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Preface

A vital ingredient in the quest for a unified theory embracing all physical phe-
nomena is supersymmetry, a symmetry which (a) unites bosons and fermions, (b)
requires the existence of gravity and (c) places an upper limit of eleven on the
dimension of spacetime. For these reasons, in the early 1980’s, many physicists
looked to eleven-dimensional supergravity in the hope that it might provide that
elusive super-unified theory. Then, in 1984, superunification underwent a major
paradigm shift: eleven-dimensional supergravity was knocked off its pedestal by ten-
dimensional superstrings, one-dimensional objects whose vibrational modes repre-
sent the elementary particles. Unlike eleven-dimensional supergravity, superstrings
provided a perturbatively finite theory of gravity which, after compactification to
four spacetime dimensions, seemed in principle capable of explaining the Standard
Model of the strong, weak and electromagnetic forces including the required chiral
representations of quarks and leptons.

Despite these major successes, however, nagging doubts persisted about super-
strings. First, many of the most important questions in string theory—How do
strings break supersymmetry? How do they choose the right vacuum state? How
do they explain the smallness of the cosmological constant? How do they resolve the
apparent paradoxes of quantum black holes?-—seemed incapable of being answered
within the framework of a weak-coupling perturbation expansion. They seemed
to call for some new, non-perturbative, physics. Second, why did there appear
to be five different mathematically consistent superstring theories: the Eg x Ejg
heterotic string, the SO(32) heterotic string, the SO(32) Type I string, the Type
IIA and Type IIB strings? If one is looking for a unique Theory of Everything,
this seems like an embarrassment of riches! Third, if supersymmetry permits eleven
dimensions, why do superstrings stop at ten? This question became more acute with
the discoveries of the elementary supermembrane in 1987 and its dual partner, the
solitonic superfivebrane, in 1992. These are supersymmetric extended objects with
respectively two and five dimensions moving in an eleven-dimensional spacetime.
Finally, therefore, if we are going to generalize zero-dimensional point particles to
one-dimensional strings, why stop there? Why not two-dimensional membranes or
more generally p-dimensional objects (inevitably dubbed p-branes)? Although this
latter possibility was actively pursued by a small but dedicated group of theorists,
starting around 1986, it was largely ignored by the mainstream physics community.

ix



X Preface

The year 1995 witnessed a new paradigm shift: perturbative ten-dimensional
superstrings were in their turn superseded by a new non-perturbative theory called
M -theory which describes, amongst other things, supermembranes and superfive-
branes, which subsumes the above five consistent string theories, and which has, as
its low-energy limit, eleven-dimensional supergravity! According to Fields Medalist
Edward Witten, ‘M stands for magical, mystery or membrane, according to taste’.
New evidence in favour of this theory is appearing daily on the Internet and repre-
sents the most exciting development in the subject since 1984 when the superstring
revolution first burst on the scene. These new insights hold promise of a deeper
understanding of the Standard Model of particle physics, of the unification of the
four fundamental forces, of the quantum theory of gravity, of the mysteries of black
holes, of big-bang cosmology and, ultimately, of their complete synthesis in a final
theory of physics.

The first purpose of this volume is to bring together the seminal papers that
have shaped our current understanding of this eleven-dimensional world: from
supergravity through supermembranes to M-theory. Second, I have included at
the beginning of each of the six chapters a commentary intended to explain the
importance of these papers and to place them in a wider perspective. Each chapter
also has an extensive bibliography. For reasons of space, I have limited to 33 this
selection of important papers on eleven dimensions: a daunting task. This has
meant omitting long review articles, and also significant papers on string theory
dualities, membrane theory, D-branes and F-theory which, though important for
our present state of knowledge, did not have eleven dimensions as their primary
theme. I have tried to combine originality and topicality by including not only
the well-cited classic papers but also some very recent works which, in the editor’s
judgement, will prove to be influential with the passage of time.

M -theory has sometimes been called the Second Superstring Revolution, but 1
feel this is really a misnomer. It certainly involves new ideas every bit as significant
as those of the 1984 string revolution, but its reliance on supermembranes and
eleven dimensions renders it sufficiently different from traditional string theory to
warrant its own name. One cannot deny the tremendous historical influence of the
last decade of superstrings on our current perspectives. Indeed, it is the pillar upon
which our belief in a quantum-consistent M-theory rests. In the editor’s opinion,
however, the focus on the perturbative aspects of one-dimensional objects moving
in a ten-dimensional spacetime that prevailed during this period will ultimately be
seen to be a small corner of M-theory. Whatever the fate of the world in eleven
dimensions, I hope this volume will help chart its course.

In making my, sometimes treacherous, way through the world in eleven di-
mensions over the last two decades I have been guided by many colleagues. I owe
a particular debt to Eric Bergshoeff, Leonardo Castellani, Stanley Deser, Ricardo
D’Auria, Sergio Ferrara, Pietro Fré, Gary Gibbons, Chris Hull, Paul Howe, Takeo
Inami, Ramzi Khuri, Jim Liu, Hong Lu, Jianxin Lu, Ruben Minasian, Bengt Nils-
son, Chris Pope, Joachim Rahmfeld, the late Abdus Salam, Ergin Sezgin, Kelly
Stelle, Paul Townsend, Peter van Nieuwenhuizen, Steven Weinberg, Nick Warner,
Peter West and Edward Witten. I am also grateful to all the authors who kindly
gave their permission to reproduce the papers. Special thanks are due to Hisham
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Sati for help in preparing the manuscript. Finally, I would like to acknowledge my

editor Jim Revill of Institute of Physics Publishing for his enthusiasm and advice.

Michael Duff
College Station, Texas, 1998
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Chapter 1

Eleven-dimensional supergravity

Eleven is the maximum spacetime dimension in which one can formulate a consis-
tent supersymmetric theory, as was first recognized by Nahm [1] in his classification
of supersymmetry algebras. The easiest way to see this is to start in four dimen-
sions and note that one supersymmetry relates states differing by one half unit of
helicity. If we now make the reasonable assumption that there be no massless par-
ticles with spins greater than two, then we can allow up to a maximum of N = 8
supersymmetries taking us from helicity —2 through to helicity +2. Since the mini-
mal supersymmetry generator is a Majorana spinor with four off-shell components,
this means a total of 32 spinor components. Now in a spacetime with D dimensions
and signature (1, D —1), the maximum value of D admitting a 32 component spinor
is D = 11. (Going to D = 12, for example, would require 64 components.) See
table 1.1. Furthermore, as we shall see in chapter 2, D = 11 emerges naturally as
the maximum dimension admitting supersymmetric extended objects, without the
need for any assumptions about higher spin. Not long after Nahm’s paper, Crem-
mer, Julia and Scherk {2] realized that supergravity not only permits up to seven
extra dimensions but in fact takes its simplest and most elegant form when written
in its full eleven-dimensional glory. The unique D = 11, N = 1 supermultiplet is
comprised of a graviton gy, a gravitino ¥y and 3-form gauge field Caynp with
44, 128 and 84 physical degrees of freedom, respectively. The theory may also be
formulated in superspace [3, 4]. Ironically, however, these extra dimensions were
not at first taken seriously but rather regarded merely as a useful device for deriv-
ing supergravities in four dimensions. Indeed D = 4, N = 8 supergravity was first
obtained by Cremmer and Julia [5] via the process of dimensional reduction, i.e. by
requiring that all the fields of D = 11, N = 1 supergravity be independent of the
extra seven coordinates.

In the early 1920’s, in their attempts to unify Einstein’s gravity and Maxwell’s
electromagnetism, Theodore Kaluza and Oskar Klein suggested that spacetime may
have a hidden fifth dimension. This idea was quite successful: Einstein’s equations
in five dimensions not only yield the right equations for gravity in four dimensions
but Maxwell’s equations come for free. Conservation of electric charge is just con-
servation of momentum in the fifth direction. By taking this fifth dimension to have
the topology of a circle, moreover, the quantization of electric charge would then

DOI: 10.1201/9781482268737-1 1



2 Eleven-dimensional supergravity

Dimension  Minimal spinor Supersymmetry

(D ord) (M or m) (N or n)
11 32 1
10 16 2,1
9 16 2,1
8 16 2,1
7 16 2,1
6 8 4,321
5 8 4,3 2,1
4 4 8 ..., 1
3 2 16, ..., 1
2 1 32, ..., 1

Table 1.1. Minimal spinor components and supersymmetries. Upper and lower case refer
to spacetime and worldvolume quantities, respectively

be automatic: the gauge group is U(1). To get the right value for the charge on the
electron, however, the radius of the circle would have to be tiny, R ~ 1073% metres,
which satisfactorily explains why we are unaware of its existence in our everyday
lives!. For many years this Kaluza-Klein idea of taking extra dimensions seriously
was largely forgotten, but the arrival of eleven-dimensional supergravity provided
the missing impetus. The kind of four-dimensional world we end up with depends
on how we compactify these extra dimensions: maybe seven of them would allow us
to give a gravitational origin, ¢ la Kaluza-Klein, to the strong and weak forces as
well as the electromagnetic. In a very influential paper, Witten [15] drew attention
to the fact that in such a scheme the four-dimensional gauge group is determined by
the isometry group of the compact manifold K. Moreover, he proved (what to this
day seems to be merely a gigantic coincidence) that seven is not only the maximum
dimension of K permitted by supersymmetry but the minimum needed for the isom-
etry group to coincide with the standard model gauge group SU(3) x SU(2) xU(1).

Round about this time there was great interest in N-extended supergravities
for which the global SO(N) is promoted to a gauge symmetry, in particular the
maximal N = 8, SO(8) theory of De Wit and Nicolai [16]. In these theories the un-
derlying symmetry is described by the D = 4 anti-de Sitter (AdS4) supersymmetry
algebra, and the Lagrangian has a non-vanishing cosmological constant proportional
to the square of the gauge coupling constant. This suggested that these theories
might admit a Kaluza—Klein interpretation, and indeed this maximal theory was
seen to correspond to the massless sector of D = 11 supergravity compactified on an
S™ whose metric admits an SO(8) isometry [17]. An important ingredient in these
developments +*hat had been insufficiently emphasized in earlier work on Kaluza-

1 A variation on the Kaluza—Klein theme is that our universe is a 3-brane embedded in a higher
dimensional spacetime [6, 7]. This is particularly compelling in the context of the Type IIB
threebrane [8] since the worldvolume fields necessarily include gauge fields [9]. Thus the strong,
weak and electromagnetic forces might be confined to the worldvolume of the brane while gravity
propagates in the bulk. It has recently been suggested that, in such schemes, the extra dimensions
might be much larger than 10~3% metres [10, 11] and may even be a large as a millimetre [12-14].
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Klein theory was that the AdSy x S7 geometry was not fed in by hand but resulted
from a spontaneous compactification, i.e. the vacuum state was obtained by finding
a stable solution of the higher-dimensional field equations [18]. The mechanism
of spontaneous compactification appropriate to the AdSy x S7 solution of eleven-
dimensional supergravity was provided by the Freund-Rubin mechanism [19] in
which the 4-form field strength in spacetime G0 (1 = 0,1,2,3) is proportional
to the alternating symbol €,,,, [20].

By deforming this geometry while keeping the same S” topology, one could
find a new stable vacuum solution, the squashed seven-sphere with only N = 1
supersymmetry and SO(5) x SU(2) gauge symmetry [21]. Moreover, this admit-
ted the four-dimensional interpretation of a Higgs mechanism in which some of
the scalars acquired non-vanishing vacuum expectation values {22]. More general
solutions were also found for which the internal components of the 3-form Cp,,p
(m = 1,2,...7) are non-vanishing and correspond to the parallelizing torsion on S’
[23]. These also admit a D = 4 Higgs interpretation. Of course, there was still
the problem of the huge cosmological constant of AdS, unless one could arrange to
cancel it via fermion condensates [24]. A summary of this S7 and other X7 com-
pactifications of D = 11 supergravity down to AdSs may be found in [25, 26]. By
applying a similar mechanism to the 7-form dual of this field strength one could also
find compactifications on AdS; x S* [28] whose massless sector describes gauged
maximal N = 4, SO(5) supergravity in D = 7 [29, 30]. Type IIB supergravity in
D = 10, with its self-dual 5-form field strength, also admits a Freund-Rubin com-
pactification on AdSs x S° [31-33] whose massless sector describes gauged maximal
N = 8 supergravity in D =5 [34, 35].

Compactification = Supergroup Bosonic subgroup

AdSy x 87 OSp(4]8) SO(3,2) x SO(8)
AdSs x S5 SU(2,2|4) 50(4,2) x SO(6)
AdSy x §* 0Sp(6,214)  SO(6,2) x SO(5)

Table 1.2. Compactifications and their symmetries.

In the three cases given above, the symmetry of the vacuum is described by
the supergroups OSp(4(8), SU(2,2]4) and OSp(6,2|4) for the S7, §° and S* com-
pactifications respectively, as shown in table 1.2. As discussed in chapters 4 and
6, these compactifications were later to prove crucial in the so-called AdS/CFT
correspondence which relates supergravity theories in the bulk of AdS to conformal
field theories on its boundary.

That the four-dimensional manifold K3 plays a ubiquitous role in much of
present day M theory is also discussed in chapters 4 and 6. It was first introduced
as a compactifying manifold in 1983 [27] when it was realized that the number
of unbroken supersymmetries surviving compactification in a Kaluza—Klein theory
depends on the holonomy group of the extra dimensions [21]. By virtue of its
SU(2) holonomy, K3 preserves precisely half of the supersymmetry. This means, in
particular, that an NV = 2 theory on K3 has the same number of supersymmetries as
an N = 1 theory on T4, a result which was subsequently to prove of vital importance
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for string/string duality, as we shall see in chapter 4. K3 also provided another
novel phenomenon in Kaluza—Klein theory; the appearance of massless particles
as a consequence of the topology, as opposed to the geometry of the compactifying
manifold, determined by Betti numbers and index theorems [27]. It was thus the
forerunner of the very influential Calabi-Yau compactifications of ten-dimensional
supergravity and string theory [36].

The Kaluza-Klein approach to D = 11 supergravity eventually fell out of
favour for two reasons. First, as emphasized by Witten [37], it is impossible to
derive by the conventional Kaluza-Klein technique of compactifying on a manifold
a chiral theory in four spacetime dimensions starting from a non-chiral theory such
as eleven-dimensional supergravity. (Ironically, as discussed in chapter 6, Horava
and Witten were to solve this problem years later by compactifying on something
that is not a manifold!). Secondly, in spite of its maximal supersymmetry and other
intriguing features, eleven dimensional supergravity was, after all, still a field theory
of gravity with all the attendant problems of non-renormalizability. (For a recent
proof of this, see [43].) The solution to this problem also had to await the dawn of
M -theory.

Finally, we have included a paper by Hull [38] which displays a plane wave
solution of D = 11 supergravity and one by Han and Koh [39] which displays a
Kaluza—-Klein monopole [40, 41, 42] solution of D = 11 supergravity: Both solu-
tions are special because, in common with the the supermembrane of chapter 2
and the superfivebrane of chapter 3, they preserve half of the supersymmetry. As
discussed in chapter 5, the eleven-dimensional plane-wave, supermembrane, super-
fivebrane and Kaluza—Klein monopole are the progenitors of the lower dimensional
supersymmetric objects of M-theory.
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SUPERSYMMETRIES AND THEIR REPRESENTATIONS
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We determine all manifest supersymmetries in more than 1 + 1 dimensions, including
those with conformal or de Sitter space-time symmetry. For the supersymmetries in flat
space we determine the structure of all representations and give formulae for an effective
computation. In particular we show that at least for masses m?=0, 1, 2 the states of the
spinning string form supersymmetry multiplets.

1. Introduction

All supersymmetries of the S-matrix in 3 + 1 dimensions are known [1]. How-
ever, there are further interesting possibilities, e.g., supersymmetries in de Sitter
space-time or in higher dimensions. Particularly important is the conjecture that a
suitably restricted version of the Neveu-Schwarz-Ramond string yields a renormal-
izable sypersymmetric Yang-Mills and gravity theory in 9 + 1 dimensions [2]. Such
theories may be reduced to 3 + 1 dimensions by compactifying some directions [3].

In sect. 2 we shall classify all manifest supersymmetries in more than 1 + 1
dimensions. For a flat space-time we determine the structure of the corresponding
little groups in sect. 3. In sect. 4 we determine their representations and derive for-
mulae to calculate them explicitly. In sect. 5 we consider as examples the theories
which admit multiplets with spins at most 1. In particular we shall see that the
lowest mass levels of the spinning string indeed can be regarded as supersymmetry
representations, thus confirming the conjecture of ref. {2].

The notations are those of ref. [4]. In particular, the bracket ¢, I') will denote
the anticommutator, if both /, I’ are odd, and the commutator, if at least one of
them is even. We shall always work with the supersymmetry algebra, not with groups.

2. Classification of supersymmetries
Let L =G o U be a finite dimensional supersymmetry algebra, where G, U

denote the even and odd subspace respectively. We assume that the generators exhibit
the usual relation between spin and statistics (in fact it is sufficient to assume that U
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contains no Lorentz scalars). Furthermore, L must admit an adjoint operation +.
This is true, if L commutes with some unitary S-matrix, but we shall also consider
theories with massless particles, or in de Sitter space, where the usual S-matrix for-
malism runs into difficulties. However, we restrict ourselves to manifest supersym-
metries, acting on some Hilbert space of particle states.

Taking the subspace of L generated by the elements which obey

g = for gE€G,

u" =iu for uelU, )

we obtain a real form of L.
For the even part we write

G=Seal/J, )

where S is the space-time symmetry, and J a compact internal symmetry of the
form

J=Ted, 3)

with T semi-simple and A Abelian.

Consider first the case where S is simple, i.e., a conformal or a de Sitter algebra.
Let C(X) denote the centre of X.

Proposition 2.1.

L/C(L) is the direct sum of an internal symmetry J. of type (3) plus a supersym-
metry which is simple up to a possible extension by an algebra of outer automor-
phisms (of course J, may be zero).

Proof:

C(L)CG, as

wu*y>0 4)

for all non-zero u € U. Let V C U be invariant under (S, +), i.e., under S and the
adjoint operation. Then (S (V'V)) is an S-invariant subspace of S, thus either equal to
S or zero. In the latter case, (V'V™) defines a positive-definite S-invariant Hermitian
form on V, thus that part of S which is faithfully represented on V is contained in
some compact unitary algebra. As S is simple and non-compact, (S¥) has to vanish.
But because of the spin-statistics relation, U contains no scalars. Thus forany V #0
we have

Sym=S. (5)

Therefore no ideal of L which contains an odd element can be soluble. Now let C be
the maximal soluble ideal of L. Because of C C G one has

CH=0. (6)
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In addition because of egs. (2) and (3)

CCA. (7
Thus

c=C), t))

and L/C(L) is semi-simple. All semi-simple graded Lie algebras are described in

ref. [5]. Because G is of type (2) with simple S, and U contains no scalars, L/C(L)
has to be a direct sum. Its summands must be simple modulo extensions by outer
automorphisms. Because of eq. (5) all odd elements of L/C(L) belong to that direct
summand which contains S. Apart from the outer automorphisms the direct sum-
mand which contains U can be written as

Uea UL

and this supersymmetry algebra is simple modulo “central charges™ as defined in
ref. [1]. Here

whH=SeJ, (10)

where J' is a direct summand of J, thus again of type (3).

All real simple graded Lie algebras have been classified [5,6]. Thus we just have
to select the algebras which are compatible with our assumptions. We use the nota-
tion (G, U as representation space of G).

Proposition 2.2.

The simple supersymmetry algebras are:
(o(2, 1) ou(V), 2, M) +(2,N)), N#2, @)
(o(2, 1) ®5u(2),(2,2) +(2,2)), ()
(o(2,1) ® (M), (2,N)), N=1,2,.., (1)
(o(2,1) ®0(4),(2,4))a , (I1y)
(0(2,1) ®0(3) @ su(V, H),(2,2,2V)), N=1,2, ..., (111)
(o2, 1) ®0(7),(2, 8)), av)
(02, 1) ®82,(2,7)), \2)
(o(3,1),(2, 1) +(1,2)), (VD)

(o(3,2) ® o(V), (4, NV)), N=1,2,.., (v
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(o(4, 1) ® u(1),4 +4), (V1))
(0(4,2) ® u(V), (4, N) + (8, N)), N#4, (V1)
(0(4, 2) @ su(4), (4,4) +(4,4)), (VHI,)
(0(6, 1) @ su(2), (8, 2)), (IX))
(0(5, 2) @ su(2), (8, 2)), (1X,)

(o(6,2) @ su(V, H), (8, 2NM), N=1,2, ...

The lie algebras are denoted by lower case latters, capitals are reserved for the

(X)

groups. SU(N, H) is the group of unitary quaternionic N X N matrices; it is the com-
pact real form of Sp(2¥, C). In particular su(1, H) ~ su(2), su(2, H) ~ o(5). In (il,),

« is a real constant which enters only into the structure constants for <UU). The
algebras involving o(4, 2) have been classified in ref. [1].
Recently, Euclidean supersymmetries have been studied [7]. The algebras

o(R + 1, 1) may be interpreted as conformal algebras of an R-dimensional Euclidean

space. For compact de Sitter spaces we obtain the additional possibilities

(0(3) ® uM), (2, M) +(2,N)),  N#2, )
(0(3) ® su(2),(2,2) +(2,2)), 1)
(o(5) ®u(1),4 +4), (viy)
(o(6) ® u(V), (4. M) + 4,N)), N#4, (VIII')
(0(6) @su(4), (4,4)+(4,%)). (VIIL})

Note that most of the orthosymplectic algebras are unsuitable, as the sp(2N) are
non-compact. Thus we had to use the isomorphisms [8]

o(2, 1) ~su(1, 1), o(4, 1) ~su(1, 1, H),
o3) ~su(2), of5) ~su(2,H),
o(2,1) ® o(3) ~ s au(2, H), o(4,2) ~su(2, 2),
o(3, 1)~ sp(2, 0), o(6) ~su(4),
o(3, 2) ~ sp(4), o6, 2) ~'s a u(4, H).

SaU(N, H) denotes the group of anti-unitary quaternionic ¥ X N matrices.
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The representations of S in U are always spinor representations.

To find central charges, one has to look at the decomposition of the symmetric
part of the tensor product of U with itself. For algebras involving a u(1), any G
scalar can be absorbed into it. Most other algebras yield no G scalars, with the
exception of (I,), (1}), (VIII;) and (VIII}). These algebras admit one central charge.
In addition, only they admit outer automorphisms U(1), and (I;) even SU(2). This
extension of (I;) by SU(2) can be obtained from (II,) in the limit a = 0. In this
latter case no central charge is allowed.

The algebras for de Sitter spaces may be contracted to algebras of flat spaces.
Here any direct summand of J may either be left unchanged or contracted to a vec-
tor space of central charges.

For supersymmetries where S is a conformal algebra we have a natural grading
over the integers

A ASE VA YACE FAQKYACH (11)

gy (my [ (m+n) , (12)
defined by

L™= {IeLidb=nl}, (13)
with a suitably normalized dilation generator d. Here

LD =p (14)
is the subspace of translation generators, and

LV e W=y, (15)

Let us now consider the supersymmetries with
S =io(R, 1), (16)

i.e., the Poincaré algebra in R + | dimensions. As we have seen, these supersym-
metries cannot be simple. A typical example is the subalgebra

LED g (D g 1O a7
of (11), where
LY o dilations = L), (18)

In fact, we shall show that such a grading by dimension can always be constructed.
Provisionally we define recursively a filtration

PoCl)=LDcI®c T (19)

by
L™ = (1€ LPy C Lm- 2 form>0. (20)

11
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The proof of ref. [9] that k is finite applies also to supersymmetries. Obviously

Ly cTimen) Q1)
L+~ [(m) i (22)
GCLO . (23)

Proposition 2.3.
In(19),L = L@,

Proof: Put

UD=pynpn i=-1,1,.. . (24)
We have

PUCDy=0, (25)
and therefore

EWDUEDy =0, (26)
Thus

WYY CPe . @7
From

EPUMN =0 (28)

we obtain for any u € U(D

CPuXPud = (PLPu) u)

= (PPuu C PPGH =0 . 29)
For u € UV with u* = u this means
Puw=0. (30)
But these elements span UM, Thus
v =y-H=y, (31)
Proposition 2.4.

U consists of spinor representations of o(R, 1).

Proof: Consider a Cartan subalgebra of the Lorentz algebra spanned by the Her-
mitian generators My,, M3, ... . Decompose U into eigenspaces of this Cartan
algebra. For any element u of one of these spaces

My i W= u . (32)

Because of the compactness properties of o(R, 1), ag(u) must be purely imaginary,
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and all the other ¢;(1) real. This yields

Maiaivy @u™)=200u)8g; wu™). (33)
But there is no element with this property in G, unless
apu) =4 or 0. (34)

This must be true for all eigenspaces of the Cartan algebra. As scalars have been
excluded, U must consist of spinors.

From (4) and eq. (33) one obtains that the coefficient of P° in (uv*) defines a
positive-definite o(R) @ J invariant Hermitian form on U. We write

(=) PP+ ... (3%

From the existence of this form it follows that even the representation of 4 in U'is
completely reducible.

Proposition 2.5.
For R > 2 the filtration (19) can be refined to a grading
L=LDg (Vg (O (36)
where
LD =poc), (37
L=y, (38)
LO=oR )eTeA,, (39)
with
A. e CL)=4. (40)

Proof: Because of (4), C(L) contains only even elements. Taking into account
egs. (25), (27) and (31), we only have to prove that (UU) N J lies in C(L). Put

M=U o UD, a1

M =M/LED WD) =V o (VW) . 42)

We have to prove that M, contains only odd elements. Let W @ B be an Abelian ideal
of M, with B even, W odd. As the representation of B in V is completely reducible,

BV = BB C(BW)=0. (43)
Thus
BCWYMNCM)=0, (44)

(VWYCB=0. (45)
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This yields
WeB=WCCM)HCV. (46)

Moreover, C(M.) is even a direct summand of M, as the complete reducibility of the
representation of (V'V)in V yields

MMNOCMYCYMCMN=0. @7
Thus
M. =M;e CM.) (48)

with semi-simple or vanishing M.

But M, admits o(R, 1) as outer automorphism. Thus for R > 2 it has to vanish.

For R =2, M has to be a direct sum whose summands are all of the form (I'l ), ie.,
(su(2) @ su(2), (2, 2) + (2, 2)). This algebra has the outer automorphism algebra
0(2, 1). As Mg admits no further outer automorphisms, all direct summands of J
which act non-trivially on M are contained in (UU). Furthermore, My admits no cen-
tral charges. Thus (U @ P & J)/P is a direct sum of an algebra isomorphic to M, and
one of type (36). This yields all L with S =io(2, 1).

In the simplest case, where M, is just (1), L can be obtained from (lI,) in the
limit a = —1., In this limit, o(2, 1) may become the outer automorphism, or it may
be scaled down to a three-dimensiona! centre. If one does both, the centre trans-
forms as the adjoint, i.e., the vector representation of the outer automorphism
o(2, 1). This doubling of 0(2, 1) thus yields the Poincaré algebra io(2,1).

The supersymmetry algebra just described apparently has not been discussed
before.

For R = 1, no new possibilities for My appear, as (I}) is the only real form of a
simple graded Lie algebra which admits o1, 1) as outer automorphism. For example,
(su(V) @ su(NV), IV, V) + (W, N)) with N > 2 has the outer automorphism algebra
0(2), which prevents the introduction of momenta.

However, the extension of (I}) by o(1, 1) admits now one central charge which
may be obtained from one momentum component in 2 + 1 dimensions by reduc-
tion to 1 + 1 dimensions.

3. Little groups

We shall only determine the representations of the supersymmetries graded
according to egs. (36)—(39). For the conformal supersymmetries this means that we
represent only a subalgebra. For the de Sitter case we are anyhow only interested
in representations which have a limit for the contraction to flat space-time.

The representations can be induced in the usual way from the representations of
the little group. Thus we fix some subspace H of the Hilbert space on which P is
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constant and which is irreducible with respect to

L'=G'eU, (49)
where

G=SolJ (50)
and

§' = o(R) for the massive case ,

S’ =io(R — 1) for the massive case . (51

In the latter case the “Galilei-transformations™ of io(R — 1) have to be represented
by zero, as otherwise the representations become infinite dimensional. Thus S’ can
be restricted to o(R — 1).

On H, A is represented by constants. Thus Ul g (U restricted to H) yields a Clif-
ford algebra with bilinear form (UU|y . This bilinear form is not necessarily positive
definite, though by (4) it is non-negative definite.

Proposition 3.1.
U can be decomposed into (G', +) invariant subspaces
U=U%e U, (52)
such that
Ply=0 (53)

and (U' U is positive-definite.
Proof: We may choose H such that p® = p® in the massless case and p = (m, 0) for
massive particles. Write

U=U,e U_, (54)
where

Mogu) = tu forue U, . (55)
Eq. (33) yields

ww=c@® Py  foru€U,, (56)
with ¢ > 0 for any non-trivial & In the massless case we obtain

w=uv_,

U =U,. C))

In the massive case we use the positive-definite Hermitian form on U defined by
eq. (35). Note that eq. (33) yields

(U.U_)=0. (58)

15
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In general, let U be the subspace of U/ which annihilates A and take its orthogonal
complement U’ with respect to this form. As the form is (G', +) invariant, this is
also true for the decomposition.

Note that in the massless case all central charges have to vanish, as

Cly CWUNg=0. (59)
In the massive case without central charges one obtains
W, U)p=0, (60)

such that (UD)|y is positive definite and U° vanishes. Even with central charges
according to eq. (56)
dim U' > dim U, =1 dim U. (61)

However, there may be linear relations between U, |y and U_ |y

Proposition 3.2.
C(L)|y forms a compact, convex set. At its boundary and only at its boundary

Uy #0. .
Proof: Choose a basis u* of Uly, ¢ of C(L)|z. We have
Atl, (N wFY*) = mag(AN) + cla; () (62)

where the ag, a; are Hermitian forms. We have seen that a, has to be positive-
definite. In contrast, no linear combination of the a; can be positive- or negative-
definite, as the non-compact algebra G has no invariant finite-dimensional positive-
definite Hermitian forms.

The allowed values for C(L)}z are those for which

P(N) = mag(AN) + c'ai(AN) >0 forall A. (63)
0O is non-vanishing, if in addition

P =0 (64)
for some non-zero A, We may restrict A to the compact space

A= NN = 1) (65)
Then

min (P)/ao(AV)

is a continuous function of the ¢’. Along any ray in C(L)|y from zero to infinity it is
a linear function which will take at first positive, then negative values, with one zero
in between. The convexity follows from

min ((¢ +d*) a;(\\)) = min (c'a;(AN) + rr:\in (da;,0N)) . (66)
A A
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An important special case arises, if § = i0(R, 1) is reduced to io(R’, 1) with
R' <R. Here the superfluous momentum components become central charges, and
the boundary of C(L){gy corresponds to zero mass in R + | dimensions.

Now we shall show that as far as the representations of L’ are concerned, the
central charges enter only vig the determination of U°.

Proposition 3.3.

Let the representation U'|y of (G, +) be given. Then (U’ U')|y is fixed up to an
isomorphism.

Proof: Let

U=-UDeu®eg . (67)

be the decomposition of U’ into inequivalent representations of (G', +). As (U' Uy
contains only G' scalars,

WMy =0 form+#n. (68)

Let uy; be a basis of some U™, where (G', +) acts irreducibly on the first index,
whereas i counts the multiplicity of the representation. We may write

Wgitth) = KapXij , (69)

where K is the uniquely defined positive-definite Hermitian invariant form of the
corresponding representation of (G', +). K ® X has to be positive-definite Hermitian,
thus also X. In particular, we may choose a basis such that

Kap =6ap Xij= 8. (70)

Now let us classify the supersymmetries with regard to the representations. As
we have seen, this requires the classification of all possible U'.

Proposition 3.4.

Let G' =S @ J be an algebra of type (3), (51) and U’ a spinorial representation of
(G, +). Then one can always find a supersymmetry L which yields G’ & U’ as algebra
of the little group, both in the massless and in the massive case.

Proof: It is sufficient to consider an irreducible U, otherwise one just takes a
direct sum with components orthogonal under the Lie bracket. For any irreducible
spinorial representation of some (G, +) with G =S & J one can define a supersym-
metry by

(02050 = (F*YasP Xy - n

Here S acts on the first and J on the second index of Q. X, ;j 8 the positive-definite
Hermitian form on the representation of J.
Let
S =or), 72)

where r = R for the massive and r = R — 1 for the massless case. Take

G=io(r+1,1)eJ (73)

17
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and choose a U which transforms under J according to the given representation.
Furthermore let its transformation properties under o(r + 1, 1) be given by the em-
bedding of the representation of o(r) into the spinorial representation of o(r + 1, 1)
of twice its dimension. As the real, quaternionic, or non-self-conjugated nature of
the spinorial representations of o(r + n, n) is independent of n [8], the representation
of (G', +) is embedded into a representation of (G, +) of twice its dimension. Now
consider the corresponding algebra (71). For an H with p® = p"*! it yields the
wanted algebra of the little group. In the massless case, we have finished. In the
massive case we just have to take the subalgebra io(R, 1) of io(R + 1, 1), and to
interpret pR*1 as central charge.

4. Representations

In this section we always take the restriction to H, without noting it explicitly.

It remains to determine the representations of (L', +). As the undecomposable
representations of Clifford algebras with non-degenerate bilinear form are fixed up
to isomorphisms, this problem is completely solved by

Proposition 4.1.

The universal associative enveloping algebra U(L") of L' decomposes as

ULy =UG") o UUY, (79)

where U (G') is isomorphic to U(G').
Proof: Take a basis g’ of G, Q, of U’, such that

QaQp =8ap (75)

(€0a) = 0p0fe - (76)
Let

(QaQy = Ty = Tyq - an
Then

Qo = TapQp - (78)
The Jacobi identity yields

TayOhe + Tag0hy =0, (79)

(¢ —104305,0%,0, =0 foralla, i. (80)
Thus we obtain a set of elements

g =8 - 3050405 1)

of U(L") which commute with all elements of U(U") and form a Lie algebra iso-
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morphic to G'. The enveloping algebra U(G") of this Lie algebra fulfils eq. (74).

Thus all representations of L’ are products of a representation of G’ with the
irreducible representation F of U'. Taking the trivial representation of U(G') we
obtain the fundamental representation 1 ® F of L', for which the generators g’ are
represented according to

g' = 505005 - (82)
Its dimension is
dim F=dimU'/2 (83)
Proposition 4.2.

The representations of L' contain the same number of fermion as of boson states.
Proof: Let f be the fermion number. Because of

Yo =-0-) Qev, (84)
one has
Tr((-)QQ) =0 forQ QEU. (85)

The number (QQ') is in general not zero.

To tackle the calculation of the representations it is convenient to use characters,
i.e., the traces of elements of the group generated by the &' We may restrict our-
selves to a maximal Abelian subgroup, because this determines already all the weights.
Let A be any representation of U(G"). It corresponds, vig the isomorphism to U(G'),
to a representation 4 of G' and vice versa. Thus we obtain

Xi © Aexp(g") = xa & rexp(§E") exp(3i0a04507))
= xz2(expEZ ) xr (3 0056 08)
= x4(exp(tig)) x1 & rlexp(§)) - (86)

Furthermore let us use eq. (67). Let U contain c,, irreducible representations of
type m, which by themselves yield fundamental representations 1 ® Fm. Then

X1 @ £(8) = LI X1 ® pm ()™ . )

Thus we can restrict ourselves to irreducible U’. We can even reduce the calculation
of X; @ Fm> using the same formula, to the corresponding one for irreducible repre-
sentations of a maximum Abelian subgroup of G'.

Now take an r-dimensional Abelian group with generators g*, ..., g" and a 2"
dimensional real representation U’ for which no g’ is represented trivially. We may
assume that the eigenvalues of all g are t%i. For convenience we define

X155 ) =x1 & Hexp(§g)) - (88)
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A change of base from g!, g% to 1(g! + g?) yields the recursion relation

X (152583 )= X1 (€1 825 835 ) Xr—1 (§1 — §25 63, ) (89)

X; can easily be calculated directly. We take a base Q, of U’, where Q_ is the
adjoint of Q.. The o of eq. (76) has the form

1 0
ol= Li( ) . 90
“lo-1 ©0)
Thus
g =4(0+0--0-0.). o1
Then Q. may be represented by the Pauli matrices %(ox tig,). Thus
x1(§) =2 cos 3 . (92)
Eq. (89) then yields
X2(§1, $2) =2 cos 3§, + 2 cos 3¢, (93)
3
X1, 82,89 =242 2 cos £+ 20 exp(3(t6 £ 83 % £2)0) (94)
i= *

Eq. (92) yields in general

X1 & F(exp(itMy3)) = (2 cos Ap)dim U'2 (95)

Eq. (93) shows that the state of 1 ® F which yields the highest eigenvalue of M,
has zero eigenvalue for all generators commuting with M ,. Thus for any g &€J

X1 & F(expli E CMoi_ 1 2i+8)) = Z? 2(cos L¢; dim U) + ... (96)

One sees that for dim U’ =0 (mod 8), the fundamental representation contains a
totally symmetric %d tensor. For dim U’ = 4, one has a spinor, more generally for
dim U' =4 (mod 8) some spinor-tensor. For dim U' =2 (mod 4), which may happen
for massless particles in 3 + 1 dimensions, x4 = 1 is obviously impossible.

X4 (exp(itM,,)) has to be a sum of terms of the form 2 cos(3(2n + 1)).

For o(10, 1), the spin representation has dimension 32, such that for massless
particles dim U’ is at least 16. Thus any representation in more than 9 + 1 dimen-
sions contains at least a symmetric tensor field. For o(11, 1), no Majorana-Weyl-
spinor exists [8], thus dim U’ is at least 32 and higher spins have to occur. Con-
sequently, supergravity theories are impossible in more than 10 + 1 dimensions,
supersymmetric Yang-Mills theories in more than 9 + 1 dimensions.

Note that the minimal value of dim U’ grows exponentially with the dimension.
According to eq. (83), dim F grows like an iterated exponential.
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5. Examples

At first we shall list the fundamental representations of the supersymmetries
which allow multiplets with highest spin one. This requires dim U’ <8.

A)S" =0(2).

For J = 0 we obtain the character of eq. (92). With

xa(exp(itM5)) = 2 cos(A (2n + 1) %), n=0,1,.., 97)
we obtain
XA ® plexplitM2)) = 2 cos(3(n + 1) §) + 2 cos(3n}) . (98)

These are the well-known massless multiplets of the standard supersymmetry in 3 + 1
dimensions.

For J = su(2) and isospin % we may embed the representation U into the corre-
sponding one for §' = o(3) without changing dim U'. Therefore we need not treat
this case separately. From now on we omit most representations for which such an
embedding is possible. _

For J =su(3) and representation 3 + 3 a slightly more complicated embedding
into the vector representation of o(6) is possible. As fundamental multiplets, one ob-
tains su(3) singlets for “spin” +2 and triplet, antitriplet for “spin” +} respectively.
Multiplying by the x4 of eq. (97) with n = 0 one obtains singlets with spins +1, t%,
triplet, antitriplet for spin i% respectively, and both triplet and antitriplet for spin 0.
Multiplying by the octet of su(3) one obtains the particles of a possible supersym-
metric Yang-Mills theory.

However, here a general difficulty of those theories becomes apparent. In eq. (96)
we have seen that for the fundamental representation the particles with highest spin
are J singlets. Thus either one has to except multiplets with spin larger than one, or
one has to multiply by the adjoint representation of some gauge group. But this
procedure yields unreasonably high representations of the gauge group for the
fermions. If one takes supercharges which commute with the gauge group, one obtains
only adjoint representations of this group, otherwise higher representations have to
occur. But, of course, one has to keep in mind that our investigation concerns only
manifest symmetries.

ForJ = su(4) and representation 4 + 4 compare the case S’ = o(6), J = o(2),
which may be embedded into the case G' = o(8) discussed below. The fundamental
representation has a singlet for spin *1, quartet, antiquartet for spin +} respectively,
and an antisymmetric tensor for spin zero. Note that the simplest multiplet for
J = su(3) discussed above admits the larger symmetry J = su(4).

B S' =0(3)

Even for J = 0 the invariance under the adjoint operation requires that U’ con-
tains an even number of spinors. As smallest multiplet one obtains

X1 & FO=x1)*=2cos §¢+2. 99)
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Taking the spinor representation for A one obtains in A @ F a vector, a scalar and
two Majorana spinors. These multiplets are well known [10].

Here an embedding into the (2,2) representation of o(3) & o(3) is possible. The
character of the fundamental representation has already been given in eq. (93).

If one chooses the isospin-% representation of J = su(2), the representation of
the maximum Abelian subgroup in U is reducible. One obtains

x1 ® FE1, $2) = x2(€r, §2) X2 (1, 362) (100)

ie,(3, 1)+(1,5)+(2,4).

o(4) = 0(3) @ o(3) need not be considered separately, as for its spinors one o(3)
is represented trivially.

From S’ = o(5) on, representations with dim U’ < 8 no longer occur and those with
dim U’ = 8 can be embedded into a Majorana-Weyl spinor of o(8). This representa-
tion occurs for the massless particles of the supersymmetric spinning string. Let us
consider this system in detail.

For all supersymmetries in more than 5 + 1 dimensions, dim U is at least 16. All
supersymmetries with R > 5, dim U = 16 can be considered as subsymmetries of the
supersymmetry L = G @ U with G = io(9, 1), U = Majorana-Wey! spinor. Central
charges can be interpreted as components of the momentum in 9 + 1 dimensions.
There are at most 9 — R of them. The maximal internal symmetry for S =io(R, 1) is
just o(9 — R). This can easily be checked case by case.

For the massless multiplet in 9 + 1 dimensions, the fundamental representation is
essentially determined by dim F = 16 and proposition 4.2. Alternatively it can be
read of from eq. (94). According to the chirality of U one finds

4 4
XeG1s 2. 83 0a) = L expli 1 Jedi) + Za 2cosy, (101)
i= =

where all ;€ {1, —1} and the sum goes over all quadruples (e, €3, €3, €4) With

n €=zl for x. respectively . (102)

The r.hs. of eq. (101) represents a Majorana-Weyl spinor plus a vector. These are just
the m = O states of the spinning string of ref. [2]. The supersymmetry admits no cen-
tral charges. Thus according to eq. (60), one finds, for the fundamental representation

of the massive case,
X4(§1 ’ §2’ §3’ §4) = X+(§1 > {2’ §3, §4) x—(§1: {2’ §3’ §4) . (103)

As can easily be read off from the helicity partition function [11] this yields
exactly the multiplet which occurs at the m? = 1 level of the Neveu-Schwarz-Ramond
string as considered in ref. [2]. For m? = 2 one finds the ¥ ® F representation,
where V is the o(9) vector with

4
Xv(1s 82,83, 8a) =2 El cos ¢+ 1. (104)
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This is a strong confirmation for the conjecture that this model is supersymmetric.

For the closed string the representations considered in ref. [2] are just the tensor
product of the open-string representations with the corresponding representation of
the boson sector alone. Thus for a supersymmetric open string, the closed string has
to be supersymmetric too. This yields one possible supergravity theory in 9 + 1
dimensions, which by reduction yields the o(4) supergravity [12] plus an additional
sector considered below. The representation is given by

4
XC 1820630 8a) = Xe (€11 €21 $3, ) 2 El cos ¢; - (105)

To restrict the representations of io(9, 1) to those of io(3, 1) + su(4) one just has
to interpret Mys, Mg7 and Mgg in the character formulae as generators of SU(4). For
the fundamental massless representation, eq. (101) yields a su(4) singlet with spin
+1, a su(4) quartet, antiquartet with spin 1% respectively, and a su(4) sextet with
spin 0.

Multiplication with 2 cos {, yields the o(4) supergravity. The remaining part of th
character of the o(8) vector in eq. (105) yields a vector of o(6) ~ su(4). This is the
adjoint representation of o(4) C su(4). Thus one obtains the multiplet of the o(4)
Yang-Mills theory.

Supergravity theories are possible in at most 10 + 1 dimensions, as we have seen.
For G =i0(10, 1), U = Majorana spinor, one obtains the fundamental representation
(103).

If seven dimensions are compactified, one finds G = i0(3, 1) & o(7), while U
transforms as Majorana spinor both under io(3, 1) and o(7}. Now, one can enlarge
o(7) to o(8) without changing the representation space U. As the Majorana-Weyl
spinor and the vector representations of o(8) are connected by outer automorphisms
of o(8), the embedding of o(7) into o(8) may be done in such a way that U trans-
forms as a vector under o(8). Thus one should obtain the o(8) supergravity by
dimensional reduction, if the supergravity in 10 + 1 dimensions can be constructed.

In 9 + 1 dimensions, there is one further supergravity, which arises, if one takes
all tensor products of the open string with itself including the fermion-fermion sec-
tor. This yields an internal symmetry J = o(2). Taking into account only the space-
time symmetry, one obtains for the fundamental representation

XE15$2-83,8a) = x+ (€15 82, €3, 84)7 (106)

Scherk has discovered that dimensional reduction of this theory probably yields
the o(8) supergravity [13]. Indeed, as far as the little group G’ = o(8) & o(2) is con-
cerned, an exchange of §” = o(8) and J = o(2) would yield the representations of this
supergravity. This exchange may arise automatically by dimensional reduction of G’
to 0(2) & o(6) & o(2). Now, the o(6) counts as part of the internal symmetry
J = 0(6) @ o(2). As discussed for o(7) above, the representation of J in U admits an
extension to the vector representation of o(8).

Thus in 9 + 1 dimensions three supergravity theories may exist, with multiplets
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given by the eqs. (105), (103) and (106), respectively. Dimensional reduction of the
first should yield the o(4) supergravity, whereas from the other two one might ob-
tain the o(8) supergravity.

I wish to thank D. Olive, B. Zumino and J. Scherk for stimulating discussions.
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We present the action and transformation laws of supergravity in 11 dimensions which is expected to be closely related
to the O(8) theory in 4 dimensions after dimensional reduction.

Extended O(V) (V= 1, ...8) supergravity theories
[1-5] are notoriously difficult to construct beyond
N = 3. The difficulty lies partly in the large number
of fields involved (for N =8, which is the largest theory
that can be constructed in this frame-work, one has
1 graviton, 8 spin 3/2 gravitinos, 28 vectors, 56 spinors,
35 scalar and 35 pseudoscalar particles) but mostly in
the fact that the spin O fields appear in a non-polyno-
mial way, thus forbidding a step-by-step construction
of the action and transformation laws. So far, only the
N =4 theory has been constructed in a closed form
[3], the simplest form of it exhibiting a manifest SU(4)
invariance [5], while the N =8 theory {4] has been
constructed only to order K2. Further, geometrical
methods [6] do not seem readily applicable to these
theories beyond N = 2, due to the presence of fields
not bearing a vector index, which makes their interpre-
tation as gauge fields difficult.

On the other hand, an elegant method has been
found to be very useful to circumvent the similar
problem of constructing in a simple way the O(V)
(N=1, ...4) supersymmetric Yang—Mills theories in
4 dimensions. One first establishes the existence of
a supersymmetric Yang—Mills theory in 10 dimensions
[7], which was suggested by the study of the dual
spinor model. Then one reduces the theory to four
dimensions by assuming all fields to be independent
of the extra 6 spacial coordinates. In this way, the

! Laboratoire Propre du C.N.R.S., associ€ 4 I'Ecole Normale
Supérieure et 4 'Université de Paris-Sud. Postal address:
24 rue Lhomond, 75231 Paris Cedex 05, France.

N =4 theory, which has a vanishing g-function at the
first two non-trivial orders [8) was found, and also a
systematic search of all supersymmetric Yang—Mills in
less than 10 dimensions was conducted [9].

As shown by Nahm [10}, D = 10 is the highest num-
ber of dimensions in which supersymmetry representa-
tions with J < 1 can exist, while supergravity theories
(J < 2) can exist up to D= 11. The interest in construct-
ing the 11 dimensional theory lies in the fact that its
reduction to four dimensions is automatically guaran-
teed to yield an O(7) invariant supergravity theory
which has exactly the same field content as the O(8)
theory, both theories being presumably equivalent
just as the O(4) and SU(4) supergravity theories have
been shown to be. .

The field content of the D= 11 theory is remarkably
simple. It consists of the vierbein V', a Majorana spin
3/2 ¢, and of a completely antisymmetric gauge ten-
sor with 3 indices 4 ,,,,. To arrive at this set of fields
a simple argument is to count the number of physical
states. In D = 11, the Dirac matrices are 32 X 32 and
a Majorana spin 3/2 field ¥, represents 1/2-32(D-3)
=128 degrees of freedom. The vierbein field represents
{(D—-1)(D—2)}/2— 1 = 44 degrees of freedom. The
mismatch is 84 = (3), which is just the number of com-
ponents of a transverse, antisymmetric gauge field with
3 indices in 11 dimensions. Transversality amounts to
requiring that beside coordinate invariance, local Lorentz
invariance and local supersymmetry, the action is also
invariant under the Abelian gauge transformation:

aAMVp= ang‘m + avg‘ﬁﬂ t ap §MV ’
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where {,, = —{,,.

This gauge invariance, together with the requirement
of absence of terms with more than two derivatives,
implies that the action is polynomial in the 4, , field.
This is a considerable simplification compared to the
non-polynomial reduced forms.

Another way to arrive at this simplest set of fields
is to start from the spinor dual model of closed strings.
This model is obtained by doubling the Neveu—Schwarz
(Bose states, NS)—Ramond (Fermi states, R) model
[11] and a priori contains four possible sectors:
NS@®NS,NS®R, R@NS and R® R. In ref. [7] it was
shown that the first sector, at zero mass, contains a
graviton V: an antisymmetric tensor A v and a scalar
¢, while the second sector contains Majorana—Weyl
spin 3/2,, and spin 1/2 fields forming an irreducible
representation of D = 10 supergravity, and the two
other sectors were neglected. However, if we include
them we get in addition a new spin 3/2 1,11 and a spin
1/2 ¥’ field of opposite helicities and a blspmor field
representing 64 degrees of freedom, equivalent to an
antisymmetric gauge field with 3 indices 4 uvp (56
degrees of freedom) and a gauge vector field 4
(8 degrees of freedom). This set of fields forms an
irreducible representation of extended supergravity in
D =10 dimensions, a point which was also realized by
Schwarz [12]. It is easy to see how this set of fields
anses from reducing the D = 11 theory to D = 10. The
VM decomposes into Vz Ap ¢ fields (taking into ac-
count the fact that only the symmetric part propagates).
The Apnp decomposes into 4, 4, Finally the
Majorana y/; field decomposes into the Majorana--Weyl
fields Vs \ll;‘, XX

It is also interesting to show that reducing the theory
down to 4 dimensions we obtain the same counting of
fields as in the O(8) theory. The Majorana yy, field
decomposes into 8 spm 3/2 fields \l/' (i=1,..8),and
56 spin 1/2 fields y; (i=1,..8;a = 1 D). The graviton
field decomposes into 1 graviton 8uw 7 vectors g,,, and
28 scalars (g,5 = 8p,)- The antisymmetric tensor decom-
poses into an 4, field equivalent, in 4 dimensions, to
an auxiliary scalar field carrying no degrees of freedom,
7 antisymmetric 4 ,,,,, gauge fields equivalent in 4 dimen-
sions to 7 scalar fields ¢,, 21 vector fields 4 uab> and
35 pseudoscalar fields 4 .. The total content of fields
is thus the same as in the O(8) theory, although dimen-
sional reduction will only make an O(7) invariance
manifest.

Eleven-dimensional supergravity

Let us now present the action and transformation
laws of the D = 11 supergravity theory. Our metric is
(+—— ... —); Greek indices are world indices while
Latin indices refer to the tangent space. The I'? matrices
are in the Majorana representations and form a purely
imaginary, representation of the Clifford algebra in 11
dimensions. '?1--2N represents the product of NT'
matrices completely antisymmetrized, i.e. for unequal
indices
Fal AN = Fal FaN

The lagrangian we find is the following:

L= —-—;—2 R(w)
800, (52) 0y Pt
2 (W,,F“"“‘?"a U, + 12 YOTYB) (F s+ Fagys)
+ (1_2415)_2 e“‘“2°'3°‘4ﬁ""ﬁ"’““"”Falaﬂgm Fy 8,0364 Ao

The quartic terms in this Lagrangian are absorbed in the
supercovariant fields (i.e. fields which under supersym-
metry transform without derivatives of €) & and F
which will be defined below.

Fupo is the field strength associated with the gauge

field 4,,,,
Fyupa = 48[“A,,po] N

where the brackets represent the antisymmetrized sum
over all permutations, divided by their number. The
covariant derivative of Y, is given by:

D(@)¥,=8,¥,+ 5w, TPy, ,

and the convention for R is the same as in ref. [13].
The Lorentz connection coefficients w,,y, are given
by:

@uap= S (V) + K g

where the contorsion tensor is
Ko = (K2[4) [~ 0T 05 g
+2 (%r‘b V,— %F,,Wb + \lJb F,‘\l’a)] .

The torsion tensor is given by:


http:rat��.QN
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C‘w” =K, "~ Ky°
= (iK2/2) [Yo L, 2P0 — 29,79, ) .
The transformation laws are given by:

8Vg= ——iKEI‘”W“ ,

v, = KD,,(w)e +_ ¢,

—8rérse )e D €,

apys™ K Ou

=3z
84, =12 I‘[,,,,\Il,,] ’
Fuvpo = Fuvpa™ 3K\l/[“l",p Vol -
In order to obtain w,,; from its equation of motion

@, qp Should be put equal to:

Duap = Dpap t QK2 (D) VT ¥ -

As one can easily verify, @ ugb 1S @ supercovariant ten-
SOr.

To obtain this action and transformation laws, we
have proceeded in the following deductive fashion:
Firstly, in the 1.5 order formalism and taking the linear
partin 5V and 8y,,, the terms of the form €y in 68,
the variation of the action vanishes as for D = 4 super-
gravity. Then, as we have a kinetic term for 4,
(whose scale has been fixed by the conventional factor
1/48), to cancel the € yF2, we need a Y XY F coupling
and a ZEF term in 5, where X and Z are unknown
tensors made of I matrices.

To determine these terms, it is shortest to use the
requirement that the equations of motion of ¥, must
be supercovariant. That is deﬁnng by 8¢, =
(1/K )D € and the supercovariant ﬁeld strength by
Voo D Vo~ -D ¥, the fermion field equation should
read:

rwepy, =0.

Looking at the terms of the form ZF in this equation
and comparing them with what is obtained from the
YXYF terms in the action fixes the form of the X and
Z tensors and relate their coefficients.

Then we consider the terms of the form € yF* 2 in
the variation of the action. They all indeed disappear
if the coefficient of Z is fixed properly, except for one
term involving a product of 9T matrices which can be

cancelled by adding to S the gauge invariant expression:

a f dx eaﬁ‘r&uuﬁaiik Faﬁ'ys Fuvpa At]k R

and only if we have: 84, =bel'[ ¥,

This fixes the product ab. Then lookmg at the terms
of the type €dy/F and €YoF in the variation, we deter-
mine b so that all terms are fixed, up to trilinear terms
in 8¢ and up to quartic terms in the fermion fields in
the Lagrangian.

In order to fix these, we require that ¥, o be ind;ed
supercovariant. This imposes that we replace Fby F in
5y, but also w by & since w is not supercovariant. Now

“the transformation laws are fully fixed and a crucial test

transformation laws are fully fixed and a crucial test
is to see whether the supersymmetry algebra closes at
least on the Bose fields. This is indeed the case, con-
firming the need to replace ¥ and w by their superco-
variant versions and the correctness of the transforma-
tion laws.

Finally the quartic terms in the action are fixed so as
to reproduce the supercovariant fermion field equation.
The fact that this is possible is a test of consistency and
requires the following identity derived by a Pauli—Fierz
transformation:

LI Nl VI 3 VTR S
— ipuvaps w,@arp +1 Pﬂwp"[,al"uvaﬂ&
—2gPlaremvly, .1y~ 2Ll b, ghlarswl
+2gflerowl § Ty, =0.

As usual the supersymmetry algebra closes on shell.
Explicitly we find:

[82.8,1V5=0,8V3+ g”asz
- ix?'l‘”\hﬁﬂ"b Vub

where

g=—ig ', ¢€=-K&y,,

and

Q) = (K/72) €, (P ebobre
—24V,@pabr18)e, ﬁaﬁﬂ +80,9,

182, 8114, = 3@ (W54 ) * £73, 4,
+ %E'I‘[",\bp] +3[,A] 5

where
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A,,=B2K)E T, 6, =384, ,
(85,8110, =03,8¥,+ £9,¥,
+(1/K)D,e + 52,1909 + R, ,

where ‘R u I8 proportional to the fermion equation of
motion.

To check the full invariance of the action, we have
successively verified the vanishing of terms of type:
ey3(F+ Ff2) and ey 2D(&) ¥ to minimize the number
of terms of the type ey5 which have been finally shown
analytically to cancel.

In conclusion, two things remain to be done with
our theory. First, we are studying the reduction to four
dimensions and the connection with the O(8) theory
and also the reduction to 10 dimensions to get the
zero slope limit of the closed string dual model of ref.
[7]. The second is to find geometrical interpretations
analogous to the one obtained for D = 4 in the case of
O(1) and O(2) supergravity theories. The natural can-
didate for the graded Lie algebra is OSp (32, 1) which
contains an internal O(8) subalgebra. Works along these
lines are presently in progress.
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An attempt is made to construct a realistic model of particle physics based on eleven-
dimensional supergravity with seven dimensions compactified. It is possible to obtain an SU(3) x
SU(2) x U(1) gauge group, but the proper fermion quantum numbers are difficult to achieve.

In 1921 Kaluza suggested [1] that gravitation and electromagnetism could be
unified in a theory of five-dimensional riemannian geometry. The idea was further
developed by Klein [2] and was the subject of considerable interest during the
classical period of work on unified field theories [3]. Readable expositions of some of
the classical work have been given in text books by Bergmann and by Lichnerowicz
[4]; more recent discussions have been given by Rayski and by Thirring [5].

While the Kaluza-Klein approach has always been one of the most intriguing ideas
concerning unification of gauge fields with general relativity, it has languished
because of the absence of a realistic model with distinctive and testable predictions.
Yet the urgency of the unification of gauge fields with general relativity has surely
greatly increased with the growing importance of gauge fields in physics. Moreover,
the Kaluza-Klein theory has generalizations to non-abelian gauge fields which
actually were first proposed [6] well before real applications were known for
Yang-Mills fields in physics.

In the last few years this approach has been revived by Scherk and Schwarz and by
Cremmer and Scherk, originally in connection with dual models [7]. These authors
introduced many new ideas as well as new focus. In contrast to much of the classical
literature, they advocated that the extra dimensions should be regarded as true,
physical dimensions, on a par with the four observed dimensions. Cremmer and
Scherk suggested that the obvious differences between the four observed dimensions
and the extra microscopic ones could arise from a spontaneous breakdown of the
vacuum symmetry, or, as they called it, from a process of ‘spontaneous
compactification’ of the extra dimensions.

These ideas have motivated much recent work. The idea of spontaneous
compactification has been developed in more detail by Luciani [8]. An interesting
idea by Palla [9] about massless fermions in theories with extra compact dimensions

* Research partially supported by NSF grant PHY78-01221.
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will figure in some of the discussion below. Manton [10] has discussed some questions
that arise in trying to generate Higgs fields as components of the gauge field in extra
dimensions. The idea of extra hidden dimensions has stimulated much work in
supersymmetry theory, including the successful construction of the N =8 super-
gravity theory by Cremmer, Julia and Scherk and by Cremmer and Julia [11]. This
work has been generalized to give models with broken sypersymmetry [12].

In many respects, of course, the modern approaches to this subject tend to differ
from the classical point of view. In view of the proliferation of new particles in the last
thirty years, one may be more willing today than in the past to postulate the infinite
number of new degrees of freedom that must exist if extra dimensions really exist.
Much of the classical literature focussed on the need to eliminate a massless spin-zero
particle that naturally exists in the original Kaluza-Klein theory; the question seems
less urgent today because the obvious answer is that quantum mechanical mass
renormalization could easily account for the failure to observe this particle (a mass of
107 eV would make it undetectable). Some of the early work was motivated by the
hope that the fifth dimension could provide the hidden variables that would eliminate
indeterminacy from quantum mechanics. Despite the many generalizations and
changes in emphasis that have occurred, I will refer generically to theories in which
gauge fields are unified with gravitation by means of extra, compact dimensions as
Kaluza-Klein theories.

It has often been suggested that spontaneous compactification and supergravity
could be usefully combined together. The N = 8 supergravity theory was constructed
by ‘‘dimensional reduction” starting from an eleven-dimensional theory. In this
context, ‘“dimensional reduction” just means that the fields are taken to be
independent of seven of the original eleven coordinates, to which physical reality
need not be attributed. However, Cremmer and Julia [11] suggested that one might
wish to consider seriously the eleven dimensions and interpret seven of them as
compact dimensions in the spirit of Kaluza and Klein. This idea has been raised, on
occasion, by various other theorists. In this paper, I will describe an attempt - not
completely successful, but not completely unsuccessful either — to construct a realis-
tic theory of Kaluza-Klein type, based on eleven-dimensional supergravity.

As discussed by some of the authors mentioned above, from a modern point of
view the Kaluza-Klein unified theory of gravitation and electromagnetism is prob-
ably best understood as a theory of spontaneous symmetry breaking in which the
group of general coordinate transformations in five dimensions is spontaneously
broken to the product of the four-dimensional general coordinate transformation
group and a local U(1) gauge group.

Let us review how this arises. One considers standard general relativity in five
dimensions with the standard Einstein-Hilbert action

A= j d*xVgR. (1)
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Instead of assuming that the ground state of this system is five-dimensional
Minkowski space, which we will denote as M°, one takes the ground state to be the
product M*xS' of four-dimensional Minkowski space M* with the circle S'. The
space M*xS' is, like M®, a solution of the five-dimensional Einstein equations.
Classically it is difficult to decide which of the spaces M® and M* xS’ is a more
appropriate choice as the ground state, since they both have zero energy, insofar as
energy can be defined in general relativity*. Conventionally, one might assume that
the ground state is M?®. In the Kaluza-Klein approach one assumes, instead, that the
ground state is M*xS', and the physical spectrum is determined by studying smail
oscillations around this ground state. One assumes that the radius of the circle S' is
microscopically small, perhaps of order of the Planck length, and this accounts for
why the existence of this fifth dimension is not noted in everyday experience.

The symmetries of the Kaluza-Klein ground state M* xS’ are the four-dimen-
sional Poincaré symmetries, acting on M*, and a U(1) group of rotations of the circle
S'. These symmetries would be observed as local or gauge symmetries in the
apparent four-dimensional world because the whole theory started with the Einstein
action (1) which is generally covariant. In fact, if one considers small oscillations
around the “ground state” M*x$', one finds an infinite number of massive excita-
tions, the masses being of order the inverse of the circumference of $'. One finds also
a finite number of massless modes, which presumably would constitute the low-
energy physics. The massless modes turn out to be a spin-two graviton and a spin-one
photon, which are gauge particles of the symmetries of M* x S', and a Brans-Dicke
scalar.

The ansatz which exhibits the massless modes is the following. The metric tensor
of this theory is a five by five matrix gas(x", ¢) which in general may depend on the
four coordinates x*, u =1- - - 4, of M*, and on the angular coordinate ¢ of S'. The
massless modes are those for which g5 is a function of x* only. One can then write
gap in block form

8uv(X) A‘.(X)) , @)

gas(x®, @)= (A,.(x) o (x)

where g,,, is a four by four matrix (the first four rows and columns of ga5), A, = g.s,
and o = gss. Then g,., is the ordinary metric tensor of the apparent four-dimensional
world, and describes a massless spin-two particle; A, is the gauge field of the U(1)
symmetry, and o is the Brans-Dicke scalar.

In the classical work on the Kaluza-Klein theory, it is shown that the five-
dimensional Einstein action (1), when expanded in terms of g,,,, A,, and o (and the
other modes, which decouple from these at low energies) contains a four-dimen-
sional Einstein action VgR' for g,,, a Maxwell action F2, for A,, and the usual

* The definition of energy in general relativity depends on the boundary conditions, so while both M*

1 . . . . .
and M* x §' have zero energy, a comparison between them is meaningless, like comparing zero apples
to zero oranges.
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kinetic energy for o. Also, one can readily check that A, transforms as a gauge field
A, - A, +d,¢ under coordinate transformations of the special type (x',¢)-
(x', & +£(x")) if the metric gap is transformed by the standard rule
ax'* ax'®
8ap > 8a'm x” ox?

The Kaluza—Klein theory thus unifies the metric tensor g,, and a gauge field A,
into the unified structure of five-dimensional general relativity. This theory is surely
one of the most remarkable ideas ever advanced for unification of electromagnetism
and gravitation.

The Kaluza-Klein theory, as noted above, also has a non-abelian generalization,
which has been extensively discussed over the years. In this generalization, one starts
with general relativity in 4 + n dimensions, possibly with additional matter fields or
with a cosmological constant. Instead of assuming the ground state to be M**",
Minkowski space of 4 + n dimensions, one assumes the ground state to be a product
space M* x B, where B is a compact space of dimension n. M* x B should be a solution
of the classical equations of motion, or possibly, as will be discussed later, a minimum
of some effective potential.

As in the previous discussion, symmetries of B will be observed as gauge
symmetries in the effective four dimensional world. With a suitable choice of B, one
may unify an arbitrary gauge group, abelian or non-abelian, with ordinary general
relativity, in a 4 + n dimensional theory.

The ansatz which generalizes (2) is the following. Let ¢,, i =1 - - - n, be coordinates
for the internal space B. Let T a=1--- N, be the generators of the symmetry
group G of B. Let the action of the symmetry generator T* on the ¢; be ¢, >
& +K? (), where Ki () is the “Killing vector” associated with the symmetry T°.
Then the massless excitations of the candidate “ground state” M* x B correspond to
an ansatz of the following form:

un(x%) Z,.A,'i(x")K?(qb"))
Y ALK () yi{®®) ’

where y;; is the metric tensor of the internal space B. The fields AL (x*) are massless
gauge fields of the group G. In this way one may obtain the gauge fields of an
arbitrary abelian or non-abelian gauge group as components of the gravitational field
in 4 + n dimensions.

One may verify that the 4 +n dimensional gravitational action really contains
the proper kinetic energy term ), (F 2,). It is also straightforward to check that
under infinitesimal coordinate transformations of the special form (x°, &)~
(x* ¢ +¥,e°(x")K] (), which is an x-dependent symmetry transformation of the
internal space B, the field AL(x) transforms in the expected fashion, Al(x)~>
A%(x)+D,e%(x). Thus, A really has the properties expected of an ordinary
four-dimensional gauge field. This gauge field is a remnant of the original coordinate

gan(x” 65 = 3)
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invariance group in 4 + n dimensions, which has been spontaneously broken down to
the symmetries of M x B.

As has been noted before, there is a fairly extensive literature on this construction.
The case which has been discussed most widely is the case in which B is itself the
manifold of some group H. It should be noted that, if H is a non-abelian group, the
symmetry group G of the group manifold is not H but HxH, since the group
manifold can be transformed by either left or right multiplication. If one starts with
general relativity in 4 + n dimensions, the ansatz (3) will automatically give massless
gauge mesons of the full symmetry group HxH.

What problems arise if we try to construct a realistic theory along these lines?
Known particle interactions can be described by the gauge group SU(3) xSU(2) x
U(1). So the symmetry group G of the compact space B must at least contain this as a
subgroup,

SUB)xSUR)xU(1)=G. 4)
So B must at least have SU(3) x SU(2) x U(1) as a symmetry group.

To be as economical as possible, we may wish to choose B to be a manifold of
minimum dimension with an SU(3) x SU(2) X U(1) symmetry. What is the minimum
dimension of a manifold which can have SU(3) x SU(2) x U(1) symmetry?

U(1) is the symmetry group of the circle S', which has dimension one. The lowest
dimension space with symmetry SU(2) is the ordinary two-dimensional sphere S°.
The space of lowest dimension with symmetry group SU(3) is the complex projective
space CP?, which has real dimension four. (CP? is the space of three complex
variables (Z', Z? Z%), not all zero, with the identification (Z', Z?% Z% =
(AZ*,AZ?, AZ*) for any non-zero complex number A. CP? can also be defined as the
homogeneous space SU(3)/U(2).) Therefore, the space CP>xS$?x§' has SU(3) x
SU(2) x U(1) symmetry, and it has 4 +2 + 1 = 7 dimensions.

As we will see below, seven dimensions is in fact the minimum dimensionality of a
manifold with SU(3) x SU(2) x U(1) symmetry, although CP?xS*xS' is not the only
seven-dimensional manifold with this symmetry. If, therefore, we wish to construct a
theory in which SU(3)xSU(2)x U(1) gauge fields arise as components of the
gravitational field in more than four dimensions, we must have at least seven extra
dimensions. With also four non-compact ‘‘space-time’dimensions, the total dimen-
sionality of our world must be at least 4+7 =11,

This last number is most remarkable, because eleven dimensions is probably the
maximum for supergravity. Eleven-dimensional supergravity has been explicitly
constructed, and it is strongly believed that supergravity theories do not exist in
dimensions greater than eleven. (The reason for this belief is that, on purely algebraic
grounds [13], a supergravity theory in d>11 would have to contain massless
particles of spin greater than two. But there are excellent reasons, both S-matrix
theoretic [14} and field theoretic [15], to believe that consistent field theories with
gravity coupled to massless particles of spin greater than two do not exist.) It is
consequently just barely possible to obtain SU(3) x SU(2) x U(1) gauge fields as part
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of the gravitational field in a supergravity theory, if we use the unique, maximal,
eleven-dimensional supergravity theory.

It is certainly a very intriguing numerical coincidence that eleven dimensions,
which is the maximum number for supergravity, is the minimum number in which
one can obtain SU(3) x SU(2) x U(1) gauge fields by the Kaluza-Klein procedure.
This coincidence suggests that the approach is worth serious consideration.

Let us now discuss in more detail the question of why seven dimensions is the
minimum number of dimensions for a space with SU(3) xSU(2) x U(1) symmetry —
and the related matter of determining all seven-dimensional manifolds with this
symmetry.

The space of lowest dimension with any symmetry group G is always a2 homo-
geneous space G/H, where H is a maximal subgroup of G. (The space G/H is defined
as the set of all elements g of G, with two elements g and g’ regarded as equivalent,
g =g, if they differ by right multiplication by an element of H, that is, if g = g’ with
h € H.) The dimension of G/H is always equal to the dimension of G minus the
dimension of H.

In the case G=SU(3)xSU(2)xU(1), the largest dimension subgroup that is
suitable is SU(2)x U(1)xU(1). Any larger subgroup of G would contain as a
subgroup one of the three factors SU(3), SU(2), or U(1) of G, and this factor would
then not have any non-trivial action on G/H - it would not really be a symmetry
group of G/H. Since the dimension of SU(3) x SU(2) x U(1)is 8 +3+1 =12 and the
dimension of SU(2) x U(1) xU(1) is 3+ 1 + 1 =5, the dimension of (SU(3) x SU(2) x
U))/(SUR)xU1)xU(1)) is 12—-5=7. It is for this reason that a space with
SUB)xSU(2) x U(1) symmetry must have at least seven dimensions. However,
there are many ways to embed SU(2) x U(1) x U(1) in SU(3) xSU(2) x U(1),and as a
result there are many seven-dimensional manifolds with SU(3)xSU(2)x U(1)
symmetry.

To embed SU(2)xU(1)xU(1) in SU(3)xSU(2)x U(1) we first embed SU(2).
SU(2) can be embedded in SU(3)xSU(2)xU(1) in a variety of ways. The only
embedding that turns out to be relevant is for SU(2) to be embedded in SU(3) as an
“isospin”’ subgroup, so that the fundamental triplet of SU(3) transforms as 2+1
under SU(2). [Other embeddings of SU(2) lead to spaces G/H on which some of the
SU(3)xSU(2)xU(1) symmetries act trivially, as discussed in the previous
paragraph.] We still must embed U(1) x U(1) in SU(3) x SU(2) x U(1).

SU(3) x SU(2) xU(1) has three commuting U(1) generators which commute with
the SU(2) subgroup of SU(3) that we have just chosen. There is a ‘‘hypercharge”
generator of SU(3), which we may call As, which commutes with the “isospin”
subgroup. Also, we have the U(1) factor of SU(3) x SU(2) x U(1), which will be called
Y, and we may choose an arbitrary U(1) generator of the SU(2) factor, which will be
called Ts.

So SU(3)x SU(2) x U(1) contains an essentially unique subgroup SU(2) x U(1) x
U(1) x U(1), where the three U(1) factors are Ag, Ts, and Y. We do not want to divide
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SU(3)xSU(2)x U(1) by the full SU(2)x U(1) x U(1) x U(1) subgroup because this
would yield a space (CP?x §?, to be precise) on which the U(1) of SU(3) x SU(2) x
U(1) would act trivially and would not really be a symmetry. So we delete one of the
three U(1) factors, and divide only by SU(2) x U(1) x U(1).

The U(1) factor that is deleted may be an arbitrary linear combination pAs +q7T5 +
rY of Ag, T, and Y where p, q, and r are any three integers which have no common
divisor*. So we define H as SU(2) x U(1) x U(1), where the SU(2) is our *‘isospin”
subgroup of SU(3), and the two U(1)’s are the two linear combinations of Ag, T3, and
Y which are orthogonal to pAs+qT5+rY. The space G/H is then a seven-dimen-
sional space with SU(3) x SU(2) x U(1) symmetry, which we may call M*™.

In a few cases the M are familiar spaces. M™' is our previous example
CP?xS*xS'. But in most cases the M*" are not familiar spaces, and are not
products.

In a few cases the M™ have greater symmetry than SU(3) x SU(2) x U(1). M'" is
S* x §?, which has the symmetry O(6) x SU(2). M°'! is CP? x §*, whose full symmetry
is SU(3) x SU(2) x SU(2). Except for these two cases, one cannot obtain from seven
extra dimensions a symmetry “larger” than SU(3) xSU(2) x U(1). Therefore, the
observed gauge group in nature is practically the ‘‘largest” group one could obtain
from a Kaluza—-Klein theory with seven extra dimensions.

Although the M”™ for general values of p, g, and r are not familiar spaces, it is
possible to give a rather explicit description of them. Consider first the eight
dimensional space S*x S [S" is the n-dimensional sphere, with symmetry group
O(n +1)). The symmetry group of S° x S* is O(6) x O(4). Let us introduce a particular
generator of O(6),

01 00 00O
-1 0 00 00O
00 01 00O
= 5
k 00 -10 0O0fF ©)
00 00 01
00 00 -10
and a particular generator of O(4),
01 00O
-1 0 00
L=
00 01 (©)
00 -1 0

Then the subgroup of O(6) that commutes with K is SU(3)x U(1) [the U(1) being

* And r should be non-zero to avoid obtaining a space on which U(1) is realized as the identity.
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generated by K itself] and the subgroup of O(4) that commutes with L is SU(2) x
U(1) [the U(1) being generated by L].

For any non-zero p and q, we now define N = —gK +pL. Then N generates a U(1)
subgroup of O(6) x O(4), consisting of elements of the form exp N, 0=t <27 We
may now form from S’ x S* a seven-dimensional space M* = (S§°x $%)/U(1), where
two points in S* X $> are considered to be identical if they are mapped into each other
by the action of the U(1) subgroup generated by N.

This space M* is equal to the r=1 case of what we have previously called
M". The M™ are actually the most general simply connected seven-dimensional
manifolds with SU(3)xSU(Q2)xU(1) symmetry. To obtain M" for r# 1 one
must factor out from $* x S* an additional discrete subgroup consisting of elements
of the form exp (2mqK/r) (¢=0,1,2,...,r-1). We define M =M"/Z" =
($* xS/ (U(1)x Z").

To verify that the construction of the M” just presented is equivalent to the
previous definition as (SU(3)x SU(2) x U(1))/(SU(2) x U(1) x U(1)), one uses the
fact that SU(3)/SU(2) is S, while SU(2) is S°, so (SU(3)x SU(2) x U(1))/(SU(2) x
U(1) x U(1)) is (S* x S* x U(1))/(U(1) x U(1)). Dividing out the two U(1) factors, one
arrives at the above definition of M™ as (S° x $*)/(U(1)x Z").

The M?" are not quite the most general seven-dimensional manifold with SU(3) x
SU(2) x U(1) symmetry, because for special values of p, g, and r it is possible to
supplement SU(2) x U(1) x U(1) with an additional twofold discrete symmetry. One
obtains in this way some non-orientable manifolds with one of the M*™ as a double
covering space. These spaces are the following. Dividing M’ by a discrete symmetry
one can get CP’xP?xS' (P is real projective space of dimension k), or CP? x
($* xS")/Z,, where Z, is a simultaneous inversion of S?and S'. From M'*! one gets
$*x P? and (S°xS?)/Z,, where the Z, is a simultaneous inversion of S° and §°.
Likewise, by dividing M'® by an additional two-fold symmetry one can make
S*/Z" x P? and (S*/Z’ x $%)/Z,. These spaces are non-orientable. This completes the
list of seven-dimensional manifolds with SU(3) x SU(2) x U(1) symmetry.

If one is willing to suppose that the ground state of eleven-dimensional super-
gravity is a product of four-dimensional Minkowski space with one of the M*”, one
can obtain an SU(3) x SU(2) x U(1) gauge group, the gauge fields being components
of the gravitational field, according to the ansatz of eq. (3). Of course, to describe
nature, it is not sufficient to have the gauge group. It is also necessary to have quarks
and leptons of essentially zero mass [very light compared to the energy scale of
gravitation; massless in any approximation in which SU(3)xSU(2) x U(1) is not
spontaneously broken] which should be in the appropriate representation of the
gauge group. And it is necessary to find Higgs bosons whose vacuum expectation
value could ultimately trigger SU(2) X U(1) breaking.

How can one obtain massless quarks and leptons in the Kaluza-Klein framework?
To understand the basic idea®, suppose that in a 4 + n dimensional theory we have a

* See also a discussion by Palla [9].
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massless spin one half fermion. It satisfies the 4 + n dimensional Dirac equation,

By =0, (7)
or explicitly

4+n

Yy yDy=0. (8)

i=1

This Dirac operator can be written in the form

E(“d/"‘g“n”df — 0, (9)

tint) __

where B = }::‘=1 ¥'D; is the ordinary four-dimensional Dirac operator, and &
Z,‘:; y'Dj is the Dirac operator in the internal space of n compact dimensions.

The expression (9) immediately shows that the eigenvalue of P“™ will be
observed in practice as the four-dimensional mass. If "¢ = Ay, then ¢ will be
observed by four-dimensional observers who are unaware of the existence of the
extra microscopic dimensions as a fermion of mass |A|.

The operator P'™ acts on a compact space, so its spectrum is discrete. Its
eigenvalues either are zero or are of order 1/R, R being the radius of the extra
dimensions. Since 1/R is, in the Kaluza—Klein approach, presumably of order the
Planck mass, the non-zero eigenvalues of B"™ correspond to extremely massive
fermions which would not have been observed. The observed quarks and leptons
must correspond to the zero modes of ™.

If, in eleven-dimensional supergravity, the ground state is a product of four-
dimensional Minkowski space with one of the M”¥, then the zero modes of the Dirac
operator in the internal space will, if there are any zero modes at all, automatically
form multiplets of SU(3) x SU(2) x U(1), since this is the symmetry of the internal
space. It therefore is reasonable to wonder whether for an appropriate choice of p, g,
and r, zero modes could exist and form the appropriate representation of the
symmetry group, so as to reproduce the observed spectrum of quarks and leptons.

Of course, to reproduce what is observed in nature, we would need quite a few zero
modes of the internal space Dirac operator. If the top quark exists, there are in nature
at least 45 fermion degrees of freedom of given helicity, counting all colors and
flavors of quarks and leptons. We would therefore need at least 45 Dirac zero modes.
However, when a Dirac operator has zero modes, the number usually depends on
topological invariants. Perhaps by choosing suitable values of p, g, and r we could
suitably “twist” the topology and obtain the required 45 zero modes lying in the
appropriate representation of SU(3) xSU(2) x U(1).

Actually, if one has in mind eleven-dimensional supergravity, one must modify
this program slightly. In eleven-dimensional supergravity, there is no fundamental
spin one half field. The only fundamental Fermi field in that theory is the Rarita-
Schwinger field ¢,.,, of spin 3 (u is a vector index, a a spinor index).

Although this field has spin ; from the point of view of eleven dimensions, the
components of ¢, with 5= u =< 11 are spin one half fields from the point of view of
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ordinary four-dimensional physics. For u =5, u would be observed as an internal
symmetry index, not a space-time index; it carries spin zero. Although the
components ¢, with u =1 - - - 4 are spin-3 fields in the four-dimensional sense, the
components with u =5 - - - 11 are spin one half fields. So zero-mode solutions of the
spin-3 wave equation in the extra dimensions would be observed as massless spin-}
fermions in four dimensions. These would be the ordinary light fermions of the
spontaneously compactified eleven-dimensional theory.

In one sense, it is an advantage to have to consider the Rarita-Schwinger operator
rather than the Dirac operator. The Rarita-Schwinger operator can have zero modes
more easily and in more abundance than the Dirac operator, because the Dirac
operator has positivity properties which tend to suppress the number of zero modes.
For instance, with four extra dimensions, it is known [16] that there is only a single
non-flat compact solution of Einstein’s equations on which the Dirac operator has
zero modes. This is the Kahler manifold K3 (which has no Killing vectors). On this
space there are two zero modes of the Dirac operator — but 42 zero modes of the
Rarita-Schwinger operator. The large discrepancy is caused, in this case, by a much
larger coefficient of the axial anomaly for Rarita-Schwinger fields. This example
shows, incidentally, that the rather large number of zero modes that would be
required to describe what is observed in physics is not necessarily out of reach.

In the approach considered here, the solution of the problem of flavor — the
problem of the existence of several ‘“‘generations” of fermions with the same
quantum numbers - would be that the extra dimensions have a sufficiently complex
topology that there are several zero modes with the same SU(3) xSU(2)x U(1)
quantum numbers. When an operator has several zero modes, they are not neces-
sarily related by any symmetry. For instance, the isospinor Dirac operator in a
Yang-Mills instanton of topological number K has K modes; these modes
are not related by any symmetry. This is fortunate, because the various genera-
tions of fermions have very different masses and are not obviously related by any
symmetry.

Unfortunately, there is a basic reason that this idea does not work, at least not in
the form described above. The reason for this is related to one of the most basic facts
about the observed quarks and leptons: the fermions of given helicity transform in a
complex representation of the gauge group, or, to put it differently, right-handed
fermions do not transform the same way that the left-handed fermions transform.
For instance, left-handed color triplets (quarks) are SU(2) doublets, but right-
handed color triplets are SU(2) singlets. This is the reason that quarks and leptons do
not have bare masses but receive their mass from the Higgs mechanism - from
SU(2) x U(1) symmetry breaking. This is a very important fact theoretically, because
itis the basis for our theoretical understanding of why the quarks and leptons are very
light compared to the mass scale of grand unification or the Planck mass. If left- and
right-handed fermions transformed the same way under the the gauge group, bare
masses would have been possible and could have been arbitrarily large.
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In the framework that has been described above, right- and left-handed fermions
would inevitably transform the same way under SU(3) x SU(2) x U(1). The reason
for this is that low mass fermions are supposed to arise as zero modes of the
Rarita-Schwinger operator in the extra dimensions. But the Rarita-Schwinger
operator in the seven extra dimensions does not *‘know"” whether a spinor field is left-
or right-handed with respect to four-dimensional Lorentz transformations. It treats
four-dimensional left- and right-handed fermions in the same way. One therefore
could not get the observed SU(3) x SU(2) x U(1) representation. One would inevit-
ably get vector-like rather than V-A weak interactions, with bare masses being
possible for all fermions. (Indeed, precisely because bare masses would be possible
for all fermions, it is not natural to get any massless fermions at all.)

There is an intriguing mechanism by which, at first sight, it seems that the internal
space Rarita—Schwinger equation could treat left and right fermions differently.
Eleven-dimensional spinors are constructed with eleven gamma matrices y,, i =
1---11. Let us define an operator I'y; =iy:- - y11 which is a sort of eleven-
dimensional helicity operator. Let us also define an operator I's = iy; y:y3 v+ Which
measures the ordinary four-dimensional helicity, and an operator I'y=ys-- -y,
which one might think of as “‘helicity” in the internal eleven-dimensional space.
Thenffl =I'f=1"3=1 andfn=1"4l"7.

The Rarita~Schwinger field ¢ of eleven-dimensional supergravity satisfies a Weyl
condition ¢ =I';1¢. (This condition must be imposed; otherwise there would be
more Fermi than Bose degrees of freedom and supersymmetry would not be
possible.) This identity may equivalently be written Iy = I'7¢.

The latter equation shows that in eleven-dimensional supergravity the four-
dimensional helicity of fermions is correlated with the seven-dimensional *‘helicity”.
Components with 'y = +1 (or —1) have I'; = +1 (or —1). If the quantum numbers of
zero modes of the seven-dimensional Rarita-Schwinger equation depended on I';, as
one might intuitively expect, they would also depend on I's.

Unfortunately, the spectrum of the seven-dimensional Rarita-Schwinger operator
does not depend on I';. The reason for this is very simple (and depends only on the
fact that the number of extra dimensions is odd). In defining how spinors transform
under coordinate transformations in riemannian geometry one needs the matrices
o, =[ v, ;1. One does not (on an orientable manifold) need the y; themselves. The
transformation y; «» —v; does not change the g;; so it does not affect the definition of
spinors. It does, however, change the sign of ['; = y,y; - - - y7. Consequently, spinors
with opposite values of I'; transform the same way under coordinate trans-
formations. Since, in the approach discussed here, SU(3)xSU(2) x U(1) trans-
formations are coordinate transformations, spinors with opposite values of I'; have
the same SU(3) xSU(2) x U(1) quantum numbers.

One could try to avoid this conclusion by taking the extra seven dimensions tobe a
non-orientable manifold. In a non-orientable manifold, the definition of spinors is
subtle and involves the y; as well as o;;. However, seven-dimensional non-orientable
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manifolds with SU(3) x SU(2) x U(1) symmetry are not abundant (they have all been
listed above), and it is not difficult to show that none of them are suitable.

One might also try to avoid the above stated conclusion by going beyond
riemannian geometry to include some variant of torsion. What possibilities this
would offer is not very clear; the matter will be discussed at the end of this paper.

Obtaining the right quantum numbers for quarks and leptons is, of course, not the
only problem that must be faced in order to obtain a realistic theory, although it may
be the most difficult problem. We must also worry about spontaneous breaking of
supersymmetry, spontaneous breaking of CP, spontaneous breaking of SU(2) x U(1)
gauge symmetry, and obtaining the proper values of the low-energy parameters
(coupling constants, masses, and mixing angles); and we must worry about what the
true ground state of the theory really is. These questions will now be briefly discussed
in turn.

For spontaneous breaking of supersymmetry the prospects are very bright; in fact,
supersymmetry almost inevitably is spontaneously broken as part of any scheme in
which there are compact dimensions with a non-abelian symmetry.

The reason for this is the following. Unbroken supersymmetry means that under a
supersymmetry transformation the vacuum expectation values of the fields do not
change. The vacuum expectation values of the Bose fields automatically are invariant
under supersymmetry, since their supersymmetric variation would be proportional
to the (vanishing) vacuum expectation values of the Fermi fields. The delicate
question is whether the vacuum expectation values of the fermi fields change under
supersymmetry.

To illustrate the point, let us ignore the possible presence in the theory of Bose
fields other than the gravitational field. Then the transformation law for the
Rarita-Schwinger field is 8¢, = D,.¢, ¢ being the gauge parameter. An unbroken
supersymmetry - a symmetry of the vacuum - must have 8¢, =0, so unbroken
supersymmetry transformations correspond to solutions of D, = 0.

On a curved manifold, this equation will almost certainly not have solutions, since
D.e =0 implies the integrability condition [D,, D,Je =0 or R,.as(y", v*1e =0,
which on most curved manifolds is not satisfied by any non-zero €. For instance, on
none of the M? does a solution exist. (The properties of seven-dimensional
manifolds admitting solutions of D,e =0 have been discussed in the mathematical
literature [17], but non-trivial examples do not seem to be known.) So in theories
with curved extra dimensions, there will generally not be any unbroken supersym-
metries.

The picture does not change greatly when one includes Bose fields other than the
gravitational field. We now have 8¢, = D, e, where D, = D, plus non-minimal terms
involving the vacuum expectation values of other Bose fields (and possibly involving
the expectation values of fermion bilinears, as discussed below). Unbroken super-
symmetries are now solutions of D,e =0, but solutions will still typically not exist
because the integrability condition [D,,, D, ]e = 0 will still not have solutions.
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Although solutions will generally not exist, the extra dimensions and the vacuum
expectation values of the fields may be just such that one or more solutions of
D,e =0 would exist. Each solution of D,e =0 in the internal space would cor-
respond to an unbroken supersymmetry charge in four dimensions. If there is
precisely one such solution, and so only one unbroken supersymmetry generator, this
corresponds to a theory in which N =8 supersymmetry has been spontaneously
broken down to N = 1 supersymmetry. If there are K solutions, there is an unbroken
N = K supersymmetry.

A particularly attractive possibility would be a theory in which the equation
D,e =0 has precisely one solution in the extra dimensions, corresponding to
unbroken N =1 supersymmetry. With N =1 supersymmetry it is possible to con-
struct more or less realistic models of observed particle physics. With N =2 it is not
possible to make a realistic model, because the supersymmetry algebra for N =2
forces left- and right-handed fermions to transform in the same way under the gauge
group, in contrast with what is observed. It is attractive to believe that N =1
supersymmetry might survive after compactification of seven dimensions because
this would severely constrain the theory, would make many predictions that might be
testable in accelerators, and [19] might shed light on SU(2) x U(1) breaking and the
gauge hierarchy problem. Of course, we would then have to explain how N =1
supersymmetry is eventually spontaneously broken at low energies.

In addition to supersymmetry breaking, we must also expiain P and CP breaking
in order to construct a realistic theory. The eleven-dimensional supergravity
langrangian is invariant under inversions of space (or time) combined with a change
of sign of the antisymmetric tensor gauge field that exists in this theory. After
compactification of seven dimensions, the eleven-dimensional symmetry could be
manifested as both P (inversion of space) and C (inversion of the compact dimen-
sions). These potential invariances must be spontaneously broken.

A natural mechanism for spontaneous breaking of P, C, and CP involves the
antisymmetry tensor gauge field of the eleven-dimensional supergravity theory. The
curl F,g,5 of this field may have a vacuum expectation value without breaking
Lorentz invariance or SU(3) x SU(2) x U(1). In fact, as discussed recently by several
authors [20], a vacuum expectation value of Fi,34 is Lorentz invariant. It would
violate P and CP but conserve C. The components F,, for i .- - m =35 may also
have expectation values, which would spontaneously break C and CP but conserve
P. It is not difficult to see (by considering the little group of a point on M") that on
any of the M, the most general SU(3) x SU(2) x U(1) invariant vacuum expectation
value of F,3,; depends on two real parameters.

Although the eleven-dimensional theory can have spontaneous breaking of C, P,
and CP, the strong interaction angle # will inevitably vanish at the tree level. The
reason for this is that in the eleven-dimensional theory, there is no operator which
might be added to the lagrangian which reduces in four dimensions to 8 [d‘xF“.f.Lv-
There simply does not exist in eleven dimensions any topological invariant that can
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be written as the integral of a lagrangian density. Of course, the question of how large
a vacuum angle might be generated by quantum corrections must wait until we
understand how to do calculations in this (presumably) non-renormalizable theory.

It is also necessary, of course, to obtain SU(2) x U(1) symmetry breaking: this
presumably means that we must find, at the tree level, a massless Higgs doublet which
could later obtain a very tiny negative mass squared.

There are various ways that, in a Kaluza—Klein theory, one might obtain massless
charged scalars. In the original Kaluza-Klein theory, with a single compact dimen-
sion (a circle) there is a massless scalar (at least at the tree level) because the classical
field equations do not determine the radius of the circle. Space-time dependent
fluctuations of this radius would be observed as a massless scalar degree of freedom.

If the equations that determine our hypothetical ground state M* x M*" admit not
a unique solution for the metric of M” but a whole family of solutions, then
oscillations within this family would be observed as massless scalars. Some of these
oscillations might involve departures from SU(2) x U(1) symmetry and could be the
desired Higgs bosons.

One might also obtain massless scalars as components of the antisymmetric tensor
gauge field. In fact, massless scalars can be obtained in this way, but tend to be neutral
under the gauge group.

Regardless of where the scalars come from, why would they be massless? The most
plausible explanation would be an unbroken supersymmetry relating the massiess
bosons to massless fermions. This could involve the possibility discussed above that
the equation D,¢ =0 has a unique non-trivial solution, leaving N =1 supersym-
metry unbroken. In this case, of course, we must hope to find a non-perturbative
mechanism spontaneously breaking the supersymmetry and giving a small vacuum
expectation value to the scalar bosons. (Some relevant issues will be discussed in a
future paper [21].)

Without understanding the Higgs bosons and the low-energy symmetry breaking,
it is of course not possible to predict the quark and lepton masses and mixing angles.
If we understood the dynamics that determines the metric of M* (assuming that the
ground state really is M*xM""), we could predict the strong, weak, and elec-
tromagnetic coupling constants, since the gauge fields all arise, by the ansatz of eq.
(3), as part of the metric tensor in eleven dimensions, and the gauge field kinetic
energy is part of the Einstein action. [The most general SU(3)xSU(2)x U(1)
invariant metric on M*" depends on three arbitrary parameters. If we understood
the dynamics and could calculate the three parameters, we could predict the SU(3),
SU(2), and U(1) coupling constants.] Even though we do not understand this
dynamics (see below), it is possible to make a useful comment.

