
ν

(p̃2)3 =
1

2d(d − 1)
∆0 +

1
d(d − 1)

∆1 (µ �= ν),

∫

BZ

ddp

(2π)d

(p̃2
µ)3

(p̃2)3 =
3 − 2d

d
∆0 +

1
d

− 4
d
∆1,

∫

BZ

ddp

(2π)d

p̃2
µp̃

2
ν

(p̃2)3 =
1

d(d − 1)
∆0 +

4
d(d − 1)

∆1 (µ �= ν),

∫

BZ

ddp

(2π)d

p̃2
µp̃

2
ν p̃

2
λ

(p̃2)3 =
2d − 6

d(d − 1)(d − 2)
∆0 − 8

d(d − 1)(d − 2)
∆1 (µ �= νλ),

(A.25a)

where ∆1 is given by

∆1 = (d − 4)
∫

BZ

ddp

(2π)d

1
(p̃2)2 . (A.25b)

In the limit d → 4 we have that ∆1 → 1
2(2π)2 . There are many other type of lattice

integrals which need to be evaluated in order to check the energy sum rule (A.1).
The complete set of calculations, which go beyond checking the energy sum rule,
can be found in (Feuerbacher, 2003).
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APPENDIX B

Up to O(e2) the vertices in momentum space associated with the axial vector
and pseudoscalar currents (14.41) and (14.42), and with the operator ∆ defined in
(14.43), are easily obtained by Fourier transforming the field as follows,

ψ(x) =
∫

BZ
(dp) ψ̃(p)eip·x,

ψ̄(x) =
∫

BZ
(dp) ˜̄ψ(p)e−ip·x,

Aµ(x) =
∫

BZ
(dk) Ãµ(k)eik·x,

where, generically,

(dq) ≡ d4q

(2π)4 .

If O(x) stands for any of the operators j5µ(x), j5(x) or ∆(x), defined in (14.41),
(14.42), and (14.43), then we define the Fourier transform Õ by

O(x) =
∫

BZ
(dq) e−iq·xÕ(q), (B.1a)

where

Õ(q) =
∫

(dp�)(dp) · · · V (q; p�, p, · · ·). (B.1b)

Here the dots stand for possible photon momenta ki (see below), and

V (q; p�, p, · · ·) = (2π)4δ(4)(p� − p − q − · · ·)Ṽ ((q; p�, p, · · ·), (B.1c)

with the vertices Ṽ (q; p�, p, · · ·) defined as follows

e−i
qµa

2 cos

((
p + p�

2

)

µ

a

)
γµγ5 , (B.2a)

−eaδµνe
−i

qµa

2 sin

((
p + p�

2

)

µ

a

)
γµγ5, (B.2b)
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−a2e2δµνδνλe
−i

qµa

2 cos
((

p+p′

2

)
µ
a

)
γµγ5, (B.2c)

[Mr(p, a) + Mr(p�, a)]γ5, (B.2d)

er
{

sin
(

p +
k

2

)

µ

a + sin
(

p� − k

2

)

µ

a
}

γ5, (B.2e)

are2δµν

{
cos

(
p +

k + k�

2

)

µ

a + cos
(

p� − k + k�

2

)

µ

a
}

γ5. (B.2f)

Taking the left derivative of j5µ(x) amounts to contracting the vertices (B.2a-c)
with −2i sin(qµa/2) exp(iqµa/2). Hence the exponentials appearing in the vertices
(B.2a–c) are eliminated by this contraction.
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APPENDIX C

Consider a general group element of SU(3) in the fundamental representation:

U(φ) = eiφ,

φ =
8∑

A=1

φATA.
(C.1)

We want to compute U−1δU , where δU = U(φ+δφ)−U(φ). To this end we introduce
the following matrices (Boulware, 1970)

W (λ) = U(λφ),

δW (λ) = U(λ(φ + δφ)) − U(λφ),

where λ is a real parameter, and where for simplicity, we have suppressed the
dependence of W on φ. Next, we derive a differential equation for

δχ(λ) = −iW−1(λ)δW (λ), (C.2)

and obtain its solution, subject to the condition that δχ(0) = 0. Then U−1δU is
given by iδχ(1). We now give the details.

From (C.2) we obtain

∂

∂λ
δχ(λ) = −i

∂W−1(λ)
∂λ

δW (λ) − iW−1(λ)
∂

∂λ
δW (λ). (C.3)

Inserting the expressions

∂W−1(λ)
∂λ

= −iφW−1(λ),

∂

∂λ
δW (λ) = iδW (λ)φ + i(W (λ) + δW (λ))δφ,

into (C.3), one finds that

∂

∂λ
δχ(λ) = i[δχ(λ), φ] + δφ + iδχ(λ)δφ.

