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PREFACE

This book is a slight extension of the third edition. Apart from some small
additions to various sections, it contains a new extended section on Calorons in
chapter 17, a topic that was only touched upon in the previous edition. Calorons
are finite temperature instantons in the pure non-abelian SU(2) and SU(3) gauge
theories, and have been the subject of intensive investigations in the past twelve
years. As has been shown analytically, they possess very interesting properties, and
appear to provide a connection between non-perturbative instanton like excitations,
vortices and monopoles. Because they are excitations of the pure non-abelian gauge
theories, they can also be studied in detail in ensembles of lattice gauge field config-
urations using conventional Monte Carlo methods, where their indirect role played
for the confinement problem becomes visible. As always we have tried to present
the material in a transparent way, avoiding mathematical details, which are quite
complex, as well as details in the simulations, which are in fact quite subtle.

Note from the author

We would be grateful if the reader would inform us about any errors he may find.
The e-mail address is: H.J.Rothe@web.de
Important corrections to this book which come to the authors attention, will
be posted on World-Wide Web at
http://www.thphys.uni-heidelberg.de/~rothe_h/LGT.html
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PREFACE TO THE THIRD EDITION

Apart from minor modifications, this new edition includes a number of topics,
some of which are of great current interest. These concern in particular a discus-
sion in chapter 17 of instantons and calorons, and of the role played by vortices for
the confinement problem. Furthermore we have included in chapter 4 a section on
Ginsparg—Wilson fermions. In chapter 10 we have added a section on the pertur-
bative verification of the energy sum rule obtained in section 10.3. Some details of
the calculations have been delegated to an appendix. New sections have also been
added in chapters 14 and 15. In chapter 14 we come back to the Ginsparg—Wilson
discretization of the action and discuss the ABJ anomaly within this framework. In
the same chapter we also have included a detailed analysis of the renormalization of
the axial vector current in one-loop order, since it provides an instructive example
of how lattice regulated Ward identities can be used to determine the renormaliza-
tion constants for currents. In chapter 15 we have included a very general treatment
of the ABJ anomaly in QCD and show that in the continuum limit one recovers
the well known result, irrespective of the precise way in which the action has been
discretized.

Following our general principle which we have always tried to implement, we
have done our best to convey the main ideas in a transparent way as possible, and
have presented most of the non-trivial calculations in sufficient detail, so that the
reader can verify them without too much effort. As always we have only included
results of numerical calculations of pioneering work, be it in the early days of the
lattice formulation of gauge field theories, or in more recent days.

Finally, we want to thank W. Wetzel and 1. O. Stamatescu for a number of very
fruitful discussions and constructive comments, and in particular Prof. Stamatescu

for providing me with some unpublished plots relevant to instantons on the lattice.

ix



This page intentionally left blank



PREFACE TO THE SECOND EDITION

The objective of this extended edition of the book which appeared in 1992
remains the same as at that time. The book is intended to provide the reader
with the necessary theoretical background and computational tools in lattice gauge
theories, to enable him to follow the vast literature on this subject, and to carry
out research in this field. We have invested much effort in presenting the material
in a (hopefully) transparent way. Wherever possible we exemplified complex ideas
in simple models. Analytical calculations have been carried out in detail, so as to
acquaint the reader with the computational techniques.

Although the numerical computations have improved substantially since the
appearance of the first edition, we have refrained from including recent results in
this volume. Thus apart from a new section in chapter 17, where we discuss the
dual superconductor picture of confinement, the data we present is the same as in
the original volume. Our emphasis is on the early pioneering work which has been
the motor for subsequent investigations, and which at the same time demonstrates
the difficulties that physicist were confronted with (and still are) when carrying
out numerical simulations. This is in line with the introductory character of the
book. For more recent results the reader should confer the numerous conference
proceedings.

In this edition we have added a substantial amount of new material. In chapter
4 we have included an additional section where the fermion doubling problem is dis-
cussed in more detail. We have also added a chapter on lattice sum rules which have
played an important role in the past years in numerical simulations of the flux-tube
picture of confinement. Chapter 15, where we discuss the lattice Feynman rules for
QCD, now also includes a derivation of the expression for the four-gluon vertex,
which in the first edition had been kindly provided us by W. Wetzel. The original
chapter 17 on finite temperature field theory has been expanded significantly, and is
now replaced by chapters 18 and 19. Chapter 18 deals in detail with the thermody-
namics of some simple, exactly solvable, bosonic and fermionic systems formulated
within the path integral formalism. It provides the basis for a better understanding
of the lattice formulation of field theories, and allows us to point out some subtle
points which are not discussed in the literature. Chapter 19 is then devoted to fi-
nite temperature perturbation theory in the continuum and on the lattice. The first
part of this chapter treats the A¢3-theory in the continuum formulation, and, apart

from minor changes, contains the material covered in the first edition. Thereafter

xi



xii Lattice Gauge Theories

we derive the finite temperature-finite chemical potential Feynman rules for QED
and QCD in the continuum and on the lattice, and apply them to calculate in detail
various quantities of interest. This will provide the reader with a sound knowledge of
the techniques used for carrying out perturbative computations at finite temperature
and chemical potential in the continuum and on the lattice.

The final chapter is devoted to non-perturbative QCD at finite temperature.
The main body of this chapter consists of the material of chapters 19 and 20 in the
original version, with minor modifications. We have included an additional section,
in which we implement the theoretical ideas introduced in the first two sections in
a simple lattice model. This model also serves to introduce the reader to a powerful
computational technique used in the literature to study lattice gauge theories for
strong coupling.

What we have not discussed at all is the electro-weak sector of the standard
model, and in particular lattice Higgs and Yukawa models. These models are treated
in detail in the recent book by I. Montvay and G. Miinster (Quantum Fields on a
Lattice, Cambridge University Press (1994)), where the reader can also find a number
of topics not covered in this book.

Writing this extended version has taken up much of the time that I should
have spend with my family, and in particular with my children, who have asked
me so many times in vain to play with them. I am very grateful to all of them
for having had so much patience with me. I am also very grateful to T. Reisz and
R. Haymaker for their critical reading of some sections of the book and their very

helpful comments, and to P. Kaste for having checked a number of formulae.



PREFACE TO THE FIRST EDITION

This book is based on a one year course I held at the University of Heidelberg
and on a series of lectures I gave at the “Autumn College on Techniques in Many-
Body Problems” at Lahore, Pakistan, in november of 1987. These lectures have
been published in the proceedings to this school by World Scientific (Rothe, 1989).
I was later encouraged by the editors of World Scientific to expand on the material
presented at the autumn college. This I have done in this book.

The purpose of my lectures at Lahore was to introduce lattice gauge theories
to young physicists who may not have the opportunity to attend a course on this
subject at their home universities. I had therefore kept the discussion as elementary
as possible, including only enough thechnical details to enable the reader to follow
the published literature on this subject. In this book I have expanded substantially
on the material presented at Lahore, and have included a number of technical details
which I felt would be very helpful to those readers who may want to carry out
research in this branch of elementary particle physics. I did, however, arrange the
material in such a way that those physicists who are mainly interested in getting
a bird eyes view on the subject can safely skip the technical parts, without the
danger of getting lost at a later stage. This concerns, in particular, the discussion in
sections 4 and 5 of chapter 4 on lattice fermions, and the weak coupling expansion in
lattice quantum chromodynamics (QCD), chapter 14. I have included this material
for the readers convenience, since it is not discussed in such detail in the literature.
I also decided to include a chapter on the path integral formalism, since the entire
book is based on the path integral approach to quantization, and I do not assume
that everybody is familiar with this formalism. Those readers that have never come
in touch with the path integral formulation of quantum field theory may find this
chapter a bit technical. However, the results we derive, of which we will make ample
use in this book, are very simple, and are easily understood by everybody.

This book is mainly addressed to graduate students interested in particle
physics. But it is also of interest to physicists actively engaged in research in the
field of lattice gauge theories, and who may want to get a more general view on this
subject. It assumes that the reader has a fair background in quantum field theory.
A moderate knowledge of the continuum formulation of quantum chromodynamics
would certainly be very helpful. Also physicists working in statistical mechanics may
profit from reading this book, since the lattice formulation of field theories resembles

closely that of complex statistical mechanical systems.
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xiv Lattice Gauge Theories

The book is divided in two parts. In the first part, comprising chapters 1 to 16,
I discuss the zero temperature formulation of field theories on a space-time lattice,
and in particular QCD. They are the lattice analogues of the usual continuum field
theories discussed in standard text books. The second part, consisting of chapters 17
to 20, deals with finite temperature field theory. The emphasis will be on QCD, but
I shall use a scalar field theory to introduce the reader to a number of new concepts
which play an important role in finite temperature QCD.

Since the main goal of this book is to stimulate the readers interest in this fasci-
nating branch of elementary particle physics, I have taken an optimistic standpoint,
selecting some results of Monte Carlo calculations which illustrate the phenomena
in a particularily dramatic way. I did not attempt to present a critical analysis of
the results, and have left it to the reader to confer the original literature. Nor did
I attempt to give a complete list of references, which the reader can find in the
numerous proceedings to lattice conferences. More detailed discussions of most of
the topics presented in this book can be found in the proceedings to various schools.
An introduction to lattice gauge theories can also be found in the monograph by
M. Creutz: Quarks, Gluons and Lattices, published by Cambridge University Press
(1983).

Hopefully this book will stimulate some of the readers to carry out some re-
search in the field of lattice gauge theories. If so, I have achieved the purpose it has
been written for.

I like to take this opportunity to thank a number of colleages for their con-
structive criticisms and for having read several chapters of this book. In particular
I am grateful to A. Actor, I. Bender, D. Gromes, F. Karsch, K.H. Miitter, .O. Sta-
matescu and W. Wetzel. I am especially grateful to W. Wetzel for having checked a
number of formulae, and for his extensive technical help in getting the manuscript
into its final form. I also want to express my gratitude to Mrs. U. Einecke, and
Mrs. M. Steiert for having typed so patiently the manuscript in TEX. Finally, I am
particularily thankful to my family, whose continued support has made this book

possible. In particular my children had to dispense of their father for many (!) hours.
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CHAPTER 1

INTRODUCTION

It is generally accepted that quantum field theory is the appropriate framework
for describing the strong, electromagnetic and weak interactions between elemen-
tary particles. As for the electromagnetic interactions, it has been known for a long
time that they are described by a quantum gauge field theory. But that the prin-
ciple of gauge invariance also plays a fundamental role in the construction of a
theory for the strong and weak interactions has been recognized only much later.
The unification of the weak and electromagnetic interactions by Glashow, Salam
and Weinberg was a major breakthrough in our understanding of elementary par-
ticle physics. For the first time one had been able to construct a renormalizable
quantum field theory describing simultaneously the weak and electromagnetic in-
teractions of hadrons and leptons. The “electro-weak” theory of Glashow, Salam
and Weinberg is based on a non-abelian SU(2) x U(1) gauge symmetry, which is
broken down spontaneously to the U(1) symmetry of the electromagnetic interac-
tions. This breaking manifests itself in the fact that, in contrast to the massless
photon, the particles mediating the weak interactions, i.e., the W+, W~ and Z°
vector bosons, become massive. In fact they are very massive, which reflects the
fact that the weak interactions are very short ranged. The detection of these par-
ticles constituted one of the most beautiful tests of the Glashow-Salam-Weinberg
theory.

The fundamental fermions to which the vector bosons couple are the quarks and
leptons. The quarks, which are the fundamental building blocks of hadronic matter,
come in different “flavours”. There are the “up”, “down”, “strange”, “charmed”,
“bottom” and “top” quarks. The weak interactions can induce transitions between
different quark flavours. For example, a “u” quark can convert into a “d” quark
by the emission of a virtual W boson. The existence of the quarks has been con-
firmed (indirectly) by experiment. None of them have been detected as free parti-
cles. They are permanently confined within the hadrons which are built from the
different flavoured quarks and antiquarks. The forces which are responsible for the
confinement of the quarks are the strong interactions. Theoretical considerations
have shown, that the “up”, “down”, etc., quarks should come in three “colours”.
The strong interactions are flavour blind, but sensitive to colour. For this reason one
calls the theory of strong interactions Quantum Chromodynamics, or in short, QCD.
It is a gauge theory based on the unbroken non-abelian SU(3)-colour group (Fritzsch
and Gell-Mann, 1972; Fritzsch, Gell-Mann and Leutwyler, 1973). The number “3”

1
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reflects the number of colours carried by the quarks. Since there are eight generators
of SU(3), there are eight massless “gluons” carrying a colour charge which medi-
ate the strong interactions between the fundamental constituents of matter. By the
emission or absorption of a gluon, a quark can change its colour.

QCD is an asymptotically free theory (’t Hooft, 1972; Politzer, 1973; Gross and
Wilezek, 1973). Asymptotic freedom tells us that the forces between quarks become
weak for small quark separations. Because of this asymptotic freedom property it
was possible for the first time to carry out quantitative perturbative calculations of
observables in strong interaction physics which are sensitive to the short distance
structure of QCD.* In particular it allowed one to study the Bjorken scaling viola-
tions observed in deep inelastic lepton nucleon scattering at SLAC. QCD is the only
theory we know that can account for these scaling violations.

The asymptotic freedom property of QCD is intimately connected with the fact
that it is based on a non-abelian gauge group. As a consequence of this non-abelian
structure the coloured gluons, which mediate the interactions between quarks, can
couple to themselves. These self couplings, one believes, are responsible for quark
confinement. Since the coupling strength becomes small for small separations of the
quarks, one can speculate that the forces may become strong for large separations.
This could explain why these fundamental constituents of matter have never been
seen free in nature, and why only colour neutral hadrons are observed. A confir-
mation that QCD accounts for quark confinement can however only come from a
non-perturbative treatment of this theory, since confinement is a consequence of the
dynamics at large distances where perturbation theory breaks down.

Until 1974 all predictions of QCD were restricted to the perturbative regime.
The breakthrough came with the lattice formulation of QCD by Kenneth Wilson
(1974), which opened the way to the study of non-perturbative phenomena using
numerical methods. By now lattice gauge theories have become a branch of parti-
cle physics in its own right, and their intimate connection to statistical mechanics
make them of interest to elementary particle physicists as well as to physicists work-
ing in the latter mentioned field. Hence also those readers who are not acquainted
with quantum field theory, but are working in statistical mechanics, can profit from
a study of lattice gauge theories. Conversely, elementary particle physicists have
profited enormously from the computational methods used in statistical mechanics,
such as the high temperature expansion, cluster expansion, mean field approxima-

tion, renormalization group methods, and numerical methods.

*For an early review see Politzer (1974).
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Once the lattice formulation of QCD had been proposed by Wilson, the first
question that physicists were interested in answering, was whether QCD is able to
account for quark confinement. Wilson had shown that within the strong coupling
approximation QCD confines quarks. As we shall see, however, this is not a justified
approximation when studying the continuum limit. Numerical simulations however
confirm that QCD indeed accounts for quark confinement.

There are of course many other questions that one would like to answer: does
QCD account for the observed hadron spectrum? It has always been a dream of
elementary particle physicists to explain why hadrons are as heavy as they are.
Are there other particles predicted by QCD which have not been observed exper-
imentally? Because of the self-couplings of the gluons, one expects that the spec-
trum of the Hamiltonian also contains states which are built mainly from “glue”.
Does QCD account for the spontaneous breakdown of chiral symmetry? It is be-
lieved that the (light) pion is the Goldstone Boson associated with a spontaneous
breakdown of chiral symmetry. How do the strong interactions manifest themselves
in weak decays? Can they explain the Al = 1/2 rule in weak non-leptonic pro-
cesses? How does hadronic matter behave at very high temperatures and/or high
densities? Does QCD predict a phase transition to a quark gluon plasma at suffi-
ciently high temperatures, as is expected from general theoretical considerations?
This would be relevant, for example, for the understanding of the early stages of the
universe.

An answer to the above mentioned questions requires a non-perturbative treat-
ment of QCD. The lattice formulation provides the only possible framework at

present to study QCD non-perturbatively.

The material in this book has been organized as follows. In the following chap-
ter we first discuss in some detail the path integral formalism in quantum mechanics,
and the path integral representation of Green functions in field theory. This formal-
ism provides the basic framework for the lattice formulation of field theories. If the
reader is well acquainted with the path integral method, he can skip all the sections
of this chapter, except the last. In chapters 3 and 4 we then consider the lattice
formulation of the free scalar field and the free Dirac field. While this formulation
is straight-forward for the case of the scalar field, this is not the case for the Dirac
field. There are several proposals that have been made in the literature for placing
fermions on a space-time lattice. Of these we shall discuss in detail the Wilson and
the Kogut-Susskind fermions, which have been widely used in numerical simula-
tions, and introduce the reader to Ginsparg-Wilson fermions, which have become of

interest in more recent times, but whose implementation in numerical simulations
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is very time consuming. In chapters 5 and 6 we then introduce abelian and
non-abelian gauge fields on the lattice, and discuss the lattice formulation of QED

and QCD.

Having established the basic theoretical framework, we then present in
chapter 7 a very important observable: The Wilson loop, which plays a fundamental
role for studying the confinement problem. This observable will be used in chapter 8
to calculate the static potential between two charges in some simple solvable models.
The purpose of that chapter is to verify in some explicit calculations that the inter-
pretation of the Wilson loop given in chapter 7, which may have left the reader with
some uneasy feelings, is correct. In chapter 9 we then discuss the continuuum limit
of QCD and show that this limit, which is realized at a critical point of the theory
where correlations lengths diverge, corresponds to vanishing bare coupling constant.
Close to the critical point the behaviour of observables as a function of the coupling
constant can be determined from the renormalization group equation. Knowledge of
this behaviour will be crucial for establishing whether one is extracting continuum

physics in numerical simulations.

Chapter 10 is devoted to the discussion of the Michael lattice action and energy
sum rules, which relate the static quark-antiquark potential to the action and energy
stored in the chromoelectric and magnetic fields of a gg-pair. These sum rules are
relevant for studying the energy distribution in the flux tube connecting a quark
and antiquark at large separations.

Chapters 11 to 15 are devoted to various approximation schemes. Of these,
the weak coupling expansion of correlation functions in lattice QCD is the most
technical one. In order not to confront the reader immediately with the most com-
plicated case, we have divided our presentation of the weak coupling expansion into
three chapters. The first one deals with a simple scalar field theory and merely
demonstrates the basic structure of Feynman lattice integrals. It also includes a
discussion of an important theorem proved by Reisz, which is the lattice version of
the well known power counting theorem for continuum Feynman integrals. In the
following chapter we then increase the degree of difficulty by considering the case
of lattice quantum electrodynamics (QED). Here several new concepts will be dis-
cussed, which are characteristic of a gauge theory. Readers having a fair background
in the perturbative treatment of continuum QED will be able to follow easily the
presentation. As an instructive application of lattice perturbation theory, we in-
clude in this chapter a 1-loop computation of the renormalization constant for the
axial vector current with Wilson fermions, departing from a lattice regularized Ward
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identity. Also included is a discussion of the ABJ-anomaly within the framework of
Ginsparg-Wilson fermions. The next chapter then treates the case of QCD, which
from the conceptional point of view is quite similar to the case of QED, but is tech-
nically far more involved. The Feynman rules are applied to the computation of the
ABJ anomaly which is shown to be independent of the form of the lattice regularized
action.

At this point we leave the analytic “terrain” and discuss in chapter 16 various
algorithms that have been used in the literature to calculate observables numeri-
cally. All algorithms are based on the concept of a Markov process. We will keep the
discussion very general, and only show in the last two section of this chapter, how
such algorithms are implemented in an actual calculation. Chapter 17 first summa-
rizes some earlier numerical results obtained in the pioneering days. Because of the
ever increasing computer power the numerical data becomes always more refined,
and we leave it to the reader to confer the numerous proceedings for more recent
results. We have however also included in this chapter some important newer devel-
opments which concern the vacuum structure of QCD and the dynamics of quark

confinement.

The remaining part of the book is devoted to the study of field theories at
finite temperature. It has been expected for some time that QCD undergoes a
phase transition to a quark-gluon plasma, where quarks and gluons are deconfined.
In chapter 18 we consider some simple bosonic and fermionic models, and discuss in
detail the path-integral representation for the thermodynamical partition function.
In particular we will construct such a representation for a simple fermionic system
which is exact for arbitrary time step, and point out some subtle points which are
not discussed in the literature. Chapter 19 is devoted to finite temperature pertur-
bation theory in the continuum and on the lattice. The basic steps leading to the
finite-temperature Feynman rules are first exemplified for a scalar field theory in
the continuum. We then extend our discussion to the case of QED and QCD in
the continuum as well as on the lattice and discuss in detail the temporal structure
of the free propagator for naive and Wilson fermions. The Feynman rules are then
applied to calculate the screening mass in QED and QCD in one-loop order, off
and on the lattice. These computations will at the same time illustrate the power
of frequency summation formulae, whose derivation has been relegated, in part, to
two appendices.

Chapter 20 is devoted to non-perturbative aspects of QCD at finite tempera-
ture. The lattice formulation of this theory is the appropriate framework for studying
the deconfinement and chiral phase transitions, and deviations of thermodynamical
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observables from the predictions of perturbation theory at temperatures well above
the phase transition. In this chapter we discuss how thermodynamical observables
are computed on the lattice, and introduce an order parameter (the Wilson line or
Polyakov loop) which characterizes the phases of the pure gauge theory. This order
parameter plays a central role in a later section, where we present some early Monte
Carlo data which gave strong support for the existence of a deconfinement phase
transition. The theoretical concepts introduced in this chapter are then implemented
in a simple lattice model which also serves to illustrate the power of the character
expansion, a technique which is used to study SU(N) gauge theories for strong
coupling. The remaining part of this chapter is devoted to the high temperature
phase of QCD which, as already mentioned, is expected to be that of a quark gluon

plasma.

The material covered in this book should enable the reader to follow the exten-
sive literature on this fascinating subject. What the reader will not have learned, is
how much work is involved in carrying out numerical simulations. A few paragraphs
in a publication will in general summarize the results obtained by several physicists
over many months of very hard work. The reader will only become aware of this by
speaking to physicists working in this field, or if he is involved himself in numerical
calculations. Although much progress has been made in inventing new methods for
calculating observables on a space time lattice, some time will still pass before one
has sufficiently accurate data available to ascertain that QQCD is the correct theory

of strong interactions.
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CHAPTER 2

THE PATH INTEGRAL APPROACH TO QUANTIZATION

Since its introduction by Feynman (1948), the path integral (PI) method has
become a very important tool for elementary particle physicists. Many of the modern
developments in theoretical elementary particle physics are based on this method.
One of these developments is the lattice formulation of quantum field theories which,
as we have mentioned in the introduction, opened the gateway to a non-perturbative
study of theories like QCD. Since the path integral representation of Green functions
in field theory plays a fundamental role in this book, we have included a chapter
on the path integral method in order to make this monograph self-contained. In
the literature it is customary to derive the Pl-representation of Green functions in
Minkowski space. But for the lattice formulation of field theories, we shall need
the corresponding representation for Green functions continued to imaginary time.
Usually a rule is given for making the transition from the real-time to the imaginary-
time formulation. This rule is not self-evident. Since we shall make use of it on several
occasions, we will verify the rule for the case of bosonic Green functions, by deriving
directly their path integral representation for imaginary time. What concerns the
fermionic Green functions, we will not derive the Pl-representation from scratch,
but shall present strong arguments in favour of it.

In the following section, we first discuss the case of non-relativistic quantum
mechanics.” The results we shall obtain will be relevant in section 2, where we
derive the Pl-representation of bosonic Green functions which are of interest to the
lattice formulation of quantum field theories involving Bose-fields. In section 3 we
then discuss the transfer matrix for bosonic systems. Green functions of fermionic
operators are considered in section 4.

As we shall see, the Pl-representation of Green functions is only formally de-
fined for systems whose degrees of freedom are labeled by a continuous variable, as is
the case in field theory. One is therefore forced to regularize the path integral expres-
sions. In section 5 we discuss this problem on a qualitative level, and motivate the
introduction of a space-time lattice. This, as we shall comment on, corresponds

* For a comprehensive discussion of the PI-method in quantum mechanics in

the real-time formulation, the reader should confer the book by Feynman and Hibbs
(1965).
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in perturbation theory to a particular choice of regularization of Feynman
integrals.

2.1 The Path Integral Method in Quantum Mechanics

In the Hilbert space formulation of quantum mechanics, the states of the sys-
tem are described by vectors in a Hilbert space, and observables are represented
by hermitean operators acting in this space. The time evolution of the quantum

mechanical system is given by the Schrodinger equation, or equivalently by*

(1) = e (t)), (2.1)

where H is the Hamiltonian. Thus if we know the state of the system at time ¢y,
(2.1) determines the state at a later time t. Let ¢ = {q.} denote collectively the
coordinate degrees of freedom of the system and |¢) the simultaneous eigenstates of
the corresponding operators {Q,}, i.e.,

Qa|q>:qa’q>, Oé:l,,n

Then (2.1) implies the following equation for the wave function v (q,t) =
{alv (1))

V(' t) = /qu(q’,t’;q,tW(q,t%
where
G(q,t;q,t) = (¢'|e”D|q) (2.2)

is the Green function describing the propagation of the state [¢(¢)), and where the

integration measure is given by

dg = H dqe.
a=1

A very important property of the Green function (2.2) is that it satisfies the following

composition law
G(t' q;q,t) = /dq”G(t’,q’;q”,t”)G(q”jt”; q,t). (2.3)

This relation follows immediately by writing exp(—iH(t' — t)) = exp(—iH(t' —
t")) exp(—iH (t" —t)) in (2.2) and introducing a complete set of intermediate states

* We set A = 1 throughout this book.
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|¢") between the two exponentials. Using the property (2.3), Feynman derived a
path integral representation for the matrix element (2.2), which exhibits in a very
transparent way the connection between the classical and quantum theory. In clas-
sical physics the time evolution of the system is given by the Lagrange equations of
motion which follow from the principle of least action. To quantize the system, one
then constructs the Hamiltonian, and writes the equation of motion in terms of Pois-
son brackets. This provides the starting point for the canonical quantization of the
theory. By proceeding in this way, one has moved far away from the original action
principle. The path integral representation of Feynman reestablishes the connection
with the classical action principle. In the following we derive this representation for
the Green function (2.2) continued to imaginary time, t — —i7,t’ — —i7’, since we
shall need it in the following section.

Consider the matrix element

(q, '], t) = (d'|e"H¥D|q), (2.4)

where

lq,t) = e""'|q)

are eigenstates of the Heisenberg operators
Qa(t) = ™M Qae™, (2.5)

ie.,

Qua(t)lg,t) = dalg, t).

Inserting a complete set of energy eigenstates to the right and left of the exponential
n (2.4), we have that

10t = e (i)

where ¥,(q) = (q|F,) is the eigenfunction of H with energy E,. The sum over n
extends over the discrete as well as the continuous spectrum of the Hamiltonian.
This expression can now be continued to imaginary time. Making the replacements
t — —iT,t' — —i7’, we arrive at an expression which is dominated by the ground

state in the limit 7/ — 7 — oo

(@ Flat) g=orr, = D e (@) (a).
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The right-hand side is just the matrix element (¢'|exp(—H (7" — 7))|q). Hence, as

expected from (2.4), the Green function continued to imaginary times is given by

(q #1q,t) j=mir, = (q'le™ "7 ]g). (2.6)
To arrive at a path integral representation for the right-hand side of (2.6), we split
the time interval® [7,7’] into N infinitesimal segments of length € = (7 — 7)/N. Let
Ti, T, ..., Tn—1 denote the intermediate times, i.e., 7 < 73 < 75 < --- < 7’. Then the
imaginary-time Green function can be obtained by a sequence of infinitesimal time

steps as follows,

<q/|6—H(q—’_7—)|q> _ <q,|€_H(T/_TN*1)€_H(TN*1_TN*Q)  H(meT) |q>

N-1

_ / [ 1 da(d'le="lq™=")
/=1
% <q(N71)‘efH6‘q(N*2)> e <q(1)’€7HE‘Q>7 (27>

where

dq" = 1] dq¥).

Here |¢9) denote the complete set of eigenstates which have been introduced in the

0’th intermediate time step.

In order to evaluate the matrix elements in (2.7), we must now specify the
structure of the Hamiltonian. Let us assume it to be of the form

1 n
H=: ; P} +V(Q), (2.8)

where P, are the momenta canonically conjugate to ),. Making use of the Baker—
Campbell-Hausdorff formula,

1
oAeB — pA+B+3ABl+..

b

we conclude that exp(—He) can be approximated for small € by

o He oy o=€65 20 PR~V (Q)

It follows that

(gD e He|g Oy a (gD e 5 Za B g0y eV (d®),

* We shall henceforth refer to 7 as “time”.
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To evaluate the remaining matrix element, we introduce a complete set of momentum
cigenstates to the right and left of exp (—5 > P?). With

(qlp) = H ’p“q“,

we have that

(1) ] o= He| (0 oy o=V (¢?) B
(@™ Ve g ) ~e / [ 11

1 ((erl) B ((f)
X exp {—e lﬁpg) zpff) (% .

Substituting this expression into (2.7) we arrive at the following approximate path

integral representation in phase space, valid for small e:

) D (LD _ 0 _
(e Dg) ~ / DqDpe™ (o ) emetta®o ), (2.94)
where
¢V =q, ¢M=¢, (2.90)
n N-—1 N-1 dp(é)
DgDp = H dqg) H —j_, (2.9¢)
B=1 (=1 =0
and
"1 2
(0% = 325" + V(). (294)

Notice that the number of momentum integrations exceeds that of the coordinates.

Actually, as the reader can readily verify, the above formula holds just as well
for any Hamiltonian of the form H(Q, P) = T(P)+ V(Q), with T'(P) a polynomial
in the canconical momenta. For the case where T'(P) has the quadratic form given
n (2.8), we can also obtain a configuration space path integral representation, by
carrying out the Gaussian integration over the momenta. The following expression

is valid for infinitesimal time slices,

=& dq ¢) N () 4(0)
(¢|e” B / H 27“ 1= eLe(@®.4") (2.10a)
=1 a=1
where
) 1.2
Le(q?,¢) =2 5d" + V(") (2.100)
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e+1) (o)
=21 (2.10¢)

€
and ¢\ = ¢, V) = ¢/. The subscript “E” on L is to remind us that we are studying
the Green function in the “euclidean” formulation.* Let us interpret the right-hand
side of (2.10a). Consider an arbitrary path in g-space connecting the space-time
points (¢, 7) and (¢’,7’), consisting of straight line segments in every infinitesimal
time interval. Let ¢'¥ denote the set of coordinates of the system at time 7, (see
fig. (2-1)). To emphasize this correspondence let us set
65 = da(T0),

where 79 = 7, v = 7". Then (2.10c) is the “euclidean velocity” in the time interval
[T, Te1] of a “particle” moving in an n-dimensional configuration space, and Lpg
is the discretized version of the classical Lagrangean in the euclidean formulation
(notice the “plus” sign between the kinetic term and the potential). The action
associated with the path depicted schematically in fig. (2-1) is given by

Seldl = 3" €| 3 5 @ulm)? + V (alr)| (2.11)

This is the expression appearing in the argument of the exponential in (2.10a).
We therefore arrive at the following prescription for calculating the Green function

for imaginary time:

i) Divide the interval [r, 7'] into infinitesimal segments of length ¢ = (7" — 7)/N.

ii) Consider all possible paths starting at ¢ at time 7 and ending at ¢’ at time 7'.
Approximate these paths by straight-line segments as shown in fig. (2-1), and
calculate the action (2.11) for each path.

iii) Weigh each path with exp(—Sg[g]) and sum these exponentials over all paths,
by integrating over all possible values of the coordinates at intermediate times.

iv) Multiply the resulting expression with (1/v/27€)™, where n is the number of
coordinate degrees of freedom and take the limit ¢ — 0, N — oo, keeping the
product Ne = (7" — 1) fixed.

* In the following chapters, where we will study the Pl-representation of field
theories in detail, the transition to imaginary time corresponds to formulating the
theories in euclidean space-time. We shall therefore refer in the following to the
imaginary-time formulation as the euclidean formulation.
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Fig. 2-1 Path connecting the space-time points (¢,7) and (¢’,7’)
contributing to the integral (2.11a).

The result of steps i) to iv) we formally denote by

(q,7|q,7) / Dq e~ %eld. (2.12a)

where

/

Seld = / " Le(a(r), d(")), (2.120)

and where, for later convenience, we have introduced the short-hand notation

(d',7'a,7) = (d'le” T ]g), (2.12¢)

in analogy to (2.4). This is the path integral expression we wanted to obtain. Notice
that because the paths are weighted with exp(—Sg), important contributions to
(2.12a) are expected to come from those paths for which Sg|q] takes values close to

the minimum, where
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This is the principle of least action which leads to the classical euclidean equa-
tions of motion. Hence, within the path integral framework, the quantization of a
classical system amounts to taking into account fluctuations around the classical
path. In the euclidean formulation these fluctuations are exponentially suppressed
if Sg > 0. On the other hand, in the real time formulation, an analogous proce-

dure to the one followed above, leads to the following path integral representation
of (2.4):

. r_ q/ i
(e D) = / Dg &5l (2.13)
q

where Slg] is the action for real time. The path integral (2.13) is defined in the
same way as before (see Feynman and Hibbs, 1965), but the paths are now weighted
with an oscillating function. For this reason this path integral representation is not
suited for numerical calculations. It is, however, a useful starting point for carrying
out semiclassical approximations, where one expands the action about a minimum
up to terms quadratic in the coordinates. For an instructive example the reader may
consult the paper by Bender et al. (1978), where the energy spectrum and eigen-
functions are calculated in the WKB approximation for a one-dimensional periodic
potential.

An exact evaluation of the path integral (2.12) or (2.13) is only possible in
a few cases. The standard example in the real time formulation is the harmonic
oscillator. It is discussed in detail in the book by Feynman and Hibbs (1965). The
Coulomb potential already provides a quite non-trivial example (Duru and Kleinert,
1979). It therefore may appear that the path integral method is of little practical
use. This is true for quantum mechanics, where more efficient methods are avail-
able to calculate scattering amplitudes, bound state energies and eigenfunctions.
But in field theory, we only know how to compute Green functions in perturba-
tion theory (except for some simple models which can be solved exactly). It is here
where physicists first became very interested in the path integral method, since it
allowed one to derive the Feynman rules for gauge theories like QCD in a very
straightforward way. This is, however, only one of the merits of the method. As
we have already pointed out, many of the modern developments in theoretical ele-
mentary particle physics are based on the path integral formalism. In the following
section we extend the above discussion to bosonic Green functions of interest in field

theory.
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2.2 Path Integral Representation of Bosonic Green Functions
in Field Theory

In quantum mechanics all physical information about the quantum system
is contained in the Green function (2.2). In field theory, on the other hand, this
information is stored in an infinite set of vacuum expectation values of time-ordered
products of Heisenberg field operators. The simplest such operator is the real scalar

field ¢(z) = ¢(Z,t). Its time evolution is given by
o(7,t) = 'o(T,0)e ™,

where H is the Hamiltonian of the system. The coordinates ' label the infinite
number of coordinate degrees of freedom of the system. They play the role of the
discrete index “a” labeling the Heisenberg operators Q,(t) defined in (2.5). The
Green functions of the scalar field are defined by

G(z1, 29, ..., 20) = (QT (P(x1)(22) . .. d(20)) |), (2.14)

where x; = (Z;,t;), and |Q2) denotes the ground state (vacuum) of the system whose
dynamics is determined by the Hamiltonian H. The time-ordering operation “17
orders the operators from left to right according to descending time. The analogue

of (2.14) in our quantum mechanical example is evidently given by

Ga1a2--~ae (tlv b1y .. 7tf) = <E0‘T(Qa1 (tl)Qo@ <t2) s Qatz (tf))’E0>' (2'15)

Let us assume that we have ordered the operators in (2.15) according to descending

time from left to right; then

Goavaseap(ti, 1, - te) = (Eo|Qay (t1)Qas (t2) - - - Qu, (te) | Eo),
(t1 >ty > >ty). (2.16)

We are interested in a path integral representation of (2.16) continued to imag-
inary times, t; — —i7;. It is this representation which we shall need to formulate
bosonic field theories on a lattice. The transition to imaginary times is made by
replacing the operators Q,, (t;) by

Qo (1) = eMTiQq e~ 1™, (2.17)

This corresponds to setting ¢ = —i7 on the right-hand side of (2.5). The euclidean
version of (2.16) is therefore given by

<EO|QO¢1 (TI)QOQ (7—2) cee Qae (Tg)|Eg>. (218)



16 Lattice Gauge Theories

To derive a path integral representation for this ground state expectation value we
proceed in two steps. We first show that (2.18) can be extracted from the matrix

elements

(q/a 7—/|Qa1 (7—1)@&2 (T2> s Qoée (Tf)l% T)
= <q/‘€7HT/Qa1 (7—1)@012 (7—2) s Qaz (Tf)eHT’(Da (219)

by studying this expression for large positive and negative values of 7/ and 7. We
then demonstrate that (2.19) has a path integral representation which is an (almost)
obvious generalization of (2.12a).

We begin with the first mentioned step. Inserting a complete set of energy
eigenstates to the left and right of the operators exp(H ) and exp(—H7') in (2.19),
we have that

(q/> T/|Qa1 (7—1) s Qae (7—0’% T)
=Y e BT T (¢ )(@) (B Qo (11) - - Qo (70) | Exe). (2.20)

Assuming that there exists an energy gap between the ground state and first excited
state, we therefore find that

(q/> 7—/|QO¢1 (Tl) s Qae (TZ)’% T)
P (@) (Bl Qs (7). Qe (). (2210)

7' =00
T——00

Furthermore, replacing the Qai (7;)’s in this expression by the unit operator, we have
that

(@ 7la.7) 2 e T o(d)i(a). (2.21b)
From (2.21a,b) we are led to the following important statement:

(q/7 T"Qal (7’1) e Qae (7—6)‘% 7') N <E0|Qa1 (7-1) L Qw (Tg)|Eo>- (2‘22)
(@77 =

T——00

Notice that according to (2.22) we are free to choose for ¢ = {q¢.} and ¢ = {¢.}
any values as long as (q|Ey) and (¢'|FEo) are different from zero! In other words,
the ground state wave function must have non-vanishing support at ¢ and ¢'. Since
(2.22) actually holds for arbitrary time, 7, ..., 7, it follows that a corresponding
expression holds for the time-ordered product of the operators, i.e.,

(q/7 T’|T(Qa(1q(,7—12/-|(-]-gae(Tﬁ))l% 7—) T,:Z <EO‘T(QO‘1 (7‘1) . Qa4(7-£>>|EO>‘ (223)

T——00
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This completes the first step of our program. We now proceed with the second
step, and construct the path integral representation for the numerator appearing on
the left-hand side of (2.23). The Pl-representation for the denominator has already
been obtained in the previous section. Our starting point, however, is not this nu-
merator, but the matrix element (2.19), with 77 > 75 > --- > 7. Let us first write

out the time dependence explicitly, by making use of the definition (2.17):

(¢, 7'1Qay (11)Qas (72) - - Que (10) g, 7)
_ <qI’67H(T’7T1)Qa1 efH(‘rlng)Qa efH(Tngg) o

XG_H(W_l_TZ)QWG (Te—T7 |C]>

We next insert a complete set of eigenstates of {Qa} to the right and left of each
of the operators Qai. These operators are diagonal in this representation. Let us

denote the integration variables associated with @ai collectively by ¢'?. Then

(@, 7'1Qa, (1) - - Que (1) g, 7)

/qu ¢, 7', 1) (@, 71lg®, )a? .. 4D (¢, melq, 7).

Inserting for (¢, 7;]¢\9), 7;), etc., the path integral expressions analogous to (2.12a)
one finds that

(q/> 7_/|Qal (Tl) s Qae<7-f)’q’ T)
QI 7—/ 1 1 . 1
— [ Do () () 307,
q
(T/>T1>"'>T[>T), (224)

where the path integral is calculated as follows:

i) Split the interval [7,7'] into N infinitesimal time intervals of length € = (77 —

T)/N.

ii) Consider all paths starting at ¢ at time 7 and ending at ¢’ at time 7/. Approxi-
mate these paths by straight line segments in each infinitesimal time interval.

iii) Weigh each path with exp(—Sg[q]), where Sg|q] is the action defined in (2.11),
and with the product of the coordinates q,,, ..., qq, at times 7y, ..., 7, respec-
tively. Sum the contributions over all paths by integrating over all possible values
of the coordinates at intermediate times.

iv) Multiply the resulting expression with (1/v/2me)™™, where n is the number of
degrees of freedom of the system, and take the limit ¢ — 0, N — oo, keeping
the product Ne = 7/ — 7 fixed.
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In deriving the above expression we have assumed that 7/ > 7 > > -+ >
T¢ > 7. Instead of (2.24) we can therefore also write

(@77 (Qus (1) - Qu (7)) lg.7)
q/ ! 5 1"
=/ Dqqo, (T1) .. - a, (re)e 7 47 Hala), (2.25)
q

But because of the definition of the T-product, we can now write the product of the
operators Qai(n) in any order we wish. This symmetry under the exchange of any
two operators is reflected in the path integral, since the g,’s are ordinary commuting
variables.

We are now ready to write down the path integral expression for the right-hand
side of (2.23). Inserting the expressions (2.25) and (2.12a) into the left-hand side of
(2.23), and taking the indicated limit, we find that

) i Dgga, (11) - - - Go, (10) el
(BT (@) - Qo)) = L2 T 5,

(2.26a)

where (2.12b) is now replaced by

Sela = | drLe(a(r). i) (2260)
S is the euclidean action associated with the path ¢(7). The integrals in (2.26a) are
carried out over all paths starting and ending at arbitrary points at times 7 = —oo
and 7 = 400, respectively. This is true as long as the ground state wave function has
non-vanishing support at ¢ and ¢'. In practical calculations the size of (g|Ey) and
(¢'| Ep) is important. The reason is that in most cases of interest we cannot evaluate
the path integral analytically, but must recur to numerical methods. This forces one
to calculate the multiple integrals on finite time lattices. It is then essential that the
contributions to the sum in (2.20) coming from higher energy states are suppressed
as much as possible. When (2.26a) is calculated numerically one usually imposes
periodic boundary conditions, i.e., ¢ = ¢’, and allows ¢ to take arbitrary values.
This choice of boundary conditions turns out to be very convenient.

We now make some further comments about the path integral expression
(2.26a). The evaluation of the right-hand side demands that we first calculate the

multiple integrals on a time lattice with finite lattice spacing €, and then take the
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limit ¢ — 0. Unfortunately, one can only carry out this program for path integrals
of the Gaussian type. As an example consider the following integral,

N
_1
Loy.ay = / 11 d4itodos - - - o672 Znm oo Mmmam, (2.27)
i=1

where M is a real, positive definite symmetric matrix, and where the sum extends
over n,m = 1,...,N. This integral can be calculated as follows. Introduce the

generating functional
N
1
ZolJ] = / [ daie = Znm onMnmam 2o Tnn, (2.28)
i=1

Then (2.27) is evidently given by

' Zy[J]
forar = (8Ja16Ja2 . 0y, ) Jeo (2.29)

We therefore need to calculate the integral (2.28). This can be easily done by per-
forming an orthogonal transformation on the coordinates {q,} which diagonalizes
the matrix M. One then finds

N/2
ZolJ] = oM s g

Videt M ’

where M~! is the inverse of the matrix M, and det M is the determinant of M.

This expression is very useful for carrying out a perturbative expansion of Green

(2.30)

functions in theories where the potential is a polynomial in the coordinates and can
be treated as a small perturbation. Thus suppose we want to calculate the integral

N
Kal---oéz = /H dquOQQOQ cee Qage_S[Q]; (2310,)
i=1
where
1
S[Q] - 5 % QnManm + SI[Q], (231b)

with S7[g] a polynomial in the coordinates {g,}. The integral (2.31a) is given by
(2.29), but with the generating functional (2.28) replaced by

N
Z[J] :/Hd%@_s[‘mzn Tndn
=1
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Expanding exp(—S[q]), we have that

e’} _1 k N .
ZlJ] = Z = /H in<SI[Q])k€_2 2onm I Mumdm+3 2, Jndn
i=1

k!
k=0

This expression can also be written in the form

5 (s [3s]) 2

2= (_/;!)

where S;[0/0.J] is obtained from S;[g] by making the replacements g, — 0/9J,, (n =
1,..., N) in the argument of S;, and where Zy[J] is the generating functional (2.30).
The above formula allows us to compute the generating functional Z[.J] of the inter-
acting theory in every order of S;. This is the first comment we wanted to make. The
second comment concerns our earlier claim, that the path integral representation of
Green functions opens the possibility of studying field theories non—perturbatively.
The reason for this is the following. Consider the right-hand side of (2.26a). If the
action is bounded from below, then this expression has the form of a statistical
ensemble average, with a Boltzmann distribution given by exp(—Sg[q]). This allows
us to use well-known statistical methods to calculate Green functions in theories
with a large number of degrees of freedom. The entire book is based on this simple
observation. Because of this similarity with statistical mechanics we shall speak of

the euclidean Green functions as correlation functions, and write (2.26) in the form

1 _
(Gay (1) -+ - 4o, (T2)) = E/qual(ﬁ%--qag(n)e ol (2.32a)
where
7 = / Dge5eld, (2.320)

We want to point out, however, that the right-hand side of (2.32a) should not
be confused with a canonical ensemble average in classical statistical mechanics.
Nevertheless, we shall refer to (2.32b) as the partition function.

For reasons mentioned at the beginning of this chapter, we have concentrated
our attention on Green functions continued to imaginary times. The derivation of the
path integral representation for the real-time Green functions (2.15) can be found
in the review article by Abers and Lee (1973), and in most modern text books on
field theory. We only quote here the result:

¢S]
(EolT @ (1) .- Qo (1) ) = 22 q“}tgq' e = (2.33)
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Here S|g| is the action whose variation leads to the equations of motion for real

times. In our quantum mechanical example S[q] is given by

st = [ E > (ddit) - v<q<t>>] . (2.34)

The quantity appearing within brackets is the Lagrangean describing the dynamics
of the classical system. On the other hand, we have seen that the “euclidean” action
Sklq] has the form

o) 2
Sela = [ ar E > (%) + v<q<r>>] , (2.3)
oo ~ T
whose variation leads to the “euclidean” equations of motion. By comparing (2.35)
and (2.34), we see that Sg[q] can be obtained from S[g| by the following formal rule:
Consider the action S|qg|. Replace ¢t by —it wherever ¢ appears explicitly, and ¢, (t)
by ¢o(7), where the coordinates are treated in both cases as real valued functions of
their arguments. Then

iSlal  —  —Skldl,
t——a7”
where “t — —i7” stands for the above formal prescription. Of course we have only
proved this rule for systems, where the kinetic part of the Lagrangean is quadratic
in the velocities. For fermionic systems this is not the case, but the prescription is
still correct. Since we are usually given the action of the system for real times, the
above rule is useful for determining the form of the euclidean action that enters the
path integral expression (2.32a).

As we have demonstrated in this section, euclidean path integrals involve the
integration over real valued coordinates on an euclidean time lattice. A similar state-
ment holds for the PI-representation of Green functions defined for real times. The
difference between the two representation, merely resides in the structure of the
action. Thus in the real-time formulation the paths ¢(t) are weighted with a phase,
while the corresponding weight in the euclidean formulation can be interpreted as
a “Boltzmann factor”, if the action is a real valued functional of the coordinates,
bounded from below. This was the main point we wanted to demonstrate by deriving
directly the path integral representation for Green functions continued to imaginary

times.
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2.3 The Transfer Matrix

Consider the partition function (2.32b). For a system whose dynamics is dic-
tated by the Hamiltonian (2.8), Z has the following explicit form on a finite, periodic,
euclidean time-lattice:*

(L+1) _ (0

—Xio' e [Zz : 5(7‘) +V<q<f>>}

/1‘[1‘[\/276 B B . (2.36)

Let us write this expression in the form

N-1 N-1
= / H dq(el) H Tq(ul)q(e), (2.37a)
2'=0 =0

where dq"¥) =[] 5 dqg), and

1\"? {za;(qgﬂi"g))twq“n}
Tq(e+1)q(e): 2_7'('6 (& . (237b)

From (2.9) we see that
Tq<é+1>q(f> = <q(£+1 le _Helq > (2.38)

The matrix defined by (2.38) is the so-called transfer matrix. It describes the evo-
lution of the system in an infinitesimal timestep e. Actually, the more fundamental
definition of the partition function is given by (2.37a) , with the transfer matrix
defined in (2.38). This is evident from our discussion in the previous two sections,
where the matrix elements of exp(—eH) played a fundamental role.

Suppose now that we were given the transfer matrix. Can we extract from it
the Hamiltonian (2.8)? Indeed, this can be done by reversing the steps which led us
from (q*V| exp(—He)|q®) to (2.9).** We now give the details. The states |¢¥)) are
simultaneous eigenstates of the coordinate operators ),:

Qalg™) = ¢P|g™).

Let us introduce the momentum operators P, canonically conjugate to @, which
satisfy the commutation relations

[Qav Pﬁ] - iéaﬁ'

*Le., ¢ and ¢™) are identified.
“ See e.g., Creutz (1977).
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Then exp(—i{ - P), with £ - P = ) &,P,, generates finite translations by ¢ =
(gla s 7§n):

e lg) =g +&).

Since
(la) =[] 0(d) — da),
we conclude that
(@“ Ve P 1qW) = [Tl — ¢ — &), (2:39)
Now the matrix element (2.38) can also be written in the form

_ 1 —eV(g®
Tq(f+1)q(5) _ /d€H {5(q((f-‘rl) _ q((f) _ 5&)6 2553}6 Vg )’

where

R s
a6 = 01:[1 \/271'6‘

By making use of the relation (2.39), this expression becomes

1 .
Tyenge = (Y] [/ dée 2 Za(£§+2ze£aPa)] e~V @)q0y,

Performing the Gaussian integral we therefore find that

1
Tern g = <qw+1>|€—e[za SPAV(Q)] 149,

By comparing this expression with (2.38), we conclude that the Hamiltonian is given
by (2.8).

The above described procedure for constructing the Hamiltonian, given the
transfer matrix, will be relevant later on, when we discuss the lattice Hamiltonian of
a gauge theory. In the lattice formulation of field theories we are given the partition
function. By writing the partition function in the form (2.37a), the identification
(2.38) will allow us to deduce the lattice Hamiltonian.

2.4 Path Integral Representation of Fermionic Green Functions

So far we have considered quantum mechanical systems involving only bosonic

degrees of freedom. But the fundamental matter fields in nature are believed to carry
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spin 1/2. In contrast to the bosonic case these fields anticommute in the limit & — 0,
and hence become elements of a Grassmann algebra in this limit. We therefore expect
that the path integral representation of Green functions built from fermion fields
will involve the integration over anticommuting (Grassmann) variables.* We hence
begin this section with a discussion of how one differentiates and integrates functions
of Grassmann variables. The integration rules are then applied to calculate specific
integrals, which will play an important role throughout this book. The results we
shall obtain will give us a strong hint regarding the path integral representation of
fermionic Green functions in theories of interest for elementary particle physics. We

begin our discussion with some basic definitions.

Grassmann Algebra

The elements 7, ..., ny are said to be the generators of a Grassmann algebra,
if they anticommute among each other, i.e., if

From here it follows that
n? = 0. (2.41)

A general element of a Grassmann algebra is defined as a power series in the n;’s.

Because of (2.41), however, this power series has only a finite number of terms:

fOn) = fo+ Y fim+ Y fuminy + -+ fro nmma ... (2.42)
i i3

As an example consider the function

g(n) — e Zﬁ’j:l ni Aijn; .

It is defined by the usual power series expansion of the exponential. Since the terms
appearing in the sum - being quadratic in the Grassmann variables - commute among

each other, we can also write g(n) as follows

g(n) = H e~ A

Z’Mj

* For a comprehensive discussion of the functional formalism for fermions the
reader may consult the book by Berezin (1966).
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or, making use of (2.41),
N
g(n) = T (0= maym,).
ij=1
i

Next we consider the following function of a set of 2/N-Grassmann variables which

we denote by 1, ..., 9N, 1, -, TN
B, 7) = e~ o wun,

Proceeding as above, we now have that

N

hin.) = [T (0 —:Am,).

1,7=1

Notice that in contrast to previous cases, this expression also involves diagonal

elements of A;;.

Integration Over Grassmann Variables

We now state the Grassmann rules for calculating integrals of the form

/ ﬁdmﬂm,

where f(n) is a function whose general structure is given by (2.42). Since a given
Grassmann variable can at most appear to the first power in f(n), the following

rules suffice to calculate an arbitrary integral [Berezin (1966)]:

/dmm =1

When computing multiple integrals one must further take into account that the

(2.430)

integration measures {dn;} also anticommute among themselves, as well as with

all n;’s

{dn;, dn;} = {dni,n;} =0, Vi,j. (2.43b)

These integration rules look indeed very strange. But, as we shall see soon, they are

the appropriate ones to allow us to obtain a Pl-representation of fermionic Green
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functions. As an example let us apply these rules to calculate the following integral:

N
4] = [ T dmane S0 nton, (2.44)

=1
We could have also denoted the Grassmann variables by 71,...,mon, by setting

nn+; = 7;. But for reasons which will become clear later, we prefer the above nota-
tion. To evaluate (2.44), we first write the integrand in the form

N
o~ i MiAin; — H o i1 A
i=1
Since 77 = 0, only the first two terms in the expansion of the exponential will

contribute. Hence
e 20 TN = (1 — iy Ay, iy ) (1 — MaAaigiy) -+ (1 — v Anin iy ) (2.45)

where a summation over repeated indices i,(¢ = 1,..., N) is understood. Now be-
cause of the Grassmann integration rules (2.43a), the integrand of (2.44) must in-

volve the product of all the Grassmann variables. We therefore only need to consider

the term
K(na 77) = Z Niy M Nix 72 - - - niNﬁNAlilAQlé s ANiNa (246)
i1yeiN
where we have set 7,7m;, = —n;, 7 to eliminate the minus signs appearing in (2.45).
The summation clearly includes only those terms for which all the indices iy,...,iyx

are different. Now, the product of Grassmann variables in (2.46) is antisymmetric
under the exchange of any pair of indices i, and i,. Hence we can write expression
(2.46) in the form

K(n,n) =mmnanz .. .0nTN Z €ivig.in A1y A2y - - ANin s

i1...IN

where €;,;, iy is the e-tensor in N-dimensions. Recalling the standard formula for
the determinant of a matrix A, we therefore find that

K(n,n) = (det A)mmunenz ... nTN -

We now replace the exponential in (2.44) by this expression and obtain

N
i=1
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Let us summarize our result for later convenience:

/ D(im)e™ =1 1 4um = det A,
N (2.47)
D(im) = | [ dedne.
(=1

There is another important formula we shall need, which is the analog of (2.30).
It will allow us to calculate integrals of the type

Ly g | Al = /D(ﬁn)ml Mg T e Eism mkigny. (2.48)

Consider the following generating functional
Zp, pl = /D(f]n)eZi,]’niAijnj+Zi(77ipi+Pi77i)’ (2.49)
where all indices are understood to run from 1 to N, and where the “sources” {p;}

and {p;} are now also anticommuting elements of the Grassmann algebra generated
by {n:, i, pi, pi }- To evaluate (2.49) we first rewrite the integral as follows:

Zlp,p] = V D(ijn)e > ngAijn;] Xy Py pi
where
m=n—> Az'pr.
k
n =1 — Zﬁkz‘l;}f’
k

and A~! is the inverse of the matrix A. Making use of the invariance of the integration

measure under the above transformation® and of (2.47), we find that
Zp, p] = det Ae2=ii PiAy'ps, (2.50)

Notice that in contrast to the bosonic case, this generating functional is proportional
to det A [instead of (det A)~/2; see (2.30)].

* This is ensured by the Grassmann integration rules.
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Differentiation of Grassmann Variables

We now complete our discussion on Grassmann variables by introducing the
concept of a partial derivative on the space of functions defined by (2.42). Suppose
we want to differentiate f(n) with respect to n;. Then the rules are the following:

i) If f(n) does not depend on 7;, then 9,,f(n) = 0.

ii) If f(n) depends on n;, then the left derivative 9/0n; is performed by first bringing
the variable 7; (which never appears twice in a product!) all the way to the left,
using the anticommutation relations (2.40), and then applying the rule

0
—mn; = 1.
3?7¢n

<_
Correspondingly, we obtain the right derivative 0 /0n; by bringing the variable ;

all the way to the right and then applying the rule

9

i— = 1.
7 on;

Thus for example

0 . .
a—mﬁjm = 1 (i # 7),
or
%
3 0
nmja—ﬁi = —nj.

