

Nature-inspired Methods
for Stochastic, Robust and

Dynamic Optimization
Edited by Javier Del Ser and Eneko Osaba

NATURE-INSPIRED
METHODS FOR

STOCHASTIC, ROBUST
AND DYNAMIC
OPTIMIZATION

Edited by Javier Del Ser and Eneko Osaba

NATURE-INSPIRED
METHODS FOR

STOCHASTIC, ROBUST
AND DYNAMIC
OPTIMIZATION

Edited by Javier Del Ser and Eneko Osaba

Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization
http://dx.doi.org/10.5772/intechopen.71401
Edited by Javier Del Ser and Eneko Osaba

Contributors

Jose Garcia, Alvaro Peña, Maxim Dulebenets, Siew Mooi Lim, Kuan Yew Leong, Javier Del Ser Lorente, Eneko Osaba

© The Editor(s) and the Author(s) 2018
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and
Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole
(compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without
INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to
INTECHOPEN LIMITED rights and permissions department (permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in London, United Kingdom, 2018 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number:
11086078, The Shard, 25th floor, 32 London Bridge Street
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization
Edited by Javier Del Ser and Eneko Osaba

p. cm.

Print ISBN 978-1-78923-328-5

Online ISBN 978-1-78923-329-2

eBook (PDF) ISBN 978-1-83881-572-1

mailto:orders@intechopen.com
http://www.intechopen.com/copyright-policy.html
mailto:permissions@intechopen.com
http://dx.doi.org/10.5772/intechopen.71401

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

3,600+ 113,000+ 115M+
Open access books available International authors and editors Downloads

Our authors are among the

151 Top 1% 12.2%
Countries delivered to most cited scientists Contributors from top 500 universities

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

www.intechopen.com
mailto:book.department@intechopen.com

Meet the editors

Prof. Dr. Javier Del Ser received his first PhD degree in
Telecommunication Engineering from the University of
Navarra, Spain, and his second PhD degree in Computa-
tional Intelligence from the University of Alcala, Spain.
He is a principal researcher in data analytics and optimi-
zation at Tecnalia, a visiting fellow at the Basque Center
for Applied Mathematics (BCAM) and a part-time

lecturer at the University of the Basque Country (UPV/EHU). His research
interests gravitate on the use of descriptive, prescriptive and predictive
algorithms for data mining and optimization in a diverse range of applica-
tion fields. He has published more than 190 articles, co-supervised 6 PhD
degree theses, edited 4 books, coauthored 6 patents and participated/led
more than 35 research projects.

Dr. Eneko Osaba received his B.Sc. and M.Sc. degrees
in Computer Science from the University of Deusto. He
obtained his PhD degree in Artificial Intelligence in 2015
from the same university, being the recipient of a Basque
Government doctoral grant. He has participated in the
proposal, development and justification of 15 research
projects. He has participated in the development of more

than 70 papers, having JCR impact factor for 20 of them. He has performed
several stays in universities of the United Kingdom, Italy and Malta. He
served as a member of the program and/or organizing committee in more
than 15 international conferences, and he is a member of the editorial
board of the International Journal of Artificial Intelligence.

Contents

Preface VII

Chapter 1 Introductory Chapter: Nature-Inspired Methods for Stochastic,
Robust, and Dynamic Optimization 1
Eneko Osaba and Javier Del Ser

Chapter 2 Robust Optimization: Concepts and Applications 7
José García and Alvaro Peña

Chapter 3 Evaluation of Non-Parametric Selection Mechanisms in
Evolutionary Computation: A Case Study for the Machine
Scheduling Problem 23
Maxim A. Dulebenets

Chapter 4 A Brief Survey on Intelligent Swarm-Based Algorithms for
Solving Optimization Problems 47
Siew Mooi Lim and Kuan Yew Leong

Contents

Chapter 1 Introductory Chapter: Nature-Inspired Methods for Stochastic,
Robust, and Dynamic Optimization 1
Eneko Osaba and Javier Del Ser

Chapter 2 Robust Optimization: Concepts and Applications 7
José García and Alvaro Peña

Chapter 3 Evaluation of Non-Parametric Selection Mechanisms in
Evolutionary Computation: A Case Study for the Machine
Scheduling Problem 23
Maxim A. Dulebenets

Chapter 4 A Brief Survey on Intelligent Swarm-Based Algorithms for
Solving Optimization Problems 47
Siew Mooi Lim and Kuan Yew Leong

Chapter 1

Introductory Chapter: Nature-Inspired Methods for
Stochastic, Robust, and Dynamic Optimization

Eneko Osaba and Javier Del Ser

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78009

Provisional chapter

Introductory Chapter: Nature-Inspired Methods for
Stochastic, Robust, and Dynamic Optimization

Eneko Osaba and Javier Del Ser

Additional information is available at the end of the chapter

1. Introduction

Optimization is one of the most studied fields in the wide field of artificial intelligence.
Hundreds of studies published year after year focus on solving many diverse problems of this
kind by resorting to a vast spectrum of solvers. Within this class of problems, several problem
flavors can be identified depending on the characteristics of their constituent fitness functions
and support of their optimization variables, such as linear, continuous or combinatorial.
Efficiently tackling such optimization problems requires huge computational resources, espe-
cially when the formulated problem at hand represents complex real-world situations with
hundreds of variables and constraints. For these reasons and due to the inherently practical
utility of optimization algorithms, very heterogeneous problem-solving approaches have been
developed by the community over the last decades for their application to these problems. From
a general perspective, optimization methods can be classified as exact, heuristics, and
metaheuristics. In this chapter, the focus is placed on the latter two families, in particular in those
algorithmic variants where biological processes observed in nature have lied at the motivating
core of the operators underlying their search mechanisms. In other words, we will center our
attention on Nature-Inspired methods for efficient optimization and problem solving.

In this context, Nature-Inspired algorithms have recently gained ever-growing popularity in the
community, with an unprecedented body of the literature related to assorted algorithmic
approaches suited to deal with problem formulations by leveraging the self-learning capability
of their mimicked natural phenomena. The rationale behind the momentum acquired by this
broad family of methods lies in their outstanding performance, which has hitherto been evinced
in hundreds of research fields and problem scenarios. In this regard, many different inspirational
sources have been proposed for constructing optimization methods, such as the behavioral
patterns of bats [1], fireflies [1], bees [2] or the stigmergy by which ants communicate to each

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.78009

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.

Chapter 1

Introductory Chapter: Nature-Inspired Methods for
Stochastic, Robust, and Dynamic Optimization

Eneko Osaba and Javier Del Ser

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78009

1. Introduction

Optimization is one of the most studied fields in the wide field of artificial intelligence.
Hundreds of studies published year after year focus on solving many diverse problems of this
kind by resorting to a vast spectrum of solvers. Within this class of problems, several problem
flavors can be identified depending on the characteristics of their constituent fitness functions
and support of their optimization variables, such as linear, continuous or combinatorial.
Efficiently tackling such optimization problems requires huge computational resources, espe-
cially when the formulated problem at hand represents complex real-world situations with
hundreds of variables and constraints. For these reasons and due to the inherently practical
utility of optimization algorithms, very heterogeneous problem-solving approaches have been
developed by the community over the last decades for their application to these problems. From
a general perspective, optimization methods can be classified as exact, heuristics, and
metaheuristics. In this chapter, the focus is placed on the latter two families, in particular in those
algorithmic variants where biological processes observed in nature have lied at the motivating
core of the operators underlying their search mechanisms. In other words, we will center our
attention on Nature-Inspired methods for efficient optimization and problem solving.

In this context, Nature-Inspired algorithms have recently gained ever-growing popularity in the
community, with an unprecedented body of the literature related to assorted algorithmic
approaches suited to deal with problem formulations by leveraging the self-learning capability
of their mimicked natural phenomena. The rationale behind the momentum acquired by this
broad family of methods lies in their outstanding performance, which has hitherto been evinced
in hundreds of research fields and problem scenarios. In this regard, many different inspirational
sources have been proposed for constructing optimization methods, such as the behavioral
patterns of bats [1], fireflies [1], bees [2] or the stigmergy by which ants communicate to each

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.

https://creativecommons.org/licenses/by-nc/4.0
http://dx.doi.org/10.5772/intechopen.78009

2 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

other when looking over an area for a food source [3], which add to the mechanisms behind
genetic inheritance that stimulated the advent of the seminal branch of genetic algorithms [4].

In recent years, most of these Nature-Inspired methods have been successfully applied to a
wide variety of topics. To cite a few, the aforementioned Bat algorithm has been applied to
problems related to energy [5], sports training planning [6] or logistics [7, 8], whereas the
Firefly Algorithm has been applied to selected applications in medicine [9], job-shop schedul-
ing [10] or goods distribution, and logistics [11, 12]. This is a very reduced yet exemplary
bibliographic sample of the heterogeneous research activity around Nature-Inspired methods.
A thorough review of the state of the art in this topic can be extensive, reason for which many
comprehensive surveys have been lately contributed to reflect the huge literature produced
around certain algorithms. Nevertheless, Genetic Algorithms and Ant Colony Systems are,
arguably, the most widely resorted algorithms of this kind, with recent literature compendi-
ums focused on these both approaches appearing in the literature on a yearly basis [13, 14].

This introductory chapter contributes to this line of research by presenting applications of
Nature-Inspired solvers to three specific branches of optimization problems, namely, stochas-
tic, dynamic, and robust optimization. We next provide a more elaborated presentation of each
of such branches.

2. Dynamic optimization

In optimization problems, it is often the case that the parameters based on which fitness
function(s) and constraints are defined remain unaltered over the period of time in which the
solution obtained by the solver is considered to be optimal. Therefore, such parameters are
assumed to be known a priori and fixed from the very beginning of the problem solving
process. In dynamic optimization, however, this stability condition may not hold, this one or
more constraints and/or fitness function of the problem can vary dynamically along time, even
after the problem is solved and the solution is applied. The setup can be even more involved if
new parameters appear at any step of the process, which must not only be included in the
problem formulation but also accommodated by the technique at hand. Due to these excep-
tional situations, this casuistry demands efficient algorithmic means to solve optimization
problems in an on-line fashion.

Dynamism in any aspect of the problem is a practical circumstance that emerges in almost any
field where the context of the problem evolves along time due to exogenous factors to the
initially formulated problem statement. One of the scenarios, where dynamic optimization is
under active investigation, is transportation and mobility, in which the dynamism of the consid-
ered parameters can force re-planning previously traced routes, even if the vehicle is already on
the road. This hypothesized case can be produced either by the appearance of any incident over
the road network or the arrival of unexpected information that was not present when the initial
route optimization was performed. An example of this kind of problem was presented in [15],
in which a vehicle routing problem is modeled by integrating the information about future

3 Introductory Chapter: Nature-Inspired Methods for Stochastic, Robust, and Dynamic Optimization
http://dx.doi.org/10.5772/intechopen.78009

customers’ dynamic requests. Another problem prone to considering this characteristic is the
job-shop scheduling problem and its multiple variants, as can be seen in recently published
studies such as [16, 17]. Several interesting surveys are available on this topic, such as [18], in
which the application of swarm intelligence methods to dynamic optimization is reviewed. In
[19], on the other hand, Evolutionary Algorithms are analyzed for the same class of optimization
problems.

3. Stochastic optimization

Stochastic optimization is another problem variant that finds its motivation in real application
scenarios. This class of optimization problems can be defined as the process of maximizing or
minimizing the value of a mathematical or statistical function, in which one or more of its
values are subject to randomness. This stochastic nature may involve random objective func-
tions and/or random restrictions, which ease the modeling of real-world problems subject to
non-negligible sources of uncertainty, imprecision or randomness.

The need for stochastic optimization techniques emerge from a wide variety of real-world
problems related to business analytics, electrical power production or energy management,
among many others. In [20], for example, the so-called unit commitment problem is endowed
with this feature to model and handle the uncertainty of the electric power generation process
in the scheduling and dispatching of the produced energy. On the other hand, the authors in
[21] regard power system management as a stochastic optimization problem, considering
microgrids capable of controlling their local generation and demand with the presence of an
uncertain amount of generated renewable energy.

Focused on Nature-Inspired techniques, examples such as the one found in [22] are worth to be
mentioned. In this work, a Firefly Algorithm is used to tackle a multi-objective active/reactive
power dispatch problem, with the existence of wind generation and load uncertainties.
Another example can be accessed in [23], in which a Genetic Algorithm is utilized for effi-
ciently solving a condition-based maintenance optimization problem subject to uncertainties.

4. Robust optimization

The third class of optimization problems targeted by this chapter is robust optimization, which
denotes a branch of problems where one or more variables that compose the problem is also
subject to uncertainty. In this case, however, the scope is placed on the robustness of the
produced solutions against the variability of the constraints affected by uncertainty (e.g., the
target is always placed on fulfilling simultaneously all constraints disregarding the statistical
variability of the problem), as opposed to stochastic optimization which aim at satisfying the
constraints up to a prescribed level of probability. This being said, different types of robust
optimization problems can be modeled depending on how extreme values for the variable

http://dx.doi.org/10.5772/intechopen.78009

4 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

parameters are formulated. One of these types is referred to as local robustness [24], where a
measure of robustness is designed to accommodate small perturbations with respect to the
nominal value of the parameter that undergoes stochastic variability. On the other hand,
probabilistically robust optimization models [25] quantify the uncertainty in the real value of
the parameter of interest using a probability distribution function. Additional classifications
are global robustness [24], or non-probabilistic robust optimization models [26].

As has been pointed along this introduction, uncertainty is present in lots of real-world
situations. For this reason, robust optimization has also been frequently used for modeling a
wide variety of real problems, belonging to different knowledge areas, such as supply chain
network design [27] or food distribution [28].

5. Conclusions

This introductory chapter highlights the potential that Nature-Inspired solvers may bring to
stochastic, robust, and dynamic optimization problems. Nature has learned from itself from
the very beginning of Earth, with manifold processes and intelligent behaviors that have
naturally evolved over ages to attain high levels of adaptability and efficiency. It is now time
for researchers, lecturers, and practitioners interested in Nature-Inspired optimization to shift
their target and span the application of this algorithmic branch to these optimization problems,
far less studied so far by the community than other formulated optimization problems.

Author details

Eneko Osaba1* and Javier Del Ser1,2,3

*Address all correspondence to: eneko.osaba@tecnalia.com

1 TECNALIA Research and Innovation, Derio, Bizkaia, Spain

2 University of the Basque Country (UPV/EHU), Bilbao, Bizkaia, Spain

3 Basque Center for Applied Mathematics (BCAM), Bilbao, Bizkaia, Spain

References

[1] Yang XS. A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010). Springer; 2010. pp. 65-74

[2] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function opti-
mization: Artificial bee colony (abc) algorithm. Journal of Global Optimization. 2007;39(3):
459-471

mailto:eneko.osaba@tecnalia.com

5 Introductory Chapter: Nature-Inspired Methods for Stochastic, Robust, and Dynamic Optimization
http://dx.doi.org/10.5772/intechopen.78009

[3] Dorigo M, Birattari M. Ant colony optimization. In: Encyclopedia of Machine Learning.
Springer; 2011. pp. 36-39

[4] Holland JH. Genetic algorithms. Scientific American. 1992;267(1):66-73

[5] Kaced K, Larbes C, Ramzan N, Bounabi M, Elabadine Dahmane Z. Bat algorithm based
maximum power point tracking for photovoltaic system under partial shading conditions.
Solar Energy. 2017;158:490-503

[6] Fister I, Rauter S, Yang XS, Ljubič K. Planning the sports training sessions with the bat
algorithm. Neurocomputing. 2015;149:993-1002

[7] Osaba E, Yang XS, Fister I, Del Ser J, Lopez-Garcia P, Vazquez-Pardavila AJ. A discrete
and improved bat algorithm for solving a medical goods distribution problem with
pharmacological waste collection. Swarm and Evolutionary Computation. 2018. https://
doi.org/10.1016/j.swevo.2018.04.001

[8] Osaba E, Carballedo R, Yang XS, Fister I Jr, Lopez-Garcia P, Del Ser J. On efficiently
solving the vehicle routing problem with time windows using the bat algorithm with
random reinsertion operators. In: Nature-Inspired Algorithms and Applied Optimization.
Springer; 2018. pp. 69-89

[9] Dey N, Samanta S, Chakraborty S, Das A, Chaudhuri SS, Suri JS. Firefly algorithm for
optimization of scaling factors during embedding of manifold medical information: An
application in ophthalmology imaging. Journal of Medical Imaging and Health Informat-
ics. 2014;4(3):384-394

[10] Karthikeyan S, Asokan P, Nickolas S, Page T. A hybrid discrete firefly algorithm for
solving multi-objective flexible job shop scheduling problems. International Journal of
Bio-Inspired Computation. 2015;7(6):386-401

[11] Osaba E, Yang XS, Diaz F, Onieva E, Masegosa AD, Perallos A. A discrete firefly algorithm
to solve a rich vehicle routing problem modelling a newspaper distribution system with
recycling policy. Soft Computing. 2017;21(18):5295-5308

[12] Del Ser J, Torre-Bastida AI, Lana I, Bilbao MN, Perfecto C. Nature-inspired heuristics for
the multiple-vehicle selective pickup and delivery problem under maximum profit and
incentive fairness criteria. In: IEEE Congress on Evolutionary Computation (CEC), 2017.
IEEE; 2017. pp. 480-487

[13] Karakatič S, Podgorelec V. A survey of genetic algorithms for solving multi depot vehicle
routing problem. Applied Soft Computing. 2015;27:519-532

[14] Afshar A, Massoumi F, Afshar A, Mariño MA. State of the art review of ant colony
optimization applications in water resource management. Water Resources Management.
2015;29(11):3891-3904

[15] Barkaoui M. A co-evolutionary approach using information about future requests for
dynamic vehicle routing problem with soft time windows. Memetic Computing. 2017:1-
13. https://doi.org/10.1007/s12293-017-0231-8

https://doi.org/10.1007/s12293-017-0231-8
https://doi.org/10.1016/j.swevo.2018.04.001
http://dx.doi.org/10.5772/intechopen.78009

6 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

[16] Shahrabi J, Adibi MA, Mahootchi M. A reinforcement learning approach to parameter
estimation in dynamic job shop scheduling. Computers & Industrial Engineering. 2017;
110:75-82

[17] Hosseinabadi AAR, Siar H, Shamshirband S, Shojafar M, Nasir MHNM. Using the grav-
itational emulation local search algorithm to solve the multi-objective flexible dynamic job
shop scheduling problem in small and medium enterprises. Annals of Operations
Research. 2015;229(1):451-474

[18] Mavrovouniotis M, Li C, Yang S. A survey of swarm intelligence for dynamic optimiza-
tion: Algorithms and applications. Swarm and Evolutionary Computation. 2017;33:1-17

[19] Yang S. Evolutionary computation for dynamic optimization problems. In: Conference on
Genetic and Evolutionary Computation Proceedings. ACM; 2015. pp. 629-649

[20] Zheng QP, Wang J, Liu AL. Stochastic optimization for unit commitmenta review. IEEE
Transactions on Power Systems. 2015;30(4):1913-1924

[21] Wang S, Gangammanavar H, Ekşioğlu SD, Mason SJ. Stochastic optimization for energy
management in power systems with multiple microgrids. IEEE Transactions on Smart
Grid. 2017. https://doi.org/10.1109/TSG.2017.2759159

[22] Liang RH, Wang JC, Chen YT, Tseng WT. An enhanced firefly algorithm to multi-objective
optimal active/reactive power dispatch with uncertainties consideration. International
Journal of Electrical Power & Energy Systems. 2015;64:1088-1097

[23] Compare M, Martini F, Zio E. Genetic algorithms for condition-based maintenance optimi-
zation under uncertainty. European Journal of Operational Research. 2015;244(2):611-623

[24] Sivaganesan S. Global and local robustness approaches: Uses and limitations. In: Robust
Bayesian Analysis. Springer; 2000. pp. 89-108

[25] Beyer HG, Sendhoff B. Robust optimization–A comprehensive survey. Computer
Methods in Applied Mechanics and Engineering. 2007;196(33–34):3190-3218

[26] Guo SX, Lu ZZ. A non-probabilistic robust reliability method for analysis and design
optimization of structures with uncertain-but-bounded parameters. Applied Mathemati-
cal Modelling. 2015;39(7):1985-2002

[27] Zokaee S, Jabbarzadeh A, Fahimnia B, Sadjadi SJ. Robust supply chain network design:
An optimization model with real world application. Annals of Operations Research. 2017;
257(1–2):15-44

[28] Orgut IS, Ivy JS, Uzsoy R, Hale C. Robust optimization approaches for the equitable and
effective distribution of donated food. European Journal of Operational Research. 2018;
269(2):516-531

https://doi.org/10.1109/TSG.2017.2759159

Chapter 2

Robust Optimization: Concepts and Applications

José García and Alvaro Peña

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75381

Abstract

Robust optimization is an emerging area in research that allows addressing different
optimization problems and specifically industrial optimization problems where there is a
degree of uncertainty in some of the variables involved. There are several ways to apply
robust optimization and the choice of form is typical of the problem that is being solved.
In this paper, the basic concepts of robust optimization are developed, the different types
of robustness are defined in detail, the main areas in which it has been applied are
described and finally, the future lines of research that appear in this area are included.