Since δχ(λ) is itself of order δφ, we have that up to O(δφ),

∂

∂λ
δχ(λ) = i[δχ(λ), φ] + δφ. (C.4)
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Furthermore, up to this order, δχ is an element of the Lie algebra of SU(3).∗ Hence
we may write δχ(λ) in the form

δχ(λ) =
∑

A

TAδχA(λ).

An analogous decomposition holds of course for δφ:

δφ =
∑

A

TAδφA.

Making use of the commutation relations (15.2a), one finds that (C.4) implies the
following differential equation for the components δχA:

∂

∂λ
δχA(λ) = −

∑
B,C

fABCδχB(λ)φC + δφA. (C.5)

But according to (15.8)

∑
C

fABCφC = i
∑
B

tCABφC ,

where tC are the generators of SU(3) in the adjoint representation. Hence we may
write (C.5) in the form

∂

∂λ
δ�χ(λ) = −iΦδ�χ(λ) + δ�φ, (C.6)

where δ�χ and δ�φ are vectors with components δχA and δφA (A = 1, . . . , 8), respec-
tively, and where

Φ =
∑

A

φAtA

is an element of the Lie algebra of SU(3) in the adjoint representation. The corre-
sponding generators tA are normalized according to (15.9). The solution to (C.6),
subject to the requirement that δχA(0) = 0, is now immediately obtained:

δ�χ(λ) =
(

e−iλΦ − 1
−iΦ

)
δ�φ.

∗This can be easily seen by applying the Campbell–Baker–Hausdorff formula to
iδχ(λ) = [e−iλφeiλ(φ+δφ) − 1].
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Setting λ = 1, we therefore find that

U−1δU = i
∑
B

TAMAB(φ)δφB, (C.7a)

where the matrix M(φ) is given by

M(φ) =
1 − e−iΦ

iΦ
. (C.7b)

This is the result we have been looking for. A similar expression to (C.7a) can be
derived for δUU−1 by solving the differential equation for

δχ̃(λ) = −iδW (λ)W−1(λ),

with W (λ) as defined above. One readily finds that

δU(φ)U−1(φ) = i
∑
A,B

TAMAB(−φ)δφB. (C.8)

This expression will be useful in the following, where we study how U(φ) transforms
under infinitesimal gauge transformations.
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APPENDIX D

In this appendix we give a proof of formula (15.19).
Let U(φ) be the group element defined in (C.1). Consider the following

infinitesimal transformation

eiδωU(φ)e−iδω′
= U(φ + δφ), (D.1)

where δω and δω� are infinitesimal elements of the Lie algebra of SU(3) in the
fundamental representation. They can be decomposed as follows

δω =
∑

A

TAδωA,

δω� =
∑

A

TAδω�A.

We want to calculate δφ up to terms linear in δω and δω�. This can be easily
accomplished by making use of the results obtained in appendix C. Consider first
the product

U(φ)e−iδω′
= U(φ + δR

(ω′)φ), (D.2)

where the superscript R on δR
(ω′) is to remind us that we are interested in the change

of φ arising from the group multiplication of U(φ) with e−iδω′ from the right. Clearly
the leading contribution to δR

(ω′)φ is of order δω�. To calculate this change we write
the right-hand side of (D.2) in the form

U(φ + δR
(ω′)φ) = U(φ){1 + U−1(φ)δU(φ)},

where U−1δU is given by (C.7) with δφ replaced by δR
(ω′)φ. But to this order we may

replace exp(−iδω�) in (D.2) by 1 − iδω�. Hence we conclude that

δω�A = −
∑
B

MAB(φ)δR
(ω′)φ

B, (D.3a)

or

δR
(ω′)φ

A = −
∑

M−1
AB(φ)δω�B. (D.3b)

Next we calculate

eiδωU(φ)e−iδω′
= eiδωU(φ�),

where φ� = φ + δR
(ω′)φ. Let us denote the change in φ� arising from the left multipli-

cation of U(φ�) with exp(iδω) by δL
(ω)φ

�; then

eiδωU(φ�) = U(φ� + δL
(ω)φ

�). (D.4)
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The right-hand side can be written in the form

U(φ� + δL
(w)φ

�) = {1 + δU(φ�)U−1(φ�)}U(φ�),

where δU(φ�) = U(φ� + δL
(ω)(φ

�)) − U(φ�). On the other hand the left-hand side of
(D.4) can be approximated by (1 + iδω)U(φ�). Now δU(φ�)U−1(φ�) is given by (C.8)
with φ replaced by (φ�). Hence we are led to the following relation between δωA and
δL
(ω)φ

B in leading order

δωA =
∑
B

MAB(−φ)δL
(ω)φ

B.

Inversion of this equation gives

δL
(ω)φ

A =
∑

M−1
AB(−φ)δωB. (D.5)

The total change in φ induced by the infinitesimal transformation (D.1) is therefore
given by the sum of (D.3b) and (D.5):

δφA =
∑
B

[
M−1

AB(−φ)δωB − M−1
AB(φ)δω�B]

. (D.6)

Consider now an infinitesimal gauge transformation of the link variables

Uµ(n) → eiδω(n)Uµ(n)e−iδω(n+µ̂).