In a theory of this kind, the gauge coupling constants, which are determined by
integrating the action over the compact dimensions, would scale as a rather high
power of 1/(M,R), where M, is the Planck mass and R is the radius of the extra
dimensions. The fact that the observed gauge coupling constants in nature differ from
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one by only one or two orders of magnitude shows that R cannot be too much greater
than 1/M,; the extra dimensions really have a radius not too different from 10> cm.

The eleven-dimensional supergravity theory has no global symmetry that could be
interpreted as baryon number, so in this theory nucleons are almost surely unstable.
The mass scale in nucleon decay, however, would probably be 1/R, which is the mass
scale of the heavy quanta in this theory. Since, as just noted, 1/ R cannot be much less
than M,, the nucleon lifetime will probably be very long, perhaps 10** years, which is
far too long for nucleon decay to be observable. If the present nucleon decay
experiments give a positive result, the approach described in this paper would
become significantly less attractive.

It is now time to finally discuss the question of whether one can really sensibly
expect M* x M* to be the ground state of this theory.

The most attractive possibility would be that M* x M™ might be a solution of the
classical equations of motion, possibly with a suitable vacuum expectation assumed
for F,,.s. Unfortunately, a straightforward calculation shows that this is not true
(regardless of what vacuum expectation value one assumes). If one arbitrarily adds to
the lagrangian a cosmological constant (with a sign corresponding to a positive
energy density) then M*xM"" can be a solution. However, local supersymmetry
does not permit a cosmological constant in the eleven-dimensional lagrangian.

This problem is not necessarily fatal, since one can always hope that M*x M**,
although not a solution of the classical equations of motion, is the minimum of the
appropriate effective potential. In eleven-dimensional supergravity, there is no small
dimensionless parameter whose smallness could justify the use of the classical field
equations as an approximation. So the fact that M*xM®™ does not satisfy the
classical equations, while not encouraging, is not necessarily critical.

In any case, there is absolutely no obvious reason that M* x M*¥, rather than the
more obvious possibility of eleven dimensional Minkowski space, should be the
ground state of this theory.

It will be shown in a separate paper that even when Kaluza-Klein vacuum states
are stable classically, they can be destabilized by quantum mechanical tunneling [22].
However, unbroken supersymmetry (plus a technical requirement that the extra
dimensions be simply connected; this is not satisfied in the original Kaluza-Kliein
theory) seems to be a sufficient condition for stability. This is another reason that
theories in which D,& = 0 has a solution and there is an unbroken supersymmetry at
the energies of compactification would be attractive.

As has been pointed out above, the most serious obstacle to a realistic model of the
type considered in this paper is that the fermion quantum numbers do not turn out
right. It is conceivable that this problem could be overcome if instead of riemannian
geometry one considered geometry with torsion or some generalization of torsion; in
such a theory the fermion transformation laws might be different.

How can one obtain torsion in eleven-dimensional supergravity? As has been
noted [11}, the theory formally contains torsion in the sense that certain fermion
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bilinears enter, formally, in the way that torsion would appear. Of course, a **torsion”
that is bilinear in Fermi fields does not have a classical limit. However, by analogy
with QCD, in which §q has a vacuum expectation value, one may be willing in
supergravity to assume a vacuum expectation value for the “‘torsion field" K ~ ¢
(or perhaps for some other bilinears). Perhaps in this way the predictions for fermion
quantum numbers can be modified. This possibility is under study.

I wish to acknowledge discussions with V. Bargmann and J. Wolf.

Note added in proof

For a recent discussion of Dirac zero modes in Kaluza-Klein theories, see ref.[23].
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N = 8 Supergravity Breaks Down to N =1
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The field equations of N = 1 supergravity in d = 11 dimensions admit a spontaneous com-
pactification on the seven-sphere to an N =8 theory {n d =4 with local SO(8) invariance. A
spontaneously broken version of this theory is provided by another solution of the field equa-
tions for which the metric on §' is distorted. The isometry group of this new solution is
SO(5) ® SU(2), the relevant holonomy group is G., and the N =8 supersymmetry is broken
down to N =1 at the Planck scale. The implications for grand unified theories are briefly

discussed.
PACS numbers: 04.60.-n, 11.30.Pb, 12.25.«e

Since its discovery in 1976, progress in super -
gravity' has evolved along rather diverse lines,
There are those who, awed by the majesty of ex-
tended supersymmetry, have looked to the N =8
theory as a possible unification of all interac-
tions, while the more phenomenologically minded
have concentrated on N =1 supersymmetry as a
means of solving the gauge hierarchy problem
and accomodating chiral fermion representations
in grand unified theories, Consequently, the
hope has sometimes been expressed that these
two approaches could be linked if N =8 super-
symmetry were to break down to N =1 at the
Planck scale, In this paper, we demonstrate
that this hope can indeed be realized,

Qur starting point is the observation®? that the
field equations of ¥ =1 supergravity in d=11
dimensions* admit a candidate ground-state solu-
tion corresponding to the product of four-dimen-
gional anti-de Sitter space (AdS) and the seven-
sphere with its standard metric, i.e., the coset
space SO(8)/SO(T). This seven-sphere admits 28
Killing vectors and eight Killing spinors (i.e.,
eight spinors which are covariantly constant
with respect to the de Sitter covariant derivative
appearing in the transformation law for the gravi-
tino). It gives rise, & la Kaluza-Klein, to an
effective four-dimensional theory with local SO(8)
invariance and .V = 8 supersymmetry. The SO(8)
Yang-Mills coupling constant ¢ is given by ¢?
~ m3M "%, where ! is the radius of " and M,

is the Planck mass, Thus m is of order M, if e
is of order 1. The massless sector describes
one spin 2, eight spin 3, 28 spin 1, 56 spin &,
and 70 spin 0 (35 scalars plus 35 pseudoscalars)
and may probably be identified with the gauged
N =8 theory of de Wit and Nicolai,® where, in
addition to the obvious local SO(8) with 28 elemen-
tary gauge bosons, one finds a hidden SU(8) with
63 composite gauge bosons. This SU(8) has formed
the basis for possibie grand unification schemes.®
By extending some earlier work on “squashing”
three -spheres and symmetry breaking,” it has re-
cently been suggested® that other solutions of
the d =11 field equations which are topologically
still 7 but which deviate from the maximally
symmetric §7 geometry could give rise to a spon-
taneously broken version of this gauged N =8
theory. The idea is that distortion of the seven-
sphere corresponds to nonvanishing vacuum ex-
pectation values for the scalar fields and hence.*
to a Higgs and super-Higgs effect in d=4. In -
this paper we exhibit such a solution correspond-
ing to the fact that S’ admits not one but two Ein-
gtein metriecs, In addition to the “round” $7 dis-
cussed above there is a “squashed” S” with isom-
etry group Sp(2)< Sp(1)= SO(5)3 SU(2) and for
which the de Sitter connection has holonomy
group G,. Remarkably, we find that it admits
but one Killing spinor and hence yields an effec-
tive four -dimensional theory with one unbroken
supersymmetry. Thus N =8 supersymmetry is

© 1983 The American Physical Society
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broken down to N =1 at the Planck scale.

We adopt the following conventions., The d=11
space has signature (- +++...), and d=11 indi-
ces M, N,... will be decomposed into d=4 in-
dices u,v,... and d=T indices m,n.... The
d=11 Dirac matrices satisfy

{Ta Tpf=27,4 (0
and may be written
F.=(ra®¥1, 7% .}, (2)

where y, and T, are the Dirac matrices ind=4
and d =1, respectively. Spontaneous compactifi-
cation works as follows: We set the fermion
fields to zero and examine the boson field equa-
tion of the d =11 theory*:

Ryn~ %3~nﬂ=%[Fu‘QnFnP°R‘ %guni‘]- 3)
v'F.NPD
=-#€n-..nni0F,l“A,‘F,s'“,'. (4)

Equation (4) is solved by the Freund-Rubin®
choice for which all components F, ..o vanish ex-
cept

Flupo=3me, 0, (5
where m is a constant, Substituting into Eq. (3)
gives

Ry =-12mg,, (6)
and

R,,=6m’g,,. W

Thus the eleven-dimensional space becomes a
product of a four-dimensional Einstein space with
negative cosmological constant and a seven-di-
mensional Einstein space with positive cosmolog-
ical constant.

There are still infinitely many solutions of {68}
and (7) but the ground state should presumably
be distinguished by its symmetries. With this in
mind, we proceed as in Refs. 2 and 3 to restrict
the solution further by requiring that the vacuum
be supersymmetric, i.e., by requiring the exis-
tence of covariantly constant spinors € {or which

8y,=Dye=0, (8
where

Dy =Dy = 357 (L 9%, 8T P4R6 M F, pope. (9)
Substituting Eq. (5) into Eq. (9) yields
(10
(11)

D,=D,+my,rs,
D,=D,-3ml,.
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When m 20, the requirement of ¥ =8 supersym-
metry singles out the unique choice of AdS»s’
with the standard SO(8)-invariant metric on §".
This is because there will be one unbroken super-
symmetry (i.e., one massless gravitino) for each
Killing spinor in d=17, i.e., each spinor satisfy-
ing

D.n=0. (12)
The integrability condition is
(D, Duln==iRua® T+ im*T o, (13)

Since spinors in d=7 have eight components,
there will be eight covariantly constant spinors
if and only if

Ronpe= MGy Bng = Zmemp)s (14)

and we obtain the maximally symmetric special
case of Eq. (7) corresponding to the seven-sphere
with its standard metric of constant curvature.
Similarly the vanishing of { D,, D, | on spinors in
d=4 implies that space-time is AdS =S0(3, 2)/
SO(3,1). As discussed in Refs. 2 and 3, this
vacuum solution then yields the effective d=4
theory with local SO(8) invariance and N =8 super-
symmetry,

One can now contemplate other solutions of Eq.
(7, i.e., other seven-dimensional Einstein met-
rics which might admit fewer than eight Killing
spinors, Of particular interest would be one with
the same S” topology since this would correspond
to a spontaneously broken version of the previous
theory. Remarkably S’ does indeed admit another
Einstein metric for which the sphere is squashed
in a special homogeneous manner. It may be
described as the distance sphere in P,(H) the
quaternionic projective plane, i.e., as the level
surface formed by all geodesics of length » ema-
nating from a point in P,(H).® When r is very
small, the distance sphere approaches the stan-
dard “round” $7 [which is an $° bundle over S%;
in fact this corresponds to the K=1 SU(2) Yang-
Mills instanton in four-dimensional Euclidean
space | but as r increases the length of the &°
fibers shrinks relative to the size of the S* base,
and the eigenvalues a, (0 €» <6) of the Ricci ten-
sor split into two sets a,=a, =, =, = a, a,=ay
=ay=4, a+d. However, for acertain value of r
the two sets become equal again, and the metric
becomes an Einstein metric. The symmetry of
this distorted sphere is the group which leaves
a point in P,(H) fixed, namely Sp(2)wSp(1) [where
Sp(n) is the group of n X n quaternionic matrices|,
which is isomorphic to SO(5) wSU(2).

47
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Explicitly, the Fubini-Study Einstein metric on P,(H), written in terms of quaternionic coordinates

(g1, 9,), is

ds?=(1 +E 7.(].)-12 dgdq, -1 *2‘7.7-)-22 aidqidq_qu' (15)
& f ] i

Defining

g,=tanycos(z)U, g¢,=tanysin(3u)V,

(16)

where U and V are quaternions of unit modulus, it is straightforward to show that the 1-forms o,, Z;

defined by

U'dU=io, +jo, +ko,, V™ AV =il +jZ, +k2,,

(17

satisfy the algebra do, = -0, A0, etc., of SU(2). (i, j,k are the imaginary quaternions.) Finally, defin-

ing

v,i=0,+Z,, w=0,-Z, (18)
the metric on P,(H) becomes

ds?=dy? + tsin®x{dp? + §sin®pw, %+ {cos2x(v; +coBp w,)?|. (19)

The distance sphere of radius r (=tany), centered
on ¢, = ¢, =0, inherits the metric obtained from
(19) by setting x=const. Thus up to an overall
scaling constant, the squashed seven-sphere has
metric

ds?=dp?+isin*uw,;?+ A3y, +cospw;)?, (20)

where A i8 a constant parameter describing the
degree of distortion. The round, SO(8)-invariant,
sphere corresponds to A*=1,

Introducing the orthonormal basis e®=dy, e’
=isinpw, ..., e*= (v, +cospw,), etc., a
straightforward calculation shows that the curva-
ture form 6,,= 3R, .,.e°A e’ is given by

oy = (1= 3rDe%a el + H1 ~2%e®ne®,

Boe = $2%%A €1+ H{1 =A%) e? A’ —e?aef],

By =1 = §2%etne? + 51 —A%eta e?,

B, A% net+ {1 -ADe® A e® +e?ae’], (21)

=A% ae® = {1 =-2aN[e%Ae® +e’ae?],

b= 2% A et + {1 =A% ene® ~e®aet],

by = IA"2%a e+ M1 = 2B en e’ velne?],
where the remaining 14 components are obtained
by performing simultaneous cyclic permutations

of the triplets (1,2, 3) and (4, 5,6). The Ricci ten-
sor R, =diag(a, a, a, a, 3, 3, 3) with

B=a?+1722%, (22)

3
a=3~32%

The Einstein condition, « =, gives two solu-
tions for A%, A*=1 gives the round sphere dis-
cussed in Refs, 2 and 3, while A*=+ gives the
squashed sphere of this paper.

I Substituting Eq. (21) with A*=4 into Eq. (13) we

find

{D,, D.In==iCpun, (23)
where

Con =Crn® T {24)

and C,,,* is the Weyl tensor. Letting m run
over (0,1, 1) where i=1,2,3, and 1=4,5,6,=1,2,
3, we find the 14 linearly independent components

Coi=4Toe+ dein 55 ], (25)

C,,=¢{r,+Tsl, (26)

Ci;:'%l“ri; -%r;f"%oi; rnn“%eunruijs
(27

where C; is trace free. The subgroup of SO(7)
generated by these 14 linear combinations of [,
corresponds to the holonomy!® group of the con-
nection of Eq. (11). Using the standard classifica
tion of Lie groups,'' we find the exceptional group
G,.

To solve C,;n =0=C,, n we resorted to an explic-
it representation,

Fo=y,®1, T,=y;51 Ti=ty,®7, (28)

and found that there is one solution, It automati-
cally satisfies C,;7=0. The existence of just
one Killing apinor is related to the fact that G,
is the stability subgroup of a seven-dimensional
gspinor. Thus spontaneous compactification on
the squashed S7 gives an effective d =4 theory
with one unbroken supersymmetry, This means
in particular that seven of the eight gravitinos
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will acquire masses of order M,

Carrying out the complete calculation of the
four -dimensional Lagrangian will not be an easy
task, however, and it remains to be seen what in-
fluence the isometry group of SO(5) xSU(2) and
the holonomy group of G, will have on the classifi-
cation of particle states. We simply note that
both contain SU(2) ¥ SU(2) as a subgroup. There
is a subtle interplay between the obvious SO(8)
symmetry and hidden SU(8) symmetry in the un-
broken phase and we expect an analogous inter -
play in the spontaneously broken phase. It will
be interesting to see what effect this might have
on the SU(8) unification schemes, As discussed
by Witten,'? in addition to the gauge hierarchy
problem and chiral fermion problem in grand
unified theories, there is another reason why
one unbroken supersymmetry at the energy of
compactification is an attractive feature of Kaluza-
Klein theories: It can provide a mechanism for
stabilizing the Kaluza-Klein vacuum,

Of course the surviving N =1 supersymmetry
must also be eventually spontaneously broken,

In this connection, we note that a third solution
of d=11 field equations with S topology has re-
cently been found.® The seven-sphere is not
squashed but the F_,,, components of F, .., are
now nonvanishing and provide a parallelizing
torsion. This solution also admits a Higgs inter -
pretation corresponding to nonzero vacuum ex-
pectation values for the pseudoscalars,?* It also
involves the group G, (Ref. 13) but according to
D’ Auria, Fre, and van Nieuwenhuizen'® all eight
supersymmetries are broken. Since our one
Killing spinor n may be used to build the required
totally antisymmetric torsion, namely 7T ,,. 7,
we expect more general solutions with both
squashing and torsion and this suggests an (N =8)
~(N=1)~(N=0) hierarchy.
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When d = 11 supergravity spontancously compactities to d = 4. the number of unbroken sypersymmetries. 0 < V < 8. is
determined by the holonomy group, K. ot the d = 7 ground-state connection. Here we present a new solution: Minkowski
spacetime X K3 X T3, for which % = SU(2) and N = 4. The massless sector ind = 4 is given by M = 4 supergravity coupled
to 22 V = 4 vector multiplets. Aside from its intrinsic interest. this cxample throws new light on Kaluza —Klein supergravity.
In particular, we note that the 192 + 192 massiess degrees of freedom obtained from K3 X T2 exceed the [28 + 128 of the

N = 8 theory obtained from T7 or §7.

The field equations of N = | supergravity ind = 11
dimensions admit of candidate ground-state solutions
in which seven dimensions are compactified. Setting
¥ar =0 (M,N = L,.., 11), these equations are

Ryn -1 8unR= 3 (FyporFa"OR

~ 3 gmvFporstTORS) N
Uy FMPOR = —sig eM1-MaPORFy 0 Frp
)

The Freund—Rubin [1] choice for which Fyyypg van-
ished except for
Fovpo =3 €00 3)

yields the product of a four-dimensional Einstein space
time

= 2
R“u = —12m By 4)
with Minkowski signature and a seven-dimensional
Einstein space with euclidean signature
Ripn = 6m> gy )]

wherey,v=1,..,4andm,n=5_.,11.Eq.(5)im-
plies compactification when m # 0 and is consistent
with, but does not imply,,compactification when m = 0.

! On leave trom The Blackett Luboratory. Imperial College.,
London, LK.

As discussed in refs. [2—4], the number of unbroken
supersymmetries, NV, in the resulting four-dimensional
theory, is determined by the number of Killing spinors
on the d = 7 manifold i.e. the number of spinors satis-
fying

Dyn=@p — % Wl —3me,2,)n=0,  (6)
where T, are the ¢ = 7 Dirac matrices,
{0, Tyt = =28, - )

Cap = T(gTs), and w,® and e,,? are the spin connec-
tion and siebenbein of the ground state solution to
eq. (5). Such Killing spinors satisfy the integrability
condition

[Dmvbn] n=_3lcmnﬂbrab77=0r (8)

where C,,,,% is the Wey! tensor. The subgroup of Spin
(7) generated by these linear combinations of the Spin
(7) generators [, corresponds to the holonomy group
X of the connection of eq. (6). Thus the maximum
number of unbroken supersymmetries, N, is equal to
the number of spinors left invariant by JC.

[t is the exception, rather than the rule, that the
ground state admits Killing spinors and, to date, only
three examples have been discussed in the literature,
two with ¥ = 8 and C,,,,% = 0 and one with NV = |
and C,,,,% # 0. The case m = 0 and V = 8 singles out
the seven torus of Cremmer and Julia 5] for which
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3 = 1:the case m # 0 and NV = 8 singles out the round
seven-sphere of Duff and Pope 23] for which 3 = 1
and then there is the squashed sevensphere of Awada
et al. [4] for whichm # 0, N = 1 and = G;. (In fact the
full 4 = 4 theory obtained from the squashed S7,in-
cluding the massive states, corresponds to a sponta-
neously broken phase of the one obtained from the
round S7 [6}.) Although T7 and the round S7 exhaust
all possible NV = 8 solutions (since they are the only
Einstein spaces to be conformally flat*!: Cm "” =0)
it is of interest to ask whether there are any others
with 0 <N < 8, and this leads naturally to the study
of possible holonomy groups X for the connection of
eq. (6). For ¥ = 1 we have N = 8 and for {{ = G, we
have NV = | because these are the groups which, in
seven dimensions, leave invariant 8 and 1 spinors re-
spectively.

In this paper we examine another solution of eq.
(5) with m = 0 for which 3 = SU(2). Since this SU(2)
leaves invariant 4 spinors we find an effectived =4
theory with N = 4 supersymmetry. The solution is
given by the Ricci flat metric on K3 X T3 where K3
is Kummer’s quartic surface in CP3. A review of the
K3 literature may be found in ref. [7}. The Ricci flat
metric on K3 is not known explicitly but there is an
existence proof. Moreover it is known to have 58 pa-
rameters, to have a self-dual Riemann tensor, and no
symmetries. Topologically, K3 has Euler number x =
24 Hirzebruch signature 7 = 16 and Betty numbers

bl=0' b2=22, b3=0, b‘=]. (9)

This information will be sufficient for us to determine
the Kaluza—Klein ansiitze necessary to isolate the

b0=l,

+

! Strictly speaking, the Weyl tensor characterizes the re-
stricted holonomy group of Dm; i.e.. it describes the rota-
tion of a spinor parallel transported around a closed loop
which is homotopic to zero. If the space is not simply con-
nected there may be global obstructions to the existence
of covariantly constant spinors, in addition to any local
obstruction implied by the Weyl tensor. In addition to the
ground statc solutions T7 and S”, there will atso exist solu-
tions of the form T7/r (generalizations of Klcin bottles)
and S7/r (generalizations of lens spaces), where T is a dis-
crete group, These spaces, like their T7 or §7 covering
spaces, have Cgpeg = 0, but these global considerations
imply that they admit fewer than 8 covariantly constant
spinors, and hence provide another means ot vblaining
0 < N < 8 supersymmetry.

We thank Don N. Page tor discussions on these points.

massless particle content of the resulting N = 4 super-
gravity theory. The number of massless particles of
each spin is given by the number of zero<igenvalue
modes of the corresponding mass matrices. These are
given by differential operators on the seven-dimensional
ground state manifold (second order for bosons and
first order for fermions) and are discussed in detail in
ref. [3] for the case m # 0, where they were applied
to 7. To apply them to the K3 X T3 solution of this
paper, we need only set m =0. The results are given
in7table I, where we compare with the reduction on
T.

The single g,,,, comes from the single zero mode of
the scalar laplacmn the three B, from the three Killing
vectors on T3 (K3 has no Kulmg vectors), and the 64
scalars S from the zero modes of the Lichnerowicz op-
erator acting on symmetric rank-two tensors: 58 from
K3 (the 58 parameters) and 6 from T3 (the 6 param-
eters of the metric on S! X S! X S!). We note that
these 6 are Killing tensors but that the 58 are not.

As far as the fermions are concerned, we first note
that since K3 is half-flat the holonomy group is SU(2)
rather than the SU(2) X SU(2) of a generic four mani-
fold and hence it admits two covariantly constant
spinors (i.e. Killing spinors) which are left or right
handed according as K3 is self-dual or anti-self-dual
[8]. The four ¥/, come from the four Killing spinors
on K3 XT3 onK3X 2on T3). To obtain the 92
spin-3 fields x we note that there are 40 zero-modes
of the Rarita—Schwinger operator on K3: 38 of
which are I-trace-free and 2 of which are not but are
covariantly constant, while on T3 there are 6 such
zero-modes which are covariantly constant but not I
trace-free. We note that these 6 are Killing vector-spinors
but that the 40 are not. With these conditions the

Table 1

d=11 d=4 spin 17 K3xT

LLY fuv 2 ! 1
By 1 7 3
N 0 23 64

Vi Vu 3/4 1Y 4
X 1/2 56 92

Asine Auup - ! !
A“y 0 7 3
Ay 1 2 25
A 0 3s 7




52 Eleven-dimensional supergravity

92 modes, given by 40 on K3 X 2 Killing spinors on
T3 plus 6 on T3 X 2 Killing spinors on K3, will be
zero-modes of the spin-3 mass matrix [3}.

The numbers ofAd,,,.A,,. 4, and A fields are
given by the zero-modes of the Hodge ~de Rham oper-
ator acting on 0, 1, 2 and 3 forms respectively; i.e. by
the Betti numbers g, by, b5 and b3 of K3 X T3. But
for a product manifold M =M’ X M",

Z) s byt (10)

where bp b b are the p'th Betti numbers of M, M’
and M” respectlvely Hence from eq. (9), and the Betti
numbers b, = (p) for T3, we obtain the numbers given
in table 1. A detailed discussion of boson and fermion
zero-modes on K3 (and their relation to axial and con-
formal anomalies) may be found in refs. [8,9].

To summarize, the spin content is given by 1 spin
2,4 spin %, 28 spin 1, 92 spin "z, 67 scalars and 67
pseudoscalars. This corresponds to an NV = 4 supergrav-
ity multiplet (1,4,6,4,1 + 1) coupled to 22 N =4
spin-one matter multiplets (1,4, 3 +3).

Several comments are now in order especially since
K3 X T3 provides a counterexample to many claims
to be found in the Kaluza—Klein literature.

(1) The number of massless degrees of freedom
(per d = 4 spacetime point) of this N = 4 theory ob-
tained from K3 X T3, namely 192 + 192, exceeds the
128 + 128 of the N = 8 theory obtained from T7 (or
S7). Thus one’s naive expectation that the N = 8 theo-
ry maximizes the number of zero-modes is seen not to
be fulfilled. Note that per d = 4 spacetime point, the
d =11 theory has (128 + 128) X o degrees of free-
dom and so there is no contradiction in obtaining more
than (128 + 128) when one isolates the massless states
from the infinite tower of massive states. We do not
know whether 192 + 192 is the maximum.

(2) Note that K3 X T3 is neither a group manifold
nor a coset space. Indeed K3 has no symmetries at all,
yet this does not prevent a sensible Kaluza—Klein the-
ory with a large number of massless particles. Of course,
the 28 massless spin | are only abelian gauge fields,
the gauge group being [U(1)]2 X [GL(1, R)]25. Note
also that K3 X T3 provides the first example of a
supersymmetric Kaluza—Klein theory for which the
extra dimensional ground-state manifold is not paral-
lelizable.

(3) The ansatz for the massless scalars coming from
8my 1s not in general given by products of Killing
vectors. When m = 0, the criterion for masslessness
corresponds to zero-modes of the Lichnerowicz oper-
ator A . These are in one-to-one correspondence with
the number of paramerers of the ground state metric
8mn because A describes the first variation of the
Einstein tensor and so its zero-modes preserve eq. (5)
when m = 0. Thus T yields 28 and K3 X T3 yields 64.
This ceases to be true when m # 0, however, because
the ground state solution of eq. (4) is now anti de Sitter
space. Massless scalars must now obey the conformal
wave equation and hence, on the round S7 for exam-
ple, the mass matrix of ref. [3] is (A, — 16 m2) which
has 35 zero-modes rather than (A, — 12 m?) which
follows from the first variation of eq. (5) and which
has no zero-modes. Hence it was found that 35 mass-
less scalars come from gy, even though the $7 solu-
tion of eq. (5) has no parameters.

(4) How do the many parameters of K3 X T3 show
up in the effective four-dimensional theory? The
answer is in the expectation values of the scalar fields.
Compactification on Ricci flat manifolds yields no ef-
fective potential for the scalars and their expectation
values are arbitrary. This contrasts with compactifica-
tion on Einstein manifolds with m # 0. {Note inciden-
tally that in this respect ungauged N = 8 supergravity
[5] obtained from T7 has many more parameters than
gauged N =8 supergravity [10] obtained from $7, con-
trary to the claim that gauging increases the param-
eters from one (Newton's constant) to two (Newton’s
constant plus gauge coupling constant).}

Although we have focussed our attention on N = 1
supergravity in d = 11, solutions of the kind discussed
here also exist for N =1 ind = 10,9 and 8 for which
spacetime is Minkowski space and for which the extra
dimensions are K3 X T2, K3 X S! and K3 respective-
ly. Owing to the Weyl condition in d = 10, we have
N = 2 rather than N = 4. Omitting the details, we
quote the results. Starting from the 64 + 64 components
of N =1 ind = 10, we obtain the 96 + 96 components
ind =4 of N = 2 supergravity coupled to 3 N =2 vec-
tor multiplets and 20 N = 2 scalar multiplets. Starting
from the 56 + 56 componentsof N=1ind =9, we
obtain the 92 + 92 componentsind =4 of ¥V =2
supergravity coupled to 2 NV = 2 vector multiplets and
20 N = 2 scalar multiplets. Starting from the 48 + 48
components of N = 1 in d = 8, obtain the 88 + 88
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components of N = 2 supergravity coupled to 1 N =2
vector multiplet and 20 &V = 2 scalar multiplets. Note

that cach drop in dimension from 10 to 8 corresponds
to one less vector multiplet ind = 4.

Returning to the case of d = 11, we recall that so-
lutions of eqs. (1) and (2) may be found for which
the Fpppq components of Fygypy are also non-zero.
However, the solution of ref. [11] is known to break
all 8 supersymmetries [12,13] and this is in fact an
inevitable feature [14] of F,,,,,, # O solutions. In
order to find out whether other supersymmetry-pre-
serving solutions exist, one can look to the holonomy
group. For example the SU(3) subgroup of G, leaves
invariant 2 spinors but we do not know of any solu-
tions of eq. (5) with 3 = SU(3). Thus the outstanding
problem is to classify all 4 = 7 Einstein metrics of non-
negative curvature and their holonomy groups.

We are grateful to S. Weinberg for stimulating dis-
cussions on Kaluza—Klein theories and to J.A. Wheeler
and S. Weinberg for their hospitality at the Center for
Theoretical Physics and at the Theory Group. This
publication was assisted by NSF Grant PHY 8205717
and by organized research funds of The University of
Texas at Austin. Supported in part by the Robert A.
Welch Foundation.
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E xact solutions of the 11-dimensional supergravity field equations with non-trivial antisymmetric tensor and Rarita -
Schwinger fields are given. Some of these are found to admit Killing spinots. The dimensional reduction to pp-wave or anti-
gravitating multicentre solutions of the fourdimensional theory is discussed.

The lagrangian of 11-dimensional supergravity [1]
with the notation and conventions of ref. [2] and k =1,
is

L=~ 3 VR(w) ~ I VFyypp FHVFC
=V Iy TMVDy (w0 + GV,
+ 5 VJ,M(FMNWXYZ + 12gMIWPXYGZIN)
X YnFuxyz * Fuxrz)
+(2/12%) MM Mu Extpom ot Pty
X ApoM oMy M

where Waap s the spin<onnection including contor-
sion and Fand «J are supercovariantizations of £ and
w. The lagrangian varies into a total divergence under
the local supersymmetry transformations [1]

Sepyt = —ier Ay, @
SAynp = TEC NV p) - €))

+ 1lu I(PNPQRM - SIWRBNM)FNPQRG = DMﬁ .

Consider the 11-dimensional generalization of the
pp-wave metric [3]
9

ds? = 2du dv — 2H(u, xi)du? ~ Q(dﬂ)2 . )
b

! Supported by a SERC/NATO Fellowship.

0.370-2693/84/3 03.00 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)

where the “light cone” co-ordinates are (v, u, x) with
i, =1, ..,9.Such metrics have been studied as solu-
tions to pure 11-dimensional Einstein theory by J. Richer
(unpublished). They admit a covariantly constant null
vector kM

KM 3[oxM = 3/du, kppy =0, gpnkMiN=0. (6)

The space also admits covariantly constant spinors. It
is convenient to introduce another null vector /M

IM310xM = 3/au + Hd/dv , )

so that kMg iV = 1.

A simple ansatz for a solution to the field equations
obtained by varying (1), analogous to those discussed
in refs. [4—6] is given by the metric (5) together with

Uy =kpx, (3)

Fynpg =k MExpo) - 9)

for some x (4, x7), £aynp(u, x*) which are taken to be
independent of the retarded time, v. Ansatz (8) is due
to Urrutia [4] and leads to the vanishing of the contor-
sion and the Rarita—Schwinger stress-energy tensor
and to trivial supercovariantizations, F MNPQ = F MNPQ
and Wy 48 = wprqpg- The non-vanishing components
of the curvature tensor for the space —time are

Ryging = kmknH iy » (10)
and so the scalar curvature R vanishes, which implies,

through the gravitational field equation, that the spin-
one field strength must be null (F2 = 0) so that one
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must have

The spin-one field equation and Bianchi identity
are satisfied if

EMNP_}’:O» E[MNP;Q] =0, 12

50 that £3.pp is harmonic, while the Einstein equation
gives

3

The Rarita—Schwinger equation then reduces to

MNP p = TMNPR, DX =0, (14)
where the covariant derivative is given by

9
Dyx=3yx -3 iZ:{riH_,{k “TYkyx - as)

Following ref. [6], it is convenient to introduce the
projection operators

P =ik DY), Py=3(-D)k-T), (16)
and define
$=Pix, n=Pyx. 17)

Then (14) has solutions similar to those found in refs.
[4,6],

=t u), n=n(), (18)
with

9

g riag=0. (19)

Then (5), (8) and (9) provide a solution to the full
field equations, provided that H(u, x9). x = ¢ (u, x¥)

+ (). Epgnplu. x¥) satisfy (11), (12). (13). (18) and
(19). The solution can be interpreted as a supergravity
wave advancing in the null direction given by kM. If
H, §ygvp and x are independent of u, it is a plane
wave, while for u-dependent functions one has a beam
of radiation whose amplitude varies over the wave
front. Just as a soliton is an extended field configura-
tion sharing many of the properties of a massive particle,
these wave solutions are in some ways analogous to
massless particles.

55

A Killing spinor € is one that parameterizes a super-
symmetry transformation leaving the fields invariant,
up to gauge transformations [6]. For (4) to vanish the
spinor must satisfy

Dye=0. (0)

Asin ref. [6], it can be shown that the integrability
conditions for (20) imply that

Epnp,i =0 Epap = Eynp(u) - @n

If (21) holds, there are solutions € = P, e(u), €(u) being
given by the solutions of

defou = (i/72)pppT M P e . Q2

For the corresponding supersymmetry transformations
of the Bose fields (2) and (3) to vanish, one must fur-
ther impose

Yy = Uyl) (23)

Thus, if (21) and (23) hold, the space is supersymme-
tric. It is puzzling that in such spaces, the gravitational
wave amplitude given by H can have arbitrary depend-
ence on the transverse directions x¢, while the spin-1
and spin-3/2 amplitudes cannot.

Using the methods of ref. [6], necessary and suffi-
cient conditions for the Rarita—Schwinger field to be
non-trivial (i.e., not pure gauge) can be given in terms
of higher order integrability conditions. As in ref. [6],
it is found that, if (21) holds, nearly all possible solu-
tions are non-trivial, whereas if (21) does not hold only
a restricted class of solutions is non-trivial.

Consider now the dimensional reduction to four
dimensions, leading to a solution of the ungauged
N = 8 supergravity theory [2]. If one takes the space—
time co-ordinates as (4, v, x!, x?) with all the fields
independent of the seven internal co-ordinates (x3,
x4 _.x%), one obtains a pp-wave solution of the V=8
supergravity with all the fields non-trivial. If the 11-
dimensional space was supersymmetric, the corre-
sponding 4-space will admit a real 16-dimensional
space of Killing spinors.

Altematively, introducing a time co-ordinate ¢ and
a space co-ordinate x!0 by

x;=0,

Vde=dv+(1 — H)du , 24
V2dx10 =du - (1 +H)du, (2%)

one can regard (¢, x!, x2, x3) as the space —time co-
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ordinates, provided that all the fields are independent
of the seven internal coordinates (x4, x5, ..., x10).
Choosing H to be of the form

5=n

Hixeb, x2,x3) = 1 +21 Mllr —ryl, (26)
e

gives some solutions of the V = 8 supergravity field
equations generalizing those found in the ¥ =4 theory
by Gibbons [7]. This gives a static “multi<centre”
space with a1 localized field configurations at the
points r = r, in equilibrium with the gravitational and
scalar attraction between them being exactly balanc-
ed by electric repulsion, a phenomenon called anti-
gravity [8]. However, although these solutions are de-
rived from regular 11-dimensional spaces, the 4-
dimensional metrics are singular, with naked singula-
rities at the points r = r; [7]. They can also be obtain-
ed by boosting a black hole solution in the x10 direc-
tion in the limit in which the velocity tends to that of
light [7]. These could only be supersymmetric if
Epvp and x were constant fields. Regular, antigravi-

tating soliton solutions of ¥ = 8 supergravity can,
however, be obtained from certain static solutions of
the 11dimensional theory, as will be discussed else-
where.

I would like to thank G.W. Gibbons for many use-
ful discussions.
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Upon seven-torus compactification of eleven-dimensional supergravity, 2 Kaluza-Kiein monopole
is embedded into one U(1) group of the isometry group Uth). Four independent Killing spinors

remain unbroken in this background.

Higher-dimensional general relativity (Kaluza-Klein
theories)! is a promising candidate to unify gauge theories
and gravity. However, dimensions of Kaluza-Klein
theories are completely arbitrary unless constrained by su-
persymmetry. Requirement of the absence of states with
spin higher than 2 puts an upper limit to the dimension of
D <11 for Riemmanian space and D <24 for quasi-
Riemmanian space.” Although the quantum behavior of
Kaluza-Klein theories is not well studied yet, the super-
symmetry will soften ultraviolet divergences compared to
nonsupersymmetric cases. Furthermore, the topologically
nontrivial solutions will play an important role in non-
perturbative effects.’

The finite-energy Kaluza-Klein monopole solutions
have been studied recently.*~” They are sphericaily sym-
metric and static, and are the usual magnetic monopoles
in the asymptotic region of four space-time dimensions.
This monopole solution is regular at the origin and the
space-time geometry is intrinsically interwoven with the
internal space in which direction the monopole is embed-
ded.

It is interesting to examine the remaining supersym-
metry in the background of Kaluza-Klein monopoles. In
eleven-dimensional supergravity which is maximal in the
pseudo-Riemmanian Kaluza-Klein theory, the fate of su-
persymmetry upon compactifications has been rather ex-
tensively studied. Some of them are the seven-torus®
(N =8), round seven-sphere® (N =8), left squashed
(N =1) and right squashed (N =0) seven-sphere,'® M?*"
(N =2) and MP (N =0,p5q) manifold,!" where the
number of remaining supersymmetries is given inside the
parentheses. A table of known compactifications and sur-
viving supersymmetry can be found in Ref. 12. Most in-
terestingly, the K3 x T solution'’ is an example with four
surviving supersymmetries, but without isometry group
corresponding to K. It turns out that there is an N =4
supersymmetric solution in the seven-torus compactifica-
tion with a Kaluza-Klein monopole embedded into one
U(1) group of the isometry U(1)” group. It is noteworthy
that the Kaluza-Klein monopole solution is a unique ex-
ample of N =4 supersymmetry with an isometry group.

The bosonic parts in D=11, N =1 supergravity
relevant for the background are ’

Ryn — T8N R = F(Fyypga Fy "R ~ § gy Foors FPO%S) |

(1}
R M, - M, PQR
Uy FMPOR— _ L™ ¢ Fu o uFay o uy-

The background solutions with Kaluza-Klein monopole
are obtained by the following vacuum expectation values
(VEV's):

( Fraops) = Frunpg ) =0,

2)
(W,)=(¥,)=0.
The VEV's for the elfbein are*
e“.=dl
elrl=eb/2d'
elal=eb/1r de N
(3)

e''=er sinf do ,
e'=e~*(dx’ + nxglcosd—11dg] ,
elél=dxﬂ . elll)=dxll.

Here e®=1+ |n |R/2r, R=2xg, and n is the monopole
charge. The indices inside the parentheses are for the
frame indices. The spherically symmetric and static
monopole solutions carrying the magnetic charge in more
than one U(1) direction of the isometry group U(1) simul-
taneously are shown to be absent.®

The number of independent supersymmetries will be

determined by the Killing spinor equation®~'?
Dyn=(3y — Ty 3 1=0, (4)
where

Tap=1(F,Cy~Tsl,).

Here early alphabet letters are used as frame labels, while
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mid-alphabet letters are employed for world indices.
The relevant spin connections are

- —(4r+ [n|R)
O 32+ |n R’
n _ —t4r+|n|R) 6
YW= n R
™ —n|n|R?
= (cosf—1),
©¢ =+ n RV
L niR
T Y S
. (s)
. n?Rcosf—1)
= —cosg4 B CS0 1)
O e et In RV
o nR
W5 gy ‘_—(Zr-b(n R )
@ nR .
= —————————— 6,
O S m R
& __ . nR
GO T Sy n IR

The flat indices are raised and lowered with the metric
nap=diag(—1,+1,..., +1), and oy*?=—wy?4 Of
course, the flat-space limit without monopoles is obtained
by putting n =0. Also since the Kaluza-Klein monopole
solutions  [equivalently Taub-Nut  (Newman-Unti-
Tamburino} solutions'*] are regular at the origin, all spin
connections are also regular.

The convenient choices for the I' matrix with the Clif-
ford algebra {I",, g} = —2n,p are

Co=yoX 14, Ii=yix1lg, =123,

—-10
Yo= 0 1]’

0 o;
Yi= —0, 0"

. 01
Ys=—1YoV1¥2¥3= | o

and o, is the Pauli spin matrix. 13 and 1, are 8x 8 and
4X 4 identity matrices. The a; and B; are defined as

0 o 0 -0,

“M=l_g, 0" 5|0, 0 |°
ig; 0 0 io,

=9 g, | Bi=lio, o |- m
01 —io; 0

Bi=|_i ol Bs=] o ioy

Observe that I's, [y, ;, and Iy, ; are 02-, 03, and o;-like
in 4x 4 block matrices. In these representations, Iy and
I, are symmetric, while all other I' matrices are antisym-
metric. Thus the charge conjugation matrix C is

C=ygy,X1; . (8)

The spinor representation of the tangent space group
SO(1,10) is of 32 components, which are represented by

LD, )

where WT-(A,T.X T) with two-componcm spinor A; and
X;. The Majorana condition 7= —~C77 gives the relanon-
ship between A; and X; as

Xj= =034} . (10)

nr=(¥], ..

ro= 0 -1, The X; is dependent, and there are only 16 independent
=YXy, o | components corresponding to eight A;.
(6) Since spin connections wpy*? wnh M=tr6...,11
a 0 vanish, their corresponding Killing spinor equations are
Fspj=vsX g _g |+ i=123 trivial as
§
0 8 8,1=38,7=8m=""" =087 . an
Fgyj=rsX B, 0|’ i=123. Thus the Killing spinor 7 is independent of coordinates
! t,r,x% ..., x'". The Killing spinor equation in the 8
Here direction reads
J
i (P8 73 0 1 {@NS) 73
a,w,-+-2—w, 0 oy \l’j+3w9 —0s Vi =0
(12)
i (rH 8 (XS} I3
39"’1+4+ ‘2”-"9 0 oy wl+l—_“’ﬂ 0 —o; \l»'J—O, i=1 4

Notice that all eight W; are not independent, but W, (j =1, .

The Killing spinor equation in the é direction reads

.., 4)arerelated to W, , (j=1,...,4)
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3 \P——Lw (ré) g ‘{"+Lw (% é) 7 W>+l LN S) a 0 '] l 191 S) 72
¥ 5 Y oy | it ywe 0 o] Yit3% 0 -a j+¢+2wa 0 -o, ¥ e=0,
(13)
i ) 8¢ i 0 1 s g 0
AT ¢ 2 RIPNTIET)
A TP 79 0 o, \lf,ul»zw‘ 0 o "l’jH“‘z’”O —a W;
_L @4S5) o2 - :
) —o ¥;=0, j=1,....4.
Finally the Killing spinor equation in the fifth direction is
. 4
a,‘l’j+7w,""” —ay \l’,+‘+3ws(m(‘) 0 o, \l’j=0v
(14)
s |7 i e |
¥y u—zas™ g, | ¥+l o, | ive=0

Solutions for these equations are obtained in a straightfor-
ward way. The ¥, (j =1, ..., 4) are given by

(Al-e"’“+8,e“"u)e"”’

}‘j= (A,_ei/u_Bje-i/u)e—mo
(15}
Xj=—0A] .
The W, j=1,... .4)arerelatedto'l'jby
Aa=tid;,
(16)
X,~+4=¥i1, '

where the upper (lower) sign corresponds to the positive
(negative) monopole charge. Thus there are four indepen-
dent Killing spinors ¥; (j =1, ..., 4) for Eq. (4), and we
obtain N =4 remaining supersymmetries in the Kaluza-
Klein monopole backgrounds (2) and (3). In the limit of
vanishing monopolc charge (n =0), the mixing terms be-
tween W, and W; ., (j=1,...,4) due to )*** in Eq.
(12), @™ and 62 in Eq. (13), and o™ in Eq. (14)
dnsappur Then \ll“,, (j=1,...,4) become independent
of ¥;, and we recover the wcll-known N =8 solutions of
seven-torus compactifications.®

It may be worthwhile to comment upon the consistency
condition of Eq. (4), which is

[Dy.DyIn=— 7 Ryn T 457 = Cun =0 . an

Here " 45 are the 55 SO(1,10) generators. The nonvanish-
ing Cyy for the positive monopole charge are

Cip=—Cy=~T+I;s=4T,
Ciy=Cy=—L13—Ty=4T,, (18)
Cpy=~Cis=Iy—T5s=4T;,

and form the SO(3) subalgebra [ T;,T;]=€;4 Ti. Similar
results hold also for the negatively charged monopole.

Now let us briefly consider the problem of remaining
supersymmetries in D-dimensional supergravity theories
other than the 11-dimensional one. The solutions for
equations of motion in the torus compactifications are
still given by Eq. {3) with the monopole embedded into
one U(1) group of the isometry group U(1)®~*. Vacuum
expectation values of all the bosonic fields vanish, except
vielbeins which have the identical vacuum expectation
value as in Eq. (3). But if theories contain several fer-
mionic fields other than the gravitino field, the remaining
supersymmetry can be drastically altered in this Kaluza-
Klein monopole background. For example in D=6,
N=2 supergravity,'> the supersymmetry transformation
law for the gaugino A; of Yang-Mills supermultiplets in
the Sp(1) direction is {Eq. (22) of Ref. 15 or Eq. (21} of
Ref. 16]

e¥ViF,, /T MNe

1
J=

W=-3

~te~#iciTie (19)

where CY=g'{AL(T/®*—8Y]. Due to 8Y in the C¥
term, all the supersymmetries are completely broken,

(8A/)#0, 20)

in the Kaluza-Klein monopole backgrounds. Thus one
cannot expect some remaining Supersy ry generally
in the Kaluza-Klein monopole background.

It is remarkable that the Kaluza-Klein monopole solu-
tion in D=11 supergravity is unique in giving N=4
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remaining supersymmetries with nonvanishing isometry
group.
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Chapter 2

The eleven-dimensional supermembrane

Membrane theory has a strange history which goes back even further than strings.
The idea that the elementary particles might correspond to modes of a vibrating
membrane was put forward originally in 1962 by Dirac [1]. When string theory
came along in the 1970’s, there were some attempts to revive the membrane idea
but without much success. Things did not change much until 1986 when Hughes,
Liu and Polchinski [2] showed that it was possible to combine membranes with
supersymmetry: the supermembrane was born.

Consequently, while all the progress in string theory was going on, a small
splinter group was posing the question: Once you have given up 0-dimensional
particles in favour of 1-dimensional strings, why not 2-dimensional membranes or
in general p-dimensional objects ? Just as a O-dimensional particle sweeps out a
1-dimensional worldline as it evolves in time, so a 1-dimensional string sweeps out
a 2-dimensional worldsheet and a p-brane sweeps out a d-dimensional worldvolume,
where d = p + 1. Of course, there must be enough room for the p-brane to move
about in spacetime, so d must be less than or equal to the number of spacetime
dimensions D. In fact supersymmetry places further severe restrictions both on the
dimension of the extended object and the dimension of spacetime in which it lives
[3]. One can represent these as points on a graph where we plot spacetime dimension
D vertically and the p-brane dimension d = p+1 horizontally. This is the brane scan
of table 2.1. In the early eighties Green and Schwarz [4] had shown that spacetime
supersymmetry allows classical superstrings moving in spacetime dimensions 3,4, 6
and 10. (Quantum considerations rule out all but the ten-dimensional case as being
truly fundamental. Of course some of these ten dimensions could be curled up to a
very tiny size in the way suggested by Kaluza and Klein [5, 6]. Ideally six would be
compactified in this way so as to yield the four spacetime dimensions with which we
are familiar.) It was now realized, however, that these 1-branes in D = 3,4,6 and 10
should be viewed as but special cases of this more general class of supersymmetric
extended object.

A simple way to understand the allowed points on the brane-scan is to demand
equal numbers of boson and fermion degrees of freedom on the worldvolume. This
matching of worldvolume bosons and fermions may, at first sight, seem puzzling
since the Green—Schwarz approach begins with only spacetime supersymmetry. The

DOI: 10.1201/9781482268737-2 61



62 The eleven-dimensional supermembrane

explanation is as follows. As the p-brane moves through spacetime, its trajectory
is described by the functions XM (¢) where X are the spacetime coordinates
(M =0,1,...,D — 1) and & are the worldvolume coordinates (1 = 0,1,...,d —1).
It is often convenient to make the so-called static gauge choice by making the
D =d+ (D - d) split

XM(E) = (X*(€), Y™(6)) (2.1)
where p =0,1,...,d-1and m=d,...,D — 1, and then setting
X1(E) = ¢ (2.2)

Thus the only physical worldvolume degrees of freedom are given by the (D —
d) Y™(&). So the number of on-shell bosonic degrees of freedom is

Ng =D —d. (2.3)

To describe the super p-brane we augment the D bosonic coordinates X (€)
with anticommuting fermionic coordinates 6“(€). Depending on D, this spinor
could be Dirac, Weyl, Majorana or Majorana—Weyl. However, there is a fermionic
kappa symmetry which implies that half of the spinor degrees of freedom are redun-
dant and may be eliminated by a physical gauge choice. The net result is that the
theory exhibits a d-dimensional worldvolume supersymmetry [3] where the number
of fermionic generators is exactly half of the generators in the original spacetime
super-symmetry. This partial breaking of supersymmetry is a key idea. Let M
be the number of real components of the minimal spinor and N the number of
supersymmetries in D spacetime dimensions and let m and n be the corresponding
quantities in d worldvolume dimensions. Let us first consider d > 2. Since kappa
symmetry always halves the number of fermionic degrees of freedom and going
on-shell halves it again, the number of on-shell fermionic degrees of freedom is

1 1
= ~mn=-MN. .
Np 5mn = o N (2.4)

Worldvolume supersymmetry demands Ng = Ng and hence
1 1

A list of dimensions, number of real dimensions of the minimal spinor and possible
supersymmetries is given in table 1.1 of chapter 1, from which we see that there are
only 8 solutions of (2.5) all with N = 1, as indicated by the d > 3 points labelled S in
table 2.1. We note in particular that Dy,,x = 11 since M > 64 for D > 12 and hence
(2.5) cannot be satisfied. Similarly d,,ax = 6 since m > 16 ford > 7. The cased = 2
is special because of the ability to treat left and right moving modes independently.
If we require the sum of both left and right moving bosons and fermions to be
equal, then we again find the condition (2.5). This provides a further 4 solutions
all with N = 2, corresponding to Type II superstrings in D = 3,4,6 and 10 (or 8
solutions in all if we treat Type ITA and Type IIB separately). Both the gauge-
fixed Type ITA and Type IIB superstrings will display (8,8) supersymmetry on
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the worldsheet. If we require only left (or right) matching, then (2.5) is replaced
by

D—2:n:%MN (2.6)

which allows another 4 solutions in D = 3,4,6 and 10, all with N = 1. The gauge-
fixed theory will display (8, 0) worldsheet supersymmetry. The heterotic string falls
into this category. The results [3] are indicated by the d = 2 points labelled S in
table 2.1. Point particles are usually omitted from the brane scan [3, 7, 8], but we
have included them in table 2.1 by the d = 1 points labelled S.

An equivalent way to arrive at the above conclusions is to list all scalar super-
multiplets and to interpret the dimension of the target space, D, by

D — d = number of scalars. (2.7)

A useful reference is [9] which provides an exhaustive classification of all unitary
representations of supersymmetry with maximum spin 2. In particular, we can
understand dpax = 6 from this point of view since this is the upper limit for
scalar supermultiplets. In sumiary, according to the above classification, Type I1
p-branes described by scalar supermultiplets do not exist for p > 1.

There are four types of solution with 8 + 8, 4 + 4, 2+ 2 or 1 + 1 degrees of
freedom respectively. Since the numbers 1, 2, 4 and 8 are also the dimension of the
four division algebras, these four types of solution are referred to as real, complex,
quaternion and octonion respectively. The connection with the division algebras
can in fact be made more precise {10, 11].

D1

11 . S T
v . V SV V V V SV VVVYV
9 . S S

8 S

7 S T
6 Vv SV VvV SV V V
5 S s

4 Vv S/V SIVv Vv

3 S|V S|V Vv

2 S

1

0

0 1 2 3 4 5 6 7 8 9 10 11
d—

Table 2.1. The brane scan, where S, V and T denote scalar, vector and antisymmetric
tensor multiplets.

Curiously enough, the maximum spacetime dimension permitted is eleven,
where Bergshoeff, Sezgin and Townsend found their supermembrane [12, 13] which
couples to eleven-dimensional supergravity [14, 5. (The 3-form gauge field of
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D = 11 supergravity had long been suggestive of a membrane interpretation [15]).
Moreover, it was then possible to show [16] by simultaneous dimensional reduction
of the spacetime and worldvolume that the membrane looks like a string in ten
dimensions. In fact, it yields precisely the Type ITA superstring. This suggested
that the eleven-dimensional theory was perhaps the more fundamental after all.
See chapter 4.

Notwithstanding these and subsequent results, the supermeémbrane enterprise
was, until recently, largely ignored by the mainstream physics community. Those
who had worked on eleven-dimensional supergravity and then on supermembranes
spent the early eighties arguing for spacetime dimensions greater than four, and the
late eighties and early nineties arguing for worldvolume dimensions greater than
two. The latter struggle [17] was by far the more bitter!

As we shall see in this volume, supermembranes now play a vital part in string
duality [18], D-branes [19, 20, 21] and M-theory. Reviews on supermembranes may
be found in [22, 23, 25, 8, 24, 17}.

Another curious twist in the history of supermembranes concerns their inter-
pretation as solitons: non-singular solutions of the classical field equations corre-
sponding to lumps of field energy that are prevented from dissipating by a topo-
logical conservation law. The classical example of such a soliton is provided by
magnetic monopole solutions of four-dimensional grand unified theories. Although
the original Hughes-Liu-Polchinski [2] supermembrane was found as a soliton of
a six-dimensional gauge theory, the subsequent development went in the opposite
direction with membranes being treated as fundamental objects in their own right.
One of the problems that membrane theory then had to confront was the question of
quantization [26]: no one knows how to quantize fundamental p-branes with p > 2.
All the techniques that worked so well for fundamental strings simply do not go
through. A useful framework for analyzing these problems is the lightcone gauge
[27, 28, 29|, sometimes called the infinite momentum frame. For p > 1, this gauge
choice does not eliminate all the unphysical degrees of freedom, and one finds in
the case of the D = 11 supermembrane a quantum mechanical matrix model corre-
sponding to a dimensionally reduced D = 10 Yang-Mills theory with gauge group
SU(N) as N — oco. Moreover, as was shown in [29], this theory does not possess a
discrete spectrum: hence the negative title: Supermembranes: a fond farewell? We
have included the paper by de Wit, Nicolai and Hoppe in our collection, however,
because this infinite momentum frame has recently been resurrected in the context
of the Matrix Model approach to M-theory [36, 31] discussed in chapter 6. In this
new interpretation, the continuous spectrum is not a drawback but a virtue!

The next development came when Townsend (30| pointed out that not merely
the D = 6 supermembrane but all the points marked S on the H,C, R sequences of
the branescan correspond to topological defects of some globally supersymmetric
field theory which preserve half of the spacetime supersymmetries. This naturally
raises the question of whether the supergravity theories, in particular the D =
11 supergravity, might also admit the O sequence supermembranes as classical
solutions preserving half the spacetime supersymmetry. Whether in global or local
supersymmetry, states preserving half the supersymmetries (and known as BPS
states) occupy a special status because, in appropriate units, their mass is equal to
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their charge. It follows from the supersymmetry algebra that they therefore belong
to short multiplets and are thus protected from quantum corrections. Studying
BPS states can thus give us vital information about the exact theory even at strong
coupling. In the D = 11 supersymmetry algebra, the anticommutator of two super-
symmetry generators Q. is given by [32]

{Qa.Qs} = (CTa1)agPM + (CTMN)asZMY + (CT Mnpor)asZM VPR (228)

where C is the charge conjugation matrix and I'ps, s, is the antisymmetric prod-
uct of n Dirac matrices. We see that the right-hand side involves not only the
momentum PM but also the 2-form charge ZM" and the 5-form charge ZMNFPQR

Indeed, in 1991 the eleven dimensional supermembrane was recovered as a so-
lution of the D = 11 supergravity theory preserving one half of the supersymmetry
[33]. The zero modes of the membrane solution belong to a (d = 3,n = 8) super-
multiplet consisting of eight scalars and eight spinors which correspond to the eight
Goldstone bosons and their superpartners associated with breaking of the eight
translations transverse to the membrane worldvolume. However, this elementary
solution is a singular solution of the supergravity equations coupled to a super-
membrane source and carries a Noether electric charge. It should not therefore be
called a soliton which would be a non-singular solution of the source-free equations
carrying a topological charge. (In this respect it resembles the fundamental string
solution of ten-dimensional supergravity coupled to a string source of Dabholkar et
al [34] to which it in fact reduces under a double dimensional reduction of spacetime
and worldvolume, followed by a truncation from N = 2 to N = 1.} The true soliton
solution of D = 11 supergravity is the D = 11 superfivebrane, discussed in chapter
3. In hindsight, we see that this is just what is expected from the supersymmetry
algebra (2.8): the spatial components of the momentum P, are carried by the
plane wave of chapter 1, those of the 2-form charge Zjsn by the 2-brane and those
of the 5-form charge Zpsnpor by the 5-brane. The time components of the 2-form
and 5-form are associated with the Type II A sixbrane (which is equivalent [37] to
the Kaluza-Klein monopole of chapter 1)} and the Type I1A eightbrane of chapter
3 that arise on compactification to D = 10 {38, 39].

In all this earlier work, the D = 11 supermembrane was treated as closed, but
following the arrival of D = 10 Dirichlet branes [19], surfaces of dimension p on
which open strings can end, it was pointed out by Strominger [35] and Townsend
[36] that the fivebrane can act as a surface on which open membranes can end.
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We construct an action for a supermembrane propagating in d=11 supergravity background. Using the constraints of d=11
curved superspace, we show that the action is invariant under Siegel-type transformations recently generalized by Hughes, Li and
Polchinski. The transformation parameter is a world-volume scalar and d=11 spacetime spinor. We also discuss the general
problem of the coupling of n-dimensional extended objects to d-dimensional supergravity.

1. Now that we have become accustomed to the
notion that strings should replace particles, it is nat-
ural to investigate the properties of higher-dimen-
sional extended objects, in particular of membranes
since they are the simplest extended objects, and they
might describe strings in an appropriate limit.

In 1962 Dirac [1] put forward a theory of an
extended electron based on the idea of a relativistic
membrane. In 1976, Collins and Tucker [2] studied
the classical and quantum mechanics of free relati-
vistic membranes. A year later a locally supersym-
metric and reparametrization-invariant action for a
spinning membrane was constructed by Howe and
Tucker [3]. The action describes anti de Sitter
supergravity coupled to a number of scalar multi-
plets in three dimensions. It is the membrane analog
of the Neveu-Schwarz-Ramond formulation of the
spinning string theory.

More progress towards the construction of a mem-
brane theory was made by Sugamoto [4] in 1983.
More recently, Hughes, Li and Polchinski [5] have
constructed a Green-—Schwarz-type action for a three-
extended object propagating in flat six-dimensional
spacetime. The consistency of the action requires the

' Supported in part by INFN, Sezione di Trieste, Trieste, Italy.
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existence of a closed superspace five-form, in anal-
ogy with the Henneaux and Mezincescu [6] con-
struction for the Green-Schwarz superstring action
[7], where a closed superspace three-form is required.
The novel feature of the theory of Hughes et al. is
that the parameter of the Siegel-type transformation
[8] is a scalar rather than a vector on the world
volume.

The generalization of the Hughes et al. model to n-
extended objects propagating in flat d-dimensional
superspace is evident. All that is required is the exis-
tence of a closer super (n+2)-form given by

H=EfE“E®..E"(Ya\ a)ap » (1)

where (E%, E?) are the basis one-forms in super-
space. This form is closed provided that the follow-
ing I"-matrix identity holds:

") (ap (72 )15, =0 (2)

The purpose of this note is to construct Hughes et
al. -type actions describing the propagation of an »n-
extended object in d-dimensional curved superspace.
We give a general formula for the action and the
transformation rules, whose consistency requires,
among other things (see below), the existence of a
closed (n+2)-form in curved superspace. Thus we
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expect that the n-extended objects under considera-
tion can consistently propagate only in d< 11 super-
gravities whose superspace formulation involves a
closed (n+2)-form. We further expect that such
forms exist in supergravity theories in which a closed
bosonic (n+2)-form occurs. As far as we know, the
following possibilites exist (we include the Yang-
Milis couplings whenever possible ):

The dual formulation of d=10, N=1 supergravity
involves a closed seven-form. Its dimensional reduc-
tion on a (10—d)-dimensional torus leads to real
closed (d—3)-forms in d-dimensional supergravi-
ties. (These are N=1 supergravities in d=8, 9, 10;
N=2ind=7and N=2or4ind=6) [9]. Apart from
these, there is: (i) A real closed four-form ind=11,
N=1 supergravity, (ii) a real closed three-form in
non-chiral d= 10, N=2 supergravity, (iii) acomplex
closed three-form in chiral d=10, N=2 supergravity.

Excluding Yang-Mills coupling, as is well known,
closed super three-forms exist in d=3, 4, 6, and 10.

Considering the case of the membranes, from the
above list it follows that the candidate dimensions
are 7 and 11. Since the superspace formulation of
d=7, N=2 supergravity is not known at present, we
are led to consider the supermembrane propagating
in eleven-dimensional spacetime.

Our main result is the construction of an action
which describes a consistent coupling of d=11
supergravity to a supermembrane. In particular the
Kalb-Ramond-like third rank antisymmetic tensor
field of d= 11 supergravity couples to the supermem-
bane via a Wess-Zumino term.

In the following we focus our attention on the
description of the supermembane action in d=11.
The extension to the case of n-extended objects is
given in the appendix.

2. We propose the following action for a super-
membrane coupled to d= 11 supergravity:

S=J’dzi 4/ —88"E.“E;"Nay

+€"E,"E,®E; Bega— 3 —8) - (3)
Here i=0, 1, 2 labels the coordinates &'= (1, 7, p) of
the world volume with metric g, and signature ( —,
+, +). The super three-form B is needed for the

superspace description of d=11 supergravity [10].
For the Levi-Civita symbol €/* we use the same con-

ventions as in ref. [11]. In (3) we have used the
notation

EA=(8,Z")Ey", 4

where ZM(&) are the superspace coordinates, and
E\,*(Z) is the supervielbein.

Note that the action has a cosmological constant
with a fixed magnitude. This is so that the field equa-
tion of the metric g, gives the embedding equation

g:/=E:"E;"'7ab5Tu - (5)

We require that the action S is invariant under a
fermionic gauge transformation of the form [5]

BE“=0, SEX=(1+I)"sx"

5g,j:2[X,,—g,]X“k/(n~ 1)]
(n=2 for membrane) , (6)

where the transformation parameter k(&) is a 32
component Majorana spinor, and a world-volume
scalar, and

SE*=8ZME,", (M

o= (116 —8) €™ E,“E E,“(7un) 5 - (8)

Here y*(a=0, 1, .., 10) are the Dirac matrices in
eleven dimensions. X,, is a function of E,* which will
be determined by the invariance of the action. The
choice of 8g;; is due to the fact that, given a variation
of the action of the form 8S=7,X ¥, and writing this
variation as

Ty XV =g, X' +(T;-g) X", 9

the second term on the right-hand side cancels
(85/3g,)8g,. Thus we are left with the first term on
the right-hand side, which equals the left-hand side
upon the use of (5). Effectively, this means that
whenever we encounter a variation of the form 7, X",
we can use eq. (5), provided that we add X" to &g,
asin {(6).

The matrix I'“, occurring in (8) satisfies the
property

Feur? s = (T T, T )0 s =76 . (10)

The normalization in (8) is chosen such that upon
the use of the equation 7),=g,, the matrix I'%, sat-
isfies the relation ", 'Y | =46 .
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Now using (6) the variation of the action (3) is
(we consider a closed supermembrane and therefore
discard the surface terms)

8S=J' d?¢ [/ —g8Y(-8EPE T ,)E,

+y/ 88 (—~8EE,cT“4)E,
+€RE AE, PE, 8 E® Hucpa

-3/ ~g8 TV - }g"T~1g")] . (1)

The torsion two-form 7 and the four-form field
strength H are defined by (our superspace conven-
tions are those of Howe [12])

TA=dE*+E®Qy" =3E?ETep™ |

H=dB=%EPE“E®E*H pcp - (12)

We now organize the terms in (11) according to
the number of one-forms £ they contain. Those with
three E* and two E® come only from the
Wess—-Zumino term. They must vanish seperately,
and this requires the constaints

HaﬁyJ:Htxﬂyd=0~ (13)

The cancellation of the terms linear in E lead to
the constraints

T =(7")ap » (14)

Heogas =~ $(Yab)ag » (15)

while the cancellation of the terms not containing E*
require the constraint

"t'(aT( Ao =NapAa 5 (16)

Haabcz‘%AB(Yabc)ﬂa . (17)

Here A, is an arbitrary spinor superfield which is
vanishing ind=11 [10].

It is important to realize that in obtaining
(14)~(17) we have used the identity

SE*=I°,8E + (1 -T*)k”* . (18)

Using this identity in the variation of the kinetic term,
the terms arising from I"*4 in (18) can be shown to
cancel similar terms coming from the variation of the
Wess-Zumino term, modulo terms which cancel by

an appropriate variation of g,. [Using the argument
below (8) once. ] In the remaining terms coming from
(1-TI?), we use the argument given below (8)
repeatedly to compute further contributions to 8g;;.
Thus we find the result

X,=—1¢ ‘dEkaElb(yab)nﬂSEﬁEjn
+ %KﬁEn a(yd)aﬂE"dgl[j( T, TI/] +8%, TII])

+ie) . (19)

In summary, the action (3) is invariant under (6)
provided that (13)-(17) hold, and X¥ is given by
(19). In addition, the following Bianchi identities
must hold:

DT*=—-E®?ARz”?, DH=0. (20)

The generalization of the results of this section to
the general case of n-extended objects in d-dimen-
sional supergravity is straightforward. The result is
given in the appendix.

3.We observe that the superspace constraints of
d=11 supergravity given by Cremmer and Ferrara
[10] and Brink and Howe [10] do provide a solu-
tion to (13)-(17) and the Bianchi identities (20),
with 4,=0.

In conclusion, we have shown that there exists a
consistent coupling of a closed supermembrane to
eleven-dimensional supergravity. (Note that it is
natural to consider a closed supermembrane in eleven
dimensions, since there are no matter multiplets in
this dimension).

4. There are several directions in which the pres-
ent work can be extended. We shall name a few.

Firstly, it is of interest to study the quantization of
the supermembrane model in eleven dimensions. In
particular, the question of whether massless gauge
fields can possibly arise is a challenging one. Although
usually one encounters difficulties in finding mass-
less excitations of a membrane [13], it is encourag-
ing that, here, we have a spacetime supersymmetric
membrane action.

Secondly, it is natural to consider the dimensional
reduction of our model from eleven- to ten-dimen-
sional spacetime, and at the same time from three-
dimensional world volume to a two-dimensional
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world sheet. It would be interesting to see what kind
of d=10 string theories could possibly emerge in an
infinitely thin membrane limit.

P.K.T. would like to thank Professor Abdus Salam
for his kind hospitality and ICTP in Trieste where
this work was carried out.

Appendix. In this appendix we construct the action
for an n-extended object propagating in d-dimen-
sional supergravity background. We also give the
transformation rules, and the constraints on the
background.

The action is

s=[ a1/ =88 EE,

+ et ”""E,, A F

A v
! BA,,‘ 1Ay

ins1

~§(n~-1)/—¢g]. (A1)

The transformation rules are those in (6), where
the matrix "% is now given by

rey=[n/(n+1)/~g]

Xe - E B, (Varana ) 8 (A2)
where 7 is given by
m= (= e (A3)

Invariance of the action (A1) is ensured by impos-
ing the following set of constraints:

T =(ap » NetaT 10 =Nap e » (A4)
Haanu...al = ('l/n!)Aﬂ(yﬂL..ﬂnwl)le 3

Hogopar = (M=) (n+ 1)(Var an)as » (A5)

Hopyni 401 =0, (A5cont’d)

and by taking X, occurring in (6) to be
Xy=(—n/2n!)
Xe HFE A B (Varan) O EPE;®

+ 3K LE (") ap E™ + (n+1) 4]
XGA T b TH g 485 T% .. T5 )
+8*% i ...5""",(,, ,Tk"k,,l)

~38EP Apg;+ (i) . (A6)
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We study the quantum-mechanical properties of a supermembrane and examine the nature of
its ground state. A supersymmetric gauge theory of area-preserving transformations provides a
convenient framework for this study. The supermembrane can be viewed as a limiting case of a
class of models in supersymmetric quantum mechanics. Its mass does not depend on the zero
modes and vanishes only if the wave function is a singlet under supersymmetry transformations of
the nonzero modes. We exhibit the complexity of the supermembrane ground state and examine
various truncations of these models. None of these truncations has massless states.

1. Introduction

Some time ago an action for a membrane moving in a d-dimensional space-time
was formulated, which is invariant under super-Poincaré transformations [1]. It is
expressed in terms of the membrane coordinates X*({) and a set of anticommuting
coordinates 8(¢{), transforming as a d-dimensional vector and spinor. respectively:
the parameters {' (i =0,1,2) parametrize the world tube swept out by the mem-
brane in space-time. As is well-known, similar actions exist for the superparticle. the
superstring, as well as higher-extended objects (““p-branes”) [1-4], and they are all
characterized by the presence of a local (i.e., {-dependent) fermionic symmetry. This
invariance requires the existence of a closed superspace form [5], appearing in the
action in the form of a Wess-Zumino-Witten term, which is only possible for a
specific number of space-time dimensions. Therefore, the supermembrane action
can only be formulated in d =4, 5, 7 and 11 dimensional space-times.

An intriguing result found in [1] is that a supermembrane can propagate in a
curved superspace. In particular for 4 = 11, the membrane can couple consistently
(i.e., without affecting the local fermionic symmetry) to a 4 =11 supergravity
background. Guided by the experience in string theory this result has been inter-
preted as an indication that the ground state of the supermembrane should be

* Address from May 1. 1988: II. Institut fiir Theoretische Physik. Universitit Hamburg.

0169-6823 /88 ,/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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degenerate and constitute the states of a massless d = 11 supergravity multiplet. [,
attempts to study this question the quantum fluctuations have been analyzed aboy,
solutions of the classical membrane equations {6,7]. While the vacuum energy of
these fluctuations vanishes for the solution considered in [6], it did not vanish for
the solution described in (7], and neither did it constitute an integer as it does in the
case of the string [8] (for the (open) bosonic membrane such a calculation was firg
undertaken in [9]). On the other hand, heuristic arguments were presented in [10),
based on the vanishing of the vacuum energy for fluctuations about a solution with
residual supersymmetry, which support the conjecture that the ground state has the
structure of a massless 4 = 11 supermultiplet.

In this paper we will study the quantum mechanics of a supermembrane in more
detail in the hope of constructing the ground-state wave function. We present an
alternative formulation of the membrane as a gauge theory of the area-preserving
transformations of the membrane surface. Here we are inspired by the fact that
these transformations are the residual invariance of a relativistic membrane theory
when quantized in the light-cone gauge [11]. It is possible to consider truncations of
this gauge theory by truncating the infinite harmonic expansion of the membrane
coordinates. At least for membranes with the topology of a sphere this can be done
in such a way that the supersymmetry remains preserved. The group of area-preserv-
ing transformations is thereby reduced to SU(N).* These truncations lead to a class
of matrix models in supersymmetric quantum mechanics (13, 14}, which turn out to
coincide with the models that have been presented in [15]. A priori, three different
types of membrane ground states are possible. One possibility is that the ground
state is a singlet under supersymmetry, which is thus annihilated by the supersym-
metry charges. By virtue of the anticommutation relation which expresses the
hamiltonian as the square of these charges, this ground state should be massless.
However, this situation is not possible for the supermembrane: it follows from the
explicit expression for the hamiltonian that all wave functions have an obvious
degeneracy associated with the fermionic zero modes. Therefore the ground state
must be degenerate and constitute a supermultiplet. There are then two possibilities.
One is that the ground state is a massless supermultiplet, consisting of 27 bosonic
and 27 fermionic states, in which case the supercharges associated with the nonzero
modes must annihilate the ground-state wave functions. If this is not the case one
has a massive supermultiplet. The ground-state degeneracy is then enormous, as 2
massive supermultiplet contains 2!* bosonic and 2'° fermionic states.

We restrict ourselves to supermembranes that move in a trivial space-time. Hence
we consider no compactification as in {6] and neither do we study the possibility of
membranes moving in nontrivial space-times such as in [16]. This means, in
particular, that our considerations have no bearing on the results described in (16],

* This idea goes back to Goldstone {11]. The relation between SU(N) and the group of area-preservini
transformations was exhibited in [121.
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where the existence of infinitely many massless states of the supermembrane
compactified to AdS, X S’ was demonstrated in a small-fluctuation analysis. Our
work shows that the ground-state wave function of a supermembrane has a high
degree of complexity. For instance, it is not possible for a massless ground state that
the wave function factorizes into a bosonic and a fermionic part, if one of these
factors is rotationally invariant. This is a distinct difference with the wave function
for the superstring ground state. We then study the restrictions imposed by
rotational invariance for the total ground-state wave function, but, unfortunately,
this does not lead to useful simplifications. Although the condition that the wave
function vanishes under the action of the supersymmetry charges has solutions,
these solutions tend to be not square-integrable. This we demonstrate in a G-
invariant truncation of the theory. We also consider a supermembrane propagating
in a 4-dimensional space-time in a truncation where the group of area-preserving
transformations is reduced to SU(2). Assuming that the wave function tends to zero
at spatial infinity, we show that the energy of the supermembrane is lower than that
of its bosonic version, but there is no solution with zero mass. However, the
complexity of this problem makes it hard to reach a firm conclusion concerning the
existence of massless solutions in the general case. We should also emphasize that,
while the supersymmetric matrix models are well defined, it is not clear what will
happen in the limit where the gauge group approaches the full infinite-dimensional
group of area-preserving transformations. As is well-known, in quantum-mechanical
systems based on an infinite number of degrees of freedom, degenerate ground
states are not always contained in the same Hilbert space; this aspect is of
immediate importance for possible applications of supermembrane theories. Also,
while the models based on SU(N) yield, in the limit N — oo, the full group of
area-preserving transformations corresponding to a membrane with the topology of
a sphere, a corresponding result for other membrane topologies is not known.

In sect. 2 we start by formulating the membrane action in the light-cone gauge,
emphasizing the role played by the area-preserving transformations. We introduce a
gauge theory of these transformations, and verify the supersymmetry algebra. In
sect. 3 we review the truncation to the finite-dimensional matrix models and discuss
some properties of area-preserving transformations. Then, in sect. 4, we discuss
attempts to solve the equations for the ground-state wave function of the supermem-
brane and demonstrate the absence of a massless ground state in two different
truncations. In an appendix we analyze the implications of SO(9) invariance for a
general wave function.

2, Lightcone formulation of the supermembrane

The starting point of this section is the lagrangian

P=—[=g(X,0) —€*[13,x*(3,X” +8I9,0) + 10I3,08I"3 0] 8T,,0,8, (2.1)
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where X*({) and 8({) denote the superspace coordinates of the membrane
parametrized in terms of world-tube parameters {* (i = 0,1.2). The metric g, ( X, 8)
is the induced metric on the world tube,

glj = EI“E;'T,“V 4 (2‘2)
where E! are certain superwelbem components tangential to the world tube,
defined by

Er=93X"+6I%8, (23)

and 7,, is the flat =11 Minkowski metric. It is easy to see that E? is invariant
under space-time supersymmetry transformations

80=c, 5X*=—il"f. (2.4)

In fact this transformation also leaves the lagrangian (2.1) invariant (up to a total
divergence) provided the following gamma matrix identity is satisfied

Eu F“‘Pz‘L-}Fu,‘PA] =0, (2-5)

where we antisymmetrize over four arbitrary spinors ¢, -y ,. This identity only holds
in d=4, 5, 7 and 11 space-time dimensions. In this paper we mainly restrict
ourselves to d =11, but this restriction is not important for the analysis to be
presented below.

The field equations corresponding to the lagrangian (2.1) take the form

6.(V=88E}) — ¢"E; 8,61%,8,8 =0, (26)
(1+T)g"B,3,6=0. (2.7)
where I is defined by
euk
Is= EFEJELT, (2.8)

6/-g wop -
We note two important identities for I,

ki

=1, T'E=ET= gU?‘/_

ELET,, (2.9)

The lagrangian (2.1) is manifestly invariant under reparametrizations of the
world-tube coordinates {’. It is also invariant under a local fermionic symmetry
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generated by
6=(1-T)x, Sx*=xk(1-rI)I#o, (2.10)

where x is an arbitrary {-dependent spinor. Observe that « is always multiplied by
the projection operator (1 ~I').

Of ‘particular importance is the supersymmetry current associated with the
transformations (2.4). It reads

Ji=-2/-gg"B 8
~e*{ EFELT, 0+ 4[I"0(61,,0,0) + I,,0(809,0)|[Ez - 36179,8]) . (2.11)

As one can verify straightforwardly, this current is conserved by virtue of the field
equations (2.6) and (2.7), provided the identity (2.5) hoids.
In order to pass to the light-cone gauge we choose light-cone coordinates

Xt=[1(Xx94 X%). (2.12)

Transverse coordinates will be denoted by X%(¢{) (a=1,....9). For the gamma
matrices we make a similar decomposition,

Yt=‘/;(rlo:t1‘o)s Yazra’ —(a=1""'9)' (213)

so that {y,,y_} =21, y2=v2=0, {v,,v,} = 0. Furthermore we change notation
and denote the parameters {‘ by

(£%¢8) = (r07).  (r=12). (2.14)
By a suitable reparametrization we now choose
X*(¢)=x"(0)+r, (2.15)

so that d, X* = 8,. Furthermore we use the local fermionic symmetry to impose the
gauge condition

v,0=0. (2.16)

With these gauge conditions we obtain the following result for the components of
the induced metric

gr:E§r3= aVX' aIX'
8o, =u, =0, X +0,X-9,X+ 0y_9.9,

800 =20, X +(8,X) +28y_a9, (2.17)
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while the determinant of the metric can now be written as

g=detg=~-4g, (2.18)
where

A= -gp+ug®u, g7g,=8, g=detg. (2.19)

After imposing the gauge conditions (2.15) and (2.16) the lagrangian and super-
charge densities take the form (using ¥ = —¢”, g% = —-47", g =4"1g"y )

L= —\/z8 +¢79,X°0y_v,00, (2.20)
JO= 2\/ i- [(8oX%—u,89,X°)y,+v_]0+e°3,X°3,Xy,,8. (2.21)

In order to write down the corresponding hamiltonian density, we first determine
the canonical momenta P, P* and § conjugate to X, X~ and 6, respectively. They
are

P= e V 8 do X g7, X
= a(aox) = A ( 0 u! 5 )’
A

K% g
hY m = - {'A:y_o, (2.22)

where 3, denotes the left derivative. The hamiltonian density then takes the simple
form

| oay

P+

H=P -9, X+P X +590 -

Pi+g
2P

—¢%3,X8y_v,39. (2.23)

The bosonic part of this expression was first found by Goldstone [11] (see also [12]),
while its superextension was derived in [17].
One easily verifies that there are two primary constraints

¢,=P-3,X+P*3 X +500=0, (2.24)

x=S+P*y_ 6=0, (2.25)
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where = 0 indicates that the constraints are “weakly zero”, so that they may have
nonzero Poisson brackets with the phase-space variables. We recall that the time
(i.e., 7) evolution in phase space is governed by the *total” hamiltonian [18])

Hy= [ d% {#+ s, + dx ), (2.26)

where ¢” and 4 are Lagrange multipliers. One can easily verify that there are no
secondary constraints at this point.

The gauge conditions (2.15) and (2.16) are still invariant under r-dependent
reparametrizations of ¢”

6" =6 +¢(r,0). (2.27)

Under such infinitesimal reparametrizations u” changes into u”— dy§" + 9,§"u* —
¢9,u’, which shows that one can impose yet another gauge condition, namely

u=0. (2.28)

In this gauge it follows that ¢’ = 0 according to the Hamilton equations correspond-
ing to (2.26), so that d,P*=0. Because P* transforms as a density under
reparametrizations, it may be adjusted to a constant times some density w(a),

P*=P;iw(o), (2.29)

where we will normalize w(e) according to
/dzow(o) =1. (2.30)

Therefore the constant P, represents the membrane momentum in the direction
associated with the coordinate X,

P;= fd’aP*. (2.31)
The other momentum components are given by the integrals over P and —J,
P,= /dzal’, Py=— jdzax. (2.32)
Hence the mass .# of the membrane is given by

PZ ‘g _
A= | dzo{L—};—g — 2P e 3, X8y _v,9, } (2.33)
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where the notation [ P?] indicates that we are excluding the zero mode P = Pyw(g)
from the integrand. On the other hand, we observe that the zero modes X, and 6,
defined by

X, = /dzaw(a)X, 6, = fdzow(o)O, (2.34)

do not appear in the equation for .# 2 either, at least if the membrane coordinates
are single-valued functions of ¢”, which is the case if space-time is not compactified,
or, for open membranes, if one assumes appropriate boundary conditions. The
absence of X, which is just the center-of-mass coordinate of the membrane. is
rather obvious. The fact that .#? does not depend on §, will play an extremely
important role later on.

The coordinate X~ no longer appears explicitly in (2.33) and is determined by the
gauge condition (2.28), or, equivalently, by the constraint (2.24) after imposing the
gauge condition (2.29). The relevant formula is

3,X =-09,X-9,X-08y_30. (2.35)

Because X~ must be a globally defined function of ¢” this requires that
45( 3,X-9,X +8y_3,0)de" =0 (2.36)

for any closed curve on the membrane. Locally this condition implies
e*(9,0,X-9.X+38y_88)=0. (2.37)

Observe that, when space-time is not compactified so that X and # are single-val-
ued functions of o, only the condition (2.37) is relevant.

The gauge conditions adopted above leave a residual reparametrization invariance
consisting of time-independent area-preserving transformations. Infinitesimal trans-
formations of this kind leave (2.29) invariant, and are thus defined by

6" =0 +¢ (o) with d.(w(a)¢(e))=0. (2.38)

There exists an alternative formulation of the membrane theory, which empha-
sizes area-preserving reparametrizations from the start. Locally the area-preserving
transformations can be written as

rs

w(o)

§(0) = 3.£(a). (2.39)

If the membrane is topologically nontrivial, i.e. if the membrane surface has handles
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so that it contains uncontractible curves, then £(o) and (o) will not necessarily be
globally defined. However, we will restrict ourselves to the subgroup generated by
functions £(o) that are globally defined. It is then convenient to introduce a Lie
bracket of any two functions A(o) and B(o) by

rs

{A’B}EW.;_)B’A(°)8’B(°)’ (2.40)

which is antisymmetric in A and B and satisfies the Jacobi identity {4, {B.C}} +
(B,{C, A}} +{C,{A4, B}} =0. Using this bracket, infinitesimal area-preserving
reparametrizations act on X and é according to

8X°={§ X°), 80=(£.0). (2.41)

Now let us introduce a gauge field w associated with time-dependent
reparametrizations, transforming as

Sw=23dp¢t+ ({0}, (2.42)
and corresponding covariant derivatives
DyX®=0yX°— {w, X°}, Dy =30 — {w,0}. (2.43)

The following lagrangian density is then manifestly gauge invariant under the
transformations (2.41) and (2.42),

wole=1(D,X)* +8y_Df - +({ X°, x*})’ +@y_v,( X*.8}. (2.44)
as well as under space-time supersymmetry transformations given by
dX*=—2&y%0,
80 =1y, (Do Xy, +v_)e+5{ X% X}y vt
dw=—2&0. (2.45)
The supercharge density associated with the transformations (2.45), equals
JO=w[2 DXy, +v_) + { X4, X°}7,,]0. (2.46)

In the gauge w =0 the latter result coincides with the charge density obtained
previously (cf. (2.21) after imposing the gauge conditions (2.28) and (2.29)). To see
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that the supersymmetry transformations are associated with space-time, one may
evaluate the supersymmetry commutator on X¢:

[6(e),8(ey)] Xo= —2&,7 .6 Do X°—2&,y°%, + {§, X°}, (2.47)

where, on the right-hand side, we distinguish a 7-translation generated by D,
(which, as we know, is related to a translation of the membrane coordinate X™*), a
transiation of X° and an X-dependent area-preserving gauge transformation with
parameter ¢ =2&,y°y,eX . In order to verify that the bosonic and fermionic
degrees of freedom balance in the path integral associated with (2.44), one may
impose a gauge condition w = 0, which leads to a (free) fermionic complex ghost
field. Altogether one then counts 9 bosonic and 16 + 2 = 18 (real) fermionic field
components.

To establish full equivalence of (2.44) with the membrane lagrangian, we imple-
ment the gauge w = 0 and introduce canonical momenta P and § associated with X
and 4,

P=wd, X, = —-wy_#§. (2.48)

The hamiltonian is then

Hafdzo{l’~aox+§800—.?}

= %/dza{w‘l}"2+ éw({xﬂ" Xb})z‘ZWEY_'Y,,{Xa’o}}, (2.49)

so that, after dropping the zero-mode P,, 2H coincides with eq. (2.33) for the
membrane mass 4, provided @ is rescaled by a factor \/ﬁ (to make the compari-
son, use that ({ X%, X®})2=2w"%).

Furthermore, the field equation for w leads to the constraint

o={d,X, X} +{0y_,0}=0, (2.50)
or, in phase-space variables,
p={w'P,-X})+{w'S,0} =0, (2.51)

This constraint is just (2.37), and we have thus established the equivalence of (2.44)
with the initial lagrangian (2.1). The quantity ¢ is the “current” that couples to the
gauge field w, so it is obvious that we represents the charge density associated with
the area-preserving transformations. In addition there is the usual second-class
constraint that expresses the fermionic momentum S into 6.
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The Dirac brackets for the theory above are derived by standard methods and
read

(Xa(")v Pb("'))na=8ab82(°“°'),

- 1
(8.00).6(0") 55 = 77 (. ) ap8(0 = ). (2.52)

It is now possible to verify the full 4 =11 supersymmetry algebra. Decomposing the
supersymmetry charges into two independent SO(9) spinors according to

0=0'+07= [d%J°, (2.53)
where J° is given in (2.46) and Q*= ly_ y;Q, we find the expressions

0'= 02ty w17, X} 1,0,

Q= —2fdzoS=27_00. (2.54)
Observe that Q™ acts only on the fermionic zero-modes 8,, which, as we have
pointed out before, do not appear in the expressions for the hamiltonian and the
membrane mass.

It is now a straightforward exercise to determine the Dirac brackets for the
supercharges. The result takes the following form

(Q;’ éﬁ_)pn = _2(7-)1:5’

( « al;)on= 2(v.) gt — 2(Ya7+),,,;fd20 wo X*°
(1. )an f 420,57+ (707, ) o [ 49,5040

(Q:’ QE)DB == (7a7+7—)aﬂP0a + (Yab7+7—)apfd2°arsa’b » (2-55)

where the surface terms, given by

S;=e*{2w X, P9, X* +2X,0y 3,0 - 3X°9,(8y_v.9)} .
Sarbcd = -Zlia,lx[a 81(67—7 bcd]a) s

= — 387Xy, 3, X 4y, (2.56)
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can contribute only if the membrane coordinates and momenta are not single-val-
ued.

It is useful to separately consider the zero-mode contributions to Q*, which
define a conserved charge 0*©. It reads

Q*@=2Pfv.8,. (2.57)

Together, Q*©® and Q™ generate the algebra

(Q;’ GE)DB = -2(Y—)aﬂ9
(01, 05) s =(v.) usPE,
(0,07 )ps= — (V¥ 7-) agPE (2.58)

where we have used that the hamiltonian for the zero modes is the center-of-mass
hamiltonian H® = 1P}. For the remainder of the supercharge Q*, which does not
contain the zero modes anymore (provided that the membrane coordinates are
single-valued), the Dirac bracket reads

(02,05 )op = (v.) g = 2¥,7. ) up [ dowpX+ -, (2.59)

where the dots indicate the contribution from the surface terms. This relation plays
a central role in the analysis of this paper.

So far we have been employing a d = 11 notation for the spinors 6. However, due
to the gauge condition (2.16), the anticommuting coordinates are restricted to SO(9)
spinors, satisfying

Ny vb=96. (2.60)

Furthermore we have
Gy_=iV268', 6=1¢"¢", (2.61)

where € is the d = 9 charge conjugation matrix, which is symmetric and related to
the d =11 charge conjugation matrix by €= —~ Cy,;; we also note that the SO(9)
gamma matrices satisfy y] = €y,€ . Henceforth we will choose = 1, so that the
SO(9) gamma matrices are symmetric.

In subsequent sections we shall study the ground-state wave function of the
supermembrane. For that purpose it is convenient to have an explicit representation
for the operators associated with the fermionic coordinates. As a first step towards
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constructing such a representation we decompose the real SO(9) spinor coordinates
g into a single complex 8-component spinor A, which transforms linearly under the
SO(7) x U(1) subgroup of SO(9). This decomposition is effected by expressing the
two eigenspinors of y,, defined by v, 8¢*'= +8'=’, into a complex SO(7) spinor A.
according to

A+ A PUSY

35 07 =i—p. (2.62)

(+) =
0 - 25/4

The bosonic coordinates X are then decomposed according to representations of
this SO(7) x U(1) subgroup so we distinguish the components X' of an SO(7) vector
(i=1,2,...,7), while X® and X® are combined into a complex coordinate

Z=/L(X*+iX?), (2.63)

which transforms under U(1). Similarly, the momenta are decomposed in terms of
an SO(7) vector P' and a complex momentum % defined by

P=[L(PP-iP%). (2.64)

The normalization factors in (2.62)-(2.64) are chosen such that the nonvanishing
Dirac brackets are equal to

(X'(a), P/(0"))pg=8"6*(c ~0’),
(Z(0), #(0)pp =8%(a - 0'),
(Aa(0). N5(0")) pp = —iw 18,5 8%(0 - 0"). (2.65)

The supercharges Q7 can also be written as a complex SO(7) spinor. When
expressed in terms of the above coordinates these charges take the form

0= [d%[(PT,+ tw{ X' X/} I, - w{Z.Z})\
+V2(i®+iw{ X', Z)T)N].
o' = [d%[(~P'T+ w( X', X)L, + w(Z, Z})N

+V2(=iP+iw{ X', Z}T)A]. (2.66)
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where I, are the SO(7) gamma matrices*. In the same notation the hamiltonian
reads

H= fdza[gw‘l(P")2 +w |2
+iw({ X, X)) +wl{Z, X} [+ (2. Z)

+WAL{ X\ N) = WIWA(Z,A) + WIwX(ZN)]. (267)

The normalization of Q and Q' is such that

(Qa’ Qﬁ)DB = —ﬁsaﬂ/dzo Wz‘P,

(Qa ) = ~2i8,0H + 2i(L}) o5 [ dPo wX'. (2.68)

3. Area-preserving transformations and supersymmetric matrix models

The analysis presented in the foregoing section has led us to the constraint (2.24)
(or. (2.35)—(2.37) and (2.50-51)), which generates the group G of area-preserving
diffeomorphisms. All physical quantities, such as the expression (2.33) for the
membrane mass, must be invariant under this group, and this statement applies
equally to the classical theory (where (2.24) constrains the space of solutions) and to
the quantum theory (where (2.24) must be imposed as a constraint on the physical
states). The group G and its associated Lie algebra play an important role in the
following and are also of interest in their own right [11,12]. In this section, we
summarize some properties of this group for spherical and toroidal membranes.
Before going into the details we make some general remarks which also pertain to
topologically more complicated membranes. We start by expanding the coordinates
into a complete orthonormal basis of functions Y#(o) on the membrane,

X(o)=Y. X*Y,(s), (A4=0,1,2,..) (3.1)

and likewise for the fermionic coordinates 8 (or A) and the momenta. The functions
Y, may be chosen real, in which case there are no restrictions on the modes, of
complex, in which case there are further restrictions from the reality of X. The
following notation allows us to discuss both options in a uniform manner. First W€

* Our conventions are as follows: (I, L}y=2, \. I, =4I\ I, =4(L.I,,}). I,...I1= -ik
Also, [,=I"= ~[T= -I*.
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define
Y4(0) = (Y, (0))* =978Y,(0). (3.2)

where the matrix 72 satisfies 7*%np- =8¢ with 1,, = (1"?)*. The normalization
of the functions Y, is

Jdlan(0)¥*(0)¥p(0) = 8. (3.32)

or, equivalently,
deOW(w)YA(o)YB(O)ﬂw, (3.3b)

which shows that 7, is symmetric. The reality condition on the expansion
coefficients of X(o) then reads

X, =(X*)*=n,X5 (3.4)

Furthermore, completeness of the Y, implies

1
§:Y (o)YA(a)=—m—)8 (o —-0’). (3.5)

As explained in the previous section, area-preserving maps are expressed in terms
of divergence-free vector fields, {’(0); according to (2.39) these vector fields can be
represented locally in terms of a scalar function £(¢), which may or may not be
globally defined.* We will concentrate on the subgroup of area-preserving maps
generated by functions §{(o) that are globally defined. As follows from (2.41),
infinitesimal transformations can be expressed in terms of the Lie bracket defined in
(2.40). Furthermore, the commutator of two infinitesimal transformations with
parameters £, and £, yields an area-preserving transformation with parameter
§3 = {£,. £, }- Therefore the structure constants of the area-preserving maps that are
globally defined, are given in terms of the Lie bracket (2.40). In order to make this
more explicit, we decompose the Lie bracket of Y, and Y, according to

{Y4 Y5} =gABCYC=gABCYC’ (3.6)
where indices of g, are raised and lowered by means of 72 and 7,. Using the

* In the mathematics literature, the vector fields corresponding to functions §(o) that are globally
defined, are called * hamiltonian vector fields™: if £(o) is not globally defined one speaks of **locally
hamiltonian vector fields”. See e.g. [19], p. 218. The latter contain harmonic vectors §” and
homotopically nontrivial reparametrizations.
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normalization condition (3.3) it follows that g, is defined by
8asc= [dlow(0)Y,(0){Ya(0). Yc(a))

= fdzoE'SYA(o)a,YB(o)a,YC(a). (3.7)
Because the Lie bracket satisfies the Jacobi identity the structure constants will also
satisfy this identity,

g[ABCg D]CE=0. (38)

In the space of functions that are globally defined, it follows directly from the
definition (3.7) that the structure constants g,z are totally antisymmetric. As we
will not consider compactified membranes, we will thus always be dealing with
antisymmetric structure constants. Furthermore the zero-mode Y,(o)= constant
decouples from the other modes because

808c = 840c =840 =0 (3.9)
It is now straightforward to substitute the expansion (3.1) and similar ones for the

fermionic coordinates into the expressions derived in sect. 2. The lagrangian
corresponding to (2.44) thus reads

L=1(3,X°)+ 4D, X*|? + 8% _3,8° + 8,y_Dg"
—%gABEgCDEX:XbBXfX!P_gABCX: 8%y _v6¢, (3.10)
where we have separately written the zero modes (corresponding to A = 0) and the
nonzero modes with indices A, B,... ranging from 1 to co. The covariant deriva-
tives in (3.10) are defined by
Do X! =03oX! - gpwPXS,  Df*=038"— gp w0, (3.11)
where w* is the gauge field associated with time-dependent area-preserving trans-
formations. The lagrangian (3.10) is invariant under time-dependent transforma-
tions, whose infinitesimal form is given by

BX[=gac$°XT. 807 =gpcE%0C.  Su'=Dgt. (312

so that the zero modes are invariant by virtue of (3.9) and the nonzero modes
transform in the adjoint representation.
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As in sect. 2. the hamiltonian associated with (3.10) in the gauge w* = 0 leads to
an equaiion for the membrane mass #.

HP=P P+ g PR pe XOAXEXEXD + 28 5c X208y _v48C.  (3.13)

which does not contain the zero modes. The relevant supercharge is the part of Q.
defined in (2.54). that pertains to the nonzero modes,

Q= 2Py + g XEXEv") 6, . (3.14)

As shown in (2.59) the Dirac bracket of Q with itself yields (3.13) and the constraint
@, whose components are

P4 =8anc(PZ- X +6% 6°)=0. (3.15)

The theory defined by (3.13)--(3.15) contains an infinite number of degrees of
freedom. In order to make it well-defined, one would like to have some kind of
regularization. This can be achieved by restricting the indices 4, B.C, ... to a finite
range between 1 and some finite number A. The original theory would then be
obtained in the limit A — 20. In general, this limiting procedure may destroy some
of the symmetries of the theory, and it is not clear which of these will be restored in
this limit. The most severe of these problems are cured if one can replace the full
group G of area-preserving transformations by a finite-dimensional symmetry group
G, which in the limit A — o coincides with G. The structure constant g*5¢ can
then be replaced by the structure constants f*%¢ of the finite-dimensional group
G,, which satisfy

lim f48€ = g8 (3.16)
A—20
The existence of such a group G, guarantees that supersymmetry is not affected, as
this symmetry rests upon the existence of a Jacobi identity for the structure
constants (it also depends on the space-time dimension through the condition (2.5)).
The application of this regularization thus leads us to a class of N = 16 supersym-
metric matrix models with hamiltonian

H=Tr(4P?+ 3[ X,. X, )’ + [ X,. 0]y _v%6). (3.17)

where P, X and # are matrices that take their values in the Lie algebra of G.
Surprisingly enough, the quantum-mechanical version of these models coincides
with the models proposed sometime ago in [15]*. However, it is not guaranteed that
the group G, will always exist. This has been demonstrated only for spherical
membranes [11,12]. In that case G, is equal to the group SU(N ), where N and A

* These models are reductions of supersymmetric Yang—Mills theories to 1 + 0 dimensions. The field w
introduced in sect. 2 corresponds to the timelike component of the gauge fields.
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are related by A = N2~ 1. Of course, subtle questions about the precise meaning of
the limit A — oo still remain and will require further study. However, we shall
ignore such questions here and turn to a more detailed discussion of the area-pre-
serving transformations for the sphere and the torus.

3.1. AREA-PRESERVING MAPS ON THE SPHERE

On the sphere one conventionally takes the spherical harmonics Y, (8. ¢) as basis
functions, where we exclude the zero mode, so that the integers / and m satisfy
[>1, |m| <l With this basis we have w(6, )= (47) 'sind. We choose the
Condon-Shortley phase convention for the Y, (we follow the definitions of [20].
except for the normalization of the Y,,, which differs by a factor Var),

(Y= =(=)"v ", (3.18)

so that
n(lm)(l’m’) = ( - )m81—1'8m+ m (319)

where 8, denotes the Kronecker symbol &,,. The Lie bracket of two spherical
harmonics then reads

ay,

1ymy

47 [ 3Y,

hmy

Y m, Y,

t "~ sinf| 98 d¢ dp 36

hmy? Y/z’"z }

= gllm,,lzmzlamjylamz - (320)

It should be obvious that g, ,, ;.. 1m, =0, unless m; + m, + my = 0. Furthermore.
one can verify that /, + [, + I, must be odd, for instance, by comparing the parity of
both sides of (3.20), and that /, </, +/,— 1. Using the antisymmetry of the
structure constants it then follows that the structure constants only differ from
zero if

=Ll +1<l,sh+1,-1, m+my+my=0. (3:21)

Another way to see this is by writing the spherical harmonics as symmetric traceless
homogeneous polynomials of three cartesian coordinates x,, x,, X5:

Ylm(o’w)=r‘-[al(1/.".'.)uxn"'x' ? ("2=X12+X§+X%) (322)

in which case the Lie bracket takes the form

{(A,B} =4nre, ,x,0,49,B. (3:23)
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Substitution of (3.22) into (3.23) leads to the same restrictions on /,, /, and 1y as
listed in (3.21). The representation (3.23) also shows that the structure constants for
l, =1, =1y=1 are proportional to those of SO(3).

In [12] it was shown that g, ,, /.. / », are the N — oo limit of SU(N) structure
constants. Let us first indicate how SU(N) emerges in the truncation of the
spherical harmonics to a finite set. This truncation is effected by restricting / to
/< N — 1, which leaves us with precisely N2 — 1 functions Y,,. To each Y,_, which
corresponds to the symmetric traceless homogeneous polynomials (3.22), we can
generally assign an N-dimensional matrix by constructing the corresponding sym-
metric traceless product of SO(3) generators L, in the N-dimensional representation
(spins = (N -1)),

a-n/2

N2-1
) al™ L ..L,. (3.24)

Ly iy

Yl,..'*T/m=4ﬂ(

As is well-known, the L, satisfy the equations

_ ' 2 NI-1
[L.L]=ie,l,., Li=L, L= L (3.25)
as well as the pseudo-reality condition
L*=LT=-wLw™!'. (3.26)

The matrices (2.24) are traceless by virtue of the tracelessness of the tensors a''™.
The dimension of the representation is chosen such that the 7,,, with / < N — 1 form
a complete set of traceless N X N matrices. This can easily be seen by writing them
as the traceless part of L% L, with L, the familiar raising and lowering operators,
which are clearly independent, provided p + ¢ < ¥ -~ 1. Using the symmetry prop-
erty (3.26), it then follows that the T, with even (odd) /> N can be expanded as a
linear combination of the T,, with even (odd) / < N — 1. Note that the hermiticity
of the T,, follows from the phase convention adopted for the spherical harmonics,
so that

(™)' =(=)"17". (3.27)

From their completeness property it is obvious that the T, are the generators of
SU(N) in the defining representation, and we obtain the structure constants from

[Tam Tims) = ity Timy, (Im | SLSN=1). (3.28)

Just as the structure constants of the area-preserving transformations, the SU(N)
structure constants f, ,, ;,m,.;,m, are only different from zero if /; +{, +/; is odd
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(this follows from applying (3.26) to both sides of (3.28)), /; </, +/,~1 and
m, + m, + m, = 0. Therefore we have the same restrictions on /, and m, as given in
(3.21), except that one should keep in mind that, in the case of SU(N), there is the
additional restriction that {, < N — 1.

Due t0 (3.29) [, . 1.m,.1,m, Will converge t0 g, .. 1 m 1,m, a8 N — oo {12]. Eq.
(3.24) also implies that the 7, transform as tensor operators under rotations and
once this is known the SU(N) structure constants defined by (3.28) are determined
by group theory [21,12] up to the calculation of the reduced matrix elements. One
gets (without loss of generality, we have assumed that /, </, </, while |, + I, - [,
is an odd positive integer)

( Lo, )
my my, my

Lo ! NRN(II)RN(IZ)
S S wive

=1

3
fl|ml.llm2,13m, = —47”( ]-_I ‘/2[' +1

(3.29)

/ I8 / N . .
where (":1 my m’)) and {l; ] ’;} are the 3j-symbol and the 6 j-symbol, respec-

tively [20]. with s = {(N — 1), while the function R, is defined by

N+ (N2-1)'
(N=1=1)

R, ()= \/( (3.30)

In the large-N limit, the expression to the right of the 3;/-symbol converges to

Ry(LRy(L) N s i}
[ 1 13}(-)”ML(1+1l+12+13)[l”2”3!(_)/a1

ls s s Ry (1)
(h+ L =L+ =0) L+ - 1)! Iﬁi_l’"(")n
x (141, +1,+ 1) o F(n)
(3.31)

where
F(n)=n"(I,+,=L=n) (L, =n) (Iy=n) (n+ 1~ ) (n+1,—1,)". (3.32)

The large-N limut of (3.29) coincides with the structure constants g, /.. 1,m, for
the full group of area-preserving transformations. The mathematics underlying this
result [12,22] is quite intriguing. and could lead to the possibility of approximating
other infinite-dimensional Lie algebras of symplectic diffeomorphisms on homoge-
neous manifolds by large-N matrix algébras.
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3.2. AREA-PRESERVING MAPS ON THE TORUS

Choosing torus coordinates 0 < ¢, ¢, < 27 the basis functions Y, are labelled by
two-dimensional vectors m = (m,.m,) with m,. m, integer numbers. They are
defined by

Y (¢)=em*, (3.33)

where m- ¢ = m ¢, + m,$,. Again we will exclude the zero mode. so that m # 0.
Furthermore we have w(é) = (47%)"!, and Noen = O . o FOT the Lie bracket of Y,
and Y,, one easily finds

(Y, Y.} = —4ri(mxn)Y,

m+n>

(3.34)

where m X n=mn, - m,n. The structure constants g, follow directly from
(3.7) and read

Bonk = — 47 (mXR)8, . (3.35)

The elements of the Lie algebra associated with G are thus labelled by the set of
nonzero two-dimensional vectors m with integer coordinates. The commutator of
two generators corresponding to two vectors of this lattice is then equal to the
generator corresponding to the sum of the two vectors, multiplied by i times the
oriented area of the parallelogram enclosed by the two vectors. Generators associ-
ated with parallel vectors thus commute. There exits an infinite variety of Cartan
subalgebras, each infinite dimensional, consisting of the generators corresponding to
the set of parallel vectors m = An, with n fixed and A all nonzero integers.

The algebra corresponding to the structure constant (3.35) has been discussed in
connection with the theory of incompressible fluids in [19]. Recently, it was
emphasized that it contains subalgebras that are isomorphic to the Virasoro algebra
[23]. One such subalgebra was explicitly given; its generators take the form

1 1
L,=-— =Y . 3.36
m 4"2 kgok (k.m+k) ( )

More generally, solutions are obtained by taking a (logarithmically diverging) sum
of the Y, along a straight line in the 2-dimensional plane. For instance, one may
take

1 1

1 1
Lm=mZEY(m.kp)’ or m=;;,—22

_YI( .m+k)? (3.37)
k#»0 k0 kp tkp )

where p is some nonzero integer. However, some caution is required with the
infinite sums in (3.36)—(3.37), as the formal expressions for L,, do not correspond to
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differentiable functions of the torus coordinates ¢, and ¢,. The Lie algebra based
on (3.35) allows for a nontrivial central extension,

(Y,.V.}) = -4xi(mxn)Y,,  +c-ms,,, (3.38)

where ¢ is a real two-dimensional vector. This result was also noted in [23]
Furthermore, one can enlarge the torus algebra to include fermionic generators X,
with (anti)commutation relations* (to avoid confusion with the usual symbol for the
anticommutator, we replace —(1/47%){ , } by[, ]

[Ym’ Yu] = (M X n)Ym+.9
{Xr’ Xs} = Yr+_n
(Y., X,]=(mxr)X,,,, (3.39)

where the fermionic generators X, are labelled by the set of two-dimensional vectors
r=(r, ry), with r, and r, ranging either over the integers, or half integers (so that
we get four different algebras, two of which are isomorphic to each other).

4. The supermembrane as a supersymmetric quantum-mechanical model

In this section we combine the previous results and study the properties of the
supermembrane ground state. So far, we have not been able to prove or disprove the
assertion that the supermembrane has massless states, although most of our results
indicate that the ground state is massive. However, we stress that more work is
needed before one can reach a definitive conclusion regarding this issue, and we
hope that the results described here will pave the way for a more rigorous treatment
of supermembranes which goes beyond perturbative (semi-classical) arguments.

The quantization of the supermembrane is straightforward in the SO(7) x U(1)
formulation that we have presented in sect. 2. The coordinates are therefore X L(O )
Z(0), Z(o) and A (o), with corresponding canonical momenta P'(0), #(a), #(0)
and X (o). The (anti)commutators of the operators associated with the coordinates
and the momenta are given by the Dirac brackets (2.65) multiphied with an extra
factor i. The operators P', 2, # and X' can then be realized on wave functions (of
rather functionals) ¥[ X', Z, Z, A] by

L B
P(o)—-—z—-——-ax,(o), ?(o)-—-—taz(o)

— a 1 d

F(0)=~izzm7 x(o)=;3A(o)' (4.1)

* This superextension of the algebra has been obtained in collaboration with Garreis (see [24]) and 1
Wess.


http:algeb.ra

The World in Eleven Dimensions 95

[t is now straightforward to write the relevant formulae from sect. 2 in this
representation. Before doing so, we “regularize” the supermembrane theory by
decomposing the coordinates and the momenta in terms of a finite set of function
Y%o) and Y*(o) with 4 =1,..., A. As explained in sect. 3, the structure constants
gasc Oof the group of area-preserving transformations are then replaced by the
structure constants f, g of a finite compact Lie group G. with dimension

dimG=A. (4.2)

In the limit A - o the group G is assumed to coincide with the group of
area-preserving transformations. This procedure turns the supermembrane into a
model of supersymmetric quantum mechanics [13,14] and leads precisely to the
supersymmetric matrix models that have been constructed in {15]. An important
consequence of this approach is that supersymmetry remains preserved, while the
invariance under area-preserving maps is approximated by the invariance under G.
For membranes topologically equivalent to S* the group G is equal to SU(N) and
the limit N — co has been shown to yield the full group of area-preserving
transformations {12]. However, in this section the precise nature of G does not play
an important role.

The model that we will be considering in this section is thus based on a finite set
of coordinates X*, Z# Z* and M\, together with their canonically conjugate
momenta P4, #4, 4 and \*'. Here, the index A labels the adjoint representation
of G. There are also the zero-mode (or center-of-mass) coordinates X°, Z° Z° and
)\(Z,, but as we have already emphasized, these decouple entirely from the other
coordinates, and do not contribute to the mass of the supermembrane states. The
(anti)commutation relations corresponding to (2.65) are

[x2, Ps) =i8,84.
(24, 23] = 24, 2] = i .
{J\f,, Af,,,} = 8,404 . (4.3)

while all other (anti)commutators vanish. The conjugate momenta can thus be
represented by the operators

. a . a
Pam=igxar  Ju= gz
a d

Moo= = (4.4)
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in agreement with (4._}), and the states of the theory correspond to the wave
functions W( X", Z#, Z* A\!). The latter are elements of the Grassmann algebra
generated by A\? and may be expressed as*

8A
V=Y 05 (X, Z, Z)NONE N (4.5)
k=0

ay

The norm of the state ¥ can then be defined through

84 1
(R (Rl Wiy L7 (4.6)

k=0

with the usual L2-norms for the coefficient functions @3- %. Of course, one also
has the customary distinction between bosonic and fermionic states according to
whether only even or odd powers of N appear.

We next make the appropriate substitutions in the supercharge operators of sect.
2. The supercharges that pertain to the nonzero modes, follow directly from the
SO(7) x U(1) covariant expressions in (2.66) and take the form

+ 4 pc XPX Tih - ancZBZC‘sap} A%

3 _
VT b e 4 if g XPZC ;ﬂ} ,
3hsn

3 _
Qi = {ir;ﬁ-(')_)(_,"_ M %fABCX:BXJCF;é +f"”CZBZCSaﬂ} dAg,

d
+\/i{—‘8aﬁa—27 +1fABCX,BZCF;B})\';3. (4.7)
These charges define a supersymmetric quantum-mechanical model. whose hamulto-
nian follows from the {Q, Q') anticommutator. In order to exhibit this. let us
evaluate the anticommutators of the supercharge operators Q and Q' After a
somewhat lengthy calculation, using the antisymmetry of f#2C as well as the Jacob!

* Observe that we suppress the dependence on the zero-mode coordinates in (4.5). We will return o
this shortly.
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identities, one arrives at the following superalgebra
(Qa-Qs} =2/268,4Z7%,,
{(0t.04) =2v26,,2%,.
(0,08} =28,,H -2l X", (4.8)

This result is consistent with the Dirac brackets (2.65). with the operators H and ¢,
corresponding to the contribution from the nonzero modes to the hamiltonian (2.67)
and the constraint (2.51). The explicit expression for this hamiltonian, which is
directly related to the membrane mass .#, reads

H= %u,ﬂz=Hb+Hf, (49)
where

u 1 32 a?
T T 29x,9x* 3Z,0Z°

+V(X.,2.2). (4.10)

with positive potential ¥ given by
V(X.Z.Z) = ffsfepe { X XPXXP + 4XZPXCZP + 22425727} . (4.11)
and

d
R P D

Hy = if,pc X"AST" + W2 fopel ZANEXE, - Z4 ) . (4.12)

The algebra (4.8) still contains the operators ¢, which are the components of the
constraint (2.51), and given by

d d - 0 d
@ = fABC X"’&X,C +Zs55c + Zogze ”“"’a_)\f,) : (4.13)

Obviously, @ are just the generators of the group G, which must vanish on physical
states, 1.e.,

‘¥ =0. (4.14)
Consequently the wave functions corresponding to physical states must be invanant

under G (or the full group of area-preserving diffeomorphisms). On physical states
one thus recovers the usual supersymmetry algebra. The expressions (4.9)-(4.14)
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precisely coincide with the results of [15], where quantum-mechanical models were
discussed with up to 16 supercharges. Hence we have established that the super-
membrane is a limiting case of this class of models.

The zero modes, which are not contained in the quantum-mechanical models of
[15), lead also to corresponding supercharges, as we have already discussed in sect.
2. In the SO(7) x U(1) notation, there is one complex charge associated with Q-
and one with Q* (cf. (2.54), where we denote the latter by Q*©@ to indicate that it
contains only contributions from the zero modes. In the representation (4.4) these
charges read

3
-= )0 -t =
Qa Al:’ Qa ak(l b
Q0 = =il —\ + V2 — 9
ax° A az° X
0" =il 55 ako +V2 azo % (4.15)

It is easy to determine the supersymmetry algebra for the above charges, which is
the quantum-mechanical analogue of (2.58) in SO(7) X U(1) notation. This algebra
contains the hamiltonian

o 1 8 32
H T T29x°3ax° " 3z°3Z°° (4.16)

which is just the transverse kinetic energy of the membrane. The wave function
associated with the zero modes is simply a plane-wave solution in terms of the
transverse coordinates X°, Z° and Z° with a certain transverse momentum,
multiplied by an arbitrary function of the fermionic zero modes A°. This wave
function thus describes 128 bosonic states 1, A‘L}\o,... and 128 fermionic states
A%, ASA%X%,... . Under SO(9), these transform as the 44 @ 84 and 128 representa-
tions. The 128 + 128 independent wave functions transform under the supercharge
operators (4.15) as the states of a massless d = 11 supergravity multiplet. To see this,
it is convenient to choose a Lorentz frame in which the transverse momentum
vanishes, so that the charge Q'® vanishes and one is only left with Q. Conse-
quently, if the wave function (4.5) associated with the ground state of the nonzero-
mode system is not degenerate, then the supermembrane ground state constitutes
precisely a massless supermultiplet.

According to the above arguments, the zero modes are no longer relevant, and we
have to determine the nature of the ground state corresponding to the hamiltonian
H which governs the nonzero modes. Atcording to (4.9), massless states ¥ must
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obey the Schrodinger equation

HY =0, (4.17)
From the supersymmetry algebra, it follows that H can be written as

H=1%(0..0). (.18)

The hamiltonian H is thus a positive operator, which vanishes if and only if the
ground-state wave function ¥ is a singlet under supersymmetry, in which case

Q¥ =0l¥=0. (4.19)

Although this condition ensures that the ground state is massless, it does not
immediately imply that the ground state constitutes the desired supermultiplet. In
d =11 dimensions one has to require separately that ¥ is also a singlet under
SO(9).* For future purposes let us list the SO(9) generators in terms of the
coordinates and momenta introduced above. It is convenient to decompose them
into “orbital” and “spin” parts according to

Jo = L4 5%, (4.20)
where
A a A a
L= X 5 X
d —, d
Lao:iZAaZA_IZAaZA’
L,=Xx! -z i
= A Gz I
d d
Li—= Xi‘ aZA - ZA aXA ’ (4.21)
and
A i a A d
X F,{,W, Sgo= — “\“a)\‘ + icy,
i 4 ; d.
S'-_= Zﬁ aA‘ aﬂaABA N S‘-+ A I‘apxﬂ‘ (422)

2f

* In lower-dimensional space-times ¥ must transform nontrivially under the SO(4 ~2) group of
transverse rotations in order that the ground-state constitutes a supergravity multiplet.
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Note the appearance of the “normal-ordering” constant ¢, = 2A in Sg. There is an
associated hermitean U(1) charge operator J,_ which reads

o .9 ., a
Y2 A TR (4.23)

J, Siy=2"

+—

(with corresponding definitions for S, and L, _). Defining the charge ¢ of any
operator @ by means of [J, . 0] = q0, we see the variables X* Z“4 Z“ and M
carry the U(1) charges 0, ~1, +1 and 1, respectively.

Our main task is now to solve (4.17), or equivalently (4.19). for some G-invariant
wave function ¥. We expect that the method of solving (4.17) for finite A cannot be
used for purely bosonic membranes, because the ground-state energy of the bosonic
membrane will diverge in the limit A — oo and needs to be renormalized (see. e.g.
[25]). Since this is a nonrenormalizable theory there is an inherent ambiguity in the
calculation of the finite part of the infinite renormalization. On the other hand, if
one succeeds in finding a state obeying (4.19) for the supermembrane, this state will
remain a proper ground state in the imit A — oo. Nevertheless, we cannot a priori
exclude the possibility that the lowest eigenvalue of H is strictly positive for finite A
but only tends to zero as A — oc. At any rate, we expect that the Bose-Fermi
symmetry leads to the usual softening of divergences associated with the large-A
limit.

Up to this point, the analysis is completely analogous to the corresponding one
for superstrings (a detailed discussion may be found in [26], sect. 11.7). The much
more difficult part of the problem, however, resides in the nonzero mode part of ¥.
First of all, the hamiltonian (4.9) describes an interacting theory and not a free
theory as in superstring theory. Secondly, the constraint (4.14) has no analog in
string theory. There, one only demands invanance of the physical Hilbert space
under rigid (i.e.. length-preserving) translations that are generated by the operator
N_ = Ng. which does not mix different oscillator modes. The group of area-preserv-
ing diffeomorphisms is much larger and, in particular, does not admit an invariant
split into positively and negatively indexed modes.

In order to facilitate the calculations, one can make the additional assumption
that ¥ is an SO(9) singlet. As alluded to above, this is in fact necessary if one wants
to recover d =11 supergravity as a “low-energy limit” from the supermembrane.
For otherwise, the ground state would transform as [(44 & 84), & 128;)] times a
nonsinglet representation of SO(9) and would therefore describe states other than
those of the d = 11 supergravity multiplet. Unfortunately, the requirement of SO(9)
invariance does not lead to significant simplifications. so that this approach is not
particularly useful. We refer the reader to the appendix for a more detailed analysis
of the structure of SO(9)-invariant wave functions. However. one can show that the
ground-state wave function cannot factorize into a bosonic and a fermionic func-
tion, i.e.. it cannot be of the form ¥ = ¥, ® ¥,. with either ¥, or ¥; (or both) SO(9)
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or G invariant. The reason is that H, defined in (4.12). can be written as a product
of two operators, a bosonic one equal to the bosonic coordinates. and a fermionic
one, bilinear in the fermion operators, which both transform as a vector under
SO(9) and in the adjoint representation of G. Sandwiching H, between the ground-
state wave functions, it follows from the SO(9) or G invariance of either ¥, or ¥,
that (¥, H,¥) must vanish. Therefore, as a result of (4.17). (¥, H W) = (¥,, H.¥,)
= 0. Because H, is a positive operator, this implies that ¥, must vanish. This
situation is in sharp contrast to superstrings where the (nonzero mode) ground-state
factorizes into a bosonic and a fermionic SO(8) singlet. and where one has a
mode-by-mode cancellation of the vacuum energies.

In general, the relevant equations Q¥ = Q'¥ =0 are very difficult to solve.
Therefore we will now consider two special cases to illustrate some of the difficul-
ties. The first one is a truncation of the membrane theory, in which we discard the
coordinates Z*, Z* and A%. We accordingly split the SO(7) spinor indices a. 8. ...
into i, j,...=1,...,7 and a,8,... =8 and make use of the fact that (see, e.g.
{27,28))

(I')p=—i8;, (I'") u=lic, . (4.24)
where ¢, , are the octonionic structure constants obeying
Cipmc ™ = 28K~ ¢e e, (4.25)

ij ijkimnp

as well as a number of other relations which can be found in [28). In this truncation
the supercharges (4.7) take the form

3
Q= { Sx7 ¢ anc XX } A

] d
J={~- + Lctkf x"xc} evall (4.26)
8 { aXl,q 2 ABC ) Pk a)\:A

The symmetry of this theory is now reduced to N =1 supersymmetry, the G,
subgroup of SO(9) and G. The equation Q¥ = Q'¥ =0 can easily be solved and
one finds two G, X G invariant solutions,

\Pl = (fo) exp {%CilkaBCXJAXJBXE} ’

W, =exp { — be %l XAXPXE ) (4.27)
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It is amusing that in the membrane limit these two solutions become
¥,[X(0), \(0)] = (I_IA,-(O))exp{%fdzoe”c,ij'a,X/a,X"},
¥,[ X(0), A(0)] = exp{ -1 [ d% e':c,,kxfa,XJa,xk} , (4.28)

so that the ground-state wave functionals are exponentials of a Wess-Zumino-Witten
term, with corresponding torsion proportional to ¢, ;. However, both solutions
(4.27) fail to be square-integrable, and this problem persists for (4.28). Thus, there is
no supersymmetric ground state, so that this truncation has no massless states.
From the analogy with ordinary N = 1 supersymmetric quantum mechanics, this is
what one would have intuitively expected for the full supermembrane, too, as the
differential operator, which appears in (4.7), is +d/dX + X2, rather than +3/9X
+ X as in superstring theory [14]. However, the argument is vitiated by (amongst
other things) the nonexistence of an SO(9)-invariant (or even SO(7)-invariant)
three-index tensor analogous to ¢, ;. Observe also that both solutions in (4.27) are
singlets in their bosonic and fermionic factors. This does not contradict our findings
above, because the wave functions do not tend to zero at spatial infinity, and for
such functions the hamiltonian H, is not a positive operator.

The second truncation which we will consider, consists in discarding the variables
X# and X, thus retaining only Z“, Z* and M=)} This corresponds to a
membrane moving in a d =4 dimensional space-time. The supercharges follow
directly from (4.7) and read

d

ad -
Q= /2_‘527_(9}—“ __/ABCZAZBAC,
A

d —
Q*= ‘\/—iﬁij +fABCZAZBa)\ : (4.29)
C

It is clear that the ground state cannot factorize into a bosonic and fermionic part
and therefore we proceed from the ansatz*

V=0,(2.Z)+ ¥ &, . (Z, Z)A". N, (4.30)

k21

where the coefficient functions ®* - “:+ are completely antisymmetric in the indices
Ay,..., A,,. To make life as simple as possible, we take G equal to SU(2), so that

* We could also choose ¥ such that only odd powers of A appear.



The World in Eleven Dimensions 103

A.B,C.... =1,2,3, and f*BC = ¢*8C The decomposition (4.30) then simplifies to
¥ =q,(Z, Z)+ e Z. Z)NEXC. (4.31)
(We choose a real basis for the adjoint representation of SU(2), so the position of

indices is immatenal).
Requiring Q¥ = Q'¥ =0, we get

e'#247%(2,Z) =0, (4.32)
which tells us that
¢t =Z%, + Z",, (4.33)
and three more equations,
dp _, do
z4 —aZ: + 3¢, + Z* afi =0, (4.34)
d _.4d -
2\/55“6{233-;% + z”%} = eABCZBZC, (4.35)

3 _ - - -
»/i—a—;"; =2((z-Z)z" - 2°Z*] ¢, +2(Z?24 - (2 Z)Z"]9,. (4.36)

Upon multiplication by Z# and Z*, (4.36) leads to

9= (4.37)

Substituting this result back into the previous equations, it turns out that (4.34) is
identically satisfied, while (4.35) and (4.36) lead to

=, 0 i
€ABCZAZB'3_;OE = gABCZ4Z8 aiz =0, (4.38)
¢ABC7BZC 3 P

Fer, = ADE| 7D___. _ 7D =
H(po— Hb+(Z_Z)2__Z2ZZE (Z aZE Z aZE)}wo 0. (4.39)
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Here H, is the hamiltonian defined in (4.10), which in this case reads

P
Hy=-57i%74

+if(z-2)' - 2277 (4.40)

According to the constraint equations (4.14), the wave function must be SU(2)
invariant, in which case eqs. (4.38) are obviously satisfied. Hence we are left with a
Schrédinger equation for an SU(2)-invariant wave function ¢, given by (4.39). The
corresponding hamiltonian, H, consists of a linear combination of H,. which is the
hamiltonian for a bosonic membrane, and an extra term.

For the class of wave functions for which the hamiltonian is self-adjoint. we find
that

—[| do
(¢0,Hb¢0)=fd32d32{s—0

2
az4l T %[(Z.Z)2 - 2222]|%;2} . (4.41)

which is positive because
(z-Z) -22Z*>0. (4.42)

Under the same conditions, we have

_1 BczBZC d 3
7~ = [q37437 - apel50_Y _p_ 7 2
(@o. (H = Hy) ) dedz2(z-2)2—2222€ (Z =57~ 27577 |Iedl
(4.43)
Because
_ 9 3 e?8Cz87¢
e‘DE(ZD = - Z° ) — — =0, (4.44)
GZE HZE (2.2)2_2222

the integrand in (4.43) can be written as a total divergence, which suggests that one
can rewrite (4.43) as a surface integral. However, one has to take into account that
the integrand has a singularity whenever (Z - Z)? = Z2Z>. This happens when Z*
becomes proportional to a real vector (or, in other words. whenever the two vectors
Re Z* and Im Z“ are aligned). Therefore, the integral (4.43) splits into two terms,
one corresponding to the surface integral associated with large distances (Z - Z-
a0), which yields a positive contribution, and another one corresponding to the
contribution from the singularities, which turns out to be negative. To show this
more explicitly, on may choose a parametrization in terms of the SU(2)-invariant
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variables

¢=2'2'. (=Z'Z'. t=\(2-Z)-2°Z". (4.45)
[t is not hard to see that H — H, is now equal to

- ‘T_—_' a
H-H, = »£°+|§|'a—§. (4.46)

IR

Furthermore, on SU(2)-invarant functions we have

gdgdydf

724’7 o —emee— |
vEX+ 1812

(4.47)

up to “angular” variables whose integral yields an irrelevant (positive) constant c.
Substituting (4.46)—(4.47) into (4.43), and performing the integral over £, we then
find

(90 (H = Hy) o) = —c [ dsdf|po(£=0.5.5)|". (4.48)

where we have dropped the contribution at £ = oo, which is proportional to |g,|* at
spatial infinity. Therefore we have shown that for wave functions vanishing at
infinity, the energy of a supermembrane will be lower than that of a corresponding
bosonic membrane.

On the other hand, imposing the boundary condition that ¢, vanishes when
Z-Z — o0, one can see that no solution of (4.39) exists, as H is an elliptic
differential operator (see e.g. [29], p. 320 ff.). Consequently, solutions that are
subject to these boundary conditions do nor have zero energy. We should empha-
size, however, that the above boundary condition is not implied by square-integra-
bility*, and we have not been able to establish the existence or nonexistence of a
general square-integrable solution to (4.39).

It is now evident that the general case with arbitrary N is even harder to tackle
because the number of coefficient functions in (4.30) as well as the number of
SU(N) invariant variables analogous to (4.45) is further increased as N becomes
larger. In particular, there seems no real advantage anymore to replacing the

* This is. for instance, demonstrated by the function f(£.8.§)={exp{— 4£'/%|¢}7 - 147). which
does not satisfy _the above boundary condition. as limy,_ . f(0.{.{)= . but nevertheless
J3° g fA¥If(£.8.5)1% < oo!
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second-order equation (4.17) by the first-order equation (4.19), since decoupling
these equations will automatically lead to higher-order equations.

Note added

After this paper was completed we learnt that Claudson and Halpern (see [15])
consider wave functions similar to (4.27). Furthermore, we have meanwhile calcu-
lated the Witten index for the SU(2) model discussed at the end of sect. 4 along the
lines of ref. [31] and found that it vanishes. This is consistent with the conclusion
that there are no massless states.

Appendix

STRUCTURE OF SO(9)-INVARIANT WAVE FUNCTIONS

We here briefly describe how to construct SO(9)-invariant wave functions which
do not factorize into bosonic and fermionic parts that are separately SO(9)-
invariant. The basic idea is to first consider nontrivial SO(9) representations in
either sector and then fold them together to form a singlet. This is completely
obvious for the SO(7) subgroup of SO(9) and the nontrivial part of the analysis
involves the generators J,, which are nonlinearly realized on the Grassmann
algebra, cf. (4.22). As is well-known, any SO(9) representation can be characterized
by its highest weight or, equivalently, by its Dynkin label (see e.g. [30]). In the
present case this label consists of four positive integers (a,a,a,4a,), the first three of
which indicate the SO(7) representation and the last of which is associated with the
U(1) charge operators L, _ and S, _. The highest-weight state ((a,a,a;a,)) must
be annihilated by the raising operators L,, and S,_, i.e.

L,+|(‘11“2“3a4)>b=0’ or S,+|(01“2‘13“4)>r=0' (A1)

for a bosonic or fermionic representation, respectively. Of course, it must also be
annihilated by the remaining raising operators of the SO(7) subgroup but this (and
analogous statements) will be understood in the following. The representation is
then generated by applying the lowering operators L, _ for the bosonic representa-
tions, or S,_ for the fermionic representations, until one reaches the lowest-weight
state; in this procedure, the U(1) charge a, is changed by one unit at each step.
From the discussion in sect. 4 we learn that the fermionic wave functions have a
maximum U(1) charge which is equal to the normal-ordering constant ¢, = 2A. so
we will restrict ourselves to representations with |a,| < ¢,,.

We will now illustrate how this works by looking at various examples, first in the
bosonic sector. So let us start with

1(000c,)), = Z4 ... Z*o. (A.2)

Obviously this state transforms under the symmetric tensor representation of the
group G which is associated with the indices A4,..... 4, but because G commutes
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with SO(9), this aspect is not very important. Clearly. the state (A.2) is an SO(7)
singlet and annihilated by L,, (use the explicit expressions in (4.21)). Acting on it
with L,_, we obtain

L (ZM.. Z%)=co XM Z% .. Z 4y, (A.3)

The U(1) charge of (A.3) is (¢, — 1) while the G-representation content is evidently
unaltered. Continuing in this fashion, we get

L_L,_(Z"...Z%)
=co(co= D) XLMXNZA T4 =48, ZMZNZ4 24, (A4)

and so on. Hence, we just obtain a generalization of the usual SO(9) spherical
harmonics. To also have an example with a, = ¢, — 1, one may start from any of the
following states

‘(t *ecy— 1))b = X,.(B‘ZBIIZ"I... z*,
XBXBZOZN T, or
,\’,.[”!X/"!Xf’f”"f“’-.- zZ*. (A.5)

where (# » =) is the appropriate SO(7) label. Owing to the antisymmetry in the
indices By, B,,... the states (A.5) are anihilated by L, ..

The construction in the fermionic sector is similar. Since, by (4.23), the highest-
weight state contains the maximal number of A’s, it is more convenient to start with
the lowest-weight state. The analogue of (A.2) is then

‘(OOO_CO)>f=1v (A.6)

which is annihilated by S,_. The action of S;, now produces the state

S|+l(000_00)>[=—’_AAriA4v (A7)

w2

which has charge —c, + 1. The analogue of (A.5) is the set of states

2
ABAB: ABINB: — —§BBXCA ABUNB: ABURNE: | (A8)

Co

An SO(9) singlet can now be formed by folding together the same bosonic and
fermionic SO(9) representations. The resulting wavefunction can then be turned into
a singlet with respect to G by contraction with an appropriate bosonic function of
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SO(9) singlet variables such as X*X?+ Z#Z?+ Z8Z4, eic. For instance. from
(A.2) and (A.6), we can construct the following SO(9)-singlet wavefunction

¥ =(000¢,) ), ® (000 ~ o))
+aL,_|(000¢,)), ® S, |(000 - <)),
+BL,_L,_|(000¢,)), ® S,.S,.1(000 - co)),
+vyL,_L,_](000¢,)), ®S,. S, [(000 ~ ¢,)),

+ .- (A9)
The coefficients a, B, v,... are determined from the requirement J,, ¥ = 0. Using
the SO(9) commutation relations and the known U(1) charges together with

L, 1(000c,)), = S,,1(000 — ¢,)); = 0 we find

1 1 « B

= BEIEITY YT agese

(A.10)

After contraction with an appropriate bosonic wavefunction, (A.9) can also be
expressed as

‘P=¢A,.,Ato(xvz~_z’)
i — —
ZA .. Z% + —=NP[/A x‘lz‘=...zﬂ«o+.-->. A.l1)
x{Z 35 s X (

Another example is

V= ¢B,B:A3...A‘O( X.Z 2-)

[ \B,xB: 54 FAq 4 __i ABAB2 \CTIN . X A2 Z 4 ZA‘0+"'}. (A.12)
x\)\ A ZM 2 W c X

It is not difficult to verify directly that indeed J, .=L,,+S, . vanish on ¥ and
¥, at least to the order given. Obviously, there is a multitude of possibilities and
very little hope of a complete classification. One can also prove that the supermem-
brane wave function for a massless ground-state cannot just be of the form (A.11).
This follows directly from the observation that H,¥ contains no A-independent
term for ¥ given by (A.11), so that H,¥ must vanish up to order A’ for a massless
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ground state. From the fact that H, is positive, it then follows that ¥ must in fact
vanish. This conclusion is already suggested by the fact that (A.11) is an eigenfunc-
tion of both L? and S?, while the hamiltonian does not commute with these
operators. A bothersome feature is that the degree of the SO(9) *“spherical har-
monic” is larger than or equal to ¢y = 2A and therefore increases without bound as
A — oo, It is hard to see what reasonably behaved wavefunction could ensure
square-integrability of ¥, ¥’,... or any linear combination thereof in this limit.
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We find exact solutions to the field equations of eleven-dimensional supergravity corresponding to stable multi-membrane
configurations. Their holonomy group is given by the SO(8) subgroup of an enlarged tangent space group SO( !, 2) XSO(16),
and hence one half of the spacetime supersymmetries are broken. The solutions saturate a Bogomol'nyi bound between the mass
per unit area and the Page charge, which also guarantees their stability.

Although the equations of motion of eleven-
dimensional supergravity were written down by
Cremmer, Julia and Scherk as long ago as 1978 [1],
it was only recently that Bergshoeff, Sezgin and
Townsend [2] constructed the eleven-dimensional
supermembrane that couples to this background. In
this paper we show that the supermembrane actually
emerges as an exact solution of the supergravity field
equations. Indeed, exact solutions for a superposi-
tion of arbitrarily many supermembranes can be ob-
tained in this way.

{t should be emphasized, however, that these
membrane solutions are not “solitons™ of the kind
sought by Townsend [3], which would be non-sin-
gular configurations stabilized by an identically con-
served topological charge. By constrast, our solutions
have J-function singulanties on the worldvolume of
the membrane and are stabilized by a charge con-
served only by virtue of the field equations, which
turns out to be the familiar Page charge [4,5] of
eleven-dimensional supergravity. Nonetheless. in
common with the soliton solutions, they break just
one half of the spacetime supersymmetries and satu-
rate a Bogomol’nyi bound between the mass per unit

' Work supported in part by NSF grant PHY-90415132.

Elsevier Science Publishers B.V. (North-Holland)

area and the conserved charge. Under a simultane-
ous dimensional reduction of the supermembrane in
eleven dimensions to the superstring in ten dimen-
sions [6], our solution goes over to the superstring
solution of Dabholkar, Gibbons, Harvey and Ruiz-
Ruiz [7].

We begin by making an ansatz for the D=11 gauge
fields guv and Ay np (M =0, 1, ..., 10) corresponding
to the most general three—eight split invariant under
P; X SO(8), where P, is the D=3 Poincaré group. We
split the D= 11 coordinates

xM=(xym), (1)
where u=0, 1, 2and m=3, ..., 10, and write the line-
element as

ds?=e?! n,,dx"“dx*+¢*55,,dy™dy" (2)

and the three-form gauge field as
i
A“VI,:i'J—gE,,,,eC, (3)

where 3g is the determinant of g, &,,p = 8ue8vs8nt™"
and £%'2= + 1 i.e. 4g,;= T €. All other components
of Apne and all components of the gravitino w,, are
set to zero. P, invariance requires that the arbitrary
functions 4, B and C depend only on y™; SO(8) in-
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variance then requires that this dependence be only
through r=./0may™y".

As we shall now show, the three arbitrary functions
A, B and C are reduced to one by the requirement
that the field configurations (2) and (3) preserve
some unbroken supersymmetry. In other words, there
must exist Killing spinors ¢ satisfying

Due=0, (4)

where D,, is the superccvariant derivative appearing
in the supersymmetry transformation rule of the
gravitino

8w ly-0=Due, (5)
D=8y +iwr"* g
— 555 (FFPORS 4+ 8T POR55, ) Fogrs (6)

where Fynpo=40(rAnpg;- Here I'y are the D=11
Dirac matrices satisfying

{rA.Ta}=2’IAn» (7)

A. B refer 1o the D= 11 tangent space, 1,z =diag ( —,
+...,+),and

r.w...(‘=r[,4rs--~rc‘] » (8)

thus = (Il 5~1sl"4), etc. The I'’s with world
indices P, Q. R... in (6) have been converted using
vielbeins e,,”. We make a three—eight split

4= (7805, 181,) , 9)

where 7, and Z, are the D=3 and D=8 Dirac matri-
ces respectively and where

=552 (10)

so that I'2 = 1. The most general spinor field consts-
tent with the P, XSO (8) takes the form

e(x,y)=€@n(r), (1)

where ¢ is a constant spinor of SO(1, 2) and 7 is an
SO(8) spinor which may further be decomposed into
chiral eigenstates via the projection operators
(1x1%).

In our background (2) and (3). the supercovar-
iant derivative becomes

D,=8,—iy,e~*Zmd,e T,

Fere MEm9,eC . (12)

bm= am + ée—ﬂ(xmzn_znzm)a"eﬁ
Fre MZ,E"-2"2,)8,eT,
Fle33,.er,. (13)

Note that the 7, and X, carry world indices. Hence
we find that (4) admits two non-trivial solutions

(1x7)n=0, (14)

where the * signs are correlated with the * signs in
our original ansatz (3),

L E (15)

where 1, is a constant spinor. and

A=1iC, (16)
= —$C+constant . amn

In each case, (14) means that one half of the maxi-
mal possible rigid supersymmetry survives.

To see the uniqueness of these solutions, we may
appeal to holonomy arguments [5] i.e. the integra-
bility conditions for (4) following from the commu-
tators of the supercovariant derivatives (12) and
{13). In this connection, it is important to realize that
the holonomy of the supercovariant derivative D,, is
different from that of the ordinary Lorentz-covariant
derivative D,,. After making a three-eight split of the
kind we are considering, it is known that the SO(1,
2) XSO(8) subgroup of the D=11 tangent space
group SO(1, 10) is enlarged to SO(1, 2)xSO(16)
[8]. Essentially, this is because the SO(8) spin con-
nections w,?%,, are augmented by terms like
Fra®Yagen Fr™ValsZs and F,,2*X,, which con-
spire to produce the connection of an SO(16), under
which n transforms as a 16-dimensional vector. The
holonomy group # of a specific D,, will be a subgroup
of this enlarged tangent space group. In the trivial case
where X is the identity, there are no restrictions on €
and the maximal number of 2X 16 rigid supersym-
metries are preserved, but spacetime 1s flat and
Funeg=0. In the other trivial case where .¥ coin-
cides with the enlarged tangent space group, £ van-
ishes and no supersymmetry survives. Given our an-
satz (2). (3). the only remaining possibilities are
those given in (14)-(17). for which the holonomy
group ¥ is 1®(8) . corresponding to two inequiva-
lent embeddings of SO(8) in SO(16). Under SO(16)
>8S0(8), the 16 decomposes into an 8 plus 8 sin-
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glets. Since the number of unbroken supersymme-
tries is given by the number of singlets in this decom-
position, we see that exactly half of the maximal rigid
supersymmetries survive.

Thus, at this stage, the three unknown functions A4,
B and C have been reduced to one by choosing the
case where half the supersymmetry survives. To de-
termine this unknown function, we must substitute
our ansatz into the field equations which follow from
the action

So=[d'x %, (18)

where %; is the supergravity lagrangian whose bo-
sonic sector is given by

K %=1y —-gR—ﬁ\/ ~g FuynpoFYNPQ
|

METIV3R

gHMNOPQRSTUVWE ForsrAvvw .
(19)

Let us first consider the antisymmetric tensor field
equation

3l —g FY™)

+ e VW MNOPRRSTE v opForsr =0 . (20)
Substitution of (2), (3) and (16), (17) yields
87"9,,8,e" =0 20

and hence, imposing the boundary condition that the
metric be asymptotically minkowskian, we find

e-f=1+;’§, r>0. (22)

where K is a constant, at this stage arbitrary. The same
expression for C also solves the Einstein equations.
Thus the two solutions are given by

-2/3

dSz=(l+F) r],,,dx“dx"

1/3
+(l + :-Ks) O, dy™dy”,

-1
i K
A,“,pzi 3}8,,,(14‘ ;a) . (23)

In fact, these expressions do not solve the field
equations everywhere because of the singularity at
r=0. Instead of (21), for example, we have

60,06 "= ~6K2,0%(y) . (24)

where £2; 1s the volume of the unit seven-sphere S’.
Similar remarks apply to the Einstein equations. In
order that (23) be solutions everywhere, it is there-
fore necessary that the pure supergravity equations
be augmented by source terms. This source is, of
course, the supermembrane itself. To see this explic-
itly we consider the combined supergravity-super-
membrane equations which follow from the action

S=Sc+Su . (25)

where Sy is the supermembrane action whose bo-
sonic sector is given by

Sm= Tj- d’é(— =770, XM, X gyw +1y ~7

+ %s'f*a,x-"a,x'*'akxmm,,,) . (26)
where T'is the membrane tension. The Einstein equa-
tions are now

Run—18unR=K*Tyy . (27)

where T, receives a contribution not only from the
antisymmetric tensor kinetic term but also from the
membrane itself,

KZTMN= ILZ(F MPQRF NPQR _ &g‘WNFPQRSF PQRS)

_KZTJ' @267y xmg xv LUK
¢ (28)
while the antisymmetric tensor equation is now
aM(\/—_‘g FMUvwy

+1755E UVYWMNOPQRSTE 1 opF. QRST

=F 2T J‘ d3&e 3, X8, X 9 X ¥ (x~X) .

(29)

Furthermore, we have the membrane field equations
8./ =7 778, X gun) + 1/ =7 773, X8, X Bugr

+ % £, XV, XP 8, XF ynpg =0 . (30)

yl/=alX‘"a]X~gMN' (31)

It is not difficult to verify that the correct source term
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in (24) and in the Einstein equations is obtained by
the static gauge choice

Xe=E# ) u=0,1,2, (32)
and the solution
Y™ =constant , (33)
provided
KT
= 4
K 0, (34)

However. with the choice of — sign in front of the
Wess-Zumino term given in (26), we must choose
the — sign solution in (23). The + sign solution also
solves the combined supergravity-supermembrane
equations but for the opposite choice of sign for the
supermembrane Wess~Zumino term. One may also
verify that (32). (33) satisfy the membrane field
equations (30), (31).

Having established that the supergravity field con-
figurations preserve half the supersymmetries, we
must also verify that the membrane configurations
(32). (33) preserve these supersymmetries. As dis-
cussed in ref. [9]. the criterion is that in addition to
the existence of Killing spinors ¢ satisfying (4), we
must also have

(1xN)e=0. (33)

where the choice of sign is correlated with the sign of
the Wess—Zumino term in (26 ), and where

I ;
I's ms”‘a,X"alX"akX”I'MN,.. (36)

Since =1 and tr =0, } (1 £7") act as projection
operators. From (32), (33), we see that for our
solutions

Ir'=1®r,. (37)

and hence (35) is indeed satisfied as a consequence
of (14). Eq. (35) explains. from the membrane point
of view, why the solutions we are seeking preserve just
half the supersymmetries. It originates from the fer-
mionic k-symmetry of the supermembrane action.
The fermionic zero-modes on the worldvolume are
yust the Goldstone fermions associated with the bro-
ken supersymmetry [10].

Under a simultaneous dimensional reduction of
spacetime and worldvolume, the combined super-

gravity-supermembrane field equations (27)-(31)
in D=11 reduce to the combined type lIA supergrav-
ity-superstring field equations in D=10 [6]. A fur-
ther truncation yields the equations studied by
Dabholkar et al. [ 7]. The tangent space group SO(1,
2)xSO(16) is thus reduced to SO(1, 1)xSO(8)
% SO(8). One might expect, therefore, that their so-
lutions may be obtained from ours by simultaneous
dimensional reduction, and this is indeed the case.
Let us denote all D= 11 variables by a carat, and then
make the ten—one split

M= (xM x?), M=0,1.3...9, (38)
Eun=€"gyn . En=e*,
/‘iMNz =BMN » (39)

aﬁnd set to zero all other components of gyx and
Axxp. Then we can read off the D =10 solutions from
(23) and (32), (33):

d52=gMNd.XM de
~-3/4

(14 5) e

K 1/4
+(1+—) Sndy™ dy™,

’.6
-1 -1/2
K K
Bo.=i(l+ﬁ) , €’=(1+ F) R
Xr=E# u=0,1, Y™=constant . (40)

These agree (choosing the — sign) with the super-
gravity-superstring solution of Dabholkar et al. [7].
where the g/~ Buya and ¢ are the metric, antisym-
metric tensor and dilation of D= 10 supergravity and
the X are the D= 10 string variables. These authors
showed that their string solution saturates a
Bogomol'nyi bound for the mass per unit length. Us-
ing the same methods we may establish a similar
bound for the mass per unit area of the membrane

= jdsyam. (a1)

where 8, is the total energy-momentum pseudo-
tensor of the combined gravity-matier system. One
finds

K M2 Py (42)
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where P is proportional to the central charge which
appears in the D=11-2=9, N=1 supersymmetry
algebra. The novel feature of this Bogomol'nyi bound
from the point of view of D= 11 supergravity is that
P is nothing but the familiar Page charge {4.5] de-
fined by

P.—.QJ.(‘F+§AAF). (43)

57

Its conservation follows from (20). Under the simul-
taneous dimensional reduction (39), P reduces to

p=i [e-en. (44)

s7

where H=dB. the quantity appearing in ref. [7].
Either way, one finds for our solutions that

P=+xT. (45)

Hence the bound is saturated and the mass per unit
area is just the membrane tension. This provides an-
other way, in addition to unbroken supersymmetry,
to understand the stability of the solution. (Note that
under simultaneous dimensional reduction the D= 10
and D=11 Newton constants are related by «’=
(27R)~'k? where R is the radius of the compactify-
ing circle, but that the string and membrane tensions
are also related by T=2nRT Hence x?T=x2T.)

So far we have concentrated on single membrane
solutions of the supergravity field equations. How-
ever, there is a straightforward generalization to ex-
act, stable multi-membrane configurations obtained
by a linear superposition of solutions to eq. (21):

e‘(=l+z K

7 r—r|®’

(46)

where r, corresponds to the position of each mem-
brane. The ability to superpose solutions of this kind
is a well-known phenomenon in soliton and instan-
ton physics and goes by the name of the *“no-force
condition™. In the present context, it means the the
mutual gravitational attraction of two widely sepa-
rated membranes is exactly cancelled by an equal and
opposite contribution from the antisymmetric ten-
sor. This is closely related both to the saturation of
the Bogomol'nyi bound and the existence of unbro-
ken supersymmetry. In the supersymmetry context
the no-force condition is sometimes called ““antigrav-

ity™. To see this explicitly, consider a stationary test
membrane at some distance from a source mem-
brane located at the origin. Let both satisfy X#=¢*
so that, in particular, they have the same orientation.
The lagrangian for this test membrane in the field of
the source given by (2). (3) is, from (26)

Ba=~T[/—det(e*'n, +e53,Y™3,Y,,) -],
(47)

corresponding to a potential V' given by
V=T(e* -e). (48)

But this vanishes by the supersymmetry condition
(16). On the other hand, if the test membrane had
the opposite orientation, and hence the opposite Page
charge P, then the sign change in the Wess-Zumino
term in (45) would result in a net attractive force
and the two membranes would annihilate one an-
other. This is entirely analogous to the D =10 string
solution [7].

Finally, we would like to emphasize that these so-
lutions are not “solitons™, because of the J-function
singularities on the membrane worldvolume. There
has been a good deal of interest in interpreting super-
membranes as solitons [10] or “cosmic p-branes”
[3]. In particular, Strominger [11] has shown how
the heterotic 5-brane [ 12] emerges as a soliton of the
heterotic string. These solutions are all source-free and
non-singular. By constrast, the singularity of our so-
lution, like the string solution of Dabholkar et al. [7].
really means that we are solving the coupled super-
gravity-supermembrane equations. They neverthe-
less share some of the same properties as the genuine
solitons: the breaking of half the supersymmetries, the
saturation of a Bogomol'nyi bound in which the mass
per unit area is equal to the tension. Some interesting
questions remain concerning the deeper physical sig-
nificance of our solutions. One has grown used to the
idea that superstrings and supermembranes are 1o be
regarded as the fundamental objects, with the super-
gravity fields emerging as the massless states in the
spectrum. The point of view most appropriate to the
present work is opposite: the supermembrane or su-
perstring emerges as a singular solution to the field
theory. The preservation of just one half of the space-
time supersymmetry plays an important role in this
relationship and it is known 1o be related to the x-
symmetry on the membrane worldvolume [ 10].
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Eleven-dimensional supergravity is a theory for which
no independent matter field theory exists, owing to
its maximal supersymmetry. The D=11 supermem-
brane is the only “‘matter” that is known to couple
consistently to this maximal supergravity back-
ground. It may be that the coupied system owes its
consistency to a so-far undiscovered off-shell sym-
metry which generalizes the x-symmetry that is pre-
served [2.6] when the supergravity background is re-
quired to satisfy its field equations. To find such an
off-shell symmetry remains an open problem for fu-
ture work.

We have enjoyed numerous fruitful conversations
with Jian Xin Lu.
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Abstract

It is shown that many of the p-branes of type II string theory and d = 11 supergravity can have boundaries on other
p-branes. The rules for when this can and cannot occur arc derived from charge conservation. For example it is found that
membranes in d = 11 supergravity and IIA string theory can have boundaries on fivebranes. The boundary dynamics are
governed by the self-dual d = 6 string. A collection of N parallel fivebranes contains %N(N — 1) self-dual strings which

become tensionless as the fivebranes approach one another.

Type I string theories contain a variety of BPS-
saturated p-brane solitons carrying a variety of charges
O’ [1-3]. All of these are extended extremal black
holes [2]. This means that they are extremal mem-
bers of a onc-parameter family of M’ > Q' solu-
tions which, for M’ > @', have regular event hori-
zons and geodesically complete, nonsingular spacelike
slices with a second asymptotic region. Furthermore
the M > Q' solutions decay via Hawking emission
to the BPS-saturated M’ = Q' states. Recently there
has been spectacular progress, initiated by Polchinski,
in describing the dynamics of those p-branes which
carry RR charge by representing them as D-branes in
a type I theory [3-15]. In this paper we will rederive
some of these recent results from low-energy reason-
ing in a manner that will generalize to all p-brancs
and uncover new phenomena.

Viewing p-branes as extended holes in spacetime
naturally lcads onc to consider configurations in
which one p-brane threads through the hole at the
core of the second p-brane ' . For example consider

! At the extremal limit. many of the p-branc solutions are singular

a static configuration consisting of two like-charged,
parallel NS-NS (i.e. symmetric) fivebranes in the IIB
theory. The metric is given by

a/

ds?y = ndy*dy” + (1 + ————
10 = Mupdy"dy” +( +|x—x1|2

o

+ o) d X d ¥, (N
[x — x2]?
where p,v =0,...,5and j, k =6,...,9. This has two
infinite throats located at x = x; and x = x;. Next
consider a RR closed string which comes out one
throat and goes in the next:

X' =1,

The existence of such a configuration may be ob-
structed by charge conservation. In particular an §7
which surrounds a RR string has a non-zero integral
QFR = [«H®® where H®® is the RR 3-form ficld

X' =x 4 (x3 — x1})0. (2)

or strongly coupled at the core. so the spacetime metric is not a
reliable guide to the geometry. One is still however led to consider
the fate of a p-branc which threads a large. smooth non-cxtremal
p-brane which subsequently evaporates down to extremality.

0370-2693 /96 /$12.00 Copyright © 1996 Published by Elsevier Science B.V. All rights reserved.
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strength. This would seem to prevent strings from
ending, since in that case the S7 may be contracted to
a point by slipping it off the end. However in so doing
one must first pass it through the fivebrane. Using
the explicit construction of [1] 2 jt may be seen that
the low-energy effective field theory on the fivebrane
worldvolume contains a coupling

/ dTBRRFH (3)
where BRR is the spacetime RR Kalb-Ramond field
and F is the worldbrane U(1) gauge field strength.
This leads to the equation of motion

d* H® = ORR&® 4+ F A 6%, (4)

where 8* (88) is a transverse 4-form (8-form) delta
function on the fivebrane (RR string) and *F denotes
the Hodge dual within the worldvolume. The total
integral of d * H over any S® must vanish. Consider
an S8 which intersects the string at only one point.
Such an S point must intersect the fivebrane in an
S*. Integrating (4) over the S® we find

O=Q“R+/*]-". (5)

4

We conclude that H®® charge conservation can be
maintained if an electric flux associated to the five-
brane U( 1) charge emanates from the point at which
the string enters the fivebrane. In other words the
end of the string looks like a charged particle on the
worldbranc.

As most easily seen from the Green-Schwarz form
of the string action, the stretched string preserves those
supersymmetries generated by spinors € obeying

Tund. XMo_XVe=e. 6)

(2) and (1) together preserves one quarter of the su-
persyminetries so this configuration is BPS-saturated
to leading order. At next order one must include the
back reaction of the string on the spacetime geometry
and ficlds. Since there is no obstruction from charge
conscrvation we presume that a fully supersymmet-
ric configuration describing a RR string stretched be-

2 A correction to the zero mode wave function may be found in
[16}]

tween two NS-NS fivebranes exists and corresponds
to a BPS state.

There is no coupling of the form (3) involving the
NS-NS B ficld. Charge conservation therefore pro-
hibits fundamental IIB strings from ending at NS-NS
fivebranes. However SL(2,Z) interchanges NS-NS
and RR onebranes and fivebranes. Hence SL(2,Z)
invariance implies that a fundamental 1B string can
end at a RR fivebrane. The latter (like all the RR soli-
tons) can be realized as a D-brane. So this is not a
surprise: we have reproduced results of [(4,3].

Next let us consider what happens as the two five-
branes approach one another. The mass of the stretched
string is given by a BPS bound and is a function on
the two-fivebranc moduli space. It decreases with the
string length. When the fivebrancs become coincident,
the stretched string has zero length and becomes a
massless state carrying the U( 1) charges of both five-
branes. The result is therefore an N = 4 U(2) gauge
theory on the fivebranc {4,6]. Note that the dual re-
lation to open string theory is not required for this
conclusion. From this perspective the source of mass-
less gauge bosons is similar to that in [ 17-19]: they
arise from a degenerating one-cycle which threads two
horizons.

A similar story applies to the RR threcbrane. Re-
duction of the formulae in [2,20]leads to spacetime-
worldbrane couplings of the form (3) for both the
NS-NS and RR B fields. This is required by SL(2, Z)
invariance because the threebrane acts as a source for
the self-dual 5-form and hence is itself self-dual. In
[4] it was shown that fundamental strings can end on
D-branes but here we see that D-strings may in some
cases also end on D-branes. This dovetails nicely with
S-duality of the N = 4, d = 4 gauge theory which lives
on the threebrane: The ends of fundamental strings
are clectrically charged particles while the ends of D-
strings are magnetically charged particies.

There may scem to be a puzzle for example for
the RR O-brane. Clearly charge conservation will pre-
vent (except when there is a RR background [21])
a fundamental string from ending at a O-brane. This
may seem (o conflict with the picturc in [3] which
involves an SU(N) gauge theory for N O-branes com-
ing from strings ending at the 0-brancs. However there
is not really a conflict because our reasoning applics
only to BPS states, and charge confinement in 0+1
SU(N) gaugc theorics indeed climinates the charged
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BPS states.

So far we have reproduced from a different per-
spective results previously obtained either directly in
14,3,6], as well as some SL(2,Z) duals of those re-
sults. Our point of view gives the lecading low-energy
dynamics, but probably cannot easily reproduce the
detailed prescription given in [4,3] for computing, e.g.
finite momentum string-D-brane scattering as in [ 12].
However in considering higher p-branes this low-
energy perspective will lead us to new phenomena.

As a further example we consider a mem-
brane stretched between two fivebranes of eleven-
dimensional supergravily*‘. (Of course reduction of
this leads to examples in the IIA theory.) Unlike its
[IB partner, the d = 11 (and IIA) fivebrane has chi-
ral dynamics governed by the d = 6 tensor multiplet
[23] containing 5 scalars and a sclf-dual antisym-
metric tensor field strength A [1]. The membrane
worldvolume condition for unbroken supersymmetry
is (22,24]

Cunp e, XM3px"3,X" e = €. (7)

Again it is easily seen that a membrane stretched be-
tween two fivebranes preserves onc quarter of the su-
persymmetrics at leading order. For appropriate brane
orientations the unbroken supersymmetries are gener-
ated by spinors obeying the two chirality conditions
%8¢ = 19'2%%¢ = €. The membranc can be sur-
rounded by an §7 for which there is a nonzero value
of the charge Q™ = [; »F, where F here is the space-
time 4-form field strength. In the presence of a mem-
brane and a fivebrane the equation of motion for F, as
follows from formulac in [ 1,25,26], is

d+xF=0Ms* + ANS. (8)

We see that the boundary of the membrane - which
is a string lying in the fivebrane — must carry sclf-
dual antisymmetric tensor charge [, A = —Q". This
string is the self-dual string of Duff and Lu [27].
Further insight into this construction can be gained
by considering S- and T-duality. Polchinski [4,3] has
shown that the worldbrane dynamics of the IIB RR
fivebranc are described by open fundamental Dirichlet
strings. SL(2, Z) invariance then implies that world-
brane dynamics of the 1B NS-NS fivebrane are de-
scribed by open RR strings (although this description

3 Preliminary observations on open membranes are made in {22}

is weakly coupled only at large g, ). Now periodically
identify and T-dualize along one direction of the five-
brane. This gives a IIA theory [4]. The NS-NS (i.e.
symmetric) fivebrane solution is represented by a con-
formal field theory involving only the transverse co-
ordinates, and hence is unaffected by longitudinal T-
duality ( This is in contrast to RR p-branes, which lose
(gain) a dimension under longitudinal (transverse)
T-duality.). However the zero modes which propagate
parallel to the fivebrane are affected, and the N = 4
U(1) vector multiplet is transformed into an N = 4
antisymmetric tensor multiplet. At the same time the
open strings which govern the IIB fivebrane dynamics
are T-transformed into open membranes which govern
the TIA fivebrane dynamics.

Next we consider the dynamics of N parallel 4 =
11 or IIA fivebranes. When the fivebranes are sepa-
rated the low energy dynamics is governed by a glob-
ally supersymmetric (0,2) d = 6 theory with N ten-
sor muftiplets. The moduli space of the SN scalars is
uniquely determined to be locally the symmetric space
T(5,N) = SO(5,N)/(S0(5) x SO(N)). Since this
is a chiral theory it is not possible for extra massless
fields to appear when the fivebrane positions coincide.
However tensionless strings can and do arise, because
the tension of a BPS string which arises as the bound-
ary of a membranc stretched between two fivebranes
vanishes when the fivebrane coincides. These strings
transform in the adjoint of the global SO(N) which
acts on the N tensor multiplets. Upon §' compactifi-
cation along the fivebranes, winding states of the ten-
sionless strings Icad (o the appearance of extra mass-
less gauge bosons which - together with the reduced
tensor multiplets which dualize to vector multiplets —
fill out a U(N) gauge theory [28], as predicted by
T-duality.

Aspects of the preceding are quite similar to Wit-
ten’s discussion [28] of K3 compactification of IIB
string theory, whose moduli space is locally 7(5,21)
and which contains (5) 5+16 (anti) self-dual an-
tisymmetric tensor fields. In this case tensionless
strings arise from threcbranes wrapping degencrating
2-cycles. Indeed there is a dual HA description of
this 1IB compactification, in the spirit of [29,8,9],
as 16 toroidally compactificd symmetric fivebrancs
and NS-NS orientifolds, where the extra 5+35 anti-
symmetric tensor ficlds arise from the supergravity
muftiplct [30]. In {29} it was shown that IIA on
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K3 is equivalent to IIB on a D-manifold with 16 RR
orientifolds and 16 RR fivebranes. IIB S-duality con-
verts NS-NS to RR fields, so this is S-cquivalent to a
B configuration with 16 NS-NS orientifolds and 16
NS-NS fivebranes. Next T-dualize this Jast represen-
tation of IIA on K3 (yielding IIB on K3) along one
of the noncompact directions. This will not affect the
4-geometry which involves only NS-NS fields. Hence
HB on K3 is equivalent to IIA on a “p-manifold” with
16 NS-NS orientifolds and 16 symmetric fivebranes.
This provides the concrete connection to [28].

As pointed out in [28] the fact that self-dual strings
(or open membranes # ) become light as the fivebranes
approach one another suggests that supergravity might
be decoupled and the dynamics of self-dual strings and
symmetric fivebranes consistently studied in isolation
from the rest of string theory. This is also suggested
by superconformal invariance of the tensor multiplet
ind = 6 [23]). The relation by compactification to
superconformal d = 4, N = 4 Yang-Mills makes this
a particularly fascinating problem.

Further examples of p-branes with boundaries can
be found. It may be directly checked in the 1IB theory
that charge conservation allows a threcbrane to end
on a membranc in the RR fivebranc. The membrane
carries magnetic charge with respect to the fivebranc
U(1) gauge ficld. In gencral every RR p-branc has
a U(1) gauge field. Electric charges are always car-
ricd by zerobranes and arise from fundamental strings
which terminate at the p-branc. Magnetic charges are
carried by a (p — 3)-brane, which can arise as the
boundary of a (p — 2)-branc. It is difficult to check
charge conservation dircctly for p > S because the
zero mode wave functions have not been worked out.
However T-duality along a dimension transverse to an
configuration of RR p-brancs increases p. so we pre-
sume it is always possible (in ITA or IIB) for a RR
(p — 2)-branc to end at a RR p-branc. All of these
new mulli-p-brane configurations can be used to con-
struct p-manifold generalizations of the D-munifolds
introduced in | 8], and may arisc in the process of du-
alization.

In conclusion string theory contains a rich variety
of extended objects which intcract in an intricate and

*The relation in the infrared between the self-dual open mem-
branes and sclf-dual strings may involve Chern-Simons theory as
in |131].

beautiful fashion. Higher p-branes provide endpoints
for branes of lower p, which latter in turn govern the
dynamics of the former.

We thank J. Polchinski for useful discussions and
for explaining the results of [29] prior to publication.
This work was supported in part by DOE Grant No.
DOE-91ER40618.
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Abstract

The 2-brane and 4-brane solutions of ten dimensional IIA supergravity have a dual interpretation as Dirichlet-branes, or ‘D-
branes’. of type lIA superstring theory and as *M-branes’ of an S'-compactified eleven dimensional supermembrane theory,
or M-theory. This eleven-dimensional connection is used to determine the ten-dimensional Lorentz covariant worldvolume
action for the Dirichlet super 2-brane, and its coupling to background spacetime fields. It is further used to show that the
2-brane can carry the Ramond-Ramond charge of the Dirichlet 0-brane as a topological charge, and an interpretation of the
2-brane as a 0-brane condensate is suggested. Similar results are found for the Dirichlet 4-brane via its interpretation as a
double-dimensional reduction of the eleven-dimensional fivebrane. It is suggested that the latter be interpreted as a D-brane

of an open eleven-dimensional supermembrane.

1. Introduction

The importance of super p-branes for an under-
standing of the non-perturbative dynamics of type II
superstring theories is no longer in doubt. For ex-
ample, they are relevant to U-duality of toroidally-
compactified type Il superstrings [1,2], and symme-
try enhancement at singular points in the moduli space
of K3 or Calabi-Yau compactified type 1 superstrings
[3-6] as required by the type I1/heterotic string-string
duality [1,3,7]. Type Il p-branes were first found as
solutions of the effective D = 10 supergravity theory
[8-11]. Because their worldvolume actions involve
worldvolume gauge fields [12,13}, in addition to the
scalars and spinors expected on the basis of sponta-
neously broken translation invariance and supersym-
metry, they were not anticipated in the original classi-
fication of super p-branes [14]. For the same reason,
the fully D = 10 Lorentz covariant action for these
type 11 super p-branes is not yet known. One purpose

of this paper is to report progress on this front.

The type II p-branes are conveniently divided into
those of Neveu/Schwarz-Neveu/Schwarz (NS-NS)
type and those of Ramond-Ramond (RR) type ac-
cording to the string theory origin of the (p + 1)-
form gauge potential for which they are a source. The
supergravity super p-branes found in the NS-NS sec-
tor comprise a string and a fivebrane. The string has
a naked timelike singularity and can be identified as
the effective field theory realization of the fundamen-
tal string® . The fivebrane solution is non-singular and
has a S-volume tension ~ A~? expected of a soli-
ton, where A is the string coupling constant. Since a
S-brane is the magnetic dual of a string in D = 10

! Note that the existence of this solution is necessary for the
consistency of any string theory with massless spin 2 excitations
since a macroscopic string will then have long range fields which
must solve the source free equations of the effective field theory.

0370-2693/96/812.00 © 1996 Elsevier Science B.V. All rights reserved
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[ 15]. this solution is an analogue of the BPS magnetic
monopole of D = 4 super Yang-Mills (YM) theory.

In the RR sector the ten-dimensional (D = 10) 1A
supergravity has p-brane solutions for p = 0,2,4,6,
while the [IB theory has RR p-branes solutions for p =
1.3.5 (see [2] for arecent review) 2. With the excep-
tion of the 3-brane, which is self-dual, these p-branes
come in (p, §) electric/magnetic pairs with g =6 —p
. The RR p-brane solutions all have a p-volume ten-
sion ~ A~! [3] so, although non-perturbative, they are
not typically solitonic. Moreover, they are all singular,
with the exception of the 3-brane, and even this excep-
tional case is not typical of solitons because the solu-
tion has an event horizon [ 19]. Thus, the RR p-branes
are intermediate between the fundamental string and
the solitonic fivebrane. It now appears [20] that they
have their place in string theory as Dirichlet-branes,
or D-branes [21.22].

It was shown in [23] how ail the p-brane solutions
of D = 10 IIA supergravity (with p < 6) have an
interpretation in D = |1, extending previous resuits
along these lines for the string and fourbrane {24~
26]. In particular, the O-branes were identified with
the Kaluza-Klein (KK) states of D = 11 supergravity
and their 6-brane duals were shown to be D = 11 ana-
logues of the KK monopoles. The remaining p-brane
solutions have their D = 11 origin in either the mem-
brane {25] or the fivebrane [27] solutions of D = 11
supergravity. It was subsequently shown that D = 11
supergravity is the effective field theory of the type IIA
superstring at strong coupling {3] and then that vari-
ous dualities in D < 10 can be understood in terms of
the electric/magnetic duality in D = 11 of the mem-
brane and fivebrane [28,29]. These results suggest the
existence of a consistent quantum theory underlying
D = 11 supergravity. This may be a supermembrane
theory as originally suggested {30}, or it may be some
other theory that incorporates it in some way. What-
ever it is, it now goes by the name *M-theory’ {31,32].

The point of the above summary is to show that the
RR p-brane solutions of D = 10 IIA supergravity the-
ory currently have two quite different interpretations.

2 There is also a IIB 7-brane {16] and a IA 8-brane {17]
(see also { 18]). but these do not come in electric/ magnetic pairs
and have rather different physical implications; for example, they
do not contribute to the spectrum of particles in any D 2> 4
compactification. Partly for this reason, only the p < 6 cases will
be discussed here.

On the one hand they are interpretable as D-branes
of type IIA string theory. On the other hand they are
interpretable as solutions of §' compactified D = |1
supergravity. In the p = 2 and p = 4 cases these
D = 11 solutions are also p-branes; since they are
presumably also solutions of the underlying D = 11
M-theory we shail call them ‘M-branes’. We shall first
exploit the interpretation of the p = 2 super D-brane
as a dimensionally reduced D = 11 supermembrane
to deduce its D = 10 Lorentz covariant worldvolume
action. The bosonic action has been found previously
[22] by requiring one-loop conformal invariance of
the open string with the string woridsheet boundary
on the D-brane®. One feature of the derivation via
D =11 is that the coupling to background fields can
also be found this way, and the resulting action has a
straightforward generalization to general p. The cou-
pling to the dilaton is such that the p-volume tension is
~ A~L, as expected for a D-brane [21]. The M-brane
interpretation of the Dirichlet 4-brane is as the double-
dimensional reduction of the eleven-dimensional five-
brane. We propose a bosonic action for the latter in-
cluding a coupling to the bosonic fields of eleven-
dimensional supergravity, and exploit it to deduce the
coupling to background supergravity fields, including
the dilaton, of the Dirichlet 4-brane. The result agrees
with that deduced by generalization of the p = 2 case.

One intriguing feature of these results is that they
suggest an interpretation of the eleven-dimensional
fivebrane as a Dirichlet-brane of an open D = 11
supermembrane, and we further suggest that the
string-boundary dynamics is controlled by the con-
jectured [34], and intrinsically non-perturbative, six-
dimensional self-dual string theory (which is possibly
related to the self-dual string soliton [35], although
this solution involves six-dimensional gravitational
fields which are not, according to current wisdom,
among the fivebrane’s worldvolume fields).

Finally, we show that a spherical D = 10 2-brane
can carry the same RR charge that is carried by the
Dirichlet O-branes; this charge is essentially the mag-
netic charge associated with the worldvolume vec-
tor potential. This suggests that the O-branes can be

3 The action of [22] is not obviously equivalent to the bosonic
sector of the one found here and the omission of a discussion of this
point was a defect of an earlier version of this paper; fortunately.
the equivalence has since been established by Schmidhuber [33].
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viewed as collapsed 2-branes. We point out that this
is consistent with the U(oo) Supersymmetric Gauge
Quantum Mechanics interpretation of the supermem-
brane worldvolume action [36,37], which further sug-
gests an interpretation of the supermembrane as a con-
densate of O-branes. Viewed from the D = 11 perspec-
tive these results can be taken as further evidence that
D = 11 supergravity is the effective field theory of a
supermembrane theory.

2. The D = 10 2-brane as a D = 11 M-brane

Consider first the D = 10 2-brane. From its D-brane
description we know that the worldvolume action is
based on the D = 10 Maxwell supermultiplet dimen-
sionally reduced to three dimensions [38), i.e. the
worldvolume field content is

(X*(a=1,....7), A (i=0,1,2) ;
X (=1...8)}) (2.1)

where the y' are eight SI(2;R) spinors and A; is
a worldvolume vector potential* . As for every other
value of p, only the bosonic part of the 10-dimensional
Lorentz covariant action constructed from these fields
is currently known [22]. However, the alternative in-
terpretation of the 2-brane as an M-brane allows us to
find the complete action. In this interpretation, the [IA
2-brane is the direct (as against double) dimensional
reduction of the D = 11 supermembrane. The world-
volume fields of the dimensionally reduced D = 10
supermembrane are, before gauge-fixing, {X™ (m =
0.1,..., 9); @; 8}, where 8 is a 32-component Ma-
jorana spinor of the D = 10 Lorentz group and X™ is
a 10-vector. After gauge fixing the physical fields are

(X“(a=1,....7). ¢;x' (I=1,....8)}. (22)

The difference between (2.1) and (2.2) is simply that
the scalar ¢ of (2.2) is replaced in (2.1) by its 3-
dimensional dual, the gauge vector A. By performing
this duality transformation in the action prior to gauge
fixing we can determine the fully D = 10 Lorentz
covariant Dirichlet supermembrane action.

* Throughout this paper we shall usc the letter A to denote
worldvolume gauge fields, of whatever rank, and B to denote
spacetime gauge fields. of whatever rank.

The first step of this procedure is to isolate the de-
pendence of the D = 11 supermembrane action on
X'1, which is here called ¢. We shall first consider the
case for which the D = 11 spacetime is the product of
S' with D = 10 Minkowski spacetime, returning sub-
sequently to consider the interaction with background
fields. It is convenient to use the Howe-Tucker (HT)
formulation of the action for which there is an auxil-
iary worldvolume metric y,;. It is also convenient to
introduce the spacetime supersymmetric differentials

1™ = dx™ - i6r"de. (2.3)

The action, given in [30], is

5=} [#6yT YN 70

+ v (dip — i67118:8) (3; — i61'1,3;6) — 1]

-} [#e b+ b0, (24)
where 7 is the D = 10 Minkowski metric, and
kb = 36V {iér,,.,, 36 [T T} s

+iI1"(81"5;8) — L(6T™3,0) (61" 9;6)]

+ (BT Tndi6) (8T118,0) (X" — 3i0T"0,6) }

(2.5)
while
£ by = 26 (BT T8:8(8;X™ — }i6T™9,6) .
(2.6)

The second step, the replacement of the worldvol-
ume scalar ¢ by its dual vector field, can be achieved
by promoting de to the status of an independent world-
volume one-form L while adding a Lagrange multi-
plier term AdL to impose the constraint dL = 0. Elim-
inating L by its algebraic equation of motion yields
the dual action in terms of the fields X™ and the world-
volume field strength two-form F = dA. This action is

=-} /d’f v=r
x [ T i + 47 oy P = 1]

- ';/435 e by — 3i(BT 38V Fa) . (2T)
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where
FA.U = Fn/ - blj . (2.8)

Thus (2.7) is the fully D = 10 Lorentz covariant
worldvolume action for the D = 10 I1A Dirichlet su-
permembrane. The bosonic action, obtained by set-
ting the fermions to zero in (2.7), is equivalent to
the Born-Infeld-type action found by Leigh [22]. The
equivalence follows from the recent observation of
Schmidhuber [33] that dualizing the vector to a scalar
in the action of Leigh yields the action of a D = 11
membrane, which was precisely the (bosonic) start-
ing point of the construction presented here S . It is in-
teresting to note that a sigma-model one-loop calcula-
tion in the string theory is reproduced by the classical
supermembrane.

It can now be seen why it was advantageous to start
from the HT form of the action; whereas the auxiliary
metric is simply eliminated from (2.4), leading to the
standard Dirac-Nambu-Goto (DNG) form of the ac-
tion, its elimination from (2.7) is far from straightfor-
ward, although possible in principle. The point is that
the y,; equation is now the very non-linear, although
still algebraic, equation

vy = (14592 V Pub) " (2 + V' Buby) 29)

where g;; = TI'1} 7)my. This equation can be solved
as a series in £ of the form

Vi = 8;[1 — 388 Fukp) + 8" Fuf + OCFY)
(2.10)

and the approximation y;; = g;; yields the quadratic
part of the action in £,

Invariance of the action (2.7) under supersymme-
try requires F to be invariant. To see how this comes
about, we observe that the two-form b in F is pre-
cisely the one that defines the WZ term in the Green-
Schwarz superstring action; it has the property that
the three-form h = db is superinvariant, which implies
that 8.6 = da for some one-form a(€), where € is
the (constant) supersymmetry parameter. The modi-
fied two-form field strength £ is therefore superinvari-
ant if we choose 8,4 = a. The «-transformation of A

5 The equivalence with Bom-Infeld for p = 1. i.c. the D-string,
was shown in [39].

is similarly determined by requiring «-gauge invari-
ance of the action, but it can also be deduced directly
from those of the D = 11 supermembrane given in
[30]. The result is most simply expressed in terms of
the variations of the supersymmetric forms [1™ and £,
which are ¢

8™ = =2i(8,6)Ido
5. F =i(8.6),I'11d0 A TI™

8.8 =(1+0«, (2.11)
where
r=¢ '_ 20 1 14

R 78 O (2.12)

and «(§) is the D = 10 Majorana spinor parameter.
The coupling of the action (2.7) to background
fields can also be deduced from its D = 11 origin. We
shall consider here only the bosonic membrane cou-
pled to bosonic background fields. Consider first the
NS-NS fields. In the D = 10 membrane action ob-
tained by direct dimensional reduction from D = 11,
the NS-NS two-form potential B couples to the topo-
logical current €43, @. In the dual action this coupling
corresponds to the replacement of F by F — B, Th~
coupling to the D = 10 spacetime metric is obvious
so this leaves the dilaton; to determine its coupling we
recall (see e.g. [26]) that the D = i1 metric is

ds?, =e $845? 4 e3%4y? (2.13)

where ds? is the string-frame D = 10 metric and & is
the dilaton. A repetition of the steps described above,
but now for the purely bosonic theory and carrying
along the dependence on the NS-NS-spacetime fields.
leads (after a redefinition of the auxiliary metric to
the action

s=-4 [#eet vTly
+ 1Yy (Fy ~ By) (Fu—Bu) -1], (2149)

where now g;; = 3;X™3;X"gmn. The appearance of F
through the modified field swength F — B could also

6 As explained in detail in [40), it is not necessary to specify
the transformation of the metric y;; if use is made of the '1.5
order’ formalism.
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have been deduced simply by the replacement of the
flat superspace two-form potential b in £ by its curved
superspace counterpart, since setting the fermions to
zero then yields precisely F — B. As for the RR fields,
the coupling to the 3-form potential is of course the
standard Lorentz coupling while the coupling to the 1-
form potential has interesting implications which will
be discussed at the conclusion of this article.

The above result, and the known form of the bosonic
p-brane action in the absence of worldvolume gauge
fields, suggests that the corresponding bosonic part of
the worldvolume action of the Dirichlet super p-brane
is

§=-3 /d("“’f e ﬁ[‘)’”&j

+ %y'l‘y”(ﬁj - Bj)(Fy—By) - (p~ 1)] .
(2.15)

Since the vacuum expectation value of ¢ is the string
coupling constant A, it follows from this result that the
p-brane tension is ~ A~!, as expected for D-branes. Of
course, the steps leading to this result were particular
to p = 2 but we shall shortly arrive at the same result
for p = 4 via a different route. Although the action
(2.15) is only guaranteed to be correct to quadratic
order in F for p # 2, this will prove sufficient for
present purposes.

3. The D = 11 S-brane as a supermembrane
D-brane

Consider now the Dirichlet 4-brane. In this case its
M-brane interpretation is as a double-dimensional re-
duction of the D = 11 5-brane. The (partially) gauge-
fixed field content of the latter consists [41,42] of
the fields of the N = 4 six-dimensional antisymmetric
tensor multiplet, i.e.

{X“(a=1,..., 5). A} (i.j=0,1,....5);
X' =14} (3.1)

where y' are chiral symplectic-Majorana spinors in
the 4 of USp(4) = Spin(5), and A* is the two-form
potential for a self-dual 3-form field strength F = dA™*.
Because of the self-duality of F we cannot expect to
find a worldvolume action (at least, not one quadratic

in F). We might try to find an action that leads to all
equations except the self-duality constraint which we
can then just impose by hand, as advocated elsewhere
in another context [43]. We shall adopt this strategy
here, but it is important to appreciate an inherent diffi-
culty in its present application. The problem is that the
self-duality condition involves a metric and it is not
clear which metric should be used, e.g. the induced
metric or the auxiliary metric; the possibilities differ
by higher order terms in F. Because of this ambiguity
we should consider the action as determining only the
lowest order, quadratic, terms in F. With this proviso,
an obvious conjecture for the D = 11 5-brane action is

S= —li/déf \/——Y[VjaixuaijﬂMN
+ 37y Y Fijk Finn — 4] . (32)

where the fields XM, M = (0,1,...,10), are maps
from the worldvolume to the D = 11 Minkowski
spacetime. This action has an obvious coupling to the
bosonic fields (guwn, Bunp) of D = 11 supergravity 7 .
The coupled action is

5= [de v [ra"

+ 47977 (Fis = i) (Finn = Bima) =4]  (3.3)
where g{!" is the pullback of the 11-metric gy and
Biji is the pullback of the 3-form potential Byyp. Up
to quartic terms in Fj;, and setting to zero the RR
spacetime fields, the double dimensional reduction of
(3.3) to D = 10 reproduces the action (2.15) with
p = 4, as required for the M-brane interpretation of the
Dirichlet 4-brane. In particular, the dilaton dependence
is exactly as given in (2.15).

The worldvolume vector of the D = 10 Dirichlet
p-branes allows not only a coupling to the 2-form
potential of string theory but also to the endpoints of
an open string via a boundary action [21,22,44]. Let
X™(o,7) be the locus in spacetime of the string’s

worldsheet, with boundary at = = 0. If this boundary
lies in the worldvolume of a p-brane, then

X"'(o',r)im = X"(£(0), (3.4)

7 Although consistency with the self-duality condition is now
problematic.
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where X™(£) is the locus in spacetime of the p-brane’s
worldvolume. It is also convenient to introduce the
conjugate momenta to the worldsheet scalar fields at
the worldsheet boundary, m, defined by

dx"(o.
Tl 0) = V/=Z g (X (0. 7)) —fi;'—’lLo.
(3.5)

The D = 10 Lorentz covariant boundary action can
then be written as

Sh(string)

d 1
=fd¢r[A.(§(o)) fdff) + X"'(f(v))m..(a)]-
(36)

Similarly, the worldvolume antisymmetric tensor
A* of the D = 11 5-brane allows not only a coupling to
the 3-form potential of D = 11 supergravity but also to
the boundary of an open membrane. Let X¥ (o, p,7)
be the locus in the D = 11 spacetime of the mem-
brane’s worldvolume, with boundary at 7 = 0. If this
boundary lies in the worldvolume of a fivebrane, with
coordinates &', then

XM(a'.p.‘r)Lo:XM(f(a.p)), (3.7

where XM (£) is the locus in spacetime of the five-
brane’s worldvolume. Defining, as before, the conju-
gate momenta 7 to the membrane scalar fields at the
membrane’s boundary, we can write down the follow-
ing natural generalization of (3.6):

S»( membrane)

= faodp[az®

de dg/

oy +x"'(f)m,]. (3.8)

Moreover, the double-dimensional reduction of this
membrane boundary action reproduces the string
boundary action (3.6). This suggests that we inter-
pret the D = 11 S-brane as a Dirichlet-brane of an
underlying open supermembrane. It seems possible
that the dynamics of the membrane boundary in the
fivebrane's worldvolume might be describable by a
six-dimensional superstring theory, which one would
expect to have ¥ = 2 (i.e. minimal) six-dimensional
supersymmetry (e.g. on the grounds that it is a ‘brane
within a brane’ [45]). However, since the 3-form

field strength to which this boundary string couples
is self-dual, this superstring theory would be, like the
supermembrane itself, intrinsically non-perturbative.
The existence of such a new superstring theory was
conjectured previously [34] in a rather different
context.

4. 0-branes from 2-branes and 2-branes from
0-branes.

One of the properties expected of the D = 11 super-
membrane theory or M-theory is that it have D = 11
supergravity as its effective field theory. Various argu-
ments for and against this have been given previously
([23] contains a recent brief review). A further argu-
ment in favour of this idea is suggested by the recent
results of Witten concerning the effective action of n
coincident Dirichlet p-branes [38]. He has shown that
the (partially gauge-fixed) effective action in this case
is the reduction from D = 10 to (p + 1) dimensions
of the U(n) D = 10 super Yang-Mills (YM) theory.
Consider the 0-brane case for which the super YM the-
ory is one-dimensional i.e. a model of supersymmetric
gauge quantum mechanics (SGQM). If the O-branes
condense at some point then the effective action will
be the n — oo limit of a U(n) SGQM. But this is
just another description of the supermembrane! It is
amusing to note that the continuity of the spectrum of
the quantum supermembrane [46], in the zero-width
approximation appropriate to its D-brane description,
might now be understood as a consequence of the zero-
force condition between an infinite number of con-
stituent O-branes. However, it is known that quantum
string effects cause the D-brane to acquire a finite size
core [47], consistent with its M-brane interpretation
as a solution with an event horizon [26], and it was
argued in [ 23] that this fact should cause the spectrum
to be discrete.

Actually, the supermembrane was usually stated as
being equivalent to an SU(o0) SGQM model [36,37],
but the additional U(1) is needed to describe the dy-
namics of the centre of mass motion. Note that a U(1)
SGQM is precisely the action for a Dirichlet 0-brane.
This suggests that there might exist some classical
closed membrane configuration for which the ground
state, on quantization, could be identified with the O-
brane. For this to be possible it would be necessary
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for the closed membrane to carry the RR charge as-
sociated with the O-branes. We now explain how this
can occur.

From the D = 11 point of view the RR O-brane
charge is just the KK charge, i.e. the electric charge
that couples to the KK vector field, which we shall
here call B,,. The coupling of B, to the D = 10 mem-
brane can be found by dimensional reduction from
D = 11. To leading order this coupling has the stan-
dard Noether form B, J", where

T"(x) = /d3§ \/l—)?,ﬂa,-x”‘aj:pﬁlo(x - x(f)) -
(4.1)

is the KK current density. After dualization of the
scalar field this becomes

T"(x) = /d’f £, X" Fy 8'0(x — X(£)). (42)

The total KK charge is Q = [ &°xJ°. Choosing the
X0 = £° gauge one readily sees that

0 =}{r. " (4.3)

i.e. the integral of the worldvolume 2-form fieid
strength F over the closed membrane.

Thus, a closed membrane can carry the O-brane RR
charge as a type of magnetic charge associated with
its worldvolume vector field, and its centre of mass
motion is described by the O-brane U(1) SQGM. This
can be interpreted as further evidence that the O-brane
is included in the (non-perturbative) supermembrane
spectrum. However, from the D = 11 point of view
the O-brane is just a massless quantum of D = 1] su-
pergravity and supersymmetry implies the existence
of all massless quanta given any one of them. Thus,
we have found a new argument that the spectrum of
the D = 11 supermembrane (or, perhaps, M-theory)
should include the massless states of D = 11 super-
gravity.
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Chapter 3

The eleven-dimensional superfivebrane

According to the classification of [1] described in chapter 2, no Type I p-branes
with p > 1 could exist. Moreover, the only brane allowed in D = 11 was p = 2.
These conclusions were based on the assumption that the only fields propagating
on the worldvolume were scalars and spinors, so that, after gauge fixing, they fall
only into scalar supermultiplets, denoted by S on the brane scan of table 2.1 of
chapter 2. Indeed, these were the only kappa symmetric actions known at the time.
Using soliton arguments, however, it was pointed out in [2, 3] that both Type ITA
and Type IIB superfivebranes exist after all. Moreover, the Type IIB theory
also admits a self-dual superthreebrane [4]. The no-go theorem is circumvented
because in addition to the superspace coordinates X* and #* there are also higher
spin fields on the worldvolume: vectors or antisymmetric tensors. This raised the
question: are there other super p-branes and if so, for what p and D? In [5]
an attempt was made to answer this question by asking what new points on the
brane scan are permitted by bose-fermi matching alone. Given that the gauge-
fixed theories display worldvolume supersymmetry, and given that we now wish to
include the possibility of vector and antisymmetric tensor fields, it is a relatively
straightforward exercise to repeat the bose-fermi matching conditions of chapter 2
for vector and antisymmetric tensor supermultiplets.

Let us begin with vector supermultiplets. Once again, we may proceed in one
of two ways. First, given that a worldvolume vector has (d — 2) degrees of freedom,
the scalar multiplet condition (2.5) gets replaced by

D—2=%mn:%MN. (3.1)

Alternatively, we may simply list all the vector supermultiplets in the classification
of [6] and once again interpret D via (2.7). The results [5, 7] are shown by the
points labelled V in table 2.1.

Next we turn to antisymmetric tensor multiplets. In d == 6 there is a super-
multiplet with a second rank tensor whose field strength is self-dual: (B, A/, o,
I'=1,...,4. This has chiral d = 6 supersymmetry. Since there are five scalars, we
have D = 6 + 5 = 11. There is thus a new point on the scan corresponding to the
D = 11 superfivebrane. One may decompose this (n,,n_) = (2,0) supermultiplet

DOIL: 10.1201/9781482268737-3 129



130 The eleven-dimensional superfivebrane

under (n4,n.) = (1,0) into a tensor multiplet with one scalar and a hypermultiplet
with four scalars. Truncating to just the tensor multiplet gives the zero modes of
a fivebrane in D = 6 + 1 = 7. These two tensor multiplets are shown by the points
labelled T in table 2.1.

Two comments are now in order:

1) The number of scalars in a vector supermultiplet is such that, from (2.7),
D = 3,4,6 or 10 only, in accordance with [6].

2) Vector supermultiplets exist for all d < 10 [6], as may be seen by dimen-
sionally reducing the (n = 1,d = 10) Maxwell supermultiplet. However, in d = 2,
vectors have no degrees of freedom and, in d = 3, vectors have only one degree
of freedom and are dual to scalars. In this sense, therefore, these multiplets will
already have been included as scalar multiplets in section chapter 2. There is con-
sequently some arbitrariness in whether we count these as new points on the scan
and in [5, 7] they were omitted. For example, it was recognized {5 that by dual-
izing a vector into a scalar on the gauge-fixed d = 3 worldvolume of the Type ITA
supermembrane, one increases the number of worldvolume scalars, i.e. transverse
dimensions, from 7 to 8 and hence obtains the corresponding worldvolume action of
the D = 11 supermembrane. Thus the D = 10 Type I A theory contains a hidden
D = 11 Lorentz invariance [5, 8, 9}!

However, the whole subject of Type II supermembranes underwent a major sea
change in 1995 when Polchinski [10] realized that Type I super p-branes carrying
Ramond-Ramond charges admit the interpretation of Dirichlet-branes that had
been proposed earlier in 1989 [11]. These D-branes are surfaces of dimension p on
which open strings can end. The Dirichlet p-brane is defined by Neumann boundary
conditions in (p + 1) directions {the worldvolume itself) and Dirichlet boundary
conditions in the remaining (D —p — 1) transverse directions. In D = 10, they exist
for even p = 0,2,4,6,8 in the Type II A theory and odd p = —1,1,3,5,7,9 in the
Type IIB theory, in complete correspondence with the points marked V on the
brane scan of table 3. The fact that these points preserve one half of the spacetime
supersymmetry and are described by dimensionally reducing the (n = 1,d = 10)
Maxwell multiplet fits in perfectly with the D-brane picture.

As we have said, the existence of the eleven-dimensional superfivebrane was
first established by Gueven [12] who found it as a soliton solution of D = 11
supergravity. In fact, he showed that it corresponds to the extreme limit of a
black fivebrane, i.e. one exhibiting an event horizon. Black p-brane solutions of
Type IIA and Type IIB supergravity had previously been found by Horowitz
and Strominger [13], and it was subsequently shown that they preserve half the
spacetime supersymmetry in the extreme mass=charge limit [5].

In chapter 2 we learned from [14] that the mass per unit area of the membrane
M3 is equal to its tension:

M3z = T;. (3.2)

This elementary solution is a singular solution of the supergravity equations coupled
to a supermembrane source and carries a Noether ‘electric’ charge

1

Q-
V2k11 Jg

1
(xKq + 503 AKy) = V2r11 T (3.3)
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where k112 is the D = 11 gravitational constant. Hence the solution saturates
the Bogomol'nyi bound v/2x;; M3 > Q. This is a consequence of the preservation
of half the supersymmetries which is also intimately linked with the worldvolume
kappa symmetry. In this chapter, we learned from [12] that the mass per unit
5-volume of the fivebrane Mg is equal to its tension:

Mg = Ts. (3.4)

This solitonic solution is a non-singular solution of the source-free equations and
carries a topological ‘magnetic’ charge

1
V21 Jss

Hence the solution saturates the Bogomol’nyi bound v/2x1; Mg > P. Once again,
this is a consequence of the preservation of half the supersymmetries. These electric
and magnetic charges obey a Dirac quantization rule {15, 16]

P

Ks = V2r1,Ts. (3.5)

QP =2mn n = integer. (3.6)
Or, in terms of the tensions [17, 18],
26112 T3Tg = 27n. (3.7)

This naturally suggests a D = 11 membrane/fivebrane duality. Note that this
reduces the three dimensionful parameters 73, Ts and Ky, to two. Moreover, it was
then shown [19, 20, 21] that they are not independent: the tension of the singly
charged fivebrane is given by

~ 1 2
6 9 3 ( )

It was recognized in 1995 that membrane/fivebrane duality will in general
require gravitational Chern-Simons corrections arising from a sigma-model anomaly
on the fivebrane worldvolume [19]. This in turn predicts a spacetime correction to
the D = 11 supergravity action

2) = o Ry s Lre
Iu(LO’I"enta) = T3/Cg/\ (271')4[ 768(t7‘R )+ 192t7'R ] (39)

Such a correction was also derived in a somewhat different way in {22, 23]. By
the simultaneous dimensional reduction described in chapter 2, it translates into
a corresponding prediction for the Type ITA string [24]. In both cases, super-
symmetry also requires corrections to the Einstein action quartic in the curvature
[25-28], as described in the paper by Green, Gutperle and Vanhove. These permit
yet more consistency checks on the assumed dualities between M-theory in eleven
dimensions and string theories in ten. Although in the D = 10 Type IIA the-
ory they correspond to one string loop effects, it is important to emphasize that
in D = 11 these corrections are intrinsically M-theoretic with no counterpart in
ordinary D = 11 supergravity. It is perfectly true that the same invariants appear
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as one-loop supergravity counterterms [26, 28]. Their coefficient is either cubically
divergent or zero according as one uses a regularization scheme with or without
a dimensionful parameter. However, in M-theory their coeflicient is finite and is
proportional to the membrane tension, as befits intrinsically braney effects. Since
this tension behaves as a fractional power of Newton’s constant T3 ~ £~%/3, these
corrections could never be generated in perturbative D == 11 supergravity. Finding
out what process in M-theory, which when doubly dimensionally reduced on S?!,
yields a string one-loop amplitude, may well throw a good deal of light on what
M-theory really is!

Having obtained the plane wave, supermembrane, Kaluza-Klein mono- pole
and the superfivebrane in eleven dimensions, a bewildering array of other solitonic
p-branes may be obtained by vertical and diagonal dimensional reduction [7, 29, 30].
(An important exception is the D = 10 Type ITA eightbrane [31] which corresponds
to a solution of the massive Type I1 A supergravity of Romans [32]. There is as yet
no satisfactory D = 11 origin for either the eightbrane or the massive supergravity.)
In particular, when wrapped around K3 which admits 19 self-dual and 3 anti-self-
dual 2-forms, the d = 6 worldvolume fields of the D = 11 fivebrane reduce to the
d = 2 worldsheet fields of the D = 7 heterotic string |33, 34}. As a consistency
check, one reproduces both the Yang-Mills and Lorentz corrections to the Bianchi
identity of the D = 7 heterotic string, starting from the Bianchi identity of the
D = 11 fivebrane [19). If we replace K3 by T*, we obtain the worldsheet fields
of the D = 7 Type IIA string. An important consequence of this will be the
cleven-dimensional origin of string/string duality described in chapter 6.

A covariant kappa-symmetric action and/or field equations for the superfive-
brane was not achieved until after similar actions for the Type II p-branes, spurred
on by their interpretation as D-branes, were written down. Three groups were res-
ponsible for the covariant M-theory superfivebrane [35-37] while a non-covariant
formulation was given by [39]; we have sclected [38], which gives a more detailed
account of the superembedding approach, as a representative. The superfivebrane
was, in fact, already implicit in [40] where super p-branes were derived by embed-
ding the worldvolume superspace into the spacetime superspace. Having obtained
the covariant fivebrane action, it was then possible to verify explicitly that it yields
the heterotic string action when wrapped around K3 [41].
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Various classes of extended black hole solutions of D= | | supergravity theory are presented. [t is shown that D= | | supergravity
admits a class of “‘electric™ black p-brane solutions for p=2, 4, 6 and a “magnetic” type of black five-brane solution. Each of these
solutions is characterized by a mass and a charge parameter. The only supersymmetric members of these families are the extreme
cases where Bogomol'nyi type of bounds are saturated by the parameters. The extreme cases also allow multi-source generaliza-
tions. Upon double dimensional reduction these families give rise to two new solutions of Type {[A stnng theory and one of these

is a black five-brane.

The studies of the string theory solitons and black
holes have recently revealed certain interesting fea-
tures. One of these is the fact that ten-dimensional,
effective string theories admit black p-brane solu-
tions [1.2]. These solutions have the structure of a
p-dimensional extended object surrounded by an
event horizon and approach the Minkowski space-
time at spatial infinity. They are characterized by two
parameters which may be interpreted as the mass per
unit p-volume and the charge of the object. The ex-
treme members of these extended black holes, which
are obtained when the mass and the charge saturate
a Bogomol’'nyi type of bound, are particularly inter-
esting as they contain the fundamental string solu-
tion [3,4] and the elementary five-brane [5,6] as
special cases. At least one of these extreme cases is
expected to have no higher-order corrections in string
theory [7] and there are indications that the “‘brane-
scan” of the known p-brane actions [8-10] can be
generalized to include new, supersymmetric ex-
tended objects {2,11].

In this paper we wish to study the black p-branes in
the framework of D= 11 supergravity theory. Whereas
strings are described by ten-dimensional actions, su-
permembranes couple to D= 11 supergravity theory
[9] and it is known that D= 11 supergravity has fun-
damental multi-membrane solutions (12]. Upon
double dimensional reduction [13] these mem-
branes go over to the string solution of refs. [3,4].

Since the inverse route, the double dimensional oxi-
dation [14], can be used to associate with each Type
[IA string theory solution a solution of D=1 super-
gravity, one may expect that D= 11 supergravity ad-
mits black membrane solutions whose extremal
member is the fundamental membrane. Although
double dimensional oxidation need not respect the
singularity structure and the asymptotic behavior that
is appropriate for a black hole, we shail see that this
expectation is indeed fulfilled. Moreover, we shall see
that D=11 supergravity possesses a class of “‘elec-
tric” black p-branes for p=2, 4, 6 and a “magnetic™
type of black five-brane and these are all character-
ized by the charge and the mass parameters. The only
supersymmetric members of these solutions turn out
to be the extreme cases where Bogomol’'nyi type of
bounds are saturated by the parameters. The extreme
cases also permit muiti-source generalizations. Un-
der double dimensional reduction, these families give
rise to two new solutions of Type IIA string theory
and one of these is a black five-brane.

After neglecting the fermionic degrees of freedom,
the field variables of D= 11 supergravity may be taken
1o be the metric gu~ and the four-form field Fi; v
and these are governed by the field equations [15]

RMN-—-f(FwMFKLPN’ %.guNFKLPQFKLPQ) d
ey

dF=0, diF+iFAF=0, 2)

0370-2693/92/% 05.00 © 1992 Elsevier Science Publishers B.V. All nghts reserved.
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where R, is the Ricci tensor, F=4FxandX5a
dX“AdX*AdX" and # denotes the D=11 Hodge
dual. We use the conventions where the signature of
£y 1s —9 and the Levi-Civita tensor €3¢ x has the
component €g,2345678910 = | in the tangent space. The
Ricci tensor is defined as Ran = B¥ yyux, Where Rysan
is the Riemann tensor. The hats are used to distin-
guish the D=11 objects from the lower-dimensional
objects that we shall encounter.

For black p-branes the D= 11 metric is taken to be
of the warped product form

d§?=ds?—e?5, dx' dx’, (3)

where ¢, j=1, 2, ..., p and the (11 -—-p)-dimensional
metric

dsi=e*®drl-e-2°dr’-R2d2_, (4)

is itself a warped product of a two-dimensional met-
ric and the metric d$2}_, of a (9—p)-dimensional
unit sphere S°~7. Here the metric functions ¢, ¥, R,
B are assumed to depend only on the radial coordi-
nate r. In order to obtain the D=11 Minkowski
spacetime as a limit. one imposes the boundary con-
ditions 9—0, -0, B—~0and R—ras r-oco. Even un-
der more general conditions, the ADM mass of such
solutions may be defined as [16]

M=3§ (Drga ~Duge) g do® (5)
£ 3

where g,, is the D =10 spatial metric on the t=const.
hypersurfaces Z; g,, is the reference spatial metric
obtained from the limiting spacetime and D, denotes
the covariant differentiation with respect to g,,. The
integration in (5) is to be performed at the r—co
boundary 9 of T with the surface element do”.

In the solutions of interest a second conserved
quantity is to be furnished by the four-form field F.
The standard conserved quantity associated with £ is
the Page charge [17]

Qe=j(if+éJAF). (6)

where A is the potential three-form: £=dA4. In anal-
ogy with the D=4 Einstein-Maxwell theory, (6) can
be viewed as an “electric™ type of charge. Non-zero
“magnetic” charges

Qm=JF, (7)

on the other hand, can occur in the cases where £ is
closed but not globally exact. Clearly, there is an
asymmetry in the definition of these two charges and
this reflects the fact that a dual formulationof D= 11
supergravity theory is not availabie [18]. Due to this
property and in contrast to the string theory exam-
ples, magnetic solutions of the D= 11 supergravity
cannot be obtained from the electric ones by duality
rotations.

F can easily anchor a non-zero Q. or Q,, on the
metrics of the form (3) when one notes that the last
Betti numbers of S°~* are non-zero for all p<9. Let
€5_, be the volume (9-p)-form of $°7 and let
Vo_p=l¢s., Since F is a four-form, & F is a seven-
form and it is natural to try either

if=q.¢ (8)
or
F=gne,, (9)

where ¢., ¢, are constants. In each of these two cases
the four-form field equations (2) are satisfied with-
out putting any restrictions on the metric functions.
If the metric can be fixed by solving the Einstein
equations (1), (8) and (9) will correspond to the
solutions that have the respective charges Q.=¢.}V,
and Q,,, = ¢, V. Clearly, (8) implies that p=2, which
is the case of membranes, whereas (9) requires the
extended object to be a five-brane.

In order 10 take into account other possible values
of p, one should, of course, assign more general forms
to F. For the electric case this can be achieved by
letting

;F.—.qc(qu,,/\ iJ, (10)

where J={J, dx’ ndx* is a certain two-form on the
p-dimensional euclidean space E” that appears as one
of the factors in the warped product (3). The symbol
+ denotes the Hodge dual on E”. Taking the D=11
dual of (10) shows that F is always of the form
F=(«F)AJ and satisfies F A F=0. Here F=q.¢,_,
and «F is a closed two-form on the (11 —p)-dimen-
sional subspace which has the metric (4) and the dual
+. Due 1o these properties, the field equations (2)
reduce to
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dJ=0. diJ=0. (11)

according to which J can be any two-form that is both
closed and co-closed on E?. Formally, (10) applies
for every p in the range 0<p<9 but Q.=0 unless
p> 2. Since the black hole metrics cannot have a non-
zero spherical section for p> 7. the really interesting
intervalis 2<p<7. Atp=2, sJ=1and (10) reduces
to (8). When p> 2. it follows from

QE=QCV9—pJ;J (12)

that ¢,V _, can be interpreted as the charge per unit
{p—2)-volume of the extended object.

Considering next the Einstein equations (1), one
finds that not every p in the range 2<p<7 is admis-
sible; (3) and (10) are compatible only if p is even
and J is the Kihler form on E*:

JJ% =~ 8% (13)

When these conditions are met, the Einstein equa-
tions become

(Ro—p e:o—w-rpso): )-

=p-3aqiRP7 et (o0, (14)
(R‘)‘Pelo—v*-pﬂ By

=(6-p) osqiR" " ers 408, (15)
(R3-720-v*PB R’ )" 4 (p—8)R7~7e¥*7*

=-p giRP 7 v o0, (16)
pe f(e?~*B') +(9-p)R~'(e”*R")’

=0, (17)

where prime denotes differentiation with respect to r
and p takes on the values 2, 4 and 6.

Similarly, one may seek a generalization of the
magnetic case by incorporating the lower-dimen-
sional spheres into (9). Suppose W,_sisa (p—35)-
form which is closed and co-closed on E” for 5<p<7.
Then it can be checked that

F'—-qme‘)—pAW—Sv (18)

satisfies the four-form field equations (2) for each p
in this range. The Einstein equations, however, turn
out to be much more restrictive and the only consis-
tent case occurs at p=S. This brings us back to (9).
For the five-branes the Einstein equations require that

(RUe™¥*% g ) =5qn R e, (19)
(R‘ela-w+5BB')'=%iquR—lew+5B. (20)
(RJ e:o-y+58 R ) _JRzeom-SB
=—HqiRev*, (21)
Se~8(ef-vB') +a4R"'(e"vR') =0. (22)

These equations reduce to the p=Scase of (14)-(17)
when ¢, =q,, =0 but if the source terms are present.
this correspondence clearly breaks down. The equa-
tions for p=2 and p=95 exhibit a duality in the sense
that these are the only two cases which allow solu-
tions obeying ¢= B for non-zero q. and q,.

To display the black p-brane solutions of these
equations in a convenient form let us define, for each
. the radial functions

A, =1=(r./r)%-7, (23)

where r,, r_ are constants and r,>r_. Then the
D=11 metric

ds?=d, 42" dr?
— 4= 2p-6)/6B=p [ 41 4= dri+r? A, ]
—46-216 (dx?+ .. +dx}), (24)
together with the dual of (10),

9.
ro-e

F= deadraJ, (25)
constitute the solution for the electric p-branes if p=2.
4, 6 and the constants satisfy

2

8—p, 8-p __ 9
o= (sat) (26)

The magnetic five-brane solution, on the other hand,
is obtained by choosing p=35 in (23) and letting

dit=d4,47¥3d2-a7'47" dri-rd8g
—A4Y3 (dxi +..+dx3) . (27
In this case F is given by (9) and the constants obey
3 =(5qm)*. (28)
When the ADM masses of these solutions are cal-
culated according to (5 ), one finds that 7, > p~ is suf-

ficient to guarantee the positivity of the mass for all
even p. When p=S5 one must also require r, >0 in
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order 10 get a positive mass in the r_=0 limit. Let
uVs_, be the mass per unit p-volume of the object:
uVs_,=M/u, where v, is the p-volume. Then for the
electric p-branes

u=21r% ~3r%  p=2, (29)
u=15r =11rt |, p=4, (30)
y=9(ri+r2_)‘ p=6, (31)

and for the magnetic five-brane solution
u=12r% =3r3 . (32)

Since (26) and (28) also hold. it follows that the fol-
lowing Bogomol’'nyi type of inequalities are satisfied
by the mass and the charge parameters:

#zal, p=2, (33)
#*2 (e, p=4, (34)
w2z (3q)°, p=6, (35)
#2qm,. p=5. (36)

When r, =r_ these become strict equalities and one
obtains the extreme solutions.

In the generic case, 7, >r_. each of the solutions
considered so far has the structure of an extended
black hole whose event horizon is located at r=r, .
The singularity at r=r,, which is manifest in (24)
and (27), is just a coordinate singularity; each solu-
tion can easily be extended over this surface. Hence
r=r, is always a regular event horizon. In the generic
case another surface of interest occurs at r=r_ and
depending on p, this is either an inner horizon or a
singular surface which is hidden behind the horizon.
For the black six-branes, the spacetime is the global
product of the D=5 Reissner-Nordstrom manifold
with E®and r=r_ is a regular inner horizon. For other
black p-branes r=r_ is a singular surface that lies be-
hind the horizon. In the extreme cases, these two sur-
faces coalesce and become regular event horizons un-
less p=4. The extreme four-brane metric appears to
be singular at r=r_

Under a simultaneous dimensional reduction of the
spacetime and the world-volumes these solutions go
over to the black (p— 1)-brane solutions of the Type
IIA supersiring theory. After labelling the D=11 co-
ordinates as X™= (XY, x”), the reduction can be

achieved through a ten-one split of the fields. The
D =11 metric then gives rise to a D= 10 metric gy, ~
and a dilaton field ¢ according to the relations [13]

e = "épp- (37)

20/3 5
8w =€ g n

The potential three-form A. on the other hand, re-
duces to two distinct D=10 potentials

BLM'=/iLMp~ ALM‘N =/iLMN~ (38)

By choosing an appropriate Kihler form on E” one
can check that the p=2 case of (24) reduces to a black
string solution of ref. [2]. For the remaining two cases
of (24) both B, ,, and A, », » turn out to be non-
trivial and consequently, these give rise to new D=10
solutions. The reduction of (27) is a known black
four-brane solution of the Type IIA string theory [2].

Let us next consider the supersymmetry of these
solutions. In order to maintain supersymmetry in the
bosonic sector of D=11 supergravity, the spacetime
must admit Killing spinors which satisfy

Dy e+ i (£70F,, —819754) Fropgé =0,
(39)

where ¢ is a Majorana spinor, D,, is the spinor co-
variant derivative and [pg, [vopp denote the anti-
symmetrized products of the D= 11 Dirac matrices.
On the above black p-brane backgrounds we have
verified that (39) is integrable only if r, =r_. There-
fore, only the extreme black p-brane solutions are
supersymimetric.

The extreme solutions not only admit Killing spi-
nors but also allow generalizations to black multi-p-
brane configurations. In constructing these generali-
zations it is convenient 1o introduce, in addition to
E”, a second euclidean space E'°-7 of dimension
10—-p. Lety=(y*), a=1, 2, .., 10—p, be the carte-
sian coordinates on E'®-7. Similarly, let the coordi-
nates x’' of E” be represented as x and suppose dots
denote the standard euclidean inner products. Con-
sider, in this notation, the fields

dsi= U«p/J d13
—Ur/e dy-dy - U'P—¢/% dx-dx, (40)
F=3U"2diadUnJ, (41)

where U= U(¥*) is a smooth, positive function on
E'%-7 and p takes again the values p=2, 4. 6. If (40)
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and (41) are substituted in (1) and (2), all field
equations reduce to

AlU=0, (42)

where A is the Laplace operator on E'°~?, Hence each
solution of the Laplace equation (42) gives rise to a
solution of the D=11 supergravity theory. For the
present problem the relevant solution is

X
U=1+ Y aR§78, (43)
=l
where R,= |y-y,| and a, y, are constants. With this
choice (40) and (41) describe the static equilibrium
of K extreme black p-branes (p=2, 6) which are po-
sitioned at y=y, in the background space E'°-*. The
mass and the electric charge of the /th hoie of this
configuration are both given in terms of a, Masses
are positive if ¢,> 0. In the particular case p=2, (40),
(41) and (43) reduce to the multi-membrane solu-
tions of ref. [12]. All the extreme cases of (24) are
obtained by setting K=1 in (43) and changing the
radial coordinate as R} —? =r8-7—,8-2,
For these electric multi-p-branes let us choose the
orthonormal basis one-forms as

Wwo=U-P%de, (44)
we= [P/ gy~ (45)
W= =012 gy (46)

[n this frame the Killing spinor equation can be read-
ily integrated. Suppose 1 is a D= 11 Majorana spinor
which has constant entries in the above frame. In the
U=1, Minkowski spacetime limit # is clearly a
Killing spinor. When 3U/dy* # 0 one can check that

E=U-7"%, (47)
where #, subject to p algebraic conditions
La=ifod L9, (48)

is the general form of the Killing spinor in the electric
case. The presence of the algebraic conditions means
that the supersymmetry of the Minkowski spacetime
is partially broken in the above backgrounds. In a
Majorana representation of the Dirac matrices (48)
annihilates the 16, 24 and 28 of the 32 independent,
real entries of /7 when p takes on the respective values
p=2, 4 and 6. Hence, in this sense, only the {, { and

} of the Minkowski supersymmetry survives for p=2,
4,6.

The solution which describes the equilibrium con-
figuration of K magnetic, black five-branes can be
written as

di?=U-">(dt® ~dx-dx)— U*"> dy-dy, (49)
F=33(idl), (50)
where U is the p=>5 case of (43) and + is the Hodge
dual on E*(y*). In this solution a, can be interpreted
as the magnetic charge parameters of the black holes

and the K= 1 specialization gives the extreme mem-
ber of (27). If one refers the spinors to the frame

W= Uimi /S dr (51)
w=U-"edx!, (52)
W“:Ul” dya, (53)

then the Killing spinors of the magnetic multi-holes
have the form

é=U—|“2ﬁ. (54)

Once again, the constant spinor 7 turns out to be not
completely arbitrary unless U is constant. Assuming
that 8U//9y* #0, (39) impiies

a=+il\[, 000, (55)

where I, ..I'; refer to the E*(y®) part of the frame
that is given by (53). As a consequence of (55) half
of the entries of # vanish in the Majorana represen-
tation. The number of the surviving supersymmetry
parameters is therefore the same for the extreme
membranes and the five-branes. Another property
shared by the p=2 and p=3 extreme solutions is the
presence of an enlarged symmetry group which in-
cludes the boosts in the x’ directions. Notice that, un-
less = B, the metric (3) gives rise to solutions that
are invariant under RXSO(10—p)XE(p) where
E(p) is the p-dimensional euclidean group. When
=B one gets precisely the p=2 and p=3 extreme
solutions and the symmetry group extends to
SO(10—-p) xP(p) where P(p) is the p-dimensional
Poincaré group. The p=2 and p=35 muiti-hole met-
rics are also invanant under SO(10—-p) XP(p).

It is well known that (43) satsfies (42) every-
where except at y=y, where one encounters delta
function singularities. The y=y, singularities are,
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however. of no conseguence 1o the field equations and
the spacetime geometry unless p=4. If one uses (44 )~
(46) as a basis, the orthonormal frame components
of (1)and (2) all reduce to U~ 17*+¢/¢ AU=0. When
one refers (1) and (2) to the basis (51)-(53). the
field equations for the magnetic case become
{'-33 AU=0. In each of these bases the field equa-
tions are satisfied at y=y,. The chosen vielbeins are.
of course. singular at y=y, but. provided p# 4, this
can also be remedied. The important point is that the
coordinates used in (40) and (49) break down when
U’ encounters a zero or a singularity. The solutions,
however, can be extended smoothly over y=y, by
changing the coordinates. One can check in this way
that y=y, are regular event horizons of the black holes
if p=2. 5. 6. The exceptional case is p=4 where the
singularities at y =y, deserve further study.

Let us return to the single black hole configurations
and consider the uncharged solutions. It is obvious
that (24) and (27) both reduce to two distinct fam-
ilies of vacuum solutions when ¢.=¢,=0. The fam-
ilies obtained by setting r, =0 have negative masses
and do not describe black holes. The r_ =0 families
are the global products of the (11 —p)-dimensional
Schwarzschild solutions with E”. In the black p-branes
with a Schwarzschild factor p need not be restricted
to the above values: for each p in the range 0<p<7
there is a valid vacuum solution. There is in fact a
third family of vacuum solutions where the metric 1s

ds* =40t AT dri - r2 A,
~427* D dx-dx . (56)

and 0<p<9. At p=2 the third family coalesces with
the r, =0 specialization of (24) and p=0 corre-
sponds to the D =11 Schwarzschild solution. Assum-
ing that r_ > 0. the metric ( 56) gives rise to a positive
mass only if p=0, 1, 7. The p=1 member of this fam-
ily has another interesting aspect: the spacetime 1s the
product of the D=10 euclidean Schwarzschild man-
ifold with the real line and the string extends over the
euclidean Schwarzschild ime. None of the vacuum
solutions is supersymmetric.

So far we have examined the solutions which ap-
proach the Minkowski spacetime at spatial infinity.
Let us finally note that there are charged black hole
solutions of D= 11 supergravity theory which display
a different asymptotic behavior but share certain in-

teresting features with the above families. The D=4
Einstein-Maxwell theory can be consistently embed-
ded in D=11 supergravity [ 19] and remarkably. the
D=4 Reissner-Nordstrom family gives rise to a class
of D=11 black hole solutions through this embed-
ding. The resulting spacetimes are of the form Msx T®
where M is a U (1) bundle over the D=4 spacetime
and T* is the flat six-torus. The T® factors of these
solutions can be replaced with E® without any pen-
alty. It was described in ref. [20] how the bosonic
sector of the D=11 supermembrane theory picks.
among these black holes, only the supersymmetric.
extreme Reissner-Nordstrom solution. Precisely the
same situation is encountered also in the above black
membrane family. Let us take the p=2 case of (24)
and (25) as supermembrane background fields and
label the membrane coordinates as (1, p, ). Then it
can be verified that

=T, Xj=p, X>=0,

XY=X} for XY#t.x . x5, (57)

where X3’ are constants, is a solution of the super-
membrane field equations of ref. (9] only if r, =r_.
The supermembrane theory therefore picks once
again the extremal member. The D=3 metric in-
duced on the membrane. in the extreme case, is

ds}=4%1(dr2—dp*—do?) (58)

and while the spacetime geometry is regular, the
membrane metric is singular at the horizon. This su-
permembrane solution is known to have the fer-
mionic x-symmetry [12].

Another solution of the supermembrane field
equations which exists only on the generic p= 2 cases
of (24). (25) and which resides only in the region
r_<r<r, can also be constructed easily but this ime
the xk-symmetry is not available.
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Abstract

Membrane/ fivebrane duality in D = 11 implies Type IIA string/Type 1IA fivebrane duality in
D = 10, which in turn implies Type IIA string/heterotic string duality in D = 6. To test the
conjecture, we reproduce the corrections to the 3-form field equations of the D = 10 Type 1A
string (a mixture of trec-level and one-loop effects) starting from the Chern-Simons corrections
to the 7-form Bianchi identities of the D = 11 fivebrane (a purely tree-level cffect). K3 com-
pactification of the latter then yields the familiar gauge and Lorentz Chern-Simons corrections
to 3-form Bianchi identities of the heterotic string. We note that the absence of a dilaton in the
D =11 theory allows us to fix both the gravitational constant and the fivebrane tension in terms
of the membrane tension. We also comment on an apparent conflict between fundamental and
solitonic heterotic strings and on the puzzle of a fivebrane origin of S-duality.

1. Introduction

With the arrival of the 1984 superstring revolution [ 1], eleven-dimensional Kaluza-
Klein supergravity [2] fell out of favor, where it more or less remained until the recent
observation by Witten [3] that D = 11 supergravity corresponds to the strong coupling
limit of the D = 10 Type HA superstring, coupled with the realization that there is a
web of interconnections between Type IIA and all the other known superstrings: Type
1IB, heterotic Ey x Eg, heterotic SO(32) and open SO(32). In particular, string/string
duality [4-10] implies that the D = 10 heterotic string compactified to D = 6 on T* is
dual to the D = 10 Type IIA string compactified to D =6 on K3 [11]. Moreover, this

* Research supported in part by NSF Grant PHY-9411543.
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automatically accounts for the conjectured strong/weak coupling S-duality in D =4, N =
4 supersymmetric theories, since S-duality for one string is just target-space T-duality
for the other [8]. In this paper we find further evidence for an eleven-dimensional origin
of string/string duality and hence for S-duality.

D = 10 string/fivebrane duality and D = 6 string/string duality can interchange
the roles of space-time and worldsheet loop expansions [4]. For example, tree-level
Chern-Simons corrections to the Bianchi identities in one theory may become one-loop
Green-Schwarz corrections to the field equations in the other. In a series of papers
[4,7,12-17], it has been argued that this provides a useful way of putting various
duality conjectures to the test. In particular, we can compare quantum space-time effects
in string theory with the o-model anomalies for the dual p-branes [18-22] even though
we do not yet know how to quantize the p-branes! This is the method we shall employ
in the present paper. We reproduce the corrections to the 3-form field equations of the
D = 10 Type IIA string (a mixture of tree-level and one-loop effects) starting from
the Chern-Simons corrections to the 7-form K; = K4 Bianchi identities of the D = 11
fivebrane (a purely tree-level effect):

dKy = 1K+ 2m)* B'Xs . (1.1)

where the fivebrane tension is given by Ts = 1/(27)38' and where the 8-form polyno-
mial X3 describes the d = 6 o-model Lorentz anomaly of the D = 11 fivebrane:
- 1 1 1
X =——[—— trR*)? + —t R“] : 1.2
il T AR T7 (1-2)
K3 compactification of (1.1) then yields the familiar gauge and Lorentz Chern-Simons
corrections to 3-form Bianchi identities of the heterotic string:

dfs = }a&' (uF? — uR?) . (1.3)

The present paper thus provides evidence not only for the importance of eleven
dimensions in string theory but also (in contrast to Witten’s paper) for the importance
of supersymmetric extended objects with d = p + 1 > 2 worldvolume dimensions: the

super p-branes ! .

2. Ten to eleven: it is not too late

In fact it should have come as no surprise that string theory makes use of eleven
dimensions, as there were already tantalizing hints in this direction:

(i) In 1986, it was pointed out [25] that D = 11 supergravity compactified on
K3 x T"=3 [26] and the D = 10 heterotic string compactified on 7" [27,28] have the
same moduli spaces of vacua, namely

_ SO(16 + n,n)
~ SO(16 + n) x SO(n) ~

(2.1)

! Super p-branes are reviewed in Refs. |23,24.9].
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It was subsequently confirmed [29,30], in the context of the D = 10 Type IIA theory
compactified on K3 x T"~4, that this equivalence holds globally as well as locally.

(ii) In 1987 the D = 11 supermembrane was discovered [31,32]. It was then pointed
out [33] that the (d = 2, D = 10) Green-Schwarz action of the Type IIA superstring
follows by simultaneous worldvolume/space-time dimensional reduction of the (d =
3, D = 11) Green-Schwarz action of the supermembrane.

(1i1) In 1990, based on considerations of this D = 11 supermembrane which treats the
dilaton and moduli fields on the same footing, it was conjectured [34,35] that discrete
subgroups of all the old non-compact global symmetries of compactified supergravity
[36-39] (e.g. SL(2,R), 0(22,6), O(24,8), E4, Eg, Ey, Ejg) should be promoted to
duality symmetries of either heterotic or Type II superstrings. The case for a target space
0(22,6;Z) (T-duality) had already been made, of course [40]. Stronger evidence
for a strong/weak coupling SL(2,Z) (S-duality) in string theory was subsequently
provided in [5,9,41-51]. Stronger evidence for their combination into an 0(24,8; Z)
duality in heterotic strings was provided in [50,10,52,53] and stronger evidence for
their combination into a discrete E; in Type Il strings was provided in {11], where it
was dubbed U-duality.

(iv) In 1991, the supermembrane was recovered as an elementary solution of D = 11
supergravity which preserves half of the space-time supersymmetry [54]. (Elementary
solutions are singular and carry a Noether “electric” charge, in contrast to solitons which
are non-singular solutions of the source-free equations and carry a topological “mag-
netic” charge.) The preservation of half the supersymmetries is intimately linked with
the worldvolume kappa symmetry. It followed by the same simultaneous dimensional
reduction in (ii) above that the elementary Type IIA string could be recovered as a
solution of Type IIA supergravity. By truncation, one then obtains the N = 1,D = 10
elementary string [55].

(v) In 1991, the elementary superfivebrane was recovered as a solution of the dual
formulation of N = 1, D = 10 supergravity which preserves half of the space-time su-
persymmetry [56]. It was then reinterpreted [57,58] as a non-singular soliton solution
of the usual formulation. Moreover, it was pointed out that it also provides a solution
of both the Type IIA and Type IIB field equations preserving half of the space-time
supersymmetry and therefore that there exist both Type IIA and Type IIB superfive-
branes. This naturally suggested a Type II string/fivebrane duality in analogy with
the earlier heterotic string/fivebrane duality conjecture [23,59]. Although no Green-
Schwarz action for the d = 6 worldvolumes is known, consideration of the soliton zero
modes means that the gauged fixed actions must be described by a chiral antisymmetric
tensor multiplet (B,,A’,#!”!) in the case of IIA and a non-chiral vector multiplet
(B, x', A, €) in the case of 1IB [57,58].

(vi) Also in 1991, black p-brane solutions of D = 10 superstrings were found [60]
for d = 1 (IIA only), d = 2 (Heterotic, 1A and [IB), d = 3 (IIA only), d = 4
(IIB only) & = 5 (IIA only), d = 6 (Heterotic, IIA and IIB) and d = 7 (IIA only).
Moreover, in the extreme mass-equals-charge limit, they each preserve half of the space-
time supersymmetry [61]. Hence there exist all the corresponding super p-branes, giving
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risc to D = 10 particle/sixbrane, membrane/fourbrane and self-dual threebrane duality
conjectures in addition to the existing string/fivebrane conjectures. The soliton zero
modes are described by the supermultiplets listed in Table 1. Note that in contrast
to the fivebranes, both Type IIA and Type IIB string worldsheet supermultiplets arc
non-chiral 2. As such, they follow from T* compactification of the Type IIA fivebrane
worldvolume supermultiplets.

(vii) In 1992, a fivebranc was discovered as a soliton of D = 11 supergravity
preserving half the space-time supersymmetry [62]. Hence there exists a D = 11
superfivebrane and it forms the subject of the present paper. Once again, its covariant
action is unknown but consideration of the soliton zero modes means that the gauged
fixed action must be described by the same chiral antisymmetric tensor multiplet in (v)
above [63,64,9]. This naturally suggests a D = 11 membrane/fivebrane duality.

(viii) In 1993, it was recognized [61] that by dualizing a vector into a scalar on
the gauge-fixed d = 3 worldvolume of the Type IIA supermembrane, one increases the
number of worldvolume scalars (i.e. transverse dimensions) from 7 to 8 and hence
obtains the corresponding worldvolume action of the D = 11 supermembrane. Thus the
D =10 Type IIA theory contains a hidden D =11 Lorentz invariance!

(ix) In 1994 [65] and 1995 [66], all the D = 10 Type IIA p-branes of (vi) above
were related to either the D = 11 supermembrane or the D = 11 superfivebrane.

(x) Also in 1994, the (extreme electric and magnetic black hole [50,67!) Bo-
gomol’nyi spectrum necessary for the E; U-duality of the D = 10 Type IIA string
compactified to D = 4 on T® was given an explanation in terms of the wrapping of
cither the D = 11 membrane or D = 11 fivebrane around the extra dimensions [11].

(xi) In 1995, it was conjectured [64] that the D = 10 Type IIA superstring should
be identified with the D = 11 supermembrane compactified on S!, with the charged
extreme black holes of the former interpreted as the Kaluza-Klein modes of the latter.

(xi1) Also in 1995, the conjectured duality of the D = 10 heterotic string compacti-
fied on T* and the D = 10 Type IIA string compactified on K3 [11,3], combined with
the above conjecture implies that the d = 2 worldsheet action of the D =6 (D =7)
heterotic string may be obtained by K3 compactification® of the d = 6 worldvolume
action of the D = 10 Type 1IA fivebrane (D = 11 fivebrane) [68,69]. We shall shortly
make use of this result.

Following Witten’s paper | 3] it was furthermorc proposed {70] that the combination
of perturbative and non-perturbative states of the D = 10 Type IIA string could be
assembled into D = 11 supermultiplets. It has even been claimed [71] that both the
Ey x Eg and SO(32) heterotic strings in D = 10 may be obtained by compactifying
the D =11 theory on =, and %, respectively, where % and %=, are one-dimensional
structures obtained by squashing K3!

2 This corrects an error in [61.9].
* The wrapping of the D = 10 heterotic fivebrane worldvolume around K3 to obtain a D = 6 heferotic string
was considered in |7].
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Table 1

Gauge-fixed D = 10 theories on the worldvolume, corresponding to the zero modes of the soliton, are
described by the above supermultiplets and worldvolume supersymmetries. The D = 11 membrane and
fivebrane supermultiplets are the same as Type IIA in D = 10

d=17 Type HA (Aps A, 3¢0) n=1
d=6 Type 1A (B, Arl, @11y I=1,....,4 (ni,no) = (2,0)
Type 11B (B, X', A 1, &) I1=1,2 (ny,n-)=(1,1)
Heterotic (Y9, ) a=1,...,60
a=1,...,120 (ny,n-) = (1,0)
d=5 Type HA (Ap, AL, @11y I=1,...,4 n=2
d=4 Type 1IB (B, x', M) I=1,...,4 n=4
d=3 Type HA X', éhH I=1,...,8 n=8
d=2 Type A (XL',¢L1),(XR',¢R') I1=1,...,8 (ny,n-) =(8,8)
Type 1IB ! o), (e’ #r") I=1,...,8 (ny,n.)=(8,8)
Heterotic 0. 6", (xr’, dr") M=1,...,24
I=1,...,8 (ny,n-) =(8,0)

3. D = 11 membrane/fivebrane duality

We begin with the bosonic sector of the d = 3 worldvolume of the D = 11 super-
membrane:

1 ’ 1
S=T; / d’¢ [—i\/—_yy”ﬁ,-XManNGMN(X) +3V=7
1 ..
~ﬁe'fkaix’”a,x”akx”cMNp(X) , (3.1)

where T3 is the membrane tension, & (i = 1,2, 3) are the worldvolume coordinates, ¥V is
the worldvolume metric and X¥ (£) are the space-time coordinates (M =0,1,...,10).
Kappa symmetry [31,32] then demands that the background metric Gyny and back-
ground 3-form potential Cynp obey the classical field equations of D = 11 supergravity,
whose bosonic action is

1 1 1
Iy = 2/d“xx/—G [RG_ KIZVINPQ] _W/C3/\K4/\K4 , (32)

2Ky 2-41
where K4 = dCs is the 4-form field strength. In particular, K4 obeys the field equation
d*K4=——%K42 (3.3)
and the Bianchi identity
dKs =0 . (34)

While there are two dimensionful parameters, the membrane tension 73 and the eleven-
dimensional gravitational constant «;, they are in fact not independent. To see this, we
note from (3.1) that C3 has period 277/T; so that K, is quantized according to

2
/K4 i R n = integer . (3.5)
T3
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Consistency of such C3 periods with the space-time action, (3.2), gives the relation
(2m)?
k112T33

The D = 11 classical field equations admit as a soliton a dual superfivebrane [62,6]

whose worldvolume action is unknown, but which couples to the dual field strength
K+ = xK4. The fivebrane tension T is given by the Dirac quantization rule [6]

€47 . (3.6)

2K112T3T6 =2mn n = integer . (3.7)
Using (3.6), this may also be written as
Ts
— €7, 3.8
7 (3.8)
which we will find useful below. Although Dirac quantization rules of the type (3.7)
appear for other p-branes and their duals in lower dimensions [6], it is the absence of
a dilaton in the D = 11 theory that allows us to fix both the gravitational constant and
the dual tension in terms of the fundamental tension.
From (3.3), the fivebrane Bianchi identity reads
[y

dK; = —=K
7 ) 4

However, such a Bianchi identity will in general require gravitational Chern-Simons
corrections arising from a sigma-model anomaly on the fivebrane worldvolume [7,14,18-
22]:

(3.9)

N 1 .
di; = —§K42 + (2m)* B Xs (3.10)

where /' is related to the fivebrane tension by Ts = 1/(27)3B and where the 8-form
polynomial Xg, quartic in the gravitational curvature R, describes the d = 6 o-model
Lorentz anomaly of the D = 11 fivebrane. Although the covariant fivebrane action is
unknown, we know from Section 2 that the gauge fixed theory is described by the chiral
antisymmetric tensor multiplet (B;,,,/\’ ,#!Y1y, and it is a straightforward matter to
read off the anomaly polynomial from the literature. See, for example Refs. [72,73].
The contribution from the anti self-dual tensor is

- 1 1
Xp = gz |~ 10(0R?)? + 28 R 11
5= Gmyiszeo | OWRD)? + 280K (1D
and the contribution from the four left-handed (symplectic) Majorana-Weyl fermions is
- i 1 110
%) = S| (rRD? 2R4]. 12
A= GmyisTenl a (TR 2 (3.12)

Hence X takes the form quoted in the introduction:
- L[ 1
T (2m)4L 768

1
242
Xs (R + l92trR‘] . (3.13)
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Thus membrane/fivebrane duality predicts a space-time correction to the D = 11 super-
membrane action

111 (Lorentz) =T3/C3 A __,( trR?)? + —trR“] (3.14)

Q2w )4[ 768 192

Unfortunately, since the correct quantization of the supermembrane is unknown, this
prediction is difficult to check. However, by simultaneous dimensional reduction {33]
of (d =3,D =11) to (d = 2,D = 10) on §', this prediction translates into a
corresponding prediction for the Type IIA string:

1
Io(Lorent By A ——s [——— (rR?)? + ——t R“] 3.15
to(Lorentz) = / 2N Gyt | 768 (KD +192r (3.15)
where B; is the string 2-form, T, is the string tension, T) = 1/2ma’, related to the
membrane tension by

Ty = 2aRTs (3.16)

where R is the S' radius.

As a consistency check we can compare this prediction with previous results found
by explicit string one-loop calculations. These have been done in two ways: either by
computing directly in D = 10 the one-loop amplitude involving four gravitons and one
B, [74-77], or by compactifying to D =2 on an 8-manifold M and computing the B,
one-point function [17]. We indeed find agreement. In particular, we note that

o
Xo = 2% K, (3.17)
where
11 25
NS,R 242
R — [ 2R 1tR“],
% (2#)42880[ 7 (R + 31t
11
R.R _ 242 . 1
Y, (277)42880[10(@) ~ 28 uR'] (3.18)

Upon compactification to D = 2, we arrive at

ﬂNs,R=/Y3NS’R,
M

nR,R=/Y8R’R , (3.19)
M

where in the (NS,R) sector nysr computes the index of the Dirac operator coupled to
the tangent bundle on M and in the (R,R) sector ng g computes the index of the Dirac
operator coupled to the spin bundle on M. We also find agreement with the well-known
tree-level terms

1 1
- 3.20
2]02/232AK4AK4, ( )
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where
kit = 2w Rig’ . (3.21)

Thus using D = 11 membrane/fivebrane duality we have correctly reproduced the
corrections to the By field equations of the D = 10 Type IIA string (a mixture of
tree-level and string one-loop effects) starting from the Chern-Simons corrections to
the Bianchi identities of the D = 11 superfivebrane (a purely tree-level effect). It is now
instructive to derive this same result from D = 10 string/fivebrane duality.

4. D = 10 Type 1A string/fivebrane duality

To sec how a double worldvolume/space-time compactification of the D = 11 super-
membrane theory on S! leads to the Type IIA string in D = 10 [33], let us denote all
(d =3,D = 11) quantities by a hat and all (d =2, D = 10) quantities without. We then
make a ten-one split of the space-time coordinates

M= (xMyy, M=0,1,...,9 4.1)
and a two-one split of the worldvolume coordinates

F=(p, i=12 (4.2)
in order to make the partial gauge choice

p=Y, (43)

which identifies the eleventh dimension of space-time with the third dimension of the
worldvolume. The dimensional reduction is then affected by taking Y to be the coor-
dinate on a circle of radius R and discarding all but the zero modes. In practice, this
means taking the background fields G sh and ¢ wip to be independent of Y. The string
backgrounds of dilaton @, string o-model metric Gyy, 1-form Ay, 2-form By and
3-form Cynp are given by *

é ey (GMN'f‘e(pAMAN e”’AM>
MN =€ @ @ s

e AN [4
Cune =Cunp ,

Cumny =Bun . (44)

The actions (3.1) and (3.2) now reduce to

4The choice of dilaton prefactor, e~®3 is dictated by the requirement that Gyny be the D = 10 string
o-model metric. To obtain the D = 10 fivebrane o-model metric, the prefactor is unity because the reduc-
tion is then space-time only and not simultaneous worldvolume/space-time. This explains the remarkable
“coincidence” [6] between Gan and the fivebrane o-model metric.
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1 y -
S=T / d’¢ [—5\/—y~/fa,-x“ajx”(;m(x> - 5e'fa,»x"ﬂ;ijBMN(X) +...
(4.5)

and

Ip=

_ 1
P /d“’x ~Ge™® [RG+ (InP)? - ﬁHLNP

1 o2 1 40 1 1
T FMN’“‘—2.4!€ Junrg T 51(4/\1(4/\32 , (4.6)

where the field strengths are given by Jy = K4 + AjH3, Hy =dB; and F, =dA,. Let us
now furthermore consider a simple space-time compactification of the fivebrane theory
on the same S' to obtain the Type IIA fivebrane in D = 10. From (3.4) and (3.10), the
field equations and Bianchi identities for the field strengths J4, Hi, F, and their duals
Jo = «Jy, Hy = e=® x Ha, Fgz = *F, now read

dly=FyHy, dJs=Hsls, 4.7
. 1 - o

dH;=0, dH, = —5142 + FJs+ 2m)* B Xz, (4.8)

dF, =0, dFg = ~H3Jg . (4.9)

Of course, the Lorentz corrections to the Bianchi identity for Hj7 could have been derived
directly from the Type IIA fivebrane in D = 10 since its worldvolume is described by
the same antisymmetric tensor supermultiplet. Note that of all the Type IIA p-branes
in Table 1, only the fivebrane supermultiplet is chiral, so only the H; Bianchi identity
acquires corrections.

From (3.7), (3.16) and (3.21), or from first principles of string/fivebrane duality
[78], the Dirac quantization rule for n = 1 is now

2k10° = (2m)3d' B . (4.10)

So from either D = 10 string/fivebrane duality or from compactification of D = 11
membrane/fivebrane duality, the B> field equation with its string one-loop correction is

2K102 ~
Xs 4.11
2ma’ P ( )

1
d(e_‘p * H3) = —§J42 + FxJy+

which once again agrees with explicit string one-loop calculations [17,74].

5. D =7 string/membrane duality

Simultaneous worldvolume/space-time compactification of the D = 11 fivebrane on
K3 gives a heterotic string in D = 7 [68,69]. The five worldvolume scalars produce
(5., 5r) worldsheet scalars, the four worldvolume fermions produce (0, 8g) worldsheet
fermions and the worldvolume self-dual 3-form produces (191,3g) worldsheet scalars,
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which together constitute the field content of the heterotic string. We may thus derive
the Bianchi identity for this string starting from the fivebrane Bianchi identity, (1.1):

- 1 _
dk; = —5K42 +2m)* B Xs . (5.1)
We begin by performing a seven-four split of the eleven-dimensional coordinates
XM =(x*y), wu=0,1,...,6;i=7,8910 (5.2)

so that the original set of ten-dimensional fields {.A,} may be decomposed in a basis
of harmonic p-forms on K3:

An(X) =Y Arp(0)wp(y) . (5.3)

In particular, we expand C3 as
C3(X) = C3(x) + 5 ZCI (wh(y) (54)

where @), I = 1,...,22 are an integral basis of b, harmonic two-forms on K3. We have
chosen a normalization where the seven-dimensional U(1) field strengths K} = dC ! are
coupled to even charges

/Kg c4nZ (5.5)

which follows from the eleven-dimensional quantization condition, (3.5).

Following Ref. [7], let us define the dual (heterotic) string tension T = 1/27@ by
1 1

—_— vV, 5.6

oy (277)33"/ (5.6)

where V is the volume of K3, and the dual string 3-form A by

| R 1 -
H; = = K, 5.7
2ma T (2m) P / ’ D
K3
so that H3 satisfies the conventional quantization condition
/ﬁ3 =47'nd | (5.8)

which follows from the underlying K; quantization. The dual string Lorentz anomaly
polynomial, Xy, is given by

- ~ 1
X4=/X8=W/ [—ﬁ(erz—*'er’l)z-f'_(lI'R4+[I'R4):|
K3 K3

1
=G 192trR2p1(K3)

~ G4 LeR? (5.9)
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where p; (K3) is the Pontryagin number of K3

1
Pi(K3) =~ /trR2 =48 . (5.10)
K3

We may now integrate (5.1) over K3, using the Dirac quantization rule, (3.8), to find
~/
dﬁ3=—5‘;— [K3K3d) +uRY] (5.11)

where d;; is the intersection matrix on K3, given by

diy =/w;/\wg (5.12)
K3

and has by = 3 positive and b; = 19 negative eigenvalues. Therefore we see that
this form of the Bianchi identity corresponds to a D = 7 toroidal compactification
of a heterotic string at a generic point on the Narain lattice [27,28]. Thus we have
reproduced exactly the D = 7 Bianchi identity of the heterotic string, starting from a
D =11 fivebrane!

6. D = 6 string/string duality

Further compactification of (5.11) on §' clearly yields the six-dimensional Bianchi
identity with two additional U(1) fields coming from S', giving trF? with signature
(4,20). Alternatively, this may be obtained from K3 compactification of the D = 10
fivebrane, with Bianchi identity

dH, = ——;—142 + FyJs+ (2m)* B Xq . (6.1)

Although in this section we focus just on this identity, we present the compactification
of the complete bosonic D = 10 Type IIA action, (4.6), in Appendix A.

The reduction from ten dimensions is similar to that from eleven. There is one subtlety,
however, which is that Jy is the D = 10 gauge invariant combination, Jy = K4 + A1 H3.
Compactifying (6.1) to six dimensions on K3, we may identify 22 U(1) fields coming
from the reduction of J; and one each coming from F, and Js. Normalizing these 24
six-dimensional U(1) fields according to (5.5), we obtain

.a_[
4
where J4 = dCJ + A\db’ and Js = dC3 + A1 Hj. The 22 scalars &' are torsion moduli of
K3. While we may be tempted to identify these two-forms with U(1) field strengths,

this would not be correct since dJ} = Fadb! # 0 and dJ, = J{db'd;; # 0. Thus the
actual field strengths must be shifted according to

dfy = —— [ J3dy — 2R J, — 1607 X,] (6.2)
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=7 -Bb,
h=0h - Bbdy + sRbbd, (6.3)

so that dIA(é = dJ, = 0. Inverting these definitions and inserting them into (6.2) gives
finally

~/
df; = _% (RiR{d)y — 2R, 0, + uR?] . (6.4)

In order to compare this result with the toroidally compactified heterotic string, it is
useful to group the U(1) field-strengths into a 24-dimensional vector

Fr=[F, h, K17, (6.5)

in which case the D = 6 Bianchi identity now reads
. a
dH3 - —-I [fTLf+trR2] Y (6~6)

where the matrix L = [(—o') @ d};] has 4 positive and 20 negative eigenvalues. This
is in perfect agreement with the reduction of the D =7 result, (5.11), and corresponds
to a Narain compactification on 4 3.

Note that the heterotic string tension 1/27& and the Type IIA string tension 1/27a’
are related by the Dirac quantization rule [6,7]

26’ = 2m)3nd'& (6.7)

where «s2 = k102/V is the D = 6 gravitational constant. Some string theorists, while

happy to endorse string/string duality, eschew the soliton interpretation. It is perhaps
worth emphasizing, therefore, that without such an interpretation with its Dirac quanti-
zation rule, there is no way to relate the two string tensions.

7. Elementary versus solitonic heterotic strings

Our success in correctly reproducing the fundamental heterotic string o-model ano-
maly polynomial

1
T 4(2m)?

4 (rR? — wF?) , (7.1)
by treating the string as a (K3 compactified fivebrane) soliton, now permits a re-
evaluation of a previous controversy concerning fundamental [79] versus solitonic
[9,12,78] heterotic strings. In an earlier one-loop test of D = 10 heterotic string/heterotic
fivebrane duality [14], X4 was obtained by the following logic: the d = 2 gravitational
anomaly for complex fermions in a representation R of the gauge group is [72,73]

11 r
Iy = > —tuR? — trgF?) | 72
0= 5y (7R~ ueF) 2
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where r is the dimensionality of the representation and R is the two-dimensional cur-
vature. Since the SO(32) heterotic string has 32 left-moving gauge Majorana fermions
(or, if we bosonize, 16 chiral scalars) and 8 physical right-moving space-time Majorana
fermions, Dixon, Duff and Plefka [14] set R to be the fundamental representation and
put r = 32 — 8 = 24 to obtain X4 = I4/2, on the understanding that R is now to be
interpreted as the pull-back of the space-time curvature. Exactly the same logic was
used in [14] in obtaining the heterotic® fivebrane Xg

- 1 1

1
Xq rF* — — uF*uR? + ﬁls (rRH? + IL trR* (7.3)

T 2mt |24 192 92

and in Sections 3 and 4 above in obtaining the Type IIA fivebrane Xg of (3.13). This
logic was however criticized by Izquierdo and Townsend [15] and also by Blum and
Harvey [16]. They emphasize the difference between the gravitational anomaly (which
vanishes for the fundamental heterotic string [79]) involving the two-dimensional cur-
vature and the o-model anomaly (which is given by X4 [80]) involving the pull-back
of the space-time curvature. Moreover, they go on to point out that the 32 left-moving
gauge Majorana fermions (or 16 chiral scalars) of the fundamental heterotic string do
not couple at all to the spin connections of this latter curvature. They conclude that
the equivalence between X4 and I4/2 is a “curious fact” with no physical significance.
They would thus be forced to conclude that the derivation of the Type HA string field
equations presented in the present paper is also a gigantic coincidence!

An attempt to make sense of all this was made by Blum and Harvey. They observed
that the zero modes of solitonic strings (and fivebranes) necessarily couple to the
space-time spin connections because they inherit this coupling from the space-time
ficlds from which they are constructed. For these objects, therefore, they would agree
that the logic of Dixon, Duff and Plefka (and, by inference, the logic of the present
paper) is correct. But they went on to speculate that although fundamental and solitonic
heterotic strings may both exist, they are rot to be identified! Recent developments in
string/string duality [3,8,11,69,68,81], however, have convinced many physicists that
the fundamental heterotic string is a soliton after all and so it seems we must look for
an alternative explanation.

The correct way to resolve the apparent conflict is, we believe, rather mundane. The
solitonic string and p-brane solitons are invariably presented in a physical gauge where
one identifies d of the D space-time dimensions with the d = p 4+ 1 dimensions of the
p-brane worldvolume. As discussed in [14], this is best seen in the Green-Schwarz
formalism, which is in fact the only formalism available for d > 2. In such a physical
gauge (which is only well-defined for vanishing worldvolume gravitational anomaly)
the worldvolume curvatures and pulled-back space-time curvatures are mixed up. So, in
this sense, the gauge fermions do couple to the space-time curvature after all.

3 Note that the heterotic string X4, the heterotic fivebrane X3 and the Type IIA fivebrane Xz are the only
non-vanishing anomaly polynomials, since from Table 1, these are the only theories with chiral supermultiplets.
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8. Fivebrane origin of S-duality? Discard worldvolume Kaluza—Klein modes?

In a recent paper [8], it was explained how S-duality in D = 4 follows as a con-
sequence of D = 6 string/string duality: S-duality for one theory is just T-duality for
the other. Since we have presented evidence in this paper that Type IIA string/heterotic
string duality in D = 6 follows as a consequence of Type IIA string/Type HIA fivebrane
duality in D = 10, which in turn follows from membrane/fivebrane duality in D =11, it
seems natural to expect a fivebrane origin of S-duality. (Indeed, a fivebrane explanation
for S-duality has already been proposed by Schwarz and Sen [46] and by Binetruy
[48], although they considered a T® compactification of the heterotic fivebrane rather
than a K3 x T2 compactification of the Type IIA fivebrane.)

The explanation of [8] relied on the observation that the roles of the axion/dilaton
fields § and the modulus fields T trade places in going from the fundamental string to
the dual string. It was proved that, for a dual string compactified from D=6 to D =4
on T2, SL(2,Z)s is a symmetry that interchanges the roles of the dual string worldsheet
Bianchi identities and the field equations for the internal coordinates y™ (m = 4,5).
However, in unpublished work along the lines of [34,35], Duff, Schwarz and Sen tried
and failed to prove that, for a fivebrane compactified from D = 10 to D =6, SL(2,Z)s
is a symmetry that interchanges the roles of the fivebrane worldvolume Bianchi identities
and the field equations for the internal coordinates y™ (m = 4,5,6,7,8,9). A similar
negative result was reported by Percacci and Sezgin {82].

Another way to state the problem is in terms of massive worldvolume Kaluza-
Klein modes. In the double dimensional reduction of the D = 10 fivebrane to D = 6
heterotic string considered in Section 6, we obtained the heterotic string worldsheet
multiplet of 24 left-moving scalars, 8 right moving scalars and 8 chiral fermions as the
massless modes of a Kaluza-Klein compactification on K3. Taken in isolation, these
massless modes on the dual string worldsheet will display the usual T-duality when
the string is compactified from D = 6 to D =4 and hence the fundamental string will
display the desired S-duality. However, no-one has yet succeeded in showing that this
T-duality survives when the massive Kaluza-Klein modes on the fivebrane worldvolume
are included. Since these modes are just what distinguishes a string X¥(7,0) from a
fivebrane XM (r, 0, p') (i =1,2,3,4), this was precisely the reason in [8] for preferring
a D = 6 string/string duality explanation for SL(2,Z) over a D = 10 string/fivebrane
duality explanation. (Another reason, of course, is that the quantization of strings is
understood, but that of fivebranes is not!) The same question about whether or not
to discard massive worldvolume Kaluza-Klein modes also arises in going from the
membrane in D = 11 to the Type IIA string in D = 10. For the moment therefore, this
inability to provide a fivebrane origin for SL(2,Z) remains the Achilles heel of the
super p-brane programme .

¢ Another unexplained phenomenon, even in pure string theory, is the conjectured SL(2,Z) duality of the
D = 10 Type 1IB string | 11|, which gives rise to U-duality in D = 4. In this connection, it is perhaps
worth noting from Table 1 that the gauged-fixed worldvolume of the self-dual Type IIB superthreebrane is
described by the d = 4,n = 4 Maxwell supermultiplet [83]. Now d = 4,n = 4 abelian gauge theories are
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I d=6, (n .0 )=(2,0
d=3, n=8 (n,.n_)=(20) D=11

D=10

Heterotic
d=6, (n, .n_)=(1,0}

Type HA
d=2, (n_.n_)=(8.8)

D=6

d=2,(n_.n_)=(4,4)

d=3,n=8 d=6, (n_.n_)=(2,0) D=11

D=10

Type IA
d=6, (n_,n_)=(2,0)

Heterotic
d=2, (n, n_)=(8.0)

d=2, (n‘,n_ )=(8,0)

d=2, (n_,n_)=(8,0)

Fig. 1. Compactifications relating (a,top) the Type IIA fivebrane to the heterotic string and (b,bottom) the

heterotic fivebrane to the Type IIA string. Worldvolume supersymmetries are indicated.

expected to display an SL(2,Z) duality. See Refs. [84,85] for a recent discussion. Could this be the origin
of the SL(2,Z) of the Type IIB string which follows from a T2 compactification of the threebrane? Note
moreover, that the threebrane supermultiplet itself follows from 72 compactification of either the Type IIA or
Type 1IB fivebrane supermultiplet. Compactifications of such d = 6 self-dual antisymmetric tensors have, in
fact, recently been invoked precisely in the context of S-duality in abelian gauge theories [85]. Of course, the
gauged-fixed action for the superthreebrane is presumably not simply the Maxwell action but some non-linear

(possibly Born-Infeld |83]) version. Nevertheless, S-duality might still hold [86].
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d=3, nz% T3 d=6, (n_,n_ 1=(2,0) D=11

Sl

D=10
d=6, (n_,n_)=(2,0)

D=7
d=2, (n u_)=(8.8) S! d=3, n=8
d=3, n=8 1 d=6, (n_.n_)=(2,0) D=11
D=10

d=2, (n_,n_)=(8,0)

+

d=6, (n_,n_)=(2,0)

D=7

H

d=2,(n.n )=(80) = d=3, n=8

Fig. 2. Compactifications incorporating worldvolume reductions (a,top) and (b,bottom).
9. Web of interconnections

We have discussed membrane and fivebranes in D = 11, heterotic strings and Type
II fivebranes in D = 10, heterotic strings and membranes in D = 7, heterotic and
Type II strings in D = 6 and how they are rclated by various compactifications. This
somewhat bewildering mesh of interconnections is summarized in Fig. 1a. There are
two types of dimensional reduction to consider: lines sloping down left to right represent
space-time reduction (d, D) — (d, D — k) and lines sloping down right to left represent
simultaneous space-time/worldsheet reduction (d, D) — (d—k, D —k). The worldsheet
reductions may be checked against Table 1. Note that the simultaneous reduction on = of
the D = 11 membrane to yield the D = 10 heterotic string is still somewhat speculative
[71], but we have included it since it nicely completes the diagram.

According to Townsend [68], a similar picture may be drawn relating the Type ITA
string and heterotic fivebrane, which we show in Fig. 1b, where we have once again
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D=11
Type [IA
D=10
Heterotic
D=
4=2 D=6

Fig. 3. A superposition of Figs. 1(a) and 1(b), illustrating strong/weak coupling dualities (denoted by the
dotted lines).

Fod
Ay

speculated on a space-time reduction on = of the D = 11 fivebrane to yield the D = 10
heterotic fivebrane. However, one must now explain how T> (or T*) compactification of
the (120,120) degrees of freedom of the gauge-fixed D = 10 heterotic fivebrane [59]
can yield only the (8, 8) of the D = 7 membrane (or the (8,,8.), (8z,8g) of the D =6
Type IIA string). Townsend has given arguments to support this claim. There are more
interrelationships one can illustrate by including horizontal lines representing worldsheet
reduction only, (d, D) — (d — k, D), some of which are shown in Figs. 2a,b.

Note that these diagrams describe theories related by compactification and so relate
weak coupling to weak coupling and strong to strong. In Fig. 3, we have superimposed
Figs. la,b to indicate how the various theories are also related by duality (denoted
by the dotted horizontal lines) which relates weak coupling to strong. We believe that
these interrelationships, which have in particular enabled us to deduce supermembrane
effects in agreement with explicit string one-loop calculations, strengthen the claim that
eleven dimensions and supermembranes have a part to play in string theory: a triumph
of diversification over unification [87].
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Appendix A. Reduction of the D = 10 Type IIA model on K3

In Section 6 we presented the reduction of the fivebrane Bianchi identity on K3. For
completeness, we present the reduction of the bosonic part of the D = 10 Type IIA
supergravity action, (4.6), which we write here in a form notation:

1
2K]02

ho= / d"°xv/~Ge™ [Rg + (Iu®)?]

[ AxFr+ e ®Hy AxHs + Js AxJys—Ks ANK4a A By, (AD)
4K|()2

where the ten-dimensional bosonic fields are the metric G, dilaton @ and the 1-, 2- and
3-form fields A}, B; and Cj;. Eleven-dimensional K4 quantization, (3.5), as well as the
usual Kaluza-Klein condition for F,, give rise to the ten-dimensional conditions

4m’nR
Ky = s
/ ¢ I
2mn
Hy="",
/ T,
/F2=27TnR. (A2)

Following the decomposition of the fields in Section 5, we write
R
A(X) = §A1(x) ,
2 / I
B2(X) = By(x) + - b ()wi(y)

R R
Cs(X) = 3Co(0) + = D Cl(@f(y), (A3)

in which case the four-form J4 is given by

7R

T, 2K () + Ai(®)db! (0]w3(y) .

(A4)

R
Ja(X) = —2-[K4(x) + A (x)H3(x)] +

The constants are chosen so the six-dimensional U(1) fields will be coupled to even
charges

/fz € 4nZ . (AS)

For K3, with Betti numbers by = 1, b; =0, b;r =3 and b; =19, we may choose an
integral basis of harmonic two-forms, @} with intersection matrix

d,,:/w{/\a){ : (A6)
K3
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Since taking a Hodge dual of w} on K3 gives another harmonic two-form, we may
expand the dual in terms of the original basis

fwh=wiH'; | (A7)
where we use * to denote Hodge duals on K3. In this case, we find

/w% A\ ﬁw{ = d]](HKj . (A.8)

K3

The matrix H'; depends on the metric on K3, i.e. the b; - b5 = 57 K3 moduli. Because
of the fact that #% = 1, H' satisfies the properties [69]

H H =8k,

dyH’ g =dg,H ), (A.9)
so that
H'jd;HX =dy (A.10)

and hence is an element of SO(3,19)/S0(3) x SO(19).
Using these properties of K3, we may compactify the second line of (A.1) to obtain

I
Ig= P /[%e“‘f’Hg A *Hy + %e“”e”db’ A xdb’dicHY

=~/

+%(e“sz AxFy+e PJy AxJy+ Jé A *szd”(HKj
K} AK] ABadiy — 2Ka A Kgb’d,,)] . (A.11)

The six-dimensional dilaton is given by ¢ = & + p where & is the ten-dimensional
dilaton and p is the breathing mode of K3:

e'p=%/~/>?<1 . (A.12)
K3

In order to make contact with the compactified heterotic string, we wish to dualize the
four-form J;. Note, however, that since d(e "%J4) = Jédb’ d;y, the proper expression
for dualizing Jy4 is given by (6.3). Performing such a step and rewriting J} as well, we
finally arrive at

Ig= 5:6—2 [%e—‘f’m A*Hy + Se%ePdb’ A xdb’dixHY,

~ /!

+% (e"’Fz A*Fy + (RS + Fbly Ax(RS + Fob’dix HY
+e”(f2 -+ kébjdu + %sz,bjdu) A *(j2 + f({"b"dn -+ %szKdeKL)

—(kéAszd,,—ze/\J‘z)/\Bz)] : (A.13)
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This expression can be brought into a SO(4,20)/50(4) x SO(20) invariant form.
As in Section 6, we group the U(1) field strengths into the 24-component vector

F=1FR, h K], (A.14)

which allows us to rewrite the bosonic lagrangian as

1 6 & 2 1 2 1
I6=E;é3/d X\/-—Ge (R+(aﬂ¢) —ﬁH#VAﬁ'gTr[ayMLaMML]

~!
—2: 3 / 94— (P (LML) AxF, — Fa" ANLFy A By) . (A.15)
6

The matrix L is given by

.
L=[ 7 O] i (A.16)

where o' = ((1) é) The matrix M contains the 1 + 57 + 22 = 80 moduli of K3 with

torsion, broken up in terms of e, H'; and b’ respectively:

e’ —%e"’(b'bjdu) efb!
M= | -Yer(b'V'diy) e+ b b dixHY j + JeP (b b di)?  —bKH'x — LePb! (bKbLdyy)
e?b’ ~bXH' g — LePb? (bXbldk) H'xd’® + erb! b’
(A.17)
In the last entry of M, d" is the inverse of d;;. We verify that
M =M, MLM =L""'. (A.18)

This agrees with the bosonic action given in [81].
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Abstract

Four-graviton scattering in eleven-dimensional supergravity is considered at one loop compactified on one, two and
three-dimensional tori. The dependence on the toroidal geometry determines the known perturbative and non-perturbative
terms in the corresponding processes in type Il superstring theories in ten, nine and eight dimensions. The ultra-violet
divergence must be regularized so that it has a precisely determined finite value that is consistent both with T-duality in
nine dimensions and with eleven-dimensional supersymmetry. © 1997 Elsevier Science B.V.

1. Introduction

The leading term in the M-theory effective action is
the classical eleven-dimensional supergravity of [1].
Although terms of higher dimension must be strongly
constrained by the large amount of supersymmetry
they have not been systematically investigated. There
is known to be an eleven-form, [ C®) A Xg (where Xz
is an eight-form made out of the curvature R and C**
is the three-form potential), which is necessary for
consistency with anomaly cancellation [2,3]. Eleven-
dimensional supersymmetry relates this to a particu-
lar R* term [4] as well as a host of other terms and
might well determine the complete effective action.
Furthermore, the effective action of the compactified
theory depends nontrivially on moduli fields associ-
ated with the geometry of the compact manifold. This
dependence is very strongly restricted by consistency

! E-mail: M.B.Green@damtp.cam.ac.uk.
2 M.Gutperle @damtp.cam.ac.uk.
* E-mail: vanhove@cpth.polytechnique.fr.

with the duality symmetries of string theory in ten and
lower dimensions. For example, the R* term in M-
theory compactified on a two-torus must be consistent
with the structure of perturbative and non-perturbative
terms in nine-dimensional IIA and IIB superstrings
[5]. This provides strong evidence that it has the form

[4]

3/9
Ky

Sps = 1 /d"x\/cmh(u,();vz)tngR“, (1
where G is the M-theory metric in the space trans-
verse to the torus, 1 = € + i)y is the complex
structure of the torus and V) is its volume in eleven-
dimensional Planck units. The parameter «; has di-
mensions [length]®/2 in arbitrary units (and the vol-
ume of the torus is given by (k| y4/°V; in these units).
The notation f5fgR* (1o be defined below) indicates
the particular contraction of four Riemann tensors that
arises from integration over fermionic zero modes at
one loop in superstring theory [6] as well as from in-
tegration over fermionic modes on a D-instanton [5].

0370-2693 /97 /$17.00 © 1997 Elsevier Science B.V. All rights reserved
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The function h has to be invariant under the action of
the modular group, S/(2,Z), acting on } and in [5,4]
various arguments were given for why it should have
the form

~ ~1/2 S 2
h(Q, W) =V, f(ﬂ,ﬂ)+TV1,~ (2)

The function f is a modular-invariant non-holomor-
phic Eisenstein series which is uniquely specified by
the fact that it is an eigenfunction of the Laplace op-
erator on the fundamental domain of SI(2,Z) with
eigenvalue 3/4,

0 dndaf =3 f 3)

(ie. f = {(3)E;, where E; is a Maass waveform
of eigenvalue s(s— 1) [7]). Significantly, this is the
kind of Ward identity that the threshold corrections
in lower-dimensional N = 2 theories satisfy [8] and
it suggests a very stringent set of geometrical con-
straints. The expansion of f for large (), has two
power-behaved terms plus an infinite series of ex-
ponentially decreasing terms. These have exactly the
correct coefficients to be identified with the tree-level
and one-loop terms, together with an infinite series of
D-instanton contributions in type IIB superstring the-
ory. This identification makes use of T-duality to re-
late a multiply-charged D-instanton of type IIB with a
multiply-wound world-line of a multiply-charged D-
particle of type IIA. Indeed, semiclassical quantization
around these D-instanton configurations may be car-
ried out by functional integration around the D-particlc
background, as outlined in [4].

In this paper we will show how the sum of the per-
turbative and D-instanton contributions to the tgzgR*
term are efficiently encoded in M-theory in the ex-
pression for the scattering of four gravitons at onc
loop in eleven-dimensional supergravity perturbation
theory. The particles circulating around the loop are
the 256 physical states that comprise the massless
eleven-dimensional supergraviton. It may secem sur-
prising that perturbation theory is of any significance
since supergravity has terrible ultra-violet divergences
in eleven dimensions. Furthermore, the absence of any
scalar fields means that there is no small dimension-
less coupling constant. However, there is strong rea-
son to believe that the one-loop #gtg R* terms are pro-
tected from receiving higher-loop contributions by an

eleven-dimensional nonrenormalization theorem since
they are related by supersymmetry to the C A X3
term. Upon compactification to ten or fewer dimen-
sions the Kaluza-Klein modes of the circulating fields
are reinterpreted in terms of the windings of euclidean
D-particle world-lines. The massive D-particles re-
produce the D-instanton effects while the massless
one (the massless ten-dimensional supergraviton) is
equivalent to the perturbative one-loop string effects.
The tg1g R* term obtained at tree level in string theory
arises, somewhat miraculously, from windings of the
D-particle world-lines in the eleventh dimension.
The one-loop diagram can, in principle, be obtained
using covariant Feynman rules by summing over the
contributions of the component fields circulating in the
loop the graviton, gravitino and third-rank antisym-
metric tensor ficlds. Alternatively, it can be expressed
in terms of on-shell superfields. In that case the dy-
namics is defined by superspace quantum mechanics
with the massless superparticle action which reduces
in a fixed parameterization of the world-line to [9],

1 § P S
Sparticlc = 5 /dTG,“,(X'u - l(")r#@)(xp - l‘(“)lw(‘)),
(4)

where © is a 32 component SO(10,1) spinor, u =
I,--+,11 and the reparameterization constraint re-
quires the action density to vanish on physical states.
For present purposes it will be sufficient to limit con-
sideration to processes in which the cxternal states
do not carry momentum in the eleventh dimension
and which are also not polarized in that direction al-
though these are not essential conditions. This loop
amplitude can be calculated by making use of the
light-cone description of the super-particle in which
the vertex operator for a graviton has the form

r r r ) i 1 i r
I )(g('),T( )) =§( )k(x — 4p+0.},10k; ))

5 1 . ),

x (XkA4p'0‘)'“0k;r))€Ik X‘ (5)
where i, j,- - = 3,--, 11, £ is the graviton wave
function with momentum k}[’ (where (k') =0 =
k"“‘{;;)), 6“ is a SO(9) spinor in the light-cone
gauge defined by '@ = 0 and X* = p*r (where
vE = v' + v? with timelike V'). This vertex opera-
tor is attached at a point 7? on the world-line and is
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defined in a frame in which &7+ =0, (¥4 = 0. In
a canonical treatment of this system the equations of
motion determine that X’ = p'r+x' and 69 = §¢//p~
and the (anti)commutation relations are [p',x/] =
—i8, {89,8"} = 6% (just as with the zero mode
components of the corresponding relations in the ten-
dimensional type IIA superstring theory).

The loop amplitude reduced to (11 —n) dimensions
by compactification on an n-dimensional torus, 7", has
the form

Af‘n) = 1 Tr dll~np

/2y,
o0 4
x/ii H/d,r(r)v(r) "r(p2+G“"”I,I/)
-
0 =l {1}
l (s )
= — & | drr/2-132 e—r(i‘””'l,l;
Wi‘avn / Z
0 {1}

T

4
x /de(”F({k"),r("}), (6)
r=1

0

where p = p' is the (11 — n)-dimensional loop mo-
mentum transverse to the compact directions and G(")
(I,J = 1,---n) is the metric on T" which has vo]-
ume V, = vdet GO The kinematic factor, K, in the
second line involves eight powers of the external mo-
menta and follows from the trace over the components
of $“. It may also be written as

/d'(’ H {;(;r()u,k(')k(rr) F“'””"nnr‘"'” )’
(@)

where 7 is a chiral SO(9, 1) Grassmann spinor. The
overall normalization will be chosen so that K is the
linearized approximation to

tatg R T R, L RO RIS (8)
where the tensor 15" was defined in [ 10]. The func-

tion F is a simple function of the external momenta.
Since we are interested here in the lcading term in the
low-cnergy limit (the 13tz R* term) we can set the mo-
menta k' 1o zero in the integrand so that [ [Jd7"F
is replaced by 7* giving

(n)
Ay =

/2 > 7 (n
m K/dTTn/2—5/2Ze—1rrG Hhgls )
"0 {i}

Though this expression was obtained in a special frame
we know that there is an (11 - n)-dimensional covari-
ant extension (including the case n = ) that would
follow directly from the covariant Feynman rules and
should be easy to check by an explicitly calculation
using the component form of the supergravity field
theory action.

The expression for Af‘") will contribute to the rgtg R*
terms in the effective action for M-theory compacti-
fied on 7T". In order to determine the dependence of
the amplitude on the geometry of the torus on which
it is compactified it will be important to express A"
in terms of the winding of the loop around 7. This
could be obtained directly from the definition of the
loop amplitude as a functional integral or by perform-
ing a Poisson summation on the n integers, /;, which
amounts to inverting the metric in (9). The result is

A‘(‘n) = VZK d% l/ZZe—m’G”l,I, (IO)
0 {in
where 7 = 7.

The ultraviolet divergence of eleven-dimensional
supergravity comes from the zero winding number
term, {f;} = 0, in the limit that the loop shrinks to a
point (¥ — oc0). We will formally write this divergent
term as the ill-defined expression, C = [ d##!/2.4
The fact that the one-loop supergravity amplitude is
infinite is a signal that point-particle dynamics dlone
cannot determine the short-distance physics of M-
theory. A microscopic theory - such as Matrix theory
[12] - should determine the correct finite value of C.
This is somewhat analogous to the way in which diver-
gent loop amplitudes in ten-dimensional super Yang-
Mills are regularized by ten-dimensional string thcory
(for example, the F* terms in the effective action of
the heterotic and open string theories [13,14]). In-
deed, we will soon see that consistency with the du-
ality symmetries of string theory together with the as-
sumption that the cleven-dimensional theory can be
obtained as a limit of the lower-dimensional theories

4 The presence of a cubically divergent szigR* termy in celeven-
dimensional supergravity was first suggested in [11] .
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determines the precise finite renormalized value for
the constant, C, that is also consistent with eleven-
dimensional supersymmetry. It is a challenge to Ma-
trix theory to reproduce this number.

In the following we will associate the integer /. with
the winding number of the loop around a compact di-
mension of circumference Ryz—, (for r > 1). If a
single direction is compactified on a circle of circum-
ference Ry; = V), the loop can be expressed as a sum
over the winding number of the euclidean supergravi-
ton world-line.

oo
—:/ZA;” =CK+ 21?/:11‘-7‘-'/2 37 emmiiR
" 0 i>0

o 1
il

Rather strikingly, the finite R;)-dependent term gives
a term in the effective ten-dimensional action that is
precisely that obtained in [15,16] from the tree-level
11A string theory (here written in the M-theory frame).
Although the regularized constant, C, is still undeter-
mined, we will see later that it must be set equal to
the coefficient of the one-loop tgtg R* term of the low
energy effective action of string theory. The absence
of any further perturbative or nonperturbative terms is
in accord with the conjectures in [5,4].

Compactification on a torus (n = 2) gives a richer
structure. In this case the one-loop amplitude has the
form

I ,
;}/—zvajf’ =V,CR

kY

(I = 0.0

di-f-‘/ze"'%“.'”?”'?

3

S [
=WVCK + —V. K e
: 272 2 l + LaP

(I1.h) #(0.0)

12 ~1/2 -
27TK(27TCV2+V2 f(n.m), (12)

where the divergent zero winding term, h=h=0
has again been separated from the terms with non-zero
winding. The function f in this expression is precisely
the (finite) 2-dependent term in (2). In particular, in
the limit V; - 0 M-theory should reduce to type 1B
superstring theory in ten dimensions [ 17,18] with the

complex scalar field, p = C'® +ie~#", identified with
Q (where C10 is the R® R scalar and ¢ is the TIB
dilaton). More precisely, the correspondence between
the parameters in M-theory and in IIB is,

V) = RigRyy ie*'ﬁnr;%.

R
Oy = S0 eﬁé”

= 13
R (13)

(where rp is the radius of the tenth dimension ex-
pressed in the [IB sigma-model frame). Using the fact
that VGO (V) g1 R = /g8 rprgrsR* (where
£% denotes the determinant of the IIB sigma-model
metric in 4 dimensions) we see that (12) leads, in the
ten-dimensional IIB limit (rz — oc), to the expres-
sion suggested in [ 5]. This has the property that, when
expanded in perturbation theory (e""’" = () — o),
it exactly reproduces both the tree-level and one-loop
13tgR* terms of the type IIB theory as well as an in-
finite series of D-instanton terms [5,4]. Importantly,
the divergent term in (12)is proportional to V, and
does not contribute in the limit of relevance to ten-
dimensional type IIB - thus the eleven-dimensional
one-loop calculation reproduces the complete, finite,
1313 R* effective action in the type IIB theory.

As before, the coefficient of the tree-level term in
the type IIB superstring perturbation theory is repro-
duced by the configurations with I =0, in which the
particle in the loop winds around the elcventh dimen-
sion but not the tenth (obviously there is a symmetry
under the interchange of these directions so we could
equally well consider the terms with {1 =0). In order
to expand (12) systematically for large {1, it is nec-
essary to undo the Poisson summation on [, for the
terms with f; # 0. These terms are then expressed as a
sum of multiply-wound D-particle world-lines where
the winding number is I, and the D-particle charge is
the Kaluza-Klein charge, /. In the limit V; — O the
terms with /| = O reproduce the one-loop grgR* term
of ten-dimensional type IIB while the [, # O terms
give the contribution of the sum of D-instantons. The
precise contribution due to the world-line of a par-
ticular wrapped massive D-particle (of mass /, and
winding /») to this instanton sum is identical to that
obtained by considering semiclassical quantization of
four-graviton scattering in this background. Super-
symmetry causes all quantum corrections to vanish.
The additional tact that the one-loop string theory re-
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sult is equivalent to the sum of windings of a massless
D-particle (the supergraviton) is notable [4]. From
the point of view of the string calculation this term
arises from wrapping the string world-sheet in a de-
generate manner around a circle.

We can now use the additional constraint of T-
duality to pin down the precise value of C. This is de-
termined by recalling that the one-loop terms in both
the IIA and IIB theories are invariant under inversion
of the circumference, rq «» r;l This equates the co-
efficients of the V; term and the Q'/ZV Y2 terms in
(12), and the result is that the coefﬁc1enl C must be
set equal to the particular value,

C= 3 (14)

The fact that the modular function in (2) is a Maass
wave form satisfying (3) is casily deduced from the
integral representation, (12). Developing a geometri-
cal understanding of the origin of this equation would
be of interest.

Upon compactifying on T3 new issues arise. The
full U-duality group is SI(3,Z) x SI(2,Z). The seven
moduli consist of the six moduli associated with the
three-torus and C ,(;3), the component of the antisym-
metric three-form on the torus. The latter couples to
the euclidean three-volume of the M-theory two-brane
which can wrap around 73. The perturbative eleven-
dimensional one-loop expression can be cxpected to
reproduce the effects of the Kaluza-Klein modes but
not of the wrapped Membrane world-volume. How-
ever, these wrapped Membrane effects will be deter-
mined in the following by imposing U-duality and
making use of the one-loop results for type II string
theory compactified on T2 [4]. We will write the com-
plete four-graviton amplitude as

WA = 2R H, (15)

where the scalar function H depends on the seven
moduli ficlds. There are several distinct classes of
terms that will make separate contributions to the com-
plete function H =%, H,.

The cffects of the Kaluza-Klein modes are obtained
from (10) with n = 3. In order to compare with string
theory on 72 we will choose Ry to be the special M-
theory direction so that Ry; = 2%"/3, wherc ¢ is the
IIA dilaton (although the expression obviously has

complete symmetry between all three compact direc-
tions). The sums over windings will be divided into
various groups of terms. Firstly, there is the term with
zero winding in all directions which is again divergent
but will be set equal to the regularised value given by
C in (14), which implies

ar T
H =-W==",
1=3¥=3h (16)
where 7 is the imaginary part of the Kihler structure
of T2. The sum over [} # O with [, = [; = 0 once
again leads to the correct tree-level string contribution
proportional to {(3),

1 "
Hy ={(3) — —;(3);e—2¢. (17)

R?.

The remaining sum is over all values of i, Iz and
I excluding the I, = I3 = 0 terms. This is usefully
reexpressed by converting the I} sum to a sum over
Kaluza-Klein modes by a Poisson resummation. The
sum of these terms is

o0

H3+H4_,/dglc 3 Z/d%

(b #0000 I

o1 G .+ G , 1
2mihly—— + 2mil |3 — — =l
xcxp[mlzcll+ 1rt|3G” T o

Gl G?
-7 B(Gn - =2) + (G - =1
(z 2 G”) 3(G33 G”)

GGz 4 5
—G;——)lzlz)]

=7 Yy 27(17‘-

(hy#00) I 9

+2(Gyp3 ~

1 N aa
X exp [‘ﬂlfe‘z‘“; + 2wl [, A — W?I,Ijg,'j-
(18)
In this expression Gj; is the metric on 7 in M-theory
coordinates with the convention that i = 12 — u (i =

1,2,3) and the components of the IIA string sigma-
model metric on the two-torus are given by

GG
g =Rn (G.-,-~‘—L’), (19)

11
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where i, j = 2, 3. The components of the R ® R one-
form potentials in the directions of the two-torus in
(18) are defined by

Gy;

A =
G

(20)
The expression (18) depends on the R ® R onc-form,
the complex structure of the two-torus,

1
U= ?(g;‘ﬁi\/dexgﬁ) 21
22

and the combination Tze‘zd’A. But it does not depend
separately on the Kahler structure,

T =By +i/detgh =C5) + iV, (22)

where V3 = RgR R In the last step we have used the
usual identification of the NS ® NS two-form with the
M-theory three-form, C3), and the fact that r5r§ =
R9RoR}), where r# is the circumference of the di-
mension labelled { in the IIA sigma-model frame.

The expression (18) contains perturbative and non-
perturbative contributions to the tgtg R* term in the IIA
effective action. The perturbative term is obtained by
setting I, = 0. The resulting double sum over Iyand I3
is logarithmically divergent, just as in the analogous
problem considered in [8]. This is a reflection of the
fact that the one-loop diagram in eight-dimensional
supergravity is logarithmically divergent. As in [8,4],
this divergence may be regularized in a unique manner
that is consistent with modular invariance by adding
aterm, ¥ = In(T,Uy/A?), giving

Uy

m - In(Usz/Az)

Hy =
() #(0.0)
=~ [In(U2n(D)]Y +In(T2)], (23)

where A? is adjusted to cancel the divergence coming
from the sum. So we see that the piece of the pertur-
bative string theory one-loop amplitude that depends
on U is reproduced by configurations in which a mass-
less particle propagating in the loop has a world-line
that winds around the torus. This is the generalization
of the way in which the IIB one-loop term was re-
produced earlier by windings of a massless D-particle
around a circle.

The terms with /; # 0 in (18) consist of a sum of
non-perturbative D-instanton contributions,

= 4 4]
He=2U0! D o

iy B31* 00)
T

x K (27Tp$\i2 + i3U”Il|) e2i1rl|(i2‘4“!+[mm),
(24)

where pf = rfe“". Using the fact that K,(z) =
e 2 (1+o( 1/z)) for large z we see that at weak

IIA coupling, e~*" — o0, these terms are exponen-
tially suppressed. The contribution of thesc instanton
terms in the nine-dimensional case described earlier
is obtained by letting r{ - oc. In this case U — ioo
and only the /3 = 0 term in (24) survives. The double
sum over /; and [, becomes the nine-dimensional D-
instanton sum contained in (12) which was explicitly
given in [4].

So far we have ignored the contributions to the
tg2g R* term arising from configurations in which the
world-volume of the M-theory Membrane is wrapped
around T>. Such contributions are obviously not con-
tained in the one-loop D = 11 supergravity amplitude.
As with the contributions that came from circulating
D-particles, the configurations that contribute to the
tgtg R* term are described by the multiple windings of
world-lines of nine-dimensional BPS states in ultra-
short (256-dimensional) multiplets. Recall that these
nine-dimensional states are winding states of funda-
mental strings with no momentum or oscillator exci-
tations which are configurations of the wrapped M-
theory Membrane with no Kaluza-Klein cxcitations.
Such contributions are therefore labelled by two inte-
gers and depend only on the volume of the three-torus,
det G, and on C*¥ but are independent of the other
five components of the metric (i.e., they depend only
on T and T). These configurations of the ITA string
world-sheet are just those that enter the functional in-
tegral for the tgtgR* term at one loop in string pertur-
bation theory. Indeed, as explained in [4] (and in an
analogous problem in [13,14]), the piece of the one-
loop string amplitude that depends on T and T is given
by a sum over non-degencrate wrapped world-sheets
and contributes
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Hs =2 Z ;I (eZm'mnT + e—27rimn1_')

mn>0
= [m(]n(r)r‘) + %Tz - In(Tz)] , (25)

where m,n are the integers that label the windings
of the world-sheet. The sum of H;, H3 and Hs re-
produces the full one-loop perturbative string theory
result. Applying T-duality in one of the toroidal di-
rections transforms this into the one-loop term of the
IIB theory. The completc non-perturbative structure
of the ten-dimensional f3tg R* terms of the IIB theory
can then be recovered using the series of dualities de-
scribed in [4].

The total contribution to the tgtgR* terms in the
eight-dimensional effective action is given (in IIA
string coordinates) by

Spo ~ | d®x/gA®) rird H 1stgRY, (26)

where H = Zf=1 H; and we have ignored an overall
constant. This expression is invariant under the requi-
site SI(3,Z) ®SI(2, Z) U- duality symmetry. The par-
ticle winding numbers ({1, 12, 13) transform as a 3 of
SI(3,Z) while the windings of the Membrane (m, n)
transform as a 2 of 8I(2,Z). The decoupling of the
two factors in the U-duality group arises from the fact
that the uitra-short BPS states in nine dimensions do
not contain both a wrapped Membrane and Kaluza-
Klein charges. Compactification on 7* to seven dimen-
sions is more complicated since the U-duality group
is SI(5,Z), which is not a product of two factors. The
1313 R* terms in this case depends on the BPS spectrum
in cight dimensions, which was discussed in [19].
In this paper we have studied properties of the
one-loop amplitude in eleven-dimensional super-
gravity compactified on tori to lower dimensions.
Upon compactifying to nine dimensions on 7? this
amplitude reproduces the complete perturbative and
non-perturbative tgtg R* terms in the effective actions
for the corresponding string theories if the ulta-violet
divergence is chosen to have a particular finite regu-
larized value (a value that can presumably be derived
from Matrix Theory). This value is also in agree-
ment with that obtained by supersymmetry which
relates it to the C3 A Xg term [4]. In the limit in
which the two-torus has zero volume, V, — 0, the
regularized term does not contribute and the com-

plete 1313 R* term of the ten-dimensional IIB theory
is reproduced precisely by the one-loop supergravity
calculation. It is noteworthy that the tgtgR* terms in
the IIB theory only get string-theory perturbative con-
tributions at tree-level and one loop, in addition to the
non-perturbative D-instanton contributions. This is
tantalizingly similar to the structure of the F? terms in
N =2 super Yang-Mills theory in D = 4 dimensions.

Upon compactification to eight dimensions on 7°
the one-loop eleven-dimensional supergravity ampli-
tude reproduces the SI(3,Z)-symmetric picce of the
tgtg R* term that is associated with Kaluza-Klein in-
stantons. The remaining piece that arises from the
wrapped Membrane is uniquely determined by con-
sistency with the T-duality that relates the IIA and
IIB theories, together with one-loop string perturba-
tion theory. We have not addressed the new issues that
arise in compactification on manifolds of non-trivial
holonomy or compactification to lower dimensions.
For example, compactification on TS requires consid-
erations of the wrapped world-volume of the M-theory
five-brane.

In addition to the R* terms considered here there are
many other terms of the same dimension involving the
other fields of ten-dimensional string theory and M-
theory. In the language of type 11B supergravity some
of these terms conserve the R-symmetry charge (as
with the R* term) while some of them violate it in a
manner consistent with the instanton effects (such as
the A'6 term described in {5]).

Since there is no scalar field there is no possibil-
ity of a well-defined perturbation expansion in pow-
ers of a small coupling constant in eleven-dimensional
supergravity. Fortuitously, the relation of the rgtgR*
term to the eleven-form, C* A Xz, via supersymme-
try, implies that the one-loop expression is exact with
no corrections from higher-toop diagrams (sin [S
normalization of the cleven-form is fixed by ano
cancellation). This adds to the ever-increasing boa
evidence that the constraints of maximal supergray
are profoundly restrictive.

We wish to acknowledge EC support under the Hu-
man Capital and Mobility programme. MBG is grate-
ful to the University of Paris VI where this work was
completed.
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Abstract

We relate Type 1IB superstrings compactified to six dimensions on K3 to an eleven-dimensional
theory compactified on (S')®/Z,. Eleven-dimensional five-branes enter the story in an interesting
way.

1. Introduction

By now, there is substantial evidence for the existence of an eleven-dimensional
quantum theory with eleven-dimensional supergravity as its long wave-length limit.
Moreover, the theory contains two-branes and five-branes at least macroscopically, and
some of their properties are known; for instance, the x-invariant Bergshoeff-Sezgin-
Townsend action [1] describes the long wavelength excitations of a macroscopic two-
brane.

The description by eleven-dimensional supergravity with two-branes and five-branes is
expected to be valid when all characteristic length scales (of a space-time and the branes
that it contains) are large compared to the Planck length. One also has some information
about the behavior under certain conditions when some dimensions of space-time are
small compared to the Planck scale. For instance, the eleven-dimensional *“M-theory”
(where M stands for magic, mystery, or membrane, according to taste) on X x S!, with
X any ten-manifold, is equivalent to Type ITA on X, with a Type IIA string coupling
constant that becomes small when the radius of S! goes to zero. Likewise, the M-theory
on Y x K3, with ¥ a seven-manifold, is equivalent to the heterotic string on ¥ x T,
and the M-theory on X x S'/Z,, with X a ten-manifold, is equivalent to the Eg x Eg

! Research supported in part by NSF Grant PHY92-45317.
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heterotic string on X; in each case, the string coupling constant becomes small when
the volume of the last factor goes to zero.

The evidence for the existence of the M-theory (beyond the consistency of the
classical low energy theory) comes mainly from the success of statements deduced
from the relations of the M-theory to strings. Even a few more similar examples might
therefore significantly enrich the story. The purpose of the present paper is to add one
more such example, by arguing that the M-theory on Z x (S')?/Z, is equivalent to the
Type HIB superstring on Z x K3. Here Z is an arbitrary six-manifold, but as usual in
such arguments, by scaling up the metric of Z, one can reduce to the case that Z = RS,
In fact, once an equivalence is established between the M-theory on Z x (S! )3 /Z, and
Type 1IB on Z x K3 when Z is large, it can be followed into the region of small Z.

The equivalence of the M-theory on R® x (S!)°/Z, with Type IIB on R® x K3 was
also conjectured recently by Dasgupta and Mukhi [2] who independently pointed out
a problem - involving anomaly cancellation and the distribution of the twisted sectors
among fixed points — that will be addressed below. Some general comments about
Type 1IB on K3 as an M-theory orbifold were also made recently by Hull [3].

2. The low energy supergravity

Compactification of the Type IIB superstring on K3 gives a six-dimensional theory
with a chiral supersymmetry which (upon toroidal compactification to four dimensions)
is related to N = 4 supersymmetry in D = 4. ‘We will call this six-dimensional chiral
N = 4 supersymmetry (though the number of supercharges is only twice the minimum
possible number in D = 6).

The supergravity multiplet of chiral N = 4 supergravity contains, in addition to the
graviton, five self-dual tensors (that is two-forms with self-dual field strength) plus
gravitinos. The graviton in six dimensions has nine helicity states, while the self-dual
tensor has three, so the total number of bosonic helicity states is 9 + 5 - 3 = 24; the
gravitinos likewise have 24 helicity states. The supergravity multiplet has gravitational
anomalies (which cannot be canceled by the Green-Schwarz mechanism alone), so any
consistent theory with chiral N = 4 supergravity in six dimensions must contain matter
multiplets also.

There is actually only one possible matter multiplet in chiral N = 4 supersymmetry.
It is the tensor multiplet, which contains five spin zero bosons, an anti-seif-dual anti-
symmetric tensor (that is a two-form field whose field strength is anti-self-dual) with
three helicity states, and 5 + 3 = 8 helicity states of chiral fermions. Cancellation of
gravitational anomalies requires that the number of tensor multiplets be precisely 21.

Using only the low energy supergravity, one can deduce (for a survey of such
matters see [4]) that the moduli space M of vacua is locally the homogeneous
space SO(21,5)/S0(21) x SO(5). In the particular case of a chiral N = 4 the-
ory obtained by compactification of Type IIB on K3, the global structure is actu-
ally (as asserted in Eq. (4.16) of {5]; see [6] for a more precise justification)
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M = S0(21,5;Z)\S0(21,5) /SO(21) x SO(5). This depends on knowledge of con-
formal field theory T-duality on K3 [7] together with the SL(2,Z) symmetry of ten-
dimensional Type IIB superstring theory.

Note that since there is no scalar in the chiral N = 4 supergravity multiplet, the
dilaton is one of the 5 x 21 = 105 scalars that come from the tensor multiplets. The
SO(21,5;Z) discrete symmetry mixes up the dilaton with the other 104 scalars, relating
some but not all of the “strong coupling” regimes to regions of weak coupling or large
volume.

2.1. Five-branes and the tensor multiplet anomaly

We will need some background about five-branes and gravitational anomalies.

We want to consider a certain model of global chiral N = 4 supergravity with the
tensor multiplet. To do this, we begin in eleven-dimensional Minkowski space, with
coordinates x',...,x!'" (x! being the time), and gamma matrices I'!,...,I"'! which
obey

r'rr...r't=1. (2.1
Now we introduce a five-brane with world-volume given by the equations
=.=xl=0. (2.2)

The presence of this five-brane breaks half of the 32 space-time supersymmetries. The
16 surviving supersymmetries are those that obey I 7...I'"" = 1, or equivalently, in
view of (2.1), I''...I'® = 1. Thus, the surviving supersymmetries are chiral in the
six-dimensional sense; the world-volume theory of the five-brane has chiral N = 4
supersymmetry. This is global supersymmetry since — as the graviton propagates in bulk
- there is no massless graviton on the five-brane world-volume.

Therefore, the massless world-volume fields must make up a certain number of tensor
multiplets, this being the only matter multiplet allowed by chiral N = 4 supergravity.
In fact, there is precisely one tensor multiplet. The five massless scalars are simply
the fluctuations in x’,...,x'!"; the massless world-volume fermions are the Goldstone
fermions associated with the supersymmetries under which the five-brane is not invariant;
and the anti-self-dual tensor has an origin that was described semiclassically in [8].
The assertion that the massless world-volume excitations of the five-brane consist of
precisely one tensor multiplet can also be checked by compactifying the x!! direction
on a circle, and comparing to the structure of a Dirichlet four-brane of Type IIA [9].
(In compactifying the M-theory to Type IIA, the five-brane wrapped around x'! turns
into a four-brane; the tensor multiplet of 5+ 1 dimensions reduces to a vector multiplet
in 4 + 1 dimensions, which is the massless world-volume structure of the Dirichlet
four-brane.)

Now we want to allow fluctuations in the position of the five-brane and compute the
quantum behavior at long wavelengths. At once we run into the fact that the tensor
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multiplet on the five-brane world-volume has a gravitational anomaly. Without picking
a coordinate system on the five-brane world-volume, how can one cancel the anomaly
in the one loop effective action of the massless world-volume fields (even at very long
wavelengths where the one loop calculation is valid)?

This question was first discussed by Duff, Liu, and Minasian [10]; what follows is a
sort of dual version of their resolution of the problem.? The tensor multiplet anomaly
cannot be cancelled, as one might have hoped, by a world-volume Green-Schwarz
mechanism. Instead one has to cancel a world-volume effect against a bulk contribution
from the eleven-dimensional world, rather as in [11].

This theory has in the long-wavelength description a four-form F that is closed in the
absence of five-branes, but which in the presence of five-branes obeys

dF = by (2.3)

where 8y is a delta-function supported on the five-form world-volume V. There is here a
key point in the terminology: given a codimension n submanifold W of space-time, the
symbol 8y will denote not really a delta “function” but a closed n-form supported on W
which integrates to one in the directions normal to W. For instance, in one dimension,
if P is the origin on the x-axis, then 6p = 8(x) dx where &(x) is the “Dirac delta
function” and 8(x) dx is, therefore, a closed one-form that vanishes away from the
origin and whose integral over the x-axis (that is, the directions normal to P) is 1. With
Sy thus understood as a closed five-form in the five-brane case, (2.3) is compatible with
the Bianchi identity d(dF) = 0 and is, in fact, sometimes taken as a defining property
of the five-brane as it asserts that the five-brane couples magnetically to F.

Now suppose that in the low energy expansion of the effective eleven-dimensional
theory on a space-time M there is a term

AL = / FAL (2.4)
M

where I; is a gravitational Chern-Simons seven-form. Exactly which Chern-Simons
seven-form it should be will soon become clear. Under an infinitesimal diffeomorphism
x! — x' + ev’ (e being an infinitesimal parameter and v a vector field), I; does not
transform as a tensor, but rather I; — Iy + dJs, where Jg is a certain six-form (which

depends upon v). The transformation of AL under a diffeomorphism is therefore

AL—*AL+/FAdJ6=AL—/dFA15. (2.5)

Thus, AL is generally covariant in the absence of five-branes, but in the presence of a
five-brane, according to (2.3), one gets

21In the very similar case of ten-dimensional Type IIA five-branes, the dual version was worked out in
unpublished work by J. Blum and J.A. Harvey.
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AL — AL — /16. (2.6)
v

But gravitational anomalies in n dimensions involve precisely expressions f Jn where
J, is as above (that is, J, appears in the transformation law of a Chern-Simons n 4 1-
form I,,1 by Ins1 — I + dJy; see {12] for an introduction to such matters.) Thus
with the correct choice of I7, the anomaly of AL in the presence of a five-brane precisely
cancels the world-volume anomaly of the tensor multiplet. This is thus a case in which
an interaction in the bulk is needed to cancel on anomaly on the world-volume. Moreover
(as explained in a dual language in [10]), the presence in eleven dimensions of the
interaction AL can be checked by noting that upon compactification on a circle, this
interaction reduces to the H A I7 term found in [13] for Type IIA superstrings; here H
is the usual three-form field strength of the Type IIA theory.

What has been said to this point is sufficient for our purposes. However, I cannot resist
a further comment that involves somewhat similar ideas. The seven-form F’ dual to F
does not obey dF’ = 0 even in the absence of five-branes; from the eleven-dimensional
supergravity one finds instead

dF'-{—%F/\F:O. 2.7)

One may ask how this is compatible with the Bianchi identity d(dF’) = 0 once - in the
presence of five-branes - one encounters a situation with dF # 0. The answer involves
the anti-self-dual three-form field strength T on the five-brane world-volume. According
to Eq. (3.3) of [14], this field obeys not - as one might expect — dT = 0, but rather
dT = F. If then in the presence of a five-brane, (2.7) becomes

dF'+%F/\F—T/\6V=0, (2.8)

then the Bianchi identity still works even in the presence of the five-brane. The T A by
term in fact follows from the coupling in Eq. (3.3) of [14], which gives a five-brane
contribution to the equation of motion of the three-form A. Thus, we get a new derivation
of the relevant coupling and in particular of the fact that dT = F.

3. Type IIB on K3

We now come to the main focus of this paper. One would like to understand the
“strong coupling behavior” of the Type IIB theory compactified on K3, or more precisely,
the behavior as one goes to infinity in the moduli space M of vacua. As explained above,
this theory has a SO(21,5;Z) discrete symmetry, which gives many identifications of
strong coupling or small volume with weak coupling or large volume, but there remain
(as in, [5], Section 3, or {6]) inequivalent limits in which one can go to infinity in
M.



The World in Eleven Dimensions 177

Any limit can be reached by starting at a given point P € M and then considering
the one-parameter family of vacua P, = ¢'*P where x is a generator of SO(21,5) and
t is a positive real number. As r — 0o, one approaches infinity in M in a direction
that depends upon x. In any such limit, by looking at the lightest states, one aims to
find a description by an effective ten-dimensional string theory or eleven-dimensional
field theory. The duality group visible (though mostly spontaneously broken, depending
on the precise choice of P) in this effective theory will include the subgroup I" of
SO(21,5;Z) that commutes with x (and so preserves the particular direction in which
one has gone to infinity).

As in [5,6], one really only needs to consider x’s that lead to a maximal set of light
states, and because of the discrete SO(21,5;Z), there are only finitely many cases to
consider. We will focus here on the one limit that seems to be related most directly to
the M-theory.

Consider a subgroup SO(16) x SO(5,5) of SO(21,5). Let x be a generator of
SO(5,5) that commutes with an SL(5) subgroup. Then the subgroup of SO(21,5;Z)
that commutes with x — and so is visible if one goes to infinity in the direction determined
by x - contains SO(16) x SL(5,Z).

Since it will play a role later, let us discuss just how SL(5,Z) can be observed as a
symmetry at infinity. Instead of making mathematical arguments, we will discuss another
(not unrelated, as we will see) physical problem with SO(21,5;Z) symmetry, namely
the compactification on a five-torus of the SO(32) heterotic string to five dimensions,
with SO(21,5;Z) as the T-duality group. The region at infinity in moduli space in which
there is a visible SL(5,Z) symmetry is simply the large volume limit, with the torus
large in all directions. In what sense can SL(5,Z) be “observed”? It is spontaneously
broken (to a finite subgroup, generically trivial) by the choice of a metric on the five-
torus, but, if one is free to move around in the moduli space of large volume metrics
(remaining at infinity in M) one can see that there is a spontaneously broken SL(5,Z).

Now, actually, the relevant region at infinity in moduli space is parametrized by a large
metric on the torus, a B-field, and a flat SO(32) bundle described by five commuting
Wilson lines W;. (For the moment we take the flat bundle to be topologically trivial,
a point we return to in Subsection 3.4.) If one is free to vary all of these, one can
certainly observe the full SL(5, Z). Suppose, though, that in some method of calculation,
the Wilson lines are frozen at particular values, and one can only vary the metric and
B-field. Then one will only observe the subgroup of SL(5,Z) that leaves the Wilson
lines invariant.

For instance, if the Wilson lines are trivial — a rather special situation with unbroken
SO(32) -~ one will see all of SL(5,Z). Here is another case that will enter below though
it will appear mysterious at the moment. As the W; commute, they can be simultaneously
diagonalized, with eigenvalues A, a = 1,...,32. Suppose that the A} are all 1, and
have the property that for each fixed a, [] jAj = -1 There are 16 collections of five
+1’s whose product is —1 (namely 1,1, 1,1, —1 and four permutations of that sequence;
1,1,—1,—1, —1 and nine permutations of that sequence; and —1, -1, -1, -1, —1). Let
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the A} be such that each such permutation appears exactly twice. This breaks SL(5,Z)
to the finite index subgroup I" consisting of SL(5,Z) matrices M/, j,k=1,...,5 such
that j M/, is odd for each fixed k. If the Wilson lines are frozen at the stated values,
it is only I" and not all of SL(5,Z) that can be observed by varying the metric and
B-field.

3.1. Interpretation of the symmetry

Let us go back to the Type IIB theory on K3 and the attempt to interpret the strong
coupling limit that was described, the one with a visible SL(5,Z). As in the example
just discussed, the SL(5,Z) symmetry is strongly suggestive of the mapping class group
of a five-torus. Thus, one is inclined to relate this particular limit of Type IIB on K3 to
the M-theory on RS times a five-manifold built from (S')3. This cannot be (S!)? itself,
because the M-theory on R® x (S')3 would have twice as much supersymmetry as we
want. One is tempted instead to take an orbifold of (S')® in such a way as to break
half of the supersymmetry while preserving the SL(5,Z).

A natural way to break half the supersymmetries by orbifolding is to divide by a
Z, that acts as —1 on all five circles. This is actually the only choice that breaks
half the supersymmetry and gives a chiral N = 4 supersymmetry in six dimensions. In
fact, dividing by this Z, leaves precisely those supersymmetries whose generators obey
I'r#...r'e = e. This condition was encountered in the discussion of the five-brane,
and leaves the desired chiral supersymmetry. So M-theory compactified on (S')3/Z; is
our candidate for an eleven-dimensional interpretation of Type IIB superstrings on K3.

More precisely, the proposal is that M-theory on (S!)°/Z; has the property that when
any S' factor in (8')3/Z; goes to zero radius, the M-theory on this manifold goes over
to a weakly coupled Type IIB superstring. This assertion should hold not just for one
of the five circles in the definition of (S')3/Z,, but for any of infinitely many circles
obtained from these by a suitable symmetry transformation.

3.2. Anomalies

Let us work out the massless states of the theory, first (as in [15]) the “untwisted
states,” that is the states that come directly from massless eleven-dimensional fields, and
then the “twisted states,” that is, the states that in a macroscopic description appear to
be supported at the classical singularities of (S')°/Z,.

The spectrum of untwisted states can be analyzed quickly by looking at antisymmetric
tensors. The three-form A of the eleven-dimensional theory is odd under parity (because
of the AAF AF supergravity interaction). Since the Z; by which we are dividing (S!)3
reverses orientation, A is odd under this transformation. The zero modes of A on (S!)?
therefore give, after the Z, projection, five two-forms (and ten scalars, but no vectors or
three-forms) on R®. The self-dual parts of these tensors are the expected five self-dual
tensors of the supergravity multiplet, and the anti-self-dual parts are part of five tensor
multiplets. The number of tensor multiplets from the untwisted sector is therefore five.
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Just as in [15], the untwisted spectrum is anomalous; there are five tensor multiplets,
while 21 would be needed to cancel the gravitational anomalies. 16 additional tensor
multiplets are needed from twisted sectors.

The problem, as independently raised in [2], is that there appear to be 32 identical
twisted sectors, coming from the 32 fixed points of the Z, action on (S')5. How can
one get 16 tensor multiplets from 32 fixed points? We will have to abandon the idea of
finding a vacuum in which all fixed points enter symmetrically.

Even so, there seems to be a paradox. As explained in [15], since the eleven-
dimensional theory has no gravitational anomaly on a smooth manifold, the gravitational
anomaly of the eleven-dimensional massless fields on an orbifold is a sum of delta
functions supported at the fixed points. In the case at hand, the anomaly can be canceled
by 16 tensor multiplets (plus a Green-Schwarz mechanism), but there are 32 fixed points.
Thus, each fixed point has an anomaly, coming from the massless eleven-dimensional
fields, that could be canceled by 16/32 = 1/2 tensor multiplets.?> The paradox is that
it is not enough to globally cancel the gravitational anomaly by adding sixteen tensor
multiplets. One needs to cancel the anomaly locally in the eleven-dimensional world,
somehow modifying the theory to add at each fixed point half the anomaly of a tensor
multiplet. How can this be, given that the tensor multiplet is the only matter multiplet
of chiral N = 4 supersymmetry, so that any matter system at a fixed point would be a
(positive) integral number of tensor multiplets?

3.3. Resolution of the paradox

To resolve this paradox, the key point is that because the fixed points in (SH3 /2
have codimension five, just like the codimension of a five-brane world-volume, there
is another way to cancel anomalies apart from including massless fields on the world-
volume. We can assume that the fixed points are magnetic sources of the four-form F.
In other words, we suppose that (even in the absence of conventional five-branes) dF
is a sum of delta functions supported at the orbifold fixed points. If so, then the bulk
interaction 4L = [ F A I; that was discussed earlier will give additional contributions to
the anomalies supported on the fixed points.

Since a magnetic coupling of F to the five-brane cancels the anomaly of a tensor
multiplet, if an orbifold fixed point has “magnetic charge” —1/2, this will cancel the
anomaly from the eleven-dimensional massless fields (which otherwise could be can-
celed by 1/2 a tensor multiplet). If an orbifold fixed point has magnetic charge +1/2,
this doubles the anomaly, so that it can be canceled if there is in addition a “twisted
sector” tensor multiplet supported at that fixed point. Note that it is natural that a Z,
orbifold point could have magnetic charge that is half-integral in units of the usual
quantum of charge.

* The eleven-dimensional massless fields by obvious symmetries contribute the same anomaly at each fixed
point,
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A constraint comes from the fact that the sum of the magnetic charges must vanish
on the compact space (S')°/Z,. Another constraint comes from the fact that if we
want to maintain supersymmetry, the charge for any fixed point cannot be less than
—1/2. Indeed, a fixed point of charge less than —1/2 would have an anomaly that
could not be canceled by tensor multiplets; a negative number of tensor multiplets or a
positive number of wrong chirality tensor multiplets (violating supersymmetry) would
be required. An example of how to satisfy these constraints and ensure local cancellation
of anomalies is to assign charge —1/2 to 16 of the fixed points, and charge +1/2 to the
other 16. With one tensor multiplet supported at each of the last 16 fixed points, such a
configuration has all anomalies locally cancelled in the eleven-dimensional sense.

Here is another way to cancel the anomalies locally. Assign magnetic charge —1/2 to
each of the 32 fixed points, but include at each of 16 points on (S')3/Z; a conventional
five-brane, of charge 1. The total magnetic charge vanishes (as 32(—1/2) +16 = 0) and
since both a fixed point of charge —1/2 and a conventional five-brane are anomaly-free,
all anomalies are cancelled locally. Each five-brane supports one tensor multiplet; the
scalars in the tensor multiplets determine the positions of the five-branes on (S')3/Z,.

I would like to suggest that this last anomaly-canceling mechanism is the general one,
and that the case that the magnetic charge is all supported on the fixed points is just a
special case in which the five-branes and fixed points coincide. In fact, if a five-brane
happens to move around and meet a fixed point, the charge of that fixed point increases
by 1. This gives a very natural interpretation of the “twisted sector” modes of a fixed
point of charge 1/2. Such a fixed point supports a tensor multiplet, which contains five
scalars; we interpret the scalars as representing a possible perturbation in the five-brane
position away from the fixed point.

If we accept this interpretation, there is no issue of what is the “right” configuration
of charges for the fixed points; any configuration obeying the constraints (total charge
0 and charge at least —1/2 for each fixed point) appears somewhere on the moduli
space. The only issue is what configuration of charges has the most transparent relation
to string theory.

Let us parametrize the five circles in (S')> by periodic variables x/, j = 7,...,11,
of period 1, with Z;, acting by x/ — —x/ so that the fixed points have all coordinates
0 or 1/2. We take SL(5,Z) to act linearly, by ¥ — M/, x*, with M/; an SL(5,Z)
matrix. Thus SL(5,Z) leaves invariant one fixed point P, the “origin” x/ = 0, and
acts transitively on the other 31. The only SL(5,Z)-invariant configuration of charges
obeying the constraints is to assign magnetic charge +31/2 to P and —1/2 to each
of the others. Then each of the 16 tensor multiplets would be supported at the origin.
This configuration cancels the anomalies and is SL(5,Z) invariant. However, it does
not seem to be the configuration with the closest relation to string theory.

To see this, consider the limit in which one of the circles in (S!)® becomes small. To
an observer who does not detect this circle, one is then left with (S! )“/Zz, which is a
K3 orbifold. Our hypothesis about M-theory on (S')3/Z, says that this theory should
go over to weakly coupled Type IIB on K3 when any circle shrinks. In (8")4/Z,, there
are 16 fixed points; in quantization of Type IIB superstrings on this orbifold, one tensor



The World in Eleven Dimensions 181

multiplet comes from each of the 16 fixed points.

In M-theory on (S')°/Z,, there are 32 fixed points. When one of the circles is small,
then - to an observer who does not resolve that circle - the 32 fixed points appear to
coalesce pairwise to the 16 fixed points of the string theory on (S!)*/Z,. To reproduce
the string theory answer that one tensor multiplet comes from each singularity, we want
to arrange the charges on (S')3/Z; in such a way that each pair of fixed points differing
only in the values of one of the coordinates contributes one tensor multiplet.

This can be done by arranging the charges in the following “checkerboard” config-
uration. If a fixed point has 7, x/ integral, we give it charge —1/2. If 3~ %/ is a
half-integer, we give it charge +1/2. Then any two fixed points differing only by the
value of the x/ coordinate - for any given j — have equal and opposite charge, and
contribute a total of one tensor multiplet.

Moreover, the four-form field strength F of the M-theory reduces in ten dimensions
to a three-form field strength H. This vanishes for string theory on K3, so one can ask
how the string theory can be a limit of an eleven-dimensional theory in a vacuum with
non-zero F. If we arrange the charges in the checkerboard fashion, this puzzle has a
natural answer. In the limit in which the jth circle shrinks to zero, equal and opposite
charges are superposed and cancel, so the resulting ten-dimensional theory has zero H.

The checkerboard configuration is not invariant under all of SL(5,Z), but only under
the finite index subgroup I" introduced just prior to Subsection 3.1 (the subgroup
consisting of matrices M/ such that Z i M/, is odd for each k). Thus the reduction to
ten-dimensional string theory can work not only if one shrinks one of the five circles in
the definition of (8')3/Z,, but also if one shrinks any of the (infinitely many) circles
obtainable from these by a /" transformation.

Just as in the discussion in which I” was introduced, in the checkerboard vacuum, one
cannot see the full SL(5,Z) if the only parameters one is free to vary are the metric and
three-form A on (S')%/Z,. An SL(5,Z) transformation w not in I" is a symmetry only
if combined with a motion of the other moduli - in fact a motion of some five-branes
to compensate for the action of w on the charges of fixed points.

3.4. Check by comparison to other dualities

In the study of string theory dualities, once a conjecture is formulated that runs into no
immediate contradiction, one of the main ways to test it is to try to see what implications
it has when combined with other, better established dualities.

In the case at hand, we will (as was done independently by Dasgupta and Mukhi
[2]) mainly compare our hypothesis about M-theory on (S')S/Zz to the assertion that
M-theory on X x S! is equivalent, for any five-manifold X, to Type IIA on X.

To combine the two assertions in an interesting way, we consider M-theory on R3 x
S' x (8')3/Z,. On the one hand, because of the S' factor, this should be equivalent to
Type I1A on R3 x (S')3/Z,, and on the other hand, because of the (S')*/Z, factor, it
should be equivalent to Type IIB on R® x S! x K3.
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It is easy to see that, at least in general terms, we land on our feet. Type IIB on
R’ x S! x K3 is equivalent by T-duality to Type IIA on R’ x S! x K3, and the latter is
equivalent by Type IIA - heterotic duality to the heterotic string on R®>xS' xT* = R*xT?,
and thence by heterotic - Type I duality to Type I on R x T5.

On the other hand, Type IIA on R’ x (S')3/Z, is an orientifold which is equivalent
by T-duality to Type I on R®> x T° [16,17].

So the prediction from our hypothesis about M-theory on (S')3/Z, - that Type 1A
on (8")%/Z; should be equivalent to Type IIB on S' xK3 -~ is correct. This is a powerful
test.

Components of the moduli space

What remains to be said? The strangest part of our discussion about M-theory on
(8'")3/Z, was the absence of a vacuum with symmetry among the fixed points. We
would like to find a counterpart of this at the string theory level, for Type IIA on
(8Y)3/Z,.

The Type IIA orientifold on (S')3/Z; needs - to cancel anomalies - 32 D-branes
located at 32 points in (S')3; moreover, this configuration of 32 points must be invariant
under Z,. It is perfectly possible to place one D-brane at each of the 32 fixed points,
maintaining the symmetry between them. Does this not contradict what we found in
eleven dimensions?

The resolution of this puzzle starts by observing that the D-branes that are not at
fixed points are paired by the Z;. So as the D-branes move around in a Zj-invariant
fashion, the number of D-branes at each fixed point is conserved modulo two (if a D-
brane approaches a fixed point, its mirror image does also). Thus, there is a Z,-valued
invariant associated with each fixed point; allowing for the fact that the total number of
D-branes is even, there are 31 independent Z5’s.

What does this correspond to on the Type I side? A configuration of 32 D-branes on
(S")3/Z, is T-dual to a Type I theory compactified on (S')3 with a flat SO(32) bundle.
However, the moduli space of flat SO(32) connections on the five-torus is not connected
~ there are many components. One component contains the trivial connection and leads
when one considers the deformations to the familiar Narain moduli space of the heterotic
string on the five-torus. This actually corresponds to a D-brane configuration with an
even number of D-branes at each fixed point. The Wilson lines W; can be simultaneously
block-diagonalized, with 16 two-by-two blocks. The ath block in W; is

( co.s0,-_u sinf;, ) , (3.1)
—-sin@;, cosb;,

with 8,4, j = 1,...,5 being angular variables that determine the position on (8" of
the ath D-brane (which also has an image whose coordinates are —8;,).

There are many other components of the moduli space of flat connections on the
five-torus, corresponding to the 32 Z;’s noted above. Another component - in a sense
at the opposite extreme from the component that contains the trivial connection -
is the following. Consider a flat connection with the properties that the W; can all
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be simultaneously diagonalized, with eigenvalues A;, = £1, @ = 1,...,32. Since the
positions of the D-branes are the phases of the eigenvalues of the W;, this corresponds
to a situation in which all D-branes are at fixed points. Pick the A;, such that each of
the 32 possible sequences of five +1’s arises as A;, for some value of a. Then there
is precisely one D-brane at each of the 32 fixed points. This flat bundle - call it F
- cannot be deformed as a flat bundle to the flat bundle with trivial connection; that
is clear from the fact that the number of D-branes at fixed points is odd. Therefore,
F does not appear on the usual Narain moduli space of toroidal compactification of
the heterotic string to five dimensions. However, it can be shown that the bundle F is
topologically trivial so that the flat connection on it can be deformed (but not via flat
connections) to the trivial connection.* Thus, compactification using the bundle F is
continuously connected to the usual toroidal compactification, but only by going through
configurations that are not classical solutions.

The fact that the configuration with one D-brane at each fixed point is not on the
usual component of the moduli space leads to a solution to our puzzle. In reconciling
the two string theory descriptions of M-theory on R® x S! x (S!)3/Z,, a key step_was
Type IIA - heterotic string duality relating Type IIA on R’ x S! x K3 to the heterotic
string on R® x 8! x (§')* = R x T3. This duality holds with the standard component of
the moduli space on T, so even though the symmetrical D-brane configuration exists,
it is not relevant to our problem because it is related to a different component of the
moduli space of flat SO(32) bundles.

Working on the Type ITA orientifold on (S')>/Z, which is T-dual to a flat SO(32)
bundle on the usual component of the moduli space means that the number of D-branes
at each fixed point is even. With 32 D-branes and 32 fixed points, it is then impossible
to treat symmetrically all fixed points. One can, however, pick any 16 fixed points, and
place two D-branes at each of those, and none at the others. In the quantization, one
then gets one five-dimensional vector multiplet from each fixed point that is endowed
with a D-brane and none from the others.> Recalling that the vector multiplet is the
dimensional reduction of the tensor multiplet from six to five dimensions, this result
agrees with what we had in eleven dimensions: given any 16 of the 32 fixed points,
there is a point in moduli space such that each of those 16 contributes precisely one
matter multiplet, and the others contribute none.

It is possible that the absence of a vacuum with symmetrical treatment of all fixed
points means that these theories cannot be strictly understood as orbifolds, but in any
event, whatever the appropriate description is in eleven-dimensional M-theory, we have

4 In a previous draft of this paper, it was erroneously claimed that the bundle F was topologically non-trivial,
with non-vanishing Stieffel-Whitney classes. The error was pointed out by E. Sharpe and some topological
details were clarified by D. Freed.

3 This is most easily scen by perturbing to a situation in which the pair of D-branes is near but not at the
fixed point. For orientifolds, there are no twisted sector states from a fixed point that does not have D-branes.
After the Z; projection, a pair of D-branes in the orientifold produces the same spectrum as a single D-brane
in an unorientifolded Type 1IA, and this is a single vector multiplet, as explained in detail in Section 2 of
1 18].
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found a precisely analogous behavior in the ten-dimensional Type IIA orientifold.

Other similar checks

One might wonder about other similar checks of the claim about M-theory on
(8')%/Z,. One idea is to look at M-theory on R’ x S!/Z, x (S')/Z,. The idea
would be that this should turn into an Eg x Eg heterotic string upon taking the S'/Z,
small, and into a Type IIB orientifold on S'/Z, x K3 if one shrinks the (S!)3/Z,.
However, because the two Z;’s do not commute in acting on spinors, it is hard to make
any sense of this orbifold.

A similar idea is to look at M-theory on R* x K3 x (S')3/Z,. When the last factor
shrinks, this should become Type IIB on K3 x K3, while if the K3 factor shrinks ther.
(allowing, as in a discussion that will appear elsewhere [19], for how the Z; orbifolding
acts on the homology of K3) one gets the heterotic string on (S')®/Z,. These should
therefore be equivalent. But one does not immediately have tools to verify or disprove
that equivalence.

Relation to extended gauge symmetry and non-critical strings

A rather different kind of check can be made by looking at the behavior when some
D-branes - or eleven-dimensional five-branes - coincide.

Type TIA on K3 gets an extended SU(2) gauge symmetry when the K3 develops an
Ay singularity.® This is not possible for Type IIB on K3, which has a chiral N = 4
supersymmetry that forbids vector multiplets. Rather, the weakly coupled Type IIB
theory on a K3 that is developing an A; singularity develops [21] a non-critical string
(that is, a string that propagates in flat Minkowski space and does not have the graviton
as one of its modes) that couples to the anti-self-dual part of one of the antisymmetric
tensor fields (the part that is in a tensor multiplet, not in the supergravity multiplet).

This six-dimensional non-critical string theory is a perhaps rather surprising example,
apparently, of a non-trivial quantum theory in six-dimensional Minkowski space. Re-
cently, it was argued by Strominger [22] that by considering almost coincident parallel
five-branes in eleven dimensions, one gets on the world-volume an alternative realization
of the same six-dimensional non-critical string theory.

We can now (as partly anticipated by Strominger’s remarks) close the circle and
deduce from the relation between M-theory on T3/Z, and Type IIB on K3 why Type 1IB
on a K3 with an A, singularity gives the same unusual low energy dynamics as two
nearby parallel five-branes in eleven dimensions. This follows from the fact that in the
map from M-theory on T3/Z; to Type IIB on K3, a configuration on T3/Z; with twc
coincident five-branes is mapped to a K3 with an A, singularity. To sce that these
configurations are mapped to each other, it is enough to note that upon compactification
on an extra circle of generic radius, they are precisely the configurations that give an
enhanced SU(2). This may be deduced as follows:

6 We really mean a quantum A, singularity including a condition on a certain world-sheet theta angle {20].
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(1) M-theory on R® x S! x T3/Z, is equivalent to Type IIA on R® x T%/Z,, with the
five-branes replaced by D-branes, and gets an enhanced SU(2) gauge symmetry
precisely when two five-branes, or D-branes, meet. Indeed, when two D-branes
meet, their U(1) x U(1) gauge symmetry (a U(1) for each D-brane) is enhanced
to U(2) (from the Chan-Paton factors of two coincident D-branes), or equivalently
a U(1) is enhanced to SU(2).

(2) Type IIB on R x 8! x K3 is equivalent to Type IIA on R® x S' x K3 and therefore
- because of the behavior of Type IIA on K3 - the condition on the K3 moduli
that causes a U(1) to be extended to SU(2) is precisely that there should be an
A, singularity.

Other orbifolds

Dasgupta and Mukhi also discussed M-theory orbifolds R'! =" x (S')"/Z,. The Z,
action on the fermions multiplies them by the matrix I = ['=n+iil-nt2 i apq
the orbifold can therefore only be defined if I =1 (and not —1), which restricts us to
n congruent to 0 or 1 modulo 4.

The case n = 1 was discussed in [15], n = 4 gives a K3 orbifold, and n = 5 has
been the subject of the present paper. The next cases are n = 8,9. For n = 8, as there
are no anomalies, it would take a different approach to learn about the massless states
from fixed points. For n = 9, Dasgupta and Mukhi pointed out the beautiful fact that
the number of fixed points — 2° = 512 - equals the number of left-moving massless
fermions needed to cancel anomalies, and suggested that one such fermion comes from
each fixed point. Since the left-moving fermions are singlets under the (chiral, right-
moving) supersymmetry, this scenario is entirely compatible with the supersymmetry
and is very plausible.

Reduced rank

Finally, let us note the following interesting application of part of the discussion above.
Toroidal compactification of the heterotic (or Type I) string on a flat SO(32) bundle
that is not on the usual component of the moduli space (being T-dual to a configuration
with an odd number of D-branes at fixed points) gives an interesting and simple way
to reduce the rank of the gauge group while maintaining the full supersymmetry. Since
2n + 1 D-branes at a fixed point gives gauge group SO(2n + 1), one can in this way
get gauge groups that are not simply laced. Models with these properties have been
constructed via free fermions [23] and as asymmetric orbifolds [24].
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Abstract

The component form of the equations of motion for the 5-brane in eleven dimensions is derived from the superspace
equations. These equations are fully covariant in six dimensions. It is shown that double-dimensional reduction of the
bosonic equations gives the equations of motion for a 4-brane in ten dimensions governed by the Bom-Infeld action. ©

1997 Elsevier Science B.V.

1. Introduction

It is now widely believed that there is a single under-
lying theory which incorporates all superstring theo-
ries and which also has, as a component, a new theory
in eleven dimensions which has been christened “M-
theory”. Opinion is divided as to whether M-theory
is itself the fundamental theory or whether it is one
corner of a large moduli space which has the five con-
sistent ten-dimensional superstring theories as other
corners. Whichever viewpoint turns out to be correct
it seems certain that M-theory will play a crucial role
in future developments. Not much is known about this
theory at present, apart from the fact that it has eleven-
dimensional supergravity as a low energy limit and
that it has two basic BPS p-branes, the 2-brane and
the 5-brane, which preserve half-supersymmetry. The
former can be viewed as a fundamental (singular) so-
lution to the supergravity cquations whereas the lat-

! Research supported in part by NSF Grant PHY-9411543.
2 Permanent address.

ter is solitonic. It is therefore important to develop a
better understanding of these branes and in particular
the 5-brane, since the Green-Schwarz action for the
2-brane has been known for some time.

In a recent paper [ 1] it was shown that all branes
preserving half-supersymmetry can be understood as
embeddings of one superspace, the worldsurface, into
another, the target superspace, which has spacetime as
its body, and that the basic embedding condition which
needs to be imposed is universal and geometrically
natural. The results of [ 1] were given mainly at the lin-
carized level; in a sequel [2] the eleven-dimensional
5-brane was studied in more detail and the full non-
linear equations of motion were derived. However,
these were expressed in superspace notation. It is the
purpose of this paper to interpret these equations in a
more familiar form, in other words to derive their com-
ponent equivalents. In the context of superembeddings
the component formalism means the Green-Schwarz
formalism since the leading term in the worldsurface
#-expansion of the embedding describes a map from
a bosonic worldsurface to a target superspace.

0370-2693 /97 /$17.00 © 1997 Elsevier Science B.V. All rights reserved.
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Partial results for the bosonic sector of the eleven-
dimensional fivebrane have becn obtained in [3-6].
More rccently, a non-covariant bosonic action has
been proposed [7,8]. In this approach, only the
five-dimensional covariance is manifest. In [9], a
complete bosonic action has been constructed. The
action contains an auxiliary scalar field, which can
be eliminated at the expense of sacrificing the six-
dimensional covariance, after which it reduccs to the
action of [7,8].

In this paper we will show that the covariant super-
field equations of motion of the eleven-dimensional
superfivcbrane presented in [1,2] can be written in -
invariant form, and that they do have the anticipated
Born-Infeld structure. The x-symmetry emerges from
the worldsurface diffeomorphism invariance of the su-
perspace equations, the parameter of this symmetry
being essentially the leading component in the world-
surface @-expansion of an odd diffeomorphism. We
find neither the need to introduce a scalar auxiliary
field, nor the necessity to have only five-dimensional
covariance. As long as one does not insist on having
an action, it is possible to write down six-dimensional
covariant equations, as one normally expects in the
case of chiral p-forms.

In order to show that our equations have the
expected Born-Infeld form we perform a double-
dimensional reduction and compare them with the
equations of motion for a 4-brane in ten dimensions. In
Section 4, we do this comparison in the bosonic sector,
and flat target space, and show that the Born-Infeld
form of the 4-brane equations of motion does indeed
emerge. The work of Refs. [1,2] is briefly reviewed
in the next section, and in Section 3 the equations of
motion are described in Green-Schwarz language.

2. Equations of metion in superspace

The 5-brane is described by an embedding of the
worldsurface M, which has (even|odd) dimension
(6]16) into the target space, M, which has dimension
(11{32). In local coordinates M = (x2,6%) for M
and zM for M the embedded submanifold is given as
7M(z)? . We define the embedding matrix E42 to be

TWe shall also denote the coordinates of M(M) by z =
(x.0)(z = (x,8)) if it is not necessary to use indices

the derivative of the embedding referred to preferred
bases on both manifolds:

Est = E\Moyz2Ey?, 1)

where Ey® (E4M) is the supervielbein (inverse su-
pervielbein) which relates the preferred frame basis
to the coordinate basis, and the target space superviel-
bein has underlined indices. The notation is as follows:
indices from the beginning (middle) of the alphabet
refer to frame (coordinate) indices, latin (greek) in-
dices refer to even (0dd) components and capital in-
dices to both, non-underlined (underlined) indices re-
fer to M (M) and primed indices refer to normal di-
rections. We shall also employ a two-step notation for
spinor indices; that is, for general formulae a spinor
index a (or a’) will run from 1 to 16, but to inter-
pret these formulae, we shall replace a subscript «
by a subscript pair ai and a subscript &’ by a pair
2 where a=1,...,4and i=1,...,4 reflecting the
Spin(1,5) xUSp(4) group structureof the N = 2,d =
6 worldsurface superspace. (A lower (upper) a in-
dex denotes a left-handed (right-handed) d = 6 Weyl
spinor and the d = 6 spinors that occur in the theory
are all symplectic Majorana-Weyl.)
The torsion 2-form T4 on M is given as usual by

T2 = dEA + EBQ 52, (2)

where ) is the connection 1-form. The pull-back of
this equation onto the worldsurface reads, in index
notation,

VAERS — (—~1)ABVREAS + TapC EcE
= (~D)ADEBE AT pC 3

where the derivative V4 is covariant with respect to
both spaces, i.e. with respect to both underlined and
non-underlined indices, the connection on M being,
at this stage at least, independent of the target space
connection.

The basic embedding condition is

E~=0, (4)
from which it follows that (using (3))
E2Eg®T, g =T.g'E~. (5

If the target space geometry is assumed to be that of
(on-shell) eleven-dimensional supergravity equation
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(4) actually determines completely the induced ge-
ometry of the worldsurface and the dynamics of the 5-
brane. In fact, as will be discussed elsewhere, it is not
necessary to be so specific about the target space ge-
ometry, but it will be convenient to adopt the on-shell
geometry in the present paper. The structure group
of the target superspace is Spin(1,10) and the non-
vanishing parts of the target space torsion are [ 10,11]

Tagt = ~i(T)ag, (6)

Tugt = — 55 (T2 gYHopey — b5 (Cabeae ) g2 HESE |

(7

where H,pq is totally antisymmetric, and the dimen-
sion 3/2 component Typ¥. Hgpeq is the dimension-one
component of the closed superspace 4-form Hy whose
only other non-vanishing component is

Hypys = —i(Tgp)ys - (8
With this target space geometry equation (5) becomes
El2EpP(T) g = T ES. 9)

The solution to this equation is given by

Eo%=u," + hoP ug™, (10)
and
Ed = m ups, (1)

together with

Top" = —i(TYap — i (¥ )ap - (12)

with 77;; = —n;; being the USp(4) invariant tensor
and the pair (u,%, u,-%) together making up an cle-
ment of the group Spin(1,10). Similarly, there is a
1,2 such that the pair (u,4,u,%) is the element of
SO(1,10) corresponding to this spin group element.
(The inverses of these group clements will be de-
noted (uﬂ",uﬁ"l) and (uﬁ",ug“l).) The tensor h,,BI
is given by *

ha® = Bl = 187 (Y)Y aphane . (13)

4 We have rescaled the Hupe and figpe of Refs. | 1.2] by a factor
of 6.

where Ay is self-dual, and
mg” = 8," = 2hgegh™ . (14)

This solution is determined up to local gauge transfor-
mations belonging to the group Spin(1,5) x USp(4),
the structure group of the worldsurface. One also has
the freedom to make worldsurface super-Weyl trans-
formations but one can consistently set the conformal
factor to be one and we shall do this throughout the
paper.

It is useful to introduce a normal basis E4 =
E4AE 4 of vectors at each point on the worldsurface.
The inverse of the pair (Es4, E42) is denoted by
(Ep*.Ep 4y, The odd-odd and even-even compo-
nents of the normal matrix E4 4 can be chosen to be

E % =u 2, (15)
and
E 4 =u,t. (16)

Together with (10) and (11), it follows that the in-
verses in the odd-odd and even-even sectors are

E," = u,", Eg"' = ul"l - llﬂﬂhﬂ"l , (17)
and
gu - “gb(m~l Yl Ei‘l, - uﬁu’ ) (18)

Later, we will also need the relations [2]

uetugf(T)ap = (T) aptta? (19)
UaZugB(T9) ap = (T arprita? (20)
Uatug (T 05 = (M Vaprttart (21)

which follow from the fact that the «’s form a 32 x 32
matrix that is an element of Spin(1, 10).

The field /i, is a self-dual antisymmetric tensor,
but it is not immediately obvious how it is related to
a 2-form potential. In fact, it was shown in [2] that
there is a superspace 3-form H3 which satisfies

dH3 = —1H,, (22)

where H, is the pull-back of the target space 4-form.
and whose only non-vanishing component is H,p.
where

! e
Hope = ma“my hege. (23)
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1ations of motion of the 5-brane can be ob-
tained by systematic analysis of the torsion equation
(3), subject to the condition (4) [2]. The bosonic
equations are the scalar equation

7K = s (Y Zagin (24)
and the antisymmetric tensor equation

Vhane = = 0™ (V)5 Zb) gk

+ 3 Y Ze i) (25)
where
Zus” = EgREST, g E,) — EXVGE,Y (26)
and
Vahbed = Vabied = 3Xa1p hedie » 27
with
Xan' = (Vaup-)us . (28)

In the scalar equation we have introduced a part of
the second fundamental form of the surface which is
defined to be

Ka© = (VAEHQ)EQC/ . 29)
Finally, the spin one-half equation is simply

(¥ x,5=0, (30)

where

X = ESLE,” (30

We end this section by rewriting the equations of
motion (24), (25) and (30) in an alternative form
that will be useful for the purposes of the next section:

ESES (T =0, (32)
NV ERE,S = - L (TP ), P Z,57 (33)
Vehape = =5 (FT )y PZeg? (34)

It will also prove to be useful to rewrite (26) as
Zup? = EgE (Tug¥ — Kug¥) EY . (35)
with the matrices 7, and K, defined as

Tt = EfTapt . (36)
Kot = ELER (V,Es® VEs2. (37

3. Equations of motion in Green-Schwarz form
3.1. Preliminaries

In this section we derive the component equations
of motion following from the superspace equations
given in the last section. The idea is to expand the
superspace equations as power series in 8% and to
evaluate them at § = 0. We may choose a gauge in
which the worldsurface supervielbein takes the form

E,(x,0) = E,“(x) + 0(0),

E,"(x,0) = E,"(x) + 0(8),

E,(x.0) =0+ 0(8),

E,"(x,0) =8, + 0(6), (38)
and the inverse takes the form

E(x,8) = EJ"(x) + 0(8),

Ef(x,0) = £ (x) +0(8),

E,"(x,0) =04 0 8),

E (x,8) = 8," +0(8), (39

where E,"(x) is the inverse of E,,“(x). The compo-
nent field E,, " (x) is the worldsurface gravitino, which
is determined by the embedding, but which only con-
tributes terms to the equations of motion which we
shall not need for the purpose of this section. The field
E*(x) is linearly related to the gravitino. From the
embedding condition (4) we learn that

3. MEy =0 atd=0. (40)
so that

uﬂ = umgmi af=0, (41)
Ef=E"E) at =0, (42)

where we have used the definitions
Epi(x) = dpMEyt a0=0, (43)
En™(X) =y EyE a6 =0. (44)

These are the cmbedding matrices in the Green-
Schwarz formalism, often denoted by T1. From (1)
we have

Ny o
ESErNan = My 0p 4. (45)
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this equation being true for all 8 and in particular for
# = 0. Therefore, if we put

e = ((m ") PE™) (x), (46)

we find that e,,¢ is the sechsbein associated with the
standard GS induced metric

gmn(X) = gmgsnh‘r]a_b- (47)

There is another metric, which will make its appear-
ance later, which we define as

G" = E"(x) Ey" (x) 0" (48)
=((m2)uheumebn)(x) . (49)

We also note the relation

uuﬂ = eu"lgmg B (50)

which follows from (11), (41) and (46).
For the worldsurface 3-form H3; we have

Hynp = EpCEg"E4™ Hapc

x (__I)((B+N)M+(P+C)(M+N)) (51)

Eivaluating this at 8 = O one finds

Hunp(X) = (EnEx"Ep°Habe) (x) (52)
so that, using (23) and (46), one finds

hape (x) = mytea"ey"ec” Hunp (X) . (53)

We are now in a position to write down the equations
of motion in terms of £,%, £,% and H,,, (x). The ba-
sic worldsurface fields are x™, 62 and B,,(x), where
B, is the 2-form potential associated with H,, as
Hy=dB, - }Cy and Cs is the pull-back of the target
space 3-form. We begin with the Dirac equation (30).

3.2. The Dirac equation

In order to extract the Dirac equation in x-invariant
component form, it is convenient to define the projec-
tion operators

ESEX=5(1+41),7, (54)
E E¥= 301 - 2. (55)

The I'-matrix, which clearly satisfies ['? = 1, can be
calculated from these definitions as follows. We ex-
pand

5
Eo"Et=Yy CU % [y ) ¥, (56)
n=0 -

where C’s are the expansion coefficients that are to
be determined. Tracing this equation with suitable ['-
matrices, and using the relations (19)-(21), we find
that the only non-vanishing cocfficients are

C=1, D
Ca_bg = %habcuagubﬁuc‘;’ (58)
Ca % = _Le“"“""ua,g' S ligge . 69

612
Substituting these back, and comparing with (54), we
find

1
IVE

X (_rm|~-~m6 +40rml~--m;hm4---m(,) ’ (60)

my---me

r

€

where we have used (50) and the definitions

o =& Ty, (61)

By = em e e Rape . (62)
The matrix I' can also be written as

I=(~14 30" By )0y (63)

where

1—‘(0) = f"”m"hrm.mnm- (64)

1
6!v/-¢

It is now a straightforward matter to derive the com-
ponent for the Dirac equation (32). We use (19) to
replace the worldsurface I'-matrix by the target space
I-matrix multiplicd by factors of u, and recall (15),
(17), (50) and (55) to find

7" (1 ~T)yB(0y) up EXER = 0. (65)

We recall that £4 = ¢,"E,% and that EX =
m. e "E2. Using these relations, the Dirac equation
can be written as

E(1 —-D)IMPm =0, (66)
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where T = [, and the target space spinor indices
are suppressed.

The Dirac equation obtained above has a very sim-
ilar form to those of D-branes in ten dimensions [ 12-
16], and indeed we expect that a double-dimensional
reduction would yield the 4-brane Dirac equation.

The emergence of the projection operator (1 —T')
in the Dirac equation in the case of D-branes, and the
other known super p-branes is due to the contribution
of Wess-Zumino terms in the action (see, for example,
Ref. [17] for the eleven-dimensional supermembrane
equations of motion}. These terms are also needed for
the x-symmetry of the action. It is gratifying to see
that the effect of Wess-Zumino terms is automatically
included in our formalism through a geometrical route
that is based on considerations of the embedding of a
world superspace into target superspace.

3.3. The scalar equation

By scalar equation we mean the equation of mo-
tion for x( x), i.e. the coordinates of the target space,
which are scalar fields from the worldsurface point
of view. In a physical gauge, these describe the five
scalar degrees of freedom that occur in the worldsur-
face tensor supermultiplet.

The scalar equation is the leading component of the
superspace equation (33) which we repeat here for
the convenience of the reader:

NPV ESES = - LT, 2,57 (67)

The superspace equation for the covariant derivative
Vu =E""V, + E[,#V“, (68)

when evaluated at & = O involves the worldsurface
gravitino E,#(x) which is expressible in terms of the
basic fields of the worldsurface tensor multiplet. Since
it is fermionic it follows that the second term in the
covariant derivative will be bilinear in fermions (at
lcast), and we shall henceforth drop all such terms
from the equations in order to simplify life a little.
We shall temporarily make a further simplification by
assuming that the target space is flat. The tensor Z, as
we saw earlier, has two types of contribution, one (7,)
involving H .4, and the other (K,) involving only
terms which are bilinear or higher order in fermions.

In accordance with our philosophy we shall henceforth
ignore these terms.

To this order the right-hand side of the scalar equa-
tion vanishes as does the right-hand side of the tensor
equation (25). Multiplying the scalar equation (67)
with E,£, we see that it can be written in the form

NPV Ef ~ Kup®ES) =0, (69)

where K¢ is defined below. Using the relation Ex€ =
mpugs and the definition of X, in (28) we find that

Kap® = V ELES

= (Vamy®) (m™")af + Xap° . (70)
Using the relation
nVamy® =0, (n

which we will prove later, we conclude that n?° K¢ =
n”bXd;,”. As a result, we can express the scalar equa-
tion of motion in the form

Y E = 0. (72)

where V,EpS = V,Ept ~ X, E <. Relation (71) al-
lows us to rewrite the scalar equation of motion in the
form

MV s = 0. (73)

The next step is to find a explicit expression for
the spin connection &, ;¢ associated with the hatted
derivative. Using the definition of X, given in (28),
we find that this spin connection is given by

Do’ = Qap® + Xas® = E (s’ . (74)

Recalling (50) and (46), we find that the hatted spin
connection takes the form

@up’ =mS s (Ines" gupe™ + 4" IEm Epg ") .
(75)

From this expression it is straightforward to derive the
following result; given any vector V,, one has

vuvh = 'nuded"e[rmvnvm (76)
where
vnvm = 0pViu — an” v/y )
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and
Lo = angmggsg g"’ . (78)

It is straightforward to verify that to the order to which
we are working this connection is indeed the Levi-
Civita connection for the induced metric g,.

We are now in a position to express the scalar equa-
tion in its simplest form which is in a coordinate basis
using the hatted connection. Using the above result we
find that (73) can be written as

G"V & =0. )

It remains to prove (71). Using the expression for
mg,® given in (14) we find that

<7 m —va(hbd hme) = —2h1,de¢bhale
2 hpae Ve hpae = =3V (hpaeh®™) = 0. (80)

In carrying out the above steps we have used the A,
equation of motion and the self-duality of this field.
In the case of a non-flat target space the derivation
is quite a bit longer and the steps will be discussed
elsewhere. One finds that the right hand side of the
scalar equation in the form of (67) is given by

NPV ERE,S = — i (1~ 2k e 1S H
+ 2m,PH peg b, (81)

where

ko = haeah™ . (82)

Using the steps given above this result can be ex-
pressed in the form

Gnmvmg I3 _2 tr kZ)Emlmmf.
\/‘ ’
1
X (m”gmr--m(. + %Hﬁnnmznn Hm.mmmf, )
X (8, — E"EnS) (83)

where the target space indices on Hy and H7 have been
converted to worldvolume indices with factors of £,4
and

d e Hevs . . ( 84 )

yondy = ﬂfgl, adyey gy

Hy

where H7 is the seven-form that occurs in the dual
formulation of eleven-dimensional supergravity. One

can verify that the ratio between the two terms on the
right hand side is precisely what one expects were this
term to have been derived from the expected gauge
invariant Wess-Zumino term of the form Cg +4C3 A Ha.
We also note that the last factor in (83) implies that
the RHS of the equation vanishes identically when
multipled with £:4, as it should, indicating that only
five of the eleven equations, which correspond to the
Goldstone scalars, are independent.

3.4. The tensor equation

The tensor equation can be manipulated in a similar
fashion. If we consider the simplest case of ignoring
the fermion bilinears and assuming the target space to
be flat we have, from (34)

n(‘bvuhbrd =0. (85)

We can relate h to H using (53) and take the factor
of m past the covariant derivative using (71) to get

ml‘h§a(€hmec"€¢‘p Hmnp) =0. (86)
Using similar steps to those given in the proved in
the previous subsection and converting to a coordinate
basis we find the desired form of the tensor equation
in this approximation, namely

GV Hpg =0 (87)

In the case of a non-trivial target space a lengthy cal-
culation is required to find the analogous result. One
first finds that

via | & e1ee:
% hubc = mmfm;,ffgeww\uH 1

= s €abderereymFHI1

+ 6h? | ahbcl At H“,,l,.y“

+ %hu,,c.h"'“"m""‘ erererer = Yap - (88)
It is possible to rewrite ¥, in the form

Yur = (K + mK + ymmK) (89)

ab

S i lo By e R
where K, = — 36_4yeubcdz'/Hulfv (mK)a, = miuKlrh-.
(mmK) ., = mmé K.y. The scalar equation of motion

can also be expressed in the form

I
GVt = T g e ea (Y HAmY mm
(90)
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where mY and mmY are defined in a similar way to
the mK and mmK terms above.

3.5. The x-symmetry transformations

The «-symmetry transformations are related to odd
worldsurface diffeomorphisms. Under an infinitesimal
worldsurface diffeomorphism 8z = ~v¥ the varia-
tion of the embedding expressed in a preferred frame
basis is

878 = 57 MEyS = v EA. (91)
For an odd transformation (v? = 0) onc has
6z%=0,

The vanishing of the cven variation §z¢ is typical of
x-symmetry and follows from the basic embedding
condition (4).

The relation between the parameter v* and the
familiar « transformation parameter < can be ex-
pressed as

v = KEE, " . (93)

622 =0 E,%. (92)

Therefore, recalling (54), the « transformation rule
(92) takes the form

8z% = k(1 +T),%, (94)

where we have absorbed a factor of two into the defini-
tion of «. It is understood that these formulae arc to be
evaluated at ¢ = 0, so that they are component resulis.

There remains the determination of the k-symmetry
transformation of the antisymmetric tensor field By,.
It is more convenient to computc the « transforma-
tions rule for the ficld Agpe(x). (The relation between
the two fields is described earlier.) Thus we need to
consider

Shape = KE} "V o hape

By including a Lorentz transformation we may write
this transformation as

ahabc = KlElavahabc - (96)

atd=0. (95)

We have calculated Vb, and the derivation of the
result will be given elsewhere [18]. Using this result,
we find

Shupe = ~1emy g E4(1 — )y (97)

where [, = ™ e, and the target space spinor indices
are suppressed. One can check that the RHS is self-
dual, modulo the Dirac equation (66).

4. Double-dimensional reduction

The procedure we shall adopt now is to use double-
dimensional reduction [ 19] to obtain a set of equa-
tions for a 4-brane in ten dimensions and then to com-
pare this set of equations with the equations that one
derives by varying the Born-Infeld action. We shall
take the target space to be flat and we shall ignore
the terms bilinear in fermions on the right-hand-side
of (24) and (25), that is, we drop the terms in these
equations that involve the quantity Z defined by (26)
and we also ignore terms involving the worldsurface
gravitino. From the previous section, we read off the
resulting equations of motion:

Gmnvmg”g =0 s (98)
Gm"van[lq =0. (99)

We can further simplify matters by considering the
corresponding bosonic problem, i.e. by neglecting 6 as

well. In this limit, and recalling that we have assumed
that the target space is flat, one has

gma_ had amxg- (100)

In order to carry out the dimensional reduction we
shall, in this section, distinguish 6- and | 1-dimensional
indices from 5- and 10-dimensional indices by putting
hats on the former. We have

XM= (1", y) (1o1)
and
= (12, ), (102)

50 that the sixth dimension of the worldsurface is iden-
tified with the eleventh dimension of the target space;
moreover, this common dimension is taken to be a
circle, and the reduction is effected by evaluating the
equations of motion at y = 0. The metric is diagonali:

&k = (&mns 1), (103)

and the sechsbein can bc chosen diagonal as well:

(104)

ey’ = (en”, 1),
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where both the five-dimensional metric and its asso-
ciated fiinfbein are independent of y. Since the fields
do not depend on v, and since the connection has non-
vanishing components only if all of its indices are
five-dimensional, the equations of motion reduce to

Gm”vm (?”_\‘ﬂ =0, ( 105)
GV Fyp =0, (106)
where

Fom = Hnmy . (107)

Since /1 in six dimensions is self-dual, and since H is
related to 4 it follows that we only need to consider
the pv component of the tensor equation. It will be
convenient to rewrite these equations in an orthonor-
mal basis with respect to the five-dimensional met-
ric; this basis is related to the coordinate basis by the
fiinfbein. Using a, b, etc., to denote orthonormal in-
dices, the equations of motion become

GV apxt = 0, (108)
GV Fpe = 0, (109)
where

G = (), (110)

and where we have introduced a hat for the six-
dimensional m-matrix for later convenience.

The claim is that these equations are equivalent
to the equations of motion arising from the five-
dimensional Born-Infeld Lagrangian,

L=+v~detK, (111)

where

Kmn = Lwn T+ me (112)

gmn being the induced metric. To prove this we first
show that the Born-Infeld equations can be written in
the form

LMV 0y x2 =0, (113)
LV Eyp =0, (114)
where

L=(1-F%)"" (115)

When matrix notation is used, as in the last equation,
it is understood that the first index is down and the
second up, and F? indicates that the indices are in
the right order for matrix multiplication. L™ is then
obtained by raising the first index with the inverse
metric as usual. To complete the proof we shall then
show that G is proportional to L up to a scale factor.
The matrix K is 1 + F so that its inverse is

K'=(1+F)"'=(1-F)L, (116)
from which we find

(K—l )(nm) = [m

(K—l)lmnl =—(FL)"m, (117)
the right-hand side of the second equation being auto-
matically antisymmetric. Varying the Born-Infeld La-

grangian with respect to the gauge field A, (F =dA),
gives

I (V=det K(K~1y(mnly = 0. (118)

Carrying out the differentiation of the determinant,
switching to covariant derivatives, and using’ the
Bianchi identity for F, one finds
V"(K‘I )[mn] + (Kvl)[/rq]v’,Fq"(K—l )[nm]

=0. (119)
Using the identity
(K—l )lnm]F"p = 5[7’” _ me (120)
and the expression for (K~')!"™! in terms of L and
F one derives from (119)
LAV (F"™L,™) + FP"L,V,L," = 0. (121)

On differentiating the product in this cquation one
finds that the two terms with derivatives of L van-
ish by symmetry. Multiplying the remaining term by
(L~") " then yields the claimed result, namely (114).
A similar calculation is used to derive (113).

To complete the proof we need to show that G™" is
proportional to L™". We begin by setting

Sab = haps » (122)
Fop = e,"ey" Fon . (123)
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We then find
Rabe = 3 €apear f* (124)
Fap=(m™ ) S (125)

where m? = ii,?. The first equation follows from the

a =
self-duality of A4, while the second equation follows
from (53), (104), (107) and (122).

We set
Mab = (g, s, i) (126)
= (m,", My, M?, N). (127)
Recalling that
g = (1 — 207 P, (128)
one finds
mg" = 8,"(1=20) +8(f2) ", (129)
M, = —€meae S [, (130)
N=(1+2t), (131)

where 1, = tr( f?). Noting that f,°M, = 0, as can be
seen by symmetry arguments, it follows from (125)
that

F/"My=0. (132)

Now, by a direct calculation, starting from (110) one
finds that

Gty = Alap + 16( ) ab (133)
where
A=1—4t —4(1)? + 1617, (134)

and we have defined t;, = tr(f*). Now, multiplying
Gap = (m?)ap + MMy with (F?)%, and recalling
(125), one finds

GF? = f2, (135)
Using this relation in (133) we find
G=A(1—16F%)"". (136)

Therefore we have shown that (after a suitable
rescaling of F), G is proportional to L and hence the

equations of motion arising from the superspace for-
mulation of the 5-brane, when reduced to a 4-brane in
ten dimensions, coincide with those that one derives
from the Born-Infeld Lagrangian.

5. Conclusions

The component form of the equations of motion for
the 5-brane in eleven dimensions are derived from the
superspace equations. They are formulated in terms of
the worldsurface fields x%, 6%, B,,,,. These equations
arc fully covariant in six dimensions; they posscss
six-dimensional Lorentz invariance, reparametrization
invariance, spacetime supersymmetry and « symme-
try. We have also derived the « transformations of the
component fields. The fivebrane equations are derived
from the superspace embedding condition for p-branes
which possess half the supersymmetry found previ-
ously [ 1] and used to find superspace equations for the
5-brane in eleven dimensions in {2]. In the superem-
bedding approach advocated here, the k-symmetry is
nothing but the odd diffeomorphisms of the worldsur-
face and as such invariance of the equations of motion
under k-symmetry is guaranteed.

We have also carried out a double-dimensional re-
duction to obtain the 4-brane in ten dimensions. We
find agreement with the known Born-Infeld formula-
tion for this latter theory. The result in ten dimensions
which emerges from eleven dimensions appears in an
unexpected form and that generalises the Born-Infeld
structure to incorporate the worldsurface chiral 2-from
gauge field.

In a recent paper [7] it was suggested that it was
impossible to find a covariant set of equations of mo-
tion for a self dual second rank tensor in six dimen-
sions. However, in this paper we have presented just
such a system whose internal consistency is ensured
by the manner of its derivation. We would note that
although the field A, which emerges form the su-
perspace formalism obeys a simple duality condition,
the field strength Hy,,, of the gauge field inherits a
version of this duality condition which is rather com-
plicated. Using the solution of the chirality constraint
on the 2-form, we expect that our bosonic equations
of motion will reduce to those of [7,8].

In Ref. [9], an auxiliary field has been introduced
to write down a 6D covariant action. It would be in-
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teresting to find if this field is contained in the formal-
ism considered in this paper. We note, however, that
in the approach of Ref. [9] one replaccs the nonman-
ifest Lorentz symmetry with another bosonic symme-
try that is equally nonmanifest, but necessary to elimi-
nate the unwanted auxiliary field and that the proof the
new symmetry involves steps similar to those needed
to prove the nonmanifest Lorentz symmetry [9]. Fur-
ther, it is not clear if a 6D covariant gauge fixing pro-
cedure is possible to gauge fix this extra symmetry.

In a forthcoming publication, we shall give in more
detail the component field equation and the double-
dimensional reduction [ 18]. We also hope to perform
a generalized-dimensional reduction procedure to the
worldsurface, but staying in eleven dimensions. In the
approach of this paper, there is little conceptual differ-
ence in whether the worldsurface multiplet is a scalar
multiplet (Type 1 branes), or vector multiplets (D
branes), or indeed tensor multiplets (M branes) and
we hope to report on the construction of all p-brane
solutions from this view point.

We conclude by mentioning some open problems
that are natural to consider, given the fact that we
now know the 6D covariant field equations of the M-
theory five-brane. It would be interesting to consider
solitonic p-brane solutions of these equations, perform
a semiclassical quantization, explore the spectral and
duality propertics of our system and study the anoma-
lies of the chiral system. Finally, given the luxury of
having manifest worldsurface and target space super-
symmetries at the same time, it would be instructive
to consider a variety of gauge choices, such as a static
gauge, as was done recently for super D-branes [ 14],
which would teach us novel and interesting ways to
realize supersymmetry nonlinearly. This may provide
useful tools in the search for the “different corners of
M-theory™.

6. Note added

While this paper was in the final stages of being
written up, we saw two related papers appear on the
net [20,21]. We hope to comment on the relationship
between these papers and the work presented in a sub-
sequent publication.
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Chapter 4

M-theory (before M-theory was cool)

This chapter addresses the question [1]: ‘Should we have been surprised by the
eleven-dimensional origin of string theory?’ The importance of eleven dimensions
is no doubt surprising from the point of view of perturbative string theory; from
the point of view of membrane theory, however, there were already tantalizing hints
in this direction:

(i) K3 compactification

In 1986, it was pointed out [2] that D = 11 supergravity on R~ x K3 xT""3
(3] and the D = 10 heterotic string on R'®~" x T™ [4] not only have the same
supersymmetry but also the same moduli spaces of vacua, namely

SO(16 + n,n)
SO(16 + n) x SO(n)’

It took almost a decade for this ‘coincidence’ to be explained, but we now know
that M-theory on R'®~" x K3 x T™~3 is dual to the heterotic string on R10-" x T™,

(i) Superstrings in D=10 from supermembranes in D=11

As described in chapter 2, eleven dimensions received a big shot in the arm
in 1987 when the D = 11 supermembrane was discovered [5]. It was then pointed
out [6] that in an R!° x S! topology the weakly coupled (d = 2, D = 10) Type
I1 A superstring follows by wrapping the (d = 3, D = 11) supermembrane around
the circle in the limit that its radius R shrinks to zero. In particular, the Green—
Schwarz action of the string follows in this way from the Green-Schwarz action
of the membrane. It was necessary to take this R — 0 limit in order to send to
infinity the masses of the (at the time) unwanted Kaluza-Klein modes which had
no place in weakly coupled Type IIA theory. The D = 10 dilaton, which governs
the strength of the string coupling, is just a component of the D = 11 metric. A
critique of superstring orthodoxy circa 1987, and its failure to accommodate the
eleven-dimensional supermembrane, may be found in (7).

(7i7) Membrane at the end of the universe

Being defined over the boundary of AdSy, the OSp(4|8) singleton! action [12]

M=

(4.1)

! We recall that singletons are those strange representations of AdS first identified by Dirac
[8] which admit no analogue in flat spacetime. They have been much studied by Fronsdal and
collaborators {9, 10].
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is a three dimensional superconformal theory with signature (—, +, +) describing 8
scalars and 8 spinors. With the discovery of the eleven-dimensional supermembrane
[5], it was noted that 8 scalars and 8 spinors on a three-dimensional worldvolume
with signature (—,+,+) is just what is obtained after gauge-fixing the super-
membrane action! Moreover, kappa-symmetry of this supermembrane action forces
the background fields to obey the field equations of (N = 1, D = 11) supergravity. It
was therefore suggested in 1987 [11] that on the AdS4x S” supergravity background,
the superconformal OSp(4|8) singleton action describes a supermembrane whose
worldvolume occupies the S! x S? boundary of the AdSy: The membrane at the
end of the universe [13]. Noting that these singletons also appear in the Kaluza -
Klein harmonic expansion of this supergravity background, this further suggested
a form of bootstrap [11] in which the supergravity gives rise to the membrane on
the boundary which in turn yields the supergravity in the bulk. This was thus a
precursor of Maldacena’s AdS/CFT correspondence [14], discussed in chapter 6,
which conjectures a duality between physics in the bulk of AdS and a conformal
field theory on the boundary. The other two supergroups in table 1.2 of chapter 1
also admit the so-called doubleton and tripleton supermultiplets [15] as shown in
table 4.1.

Supergroup Supermultiplet Field content
OSp(4]8) (n = 8,d = 3) singleton 8 scalars,8 spinors
SU(2,2/4) (n =4,d = 4) doubleton 1 vector,4 spinors,6 scalars
OSp(6,2]4) ((ny,n.)=1(2,0),d =6) 1 chiral 2-form,8 spinors,
tripleton 5 scalars

Table 4.1. Superconformal groups and their singleton, doubleton and tripleton represen-
tations.

(iv) Membranes and matrix models

As mentioned in chapter 2, the D = 11 supermembrane in the lightcone gauge
has a residual area preserving diffeomorphism symmetry. In 1988 it was shown
to be described by a quantum mechanical matrix model [16] corresponding to a
dimensionally reduced D = 10 Yang- Mills theory with gauge group SU(k) as k —
00. This Hamiltonian has recently been resurrected in the context of the matrix
model approach to M-theory [18, 17] discussed in chapter 6.

(v) U-duality (when it was still non-U)

Based on considerations of this D = 11 supermembrane, which on further
compactification treats the dilaton and moduli fields on the same footing, it was
conjectured [19] in 1990 that discrete subgroups of all the old non-compact global
symmetries of compactified supergravity [20, 21| (e.g SL(2, R), O(6,6), E7) should
be promoted to duality symmetries of the supermembrane. Via the above wrapping
around S, therefore, they should also be inherited by the Type ITA string [19].

(vi) D=11 membrane/fivebrane duality

In 1991, the supermembrane was recovered as an elementary solution of D = 11
supergravity which preserves half of the spacetime supersymmetry {22]. In 1992,
the superfivebrane was discovered as a soliton solution of D = 11 supergravity
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also preserving half the spacetime supersymmetry [23]. This naturally suggests a
D = 11 membrane/fivebrane duality.

(vii) Hidden eleventh dimension

We have seen how the D = 10 Type IIA string follows from D = 11. Is it
possible to go the other way and discover an eleventh dimension hiding in D = 107
In 1993, it was recognized [24] that by dualizing a vector into a scalar on the
gauge-fixed d = 3 worldvolume of the Type I1A supermembrane, one increases the
number of worldvolume scalars (i.e. transverse dimensions) from 7 to 8 and hence
obtains the corresponding worldvolume action of the D = 11 supermembrane. Thus
the D = 10 Type I1A theory contains a hidden D = 11 Lorentz invariance! This
device was subsequently used [25, 26] to demonstrate the equivalence of the actions
of the D = 10 Type IIA membrane and the Dirichlet twobrane {27].

(viid) U-duality

Of the conjectured Cremmer—Julia symmetries referred to in (v) above, the
case for a target space O(6,6;2) (T-duality) in perturbative string theory had
already been made, of course [28]. Stronger evidence for an SL(2, Z) (S-duality) in
string theory was subsequently provided in [29, 30] where it was pointed out that
it corresponds to a non-perturbative electric/magnetic symmetry. In 1994, stronger
evidence for the combination of S and T into a discrete duality of Type IT strings,
such as E7(Z) in D = 4, was provided in [31], where it was dubbed U-duality.
Moreover, the BPS spectrum necessary for this U-duality was given an explanation
in terms of the wrapping of either the D = 11 membrane or D = 11 fivebrane around
the extra dimensions. This paper also conjectured a non-perturbative SL(2,Z) of
the Type IIB string in D = 10.

(iz) Black holes

In 1995, it was conjectured [32] that the D = 10 Type I1A superstring should
be identified with the D = 11 supermembrane compactified on S*, even for large
R. The D = 11 Kaluza-Klein modes (which, as discussed in (ii) above, had no
place in the perturbative Type IIA theory) were interpreted as charged extreme
black holes of the Type IIA theory.

(z) D=11 membrane/fivebrane duality and anomalies

Membrane/fivebrane duality interchanges the roles of field equations and Bian-
chi identities and, as we saw in chapter 3, membrane/fivebrane duality thus predicts
a spacetime correction to the D = 11 supergravity action [33, 34]. This prediction
is intrinsically M-theoretic, with no counterpart in ordinary D = 11 supergravity.
However, by simultaneous dimensional reduction [16] of (d = 3,D = 11) to (d =
2,D = 10) on S}, it translates into a corresponding prediction for the Type ITA
string. Thus using D = 11 membrane/fivebrane duality one can correctly reproduce
the corrections to the 2-form field equations of the D = 10 Type IIA string (a
mixture of tree-level and string one-loop effects) starting from the Chern-Simons
corrections to the Bianchi identities of the D = 11 superfivebrane (a purely tree-
level effect).

(zi) Heterotic string from fivebrane wrapped around K3

In 1995 it was shown that, when wrapped around K3 which admits 19 self-dual
and 3 anti-self-dual 2-forms, the d = 6 worldvolume fields of the D = 11 fivebrane
(or Type ITA fivebrane) (B~ ,,, M, ¢[//]) reduce to the d = 2 worldsheet fields of
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the heterotic string in D = 7 (or D = 6) (35, 36]. The 2-form yields (19,3) left
and right moving bosons, the spinors yield (0,8) fermions and the scalars yield
(5,5) which add up to the correct worldsheet degrees of freedom of the heterotic
string [35, 36]. A consistency check is provided [33] by the derivation of the Yang-
Mills and Lorentz Chern—Simons corrections to the Bianchi identity of the heterotic
string starting from the fivebrane Bianchi identity. We also note that if we replace
K3 by T in the above derivation, the 2-form now yields (3, 3) left and right moving
bosons, the spinors now yield (8, 8) fermions and the scalars again yield (5, 5) which
add up to the correct worldsheet degrees of freedom of the Type II A string [1]. In
this case, one recovers the trivial Bianchi identity of Type ITA.

(zii) N=1 in D=4

Also in 1995 it was noted [37—43] that N = 1 heterotic strings can be dual
to D = 11 supergravity compactified on seven-dimensional spaces of G holonomy
which also yield N =1 in D = 4 [44].

(z1iz) Non-perturbative effects

Also in 1995 it was shown [45] that membranes and fivebranes of the Type
II A theory, obtained by compactification on S, yield e~1/9+ effects, where g, is
the string coupling.

(ziv) SL(2,Z)

Also in 1995, strong evidence was provided for identifying the Type I1B string
on R® x S' with M-theory on R® x T? [46, 43]. In particular, the conjectured
SL(2,Z) of the Type IIB theory discussed in (viii) above is just the modular
group of the M-theory torus. Two alternative explanations of this SL(2, Z) had
previously been given: (a) identifying it with the S-duality [33] of the d = 4 Born—
Infeld worldvolume theory of the self-dual Type IIB superthreebrane [47], and (b)
using the four-dimensional heterotic/Type IIA/Type I1B triality [48] by noting
that this SL(2, Z), while non-perturbative for the Type I1B string, is perturbative
for the heterotic string.

(zv) Eg x Eg heterotic string

Also in 1995 (that annus mirabilis!), strong evidence was provided for identi-
fying the Eg x Eg heterotic string? on R!® with M-theory on R x S1/Z, [50].

This completes our summary of M-theory before M-theory was cool. The
phrase M-theory (though, as we hope to have shown, not the physics of M-theory)
first made its appearance in October 1995 [46, 50]. We shall return to M-theory in
chapter 6.
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The type 1IA superstring in ten dimensions is derived from the supermembrane in eleven dimensions by a simultaneous dimen-

sional reduction of the world volume and the spacetime.

It is well known that N=2a supergravity in ten
dimensions (£.m Ams P; Wons X3 Ainnps Amn) May be
obtained by dimensional reduction from N=1
supergravity in eleven dimensions (£, lﬁ,;,; /i,;,,—,,;).
On the other hand, n=2a supergravity is also the field
theory limit of the type Ila superstring. Does this
imply a connection between D= 11 supergravity and
strings? Bergshoeff, Sezgin and Townsend [1] have
recently found a niche for D =11 supergravity within
the framework of extended objects, but the extended
object in question is a three-dimensional membrane
rather than a two-dimensional string *'. The purpose
of this letter is to derive the type IIA superstring from
this supermembrane by a dimensional reduction of
the world volume from three to two dimensions and,
simultaneously, a dimensional reduction of the
spacetime from eleven to ten.

To describe the coupling of a closed three-mem-
brane to a d=11 supergravity background, let us
introduce world-volume coordinates & (i=1, 2, 3)
and a world-volume metric 7 ;( é) with signature ( —,
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It is interesting to note that the three-eight split SO(1,
10) > S0(1, 2) xSO(8) implied by the membrane had previ-
ously been invoked in refs. [2,3] 10 exhibit the hidden SO(16)
of D= 11 supergravity.

+, +). The target space is a supermanifold with
superspace coordinates 2= (%™, 6%) where =1,
. 11 and =1, ..., 32 with spacetime signature (—,
+, ... +). We also define £ =( 9;2)E,;A(3) where
Ex is the supervielbein and 4= (4, &) is the tan-
gent space index (4=1, .., 11 and &=1, ..., 32). The
action is then given by [1]

s= @€/ 97 Efns
~3ePEAEPE S degi— 3 ~) . (1)

Note that there is a Wess-Zumino term involving
the super three-form A ;5+(3) and also a world-vol-
ume cosmological term. In addition to world-vol-
ume diffeomorphisms, target-space superdiffeo-
morphisms, Lorentz invariance and three-
form gauge invariance, the action (1) is invariant
under a fermionic gauge transformation [1] whose
parameter k%(€) is a 32-component spacetime
Majorana spinor and a world-volume scalar. This is
a generalization to the case of membranes of the
symmetry discovered by Siegel [4] for the super-
particle and Green and Schwarz [ 5] for the superstr-
ing in the form given by Hughes, Liu and Polchinski
[6]. We shall return to this later in eq. (23).

To see how the dimensional reduction works, let
us first focus our attention on the purely bosonic sec-
tor for which the action (1) reduces to

S:J'djf [ i\/—_f' }7';‘9:’*'i'ai-""ignim(«f) - %V/TJ—;

+ 1€ %" IR X Ain(£)] 2)

0370-2693/87/% 03.50 © Elsevier Science Publishers B.V.
{ North-Holland Physics Publishing Division)
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Varying with the respect to the metric ; yields the
embedding equation

Pr=85=0:%" ;%" fsn(X) , 3)

while varying with respect to £ yields the equation
of motion

WS ~8)oAS =8 87027 )+ I 4" 3:570;%2 87
=3P 087 0K R85~ . (4)

where F,;; is the field strength of /f,,»,;,ﬁ ,

Frﬁﬁpﬁ E48|rh‘jr‘u}é] . (5)

We now make a two-one split of the world-volume
coordinates

E=(&,p), =12, (6)
and a ten-one split of the spacetime coordinates
=(x",y), m=1,.,10, (7

in order to make the partial gauge choice

=y, (8)

which identifies the eleventh spacetime dimension
with the third dimension of the world volume. The
dimensional reduction is then affected by demand-
ing that

a,x" =0, )]
and
ay.érhﬁ =0= av/imfr,; - (10)

A suitable choice of ten-dimensional variables is now
given by

b q,,_2,,(gm+<1>2AmAn ¢2A,,,)

P4, P’
Ay = (s Avnme) = (Apanps Aun) - (11)

From (3), the induced metic on the world sheet is
now given by

528yt PPAA, (DZA,)
8= ( 4, @)

where

(12)

8y=0,X"0,xX"gun, A;i=0,X"4,,. (13)

Note that

v -—&=v-8- (14)
Substituting these expressions into the field equa-
tions (4) yields in the case #7=x™

1/ ~8)8:(/—~gg"dx™)+TI,,”"d,x"9;x"g"

=LFm a.x"8,x7eil /g, (15)
where F,,,, is the field strength of 4,,,,
annESa[mAnp]:ﬁmnny - (16)

In the case "=y, (4) is an identity, as it must be
for consistency. But (15) is just the ten-dimensional
string equation of motion derivable from the action

S=J‘d2{(§./ —7 978,X73,X" 8 n

+4€99,xM0;x" Appn) - 17y

Comparing with (2), we see that the overall effect is
to reduce the eleven-dimensional membrane to a ten-
dimensional string, to replace the three-form by a
two-form in the Wess-Zumino term and to eliminate
the world-volume cosmological constant. Note that
the other ten-dimensional bosonic fields 4,,,,,, 4, and
@ have all decoupled. They have not disappeared
from the theory, however, since their coupling still
survives in the fermionic 8 sector, to which we shall
turn shortly. First, we make some remarks.

As is well known, the dimensional reduction (10)
corresponds to a Kaluza-Klein compactification of
spacetime on a circle in which one discards all the
massive modes. The difference from conventional
Kaluza-Klein is that by identifying the eleventh
spacetime dimension with the third dimension on
the world volume as in (8), the world volume is also
compactified on the same circle. The condition (9)
means that we are discarding the massive world-sheet
modes at the same time. By retaining all the U(1)
singlets but only the U(1) singlets, these truncations
are guaranteed to be consistent [7] with the mem-
brane equations of motion and, as we shall see, with
the equations of motion of the background fields. As
an extra check on consistency, we have been careful
to substitute the Kaluza-Klein ansatz into the equa-
tions of motion rather than directly into the action.
The signal for consistency is that the £*=y com-
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ponent of the field equations (4) is an identity. Hav-
ing established consistency one may then, if so
desired, substitute directly into the action (2) and
integrate over p. The result is not quite the action
(17) but an equivalent one which yields the same
equations of motion. To see this, let us recall that
since we are now treating 7; and %™ as independent
variables in (2), we should make independent
Ansitze for both. Thus we write

?_=¢_2,,(y,,+¢ZV,V, ¢214)
4 ¢2V/ ¢2 i

where y,, V, and ¢ are, a priori, unrelated to g, 4;
and @ of (12). Substituting into the action (2) and
integrating over p yields

S=J‘d2¢ {%\/?}‘, ¢2/3‘p»2/3

X178, + /(A ~V)(A4,=V) +¢72077)

(18)

—3/ P+ 1€79,x73; X" Apn} . 19)

Since the equations of motion for y,;, V; and ¢ are
algebraic, we may eliminate all of them to yield the
action

S=J‘d2§ (V—g+1€93.xm3,x"4,.,) , (20)

which is the action we would have obtained by writ-
ing (2) in Nambu-Goto form

S='[d3f(‘/—g+%eﬁ8;)‘c’;’3,;)'c”A,;,;,,;) . (21)

Alternatively, we may eliminate just ¥; and ¢ to
obtain (17). It is interesting to note that the string
action (17) we obtain by dimensional reduction is
conformally invariant even though the membane
theory we started from was not.

The foregoing discussion is readily generalized to
a superspace setting. To facilitate a discussion of the
fermionic symmetry, it is convenient to eliminate the
world-volume metric as an independent variable. In
this way we avoid having to discuss the rather com-
plicated transformation rule for the metric. The
action (1) then takes on its Nambu-Goto form

S= J.dJE (/ —det E‘;ﬁEjE N6

—3eFEAESE  desi) . (22)

It is invariant under the transformation [1]

354=85ME =0,

850 =83"Epa=RF(1+ )%, (23)
where
Fpo=(1/6/=8)e*ECELEE( ase)p” . (24)

In (24) g;is the metric on the world volume induced
from the bosonic metric on superspace,

Er=EFfEPnas - (25)

In order for (22) to be invariant under this trans-
formation, it is necessary that the background super-
geometry be constrained. The constraints found in
ref. [1] are

Tagl= =il ap, Fapea=iFa)ag
Faﬁi& =Faﬁ;‘»3=0 ’ (26)

Tase=NgeAas Fasca=(Tsa)a’As . (27)

Although these equations are not the standard equa-
tions of on-shell D=11 supergravity in superspace
[8], they are equivalent to them. That is to say, by
suitable redefinitions of the superconnections and
parts of the supervielbein, we may set A, f},ﬂ and
T.s¢ to zero,

T’ =Tap” = Fanea=0. (28)

Egs. (26) and (28) are the on-shell supergravity
equations, as may be checked using the Bianchi iden-
tities. Since we are always free to make such rede-
finitions, we may take the superspace constraints to
be (26) and (28). This is therefore a stronger result
than that given in ref. [ 1]; the fact that conventional
constraints can be imposed was noted in the context
of N=1 D=10 supersymmetric particles and strings
in ref. [9].

The Kaluza-Klein Ansatz for the N=1 D=11
supervielbein is

a i oa [

EM/*:(?; %’a Eg’) (29)
Ey° Ey*+Ayux™ @Ay

=% - o) (30)
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where E= (Ey® Ep®) is the N=2a D=10 super-
vielbein, A,, the superspace U(1) gauge field, and @
and x° are superfields whose leading components are
the dilaton and the dilatino respectively. In writing
(23), we have made a partial D=11 local Lorentz
gauge choice to set £,=0. For the superspace three-
index potential Ayys we have

AMNP=AMNP s (31 )

A‘MNy =Aun . (32)

All of the D=10 superfields E,”, x*, A, P, Amns
Ay vpare taken to be independent of y. Note also that
ten-dimensional spinor indices run from 1 to 32 so
that  and & can be identified. With 2% = (z¥, y) we
also impose

8,z =0, (33)
and fix
y=p. (34)

Substituting the Ansdtze (30), (31) and (32) into
(22) and using (33) and (34) yields the action for
a type IIA superstring coupled to a supergravity
background

S= jdzc (®./—detE“E’n,,
—}€43,278,2" Anpr) . (35)

Purely for convenience in superspace calculations,
we have omitted an overall factor of @~ in the
Ansatz (29); the factor of @ in (35) can be removed
by a suitable rescaling of the supervielbein. To find
the fermionic symmetry of the dimensionally reduced
action (35), one substitutes the Kaluza-Klein
Ansitze into (23). It is straightforward to show that

=112/ —8)e"EfEX(I oI 11) 5" (36)
and that
35%=82%=8zME)* =xP(1+T)p* . (37)

However, y also transforms under (23):
8, = —KkP(1+1)%A, (38)

and a compensating infinitesimal world-volume dif-
feomorphism with parameter

(0,0, kP(1+1")%Aa) (39)

must be made in order to maintain the gauge y=p.
Since (22) is invariant under (23) when the D=11
field equations are satisfied, it follows that the
reduced action (35) will be invariant under (37) if
the N=2a D=10 supergravity field equations are
satisfied. This is because the compactification of the
N=1 D=11 field theory on a circle is known to yield
the N=2a D= 10 field theory, though to the best of
our knowledge this is the first time it has been done
in superspace. Note that all of the N=2a supergrav-
ity fields are now coupled, including 4,,,, 4,, and @
which decoupled from the purely bosonic sector.
The transformation (37) can be recast into the
Green-Schwarz [5,6] form by introducing

Ao =3(e'/ ~2)EL k(DI 11)p% s (40)
so that (37) becomes
S =E*{[A? + ("] —g)A% )

+[A% — (el - )AL 1T )" (41)
where
A =4AB( 4T )" . (42)

In conclusion, we have succeeded in deriving (for
the first time '2) the action of the type 1IA super-
string coupled to an N=2a D= 10 supergravity back-
ground starting from the action of the
supermembrane coupled to the background of N=1
supergravity in D=11. The dimensional reduction
corresponds to a compactification of both the space-
time and the world volume on the same circle and
then discarding the massive modes. Classically, this
is equivalent to letting the membrane tension «tend
to infinity and the radius of the circle R tend to zero
in such a way that the string tension

oy =21 R

remains finite. The type IIA superstring is known to
be a consistent quantum theory; the most urgent
question for the supermembrane is whether it too is
a consistent quantum theory in its own right,

We are grateful for discussions with Chris Pope and
Ergin Sezgin.

2 The type 11B action is given in ref. [10].
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DUALITY ROTATIONS IN MEMBRANE THEORY
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In analogy with a previous treatment of strings, it is shown that membrane theories exhibit
global noncompact symmetries which have their origin in duality transformations on the
three-dimensional worldvolume which rotate field equations into Bianchi identities. However, in
contrast to the string, the worldvolume metric also transforms under duality by a conformal
factor. In this way the Cremmer-Juylia hidden symmetries of supergravity are seen to be a
consequence of supermembrane duality. Moreover, the string duality follows from that of the
membrane by simultaneous dimensional reduction. Generalization to higher-dimensional objects
is straightforward.

1. Introduction

The purpose of this paper is to explore the phenomenon of “duality” in
membrane theories. The word duality has come to acquire many meanings but
here a duality transformation will mean a symmetry that rotates field equations
into Bianchi identities on the worldvolume of the extended object. In a previous
paper [1] devoted to duality rotations in string theory, we saw that in the case of a
bosonic string compactified on an n-torus, these continuous transformations were
described by an SO(n, n) symmetry of the equations of motion in the presence of
the massless background fields. The discrete subgroup, SO(n, n; 7) which survives
as a symmetry of the spectrum, contains the typical R < «'/R transformations
whose fixed points correspond to points of enhanced gauge symmetries and which
have led to speculations about a minimum length in string theory {2]. As a
preliminary to investigating questions of enhanced symmetry or minimum length in
membrane theory, therefore, we first wish to discuss the continuous duality
transformations.

In fact, our original motivation for studying duality on the worldvolume of
extended objects sprang from the old observation that four-dimensional supergrav-
ity theories exhibit global noncompact continuous symmetries corresponding to
duality symmetries that rotate space-time field equations into Bianchi identities

* Work supported in part by NSF grant PHY-9045132.

0550-3213,/90,/$03.50 © 1990 ~ Elsevier Science Publishers B.V. (North-Holland)
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[3,4]. These were frequently referred to as “hidden” symmetries since their
presence is far from obvious by inspection of the four-dimensional lagrangian.
Indeed, they were originally best understood as a consequence of compactifying a
higher-dimensional theory [4]. Nowadays, of course, supergravity theories are
regarded as being merely the field theory limit of a superstring or supermembrane,
and so it is natural to conjecture that these symmetries have their origin on the
worldvolume of the appropriate extended object. Some evidence in favor of these
ideas may be found in refs. [S, 6). For example, considerations of bosonic strings on
group manifolds led us to expect a global SO(n, n) in the lower dimension, where
n = dim G. In the case of the four-dimensional heterotic string this is replaced by
global SO(6, n). This latter symmetry is known to be present in four-dimensional
N = 4 supergravity coupled to a Yang—Mills supermultiplet. The 6n scalars in the
Yang-Mills sector are described by a nonlinear o-model given by the coset
SO(6, n) /SO(6) X SO(n). (There are -also two scalars in the supergravity sector
described by SU(1, 1) /U(1). The stringy origin of this coset is described in sect. 6.)
Cosets of this kind were also encountered by Narain [7] in his torus compactifica-
tior of the heterotic string but where n = rank G. By group manifold considera-
tions, we were led to the larger symmetry with n = dim G. It should be emphasized
that these larger symmetries with n = dim G are broken by gauge interactions but
they nevertheless exactly describe the nonlinear o-model of the scalars. Similarly,
one might expect that the global E, ,; Cremmer-Julia [4] symmetry of N =8
supergravity in four-dimensions has its origin on the worldvolume of the eleven-
dimensional supermembrane [8] compactified on a seven-torus [4] or a seven-sphere
[9]. Once again, in the case of the seven—sphe're the E,, , will be broken by SO(8)
gauge interactions but the E, , ,,/SU(8) coset still describes the nonlinear o-model
of the scalars [10].

The proof of these conjectures (in the case of the string) was supplied by Cecotti
et al. [11], who first pointed out that the two-dimensional worldsheet origin of
these symmetries is quite similar to the way they appear in four-dimensional
space-time i.e. through generalized duality transformations of the kind discussed in
detail by Gaillard and Zumino [12]. Thus our task in this paper is to generalize the
arguments of Cecotti et al. to the three-dimensional worldvolume of the mem-
brane. We shall confine our attention in this paper to torus compactification and
focus mainly on the bosonic scctor. Moreover, we shall follow the approach
described in ref. [1] for treating string duality which lends itself to generalization to
membranes and other higher-dimensional objects. Let us thercfore first recall
string duality.

2. Review of string duality

The n-dimensional string is described by a two-dimensional o-model with
worldsheet coordinates ¢’ = (r, o), worldvolume metric vy, (¢) and target-space
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coordinates x*(£), with

L=/ —yyex*ax"g,, + 3679 x" ax b, . (2.1)
We shall consider the case where x* correspond to the compactified coordinates
with the background fields g,, and b,, (u = 1,...,n) being x-independent. These

backgrounds will admit the interpretation of scalar fields in space-time and hence
will still depend on the space-time coordinates X ™. Let us define

yiﬂz‘/—'y'yijajx“, ?i“EEijan“’, (22)1(23)
P48, 5 dpaa s, e

Then there is a symmetry between the equations of motion,
82, =0, (2.5)
and the Bianchi identities,
T =0. (2.6)
The invariance is summarized by the equations
BFm=Ar, Fie LG 85 =C, F"*+DLI, (2.7)

where A, B, C and D are constant parameters. We must also establish invariance
of the equation of motion obtained by varying with respect to y,;, namely the
vanishing of the energy-momentum tensor

288

V—v6,= —_67” =V-v [6,-x" 9x"g,, — %yijy“akx“ d,x* gw] =0. (2.8)

To fix the group structure more precisely, we introduced in ref. [1] a “dual”
o-model for which the roles of field equations and Bianchi identities are inter-

changed. One begins by noting that the equations of motion (2.5) may equivalently
be derived from a first-order lagrangian with independent variables x* and F;*,

A= =5 —yYIF,"Fg,, — s F,*F"b,,

+ 0,2 (V =y y'F,"g,, + €"Fb,,). (2.9)
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Varying with respect to d,x*, we have
0.7, /00,5 = \[ =y YIE g, + €F"b,, |
and with respect to F,*, we have
0.4, JOFF = —\[= ¥ y'F,"g,, — E"b,,
+y—yyY 9,x" g, + gl dx"b,,=0.
This latter equation says

F*=d,x*,

13

213

(2.10)

(2.11)

(2.12)

and then eq. (2.10) yields the same equation of motion as in the second-order

(2.13)

formalism.
Next consider a different first-order lagrangian with independent variables y,
and F*,
— 1 ./ T8 NS LR AN~ TR AN
L=3 Yy F,"Fg,, + 3¢"F, Fjb‘w+6iy#e’Fl .
We have

anf;y/aaiy“ =Eijl:j-#,
(9“/;,/8F’_F‘= —‘Y‘y'JF}Vgl_“,+£”1:jub‘“,—£”ajy“=0‘
This is an algebraic equation for F;* with the solution

F* :P“"(l/m)%ﬁjk 9y, +q*"9;y,,

where p** =p"* and q*" = —q"* are related to g, =g,, and b,, = —b,,

P.. =8, + buagaﬁbvﬁ ’ p;wqm’ = b#ﬁgaﬁ >
where p,, is the inverse of p**. From eq. (2.14) the equation for y, is
8,-(.9”1?“) =0,

which implies (2.12), at least locally.

(2.14)

(2.15)

(2.16)

by

(2.17)

(2.18)
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Putting these results together, we find

Yoy, = M _ —yyYdx"+b,,e7dx"
B0V T g r 8wV TYYIOX T 0L, ENGXT,
t
ij a>/iv v iy v_ij
Ejafxuzaa.y =p**V—vy'0y, +q"e"9y,. (2.19)

iYp

Thus the field equations of the original lagrangian .#, are the Bianchi identities
for the “dual” lagrangian .7}, and vice versa.
To see the SO(n, n) symmetry explicitly, define

G =V-vy'ay,. (2.20)

Then eq. (2.19) may be written

G =g, FHb, T, Fir=prg g (2.21)

or, in compact notation,

Qun PN =Gy @™, (2.22)
where M, N =1,....2n and where
- v ) (9‘\'-”
iN _ o iN __ .
P (f'ﬁ , i (f'g ) . (2.23)

The 2n X 2n matrices {2 and G are given by

0 s5°
Qun= =, 2.24
MN ( 5 0 ) (2.24)

Gun =

(2.25)

g[.l.V + bp.ugaﬁbuﬁ bp.agaﬁ
guBbVB gaﬁ

The desired SO(n, n) symmetry is now manifest since the group SO(n, n) may be
defined by parameters A, for which

3yn=—A"yQpy— A\ Qyyp=0. (2.26)
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Moreover,

GM,)QPQGQN=0MN, (227)

and hence G is an element of SO(n,n). Thus eq. (2.22) is manifestly SO(n, n)
invariant with @V and @'V both transforming as the 2n-dimensional vector
representation

BPM =AM, D", DM =AM, D, (2.28)
The explicit transformation rules are those of eq. (2.7) with the restrictions
B#B = BBl = 418

av av?’

Cop = Cauy = A

DFf=A4rf=—4P (2.29)

corresponding to the n(2n — 1) parameters of SO(n, n). Thus
BF i =Ar F L BUBZ 8.7 =C,F " -4P Ty,  (2.30)
and similarly for #* and &' . The transformation rule for G,y is
Gy = ‘APMGPN’APNGMP’ (2.31)
and hence
88, = —A°,8,, ~ A%, 8., — b, B84, — 8, Bby, ,
éb,, = —A*,b,, —A",b, ~b, BPby, —g, BPg,, +C,,. (2.32)

The action of SO(n, n) on the background fields g,, and b,, is nonlinear. A linear
realization may be obtained by rewriting eq. (2.22) as

&, =D, (2.33)

where

&'y =0 ESPN, & =Ey oW (2.34)
and where E,* is the “vielbein” for which

Gun = EMAENA . (2.35)
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Multiplying (2.33) by E,;* and using the fact that £, is also an element of
SO(n, n),

Epy'QpEN" =04y, (2.36)

we recover (2.22). As usual, the price to pay for a linear realization of G is a local
symmetry H where H C G. In this case

E,/' > AE (2.37)

where A is an element of SO(n) X SO(n), the maximal compact subgroup of
SO(n,n), whose elements commute with £2. The n? physical scalar fields described
by G, parametrize the coset SO(n, n)/SO(n) X SO(n) and their self-interaction
is described by the corresponding nonlinear o-model.

3. Membrane duality

The bosonic sector of the n-dimensional supermembrane is described by a
three-dimensional o-model with worldvolume coordinates £° = (r, o, p), worldvol-
ume metric y,;(£) and target-space coordinates x*(¢), with

. | S -
L=3y—yyaxtdxtg,, + ;e”k dx*dx"d, x*b,,, - W=y (3.1

with background fields g, and b,, (1 = 1,...,n). Define

Hp
Fih=[—yyloxr,  Fr=gikyxrg x (3.2), (3.3)

By = 8 T b, T =000 (3:4)

nrpt

In the case when the background fields g,, and b,,, are independent of the
coordinate x*, its equation of motion is just

35", =0, (3.5)
whereas the Bianchi identity is

9, F =0, (3.6)

Thus there is a duality symmetry that rotates field equations into Bianchi identi-
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ties. The invariance is summarized by the equations
Gipv ) quv  Gripo uvp i
8F M =AM FOT+ BRPG

8.9, =3Cope ¥+ DL, (3.7)
where A, B, C and D are constant parameters. Thus the first major difference
from the string is that the duality transformations are nonlinear in the “field
strength” 9.x* by virtue of % “*, given in (3.3). We must also establish invariance
of the equation of motion obtained by varying with respect to y,;, namely the
vanishing of the energy—-momentum tensor

288
V—ve,;= 3yij =V~ [aix“ 31)‘"8,“, - %'Yiﬂ'k[akx#alx" gt %yij] =0. (3.8)

This equation is just the statement that y,; is the induced metric on the world-
volume

Y, =0 x*dx"g,,. (3.9)
Here we encounter the second major difference from the string case, where the
worldsheet metric is invariant under duality transformations. For the membrane,
we must allow the possibility that y,; also transforms under duality.

The equations of motion (3.4), (3.5) and (3.8) may equivalently be derived from a
first-order lagrangian with independent variables x* and F,*

Z,=—3y—vvy'F"F'g,, — 3" F,"F,'"F’b,,,
+ x4y =y ¥IF "8, + 367FF b, ) = 3V (3.10)

Varying with respect to d,x*, we have

6.4,
39, x*

= \/___YYUE' Vguu + %eiikﬁ} VFkawo ’ (3.11)
and with respect to F;*, we have

0L,/ = ~\ =y VIE"g,, ~ ¥ Flb,,

+y-yy'ox"g,, +e*x"Frb,,, =0. (3.12)
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This latter equation says

Fl=ax" (3.13)

and then eq. (3.11) yiclds the same equations of motion as in the second-order
formulation.

Now consider a different first-order lagrangian with independent variables y
and F.*

uy

, |
= WYY E g, + e EEF b

3! noe
+ek 8y, FAFS— 37V —v . (3.14)
We have
6_/;/66,.yw,=£"jkf}quV (3.15)

0.4, /0F " =~y yIF"g,, + Y F Ffb,,, — 269 0y, F =0. (3.16)

This is an algebraic equation for F,* with the (implicit) solution

F*=2p"(1/V =7 )v,;e™ 9y, F,7 = 24°*8,y,, (3.17)
where p*” =p™* and ¢°7* = q'#?*] are related to g, =g,, and b,,, =b,,, by
Puv = 8uu ¥ iD,ap 8 P7%b, 05,
Pud® =3b,,:8°%°, (3.18)
where p,, is the inverse of p*” and where
goPYe = (g=gh? — gghv). (3.19)

In proving eq. (3.17), we have madc usc of the identities

N km jn, ki

ijkelmn - ,y(,yil,yjm,ykn + ,yin,y Y + ,yim,y v

€

_,yil,yjn,ykm — ,yim,yjl,ykn _ ,yin,yjm,ykl) ,
gijkgl’”k - ,y(,yil,yjm - ,yim,),fl) ,

gkl = 2yyH, £ke ;= 6y (3.20)



The World in Eleven Dimensions 219
and have also used the ficld equation (3.9). From eq. (3.15) the equation for y,, is
ai(sikojl‘Fk”) =0, (3.21)

which implies (3.13), at least locally. Putting these results together, we find

2¢%9y,,8,x" = Pyl yy'3,x" + 5b,, e 0,x" 9, x",
i
ijk m v a‘_/g nrpo I nvp _ijk o
79 x" 9, x :Ba.y =2p f:yy 0¥, +2q"P€" 0y, 0, x7 (3.22)
iYuv

where p*® is defined by
gaﬁys =pa875 + q"""pﬂvqﬁ" i (3.23)

Thus the field equations of the original lagrangian _#, are the Bianchi identities
for the “dual” lagrangian .7, and vice versa.

4. A specific case: n =4

In the case of the string, the n & "“ and the n & transform as the same
2n-dimensional vector representation of the same orthogonal group, SO(n, n), for
all n. In the case of the membrane, however, we shall see that each n tells a
different story. The n & "# and the n(n—1)/2 F v will transform as an
(n(n + 1) /2)-dimensional representation of some noncompact group. Then the
n(n+1)/2 g,, and the n(n —1Xn ~2)/3! b,,, will parametrize some (n(n’+
5)/3"-dimensional coset. (In fact, we shall see in sect. 5 that this is valid only for
n <4 and that the cases n > 5 require a separate treatment). The group and the
coset will be different for each n.

In this section we shall focus explicitly on n = 4. Then the 4 & ‘, and 6 Ginv
will transform as a 10-dimensional representation of the duality group which will
turn out to be SL(5,R), and the 10 g,, and 4 b, will parametrize the 14-dimen-

nvp

sional coset SI(5,R)/SO(5). To see this explicitly, define
f'w54 —'y'y”(?jy‘w. (4.1)
Then eq. (3.22) may be written
i _ v 1 = iv,
7', =8, " +3b,,,5"

.9"[/,1.)/ — %puvpdjipa + qll-VpCéip . (4.2)
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Now define @,y = ~P'yp (M, N=1,...,5) via

1 . .
& £up T B P =

wv 2—5’ uvap “ n

and @MN = — @M yiy
Ppiny = %g—l/SE;u'prrfipa’ ¢l}£5=g—1/5((77!'p ,
where g is the determinant of g,,. Then eq. (4.2) may be written
(DiMN = (GMPGNQ - GMQGNP)d)iPQ

where G,,, is the 5 X 5 symmetric matrix for which

~ ~2/5
G,.=¢"g,,,

M 1 -2/5 afyd
Gus=~— ﬁg 8uat™ " bgys = G,

1
Gss =g 1+ ;baﬁvgwgﬁygwbum .

We note that
detGyy=1,

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

and hence that G,,, is an element of SL(5, R). Eq. (4.5) is thus manifestly SL(5, R)

invariant with ™" transforming as the 10-dimensional representation
= . P
3Py = —A Py — A NP yp
where AF,, is a traceless 5 X 5 constant matrix. Similarly, we have
3¢iMN=AMP¢iPN +ANP¢1‘MI"

The explicit transformation rules are those of (3.7) with the restrictions

(4.8)

(4.9)

AR, =", AY, — 8 A*, + 8Y, A", — 8", A", — &* 8", A%, + 84,87, A%,

B#ve = Bluvel — ‘EMVpUASo ’ C;va = C{uuP] = “(1/g)8"“'p”A05

DS =—Ar, +5°,4°,

N

(4.10)
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corresponding to the 24 parameters of SL(5, R). Thus
Sjiuv - _Aaag;;'iuv _f_Ap.aj‘iav +Ava‘§riua + Bp.u)\;i)‘
85, =A° G ~A", ' +1C, \F . (4.11)

Whereas,

, 21 | | |
3F ik = (— a0, =5 5Baﬂwa,,y) Fik AR, T~ ABreB g
21

33!

u PRy

85" =(§A"a— B"B‘/baﬁy)(fi#V—A““fiaV—A"Vf’#(,‘C Fr. (4.12)

The transformation rule for G,y is given by

8Gyn= —A NGyp— A, Gon (4.13)

and hence

agp.u = %Aaagp.u —Agu.g(rv —A°

Vg/.LG

21
_ __RaB _1 a, 1 af}
M 3 3! B Yb"ﬂYg‘“’ Zgl-LPBp ﬁbaﬂv 2 uaBB pgpu ,

6b,,,=24b,,,—-A°,b,,, —A%b,,, —A°b

a T uvp urovp vYuop oPuve
! afy aBy
- _3—!8 bopybup + BP8,,8,58,,+ Cpup- (4.14)

This action of SL(5,R) on the background fields is nonlinear. A linear realization
of SL(5, R) may be obtained by rewriting eq. (4.5) as

éi/u'i'=2(I)i,<113, (4.15)
where
d;iAB =EMAENB(I~>iMN’ P'y5 =EpaEng®™™, (4.16)
with E,/* the “fiinfbein” for which
Gun = EMAENA ’ (4.17)

where EM is its inverse. Multiplying eq. (4.15) by E,'E,” we recover eq. (4.5).
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As usual the price to pay for a linear realization of G is a local symmetry H
where H C G. In this case

E\'— A'GE”, (4.18)

where A is an element of SO(5), the maximal compact subgroup of SL(5, R). The
14 physical scalar fields described by G,y parametrize the coset SL(5,R)/SO(5)
and their self-interaction is described by the corresponding nonlinear ¢-model.

Finally, we should also discuss the transformation properties of the membrane
metric. From eqgs. (3.2) and (3.9) we have

—yy =g#y7i”?j" . (4.19)

Thus from the transformation rules for g,, of (4.14) and %™ of (4.12) we may
deduce

1
By, = 5| A% — ﬁBaﬁybaﬁy =2 Y5 (4.20)
where
1
Ty e Oy X" 0, X" 0, X" 8,0 8,58, BT (4.21)

Thus vy;; transforms conformally with a worldvolume coordinate-dependent confor-
mal factor. The invariant

&, P =0 (4.22)

as a consequence of eq. (3.9) which just restates, in a manifestly SL(5, R) invariant
way, the vanishing of the energy-momentum tensor (3.8).

5. Comparison with d = 11 supergravity

By compactifying thc membrane on T*, we discovered in the last section that the
duality symmetry is SI(5,R) and that the 14 background fields g, and b,,,
parametrize the 14-dimensional coset SL(5,R)/SO(5). But this duality symmetry
and this cosct are precisely those obtained by Cremmer and Julia [4] from
compactification of d = 11 supergravity on T*. Once we have accepted that duality
symmetries of supergravity can in principle have their origin on the worldvolume of
the supermembrane, this correspondence should not be surprising since we know
that the x-symmetry of the d = 11 supermembrane [8] forces the background fields
of the three-dimensional o-model to be solutions of the d =11 supergravity
equations [13]. With the exception of the graviton, which is a singlet under duality,
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TaBLE 1
The hidden global symmetries G and local symmetries H that result from compactifying D = 11
supergravity on T". For n < 5, these are compatible with the coset parametrized
by the membrane background fields g, and b,,, only. Extra space-time scalars
must be included for n > 6

n G H dim G/H n(n?+5)/3!

1 R 1 1 1 v
2 GL(2,R) SO(2) 3 v
3 SL(3.R) X SL(2,R) SO(3) x SO(2) 7 7 v
4 SL(5, R) SO5) 14 14 v
5 SO(5.,5) SO(5) X SO(S) 25 25 v
6 Eqvo) Usp(8) 42 4] X
7 Es.o SU(8) 70 63 X
8 | SIS SO(16) 128 92 X

all the space-time fields in the supergravity multiplet, gravitinos, vectors, spinors,
scalars and antisymmetric tensors, will transform under duality. By rctaining only
the backgrounds g,, and b,, ,, we have so far been treating only the space-time
scalars. The scalars alone are nevertheless sufficient to determine the duality
symmetries. If we repeat the n =4 analysis of sect. 4 for n <4, one finds the
duality symmetries listed in table 1 with the n(n? + 5)/3! 8,. and b, parametriz-
ing the corresponding coset. These once again agree with those of Cremmer and
Julia. Moreover the n(n + 1)/2 “field strengths” ¢, and % ** transform as the
same representation of G as do the space-time vector fields*.

For n > 6, however, there is a mismatch with the number of space-time scalars
as shown in table 1. The mismatch with the number of space-time vectors occurs
already for n > 5 as shown in table 2. The reason for this is easy to explain and
does not present a serious problem. By focussing only on those space-time scalars
arising from g, and b,,,, we have ignored those arising from other sources [4].
For n =6, we get | extra by dualizing the space-time three-form by, (M, N, P =
I,...,5); for n =7 we get 7 extra by dualizing the space-time two-form by, (M, N
=1,...,4); for n = 8 we get 28 extra by dualizing the one-form b,,,, and 8 extra by
dualizing g,,,(M = 1,2,3). This correctly accounts for the mismatch in table 1.
Similarly, by focussing on the ficlds strengths f’# and % **, we have becen
ignoring others that couple to space-time vectors arising from dualization. For
n =35, we get | extra by dualizing the three-form by, for n = 6 we get 6 extra by
dualizing the two-form b,,,. This correctly accounts for the mismatch in table 2.
The cases n = 7,8 are special. The 28 space-time vectors field strengths combine
with 28 dual field strengths to form a 56 of E, , ,, whereas for n = 8 all vectors are

* We are grateful to Ergin Sezgin for pointing out the importance of this.
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TABLE 2
Representations of the duality symmetry under which the spin-1 space-time fields
of compactified D = 11 supergravity transform. For n < 4, these are compatible
with the representations of the membrane “field strengths” (é’“ and %™ only.
Extra field strengths must be included for n = 5

n G spin-1 reps. n(n+1)/2

1 R 1 v
2 GL2,R) 3 3 v
3 SL(3.R) X SL(2.R) 3.2 6 v
4 SL(5.R) 10 10 v
5 SO(5,5) 16 5 X
6 | SPRRPS 27 X
7 Evs) 56 28 x
8 | SHA — 36 X

dual to scalars. Thus we expect that all the hidden symmetries of Cremmer and
Julia, including those for n > 5, will follow from membrane duality provided we
start with an enlarged o-model that includes the couplings to those background
fields we could safely ignore for n < 4. We intend to return to this point elsewhere.

6. String duality from membrane duality

The dimension of the extended object (p + 1 for a “p-brane”) and the dimen-
sion of space-time (D) in which it moves, are severely limited by supersymmetry.
Classically, one requires that in a physical gauge there be equal numbers of bosons
and fermions on the worldvolume [14]. There arc 12 possibilities displayed on the
“brane-scan’ of fig. 1. They fall into 4 sequences and the equations of motion for a
lower member of the sequence may be obtained from those of a higher member in
the same sequence by the process of “simultancous dimensional reduction™ [13].
This is illustrated by the diagonal lines in fig. 1 which terminate on the strings
(p=1)in D=3, 4, 6 and 10. In particular, the Type IIA superstring in D = 10
follows from the supermembrane in D = 11. One suspects, thercfore, that the
string duality of sect. 2 should follow from the membrane duality of sect. 3 by the
same simultancous dimensional reduction. We shall now show that this is indeed
the case, using the explicit # = 4 example of sect. 4.

Let us denote all membrane variables by a hat. Thus the equations of motion
(3.5) and Bianchi identities (3.6) now read

000 =0, 350 =0, (6.1).(6.2)

i

Similarly, we denote the membrane background fields by g;; and [;ﬁf,‘; and the

SL(5,R) parameters by /ff“'},\;. Here [ runs over 1 to 3, @ over | to 4 and M over |
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p / (8+8)

Quantum
consistent
8
7
6 —
5 b
4
3 —
2
1 b—
l 1 ! L J
0 1 2 3 A 5
p
Strings
Fig. 1. The “brane-scan”.
to 5. In this notation, eq. (3.9) becomes
Fir= 9 RE IR B, (6.3)

Following ref. [13], we now make a two-one split of the worldvolume coordinates
£=(6.8), =12, (6.4)

and a three-one split of the target-space coordinates
£ =(x", xY), w=1,2,3, (6.5)

in order to make the partial gauge choice

£3=x*, (6.6)

which identifies the fourth target-space dimension with the third worldvolume
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dimension. The dimensional reduction is then effected by demanding that
dx*/3g3=0. (6.7)
(The other requirement of ref. [13], namely
38:5/0x =0=0b,;;/9x%, (6.8)

5%

is here superfluous since we are already assuming that the background fields are
independent of all £#.) A suitable choice of four-dimensional variables is now

~ _ -2/3 gp,u+d)2A;LAv (bZA#
=9 5 , | (6.9)
A, )
biss = (Buvpr Buvs) = (Bspr b)) - (6.10)

The background fields g,, and b,, will be identified with the string backgrounds
of sect. 2 with n =3, and ¢ will be the string dilaton. The fields 4, and b,,, are
the extra backgrounds that appear in the Type 11A but not the bosonic or heterotic
strings. By working in a Green—Schwarz formalism and focussing only on the
bosonic sector, we shall see that ¢, A, and b,,, in fact all decouple from the

equations of motion. Note, for example, that

£=g. (6.11)

If we now make the following identifications

e :i 4 i :i
Fiw=gw  Z = (6.12), (6.13)
and substitute (6.9) and (6.10) into the membrane equations 6.1) and (6.2), we
correctly recover the string equations (2.5) and (2.6). The % iw and &£ ":, equations
are identities, as they must be for consistency. Similarly, if we now make the
identifications

At =Ar —§n AP BP =4 e C,, =(1/g)A%s¢,,, . (6.14)

set to zero A°,, A%, A%, A*, and 4%, and substitute into the membrane
transformation rules (4.11), (4.12) and (4.14), we correctly recover the string
transformation rules (2.30) and (2.32). Once again, the extra equations not corre-
sponding to string variables are just identities.

Thus in this explicit example, we have seen how the duality symmetry of the
string equations of motion for n = 3, namely SO(3, 3), follows as a consequence of
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TasLE 3
String duality from membrane duality via simultaneous dimensional reduction (— ). The string
symmetries are actually larger than SO(n, n), where n is the number of compactified
string dimensions

n membrane duality - string duality SO(n, n)
1 GLQ2,R) - SO(1,1) x SO(1, 1) SO, 1
2 SL(3, R) x SI(2,R) - S0(2,2) x SO, 1) S0(2,2)
3 SLG5, R) - S0O(3,3) X SO(1,1) S0, 3)
4 SO(,5) - S0O(4,4) x SO(1,1) S04, 4)
5 Eos o) - SO(5,5) x SO(1, 1) SO(5,5)
6 Eyin - S0(6,6) x SO(2,1) SO(6,6)
7 Egs s > SO(8, 8) SO(7,7)

the SL(5, R) duality symmetry of the membrane for n = 4. It is not difficult to see,
from a group theoretical point of view, how this would work for other values of n.
The results are shown in table 3.

In fact, the string duality symmetries listed in the second column are larger than
the SO(n, n) appearing in the third column and discussed in sect. 2. The reason is
that the SO(n, n) refers to the coset parametrized by g, and b,, only. However,
even for the string, space-time scalars may arise from other sources. First there is
the dilaton ¢ which, although decoupling from the bosonic sector, still survives in
the fermi—fermi couplings. If we retain the A“4 component of A*;, there is an
extra SO(1, 1) under which g,,, b,, and ¢ transform by conformal factors. In four
space-time dimensions we also have the axion b,, (coming from byniy Of the
D =11 supermembrane) which is dual to a scalar and which, together with ¢
parametrizes the coset SO(2,1) /U(1). In three space-time dimensions we have 14
more scalars coming from §,,; and b,,;,,. These conspire with the dilaton and 49

g,, and b,, to parametrize SO(8,8)/SO(8) X SO(8). For the heterotic string we
promote each SO(n, n) to SO(16 + n, n) corresponding to the extra 16 left-moving
modes. Thus in D = 3, we would have SO(24, 8).

Of course, we could retain all the space-time background fields in the dimen-
sional reduction including those that appear only in fermi—fermi couplings and
thereby obtain the duality symmetries of the Type IIA superstring. Its duality
symmetries would then be given by the first column in table 3 i.e. the same as those
of the D =11 supermembrane.

7. Higher extended objects

So far we have considered strings (p = 1) and membranes (p = 2), but similar
duality symmetries will be present for other “p-branes” with p > 3. The lagrangian
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takes the form with i=1,..., p+ 1,
A=y yIaxtaxt e, —i(p- DV -y

1

fiy...1, oy mn mn
+_—(p+l)!£ ot gt gy xMYLG; xReby,

with background fields g,, and b,,  , (u=1,...,n). Define

Gin = [T iy n
F vV-ryyYoxt,
Fimrby = glhlp gy gk
: i X5y
zi G 1 G
— v &
G =8,F"+ —b G

p’ By -y

Then once again there is a symmetry that rotates field equations

into Bianchi identities

8,5 = 0

The dual coordinate now has p indices: y, . and the analogue of egs.

and (3.22) becomes

Volipedp g oy M2 M
D:e Pal)yuu2___“p6,2x "'81,,x ’

=03.2,/99,x"

- 1 L
:guv _,y.yljajxu+;_b Eulmlpai,x“]"'aipx””’

| HELHp
T By Mp =
gl g XML xte =0L/90,y,,

=plptrte ot/ —yylay,

Wy v i d v
+ plghr#ergh P«?ilywz.“ypaizx 2...8ipx

Ry

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(2.19)

v, (7.7)
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where p™¥ =p"® and g1 #» =gl 4] are related to 8 =8up and bu.---#,,:
b[lh---l-‘p] by

Pu.=8, +b,,8""b,,, p,q""=b,8"", (7.8)

where p,, is the inverse of p*". Here we have adopted a condensed notation
where the index m means

m=[p...n,l,

and where a repeated m index means

a,b" = (l/p!)am_““pb“"““f'. (7.9)
The quantity g™” is given by
gmn Eg“l"'“l"'l""'l’ — Z(~ I)ngll'l . gy,l,u,, ] (710)
P

In this notation, the equations analogous to egs. (2.21) and (4.2) may be written

P v il ciim __ i my i
<f'#—gm,7’ +bu,,J’", FiM=p™ g +q" g (7.11)
where
jiﬂ =P!£ii'"‘il’(7,1)’,1,,3,”,,”3,,:,("1...(7ipx"n,
. ; > —
F=G = (V=YY s (7.12)

and where p™" is defined by

gmn =pmn + qmp.p‘“'qnu‘ (713)
This may be rewritten as
;i +b mnp, b mn Fiv
( i # ) _ (gl“’ p-mg vn umg )( . ) (714)
Grim g'""b,,,, gm" (gtn

As remarked in ref. [1] in the context of strings, increasing the dimension of the
target space, with coordinates x*, to include the extra y,, coordinates is strongly
reminiscent of a Kaluza-Klein procedure. This analogy is seen to be even closer
when we compare the matrix in eq. (7.14) with the typical Kaluza-Klein decompo-
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sition of the metric

8wt AL 8 A Ay B

G = (7.15)

n

gmnAv gmn

Thus the role of the gauge field 4,™ is played by the antisymmetric tensor b,,,.
Untypical is the fact that the number of “internal” dimensions {7 ) is determined
by the number of “space-time” dimensions, n, with the curious twist that the role
of the “internal” metric g,,, is played by g™” which is built out of the inverse of
the “space-time” metric g** as in eq. (7.10). Indeed, if we introduce as in ref. [1] a
target space with n + ( Z) dimensions and coordinates

ZM=(x*,y,) (7.16)

the equations of motion and Bianchi identities may be united into a single
equation, since after some rearrangement eq. (7.7) may be written

Do, "0 ZM 3, ZMr = Gy — ¥ 7 9,2, (7.17)

whcre.GMN is the matrix appetari.ng in (7.14) and ‘QM.Ml...MP='QM[Ml.HMp] is a
numerical tensor whose nonvanishing components are given by

0,7, o= ;)%;5;’55.'.'3 e %5‘75.‘.‘.'3, (7.18)
where
daby =Y (-1)78,88,...67,. (7.19)
P
Note that
Dirm,. . my=0, (7.20)

and so, multiplying both sides of eq. (7.17) by 3,Z™ we learn that
—yy78,ZMGyn ,ZN =0 (7.21)

as may also be verified explicitly.

Although eq. (7.17) is an elegant way of summarizing the combined field
equations and Bianchi identities of an arbitrary p-brane in a target space of
arbitrary D, one must not be lulled into thinking that all the hidden symmetries
are thus rendered manifest. This is because, with the exception of the string, (2 is
not an invariant tensor under the full duality transformations and 6].ZM does not
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transform as a vector. Rather, the manifest symmetry is only a subgroup of the full

duality group, and turns out to be SL(n,R) X R*”’, under which y;; does not
transform. To obtain the complete duality symmetry we must adopt a different
route along the lines described in sect. 3. What will these p-brane symmetries be?

The first observation to make is that a p-brane couples to a (p + 1-form
background by, u, (M=1,..., D) whose field strength F=db is a (p +2)-
form. But in D space-time dimensions a (p + 2)-form F is dual (in the sense of
Poincaré duality) to a (D —p — 2)-form F =db where b is (D —p — 3) form that
couples to (D — p — 4)-brane. Hence we expect the duality symmetry of a p-brane
in D dimensions compactified on T” to be the same as that of (D — p — 4)-brane
in D dimensions compactified on T”. A good example is provided by the string in
D =10 and the 5-brane in D = 10. The former couples to the background fields of
D = 10 supergravity with a 2-form b,,,, while the latter couples to the fields of the
dual formulation of D = 10 supergravity in which the 2-form is replaced by a
6-form BMNPQRS. Thus we anticipate that the 5-brane duality symmetries will be
exactly the same as those for the string listed in table 3. Of course, to achieve this
it will be necessary, as described in sect. 5, to augment the »n-dimensional
background scalar fields g, and !3,“, pror With those arising from other sources and
similarly for the field strengths ¢, and & *#"#*7.

Note, incidentally that whereas in space-time one must replace the field-strengths
FMNN,...N,, of the gauge (p + 1)-forms by their duals in order to get equivalent
degrees of freedom, for the compactified coordinates (where the (p + 1)-form
potentials are space-time scalars) one must replace the potentials buy,...., them-
sclves by their duals. Similar remarks apply when working with the space-time
fields in the light-cone gauge rather than covariantly.

If we consider the full superspace (x*,6%) couplings and keep all the back-
ground fields, then the duality symmetry is preserved by the simultancous dimen-
sional reduction e.g. as discussed in sect. 6, the D = 11 membrane duality leads to
the D =10 Type IIA superstring duality. Thus there are really just four duality
schemes corresponding to the four sequences on the “brane-scan” of fig. 1. Just as
the largest duality group is Ey 4, for the octonionic sequence, a process of
counting degrees of freedom and truncating leads to the three groups shown in

TABLE 4
Maximal (finite dimensional) duality symmetries for the 4 sequences of extended objects

Sequence G H dim G/H
O Eg + 1) SO(16) 128
H S0O(8,8) SO(8) x SO(8) 64
C S0(4,4) SO(4) x SO(4) 16
R SO(2,2) SO(2) X SO(2) 4
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table 4 for the quaternionic, complex and real sequences when compactified to
D = 3 space-time dimensions. Of course, one might conjecture that these may be
enlarged even further to infinite-dimensional symmetries, for example E, [4] and
E,, [5,6,19] in the octonionic case.

8. Conclusions

We have seen how the Cremmer—Julia hidden symmetries of supergravity have
their origin in duality transformations on the three-dimensional worldvolume of
the D = 11 supermembrane, and how the string duality symmetries follow from
those of the membrane by simultaneous dimensional reduction. The duality
symmetries for a general p-brane in D space-time dimensions, will be the same as
those of (D — p — 4)-brane, to which it is related by Poincaré duality, an cxample
being provided by the string and the S-brane in D = 10. Several questions now
spring to mind.

First, we have succceded in writing the equations in a manifestly duality
invariant way. Since these symmetries are not symmetries of the p-brane action,
however, their presence will never be obvious starting from the o-model with
physical background scalar fields g, and b,, , . However, it would be interest-
ing to sec whether we could write the p-brane action coupled to all the scalars of
EMA which describes both physical and unphysical modes. In this way, at least the
local group H, which is the maximal compact subgroup of (G, might then be
manifest.

Secondly, all the continuous symmetries discussed here follow by demanding
that the background ficlds are independent of the compactified coordinates. This
corresponds to a naive dimensional reduction in which it is not even necessary to
specify the topology of the extra dimensions. In reality, we must pick a specific
topology and gcometry c.g. the flat torus T”, and keep all the Fourier modes.
These symmetrics will then be broken by the massive states. Moreover, there will
be quantization conditions imposed by the torus topology. For the string, the 7
components of both Q"u and .% * will be quantized, thus

P,=9" =y, =m,, At=FH=xt=n*, (8.1)

where m,, and n* are integers. From the point of view of the original o-model ../,
m,, corresponds to the momentum modes and n* to the winding modes. Whereas
from the point of view of the dual o-model ., the roles are reversed [1]. Thus
there is a discrete subgroup of SO(n, n) given by

(m) =57 (m)

G- STGS (8.2)
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where G is given by eq. (2.25). This is the SO(n, n; Z) referred to in sect. 1 and
which leaves the string spectrum invariant. Thus the question arises whether there
are also discrete subgroups of the membrane duality symmetries which leave the
membrane spectrum invariant. The equations analogous to (8.1) are

P=g, =2x"y.}. AW = G = (xH | x"} (8.3)

where the Lie bracket is defined by
{X,Y)=¢"9,Xa,Y. (8.4)

Unfortunately, this is a difficult question to answer since the membrane spectra
are, as yet, unknown. (This is primarily because the usual light-cone gauge [15]
action for a p-brane is highly nonlinear except for p = 1. An alternative gauge
which linearizes the equations of motion has been proposed [16], at the expense of
introducing a highly nonlinear constraint. Incidentally, on the subject of the
light-cone gauge, we note that except for p =1, it is inhomogeneous in the
components of vy;;, namely

Yij = ( -()h h?,,,) (8.3)

where h=deth,, and a,b=1,..., p. Consequently, the duality symmetry, under
which v;; rescales by a conformal factor (4.20), would be obscured in this gauge.
The conformal gauge of ref. [16], which for p = 2 looks like

A% —A,A4, ’A|A3
v, = | -4,4, A; ~A,A, (8.6)
A Ay —A,A5 AF

would be much more suitable.) If such discrete subgroups do leave the membranc
spectrum invariant, does the R — o' /R idea continue to apply, and hence does the
idea of a “minimum length” also hold for membranes? We would expect so, since
as we saw in sect. 6, G (string) C G (membrane). It would also be interesting to see
whether the fixed points correspond to enhanced gauge symmetries.

Finally, is the similarity of the duality symmetry of the string in D = 10 and the
S-brane in D = 10 indicative of a deeper relationship? The two formulations of
D = 10 supergravity, one with a 3-form field strength and one with a 7-form field
strength, has long bcen something of an enigma from the point of view of
superstrings. As field theories, each seems equally as good. In particular, provided
we couple them to E; X E; or SO(32) Yang-Mills, then both are anomaly-free
[17,18]. Since the 3-form version corresponds to the low-energy limit of the
heterotic superstring (or Type-I superstring) it is naturally to conjecture, as was
done some time ago [19], that there exists a “heterotic 5-brane” (or “Type-1
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5-brane”) whose low energy limit is the 7-form version. However, this would
require a coupling of the super-5-brane to background Yang--Mills fields which, to
date, has not been achieved. It was spcculated that such a coupling might exist,
making use of the property that a one-time and five-space dimensional worldvol-
ume admits real self-dual three forms (and /or Weyl spinors).

This possibility has now become a virtual certainty thanks to the recent remark-
able observation by Strominger {20] that the heterotic string admits the heterotic
S-brane as a soliton solution. The soliton interpretation of membranes was the
motivation for the original supermembrane paper of Hughes et al. [21] and has
also been pursued by Townsend [22]. Strominger went on to conjecture that the
heterotic string and heterotic 5-brane might be “dual” in the sense of Olive and
Montonen [23] and that the 5-brane describes the strong coupling limit of the
string. Clearly, the many meanings of the word “duality” in theories of extended
objects have still not been exhausted.

We are grateful to Paul Howe, Chris Pope and Ergin Sezgin for useful conversa-
tions. M.J.D. acknowledges the hospitality extended by members of the Theory
Division at the Rutherford Laboratory, UK, where part of this work was carried
out.
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Abstract

The effective action for type II string theory compactified on a six-torus is N =8
supergravity, which is known to have an E, duality symmetry. We show that this is broken
by quantum effects to a discrete subgroup, £,(Z), which contains both the T-duality group
O(6, 6; Z) and the S-duality group SL(2; Z). We present evidence for the conjecture that
E,(Z) is an exact ‘U-duality’ symmetry of type II string theory. This conjecture requires
certain extreme black hole states to be identified with massive modes of the fundamental
string. The gauge bosons from the Ramond-Ramond sector couple not to string excitations
but to solitons. We discuss similar issues in the context of toroidal string compactifications
to other dimensions, compactifications of the type II string on K, X T? and compactifica-
tions of 11-dimensional supermembrane theory.

1. Introduction

String theory in a given background can be formulated in terms of a sum over
world-sheet fields, (super-) moduli and topologies of a world-sheet sigma-model
with the background spacetime as its target space. Different backgrounds may
define the same quantum string theory, however, in which case they must be
identified. The transformations between equivalent backgrounds generally define a
discrete group and such discrete gauge symmetries are referred to as duality
symmetries of the string theory. An example is T-duality, which relates spacetime
geometries possessing a compact abelian isometry group (see [1] and references
therein). The simplest case arises from compactification of the string theory on a
circle since a circle of radius R defines the same two-dimensional quantum field
theory, and hence the same string theory, as that on a circle of radius a'/R.
T-dualities are non-perturbative in the sigma-model coupling constant a’ but valid
order by order in the string coupling constant g. Some string theories may have

0550-3213 /95 /$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0550-3213(94)00559-1


http:0550-3213/95/$09.50

The World in Eleven Dimensions 237

additional discrete symmetries which are perturbative in a’ but non-perturbative
in g. An example is the conjectured S-duality of the heterotic string compactified
on a six-torus [2—4). In this paper we investigate duality symmetries of the type II
string compactified to four dimensions and present evidence for a new ‘U-duality’
symmetry which unifies the S- and T-dualities and mixes sigma-model and string
coupling constants.

Consider a compactified string for which the internal space is an n-torus with
constant metric g;; and antisymmetric tensor b;;. The low-energy effective field
theory includes a spacetime sigma-model whose target space is the moduli space
O(n, n)/{0(n) X O(n)] of the torus, and the constants g;; and b;; are the expecta-
tion values of the n? scalar fields. There is a natural action of O(n, n) on the
moduli space. In general this takes one string theory into a different one, but a
discrete O(n, n; Z) subgroup takes a given string theory into an equivalent one.
This is the T-duality group of the toroidally compactified string and the true
moduli space of the string theory is the moduli space of the torus factored by the
discrete T-duality group. There is a generalization to Narain compactifications on
the ‘(p, q)-torus’ T(p, q) for which the left-moving modes of the string are
compactified on a p-torus and the right-moving ones on a g-torus [5]. In this case
the moduli space is O(p, q)/[O(p) X O(q)] factored by the T-duality group
O(p, q; Z). The T(6, 22) case is relevant to the heterotic string compactified to
four dimensions which has O(6, 22; Z) as its T-duality group. At a generic point in
the moduli space the effective field theory is N =4 supergravity coupled to 22
abelian vector multiplets, giving a total of 28 abelian vector gauge fields [6] with
gauge group U(1)%. It follows from the compactness of the full gauge group for all
28 vector gauge fields that any electric or magnetic charges are quantized. The
effective field theory has an SL(2; R) X O(6, 22) invariance of the equations of
motion which, due to the charge quantization and the fact that states carrying all
types of charge can be found in the spectrum, is broken to the discrete subgroup
SL(2; Z) X O(6, 22; Z). The O(6, 22; Z) factor extends to the T-duality group of
the full string theory. It has been conjectured that the SL(2; Z) factor also extends
to a symmetry of the full string theory [3]. This is the S-duality group of the
heterotic string. It acts on the dilaton field ¢ and the axion field ¢ (obtained by
dualizing the four-dimensional two-form gauge field b,, that couples to the string)
via fractional linear transformations of the complex scalar ¢ +ie~® and on the
abelian field strengths by a generalized electric-magnetic duality. One of the
SI(2; Z) transformations interchanges the electric and magnetic fields and, when
¢ =0, takes @ to —P which, since the expectation value of e® can be identified
with the string coupling constant g, takes g to 1/g, and so interchanges strong
and weak coupling.

Consider now the compactification of the type IIA or type 1IB superstring to
four dimensions on a six-torus. The low-energy effective field theory is N =8
supergravity [7], which has 28 abelian vector gauge fields and 70 scalar fields taking
values in E,-,/[SU@B)/Z,). The equations of motion are invariant under the
action of E, ., [7], which contains SI(2; R) X O(6, 6) as a maximal subgroup. We
shall show that certain quantum mechanical effects break E,,, to a discrete



238 M-theory (before M-theory was cool)

subgroup which we shall call E,(Z), and this implies a breaking of the maximal
SL(2; R) x O(6, 6) subgroup to SL(2; Z) X O(6, 6; Z). The O(6, 6; Z) factor ex-
tends to the full string theory as the T-duality group, and it is natural to conjecture
that the SL(2; Z) factor also extends to the full string theory as an S-duality group.
In fact, we shall present-evidence for the much stronger conjecture that the full
E(2) group (to be defined below) extends to the full string theory as a new unified
duality group, which we call U-duality. U-duality acts on the abelian gauge fields
through a generalized electromagnetic duality and on the 70 scalar fieids, the
constant parts of which can each be thought of as a coupling constant of the
theory. The zero-mode of the dilaton is related to the string coupling g, while 21
of the scalar zero-modes are the moduli of the metric on the 6-torus, and the
others parameterise the space of constant antisymmetric tensor gauge fields on the
six-torus. U-duality implies that all 70 coupling constants are on a similar footing
despite the fact that the standard perturbative formulation of string theory assigns
a special réle to one of them.

Whereas T-duality is known to be an exact symmetry of string theory at each
order in the string coupling constant g, the conjectured S-duality and U-duality
are non-perturbative and so cannot be established within a perturbative formula-
tion of string theory. However, it was pointed out in [4] in the context of the
heterotic string that there are a number of quantities for which the tree level
results are known to be, or believed to be, exact, allowing a check on S-duality by a
perturbative, or semi-classical, calculation. We shall show that U-duality for the
type Il string passes the same tests.

First, for compactifications of the type II string that preserve at least N =4
supersymmetry, the low-energy effective field theory for the massless modes is a
supergravity theory whose form is determined uniquely by its local symmetries and
is therefore not changed by quantum corrections. Duality of the string theory
therefore implies the duality invariance of the equations of motion of the super-
gravity theory. This prediction is easily checked because the symmetries of the
N = 4 supergravity /matter theories have been known for some time. In particular,
the equations of motion of N =8 supergravity are U-duality invariant. Second,
another quantity that should be, and is, duality invariant is the set of values of
electric and magnetic charges allowed by the Dirac-Schwinger—Zwanziger quanti-
zation condition. Third, the masses of states carrying electric or magnetic charges
satisfy a Bogomolnyi bound which, for the compactifications considered here, is
believed to be unrenormalized to arbitrary order in the string coupling constant.
Duality invariance of the string theory requires this bound to be duality invariant.
For soliton states the Bogomolnyi bound can be found from a classical bound on
field configurations of the effective supergravity theory carrying electric or mag-
netic charges that generalizes the bound obtained in [8] for Maxwell-Einstein
theory. We present this bound for N = 8 supergravity and show that it is U-duality
invariant. Fourth, the spectrum of ‘Bogomolnyi states’ saturating the Bogomolnyi
bound should also be duality invariant. These states include winding and momen-
tum modes of the fundamental string and those found from quantization of
solitons. We shall assume that soliton solutions of the type II string can be
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identified with those of its effective N =8 supergravity theory, and these, as we
shall see, include various types of extreme black hole .

One of the main concerns of this paper will be the Bogomolnyi states of the
type II string theory that break half the supersymmetry. As we shall see, the soliton
states in this category arise from quantization of a particular class of extreme black
hole solution of N = 8 supergravity. It is essentially automatic that all soliton states
of the type II string fall into representations of the U-duality group because this is
a symmetry of the equations of motion of which the solitons are solutions 2. A
similar argument can be made for solitons of the heterotic string; for example,
extreme black hole solutions of the low-energy field theory corresponding to the
heterotic string fit into SL(2; Z) representations [10]. There are two points to bear
in mind, however. First, a duality transformation not only produces new soliton
solutions from old but also changes the vacuum, as the vacuum is parameterised by
the scalar expectation values and these change under duality. We shall assume, as
in {4}, that the new soliton state in the new vacuum can be continued back to give a
new soliton state in the old vacuum with duality transformed electric and magnetic
charges; this is certainly possible at the level of solutions of the low-energy
effective action, since the extreme black hole solutions depend analytically on the
scalar expectation values. Combining U-duality transformations with analytic con-
tinuations of the scalar field zero-modes in this way gives an E.(Z) invariance of
the spectrum of soliton states in a given vacuum. (Note that whereas U-duality
preserves masses, combining this with a scalar zero-mode continuation gives a
transformation which changes masses and so is not an invariance of the hamilto-
nian.) Second, the four-dimensional metrics of many extreme black hole solitons
are only defined up to a conformal rescaling by the exponential of a scalar field
function that vanishes at spatial infinity. While the ‘Einstein’ metric is duality
invariant, other metrics in the same conformal equivalence class will not be. In
general one should therefore think of duality as acting on conformal equivalence
classes of metrics, and the issue arises as to which metric within this class is the
physically relevant one. As we shall see, for the solutions considered here each
conformal class of metrics contains one that is (i) either completely regular or
regular outside and on an event horizon and (ii) such that its spatial sections
interpolate between topologically distinct vacua. The extreme black hole solutions
corresponding to these metrics might reasonably be interpreted as solitons of the
theory.

We now encounter an apparent contradiction with U-duality, and with S-dual-
ity, of the type II string theory because the fundamental string excitations include
additional Bogomolnyi states which apparently cannot be assigned to duality
multiplets containing solitons because the soliton multiplets are already complete.
The only escape from this contradiction is to make the hypothesis that the

!'See [9] for a discussion of the interpretation of extreme black holes as solitons.
2 They also fall into supermultiplets because of the fermion zero-modes in the presence of an
extreme black hole [11).
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fundamental string states have already been counted among the soliton states. In
order for this to be possible there must be soliton states carrying exactly the same
quantum numbers as the fundamental Bogomoinyi states. This is indeed the case.
The idea that particles with masses larger than the Planck mass, and hence a
Compton wavelength less than their Schwarzschild radius, should be regarded as
black holes is an old one [12,13}, and it has recently been argued that Bogomolnyi
states in the excitation spectrum of the heterotic string should be identified with
extreme electrically charged dilaton black holes [14,15]. For the heterotic string,
approximate solutions of the low-energy effective action include extreme black
holes and self-gravitating BPS monopoles [16,17], and it is believed that these
correspond to Bogomolnyi solitons of the heterotic string [4]. Any magnetically
charged soliton will have an electrically charged soliton partner generated by the
action of the Z, electromagnetic duality subgroup of S-duality. Now, if the full
string theory is S-duality invariant, and this Z, subgroup acts on an electrically
charged fundamental string state to give a magnetically charged soliton, as argued
for the heterotic string in [4], then this fundamental string state must be identified
with the corresponding electrically charged soliton. We shall return to these points
later but it is worth noting here that solitons of the low-energy effective N = 4 or
N = 8 supergravity theory fit into representations of the S X T or U-duality as
these are symmetries of the supergravity equations of motion, and this is true
irrespective of whether the duality symmetry is actually a symmetry of the full
heterotic or type II string theory.

For compactifications of ten-dimensional string theories one expects solitons of
the effective four-dimensional theory to have a ten-dimensional origin. For the
type II string we are able to identify the four-dimensional solitons that break half
the supersymmetry of N =8 supergravity as six-torus ‘compactifications’ of the
extreme black p-branes of either IIA or IIB ten-dimensional supergravity [18-22].
We note that, in this context, the Bogomolnyi bound satisfied by these states can
be seen to arise from the algebra of Noether charges of the effective world-volume
action [23]. Remarkably, the solitonic states that are required to be identified with
fundamental string states are precisely those which have their ten-dimensional
origin in the string soliton or extreme black 1-brane solution, which couples to the
same two-form gauge field as the fundamental string. This suggests that we should
identify the fundamental ten-dimensional string with the solitonic string. This is
consistent with a suggestion made in [24), for other reasons, that the four-dimen-
sional heterotic string be identified with an axion string.

A similar analysis can be carried out for non-toroidal compactification. A
particularly interesting example is compactification of the type II superstring on
K, X T? {25] for which the effective four-dimensional field theory turns out to be
identical to the effective field theory of the TS-compactified heterotic string, and in
particular has the same SI(2; Z) X O(6, 22; Z) duality group. Furthermore, the
spectrum of extreme black hole states is also the same. This raises the possibility
that the two string theories might be non-perturbatively equivalent, even though
they differ perturbatively. Such an equivalence would clearly have significant
implications.
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Finally we consider similar issues in the context of the 11-dimensional super-
membrane [26]. This couples naturally to 11-dimensional supergravity [27] and
hence to N = 8 supergravity after compactification on T’ and to N = 4 supergrav-
ity coupled to 22 vector multiplets after compactification on K, x T3 [28]. At
present it is not known how to make sense of a quantum supermembrane, so there
is little understanding of what the massive excitations might be. However, some
progress can be made using the methods sketched above for the string. We shall
show that, if the elementary supermembrane is identified with the solitonic
membrane solution {29] of 11-dimensional supergravity and account is taken of the
solitonic five-brane solution [30], the results of this analysis for the four-dimen-
sional theory are exactly the same as those of the type II string.

2. Charge quantization and the Bogomolnyi bound

Consider the four-dimensional lagrangian
L=y=g[iR - 18,(9)0.8' ¢’ —im,(6) F*'F,

~ §€***%a,,($) F.F}, | (2.1)
for a spacetime 4-metric g,,, scalars ¢’ taking values in a sigma-model target
space .« with metric g, (¢), and k abelian vector fields AL with field strengths
F!. The scalar functions m,, +ia,, are entries of a positive definite k X k
hermitian matrix. The bosonic sector of all supergravity theories without scalar
potentials or non-abelian gauge fields can be put in this form. We shall be
interested in those cases for which the equations of motion are invariant under
some symmetry group G, which is necessarily a subgroup of Sp(2k; R) [31] and an
isometry group of .. Of principal interest here are the special cases for which .4
is the homogeneous space G/H where H is the maximal compact subgroup of G.
These cases include many supergravity theories, and all those with N > 4 super-
symmetry. For N =4 supergravity coupled to m vector multiplets k =6+ m,
G = SL(2; R) X O(6, m) and H = U(1) X O(6) X O(m). For N = 8 supergravity, k
=28, G=E,4 and H=SU(8). For the ‘exceptional’ N =2 supergravity [32],
k=28, G=E,_,, and H=E X U(1).
Defining

= 7
G vl“mll*Fu.v

J
A +a,,F

uv?

(2.2)

where * F), = {¢,,,,F*°', the A, field equations and Bianchi identities can be
written in terms of the the 2k-vector of two-forms

- (g ) (23)
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as simply d.# = 0. The group G acts on the scalars through isometries of .# and on
F as F o AF where A€ GCSp(Rk; R) is a 2k X 2k matrix preserving the
2k X 2k matrix

n- ( %) (24)

An alternative way to represent the G/H sigma-model is in terms of a G-valued
field V(x) which transforms under rigid G-transformations by right multiplication
and under local H-transformations by left multiplication:

V(x) >h(x)V(x)A™', heH, AE€G. (2.5)

The local H-invariance can be used to set V& G/H. Note that F=VF is
G-invariant. In most cases of interest, the scalar coset space can be parameterised
by the complex scalars z,, = a,, + im,;, which take values in a generalized upper
half-plane (m,; is positive definite), and the group G acts on z,; by fractional
linear transformations. (This can be seen for N = 8 supergravity as follows. In the
symmetric gauge (7], the coset is parameterised by a scalar y,, which transforms
under fractional linear transformations under G. However, z, is related to y,, by
a fractional linear transformation, z,, =i(1 +7)/(1 —¥), so that z in turn trans-
forms under G by fractional linear transformations. Similar results follow for N < 8
supergravities by truncation.)
We now define the charges

Q1=¢X*F’, p,=51;§621~"', q,=gS£G, (2.6)

as integrals of two-forms over a two-sphere I at spatial infinity. The charges p!
and g, are the magnetic charges and the Noether electric charges, respectively.
The charges Q' are the electric charges describing the 1/r2 fall-off of the radial
components of the electric fields, Fj,, and incorporate the shift in the electric
charge of a dyon due to non-zero expectation values of axion fields [33]. Indeed, if
the scalars ¢' tend to constant values @' at spatial infinity, then

4 =my(8)Q’ +a,(6)p’. 2.7
The churges (p, q,) can be combined into a 2k-vector
I
= =|? 2.8
o ¢Zy (q, ) ’ (2.8)

from which it is clear that Z - AZ under G.
The Dirac-Schwinger-Zwanziger (DSZ) quantization condition (with # = 1) for
two dyons with charge vectors Z and 27 is

T =plq,-plq,=v, (2.9)

for some integer v. This quantization condition is manifestly G-invariant as
G < Sp(2k; R). However, it has implications for the quantum theory only if there
exist both electric and magnetic charges. If, for example, there are no magnetic
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charges of one type then (2.9) places no constraint on the values of the correspond-
ing electric charge. For the cases of interest to us here, we will show that there
exist electric and magnetic charges of all types. We shall now proceed with our
analysis of the general case assuming all types of charge exist and this, together
with the quantization condition (2.9), implies that the Noether electric charges q;
lie in some lattice I" and that the magnetic charges p’ lie in the dual lattice I.
The group G is therefore broken to the discrete subgroup G(2) which has the
property that a vector Z €I’ @I is taken to another vector in the same self-dual
lattice. The subgroup of Sp(2k) preserving the lattice is Sp(2k; Z), so that the
duality group is

G(Z) = G N Sp(2k; Z). (2.10)

For compact G, G(Z) is a finite group, while for non-compact G, it is an infinite
discrete group. If we choose a basis for the fields 4’ so that the electric charges,
and hence the magnetic charges, are integers, then the lattice I' ® I' is preserved
by integer-valued matrices, so that Sp(2k; Z) consists of integer-valued 2k X 2k
matrices preserving 2, and G(Z) is also represented by integer-valued 2k X 2k
matrices. Note that the group G(2Z) is independent of the geometry of the lattice,
as any two lattices I', I" are related by a GL(k, R) transformation, so that the
corresponding discrete groups G(Z), G'(Z) are related by GL(k, R) conjugation
and so are isomorphic. For N =4 supergravity coupled to 22 vector multiplets,
G(2Z) is precisely the S X T duality group SI(2; Z) X O(6, 22; Z) of the toroidally
compactified heterotic string, which was observed previously to be the quantum
symmetry group of this effective field theory [4]. For N = 8 supergravity, G(Z) is a
discrete subgroup of E,,, which we shall call E,;(Z) and abbreviate to E(2). It
can be alternatively characterized as the subgroup of Sp(56; Z) preserving the
invariant quartic form of E,,. From the explicit form of this invariant given in (7],
it is straightforward to see that E,(Z) contains an SL(8, Z) subgroup. We also have

E,(Z) >SL(2; Z) X O(6, 6; Z), (2.11)

so that E,(Z) contains the T-duality group of the toroidally compactified type 1I
string. The minimal extension of the S-duality conjecture for the heterotic string
would be to suppose that the SL(2; Z) factor extends to an S-duality group of the
type II string, but it is natural to conjecture that the full discrete symmetry group is
the much larger U-duality group E,(Z). E,(2) is strictly larger than SL(2; Z) X
(6, 6; Z), as it also contains an SL(8, Z) subgroup. In the next section we shall
verify some predictions of U-duality for the spectrum of states saturating a
gravitational version of the Bogomolnyi bound, i.e. the ‘Bogomolnyi states’. How-
ever, before turning to the spectrum we should verify that the Bogomolnyi bound is
itself U-duality invariant, since otherwise a U-duality transformation could take a
state in the Bogomolnyi spectrum to one that is not in this spectrum.

Consider first the cases of pure N = 4 supergravity (without matter coupling)
and N =8 supergravity, for whnch A4 =G/H and k=N(N-1)/2. We_define
Y,,= ,,,,,(q, +ip~!) where (p’, §,) are the components of the 2k-vector Z = V.z’
and V is the constant asymptotic value of the G-valued field V at spatial infinity.
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Here m, n=1,...,N and t! = —t! are the matrices generating the vector
representation of SO(N). The Y,,, appear in a global supersymmetry algebra as
central charges [34,8,9,35] and this allows a derivation of a Bogomolnyi bound. The
antisymmetric complex N X N matrix Y,,, has N/2 complex skew eigenvalues A,
a=1,...,N/2, and the bound on the ADM mass of the Maxwell-Einstein theory
[8] can be generalized to [35]

M, py > max|A ] (2.12)

Since Z —» AZ and ¥ — VA ™! under G, it follows that Z and the A, are invariant
under duality transformations, so the bound (2.12) is manifestly G-invariant. In the
quantum theory this bound translates to a bound on the mass of the corresponding
quantum state. Similar results apply to the case of N = 4 super-matter coupled to
supergravity, with the difference that ¢! = —¢! are now certain scalar-field
dependent matrices that ‘convert’ the SO(6, m) index I to the SO(6) composite
index mn. Nevertheless, the charges A, remain duality invariant.

If the moduli of all the elgenvalues are equal, [A, | = 1A
then the bound (2.12) is equivalent to

2 =
Mapm > \/ ~NZ% (2.13)

where

ol == ANl

[ Z17= L IAl*= ZYMY "=Gyup'p’ + Gyaia, (2.14)
and G, =3 ,,,,,t,{,,, is the identity matrix for pure supergravity, but is scalar
dependent for the the matter-coupled N = 4 theory. However, in the general case
of different eigenvalues, the bound (2.14) is strictly weaker than (2.12). If M, is
equal to the modulus of r of the eigenvalues A,, M py = 1A, = Al = ... =
IA,, |, for some r with 0 <r <N/2, then the soliton with these charges sponta-
neously breaks the N original supersymmetries down to r supersymmetries, so that
for solitons for which r=N/2 precisely half of the N supersymmetries are
preserved and the bound (2.12) is equivalent to (2.14). The duality invariance of
the bound (2.14) for N = 4 was previously pointed out in [3,4].

3. Spectrum of Bogomolnyi states

There are many massive states in the spectrum of toroidally compactified string
theories. The masses of those which do not couple to any of the U(1) gauge fields
cannot be calculated exactly. This is also true in general of those that do couple to
one of the U(1) gauge fields, but the masses of such particles are bounded by their
charges, as just described. It is believed that the masses of string states that
saturate the bound are not renormalized for theories with at least N = 4 supersym-
metry. If this is so then these masses can be computed exactly. Such ‘Bogomolnyi
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states’ arise in the theory from winding and Kaluza-Klein modes of the fundamen-
tal string, and from quantization of non-perturbative soliton solutions of the string
theory. The latter include extreme black holes and, for the heterotic string,
self-gravitating BPS monopoles.

For generic compactifications of both heterotic and type II strings there are 28
abelian gauge fields and so a possible 56 types of electric or magnetic charge. We
shall identify solitons of the effective supergravity theory carrying each type of
charge, thereby justifying the quantization condition on these charges. These
solitons are various types of extreme black holes. Initially, at least, we shall be
interested in solitons carrying only one type of charge, in which case we should
consistently truncate the supergravity theory to one with only one non-zero field
strength, F. The coefficients of the F? terms can then be expressed in terms of a
scalar field o and a pseudoscalar field p (which are two functions of the ¢') such
that the truncated field theory has an action of the form

S= j d*xy =g [IR+} e 2F, F** + }pF,, » F* + L(o, p)], (3.1)

where L(a, p) is the lagrangian for a scalar sigma-model and a is a constant. One
can choose a > 0 without loss of generality since a is changed to —a by the field
redefinition ¢ — —o. For every value of a the equations of motion of (3.1) admit
extreme multi-black hole solutions [36], parameterised by the asymptotic values of
o,p, which are arbitrary integration constants. There is an intrinsic ambiguity in
the metric of the a # 0 extreme black hole solutions because a new metric can be
constructed from the canonical metric (appearing in the action (3.1)) by a confor-
mal rescaling by a power of ¢?. The general metric in this conformal equivalence
class will not have an interpretation as a ‘soliton’ in the sense for which the a =0
extreme Reissner—Nordstrom (RN) black hole is a soliton. One feature that is
generally expected from a soliton is that it interpolates between different vacua: in
the RN case these are the Minkowski spacetime near spatial infinity and the
Robinson-Bertotti vacuum down an infinite Einstein-Rosen ‘throat’. If we require
of the a # 0 extreme black holes that they have a similar property then one must
rescale the canonical metric d§? by e2?°, after which one finds, for vanishing
asymptotic values of o and p, the solution

ds? = e 452

1+a M 20 -ad/(1 +ad)
(1+a )M\
+{l- — dri+r* d03, (3.2)
; 2
(1+02)M al/(1+a?)
r
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where M is the ADM mass and df2? is the metric on the unit 2-sphere. When
a =1 and o is the dilaton field this rescaling of the canonical metric is exactly
what is required to get the so-called ‘string metric’. so that the a = 1 black holes
have a natural interpretation as string solitons. This might make it appear that the
rescaling of the canonical metric by e2*” is inappropriate to string theory when
a # 1, but it must be remembered that the scalar field o is not necessarily the
dilaton but is, in general, a combination of the dilaton and modulus fields of the
torus and gauge fields. Indeed, it was shown in [37] that for the a = V3 black holes
this combination is such that the effective rescaling is just that of (3.2). For any
value of a this metric has an internal infinity as r - (1 + a>)M for constant ¢. For
a <1 the surface r=(1 +a?)M is an event horizon, but this event horizon is
regular only if 2(1 — a®)/(1 + a?) is an integer, which restricts the values of a less
than unitytoa=Qora=1/ V3. The a = 0 case is the extreme RN black hole for
which the soliton interpretation is widely accepted. The significance of the a =
1/v3 case has been explained in [38]. For a > 1 the surface r =(1 +a?)M is at
infinite affine parameter along any geodesic, so one might admit all values of
a > 1. On the other hand, the relevance of geodesic completeness is not clear in
this context so one might still wish to insist that 2(1 — a%) /(1 + a?) be an integer so
that the null surface r = (1 + a*)M is regular, in which case only the further values
of a=1and a = ¥3 can be admitted. Curiously, the values

a=0,1/¥3,1,v3, (3.3)

which we find in this way by demanding that the solution (3.2) is a bona fide
soliton, also arise from truncation of N =8 supergravity. The possibility of the
values a =0 and a = 1 is guaranteed by the existence of consistent truncations of
N = 8 supergravity to N =2 and N = 4 supergravity, respectively. The possibility of
the values @ = V3 and a = 1/V3 is guaranteed by the existence of a consistent
truncation of the maximal five-dimensional supergravity to simple five-dimensional
supergravity since the subsequent reduction to four dimensions yields just these
values.

Consider first the a = 0, electric and magnetic extreme RN black holes. Given
any one such black hole with integral charge, an infinite number can be generated
by acting with G(Z), and these will include black holes carrying each of the 56
types of charge [35], and this is already sufficient to show that the continuous
duality group E,, is broken to a discrete subgroup. These solutions break 3/4 of
the supersymmetry in the N =4 theories and 7/8 of the supersymmetry in the
N = 8 case. For the remainder of the paper, we shall restrict ourselves to solitons
which break half the supersymmetry, and the only extreme black hole solutions of
this type are those with a = V3. This follows from consideration of the implica-
tions of supersymmetry for the moduli space of multi-black hole solutions. This
multi-soliton moduli space is the target space for an effective sigma-model describ-
ing non-relativistic solitons [39]. This sigma-model must have 8 supersymmetries
for solitons of a four-dimensional N =4 supergravity theory that break half the
supersymmetry, and this implies that the moduli space is hyper-Kahler. Similarly,
the moduli space for multi-solitons of N =8 supergravity that break half the



The World in Eleven Dimensions 247

supersymmetry is the target space for a sigma-model with 16 supersymmetries, and
this implies that the moduli space is flat. However, the moduli space of multi-black
hole solutions is flat if and only if @ = V3 [40,41], so only these extreme black holes
can be solutions of N =8 supergravity that break half the supersymmetry. An
alternative characterization of these extreme black holes is as ‘compactifications’
of the extreme black p-brane solitons of the ten-dimensional supergravity theory,
which are known to break half the supersymmetry [42]). It follows that the moduli
space of these solutions must be flat, and what evidence there is [43] confirms this
prediction. This ten-dimensional interpretation of the solitons discussed here will
be left to the following section where it will also become clear that they carry
combinations of all 28 + 28 electric and magnetic charges associated with the 28
U(1) gauge fields.

This moduli space argument shows, incidentally, that whereas the flatness of the
moduli space for solitons that break half the supersymmetry is protected by
supersymmetry for N = 8 supergravity, this is not so for N = 4 theories. There is
then no reason to expect the moduli space metric of extreme black hole solitons of
the exact heterotic string theory (to all orders in ' and g) to be flat. Indeed, the
a = v¥3 extreme black holes, which have a flat moduli space, are only approximate
solutions of the heterotic string and are expected to receive higher order correc-
tions. Furthermore, if BPS-type monopoles were to occur in the type II string
theory, a possibility that is suggested by the occurrence of non-abelian gauge
groups in some versions of the compactified type II string [44], they would have to
break more than half the supersymmetry as their moduli space is not flat. This is in
accord with the fact that the four-dimensional type II strings of [44] have at most
N = 4 supersymmetry, so that solitons of these theories saturating a Bogomolnyi
bound would have less than N = 4 supersymmetry. This provides further justifica-
tion for our assumption that the solitons of the toroidally compactified type II
string that break half the N =8 supersymmetry are those of the effective N =38
supergravity theory.

The complete set of soliton solutions of a supergravity theory fills out multiplets
of the duality group G(Z), as mentioned in the introduction. We shall now explain
this in more detail. Flat four-dimensional spacetime with the scalar fields ¢’ taking
constant values, ¢}, is a vacuum solution of the supergravity theory parameterised
by these constants. The duality group acts non-trivially on such vacua as it changes
the ¢%. The solitons for which the scalar fields tend asymptotically to the values ¢y
provide the solitonic Bogomolnyi states about the vacuum state |¢,). A G(Z)
transformation takes a Bogomolnyi state in this vacuum with charge vector Z to
another Bogomolnyi state with charge vector 2’ and equal mass but in a new
vacuum | ¢;). As in [4), it will be assumed that one can smoothly continue from ¢,
to ¢, without encountering a phase transition, to obtain a state with the charge
vector Z', but a different mass in general, about the original vacuum | ¢,). This
assumption seems reasonable because the extreme black hole solutions depend
analytically on the constants ¢}. We thus obtain a new Bogomolnyi soliton solution
about the original vacuum but with a G(Z) transformed charge vector. The
spectrum of all the Bogomolnyi states obtained in this way is G(Z) invariant by
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construction. In particular, the number of these Bogomolnyi states with charge
vector Z will be the same as the number with charge vector 2’ whenever 2 is
related to 2" by a G(Z) transformation.

In addition to the Bogomolnyi states that arise from solitons, there are also the
electrically charged Bogomolnyi states of the fundamental string. These states are
purely perturbative and for the type II string they consist of the Kaluza-Klein
(KK) and winding modes of the string. If they are also to fit into multiplets of the
duality group they must have magnetically charged partners under duality, and
these should be non-perturbative, i.e. solitonic. The soliton duality multiplets are,
however, already complete for the reason just given. In order to have duality of the
string theory we must therefore identify the fundamental states with electrically
charged solitonic states. We shall see in the next section how this identification
must be made.

It might be thought that all electrically charged soliton states should have an
equivalent description in terms of fundamental states. This is presumably true of
the heterotic string since there are fundamental string states carrying each of the
28 types of electric charge and these are related by the T-duality group O(6, 22; Z).
In contrast, the fundamental modes of the type Il string carry only 12 of the
possible 28 electric charges, because the 16 Ramond-Ramond (RR) U(1) gauge
fields couple to the string through their field strengths only. The 12 string-mode
electric charges are related by the T-duality group O(6, 6; Z) of the type II string.
It would be consistent with S- and T-duality to suppose that there are no charged
states coupling to the 16 (RR) gauge fields, but this would not be consistent with
U-duality, as we now show.

Recall that an n-dimensional representation of G gives an action of G on R"
which restricts to an action of G(Z) on the lattice Z". For both the heterotic and
type II strings, the charge vector Z transforms under G as a 56-dimensional
representation. For the heterotic string, G = SI(2; R) X O(6, 22) and Z trans-
forms according to its irreducible (2, 28) representation. This has the decomposi-
tion

(2,28) > (2,12) +16 X (2, 1) (3.4)

in terms of representations of SL(2; R) X O(6, 6). This is to be compared with the
type I string for which G = E,, and Z transforms according to its irreducible 56
representation, which has the decomposition

56 — (2, 12) + (1, 32) (3.5)

under SL(2; R) X O(6, 6). In both cases there is a common sector corresponding to
the (2, 12) representation of SL(2; R) X O(6, 6), plus an additional 32-dimensional
representation corresponding, for the heterotic string, to the charges for the
additional U(1)'® gauge group and, for the type II strings, to the charges for the
Ramond-Ramond (RR) sector gauge fields. It is remarkable that the latter fit into
the irreducible spinor representation of O(6, 6). These decompositions of the 56
representation of G induce corresponding decompositions of representations of
G(Z) into representations of SI(2; Z) X O(6, 6; Z) on the charge lattice Z%. In
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particular, U-duality requires the 16 + 16 electric and magnetic charges of the RR
sector to exist and to transform irreducibly under the action of the T-duality group
0(6, 6; Z), and we conclude that all charges in the RR sector must be carried by
solitons. We shall later confirm this.

4. p-Brane interpretation of Bogomolnyi solitons

We have seen that the solitons of toroidally compactified superstrings fit into
representations of the duality group G(Z). Our concern here will be to identify
states that break half the supersymmetry and carry just one of the 56 types of
electric or magnetic charge. We shall call such states for which the charge takes
the minimum value ‘elementary’; acting on these with the duality group G(Z) will
generate a lattice of charged states. Here we wish to show how the elementary
solitons arise from extreme black p-brane solitons of the ten-dimensional effective
supergravity theory. These may be of electric or magnetic type. Electric p-brane
solitons give electrically charged solitons of the four-dimensional dimensionally
reduced field theory, while magnetic ones give magnetic monopoles, provided we
use the form of the four-dimensional supergravity theory that comes directly from
dimensional reduction without performing any duality transformations on the
one-form gauge fields (although we convert two-form gauge fields to scalar fields
in the usual way). If we had chosen a different dual form of action, the solutions
would be the same, but some of the electric charges would be viewed as magnetic
ones, and vice versa. This form of the action is manifestly invariant under
T-duality: for the heterotic string, the action is the O(6, 22) invariant one given in
[45), which is related to the one of [46] by a duality transformation, and for the type
11 string, it is a new O(6, 6) invariant form of the N = 8 supergravity action which
is related to the SL(8, R) invariant Cremmer-Julia action [7] by a duality transfor-
mation.

An extreme p-brane soliton of the ten-dimensional low-energy field theory has
a metric of the form [21]

ds?=A(r)(—de*+dx' dx*) + B(r) dr’+r* dfd}_,, (4.1)

where x‘ (i=1,..., p) are p flat euclidean dimensions, d£23_ p is the metric on an
(8 — p)-sphere, r is a radial coordinate, ¢ is a time coordinate and A(r),B(r) are
two radial functions that tend to unity as r — «. These solitons couple either to an
antisymmetric tensor gauge field A, of rank r = 7 — p, in which case the p-brane is
magnetically charged and F=dA is proportional to the (8 — p)sphere volume
form €;_,, or one of rank r =p — 3, in which case the brane is electric and = F is
proportional to €5_,. In some cases, the p-brane solutions will have corrections of
higher order in «’, but some of the solutions correspond to exact conformal field
theories.

We shall be interested in four-dimensional solitons obtained by ‘compactifying’
p-brane solitons on the six-torus. Compactification on T? is straightforward since
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one has only to ‘wrap’ the p-brane around the p-torus, which is achieved by
making the appropriate identifications of the x' coordinates. If p < 6, a soliton in
four dimensions can then be found by taking periodic arrays on T~ and making
a periodic identification 3. For example [47], a five-brane can be wrapped around a
five-torus in six ways giving rise to six types of five-dimensional soliton. and these
yield six types of black hole soliton in four dimensions on taking periodic arrays.
Similarly, to ‘compactify’ a 0-brane (i.e. a 10-dimensional black hole) on a six-torus
one first introduces a 6-dimensional periodic array of such black holes and
periodically identifies. Instead of wrapping all p dimensions of a p-brane to obtain
a point-like 0-brane in 3 + 1 dimensions, one can wrap p — q dimensions to obtain
a g-brane soliton in 3 + 1 dimensions; however, in what follows we shall restrict
ourselves to 0-brane solitons in 4 dimensions.

The bosonic sectors of the ten-dimensional effective field theories of the
heterotic and type 11A and type IIB superstrings each include a metric, gy, an
antisymmetric tensor gauge field, b,,y, and a dilaton field, ®. We shall first discuss
this common sector of all three theories and then turn to the additional sectors
characteristic of each theory. We expect the solutions we describe to be exact
solutions of the classical type II theory, and their masses to be unrenormalized in
the quantum theory, but for the heterotic string they are only approximate
solutions (to lowest order in a') of the low-energy field theory.

Dimensional reduction of the common (g, b, ®) sector on T® yields 6 Kaluza-
Klein abelian gauge fields (g,; + ...) coming from g, and another 6 abelian
gauge fields (b“,.+ ...) coming from b,,y. It is straightforward to identify the
magnetically charged solitons associated with the KK gauge fields. These are the
KK monopoles [48], consisting of the product of a self-dual Taub-NUT instanton,
with topology R*, with a S-torus and a time-like R. As this is the product of a
five-metric with a five-torus, this can also be viewed as a five-brane solution of the
ten-dimensional theory wrapped around a five-torus ®. There are six types of KK
monopoles in four dimensions, one for each of the six KK gauge fields, because the
five-brane can be wrapped around the six-torus in six different ways. As four-di-
mensional solutions the KK monopoles are extreme black holes with a = V3, as
expected from the moduli space argument of the previous section. The elementary
magnetically charged solitons associated with the b, gauge fields can be identified
with the six possible ‘compactifications’ of the extreme black five-brane [20,19] of
the ten-dimensional (g, b, @) theory. We shall refer to these as abelian H-mono-
poles; they were first given in [49] and have been discussed further in [50,47,22]. It

3 Alternatively, since the solution of extreme black p-branes always reduces to the solution of the
Laplace equation in the transverse space, one has only to solve this equation on R3 xT®~? instead of
R®-P) o find solitons of the four-dimensional theory.

* For fixed r,t, the solution has topology S? X T?, and the S* can be regarded as a Hopf bundle of S!
over S2. Thus locally it is S2 X T®, so that this solution might also be thought of as a twisted 6-brane.
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is straightforward to check directly that the KK monopoles and the H-monopoles
are indeed related by T-duality, as expected [51,52). Note that we have not
included KK modes of the S-brane, i.e. configurations in which the 5-brane has
momentum in some of the toroidal directions, as these either lead to extended
objects in four dimensions or to localised solitons that carry more than one type of
charge and so are not elementary.

The KK and abelian H-monopoles have electric duals. These electrically charged
solitons have their ten-dimensional origin in the extreme black string [18] of the
(g, b, ¥) theory, which is dual [53-55] to the extreme black five-brane. The 6
electric duals to the abelian H-monopoles are found by wrapping the solitonic
string around the 6-torus, i.e. the 6 winding modes of the solitonic string. The
electric duals of the KK monopoles come from Kaluza-Klein modes of the
1-brane, i.e. configurations in which the solitonic string has momentum in the
toroidal directions. They can be thought of as pp-waves travelling in the compacti-
fied directions [11). These 6 + 6 elementary electrically charged solitons couple to
the 6 + 6 KK and b,,; gauge fields. They are in one to one correspondence with the
KK (i.e. torus momentum modes) and winding states of the fundamental string
which couple to the same 12 gauge fields. This allows us, in principle, to identify
the fundamental string states as soliton states and, as explained in earlier sections,
U-duality of string theory forces us to do so.

Before turning to solitons of the additional sector of each string theory, we shall
first explain here why these field theory solitons are exact solutions of type II string
theory. Type II string theory in a (g, b, @) background is described by a non-linear
sigma-model with (1, 1) world-sheet supersymmetry. The KK monopole back-
ground is described by a (4, 4) supersymmetric sigma-model plus a free (1, 1)
supersymmetric field theory; this is conformally invariant [56] and so gives an exact
classical solution of string theory. The pp-wave background is also an exact
classical solution [57], so that the T-duals of these two solutions must be exact
classical solutions too. In contrast, the heterotic string in a (g, b, ®) background is
described by a (1, 0) supersymmetric sigma-model, and at least some of the
solutions described above only satisfy the field equations to lowest order in o'. In
some cases, as we will describe later, these solutions can be modified to obtain
exact classical heterotic string solutions. However, it is not known in general
whether such backgrounds can be modified by higher order corrections to give an
exact string solution.

We have now accounted for 12 + 12 of the required 28 + 28 types of charge of
all three ten-dimensional superstring theories. We now consider how the addi-
tional 16 + 16 charges arise in each of these three theories, starting with the type
II string. It is known that, after toroidal compactification, the type I1A and type
IIB string theories are equivalent {58], but it is instructive to consider both of them.
In either case, we showed in the last section that U-duality requires that the
missing 16 + 16 types of charge transform as the irreducible spinor representation
of the T-duality group. Since T-duality is a perturbative symmetry, if there were
electrically charged states of this type in the fundamental string spectrum, there
would also have to be magnetic ones. However, magnetic charges only occur in the
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soliton sector, so a prediction of U-duality is that the corresponding 16 electric
charges are also to be found in the soliton sector and not, as one might have
thought, in the elementary string spectrum. We shall confirm this.

First, we consider the type IIA theory. The ten-dimensional bosonic massless
fields are the (g, b, @) fields of the common sector plus a one-form gauge
potential, A,,, and a three-form gauge potential, 4,,p. These extra fields appear
in the RR sector but couple to the string through their field strengths only. Upon
compactification to four dimensions, 4,, gives one abelian gauge field A, and
Apnp gives 15 abelian gauge fields A4;). These also couple to the string through
their field strengths only and so there are no elementary string excitations that are
electrically charged with respect to these 16 gauge fields, as expected. The solitonic
p-brane solutions of the ten-dimensional field theory involving A4,, or A,,, and
breaking only half the supersymmetry consists of a 0-brane, i.e. a (ten-dimensional)
extreme black hole, a 2-brane (i.e. a membrane), a 4-brane and a 6-brane. The
O-brane and the 2-brane are of electric type. The O-brane gives rise to an
electrically charged four-dimensional black hole in the toroidally compactified
theory by the procedure of taking periodic arrays of the ten-dimensional solution.
The membrane gives a total of 6 X 5/2 = 15 electric black holes in four dimensions
after ‘wrapping’ it around two directions of the six-torus and then taking periodic
arrays to construct a four-dimensional solution. Similarly, the magnetic-type 4-brane
and 6-brane can be wrapped around the six-torus (introducing periodic arrays
where necessary) to give 15 + 1 magnetically charged black holes in four dimen-
sions. We have therefore found a total of 32 additional electric and magnetic
charges. Combined with the previous 24 charges this gives a total of 56 elementary
charged states carrying only one type of charge. From the low-energy field theory
we know that these charges transform according to the 56 representation of E,,
and that acting on these elementary solitons with E,(Z) generates a 56-dimen-
sional charge lattice. As anticipated, the extra 16 + 16 electric and magnetic
charges are inert under S-duality but are mixed by the T-duality group O(6, 6; Z).
In addition to the p-brane winding modes discussed above, there are also p-brane
momentum modes; however, to give a (0-brane in 4 dimensions, the p-brane must
wrap around the torus as well as having internal momentum, so that the resulting
soliton would carry more than one type of charge and so would not be elementary;
nevertheless, these solitons occur in the charge lattices generated by the elemen-
tary solitons.

A similar analysis can be made for the type IIB theory. In this case the extra
massless bosonic fields in the ten-dimensional effective field theory are a scalar, a
two-form potential, A4,,y, and a four-form potential 447}p,, with self-dual five-form
field strength. As for the type I1A string theory, these gauge fields couple through
their field strengths only and so, again, there are no string excitations carrying the
new clectric charges. In the solitonic sector of the ten-dimensional field theory
there is a neutral 5-brane, a self-dual 3-brane and a string, in addition to the string
and neutral five-brane of the (g, b, ®) sector. The new neutral five-brane gives 6
magnetic charges in four dimensions, the self-dual 3-brane gives 10 electric and 10
magnetic charges and the new string gives six electric charges. Note that the new



The World in Eleven Dimensions 253

solitonic string couples to the 16 U(1) gauge fields coming from 4,y and A/,
These 16 + 16 charges couple to A,,y, while the fundamental string and the
solitonic string of the common sector both couple to b,,,; thus it may be consistent
to identify the fundamental and common sector solitonic strings, but the new
solitonic string cannot be identified with either. As for the type IIA string, all 56
charges generate the irreducible 56 dimensional representation of E (Z).

Finally, we turn to the heterotic string. We have seen that the common sector
solutions of the low-energy effective supergravity theory include 12 KK and abelian
H-monopoles, and their 12 electric duals, and under T-duality these must have
16 + 16 electric and magnetic black hole partners coupling to the 16 remaining
U(1) gauge fields. These have a ten-dimensional interpretation as the 0-branes and
8-branes of N =1 ten-dimensional supergravity coupled to 16 abelian vector
multiplets [21] (which can be taken to be those of the U(1)* subgroup of E; X E4
or SO(32)/Z,).

In addition to these black hole solutions, there are also BPS monopole solutions
of the heterotic string arising from wrapping heterotic or gauge five-branes around
the six-torus {16]. The BPS monopoles are not solutions of the effective supergrav-
ity theory with the abelian gauge group, but it has been argued (e.g. in [47]) that
there should be modifications of these monopoles that are solutions of the abelian
theory. The moduli spaces for multi-soliton solutions of BPS monopoles are
hyper-Kihler [59] while those for extreme a = v3 black holes are flat [40,41], so
that the black holes and BPS monopoles should not be related by duality. If the
modified BPS monopoles also have a non-flat moduli space, then they too cannot
be dual to black holes. However, it is also possible that they have a flat moduli
space, and even that they are equivalent to black hole solutions. The modified BPS
monopoles, if they exist, would have electric partners under S-duality which would
be electric solitons. The magnetic partners under S-duality of electrically charged
Bogomolnyi fundamental string states are expected to be magnetic monopole
solitons, which might be either BPS-type solutions, or black holes (or both, if they
are equivalent). In either case, the fundamental string states should be identified
with the electrically charged solitons related to the magnetic monopoles by
S-duality.

Whereas the solutions of the type II string we have discussed are exact
conformal field theories, the solutions of the heterotic string are only approximate
low-energy solutions. However, some of these heterotic solutions have a compact
holonomy group, and for these one can set the Yang—-Mills connection equal to the
spin-connection so that the sigma-model becomes one with (1, 1) supersymmetry
and the resulting background is an exact solution of string theory. Applying this to
the five-brane gives the symmetric five-brane solution [50] and this can also be
used to construct a ‘symmetric KK monopole’. However, we do not know which of
the other solutions of the low-energy effective theory can be corrected to give exact
solutions, and the duality symmetry of non-abelian phases of the theory are not
understood. Moreover the a’ corrections to the four-dimensional supergravity
action give a theory that is not S-duality invariant, but if string-loop corrections are
also included, an S-duality invariant action should arise.
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Table 1
Duality symmetries for type II string compactified to d dimensions
Space-time Supergravity String T-duality Conjectured
dimension d duality group G full string duality
10A SO(1, 1)/2, 1 1
108 SL(2; R) 1 SL(2; 2)
9 SL(2; Ry xO(1, 1) z, SL(2; Z)x Z,
8 SL(3; RyxSL(2; R) 02,2, 2) SL(3; 2)xSL(2; Z)
7 0(, 5) 03,3;,2) 05,5, 2)
6 SL(5; R) 04,4; 2) SL(5; 2)
5 Egey 0,5, 2) EgefD)
4 E7(7) o6, 6; 2) E7(7)(Z)
3 8(8) 0(7, 7; 7) Eg(g)(z)
2 ) 0(8,8; 2) Eg\(2)
1 ElO(lO) 009, 9, 2) EIRIO)(Z)

S. Toroidal compactification to other dimensions

In this section, we extend the previous discussion to consider the duality
symmetries of type II and heterotic strings toroidally compactified to d dimen-
sions. The resulting low-energy field theory is a d-dimensional supergravity theory
which has a rigid ‘duality’ group G, which is a symmetry of the equations of
motion, and in odd dimensions is in fact a symmetry of the action. In each case the
massless scalar fields of the theory take values in G/H, where H is the maximal
compact subgroup of G. G has an O(10 —d, 10 — d) subgroup for the type II
string, and an O(10 — d, 26 — d) subgroup for the heterotic string. In either string
theory, it is known that this subgroup is broken down to the discrete T-duality
group, (10 — d, 10 ~ d; Z) or O(10 — d, 26 ~ d; Z). 1t is natural to conjecture that
the whole supergravity duality group G is broken down to a discrete subgroup
G(2Z) (defined below) in the d-dimensional string theory. We have already seen
that this occurs for d = 4 and will argue that for d > 4 the symmetry G is broken to
a discrete subgroup by a generalization of the Dirac quantization condition. In

Table 2

Duality symmetries for heterotic string compactified to d dimensions

Space-time Supergravity String T-duality Conjectured

dimension d duality group G full string duality
10 0(16) xSO(1, 1) 06; 2) o(16; 2)x 2,
9 o1, 17)xS0(1, 1) o1, 17, ) o, 17, )x 2,
8 02, 18)xS0(1, 1) 02,18, 2) 02,18, 2)x2Z,
7 03, 19)x50(1, 1) 03,19, 2) 03,19, )xZ,
6 04, 20)x SO(1, 1) 04,20, 2) 0(4,20; 2)x Z,
5 0(5, 21)xSO(1, 1) 06,21, 2 05,21, )<,
4 (6, 22) x SL(2, R) 06,22, 2) (6, 22; Z)xSL(2; Z)
3 08, 24) 07,23, 2) (8,24, 2)
2 o8, 2)1 08,24, 2) O(8, 24)'(Z)
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Tables 1 and 2, we list these groups for toroidally compactified superstring theories
(at a generic point in the moduli space so that the gauge group is abelian).

For the type II string (Table 1), the supergravity duality groups G are given in
[60,61] 5. The Lie algebra of Egq, is the Egq Kao-Moody algebra, while the
algebra corresponding to the E,, Dynkin diagram has been discussed in [61,63].
The d =2 duality symmetry contains the infinite-dimensional Geroch symmetry
group of toroidally compactified general relativity. In d =9, the conjectured
duality group is a product of an SI(2; Z) S-duality and a Z, T-duality, while for
d < 8 we conjecture a unified U-duality. For d = 8, the T-duality group O(2, 2; Z)
~[SL(2; Z) x SL(2; 2))/Z,x Z, is a subgroup of the conjectured duality. In
d = 10, the type IIA string has G = SO(1, 1)/Z,, while the type IIB has G =
SL(2; R), as indicated in the first two lines of Table 1. We shall abbreviate E, , (Z)
to E (Z) when no confusion can arise.

For the heterotic string (Table 2), the supergravity duality groups G for d > 2
can be found in articles collected in [64]. Pure N = 4 supergravity in d = 4 reduces
to a theory with G = SO(8, 2) in d = 3 and to a theory with the supergravity duality
group given by the affine group SO(8, 2)! in d = 2 [60}. Similar arguments suggest
that the heterotic string should give a d = 2 supergravity theory with G given by
the affine group O(8, 24) symmetry. The heterotic string is conjectured to have
an S X T duality symmetry in d > 4 and a unified U-duality in d < 3. Sen conjec-
tured an O(8, 24; Z) symmetry of d =3 heterotic strings in [65]. The d =10
supergravity theory has an O(16) symmetry acting on the 16 abelian gauge fields
which is broken to the finite group O(16; Z); we refer to this as the T-duality
symmetry of the ten-dimensional theory.

The supergravity symmetry group G in d dimensions does not act on the
d-dimensional spacetime and so survives dimensional reduction. Then G is neces-
sarily a subgroup of the symmetry G’ in d’' <d dimensions, and dimensional
reduction gives an embedding of G in G’, and G(Z) is a subgroup of G'(Z). We use
this embedding of G into the duality group in d' =4 dimensions to define the
duality group G(Z) in d > 4 dimensions as GNE,(Z) for the type II string and as
GN[O(6, 22; Z) x SL(2, Z)] for the heterotic string.

The symmetries in d < 4 dimensions can be understood using a type of argu-
ment first developed to describe the Geroch symmetry group of general relativity
and used in [65] for d = 3 heterotic strings. The three-dimensional type II string
can be regarded as a four-dimensional theory compactified on a circle and so is
expected to have an E,(Z) symmetry. There would then be seven different E(2)
symmetry groups of the three-dimensional theory corresponding to each of the
seven different ways of first compactifying from ten to four dimensions, and then
from four to three. The seven E.(Z) groups and the O(7, 7; Z) T-duality group do
not commute with each other and generate a discrete subgroup of Eg which we
define to be E4(2). (Note that the corresponding Lie algebras, consisting of seven

5 They have also been discussed in the context of world-volume actions of extended objects in
supergravity backgrounds [62].
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Eqn algebras and an O(?, 7), generate the whole of the Egq Lie algebra.)
Similarly, in d =2 dimensions, there are eight E4(Z) symmetry groups and an
O(8, 8; Z) T-duality group which generate E¢(Z) as a discrete subgroup of E
and in the heterotic string there are eight O(8, 24; Z) symmetry groups from th‘;(;z
dimensions and an O(8, 24; Z) T-duality group which generate O(8, 24; 2)" as a
discrete subgroup of O(8, 24)V,

We now turn to the charge quantization condition and soliton spectrum in & > 4
dimensions. Consider first the example of type II string theory compactified to
d =5 dimensions. The low-energy theory is d =5, N =8 supergravity [66] which
has 27 abelgan vector gauge fields 4] and an Egg) rigid symmetry of the action.
Recall that in five dimensions electric charge can be carried by particles or 0-brane
solitons, while magnetic charge can be carried by strings or 1-brane solitons. The
27 types of electric charge g, transform as a 27 of Eg, while 27 types of magnetic
charge p’ transform as a 27. These charges satisfy the quantization condition
q,p" = integer [53,67] which is invariant under Eg,. As we shall see, all 54 types of
charge occur and so the electric charges take values in a 27-dimensional lattice A
and the magnetic ones take values in the dual lattice. This breaks the Egg,
symmetry down to the discrete subgroup which preserves the lattice. If the theory
is now compactified to four dimensions, Egg, survives as a subgroup of the E,
duality symmetry in d = 4 and the 27-dimensional lattice A survives as a sub-lattice
of the 28-dimensional lattice of d = 4 electric charges (this will be checked for the
elementary charged solitons below). Thus the subgroup of Eg preserving A is
Egs NE(Z), which is precisely the discrete group E¢(Z) defined above.

The five-dimensional theory has a Bogomolnyi bound involving the electric and
magnetic charges [11,17] which is saturated by Bogomoinyi solutions that do not
break all the supersymmetries, and the masses and charges of these states are
expected to be unrenormalized in the quantum theory. This bound is invariant
under Egq and E(Z) and so Bogomolnyi solitons automatically fit into E((2)
representations.

The d =5 elementary solitons of the type ILA theory carrying precisely one type
of electric or magnetic charge and breaking half the supersymmetry can be
identified in a similar manner to that used in d = 4. The 27 elementary electrically
charged solitons, which are all extreme black hole solutions in d =5, and the 27
magnetic ones, which are all extreme black strings, arise from 4 =10 solutions as
follows. The S-brane wrapped around the S-torus gives one electrically charged
0O-brane and 5 magentically charged strings. The d = 10 solitonic string gives 5
electric black holes and 1 black string. The O-brane gives one black hole, the
4-brane gives 10 black holes and 5 black strings, the 4-brane gives 5 black holes
and 10 black strings and the 6-brane gives 1 black string. In addition, there are 5
electric black holes, arising from pp-waves travelling in each of the 5 toroidal
dimensions (these can also be viewed as momentum modes of the solitonic string),
and their 5 magnetic duals, which are a magnetic string generalization of the KK
magnetic monopole. These are the solutions consisting of the product of a 4-torus
with self-dual Taub-NUT and two-dimensional Minkowski space. The non-com-
pact six-dimensional subspace gives rise to a 5-dimensional magnetic string in the
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same way that a 4-dimensional KK magnetic monopole originates from a five-di-
mensional solution. Note that these solutions can be thought of as wrapped
4-brane solutions. This gives the 27 + 27 elementary charges, as required.

On further compactification to d = 4, the 27 electric charges give 27 electrically
charged black holes in d = 4 and the magnetic strings give 27 magnetic black holes
(together with 27 d =4 black strings). There are two additional elementary
charged states in d = 4, the pp-wave travelling in the fifth dimension and the KK
monopole corresponding to the fifth dimension; these two solutions are uncharged
from the five-dimensional point of view. This corresponds to the fact that the
four-dimensional charges lie _in a 56 of E,; and this decomposes into Egg,
representations as 56 - 27 +27+1+ 1.

Similar arguments apply to other strings in d > 4 dimensions, where charge
quantization effects break G to at most the string duality groups listed in the
tables. In d dimensions there are electric point charges and magnetic (d — 4)-brane
solitons (which correspond to a subset of the four-dimensional black hole solitons
on compactification), and the Dirac quantization of their charges [53,67] breaks the
duality symmetry to the discrete subgroup G{Z). There is a similar charge quanti-
zation condition on electric p-branes and magnetic d — p — 4 branes in 4 dimen-
sions [53,67] which again break G to G(Z). In each case, the Bogomolnyi solitons
automatically fit into representations of the duality group (providing one can
continue solutions from one vacuum to another as discussed in Section 3).

For d < 4, it is not clear how to understand the breaking of G to G(Z) directly
in terms of d-dimensional quantum effects. Thus, while we have shown that for
d >4 the group G is broken to at most G(Z), there is less evidence for our
conjectures for d < 4, although we do know that a subgroup of G is broken to the
discrete T-duality group, and that the solitons will fit into representations of G(Z).

6. Compactification of type II strings on K, X T?

The analysis of Bogomolnyi states can also be carried out for non-toroidal
compactifications. An interesting example is compactification of the type Il super-
string on K; X T? because, while K; has no non-trivial one-cycles and hence no
string winding modes, it does have 22 non-trivial two-cycles around which a
p-brane for p> 1 can wrap itself to produce a (p — 2)-brane which will then
produce monopole winding states on T2 if p <5 (taking periodic arrays where
necessary). The effective four-dimensional supergravity can be found by the
two-stage process of compactification to six dimensions on K; [25], followed by a
straightforward reduction on T2, It is an N =4 supergravity with an SL(2; R) X
O(6, 22) symmetry and 28 U(1) gauge fields, exactly as for the compactification of
the heterotic string on T® at a generic point in the moduli space. In fact, the
four-dimensional supergravity theories are identical because the coupling of N = 4
supergravity to k abelian vector multiplets is unigely determined by the choice of
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gauge group [46) ¢. The analysis of Section 2 again applies, with the result that the
duality group is broken down to SL(2; Z) X O(6, 22; Z) by the charge quantization
condition, and the Bogomolnyi bound is again duality invariant. The soliton
spectrum then automatically fits into representations of SL(2; Z) X O(6, 22; Z),
and the solitons correspond to precisely to the same extreme black holes as were
discussed in Section 4 for the heterotic string. However, the ten-dimensional origin
of the elementary charged solutions is now different and we now discuss these.

Consider first the common (g, b, ®) sector. Because K, has no isometries and
no non-trivial one-cycles all KK modes and string winding modes arise from the
T2-compactification. This yields modes carrying 2 + 2 types of electric charge
which couple to the 2 + 2 gauge fields from the metric and antisymmetric tensor.
The corresponding magnetic charges are the KK monopoles and the H-monopoles.
The latter can be interpreted as the winding modes on T2 of the six-dimensional
solitonic string found from ‘wrapping’ the neutral ten-dimensional five-brane
around the K, surface [68]. We have therefore identified the modes carrying just
one type of the 4 + 4 electric and magnetic charges in this sector. As before, we do
not consider modes arising from the ten-dimensional solitonic string on the
grounds that these are not independent of the fundamental string modes already
considered.

Consider now the type I1A string. The additional 24 vector gauge fields in the
four-dimensional effective field theory arise from the ten-dimensional RR gauge
fields A, and A,,p. One of these vector gauge fields, A4,, is the four-dimen-
sional component of A,,. The remaining 23 come from expressing the ten-dimen-
sional three-form A,,,, as the exterior product of a four-dimensional one-form
gauge potential times each of the 22 + 1 harmonic two-forms of K ; X T2. We must
now find the charged Bogomolnyi states to which these fields couple. Again we
consider states carrying only one type of charge. The ten-dimensional 0-brane and
six-brane solitons associated with A4,, yield, respectively, one electric and one
magnetic four-dimensional black hole coupling to A4,,. The electric 2-brane and the
magnetic 4-brane solitons in ten dimensions produce the Bogomolnyi states carry-
ing the other 23 + 23 types of charge coupling to the other 23 gauge fields.
Specifically, the 2-brane can be wrapped around the 22 + 1 non-trivial two-cycles
of K, X T? to produce 22 + 1 six-dimensional black holes of which one can then
take periodic arrays to get 22 + 1 four-dimensional electric black holes. The
four-brane can be wrapped around the 22 homology two-cycles of K, to give 22
six-dimensional 2-branes, each of which can then be wrapped around T? to
produce a four-dimensional magnetic black hole. Alternatively, the four-brane can
be wrapped entirely around K to give one six-dimensional black hole which then
produces a further magnetic black hole in four dimensions on taking periodic
arrays. We have now found a total of 24 + 24 additional electric and magnetic

6(Jompactiﬁcation of the heterotic string on K, X T? leads to a four-dimensional effective field
theory with only N =2 supersymmetry, for which the masses of the Bogomolnyi states might be
expected to receive quantum corrections, so we shall not discuss this case here.



The World in Eleven Dimensions 259

black holes. They each satisfy the Bogomolnyi bound because the ten-dimensional
p-brane solitons do, and they each carry just one type charge. Combining these
with the 4 + 4 black holes from the (g, b, ®) sector yields a total of 28 + 28
elementary electric and magnetic extreme black holes which generate the (2, 28)
representation of SL(2; Z) x O(6, 22; Z).

Consider instead the type I1B superstring. The RR gauge fields are 4,,, and
A‘,;,\’,PQ which produce 2 + 22 four-dimensional gauge fields upon compactification
on K; X T? [25). These fields couple to the soliton states in four dimensions
obtained by wrapping the extra solitonic string and five-brane, and the self-dual
three-brane, around the homology cycles of K, X T?, taking periodic arrays when
necessary to get a four-dimensional soliton (alias extreme black hole). There are
two homology one-cycles and two homology five-cycles so the extra solitonic string
and five-brane produce 2 + 2 four-dimensional electric and magnetic black holes.
There are 44 three-cycles so the three-brane produces 44 four-dimensional soli-
tons. Since the three-brane is self-dual 22 of these are electric and 22 magnetic.
Again we have a total of 24 + 24 additional charges. Combining these with the
4 + 4 black holes from the (g, b, P) sector again yields a total of 28 + 28 elemen-
tary electric and magnetic extreme black holes which generate the (2, 28) represen-
tation of S1(2; Z) X O(6, 22; Z).

Since the type II string compactified on K; X T? and the generic toroidal
compactification of the heterotic string have exactly the same four-dimensional
low-energy field theory it is natural to conjecture that they might be equivalent
string theories. If this is so then the Bogomolnyi states of the heterotic string
discussed at the conclusion of the previous section would have a straightforward
ten-dimensional interpretation after all. It would have some other remarkable
consequences. For example, at special points of the heterotic string moduli space,
there are extra massless fields and an enhanced (Yang-Mills) symmetry due to
non-perturbative world-sheet effects (i.e. non-perturbative in a’, but perturbative
in g). If the compactified type II string is equivalent, it must have the same
enhanced symmetry in vacua corresponding to the same points in the scalar-field
coset space. This presumably does not arise from non-perturbative world-sheet
effects, so would have to come from non-perturbative stringy effects, or from
Wilson lines and their p-brane generalizations. This would mean that the sigma-
model coupling constant a’ of the heterotic string becomes one of the stringy
coupling constants of the type Il theory, as might have been expected from the fact
that for the toridally compactified type II string, all coupling constants are on an
equal footing and are mixed up under U-duality.

7. U-duality and the 11-dimensional supermembrane

As we have seen, the E,(Z) invariance of the spectrum of soliton states of N = 8
supergravity is an automatic consequence of the E,(Z) invariance of the equations
of motion. The non-trivial features are, firstly, that these states have an interpreta-
tion in terms of ten-dimensional KK solitons and solitonic p-branes and, secondly,
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that if the ten-dimensional field theory is considered to be the effective field
theory of the type II string theory then E.(Z) invariance requires an identification
of the solitonic string with the fundamental string. N = 8 supergravity can also be
obtained by dimensional reduction of 11-dimensional supergravity on T’. We shall
now show that the elementary soliton states of N =8 supergravity also have an
interpretation in terms of KK solitons and solitonic p-branes of 11-dimensional
supergravity. There are 7 KK magnetic monopoles and 7 electric duals, which are
pp-waves of 11-dimensional supergravity [69] travelling in the internal dimensions.
The 11-dimensional solitonic p-branes are the electric membrane and the mag-
netic five-brane. Each can be wrapped around the seven-torus to produce 21
four-dimensional solitons. Thus we have a total of 28 electric and 28 magnetic
four-dimensional solitons each carrying one of the 56 types of charge which are a
basis for the irreducible 56 representation of E,(Z). If we now wish to interpret
11-dimensional supergravity as an effective field theory of a fundamental E,(Z)
supermembrane theory then we must identify the fundamental membrane with the
solitonic one, just as we were forced to identify the fundamental string with the
(appropriate) solitonic string.

Consider now the compactification to .#, on K; X T? of 11-dimensional super-
gravity {28). The effective field theory is the same as that of the type 11 superstring
compactified on K; X T, i.e. an N = 4 supergravity with 28 U(1) gauge fields and
an SL(2; Z) X O(6, 22; Z) symmetry. The soliton spectrum is also the same. In the
monopole sector we have, firstly, 3 KK monopoles from the T* factor and,
secondly, a further 25 monopoles from wrapping the solitonic five-brane around
the 3 + 22 homology five-cycles of K, X T?. This gives a total of 28 monopoles.
The 28 electrically charged solitons are the electric duals of these monopoles
which can be understood in terms of the KK and winding modes of either the
solitonic membrane or a fundamental membrane. The entire set of 56 states can be
assigned to the (2, 28) representation of SL(2; R) X O(6, 22), inducing a corre-
sponding representation of SL(2; Z) X O(6, 22; Z).

These results are encouraging signs that it may be possible to define the
quantum supermembrane theory entirely in terms of the solitonic membrane
solution of 11-dimensional supergravity. Alternatively, one can envisage a dual
formulation in terms of a fundamental 11-dimensional superfive-brane, in which
case the solitonic five-brane might be identified with a fundamental five-brane. Of
possible relevance in this connection is the fact that the membrane and five-brane
solitons have a very different global structure. Both have a degenerate Killing
horizon, but whereas the membrane horizon conceals a singularity in an interior
region [70], much like the extreme Reissner—Nordstrom solution of four-dimen-
sional Maxwell-Einstein theory, the five-brane is completely non-singular [38].

8. Comments

The equations of motion of four-dimensional effective supergravity theories of
compactified superstring theories are invariant under a continuous duality group G
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that is broken by quantum effects to a discrete subgroup G(Z). For the toroidally
compactified heterotic string at a generic point in the moduli space, and for the
K, X T? compactified type II superstrings, this group is the S X T duality group
SL(2; Z) X O(6, 22; Z). For the toroidally compactified type Il superstrings it is the
U-duality group E,(Z) which contains the SXT duality group SI(2; Z) %
0O(6, 22; Z). Whereas T-duality is known to be an exact symmetry of string theory
at each order in the string coupling constant g, the conjectured S- and T-dualities
are non-perturbative. We have provided evidence for U-duality of the type II string
by considering those features of string theory that are expected to be given exactly
by a semi-classical analysis, although it should be emphasized that this evidence
depends only on the form of the effective supergravity theory and would apply
equally to any consistent quantum theory of gravity for which this is the effective
low-energy action. Nevertheless, by supposing this consistent quantum theory to be
a string theory our arguments have led us to the remarkable conclusions that it is
necessary to identify certain states of the string with extreme black holes, and the
fundamental string with a solitonic string. We have also seen that the elementary
Bogomolnyi states are extreme black hole solutions of the low-energy theory, and
have shown how these arise from p-brane solitons of the ten-dimensional theory.

The zero-modes of the scalar fields of the low-energy field theory are ail
coupling constants of the string theory, so that G(Z) symmetry relates different
regimes in the perturbation theory in these coupling constants, interchanging
strong and weak coupling and, in the case of U-duality, interchanging g with «’, in
the sense of mixing the quantum loop expansion in g with the sigma-model
perturbation expansion in a’ and the moduli of the compactification space. For the
compactified type II superstring, any physical quantity (e.g. the S-matrix) can be
expanded in terms of the 70 coupling constants associated with zero-modes of the
70 scalars. In the world-sheet approach to string theory, one first integrates over
the sigma-model degrees of freedom on a Riemann surface of fixed genus,
obtaining a result parameterised by the sigma-model coupling constants, and then
sums over genus. As U-duality mixes up all 70 coupling constants, the final result
may be expected to depend on all 70 scalars in a symmetric way, even though the
calculation was very asymmetrical and in particular picked out the dilaton to play a
special role. This would hugely constrain the theory, and the assumption of
U-duality, together with N = 8 supersymmety, gives us a great deal of non-per-
turbative information, and might even enable us to solve the theory! This structure
also suggests that there might be a new formulation of string theory which treats
all the coupling constants on an equal footing.

We have seen that there are duality symmetries in all dimensions d < 10 and it
is interesting to ask whether the d < 10 symmetries can correspond to symmetries
of the 10-dimensional theory. If e.g., the four-dimensional dualities correspond to
symmetries of the full ten-dimensional theory, these symmetries must interchange
the various p-brane solitons of the string theory; such symmetries would probably
have to be non-local. If the theories in d < 4 dimensions really do have the duality
symmetries suggested in Section 5, and if these have analogues in higher dimen-
sions, this would have remarkable consequences for string theory. For example, the
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U-duality of the three-dimensional heterotic string includes transformations that
would mix the string with 5-brane solitons in ten dimensions, and so would contain
the transformations described as the ‘duality of dualities’ in [3]. For the type Il
string theory, this suggests that E,,(Z) might be a discrete non-local symmetry of
the ten-dimensional string theory!

One of the predictions of S-duality for the heterotic string is the presence of
certain dyon bound states in the Bogomolnyi spectrum, which can be translated
into a prediction concerning harmonic forms on the multi-monopole moduli space
[71]. It would be interesting to consider the corresponding predictions for the type
II string. Recently, some strong-coupling evidence for S-duality of the heterotic
string has been found by studying partition functions of certain topological field
theories [72], and again it would be interesting to seek similar strong-coupling tests
for U-duality.

Finally, since N = 8 supergravity and its soliton spectrum are U-duality invari-
ant, many of the properties previously thought to be unique to string theory are in
fact already properties of the effective supergravity theory once account is taken of
all soliton solutions. Since only stable states can appear in an exact S-matrix it is
possible that the only states of the exact toroidally compactified type II string
theory are the Bogomolnyi states and that these are in one to one correspondence
with soliton states of the supergravity theory. This would support a previous
suggestion [73] that a fundamental superstring theory might actually be equivalent
to its effective field theory once solitons of the latter are taken into account. To
pursue this further one would need to find higher-spin (> 2) soliton states
corresponding to the higher-spin states of string theory. There seems to be no
problem in principle with the existence of such higher-spin soliton states in N = 8§
supergravity because the a =0 and a =1 extreme black holes must belong to
massive supermultiplets with spins > 2 as they break more than half the supersym-
metry. In this connection it is worth recalling the similarity of the mass/spin
relation for Regge trajectories in four-dimensional string theory, M2 aJ/a’, with
that of the degenerate Kerr solutions of general relativity, M2 aJ/G.

Acknowledgements

We are grateful to Louise Dolan, Michael Duff, José Figueroa-O’Farrill, Jerome
Gauntlett, Gary Gibbons, Michael Green, Bernard Julia, Wafic Sabra, Trevor
Samols, Kellogg Stelle and Edward Witten for helpful comments.

References

[1) A. Giveon, M. Porrati and E. Rabinovici, Phys. Rep. 244 (1994) 77.
[2} A. Font, L. Ibanez, D. Lust and F. Quevedo, Phys. Lett. B 249 (1990) 35;
S.J. Rey, Phys. Rev. D 43 (1991) 526.
[3) J.H. Schwarz and A. Sen, Nucl. Phys. B 411 (1994) 35; Phys. Lett. B 312 (1993) 105.



The World in Eleven Dimensions 263

{4) A. Sen. Nucl. Phys. B 404 (1993) 109; Phys. Lett. B 303 (1993); Int. J. Mod. Phys. A 8 (1993) 5079;
Mod. Phys. Lett. A 8 (1993) 2023.
[5] K_S. Narain, Phys. Lett. B 169 (1986) 41.
[6] K.S. Narain, M.H. Sarmadi and E. Witten, Nucl. Phys. B 279 (1987) 369.
[7) E. Cremmer and B. Julia, Phys. Lett. B 80 (1978) 48; Nucl. Phys. B 159 (1979) 141.
[8) G.W. Gibbons and C.M. Hull, Phys. Lett. B 109 (1982) 190.
[9] G.W. Gibbons, in Supersymmetry, supergravity and related topics, eds. F. del Aguila, J.A. de
Azciarraga and L.E. Ibafiez (World Scientific, Singapore, 1985).
[10] R. Kallosh and T. Ortin, Phys. Rev. D 48 (1993) 742.
[11] G.W. Gibbons and M.J. Perry, Nucl. Phys. B 248 (1984) 629.
[12) S.W. Hawking, Mon. Not. R. Astron. Soc. 152 (1971) 75;
A. Salam, in Quantum gravity: an Oxford symposium, eds. CJ. Isham, R. Penrose and D.W.
Sciama (Oxford U.P., Oxford, 1975);
G.’t Hooft, Nucl. Phys. B 335 (1990) 138.
{13] M.J. Duff, R.R. Khuri, R. Minasian and J. Rahmfeld, Nucl. Phys. B 418 (1994) 195.
[14) L. Susskind, preprint hep-th/9309145;
J.G. Russo and L. Susskind, preprint hep-th /9405117,
{15] M.J. Duff and J. Rahmfeld, preprint hep-th /9406105.
[16] J. Harvey, J. Liu, Phys. Lett. B 268 (1991) 40.
[17] G.W. Gibbons, D. Kastor, L. London, P.K. Townsend and J. Traschen, Nucl. Phys. B 416 (1994)
850.
[18] A. Dabhotkar, G.W. Gibbons, J.A. Harvey and F. Ruiz-Ruiz. Nucl. Phys. B 340 (1990) 33;
M.J. Duff, G.W. Gibbons and P.K. Townsend, Phys. Lett. B 332 (1994) 321.
{19] C. Callan, J. Harvey and A. Strominger, Nucl. Phys. B 359 (1991) 611.
{20) M.J. Duff and J.X. Lu, Nucl. Phys. B 354 (1991) 141; Phys. Lett. B 273 (1991) 409.
[21] G.T. Horowitz and A. Strominger, Nucl. Phys. B 360 (1991) 197.
[22] M.J. Duff and J.X. Lu, Nucl. Phys. B 416 (1993) 301.
[23) J.A. de Azcirraga, J.P. Gauntlett, J.M. Izquierdo and P.K. Townsend, Phys. Rev. Lett. 63 (1989)
2443.
[24] E. Witten, Phys. Lett. B 153 (1985) 243.
{25] P.K. Townsend, Phys. Lett. B 139 (1984) 283;
M.B. Green, J.H. Schwarz and P.C. West, Nucl. Phys. B 254 (1985) 327.
[26] E. Bergshoeff, E. Sezgin and P.K. Townsend, Phys. Lett. B 189 (1987) 75; Ann. Phys. (NY) 185
(1988) 330.
{27) E. Cremmer, B. Julia and J. Scherk, Phys. Lett. B 76 (1978) 409.
(28] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Phys. Lett. B 129 (1983) 39.
[29] M.J. Duff and K_S. Stelle, Phys. Lett. B 253 (1991) 113.
[30] R. Giiven, Phys. Lett. B 276 (1992) 49.
{31] M.K. Gaillard and B. Zumino, Nucl. Phys. B 193 (1981) 221.
132] M. Giinaydin, G. Sierra and P.K. Townsend, Phys. Lett. B 133 (1983) 72; Nucl. Phys. B 242 (1984)
244,
[33] E. Witten, Phys. Lett. B 86 (1979) 283.
[34] E. Witten and D. Olive, Phys. Lett. B 78 (1978) 97.
{35) C.M. Hull, Ph.D. thesis, Cambridge 1983.
[36] G.W. Gibbons, Nucl. Phys. B 207 (1982) 337;
G.W. Gibbons and K. Maeda, Nucl. Phys. B 298 (1988) 741;
D. Garfinkle, G.T. Horowitz and A. Strominger, Phys. Rev. D 43 (1991) 3140;
C.F. Holzhey and F. Wilczek. Nucl. Phys. B 380 (1992) 447;
R. Kallosh, A. Linde, T. Ortin. A. Peet and A. Van Proeyen, Phys. Rev. D 46 (992) 5278.
[37] M.J. Duff, R.R. Khuri, R. Minasian and J. Rahmfeld, Nucl. Phys. B 418 (1994) 195.
{38] G.W. Gibbons, G.T. Horowitz and P.K. Townsend, Higher-dimensional resolution of dilatonic
black hole singularities, Class. Quant. Grav,, in press.
[39] J. Gauntlett, Nucl. Phys. B 400 (1993) 103.
[40] P. Ruback, Commun. Math. Phys. 107 (1986) 93.



264 M-theory (before M-theory was cool)

[41] K. Shiraishi, J. Math. Phys. 34 (4) (1993) 1480.

{42} M.J. Duff and J.X. Lu, Nucl. Phys. B 390 (1993) 276.

[43] A.G. Felice and T.M. Samols, Phys. Lett. B 308 (1993) 30.

{44] Biuhm, P. Goddard and L. Dolan, Nucl. Phys. B 289 (1987) 364; B 309 (1988) 330.

(45] J. Maharana and J.H. Schwarz, Nucl. Phys. B 390 (1993) 3.

{46] M. de Roo, Nucl. Phys. B 255 (1985) 515.

{47] J. Gauntlett, J. Harvey and J. Liu, Nucl. Phys. B 409 (1993) 363;
J. Gauntlett and J. Harvey, S-duality and the spectrum of magnetic monopoles in heterotic string
theory, preprint EF1-94-36.

[48] R. Sorkin, Phys. Rev. Lett. 51 (1983) 87;
D. Gross and M. Perry, Nucl. Phys. B 226 (1983) 29.

{49]) R.R. Khuri, Phys. Lett. B 259 (1991) 261.

{50] R.R. Khuri, Nucl. Phys. B 387 (1992) 315.

[51] T. Banks, M. Dine, H. Dijkstra and W. Fischler, Phys. Lett. B 212 (1988) 45.

[52] CM. Hull, in preparation.

(53] R. Nepomechie, Phys. Rev. D 31 (1985) 1921.

{54] A. Strominger, Nucl. Phys. B 343 (1990) 167.

[55] M.J. Duff and J.X. Lu, Phys. Rev. Lett. 66 (1991) 1402.

(56] C.M. Hull, Nucl. Phys. B 260 (1985) 182;
L. Alvarez-Gaumé and P. Ginsparg, Commun. Math. Phys. 102 (1985) 311.

[S7) G.T. Horowitz and A.A. Tseytlin, IC preprints Imperial /TP /93-94 /38, Imperial /TP /93-94 /54.

[58] J. Dai, R.G. Leigh and J. Polchinski, Mod. Phys. Lett. A 4 (1989) 2073;
M. Dine, P. Huet and N. Sciberg, Nucl. Phys. B 322 (1989) 301.

[59] M. Atiyah and N. Hitchin, Phys. Lett. A 107 (1985) 21; Philos. Trans. R. Soc. London A 315 (1985)
459; The geometry and dynamics of magnetic monopoles (Princeton U.P., Princeton, NJ, 1988).

{60} B. Julia, in Supergravity and superspace, eds. S.W. Hawking and M. Rocek (Cambridge U.P.,
Cambridge, 1981).

[61] B. Julia, in Lectures in applied mathematics Vol. 21 (American Mathematical Society, Providence,
R.1, 1985) p. 355.

[62] M.J. Duff and J.X. Lu, Nucl. Phys. B 347 (1990) 394.

[63] R.W. Gebert and H. Nicolai, preprint DESY-94-106 [hep-th 9406175).

[64) A. Salam and E. Sezgin, eds., Supergravity theories in diverse dimensions (World Scientific,
Singapore, 1989)

[65] A. Sen, Tata Institute preprint TIFR-TH-94-19 [hep-th 9408083).

(66} E. Cremmer, in Supergravity and superspace, eds. S.W. Hawking and M. Rocek (Cambridge U.P.,
Cambridge, 1981).

[67] C. Teitelboim, Phys. Lett. B 67 (1986) 63, 69.

[68] A. Achiicarro, J. Evans, P.K. Townsend and D. Wiltshire, Phys. Lett. B 198 (1987) 441.

[69] C.M. Hull, Phys. Lett. B 139 (1984) 39.

[70] M.J. Duff, G.W. Gibbons and P.K. Townsend, Phys. Lett. B 332 (1994) 321.

[71] A. Sen, Phys. Lett. B 329 (1994) 217.

[72] C. Vafa and E. Witten, Harvard preprint HUTP-94-A017 {hep-th /9408074).

{73} P.K. Townsend, Phys. Lett. B 202 (1988) 53.



Reprinted from Phys. Lett. B 350 (1995) 184-8
Copyright 1995, with permission from Elsevier Science

The eleven-dimensional supermembrane revisited

PK. Townsend
DAMTP. Univ. of Cambridge, Silver St.. Cambridge, UK

Received 16 January 1993 revised manuscript received 28 March 1995
Editor: PV. Landshoff

Abstract

It is argued that the type lIA 10-dimensional superstring theory is actually a compactified 11-dimensional supermembrane
theory in which the fundamental supermembranc is identified with the solitonic membrane of 11-dimensional supergravity.
The charged extreme black holes of the 10-dimensional type [IA string theory are interpreted as the Kaluza-Klein modes of
1 1-dimensional supergravity and the dual sixbranes as the analogue of Kaluza-Klein monopoles. All other p-brane solutions
of the type IIA superstring theory are derived from the |1-dimensional membrane and its magnetic dual fivebrane soliton.

The effective field theory of the ten-dimensional
type IIA superstring is N = 2A supergravity. It has
long been appreciated that this field theory is also
the effective massless theory for eleven-dimensional
supergravity compactified on S'; the ten-dimensional
dilaton thereby acquires a natural Kaluza-Klein (KK)
interpretation. This leads one to wonder whether the
type IIA string theory has an eleven-dimensional inter-
pretation. An obvious candidate is the 11-dimensional
supermembrane [ 1] since the double dimensional re-
duction of its worldvolume action yields the Green-
Schwarz (GS) action of the type IIA superstring [2].
Despite this, the 11-dimensional interpretation of the
quantum type IIA superstring is obscure because the
dilaton vertex operator is radically different from the
graviton vertex operator. In the GS action the dilaton
comes from the R-R sector while the graviton comes
from the NS-NS sector; there is therefore no obvious
KK interpretation of the dilaton in string theory (in
the bosonic string the dilaton is usually taken to cou-
ple to the worldsheet curvature but this makes the dila-
ton vertex operator even more dissimilar to the gravi-

0370-2693/95/99.50 © 1995 Elsevier Science B.V. All rights reserved

SSDI0370-2693(95)00397-5

ton vertex operator). It is possible, however, that this
special status of the dilaton is an artefact of pertur-
bation theory. It has recently been realized that some
features of the effective field theories of compactified
superstring theories, such as invariance under a gen-
eralized electromagnetic duality, may also be features
of the full non-perturbative string theory even though
this is not apparent in perturbation theory {3.4.5].
In this letter I similarly argue that the type IIA 10-
dimensional superstring theory actually is a compact-
ified 11-dimensional supermembrane theory.

Before further analysis of this conjecture, some dis-
cussion of the status of the 11-dimensional superme-
mbrane is warranted. There is some reason to suppose
that the supermembrane spectrum contains massless
particles which can be identified as the graviton and
other quanta of 11-dimensional supergravity [6]. The
principal objection to this conclusion is that there are
also reasons [7,8] to believe the spectrum to be con-
tinuous, which would preclude a particle interpreta-
tion. The physical reason for this is that there is no
energy cost to a deformation of the membrane lead-
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ing to ‘spikes’ of arbitrary length but zero area, like a
fakir’s bed of nails ( for the bosonic membrane there is
an energy cost at the quantum level due to the Casimir
effect, but this Casimir energy cancels for the super-
membrane) . The possibility of spikes of zero area is of
course due to the supposition that the membrane has a
core of zero width. A calculation [8] in the context of
a first-quantized, regularized, zero-width supermem-
brane showed that the spectrum is indeed continuous,
from zero, and this was widely interpreted as putting
an end to the idea of a ‘fundamental’ supermembrane.

However, evidence was presented in [5] that the
fundamental supermembrane should be identified with
the solitonic membrane [9] of 11-dimensional super-
gravity. An additional reason for this identification is
that x-symmetry of the worldvolume action for a su-
permembrane requires the background fields to sat-
isfy the source-free field equations of 11-dimensional
supergravity {1]. This is paradoxical if the superme-
mbrane is regarded as the source of the background
fields, but the paradox would be resolved if the fun-
damental supermembrane were to be identified with a
membrane solution of the source-free field equations,
and the one of {9] is the only candidate. As originally
presented this was seen as the exterior solution to a
singular surface, which was interpreted as a membrane
source, but the singularity can be interpreted equally
well as a mere coordinate singularity at an event hon-
zon. through which the source-free exterior solution
can be analytically continued [ 10]. If one accepts the
identification of the fundamental and solitonic super-
membranes in the fully non-perturbative quantum the-
ory, then it follows that the supermembrane acquires
a core of finite size due 1o its gravitational field in the
same way that a ‘point’ particle actually has a size
of the order of its Schwarzschild radius once gravi-
tational effects are included. In this case a ‘spike’ of
a given length has a minimum area and therefore a
minimum energy cost. Under these circumstances one
would not expect a continuous spectrum.

A possible objection to this argument is that it
could also be applied to string theory where, how-
ever, it is not needed because the spectrum is already
discrete in perturbation theory. This may simply be a
reflection of the fact that perturbation theory makes
sense for strings because of the renormalizability
of two-dimensional sigma-models whereas it does
not make sense for membranes because of the non-

renormalizability of three-dimensional sigma models.
Also, there is no dilaton in 11-dimensions and so no
obvious coupling constant with which to order a per-
turbation series. In any case, I shall assume in the fol-
lowing that the fully non-perturbative supermembrane
spectrum is discrete for reasons along the above lines.
The determination of the spectrum of the [1-
dimensional supermembrane, given that it is discrete,
is impossible in practice, as it is for superstrings
when account is taken of interactions and all non-
perturbative effects. However, certain features of the
spectrum can be reliably ascertained. Among these is
the massless spectrum, for which the effective field
theory is just 11i-dimensional supergravity. This the-
ory reduces to 10-dimensional N = 2A supergravity
upon compactification on S!, but the spectrum in 10-
dimensions will then also include the charged massive
KK states. These states must also be present in the
spectrum of the type HHA superstring if the latter is
to be interpreted as a compactified supermembrane,
as conjectured here. These states do not appear in
perturbation theory but there are extreme black hole
solutions of 10-dimensional N = 2A supergravity that
are charged with respect to the KK U(1) gauge field
[11]. Because these solutions preserve half of the
supersymmetry there are good reasons (see e.g. (5]
and references therein) to believe that their semi-
classical quantization will be exact. I suggest that
these states be identified as KK states. I shall now
address possible objections to this identification.
First, the mass of a KK state is an integer multiple of
a basic unit (determined by the S' radius) whereas the
mass of an extreme black hole is apparently arbitrary.
However, there are also 6-brane solutions of N = 24
supergravity [11] that are the magnetic duals of the
extreme black holes. It will be shown below that these
6-branes are completely non-singular when interpreted
as solutions of the compactified 11-dimensional super-
gravity. It follows, if the 11-dimensional interpretation
is taken seriously, that the 6-brane solitons must be in-
cluded as solutions of the ten-dimensional theory and
then, by the generalization of the Dirac quantization
condition to p-branes and their duals [ 12], we con-
clude that in the quantum theory the electric charge of
the extreme black holes is quantized. Since their mass
is proportional to the modulus of their charge, with
a universal constant of proportionality, their mass is
also quantized. The unir of mass remains arbitrary, as
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was the §! radius.

Second, it may be objected that whereas the type
IIA theory has only one set of charged states coupling
to the U(1) gauge field, the compactified supermem-
brane theory has two: the extreme black hole solutions
of the effective 10-dimensional field theory after com-
pactification on S' and the KK modes. The two sets
of states have identical quantum numbers since the al-
lowed charges must be the same in both cases. It has re-
cently been argued in the context of compactifications
of the heterotic [13) and the type II [5] superstrings
that KK states should be identified with electrically
charged extreme black holes (see also [14]). The rea-
sons advanced for this identification do not obviously
apply in the present context but once the principle is
granted that this identification is possible it seems rea-
sonable to invoke it more generally. Thus, I conjecture
that the resolution of this second objection is that the
KK and extreme black hole states of the S! compacti-
fied 11-dimensional supergravity are not independent
in the context of the underlying supermembrane the-
ory. This conjecture is similar to those made recently
for the heterotic and type II superstrings but there is
a crucial difference; in the string theory case the KK
states also appear in the perturbative string spectrum
since they result from compactification from the crit-
ical dimension, whereas the KK states discussed here
do not appear in the perturbative string spectrum be-
cause they result from compactification fo the critical
dimension.

Little more can be said about the spectrum of par-
ticle states in ten dimensions since only those solu-
tions of the effective field theory that do not break all
supersymmetries can yield reliable information about
the exact spectrum upon semi-classical quantization,
and the only such particle-like solutions are the ex-
treme electric black holes. However, there are also
p-brane solitons of N = 2A supergravity which pre-
serve half the supersymmetry and are therefore ex-
pected to be exact solutions of type IIA string theory.
These should also have'an 11-dimensional interpreta-
tion. The extreme multi p-brane solutions associated
with a R-R (p + 2)-form field strength F, .2 of a 10-
dimensional type Il superstring have metric (in ‘string
sigma-model’ form) and dilaton

dsty=v-Y(x)ds?,,,, + Vldx -ax,

e =veP(x), (1

where ds? ., is the Minkowski (p + 1)-metric, dx
dx is the Euclidean metric on R®~?) and V is a har
monic function on R~?) that approaches unity a:
p? = x - x tends to infinity; e.g. for the one R-R p-
brane solution given in [11],
V=1+ ;;L_—p) . (2)
for some constant g proportional to the mass per
unit p-volume. The solutions (1) include the seif-dual
threebrane {11] of the type IIB superstring. They also
include a R-R string and fivebrane of the type IIB su-
perstring that appear not to have been considered pre-
viously in the string theory context, although they are
special cases of the general p-brane solution of [11].
However, we are interested here in the type IIA p-
branes. These comprise electric 0, 1 and 2 branes and
magnetic 4, 5 and 6 branes, although the string and
fivebrane are not of R-R type and so have a different
form from (1). -

The 6-brane soliton has already been mentioned; we
now turn to its 1 1-dimensional interpretation. Consider
the 11-metric

ds?, = —df? +dy-dy + V(x)dx - dx
+VU(x) (dx" - A(x) - dx)?, 3)

where dy-dy is the Euclidean metric on R® (an infinite
planar 6-brane) and dx-dx is the Euclidean metric on
R? (the uncompactified transverse space). This metric
solves the 11-dimensional vacuum Einstein equations,
and hence the field equations of 11-dimensional super-
gravity with zero four-form field strength, if V. x A =
YV, which implies that V2V = 0. The one-soliton =0-
lution is

v=i+ &, (4)
P

where p = \/x - x. The two-form F = dA is then given
by

F=pe, (5)

where &3 is the volume form on the unit 2-sphere. The
singularity of (3) at p = 0 is merely a coordinate
singularity if x'! is identified modulo 47y (1o see
this, set p = A? and take the A — O limit). Thus
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(3) is a non-singular solution of compactified 11-
dimensional supergravity representing a magnetic KK
6-brane. It is an exact analogue in 11 dimensions of the
KK monopole in 5 dimensions [ 16]. Considered as a
solution of the effective field theory of ten-dimensional
string theory, the 10-metric, in ‘string sigma-model’
form, is

ds’y=e¥[—d? +dy-dy+Vdx-dx]. (6)
where the 10-dimensional dilaton field ¢ is given by
e = Vi, @)

This is the sixbrane case of (1). In terms of the new
radial coordinate r = p+ u, the one-soliton solution is

A%
dsf0=<l——r-) [-di +dy-dy

+ (-5 tar 12 (1~ #)laad,
e =(1- 2y (8)
r

where d2Z is the metric on the unit 2-sphere. This is
just the 6-brane solution of 10-dimensional N = 2A
supergravity found by Horowitz and Strominger [5].

The remaining p-brane soliton solutions of N = 2A
supergravity are the string [17], membrane, four-
brane and fivebrane {11]. The string and fourbrane
solitons have previously been shown [2,10] to be
double-dimensional reductions of, respectively, the
11-dimensional membrane and the 11-dimensional
fivebrane [18]. The 10-dimensional membrane and
fivebrane differ from their 11-dimensional counter-
parts simply by the boundary conditions imposed on
the harmonic function V that determines the solution,
and the ten-dimensional soliton can be viewed as a
periodic array of 11-dimensional solitons. Close to
the horizon at the object’s core the 10-dimensional
solution approximates the 11-dimensional solution. A
potential difficulty here is that the heterotic and type
IIA superstring theories have the same fivebrane so-
lution but we need the 11-dimensional interpretation
only in the type II case. The resolution of this is that
the fivebrane horizon is at infinite affine parameter
in the ten-dimensional (string sigma-model) metric
but at finite affine parameter (on timelike geodesics)
in the 11-dimensional metric, so that both a ten and

an eleven dimensional interpretation are possible. In
contrast, the horizon of the [0-dimensional membrane
is at finite affine parameter and one must pass to the
11-dimensional interpretation to avoid a singularity
there. Moreover, as the horizon is approached the ra-
dius of the ! 1th dimension approaches infinity, so we
have dimensional decompactification at the horizon.
This behaviour may be contrasted with that of the
sixbrane discussed above for which the (coordinate)
singularity at the sixbrane core is due to the radius of
the 11th dimension shrinking to zero.

Thus, all p-brane solitons of 10-dimensional
N = 2A supergravity have an 11-dimensional origin.
Moreover, since the 11l-dimensional fivebrane has a
completely non-singular analytic extension through
its horizon [15], the 10-dimensional magnetic 4, 5
and 6-brane solitons are all completely non-singular
when interpreted as solutions of compactified 11-
dimensional supergravity. The |I-dimensional mem-
brane is singular, although the singularity is hidden
behind an horizon. This is what one might expect in
the context of a fundamental supermembrane theory.
Together, these results for the type IIA electric and
magnetic p-brane solitons can be taken as further
evidence in favour of an 11-dimensional origin of
the apparently 10-dimensional type IIA superstring
theory. It is perhaps worth remarking that, not surpris-
ingly, there is no similar interpretation of the p-brane
solitons of type IIB superstring theory.

It may be objected here that while all of the p-
brane solitons of the type IIA superstring may be so-
lutions of an §'-compactified supermembrane theory,
the two theories differ in that one has an additional
fundamental string while the other has an additional
fundamental membrane. But this difference disappears
once one identifies the fundamental string or mem-
brane with the solitonic ones; both theories then have
exactly the same spectrum of extended objects. In fact,
it becomes a matter of convention whether one calls
the theory a string theory, a membrane theory, or a p-
brane theory for any of the other values of p for which
there is a soliton solution; all are equal partners in a
p-brane democracy. However, in the type IIA string
these solitons must be interpreted as solutions of 11-
dimensional supergravity and p-brane democracy has
then to be interpreted as membrane fivebrane duality
[5]. In contrast to the supermembrane, for which the
worldvolume action is known [ 1], the six-dimensional
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worldvolume action for the 11-dimensional fivebrane
has yet to be constructed, although it is known [19]
that its six-dimensional physical field content is that
of the self-dual antisymmetric tensor supermultiplet.

Discussions with M.J. Duff, CM. Hull and K.S.
Stelle are gratefully acknowledged
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Chapter 5

Intersecting branes and black holes

The idea that elementary particles might behave like black holes is not a new one.
Intuitively, one might expect that a pointlike object whose mass exceeds the Planck
mass, and whose Compton wavelength is therefore less than its Schwarzschild ra-
dius, would exhibit an event horizon. In the absence of a consistent quantum theory
of gravity, however, such notions would always remain rather vague. M-theory, on
the other hand, not only predicts such massive states but may provide us with a
consistent framework in which to discuss them. We might then be able to tackle
some of the outstanding issues in black hole physics such as the information para-
dox and the microscopic origin of the Beckenstein-Hawking [1, 2] entropy formula.
Moreover, in the M-theory framework, four-dimensional black holes may be re-
garded as originating from the elementary D = 11 building blocks of plane wave,
membrane, Kaluza-Klein monopole or fivebrane by allowing these objects to wrap
around some of the seven compactified directions. In particular, as we shall see in
this chapter, black hole bound states have their M-theoretic origin in intersecting
branes in eleven dimensions.

In [3] it was suggested that certain massive excitations of four-dimensional
superstrings should indeed be identified with black holes. Of course, non-extreme
black holes would be unstable due to the Hawking effect. To describe stable ele-
mentary particles, therefore, attention was focussed on extreme black holes whose
masses saturate a Bogomol'nyi bound and these were identified with the BPS string
states. There are also black holes which, though extreme, are not supersymmetric
and which therefore do not obey any such bound. Nevertheless, evidence based on
the mass and charge assignments was provided for also identifying these black holes
with certain non-BPS string states. However, the paper remained agnostic concern-
ing the relation between the other non-BPS string states and non-extreme black
holes [4, 5] partly because superstring states always form supermultiplets whereas
it has been argued that non-extreme black holes do not [6].

The motivation for identifying elementary electrically charged string states
with black holes came from first noticing that the solitonic magnetically charged
string states are extreme black holes [7] and then noting that they transform into
one another under S duality. Of course, this involves extending the classical notion
of a black hole from the weak coupling to the strong coupling regime. The words
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272 Intersecting branes and black holes

‘black hole’ were therefore taken to describe a string state if there exists at least
one string picture in which its mass exceeds the Planck mass for weak coupling.
Further dynamical evidence for these identifications was supplied in (8, 9] where
comparisons were made between the low energy scattering amplitudes.

By choosing appropriate combinations of dilaton and moduli fields to be the
scalar field ¢ and appropriate combinations of the field strengths and their duals
to be the Maxwell field F', the field equations of the four-dimensional low energy
effective Lagrangians of M-theory can be consistently truncated to a form given by
the Lagrangian

_ 1
T 2k2

V=3[R 007 - qener (5.1)

A consistent truncation is defined to be one for which all solutions of the trun-
cated theory are solutions of the original theory. The dots in (5.1) refer to terms
involving a combination of pseudoscalar axion and dilaton fields which are in gen-
eral required for consistency but which do not contribute to non-rotating black
holes. Supersymmetric black hole solutions can be found for the four values of the
dilaton-Maxwell coupling parameter a = v/3,1,1/4/3,0. The cases a = v/3,a = 1
and a = 0 correspond to the Kaluza—Klein black hole [10], the dilaton black hole
[10] and the Reissner-Nordstrom black hole respectively. It was originally thought
that only the ¢ = 1 solution appeared in string theory. This is indeed true if the
scalar ¢ refers purely to the dilaton [11, 12]. However, the case a = V'3 was shown
to be a solution of string theory in [7] by taking ¢ to be a linear combination of
dilaton and moduli fields, and the case a = 0 was shown to be a dyonic solution
of string theory in [3] by taking the field strength F to be a linear combination of
a Maxwell field and its dual. The a = 1/v/3 solution was discussed in [13] and its
dyonic interpretation in [14].

For a truncation with N = 2 supersymmetries the fraction of supersym-
metry preserved by these four values of a is (1/2,1/2,1/2,1/2); for N = 4 it is
(1/2,1/2,1/4,1/4); for N = 8 it is (1/2,1/4,1/8,1/8) [14, 15, 3, 16, 17]. In each
case, one may find BPS states in the superstring spectrum with the right masses
and charges to be identified with these extreme black holes. On the basis of these
mass and charge assignments, it was further suggested [3, 14] that we interpret
these four values of a as 1—,2—,3— and 4-particle bound states with zero binding
energy. For example, the Reissner~Nordstrom (a = 0) black hole combines four
(e = v/3) black holes: an electric Kaluza-Klein black hole, a magnetic Kaluza-
Klein black hole, an electric winding black hole and a magnetic winding black hole.
This zero-binding-energy bound-state conjecture can, in fact, be verified in the
classical black hole picture by finding explicit 4-centred black hole solutions which
coincide with the a = v/3,1,1//3, 0 solutions as we bring 1,2, 3,4 centres together
and take the remaining 3,2,1,0 centres out to infinity [18]. Such a construction
is possible because of the appearance of four independent harmonic functions [19].
Moreover, this provides a novel realization of the no-force condition in that the
charge carried by each black hole corresponds to a different U(1). Thus the gravi-
tational attraction cannot be cancelled by an electromagnetic repulsion but rather
by a subtle repulsion due to scalar exchange. This phenomenon was also observed
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in [20]. In the above, for purposes of illustration, the special case has been chosen
where all non-zero charges are equal to unity, but it is easily generalized to the
case of different electric charges @1, P», Q3, Py where the interpretation is that of a
(@1 + Py + Q3 + Py)-particle bound state with zero binding energy (21].

A subsequent paper showed that this string-state/black-hole equivalence, and
the corresponding bound state interpretation, are consistent not only with the mass
and charge assignments, but also with the spin and supermultiplet structures [22].
String states are labelled by their superspin which tells us which supermultiplet
we are talking about and by their ordinary spin which tells us which member of
the supermultiplet we are talking about. In the string-state/black-hole dictionary,
it is the bosonic Kerr angular momentum which yields the superspin whereas it
is the fermionic angular momentum, provided by the Aichelburg-Embacher [23]
fermionic hair, which yields the ordinary spin. As a further test, the gyromagnetic
ratios of the black holes were calculated and found to be in agreement [24] with
those of the string states [25]. Indeed, one of the motivations for believing the
equivalence {3, 26] was based on the observation that both Kaluza-Klein string
states [27] and extreme electrically charged Kaluza-Klein black holes (28] have the
same {anomalous) gyromagnetic ratio g = 1.

In a similar fashion, it was then conjectured {29] that the Kaluza-Klein states
arising from the compactification of D = 11 supergravity on a circle should be
identified with the extreme electrically charged black hole solutions of D = 10
Type IIA theory (8].

These ideas extend quite naturally to the black p-branes of M-theory [8, 31, 33]
which in the extreme limit may become super p-branes [32]. The same Lagrangian
(5.1) appears in arbitrary dimensions D < 11 but where F is now a (p + 2)-form.
The parameter a can conveniently be expressed as (31, 35]

_2(p+1)(D-p=-3)

2 _
¢’ =4 D—2

(5.2)

since A is a quantity that is preserved under dimensional reduction [35]. One may
calculate the macroscopic entropy of the black p-branes and one finds that in the
extreme limit it vanishes except when @ = 0 and p = 0, i.e. for black holes in
D =5 with A =4/3 and in D = 4 with A = 1 (the Reissner-Nordstrom solution).
Moreover, branes with A == 4/n can also be regarded as bound states with zero
binding energy of n fundamental A = 4 branes [22, 34]. One again finds1 <n < m-
centred p-brane solutions which reproduce the A = 4/n solutions of [35] as we allow
n of the centres to coincide and take the remaining (m — n) out to infinity.

In the case of D = 4 black holes, it remained a puzzle why these four values of
a, namely v/3, 1, 1/\/5, 0 giving rise to n = 1, 2, 3, 4-particle bound states should be
singled out. This puzzle was resolved by the realization [36] that the M-theoretic
origin of the a = V3.1, 1/ V3 black holes preserving 27" of the supersymmetry
was given by re-interpreting the D = 11 solutions of [37] as n = 1,2, 3 orthogonally
intersecting membranes or fivebranes in D = 11, which are then wrapped around the
compact dimensions. Once one has introduced two or three intersecting membranes:
21 20r21 21,2 and fivebranes: 5 1. 50or 5 L 5 1,5, one can also envisage
other supersymmetry-preserving intersections (38, 39]: 2 1L 5,2 L 5 1 5 and
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2 1 5 1 5. Moreover, the missing a = 0 case preserving 1/8 supersymmetry admits
the interpretation of four intersecting M-branes: 2 L 2 1. 5 L 5 [40] or alternatively
as an intersecting membrane and fivebrane superposed by a Kaluza-Klein monopole
[38, 39]. More complicated configurations, including branes intersecting at angles,
are also possible [41-45].

What does all this have to do with the problem of finding a microscopic origin
of the Beckenstein—-Hawking black hole entropy S as one quarter of the area A of
the event horizon? Macroscopically, the entropy of a black hole with scalar-Maxwell
parameter a and inner and outer event horizons at r4 is given by [12]

S = é—llA = 77, 2 (——T+ — T

202 /(1+a?)
5.3
T+ ) (5:3)

and so, according to this formula, the extreme (r, = r_) black holes have zero
entropy for a # 0 whereas the a = 0 case has § = nr,2. However, in the string-
state/black-hole equivalence picture the entropy is supposed to be provided by the
degeneracy of string states with the same mass and charges as the black hole. This
degeneracy is certainly non-zero even for those states identified with the a # 0
black holes and so the test seems to fail. On the other hand, these solutions have
non-trivial dilaton and hence involve strong coupling effects which render (5.3)
untrustworthy. An attempt to remedy this was then made [46, 47] by showing that
the entropy of the black holes evaluated at the stretched horizon [48] qualitatively
matches the result expected from the degeneracy of string states. On the other
hand, the @ = 0 case in D = 4 and its a = 0 friend in D = 5 discussed above, can
offer no such excuse. If this black hole picture is right, the entropy calculated from
the logarithm of degeneracy of states has to yield one quarter the area of the event
horizon!

The solution to this long-standing puzzle of explaining the microscopic origin of
Beckenstein-Hawking entropy came from an unexpected quarter (no pun intended).
We have already discussed the interpretation of black holes as bound states of
wrapped p-branes. But if the charges in question are Ramond-Ramond charges,
then these p-branes are just the Dirichlet branes [49]: surfaces of dimension p on
which open strings can end. The problem of counting the number of string states
is thus reduced to a solvable problem in conformal field theory! It was in this way
that Strominger and Vafa [50] correctly provided the first microscopic derivation of
the black hole entropy in the case a = 0,D = 5. The a = 0, D = 4 case followed
soon after [51], and since then there has blossomed a whole industry involving
generalizations to rotating black holes, non-extreme black holes, grey body factors
and the like. All this is also suggestive of a resolution of the black hole information
paradox, but this remains a controversial issue. The reader is referred to several
reviews [52, 53, 54].

More recently, black hole solutions of gauged supergravity are attracting a good
deal of attention due, in large part, to the correspondence between anti-de Sitter
space and conformal field theories on its boundary as discussed in chapter 6. In
[55], for example, new anti-de Sitter black hole solutions of gauged N = 8, D = 4,
SO(8) supergravity were presented. By focussing on the U(1)* Cartan subgroup,
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non-extremal 1, 2, 3 and 4 charge solutions were found. In the extremal limit, they
may preserve up to 1/2, 1/4, 1/8 and 1/8 of the supersymmetry respectively. By
contrast, the magnetic solutions preserve none. Since N = 8, D = 4 supergravity
is a consistent truncation of N = 1, D = 11 supergravity, resulting from the S7
compactification, it follows that these black holes will also be solutions of this
theory. In [55], it was conjectured that a subset of the extreme electric black holes
preserving 1/2 the supersymmetry may be identified with the S7 Kaluza-Klein
spectrum, with the non-abelian quantum numbers provided by the fermionic zero
modes.

In [56] the non-linear S7 Kaluza-Klein ansatz describing the embedding of the
U(1)* truncation was presented. The charges for the black holes with toroidal hori-
zons may be interpreted as the angular momenta of D = 11 membranes spinning
in the transverse dimensions [57, 56]. The horizons of the black holes coincide with
the worldvolume of the branes. It is curious that the same U(1)* black hole charges
appear in the S7 compactification of D = 11 supergravity as in the T7 compactifi-
cation, but for totally different reasons. Instead of arising from the intersection of
different non-rotating branes, they arise from the different angular momenta of a
single brane. This is indicative of deeper levels of duality yet to be uncovered.
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Abstract

We present the magnetic duals of Giiven’s electric-type solutions of D = 11 supergravity preserving 1/4 or 1/8 of
the D = 11 supersymmetry. We interpret the electric solutions as n orthogonal intersecting membranes and the magnetic
solutions as n orthogonal intersecting 5-branes, with n = 2,3; these cases obey the general rule that p-branes can self-
intersect on (p — 2)-branes. On reduction to D = 4 these solutions become electric or magnetic dilaton black holes with
dilaton coupling constanta=1 (forn=2) ora= 1/\/5 (for n=3). We also discuss the reduction to D = 10.

1. Introduction

There is now considerable evidence for the exis-
tence of a consistent supersymmetric quantum theory
in 11 dimensions (D = 11) for which the effective
field theory is D = 11 supergravity. This theory, which
goes by the name of M-theory, is possibly a super-
membrane theory [1]; in any case, the membrane so-
lution of D = 11 supergravity {2], and its magnetic-
dual 5-brane solution [3], (which we refer to jointly
as ‘M-branes’) play a central role in what we cur-
rently understand about M-theory and its implications
for non-perturbative superstring theory (see, for ex-
ample, [4-10]). It is therefore clearly of importance
to gain a fuller understanding of all the p-brane-like
solutions of D = 11 supergravity.

For example, it was shown by Giiven [3] that
the membrane solution of [2] is actually just the
first member of a set of three electric-type solutions
parametrized, in the notation of this paper, by the
integer n = 1,2, 3. These solutions are

ds%n) = ~H~ 2342 ¢ g3 (1)
+ H"34s2 (B0
Fayy=-3dtAdH " AT, o

where H is a harmonic function on E'°~?" with point
singularities, J is a Kihler form on E* and F,), is
the 4-form field strength of D = 11 supergravity. The
proportion of the D = 11 supersymmetry preserved
by these solutions is 27", i.e. 1/2,1/4 and 1/8, re-
spectively. The n = 1 case is the membrane solution
of [2]. We shall refer to the n = 2 and n = 3 cases,
which were interpreted in [3] as, respectively, a 4-
brane and 6-brane, as the ‘Giiven solutions’. Their ex-
istence has always been something of a mystery since
D = 11 supergravity does not have the five-form or
seven-form potentials that one would expect to couple
to a 4-brane or a 6-brane. Moreover, unlike the mem-
brane which has a magnetic dual 5-brane, there arc¢ no
known magnetic duals of the Giiven solutions.

In our opinion, the p-brane interpretation given by
Giiven to his electric n = 2,3 solutions is questionable
because of the lack of (p + [)-dimensional Poincaré
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invariance expected of such objects. This is to be con-
trasted with the n = 1 case, for which the solution (1)
acquires a 3-dimensional Poincaré invariance appro-
priate to its membrane interpretation. In this paper we
shall demystify the Giiven solutions by re-interpreting
them as orthogonally intersecting membranes. We also
present their magnetic duals which can be interpreted
as orthogonally intersecting 5-branes. The latter are
new magnetic-type solutions of D = 11 supergravity
preserving, respectively, 1/4 and 1/8 of the D = 11
supersymmetry. A novel feature of these solutions is
that they involve the intersection of D = 11 fivebranes
on 3-branes. We shall argue that this is an instance of
a general rule: p-branes can self-intersect on (p —2)-
branes.

Particle solutions in four dimensions (D = 4) can
be obtained from M-brane solutions in D = 11 by
wrapping them around 2-cycles or 5-cycles of the com-
pactifying space. This is particularly simple in the case
of toroidal reduction to D = 4. In this case, wrapped
membranes and 5-branes can be interpreted [4] as,
respectively, electric and magnetic a = V3 extreme
black holes (in a now standard terminology which we
elaborate below). Here we show that Giiven’s solu-
tions, and their magnetic duals, have a D = 4 inter-
pretation as either a = 1 (forn = 2) ora = 1/V3
(for n = 3) extreme electric or magnetic black holes.
This D = 11 interpretation of the @ = 1,1/v/3 ex-
treme black holes in D = 4 is in striking accord with
a recent interpretation [11] of them (following ear-
lier suggestions [12], and using results of [13]) as
bound states at threshold of two (for a = 1) or three
(fora=1/ V3) a = /3 extreme black holes.

Rather than reduce to D = 4 one can instead reduce
to D = 10 to find various solutions of IIA supergrav-
ity representing intersecting p-branes. We shall briefly
mention these at the conclusion of this paper. There is
presumably an overlap here with the discussion of in-
tersections [ 14] and the ‘branes within branes’ [15-
19] in the context of D-branes, but we have not made
any direct comparison. The general problem of inter-
secting super p-branes was also discussed in [20] in
the context of flat space extended solitons. We must
also emphasize that the D = 11 supergravity solutions
we discuss here have the interpretation we give them
only after an integration over the position of the in-
tersection in the ‘relative transverse space’; we argue
that this is appropriate for the interpretation as extreme

black holes in D = 4.

2. Intersecting p-branes

We begin by motivating our re-interpretation of the
D =11 supergravity solutions (1). The first point to
appreciate is that infinite planar p-branes, or their par-
allel multi p-brane generalizations, are not the only
type of field configuration for which one can hope
to find static solutions. Orthogonally intersecting p-
branes could also be static. The simplest case is that of
pairs of orthogonal p-branes intersecting in a g-brane,
g < p. The next simplest case is three p-branes having
a common q-brane intersection. Here, however, there
is already a complication: one must consider whether
the intersection of any two of the three p-branes is also
a g-brane or whether it is an r-brane with r > g (we
shall encounter both cases below). There are clearly
many other possibilities once one considers more than
three intersecting p-branes, and even with only two or
three there is the possibility of intersections of orthog-
onal p-branes for different values of p. A limiting case
of orthogonal intersections of p-branes occurs when
one p-brane lies entirely within the other. An example
is the D = 11 solution of [21] which can be inter-
preted as a membrane lying within a 5-brane. For the
purposes of this paper, orthogonal intersections of two
or three p-branes for the same value of p will suffice.

Consider the case of n intersecting p-branes in
D-dimensions for which the common intersection
is a g-brane, with worldvolume coordinates &#,
©n=0,1,...,q9. The tangent vectors to the p-branes’
worldvolumes that are not tangent to the g-brane’s
worldvolume span a space V, which we call the ‘rel-
ative transverse space’; we denote its coordinates by
x%,a=1,...,¢ where £ =dimV. Let y denote the co-
ordinates of the remaining ‘overall transverse space’
of dimension D — g — £. The D-dimensional spacetime
metric for a system of static and orthogonal p-branes
intersecting in a g-brane should take the form

ds® = A(x, y)dE*d¢" s + Bup(x,y)dx*dx®
+Cyj(x,y)dy'dy’ . (2)

Note the ( g+ 1)-dimensional Poincar€ invariance. We
also require that A — 1, and that B, C tend to the iden-
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tity matrices, as |y| — 0o, so the metric is asymptotic
to the D-dimensional Minkowski metric in this limit.

A metric of the form (2) will have a standard in-
terpretation as n intersecting p-branes only if the co-
efficients A, B,C functions are such that the metric
approaches that of a single p-brane as one goes to in-
finity in V while remaining a finite distance from one
of the n p-branes. The Giiven solutions (1) do not
have this property because they are translation invari-
ant along directions in V. Specifically, they are special
cases of (2) of the form

ds? = A(y)dE*dE ., + B(y)dx"dx"8,,
+C(y)dy'dy's; . 3)

Because of the translational invariance in x directions,
the energy density is the same at every point in V for
fixed y. However, the translational invariance allows
us to periodically identify the x coordinates, i.e. to take
V = T. In this case, the metric (3) could be viewed
as that of a g-brane formed from the intersection of
p-branes after averaging over the intersection points
in V. If we insist that the p-branes have zero mo-
mentum in V-directions orthogonal to their g-brane,
then this averaging is an immediate consequence of
quantum mechanics. This delocalization effect should
certainly be taken into account when the size of V is
much smaller than the scale at which we view the dy-
namics in the y directions, i.e. for scales at which the
effective field theory is (D — £)-dimensional. The g-
brane solution of this effective field theory can then
be lifted to a solution of the original D-dimensional
theory; this solution will be of the form (3).

Thus, metrics of the form (3) can be interpreted as
those of p-branes intersecting in a common g-brane.
However, the solution does not determine, by itself, the
combination of p-branes involved. That is, when inter-
preted as a g-brane intersection of n, p,-branes (for
a=1,2,...) the numbers (n,, po) are not uniquely
determined by the numbers (D, q,¢). For example,
the n = 2 Giiven spacetime could be interpreted as in-
tersections at a point of (i) 4 strings, or (ii) 2 strings
and one membrane or (iii) a 0-brane and a 4-brane or
(iv) 2 membranes. Additional information is needed
to decide between these possibilities. In the context of
M-theory, most of this additional information resides
in the hypothesis that the ‘basic’ p-branes are the M-
branes (i.c. the membrane and 5-brane), where ‘ba-

sic’ means that all other p-branes-like objects are to be
constructed from them via orthogonal intersections, as
described above. There is also additional information
coming from the form of the 4-form field strength,
which allows us to distinguish between electric, mag-
netic and dyonic solutions. With this additional infor-
mation, the intersecting p-brane interpretation of the
n = 2,3 Giiven solutions is uniquely that of 2 or 3
intersecting membranes.

It is convenient to consider the Giiven solutions
cases as special cases of n p-branes in D dimensions
pairwise intersecting in a common g¢-brane, ie. £ =
n(p — q). To see what to expect of the magnetic du-
als of such solutions it is convenient to make a peri-
odic identification of the x-coordinates in (3), lead-
ing to an interpretation of this configuration as a g-
brane in d = D —n(p — q) dimensions. The magnetic
dual of a g-brane in d dimensions is a §-brane, where
G = d — g — 4. We must now find an interpretation
of this §-brane as an intersection of n j-branes in D-
dimensions, where § = D — p — 4. The consistency of
this picture requires that the dimension of the space ¥
spanned by vectors tangent to the j-branes’ worldvol-
umes that are not tangent to the §-brane’s worldvol-
ume be D —d = D —n(p—q). This is automatic when
n =2 (but not when n > 2). As an example, consider
the n = 2 Giiven solution, interpreted as two orthog-
onal membranes with a O-brane intersection. Periodic
identification of the x-coordinates leads to a particle-
like solution in an effective D = 7 supergravity theory.
A particle in D = 7 is dual to a 3-brane. This 3-brane
can now be interpreted as the intersection of two 5-
branes. The vectors tangent to the 5-branes’ worldvol-
umes that are not tangent to the 3-brane’s worldvolume
span a four-dimensional space, so the total dimension
of the spacetime is 7 + 4 = 11, as required.

Consider now the n = 3 Gilven solution, inter-
preted as three orthogonal membranes intersecting at
a common O-brane. Periodic identification of the x-
coordinates now leads to a particle-like solution in an
effective D = 5 supergravity theory. A particle is dual
to a string in D = 5, so we should look for a solu-
tion in D = 11 representing three orthogonal 5-branes
whose common intersection is a string. The dimen-
sion of the space V spanned by the vectors tangent to
the 5-branes’ worldvolumes that are nor tangent to the
string’s worldsheet depends on whether the common
intersection of all three 5-branes is also the intersection
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of any pair. If it were then V would take its maximal
dimension, 3(5—1) = 14, leading to a total spacetime
dimension of 5 + 14 = 19. Since this is inconsistent
with an interpretation in D = 11, we conclude that the
pairwise intersection of the three 5-branes must be a
g-brane with g > 1. In fact, the consistent choice is
q = 3, i.e. each pair of 5-branes has a 3-brane inter-
section and the three 3-branes themselves intersect in
astring! . In this case ¥ has dimension six, leading to
a total spacetime dimension of eleven.

Note that all the cases of intersecting p-branes
which we have argued should occur in M-theory have
the property that p-brane pairs (for the same value
of p) intersect on (p — 2)-branes. Specifically, we
have argued that 2-branes can intersect on 0-branes,
that 5-branes can intersect on 3-branes and that these
3-brane intersections can themselves intersect on 1-
branes. We shall conclude this section by explaining
why we believe that this is a general rule, i.e. p-branes
can self-intersect on (p — 2)-branes.

Recall that the possibility of a membrane having a
boundary on a 5-brane | 16,17] arises from the fact that
the 5-branc worldvolume contains a 2-form potential
which can couple to the membrane’s string boundary.
The same argument does not obviously apply to inter-
sections but it is plausible that it does, at least for those
cases in which it is possible to view the g-brane inter-
section within a given p-brane as a dynamical object
in its own right. Thus, it is reasonable to suppose that
a condition for a p-brane to support a g-brane inter-
section is that the p-brane worldvolume field theory
includes a (g+1)-form potential to which the g-brane
can couple. We now observe that p-brane worldvol-
ume actions always contain (D — p — 1) scalar fields.
If one of these scalars is dualized then the worldvol-
ume acquires a (p — 1)-form potential, which can cou-
ple to a (p - 2)-brane. Hence the rule stated above;
the freedom of choice of which scalar to dualize cor-
responds to the possibility of an energy flow into the
p-brane, at the intersection, in any of the directions
orthogonal to its worldvolume.

! A uscful analogy is that of three orthogonal planes in E* which
intersect pairwise on a line. The three lines intersect at a point.

3. Magnetic duals of Giiven solutions

We now have sufficient information to find the mag-
netic duals of the series of electric solutions (1) of
D = 11 supergravity. They should be of the form (3)
with ¢ =7 — 2n and they should preserve some frac-
tion of the D = 11 supersymmetry. Solutions that pre-
serve some supersymmetry can most easily be found
by seeking bosonic backgrounds admitting Killing
spinors. The Killing spinor equation can be found di-
rectly from the supersymmetry transformation law for
the gravitino field ¢y (M =0,1,2,...,10), and is

[DM b (I VPOR - 85%FPQR)FNPQR] =0, (4)

where Dy is the standard covariant derivative. Solu-
tions ¢ of this equation (if any) are the Killing spinors
of the bosonic background, i.e. the D = 11 metric and
4-form field strength Fynpp. Backgrounds admitting
Killing spinors for which the Bianchi identity for F(yy,
is also satisfied are automatically solutions of D = 11
supergravity. The proportionof the D = 11 supersym-
metry preserved by such a solution equals the dimen-
sion of the space of Killing spinors divided by 32.

By substituting an appropriate ansatz for the metric
and 4-form into (4) we have found a series of mag-
netic solutions parametrised by the integer n = 1,2, 3.
These are

dstyyy = H"P(d€ - dE) + H™ """ ds (B
+ H"Pds™ (E)
Fan =43 xdHAJ, (5)

where « is the Hodge star of E*, J is the Kahler form
on E* and n = 1,2,3. Our conventions for forms are
such that

J =3 Jopdx" A dx®
F(n)‘—‘%FMNPRIIXM/\de/\de/\dXR . (6)

The function H is harmonic on E* with point singu-
laritics. Asymptotic flatness at ‘overall transverse in-
finity’ requires that H — | there, so that

H=1+Y —F <

[x — x|

for some constants u;. Note that these solutions have
an 8 —2n dimensional Poincaré invariance, as required.
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In the n = 1 case the metric can be written as
dshy,y = H™ '/ di - dg + H3ds*(E?) (8)

which is formally the same as the 5-brane solution
of [3]. The difference is that the function H in our
solution is harmonic on an E* subspace of E’, ie.
our solution is a special case of the general 5-branc
solution, for which H is harmonic on E°>. The n =
2,3 cases are new solutions of D = 11 supergravity
with the properties expected from their interpretation
as intersecting 5-branes. The solutions of the Killing
spinor equation for the background given by (5) are

F=H, Tubo=Flay T, (9)

where {f‘a;a =1,...,2n} are the (frame) constant
D =11 gamma matrices along the E* directions, y*
is the product of the three constant gamma matrices
along the E? directions and £ is a constant D = 11
spinor. It follows from (9) that the number of super-
symmetries preserved by the magnetic intersecting 5-
brane solutions is 27", exactly as in the electric case.

4. D = 4 interpretation

We now discuss the interpretation of the solutions
(1) and (5) in D = 4. The D = 4 field theory obtained
by compactifying D = 11 supergravity on T7 can be
consistently truncated to the massless fields of N = 8
supergravity. The latter can be truncated to

/= /d“x\/—g{R —200¢)2 —Le ™ F2| . (10)

where F is an abelian 2-form field strength, provided
that the scalar/vector coupling constant a takes onc
of the values? [4,22]

1 .
a=V3, 1, 7 0 ()
The truncation of N = 8 supergravity to (10) is not ac-
tually a consistent one (in the standard Kaluza-Klein
sense) since consistency requires that F satisfy FAF =
0. However, this condition is satisfied for purely elec-
tric or purety magnctic field configurations, so purely

2 We may assume that « > 0 without loss of generality.

electric or purely magnetic solutions of the field equa-
tions of (10) are automatically solutions of N = 8
supergravity, for the above values of a. In particular,
the static extreme electric or magnetic black holes are
solutions of N = 8 supergravity that preserve some
proportion of the N = 8 supersymmetry. This propor-
tionis 1/2, 1/4, 1/8, 1/8 fora=+/3. 1, 1/V/3, 0,
respectively.

It is known that the membrane and fivebrane solu-
tions of D = 11 supergravity have a D = 4 interpre-
tation as a = v/3 extreme black holes. Here we shall
extend this result to the n = 2, 3 cases by showing that
the electric solutions (10) of D = 11 supergravity, and
their magnetic duals (5) have a D = 4 interpretation
as extreme black holes with scalar/vector coupling
a=/(4/n) — 1. As we have seen, the D = 11 solu-
tions for n =2, 3, electric or magnetic, have a natural
interpretation as particles in D =7 and D = 5, respec-
tively. It is therefore convenient to consider a two-step
reduction to D = 4, passing by these intermediate di-
mensions. The n = 3 case is actually simpler, so we
shall consider it first. We first note that for a = 1/+/3
the action (10) can be obtained from that of simple
supergravity in D = 5, for which the bosonic fields
are the metric ds%s) and an abelian vector potential A
with 2-form field strength F(s,, by the ansatz

dsls) = e**ds’ + e *%dx}, Fi5,=F, (12)

where ds?, ¢ and F are the metric and fields appearing
in the D = 4 action (10). Note that this ansatz involves
the truncation of the D = 4 axion ficld As; it is the
consistency of this truncation that requires F A F = 0.
As mentioned above, this does not present problems in
the purely electric or purely magnetic cases, so these
D = 4 extreme black hole solutions can be lifted, for
a = 1/V/3, to solutions of D = 5 supergravity. The
magnetic black hole lifts to the D = 5 extreme black
multi string solution [23]

dsks, = H™'(—df* + dx}) + H?ds(E*)
Fesy=*dH , (13)

where * is the Hodge star of E* and H is a harmonic
function on E> with some number of point singulari-
tics, i.e. as in (7). We get a magnctic a = 1/\/§ ex-
treme black hole by wrapping this string around the
x5 direction.
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The electric @ = 1/v/3 extreme muiti black holc
lifts to the following solution of D =5 supergravity:

dsks, = —H™2df* + Hds*(E’ x §')
Fsy=dtAdH™', (14)

where H is a harmonic function on E*. This solution
is the ‘direct’ dimensional reduction of the extreme
electrically-charged black hole solution of D =5 su-
pergravity [24]. The latter is formally the same as
(14) but E* x S' is replaced by E* and H becomes a
harmonic function on E*.

To make the connection with D = |11 we note that
the Kaluza-Klein (KK) ansatz

(1S2” =d5%5 +d52(]E6), F(II) =F(5)/\J, (15)
1)y )

where J is a Kihler 2-form on E®, provides a consis-
tent truncation of D = 11 supergravity to the fields of
D =5 simple supergravity. This allows us to lift solu-
tions of D = 5 supergravity directly to D =11. Itis a
simple matter to check that the D = 5 extreme black
hole solution lifts to the n = 3 Giiven solution and that
the D = 5 extreme black string lifts to the magnetic
n = 3 solution of (5).

The a = 1 case works similarly except that the in-
termediate dimension is D = 7. The KK/truncation
ansaiz taking us to D =7 is

dshyy, = e (a1 (D452 (T4

F(||)=F(7)/\J. (16)

where d2,, is the string-frame D = 7 metric. Consis-
tency of this truncation restricts F(7y to satisfy Fi7y A
Fi7y = 0, but this will be satisfied by our solutions.
The ansatz then taking us to D =4 is

dstyy =d& +ds’(T%), Fay=F, amn
where d§? = e2%ds? is the string-frame D = 4 metric.
Combining the two KK ansitze, it is not difficult to
check that the electric @ = 1 extreme black hole lifts
to the n = 2 Giiven solution in D = 11 and that the
magnetic @ = 1 extreme black hole lifts to the new
n =2 magnetic D = 11 solution of this paper.

5. Comments

‘We have extended the D = 11 interpretation of D =
4 extreme black hole solutions of N = 8 supergravity
with scalar/vector coupling a = V3 1o two of the
other three possible values, namely @ = 1 and a =
1/+/3. While the a = /3 black holes have a D = 11
interpretation as wrapped M-branes, thea=l anda =
1/ /3 black holes have an interpretation as wrappings
of, respectively, two or three intersecting M-branes.
We have found no such interpretation for the a = 0
case, i.e. extreme Reissner-Nordstrom black holes; we
suspect that their D = 11 interpretation must involve
the gauge fields of KK origin (whereas this is optional
for the other values of a).

The solution of D = 11 supergravity representing
three intersecting 5-branes is essentially the same as
the extreme black string solution of D = 5 supergrav-
ity. For both this solution and the D = 11 5-brane itself
the singularities of H are actually coordinate singular-
ities at event horizons. Moreover, these solutions were
shown in [23] to be geodesically complete, despite
the existence of horizons, so it is of interest to consider
the global structure of the solution representing two
intersecting 5-branes. For this solution the asymptotic
form of H near one of its singularities is H ~ 1/r,
where r is the radial coordinate of E°. Defining a new
radial coordinate p by r = p*, we find that the asymp-
totic form of the metric near p =0 is

1
dstyy, ~ prdE - dE + ;dsz(E“) +9dp* + pd0?
(18)

where dQ? is the metric of the unit 2-sphere. ‘Spatial’
sections of this metric, i.e. those with dé = 0, are
topologically E* x §? x R*, where p is the coordinate
of R*. Such sections are singular at p = 0 although it
is notable that the volume element of E* x $? remains
finite as p — 0.

We have concentrated in this paper on solutions
representing intersecting p-branes in D = 11, i.e. M-
branes, but the main idea is of course applicable to
supergravity theories in lower dimensions. In fact, the
intersecting M-brane solutions in D = 11 can be used
to deduce solutions of D = 10 IIA supergravity with a
similar, or identical, interpretation by means of either
direct or double dimensional reduction. Direct reduc-
tion yields solutions of D = 10 IIA supergravity with
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exactly the same interpretation as in D = 11, i.e. two
(for n = 2) or three (for n = 3) membranes intersect-
ing at a point, in the electric case, and, in the mag-
netic case, two 5-branes intersecting at a 3-brane (for
n = 2) or three 5-branes intersecting at a string (for
n = 3). On the other hand, double dimensional reduc-
tion of the electric D = 11 n > 1 solutions, i.e. wrap-
ping one membrane around the S!, gives solutions of
D =10 N = 2A supergravity theory representing ei-
ther a string and a membrane intersecting at a point
(for n = 2) or a string and two membranes intersect-
ing at a point (for n = 3). In the magnetic case, the
wrapping can be done in two different ways. One way,
which is equivalent to double-dimensional reduction,
is to wrap along one of the relative transverse direc-
tions, in which case the D = 10 solutions represent ei-
ther a 5-brane and a 4-brane intersecting at a 3-brane
(for n = 2) or two 5-branes and a 4-brane intersecting
at a string (for n = 3). The other way, which might
reasonably be called ‘triple dimensional’ reduction, is
to wrap along one of the directions in the common
g-brane intersection, in which case one gets D = 10
solutions representing either two 4-branes intersecting
at a membrane (for n = 2) or three 4-branes inter-
secting at a point (for n = 3). We expect that some
of these IIA D = 10 solutions will have a superstring
description via Dirichlet-branes.

Finally, we point out that the solutions (1) and (5)
can both be generalized to the case in which ds*(E™)
is replaced by any Ricci-flat Kihler manifold M” of
complex dimension n. Examples of compact mani-
folds M" forn = 1,2,3 are M! = T2, M? = K3, M?
a Calabi-Yau space. The new solutions of D = 11 su-
pergravity obtained in this way generalize the corre-
sponding KK vacuum solution of D = 11 supergrav-
ity to one representing an M-brane, or intersecting M-
branes, wrapped around cycles in the the compactify-
ing space. In any case, it is clear that the resuits of this
paper are far from complete. It seems possible that a
recent classification [25] of p-brane solutions of max-
imal supergravities in dimensions D < 11 might form
a basis of a systematic M-theory interpretation, along
the lines presented here, of all p-brane like solutions
of D = 11 supergravity.
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Abstract

We present solutions describing supersymmetric configurations of 2 or 3 orthogonally inter-
secting 2-branes and 5-branes of D = 11 supergravity. The configurations which preserve i/4 or
1/8 of maximal supersymmetry are 212, 515, 215, 21212, SL5LS5, 21215and 2.L5145
(212 stands for orthogonal intersection of two 2-branes over a point, etc.; p-branes of the same
type intersect over (p-2)-branes). There exists a simple rule which governs the construction of
composite supersymmetric p-brane solutions in D = 10 and 11 with a separate harmonic function
assigned to each constituent |/2-supersymmetric p-brane. The resulting picture of intersecting
p-brane solutions complements their D-brane interpretation in D = 10 and seems to support pos-
sible existence of a D = 11 analogue of D-brane description. The D = 11 solution describing
intersecting 2-brane and 5-brane reduces in D = 10 to a type I string solution corresponding to a
fundamental string lying within a solitonic 5-brane (which further reduces to an extremal D = §
black hole). We also discuss a particular D = 11 embedding of the extremal D = 4 dyonic black
hole solution with finite area of horizon.

PACS: 04.50.+h; 04.20.Jb; 04.70.Bw; 11.25.M;j

1. Introduction

In view of recent suggestions that D = 11 supergravity may be a low-energy effective
field theory of a fundamental ‘M-theory’ which generalises known string theories (see,
e.g.. {1]) it is important to gain better understanding of its classical p-brane solutions.
It seems likely that supersymmetric BPS saturated p-brane solutions of low-dimensional
theories can be understood as ‘reductions’ of basic D = 11 ‘M-branes’ - 2-brane
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(2] and 5-brane [3] and their combinations [4]. The important questions are which
combinations of M-branes do actually appear as stable supersymmetric solutions, how
to construct them and how they are related to similar D = 10 p-brane configurations.

Here we shall follow and extend further the suggestion [4] that stable supersymmetric
D = 11 p-brane configurations should have an interpretation in terms of orthogonal
intersections of certain numbers of 2-branes and/or 5-branes. A possibility of existence
of similar supersymmetric configurations was pointed out earlier (on the basis of charge
conservation and supersymmetry considerations) in {5,6]. Discussions of related systems
of D-branes in D = 10 string theories appeared in [7-9].

It should be noted that ‘intersecting p-brane’ solutions in [4] and below are isometric
in all directions internal to all constituent p-branes (the background fields depend only on
the remaining common transverse directions). They are different from possible virtual
configurations where, e.g., a (p-2)-brane ends (in transverse space radial direction)
on a p-brane [5] (such configurations may contribute to path integral but may not
correspond to stable classical solutions). A configuration of, e.g., a p-brane and a p’-
brane intersecting in (p -+ p’)-space may be also considered as a special anisotropic (cf.
[10]) (p + p’)-brane. We expect (see also [4]) that there should exist more general
solutions (with constituent p-branes effectively having different transverse spaces) which
represent more complicated ‘BPS bound states’ of constituent p-branes and interpolate
between such intersecting solutions and solutions with higher rotational symmetry for
each p-brane.

The basic property of supersymmetric p-brane solutions of supergravity theories is
that they are expressed in terms of harmonic functions of transverse spatial coordinates.
This reflects the BPS saturated nature of these solutions and implies that there exist
stable ‘multicenter’ configurations of multiple parallel p-branes of the same type. There
may also exist stable supersymmetric solutions corresponding to combinations (inter-
sections and bound states) of p-branes of the same or different types. While the rules
of combining p-branes (in a way preserving supersymmetry and charge conservation)
in D = 10 depend on a type (NS-NS or R-R) of the constituents [5], the following
rules seem to be universal in D = 11 (these rules are consistent with D = 10 rules upon
dimensional reduction):?

(i) p-branes of the same type can intersect only over a (p-2)-brane [4] (i.e. 2-branes
can intersect over a O-brane, 5-branes can intersect over a 3-brane, 3-branes can intersect
over a string);

(ii) 2-brane can orthogonally intersect 5-brane over a string [5,6];

(iii) a configuration of n orthogonally intersecting M-branes preserves at least 1/2" of
maximal supersymmetry. >

Thus in addition to the basic (2- and 5-) M-branes preserving 1/2 of supersymmetry
one should expect to find also the following composite configurations:

2 Related conditions for supersymmetric combinations of D-branes in D = 10 are that the number of mixed
Dirichlet-Neumann directions should be a multiple of 4 and that a (p-2)-brane can lie within a p-brane |8].

¥ In the case of general solutions involving parallel families of p-branes n stands for 2 number of intersecting
families.
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(i) 242, 5185, 512 preserving /4 of supersymmetry, and
(ii) 21212, 51212, 51512, 5L5L5 preserving 1/8 of supersymmetry.

The allowed 1/16 supersymmetric configurations with four intersecting M-branes
(ie. 2121212, 2121215, 5151512) have transverse space dimension d < 3 and
thus (being described in terms of harmonic functions of transverse coordinates) are
not asymptotically flat in transverse directions. The exception is 5151212 for which
the transverse dimension is 3 as in the 51212, 5.5.2 and 515L5 cases. Like the
‘boosted’ version of 51515 solution the 5151212 background is 1/8-supersymmetric
and upon compactification to D = 4 reduces to the dyonic D = 4 black hole [11,12]
with four different charges and finite area of the horizon. This will be discussed in detail
in [13]. Note also that the regular 3-charge dyonic D = 5 black hole [14] is described
by 21212 or by ‘boosted’ 2.L5 solution.

In [4] the ‘electric’ D = 11 solutions of [3] with 1/4 and 1/8 of supersymmetry were
interpreted as special 2.2 and 21212 configurations and the corresponding ‘magnetic’
515 and 51515 solutions were found.

Below we shall generalise the solutions of [3,4] to the case when each intersecting
p-brane is described by a separate harmonic function and will also present new solutions
corresponding to case when intersecting M-branes are of different type, i.e. 5.2, 51212
and 51512. The important 512 solution reduces in D = 10 to a configuration which
can be interpreted as a fundamental string lying within a solitonic (i.e. NS-NS) S-brane
(such D = 10 solution was given in [14]).4

The basic observation that clarifies the picture suggested in {4] and leads to various
generalisations (both in D = 11 and D = 10) is that it is possible to assign an indepen-
dent harmonic function to each intersecting p-brane (the solutions in [3,4] correspond
to the ‘degenerate’ case when all harmonic functions are taken to be equal). For ex-
ample, a generalisation of 2.2 solution of [3,4] now parametrised by two independent
harmonic functions describes, in particular, two orthogonally intersecting families of
parallel 2-branes.

Combining the above D = 11 p-brane composition rules with the ‘harmonic function
rule’ explained and illustrated on D = 10 examples in Section 2 below, it is easy to write
down explicitly new solutions representing orthogonally intersecting (parallel families
of) 2-branes and 5-branes mentioned above, i.e. 512, 5L212, 51512 (Section 3). A
special version of 2.5 solution superposed with a Kaluza-Klein monopole represents a
particular D = |1 embedding of the extreme dyonic D = 4 black hole (Section 4).

4 In addition to the intersecting 2.LS configuration there should exist a supersymmetric D = |1 solution
describing a 2-brane lying within a S-brane (see [15] and Section 3.2). It shouid lead upon dimensional
reduction (along S-brane direction orthogonal to 2-brane) to a 2-brane within 4-brane configuration of type
HA theory (related by T-duality to a R-R string within 3-brane in type IIB theory) which is allowed from
the point of view of D-brane description [8].
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2. Harmonic function rule and D = 10 intersecting p-brane solutions

The metric and 4-form field strength of the basic extremal supersymmetric p = 2
[2] and p =5 [3] p-brane solutions of D = 11 supergravity can be represented in the
following form:

dst, = HP*V0(x) [H; ' (x)(~df? + dy dy,) + dxdxio-p) , (2.1)
Fay=-3dt Ad(H7')),  Fusy=3%dHs, °H,=0, (22)

where dy dy, = dy} +...+dy}, dxdx, = dx}+...+dx2 (y, are internal coordinates of
p-brane and x; are transverse coordinates), J = dy| A dy, is the volume form on R? and
* defines the dual form in R3. H,, is a harmonic function on R!°~? which may depend
only on part of x-coordinates (this may be viewed as a result of taking a periodic array
of generic 1-center solutions; for simplicity, we shall still refer to such solution as a
p-brane even though it will be ‘delocalised’ in some x-directions).

The structure of F4 in (2.2) is such that the contribution of the CS interaction term
to the F4-equation of motion vanishes (i.e. 4 A F4 = 0). This will also be the property
of all intersecting solutions discussed below.

The structure of the metric (2.1) can be described as follows. If one separates the
overall conformal factor which multiplies the transverse x-part then each of the squares
of differentials of the coordinates belonging to a given p-brane is multiplied by the
inverse power of the corresponding harmonic function. We suggest that this as a general
rule (‘harmonic function rule’) which applies to any supersymmetric combination of
orthogonally intersecting p-branes: if the coordinate y belongs to several constituent
p-branes (p, ..., ps) then its contribution to the metric written in the conformal frame
where the transverse part dxdx is ‘free’ is multiplied by the product of the inverse
powers of harmonic functions corresponding to each of the p-branes it belongs to,
ie. H;'...H;!dy?. The harmonic function factors thus play the role of ‘labels’ of
constituent p-branes making the interpretation of the metric straightforward.

It can be checked explicitly that the specific backgrounds discussed below which
can be constructed using this rule indeed solve the D = 11 supergravity equations of
motion. While we did not attempt to give a general derivation of this rule directly
from D = 11 field equations, it should be a consequence of the fact that intersecting
configurations are required to be supersymmetric (i.e. it should follow from first-order
equations implied by the existence of a Killing spinor). Since one should be able to
superpose BPS states they must be parametrised (like their basic constituent p-branes)
by harmonic functions. Taking the centers of each of the harmonic function at different
points one can interpolate between the cases of far separated and coinciding p-branes,
confirming the consistency of the ‘harmonic function rule’.

This rule is also consistent (upon dimensional reduction) with analogous one which
operates in D = 10 where it can be justified by conformal o-model considerations (for
specific NS-NS configurations) [12,14] or by T-duality [16] considerations (for R-R
configurations).
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2.1. 212 D =11 solution

For example, the metric of two D = 11 2-branes intersecting over a point constructed
according to the above rule wiil be

ds}y = Hy3,(x) Hyl3,(0) [ = Hy\ (x) Hyy (x) di?

+H2(,)(x)dydy;” + Hy (x)dy dys? + dx dxg) . (2.3)

Here y(” (D and y (2’ are internal coordinates of the two 2-branes. The time part

‘belongs’ to both 2- branes and thus is multiplied by the product of the inverse powers
of both harmonic functions. The corresponding field strength is

Faain = =3dt Ad(Hy )\ )y + Hyb lh) (2.4)

The fact that the two harmonic functions can be centered at different (e.g. far separated)
points together with supersymmetry and exchange symmetry with respect to the two 2-
branes uniquely determines the form of the background, which indeed solves the D = 1 |
supergravity equations.

Setting H(2) = | one gets back to the special 2-brane solution (2.1), (2.2) where
Ha = Hy(yy does not depend on two of the eight x-coordinates (called y(2 in (2.3)).
Another special case H(1) = Hy(2y corresponds to the ‘4-brane’ solution of 3] inter-
preted in [4] as representing two intersecting 2-branes.

2.2. Examples of intersecting p-brane solutions of D = 10 type Il theories

Before proceeding with the discussion of other composite D = 11 solutions let us
demonstrate how the ‘harmonic function rule’ applies to various p-brane solutions of
D = 10 type II superstring theories.

The basic D = 10 fundamental string solution [17] which has the following metric
(we shall always use the string-frame form of the D = 10 metric):

dsty = H7'(x)(—di® + dy?) + dxdxg. (2.5)
The metric of the solution describing a fundamental string lying within the solitonic
5-brane [18,19] is given by [14]

ds?y= H{'(x) (—d? +dy?) +dy} + ... + dy} + Hs(x)dxdxs

= Hs(x) [H ' (0 Hy ' (x) (—dP + dy})
+HS ' (x)(dy2 + ... + dy?) + dxdxy]. (2.6)

Other NS-NS background fields have obvious ‘direct sum’ structure, i.e. the dilaton is
given by 2 = H ["H5 and the antisymmetric 2-tensor has both ‘electric’ (fundamental
string) and ‘magnetic’ (5-brane) components, B, = H{ ' Hunk = —€maudiHs. The
factorised harmonic function structure of this background has a natural explanation from
the point of view of the associated conformal o-model [14]. The solutions (2.5), (2.6)
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(as well as all solutions below which have a null hypersurface-orthogonal isometry)
admit a straightforward ‘momentum along string’ generalisation —dr* + dy? — —dr® +
dy? + K(x)(dt — dy)? where K is an independent harmonic function (cf. [20]).

Applying SL(2,Z) duality transformation of type IIB supergravity (which inverts the
dilaton and does not change the Einstein-frame metric, i.e. modifies the string frame
metric only by the conformal factor e=¢) one learns that the metric describing an R-R
string lying within an R-R 5-brane has the same structure as (2.6), i.e. the structure
consistent with the harmonic function rule (with the factor multiplying the square bracket
now being H,'/ 2H;/ %y, T-duality in the two 5-brane directions orthogonal to the string
gives type IIB solution describing two 3-branes orthogonally intersecting over a string.
Its metric has the form consistent with the ‘harmonic function rule’

2 2 - -
dslo = Hy(1\Hs (3, [Hs(llr)Hulz)( —dr* + ay})
+ Hildydys" + Hibydydyl + dxdxi) @7

where y; is the coordinate common to the two 3-branes.® The corresponding self-dual
S-tensor is

Fsiais =dt A (dH3, Ady) AdyD AdysD + dHyh, Adyr Adyy? AdyD)
+ % dHy) AdyiD Ady$? + «dHy) A dyiD AdySD. (2.8)

More general 1/8 supersymmetric solutions describing the configurations 31313 and
3131313 will be discussed in [13].

While charge conservation prohibits the configuration with a fundamental string or-
thogonally intersecting solitonic 5-brane (and, by SL(2,Z) duality, R-R string inter-
secting R-R 5-brane), the type IIB configuration of a fundamental string intersecting a
R-R 5-brane (and its dual - R-R string intersecting a solitonic 5-brane) is allowed {5].
The corresponding solution is straightforward to write down. Its metric is given by (cf.
(2.6); see also the discussion below)

dsty= Hy ()| = By (0 HS ' (x)dr® + HT ' dy}
+HT (2)(dy} + ... + d¥}) + dxdx] . (2.9)

Here y) is the coordinate of the string intersecting S-brane (ys, ..., ys) over a point.®
In general, metrics of 1/2-supersymmetric p-branes of type II theories which carry
R-R charges have the following form [21]:

dsiy = H)* [H;' (~dr’ + dydy,) + dxdxy_,] (2.10)

5 Adding a boost along the common string one finds upon reduction to D = 5 an extremal black hole with 3
charges and x = 0 as a regular horizon | 14].

¢ For a multicenter choice of S-brane harmonic function Hs this metric describes a fundamental string
intersecting several parallel 5-branes.
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with the dilaton given by e*® = H>™""/% It is straightforward to apply the ‘harmonic
function ruie’ and the supersymmetry and R-R charge conservation rules { 5] to construct
explicitly the solutions which describe multiple and intersecting R-R soliton configu-
rations which are counterparts of the D-brane configurations discussed in [7,8]. The
resulting procedure of constructing ‘composite’ supersymmetric backgrounds from ‘ba-
sic’ ones is in direct correspondence with a picture of ‘free’ parallel or intersecting
D-brane hypersurfaces in flat space [22].

For example, the solution of type IIB theory representing a R-R string orthogonally in-
tersecting 3-brane (7-dual to a O-brane within a 4-brane in type IIA theory) is described
by

dsiy = H\*Hy*[~H['Hy 'di® + H'dy} + Hy ' (dy} + dy? + dy}) + dx dxs] .
(2.11)

By SL(2,Z) duality the same (up to a conformal factor) metric represents a funda-
mental string intersecting a 3-brane.

An example of intersecting solution in type IIA theory is provided by a fundamental
string orthogonally intersecting a 4-brane at a point (cf. (2.6), (2.11))

dsty= HY*[ - HT'H7'\de? + H'dy? + Hy'(dy} + dy} + dy} + dy}) + dxdxs) .
(2.12)

The required dilaton and antisymmetric tensors are given by direct sums of constituent
fields. This background will be reproduced in Section 3.2 by dimensional reduction of
orthogonally intersecting 2-brane and 5-brane solution of D = 11 supergravity.

Metrics describing configurations of different parallel type II p-branes lying within
each other (with at least one of them being of R-R type) do not obey the ‘harmonic
function rule’. For example, the metric of the ‘fundamental string - R-R string’ bound
state solution of type IIB theory (obtained by applying SL(2,Z) transformation to the
fundamental string background (2.10), see Schwarz in {1]) has the following structure:

dsty = B2 H (~dP + dy?) + dxdxs], (2.13)

where H, and H, are 1-center harmonic functions with charges ¢ and § = gd?/(c?+d?).
The fundamental string limit corresponds to H; = 1 while the pure R-R string is
recovered when H, = H,. Other solutions related by T and SL(2,Z) dualities (e.g. R-R
string lying within 3-brane) have similar structure.

Let us note also that there exist a class of p-brane solutions [23-25] of the equations
following from the action

1 ~a
S= /de N/ [R - %(0¢)2 - me ‘Fcz.—z-p] .

with the metric being

dsh = H3 [H; N (—df? + dydy,) + dxdxp_1-,) .
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4 o= 4(p+1)
A’ T(D-2)A°

The power N is integer for supersymmetric p-branes with the amount of residual su-
persymmetry being at least 1/2¥ of maximal (for N =4 and D = 4 + p the remaining
fraction of supersymmetry is 1/8). Lower dimensional (D < 10) solutions which have
N > 1 can be re-interpreted as special limits of (reductions of) combinations of 1/2-
supersymmetric ‘basic’ (N = 1) p-brane solutions in D = 10, 11. The higher than first
power of the H, ' factor in the square bracket in (2.14) is a result of identifying the
harmonic functions corresponding to basic constituent p-branes [26].

An example of a solution with N = 2 is the self-dual string in D =6 [23]. It indeed
can be reproduced as a special limit of the solitonic 5-brane plus fundamental string
solution (2.6) with the four ‘extra’ 5-brane directions wrapped around a 4-torus (leading
to the solution equivalent to the dyonic string of [27]) and the harmonic functions H,
and Hs set equal to each other.

D-3-p
D-2

N= A=ad+2(p+1) (2.14)

3. Intersecting 2-branes and 5-branes in D = 11
3.1. 21212 and 51515 configurations

To write down the explicit form of intersecting 2- and S-brane solutions in D = 11 it
is useful first to simplify the notation: we shall use T (F) to denote the inverse power of
harmonic function corresponding to a two-brane (five-brane), i.e. T = Hy ' F= Hy !
The lower index on T or F will indicate a number of a p-brane.

The solution which describes three 2-branes intersecting over a point is given by the
straightforward generalisation of (2.3), (2.4):

ds%l = (TIT2T3)-I/3[ - T|T2T3 dt2
+Ty dy d)’é') + T dy dy§2) + I3 dy dy{” +dx dx4] . 3.1)
Far2iny=-3dt Ad(TJ) + ThJ2 + T3J3) . (3.2)

The three 2-branes are parametrised by 3 sets of coordinates y,“’.yé" and J; are the
volume forms on the corresponding 2-planes. Also, 3*7,"' = 0, i.e. T' = 1 + g;/|x?
in the simplest 1-center case. The special case of T} = T, = T3 gives the ‘6-brane’
solution of [3] correctly interpreted in [4] as representing three 2-branes orthogonally
intersecting at one point. Other obvious special choices, e.g. 73 = 1, lead to a particular
case of 2.2 solution (2.3), (2.4) with the harmonic functions not depending on two
of the transverse coordinates.

This solution is regular at x =0 and upon dimensional reduction to D = 5 along y,-
directions it becomes the 3-charge D = 5 Reissner-Nordstrom type black hole (discussed
in the special case of equal charges in [28]) which is U-dual to NS-NS dyonic black
hole constructed in [14]).

Similar generalisation of the 51515 solution in [4] corresponding to the three 5-
branes intersecting pairwise over 3-branes which in turn intersect over a string can be
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found by applying the ‘harmonic function rule’
ds%l =(F "-2,'“3)—2/3 [F[ FzFJ(—-dIZ + dyg)
+FRFdydyl" + FiFydydyl® + FiFydydy® +dxdxs],  (3.3)

Fagsisisy =3 (edFT A Jy + 2dF7 A Dy + xdFTV A ) (34)

The coordinate yg is common to all three 5-branes, y,(”, yz(” are common to the second

and third S-branes, etc. F; depend on three x-coordinates. The duality * is always
defined with respect to the transverse x-subspace (R3 in (3.3), (3.4)). The special case
of Fi = F, = F3 gives the solution found in [4]. If F; = F; = 1 the above background
reduces to the single 5-brane solution (2.1), (2.2) with the harmonic function Hs = F ,"
being independent of the two of transverse coordinates (here denoted as y;'’, y{")). The
case of F3 = | describes two 5-branes orthogonally intersecting over a 3-brane,

ds? = (FF) ™3 [Fll'-z(—df2 + dydys) + Fld)’dyél) + deydyéz) + dxdxs)

(3.5)

Facsisy=3(xdF7 A Jy + +dF5 A D), (3.6)
which again reduces to the corresponding solution of [4] when F| = F3.

The 5.515 configuration (3.3) has also the following generalisation obtained by
adding a ‘boost’ along the common string:

dst =(FleFJ)‘zﬁ[FleFg(dudv+Kduz)
+FRF; dyd)é” + F R dydyéz) +F R dydyé” +dxdx3] . (3.7)

Here u,v = yo ¥t and K is a generic harmonic function of the three coordinates x;. A
non-trivial K = Q/|x| describes a momentum flow along the string (yo) direction. Upon
compactification to D = 4 along isometric y,-directions this background reduces [13]
to extremal dyonic black hole with regular horizon which has the same metric as the
solution of [11]. Thus the ‘boosted’ 515L5 solution gives an embedding of the 1/8
supersymmetric dyonic black hole in D = 11 which is different from the one discussed
in Section 4 below (see [13] for details).

3.2. 2-brane intersecting 5-brane

Let us now consider other possible supersymmetric intersecting configurations not
discussed in [4]. The most important one is a 2-brane orthogonally intersecting a 5-
brane over a string (a possibility of such a configuration was pointed out in [5,6]). The
corresponding background is easily constructed using the harmonic function rule

ds?, = FY3T~\B[FT(~d* + dy}) + F(dy; + ... + dy}) + Tdy§ + dxdxs]
(3.8)
Fasizy=—3dt AdT Ady, Adys +3+dF~' Adys, (3.9)



The World in Eleven Dimensions 295

where yi, ..., ys belong to 5-brane and y;, ys to 2-brane. This solution can be generalised
further:

dst) = F~*T~'[FT(dudv + K du®) + F(dy} + ... + dy?) + T dy} + dxdxs) ,
(3.10)

where as in (3.7) u,v =y, ¥t and K, like T~! and F~', is a generic harmonic function
of x,. In the simplest 1-center case having a non-trivial K corresponds to adding a
momentum flow along the string (y;) direction.

Dimensional reduction of this solution to D = 10 along x;; = ys (the direction of
2-brane orthogonal to 5-brane) leads to the NS-NS type II background corresponding
to a fundamental string lying within a solitonic 5-brane. Using the relation between the
D =11 and (string frame) D = 10 metrics,

ds?) = e** (dx}) + e7%dsl,) (3.11)

we indeed find the expected D = 10 background with the dilaton €24 = F~'T, the
metric given by (2.6) (with Hy =T~!, Hs= F~!) and the antisymmetric 2-tensor field
strength determined by the 3-tensor field strength (3.9).

Dimensional reduction along the string y, direction leads instead to the D = 10
solution corresponding to a fundamental string (along y,) orthogonally intersecting a
4-brane (cf. (2.11)). Here the dilaton is e2® = H7'H;'/%, Hy =T~', Hy = F~! and
thus the resulting D = 10 metric has indeed the form (2.12) obtained by applying the
harmonic function rule to combine the fundamental string (2.5) and R-R 4-brane (2.10)
of type IIA theory. Another possibility is to compactify along one of the transverse
directions, e.g., x4 (assuming that harmonic functions are independent of it or forming
a periodic array) in which case we find the type IIA solution describing a R-R 2-brane
orthogonally intersecting solitonic 5-brane.

Compactification of all 6 isometric y-coordinates on a 6-torus leads to the extremal
D = 5 black hole solution parametrised by 3 independent charges [14]. Thus the
‘boosted’ 215 solution and 21212 solution discussed above represent two different
D =11 ‘lifts’ of the regular extremal 3-charge D =5 black hole.

These black holes have a finite entropy’ which is not surprising since (3.10) has
a finite entropy directly as a D = 11 black brane background (assuming that internal
directions of 2- and S-branes are compactified). Setting T—' = 1 + Q/r?, F~' =
14+ P/r?, K =Q/rt (r = xpx,), one finds that r = 0 is a regular horizon (all radii
are regular at r — 0) with the area A9 = 272L%\/QQP (L is an equal period of
y-coordinates). The corresponding thermodynamic entropy can then be understood as
a statistical entropy (related to existence of degenerate 512 BPS configurations with
the same values of the charges) by counting relevant BPS states directly in D = 11 as
suggested in {30].

7 This makes possible to reproduce their entropy by counting the corresponding BPS states using D-brane
description of the corresponding dual backgrounds with R-R charges [28.29] or using direct conformal field
theory considerations | 14].
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The 2.L5 metric (3.8) may be compared to the metric obtained by lifting to D = 11
the D = 8 dyonic membrane solutions [15],

ds?, = T"”'i“'“['[‘(—dt2 + dyt + dyv?) + T(dy} + dy} +dy}) + dxdxs) ,
(3.12)
where T~' = | +q/|x?, and T=' = 1 + §/|x|>, §=qcos?¢ (£ is a free parameter).
Since (3.12) reduces to the 2-brane metric if T = 1 and to the 5-brane metric if T =T
(and thus is similar to the metric (2.13) of a bound state of a NS-NS and R-R strings

in type IB theory) this background can presumably be interpreted as corresponding to
a 2-brane lying within a S-brane [15.4].

3.3. 21215 and 51512 configurations

Two other 1/8 supersymmetric configurations of three orthogonally intersecting M-
branes are 21215 and 51512. The first one represents two 2-branes each intersecting
5-brane over a string with the two strings intersecting over a point (so that 2-branes
intersect only over a point). The second one corresponds to a 2-brane intersecting each
of the two 5-branes over a string with the 5-branes intersecting over a 3-brane (with the
strings orthogonally intersecting 3-brane over a point).

In the first case we find

ds}, = (T\Ty) -'/-"F-m[ ~T\ToF di? + T\ F dy} + Ty dy? + ThF dy? + T> dy}

+F(dy? + dy? + dyd) +dxdx3]. (3.13)
Faararsy==3dt Ad(Tidy, Ady, + Todys Adys) +3+dF~' Adys Adys,
(3.14)

where yi, y3, ys. ¥s, y7 are 5-brane coordinates and y;, y; and y3, ys are coordinates of
2-branes.® In the second case

ds?, =T"’3(F1Fz)'2/3[ - FiR{,Td? + FTdy} + BT dy?
+F Fy(dy} + dy} + dy?) + Fi dy} + Frdy} +dx dx;] , (3.15)
Fasosizy = —3dt Ad(Tdy Adyr)
+3(*dF;" Ady, Adyr + +dF;' Ady Adys) . (3.16)

& Note that this configuration is unique since (according to the rule that p-branes can intersect only over
(p-2)-branes) the 2-branes cannot intersect over a string. For example, if one would try to modify (3.13) by
combining dyf with di? then y; would belong also to the second 2-brane.
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Here y,, y2 belong to the 2-brane and y,, y3, y4, ¥s5, Y6 and y2, y3, ¥s, ¥s. y7 are coordinates
of the two 5-branes intersecting over ys, ys, ys.°

The backgrounds (3.13), (3.14) and (3.15), (3.16) have ‘dual’ structure. In the
special case when T; = 1 in (3.13), (3.14) and F; = | in (3.15), (3.16) they become
equivalent to the 2.L5 solution (3.8), (3.9) with the harmonic functions independent of
one of the 4 transverse coordinates (ys in (3.13) and y; in (3.15)). Various possible
dimensional reductions to D = 10 lead to expected p-brane intersection configurations
of type IIA theory. For example, the reduction of 21215 (3.13) along the orthogonal
direction y, of the first 2-brane leads to the configuration of a solitonic 5-brane with
a fundamental string lying within it orthogonally intersected by 2-brane. Dimensional
reduction along the direction y; common to the first 2-brane and 5-brane leads to the
4-brane orthogonally intersected by fundamental string and 2-brane, while the reduction
along other 5-brane directions (ys, ys, y7) gives 21214 type IIA configuration, etc.

4. D = 11 solution corresponding to D = 4 extremal dyonic black hole

The extreme dyonic D = 4 black hole string solutions with non-zero entropy [31,11]
are described by the following NS-NS type I D = 10 background (compactified on
6-torus) {12]

dsty=Hy'(x)[dudv + K(x) du?] + dy dys

+Hs(x)V~!(x)[dy: + as(x) dx*]? + Hs(x)V(x) dx dxs, (4.1)
e**=H;'Hs, B=H;'dtAdy - bdx’Ady,, db=—x*dHs, da=—+dV,
(4.2)

where u,v = y; ¥t and H), Hs, K,V are harmonic functions of x; (s = 1,2,3). This
background can be interpreted as representing a fundamental string (with an extra
momentum along it, ¢f. (2.6)) lying within a solitonic 5-brane with all harmonic
functions being independent of one of the four transverse directions (y;) along which a
Kaluza-Klein monopole [32] is introduced. Since the corresponding o-model is invariant
under T-duality, one cannot get rid of the off-diagonal KK monopole term in the metric
by dualizing in y; direction. However, interpreting this background as a solution of type
IIB theory one can apply the SL(2,Z) duality to transform it first into a configuration
of a R-R string lying on a R-R 5-brane ‘distorted’ by the Kaluza-Klein monopole. The
metric one finds is then given by (4.1) rescaled by ¢~2, i.e.

dstonp = (H\Hs)'2[H'H ' (dudv + K du®) + H ' dy dy,
+V"(dy2+a_‘dx‘)2+dedx3]. (4.3)

9 Another possibility could be to consider 2-brane intersecting each of the two 5-branes over the same string.
ie ds =T™V3(F F)=? [F. FRT(—dP +dy}) + Tdyl + FiFa(dvi +dv}) + Fi(dvi + dv)) + Fy(dvi +

d.\ﬁ) + dx dx;]. In this case, however, the transverse space is only 2-dimensional and thus the harmonic
functions do not decay at infinity.
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Since B, in (4.2) is transformed into an R-R field one can now use T-duality along
vz to exchange the off-diagonal term in the metric for an extra NS-NS B, field. The
resulting type IIA background has the metric

dstona = (Han)'“V[Hr'H;'V"(dudu +Kdi?) + H; 'V dy dy,
+H H dy? +dxdx3] : (44)

and the dilaton €2 = H/2H;*’*V_ As in other examples discussed above we can
interpret this metric as descnbmg a solitonic S-brane (with the corresponding harmonic
function now being V) which is lying within a R-R 6-brane (with the harmonic function
Hs and an extra dimension ¥;), both being orthogonaily intersected (over a string along
yit) by an R-R 2-brane ( with coordinates yi, > and harmonic function H;). Equivalent
interpretation of this D = 4 dyonic black hole background was suggested in [33] where
it was used to argue that statistical entropy found by D-brane counting of degenerate
BPS states reproduces the finite thermodynamic entropy of the black hole.

Anticipating a possibility to compute the entropy by counting BPS states directly in
D = 11 theory [30] it is of interest to lift the above type IIA D = 10 background to
D = 11. Both forms of the D = 10 type IIA solution (4.1) and (4.4) lead to equivalent
non-diagonal D = 11 metric.'? From (4.1), (4.2) we find

dst = HYPHIPV[H ' H; 'V~ (dudv + K di?) + H;'V='dy dys
+H'Vdxd + V7 i(dy, + a,dx’)? + dxdx;]. (4.5)
The corresponding 3-tensor field strength F4 is
Fa=3dBAdx), = -3dt AdH' Ady) Adx); +3 «dHs Ady, Adxy;.  (4.6)

Starting with (4.4) one obtains equivalent metric with V « Hs, x| - 32, y2 — x11.
The metric (4.5) can be interpreted as describing intersecting 2-brane and 5-brane (cf.
(38) for V=1, F = H{', T = H7', xu = ys. y2 = x4) superposed with a KK
monopole along y; (for Hy = Hs =1, K = | the metric becomes that of KK monopole
times a 6-torus or type IIA 6-brane lifted to D = 11, see second reference in [1]).

The special cases of the background (4.1) when one or more harmonic functions are
trivial are related toa =1/ V3,3, | extremal D = 4 black holes. The ‘irreducible’ case
when all 4 harmonic functions are non-trivial and equal (H, = Hs = K = V) corresponds
(for the l-center choice of V) to the a = 0, D = 4 (Reissner-Nordstrom) black hole.
The associated D = 11 metric (4.5) takes the form

ds?, = V~'(x) dudv + di + dy dys + dx}, + (dy, + a,dx*)? + V3(x)dxdxy.
(4.7)

0 Though the D = 10 metric (4.4) is diagonal, the R-R vector field suppomng the 6-brane gives a non-
vanishing Gy, component of the D = |1 metric.
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We conclude (confirming the expectation in [4]) that there exists an embedding of
a = 0 RN black hole into D = 11 theory which has a non-trivial KK monopole type
metric. This seems to represent an obstacle on the way of applying the D = 11 approach
in order to give a statistical derivation of the D = 4 black hole entropy: one is to
understand the effect of the presence of the KK monopole on counting of BPS states of
systems of M-branes. '!

The embedding of extreme 1/8 supersymmetric dyonic black holes into D = 11 theory
discussed above is not, however, the only possible one. There exist two different 1/8
supersymmetric D = 11 solutions, namely, 51515 with a *boost’ along the common
string (Section 3.1) and 2121515, for which the D = 11 metric does not have KK
monopole part but still reduces to an equivalent D = 4 dyonic black hole metric with
regular horizon and finite entropy [13]. These M-brane configurations are likely to be a
proper starting point for a statistical understanding of D = 4 black hole entropy directly
from M-theory point of view.

5. Concluding remarks

As was discussed above, there are simple rules of constructing supersymmetric com-
posite M-brane solutions from the basic building blocks ~ D = 11 2-brane and 5-brane.
This may be considered as an indication that there may exist a D = 11 analogue of
D-brane description of R-R solitons in type I D = 10 string theories which applies
directly to supersymmetric BPS configurations of D = 11 supergravity (in agreement
with related suggestions in [5,6,35,36,30,37]).

We have also presented some explicit solutions corresponding to intersecting p-brane
configurations of D = 10 type II theories. The resulting gravitational backgrounds
complement the picture implied by D-brane approach. An advantage of viewing type
IIA D =10 configurations from D = 11 perspective is that this makes possible to treat
various combinations of NS-NS and R-R p-branes on an equal footing, and in this sense
goes beyond the D-brane description.
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Abstract

We present a class of black p-brane solutions of M-theory which were hitherto known only in the extremal supersymmetric

limit, and calculate their macroscopic entropy and temperature.

1. Introduction

There is now a consensus that the best candidate
for a unified theory underlying all physical phenom-
ena is no longer ten-dimensional string theory but
rather eleven-dimensional M-theory. The precise for-
mulation of M-theory is unclear but membranes and
fivebranes enter in a crucial way, owing to the pres-
ence of a 4-form field strength F4 in the correspond-
ing eleven-dimensional supergravity theory [1]. The
membrane is characterized by a tension 73 and an
“electric” charge Q3 = [; *Fa. For T3 > (s, the
membrane is “black” [2], exhibiting an outer event
horizon at r = r, and an inner horizon at r = r_,
where r = /Y™y, and where y", m=1,2,...,8, are
the coordinates transverse to the membrane. In the
extremal tension=charge limit, the two horizons co-
incide, and one recovers the fundamental superme-
mbrane solution which preserves half of the space-
time supersymmetries [3]. This supermembrane ad-
mits a covariant Green-Schwarz action [4]. Similar
remarks apply to the fivebrane which is characterized

! Research supported in part by NSF Grant PHY-9411543.
2Research supported in part by DOE Grant DE-FG05-91-
ER40633.

by a tension 75 and “magnetic charge” Ps = fs' Fy. It
is also black when Ty > Ps and also preserves half
the supersymmetries in the extremal limit [2]. There
is, to date, no covariant fivebrane action, however.
Upon compactification of M-theory to a lower space-
time dimension, a bewildering array of other black
p-branes make their appearance in the theory, owing
to the presence of a variety of (p + 2)-form field
strengths in the lower-dimensional supergravity the-
ory [5,6]. Some of these p-branes may be interpreted
as reductions of the eleven-dimensional ones or wrap-
pings of the eleven-dimensional ones around cycles
of the compactifying manifold [ 7-10]. In particular,
one may obtain as special cases the four-dimensional
black holes (p = 1). It has been suggested that, in
the extremal limit, these black holes may be identified
with BPS saturated string states { [1-14]. Moreover,
it is sometimes the case that multiply-charged black
holes may be regarded as bound states at threshold of
singly charged black holes [11,12,15,16]. Apart from
their importance in the understanding of M-theory,
therefore, these black p-branes have recently come to
the fore as a way of providing a microscopic expla-
nation of the Hawking entropy and temperature for-
mulae [17-28] which have long been something of
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an enigma. This latter progress has been made pos-
sible by the recognition that some p-branes carrying
Ramond-Ramond charges also admit an interpreta-
tion as Dirichlet-branes, or D-branes, and are there-
fore amenable to the calculational power of conformal
field theory [29].

The compactified eleven-dimensional supergravity
theory admits a consistent truncation to the following
set of fields: the metric tensor g, a set of N scalar
fields ¢ = (¢y,...,dy), and N field strengths F, of
rank n. The Lagrangian for these fields takes the form
[30,31]

N
1
—1p )] 2 o 12
e L=R—35(dp) ~ 5 ,,E.l e PF:, (1.1)

where a, are constant vectors characteristic of the su-
pergravity theory. The purpose of the present paper is
to display a universal class of (non-rotating) black p-
brane solutions to (1.1) and to calculate their classical
entropy and temperature.

As discussed in Section 2, it is also possible to make
a further consistent truncation to a single scalar ¢ and
single field strength F:

1
e 'L=R-1(ap)? — e F?, (1.2)
2n!

where the parameter a can be conveniently re-
expressed as

2dd
2

=A - ——,
“ D—2

since A is a parameter that is preserved under dimen-
sional reduction [32]. Special solutions of this theory
have been considered before in the literature. Purcly
electric or purely magnetic black p-branes were con-
sidered in [5] for D = 10 dimensions and in [6] for
general dimensions D < 11. All these had A = 4. In
the case of extremal black p-brancs, these were gen-
eralized to other values of A in [32,30]. Certain non-
extrecmal non-dilatonic (a = 0) black p-branes were
also obtained in [33]

A particularly interesting class of solutions are the
dyonic p-branes. Dyonic p-brane occur in dimensions
D = 2n, where the n-index field strengths can carry
both clectric and magnetic charges. There are two
types of dyonic solution. In the first type, each individ-
ual field strength in (1.1) carries cither clectric charge

(1.3)

or magnctic charge, but not both. A particularly in-
teresting example, owing to its non-vanishing entropy
even in the extremal limit [34], is provided by the
four-dimenstonal dyonic black hole. This is the a =0
(Reissner-Nordstrom) solution, recently identified as
a solution of heterotic string theory [11], but known
for many years to be a solution of M-thcory [35,36].
The construction of black dyonic p-branes of this type
is identical to that for the solutions with purely electric
or purely magnetic charges, discussed in Section 3.

In Section 4, we shall construct black dyonic p-
branes of the second type, where there is one field
strength, which carries both electric and magnetic
charge. Special cases of these have also been con-
sidered beforc: the self-dual threcbranc in D = 10
[5,37], the extremal self-dual string [6] and extremal
dyonic string in D = 6 [41], a black self-dual string
in D = 6 [33,19] and a different dyonic black hole
in D = 4 [30]. See also [38] for the most general
spherically symmetric extremal dyonic black hole so-
lutions of the toroidally compactified heterotic string.

Black multi-scalar p-branes, the extremal limits of
which may be found in [31], are discussed in Sec-
tion 5.

The usual form of the metric for an isotropic p-
brane in D dimensions is given by

ds® = €A(- diP + dx'dx’) + 2B (dr® + r*dO?)
(1.4)

where the coordinates (7, x') paramcterise the d-
dimensional world-volume of the p-brane. The re-
maining coordinates of the D dimensional spacetime
are r and the coordinates on a (D —d -~ 1)-dimensional
unit sphere, whose metric is dQ2. The functions A
and B depend on the coordinate r only, as do the dila-
tonic scalar fields. The field strengths F, can carry
either clectric or magnetic charge, and are given by

Fo=An €44, or F,=As€,, (1.5)

where €, is the volume form on the unit sphere d)2.
The former case describes an elementary p-brane so-
lution with d = n — | and electric charge A, = Q,; the
latter a solitonic p-brane solution withd =D —n — |
and magnetic charge A, = P,.

Solutions ol supergravity theories with metrics of
this form include extremal supersymmetric p-brane
solitons, which saturate the Bogomol’nyi bound. The
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mass per unit p-volume of such a solution is equal to
the sum of the electric and/ or magnetic charges carried
by participating field strengths. More general classes
of “black” solutions exist in which the mass is an in-
dependent free parameter. In this paper, we shall show
that there is a universal recipe for constructing such
non-extremal generalisations of p-brane solutions, in
which the metric (1.4) is replaced by

ds? = A (—e? dr? + dx'dx’)
+ (e art + rPd0?) . (1.6)

Like A and B, f is a function of r. The ansitze for
the field strengths (1.5) remain the same as in the
extremal case. Remarkably, it turns out that the func-
tions A, B and ¢ take exactly the same form as they
do in the extremal case, but for rescaled values of the
electric and magnetic charges. The function f has a
completely universal form:
ok
el =] i (1.7)
where d = D —d — 2. If ks positive, the metric has an
outer event horizon at r = r, = k'/¢. When k = 0, the
solution becomes extremal, and the horizon coincides
with the location of the curvature singularity at r = 0.
The temperature of a black p-brane can be calcu-
lated by examining the behaviour of the metric (1.6)
in the Euclidean regime in the vicinity of the outer
horizon r = r,. Setting ¢t = ir and 1 — krd= p?, the
metric (1.6) becomes

2
ds? = 4ry 228

72
x (dp2 + d—zez"("’_w(")pzdfz+- ). (18)
4r
We sce that the conical singularity at the outer hori-
zon (p = 0) is avoided if 7 is assigned the period
(47rr, /d)eB ") =AU) The inverse of this periodic-
ity in imaginary time is the Hawking temperature,

T = d eA(rl)—B(r.) (1.9
4arr ’

We may also calculate the entropy per unit p-volume

of the black p-brane, which is given by one quarter of

the area of the outer horizon. Thus we have

S§= %ri+le(d+l)B(u)+(d—l)A(r,)wd__H , (110)

where w;, | = 21rd/2+l/(7ld~)! is the volume of the
unit (d + 1)-sphere

In subsequent sections, we shall generalise various
kinds of exiremal p-brane solutions to obtain black
single-scalar elementary and solitonic p-branes, black
dyonic p-branes and black multi-scalar p-branes. The
metric ansatz ( 1.6) gives rise to non-isotropic p-brane
solutions for d > 2, in the sense that the Poincaré
symmetry of the d-dimensional world volume is bro-
ken. When d = 1, however, the black hole solutions
remain isotropic. In the extremal black hole solutions,
the quantity dA +dB vanishes, where A and B are de-
fined in (1.4); whilst in the non-extremal cases, this
quantity is non-vanishing. Isotropic p-brane solutions
with dA + dB # 0 were discussed in [42].

2. Single-scalar black p-branes

The Lagrangian (1.1) can be consistently reduced
to a Lagrangian for a single scalar and a single field
strength

1
“ip_p_ 1 21 g2
e L=R~5(dp) 2n!e"F R (2.1)
where a, ¢ and F are given by [30]
a = (M Yap) ™,
B

b=ad (M apaa- b,

a.B
(F)?=a”y (M™)ag F?, (22)
B

and M.g = a, - ag. The parameter a can conveniently
be re-expressed as

2dd

2
=A - —,
a D-2

(2.3)
where A is a parameter that is preserved under dimen-
sional reduction [32]. Supersymmetric p-brane solu-
tions can arise only when the value of A is given by
A = 4/N, with N field strengths participating in the
solution. This occurs when the dot products of the
dilaton vectors a, satisfy [31]
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2dd
Mapg =48,5 — D3 (2.4)
An interesting special case is provided by the four-
dimensional black holes with a2 = 3,1,1/3,0, ie.
N = 1,2,3,4 whose extremal limits admit the inter-
pretation of 1, 2, 3, 4-particle bound states at threshold
[11,15,16]. Their D = 11 interpretation has recently
been discussed in [39,40].
To begin, let us consider the more general metric

ds® = —e¥di? + edxidx’ + e2'dr? + 28X d0? .
(2.5)

It is straightforward to show that the Ricci tensor for
this metric has the following non-vanishing compo-
nents

Roo = 2= (u” — v’ + 0" + (d ~ D' A/
+(d+ l)u’(B'+;)).

Ry = -2 A" (A" ~ A" + At + (d - 1)A?

+(d+ 1A (B + %))5,7,

DA+ (d -

d+1 o'

Ry=—u" +u'v —u? - (d— Ay

~(d=NA? ~(d+1)B" + ——

2d+1)
- r

B +(d+ 1)J'B — (d+1)B?,

1
Ry = —e2 B~ (B" + (B’ + —)[u’ v+ (d- 1A

+(d+ 1) (B + —)1 - —)ga,,+dg,,h, (2.6)

where a prime denotes a derivative with respect to r,
and g, is the metric on the unit (d + 1)-sphere. For
future reference, we note that the ADM mass per unit
p-volume for this metric is given by [43]

m= [(d— ])(ezA)/rJH (d+ l)(eza)/ d+1

—(d+ 1)(e2"—e2”)r"]} . (2.7)

[asde
The Ricci tensor for the metric (1.6) is given by
(2.6) withu =2(A+ f)and v =2(B— f). Asinthe
case of isotropic p-brane solutions, the equations of
motion simplify dramatically after imposing the ansatz

dA+dB=0. (2.8)

Furthermore, the structure of the equations of motion
implies that it is natural to take

d“f +2f%=0, (29)

fII +
which has the solution given by (1.7). Note that we
have chosen the asymptotic value of f to be zero at
r = 00. This is necessary in order that the metric (1.6)
be Minkowskian at r = occ. The equations of motion
then reduce to the following three simple equations:

¢// ¢+2¢If__‘ 2 —2}’,
J+1 d

A" A+ 24 F 2 _2f,

T A AL 2(D 2’
d(D-2) A"+ Sd¢"? +2(D - 2)A'f/

= %Jsze'zf, (2.10)
where s is given by
§ = Ae™ TUHIA p=deD) (211
and € = | for elementary solutions and € = —1 for

solitonic solutions. The last equation in (2.10) is a
first integral of the first two equations, and hence de-
termines an integration constant. The first two equa-
tions in (2.10) imply that we can naturally solve for
the dilaton ¢ by taking ¢ = a(D — 2)A/d. The re-
maining equation can then be easily solved by making
the ansatz that the function A takes the identical form
as in the extremal case, but with a rescaled charge, i.e.
it satisfies

d+1 d

AII Al - .lh
+ ——Z(D 3 K wi
= ;\e‘%futbﬂl/i r—(‘iH). (2.12)
This has the solution PR R ALYVICT R (S
AvVA/(2d) r=4. Thus from (2.10) we have
d+1 2
2 = A+ LA (-1 —%e-zf) . (213
r
implying
2 i .
é——€2f=c(l+i.x—r"’), (2.14)
A? 2d
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where ¢ is an integration constant. Substituting (1.7)
into this, we deduce that

gDV |y i.(’_\—2 -n~h (2.15)
A X

Thus it is natural to set A = Atanh u, giving

e (P=DAAD - 4 ;’}sinh2 K (2.16)

The blackened single-scalar p-brane solution is there-
fore given by

-1 .
ds? = (1+ ésintf p) T (—eMdi? + dxdx’)

A
+(+ %sinhz 1) (e Ydr* 4+ r1d0?)
B0 o14 Kanty, =1-% @
rd rd
with the two free parameters k and u related to the
charge A and the mass per unit p-volume, m. Specifi-
cally, we find that

dk
A= —=sinh2u,
Ja e

4d o
m=k(Xsinh2y +d+1). (2.18)
The extremal limit occurs wben k— 0, u —
while holding ke?* = v/AA/d = constant. If k is non-
negative, the mass and charge satisfy the bound

20 ko - . -
m— == [(d+ DA - 2d +2de™*
VA A [ ]
72(d —
2kd“(d — 1) >

SR R @

where the inequality is derived from A = a? +
2dd/(D — 2) > 2dd/(D - 2). The mass/charge
bound (2.19) is saturated when k goes to zero, which
is the extremal limit. In cases where A = 4/N, the
extremal solution becomes supersymmetric, and the
bound (2.19) coincides with the Bogomol’nyi bound.
Note however that in general there can exist extremal
classical p-brane solutions for other values of A,
which preserve no supersymmetry [30].

It follows from (1.9) and (1.10) that the Hawking
temperature and entropy of the black p-brane (2.17)
are given by

d 4
T= h 4,
4, (COS /J')
B 4
S=1irt*"w;, (coshu)? (2.20)
In the extremal limit, they take the form
2 -
I (e#)z(iool%)/(w) ‘
§ oc e#H/A-UED/D | (221)

Thus the entropy becomes zero in the extremal limit
pu — 00, unless the constant g is zero and d = 1,
since the exponent can be rewritten as u(4/A —2(d+
1)/d) = -2p(2(d—1)d/(D-2) +(d+1)a*/d) /A.
In these special cases the dilaton ¢ vanishes and the
entropy is finite and non-zero. The situation can arise
for black holes with A =4/3in D =5,and A = 1
in D = 4. The temperature of the extremal p-brane
is zero, finite and non-zero, or infinite, according to
whether (a? — Dl’f—z) is negative, zero or positive.

3. Black dyonic p-branes

Dyonic p-brane occur in dimensions D = 2n, where
the n-index field strengths can carry both electric and
magnetic charges. There are two types of dyonic solu-
tion. In the first type, each individual field strength in
(1.1) carries either electric charge or magnetic charge,
but not both. The construction of black dyonic p-
branes of this type is identical to that for the solutions
with purely electric or purely magnetic charges, which
we discussed in the previous section.

In this section, we shall construct black dyonic
p-branes of the second type, where there is one field
strength, which carries both electric and magnetic
charge. The Lagrangian is again given by (2.1), with
the field strength now taking the form

F = A€, + Ay x€,. (3.1)

As in the case of purely elementary or purely solitonic
p-brane solutions, we impose the conditions (2.8) and
(2.9) on B and f respectively. The equations of mo-
tion then reduce to

n
¢+ —¢' +24'f = Ja(s} - e,



306 Intersecting branes and black holes

A4 SN2 f = (e

d(D~-2)A" + 1d¢* +2(D - 2)A'f’
=1d(si+ e, (3.2)

where

1
51 = A|e2a¢+(n—l)A o ,

1
$2 = Age”29H(N=DA o (3.3)

We can solve the Egs. (3.2) for black dyonic p-branes
by following analogous steps to those described in
the previous section, relating the solutions to extremal
dyonic solutions. In particular, we again find that the
functions A, B and ¢ take precisely the same forms
as in the extremal case, but with rescaled values of
charges. Solutions for extremal dyonic p-branes are
known for two values of @, namely a> = n — | and
a=0[30]. When a® = n — 1, we find that the black
dyonic p-brane solution is given by

]
e—298—(n=DA _ | | _Ll. sinh? g ,
-
1 k.
£79—(=DA _ g 4 — sinh® uy (3.4)
r

with f given by (1.7). The mass per unit volume and
the electric and magnetic charges are given by

m = k(2sinh? ) + 2sinh? p + 1),
Aa = (ak/V/2) sinh(2p,) . (3.5)

For the non-negative values of k, the mass and the
charges satisfy the bound

m— (A +A) =k(n—2+e 1 47 %2) >0,
(3.6)

The bound is saturated in the extremal limit & — 0.
The solution (3.4) corresponds to the black dyonic
string with n = 3 and A =4 in D = 6, and the dyonic
black hole with n =2 and A =2 in D = 4. In both
cases, the extremal solution is supersymmetric and the
bound (3.6) coincides with the Bogomol’nyi bound.
Using (1.9) and (1.10), we find that the Hawking
temperature and entropy of the non-extremal solutions
are given by

d 2
T= m(coshm coshpy) "',
2
S =1rt w, (cosh p cosh pp) ™! . 37

When a = 0, the equations of motion degenerate
and the dilaton ¢ decouplcs. We find the solution

$=0, e‘("‘l)"=1+rn—k_rsinh2p,, (3.8)
where again f is given by (1.7). The constant u
is related to the electric and magnetic charges by
/A¥ + X% = ksinh2u. In this case, unlike the a® =
n — 1 case, the solution is invariant under rotations
of the electric and magnetic charges, and hence it is
equivalent to the purely electric or purely magnetic
solutions we discussed in the previous section. Note
that in the dyonic solution (3.4), when the parameter
M1 = p2, ie. the electric and magnetic charges are
equal, the dilaton field also decouples. For example,
this can happen if one imposes a self-dual condition
on the 3-form field strength in the dyonic string in
D = 6. However, this is a different situation from
the a = 0 dyonic solution, since in the latter case the
electric and magnetic charges are independent free
parameters. In fact the a = 0 dyonic solution with in-
dependent electric and magnetic charges occurs only
inD=4.

4. Black multi-scalar p-branes

To describe multi-scalar p-brane solutions, we re-
turn to the Lagrangian (1.1) involving N scalars and
N field strengths. As we discussed previously, it can be
consistently truncated to the single-scalar Lagrangian
(2.1), in which case all the field strengths F,, are pro-
portional to the canonically-normalised field strength
F, and hence there is only one independent charge pa-
rameter. In a multi-scalar p-brane solution, the charges
associated with each field strength become indepen-
dent parameters. After imposing the conditions (2.8)
and (2.9), the equations of motion reduce to

k1 N
d+1 -
O+ e + 20, f = ~hee ™ Y Mo S
B=1
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- 7 N
” d+1 1 et d ~2f 2
A+ ——A +2Af——2(D~2)e ;sa,
N
d(D~ DA% +3d 3" (M) ag ¢, ¥
a,B=1
. N
+2D-D)Af =1de M "2, (4.1)

a=]

1 .
where @, = @, - ¢ and S, = Age  2°PHIA -]

We again find black solutions by taking A and ¢,
to have the same forms as in the extremal case, with
rescaled charges. Extremal solutions can be found in
cases where the dot products of the dilaton vectors a,
satisfy (2.4) [30]. Thus we find that the correspond-
ing black solutions are given by

Ll

1 k
edaTdA 1 4 ﬁsinh2 oy € =1-

N 4 o
as’ =[O+ % sinh? o) P72 (—e¥di? + dx'dx')
a=1
N k _d
+JJ(+ i sinh? pq) P72 (e dr? + r2d0?) .
a=]

(4.2)

The mass per unit volume and the charges for this
solution are given by

N
m=k(dy sinh’p,+d+1),
a=]

Ao = 3dksinh2pu, . (4.3)

For non-negative values of k, the mass and charges
satisfy the bound

N N
m—> Aa=1kd Y (e —1) +k(d+1)
a=] a=1

S kd(d - 1) >

> 7 0. (4.4)

The bound coincides with the Bogomol’nyi bound.
The Hawking temperature and entropy are given by

d 5
T= - -1
dar, l—ll (coshp,) ™,

N
S=4r4" sy ] (coshpa) . (4.5)

a=1

In the extremal limit ¥ — 0, the bound (4.4) is
saturated, and the solutions become supersymmetric.

5. Conclusions

We have presented a class of black p-brane solutions
of M-theory which were hitherto known only in the ex-
tremal supersymmetric limit and have calculated their
macroscopic entropy and temperature. It would obvi-
ously be of interest to provide a microscopic derivation
of the entropy and temperature using D-brane tech-
niques and compare them with the macroscopic results
found in this paper. Agreement would both boost the
credibility of M-thcory and further our understanding
of black hole and black p-brane physics.
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Abstract

We present two 1/8 supersymmetric intersecting p-brane solutions of 11-dimensional super-
gravity which upon compactification to four dimensions reduce to extremal dyonic black holes
with finite area of horizon. The first solution is a configuration of three intersecting 5-branes with
an extra momentum flow along the common string. The second describes a system of two 2-
branes and two 5-branes. Related (by compactification and T-duality) solution of type 1IB theory
corresponds to a completely symmetric configuration of four intersecting 3-branes. We suggest
methods for counting the BPS degeneracy of three intersecting S-branes which, in the macroscopic
limit, reproduce the Bekenstein-Hawking entropy.

PACS: 04.65.+e; 11.27.4d; 11.30.Pb

1. Introduction

The existence of supersymmetric extremal dyonic black holes with finite area of the
horizon provides a possibility of a statistical understanding [1] of the Bekenstein-
Hawking entropy from the point of view of string theory [2-4]. Such black hole
solutions are found in four [5-7] and five {4,8] dimensions but not in D > 5 [9,10].
While the D-brane BPS state counting derivation of the entropy is relatively straight-
forward for the D = 5 black holes [4,11], it is less transparent in the D = 4 case, a
complication being the presence of a solitonic S5-brane or Kaluza-Klein monopole in
addition to a D-brane configuration in the descriptions used in [12,13].
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One may hope to find a different lifting of the dyonic D = 4 black hole to D = 10
string theory that may correspond to a purely D-brane configuration. A related question
is about the embedding of the D =4 dyonic black holes into D = 11 supergravity (M-
theory) which would allow to reproduce their entropy by counting the corresponding
BPS states using the M-brane approach similar to the one applied in the D = 5 black
hole case in [14].

As was found in [15], the (three-charge, finite area) D =5 extremal black hole can
be represented in M-theory by a configuration of orthogonally intersecting 2-brane and
S-brane (i.e. 2.15) with a momentum flow along the common string, or by configuration
of three 2-branes intersecting over a point (21212). A particular embedding of (four-
charge, finite area) D = 4 black hole into D) = 11 theory given in [15] can be interpreted
as a similar 215 configuration ‘superposed’ with a Kaluza-Klein monopole.

Below we shall demonstrate that it is possible to get rid of the complication associated
with having the Kaluza-Klein monopole. There exists a simple 1/8 supersymmetric
configuration of four intersecting M-branes (2.121515) with diagonal D = 11 metric.
Upon compactification along six isometric directions it reduces to the dyonic D = 4
black hole with finite area and all scalars being regular at the horizon.

The corresponding 2121414 solution of type IIA D = 10 superstring theory (ob-
tained by dimensional reduction along a direction common to the two S5-branes) is
T-dual to a D = 10 solution of type IIB theory which describes a remarkably symmetric
configuration of four intersecting 3-branes. 3

Our discussion will follow closely that of [15] where an approach to constructing in-
tersecting supersymmetric p-brane solutions ( generalising that of [19]) was presented. *
The supersymmetric configurations of two or three intersecting 2- and 5-branes of D = 11
supergravity which preserve 1/4 or 1/8 of maximal supersymmetry are 212, 515, 215,
21212, 51515, 21215 and 2.1515. Two 2-branes can intersect over a point, two
S-branes - over a 3-brane (which in turn can intersect over a string), 2-brane and
S-brane can intersect over a string [19]. There exists a simple ‘harmonic function’ rule
[15} which governs the construction of composite supersymmetric p-brane solutions in
both D = 10 and D = 11: a separate harmonic function is assigned to each constituent
1/2 supersymmetric p-brane.

3 Similar D-brane configuration was independently discussed in [ 16,17]. Note that it is a combination of four
and not three intersecting 3-branes that is related (for the special choice of equal charges) to the non-dilatonic
(a = 0) RN D = 4 black hole. T-dual configuration of one 0O-brane and three intersecting 4-branes of type
1A theory was considered in | 18].

4 Intersecting p-brane solutions in [ 19,15] and below are isometric in all directions internal to all constituent
p-branes (the background fields depend only on the remaining common transverse directions). They are
different from possible virtual configurations where, e.g., a (p-2)-brane ends (in transverse radial direction)
on a p-brane {20]. A configuration of p-brane and p’-brane intersecting in p-+p’-space may be also considered
as a special anisotropic p+p’-brane. It seems unlikely that there exist more general static solutions (with
constituent p-branes effectively having different transverse spaces [ 19,21]) which may ‘intcrpolate’ between
intersecting p-brane solutions and solutions with one p-brane ending on another in the transverse direction of
the latter.
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Most of the configurations with four intersecting M-branes, namely, 2121212,
2121215and 5151512 are 1/16 supersymmetric and have transverse x-space dimen-
ston equal to two (5.L515.15 configuration with 5-branes intersecting over 3-branes to
preserve supersymmetry does not fit into 11-dimensional space-time). Being described
in terms of harmonic functions of x they are thus not asymptotically flat in transverse
directions. There exists, however, a remarkable exception - the configuration 2121515
which (like 51212, 51512 and 5.L515) has transverse dimension equal to three and
the fraction of unbroken supersymmetry equal to 1/8 (Section 3). Upon compactifica-
tion to D = 4 it reduces to the extremal dyonic black hole with four different charges
and finite area of the horizon.

Similar D = 4 black hole background can be obtained also from the ‘boosted’ version
of the D =11 51515 solution [15] (Section 2) 3 as well from the 3131313 solution
of D = 10 type IIB theory (Section 4). The two D = 11 configurations 5.1 5.1 5+ ‘boost’
and 2121515 reduce in D =10 to 0.L414 14 and 21214 14 solutions of D = 10 type
ITIA theory which are related by 7T-duality.

In Section 5 we shall suggest methods for counting the BPS entropy of three intersect-
ing 5-branes which reproduce the Bekenstein-Hawking entropy of the D = 4 black hole.
This seems to explain the microscopic origin of the entropy directly in 11-dimensional
terms.

2. ‘Boosted’ 51515 solution of D = 11 theory
The D = 11 background corresponding to 51515 configuration [19] is [15]

ds%l=(F1F2F3)’2/3[F1F21ﬁ(—d12+dy|2) Q2.
+ BF(dy} + dy2) + FiFa(dy} + dy?) + FiFa(dyg + dy?) + dx,dx;)

Fa=3(xdF,"" Ndyy Adys + *dFy ' Adys Ndys + «dFy ' Adys Adyr) . (2.2)

Here F4 is the 4-form field strength and F; are the inverse powers of harmonic func-
tions of x, (s =1,2,3). In the simplest I-center case discussed below F,"' =1+ P;/r
(r? = x,x,). The *-duality is defined with respect to the transverse 3-space. The co-
ordinates v, internal to the three 5-branes can be identified according to the F; factors
inside the square brackets in the metric: (v, v4, vs, ¥, y7) belong to the first 5-brane,
(¥1, ¥2, ¥3, ¥, v7) to the second and (vy, v2, y3, y4,¥s) to the third. 5-branes intersect
over three 3-branes which in turn intersect over a common string along y;. If F, = F3 = 1
the above background reduces to the single 5-brane solution [22] with the harmonic
function H = F," independent of the two of transverse coordinates (here y, y3). The

3 The *boost’ along the common string corresponds to a Kaluza-Klein electric charge part in the D = 11
metric which is “dual’ to a Kaluza-Klein monopole part present in the D = 11 embedding of dyonic black
hole in [ 15].
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case of F3 = 1 describes two S-branes intersecting over a 3-brane.® The special case of
F, = F, = F3 is the solution found in [ 19].

Compactifying y;, .., y7 on circles we learn that the effective ‘radii’ (scalar moduli
fields in D = 4) behave regularly both at r = oo and at r = 0 with the exception of the
‘radius’ of y;. It is possible to stabilize the corresponding scalar by adding a ‘boost’
along the common string. The metric of the resulting more general solution [15] is (the
expression for F4 remains the same)

ds?, = (FiF,F3) =3[ F) FyF3(dudv + Kdu®)

+FRF3(dy} + dy2) + FiFs(dy; + dy}) + FiFa(dy? + dy?) + dx,dx,] .
(2.3)

Here u = y; — ¢, v =2t and K is a harmonic function of the three coordinates x;. A
non-trivial K = 1 4+ Q/r describes a momentum flow along the string direction.” Q also
has an interpretation of a ‘boost’ along y; direction.

The D = 11 metric (2.3) is regular at the r = 0 horizon and has a non-zero 9-area of
the horizon (we assume that all y, have period L)

Ag = 4L’ (PP K2 (FyFaF3) V), = 4L’ \/QP P, P . (24)

Compactification along y,...y7 leads to a solitonic D = 5 string. Remarkably, the
corresponding 6-volume is constant so that one gets directly the Einstein-frame metric

dst = H™'(dudv + Kdu®) + H dxdx,, H = (FFRF)™'3. (2.5)

Further compactification along y, or u gives the D = 4 (Einstein-frame) metric which
is isomorphic to the one of the dyonic black hole [6],

dsi=—A(r)de® + A7 (r) (dr* + r*dQ}) , (2.6)

2

Ar) = VK-TF FF = !

O+ r+P)C+P)r+P)

Note, however, that in contrast to the dyonic black hole background of [6] which has
two electric and two magnetic charges here there is one electric (Kaluza-Klein) and 3
magnetic charges. From the D = 4 point of view the two backgrounds are related by
U-duality. The corresponding 2-area of the r = 0 horizon is of course Ag/L’.

In the special case when all 4 harmonic functions are equal (K = F; = H =1y the
metric (2.3) becomes

(2.7)

% The corresponding | /4 supersymmetric background also has 3-dimensional transverse space and reduces to
a D = 4 black hole with two charges (it has « = 1 black hole metric when two charges are equal). The 515
configuration compactified to D = 10 gives 414 solution of type 11A theory which is T-dual to 313 solution
of type lIB theory.

7 The metric (2.3) with F; = | (ie. ds? = =K~ di2 + K|dv| + (K~ = 1)dt1? 4+ dvadvy + dxsdx,) reduces
upon compactification along v; direction to the D = 10 type IIA R-R 0O-brane background (23] with Q
playing the role of the KK electric charge.
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ds?, = H 'dudv + du® +dy? + ... + dyg + Hdxdx,
=—H2df* + H¥dxdx, + [dy, + (H™' = )dt]®> + dy? + ... + dyZ, (2.8)

and corresponds to a charged solitonic string in D = 5 or the Reissner-Nordstrom
(a = 0) black hole in D = 4 (‘unboosted’ 51515 solution with K = 1 and equal F;
reduces to a = 1/+/3 dilatonic D = 4 black hole [19]).

A compactification of this 51515+ ‘boost’ configuration to D = 10 along y; gives a
type A solution corresponding to three 4-branes intersecting over 2-branes plus addi-
tional Kaluza-Klein (Ramond-Ramond vector) electric charge background, or, equiva-
lently, to the 0.4 14 14 configuration of three 4-branes intersecting over 2-branes which
in turn intersect over a O-brane. If instead we compactify along a direction common
only to two of the three 5-branes we get 41415+ ‘boost’ type IIA solution.® Other
related solutions of type IIA and IIB theories can be obtained by applying T-duality and
SL(2,Z) duality.

3. 2121515 solution of D = 11 theory

Solutions with four intersecting M-branes are constructed according to the rules dis-
cussed in [15]. The 2121515 configuration is described by the following background:

ds}, = (T\Ty) "'\ P(FR) ™3 = LA F, df*
+ T\ Fidy? + T1Fady? + ThFidy? + Ty Fady?
+F Fy(dy? + dy; + dy?) + dxdx;] , (3.1)
Fa==3dt A (dTy Ady; Ady, + dTy A dys A dys)
+3(+dF7 Ady; Adys + +dF; ' Ady Adys) . (32)

Here 7,~' are harmonic functions corresponding to the 2-branes and F,-“ are harmonic
functions corresponding to the 5-branes, i.e.

T,.—'=1+9, F;'=1+5. (3.3)
r r

(31,y2) belong to the first and (y3,ys) to the second 2-brane. (yi, ys, ¥s, ¥, y7) and
(>2, ¥a,¥s, ¥, y7) are the coordinates of the two 5-branes. Each 2-brane intersects each
5-brane over a string. 2-branes intersect over a O-brane (x = 0) and S-branes intersect
over a 3-brane.

Various special cases include, in particular, the 2-brane solution [24] (b =F =
F=1),aswellas 515 (T =T, =1) [19} and 215 (T1 = F,=1),21215 (F, = 1),
21515 (T, = 1) [15] configurations (more precisely, their limits when the harmonic

functions do not depend on a number of transverse coordinates).

# This may be compared to another type 1A configuration (consisting of solitonic 5-brane lying within a
R-R 6-brane, both being intersected over a ‘boosted’ string by a R-R 2-brane) which also reduces {12,15] to
the dyonic D = 4 black hole.
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As in the case of the 5 151 54 boost’ solution (2.3), (2.2), the metric (3.1) is regular
at the r = 0 horizon (in particular, all internal y,-components smoothly interpolate
between finite values at r — oo and r — 0) with the 9-area of the horizon being
(cf. (2.4))

Ag = 4L’ [P (T, F1Fy) V%), o = 47l \/Q Q2 P\ P, . (3.4)
The compactification of y, on 7-torus leads to a D = 4 background with the metric
which is again the dyonic black hole one (2.6), now with
r
)t(r)=\/TT2FF2= .
T 00 Y 0D (r ¥ P)(r + P

In addition, there are two electric and two magnetic vector fields (as in [6]) and also
7 scalar fields. The two electric and two magnetic charges are directly related to the
2-brane and 5-brane charges (cf. (3.2)).

2
(3.5)

When all 4 harmonic functions are equal ( T,-‘l = Fi_' = H) the metric (3.1) becomes
(cf. (2.8))
ds?, = —H72dt* + H'dxgdx, + dy? + ... + dy?, (3.6)

i.e. describes a direct product of a D = 4 Reissner-Nordstrom black hole and a 7-torus.

Thus there exists an embedding of the dyonic D = 4 black holes into D = 11
theory which corresponds to a remarkably symmetric combination of M-branes only.
In contrast to the embeddings with a Kaluza-Klein monopole [15] or electric charge
(‘boost’) (2.3), (2.8) it has a diagonal D = 11 metric.

4. 3131313 solution of type IIB theory

Dimensional reduction of the background (3.1), (3.2) to D = 10 along a direction
common to the two 5-brane (e.g. y7) gives a type IIA theory solution representing the
R-R p-brane configuration 212 14 14. This configuration is T-dual to 0141414 one
which is the dimensional reduction of the 51515+ ‘boost’ solution. This suggests also
a relation between the two D = 11 configurations discussed in Sections 2 and 3.

T-duality along one of the two directions common to 4-branes transforms 2121414
into the 3131313 solution of type IIB theory. The explicit form of the latter can
be found also directly in D = 10 type IIB theory (i.e. independently of the above
D = 11 construction) using the method of [15], where the 1/4 supersymmetric solution
corresponding to two intersecting 3-branes was given. One finds the following D = 10
metric and self-dual 5-form (other D = 10 fields arc trivial):

ds%o =(N1;T:Ty) _1/2[ — L5, dr?
+ TiThdy? + T\ Tady? + T Tady? + T2T3dy§ + T2T4dy§ + T3T4dyg + dxsdxs] .
4.1)
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Fs=dt A (dT1 A dyi ANdy; ANdys + dTh Adyy Adyg Adys
+ dT3 A dyy Adys N dye -+ dTy Adyy A dys A dyg)
+ % dT;7 Adys Adys Adyg + *dTy™' A dyy Adys A dys

+ *dT; Adyy Adys Adys + *dT; P Ady) Ady, Adys. (42)

The coordinates of the four 3-branes are (y.y2,¥3), (¥1,¥4,¥s), (¥2,¥4,¥6) and
(y¥3,¥s,¥s), i.e. each pair of 3-branes intersect over a string and all 6 strings inter-
sect at one point. T; are the inverse harmonic functions corresponding to each 3-brane,
T,—‘l =1+ Q;/r. Like the 2121515 background of D = 11 theory this D = 10 solution
is 1/8 supersymmetric, has 3-dimensional transverse space and diagonal D = 10 metric.

Its special cases include the single 3-brane [23,25] with harmonic function indepen-
dent of 3 of 6 transverse coordinates (15> =73 = T4 = 1), 31.3 solution found in [15]
(T3 =T4 = 1) and also 31313 configuration (74 = 1). The 1/8 supersymmetric 31313
configuration also has 3-dimensional transverse space® but the corresponding D = 10
metric

dsly = (TyTT3) ' = VI Ts df?
+ TiThdy? + TiTsdy; + Tvdy; + ThTzdy; + Tody? + T3dyi + dxdx,] ,(4.3)
is singular at r = 0 and has zero area of the r = 0 horizon. '°
As in the two D = 11 cases discussed in the previous sections, the metric of the
3131313 solution (4.1) has r = 0 as a regular horizon with finite 8-area, (cf. (2.4),
(34))

Ag = 4w L[ A (VT T2) /%), 0 = 47 L8/ 01020304 . (4.4)

Ag/L® is the area of the horizon of the corresponding dyonic D = 4 black hole with the
metric (2.6) and

2

r
A =V = e S G 09 s 0) 1 00 (4.3)

The gauge field configuration here involves 4 pairs of equal electric and magnetic
charges. When all charges are equal, the 3131313 metric (4.1) compactified to D =4
reduces to the a = 0 black hole metric (while the 31313 metric (4.3) reduces to the
a =1/+/3 black hole metric [26]).

9 Similar configurations of three and four intersecting 3-branes, and, in particular, their invariance under the
1/8 fraction of maximal supersymmetry were discussed in D-brane representation in [17,16].

10 This is similar to what one finds for the ‘unboosted’ 5.L5.L5 configuration (2.1), (2.2). As is well known
from 4-dimensional point of view, one does need four charges to get a regular behaviour of scalars near the
horizon and finite area.
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5. Entropy of D = 4 Reissner-Nordstrom black hole

Above we have demonstrated the existence of supersymmetric extremal D = 11 and
D = 10 configurations with finite entropy which are built solely out of the fundamental
p-branes of the corresponding theories (the 2-branes and the 5-branes of the M-theory
and the 3-branes of type IIB theory) and reduce upon compactification to D =4 dyonic
black hole backgrounds with regular horizon.

Namely, there exists an embedding of a four-dimensional dyonic black hole (in
particular, of the non-dilatonic Reissner-Nordstrom black hole) into D = 11 theory
which corresponds to a combination of M-branes only. This may allow an application of
the approach similar to the one of [ 14] to the derivation of the entropy (3.4) by counting
the number of different BPS excitations of the 2121515 M-brane configuration.

The 3131313 configuration represents an embedding of the 1/8 supersymmetric
dyonic D = 4 black hole into type IIB superstring theory which is remarkable in that
all four charges enter symmetrically. It is natural to expect that there should exist
a microscopic counting of the BPS states which reproduces the Bekenstein-Hawking
entropy in a (U-duality invariant) way that treats all four charges on an equal footing.

Although we hope to eventually attain a general understanding of this problem, in what
follows we shall discuss the counting of BPS states for one specific example considered
above: the M-theory configuration (2.3), (2.2) of the three intersecting 5-branes with
a common line. Even though the counting rules of M-theory are not entirely clear, we
see an advantage to doing this from M-theory point of view as compared to previous
discussions in the context of string theory [12,13]: the 11-dimensional problem is more
symmetric. Furthermore, apart from the entropy problem, we may learn something about
the M-theory.

5.1. Charge quantization in M-theory and the Bekenstein-Hawking entropy

Upon dimensional reduction to four dimensions, the boosted 51515 solution (2.3),
(2.2), reduces to the 4-dimensional black hole with three magnetic charges, Py, P,
and P3, and an electric charge Q. The electric charge is proportional to the momentum
along the intersection string of length L, P =2wN/L. The general relation between the
coefficient @ in the harmonic function K appearing in (2.3) and the momentum along
the D = 5 string (cf. (2.5)) wound around a compact dimension of length L is (see

eg. [27])
263, 2aN «3N _ KN

TD-deps L[ L 18’ G-D

Q

where «}/87 and «? /8 are Newton’s constants in 4 and 11 dimensions. All toroidal
directions are assumed to have length L.

The three magnetic charges are proportional to the numbers n;, ny, n3 of 5-branes in
the (14567), (12367), and the (12345) planes, respectively (see (2.1), (2.3)). The
complete symmetry between nj, np and n3 is thus automatic in the 11-dimensional
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approach. The precise relation between P, and r; is found as follows. The charge g5 of
a D =11 5-brane which is spherically symmetric in transverse d + 2 < 5 dimensions is
proportional to the coefficient P in the corresponding harmonic function. For d +2 =3
appropriate to the present case (two of five transverse directions are isotropic, or,
equivalently, there is a periodic array of 5-branes in these compact directions) we get

2 4L2
cwandp ol AL g (5.2)

=k VoK Vak
At this point we need to know precisely how the 5-brane charge is quantized. This was
discussed in [9], but we repcat the argument here for completeness. A different argument
leading to equivalent results was presented earlier in [28]. Upon compactification on
a circle of length L, the M-theory reduces to type IIA string theory where all charge
quantization rules are known. We use the fact that double dimensional reduction turns
a 2-branc into a fundamental string, and a 5-brane into a Dirichlet 4-brane. Hence, we

have
Tt =Tk,  Tsi? =Tay, (5.3)

where the 10-dimensional gravitational constant is expressed in terms of the 11-dimen-
sional one by %, = k*/L. The charge densities are related to the tensions by

@ =V2kTy, g5 =V2«Ts, (5.4)

and we assume that the minimal Dirac condition is satisfied, g2gs = 27r. These relations,
together with the 10-dimensional expressions {29]

1 I
Kkio = g(a')?, T = Smal K10T4=m, (5.5)

fix all the M-theory quantities in terms of a’ and the string coupling constant, g. In
particular, we find

K2=g3(a')9/2 g/

4m2 = Ams (5.6)
The tensions turn out to be
202 2
2 = oe———, 5 | omee— (5-7)
g(a/)3/2 g2(a/)3

Note that 7; is identical to the tension of the Dirichlet 2-brane of type IIA theory,
while Ts ~ to the tension of the solitonic 5-brane. This provides a nice check on our
results, since single dimensional reduction indeed turns the M-theory 2-brane into the
Dirichlet 2-brane, and the M-theory 5-brane into the solitonic 5-brane. Note that the
M-brane tensions satisfy the relation 2775 = T, which was first derived in [28] using
toroidal compactification to type IIB theory in 9 dimensions. This serves as yet another
consistency check.
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It is convenient to express our results in pure M-theory terms. The charges are

quantized according to'!

@ =V2 KTy = nV2 2km?)'?, (5.8)

gs=V2«Ts = nf( ', (5.9)
ie.

P = 2;"L2< )73 (5.10)

The resulting expression for the Bekenstein-Hawking entropy of the extremal Reissner-
Nordstrom type black hole, (2.6), (2.7), which is proportional to the area (2.4), is

?‘WA" NG (5.11)

This agrees with the expression found directly in D =4 {2,3,12,13].

In the case of the 2L2J_5L5 conﬁguratlon we get (for each pair of 2-brane and 5-
brane charges) ¢, = Q qs = ‘:}’-’“ P. The Dirac condition on unit charges translates
Mo ggs = 21m]n2, where n; and ny are the numbers of 2- and 5-brancs. We conclude

that Q1P = ——7n|n2 Then from (3.4) we learn that

P\ P,P3Q

SpH =

2mAy 87l

7 = ———/QIPLQ: Py = 2 /mimam3ny (5.12)
Remarkably, this result does not depend on the particular choice of M-brane quantization
condition (choice of my = 772K_2T2‘3) or use of D-brane tension expression since the
2121515 configuration contains equal number of 2-branes and 5-branes. This provides
a consistency check. Note also that the D = 4 black holes obtained from the 2121515
and from the 51515 M-theory configurations are not identical, but are related by U-
duality. The equality of their entropies provides a check of the U-duality.

The same expression is obtained for the entropy of the D = 10 configuration
3131313 (4.3) (or related D = 4 black hole). Each 3-brane charge g3 is propor-
tional to the corresponding coefficient @ in the harmonic function (cf. (5.2))

Spu =

1 wg.1d w3 2aL3

- . = , 5.13
q3 \/§( Yo 0 0 ( )

V2 k10 2K10 K10
where «2,/8ar is the 10-dimensional Newton constant and the overall factor -'—2 is due
to the dyonic nature of the 3-brane. The charge quantization in the self-dual case implies
(sce [9]) g3 = ny/7r (the absence of standard /2 factor here effectively compensates
for the “dyonic’ - factor in the expression for the charge). 12 Thus, Q; = 5=, and
the area (4.4) leads to the following entropy:

W in [30] it was argued that the 2-brane tension, 73, satisfies K2T23 =q? /my, where my is a rational number
that was left undetermined. The argument of [28], as well as our procedure {9], unambiguously fix mp = 1/2.
12 This agrees with the D3-brane tension, 19Tz = /7, since in the self-dual case qp = x10Tp.
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2mAg  8miLS
SpH = 2= a V 01020304 = 27\ /ninynang . (5.14)

10

5.2. Counting of the microscopic states

The presence of the factor V/N in Sgy (5.11) immediately suggests an interpretation
in terms of the massless states on the string common to all three 5-branes. Indeed, it
is well known that, for a (1 + 1)-dimensional field theory with a central charge c, the
entropy of left-moving states with momentum 27 N/L is, for sufficiently large N, given
by 13

Sar = 27\ LeN . (5.15)

We should find, therefore, that the central charge on the intersection string is, in the
limit of large charges, equal to

¢ =6nnyn; . (5.16)

The fact that the central charge grows as nynyn3 suggests the following picture. 2-branes
can end on 5-branes, so that the boundary looks like a closed string [20,32,33]. It is
tempting to associate the massless states with those of 2-branes attached to 5-branes
near the intersection point. Geometrically, we may have a two-brane with three holes,
each of the holes attached to different 5-dimensional hyperplanes in which the 5-branes
lie. Thus, for any three 5-branes that intersect along a line, we have a collapsed 2-brane
that gives massless states in the (1 + 1)-dimensional theory describing the intersection.
What is the central charge of these massless states? From the point of view of one of
the 5-branes, the intersection is a long string in 5 4+ 1 dimensions. Such a string has
4 bosonic massless modes corresponding to the transverse oscillations, and 4 fermionic
superpartners. Thus, we believe that the central charge arising from the collapsed 2-brane
with three boundaries is 4(1+ 3) = 6.

The upshot of this argument is that each triple intersection contributes 6 to the central
charge. Since there are mynpn; triple intersections, we find the total central charge
6n;nyn3. One may ask why there are no terms of order n, etc. This can be explained
by the fact that all parallel 5-brancs are displaced relative to each other, so that the
2-branes produce massless states only near the intersection points.

One notable feature of our argument is that the central charge grows as a product
of three charges, while in all D-brane examples one found only a product of two
charges. We believe that this is related to the peculiar n* growth of the near-extremal
entropy of n coincident 5-branes found in [9] (for coincident D-branes the near-extremal

I3 As pointed out in |31], this expression is reliable only if N > ¢. Requiring N to be much greater than
nynynz is a highly asymmetric choice of charges. If, however, all charges are comparable and large, the
entropy is dominated by the multiply wound S-branes, which we discuss at the end of this section.

14 Upon compactification on 77, these massless modes are simply the small fluctuations of the long string in
4 + | dimensions which is described by the classical solution (2.5). One should be able to confirm that the
central charge on this string is equal to 6 by studying its low-energy modes.
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entropy grows only as n). This is because the intersecting D-brane entropy comes from
strings which can only connect objects pairwise. The 2-branes, however, can connect
three different 5-branes. Based on our observations about entropy, we conjecture that the
configurations where a 2-brane connects four or more 5-branes are forbidden (otherwise,
for instance, the near-extremal entropy of n parallel 5-branes would grow faster than
n?). Perhaps such configurations do not give rise to massless states or give subleading
contributions to the entropy.

The counting argument presented above applies to the configuration where there are
n; parallel 5-branes in the (14567) hyperplane, ny parallel 5-branes in the (12367)
hyperplane, and n3 parallel 5-branes in the (12345) hyperplane. As explained in [31],
if ny ~ ny ~ n3 ~ N we need to examine a different configuration where one replaces
a number of disconnected branes by a single multiply wound brane. Let us consider,
therefore, a single 5-brane in the (14567) hyperplane wound n; times around the y;-
circle, a single 5-brane in the (12367) hyperplane wound n; times around the y;-circle,
and a single 5-brane in the (12345) hyperplane wound n3 times around the y,-circle.
Following the logic of [31], one can show that the intersection string effectively has
winding number nynyns: this is because the 2-brane which connects the three 5-branes
needs to be transported nynyns times around the y,-circle to come back to its original
state. 13 Therefore, the massless fields produced by the 2-brane effectively live on a circle
of length nynyn3 L. This implies [34] that the energy levels of the (1 4+ 1)-dimensional
field theory are quantized in units of 277/(nnynsL). In this theory there is only one
species of the 2-brane connecting the three 5-branes; therefore, the central charge on the
string is ¢ = 6. The calculation of BPS entropy for a state with momentum 277N/L, as
in [34,31], once again reproduces (5.11). While the end result has the form identical to
that found for the disconnected S-branes, the connected configuration is dominant when
all four charges are of comparable magnitude [31]. Now the central charge is fixed,
and the large entropy is due to the growing density of energy levels.

6. Black hole entropy in D = 5 and discussion

The counting arguments presented here are plausible, but clearly need to be put on
a more solid footing. Indeed, it is not yet completely clear what rules apply to the 11-
dimensional M-theory (although progress has been made in [14]). The rule associating
massless states to collapsed 2-branes with three boundaries looks natural, and seems
to reproduce the Bekenstein-Hawking entropy of extremal black holes in D = 4. Note
also that a similar rule can be successfully applied to the case of the finite entropy
D =5 extremal dyonic black holes described in 11 dimensions by the ‘boosted” 2 1 5

15 The role of nynynz as the effective winding number is suggested also by comparison of the D = 5
solitonic string metric, (2.5), with the fundamental string metric, ds? = V—'(dudv + Kdu?) + dxgdx; , where
the coefficient in the harmonic function V is proportional to the tension times the winding number of the
source string (see e.g. |27]). After a conformal rescaling, (2.5) takes the fundamental string form with
V = H? = (F|F, F3) ! so that near r = O the dudv part of it is multiplied by P; PPy ~ n nyny. Thus, the
source string may be thought of as wound ninzn3 times around the circle.
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configuration [15]. Another possible D = 11 embedding of the D = 5 black hole is
provided by 21212 configuration [15]. The relevant D = 10 type IIB configuration
is 313 (cf. (4.3)) with momentum flow along common string. In the case of 2 L 5
configuration the massless degrees of freedom on the intersection string may be attributed
to a collapsed 2-brane with a hole attached to the 5-brane and one point attached to the
2-brane. If the 5-brane is wound n; times and the 2-brane - n, times, the intersection
is described by a ¢ = 6 theory on a circle of length nyn;L. Following the arguments of
[31], we find that the entropy of a state with momentum, 27w N/ L along the intersection
string is

Sotat = 2V N . (6.1)

This seems to supply a microscopic M-theory basis, somewhat different from that in
[14], for the Bekenstein-Hawking entropy of D =5 extremal dyonic black holes.

We would now like to show that (6.1) is indeed equal to the expression for the
Bekenstein-Hawking entropy for the ‘boosted’ 2 L S configuration {15] (cf. (5.11}),

2mAy  47LS
Spy = K29 = VOPQ' . (6.2)

K2

Q and P are the parameters in the harmonic functions corresponding to the 2-brane
and the 5-brane, and Q' is the parameter in the ‘boost’ function, i.e. T~' = 1 + Q/r?%,
F~'=14 P/r’, K =1+ Q'/r% Note that here (cf. (5.1))

KIN 472 L? 4L
! I —— —_— —— y R ——
0 ~77 7)) NP Y gs Ton

As in the case of the 2121515 configuration, we can use the Dirac quantization
condition, g>gs = 2mnyny, to conclude that QP = ﬁnlnz. This yields (6.1) when
substituted into (6.2). A similar expression for the BPS entropy is found in the case of
the completely symmetric 21212 configuration,

V10203 = 2my/mnans (6.4)

where we have used the 2-brane charge quantization condition (5.8), which implies that
Q; = m;L™*(x/\2m)*3. Agreement of different expressions for the D = 5 black hole
entropy provides another check on the consistency of (5.8), (5.9).

Our arguments for counting the microscopic states apply only to the configurations
where M-branes intersect over a string. It would be very interesting to see how approach
analogous to the above might work when this is not the case. Indeed, black holes with
finite horizon area in D = 4 may also be obtained from the 2121515 configuration
in M-theory, and the 3131313 one in type IIB, while in D =5 - from the 21212
configuration. Although from the D = 4,5 dimensional point of view these cases are
related by U-duality to the ones we considered, the counting of their states seems to be
harder at the present level of understanding. We hope that a more general approach to
the entropy problem, which covers all the solutions we discussed, can be found.

P. (6.3)

473 L0
K2

Spn =
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Chapter 6

M-theory and duality

In 1977, Montonen and Olive made a bold conjecture [1]. Might there exist a dual
formulation of fundamental physics in which the roles of Noether charges and topo-
logical charges are reversed? In such a dual picture, the magnetic monopoles would
be the fundamental objects and the quarks, W-bosons and Higgs particles would
be the solitons! They were inspired by the observation that in certain supersym-
metric grand unified theories, the masses M of all the particles whether elementary
(carrying purely electric charge Q), solitonic (carrying purely magnetic charge P)
or dyonic (carrying both) are described by a universal formula

M? = v*(Q? + P?) (6.1)

where v is a constant. Note that the mass formula remains unchanged if we ex-
change the roles of P and Q. The Montonen—-Olive conjecture was that this elec-
tric/magnetic symmetry is a symmetry not merely of the mass formula but is an
exact symmetry of the entire quantum theory! The reason why this idea remained
merely a conjecture rather than a proof has to do with the whole question of pertur-
bative versus non-perturbative effects. According to Dirac, the electric charge Q is
quantized in units of e, the charge on the electron, whereas the magnetic charge is
quantized in units of 1/e. In other words, Q = me and P = n/e, where m and n are
integers. The symmetry suggested by Montonen and Olive thus demanded that in
the dual world, we not only exchange the integers m and n but we also replace e by
1/e (or h/e if we restore Planck’s constant) and go from a regime of weak coupling
to a regime of strong coupling. This was very exciting firstly because it promised a
whole new window on non-perturbative effects and secondly because this would be
an intrinsically quantum symmetry with no classical (A — 0) counterpart. On the
other hand, it also made a proof very difficult and the idea was largely forgotten
for the next few years.

Although the original supermembrane paper by Hughes, Liu and Polchinski
[2] made use of the soliton idea, the subsequent impetus in supermembrane theory
was to mimic superstrings and treat the p-branes as fundamental objects in their
own right (analogous to particles carrying an electric Noether charge). Even within
this framework, however, it was possible to postulate a Poincaré duality between
one p-brane and another by relating them to the geometrical concept of p-forms.
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(Indeed, this is how p-branes originally got their name.) Now the low energy limit of
10-dimensional string theory is a 10-dimensional supergravity theory with a 3-form
field strength. However, 10-dimensional supergravity had one puzzling feature that
had long been an enigma from the point of view of string theory. In addition to the
above version there existed a dual version in which the field strength was a 7-form.
This suggested (3], a dual version of string theory in which the fundamental objects
are fivebranes! This became known as the string/fivebrane duality conjecture. The
analogy was still a bit incomplete, however, because at that time no-one had thought
of the fivebrane as a soliton.

Then in 1990, a major breakthrough for the string/fivebrane duality conjecture
came along when Strominger [4] found that the equations of the 10-dimensional
heterotic string admit a fivebrane as a soliton solution which also preserves half
the spacetime supersymmetry and whose mass per unit 5-volume is given by the
topological charge associated with the 3-form of the string. Moreover, this mass
became larger, the smaller the strength of the string coupling, exactly as one would
expect for a soliton. He went on to suggest a complete strong/weak coupling duality
with the strongly coupled string corresponding to the weakly coupled fivebrane.
By generalizing some earlier work of Nepomechie [5] and Teitelboim [6], moreover,
it was possible to show that the electric charge of the fundamental string and
the magnetic charge of the solitonic fivebrane obeyed a Dirac quantization rule.
In this form, string/fivebrane duality was now much more closely mimicking the
electric/magnetic duality of Montonen and Olive. However, since most physicists
were already sceptical of electric/magnetic duality in four dimensions, they did not
immediately embrace string/fivebrane duality in ten dimensions!

Furthermore, there was one major problem with treating the fivebrane as a
fundamental object in its own right; a problem that has bedevilled supermembrane
theory right from the beginning: no-one knows how to quantize fundamental p-
branes with p > 1. All the techniques that worked so well for fundamental strings
and which allow us, for example, to calculate how one string scatters off another,
simply do not go through. Problems arise both at the level of the worldvolume
equations where the old béte noir of non-renormalizability comes to haunt us and
also at the level of the spacetime equations. Each term in string perturbation theory
corresponds to a two-dimensional worldsheet with more and more holes: we must
sum over all topologies of the worldsheet. But for surfaces with more than two
dimensions we do not know how to do this. Indeed, there are powerful theorems
in pure mathematics which tell you that it is not merely hard but impossible.
Of course, one could always invoke the dictum that God does not do perturbation
theory, but that does not cut much ice unless you can say what He does do! So there
were two major impediments to string/fivebrane duality in 10 dimensions. First,
the electric/magnetic duality analogy was ineffective so long as most physicists were
sceptical of this duality. Secondly, treating fivebranes as fundamental raised all the
unresolved issues of quantization.

The first of these impediments was removed, however, when Sen [7] revitalized
the Montonen—Olive conjecture by establishing that certain dyonic states, which
their conjecture demanded, were indeed present in the theory. Many duality sceptics
were thus converted. Indeed this inspired Seiberg and Witten (8] to look for duality
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in more realistic (though still supersymmetric) approximations to the standard
model. The subsequent industry, known as Seiberg-Witten theory, provided a
wealth of new information on non-perturbative effects in four-dimensional quantum
field theories, such as quark-confinement and symmetry-breaking, which would have
been unthinkable just a few years ago.

The Montonen-Olive conjecture was originally intended to apply to four-dimen-
sional grand unified field theories. In 1990, however, Font, Ibanez, Lust and
Quevedo (9] and, independently, Rey [10] generalized the idea to four-dimensional
superstrings, where in fact the idea becomes even more natural and goes by the
name of S-duality.

In fact, superstring theorists had already become used to a totally different
kind of duality called T-duality. Unlike S-duality which was a non-perturbative
symmetry and hence still speculative, T-duality was a perturbative symmetry and
rigorously established [11]. If we compactify a string theory on a circle then, in
addition to the Kaluza—Klein particles we would expect in an ordinary field theory,
there are also extra winding particles that arise because a string can wind around
the circle. T-duality states that nothing changes if we exchange the roles of the
Kaluza-Klein and winding particles provided we also exchange the radius of the
circle R with its inverse 1/R. In short, a string cannot tell the difference between
a big circle and a small one!

Recall that, when wrapped around a circle, an 11-dimensional membrane be-
haves as if it were a 10-dimensional string. In a series of papers between 1991 and
1995, Duff, Khuri, Liu, Lu, Minasian and Rahmfeld {12-14, 16-18] argued that this
may also be the way out of the problems of 10-dimensional string/fivebrane dual-
ity. If we allow four of the ten dimensions to be curled up and allow the solitonic
fivebrane to wrap around them, it will behave as if it were a 6-dimensional solitonic
string! The fundamental string will remain a fundamental string but now also in
6-dimensions. So the 10-dimensional string/fivebrane duality conjecture gets re-
placed by a 6-dimensional string/string duality conjecture. The obvious advantage
is that, in contrast to the fivebrane, we do know how to quantize the string and
hence we can put the predictions of string/string duality to the test. For example,
one can show that the coupling constant of the solitonic string is indeed given by
the inverse of the fundamental string’s coupling constant, in complete agreement
with the conjecture.

When we spoke of string/string duality, we originally had in mind a duality
between one heterotic string and another, but the next major development in the
subject came in 1994 when Hull and Townsend [19] suggested that, if the four-
dimensional compact space is chosen suitably, a six-dimensional heterotic string can
be dual to a six-dimensional Type ITA string! The barriers between the different
string theories were beginning to crumble.

String/string duality has another unexpected pay-off [18]. If we compactify
the six-dimensional spacetime on two circles down to four dimensions, the funda-
mental string and the solitonic string will each acquire a T-duality. But here is
the miracle: the T-duality of the solitonic string is just the S-duality of the fun-
damental string, and vice-versa! This phenomenon, in which the non-perturbative
replacement of e by 1/e in one picture is just the perturbative replacement of R
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by 1/R in the dual picture, goes by the name of Duality of Dualities. Thus four-
dimensional electric/magnetic duality, which was previously only a conjecture, now
emerges automatically if we make the more primitive conjecture of six-dimensional
string/string duality.

All this previous work on T'-duality, S-duality, and string/string duality was
suddenly pulled together by Witten [20] under the umbrella of eleven-dimensions.
One of the biggest problems with D == 10 string theory is that there are five
consistent string theories: Type I SO(32), heterotic SO(32), heterotic Eg x Eg,
Type ITA and Type IIB. As a candidate for a unique theory of everything, this is
clearly an embarrassment of riches. Witten put forward a convincing case that this
distinction is just an artifact of perturbation theory and that non-perturbatively
these five theories are, in fact, just different corners of a deeper theory. See table
6.1. Moreover, this deeper theory, subsequently dubbed M-theory, has D = 11
supergravity as its low energy limit! Thus the five string theories and D = 11
supergravity represent six different special points! in the moduli space of M-theory.
The small parameters of perturbative string theory are provided by < e® >, where
® is the dilaton field, and < €% > where o; are the moduli fields which arise after
compactification. What makes M-theory at once intriguing and yet difficult to
analyze is that in D = 11 there is neither dilaton nor moduli and hence the theory
is intrinsically non-perturbative. Consequently, the ultimate meaning of M-theory
is still unclear, and Witten has suggested that in the meantime, M should stand for
‘magic’, ‘mystery’ or ‘membrane’, according to taste. Curiously enough, however,
Witten still played down the importance of supermembranes. But it was only a
matter of time before he too succumbed to the conclusion that we weren’t doing
just string theory any more! In the coming months, literally hundreds of papers
appeared in the internet confirming that, whatever M-theory may be, it certainly
involves supermembranes in an important way[64].

Eg x Eg heterotic string

S0(32) heterotic string

S50(32) Type I string M theory
Type ITA string

Type IIB string

Table 6.1. The five apparently different string theories are really just different corners
of M-theory.

For example, the 6-dimensional string/string duality discussed above (and
hence the 4-dimensional electric/magnetic duality) follows from 11-dimensional
membrane/fivebrane duality (21, 22]. The fundamental string is obtained by wrap-
ping the membrane around a one-dimensional space and then compactifying on a

1 Some authors take the phrase M -theory to refer merely to this sixth corner of the moduli space.
With this definition, of course, M-theory is no more fundamental than the other five corners. For
us, M-theory means the whole kit and caboodle.
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four-dimensional space; whereas the solitonic string is obtained by wrapping the
fivebrane around the four-dimensional space and then compactifying on the one-
dimensional space. Thus S'/Zy x K3, S' x K3, S'/Zy x T* and S! x T* yield
heterotic/heterotic, Type IIA/heterotic, heterotic/Type I1A and Type ITA/Type
ITA duality, respectively. Nor did it take long before the more realistic kinds of
electric/magnetic duality envisioned by Seiberg and Witten [8] were also given an
explanation in terms of string/string duality and hence M-theory (23, 24, 34, 35].
Even QCD now has a D = 11 interpretation (35].

It is interesting to ask whether we have exhausted all possible theories of ex-
tended objects with spacetime supersymmetry and fermionic gauge invariance on
the worldvolume. This we claimed to have done in chapters 2 and 3 by demanding
super-Poincaré invariance, but might there exist other Green—-Schwarz type actions
in which the supergroup is not necessarily super-Poincaré? Although we have not
yet attempted to construct all such actions, one may nevertheless place constraints
on the dimensions and signatures for which such theories are possible [25]. We
simply impose bose-fermi matching but relax the requirement of a super-Poincaré
algebra. Although the possibilities are richer, there are still several constraints. In
particular, the maximum spacetime dimension is now D = 12 where we can have a
worldvolume with (2,2) signature provided we have a (10, 2) spacetime signature.
This new case is particularly interesting since it belongs to the O sequence and
furthermore admits Majorana—-Weyl spinors. In fact, the idea of a twelfth timelike
dimension in supergravity is an old one [26} and twelve-dimensional supersymmetry
algebras have been discussed in the supergravity literature [27]. In particular, the
chiral (N4, N_) = (1,0) supersymmetry algebra in (S,T) = (10,2) involves the
anti-commutator

{Qa,Qs} = (TMN)opPun + (TMNPQRSY 7+ MinPORS- (6.2)

The right-hand side yields a Lorentz generator and a six index object so it is
certainly not super-Poincaré.

Despite all the objections one might raise to a world with two time dimensions,
and despite the above problems of interpretation, the idea of a (2, 2) object moving
in a (10, 2) spacetime has recently been revived [28] in the context of F-theory [29],
which involves Type II B compactifications where the axion and dilaton from the
Ramond-Ramond sector are allowed to vary on the internal manifold. Given a
manifold M that has the structure of a fiber bundle whose fiber is T2 and whose
base is some manifold B, then

Fon M= Type IIB on B. (6.3)

The utility of F-theory is beyond dispute and it has certainly enhanced our under-
standing of string dualities, Seiberg-Witten theory and much else, but should the
twelve-dimensions of F-theory be taken seriously? And if so, should F-theory be
regarded as more fundamental than M-theory? Given that there seems to be no
supersymmetric field theory with SO(10, 2) Lorentz invariance [30], and given that
the on-shell states carry only ten-dimensional momenta {29], the more conservative
interpretation is that the twelfth dimension is merely a mathematical artifact and
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that F-theory should simply be interpreted as a clever way of compactifying the
I1B string [31]. Time (or should I say ‘both times’?) will teli.

Even the chiral Eg x FEjg string, which according to Witten's earlier theorem
could never come from eleven-dimensions, was given an eleven-dimensional explana-
tion by Horava and Witten [32]. The no-go theorem is evaded by compactifying not
on a circle (which has no ends), but on a line-segment (which has two ends). Witten
went on to argue that if the size of this one-dimensional space is large compared
to the six-dimensional Calabi-Yau manifold, then our world is approximately five-
dimensional [33]. This may have important consequences for confronting M-theory
with experiment. For example, it is known that the strengths of the four forces
change with energy. In supersymmetric extensions of the standard model, one finds
that the fine structure constants as, az, a; associated with the SU(3)xSU(2)xU(1)
all meet at about 1018 GeV, entirely consistent with the idea of grand unification.
The strength of the dimensionless number ag = GE?, where G is Newton's con-
stant and E is the energy, also almost meets the other three, but not quite. This
near miss has been a source of great interest, but also frustration. However, in a
universe of the kind envisioned by Witten [33], spacetime is approximately a nar-
row five dimensional layer bounded by four-dimensional walls. The particles of the
standard model live on the walls but gravity lives in the five-dimensional bulk. As
a result, it is possible to choose the size of this fifth dimension so that all four forces
meet at this common scale. Note that this is much less than the Planck scale of
1019 GeV, so gravitational effects may be much closer in energy than we previously
thought; a result that would have all kinds of cosmological consequences.

On the subject of cosmology, the S7 compactification of M-theory and its
massless sector of gauged N = 8 D = 4 supergravity have also featured in a recent
cosmological context with attempts to reconcile an open universe with infiation
[39-42].

Thus this eleven-dimensional framework now provides the starting point for un-
derstanding a wealth of new non-perturbative phenomena, including string/string
duality, Seiberg-Witten theory, quark confinement, QCD, particle physics phe-
nomenology and cosmology.

So what is M-theory?

There is still no definitive answer to this question, although several different
proposals have been made. By far the most popular is M(atrix) theory [40]. The
matrix models of M-theory are SU(k) supersymmetric gauge quantum mechani-
cal models with 16 supersymmetries. As we have seen in chapter 2, these models
were first introduced in the context of M-theory in [42, 41, 43|, where they ap-
peared as regularizations of the D = 11 supermembrane in the lightcone gauge,
sometimes called the infinite momentum frame. (The lightcone gauged-fixed super-
membrane is a supersymmetric gauge quantum mechanical model with the group of
area-preserving diffeomorphisms as its gauge group.) The matrix approach of [40]
exploits the observation [44] that such models are also interpretable as the effective
action of k& coincident Dirichlet 0-branes, and that the continuous spectrum phe-
nomenon is then just the no-force condition between them.

The theory begins by compactifying the eleventh dimension on a circle of radius
R, so that the longitudinal momentum is quantized in units of 1/R with total P =
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k/R with k — oc. The theory is holographic [40] in that it contains only degrees
of freedom which carry the smallest unit of longitudinal momentum, other states
being composites of these fundamental states. This is, of course, entirely consistent
with their identification with the Kaluza—Klein modes. It is convenient to describe
these k degrees of freedom as k x k matrices. When these matrices commute,
their simultaneous eigenvalues are the positions of the 0-branes in the conventional
sense. That they will in general be non-commuting, however, suggests that to
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