Keywords: optimization, robustness, uncertainly, uncertainty modeling

1. Introduction

Nowadays, using the technologies and techniques associated with the Internet of things, Big
Data and artificial intelligence, we are able to capture and process enormous and varied
volumes of data. Examples of the above can be observed in different disciplines such as
transport [1, 2], mining [3] and agriculture [4] among others. However, in the area of optimi-
zation, many problems still work at the level of reference instances [5–8]. To solve real optimi-
zation problems, we must consider that these are generally multi-variable problems with
restrictions and trade-off between them. In many instances, when a problem is modeled, a
point that is not taken into consideration is the uncertainty to which the system is subject. In
this sense, our solution can be submitted to questions of the type: How feasible is this solution
according to the different scenarios? What is the optimality of this solution? How strict should
the treatment of uncertainty be? One way to approach uncertainty is to consider the robustness
of the solution. However, the definition of robustness is not trivial and there are several
definitions. Ideally, you want to get the best solution and also the most robust one but usually

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.

https://creativecommons.org/licenses/by-nc/4.0
http://dx.doi.org/10.5772/intechopen.75381

8 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

there is a trade-off between these two concepts [9]. Due to the importance and particularity for
each problem of this trade-off between the quality and robustness of the solution, a series of
definitions have been generated and a series of methods developed to adequately address or
estimate the trade-off [10, 11].

Because each problem has its own level of demand regarding the quality of the solution and its
treatment with respect to its robustness, it is difficult to provide a single definition of robust-
ness. In some cases, our solution could be considered robust if under certain conditions of the
search space or under certain operational conditions, the solution behaves reasonably with
respect to its quality, feasibility or optimality. Under other conditions where the management
of uncertainty is very strict, the most appropriate result is associated with scenarios that
consider the worst case [12].

On the other hand, it has been methodologically argued [13] that instead of transforming and
solving the optimization problem with uncertainty in a robust problem, this can be solved in
two stages considering the robustness as a separate objective [13]. The argument is based on
the fact that a separate analysis allows obtaining more information and understanding about
the solution and its robustness, facilitating the decision-making process. On the other hand,
considering robustness as part of the problem has advantages over implementation, computa-
tional cost and alternatives to solve the problem. In the latter case, modeling the choice of
scenarios and the measure of robustness is essential [14].

The aforementioned discussion indicates that the concepts of robustness are still in the process
of maturation and there is no clear methodology on how to address robust problems. There are
conceptual, computational and application challenges in the area of robust optimization.
Usually, the few state of the art reviews found about robust optimization, focus on identifying
what areas and types of problems have been addressed. In this article, as a starting point, we
present a collection of the different definitions and models with which robust optimization
problems have been addressed. Knowledge of the different models used in robust optimiza-
tion is essential for a proper understanding of the field. Once the main concepts are defined,
we proceed to provide an update on the main robust optimization works that have been
carried out over the last few years. In Section 2, we will describe the basic concepts associated
with uncertainty. We will describe the main robustness models in Section 3. Finally, in Section
4, we will describe the main areas of application.

2. Fundamental concepts

Suppose an engineer who must make constant decisions and face the difficulty of
multidimensional problems with some degree of ambiguity or errors in the parameters to
analyze and some kind of stochastic uncertainty of the process and its environment. Then this
engineer must also determine if the proposed solution is robust. This means that the solution is
feasible to apply for any parameter scenario and stochastic uncertainty and that this feasibility
remains close to the optimality condition. Then two fundamental concepts appear: the uncer-
tainty of the feasibility of the solution and the uncertainty of the objective value of the function.

9 Robust Optimization: Concepts and Applications
http://dx.doi.org/10.5772/intechopen.75381

2.1. Uncertainty in the feasibility of the solution

Ideally, the engineer would like his or her solution to be feasible for any value of the parame-
ters analyzed; however, this feasibility has consequences. The first consequence corresponds to
having a significant computational cost when considering all the possible parameter values.
The second consequence is related to the deterioration in the quality of the solution. The more
demanding it is with regard to the feasibility of the parameters, the greater the probability of
moving away from optimality. Therefore, there is a trade-off, which is related to the problem
that is being solved. Then solutions in the area of control theory related to equipment failures
should be much stricter regarding the feasibility of the solution than solutions obtained in
marketing areas where the effect on a set of clients is not so critical. Therefore, the choice of the
uncertainty set plays a fundamental role in the feasibility of solving the problem and in the
quality of the solution obtained.

2.2. Uncertainty in the optimality of the solution

It may happen that depending on the set of uncertainty chosen, the optimality of the solution is
altered. In this case, robust optimization tries to obtain a solution that performs adequately in
the different scenarios; however, all scenarios do not require the same treatment with respect
to optimality. Due to the above, in the literature, we can find different concepts of robustness;
among the most mentioned are: strict robustness [15], cardinality constrained robustness [16],
adjustable robustness [17], lightweight robustness [18], soft robustness [19], lexicographic
robustness and regret robustness.

2.3. Uncertainty in the optimization problem

Each real optimization problem suffers from some type of uncertainty that are mainly caused by
uncertainty at the level of the measurements or by uncertainties due to changes in the environ-
ment of the system. The first case we will refer to microscopic uncertainties and the second will
be macroscopic. The optimization problem can be approached in a standard way through a
nominal scenario which would describe, for example, the most typical case or an average case.
However, in general, the most probable scenario is not trivial to obtain and for some problems,
having a more frequent scenario is not the natural way to approach the problem [20]. An
optimization problem with constraints can be formally written as shown in Eq. (1).

minf ð Þx

s:t: F xð Þ ≤ 0 (1)
x ∈ S,

where F : Rn ! Rm describes a problem of n dimensions with m constraints. f : Rn ! R is the
objective function and S ⊂ Rn is the search space. Our next step is to formalize the uncertainty

in the optimization problem. Suppose ξ ∈ Rk corresponds to a scenario that could occur in our
real problem. Hence, our optimization problem considering the uncertainty scenario ξ, is
written in Eq. (2):

http://dx.doi.org/10.5772/intechopen.75381

� �

� �

10 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

minf ðx; ξÞ
s:t: F xð ; ξÞ ≤ 0 (2)

x ∈ S,

In most problems, it is not known exactly what the value of ξ is, but if it is clear that the

problem falls on an uncertainty set U ∈ Rk , which represents the scenarios that are enough to
consider. Then we have a family of optimization problems given by the pair ðPð Þξ ; ξ ∈ UÞ. A
fundamental objective of robust optimization corresponds to turn this family of problems into
a single problem of optimization, where the choice of the set of uncertainty is fundamental for
the result and complexity of the problem. For an adequate treatment of the problem of
uncertainty, it is fundamental to give structure to the set U. In literature, it is common to find
the following types:

1. Finite uncertainty U ¼ ξ1; …ξl .

2. Interval-based uncertainty U ¼ ∣ξ1, ξb1∣ �… � ∣ξk, ξbk∣.
n o

3. Norm-based uncertainty U ¼ ξ ∈ Rk : ∥ξ � ξb∥ ≤ r .

4. Polytopic uncertainty U ¼ conv ξ1; …ξl .

5. Constraint-wise uncertainly U ¼ U1 �… � Um, where U i affects only the constraint i.

3. Robustness models

This section aims to formally define the main concepts of robustness used to solve optimiza-
tion problems with uncertainty. In each of the ways to approach robustness, the intuition that
exists behind the definition is described; later, the sets that model the uncertainty are charac-
terized and then the problem is written in its robust version. Finally, articles where the
definition has been used are referenced.

3.1. Strict robustness

Let x inS be a solution to the optimization problem with uncertainty ðPð Þξ ; ξ ∈ UÞ. The solution
is strict if x is feasible for all possible scenarios of U, that is, if F xð ; ξÞ ≤ 0 for all ξ ∈ U. This
approach is the most intuitive when trying to solve the optimization problem in a robust way.
Formally, consider the set of all possible strictly robust solutions with respect to the uncertainty
set U given by:

Fð Þ ¼ξ fx ∈ S : F xð ; ξÞ ≤ 0g
(3)RðUÞ ¼ ∩ Fð Þξ

ξ ∈ U

Then the strict robust problem corresponds to the problem formulated in Eq. (4),

b b

b

Robust Optimization: Concepts and Applications 11
http://dx.doi.org/10.5772/intechopen.75381

min sup f xð ; ξÞ
ξ ∈ U

ð Þ (4)s:t: x ∈ R U

x ∈ S

To the best of our knowledge, the first to use strict robustness was Soster in [21], where he
applied uncertainty to convex sets, solving the problem using linear programming. Later, this
work was extended and placed in a theoretical framework in the articles [22, 23]. The essence
of strict robustness is that all scenarios can occur and all of them have an important criticality.
In real problems, this type of robustness is necessary in critical systems where a failure is not
tolerable. For example, the case of air planes and nuclear plants. However, in other types of
problems, such as revenue management, public or scheduling, this type of robustness can be
relaxed.

3.2. Cardinality constrained robustness

One way to relax the strict robustness is to restrict the space of uncertainty. There are several
ways to achieve this restriction. In cardinality constrained robustness, the property is used that
it is unlikely that all the uncertainty parameters change at the same time when analyzing the
worst case. Then, we can restrict the cardinality of the uncertainty space by varying only some
parameters; the others are modeled with their representative values.

Let X ¼ fx1; …xng and b1x1, …, bnxn ≤ c be a solution and restriction respectively of the optimiza-n h i o
tion problem. Let U ¼ b ∈ Rn : bi ∈ bi � di; bi þ di ; i ¼ 1; …n ; then, the cardinality constrained

robustness is described in Eq. (5).

 !
n

bixi þ max dijxij ≤ c (5)
R ⊂ f1;…;ng, ∣R∣¼γ

X X
i¼1 i ∈ R

This approach was conceptualized by Bertsimas and Sim [16] for continuous problems. Later,
this approach was extended to combinatorial problems in the articles [24, 25].

3.3. Adjustable robustness

Another way to relax the space of uncertainty of strict robustness, corresponds to divide the
space into groups of variables. A first group will be called here and now variables. These vari-
ables correspond to variables that must be evaluated before the scenario ξ ∈ U is determined
and the wait and see variables, which can be determined once the scenario ξ is known.

Let X be one point of our search space; then, X ¼ ðu; vÞ can be divided into u ∈ S1 ⊂ Rn1 and

v ∈ S2 ⊂ Rn2 where n1 þ n2 ¼ n. Then the variables u correspond to the group here and now
variables and the variables v to the group wait and see variables. Formally, this is written in
Eq. (6).

http://dx.doi.org/10.5772/intechopen.75381

12 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

minf uð ; v; ξÞ
F uð ; v; ξÞ ≤ 0 (6)

ðu; vÞ∈ S1 � S2

Then once we have fixed the variables here and now, we must make sure that for any of the

selected ξ ∈ U scenarios, there is v ∈ S2 such that ðu; vÞ is feasible for ξ. Let PS1 ðFð Þξ Þ, defined in

Eq. (7) be the projection of Fð Þξ over S1.

˜ °
PS1 ðFð Þξ Þ≔ u ∈ S1 : ∃v ∈ S2 s:t: ðu; vÞ∈ Fð Þξ (7)

where Fð Þξ corresponds to the solution space that complies with the constraints defined in
Eq. (3). Then, the set of solutions for the split robustness is given by:

R ¼
˜
u ∈ S1 : ∀ξ ∈ U∃v ∈ S2 s:t: ðu; vÞ∈ Fð Þξ

°

(8)¼ ∩ PS1 ðFð Þξ Þ
ξ ∈ U

Given a u, the worst case w for some specific u with respect to the set of solutions R, is given by
Eq. (9).

wR u inf ð Þ (9)ð Þ ¼ sup f u; v; ξ
v:ðu;vÞ∈ Fð Þξξ ∈ U

And therefore, the split robustness is given by Eq. (10).

˜ ° Rmin w ð Þu : u ∈ R (10)

The first one to introduce the concept of adjustable robustness was Ben Tal et al. [17] applied to
uncertainly problems in linear programming. However, the concept has continued to develop
and adapt and nowadays, applications are being seen in portfolio selection [26], in power
systems [27], capacity extension planning [28], aperiodic timetabling [29], among others.

3.4. Light robustness

A completely different way of relaxing the concept of strict robustness corresponds to instead
of reducing the space of uncertainty, we can relax the constraints in favor of the quality of the
solution. This new concept that is called light robustness, this concept considers as a funda-
mental hypothesis that if we are able to adequately solve the optimization problem consider-
ing the nominal (or average) case, the solution should not be bad and basically, we can
concentrate on finding relatively close solutions of the fitness that also fulfill in the best
possible way the restrictions of the problem considering all ξ ∈ U. Formally, light robustness is
detailed in Eq. (11).

� � � �

Robust Optimization: Concepts and Applications 13
http://dx.doi.org/10.5772/intechopen.75381

kX
min wiλi

i¼1

s:t: f x; bξ ≤ f ∗ ξb þ r (11)

F xð ; ξÞ ≤ λ, ∀ξ ∈ U

x ∈ S, λ ∈ Rk

The concept of light robustness was introduced by Fischetti and Monaci [30], the main objec-
tive of its new definition was to allow a trade-off between robustness and quality of the
solution. A constraint is added by entering the parameter r. This parameter forces the solution

to have a certain closeness to the solution for the nominal case represented by bξ. Because there
is a trade-off between quality and robustness, to allow this closeness of the nominal case, it is
necessary to relax the original constraints. This is done with the λ factor, where we finally want
to find the best set of coefficients that relax our solution.

Originally, the concept of light robustness was conceived to be applied to problems of linear
programming [30] and specifically, in time optimizations in Italian single-line instances. Later,
in [31] light robustness was applied to determine the best route to traveling in a public
transport network in Germany. Later in [18] the concept was generalized taking into account
any optimization problem and any set of uncertainty.

3.5. Regret robustness

The regret robustness described by [32] uses a way to relax the problem through the objective
function. Let f ∗ ð Þξ be the best target value in the scenario ξ ∈ U. Instead of minimizing the
worst-case performance of a solution, it minimizes the difference to the objective function of
the best solution that would have been possible in a scenario. The regret robustness formula-
tion is shown Eq. (12).

min sup ðf xð ; ξÞ � f ∗ ð Þξ Þ
ξ ∈ U

(12)s:t: F xð Þ ≤ 0

x ∈ S

Today, we see used in the concept of regret robustness in different areas. In [33], it was used in
portfolio optimization problems. In safety investment problems, it was used in [34]. In [35] it
was used to solve evacuation planning models.

3.6. Recoverable robustness

Recoverable robustness uses the concept of recovery algorithm and, like adjustable robustness, it
obtains the solution in two stages. Give a family of algorithms A. A solution x is recovery
robust with respect to A if it exists for every scenario ξ ∈ U, an algorithm A ∈ A such that A

http://dx.doi.org/10.5772/intechopen.75381

14 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

applied to the solution x and a scenario ξ allows you to build a solution A xð ; ξÞ ∈ FðξÞ. Then
the optimization problem in its robust form is written by Eq. (13):

min f xð Þ
ðx;AÞ ∈ ðFðξÞ�AÞ (13)

s:t: A xð ; ξÞ ∈ FðξÞ, ∀ξ ∈ U

The concept of recoverable robustness was developed in the article [36] applied to shunting
problems and later refined in [37] applying recoverable robustness to railway problems with
linear programming. Today, we find the concept of recoverable robustness applied to location
planning [38], scheduling and delivering routing [39], allocation and network design problems
[40], robust traveling salesman problem [41] and transit network design [42], among others.

4. Application areas of robust optimization

In this section, we will describe some examples where robust optimization has been applied.
Mainly identified areas have been logistics, finance, water management, energy management
and machine learning.

4.1. Energy management

Energy management has received significant attention with respect to robust optimization. In
[43] a strategic planning model applied to the integrated oil chain was designed. For the
design, it was considered as sources of uncertainty: crude oil production, demand for refined
products and market prices. The robust version of the demands for a power plant problem was
studied in [44]. In this article the phases of unit commitment and economic dispatch were
considered to minimize the local cost. A robust model of energy distribution under uncer-
tainties with respect to wind energy was studied in [45]. In this article, it was shown that the
proposed method can be solved in suitable times in addition to being able to effectively
capture the ambiguous distribution of wind power generation. In [46], the configuration of
the energy consumption of household appliances under the uncertainty of manually operated
devices (MOAs) was modeled as a problem of robust optimization. When evaluating all the
possible cases of the energy of MOAs, the traditional approach was chosen, that is, using the
worst case with the intention of reducing the payment of electricity for all the household
appliances. To determine the reduction in the payment, the price of electricity in real time was
considered as information in addition to the inclining block rate.