Let δ(ω)φ
A
µ (n) denote the change in the group-parameters, defined in (15.1a,b), in-

duced by this transformation. By making the appropriate substitutions in (D.6),
one obtains

δ(ω)φ
A
µ (n) =

∑
B

[
M−1

AB (−φµ(n)) δωB(n) − M−1
AB (φµ(n)) δωB(n + µ̂)

]
. (D.7)

This expression may also be written in the form (15.19). To this effect we set

δωB(n + µ̂) = δωB(n) + ∂̂R
µ δωB(n),

where ∂̂R
µ is the right lattice derivative. Then (D.7) becomes

δ(ω)φ
A
µ (n) =

∑
B

{
[M−1(−φµ(n)) − M−1(φµ(n))]ABδωB(n)

−M−1
AB(φµ(n))∂̂R

µ δωB(n)
}
. (D.8)
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Making use of the explicit form for M(φ) given in (C.7b), one can show after some
simple algebra, that

M−1(−φµ(n)) − M−1(φµ(n)) = −iΦµ(n), (D.9a)

where

Φµ(n) =
∑

A

φA
µ (n)tA. (D.9b)

Substituting (D.9) into expression (D.8) we finally obtain

δ(ω)φ
A
µ (n) = −

∑
B

(
iΦµ(n) + M−1(φµ(n))∂̂R

µ

)
AB

δωB(n), (D.10)

which is the result we wanted to prove.
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APPENDIX E

In this appendix we derive a formula which allows us to carry out sums over
fermionic Matsubara frequencies in the continuum formulation, where these frequen-
cies are not restricted to a finite interval (Pietig, 1994).

Consider the function

h(ω) =
−iβ

eiβ(ω−iµ) + 1
,

where ω is a complex variable. It has simple poles with unit residue located at
ω = ω−

� + iµ, where ω = ω−
� are the fermionic Matsubara frequencies (19.57). Let

f(ω) be a function of the complex variable ω which is non-singular for Im ω ∈
[µ − �, µ + �], with � infinitessimal. Then

1
β

∞∑
�=−∞

f(ω−
� + iµ) =

1
2πiβ

∫

C

dωf(ω)h(ω), (E.1)

where, for µ > 0, C is the closed contour depicted in fig. E-1.

Fig. E-1 Contour of integration C in eq. (E.1).

By making use of the relation

1
ex + 1

= 1 − 1
e−x + 1

(E.2)

on the upper branch of the contour we can write (E.1) in the form

1
β

∞∑
l=−∞

f(ω−
� + iµ) =

1
2π

∫ ∞+iµ+i�

−∞+iµ+i�

dω f(ω)

− 1
2π

∫ ∞+iµ+i�

−∞+iµ+i�

dω
f(ω)

e−iβ(ω−iµ) + 1

− 1
2π

∫ ∞+iµ−i�

−∞+iµ−i�

dω
f(ω)

eiβ(ω−iµ) + 1
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Consider the case where f(ω) is of the form f(ω) = p(ω)/q(ω), where p(ω) and q(ω)
are polynomials in ω. Then we can close the integration contours in the last two
integrals in the lower and upper planes, respectively, and obtain

1
β

∞∑
�=−∞

f(ω−
� + iµ) =

1
2π

∫ ∞+iµ+i�

−∞+iµ+i�

dω f(ω) + i
∑

Im ω̄i<µ+�

Rf (ω̄i)
eiβ(ω̄i−iµ) + 1

− i
∑

Im ω̄i>µ+�

Rf (ω̄i)
e−iβ(ω̄i−iµ) + 1

, (E.3)

where Rf (ω̄i) stand for the residues at the poles of f(ω) whose location we have
denoted by ω̂i.

Next consider the integral in (E.3). If f(ω) vanishes faster than |ω|−1 for
|ω| → ∞, then the residue theorem tells us that

1
2π

∫ ∞+iµ+i�

−∞+iµ+i�

dω f(ω) =
1
2π

∫ ∞

−∞
dω f(ω) − i

∑
0<Im ω̄i<µ+�

Rf (ω̄i).

Making use of the identity (E.2) we have
∑

0<Im ω̄i<µ+�

Rf (ω̄i)

=
∑

0<Im ω̄i<µ+�

Rf (ω̄i)
(

1
eiβ(ω̄i−iµ) + 1

+
1

e−iβ(ω̄i−iµ) + 1

)
,

so that

1
β

∞∑
�=−∞

f(ω−
� + iµ) =

∫ ∞

−∞

dω

2π
f(ω) + i

∑
Im ω̄i<0

R(ω̄i)
eiβ(ω̄i−iµ) + 1

− i
∑

Im ω̄i>0

R(ω̄i)
e−iβ(ω̄i−iµ) + 1

.
(E.4)

where we have now set � = 0, since by assumption f(ω) is non-singular in the strip
Im ω ∈ [µ − �, µ + �].
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APPENDIX F

In this Appendix we derive expressions which are useful for performing sums
over fermionic and bosonic Matsubara frequencies on the lattice. We first consider
the fermionic case (Pietig, 1994).