Notice that, because of the peculiar definition of Grassmann integration, we have
that

/dmf(n) - fn).
on;

Hence integration over 7); is equivalent to partial differentiation with respect to this

variable! Another property, which can be easily proved, is that

o 0 }
—— 5 /() =0.
{3771- on;
Let us apply these rules to some cases of interest. Consider the function
E(p) = e,

where {n;, p;} are the generators of a Grassmann algebra. If they were ordinary
c—numbers then we would have that

S E() = nE(p
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This result is in fact correct. To see this let us write E(p) in the form
E(p) = [ [0+ pjmy)-
J
Applying the rules of Grassmann differentiation, we have that

16) N _
5 E(p) = n; | |(1 + pin;)-
pi i

But because of the appearance of the factor n; we are now free to include the extra
term 1 + p;n; in the above product. Hence we arrive at the above-mentioned naive
result. It should, however, be noted, that the order of the Grassmann variables in
>; pim; was important. By reversing this order we get a minus sign, and the rule is
not the usual one! By a similar argument one finds that

%
e TP — 225 iP3

)

Let us now return to the generating functional defined in (2.49). Proceeding as
above one can easily show that

= =
0 0 0 0

L iyir it |Al = — ... —Z|p,p , 2.51

12131 e[ ] apll apll [p p] 8p1,1 8&2 p:ﬁzo ( )

where the left-hand side has been defined in (2.48). By making use of the explicit
expression for Z[p, p| given in (2.50), one can calculate the right-hand side of (2.51).
Since we shall need this expression in later chapters, we will derive it here. To this

effect we first rewrite (2.50) as follows

Zlp,pl = det A [ " X557 = (det A)(1+ pi, A7k pr)

(L P As o Pra) - (L Pi Ar o), (2.52)
where the indices ki, ..., k; are summed, and [...] stands for the remaining factors
not involving the variables p;,, ..., p;,. The only terms which contribute to the left

derivatives in (2.51) are those involving the product p;, ... p;,. Furthermore since we
will eventually set all “sources” p; and p; equal to zero, we can replace |[...] by 1.
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The contribution in (2.52), which is relevant when computing (2.51), is therefore
given by
Z[ﬂ? ﬁ] =det A Z ﬁilAi_]_}glpkl s ﬁieAi_legépkw
{ki}
where all k;’s are different, and the “prime” on {k;}’ indicates that the k;’s take only

values in the set (¢},1),...,17)), labeling the right derivatives in (2.51). Thus we can

write the above expression in the form

Zlp, ]—detAZA i Aty - Aty PisPity, i, - D,

zlz[ﬁ

(2.53a)

where the sum extends over all permutations

P: <,/1 ; S ) . (2.53b)
ip, ip, --- lp,

Each of the products of Grassman variables appearing in the sum (2.53a) can be

put into the form

5. Ze—

EllQ Lip T p11p11p12p22 cee ﬁzgpz;

by using the anticommutation rules for Grassmann variables. It follows that

’Ll ZZ

Z[p, p] = (det A) L (psp)s

o 1 -1
Z( ) PA'Ll'LP t Aigilpe

P

where (—1)7” is the signum of the permutation (2.53b). We now apply the left and
right derivatives indicated in (2.51) to the above expression and obtain the following

important result:
/D(7777)77i1 MM e 2 A

= &(det A)Y (—1)7PALL AL (2.54)

= zlzpl irip,
where & = (—1)"“~1/2, As a particular case of (2.54) we have that
/ D(imiiige™ Sos W40 = (det A) A7 (2.55)

Let us define the two-point correlation function

[ D(im)mine~ 2= i
J D(im)e” 24,5 MiAijn;

(nitj) = (2.56)
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Then it follows from (2.47) and (2.55) that

We shall refer to (2.57) as a contraction. The generalization of (2.57) to arbitrary

“correlation” functions,

S D), - i -y € i T
f D(Fm)ei > MiAign;

Miy Mgt - - - T_hg) = , (2.58)

follows from (2.54) and (2.47). One finds that

= = = r = = a =
(Mis iy -+ Mg it Tty -+ - Tiy) = Nia Wiy - i Tt 7y, - - T,
|

F M Wi -+ i Mit ity -+ - Ty =+ iy Mgy - - r%ﬁi'ﬁi; . -_lﬁig +...
I S St | L [y |
| | I

(2.59)

where the right-hand side stands for the sum of all possible pairwise contractions
(2.57) of the Grassmann variables, multiplied by a phase (—1)?, where p is the
number of transpositions required to place the contracted variables next to each

other in the form nn.

This completes our discussion of Grassmann variables. Let us now answer the
question what all these exercises with Grassmann variables have to do with the path
integral representation of fermionic Green functions. To this effect let us consider
the simplest type of relativistic field theory involving only fermionic fields: the free
Dirac field. The corresponding action in Minkowski space is given by*

S, 9] = / Do () (70, — My(a),

where y* are the Dirac y-matrices, and where the Lorentz index p is summed. Let

us write this action in the form

Sp— %3 / A wd () Kap (2, 1)0s (1),

where

Kop(x,y) = (iv"0, — M)aps™ (z — y).

* We assume the reader is familiar with the quantization of the free Dirac field.
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The two-point function (fermion propagator) is related to the inverse of the matrix

K as follows:

(QUT(Va(2)Ps(y))|Q) = iK 52, y),

where the time-ordering operation “I"” orders the operators from left to right ac-
cording to descending time, treating the operators ¥, and Vs as elements of a
Grassmann algebra. But we have just learned above how to compute the inverse of
a matrix by means of Grassmann integrals. Thus a naive application of the formulae
(2.56) and (2.57) leads to the following Pl-expression for iK_;(z,y):

[ D)o () s (y)eiSrw)

iK gz, y) = [ D(pe)eiSrl:v] ’
where the measure is formally defined by
Ildwa )i (x

and where 7 and 1) are Grassmann-valued fields. The above observation suggests
that the Pl-representation of Green functions involving an equal number of Dirac
fields of type ¥ and ¥ is given in Minkowski space by*

(QUT (Vo (21) . Vo, (20) U, (11) - g, (y2))[€2)

— f D(quvb)wm (1‘1) .- ‘Qﬂag (l’éﬁ;ﬂl (yl) . .1/_1@ (yg))eiSF[l/’ﬂ/j]
J D()eiselo] -

This is certainly true for the free Dirac field, as follows from a naive application of

(2.60)

formula (2.59), which is nothing but Wick’s theorem. But it is also true for theories
like QED or QCD, where the fermionic contribution to the action is again a bilinear
function in the fields 1) and 1. In these theories, this fermionic contribution also
depends on a collection of bosonic variables (the gauge potentials) and the path
integral (2.60) gives the Green function evaluated in external gauge fields. When
quantum fluctuations of these fields are taken into account, the appearance of the
determinant of the matrix A in (2.55) (rather than 1/v/det A, which is characteristic
of the bosonic case) will play a crucial role. This will become clear later on, when
we discuss these theories in detail.

* All other functions vanish because of the Grassmann integration rules. For a

derivation of the path integral expression for fermions from fundamental principles,
see Berezin (1966).
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As the reader will have noticed, we have not discussed the path integral rep-
resentation of fermionic Green functions continued to imaginary times. We shall do
this in chapter 4, using the rule derived in section 2 for Green functions involving
bosonic variables. In the case of the free Dirac theory, the correctness of this rule
can be checked explicitly by comparing the results obtained by the PI-method with
those derived using conventional canonical Hilbert space methods. In field theories
with interactions like QED or QCD, such a comparison can be made in perturbation
theory. The non-perturbative definition of the correlation functions in these theories
is assumed to be given by the PI expressions.

We close this section with a remark. In contrast to the bosonic case, we cannot
calculate numerically “ensemble averages” of products of Grassmann variables using
statistical methods. Nevertheless, we will still be able to study theories like QED
or QCD numerically. The reason is that, as we have just mentioned, the fermionic
contributions to the action in these theories is bilinear in the fields v and . This
allows one to perform the Grassmann integrals and to recast the path integral ex-
pression for the euclidean correlation functions in the form of a statistical mechanical
ensemble average, with a new effective action. This action depends in a non-local
way on the bosonic fields to which the fermions are coupled. It is this non-locality
that makes numerical computations of correlation functions involving fermions very

time-consuming.

2.5 Discretizing Space-Time. The Lattice as a Regulator
of a Quantum Field Theory

As we have pointed out repeatedly in the previous sections, the path integral
expressions for Green functions have only a well-defined meaning for systems with
a denumerable number of degrees of freedom. In field theory, however, where one is
dealing with an infinite number of degrees of freedom, labeled by the coordinates &
and, in general, by some additional discrete indices, the multiple integrals are only
formally defined. To give the path integrals a precise meaning, we will therefore
have to discretize not only time, but also space; i.e., we will be forced to introduce
a space-time lattice. Eventually we will have to remove again this lattice structure.
This is a quite non-trivial task. Those readers acquainted with the renormalization
program in continuum perturbation theory know that the renormalization of Green
functions first requires the regularization of the corresponding Feynman integrals
in momentum space. These integrals will then depend on one or more parameters

which are introduced in the regularization process (momentum cut-off, Pauli-Villars
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masses, dimensional regularization parameter). Since the effect of any regularization
procedure is to render the momentum integrations in Feynman integrals ultraviolet
finite, let us loosely say that the first step in the renormalization program consists
in the introduction of a momentum cutoff. If the original Feynman integrals are di-
vergent, then the regularized integrals will be strongly dependent on the cutoff. The
second step in the renormalization program now consists in defining renormalized
Green functions, which approach a finite limit as the cutoff is removed. This demands
that the bare parameters of the theory become cutoff dependent. This dependence
is determined by imposing a set of renormalization conditions, which merely state
that such quantities as the physical coupling strength measured at some momentum
transfer, and particle masses are to be held fixed as the cutoff is removed.

The above described renormalization program is carried out on the level of
Feynman integrals in momentum space. In the lattice approach this program can be
formulated without reference to perturbation theory. The first step (regularization)
consists in introducing a space-time lattice at the level of the path integral. This
regularization merely corresponds to defining what we mean by a path integral.
The second step of the renormalization program then corresponds to removing the
lattice structure. This amounts to studying the continuum limit. It is therefore not
surprising that the bare parameters of the theory will have to be tuned to the lattice
spacing in a very definite way depending in general on the dynamics, if physical
observables are to become insensitive to the underlying lattice structure. Thus if
the reader had some uneasy feelings about the way the infinities are removed in
conventional perturbation theory, he will probably feel much better after having read
this book. In this connection we also want to mention that within the perturbative
framework the introduction of a space-time lattice corresponds to a particular way of
regularizing Feynman integrals. As we shall see, this regularization does not amount
to the naive introduction of a momentum cutoff. Although the momentum space
integrals will indeed be cut off at a momentum of the order of the inverse lattice
spacing, the integrands of Feynman integrals will not have the usual structure, but
are modified in a non-trivial way. This is one of the reasons why lattice weak coupling
perturbation theory is so difficult. The other reason is that in the lattice formulation
of gauge theories, new interaction vertices pop up, which have no analogue in the

continuum formulation.

The appearance of a momentum cutoff in the lattice formulation is not surpris-
ing. Consider a function f(z) of a single continuous variable. If its absolute value is
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square integrable, then f(x) has the following Fourier representation:
< dk - ,
f(x) = / 2—f(k)e”“. (2.61)
oo 2T

On the other hand, if z is restricted to a multiple of a “lattice spacing” a, i.e., x = na
with n an integer, then f(na) can be Fourier-decomposed as follows:

w/a B )
fna) = [ SRRyt (2.62)

—7/a

where f,(—7/a) = f,(7/a). Hence the “momentum” integration is now restricted to
the so-called Brillouin zone (BZ) [—7/a, 7 /a]. f.(k) can be represented by a Fourier
series. The coefficient of exp(—ikna) is given by (2.62) multiplied by a:

fa(k)=a Y f(na)e . (2.63)

The right-hand side is just the discretized version of the expression for f (k) obtained
by inverting (2.61). By setting f(na) = 1/27 in (2.63), we obtain a Fourier series
representation of the d-function in the BZ,

Sp(k) = e 3 ek, (2.64)

:%n

where the subscript P stands for “periodic”. It emphasizes the fact that 0p(k) has
non-vanishing support at & = 0 modulo 2nw. The Dirac é-function, §(z — y), of

course becomes the Kronecker-d (multiplied by 1/a) on the z-lattice:

w/a dp
S = @ / P ip(n—m)a, (2.65)

—7/a 27

The above formulae are trivially extended to functions depending on an ar-
bitrary number of variables. In particular, in four space-time dimensions, all four
components of momenta will be restricted to the interval [—7/a, 7 /a]. Thus the in-
troduction of a lattice provides a momentum cutoff of the order of the inverse lattice
spacing.

We are now ready to embarque on the main task of this book, i.e., the for-
mulation of field theories on a space-time lattice. As a warm-up, we begin in the
following chapter with a very simple field theory: the free scalar field. Although the
lattice formulation will be trivial in this case, we will nevertheless learn a number

of important facts by studying it in detail.
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CHAPTER 3

THE FREE SCALAR FIELD ON THE LATTICE

Consider the classical field equation
(O + M*)p(x) =0, (3.1)

where ¢ is a real field, O is the d’Alembert operator, and x stands for the space-time
vector with components z, (1 = 0,1,2,3). This equation of motion follows from an
action principle, .5 = 0, where

1

S = —5 /d%qb(x)(lj + M?)p(z) (3.2)

is the action associated with the Lagrangian density

In the quantum theory the coordinates ¢z(t) = ¢(z) and momenta pz(t) = ¢(a:)
become operators, ®(x) and ®(z), satisfying canonical commutation relations. The
information about the quantum theory is contained in the Green functions

G,y,...) = QT (2(x)®(y) - --)[), (3-3)

where |Q2) stands for the ground state of the system (physical vacuum) and 7" denotes
the time-ordered product of the operators ®(x). These Green functions have a path
integral representation which can be formally obtained from (2.33) by making the
replacements @, (t) — ®(Z,t) and q,(t) = ¢(Z,1):

_ [ Do (x)p(y) - ..eiS[@'

G(z,y,...) [ Does

(3.4)
Here [ D¢ denotes the sum over all possible field configurations ¢(z). The effects
arising from quantum fluctuations are contained in those contributions to the inte-
gral (3.4) coming from field configurations which are not solutions to the classical
equation of motion (3.1) and hence do not lead to a stationary action. Now for
reasons mentioned in chapter 2 we are interested in the analytic continuation of
(3.4) to imaginary times, 2° — —izy,y° — —iy4, etc. Let, from now on, z and y
denote the euclidean four vectors with components z,, and y, (u=1,...,4). It then
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follows from our discussion in chapter 2 that the Green functions (3.3) continued to

imaginary times have the following path integral representation

£)o(y) .. JeSele
o). ) = L2 W’f( D, (35)

where we have made use of the notation for the euclidean Green functions, intro-
duced in chapter 2. The euclidean action Sg[¢] appearing in (3.5) is obtained from
(3.2) by i) making the replacement zy — —ixzy where-ever 2° appears explicitly,
ii) substituting for ¢(Z,t) the (real valued!) field ¢(z) = ¢(Z,z4),* and iii) mul-
tiplying the resultant expression by —i¢. This leads to the following expression for

Sele],

1

Sel¢] 5

/d%QS(x)(—D + M?)é(x), (3.6a)

where O denotes from now on the 4-dimensional Laplacean

4

0= 9.0, (3.60)

pn=1
In passing to the imaginary time formulation, the Green functions take the form
of correlation functions of a statistical mechanical system defined by the partition

function
Z = / Dge 19,

where the integration measure D¢ is formally defined by

D¢ =[] do(, a).

-
T,x4

So far the path integral (3.5) has not been given a precise mathematical meaning.
We do this now by introducing a space-time lattice with lattice spacing a. Every
point on the lattice is then specified by four integers which we denote collectively by
n = (ni1,ne,ng,ny). By convention the last component will denote euclidean time.

The transition from the continuum to the lattice is then effected by making the

* We are a bit sloppy in our notation: ¢(Z,z4) is not obtained from ¢(Z,t) by
substituting x4 for ¢, but denotes a real field which is a function of the euclidean
variables z,(n = 1,...,4).
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following substitutions:

T, — n,a,

¢(x) = ¢(na),

[damaty (3.7a)

1.

O6(2) — 506 (na),

D¢ — H do(na),

where the action of the dimensionless lattice Laplacean [ is defined by
Op(na) = Y _(é(na + fia) + ¢(na — fia) — 2¢(na)). (3.7b)
p
Here i = ¢, where ¢, is a unit vector pointing along the pu-direction.
We next want to obtain a path integral expression involving dimensionless
variables only. To this effect we scale the mass parameter M and the field ¢ ac-

cording to their “canonical” dimension. As seen from (3.6a) ¢ has the dimension of
inverse length (the same as M). Hence we define the dimensionless quantities M and

qgn by

¢En = a¢(na)>
M = aM. (3.8)

With (3.7) and (3.8) expression (3.5) translates into
- [ 11, déentm - - - e 551

() [TL,ddec—5=18 (3:9a)
where
1 AA 1 A PSRN
Sp = =5 D onburnt 58+ Y dudn, (3.95)
n,0 n

and where the sum over i extends over all positive and negative directions. Notice
that the lattice spacing no longer appears in these expressions! This is not partic-
ular to the free field theory considered here, for it is merely a consequence of the
fact that, measured in units of A, the action is dimensionless, which is true for any
theory.

It is important to realize that the form of the lattice action (3.9b) is not

unique, and that we have merely chosen the simplest one. Thus, a priori, the only
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requirement that any lattice action should fulfil is that it reproduces the correct
classical expression in the naive continuum limit.* Indeed, the scalar field is the
only case in which a simple prescription of the above type gives the correct lattice
action describing the quantum theory. Already the free Dirac theory will require a

more careful treatment!

Let us now consider the integral (3.9a) in more detail. Its structure is analogous
to that encountered in the statistical mechanics of a spin system with nearest neigh-
bour interactions. In the present case, however, the theory is easily solved since the
variables qgn are allowed to take on any real value. To carry out the integral (3.9a)

we rewrite the action (3.9b) in the form

1 . R
Sp =3 %‘ G K i O (3.10a)
where K, is given by
Knm - - Z[CSn—i—ﬂ,m + 5n—ﬂ,m - 25nm] + Mz(snm (310(7)
n>0

Consider the generating functional
ZolJ] = / T] o e=SeE0 b (3.11)
¢

It can be easily calculated, since the (multiple) integral is of the Gaussian type.
Apart from an overall constant, which we shall always drop since it plays no role
when computing ensemble averages, we have that (cf. e.g., (2.28) and (2.30)

1 1
Z()[J] = —me% Z”'"L JnKnme. (312)

Here K ! is the inverse of the matrix (3.10b), and det K is the determinant of K. By
differentiating (3.12) with respect to the sources we obtain any desired correlation
function. For our purpose it suffices to consider the 2-point function. From what we
have learned in chapter 2, we get

(Pndm) = Ko (3.13)
The inverse matrix K ! is determined from the equation
> KKy = Sum, (3.14)
¢

* T.e., scaling the variables with a appropriately, and letting a — 0.
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and is easily computed by working in momentum space, where 9,,, is given by

" d4l% ik-(n—m
5nm:/ (%)4@’“( ), (3.15)

We have introduced the “hat” on k = (/2;1, cee 1%4) to emphasize that these variables
are dimensionless. Making use of the Fourier representation (3.15), one finds that
(3.10Db) is given by

" d4l% (TN ik (n—m)
Kpm = (27?)4K(k)6 , (3.16a)
where
.. ! k .
K(k)=4) sin® >+ M. (3.16b)
pn=1

Notice that the integration in (3.16a) is restricted to the Brillouin zone (BZ), —7 <
l%# < 7. The inverse matrix (3.13) is now easily determined from (3.14) by making

the ansatz

— " d4]% 2N\ ik-(n—m
Km}l:/ (QW)LLG(k:)ek( ),

—T

and performing the sum over ¢ using the expression (2.64) with (¢ = 1) for the
periodic delta function:

™ d4f€ eifv(n—m)

Kot = {Gudm) = [ . (317)
= (2m)ty ZH sin? %" + M?

The right-hand side of this expression depends on the lattice sites n and m, and on

the dimensionless mass parameter M. To make this explicit let us define

G(n,m; M) = ($nm)-

Suppose we were given (3.17) and were asked to study its continuum limit in order
to extract the physical two-point correlation function, (¢(x)¢(y)). The obvious thing
to try would be to introduce the lattice spacing by rescaling ngSn and M according to
(3.8), and to take the limit a — 0, holding M, ¢, x = na and y = ma fixed. Hence
one must know which quantities are to be held fixed as one removes the lattice
structure! For example, in an interacting theory the mass parameter M would in
general be unphysical and cannot be held fixed as we let the lattice spacing go to

zero. In the present simple case, however, the naive procedure just described gives
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the correct continuum limit; i.e., we claim that the right-hand side of
o1 Ty
(6(@)o(y)) = lim G (=, 4 Ma) (3.18)
approaches a finite limit, and reproduces the well-known result for the scalar two-
point function. For this to be the case, G(z/a,y/a; Ma) must clearly vanish in the
limit @ — 0. From (3.17) one finds after a trivial change of integration variables
that

T/a Ak ik-(z—y)
G (f, Y. Ma) - a2/ N— (3.190)
a a —m/a (27T) ZM kZ+M2
where /~€H is given by
~ 2 . kua
k, = _ sin % (3.190)

Since the integration in (3.19a) is restricted to the interval [~ 7], the integral will
be dominated by momenta which are small compared to the inverse lattice spacing;
hence we may set /;u — k. Taking the limit a — 0 we arrive at the well-known
result:

00 d4k‘ 6ik-(mfy)

(¢(x)d(y)) = / e I (3.20)

The above discussion has made explicit use of the lattice spacing. But suppose we

were not in the position of performing the continuum limit analytically, but must
rely on a numerical calculation of the path integral (3.9) where the lattice spacing
does not appear. What does it mean to study the continuum limit in such a case?
The idea is of course to make the lattice finer and finer with physics remaining the
same as we approach the continuum limit. Consider for example a physical correla-
tion length £. Decreasing the lattice spacing means increasing the correlation length
é measured in lattice units. But f may be controlled by the parameters on which the
theory depends! Thus, doubling é by choosing these parameters appropriately, we
have cut down the lattice spacing by a factor of 1/2. Now what controles the corre-
lation length f in our example is the dimensionless parameter M. In the continuum
limit the correlation function (3.20) decays exponentially for large |x — y| with a

correlation length given by the inverse mass. Hence the corresponding correlation
1

Ma’

of view of a statistical mechanical system described by the partition function (3.11)

length measured in lattice units, i.e., é = diverges as a — 0! Thus from the point
with J = 0, the continuum limit is realized for M — 0 at a critical point of the the-
ory! It is therefore evident that in any practical numerical calculation carried out on

a finite-size lattice we can never actually go to the continuum limit. How do we then
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decide whether we are extracting continuum physics? In principle the answer is very
simple: We must ensure that our lattice is fine enough (i.e., M small enough in the
present case) so that physical quantities become insensitive to the lattice structure.
But quantities like (¢(z)¢(y)) are dimensioned, and we can only calculate dimen-
sionless objects! So we must consider dimensionless ratios of physical quantities. In
our case the simplest quantity is (¢(z)@(y))/M?; hence we must study the lattice
ratio (¢ndm)/M? for small values of M, keeping M|n — m| ~ M|z — y| fixed. If for
sufficiently small M this ratio becomes independent of M, then our lattice is fine
enough and we are extracting continuum physics.

Admittedly the case of a free scalar field was a very simple one. Nevertheless it
has served to elucidate several ideas that go into a lattice formulation. In an inter-
acting theory the story will be certainly more complicated. But the main messages

of this chapter will remain.
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CHAPTER 4

FERMIONS ON THE LATTICE

In the preceding chapter we have shown that the lattice formulation of the free
scalar field theory poses no problems. The correct continuum limit was reached by
simply scaling all dimensionless variables appropriately with the lattice spacing a,
and taking the limit @ — 0 holding physical quantities fixed. The purpose of these
lectures, however, is to arrive at a lattice formulation of QCD which describes the
interaction of quarks and gluons. Hence we must learn how to deal with fermions and
gauge fields on a lattice. While there is a clear-cut and elegant way of introducing
gauge fields on a space-time lattice, the situation regarding fermions is not so clear.
As we shall see, the difficulties arise already on the level of the free Dirac field. From
the psychological point of view it would therefore be preferable to discuss that part of
lattice gauge theories first which one believes to be well understood, and to introduce
lattice fermions at a later stage, since they are endowed with special problems not
encountered for bosonic fields. On the other hand, having discussed the scalar field,
it is only natural to attempt a similar naive formulation for the other kind of matter
field. Thus it is interesting that in the case of fermions the lattice forces us to deviate
from the naive type of prescription adopted in the previous chapter, in order to avoid
the so-called fermion “doubling” problem. Several proposals have been made in the
literature to get around this problem, and we shall discuss the two most popular ones.

4.1 The Doubling Problem

We begin by pointing out the difficulties one encounters when latticizing the
free Dirac field.

Consider first the Dirac equation in Minkowski space
(i7" — M)¢p(z) =0,
where v* are 4 x 4 Dirac matrices satisfying the following anticommutation relations
{77} = 29",
and 1 is a 4-component field, whose components we shall label by a Greek index

(a, 3, etc.). The equation of motion for ¢ and (= 1T4°) follow from the independent

variation of the action

S, 9] = / () (i7", — M)i(x)
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with respect to the fields ¢ and . In the quantum theory, ¢ and ' become opera-

tors, ¥ and W' satisfying the following canonical equal-time commutation relations
{Wa(,1), WH(F, 1)} = 0050 (7 = §).
The path integral representation of the Green function™®

<Q’T(‘Ija1 (331) s \Pae@jf)‘ilm (1) - - \ilﬁe (yf))|Q>
is given by (2.60), i.e.

; [ DUDYta () . Dgly) . e
(QUT(o(z)... By(y)...)|Q) = e |

The corresponding representation of the Green functions continued to imaginary
times is obtained by replacing iSx[¢),1)] by —S;fml') [, %], where S§UCI') is the
euclidean action, and identifying x, y etc. with the euclidean four-vectors. We denote
the euclidean Green functions by (1, (z)...%s(y)...). Then

[ DUDY(Wa(x) . Pa(y) .. Je S
[ D Dype5E"" 0] '

(Yal@). . Up(y)...) (4.1)

The euclidean action can be obtained from Sg by the prescription discussed in sec-
tion 2 of the previous chapter. But since in euclidean space the Lorentz group is
replaced by the rotation group in four dimensions, it is convenient to express the

action in terms of a new set of y-matrices 75 (n=1,...,4), satisfying the algebra

(70} = 20

With the hermitean choice v¥ = ~° ¥ = —iv?, the euclidean action then takes the

form
si) = [ dtai@) 08, + M) (42)

Since from now on we shall be interested only in the euclidean formulation, we shall

drop any labels reminding us of this.

So far the path integrals in (4.1) are only formally defined, since x,y etc. are

continuous variables. So let us introduce a space-time lattice. The fields 1 and 1)

* Here x;,y;(i = 1,...,¢) denote four vectors in Minkowski space.
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then live on the lattice sites na, where a is the lattice spacing, and the integration

measure is given by

DDy = [ [ diba(na) Hdwﬁ (ma)

a,n

Next we rewrite (4.1) in terms of dimensionless lattice variables, by scaling M,
and ) with a according to their canonical dimensions. This is achieved by making
the replacements

1

M — =M ,
a
1 -
¢a($) — m¢a(n)a
- (4.3a)
7%(33) — m%ﬁa(n),
1 ~ .
8H¢a(x) — m6u¢a<n)a
where 5# is the antihermitean lattice derivative defined by
L 1 - . R
Outpa(n) = SlYaln + 1) = Yaln — ). (4.3b)
Then the lattice version of (4.2) reads
Sp = Zw Kop(n,m)ihs(m), (4.4a)
where
1 .
ozﬁ n, m Z 5 ’y“ aﬁ mn-i—,& — 5m,n—ﬁ] + M(Smnéaﬁ. (44b)
o

With this action the lattice correlation functions are given by the following

path integral expression

=< 7 ) fn/...i m...e_SF
(Galn) -+ Byom) -y = I DEDEln) - Golm) o T g
| Dy Dype=5rF

where the integration measure is defined by

DEDY = [ diba(n) [T ddbstm). (4.50)
n,a m,3
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The correlation functions (4.5a) can be obtained from the generating functional
Z[n’ 'f]] = / D@ZD’Q&G_SF—FZ"@W“ (n)¢a (n)—"_’lZa (n)na(n)] (46)

by carrying out the appropriate differentiations with respect to the Grassmann-
valued sources 7,(n) and 7, (n) (see chapter 2). The integral (4.6) can be performed
(cf. egs. (2.49) and (2.50)) and we obtain

Z[T]7 T_]] = det, Kezn,m,a,ﬁ ﬁa(n)Kojﬁl(mm)n,g(m)'

Hence the two-point function is given by

(B (n)5(m)) = K3 (n,m).

So far everything is quite analogous to the scalar case considered in the previous
chapter. In particular we want to emphasize that the lattice action (4.4) was ob-
tained by proceeding in the most naive way possible. Such a prescription was shown
to work in the case of the free scalar field. Hence there is no a priori reason why
it should fail to do so in the present case. But the fact is that it fails! To see this
let us compute the physical correlation function (1, (z)13(y)) by carrying out the
continuum limit in a manner analogous to the scalar case (cf. eq. (3.18)), i.e

(a(2)is(y)) = lim Gag (— z Ma>

CL

where Gog(n,m, M) = K _Bl(n,m). The factor 1/a® arises from scaling the fields

[0

according to (4.3a). The inverse matrix K ;ﬁl (n,m), defined by
Z )\ n ﬁ K)\/g(f m) = 5,1557”7“

can be easily calculated by proceeding as in the previous chapter, and one obtains

m/a d4p [_szyﬂpu-i—M]aﬁ pip(a— y)

Wal)bat) =limy | 55 AT (4.70)
where ﬁu is given by
= 1
P, = . sin(ppa). (4.7D)

For 5# — pu the above integral would reduce to the well-known 2-point function
in the limit a — 0. Recall that in the scalar case, we had encountered a similar
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situation, but with an all important difference! The argument of the sine-function
in eq. (3.19b) is only half of that in (4.7b)! This makes a big difference and is the
origin of the so-called “fermion doubling” problem. While in the case of the scalar
field we could argue that ffu in (3.19a) can be replaced by k£, in the continuum limit,
such a replacement cannot be made in the present case. The reason for this is most
clearly seen by looking at fig. (4-1) where we have plotted ]5“ as a function of p,, for
pp within the Brillouin zone. The straight line corresponds to p, = p,. Within half
of the BZ the situation is analogous to that encountered in the scalar case: near
the continuum limit, the deviation from the straight line behaviour occurs only for
large momenta where p, and 5# are both of order 1/a.

L ___[3#=1/a

y

—rla ma p u

Fig. 4-1 Plot of sin(p,a)/a versus p, in the Brillouin zone. The
straight line corresponds to ]5# = p,. The continuum limit is determined by

the momenta in the neighbourhood of p, = 0 and p,, = £7/a.

What destroys the correct continuum limit in the fermionic case are the zeros
of the sine-function in (4.7b) at the edges of the BZ. Thus there exist sixteen
regions of integrations in (4.7a), where ]’5“ takes a finite value in the limit a — 0.
Of these, fifteen regions involve high momentum excitations of the order of 7/a
(and —7/a), which give rise to a momentum distribution function having the form
resembling that of a single particle propagator. Hence in the continuum limit, the
Green function (4.7a) receives contributions from sixteen fermion-like excitations in
momentum space, of which fifteen are pure lattice artefacts having no continuum
analog. In d space-time dimensions the number would be 2%; i.e. it doubles for each
additional dimension.

The “doubler” contributions, arising from momentum excitations near the cor-

ners of the Brillouin zone, are in fact essential for avoiding an apparent clash with a
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well known result in continuum QED. For vanishing fermion mass the QED action
is invariant under the global chiral transformation

b= €0 ) e, (4.8)

where 6 is a parameter, and 75 = Y1723V is a hermitean matrix which anticom-
mutes with v, (¢ = 1,2, 3,4). Naively this implies the existence of a conserved axial
vector current. But because of quantum fluctuations this current has actually an
anomalous divergence [Adler (1969); Bell and Jackiw (1969)]. In a lattice regular-
ized theory, on the other hand, such a symmetry implies that this current is strictly
conserved for any lattice spacing. The way the lattice resolves this apparent puzzle,
consists in generating extra excitations (— doublers) that have no analog in the
continuum, and which cancel the anomaly of the continuum theory arising from
momentum excitations around p = 0 [Karsten and Smit (1981)].

Since the phenomenon of fermion doubling is a serious stumbling block in
constructing lattice actions involving fermions, we will look at it in more detail

in the following section.

4.2 A Closer Look at Fermion Doubling

Before we discuss the lattice Dirac propagator in more detail, it is instructive to
demonstrate the essence of the fermion doubling problem in some simple examples.
In particular we want to show that the origin of fermion doubling lies in the use of

the symmetric form for the lattice derivative.

(i) Example 1
Consider the following eigenvalue equation

d

—io—f2) = Af(2).

The solution is given by fy(z) = f1(0)e**. Next consider the discretized version of
this equation, where the derivative is replaced by the right “lattice” derivative. Let
f(n) be the value of f(z) at the lattice site x = na, where a is the lattice spacing.
Then

—i[f((n+1)) = f(n)] = Mf(n),

where ) is the eigenvalue measured in units of the lattice spacing, i.e. A = Aa. The

equation can be solved immediately by iteration:

f:\(n) _ enln(l-&-ij\)fj\(())‘
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~

In the continuum limit, which is obtained by setting n = £, A = Aa, and taking the
limit @ — 0 with A fixed, we recover the above solution.

Let us now consider a discretization which respects the hermiticity of the op-
erator z'a%. This requires the use of the symmetric lattice derivative.
7 ~
—§[f((n+1)) — f((n=1))] = Af(n). (4.9)

Thus our estimate of the derivative now involves twice the lattice spacing! As a
consequence one finds that for each eigenvalue X\ there exist two solutions to the
eigenvalue equation (4.8). Not both of the solutions can possess a continuum limit,
since the continuum eigenfunctions are non-degenerate. Indeed, equation (4.8) can
be solved with the Ansatz

fi(n) = Ce™,
where p satisfies the equation
sinp = .
For a given positive (negative) eigenvalue A this equation possesses two solutions

for p: one lying in the range 0 < p < § (=% < p < 0), and the other in the interval
7 <p<m (=7 <p<—7%). The corresponding eigenfunctions are given by

f}(\l)(n) — Aei(arcsinj\)n’ (4100,)
fj(\2) (n) _ B(_l)ne—i(arcsinj\)n’ (410b)

where
—g < arcsin \ < g (4.10¢)

The solution (4.10a) possesses a continuum limit which is realized by setting
n = z/a, A = Aa, and taking the limit @ — 0 with \ fixed. In this limit we re-
cover the solution to the original continuum eigenvalue equation. On the other hand
(4.10b) does not possess such a limit because of the factor (—1)" which alternates in
sign as one proceeds from one lattice site to the next. Notice that the origin of the
“doubler” solution (4.10b) is a consequence of having used the symmmetric form
for the lattice derivative. One might be tempted to merely ignore this solution. In

this case, however, our eigenfunctions would no longer constitute a complete set.
(ii) Example 2
Consider the Green function for the differential operator % + M:

[% T M] G(t.t) = 5(t — ). (4.11)
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The general solution is given by
G(t,t) = Ae™ME) L g(t — )e M), (4.12)

Next consider the dimensionless discretized version of (4.11), where the derivative

is replaced by the symmetric lattice derivative:

1

> {5(5%1,”, — Optt) + M6 | G0, ) = G- (4.13)

7,Ll

Here M is the “mass” M measured in lattice units, i.e., M = Ma. The most general

solution to the homogeneous equation reads:
~(0) _ —(n—m)arsinh M __1\n—m _(n—m)arsinh M
G, (n,m) = Ae + B(—1)"""e . (4.14)

Thus, when discretized, the homogeneous equation has an additional solution which,
because of the factor (—1)"~™, possesses no continuum limit. This limit is realized
for M — 0, n,m — oo with Mn = Mt and Mm = Mt fixed. The homogeneous
solution to (4.11) is then seen to correspond to the first term appearing on the rhs

of (4.14).

A particular solution to the inhomogeneous equation (4.13) can be obtained by
making the Fourier Ansatz

A(part) _ W@A A\ _ip(n—m)
G mm) = [ Laernm.

- 2m

Introducing this expression into (4.13) we obtain

A Tdp e
G (n,m :/ —_—.
M ( ) —_x 2T isinp + M

ip(n—m)

(4.15)

The integral can be easily evaluated by introducing the variable z = €. Then

n—m

~(par 1
G(E’ t)(n,m) = —,/dzZ—A,
M T Jo  242Mz—1

where integration is carried in the counterclockwise sense along a unit circle in the
complex zplane centered at z = 0. For n — m > 0 the integral is determined by
the residue of the pole at z = —M + /1 4 M?2. On the other hand, for n —m < 0
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we can distort the integration contour to infinity, taking into account the pole at
r=—-M—\1+M 2. located outside the unit circle. One then finds that

A (part) 6—(n—m)arsinhM . e(n—m)arsinhM
GM (n,m) :H(H—m)—A +(—1) G(m—n)—A (4.16)
(14 M?) (14 M?2)

where 0(0) = % Note again, that only the first term on the rhs possesses a con-

tinuum limit. For lattice spacings small compared to ﬁ, i.e. for small M, and
for fixed t = na and t' = ma, we have that
A (par tt ’ t—t' /
G;ga R <_,—) ~ Ot —t)e M) L (1) 0 — t)eMETt), (4.17)
a’ a

While the second term is not defined for a — 0, the first term reproduces the
inhomogeneous solution to (4.11), given by the second term in (4.12).

The expression (4.17) could also have been obtained as follows, without actually
carrying out the integrals. Let us set p = pa, M = Ma, and t = na, t' = ma in

(4.15). Then
G (LU / fdp PO (4.18)
M a a) J_x2misinpa+ M '

For a — 0 the relevant contributions to the integral come from momenta for which

sinpa ~ O(a), i.e. from i) finite (dimensioned) momenta p, and ii) momenta close

to the corners of the Brillouin zone. Let us therefore decompose the integral (4.18)
z ip(t—t') z ip(t—t')
A(party (1 [ dp e adp e
“ar <_ _) _/ *

a’a = 21 Lsinpa + M E 21 Lsinpa + M

_% dp eip(t_t/)
+/ P e ———
_x 27 tsinpa+ M

as follows:

Making the change of variables p = 7 +p’ and p = —Z 4 p' in the last two integrals,
respectively, one finds that

gl (£ 10 / L / Wdp e
M 2 a _x 21 tsinpa+ M _z 27 —Lsinpa+ M’

The integrations now extend over only one half of the Brillouin zone. For a — 0

INE]

the two integrals are therefore dominated by finite momenta p, for which sinpa is
of O(a). Hence for a — 0 we can replace sin pa by pa and obtain

/ 0 ip(t—t’ , 0 ip(t—t’
((part) Ejt_ _>/ @.ep( : _(_1)t_at/ d_p?p( )7
a a) a0 J_2mip+ M oo 2mip — M

which can be readily integrated to yield (4.17).
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The simple examples we discussed show how the discretization of an equation
can lead to a doubling of solutions. The “doubler”-like solutions manifested them-
selves in the appearance of a phase factor which changes sign as one proceeds from
one “lattice” site to the next. This is not only peculiar to the above examples. In fact
that doubler contributions to the Dirac propagator (4.7a) are expected to manifest

themselves in the same way. This we will show below.

(iii) Fermion Propagator
In the case of the fermion propagator one is confronted with matrix valued
integrals over four dimensional momentum space. The characteristic structure of
the “doublers” contributions to the Green function can nevertheless be easily ex-
hibited by proceeding in the way we have just described. Our starting point is the
expression (4.7a). To exhibit the effect of fermion doubling we decompose each of

the momentum integrations into the following two regions
() Ipdl < 5

and

. ™
(ii) 38

After changes of variables similar to those we made before, the reader can easily

m
< lpul < - (4.19)

convince himself that the two-point function (4.7a) can be written in the form

us

/za d'p [ 3 85, YDy + Mlag oir(a—y)
4 2 ’
7% (27T) ZMPN+M2

(Wale)d(y)) = 3 0

(4.20a)

where x = na, y = ma, and
05, = €Pr. (4.200)

The sum in (4.20a) runs over all possible sets of four-momenta p (measured in
lattice units), labeling the 16 corners of the hypercube in the first quadrand in mo-
mentum space: (0,0,0,0), (7,0,0,0)-, (w,7,0,0)-, (7,7, m,0), (7,7, 7 7). The
dots stand for all possible permutations of the components. Notice that all the inte-
grations in (4.20a) extend over the reduced Brillouin zone [, 7-]. Of the sixteen
terms in the sum, only the term corresponding to p = (0,0,0,0) yields the familiar
result in the continuum limit. While the remaining 15 integrals also possess a contin-
uum limit, the phase factor explip- (n —m)] does not. The structure of these fifteen

integrals is the same as that corresponding to p = (0,0, 0,0), except that each term
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is the Dirac propagator in a different representation of the gamma-matrices. Thus in
each of the integrals the sign of the gamma matrix v, is reversed if p, = 7. The new
set of gamma matrices are related to the standard set by a similarity transformation.
Let us denote the matrices which induce these transformations by 75:

T Ty " = 05, Ve (4.21)

They have a different structure depending on the number of non-vanishing compo-
nents of p. Let 7~;, 7?,,, ﬁy)\, 7~;,,Ap (all indices distinct) stand for the matrices 7
which induce a reversal of signs of those y-matrices corresponding to the set of sub-
scripts. Their explicit form is given by 7~; = VY5, 7;” =YY 7;,,,\ = YV Y\ Y5, and
77“,)\,0 = 75, where 75 is the hermitean matrix: 75 = 12374 By the same reasoning
as that given in example ii), the propagator is found to take the following form close

to the continuum limit:

Zelﬁ% [/oo dp —zZ%p#—l—;/\/[ ip-(— y)] 7

— Z Vo(2)SE (z — y)Vy H(y), (4.22a)

where
Vo(2) = ePaT,, (4.220)

and

e (@=y) (4.22¢)

O, [T dp | =iyt M

is the continuum Feynman propagator.

The above structure of the correlation function is intimately connected with a
symmetry of the lattice action. Indeed one readily verfies that the gamma matrices

satisfy the following relation,

Va(2)7uVy (2 £ fia) = 7,

As a consequence the lattice action

5= 5 S a (oo + fia) — (e — )] + MY a(ayi(a)

x

is invariant under the transformation
U(z) = Va(@)(z),
b(x) = P(x)V; H (2).
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In momentum space the action of the operator V; corresponds to a shift in the
momenta by p. Corresponding to the sixteen edges of the BZ there exist sixteen
such symmetry transformations. The fermion doubling phenomenon is a consequence

of the existence of these symmetry transformations.

Finally, let us take a look at how the doublers manifest themselves in the naive
lattice fermion two-point function for a massless field with definite chirality (as is
the case for the neutrino). This field is an eigenstate of the projection operator

Py = %(1 —5). The two point function is given by

(Wr(@)yr(y)) = Pr{v(@)v(y)) Pr

where ¢ (n) = Prip(n), and Pr = (1 +75). It therefore has the form

4 s )
Wn()u() = Py [ =T,

where we have made use of the fact that 75 anticommutes with the y-matrices v,
and that P? = 1. On the other hand the corresponding lattice version is given by

o 4 _
/ (373;7;3 [ ZE:Z %pM] T_l ip-(e=y), (4.23)
Ta Dy

Wr(2)0L(Y) e = Z S

p

Now one can easily verify that
To(1—7)T, " = (1 — &), (4.24a)
where

I

Hence we can also write (4.23) in the form

o 4
<wL<x>zzL<y>>:Zeiﬁ‘ay7;[ / T 1(1—%)% P | T,
' (4.25)

Since there are eight momenta p for which €; = 1, and eight momenta p for which
€5 = —1, it follows that the sum involves sixteen integrals which in the continuum

limit have the form of eight left handed and eight right handed correlators in different
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representations of the v-matrices. Fifteen of these integrals are however multiplied
by phase factors characteristic for the doubler contributions.

As we have already stressed, the origin of the doubling problem lies in the use
of the (antihermitean) symmetric form for the lattice derivative (4.3b). Thus while
our lattice scale is a, our estimate of the derivative involves twice the lattice spacing.
By using the right derivative

Of(n) = P(n + f1) — 1j(n), (4.26a)
or left derivative
Opb(n) = 1)(n) — (n — fr), (4.26b)

our estimate of the derivative would involve a distance which is just the lattice spac-
ing and the doubling problem would not occur. In this case the hermitean conjugate
of éﬁ would be —35. A detailed analysis however shows that in the presence of inter-
actions the use of the left or right derivative gives rise, for example, to non-covariant
contributions to the fermion self energy and vertex function in QED which render
the theory non-renormalizable.*

That the doubling phenomenon must occur in a lattice regularization which
respects the usual hermiticity, locality and translational invariance requirements,
follows from a theorem by Nielsen and Ninomiya [Nielsen (1981)] which states that,
under the above assumptions, one cannot solve the fermion doubling problem with-
out breaking chiral symmetry for vanishing fermion mass.** This suggests that one
may get rid of the doubling problem at the expense of breaking chiral symmetry
explicitly on the lattice. A proposal in this direction was made originally by Wil-
son (1975), and is one of the two most popular schemes dealing with the doubling

problem.

* A very detailed study of the precise form of these non-covariant contribu-
tions has been carried out by Rothe and Sadooghi (1997). Actions using one side
lattice differences have been considered in the literature before, where by a suit-
able averaging procedure the correct continuum behaviour of the quantum theory
is restored. The reader may confer the references cited in the above mentioned
paper.

** For a simple derivation of the theorem, based on the Poincare-Hopf index
theorem, we refer the reader to the book by Itzykson and Drouffe (1989).
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4.3 Wilson Fermions

As we have emphasized in the last chapter, there are many different lattice
actions which have the same naive continuum limit, and we have merely chosen the
simplest one. We now exploit this ambiguity to modify the action (4.4) in such a
way that the zeros of the denominator in (4.7a) at the edges of the BZ are lifted
by an amount proportional to the inverse lattice spacing. This appears to be a
perfectly legitimate procedure. What will, however, be particular to it is that, while
one usually constructs the lattice action in accordance with the symmetries of the
classical theory, one is forced to break explicitly the chiral symmetry which the
original theory possesses for vanishing fermion mass. This is the price one has to
pay to eliminate the fermion doubling problem and to ensure the correct continuum
limit.

Let us now modify the action (4.4) by a term which vanishes in the naive
continuum limit and is not invariant under chiral transformations. As we shall see

below a second derivative term is a good candidate. Thus consider the action

S = §p — = Z¢ VB (n) (4.27)

where r is the Wilson parameter and [ is the four-dimensional lattice Laplacean
defined by (3.7b) with a = 1. Setting ¢ = ¢*%*) and 0 = 420, we see that the
additional term in (4.27) vanishes linearly with @ in the naive continuum limit.
Inserting for £l(n) the expression analogous to (3.7b), the Wilson action can be

written in the form

S — Z¢ VKL (n,m)ds(m), (4.28a)

where
K (nym) = (M + 41)8,m00s
(4.28b)
-5 Z — YuapOmmti + (7 + Vi) apOm,n—p]-

Notice that for r # 0 this expression breaks chiral symmetry even for M = 0.

The action (4.28) leads to the following two-point function of the continuum

theory

(Va(2)1hs(y)) = lim e d'p [—mﬁﬁM(p)]aﬂ piray),

4.29a
=0 e 200 S B 4 M(p)? e
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where ﬁu is given by (4.7b) and

M(p) = M + % Z sin®(p,a/2). (4.290)

From (4.29b) we see that for any fixed value of p,, M(p) approaches M for a — 0.
Near the corners of the BZ, however, M(p) diverges as we let the lattice spac-
ing go to zero. This eliminates the fermion doubling problem, but at the expense
that the chiral symmetry of the original action (4.4) for M = 0 has been bro-
ken. This makes this scheme less attractive for studying such questions as spon-
taneous chiral symmetry breaking in QCD (which requires a fine tuning of the
parameter M ). So let us turn to the discussion of an alternative scheme for putting
fermions on the lattice, known in the literature as the staggered fermion formulation
(Kogut and Susskind (1975); Susskind, 1977; Banks et al., 1977). In contradistinc-
tion to Wilson fermions one then speaks of Susskind, Kogut—Susskind, or staggered

fermions.

4.4 Staggered Fermions

As we have seen above, the fermion doubling problem owes its existence to
the fact that the function (4.7b) vanishes at the corners of the Brillouin zone. This
suggests the possibility of eliminating the unwanted fermion modes by reducing
the BZ, i.e. by doubling the effective lattice spacing. This could in principle be
accomplished if a) we were able to distribute the fermionic degrees of freedom
over the lattice in such a way that the effective lattice spacing for each type
of Grassmann variable is twice the fundamental lattice spacing, and b) if in the
naive continuum limit the action reduces to the desired continuum form. Hence let
us first take a look at the number of degrees of freedom required to double the
effective lattice spacing. To this end consider a d-dimensional space-time lattice
and subdivide it into elementary d-dimensional hypercubes of unit length. At each
site within a given hypercube place a different degree of freedom, and repeat this
structure periodically throughout the lattice. Then the effective lattice spacing has
been doubled for each degree of freedom. In fig. (4-2) we show the case of a 2-
dimensional lattice. Since there are 27 sites within a hypercube, but only 242 com-
ponents of a Dirac field (in even space-time dimensions) we need 2%/2 different Dirac
fields to reduce the BZ by a factor of 1/2. In four space-time dimensions such a
prescription may therefore be appropriate for describing 22 different “flavoured” (i.e.
“up”, “down”, etc.) quarks. The corresponding Dirac fields we denote by 9/, where
f denotes the flavour and « the spinor index. The concrete realization of the above
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program is, however, not as simple as it sounds. Thus the sites of an elementary
hypercube will be occupied by certain linear combinations of the fields ¥/ chosen in
such a way that the lattice action reduces in the naive continuum limit to a sum of

free fermion actions, one for each of the quark flavours:

5749 = [t Y 6l(e) b+ Mhaatsl(a). (430)
a,8,f

In a staggered-fermion formulation much of the work goes into the construction of
the quark fields from the different one-component fields populating the lattice sites
within an elementary hypercube, and into the study of the lattice symmetries.* In
the following we briefly describe the main steps involved in arriving at a staggered
fermion formulation, so that the reader will be acquainted with some expressions
occurring frequently in the literature. Our presentation will essentially follow the
work of Kluberg-Stern, Morel, Napoly and Petersson (1983). The technical details
are relegated to the next section.

It

HE
HE

u:
o

Fig. 4-2 Distributing 2¢ degrees of freedom on a two dimensional (d = 2) lattice.

Consider the naive action (4.4) for a free Dirac field on the lattice:

~ ~

§ = 5 S d(n + i) — Do — )] + MY dyin). (431)

By making a local change of variables
(n) = T(n)x(n), (4.32)
(n) = x(n)T(n),

gb @>

* See e.g., Kluberg-Stern et al. (1983), Golterman (1986a), Jolicoeur, Morel, and
Petersson (1986), Kilcup and Sharpe (1987).
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where T'(n) are unitary 22 x 2%/2 matrices, one can “spin diagonalize” this expres-

sion by choosing the matrices 7'(n) in such a way that
TH ()T + ) = ()1, (433)

where 7, are c-numbers (notice that different space-time points are involved!), and
1l is the unit matrix. The matrices

T(n) =n"r" " (4.34)
satisfy (4.33) with the following phases 7,(n):

Mu(n) = (=1)" et (n) = 1. (4.35)

Written in terms of the fields x(n) and y(n) the action (4.31) reads

5= Zm 1)3Xa(n) + 1Y aln)xa(n)

where @ is the lattice derivative defined in (4.3b). So far, of course, we have merely
rewritten (4.31). Now comes a crucial step. Since we have got rid of the Dirac matrix
Yx We can in principle let a run over any number of possible values, o = 1,2,... k.
The minimal choice is kK = 1, so that we shall omit this index from now on. The
corresponding action

stag Znu n -+ :U’) X( )X —|— MZX n (436)

now involves only one degree of freedom per lattice site, and the only remnants
of the original Dirac structure are the phases 7,(n). The expression (4.36) is the
action of the staggered fermion formulation in the absence of interactions. For it
to be of physical relevance one must still show that in the continuum limit it may
be written in the form (4.30) where the flavoured Dirac field components v/ are
given as linear combinations of the one component fields living at the lattice sites
within an elementary hypercube. Hence for finite lattice spacing the space-time
coordinates of the fields 1/ will be those labeling the position of the particular
hypercube considered. Let us look at the “reconstruction” problem in somewhat
more detail.

Consider a hypercube with origin at , = 2N,, (IV,, integers); then the lattice
coordinates at the 2¢ sites within this hypercube are given by

Ty =2N,+ py,
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where p, = 0 or 1. This suggests the following relabeling of the fields x(n)
Xp(N) = X(2N + p), (4.37)

and similarly for y. Notice that N = (Ny,..., Ny) now labels the space-time points
of a lattice with lattice spacing 2a, and that the (multi) index p labels the 2¢
components of the new field y. From these components one then constructs 2¢/2
flavoured Dirac fields ¥/ (f = 1,...,2%2) with components ¥/ (a = 1,...,2%2), by
taking appropriate linear combinations:

YUY = No > (Th)apx,p(N). (4.38a)
p
Here
T, =% g (4.38b)

By choosing the normalization constant A in (4.38a) appropriately, the action (4.36)
then takes the following form in terms of the fields ¢/ and 1/:

gltas) _ ZZ@Zf(N)(Vuéu 4 N (N) + - - (4.39)
f N

where 9, is now the lattice derivative on the new (blocked) lattice, and where the
“dots” stand for terms which vanish in the naive continuum limit.* For finite lattice
spacing, however, these terms are no longer invariant under the full chiral group.
Nevertheless for M = 0, (4.39) preserves a continuous U(1) x U(1) symmetry which
is a remnant of the original chiral symmetry group. Because of this, one can use the
staggered fermion formulation to study the spontaneous breakdown of this remaining
lattice symmetry, and the associated Goldstone phenomenon (zero mass excitation,
accompanying the spontaneous breakdown). This is a major advantage of staggered
fermions over the Wilson fermions discussed before. Of course the staggered formu-
lation has its drawbacks. Thus for example it can only be the lattice version of a
theory with 2%2 degenerate quark flavours, whereas there is no restriction on the

flavour number in the Wilson formulation.

We close this section with a remark. Making use of the relation (4.38), one
can calculate correlation functions of flavoured quark fields, by taking appropriate

* See the following section.
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linear combinations of the y-correlation functions. The latter are given by the fol-
lowing path integral expression

_ _ q(stag)
IDXDXXm(Nl) Xp[(Ng)e Sp

(Xo1 (N1) -+ X, (Ne)) = : (4.40a)
P1 Pe f DXDxe F )
where
DxDy = [[ dx,(N) [] dx»(N'). (4.40D)
o, N o' N’

This all sounds rather simple. Nevertheless, the details can become rather involved.
Thus one must make sure that the composite fields that one constructs to study the
properties of hadronic matter carry the correct quantum numbers in the continuum
limit. In particular one wants to know what are the flavour, spin, and parity contents
of the states excited by these operators. These are the problems which demand a
lot of effort. We shall not discuss them here. The interested reader may consult for
example the papers by Morel and Rodrigues (1984), Golterman and Smit (1985),
Golterman (1986b).

4.5 Technical Details of the Staggered Fermion Formulation

Having sketched the main ideas which go into the staggered formulation, we
now present some mathematical details. Should the reader not be interested in the
details for the moment, he may skip this and the following section and go on to the
next chapter without any danger of getting lost at a later stage.

Consider the action (4.36). As we have already pointed out, the coordinates
n, of any lattice site may be written in the form n, = 2N, + p,, where 2N, are
the coordinates labeling the hypercube to which the site belongs, and p is a vector
whose components are either one or zero. Since it follows from the definition (4.35)
that 7,(2N + p) = nu(p), we can rewrite the action in the form

Spree) = Z Mu(P)X2N + p)[X(2N + p+ 1) — x(2N + p — j1)]
e (4.41)
+MZ>‘((2N + p)X(2N + p).
N,p

We next express (4.41) in terms of the 2¢-component field defined in (4.37). To
this effect we must remember that the components of p are restricted to the values
one or zero. Hence we must exercise some care in rewriting the difference x (2N +
p+ i) —x(2N + p — 1) appearing in the expression (4.41). Consider for example
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[13PeH]

X2N + p+ ). If p+ 1 is a vector of type “p”, i.e. if the components of p + i are
either one or zero, then 2N + p + [i labels a site within the hypercube with base
at 7 = 2N. Hence in this case x(2N + p + 1) can be identified with x,4;(V). On
the other hand if p + fi is not a vector of type p, then p — [i is such a vector, and
X(2N+p+i) = xp—a(N+1). These conclusions can be summarized by the equation
XCN+p+ i) = Z[éerﬂ,p’Xp’(N) + oo Xor (N + [1)], (4.42a)
o

where p’ is understood to be a vector whose components are either one or zero.*

In a similar way one obtains that
XN +p—f) = Z[ép—mp’Xp'(N) + Oprpp Xp (N — f1)]. (4.420)

o

Inserting the expressions (4.42a,b) into (4.41), we obtain

stag. 1 \ )
Sé‘t g) — 5 Z Wy(ﬁ)Xp(N)[5P+ﬂ,p/aﬁxp'(]v)

Npen (4.43a)
+ 6y O Xy (N)] + MZXP

where 55 and éff are the left and right (block) derivatives analogous to (4.26a,b),
defined by

O (N) = x(N + ) — x(N), (4.43D)

Opx(N) = x(N) = x(N — ).