4.2. Water management

In [47] robust optimization was used to handle the uncertainties of water planning resources.
In [48] the authors developed a new methodology for the optimizing daily operations of pum-
ping stations. This methodology takes into consideration the fact that a water distribution system
is actually unavoidably affected by uncertainties. A multi-objective robust decision-making

Robust Optimization: Concepts and Applications 15
http://dx.doi.org/10.5772/intechopen.75381

approach was developed in [49]. This approach supports seasonal water management. In [51],
a comparison of Robust Optimization and Info-Gap Methods for Water Resource Management
under Deep Uncertainty was made. A multi-objective design of water distribution systems
under uncertainty was developed in [50]. The main objectives are (1) minimize the total water
distribution system (WDS) design cost and (2) maximize WDS robustness. In the article, the
WDS robustness is defined as the probability of simultaneously satisfying minimum pressure
head constraints at all nodes in the network.

4.3. Machine learning

In [52] regularized support vector machines (SVMs) were considered, and they were shown to
be equivalent to a robust formulation of the problem. The authors show that this equivalence
between robust optimization and regularization has implications for both algorithms and
analysis. The equivalence of robustness and regularization provides a robust optimization
interpretation for the success of regularized SVMs. On the other hand, Fertis in his doctoral
thesis [53], studied the connection between regularizations like Lazo and robustness. Specifi-
cally, he showed that in classical regression, regularized estimators like lasso can be obtained
by applying robust optimization to the classical least squares problem. He discovers an explicit
connection between the size and the structure of the uncertainty used in the robust estimator,
with the coefficient and the kind of norm used in regularization. Xu et al. [54], investigated a
probabilistic interpretation of robust optimization. They established a connection between
robust optimization and distributionally robust stochastic programming (DRSP). In the article,
they showed that the solution to any robust optimization problem is also a solution to a DRSP
problem. In [55] the problem of constructing robust classifiers when the training is subject to
uncertainty was studied. The problem is posed by a chance-constrained programming, which
ensures that the uncertainty of the data is correctly defined with high probability.

4.4. Logistics

In the area of logistics problems such as the traveling salesman and routing problem have been
explored in their robust versions. A Swarm intelligence system was designed in [56] to solve
the vehicle routing problem with time windows and uncertain travel times. The uncertainty
here models the perturbation in the data. This perturbation, is caused by the effects of
unpredictable events, such as traffic jams, road building, etc. In the article, the authors pro-
posed a heuristic approach using ant colony optimization as a metaheuristic. In [57], the open
vehicle routing problem with uncertain demands was studied. In this problem, the vehicles
have as an additional function that they do not necessarily return to their original locations
after delivering the products to the customers. First, the authors modeled the demand of the
clients as specific sets of limited uncertainty with expected values of demand and nominal
values. Having the sets modeled, they later proposed a robust optimization model that aims to
minimize transport costs and unsatisfied demands on the specific uncertainty sets defined. The
robust vehicle routing problem with time windows was solved in [58]. They proposed two
new formulations for the robust problem, each based on a different robust approach. They
proposed two new formulations for the robust problem, each based on a different robust

http://dx.doi.org/10.5772/intechopen.75381

16 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

approach. The first formulation uses adjustable robustness with the aim of extending the well-
known formulation of resource inequalities. The second formulation generalizes a path
inequalities formulation to the uncertain context. In this case, uncertainty is modeled in the
formulation of the problem. In [41], an uncertain traveling salesman problem was developed.
In this problem, the distances between the nodes are not exactly known, but they can be
obtained from a set of uncertainties of possible scenarios. This set of uncertainties is modeled
as intervals, including an additional limit associated with the number of distances that can
deviate from their expected nominal values. In the study, a recoverable robust model was
proposed. This model allows a tour to change only a limited number of borders once a scenario
is known; all these with the goal of minimizing the complexity in calculations. The robust
traveling salesman problem with interval data was studied in [59]. In the article, travel times
are specified as a range of possible values. They applied the robust deviation criterion to drive
the optimization over the interval data problem thus obtained.

Another interesting group of problems in the logistics area corresponds to facility location
problems. The robust formulation of these problems aims to obtain an optimal design of a
system considering uncertainty. The authors introduce a robust optimization-based approach to
obtain some capacity expansion solutions that are not sensitive to this uncertainty. In this area,
we highlight the work carried out by [60], where they considered the question of how to make a
decision about capacity expansions for a network flow problem that is subject to demand and
travel time uncertainty. The authors introduce a robust optimization-based approach to obtain
some capacity expansion solutions that are not sensitive to this uncertainty. They show that the
robust modeled solution is a computationally tractable problem when considering general
uncertainty sets together with reasonable conditions for network flow applications. Another
interesting problem in this area is the robust transmission expansion planning. In [61] the
authors address the problem of transmission expansion planning, considering uncertainties in
the electric power system. They consider varied sources of uncertainty such as: the growth of
future demand, the availability of generation facilities, geographical characterization within the
electric power system. A robust adaptive optimization model is used to obtain investment
decisions with the objective of minimizing the total costs of the system and anticipating the
worst-case materialization of the uncertain parameters within a uncertainty set.

4.5. Public goods

Public goods can be understood as a merchandise or service that is provided non-profit to all
members of a society. This merchandise or service, can be provided by the government, an
individual or an organization. When we consider public goods and robust optimization,
interesting applications appear. An interesting first application corresponds to radiation
therapy. When a radiation therapy examination is performed, there are uncertainties that
are fundamental to consider in defining the correct treatment in patients with cancer. In this
context, addressing problems through robust optimization makes a lot of sense. In [62] the
authors constructed an uncertainty model of the movement of respiration based on proba-
bility density functions. These functions allowed them to robustly model the optimization of
intensity-modulated radiation therapy.

Robust Optimization: Concepts and Applications 17
http://dx.doi.org/10.5772/intechopen.75381

Another interesting implementation associated with the application of robust optimization to
public goods corresponds to intrahospital transport. Intrahospital transport is often required
for reasons associated with a diagnosis or some therapy that the patient must perform.
Depending on the design of the hospital, transportation between the nursing rooms and the
service units is provided by ambulances or by trained personnel accompanying patients on
foot. When the hospital is large, the patient transport service is often poorly managed and
there is no associated flow coordination; on the other hand, there is no clarity of all the
necessary transports since they are dependent on the diagnoses. In [63] the authors address
the problem of defining robustness to patient flow management in the context of optimized
patient transport in hospitals. In [64] a methodology was proposed to obtain a robust logistics
plan to mitigate the uncertainty of the demand for humanitarian relief supply chains. More
specifically, the authors formulated the problem as a robust optimization problem with the
objective of dynamically assigning emergency response and generate evacuation traffic flow,
all this in the context of time-dependent demand uncertainty.

5. Discussion and conclusions

In this article, we have carefully reviewed the different definitions that have appeared in the
literature to address the concept of robust optimization. We have taken special care to formal-
ize each of the definitions and cite specific examples where they have been used. Subsequently,
a review was made in areas where robust optimization has been applied. In particular, the
areas of water management, energy management, machine learning, logistics and public
goods stood out. With the advent of the concepts and technologies associated with the Internet
of Things and Big Data, it is expected that the problems described above have a greater
amount of data to build more robust models; however, this brings challenges regarding the
complexity of the algorithms, in addition to the learning and operation of these in real time.

When we analyze the research works developed in the area of robust optimization, we found
that there is a lack of a formal argument that clearly defines the uncertainty set to be used to
solve the problem in a robust way. Usually, the choice is guided by business intuition together
with the need to adapt the uncertainty set to solve the problem in a reasonable time.

Therefore, there is an important space to develop quantitative studies to determine what kind
of robustness and uncertainty set should be used to solve a problem. Identifying how different
uncertainty sets behave for a defined problem is fundamental. To be able to answer questions
such as: How is the quality of the solutions perturbed with the choice of the uncertainty set?, Is
this perturbation important for the problem that is being solved?, How is the convergence of
the algorithm altered against different sets of uncertainty?, Can we classify problems
according to some degree of robustness? Can this classification be related to the type of
uncertainty to be used? The answer to these questions allows developing a methodology that
allows identifying which is the robustness required by the problem, what type of uncertainty
set should be chosen and how is the behavior of the algorithm in terms of quality of its results
and convergence.

http://dx.doi.org/10.5772/intechopen.75381

18 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

As future lines of research in the area of robust optimization, we see that considering these
group of definitions together with the different applications mentioned earlier, we can work on
developing a methodology that gives a specific problem, allows in a simple way to identify
which definition is the most appropriate and which methods they are the most appropriate to
solve the problem at reasonable times.

Regarding the tractability of robust problems, we have not found solutions where the hybrid-
ization of metaheuristics with other techniques is exploited such as integration with mathe-
matical programming, with simulations or integration with machine learning, all these with
the goal of improving convergence times of algorithms.

Particularly, according to our experience in the integration of machine learning and
metaheuristics, a line that must be explored corresponds to the use of a general scheme of
integration of these two areas through the use of metalearning techniques. Considering that
we have a set of algorithms or settings of some algorithm, we use a mechanism that selects
the best algorithm or settings for given an instance to obtain the best convergence and
results. Furthermore, the use of reinforced learning can be explored to enrich the meta-
model with the new results generated.

Author details

José García1,2* and Alvaro Peña1

*Address all correspondence to: joseantonio.garcia@telefonica.com

1 Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso,
Valparaíso, Chile

2 Telefónica I+D, Providencia, Santiago, Chile

References

[1] Graells-Garrido E, García J. Visual exploration of urban dynamics using mobile data. In:
International Conference on Ubiquitous Computing and Ambient Intelligence. Springer;
2015. pp. 480-491

[2] Graells-Garrido E, Peredo O, García J. Sensing urban patterns with antenna mappings:
The case of Santiago, Chile. Sensors. 2016;16(7):1098

[3] Peredo OF, García JA, Stuven R, Ortiz JM. Urban dynamic estimation using mobile phone
logs and locally varying anisotropy. In: Geostatistics Valencia 2016; Springer; 2017.
pp. 949-964

[4] García J, Pope C, Altimiras F. A distributed k-means segmentation algorithm applied to
lobesia botrana recognition. Complexity. 2017;2017

mailto:joseantonio.garcia@telefonica.com

Robust Optimization: Concepts and Applications 19
http://dx.doi.org/10.5772/intechopen.75381

[5] García J, Crawford B, Soto R, García P. A multi dynamic binary black hole algorithm
applied to set covering problem. In: International Conference on Harmony Search Algo-
rithm. Singapore: Springer; 2017. pp. 42-51

[6] Crawford B, Soto R, Monfroy E, Astorga G, García J, Cortes E. A meta-optimization
approach for covering problems in facility location. In: Workshop on Engineering Appli-
cations. Vol. 742. 2018. pp. 565-578

[7] García J, Crawford B, Soto R, Castro C, Paredes F. A k-means binarization framework
applied to multidimensional knapsack problem. Applied Intelligence. Springer; 2018;48
(2):357-380

[8] García J, Crawford B, Soto R, Astorga G. A percentile transition ranking algorithm
applied to knapsack problem. In: Proceedings of the Computational Methods in Systems
and Software. Springer; 2017. pp. 126-138

[9] Rooderkerk RP, van Heerde HJ. Robust optimization of the 0–1 knapsack problem:
Balancing risk and return in assortment optimization. European Journal of Operational
Research. 2016;250(3):842-854

[10] Jin Y, Branke J. Evolutionary optimization in uncertain environments-a survey. IEEE
Transactions on Evolutionary Computation. 2005;9(3):303-317

[11] Paenke I, Branke J, Jin Y. Efficient search for robust solutions by means of evolutionary
algorithms and fitness approximation. IEEE Transactions on Evolutionary Computation.
2006;10(4):405-420

[12] Gabrel V, Murat C, Thiele A. Recent advances in robust optimization: An overview.
European Journal of Operational Research. 2014;235(3):471-483

[13] Jin Y, Sendhoff B. Trade-off between performance and robustness: An evolutionary
multiobjective approach. In: EMO. Vol. 3. Springer; 2003. pp. 237-251

[14] Lim D, Ong Y-S, Lim M-H, Jin Y. Single/multi-objective inverse robust evolutionary
design methodology in the presence of uncertainty. In: Evolutionary Computation in
Dynamic and Uncertain Environments. Springer; 2007. pp. 437-456

[15] Ben-Tal A, Ghaoui L.E., Nemirovski A. Robust Optimization. Princeton Series in Applied
Mathematics. Princeton University Press; 2009. ISBN: 9781400831050. https://books.goo-
gle.cl/books?id=DttjR7IpjUEC

[16] Bertsimas D, Sim M. The price of robustness. Operations Research. 2004;52(1):35-53

[17] Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A. Adjustable robust solutions of
uncertain linear programs. Mathematical Programming. 2004;99(2):351-376

[18] Schöbel A. Generalized light robustness and the trade-off between robustness and nom-
inal quality. Mathematical Methods of Operations Research. 2014;80(2):161-191

[19] Ben-Tal A, Bertsimas D, Brown DB. A soft robust model for optimization under ambigu-
ity. Operations Research. 2010;58(4-part-2):1220-1234

https://books.goo
http://dx.doi.org/10.5772/intechopen.75381

20 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

[20] Jenkins L. Selecting scenarios for environmental disaster planning. European Journal of
Operational Research. 2000;121(2):275-286

[21] Soyster AL. Convex programming with set-inclusive constraints and applications to
inexact linear programming. Operations Research. 1973;21(5):1154-1157

[22] Ben-Tal A, Nemirovski A. Robust convex optimization. Mathematics of Operations
Research. 1998;23(4):769-805

[23] Ben-Tal A, Nemirovski A. Robust solutions of uncertain linear programs. Operations
Research Letters. 1999;25(1):1-13

[24] Atamtürk A. Strong formulations of robust mixed 0–1 programming. Mathematical Pro-
gramming. 2006;108(2):235-250

[25] Goetzmann K-S, Stiller S, Telha C. Optimization over integers with robustness in cost and
few constraints. In: WAOA. Vol. 2011. Springer; 2011. pp. 89-101

[26] Fliedner T, Liesiö J. Adjustable robustness for multi-attribute project portfolio selection.
European Journal of Operational Research. 2016;252(3):931-946

[27] Ding T, Bie Z, Bai L, Li F. Adjustable robust optimal power flow with the price of
robustness for large-scale power systems. IET Generation, Transmission & Distribution.
2016;10(1):164-174

[28] Mejia-Giraldo D, McCalley J. Adjustable decisions for reducing the price of robustness
of capacity expansion planning. IEEE Transactions on Power Systems. 2014;29(4):1573-
1582

[29] Goerigk M, Schöbel A. Recovery-to-optimality: A new two-stage approach to robustness
with an application to aperiodic timetabling. Computers & Operations Research. 2014;52:
1-15

[30] Fischetti M, Monaci M. Light robustness. In: Robust and Online Large-Scale Optimiza-
tion. Springer; 2009. pp. 61-84

[31] Goerigk M, Schmidt M, Schöbel A, Knoth M, Müller-Hannemann M. The price of strict
and light robustness in timetable information. Transportation Science. 2013;48(2):225-242

[32] Kouvelis P, Yu G. Robust Discrete Optimization and Its Applications. Vol. 14. US: Springer
Science & Business Media; 2013

[33] Xidonas P, Mavrotas G, Hassapis C, Zopounidis C. Robust multiobjective portfolio opti-
mization: A minimax regret approach. European Journal of Operational Research. 2017;
262(1):299-305

[34] Aven T, Hiriart Y. Robust optimization in relation to a basic safety investment model with
imprecise probabilities. Safety Science. 2013;55:188-194

[35] Goerigk M, Hamacher HW, Kinscherff A. Ranking robustness and its application to
evacuation planning. European Journal of Operational Research. Elsevier; 2018;264(3):
837-846

Robust Optimization: Concepts and Applications 21
http://dx.doi.org/10.5772/intechopen.75381

[36] Cicerone S, D’Angelo G, Di Stefano G, Frigioni D, Navarra A. 12. Robust algorithms and
price of robustness in shunting problems. In: Liebchen C, Ahuja KR, Mesa AJ, editor. 7th
Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’07). Vol. 7. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum für
Informatik; 2007. ISBN: 978-3-939897-04-0. ISSN: 2190-6807. DOI: 10.4230/OASIcs.ATM
OS.2007.1175

[37] Liebchen C, Lübbecke M, Möhring R, Stiller S. The concept of recoverable robustness,
linear programming recovery, and railway applications. In: Robust and Online Large-
Scale Optimization. Berlin, Heidelberg: Springer; 2009. pp. 1-27

[38] Carrizosa E, Goerigk M, Schöbel A. A biobjective approach to recoverable robustness based
on location planning. European Journal of Operational Research. 2017;261(2):421-435

[39] Cheref A, Artigues C, Billaut J-C. A new robust approach for a production scheduling
and delivery routing problem. IFAC-PapersOnLine. 2016;49(12):886-891

[40] Kutschka M. Robustness concepts for knapsack and network design problems under data
uncertainty. In: Operations Research Proceedings 2014. Cham: Springer; 2016. pp. 341-347

[41] Chassein A, Goerigk M. On the recoverable robust traveling salesman problem. Optimi-
zation Letters. 2016;10(7):1479-1492

[42] Cadarso L, Marn Á. Rapid transit network design considering risk aversion. Electronic
Notes in Discrete Mathematics. 2016;52:29-36

[43] Ribas GP, Hamacher S, Street A. Optimization under uncertainty of the integrated oil
supply chain using stochastic and robust programming. International Transactions in
Operational Research. 2010;17(6):777-796

[44] Zhang M, Guan Y. Two-Stage Robust Unit Commitment Problem. USA: University of
Florida; 2009

[45] Xiong P, Singh C. Distributionally robust optimization for energy and reserve toward a
low-carbon electricity market. Electric Power Systems Research. 2017;149:137-145

[46] Du Y, Jiang L, Li Y, Wu Q. A robust optimization approach for demand side scheduling
considering uncertainty of manually operated appliances. IEEE Transactions on Smart
Grid. 2018;9(2):743-755. ISSN: 1949-3053. DOI: 10.1109/TSG.2016.2564159

[47] Beh EH, Zheng F, Dandy GC, Maier HR, Kapelan Z. Robust optimization of water infra-
structure planning under deep uncertainty using metamodels. Environmental Modelling
& Software. 2017;93:92-105

[48] Goryashko AP, Nemirovski AS. Robust energy cost optimization of water distribution
system with uncertain demand. Automation and Remote Control. 2014;75(10):1754-1769

[49] Riegels N, Jessen O, Madsen H. Using multi-objective robust decision making to support
seasonal water management in the chao phraya river basin, Thailand. In: EGU General
Assembly Conference Abstracts. Vol. 18. 2016. p. 12712

http://dx.doi.org/10.5772/intechopen.75381

22 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

[50] Roach T, Kapelan Z, Ledbetter R, Ledbetter M. Comparison of robust optimization and
info-gap methods for water resource management under deep uncertainty. Journal of
Water Resources Planning and Management. 2016;142(9):04016028