(i) Fermionic Frequency Sums

As we have seen in section (19.11) the following type of sums are of interest:

I({�̂pi}) =
1

β̂

β̂
2 −1∑

l=− β̂
2

g(ei(ω̂−
l +iµ̂); {�̂pi}),

where ω̂−
� = (2�+1)π

β̂
are the fermionic Matsubara frequencies, with β̂ the

inverse temperature measured in units of the lattice spacing. The dependence of
g(ei(ω̂−

l +iµ̂); {�̂pi}) on the momentum variables {�̂pi} will be suppressed from now on.
Consider the following function of the complex variable ω̂:

h(ω̂) =
−iβ̂

eiβ̂(ω̂−iµ̂) + 1
. (F.1)

It has simple poles located at ω̂ = ω̂−
l + iµ̂, with unit residue. Hence if g(eiω̂) has

no singularities for Im ω̂ =∈ [µ̂ − �, µ̂ + �], then

1

β̂

β̂
2 −1∑

l=− β̂
2

g(ei(ω̂−
l +iµ̂)) = − 1

2π

∮

C

dω̂
g(eiω̂)

eiβ̂(ω̂−iµ̂) + 1
, (F.2)

where C is the closed contour depicted in fig. (F-1).

Fig. F-1 Contour of integration C.
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Introducing the variable z = eiω̂, the poles of h(ω̂) are located on a circle with radius
e−µ̂ in the complex z-plane. The upper and lower branches of the contour in fig. (F-
1) are mapped onto two circles of radius |z| = exp(−µ̂ + �) and |z| = exp(−µ̂ − �),
respectively, traversed in a counterclockwise sense. Hence (F.2) takes the form

1

β̂

β̂
2 −1∑

l=− β̂
2

g(ei(ω̂−
l +iµ̂)) = − 1

2πi

∮

|z|=e−µ̂+�

dz

z

g(z)
[eβ̂µ̂zβ̂ + 1]

+
1

2πi

∮

|z|=e−µ̂−�

dz

z

g(z)
[eβ̂µ̂zβ̂ + 1]

.

(F.3)

If |z|−β̂g(z) → 0 for |z| → ∞, then we can distort the contour in the first integral
to infinity, taking proper account of the singularities. For the case where g(z) is
a meromorphic function of z, the combined contributions of the two integrals in
(F.3) yields

1
β̂

β̂
2 −1∑

l=− β̂
2

g(ei(ω̂−
l +iµ̂)) =

∑
i

(
Resz̄i

g(z)
z

)
1

eβ̂µ̂z̄β̂
i + 1

, (F.4)

where Resz̄i

g(z)
z

are the residues of g(z)/z at the poles, whose position we have
denoted by z̄i.

(ii) Bosonic Frequency Sums

Bosonic frequency sums on the lattice of the type required in section 11 of
chapter 19, i.e.,

K({�̂pi}) =
1

β̂

β̂
2 −1∑

l=− β̂
2

f(eiω̂+
l ; {�̂pi}),

with ω̂+ = 2�π/β̂ can also be readily performed. By considering instead of h(ω̂) in
(F.1) the function

g̃(ω̂) =
iβ̂

eiω̂β̂ − 1
,

which has simple poles with unit residue located at the bosonic Matsubara frequen-
cies ω̂+

� , and following the same line of arguments as in the fermionic case, one
readily derives the following summation formula:

1

β̂

β̂
2 −1∑

�=− β̂
2

g(eiω̂+
� ) = −

∑
i

Reszi

(
g(z)

z

)

z̄β̂
i − 1.

(F.5)
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APPENDIX G

THE ELECTRIC SCREENING MASS FOR NAIVE FERMIONS
IN LATTICE QED TO ONE-LOOP ORDER

The electric screening mass squared has been defined in section 6 of chapter 19
as the infrared limit of the 44-component of the vacuum polarization tensor evaluated
for vanishing photon frequency (cf. eq. (19.71)). In this appendix we compute this
screening mass for naive fermions (i.e., for vanishing Wilson parameter), following
closely the work of R. Pietig (1994).

