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Preface

This book is titled Forecasting in Mathematics – Recent Advances, New Perspectives 
and Applications. Additionally, each time I work in the field of mathematical 
probability and statistics, I have the pleasure of tackling the knowledge, the 
theorems, the proofs, and the applications of the theory. In fact, each problem is 
like a riddle to be solved, a conquest to be won, and I am relieved and extremely 
happy when I find the solution. This proves two important facts: firstly, the power 
of mathematics and its models to deal with such problems and secondly the power 
of the human mind that is able to understand such problems and to tame such a 
wild concept that is randomness, probability, stochasticity, uncertainty, chaos, 
chance, and nondeterminism.

Mathematical probability and statistics are attractive, thriving, and respectable 
parts of mathematics. Some mathematicians and philosophers of science say that 
they are the gateway to mathematics’ deepest mysteries. Moreover, mathematical 
probability and statistics denote an accumulation of mathematical discussions 
connected with the efforts to most efficiently collect and use numerical data 
subject to random or deterministic variations. In the twentieth century and the 
present time, the concept of probability and mathematical statistics has become 
one of the fundamental notions of modern science and philosophies of nature. This 
was accomplished after a long history of efforts by prominent and distinguished 
mathematicians and philosophers like the famous French Blaise Pascal and Pierre 
de Fermat, the Dutch Christiaan Huyghens, the Swiss Jakob Bernoulli, the German 
Carl Friedrich Gauss, the French Siméon-Denis Poisson, the English Thomas Bayes, 
the French Joseph Louis Lagrange and Pierre-Simon de Laplace, the English Karl 
Pearson and Ronald Aylmer Fisher, the Russian Andrey Nikolaevich Kolmogorov, 
the American John von Neumann, etc…

As a matter of fact, each time I read or meditate on these outstanding giants, I feel 
the respect, the admiration, and the esteem towards these magnificent men and 
giants of science who most of them were mathematicians, physicists, astronomers, 
statisticians, philosophers, etc... at the same time. They were, as we call them today: 
Universalists.

Moreover, this book develops methods for simulating simple or complicated 
processes or phenomena. If the computer can be made to imitate an experiment or 
a process, then by repeating the computer simulation with different data, we can 
draw statistical conclusions. Thus, a simulation of a spectrum of mathematical 
processes on computers was done. The result and accuracy of all the algorithms are 
truly amazing and delightful; hence, this confirms two complementary accomplish-
ments: first the triumphs of the theoretical calculations already established using 
different theorems and second the power and success of modern computers to 
verify them.

To conclude, due to its universality, mathematics is the most positive and certain 
branch of science. It has been successfully called by philosophers the Esperanto 
of all sciences since it is the common, the logical, and the exact language of 
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understanding, capable of expressing accurately all scientific endeavors. Although 
probability and statistics are approximate sciences that deal with rough guesses, 
hypotheses tests, estimated computations, expected calculations, and uncertain 
results, they still keep in them the spirit of “exact” sciences through their numbers, 
proofs, figures, and graphs, since they remain a branch of mathematics. Surely, the 
pleasure of working and doing mathematics is everlasting. I hope that the reader 
will benefit from it and share the pleasure of examining the present book. 

Sincerely, I am truly astonished by the power of probability and statistics to deal 
with deterministic or random data and phenomena, and this feeling and impression 
has never left me from the first time I was introduced to this branch of science and 
mathematics. I hope that in the present book I will convey and share this feeling 
with the reader. I hope also that they will discover and learn about the concepts and 
applications of probability and statistics paradigm. 

Abdo Abou Jaoudé, Ph.D.
Notre Dame University-Louaizé,

Zouk Mosbeh, Lebanon

Chapter 1

The Monte Carlo Techniques and
the Complex Probability Paradigm
Abdo Abou Jaoude

Abstract

The concept of mathematical probability was established in 1933 by Andrey
Nikolaevich Kolmogorov by defining a system of five axioms. This system can be
enhanced to encompass the imaginary numbers set after the addition of three novel
axioms. As a result, any random experiment can be executed in the complex prob-
abilities set C which is the sum of the real probabilities set R and the imaginary
probabilities set M. We aim here to incorporate supplementary imaginary dimen-
sions to the random experiment occurring in the “real” laboratory in R and there-
fore to compute all the probabilities in the sets R, M, and C. Accordingly, the
probability in the whole set C ¼ RþM is constantly equivalent to one indepen-
dently of the distribution of the input random variable in R, and subsequently the
output of the stochastic experiment in R can be determined absolutely in C. This is
the consequence of the fact that the probability in C is computed after the subtrac-
tion of the chaotic factor from the degree of our knowledge of the nondeterministic
experiment. We will apply this innovative paradigm to the well-known Monte
Carlo techniques and to their random algorithms and procedures in a novel way.

Keywords: degree of our knowledge, chaotic factor, complex probability set,
probability norm, complex random vector, convergence probability,
divergence probability, simulation

1. Introduction

“Thus, joining the rigor of the demonstrations of science to the uncertainty of fate,
and reconciling these two seemingly contradictory things, it can, taking its name
from both, appropriately arrogate to itself this astonishing title: the geometry of
chance.”

Blaise Pascal

“You believe in the God who plays dice, and I in complete law and order.”
Albert Einstein, Letter to Max Born

“Chance is the pseudonym of God when He did not want to sign.”
Anatole France

“There is a certain Eternal Law, to wit, Reason, existing in the mind of God and
governing the whole universe.”

Saint Thomas Aquinas

1XIV
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“An equation has no meaning for me unless it expresses a thought of God.”
Srinivasa Ramanujan

Calculating probabilities is the crucial task of classical probability theory. Adding
supplementary dimensions to nondeterministic experiments will yield a determin-
istic expression of the theory of probability. This is the novel and original idea at the
foundations of my complex probability paradigm. As a matter of fact, probability
theory is a stochastic system of axioms in its essence; that means that the phenom-
ena outputs are due to randomness and chance. Adding new imaginary dimensions
to the nondeterministic phenomenon happening in the set R will lead to a deter-
ministic phenomenon, and thus, a probabilistic experiment will have a certain
output in the set C of complex probabilities. If the chaotic experiment becomes fully
predictable, then we will be completely capable to foretell the output of random
events that occur in the real world in all probabilistic processes. Accordingly, the
task that has been achieved here was to extend the set R of random real probabil-
ities to the deterministic set C ¼ RþM of complex probabilities and this by
incorporating the contributions of the set M which is the set of complementary
imaginary probabilities to the set R. Consequently, since this extension reveals to
be successful, an innovative paradigm of stochastic sciences and prognostic was put
forward in which all nondeterministic phenomena in R was expressed determinis-
tically in C. I coined this novel model by the term “the complex probability para-
digm” that was initiated and established in my 14 earlier research works [1–14].

2. The purpose and the advantages of the current chapter

The advantages and the purpose of the present chapter are to [15–39]:

1.Extend the theory of classical probability to cover the complex numbers set,
hence to connect the probability theory to the field of complex analysis and
variables. This task was initiated and developed in my earlier 14 works.

2.Apply the novel paradigm and its original probability axioms to Monte Carlo
techniques.

3.Prove that all phenomena that are nondeterministic can be transformed to
deterministic phenomena in the complex probabilities set which is C.

4.Compute and quantify both the chaotic factor and the degree of our
knowledge of Monte Carlo procedures.

5.Represent and show the graphs of the functions and parameters of the
innovative model related to Monte Carlo algorithms.

6.Demonstrate that the classical probability concept is permanently equal to 1 in
the set of complex probabilities; thus, no chaos, no randomness, no ignorance,
no uncertainty, no unpredictability, no nondeterminism, and no disorder exist in

C complex setð Þ ¼ R real setð Þ þM imaginary set
� �

:

7.Prepare to apply this inventive paradigm to other topics in prognostics and to
the field of stochastic processes. These will be the goals of my future research
publications.
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Regarding some applications of the novel established model and as a subsequent
work, it can be applied to any nondeterministic experiments using Monte Carlo
algorithms whether in the continuous or in the discrete cases.

Moreover, compared with existing literature, the major contribution of the
current chapter is to apply the innovative complex probability paradigm to the
techniques and concepts of the probabilistic Monte Carlo simulations and
algorithms.

The next figure displays the major aims and purposes of the complex probability
paradigm (CPP) (Figure 1).

3. The complex probability paradigm

3.1 The original Andrey Nikolaevich Kolmogorov system of axioms

The simplicity of Kolmogorov’s system of axioms may be surprising [1–14]. Let
E be a collection of elements {E1, E2, … } called elementary events and let F be a set
of subsets of E called random events. The five axioms for a finite set E are:

Axiom 1: F is a field of sets.
Axiom 2: F contains the set E.
Axiom 3: A nonnegative real number Prob(A), called the probability of A, is

assigned to each set A in F. We have always 0 ≤ Prob(A) ≤ 1.
Axiom 4: Prob(E) equals 1.
Axiom 5: If A and B have no elements in common, the number assigned to their

union is

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ

hence, we say that A and B are disjoint; otherwise, we have

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ � Prob A∩Bð Þ

And we say also that Prob A∩Bð Þ ¼ Prob Að Þ � Prob B=Að Þ ¼ Prob Bð Þ � Prob A=Bð Þ
which is the conditional probability. If both A and B are independent then
Prob A∩Bð Þ ¼ Prob Að Þ � Prob Bð Þ.

Moreover, we can generalize and say that for N disjoint (mutually exclusive)
events A1,A2, … ,A j, … ,AN (for 1≤ j≤N), we have the following additivity rule:

Figure 1.
The diagram of the major aims of the complex probability paradigm.
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Prob ⋃
N

j¼1
A j

 !
¼
XN
j¼1

Prob A j
� �

And we say also that for N independent events A1,A2, … ,A j, … ,AN (for
1≤ j≤N), we have the following product rule

Prob ⋂
N

j¼1
A j

 !
¼
YN
j¼1

Prob A j
� �

3.2 Adding the imaginary part M

Now, we can add to this system of axioms an imaginary part such that:
Axiom 6: Let Pm ¼ i� 1� Prð Þ be the probability of an associated complemen-

tary event in M (the imaginary part) to the event A in R (the real part). It follows
that Pr þ Pm=i ¼ 1 where i is the imaginary number with i ¼ ffiffiffiffiffiffi�1

p
or i2 ¼ �1.

Axiom 7:We construct the complex number or vector Z ¼ Pr þ Pm ¼
Pr þ i 1� Prð Þ having a norm Zj j such that

Zj j2 ¼ P2
r þ Pm=ið Þ2:

Axiom 8: Let Pc denotes the probability of an event in the complex probability
universe C where C ¼ RþM. We say that Pc is the probability of an event A inR
with its associated event in M such that

Pc2 ¼ Pr þ Pm=ið Þ2 ¼ Zj j2 � 2iPrPm and is always equal to 1:

We can see that by taking into consideration the set of imaginary probabilities,
we added three new and original axioms, and consequently the system of axioms

Figure 2.
The EKA or the CPP diagram.
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defined by Kolmogorov was hence expanded to encompass the set of imaginary
numbers.

3.3 A brief interpretation of the novel paradigm

To summarize the novel paradigm, we state that in the real probability universe
R, our degree of our certain knowledge is undesirably imperfect and hence unsat-
isfactory; thus, we extend our analysis to the set of complex numbers C which
incorporates the contributions of both the set of real probabilities which is R and
the complementary set of imaginary probabilities which is M. Afterward, this will
yield an absolute and perfect degree of our knowledge in the probability universe
C ¼ RþM because Pc = 1 constantly. As a matter of fact, the work in the universe
C of complex probabilities gives way to a sure forecast of any stochastic experiment,
since in C we remove and subtract from the computed degree of our knowledge the
measured chaotic factor. This will generate in the universe C a probability equal to 1
(Pc2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1 ¼ Pc). Many applications taking into con-
sideration numerous continuous and discrete probability distributions in my 14
previous research papers confirm this hypothesis and innovative paradigm. The
extended Kolmogorov axioms (EKA) or the complex probability paradigm (CPP)
can be shown and summarized in the next illustration (Figure 2).

4. The Monte Carlo techniques and the complex probability paradigm
parameters

4.1 The divergence and convergence probabilities

Let RE be the exact result of the stochastic phenomenon or of a multidimensional
or simple integral that are not always possible to compute by probability theory
ordinary procedures or by deterministic numerical means or by calculus [1–14].
And let RA be the phenomenon and integrals approximate results calculated by the
techniques of Monte Carlo:

The relative error in the Monte Carlo methods is Rel:Error ¼ RE�RA
RE

���
��� ¼ 1� RA

RE

���
���.

Additionally, the percent relative error is = 100%� RE�RA
RE

���
��� and is always between

0% and 100%. Therefore, the relative error is always between 0 and 1. Hence

0≤
RE � RA

RE

����
����≤ 1⇔

0≤
RE � RA

RE

� �
≤ 1 if RA ≤RE

0≤ � RE � RA

RE

� �
≤ 1 if RA ≥RE

8>>><
>>>:

⇔
0≤RA ≤RE

RE ≤RA ≤ 2RE

�

Moreover, we define the real probability in the set R by

Pr ¼ 1� RE � RA

RE

����
���� ¼ 1� 1� RA

RE

����
���� ¼

1� 1� RA

RE

� �
if 0≤RA ≤RE

1þ 1� RA

RE

� �
if RE ≤RA ≤ 2RE

8>>><
>>>:

¼
RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8>><
>>:
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sideration numerous continuous and discrete probability distributions in my 14
previous research papers confirm this hypothesis and innovative paradigm. The
extended Kolmogorov axioms (EKA) or the complex probability paradigm (CPP)
can be shown and summarized in the next illustration (Figure 2).

4. The Monte Carlo techniques and the complex probability paradigm
parameters

4.1 The divergence and convergence probabilities

Let RE be the exact result of the stochastic phenomenon or of a multidimensional
or simple integral that are not always possible to compute by probability theory
ordinary procedures or by deterministic numerical means or by calculus [1–14].
And let RA be the phenomenon and integrals approximate results calculated by the
techniques of Monte Carlo:

The relative error in the Monte Carlo methods is Rel:Error ¼ RE�RA
RE

���
��� ¼ 1� RA

RE

���
���.

Additionally, the percent relative error is = 100%� RE�RA
RE

���
��� and is always between

0% and 100%. Therefore, the relative error is always between 0 and 1. Hence

0≤
RE � RA

RE

����
����≤ 1⇔

0≤
RE � RA

RE

� �
≤ 1 if RA ≤RE

0≤ � RE � RA

RE

� �
≤ 1 if RA ≥RE

8>>><
>>>:

⇔
0≤RA ≤RE

RE ≤RA ≤ 2RE

�

Moreover, we define the real probability in the set R by

Pr ¼ 1� RE � RA

RE

����
���� ¼ 1� 1� RA

RE

����
���� ¼

1� 1� RA

RE

� �
if 0≤RA ≤RE

1þ 1� RA

RE

� �
if RE ≤RA ≤ 2RE

8>>><
>>>:

¼
RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8>><
>>:
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= 1 � the relative error in the Monte Carlo method.
= probability of Monte Carlo method convergence in R.
And therefore,

Pm ¼ i 1� Prð Þ ¼ i 1� 1� RE � RA

RE

����
����

� �� �
¼ i 1� 1� 1� RA

RE

����
����

� �� �
¼ i 1� RA

RE

����
����

¼
i 1� RA

RE

� �
if 0≤RA ≤RE

�i 1� RA

RE

� �
if RE ≤RA ≤ 2RE

8>>><
>>>:

¼
i 1� RA

RE

� �
if 0≤RA ≤RE

i
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>><
>>>:

= probability of Monte Carlo method divergence in the imaginary complemen-
tary probability set M since it is the imaginary complement of Pr.

Consequently,

Pm=i ¼ 1� Pr ¼ 1� RA

RE

����
���� ¼

1� RA

RE
if 0≤RA ≤RE

RA

RE
� 1 if RE ≤RA ≤ 2RE

8>><
>>:

= the relative error in the Monte Carlo method.
= probability of Monte Carlo method divergence in R since it is the real com-

plement of Pr.
In the case where 0≤RA ≤RE ) 0≤ RA

RE
≤ 1 ) 0≤Pr ≤ 1 and we deduce also that

0≤ 1� RA
RE

� �
≤ 1 ) 0≤Pm=i≤ 1 and ) 0≤Pm ≤ i.

And in the case where RE ≤RA ≤ 2RE ) 1≤ RA
RE

≤ 2 ) 0≤ 2� RA
RE

� �
≤ 1 )

0≤Pr ≤ 1 and we deduce also that 0≤ RA
RE

� 1
� �

≤ 1 ) 0≤Pm=i≤ 1 and ) 0≤Pm ≤ i.

Consequently, if RA ¼ 0 or RA ¼ 2RE that means before the beginning of the
simulation, then

Pr ¼ Prob convergenceð Þ in R ¼ 0

Pm ¼ Prob divergenceð Þ in M ¼ i

Pm=i ¼ Prob divergenceð Þ in R ¼ 1

And if RA ¼ RE that means at the end of Monte Carlo simulation, then

Pr ¼ Prob convergenceð Þ in R ¼ 1

Pm ¼ Prob divergenceð Þ in M ¼ 0

Pm=i ¼ Prob divergenceð Þ in R ¼ 0

4.2 The complex random vector Z in C ¼ RþM

We have
Z ¼ Pr þ Pm ¼

RA

RE
þ i 1� RA

RE

� �
if 0≤RA ≤RE

2� RA

RE

� �
þ i

RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>><
>>>:

¼ Re Zð Þ þ iIm Zð Þ

.
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where

Re Zð Þ ¼ Pr ¼
RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8>><
>>:

¼ the real part of Z

and

Im Zð Þ ¼ Pm=i ¼
1� RA

RE
if 0≤RA ≤RE

RA

RE
� 1 if RE ≤RA ≤ 2RE

8>><
>>:

¼ the imaginary part of Z:

That means that the complex random vector Z is the sum in C of the real proba-
bility of convergence inR and of the imaginary probability of divergence inM.

If RA ¼ 0 or RA ¼ 2RE (before the simulation begins), then

Pr ¼ RA

RE
¼ 0

RE
¼ 0 or Pr ¼ 2� RA

RE
¼ 2� 2RE

RE
¼ 2� 2 ¼ 0:

and

Pm ¼ i 1� RA

RE

� �
¼ i 1� 0

RE

� �
¼ i 1� 0ð Þ ¼ i or Pm ¼ i

RA

RE
� 1

� �
¼ i

2RE

RE
� 1

� �

¼ i 2� 1ð Þ ¼ i

therefore Z ¼ 0þ i ¼ i.
If RA ¼ RE

2 or RA ¼ 3RE
2 (at the middle of the simulation), then

Pr ¼
RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8>><
>>:

¼
RE

2RE
¼ 0:5 if 0≤RA ≤RE

2� 3RE

2RE
¼ 0:5 if RE ≤RA ≤ 2RE

⇔Pr ¼ 0:5

8>><
>>:

and

Pm ¼
i 1� RA

RE

� �
if 0≤RA ≤RE

i
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>><
>>>:

¼
i 1� RE

2RE

� �
¼ 0:5i if 0≤RA ≤RE

i
3RE

2RE
� 1

� �
¼ 0:5i if RE ≤RA ≤ 2RE

8>>><
>>>:

⇔Pm ¼ 0:5i

therefore Z ¼ 0:5þ 0:5i.
If RA ¼ RE (at the simulation end), then

Pr ¼
RA

RE
¼ RE

RE
¼ 1 if 0≤RA ≤RE

2� RA

RE
¼ 2� RE

RE
¼ 2� 1 ¼ 1 if RE ≤RA ≤ 2RE

⇔Pr ¼ 1

8>><
>>:
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bility of convergence inR and of the imaginary probability of divergence inM.

If RA ¼ 0 or RA ¼ 2RE (before the simulation begins), then
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and

Pm ¼
i 1� RA

RE

� �
if 0≤RA ≤RE

i
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>><
>>>:

¼
i 1� RE

RE

� �
if 0≤RA ≤RE

i
RE

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>><
>>>:

¼
0 if 0≤RA ≤RE

0 if RE ≤RA ≤ 2RE

(

⇔Pm ¼ 0

therefore Z ¼ 1þ 0i ¼ 1.

4.3 The degree of our knowledge, DOK

We have

DOK ¼ Zj j2 ¼ P2
r þ Pm=ið Þ2 ¼

RA
RE

� �2
if 0≤RA ≤RE

2� RA
RE

� �2
if RE ≤RA ≤ 2RE

8>><
>>:

þ
1� RA

RE

� �2
if 0≤RA ≤RE

RA
RE

� 1
� �2

if RE ≤RA ≤ 2RE

8>><
>>:

¼
RA
RE

� �2
þ 1� RA

RE

� �2
if 0≤RA ≤RE

2� RA
RE

� �2
þ RA

RE
� 1

� �2
if RE ≤RA ≤ 2RE

8>><
>>:

¼
2 RA

RE

� �2
� 2

RA

RE

� �
þ 1 if 0≤RA ≤RE

2 RA
RE

� �2
� 6

RA

RE

� �
þ 5 if RE ≤RA ≤ 2RE

8>>><
>>>:

From CPP we have that 0:5≤DOK ≤ 1, then if DOK = 0.5

⇔
2 RA

RE

� �2
� 2

RA

RE

� �
þ 1 ¼ 0:5 if 0≤RA ≤RE

2 RA
RE

� �2
� 6

RA

RE

� �
þ 5 ¼ 0:5 if RE ≤RA ≤ 2RE

8>>><
>>>:

then solving the second-degree equations for RA
RE

gives

RA

RE
¼ 1=2 if 0≤RA ≤RE

RA

RE
¼ 3=2 if RE ≤RA ≤ 2RE

8>><
>>:

⇔
RA ¼ RE=2 if 0≤RA ≤RE

RA ¼ 3RE=2 if RE ≤RA ≤ 2RE

�
and vice versa:

That means that DOK is minimum when the approximate result RA is equal to
half of the exact result RE if 0≤RA ≤RE or when the approximate result is equal to
three times the half of the exact result if RE ≤RA ≤ 2RE, which means at the middle
of the simulation.

In addition, if DOK ¼ 1, then

⇔

2 RA
RE

� �2
� 2

RA

RE

� �
þ 1 ¼ 1 if 0≤RA ≤RE

2 RA
RE

� �2
� 6

RA

RE

� �
þ 5 ¼ 1 if RE ≤RA ≤ 2RE

8>>><
>>>:

⇔

RA
RE

� �2
� RA

RE

� �
¼ 0 if 0≤RA ≤RE

2 RA
RE

� �2
� 6

RA

RE

� �
þ 4 ¼ 0 if RE ≤RA ≤ 2RE

8>>><
>>>:
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⇔
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

(
and vice versa:

That means that DOK is maximum when the approximate result RA is equal to 0
or 2RE (before the beginning of the simulation) and when it is equal to the exact
result RE (at the end of the simulation). We can deduce that we have perfect and
total knowledge of the stochastic experiment before the beginning of Monte Carlo
simulation since no randomness was introduced yet, as well as at the end of the
simulation after the convergence of the method to the exact result.

4.4 The chaotic factor, Chf

We have

Chf ¼ 2iPrPm

¼ 2i�

RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8>>><
>>>:

�
i 1� RA

RE

� �
if 0≤RA ≤RE

i
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

Since i2 ¼ �1 then

Chf ¼
�2

RA

RE

� �
1� RA

RE

� �
if 0≤RA ≤RE

�2 2� RA

RE

� �
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

From CPP we have that �0:5≤Chf ≤0, and then if Chf ¼ �0:5

⇔

�2
RA

RE

� �
1� RA

RE

� �
¼ �0:5 if 0≤RA ≤RE

�2 2� RA

RE

� �
RA

RE
� 1

� �
¼ �0:5 if RE ≤RA ≤ 2RE

8>>>><
>>>>:

⇔
RA ¼ RE=2 if 0≤RA ≤RE

RA ¼ 3RE=2 if RE ≤RA ≤ 2RE

(

and vice versa.
That means that Chf is minimum when the approximate result RA is equal to half

of the exact result RE if 0≤RA ≤RE or when the approximate result is equal to three
times the half of the exact result if RE ≤RA ≤ 2RE, which means at the middle of the
simulation.

In addition, if Chf ¼ 0 then

⇔

�2
RA

RE

� �
1� RA

RE

� �
¼ 0 if 0≤RA ≤RE

�2 2� RA

RE

� �
RA

RE
� 1

� �
¼ 0 if RE ≤RA ≤ 2RE

⇔
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

8<
:

8>>>><
>>>>:

And, conversely, if
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

�
, then Chf ¼ 0.
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⇔
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

(
and vice versa:

That means that DOK is maximum when the approximate result RA is equal to 0
or 2RE (before the beginning of the simulation) and when it is equal to the exact
result RE (at the end of the simulation). We can deduce that we have perfect and
total knowledge of the stochastic experiment before the beginning of Monte Carlo
simulation since no randomness was introduced yet, as well as at the end of the
simulation after the convergence of the method to the exact result.

4.4 The chaotic factor, Chf

We have

Chf ¼ 2iPrPm

¼ 2i�

RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8>>><
>>>:

�
i 1� RA

RE

� �
if 0≤RA ≤RE

i
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

Since i2 ¼ �1 then

Chf ¼
�2

RA

RE

� �
1� RA

RE

� �
if 0≤RA ≤RE

�2 2� RA

RE

� �
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

From CPP we have that �0:5≤Chf ≤0, and then if Chf ¼ �0:5

⇔

�2
RA

RE

� �
1� RA

RE

� �
¼ �0:5 if 0≤RA ≤RE

�2 2� RA

RE

� �
RA

RE
� 1

� �
¼ �0:5 if RE ≤RA ≤ 2RE

8>>>><
>>>>:

⇔
RA ¼ RE=2 if 0≤RA ≤RE

RA ¼ 3RE=2 if RE ≤RA ≤ 2RE

(

and vice versa.
That means that Chf is minimum when the approximate result RA is equal to half

of the exact result RE if 0≤RA ≤RE or when the approximate result is equal to three
times the half of the exact result if RE ≤RA ≤ 2RE, which means at the middle of the
simulation.

In addition, if Chf ¼ 0 then

⇔

�2
RA

RE

� �
1� RA

RE

� �
¼ 0 if 0≤RA ≤RE

�2 2� RA

RE

� �
RA

RE
� 1

� �
¼ 0 if RE ≤RA ≤ 2RE

⇔
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

8<
:

8>>>><
>>>>:

And, conversely, if
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

�
, then Chf ¼ 0.
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That means that Chf is equal to 0 when the approximate result RA is equal to 0 or
2RE (before the beginning of the simulation) and when it is equal to the exact result
RE (at the end of the simulation).

4.5 The magnitude of the chaotic factor, MChf

We have

MChf ¼ Chfj j ¼ �2iPrPm

¼ �2i�

RA

RE
if 0≤RA ≤RE

2� RA

RE
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

�
i 1� RA

RE

� �
if 0≤RA ≤RE

i
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

Since i2 ¼ �1 then

MChf ¼
2

RA

RE

� �
1� RA

RE

� �
if 0≤RA ≤RE

2 2� RA

RE

� �
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

From CPP we have that 0≤MChf ≤0:5, and then if MChf ¼ 0:5

⇔

2
RA

RE

� �
1� RA

RE

� �
¼ 0:5 if 0≤RA ≤RE

2 2� RA

RE

� �
RA

RE
� 1

� �
¼ 0:5 if RE ≤RA ≤ 2RE

8>>>><
>>>>:

⇔

RA ¼ RE=2 if 0≤RA ≤RE

RA ¼ 3RE=2 if RE ≤RA ≤ 2RE

8><
>:

and vice versa.
That means that MChf is maximum when the approximate result RA is equal to

half of the exact result RE if 0≤RA ≤RE or when the approximate result is equal to
three times the half of the exact result if RE ≤RA ≤ 2RE, which means at the middle
of the simulation. This implies that the magnitude of the chaos (MChf) introduced
by the random variables used in Monte Carlo method is maximum at the halfway of
the simulation.

In addition, if MChf ¼ 0, then

⇔

2
RA

RE

� �
1� RA

RE

� �
¼ 0 if 0≤RA ≤RE

2 2� RA

RE

� �
RA

RE
� 1

� �
¼ 0 if RE ≤RA ≤ 2RE

⇔
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

8<
:

8>>>><
>>>>:

And, conversely, if
RA ¼ 0 OR RA ¼ RE if 0≤RA ≤RE

RA ¼ 2RE OR RA ¼ RE if RE ≤RA ≤ 2RE

�
, thenMChf ¼ 0.

That means that MChf is minimum and is equal to 0 when the approximate
result RA is equal to 0 or 2RE (before the beginning of the simulation) and when it is
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equal to the exact result RE (at the end of the simulation). We can deduce that the
magnitude of the chaos in the stochastic experiment is null before the beginning of
Monte Carlo simulation since no randomness was introduced yet, as well as at the
end of the simulation after the convergence of the method to the exact result when
randomness has finished its task in the stochastic Monte Carlo method and
experiment.

4.6 The probability Pc in the probability set C ¼ RþM

We have

Pc2 ¼ DOK � Chf ¼ DOK þMChf

¼
2 RA

RE

� �2
� 2

RA

RE

� �
þ 1 if 0≤RA ≤RE

2 RA
RE

� �2
� 6

RA

RE

� �
þ 5 if RE ≤RA ≤ 2RE

8>>>><
>>>>:

�
�2

RA

RE

� �
1� RA

RE

� �
if 0≤RA ≤RE

�2 2� RA

RE

� �
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

¼ 1 if 0≤RA ≤RE

1 if RE ≤RA ≤ 2RE

�
⇔Pc2 ¼ 1 for 0≤∀RA ≤ 2RE

⇔Pc ¼ 1 = probability of convergence in C; therefore,

Pc ¼

RA

RE
¼ 1 if 0≤RA ≤RE

2� RA

RE
¼ 1 if RE ≤RA ≤ 2RE

8>>><
>>>:

⇔
RA ¼ RE if 0≤RA ≤RE

RA ¼ RE if RE ≤RA ≤ 2RE

�

⇔RA ¼ RE for 0≤∀RA ≤ 2RE continuously in the probability set C ¼ RþM.
This is due to the fact that in C, we have subtracted in the equation above the
chaotic factor Chf from our knowledge DOK, and therefore we have eliminated
chaos caused and introduced by all the random variables and the stochastic
fluctuations that lead to approximate results in the Monte Carlo simulation in R.
Therefore, since in C we have always RA ¼ RE, then the Monte Carlo simulation
which is a stochastic method by nature in R becomes after applying the CPP a
deterministic method in C since the probability of convergence of any random
experiment in C is constantly and permanently equal to 1 for any iterations
number N.

4.7 The rates of change of the probabilities in R, M, and C

Since

Z ¼ Pr þ Pm ¼

RA

RE
þ i 1� RA

RE

� �
if 0≤RA ≤RE

2� RA

RE

� �
þ i

RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

¼ Re Zð Þ þ iIm Zð Þ

8>>>><
>>>>:

Then
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end of the simulation after the convergence of the method to the exact result when
randomness has finished its task in the stochastic Monte Carlo method and
experiment.

4.6 The probability Pc in the probability set C ¼ RþM

We have

Pc2 ¼ DOK � Chf ¼ DOK þMChf

¼
2 RA

RE

� �2
� 2

RA

RE

� �
þ 1 if 0≤RA ≤RE

2 RA
RE

� �2
� 6

RA

RE
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8>>>><
>>>>:
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RA

RE

� �
1� RA

RE
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RE

� �
RA

RE
� 1

� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:
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RE
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This is due to the fact that in C, we have subtracted in the equation above the
chaotic factor Chf from our knowledge DOK, and therefore we have eliminated
chaos caused and introduced by all the random variables and the stochastic
fluctuations that lead to approximate results in the Monte Carlo simulation in R.
Therefore, since in C we have always RA ¼ RE, then the Monte Carlo simulation
which is a stochastic method by nature in R becomes after applying the CPP a
deterministic method in C since the probability of convergence of any random
experiment in C is constantly and permanently equal to 1 for any iterations
number N.