[51] Kapelan ZS, Savic DA, Walters GA. Multiobjective design of water distribution systems
under uncertainty. Water Resources Research. 2005;41(11)

[52] Xu H, Caramanis C, Mannor S. Robustness and regularization of support vector
machines. Journal of Machine Learning Research. 2009;10(Jul):1485-1510

[53] Fertis A. A robust optimization approach to statistical estimation problems by Apostolos
G. Fertis [PhD thesis]. Massachusetts Institute of Technology; 2009

[54] Xu H, Caramanis C, Mannor S. A distributional interpretation of robust optimization.
Mathematics of Operations Research. 2012;37(1):95-110

[55] Ben-Tal A, Bhadra S, Bhattacharyya C, Nath JS. Chance constrained uncertain classifica-
tion via robust optimization. Mathematical Programming. 2011;127(1):145-173

[56] Toklu NE, Gambardella LM, Montemanni R. A multiple ant colony system for a vehicle
routing problem with time windows and uncertain travel times. Journal of Traffic and
Logistics Engineering. 2014;2(1)

[57] Cao E, Lai M, Yang H. Open vehicle routing problem with demand uncertainty and its
robust strategies. Expert Systems with Applications. 2014;41(7):3569-3575

[58] Agra A, Christiansen M, Figueiredo R, Hvattum LM, Poss M, Requejo C. The robust
vehicle routing problem with time windows. Computers & Operations Research. 2013;
40(3):856-866

[59] Montemanni R, Barta J, Mastrolilli M, Gambardella LM. The robust traveling salesman
problem with interval data. Transportation Science. 2007;41(3):366-381

[60] Ordóñez F, Zhao J. Robust capacity expansion of network flows. Networks. 2007;50(2):
136-145

[61] Ruiz C, Conejo AJ. Robust transmission expansion planning. European Journal of Oper-
ational Research. 2015;242(2):390-401

[62] Bortfeld T, Chan TC, Trofimov A, Tsitsiklis JN. Robust management of motion uncertainty
in intensity-modulated radiation therapy. Operations Research. 2008;56(6):1461-1473

[63] Hanne T, Melo T, Nickel S. Bringing robustness to patient flow management through
optimized patient transports in hospitals. Interfaces. 2009;39(3):241-255

[64] Ben-Tal A, Do Chung B, Mandala SR, Yao T. Robust optimization for emergency logistics
planning: Risk mitigation in humanitarian relief supply chains. Transportation Research
Part B: Methodological. 2011;45(8):1177-1189

Chapter 3

Evaluation of Non-Parametric Selection Mechanisms in
Evolutionary Computation: A Case Study for the
Machine Scheduling Problem

Maxim A. Dulebenets

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75984

Abstract

Evolutionary Algorithms have been extensively used for solving stochastic, robust, and
dynamic optimization problems of a high complexity. Selection mechanisms play a very
important role in design of Evolutionary Algorithms, as they allow identifying the parent
chromosomes, that will be used for producing the offspring, and the offspring chromo-
somes, that will survive in the given generation and move on to the next generation.
Selection mechanisms, reported in the literature, can be classified in two groups: (1)
parametric selection mechanisms, and (2) non-parametric selection mechanisms. Unlike
parametric selection mechanisms, non-parametric selection mechanisms do not have any
parameters that have to be set, which significantly facilitates the Evolutionary Algorithm
parameter tuning analysis. This study presents a comprehensive analysis of the com-
monly used non-parametric selection mechanisms. Comparison of the selection mecha-
nisms is performed for the machine scheduling problem. The objective of the presented
mathematical model is to determine the assignment of the arriving jobs among the avail-
able machines, and the processing order of jobs on each machine, aiming to minimize the
total job processing cost. Different categories of Evolutionary Algorithms, which deploy
various non-parametric selection mechanisms, are evaluated in terms of the objective
function value at termination, computational time, and changes in the population diver-
sity. Findings indicate that the Roulette Wheel Selection and Uniform Sampling selection
mechanisms generally yield higher population diversity, while the Stochastic Universal
Sampling selection mechanism outperforms the other non-parametric selection mecha-
nisms in terms of the solution quality.

Keywords: optimization, Evolutionary Algorithms, non-parametric selection
mechanisms, machine scheduling problems, parameter tuning, computational time

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.

https://creativecommons.org/licenses/by-nc/4.0
http://dx.doi.org/10.5772/intechopen.75984

24 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

1. Introduction

Evolutionary Algorithms (EAs) and other metaheuristic algorithms have been widely used for
solving complex stochastic, robust, and dynamic optimization problems. These complex prob-
lems include but are not limited to the following: vertex cover problem, Boolean satisfiability
problem, maximum clique size problem, Knapsack problem, traveling salesman problem, bin
packing problem, machine scheduling problems, and others [1, 2]. Some of the aforementioned
problems have a non-deterministic polynomial time complete (NP-complete) complexity,
while the others are non-deterministic polynomial time hard (NP-hard). The exact solution
algorithms cannot be used to solve NP-complete and NP-hard problems to the global optimal-
ity for the realistic size problem instances within an acceptable computational time. On the
other hand, the approximation algorithms, including EAs and other metaheuristic algorithms,
are able to provide good quality solutions within a reasonable computational time. Candidate
solutions to the problem of interest are encoded in the chromosomes within EAs. Different
types of chromosome representations have been reported in the EA literature. For example,
canonical Genetic Algorithms, developed by Holland, rely on a binary chromosome represen-
tation; while canonical Evolutionary Strategies, proposed by Rechenberg, use a real-valued
chromosome representation [3, 4]. On the other hand, Genetic Programming, developed by
Koza, relies on a tree-based chromosome representation [3, 4].

Once the chromosome representation is selected, the initial population is generated, and
fitness values of the initial population chromosomes are estimated. Then, the EA starts an
iterative process, where the population chromosomes are continuously altered using selection
and EA operators (e.g., crossover and mutation) from one generation to another, aiming to
identify superior solutions. The EA is terminated, once a certain stopping criterion is met (in
some EAs multiple stopping criteria can be imposed). Two types of selection mechanisms are
applied throughout the EA evolution: (1) parent selection, which aims to identify a subset of
individuals from the offspring chromosomes, survived in the previous generation, that will
participate in the EA operations and generate the new offspring chromosomes; and (2) off-
spring selection, which aims to identify a subset of individuals from the generated offspring
chromosomes that will survive in the given generation and will be moved to the next genera-
tion. A large number of different selection mechanisms have been reported in the EA literature,
which can be categorized in two groups: (1) parametric selection mechanisms (e.g., Exponen-
tial Ranking Selection, Tournament Selection, Boltzmann Selection), and (2) non-parametric
selection mechanisms (e.g., Roulette Wheel Selection, Stochastic Universal Sampling, Binary
Tournament Selection, Ranking Selection, Uniform Sampling).

Each EA has several parameters (e.g., population size, crossover probability, mutation probability,
and others), which are generally determined based on a parameter tuning [3, 4]. A “full factorial
design” methodology has been widely used for the EA parameter tuning [5]. Based on the latter
methodology, the algorithm has a number of parameters (or factors - f), which have a set of

candidate values (or levels - l). In order to set the appropriate EA parameter values, a total of lf

algorithmic runs will be required throughout the parameter tuning analysis. Based on the analysis
of a tradeoff between the objective function and computational time values, the most promising

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 25
http://dx.doi.org/10.5772/intechopen.75984

parameter combination will be chosen. Parametric selection mechanisms will increase the number
ð Þof algorithmic runs to l f þNSEL

, where NSEL – is the number of parameters for a given selection
mechanism. Such increase in the number of algorithmic runs can make the parameter tuning
analysis computationally prohibitive due to significant computational time required. Moreover,
the parameter values of the selection mechanisms, adopted for a given set of problem instances,
may worsen the EA performance, when applied to a different set of problem instances.

In order to avoid the latter drawbacks and facilitate the EA parameter tuning analysis, this
study solely applies non-parametric selection mechanisms throughout the EA design. Differ-
ent EA categories, which rely on various non-parametric selection mechanisms, are evaluated
based on the major algorithmic performance indicators, including the objective function value
at termination, computational time, and changes in the population diversity throughout the
algorithmic evolution. The computational experiments are conducted for the machine sched-
uling problem. The machine scheduling problem deals with allocation of the available han-
dling resources (i.e., machines) for service of the tasks (i.e., jobs), which arrive at the given
facility with a specific frequency [2]. The machine scheduling problem receives an increasing
attention from the community, as it is considered as an important decision problem in
manufacturing, service industries, and supply chain management [6–10]. Without efficient
sequencing and scheduling, the supply chain players may not be able to meet specific dead-
lines, which are established for processing certain products. The latter may incur substantial
monetary losses and, ultimately, can even result in the customer loss. In the meantime, poor
utilization of the available handling resources may cause drastic monetary losses as well.
Therefore, development of advanced decision support tools for the machine scheduling prob-
lems (including effective solution algorithms, which are the primary focus of this study)
becomes critical in the current competitive environment.

Findings from this research are expected to provide important insights regarding non-
parametric selection mechanisms, which can be further used in future for the design of EAs.
Efficient non-parametric selection mechanisms will be critical for Hybrid EAs, which along
with the standard EA parameters (e.g., population size, crossover probability, mutation prob-
ability) may require setting additional parameters for the local search heuristics. The
remaining sections of this chapter are organized in the following order. The next section
discusses the machine scheduling environment, where the developed EA will be applied. The
third section presents a mixed integer mathematical model for the machine scheduling prob-
lem. The fourth section focuses on a detailed description of the main EA components. The fifth
section discusses the computational experiments, which were conducted in this study for
evaluation of non-parametric selection mechanisms. The last section summarizes findings and
outlines potential directions for the future research.

2. Machine scheduling

The objective of the machine scheduling problems (MSPs) is to allocate the arriving jobs among
the available machines and identify the processing order of jobs on each machine. A large

http://dx.doi.org/10.5772/intechopen.75984

26 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

number of various MSPs have been widely studied in the past, such as single machine,
identical machines in parallel, machines in parallel with different speeds, unrelated machines
in parallel, job shop, and others [2]. The aforementioned MSPs differ in terms of machine
properties (e.g., machines at a given facility have identical properties vs. machines at a given
facility have different properties), job type (e.g., the processing time of a given job may vary on
two machines with the same speeds based on the job type), order of machines to be visited
(e.g., a given job may have to be processed on several machines in a specific order), etc.

The unrelated MSP will be studied in this chapter. Let I ¼ f1; …; mg be a set of jobs, arriving at
the facility, which should be processed on the available machines within a given planning
horizon. Let J ¼ f1; …; ng be a set of machines available at the given facility within a given
planning horizon. Let K ¼ f1; …; pg be a set of job processing orders. Each job should be
assigned for processing on one of the available machines in one of the processing orders. The
machines at the given facility are assumed to have different properties (e.g., different speeds);
therefore, the processing time of a given job may vary depending on the machine assignment.
Furthermore, the processing time on a given machine depends on the job type (i.e., the
processing time for a given job on the machines with the same speed may be different due to
the job type). The latter three aspects are common for the unrelated MSPs. The MSP environ-
ment, modeled in this study, is illustrated in Figure 1.

Once the job arrives at the facility, it will be directed to the assigned machine for processing. If
the assigned machine is processing another job at the moment, the arriving job will be queued,
while waiting to be processed (see Figure 1). It is assumed that the facility operator will incur

WCthe job waiting cost (c , i ∈ I in USD/hour), as increasing number of waiting jobs may causei

congestion at the given facility. Furthermore, the facility operator will incur the cost of
HCprocessing a given job on one of the available machines (c , i ∈ I in USD/hour). Each job,i

arriving at the facility, must be processed by specific time (DPi, i ∈ I in hours). If the job
processing deadline is violated, the facility operator will incur the cost due to job processing

DCdelays (c , i ∈ I in USD/hour). The objective of the facility operator is to allocate the arriving i

jobs among the available machines and identify the processing order of jobs on each machine,

Figure 1. Machine scheduling environment.

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 27
http://dx.doi.org/10.5772/intechopen.75984

aiming to minimize the total job processing cost, which includes: (1) the total job handling cost;
(2) the total job waiting cost; and (3) the total cost due to job processing delays.

3. Mathematical model

This section of the chapter presents a mixed integer programming model for the machine sched-
uling problem (MSP), which is studied herein. A detailed description of notations used in the
mathematical model and throughout this book chapter is provided at the end of the book chapter.

MSP: Machine Scheduling Problem

2 3
XXX� � X� � X� �HC WC DCmin4 HTijxijkci þ WT ici þ PDici 5 (1)
i ∈ I j ∈ J k ∈ K i ∈ I i ∈ I

Subject to:
XX

xijk ¼ 1∀i ∈ I (2)
j ∈ J k ∈ K

X
xijk ≤ 1∀j ∈ J, k ∈ K (3)

i ∈ I

X X � �
HTi∗jxi∗jk∗ þ IT i∗ jk∗ þ IT ijk � ATixijk ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K (4)

i∗ ∈ I:i∗ ¼6 i k∗ ∈ K:k∗ <k

X X � � � �
SPT i ≥ HTi∗jxi∗jk∗ þ IT i∗ jk∗ þ IT ijk � PN 1 � xijk ∀i ∈ I, j ∈ J, k ∈ K (5)

i∗ ∈ I:i∗ ¼6 i k∗ ∈ K:k∗ <k

WT i ≥ SPT i � ATi∀i ∈ I (6)
XX� �

FPT i ≥ SPT i þ HTijxijk ∀i ∈ I (7)
j ∈ J k ∈ K

PDi ≥ FPT i � DPi∀i ∈ I (8)

The objective function (1) of the MSP mathematical model minimizes the total job processing
cost, which is composed of the following components: (1) the total job handling cost; (2) the
total job waiting cost; and (3) the total cost due to job processing delays. Constraint set (2)
guarantees that each job will be scheduled for processing on one of the available machines in
one of the processing orders. Constraint set (3) ensures that no more than one job can be
processed on each machine in a given processing order. Constraint set (4) ensures that the
processing of a given job will not start before its arrival at the facility. Constraint set (5)
calculates the start processing time for each job, arriving at the facility. Constraint set (6)
computes the waiting time for each job, arriving at the facility. Constraint set (7) estimates the
finish processing time for each job. Constraint set (8) calculates hours of delay in processing
each job, arriving at the facility.

http://dx.doi.org/10.5772/intechopen.75984

28 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

4. Evolutionary Algorithm description

MSPs belong to the class of NP-hard problems, which cannot be solved using the exact
optimization algorithms to the global optimality for the realistic size problem instances within
an acceptable computational time. Therefore, a set of EAs were developed in this study to
solve the MSP mathematical model. EAs were differentiated based on the type of non-
parametric selection mechanism adopted. This section provides an outline of the main EA
steps and a detailed description of each step.

4.1. Main EA steps

The main EA steps are presented in Algorithm 1. The data structures for the EA variables are
initialized in step 0. The initial population is generated in steps 1–2. After that, fitness of the
initial population chromosomes is evaluated in step 3. Then, the EA algorithm starts an
iterative process (steps 4–12), where the fittest individual is stored before applying the parent
selection in step 6. The latter strategy is commonly referred to as “Elitist Strategy” in Evolu-
tionary Computation. After that, the parent chromosomes are determined in step 7, while the
offspring chromosomes are produced via the EA operations in step 8. Fitness of the offspring
chromosomes is evaluated in step 9. After that, the offspring selection is executed to determine
the offspring chromosomes that along with the fittest individual will be moved to the next
generation (steps 10 and 11). The iterative process is continuously executed until a certain
stopping criterion is met. At convergence, the proposed EA algorithm returns the best solu-
tion, which corresponds to the job to machine to processing order assignment with the least
possible job processing cost. A detailed description of each EA component is presented in
Sections 4.2–4.8.

Algorithm 1. Evolutionary Algorithm (EA).
˜ °

EA Data; Ω; σC; σM ; SC :

in: Data - input data for the MSP mathematical model; Ω - population size; σC - crossover probability; σM - mutation
probability; SC - stopping criterion

out: Solution - the best job to machine to processing order assignment

0: ∣Population∣ Ω; ∣Fitness∣ Ω; ∣Parents∣ Ω; ∣Offspring∣ Ω; ∣Best∣ ⊘

1: gen 1

2: Populationgen InitPopulation Data; Ωð Þ
˛ ˝

3: Fitnessgen FitnessEval Data; Populationgen

4: while SC FALSE do

5: gen gen þ 1
˜ °

6: Best argmin Fitnessgen

˛ ˝
7: Parentsgen ParentSel Population ; Fitnessgengen

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 29
http://dx.doi.org/10.5772/intechopen.75984

Algorithm 1. Evolutionary Algorithm (EA).
˜ °

8: Offspring EAoperation Parentsgen; σC ; σM
gen

˛ ˝
9: Fitnessgen FitnessEval Data; Offspringgen

10: Populationgenþ1 Populationgenþ1∪fBestg
˛ ˝

11: Population OffspringSel Offspring ; Fitnessgengenþ1 gen

12: end while
˜ °

13: Solution argmin Fitnessgen∪ FitnessBest

14: return Solution

4.2. Chromosome representation

Two-dimensional integer chromosomes will be used in this study to represent candidate
solutions to the MSP mathematical model (i.e., job to machine to processing order assign-
ments). Note that the term “chromosome” is used interchangeably with the term “individual”
throughout this chapter, as both terms represent the same meaning [3]. An example of a
chromosome is illustrated in Figure 2, where 9 jobs are scheduled for processing on 3 machines.
Specifically, jobs “2”, “3”, and “5” are scheduled for processing on machine “1” (in that specific
processing order); jobs “4”, “6”, and “9” are scheduled for processing on machine “2” (in that
specific processing order); while jobs “1”, “7”, and “8” are scheduled for processing on
machine “3” (in that specific processing order). The term “genes” will be used in this study to
denote components of a chromosome (i.e., machine identifiers and job identifiers).

4.3. Initialization of the chromosomes and population

There are two major approaches for initializing the chromosomes and population within EAs.
The first approach initializes the chromosomes and population randomly (i.e., the job to
machine to processing order assignment is determined randomly). The second approach relies
on application of the local search heuristics. A large number of the local search heuristics have
been presented in the machine scheduling literature, such as [2]: First In First Out, First In Last
Out, Shortest Processing Time First, Shortest Remaining Processing Time on the Fastest
Machine, Shortest Setup Time First, and others. The local search heuristics may allow obtaining
better quality solutions as compared to the random initialization mechanisms. However, the
local search heuristics, which have been used for MSPs, are typically deterministic. Therefore,
the population, initialized using deterministic local search heuristics, will have identical chro-
mosomes, which will negatively affect the population diversity (i.e., only one domain of the

Figure 2. Chromosome representation example.

http://dx.doi.org/10.5772/intechopen.75984

30 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

search space will be explored at the population initialization stage). To avoid the latter draw-
back and ensure the population diversity, this study will use a random initialization mecha-
nism to create the initial population. The number of individuals in the population is
determined based on the population size parameter (Ω).