In the following the vacuum polarization tensor is defined as the negative of
the one-particle irreducible diagrams with two external photon lines. The Feynman
diagrams contribution in O(g2) are shown in fig. (19-6). Using the finite temperature
lattice Feynman rules discussed in chapter 19, one finds, after carrying out the traces
in Dirac space that

Π̂(β,µ)
44 (ω̂+

n , �̂k) = 4e2 1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3

sin2(ω̂−
� + iµ̂)

sin2(ω̂−
� + iµ̂) + Ê2

−4e2 1

β̂

β̂
2 −1∑

�=− β̂
2

∫ π

−π

d3p̂

(2π)3

cos2(1
2 ω̂

+
n + ω̂−

� + iµ̂)[Ĝ2 − sin(ω̂+
n + ω̂−

� + iµ̂) sin(ω̂−
� + iµ̂)]

[sin2(ω̂−
� + iµ̂) + Ê2][sin2(ω̂+

n + ω̂−
� + iµ̂) + F̂ 2]

,

(G.1a)

where

Ê2 =
∑

i

sin2 p̂i + m̂2,

F̂ 2 =
∑

i

sin2(p̂ + k̂)i + m̂2,

Ĝ2 =
∑

i

sin p̂i sin(p̂ + k̂)i + m̂2.

, (G.1b)

and where ω̂+
� and ω̂−

� are the Matsubara frequencies for bosons and fermions de-
fined in (19.92b) and (19.93b). All quantities are measured in lattice units. The first
integral is the contribution of diagram (b) in fig. (19–6), which has no analog in the
continuum. As always, the fermionic Matsubara frequencies appear in the combina-
tion ω−

� + iµ̂. The frequency sum can be performed by making use of the summation
formula (F.4).
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Expression (G.1a) can be written in the form (recall that we always take β̂ to
be even)

Π̂(β,µ)
44 (ω̂+

n , �̂k) = 4e2 1

β̂

β̂
2 −1�

�=− β̂
2

� π

−π

d3p̂

(2π)3f(eiω̂−
� ), (G.2a)

where

f(z) = − (z2e−2µ̂ − 1)2

(2Êe−µ̂z)2 − (z2e−2µ̂ − 1)2
−


 (z2e−2µ̂ei

ω̂+
n
2 + e−i

ω̂+
n
2 )2

(2Êe−µ̂z)2 − (z2e−2µ̂ − 1)2




× (2ze−µ̂Ĝ)2 + (z2e−2µ̂ − 1)(eiω̂+
n e−2µ̂z2 − e−iω̂+

n )
(2F̂ e−µ̂z)2 − (z2eiω̂+

n e−2µ̂ − e−iω̂+
n )2

(G.2b)

is a meromorphic function of z. We have suppressed for simplicity the dependence
of f(z) on the momentum variables. Let us rewrite this expression as follows,

f(z) =
e4µ̂(z2e−2µ̂ − 1)2

�4
i=1(z − zi)

−
�
e8µ̂−2iω̂+

n (z2e−2µ̂+i
ω̂+

n
2 + e−i

ω̂+
n
2 )2

�

× 4z2Ĝ2e−2µ̂ + (z2e−2µ̂ − 1)(z2e−2µ̂eiω̂+
n − e−iω̂+

n )�4
i=1(z − zi)(z − z�

i)
, (G.3a)

where

z1 = −z3 = −eµ̂−φ̂,

z2 = −z4 = eµ̂+φ̂,

z�
1 = −z�

3 = −eµ̂−ψ̂e−iω̂+
n ,

z�
2 = −z�

4 = eµ̂+ψ̂e−iω̂+
n ,

φ̂ = ar sinh Ê,

ψ̂ = ar sinh F̂ .

(G.3b)

Now for |z| → ∞, f(z) approaches a constant. Hence we can make direct use of the
summation formula (F.4) to calculate the frequency sum (G.2a). Thus

1
β̂

β̂
2 −1�

�=− β̂
2

f(z�) =
�

i

�
R(zi)

zβ̂
i + 1

+
R(z�

i)

z�β̂
i + 1

�
, (G.4)

where

R(zi) = Reszi

�
f(z)

z

�
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are the residues of f(z)/z at z = zi. A similar statement holds for R(z�
i). Notice

that only the poles at z = zi, z = z�
i contribute, since the residue of the aparent pole

at z = 0 vanishes. The computation of the residues is straightforward, although
tedious. One finds that

R(z1) = R(z3) = −R(z2)∗ = −R(z4)∗ = −1
2 tanh φ̂ + Ĥ(φ̂, ψ̂, Ĝ),

R(z�
1) = R(z�

3) = −R(z�
2)

∗ = −R(z�
4)

∗ = Ĥ∗(ψ̂, φ̂, Ĝ),
(G.5a)

where∗

Ĥ(φ̂, ψ̂, Ĝ) =
cosh2(φ̂ − i ω̂+

n

2 )[Ĝ2 + sinh φ̂ sinh(φ̂ − iω̂+
n )]

sinh(2φ̂) sinh(φ̂ − ψ̂ − iω̂+
n ) sinh(φ̂ + ψ̂ − iω̂+

n )
. (G.5b)