4.7 The rates of change of the probabilities in R, M, and C

Since

Z ¼ Pr þ Pm ¼

RA

RE
þ i 1� RA

RE

� �
if 0≤RA ≤RE

2� RA

RE
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RA

RE
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dZ
dRA

¼ dPr

dRA
þ dPm

dRA
¼

d
dRA

RA

RE
þ i 1� RA

RE

� �� �
if 0≤RA ≤RE

d
dRA

2� RA

RE

� �
þ i

RA

RE
� 1

� �� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

¼

d
dRA

RA

RE

� �
þ d
dRA

i 1� RA

RE

� �� �
if 0≤RA ≤RE

d
dRA

2� RA

RE

� �
þ d
dRA

i
RA

RE
� 1

� �� �
if RE ≤RA ≤ 2RE

8>>>><
>>>>:

¼

1
RE

� i
RE

¼ 1
RE
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RE
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RE
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RE
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8>>><
>>>:
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dRA

� �
¼ dPr

dRA
¼

þ 1
RE

if 0≤RA ≤RE

� 1
RE

if RE ≤RA ≤ 2RE

8>>><
>>>:

¼
constant>0 if 0≤RA ≤RE and RE >0

constant<0 if RE ≤RA ≤ 2RE and RE >0

8<
:

That means that the slope of the probability of convergence in R or its rate of
change is constant and positive if 0≤RA ≤RE, and constant and negative
if RE ≤RA ≤ 2RE, and it depends only on RE; hence, we have a constant increase in
Pr (the convergence probability) as a function of the iterations number N as RA
increases from 0 to RE and as RA decreases from 2RE to RE till Pr reaches the value 1
that means till the random experiment converges to RE:

Im
dZ
dRA

� �
¼ 1

i
dPm

dRA
¼ d Pm=ið Þ

dRA
¼

� 1
RE

if 0≤RA ≤RE

þ 1
RE

if RE ≤RA ≤ 2RE

8>>><
>>>:

¼
constant<0 if 0≤RA ≤RE and RE >0

constant>0 if RE ≤RA ≤ 2RE and RE >0

(

That means that the slopes of the probabilities of divergence in R and M or
their rates of change are constant and negative if 0≤RA ≤RE and constant and
positive if RE ≤RA ≤ 2RE and they depend only on RE; hence, we have a constant
decrease in Pm=i and Pm (the divergence probabilities) as functions of the
iterations number N as RA increases from 0 to RE and as RA decreases from 2RE to
RE till Pm=i and Pm reach the value 0 that means till the random experiment
converges to RE.

12

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

Additionally,
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dRA

� �2
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dRA

� �2
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dRA

� �2
þ d Pm=ið Þ

dRA

� �2
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RE

� �2
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RE

� �2
if 0≤RA ≤RE

� 1
RE

� �2
þ 1

RE

� �2
if RE ≤RA ≤ 2RE

8>><
>>:

⇔
dZ
dRA

����
����
2

¼ 1
R2
E
þ 1
R2
E
¼ 2

R2
E

for 0≤∀RA ≤ 2RE

⇔
dZ
dRA

����
���� ¼

ffiffiffi
2

p

RE
¼ constant>0 if RE >0;

that means that the module of the slope of the complex probability vector Z in C
or of its rate of change is constant and positive and it depends only on RE; hence, we
have a constant increase in Re Zð Þ and a constant decrease in Im Zð Þ as functions of
the iterations numberN and as Z goes from (0, i) atN = 0 till (1,0) at the simulation
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Furthermore, since Pc2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1, then
Pc ¼ 1 = probability of convergence in C, and consequently

d Pcð Þ
dRA

¼ d 1ð Þ
dRA

¼ 0,

which means that Pc is constantly equal to 1 for every value of RA, of RE, and of
the iterations number N, which means for any stochastic experiment and for any
simulation of Monte Carlo method. So, we conclude that in C ¼ RþM, we have
complete and perfect knowledge of the random experiment which has become now
a deterministic one since the extension in the complex probability plane C defined
by the CPP axioms has changed all stochastic variables to deterministic variables.

5. The new paradigm parameter evaluation

We can infer from what has been developed earlier the following:

The real probability of convergence Pr Nð Þ ¼ 1� RE�RA Nð Þ
RE

���
���.

We have 0≤N ≤NC whereN = 0 corresponds to the instant before the beginning
of the random experiment when RA N ¼ 0ð Þ ¼ 0 or ¼ 2RE and where N ¼ NC (iter-
ations number needed for the method convergence) corresponds to the instant at the
end of the random experiments and Monte Carlo methods when RA N ¼ NCð Þ ! RE.

The imaginary complementary probability of divergence Pm Nð Þ ¼ i RE�RA Nð Þ
RE

���
���.

The real complementary probability of divergence Pm Nð Þ=i ¼ RE�RA Nð Þ
RE

���
���.

The random vector of complex probability

Z Nð Þ ¼ Pr Nð Þ þ Pm Nð Þ ¼ 1� RE � RA Nð Þ
RE

����
����

� �
þ i

RE � RA Nð Þ
RE

����
����
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The degree of our knowledge

DOK Nð Þ ¼ Z Nð Þj j2 ¼ P2
r Nð Þ þ Pm Nð Þ=i½ �2 ¼ 1� RE � RA Nð Þ

RE

����
����

� �2
þ RE � RA Nð Þ

RE

����
����

� �2

¼ 1þ 2iPr Nð ÞPm Nð Þ ¼ 1� 2Pr Nð Þ 1� Pr Nð Þ½ � ¼ 1� 2Pr Nð Þ þ 2P2
r Nð Þ

¼ 1� 2
RE � RA Nð Þ

RE

����
����þ 2

RE � RA Nð Þ
RE

� �2
:

DOK Nð Þ is equal to 1 when Pr Nð Þ ¼ Pr 0ð Þ ¼ 0 and when Pr Nð Þ ¼ Pr NCð Þ ¼ 1.
The Chaotic factor

Chf Nð Þ ¼ 2iPr Nð ÞPm Nð Þ ¼ �2Pr Nð Þ 1� Pr Nð Þ½ � ¼ �2Pr Nð Þ þ 2P2
r Nð Þ

¼ �2
RE � RA Nð Þ

RE

����
����þ 2

RE � RA Nð Þ
RE

� �2

Chf Nð Þ is null when Pr Nð Þ ¼ Pr 0ð Þ ¼ 0 and when Pr Nð Þ ¼ Pr NCð Þ ¼ 1.
The magnitude of the chaotic factor MChf

MChf Nð Þ ¼ Chf Nð Þj j ¼ �2iPr Nð ÞPm Nð Þ ¼ 2Pr Nð Þ 1� Pr Nð Þ½ � ¼ 2Pr Nð Þ � 2P2
r Nð Þ

¼ 2
RE � RA Nð Þ

RE

����
����� 2

RE � RA Nð Þ
RE

� �2

MChf Nð Þ is null when Pr Nð Þ ¼ Pr 0ð Þ ¼ 0 and when Pr Nð Þ ¼ Pr NCð Þ ¼ 1.
At any iteration number N 0≤∀N ≤NC, the probability calculated in the set C of

complex probabilities is as follows:

Pc2 Nð Þ ¼ Pr Nð Þ þ Pm Nð Þ=i½ �2 ¼ Z Nð Þj j2 � 2iPr Nð ÞPm Nð Þ ¼ DOK Nð Þ � Chf Nð Þ

¼ DOK Nð Þ þMChf Nð Þ ¼ 1

then

Pc2 Nð Þ ¼ Pr Nð Þ þ Pm Nð Þ=i½ �2 ¼ Pr Nð Þ þ 1� Pr Nð Þ½ �f g2 ¼ 12 ¼ 1⇔Pc Nð Þ ¼ 1ðcontinuouslyÞ:

Thus, the prediction in the set C of the probabilities of convergence of the
random Monte Carlo methods is always certain.

Let us consider afterward a multidimensional integral and a stochastic
experiment to simulate the Monte Carlo procedures and to quantify, to draw, as
well as to visualize all the prognostic and CPP parameters.

6. The flowchart of the prognostic model of Monte Carlo techniques
and CPP

The flowchart that follows illustrates all the procedures of the elaborated
prognostic model of CPP.
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7. Simulation of the new paradigm

Note that all the numerical values found in the simulations of the new paradigm
for any iteration cycles N were computed using the 64-bit MATLAB version 2020
software and compared to the values found by Microsoft Visual C++ programs.
Additionally, the reader should be careful of the truncation and rounding errors since
we represent all numerical values by at most five significant digits and since we are
using Monte Carlo techniques of simulation and integration which yield approximate
results under the influence of stochastic aspects and variations. We have considered
for this purpose a high-capacity computer system: a workstation computer with
parallel microprocessors, a 64-bit operating system, and a 64-GB RAM.
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7.1 The continuous random case: a four-dimensional multiple integral

The Monte Carlo technique of integration can be summarized by the following
equation:

ðb1

a1

ðb2

a2

…

ðbn

an

f x1, x2, … , xnð Þ:dx1dx2 … dxn ffi

b1 � a1ð Þ � b2 � a2ð Þ � … � bn � anð Þ½ �
N

XN
j¼1

f x1 j, x2 j, … , xn j
� �

Let us consider here the multidimensional integral of the following function:

ð4=3

0

ð4=3

0

ð4=3

0

ð4=3

0

xyzw:dxdydzdw ¼
ð4=3

0

ð4=3

0

ð4=3

0

x2

2

� �4=3
0

yzw:dydzdw ¼
ð4=3

0

ð4=3

0

ð4=3

0

16
18

yzw:dydzdw

¼ 8
9

ð4=3

0

ð4=3

0

y2

2

� �4=3
0

zw:dzdw ¼ 8
9

ð4=3

0

ð4=3

0

16
18

zw:dzdw ¼ 64
81

ð4=3

0

z2

2

� �4=3
0

w:dw ¼ 64
81

ð4=3

0

16
18

w:dw

¼ 512
729

w2

2

� �4=3
0

¼ 512
729

� 16
18

¼ 512
729

� 8
9
¼ 4, 096

6, 561
¼ 0:62429507696997411…

⇔RE ¼ 0:62429507696997411… by the deterministic methods of calculus.
⇔f x, y, z,wð Þ ¼ xyzw, where x, y, z, and w follow a discrete uniform distribution

U such that

x↦U 0, 4=3ð Þ, y↦U 0, 4=3ð Þ, z↦U 0, 4=3ð Þ,w↦U 0, 4=3ð Þ

Figure 3.
The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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⇔
ð4=3

0

ð4=3

0

ð4=3

0

ð4=3

0

xyzw:dxdydzdw ffi 4=3� 0ð Þ � 4=3� 0ð Þ � 4=3� 0ð Þ � 4=3� 0ð Þ½ �
N

XN
j¼1

x jy jz jw j

¼ 256=81
N

XN
j¼1

x jy jz jw j ¼ RA

with 1≤N ≤NC after applying Monte Carlo method.
Furthermore, the four figures (Figures 3–6) illustrate and prove the increasing

convergence of Monte Carlo simulation and technique to the exact result

Figure 5.
The increasing convergence of the Monte Carlo method up to N = 500 iterations.

Figure 4.
The increasing convergence of the Monte Carlo method up to N = 100 iterations.
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RE ¼ 0:62429507696997411… for N = 50, 100, 500, and N ¼ NC ¼ 100, 000

iterations. Consequently, we have limN!þ∞ Pr Nð Þ ¼ limN!þ∞ 1� RE�RA Nð Þ
RE

���
���

n o
¼

1� RE�RE
RE

���
��� ¼ 1� 0 ¼ 1 which is equal to the probability of convergence of Monte

Carlo technique as N ! þ∞.
Moreover, Figure 7 shows undoubtedly and graphically the relation of all the

parameters of the complex probability paradigm (Chf ,RA,Pr,MChf ,RE,DOK,Pm=i,Pc)
to the Monte Carlo technique after applying CPP to this four-dimensional integral.

Figure 7.
The CPP parameters and the Monte Carlo method for a multiple integral.

Figure 6.
The increasing convergence of the Monte Carlo method up to N = 100,000 iterations.
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7.2 The discrete random case: the matching birthday problem

An interesting problem that can be solved using simulation is the famous birthday
problem. Suppose that in a room of n persons, each of the 365 days of the year (not a
leap year) is equally likely to be someone’s birthday. It can be proved from the
theory of probability and contrary to intuition that only 23 persons need to be
present for the probability to be better than fifty-fifty that at least two of them will
have the same birthday.

Many people are interested in checking the theoretical proof of this statement,
so we will demonstrate it briefly before doing the problem simulation. After some-
one is asked about his or her birthday, the probability that the next person asked
will not have the same birthday is 364/365. The probability that the third person’s
birthday will not match those of the first two people are 363/365. It is well-known
that the probability of two independent and successive events happening is the
product of the probability of the separate events. In general, the probability that the
nth person asked will have a birthday different from that of anyone already asked is

P all n birthdays are different
� � ¼ 365

365

� �
� 364

365

� �
� 363

365

� �
� …

� 365� n� 1ð Þ
365

� �

The probability that the nth person asked will provide a match is 1 minus this value:

P matching birthdays
� � ¼

1� 365
365

� �
� 364

365

� �
� 363

365

� �
� … � 365� n� 1ð Þ

365

� �

¼ 1� 365ð Þ � 364ð Þ � 363ð Þ � … � 365� n� 1ð Þ½ �
365n

¼ RE

which shows that with 23 persons, the chances are 50.7%; with 55 persons, the
chances are 98.6% or almost theoretically certain that at least two out of 55 people
will have the same birthday. The table gives the theoretical probabilities of
matching birthdays for a selected number of people n (Table 1).

Without using the probability theory, we can write a routine that uses the
random number generator to compute the approximate chances for groups of n
persons. Obviously, what is needed here is to choose n random integers from the set
of integers {1, 2, 3, … , 365} and to check whether there is a match. When we repeat
this experiment a large number of times, we can calculate afterward the probability
of at least one match in any gathering of n persons. Note that if n≥ 366, then
P matching birthdays
� � ¼ 1 by the famous pigeonhole principle.
Furthermore, the four figures (Figures 8–11) illustrate and prove the increasing

convergence of Monte Carlo simulation and technique to the exact result RE ¼
0:706316242719… for n = 30 and for N = 50, 100, 500, and N ¼ NC ¼ 750, 000

iterations. Consequently, we have lim
N!þ∞

Pr Nð Þ ¼ lim
N!þ∞

1� RE�RA Nð Þ
RE

���
���

n o
¼

1� RE�RE
RE

���
��� ¼ 1� 0 ¼ 1 which is equal to the probability of convergence of Monte

Carlo technique as N ! þ∞.
Moreover, Figure 12 shows undoubtedly and graphically the relation of all the

parameters of the complex probability paradigm (Chf ,RA,Pr,MChf ,RE,DOK,Pm=i,Pc)
to theMonte Carlo technique after applyingCPP to this problem of matching birthday.
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7.2.1 The cubes of complex probability

In Figure 13 and in the first cube, the simulation of Chf and DOK as functions of
the iterations N and of each other is executed for the problem of matching birthday.
If we project Pc2(N) = DOK(N) � Chf(N) = 1 = Pc(N) on the plane N = 0 iterations,

Number of people n Theoretical probability = RE

n = 5 P = 0.027135573700

n = 10 P = 0.116948177711

n = 15 P = 0.252901319764

n = 20 P = 0.411438383581

n = 22 P = 0.475695307663

n = 23 P = 0.507297234324

n = 25 P = 0.568699703969

n = 30 P = 0.706316242719

n = 35 P = 0.814383238875

n = 40 P = 0.891231809818

n = 45 P = 0.940975899466

n = 50 P = 0.970373579578

n = 55 P = 0.986262288816

n = 100 P = 0.999999692751

n = 133 P = 0.999999999999

n = 365 P = 1.000000000000

Table 1.
Some theoretical probabilities of matching birthdays for n people where 1≤ n≤ 365.

Figure 8.
The increasing convergence of the Monte Carlo method up to N = 50 iterations.
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we will get the line in cyan. The starting point of this line is point J (DOK = 1,
Chf = 0) when N = 0 iterations, and then the line gets to point (DOK = 0.5,
Chf = �0.5) when N = 375,000 iterations and joins finally and again point J
(DOK = 1, Chf = 0) when N = NC = 750,000 iterations. The graphs of Chf(N) (pink,
green, blue) in different planes and DOK(N) (red) represent the other curves. We
can notice that point K (DOK = 0.5, Chf = �0.5, N = 375,000 iterations) is the
minimum of all these curves. We can notice also that point L has the coordinates
(DOK = 1, Chf = 0, N = NC = 750,000 iterations). Additionally, the three points J, K,
and L correspond to the same points that exist in Figure 12.

Figure 9.
The increasing convergence of the Monte Carlo method up to N = 100 iterations.

Figure 10.
The increasing convergence of the Monte Carlo method up to N = 500 iterations.
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In Figure 14 and in the second cube, we simulate the probability of convergence
Pr(N) and its complementary real probability of divergence Pm(N)/i as functions of
the iterations N for the problem of matching birthday. If we project Pc2(N) =
Pr(N) + Pm(N)/i = 1 = Pc(N) on the plane N = 0 iterations, we will get the line in
cyan. The starting point of this line is point (Pr = 0, Pm/i = 1), and the final point is

Figure 11.
The increasing convergence of the Monte Carlo method up to N = 750,000 iterations.

Figure 12.
The CPP parameters and the Monte Carlo techniques for the matching birthday problem.
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Figure 13.
Chf and DOK in terms of each other and of N for the problem of matching birthday.

Figure 14.
Pm/i and Pr in terms of each other and of N for the problem of matching birthday.

23

The Monte Carlo Techniques and the Complex Probability Paradigm
DOI: http://dx.doi.org/10.5772/intechopen.93048



Figure 13.
Chf and DOK in terms of each other and of N for the problem of matching birthday.

Figure 14.
Pm/i and Pr in terms of each other and of N for the problem of matching birthday.
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point (Pr = 1, Pm/i = 0). The graph of Pr(N) in the plane Pr(N) = Pm(N)/i is
represented by the red curve. The starting point of this graph is point J (Pr = 0, Pm/i = 1,
N = 0 iterations), and then it gets to point K (Pr = 0.5, Pm/i = 0.5, N = 375,000
iterations) and joins finally point L (Pr = 1, Pm/i = 0, N = NC = 750,000 iterations).
The graph of Pm(N)/i in the plane Pr(N) + Pm(N)/i = 1 is represented by the blue
curve. We can notice how much point K is important and which is the intersection
of the blue and red graphs when Pr(N) = Pm(N)/i = 0.5 at N = 375,000 iterations.
Additionally, the three points J, K, and L correspond to the same points that exist in
Figure 12.

In Figure 15 and in the third cube, we simulate the vector of complex
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Pr(N) = Re(Z) in R and of its complementary imaginary probability of divergence
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by the blue curve. The graph of the vector of complex probabilities
Z(N) = Pr(N) + Pm(N) = Re(Z) + i � Im(Z) in the plane Pr(N) = iPm(N) + 1 is
represented by the green curve. The graph of Z(N) has point J (Pr = 0, Pm = i, N = 0
iterations) as the starting point and point L (Pr = 1, Pm = 0, N = NC = 750,000
iterations) as the end point. If we project Z(N) curve on the plane of complex
probabilities whose equation is N = 0 iterations, we get the line in cyan which is
Pr(0) = iPm(0) + 1. This projected line has point J (Pr = 0, Pm = i, N = 0 iterations) as
the starting point and point (Pr = 1, Pm = 0, N = 0 iterations) as the end point. We
can notice how much point K is important, and it corresponds to Pr = 0.5 and

Figure 15.
The vector of complex probability Z in terms of N for the problem of matching birthday.
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Pm = 0.5i when N = 375,000 iterations. Additionally, the three points J, K, and L
correspond to the same points that exist in Figure 12.

8. Perspectives and conclusion

In the current chapter, the extended and original Kolmogorov model of eight
axioms (EKA) was connected and applied to the random and classical Monte Carlo
techniques. Thus, we have bonded Monte Carlo algorithms to the novel CPP para-
digm. Accordingly, the paradigm of “complex probability” was more expanded
beyond the scope of my 14 earlier studies on this topic.

Also, as it was proved and demonstrated in the original paradigm, when N = 0
(before the beginning of the random simulation) and when N = NC (after the
convergence of Monte Carlo algorithm to the exact result), then the chaotic factor
(Chf and MChf) is 0, and the degree of our knowledge (DOK) is 1 since the
stochastic aspects and variations have either not commenced yet or they have
terminated their job on the random phenomenon. During the course of the
nondeterministic phenomenon (N > 0), we have 0 < MChf ≤ 0.5, 0.5 ≤ DOK < 1,
and � 0.5 ≤ Chf < 0, and it can be noticed that throughout this entire process, we
have continually and incessantly Pc2 = DOK � Chf = DOK + MChf = 1 = Pc, which
means that the simulation which seemed to be random and nondeterministic in the
set R is now deterministic and certain in the set C ¼ RþM, and this after adding
the contributions of M to the experiment happening in R and thus after removing
and subtracting the chaotic factor from the degree of our knowledge. Additionally,
the probabilities of convergence and divergence of the random Monte Carlo proce-
dure that correspond to each iteration cycle N have been determined in the three
sets of probabilities which are C, M, and R by Pc, Pm, and Pr, respectively.
Subsequently, at each instance of N, the novel Monte Carlo techniques and CPP
parameters DOK, Chf,MChf, RE, RA, Pr, Pm, Pm=i, Pc, and Z are perfectly and surely
predicted in the set of complex probabilities C with Pc kept as equal to 1 continu-
ously and forever. Also, referring to all these shown simulations and obtained
graphs all over the entire chapter, we can visualize and quantify both the system
chaos and stochastic influences and aspects (expressed by Chf and MChf) and the
certain knowledge (expressed by DOK and Pc) of Monte Carlo algorithms. This is
definitely very wonderful, fruitful, and fascinating and demonstrates once again the
advantages of extending the five axioms of probability of Kolmogorov and thus the
benefits and novelty of this original theory in applied mathematics and prognostics
that can be called verily: “the complex probability paradigm.”

Moreover, it is important to mention here that one essential and very well-
known probability distribution was taken into consideration in the current chapter
which is the uniform and discrete probability distribution as well as a specific
generator of uniform random numbers, knowing that the original CPPmodel can be
applied to any generator of uniform random numbers that exists in literature. This
will yield certainly analogous results and conclusions and will confirm without any
doubt the success of my innovative theory.

As a prospective and future challenges and research, we intend to more develop
the novel conceived prognostic paradigm and to apply it to a diverse set of
nondeterministic events like for other stochastic phenomena as in the classical
theory of probability and in stochastic processes. Additionally, we will implement
CPP to the first-order reliability method (FORM) in the field of prognostic in
engineering and also to the problems of random walk which have huge conse-
quences when applied to economics, to chemistry, to physics, and to pure and
applied mathematics.
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Nomenclature

R the events real set
M the events imaginary set
C the events complex set
i the imaginary number with i2 ¼ �1 or i ¼ ffiffiffiffiffiffi�1

p
EKA extended Kolmogorov axioms
CPP complex probability paradigm
Prob any event probability
Pr the probability in the real set R = the probability of convergence

in R
Pm the probability in the complementary imaginary set M that

corresponds to the real probability set in R = the probability of
divergence in M

Pc the probability in R of the event with its associated event in
M = the probability in the set C ¼ RþM of complex probabilities

RE the exact result of the random experiment
RA the approximate result of the random experiment
Z complex probability number = complex random vector = sum of Pr

and Pm
DOK = Zj j2 the degree of our knowledge of the stochastic experiment or system,

it is the square of the norm of Z
Chf the chaotic factor of Z
MChf the magnitude of the chaotic factor of Z
N the number of iterations cycles = number of random vectors
NC the number of iterations cycles till the convergence of Monte Carlo

method to RE = the number of random vectors till convergence.
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Chapter 2

ANFIS TVA Power Plants 
Availability Modeling 
Development
Isa Qamber and Mohamed Al-Hamad

Abstract

In the present chapter, the evaluation of the Tennessee Valley Authority (TVA) 
Markov model transient behavior is derived and studied. It is focused on finding 
the models of the transient-state availability and unavailability of the four (TVA) 
models among using an adaptive neuro-fuzzy inference system (ANFIS). The 
developed ANFIS model for the TVA models is derived, and both availability and 
unavailability of the four TVA models are derived using the curve fitting technique, 
where each model of the transient availability of the three-state models of the TVA 
models is found. Each model is considered as a three-state model, and its equations 
obtained using the curve fitting technique are helping for the future availabilities 
and unavailabilities. The availability is a very important measure of performance for 
the availability of TVA power plants. The technique is used and applied on the four 
models in the present study to formulate and obtain the TVA models’ results and are 
compared. In addition, the generation effects on the reliability investigation. The 
generation study evaluates the improvement in reliability over a time.

Keywords: transient availability, TVA, Markov model, ANFIS, curve fitting

1. Introduction

The Tennessee Valley Authority (TVA) is a business organization in the United 
States. TVA has been a key force for success in the Tennessee Valley since 1933 [1]. 
TVA supplies electricity to commercial customers and local energy supply compa-
nies. It serves approximately 10 million people in parts of seven southeastern states. 
TVA not only serves and invests its revenues in its electrical system but also provides 
flood control, navigation, and land management on the Tennessee River system and 
provides support to local energy companies.

Ren et al. [2] in their study went through the multi-microgrid system which is 
studied as a basic part of the intelligent network, and the radical system for several 
microgrids is the complete and standard system. The evaluation of the reliability of 
multi-microgrid systems is widely discussed to guarantee its reliability and steady-
state operation. Balancing power between supply and demand is the key criterion 
for assessing the reliability of multiple microsystems, such as equipment shortages 
and inadequate distribution capacity in the network. In their research, few have 
developed a reliability model for partial failures and incomplete equipment repairs, 
and the transferability of distribution network (DN) is generally overlooked. 
In their study, they summarize the multi-microgrid (MMG) radial system as a 
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TVA supplies electricity to commercial customers and local energy supply compa-
nies. It serves approximately 10 million people in parts of seven southeastern states. 
TVA not only serves and invests its revenues in its electrical system but also provides 
flood control, navigation, and land management on the Tennessee River system and 
provides support to local energy companies.

Ren et al. [2] in their study went through the multi-microgrid system which is 
studied as a basic part of the intelligent network, and the radical system for several 
microgrids is the complete and standard system. The evaluation of the reliability of 
multi-microgrid systems is widely discussed to guarantee its reliability and steady-
state operation. Balancing power between supply and demand is the key criterion 
for assessing the reliability of multiple microsystems, such as equipment shortages 
and inadequate distribution capacity in the network. In their research, few have 
developed a reliability model for partial failures and incomplete equipment repairs, 
and the transferability of distribution network (DN) is generally overlooked. 
In their study, they summarize the multi-microgrid (MMG) radial system as a 
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performance sharing system and present a uniform modeling approach based on 
the Bayesian network for performance and reliability to fill research gaps. The 
operation of MMG radial systems is analyzed to create an abstract model to simplify 
the problem. The operational program is provided for the BN reliability assessment 
method. In addition, system modeling and BN parameter modeling are introduced. 
Finally, the MMG radial system composed of nine micronetworks (MNs) were 
examined and the variability of the system reliability indicator is analyzed in 
network-connected mode and in island mode.

Pham et al. [3] in their study highlight on the microgrid which mainly consists of 
distribution generators and energy storage systems, which are used to supply local 
loads. Distributed generators are mainly renewable energy sources. The aggregated 
system with numerous battery energy storage devices should be used to improve the 
reliability of the power supply from these renewable energy sources in the microgrid 
as a collective storage system battery power. The complete battery energy storage 
system is used to control the balance of source charging power so that microgrid can 
operate with high stability and reliability to supply electricity to a variety of custom-
ers. To demonstrate the importance of the complete battery energy storage system in 
microgrid, the reliability of its operation is examined in their study. Microgrid offers a 
systematic way to assess the reliability performance under various dynamic operational 
issues. An analytical method based on Markov models has been developed to assess 
the reliability of the entire energy storage system of the overall battery. In addition to 
the time-dependent failure rate, the voltage-dependent failure rate, and the power loss 
failure rate, important components, such as bilateral DC-to-DC converters, DC-to-AC 
converters, switching and protection devices, battery modules, and a battery charger/
controller, are also designed and included in the reliability assessment. Depending on 
the dynamic operating problems of the microarrays with the full battery energy stor-
age system and the photovoltaic (PV) generation systems, the overall battery energy 
storage system will be affected differently. The dynamic random operating conditions 
of the microgrid analyzed include the change in the load power, the intermittent and 
unstable operation of the PV sources, the modes of operation and distribution of the 
microarrays, and the cost/off-grid conditions. The complete battery energy storage 
system is used to control the balance of source charging power. The results of the 
simulation tests are presented and discussed to confirm that the operational reliability 
of the entire battery energy storage system in the microgrid strongly depends on its 
different dynamic operating strategies as well as activated voltage constraints.

Min et al. [4] in their paper highlight on the plan to switch to renewable energy, 
which recently has been a key element in the energy policy of the electricity system 
in South Korea. The renewable energy has raised questions about the reliability and 
flexibility of the electricity system. The researchers provide a research framework to 
assess the new policy in South Korea from different dimensions using three consecu-
tive simulation models. The first-generation model in their study, which they derived 
from the best electricity generation mix, provides the overall cost of production and 
the environmental impact of the long-term capacity expansion plan. In addition, the 
researchers deal with other two simulation models to assess the reliability and flex-
ibility of electrical systems, respectively. Also, they introduced the way to measure 
the results predictability of applying the framework in the new policy which shows 
that the policy does not guarantee a target level of reliability and increases costs and 
emissions. Achieving target system reliability requires additional reliability, and 
system flexibility is very sensitive to the type of capacity added.

Čepin, in his paper [5], published the modern electrical systems which introduce 
an increasing number of more dispersed and smaller energy sources, which are 
slowly replacing larger and more compact energy sources. The aim of the article is 
to examine the relocation of nuclear power plants to wind power plants to compare 
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each scenario in terms of reliability of the electricity network. The author highlights 
on the load diagram and the variability of power plants. The load diagram power 
depends on environmental parameters over time. In addition, the article’s updated 
method measures the power of the installation as a function of time instead of 
its nominal power. The first model, in the study, includes a dozen power plants 
including a nuclear power plant. This power plant will then be replaced by three 
wind turbines whose total power will be five times that of the nuclear power plant. 
Reliability is compared to pressure drop using actual weather data for a calendar 
year. The results show that a decrease in the reliability of the power system leads to a 
decrease in the reliability of the power system.

To determine the dynamic systems of a nuclear power plant, it is necessary to 
consider the effects of dynamic interactions, such as components, software, and 
operating processes. But at present, Lee et al. [6] in their study concentrate that 
there is no simple and easy-to-use tool to assess the availability of these dynamic 
systems. The method, for example the Markov chains, has a precise solution, but 
it is difficult to model the system. Using standard error trees, the reliability of a 
system with dynamic characteristics cannot be accurately estimated because error 
trees measure the reliability of a system configuration. The dynamic reliability 
graph with general gates (DRGGGs) allows intuitive modeling similar to actual 
system configuration, which can reduce the human error that occurs when model-
ing the target system. As the current dynamic reliability graph with general gates 
cannot assess the dynamic system in terms of reliability without repair, a new 
evaluation method enabling the availability of the dynamic repair system to be 
calculated is proposed through this study. The proposed method extends dynamic 
reliability graph with general gates by adding the repair condition to dynamic doors. 
A comparison of the method proposed by the Markov chains in terms of a simple 
validation model shows that the measured value converges toward the solution.

Sabouhi et al. [7] in their paper deal with the proper functioning of a power 
tool which depends on its subsystem and its components. Due to the current 
financial constraints in the energy sector, power plant operators face a wide range 
of challenges when dealing with the maintenance schedule and asset management 
practices. Knowing the roles and judgment of the components on the overall perfor-
mance of the plant will help to plan for smooth, safe, and economical operation. To 
determine the technical and economic decisions for the maintenance of power plant 
equipment, this study focuses on modeling the reliability of combined cycle power 
plants (CCPPs). Reliability models are first developed for gas turbine power plants 
(GTPPs) and steam turbine power plants (STPPs), which provide the data needed 
to assess the overall reliability of the CCPP from a system perspective. Reliability 
indices with the reliability of the abovementioned types of supply devices are 
recommended to identify the critical components of a plant, that is, those which 
have the most significant impact on the reliability and availability objectives of the 
system. By identifying essential system components, it is possible to determine 
effective maintenance strategies for power tool components so that the available 
resources are well designed and technically allocated.