4.4. Fitness function

The fitness function of chromosomes is assumed to be equal to the objective function of the
MSP mathematical model (i.e., total job processing cost). Application of various scaling mech-
anisms for the fitness function (e.g., linear scaling, sigma truncation, and power law scaling) to
control the selection pressure throughout the algorithmic run will be one of the future research
directions of this study.

4.5. Parent selection mechanism

The purpose of the parent selection mechanism is to determine a subset of individuals from the
offspring chromosomes, survived in the previous generation, that will participate in the EA
operations and generate the new offspring chromosomes. As discussed in the introduction
section of this chapter, the main objective of this study is to evaluate various non-parametric
selection mechanisms, commonly used in the literature, including the following [3, 4]:

a. Roulette Wheel Selection (also known as Fitness Proportionate Selection) – each indi-
vidual of the population is assigned a portion of a roulette wheel, where a larger portion is
allocated to the individual with a higher fitness value. Then, the roulette wheel is contin-
uously rotated until the required amount of parent chromosomes has been selected.

b. Stochastic Universal Sampling – each individual of the population is assigned a portion
of a straight line segment, where a larger portion is allocated to the individual with a
higher fitness value (similar to the Roulette Wheel Selection mechanism). Then, the parent
chromosomes are selected based on the evenly spaced fitness intervals (unlike Roulette
Wheel Selection, which requires generating a random number each time in order to rotate
the roulette wheel).

c. Binary Tournament Selection – multiple binary tournaments are executed, where two
individuals are randomly sampled from the population during each tournament, and the
individual with a higher fitness value is chosen to become a parent. The required number
of tournaments is determined based on the population size.

d. Ranking Selection – the parent and offspring chromosomes from the previous generation
are combined in a one data structure, sorted based on their fitness, and a subset of
chromosomes with higher fitness values (out of the available parent and offspring chro-
mosomes) will become parents. Such selection mechanism has been widely used in canon-˜ °
ical Evolutionary Strategies [3] and is generally referred to as μ þ λ -selection, where

parents (μ) are allowed to compete with offspring (λ).

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 31
http://dx.doi.org/10.5772/intechopen.75984

e. Uniform Sampling – the parent chromosomes are selected from the population by uni-
form (or random) sampling. Unlike the aforementioned selection mechanisms, Uniform
Sampling is not biased by fitness.

For a detailed description of the considered non-parametric selection mechanisms and illus-
trative examples of these mechanisms, this study refers to Eiben and Smith [3] and
Sivanandam and Deepa [4]. Five categories of the EA algorithm, deploying different types of
parent selection mechanisms, will be evaluated in this study, including the following: (1) EA
with Roulette Wheel Selection (EA-RWS); (2) EA with Stochastic Universal Sampling (EA-
SUS); (3) EA with Binary Tournament Selection (EA-BTS); (4) EA with Ranking Selection (EA-
RS); and (5) EA with Uniform Sampling (EA-US).

4.6. EA operations

Once the parent chromosomes are selected, the developed EA algorithm applies the crossover
and mutation operators in order to produce and mutate the offspring chromosomes. Both
operators are described in sections 4.6.1–4.6.2 of the chapter.

4.6.1. Crossover

The order crossover is used to produce the offspring chromosomes. Selection of the latter
crossover operator can be justified by the adopted chromosome representation. Specifically,
certain crossover operators (e.g., N-point, whole arithmetic, uniform) may produce infeasible
offspring for the integer chromosome representation [3]. On the other hand, the order cross-
over guarantees feasibility of the generated offspring chromosomes. An example of an order
crossover operation is illustrated in Figure 3. Two chromosomes are randomly selected from
the available parent chromosomes. The probability of parents to undergo a crossover opera-
tion is determined by the crossover probability parameter (σC). After that, a string of genes is
copied from parent “1” to offspring “1”. Note that the length of a string will be set randomly,
and, therefore, may vary from one crossover operation to another. In the considered example, a
string of genes with jobs “2”, “6”, “8”, and “3” is copied from parent “1” to offspring “1”.
Then, the genes with missing jobs are copied from parent “2” to offspring “1”. In the

Figure 3. Order crossover operation example.

http://dx.doi.org/10.5772/intechopen.75984

32 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

Figure 4. Mutation operation example.

considered example, jobs “9”, “7”, “4”, “5”, and “1” are copied from parent “2” to offspring
“1”. The offspring “2” is produced in a similar manner.

4.6.2. Mutation

The offspring chromosomes, produced via the order crossover, will be mutated. Two types of
mutation operators will be applied in this study: (a) swap; and (b) insert. An example of a
mutation operation is illustrated in Figure 4. In case of a swap mutation operation, job “2”,
initially scheduled for processing on machine “1” as the first job, is re-scheduled for processing
on machine “3” as the second job. On the other hand, job “7”, initially scheduled for processing
on machine “3” as the second job, is re-scheduled for processing on machine “1” as the first
job. In case of an insert mutation operation, job “4”, initially scheduled for processing on
machine “2” as the first job, is re-scheduled for processing on machine “1” as the second job.
On the other hand, job “1”, initially scheduled for processing on machine “3” as the first job, is
re-scheduled for processing on machine “2” as the second job. Application of both swap and
insert mutation operators allows altering job to machine and job to processing order assign-
ments. The number of genes to be mutated throughout the mutation operation is determined

by the mutation probability parameter (σM).

4.7. Offspring selection mechanism

The purpose of the offspring selection mechanism is to determine a subset of individuals from
the generated offspring chromosomes that will survive in the given generation and will be
moved to the next generation. This study relies on the generational offspring selection mecha-
nism, where all offspring chromosomes will be moved to the next generation and become
candidate parent chromosomes. Such offspring selection mechanism has been widely used in
canonical Genetic Algorithms, proposed by Holland, and Genetic Programming, developed by
Koza [3, 4].

4.8. Stopping criterion

The developed EA algorithm will be terminated, once a certain stopping criterion is met. The
MAX).stopping criterion, adopted in this study, is the maximum number of generations (g

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 33
http://dx.doi.org/10.5772/intechopen.75984

5. Computational experiments

This section provides a detailed description of the computational experiments, which were
conducted to evaluate the considered non-parametric selection mechanisms. Five EA catego-
ries, applying different non-parametric selection mechanisms (i.e., the EA-RWS, EA-SUS, EA-
BTS, EA-RS, and EA-US algorithms, described in Section 4.5), were evaluated in terms of the
objective function value at termination, computational time, and changes in the population
diversity throughout the algorithmic run. All EA algorithms were coded in MATLAB 2016a.
The computational experiments were executed on a CPU with Dell Intel(R) Core™ i7 Processor
and 32 GB of RAM. Sections 5.1–5.3 elaborate on the input data selection for the MSP mathe-
matical model, parameter tuning of the developed EA algorithms, and comprehensive com-
parative analysis of the considered non-parametric selection mechanisms.

5.1. Input data selection

The required input parameters for the MSP mathematical model were primarily generated
based on the relevant literature [2, 6–36]. The adopted parameter values are presented in
Table 1. A total of 40 problem instances were developed to conduct the computational exper-
iments by changing the number of arriving jobs from 50 to 140 with an increment of 10 jobs,
while the number of available machines was changed from 4 to 10 with an increment of 2
machines.

MSP parameter Adopted value

Number of arriving jobs: m (jobs) Varies based on the problem instance

Number of available machines: n (machines) Varies based on the problem instance

Number of job processing orders: p (orders) p ¼ m (considering the case, when all jobs are assigned for
processing on one machine)

Arrival time of job i: ATi, i ∈ I (hours) Exponentialð Þ2 =60

Handling time of job i on machine j: HTij, i ∈ I, j ∈ J (hours) Uniformð20; 80Þ=60
˜ °

Deadline for processing job i: DPi, i ∈ I (hours) ATi þUniformð1:2; 1:5Þ∙minj ∈ J HTij

HCUnit handling cost for job i: c , i ∈ I (USD/hour) Uniformð200; 400Þi

Unit waiting cost for job i: cWC, i ∈ I (USD/hour) Uniformð50; 100Þi

DC
iUnit delayed processing cost of job i: c , i ∈ I (USD/hour) Uniformð300; 600Þ

Large positive number: PN 106

Exponentialð Þa – exponentially distributed pseudorandom numbers with a mean inter-arrival time of a; Uniformðb; cÞ –
uniformly distributed pseudorandom numbers, varying from b to c.

Table 1. MSP parameter values.

http://dx.doi.org/10.5772/intechopen.75984

34 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

5.2. EA parameter tuning

A parameter selection analysis was performed for the EA-RWS, EA-SUS, EA-BTS, EA-RS, and
EA-US algorithms to identify the appropriate parameter values. Each one of the developed EA
algorithms has a total of 4 parameters, including the following: (1) population size – Ω; (2)
crossover probability – σC; (3) mutation probability – σM; and (4) maximum number of gener-
ations – gMAX. A “full factorial design” methodology [5], described in the introduction section
of the chapter, was adopted for the EA parameter tuning. A total of 3 candidate values were

considered for each parameter (i.e., 3f factorial design). A total of 3 problem instances were
chosen at random from the generated problem instances (see Section 5.1) in order to conduct
the parameter tuning analysis.

A total of 10 replications were performed for each algorithm and each problem instance to
obtain the average objective function and computational time values. The number of replica-
tions was found to be sufficient, as the objective function values did not vary substantially
from one replication to another. Specifically, the coefficient of variation of the objective func-
tion values at termination did not exceed 1.00% over the performed replications for all the
generated problem instances and the developed solution algorithms. Based on preliminary
algorithmic runs, it was found that increasing number of replications would incur a significant
increase in the computational time without a significant reduction of the objective function
coefficient of variation for each EA. Table 2 provides a summary of the parameter analysis for
each EA, including the following data: (1) algorithm; 2) parameter; (3) considered candidate
values for each parameter; and (4) the best parameter value, highlighted in bold font (deter-
mined based on the analysis of a tradeoff between the obtained objective function values and
computational time required).

The parameter tuning analysis for the developed EA algorithms took more than 11 days (i.e.,
more than 51 hours for each EA). Application of parametric selection mechanisms would
increase the computational time of the parameter tuning analysis even further. The latter
highlights the importance of adopting non-parametric selection mechanisms.

5.3. Comparative analysis

This section focuses on a detailed comparative analysis of the considered EA algorithms,
deploying different non-parametric selection mechanisms, in terms of the objective function

Algorithm\Parameter Ω σC σM MAXg

EA-RWS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

EA-SUS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

EA-BTS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

EA-RS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

EA-US [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

Table 2. EA parameter tuning analysis summary.

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 35
http://dx.doi.org/10.5772/intechopen.75984

values at termination and required computational time. Moreover, changes in the population
diversity are analyzed throughout evolution of each EA.

5.3.1. Objective function and computational time

The developed EA-RWS, EA-SUS, EA-BTS, EA-RS, and EA-US algorithms were executed for
all the generated problem instances, which were described in Section 5.1. A total of 10 replica-
tions were performed for each algorithm and each problem instance. Results of the conducted
analysis are reported in Table 3 for each algorithm and each problem instance, including the
following data: (1) instance number; (2) number of arriving jobs (m); (3) number of available
machines (n); (4) average objective function value at termination (Z) for each EA algorithm;
and (5) average computational time value (CPU) for each EA algorithm.

The average objective function values comprised 339.79 103 USD, 321.39 103 USD, 333.97 103

USD, and 324.14 103 USD, and 357.86 103 USD over the developed problem instances for the
EA-RWS, EA-SUS, EA-BTS, EA-RS, and EA-US algorithms respectively. Therefore, EA-SUS
that relies on Stochastic Universal Sampling outperformed the EAs with other non-parametric
selection mechanisms in terms of the solution quality. Superiority of the EA-SUS algorithm can
be explained by the fact that Stochastic Universal Sampling selects the parent chromosomes
based on the evenly distributed fitness intervals and, therefore, ensures that high, medium,
and low quality individuals will be given a chance to reproduce. The EA-RS algorithm, which
deploys Ranking Selection, demonstrated a good performance; however, it was outperformed
by the EA-SUS algorithm due to the fact that ranking is substantially biased by fitness.
Ranking Selection allows only high and medium fitness chromosomes to become parents,
while the individuals with low fitness values are not given any chance to reproduce.

The EA-RWS and EA-BTS algorithms were outperformed by both EA-SUS and EA-RS algo-
rithms, as they do not guarantee that high and medium quality individuals will become
parents. Although Roulette Wheel Selection and Binary Tournament Selection are biased by
fitness, and the individuals with higher fitness have higher chances to reproduce, such selec-
tion mechanisms may allow a significant portion of low quality individuals to become parents,
which negatively affects the objective function values and results in a premature convergence.
The worst performance was recorded for the EA-US algorithm, which relies on Uniform
Sampling. Uniform Sampling is not biased by fitness and gives all individuals equal chances
to become parents, which may not be desirable in some cases (i.e., higher and medium quality
individuals should have higher chances to reproduce, as compared to low quality individuals).
Uniform Sampling can be advantageous when applied in combination with other selection
mechanisms (e.g., Uniform Sampling is used at the parent selection stage, while Stochastic
Universal Sampling is used at the offspring selection stage). Evaluation of the EA algorithms,
which use a combination of various non-parametric selection mechanisms, will be one of the
future research directions of this study.

An additional statistical analysis was conducted to investigate differences between the average
objective function values at termination, suggested by the developed algorithms. The null
hypothesis was assumed to be H0 : μEA1

(i.e., the average objective function value at¼ μEA2

http://dx.doi.org/10.5772/intechopen.75984

5

10

15

20

25

30

50

60

70

80

90

100

110

120

130

50

60

70

80

90

100

110

120

130

50

60

70

80

90

100

110

120

36 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

Instance m n EA-RWS EA-SUS EA-BTS EA-RS EA-US

Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, Z, 103 CPU,
USD sec USD sec USD sec USD sec USD sec

1 4 141.61 52.72 137.06 56.26 138.30 56.61 138.86 55.11 143.75 61.19

2 6 84.43 51.76 82.89 53.53 82.94 58.46 87.32 54.45 89.29 62.14

3 8 59.35 52.92 56.85 54.81 57.81 59.75 57.84 55.42 61.45 63.01

4 50 10 44.52 54.54 42.98 56.07 45.19 60.40 45.14 56.32 48.43 63.94

4 198.97 58.39 190.43 60.07 191.37 65.79 192.01 60.47 195.31 68.20

6 6 121.49 59.69 111.83 61.33 114.81 67.33 113.47 62.06 123.11 69.39

7 8 82.89 61.17 80.00 62.16 80.71 68.59 80.60 63.14 84.01 70.83

8 60 10 62.31 62.12 60.37 63.35 62.98 70.17 60.61 64.00 66.13 72.39

9 4 278.59 65.71 259.23 67.40 269.27 74.93 267.85 68.11 285.21 77.10

6 164.86 67.19 159.63 69.17 161.25 76.34 159.87 69.38 176.77 78.77

11 8 119.25 68.20 111.44 70.07 114.07 77.85 113.52 71.61 122.13 80.20

12 70 10 87.04 69.71 84.72 70.99 88.47 79.31 85.13 72.72 92.40 82.75

13 4 358.82 73.98 341.87 75.49 347.55 84.01 342.51 77.36 368.74 87.29

14 6 214.52 75.25 204.72 76.47 212.32 84.90 206.70 78.60 222.90 88.00

8 148.00 76.39 142.60 79.78 148.80 85.86 143.65 79.50 155.65 89.31

16 80 10 112.84 77.59 106.88 79.47 110.21 87.52 107.23 80.47 124.04 91.83

17 4 460.90 81.58 444.03 83.76 446.23 92.98 446.81 85.02 484.48 96.91

18 6 277.98 82.84 269.76 84.89 271.57 93.84 271.19 86.96 297.47 92.80

19 8 191.22 83.95 180.81 86.22 195.22 95.37 180.97 88.43 203.99 94.31

90 10 151.94 85.54 135.86 87.94 142.50 97.32 136.17 89.75 159.42 95.93

21 4 600.06 89.07 564.90 92.29 580.63 101.97 568.24 94.03 601.43 101.61

22 6 355.99 89.84 343.57 93.10 348.84 101.66 346.33 94.63 384.70 102.99

23 8 249.85 91.11 228.49 94.42 243.06 103.32 229.37 95.94 260.30 103.12

24 100 10 190.11 92.81 171.88 95.95 184.94 104.81 174.24 97.51 196.91 104.42

4 720.16 96.39 678.10 99.21 706.05 109.70 678.90 101.52 745.49 108.94

26 6 440.85 98.03 419.34 101.31 429.49 111.74 421.62 102.51 461.96 110.18

27 8 300.11 99.59 280.76 102.57 292.38 112.76 281.59 104.07 317.98 111.86

28 110 10 223.92 100.81 208.87 103.90 220.49 114.61 210.76 105.66 245.74 113.24

29 4 858.23 104.78 802.81 108.03 848.19 120.34 816.61 110.30 900.09 120.61

6 539.24 105.52 488.90 109.46 514.46 120.73 498.86 112.01 549.63 122.26

31 8 356.24 107.50 343.26 111.21 363.44 122.90 345.24 113.77 389.83 123.98

32 120 10 273.65 109.06 249.24 112.04 267.37 125.11 250.87 114.76 284.92 124.56

33 4 1011.56 112.84 974.07 116.21 1001.36 123.02 979.15 119.14 1069.10 129.10

34 6 620.42 114.00 583.82 117.26 618.10 122.51 589.85 119.96 650.25 130.27

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 37
http://dx.doi.org/10.5772/intechopen.75984

Instance m n EA-RWS EA-SUS EA-BTS EA-RS EA-US

Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, Z, 103 CPU,
USD sec USD sec USD sec USD sec USD sec

35 130 8 418.78 115.49 401.15 118.47 424.44 124.11 403.36 121.57 449.19 132.76

36 130 10 310.32 116.52 296.11 119.97 318.84 125.34 298.81 122.95 342.26 134.08

37 140 4 1184.91 120.74 1121.27 123.96 1168.76 129.81 1123.67 127.12 1267.22 138.33

38 140 6 712.51 121.49 680.00 125.12 696.63 130.66 690.01 129.63 757.52 139.52

39 140 8 499.65 123.61 465.71 126.37 483.23 131.65 469.30 129.50 529.86 141.40

40 140 10 363.36 124.70 349.41 127.91 366.61 133.38 351.45 130.79 405.48 142.81

Average: 339.79 87.38 321.39 89.95 333.97 97.69 324.14 91.66 357.86 100.56

Table 3. Objective function and computational time values for the considered EA algorithms.

termination of algorithm EA1 [μEA1
] is equal to the average objective function value at termi-

nation of algorithm EA2]), while the alternative hypothesis was assumed to be[μEA2

(algorithm EA1 returns lower average objective function value at termination Ha : μEA1
< μEA2

as compared to algorithm EA2). The average objective function values were estimated over 40
problem instances for each EA algorithm. Based on the hypothesis testing results, no statisti-
cally significant difference has been identified among the average objective function values at
termination, suggested by the EA-SUS algorithm and other developed EA algorithms, at
significance level α ¼ 0:05. The latter finding can be justified by the fact that for some of the
problem instances the developed algorithms did not demonstrate significant differences in
terms of the objective function values (generally, the problem instances with lower number of
arriving jobs and available machines – problem instances 1, 2, 5, 6, and others).