Hence (G.4) is given by

1

β̂

β̂
2∑

�=− β̂
2

f(z�) = − tanh φ̂

[
1

eβ̂(µ̂−φ̂) + 1
− 1

eβ̂(µ̂+φ̂) + 1

]

+ 2
[
Ĥ(φ̂, ψ̂, Ĝ)

1
eβ̂(µ̂−φ̂) + 1

+ Ĥ∗(ψ̂, φ̂, Ĝ)
1

eβ̂(µ̂−ψ̂) + 1

]

− 2
[
Ĥ(ψ̂, φ̂, Ĝ)

1
eβ̂(µ̂+ψ̂) + 1

+ Ĥ∗(φ̂, ψ̂, Ĝ)
1

eβ̂(µ̂+φ̂) + 1

]
,

(G.6)

where we have made used of the fact that eiβ̂ω̂+
� = 1, since β̂ is even. Now from the

definitions of φ̂ and ψ̂ given in (G.3b), and the definition (G.1b) we see that for any
function K(φ̂, ψ̂, Ĝ),

K(φ̂, ψ̂, Ĝ) −→
�̂p→−�̂p−�̂

k

K(ψ̂, φ̂, Ĝ).

Hence if K(φ̂, ψ̂, Ĝ) is a periodic function of �̂p with period 2π, then
∫ π

−π

d3p̂ K(φ̂, ψ̂, Ĝ) =
∫ π

−π

d3p̂ K(ψ̂, φ̂, Ĝ). (G.7)

Making use of this relation, with K given by the rhs of (G.6), we can write (G.1a)
in the form

Π̂(β,µ)
44 (ω̂+

n , �̂k) = −4e2
∫ π

−π

d3p

(2π)3 [tanh φ̂ − 4Re Ĥ(φ̂, ψ̂, Ĝ)]

×
[

1
e−β̂(φ̂−µ̂) + 1

− 1
eβ̂(µ̂+φ̂) + 1

]
.

∗We have supressed in Ĥ the dependence on the photon frequency.
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This expression can be decomposed as follows by making use of the identity
(ex + 1)−1 + (e−x + 1)−1 = 1,

Π̂(β,µ)
44 (ω̂+

n , �̂k) = Π̂(vac)
44 (ω̂+

n , �̂k) + Π̂44(ω̂+
n , �̂k)f .T ., (G.8)

where

Π̂44(ω̂+
n , �̂k)f .T . = 4e2

∫ π

−π

d3p̂

(2π)3 [tanh φ̂ − 4Re Ĥ(φ̂, ψ̂, Ĝ)]

×
(

1
eβ̂(φ̂−µ̂) + 1

+
1

eβ̂(φ̂+µ̂) + 1

)
(G.9a)

and

Π̂(vac)
44 (ω̂+

n , �̂k) = −4e2
∫ π

−π

d3p̂

(2π)3 [tanh φ̂ − 4Re Ĥ(φ̂, ψ̂, Ĝ)]. (G.9b)

As we shall see below (G.9a) is the finite temperature (→ f.T.) contribution arising

from the presence of the heat bath, while Π̂(vac)
44 (ω̂+

n , �̂k) is the lattice expression which
one obtains by using the zero temperature, zero chemical potential lattice Feynman
rules, with the fourth component of the photon momentum evaluated at ω̂+

� . Indeed,
for µ̂ = 0 and β̂ → ∞, the expression corresponding to (G.1a) is obtained by setting
µ̂ = 0, replacing ω̂−

� by the continuous variable p4, and the frequency sum by an
integral according to β−1 ∑

� →
∫ π

−π
dp4/2π. Upon introducing z = eip4 as a new

integration variables, we therefore have that

Π̂(T=µ=0)
44 (k̂) =

2e2

iπ

∫ π

−π

d3p̂

(2π)3

∮
dz

f(z)
z

,

where f(z) is given by (G.3a) with µ̂ = 0, and where the contour integration is
carried out over a circle in the complex z-plane with unit radius. Since for µ̂ = 0,
the singularities of f(z) inside the circle are located at ±e−φ̂ and ±e−ψ̂−iω̂+

n , one is
then led to the result (G.9b). As we now show, (G.9) does not contribute to the
screening mass.