Uncertain sources of intermittent generation and load demand in addition to 
the transmission line access is not a threat to the security of electricity grids. In 
Sharifzadeh et al.’s [8] study, to address these uncertainties, an optimal stochastic 
energy flow is recommended when examining security constraints. A site genera-
tion method is also presented to assess the uncertainty of wind generations and load 
requests when evaluating their connections. In the proposed model, uncertainty 
is addressed through a combination of common decisions to be the best decision. 
The efficiency of the proposed model is demonstrated in the known 24 IEEE bus 
test system. The greater efficiency of the proposed model is shown numerically 
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system flexibility is very sensitive to the type of capacity added.

Čepin, in his paper [5], published the modern electrical systems which introduce 
an increasing number of more dispersed and smaller energy sources, which are 
slowly replacing larger and more compact energy sources. The aim of the article is 
to examine the relocation of nuclear power plants to wind power plants to compare 

33

ANFIS TVA Power Plants Availability Modeling Development
DOI: http://dx.doi.org/10.5772/intechopen.93422

each scenario in terms of reliability of the electricity network. The author highlights 
on the load diagram and the variability of power plants. The load diagram power 
depends on environmental parameters over time. In addition, the article’s updated 
method measures the power of the installation as a function of time instead of 
its nominal power. The first model, in the study, includes a dozen power plants 
including a nuclear power plant. This power plant will then be replaced by three 
wind turbines whose total power will be five times that of the nuclear power plant. 
Reliability is compared to pressure drop using actual weather data for a calendar 
year. The results show that a decrease in the reliability of the power system leads to a 
decrease in the reliability of the power system.

To determine the dynamic systems of a nuclear power plant, it is necessary to 
consider the effects of dynamic interactions, such as components, software, and 
operating processes. But at present, Lee et al. [6] in their study concentrate that 
there is no simple and easy-to-use tool to assess the availability of these dynamic 
systems. The method, for example the Markov chains, has a precise solution, but 
it is difficult to model the system. Using standard error trees, the reliability of a 
system with dynamic characteristics cannot be accurately estimated because error 
trees measure the reliability of a system configuration. The dynamic reliability 
graph with general gates (DRGGGs) allows intuitive modeling similar to actual 
system configuration, which can reduce the human error that occurs when model-
ing the target system. As the current dynamic reliability graph with general gates 
cannot assess the dynamic system in terms of reliability without repair, a new 
evaluation method enabling the availability of the dynamic repair system to be 
calculated is proposed through this study. The proposed method extends dynamic 
reliability graph with general gates by adding the repair condition to dynamic doors. 
A comparison of the method proposed by the Markov chains in terms of a simple 
validation model shows that the measured value converges toward the solution.

Sabouhi et al. [7] in their paper deal with the proper functioning of a power 
tool which depends on its subsystem and its components. Due to the current 
financial constraints in the energy sector, power plant operators face a wide range 
of challenges when dealing with the maintenance schedule and asset management 
practices. Knowing the roles and judgment of the components on the overall perfor-
mance of the plant will help to plan for smooth, safe, and economical operation. To 
determine the technical and economic decisions for the maintenance of power plant 
equipment, this study focuses on modeling the reliability of combined cycle power 
plants (CCPPs). Reliability models are first developed for gas turbine power plants 
(GTPPs) and steam turbine power plants (STPPs), which provide the data needed 
to assess the overall reliability of the CCPP from a system perspective. Reliability 
indices with the reliability of the abovementioned types of supply devices are 
recommended to identify the critical components of a plant, that is, those which 
have the most significant impact on the reliability and availability objectives of the 
system. By identifying essential system components, it is possible to determine 
effective maintenance strategies for power tool components so that the available 
resources are well designed and technically allocated.

Uncertain sources of intermittent generation and load demand in addition to 
the transmission line access is not a threat to the security of electricity grids. In 
Sharifzadeh et al.’s [8] study, to address these uncertainties, an optimal stochastic 
energy flow is recommended when examining security constraints. A site genera-
tion method is also presented to assess the uncertainty of wind generations and load 
requests when evaluating their connections. In the proposed model, uncertainty 
is addressed through a combination of common decisions to be the best decision. 
The efficiency of the proposed model is demonstrated in the known 24 IEEE bus 
test system. The greater efficiency of the proposed model is shown numerically 
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compared to four other definitive and stochastic methods for determining the 
reserve obtained and the “subsequent” conditions. In addition, the impact of the 
number of cases on the performance of the proposed model is assessed using a 
sensitivity analysis. Slower changes in the conditions created have also been shown 
to reflect correlations and can better capture the uncertain load behavior.

In recent years, there has been growing interest in developing maintenance 
activities for nuclear power plants in the form of risk-based models as studied by 
Mohammadhasani and Pirouzmand [9]. Maintenance design plays a key role in secu-
rity likelihood assessment applications. The importance of these actions, especially 
when considering the effects of component degradation, is very clear for resolving 
controversial goals such as achieving the highest level of opportunity and reducing 
implementation costs of these actions, given the limitations of using standard safety 
assessment methods to test complex maintenance policies, as well as the difficulty of 
formulating the impact of component maintenance and degradation strategies using 
analysis of fault trees. Mohammadhasani and Pirouzmand [9] in their article present 
Markov’s multi-time continuous approach to modeling three-component test and 
repair policies focusing on changing technical specifications such as test times. First, 
Markov models will be developed for three different test policies considering the 
effects of degradation. These models are then applied to analyze the availability of 
essential components of an emergency cooling system for the core of a VVER-1000/
V446 nuclear power plant as a case study. In the first policy, the other components 
are not tested further. The test method is carried out in accordance with the test plan 
as originally recorded. In the second policy, additional testing should take place after 
the repair of the defective part and, in the third policy, the remaining redundant 
components should be subjected to extensive testing after the first detection.

Managing instant access to content servers (source servers) in a network in 
knowledge-centric networks has received little attention in Banerjee et al.’s [10] study. 
Banerjee et al. [10] considered a case in their study where content repositories in an 
information-centric network are temporarily unavailable, perhaps for reasons such 
as device malfunction, interruption of power outage, or denial of service attacks. 
Unlike the traditional host-centric Internet, users can still be served on information-
centric networks, because content is stored on network nodes. The authors [10] 
begin their study by observing whether caches continue to operate using their native 
cache and expulsion policies after content repositories are unavailable, and over time 
the diversity of network content decreases. Therefore, the authors [10] recommend 
freezing network caches as soon as the custodians are not available. Next, the authors 
[10] provide a routing and search algorithm, content analysis under server avail-
ability, which uses breadcrumbs to efficiently find content stored on network nodes 
and to satisfy user requests when guards are not available. The authors [10] perform 
in-depth simulations of the real Internet topology in the Icarus simulator and show 
that content analysis on server accessibility can easily detect content stored on the 
network. The content of the server availability survey exceeds the shortest content 
demand on average by 56% and meets up to 98.5% of the total server demand.

2. Power plant model

The four TVA power plant models [11] are differing by nature of different 
numerical values for transition rates and are shown in Table 1. These transition 
rates are shown for the four TVA models represented by Figure 1, which are rel-
evant to power plants operated by the TVA. Each TVA model is formed as illustrated 
in Figure 2, which is called Markov model. The general model for each of the TVA 
model can be represented by the following differential equations:
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The three differential equations are solved using the MATLAB Simulink 7.10 
package to find the transient probabilities of each model of the TVA, where the 
three states of each model are defined as follows:

Up-state: the system operates at full capacity.
Derated-state: the system operates at less than full capacity due to generators 

outages.
Down-state: the system has no power at all due to forced outage rate.

And the initial probabilities for each model are P1 (0) = 1, P2 (0) = 0, and P3 
(0) = 0. The results are obtained for the four TVA models. The MATLAB Simulink 7.10 
package is used to obtain the transient-state probabilities for the four TVA models and 

Model Transition rates (per hour)

a b c d e f

1 0.0003 0.0010 0.0225 0.0350 0.0008 0.0004

2 0.0006 0.0050 0.0400 0.1000 0.0004 0.0004

3 0.0005 0.0002 0.0240 0.0430 0.0001 0.0001

4 0.0010 0.0006 0.0200 0.1000 0.0002 0.0020

Table 1. 
The four TVA models’ transition rate values [11].

Figure 1. 
TVA power plants’ representation.
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is reproduced by the fourth order Runge-Kutta method. Out of the obtained results, 
the availabilities and unavailabilities are obtained. The availability is the summation 
of the up-state and derated-state, where the unavailability is the down-state.

Table 2 summarizes the six transition rates of the four TVA models. Figure 3a–d 
illustrate the four TVA models with their transition rate values.

Table 2. 
Transition rates of each TVA model.

Figure 2. 
TVA three-state Markov model.
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Al-Hamad and Qamber in their study [12] targeted a numerical evaluation of 
the nonlinear behavior of the Markov model and discussed it. Their study aims to 
obtain the transient probability between the states of four models recognized by the 
Tennessee Valley Authority (TVA). Three approaches are being studied to obtain the 
three transient probabilities after modeling. These techniques are Laplace trans-
forms, curve fitting, and neuro-fuzzy. The MATLAB Simulink 7.10 package is used 
to obtain steady-state probabilities for the four VAT models while reproducing these 
solutions with Laplace transforms. For each model, a three-state model is con-
sidered, where its equations can be obtained using curve fitting and neuro-fuzzy 
methods. All the methods are used and applied in Al-Hamad and Qamber’s study 
[12] and are used to design and obtain the TVA models. Al-Hamad and Qamber’s 
study [12] proposes three technical approaches. These techniques increased the 
performance of the models in terms of execution time. These techniques are 
Laplace transformations, curve fitting, and neuro-fuzzy. The main objective of 
their study [12] is to temporarily reshape the transient-state probabilities for the 
four TVA models and find the best TVA models, even if any researcher has worked 

Figure 3. 
Transition rate values for (a) TVA-1 model, (b) TVA-2 model, (c) TVA-3 model, and (d) TVA-4 model.
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on modeling using curve fitting and other methods. TVA data are very useful for 
modeling a three-state model system. In their work the neuro-fuzzy was studied 
and used. It is found that it is the best and most useful to model and calculate the 
transient probabilities. In addition, the performance of the TVA models is clear 
and satisfying. As the way of calculating the transient probabilities throughout the 
operation period, each TVA model is likely to be trained at some point to develop 
fuzzy IF-THEN rules that help to determine the input and output variables for the 
functions of the TVA model. In Al-Hamad and Qamber’s study [12], the combina-
tion of fuzzy logic and the neural network (becoming neuro-fuzzy) is a powerful 
means of designing intelligent systems and obtaining precise results. In their study 
[12], curved fitting modulation methods and neuro-fuzzy methods were adopted 
and applied to the four TVA models to calculate the probability of nonlinear state 
of the models. The performance of the two approaches was also evaluated to find 
the right and the accurate approach for the four TVA models. The results obtained 
from Al-Hamad and Qamber’s study [9] were found to be much closer to the results 
of Laplace transforms, in particular, the results obtained using neuro-fuzzy. The 
study [12] shows a successful development of a reliable relationship between the 
probabilities of movement and time. Results obtained with both curve fitting and 
neuro-fuzzy were compared and studied. Comparing exposures to neuro-fuzzy 
offers better accuracy—as already mentioned—in predicting the probability of a 
moving state carried out in their study [12].

3. Applications and results

The neuro-fuzzy has a combination of advantages of the neural networks and 
fuzzy-logic, where the aim of the neuro-fuzzy is to combine collectively the benefits 
of both approaches. The neural networks have two main benefits. These two can 
learn nonlinear mapping of numerical data and the performing of parallel compu-
tation. It is very hard to understand the meaning of weights and the incorporation 
of prior knowledge into the system, which is usually impossible. Fuzzy logic uses 
human understanding of linguistic terms to form the knowledge of the system. This 
makes a close interaction between the system and human operator possible. In addi-
tion, neuro-fuzzy systems allow the incorporation of both numerical and linguistic 
data into the system, where it is also capable of extracting fuzzy knowledge from 
numerical data.

The ANFIS system applies the artificial neural network to find a suitable fuzzy 
inference system (FIS) structure and parameters. The fuzzy system with its struc-
ture identifies the considered fuzzy rules to obtain the targeted results. In addition, 
the considered architecture of the ANFIS structure has five layers as shown in 
Figure 4, which is the developed model in the study.

The developed general model for the neuro-fuzzy system is shown in Figure 4. 
Figure 4 shows the developed five-layer connection for six inputs and two outputs. 
These five layers represent the neuro-fuzzy model, which is used to represent 
the TVA models and helps to obtain the availabilities and unavailabilities of each 
TVA model.

The proposed model using the neuro-fuzzy has six inputs as mentioned earlier 
and two outputs model as illustrated in Figure 4. In addition to the fourth order 
Runge-Kutta method, ANFIS technique applied in the present chapter to model 
the three-state probabilities of the four TVA models (fourth layer of Figure 4) 
which deals to the fifth layer helps to find the availability and unavailability of 
the model. The availability is reaching the steady-state availability of each TVA 
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model, where the steady-state availability is defined as the steady-state probability 
of the system which is IN service. The steady-state probability that the TVA model 
is OUT of service is calculated as out of service due to failures. Any system can be 
interpreted as the long-run fraction of time spent in the failure state. The ANFIS 
and the curve fitting techniques are compared based on the availability and 
unavailability results. Through the obtained results, it is found that the results 
from both techniques are very close to each other. ANFIS and the curve fitting 
models are identical.

With reference to the TVA models, the fuzzy inference system (FIS) is applied. 
Six inputs are shown in layer (1), which are the transition rates between the three 
states model (Figure 2). The outputs of the model (layer (5)) results are the avail-
ability and unavailability of the TVA model. The second layer shows the three-states 
model. This process of converting an output fuzzy set for a solution variable into a 
single model is represented by the layer (3) which is TVA model. The results of the 
TVA model are shown in layer (4), which are the three probabilities PUp, PDerated, 
and PDown.

The results obtained using the curve fitting for the four TVA models are shown 
in Figures 5–8 as availability and unavailability. The curve fittings models’ equa-
tions are obtained for the four TVAs’ availability and unavailability as a function 
of time.

The availabilities as a function of time for the four TVA models are shown in 
Figures 5a–8a, respectively. The availability of each TVA model decreased gradually 
with time and then finally reached steady state (stable). The unavailability of each 
TVA model is illustrated in Figures 5b–8b, respectively. The unavailability of each 
TVA model increased gradually till it reached the steady state (stability).

When the generation reached the stability, the availabilities are 98.72%, 
98.56%, 97.99%, and 95.26%, respectively, for the corresponding TVA models. 
Under the same conditions, the unavailabilities are 1.28%, 1.44%, 2.01%, and 
4.74%, respectively, for the TVA models.

Figure 4. 
ANFIS TVA developed model.
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Figure 6. 
(a) Availability model for TVA2 and (b) unavailability model for TVA2.

Figure 5. 
(a) Availability model for TVA1 and (b) unavailability model for TVA1.
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Figure 7. 
(a) Availability model for TVA3 and (b) unavailability model for TVA3.

Figure 8. 
(a) Availability model for TVA4 and (b) unavailability model for TVA4.
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Figure 7. 
(a) Availability model for TVA3 and (b) unavailability model for TVA3.

Figure 8. 
(a) Availability model for TVA4 and (b) unavailability model for TVA4.
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The curve fitting technique MyCurveFit (online curve fitting) is applied to find 
the model as shown in Figures 5–8 as mentioned earlier. The results for the four 
TVA models are summarized in Table 3, showing the availabilities of each model, 
where Table 4 shows the unavailabilities of the same models. The obtained avail-
ability equation using the curve fitting technique MyCurveFit is shown in Eq. (4) 
for the four TVA models.
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The obtained unavailability equation using the curve fitting technique 
MyCurveFit is shown in Eq. (5) for the four TVA models.
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Strong access to a complex system, such as a gas turbine, is linked to a part’s reli-
ability and maintenance policy. This policy affects not only the repair time of parts 
but also the reliability of parts, which affects the contamination and accessibility of 
the system. In any study, different methods are used for assessing the reliability and 
availability of gas turbines installed in a power plant. The investigated methods are 
based on concepts of system reliability, such as the development of the functional 
tree structure. The application of the failure mode and the analysis of the power 

Availability model of TVA Coefficients

TVA1 a 1.00014234742424

b 1.646673111807

c 32.8722769925419

d 0.98712380612843

TVA2 a 1.00022688188532

b 1.89339095988375

c 20.6089357501677

d 0.985496773685337

TVA3 a 0.999265231533308

b 1.53764424728804

c 29.218900622036

d 0.97949890714863

TVA4 a 0.999505792270978

b 1.26046003465127

c 35.1534160245152

d 0.950859080757418

Table 3. 
Availabilities of the four TVA models.
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supply helps identify the critical components in improving the reliability of the 
system. The system and assessment of maintenance based on a historical fault data-
base. This study focuses on the transition rates’ changes (failure and repair rates) 
between the state which the model is passing through as observed and presented in 
this study. Implement trust-based maintenance concepts to implement the complex 
system maintenance policies of the generation system aimed at minimizing unex-
pected failure in critical components. The accessibility analysis shows different 
results for each TVA model, showing differences in the installation and operation of 
the system.

4. Conclusion

Various failure and repair transition rates have been taken in consideration in the 
present study. In the present study, the transition rates show the performance of the 
TVA models based on their variation and nature of each model. Different cases as 
obtained graphs show the availability and unavailability of the TVA models, where 
their models are produced by the curve fitting. The availability and unavailability 
values are obtained through a period of times. The unavailability increases until it is 
finally becoming stable.

The reliability of the availability and unavailability generation study seems 
important to obtain the means for the designer to apprehend the reliability for each 
design of TVA model. This means that the experience feedback is necessary. In the 
present study, the main part is to obtain the general TVA model transient availabili-
ties and unavailabilities which has been modeled. This leads to the final target of the 
application study.

Unavailability model of TVA Coefficients

TVA1 a 0.000369658874527318

b 1.47698177420345

c 30.6343647596028

d 0.0130413214169725

TVA2 a 0.000583437614778953

b 1.64413595811526

c 17.7140736131654

d 0.0146075810962714

TVA3 a 0.000728795178208125

b 1.52929468363619

c 29.3840092626888

d 0.0205824453759151

TVA4 a 0.000499149643278974

b 1.26083143262919

c 35.1382710744811

d 0.0491382311673703

Table 4. 
Unavailabilities of the four TVA models.
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Chapter 3

A Layered Recurrent Neural
Network for Imputing Air
Pollutants Missing Data and
Prediction of NO2, O3, PM10,
and PM2.5

Hamza Turabieh, Alaa Sheta, Malik Braik
and Elvira Kovač-Andrić

Abstract

To fulfill the national air quality standards, many countries have created emis-
sions monitoring strategies on air quality. Nowadays, policymakers and air quality
executives depend on scientific computation and prediction models to monitor that
cause air pollution, especially in industrial cities. Air pollution is considered one of
the primary problems that could cause many human health problems such as
asthma, damage to lungs, and even death. In this study, we present investigated
development forecasting models for air pollutant attributes including Particulate
Matters (PM2.5, PM10), ground-level Ozone (O3), and Nitrogen Oxides (NO2). The
dataset used was collected from Dubrovnik city, which is located in the east of
Croatia. The collected data has missing values. Therefore, we suggested the use of a
Layered Recurrent Neural Network (L-RNN) to impute the missing value(s) of air
pollutant attributes then build forecasting models. We adopted four regression
models to forecast air pollutant attributes, which are: Multiple Linear Regression
(MLR), Decision Tree Regression (DTR), Artificial Neural Network (ANN) and
L-RNN. The obtained results show that the proposed method enhances the overall
performance of other forecasting models.

Keywords: imputing missing data, air pollutants, prediction, layered recurrent
neural network

1. Introduction

Air quality monitoring and management have drawn much attention in recent
years and attracted great attention from the public. Air pollution poses serious
problems and infection for living organisms and environmental risks [1]. Harmful
emission of industrial waste on air is one of the common environmental influences
that disturb the air quality specifications and the national economy [2]. Significant
publications have shown that air pollution has harmful effects on human health [3].
Air pollution affects the living organisms by producing impacts on cardiac, vascu-
lar, pulmonary, and neurological systems [4]. For example, air pollution in the City
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of New York causes the death of more than 3000 people and causes hospitalization
of 200 persons [5]. It was found that many of these reported incidences were caused
by the exposure to PM2.5 and other pollutant attributes [6]. In 2010, it was esti-
mated that ambient particulate matter (PM) caused 3.2 million premature deaths
[7]. Moreover, several-analysis and research papers highlight that there is an expo-
nential relationship between PM values and cardiovascular disease, and significant
relation between NO2 concentrations and cardiovascular disease [8, 9].

Air pollution arises from many sources such as vehicle fumes, agricultural,
industrial, and natural sources like volcanoes [10]. Common air pollutants are
classified into two groups: trace gases such as carbon monoxide (CO), nitrogen
dioxide (NO2), ground-level ozone (O3), and sulfur dioxide (SO2) or particulate
matter (PM2.5) or (PM10) in aerodynamic diameter [11]. Tropospheric ground-level
ozone (O3) is a secondary factor that can damage human health and ecosystem
[12–41]. O3 concentration is one of the most serious oxidant factors that are harmful
to human skin and lung tissues when inhaled [15, 16]. Several side effects impair
pulmonary function and cause respiratory symptoms such as headache, weight loss,
cough, shortness of breath, hoarseness, and pain while breathing [17]. Moreover,
several epidemiological research studies focus on the relation between O3 pollution
and mortality [18].

1.1 Challenges

Air pollution monitoring and control is a major global challenge [19, 20]. To
develop and train air quality prediction models, meteorological data for the investi-
gated area should be collected and used. This data mostly consists of physical
parameters that include temperature, dew point, wind direction, wind speed, cloud
cover, cloud layer(s), ceiling height, visibility, current weather, amount of precip-
itation, and many more [21, 42]. These attributes greatly influence the concentra-
tion of pollutants in the area of interest.

Recently, cities are exposed to air pollutants either indoors or outdoors [22].
Several monitoring stations (i.e., sensors) are used to monitor the air quality by
collecting data from different locations inside cities. These stations are used to
collect data for gases or particulate matter in an accurate manner [23]. These
sensors can be categorized as wired or wireless sensors. Wired sensors need great
efforts for deployment and maintenance. Wired sensors can be easily breakdown
due to several reasons (e.g., environment close to a volcano, where the hot gases
and steams can damage a wired network easily [24, 43]). Wireless sensors still in an
early stage. However, they show a great performance compared to wired sensors
either in deployment or maintenance. Both types of sensors send the collected data
to a central station for further processing. However, sometimes the process of
collecting data suffers from different problems such as power failure, sensor fault,
man-made error in measurements, and many others. Figure 1 depicts the process of
collecting data from different sensors. For example, if the gas sensor (i.e., O3) does
not work accurately, the collected data will not be complete and accurate. As a
result, the air quality of the prediction model may not be accurate if the percentage
of missing data is high.

Missing data cause serious problems for developing prediction models. The
presence of missing data could severely reduce the quality of air quality prediction
models. To solve this problem, we may either remove the missing data or imputing
it. Removing the missing data may reduce the application performance [25], while
imputing missing data may enhance the overall performance and without losing the
collected data. Many methods exist to impute the missing data. Researchers either
applied simple methods such as average value or complex methods such as machine
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learning methods to impute missing data [25]. Imputing missing values based on
average is not accurate compared to the other one.

The main goal of this study is to propose a hybrid model that can predict the
daily average of the concentration of air pollutants based on missing data imputa-
tion. The proposed model is a machine learning approach that can enhance the
performance of monitoring systems of air pollution inside cities. Layered Recurrent
Neural Network (L-RNN) [26] was successfully used to solve a variety of state-
of-the-art applications such as detection of heart failure [27] and time-series data
classification [28]. L-RNNs for missing data were explored earlier to handle the
missing data problem [25, 29]. In this research, we first explore the use of L-RNN
for imputing the missing data collected from Dubrovnik city that is in the east of
Croatia. In the second step, we develop a series of models for predicting NO2,
O3,PM10, and PM2:5 using the machine learning model (i.e., MLR, DTR, ANN, and
L-RNN).

The rest of this chapter is organized as follows: In Section 2, the related works of
air pollution as well as the literature of missing data is presented. Section 3 describes
the proposed methodology. Section 4 presents predictive models using machine
learning concepts. Section 5 presents the data collection process. The evaluation
criteria used in this chapter are presented in Section 6. Section 7 presents the
experimental setup used in this paper. Finally, a conclusion of the work is presented
in Section 8.

2. Related works

2.1 Imputation vs. removing data

One of the most common problems in the process of developing prediction
models is the Data Cleaning/Exploratory Analysis. This phase becomes a challenge

Figure 1.
The process of collecting data using air pollutants sensors.
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when missing values are in presence. In general, there is no fundamental method to
deal with missing data. Missing data problem occurs if no value(s) is assigned while
collecting data. In general, the missing data are presented by different symbols such
as ?, N/A, or �. There are two methods adopted in the literature to handle missing
data. They are:

2.1.1 Deletion

Several researchers remove the missing data from the collected dataset if the
percentage of the missing data is less than 5%. However, if the percentage of
missing data is greater than 5%, the dataset should be examined carefully [30].
Many approaches have been investigated by researchers to solve the missing data
problem. For example, the data list wise deletion method removes the missing data
or incomplete data from the collected dataset. This method works fine if the per-
centage of missing data is very small and does not affect the overall accuracy [31].
The pairwise data deletion method keeps the missing data and tries to reduce the
loss that occurs in the list wise deletion method. However, deleting missing values is
an acceptable approach for some applications. Mary and Arockiam [32] investigated
the missing data as a case study of air pollution. They proposed an ST-correlated
proximate approach to impute the incomplete dataset for the air pollution system.
The authors compared the obtained results of the proposed approach with different
statistical methods. Sta [33] investigated the process of collecting data for modern
urban cities. The author proposed a framework to cluster the collected data into
three clusters: complete, ambiguous, and missing data. The author imputed the
missing data and enhanced the overall performance of the proposed system.
Xiaodong et al. [34] proposed a Hot Deck imputation approach that imputes the
incomplete records (missing data) using the similarity between complete and
incomplete data.

2.1.2 Imputation

In statistics, imputation is defined as the process of substituting missing data
with swapped values. Unit imputation is used when we replace a single data point
while the replacement of a component of a data point, is called, item imputation.
Imputation is considered a successful solution to avoid difficulties associated with
list wise deletion of missing values. Suhani et al. [35] proposed a machine learning
approach based on the fuzzy kNN technique to impute the missing data for a
selected case from the medical field. The authors ignore the missing data whose
entropy value is less than a predetermined value and recover the incomplete data
that are higher than the predetermined value based on a fuzzy kNN algorithm.
Chen et al. [36] applied a machine learning approach based on a convolutional
neural network to impute the missing data for a real medical dataset. The authors
improve the overall performance after imputing missing data. Turabieh et al. [25]
proposed a dynamic model based on deep learning neural networks for missing data
imputation. The authors showed that the proposed model improves the overall
performance of medical applications after imputing missing data.

2.2 Air pollution prediction

Air pollution is a serious problem that negatively affects human health, envi-
ronment, and climate. Governments and organizations published several initiatives
to reduce the concentrations of air pollutants, but high levels of concentrations of
air pollutants still exist. As a result, monitoring the concentrations of air pollution is
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needed. Air monitoring consists of several steps; 1) Monitoring sites based on wired
or wireless sensors, 2) collecting data that should be accurate and complete, 3) data
analysis using predictive models based on machine learning to predict and analyze
the collected data, and, 4) the final step is making decisions to reduce the concen-
trations of air pollution. This process should be performed correctly to ensure that
the concentration of air pollution is under control.

Different types of machine learning methods have been used to predict the
concentrations of air pollutant indicators by many researchers. For example, Perez
and Gramsch [37] applied a feed-forward neural network to predict the concentra-
tion of PM2.5 and PM10 in Santiago, Chile. The obtained accurate results show that
the proposed approach enhances the prediction of PM2.5 and PM10. Lana et al. [38]
employed regression models to predict several air pollutants such as CO, NO, NO2,
O3 and PM10) for the city of Madrid (Spain). The obtained results explore the
importance of reducing air pollutants in the city of Madrid. Kamińska [39]
employed an ensemble learning method based on random forests to model the
relationship between the concentrations of air pollutants and nine variables
describing meteorological conditions, temporal conditions, and traffic flow. The
collected data was for 2 years 2015 and 2016 for WrocÅ‚aw city. The data consists of
hourly values of wind speed, wind direction, temperature, air pressure and relative
humidity, temporal variables, and traffic flow. The obtained results show that the
season plays a vital role in the overall performance. Kamińska [40] proposed a
probabilistic forecasting method to predict the concentrations of NO2. The dataset
represents the hourly values of the concentration of NO2 wind speed, and traffic
flow for the main intersection inWrocław city. The obtained results show that wind
speed plays a vital factor in the concentration of NO2.

Shang et al. [41] employed a novel prediction method that hybridized the
regression tree (CART) and ensemble extreme learning machine (EELM) methods
to predict the hourly concentration of PM2.5 air pollutant. The training dataset used
in this research obtained from the meteorological data of Yancheng urban area,
while the testing data (i.e., the air pollutant concentration) obtained from the City
Monitoring Centre. The obtained results demonstrate the effectiveness of the pro-
posed method to predict PM2.5. A hybrid framework based on three different
machine learning methods (i.e., genetic algorithm [GA], random forests [RFs], and
backpropagation neural networks [BPNN]) proposed by Dotse et al. [44]. The
proposed hybrid approach is used to predict daily PM10 in Brunei Darussalam. Sun
and Sun [45] proposed a hybrid model to predict PM2.5 in Baoding city in China,
where a combination of three machine learning methods (i.e., principal component
analysis [PCA], least squares support vector machine [LSSVM], and cuckoo search
[CS]). The obtained results show that the PCA algorithm works as a feature selec-
tion algorithm that reduces the dimensionality of the input dataset while CS shows
promising results to predict PM2.5. The main shortfall of this work that is applicable
for short-term PM2.5 forecasting.

A dynamic fuzzy synthetic evaluation model for predicting the concentration of
three air pollutants (i.e., of PM2.5, PM10 and SO2) in two cities from China have
been proposed by Xu et al. [46]. The obtained results show that the proposed model
can be employed to build a robust monitoring air quality system for early warning.
A novel hybrid model based on extreme learning machine (ELM) is employed to
predict the concentration level of PM10 for Beijing and Harbin cities in China by Luo
et al. [47]. Aznarte [48] proposed an ELM approach that is optimized by cuckoo
search (CS) to enhance the overall performance of ELM. A probabilistic forecasting
approach is applied to predict NO2 in Madrid city from Spain. Wang et al. [49]
proposed a novel hybrid machine learning approach based on a decomposition
method and extreme learning machine (ELM) that is optimized by differential
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evolution (DE) to predict air pollutants in Beijing and Shanghai cities from China.
Kumar and Goyal [50] applied Multiple Linear Regression (MLR) and Principal
Component Regression (PCR) methods to predict several air pollutants in Delhi city
from India. A MultiLayer Perceptron (MLP) neural network is adopted to predict
PM10 in Delhi city from India by Aly et al. [51]. The authors also applied two
algorithms (i.e., Naïve Bayes [NB] and Support Vector Machine [SVM]) and the
performance of MLP outperforms NB and SVM. Vibha and Satyendra [52] applied
seven models of neural networks using Levenberg–Marquardt (LM) to predict the
daily PM10 in two cities from India.