Before proceeding, let us digress for a moment and calculate the 2-point corre-
lation function (x,(N)x,(N')) from the path integral expression (4.40). A quick way
of proceeding is to rewrite (4.43a) in momentum space by introducing the Fourier

transforms**

T d4 A
Xp(N) = 4>~<p(p) sz’
/ (2r) (4.44)

(V) = / ' (;Z ;4>2p(p) e,

—T

* It will be understood from now on, that vectors denoted by the symbol rho

(i.e. p, o/, etc.) have components restricted to these values.
* Here, and in the following we shall restrict ourselves to four space-time

dimensions.
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into (4.43a), and performing the sum over N using eq. (2.64). A simple calculation

yields
(stag.) " d415 = /A AN~ A
Sy =2 (2n) Xo(D) K ppr (D)X () (4.45a)
pp T
where
Z i, sm B M6, (4.45b)
D (p) = e p>/2r5,,,, (1.45¢)
and
FZP’ - [5P+ﬂ,p’ + 5p—ﬂ,p’]77u(/0>‘ (4.45d)
Hence the Fourier representation of the yy-correlation function is given by
N = N/ o " d4p K—l A iﬁ~(N—N/) 4 46
Xy () = | G @) (1.46)

The inverse of the matrix (4.45b) can be easily calculated by making use of the

relation

{TH, T} = 20,1, (4.47)
where 1l is the unit matrix.* This relation follows from the definition (4.45d) and
can be proved by making use of the following properties of the phases (4.35):

1u(p £ 1) = nu(p),
mu(P)n(p + 1) = =0 (p)nu(p +0), (1 # v).
From (4.47) and the definition of I'} /(p) given in (4.45¢), it follows that for given
D, these matrices also satisfy anticommutation relations analogous to (4.47). Hence
the inverse of the matrix (4.45b) can be written down immediately:
—i 3, #(p) sin & + M
o sin? % +M2

K'(5) =

Because of the appearance of the factor 1/2 in the argument of the sine function
in the denominator, the integral (4.46) will be dominated for M — 0 (i.e. in the
continuum limit) by the momenta in the immediate neighbourhood of p = 0. Hence

no doubling problem of the type discussed before arises here. The same conclusion

* The I'*’s therefore satisfy the same algebra as the Dirac matrices *.
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will then also hold for the quark correlation functions, since they can be constructed
from (4.46) by taking appropriate linear combinations.

After this intermezzo, let us return now to expression (4.43a), and express the
left and right derivatives (4.43b) in terms of the symmetric first and second block

derivatives, defined by
A 1 . .
0uXp(N) = 5 (Xp(N + 1) = Xp(N = 1)),

OuXp(N) = Xp(N + 1) + X (N = f1) = 2x,(N).

In terms of these derivatives, the action (4.43a) takes the form

— % Z Xo(N) [Z (r“ D, + QP;’;*; > +2M5pp,] Xy (), (4.48a)

N,p,p’ 7
where I' , has been defined in (4.45d), and
Fiﬁ’ = (6p—ip’ = Optpp )u(p)- (4.48b)

The matrices I'* and I'°* satisfy the same anticommutator algebra as the direct
products 7, ® 1 and 75 ®@ 7,75, respectively, where v5 = 71727374; i.e., in addition
o (4.47) we have that

{r* T} =0,

{17} = —26,, 1.
This suggests that I'* and I'°* are unitarily equivalent to the above mentioned direct
products. If the second matrix in these products is interpreted to operate in flavour
space, while the first matrix acts in Dirac space, then (v, ® 1), would be the
matrix version of the kinetic term in (4.30). This suggests that the fields 1/ and
) are related to X, and X, by the unitary transformation which brings I'* and I'°#
into the form v, ® 1 and 75 ® 7,75, respectively. We now construct this unitary
transformation. Because of the way the y-fields had been introduced originally (cf.
eqs. (4.32) and (4.34)) and the appearance of the phase 7,(p) (rather than 7,(n))
in the definitions of I'* and I'**, it is not surprising that the transformation will
involve the matrix 7}, defined by

Ty =12 s (4.49)
Thus consider the following sixteen component fields
Z/A}aﬁ(N = Mo Z Uaﬂ po(N), (450&)

¢aﬁ =M ZXp paﬁ’ (450())
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where A is a normalization constant to be determined later, and where

%(Tp)aﬁ. (4.50¢)

Since in four space-time dimensions « and 3 take the values one to four, and since

Uaﬂ,p =

p = (p1,...,ps) Tuns over the sixteen sites within a hypercube, we see that U is a
16 x 16 square matrix whose rows are labeled by the double index af. Equations
(4.50a,b) can be readily inverted by noting that because the trace of any product of
distinct y-matrices vanishes, T}, satisfies the following orthogonality relation

Tr(TTy) = 40,y
For the matrix U defined in (4.50c) this relation reads
(UTU)pp’ = 5pp’7

where (UT),ap = Uls , = 5(T,)%5. We hence obtain

Z aﬁwaﬁ

p NO Z ¢a[3 Oéﬁ I

Introducing these expressions into (4.48a), and making use of*
(UUaparsy = Gacr G,

we arrive at the following expression for the staggered fermion action in terms of

the “quark” fields ¢ and ¥

Glstag) _ 2/\/2 Z ¢aﬁ {Z [Agﬂa,ﬁ/éﬂ

0N a,8,a .3
g (4.51a)
S . .
zAal;f arpDi| +2Mdaardsp }%w (V)

* This relation can be verified by using the following representation for the

y-matrices in (4.49)
[0 —io (10
Yi = iUi 0 ) V4 = 0—1 )

where o; are the Pauli matrices, and 1l the 2 X 2 unit matrix.
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where

/ﬁ/ Z Uaﬂp ’ﬂ” (451b)

and

5
Aa%a’ﬁ’ ZUaﬁp 5pp’ po/g/- (4.51c¢)

Making use of the explicit representation of the v-matrices given in the previous

footnote, one finds that

Agopy = (Vu)aardpps
5
Aa%,a’ﬁ’ - (75>ao/ (tut5)ﬂﬁ’7
where ¢, = 7}, and 5 = 75. Since in the naive continuum limit only the first and third
term in (4.51a) contribute to the action, it follows by comparing this expression with
(4.39) that « and 8 should be identified with the Dirac and flavour quark—degrees
of freedom, respectively. In (4.38a) we had made this fact explicit by writing the
field components in the form 1/, rather than 1/Ajag. Accordingly, A* and A* can be
written as the following direct products,
A = Y & 1,
A = 5 @ t b,
where the first matrix appearing on the right hand side acts in Dirac space, while

the second matrix acts in flavour space.

Finally, we must determine the normalization constant Aj in (4.51a). To this
effect we study the naive continuum limit of this expression by introducing the
dimensioned fields ¥,3 and block derivatives d,, in the standard way; i.e., ¢ = b3/ 21@
and 0, = %(‘% Here b is the lattice spacing of the blocked lattice. By choosing
Ny = 1/4/2 the action (4.51a) then takes the form

stag) Z b4w ,.)/lu ® ]1)

0,4

1
+ 51)(% ® tuts)0,)0(z) + 2M Zw )@ Wp(x) (4.52)

where M = %M and where the sum over z (= Nb) runs over all hypercubes of the
blocked lattice. In the naive continuum limit (b — 0) this expression reduces to the

form

stag b%OZ/dgrlpf <Z’yﬂa +MO> QZJf( )
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where My = 2M, and where 1,5 has been replaced by /. Notice that the appear-
ance of the mass 2M instead of M in eq. (4.52) is not surprising since we have scaled
M with the lattice spacing of the blocked lattice. Thus My = %M is the dimensioned

mass parameter of the original fine lattice.

Consider now the two point correlation function of the quark fields,
(WI(N )¢£:(N ")), where we have introduced the more suggestive notation ¢/ men-
tioned above. This two-point function can either be computed from the y — x cor-
relation functions (4.46) by taking appropriate linear combinations, as dictated by
the egs. (4.50a,b), i.e

<¢f< )wfl NI Z Uafp XP XPI<N/)>U; o 1o

and multiplying the expression with =3, or by inverting the matrix operator ap-
pearing within square brackets in eq. (4.52). This inversion is easiest done by going

to momentum space. Introducing the Fourier decompositions

_ /e d'p - ip-Nb
¢(Nb) - /_W/b (27_‘_)4¢(p)6 )

_ B /b d4p — i Nb
i = [ e

into (4.52), and making use of the relation
> bt N = (o)t (p — ),
N

where dp is the periodic delta function, one finds that

/b -
Glstag.) _ / 1/;( ) {Z[(% ® ]l)b sin(p,b)

—7/b 2m ) u

(0 = conlp )25 ]+ Mo 0) (453)

The propagator in momentum space is given by the inverse of the matrix appearing
within curly brackets:

> —i(y, ® M) sinp,b+ 2 (5®tt5)81n2p“}+M0]1®]1

4 G2 pub 2
Zubzsm =+ Mg

S(p) = (4.54)
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Notice that the denominator is the same as for the scalar field discussed in chapter 3.
In the naive continuum limit (b — 0), the above expression reduces to

—i ® Wp, + Ml @ 1
Str)— > (u i )pu2 0
—0 p +MU

Y

which is the correct fermion propagator describing four degenerate flavoured Dirac
particles. Because the denominator in (4.54) has the same structure as for the scalar
field, the two-point function (wf;(x)iﬁf; (x)) obtained by Fourier transforming this
expression and taking the limit b — 0, is given by

. ° g (VN
AN ) = [ B Sualwpe O
where
_ —iy-p+ My

Finally let us compare the expression (4.52) with the lattice action for four
flavoured Wilson fermions. Clearly, the generalization of eq. (4.27) (with Sp defined
in (4.4)) to the case of four quark flavours is

S — Za%(n) {Z [(% ® 1), — %(]1 ® ]l)lju} + M1® ]1} Y(n). (4.55)

m

Thus the only difference between the Wilson and the staggered fermion actions,
consists in the matrix structure of the second derivative term. This term does not
contribute in the naive continuum limit, but is responsible for lifting the fermion
degeneracy. So why not choose the simpler (Wilson) version, which has the merit
that the number of quark flavours is not restricted? We only give a brief answer
to this question without going into details: In the naive continuum limit both
actions (4.52) and (4.55) possess a U(4) x U(4) (chiral) symmetry for M = 0.
This symmetry is broken in both cases by the second term. But whereas the
axial symmetry (involving the generator 5 in Dirac space) is completely lost for
Wilson fermions, the staggered fermion action preserves a non-trivial piece of the
full chiral symmetry, whose generator is v; ® t5. Under this abelian subgroup the

fields transform as follows

PY(N) — eia(%@“)w(]\f),
J}(N> — &(N)eia(%@ts)
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where « is an arbitrary parameter which does not depend on N. For this reason
the staggered fermion formulation is more adequate for studying spontaneous chiral
symmetry breaking and the associated Goldstone phenomenon in theories like QCD
with massless quarks.

4.6 Staggered Fermions in Momentum Space

In the previous section the transition from a one-component field to a 2%-
component field x, was carried out in configuration space. We now want to construct
an alternative lattice action by working in momentum space. As we shall see, this
action differs from (4.52) in several interesting respects. For some papers which are
of relevance to this section confer Sharatchandra, Thun and Weisz (1981), Van den
Doel and Smit (1983), Kluberg-Stern et al. (1983) and Golterman and Smit (1984).

Our starting point is again the action (4.36). Inserting for x(n) and x(n) the
Fourier decomposition analogous to (4.44), and writing the phase 7,(n) as

in-6()

77#(”) =€ )

where

s — (0,0,0,0), 52 — (7,0,0,0),
56 — (71',7T,0,0), 5@ — (7r,7r,71',0)7

the action takes the following form in momentum space

sta ™ d4]5 ™ d4]§/7A, e

Here

M(p,p) = (2m)* {Z 8D (p— '+ 6W)isinp, + M6 (p— 13’)} (4.56b)
"

~

and dp(k) is the periodic delta function. For the following discussion it is conve-
nient to extend the fields y(p) and )E(_ﬁ) periodically with period 27. Let us denote
the corresponding fields by ¢(p) and ¢(p), respectively. Because (4.56b) is itself 27-
periodic, we can then shift the integration intervals [—m, 7] by 7/2. In fig. (4-3) we

show the new integration region for the case of two space-time dimensions.
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Fig. 4-3 The four quadrants of the shifted integration region (solid

lines).

Next, let us divide the new Brillouin zone, BZ’, into sixteen domains, whose
centers are the corners of the first quadrant in the original Brillouin zone. For two
dimensions these domains are shown in fig. (4-3). Because of the appearance of sin p,,
rather than sinp, /2 in (4.56b), the xy — x correlation function will receive, in the
continuum limit, contributions from momenta in the immediate neighbourhood of
the above-mentioned corners. The momenta in the sixteen integration regions can

be parametrized as follows.

where
—n/2 <k, <m/2,

and 7Y are constant vectors, defined by

W =1(0,0,0,0), 7@ =(7,0,0,0),..., 71 = (7,7 7, 7).
The integral (4.56a) may then be written in the form
2d4kd4k’*A N
s =3 / T M asl s, (@570

where

Map(i' k) = (2@4{ S 6Dk — k7 — ) 4 500y i sin f,
g (4.57b)

+ M (ke — K + 7P — W<A>>},
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and where we have introduced the 16-component (dimensionless) fields QZBA(I%) as

follows
da(k) = ¢k + 7). (4.57c)

This is the analog of (4.37) in the momentum space approach. Notice that the
integral (4.57a) now extends only over half the BZ. Because k and k' are restricted
to the interval [—7/2,7/2], the periodic d-functions appearing in (4.57b) can be

written in the form

O (k= K 4+ 7P — 70) = 60 (k — K)o,
55;1)(/% — K+ 7B — 7@ 45w = 775\35(4)(]% ~ k)

where § (l% — K ) has only support at k = k', and where

4
1 B () 560
v=1

This factor just expresses the fact that the 4-dimensional periodic d-function only
has support in the integration domain given in (4.57a) if B — 2l 4 s equals
zero or 27 for every component v. Inserting these expressions into (4.57b), and
performing the integration over &’ in (4.57a), one obtains

w/2 d4/{3 - A

Sistag) / da(KVK ap(k)bp(k), 4.58a
F ; s (27 (k)Kag(k)os (k) (4.58a)

where
Kap(k) =14y Tgsink, + 6450, (4.58b)

"
and

T, = e”i‘B)nf‘B. (4.58¢)

These matrices satisfy the following anticommutation relations.
[0 ) — 25,1

Furthermore it can be shown that the fu’s are unitarily equivalent to (y,®11). Hence

we can write (4.58a) in the form

stag. " d4 D~ A ) S 4 y (P
57 = / (273;4 Q) [Z(% ©W2isin 2 + 20 1| QH)  (459)
. -
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where we have rescaled the range of integration to the interval [—m, 7]. This is,
at first sight, a surprising result, for the action is invariant for M = 0 under the

transformations of the full U(4) ® U(4) chiral group, and in particular under

Q N 6ZQB(H®TB)Q,

Q N Qe—zaB(].l@TB)
and

Q N eiﬁB(%@TB)Q’

é N éeiﬁB('YE)@TB)’
for each generator T in the Ny-dimensional flavour space. This U(4) ® U(4) sym-
metry has however been gained at the expense of giving up the locality of the action

in configuration space. Indeed, the action (4.59) is a non-local function of the fields
Q(n) and Q(n), obtained by inverting the Fourier series

ZQ —zpn

Q Zé zpn.

Substituting these expressions into (4.59), one finds that

giae) _ S om) [Z(% @ 1)(A)pm + 2M T @ 1| Q(m), (4.60a)
n,m w
where
™ 4 A
(Ap)nm = / (ir}; 2i sin p; e’ tn=m) (4.600)

connects arbitrary sites along the p-direction. The reason for this is the appearance
of the p,,/2 (instead of p,) in the argument of the sine function. If p, /2 were replaced
by p, in (4.60b), then this expression would equal éufsnm = (Ontpm — On—pm)/2 and
we would be left with an expression for the action involving only nearest neighbour

couplings of the fields.

The above discussion suggests that the fields Q(n) are related to the fields
¥ (n) by a non-local transformation. This is indeed the case. Thus the fields ¥ (p)
and Q(ﬁ) appearing in (4.53) and (4.60a) are connected by a unitary transforma-
tion which depends on the momentum p (see e.g., Kluberg-Stern et al. (1983).
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Because of this dependence, the field Q at the lattice site N will be given by a
linear combination of the “quark” variables 1@ attached to lattices sites which are
arbitrarily far from n.

This concludes our discussion of staggered fermions. As the reader is probably
convinced by now, a thorough discussion of this subject, including all lattice sym-
metries, becomes quite technical. We believe, however, that the material presented
in the last two sections will enable the reader to follow the literature on this subject
without too much difficulties.

4.7 Ginsparg—Wilson Fermions. The Overlap Operator

Of the two lattice regularizations discussed above, only the Wilson fermions
allow one to study models with an arbitrary number of quark flavours. Wilson
fermions do however break the chiral symmetry of the continuum fermion action for
massless quarks. This makes it difficult to explore the regime of small quark masses
in numerical simulations and to study spontaneous chiral symmetry breaking on the
lattice. In fact, as we have already pointed out, the Nielsen—Ninomiya theorem tells
us that we cannot get around breaking the symmetry (4.8) of the (massless) fermion
action, unless we give up at least some important property, like e.g., locality.

But there is another way of breaking chiral symmetry on the lattice in a par-
ticular mild and controlled way. It was proposed a long time ago by Ginsparg and
Wilson (1982), but has not been seriously considered for 16 years. Ginsparg and Wil-
son had searched for a lattice Dirac operator by starting from a chirally symmetric
action and following a renormalization group blocking procedure, using a chirally
non-invariant Kernel. For Ginsparg-Wilson (GW) fermions the fermionic action is

of the form

Sterm = Y P(@)(D(,y) + mdey ) (y), (4.61)

where the “Dirac Operator” D(z,y) is a 4 X 4 matrix in Dirac space which breaks
the standard chiral symmmetry in a very special way. Since every lattice action must
possess the correct naive continuum limit, it follows that for a — 0 D(x,y) becomes
the usual continuum Dirac operator. While in the continuum, or in its naively dis-
cretized form, this operator anticommutes with 5, the GW-Dirac operator satisfies
the following GW-relation,

V5D 4+ D5 = aDRysD, (4.62)
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or

{75, D} = aDR~;D, (4.63)
where R is a non singular and local operator proportional to the unit matrix
in Dirac space, and where D is a matrix whose rows and columns are labeled by a
spin and space-time index. Note that the rhs is of order a. From here one trivially
obtains that

{75, D'} = aRys, (4.64)
which shows that the anticommutator {75, D™'} breaks chiral symmetry in a very
mild way:.

A Dirac operator satisfying the GW relation does however not ensure the ab-
sence of species doubling. It was only in 1998 that an explicit expression for D
was given (Neuberger, 1998), which is free of doublers and local in a more general

sense (Hernandez, 1998). The Neuberger solution corresponds to choosing R to be

a (dimensionless) parameter (R = MLO) and is given by
M, X
Dy, = —2 <1 + ) , (4.65)
a XX

where X is the Wilson—Dirac operator with a negative mass term,

X = Du(—lp) =31

In

— (4.66)

with 0 < My < 2, and 0, the dimensioned symmetric lattice derivative.* In the
case where the fermions are coupled to gauge fields, X is replaced by an expression
depending on the gauge potentials in the way discussed in the following chapter.
The operator (4.65) is referred to as the overlap Dirac operator. It is not
the only Dirac operator respecting chiral symmetry for vanishing fermion mass.
In fact, the so called domain wall fermions of Kaplan (1992), and the exact fized
point Dirac operator of Hasenfratz (1994/1998) are also solutions to the GW
relation with chiral symmetry. Furthermore, as has been shown in (Hasenfratz,
1998a), the fixed point Dirac operator satisfies an exact index theorem, which
is a lattice version of the Atiyah—Singer index theorem (Atiyah, 1971)** It had

* For My < 0 there exist no massless fermions, and for My > 2 doublers are

present (Niedermayer, 1999).
** In the continuum the Dirac operator for massless fermions in a smooth back-

ground gauge field carrying non-vanishing topological charge ) (see section (17.6))
possesses left and right-handed zero modes. The difference n;, — ng in the number
of these zero modes equals the topological charge of the background field.
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been believed that all these operators, which were constructed from quite different
starting points, had not much in common. But actually they all turned out to satisfy
the GW relation.

The above “overlap construction” of the lattice Dirac operator is not the
only one. The “parametrized Fixed Point Dirac operator” of Hasenfratz et al.
(Hasenfratz, 2001) is an approximate solution to the GW relation with very good,
but not exact, chiral behaviour. The chiral symmetry can be made exact by using
it as input for X in the overlap construction (4.65). This allows one to use a

polynomial approximation to \/leix (Hasenfratz, 2002).

Clearly numerical simulations with GW-fermions are much more costly than
with Wilson fermions. So why is one so interested in GW-fermions? After all, they
also break the standard chiral symmetry (4.8). What makes them interesting in
particular, is that the GW-action still possesses an exact chiral symmetry which
differs from (4.8) by O(a) lattice artefacts, as was shown by Liischer (1999a). And
this is true for the free theory as well as interacting case. The only thing that
matters is the bilinear structure of the action (4.61) in the fermion fields, and
that D satisfies the GW-relation. The emphasis above is on the word exact. The
existence of an exact chiral symmetry should allow one to study not only the regime
of small quark masses, but may possibly also resolve a long standing problem of
putting chiral gauge theories (like the electroweak theory) on the lattice.

The exact symmetry referred to above corresponds to the transformations

w — 61975(1_%D)/¢},

5, Getnini) (4.67)
or infinitessimally
b= =)0, = =+ 0y, (4.68a)
where*
Su(2) = iers| (1 = ZD)| (@),
5(z) = z‘e[w . gD)} ()75 (4.68)

*

(1—
>, )

5D)](x) stands for } (6., —5D(z,y))Y(y). Furthermore [W(1-4¢D)](z) =
[0y = 5D(y, 2)].
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One readily finds that the variation of the action is given by

6 Sterm = i€ Y [F(az) + 2map ()5 () + A(x)] : (4.69a)

T

where Y~ =" a*, and
F(z) = (¥D)(2)y5¢(2) + P (x)75(D) (x) — a(D)(x)v5(DY)(), (4.690)

A(x) = =Z2[@D)@)sv(e) + d()s(D6)(x)] (4.690)

We now note that
> Fle) = 3 6(@)[ {3, D} — a3 D (@, y)u(y) = 0, (4.70)

where we made use use of (4.63). Hence for m = 0 the action is invariant under
the global transformations (4.67), which verifies the observation made by Lischer
(1998).

This is all we will say about GW-fermions at this point. We shall return to
them once more in chapter 14, when we discuss the ABJ axial anomaly.
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CHAPTER 5

ABELIAN GAUGE FIELDS ON THE LATTICE
AND COMPACT QED

5.1 Preliminaries

In 1971 F. Wegner studied a class of Ising models, where the global Z(2)
symmetry of the Hamiltonian was promoted to a local one. Although the models
did not possess a local order parameter, they did exhibit a phase transition. In con-
structing the models, Wegner (1971) introduced a number of important concepts
which turned out to play also a fundamental role in the lattice formulation of gauge
field theories like QED and QCD. In particular he was led to construct a non-local
gauge invariant order parameter, whose analog in QCD was later introduced by
K.G. Wilson (1974), and provides a criterium for confinement. In QCD this order
parameter is known under the name of Wilson loop, although the name “Wegner—
Wilson loop” would seem more appropriate. Nevertheless we shall adhere to the

general praxis and refer to it simply as Wilson-loop.

A common feature of the above mentioned theories is that they possess a local
symmetry. In the case of QED or QCD the local symmetry group is a continuous one.
The action in these theories is obtained by gauging the global symmetry of the free
fermionic action and adding a kinetic term for the gauge fields. In the continuum
formulation the construction principle is well known, and we will recapitulate it
below for the case of QED. The lattice version of the action can be obtained following
the same general type of reasoning, but it will differ in some important details from

the naive discretization.

Let us briefly review how one arrives at the gauge-invariant action in continuum
QED. The starting point is the action of the free Dirac field:

SO — / () (79, — M)w(x).
This action is invariant under the transformation

b(x) = G(x),
U(@) = P(z)G

where G is an element of the abelian U(1) group, i.e.,
G = e™,
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with A independent of z (i.e., a global transformation). The next step consists in
requiring the action to be also invariant under local U(1) transformations with (1))
transforming independently at different space-time points. This is accomplished by
introducing a four-vector potential A,(z) and replacing the ordinary four-derivative

0, by the covariant derivative D,,, defined by

D, =0, +ieA,. (5.1)
The resulting new action
Sp = / d*zp(iv* D, — M)y, (5.2)
is then invariant under the following set of local transformations
() = Gla)b(a), 530
V(@) = P(2)GH(z),
Au(z) = G(2) A, ()G (z) — éG(x)@uG_l(:E), (5.30)
where
G(z) = @), (5.3¢)

In the present case, (5.3b) is just another form of writing the familiar transformation
law, A, = A, — é@MA. Since A, and G commute, we could have written just as well
A, instead of GA,G~'. In the non-abelian case to be considered later, however, this
will be the relevant structure of the gauge transformations. The crucial property
which ensures the gauge invariance of (5.2) is that, while A, transforms inhomoge-
neously, the transformation law for the covariant derivative (5.1) is homogeneous:

D, — GD,G™".

Having ensured the local gauge invariance of the action by introducing a four-vector
field A,, we now must add to the expression (5.2) a kinetic term which allows A,
to propagate. This term must again be invariant under the local transformations

(5.3c), and is given by the familiar expression
1
Sa=—7 / d'zF,, F", (5.4)

where F),, = 0,A, —0,A, is the gauge invariant field strength tensor. The full gauge
invariant action describing the dynamics of ¥, v and A, is then given by

Sqep = —%l / d*xF"FE,, + / d*zyp(iv" D, — M)ip. (5.5)
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The Green functions of the corresponding quantum theory (QED) are (formally)

computed from the generating functional
Z|J,n, 7] = /DAszszeiSQEDﬂfd“M"AuHfd4x(77w+15n) (5.6)

by differentiating this expression with respect to the sources J*(x), n(z) and 7(z),
where 1,1, 1 and 7 are Grassmann-valued fields. The integral (5.6) may be given a
meaning within perturbation theory. For a non-perturbative formulation, however,
we should define the generating functional on a euclidean space-time lattice. Hence
let us do this here for QED and generalize it later to the more complicated case
of a non-abelian gauge theory. Our construction procedure will parallel very closely
the one described above and is based on the following two requirements: i) The
lattice action should be invariant under local U(1) transformations and ii) reduce

in the naive continuum limit to the classical continuum action.

Before we carry out this program, let us first obtain the euclidean version of
(5.4) and (5.2); to this effect we let 2° become purely imaginary (z° — —iz,) and
replace at the same time AY by +iAy; the prescription that A° should be replaced
by +iA, is made plausible by considering the case where A, is a pure gauge field
configuration: A, = 9,A(z); thus the replacement 2° — —iz, implies Jy — +i0,.
With this formal substitution (5.4) becomes

Se — %/d‘{rF JEo, (5.7)

where a sum over p and v (u, v = 1,2, 3,4) is understood. Hence exp(iS¢g) goes over

into an exponentially damped functional of A, (as it should).

The transition from (5.2) to the imaginary time formulation is also carried
out immediately by substituting the euclidean derivative d, in eq. (4.2) by the
corresponding covariant derivative D, = 0, + ieA,.* Hence the action (5.5) goes

over into 15"V where

Sain = s¢Y -+ 5p, (5:80)

with
Slonel) — 1 / d'zF,,F,, (5.8b)
s = [ atedouD, + Myv. (5.8¢)

* Notice that the structure of the covariant derivative remains unchanged when
making the transition, since both 0y and Aq follow the rule: 9y — 19, and Ay — 1 A4.
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Here v, (1 =1,...,4) are the euclidean y-matrices introduced in chapter 4. Since
from here on we shall always work with the euclidean formulation, we shall drop in

the following any labeling reminding us of this.

5.2 Lattice Formulation of QED

We start our construction program of lattice QED by considering first the
lattice action for a free Dirac field. To parallel as closely as possible the steps in
the continuum formulation, we shall work with Wilson fermions, where every lattice
site may be occupied by all Dirac components 1),. The corresponding action is given
by (4.28) which, after making a shift in the summation variable, can be written in

the form
S = (M +4r) Y D(n)i(n)
2 ST~ )t )+ Bt D)) (59)

Here we have dropped the “hat” on the fermionic variables for simplicity. It will
be always evident from our notation, whether we are considering the dimensionless

lattice- or the dimensioned continuum formulation.

The action (5.9) is invariant under the global transformations

¥(n) = Gy (n),
Y(n) = Y(n)G,

where GG is an element of the U(1) group. The next step of our program consists
in requiring the theory to be invariant under local U(1) transformations, with the
group element GG depending on the lattice site. Let us denote it by G(n). Because
of the non-diagonal structure of the second term in eq. (5.9) (whose origin is
the derivative in the continuum formulation) we are forced to introduce new degrees
of freedom. Since the group elements G(n) do not act on the Dirac indices, it is suf-
ficient for the following argument to focus our attention on a typical bilinear term,

Y(n)(n + ).
In the continuum formulation it is well known how such bilinear terms should

be modified in order to arrive at a gauge-invariant expression. Since according to

(5.3a) ¥ (x)1(y) transforms as follows,

D(@)(y) = V()G H(z)G(y)v(y),
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we must include a factor depending on the gauge potential which compensates the
above gauge variation. This factor, known as the Schwinger line integral, is well

known, and is given by
U(l’,y) _ eief;f' dzMAu(z)’ (510)

where the line integral is carried out along a path C' connecting x and y and a
summation over u is understood. Notice that U(x,y) is an element of the U(1)

group. Under a gauge transformation, A, — A, — %@A, (5.10) transforms as follows
U(z,y) = G(@)U(z,y)G™ (), (5.11)

where G(x) is given by (5.3c). From the above considerations we conclude that the

following bilinear expression in the fermion fields ¢ and v is gauge-invariant:

(@)U (z,y)i(y) = P(a)e' “rdn@y (y). (5.12)

Suppose now that y = = + €. Then we conclude from (5.12) that ()1 (z + €) and

D(z + €)1b(z) must be modified as follows:
() (x +€) = P(@)U(x, 2 + e)ib(x +€),
D@+ (@) = (e + Uz, + )y (),
where
U,z + ¢) = eieeA®

and e- A=) €,4,.
The above considerations suggest that to arrive at a gauge-invariant expression

for the fermionic action on the lattice, we should make the following substitutions
in (5.9)

(n)(r =)+ ) = Pn)(r = ) Unniath(n + 1), (5.13a)
P(n + @) (r + )0 (n) = P(n+ @) (r + 70 Unsantd(n), (5.130)

where
Uniin = Ul o an

and Uy, 4, is an element of the U(1) gauge group. It can therefore be written in the

form

Upnyp = €20, (5.15)
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where ¢,(n) is restricted to the compact domain [0,27]. The right-hand side of

(5.13a) and (5.13b) are now invariant under the following set of local transformations

b(n) = G(n)p(n),

dm) =BG (n), 516

Un,nJr/l — G(n)Un,nﬂlG’fl(n + /Al),
Un+ﬂ,n — G(n + /j) Un+ﬂ,nG71(n)a

Notice that in contrast to the matter fields discussed before, the group elements
Unntp live on the links connecting two neighbouring lattice sites; hence we will refer
to them as link variables and sometimes simply as links. Because of (5.14) they are
directed quantities, and we shall use the following graphical representation:

*~—> 0 —s—o

n n+ i n n+p
¥

Un,7z+ﬂ Un+ﬂ,n = YUn,n+f

Making the substitutions (5.13) in eq. (5.9), we obtain the following gauge-invariant
lattice action for Wilson fermions

SEON,$, U] = (M +4r) >~ d(n)ip(n)
5 )~ Uit + 1) (517)

(4 @) +7)UL ().

Let us pause here for a moment and forget the arguments which led us to eq. (5.17).
By requiring that U, ,+; and Uy, transform according to (5.16), this expression
represents a natural way of implementing U (1)-gauge invariance. That the link vari-
ables should be elements of the U(1) gauge group, follows from the requirement that
their gauge transforms must also be elements of U(1). One then would have to show
that in the continuum limit (5.17) can be cast into the form (5.8c) by establishing
a relation between the link variables and the vector potential A,(n). The procedure
would then be the following. The vector potential A, (n) at the lattice site n is real-
valued and carries a Lorentz index. The same is true for ¢,(n), which parametrizes
the link variable (5.15). But ¢, (n) takes only values in the interval [0, 27|, while the
values taken by the vector potential A,(z) in the continuum theory extends over
the entire real line. This is no problem, for we must remember that A, carries the
dimension of inverse length, while ¢, is dimensionless. Let us therefore make the
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Ansatz ¢,(n) = caA,(n), where a is the lattice spacing, and ¢ is a constant to be
determined. For a — 0 the range of A, will hence be infinite. With this ansatz it
is now a simple matter to check that by scaling M, ¢ and ¢ appropriately with a
(i.e., M — aM, o — a3, ¢ — a®/?1) and replacing U, 4 for small values of
the lattice spacing by

Upnip = 1 +icaA,(n)

expression (5.17) reduces to (5.8¢) in the naive continuum limit, if we choose ¢ = e.
Because of this connection between U, ;. and A,(n) we shall use from here on the

more suggestive notation
Uu(n) = Uppyp = €M™, (5.18)

With this identification™ it is now an easy matter to verify that U,(n) transforms

as follows under gauge transformations
Uu(n) — G(n)UH(n)G71<n + ﬂ) — 6ieaAle(n)’

where AY(n) is a discretized version of A, (z) — 20,A(z). Hence so far the lattice
action (5.17) with A, (n) defined by (5.18) satisfies the basic requirements stated at
the beginning of this chapter. To complete our construction of the lattice action for
QED, we must obtain the lattice version of (5.8b) which again should be strictly
gauge-invariant, and be a functional of the link variables only. Such gauge-invariant
functionals are easily constructed by taking the product of link variables around
closed loops on the euclidean space-time lattice. Furthermore, because of the local
structure of the integrand in (5.8b), it is clear that we should focus our attention
on the smallest possible loops. Hence we are led to consider the product of link
variables around an elementary plaquette, as shown in fig. (5-1). Let this plaquette
lie in the y — v plane. We then define

Uw(n) = Uu(n)U,(n+ @)Uf (n + 2)UJ(n), (5.19)

where we have path-ordered the link variables. Although this path ordering is irrel-
evant in the abelian case considered here, it will become important when we study
QCD. Inserting the expression (5.18) into (5.19), one finds that

Uy () = etee Fulm), (5.20)

* Of course, this identification of A,(n) with the vector potential is only strictly
correct in the continuum limit.
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1 A
n+V U (m+y) n+HIH)
|
Ul (n) .
v y AU, (i)
|
n Uy(n) n+l

Fig. 5-1 The contribution Uy, (n) of an elementary plaquette with base
at n lying in the pv-plane.

where F),,(n) is a discretized version of the continuum field strength tensor:

It then follows immediately from (5.20) that for small lattice spacing

=)D [1 — Wl + U,L(n»] ~ 1 Y Fu () Fuln),

p<v

where the sum appearing on the left-hand side extends over the contributions coming

from all distinct plaquettes on the lattice.® Hence from now on we shall write the

lattice action for the gauge potential in the compact form

SelU] = e—ﬂipj {1 ~ S(Up UL)} ,

where Up (plaquette variable) stands for the product of link variables around the

boundary of a plaquette “P” taken (say) in the counterclockwise direction.

At this point we want to mention an interesting property of the lattice formula-

tion. In contrast to the continuum formulation where the coupling constant e enters

* Notice that on the right-hand side of this equation the sum extends over all p

and v.
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linearly in the fermionic piece of the action (cf. egs. (5.8¢) and (5.1)), the coupling
now appears with an inverse power in the action for the gauge field! Thus on the

lattice, the strong coupling expansion turns out to be the natural one.

This completes the construction of the lattice action for QED. For Wilson

fermions it is given by

SqunlU. ] = 5 3 [1= 3(Un + U] + 01 -+40) 3 bty

5 SR = ) Uam)n + )
F O+ A+ UL (5.22)

The action (5.22) is to be used in a path-integral formulation, from which any correla-
tion function of the fermionic and link variables can be computed. This path integral
will involve an integration over all link variables U, (n), which, as we have empha-
sized, are elements of a unitary group. Hence the integration is to be performed over
the (compact) group manifold which in the present U(1) case is parametrized by
a single real angular variable restricted to the range [0, 27].* Now we have made a
great effort in ensuring the exact gauge invariance of the action. Hence this gauge
invariance should not be destroyed in the integration process; i.e., we must de-
fine a gauge-invariant integration measure! This is quite trivial in the present case,
for under a gauge transformation the link variables are transformed according to
(5.16). But since G(n) is an element of the abelian U(1) group, a gauge transfor-
mation merely amounts to a site-dependent shift in the phase of U,(n). With the
parametrization U, (n) = en(")  the gauge-invariant measure to be used in a path
integral expression is therefore given by

DU =[] déu(n), (5.23)

and correlation functions of the link variables and Dirac fields are computed from
the following path integral expression

(a(n) - g(m) - Uu(N) )
_ [ DUDGDY(a(n) - h(m) - Up(N) - - )~ Samn
J DU Dy Dipe=Saro :

(5.24)

* Since the integration range is compact, one also speaks of compact QED when
referring to the lattice formulation.
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These correlation functions depend on the parameters M and e which enter
the expressions for the fermionic and gauge lattice actions (5.17) and (5.21). In
the interacting quantum theory defined by (5.24), these parameters can no longer
be identified with the physical fermion mass and charge, and must be viewed upon
as bare parameters, having no direct physical meaning. To emphasize this point, one
usually writes My and eq instead of M and e. We have not done so in this chapter,
since we have merely constructed the lattice action starting from the free fermion
theory. In the following chapter, where we discuss the non-abelian case, we shall,

however, make use of this notation.

One other remark must be made. For the euclidean lattice action (5.22) to be
a bonafide candidate for defining a quantum theory, it must satisfy the criterion of
reflection positivity. Reflection positivity is a necessary ingredient for the existence of
a non-negative hermitean Hamiltonian, with a positive transfer matrix, and a Hilbert
space formulation. This is an important technical detail which we only mention here.
The action (5.22) can be shown to satisfy reflection positivity, which within the
continuum formulation was first discussed by Osterwalder and Schrader (1973). For
details the reader may consult the book by Montvay and Miinster (1994), and in
particular the references quoted there.

This completes the formulation of lattice QED. As we have seen, the group
aspect has played a central role in the above discussion. In a lattice formulation it is
not the vector potential which emerges naturally in the process of gauging the free
Dirac theory, but rather the group elements U, (n) which live on the links connecting
two neighbouring sites. Thus the connection between lattice and continuum variables
is much more subtle than in the case of the matter fields. In fact one may easily
verify that a naive lattice translation of the minimal substitution rule 9, — D,
(see eq. (5.1)) will lead to a fermionic action Sp which violates gauge invariance in
higher orders of the lattice spacing. For reasons we have already mentioned, however,

we have insisted on the strict gauge invariance of the lattice action.
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CHAPTER 6

NON ABELIAN GAUGE FIELDS ON THE LATTICE
COMPACT QCD

The lattice gauge theory we discussed in chapter 5 can be easily extended to
the case where the abelian group U(1) is replaced by a non-abelian unitary group.
Thus suppose that instead of a single free Dirac field we have N such fields 3

(a=1,...,N) of mass My. Then the euclidean fermionic action, replacing (5.9), is
given by*
~ N —
SF:(M0+4T)ZZ¢a(n) P( ——ZZ@D“ )(r —y,)v*(n+ 1)
n a=1 n,u a=1
+ 9+ @) (r +7,)9" (). (6.1)

This action is invariant under global unitary transformations in N dimensions, and
in particular under the non-abelian subgroup SU(N).** Introducing the following

N-component column and row vectors

W
y: ) EE:<&1?--'7&N)7 (6'2)
N
these transformations read
Y(z) — GY(a),

where G is an element of SU(N). We now want to generalize (5.22) to the non-

abelian case. This is straightforward. We only have to replace the Dirac fields ¢ and 9
by the N-component vectors (6.2) and the link variables U,(n) by the corresponding
group elements of SU(N) in the fundamental (N-dimensional) representation. Let
us denote the matrix-valued link variables by U, (n). They can be written in the form

Uu(n)=e | (6.3)

* We omit the “hat” on the dimensionless fields ¢, 1 since it is clear that we are

discussing the dimensionless formulation.
** This group consists of all unitary N x N matrices with determinant equal to

one.
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where ¢,(n) is a hermitean matrix belonging to the Lie algebra of SU(N). Making
the above substitutions in (5.17), we obtain the gauged version of (6.1):

Si') = (Mo +4r) Y D(n)(n)

=5 2 W) =) Uu(n)e(n + 1) (6.4)

For the reasons stated at the end of chapter 5, we have now written MO instead of
M. Written out explicitly, a typical term in (6.4) reads

EE(TO (r =) Uu(n)(n + i) = Z va(n)(r — VM)aB(Uu<n))ab¢g(n + f1).

a7ﬁ7a7b

The action (6.4) is invariant under the following local transformations

¥(n) = Gln)y(n) 6501
$(n) — DG ),
Uuln) = GmUu(n)G™ (n 40, -
Uin) = Gln+ U} (m)G(m).

Here G(n) is an element of SU(N) in the fundamental representation. It can there-

fore be written in the form

iA(n)
Gn)=e¢ (6.5¢)

where A(n) is a hermitean matrix belonging to the Lie algebra of SU(N).
It is now a simple matter to construct the other piece of the action analogous to
(5.21). Clearly S should be gauge-invariant. Since U,(n) transforms according to

(6.5b), the simplest gauge-invariant quantity one can build from the group elements
U,(n), is the trace of the path ordered product of link variables along the boundary

of an elementary plaquette; this path-ordered product is the generalization of (5.19)
to the non-abelian case and reads:

Ui (n) = Uu()Uy (0 + @)U} (n + 2)U (n). (6.6)
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Notice that the trace, and the path-ordering of the links in (6.6) are important now,
since the group elements do not commute. In analogy to the abelian case discussed

in chapter 5 we now replace (5.21) by

S =T |1 5 Ul + UL (6.7

Y
where ¢ is a constant which will be fixed below.

So far we have merely extended the analysis in chapter 5, to the case of a non-
abelian group. Undoubtedly the lattice theory constructed in this way describes a
quite non-trivial system. But does it have any relevance for physics, and in particular
for elementary particle physics? To answer this question we must see whether it has
a chance of describing in the continuum limit an interesting field theory. To this
effect let us first fix the gauge group that we expect to be relevant for describing
the strong interactions of quarks and gluons. It has been known for a long time that
quarks (and antiquarks) must come in three “coloured” versions, (— ¥*, a = 1,2, 3)
and that the observed strongly interacting particles (hadrons) are colour singulets
with respect to the group SU(3).* Hence we expect this group to be the one of
interest. Now any element O lying in the Lie algebra of SU(3) can be written in the

form

where the eight group generators A? are usually chosen to be the (3 x 3) Gell-Mann

matrices, satisfying the commutation relations**

8

MNP =20 fapeA®. (6.8)
c=1

Here fapc are the completely antisymmetric structure constants of the group,
corresponding to this choice of generators.

* These hadrons are built from different “flavoured” quarks (i.e., up, down,
strange, charm, top, bottom). Each of these quarks comes in three colours, and
they must be combined in such a way that the hadron transforms trivially under
SU(3). The reader who is not acquainted with these concepts, and is interested in

learning more about it, may consult the book by Close (1979).
** See e.g., the book quoted in the previous footnote.
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Let us now study the naive continuum limit of the action (6.4) for the case
N = 3, proceeding in a way analogous to the abelian case. To this effect we introduce

a dimensioned matrix valued lattice field A,(n) as follows,

¢u (n) = gﬂaﬁélu(n)' (6'9)

Here ¢,(n) is defined in (6.3), a is the lattice spacing, and go is a bare coupling
constant. Again we have written gq instead of g to emphasize that in an interacting
theory this coupling constant is one of the bare parameters on which the action

depends. Since A, (n) is an element of the Lie algebra of SU(3) it is of the form

Auln) =32 AT (6.10)

where AE (n) are eight real-valued vector fields corresponding to the eight generators
of SU(3). Inserting (6.9) into (6.3) and expanding the exponential to leading order
in a, one finds, after scaling Mg, Y and EE appropriately with the lattice spacing,

that (6.4) reduces to the following continuum action for a — 0:

Sl(wcont.) _ /d%gﬁ(x) (fm(aﬂ + igoflu) + MO)ED(@

Next we consider the naive continuum limit of eq. (6.7). To this end we define in

analogy to (5.20) the matrix-valued lattice field tensor 7, by

iQOGQ‘Z:;w (n)

Uw(n) =e : (6.11)

Clearly, the relation between F,,(n) and A,(n) is now much more complicated

than in the abelian case. The reason is that the link variables appearing in the
product (6.6) are now matrices which do not commute. In order to arrive at the
connection between F,, and A,, one needs to make use of the Baker-Campbell-

Hausdorff formula
eAeB — €A+B+%[A,B}+--~7 (6.12)

where the “dots” will in general involve an infinite number of terms. But be-

cause ¢,(n) is proportional to the lattice spacing (cf. eq. (6.9)), one only needs
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to compute a few terms in the exponent of (6.12), when this formula is used to

calculate the product of link variables. By making use of such relations as
Qbu(n + V) ~ Qbu(n) + aa,/@u(n) o= gOaflu<n) + gOCLZau;Au(n) +y
one finds that

Fuv—F = 0,4y — 0, A, +igo[Au, Ay]. (6.13)

a—0"~

This is the well-known expression for the matrix-valued field tensor in continuum
QCD. Since (6.13) is again an element of the Lie algebra, it can be written in the
form

8 5 )\B
Flw=)_ Fa (6.14)
Making use of (6.8) and of the orthogonality relation of the Gell-Mann matrices,

Tr(APAY) = 20p¢, (6.15)

one arrives at the following connection between the eight components of F fy and
AB defined in (6.14) and (6.10), respectively:

F/E/ = 8uA§ - &,Af - gOfBCDASAf)- (6.16)
Having motivated the introduction of the lattice field strength tensor F,, according

o (6.11), we now compute Sg in the naive continuum limit. Approximating (6.11)
for small lattice spacing by the first two non-trivial terms in the expansion of the

exponential and inserting this expression into (6.7), one finds that

S C S cont
where

cont. ]'
St — ;T /d 2F 0 Fo, (6.17)

and a sum over u, v is understood. This is the well-known gauge field action of QCD.
Hence we must choose ¢ = 2/g2. The continuum field strength tensor for SU(N) has
the same form as given in (6.13) with A, an element of the Lie algebra of SU(N).

Following the same procedure as above one finds that the gauge part of the lattice
action is given for all N > 1 by

ST 52 {1 — ——(Up+U}) (6.184)
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where

2N
90
As in the abelian case, the sum in (6.18a) extends over all distinct plaquettes on the

lattice, and we have introduced the notation Up for the path-ordered product (6.6)

of link variables around the boundary of a plaquette P. Both orientations for this
product are taken into account, thus ensuring the hermiticity of the action.

The action (6.18) is invariant under the local transformations (6.5b). Inserting
for U,(n) the expression

Uu(n) =e : (6.19)

one finds that (6.5b) implies the following transformation law for A, in the contin-
uum limit:
Au(r) = G(2)Au(2)G (2) — iCT'(:zc)a,LG_l(x). (6.20)
£ G\x) £ ¢ 70" ¢
This is the non—-abelian analog of (5.3b).

For those readers not familiar with continuum QCD we want to make the
following remark. Using the relation (6.15), the expression (6.17) may be written in

the form

1
Gleont) — 0 / d*zFP FB (6.21)

pvtopys

where F /ﬁ is related to the coloured gauge potentials by (6.16). Hence, in contrast
to the abelian case, the pure gauge sector of QCD describes a highly non-trivial
interacting theory, which involves tripel and quartic interactions of the fields, Af.
This is the reason why a study of the pure gauge sector of QCD is of great interest.
In fact, the self-couplings of the gauge potentials are believed to be responsible for
quark confinement. The first non-abelian gauge theory was proposed by Yang and
Mills (1954), and was based on SU(2). For this reason one usually refers to (6.18),
or (6.21), as the Yang-Mills action.

So far we have constructed the lattice action which possesses the desired naive
continuum limit. We must now define the quantum theory by specifying the path in-
tegral expression from which correlation functions may be computed. This expression
will be of the form (5.24) except that now t,, 1, and U,(n) will carry additional
colour indices corresponding to the three-coloured quarks lying in the fundamental

representation of SU(3). What concerns the integration measure DU on the other
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hand, it will now depend on the eight real variables parametrizing the group ele-
ments of SU(3), and the integration is to be performed over the group manifold.
For the same reasons mentioned before in connection with the abelian theory, this
integration measure must be gauge-invariant if quantum fluctuations are not to de-
stroy this important principle. Denoting by a;'(A = 1,...,8) the group parameters
on which the ¢’th link variable depends, the corresponding integration measure will

be of the form*

DU =[] J(ax)(daw), (6.22a)

where «y stands for the set {a;'}, and

(doy) = [ ] e (6.22b)

The structure of the Jacobian J(ay) in (6.22a) is determined from the requirement
of gauge invariance. For our purpose it will suffice to know some of the standard
integrals involving polynomials of the link variables and we shall only list a few of
them without proof. A general rule, however, is the following: only those integrals
involving products of the link variables will give a non-vanishing contribution, for

which the direct product of the corresponding representations contains the identity
element. With dU, defined by

AUy = J(ap)(day),

some useful SU(3) group integrals are:

/dU U =0, (6.23a)

/dU U Ut =0, (6.23D)

/ U Ut (U = %5ad5bc, (6.23¢)

/ dU Umhrgyezbagrasts — %e €bybabs - (6.23d)

Here U stands generically for any given link variable. The general rules for evaluating
arbitrary integrals of the above type have been discussed by Creutz (1978).

* The integration measure DU is the so-called Haar measure. We will discuss this
measure in detail in chapter 15, where we shall require its explicit form in order to
perform the weak coupling expansion of lattice QCD.
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An arbitrary correlation function involving the fermionic and link variables can
be computed from the following path integral expression

(e (ny) - g (ma) - U(ka) - )

1 _ _
= / DUDYDY (ny) - - gt (ma) - - - Ug (ky )e %P, (6.24a)
where
= / DU Dvp Dipe=5acp, (6.240)

and where Sqcp is given by the sum of the actions (6.18) and (6.4) with N = 3. For

later convenience we summarize the results for QCD below:

Sacp = Sa[U] + 821U, v, 4], (6.254)
Se = % > [1 - E({Jp + U}:)} : (6.250)
9o 5 6

Sp) = (M + 4r) Z d(n)e(n)

——Z@ (r =) Un(n)¥(n + 2 (6.25¢)

We have concentrated here on the case of Wilson fermions. The generalization of
the free staggered fermion action (4.36) to QCD is obvious. The fields x and x
become 3-component vectors in colour space and must be coupled to the matrix-
valued link variables in a gauge invariant way. Each lattice site can accomodate the
three colours. Denoting by y the vector (x', x%, x*) in colour space, we have that

stag Znu n)x(n)(Uu(n)x(n+ i) — UT(TL— )x(n— i)

+M02ann. (6.26)

For each colour, the different Dirac and flavour components of the quark fields are
then constructed from the y-variables at the sixteen lattice sites within a hypercube
in the way described in chapter 4.

This completes our construction program for lattice QCD. In the following
chapter we introduce an important observable which will play a central role in the
study of confinement later on.
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CHAPTER 7

THE WILSON LOOP AND THE STATIC
QUARK-ANTIQUARK POTENTIAL

One of the crucial tests of QCD is whether it accounts for the fact that isolated
quarks have never been seen in nature. It is generally believed that quark confine-
ment is a consequence of the non-abelian nature of the gauge interaction in QCD.
In contrast to QED where the field lines connecting a pair of opposite charges are
allowed to spread, one expects that the quarks within a hadron* are the sources of
chromoelectric flux which is concentrated within narrow tubes (strings) connecting

the constituents in the manner shown in fig. (7-1).

«—O
(a) (b)

Fig. 7-1 (a) Picture of a meson built from a quark and antiquark which
are held together by a string-like colour electric field; (b) corresponding

picture of a baryon built from three quarks.

Since the energy is not allowed to spread, the potential of a quark-antiquark
(qq) pair will increase with their separation, as long as vacuum polarization effects
do not screen their colour charge. For sufficiently large separations of the quarks, the
energy stored in the string will suffice to produce real quark pairs, and the system
will lower its energy by going over into a new hadronic state, consisting of colour
neutral hadrons. In fig. (7-2) we give a qualitative picture of this hadronization
process for the case when the quarks are bound within a meson (gg-system) or

baryon (gqg-system).

* We shall often refer to the constituents of hadrons simply as quarks, without
distinguishing explicitly between quarks and antiquarks.
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«—> — OO

Fig. 7-2 Hadronization of the ¢g and qqq systems as the quarks are pulled apart.

Once the colour charges of the quarks and antiquarks have been screened,
the remaining Van der Waals type interaction between the colour neutral hadrons
becomes the short-range interaction characteristic of the known hadronic world.
This picture of confinement can in principle be checked by computing, for example,
the non-perturbative potential between a static quark-antiquark pair. We now show
how this potential can be extracted from a path integral representation. To this
effect, it will be useful to first discuss some of the ideas involved within the context
of non-relativistic quantum mechanics, since our subsequent presentation of the field

theoretical case will be quite formal.

7.1 A Look at Non-Relativistic Quantum Mechanics

Consider a particle of mass m moving in a potential V' (z) in one space dimen-

sion. Its propagation is described by the amplitude
K, t;2,0) = (2/e" "), (7.1)

where H = p?/2m + V(). Next consider the static limit of (7.1); letting m — oo,
the kinetic term in the Hamiltonian may be dropped and H can be replaced by the
potential. Hence (7.1) takes the simple form

K2 t;2,0) — §(z —2')e V@1, (7.2)

m—0o0
Continuing this expression to imaginary times (t — —iT'), we see that the poten-
tial V' (z) may be determined from the exponential decay of (7.1) as a function of
euclidean time T'. The d-function appearing in (7.2) just tells us that an infinitely
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massive particle does not propagate. In fact the only change in the wave function
with time consists in the accumulation of a phase. Thus in the static limit the wave
function ¢ (x,t) is a solution to the following equation

i0pp(x,t) = V(x)(x,t),
which may immediately be integrated to give
Y(x,t) = e V@4 (2, 0). (7.3)

The phase exp(—iV') is just the one appearing in eq. (7.2). To substantiate the
formal arguments given above, we illustrate the result (7.2) for the case of the one-
dimensional harmonic oscillator whose Hamiltonian is given by H = p?/2m+ xx? /2.
The corresponding propagation kernel has the form*

mw 1/2 imw 2, 2 ’
K(2' t;2,0) = <—> eZsinwr (T F2"7) coswi—2za’] 7.4
( ) 2misin wt (74)
where w = \/K/m is the frequency of the oscillator. In order to extract the potential
from (7.4), we now take the limit m — oo, holding x (i.e. the potential) fixed. This
implies that w must vanish like 1/y/m. It is then a trivial matter to show that

, 1Y e | v
K(x 7t’ x’ O) j 2 . e 2e e 2 <75)
iglﬁx%(c)l e

where € = t/m. In the limit ¢ — 0 (m — o), the factor appearing within square

brackets just becomes d(z — z’); hence we arrive at the result (7.2).

7.2 The Wilson Loop and the Static gg-Potential in QED

We now generalize this discussion to the case of a gauge field theory. To keep
things as simple as possible, we shall restrict us for the moment to the case of an
abelian U(1) gauge theory, and in particular to QED. Furthermore, we shall argue
entirely within the framework of the continuum formulation where the physical
picture is most transparent. Our presentation is based on the work by Brown and
Weisberger (1979), and on the review article by Gromes (1991).