Consider (G.9b) for vanishing frequency. One readily verifies that

Π̂(vac)
44 (0, �̂k) = −4e2

∫ π

−π

d3p̂

(2π)3 [tanh φ̂ − 4h(φ̂, ψ̂, Ĝ)], (G.10a)

where

h(φ̂, ψ̂, Ĝ) =
Ĝ2 coth φ̂ + 1

2 sinh 2φ̂

2 sinh(φ̂ − ψ̂) sinh(φ̂ + ψ̂)
. (G.10b)

To compute the corresponding contribution to the screening mass we must take
the limit �̂

k → 0. In this limit ψ̂ → φ̂, so that h(φ̂, ψ̂, Ĝ) becomes singular. This
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singularity is however integrable. To see this we make use of (G.7) to rewrite (G.10)
in the form

Π̂(vac)
44 (0, �̂k) = −4e2

∫ π

−π

d3p̂

(2π)3 [tanh φ̂ − 2f̂(φ̂, ψ̂, Ĝ)], (G.11)

where

f̂(φ̂, ψ̂, Ĝ) = ĥ(φ̂, ψ̂, Ĝ) + ĥ(ψ̂, φ̂, Ĝ).

Making use of the relations for hyperbolic functions, f̂(φ̂, ψ̂, Ĝ) can be written as
follows

f̂(φ̂, ψ̂, Ĝ) =
1

2 sinh(φ̂ + ψ̂)

[
− Ĝ2

sinh φ̂ sinh ψ̂
+ cosh(φ̂ + ψ̂)

]
.

Now for �̂
k → 0, G2 → sinh2 φ̂, and ψ̂ → φ̂. Hence

f̂(φ̂, ψ̂, Ĝ) −→
�̂
k→0

1
2

tanh φ̂. (G.12)

Inserting this expression into (G.11) we therefore find that

lim
�̂
k→0

Π̂(vac)
44 (0, �̂k) = 0. (G.13)

Hence there is no contribution to the screening mass arising from Π̂(vac)
44 (ω̂+, �̂k).

Consider now the second term on the rhs of (G.8), i.e., (G.9a). Let us replace
the second term in the integrand by an expression symmetrized in φ and ψ. One
then verifies that (G.9a) can be written in the form

Π̂(β,µ)
44 (0, �̂k) = 4e2

∫ π

−π

d3p̂

(2π)3

{
tanh φ̂ − 2f̂(φ̂, ψ̂, Ĝ)[η̂FD(ψ̂) + ¯̂ηFD ]

+ h(φ̂, ψ̂, G)∆η̂FD

}
(G.14)

where

∆η̂FD = [η̂FD(φ) − η̂FD(ψ)] + [¯̂ηFD(φ) − ¯̂ηFD(ψ)],

and (ρ̂ = φ̂, ψ̂)

η̂FD(ρ̂) =
1

eβ̂(ρ̂−µ̂) + 1
,

¯̂ηFD(ρ̂) =
1

eβ̂(ρ̂+µ̂) + 1
, (G.15)
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are the lattice Fermi-Dirac distribution functions for particles and antiparticles.
While h(φ̂, ψ̂, G) is singular in the limit �̂

k → 0, the product h(φ̂, ψ̂, G)∆η̂FD is finite,
as can be seen by setting ψ̂ = φ̂+� and taking the limit � → 0. The remaining terms
in (G.14) are finite in this limit, as follows from (G.12). One then finds that

lim
�̂
k→0

Π̂44(0, �̂k) = m̂2
el = 4e2β̂

∫ π

−π

d3p̂

(2π)3

{
eβ̂(φ̂−µ̂)

[eβ̂(φ̂−µ̂) + 1]2
+

eβ̂(φ̂+µ̂)

[eβ̂(φ̂+µ̂) + 1]2

}
. (G.16)

It is now evident that this expression possesses a finite continuum limit, since for
β̂ → ∞, β̂µ̂ = βµ fixed, only momenta p̂i contribute for which β̂φ̂ is finite. This im-
plies that Ê = sin hφ̂ is of O(1/β̂). Nevertheless, the above expression is not the lat-
tice analog of (19.78). First of all there is an extra factor two multiplying the integral.
This factor arises from excitation in frequency space near the corner of the Brillouin
zone. Such a factor was of course expected since we have carried out our compu-
tations with naive fermions. Of course we also expect to see the effects of the 23

douplers arising from excitations in 3-momenta at the edges of the Brillouin zone.
This can be easily seen. To this effect we notice the momentum dependence of φ̂

appears in the form sin2 p̂j, which also vanishes at the edges of the Brillouin zone.
Hence the integral (G.16) is just 23 times the integral extending over only half the
Brillouin zone. This integral is now dominated for β̂ → ∞ by momenta p̂j of the
order of 1/β̂ (for which β̂φ̂ takes finite values). We are therefore now allowed to
replace φ̂ = arsinh Ê by

√
p̂2 + m̂2. Introducing the dimensionful variables pj, m, µ

and β by p̂j = pja, m̂ = ma, µ̂ = µa and β̂ = β/a, we therefore find that the
physical screening mass, mel = m̂el/a, is given by

m2
el(β, µ, m) = lim

a→0

1
a2 m̂2

el

(
β

a
, µa, ma

)

= 32e2β

∫ ∞

−∞

d3p

(2π)3

{
eβ(

√
�p2+m2−µ)