3. Methodology

The main purpose of this research is to evolve different machine learning
methods to predict daily average air pollutant concentrations such as O3, PM2.5,
PM10, and NO2 values given data with many missing values. The process consists of
two phases: 1) imputing missing data based L-RNN model, and 2) development of
predictive models using several machine learning algorithms which include LR,
DTR, ANN, and L-RNN. Our proposed approach starts by collecting data from
sensors. If the collected data suffer from missing data, an imputation process will
start based on the L-RNN hat predicts the concentration of air pollutants. This
process will be repeated until the collected data have no missing value(s). Once the
collected dataset is complete, a machine learning model is selected to predict the
daily average of air pollutant concentrations. The selected model is evaluated based
on two evaluation criteria that are Root Mean Square Error (RMSE), and coefficient
of determination (R2). The proposed approach is depicted in Figure 2. The follow-
ing subsections demonstrate the proposed approach.

3.1 L-RNN

A layered recurrent neural network is known as a neural network that has local
feedback, which is particularly suited to predict the daily air pollutant attributes
since it incorporates a time delay while training process through a feedback

Figure 2.
The proposed approach.

52

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

connection between output layer and hidden layer(s). Figure 3 demonstrates the
connection feedback. In simple, during the training process, the output of the
recurrent neural network is added to the output of the hidden layer. The result of
summation is employed as an argument of the transfer function to gain the output
in the succeeding iteration. Eq.(1) demonstrates the output of the L-RNN, where
u kð Þ presents the input values for hidden layer, v kð Þ presents the input values for
output layer. Wu,i and Wv,j presents the weights between u and v, respectively. The
final output y kð Þ is obtained from Eq.(2), where f ðÞ is a transfer function. In this
work, we employed back-propagation through time in the training phase for the
proposed L-RNN structure.

v kþ 1ð Þ ¼
Xn
i¼0

Wu,i kð Þu kð Þ þ
Xm
j¼0

wv,j kð Þv kð Þ (1)

y kð Þ ¼ f v kð Þð Þ where : f v kð Þð Þ ¼ 1
1þ exp � v kð Þð Þð (2)

3.2 Data imputation using L-RNN

To implement the data imputation process, we clustered the data into two
groups 1) complete dataset [without a missing value(s)] and 2) incomplete dataset
[with a missing value(s)]. A holdout method is used to train and test the L-RNN.
The complete dataset is divided into three datasets: training dataset (70%),
testing dataset (15%), and validation dataset (15%). While the incomplete dataset
is used to simulate the trained L-RNN model to impute the missing value(s).
This process will be repeated dynamically while receiving any records with a
missing value(s).

The computational complexity of the model depends on the structure of the
L-RNN and the number of missing data in the received record. The computational
complexity will increase exponentially if the number of missing values increases.
Figure 4 illustrates the process used to impute the missing value(s) (i.e., the
concentration value of O3, NO2, PM2.5, PM10).

Figure 3.
Layer recurrent neural network (L-RNN).
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Figure 2.
The proposed approach.
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4. Predictive models using machine learning

Several machine learning methods can be used to predict air quality. However,
we have limited our research paper into four methods: MLR, DTR, ANN, and
L-RNN. To avoid the over-fitting problem in the training process, we employed the
k-fold cross-validation method with k-fold = 5. The following subsection explores
each learning method in more detail.

4.1 Multiple linear regression

Linear regression (LR) is one of the most well-known algorithms in statistics
and machine learning. The main idea of LR is to find the relationship between
input and output numerical variables. There are several types of LR such as
Simple linear regression, multiple linear regression, logistic regression, ordinal
regression, Multinomial regression, and Discriminant Analysis. LR has been
employed successfully in many areas as a machine learning algorithm [53, 54].
MLR is a classical statistical method that tries to find a relationship between
complex input–output variables. In simple, MLR tries to find an approximation
linear function between independent input variables and dependent
output variable without loss of generality. Eq.(3) explores the regression line
in MLR.

y ¼ β0 þ β1x1 þ … þ βixi þ … þ βkxk þ ε (3)

where y is dependent output variable, xi is the ith independent input
variable, βi is polynomial coefficients of xi, k is the number of independent input
variables, and εis the possible variation form. Eq.(4) presents a compact version
of Eq.(3).

y ¼ Xβ þ ε (4)

Figure 4.
Impute missing data approach.
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where n represents the number of samples, xm,i represents the value of ith

independent input variable in the mth sample, and εi is the ith residual error in the
mth sample. The coefficient vector β can be calculated based on the standard least-
square method as shown in Eq.(6).

β ¼ XTX
� ��1

XTY (6)

Therefore, when the parameter vector β is known, the generated MLR model
can predict the dependent output variable based on the independent input
variable (s).

4.2 Decision tree regression

The DTR is employed in this chapter to predict the air pollutant attributes due to
its ability to handle complex data and takes less training execution time compared
to other prediction models. In simple, DTR uses if-then conditions to predict the
appropriate output value(s) [55]. The DTR has three steps to predict the output
value(s) as follows:

• Step 1: Determining the parameter settings for DTR such as: predicting
accuracy, selecting splits, when to stop splitting, and selecting the optimal tree.

• Step 2: Selecting the splits to predict values of the continuous dependent
variable, which usually measured with node impurity measure which provides
an indication of the relative homogeneity of cases in the terminal nodes.

• Step 3: Determining when to stop the splitting which is related to the minimum
number of nodes. Which means to select the best rightly-sized tree, which is
called the optimum tree.

4.3 Artificial neural network

Artificial Neural Network (ANN) has been used widely in many forecasting
applications due to its ability to handle complex data. Without having any infor-
mation about the mathematical model that represents the relation between input
and output variables, ANN can learn the learn hidden knowledge between input
and output variables. In general, there are many kinds of ANNs such as
Feedforward Neural Network (FFNN), Recurrent Neural Network (RNN), and
Convolutional Neural Network (CNN) [56]. In this chapter, we adopted two types
of neural networks based on a feed-forward network using the propagation
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training method, which is: the standard neural network (ANN) and Layered
Recurrent Neural Network (LRNN).

5. Data collection

The data set used in this research is collected from Dubrovnik city that is located
in the east of Croatia. Dubrovnik city has a Mediterranean climate and has over
2600 hours of sunshine per year, which is considered the sunniest place in Croatia.
In this dataset, the concentration of O3 has been monitored with a commercial
Teledyne API 400E UV photometric O3 analyzer. While the concentration of NO2

has been monitored with Teledyne API 200E chemiluminescent NO2 analyzer. O3

and NO2 concentrations were measured every minute and the output signals were
stored in a datalogger. The collected data are validated and averaged. The concen-
tration of PM10, and PM2.5 have been monitored with the GRIMM model EDM 180.
Samples of PM particles were collected by gravimetric methods throughout the day
to obtain 24–hour averages of concentrations. All instruments are regularly
maintained and calibrated. Meteorological data were obtained from the Meteoro-
logical and Hydrological Services of Croatia. The dataset is collected during the 2015
and 2016.

Table 1 shows the number of records in each dataset used in this paper. For
example, the O3 dataset has 699 total records, where 200 records (28:80%) are
incomplete. Figure 5b demonstrates the missing data pattern for each dataset,
where the x-axis presents the 24-hours (i.e., input variables), while the y-axis pre-
sents the observations during the 2 years. Figure 5a shows that there is a missing
data in the second year for NO2 dataset, where NO2 sensors do not work. Since the
missing data are higher than 5%, we examined the collected data carefully to
maintain the performance of air quality prediction systems. As a result, imputing
missing data are needed.

6. Evaluation criteria

In this research, we employed two different evaluation criteria: Root Mean
Square Error (RMSE), and coefficient of determination (R2), defined below.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s

Xs

i¼1
yi predicted � yi observed
� �2r

(7)

R2 ¼ 1�
Ps

i¼1 yi predicted � yi observed
� �2

Ps
i¼1 yi observed � ŷi observed
� �2 (8)

Dataset PM2.5 PM10 O3 NO2

InComplete 179 179 200 270

Complete 551 551 499 461

Percentage of missing data % 16.96 17.08 20.26 28.80

Total number of records 730 731 699 731

Table 1.
Number of samples in each dataset.
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where yi observed and yi predicted denote the actual and predicted values of air pollu-
tion concentrations, respectively, s represents the number of instances and ŷi observed
stands for the average of the actual values of the air pollution concentrations.

Eqs.(7) and (8) show the evaluation process for each criteria. The minimum
value of RMSE means better forecasting, while the maximum value of R2 means
better forecasting.

7. Experimental results

In this work, two different types of experiments were performed to develop a
prediction model for pollutant parameters with missing data. They are: (i) remov-
ing missing or incomplete records, and (ii) imputing the missing data. Four regres-
sion models were employed in this work (i.e., MLR, DT, ANN, and LRNN). All
experiments were performed using MATLAB-R2019b environment. The following
subsections discussed the obtained results.

7.1 Results without imputing missing data

The first experiments that we employed in this chapter are based on removing
all the missing data (i.e., records). Table 2 shows the obtained results of four
different regression models. The LRNN model outperforms other models in three

Figure 5.
Actual (�) and predicted (�.) values for No2 using all regression methods for NO2 dataset.
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training method, which is: the standard neural network (ANN) and Layered
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to obtain 24–hour averages of concentrations. All instruments are regularly
maintained and calibrated. Meteorological data were obtained from the Meteoro-
logical and Hydrological Services of Croatia. The dataset is collected during the 2015
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Table 1 shows the number of records in each dataset used in this paper. For
example, the O3 dataset has 699 total records, where 200 records (28:80%) are
incomplete. Figure 5b demonstrates the missing data pattern for each dataset,
where the x-axis presents the 24-hours (i.e., input variables), while the y-axis pre-
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where yi observed and yi predicted denote the actual and predicted values of air pollu-
tion concentrations, respectively, s represents the number of instances and ŷi observed
stands for the average of the actual values of the air pollution concentrations.

Eqs.(7) and (8) show the evaluation process for each criteria. The minimum
value of RMSE means better forecasting, while the maximum value of R2 means
better forecasting.

7. Experimental results

In this work, two different types of experiments were performed to develop a
prediction model for pollutant parameters with missing data. They are: (i) remov-
ing missing or incomplete records, and (ii) imputing the missing data. Four regres-
sion models were employed in this work (i.e., MLR, DT, ANN, and LRNN). All
experiments were performed using MATLAB-R2019b environment. The following
subsections discussed the obtained results.

7.1 Results without imputing missing data

The first experiments that we employed in this chapter are based on removing
all the missing data (i.e., records). Table 2 shows the obtained results of four
different regression models. The LRNN model outperforms other models in three
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Actual (�) and predicted (�.) values for No2 using all regression methods for NO2 dataset.
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datasets (i.e., NO2, PM10, and PM2.5) based on RMSE and R2 values. While ANN
outperforms other models in O3 dataset based on RMSE. The performance of the
MLR method is the worst overall datasets.

7.2 Imputing data using LRNN

For imputing missing data, we employed L-RNN as a dynamic prediction
model based on the current states of the collected data. In general, there are two
different training algorithms for L-RNN: real-time recurrent learning, where a fixed
set of weights recursively applied while training process and back-propagation
through time, where the L-RNN structure altered between feed-forward and
feedback structures. In this work, we used back-propagation through a time
training process.

The parameters setting used, in this case, are shown in Table 3. A holdout
method is employed to train the L-RNN based on the complete dataset, where 70%
for training, 15% for validation, and 15% for testing. The reason for employing
the holdout method is to reduce the complexity and execution time for the
proposed imputing model. After imputing missing data, we employed a k-fold
across-validation method in the training process for four machine learning methods
(i.e., MLR, DTR, L-RNN, and ANN) with k-fold = 5 to evaluate the complete
dataset.

7.3 Results after imputing missing data

7.3.1 MLR models

In this part, we employed MLR as a prediction model after imputing missing
data. In Eq.(9), Eq.(10), Eq.(11), and Eq.(12) we show the MLR results for PM2.5,

Regression model NO2 O3 PM10 PM2.5

RMSE R2 RMSE R2 RMSE R2 RMSE R2

MLR 1.79 0.10 22.11 0.05 3.68 0.83 2.61 0.81

DT 1.73 0.16 20.44 0.19 3.68 0.83 2.57 0.82

LRNN 0.26 0.85 10.06 0.61 0.30 0.88 2.39 0.90

ANN 1.02 0.74 8.39 0.76 3.85 0.67 2.92 0.85

Table 2.
Results without imputing missing data.

Parameters Values

Number of iterations 1000

Number of neurons in the input layer Number of input data

Number of neurons in the hidden layer Number of input data /2

Number of neurons in the output layer 1

Table 3.
Parameter settings for the L-RNN model during imputing missing data.
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PM10, O3, and NO2, respectively. Table 4 shows the obtained results of MLR
method. The performance of of MLR is acceptable over all datasets.

PM2:5 ¼ 4:4447 � 0:3753�NO2 þ 0:61551� PM10 � 0:025394� O3 (9)

PM10 ¼ �3:8704þ 0:6183�NO2 þ 0:033796� O3 þ 1:2886� PM2:5 (10)

O3 ¼ 95:039� 0:22434�NO2 þ 0:96905� PM10 � 1:493� PM2:5 (11)

NO2 ¼ 93:9595þ 0:0017985�O3 þ 0:15471� PM10 � 0:17977 � PM2:5 (12)

7.3.2 DT models

In this work, the minimum leave size used is 4, and the maximum number of
splits is 6. The main reason for using this setting is to simplify the generated tree.

Dataset MLR results

RMSE R2

NO2 1.61 0.79

O3 1.78 0.82

PM10 3.84 0.46

PM2.5 1.76 0.62

Table 4.
MLR results after imputing missing data.

Figure 6.
Obtained tree for all datasets after imputing missing data.
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The obtained models of DT for each dataset were shown in Figure 6. Table 5
explores the obtained results of DT over all datasets.

7.3.3 ANN models

Figure 7 shows the ANN structure used in this chapter, where we have
three inputs and a single output. Table 6 shows the obtained results of

Figure 7.
ANN block diagram structure.

Dataset- ANN results

RMSE R2

NO2 0.05 0.96

O3 3.25 0.78

PM10 0.33 0.82

PM2.5 0.16 0.97

Table 6.
ANN results after imputing missing data.

Parameters Value

LRNN Number of epoch 1000

Layer delays 1:2

Hidden sizes 10

Training function Back propagation

Table 7.
Parameters setting for LRNN as a regression method.

Dataset DT results

RMSE R2

NO2 2.36 0.65

O3 7.32 0.54

PM10 3.21 0.89

PM2.5 3.14 0.85

Table 5.
DT results after imputing missing data.

60

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

ANN over all datasets. The performance of ANN is excellent compared to MLR
and DT.

7.3.4 LRNN models

In this chapter, we employed the LRNN as a regression model to predict the
daily average of air pollutant attributes. Table 7 shows the parameters setting for
LRNN as a regression method. These settings have been selected carefully to fit our
data based on a set ore preliminary experiments. Table 8 shows the obtained results
of LRNN. The performance of LRNN is outstanding based on the convergence
curves as shown in Figure 8. LRNN method can converge within 1000 epochs.

Dataset LRNN results

RMSE R2

NO2 0.22 0.93

O3 2.76 0.80

PM10 0.02 0.98

PM2.5 0.02 0.93

Table 8.
LRNN results after imputing missing data.

Figure 8.
Convergence curves for LRNN over all datasets.
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Moreover, the obtained results of LRNN compared to the other previous methods
are promising.

7.4 Analysis of the results

Table 9 shows the obtained results before and after imputing missing data.
The performance of the LRNN model outperforms other models in three
datasets (i.e., NO2, PM10, and PM2.5) based on RMSE and R2 values. While
ANN outperforms other models in O3 dataset based on RMSE. The performance
of ANN over O3 outperforms other methods. While the performance of MLR is the
worst one.

From the obtained results, it can be seen that the performance of the LRNN
model has an outstanding performance, where R2 equals 0.90 in three datasets.
However, these obtained results are not perfect since 16:96% of the data is removed
for PM2.5, and 28:80% of the data is removed from NO2. Removing the missing data
will neglect several records and the dataset may lose important information.
Figure 5 shows the actual and predicted values for NO2 dataset using all regression
methods after imputing missing data.

For more analysis, comparing the obtained results that are reported in Table 9,
we can notice that the performance of MLR over PM10 after imputing the
missing data is reduced 19%, while the performance of DT, LRNN, and ANN is
improved after imputing missing data for PM10 dataset. In general, the performance
of the regression models is improved compared to the results reported in Table 2.

Dataset Regression model After imputing Without imputing

RMSE R2 RMSE R2

NO2 MLR 1.61 0.79 1.79 0.1

DT 2.36 0.65 1.73 0.16

LRNN 0.22 0.93 0.26 0.85

ANN 0.05 0.96 1.02 0.74

O3 MLR 1.78 0.82 22.11 0.05

DT 7.32 0.54 20.44 0.19

LRNN 2.76 0.80 10.06 0.61

ANN 3.25 0.78 8.39 0.76

PM10 MLR 3.84 0.46 3.68 0.83

DT 3.21 0.89 3.68 0.83

LRNN 0.02 0.98 0.3 0.88

ANN 0.33 0.82 3.85 0.67

PM2.5 MLR 1.76 0.62 2.61 0.81

DT 3.14 0.85 2.57 0.82

LRNN 0.02 0.93 2.39 0.9

ANN 0.16 0.97 2.92 0.85

All significance values are in bold.

Table 9.
Results before and after imputing missing data.
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For example, the R2 value of ANN over O3 dataset before imputing missing
data was 0.76, and after imputing missing data becomes 0.78, while the
RMSE is improved 39%. So, we can conclude that imputing missing data
will improve the air quality measurement systems without losing any record of
collected data.

8. Conclusion and future work

Data collection from remote sensors suffers from missing data which reduces
the overall performance of air quality monitoring systems. Monitoring air
pollution is not an easy task, where several measurements are used to evaluate
air quality. In this study, four measurements are used to predict air pollution
concentrations (i.e., O3, NO2, PM2.5, and PM10). We imputed the missing data
using the Layered recurrent neural network (L-RNN). The performance of four
different machine learning models (i.e., LR, DTR, ANN, and L-RNN) was
investigated to predict the average daily air pollution concentrations. The perfor-
mance of the proposed method presented an improvement in the performance of
the air quality monitoring system. In future work, we plan to study different
methods based on machine learning concepts to enhance the prediction of air
pollutant systems. Moreover, we will investigate the general design of the Internet
of Things (IoT) applications to improve the performance of the air quality
monitoring system.
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For example, the R2 value of ANN over O3 dataset before imputing missing
data was 0.76, and after imputing missing data becomes 0.78, while the
RMSE is improved 39%. So, we can conclude that imputing missing data
will improve the air quality measurement systems without losing any record of
collected data.

8. Conclusion and future work

Data collection from remote sensors suffers from missing data which reduces
the overall performance of air quality monitoring systems. Monitoring air
pollution is not an easy task, where several measurements are used to evaluate
air quality. In this study, four measurements are used to predict air pollution
concentrations (i.e., O3, NO2, PM2.5, and PM10). We imputed the missing data
using the Layered recurrent neural network (L-RNN). The performance of four
different machine learning models (i.e., LR, DTR, ANN, and L-RNN) was
investigated to predict the average daily air pollution concentrations. The perfor-
mance of the proposed method presented an improvement in the performance of
the air quality monitoring system. In future work, we plan to study different
methods based on machine learning concepts to enhance the prediction of air
pollutant systems. Moreover, we will investigate the general design of the Internet
of Things (IoT) applications to improve the performance of the air quality
monitoring system.

Acknowledgements

The authors would like to acknowledgement Croatian Meteorological and
Hydrological Service for their support.

63

A Layered Recurrent Neural Network for Imputing Air Pollutants Missing Data…
DOI: http://dx.doi.org/10.5772/intechopen.93678



Author details

Hamza Turabieh1*, Alaa Sheta2, Malik Braik3 and Elvira Kovač-Andrić4

1 Department of Information Technology, College of Computers and Information
Technology, Taif University, Taif, Saudi Arabia

2 Computer Science Department, Southern Connecticut State University,
New Haven, United States of America

3 Department of Computer Science, Al-Balqa Applied University, Salt, Jordan

4 Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Osijek,
Croatia

*Address all correspondence to: turabieh@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

64

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

References

[1] Delfino RJ, Staimer N, Tjoa T, Gillen
D, Kleinman MT, Sioutas C, et al.
Personal and ambient air pollution
exposures and lung function decrements
in children with asthma. Environmental
Health Perspectives. 2008;116(4):
550-558

[2] Belwal C, Sandu A, Constantinescu
EM. Adaptive resolution modeling of
regional air quality. In: Proceedings of
the 2004 ACM Symposium on Applied
Computing, SAC ‘04. New York, NY,
USA: ACM; 2004. pp. 235-239

[3] Dastoorpoor M, Goudarzi G,
Khanjani N, Idani E, Aghababaeian H,
Bahrampour A. Lag time structure of
cardiovascular deaths attributed to
ambient air pollutants in Ahvaz, Iran,
2008–2015. International Journal of
Occupational Medicine and
Environmental Health. 2018;31(4):
459-473

[4] Adhikari A. Chapter 1 - introduction to
spatiotemporal variations of ambient air
pollutants and related public health
impacts. In: Li L, ZhouX, TongW, editors.
Spatiotemporal Analysis of Air Pollution
and Its Application in Public Health.
Netherlands: Elsevier; 2020. pp. 1-34

[5] Ghaly A. Mapping environmental
pollution, contamination, andwaste in the
United States. In: Proceedings of the 3rd
International Conference on Computing
for Geospatial Research and Applications.
United States: ACM; 2012. p. 41

[6] Chen Y, Wild O, Conibear L, Ran L,
He J, Wang L, et al. Local characteristics
of and exposure to fine particulate
matter (pm2.5) in four Indian
megacities. Atmospheric Environment:
X. 2020;5:100052

[7] Gualtieri M, Øvrevik J, Holme JA,
Perrone MG, Bolzacchini E, Schwarze
PE, et al. Differences in cytotoxicity
versus pro-inflammatory potency of

different pm fractions in human
epithelial lung cells. Toxicology In Vitro.
2010;24(1):29-39

[8] Milojevic A, Wilkinson P, Armstrong
B, Bhaskaran K, Smeeth L, Hajat S.
Short-term effects of air pollution on a
range of cardiovascular events in
England and wales: Case-crossover
analysis of the minap database, hospital
admissions and mortality. Heart. 2014;
100(14):1093-1098

[9] Dastoorpoor M, Sekhavatpour Z,
Masoumi K, Mohammadi MJ,
Aghababaeian H, Khanjani N, et al. Air
pollution and hospital admissions for
cardiovascular diseases in Ahvaz, Iran.
Science of the Total Environment. 2019;
652:1318-1330

[10] Noel De Nevers. Air Pollution
Control Engineering. Waveland Press.
2010

[11] Nowak DJ, Hirabayashi S, Doyle M,
McGovern M, Pasher J. Air pollution
removal by urban forests in canada and
its effect on air quality and human
health. Urban Forestry & Urban
Greening. 2018;29:40-48. Wild urban
ecosystems: challenges and
opportunities for urban development

[12] Kovać-Andrić E, Sheta A, Faris H,
Gajdosik MS. Forecasting ozone
concentrations in the east of Croatia
using nonparametric neural network
models. Journal of Earth System
Science. 2016;125(07)

[13] Sarwar G, Godowitch J, Henderson
BH, Fahey K, Pouliot G, Hutzell WT,
et al. A comparison of atmospheric
composition using the carbon bond and
regional atmospheric chemistry
mechanisms. Atmospheric Chemistry
and Physics. 2013;13(19):9695-9712

[14] Sheta A, Faris H, Rodan A, Kovač-
AndrićE,Al-ZoubiA. Cycle reservoirwith

65

A Layered Recurrent Neural Network for Imputing Air Pollutants Missing Data…
DOI: http://dx.doi.org/10.5772/intechopen.93678



Author details

Hamza Turabieh1*, Alaa Sheta2, Malik Braik3 and Elvira Kovač-Andrić4

1 Department of Information Technology, College of Computers and Information
Technology, Taif University, Taif, Saudi Arabia

2 Computer Science Department, Southern Connecticut State University,
New Haven, United States of America

3 Department of Computer Science, Al-Balqa Applied University, Salt, Jordan

4 Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Osijek,
Croatia

*Address all correspondence to: turabieh@gmail.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

64

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

References

[1] Delfino RJ, Staimer N, Tjoa T, Gillen
D, Kleinman MT, Sioutas C, et al.
Personal and ambient air pollution
exposures and lung function decrements
in children with asthma. Environmental
Health Perspectives. 2008;116(4):
550-558

[2] Belwal C, Sandu A, Constantinescu
EM. Adaptive resolution modeling of
regional air quality. In: Proceedings of
the 2004 ACM Symposium on Applied
Computing, SAC ‘04. New York, NY,
USA: ACM; 2004. pp. 235-239

[3] Dastoorpoor M, Goudarzi G,
Khanjani N, Idani E, Aghababaeian H,
Bahrampour A. Lag time structure of
cardiovascular deaths attributed to
ambient air pollutants in Ahvaz, Iran,
2008–2015. International Journal of
Occupational Medicine and
Environmental Health. 2018;31(4):
459-473

[4] Adhikari A. Chapter 1 - introduction to
spatiotemporal variations of ambient air
pollutants and related public health
impacts. In: Li L, ZhouX, TongW, editors.
Spatiotemporal Analysis of Air Pollution
and Its Application in Public Health.
Netherlands: Elsevier; 2020. pp. 1-34

[5] Ghaly A. Mapping environmental
pollution, contamination, andwaste in the
United States. In: Proceedings of the 3rd
International Conference on Computing
for Geospatial Research and Applications.
United States: ACM; 2012. p. 41

[6] Chen Y, Wild O, Conibear L, Ran L,
He J, Wang L, et al. Local characteristics
of and exposure to fine particulate
matter (pm2.5) in four Indian
megacities. Atmospheric Environment:
X. 2020;5:100052

[7] Gualtieri M, Øvrevik J, Holme JA,
Perrone MG, Bolzacchini E, Schwarze
PE, et al. Differences in cytotoxicity
versus pro-inflammatory potency of

different pm fractions in human
epithelial lung cells. Toxicology In Vitro.
2010;24(1):29-39

[8] Milojevic A, Wilkinson P, Armstrong
B, Bhaskaran K, Smeeth L, Hajat S.
Short-term effects of air pollution on a
range of cardiovascular events in
England and wales: Case-crossover
analysis of the minap database, hospital
admissions and mortality. Heart. 2014;
100(14):1093-1098

[9] Dastoorpoor M, Sekhavatpour Z,
Masoumi K, Mohammadi MJ,
Aghababaeian H, Khanjani N, et al. Air
pollution and hospital admissions for
cardiovascular diseases in Ahvaz, Iran.
Science of the Total Environment. 2019;
652:1318-1330

[10] Noel De Nevers. Air Pollution
Control Engineering. Waveland Press.
2010

[11] Nowak DJ, Hirabayashi S, Doyle M,
McGovern M, Pasher J. Air pollution
removal by urban forests in canada and
its effect on air quality and human
health. Urban Forestry & Urban
Greening. 2018;29:40-48. Wild urban
ecosystems: challenges and
opportunities for urban development

[12] Kovać-Andrić E, Sheta A, Faris H,
Gajdosik MS. Forecasting ozone
concentrations in the east of Croatia
using nonparametric neural network
models. Journal of Earth System
Science. 2016;125(07)

[13] Sarwar G, Godowitch J, Henderson
BH, Fahey K, Pouliot G, Hutzell WT,
et al. A comparison of atmospheric
composition using the carbon bond and
regional atmospheric chemistry
mechanisms. Atmospheric Chemistry
and Physics. 2013;13(19):9695-9712

[14] Sheta A, Faris H, Rodan A, Kovač-
AndrićE,Al-ZoubiA. Cycle reservoirwith

65

A Layered Recurrent Neural Network for Imputing Air Pollutants Missing Data…
DOI: http://dx.doi.org/10.5772/intechopen.93678



regular jumps for forecasting ozone
concentrations: Two real cases from the
east of Croatia. Air Quality, Atmosphere
and Health. 2018;11(03):559-569

[15] Fuks KB, Woodby B, Valacchi G.
Skin damage by tropospheric ozone. Der
Hautarzt. 2019:1-5

[16] Lange SS, Mulholland SE,
Honeycutt ME. What are the net
benefits of reducing the ozone standard
to 65 ppb? An alternative analysis.
International Journal of Environmental
Research and Public Health. 2018;15(8)

[17] Isiugo K, Jandarov R, Cox J, Ryan P,
Newman N, Grinshpun SA, et al. Indoor
particulate matter and lung function in
children. Science of the Total
Environment. 2019;663:408-417

[18] Faustini A, StafoggiaM,WilliamsM,
DavoliM, Forastiere F. The effect of short-
term exposure to o3, no2, and their
combined oxidative potential onmortality
in Rome. Air Quality, Atmosphere and
Health. 2019;12(5):561-571

[19] Kim C, Hu S-C. Total respiratory
tract deposition of fine micrometer-
sized particles in healthy adults:
Empirical equations for sex and
breathing pattern. Journal of Applied
Physiology. 2006;101:401-412

[20] Deng Q, Lu C, Li Y, Sundell J,
Norbäck D. Exposure to outdoor air
pollution during trimesters of pregnancy
and childhood asthma, allergic rhinitis,
and eczema. Environmental Research.
2016;150:119-127

[21] Ul-Saufie A, Yahya A, Ramli N,
Hamid H. Robust regression models for
predicting PM10 concentration in an
industrial area. International Journal of
Engineering and Technology. 2012;2(3):
364-370

[22] Holgate ST, Koren HS, Samet JM,
Maynard RL. Air Pollution and Health.
United States: Elsevier; 1999

[23] Pokric B, Kreo S, Drajic D, Pokric M,
Jokic I, Stojanovic MJ. Ekonet -
environmental monitoring using low-
cost sensors for detecting gases,
particulate matter, and meteorological
parameters. In: 2014 Eighth International
Conference on Innovative Mobile and
Internet Services in Ubiquitous
Computing. United Kingdom: IMIS-
2014, Conference Publishing Service
(CPS); 2014. pp. 421-426

[24]Wang F, Liu J. Networked wireless
sensor data collection: Issues,
challenges, and approaches. IEEE
Communication Surveys and Tutorials.
2011;13(4):673-687

[25] Turabieh H, Abu Salem A, Abu-El-
Rub N. Dynamic L-RNN recovery of
missing data in iomt applications.
Future Generation Computer Systems.
2018;89:575-583

[26] Yu Y, Si X, Hu C, Zhang J. A review
of recurrent neural networks: LSTM
cells and network architectures. Neural
Computation. 2019;31(7):1235-1270

[27] Choi E, Schuetz A, Stewart W, Sun
J. Using recurrent neural network
models for early detection of heart
failure onset. Journal of the American
Medical Informatics Association. 2016;
24:ocw112

[28] Oeda S, Kurimoto I, Ichimura T.
Time series data classification using
recurrent neural network with ensemble
learning. In: Gabrys B, Howlett RJ, Jain
LC, editors. Knowledge-Based
Intelligent Information and Engineering
Systems. Berlin Heidelberg: Springer;
2006

[29] Che Z, Purushotham S, Cho K,
Sontag D, Liu Y. Recurrent neural
networks for multivariate time series
with missing values. Scientific Reports.
2016;8:06

[30] Momeni A, Pincus M, Libien J.
Imputation and Missing Data. United

66

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

States: Springer International
Publishing; 2018. pp. 185-200

[31] Lang KM, Little TD. Principled
missing data treatments. Prevention
Science. 2018;19(3):284-294

[32] Mary IPS, Arockiam L. Imputing
the missing data in iot based on
the spatial and temporal correlation.
In: 2017 IEEE International
Conference on Current Trends in
Advanced Computing (ICCTAC).
Netherlands: Elsevier; 2017. pp. 1-4

[33] Sta HB. Quality and the efficiency
of data in “smart-cities”. Future
Generation Computer Systems. 2017;74:
409-416

[34] Feng X, Wu S, Liu Y. Imputing
missing values for mixed numeric and
categorical attributes based on
incomplete data hierarchical clustering.
In: Xiong H, Lee WB, editors.
Knowledge Science, Engineering and
Management. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2011. pp.
414-424

[35] Sen S, Das M, Chatterjee R.
Estimation of incomplete data in mixed
dataset. In: Sa PK, Sahoo MN,
Murugappan M, Wu Y, Majhi B, editors.
Progress in Intelligent Computing
Techniques: Theory, Practice, and
Applications. Singapore: Springer
Singapore; 2018. pp. 483-492

[36] Chen M, Hao Y, Hwang K, Wang L,
Wang L. Disease prediction by machine
learning over big data from healthcare
communities. IEEE Access. 2017;5:
8869-8879

[37] Perez P, Gramsch E. Forecasting
hourly pm2.5 in santiago de chile with
emphasis on night episodes.
Atmospheric Environment. 2016;124:
22-27

[38] Laña I, Del Ser J, Padró A, Vélez M,
Casanova-Mateo C. The role of local

urban traffic and meteorological
conditions in air pollution: A data-based
case study in Madrid, Spain.
Atmospheric Environment. 2016;145:
424-438

[39] Kamińska JA. The use of random
forests in modeling short-term air
pollution effects based on traffic and
meteorological conditions: A case study
in wrocław. Journal of Environmental
Management. 2018;217:164-174

[40] Kamińska JA. Probabilistic
forecasting of nitrogen dioxide
concentrations at an urban road
intersection. Sustainability. 2018;10:
4213

[41] Shang Z, Deng T, He J, Duan X. A
novel model for hourly pm2.5
concentration prediction based on cart
and eelm. Science of the Total
Environment. 2019;651:3043-3052

[42] Braik M, Sheta A, Al-Hiary H.
Hybrid neural network models for
forecasting ozone and particulate matter
concentrations in the Republic of China.
13. Air, Quality, Atmosphere, and
Health. 2020;13:839-851. Springer

[43] Sheta AF, Ghatasheh N, Faris H.
2015 6th International Conference on
Information and Communication
Systems (ICICS). Forecasting global
carbon dioxide emission using auto-
regressive with eXogenous input and
evolutionary product unit neural
network models. 2015;182-187. DOI:
10.1109/IACS.2015.7103224

[44] Dotse S-Q, Petra MI, Dagar L, De
Silva LC. Application of computational
intelligence techniques to forecast daily
pm10 exceedances in Brunei
Darussalam. Atmospheric Pollution
Research. 2018;9(2):358-368

[45] Sun W, Sun J. Daily pm2.5
concentration prediction based on
principal component analysis and lssvm
optimized by cuckoo search algorithm.

67

A Layered Recurrent Neural Network for Imputing Air Pollutants Missing Data…
DOI: http://dx.doi.org/10.5772/intechopen.93678



regular jumps for forecasting ozone
concentrations: Two real cases from the
east of Croatia. Air Quality, Atmosphere
and Health. 2018;11(03):559-569

[15] Fuks KB, Woodby B, Valacchi G.
Skin damage by tropospheric ozone. Der
Hautarzt. 2019:1-5

[16] Lange SS, Mulholland SE,
Honeycutt ME. What are the net
benefits of reducing the ozone standard
to 65 ppb? An alternative analysis.
International Journal of Environmental
Research and Public Health. 2018;15(8)

[17] Isiugo K, Jandarov R, Cox J, Ryan P,
Newman N, Grinshpun SA, et al. Indoor
particulate matter and lung function in
children. Science of the Total
Environment. 2019;663:408-417

[18] Faustini A, StafoggiaM,WilliamsM,
DavoliM, Forastiere F. The effect of short-
term exposure to o3, no2, and their
combined oxidative potential onmortality
in Rome. Air Quality, Atmosphere and
Health. 2019;12(5):561-571

[19] Kim C, Hu S-C. Total respiratory
tract deposition of fine micrometer-
sized particles in healthy adults:
Empirical equations for sex and
breathing pattern. Journal of Applied
Physiology. 2006;101:401-412

[20] Deng Q, Lu C, Li Y, Sundell J,
Norbäck D. Exposure to outdoor air
pollution during trimesters of pregnancy
and childhood asthma, allergic rhinitis,
and eczema. Environmental Research.
2016;150:119-127

[21] Ul-Saufie A, Yahya A, Ramli N,
Hamid H. Robust regression models for
predicting PM10 concentration in an
industrial area. International Journal of
Engineering and Technology. 2012;2(3):
364-370

[22] Holgate ST, Koren HS, Samet JM,
Maynard RL. Air Pollution and Health.
United States: Elsevier; 1999

[23] Pokric B, Kreo S, Drajic D, Pokric M,
Jokic I, Stojanovic MJ. Ekonet -
environmental monitoring using low-
cost sensors for detecting gases,
particulate matter, and meteorological
parameters. In: 2014 Eighth International
Conference on Innovative Mobile and
Internet Services in Ubiquitous
Computing. United Kingdom: IMIS-
2014, Conference Publishing Service
(CPS); 2014. pp. 421-426

[24]Wang F, Liu J. Networked wireless
sensor data collection: Issues,
challenges, and approaches. IEEE
Communication Surveys and Tutorials.
2011;13(4):673-687

[25] Turabieh H, Abu Salem A, Abu-El-
Rub N. Dynamic L-RNN recovery of
missing data in iomt applications.
Future Generation Computer Systems.
2018;89:575-583

[26] Yu Y, Si X, Hu C, Zhang J. A review
of recurrent neural networks: LSTM
cells and network architectures. Neural
Computation. 2019;31(7):1235-1270

[27] Choi E, Schuetz A, Stewart W, Sun
J. Using recurrent neural network
models for early detection of heart
failure onset. Journal of the American
Medical Informatics Association. 2016;
24:ocw112

[28] Oeda S, Kurimoto I, Ichimura T.
Time series data classification using
recurrent neural network with ensemble
learning. In: Gabrys B, Howlett RJ, Jain
LC, editors. Knowledge-Based
Intelligent Information and Engineering
Systems. Berlin Heidelberg: Springer;
2006

[29] Che Z, Purushotham S, Cho K,
Sontag D, Liu Y. Recurrent neural
networks for multivariate time series
with missing values. Scientific Reports.
2016;8:06

[30] Momeni A, Pincus M, Libien J.
Imputation and Missing Data. United

66

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

States: Springer International
Publishing; 2018. pp. 185-200

[31] Lang KM, Little TD. Principled
missing data treatments. Prevention
Science. 2018;19(3):284-294

[32] Mary IPS, Arockiam L. Imputing
the missing data in iot based on
the spatial and temporal correlation.
In: 2017 IEEE International
Conference on Current Trends in
Advanced Computing (ICCTAC).
Netherlands: Elsevier; 2017. pp. 1-4

[33] Sta HB. Quality and the efficiency
of data in “smart-cities”. Future
Generation Computer Systems. 2017;74:
409-416

[34] Feng X, Wu S, Liu Y. Imputing
missing values for mixed numeric and
categorical attributes based on
incomplete data hierarchical clustering.
In: Xiong H, Lee WB, editors.
Knowledge Science, Engineering and
Management. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2011. pp.
414-424

[35] Sen S, Das M, Chatterjee R.
Estimation of incomplete data in mixed
dataset. In: Sa PK, Sahoo MN,
Murugappan M, Wu Y, Majhi B, editors.
Progress in Intelligent Computing
Techniques: Theory, Practice, and
Applications. Singapore: Springer
Singapore; 2018. pp. 483-492

[36] Chen M, Hao Y, Hwang K, Wang L,
Wang L. Disease prediction by machine
learning over big data from healthcare
communities. IEEE Access. 2017;5:
8869-8879

[37] Perez P, Gramsch E. Forecasting
hourly pm2.5 in santiago de chile with
emphasis on night episodes.
Atmospheric Environment. 2016;124:
22-27

[38] Laña I, Del Ser J, Padró A, Vélez M,
Casanova-Mateo C. The role of local

urban traffic and meteorological
conditions in air pollution: A data-based
case study in Madrid, Spain.
Atmospheric Environment. 2016;145:
424-438

[39] Kamińska JA. The use of random
forests in modeling short-term air
pollution effects based on traffic and
meteorological conditions: A case study
in wrocław. Journal of Environmental
Management. 2018;217:164-174

[40] Kamińska JA. Probabilistic
forecasting of nitrogen dioxide
concentrations at an urban road
intersection. Sustainability. 2018;10:
4213

[41] Shang Z, Deng T, He J, Duan X. A
novel model for hourly pm2.5
concentration prediction based on cart
and eelm. Science of the Total
Environment. 2019;651:3043-3052

[42] Braik M, Sheta A, Al-Hiary H.
Hybrid neural network models for
forecasting ozone and particulate matter
concentrations in the Republic of China.
13. Air, Quality, Atmosphere, and
Health. 2020;13:839-851. Springer

[43] Sheta AF, Ghatasheh N, Faris H.
2015 6th International Conference on
Information and Communication
Systems (ICICS). Forecasting global
carbon dioxide emission using auto-
regressive with eXogenous input and
evolutionary product unit neural
network models. 2015;182-187. DOI:
10.1109/IACS.2015.7103224

[44] Dotse S-Q, Petra MI, Dagar L, De
Silva LC. Application of computational
intelligence techniques to forecast daily
pm10 exceedances in Brunei
Darussalam. Atmospheric Pollution
Research. 2018;9(2):358-368

[45] Sun W, Sun J. Daily pm2.5
concentration prediction based on
principal component analysis and lssvm
optimized by cuckoo search algorithm.

67

A Layered Recurrent Neural Network for Imputing Air Pollutants Missing Data…
DOI: http://dx.doi.org/10.5772/intechopen.93678



Journal of Environmental Management.
2017;188:144-152

[46] Xu Y, Du P, Wang J. Research and
application of a hybrid model based on
dynamic fuzzy synthetic evaluation for
establishing air quality forecasting and
early warning system: A case study in
China. Environmental Pollution. 2017;
223:435-448

[47] Luo H, Wang D, Yue C, Liu Y, Guo
H. Research and application of a novel
hybrid decomposition-ensemble
learning paradigm with error correction
for daily pm10 forecasting. Atmospheric
Research. 2018;201:34-45

[48] Aznarte JL. Probabilistic forecasting
for extreme no2 pollution episodes.
Environmental Pollution. 2017;229:
321-328

[49] Wang D, Wei S, Luo H, Yue C,
Grunder O. A novel hybrid model for air
quality index forecasting based on two-
phase decomposition technique and
modified extreme learning machine.
Science of the Total Environment. 2017;
580:719-733

[50] Kumar A, Goyal P. Forecasting of
air quality in Delhi using principal
component regression technique.
Atmospheric Pollution Research. 2011;2
(4):436-444

[51] Akhtar A, Masood S, Gupta C,
Masood A. Prediction and analysis of
pollution levels in Delhi using multilayer
perceptron. In: Satapathy SC, Bhateja V,
Raju KS, Janakiramaiah B, editors. Data
Engineering and Intelligent Computing.
Singapore: Springer Singapore; 2018.
pp. 563-572

[52] Yadav V, Nath S. Identification of
relevant stochastic input variables for
prediction of daily pm10 using artificial
neural networks. In: Ray K, Sharma TK,
Rawat S, Saini RK, Bandyopadhyay A,
editors. Soft Computing: Theories and

Applications. Singapore: Springer
Singapore; 2019. pp. 23-31

[53] Singh P. Linear Regression.
Berkeley, CA: Apress; 2019. pp. 43-64

[54]Wang S, Huang GH, He L.
Development of a clusterwise-linear-
regression-based forecasting system for
characterizing dnapl dissolution
behaviors in porous media. Science of the
Total Environment. 2012;433:141-150

[55] Swetapadma A, Yadav A. A novel
decision tree regression-based fault
distance estimation scheme for
transmission lines. IEEE Transactions on
Power Delivery. 2017;32(1):234-245

[56] Qin H, Gong R, Liu X, Bai X, Song J,
Sebe N. Binary neural networks: A survey.
Pattern Recognition. 2020;105:107281

68

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

Chapter 4

Wind Power Forecasting
Sumit Saroha, Sanjeev Kumar Aggarwal and Preeti Rana

Abstract

The wind power generation depends on wind speed and its derivatives like: wind
speed and direction. With consideration of stochastic nature of wind power, this
work addresses three main issues: first, it discusses the state of art of energy
forecasting with emphasis on wind power forecasting. It provides an overview of
different variables on which wind power generation depends and explains various
key features regarding the design framework of forecasting models. Second, it
performs an assessment, detailed comparison and evaluation of the forecasting
performance of various types of models; and third, evaluates the uncertainty of
expected outcomes with the help of probabilistic measures.

Keywords: forecasting, neural networks, probability, time series, wind power

1. Introduction

Electricity sector especially in supply industry over the last various years across
the world has underwent through numerous structural and systematic changes due
to two main reasons: orientation of industry towards privatizations (reforms) and
movement of electricity generation towards clean and pollution free renewable
energy sources [1]. In this changing environment forecasting electricity becomes
one of the most important exercises in managing the power systems. Forecasting
plays a significant role in operation planning, scheduling and real time balancing of
power system. Mainly, there are three forecasting issues in present day power
systems namely electricity load, price and the renewable energy sources. Among the
recently emerged renewable sources of energy (solar energy), the wind power
industry has witnessed tremendous growth and has taken a leading role [2, 3].

Besides this, the electricity based on renewable energy sources perceived as an
alternate source of energy and their penetration within the power system is rising at
a very fast rate [4]. Among new sources of renewable energy, the wind energy has
seen tremendous growth over recent years; in various countries, it is a true alterna-
tive to fossil fuels. Furthermore, wind power generation capacity varies constantly,
stochastic, intermittent in nature and associated with generation of other ramp
events. In spite of that, it is freely available & pollution free source of energy; so, it
has gained an extensive interest and one of the most established renewable energy
alternatives to the conventional energy resources. On approaching towards the end
of 2016, 486.8 GW would be worldwide installed wind nameplate capacity due to
growth rate of 12.5%. As per estimate, wind power towards the end of 2021 will
approach to 817 GW with growth rate of 10.4%. These wind capacity installations
are mainly utilized in electric power systems based on large grid and their inter-
connections [5, 6]. Now-a-days another fast growing eco-friendly electrical
generation technologies are solar, geothermal and tidal energy.
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Electricity sector especially in supply industry over the last various years across
the world has underwent through numerous structural and systematic changes due
to two main reasons: orientation of industry towards privatizations (reforms) and
movement of electricity generation towards clean and pollution free renewable
energy sources [1]. In this changing environment forecasting electricity becomes
one of the most important exercises in managing the power systems. Forecasting
plays a significant role in operation planning, scheduling and real time balancing of
power system. Mainly, there are three forecasting issues in present day power
systems namely electricity load, price and the renewable energy sources. Among the
recently emerged renewable sources of energy (solar energy), the wind power
industry has witnessed tremendous growth and has taken a leading role [2, 3].

Besides this, the electricity based on renewable energy sources perceived as an
alternate source of energy and their penetration within the power system is rising at
a very fast rate [4]. Among new sources of renewable energy, the wind energy has
seen tremendous growth over recent years; in various countries, it is a true alterna-
tive to fossil fuels. Furthermore, wind power generation capacity varies constantly,
stochastic, intermittent in nature and associated with generation of other ramp
events. In spite of that, it is freely available & pollution free source of energy; so, it
has gained an extensive interest and one of the most established renewable energy
alternatives to the conventional energy resources. On approaching towards the end
of 2016, 486.8 GW would be worldwide installed wind nameplate capacity due to
growth rate of 12.5%. As per estimate, wind power towards the end of 2021 will
approach to 817 GW with growth rate of 10.4%. These wind capacity installations
are mainly utilized in electric power systems based on large grid and their inter-
connections [5, 6]. Now-a-days another fast growing eco-friendly electrical
generation technologies are solar, geothermal and tidal energy.
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The uncertainty associated with wind power originates from uncertainties in its
derivatives such as: wind speed & direction forecasts. In coordination with fast
deployment of wind farms establishes a demand for efficient forecasting methods
related to wind power production. The high is forecast reliability, low will be
reserve maintenance cost of the system, which will result technical and commercial
implications for proper management and working of power systems. Wind power
forecasting (WPF) depicts how much wind power is to be expected at particular
instant of time in the days to come. WPF is one of the most critical aspects in wind
power integration and operation [6–8]. As per time horizons, the WPF has been
done on the basis of long, medium and short term.

The availability of wind power is largely influenced by the prevailing weather
conditions, seasonal variations and time spam variation and therefore, it is charac-
terized by strong fluctuations, uncertainty and intermittency. These characteristics
of wind power create a great attention towards it. Consequently, power generation
from wind cannot be matched easily to the electricity demand like power generated
with conventional plants. The penetration (share of wind power to meet demand)
level of wind power introduces new challenges for the power system, some of them
include:

Integration with Grid: The management of intermittence of wind generation is
the key issue related to its integration with grid. The transmission utility is only
responsible for the balancing of demand and supply at grid level. Therefore, it is
necessary to schedule the supply in advance in order to meet the load profile.
The load is corresponding to the total demand of electricity consumption over a
definite area. The load forecast is usually given by the load forecasting models.
The Mean Absolute Percentage Error (MAPE) of load is in the order of 0.87–1.34%
[9] for the day ahead or week ahead predictions. Still continuous effort has been
made by various researchers and practitioners for improving the performance of
load forecasting models and techniques. i.e. it is reached in advance stage of
research.

Integration with Electricity Markets: Generally, the electricity market is build
by two mechanisms. The first one is spot energy market or so called Day Ahead
market, where the bulk energy necessary to cover the load profile for the next
coming day is traded on the generation cost. An auction process followed by bid-
ding permits the settlement of electricity price and generation for the various
bidding hours. The second mechanism is ancillary service market or so called
intraday market, where differences between planned production and actual load are
traded (due to the power plant failure or due to intermittence of wind power
generation). The ancillary service market is very important for a stable operation of
the power grid and span across various time frames. Therefore, it is additionally
important for consumers as well as suppliers to know the future electricity price, so
that they can make strategies. Like load forecasting the electricity price is in its
advance stage of research and error rate (MAPE) reported is 3.96–4.92% [10].

Therefore, the accurate forecasts of wind power generation is an essential factor
for a successful integration of large amounts of wind power into the electricity
supply system, aiming at precise information on timing and magnitude of power
generation from these variable sources.

Among requirements of wind power forecasting over three different forecasting
horizons, there are different framework for the forecasting which includes single
step ahead, multiple lead hours ahead and probabilistic forecasting. Typically mul-
tiple step and probabilistic forecasting is more complicated because in multiple, the
error is multiples at every lead hour prediction; whereas, in probabilistic several
statistical factors contribute additional complexity and additional complicacy.
Moreover, it also affects the profits of a utility directly.
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2. Methods of energy forecasting

2.1 Deterministic or point forecasting

The predicted values can be provided to end-users either in a deterministic or in
probabilistic format, with the former, a specific value for energy production at a
particular time step (15-minutes or one hour) is forecasted; whereas, in later, range
of possible output is forecasted on the behalf of deterministic forecasted values
using probability theory.

Single Step Ahead Forecasting.
It is the estimation of any quantity today for the next coming day with utmost

possible precision and reliability. We have at our disposal the past values of this
quantity, the data of one or several time series along with other several factors on
which these time series are produced.

WPtþ1 ¼ f WPt, … … ,WPt�dþ1ð Þ þ e (1)

With

t∈ f d, … … ,N � 1f g (2)

By the Eq. (1), e, is the prediction error or noise present between present
forecasting value and n previous observations. WP is the wind power, T is the
target, for multiple step the target matrix is increased with respect to each step in
advance as given below in Eq. (3, 4).

Single Step

WP11WP12 ���WP16

WP21WP22 ���WP26

WPN1WPN2 ���WPN6

2
6664

3
7775

T1

T2

TN

2
6664

3
7775 (3)

Second Step

WP11WP12 ���WP16

WP21WP22 ���WP26

WPN1WPN2 ���WPN6

2
6664

3
7775

T2

T3

TNþ1

2
6664

3
7775 (4)

Multi Step Ahead Forecasting.
The multiple steps ahead or multiple lead hour prediction is forecasting a pattern

of values for given time series. It is an approach that works step-by-step by using
current prediction for deterministic next stage prediction. In case of multi-step ahead
prediction various anomalies like error accumulation and complexity of data prevails
when prediction period is long. It all occurs due to propagation of bias and variances
form previous prediction of future prediction. Because of this large forecasting hori-
zon & error present in forecasting this method is suffered from the low performance
& higher inaccuracy that is because of use of approximated values rather than actual
values. The main reason for this higher inaccuracy is that the error is multiplied in
every step-ahead prediction. So, the selection of input parameter function to fit the
time series can be a challenging task for the power system researchers.

KthStep

WP11WP12 ���WP16

WP21WP22 ���WP26

WPN1WPN2 ���WPN6

2
6664

3
7775

TK

TKþ1
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2
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3
7775 (5)
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The uncertainty associated with wind power originates from uncertainties in its
derivatives such as: wind speed & direction forecasts. In coordination with fast
deployment of wind farms establishes a demand for efficient forecasting methods
related to wind power production. The high is forecast reliability, low will be
reserve maintenance cost of the system, which will result technical and commercial
implications for proper management and working of power systems. Wind power
forecasting (WPF) depicts how much wind power is to be expected at particular
instant of time in the days to come. WPF is one of the most critical aspects in wind
power integration and operation [6–8]. As per time horizons, the WPF has been
done on the basis of long, medium and short term.

The availability of wind power is largely influenced by the prevailing weather
conditions, seasonal variations and time spam variation and therefore, it is charac-
terized by strong fluctuations, uncertainty and intermittency. These characteristics
of wind power create a great attention towards it. Consequently, power generation
from wind cannot be matched easily to the electricity demand like power generated
with conventional plants. The penetration (share of wind power to meet demand)
level of wind power introduces new challenges for the power system, some of them
include:

Integration with Grid: The management of intermittence of wind generation is
the key issue related to its integration with grid. The transmission utility is only
responsible for the balancing of demand and supply at grid level. Therefore, it is
necessary to schedule the supply in advance in order to meet the load profile.
The load is corresponding to the total demand of electricity consumption over a
definite area. The load forecast is usually given by the load forecasting models.
The Mean Absolute Percentage Error (MAPE) of load is in the order of 0.87–1.34%
[9] for the day ahead or week ahead predictions. Still continuous effort has been
made by various researchers and practitioners for improving the performance of
load forecasting models and techniques. i.e. it is reached in advance stage of
research.

Integration with Electricity Markets: Generally, the electricity market is build
by two mechanisms. The first one is spot energy market or so called Day Ahead
market, where the bulk energy necessary to cover the load profile for the next
coming day is traded on the generation cost. An auction process followed by bid-
ding permits the settlement of electricity price and generation for the various
bidding hours. The second mechanism is ancillary service market or so called
intraday market, where differences between planned production and actual load are
traded (due to the power plant failure or due to intermittence of wind power
generation). The ancillary service market is very important for a stable operation of
the power grid and span across various time frames. Therefore, it is additionally
important for consumers as well as suppliers to know the future electricity price, so
that they can make strategies. Like load forecasting the electricity price is in its
advance stage of research and error rate (MAPE) reported is 3.96–4.92% [10].

Therefore, the accurate forecasts of wind power generation is an essential factor
for a successful integration of large amounts of wind power into the electricity
supply system, aiming at precise information on timing and magnitude of power
generation from these variable sources.

Among requirements of wind power forecasting over three different forecasting
horizons, there are different framework for the forecasting which includes single
step ahead, multiple lead hours ahead and probabilistic forecasting. Typically mul-
tiple step and probabilistic forecasting is more complicated because in multiple, the
error is multiples at every lead hour prediction; whereas, in probabilistic several
statistical factors contribute additional complexity and additional complicacy.
Moreover, it also affects the profits of a utility directly.

70

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

2. Methods of energy forecasting
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probabilistic format, with the former, a specific value for energy production at a
particular time step (15-minutes or one hour) is forecasted; whereas, in later, range
of possible output is forecasted on the behalf of deterministic forecasted values
using probability theory.

Single Step Ahead Forecasting.
It is the estimation of any quantity today for the next coming day with utmost

possible precision and reliability. We have at our disposal the past values of this
quantity, the data of one or several time series along with other several factors on
which these time series are produced.

WPtþ1 ¼ f WPt, … … ,WPt�dþ1ð Þ þ e (1)

With
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By the Eq. (1), e, is the prediction error or noise present between present
forecasting value and n previous observations. WP is the wind power, T is the
target, for multiple step the target matrix is increased with respect to each step in
advance as given below in Eq. (3, 4).
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Multi Step Ahead Forecasting.
The multiple steps ahead or multiple lead hour prediction is forecasting a pattern

of values for given time series. It is an approach that works step-by-step by using
current prediction for deterministic next stage prediction. In case of multi-step ahead
prediction various anomalies like error accumulation and complexity of data prevails
when prediction period is long. It all occurs due to propagation of bias and variances
form previous prediction of future prediction. Because of this large forecasting hori-
zon & error present in forecasting this method is suffered from the low performance
& higher inaccuracy that is because of use of approximated values rather than actual
values. The main reason for this higher inaccuracy is that the error is multiplied in
every step-ahead prediction. So, the selection of input parameter function to fit the
time series can be a challenging task for the power system researchers.
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2.2 Probabilistic or interval forecasting

The probabilistic forecast systems are designed to estimate the uncertainty of a
forecast and used to produce the application of probabilistic forecasting. The veri-
fication is an essential part of probabilistic forecast systems. The correct and accu-
rate use of probability forecasts means that, given a large sample, on average and
event will occur at the same frequency as the forecast probability [11].

3. State of art for wind power forecast

As far as literature is concerned, number of forecasting methods have been
designed and analyzed over last few decades. Based on information in research
papers, author has examined various developments in the field of wind power
generation & its derivatives prediction such as speed or direction. The major
emphasis is led on facilitation of a number of issues concerned with techniques
involved in WPF, focuses on complexity reduction in forecasting issues with higher
accuracy in forecasting for different time span. This research mainly focuses on
motivating power system researchers to design highly efficient and accurate models
whether online/offline considering various issues related to wind power which in
twin result in reliable operation of power system models by utilizing energy
resources economically. On carrying out comparative study and analysis of accu-
racy in forecasting models, hybrid models outperformed all other models.

The generation of wind power is highly influenced by nature and seasons. So, it
has been a tedious task to design a sound prediction model by taking in account
above two factors. But, AI and machine learning have come with an advantage for
developing new models due to their higher efficiency and accuracy. After a deep
insight of various research papers authors have observed that the NN is the most
prevailing approach for wind power and its derivatives estimation. It has also been
observed that, hybrid models have been found to be more accurate model and for
getting more accuracy, the training data should be updated regularly with small
time span. Although for real time operation of power system, researchers have to
move towards online models. There are three main steps involved in WPF (i) Input
Selection, (ii) Data Pre-processing, & (iii) Forecasting models (tool) used.

3.1 Input parameters & their selection methods

The higher uncertainty in wind nature is result of uncertainties in its derivatives
that affect systems of reliability. If forecast reliability is higher than operational cost
of wind power system is lowered, in turn benefitting wind farm owners as they will
have more substantial saving as well as have better efficiency of the system [12].
Apart from all this, wind power prediction is still a tedious task because wind flow is
an unpredictable natural phenomenon and wind speed time series possesses various
characteristics like: high volatility, high complexity, non linearity and non-
stationary due to prevent physical conditions of place [13, 14]. After an extensive
study of various research papers more than 46 exogenous variables have been
observed as given in Table 1.

The input variables selection is main task because the accurate prediction by a
forecasting model is highly influenced by proper input variables and their past
results in the field of wind speed & power prediction and estimation. Furthermore,
the selection of input variables for a prediction model mainly depends on exogenous
and without exogenous variables. The various input selection techniques are as
discussed.
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3.1.1 Physical or numerical weather prediction (NWP) models

These are very common model in which wind is a function of exogenous vari-
ables and forecasting tool input is the output of NWP models. These physical
models forecasting process depends on entire input corresponding to wind power
derivatives and are deterministic one. Their implementation process is very com-
plex to perform, take high computation time to carry out forecasting process and
depends on physical variables concerned with wind farm location. The equation
which is used to convert wind speed into power is as follows as: Wp = 0.5.ρ.A.v3.
Here, ρ denotes the air density; v denotes the wind velocity through an intercepting
area A of wind turbine. Actually, this equation follows the different physical vari-
ables corresponding to wind turbine. The purpose of NWP models is to predict the
wind speed of surrounding area of wind mill.

3.1.2 Statistical models

In statistical models, wind remains a function that works using past captured
values. These models are trained by providing data patterns that are measured
statistically. They are based on historical data patterns generated by wind power
and hence, they are not based on computation of any form of mathematical expres-
sion. These models outperform other short term forecasting horizon over prediction
accuracy and these models are easy to implement & validate. They employed the
statistics like: Cross Correlation (CC), Auto Correlation Function (ACF) and Partial
Auto Correlation Function (PACF) for input selection on the basis of standard
deviation, variance, mean and slope of input curve etc. The Figure 1 shows ACF
and PACF of hourly Wind Power time series based on these two parameters input

Class Input variable Input data

1. Atmospheric
Characteristics

(1) Temperature (2) Pressure, (3) Humidity (4) Rainfall,
(5) Cloud formation, (6) Cloud cover, (7) Turbulance,
(8) Radiations Effect, (9) Density

2. Topographic
Characteristics

(10) Turbine position, (11) Turbine size, (12) Hub
height, (13) Tower height, (14) Elevation, (15) Degree in
Latitude

3. Wind Power
Characteristics

(16) Wind speed, (17) Wind direction, (18) Radiation
transmission, (19) Sine & Cosine of wind direction, (20)
Air density, (21) Local wind profile

f(wind Speed); (d-m,
t), m = 1,2,3,4,7,8,
168, 365

4. Behavior
Indices

(22) Hydrological cycle, (23) cloud-radiation interaction,
(24) spatial behavior, (25) Temporal behavior, (26)
Spatial resolution

f(wind power; (d-m,t-
n), m = 1,2,3,4,7,8,
168, 365 and
n = 0,1,2,3,4

5. Other
Stochastic
Uncertainty

(27) Ocean-land interactions, (28) Regime switching,
(29) Exchanges of momentum, (30) Load distribution
among parallel turbines, (3) 1Thunders, (32) Storms,
(33) Risk index, (34) Guest wind speed

f(wind direction;
(d-m,t-n), m = 1,2,3,
168, 365 and
n = 0,1,2,3,4

6. Geographical
Conditions

(35) Orography, (36) Surface roughness, (37) Obstacles,
(38) Geographical height, (39) Mean sea level pressure,
(40) Air temperature, (41) Soil wetness, (42)
Atmosphere covering, (43) Snow covering, (44)
Moisture with land surface, (45) Complex terrain, (46)
Terrain roughness

Table 1.
Factors affecting wind power generation.
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time lag parameterization of both time series and Artificial Intelligence (AI) take
place. The higher is the value of ACF more is correlation between two consecutive
series. However, the selection of input variables is one of the most important part of
NN based forecasting model on with the accuracy of the model depends and that also
determines the input architecture of the model. During the training of NN model,
there may be problem of overtraining or over fitting that leads to poor accuracy of
model. Therefore, it is necessary to know the relation that exists between present
time wind power series along with their past time lag series. The input time lag is
given below in Table 2. The wind forecast problem aims to find an estimateWP
(t + k) of the wind vectorWP(t + n) based on the previous n measurementsWP(t),
WP(t-1),. .., WP(t-n).

3.1.3 Hybrid (physical + statistical) models

It is the combination of NWP and statistical tools for input data selection. In this,
on the bases of statistical analysis, the NWP variables are pre-processed to time lag
for the prediction of next step.