* See e.g. Feynman and Hibbs (1965) for a derivation of (7.4) within the path
integral framework. We have set A = 1.
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Consider a heavy quark (@) and antiquark ()), which are introduced into the
ground state of a quantum system whose dynamics is described by the action (5.5).*
We want to study the energy of this (infinitely) heavy pair when it is coupled to
the gauge potential in the usual minimal way. To this effect consider the following

gauge invariant state

|bap(Z, 7)) = T (Z,0)U(Z,0; 7,005 (7,0)|), (7.6)

—

where |Q2) denotes the ground state, and where, for arbitrary time U(Z,t;4,t) is
defined by

U(Z, t;7.1) = e’ =450, (7.7)

with the line integral extending along the straight line path connecting © and v.
This phase ensures the gauge invariance of the state (7.6) which describes a quark
and antiquark located at ¥ and ¢ at time ¢ = 0. In order to distinguish the heavy
quarks, serving as test charges, from the (light) dynamical quarks responsible for
the vacuum polarization effects referred to at the beginning of this chapter, we have
attached the label “Q” to the corresponding Dirac fields. The state (7.6) is not an
eigenstate of the Hamiltonean H. It serves however as a trial state to extract the
energy of the lowest eigenstate of H having a non-vanishing projection on |¢ag).
This energy will be a function of the separation of the quark and antiquark, and is
the quantity that we are interested in. As in the case of our quantum mechanical
example we can extract this ground state energy by studying the propagation of the
state (7.6). But the procedure will not completely parallel the quantum mechanical
case. The difference is that whereas the state |Z), whose propagation we have studied
there, becomes an eigenstate of the Hamiltonian H = p?/2m + V(z) in the infinite
mass limit, this is not true for the trial state (7.6). In the field-theoretic case, where
one is dealing with a system having an infinite number of degrees of freedom, there
will be many eigenstates of H which have a non-vanishing projection on (7.6); but
of all these states we are only interested in that state having the lowest energy. In
our quantum mechanical example we would be confronted with a similar situation if
we were studying the propagation of a particle of finite mass in the potential V' (x).
In this case the state |z) is no longer an eigenstate of the Hamiltonian and the
propagation amplitude will no longer have the simple form (7.2). Instead, we must

* Although we are studying the U(1) gauge theory, we will refer to the charged
particles as quarks and antiquarks.
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consider its general spectral decomposition

K(2' t;2,0) = Z(m’|n>(n|x>e‘iEnt, (7.8)

where E, are the eigenvalues of H = p?/2m + V(x), and |n) the corresponding
eigenstates. But from the structure of the right hand side of (7.8) we see that we can
extract the contribution of the state of lowest energy by studying the propagation
amplitude for large euclidean (t — —iT") times:

K(2',—iT;x, 0)T—> (z'|0)(0|z)e~ BT,
—00

This is the well-known Feynman—-Kac formula. As an example consider the harmonic
oscillator, where K (2',t;x,0) is given by (7.4). Taking the above limit, holding the
mass fixed, one readily finds that Ey = —w This is of course not the quantity that
we were interested in; but the example illustrates the point that in general we must
supplement the infinite mass limit with another limit involving the euclidean time.
Furthermore, the order of these limits is important! To extract the ground state
energy of a quark-antiquark pair, we must first study the propagation of the state
(7.6) in the infinite mass limit, and then examine the behaviour of the propagation
amplitude for large euclidean times. With this in mind, consider now the following
Green function describing the propagation of the state (7.6):

Gugras(@ 75 2,5:t) = (QT(EP (5 OU (G 67, 1)
<UD (2 )T (F,0)U(F,0;7,000P(7,0)Q)  (7.9)

where “T"” is the time-ordering operator. Since in the limit of infinite quark masses,*
the positions of the quark and antiquark are frozen, we expect that (7.9) will show

the following behaviour

Gorgrop(@', 7,5 =1T) | — 80T =78 (G — §)Corgy s (7, 7)™ 7,
1)MQ—>OO
2)T—o00

(7.10)
where Mg is the quark (antiquark) mass, Cy s 0p(Z, ¥) is a function describing the
overlap of our trial state (7.6) with the ground state of the Hamiltonian in the
presence of the static pair, and E(R) is the ground state energy™ of the static pair

_,|

separated by the distance R = |7 — ¢

* Actually we shall keep the masses finite, in order to control any divergencies

that might arise.
** As we shall see in the next chapter, E(R) also includes self-energy effects

which need to be subtracted when calculating the interquark potential.
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The right-hand side of (7.9) has the (formal) path integral representation

Gurprop = —= / DA D¢ DY DY@ DPQ@P (7' 4) .. P (5,0))e,  (7.11)

where the expression within brackets stands for the quantity whose expectation value
we are calculating, Z is the normalization constant given by the integral (7.11) omit-
ting the above mentioned expression, and S is the action describing the dynamics
of the light and heavy quarks, and of the gauge potential:

S = SG[A] + SF[w> &7 A] + SQ[w(Q)a @E(Q)a A]
Here Si and Sp are defined in (5.4) and (5.2) respectively, and*
S @, 4P, A] = /d4ww(Q)(93)(’i’Y“Du — Mo)y D (x). (7.12)

Since this action is quadratic in the fields ¥(@ and ¥(?), one can immediately

perform the integration over these Grassmann variables in (7.11) (see chapter 2):

1 _
Ga/ﬂ/@ﬂ = _E/DA Dw Dz/} [Sﬁﬁ/<y7yl;A)Sa/a(JJ/7I;A>
Sy (o A) Sy, A)} (7.13)
U(Z,0;7,0)U(7 7, t: 27, t) det K(Q[A]eiSctiSr

Here x,y, 2" and y' are the following four—-component vectors
(7.14)

S(z,2'; A) is the Green function describing the propagation of a quark in the external
field A,

[i7"(0), +ieA,u(2)) — Mg)S(z,2'; A) = 63(Z — 25 (t —t'), (7.15)
and det K(@[A] is the determinant of the matrix

K9, [A] = [i7"(8, + ieAu(x)) — Mgl ;.00 (z — y),

oz, By

* Recall that we are still in Minkowski space. Hence v* (1 = 0, 1,2, 3) are the
usual Dirac matrices.
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arising from the integration over the heavy quark fields. In perturbation theory the
logarithm of this determinant is given by the sum of Feynman graphs consisting of a
fermion loop with an arbitrary number of fields A, attached to it. This determinant
approaches an (infinite) constant for Mg — oo which is however canceled by a

corresponding factor contained in Z. Hence in what follows we can set det K@) = 1.

For the same reasons as stated above, we can of course also perform the inte-
gration over the dynamical quark fields ¢ and ¢ in eq. (7.13). This gives rise to a
similar determinant; but its dependence on the gauge potential can no longer be ig-
nored, since these fields have finite mass. It is this determinant which is responsible
for the vacuum polarization effects mentioned at the beginning of this chapter.

So far the result (7.13) holds for arbitrary quark mass Mg. We now want to
study this expression for Mgy — oo. Following Brown and Weisberger (1979), we
drop the spatial part of the covariant derivative, but keep its time component. Thus

gauge invariance is maintained in this approximation:
[i7°(0 + ieAo(2)) — Mg)S(z, 2/; A) = 6W (2 — 2). (7.16)

Here the derivative acts on z. Equation (7.16) can be easily integrated. Making the
Ansatz

S(z,2; A) = 0 # AEDG( _ o) (7.17)

one finds that S(z — 2/) satisfies a differential equation, which does not involve the

gauge potential:
(i7°0) — Mo)S(z — 2') = 6W(z — ). (7.18)

This equation can be readily solved by making a Fourier ansatz for S, and leads to
the following expression for (7.17):

iS(Z, Z/; A) _ 5(3)(5_ Z—»/)ez‘efzzof) dt Ao(Z)t) {@<ZO . 26) (1 + 70) e*iMQ(ZO*Z{))

2
1-— : /
+0O(z, — 20) ( 2%) elM‘?(zOzo)} )

(7.19)

This expression shows that the time evolution of the (infinitely) heavy quark fields
merely consists in the accumulation of a phase determined by Ay and the quark
mass. This is the statement analogous to (7.3) in our quantum mechanical example.
We next insert (7.19) into (7.13). Because of the appearance of the spatial delta
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function, which merely tells us that an infinitely heavy quark cannot propagate
in space, only the first term in eq. (7.13) contributes since ¥ # ¢. Recalling the
definitions of x,y, 2" and y’ given in eq. (7.14), one finds that
Capras — 0T = 70D (F — ') (Pr)aa(P-)gre™ Mt (e 47 4u)),
Q0
(7.20a)
where
1
Py = 5(1 +4Y), (7.200)
and where the line integral extends over a closed rectangular path with spatial and
temporal extension R = |Z — ¢| and ¢, respectively, whose corners are located at
the points (7.14). The bracket ( ) denotes the ground state expectation value in the

absence of the static quark-antiquark source. It is formally given by

[ DA Dy Dy eicf " 4u()¢iSaen
B f DA Diﬂ D& e'"SQED )

(efe $ d Au(2))y (7.21)

where Sqgp is the action defined in eq. (5.5).

Finally let us continue the expression (7.20) to imaginary times, t — —i7". This
is accomplished by replacing —iSqgp in (7.21) by its euclidean counterpart (5.8),
and continuing the exponentials exp(—2iMgt) and exp(ie § dz*A,(z)) to imaginary
times. By writing out explicitely the contour integral, and recalling that Ay, must

be replaced by 744 in this continuation process, one finds that

(Gargraplisir — 0O (T =)0 (G = § ') (Pr)ava(P-)sp
Q00

(7.22a)
e M (We[A])euel.
where
WelA] = eled Butn(z) (7.22b)
and
_ (eucl)
(WelAl)on, = 1 PA DY DY WC[A]e;j?ED . (7.22¢)

[ DA Dy Dip 5650
In (7.22b) the line integral is carried out along a rectangular contour C' in euclidean
space time, with corners given by (Z,0), (¢,0), (¥, T) and (Z,T"). This is the famous
Wilson loop.

Finally, to obtain the static quark-antiquark potential we must study the
behaviour of (7.22) for large euclidean times 7. Comparing this expression with



The Wilson Loop and the Static Quark-Antiquark Potential 103

eq. (7.10), we see that the exponential factor exp(—2MgT) just accounts for the
fact that the energy of the quark-antiquark system includes the rest mass of the
pair. Hence we expect that (Wo[A]) behaves as follows for large T

W(R,T) = (Wc[A]) — F(R)e FBT

T—o00

where FE(R) is the interaction energy of the static quark-antiquark pair separated
by a distance R, and F(R) reflects the overlap of our state (7.6) with the ground
state of the system in the presence of this pair. Hence we conclude that this energy
can be calculated as the following limit:
E(R) = — lim lln(I/VC[A]). (7.23)
T—oo T
We want to emphasize the formal simplicity of the above result. To compute
the static interquark potential we “merely” need to calculate the expectation value
of a gauge invariant quantity built only from the gauge potential. Admittedly the
derivation of the result involved a bit of handwaving. Furthermore, we have used
a special trial state constructed from the quark fields and the string like operator
(7.7), with the line integral taken along a straight line path connecting the quark
and antiquark. Especially, in QED, where field lines are allowed to spread all over
space, we expect that there are other trial states which have a better overlap with
the ground state of the QED-Hamiltonian in the presence of a static source. But
also in QCD where the field lines are expected to be squeezed into a tube connecting
the two quarks, the use of other trial states can allow one to determine the potential
from Wilson loops with a relatively small temporal extension.*

So far we have argued entirely within the continuum formulation where the
path integral (7.22c) only has a formal meaning. To define it, we must obtain the
lattice version of (7.22b) and (7.22c¢). This can be easily done. Thus on the lattice
the exponential of the line integral in (7.22b) just corresponds to the product of
the link variables (5.18) along the rectangular contour C shown in fig. (7-3). Let U,
denote such a link variable. Then we define the Wilson loop operator by**

welv] =[] v (7.24)

leC

* See e.g., Griffith, Michael and Rakow (1983).
** In order not to introduce too many symbols, we use the same symbol W as

in the continuum formulation. The argument of W will tell us which formulation
we are talking about; notice also that in the abelian case the ordering of the link
variables is irrelevant.
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Its ground state expectation value
W(R,T) = (Wc[U]) (7.254)
is given by

W“Rjﬁ_ﬁfDUD&DwaWkﬂ%“W“@ (7.25b)
S [ DU Dyp Dipe—SaenlU¥:¥] '

where in the case of Wilson fermions, Sqgp is given by (5.22). Notice that W (R, T)
is a function of the dimensionless ratios R = R/a and T = T/a, with a the lattice

spacing.

Fig. 7-3 Integration contour appearing in eq. (7.22b), relevant for calcu-

lating the static interquark potential.

On the basis of the arguments presented in this chapter, we now define the
energy of a static ¢g-pair measured in lattice units, E(R), by an expression analogous
to (7.23),

A A 1 A A
E(R) = — lim =InW(R,T), (7.26)

Tooo T

where, as we have pointed out before, E (R) will still contain R-independent self-
energy contributions, which have to be substracted when calculating the interquark
potential. Relation (7.26) will allow us to compute, at least in principle, the

interquark potential using numerical methods.
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7.3 The Wilson Loop in QCD

The non-abelian case can be treated in a very similar manner to that discussed
in the previous section. The starting point is again a state of the form (7.6), except
that now the Dirac fields are replaced by (6.2) with N = 3, and we must substitute
for U(Z,t;4,t) the operator

ig [J dz Ai(Z1)

U(Z, t;y,t)=Pe , (7.27)

where A;(Z,t) is the matrix valued field defined in (6.10), and P denotes the path-

ordering operation. This path ordering is important to ensure the gauge invariance
of the state. Let us see why this is so.

Consider the following generalization of (7.27) to exponentials of line integrals
performed along an arbitrary path C' connecting two different space-time points x
and y:

ig [, dz=" Ay (2)

U(z,y)c =Pe : (7.28)
The path ordering in (7.28) is defined as follows: divide the path C into n infinites-
imal segments and let x1,29,...,x,_1 denote the intermediate space—time points
going from x to y. Furthermore define dx, = x, — xy_1, with 2y and x,, identified
with = and y, respectively. On each of the infinitesimal segments the exponential in
(7.28) can be approximated by the first term in the Taylor expansion. Then (7.28)
is given as the limit dz;, — 0 of the ordered product of these (non-commuting)
expressions along the path from x to y:

Ule,y)e = Jim [1+igd,(wo)det] - [1 +igAu(ea)dst].  (7.29)

o0
Consider now an infinitesimal gauge transformation. According to (6.20), A, trans-
forms as
Au(w) = 4y(a) + i), 4,(2)] = ~0,0(a),
where §(x) is an infinitesimal matrix belonging to the Lie-Algebra of SU(3). Up to
terms linear in dz, and §(z) we have that

1 +igA,(xe_1)day — 1 +igA,(ze1)dzy

— g[0(xe 1), Ao ))dat (7.30)

~i (08w ) st
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But (0,0(x¢-1))dx} = 0(x;) — 0(x¢—1). Hence up to leading order in 6, (7.30) can

also be written in the form

1+igA,(vey)drl — @D 4 igA, (z,)dal]e 0@,

We therefore conclude that (7.29) transforms as follows under finite gauge

transformations

Ule.y)e — G)U(e.9)G ' (y), (7.31)

where G(x) is an element of the gauge group. The transformation law (7.31) is the
analog of (5.11) for the non-abelian case. It guarantees that the state analogous to
(7.6) is gauge invariant.

On the lattice, the path ordered exponential (7.28) is just the ordered product
of link variables along a path connecting the lattice sites corresponding to x and y.
Let us denote these sites by n and m, respectively, and by C}, a path on the lattice
connecting n and m. Then the transition from (7.28) to the lattice reads

U(z,y)c = U(n,m)c H Up, (path ordered), (7.32)
LeCy,

where U, denotes generically a link variable on C'p. Since under gauge transforma-

tions the link variables transform according to (6.5b), it follows that the right—hand
side of (7.32) transforms according to

U(n,m)c, = G(n)U(n,m)c, G~ (m).
Taking for C', the Wilson loop, we conclude that

=Tr H U, (path ordered) (7.33)

LeCy,
is gauge invariant. This is the analog of (7.24). The corresponding expectation
value (We[U]) = W (R, T), is then calculated as before according to a path integral

expression analogous to (7.25b):

[ DUD¢Dy We[Ule —SqeplU3.9]
fDUD¢Dw€—SQCD[U1¢:1Z] ’

W(R,T) = (7.34)
where for Wilson fermions Sgcp is the QCD action given by (6.25), and where DU
is the gauge-invariant measure discussed in chapter 6. The interquark potential is
then computed according to (7.26).
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The right-hand side of (7.34) can be written in a form which involves only
an integration over the link variables and hence will be suited for numerical, Monte
Carlo, calculations. Indeed, the fermionic contribution to the action, given in (6.25¢),
is bilinear in the fermion fields and has the form*

S(W U w 1/1 Z¢a naam,@b[ ]¢g(m)7 (735)

where (a,b) and (o, 3) are colour and Dirac-spinor indices, respectively. Hence we
can immediately perform the Grassmann integration (see chapter 2) and obtain

[ DU W¢[U]e Sl

<WC[U]> = f DU e*Seff[U] , (736@)
where the effective action, Seg, is given by
Seﬂ‘[U] = Sg[U] —1In detK[U] (736b)

Here KU] is the matrix in Dirac, SU(3)-colour, and z-space defined in (7.35). In

the continuum formulation the matrix elements of K are given by**

Koa,py[A] = (1u(9u + igoAy) + Mo) 65(4) (z —y).
The meaning of In det K[A] is well known in perturbation theory. It is given by the
sum of Feynman diagrams consisting of a single fermion loop, with an arbitrary
number of external gluon fields attached to it. Hence this term gives rise to the
vacuum polarization effects, referred to at the beginning of this chapter. Ignoring
these effects amounts to setting det K = 1. This is the so-called quenched approzi-
mation. In this approximation one expects that the static gg-potential rises with the
separation of the quarks. This, as we have pointed out before, is a prerequisite for
the hadronization picture mentioned at the beginning of this chapter. Hence calcu-
lating the gg-potential in the quenched approximation is an important first check of

confinement.

The above analysis does not yield any information about the spin-dependent
forces between quarks since we have merely studied the static limit. To obtain

information about the spin-dependent terms in the potential, one must allow the

* The same is true for the staggered fermion action (6.26).
** For simplicity we use the same notation for the Wilson loop, fermionic matrix,

and effective action as above.
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quarks to propagate in space. This means that one has to take into account the
spatial part of the covariant derivative in the Dirac equation. This program has
been first carried out by Eichten and Feinberg (1981), who treat this term pertur-
batively. Alternative derivations of the results obtained by these authors have been
carried out subsequently by Peskin (1983), Gromes (1984), Barchielli, Montaldi and
Prosperi (1988). The reader may consult the recent review article by Gromes (1991)
for details on this subject.

Our above discussion has been quite formal. But simplified arguments based
on physical intuition often lead to the correct result. So let us verify our conclusions
at least within the framework of some simple models. After all, our understanding
of quark confinement will depend on our ability of calculating the non-perturbative
inter-quark potential, which — at the present state of the art — can only be deter-
mined by studying the expectation value of the Wilson loop numerically. Hence let
us get some confidence in this procedure by studying some solvable field theories.
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CHAPTER 8
THE QQ-POTENTIAL IN SOME SIMPLE MODELS

In this chapter we study the potential of a static ¢¢ pair in two soluble models
within the quenched approximation: 1) QED in four space-time dimensions, and
2) compact (lattice) quantum electrodynamics in two dimensions (QEDs). The latter
model will also provide us with another opportunity to study the continuum limit

and to compare our results with those obtained in a continuum calculation.

8.1 The Potential in Quenched QED

Consider the expectation value of the Wilson loop in QED. In the continuum

formulation it is formally given by eq. (7.22c). Performing the fermion integration,

we obtain
[ DA We[A]eSealAl
(WelA]) = fDA o—SewlAl (8.1a)
where
Seg[A] = Sg[A] — Indet K[A], (8.1b)

Sc[A] is given by (5.8b), and K[A] is a matrix in space-time and Dirac space:
Kﬂﬁa,yﬂ[A] = [’Yu(au + ieAu) + M]aﬁ5(4) (x —y). (8.1¢c)

We now want to calculate the integral (8.1a) in the quenched approximation where
vacuum polarization effects, arising from the presence of dynamical fermions, are
neglected. This, as we have seen, amounts to setting det K = 1, and hence replacing
Seft by Sg[A]. The latter action can be written in the following convenient form:

SelA] = —% / A A, () Ay (1), (8.20)
where
Q= 5,0 — 0,0y, (8.20)

and O is the four-dimensional Laplacean. Hence in the quenched approximation

(q.a.) the expectation value of the Wilson loop is given by
f DA e%fal‘lmA#Q;WA,,Jriefdz#AM

f DA eéfd‘leHQWAl,

(WelA]q.a. (8.3)
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Since the integrands in the above expression are exponentials of quadratic forms in
the potentials, the integrals can also be carried out in the continuum formulation.
Nevertheless, we cannot perform the Gaussian integration in the present form. The
reason for this is well known: because of the gauge invariance of the action (8.2)
the inverse of the operator €1, does not exist, since it annihilates all field configu-
rations A, which are pure gauge (i.e., of the form A, = d,A). This means that the
integrands appearing in (8.3) take the same value for all field configurations which
only differ from each other by a gauge transformation (notice that the closed line
integral is also gauge invariant). These gauge equivalent potentials define an orbit
for every given field strength F),,, and the integration along any such orbit will give
rise to a divergent integral in the numerator and denominator of (8.3). The ratio,
however, will be finite. To show this, one must have a method for controlling this
infinity. An elegant procedure has been given by Faddeev and Popov and amounts
to selecting one representative field configuration from each set of gauge-equivalent
potentials.* This is done by imposing a gauge condition. Since we are computing the
expectation value of a gauge-invariant quantity, the choice of gauge is immaterial. A
particularly simple choice is the so-called Feynman gauge and amounts to making
the replacement

Q — 0,,,0.

The Gaussian integrations in (8.3) may then be performed immediately and one

obtains

<6i6§dzuAu> = @% fﬁdzufdzlvéwD(Z_zl)7 (84(1)

where D(z — 2') is the Green’s function for the operator O,

OD(z — 2') = 6W(z — 2) (8.4b)
ie.,
1 1

Because the integrand in (8.4a) is proportional to d,,,, the double integral will only
receive a contribution when z and 2’ are located on segments of the integration con-

tour which are parallel to each other. In fig. (8-1) we show various types of diagrams

* Those readers which are not familiar with the Fadeev—Popov trick may consult
the review article by Abers and Lee (1973) or any modern field theory book. In
chapter 15 we shall demonstrate this trick for lattice QCD.
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which contribute to the exponential (8.4a). Clearly the leading contribution for large
(euclidean) times comes from the diagrams shown in figs. (8-1a,d). Of these, however,
the latter one represents the self-energy contribution to the energy of the static qq
pair. It must therefore be subtracted when computing the inter-“quark” potential.
Hence the relevant diagram is that shown in fig. (8-1a). The corresponding integral
is easily evaluated and one obtains*

. 82
<ezefdzMA#>subtr — eir Tf(RT)

— N VBT
T—o0
where
2 T R T?
RT)=— tan — — —In( 14+ — ||.
f(R,T) 7T{arcanR 2Tn( +R2>}

Since f(R,T) — 1 for T — oo, we find that V(R) is just the usual Coulomb
potential.

!

T ¥

Fig. 81 Diagrams contributing to the argument of the exponential in (8.4a).

The potential calculated from (8.3) does not include vacuum polarization ef-
fects. When one takes into account dynamical fermions (i.e., fermions of finite mass
coupled to the gauge potential), then one must also calculate diagrams containing
virtual fermion loops. These loops arise from the contribution of the determinant
of the operator K[A] = @ + M + ieA to the effective action (8.1b).** As an exam-
ple let us calculate the leading order contribution of IndetK[A]. To this effect we
write Indet K [A] in the form Trln K[A], where the trace is taken with respect to the
space-time coordinates as well as Dirac spinor indices. Then

Trin K[A] = Trln {(a + M) (1 + &jMieA)}

— ¢+ Trln (1 + @+1Mi64> | (8.5)

* See e.g., Kogut (1979).
** We use the standard notation p = >_  7,b,.
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where ¢ = Trn(@ + M) is an irrelevant constant, which drops out when calculating
the ratio (8.1a). Expanding the logarithm in (8.5) in a formal series, one finds that
the leading contribution is of O(e?):*

Trin K[A] = —%Tr [@jMieAa _:MieA] + O(e).

The right-hand side stands for the following expression

%Tr {@jMieA@jMieA] _ (i;)QTrD/d“x <x @jMA@jMA‘x>

_ e /d4x/d4x'Tr x ! 'y Ax) (o b z ) A(z)
T2 P J+M J+M ’
(8.6)
where Trp denotes the trace in the Dirac indices, and where
(el ) = svte =
x ) =Sp(x—x
g+ M "
is the (euclidean) fermion propagator. From (8.5) and (8.6) we see that
1
Trin K[A] = 3 /d4xd4x'AH(x)HW(x —2)A,(2) + O(e?), (8.7a)
where
I, (z —2') = —(ie)*Trp{v,(Sp(z — 2')7,Sp(2' — )} (8.7b)

is the vacuum polarization tensor in one loop order. Substituting (8.7a) and (8.2a)
into (8.1b) we are led to the following expression for (8.1a) in the Feynman gauge,

f DAeiefdzuA#(z)e% [ drzdex’ A (x)Qu (x—a') Ay (z')

(WelA]) i D Aef dediae’ A (@) (v—a') Ay (2') ’ (8-8a)
where
Qu(2) = Qu(2) + M (2), (8.8b)
Quu(2) = 0,060 (2). (8.8¢)
We now perform the Gaussian integrals in (8.8a) and obtain
(WAJA]) = e § dou § L0l (=) (8.9)

* Furry’s theorem tells us that there are no contributions coming from an odd
number of external photon lines.
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Here Q;l} is the inverse of the matrix (8.8b). It is defined by
/d4z"flu,\(z — NN — ) = 6,,0W (2 — ),
and can be easily computed up to O(e?).

Q;Vl(at —y) = Q;j(m —y) — /d4zd4z'Q;§(x — 2w (z — 2L (2 —y) + O(e).
The two point correlation function of the gauge potential in O(e®) and O(e?) is given
by —Q;l and —Q 1

. > respectively. Hence in terms of Feynman diagrams the right

hand side of the above expression is given by:

MWW + NV + oe

x, U »Vv X, 1 »Vv

Thus a typical diagram contributing to (8.9) is that depicted in fig. (8-2).

Fig. 8-2 Vacuum polarization graph arising from the fermionic deter-

minant contributing to (8.9).

By carrying out the expansion of (8.5) to higher orders, we arrive at a sum of
one-fermion loop contributions with an arbitrary number of external photon lines

attached to it.

Unfortunately we are only able to compute the effects arising from dynam-
ical quarks analytically within the framework of perturbation theory. For a non-
perturbative treatment we are forced to recur to numerical methods. This, as we

shall see later on, turns out to be a quite non-trivial task.
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8.2 The Potential in Quenched Compact QED,

We now perform a similar calculation of the potential between two opposite
charges but starting from a lattice formulation. For this purpose we consider the
case of compact QED in 2 space-time dimensions, which, if we neglect dynamical
fermions, may be solved in closed form. The lattice action in the pure gauge sector

is given by*
1
Se=8_ {1 —5(Up+ U;)] , (8.10)
P

where ( is some parameter which, in analogy to (5.20), we shall relate to the

dimensionless bare coupling é by

1
b= X (8.11)

and where Up is given by the product of the link variables
Uu(n) = e )

taken around an elementary plaquette “P” as discussed in chapter 5.

Next consider the expectation value of the Wilson loop (7.25b), with the con-
tour C' having spatial and temporal extension given by R and T. In the quenched
approximation it is given by

[ DU W¢[U]e %6l
[ DU e-SclU]

(WelU]) (8.12)

Since the link variables are elements of the abelian group U(1), it is evident that
We[U] can also be written as the product of the elementary Wilson loops (— pla-
quette variables) contained within the region R, bounded by the square contour
C, as shown in fig. (8-3).

welu] = ] Ue. (8.13)
PeRc
Hence**
S DU per,. Up)eg S p(Up+U})

WelU .
(Wel) Do TE o

(8.14)

* Its structure is the same as that discussed in chapter 5 (see eq. (5.21)).
** We have dropped the constant term in the action (8.10) since it cancels in

the numerator and denominator of (8.12).
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l

Fig. 8-3 Writing the Wilson loop (8.13) as a product of elementary
plaquette contributions. The dashed line stands for the original product of

link variables along the contour C.

To carry out this integral it is convenient to choose a gauge where all link vari-
ables pointing along the time direction are rotated to the unit element. This can
always be achieved by performing an appropriate gauge transformation under which
the link variables transform according to (5.16). Hence the contribution of a partic-
ular plaquette with origin at n = (ny,ny) will be of the form Up = exp(iflp), where
Op is given by the difference of the phase-angles associated with two neighbouring

links lying on consecutive time slices:
9p = 91(711, TLQ) — 91(n1,n2 + 1)

Making use of the periodic structure of the integrands in (8.14), one finds that

- .
f_ﬂ dgp €Z9P€’BC0S Op

W(R,T) = - , (8.15)
where W (R, T) = (W¢[U]). Performing the integral (8.15) one obtains
. 7 w))”
W(R,T) = ) 8.16
"D = (35 (#10

where I,,(/3) are the modified Bessel functions of integer order. From (8.16) we read
off the ¢q potential in units of the lattice spacing,

o 1 A A N
V(R) = — lim =InW(R,T) = 6R, (8.17a)

T—o0
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where

6=In (ﬁgg;) (8.170)

is the so-called string tension. Thus in the lattice formulation of quenched QED,
the potential rises linearly with the separation of the ¢g-pair and hence confines the
charged pair. This is the same behaviour found in continuum QED, and is a con-
sequence of the two-dimensional nature of the problem. In fact, let us compute the
physical potential V' (R) by taking the appropriate continuum limit of the lattice
version (8.17). Since continuum QED; is a superrenormalizable theory we expect
that a simple rescaling of the variables with the lattice spacing a will suffice. This
rescaling, however, requires some care. Thus we must clarify first of all which quan-
tities must be kept fixed as we let the lattice spacing go to zero. Since the physical
potential has the dimension of inverse length, we must scale V with the inverse
lattice spacing. Furthermore, R is to be replaced by R/a; we therefore consider the
expression
1
2

V(R;f,0) = 56(F)R. (8.18)

From (8.18) we see that if we keep 3 fixed as a — 0, then V diverges like 1/a?!
Therefore, this cannot be the correct continuum limit. So let us take a closer look at
the meaning of the bare coupling é defined in (8.11) by studying the naive contin-
uum limit of (8.10) in the manner described in chapter 5. Making the replacement
Up — exp (iéa*F),) for a plaquette “P” lying in the uv-plane (see eq. (5.20)) and
expanding the exponential in powers of the lattice spacing squared, one finds that

the coupling constant in physical units, e, is related to é by

L,
e=_¢. (8.19)
This we could of course have guessed immediately, since the coupling constant in
QED, carrys the dimension of a mass.
From the above discussion it is evident that (8.11) is a function of the lattice

spacing, and that the physical potential should be calculated as the following limit,*

V(R,e) = Clllir(l) V(R,((a),a) (8.20a)

* We have assumed that (8.19) is a physical coupling constant, which is to be
held fixed when performing the continuum limit. The fact that this limit turns out
to be finite, justifies a posteriori this assumption, and agrees with what is known
from the continuum theory.
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where
1

Bla) = popeR (8.200)
Hence  diverges in the continuum limit! This makes it plausible why the lattice
formulation (8.12) reproduces the correct continuum limit, as we shall see below.
Thus it is evident that for large 3 the Boltzmann factor appearing in the integrand
of (8.12) will ensure that the integral is dominated by those link configurations for
which Up = 1. Because of (5.20), this implies that the fluctuations in eF),, are small

compared to the inverse lattice spacing squared.

With these remarks let us now compute the continuum limit (8.20a). Inserting

in (8.17b) the following asymptotic expansions for I;(5) and Iy(5), valid for large £,

e’ 1
Io(ﬂ)z—m (1+%+“'),

e’ 3
)= o (1= ),

one finds that
1
V(R) == §€2R.
This is the classical energy of a pair of opposite charges separated by a distance R,

for electrodynamics in one space dimension.

In the special case considered here, the energy of a gg-pair is a linear func-
tion of their separation for any coupling. In particular, in the strong coupling limit
(8 — 0), the string tension (8.17b) is given by —In(5/2). In a four-dimensional
gauge theory (without dynamical fermions), the confining nature of the potential
obtained in the strong coupling limit is a consequence of the fact that the flux lines
connecting the quark and antiquark are squeezed into narrow tubes (strings) along
the shortest path joining the gg-pair (see chapter 11). This string is not allowed to
fluctuate for gy — oo. Fluctuations may, however, destroy confinement, when one
studies the continuum limit. In the above two-dimensional example, the persistence
of confinement in the continuum limit (¢, — 0), is not surprising since in one-space
dimension there is no way the string can fluctuate. In QCD, however, there is no
a priori reason why confinement could not be lost in the continuum limit (which,
as we shall see, is also realized at vanishing bare coupling). Should it persist in this

limit, it must be a consequence of the non-trivial dynamics.

This completes our demonstration of how the potential of a static qq pair may

be extracted by studying the expectation value of the Wilson loop for large euclidean
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times. In the simple examples considered, the calculation could be done exactly. In
general, however, we must rely on numerical methods and the starting point will be
the lattice version. In this respect the second case treated above exhibited already
some interesting features which we shall meet again when studying the continuum
limit of QCD. Thus we have seen that taking the continuum limit required [ to
be a function of the lattice spacing. This functional dependence was very simple
in the case considered here, and we could actually determine it from dimensional
arguments alone. In the case of QCD, on the other hand, this dependence will not
be trivial, and will be determined from the short distance dynamics of QCD.
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CHAPTER 9

THE CONTINUUM LIMIT OF LATTICE QCD

9.1 Critical Behaviour of Lattice QCD and the Continuum Limit

In chapter 6 we constructed a lattice gauge theory based on the non-abelian
group SU(3) and have given arguments which suggest that in the continuum limit
it describes QCD. These arguments were based on the observation that the lattice
action (6.25) reduces to the correct expression in the naive continuum limit. But as
we have emphasized before, there exist an infinite number of lattice actions which
have the same naive continuum limit. We have merely chosen the simplest one, pro-
posed originally by Wilson.* There is, however, no a priori reason why any choice of
lattice action satisfying the above mentioned requirement will ensure that the theory
processes a continuum limit corresponding to QCD or some other field theory. For
this to be the case the lattice theory must exhibit first of all a critical region in
parameter space where correlation lengths diverge. To see this, let us consider the
case of a pure SU(3) gauge theory, which in the lattice formulation resembles a
statistical mechanical system described by the partition function™*

1 i
Z = /DU es 2P Urtir) (9.1)

Suppose that this lattice theory possesses a continuum limit, and that we wanted
to extract from it the mass spectrum of the corresponding field theory by study-
ing the appropriate correlation functions for large euclidean times (see chapter 16
for more details). The largest correlation length is then determined by the lowest
mass in the problem. If the corresponding physical mass, m, is to be finite, then
the mass measured in lattice units, m, must necessarily vanish in the continuum
limit. This in turn implies that the correlation length measured in lattice units, é ,
must diverge. Hence the continuum field theory can only be realized at a critical
point of the statistical mechanical system described by the partition function (9.1).

* One can make use of the ambiguity in the action to construct so-called “improved
actions”, which lead to a suppression of lattice artefacts contributing to observables
for finite lattice spacing. This allows one to extract continuum physics already for

larger lattice spacings (Symanzik, 1982 and 1983).
** We have dropped the constant term in the action (6.25b) since it is irrelevant

when calculating expectation values.
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This, of course, is to be expected, since only if the correlation lengths diverge does
the system loose its memory of the underlying lattice structure. It follows that if
the above system is not critical for any value of the coupling, it cannot possibly
describe QCD or any other continuum field theory.

Now studying a system near criticality means tuning the parameters accord-
ingly. In the case considered above, the only parameter is the bare coupling g,
a dimensionless quantity which is void of any direct physical meaning. The cor-
relation length é measured in lattice units will depend on this parameter. Hence
the continuum limit will be realized for gy — ¢;, where correlation lengths
diverge:

é(go) — 00. (9.2)

go—9¢

We want to emphasize that (9.2) followed from the general requirement that physical
quantities should be finite in the limit of zero lattice spacing a. To arrive at the
above conclusion we have implicitly introduced a scale from the outside, in terms
of which dimensioned observables can be measured.* This scale must clearly be
correlated with go. The relationship between the two may in principle be determined
in the following way. Consider an observable O, such as the correlation length or
the string tension ¢ defined in (8.17a), with mass dimension dg. Let © denote the
corresponding lattice quantity which may in principle be determined numerically. )
will depend on the bare parameters of the theory (coupling, masses etc.) which in
the simple case considered here is just the dimensionless coupling go. The existence
of a continuum limit then implies that

O(go, a) = (l)de ©(g0) (9.3)

a

approaches a finite limit for a — 0, if go is tuned with a in an appropriate way, with
go(a) approaching the critical coupling g defined in eq. (9.2):

6(90(0’)7 a) a——>0> @phys.- (94)

Hence if the functional dependence of O on go is known, we can determine go(a)
from (9.3) for sufficiently small lattice spacing by fixing the left-hand side at its
physical value Oppys. This determines gy as a function of a(@phys)l/ 4o Tn the
case of the free scalar field and QED in two dimensions, dimensional arguments

* There exists a priori no such scale in a pure lattice formulation!
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alone determined the a-dependence of the bare parameters. In the present case,
however, we are faced with a quite nontrivial theory, and the answer is not so
simple.

The above discussion did not make use of any particular observable. From
(9.3) and (9.4) it may appear, however, that the functional dependence of gy(a) will
depend on the observable considered. For finite lattice spacing this will in fact be
true. For sufficiently small a, however, a universal function go(a) should exist, which
ensures the finiteness of any observable. A corresponding statement is expected to
hold if the action depends on several parameters, (e.g., bare coupling constant and

quark masses).

We want to emphasize that it is not surprising that the bare parameters
will depend in general on the lattice spacing: by making the lattice finer and
finer (see fig. (9-1)), the number of lattice sites and links within a given physi-
cal volume increases. Hence if physics is to remain the same, the bare parame-
ters must be tuned to a in a way depending in general on the dynamics of the

theory.

——

Fig. 9-1 Making the lattice finer by tuning the coupling with the lattice

spacing so as to keep physics the same.

Suppose now that the lattice theory describes some field theory in the contin-
uum limit. How do we know whether it is QCD? And how do we know that we are
extracting continuum physics in a numerical calculation where we shall always be
forced to work on a modest-sized lattice, and hence also at finite lattice spacing?
Clearly a first requirement in any numerical calculations should be that the scales
which are relevant to the particular problem under investigation are large compared
to the lattice spacing, but small compared to the extension of the lattice. Thus on
the one hand correlation lengths measured in lattice units should be large; but on

the other hand, they are not allowed to exceed the lattice, whose size is limited by
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the available computer facilities! Hence we must have some clear signal which tells
us whether we are extracting continuum QCD, or merely performing an academic

exercise.

In the following we shall show that in the case of QCD one can actually de-
termine the functional dependence of gy on the lattice spacing for sufficiently small
a. We shall restrict our discussion to the case discussed above, where the effects of
dynamical fermions are ignored and the action only depends on the bare coupling gp.
Having established the relation between the lattice spacing and gg, the dependence
of any lattice observable on the bare coupling near criticality will be known and can
be used as signal for testing the continuum in a numerical calculation performed on
a lattice of finite extent.

9.2 Dependence of the Coupling Constant on the Lattice
Spacing and the Renormalization Group 3-Function

As we have pointed out above, we expect that close to the continuum limit
a single function go(a) will ensure the finiteness of any observable. Hence we can
use any observable to determine the functional dependence of the bare coupling g
on the lattice spacing. Consider in particular the static qq potential discussed in
chapter 7. As we have seen, it can be deduced from the large time behaviour of
the expectation value of the Wilson loop. Within the quenched approximation this
potential, measured in lattice units, is a function of gy and of R = R/a, where R
is the physical separation of the quark—antiquark pair. At a finite, but small lattice
spacing the potential in physical units is then given by

1~ (R
ViRgna) =27 (Tom). 9.5)

where gy must be tuned to a in such a way that for sufficiently small lattice spac-
ing (9.5) becomes independent of a. Hence V' (R, gy, a) must satisfy the so-called
renormalization group (RG) equation

{ 0 0

s <go>a—g0] V(R, gora) = 0 (9.60)

where

B(g0) = —a% (9.6b)
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is the Callan—Symanzik [-function (Callan 1970; Symanzik 1970).* Thus if 3(go)
would be known, we could integrate (9.6b) to obtain gg(a). Of course, we cannot
calculate [3(go) exactly, but we may determine it in perturbation theory, where
(9.6a) must also hold in every order. In the continuum formulation this can e.g., be
accomplished by expanding the following expression for the potential

1 igo § dzu A (2)
V(R, go,a) = — lim Tln <Pe > (9.7)

T—o0

in powers of the coupling constant g, and inserting the expression into the RG
equation (9.6).

A I e I
e Ll

Fig. 9-2 Classes of diagrams contributing to the potential in order g*.

The lines connect to arbitrary points on the Wilson contour.

Because of the non-abelian nature of the gauge potential and the path ordering
prescription, the calculation is much more involved than in the abelian case. In
fig. (9-2) we show the diagrams contributing to (9.7) in order gi. On the lattice the
SU(N) potential has been computed by Kovacs (1982), and by Heller and Karsch
(1985) up to O(gg). Because of the complicated structure of the Feynman rules
(see chapter 15) these computations are quite involved. Up to the above order the

potential is given by**

V(R) ~ —%CQ(F) 1+ g5(a) ;L]T\; In (7.501?) + igg(a)Cg(F)] (9.8)

* Suppose we determine go(a) by holding a hadron mass M fixed at its physical
value; then M = %M(go(a)). Hence gq is a function of Ma, and adgy/da = f(Ma) =

—B(go(a)), where (3(go) is the lattice version of the Callan-Symanzik S-function.
** This expression differs from an earlier approximate calculation (Susskind 1976).
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where Cy(F') is the quadratic Casimir operator in the fundamental representation.

For SU(N) it is given by Cy(F) = N;];l. Next, we demonstrate how one may

use the perturbative expression (9.8) to determine the non-perturbative relation

between gy and the lattice spacing a, which ensures that the full potential V' becomes
independent of the lattice spacing for sufficiently small a. To this effect we first
determine the G-function to lowest order in gq by inserting (9.8) into the RG equation
(9.6). One readily finds that for SU(N)

11N
8.7 ge. (9.9)

This we expect to be a good approximation for sufficiently small bare coupling.

B(g0) =~ —

Because (3(go) is negative in the small coupling region, we conclude from eq. (9.6b)
that, when the lattice spacing is decreased, gy will be driven towards the fixed
point g5 = 0, corresponding to a zero of the [-function. Hence, if for some value
of the lattice spacing, gy (as determined from a fit to experimental data) turns out
to be small enough to validate (9.9), then this approximation will improve as we
decrease a, and the continuum limit will be realized at vanishing bare coupling!
This is asymptotic freedom as seen on the level of the bare coupling constant: as
we make the lattice finer and finer, and hence increase the number of sites within
a given physical volume, we must decrease the coupling accordingly to keep physics
the same.

Integrating eq. (9.6b) one now obtains a relation between gy and a:*

1 -1
a= A, e P9 (9.10a)
where
By = 11N /4872, (9.100)

and Ay is an integration constant with the dimension of a mass.

The above derivation of the (-function in leading order was based on the
perturbative expression for the potential (9.8) and the renormalization group

* We remind the reader that we have only considered the leading term in the
f-function. This term as well as that of order gj determines the behaviour of
the theory near the RG-fixed point. Their structure is independent of the observ-
able that one uses to compute it; in the usual continuum language: The first two
coefficients of the perturbative [-function are independent of the renormalization
scheme.
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equation. An alternative procedure is to relate the bare coupling constant to
the renormalized coupling constant in perturbation theory. By holding the latter
fixed, while varying the lattice cutoff, one then obtains a perturbative expres-
sion for adgp/da, and hence the f-function. We feel, however, that the above ap-
proach (Kogut, 1983) is more transparent, since the potential has a direct physical

meaning.

Having obtained the -function, let us now use the RG-equation (9.6) to obtain
an improved expression for the potential. This will not only be very instructive to
the reader, but will also serve to illustrate the basic ideas discussed in the previous

section.

Consider the potential as given by the right-hand side of (9.5). Inserting this
expression™® into (9.6), one readily arrives at the following alternative RG-equation
in which the derivative d/da has been traded in favour of the physical separation of
the gg-pair:

0 0

Rom+ ﬁ(go)a—go V(R, go,a) = =V (R, go,a).

If we define the dimensionless quantity

V(R7 907a) = RV(Rv gOaa)a (911)

then V satisfies the following differential equation:

RGQR + ﬁ(go)aigo V(R, go,a) = 0. (9.12)
This is an interesting equation, for it tells us how an infinitesimal change in R can
be compensated by a corresponding change in the bare coupling constant, keeping
the lattice spacing fixed. In other words, any change in R can be absorbed into a (R-
dependent) redefinition of the coupling strength. Let us be more explicit. Suppose we
know V' (R, go, a) for some given separation Ry of the quark-antiquark pair. Question:
can we determine the potential for separations R = ARy?. Consider V(ARO, go, a),
where V' has been defined in (9.11). Then (9.12) leads to the following equation

involving dimensionless variables only:

0 0|~

* Our presentation parallels closely that of Kogut (1983).
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One now easily verifies that the solution to (9.13) is given by
‘N/()\ngma) = V(Ro,ﬁo()\),(l), (914)

where the “running” coupling constant go(A) satisfies an equation analogous to
(9.6b):

dgo _
90— 3a(0). (915)
with
go(1) = go.

Inserting for 5(go) the expression (9.9), one finds upon integrating (9.15) that
1 {4_;}
A=e¢ "olg™ 4] (9.16)
where [3y is given by (9.10b). Solving (9.16) for g2(\), we obtain

2
- 90
A =—"—F5——. 9.17
Hence what concerns the dimensionless quantity (9.14), scaling Ry with a factor A is
equivalent to replacing the bare coupling constant gg by (9.17). The corresponding
statement for the interquark potential now follows immediately from (9.11):

1 =~
V()\R07 9o, CL) = /\_R()V()\RO, 9o, CL)
(9.18)

= SV(Ro Go(M).a).

Let us now use this relation to obtain a renormalization-group improved expres-
sion for the potential, replacing the perturbative expression (9.8). This expression
suggests that we should normalize the potential as follows:

9(2)
V = (C=.
(@, 90, a) d1a

It then follows from (9.18) that V(\a, go,a) = Cg2()\)/(4wAa). By choosing A = R/a,
we therefore find that

9o(R/a)

V(R7907a) - C ATR )
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which, upon substituting for g2(R/a) the expression (9.17), becomes

C 9%
V(R = 9.19
( 7905a> 47TR 1_2609(2)111(%)], ( 0’)
or
1
V(R, go,a) = — ¢ : (9.190)

_ 1
TR (ge %gg)

Expanding the denominator in (9.19a) to leading order in g2, we recover eq. (9.8).
Furthermore, requiring V (R, go,a) to be independent of a, we arrive at the non-
perturbative relation (9.10), as follows immediately from eq. (9.19b). Hence Ay is
related to the strength of the potential V' by

C 1

VIR =~ 1R In(RAL)’

In contrast to the lattice spacing, Ay, is a physical scale in terms of which dimensioned
quantities can be measured. Thus by construction the quantity

1 ——1_
Ap == e *Pos (9.20)
a

satisfies an equation analogous to (9.6) and hence is a renormalization group in-
variant quantity. Solving (9.20) for gy we see that the bare coupling vanishes like
1/In(aAL) as a — 0:

1
9ola) = - 200 In(aAL)

For the sake of completeness we also give here the relation between gy, and the
lattice spacing, derived from the first two (universal) coefficients in the power series

expansion of the g-function for Ny flavours of massless quarks:*

B(g90) = =00 90 — 195, (9.21a)
1 2 1 38
ﬁo = 1672 (11 — gNF) s 51 - m (102 - ?NF> s (921b)

* In one-loop order the (3 -function was computed by Gross and Wilczek (1973)
and by Politzer (1973); the computation to second order has been carried out by
Caswell (1974), Jones (1974), and Belavin and Migdal (1974).
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1
a= —ALR(gO), (9.21¢)
1
R(go) = (ﬁogg)—ﬁl/%g e 26095 (9.21d)

Let us pause here for a moment. Our renormalization group arguments have

shown that the potential is of the form

a(R)
V(R) = -C——
(R) =024
where a(R) increases with increasing separation of the quark and antiquark:
9
a(R) = . 9.22
(R) = 20hg2Tn (B) (9.22)

Clearly this result can only be meaningful if R is larger than the lattice spacing,

but much smaller than the inverse lattice cutoff. For R = A;' the effective cou-
pling strength diverges! This behaviour is quite different from that encountered in
QED. Thus when a charge is inserted into the vacuum of QED it will polarize the
medium in such a way that the effective charge measured at a distance R is less
than the original charge. In QCD, on the other hand, the opposite phenomenon
takes place. The non-abelian couplings of the gauge potentials lead to antiscreening.
This suggests that for large separations of the quark and antiquark the interaction
may become strong. Unfortunately, we have no way at present to calculate the qg-
potential for large separations analytically, and we must take recourse to numerical
methods.

But how do we know whether we are extracting continuum physics when per-
forming calculations on finite (rather small!) lattices?. The answer to this question is
found in the relation (9.21c,d). This relation tells us how the bare coupling constant
controls the lattice spacing. Indeed, inserting (9.21c) into (9.3), the requirement
(9.4) implies that for go ~ g = 0, ©(go) must behave as follows:

~

Og) ~, Co(R(g0))% (9.23)

where Cg is a dimensionless constant. Quantities behaving like (9.23) are said to
show “asymptotic scaling”. By studying the ratio ©(go)/(R(g0))% as a function of
go in the scaling region one then determines the constant Co.

In an actual numerical calculation on a lattice of finite size there will exist in
general only a narrow region in coupling constant space where é)(go) scales according
to (9.23). This region is called the “scaling window”. Thus since the lattice spacing
is controlled by the bare coupling according to (9.21¢,d), physics will no longer fit on



The Continuum Limit of Lattice QCD 129

the lattice if gy (and hence a) becomes too small (— finite size effects). On the other
hand, by increasing the bare coupling, the lattice may become too coarse to account
for fluctuations taking place on a small scale, and we are leaving the continuum

region. This is the reason for the narrow window.

Returning now to (9.23), we find upon inserting this expression together with
(9.21c) into (9.3), that the observable defined in (9.4) can be expressed in terms of
the lattice scale Ay by

Ophys. = Co(AL)%. (9.24)

This shows that physical quantities can be calculated in units of the undetermined
mass scale A;. Hence a lattice calculation can only determine dimensionless ratios

of physical quantities (e.g., ratios of particle masses).

A particularly interesting example is the string tension ¢ which is the coefficient
of the linearly rising part of the interquark potential. Measured in lattice units it
is only a function of the bare coupling: 6(go). In physical units, however, it has the
dimension of (mass)?, so that the physical string tension is given by

o = lim @5(90(@)-

From the above discussion we hence conclude that for gy — 0, 6(go) must depend
as follows on gq

7(go) =~ OU(R(QO))Qa (9.25)

which in view of (9.21d) tells us that o is a non-perturbative observable.

Finally we remark that the appearance of Ay in a theory which a priori is free of
any scale (like the case considered here) is well known from perturbative continuum
QCD, where the necessity of renormalizing the theory also requires the introduction
of a scale Aqcp. The numerical values of Az and Aqep are not the same and indeed
differ substantially (see chapter 15).

In the following chapter we will make use of scaling arguments of the type
discussed above, to derive a relation between the potential of a quark-antiquark
pair and the energy stored in the colour electric and magnetic field.
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CHAPTER 10

LATTICE SUM RULES

In chapter 7 we have shown that the static quark-antiquark potential can be
determined from the exponential decay of the expectation value of the Wilson loop
for large euclidean times. In the pure Yang-Mills theory we expect that this potential
rises linearly for large quark-antiquark separations, leading to quark confinement.
As we have already pointed out, this linear rise is believed to be due to the formation
of a narrow flux tube connecting the quark—antiquark pair, in which the colour field
energy is concentrated. The energy stored in the colour fields should match, after
subtracting the self energy contributions of the quark and antiquark, the interquark
potential, as determined from the Wilson loop. In order to be able to study the
distribution of the field energy surrounding the quark-antiquark pair we need a
non-perturbative expression for the field energy which is suited for Monte Carlo
simulations. To this effect we shall derive an energy sum rule which relates the
potential to the expectation value of an operator which can be identified with the
field energy of a quark-antiquark pair. The same line of reasoning leads to a similar
sum rule relating the mass of a glueball® to the energy stored in the chromoelectric
and magnetic fields. Such sum rules have been first obtained by Michael [Michael,
1987], and have been further discussed in [Rothe (1995a,b); Michael (1996)]. Before
deriving these sum rules it is instructive to illustrate the basic idea that goes into
their derivation in a simple quantum mechanical example. Although in principle we
can chose any potential for purposes of illustration, we prefer to be specific, and
consider the harmonic oscillator, where the sum rule can be checked exactly.

10.1 Energy Sum Rule for the Harmonic Oscillator

Consider the imaginary time Green function, (¢’|e~f7|q), whose path integral
representation has been discussed in chapter 2. By expanding |¢) in a complete set of
energy eigenstates one immediately concludes that this matrix element is dominated

for large 7 by the contribution of the ground state, i.e.,

(de™ 7 |q) — o(d)v5(q)e ™, (10.1)

* Glueballs constitute the particle spectrum of the pure SU(3) Yang—Mills theory.

130


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/9789814365871_0010

Lattice Sum Rules 131

where 1 is the wave function with energy Fy. By setting ¢’ = ¢ and integrating
over g we therefore have that

T—00

[ datale o) = e (10.2)

Hence by studying the behaviour of the lhs for large euclidean times we can in princi-

ple extract the ground state energy. What we are interested in, however, is an expres-

sion which relates the ground state energy to an ensemble average of the kinetic and

potential energy. In the following we now illustrate the basic ideas for accomplishing

this program for the case of the harmonic oscillator whose Hamiltonian is given by
P 1

H=2 4 k2
om T 3"

The first step in deriving an energy sum rule consists in expressing the imaginary
time Green function in (10.2) as a configuration space path integral. Proceeding as

in chapter two, the lhs of (10.2) is given for small time step € by

—Ht m % T —S[g;m,K,N €]
dq{qle™""|q) =~ (—) I dgne15mmNd g (10.3a)
n=0

2me

where
N

-1 2
1 i1 — On 1
S[q;mﬂ‘i?N?E] = § € lém (%) + §KQ721
0

n=

, (10.3b)

and we have set ¢ = ¢qp. The euclidean time 7 is given by Ne. Notice that we did
not take the continuum limit (N — oo, € — 0, with Ne = 7 fixed) on the rhs. For
sufficiently small €, and hence large N = Z the rhs will be a good approximation to
the Green function. How small € has to be chosen to approximate continuum physics
will depend on the values of the dimensioned parameters m and x which determine
the relevant scales in the problem. Now for a fixed non-vanishing value of ¢, the limit
T — o0 in (10.2) is realized for N — oco. We are therefore led to the statement that

N-1

. A
(2 / [T dane sty — 7N, (10.4)
n=0

2me

where Fy = €F, is the energy measured in units of the lattice spacing €. By scaling all
the dimensioned variables with € according to their canonical dimension, we arrive

at the following dimensionless lattice version of (10.4)

~ ~

G, ks, N) — e EotmmN, (10.5a)

N—oo
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where
Gl i N) = (T : ]ﬁcﬁ —Slama N 10.5b
53 =(52) " [ T e 05, (105
and N1
Slgirm, k&, N = Bm@m —Gn)* + %fz@qg) : (10.5¢)

3k are dimensionless parameters. In the continuum limit

Here m = me and & = ¢
m — 0, & — 0 with ng = ng fixed. From (10.5) it follows that the energy measured

in lattice units can be computed as the following limit

A

1 A
Eo(rin, &) = = lim < InG(i. &, N) . (10.6)

N—oo

Let us now repeat this excercise using another (fine) discretization ¢’ = %e. Then the
path integral representation of the lhs of (10.2) will differ from that in (10.3a) in that
e and N are replaced by € = %e, and N’ = ¢N (recall that N'¢’ = Ne = 7). After
scaling all variables with the original lattice spacing € according to their canonical
dimensions (so that the values of the parameters /m and i are the same as before),

the new path integral expression for the lhs of (10.2) reads

R NN
N 5 / m ’ ~ —8lamm(E),R(€),N
6w =[] [ [ agesom05602, o (1070
n=0

where N
S[g. (), (&), N') = Bm(i)(énﬂ — o)’ + %f%(ﬁ)di , (10.7b)
n=0
and {
m(§) = &y k() = k. (10.7¢)

§

Hence the parameters m and i have now acquired a £-dependence, which is very
simple in the present case. Certainly for £ > 1 the above path integral expression
for the Green function is at least as good as the previous one, since we have made
the lattice even finer. For N — oo (10.7a) will now behave like

~

GOR(E) k(€),N') —— e (MOFON, (10.8)
'—00

as follows from (10.5a). But for sufficiently small ¢ we must have that G(rh, &, N) =

G(m(€), k(€),EN), where 7 = (1), k = &(1). We hence conclude that

~
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i.e., the lhs must be independent of £. By taking the derivative of the lhs with respect
to & we therefore arrive at the following alternative equation for the ground state

energy
Eo(i, &) = — OL(m(E).RE)| (10.10)
¢ -
But according to (10.8)
Ey(n(€), #()) = — Jim_~InG(m(E), 4(), ). (10.11)

Taking the derivative of (10.7a) with respect to £, making use of (10.7¢c), one there-
fore finds that (10.10) translates into

1 1%/ 1 1
Eo(m, k) = =+ lim — Z <—§m(qn+1 —Gn)® + §f-@qg> , (10.12a)

where generically

_ [ DO(g)e "

_ 10.12b
| Dge—% ( )

(0(9))
with S the action (10.5¢). The expression (10.12a) can be further simplified. Because
of the periodic boundary condition ¢, = ¢y, we have compactified the imaginary
time direction. The value of the expectation value in (10.12a) will be independent
of the time slice labeled by n. Hence (10.12a) can be simplified to read

- 1 1. 1
Eo(m, k) = =+ ( —=mq; + =kq} ). (10.13a)
2 2 2
where
G = Ges1 — e, (10.13b)

and ¢ denotes some arbitrarily chosen temporal lattice site. For the ground state

energy measured in physical units, Fy = %EO, one then obtains

1

Eo(m, ) = i + <—§m42(7) + %Kq2(7)> | (10.14)

where all variables are now dimensionful, and where we have used the more sugges-
tive notation ¢(7) instead of gp.

Equation (10.14) relates the ground state energy to an ensemble average of the
kinetic and potential energy, calculated with the Boltzmann distribution e=S. In the

euclidean version, however, the kinetic term is seen to yield a negative contribution!
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Although this is naively understood by recalling that the transition from real to

imaginary time will map ( %)2 into —%(%)2, the above result still looks surprising
at first sight. After all, the contribution of the kinetic energy should be positive. A

dg
dr

divergence is cancelled by the first term in (10.14) and leaves a positive contribu-

detailed calculation shows that (—1(5%)?) is itself divergent in the limit € — 0. The

tion, which has precisely the expected form.* The fact that the kinetic contribution
diverges does not come as a surprise. Looking at the integrand on the rhs of (10.3a)
we see that the width of the distribution in g1 — g¢ is only of O(y/€), so that
(G2) = ((qer1 — qo)?/€%) is expected to be of O(21).

Since the appearance of the minus sign in front of the kinetic term is so charac-
teristic of the euclidean formulation, and, in fact, will pop up again when we discuss
the SU(N) gauge theory in the following section, it is instructive to derive the above
result for the kinetic contribution in an alternative way.