[eβ(
√

�p2+m2−µ) + 1]2

+
eβ(

√
�p2+m2+µ)

[eβ(
√

�p2+m2+µ) + 1]2

}
. (G.17)

Peforming the angular integrations, and an additional partial integration in |�p| we
finally obtain

m2
el = 16

e2

π2

∫ ∞

0
dp

2p2 + m2
√

p2 + m2

[
1

eβ(
√

p2+m2−µ) + 1
+

1

eβ(
√

p2+m2+µ) + 1

]
, (G.18)

which is just sixteen times the result we obtained in continuum perturbation theory.
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We want to call the readers attention to the fact that the first term in (G.1a),
arising from the diagram (b) in fig. (19–6), which has no continuum analog, played an
essential role in obtaining (except for the factor 16, of course) the correct continuum
limit.
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heat bath, 284–285
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β-function, 122–127, 272–274,
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Carolons
Harrington–Shepard caloron, 384, 385
KvBLL caloron, 386–390, 392, 395–397, 401

Center gauge, maximal, 377, 380, 382, 399
Center projection, 377, 378, 380
Center symmetry, 373, 514
Center vortex, 373, 377, 378, 380, 399, 400
Character expansion, 156, 518–519
Charge, topological, 346, 349, 350, 352–358,
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Chiral phase transition, 539–542
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Covariant lattice derivative, 249
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542

Debye screening, 467, 551–555
Deconfinement phase transition, 531–539
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Edinburgh plot, 345

Energy density, lattice expression for, 506, 507,
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Energy sum rule, 130–133, 142–146, 148, 149, 526,
561

Faddeev–Popov determinant, 247–250, 418, 419,
Faddeev–Popov ghosts, 250
Faddeev–Popov trick, 211
Feynman rules for

lattice QCD, 268–270
lattice QED, 216, 219, 220

Flux tube, 130, 323, 359–363, 365, 366, 368, 515
Fuzzy link, 334, 335

Gauge field on the lattice
abelian, 77–86,
non-abelian, 87–94

Gauge transformations, 78, 83, 88, 92, 106, 159,
106, 159, 349, 371 372

Ginsparg–Wilson fermions, 73–76
Glueballs, 130, 138, 148–150, 330–332, 335, 336
Gluon propagator, 268
Grassmann

algebra, 24,
differentiation rules, 28
integration rules, 25–27

Haar measure, 244, 247
Heat bath algorithm, 285
Holonomy, 384, 385
Hopping parameter, 171, 172, 174
Hopping parameter expansion, 174–182
Hybrid algorithm, 301–304
Hybrid Monte Carlo algorithm, 304–307, 313–316,

344

Importance sampling, 284
Infrared problem, 403, 459, 501, 502
Instanton, 345–358

J/ψ suppression, 551–558

Kogut–Susskind (staggered) fermions, 57–73

Langevin algorithm, 293–295
Latent heat, 506, 509, 537, 545
Lattice ΛL-Parameter, 272–274
Lattice degree of divergence, 206–208
Lattice Hamiltonian, 158–164, 169, 313–315
Leapfrog integration, 302
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Magnetic screening mass, 501–503
Markov chain, 286–291
Maximal abelian gauge, 370–372
Maximal center gauge, 377, 378, 380
Metropolis method, 291, 292
Molecular dynamics method, 295300
Monopole, 366–368, 372, 373, 383, 386–389, 391,

398–401
Monopole current, 368–370, 372

Nielsen–Ninomiya theorem, 55, 73

Overlap operator, 73, 393–394

Phase transition
chiral, 539–543
deconfining, 531–539

Polyakov loop (Wilson line), 384–386, 395–397,
509–513, 522–524, 531–536, 538, 539, 549

Power counting theorem, 201–208
Pressure, lattice expression for, 507–508
Propagator

ghost, 268
gluon, 268
scalar, 196, 197

Pseudofermions, 309–313
Pseudofermion method, 307–313

Quenched approximation, 107, 109

Renormalization group equation, 122–129

Renormalization of axial vector current, 222–234
Running coupling constant, 126,

Scaling window, 128,
Scaling, asymptotic, 128, 321, 322
Screening (of qq̄-potential), 324–325
Screening mass,

electric, 467–474, 483–501
magnetic, 501–503

Staggered fermion action, 65–67, 71, 94
Staggered fermions

in configuration space, 57–69
in momentum space, 69–73

String tension, 116, 117, 153, 156, 168, 317–323

’t Hooft loop operator, 382
Topological charge, 347–350, 354–356
Trace anomaly, 139
Transfer matrix, 22, 23

Vertices
for QCD, 269, 270
for QED, 219

Vortex, thin and ideal, 376

Wilson fermions, 56–57, 68, 85, 94
Wilson line (Polyakov loop), see Polyakov loop
Wilson loop, 97, 103–106, 318
Wilson parameter, 56
Winding number, 350, 352
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