3.2 Input data collection & pre-processing

The input data and wind data pattern is accumulated in raw form and does not
possesses highly efficient forecasting capability with accurate precision. Raw data is
unpredictable, irregular, seasonal and more complex due to changing weather.
While prediction computation, over-fitting or over-training of NN is the main issue
in time series variation leading to foot fall in accuracy of forecasted values. Data

Figure 1.
ACF & PACF for hourly wind power series.
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pre-processing means data cleaning data transformation and data reduction input
data and converting it into useful information as per dimensions. Data must be
classified based on seasonal and weather variable variation. Kalman filter is an
appropriate solution to various problems such as: complexity in data, over-fitting and
outliers of input data generated during learning process [15, 16]. As Unscented
Kalman Filter (UKF) achieves higher efficiency in handling random fluctuations, so it
is an economical and adequate choice for non-linear estimation of wind speed [17].

In presented work, in order to investigate the performance of different fore-
casting models, real wind generation data of Ontario Electricity Market (OEM)
from 2011 to 2014 [18] has been considered. For obtaining more accuracy and over-
training avoidance in learning process to achieve greater accuracy, large set of data
values have not been considered, as generation of wind power is dependent func-
tion on numerous parameters such as: changing season, temperature and weather
conditions. As time moves wind capacity (defined as actual energy produced in
comparison to energy actually dissipated by turbines under favorable conditions)
can fluctuate. The main concern of Wavelet Transform (WT) is to collect the
meaningful information with removal of noise & irregularities from the original
signal. From the available literature on forecasting and experimental analysis, it has
been observed that Daubechies wavelet at different levels performs an appropriate
smoothness of the signal with respect to wave-length, which results in an appropri-
ate behavior of input data pattern for wind power prediction tool.

The WT implementation is done to decompose wind power series broadly into
constitutive series set. This set of constitutive series help in reduction of input data
and outperforms original wind series in behavior leading to prediction accuracy
improvement. The WT divides wind series signal into two distinguishing signals
having low and high frequency, then the decomposed signals are provided to the
separate NN model for training. There are four filters (decomposition low pass &
high pass filter, reconstruction low & high pass filter) used in Discrete Wavelet
Transform (DWT) for scaling the input data pattern into approximate (A) and
detailed (D) signals as given in Table 2 [19–24]. Empirical Model Decomposition
(EMD) has also been used to decompose the wind power series into high and low
frequency signals [25]. The NN models train themselves better with the
pre-processed data, as a result of this better prediction performance.

3.3 Wind power forecasting tools

For the past two decades, models based on machine learning have captured
attention & become more sophisticated and reliable contenders in spite of

S. No. Time lag series No. of time lag

1. WP (t-1) 1

2. WP (t-1), WP (t-2) 2

3. WP (t-1), WP (t-2), WP (t-3) 3

4. WP (t-1), WP (t-2), WP (t-3), WP (t-4) 4

5. WP (t-1), WP (t-2), WP (t-3), WP (t-4), WP (t-5) 5

6. WP (t-1), WP (t-2), WP (t-3), WP (t-4), WP (t-5), WP (t-6) 6

7. A1 Approximate Series

8. D1, D2, D3, D4, D5, D6 Detailed Series

Table 2.
Inputs used.
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traditional statistical models in forecasting. These are non parametric & non-linear
models also known as data driven or black box models having usage of historical
data patterns to learn the stochastic dependency between past and future. These
NN’s models always leave behind other traditional statistical models such as: linear
regression and Box-Jenkins approaches. The NNs can be successfully used for
modeling and forecasting non-linear time series [26].

3.3.1 Statistical models

The conventional statistical models (persistence, Moving Average & Gray
Models) are identical to the direct random time-series model. Based on a
number of historical data, pattern identification, parameter estimation,
model checking are utilized to make a mathematical model for the prediction
problem.

i. Traditional Models

a. Naïve Predictor: In order to get a significant evaluation of WPF a
naïve model should be used. This is one of the old and simple ways to
forecast wind power & speed also called persistence model. It is
based on the simple assumption that wind power at present time t
will be same in a future time (t + x) [27].

b. Simple Moving Average: The moving average predicts the wind
power based on simply the average of past values of wind power. It
has also been used as a benchmark for assessing the accuracy criteria
of prediction model.

c. Gray Model (1,1) Predictor: GM (n, m) model is based on the
Gray theory as demonstrated by Professor Deng in 1982. GM
(n, m) denotes a Gray model where n is the order differential
equation and m is the no. of variables. It predicts the future
values of time series based on the recent data fluctuations.
There are various types of Gray Models as designed by various
researchers but because of computational efficiency of GM (1, 1)
is generally used.

ii. Linear or Time Series (TS) Models

According to the methods which have been proposed by Jenkins, these
models can be further divided as follows: autoregressive model (AR), moving
average model (MA), autoregressive moving average model (ARMA), auto
regressive integrated moving average model (ARIMA) [28]. Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) has been used for
interval forecasting to simulate the fluctuating characteristics of the residual
series in Mictrogrid China. Fractional-ARIMA method has been proposed to over-
come the disadvantage of ARIMA method, which has been characterized by a slow
decay in its ACF [29]. The stochastic and seasonality pattern of wind power has
been tackled by designing a combined Autoregressive Fractionally Integrated Mov-
ing Average (ARFIMA) and GARCH model [30]; whereas, for above said problem
ref. [31] demonstrated ARMA with Vector Auto-regression and ref. [32] designed
different ARMA models for wind speed and direction tuples prediction (above said
problem).

76

Forecasting in Mathematics - Recent Advances, New Perspectives and Applications

3.3.2 Artificial intelligence (AI) models

The FFNN architecture, which is also called as Multi Layer Perceptron (MLP),
along with back propagation (BP) as the learning algorithm is the most popular
choice among researchers. The neural network (NN) and machine learning algo-
rithms structures used by most of the researchers after 2000 in the leading journals
are: Feed Forward Neural Network (FFNN), Recurrent Neural Network (RNN),
Radial Basis Function Neural Network (RBFNN), Support Vector Machine (SVM),
Support Vector Regression (SVR), Adaptive Neuro Fuzzy Inference System
(ANFIS), Extreme Learning Machine (ELM), Adaptive Wavelet Neural Network
(AWNN), General Regression Neural Network (GRNN), and Linear Neural
Network with Time Delay (LNNTD).

In this, wind forecasting has been done by the three different models: (i)
Benchmark, (ii) NN and (iii) WT based model. In the first category, only Naïve
Predictor has been considered. This is the standard benchmark for wind forecasting
applications, in which the previous values of input wind power series have been
used for the next lead hour as forecasted values. In the second category, different
ANN based models have been taken into consideration with different structure of
network and learning algorithms. The NN along with gradient-based optimization
techniques is most popular choice among all researchers and associated with the
short comings of local minima and sensitivity to initial value persists as a result of
poor accuracy. So, as to resolve above said problems, global evolutionary algorithms
(EA) such as Genetic Algorithms (GA) [1, 23], Particle Swarm Optimization (PSO)
[19, 33, 34] have been utilized. The main advantages of EA lie in its global conver-
gence, inherent parallel search nature, and great robustness. These algorithms gen-
erate a high quality solution within a short computation time.

For proper input selection, there is need of complete experimental analysis on
the basis of error rate. The input structures of WT based models are different from
that of the non WT based models. In the WT based models, the input is the
combination of Wind Power series and WT based approximated and detailed wind
power series. Therefore, the number of input nodes is more as compared to nonWT
models. The structure of WT based FFNN for wind power prediction has been
shown in Figure 2 & detailed prediction steps are:

Step 1: From the raw data of wind power, a time series as input is selected on the
behalf of ACF.

Step 2: Supply the created input signal to WT for performing multilevel decom-
position on wind power signal by utilizing Daubechies (db10) wavelet.

Step 3: Now extract the multi level approximation A6 and 1, 2, 3,4,5,6 level
detailed coefficients D1 to D6 of input wind power series signal.

Step 5: The approximated and detailed wind power series along with six original
time lags has been used as an input variables.

Step 6: A three layer FFNN, as shown in Figure 3, has been selected having
thirteen input nodes equal to the number of input variables, twelve hidden neurons
with tangential sigmoid transfer function, and one output neuron with pure linear
activation function, with each series. The network is trained using Levenberg–
Marquardt (LM) training algorithms with architecture [12–11–1]. The momentum
constant and learning rate have been kept equal to 0.06 and 0.001, respectively.

Step 7: For the prediction, one year wind data has been trained and tested for
next one month, similar process is continuously repeated up-to next 24 months with
one month moving window. The maximum epochs were set equal to 10,000 with
the performance goal of 0.001.

Step 8: The output values found by the network has been assessed on the
accuracy criterion with actual wind power data series.
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3.4 Evaluation of prediction performance

The aim of forecast evaluation is to assess, the general quality of a forecast by
comparing the forecasted system states to actual observed states. The forecast
evaluation provides a forecaster with:

Figure 2.
Hourly curve for load, price & wind power from Ontario electricity market.

Figure 3.
WT based FFNN for wind power forecasting.
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• The ability of better improvement and understanding of forecast. The
evaluation of forecast exposes all those sub-spaces whose forecasting error is
more out of model state space. So, a forecaster can take advantage of analyzing
sub-spaces & utilize it for improving forecasting model.

• Justifying the cost associated with resources used in forecasting model. The
forecast performance assessment in accuracy terms gives a measure that can be
directly linked to the utility or forecast user. Then coast and utility are
compared with each other.

• The ability of performing model selection so that maximum certainty of results
can be obtained with the comparison of others.

In most of the forecasting models accuracy is the criterion for selecting a partic-
ular method for the forecasting. For a consumer accuracy of forecasting is most
important. The various methods for accuracy calculation given below:

• The Error

E ¼ WPt � Ftð Þ (6)

Where, WPt, is actual observation at time t, Ft, is forecast for time t

• The Mean Absolute Error (MAE)

MAE ¼ 1
n

Xn
t¼1

WPt � Ftj j (7)

• The Root Mean Square Error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼0

WPt � Ftð Þ2
s

(8)

• Percentage Error (PE)

PE ¼ WPt � Ftð Þ
Yt

� �
∗ 100 (9)

• The Mean Absolute Percentage Error (MAPE)

MAPE ¼ 1
n

Xt
n¼1

PEj j (10)

The prediction performance of forecasting carried out by the different models
used in this research is justified on the basis of forecasting accuracy indices. The
methodology described above has been applied to predict the wind power of OEM
for two years from November 2012 to October 2014 on MAPE & MAE accuracy
criteria. The software used for training and testing of NN is MATLAB version
R2011b. The extensive use of WT for data pre-processing makes the results more
significant and effective. From the results Table 3, it is clear that the results
achieved with the help of WT based models have been found to be better up to
40–60% as compare to non WT based models. The 24 hours actual and forecasted
wind power curves with error curve have been shown in Figure 4.
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3.5 Uncertainty of forecasts using probabilistic forecasting

The uncertainty of forecasts is mainly due to the noise of training data, the
misspecification of NN model for regression and input data selection.

NN Model Uncertainty: Uncertainty in NN forecasting arises due to misspeci-
fication in input parameters and structure of model which occurs due to local
minima in the training process, random generation of input weights and so on. In
case of global minima, misspecifications lead to non-eligible uncertainties in results
related to prediction. The other factor behind model uncertainty is that during
training finite samples never guarantee consistent generalization in performance of
NN for future days. Basically, in WPF, it has become impossible to gather accurate
information for reducing uncertainties while predicting and hence collectively
called as model uncertainty. Due to model uncertainty, uncertainty in output should
be handled carefully for accurate estimation in NN.

Data Uncertainty: Not only model uncertainty but also data noise adds to
prediction uncertainty. If the data is stochastic in nature, then modeling is deter-
ministically is really difficult. Both model misspecification and data noise are the
major sources of uncertainties that affect the forecasting results.

In this, probabilistic forecasting of wind power has been performed in coordi-
nation with single step ahead wind power point forecasts. The major emphasis of
probabilistic forecasting is to take into account the uncertainty associated with the
wind power with probabilistic forecasting attributes such as: sharpness, reliability,
resolution and discrimination. It consists of a set of prediction intervals which
works in coordination with the best forecasts of single step ahead of wind power
for the next coming hour; the interval forecasting has been incorporated. With a

Model Naïve FFNN ERNN GANN PSONN GAPSONN GRNN LNNTD WT + FFNN

MAPE 15.016 13.83 13.885 14.015 13.91 13.915 14.48 13.825 5.948

MAE 65.073 58.415 58.145 58.413 58.4675 58.29209 62.285 58.0475 23.225

Table 3.
Overall prediction comparisons for all models used.

Figure 4.
One day ahead actual & forecasted wind power curve during winter season.
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pre-assumed probabilistic value, the basic aim of interval forecasting is to find out
the range of prediction interval in which next hour wind power output lies. This
framework has been consequently used for evaluating and analyzing the skill of
the models for one lead hour point forecast. Thus, the overall results have been
proving the reliability of results and show how the resolution may improve the
forecasts skill.

The probabilistic forecasting has a wide range of statistical parameters on which
the probabilistic outcomes of wind power lies. The prediction intervals (PI) stands
for a wide range of possible probabilistic values within which the observed wind
power values lies with a certain predefined probability. The basic idea behind the
prediction intervals is to estimate the uncertainty associated with observed wind
power WPt

i

� �
and forecasted F WPt

i

� �
. The prediction intervals range can be much

more enclosed and wider both depending on the value of confidence intervals (CI).
The CI can be expressed as:

Confidence Interval CIð Þ ¼ 100 1� αð Þ% (11)

For a given sample size α has been a significant level which has been used to take
into account the CI of the certain prediction intervals. The probabilistic stochastic
interval (PSI) can be obtained by:

PSIαt WPið Þ ¼ LBα
t WPið Þ,UBα

t WPið Þ� �
(12)

In the Eq. (12), the lower bound and upper bound can be expressed as:

LBα
t WPið Þ ¼ F WPið Þ � z1�σ=2

σffiffiffi
n

p
� �

(13)

UBα
t WPið Þ ¼ F WPið Þ þ z1�σ=2

σffiffiffi
n

p
� �

(14)

In (13) and (14) z1�σ=2 is the critical value of standard Gaussian distribution,
which depends on certain value of CI, n is look ahead hour for the prediction sample
& σ is the standard deviation of predicted values [11, 35–37] which is expressed as:

Figure 5.
PI with nominal confidence 95% in 24 hours look ahead.
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pre-assumed probabilistic value, the basic aim of interval forecasting is to find out
the range of prediction interval in which next hour wind power output lies. This
framework has been consequently used for evaluating and analyzing the skill of
the models for one lead hour point forecast. Thus, the overall results have been
proving the reliability of results and show how the resolution may improve the
forecasts skill.

The probabilistic forecasting has a wide range of statistical parameters on which
the probabilistic outcomes of wind power lies. The prediction intervals (PI) stands
for a wide range of possible probabilistic values within which the observed wind
power values lies with a certain predefined probability. The basic idea behind the
prediction intervals is to estimate the uncertainty associated with observed wind
power WPt
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and forecasted F WPt

i

� �
. The prediction intervals range can be much

more enclosed and wider both depending on the value of confidence intervals (CI).
The CI can be expressed as:

Confidence Interval CIð Þ ¼ 100 1� αð Þ% (11)

For a given sample size α has been a significant level which has been used to take
into account the CI of the certain prediction intervals. The probabilistic stochastic
interval (PSI) can be obtained by:
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σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WP�WP
� �2

n� 1ð Þ

s
(15)

For the WT based model, the upper bound curve and lower bound curves
obtained at 95% of the confidence and the actual measured wind power curve in
24 hours has been shown in Figure 5.

4. Conclusions

The uncertainty, complexity and seasonal aspects associated with the wind
contribute high level of uncertainties in wind power generation. Because weather
conditions and wind speeds vary very much in different seasons. Therefore, for a
perfect efficient forecasting model it is necessary to take care of input variables and
their proper selection in time series. Actually, the improper input cause improper
training of NN model as a result of that poor accuracy of forecasts. In this chapter,
in order to take care of models forecast performance, probabilistic parameters have
been taken into consideration.

In order to evaluate the performance on probabilistic forecasting, on the basis of
single step reliable Prediction Intervals (PI’s) need to be derived. In this, instead of
exact values of forecast a range of forecasting interval need to be considered. If the
predicted values lie in that range then, the performance of model is good otherwise
model is poor one. Furthermore, power system operations require useful efficient
forecast values with high level of reference confidence. Therefore, to fulfill the need
of power system, more practical data based model should be required with high-
confidence-level PI’s.
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Chapter 5

Stock Market Trend Prediction
Using Hidden Markov Model
Deneshkumar Venugopal,
Senthamarai Kannan Kaliyaperumal
and Sonai Muthu Niraikulathan

Abstract

In Recent years many forecasting methods have been proposed and implemented
for the stock market trend prediction. In this Chapter, the trend analyses of the stock
market prediction are presented by using Hidden Markov Model with the one day
difference in close value for a particular period. The probability values π gives the
trend percentage of the stock prices which is calculated for all the observe sequence
and hidden sequences. This chapter helps for decision makers to make decisions in
case of uncertainty on the basis of the percentage of probability values obtained from
the steady state probability distribution.

Keywords: stock market, HMM, TPM, EPM and trend prediction

1. Introduction

The fundamental idea behind a hidden Markov model is that there is a Markov
process we cannot observe that determines the probability distribution for what we
do observe. Thus a hidden Markov model is specified by the transition density of
the Markov chain and the probability laws that govern what we observe given the
state of the Markov chain. Given such a model, we want to estimate any parameters
that occur in the model. And also determined the most likely sequence for the
hidden process. Finally we may want the probability distribution for the hidden
states at every location.

Let yt represents the observed value of the process at location t for t ¼ 1, :… ,T, θt
the value of the hidden process at location t and let ϕ represents parameters necessary
to determine the probability distribution for yt given θt and θt given θt�1. In our
applications, yt will either be an increase or decrease and the hidden process will
determine the probability distribution of observing different letters.

Our model is then described by the sets of probability distributions p yt∣ θt,
�

ϕÞ
and p θtj θt�1,ϕð Þ. A crucial component of this model is that the yt are independent
given the set of θt and θ only depends directly on its neighbors θt�1 and θtþ1. The
various distribution in which we are interested are p ϕ jy1, … :, yT

� �
, p θtjy1, … :, yT
� �

for all t and p θ1, … ::, θT jy1, … ::, yt
� �

. We will adopt a Bayesian perspective, so that
we treat θt as a random variable [1, 2].

The measure of best is to find the path that has the maximum probability in the
HMM, given the sequence X. Recall that the model gives the joint probabilities

87



Chapter 5

Stock Market Trend Prediction
Using Hidden Markov Model
Deneshkumar Venugopal,
Senthamarai Kannan Kaliyaperumal
and Sonai Muthu Niraikulathan

Abstract

In Recent years many forecasting methods have been proposed and implemented
for the stock market trend prediction. In this Chapter, the trend analyses of the stock
market prediction are presented by using Hidden Markov Model with the one day
difference in close value for a particular period. The probability values π gives the
trend percentage of the stock prices which is calculated for all the observe sequence
and hidden sequences. This chapter helps for decision makers to make decisions in
case of uncertainty on the basis of the percentage of probability values obtained from
the steady state probability distribution.

Keywords: stock market, HMM, TPM, EPM and trend prediction

1. Introduction

The fundamental idea behind a hidden Markov model is that there is a Markov
process we cannot observe that determines the probability distribution for what we
do observe. Thus a hidden Markov model is specified by the transition density of
the Markov chain and the probability laws that govern what we observe given the
state of the Markov chain. Given such a model, we want to estimate any parameters
that occur in the model. And also determined the most likely sequence for the
hidden process. Finally we may want the probability distribution for the hidden
states at every location.

Let yt represents the observed value of the process at location t for t ¼ 1, :… ,T, θt
the value of the hidden process at location t and let ϕ represents parameters necessary
to determine the probability distribution for yt given θt and θt given θt�1. In our
applications, yt will either be an increase or decrease and the hidden process will
determine the probability distribution of observing different letters.

Our model is then described by the sets of probability distributions p yt∣ θt,
�

ϕÞ
and p θtj θt�1,ϕð Þ. A crucial component of this model is that the yt are independent
given the set of θt and θ only depends directly on its neighbors θt�1 and θtþ1. The
various distribution in which we are interested are p ϕ jy1, … :, yT

� �
, p θtjy1, … :, yT
� �

for all t and p θ1, … ::, θT jy1, … ::, yt
� �

. We will adopt a Bayesian perspective, so that
we treat θt as a random variable [1, 2].

The measure of best is to find the path that has the maximum probability in the
HMM, given the sequence X. Recall that the model gives the joint probabilities

87



Pr H,Xð Þ for all sequence, it also gives the posterior probability Pr H,Xð Þ ¼
Pr H,Xð Þ=Pr Xð Þ, for every possible state path H through the model, conditioned on
the sequence X with maximum posterior probability [3, 4]. Given that the denomi-
nator Pr Xð Þ is constant in the conditional probability formula for a given sequence X,
maximizing the posterior probability is equivalent to finding the state path H* that
maximizes the joint probability Pr H ∗ ,Xð Þ: Nguyen [5] has determined the optimal
number of states for the HMM by using the AIC, BIC and HQ information criteria and
also discussed the applications of HMM in stock trading. Hassan and Nath [6] have
applied HMM to the airlines stock forecast. HMMs have been used for pattern recog-
nition and classification problems and it was suitable for modeling dynamic systems.

2. Hidden Markov model

Hidden Markov model (HMM) is a stochastic model which is not directly
observable, It describes the observable events that are depends on internal factors.
The observable events are represented as symbols, where the invisible factor
involved in the observation is represented as a state. HMM is a stochastic model
where the system is assumed to be a Markov Process with hidden states and it gives
better accuracy than the other models. Using the given input values, the parameters
of the HMM (λ) denoted by A, B and π are found out. An HMM is defined as λ =
(S,O,A,B,π) where S = {s1,s2,… ,sN} is a set of N possible states O = {o1,o2,… ,oM} is
a set of M possible observation symbols, A is an N*N state Transition Probability
Matrix (TPM), B is an N*M observation or Emission Probability Matrix (EPM) and
Π is an N dimensional initial state probability distribution vector and A,B and π
should satisfy the following conditions (Figure 1):

XN
j¼1

aij ¼ 1 where 1≤ i≤N;

XM
j¼1

bij ¼ 1 where 1≤ i≤N;

XN
i¼1

πi ¼ 1 where πi ≥0

Figure 1.
Diagram of HMM.
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2.1 Evaluation problem

Given the HMM = {A,B,π} and the observation sequence O = o1,o2,… ,oM, the
probability that model λ has generated sequence O is calculated. Often this problem
is solved by the Forward Backward Algorithm [7, 8].

2.2 Decoding problem

Given the HMM λ = {A,B,π} and the observation sequence O = o1,o2,… ,oM,
calculate the most likely sequence of hidden states that produced this observation
sequence O. Usually this problem is handled by Viterbi Algorithm [7, 8].

2.3 Learning problem

Given some training observation sequences O = o1,o2,… ,oM, and general struc-
ture of HMM (numbers of hidden and visible states), determine HMM parameters
λ = {A,B,π} that best fit training data. The most common solution for this problem is
Baum-Welch algorithm [9, 10] which is considered as the traditional method for
training HMM.

3. Results and discussions

In this chapter, the data has been taken from Yahoofinance.com and the NSE daily
close value data for a month of January 2020 period is considered for the analysis.

Here two observing symbols “I” for Increasing states and the symbols “D” for
decreasing states have been used. If the differences of close value greater than 0 its
observing that the symbol is “f” and If the differences of close value less than 0 its
observing that the symbol is “D”. There are six hidden states assumed and are denoted
by the symbol S1, S2, S3, S4, S5, S6 are indicates that very low, low, moderate low,
moderate high, high and very high respectively. The states are not directly observable.

The situations of the stock market are considered hidden. Given a sequence of
observation we can find the hidden state sequence that produced those observa-
tions. Table 1 shows the daily close value of the stock market.

Interval values:
S1 = �9500 to �551.
S2 = �550 to �251.
S3 = �250 to 249.
S4 = 250 to 8500.
The various probability values of TPM, EPM and π for difference in one day, two

days, three days, four days, five days, six days close value are calculated as given
below (Table 2).

Probability values of TPM, EPM, and π for difference in one day close value
(Figure 2 and Table 3):

S1 S2 S3 S4

S1 0 0 1 0

S2 0 0 1 0

S3 0:071 0:071 0:4286 0:4286

S4 0 0 1 0

2
666666664

3
777777775
      

I D

S1 0 1

S2 0 1

S3 0:2849 0:7143

S4 0:5 0:5

2
666666664

3
777777775
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S1 S2 S3 S4
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S3 0:071 0:071 0:4286 0:4286
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2
666666664

3
777777775
      

I D
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666666664

3
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Probability values of TPM, EPM, and π for difference in two day close value
(Figure 3 and Table 4).

S1 S2 S3 S4
S1 0 0 1 0

S2 0 0 1 0

S3 0:0111 0 0:5555 0:3333

S4 0 0:3333 0:5 0:1667

2
6666664

3
7777775
      

I D
S1 0:5 0:5

S2 0:5 0:5

S3 0:4444 0:5556

S4 1 0

2
6666664

3
7777775

Probability values of TPM, EPM, and π for difference in three day close value
(Figure 4 and Table 5):

S1 S2 S3 S4

S1 0 0 0 1

S2 0 0 0:75 0:25

S3 0 0:6 0:2 0:2

S4 0:5 0:2 0:2 0:2

2
66666664

3
77777775
      

I D

S1 0 1

S2 1 1

S3 0:6 0:4

S4 1 0

2
66666664

3
77777775

S. no Date Close

1 01/02/2020 41,626.64

2 01/03/2020 41,464.61

3 01/06/2020 40,676.63

4 01/07/2020 40,869.47

5 01/08/2020 40,817.74

6 01/09/2020 41,452.35

7 01/10/2020 41,599.72

8 01/13/2020 41,859.69

9 01/14/2020 41,952.63

10 01/15/2020 41,872.73

11 01/16/2020 41,932.56

12 01/17/2020 41,945.37

13 01/20/2020 41,528.91

14 01/21/2020 41,323.81

15 01/22/2020 41,115.38

16 01/23/2020 41,386.4

17 01/24/2020 41,613.19

18 01/27/2020 41,155.12

19 01/28/2020 40,966.86

20 01/29/2020 41,198.66

21 01/30/2020 40,913.82

22 01/31/2020 40,723.49

Table 1.
Daily close value of NSE.
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Probability values of TPM, EPM, and π for difference in two day close value
(Figure 3 and Table 4).

S1 S2 S3 S4
S1 0 0 1 0

S2 0 0 1 0

S3 0:0111 0 0:5555 0:3333

S4 0 0:3333 0:5 0:1667

2
6666664

3
7777775
      

I D
S1 0:5 0:5

S2 0:5 0:5

S3 0:4444 0:5556

S4 1 0

2
6666664

3
7777775

Probability values of TPM, EPM, and π for difference in three day close value
(Figure 4 and Table 5):

S1 S2 S3 S4

S1 0 0 0 1

S2 0 0 0:75 0:25

S3 0 0:6 0:2 0:2

S4 0:5 0:2 0:2 0:2

2
66666664

3
77777775
      

I D

S1 0 1

S2 1 1

S3 0:6 0:4

S4 1 0

2
66666664

3
77777775

S. no Date Close

1 01/02/2020 41,626.64

2 01/03/2020 41,464.61

3 01/06/2020 40,676.63

4 01/07/2020 40,869.47

5 01/08/2020 40,817.74

6 01/09/2020 41,452.35

7 01/10/2020 41,599.72

8 01/13/2020 41,859.69

9 01/14/2020 41,952.63

10 01/15/2020 41,872.73

11 01/16/2020 41,932.56

12 01/17/2020 41,945.37

13 01/20/2020 41,528.91

14 01/21/2020 41,323.81

15 01/22/2020 41,115.38

16 01/23/2020 41,386.4

17 01/24/2020 41,613.19

18 01/27/2020 41,155.12

19 01/28/2020 40,966.86

20 01/29/2020 41,198.66

21 01/30/2020 40,913.82

22 01/31/2020 40,723.49

Table 1.
Daily close value of NSE.
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Probability values of TPM, EPM and π for difference in four days close value
(Figure 5 and Table 6):

S1 S2 S3 S4
S1 0:3858 0:1429 0:1429 0:4286

S2 0:5 0 0:5 0

S3 0 0 1 0

S4 0:4286 0:1429 0 0:4286

2
6666664

3
7777775
      

I D
S1 0:1429 0:9573

S2 0:5 0:5

S3 0 1

S4 1 0

2
6666664

3
7777775

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0 1 0 0 0

S2 0 0 0 0 1 0 0 0

S3 0.071 0 0.071 0 0.1429 0.2857 0 0.4286

S4 0 0 0 0.8 0.2 0 0 0

Table 3.
Transitions with probability values for one day close value.

Figure 2.
Diagram of TPM day 1.

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0 0 0 0.5 0.5

S2 0 0 0 0 0.5 0.5 0 0

S3 0 0.111 0 0 0.3333 0.2222 0.1111 0.2222

S4 0 0 0.3333 0 0.5 0 0.1667 0

Table 4.
Transition table with probability values for difference in two day close value.
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Probability values of TPM, EPM and π for difference in five days close value
(Figure 6 and Table 7):

S1 S2 S3 S4

S1 0:1667 0 0:1667 0:6667

S2 0 0 0 0

S3 0 0 0:6667 0:3333

S4 0:7143 0 0 0:6667

2
66666664

3
77777775
      

I D

S1 0 1

S2 0 1

S3 0:3333 0:6667

S4 1 0

2
6666664

3
7777775

Probability values of TPM, EPM and π for difference in six days close value
(Figure 7 and Table 8):

S1 S2 S3 S4
S1 0 0:2 0:2 0:6

S2 0 0 0 1

S3 0:6667 0 0:3333 0

S4 0:5 0 0:25 0:25

2
6666664

3
7777775
      

I D
S1 0 1

S2 0 1

S3 0:667 0:3333

S4 1 0

2
6666664

3
7777775

Figure 3.
Diagram of TPM day 2.

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0 0 0 0 1

S2 0 0 0 0 0 0.75 0 0.25

S3 0 0 0.4 0.2 0.2 0 0 0.2

S4 0.5 0 0.2 0 0.2 0 0.2 0

Table 5.
Transition table with probability values for difference in three day close value.
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(Figure 5 and Table 6):

S1 S2 S3 S4
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S3 0 0.111 0 0 0.3333 0.2222 0.1111 0.2222
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Transition table with probability values for difference in two day close value.
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Probability values of TPM, EPM and π for difference in five days close value
(Figure 6 and Table 7):

S1 S2 S3 S4
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Figure 3.
Diagram of TPM day 2.

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0 0 0 0 1

S2 0 0 0 0 0 0.75 0 0.25

S3 0 0 0.4 0.2 0.2 0 0 0.2

S4 0.5 0 0.2 0 0.2 0 0.2 0

Table 5.
Transition table with probability values for difference in three day close value.
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S1 S2 S3 S4

I D I D I D I D

S1 0.1429 0.2429 0 0.1429 0 0.1429 0 0.4286

S2 0.5 0 0 0 0 0.5 0 0

S3 0 0 0 0 0 1 0 0

S4 0.4286 0 0.1429 0 0 0 0.4286 0

Table 6.
Transition table with probability values for difference in four day close value.

Figure 5.
Diagram of TPM day 4.

Figure 4.
Diagram of TPM day 3.
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The various transitions probability values for difference in one day to six days
close values are displayed in Figure 2 to Figure 7 respectively.

Optimum Sequence of States:
To generate a random sequence of emission symbols and states are calculated by

using the function “Hmmgenerate”. The HMMmatlab toolbox syntax is: [Sequence,
States] = Hmmgenerate(L,TPM,EPM). The length of both sequence and state to be
generated is denoted by L [11]. The fitness function used for finding the fitted value
of sequence of states is defined by

S1 S2 S3 S4

I D I D I D I D

S1 0 0.1667 0 0 0 0.1667 0 0.6667

S2 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0.6667 0.3333 0

S4 0.7143 0 0 0 0 0 0.2857 0

Table 7.
Transition table with probability values for difference in five day close value.

Figure 6.
Diagram of TPM day 5.

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0.2 0 0.2 0 0.6

S2 0 0 0 0 0 0 0 1

S3 0.3333 0.3333 0 0 0.3333 0 0 0

S4 0.5 0 0 0 0.25 0 0.25 0

Table 8.
Transition table with probability values for difference in six day close value.

95

Stock Market Trend Prediction Using Hidden Markov Model
DOI: http://dx.doi.org/10.5772/intechopen.93988



S1 S2 S3 S4

I D I D I D I D

S1 0.1429 0.2429 0 0.1429 0 0.1429 0 0.4286

S2 0.5 0 0 0 0 0.5 0 0

S3 0 0 0 0 0 1 0 0

S4 0.4286 0 0.1429 0 0 0 0.4286 0

Table 6.
Transition table with probability values for difference in four day close value.

Figure 5.
Diagram of TPM day 4.

Figure 4.
Diagram of TPM day 3.
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The various transitions probability values for difference in one day to six days
close values are displayed in Figure 2 to Figure 7 respectively.

Optimum Sequence of States:
To generate a random sequence of emission symbols and states are calculated by

using the function “Hmmgenerate”. The HMMmatlab toolbox syntax is: [Sequence,
States] = Hmmgenerate(L,TPM,EPM). The length of both sequence and state to be
generated is denoted by L [11]. The fitness function used for finding the fitted value
of sequence of states is defined by

S1 S2 S3 S4

I D I D I D I D

S1 0 0.1667 0 0 0 0.1667 0 0.6667

S2 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0.6667 0.3333 0

S4 0.7143 0 0 0 0 0 0.2857 0

Table 7.
Transition table with probability values for difference in five day close value.

Figure 6.
Diagram of TPM day 5.

S1 S2 S3 S4

I D I D I D I D

S1 0 0 0 0.2 0 0.2 0 0.6

S2 0 0 0 0 0 0 0 1

S3 0.3333 0.3333 0 0 0.3333 0 0 0

S4 0.5 0 0 0 0.25 0 0.25 0

Table 8.
Transition table with probability values for difference in six day close value.
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ðFitness ¼Þ 1P
compare i, jð Þ

Using the iterative procedure, for each TPM and EPM framed we get an
optimum sequence of states generated.

The length of the sequence taken as L = 4 and the optimum sequence of states
obtained from the all six day’s differences with TPM and EPM is given in the below
and here ‘ε’ is the start symbol.

1. ε ! I
S4

! D
S4

! I
S3

! D
S4

2. ε ! D
S1

! I
S4

! I
S4

! D
S3

3. ε ! I
S4

! I
s2

! D
S3

! D
S1

4. ε ! D
S1

! D
S4

! I
S3

! D
S4

5. ε ! I
S3

! I
S3

! D
S2

! D
S4

6. ε ! I
S4

! D
S1

! I
S3

! D
S4

Here, the one day difference of TPM and EPM has the shortest path. So the best
optimum sequence is found from one day difference in close value. Using the fitness
function we compute the fitness value for each of the optimum sequences of states
obtained (Table 9).

In column four the highest value is the fitness value and the better is the
performance of the particular sequence.
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4. Conclusion

Stock prediction is challenging due to its randomness. Hidden Markov Model
can be used for stock prediction by finding hidden patterns. Here the Hidden
Markov model easily recognized four states of the stock market and also it was used
to predict the future values. The highest value in the Optimum State Sequences is
the better performance of the particular sequence. Hidden states and sequences
have been generated to easily identify the level of the sequence whether the next
day value is increasing. And also identified whether the increasing level is moderate
high or high or very high and also decreasing level whether moderate low or low or
very low. This model will be very much useful for short term as well as long term
investors.
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S. no. Comparison of six optimum sequence of states Calculated value Fitness = 1P
comparision i, jð Þ

1 (1,2) + (1,3) + (1,4) 1 1

2 (2,1) + (2,3) + (2,4) 1.7 0.588

3 (3,1) + (3,2) + (3,4) 2.425 0.412

4 (4,1) + (4,2) + (4,3) 3.15 0.32

Table 9.
Comparison of six optimum state sequences.
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Chapter 6

Electric Load Forecasting an
Application of Cluster Models
Based on Double Seasonal Pattern
Time Series Analysis
Ismit Mado

Abstract

Electricity consumption always changes according to need. This pattern
deserves serious attention. Where the electric power generation must be balanced
with the demand for electric power on the load side. It is necessary to predict and
classify loads to maintain reliable power generation stability. This research proposes
a method of forecasting electric loads with double seasonal patterns and classifies
electric loads as a cluster group. Double seasonal pattern forecasting fits perfectly
with fluctuating loads. Meanwhile, the load cluster pattern is intended to classify
seasonal trends in a certain period. The first objective of this research is to propose
DSARIMA to predict electric load. Furthermore, the results of the load prediction
are used as electrical load clustering data through a descriptive analytical
approach. The best model DSARIMA forecasting is ([1, 2, 5, 6, 7, 11, 16, 18, 35, 46],
1, [1, 3, 13, 21, 27, 46]) (1, 1, 1)48 (0, 0, 1)336 with a MAPE of 1.56 percent. The
cluster pattern consists of four groups with a range of intervals between the mini-
mum and maximum data values divided by the quartile. The presentation of this
research data is based on data on the consumption of electricity loads every half
hour at the Generating Unit, the National Electricity Company in Gresik City,
Indonesia.

Keywords: electric loads, DSARIMA model, descriptive analytic, clustering,
forecasting, time series

1. Introduction

Fluctuations in electrical power greatly affect the performance of power gener-
ation systems. Changes in electrical power due to variations in demand for electrical
power momentarily result in an imbalance of electricity generated by the electric
power absorbed. If the power supplied is greater than there will be energy waste.
And if the power supplied is smaller then there will be overload which will result in
a blackout. This means that the amount of electric power generated must be bal-
anced or not too far from the nominal value of the electrical power requirements at
the load center. In fact, the use of electrical energy tends to change at any time.
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For this reason, it is necessary to predict the use of electric power that is able to
maintain a balance between supply and consumption of electric power in the power
generation system. Research of electricity load forecasting is very important in the
power plant system operation plan [1]. Load forecasting studies are classified into
three categories: long-term, medium-term and short-term predictions. Long-term
predictions are needed for planning the peak load capacity and system maintenance
schedule [2], medium-term predictions are needed for the planning and operation
of the power plant system [3], and short-term predictions are needed to control and
schedule the generating system [4]. So that load forecasting studies play a role in
ensuring the economic value of financing, system reliability, stability and quality of
electricity system services.

Fluctuations in electrical power at the load center contain a set of time-based
information. The characteristics of the load from the period of use both by house-
hold, commercial, industrial and public costs, are needed so that fluctuations can be
analyzed. The load characteristics, besides being able to be analyzed also contain a
series of load patterns tendencies due to usage. This conduct of using electric loads
contains seasonal patterns. Daily use tends to recur on certain days, as well as
weekly load patterns. This trend is then analyzed through the load cluster approach
to achieve load usage patterns based on seasonal patterns.

The Box-Jenkins time series study approach conducted in this research was able
to increase the estimated usage and application of seasonal patterns based on elec-
tricity load clusters. The time series prediction model is an accurate choice and
continues to grow to this day [5–7]. Researchers have carried out load forecasting
study activities with 2.06 percent MAPE [8]. In research, the parameter estimation
pattern was developed again with the least squares method which is better. And
then the load cluster modeling is developed to classify the trend based on seasonal
patterns.

2. Electrical load characteristics

The main purpose of an electric power distribution system is to distribute elec-
tric power from substations or sources to a number of customers or loads. The most
important main factor in the distribution system planning is the characteristics of
various electrical loads.

The electrical load characteristics are needed so that the system voltage, the
thermal effect of loading and the loading pattern can be analyzed properly. The
analysis is included in determining the initial projections in the next planning.

The characteristics of the electrical load are very dependent on the type of load it
serves. This will be clearly seen from the results of recording the load curve in a
time interval. The following are several factors that determine the load characteris-
tics according to the needs of this study [9].

2.1 Load factor

Load factor is the ratio between average load and peak load measured in a
certain period. Average load and peak load can be expressed in KiloWatt (KW),
KiloVolt-Ampere (KVA) and so on, but the units of both must be the same. Load
factor can be calculated for a certain period usually used in units of daily, monthly
or yearly.

The peak load referred to in this study is a momentary peak load or average peak
load in a certain interval (maximum demand), generally a maximum demand of
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15 minutes or 30 minutes is used. In this study, the load data used is 30-minute
interval load data.

The definition of the load factor can be written in the following equation:
when you are citing sources, the citations should be set in numbered format. All

the references given in the list of references should be cited in the body of the text.
Please set citations in square brackets keeping the below points in mind.

Load factor ¼ average load in a certain period
peak load in a certain period

(1)

The load factor can be known from the load curve. As for the estimation of the
magnitude of the burden factor in the future, it can be approached with existing
statistical data as was done in this study.

When applied to the power plant, it is formulated into

Load factor ¼ Paverage

Ppeak
� T
T

(2)

If T is in a year, an annual expense factor is obtained. If in 1 month the monthly
load factor is obtained, as well as the daily load factor.

2.2 Daily load

Daily load factors vary according to the characteristics of the load area, whether
it is a dense residential area, industrial area, trade or a combination of various types
of customers.

This daily load factor will also affect the weather conditions and certain days
such as holidays and so on.

2.3 Load curve

Load curves illustrate the variation of loading on a substation measured by KW
or KVA as a function of time. Measurement time intervals are usually determined
based on the use of measurement results, for example intervals of 30 minutes,
60 minutes, 1 day or 1 week.

The load curve shows the demand or load requirements at different time inter-
vals. With the help of this load curve, we can determine the magnitude of the
largest load and then the generating capacity can also be determined.

2.4 Peak load

Peak load or maximum demand is defined as the biggest load of needs that
occurs during a certain period. Certain periods can be in the form of daily, monthly
or annual periods. Furthermore, the peak load must be interpreted as the average
load during a certain interval, where the possibility of such load. For example, the
daily load of a distribution transformer where the peak load during an interval of
1 hour, ie between 19:00 (point A) and 20:00 (point B). The average value of the
A - B curve is its peak requirement.

Keep in mind here that peak needs are not instantaneous needs, but on average
during a certain time interval, usually a certain time interval is 15 minutes,
30 minutes or 1 hour.

The characteristics of the burden between holidays are different from ordinary
days so that they have different load variants. Load characteristics can also be
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distinguished by the factor of loading outside the time of the peak load, or who are
at the time of the peak load. So we need load forecasting with the aim of preparing
operating generating units. When electricity demand increases, it will be balanced
with adequate electricity supply to prevent power outages, otherwise if electricity
consumption decreases, electricity supply will be reduced so as not to over supply.

3. Electrical load analysis based on time series model

Box and Jenkins popularized the use of ARIMA models and the Box-Jenkins
methodology became highly popular in the 1970s among academics [10]. The
ARIMA model is also called the Box-Jenkins time series. A time series is a series of
observations taken sequentially based on time [11]. The observation process is
carried out at the same interval, for example in hour, daily, weekly, monthly, yearly
or other intervals. The purpose of time series analysis is twofold, namely to model
the stochastic mechanism found in observations based on time and to predict the
value of observations in the future. The value of a variable can be predicted if the
nature of the variable is known in the present and in the past.

3.1 ARIMA model classification

The ARIMA model is divided into several groups, namely: autoregressive (AR),
moving average (MA), and ARMA. The ARIMA model is a nonstationary ARMA
model that has gone through a differencing process so that it becomes a stationary
model. The ARIMA model also contains seasonal patterns. Defined as a pattern that
repeats in a fixed time interval. The application of this seasonal pattern has been
developed into a double seasonal pattern [12–14]. Double seasonal ARIMA model is
written with notation, as follows.

ARIMA p, d, qð Þ P1,D1,Q1ð ÞS1 P2,D2,Q2ð ÞS2 (3)

This model consists of two components, namely the first level which is usually
developed from a linear forecasting model to explain seasonal trends from data or
known as potential load. And at the second level developed from the ARIMA model
to capture autoregressive patterns from data or called irregular loads. For stationary
data, the seasonal factor can be determined by identifying the coefficient of autocor-
relation at two or three time intervals that are very different from zero. So that this
seasonal pattern can be identified whether it contains a tendency to have a seasonal
pattern or multiple seasonal patterns and has the following general form [15]:

ϕp Bð ÞΦP1 Bs1ð ÞΦP2 Bs2ð Þ 1� Bð Þd 1� Bs1ð ÞD1 1� Bs2ð ÞD2Zt ¼ θq Bð ÞΘQ1
Bs1ð ÞΘQ2

Bs2ð Þat
(4)

With

ϕp Bð Þ ¼ 1� ϕ1B� ϕ2B
2 � … � ϕpB

p

ΦP1 Bs1ð Þ ¼ 1�Φ11B
s1 �Φ21B

2s1 � … �ΦP1B
P1s1

ΦP2 Bs2ð Þ ¼ 1� Π12B
s2 � Π22B

2s2 � … � ΠP2B
P2s2

θq Bð Þ ¼ 1� θ1B� θ2B2 � … � θqBq

ΘQ1
Bs1ð Þ ¼ 1� Θ11B

s1 � Θ21B
2s1 � … � ΘQ1

BQ1s1

ΘQ2
Bs2ð Þ ¼ 1�Ψ12B

s2 � Ψ22B
2s2 � … � ΨQ2

BQ2s2 .
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3.2 ARIMA Box-Jenkins procedure

The prediction procedure of ARIMA Box-Jenkins model through five stages of
iteration, as follows:

i. Preparation of data, including checking of data stationary

ii. Identification of ARIMA model through autocorrelation function and
partial autocorrelation function

iii. Estimation of ARIMA model parameters: p, d, and q

iv. Determination of ARIMA model equations

v. Forecasting.

3.3 Identification

Identification requires calculation and general review of the results of the auto-
correlation function (ACF) and the parisal autocorrelation function (PACF). The
results of these calculations are needed to determine the appropriate ARIMA model,
whether ARIMA p, 0, 0ð Þ or AR pð Þ, ARIMA 0, 0, qð Þ or MA qð Þ, ARIMA p, 0, qð Þ or
ARMA p, qð Þ, ARIMA p, d, qð Þ. Meanwhile, to determine the presence or absence of
the dmodel value, it is determined by the data itself. If the data form is stationary, d
is 0, while the data form is not stationary, the value of d is not equal to 0 d>0ð Þ.
Likewise, the dual seasonal ARIMAmodel also refers to the autocorrelation function
(ACF) and partial autocorrelation function (PACF) as well as knowledge of the
system or process being studied.

Identification can be done after fixed time series data. The application of the
model after ACF and PACF data has a tendency according to the reference to
Table 1 and for the seasonal data patterns determined by referring to Table 2 [11].

3.4 Parameter approximation

There are two basic ways to get this parameter:

a. By trial and error, test several different values and choose one of these values
(or a set of values, if more than one parameter is estimated) that minimizes
the sum of squared residuals.

b. Iterative approach, choosing an initial estimate and then letting the computer
correct the iterative approximation.

ACF patterns PACF patterns ARIMA
parameters

Heading to zero after lag q Decreasing gradually/bumpy ARIMA 0, d, qð Þ
Decreasing gradually/bumpy Heading to zero after lag q ARIMA p, d, 0ð Þ
Decreasing gradually/bumpy (until lag q
is still different from zero)

Decreasing gradually/bumpy (until lag q
is still different from zero)

ARIMA p, d, qð Þ

Table 1.
PACF and ACF patterns.
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operating generating units. When electricity demand increases, it will be balanced
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ϕp Bð ÞΦP1 Bs1ð ÞΦP2 Bs2ð Þ 1� Bð Þd 1� Bs1ð ÞD1 1� Bs2ð ÞD2Zt ¼ θq Bð ÞΘQ1
Bs1ð ÞΘQ2

Bs2ð Þat
(4)

With

ϕp Bð Þ ¼ 1� ϕ1B� ϕ2B
2 � … � ϕpB

p

ΦP1 Bs1ð Þ ¼ 1�Φ11B
s1 �Φ21B

2s1 � … �ΦP1B
P1s1

ΦP2 Bs2ð Þ ¼ 1� Π12B
s2 � Π22B

2s2 � … � ΠP2B
P2s2

θq Bð Þ ¼ 1� θ1B� θ2B2 � … � θqBq

ΘQ1
Bs1ð Þ ¼ 1� Θ11B

s1 � Θ21B
2s1 � … � ΘQ1

BQ1s1

ΘQ2
Bs2ð Þ ¼ 1�Ψ12B

s2 � Ψ22B
2s2 � … � ΨQ2

BQ2s2 .
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3.2 ARIMA Box-Jenkins procedure

The prediction procedure of ARIMA Box-Jenkins model through five stages of
iteration, as follows:

i. Preparation of data, including checking of data stationary

ii. Identification of ARIMA model through autocorrelation function and
partial autocorrelation function

iii. Estimation of ARIMA model parameters: p, d, and q

iv. Determination of ARIMA model equations

v. Forecasting.

3.3 Identification

Identification requires calculation and general review of the results of the auto-
correlation function (ACF) and the parisal autocorrelation function (PACF). The
results of these calculations are needed to determine the appropriate ARIMA model,
whether ARIMA p, 0, 0ð Þ or AR pð Þ, ARIMA 0, 0, qð Þ or MA qð Þ, ARIMA p, 0, qð Þ or
ARMA p, qð Þ, ARIMA p, d, qð Þ. Meanwhile, to determine the presence or absence of
the dmodel value, it is determined by the data itself. If the data form is stationary, d
is 0, while the data form is not stationary, the value of d is not equal to 0 d>0ð Þ.
Likewise, the dual seasonal ARIMAmodel also refers to the autocorrelation function
(ACF) and partial autocorrelation function (PACF) as well as knowledge of the
system or process being studied.

Identification can be done after fixed time series data. The application of the
model after ACF and PACF data has a tendency according to the reference to
Table 1 and for the seasonal data patterns determined by referring to Table 2 [11].

3.4 Parameter approximation

There are two basic ways to get this parameter:

a. By trial and error, test several different values and choose one of these values
(or a set of values, if more than one parameter is estimated) that minimizes
the sum of squared residuals.

b. Iterative approach, choosing an initial estimate and then letting the computer
correct the iterative approximation.

ACF patterns PACF patterns ARIMA
parameters

Heading to zero after lag q Decreasing gradually/bumpy ARIMA 0, d, qð Þ
Decreasing gradually/bumpy Heading to zero after lag q ARIMA p, d, 0ð Þ
Decreasing gradually/bumpy (until lag q
is still different from zero)

Decreasing gradually/bumpy (until lag q
is still different from zero)

ARIMA p, d, qð Þ

Table 1.
PACF and ACF patterns.

103

Electric Load Forecasting an Application of Cluster Models Based on Double Seasonal Pattern…
DOI: http://dx.doi.org/10.5772/intechopen.93493



3.5 Parameter testing

Parameter testing phase is to test whether the selection of parameters p, d, q is
true and correct. The model is said to be good if the error value is random, meaning
that it no longer has a certain pattern. In other words, the model obtained can
capture well the existing data patterns. To see the error value of the test carried out
testing the value of the autocorrelation coefficient of the error, using one of the
following two statistics:

1.Q Box dan Pierce Test

Q ¼ n0
Xm

k¼1

r2k (5)

2.Ljung-Box Test

Q ¼ n0 n0 þ 2ð Þ
Xm

k¼1

r2k
n0 � kð Þ (6)

Spread by chi squared χ2ð Þ with free degrees dbð Þ ¼ m� p� q� P�Qð Þ
Where

n0 ¼ n� dþ SDð Þ (7)

3.6 Testing criteria

If Q ≤ χ2 α, dbð Þ, meaning: error value is random (model is accepted)
If Q > χ2 α, dbð Þ, meaning: error value is not random (model cannot be accepted

3.7 Parameter estimation

This study uses the least squares method in estimating parameters [15]. The
ARIMA model parameters are based on the time series observed with Z1,Z2, … ,Z1.
The quadratic method assumes that the best curve is the curve that has the least
square error of the data set. The parameter values of the ARIMA models p, d, and q
are determined through the stationary ACF and PACF chart plots.

3.8 Measuring accuracy level of forecasting result

Basically, to measure the accuracy of forecasting result can be done by
various methods. Some statistical methods such as as Root Mean Square Error

Model ACF PACF

AR pð Þ Dies down (decreases exponentially) in
seasonal lags

Cut off after lag ps

MA qð Þ Cut off after lag qs Dies down (decreases exponentially) in
seasonal lags

ARMA
p, qð Þ

Dies down (decreases exponentially) in
seasonal lags

Dies down (decreases exponentially) in
seasonal lags

Table 2.
PACF and ACF seasonal patterns.
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(RMSE), Mean Absolute Error (MEA) and Mean Absolute Percentage Error
(MAPE). In this research. MAPE is used as a standard measurement of the accuracy
offorecasting result. MAPE is defined as follows [13]

MAPE ¼
Pn

i¼1
Z�Ẑi
Zi

���
���

n
� 100% (8)

Where Zi and Ẑi is the actual and predicted values, while n is the number of
predicted values.

3.9 Electric load cluster modeling

Cluster analysis performed in this study refers to the statistical description of the
analysis technique. Descriptive statistics are methods relating to the collection and
presentation of a group of data so as to provide useful information [16]. This
description analysis includes several things, namely: frequency distribution, mea-
surement of central tendency, and measurement of variability [17].

The data that has been obtained from a study which is still in the form of random
data that can be made into grouped data is data that has been arranged into certain
classes. Lists containing grouped data are called frequency distributions or fre-
quency tables. Frequency distribution is the arrangement of data according to
certain interval classes or according to certain categories in a list. Frequency distri-
bution can be presented in groups, distribution based on rank order or ranking of
distribution classes, distribution in groups, and distribution charts.

Measuring central tendency is a statistical analysis that specifically describes a
representative score. The central tendency shows the location of the largest part of
the value in the distribution including a general description of data frequencies such
as mode, media, and mean or mean count.

While the measurement of variability to describe the degree of dispersion of
quantitative data. This measure consists of interquartile range, quartile deviation,
mean deviation, standard deviation and coefficient of variation, and variance.
Measurement of variability serves to determine the homogeneity or heterogeneity
of data. A data may have the same central tendency value but have different
variance values.

4. DSARIMA-based load forecasting

The data used in this study is the consumption of electric power every 30
minutes during January 2, 2009 to November 19, 2011 in the Generating Unit
service, the National Electricity Company in Gresik City, Indonesia.

The data is distributed on: 1. Data for training during January 2, 2009 to
November 12, 2011, 2. Data for testing with the assumption of real data compared to
training data from forecasting results during November 13–19, 2011.

Statistical Analysis System (SAS) is used as a simulation of electricity load
forecasting and Minitab programming is used to analyze the electricity load cluster
model.

4.1 Parameter identification

To identify data, the first step that must be taken is to plot the time series of the
data. The time series plot is displayed to see the data patterns and stationarity of the
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data which aims to determine the ARIMA model. The pattern of data as shown in
Figure 1 is very volatile. This condition is likely influenced by the integrated power
distribution system in the Java-Madura-Bali Indonesia interconnection system.

When referring to Figure 1(a), it can be seen that the data are not stationary in
variance or mean. For more details, it will be seen in the autocorrelation function as
shown in Figure 2. And if it refers to time series patterns there is a tendency for the
data to contain seasonal patterns as shown in Figure 1(b).

The data is not stationary in the variance, so it is necessary to transform the data
as follows. Testing stationarity in variance if the p-value or λ ¼ 1. Based on the
results of the transformation, the data is not stationary in the variance marked with
the value λ ¼ �0:13 as shown in Figure 3a. After going through the process of
transformation the data becomes significant with the value λ ¼ 1 as shown in
Figure 3b.

After the data is transformed it will be transformed back to get the active data
value, as follows

Figure 1.
(a) Data plot of electricity usage every 30 minutes during January 2, 2009 to November 12, 2011; (b) plot of
electrical load data with seasonal patterns (red box).

Figure 2.
ACF plot data.
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Z ∗
t ¼ Z�0,13

t (9)

Then

Zt ¼ Z ∗
t

� ��100
13 (10)

The data is stationary in variance, but the transformation results in Figure 2b
are not stationary in the mean. Data has not shown a constant value in the middle.
The stationarity of the data can also be seen through the plot of the autocorrelation
function (ACF). From Figure 2, it can be seen that the coefficient of autocorrelation
is significantly different from zero and slowly decreases. The pattern shows that the
data is not stationary in particular not stationary in the mean, while the ARIMA
method requires data that is stationary.

The ACF plot also shows that there are strong indications of having a seasonal
pattern in both daily and weekly seasonal averages as shown in Figure 4, below.

In Figure 4a, it can be seen that the electricity load data has a seasonal pattern
that is the daily seasonal as seen in lags 48, 96, 144, etc. And in Figure 4b, the data
also contains weekly seasonal as seen in lag 336, 672, 1008, 1344, etc.

Because the data is not stationary in the mean, it is necessary to do differencing
d ¼ 1ð Þ . The ACF plot of differencing data results is shown in Figure 5 below.

Based on the ACF plot in Figure 5, it appears that the nonseasonal data has been
stationary. However, seasonal plots are still not stationary with an indication that
ACF is still falling slowly in daily seasonal lags, ie lags 48, 96, 144, etc., and weekly
seasonal lags, ie lags 336, 672, etc.

Figure 3.
(a) Box-Cox transformation; (b) after transformation.

Figure 4.
ACF plots with seasonal patterns: (a) daily seasonal; (b) weekly seasonal.
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It is necessary to do differencing data once more in the seasonal pattern
d ¼ 1,D ¼ 1, s ¼ 48ð Þ. After going through seasonal differencing there are strong
indications that the data patterns have been stationary.

Based on the ACF plot for differencing d ¼ 1,D ¼ 1, s ¼ 48ð Þ it is clear that the
data as a whole has been stationary in the mean. The nonseasonal data plot has been
stationary in lags 1, 2, 3, … , 40. The data pattern tends to dies down and will be cuts
off after lag 7 and lag 8 in Figure 6a.

The ACF plot for seasonal patterns s ¼ 48 after differencing has also been
stationary at lags 48, 96, 144, etc. The data pattern tends to be cuts off after lag 48
in Figure 6b. The seasonal pattern s ¼ 336 tends to be cuts off after lag 336 in
Figure 6c.

For PACF plots both seasonal s ¼ 48ð Þ and s ¼ 336ð Þ dies down as shown in
Figure 6d. Based on the provisions in Tables 1 and 2, the parameter identification
results can be rewritten in the following Table 3.

The ACF and PACF data plots are stationary, the alleged nonseasonal ARIMA
models are in accordance with the stationary topology in Table 1 and the seasonal
ARIMA in Table 2. The temporary model of ARIMA provisional model is double
seasonal based on Table 3 is DSARIMA 1, 1, 1ð Þ 0, 1, 1ð Þ48 0, 0, 1ð Þ336 . However, there
is a possibility that white noise has not been fulfilled, so it is necessary to add or
change the order in accordance with the test.

4.2 Parameter estimation

AR and MA coefficients in the DSARIMA model are estimated using the least
squares method. The initial estimate that has been obtained is used as the initial
value of the estimation method iteratively. Obtained initial estimates of AR and MA
coefficients from the interim model DSARIMA (1, 1, 1) (0, 1, 1)48 (0, 0, 1)336 as
shown in Table 4 in the following.

Based on Table 4, AR and MA parameters have met the criteria for white noise
with a p-value greater than the error tolerance value α = 5%, with an alpha signifi-
cance level of less than 0.0001. However, it is necessary to re-test the residual

Figure 5.
ACF plot after differencing d ¼ 1:ð Þ
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assumptions which include the white noise assumption and meet the independent
criteria and are normally distributed 0, σ2ð Þ.

Ljung-Box Test is used to check the assumption of independence from residuals
with the following hypotheses:

H0 : ρ1 ¼ ρ2 ¼ … ¼ ρK ¼ 0

H1: there is at least one ρi that is not equal to zero for i ¼ 1, 2, … ,K

Figure 6.
ACF and PACF plot after differencing d ¼ 1,D ¼ 1, s ¼ 48ð Þ

Models ACF PACF Estimated parameters

Nonseasonal Dies down Dies down ARMA 1, 1ð Þ
Seasonal s ¼ 48ð Þ Cuts off Dies down MA 1ð Þ48

Seasonal s ¼ 336ð Þ Dies down Dies down MA 1ð Þ336

Table 3.
Identification plots for ACF and PACF.

Parameter Estimate Standard error t value Approx Pr> tj j Lag

MA 1.1 �0.35184 0.01899 �18.53 <0.0001 1

MA 2.1 0>95734 0.0013007 736.02 <0.0001 48

MA 3.1 �0.04526 0.0045103 �10.03 <0.0001 336

AR 1.1 �0.14,578 0.02006 �7.27 <0.0001 1

Table 4.
An output SAS of model with CLS iterative.
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With an error tolerance of 5%, H0 is rejected if the ρ-value < α, which means the
residual does not meet the assumption of white noise. The initial residual tests are
shown in Table 5 below.

Based on the estimated AR and MA coefficient parameters in Table 5, the
residual normal probability plot must meet the assumption of white noise with a
limit of< � 1:96ffiffi

n
p ≈� 0:009, where n as many as 50,160 training data. Then based on

the initial estimation results in Table 5, it is necessary to estimate to meet the white
noise assumption, namely by including an estimate on the lag 2, 3, 4, 5, 7, 8, 9, 11,
16, 17, 18, 19, 20, 21, 22, 23, 27, 29, 30, 31, 46, 47, and 48. The results of the residual
check are shown in Table 6 below. The estimation results are significant for sea-
sonal lag, which is lag 48.

Based on residual checking, namely by adding and subtracting AR and MA
parameters, it can be seen that all lags have met the assumption of white noise with
a limit of < � 1, 96ffiffi

n
p ≈� 0, 009 (see ACF Results). The best iteration results of the AR

and MA parameters are shown in Table 7 below.
Based on Table 7, the DSARIMA model is obtained with the coefficients

1, 2, 5, 6, 7, 11, 16, 18, 35, 46½ �, 1, 1, 3, 13, 21, 27, 46½ �ð Þ 1, 1, 1ð Þ48 0, 0, 1ð Þ336, which have
met the assumption of white noise.

To Lag ChiSq DF Pr > ChiSq ACF results

6 153.39 2 <0.0001 �0.002 �0.019 �0.041 �0.017 �0.028 �0.008

12 274.15 8 <0.0001 �0.033 �0.027 �0.0114 �0.009 �0.014 �0.007

18 342.13 14 <0.0001 �0.009 �0.009 �0.008 �0.017 �0.016 �0.023

24 422>74 20 <0.0001 �0.023 �0.018 �0.020 �0.011 �0.013 �0.003

30 43.05 26 <0.0001 �0.009 �0.008 �0.017 �0.008 �0.017 �0.014

36 489.03 32 <0.0001 �0.011 �0.009 �0.002 0.000 �0.010 0.000

42 497.60 38 <0.0001 �0.007 �0.008 0.002 �0.005 �0.004 0.003

48 804.03 44 <0.0001 0.001 0.002 0.006 0.018 0.044 0.060

Table 5.
An output SAS of model with ACF check of residuals.

To Lag ChiSq DF Pr > ChiSq ACF results

6 — 0 — 0.000 0.000 �0.002 0.004 0.001 0.002

12 — 0 — �0.005 �0.002 0.008 0.000 �0.007 �0.004

18 — 0 — 0.005 0.001 �0.008 0.001 �0.003 �0.003

24 18>10 5 0.0028 �0.007 �0.000 0.001 0.003 �0.001 0.002

30 24.78 11 0.0098 �0.005 �0.005 �0.002 0.009 0.0011 �0.001

36 31.03 17 0.0198 �0.005 �0.004 �0.000 �0.001 �0.004 0.008

42 33.77 23 0.0686 �0.000 �0.005 0.004 0.000 0.000 0.004

48 37.61 29 0.1314 0.005 0.006 �0.002 �0.002 0.003 �0.000

Table 6.
An output SAS of model with ACF check of residuals.
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4.3 Electrical load forecasting results

Based on the final results of the estimated parameters in Table 4 the ARIMA
coefficient parameters are obtained as follows: AR (1.1) = 1.1464, AR
(1.2) = � 0.295, AR (1.3) = � 0.0104, AR (1, 4) = 0.0189, AR (1.5) = � 0.0234, AR
(1.6) = � 0.004, AR (1.7) = � 0.0083, AR (1.8) = � 0.0125, AR (1.9) = � 0.0074,
AR (1.10) = 0.07, AR (2.1) = 0.03, MA (1.1) = 0.934, MA (1.2) = � 0.077, MA
(1.3) = 0.008, MA (1.4) = 0.00685, MA (1.5) = 0.017, MA (1.6) = 0.059, MA
(2.1) = 0.98, MA (3.1) = � 0.0364.

Based on the prediction model parameters obtained DSARIMA models
1, 2, 5, 6, 7, 11, 16, 18, 35, 46½ �, 1, 1, 3, 13, 21, 27, 46½ �ð Þ 1, 1, 1ð Þ48 0, 0, 1ð Þ336 with the

model equation as follows:

1� 1:1464Bþ 0:295B2 þ 0:0104B5 � 0:0189B6 þ 0:0234B7 þ 0:004B11�

þ0:0083B16 þ 0:0125B18 þ 0:0074B35 � 0:07B46� 1� 0:03B48� �
Z ∗
t ¼

1� 0:934Bþ 0:077B3 � 0:008B13 � 0:00685B21 � 0:017B27�

�0:059B46� 1� 0:98B48� �
1þ 0:0364B336� �

at

After going through a reverse transformation Zt electrical load for the compari-
son of predicted results with actual data (testing) in Figure 7 below.

Parameter Estimate Standard error t value Approx Pr> tj j Lag

MA 1.1 0.934 0.01770 52.78 <0.0001 1

MA 1.2 �0.077 0.0072138 �10.64 <0.0001 3

MA 1.3 0.008 0.0038171 2.18 0.0293 13

MA 1.4 0.00685 0.0031724 2.16 0.0309 21

MA 1.5 0.017 0.0027856 5.92 <0.0001 27

MA 1.6 0.059 0.0067600 8.67 <0.0001 46

MA 2.1 0.98 0.0009744 1003.38 <0.0001 48

MA 3.1 �0.0364 0.0045572 �7.98 <0.0001 336

AR 1.1 1.1464 0.01855 61.81 <0.0001 1

AR 1.2 �0.295 0.0087427 �33.79 <0.0001 2

AR 1.3 �0.0104 0.0052195 �2.00 0.0454 5

AR 1.4 0.0189 0.0067496 2.80 0.0051 6

AR 1.5 �0.0234 0.0047509 �4.93 <0.0001 7

AR 1.6 �0.004 0.030582 �1.29 0.1958 11

AR 1.7 �0.0083 0.0033299 �2.49 0.0126 16

AR 1.8 �0.0125 0.0033252 �3.77 0.0002 18

AR 1.9 �0.007 0.0022520 �3.26 0.0011 35

AR 1.10 0.07 0.0067089 10.62 <0.0001 46

AR 2.1 0.03 0.0050410 5.86 <0.0001 48

Table 7.
An output SAS of model with CLS iterative.
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4.3 Electrical load forecasting results

Based on the final results of the estimated parameters in Table 4 the ARIMA
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4.4 Model testing and measuring forecasting accuracy

Accuracy testing between actual power data and prediction results. Test using
the MAPE procedure and obtained at 1.56 percent.

5. Electric load modeling

The application of descriptive analytic methods in this book is presented to
obtain significant information in managing optimal electrical energy as the author
did [18]. Through frequency distribution, data can be arranged based on certain
criteria. Data categories are presented based on rank orders that contain ranking
data from the top or highest load to the lowest data value.

5.1 Data distribution forecasting results

This electricity load forecasting data is a usage data for a week at intervals every
half hour measurement at the power generation. This electricity load forecasting
data sample is 336 (N = 336) with mean of 370.56 MWh, meaning that the value is
centered at 370.526 MWh. Standard deviation of 36.2582 or the value of this devia-
tion is not too large, this shows the diversity of data is not too large, which means
the data is homogeneous.

Furthermore, forecasting the data shown in the time measurements every half-
hour of electric power consumption in the load center in Figure 8 below.

Figure 7.
Comparison of actual power with forecast power.
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Visualizations in other forms can be displayed in the form of boxplot graphics.
Figure 9 shows of range (in a box) every hour of measurement and the average
value line of every half hour of measurement.

Figure 9 shows that data tend to be at the minimum level, first quartile and the
median value. Electricity load increases at third quartile intervals and the maximum
load. This condition occurs between 18:30 until 21:30 at night.

Each measurement of electric power absorption at the load center has a
peak load. Based on the measurement data, it can be seen that the peak power
load absorption occurs at 19:00 and generally the peak load tendency occurs at
that hour.

Figure 8.
Plot data forecasting.

Figure 9.
Graph forecast boxplot.
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Henceforth processing this distribution data through seasonal data that can be
presented in the form of daily data, as follows.

The sample data used is Friday data and then the data will be presented in
Table 8 below.

Friday’s electricity load data—samples of electric load data are 48 (N = 48)
with mean of 375.143 MWh, meaning that the value is centered at 375.143 MWh.
Standard deviation of 35.4253 or the value of this deviation is not too large, this
shows the diversity of data is not too large, which means the data is homogeneous.

On Friday shown in Figure 10, the peak load occurred at 19:00 amounting to
444.234 MWh with a minimum electric absorption range of 327.509 MWh. On
Friday, the data has mean of 375.143 MWh.

No Days Mean StDev Median Minimum Peak Load Time of peak load

1 Friday 375.143 35.4253 375.832 327.509 444.234 19:00

2 Saturday 373.635 36.2699 375.208 325.378 445.746 19:00

3 Sunday 361.193 36.8101 357.005 312.912 438.985 19:00

4 Monday 368.672 36.5413 368.417 320.639 440.478 19:00

5 Tuesday 370.616 36.2821 371.793 321.685 439.731 19:30

6 Wednesday 371.619 36.3137 372.718 322.735 441.976 19:00

7 Thursday 372.806 36.6616 374.899 323.262 442.727 19:30

Table 8.
Daily data samples.

Figure 10.
Data plot on Friday.
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Furthermore, seasonal electricity load data on a daily scale can be restated in the
form of Table 8 below.

5.2 Predicted cluster data

In descriptive analysis, frequency distribution, measurement of central tenden-
cies and measurement of variability can be presented in the frequency distribution
graph. The purpose of the presentation and information provided in addition to
being able to describe the tendency of the data to form certain patterns, this analysis
can also be used as a reference for changes in electric power in the power generation
system.

The degree of data dispersion can be determined based on the range of
interquartile intervals that indicate the homogeneity of the data. In this study, the
electrical load cluster is defined as the range of quartile intervals to median value or
is shown in the electrical load data below.

It can be seen that the data sample with N = 336 has an average of 370.53 MWh
which means that the centralized data distribution is rated median. Standard devi-
ation of 36.26 or the value of this deviation is not too large, this shows the diversity
of data is not too large, which means the data is homogeneous.

Quartile intervals that divide data over median values form a cluster pattern,
with the distribution of data presented in Table 9 below

An important aspect of this data sample analysis is the presentation of data with
seasonal variants. Data development by taking into account the seasonal variants of
the hours and daily helped to optimize the management and operational decisions
of the generating system both in scheduling and controlling.

6. Conclusion

One of the research trends in electrical engineering is time series analysis. This
research includes forecasting studies and modeling of electrical load clusters. The
time series analysis method is very suitable with the characteristics of the electrical
load that is always fluctuating. This method is also able to produce different data or
not included in the training data process.

Clusters Interval range Frequency

1 Min–Q1 97

2 Q1–Median 83

3 Median–Q3 86

4 Q3–Max 70

N = 336

Table 9.
Range of clusters in the data variant.
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For the purposes of this electrical load research, forecasting study using the
DSARIMA method is an appropriate choice. This method accurately considers the
seasonal parameters of the electricity load with MAPE of 1.56 percent when com-
pared with the actual data.

Whereas the modeling of electrical load clusters based on descriptive analytic
methods, obtained knowledge of the dynamics of electrical loads. The electrical load
pattern has seasonal characteristics at daily and weekly intervals. This pattern forms
a unique load characteristic at all times.

So, forecasting studies and modeling of electricity load clusters are able to
answer the challenges of electricity energy utilization policies and the operation of
generating systems that are able to maintain the balance of supply and demand.

Nomenclature

T period of time (hours)
Paverage average load in period T (watts)
Ppeak peak load in the T (watts)
p,d, q nonseasonal parts of the model
P,D,Q seasonal parts of the model
S1, S2 1st and 2nd period seasonal
D1,D2, d order of differences
S number of period per season
m maximum lag time
rk autocorrelation or time-lag , 2, 3, … , k
Zt time series process in period T
Z ∗
t forecasting process in transformation in period T

Q1 quartile 1
Q3 quartile 3

Greek symbols

λ Box-Cox transformation number
αt white noise
θq Bð Þ regular MA polynomials of order q
ΘQ1

BS1
� �

,ΘQ2
BS2
� �

MA polynomials of orders
φp Bð Þ regular AR polynomials of orders p
ΦP1 BS1
� �

,ΦP2 BS2
� �

AR polynomials of orders

Abbreviations

MAPE mean absolute percentage error
MWh mega watt hours
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Q3 quartile 3

Greek symbols

λ Box-Cox transformation number
αt white noise
θq Bð Þ regular MA polynomials of order q
ΘQ1

BS1
� �

,ΘQ2
BS2
� �

MA polynomials of orders
φp Bð Þ regular AR polynomials of orders p
ΦP1 BS1
� �

,ΦP2 BS2
� �

AR polynomials of orders

Abbreviations

MAPE mean absolute percentage error
MWh mega watt hours
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Chapter 7

Seeking Accuracy in Forecasting 
Demand and Selling Prices: 
Comparison of Various Methods
Zineb Aman, Latifa Ezzine, Yassine Erraoui, 
Younes Fakhradine El Bahi and Haj El Moussami

Abstract

The need for a good forecast estimate is imperative for managing flows in a supply 
chain. For this, it is necessary to make forecasts and integrate them into the flow 
control models, in particular in contexts where demand is very variable. However, 
forecasts are never reliable, hence the need to give a measure of the quality of these 
forecasts, by giving a measure of the forecast uncertainty linked to the estimate 
made. Different forecasting models have been developed in the past, particularly 
in the statistical area. Before going to our application on real industrial cases which 
highlights a prospective study of demand forecasting and a comparative study of 
sales price forecasts, we begin, in the first section of this chapter, by presenting the 
forecasting models, as well as their validation and monitoring.

Keywords: forecasts, accuracy, quality of forecasts, demand forecasting, selling price 
forecasting

1. Introduction

For most companies, forecasting is a prerequisite for effective supply chain 
management. As explained by Lai et al. [1], forecasting is the basis of all production 
management systems. The entire supply chain is based on the data from forecast 
models.

In Ref. [2], the authors show the usefulness of forecasting and planning as a 
decision-making tool for organizing the supply chain across all horizons of time and 
at all levels.

In the academic field, forecasting occupies an important place. Given the pri-
mordial role of forecasting, we understand why many models have been developed 
since the beginning of the twentieth century. Research mainly developed from the 
1950s onward with the use of mathematical models. A review of the literature was 
carried out by Stadtler [3]. We find there the interest of forecasting for the global 
supply chain in order to integrate the different organizations and coordinate their 
flows in order to satisfy the end consumer.

The various sources for making these forecasts are located throughout the supply 
chain, including the commercial part of the business. It is the analysis of this source 
that will help build the basis for future forecasting. In the end, the sources used to 
build the forecasts are therefore multiple.
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2.  Application to prospective approach: modeling and forecasting 
demand using the ARIMA models

In the manufacturing sector, forecasting demand is one of the most crucial 
problems in inventory management [4]; it can be used in various operational plan-
ning activities during the production process: capacity planning and management 
of used product acquisitions [5].

For both types of push/pull supply chain processes, demand forecasting 
forms the basis of all CS planning. The “pull” processes in the SC are performed 
in response to the client’s request, while all the “push” processes are performed 
in anticipation of the client’s request [6]. A business needs to know many factors 
related to forecasting demand. Some of these factors are listed below:

• past requests;

• product delivery time;

• planned advertising or marketing efforts;

• state of the economy;

• price reduction planned; and

• actions undertaken by competitors.

Businesses need to understand these factors before they can choose an appropriate 
forecasting method as it can be difficult to decide which method is the most suitable 
for forecasting. Forecasting methods are classified into the following types: time 
series, causal, qualitative, and simulation [6].

A time series is considered to be a set of observations cited in chronological 
order [7]. To forecast demand, time series forecasting models are based on historical 
data. These mathematical models used are based on the assumption that the future 
is an expansion of the past [8].

Numerous studies on demand forecasting by time series analysis have been car-
ried out in several fields. They include demand forecasts for food sales [9], tourism 
[10], spare parts [4, 11], electricity [12, 13], automobiles [14], and some other goods 
and services [15–17].

In this section, we forecast the demand for a product in a food manufacturing 
operation based on real data, as well as the precision and characteristics of these 
forecasts.

Our study will be carried out according to the three stages of the Box-Jenkins 
approach: identification, estimation, and verification. We present the model 
relating to product demand from January 2010 to December 2015 as shown in 
Figure 1.

2.1 Identification of model

This refers to the initial preprocessing of the data to make it stationary and to the 
choice of p and q values that can be adjusted during model fitting.

We present the ACF and PACF diagrams of the series in Figures 2 and 3, respec-
tively. We find that this series oscillates, respectively, around an average value, 
and its autocorrelation function decreases to zero point rapidly, which proves the 
stationarity of the time series studied.
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Moreover, to assess whether the data come from a stationary process, we can 
perform the unit root test: Dickey-Fuller test for stationarity. After carrying out the 
test on the Xlstat software, the results are grouped in Table 1.

H0: The series has a unit root.
H1: The series does not have a unit root. The series is stationary.
The null hypothesis H0 cannot be rejected since the calculated p value is greater 

than the significance level α set at 0.05. We calculated the risk of rejecting the null 
hypothesis H0, while it is true. The risk is 84.38%.

Figure 1. 
Evolution of the final product’s sales.

Figure 2. 
ACF correlograms of the demand series.
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In our study, we checked the stationarity of the series, and we noted from 
the ACF and PACF correlograms that our model cannot be pure RA or pure MA. 
Therefore, we tested several models to identify the most suitable for our series.

2.2 Estimation of model coefficients

Using the ARIMA procedure of the SPSS time series module [18], we can esti-
mate the coefficients of our model by providing the parameters p, q, and d [19–22].

The best model is as simple as possible and minimizes certain criteria, namely 
AIC criteria (Akaike criterion), SBC (Bayesian criterion of Schwarz), variance, and 
maximum likelihood [23–25]. The chosen model is that of ARIMA (0, 1, 1). For 
other models, either the Student “T-RATIO” test values are found in the range of 
±1.96, or one of the values of the minimization criteria is higher than that found for 
the ARIMA model (1, 0, 1) with the constant value.

Table 2 presents the values of the different models. From this table, we choose 
the appropriate model on which we will base ourselves to make our forecasts.

It is clear from Table 2 that the ARIMA model (1,0,1) is selected because all 
the coefficients are significantly different from 0 according to the Student test 
(|T-RATIO|) ≥ 1.96) with an acceptable level of adjustment.

The model residue is stationary and follows a white noise process in the range 
of ±40. The residue histogram shows whether the distribution of residues approxi-
mates a normal distribution. In our case, we have residues that distribute relatively 
normal around zero and with a relatively low dispersion at a 5% risk.

Figure 3. 
PACF correlograms of the demand series.

Tau (observed value) −1.350

Tau (critical value) −0.717

p (unilateral) 0.844

α 0.05

Table 1. 
Test results.
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The chosen model parameters are presented in Table 3.
The developed model is given by Eq. 1.

 1 1 1 1− −= δ + − +α θ ε εt t t ty y   (1)

With:

• ty , 1−ty : sales of periods t and t–1, respectively.

• 1, −ε εt t : residuals of periods t and t–1, and constitute a white nose.

• α1, θ1: coefficients of autoregressive and moving average processes, 
respectively.

We can easily extract from Table 3 the coefficients of the autoregressive 
 processes and moving averages and inject them into Eq. (1), which becomes:

 1 1125,524 0,90792 0.6388− −= + − εt t ty y   (2)

2.3 Accuracy of ARIMA (1, 0, 1) model

In order to assess the accuracy of the developed model, we compare the experi-
mental and simulated sales during the same period. This comparison is drawn up 
in Table 4 and reveals that the model selected has great precision and an ability to 
simulate dynamic sales behavior. Therefore, this model can be used to analyze and 
model the demand in this food manufacturing.

Figure 4 shows that the model is validated since the predicted demand fluctu-
ates around the adjustment and the forecast demand, which remained between the 
upper limit and the lower limit.

The error varies, but it is within the tolerance range. In order to minimize this 
error, we are opting for other approaches in our future work.

2.4 Forecast

Once the appropriate model is defined and validated, we must do the forecasting, 
using the IBM SPSS forecasting. Table 4 and Figure 5 present the results of the 

AR (1) α1 0.90792

SEB 0.094852

T value 9.571955

p value 0.00000000

MA (1) θ1 0.63880

SEB 0.161531

T value 3.954655

p value 0.00018319

Constant Δ 125.53260

Table 3. 
ARIMA model parameters.
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using the IBM SPSS forecasting. Table 4 and Figure 5 present the results of the 
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ARIMA model parameters.
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sales forecasts that we obtained by applying our ARIMA model (1, 0, 1) for the next 
10 months from January 2016 to October 2016.

The chosen model can therefore be used to model and forecast future demand 
in this food manufacturing. However, each time we have to feed historical data with 
new data to enrich it and thus improve the new model and forecasts.

The accrue forecasts presented facilitated the production decision in this busi-
ness. Indeed, the model allowed us to forecast demand and make precise forecasts. 
Once we have a forecast of demand, it will be much easier to clearly plan the 
production and thus eliminate the heavy cost losses.

Figure 4. 
Sales, fit, LCL, and UCL.

Figure 5. 
Sales, fit, LCL, UCL, and forecasting.

Model 73 74 75 76 77 78 79 80 81 82

Sales-
Model_1

Prévision 95.12 97.92 100.46 102.77 104.86 106.77 108.49 110.06 111.49 112.78

UCL 151.41 156.21 160.35 163.95 167.08 169.83 172.25 174.38 176.26 177.93

LCL 38.83 39.63 40.57 41.59 42.64 43.70 44.74 45.75 46.71 47.63

Table 4. 
Forecast sales from January 2016 to October 2016.
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3.  Application to comparative approach: comparison of the quality of 
forecasts obtained in the context of forecasting selling prices

Our second industrial application is devoted to a modeling study and compara-
tive forecast of sales prices using ARIMA models, artificial neural networks, and 
support vector machines.

In this section, we will model the actual fuel price data named “SSP” in order to 
make important predictions to determine future selling prices. The model shown in 
Figure 6 is based on the price of “SSP” fuel in a petroleum production from January 
2012 to December 2016.

3.1 Forecasting using ARIMA models

3.1.1 Determination of the differentiation parameter

Under SPSS, we have drawn the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF), the results found are presented in Figures 7 and 8.

The series has a large number of positive shifts for the autocorrelation function, 
so it must be differentiated.

The next step is to differentiate the series. You have to differentiate it enough to 
make it immobile but not drag with an excessive differentiation, which will cause a 
loss of information and therefore unstable models. In our case, we just had to take 
d = 1 because of the linearity of the trend.

Besides, to decide if the data come from a stationary process or not, we can carry 
out the unit root test: Dickey-Fuller test for stationarity. After performing the test 
on the Xlstat software, we grouped the results in Table 5.

H0: The series has a unit root.
H1: The series does not have a unit root. The series is stationary.
The null hypothesis H0 must be rejected, and the alternative hypothesis H1 must 

be accepted since the calculated p value is less than the significance level α set at 
0.05. We calculated the risk of rejecting the null hypothesis H0, while it is true. The 
risk is less than 0.92%.

We conclude that our model will have an order of differentiation d = 1. We also 
note that the T-RATIO for the constant of model μ is less than 2 in absolute value. We 
must therefore deduct it from the model before determining the parameters p and q.

Figure 6. 
Selling price of “SSP.”
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3.1.2 Determination of the autoregressive parameter

Figures 9 and 10 show the residue curve and the ACF and PACF diagrams of the 
residues of the ARIMA model (0, 1, 0), respectively.

We can clearly see from Figures 9 and 10 that the partial autocorrelation has a 
significant peak at offset 2, and we can then deduce that the differentiated series 
comprises an autoregressive signature. The parameter p is therefore equal to 1.

However, the T-RATIO for the autoregressive parameter φ1 is lower in absolute 
value than 2. So, we cannot retain this model. Similarly, the ARIMA model (2, 1, 0)  
presents the autoregressive parameters whose T-RATIO is less than 2 in absolute value.

Figure 7. 
ACF correlogram for the sales price series.

Figure 8. 
PACF correlogram for the sales price series.
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3.1.3 Determination of the moving average parameter

Now, the T-RATIO for the moving average parameter θ1 is lower in absolute 
value than 2. So we cannot retain this model. Similarly, the ARIMA model (0,1,2) 
presents moving average parameters whose T-RATIO is less than 2 in absolute 
value.

3.1.4 Mixed ARIMA model

After several iterations and tests, we concluded that only the ARIMA model 
(1,1,1) had higher T-RATIOS in absolute value than 2. This is the model we should 
use to make forecasts.

With the coefficients obtained now, we can write the equation of the model 
retained as follows:

 ( )1 1 2 10.928 0.873− − − −= − − + +ε εt t t t t ty y y y  (3)

Table 6 lists the forecasts obtained for the first quarter of 2017.
The graph in Figure 11 proves the adequacy of the ARIMA model (1,1,1) devel-

oped, which is very close to the real model.
Table 2 allows us to admit that the chosen model can be used to model and 

forecast future sales in this petroleum production.

Tau (observed value) −4.0325

Tau (critical value) −0.7648

p (unilateral) 0.0092

α 0.05

Table 5. 
Test results.

Figure 9. 
Residue curve.
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3.1.5 Forecasting using artificial neural networks

The goal here is to develop a relationship between experimental data collected 
from authentic sources to estimate the selling prices of fuel. We are trying to apply 
RBF radial-based neural networks, which are based on machine learning approaches 

Figure 10. 
ACF and PACF diagrams of the residues of the ARIMA model (0,1,0).

Fortnight Real price Model % error

1Q January 1072 1042.49 −2.752798507

2Q January 1074 1043.05 −2.881750466

1Q February 1072 1043.59 −2.650186567

2Q February 1082 1044.21 −3.492606285

1Q March 1084 1044.81 −3.615313653

2Q March 1064 1045.48 −1.740601504

Table 6. 
Forecast results for the ARIMA model (1,1,1) [26].
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due to the complex relationships between the input parameter and the output 
parameter. In this section, we present the modeling approach using this technique to 
precisely compare it with the ARIMA model used in the previous section.

3.1.6 Model development

The radial basis ANN model (comprising two layers) is trained for implement-
ing the back propagation algorithm to minimize the mean squared error with 
one parameter (time) as the input and the desired output (fuel selling price). As 
presented on the visualization of the network shown in Figure 12, the first layer has 
radial basis transfer functions with the maximum number of 80 neurons, and the 
second layer has a linear transfer function, in order to build a consistent model for 
providing accurate forecasts [27].

Feature selection is one of the core concepts in machine learning, which hugely 
impacts the performance of our model. Irrelevant or partially relevant features can 
negatively impact model performance. Feature selection and data cleaning should 
be the first and most important step of our model designing. However, in our case, 
this step may be omitted as long as our point cloud is significant. Subsequently, the 
dataset was randomly divided into two disjoint subsets of training set (60% of total 
dataset), which help us train our dataset to find the adequate model and testing set 
(40% of total dataset) to validate the model found. The training set is applied in 
order to develop the network. After the training phase, the reliability and accuracy 

Figure 11. 
Results of the ARIMA model (1,1,1) [26].

Figure 12. 
Visualization of the RBF network.
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order to develop the network. After the training phase, the reliability and accuracy 

Figure 11. 
Results of the ARIMA model (1,1,1) [26].

Figure 12. 
Visualization of the RBF network.
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of the network were perused with the test data. Besides, in our study, we imple-
mented radial basis network of the MATLAB toolbox (i.e., “nwrb”). Furthermore, 
the Gaussian function is the main kernel function implemented here with the width 
parameter of 1 [27].

After executing the learning phase, we obtain Figures 13 and 14 that represent 
the learning of our database. Figure 15 represents the error in the training phase. 
During the test phase, we gave values to the input variable to visualize the results of 
the output and thus simulate our model.

3.1.7 Error optimization

Optimizing the error consists of a compromise to be made between the various 
parameters of the network, namely the speed, the objective, the number of neu-
rons, and the number of neurons to be added to the hidden layer. This compromise 
is made on the basis of several tests of the different combinations carried out. Some 
of these combinations are presented in Table 7.

After making different combinations, we find that the error is considerable for 
all the compromises. Consequently, no model can adapt to the time series, especially 
in the long term. The reason behind this result is not only the large fluctuations in 

Figure 13. 
Training of the RBF network.
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the selling price of the fuel but also the percentage of the total dataset used in the 
training stage (60%). In fact, this percentage will not allow us to predict 40% of the 
total dataset. We will have to increase the percentage of training. In the next step, 

Figure 14. 
Training graph of the RBF network.

Figure 15. 
The graph of error.

Parameters

Goal Spread MN DF

0 .01 1.5 25 25

0.01 1 25 30

0.01 2 30 30

0.01 0.8 12 30

0.01 1.57 10 30

Table 7. 
Part of different combinations made.
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we will consider 80% of the total dataset for the training phase and 20% for testing 
the model. Table 8 summarizes the different combinations [27].

The combination that minimizes the error is therefore:

• goal = 0.01;

• spread = 1;

• MN = 20; and

• DF = 30.

We can conclude that learning with 80% of the database gives increased results 
in comparison with the other case (learning with 60%) since the error is mini-
mized. The output is calculated and presented in Table 9.

From Table 9, we can clearly see that the selected model can be used to model 
and forecast future sales in this petroleum manufacturing. As a last part, we will use 
the methodology of support vector machines to see that this is going to give a result.

3.1.8 Forecasting using support vector machines (SVMs)

The aim of our current work is to develop a relationship between experimental 
data collected from authentic sources to estimate the selling price of fuel. We are 
trying to apply support vector machines based on machine learning approaches 
because of the complex relationships between the input parameter and the output.

We prepared our database and then developed the program in Python language, 
which will be compiled on Spyder software.

We imported our dataset, which is the actual price of our fuel studied, created, 
and indexed the location of values from the database. Then, we standardized the 
data so that it corresponds to the learning process that will be carried out using 
the SVR function. In fact, we have divided our database into a learning part and 
another for the test. We tried two main distributions: (1) 60% of our database used 
in the learning phase and 40% used in the testing phase and (2) 80% of our data-
base used in the learning phase and 20% used in the testing phase. We have kept 
the second distributions based on the results obtained after compiling the program. 
After that, we learned “Train X” and “Train Y” and executed the test to finally cal-
culate the average of the errors and obtained the values  predicted in the test phase, 
which are grouped in Figure 16.

The average error is equal to 26.882361, which represents 2.53%. The error graph 
is shown in Figure 17.

Parameters Relative error (%)

Goal Spread MN DF

0.01 1 10 30 9.37

0.01 0.25 25 25 7.61

0.01 0.5 30 20 5.29

0.01 0.8 30 20 3.21

0.01 1 20 30 1.95

Table 8. 
Error comparison for several combinations of parameters.
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It is clear that the model chosen can be used to model and forecast future sales for 
this petroleum industry since the error observed (2.53%) respects the allowable margin 
of error set by the company at 3%. In addition, the SVR function is a useful tool, which 
guarantees good precision and minimizes the error compared to the ARIMA model.

Input (time) Real value of output Predicted value of output % error

83 1038 1027.2 1.04046243

84 1043 1044.8 −0.1725791

85 1035 1033.4 0.15458937

86 1040 1034.3 0.54807692

87 1016 1034.7 −1.84055118

88 1015 1034.8 −1.95073892

89 1010 1034.9 −2.46534653

90 1001 1034.9 −3.38661339

91 1031 1034.9 −0.37827352

92 1033 1034.9 −0.1839303

93 1036 1034.9 0.10617761

94 1030 1034.9 −0.47572816

95 1000 1034.9 −3.49

96 1042 1034.9 0.68138196

97 1072 1034.9 3.4608209

98 1074 1034.9 3.6405959

99 1072 1034.9 3.4608209

100 1082 1034.9 4.35304991

101 1084 1034.9 4.5295203

102 1064 1034.9 2.73496241

Table 9. 
Predicted value of output after using the RBF model.

Figure 16. 
Results of the SVR function.
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3.2 Synthesis

In the first industrial application of this chapter, we modeled demand using 
ARIMA models. The model we have obtained will allow the company to forecast 
demand and make precise forecasts.

In the second application, we studied the selling prices of the SSP via three 
methodologies: ARIMA, RBF, and SVMs.

First, we developed an ARIMA model based on historical data. This study 
allowed us to determine the ARIMA model (1,1,1), which gives gasoline price 
forecasts close to the margin to reach for the first quarter of the current year with 
an average margin of error 2.855%. Second, we used the RBF technique to improve 
the modeling and forecasting of the selling price of fuel. It was found that this 
technique has proven its strength manifested in the error, which has been further 
minimized: 1.95% instead of 2.85% for the ARIMA model. Finally, we used the SVM 
function. The forecasts made are quite satisfactory because they respect the margin 
tolerated by the company. The error of the SVM function is around 2.53%.

As a summary, the SVM function has proven its strength manifesting itself 
in the error, which has been further minimized: 2.53% instead of 2.885% for the 
ARIMA model, but which remains higher than the error obtained using the RBF 
technique.

4. Conclusion

For most companies, forecasting is a prerequisite for effective supply chain 
management. Forecasting is the basis of all production management systems. The 
entire supply chain is based on data from forecast models.

In this chapter, we have presented the study of forecasting demand and selling 
prices in industrial companies. We also carried out a comparative study aimed at 
minimizing the error to guarantee increased forecasts.

In the first part, we modeled the future demand for a food company using 
ARIMA models based on the Box-Jenkins methodology. The model we have 
obtained will allow the company to forecast demand and make precise forecasts. 

Figure 17. 
Error graph.
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We can clearly see that the chosen model can be used to model and forecast future 
demand for this agribusiness, but each time we need to populate the historical data 
with the new data.

Second, we carried out a study, which consists in comparing the quality of the 
forecasts obtained in the context of forecasting selling prices. We presented the 
application of three different methodologies allowing us to make sales forecasts in a 
company operating in the petroleum sector.

We have developed an ARIMA model based on historical data. This study allowed 
us to determine the optimal autoregressive, moving average, and differentiation 
parameters in order to make predictions. We found that the ARIMA model (1,1,1) 
gives gasoline price forecasts close to the margin to reach for the first quarter of the 
current year with an average margin of error of 2.855% included within the margin 
of error tolerated by the company (plus or minus 3% as margin of error). In addition, 
the hypothesis that the residues are white Gaussian noise has always been verified.

Then, we tried forecasting selling prices via the RBF technique in order to 
improve the modeling and forecasting done before. To do this, we have developed 
an RBF network based on historical data to come up with conclusions in terms of 
superiority of forecast performance. Consequently, the use of this technique has 
proven itself and has allowed us to minimize the error, which is 1.95% versus 2.85% 
for the ARIMA model.

Finally, we studied the SSP selling prices via the SVM function. We prepared 
our database and then developed the program in Python language, which will be 
compiled on Spyder software. The forecasts made are quite satisfactory with regard 
to the constraint imposed by the company (plus or minus 3% margin of error). The 
error of the SVM function is around 2.53%. Consequently, the SVM function has 
proven its strength manifesting itself in the error, which has been further mini-
mized: 2.53% instead of 2.855% for the ARIMA model, but which remains higher by 
comparing it with the error obtained if we had opted for neural networks.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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