Furthermore, on average over all the generated problem instances the EA-SUS algorithm
outperformed the EA-RWS, EA-BTS, EA-RS, and EA-US algorithms by 5.72, 3.91, 0.86, and
11.35%. However, for some of the problem instances the EA-SUS algorithm outperformed the
EA-RWS, EA-BTS, EA-RS, and EA-US algorithms by up to 11.84, 7.97, 5.34, and 17.65%.
Therefore, application of the EA-SUS algorithm is expected to become even more advanta-
geous (in terms of objective function values at termination) with increasing problem size. The
computational time of the developed EA algorithms did not exceed 142.81 sec over all 40
problem instances, which can be considered as acceptable.

5.3.2. Changes in the population diversity

The population diversity is critical in EAs especially at early stages of the search process.
Without a diverse population, a given EA will not be able explore the available domains of
the search space in an efficient manner. Lack of diversity in early generations of the EA
algorithm may lead to negative consequences, including premature convergence. The popula-
tion fitness values were recorded throughout evolution of the developed EA-RWS, EA-SUS,

http://dx.doi.org/10.5772/intechopen.75984

38 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

EA-BTS, EA-RS, and EA-US algorithms for each replication and each problem instance. The
population fitness boxplots are illustrated in Figures 5 and 6 for the first replication of each EA
algorithm after the parent selection in generations 500, 1000, 1500, 2000, 2500, and 3000. Note
that boxplots are presented only for the first replication of each EA algorithm and problem
instances 37–40 (i.e., the problem instances with the largest number of arriving jobs), but

Figure 5. EA population fitness boxplots for problem instances 37 and 38.

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 39
http://dx.doi.org/10.5772/intechopen.75984

Figure 6. EA population fitness boxplots for problem instances 39 and 40.

similar patterns have been observed for the rest of algorithmic replications and problem
instances. The population fitness boxplots have the following components: (1) rectangle, where
the top and the bottom parts correspond to 75th and 25th population fitness value percentiles
respectively; (2) median, which is shown using a red line; (3) whiskers, which are shown using
dashed lines covering 99.30% of the population fitness value data points; and (4) extreme

http://dx.doi.org/10.5772/intechopen.75984

40 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

population fitness value points (falling outside of 99.30% of the population fitness value data
points) or “outliers”, which are shown using “˜” symbol.

It can be observed that the population fitness boxplot whiskers of the EA-RWS and EA-US
algorithms consistently cover a wider range of the population fitness values. The latter finding
indicates that both EA-RWS and EA-US algorithms maintain a more diverse population, as
compared to the EA-SUS, EA-BTS, and EA-RS algorithms. However, the quality of individuals
within both EA-RWS and EA-US populations is significantly lower as compared to the EA-
SUS, EA-BTS, and EA-RS populations. For example, the EA-RWS and EA-US algorithms cover
the population fitness ranges of [1193.15; 1627.94] 103 USD and [1276.65; 1829.78] 103 USD
respectively, while the EA-SUS algorithm covers the population fitness range of [1110.66;
1387.16] 103 USD for problem instance 37 at termination (i.e., in generation 3000). Therefore,
as discussed in Section 5.3.1, the EA-RWS and EA-US algorithms were outperformed by the
EA-SUS, EA-BTS, and EA-RS algorithms in terms of the objective function values at termina-
tion. The EA-SUS, EA-BTS, and EA-RS algorithms were able to maintain the adequate popula-
tion diversity and return good quality job to machine to processing order assignments.

Throughout the computational experiments, it was found that the population diversity pat-
terns did not change significantly from generation 500 up to generation 3000 (e.g., the range,
covered by the population fitness boxplot whiskers, does not alter substantially throughout
evolution of each EA after generation 500). The latter finding can be justified by the fact that
the developed EAs relatively quickly identified the promising domains of the search space (i.e.,
within the first 400–500 generations), and then focused on exploiting the identified domains
for the rest of generations, aiming to discover solutions with superior fitness values. Applica-
tion of scaling mechanisms (such as linear scaling, sigma truncation, and power law scaling)
will allow controlling the population diversity of the developed EA algorithms (e.g., reduce
the population diversity towards the EA convergence and give higher reproduction chances to
“super-individuals” – i.e. the individuals with the highest fitness values) and will be one of the
future research directions of this study.

6. Concluding remarks and future research extensions

Evolutionary Algorithms and other metaheuristic algorithms have been extensively applied
for solving complex stochastic, robust, and dynamic optimization problems. Two types of
selection mechanisms are deployed within Evolutionary Algorithms, including the parent
selection and the offspring selection. Evolutionary Algorithms have a lot of parameters, which
are generally set based on the parameter tuning analysis. Parametric selection mechanisms
(e.g., Exponential Ranking Selection, Tournament Selection, Boltzmann Selection) increase the
number of parameters within a given Evolutionary Algorithm, which can make the parameter
tuning analysis computationally prohibitive due to significant computational time required.
To avoid the latter drawback and facilitate the parameter tuning analysis of Evolutionary
Algorithms, this study focused on design of the Evolutionary Algorithm that solely relied on

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 41
http://dx.doi.org/10.5772/intechopen.75984

non-parametric selection mechanisms. Different categories of Evolutionary Algorithms, which
applied various non-parametric selection mechanisms (Roulette Wheel Selection, Stochastic
Universal Sampling, Binary Tournament Selection, Ranking Selection, Uniform Sampling),
were evaluated based on the major algorithmic performance indicators.

A set of computational experiments were conducted for the unrelated machine scheduling
problem, which is known to be NP-hard. The objective of the mathematical model, proposed
for the problem, aimed to minimize the total job processing cost. Results indicate that the
Evolutionary Algorithm with the Stochastic Universal Sampling selection mechanism outper-
forms the Evolutionary Algorithms with other selection mechanisms in terms of the objective
function values. The worst performance was demonstrated by the Evolutionary Algorithm,
which relied on the Uniform Sampling selection mechanism. Furthermore, the Evolutionary
Algorithms with the Roulette Wheel Selection and Uniform Sampling selection mechanisms
typically allowed maintaining higher population diversity; however, the quality of individuals
within the population was lower as compared to the Evolutionary Algorithms with the Sto-
chastic Universal Sampling, Binary Tournament Selection, and Ranking Selection mechanisms.
The computational time of all the developed Evolutionary Algorithms did not exceed
142.81 sec over the considered problem instances, which can be considered as acceptable.
Therefore, based on a comprehensive analysis of the commonly used non-parametric selection
mechanisms, Stochastic Universal Sampling was found to be the most promising, as it was able
to maintain the adequate population diversity throughout the algorithmic run and return good
quality solutions at termination. Results from the conducted numerical experiments are
expected to facilitate development of efficient Evolutionary Algorithms for the machine sched-
uling problems. Moreover, the developed problem instances and findings from this study can
serve as benchmarks for the future machine scheduling studies.

The future research directions for this study include the following: (1) application of scaling
mechanisms for the fitness function; (2) evaluation of the Evolutionary Algorithms, which use
a combination of various non-parametric selection mechanisms (e.g., Uniform Sampling is
used at the parent selection stage, while Stochastic Universal Sampling is used at the offspring
selection stage); (3) consider alternative stopping criteria for the developed Evolutionary
Algorithms; (4) compare various non-parametric selection mechanisms for the Hybrid Evolu-
tionary Algorithms, which apply different local search heuristics along with the stochastic
search operators; and (5) evaluate performance of the commonly used non-parametric selec-
tion mechanisms for other NP-hard problems (e.g., bin packing problem, Knapsack problem,
traveling salesman problem).

Nomenclature

Sets

I ¼ f1; …; mg set of arriving jobs

J ¼ f1; …; ng set of available machines

http://dx.doi.org/10.5772/intechopen.75984

42 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

K ¼ f1; …; pg set of job processing orders

Decision variables

xijk ∈ f0; 1g∀i ∈ I, j ∈ J, k ∈ K =1 if arriving job i is scheduled for processing on machine j in
processing order k (=0 otherwise)

Auxiliary variables

IT ijk ∈ Rþ∀i ∈ I, j ∈ J, k ∈ K idling time of machine j between processing job i and preceding
job processed in order (k � 1) (hours)

SPT i ∈ Rþ∀i ∈ I start processing time for job i (hours)

FPT i ∈ Rþ∀i ∈ I finish processing time for job i (hours)

WT i ∈ Rþ∀i ∈ I waiting time of job i (hours)

PDi ∈ Rþ∀i ∈ I delay in processing job i (hours)

Parameters

m ∈ N number of arriving jobs (jobs)

n ∈ N number of available machines (machines)

p ∈ N number of job processing orders (orders)

ATi ∈ Rþ∀i ∈ I arrival time of job i (hours)

HTij ∈ Rþ∀i ∈ I, j ∈ J handling time of job i on machine j (hours)

DPi ∈ Rþ∀i ∈ I deadline for processing job i (hours)

HCc ∈ Rþ∀i ∈ Ii unit handling cost for job i (USD/hour)

WCc ∈ Rþ∀i ∈ Ii unit waiting cost for job i (USD/hour)

DCc ∈ Rþ∀i ∈ Ii unit delayed processing cost of job i (USD/hour)

PN ∈ Rþ large positive number

Author details

Maxim A. Dulebenets

Address all correspondence to: mdulebenets@eng.famu.fsu.edu

Department of Civil and Environmental Engineering, Florida A&M University-Florida State
University, Tallahassee, FL, USA

mailto:mdulebenets@eng.famu.fsu.edu

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 43
http://dx.doi.org/10.5772/intechopen.75984

References

[1] Hromkovič J. Algorithmics for Hard Problems: Introduction to Combinatorial Optimiza-
tion, Randomization, Approximation, and Heuristics. 2nd ed. Berlin, Germany: Springer
International Publishing; 2002. p. 557. DOI: 10.1007/978-3-662-05269-3

[2] Pinedo M. Scheduling: Theory, Algorithms, and Systems. 5th ed. New York, USA: Springer
International Publishing; 2016. p. 670. DOI: 10.1007/978-3-319-26580-3

[3] Eiben AE, Smith JE. Introduction to Evolutionary Computing. 2nd ed. Berlin, Germany:
Springer International Publishing; 2015. p. 287. DOI: 10.1007/978-3-662-44874-8

[4] Sivanandam SN, Deepa SN. Introduction to Genetic Algorithms. 1st ed. Berlin, Germany:
Springer International Publishing; 2008. p. 442. DOI: 10.1007/978-3-540-73190-0

[5] de Lima EB, Pappa GL, de Almeida JM, Gonçalves MA, Meira W. Tuning Genetic Program-
ming parameters with factorial designs. In: Proceedings of the IEEE Congress on Evolution-
ary Computation (CEC); 18–23 July 2010; Barcelona, Spain. New York: IEEE; 2010. pp. 1-8

[6] Boysen N, Briskorn D, Meisel F. A generalized classification scheme for crane scheduling
with interference. European Journal of Operational Research. 2017;258(1):343-357. DOI:
10.1016/j.ejor.2016.08.041

[7] Nagananda KG, Khargonekar P. An approximately optimal algorithm for scheduling
phasor data transmissions in smart grid networks. IEEE Transactions on Smart Grid.
2017;8(4):1649-1657. DOI: 10.1109/TSG.2015.2497284

[8] Fernandez-Viagas V, Ruiz R, Framinan JM. A new vision of approximate methods for the
permutation flowshop to minimise makespan: State-of-the-art and computational evalua-
tion. European Journal of Operational Research. 2017;257(3):707-721. DOI: 10.1016/j.
ejor.2016.09.055

[9] Ozturk O, Chu C. Exact and metaheuristic algorithms to minimize the total tardiness of
cutting tool sharpening operations. Expert Systems with Applications. 2018;95:224-235.
DOI: 10.1016/j.eswa.2017.11.030

[10] Juarez F, Ejarque J, Badia RM. Dynamic energy-aware scheduling for parallel task-based
application in cloud computing. Future Generation Computer Systems. 2018;78:257-271.
DOI: 10.1016/j.future.2016.06.029

[11] Dulebenets MA. Application of evolutionary computation for berth scheduling at marine
container terminals: Parameter tuning versus parameter control. IEEE Transactions on
Intelligent Transportation Systems. 2018;19(1):25-37. DOI: 10.1109/TITS.2017.2688132

[12] Herrmann J, Proth JM, Sauer N. Heuristics for unrelated machine scheduling with prece-
dence constraints. European Journal of Operational Research. 1997;102(3):528-537. DOI:
10.1016/S0377-2217(96)00247-0

http://dx.doi.org/10.5772/intechopen.75984

44 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

[13] Weng MX, Lu J, Ren H. Unrelated parallel machine scheduling with setup consideration
and a total weighted completion time objective. International Journal of Production Eco-
nomics. 2001;70(3):215-226. DOI: 10.1016/S0925-5273(00)00066-9

[14] Vallada E, Ruiz R. A genetic algorithm for the unrelated parallel machine scheduling
problem with sequence dependent setup times. European Journal of Operational Research.
2011;211(3):612-622. DOI: 10.1016/j.ejor.2011.01.011

[15] Bank J, Werner F. Heuristic algorithms for unrelated parallel machine scheduling with a
common due date, release dates, and linear earliness and tardiness penalties. Mathemat-
ical and Computer Modelling. 2001;33(4):363-383. DOI: 10.1016/S0895-7177(00)00250-8

[16] Glass CA, Potts CN, Shade P. Unrelated parallel machine scheduling using local search.
Mathematical and Computer Modelling. 1994;20(2):41-52. DOI: 10.1016/0895-7177(94)
90205-4

[17] Pearn WL, Chung SH, Yang MH, Chen YH. Algorithms for the wafer probing scheduling
problem with sequence-dependent set-up time and due date restrictions. Journal of the
Operational Research Society. 2004;55(11):1194-1207. DOI: 10.1057/palgrave.jors.2601795

[18] Rabadi G, Moraga RJ, Al-Salem A. Heuristics for the unrelated parallel machine schedul-
ing problem with setup times. Journal of Intelligent Manufacturing. 2006;17(1):85-97. DOI:
10.1007%2Fs10845-005-5514-0

[19] Kim DW, Na DG, Chen FF. Unrelated parallel machine scheduling with setup times and a
total weighted tardiness objective. Robotics and Computer-Integrated Manufacturing.
2003;19(1):173-181. DOI: 10.1016/S0736-5845(02)00077-7

[20] Aspnes J, Azar Y, Fiat A, Plotkin S, Waarts O. On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM (JACM).
1997;44(3):486-504. DOI: 10.1145/258128.258201

[21] Hsieh JC, Chang PC, Hsu LC. Scheduling of drilling operations in printed circuit board
factory. Computers and Industrial Engineering. 2003;44(3):461-473. DOI: 10.1016/S0360-
8352(02)00231-0

[22] Chen JF, Wu TH. Total tardiness minimization on unrelated parallel machine scheduling
with auxiliary equipment constraints. Omega. 2006;34(1):81-89. DOI: 10.1016/j.omega.2004.
07.023

[23] Jinsong B, Xiaofeng H, Ye J. A genetic algorithm for minimizing makespan of block
erection in shipbuilding. Journal of Manufacturing Technology Management. 2009;20(4):
500-512. DOI: 10.1108/17410380910953757

[24] Agnetis A, Flamini M, Nicosia G, Pacifici A. Scheduling three chains on two parallel
machines. European Journal of Operational Research. 2010;202(3):669-674. DOI: 10.1016/
j.ejor.2009.07.001

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine… 45
http://dx.doi.org/10.5772/intechopen.75984

[25] Hu X, Bao JS, Jin Y. Minimising makespan on parallel machines with precedence con-
straints and machine eligibility restrictions. International Journal of Production Research.
2010;48(6):1639-1651. DOI: 10.1080/00207540802620779

[26] Driessel R, Mönch L. Variable neighborhood search approaches for scheduling jobs on
parallel machines with sequence-dependent setup times, precedence constraints, and
ready times. Computers and Industrial Engineering. 2011;61(2):336-345. DOI: 10.1016/j.
cie.2010.07.001

[27] Agnetis A, Kellerer H, Nicosia G, Pacifici A. Parallel dedicated machines scheduling with
chain precedence constraints. European Journal of Operational Research. 2012;221(2):296-305.
DOI: 10.1016/j.ejor.2012.03.040

[28] Park C, Seo J. A GRASP approach to transporter scheduling and routing at a shipyard.
Computers & Industrial Engineering. 2012;63(2):390-399. DOI: 10.1016/j.cie.2012.04.010

[29] Park C, Seo J. A GRASP approach to transporter scheduling for ship assembly block
operations management. European Journal of Industrial Engineering. 2013;7(3):312-332.
DOI: 10.1504/EJIE.2013.054133

[30] Rose CD, Coenen JM. Comparing four metaheuristics for solving a constraint satisfaction
problem for ship outfitting scheduling. International Journal of Production Research.
2015;53(19):5782-5796. DOI: 10.1080/00207543.2014.998786

[31] Nicosia G, Pacifici A. Scheduling assembly tasks with caterpillar precedence constraints
on dedicated machines. International Journal of Production Research. 2017;55(6):1680-1691.
DOI: 10.1080/00207543.2016.1220686

[32] Dulebenets MA. The vessel scheduling problem in a liner shipping route with heteroge-
neous vessel fleet. International Journal of Civil Engineering. 2018;16(1):19-32. DOI:
10.1007/s40999-016-0060-z

[33] Dulebenets MA. The green vessel scheduling problem with transit time requirements in a
liner shipping route with emission control areas. Alexandria Engineering Journal. 2018;
57(1):331-342. DOI: 10.1016/j.aej.2016.11.008

[34] Dulebenets MA. A comprehensive multi-objective optimization model for the vessel
scheduling problem in liner shipping. International Journal of Production Economics.
2018;196:293-318. DOI: 10.1016/j.ijpe.2017.10.027

[35] Kim DW, Kim KH, Jang W, Chen FF. Unrelated parallel machine scheduling with setup
times using simulated annealing. Robotics and Computer-Integrated Manufacturing.
2002;18(3):223-231. DOI: 10.1016/S0736-5845(02)00013-3

[36] Caragiannis I. Efficient coordination mechanisms for unrelated machine scheduling.
Algorithmica. 2013;66(3):512-540. DOI: 10.1007/s00453-012-9650-6

http://dx.doi.org/10.5772/intechopen.75984

Chapter 4

A Brief Survey on Intelligent Swarm-Based Algorithms
for Solving Optimization Problems

Siew Mooi Lim and Kuan Yew Leong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76979

Provisional chapter

A Brief Survey on Intelligent Swarm-Based Algorithms
for Solving Optimization Problems

Siew Mooi Lim and Kuan Yew Leong

Additional information is available at the end of the chapter

Abstract

This chapter presents an overview of optimization techniques followed by a brief survey
on several swarm-based natural inspired algorithms which were introduced in the last
decade. These techniques were inspired by the natural processes of plants, foraging
behaviors of insects and social behaviors of animals. These swam intelligent methods
have been tested on various standard benchmark problems and are capable in solving a
wide range of optimization issues including stochastic, robust and dynamic problems.