The energy FEj is given by the ground state expectation value of the Hamilto-

nian, i.e,
Ey= (0| P?+V(Q)|0
0 — m 9

where P and @) are the momentum and coordinate operators, and |0) is the ground
state (or “physical vacuum” in the language of field theory). We are interested, in
particular, in expressing (0| P?|0) as a euclidean path integral. To this effect consider
the (imaginary time) Heisenberg operator

Q(r) = efl"Qe 1T,
and the corresponding conjugate momentum
P(1) = " Pe 1T
They satisfy the canonical commutation relation
Q(r), P(r)] = i.
The equation of motion for the operator Q(7) reads

Q(T) =7 H, Qle ™ = —%P(T).

* The cancellation will be demonstrated in section 4 of chapter 18 for the more
general case of a harmonic oscillator in contact with a heat bath, where a similar
energy sum rule holds.
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Since |0) is an eigenstate of the Hamiltonian it follows that (0| P%|0) = (0| P*(7)|0).
Consider now the ground state expectation value of the euclidean time ordered
product of Q(7)Q(7’). This time ordered product has a path integral representation,
given by (2.26a), i.e

(010(r = T)Q(T)Q(7 )+9(T —7)Q(r)Q(7)[0)
- _/Dq g(T)g (e~ arlEmd+V (@]

where

7 - / Dy e artmd®(r)+Viao)]

Taking the derivative® with respect to 7 and 7/ on both sides of this equation, and
making use of the fact that the operators Q(7) commute for equal times, one finds,
after setting Q(7) = —L P(7) that

~Lsr — 7)), Pr)] - $<0\T<P<T>P<T’>>|o>
= _/qu e~ Jdrlzmd* (1) +V(a())]

Since the operators appearing in the time ordered product commute, we can omit the
time ordering operation. Now on a discretized time lattice, the continuum J-function
is replaced by (see eq. (2.65))

1 < dp4 ; /
ST =7) = g = | Lheimalnne,
(r=7) e /w 27?6

Hence setting 7 = 7’ (i.e. n = n’) implies §(0) — % After replacing the equal time
commutator of Q(7) and P(7) by “”, we find that

1 {0l P20) = ___/Dq mi(r)2e~J TEmEO+Va)]

Hence the kinetic contribution to Ej has precisely the form given by the first two
terms in (10.14)

* Of course when writing ¢(7) within a path integral, we always mean its dis-
cretized version.
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10.2 The SU(N) Gauge Action on an Anisotropic Lattice

In the case of our quantum mechanical example, the dependence of the di-
mensionless parameters m and & on the asymmetry parameter { = 5 was very
simple. In lattice gauge field theories the analogous parameter is given by § = *,
where a and a, are the spatial and temporal lattice spacings. On an isotropic
lattice a, = a. The spatial lattice spacing now plays the role of the reference
“lattice spacing” € in our quantum mechanical example. The parameterization of
the SU(N) gauge action on an anisotropic lattice turns out to be more subtle than
in the quantum mechanical case, and does not follow from naive considerations
alone.

Consider the continuum action (6.17) for the pure SU(N) gauge theory. In the

temporal gauge, AP =0, where Ff = 9,AP it has the form
/dT/d3 Z AB(#, 7))+ Si[A],

where

S/A / dr / d*z > Ff 27, 7),
,J,B
and “B” are the colour indices. In this gauge the action thus has a similar form as
that of a quantum mechanical system, except that we are dealing with a system
with an infinite number of degrees of freedom. A naive discretization of the degrees

of freedom, labeled by #, and of the euclidean time integral, yields

SalA] =) ard® {Zi > A7 (e +1) - AP (G Z }
n i,B ,3,B
where AP (n) and F}(n) are the potentials and colour-magnetic fields at the lattice
site n = (7,n4). The discretized colour-magnetic contribution Y-, . 5 F} (n)Ef (n)
does not involve an explicit a,-dependence. Having discretized the degrees of free-
dom, we have thereby introduced an additional scale, given by the spatial lattice
spacing. By scaling the potentials with this lattice spacing according to their canon-
ical dimension, i.e., introducing the dimensionless potentials AB = aAP, the above

action can be written in the form

¢ 1
S = 3 { SFEMZ0) + £ FEES )},
where Ff = aa,Ff, FE = o®FF,
understood. Written in terms of the field strengths, the expression appears to be

and where a sum over repeated indices is now
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gauge invariant. For finite lattice spacing this is however not the case. To ensure
gauge invariance for arbitrary lattice spacings, we must introduce the potentials in
the form of link variables, as discussed in chapter 6. The matrix valued fields strength
tensor F),, is then related to the plaquette variables by U, (n) ~ expligoF}, (n)]. One
then readily verifies that the following SU(N) action possesses the correct naive

continuum limit

2N 1 2N
SelU] = 55 =Py + Z5¢P;, (10.15a)
go § go
where
P = Z {1 - —Tr (Up, + UA)}, (10.15b)
P, = Z [1 - —Tr (Up, + U}, )} (10.15¢)

Here Up, and Up_ are the spatial and temporal plaquette variables which are related
to the colour electric and magnetic fields. Notice that the £-dependence of the ki-
netic (electric) and potential (magnetic) term is the same as in the case of the
harmonic oscillator. This form for the action had been proposed by Engels et al.,
and by Kuti et al. [Engels (1981b), Kuti (1981)]. The naive &-dependence of the
above action is however too simple. The reason is that this action describes a com-
plicated interacting system. As a consequence of quantum fluctuations the couplings
associated with the temporal and spatial plaquettes must be separately tuned with
the spatial lattice spacing and the asymmetry parameter £ to ensure that physical
observables become independent of a and & close to the continuum limit. Instead of
the spatial lattice spacing one can also choose the bare coupling constant gy defined
on an isotropic lattice. We therefore consider the following more general form for
the action [Hasenfratz and Hasenfratz (1981b); Karsch (1982)],

SclU] = BsPs + B, Py, (10.16a)
where
- 2N 1
N 2N
=,
gT(g(]u g)

with gs(go, &) and g, (go, &) satisfying the condition

9s(90, 1) = 9-(90, 1) = go. (10.16¢)
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Hence*
BU — B = 2N/gg.
E—1

Let us pause here for a moment and return to the case of the harmonic oscillator.
There the ¢-dependence of the action was absorbed into a mass and coupling pa-
rameter. This {-dependence was given by naive arguments alone: m(§) = &m and
k(&) = %/% Hence m(§) and /(&) are functions of £ and the dimensionless mass and
k parameters m = m(l) and & = £(1). When taking the continuum limit, these
dimensionless parameters must be tuned with the lattice spacing e according to

3k, where m and & are physical parameters which are held fixed

m =me and k = €
when taking the continuum limit. The naive £ dependence of the parameters in the
quantum mechanical case correspond to the explicit £-dependence of the couplings
(10.16b), while the £-dependence of gs(go, &) and g.(go, §) is a consequence of quan-
tum fluctuations. As has been shown by Karsch (1982), B, and 3. can be related
in the weak coupling limit (go — 0, or B — 00) to the coupling 3 on an isotropic
lattice as follows
£0:(8.) = B+ 2Ner(6) + O(37),
(10.17)

£3:(B,€) = B+ 2Nc,(€) + O(37Y),

where ¢,(1) = 0, 0 = s, 7. The {-dependence of the functions ¢, (§) have been studied
in detail by this author. When taking the continuum limit at a fixed value of £, the
coupling constant go in (10.16b), defined on a isotropic lattice, must be tuned with
the spatial lattice spacing as dictated by the renormalization group. As we shall see
in the following sections, the é-dependence of the couplings g, in (10.16b) will lead
to an energy sum rule for the gg-potential, and the glueball mass, which differs in

an important way from that which one would expect naively.

10.3 Sum Rules for the Static gg-Potential

Having parametrized the SU(N)-Yang-Mills action on an anisotropic lattice,
we can now proceed along similar lines as in section 2, to derive an energy sum rule
for the static quark—antiquark potential, which relates this quantity to the energy
stored in the chromoelectric and chromomagnetic fields of a quark—antiquark pair.
To guide the readers attention, let us briefly outline the general strategy we shall

* We have denoted 8 with a “hat”, in order not to confuse it with the renormal-
ization group [-function (9.6b) which will be relevant further below.
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follow. We first derive a sum rule for the static gg-potential in the pure SU(N) gauge
theory, which relates the potential to the action stored in the chromoelectric and
magnetic fields. For this we will only need to know the expression of the action on an
isotropic lattice, i.e., a lattice with equal spacings in the space and time directions.
This action sum rule will play an important role in our subsequent discussion of
the energy sum rule. For the derivation of the latter sum rule we shall need the
expression for the action on an anisotropic lattice, obtained in the previous section.
As in the case of the quantum mechanical example, the energy sum rule then follows
by requiring that in the continuum limit the potential calculated from a Wilson loop
on an anisotropic lattice should be independent of the anisotropy parameter £ = i
The very same requirement, when applied to the special case of a confining, linearly
rising, potential leads to a “coupling constant sum rule” [Karsch (1982)], which
will allow us to confirm that the energy stored in the chromoelectric and magnetic
field matches the interquark potential. In particular, it will allow us to identify the
contribution to the field energy arising from the trace anomaly, which will be shown
to account for 1/2 of the field energy stored in the flux tube.

Let us briefly state what is meant by the trace anomaly. The colour-electric and
magnetic field energy density is given by Tyo, where T}, is the energy momentum
tensor. On the classical level this tensor is traceless and symmetric. On the quantum
level, however, it is known from perturbation theory that quantum fluctuations give
rise to the so called trace anomaly: the energy momentum tensor 7, is no longer
traceless. Now T}, can be trivially decomposed into a traceless and trace part,

1 1
T,uu = <THV — Zlg'ij) + Zgl_“,T, (1018)

where T is the trace, T = > WL One therefore expects that in addition to the
naive field energy density (which is given by an expression analogous to that in
electrodynamics) the potential receives a contribution arising from the non-vanishing

trace of the energy momentum tensor. This trace is given in Minkowski space by
[Collins (1977)]

T(z) = %@E(a:), (10.19q)
where
L(z) = iFAW(:v)Fﬁ/(x). (10.19)

A summation over repeated indices is always understood. 5(g) = pdg/0p is the

[-function of the continuum SU(N)-gauge theory with p the renormalization scale.
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Hence from (10.18), we expect that the interquark potential receives an anomalous

contribution having the form

Vanom (R) = 411 </d3x T(x)>qq = % </d3a: L(:c)>qq. (10.20)

In the euclidean formulation, the action density will be replaced by its euclidean
counterpart 4, (x)F,(x). Since the lattice provides a non-perturbative regu-
larization of the partition function, it is the appropriate framework for deriving a
non-perturbative expression for the contribution of the normal and anomalous part
of the field energy to the interquark potential. Originally it was C. Michael (1987)
who derived an action and energy sum rule for the gg-potential in an SU(NN) gauge
theory. A more detailed discussion of these sum rules has been carried out in Rothe
(1995a,b) and will be presented below. As we shall see, the derivation is straightfor-
ward and leads in a very natural way to a decomposition of the field energy into a

normal and anomalous part.
(i) Action Sum Rule

Consider the ground state energy of a quark—antiquark pair separated by a
distance R. As always, quantities denoted with a “hat” are understood to be mea-
sured in units of the lattice spacing. The energy EO(R) can be calculated from the
expectation value of the Wilson loop according to

~ A 1 A A
Tooo T
where
- [ DUW (R, T)e 5S¢
W(R,T)) = ) 10.21b
< ( ? )) fDUe_SG ( )

Recall that W(Z%, T) is given by the trace of the path ordered product of link vari-
ables around a rectangular loop with R and T lattice spacings in the spatial and
euclidean time directions (Our notation here deviates from that in chapter 7). On
an isotropic lattice (W (R, T)) is calculated with the action (10.15) with & = 1. This
action has the form

S¢ = B(P; +Ps) (10.22)

where 3 = 29—];[ for SU(N). The energy EO(R), defined by (10.21a), is a function
0

of R and B and includes the self-energy contributions of the quark and antiquark.
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Since these contributions do not depend on R, they can be eliminated by considering
the difference EAO(}A%, B) — EAO(}?O, B), where Ry is some reference gg-separation. We
then define the ¢g potential by

A~ A A 1 A
V(R,3) == lim —[In(W(R,T))subtr- (10.23)
From here on we will always assume that such a subtraction has been carried out,

and shall drop the subscript “subtr” for simplicity. Following Michael (1987) we now
take the derivative of (10.23) with respect to /3 and obtain

(R, 3 1
OVIEB) _ Hm = (P, + Py ggo, (10.24a)
aﬁ Tooo T

where (O),4-0 is defined generically by

_(W(R,T)0)
(OVgao = WA (0). (10.24b)

The rhs of this expression is the expectation value of the operator O in the qg-state
measured relative to the vacuum. In the limit 7' — oo, the rhs of (10.24a) can be
approximated by*

(Podaz-o ~ T(P)go, (10.25a)
T—o00
where
1
73(/)_ — zp: |:]_ — ﬁTI‘(UPU + U]T;a) o e (U =T, S) (1025b)

is the contribution to P, arising from plaquettes located on a fized time slice, and
with the Wilson loop extending from ny = —% to ng = %, with 7' — co. This time
slice is conveniently chosen to be the ny = 0 plane. Hence,

)
0

Q
/S>
e b:b
@

= B{PL + PlYeg—o

=X®

(10.26)
a3 dL (B(&) + B (@)oo

naive
T

where in the last step we have taken the naive continuum limit. £ and B? are the
square of the euclidean (!) colour electric and magnetic fields E, and B summed

* See the argument given by Michael (1987). Note that (P’),;—0 is calculated with
a Wilson loop of very large extension in euclidean time.
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over i = 1,2,3, and colours. The expectation value 1(E?(Z) + B?*(Z)) is not to be
confused with the Minkowski field energy. In fact, 3(P. + P!) is the contribution to
the action coming from a fixed time slice.

We next make use of the renormalization group to cast the lhs of (10.26) in
a form involving the potential and its derivative with respect to R. In the limit of

vanishing lattice spacing “a” we have that

1~ (R 4
7 (Fhw) v (1027
where V(R) is the interquark potential in physical units. The dependence of
B(a) = 2N/g2(a) on the lattice spacing is given, close to the continuum limit, by the
renormalization group relation (9.21c,d). The invariance of the lhs of (10.27) with
regard to changes in the lattice spacing leads to

dlna  9f ’ OR

Y

where it is understood that this relation holds close to the continuum limit. Making

use of this expression, equation (10.26) takes the following form*

oo SOV(R,B) 0P
V(R,B)+ R 9k  Olna

(PL+ Pgo. (10.28)

In the case of a confining potential, V(ﬁ’, B) = 6(3)1:2, this equation reduces to

0p
Olna

26(B) 1t = = (P, + P{) gg—o, (10.29)
while for a pure Coulomb—typg potential the lhs of (10.28) vanishes. Thus in an
SU(N) gauge theory, where % # 0, the potential cannot be of the pure Coulomb

type.
(ii) Energy Sum Rule

Let us now turn to our second objective, and derive a sum rule, relating the
interquark potential to the field energy. This sum rule is obtained by requiring that a
lattice regularization involving different lattice spacings in the temporal and spatial
directions should lead to the same potential as that computed from an isotropic

* As was first noted by H.G. Dosch the action sum rule of Michael (1987) contained
an error (private communication).
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lattice. This is analogous to the requirement which in the case of our quantum
mechanical example led us to an energy sum rule for the ground state energy. Here
it is the ground state energy of a static quark—antiquark pair interacting via Young—
Mills fields.

Consider the expectation value of a Wilson loop on an isotropic lattice. The
expectation value is computed with the action (10.22). Next consider a Wilson loop
on an anisotropic lattice with the same physical extension in the spatial and temporal
directions. The expectation value must now be calculated with the &-dependent
action (10.16a,b), which we shall denote by S(&). Hence the number of lattice sites
in the euclidean time direction is now fT . Since both Wilson loops have the same
physical extension, their expectation values must be the same, if the lattice is fine

enough to approximate continuum physics. This leads to the requirement that

From (10.23) it then follows that*

V(R B) = EV(R, Bu(£), B:(9)), (10.30a)
where
V(R A€ 5r(€) = — lim = In(W(R. s (10.300)
and
. /DU W (R, T)e~ 1P+(©Pst5-()Pr]
(W(E,D)see) = [ DU e=[8:(©)Ps+5-(©)Pr) (10-30¢)
Clearly
V(R, 8:(8), () |e=1 = V(R, B).
Equation (10.30a) implies that
dr ~ /4
i |7 (R 50, 0-0))| =0 (10:31)

This equation is the basis for deriving the desired energy sum rule. From (10.30b,c)
one finds that
oV
905

= (Po)ea-0; =T,

* We suppress the dependence of (3, on gg, or alternatively on a, on which the
coupling gy depends, since it is held fixed in the analysis.
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Upon carrying out the differentiation (10.31), and then returning to the isotropic

lattice £ = 1, we are led to the relation

V@ﬁﬁ*lefy“M0+@fyﬂM4 .
=1

Here V(R, B) is the potential in lattice units computed on an isotropic lattice. This

expression can be written in the form

V(R, B) = n- (=P} + PYag—o — 14 (Pr+ Pllgz-o, (10.32a)
where
1| (0B 0P,
=g (ag) + ((%) . (10.320)
§=1 =1

Consider the first term appearing on the rhs of (10.32a). In the continuum limit
go — 0 (or § — 00). From the weak coupling relations (10.17) one finds that
n. — f. (10.33)

ﬂ—>oo

Hence

N {=PL+Pllago — B{(—PL+Pllez—o
goee (10.34)

—a ) + B? F—0s
naive 25: ( )> q4—0
where we have taken the naive continuum limit in the last step. This suggests that
the first term appearing on the rhs of (10.32a) is the (euclidean) lattice version
of the usual Minkowsky field energy of a quark—antiquark pair (measured relative
to the vacuum), coming from the traceless part of the energy momentum tensor.
Notice that just as in our quantum mechanical example, the contribution arising
from the “kinetic term”, involving the time like plaquettes (which is associated with
the electric field energy density), carries a negative sign in the euclidean formulation.
We now show that for the case of a linearly rising (confining) potential one
can actually determine what fraction of the potential is made from “ordinary” field
energy. By making use of the action sum rule (10.28), we can cast the energy sum
rule (10.32) in the form

~

A A 81na AL A V(R B) / /
(R 6) 35 V<R ﬁ) aR < P +P >qq 0- (10'35)
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The combination 7, defined in (10.32b) has been determined non-perturbatively by
Karsch (1982), by requiring that the string tension determined either from a space-
like or time like Wilson loop on an anisotropic lattice should yield the same result.
Karsch finds that

1 9p _ Bilgo)

T T 9ma 240 b, (10-36a)
where
Br(go) = _ % (10.36)
da
is the g-function discussed in chapter 9. Hence 7,(81lna/d3) = —1/4, so that
(10.32a) becomes
[ oV(R
V(R A~ V(BB + Ré—éﬁ) =P+ P, (10.37)

For the case of a linearly rising (confining) potential this equation reduces to

1 D A / /
5 Veont (B, ) = 11— (=Pr + Py)gg-0: (10.38)

which, according to (10.34) suggests that the “normal” field energy accounts for
only one half of the interquark potential. The other half must therefore be provided
by the second term in (10.32a). If the first term in (10.32a) is the lattice version
of the semiclassical field energy, then the second term should be the contribution

coming from the trace anomaly. Thus making use of (10.36a) we have that

/ ! 172 ?
=1+(Pr + Polag-o = (ﬁa/)qq—o) : (10.39a)
9o
where
L=B(P.+P) (10.39b)

is the (dimensionless) lattice version of the euclidean continuum Lagrangian density
integrated over all space at a fixed time. The energy sum rule (10.32a) therefore
becomes

NP 1 /281 -

VR, 5) = n-{=Pr +Pag-o + <E<L>qq0) :
The quantity (23./go)L in (10.40a) has the form of the anomalous contribution

to the Hamiltonian following from the trace anomaly as computed in lattice per-
turbation theory by Caracciolo, Menotti and Pelisetto (Caracciolo, 1992). For weak
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coupling the anomalous contribution to the potential (10.40), in physical units, takes

the form

Vo (R, 3(a), @) = %}?) [ o3 (E@) + @)l (10.41)
The rhs is a finite, renormalization group invariant expression. It can be expressed
in terms of a renormalized coupling constant g, and renormalized squared colour
electric and magnetic fields. The form remains the same, except that £r(g0)/go is
replaced by ((g)/g, where (5(g) = pdg/0u is the continuum beta-function, with u
the renormalization scale.* The right hand side of (10.41) then just becomes 1/4 of
the space integral of the trace anomaly (10.19) expressed in terms of the euclidean
fields.

Finally let us return to the action sum rule in the form (10.28). From (10.36a)
and (10.39b) we see that the rhs of (10.28) is directly related to the trace anomaly.
Thus we can write the action sum rule in the form

o 2OV(RB) 281
27— LYuio. 10.42
V(R,ﬁ)—l—R oR 9 < >qq 0 ( 0 )

The rhs of this equation is just the trace of the energy momentum tensor summed
over the spatial lattice sites at fixed (euclidean) time. Hence for a confining potential
of the form V.., = 6 R the second term appearing on the rhs of (10.40) yields, as
expected, just 1/2 of the potential.

10.4 Determination of the Electric, Magnetic and Anomalous
Contribution to the qg Potential

The lattice energy sum rule has been checked in lattice perturbation theory
by Feuerbacher (2003a,b) up to O(ga). The computations are very involved. Some
technical details are given in Appendix A.

The reader may wonder: why check the sum rule? Is it not exact? While the ac-
tion sum rule (10.24a) is an identity following from the definition of the ¢g-potential
via the Wilson loop, the derivation of the energy sum rule (10.40) relies on a number
of input informations which, although quite plausible, are not self evident: i) The
structure of the action on an anisotropic lattice is taken to be given by (10.16).
This is the standard form of the action considered in the literature; ii) Close to the

* See e.g., Dosch et al. (1995).
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continuum limit the potential should become independent of the anisotropy of the
lattice, &, and satisfy (10.31). This must of course be so, if it is to be an observable.
It is however not self evident that this is indeed the case; iii) A perturbative check
of the sum rule requires a perturbative expression for n.. This expression has been
given by Karsch (Karsch, 1985). Hence checking the sum rule in perturbation theory
would not only confirm the presence of a contribution to the potential arising from
the trace anomaly of the energy momentum tensor, but also confirm indirectly the
perturbative relations obtained from other considerations in the literature. Having
checked the sum rule (at least in perturbation theory), one can extract the electric,
magnetic and anomalous contributions to the potential. To this effect let us first
write the energy sum rule (10.40) in the form

ﬁL(g(])B(PT + 7)s>q(ij )

NP 1
V(R, 6) = AhIIl = 7]7<—,PT —|—,P3>qq70 +

T—o0 T 290

(10.430)

where we made use of the definition (10.39b), and, in accordance with (10.25a), we

have made the replacement
/ . 1
(P.) = lim —=(P,). (10.43b)

By combining this expression with the action sum rule (10.24a) one finds for SU(N)

o1 1.1 oV gt ov
elec = 1 =N-\—"/F7)qg—0 = 3 — —_— e,
Val Jim 7n (=Pr)ag—o 5V + 490ﬁL(90)agg +1 IN g2
o1 1.1 oV gt ov
magn — 1 o s/qg—0 — = - a o =375 9
Vinag Tl_{folo 7 (Ps)qi—0 2‘/ + 4905L(90)agg - IN 062
1 ov
‘/;mom =—= a 99 1044
2905L (90) 893 ( )

where, according to (10.17), and (10.32b), and making use of ¢.(1) = ¢5(1) = 0
(see sec. 10.2),
2N
="z + N(c =)+ 0(g)). (10.45)
0
The derivatives ¢, = [dc,(£)/dE|¢=1 have been determined by Karsch (1985).
Fig. 10-1, taken from Feuerbacher (2003) shows the electric, magnetic and
anomalous contributions to the SU(3) potential computed from (10.44) and the
expression (9.8). Notice that while the leading electric contribution to the potential
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Fig. 10-1 The next to leading order contributions, divided by g2, of the
electric field energy (dashed), magnetic field energy (dot-dashed) and trace
anomaly (dotted) to the SU(3) ¢q potential (solid line). The figure is taken
from Feuerbacher (2003a).

is of O(g7), the magnetic contribution is of O(g;), and same is true for the anomalous
part. Note also that in the perturbative regime the trace anomaly contributes sig-
nificantly only for small R, and that the electric and magnetic contributions are
of opposite sign, while in lattice simulations carried out in the non-perturbative
region for large quark—antiquark separations they are found to be of the same
sign. The solid curve in fig. (10-1) is the full potential in O(gj). This curve agrees
with that obtained from a perturbative calculation of the rhs of the energy sum
rule (10.43).

10.5 Sum Rules for the Glueball Mass

The interquark potential is not the only observable for which one can derive an
action and energy sum rule. In fact, the way the sum rules (10.40) and (10.42) were
derived, it is evident that similar expressions will hold for any observable which can
be determined from the exponential decay in euclidean time of the expectation value
of some operator. In the pure SU(N) gauge theory, such observables are the masses
of glueballs states, which are eigenstates of the SU(N) Hamiltonian. In numerical
simulations particle masses are determined from the exponential decay in euclidean
time of correlators of operators which excite the state of interest. In principle the
specific form of the operator is not important, as long as it excites states having a

non-vanishing projection onto the state of interest. In practice, however, a judicious
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choice needs to be made in order to enhance the signal in Monte Carlo calculations.
The anomalous contribution to the Hamiltonian, arising from the trace anomaly,
should also manifest itself in the energy and action sum rules for the glueball mass.
To determine the mass of a glueball with a given set of quantum numbers one
can construct such correlators from combinations of space-like Wilson loops located
at times —% and L 5, averaged over all spatial lattice sites to project out a zero-
momentum state [Mlchael (1987)]. Let us denote the corresponding operators by
G(=T) and G(T). The lowest glueball mass with non-vacuum quantum numbers is
then given by

~ A ~

M= — lim = In(G(T)G(-T)), (10.46)

which is the analog of (10.21a). Proceeding in exactly the same way as for the case

of the qq potential one then arrives at the following action and energy sum rules for
the glueball mass [Rothe (1995b)],

i 261(90)
90

M =n (=P} +Pio+

(L)1_o, (10.47a)

Br(go)
TR (10.470)

where L has been defined in (10.39b), and where the bracket (O);_q stands generi-
cally for the following correlator

~

. (GDOG(-1))
Ol_ozhm = —(0O).
@ T=ee (G(T)G(=T)) )

Notice that the energy sum rule (10.44b) has exactly the same form as for the
qg-potential given by (10.40). The form of the action sum rule (10.44a) however
differs from (10.42), since in the case of the glueball mass, there is no analog of the
derivative term. This manifests itself in that the contribution of the anomalous field
energy to the glueball mass accounts for only 1/4 of the glueball mass, as follows
immediately from (10.44a). This result is consistent with that obtained by Michael
(1996) for the contribution of the “normal field energy” to the glueball mass.

As we have seen in this chapter, the lattice formulation of the pure SU(N) gauge
theory on an anisotropic lattice has allowed us to derive in a straight forward way
a non-perturbative expression for the energy stored in the chromoelectric and mag-

netic fields of a static gg-pair and glueball, in which the contributions arising from
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the traceless and trace part of the energy momentum tensor are clearly exhibited.
In principle these sum rules provide us with an alternative way to determine the
string tension or glueball mass. But what is more important, these sum rules allow
us to obtain detailed information about the distribution of the field energy in a flux
tube connecting a static quark and antiquark. In most Monte Carlo simulations only
the action density has been measured with good precision, since it is more accessible
to Monte Carlo simulations (For a recent computation see Bali (1995)). The energy
density, on the other hand, including the anomalous contribution, has so far not
been studied in such detail in the literature.
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CHAPTER 11

THE STRONG COUPLING EXPANSION

In chapters 7 and 8 we have shown how the static gg-potential V' (R) can be
determined by studying the expectation value of the Wilson loop for large euclidean
times. In QCD one believes that this potential confines quarks; more precisely, one
expects that for large separations of the quark-antiquark pair, V/(R) rises linearly
with R up to distances where vacuum polarization effects, due to the presence of
dynamical fermions, screen the interaction. As we have seen, such a behaviour of the
potential cannot be generated within perturbation theory. For this reason, we have
no way (at present) to calculate it analytically, and hence are forced to determine it
numerically. On the other hand, analytic statements can be made in the strong cou-
pling region. Indeed, in the absence of dynamical fermions the structure of the action
(5.21) for QED, and (6.25b) for QCD suggests a natural expansion in powers of the
inverse coupling. This is the analog of the high temperature expansion in statistical
mechanics. In the following section we shall concentrate on the leading strong cou-
pling approximation to the static ¢¢ potential, ignoring vacuum polarization effects.
As was first shown by Wilson (1974), this potential confines quarks. In fact it was

this observation which has stimulated the great interest in lattice gauge theories.

11.1 The gg-Potential to Leading Order in Strong Coupling

Consider the SU(N) lattice gauge theory in the pure gauge sector.* The cor-
responding lattice action is given by

S = —ﬁZSp + const.,
P

where
B =2N/g;,
and**

1
Sp = ﬁTY(UP +U})

* We give the formulation for SU(N), since we are interested later also in the

case of SU(2).
** Sp has been normalized in such a way that Sp — 1 if Up — 1, i.e., close

to the continuum limit. The links U,(n) and plaquette variables Up lie in the N-
dimensional fundamental representation of SU(N).
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is the contribution to the action associated with a plaquette P (see chapter 6). The

corresponding partition function reads
7 = /DU ef2pSe, (11.1)

and the expectation value of the Wilson loop with spatial and temporal extention

R and T, respectively, is given by

_ [ DU WelUT]p e*r
JDU p e 7

(WelU]) (11.2)

where W [U] is defined in (7.33). We next expand the exponential in (11.2) in powers
of the coupling j:

(11.3)

P rr S — H [Z %(Sp)n

P n

Since each plaquette in the expansion costs a factor 3, the leading contribution, for
B — 0 to the numerator in (11.2) is obtained by paving the inside of the Wilson
loop with the smallest number of elementary plaquettes yielding a non-vanishing
value for the integral. Consider the case of SU(3). As is evident from the integration
rules (6.23), the relevant configuration is the one shown in fig. (11-1). Hence the
leading term in the strong coupling expansion of the numerator is proportional to
ﬂA, where A is the minimal area bounded by the rectangular contour C': A= RT.On
the other hand, the leading contribution to the denominator is obtained by making
the replacement exp(6 Y. Sp) — 1. Hence for small 3, (11.2) will be proportional to
( B)RT.

6

Y

A
' A
Yy A

' A

Fig. 11-1 Leading contribution to (W¢) in the strong coupling approx-

imation.
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The factor multiplying this expression may also be readily calculated by noting
that according to (6.23c) the colour indices of the link variables are identified at each
of the lattice sites, and that the integration over each pair of oppositely oriented
links yields a factor of 1/3. Now the number of link integrations for a given set of
colour indices is 2RT + R+1T". Hence there is a factor (1/3)2RT+B+T coming from the
integrations. But there are three possible colours associated with the (R+1)(T +1)
lattice sites. Consequently the factor multiplying (5/ G)A is given by (1/ 3)‘4*1. We
hence conclude that in leading order of strong coupling

(WU]) ~ 3 (%)

The qg-potential in the strong coupling limit is therefore given by

N

V(R) = — Tim ~ In(WalU]) = 6(g0) B, (11.4a)

&:—m(%) (11.4b)

is the string tension measured in lattice units. Thus in the leading strong coupling ap-

where

proximation, QCD confines quarks: the expectation value of the Wilson loop exhibits
an area law behaviour, (W) — exp(—6RT). If this confining property persists into
the small coupling regime, where continuum physics is (hopefully) observed, then
7(go) must depend on gq according to (9.25). In the one-loop approximation to the
(B-function this dependence on g is given by

1

6(g0) ~ C,e P09, (11.5)

g0~>0

Its explicitly known form provides us with a signal which will tell us whether we are

extracting continuum physics from a numerical calculation.

We want to point out that the same calculation performed for compact QED
would also have given a potential of the form (11.4a). But in QED we know that
this potential is given by the Coulomb law! Hence compact QED must exhibit at
least two phases. In fact it has been shown by Guth (1980), using an action of the
Villain form, that the lattice U(1) gauge theory possesses a weak coupling Coulomb
phase. That the strong coupling and weak coupling regions are separated by a phase
transition, has also been verified in numerical simulations. (see e.g., Lautrup and
Nauenberg, 1980). It is therefore important to check that in the case of QCD there

exists no such phase transition to a weak coupling regime.
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11.2 Beyond the Leading Approximation

Higher order corrections to the potential (11.4) can in principle be computed
by expanding the exponentials appearing in (11.2) in powers of the coupling
and performing the corresponding (Haar) integrals over the link variables. As is
evident from the expansion (11.3), the contribution of order 5™ will involve (before
integration) all possible sets consisting of n plaquettes, including also multiples of
the same plaquette. To each oriented plaquette P in a given diagram we associate
a factor (g) TrUp, or (%) TrUITJ, depending on its orientation, and include a factor

1/n!, where n is the multiplicity of P. However, of all the possible sets contributing
to the sum (11.3), only a certain subset of plaquette configurations will survive the

integrations in (11.2) because of the integration rules (6.23).

Thus we are faced with two problems in computing higher order corrections to
the potential: i) enumerating all the diagrams contributing in a given order, and ii)
calculating the Haar integrals. As the reader can imagine, already the bookkeeping
problem associated with the first step will become non-trivial as we go to higher
and higher orders.

To keep the discussion as simple as possible, let us exemplify the method for
the two dimensional abelian model discussed in chapter 8. As we shall see it will
serve to illustrate the basic point we wish to make. Consider QEDs in the quenched
approximation. The partition function (11.1) has the form

7 = /DU e3 ZpUp+Up) (11.6a)
where
Up = €' (11.6)

is an element of the U(1) group associated with the plaquette P. The expectation
value of the Wilson loop is then given by (8.15). Expanding the exponentials ap-
pearing in the integrands of this expression in powers of the coupling 3, one finds
that in the next to leading order the only plaquette configurations which contribute
to the numerator and denominator are those shown in fig. (11-2), since diagrams
containing any unpaired link will not contribute after performing the integrals over
the link variables.*

* Notice that link variables of opposite orientations must appear paired.
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Fig. 11-2 Next to leading order contributions to (W¢) in the strong
coupling expansion. Diagrams (a-c) contribute to the numerator (11.2),

while diagram (d) contributes to the denominator.

Hence we have three types of diagrams contributing to the numerator in this
non-leading order: i) diagrams where the inside of the Wilson loop contains a triple
of the same plaquette; the number of such diagrams is given by 3RT ;¥ 1i) diagrams
where a multiple plaquette is attached to the contour C, as shown in fig. (11-2b). The
number of these diagrams is N, ~ 4(1% + T); and finally iii) disconnected diagrams
of the type shown in fig. (11-2c). The number of such diagrams is approximately
given by 2(V — RT — N,/2), where V is the “volume” of the lattice. Since in the
U(1) case the group integrals are trivial, we obtain the following expression for the

* In counting the number of each type of diagram we must take into account
the various possible relative orientations of the multiple plaquettes. Thus the factor
3 arises from the expansion of (U + U")3 = 3UTUU + - - - .
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numerator, including the leading contribution, (3/2)%7:

5 5RT 1 52AA 52A
NN(E) ll‘a(a) RT*(E)V

Consider now the denominator of (11.2). In next to leading order it is given by

the diagrams of the type shown in fig. (11-2d). Hence

2 () -
Z=1+=|= .
+2!(2) v

Taking the ratio N/Z, we see that to the order of approximation considered here,
we are left with the following expression for the Wilson loop:

WolU)) ~ (g) [1 - (§)RT

Hence we are led to the following expression for the static qg—potential,

A 1 o
V(R) = — lim = In(We[U]) = 6R,

T—o0
where the string tension ¢ is given in this approximation by
g, B

o= —In— 4+ —. 11.
o n2—|—8 ( 7)

Notice that this potential is determined solely by connected plaquette configurations
attached to the minimal surface enclosed by the contour C.

The U(1) case discussed above is of course the simplest example we could
choose. Nevertheless, the number of connected and disconnected diagrams contribut-
ing to (11.2) will rapidly increase with the order. In particular, the occurrence of
multiples of a given plaquette will complicate the bookkeeping and the computation
of the Haar integrals in the non-abelian gauge theory. This latter difficulty may,
however, be avoided by making use of the so-called character expansion of the expo-
nential of the action. We again demonstrate the procedure for the case of quenched
QED,, where the character expansion is just the well-known Fourier-Bessel expan-
sion of exp(/F cosfp):

e3UrtUh) = N L (B)er. (11.8)

V=—00
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I,(53) is the modified Bessel function and exp(ivfp) is the character of the plaquette
variable (11.6b) in the v’th irreducible representation of the compact U(1) group.
Hence instead of having to deal with contributions to (11.3) arising from multiples
of the same plaquettes, every plaquette will now occur only once in the expansion
(11.8), but in all possible irreducible representations of the compact U(1) group.
But because of the orthogonality relations satisfied by exp(ivf), only a few terms
in the sum (11.8) will contribute to (11.2). As an example let us derive the result
(11.7) using the expansion (11.8). Making use of the fact that in the present case
the Wilson loop can be written in the form (8.15), one finds upon inserting (11.8)
n (8.15), that the numerator N is given by*

N = H/ dop {e""PZL(ﬂ wep} H/ d9P L(B)ee

PeR. P¢&R.

where R, denotes the region enclosed by the loop C'. The integrals can be performed

immediately and one obtains
N = [L(B)]" ()]
The corresponding expression for the denominator in (8.15) reads:

Z= H/ S L)

= [Io(5)]""

Hence the volume-dependent factor cancels in the ratio N/Z and we obtain the

ovel) = (£5) 119

which coincides with (8.17b). Now for small 5 we have that

Io(B) =1+ (2)2,

- ()+50)]

Inserting these expressions into (11.9), we come back to our result (11.7).

exact result

* We have normalized the integration measure so that [ dU = 1.
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The fact that we were able to solve the above problem to any order in [ is
connected with the 2-dimensional abelian nature of the model. In four-dimensional
gauge theories more sophisticated methods are required for carrying out the strong
coupling expansion. The interested reader may consult the extensive work carried
out by Miinster (1981) who has calculated the string tension for the case of an SU(2)
gauge theory up to twelvth order in 5.

11.3 The Lattice Hamiltonian in the Strong Coupling Limit
and the String Picture of Confinement

We have seen in the previous sections that for strong coupling the pure SU(3)
gauge theory confines quarks. The usual picture of confinement is that the chromo-
electric flux linking a quark and antiquark is squeezed within a narrow tube (string)
carrying constant energy density. As a consequence, the energy of the system in-
creases linearly with the separation of the quarks. The purpose of this section is to
verify the string picture of confinement in the strong coupling approximation within
the framework of the Hamiltonian formulation as discussed originally by Kogut and
Susskind (1975).

In the continuum formulation, the Hamiltonian is the generator of infinitesimal
time translations and is obtained by a Legendre transformation from the Lagrangean
of the theory. Within the framework of the lattice formulation the natural way of
introducing the Hamiltonian is via the transfer matrix. In chapter 2 we defined
the transfer matrix for the case of a quantum mechanical system with generalized
coordinates ¢,(a=1,...,n) by

Tyq = (d'le=]q). (11.10)

Here H is the Hamiltonian of the system, which, in the particular example con-
sidered, had the form (2.8), and € is an infinitesimal time—step. The corresponding
transfer matrix was given by (2.37b). Expressed in terms of the transfer matrix, the
partition function (2.32b) took the form

Z = /qué')HTq(m)q(e) (11.11)

a,l’ l

where ¢®) = {qék)} could be interpreted as the coordinates of the system at “time”
71, on the euclidean time lattice. We then discussed a method which allowed us
to construct the Hamiltonian from the knowledge of the transfer matrix. In this
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section, we want to apply this method to the case of a lattice gauge theory. To
this effect we will have to choose a gauge. The reason for this is the following.
In the lattice formulation of a gauge theory, the action is a function of the link
variables which live on all the links of the euclidean space-time lattice. Therefore
the action not only depends on the group parameters associated with the links
lying in fixed time slices, but also on those parametrizing the link variables that
live on links connecting sites at different times. We can, however, eliminate the
latter (bothersome) variables by choosing a gauge where all time-like oriented links*
are replaced by the unit matrix. This can always be achieved by an appropriate
gauge transformation, and corresponds in the continuum formulation to choosing
the temporal gauge, A4(z) = 0. This we are allowed to do, since we are computing

a gauge-invariant observable, namely the Hamiltonian.

Of course, setting A4(z) = 0 does not fix the gauge completely. We are still
free to perform time-independent gauge transformations. This allows us to fix a
subset of the remaining link variables oriented along the space directions. The
variables that can be fixed by a time-independent gauge transformation are re-
stricted by the requirement that there exist no closed paths on the lattice along
which all the degrees of freedom are “frozen” (see Fig. (11-3)). This is obvious
since the trace of the path-ordered product of link variables along closed paths is

gauge-invariant.

Fig. 11-3 The temporal gauge corresponds to fixing the link variables on the solid lines to

unity. The dashed links can be fixed by time independent gauge transformations.

* Sometimes we use the word “link” instead of “link variable” if it is clear from
the context what is meant.



160 Lattice Gauge Theories

That the temporal gauge is the appropriate one for constructing the Hamiltonian via
the transfer matrix is also strongly suggested by looking at the continuum action of
the pure SU(3) gauge theory. This action is given by (6.21), where F (B = 1,...,8)
has been defined in (6.16). Setting Ay = 0, the action takes the following simple

form

1 A 1 - -
SelA] = /dT/d% [5 SAP@E )Y+ 3 X FEEnER )|
i,B i.5,B
where we have set 24, = 7 and where AP denotes the “time”-derivative of A, Notice

the striking similarity between the above expression and (2.11).

The lattice version of the action in the temporal gauge is of course more com-
plicated (see previous chapter). But the above observation suggests that also there
the action will acquire a structure which will allow us to write the partition function
in the form (11.11).

There is another important point that must be mentioned. By eliminating
the time component of the gauge potential in the action, we are loosing one of

b

“Maxwell’s” equations, namely Gauss’s law. Consider for simplicity continuum elec-
trodynamics in the absence of sources. The following discussion can be readily ex-
tended to the case of a non-abelian theory and to euclidean space-time. Let us not
fix the gauge. By varying the action with respect to the time component of the
potential, one arrives at the equation V - E (x) = 0, where E is the electric field.
The components E; are the momenta canonically conjugate to A;. Let us denote the
corresponding operators in the quantized theory by ;. Then V- 7(x) =0 is a con-
straint for the canonical momenta. This constraint is lost when we set A4(z) = 0 in
the action, and must therefore be implemented on the states. In the temporal gauge
V- ®(z) is not constrained to vanish. But its time derivative still vanishes, as follows
from the time-dependent version of Ampere’s law. Now it can be easily shown that
the operators V- 7(x) are the generators of infinitesimal time-independent gauge

transformations. Indeed, consider the following unitary operator
TIA] = o~ i [ P @) ”-ﬁ(:p).
Because V - 7 is independent of the time, one finds, upon using the canonical com-
mutation relations of the momenta and gauge potentials, that
TIAAi(2)T[A]" = Ai(z) + O:A(D).

Hence imposing Gauss’s law on the states is equivalent to restricting the phys-
ical states to be invariant under the residual group of time-independent gauge
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transformations. This observation will play an important role when we discuss the
energy spectrum of the Hamiltonian. In the presence of sources 67?(33) is replaced by
V- 7(x) — p(z), where p is the charge density. This latter quantity, constructed from
the fermion fields, generates the corresponding transformations on the fermionic

variables.

After these remarks, we now turn to the construction of the lattice Hamiltonian
in a pure gauge theory. To keep the discussion as simple as possible, we will consider
the abelian U(1) theory discussed in chapter 5. This theory will already exhibit an
important feature encountered in the non-abelian case. For the derivation of the
lattice Hamiltonian in the SU(3) gauge theory, using the transfer matrix approach,
we refer the reader to the paper by Creutz (1977).

Our procedure for constructing the lattice Hamiltonian parallels the quantum
mechanical case discussed in chapter 2. The first step consists in identifying the
transfer matrix, and writing the partition function of the U(1) gauge theory in a
form analogous to (11.11). This is done by working in the temporal gauge. We then
obtain the Hamiltonian by studying the transfer matrix for infinitesimal temporal
lattice spacing. Since the spatial lattice spacing is to be kept fixed while taking
the temporal lattice spacing to zero, we must first rewrite the action (5.21) on an
asymmetric lattice. Following Creutz (1977) we take the U(1) action to be of the form

(11.12)

where p = a,/a, and where P; and P, denote space-like and time-like oriented
plaquettes, respectively. This is the analog of (10.15) with p = 1/¢. This action
possesses the correct naive continuum limit. We next choose the temporal gauge;
i.e., we set all the link variables associated with time-like links equal to one. Then
a plaquette variable with base (n,ny), lying in the i4-plane, is given by

—€

Us(n) = 1 = Ui(n,ng)U] (n,ng + 1)

[

— ei(ei (n,n4)—9i (n,n4+1)) ,

where the dashed lines stand for link variables that have been set equal to one in the
temporal gauge. The coordinate degrees of freedom of the system are labeled by the
spatial lattice site n and the spatial direction of the link variables. Let us collect
these labels into a single index o = (n,4) and set ny = (. Furthermore, to parallel

our quantum mechanical example, we relabel the group parameters, parametrizing
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the link variables, as follows:
0% = 6;(n, ().

Then the partition function associated with the action (11.12) can be written in a
form analogous to (11.11):

/DU@ SalU /Hd9 HT9(£+1 )00 s (11.13a)

al!

where

Ty = e~V T e b limeosO8 =08 (11.13b)

[0}

with the potential V' defined by

1 1
VieW] = e Z [1 — 5(UPS(Z) + Uzts(e)) : (11.13¢)
P.(0)

The sum extends over all plaquettes located on the ¢’th time slice. The potential
(11.13c) is therefore a function of the group parameters labeling the link variables
located on this time slice. We next introduce a set of commuting operators {O,}
and simultaneous eigenstates of these by

0.]0) = 0,]6),

(0'0) = Ha 0 —

The states |#) are the analogue of |¢) in the quantum mechanical example discussed

in chapter 2. Let P, be the momentum canonically conjugate to ©,:
[©4, Ps] = i6ap.
Then exp(—i§ - P), with - P =) _ £, Fa, generates translations by &:
e P19 =10 + €.
From here, and the orthogonality of the states |#) we conclude that

<9(5+1)|67i§.P’9(Z)> _ H 5(95541) _ eg) —&a).
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Hence (11.13b) can also be written as follows

Toernger = (0V|T]09), (11.14a)
where

T = H/dgae‘iﬁﬂpa‘@“‘mﬁ“)eGTV[@L (11.14b)

To obtain the expression for the lattice Hamiltonian, we must now take the tem-
poral lattice spacing to zero, while keeping the spatial lattice spacing fixed. This
means that p = a,/a approaches zero. But for small p the integrand in (11.14b) is
dominated by those values of &, for which cos&, ~ 1. We are then allowed to replace
1 — cos&, by £2/2. Performing the remaining Gaussian integral, we therefore find
that, apart from an irrelevant constant,

T — g-or(le S, P2HVIO))

The quantity appearing within brackets is the lattice Hamiltonian we were looking
for:

2
_9 2
H= % P2+ viel. (11.15)

In the coordinate representation the canonical momenta P, are given by

0
P,=—i—.
00,
Recall that « stands collectively for the set (n,i), where n is the spatial location
of the lattice site and 7 is the direction of the link with base at n.* To make this

explicit, we shall write 6;(n) instead of 6,. Then the Hamiltonian (11.15) becomes

92 82
H=—- nz O Vo], (11.16a)

where V[f] has the following structure:

Vg = ! Z([:H[j) + const.

9.2
QQCLPS

1
= 3% Z(UUUU +h.c.) + const. (11.160)

* From now on it will be understood that n and x denote spatial positions.
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Here UUUU denote the product of link variables along the boundary of a plaquette
on the spatial lattice. These link variables are parametrized by the angular variables
0;(n). Thus, the contribution of a plaquette lying in the ij-plane with base at n is
given by

_ eiei(n)eiej(ﬂri’éi) —i0i(n+eé;) ,—i0;(n)

i

€ €

Before we proceed with the discussion of (11.16), let us establish the connection
with the Hamiltonian in the continuum formulation. To this effect we introduce the
gauge potentials in the by now familiar way:

0;(n) = agA;(x), =z =na.

The Hamiltonian (11.16) then takes the following form in the continuum limit

H— —% d%Ei: <5Af(x)) + V[A], (11.17a)

where

~ 1
V[A] = —Z/d?’wFij(x)Fij(x) (11.17b)
0,
is the contribution arising from the spatial plaquettes in (11.16b) and J§/0A;(x)

denotes the functional derivative with respect to A;(z). Its action on A;(y) is
defined by

1) =809~ ).
The right-hand side of (11.17a) is nothing but the familiar expression for the tem-
poral gauge-Hamiltonian in the so-called field representation, where the potentials
A;(x) are ordinary functions of the spatial coordinates and where the components
E; of the electric field (which are the momenta canonically conjugate to A;) are rep-
resented by the functional derivative —i§/JA;. This Hamiltonian acts on the space
of “wave functions”, which are functionals of the spatial components of the vector
potential. We therefore see that in the case of the U(1) gauge theory the kinetic part
of the lattice Hamiltonian has a structure which is similar to that of the continuum
formulation. There is, however, an important difference. While in the continuum
formulation the potentials can take arbitrary values, the group parameters 6;(n)
take values in the interval [0,27]. The wave functions are single valued functions

of these variables. As a consequence the eigenvalue spectrum of the kinetic term in
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(11.16a) is discrete. As seen from (11.16a,b), it is this term which dominates the

Hamiltonian in the strong coupling limit:
2 2
g 0
H — Hy=—=— E —_—. 11.18
0 2a = 00;(n)? ( )

This shows that in this limit the relevant contribution to the Hamiltonian comes
from the electric field.

Let us now study the eigenvalue spectrum of Hy. The eigenfunctions of H are
given by

iy (0] = H[Ui(n)]N*”), (11.19)
where

Ui(n) = %™

is a link variable with base at n, pointing in the ¢’th spatial direction, and where
N;(n) is the excitation number of the link connecting the sites n and n + ¢é;. These

wave functions are normalized as follows:

/ 11 o Vv 010 0m3 0] = Oy v omyy-
k,m

The energy associated with the state (11.19) is given by

2
g

Evimy = 5, > (Ni(n))*. (11.20)

It must, however, be remembered that not all such states are physical. Thus we have

emphasized before that only gauge-invariant states belong to the physical Hilbert

space. Hence only wave functions built from products of link variables along one or

several closed loops have a physical meaning.

Let us consider a few states. The lowest energy state is the one where no link is
excited. The wave function of the next higher energy state is given by an elementary
plaquette variable located anywhere on the lattice. The energy associated with this
excitation is given according to (11.20) by 4(g*/2a), since there are four links on the
boundary of an elementary plaquette. By exciting larger loops or several loops, we
obtain states of increasing energy. In fig. (11-4) we show various types of excitations

on a two-dimensional spatial lattice.
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Fig. 11-4 Two types of excitations on a two dimensional spatial lattice.

The above strong coupling picture gets modified when fermions are coupled
to the link variables. Suppose that we introduce into the pure gauge medium a
very heavy pair of opposite charges at the lattice sites n and m, respectively. Then
we can build a gauge-invariant state by connecting the two charges by a string
built from the product of link variables. The lowest energy state of the system is
obtained by exciting the links along the shortest path connecting the two charges.
Each excited link contributes an energy g*/2a. Consider, in particular, two charges
located on a straight line path on the lattice, as shown in fig. (11-5a). Their energy is
given by

Ey=21, (11.21)

where L is the separation of the pair measured in lattice units. Thus in the strong
coupling limit we have confinement already in the U(1) theory!

The above result was obtained in the strong coupling limit and in the absence
of dynamical (finite mass) fermions. The effect of the potential in (11.16) for finite
(but large) coupling can be calculated in perturbation theory. Clearly the states
discussed above are no longer eigenstates of the Hamiltonian when the potential
is turned on. In this case the string connecting the two charges will be allowed to
fluctuate. To see this consider the action of the potential on the state depicted in
fig. (11-5a). In particular consider the effect arising from those plaquettes in the
potential (11.16b) having a link in common with the string connecting the two
charges. In fig. (11-5b,c) we show the possibilities corresponding to overlapping flux
lines. The wave functions associated with these states are those constructed from
the link variables shown in fig. (11-5d,e), where the darkened line corresponds to a
doubly excited link. For finite coupling the lowest energy state of the charged pair
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Fig. 11-5 (a) Eigenstate of the Hamiltonian in the strong coupling
limit; (b,c) Configurations created by the action of the potential on the
state depicted in (a); (d,e) Corresponding link configurations from which the
wave functionals (11.19) are constructed. The darkened line in (e) denotes
a doubly excited link. The dots stand for the other three possible ways of

attaching the plaquettes on the three dimensional spatial lattice.

will include these (and many other) excitations. Thus the original rigid string begins
to fluctuate when the potential is turned on.

Let us compute the change in energy AFE arising from fluctuations of the type
depicted in fig. (11-5d,e). They can be computed by standard perturbation theory:
Let |Ey) denote the ground state of the gg-pair in the strong coupling limit, depicted
in fig. (11-5a), and |Ey) the eigenstate of H, corresponding to link configurations of
the type shown in fig. (11-5d,e). Then

]EOIV]Ef
AFE = 11.22
%e; Eo— By (1:22)

where the sum extends over all states |Ey) with the fluctuation taking place any-
where along the line connecting the two charges. The energy Ej is given by (11.21).
Furthermore, from (11.20) we obtain for the states of type d and e,
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irrespective of the location of the fluctuation. For all these states

(EPWIE) = [ T] 520 lVielis

" 2¢%°

The energy shift (11.22) is therefore given by

~

4 L
AFE;

"= 3ag
Hence in this (oversimplified) example, we arrive at the following expression for the

string tension measured in lattice units:

.9 8
=L (1-2).
2 398

For the case of the pure SU(3) gauge theory, Kogut, Pearson, and Shigemitsu
(1981) have computed the string tension up to O(g~2*). These computations (which
are quite non-trivial) suggest that the strong coupling expansion, when carried out
to sufficiently high orders, yields a string tension in the intermediate coupling region
which can be fitted at the low coupling end with the square of the function R(g)
defined in (9.21d). In the strong coupling regime the flux tube connecting the two
charges will have a finite width of the order of the lattice spacing. But as the coupling
is decreased, not only the width of the flux tube will increase, but also its shape will
eventually undergo strong changes. Furthermore, the number of string configurations
of a given length L will increase dramatically with L.

Fig. 11-6 Breaking of the string due to pair production.
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In the presence of dynamical fermions this picture is further modified. Thus for
sufficiently large separations of the two charges, the system can lower its energy by
creating an oppositely charged pair connected by a string as shown in fig. (11-6).
This corresponds in the strong coupling approximation to the hadronization process
mentioned at the beginning of chapter 7. This concludes our discussion of the string
picture of confinement in the strong coupling Hamiltonian formulation. We have seen
that for strong coupling, the U(1) theory leads to a non-vanishing string tension.
This result is in agreement with that obtained by studying the Wilson loop. In the
continuum limit confinement should of course be lost. On the other hand, the SU(3)
gauge theory should still exhibit confinement in this limit. We have concentrated our
attention on the U(1) gauge theory since it allowed us to demonstrate in a simple
way how a string picture of confinement emerges in the strong coupling limit, if the
theory is compactified. The non-abelian case is of course more complicated but the
basic ideas are the same. For a discussion of the SU(3) gauge theory, the reader
may confer the paper by Creutz (1977).

Finally we want to mention that the construction of the lattice Hamiltonian
via the transfer matrix is not the only method. For an alternative procedure based
on canonical methods the reader may consult the review article by Kogut (1983)
or the lectures of this author given at the International School of Physics, Enrico
Fermi (Kogut, 1984).
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CHAPTER 12

THE HOPPING PARAMETER EXPANSION

The inclusion of fermions in lattice calculations is a very non-trivial problem.
In the pure gauge theory correlation functions can be calculated by Monte Carlo
methods (see chapter 16). Such methods cannot be applied directly to path integrals
involving Grassmann variables. To overcome this difficulty one must first integrate
out the fermions. The resulting path integral expression then only involves bosonic
variables and one can evaluate them, in principle, using statistical methods. But the
Boltzmann distribution is now determined by an effective action which is a non-local
function of the link variables. Not only that. When calculating fermionic correla-
tion functions, the ensemble average must be performed over expressions which are
themselves non-local functions of these variables. For this reason most of the nu-
merical calculations have been performed over many years in the pure gauge sector,
or in the so-called quenched approximation, where the effects of pair production
processes are neglected. Computations in full QCD were restricted to very small
lattices. With the advent of the supercomputers the situation has improved sub-
stantially, and numerical calculations with dynamical fermions performed on larger
lattices have become feasible. But the computer times required are still astronomical.

A brute-force numerical calculation does not provide us with much insight
into the detailed dynamics. One would therefore like to have some analytic way of
estimating the effects of dynamical fermions on physical observables. The hopping
parameter expansion (HPE) allows one at least to study these effects for large bare
lattice-masses of the quarks (it is therefore only useful far away from the continuum
limit). Furthermore, when combined with the strong coupling expansion, it also
provides us with a physical picture of how hadrons propagate on a lattice, and how
pair production processes influence the observables.

The purpose of this chapter is two-fold. We first want to show how the calcu-
lation of arbitrary correlation functions of the fermion fields and the link variables
can be reduced to a pure bosonic problem, which can in principle be handled by
numerical methods. This will be the subject of the following section. In section 2 we
then discuss the hopping parameter expansion of the two-point fermion correlation
function, and show how hadrons propagate on the lattice in a combined HPE and
strong coupling expansion. Section 3 is devoted to the hopping parameter expan-
sion of the effective action. This allows one to include the effects of pair production
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processes. Finally, in section 4 we demonstrate in some examples how the HPE
expansion respects the Pauli exclusion principle, which forbids that two identical
quarks (or antiquarks) can occupy the same lattice site.

12.1 Path Integral Representation of Correlation Functions
in Terms of Bosonic Variables

In the following we shall consider Wilson fermions of a single flavour. Let
A, B, C... be collective indices for the colour and Dirac degrees of freedom la-
beling the quark fields. Thus ¢4, ¥p will stand for 1% and &Z, respectively. The
path integral representation of a general correlation function of the fermionic and
link variables is then given by

(a, (n1) - Yy () p, (ma) - Uy, (M) U (Rr) - - Ut (k)
[ DUD@$)a,(m1) -+ o, (ma) - - U (k) - - - = SacnlU 0]
B fDUD(@EQ/})e—SQCD[U%@E]

(12.1a)

where*

H dipa(n)da(n), (12.10)

and where US’(n) denotes a matrix element of the link variables U,(n). Notice

that (12.1a) contains the same number of 1 and ¥ fields since all other correlation
functions vanish because of the Grassmann integration rules discussed in chapter

two.

Consider the fermionic contribution to Sqcp. For Wilson fermions it is given

by (6.25¢). Let us write this contribution in the form
)
Sp) =4, Z P(n J¢(m), (12.2a)

where

1
K= ———— (12.2b)
87” =+ 2M()

* For later convenience we have chosen to write the measure in this form, rather
than DiDt). This has of course no influence on the ratio (12.1a), but eliminates
some unpleasant minus signs which would otherwise arise in intermediate steps of
the calculation.
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is the so-called hopping parameter (for reasons which will become clear below), and

K,,, are matrices in Dirac and colour space:

EonlU) = Sl 5 S [0 = 1)U (1) (r 20 US (0 — )00g]. (1220)

©>0
Thus K,,, is of the form

Ky = Op 1l — £ M, [U], (12.3a)

where the only non-vanishing matrices M,,, are those connecting neighbouring lat-

tice sites:

Mn n—l—ﬂ[U] = (T - ’VLL)UH(TL%

(12.30)
My, nlU] = (r +7,)Uk(n — ).
The corresponding expressions for the matrix elements read:
(M ps)aasn = (1 = Yu)ap(Un(n))ab,
s S (12.3¢)

(Mn,n—ﬂ)aa,,@b == (T + ’VAL)CVﬁ(U):(n - :&))Cbb'

In the literature it is customary to eliminate the factor 1/2x appearing in (12.2a)by
scaling the fermion fields with v2k : ¢ — 2k, 10 — /2k1p. The corresponding
Jacobian in the fermion integration measure drops out in the ratio (12.1a). Hence by
eliminating the factor 1/2x in (12.2a), the path integral expression (12.1) yields the
original correlation function multiplied by (1/2x)Y. With this in mind, the action

we shall be working with is given by

Sac = SalU] + 53" [U, v, 0], (12.40)
where Sg has been defined in (6.25b), and where
Sp) = Z Va(n)KpamplUlws(m), (12.4D)
A,B
with
KnA,mB[U] = OnmdaB — K(Mnm)AB~ (1246)

Here we have made use of the collective notation for the Dirac and colour indices
introduced above. Thus dap = 6apdap, and (Mpm)ap = (Mpm)aa,ss- Using the fact

that (see chapter 2),

det K[U] = / D(gp)e=s Wil (12.5)
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one readily verifies that (12.1a) can also be written in the form

(W, (1) -, (ma) - Ut (kr) - )
[ DU, (m) -+ g, (m1) -+ )5, Ut () - - - det K[U)e 56l
- [ DU det K [U]e—5610] :

(12.6a)

where (14, (n1) - -, (m1) - -+ ) s, is the purely fermionic correlation function in the
“external” field defined by the link variable configuration {U,(n)}; i.e.,

D), (1) b, (my) e S )
[ D(pp)eSe" W] '

(a, () b, (1) -+ )

(12.6b)
In the so-called quenched approximation (q.a.), where det K[U] is replaced by a
constant, the correlation function (12.6a) is just the ensemble average of the external
field correlation function (12.6b) multiplied by the link variables appearing on the
left-hand side of eq.(12.6a), and averaged with the Boltzmann distribution of the
pure gauge theory, exp (—Sg[U]).
In chapter 2 we have shown that path integrals of the type (12.6b) can be
expressed in terms of products of the two-point correlation functions (2.57) according
to (2.59). A simple translation of these expressions to the path integral (12.6b) leads

to the following result:

<wA1 (nl) o 'wAz (né)&B1 (ml) T sz (mg)>SF
= Wa, (1) - a, (ne)hs, (ma) - U, (my). (12.7)

contr.
The right-hand side is meant to be the sum over all possible complete contractions
of ¢ — 1 pairs,* where a contraction is defined generically by

Ya(n)s(m) = K, 4, 5U]. (12.8)

| S|

Hence in the quenched approximation we “only” need to compute the ensemble
average of products involving the two-point function (12.8) and the link variables
with a Boltzmann distribution corresponding to that of the pure gauge theory:

(tha, (na) - - .@Bl<m1)Uﬁidl(l{;l) “ga.

= < D (Whay(na) -+ tp, (ma) - USRS (ky) - > , (12.9)

contr.

* For the precise meaning of the right-hand side of (12-7) see the discussion in
chapter 2 after eq. (2.59).
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where ( )g, denotes the ensemble average taken with the Boltzmann factor of the
pure gauge theory. But neither the integral (12.6a) with det K = 1, nor K [U]
alone, can be calculated in closed form, and we are forced in general to compute
these quantities numerically. We may, however, calculate (12.8) within the so-called
hopping parameter expansion. This we will do in the following section.

12.2 Hopping Parameter Expansion of the Fermion Propagator
in an External Field

Consider the matrix K defined in (12.4c).
K[U|=1-&M][U]. (12.10)

Its inverse is the fermion propagator for a given link-variable configuration. For small
k (i.e., large bare quark mass Mg)* we can expand K ! in powers of the hopping

parameter as follows:
oo
K'=1-rM)"=> s'M.
=0
The corresponding expression for the matrix elements of K~ reads

ng,mB[U] = 5nm5AB + R(Mnm)AB + Z ’fz Z(Mnnanlng e Mng,1m>AB;
(=2 {n.}
(12.11)

where the non-vanishing matrices M, have been given in (12.3b). It follows from
(12.11) and the fact that Mj, connects only nearest neighbours on the lattice, that

the contributions to K j,m 5|U] in order £ can be computed according to the fol-
lowing rules:

i) Consider all possible paths of length ¢ on the lattice starting at the lattice site
n occupied by 14 (open circles) and terminating at the site m occupied by 1z
(black blobs). As shown in fig. (12-1), these paths may intersect each other, and
turn back on themselves, creating for example appendix-like structures.

ii) Associate with each link with base at k, and pointing in the +p direction, the

matrices

Migerp = (r = 7)Upu(k),
M- = (r +7)Ul(k — ).

* We are thus necessarily away from the continuum limit, which is realized for
MO — 0.
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iii) Take the ordered product of all these matrices along a path following the arrow
pointing from n to m, and take the AB-matrix element of this expression

iv) Sum over all possible paths leading from n to m.

The number of diagrams reduces drastically if we choose the Wilson parameter
to be r = 1, for in this case diagrams with appendices, such as shown in fig. (12-1c),
will not contribute. This is a consequence of the fact that (1 —~,)(1+~,) =0. In
the following we shall choose r = 1.

m, B

e

O——

Fig. 12-1 Diagrams contributing to K ﬂ_flhm 5lU] in the hopping param-

eter expansion.

As an example let us calculate in order x* the correlation function describ-
ing the propagation of a colour-singlet scalar particle, consisting of a local ¢g-pair,
between two neighbouring lattice sites n, and n+ fi. Let us denote the corresponding
composite field by ¢(n):

$(n) =Y P(n)ga(n).

The correlation function of ¢ in the quenched approximation is given by:

(p(n+)d(n))ga = Z@Z(n + p(n + )i (n)va(n)sg

a,q
b,8

+ > (b + mehn + p)vs(n)ve(n)s,.

b,8
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Consider the first term on the right-hand side which is the contribution describing

the propagation of a quark (and antiquark) between two neighbouring lattice sites:

(S(m)d(n))) g0 = = D A s UIE b 0a[U]) s (12.12)

Here m = n + fi, and A and B stand for the set (a,«) and (b, 3), respectively. To
compute the contribution in order x* of (12.12), we must expand K~! up to order
k3. In fig. (12-2) we show, for the case of a two-dimensional lattice, the various paths
C4, Cy, C5 of interest.

LA O——@ n+{i, B i i

G

Fig. 12-2 Diagrams contributing to K, } ntpap U] up to order K3

The corresponding expressions obtained by applying the general rules stated
above with r = 1, then read

3
K;j;n—&—ﬂB = Z(Fcz)aﬁ(ifcz)“”

=1
where
ch1 = (1 - 7#)7
Ucl = Uﬂ(n)
and

chz = (1 - 7V)(1 - 7#)(1 + ’Yu)a
Uo, = Uy(n)U,(n + 0)U (n + f1),
Loy =1+ %) =)0 =),

Uc, = Ul(n — 9)Uu(n — 9)U, (n + i — ).
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n,A @ —«—OnH,B

Fig. 12-3 Diagrams contributing in order x* to the external field cor-
relation function (12.12).

<D —<—O
o < o— <
(a) (b)

©)

Fig. 12-4 (a) Diagrams contributing to an external field 4-point corre-
lation function; (b) contribution to the correlation function in the leading
strong coupling approximation; (c) type of diagrams contributing to (12.12)

in the limit § — 0.

Hence the relevant diagrams associated with the correlation function (12.12)
in order k% are those shown in fig. (12-3). Their contribution is obtained by taking

the product of the individual propagators K ! making up the diagram.

So far we have considered quark-correlation functions evaluated for a given con-
figuration of the link variables. In the quenched approximation (det K[U] — const.),

these correlation functions must still be weighted with a Boltzmann distribution of
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the pure gauge theory, i.e., with

e_SG[U}
~ [ DUeSclU)’

It is instructive to calculate the ensemble average of some simple correla-

PelU] (12.13)

tion functions in leading order of the strong coupling approximation. Consider
for example the contribution of O(k®) to the correlation function (12.12) depicted
in fig. (12-4a). This contribution must be averaged with the Boltzmann distri-
bution (12-13). Expanding the action Sg according to (11.3), we see that the
leading contribution to the ensemble average is obtained by paving the mini-
mal area enclosed by the quark paths with plaquettes, each of which contributes
a factor 3. This is shown in fig. (12-4b). Hence in the strong coupling limit
(8 — 0), the quark—antiquark pair can only propagate as a local unit, as shown in
fig. (12-4c).

m’ Q»————é————. n’

m’+

e

Fig. 12-5 Diagram contributing to the gauge invariant correlation func-
tion (Y(m)U - - Uth(n)yp(n')U - -- Up(m’)) in order x°, for the case where n

and m (n’ and m’) are neighbouring lattice sites.

On the other hand consider the propagation of an extended meson. Then we
must study correlation functions of a gauge-invariant composite field having the
following schematic structure

Ggg = Y(m)U - - Up(n),

where U --- U denotes the matrix product of link variables along a path connecting

the lattice sites n and m. In fig. (12-5) we show a diagram contributing to the



The Hopping Parameter Expansion 179

“meson” propagator

D= (B(m)U - Ub(n)d(n')U - U ()

in O(x®) of the HPE, and O(/3?) of the strong coupling expansion, for the case where
m and n (m’ and n') are neighbouring lattice sites. The dashed lines stand for the
product of link variables appearing in the above correlation function. Notice that the
“strings” connecting the quarks and antiquarks (dashed lines) are essential, since
the group integral over a single link variable vanishes. For the same reason a single
quark cannot propagate in any order of the HPE. This can be viewed as another

statement of confinement.

12.3 Hopping Parameter Expansion of the Effective Action

As we have just seen, we can in principle compute a general correlation function
in the quenched approximation by calculating the ensemble average of products of
fermionic two-point correlation functions and the link variables, with a Boltzmann
distribution given by (12.13). In full QCD, however, we must also include the
fermionic determinant, det K[U], in (12.6a). This is equivalent to taking the en-
semble average with the following probability distribution

o—Ser[U]
P[U] = m, (1214&)
where the effective action, Seg, is defined by
Seﬁ‘[U] = Sg[U] — Indet K[U] (12.14b)

Correspondingly, (12.9) is now replaced by

(a, (m1) g, (ma) -+ U™ (k) - )

- <Z<¢Al<m> () --->U,51d1<k1>---> .
Seft

contr.

We remark that it is not obvious that (12.14a) can be interpreted as a probability
distribution. For this to be the case one must show that Indet K[U]| is real and
bounded from above. That det K[U] is real can be shown rather easily. We first
notice that K[U] is not a hermitean matrix. From the definition (12.2c) and the
hermiticity of the v-matrices, it follows that

;B,nA = OnmOapOab — K Z [(T + 'VM)aﬁ(gu(n))abcsn-i-mm

“w
+ (T’ - VM)aﬁ(yl(n - ﬂ))ab(gn—ﬂvm} )
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ie.,

*
KmB,nA 7£ KnA,mB'

In fact the hermitian adjoint of the matrix K is obtained from K by replacing 7,
by —7,. This observation can be stated in the form

K'= V5K s,

where 5 is a matrix in Dirac space which anticommutes with all v,’s, and whose
square is the unit matrix. Since det KT = det v5K 5 = det K, it follows that det K
is real. Furthermore it has been shown by Seiler (1982) that for k < 1/8 (which is
realized for the usual choice of Wilson parameter r = 1) 0 < det K[U] < 1. Hence

we can interpret the expression (12.14a) as a probability distribution.

In contrast to Sg[U], the effective action (12.14b) is a non-local function of
the link variables, and its numerical calculation demands an enormous amount of
computer time. Before the advent of supercomputers, one has therefore mainly con-
centrated on calculating fermionic correlation functions in the quenched approxima-
tion. This may be a reasonable approximation to estimate such quantities as hadron
masses. On the other hand, there are problems where vacuum polarization effects
play a crucial role. Thus for example the screening of the quark-antiquark potential
at large distances is due to processes involving the creation of quark-antiquark pairs.
These effects arise from the determinant of the fermionic matrix K[U].

We now derive graphical rules for computing In det K[U] in the hopping pa-
rameter expansion. To this effect we first rewrite In det K as follows

Indet K[U] = Trln K[U],

where “Tr” denotes the trace in the internal space as well as in space-time. Sub-
stituting for K[U] the expression (12.10) and expanding the logarithm in powers of
kM, we have that*

l

Trin K[U] = —Z%

/=1

Tr(MY). (12.15)

* Actually, there is no contribution to the trace coming from ¢ = 1, since M,,,

connects different lattice sites.
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To get a diagramatic representation of the sum in (12.15), we write out the space-

time trace explicitly:

R4
Tr an[U] == Z % Z trMn1n2Mn2n3 e Mnenn (1216)
(=2 {ni}

where “tr” now stands for the trace in the internal space. The non-vanishing matrices
M., have been defined in (12.3b). From the structure (12.16) it follows immediately

that the contributions of order x* can be associated with closed paths of length ¢ on
the lattice with an arbitrary sense of circulation. These contributions are calculated
as follows. Consider a given closed geometrical contour Cy, on the lattice, with ¢
the perimeter of the contour measured in lattice units. Because of the space-time
trace in (12.15) a path winding around the contour one or more times can start at
any one of the ¢, lattice sites on Cy,. Hence each path is weighted with a factor ¢.
A path tracing out the contour Cy, n times will however contribute in order x".
Hence the contribution to (12.16) associated with all possible paths on the closed
contour Cy, is given by

ﬁ.neo

tngZO,
n=1
where Mc, is the path ordered product of the matrices (12.3b) along the geo-

metrical contour Cy,. The rhs of (12.16) is now obtained by summing the above
expression over all possible geometrical contours of arbitrary shape, and arbitrary

perimeter:

Trln K[U] = lndet Kfu] = =3 3 Z

Lo {C[O}n 1

(12.17)

From here we can further obtain an elegant expression for the determinant
itself [Stamatescu (1982, 1992)]. Thus (12.17) can also be written in the form

Indet K[U] = Z Z trin(1l — neOMCZ ).
t {Cry)

It therefore follows that

det K[U] =[] [ det(1 - x"Mc,). (12.18)
o {Cyy}
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Note that the determinant appearing in this expression is that of a finite matrix in
colour and Dirac space.

In fig. (12-6) we show some diagrams contributing to (12.17). As in the case
of the external field Green’s function discussed in section 2, they also include paths
passing through a given lattice site an arbitrary number of times, as well as paths
having appendix-like structures. As before these appendices do not contribute if the
Wilson parameter is chosen to be r = 1.*

o

Fig. 12-6 Diagrams contributing to In detK in the hopping parameter

expansion.

The above hopping parameter expansion for the effective action (12.14b) can
be combined with the corresponding hopping expansion for the fermionic correlation
function discussed in section 2. In those regions of parameter space where Indet K
and K~! can be approximated by a few terms in the expansion (i.e., small hopping
parameter, or large MO), the computational effort is thereby drastically reduced.
In practice, however, where one is interested in working in the scaling region with
small quark masses, non-perturbative methods for computing K~! and det K are
required.

The hopping parameter expansion can be used to obtain a qualitative picture
of the screening of the static quark—antiquark potential due to “pair-production”
processes (see e.g., Joos and Montvay, 1983). The following picture is very crude.
Within the framework of the strong coupling expansion, the Wilson loop will be
paved not only with the plaquettes arising from the action Sg[U], but also with
closed loops built from link variables, arising from the fermionic determinant. In

the HPE, these latter contributions come with a power of x, determined by the

* In the continuum limit physics should be independent of the choice for r, as
long as r # 0.
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Fig. 12-7 Contribution to (W¢) coming from the fermionic determinant
(inside loop) which screens the ¢g -potential in the strong coupling limit and

in lowest order of the hopping parameter expansion.

length of the loop. These different loop contributions will compete with each
other in determining the interquark potential. In particular, in the strong cou-
pling limit, 8 — 0, the Wilson loop will be paved with loops arising only from
the fermionic determinant. In fig. (12-7) we show a diagram which corresponds to
a dynamical quark and antiquark being created at the positions of the (infinitely)
heavy antiquark and quark, respectively. The contribution of this diagram is of

the form
<W0[U]> ~ RQ(R-{-T) _ €(R+T) ln/i2’

which shows that the dynamical ¢g-pair leads to screening of the heavy quark-
antiquark potential, which in this crude approximation is just a constant: V,; =

—In k2.

12.4 The HPE and the Pauli Exclusion Principle

In the previous sections we obtained graphical rules for calculating the two-
point fermion correlation function and the effective action in any order of the hopping
parameter expansion. In particular the rules for calculating the quark propagators
in a background field, corresponding to a given link-variable configuration, where
based on eq. (12.7), derived in chapter 2 using the concept of a generating functional.
We now want to rederive the results obtained above by applying the Grassmann
integration rules (discussed in chapter 2) directly to the path integral expressions for
the external field correlation function (12.6b) and the determinant of K [U]. In this

way we shall demonstrate explicitly that the Pauli exclusion principle, which forbids
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that the same lattice site can be occupied by two identical quarks or antiquarks, is
satisfied.

Consider the exponential, exp(—Sr), in (12.6b) where Sp is given by (12.4b).
Inserting for K the expression (12.10) and using the fact that bilinear expressions

in Grassmann variables behave like c-numbers under commutation, we have that

o~ SF — H o~ Pa(n)a(n) H B (M) My p g b (i) (12.19)
n,A m,Bi,B’
i

where M,,p 5 = (Mmn)sp - Here, and in the following, the unit vector /i can point

in the positive and negative directions. Now, since products of a given Grassmann
variable vanish, only the first two terms in the expansion of the exponentials (12.19)
will contribute; hence

e = TT0+ mat)) TT [0+ s (m, ), (12.200)
n,A m,B,B’
where*
ma(n) = Ya(n)pa(n), (12.200)
dpp (m, 1) = (M) My mipp (Ul (m + ). (12.20¢)

For convenience we shall refer to (12.20b) and (12.20c¢) as “monomers” and “dimers”,
respectively. These names have also been used elsewhere in the literature, although
in a somewhat different way, and we apologize for borrowing these suggestive names

for our purpose.**

According to (12.20), the basic elements appearing in the integrand of the nu-
merator and denominator of (12.6b) in any order of the hopping parameter expansion

are:

i) The quark (antiquark) fields 14, (n1) - - - (5, (my) - - - ) of the correlation function
to be calculated. We denote these graphically by an open circle (¢ — o) and an
extended dot (i) — e) and shall refer to them as the external fields.

ii) Monomers, consisting of a quark and an antiquark located at the same lattice
site.

* Notice that we have interchanged the order of the Grassmann variables in

(12.20b). This gives rise to a minus sign.
** See e.g., Gruber and Kunz (1971); Rossi and Wolff (1984); Burkitt, Miitter and

Uberholz (1987).
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iii) Dimers, consisting of a quark and antiquark located at neighbouring lattice sites
and joined by a string bit U,(n). We shall denote these graphically by

n,B n+p,B' tdpp (n’ ﬂ)
Hence the contributions to the integrand of (12.6b) of order x* will consist of the
external fields mentioned in i) and a system of monomers and ¢ dimers distributed
on the lattice. Of these only a subset of configurations will survive the fermion inte-
gration. Thus it follows immediately from the structure of the integration measure
(12.1b) and the fact that the only non-vanishing Grassmann integral is of the form

[ v =~ [ dvdvi =1, (12.21)

that every lattice site must be occupied by one, and only one, quark-antiquark pair
for every internal degree of freedom. This is the manifestation of the Pauli exclusion
principle! Since the internal indices of the gg-pairs associated with monomers are
automatically paired, it then follows that the degrees of freedom of the quark and
antiquarks associated with the external fields and dimers must also combine into
pairs at every lattice site. Thus the maximum number of such pairs at any site
cannot exceed the total number of degrees of freedom of the quarks. What concerns
the monomers, we can ignore them from now on, since their role is merely to fill in
those degrees of freedom which are not supplied by the external fields and dimers;*
hence they are the “filling material” which ensures that the Grassmann integrals do
no vanish, and we shall not exhibit them in any diagram. (Notice that according
to the definition (12.20b) of m, each monomer merely contributes a factor +1,
as follows from the integration rule (12.21)). What concerns the denominator in
(12.6b), the same general criteria as discussed above apply, except that now the
integrand only receives contributions from monomers and dimers. Since this is the

simplest quantity to study, we shall discuss it first.

Consider the integral (12.5). In order ’ the only relevant contributions to the
integrand involve ¢-dimers distributed on the lattice in accordance with the princi-
ples mentioned above. In figs. (12-8) and (12-9) we show some typical configurations
in order xk* and x®. Consider first the diagram of fig. (12-8a). Since each lattice site
is only occupied by a single qg-pair, there is no restriction on the internal degrees

* Recall that monomers (and dimers) act like C-numbers under commutation with
any Grassmann variable.
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of freedom labeling the pair. For a fixed choice of Ay,... A4, the diagram gives the
following contribution to det K[U]:

4
],(41611)...144 = /Hd'&x‘lz (nl)d¢Az(n2) 1/_1141 (nl) [(Mn1n2)141142¢142 (nQ)wx‘b (nQ)
=1

ca, (n4)7;A4 (n4) (Mm;m )A4A1} ¥, (n1),

Except for the two fields, ¢4, (n1) and 14,(n;), appearing on the right and left of
the square bracket, all others are grouped in the form 7). Upon integration each of
these pairs yields a factor +1. The remaining integral gives rise to the well-known

minus sign associated with a fermion loop. Hence
(a)
IAal...A4 = _(Mmm)x‘hx‘lz (MN27L3)A2A3 s (MN47L1)A4A1'

Upon summing over all possible values of the internal degrees of freedom, we are led
to the diagram in fig. (12-8b), whose contribution is obtained by taking the trace of
the product of matrices (12.3b) along the closed path, and including a minus sign
for the fermion loop.

(a) (b)

Fig. 12-8 (a) Dimer configuration contributing to det K in order x*;
(b) corresponding diagram obtained by taking the trace.

Let us now take a look at the more complicated diagrams shown in
fig. (12-9a,b). Here we notice that the path to be followed is not unique. Thus with
the diagram in fig. (12-9a) we can associate the paths shown in fig. (12-10), while for
the diagram in fig. (12-9b) the possible paths are those depicted in fig. (12-11). The
possibility of associating different paths with a given diagram of dimers is clearly
connected with our ability to match the degrees of freedom of the ¢q pairs at lattice
sites occupied by more than one gg-pair in different ways. Notice also that the var-
ious connected and disconnected paths associated with a given set of dimers differ

in the number of independent quark loops.
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N
L] 1

() (b)

Fig. 12-9 Dimer configurations contributing to det K in order »%.

(@) (b)

Fig. 12-10 The two possible paths which can be associated with the
dimer configuration depiced in fig. (12-9a).

Fig. 12-11 The two possible paths which can be associated with the
dimer configuration depicted in fig. (12.9b).
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If we consider the contribution of any one of these closed paths obtained by

taking the trace of the ordered product of the matrices M,, ,+; along the path

with a given sense of circulation, then we are clearly violating the Pauli exclusion

principle, since several quarks (and antiquarks) at a given lattice site would be
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allowed to carry the same quantum numbers. But if we add the contributions of
the paths shown in fig. (12-10) (or fig. (12-11)), Pauli’s principle is restored! Thus
consider for example the two paths depicted in fig. (12-10a,b). For both of them, the
contributions violating Pauli’s principle correspond to the following qq configurations

L,

A
0+AOXOA—%0

But because the diagram in fig. (12-10b) contains an extra fermion loop, it will

at the lattice site denoted by a cross:

receive an extra minus sign. Hence the configuration shown above will not con-
tribute in the sum. In general, diagrams contributing to the determinant consist
of a single loop, or of several closed loops (in contrast to Indet K which, as we
have seen, only involves simple closed paths). The contribution of each loop is cal-
culated by taking the trace of the ordered product of the matrices (12.3b) along
the path with a given sense of circulation and including a minus sign for every

fermion loop.

Let us now carry through a similar analysis for the numerator in (12.6b). For
definiteness sake we shall demonstrate the general ideas by studying the following

four-point correlation function:

11141,142;131,32 (nla Ng; My, Maj; U) = <wA1 (nl)l/}Ag (nQ)Q/_}Bl (ml)d—}Bz (m2>>sF. (1222)

The relevant dimer configurations contributing to the numerator of the correspond-
ing path integral expression are given by the rules stated earlier in this section. In
fig. (12-12) we show some typical diagrams built from the external quark-antiquark
fields appearing in (12.22) and from a set of dimers. Depending on the way the
internal degrees of freedom of the gg-pairs are matched* we generate different sets
of diagrams consisting of paths connecting the external quarks and antiquarks, and
of closed loops which may, or may not, have links in common with these paths, as
shown in fig. (12-13). Once we have generated all possible sets of paths of a given
total length, there is no longer any need for restricting the sum over internal indices.

* Or equivalently, the way we follow the arrows through the diagram.
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T i
nl,Al o—<—e
QO e>—0 e—>—o0 O e—>—o0
i mz, B2 i
{ J &——O o ( J ——0 [ )
ml,BlT %
o—<—eo0—<« O o—~«—e o—<—o O
ny, Ay
(a) (b)

Fig. 12-12 Two possible dimer configurations which contribute to the

correlation function (12.22).

O—>— O————
(@) (b)

O——  a
+. +.
©) ()

Fig. 12-13 Diagrams which can be associated with the dimer configu-
rations in fig. (12-12).
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The cancellation of those contributions violating Pauli’s principle in individual
diagrams, takes place between diagrams consisting of the same set of oriented links.
As we have seen, all these diagrams originate from the same dimer configuration.

Notice that the contributions shown in figs. (12-13a) and (12-13c) factorize into
a contribution of O(k®), calculated according to the rules stated in section 2, and
a closed loop. This loop is cancelled by a corresponding contribution arising from
the denominator, i.e., from the fermionic determinant. In this way we recover the

results of section 2.

1 | O——x

2 2 @——
Fig. 12-14 Two diagrams generated from the same dimer configuration

shown in fig. 12-15, and which taken together ensure the Pauli principle.

There is another point which must be mentioned. Not only the minus sign
associated with fermion loops but also the signum of the permutation associated with
the contractions in (12.7) plays an important role in ensuring Pauli’s principle. Thus
consider e.g., the diagrams in fig. (12-14) generated from the dimer configuration
depicted in fig. (12-15). None of these diagrams contains a closed loop. Symbolically

their contributions are of the form

oM---M®d @& M---M®
and

oM---Mo> @& M---M®

where the circles indicate the position of the external quark (antiquark) fields; hence,
according to our integration rules, one of the two diagrams receives an extra minus
sign ensuring the cancellation of Pauli-forbidden contributions at the lattice site

denoted by a cross.

For examples where the hopping parameter expansion has been used in a Monte
Carlo simulation see Hasenfratz and Hasenfratz (1981a), and Hasenfratz, Karsch and
Stamatescu (1983).
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3 4
O o
2 @ i

Fig. 12-15 Dimer configuration which gives rise to the paths depicted
in fig. 12-14.

This concludes our discussion of the hopping parameter expansion. For a more
detailed study of the fermionic determinant in the HPE see Stamatescu (1982). In
the following three chapters we now study the lattice analog of the weak coupling

expansion in continuum field theory.
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CHAPTER 13

WEAK COUPLING EXPANSION (I).
THE ®3-THEORY

13.1 Introduction

Weak coupling perturbation theory can be used in continuum QCD to in-
vestigate its short distance properties. The reason is that QCD is asymptotically
free. On the other hand, lattice QCD was invented to study non-perturbative phe-
nomena, like quark confinement, hadron masses, hadronic weak matrix elements,
etc.. So why should we be interested in studying weak coupling perturbation the-
ory in lattice QCD which, as the reader might expect, is much more involved than
in the continuum formulation? Because of the specific gauge invariant regulariza-
tion with a lattice cutoff, the lattice action will include so-called irrelevant vertices,
which have no analog in the continuum. Although these vertices vanish in the con-
tinuum limit, a finite number of them will actually contribute in a give order of
perturbation theory to the Green functions in the limit of vanishing lattice spac-
ing. Hence the number of Feynman diagrams that need to be considered is larger
than in the continuum formulation. But also the integrands of Feynman integrals
are now periodic functions of the momenta, and the usual power counting theo-
rems of the continuum formulation, needed for formulating a renormalization pro-
gram, do not apply. It is therefore not a priori clear that lattice gauge theories are

renormalizable.

Let us come back to the question of why we are interested in a perturbative
treatment of lattice gauge theories. By having introduced a space-time lattice to
regularize the quantum theory, one has manifestly broken Poincaré invariance. It is
therefore important to investigate whether this symmetry is restored in the contin-
uum limit. A non-perturbative analysis is very difficult. We can, however, get an
answer to this question within the framework of perturbation theory. On the other
hand there are symmetries of the classical continuum action which are known to
be broken on the quantum level. In this case one speaks of an anomaly. Clearly a
lattice formulation should correctly reproduce the anomalous behaviour of the quan-
tum theory. A typical example is the famous Adler-Bell-Jackiw (ABJ) anomaly in
continuum QED. For vanishing fermion masses the action possesses a (chiral) sym-
metry which, according to the Noether theorem, implies the conservation of the

vector and axial vector currents on the classical level. But on the quantum level it
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has been shown that there exists no regularization scheme in which both currents are
conserved. If one insists on the requirement that the current coupled to the gauge
field (i.e. the vector current) remains conserved on quantum level (we do not want
gauge invariance to be broken), then the axial current will no longer be conserved.
Its divergence can be calculated and is referred to in the literature as the Adler—
Bell-Jackiw anomaly (Adler, 1969; Bell and Jackiw, 1969). The question then arises
whether the lattice formulation of QED reproduces this result. At first sight there
appears to be a contradiction with what is known from the continuum formulation.
Thus the action with naive massless fermions is invariant under chiral transforma-
tions for any finite lattice spacing. Hence one expects that the vector and axial
vector currents remain conserved also for a — 0. This is indeed the case. Neverthe-
less there is no contradiction with the result obtained from continuum perturbative
theory, for we have seen that the action with naive fermions actually describes six-
teen fermion species. As has been shown by Karsten and Smit (1981), these sixteen
fermions give rise to contributions to the divergence of the axial vector current which
alternate in sign, and the theory exhibits not anomaly. On the other hand, by using
Wilson fermions, chiral symmetry is broken explicitly for any finite lattice spacing.
Although this symmetry is broken on the lattice by an “irrelevant” term of the
action, this term plays a crucial role when studying the continuum limit, and en-
sures that the ABJ-anomaly is correctly reproduced. In continuum QCD there exist
a similar anomaly in the axial flavour singlet current, which must be reproduced
correctly by lattice perturbation theory.

But there are also other questions for which one wants to have an answer,
and which are not connected with any symmetries. For example, the short distance
properties of QCD, which can be studied in continuum perturbation theory, involve
a scale, A, with the dimension of a mass, which determines the rate with which the
renormalized effective coupling constant decreases with decreasing separation of the
quarks. This scale can be measured in deep inelastic scattering experiments. On the
other hand we have seen that one encounters a similar mass-scale Az, when studying
the continuum limit of observables in the lattice formulation. The two scales, which
have been introduced in very different ways, are expected to be related. In this case
this would lead us to the interesting perspective that, given A and the quark masses,
QCD should be able to predict all physical phenomena.

The above examples do not exhaust the list of applications of weak coupling
perturbation theory on the lattice, which, for vanishing lattice spacing, should cor-

rectly reproduce all the perturbative results of the continuum theory. For finite
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lattice spacing, however, the continuum results will be modified by lattice artefacts.
By making use of the large freedom one has in choosing the lattice action (which,
a priori, is only required to reduce to its continuum form in the naive continuum
limit), one can construct so-called improved actions (Symanzik 1982, 1983) for which
these artefacts are reduced.* Non-perturbative calculations using these “improved
actions” are then expected to allow one to extract continuum physics already for
larger lattice spacings. This is important since in praxis one is forced to perform

numerical claculations on rather small lattices.

In this and the following two chapters we want to to provide the reader with the
basic framework for carrying out perturbative calculations on the lattice, stressing
the differences between continuum and lattice perturbation theory. We will not
discuss renormalization theory. Renormalization of lattice gauge theories is based on
the same general ideas familiar from the continuum formulation. But their practical
implementation is much more involved. The interested reader may consult the work
of Reisz (1988a,b), where the renormalization program for lattice gauge theories has
been studied in detail.

In this chapter we begin with a discussion of a scalar field theory. Our objective
is to demonstrate how the integrands of Feynman integrals are modified by lattice
artefacts. The ¢3-theory is the simplest non-trivial example of such a field theory.
Our discussion, however, applies to any lattice field theory relevant to elementary
particle physics. Irrelevant vertices will play no role in our discussion. In the next
chapter we then consider the more complicated case of an abelian lattice gauge
theory. There we shall also have to deal with Feynman diagrams involving irrelevant
vertices. Finally, in chapter 15, we consider the case of lattice QCD. The weak
coupling expansion of Green functions in this theory is far more complicated than
in the ¢3-theory and lattice QED because of its non-abelian nature. But having
prepared the ground in this and the following chapter, the reader will hopefully be
able to follow the material on the weak coupling expansion in lattice QCD, which

we will present in great detail.

* Confer also the lectures by Liischer (1984). For an important example where
the program of Symanzik has been applied in the SU(2) and SU(3) gauge theories,
see e.g., Bernreuther and Wetzel (1983).
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13.2 Weak Coupling Expansion of Correlation Functions
in the ¢3-Theory

Consider the following euclidean continuum action for a real scalar field:

St = 5 [ d'zs()(-0+ M)o(a) + % [ ata(ola)’
Here O is the four-dimensional Laplacean, M is the bare mass, and gy is the bare
coupling constant carrying the dimension of a mass. As usual, the combinatorial
factor 3! has been introduced to simplify the Feynman rules. Introducing a space
time lattice, and scaling ¢, 0, M and gy with the lattice spacing a according to their
canonical dimension,* the lattice action takes the form

S8 = 3 buKumn + 2378,

where K is the matrix defined in (3.10b), and where n and m are 4-component vec-
tors labeling the lattice sites. Correlation functions of the fields gﬁn can be computed

from the generating functional
Z[j] — /Dée—s[éHZJnén
by differentiating this expression with respect to the currents I,k

~ o 1 0 Z[J]

A

As has been shown in section 2 of the second chapter, Z[J] can be computed in

perturbation theory as follows:
21 = e Smlsil Z,[J)

-y (_sint %DN ZolJ), (13.2a)

=0

* i.e., we define the dimensionless quantities é = ao, M = aM , O = a’0, and

Jo = ago-
** Notice that the subscript on n; labels different four-component vectors, and is
not to be confused with the i’th coordinate of a lattice site.
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where

Smld] = 5> k. (13.20)

and S, [0/0.J] is obtained from (13.2b) by making the replacement ¢, — 0/9.J,,.
Zo[j] is the generating functional of the free theory, given by eq. (3.12), i.e.,

. 1 1w s
Zo[J] = ————e2 Znm InKnmJm (13.2¢)

vdet K

From (13.1) and (13.2) one derives the Feynman rules in the standard way. In
every given order of perturbation theory the contribution to the correlation function
(13.1) can be represented by a set of Feynman diagrams built from the interaction
vertices with coupling —go and propagators Apm = K} represented graphically as

follows:
= KL

nm nm

n m
{ — 7.&0

There are two types of lines (propagators) associated with a general Feynman dia-

— A

gram: a) lines that connect one of the external lattice sites appearing in the corre-
lation function with an interaction vertex, and b) lines connecting two vertices. We

shall refer to the former as external lines, and to the latter as internal lines.

O

(b)

Fig. 13-1 (a) Diagram contributing to (¢,ém) in O(g2); (b) Lines
emanating from the two vertices which must be contracted to form the

diagram in (a).

As an example consider the contribution of order g2 to the two-point correlation
function (¢n¢pnm,) shown in Fig. (13-1a). It is given by*

A A

1. P
(DnPm) @) = 59 ; A Il Ay, (13.3a)

* As always, we denote dimensionless (lattice) variables and functions with a
small hat.
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where
Iy = (Azz’)Q- (13.30)

The “symmetry factor” of 1/2 multiplying (13.3a) arises as follows. Let us count
the number of ways that the six lines emanating from the two vertices shown in
fig. (13-1b) can be connected to make up the diagram depicted in fig. (13-1a). There
are six ways of choosing the endpoint n. This leaves us with three possibilities for
choosing m. The number of possibilities to connect the four remaining lines is two.
Hence there are 6 - 3 -2 = (3!)? ways of building up the diagram. Now each vertex
yields a factor 1/3!. This leaves us with a factor of 1/2! arising from the second
order term in (13.2a). Let us now write the right-hand side of (13.3a) in momentum

space.

As we have learned in chapter 3, the free propagator A, has the following

Fourier representation (cf. eq. (3.17))

. 7r d4f€ ik-(n—m)
Anmz/ — (13.4a)

where
A 4 A~
2= k2, (13.4b)
pn=1
and
~ k,
k, = 2sin R (13.4¢)

Notice that while l%“ denotes the momentum measured in lattice units, kn (with the
extended “hat”) denotes the dimensionless periodic function (13.4c). Because of the
appearance of the square of l%; in the integral (13.4a), the integrand is a periodic
function of l%u with periodicity 27. Inserting the expression (13.4) into (13.3) and
performing the sum over [ and [’ using the representation (2.64) for the periodic
d-function (with a = 1) one finds that

- A R s,
— M ik-n—ik’-m 13.
(o) = [ i Gl e, (13.50)
where
ALa s, A 1 An A A 1
e K2 4 M2
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and

2

4
T1(k, /Hd (2200 (k — 1 — )oK — 1 =) [ =———
BZ

iy l2 - M2
(13.5¢)

[\

Here [; denote the “line” momenta carried by the internal lines of the momentum
space diagram corresponding to Fig. (13.1a). Notice that the general structure of the
expressions (13.5) is the same as that of the continuum formulation if kAu is replaced
by l%m except that all the variables are expressed in lattice units. But because of
the appearance of the periodic d-functions, momenta are conserved at the vertices
modulo 2n7 (n an integer). This is important, since, e.g., for certain values of k and
l; in the (first) BZ, the argument of 51(;1)(1% — 1y — ) will vanish only for I, in the
next BZ. Consider, for example, the integration in (13.5¢) over ly. Then [, is fixed
tobe ly =k —1; +2N 7, where the integer N is determined by the requirement that
[, lies within the integration interval. But since the integrand is itself a periodic
function of the momenta, integrating over Zg is equivalent to setting Zg =k — Zl. In
other words, we can implement momentum conservation in the way familiar from

the continuum formulation. We are therefore left with the following expression for
(13.5¢):

TI(k, K M) = (2m)*03) (k — &)T1(E, M),

where

and

Let us next compute the contribution of the diagram in Fig. (13-1a) to the
physical correlation function (¢(z)p(y)) by scaling all lattice variables appropriately
with a. Proceeding as in chapter 3, we introduce the dimensioned variables ¢ = ngﬁ /a,
x =na, y = ma, M = M/a, k = l%/a, K = /%’/a, q = ¢/a, as well as the
dimensioned coupling constant gy = go/a, and study the behaviour of the integral
as the lattice spacing is decreased, keeping z,y, M and gy fixed. One finds that
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formally*

/a 4 4 7./
(¢(z)¢(y)) = lim Ak d'k

Gk K: M, a)ere v 13.6
a=0 | o (21)% (2m) (k, K5 M, a)e™e ' (13.6a)

where
1
Gk, K'; M, a) = (21)*0W (k — k' {~—H k:M,a)——| 13.6b
( ) = (27m)%0p ( )k2+M2( )k2+M2 (13.6b)
and
2 T/a d4 1
T(k; M, a) = 9—20/ : 7 E— . (13.6¢)
wofe T g2 4 Mk =) + M7

Here the dimensioned variables denoted with a “tilde” are defined generically by

.2 . pua

Pu = sin ==, (13.7a)
4

=Y b (13.7b)
pn=1

The graphical representation of the quantity appearing within square brackets in
(13.6b) is given in fig. (13-2).

k-q
Fig. 13-2 Contribution of O(g3) to the propagator in momentum space.
Let us summarize the important properties of the Fourier transform of the

correlation function (13.6a):

i) The general structure of G(k, k’; M, a) is the same as in the continuum formu-
lation, except that propagators are replaced by their lattice analogues,

A(p) = !

_ 13.8
252 + MQ’ ( )

* Actually this limit does not exist and one must invoke renormalization before
taking it. We shall come back to this point later; here we are only interested in
discussing some formal aspects.
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and that the momentum integrations are carried out over the Brillouin zone:

[_E us
a’a

]*. Hence apart from these modifications the Feynman rules are the same
as those of the continuum formulation.

ii) In the limit a — 0 the lattice propagators reduce to those of the continuum
theory.

iii) G(k,k’; M,a) is a periodic function in each of the components of the momenta,
with periodicity 27/a.

iv) The integrand of the lattice Feynman integral (13.6¢) is a periodic function of
the loop momentum ¢, with periodicity 27/a. Furthermore, it possesses a finite
continuum limit.

v) If the integrand of the lattice Feynman integral (13.6¢) is replaced by its naive
continuum limit, then the resulting integral is given by the continuum Feynman

rules with a momentum cutoff 7/a.

Although we have only discussed a particular example, these properties hold for
any Feynman diagram if we choose an appropriate set of loop integration variables.
A natural set of integration variables is obtained by identifying these with a subset
of the line momenta.* This is the choice we shall make in this and the following two
chapters. In fig. (13-3) we show such a natural choice of integration variable for a

diagram contributing to the two-point function in 0(gj).

Fig. 13-3 A natural choice for the loop integration variables.

Given a lattice Feynman integral having the above properties, we now want to
learn something about its continuum limit. In general this limit cannot be calcu-
lated by first evaluating the integrals for finite lattice spacing and then taking the
limit @ — 0. But since the integrands are finite in this limit, one may expect that
under certain conditions, one can replace the integrands by their naive continuum

limit, and hence get rid of the periodic structure of the integrands which complicate

* See Reisz (1988c) for a discussion of more general integration variables.
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enormously the computations. The power counting theorem of Reisz (1988c¢), which
we discuss in the following section, will tell us when this can be done. It also plays

a central role for formulating a renormalization program.*

13.3 The Power Counting Theorem of Reisz

Consider a general lattice Feynman integral in the scalar ¢ theory. We assume
that we have scaled all variables with the lattice spacing a in an appropriate way so
that this integral is the lattice-regulated version of a continuum Feynman integral. **

Furthermore we assume that

a) all trivial integrations asociated with the conservation of energy and momenta
at the vertices have been performed, and

b) that the loop integration variables ¢; (¢ = 1,..., L) have been chosen in such
a way that the integrand is a periodic function in each component of ¢;, with

periodicity 27 /a. The domain of integration is the first BZ.

Let k and [ denote collectively the set of momenta associated with the external
and internal lines of the diagram, respectively, and ¢ the collection of independent
loop integration variables. A general Feynman integral in the ¢3-theory then has the

following structure,

dq;
F(k; M,
@) /BZH 27T4Dk:q,Ma)

where the integrand is given by a product of the propagators (13.8) associated with

the internal lines of the diagram:

D(k,q; M, a) = [[ (@ (k,q) + M),

=1

Here I is the number of internal lines, and the p’th component of ; is defined by an
expression analogous to (13.7a). With a natural choice of loop integration variables

* A summary can be found in the lectures by Liischer at Les Houches (1988).
** In lattice gauge theories we shall also have to deal with Feynman integrals

which have no continuum analogue.
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[; will then be of the form*

L
koq) = i+ Qy(k)
j=1

where ¢;; are either &1 or 0. We will be interested, however, in integrals of a more
general structure. The reason is the following: take for example the integral (13.6¢).
It actually diverges logarithmically for a — 0. But by subtracting from it its con-
tribution at k = 0, we arrive at an expression which possesses a finite continuum

limit. We therefore decompose (13.6¢) as follows:

(k; M, a) =T1(0, M, a) + II(k, M, a) (13.9a)
where
90 d*q 1 1 1
Ik, M S— - : 13.9b
(k. M.a) =5 /z (2m)* (¢* + M?) [(q—k:)2+M2 2 + M? (13.99)

The first term appearing on the right-hand side of (13.9a) diverges in the limit
a — 0. This divergent constant can be absorbed into the bare mass parameter M in
the way familiar from continuum perturbation theory. The remaining integral will

be shown to possess a finite continuum limit. This integral has the following form

4 .
LCRRES Y
where**
N(k,q; M,a) = @ — (¢ — k)%, (13.100)
and
D(k,q; M,a) = (¢* + M*?[(q — k)> + M?]. (13.10¢)

But this is not the only motivation for studying integrals of a more general structure.
In lattice QED or QCD the integrals associated with Feynman diagrams will be
already of the type

d*q; N(k,q;M,a)
kM 13.11
2 /BZH @)1 D(k, ¢ M, ) (1311)

* We want to emphasize that it is important that the loop momenta are chosen in
such a way that the coefficients ¢;; are integers. Only then does the power counting
theorem of Reisz apply for Feynman integrals involving an arbitrary number of loop

integrations. Such a choice is always possible.
** In the present case the numerator function N does not depend on M.
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before invoking any renormalization procedure.®* We therefore are interested in an
answer to the following questions: a) When does the integral (13.11) possess a finite
continuum limit, and b) if so, what can we say about this limit?

These questions have been answered by Reisz (1988c), who proved a power
counting theorem for lattice theories, analogous to that familiar from continuum
perturbation theory. This theorem applies to integrals of the type (13.11) with N

and D satisfying the following requirements:

i) There exists an integer x such that™**
N(k,q;: M,a) = a "N (ka, qa; Ma) (13.12a)

where N is a smooth function of the variables ka,qa, Ma. Furthermore, N is
periodic in each component of the dimensionless loop momenta ¢ = qa with
periodicity 27, and a polynomial in Ma.

ii) The continuum limit of N(k, q; M, a) exists. We shall denote it by P(k,q; M):

lirr(l)N(k,q; M,a) = P(k,q; M). (13.120)
a—

iii) The denominator D(k,q; M, a) is of the form

D(k,q; M, a) = | [ Di(li(k. q); M;, a). (13.12¢)

=1

Furthermore, there exists a smooth function FZ(ZZ, MZ), which is periodic in ZZ with

periodicity 27 and a polynomial in M;, such that
1 -
iv) The continuum limit of D;(l;; M;, a) exists and is given by
lim D;(l; M;, a) = 17+ M} (13.12¢)
a—

v) There exist positive constants ay and K such that
|Di(l;; M;,a)| > K(I7 + MP) (13.12f)

for every a < ag, and [; in the BZ.

* If Ir depends on several masses, then M stands collectively for all of them.
** Recall that k& and ¢ denote collective variables. To be general we also include

the case where several masses {M;} = M are involved.
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Notice that this condition is automatically satisfied for scalar particles. But for naive
fermions it is violated for momenta /¢; at the edges of the BZ. On the other hand, for
Wilson fermions, the denominator function appearing under the integral in (4.29a)
is given by

1
D(I;M,a) =) o sin?(1,a) + M(1)?,

I

where M(l) has been defined in (4.29b). Expressed in terms of the momenta
ZNH, D(l; M, a) takes the following form for r = 1:

D(I; M, a) = (I + M?) + Mal® + ZFF
u#v

Hence D(I, M,a) > (I + M?) and (13.12f) is satisfied. Now if the integrand in
(13.11) has the properties (13.12) and if it satisfies the power counting theorem
of Reisz (which we discuss below), then a) the integral (13.11) possesses a finite
continuum limit, and b) this limit coincides with the expression obtained by re-
placing the integrand by its continuum limit, and sending the cutoff 7/a to infin-
ity; i.e.,
> L dqz P(k,q; M)
I, (2 + M?)

hm Ir(k; M, a) / (13.13)

where P(k,q; M) has been defined in (13.12b). This is a very nice result, for in this
case we get rid of the periodic structure of the integrand in (13.11) and are left with

an ordinary continuum Feynman integral.

We want to emphasize that the conditions i)-iv) are rather weak. In fact we
know of no example when they are not satisfied. On the other hand, condition v)
imposes a non-trivial constraint on the structure of the denominator for it implies
that for momenta [; lying at the edges of the BZ, D;(l;, M;, a) must diverge like 1/a?
in the continuum limit. Hence naive fermions are excluded, while Wilson fermions
satisfy condition (13.12f). The following example illustrates the role played by this

condition.

Consider the one-dimensional integral

fN(a):/Tr/a dk——— ! (13.14)

NZ 2k
—mja gz sin® 3¢ 4+ M?
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where N = 1 or 2. For N = 2 the integrand is the one-dimensional analogue of the
scalar propagator (13.8). On the other hand for N = 1 the denominator in (13.14)
is the analogue of that encountered for naive fermions. Consider first the integral
which is obtained from (13.14) by replacing the integrand by its continuum limit
and sending the cutoff to infinity. Independent of the choice of N, the result is 7/M.
Next let us calculate the integral exactly in the limit a — 0. To this end we make
use of the following integral representation for the integrand
s, e

2 .
where 22 = M gin? ke = N2(1 _ cos
a N

one finds that for N = 1 or 2, the integral can be written in the form

250 Substituting this expression into (13.14),

4ra 2a M
fn(a) = W/ dye” TR (y), (13.15)
where Iy(y) is the modified Bessel function. For large arguments, Iy(y) behaves as
follows:
1
Iy(y) — ——=¢". (13.16)

y—oo /21y

Hence for any finite a the integral (13.15) exist. For a — 0, however, the integral
diverges, as it must, if (13.15) is to possess a finite limit. We can therefore calculate
this limit by substituting the right—hand side of (13.16) into (13.15). The resulting
integral can be immediately performed, and one obtains

o 5 ()
Hence the result coincides with the one obtained in the naive approach for N = 2,
while it is twice as large for N = 1. This does not come as a surprise, since for
N =1, and k within the BZ, sin ka not only vanishes for £ = 0, but also at the
corner of the Brillouin zone. This is the analog of the familiar doubling problem!

The above example shows that even if a lattice integral, and its naive ap-
proximation, both possess a finite limit for a — 0, their continuum limits will not
necessarily coincide. In fact for N = 1 the denominator appearing in the integrand
of (13.14) violates condition (13.12f).

After these preliminaries, we are now in the position to discuss the power count-
ing theorem of Reisz, which applies to integrals having the form (13.11), with the
integrand satisfying conditions (13.12a—f). In order to establish the existence, or

non—existence, of the continuum limit, we need a definition for the lattice degree of
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divergence (LDD) analogous to that introduced in continuum perturbation theory
to study the convergence of Feynman integrals. But in contrast to the continuum
formulation, the LDD not only refers to the behaviour of the integrand for large
loop momenta, but it characterizes its behaviour under a simultaneous scale trans-
formation of the loop momenta and lattice spacing. This is connected with the
periodic structure of the integrand. Let us first introduce the lattice degree of diver-
gence for an integral involving a single loop momentum, and generalize the concept

afterwards.

Consider a function W (k, ¢; M, a) depending on a single loop momentum g.
Then according to Reisz (1988), the LDD is given by the exponent o defined by

W (k,\q; M,a/\) N Wo(k, q; M, a)A* + O(A*1). (13.17)
—00
To make it explicit that the LDD is obtained by scaling ¢ and a in such a way that
the product ¢ = qa is held fixed, we shall use the following notation:

degr,IW = a.

Applying this definition to the numerator and denominator functions, N and D,
of a one loop integral of the type (13.11) with L = 1, one finds that the LDD
of the integrand is given by degr, N — degr,D. The LDD of the corresponding in-
tegral (which includes the behaviour of the integration measure under the scale
transformation ¢ — Aq) is then defined by degrlr = 4 + degr,N — degr,D. The
power counting theorem of Reisz then states that if degrl/rp < 0, then the con-
tinuum limit of the lattice integral exists and coincides with its naive continuum
limit.

As an example consider the integral (13.10). A simple calculation shows that
degr,N =1 and degr,D = 6, so that degréﬁ = —1. Hence the integral converges for
a— 0 to

- g [ d'q 2q - k — k?

MM 235 | Gy @ + 3PP — kP + A7

Consider next Feynman integrals involving L loop momenta ¢, ..., qr, where
L > 1. The overall LDD is obtained by scaling all these momenta with the same
factor A\, while reducing at the same time the lattice spacing by a factor 1/A. But
even if this LDD is negative, the Feynman integral need not converge. The reason is

that divergencies may arise from integration regions, where only a subset of the line
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momenta becomes large, while the others are kept finite. Consider for example the
diagram depicted in fig. (13-3) for a fixed external momentum k. By keeping ¢, or ¢/,
or ¢-¢' fixed, large momenta are only allowed to flow in the loops of figs. (13-4a,b,c)
denoted by a solid line. In the remaining diagram, none of these momenta are kept

fixed.
e RN
K/ k k vk
(a) (b)
+

(©) ()

Fig. 13-4 Diagrams displaying the four Zimmermann subspaces cor-
responding to holding (a) ¢, (b) ¢, (¢) ¢-¢' fixed or (d) none of these in

fig. 13-3. The solid lines can carry arbitrarily large loop momenta.

This defines four Zimmermann subspaces. To each of these subspaces we can
associate an LDD by studying the behaviour of the integral associated with the
diagrams obtained by omitting the propagators denoted by the dashed lines in
fig. (13-4), and fixing the momenta carried by these lines. Consider for example
the diagram depicted in fig. (13-4c). Let u be the momentum in the dashed line
which is held fixed. Then the relevant integral corresponding to this Zimmermann

subspace H is given by

Iy = / T ! .
W S O @ MG + Mg R+ Mg~ - ) M

The LDD corresponding to the subspace H is obtained by scaling the loop vari-
able ¢ and lattice spacing a with A and 1/\, respectively. This LDD is given by
degryIny = —4.

The generalization of these ideas to Feynman integrals involving any number
of loop integration variables is straightforward: Given a Zimmermann subspace, we
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write the line momenta as a function of those momenta which are to be held fixed
and a set of loop momenta which are scaled with a common factor \. At the same
time the lattice spacing is multiplied by A™!. One then determines the LDD of the
integrand according to (13.17) where ¢ now stands collectively for all momenta that
are integrated over the BZ. The LDD of the integral is obtained by including the
behaviour of the integration measure under the scale transformation ¢ — Aq.

Let us summarize the results of this section. For lattice integrals satisfying
the conditions (13.12a—f), the power counting theorem of Reisz makes the following

assertion:

Theorem

Let Ir be a lattice Feynman integral of the form (13.11), which satisfies condi-
tions (13.12a—f). If the lattice degree of divergence for all Zimmermann subspaces
is negative, then the integral possesses a finite continuum limit given by (13.13).
Furthermore the right-hand side of (13.13) is absolutely convergent.

Let us apply this theorem to the integral (13.14). For N = 1 this theorem does
not apply since the integrand violates (13.12f). For N = 2 this condition is fulfilled.
Furthermore the degree of divergence of the denominator is 2. Hence the LDD of
f2(a) is —1, and the continuum limit is given by
This agrees with our earlier observation.

For a proof of the above theorem we refer the reader to the work of Reisz
(1988¢). As we have already mentioned, this theorem plays a central role in devel-
oping a renormalization program for lattice field theories. But it is clearly also very
useful for studying such problems as we have mentioned in the introduction, since it
allows us to replace all lattice integrals which satisfy the conditions of the theorem

by ordinary Feynman integrals whose symmetries are manifest.

This concludes our discussion of some of the basic lattice concepts which are
relevant to the perturbative study of any lattice field theory. In the following two
chapters we discuss lattice gauge theories which will be burdened by a number of
additional problems.
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CHAPTER 14

WEAK COUPLING EXPANSION (II). LATTICE QED

The scalar ¢*-theory we discussed in the previous chapter was a good labora-
tory for introducing a number of important concepts in weak coupling perturbation
theory which are relevant to all lattice field theories of interest to elementary par-
ticle physics. We now extend our discussion to the case of lattice gauge theories,
which present some problems of their own. Since the perturbative treatment of lat-
tice QCD involves a number of technicalities arising from its non-abelian structure,
we will begin with a discussion of lattice QED, where the Feynman rules can be

easily derived.

As we shall see, the lattice regularization of a gauge field theory gives rise
to an infinite number of so-called “irrelevant” interaction vertices which vanish in
the limit of zero lattice spacing. Nevertheless, some of these vertices can contribute
to correlation functions in the continuum limit through divergent loop corrections.
For QED in a linear covariant gauge, these vertices originate only from the lattice
regulated action. The purpose of this chapter is to demonstrate i) how the structure
of the interaction vertex in the continuum formulation is modified by the lattice
regularization, and ii) to elucidate the role played by irrelevant vertices in cancelling
ultra-violet divergencies in lattice Feynman integrals, which cannot be removed by

renormalization.

14.1 The Gauge Fixed Lattice Action

In lattice QED, the link variables are elements of the abelian U(1) group.
Their parametrization in terms of a single angular variable is given by U,(n) =
exp(i¢,(n)). Correlation functions of the link variables and the fermion fields are
computed according to (5.24), where, because of the abelian nature of the link
variables the integration measure DU has the simple form (5.23).

Since we are dealing with a gauge theory, we will eventually be interested in
studying the ground state expectation value of gauge invariant functionals of the
dimensionless fields ¢, ’JJ, and @/AJ We denote these functionals by F[gb;@/;,g/;]. The
ground state expectation value of I is given by

(T) = % / D@DYDYT [, 3, e Sernlod], (14.1a)
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where

7 = / D Dip DipeSaen(é:.4] (14.1b)

is the “partition” function for lattice QED, and Sqrp|¢, 0, 1&]}8 the gauge invariant
action expressed in terms of the dimensionless fields ¢, qﬁ, and @ For Wilson fermions
it is given by (5.22),* with the link and plaquette variables expressed in terms of
{¢.(n)}. One readily verifies that

SQED[(b’Q/;le] = SG[¢] +SI(E’W)[¢7@7QZ]7 (142@)
where**
1
Sclo] = 52 ;[1 — cos @ (n)], (14.20)
S (n) = 016, (n) — O du(n), (14.2¢)
and

— 5 SO — ) (n + ) (14.2d)

+d(n+ @) (r+ ) M h(n)].

The action of the right lattice derivative, 35, appearing in eq. (14.2¢c), is defined by
an expression analogous to (4.43b).

Because the coupling constant e, occurs with an inverse power in (14.2b), one
naively expects that the integral (14.1) is dominated for small coupling by those
configurations ¢ lying in the immediate neighbourhood of the classical minimum

of Sg.*** This minimum is realized for link configurations which are pure gauge,

* In chapter 5 we had supressed the “hat” on the Dirac fields, since we were only

interested in the dimensionless formulation.
** Here, and in the following, we shall use the same symbols for Sqrp, S¢ and

S%W), irrespective of whether they are considered to be functions of the link variables
U,(n), or the angular variables ¢, (n) parametrizing these. The factor 1/2 multiply-
ing the sum in (14.2b) takes account of the fact that we are summing over all values

of 1 and v. Notice that there is no contribution coming from p = v.
% We want to emphasize that this argument is only formal. Large quantum

fluctuations in the fields could turn out to play an important role, invalidating
perturbation theory.
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and therefore is degenerate. This degeneracy must be removed before performing
the weak coupling expansion, since otherwise one cannot define the free propagator
of the photon. In continuum perturbation theory this is a well-known fact. That it
is also true in the lattice formulation can be seen immediately by expanding (14.2b)

in powers of ¢,,, and looking at the quadratic contribution:

Solé] = 4 3 dnlr)op ) + -

Except for the factor 1/e2, this contribution has a structure analogous to that en-
countered in the continuum formulation. Hence the free propagator of the ¢,-field
cannot be defined, since ¢, vanishes for all configurations ¢ which are pure gauge:
du(n) = 55A(n) The solution to this problem is well-known: we have to introduce a
gauge condition in (14.1) which selects from each gauge orbit a single representative.
Along each such orbit the integrands appearing in the numerator and denominator
of (14.1) are constants. This must be done in such a way that gauge invariant corre-
lation functions are not affected by the gauge fixing procedure for any finite lattice
spacing. An elegant way of introducing a gauge condition was proposed by Faddeev
and Popov, and is referred to in the literature as the Faddeev—Popov trick.* Since
we shall demonstrate this trick for a generalized Lorentz gauge later on when we
discuss the non-abelian theory (where the computations are non-trivial), we shall
only state here the result, which in the abelian case is very simple. Consider the
following generalized Lorentz gauge**

Faldix] = 0L du(n) — x(n) =0, (14.3)

where x is some given arbitrary field, 35 is the left lattice derivative defined by an
expression analogous to (4.26b). The reason for having introduced the left derivative
will become clear later on. Applying the Faddeev—Popov trick, one finds that the
above gauge condition can be implemented by merely introducing a set of d-functions
in the integrands of (14.1a,b) which ensure that only those field configurations ¢,
contribute to the integrals which satisfy (14.3). Hence (14.1a) can also be written

in the form

_ ] DODIDETL, (7l XDTI6, &, e Samnlésdsil

r 1 =
< > ngbD@/AJD’Q/} Hn(s(}—n[gb;X])G—SQEDW{JN‘/;]

(14.4)

* If the reader is not familiar with this trick in continuum field theory, he may

consult the review article by Abers and Lee (1973), or any modern field theory book.
** Tt will be understood from now on that repeated Lorentz indices are summed.
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Next we perform one further standard trick to get rid of the J-functions. Since we
are calculating a gauge invariant correlation function, the choice of x in (14.3) is
immaterial. We can therefore average the numerator and denominator in (14.4) over
x with a Gaussian weight factor exp(—5= >, (x(n))?). The resulting expression then
takes the form

P 21— SSe 6,9)
<F>:fD¢Dwaf[¢>,w,w]e een 7 (14.50)

Ik D¢D1/}D1;6*58E3 [6,),1)]

where the “total” action Sgg% is given by

SSo16, .01 = Salo] + S2 (6,4, 9] + Scrld), (14.5b)
1

¥,
SGF[¢]:2a (Lgbu ) (14.5¢)

The subscript “GF” stands for “gauge ﬁxmg .

So far the coupling constant occurs in that piece of the action depending only on
the link variables. Furthermore, it appears with an inverse power, which is peculiar
to the lattice formulation. In the continuum formulation, on the other hand, this
coupling constant enters linearly in the fermionic part of the action and not at
all in the kinetic term for the gauge field. To establish the connection between
the lattice and continuum action we must introduce a lattice scale a, and a set of
dimensioned gauge potentials and fermion fields. This is done in a way analogous
to that described in chapters 4 and 5. But since we want our discussion to parallel
as much as possible the continuum case, we shall use a slightly modified notation.
Let ¥, = n,a be the coordinates of the lattice sites and (x),¢(z) and A, (z)
the dimensioned fermion fields and gauge potentials evaluated at these sites. The
action (14.2a) can be written as a functional of these fields by making the following
substitutions: ¢ (n) — a*y(x), ¥(n) — a®?p(x), p,(n) — epaA,(z). Furthermore,

we define a dimensioned bare mass parameter My by MO = aM, and introduce the

In the continuum limit ) goes over into [ d*z. With these replacements (14.5b)

following short—hand notation

becomes*

SarnlA, . 9] = SalA] + SpV[A, 4,9 + Sar(A], (14.60)

* In order not to introduce new symbols, we keep the old notation for the various
contributions to the action.
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where
Sa[A] = 302 a4 j{: [1 — cos(ega®F, (z))], (14.6b)
S0 = (Mot 4—) > bt
oo SR — ) (4 a) (14.6¢)
b B+ e+ e V()]
ScelA] = = Ty L OE A (14.64)

20[0

Here we have introduced the arbitrary parameter ag by setting a = e2a. The lattice
field strength tensor appearing in (14.6b) is given by

Fou(z) = 0% A, (z) — 97 A, (2), (14.7)

and the action of the dimensioned “right” and “left” derivatives in (14.7) and (14.6d)
are defined by

0, f () = ~(f(z + ajt) — f(z)), (14.8a)

0y f(x) = ~(f(2) = f(z — ajr)). (14.8b)

QI Q|

The next step consists in expanding the action in powers of the bare coupling.
This gives rise to an infinite number of interaction terms contributing to Sg and
S}W). Of these only those terms survive in the naive continuum limit which are
characteristic of the continuum formulation. Nevertheless, as we have pointed out,
we cannot simply ignore the irrelevant contributions when performing the weak
coupling expansion in a lattice regulated theory. In the following we include only
those “irrelevant” interaction vertices which vanish linearly with a in the naive

continuum limit.

Consider first the contribution to the action depending only on the link vari-
ables, i.e., Sg. Expanding (14.6b) in powers of the lattice spacing one finds that

Z )+ O(a®). (14.9)
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By making use of the relation™

> (0F f () Z f(z)dkg( (14.10)

T

we can rewrite (14.6b) up to terms vanishing like a* as follows:

——ZA )(8,0 — OFOL) A, (2). (14.11a)

Here

= Zafaﬁ (14.11b)

is the hermitean lattice Laplacean in 4 space-time dimensions:

0f() = = S[f @ + ai) + f(z — ap) — 2/(2)].

a2
I

Next, consider that piece of the action arising from gauge fixing J-function, i.e.,
(14.6d). Using again relation (14.10) we have that

Sap = ——ZA )OROLA, (). (14.12)

Notice that because (14.6d) involves the left lattice derivative, the tensor structure
of (14.12) is the same as that appearing in (14.11a). Hence by combining (14.11a)
and (14.12), we arrive at the following contribution to SgOt) quadratic in the gauge

potentials
ZA Qu (7, 9) Ay (y), (14.13a)
where
Qo (z,y) = (—5Wm + (1 - O%) a;jaf) 5D (x —y). (14.13b)
Here 5§f)(z) is the periodic d-function
éﬁ)(z) = /z (;ZZIT];@MZ, z = na, (14.14)

where from now on BZ stands for the dimensioned Brillouin zone [—7/a, 7/a].

* This relation follows immediately by introducing (14.8a) into the left-hand side
of (14.10), and making a shift in the summation variable. We assume here that
we are dealing with an infinite lattice, or with a finite lattice, with f(x) and g(z)
satisfying periodic boundary conditions.
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Finally, consider the fermionic contribution (14.6¢). Expanding the link vari-
ables U, = exp(iepaA,) up to terms quadratic in the coupling, one finds that

SW) = g0 4 g1 4 g 4 0a?), (14.15a)
where
4 _
50 = (ar+ %) S vtoute)
. E ) (14.150)
_ % W;(gj (7“ — ’yﬂ)l/J(.T + a/l) + 1/1(13 + au)(r + 7u>¢( )]
o

is the free fermion action expressed in terms of the dimensioned variables, and

s =10 [ () (r — ) Ap(2)e(@ + ap)

T,u

— (x4 aft)(r + 7)) A (2)(z)], (14.15¢)

}j )(r = ) A2 ()Y (x + aji)

+ 1/1(x + aft)(r + %)A”(x)w(m)]. (14.154)

Collecting our results, we therefore find that the total action (14.6a) is given by

SSea[A,0,9] = SPTAl + SL b, ] + S A, v, 9] + O(a?), (14.16a)
where
2
SiuelA, 0, 0] =Y SI[A, 4, 9] (14.160)
/=1

is the contribution arising from the fermion-gauge-field interaction. From (14.15) we
see that Sy, describes not only the interaction of a single photon with the Dirac
field, but also includes a contribution involving the coupling of two photons to the
fermions. Whereas the former contribution reduces in the naive continuum limit to

the familiar interaction term,
S0 s deq [ dai(o)Aua)i(a),

the latter contribution, 51(?2)’ has no analog in the continuum and in fact vanishes
for a — 0. Nevertheless, as we shall see, it plays an important role in canceling
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divergent contributions to the vacuum polarization, which cannot be eliminated by
renormalizing the fields and bare parameters. This is not surprising, since these
vertices are a consequence of the lattice regularization which provides us with a
gauge invariant cutoff.*

14.2 Lattice Feynman Rules

Assuming that Sg]%% can be approximated by (14.16), and that the integra-
tion range of A, in the path-integral expression for the correlation functions can
be extended to infinity,** the perturbative expansion of any correlation function in-
volving a product of the fermion fields ¢ and 1) and gauge potentials A, is obtained
in the way familiar from continuum perturbation theory. In any given order of the
coupling, the contributions to the correlation function can be represented in terms
of Feynman diagrams built from the free propagators of the gauge potential and the
fermion field, and from the interaction vertices. Their momentum space represen-
tations can be easily deduced by writing the action in momentum space. Consider
first the contribution (14.13). Introducing the following Fourier decomposition of
the fields

d4k A ik-x
e = [ A e
Vo) = /BZ (;ZWZ))ALQ;a(p)eip'I, (x = na) (14.17)

inle) = [ i,

and making use of the relation (2.64), one readily finds that it can be written in the

form
SO — % /B ) (;l:; (6211’{;4 A, (k) [e*“fit%szw(k', ke ™| A, k), (14.18a)
where
O (K k) = (27)6W (k + k) (k), (14.18b)
and
Q. (k) = (@Wl%? — (1 - O%) l%ul%,,). (14.18¢)

* In continuum perturbation theory it is well-known that Feynman integrals must

be regularized in a gauge invariant way.
** We know of no rigorous proof that this is a legitimate procedure.
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Here lzru is defined by an expression analogous to (13.7a). Notice that because of the
appearance of the phase factors in the integrand of (14.18a), the quantity within
square brackets is a periodic function in each component of the momenta with

periodicity 27/a.
Next, consider the contribution Sg)) defined in (14.15b). Its decomposition in

momentum space is given by

Sy = /BZ (34];4 (d4 ), G 0) Kas (0, )0 (p), (14.19a)
where
Kas(p,p) = (27)'05 (p — P') Kap(D), (14.190)
and
Kas(p) = 2 > (Vu)apsinpua + M(p)das. (14.19¢)
P

The momentum dependent mass M (p) has been defined in (4.29b).
Finally, one easily verifies that (14.15c¢) and (14.15d) have the following

momentum-space decomposition:

o _ 'k d'p dY s s s
W= [ i B

X [ei(p’p/)“% ~FS;()XB(p’,p, k)} , (14.204a)
Ll s (0. k) = (2m)0p(p — P + R)V,is(p + 7). (14.200)
Vu(;lczﬁ(q) = —ieg [("}/u)ag cos % — ir0ap Sin %] ; (14.20¢)
AL A AL A

S = 5 | Gl g ) A )ALl
X [ei(p_p/)”%F/(i,);aﬁ(p/,p, K k;)} : (14.21a)
T s 0 k) = 2m)400) (p— p' + b+ KV o0+ P), (14.210)
V;i?aﬁ(q) = —e3ab,, [10ap cos L% — i(7,)apsin 2] . (14.21¢)
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Notice again, that because of the appearance of the phases, the quantities appearing
within square brackets in (14.20a) and (14.21a) are periodic functions in all com-
ponents of the momenta with periodicity 27 /a. Hence momentum conservation can
be implemented in the usual way. Accordingly, we can replace the phase factors in
(14.20a) and (14.21a) by exp(—ik,a/2) and exp(—i(k+k"),a/2), respectively. These
phases can now be absorbed in the Fourier transforms of the gauge potentials, which
amounts to redefining the potentials at the midpoints of the links connecting two
neighbouring lattice sites. Although we could have avoided these phases right from
the start by Fourier decomposing A, (z) as follows

d4k x . .
Au(z) = / A, (k)etwrai/2) (14.22)

we have nevertheless preferred to carry them along in order to exhibit the 27/a—
periodic structure of the above mentioned expressions. But when computing the
contribution of a particular Feynman diagram one finds that the phases associated
with the interaction vertices, and the photon propagator (deduced from (14.18a))
cancel at each interaction vertex. The only phases that remain are those associated
with the gauge potentials appearing in the correlation function. Hence by Fourier

decomposing the correlation functions as follows,

(%1 (371 - Yay, (xn)&&( ) o @Z (yn)Am(Zl) S Aue (Z€)>

d”‘pz dh T
- L5 T 5 LT it o 4 45
=1 ]:1
w b im1(Piwi—piyi) i iy kj'(zj'f‘aﬂj/?)’ (14.23)

we can calculate the contribution of a Feynman diagram to the correlation function
in momentum space, f‘almw (p1, ... k), using the propagators and vertices deduced
from (14.18) to (14.21) ignoring the phases factors. The propagators of the gauge
potential and of the fermion field are given by the inverse of the matrices (14.18c¢)
and (14.19¢), respectively, while the vertices are given by (14.20c) and (14.21c). In
the continuum limit V' s CYB(q) vanishes, and V},,..(q) reduces to the vertex function
of the continuum theory, i.e., —ieo(Vu)as-

Except for the fact that on the lattice we must also take into account “irrele-
vant” interaction vertices, the rules for computing the contribution of a particular
Feynman diagram are the same as in the continuum formulation. For finite lattice
spacing the corresponding Feynman integrals are however much more complicated

than those encountered in continuum perturbation theory, where the integrals are
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regularized a posteriori, and do not follow from a space—time regulated generating
functional.

We now summarize the rules for calculating the contribution of a Feynman
diagram to the correlation function T, ., (D1, . . ., k) defined in (14.23).

i) To an internal fermion or photon line associate the propagators

P Selplas= Kol(p) = | e me M)
P I >, & sin® pua+ M2(p)

k _ 1 k. k,
W Dy (k) = Q/,Ll}(k) = ﬁ (6MV —(1—a) %2 )

ii) For the vertices insert the following expressions:

p. B p,o

k,u

—ieo(2m) "0, (p — p' + k)
e [(rdopcs (BEZ2) i (2220

K, v p,o

k, 1 p. B
—6%(271’)451(;1) (p—p +k+E)ad,,

X {Maﬁ cos <—<p +2p/)“a) — 1(Yu)ag Sin (—(p +2p/)"a)}

iii) For every closed fermion loop include a minus sign.
iv) Contract all Dirac indices following the fermion lines, and all Lorentz indices
following the photon lines.
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(v) Integrate the internal momenta over the Brillouin zone with integration measures

having the generic form d*k/(2m)%.

As an example consider the vacuum polarization tensor 7, in order 2. In the
lattice regularized theory there are two diagrams that contribute. They are depicted
in fig. (14-1).

p
p
k’w Y ‘vﬂ)@v\)ﬁ
k, k,v
(a) (b)

Fig. 14-1 Diagrams contributing to the vacuum polarization tensor I1,,, (k).

Applying the above Feynman rules, and performing the trivial integrations

associated with the (periodic) d-functions, one finds that

T, (k, k') = (27)*0% (k + k)L, (), (14.24a)
where
I (k) =TI (k) 4+ 110, (14.24b)
0 = - [ SE v - sV - )Se( - 1),
(14.24c)
ne) = —/BZ (;l; Tr {V,2(2p)Sr(p)} . (14.24d)

Here V,fl) and V,ff) are the matrices in Dirac space whose matrix elements are given
by (14.20c) and (14.21c). The minus sign in (14.24c¢,d) takes into account rule iii)
given above. Applying the power counting theorem of Reisz discussed in chapter 13,
we conclude that the lattice degree of divergence of both integrals is 2. Hence they
diverge like 1/a? in the continuum limit. If this divergence would persist after com-
bining the two integrals, then the theory would not be renormalizable, since there is
no mass-counterterm available to cancel this divergence. In continuum QED, where
only the diagram shown in fig. (14-1a) contributes, the corresponding Feynman inte-
gral is also superficially quadratically divergent. But because of the Ward identities,
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it actually only diverges logarithmically. This divergence can be eliminated by wave
function renormalization. On the other hand, the Ward identities, following from
gauge invariance on the lattice, are only satisfied after including the contribution
coming from the diagram depicted in fig. (14-1b); hence only then do we expect a
cancellation of unwanted divergencies. For vanishing bare fermion mass and Wilson
parameter r, this cancellation can be easily demonstrated (Kawai, Nakayama, and
Seo, 1981). We first isolate that part of Hfﬁ,) and HS’,} diverging like 1/a? for a — 0
by decomposing these quantities as follows:

1) (k) = 19(0) + [T10) (k) — T10(0)],

where ¢ = a or b. The quadratically divergent part is contained entirely in H,(f)(O).
Performing the trace in (14.24c) one finds that

2 T g sin Py sin p, cos P, cos p
H(“V) 0) = _6_0/ D " p w v 14.25a
WO =G | T (s, st e
where
Lo = Tr (737 %) (14.25b)

= 4(0,700p — 0, 0xp + 0,002 ).

By carrying out the summation over the Lorentz indices one easily verifies that
(14.25a) is proportional to d,, and can be written in the form

4e? T od'p cos® p 1 0 1
o - s, [ AR
v (0) a2 L @2m)t >, sin?py 2 sin( p“)ﬁﬁu >, sin? py
— 4_685 / Todlp sin’p, .
a2 | (2m)*Y, sin® py
On the other hand, for r = My = 0, (14.24d) becomes
—ej [T d'p 2 sinpy
e — ﬂ/ L AT A
m a? (2m)4 R Zp sin® P, S Py

—T

(14.26)

which, upon making use of the relation tr(v,7,) = 46,,, reduces to the negative of
(14.26). This simple example demonstrates the important role played by irrelevant

vertices in canceling divergences that cannot be removed by renormalization.

Let us summarize the lesson we have learned. The lattice provides us with
a gauge invariant regularization scheme. Although this gauge invariance is broken
by the gauge condition, the Faddeev—Popov procedure will leave gauge invariant
correlation functions unchanged, if we include the contributions of all irrelevant

vertices. This is true for finite lattice spacing. But when studying the continuum
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limit of correlation functions in a given order of weak coupling perturbation theory,
only a subset of these vertices need to be taken into account. These vertices will
ensure the renormalizability of the theory and the restauration of the continuum
space-time symmetries in the limit of vanishing lattice spacing.

14.3 Renormalization of the Axial Vector Current
in One Loop Order

When computing decays like 7= — e + 7., one needs to calculate the matrix
element (0]75,(0)|7~(p)) = pufr, where fr is the pion decay constant, and js,(z)
is the renormalized axial vector current. We must therefore know how the lattice
regularized bare current is renormalized. Here Ward identities will serve as guidelines
for determining the renormalization constants. It is instructive to compute these
constants in one-loop order perturbation theory.

Let us first exemplify the main idea for QED in the continuum. In the tree
graph approximation the axial vector current is js,|wee = &(:B)”y#'yg)w(x). The one
loop correction to this current is given by the diagrams depicted in fig. (14-2). In
the limit of vanishing fermion mass the QED action is invariant under global ~s-

transformations,

U(@) = ePP(a),
V() — P(w)e”. (14.27)

By performing an infinitessimal local vs-transformation of the fermion fields
in the generating functional of Green functions (i.e., ¢ becomes z-dependent), and
making use of the invariance of the measure, one easily derives a Ward identitiy for
an n-point vertex function with an the insertion of the divergence of the axial vector
current. In the continuum formulation of the path integral the Ward identity is only
formally defined. In a lattice regularization of the path integral, this Ward identity
is an exact statement, but needs, in general, to be renormalized as the cutoff (lattice
spacing) is removed. It is instructive to first derive this naive identity in continuum
QED in one-loop order directly for the diagram shown in fig. (14-2a). In momentum
space its divergence is given by

‘ o 40 , 1
iqu 5 (p. p') =Z(-@€>%Z/W [%50(1? 07755 (P + On | 5, (14.28)
A

where ¢ = p — p/, and Sj is the free fermion propagator Sy = (i7,q, + mo)~; mo is
the bare fermion mass. Making use of the trivial identity

i(p — 05 = 2movs — So (P — 155, ' (p), (14.29)
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b) (©

Fig. 14-2 Diagrams contributing in O(e?) to the axial vector (pseu-
doscalar) current in the continuum formulation. The cross stands for the

insertion of v,7vs (75).

which is valid for arbitrary momentum ¢, one immediately verifies that

19, N5, (p, ') = 2moAs(p, p') + v:X(p) + Z(p) s (14.30)

Here ¥(p) is the self-energy, and As is given by
As( ’)—i(—ie)QZ/ﬂ[ So(p' + €)v5S0(p + 0) 1 (14.31)
5\, P) = ~ (27)? BRIV V500(P T 7 .

The self energy is divergent and requires mass as well as wave function renormaliza-
tion. Mass and wave function renormalization as is dicated by QED in fact suffices to
render all the terms in (14.30) finite. This can be easily checked in the Pauli-Villars,
or dimensional regularization. The renormalized Ward identity for the corresponding

vertex function takes the form

iq,Usu(p, 0 r = 2mUs(p, 0 )r — S (V) rYs — 1555 (P) R, (14.32)

where Sr(q)g is the renormalized fermion propagator to one loop order, i.e., (i -
p+m = a(p)~!, and

F5u(pap,)R = Z2F5,u(p7p/)7
Ls(p,p')r = Zpls(p,p'),
mo = Zy ' (m + dm). (14.33)
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In the one-loop approximation one finds that*

2

Zg—l e—ln(m),

872 A
Zp—1= 2—; In (TX) (14.34)
om = m;—;ln (7\1),

where A is a momentum cutoff. Equation (14.32) is the generalization of the tree
level Ward identity (14.29).

On the lattice the Ward identity (14.32) will be modified by terms which are
naively irrelevant, i.e., which vanish in the naive continuum limit. We shall refer to
them in the following simply as “irrelevant”. In particular it will involve a contri-
bution arising from a chiral symmetry breaking term in the action, which ensures
the absence of fermion doubling. For concreteness sake we will consider the case
of Wilson fermions. As we shall see, the irrelevant contribution referred to above
leads to an additional finite renormalization of the axial vector current (apart from
the QED wave function renormalization) in the continuuum limit. This problem
has been first discussed by Karsten and Smit (1981).** Here we dicuss it in some
detail.

To derive the lattice regularized Ward identity analogous to (14.32) we consider
the following lattice integral,

Zo = /DUD¢D¢3 O, p)e ™, (14.35a)
where

O = taly)¥s(2), (14.350)

and S is the lattice action for QED with Wilson fermions, (5.22). The fermionic

contribution can be written in the form

Storm = Zzp { —v.(DHU] + DL[U]) + mo} + AS, (14.36a)

* We are neglecting finite contributions. It therefore corresponds to a minimal

substraction scheme.
** The renormalization of the axial vector current for different lattice realizations

of the current has been considered by Meyer (1983).
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where
AS = ga S () DEUIDE U (x) (14.36b)
is the chiral symmetry breaking Wilson term which vanishes for a — 0, and
DEUN6(x) = = [V @) + o) — (2)],
DHUN ) = ~[(a) — Ul — ai)(e — af)], (14.37)

are the covariant right and left lattice derivatives. r is the Wilson parameter. Making

use of the invariance of the partition function (14.35a) under the following infinites-

simal local axial transformation of the fermion fields (i.e., a change of variables),*
ie(z)ys (),

o1p(x)
0(x) = ie(z) ()75, (14.38)

where 75 = 171727374, and {,,75} = 0 for all u, one is led to the identity
(06S —60) = 0. (14.39)
One then readily verifies that for Wilson fermions

08 =iy e(x)[-0Ljo(x) + 2mojs(z) + Az))], (14.40)

xz

where Y =37 a*, x, = nua (n, € Z), 9% denotes the left lattice derivative,

() = S RBU () + ai) + Dl + aysUl(@he)]  (1441)
is the gauge invariant axial vector current, and
Js(x) = P(x)3s59() (14.42)

is the pseudoscalar current. Furthermore
r T N A N
A(w) = =5 > Bl@)slUp@)(a + af) + Ule - ap)le - a) - 20(x)]
o

— - > e — a) Uy — ait) + (@ + ap) U (2) = 20(2)st(a).

(14.43)

* The integration measure is invariant under this transformation.
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is the operator originating from the chiral symmetry breaking Wilson term (14.36b)
in the action. Finally, the variation dO in (14.39), with O given by (14.35b), is
given by

00 = ZZ e(x) Z[(gzy('%)aﬂ/fd(y)qﬁﬁ(z) + 5zz¢a(y)¢_}6(z> (75)55]-
T 0

Since €(x) in (14.40) is an arbitrary infinitessimal function, one is led to the Ward

identity

(O 5 (@) (y)5(2)) = 2mo s (= w (y)%(Z» <A(w)¢a(y)15ﬁ(Z)>

- Zém Ya(y)¥s5(2))(75)55- (14.44)
0

Notice that A is an “irrelevant” operator which vanishes in the classical continuum
limit. It could however (and in fact does) play a relevant role on quantum level. In
the following we will consider (14.44) up to O(e?). To this order A is given by

Alz) ~ —— {w(x)% [1 +icaA, (a: + %)

2
- (e (o= 2)) [t -
+ h.c.} + %7” > d(@)ys(). (14.45)
Hence up to O(e?), M
A(r) = —a; Zw yys0(z) —ag Zw )39 () + X(), (14.46)

where x(z) is an “irrelevant” operator 1nvolv1ng one and two photon fields. In mo-
mentum space the sum of the first two terms on the rhs of (14.46) become propor-
tional to M,.(p;a) + M,.(p; a), where

2
M, (q;a) = % Z sin? % (14.47)
o

is the r-dependent part of the Wilson mass (4.29b).
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With the decomposition (14.46), the Ward identity (14.44) implies the following
relation between the axial vector and pseudoscalar vertex functions in momentum
space

i@ L, (p, s mo, a) = 2[M (p; mo, a) + M (p'; mo, a)|Ts(p, p'; mo, a)
+ T8 (p, p'smo, @) — 15 S5 (p;mo, @) — g (9'smo, @),
(14.48)

where '™ is the two-point fermion vertex function with an insertion of the

x-operator. M(q;mg,a) is the “Wilson” mass
M((L my, a’) =mo + MT(Qa CL), (1449)

and S;! is the inverse of the lattice regularized fermion propagator

S;l(p; mo, a) = iv,p, + M(p;mo, a) — X(p; mo, a), (14.50a)
where
_ 1.
Pu = —sinp,a. (14.500)

In one-loop order, I';,, and I's are given by the sum of Feynman diagrams of the
form a — f and a, e, f, respectively, shown in fig. (14-3). The diagrams contributing
to the self-energy Y(p) are those labeled by g and h. The Ward Identity (14.48) is
nothing but the generalization of the following tree-level lattice identity analogous
to (14.29):

R/
sin [(p ;’) ] Psu(p, 'm0, @)ree = 2M (pi o, @) + M(p'smo, )ls
I

— 7555 H(p; mo, a) — Sy (p's mo, a)7s,
(14.51a)

where

+
1_\5u|t1ree = COSs [(p 2p ) CL] YuV5- (14.51b)
m

In O(e?) we have the following relation between the one particle irreducible vertex

functions

z’cj#Ag)M(p,p'; mo, a) = Q[M(pJ my, a) + M(p’; mo, G)]A5(pap/; mo, G)

+ASY (p, p'smo, a) + 5 5(ps mo, @) + 2 (p mo, a)ys,
(14.52)
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q + qyv qv
P’ p P P v P
(@) (b) ©
v ay q i
o D v D P D
) (e) t9)
O N ﬁl
p p P P
(2) (h)

Fig. 14-3 Lattice diagrams contributing in O(e?) to the Ward identity
(14.48). Diagrams b, ¢, d and h have no counterpart in the continuum.
Diagrams a—f contribute to I's,. In this case the big dots stand for the
insertion of the axial vector vertices defined via the expansion of (14.41)
in powers of the gauge field. Diagrams contributing to FéX) are shown in
figs. b, ¢ and d, where the big “dot” now stands for the insertion of the
vertices defined via (14.45) and (14.46). Only diagrams a, e, f contribute in

one loop order to I's(p, p'; a) because of the ultralocality of the pseudoscalar

current (14.42).

which is the lattice version of (14.30). Apart from the appearance of the Wilson
mass, it involves a naively “irrelevant” contribution AéX). In the following we will
study in detail the renormalized version of the bare lattice Ward identitiy (14.48) to
one-loop order. Our emphasis will be placed on the role played by the above men-
tioned irrelevant contribution. The determination of the renormalization constants
involve some tedious, but straight forward calculations. They are extracted by Taylor
expanding the expressions for the vertex functions around vanishing momenta. Only
first order polynomials in the momenta need to be considered. The coefficients in
the expansion are in general complicated integral expressions, whose behaviour for
a — 0 can however be determined rather easily. We leave these computations as
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a lengthy exercise for the reader. In appendix B we have summarized the relevant
vertices in momentum space required for carrying out the computations.

Consider the lattice regularized Ward identity (14.48). Let Zzl/ ? be the QED
wave function renormalization constant for the fermion fields. Multiplying (14.48)
by Zy we have that

iGuZaT5,(p, Py o, @) — 2mo ZaTs(p, p's mo, a) — ZoTS™ (p, ' mo, a)
= —’75225;1(]9; mo, a) — Zzsﬁl(p/;mo, a)ys, (14.53)
where

2o (p, ' mo, a) = 225[ My (p; mo, @) + M, (p';mo, a)|Ts(p, p's mo, )
+ 2T (p, 1y mo, ). (14.54)

Diagrams contributing to FéX) are labeld by b, ¢, d in fig. (14-3). For the rhs of
(14.53) to be finite we must also perform a mass renormalization:

mo = Zy '(m + om). (14.55)

Here m is a renormalized mass. With the definitions (14.47), (14.49), (14.50a) and
(14.55), we then have to one-loop order that

lim 7,85 (p:mo, a) = i9,p,, + m — Xr(p,m), (14.56)
where
Sr(pim) = im[S(p;m, a) — om — i(Z2 — 1)7,p,] (14.57)

is the renormalized self-energy. Z, and dm are chosen such as to the render this
expression finite.

The in the limit a — 0 divergent parts of dm and Z; can be computed by
Taylor expanding Y(p; m, a) up to first order in the momentum. From the diagrams
g and h in fig. (14-3) one finds after some lenghty, but straightforward algebra that
the divergent parts are given by

C0) e?
om = Y + ﬁmln(ma), (14.58a)
o2
Zy— 1= 52 In(ma), (14.58b)
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where
™ 49 )
C(ma) = T‘62/ g 64 B nfé) - : (14.58¢)
= 7 5122 4 K120, ma))
with
. / 0 0
— p2 i 2 0p 2 o 2 i 2 o
n(t)=1¢ —2;8111 5; [cos <5> — rsin (;)]
—A[? + M?(0,ma)] (14.584)
and

n

. g
U:2sm§,

o =sin/t,. (14.58¢)

~

M(¢,ma) is the Wilson mass (14.49), with mo — m, measured in lattice units
(Quantities with a “hat” are measured in lattice units), and C'(0) is a finite constant.

Hence to one loop order and a — 0 (14.55) is given by

C(0) = 3e?
" + ] In(ma). (14.59)

mo=m +

In contrast to the continuum formulation, mg involves a linearly divergent contribu-
tion proportional to the Wilson parameter. As we shall see this linear divergence will
be elliminated by a corresponding divergent contribution of the naively irrelevant
term FéX) in the Ward identity. The logarithmic divergent expressions Z, — 1 and
dm are the lattice analog of the expressions in the continuum (14.34).

Consider now the lhs of (14.53). Since with the above choice of Z; and dm
the rhs is finite for @ — 0, so is the lhs. Consider first the contribution g, Z>I's,.
Since the highest “lattice degree of divergence” (LDD; see sec. 13.3) of the one
loop diagrams contributing to I's, is zero, this expression is at most logarithmically

divergent. In one loop order we have that

14, ZoL5,(p, p's mo, @) = 1Gu Y,y + 1Gu[Asu(p, p'sm, ) + (Zo — 1)y,y5). (14.60)

As, denotes the contribution of the one-loop diagrams a — d shown in fig. (14-3).
Of all these diagrams only the triangle diagrams turns out to be (logarithmically)
divergent. We can extract the divergent part by studying the small a behaviour
of the corresponding lattice Feynman integral at zero external momenta. After
some lengthy, but straighforward algebra one finds that the quantity appearing
within square brackets in (14.60) is finite for @ — 0. Consequently the remaining
(pseudoscalar) terms on the lhs of (14.53) are also finite, since the Ward Identity
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holds for arbitrary a. Consider first the contribution of 2[M,(p, a) + M, (p’,a)|I's in
(14.54). Since the one-loop contribution to I's; has LDD = 0, and hence diverges at
most logarithmically, while M, vanishes linearly with the lattice spacing, this term
will make no contribution in the continuuum limit. Next consider the contribution
of Z,TX in (14.54). To O(e?) ZoTY is just T * The corresponding Feynman dia-
grams b, ¢, d in fig. (14-3) have LDD = 1. We therefore decompose this term follows:

) = L0+ (T — To)I + (1 - 1)1y, (14.61)

where T}, denotes the Taylor expansion in the momenta around p = p’ = 0 up to n’th
order. The last term on the rhs has negative lattice degree of divergence and hence
possesses a finite continuum limit. This limit may be calculated by making use of
the Reisz theorem (see sec. 13.3). Since FéX) is a naively irrelevant contribution, this

)

term vanishes in the continuum limit. For TOFéX) and (T — TO)FgX one then finds

after some lengthy algebra that

TOFéX) = 2mz§§<)75,

o )F(X) W (14.62a)
1 0)ls A Qu Y5,
where
C s d4g i 2 é_d
20— (ma) 2T262/ - %30 . (14.620)
ma = ) i 4 )

and Z,(4X) is finite. After a rather lengthy calculation its expression is found to be

A

T di (0 T 44 (0
zﬁ‘)(m):&/ 4:2 f()(éA)]Jrez/ . 9o (1) |
77’)’L

_x (27) / MZQ + M2 _x (27) / [gz + ]\Zf2(é, m)]?
(14.62c¢)
where m = ma,
N ~ A 2 ~ .92 Eo— “rrh A .92 éo‘
fol) = =2rM,(¢) 4 2r= cos{, Z sin” = + 2rM (¢, m) sin 5 (14.62d)
)
9o (0) = 2M,.(0) [ng(é) +17) " sin® %] (rsinf, — M((, 1) cos )

)
+ 7 cos l,(sin® 0, — E:Sin2 0y), (14.62¢)

A

* Recall that x is itself an operator of O(e). It arises from the expansion of the
fermionic contribution to the lattice action in powers of the gauge potentials, and
is a lattice artefact.
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with
. ‘
M (0, ) :m+2TZsin2§)‘, (14.62f)
A
and
A 2 é\U 2 é\)\
Ne(¢) = 2 cos 5 = Zcos Ok (14.629)
A

As always, quantities with a “hat” are measured in lattice units. The continuum
limit corresponds to vanishing m = ma. The above integrals are finite in this limit.
Summarizing we have that ZQFéA) in (14.53) is given by

ZQFéA) (p,p) = 2m21<3X)75 + iz%)quw% + - (14.63)

where the “dots” stand for terms vanishing in the continuum limit. Note that this
expression is completely local and has the form of possible counterterms for the
pseudoscalar and axial vector current. This will in fact be just the case.

Finally consider the contribution 2mgZsI's(p, p'; mo, a) in (14.53), where my is
defined in terms of the renormalized mass m by (14.55). In the one-loop approxi-
mation it is given by

om
2moZsT5(p,p's mo, a) = 2mys + 2m | As(p,p'sm, a) + peti1E (14.64)

where the diagram contributing to As is shown in fig. (14-3a). Since As(p,p’;m,a)
has LDD = 0, it diverges at most logarithmically for a — 0. But dm has a linearly
divergent part, so that (14.64) diverges even linearly for a — 0. Now comes an
important role played by the x-term in (14.53). By combining (14.64) with (14.63),
and making use of (14.58a) and (14.58b), we have that for a — 0

2moZs0s(p, p's mo, @) + ZaT® (p, p') = 2m[Us(p, p'sm, @) + Zpv5] + 12 g7,

(14.65a)

where

2
-~ om - €
Zp =zp’ + gl v In(ma). (14.65b)
This is precisely the lattice analog of the renormalization constant zp = Zp — 1
in (14.34). Hence, after wave function and mass renormalization, the Ward identity

(14.53) reads as follows in the continuum limit

iq,Tsu(p, )k = 2mTs(p, )k + 125 ¢y — 1557 () — S5 ()75, (14.66)
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where 21(49‘) = z&X)(O) is a finite constant determined from (14.62c), and Sp is the
renormalized propagator. The extra term ing)QMVM% can be removed by a finite
renormalization of the axial vector current, so that the final form of the Ward

identity becomes

i@, s (p, PR = 2mDs(p,p')r — 1555 () — Sz ()75, (14.67a)
where
_ —1
F5,u<p7 p/)R = (llll)% Z,(4X) Z2 (ma)r5u(p7p/; ma, a)7 (1467b)
Ls(p,p)r = lim Zp(ma)Ls(p, p'; ma, a), (14.67¢)
a—

and ZX‘) = 1+2£‘X), Zp =1+ZzZp. Zy and Zp are logarithmically divergent renormal-
ization constants having a form completely analogous to (14.34) of the continuum
formulation. Note that the linear divergent contribution TOF(5X) in (14.61) to the
Ward identity (14.53) played a crucial role in rendering the expression finite. This
term cancelled the linear divergent contribution arising from dm, which is a conse-
quence of the lattice regularization, and has no counterpart in the continuum. What
is new on the lattice, is that the axial vector current requires an additional finite
renormalization, in order that the Ward identity retains its naive structure after
renormalization. Thus QED renormalization alone does not suffice.

We have considered above the Ward identity relevant for studying the renor-
malization of the axial vector current. Ward identities involving the insertion of
the divergence of the axial vector current in more general Green functions can also
be readily be obtained. They can be best summarized by making use of functional
methods. Thus consider the generating functional of Green functions,

Zn,7,J] = / DUD Dy =St Ssonee (14.68a)

where

Ssource = Y _[1(x)(x) + P(@)n(@) + Ju(2)U,(2)]. (14.68b)

xT

Making the infinitessimal change of variables v (z) — 1(z) + 6¢(x), ¥ (x) — ¥(x) +
S1p(x), with d¢ and d1) given by (14.38), under which the measure is invariant, one
imediately concludes that

<5S - 6Ssource>n,77,J - O, (14690,)
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where, as before, 65 is given by (14.40), and

source Z Z ")/5w ) ¢($)75n<x>]' (14'69b>

Expression (14.69a) can also be written as follows

/DUDQ/}DIE {—85]'5“(96) + 2myjs(x) + A(x)

e a _ a —S+Ssource __
7704<£L'> (75)045 8%(3:) 77[3(33) (’75)04,8 ana(l') e =0,

or compactly

(=0Liy(a) + 2majo(o) + Ale)yas = i) = o). (1470

By differentiating this expression with respect to the sources we generate Ward
identities involving the insertion of the divergence of the axial vector current in
arbitrary Green functions. The Ward identity we have discussed above follows by
differentiating (14.70) with respect to  and 7 and setting thereafter n =7 = J, = 0.
A similar analysis as the one discussed above shows that Ward identities involving
the insertion of the divergence of the axial vector currrent in higher n-point functions
involving np > 2 external fermion lines and ny4 > 1 gauge fields are finite and non-

anomalous upon QED renormalization.

14.4 The ABJ Anomaly

In continuum QED or QCD it is well known that Ward identities following
from gauge invariance play a very important role in securing the renormalizabilty of
these theories. In general, Ward identities relating different unrenormalized Green
functions are derived by considering local transformations of the fields in the gener-
ating functional. If the “naive” form of these identities retain their structure after
renormalization, then we say that the Ward identities are non-anomalous. If their
structure is not preserved (on account of quantum fluctuations) then one speaks of
anomalous Ward identities. Such a breakdown on quantum level can be desastrous,
for it may not allow the quantization of the theory. Thus e.g. in the case of the elec-
troweak theory it is important that the chiral symmetry of the classical action, in
the massless quark limit, remains unbroken on quantum level, since the gauge fields
are coupled to chiral currents which are the sources for the fields. An example of a
harmeless anomaly is the ABJ-anomaly (Adler 1969, Bell and Jackiw 1969), which
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plays an important role in the description of the electromagnetic decay 7 — 2v.
The anomaly is harmless because it manifests itself in the divergence of a current
(the axial vector current) which is not the source for the gauge fields in QED or
QCD. How does this anomaly arise within the framework of a lattice regularized
gauge theory?

Let me first remind the reader of how the axial anomaly arises in continuum

QED. Consider first the partition function for continuum QED in an external gauge

field,
Z[A) = / DipDip e~ el 0] (14.71)

where Sgem is the fermionic contribution to the action (5.8¢). In the limit of
vanishing fermion mass this action is invariant under the global transformations
Y(x) — exp(iays)y(r) and ¥(x) — ¥(x) exp(iays), where a is an 2-independent
parameter. Next consider an infinitessimal local transformation with o — €(x). The
fermion measure in (14.71) is, at least formally, invariant under this transforma-
tion.* Let 0Sm be the corresponding change of the action. Since the above local
transformations of the fermion fields just correspond to a change of variables, we
(naively) conclude that

<5Sferm>A = %/D¢D¢ (S‘S’fermeisferm =0. (1472)

(0Sferm) 4 18 the expectation value of § S, in a background gauge field. One readily
finds (after a partial integration) that

3t = [ d'a e(w) [2md(o)50() - B, Ba ()|
Since €(x) is an arbitrary function, it follows from (14.72) that

(Oujsu(x))a = 2m(js(x)) 4, (naive), (14.73)

where j5, = zﬁfyu%w. But actually this equation is violated because of quantum
fluctuations, as is demonstrated in any book on quantum field theory. The violation
is induced by the triangle graphs shown in fig. (14-4), each of which is linearly

* Actually, the integration measure needs to be regularized. As has been shown
by Fujikawa (Fujikawa, 1979) the ABJ anomaly can be viewed as a consequence of
having to regularize this measure.
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Fig. 14-4 Triangle diagrams which give rise to the ABJ anomaly in the

continuum.

divergent and therefore must be regularized. One then finds that (14.73) is modified
by an additional term as follows

2
. . e ~
(Ousn(@))a = 2mljs(2))a + 7o B E, (14.74)

where F v 1s the dual field strength tensor, Fuv = %EM,,)\IOF \p-

On the lattice the regularization is introduced already on the level of the parti-
tion function. Hence any considerations of the above type will leave us with equations
which are exact. One then may be left with an anomaly when the cutoff is removed,
i.e., upon taking the continuum limit.

In the continuum formulation of QCD (or QED) it is well known that different
gauge invariant regularization schemes all yield the same expression for the axial
anomaly. Any candidate for a lattice discretization of QED or QCD should also
reproduce the correct axial anomaly in the continuum limit. As we have seen in
chapter 2, a naive discretization of the fermionic action which is local, hermitean,
chirally symmetric for vanishing fermion mass, and having the correct continuum
limit, will necessarily lead to the fermion doubling problem. That this must be so
is a consequence of the Nielsen-Ninomyia theorem (1981). To avoid the problem
of species doubling, the chiral symmetry must be broken explicitely, if one refrains
from abandoning at least some of the other properties. As we have seen in chapter 5,
a simple way to accomplish this is to add to the naively discretized fermion action
a “Wilson term”, leading to (5.17), which ensures that in the limit of vanishing
lattice spacing the unwanted fermion modes acquire an infinite mass and hence
decouple. For Wilson fermions the axial anomaly has been first studied by Karsten
and Smit (Karsten, 1981). These authors showed that the origin of the anomaly was
an irrelevant term in the lattice Ward identity. The anomaly was also studied by
Rothe and Sadooghi (Rothe, 1998), using the small-a-expansion scheme of Wetzel
(1985). In the former reference it was shown that, in the limit of vanishing lattice
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spacing a, this naively irrelevant contribution is indeed given by the D — 4 limit of
the dimensionally regulated continuum triangle graph. These computations are very
involved and we do not present them here. Subsequently, the anomaly was studied
within a more general framework by Reisz and Rothe (Reisz 1999), where the action
is not assumed to have the form proposed by Wilson.

As we have pointed out in section (4.7), there is an even milder way of breaking
chiral symmetry on the lattice, proposed a long time ago by Ginsparg and Wilson
(1982). For Ginsparg—Wilson (GW) fermions the fermionic action is of the form

Sferm Z¢ ]3 Y +m51y)w( ) (1475)

where the “Dirac Operator” D(z,y) is a 4 X 4 matrix in Dirac space which breaks
chiral symmetry in a very special way. While the Dirac operator in the continuum,
or its naively discretized version, anticommutes with 75, the GW-Dirac operator
satisfies the following GW-relation:

{75aD} = aD’75D, (1476)

where D is a matrix whose rows and columns are labeled by the a spin and space-
time index. It is a function of the link variables and can be expanded in terms of
the gauge potentials,

1
D(x,y)= n—Dgg o @yl ) A () - Ay (20), (14.77)

n,Hi,Q4,2Tq

where x denotes a lattice site. For Wilson fermions D(z, y) is a strictly local operator
connecting only neighbouring lattice sites, and with the gauge potentials living on
the corresponding links. On the other hand, the Dirac operator D(x,y) for GW-
fermions is non local in the sense that it connects arbitrary lattice sites and does
not involve only the gauge potentials at sites close to x. For the Neuberger solution
o (14.76), given by (4.65a) and (4.66), the non-locality arises from the inverse of
(ATA)Y/2. Nevertheless, as has been shown by Hernandez et al. (Hernandez, 1999),
Neuberger’s Dirac operator is still local in the more general sense, that the Dirac
operator decays exponentially at large distances, with a decay rate proportional to
1/a. In the naive continuum limit we have of course that D(x,y) — v,D,[A], where
D, [A] is the covariant derivative in the continuum.

In the following we shall discuss two alternative points of view of how the

ABJ anomaly is generated in the case of GW fermions. In the first approach we
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will make use of the observation made by Liischer (1998), which was proven in
sec. 4.7, that the GW-action possesses an exact global axial-type symmetry for
vanishing fermion mass. As we have seen in sec. 4.7, this symmetry differes from the
standard one (4.8) by lattice artefacts. Associated with this symmetry is an axial
vector current which is conserved on classical level. Following a similar procedure
as in the continuum, we then derive a Ward identity and identify the anomalous
contribution (ABJ anomaly). Within this approach the anomaly will arise from
the non-invariance of the fermionic integration measure under the non-standard
local axial transformations. In the second approach we then consider the Ward
identity derived for standard local axial transformations under which the measure is
invariant, but the action is not. The ABJ anomaly now originates from the explicit
chiral symmetry breaking in the GW-action, and hence parallells the approach to
the anomaly in the case of Wilson fermions.

Approach 1

Consider the action (14.75), where D satisfies the GW-relation (14.76). The
GW-Dirac operator is a function of the link variables. This action is invariant for
m =0 under the global infinitessimal transformations (4.68). Consider the case
where € in (4.68b) is a function of the space-time coordinates, i.e., a local trans-

formation:
V= =Y +60, =Y =+ 8, (14.78a)
S0 (x) = ie(2)s [(1 - gD) ¢] (), (14.78b)
30(z) = ie(z) [1; (1 - gpﬂ (2)7s. (14.78¢)

One then readily verifies that the variation of the action is given by

8t =1 3 () [F (@) + 2mib(2)350(x) + Aw)], (14.79)

x

where Y = > a*. F(z) and A(z) are defined in (4.69b) and (4.69¢), with F(x)
satisfying (4.70). Now according to the Poincare Lemma on the lattice (Liischer,
1999b), (14.70) implies that there exists an axial vector current js,(x) such that

F(x) = ~0} (), (14.80)

where 85 is the left lattice derivative (the proof of this lemma is quite involved).
Since the GW-Dirac operator has the correct continuum limit, it follows that for
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a— 0, jsu(z) = ¥(x)y,75¢(z). With (14.80) we conclude that (14.79) is given by
0Stem =i Y e(@)[=0 sy (x) + 2mid ()59 (x) + A(x)]. (14.81)

x
In contrast to the case of Wilson fermions, where jj,(x) is given by (14.41), we do
not know the explicit expression for the axial vector current. The last term on the
rhs is not responsible for the anomaly. In fact its external field expectation value
vanishes in the continuum limit. The anomaly arises from the non-invariance of the
fermionic measure under the variations (14.78). This leads to a Jacobian. Thus from
(14.78) we have that

(?Zg)) = B(z,y) = [1 +ie(z)vs (1 - %D>] (z,y).

The determinant of this matrix is given by

det B=¢e"™8 ~ 14+ Trin B.

Here the trace is carried out in Dirac, as well as in coordinate space. Hence the

Jacobian of the transformation is

o’ .a
J {51&] detB=1-— Z§Ze(x)trD(fy5D)(x,x),

where trp denotes the trace in Dirac space. A corresponding expression holds

T

for J[07'/81)]. Consider now the partition function in a background link variable

configuration,

= / DipDip ¢ Serm[:0U], (14.82)

Making the infinitessimal change of variables (14.78) leaves this expression invariant.
Hence we conclude that (taking into account the Jacobian of the transformation)
that

(0 Sferm ) U mz x)trp(ysD(x, x)) = 0. (14.83)

To arrive at the final form of the Ward identity we rewrite the contribution (A(z))y
t0 (0Sferm) in (14.81) as follows: from (4.69¢), (A(z))y is given in matrix notation
by*

(Az))y = ?trp [(D +m) ' Dys + v D(D +m) | (x, z),

* We have dropped the explicit dependence of the Dirac operator on the link
variables, for simplicity.
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where we have made use of
(Ya(@)¥s(y))v = (D +m) 5z, y) (14.84)
Making use of (D +m) "D =1—m(D +m)~ ! and trpys = 0, we can further write
(A(2))y = —m*atrp(y5(D +m))(z, 2) = m*a(y)(x)i(z)).

Hence the Ward identity (14.83) takes the form

(Oudsu())v = 2m{js(x))v — atrp (1D (, ), (14.85a)
where
js(@) = (1457 vla)sv(a). (14.850)

The last term on the rhs of (14.85a) is an anomalous contribution and yields in the
continuum limit the ABJ anomaly (Hasenfratz, 1998: Liischer, 1998a).

We now proceed to derive the above Ward identity from a more conventional
point of view which parallels the case of Wilson fermions.

Approach 2

Consider once again the action (14.75) and the partition function (14.82). Let
us carry out a change of variables (14.78a) induced by the standard local axial
transformations, where d1) and 81 are given by (14.38). Under this transformation
the integration measure is invariant since trp7ys = 0. The change in the action is

easily computed and now given by

OSim =i 3 (v [ 2)35(DY) (@) + (@ D) () y50(a)|

-+ ZZmZ 2)ys1(). (14.86)
We now make use of the definition (4.69b) and of (14.80) to write this expression in
the form
0Sterm =i Y €(@)[=0 sy () + 2mib(x)50 () + (D) (x)5 (D) (w)].

xT

(14.87)

Since the fermionic measure in (14.82) is invariant under the above local axial trans-
formations, the Ward identity now reads

(0S5erm) = 0. (14.88)
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Making use of (14.84), the expectation value of the last term in (14.87) can be

written in the form

a((¢D)(x)75(DY)(x)) = —atrp(ys D(z.z))
—mPatrp |y5(D +m) ™ (x, :1:)] , (14.89)

where the last term is just m2a(y(z)vs¢(x))y. Thus one arrives once again at the
anomalous Ward Identity (14.85).

We shall not discuss the anomalous contribution any further, since it has been
shown by Reisz and Rothe (Reisz 1999) that any lattice action satisfying some very
general conditions (which also hold for GW-fermions) will necessarily reproduce the
correct anomaly in the continuum limit. For the more complicated case of QCD we
will present a proof in section 6 of the following chapter.
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CHAPTER 15

WEAK COUPLING EXPANSION (III).
LATTICE QCD

Weak coupling perturbation theory in lattice QCD is much more involved than
in the U(1) gauge theory discussed in the previous section. The reasons for this
are the following: a) The lattice action is a complicated functional of the coloured
gauge potential; b) the gauge invariant integration measure associated with the link
variables depends non-trivially on the gauge fields, and c) the generalized covariant
gauge, analogous to that discussed in the abelian case, can no longer be implemented
in a trivial way. This latter feature is of course also true in continuum QCD. But
whereas there the Faddeev—Popov determinant, which emerges when the gauge is
fixed, can be represented in terms of an effective ghost-gauge field interaction which
is linear in the gauge potential, this is no longer true in lattice QCD.

The complexity of the expressions in perturbative lattice QCD, is a consequence
of the gauge invariant lattice regularization, which, as in the U(1) case, leads to an
infinite number of interaction vertices. But because of the non-abelian structure of
the theory, most of these vertices have a very complicated structure. Although in
the naive continuum limit only those vertices survive which are characteristic of the
continuum formulation, irrelevant contributions to the action do play an important
role when studying the continuum limit of Feynman integrals. Hence one must ex-
ercise great care in including all lattice artefacts in the action, which contribute
to the correlation functions in this limit. In this connection let us recall that the
whole point of the lattice formulation was that it provides a regularization scheme,
where gauge invariance is ensured for any finite lattice spacing. Only by including
all lattice artefacts we will therefore be ensured that for any finite lattice spacing
gauge invariant correlation functions will be independent of the choice of gauge,
and that the gauge fixed theory will possess a BRS-type symmetry, reflecting the
original gauge invariance of the theory before fixing the gauge. This is important
since this symmetry leads to Ward-identities which play an important role in de-
veloping a renormalization program. One therefore should abstain from making any
approximation when expressing the link-integration measure and Faddeev—Popov
determinant in terms of the gauge potentials before removing the lattice cutoff.
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In the following we shall set up the generating functional in a form which is
suited for performing the weak coupling expansion in lattice QCD. We then derive
lattice expressions for the propagators and vertices relevant for low order perturba-
tive calculations. We will however not discuss lattice Ward identities, nor renormal-
ization in this book. A detailed discussion of these topics can be found in the work

by Reisz (1988a,b).

15.1 The Link Integration Measure
In lattice QCD, the link variables are elements of SU(3) in the fundamental

representation.* They hence can be written in the form
U,(n) = e"n) (15.1a)

where ¢, (n) is an element of the Lie-algebra of SU(3):

8
Gu(n) =Y dp ()T (15.1b)
A=1
Here T4 (A = 1,...,8) are the generators of the group in the fundamental repre-

sentation. We chose them to be given by

TA—éA
2

Y

where A are the Gell-Mann matrices introduced in chapter 6. From (6.8), and (6.15)

we have that

(T4, TP =i faneTC, (15.2a)
C
Te(TAT?) = %5,43. (15.2b)

Under a gauge transformation, the link variables transform according to

~

Uu(n) = g(n)Uyu(n)g™! (n + 1),

* In contrast to the notation used in chapter 6, we shall not underline matrices
in colour space with a “twidle”. Except for the generators, all quantities carrying a
colour index will be c-numbers. Quantities without a colour index are matrix-valued.
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where g(n) and g(n + 1) are elements of SU(3). Correlation functions involving
the product of link variables and coloured quark fields are computed according to
(6.24), where DU is the gauge invariant measure associated with the link variables.
Our present objective is to express this integration measure in terms of the group
parameters ¢7}(n) defined in (15.1b). To this effect we first construct the invariant
measure associated with a single link variable, following Kawai et al. (1981).

Let U be an element of SU(3) with Lie algebra L. Then U can be written
in the form U = exp(i¢), with ¢ € L. Consider the following bilinear differential

form
d*s = Tr(dUTdU), (15.3)

where dU = U(¢ + d¢) — U(¢). It is invariant under left or right multiplication
of U with a group element of SU(3). Expressed in terms of the coordinates {44},
parametrizing ¢, (15.3) will have the form

s =Y gap(¢)de’de”. (15.4)
A,B

This defines a metric, g4p(¢) on the group manifold. The gauge invariant integration

measure (Haar measure) is then given by

du() = \/det g(¢ quﬁ (15.5)

where g(¢) is the matrix constructed from the elements gap(¢). To calculate g(¢)
let us rewrite (15.3) as follows (Kawai et al. (1981)):

d*s = Te{ (U~ dU) (U1dU)}. (15.6)

As is shown in appendix C, U~!dU is an element of the Lie-algebra of SU(3) and

has the form

U™dU =iy T*Map(—¢)dg”, (15.7a)
A,B
where
Map(¢) = (£> : (15.70)
1P AB
D = 28: oA, (15.7¢)
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and t4 are the generators of SU(3) in the adjoint representation.” Their matrix

elements are given by

the = —ifano, (15.8)

where fapc are the structure constants of the group appearing in (15.2a). The
generators ¢4 satisfy the following orthogonality relation:

Tr(t*t?) = 30 4. (15.9)

Inserting the expression (15.7a) into (15.6), and making use of (15.2b), one finds
that the metric gap(¢), defined in (15.4) is given by

1

gap(9) = §(MT(¢)M(¢))AB

1—cos<1>>
Y T (15.10)
( P2 AB

Hence g(¢) has the following power series expansion in terms of {¢*}:

| T G DAY
9(¢) = §+;m(@) : (15.11)
where ® has been defined in (15.7¢). This is the expression we were looking for.
Notice that by construction, g(¢) is a non-negative hermitian matrix. Hence its
determinant is real and non-negative.
The invariant integration measure associated with a single link variable U, (n)
is obtained from (15.5) and (15.10) by replacing ¢ by ¢/'(n). Taking the product
of these measures we arrive at the desired expression for DU:

DU = {H det [%MT(ng(n))M(gb#(n))] } Do, (15.12a)

where
1— 6*¢¢’u(”)
M(¢pu(n)) = .0 (15.12b)
®,(n) = t1e}(n), (15.12¢)

A

* Capital letters always run from one to eight.
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and

D¢ =[] dép(n). (15.12d)

n,Ap

We next rewrite (15.12) in a way which is convenient for later computation. Since
the determinant of g(¢) can also be written in the form exp(Trln g(¢)), we obtain
the following alternative expression for DU:

DU = ¢ Smeasl¥l D, (15.13a)

where, apart from an irrelevant additive constant, Syeas|[¢] is given by

1 2(1 —cos®,(n
Smeas[¢] = _§HZ,;TI' In { ( Cbi(n) ( )):| .

(15.13b)

The quantity appearing within square brackets is a polynomial in the matrix ®,,.

Shmeas[®] can also be written in the form

Smenl] = —3 S Tr Il + N (6, (m)], (15.14a)

n,

where

——(d,)*, (15.14b)

with @, defined in (15.12c). Notice the difference in the structure of the integration
measure (15.13) and its abelian U(1) counterpart, where DU is given by (5.23). In-
deed in the abelian case U ~'dU = id¢, where ¢ is the single real variable parametriz-
ing U. Hence according to (15.6), the right-hand side is just given by (d¢)?.
Consider now the ground state expectation value of a gauge invariant func-
tional of the dimensionless fields ¢7(n), Ve (n), A@&n)* We denote this functional by
T[¢, 1, 4]. For the action we will take the standard Wilson form given in egs. (6.25),
except that now we shall write Sqcp|o, 0, zﬁ] instead of Sqcp|[U, 0, Qﬁ] to emphasize
that Sqcp should be expressed in terms of the fields (bf}. Writing the link integration

* Recall that while the capital letters A, B, ... run from one to eight, small Latin
letters run from one to three, since the quark fields transform under the fundamental
representation of SU(3).
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measure in the form (15.13a), the ground state expectation value of F[(b,zﬂ,qZ] is

given by

. fDqSD@ZD@Z}F[QZ),/A&"(Z)]eiSQCD[d)ﬂ;ﬂZ}fsmeas[(b]
fD(bD'lZD'(&eiSQCD[Qszll;:lz]fsmeas[(b] ’

EH

(T[¢, ¢, (15.15)

This expression is not yet suited for carrying out the weak coupling expansion. As

in the U(1) case considered in the previous chapter, we must still fix the gauge.*

15.2 Gauge Fixing and the Faddeev—Popov Determinant

A popular choice for a local gauge condition which is linear in the fields ¢;‘, and

respects the discrete lattice symmetries, is the following generalization of (14.3),**

Af .1 AL (A Ay
where y4(n), A =1,...8, are some arbitrary given fields. We want to introduce this

gauge condition into the functional integral (15.15). This must be done in such a
way that expectation values of gauge-invariant observables are not affected by the
gauge-fixing procedure. Following the prescription given by Faddeev and Popov for

the continuum formulation, we consider the integral
Apples x| = /Dgﬂé(fﬁ[%,x]), (15.17)
n,A

where 9¢ denotes collectively the gauge transform of the group parameters {(;5;‘ (n)}
which parametrize the link variables U,(n). The above integral is carried out over the
gauge group manifold, with the integration measure Dg being given by the product
of the invariant Haar measures on SU(3) at every lattice site,

Dg = H dﬂ(fh)-

Because by definition of the Haar measure du(gg’) = du(g), it follows that App[¢; x|

is gauge invariant:

Arp[?9; x| = Arplé; X].

* Within the framework of continuum perturbation theory, this is an obvious
requirement, since otherwise the gluon propagator cannot be defined. In a lattice
formulation Speas[¢] includes a term quadratic in the fields gb;‘ which is not gauge
invariant. But since it depends on the coupling, it must be treated as part of the

interaction.
“* It will be always understood that repeated Lorentz indices are summed.
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We next introduce the identity
1= Aesloin] [ Dy [ o(5irin)
n,A

into the integrands of (15.15). Using the fact that I', Socp, Arp, as well as the
integration measures DU = exp(—Smeas) D¢ and Dv D1 are gauge invariant, we can
replace the fields ¢, 1&, and ?ﬁ in these expressions by their gauge transforms 9¢, 917@
and 92&, respectively. A simple redefinition of the integration variables then leads to

the following alternative expression for (15.15):

(v1o.0.3) = 5 [ DoDEDDArelon [T 80560

(15.184a)
. F[¢, 77;’ Q/;]G*SQCD[Qsa@;aq/;]*SmcaSW]’
where the normalization constant Z is given by
Z = / DSDYDYApplds x] [ 6(FL . x])e Seen bl Smslo] (15.18b)
n,A

We must now compute Agp|¢; x]. But because of the gauge fixing é—function appear-
ing in (15.18), we only need to know App[¢; x| for field configurations ¢ satisfying
the gauge condition (15.16). Hence it suffices to calculate the integrand of (15.17)
for 9¢ in the infinitesimal neighbourhood of ¢ = 1 with ¢ restricted by (15.16).
Accordingly, we must compute the change in the fields qb/‘j(n) induced by an in-
finitesimal gauge transformation. In the continuum formulation the corresponding
change in the potentials Af is a linear functional of the gauge fields. In a lattice reg-
ulated theory this is no longer true. Hence also App[¢; x| will acquire a non-trivial
structure.

The response of ¢ﬁ(n) to an infinitesimal gauge transformation has been cal-
culated in appendix D. Let 5(6)(;52‘(11) denote the change in qﬁﬁ(n) induced by the

transformation, i.e.,
UM(”) N eiﬁ(”)UM(n)e—i€(n+ﬂ) — ei(¢u(”)+5(e)¢u(n))

where €(m) are elements of the Lie algebra of SU(3) in the fundamental represen-
tation:

e(m) = Z T4 (m).
A
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Then it has been shown in appendix D that

e)¢A Z D,[¢]ape® (15.19q)
where

Dld] = M~ (9,(n)) O + i, (n). (15.190)

1 (¢u(n)) is the inverse of the matrix (15.12b), and ®,(n) has been defined in
(15.12¢). The first few terms in the expansion of M~ in powers of ¢,,(n) are given by

HOu) = 1 @) = o5 (@) (15190)

The non-linear response of gzﬁﬁ(n) to an infinitesimal gauge transformation is due to
lattice artefacts. Indeed, making the replacement

1 (n) = goad; (x)

n (15.19), and using the more suggestive (continuum) notation €Z(

¢B(n), one finds that

x) instead of

9000 Ay () —> ZD Jce” ()

where

Du[A] =0, +igy > tP Al ()
B

is the matrix valued covariant derivative of the continuum formulation.

Let us now calculate the function F2[9¢, x] in (15.17) for g in the neighborhood
of the identity, and for fields gbﬁ(n) satisfying the gauge condition (15.16). Making
use of (15.19) one finds that

X g§1 - mZB Loampldle® (m), (15.20a)

where

LnA,mB [Qb} = A;[L/Du[gb]ABénm (1520b)

is the analog of the matrix 9,D,[A]4pd® (x — y) in the continuum formulation.
Note that according to (15.19b), D,[¢] is a local function of the matrix valued field
®,(n), and that all lattice derivatives act on the lattice site “n”. We next introduce
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the expression (15.20a) into (15.17). Since for fields ¢} (n) which satisfy the gauge
condition (15.16) the integral only receives a contribution for group elements g in
the immediate neighbourhood of the identity, we may replace the group integration

measure by

Dg — H de?(n)
n,A

The integral (15.17) can now be immediately performed and one finds that for field
configurations satisfying the gauge condition, App is independent of x and given by

App[g] = det(=L]¢])

where L[¢] is the matrix defined in (15.20b). App is referred to in the literature as
the Faddeev—Popov determinant.

In principle we could incorporate the effect of App[¢] into an effective action by
setting App[¢] = exp(Trin(—L[¢])). We had adopted such a procedure in connection
with the link integration measure. But whereas Syeas|@] is given by a sum over local
products of the fields ¢ (n), this is not the case for Trin(—L[¢]).* To derive the
Feynman rules, however, we want to start from an action where the fields are coupled
locally. Hence we cannot incorporate the effect of the Faddeev—Popov determinant
into an effective action in the above mentioned way. Using a standard trick however,
we can circumvent this difficulty. Thus making use of the formula (2.47) we can
write det L[¢] in the form

det L[ / Hd n)de (n)eSeelotd, (15.21a)
where
Seple, ¢,6l = = > ¢4 (n)d} Dyld] ane® (n). (15.21b)
A,B.n
The Grassmann valued fields é¢4(n) and ¢#(n) (A = 1,...,8) carry a colour but no

Dirac—index. They transform according to the adjoint representation of SU(3), and
are the lattice analogs of the famous Faddeev—Popov ghost fields.

Finally, we must get rid of the gauge fixing d-functions in (15.18a,b). We do
this in the way described in chapter 14. Since the numerator and denominator in

* This non-local property is of course not peculiar to the lattice formulation.
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(15.18a) do not depend on the choice of the fields x*(n), we can average these
expressions over x*'(n) with a Gaussian weight factor exp |—5- 3, 4 XA(n)XA(n)].
Collecting the results obtained so far, we therefore find that (15.18) can be written
in the form*

(tot

fD¢DwaDCDCF[¢ w w] QCD[¢¢¢Cc]

(T[é ), 0]) = e (15.224)
[ DéD D DEDee=Saenlo:b b4
where the “total” action, Sgg%, is given by
Soen = Salé] + 8¢ (6.0, ] + Sarld] + Smeasld] + See[#, &, €]
(15.22b)

Here S¢i[¢] and S}W) (6,0, 1Z] are given by (6.25b) and (6.24c) with the link variables
U,(n) replaced by exp(i¢,(n)), and Sqr|¢| is the non-abelian analog of (14.5¢):

Sorld] = 5= 3 (AFeim) (15.22)

n,

The expression (15.22a) provides the appropriate starting point for performing a
weak coupling expansion analogous to that described for the abelian case considered
in the previous chapter. We have gone quite a way to arrive at this expression. And
we still have to do some work to derive the Feynman rules from the generating

functional

{ ﬁ é E /DéDtz/JDCDce QCD[¢ RN

pn [Ju ()b (m)+72 () P& (1) + () (n)+E64 () (n)+64 (n)éA (n)] .

The reason is that the contribution of S¢[¢] to Sqcp, is a complicated functional of
the fields gb;‘ and their derivatives. This is a consequence of the non-abelian character
of the link variables. In the continuum formulation this piece of the action gives rise
to triple and quartic interactions of the gluon fields. In the lattice formulation, on
the other hand, not only do these vertices get modified by lattice artefacts, but there
are also an infinite number of additional interaction vertices which contribute to the
correlation functions for finite lattice spacing. Only a finite number of these vertices,

however, contribute in the continuum limit in a given order of perturbation theory.

* In chapter 2 we had omitted the “hat” on 1/3 and zﬁ for convenience.



252 Lattice Gauge Theories

15.3 The Gauge Field Action
Consider the action (6.25b). It can be written in the form

Salo] = T Y (1= U (), (15.23)

n,u,v

nFY

where “1I” denotes the 3 x 3 unit matrix, and U, (n) is given by the ordered product

of link matrices around an elementary plaquette lying in the pr-plane:
Uy (n) = e"0n(m)gidv(nti) o =idu(nt?) o =igw(n) (15.24)
Clearly,
Ul (n) = Uypu(n). (15.25)

Since Uy, (n) is an element of SU(3) in the fundamental representation, it can be

written in the form
Uy (n) = e"om®), (15.26)

where ¢,,(n) is an element of the Lie algebra of SU(3) in the above mentioned

representation:
G (1 Z o, (n)T. (15.27)
From (15.25) it follows that

(1) = =07, (n).

Consider the trace of (11 — U,,). Expanding (15.26) in powers of ¢,,, and recalling
that TrT4 = 0, we have that

1 ) 1
TH( = ) = T { 0" + (00"~ i0)' 4+ |

Because ¢, = —¢,,, it follows that the cubic term will not contribute to the action.
Hence

= S ) - pout | 2

nuu
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The trace can be easily evaluated by making use of the following relations*
1
Tr(TAT?) = 5045,

1 :
To(TATPTC) = Z(dABC +ifanc),

1 1 1
Te(TATETOTP) = EéAB(SCD - ngBEfCDE + gdABEdCDE

7
+§(fABEdCDE + fepedapr),

which can be easily derived using the commutation relations (15.2a) and the follow-

ing expression for the anticommutator of 74 and T'Z:
1
{14,177} = §5AB[ + dapcTC.

Written in terms of the fields ¢! ,...,¢% , (15.28) becomes

uvo nrs

Solo] = = 0 |3 S 0h) — e S (G (0h)

R~ 288
o AP (15.29)
1
o § d d A B ,C .D .
192 A B E ABE CDE(b'u,y uv uy(buy + Y

where we have suppressed the dependence of the fields on the lattice site. Next we
express the right-hand side of this expression in terms of the fields {¢7(n)} which,
apart from a factor gg, are the lattice analogues of the coloured gauge potentials.
To this effect we first derive a relation between ¢, (n) and the matrix valued fields
du(n), ¢ (n+ 1), ¢.(n+7) and ¢, (n) appearing in the product (15.24). We do this
by making repeated use of the Campbell-Baker—Hausdorff (CBH) formula, which
states the following: Let GG be a Lie group with Lie algebra L, and let B; and B, be
elements of L. Consider the product exp(Bj) exp(Bz). It can be written in the form

Bi

eBreBz — (C(BrB2) (15.30a)

with C'(By, B2) € L. According to CBH, C(B;, By) is given by

C(B1,By) =Y Co(B1,By), (15.300)
n=1

* The tensor dapc is completely symmetric in the indices. Its components are
given by di1g = dagg = d3zs = —dsss = 1/\/§; dise = dis7 = —doay = dase = dzas =
d3ss = —dzes = —dzrr = 1/2; dysg = dszs = des = dirrg = —ﬁg-
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where the contributions C,,(B1, By) are determined by the following recursion rela-
tions:

C1(By, By) = By + Bs,

1
(n+1)Cpyr (B, B2) = 5[31 — By, Cy (B, By)]

+ 3 kY [Coi(Bi,Bo), [, [Couy, (Bi, Bo), By + B -]

(15.30¢)

Here ks, are rational, and ko,(2p)! are the Bernoulli numbers. We now make

repeated use of this formula to calculate the product

€B1 €B2 €B3 €B4 — €M(B)

where B stands collectively for By, ..., By. Clearly

M = iBi +0O(B?).

i=1

Consider the case where exp(B;) are elements of SU(N) in some matrix represen-
tation. Since M(B) is at least of O(B), and since Tr M = 0, it follows that if we
want to calculate Tr(1l — exp(M)) up to fourth order in the B;’s,* we only need to
know M (B) up to O(B?). Hence we will also only need to know (15.30b) up to this

order. From (15.30c) one obtains

1
1

AED)

([By, [Bi, Bj]) + By, [Bj, Bi]])) + - - - -

Making repeated use of this expression and of the Jacobi identity, one finds after
some algebra that M (B) can be written in the form

M(B) = Z B; + %Z[Biv Bj] + 1—12 Z [B;, [Bi, Bj]]

1 (15.31)
+ G Z {[B;,Bj, By]) + B, [B;, Bi]]} + O(B*).

i<j<k

* This will suffice for our purposes.
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We now apply this formula to the matrix product (15.24), and obtain an expression
for (15.27), correct up to third order in the fields ¢,,:

Z@ + = Z 10;,0;] — 112 Z (03, 05, 0,]]

245 ij (15.324)
_6 > {105,105, 0k]] + [6x, [0, 6:]]} +

i<j<k

Here the Lie-algebra valued fields #; are given by

01(n) = ¢u(n), )

O2(n) = ¢u(n+ i) = ¢u(n) + af(bl: (n), (15.32b)
03(n) = =@u(n + 0) = —¢u(n) — iu(n),

04(n) = —¢(n).

For simplicity we have suppressed the dependence of ¢, and §; in (15.32a) on the
lattice sites.

Consider for example the contribution of the first two terms appearing on the
right-hand side of (15.32a). Inserting the definitions (15.32b) one finds that

Gbuu = éfqby - 35¢u + Z'[(b,“ Cbu] + i([¢u» éfﬁbu] - [¢u7 éfﬁbu])
560, 816.] ~ 10, 076,)) (15.33)
—51056,, 08 0,] + 0(6").

Introducing the dimensioned (matrix valued) gauge potentials A, (z), and the field
strength tensor F),, in the familiar way, i.e.,

925“(72,) — gOCLA#(I>7
G (n) — goa2Fm,(a:), (x = na)

we see that only the first two terms in (15.33) contribute to F),, in the continuum
limit. Thus

Fuu(r) = 9,/ A,(2) — 0, Au(w) +igo [Au(), Au(@)] + -+,

where 85 is the dimensioned right lattice derivative, and where the dots stand for
terms which vanish for @ — 0. Hence in the continuum limit ), coincides with the
field strength tensor in QCD.
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We now return to eq. (15.32a). Decomposing the matrices 6; as follows
0, => 0/T"
A

and making use of the relations (15.2), one finds that the colour components of the

field ¢, defined in (15.27), are given by

:Zef(m_lzei‘é( 1229“3

i< (15.34a)
+ = Z mk k]z(n)} T
z<]<k
where
(n) = Z fapc07 ()05 (n),
(15.34b)
05 (n) Z fase foprbi (n)65 (n)6y (n),
B,C,D,E
and where 02, ..., 05 are related to the fields gbﬁ, ¢2 and their derivatives by expres-
sions analogous to (15.32b):
01 (n) = 13 (n),
Al _ 4 A AR 4 A
93 (n> - —QZS“ (n) - azz ,u(n)a
07 (n) = —¢5(n)

Inserting (15.34a) into (15.29) one arrives at the following expression for the action,
correct up to fourth order in the fields {§:}:*

1 1 1
Sale] = e Z{ZZ@A@}A - ZZQAHJIC

v i,j i,j.k

1

1
—{oglapedepr 'Zk:l 0070567
4.7,

1
_ eAeAeBeB}
288
4,7,k,l

* From now on it will be understood that also repeated colour indices are
summed.
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Here a sum over repeated colour indices is understood. The dependence on n, y,
and v of the quantity appearing within curly brackets is given implicitely by the
relations (15.32b).

Clearly, (15.35) is a complicated function of the fields {¢7} and their deriva-
tives. Most of the contributions are however lattice artefacts and do not survive
in the continuum limit.* This is easlily demonstrated. Introducing the definitions
(15.34b,c) into (15.35), and the dimensioned colour components of the vector

potentials according to
¢ (n) = goaAl(x), = na, (15.36)
one has that

Z QB _> 9002 n ($)7

where

5,(96) = 85145(36) — 85145(:15).
Hence the sum )", #7 actually vanishes with the second power of the lattice spacing.
It is therefore evident, that in the naive continuum limit only the first three terms
appearing on the right-hand side of (15.35) survive. For a — 0 their contribution
can be easily evaluated and yields the usual expression for the continuum action

1 4 B B
SGE;Z d prLV('T)F[LV('CL‘)’

where F[J(z) is the non-abelian field tensor defined in (6.16). On the other hand,
for finite lattice spacing, only the contributions quadratic and cubic in # have a

simple form. We shall treat them in detail below.

15.4 Propagators and Vertices
(i) The Gluon Propagator

Consider first the contributions to (15.22b) arising from Sg and Sgr which are
quadratic in the fields gbﬁ Expressed in terms of the dimensioned gauge potentials

one readily finds that**
ZAB QB (2, ) AS (y), (15.37a)

* This is true for the classical action. But on the quantum level, we cannot

simply ignore all these contributions, as we have pointed out repeatedly.
** We use the notation Y = > a*, introduced in chapter 14. The procedure

for casting S¢ into the form (15.37) is the same as that described in this chapter.
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where
Q0 (2, y) = 0o (2, y), (15.37b)

and €, is defined in (14.13b). Following the procedure discussed in chapter 14, we
can immediately write down the propagator for the gauge potential in momentum
space. To avoid the appearance of any superfluous phases, which will eventually
cancel in the Feynman rules,” we Fourier decompose the fields A% (z) as follows

d*k —
AB — —AB k lk-$+lk#a/2. 15.38
f@) = | Al (15.38)
Then the gluon propagator in k—space is given by
k 1 l% k,
e NN = T 5;”/ - (1 - 040) 2 6307
B,u C,v k k

where k, is the lattice momentum defined by (13.7a).
(ii) The Two-Gluon Vertex

Consider next the contribution of Speas[®] quadratic in the gauge potential.
From (15.15) one finds, using (15.9), that

1 g5
Sheesl Al = 5715 Z (15.39)

This contribution is proportional to g2 and hence should be considered as part of
the interaction. What is striking about this contribution is, that it diverges like
1/a? in the continuum limit!** In fact it has the typical structure of a mass-counter
term. This is indeed the role it plays in lattice perturbation theory where it serves
to eliminate quadratic “ultraviolet” (a — 0) divergences in Feynman integrals con-
tributing in O(g?) to the gluon self-energy. In this way the lattice provides its own
counterterms to ensure the renormalizability of the theory. This demonstrates in a
particularily drastic way, how important it is to include the effects of the lattice
cut-off in the integration measure.

The two-gluon vertex arising from (15.39) is given in momentum space by

e~ = —20)0D (k + k) L5,,05¢,
u,B v, C

* See the discussion in chapter 14.
** Since Y. =Y a*, the contribution to Syeas arising from the Haar measure
associated with an individual link variable actually vanishes for a — 0.
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where 55;1)(15 + k') is the periodic d-function. Notice that we did not include the
factor 1/2! appearing in (15.39) in the definition of the vertex, conforming to usual

conventions.
(iii) The Three-Gluon Vertex

The contribution to S¢g involving three gauge fields is obtained from the second
term appearing on the right-hand side of (15.35).* Making the substitutions (15.34c)
and (15.36), and using the antisymmetry of the structure constants fapc under

exchange of any pair of indices, one finds that
a
S = g0 fase (A@) + SORAL@)) (9F AP (@) AS (2)dn.

Notice that this expression includes lattice artefacts vanishing linearly with a. It can
be written in a more symmetric form by making use of the antisymmetry and cyclic
symmetry of the structure constants fapc in A, B, C. Using the first mentioned
property we have that

(3) 9o AN B \AR AC
S =23 fasc ((1 + 5@) A (m)) AP(2)RAS () ) G,
<~
where the action of 85 is defined by

9@ F(2) = 9()OR(x) — (0%9()) f(x).
Next we cyclically permute the pair of indices (A4, u), (B,v) and (C,)) and obtain
59 =S fane { (14 500420 (A2 @0RAS() ) o
+ cycl. perm.}. (15.40)

In this way, we have made manifest the Bose symmetry under the exchange of colour
and Lorentz indices. Notice that by having cyclically permuted simultaneously the
Lorentz and colour indices, the gauge potentials appearing in all three terms within
the curly bracket in (15.40) are labeled by the pairs (A, 1), (B,v) and (C, \).

* Notice that Speas[¢] does not contribute in this order.
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ABC

Let us calculate explicitly the 3-point gluon vertex, I'//37,

in momentum space.
This vertex function is defined as follows

4 41./ 4 1.1 B N
SO =5 5 [ ooyt famy AT WA O G )

27r)4 iz 22
x gtk Tk 2. (15.41)

We represent T'15¢ (k, k', k") by the following diagram

ko u, A k’,v.B

Consider the explicit expression displayed on the right-hand side of (15.40). In
s

momentum space the operators 1 + %85' and @5” act multiplicatively as follows

. Lk .
(1 + E@?) ek ( ks cos ”a) ek
2 2 (15.42)

H —_
ke 9R ig- : i(k+q)- i(k+q),
e, e — i(q — k)uez( Dz eilktaus

where l;;' and l~f” are defined by an expression analogous to (13.7a). When the phase
factors appearing in (15.42) are combined with the overall phase expli(k, + ki, +
kY)a/2], arising from the definition of the Fourier transform (15.38), and use is made
of the fact that — because of the summation over z in (15.41) — the sum of the
momenta flowing into the vertex vanishes, one finds after some trivial trigonometric
algebra that

k,a
v 5’/
5 O

DABC (k, k' ") = igo(2m) 0% (k + k' + k") fanc {(k“ k), cos

o k/ o k,//
+ (k — k"), cos —— (5“,\ + (k' — k), cos %aéw,} :

(15.43)

—~—

where (p — ¢),, stands for
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Hence in the continuum limit, (15.43) reduces to the familiar expression of the

continuum formulation

L’ Ok, K K") —— igo(2m) 100 (k + K + K") fapc (K" = k)00

2N
+ (k - k//>V5u>\ + (k/ - k)kdw]-
(iv) The Four-Gluon Vertex

The computation of the four-gluon vertex (see fig. on page 245) from the fourth-
order contribution in {#¢} to the action (given by the last five terms in (15.35)) is
quite tedious.* Making use of the definition (15.34b) and of 37, 84 = 9,07 — l,géf,
following from (15.34c), as well as of the antisymmetry of fopg under C' <+ D, this
contribution takes the form

where
(n_11 oy — oy 65 6%
SY _@g_gzz Z fABEfCDE{(aM% —8,,<b [Z@ 07 0%
n  pv ABCDE 7k
J<k<l
Z (0,07 — 0207 (650P — 6°6P )}
Z<<Jz
and

S0 =~ % > {3 0undon + dacdon + bapdac)

n wuv ABCDE
+ (daprdcpe + dacedpsr + dADEdBCE)}

X (R — IR (ORGE — ORP) (9 6C — OF¢C)(ORGL — HE D)
(15.44¢)

where {60!} have been defined in terms of the gauge potentials in (15.34c). We have
suppressed the dependence of the fields on the lattice site n. The expression (15.44c)
has been written in a manifestly symmetric form under the exchange of any pair of

colour indices.

* The following derivation has also been carried out independently by P. Kaste.
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Consider first the expression (15.44b). We need to express the r.h.s. in terms
of the fields {9;:‘} and their derivatives according to (15.34c). This clearly generates
an anormous amount of terms which can be readily obtained by using a program
like “Mathematica”. The next step consists in classifying these terms according to
the number of identical Lorentz indices of the gauge potentials. A large number of
these terms can be combined by making use of the antisymmetry of the structure
constants under the exchange of any pair of indices, and of the invariance of the
individual contributions to the action under the exchange of y and v. Let us de-
note the contributions to Sg ) involving two, three, and four gauge potentials with
identical Lorentz indices by S(Gf 1), Sg 2 and Sg 3), respectively.

Consider for example the contribution SU2). After exploiting the above-
mentioned symmetries one finds at the end of the day that the (hundreds!) of terms
combine to

S =30 S faasdoos { go(ot0Re e 0ReD)

0 nuv ABCDE
R G
A AL A AR G A A
RO AG]S
This expression can be written in an even more convenient form:

Sg2)24g Z Z fABEfCDE{H(l—Fééf) ¢ﬂ Kl‘F%éf) ¢;ﬂ
0

n,u,v ABCDE

- st || (1 qom) o] | (14 530) )

1 . .
08N Of6D)

(OB B67)OFGR) — - (610766 (6L DY)
L (083 oE) L0 D)} (15.45)

Next we introduce the dimensional gauge potentials through the identification
gbB = goaA , and Fourier decompose the fields AE according to (15.38). Let k, q,r
and s denote the incoming momenta associated with the gauge potentials carrying
colour indices A, B, C and D, respectively. Making use of (15.42), one readily finds,

after carrying out the sum over n (which yields an energy momentum conserving
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d-function), that

d4k d4 d*r d*s
S(f2 Qoz Z / q fABEfCDE

uvAp ABCDE 27T) (2 )

1 1 1 —
X {5u,\5yp {cos 5(1(/{; — ), Cos §a(q —8),+ Ecﬁ(k: —1)(qg—s),

1 >~ 1 - —_ ~ ~ ~ ~
—Ekq] — Sy0utna®(a — (s = m} AR A2 (@) AS (1) A (s),
(15.46a)

where, generically,

k, = %sin %ak“. (15.46)
The term proportional to d,,0,, can be written in a more symmetric form by making
use of the antisymmetry of fopp under the exchange of C' and D. The contribution
proportional to d,,0, is already invariant under the relabeling (C, A\, 7) <+ (D, p, s).
Adding to (15.46a) the expression with (C,A,r) and (D, p,s) interchanged, and

dividing the result by 2, we obtain

d4k d4q dir d's
) Z Z / 4(2m)4 (2m)4

,u,l/)\pABCD (15.47a)
x rLfiifBCD<k, ¢, s>A;3<k>Af<q>A§ (A (s)
where
ABCD
g™ (kg7 5)
) 1 1 1
= — g5 ; fapefcpr { 000y, |cOS 5@(/{ —T), COS Ea(q —S)y — 59 kyGuT5,
1 1 1 4~ ~ o~ o~
— 0,002 | COS 5@(1{; — 5), COS ia(q — 1), — 3¢ k,G,T .5,
+Tag (ko q,7,5) (15.47b)

and
]_ - P
T;ﬁﬁgD(k q,T, 3 =9 Z fABEfCDE { u)\éupazaf - r)l/(q - S),u

1 - —_—~—

—Eéﬂp&,)\cﬁ(/{: —8)(g—1), (15.47¢)

1 —_—
—55,”5,\,,&2((1 —k)a(s — T)u}'
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Let «, 3,7 denote collectively the sets
a= (A puk); B=(B,v,q; v=(C,\r); 0= (D,p,s). (15.48)

Then the expression (15.47b) is symmetric under the relabelings i) o <+ 3, ii) v <> 6,
iii) a <> 7,0 > 0 and iv) a > 0, 3 <> 7. The full Bose symmetry of the contribution
ng 2) to the four-gluon vertex function can now be incorporated if we add to (15.47Db)
the expressions obtained by carrying out the permutations 3 <> «, and § <> d, and
dividing the result by 3. Then

4 4 4 4
glf2) _ dk dq d'r d's (f2)ABCD
G2 | Z Z / 27'(') (27’(’)4 F,sz)\p (k7 q,T, 8)

uvip ABCD
i (g 3 /y\) - (f) Z :) } A (k) AD (q) AS (r)AD (s).

Having written S(Gf 2) in this symmetrized form, one finds, upon making use of

Z[fABEfCDE + facefpse + fapefcr] =0,
B

(15.49)

following from the Jacobi identity for double commutators of the generators of the
group, that the last term in (15.47b), together with the permutations in (15.49) does
not contribute to (15.49)

Consider next the contributions S(Gf and S(f“ , with three and four Lorentz
indices of the gauge potentials identified. Making again use of the symmetries of
faBefope one finds after a fair amount of work that they can be reduced to the

simple forms

S = —15 ZZZ S Fansfepe(éSoReD) A0 Kuééf) ¢>§]

n uv ABCDE

(15.50a)
and
_ AAR B\ (4CAR D
Sg = 969 233N fasefope(6i0feR) (6508eD). (15.500)
n uv ABCDE
Going over to momentum space, one finds, making again use of (15.42) that

4 4 4 4
(f) (f)_ dk‘ dq d dS
S - DID I = o o

pr ABCD
ABC
> F(f3+f4) B D(k’ q,7, S)Aﬁ(k’)AE(Q)Ag(T)AE(s)’

HVAp

(15.51a)
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where

1

_aqu

FL{Z\erﬁ ABCD(k q,r,8) =—gq Z faBefepE [85y,\5ypa2(s/:/7“)ulz‘y cos 3
E

+ 6,0,06,,0° Z({—v/c)g(ﬁ>(,]. (15.51b)
While the second term in this expression is symmetric under the permutations: i)
v 6, 1) a > §,iil) a < 7,0 < 6 and iv) a < 0, f < v, where a,3,7,9
stand for the collection of indices (15.48), the first term is only symmetric under
the exchange v <+ §. We therefore add to it the corresponding expressions obtained
by implementing the permutations ii)-iv), making use of the symmetries of the
structure constants, and divide the result by 4.

d4k; d4 d*r
S(f3 —|—Sf4 go Z Z / q Vi (2 ZfABEfCDE

uu)\p ABCD

1 —_— = 1
X {65,,,\5,,,0@2(5 — 7).k, cos 50u

1 — 1
6 w\éupa2<5 - T)yqu cos §a/€l,

— 1
+65uv5upa2(q — k)T, cos 5@3,\

1 — 1
—gdwéwaQ(q — k),8) cos 397

+ 12%%5”,)@2 Z(q/:%%(?—?)o} AL (k)AL (@)AS (r)AD(s).

[

(15.52)

The expression appearing within curly brackets is still not symmetric under all
permutations of the collective variables (15.48). To exhibit the full Bose symmetry
we add to it the corresponding expression obtained by the permutations appearing
n (15.49), and divide the result by a factor 3.

The remaining contribution (15.44c) to the action, expressed in Fourier space,
is obtained in a straightforward way. Combining it with that obtained above one is
then led to the following expression for the four-gluon contribution to the action

1 d*k d*q d'r d*s
4 / (2m)* (2m)* (2m)* (2)*
x> > TalP (koq,r, ) AL (R)AZ () AS (r) AP (s).

uvAp ABCD

(S¢) A

(15.53a)
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where*

L (k,q,7,5)

HVAp
) 1 1 at-
=—g; XE: faBefepE { 0urdy, |COS éa(q — 5), CO8 5@(1{: —7r), — Ek,,qur,,su
5 5 1( ) 1(k ) a4%~~~
w0 | €08 5alg — 1), cos a 8)v = 1o kvduTusy
1 , - 1
—1—651,)\51,,,@ (s — T’)Hl{?l, cos 54
1 , 1
——0,00,p0°(s — 1),,Gu cos | —ak,
6 2
1 , 1
—i—géﬂyéupa (q — k)7, cos §a5A
1 S —— 1
—65;“,(5#,\@ (q— k)psA cos { ar,
1 — e
+E(5MV5M>\6HP&2 Z (¢ —k),(s — T)o‘}
+(B<—>C’,V<—>)\,q<—>r)+(B<—>D,V<—>p,q<—>s)]
9% 42
+ Ea4 §(5AB5CD + 04cOpp + 0ap0BC)
+ Z(dABEdCDE +dacrdppe + dADEdBCE)}
B
x {%%(SW > ko GoToSe — SubunkpyTH8,
- 5uuéup%AQA§Afu - ,u)\(suplgufuguczt - 51/)\6quva}1/§#]’%1/
+ 0,00 kAT 1B+ 0,00 p kPGB + O,upOunkn Bl ¢ (15.53b)

This concludes our discussion of the pure gluonic sector. We now proceed to the
analysis of the fermionic and ghost sectors.

(iv) Fermionic and Ghost Contributions

Consider first the contribution to (15.22b) arising from SI(UW) [A, 0, zZ] For
Wilson fermions it is given by (6.4), where the link variables are replaced by (15.1a).
Expanding these in powers of ¢,,, and introducing the dimensional fermion fields and

* This is a corrected version of the expression given by Kawai et al. (1981).
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gauge potentials according to (4.3a) and (15.36), one obtains up to second order in
the gauge potentials Af(x):

Sel, 0, Al = SP[w, 9] + SWA, 4, 9] + SP[A, 9, 9], (15.54a)
where
$01.0l = (M + L) S i)
I G e e R R R )
: (15.54D)
SPIA 0] = =203 TE [0°(@)(r — 3@ + ajy)
—(a + a)(r + )0 (@)] AL (@), (15.54c)
SP1A D] = B S TP 1) 4,
X [0(@)(r = )o@ + ai) + 9@ + ap) (7 + 3)0 (@) AL (@) A ()
(15.54d)

A summation over the “quark” and gluon colour indices is understood.* Apart from
some group theoretical factors, and the fact that the fields now carry colour indices,
the structure of Sp[A,1),] is quite similar to that discussed in the abelian U(1)
case. Hence except for some obvious modifications, the structure of the fermion
propagator and gluon—fermion vertices will also be the same as those obtained in
the abelian case.

Finally, consider the contribution of the ghost fields to the action. It is given
by (15.21b), where ﬁ,ﬁgb] has been defined in (15.19b). By expanding the matrix
M~(¢,) up to terms linear in ¢, (cf. eq. (15.19¢)), we include lattice artefacts
vanishing linearly with @ in the naive continuum limit. Next we introduce the

dimensioned Faddeev-Popov ghost fields ¢*(z) and &*(x) according to**

* Recall that small latin letters run from one to three, while capital letters run

from one to eight.
** They carry the same dimension as the scalar field discussed in chapter 3.
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Then (15.21b) becomes

SpplA,c, ) =— Z ()0 40P (2)

g0 Y Fanot (@)0) | AT (@)(1+ SOF)H (@)

1 gga?
|12

> 6 {tC P ap (0 e ()0 " (2)) AT (2) AD (2) + - - |

(15.55)

where we have made use of (15.8). By Fourier decomposing the quark and ghost fields
in a way analogous to (14.17), one readily derives from (15.54b—d) the propagators
and interaction vertices in momentum space. Except for some colour matrices, the
quark propagator and the gluon—quark interaction vertices have the same structure
as the corresponding expressions in the U(1)-gauge theory. Furthermore, from the
quadratic contribution to (15.55) we see immediately that the ghost propagator is
given by dap/ k2. The ghost—gluon interaction vertices in momentum space can also
be read off immediately from (15.55) by making use of the property (15.42). Below
we summarize the lattice propagators and vertices.

(i) Propagators and Vertices which Possess a Non-Vanishing Continuum Limit*

W, A k v,B 1 k INCV
SNNNNNNS ﬁ (5;”/—(1—040) %2 >5AB

—hp—0
B7b o a A 1 N ! 5ab
i, 2 usinpua + M(p) »
k 1 5
AR [P

* For the definition of M (p) confer eq. (4.29b).
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p. B, b p’,o,a

kA

/ /
iga(2m)6 e p = ) s (LEERE) i (L))
aB

kK, v.B k%4, C 2 —~—
igo(2m)46%) (k + K + k) fagc [511/\(/?" — k'), cos 5k,a
K u, A +5M(k/:/k:”)y cos 1kha + 5W(k7\—/k;)/\ Ccos %k:ja]
pB P . (1) ;
Z£7()(27T)45p (k +p— p/)fABCp/y cos(pua/2)
k,u, C
q, Vv, B T, )\,, C

(see eq. (15.53b))

k,u, A s, p, D
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(i) Vertices which Have No Continuum Analog

u, B v,C

2
ANNAKNANN —(2#)451(1;1)(/’{;4— k/)%@w@?c

kK, v,B p,o,a a
4
— 500 ) (kK 4 p = )8, AT Ty
: {r Cos (—(p +p/)“a> — iy, sin (_(p +p’)ua)}
k, L, A p.B.b 2 a 2 s
p,B ~ s pLA

1 4 -
yfji‘q 5960°(2m)"55) (k + K+ p = D)1, 17 Y apb )

Note that the factor % multiplying the contributions to the action involving
couplings with n-gluons have not been included in the expressions for the vertices.
The symmetry factor multiplying a Feynman integral is computed in the same way
familiar from continuum perturbation theory.

In contradistinction to continuum perturbation theory, there are, in general,
more diagrams to be considered when calculating a vertex function in a given order
of the coupling. Thus consider for example the diagrams contributing to the gluon
self energy in one-loop order. They are depicted in fig. (15-1). Their contributions
have been calculated by Kawai, Nakayama and Seo (1981).
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/\g} /V\\
Ao~ bk
\‘/

Fig. 15-1 Diagrams contributing to the gluon self-energy in one-loop

order.

Each diagram contributes a quadratically divergent mass term. But when the
graphs are summed these divergencies are found to cancel! There is another re-
markable cancellation that occurs. When performing the calculation one encounters
non-covariant terms of the type pi(SW. But after summing all the contributions,
these terms cancel out and one is left with a transverse expression for the gluon self
energy, reflecting the gauge invariance of the theory!

Because of the complexity of lattice QCD Feynman rules (note that we have
only expanded the action up to O(g3)), and the periodic structure of the integrands
of Feynman integrals, perturbative calculations of more than one-loop contributions
become prohibitively difficult. In this connection the power counting theorem of
Reisz discussed in chapter 13 is of great help, for it allows one at least to take the
naive continuum limit in those cases where Feynman integrals satisfy the conditions
for which the theorem applies.

In the following two sections we will apply the knowledge we have acquired so
far to the computation of two important quantites: the ratio of two renormalization
group invariant scales, and the ABJ anomaly of the axial vector current within the
framework of QCD. As you shall see, the structure of this anomaly is, under very
general conditions on the action, independent of the lattice regularization. What
concerns the first mentioned quantity, we will not dwell on any technical details,

but merely discuss the problem on a qualitative level.
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15.5 Relation between A; and the A-Parameter
of Continuum QCD

In chapter 9 we have seen that in QCD with massless fermions, dimensioned
physical quantities, such as a hadron mass, or the string tension, can be calculated
in units of a lattice scale parameter Ay, which determines the rate at which the
bare coupling constant gy approaches the fixed point g; = 0 with decreasing lattice
spacing. A similar renormalization group invariant scale, Agcp, also occurs in con-
tinuum QCD. But there, Aqcp determines how the renormalized coupling constant
g, defined, for example, as the value of the three or four-gluon vertex function at
some momentum scale p, changes with p. The connection between g and p, which
ensures that physics does not depend on the choice of the renormalization point p,
can be obtained by studying the response of g to an infinitesimal change in p. This

response is measured by the following (-function

99
= u==. 15.56
Blo) =nrg, (15.56)
In two-loop order this S-function is given by
B=—0bg’ —Big"+---, (15.57)

where 3y and [3; have the same values as those appearing in the two-loop expansion
of the p-function considered in chapter 9 (cf. eq. (9.21b)). Because f; > 0 the
renormalized coupling constant is driven to ¢ — ¢g* = 0 as u — oo. This is the
statement of asymptotic freedom. In the one-loop approximation to the g-function,
given by the first term on the right-hand side of (15.57), integration of (15.56) leads
to the following relation between g and pu:

1 1 -
e 2809, (15.58)

K B AQCD

The value of the integration constant, Aqcp, depends on the definition of the renor-
malized coupling constant. Because of the asymptotic freedom property of QCD this
scale can be measured in deep inelastic scattering processes, where the short dis-
tance dynamics can be described by renormalization group improved perturbation
theory. Its value is found to be of the order of 200 MeV. On the other hand we have
seen in chapter 9 that the connection between the bare coupling gy and the lattice
spacing a, which ensures that physical observables remain unchanged as we remove
the lattice structure, is given in the one-loop approximation to the S-function by

1

1 -1
a=1e 20095, (15.59)
L
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The lattice scale Aj, determined, for example, from a Monte Carlo calculation of
the string tension is of the order of a few MeV. To confirm that QCD involves only
a single scale which describes the large distance physics at quark separations of the
order of 1fm, as well as the short distance physics taking place at separations of
0.1fm or less, one must check whether Ay, as determined from a measurement of,
say, the string tension, corresponds to the value of Aqgcp as obtained from deep
inelastic scattering data.

The first calculation relating the two scales has been performed by Hasenfratz
and Hasenfratz (1980) in the pure gauge theory. This calculation has been subse-
quently extended to the case of QCD with massless quarks by Kawai, Nakayama
and Seo (1981). The basic idea underlying these computations is the following.

Suppose we calculate an observable O in QCD with massless fermions. In the
lattice regulated theory the value of this observable depends on the bare coupling

constant gy and the lattice spacing a:*
O =0(go,a, ). (15.60)

Now for sufficiently small lattice spacing, gy can be tuned to a in such a way that O
remains fixed as we remove the lattice structure. In the two-loop approximation to
the S-function this dependence is given by (9.21c,d). Hence gp is a function of the
product aAr : go = go(aAr). On the other hand, we can also eliminate the cutoff
dependence by introducing a renormalized coupling constant g in the way familiar
from continuum perturbation theory. This coupling constant depends on gy, the
renormalization scale u, and the cutoff a. Since g is dimensionless, it will depend on
i and a only through the product pa:

9 = 9(90, pa). (15.61)

Solving this equation for gy, one obtains the bare coupling constant as a function of

g and pa:

90 = 90(g, ). (15.62)

Upon inserting (15.62) into (15.60) one arrives at an expression in which the depen-

dence on the lattice spacing has again been eliminated

O(go(g, pa),a;---) = O(g, p;- -+ ). (15.63)

* The “dots” stand for possible dependences on kinematical variables such as
momenta; for example, O could be a scattering matrix element.
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Now g can also be tuned to p in such a way that the right-hand side of (15.63)
remains fixed as we change the renormalization point . In the one-loop approxima-
tion to the f-function (15.56) the dependence of g on p is given by (15.58); hence
g = g(p/Aqep). But both, the dependence of gy on aAy, and of the renormalized
coupling constant on x/Aqep, are determined from a single equation, namely from
(15.61), or its inverse (15.62). Thus holding gy and a fixed, we determine the p de-
pendence of g. Alternatively, holding g and u fixed we determine the a-dependence
of go. This shows that Ay and Aqcp must be related. To obtain this relation one
calculates the right-hand side of (15.61) in perturbation theory. In the one-loop

approximation one obtains an expression of the form

1a
9° = 95 — 200gs In (7) +0(g0), (15.64)

where ¢ is a constant. From here one readily verifies the one-loop expressions for
the S-functions (9.6b) and (15.56). Now to this order Aqcp/AL, as determined from
(15.58) and (15.59) is given by

111
Agep _ ()
Ap
But from (15.64) it follows that
1 1 pna 9
We therefore conclude that
Aqep _
Ap

Hence the purpose of a perturbative computation consists in calculating the con-
stant ¢ in (15.64). In the momentum subtraction scheme (MOM), Hasenfratz and
Hasenfratz (1980) have calculated the ratio Ayon/Ar for the pure SU(3) gauge
theory. After a lengthy calculation they found that

A
MOM _ 835 (pure SU(3)).
AL

In full QCD with massless quarks this value was found to change as follows (Kawai
et al., 1981)

A
MOM —105.7 (3 flavours),
Ap

A
MOM — 117.0 (4 flavours).
Ap

These ratios are consistent with those determined from non-perturbative lattice
calculations (Ar) and from the deep inelastic scattering data (Ayom)-
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15.6 Universality of the Axial Anomaly in Lattice QCD

In this section we study the ABJ anomaly in the divergence of the colour singlet
axial vector current in QCD, and show that not only for Wilson or Ginsparg—Wilson
fermions the well known anomaly is reproduced in the continuum limit, but that
the same result is obtained for any discretization of the action satisfying some very
general conditions. In the case of a U(1) gauge theory, this has been first shown to
be the case by Reisz and Rothe (1999). Here we discuss the case of SU(3) which has
been studied subsequently by Frewer and Rothe (2001). From the analysis it will be
evident that the same proof goes through for any SU(N) gauge theory. The main
steps we will follow are the following: we first discuss the general form of the lattice
axial vector Ward identity. As you will see, its precise structure, which depends on
the particular discretization of the lattice action, need not be known to compute
the anomaly. Only very general properties thereof are required. In fact, the entire
ambiguity in the lattice Ward identity, arising from different discretizations, will
reside in a contribution which vanishes in the naive continuum limit. Although its
structure depends on the way one has discretized the action, we will only make use
of quite general properties thereof to generate the anomaly.

General Structure of the Ward Identity

In the following all expressions will be written in terms of dimensioned variables.
We are interested in computing the anomalous contribution to the divergence of the
colour singlet axial vector current j,s(z) = ¥(2)v57,4(z) in an external gauge field,
where 1(x) are 3-component fields in colour space.

Consider the fermionic contribution to the lattice action for QCD. It is of the

form (4.61), i.e.,
Sterm = »_ ¥(x)(Dy (w,y) +mé,y )0(y), (15.65)

where Dy(x,y) is the Dirac operator (a matrix in Dirac-spin and colour space)
depending on the matrix valued link variables which we denote collectively by U.
As always > = > a*, where n labels the lattice sites. SU(3) colour indices will
be denoted in the following by small latin letters. The action is assumed to be gauge
invariant, and to possess the discrete symmetries of the continuum theory.” The

* The Dirac operator can always be decomposed into a chirally symmetric, and
a chiral symmetry breaking (sb) part as follows, D(z,y) = D(z,y)sym + D(x, ¥)sp,
where D(z,y)sym = 3[D,75)75, and D(z,y)s, = 3{D,75}75. Any candidate for a
lattice action should possess the correct continuum limit. It therefore follows that
for a = 0, D(z,y)sym — VuDulA], where D,[A] is the covariant derivative, while
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Dirac operator, which is a function of the link variables, can be expanded in the
gauge potentials in the form
1 n)ai---a a a
DU(may) = Z _D;(j/l);lj/n n<$ay|xl$n)Au11<xl)A;[:L(xn)

n!

T, iy Q45T

(15.66)

The next step consists in deriving a lattice Ward identity for the divergence of
the singlet axial vector current. This is achieved by performing in the partition
function the infinitessimal colour blind local axial transformation of the fermion
fields analogous to (14.38). Note that, since we do not specify the Dirac operator,
we have no other alternative to define a sensible axial transformation. Since the
measure is invariant under this transformation one is led again to the statement
(14.88). In the case of Wilson fermions the variation § S, is given by (14.81), where
A(z) is an irrelevant operator vanishing in the continuum limit. For different lattice
discretizations, js,(z) and A will differ from (14.41) and (14.46) by terms which
vanish in the naive continuum limit. What concerns the axial anomaly, however,
the precise form of the various terms in (14.81) need not be known. This is quite
remarkable. In fact, as we shall see, any lattice discretization of the action S with
the following properties:

i) S has the correct continuum limit,

ii) S is gauge invariant,

)
)

iii) the Dirac operator is local,
)

iv) absence of species doubling,

reproduces the axial anomaly in the continuum limit. This anomaly arises from an
“irrelevant” (A) term in the Ward identity, which, in view of what has been said

above, will necessarily have the form
(OLdsu(®))0 = 2m(js(x))u + (D), (15.67)

where js,(z) and js(x) possess the correct continuum limit. Thus for Wilson
fermions, the Ward identity is of the above form (Rothe, 1998). Any other dis-
cretization of the action will differ only by lattice artefacts which can, in principle,
be absorbed into the A-term. The reader may ask: is there no way of avoiding such

a term? The answer is “no” as will be clear from our analysis.

D(z,y)sp vanishes in the continuum limit. It therefore also follows that for a — 0
D(z,y) = ~,D[A], where D,[A] is the covariant derivative.
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Before proving the above assertion it is convenient to rewrite the Ward identity
(15.67) in terms of correlators in momentum space. Let O(x) stand for any of the
operators appearing in (15.67). Then (O(z))y has the following formal expansion in
the gauge potentials

U—Z o DO (glay, my, @) Agt (21) -+ AL (),
n>2 C{a )y {p{add

(15.68)
where, because of the assumed symmetries of the action, the sum over n starts with
n = 2. The correlation functions F,(” )aﬁn “"(x|xy, 29, -, T,) are symmetric under the
exchange of any pair of collective labels (x;, f1;, a;). Defining the Fourier transform

(O)ai--an
of F#l"'ll«n (x|$1,$2,"‘ 7xn) by
Fl(f?‘).(.lﬁ;-an(x‘xb te 7xn) == / 7“1 H Z lk IZF O)al an(qyk17 7kn)7
- =1
(15.69a)

where, by translational invariance,

- O a Qan a QAn

D(@ar-on(glky, - -+ q—Zk (Oaran (g, k), (15.690)

the Ward identity (15.67) translates as follows to momentum space,

—ig Ll (ke k) = 2mElel o (ky,ee k) (15.700)
TR (k- K),

where

=% 2 sin ‘% (15.700)
As we shall see further below, gauge invariance implies that every term in (15.67)
possesses a finite continuum limit. If in this limit the A-contribution is different from
zero, we are faced with an anomaly, since the divergence of the axial vector current
would not vanish in the chiral limit m — 0 (as it would, if the axial symmetry would
be implemented on quantum level). We now show that under the conditions i)-iv)
this is indeed the case, and moreover, that this limit is universal.
Let us first study the implications of the assumptions i)-iv). Clearly the first as-

sumption is a “must” and needs no further elaboration. Consider next assumption ii):
(ii) Gauge Invariance

Gauge invariance has strong implications. In fact the renormalizability of

QED or QCD relies heavily on gauge invariance. Gauge invariance tells us that
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if O(A,,1) is a gauge invariant operator, then its external field expectation value

satisfies
F@[Aw] = Fo[A], (1571(1)

where

[ DYDy O[A, ), )] e 5144

FO[A] = fD@Z)D¢ e_S[A7¢7¢] )

(15.71b)

with A“ the gauge transformed potential. This can be readily verified by making
use of the gauge invariance of the fermionic measure. On the lattice the variation of
the gauge potentials induced by an infinitessimal gauge transformation is given by
(15.19) with ¢!, = ga Al ie.*

AL () = [gfane Al () — M (gad,(2))0,e (), (15.72)

where f,;. are the structure constants of SU(3), 85 is the dimensioned right lattice
derivative, and the matrix M is given by (15.12b), or the expansion (15.19¢). Be-
cause of the structure of the rhs of (15.68), the I'’s are symmetric functions under

permutations of the labels 1,--- ,n. Hence the variation can be written in the form
0. FolA Z > TOmen (g wy, e @, )OAR (1) - A ().

n>2 " e} dnit{ai}

Inserting for § A5l the expression (15.72), and considering in turn the coefficients of
O(A?) and O(A?), one finds that (15.71a) implies that

651 MM‘;”Q (x|z1,22) =0, (15.73a)
and furthermore
O T(Q)019202 (301 35, 03) = Go farand] orr™® (2|22, 23) 05,2
—%goafa1a2b8£2 (53