Keywords: optimization, artificial intelligence, swarm intelligence, nature-inspired and
bio-inspired computation

1. Introduction

Optimization is a form of mathematical procedure for determining optimal allocation of scare
resources. In recent years, the optimization area has received enormous attention primarily
due to the rapid emerging science and technology in computing, communication, engineering,
environment and society. Several types of optimization problems exist. Two important classes
of objects for most optimization problems are limited resources and activities. Resources
include land size, plant capacity and sales force. Whereas production activities are like produce
stainless steel, low carbon steel or high carbon steel; how we solve them will depend on the
circumstances to determine the best condition of activity levels using the resources available.
All optimization problems have an objective function, constraints, and choice variables which
will lead to the improvement in application or audience. For instance, tradeoffs between faster
algorithm with more consumption of memory and vice-versa are used to bring the greatest
interest to the audience [1].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.76979

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.

Chapter 4

A Brief Survey on Intelligent Swarm-Based Algorithms
for Solving Optimization Problems

Siew Mooi Lim and Kuan Yew Leong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76979

Abstract

This chapter presents an overview of optimization techniques followed by a brief survey
on several swarm-based natural inspired algorithms which were introduced in the last
decade. These techniques were inspired by the natural processes of plants, foraging
behaviors of insects and social behaviors of animals. These swam intelligent methods
have been tested on various standard benchmark problems and are capable in solving a
wide range of optimization issues including stochastic, robust and dynamic problems.

Keywords: optimization, artificial intelligence, swarm intelligence, nature-inspired and
bio-inspired computation

1. Introduction

Optimization is a form of mathematical procedure for determining optimal allocation of scare
resources. In recent years, the optimization area has received enormous attention primarily
due to the rapid emerging science and technology in computing, communication, engineering,
environment and society. Several types of optimization problems exist. Two important classes
of objects for most optimization problems are limited resources and activities. Resources
include land size, plant capacity and sales force. Whereas production activities are like produce
stainless steel, low carbon steel or high carbon steel; how we solve them will depend on the
circumstances to determine the best condition of activity levels using the resources available.
All optimization problems have an objective function, constraints, and choice variables which
will lead to the improvement in application or audience. For instance, tradeoffs between faster
algorithm with more consumption of memory and vice-versa are used to bring the greatest
interest to the audience [1].

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.

https://creativecommons.org/licenses/by-nc/4.0
http://dx.doi.org/10.5772/intechopen.76979

48 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

Three categories of optimizations techniques namely stochastic optimization (SO), robust optimi-
zation (RO) and dynamic optimization (DO) are presented in the following subsections with the
conclusions given on the advantages and application in practice for each technique. The main
motivation behind this study on the nature inspired computation is to identify among the
connection, social conduct and rise. This work is needed in the current scientific community to
utilize the use of computing to demonstrate the living marvels, to investigate and to enhance
our life by using computers. This study will substantially contribute in bringing the inspiration
of computerized solutions through a wide range of nature processes.

1.1. Stochastic optimization

Stochastic optimization (SO) process involves randomness in the minimization or maximiza-
tion of a function and lends itself to real-life phenomena which involve uncertainty and
imprecision. The randomness may be present as either noise in measurements or Monte Carlo
randomness in the search procedure, or both. Some common techniques of SO are: direct search
methods, stochastic approximation, stochastic programming, simulated annealing, genetic algorithms,
etc. These techniques can cope with the inherent system noise, and systems with high
nonlinearity and high dimensional models.

In other words, these models are derived, solved analytically or numerically and analyzed to
extract information to be presented to decision makers [2]. SO is important in analyzing,
designing and operating modern systems. Specific applications of SO in business include short
and long-term investment decisions, aerospace engineering in designing missile or aircraft,
new drug design and the network in traffic control. The challenge in real-life applications is
hard to estimate the accurate probabilistic description of the randomness, if such information
is available, stochastic programming can be applied as a powerful modeling tool. SO has the
advantage of solving problems in polynomial time. Theoretically, it guarantees the quality of
the solutions generated. Practically, SO is limited by its heavy dependency on the availability
of historical data and complex modeling [3, 4].

1.2. Robust optimization

Robust optimization (RO) is a rather new approach that deals with data uncertainty. The two
motivational factors of RO are firstly the uncertainty model is rather deterministic and set-
based. This motivational concept is the most appropriate notion of parameter uncertainty in
many applications. The second motivational factor is the computational tractability. For
instance, for a given optimization problem, multiple robust versions exist depend on the
structure of the uncertainty set, therefore maintaining tractability is important. The classifica-
tion models for RO includes local vs. global and probabilistic vs. non-probabilistic. Based on
the nature of the problem, this technique is also known as min-max or worst-case approach. It
provides a good guaranteed solution for most possible realizations of the uncertainty in the
data. It is also useful if some of the parameters belong to the estimation process and contains
estimation errors.

A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems 49
http://dx.doi.org/10.5772/intechopen.76979

One important concept in defining and interpreting robustness and the resulting models is
constraint robustness (model robustness) [5]. The application of RO in engineering is known
as robust design optimization or reliability-based design optimization where the solutions remain
feasible for all possible values of the uncertain inputs. RO methodology is applicable to
every generic optimization problem in which numerical data can be separated from the
structure of the problems. The challenge of RO is that it gives the same weight and values
to all of the uncertain parameters. The advantages of RO formulation are cost saving and
increment of stability, qualitative and quantitative robustness. The practical usage of RO is
that it does not significantly increase the complexity of the considered optimization prob-
lems in most cases [6, 7].

1.3. Dynamic optimization

Dynamic optimization (DO), also known as dynamic programming is a process of finding the
optimal control profile of one or more control parameters of a system. It is used to find the
possible number of solutions for a given problem. There are several approaches of DO such as
based on the calculus variations, deal with optimization discrete time and extend the static
optimization. Basically, the process of DO implementation involves a system controller, a
performance criterion and an algorithm to execute the control. Two key attributes of DO are
optimal substructure and overlapping sub-problems [8]. Four major steps on development of
DO algorithm are:

a. Characterize the structure of an optimal solution.

b. Recursively define the value of an optimal solution.

c. Compute the value of an optimal solution in a bottom-up fashion.

d. Construct an optimal solution from computed information.

The advantage of this paradigm: it performs the optimization recursively by dividing the
problems into a collection of simpler sub-problems. Each sub-problem is solved only once
using either top-down or bottom-up approach. To facilitate its lookup, a technique called
memorization is applied where the solutions of subproblems are indexed based on its input
parameter values, thereby solving computation time at the expense of modest expenditure in
storage space. Practically, the concept of DO is universal and flexible which can be applied to
the execution of any effort [9].

2. Algorithms

Artificial intelligence (AI) has been viewed as a regulation in computer science. It has been
developing and examining frameworks which work logically. Bio-inspired computation,
metaheuristics and computational intelligence are the common examples of algorithms from
numerous parts of AI. Bio-inspired computation utilizes the computing power to demonstrate

http://dx.doi.org/10.5772/intechopen.76979

50 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

the living marvels. Computational intelligence which emphasizes on strategy and outcome can
be broadly divided into five dominant fields: swarm intelligence, evolutionary computation,
artificial neural networks, artificial immune system and fuzzy systems. This chapter will be
focusing on a few swarm intelligence-based algorithms which are inspired by their natural
processes.

3. Swarm intelligence

Swarm intelligence (SI) is evaluated as an adaptive strategy which takes collective intelligence
as a behavior without centralized control structure on how an individual should behave. The
rules of SI are simple, self-organizing, co-evolution and being widely applied in the domains of
optimizing, searching methods, research in DNA computing improvement, heating system
planning etc. SI paradigm includes bird flocking, cuckoo search, animal herding and fish
schooling etc. However, the two dominant subfields of SI are ant colony optimization, inspired
by pheromone-trail of the ant behavior and particle swarm optimization, inspired by flocking
and swarming behavior [10].

However, providing a complete review to all the swarm-based algorithms is rather impossible.
The next sub-sections present the inspiration, working, metaphor and heuristic of eight popu-
larly known swarm-based methods. These methods have been introduced and implemented in
the last decade. The main challenges of the field and their future trends have also been
discussed.

3.1. Bat algorithm

Bat algorithm (BA) [11] helps in simplicity and flexibility. It is found to be very efficient in
handling nonlinear and multi objective issues. Bats have a special high-level capability of bio-
sonar (echolocation) which is used to find their prey, obstacles, roosting crevices detection and
discriminate different types of insects.

The efficiency of BA depends on the features below:

a. Automatic zooming: this capability is performed based on the automatic switch from
explorative direction to the local insensitive exploitation.

b. Frequency tuning: the variation of frequency is performed on the echolocation.

Microbats are the famous examples among all the bat species. The echolocation attribute of
microbat is used to model BA. Literature has reported a diverse range of BA applications such
as loading pattern of nuclear core in engineering optimization, nonlinear economic dispatch
problem, design of a power system stabilizer, size optimization for the skeletal structures
which consist of truss and frame, multilevel image thresholding which is an image processing
technique. In the context of inverse problem and parameter estimation, bat calculations have
been utilized in solving numerical improvement, advancing the brushless DC wheel engines,
and enhancing topological shape in microelectronic applications [12–15].

A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems 51
http://dx.doi.org/10.5772/intechopen.76979

There are some successful implementations of BA in SO. In their work of stochastic resonance for
MR images enhancement [16], proposed a neuron model that tapped on the BA multi-objective
optimization property to tune the parameters. In their work, the BA is utilized to maximize both
the image performance indices contrast enhancement factor and the mean opinion score. Their
results show that the method has improved the gray-white matter differentiation, which has
been found useful to diagnose MR images. In another work by [17], BA is adapted with inclusion
of two operations—(1) iterative local search, and (2) stochastic inertial weight to improve its
performance in terms of accuracy, speed and convergence stability. It is claimed that BA is easy to
fall into local optima and has unstable optimization results due to low global exploration ability.
The authors overcome the weaknesses of BA when their iterative local search algorithm disturbs
the local optimum and do some local re-search, such that the BA has better ability to get out of
the local optima. Adding with their stochastic inertial weight to disrupt the velocity updating
equation, it enhances the diversity and flexibility of bat population. They proved their results
based on 10 classic benchmark functions, CEC 2005 benchmark suite, and two (2) real-world
problems, in which they concluded with improved performance.

A robust tuning of power system stabilizer is demonstrated to be possible by using BA [18]. In
such scenario of RO application, the stability of the power system is highly critical. This paper
proposed BA to optimize the gain and the pole-zero parameters of the stabilizer. They com-
pared that the BA approach is superior than PSO optimization method. The optimization was
performed with objective function based on eigenvalue shifting to guarantee the stability of
nonlinear plant for a wide range of operating conditions.

A dynamic perceptive BA [19] is used to optimize particle filter for multiple targets tracking.
This is an example of DO in which the authors proposed a multiple-maneuvering-target
tracking algorithm and combined it with the BA to optimize particle filter typically used in a
modern radar tracking system. Their combined algorithm regards the particles as bats and it
simulates the behavior of bats preying by dynamically adjusting the radar tracking system’s
components of frequency, volume and pulse rate. This dynamic control of adjusting the
particle filter, adding with a joint probabilistic data association has enabled an improved
accuracy in target tracking even under a complex environment.

In other relevant applications, BA has been reported in data mining techniques of classifications
and clustering. BA has been applied in grouping microarray information, minimization of make
span and mean flow time to study half breed flow shop booking issues [20]. In the application of
image processing, BA has been utilized for full body human stance estimation. In this study, BA
has outperformed particle swarm optimization, particle filter and annealed particle filter. Bat based
model has also shown its effectiveness in envision coordinating as compared in evolution and
genetic algorithms [15]. In fuzzy logic and other applications, BA has been applied in investigating
the ideal capacitor position for misfortune decrease in dispersion frameworks. BA and fluffy
frameworks have also been utilized for energy displaying and energy changes in a gas turbine [15].

3.2. Firefly algorithm

The current population of firefly species is over 2000. The short and rhythmic blazing light of
fireflies is an astounding sight in the sky of the tropical and calm areas. This nature capability

http://dx.doi.org/10.5772/intechopen.76979

52 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

of fireflies inspired the firefly algorithm (FA) [21]. Bioluminescence is the process of generating
the flash light. The light is used to model the warning signals. Each objective function of
optimization problem is represented by different light intensity. They are some similarities
between FA and bacterial foraging algorithm. Their attractions are based on objective function,
fitness and distance respectively. FA can solve discrete and continuous optimization problems.
Kwiecien and Filipowicz [22] have applied FA in cost optimization of queueing systems. A
study carried out by Gandomi et al. [23] has proven that FA is better than other nonlinear
optimization techniques in designing the stepped cantilever beam. FA has been reported in the
recent literature as an efficient computational procedure for simultaneously generating multi-
ple different alternatives to an optimal solution [24].

FA has a wide spread of applications since its introduction, attributed mainly to its simplicity
of implementation as compared to some traditional approaches. In content-based image
retrieval, feature extraction has been done with the Euclidean distance estimation between
the pixels. However, such approach needs more precision, and this has motivated [25] to
employ FA to optimize the image features. Their work is closely related to SO as the potential
image features are stochastically found by FA. They benchmarked their FA image optimization
results with PSO and GA and discovered the differences of each model in terms of precision
and image recall. [26] also applied FA to solve a SO problem in linear phase finite impulse
response filter (FIR) design. Differential evolution (DE) is known as one of the best performer
in used for such problem. However, they proved through their simulation of designing FIR
filters that FA is better than other relevant algorithms (inclusive of PSO and GA). The improve-
ment was recorded not only in the convergence speed but also in the performance of the
designed filter.

Other variants of FA have also found their applications in several various disciplines. [27]
proposed a hybrid PSO-FA to solve a combinatorial optimization issue in floor planning. [28]
introduced a hybrid FA and DE method to estimate the parameters of the nonlinear biological
model. In the optimization design of sewer pipes, [29] has proposed a novel method by
combining a support vector regression and the FA to predict the minimum velocity required
to avoid sediment settling in the pipe channels.

3.3. Lion optimization algorithm

Lion optimization (LO) [30] is a population-based algorithm which was inspired by lion’s
social system and collaboration characteristics which can be described with the term ‘pride’.
The uniqueness of lion’s social behavior makes them the strongest mammal in the world. LO is
modeled based on two unique behaviors of lion: territorial defense and territorial takeover.
Based on these two behaviors, the solutions of LO are generated through three steps: (1) to
differentiate whether each cub solution is an original or a derived solution; (2) territorial
defense will proceed to evaluate and compare the existing and new solutions; (3) if the existing
solution is better than the new solution, then territorial takeover will keep the existing solution
to further improve it. LO can perform huge search space to solve continuous, single variable
and multi-variable optimization problems. LO algorithm has been validated using De-Jong’s
Type 1 function and the performance has been compared against evolutionary programming.
The results shown that LO performed better than evolutionary programming.

A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems 53
http://dx.doi.org/10.5772/intechopen.76979

LO is still in its early stage of application, both [31, 32] have experimented on its optimiza-
tion capability and benchmarked it on some function optimization problems. Both authors
concluded on the high performance of LO in functions optimization. While [33] has taken LO
further to perform clustering of data by utilizing the optimization capability of LO. Such
data clustering approach is very much a SO problem. In their work, the LO is modified with
the fractional theory to search the cluster centroids of data instead of typical distance
measurement.

3.4. Chicken swarm optimization algorithm

Chickens are sociable birds that they live in groups. Chicken swarm optimization (CSO)
algorithm [34] was inspired by the social behavior of chickens. Every chicken has their own
motion laws. The fitness values of the chickens will identify themselves as the roosters, hens
and chicks. These identities will put them into groups. The fittest, the weakest and the
intermediate chickens are simulated as a rooster, as a chick and as hens accordingly. The
hierarchal order plays a vital part in the group of chickens and this characteristic is used to
model CSO algorithm. CSO has been applied in solving the design of speed reducer effi-
ciently. In that research, a gearbox has been created with the design of most efficient speed.
The research on CSO has been promising. It has been used to improve the performance of the
greedy algorithm [35].

A deadlock-free migration of virtual machine consolidation is optimized using CSO [36]. In
such consolidation of services, two separate but related issues of virtual machine placement
and migration is a challenging optimization task. The authors proposed a consolidation
scheme utilizing CSO that turns the virtual machine consolidation problem into a vector
packing optimization based on deadlock-free migration. The optimization also helps to mini-
mize the energy consumptions. The proposed method achieved higher convergence rate as
compared to several other deadlock-free migration algorithms.

CSO is also applied to a classical job-shop scheduling problem in the work of [37]. An
improved version of CSO is also being applied to identifying the maximum power point
tracking control of a photovoltaic system [38]. CSO has also seek its application in disaggrega-
tion of non-invasive domestic appliances [39].

3.5. Social spider algorithm

Social spiders are organism living in groups. They are solitary and having aggressive charac-
ters among their own species. Their foraging behaviors and their corporation in performing
daily tasks are used to model social spider algorithm (SSA) [40]. In SSA, two different
evolutionary operators are created based on the gender of male and female spiders to divide
their tasks for predation, web design and mating. This algorithm can solve a wide range of
continuous optimization problems including minimization of molecular potential energy
function [41, 42]. SSA has been validated using standard benchmark problems to study its
performance. An analysis has been carried out on the performance SSA against particle
swarm optimization and artificial bee colony. The results shown that SSA has outperformed
the other techniques.

http://dx.doi.org/10.5772/intechopen.76979

54 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

SSA has some wide application in recent researches. An SSA is proposed to solve a non-convex
economic load dispatch problem [43]. Economic load dispatch (ELD) is one of the essential
components in power system control and operation. Most modern power system introduces
new models of the power units which are non-convex, non-differentiable, and sometimes non-
continuous; such RO problem is hence difficult to be solved by conventional mathematical
techniques. In this paper, the authors modified the SSA to suit the characteristics of ELD, and
their simulation results show that such ELD problem can be solved by SSA effectively and
efficiently.

Another example of employing SSA to a DO problem is proposed by [42] to solve the trans-
mission expansion planning in electrical power system. The authors tested SSA in solving the
transmission expansion planning problem of three benchmark systems having 6-busses, 46-
busses, and 87-busses. They achieved great performance as well as reduction in the total
investment cost.

In a multi-objective optimization problem of QoS-aware web services, [44] applied SSA to
perform optimized selection of numerous functionality in the web services involving complex
tasks delivery. They studied current approaches of GA and PSO to realize that the time
performance of such approaches is still a great concern. The proposed SSA has outperformed
PSO in terms of both execution time and fitness.

3.6. Spider monkey optimization algorithm

Spider monkey (SM) [45] is a population-based optimization algorithm which was inspired by
the intelligent ways of spider monkeys to search for the most suitable food sources. The
excellency of food source corresponds to the fitness of a solution. Major characteristics and
the strategies of SM algorithm are similar to artificial bee colony algorithm. The exploration
and exploitation functions allowed SM algorithm to perform huge search space and generate
greatest feasible solutions. SM algorithm is simple and speedy. It is used to solve numerical
optimization problems.

An example of SM application in continuous numerical optimization can be found in the work
of [46]. They modified SM to enable it for solving some constrained optimization problems.
Their proposed SM was tested on the well-defined constrained optimization problems of
CEC2006 and CEC2010 benchmark sets. The algorithm acquired some promising results when
compared to PSO, artificial bee colony and DE methods.

Although SM could be best to implement for a numerical problem, several other researchers
have applied it to some wider scope of optimization problems. Both [47, 48] in their separate
studies, have proposed SM to solve antenna optimization. [47] focuses their work in the
thinning of concentric circular antenna arrays. While such thinning problem is a binary opti-
mization, the original SM might not be suitable. Hence, they suggested their version of binary
SM in which it must handle the logical operators of the thinning problem. Their results proved
the competence and superiority of a binary SM as compared to existing metaheuristic algo-
rithms. On the other hand, [48] applies SM to synthesize the factor of a linear antenna’s array
and to optimally design an E-shaped patch antenna. They discovered that their SM, when

A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems 55
http://dx.doi.org/10.5772/intechopen.76979

compared to traditional method for such optimization problem, can reach optimum solutions
with less number of iterations.

3.7. African buffalo optimization algorithm

African buffalo optimization (ABO) algorithm [49] was inspired by the practice of African
buffalos in the vast African forests and savannahs in finding pastures. Three specific charac-
teristics of these animals are used to model ABO algorithm. Firstly, these animals have high
memory capacity. This skill enables them to monitor their routes up to thousands of kilometers
in Africa continent. Secondly, they communicate among themselves using two specific vocali-
zations: ‘maa’ and ‘waa’ to support each other in surviving. Lastly, African buffalos practice
‘democracy’ system in making decisions.

The information of every buffalo’s past and current location is used in tackling the issue of
premature convergence. Leading buffalo’s search space and the experience of all other buffalos
complement to the exploration and exploitation strategies in ABO. This algorithm utilizes only
learning parameters, therefore it is a simple and yet easy to implement algorithm which
guarantees quick convergence. The efficiency and powerful features of this algorithm are
capable in solving knapsack problems. ABO has been validated using traveling salesman
benchmark problems to study its cost effectiveness. A study has been carried out on the
comparative CPU time for ABO against Genetic Algorithm, Honey Bee Mating Optimization,
Ant Colony Optimization, Simulated Annealing and Adaptive Simulated Annealing with
Greedy Search. ABO has outperformed all other techniques to obtain the solutions at an
incredibly fast rate.

[50] has used ABO to solve the well-studied Traveling Salesman’s Problem (TSP). They
performed ABO on 33 benchmark symmetric TSP and observed excellent exploration and
exploitation of the search space through regular communication, cooperation, good memory
of its previous individual and collective exploits. They concluded that ABO is as competitive as
other algorithms superior in TSP.

In another DO example, ABO is used to optimize parameters tuning of proportional-integral-
derivative (PID) controller [51]. The PID controller in their study is used to automatically
regulate voltage. It was noted that existing metaheuristic tuning methods have been proven
to be quite successful, but the authors wanted to improve the gain overshoot and steady state
errors of the system. They gained some encouraging results with ABO when it was compared
to several other optimization algorithms.

3.8. Flower pollination algorithm

The goal of plants, like any other living organism is producing offspring for the next gener-
ation. Pollination is the process of transferring pollen grains from the male anther of a flower
to the female stigma. Two types of pollinations process are self-pollination and cross pollina-
tion. When pollen grains are produced, pollinators will spread it among the flowers to either
local or global flow of pollination. The process of passing the pollen grains from the stamens

http://dx.doi.org/10.5772/intechopen.76979

56 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

to the ovule-bearing organs during pollination is used to model flower pollination algorithm
(FPA) [52].

The assumption on the current version of FPA: each flower only produces one pollen gamete.
The time complexity of FPA is shorter; therefore, it is flexible and easy to implement. A study
has been carried in structural engineering to evaluate the cost optimization of tubular column
under compressive load using FPA against Cuckoo search algorithm, fuzzy rules and engi-
neering optimization techniques. The results showed that FPA is the most efficient method and
the convergence of the algorithm is very effective. This algorithm has been applied for solving
continuous, single objective and multi-objective optimization problems. It can be improved
further to apply in the areas of image compression and graph coloring. FPA has successfully
converged in shape matching problem based on a relatively new branch called atomic poten-
tial matching model [53].

FPA is applied to a visual tracking problem in the work of [54]. In their model, visual tracking
is considered to be a process of optimal reproduction of flowering plants. This is a typical
example of DO. FPA is then presented with a switch probability that changes dynamically
with generation numbers. To compare the tracking ability of the FPA tracker, the tracking
accuracy of particle filter, mean shift and PSO are studied as well. Comparative results show
that their method outperforms the other three trackers. Other applications of FPA can be found
in the works of [55–57]. [55] proposed a FPA to optimize a SO problem of static economic
dispatch incorporating wind farm. [56] worked on the sizing optimization of truss structures.
Again, this is another example of SO. While [57] applied FPA on a DO problem of photovoltaic
parameters optimization. Through their simulation, FPA is recommended as the fastest and
the most accurate optimization technique for the optimal parameters extraction process, after
benchmarking it on several other methods.

4. Conclusion

All different creatures survive with their own unique behaviors and features. Their character-
istics are concealing in the natural world. This chapter has reviewed eight natural inspired
algorithms mainly from the field of swarm intelligence. These techniques are becoming pow-
erful in numerical optimization and have shown remarkable robustness, high accuracy and
have immense capacity in solving different types of optimization problems.

In dealing with real world problems of optimization, we are now presented with even more
choices of algorithm thanks to inspirations form the nature, as well as persistence research
contributions by many researchers. However, with more choices means it could be even harder
to decide which one of the algorithms is a better candidate for a problem at hand. Based on
No-Free-Lunch theorem, there is surely no single best algorithm for every problem. The
complexity, characteristics and diversity of optimization problems mean that it is very unlikely
to have a single method that can handle all types of optimization problems. This is very much
the current state of research in optimization, despite the abundance of nature inspired algo-
rithms being added to the solution pool.

A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems 57
http://dx.doi.org/10.5772/intechopen.76979

Moving ahead, the research community is definitely not looking for a single most powerful
algorithm to solve all types of problem. Indeed, we might witness even more successful
variants of algorithm being developed from their current counterparts. This is a trend we have
observed since any introduction of a new algorithm being inspired. It is also possible that more
and more new optimization algorithms are to be inspired, given that the vast unknown and
untested phenomena in the nature are still beyond our exploration.

Author details

Siew Mooi Lim1* and Kuan Yew Leong2

*Address all correspondence to: limsm66@gmail.com

1 Faculty of Computing, University Malaysia of Computer Science and Engineering,
Putrajaya, Malaysia

2 School of Information Technology (Caulfield), Monash University, Melbourne, Victoria,
Australia

References

[1] Crowley M. Using equilibrium policy gradients for spatiotemporal planning in forest
ecosystem management. IEEE Transactions on Computers. 2014;63(1):142-154

[2] Weisstein EW. Stochastic optimization. From MathWorld—A Wolfram Web Resource

[3] Mesbah A. Stochastic model predictive control: An overview and perspectives for future
research. IEEE Control Systems. 2016;36(6):30-44

[4] Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. 2015;
61:85-117

[5] Dunning I, Huchette J, Lubin M. JuMP: A modelling language for mathematical optimi-
zation. SIAM Review. 2017;59(2):295-320

[6] Ahmadi-Javid A, Jalali Z, JKlassen K. Outpatient appointment systems in healthcare: A
review of optimization studies. European Journal of Operational Research. 2017;258(1):3-34

[7] Bertsimas D, Gupta V, Kallus N. Data-driven robust optimization. Springer Link. 2018;
167(2):235-292

[8] Shin YC, Xu CY. Intelligent Systems: Modelling, Optimization and Control. CRC Press,
Taylor & Francis Group; 2017

[9] Priya Esther B, Sathish Kumar K. A survey on residential demand side management
architecture, approaches, optimization models and methods. Renewable and Sustainable
Energy Reviews. 2016;59:342-351

mailto:limsm66@gmail.com
http://dx.doi.org/10.5772/intechopen.76979

58 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

[10] Brownlee J. Clever Algorithms: Nature-Inspired Programming Recipes. 2012. ISBN: 978-1-
4467-8506-5

[11] Yang X-H. A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al. Nature
Inspired Cooperative Strategies for Optimization (NICSO 2010), SCI. Vol. 284. 2010. pp.
65-74

[12] Tsai PW et al. Bat algorithm inspired algorithm for solving numerical optimization prob-
lems. Applied Mechanics and Materials. 2011;148-149:134-137

[13] Titus J. Careful Designers Get the Most from Brushless DC Motors. Tillgänglig: ECN
Electronic Communication Network; 2012

[14] Yang X-S. Bat algorithm: Literature review and applications. International Journal of Bio-
Inspired Computing. 2013;5(3):141-149

[15] Marichelvam MK, Prabaharam T. A bat algorithm for realistic hybrid flow shop schedul-
ing problems to minimize makespan and mean flow time. ICTACT, Journal on Soft
Computing. 2012;3(1):428-433

[16] Singh M, Verma A, Neeraj S. Bat optimization-based neuron model of stochastic reso-
nance for the enhancement of MR images. Biocybernetics and Biomedical Engineering.
2017;37(1):24-134

[17] Gan C, Cao WH, Wu M, Chen X. A new bat algorithm based on iterative local search and
stochastic inertia weight. Expert Systems with Applications. 2018;104:202-212

[18] Sambariya DK, Prasad R. Robust tuning of power system stabilizer for small signal
stability enhancement using metaheuristic bat algorithm. International Journal of Electri-
cal Power and Energy Systems. 2014;61:229-238

[19] Chen ZM, Bo YM, Tian MC, Wu PL, Ling XD. Dynamic perceptive bat algorithm used to
optimize particle filter for tracking multiple targets. Journal of Aerospace Engineering.
2018;31(3)

[20] Yang X-H. A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al., editors.
Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), SCI. Vol. 284.
2010. pp. 65-74

[21] Bacanin N, Tuba M. Firefly algorithm for cardinality constrained mean-variance portfolio
optimization problem with entropy diversity constraint. The Scientific World Journal. 2014.
Article ID 721521, http://dx.doi.org/10.1155/2014/721521

[22] Kwiecien J, Filipowicz B. Firefly algorithm in optimization of queueing systems. Bulletin
of the Polish Academy of Sciences: Technical Sciences. 2012;60(2):363-368

[23] Gandomi AH, Yang X-S, Alavi AH. Mixed variable structural optimization using firefly
algorithm. Computers & Structures. 2011;89(23–24):2325-2336

[24] Yeomans JS. An efficient computational procedure for simultaneously generating alterna-
tives to an optimal solution using the firefly algorithm. In: Yang XS, editor. Nature-Inspired

http://dx.doi.org/10.1155/2014/721521

A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems 59
http://dx.doi.org/10.5772/intechopen.76979

Algorithms and Applied Optimization. Studies in Computational Intelligence, Vol. 744.
Springer; 2018

[25] Kanimozhi T, Latha K. Stochastic firefly for image optimization, International Conference
on Communication and Signal Processing. 2013. pp. 592-596

[26] Suman S, Kar R, Mandal D, Ghoshal S. A novel firefly algorithm for optimal linear phase FIR
filter design. International Journal of Swarm Intelligence Research (IJSIR). 2013;4(2):29-48

[27] Sivaranjani P, Senthil Kumar A. Hybrid particle swarm optimization-firefly algorithm
(HPSOFF) for combinatorial optimization of non-slicing VLSI floor planning. Journal of
Intelligent and Fuzzy Systems. 2017;32(1):661-669

[28] Afnizanfaizal A, Safaai D, Sohail A, Arjunan SNV. An evolutionary firefly algorithm for
the estimation of nonlinear biological model parameters. PLoS ONE. 2013;8(3):56310

[29] Ebtehaj I, Bonakdari H. A support vector regression-firefly algorithm-based model for
limiting velocity prediction in sewer pipes. Water Science and Technology: A Journal of
the International Association on Water Pollution Research. 2016;73(9):2244-2250

[30] Rajakumar BR. The lion's algorithm: A new nature-inspired search algorithm. Procedia
Technology. 2012;6:126-135

[31] Yazdani M, Fariborz J. Lion optimization algorithm (LOA): A nature-inspired metaheuristic
algorithm. Journal of Computational Design and Engineering. 2016;3(1):24-36

[32] Wang B, Jin XP, Cheng B. Lion pride optimizer: An optimization algorithm inspired by
lion pride behaviour. Science China Information Sciences. 2012;55(10):2369-2389

[33] Chander S, Vijaya P, Dhyani P. Fractional lion algorithm-an optimization algorithm for
data clustering. Journal of Computer Science. 2016;2(7):323-340

[34] Meng X, Liu Y, Gao XZ, Zhang H. A new bio-inspired algorithm: Chicken swarm optimi-
zation. In: Advances in Swarm Intelligence. ICSI, Lecture Notes in Computer Science. Vol.
8794. Springer; 2014. pp. 86-94

[35] Mohamed TM. Enhancing the performance of the greedy algorithm using chicken swarm
optimization: An application to exam scheduling problem. Egyptian Computer Science
Journal. 2018;42(1):1-17

[36] Tiana F, Zhanga R, Lewandowskic J, Chaoc KM, Li LZ, Dong B. Deadlock-free migration
for virtual machine consolidation using chicken swarm optimization algorithm. Journal of
Intelligent & Fuzzy Systems. 2017;32(2):1389-1400

[37] Xu S, Wu D, Kong F, Ji Z. Solving flexible job-shop scheduling problem by improved
chicken swarm optimization algorithm. Journal of System Simulation. 2017;29(7):1497-1505

[38] Benoit C, Sebastian S, Wu ZQ, Yu DQ, Kang XH. Application of improved chicken swarm
optimization for MPPT in photovoltaic system. Optimal Control Applications and Methods.
2018;39(2), 1029(14)

http://dx.doi.org/10.5772/intechopen.76979

60 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

[39] Xu Y, Li W, Li D, You X. Disaggregation for non-invasive domestic appliances based on
the improved chicken swarm optimization algorithm. Power System Protection and Con-
trol. 2016;44(13):27-32

[40] Yu JJQ, Li VOK. A social spider algorithm for global optimization. Applied Soft Comput-
ing. 2015;30:614-627

[41] Tawhid MA, Ali AF. A hybrid social spider optimization and genetic algorithm for minimiz-
ing molecular potential energy function. Soft Computing. Springer; 2017;21(21):6499-6514

[42] El-bages MS, Elsayed WT. Social spider algorithm for solving the transmission expansion
planning problem. Electric Power Systems Research. 2017;143:235-243

[43] Yu JJQ, Li VOK. A social spider algorithm for solving the non-convex economic load
dispatch problem. Neurocomputing. 2016;171:955-965

[44] Mousa A, Bentahar J. An efficient QoS-aware web services selection using social spider
algorithm. Procedia Computer Science. 2016;94:176-182

[45] Bansal JC, Sharma H, Jadon SS, Clerc M. Spider monkey optimization algorithm for
numerical optimization. Memetic Computing. 2014;6(1):31-47

[46] Gupta K, Deep K, Bansal J. Spider monkey optimization algorithm for constrained opti-
mization problems. Soft Computing. 2017;21(23):6933-6962

[47] Singh U, Salgotra R, Rattan M. A novel binary spider monkey optimization algorithm for
thinning of concentric circular antenna arrays. IETE Journal of Research. 2016;62(6):736-744

[48] Al-Azza A, Al-Jodah A, Ammar F, Harackiewicz J. Spider monkey optimization: A novel
technique for antenna optimization. IEEE Antennas and Wireless Propagation Letters.
2016;15:1016-1019

[49] Odili JB, Kahar MNM, Anwar S. African buffalo optimization: A swarm-intelligence
technique. Procedia Computer Science. 2015;76:443-448

[50] Odili J, Beneoluchi M, Kahar MN. Solving the traveling Salesman’s problem using the
African buffalo optimization. Computational Intelligence and Neuroscience. 2016;2016(3)

[51] Odili J, Noraziah. Parameters-tuning of PID controller for automatic voltage regulators
using the African buffalo optimization. PLoS One. 2017;12(4):175901

[52] Yang X-S. Flower pollination algorithm for global optimization. In: Unconventional Com-
putation and Natural Computation, Lecture Notes in Computer Science. Vol. 7445. 2012.
pp. 240-249

[53] Zhou Y, Zhang S, Luo Q, et al. Neural Computing and Applications. 2018;29:21. DOI:
10.1007/s00521-016-2524-0

A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems 61
http://dx.doi.org/10.5772/intechopen.76979

[54] Gao ML, Jin S, Jun J. Visual tracking using improved flower pollination algorithm. Optik -
International Journal for Light and Electron Optics. 2018;156:522-529

[55] Velamuri, Suresh S, Sreejith P, Ponnambalam. Static economic dispatch incorporating
wind farm using flower pollination algorithm. Perspectives in Science. 2016;8:260-262

[56] Gebrail B, Melih NS, Yang XS. Sizing optimization of truss structures using flower polli-
nation algorithm. Applied Soft Computing. 2015;37:322-331

[57] Alam DF, Yousri DA, Eteiba MB. Flower pollination algorithm based solar PV parameter
estimation. Energy Conversion and Management. 2015;101:410-422

http://dx.doi.org/10.5772/intechopen.76979

Edited by Javier Del Ser and Eneko Osaba

Nature-inspired algorithms have a great popularity in the current scientifc
community, being the focused scope of many research contributions in the literature

year by year. Te rationale behind the acquired momentum by this broad family of
methods lies on their outstanding performance evinced in hundreds of research felds

and problem instances. Tis book gravitates on the development of nature-inspired
methods and their application to stochastic, dynamic and robust optimization. Topics
covered by this book include the design and development of evolutionary algorithms,

bio-inspired metaheuristics, or memetic methods, with empirical, innovative fndings
when used in diferent subfelds of mathematical optimization, such as stochastic,
dynamic, multimodal and robust optimization, as well as noisy optimization and

dynamic and constraint satisfaction problems.

Published in London, UK
© 2018 IntechOpen
© BirdHunter591 / iStock

ISBN 978-1-78923-328-5ISBN 978-1-83881-572-1

	Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization
	Contents
	Chapter 1 - Introductory Chapter: Nature-Inspired Methods for Stochastic, Robust, and Dynamic Optimization
	Chapter 2 - Robust Optimization: Concepts and Applications
	Chapter 3 - Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine Scheduling Problem
	Chapter 4 - A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems

