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Provisional chapter

Introductory Chapter: Nature-Inspired Methods for
Stochastic, Robust, and Dynamic Optimization

Eneko Osaba and Javier Del Ser

Additional information is available at the end of the chapter

1. Introduction

Optimization is one of the most studied fields in the wide field of artificial intelligence.
Hundreds of studies published year after year focus on solving many diverse problems of this
kind by resorting to a vast spectrum of solvers. Within this class of problems, several problem
flavors can be identified depending on the characteristics of their constituent fitness functions
and support of their optimization variables, such as linear, continuous or combinatorial.
Efficiently tackling such optimization problems requires huge computational resources, espe-
cially when the formulated problem at hand represents complex real-world situations with
hundreds of variables and constraints. For these reasons and due to the inherently practical
utility of optimization algorithms, very heterogeneous problem-solving approaches have been
developed by the community over the last decades for their application to these problems. From
a general perspective, optimization methods can be classified as exact, heuristics, and
metaheuristics. In this chapter, the focus is placed on the latter two families, in particular in those
algorithmic variants where biological processes observed in nature have lied at the motivating
core of the operators underlying their search mechanisms. In other words, we will center our
attention on Nature-Inspired methods for efficient optimization and problem solving.

In this context, Nature-Inspired algorithms have recently gained ever-growing popularity in the
community, with an unprecedented body of the literature related to assorted algorithmic
approaches suited to deal with problem formulations by leveraging the self-learning capability
of their mimicked natural phenomena. The rationale behind the momentum acquired by this
broad family of methods lies in their outstanding performance, which has hitherto been evinced
in hundreds of research fields and problem scenarios. In this regard, many different inspirational
sources have been proposed for constructing optimization methods, such as the behavioral
patterns of bats [1], fireflies [1], bees [2] or the stigmergy by which ants communicate to each
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other when looking over an area for a food source [3], which add to the mechanisms behind 
genetic inheritance that stimulated the advent of the seminal branch of genetic algorithms [4]. 

In recent years, most of these Nature-Inspired methods have been successfully applied to a 
wide variety of topics. To cite a few, the aforementioned Bat algorithm has been applied to 
problems related to energy [5], sports training planning [6] or logistics [7, 8], whereas the 
Firefly Algorithm has been applied to selected applications in medicine [9], job-shop schedul-
ing [10] or goods distribution, and logistics [11, 12]. This is a very reduced yet exemplary 
bibliographic sample of the heterogeneous research activity around Nature-Inspired methods. 
A thorough review of the state of the art in this topic can be extensive, reason for which many 
comprehensive surveys have been lately contributed to reflect the huge literature produced 
around certain algorithms. Nevertheless, Genetic Algorithms and Ant Colony Systems are, 
arguably, the most widely resorted algorithms of this kind, with recent literature compendi-
ums focused on these both approaches appearing in the literature on a yearly basis [13, 14]. 

This introductory chapter contributes to this line of research by presenting applications of 
Nature-Inspired solvers to three specific branches of optimization problems, namely, stochas-
tic, dynamic, and robust optimization. We next provide a more elaborated presentation of each 
of such branches. 

2. Dynamic optimization 

In optimization problems, it is often the case that the parameters based on which fitness 
function(s) and constraints are defined remain unaltered over the period of time in which the 
solution obtained by the solver is considered to be optimal. Therefore, such parameters are 
assumed to be known a priori and fixed from the very beginning of the problem solving 
process. In dynamic optimization, however, this stability condition may not hold, this one or 
more constraints and/or fitness function of the problem can vary dynamically along time, even 
after the problem is solved and the solution is applied. The setup can be even more involved if 
new parameters appear at any step of the process, which must not only be included in the 
problem formulation but also accommodated by the technique at hand. Due to these excep-
tional situations, this casuistry demands efficient algorithmic means to solve optimization 
problems in an on-line fashion. 

Dynamism in any aspect of the problem is a practical circumstance that emerges in almost any 
field where the context of the problem evolves along time due to exogenous factors to the 
initially formulated problem statement. One of the scenarios, where dynamic optimization is 
under active investigation, is transportation and mobility, in which the dynamism of the consid-
ered parameters can force re-planning previously traced routes, even if the vehicle is already on 
the road. This hypothesized case can be produced either by the appearance of any incident over 
the road network or the arrival of unexpected information that was not present when the initial 
route optimization was performed. An example of this kind of problem was presented in [15], 
in which a vehicle routing problem is modeled by integrating the information about future 
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customers’ dynamic requests. Another problem prone to considering this characteristic is the 
job-shop scheduling problem and its multiple variants, as can be seen in recently published 
studies such as [16, 17]. Several interesting surveys are available on this topic, such as [18], in 
which the application of swarm intelligence methods to dynamic optimization is reviewed. In 
[19], on the other hand, Evolutionary Algorithms are analyzed for the same class of optimization 
problems. 

3. Stochastic optimization 

Stochastic optimization is another problem variant that finds its motivation in real application 
scenarios. This class of optimization problems can be defined as the process of maximizing or 
minimizing the value of a mathematical or statistical function, in which one or more of its 
values are subject to randomness. This stochastic nature may involve random objective func-
tions and/or random restrictions, which ease the modeling of real-world problems subject to 
non-negligible sources of uncertainty, imprecision or randomness. 

The need for stochastic optimization techniques emerge from a wide variety of real-world 
problems related to business analytics, electrical power production or energy management, 
among many others. In [20], for example, the so-called unit commitment problem is endowed 
with this feature to model and handle the uncertainty of the electric power generation process 
in the scheduling and dispatching of the produced energy. On the other hand, the authors in 
[21] regard power system management as a stochastic optimization problem, considering 
microgrids capable of controlling their local generation and demand with the presence of an 
uncertain amount of generated renewable energy. 

Focused on Nature-Inspired techniques, examples such as the one found in [22] are worth to be 
mentioned. In this work, a Firefly Algorithm is used to tackle a multi-objective active/reactive 
power dispatch problem, with the existence of wind generation and load uncertainties. 
Another example can be accessed in [23], in which a Genetic Algorithm is utilized for effi-
ciently solving a condition-based maintenance optimization problem subject to uncertainties. 

4. Robust optimization 

The third class of optimization problems targeted by this chapter is robust optimization, which 
denotes a branch of problems where one or more variables that compose the problem is also 
subject to uncertainty. In this case, however, the scope is placed on the robustness of the 
produced solutions against the variability of the constraints affected by uncertainty (e.g., the 
target is always placed on fulfilling simultaneously all constraints disregarding the statistical 
variability of the problem), as opposed to stochastic optimization which aim at satisfying the 
constraints up to a prescribed level of probability. This being said, different types of robust 
optimization problems can be modeled depending on how extreme values for the variable 

http://dx.doi.org/10.5772/intechopen.78009
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parameters are formulated. One of these types is referred to as local robustness [24], where a 
measure of robustness is designed to accommodate small perturbations with respect to the 
nominal value of the parameter that undergoes stochastic variability. On the other hand, 
probabilistically robust optimization models [25] quantify the uncertainty in the real value of 
the parameter of interest using a probability distribution function. Additional classifications 
are global robustness [24], or non-probabilistic robust optimization models [26]. 

As has been pointed along this introduction, uncertainty is present in lots of real-world 
situations. For this reason, robust optimization has also been frequently used for modeling a 
wide variety of real problems, belonging to different knowledge areas, such as supply chain 
network design [27] or food distribution [28]. 

5. Conclusions 

This introductory chapter highlights the potential that Nature-Inspired solvers may bring to 
stochastic, robust, and dynamic optimization problems. Nature has learned from itself from 
the very beginning of Earth, with manifold processes and intelligent behaviors that have 
naturally evolved over ages to attain high levels of adaptability and efficiency. It is now time 
for researchers, lecturers, and practitioners interested in Nature-Inspired optimization to shift 
their target and span the application of this algorithmic branch to these optimization problems, 
far less studied so far by the community than other formulated optimization problems. 
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Abstract 

Robust optimization is an emerging area in research that allows addressing different 
optimization problems and specifically industrial optimization problems where there is a 
degree of uncertainty in some of the variables involved. There are several ways to apply 
robust optimization and the choice of form is typical of the problem that is being solved. 
In this paper, the basic concepts of robust optimization are developed, the different types 
of robustness are defined in detail, the main areas in which it has been applied are 
described and finally, the future lines of research that appear in this area are included. 

Keywords: optimization, robustness, uncertainly, uncertainty modeling 

1. Introduction 

Nowadays, using the technologies and techniques associated with the Internet of things, Big 
Data and artificial intelligence, we are able to capture and process enormous and varied 
volumes of data. Examples of the above can be observed in different disciplines such as 
transport [1, 2], mining [3] and agriculture [4] among others. However, in the area of optimi-
zation, many problems still work at the level of reference instances [5–8]. To solve real optimi-
zation problems, we must consider that these are generally multi-variable problems with 
restrictions and trade-off between them. In many instances, when a problem is modeled, a 
point that is not taken into consideration is the uncertainty to which the system is subject. In 
this sense, our solution can be submitted to questions of the type: How feasible is this solution 
according to the different scenarios? What is the optimality of this solution? How strict should 
the treatment of uncertainty be? One way to approach uncertainty is to consider the robustness 
of the solution. However, the definition of robustness is not trivial and there are several 
definitions. Ideally, you want to get the best solution and also the most robust one but usually 

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution 
and reproduction for non-commercial purposes, provided the original is properly cited. 
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there is a trade-off between these two concepts [9]. Due to the importance and particularity for 
each problem of this trade-off between the quality and robustness of the solution, a series of 
definitions have been generated and a series of methods developed to adequately address or 
estimate the trade-off [10, 11]. 

Because each problem has its own level of demand regarding the quality of the solution and its 
treatment with respect to its robustness, it is difficult to provide a single definition of robust-
ness. In some cases, our solution could be considered robust if under certain conditions of the 
search space or under certain operational conditions, the solution behaves reasonably with 
respect to its quality, feasibility or optimality. Under other conditions where the management 
of uncertainty is very strict, the most appropriate result is associated with scenarios that 
consider the worst case [12]. 

On the other hand, it has been methodologically argued [13] that instead of transforming and 
solving the optimization problem with uncertainty in a robust problem, this can be solved in 
two stages considering the robustness as a separate objective [13]. The argument is based on 
the fact that a separate analysis allows obtaining more information and understanding about 
the solution and its robustness, facilitating the decision-making process. On the other hand, 
considering robustness as part of the problem has advantages over implementation, computa-
tional cost and alternatives to solve the problem. In the latter case, modeling the choice of 
scenarios and the measure of robustness is essential [14]. 

The aforementioned discussion indicates that the concepts of robustness are still in the process 
of maturation and there is no clear methodology on how to address robust problems. There are 
conceptual, computational and application challenges in the area of robust optimization. 
Usually, the few state of the art reviews found about robust optimization, focus on identifying 
what areas and types of problems have been addressed. In this article, as a starting point, we 
present a collection of the different definitions and models with which robust optimization 
problems have been addressed. Knowledge of the different models used in robust optimiza-
tion is essential for a proper understanding of the field. Once the main concepts are defined, 
we proceed to provide an update on the main robust optimization works that have been 
carried out over the last few years. In Section 2, we will describe the basic concepts associated 
with uncertainty. We will describe the main robustness models in Section 3. Finally, in Section 
4, we will describe the main areas of application. 

2. Fundamental concepts 

Suppose an engineer who must make constant decisions and face the difficulty of 
multidimensional problems with some degree of ambiguity or errors in the parameters to 
analyze and some kind of stochastic uncertainty of the process and its environment. Then this 
engineer must also determine if the proposed solution is robust. This means that the solution is 
feasible to apply for any parameter scenario and stochastic uncertainty and that this feasibility 
remains close to the optimality condition. Then two fundamental concepts appear: the uncer-
tainty of the feasibility of the solution and the uncertainty of the objective value of the function. 
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2.1. Uncertainty in the feasibility of the solution 

Ideally, the engineer would like his or her solution to be feasible for any value of the parame-
ters analyzed; however, this feasibility has consequences. The first consequence corresponds to 
having a significant computational cost when considering all the possible parameter values. 
The second consequence is related to the deterioration in the quality of the solution. The more 
demanding it is with regard to the feasibility of the parameters, the greater the probability of 
moving away from optimality. Therefore, there is a trade-off, which is related to the problem 
that is being solved. Then solutions in the area of control theory related to equipment failures 
should be much stricter regarding the feasibility of the solution than solutions obtained in 
marketing areas where the effect on a set of clients is not so critical. Therefore, the choice of the 
uncertainty set plays a fundamental role in the feasibility of solving the problem and in the 
quality of the solution obtained. 

2.2. Uncertainty in the optimality of the solution 

It may happen that depending on the set of uncertainty chosen, the optimality of the solution is 
altered. In this case, robust optimization tries to obtain a solution that performs adequately in 
the different scenarios; however, all scenarios do not require the same treatment with respect 
to optimality. Due to the above, in the literature, we can find different concepts of robustness; 
among the most mentioned are: strict robustness [15], cardinality constrained robustness [16], 
adjustable robustness [17], lightweight robustness [18], soft robustness [19], lexicographic 
robustness and regret robustness. 

2.3. Uncertainty in the optimization problem 

Each real optimization problem suffers from some type of uncertainty that are mainly caused by 
uncertainty at the level of the measurements or by uncertainties due to changes in the environ-
ment of the system. The first case we will refer to microscopic uncertainties and the second will 
be macroscopic. The optimization problem can be approached in a standard way through a 
nominal scenario which would describe, for example, the most typical case or an average case. 
However, in general, the most probable scenario is not trivial to obtain and for some problems, 
having a more frequent scenario is not the natural way to approach the problem [20]. An 
optimization problem with constraints can be formally written as shown in Eq. (1). 

minf ð Þx 

s:t: F xð Þ ≤ 0 (1) 
x ∈ S, 

where F : Rn ! Rm describes a problem of n dimensions with m constraints. f : Rn ! R is the 
objective function and S ⊂ Rn is the search space. Our next step is to formalize the uncertainty 

in the optimization problem. Suppose ξ ∈ Rk corresponds to a scenario that could occur in our 
real problem. Hence, our optimization problem considering the uncertainty scenario ξ, is 
written in Eq. (2): 

http://dx.doi.org/10.5772/intechopen.75381


� � 

� � 

10 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization 

minf ðx; ξÞ 
s:t: F xð ; ξÞ ≤ 0 (2) 

x ∈ S, 

In most problems, it is not known exactly what the value of ξ is, but if it is clear that the 

problem falls on an uncertainty set U ∈ Rk , which represents the scenarios that are enough to 
consider. Then we have a family of optimization problems given by the pair ðPð Þξ ; ξ ∈ UÞ. A  
fundamental objective of robust optimization corresponds to turn this family of problems into 
a single problem of optimization, where the choice of the set of uncertainty is fundamental for 
the result and complexity of the problem. For an adequate treatment of the problem of 
uncertainty, it is fundamental to give structure to the set U. In literature, it is common to find 
the following types: 

1. Finite uncertainty U ¼ ξ1; …ξl . 

2. Interval-based uncertainty U ¼ ∣ξ1, ξb1∣ �… � ∣ξk, ξbk∣. 
n o 

3. Norm-based uncertainty U ¼ ξ ∈ Rk : ∥ξ � ξb∥ ≤ r . 

4. Polytopic uncertainty U ¼ conv ξ1; …ξl . 

5. Constraint-wise uncertainly U ¼ U1 �… � Um, where U i affects only the constraint i. 

3. Robustness models 

This section aims to formally define the main concepts of robustness used to solve optimiza-
tion problems with uncertainty. In each of the ways to approach robustness, the intuition that 
exists behind the definition is described; later, the sets that model the uncertainty are charac-
terized and then the problem is written in its robust version. Finally, articles where the 
definition has been used are referenced. 

3.1. Strict robustness 

Let x inS be a solution to the optimization problem with uncertainty ðPð Þξ ; ξ ∈ UÞ. The solution 
is strict if x is feasible for all possible scenarios of U, that is, if F xð ; ξÞ ≤ 0 for all ξ ∈ U. This 
approach is the most intuitive when trying to solve the optimization problem in a robust way. 
Formally, consider the set of all possible strictly robust solutions with respect to the uncertainty 
set U given by: 

Fð  Þ ¼ξ fx ∈ S : F xð ; ξÞ ≤ 0g 
(3)RðUÞ ¼  ∩ Fð Þξ 

ξ ∈ U 

Then the strict robust problem corresponds to the problem formulated in Eq. (4), 
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min sup f xð ; ξÞ 
ξ ∈ U 

ð Þ  (4)s:t: x ∈ R U 

x ∈ S 

To the best of our knowledge, the first to use strict robustness was Soster in [21], where he 
applied uncertainty to convex sets, solving the problem using linear programming. Later, this 
work was extended and placed in a theoretical framework in the articles [22, 23]. The essence 
of strict robustness is that all scenarios can occur and all of them have an important criticality. 
In real problems, this type of robustness is necessary in critical systems where a failure is not 
tolerable. For example, the case of air planes and nuclear plants. However, in other types of 
problems, such as revenue management, public or scheduling, this type of robustness can be 
relaxed. 

3.2. Cardinality constrained robustness 

One way to relax the strict robustness is to restrict the space of uncertainty. There are several 
ways to achieve this restriction. In cardinality constrained robustness, the property is used that 
it is unlikely that all the uncertainty parameters change at the same time when analyzing the 
worst case. Then, we can restrict the cardinality of the uncertainty space by varying only some 
parameters; the others are modeled with their representative values. 

Let X ¼ fx1; …xng and b1x1, …, bnxn ≤ c be a solution and restriction respectively of the optimiza-n h i o 
tion problem. Let U ¼ b ∈ Rn : bi ∈ bi � di; bi þ di ; i ¼ 1; …n ; then, the cardinality constrained 

robustness is described in Eq. (5).

 ! 
n 

bixi þ max dijxij ≤ c (5)
R ⊂ f1;…;ng, ∣R∣¼γ 

X X 
i¼1 i ∈ R 

This approach was conceptualized by Bertsimas and Sim [16] for continuous problems. Later, 
this approach was extended to combinatorial problems in the articles [24, 25]. 

3.3. Adjustable robustness 

Another way to relax the space of uncertainty of strict robustness, corresponds to divide the 
space into groups of variables. A first group will be called here and now variables. These vari-
ables correspond to variables that must be evaluated before the scenario ξ ∈ U is determined 
and the wait and see variables, which can be determined once the scenario ξ is known. 

Let X be one point of our search space; then, X ¼ ðu; vÞ can be divided into u ∈ S1 ⊂ Rn1 and 

v ∈ S2 ⊂ Rn2 where n1 þ n2 ¼ n. Then the variables u correspond to the group here and now 
variables and the variables v to the group wait and see variables. Formally, this is written in 
Eq. (6). 
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minf uð ; v; ξÞ 
F uð ; v; ξÞ ≤ 0 (6) 

ðu; vÞ∈ S1 � S2 

Then once we have fixed the variables here and now, we must make sure that for any of the 

selected ξ ∈ U scenarios, there is v ∈ S2 such that ðu; vÞ is feasible for ξ. Let PS1 ðFð Þξ Þ, defined in 

Eq. (7) be the projection of Fð Þξ over S1. 

˜ ° 
PS1 ðFð Þξ Þ≔ u ∈ S1 : ∃v ∈ S2 s:t: ðu; vÞ∈ Fð Þξ (7) 

where Fð Þξ corresponds to the solution space that complies with the constraints defined in 
Eq. (3). Then, the set of solutions for the split robustness is given by: 

R ¼ 
˜ 
u ∈ S1 : ∀ξ ∈ U∃v ∈ S2 s:t: ðu; vÞ∈ Fð Þξ 

° 

(8)¼ ∩ PS1 ðFð Þξ Þ 
ξ ∈ U 

Given a u, the worst case w for some specific u with respect to the set of solutions R, is given by 
Eq. (9). 

wR u inf ð Þ (9)ð Þ ¼ sup f u; v; ξ 
v:ðu;vÞ∈ Fð Þξξ ∈ U 

And therefore, the split robustness is given by Eq. (10). 

˜ ° Rmin w ð Þu : u ∈ R (10) 

The first one to introduce the concept of adjustable robustness was Ben Tal et al. [17] applied to 
uncertainly problems in linear programming. However, the concept has continued to develop 
and adapt and nowadays, applications are being seen in portfolio selection [26], in power 
systems [27], capacity extension planning [28], aperiodic timetabling [29], among others. 

3.4. Light robustness 

A completely different way of relaxing the concept of strict robustness corresponds to instead 
of reducing the space of uncertainty, we can relax the constraints in favor of the quality of the 
solution. This new concept that is called light robustness, this concept considers as a funda-
mental hypothesis that if we are able to adequately solve the optimization problem consider-
ing the nominal (or average) case, the solution should not be bad and basically, we can 
concentrate on finding relatively close solutions of the fitness that also fulfill in the best 
possible way the restrictions of the problem considering all ξ ∈ U. Formally, light robustness is 
detailed in Eq. (11). 
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kX
min wiλi 

i¼1 

s:t: f x; bξ ≤ f ∗ ξb þ r (11) 

F xð ; ξÞ ≤ λ, ∀ξ ∈ U 

x ∈ S, λ ∈ Rk 

The concept of light robustness was introduced by Fischetti and Monaci [30], the main objec-
tive of its new definition was to allow a trade-off between robustness and quality of the 
solution. A constraint is added by entering the parameter r. This parameter forces the solution 

to have a certain closeness to the solution for the nominal case represented by bξ. Because there 
is a trade-off between quality and robustness, to allow this closeness of the nominal case, it is 
necessary to relax the original constraints. This is done with the λ factor, where we finally want 
to find the best set of coefficients that relax our solution. 

Originally, the concept of light robustness was conceived to be applied to problems of linear 
programming [30] and specifically, in time optimizations in Italian single-line instances. Later, 
in [31] light robustness was applied to determine the best route to traveling in a public 
transport network in Germany. Later in [18] the concept was generalized taking into account 
any optimization problem and any set of uncertainty. 

3.5. Regret robustness 

The regret robustness described by [32] uses a way to relax the problem through the objective 
function. Let f ∗ ð Þξ be the best target value in the scenario ξ ∈ U. Instead of minimizing the 
worst-case performance of a solution, it minimizes the difference to the objective function of 
the best solution that would have been possible in a scenario. The regret robustness formula-
tion is shown Eq. (12). 

min sup ðf xð ; ξÞ � f ∗ ð Þξ Þ 
ξ ∈ U 

(12)s:t: F xð Þ ≤ 0 

x ∈ S 

Today, we see used in the concept of regret robustness in different areas. In [33], it was used in 
portfolio optimization problems. In safety investment problems, it was used in [34]. In [35] it 
was used to solve evacuation planning models. 

3.6. Recoverable robustness 

Recoverable robustness uses the concept of recovery algorithm and, like adjustable robustness, it 
obtains the solution in two stages. Give a family of algorithms A. A solution x is recovery 
robust with respect to A if it exists for every scenario ξ ∈ U, an algorithm A ∈ A such that A 
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applied to the solution x and a scenario ξ allows you to build a solution A xð ; ξÞ ∈ FðξÞ. Then 
the optimization problem in its robust form is written by Eq. (13): 

min f xð Þ  
ðx;AÞ ∈ ðFðξÞ�AÞ (13) 

s:t: A xð ; ξÞ ∈ FðξÞ, ∀ξ ∈ U 

The concept of recoverable robustness was developed in the article [36] applied to shunting 
problems and later refined in [37] applying recoverable robustness to railway problems with 
linear programming. Today, we find the concept of recoverable robustness applied to location 
planning [38], scheduling and delivering routing [39], allocation and network design problems 
[40], robust traveling salesman problem [41] and transit network design [42], among others. 

4. Application areas of robust optimization 

In this section, we will describe some examples where robust optimization has been applied. 
Mainly identified areas have been logistics, finance, water management, energy management 
and machine learning. 

4.1. Energy management 

Energy management has received significant attention with respect to robust optimization. In 
[43] a strategic planning model applied to the integrated oil chain was designed. For the 
design, it was considered as sources of uncertainty: crude oil production, demand for refined 
products and market prices. The robust version of the demands for a power plant problem was 
studied in [44]. In this article the phases of unit commitment and economic dispatch were 
considered to minimize the local cost. A robust model of energy distribution under uncer-
tainties with respect to wind energy was studied in [45]. In this article, it was shown that the 
proposed method can be solved in suitable times in addition to being able to effectively 
capture the ambiguous distribution of wind power generation. In [46], the configuration of 
the energy consumption of household appliances under the uncertainty of manually operated 
devices (MOAs) was modeled as a problem of robust optimization. When evaluating all the 
possible cases of the energy of MOAs, the traditional approach was chosen, that is, using the 
worst case with the intention of reducing the payment of electricity for all the household 
appliances. To determine the reduction in the payment, the price of electricity in real time was 
considered as information in addition to the inclining block rate. 

4.2. Water management 

In [47] robust optimization was used to handle the uncertainties of water planning resources. 
In [48] the authors developed a new methodology for the optimizing daily operations of pum-
ping stations. This methodology takes into consideration the fact that a water distribution system 
is actually unavoidably affected by uncertainties. A multi-objective robust decision-making 
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approach was developed in [49]. This approach supports seasonal water management. In [51], 
a comparison of Robust Optimization and Info-Gap Methods for Water Resource Management 
under Deep Uncertainty was made. A multi-objective design of water distribution systems 
under uncertainty was developed in [50]. The main objectives are (1) minimize the total water 
distribution system (WDS) design cost and (2) maximize WDS robustness. In the article, the 
WDS robustness is defined as the probability of simultaneously satisfying minimum pressure 
head constraints at all nodes in the network. 

4.3. Machine learning 

In [52] regularized support vector machines (SVMs) were considered, and they were shown to 
be equivalent to a robust formulation of the problem. The authors show that this equivalence 
between robust optimization and regularization has implications for both algorithms and 
analysis. The equivalence of robustness and regularization provides a robust optimization 
interpretation for the success of regularized SVMs. On the other hand, Fertis in his doctoral 
thesis [53], studied the connection between regularizations like Lazo and robustness. Specifi-
cally, he showed that in classical regression, regularized estimators like lasso can be obtained 
by applying robust optimization to the classical least squares problem. He discovers an explicit 
connection between the size and the structure of the uncertainty used in the robust estimator, 
with the coefficient and the kind of norm used in regularization. Xu et al. [54], investigated a 
probabilistic interpretation of robust optimization. They established a connection between 
robust optimization and distributionally robust stochastic programming (DRSP). In the article, 
they showed that the solution to any robust optimization problem is also a solution to a DRSP 
problem. In [55] the problem of constructing robust classifiers when the training is subject to 
uncertainty was studied. The problem is posed by a chance-constrained programming, which 
ensures that the uncertainty of the data is correctly defined with high probability. 

4.4. Logistics 

In the area of logistics problems such as the traveling salesman and routing problem have been 
explored in their robust versions. A Swarm intelligence system was designed in [56] to solve 
the vehicle routing problem with time windows and uncertain travel times. The uncertainty 
here models the perturbation in the data. This perturbation, is caused by the effects of 
unpredictable events, such as traffic jams, road building, etc. In the article, the authors pro-
posed a heuristic approach using ant colony optimization as a metaheuristic. In [57], the open 
vehicle routing problem with uncertain demands was studied. In this problem, the vehicles 
have as an additional function that they do not necessarily return to their original locations 
after delivering the products to the customers. First, the authors modeled the demand of the 
clients as specific sets of limited uncertainty with expected values of demand and nominal 
values. Having the sets modeled, they later proposed a robust optimization model that aims to 
minimize transport costs and unsatisfied demands on the specific uncertainty sets defined. The 
robust vehicle routing problem with time windows was solved in [58]. They proposed two 
new formulations for the robust problem, each based on a different robust approach. They 
proposed two new formulations for the robust problem, each based on a different robust 
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approach. The first formulation uses adjustable robustness with the aim of extending the well-
known formulation of resource inequalities. The second formulation generalizes a path 
inequalities formulation to the uncertain context. In this case, uncertainty is modeled in the 
formulation of the problem. In [41], an uncertain traveling salesman problem was developed. 
In this problem, the distances between the nodes are not exactly known, but they can be 
obtained from a set of uncertainties of possible scenarios. This set of uncertainties is modeled 
as intervals, including an additional limit associated with the number of distances that can 
deviate from their expected nominal values. In the study, a recoverable robust model was 
proposed. This model allows a tour to change only a limited number of borders once a scenario 
is known; all these with the goal of minimizing the complexity in calculations. The robust 
traveling salesman problem with interval data was studied in [59]. In the article, travel times 
are specified as a range of possible values. They applied the robust deviation criterion to drive 
the optimization over the interval data problem thus obtained. 

Another interesting group of problems in the logistics area corresponds to facility location 
problems. The robust formulation of these problems aims to obtain an optimal design of a 
system considering uncertainty. The authors introduce a robust optimization-based approach to 
obtain some capacity expansion solutions that are not sensitive to this uncertainty. In this area, 
we highlight the work carried out by [60], where they considered the question of how to make a 
decision about capacity expansions for a network flow problem that is subject to demand and 
travel time uncertainty. The authors introduce a robust optimization-based approach to obtain 
some capacity expansion solutions that are not sensitive to this uncertainty. They show that the 
robust modeled solution is a computationally tractable problem when considering general 
uncertainty sets together with reasonable conditions for network flow applications. Another 
interesting problem in this area is the robust transmission expansion planning. In [61] the 
authors address the problem of transmission expansion planning, considering uncertainties in 
the electric power system. They consider varied sources of uncertainty such as: the growth of 
future demand, the availability of generation facilities, geographical characterization within the 
electric power system. A robust adaptive optimization model is used to obtain investment 
decisions with the objective of minimizing the total costs of the system and anticipating the 
worst-case materialization of the uncertain parameters within a uncertainty set. 

4.5. Public goods 

Public goods can be understood as a merchandise or service that is provided non-profit to all 
members of a society. This merchandise or service, can be provided by the government, an 
individual or an organization. When we consider public goods and robust optimization, 
interesting applications appear. An interesting first application corresponds to radiation 
therapy. When a radiation therapy examination is performed, there are uncertainties that 
are fundamental to consider in defining the correct treatment in patients with cancer. In this 
context, addressing problems through robust optimization makes a lot of sense. In [62] the 
authors constructed an uncertainty model of the movement of respiration based on proba-
bility density functions. These functions allowed them to robustly model the optimization of 
intensity-modulated radiation therapy. 
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Another interesting implementation associated with the application of robust optimization to 
public goods corresponds to intrahospital transport. Intrahospital transport is often required 
for reasons associated with a diagnosis or some therapy that the patient must perform. 
Depending on the design of the hospital, transportation between the nursing rooms and the 
service units is provided by ambulances or by trained personnel accompanying patients on 
foot. When the hospital is large, the patient transport service is often poorly managed and 
there is no associated flow coordination; on the other hand, there is no clarity of all the 
necessary transports since they are dependent on the diagnoses. In [63] the authors address 
the problem of defining robustness to patient flow management in the context of optimized 
patient transport in hospitals. In [64] a methodology was proposed to obtain a robust logistics 
plan to mitigate the uncertainty of the demand for humanitarian relief supply chains. More 
specifically, the authors formulated the problem as a robust optimization problem with the 
objective of dynamically assigning emergency response and generate evacuation traffic flow, 
all this in the context of time-dependent demand uncertainty. 

5. Discussion and conclusions 

In this article, we have carefully reviewed the different definitions that have appeared in the 
literature to address the concept of robust optimization. We have taken special care to formal-
ize each of the definitions and cite specific examples where they have been used. Subsequently, 
a review was made in areas where robust optimization has been applied. In particular, the 
areas of water management, energy management, machine learning, logistics and public 
goods stood out. With the advent of the concepts and technologies associated with the Internet 
of Things and Big Data, it is expected that the problems described above have a greater 
amount of data to build more robust models; however, this brings challenges regarding the 
complexity of the algorithms, in addition to the learning and operation of these in real time. 

When we analyze the research works developed in the area of robust optimization, we found 
that there is a lack of a formal argument that clearly defines the uncertainty set to be used to 
solve the problem in a robust way. Usually, the choice is guided by business intuition together 
with the need to adapt the uncertainty set to solve the problem in a reasonable time. 

Therefore, there is an important space to develop quantitative studies to determine what kind 
of robustness and uncertainty set should be used to solve a problem. Identifying how different 
uncertainty sets behave for a defined problem is fundamental. To be able to answer questions 
such as: How is the quality of the solutions perturbed with the choice of the uncertainty set?, Is 
this perturbation important for the problem that is being solved?, How is the convergence of 
the algorithm altered against different sets of uncertainty?, Can we classify problems 
according to some degree of robustness? Can this classification be related to the type of 
uncertainty to be used? The answer to these questions allows developing a methodology that 
allows identifying which is the robustness required by the problem, what type of uncertainty 
set should be chosen and how is the behavior of the algorithm in terms of quality of its results 
and convergence. 
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As future lines of research in the area of robust optimization, we see that considering these 
group of definitions together with the different applications mentioned earlier, we can work on 
developing a methodology that gives a specific problem, allows in a simple way to identify 
which definition is the most appropriate and which methods they are the most appropriate to 
solve the problem at reasonable times. 

Regarding the tractability of robust problems, we have not found solutions where the hybrid-
ization of metaheuristics with other techniques is exploited such as integration with mathe-
matical programming, with simulations or integration with machine learning, all these with 
the goal of improving convergence times of algorithms. 

Particularly, according to our experience in the integration of machine learning and 
metaheuristics, a line that must be explored corresponds to the use of a general scheme of 
integration of these two areas through the use of metalearning techniques. Considering that 
we have a set of algorithms or settings of some algorithm, we use a mechanism that selects 
the best algorithm or settings for given an instance to obtain the best convergence and 
results. Furthermore, the use of reinforced learning can be explored to enrich the meta-
model with the new results generated. 
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Abstract 

Evolutionary Algorithms have been extensively used for solving stochastic, robust, and 
dynamic optimization problems of a high complexity. Selection mechanisms play a very 
important role in design of Evolutionary Algorithms, as they allow identifying the parent 
chromosomes, that will be used for producing the offspring, and the offspring chromo-
somes, that will survive in the given generation and move on to the next generation. 
Selection mechanisms, reported in the literature, can be classified in two groups: (1) 
parametric selection mechanisms, and (2) non-parametric selection mechanisms. Unlike 
parametric selection mechanisms, non-parametric selection mechanisms do not have any 
parameters that have to be set, which significantly facilitates the Evolutionary Algorithm 
parameter tuning analysis. This study presents a comprehensive analysis of the com-
monly used non-parametric selection mechanisms. Comparison of the selection mecha-
nisms is performed for the machine scheduling problem. The objective of the presented 
mathematical model is to determine the assignment of the arriving jobs among the avail-
able machines, and the processing order of jobs on each machine, aiming to minimize the 
total job processing cost. Different categories of Evolutionary Algorithms, which deploy 
various non-parametric selection mechanisms, are evaluated in terms of the objective 
function value at termination, computational time, and changes in the population diver-
sity. Findings indicate that the Roulette Wheel Selection and Uniform Sampling selection 
mechanisms generally yield higher population diversity, while the Stochastic Universal 
Sampling selection mechanism outperforms the other non-parametric selection mecha-
nisms in terms of the solution quality. 

Keywords: optimization, Evolutionary Algorithms, non-parametric selection 
mechanisms, machine scheduling problems, parameter tuning, computational time 
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1. Introduction 

Evolutionary Algorithms (EAs) and other metaheuristic algorithms have been widely used for 
solving complex stochastic, robust, and dynamic optimization problems. These complex prob-
lems include but are not limited to the following: vertex cover problem, Boolean satisfiability 
problem, maximum clique size problem, Knapsack problem, traveling salesman problem, bin 
packing problem, machine scheduling problems, and others [1, 2]. Some of the aforementioned 
problems have a non-deterministic polynomial time complete (NP-complete) complexity, 
while the others are non-deterministic polynomial time hard (NP-hard). The exact solution 
algorithms cannot be used to solve NP-complete and NP-hard problems to the global optimal-
ity for the realistic size problem instances within an acceptable computational time. On the 
other hand, the approximation algorithms, including EAs and other metaheuristic algorithms, 
are able to provide good quality solutions within a reasonable computational time. Candidate 
solutions to the problem of interest are encoded in the chromosomes within EAs. Different 
types of chromosome representations have been reported in the EA literature. For example, 
canonical Genetic Algorithms, developed by Holland, rely on a binary chromosome represen-
tation; while canonical Evolutionary Strategies, proposed by Rechenberg, use a real-valued 
chromosome representation [3, 4]. On the other hand, Genetic Programming, developed by 
Koza, relies on a tree-based chromosome representation [3, 4]. 

Once the chromosome representation is selected, the initial population is generated, and 
fitness values of the initial population chromosomes are estimated. Then, the EA starts an 
iterative process, where the population chromosomes are continuously altered using selection 
and EA operators (e.g., crossover and mutation) from one generation to another, aiming to 
identify superior solutions. The EA is terminated, once a certain stopping criterion is met (in 
some EAs multiple stopping criteria can be imposed). Two types of selection mechanisms are 
applied throughout the EA evolution: (1) parent selection, which aims to identify a subset of 
individuals from the offspring chromosomes, survived in the previous generation, that will 
participate in the EA operations and generate the new offspring chromosomes; and (2) off-
spring selection, which aims to identify a subset of individuals from the generated offspring 
chromosomes that will survive in the given generation and will be moved to the next genera-
tion. A large number of different selection mechanisms have been reported in the EA literature, 
which can be categorized in two groups: (1) parametric selection mechanisms (e.g., Exponen-
tial Ranking Selection, Tournament Selection, Boltzmann Selection), and (2) non-parametric 
selection mechanisms (e.g., Roulette Wheel Selection, Stochastic Universal Sampling, Binary 
Tournament Selection, Ranking Selection, Uniform Sampling). 

Each EA has several parameters (e.g., population size, crossover probability, mutation probability, 
and others), which are generally determined based on a parameter tuning [3, 4]. A “full factorial 
design” methodology has been widely used for the EA parameter tuning [5]. Based on the latter 
methodology, the algorithm has a number of parameters (or factors - f ), which have a set of 

candidate values (or levels - l). In order to set the appropriate EA parameter values, a total of lf 

algorithmic runs will be required throughout the parameter tuning analysis. Based on the analysis 
of a tradeoff between the objective function and computational time values, the most promising 
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parameter combination will be chosen. Parametric selection mechanisms will increase the number 
ð Þof algorithmic runs to l f þNSEL 

, where NSEL – is the number of parameters for a given selection 
mechanism. Such increase in the number of algorithmic runs can make the parameter tuning 
analysis computationally prohibitive due to significant computational time required. Moreover, 
the parameter values of the selection mechanisms, adopted for a given set of problem instances, 
may worsen the EA performance, when applied to a different set of problem instances. 

In order to avoid the latter drawbacks and facilitate the EA parameter tuning analysis, this 
study solely applies non-parametric selection mechanisms throughout the EA design. Differ-
ent EA categories, which rely on various non-parametric selection mechanisms, are evaluated 
based on the major algorithmic performance indicators, including the objective function value 
at termination, computational time, and changes in the population diversity throughout the 
algorithmic evolution. The computational experiments are conducted for the machine sched-
uling problem. The machine scheduling problem deals with allocation of the available han-
dling resources (i.e., machines) for service of the tasks (i.e., jobs), which arrive at the given 
facility with a specific frequency [2]. The machine scheduling problem receives an increasing 
attention from the community, as it is considered as an important decision problem in 
manufacturing, service industries, and supply chain management [6–10]. Without efficient 
sequencing and scheduling, the supply chain players may not be able to meet specific dead-
lines, which are established for processing certain products. The latter may incur substantial 
monetary losses and, ultimately, can even result in the customer loss. In the meantime, poor 
utilization of the available handling resources may cause drastic monetary losses as well. 
Therefore, development of advanced decision support tools for the machine scheduling prob-
lems (including effective solution algorithms, which are the primary focus of this study) 
becomes critical in the current competitive environment. 

Findings from this research are expected to provide important insights regarding non-
parametric selection mechanisms, which can be further used in future for the design of EAs. 
Efficient non-parametric selection mechanisms will be critical for Hybrid EAs, which along 
with the standard EA parameters (e.g., population size, crossover probability, mutation prob-
ability) may require setting additional parameters for the local search heuristics. The 
remaining sections of this chapter are organized in the following order. The next section 
discusses the machine scheduling environment, where the developed EA will be applied. The 
third section presents a mixed integer mathematical model for the machine scheduling prob-
lem. The fourth section focuses on a detailed description of the main EA components. The fifth 
section discusses the computational experiments, which were conducted in this study for 
evaluation of non-parametric selection mechanisms. The last section summarizes findings and 
outlines potential directions for the future research. 

2. Machine scheduling 

The objective of the machine scheduling problems (MSPs) is to allocate the arriving jobs among 
the available machines and identify the processing order of jobs on each machine. A large 

http://dx.doi.org/10.5772/intechopen.75984


26 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization 

number of various MSPs have been widely studied in the past, such as single machine, 
identical machines in parallel, machines in parallel with different speeds, unrelated machines 
in parallel, job shop, and others [2]. The aforementioned MSPs differ in terms of machine 
properties (e.g., machines at a given facility have identical properties vs. machines at a given 
facility have different properties), job type (e.g., the processing time of a given job may vary on 
two machines with the same speeds based on the job type), order of machines to be visited 
(e.g., a given job may have to be processed on several machines in a specific order), etc. 

The unrelated MSP will be studied in this chapter. Let I ¼ f1; …; mg be a set of jobs, arriving at 
the facility, which should be processed on the available machines within a given planning 
horizon. Let J ¼ f1; …; ng be a set of machines available at the given facility within a given 
planning horizon. Let K ¼ f1; …; pg be a set of job processing orders. Each job should be 
assigned for processing on one of the available machines in one of the processing orders. The 
machines at the given facility are assumed to have different properties (e.g., different speeds); 
therefore, the processing time of a given job may vary depending on the machine assignment. 
Furthermore, the processing time on a given machine depends on the job type (i.e., the 
processing time for a given job on the machines with the same speed may be different due to 
the job type). The latter three aspects are common for the unrelated MSPs. The MSP environ-
ment, modeled in this study, is illustrated in Figure 1. 

Once the job arrives at the facility, it will be directed to the assigned machine for processing. If 
the assigned machine is processing another job at the moment, the arriving job will be queued, 
while waiting to be processed (see Figure 1). It is assumed that the facility operator will incur 

WCthe job waiting cost (c , i  ∈ I in USD/hour), as increasing number of waiting jobs may causei 

congestion at the given facility. Furthermore, the facility operator will incur the cost of 
HCprocessing a given job on one of the available machines (c , i  ∈ I in USD/hour). Each job,i 

arriving at the facility, must be processed by specific time (DPi, i  ∈ I in hours). If the job 
processing deadline is violated, the facility operator will incur the cost due to job processing 

DCdelays (c , i  ∈ I in USD/hour). The objective of the facility operator is to allocate the arriving i 

jobs among the available machines and identify the processing order of jobs on each machine, 

Figure 1. Machine scheduling environment. 
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aiming to minimize the total job processing cost, which includes: (1) the total job handling cost; 
(2) the total job waiting cost; and (3) the total cost due to job processing delays. 

3. Mathematical model 

This section of the chapter presents a mixed integer programming model for the machine sched-
uling problem (MSP), which is studied herein. A detailed description of notations used in the 
mathematical model and throughout this book chapter is provided at the end of the book chapter. 

MSP: Machine Scheduling Problem 

2 3 
XXX� � X� � X� �HC WC DCmin4 HTijxijkci þ WT ici þ PDici 5 (1) 
i ∈ I j ∈ J k ∈ K i ∈ I i ∈ I 

Subject to: 
XX 

xijk ¼ 1∀i ∈ I (2) 
j ∈ J k ∈ K 

X 
xijk ≤ 1∀j ∈ J, k ∈ K (3) 

i ∈ I 

X X � � 
HTi∗jxi∗jk∗ þ IT i∗ jk∗ þ IT ijk � ATixijk ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K (4) 

i∗ ∈ I:i∗ ¼6 i k∗ ∈ K:k∗ <k 

X X � � � � 
SPT i ≥ HTi∗jxi∗jk∗ þ IT i∗ jk∗ þ IT ijk � PN 1 � xijk ∀i ∈ I, j ∈ J, k ∈ K (5) 

i∗ ∈ I:i∗ ¼6 i k∗ ∈ K:k∗ <k 

WT i ≥ SPT i � ATi∀i ∈ I (6) 
XX� � 

FPT i ≥ SPT i þ HTijxijk ∀i ∈ I (7) 
j ∈ J k ∈ K 

PDi ≥ FPT i � DPi∀i ∈ I (8) 

The objective function (1) of the MSP mathematical model minimizes the total job processing 
cost, which is composed of the following components: (1) the total job handling cost; (2) the 
total job waiting cost; and (3) the total cost due to job processing delays. Constraint set (2) 
guarantees that each job will be scheduled for processing on one of the available machines in 
one of the processing orders. Constraint set (3) ensures that no more than one job can be 
processed on each machine in a given processing order. Constraint set (4) ensures that the 
processing of a given job will not start before its arrival at the facility. Constraint set (5) 
calculates the start processing time for each job, arriving at the facility. Constraint set (6) 
computes the waiting time for each job, arriving at the facility. Constraint set (7) estimates the 
finish processing time for each job. Constraint set (8) calculates hours of delay in processing 
each job, arriving at the facility. 
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4. Evolutionary Algorithm description 

MSPs belong to the class of NP-hard problems, which cannot be solved using the exact 
optimization algorithms to the global optimality for the realistic size problem instances within 
an acceptable computational time. Therefore, a set of EAs were developed in this study to 
solve the MSP mathematical model. EAs were differentiated based on the type of non-
parametric selection mechanism adopted. This section provides an outline of the main EA 
steps and a detailed description of each step. 

4.1. Main EA steps 

The main EA steps are presented in Algorithm 1. The data structures for the EA variables are 
initialized in step 0. The initial population is generated in steps 1–2. After that, fitness of the 
initial population chromosomes is evaluated in step 3. Then, the EA algorithm starts an 
iterative process (steps 4–12), where the fittest individual is stored before applying the parent 
selection in step 6. The latter strategy is commonly referred to as “Elitist Strategy” in Evolu-
tionary Computation. After that, the parent chromosomes are determined in step 7, while the 
offspring chromosomes are produced via the EA operations in step 8. Fitness of the offspring 
chromosomes is evaluated in step 9. After that, the offspring selection is executed to determine 
the offspring chromosomes that along with the fittest individual will be moved to the next 
generation (steps 10 and 11). The iterative process is continuously executed until a certain 
stopping criterion is met. At convergence, the proposed EA algorithm returns the best solu-
tion, which corresponds to the job to machine to processing order assignment with the least 
possible job processing cost. A detailed description of each EA component is presented in 
Sections 4.2–4.8. 

Algorithm 1. Evolutionary Algorithm (EA). 
˜ ° 

EA Data; Ω; σC; σM ; SC : 

in: Data - input data for the MSP mathematical model; Ω - population size; σC - crossover probability; σM - mutation 
probability; SC - stopping criterion 

out: Solution - the best job to machine to processing order assignment 

0: ∣Population∣ Ω; ∣Fitness∣ Ω; ∣Parents∣ Ω; ∣Offspring∣ Ω; ∣Best∣ ⊘ 

1: gen 1 

2: Populationgen InitPopulation Data; Ωð Þ 
˛ ˝ 

3: Fitnessgen FitnessEval Data; Populationgen 

4: while SC FALSE do 

5: gen gen þ 1 
˜ ° 

6: Best argmin Fitnessgen 

˛ ˝ 
7: Parentsgen ParentSel Population ; Fitnessgengen 
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Algorithm 1. Evolutionary Algorithm (EA). 
˜ ° 

8: Offspring EAoperation Parentsgen; σC ; σM 
gen 

˛ ˝ 
9: Fitnessgen FitnessEval Data; Offspringgen 

10: Populationgenþ1 Populationgenþ1∪fBestg 
˛ ˝ 

11: Population OffspringSel Offspring ; Fitnessgengenþ1 gen 

12: end while 
˜ ° 

13: Solution argmin Fitnessgen∪ FitnessBest 

14: return Solution 

4.2. Chromosome representation 

Two-dimensional integer chromosomes will be used in this study to represent candidate 
solutions to the MSP mathematical model (i.e., job to machine to processing order assign-
ments). Note that the term “chromosome” is used interchangeably with the term “individual” 
throughout this chapter, as both terms represent the same meaning [3]. An example of a 
chromosome is illustrated in Figure 2, where 9 jobs are scheduled for processing on 3 machines. 
Specifically, jobs “2”, “3”, and “5” are scheduled for processing on machine “1” (in that specific 
processing order); jobs “4”, “6”, and “9” are scheduled for processing on machine “2” (in that 
specific processing order); while jobs “1”, “7”, and “8” are scheduled for processing on 
machine “3” (in that specific processing order). The term “genes” will be used in this study to 
denote components of a chromosome (i.e., machine identifiers and job identifiers). 

4.3. Initialization of the chromosomes and population 

There are two major approaches for initializing the chromosomes and population within EAs. 
The first approach initializes the chromosomes and population randomly (i.e., the job to 
machine to processing order assignment is determined randomly). The second approach relies 
on application of the local search heuristics. A large number of the local search heuristics have 
been presented in the machine scheduling literature, such as [2]: First In First Out, First In Last 
Out, Shortest Processing Time First, Shortest Remaining Processing Time on the Fastest 
Machine, Shortest Setup Time First, and others. The local search heuristics may allow obtaining 
better quality solutions as compared to the random initialization mechanisms. However, the 
local search heuristics, which have been used for MSPs, are typically deterministic. Therefore, 
the population, initialized using deterministic local search heuristics, will have identical chro-
mosomes, which will negatively affect the population diversity (i.e., only one domain of the 

Figure 2. Chromosome representation example. 
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search space will be explored at the population initialization stage). To avoid the latter draw-
back and ensure the population diversity, this study will use a random initialization mecha-
nism to create the initial population. The number of individuals in the population is 
determined based on the population size parameter (Ω). 

4.4. Fitness function 

The fitness function of chromosomes is assumed to be equal to the objective function of the 
MSP mathematical model (i.e., total job processing cost). Application of various scaling mech-
anisms for the fitness function (e.g., linear scaling, sigma truncation, and power law scaling) to 
control the selection pressure throughout the algorithmic run will be one of the future research 
directions of this study. 

4.5. Parent selection mechanism 

The purpose of the parent selection mechanism is to determine a subset of individuals from the 
offspring chromosomes, survived in the previous generation, that will participate in the EA 
operations and generate the new offspring chromosomes. As discussed in the introduction 
section of this chapter, the main objective of this study is to evaluate various non-parametric 
selection mechanisms, commonly used in the literature, including the following [3, 4]: 

a. Roulette Wheel Selection (also known as Fitness Proportionate Selection) – each indi-
vidual of the population is assigned a portion of a roulette wheel, where a larger portion is 
allocated to the individual with a higher fitness value. Then, the roulette wheel is contin-
uously rotated until the required amount of parent chromosomes has been selected. 

b. Stochastic Universal Sampling – each individual of the population is assigned a portion 
of a straight line segment, where a larger portion is allocated to the individual with a 
higher fitness value (similar to the Roulette Wheel Selection mechanism). Then, the parent 
chromosomes are selected based on the evenly spaced fitness intervals (unlike Roulette 
Wheel Selection, which requires generating a random number each time in order to rotate 
the roulette wheel). 

c. Binary Tournament Selection – multiple binary tournaments are executed, where two 
individuals are randomly sampled from the population during each tournament, and the 
individual with a higher fitness value is chosen to become a parent. The required number 
of tournaments is determined based on the population size. 

d. Ranking Selection – the parent and offspring chromosomes from the previous generation 
are combined in a one data structure, sorted based on their fitness, and a subset of 
chromosomes with higher fitness values (out of the available parent and offspring chro-
mosomes) will become parents. Such selection mechanism has been widely used in canon-˜ ° 
ical Evolutionary Strategies [3] and is generally referred to as μ þ λ -selection, where 

parents (μ) are allowed to compete with offspring (λ). 
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e. Uniform Sampling – the parent chromosomes are selected from the population by uni-
form (or random) sampling. Unlike the aforementioned selection mechanisms, Uniform 
Sampling is not biased by fitness. 

For a detailed description of the considered non-parametric selection mechanisms and illus-
trative examples of these mechanisms, this study refers to Eiben and Smith [3] and 
Sivanandam and Deepa [4]. Five categories of the EA algorithm, deploying different types of 
parent selection mechanisms, will be evaluated in this study, including the following: (1) EA 
with Roulette Wheel Selection (EA-RWS); (2) EA with Stochastic Universal Sampling (EA-
SUS); (3) EA with Binary Tournament Selection (EA-BTS); (4) EA with Ranking Selection (EA-
RS); and (5) EA with Uniform Sampling (EA-US). 

4.6. EA operations 

Once the parent chromosomes are selected, the developed EA algorithm applies the crossover 
and mutation operators in order to produce and mutate the offspring chromosomes. Both 
operators are described in sections 4.6.1–4.6.2 of the chapter. 

4.6.1. Crossover 

The order crossover is used to produce the offspring chromosomes. Selection of the latter 
crossover operator can be justified by the adopted chromosome representation. Specifically, 
certain crossover operators (e.g., N-point, whole arithmetic, uniform) may produce infeasible 
offspring for the integer chromosome representation [3]. On the other hand, the order cross-
over guarantees feasibility of the generated offspring chromosomes. An example of an order 
crossover operation is illustrated in Figure 3. Two chromosomes are randomly selected from 
the available parent chromosomes. The probability of parents to undergo a crossover opera-
tion is determined by the crossover probability parameter (σC). After that, a string of genes is 
copied from parent “1” to offspring “1”. Note that the length of a string will be set randomly, 
and, therefore, may vary from one crossover operation to another. In the considered example, a 
string of genes with jobs “2”, “6”, “8”, and “3” is copied from parent “1” to offspring “1”. 
Then, the genes with missing jobs are copied from parent “2” to offspring “1”. In the 

Figure 3. Order crossover operation example. 
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Figure 4. Mutation operation example. 

considered example, jobs “9”, “7”, “4”, “5”, and “1” are copied from parent “2” to offspring 
“1”. The offspring “2” is produced in a similar manner. 

4.6.2. Mutation 

The offspring chromosomes, produced via the order crossover, will be mutated. Two types of 
mutation operators will be applied in this study: (a) swap; and (b) insert. An example of a 
mutation operation is illustrated in Figure 4. In case of a swap mutation operation, job “2”, 
initially scheduled for processing on machine “1” as the first job, is re-scheduled for processing 
on machine “3” as the second job. On the other hand, job “7”, initially scheduled for processing 
on machine “3” as the second job, is re-scheduled for processing on machine “1” as the first 
job. In case of an insert mutation operation, job “4”, initially scheduled for processing on 
machine “2” as the first job, is re-scheduled for processing on machine “1” as the second job. 
On the other hand, job “1”, initially scheduled for processing on machine “3” as the first job, is 
re-scheduled for processing on machine “2” as the second job. Application of both swap and 
insert mutation operators allows altering job to machine and job to processing order assign-
ments. The number of genes to be mutated throughout the mutation operation is determined 

by the mutation probability parameter (σM). 

4.7. Offspring selection mechanism 

The purpose of the offspring selection mechanism is to determine a subset of individuals from 
the generated offspring chromosomes that will survive in the given generation and will be 
moved to the next generation. This study relies on the generational offspring selection mecha-
nism, where all offspring chromosomes will be moved to the next generation and become 
candidate parent chromosomes. Such offspring selection mechanism has been widely used in 
canonical Genetic Algorithms, proposed by Holland, and Genetic Programming, developed by 
Koza [3, 4]. 

4.8. Stopping criterion 

The developed EA algorithm will be terminated, once a certain stopping criterion is met. The 
MAX).stopping criterion, adopted in this study, is the maximum number of generations (g 
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5. Computational experiments 

This section provides a detailed description of the computational experiments, which were 
conducted to evaluate the considered non-parametric selection mechanisms. Five EA catego-
ries, applying different non-parametric selection mechanisms (i.e., the EA-RWS, EA-SUS, EA-
BTS, EA-RS, and EA-US algorithms, described in Section 4.5), were evaluated in terms of the 
objective function value at termination, computational time, and changes in the population 
diversity throughout the algorithmic run. All EA algorithms were coded in MATLAB 2016a. 
The computational experiments were executed on a CPU with Dell Intel(R) Core™ i7 Processor 
and 32 GB of RAM. Sections 5.1–5.3 elaborate on the input data selection for the MSP mathe-
matical model, parameter tuning of the developed EA algorithms, and comprehensive com-
parative analysis of the considered non-parametric selection mechanisms. 

5.1. Input data selection 

The required input parameters for the MSP mathematical model were primarily generated 
based on the relevant literature [2, 6–36]. The adopted parameter values are presented in 
Table 1. A total of 40 problem instances were developed to conduct the computational exper-
iments by changing the number of arriving jobs from 50 to 140 with an increment of 10 jobs, 
while the number of available machines was changed from 4 to 10 with an increment of 2 
machines. 

MSP parameter Adopted value 

Number of arriving jobs: m (jobs) Varies based on the problem instance 

Number of available machines: n (machines) Varies based on the problem instance 

Number of job processing orders: p (orders) p ¼ m (considering the case, when all jobs are assigned for 
processing on one machine) 

Arrival time of job i: ATi, i  ∈ I (hours) Exponentialð Þ2 =60 

Handling time of job i on machine j: HTij, i  ∈ I, j ∈ J (hours) Uniformð20; 80Þ=60 
˜ ° 

Deadline for processing job i: DPi, i  ∈ I (hours) ATi þUniformð1:2; 1:5Þ∙minj ∈ J HTij 

HCUnit handling cost for job i: c , i  ∈ I (USD/hour) Uniformð200; 400Þi 

Unit waiting cost for job i: cWC, i  ∈ I (USD/hour) Uniformð50; 100Þi 

DC 
iUnit delayed processing cost of job i: c , i  ∈ I (USD/hour) Uniformð300; 600Þ 

Large positive number: PN 106 

Exponentialð Þa – exponentially distributed pseudorandom numbers with a mean inter-arrival time of a; Uniformðb; cÞ – 
uniformly distributed pseudorandom numbers, varying from b to c. 

Table 1. MSP parameter values. 
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5.2. EA parameter tuning 

A parameter selection analysis was performed for the EA-RWS, EA-SUS, EA-BTS, EA-RS, and 
EA-US algorithms to identify the appropriate parameter values. Each one of the developed EA 
algorithms has a total of 4 parameters, including the following: (1) population size – Ω; (2) 
crossover probability – σC; (3) mutation probability – σM; and (4) maximum number of gener-
ations – gMAX. A  “full factorial design” methodology [5], described in the introduction section 
of the chapter, was adopted for the EA parameter tuning. A total of 3 candidate values were 

considered for each parameter (i.e., 3f factorial design). A total of 3 problem instances were 
chosen at random from the generated problem instances (see Section 5.1) in order to conduct 
the parameter tuning analysis. 

A total of 10 replications were performed for each algorithm and each problem instance to 
obtain the average objective function and computational time values. The number of replica-
tions was found to be sufficient, as the objective function values did not vary substantially 
from one replication to another. Specifically, the coefficient of variation of the objective func-
tion values at termination did not exceed 1.00% over the performed replications for all the 
generated problem instances and the developed solution algorithms. Based on preliminary 
algorithmic runs, it was found that increasing number of replications would incur a significant 
increase in the computational time without a significant reduction of the objective function 
coefficient of variation for each EA. Table 2 provides a summary of the parameter analysis for 
each EA, including the following data: (1) algorithm; 2) parameter; (3) considered candidate 
values for each parameter; and (4) the best parameter value, highlighted in bold font (deter-
mined based on the analysis of a tradeoff between the obtained objective function values and 
computational time required). 

The parameter tuning analysis for the developed EA algorithms took more than 11 days (i.e., 
more than 51 hours for each EA). Application of parametric selection mechanisms would 
increase the computational time of the parameter tuning analysis even further. The latter 
highlights the importance of adopting non-parametric selection mechanisms. 

5.3. Comparative analysis 

This section focuses on a detailed comparative analysis of the considered EA algorithms, 
deploying different non-parametric selection mechanisms, in terms of the objective function 

Algorithm\Parameter Ω σC σM MAXg

EA-RWS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000] 

EA-SUS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000] 

EA-BTS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000] 

EA-RS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000] 

EA-US [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000] 

Table 2. EA parameter tuning analysis summary. 
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values at termination and required computational time. Moreover, changes in the population 
diversity are analyzed throughout evolution of each EA. 

5.3.1. Objective function and computational time 

The developed EA-RWS, EA-SUS, EA-BTS, EA-RS, and EA-US algorithms were executed for 
all the generated problem instances, which were described in Section 5.1. A total of 10 replica-
tions were performed for each algorithm and each problem instance. Results of the conducted 
analysis are reported in Table 3 for each algorithm and each problem instance, including the 
following data: (1) instance number; (2) number of arriving jobs (m); (3) number of available 
machines (n); (4) average objective function value at termination (Z) for each EA algorithm; 
and (5) average computational time value (CPU) for each EA algorithm. 

The average objective function values comprised 339.79 103 USD, 321.39 103 USD, 333.97 103 

USD, and 324.14 103 USD, and 357.86 103 USD over the developed problem instances for the 
EA-RWS, EA-SUS, EA-BTS, EA-RS, and EA-US algorithms respectively. Therefore, EA-SUS 
that relies on Stochastic Universal Sampling outperformed the EAs with other non-parametric 
selection mechanisms in terms of the solution quality. Superiority of the EA-SUS algorithm can 
be explained by the fact that Stochastic Universal Sampling selects the parent chromosomes 
based on the evenly distributed fitness intervals and, therefore, ensures that high, medium, 
and low quality individuals will be given a chance to reproduce. The EA-RS algorithm, which 
deploys Ranking Selection, demonstrated a good performance; however, it was outperformed 
by the EA-SUS algorithm due to the fact that ranking is substantially biased by fitness. 
Ranking Selection allows only high and medium fitness chromosomes to become parents, 
while the individuals with low fitness values are not given any chance to reproduce. 

The EA-RWS and EA-BTS algorithms were outperformed by both EA-SUS and EA-RS algo-
rithms, as they do not guarantee that high and medium quality individuals will become 
parents. Although Roulette Wheel Selection and Binary Tournament Selection are biased by 
fitness, and the individuals with higher fitness have higher chances to reproduce, such selec-
tion mechanisms may allow a significant portion of low quality individuals to become parents, 
which negatively affects the objective function values and results in a premature convergence. 
The worst performance was recorded for the EA-US algorithm, which relies on Uniform 
Sampling. Uniform Sampling is not biased by fitness and gives all individuals equal chances 
to become parents, which may not be desirable in some cases (i.e., higher and medium quality 
individuals should have higher chances to reproduce, as compared to low quality individuals). 
Uniform Sampling can be advantageous when applied in combination with other selection 
mechanisms (e.g., Uniform Sampling is used at the parent selection stage, while Stochastic 
Universal Sampling is used at the offspring selection stage). Evaluation of the EA algorithms, 
which use a combination of various non-parametric selection mechanisms, will be one of the 
future research directions of this study. 

An additional statistical analysis was conducted to investigate differences between the average 
objective function values at termination, suggested by the developed algorithms. The null 
hypothesis was assumed to be H0 : μEA1 

(i.e., the average objective function value at¼ μEA2 
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Instance m n EA-RWS EA-SUS EA-BTS EA-RS EA-US 

Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, 
USD sec USD sec USD sec USD sec USD sec 

1 4 141.61 52.72 137.06 56.26 138.30 56.61 138.86 55.11 143.75 61.19 

2 6 84.43 51.76 82.89 53.53 82.94 58.46 87.32 54.45 89.29 62.14 

3 8 59.35 52.92 56.85 54.81 57.81 59.75 57.84 55.42 61.45 63.01 

4 50 10 44.52 54.54 42.98 56.07 45.19 60.40 45.14 56.32 48.43 63.94 

4 198.97 58.39 190.43 60.07 191.37 65.79 192.01 60.47 195.31 68.20 

6 6 121.49 59.69 111.83 61.33 114.81 67.33 113.47 62.06 123.11 69.39 

7 8 82.89 61.17 80.00 62.16 80.71 68.59 80.60 63.14 84.01 70.83 

8 60 10 62.31 62.12 60.37 63.35 62.98 70.17 60.61 64.00 66.13 72.39 

9 4 278.59 65.71 259.23 67.40 269.27 74.93 267.85 68.11 285.21 77.10 

6 164.86 67.19 159.63 69.17 161.25 76.34 159.87 69.38 176.77 78.77 

11 8 119.25 68.20 111.44 70.07 114.07 77.85 113.52 71.61 122.13 80.20 

12 70 10 87.04 69.71 84.72 70.99 88.47 79.31 85.13 72.72 92.40 82.75 

13 4 358.82 73.98 341.87 75.49 347.55 84.01 342.51 77.36 368.74 87.29 

14 6 214.52 75.25 204.72 76.47 212.32 84.90 206.70 78.60 222.90 88.00 

8 148.00 76.39 142.60 79.78 148.80 85.86 143.65 79.50 155.65 89.31 

16 80 10 112.84 77.59 106.88 79.47 110.21 87.52 107.23 80.47 124.04 91.83 

17 4 460.90 81.58 444.03 83.76 446.23 92.98 446.81 85.02 484.48 96.91 

18 6 277.98 82.84 269.76 84.89 271.57 93.84 271.19 86.96 297.47 92.80 

19 8 191.22 83.95 180.81 86.22 195.22 95.37 180.97 88.43 203.99 94.31 

90 10 151.94 85.54 135.86 87.94 142.50 97.32 136.17 89.75 159.42 95.93 

21 4 600.06 89.07 564.90 92.29 580.63 101.97 568.24 94.03 601.43 101.61 

22 6 355.99 89.84 343.57 93.10 348.84 101.66 346.33 94.63 384.70 102.99 

23 8 249.85 91.11 228.49 94.42 243.06 103.32 229.37 95.94 260.30 103.12 

24 100 10 190.11 92.81 171.88 95.95 184.94 104.81 174.24 97.51 196.91 104.42 

4 720.16 96.39 678.10 99.21 706.05 109.70 678.90 101.52 745.49 108.94 

26 6 440.85 98.03 419.34 101.31 429.49 111.74 421.62 102.51 461.96 110.18 

27 8 300.11 99.59 280.76 102.57 292.38 112.76 281.59 104.07 317.98 111.86 

28 110 10 223.92 100.81 208.87 103.90 220.49 114.61 210.76 105.66 245.74 113.24 

29 4 858.23 104.78 802.81 108.03 848.19 120.34 816.61 110.30 900.09 120.61 

6 539.24 105.52 488.90 109.46 514.46 120.73 498.86 112.01 549.63 122.26 

31 8 356.24 107.50 343.26 111.21 363.44 122.90 345.24 113.77 389.83 123.98 

32 120 10 273.65 109.06 249.24 112.04 267.37 125.11 250.87 114.76 284.92 124.56 

33 4 1011.56 112.84 974.07 116.21 1001.36 123.02 979.15 119.14 1069.10 129.10 

34 6 620.42 114.00 583.82 117.26 618.10 122.51 589.85 119.96 650.25 130.27 
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Instance m n EA-RWS EA-SUS EA-BTS EA-RS EA-US 

Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, Z, 103 CPU, 
USD sec USD sec USD sec USD sec USD sec 

35 130 8 418.78 115.49 401.15 118.47 424.44 124.11 403.36 121.57 449.19 132.76 

36 130 10 310.32 116.52 296.11 119.97 318.84 125.34 298.81 122.95 342.26 134.08 

37 140 4 1184.91 120.74 1121.27 123.96 1168.76 129.81 1123.67 127.12 1267.22 138.33 

38 140 6 712.51 121.49 680.00 125.12 696.63 130.66 690.01 129.63 757.52 139.52 

39 140 8 499.65 123.61 465.71 126.37 483.23 131.65 469.30 129.50 529.86 141.40 

40 140 10 363.36 124.70 349.41 127.91 366.61 133.38 351.45 130.79 405.48 142.81 

Average: 339.79 87.38 321.39 89.95 333.97 97.69 324.14 91.66 357.86 100.56 

Table 3. Objective function and computational time values for the considered EA algorithms. 

termination of algorithm EA1 [μEA1
] is equal to the average objective function value at termi-

nation of algorithm EA2 ]), while the alternative hypothesis was assumed to be[μEA2 

(algorithm EA1 returns lower average objective function value at termination Ha : μEA1 
< μEA2 

as compared to algorithm EA2). The average objective function values were estimated over 40 
problem instances for each EA algorithm. Based on the hypothesis testing results, no statisti-
cally significant difference has been identified among the average objective function values at 
termination, suggested by the EA-SUS algorithm and other developed EA algorithms, at 
significance level α ¼ 0:05. The latter finding can be justified by the fact that for some of the 
problem instances the developed algorithms did not demonstrate significant differences in 
terms of the objective function values (generally, the problem instances with lower number of 
arriving jobs and available machines – problem instances 1, 2, 5, 6, and others). 

Furthermore, on average over all the generated problem instances the EA-SUS algorithm 
outperformed the EA-RWS, EA-BTS, EA-RS, and EA-US algorithms by 5.72, 3.91, 0.86, and 
11.35%. However, for some of the problem instances the EA-SUS algorithm outperformed the 
EA-RWS, EA-BTS, EA-RS, and EA-US algorithms by up to 11.84, 7.97, 5.34, and 17.65%. 
Therefore, application of the EA-SUS algorithm is expected to become even more advanta-
geous (in terms of objective function values at termination) with increasing problem size. The 
computational time of the developed EA algorithms did not exceed 142.81 sec over all 40 
problem instances, which can be considered as acceptable. 

5.3.2. Changes in the population diversity 

The population diversity is critical in EAs especially at early stages of the search process. 
Without a diverse population, a given EA will not be able explore the available domains of 
the search space in an efficient manner. Lack of diversity in early generations of the EA 
algorithm may lead to negative consequences, including premature convergence. The popula-
tion fitness values were recorded throughout evolution of the developed EA-RWS, EA-SUS, 
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EA-BTS, EA-RS, and EA-US algorithms for each replication and each problem instance. The 
population fitness boxplots are illustrated in Figures 5 and 6 for the first replication of each EA 
algorithm after the parent selection in generations 500, 1000, 1500, 2000, 2500, and 3000. Note 
that boxplots are presented only for the first replication of each EA algorithm and problem 
instances 37–40 (i.e., the problem instances with the largest number of arriving jobs), but 

Figure 5. EA population fitness boxplots for problem instances 37 and 38. 
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Figure 6. EA population fitness boxplots for problem instances 39 and 40. 

similar patterns have been observed for the rest of algorithmic replications and problem 
instances. The population fitness boxplots have the following components: (1) rectangle, where 
the top and the bottom parts correspond to 75th and 25th population fitness value percentiles 
respectively; (2) median, which is shown using a red line; (3) whiskers, which are shown using 
dashed lines covering 99.30% of the population fitness value data points; and (4) extreme 
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population fitness value points (falling outside of 99.30% of the population fitness value data 
points) or “outliers”, which are shown using “˜” symbol. 

It can be observed that the population fitness boxplot whiskers of the EA-RWS and EA-US 
algorithms consistently cover a wider range of the population fitness values. The latter finding 
indicates that both EA-RWS and EA-US algorithms maintain a more diverse population, as 
compared to the EA-SUS, EA-BTS, and EA-RS algorithms. However, the quality of individuals 
within both EA-RWS and EA-US populations is significantly lower as compared to the EA-
SUS, EA-BTS, and EA-RS populations. For example, the EA-RWS and EA-US algorithms cover 
the population fitness ranges of [1193.15; 1627.94] 103 USD and [1276.65; 1829.78] 103 USD 
respectively, while the EA-SUS algorithm covers the population fitness range of [1110.66; 
1387.16] 103 USD for problem instance 37 at termination (i.e., in generation 3000). Therefore, 
as discussed in Section 5.3.1, the EA-RWS and EA-US algorithms were outperformed by the 
EA-SUS, EA-BTS, and EA-RS algorithms in terms of the objective function values at termina-
tion. The EA-SUS, EA-BTS, and EA-RS algorithms were able to maintain the adequate popula-
tion diversity and return good quality job to machine to processing order assignments. 

Throughout the computational experiments, it was found that the population diversity pat-
terns did not change significantly from generation 500 up to generation 3000 (e.g., the range, 
covered by the population fitness boxplot whiskers, does not alter substantially throughout 
evolution of each EA after generation 500). The latter finding can be justified by the fact that 
the developed EAs relatively quickly identified the promising domains of the search space (i.e., 
within the first 400–500 generations), and then focused on exploiting the identified domains 
for the rest of generations, aiming to discover solutions with superior fitness values. Applica-
tion of scaling mechanisms (such as linear scaling, sigma truncation, and power law scaling) 
will allow controlling the population diversity of the developed EA algorithms (e.g., reduce 
the population diversity towards the EA convergence and give higher reproduction chances to 
“super-individuals” – i.e. the individuals with the highest fitness values) and will be one of the 
future research directions of this study. 

6. Concluding remarks and future research extensions 

Evolutionary Algorithms and other metaheuristic algorithms have been extensively applied 
for solving complex stochastic, robust, and dynamic optimization problems. Two types of 
selection mechanisms are deployed within Evolutionary Algorithms, including the parent 
selection and the offspring selection. Evolutionary Algorithms have a lot of parameters, which 
are generally set based on the parameter tuning analysis. Parametric selection mechanisms 
(e.g., Exponential Ranking Selection, Tournament Selection, Boltzmann Selection) increase the 
number of parameters within a given Evolutionary Algorithm, which can make the parameter 
tuning analysis computationally prohibitive due to significant computational time required. 
To avoid the latter drawback and facilitate the parameter tuning analysis of Evolutionary 
Algorithms, this study focused on design of the Evolutionary Algorithm that solely relied on 
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non-parametric selection mechanisms. Different categories of Evolutionary Algorithms, which 
applied various non-parametric selection mechanisms (Roulette Wheel Selection, Stochastic 
Universal Sampling, Binary Tournament Selection, Ranking Selection, Uniform Sampling), 
were evaluated based on the major algorithmic performance indicators. 

A set of computational experiments were conducted for the unrelated machine scheduling 
problem, which is known to be NP-hard. The objective of the mathematical model, proposed 
for the problem, aimed to minimize the total job processing cost. Results indicate that the 
Evolutionary Algorithm with the Stochastic Universal Sampling selection mechanism outper-
forms the Evolutionary Algorithms with other selection mechanisms in terms of the objective 
function values. The worst performance was demonstrated by the Evolutionary Algorithm, 
which relied on the Uniform Sampling selection mechanism. Furthermore, the Evolutionary 
Algorithms with the Roulette Wheel Selection and Uniform Sampling selection mechanisms 
typically allowed maintaining higher population diversity; however, the quality of individuals 
within the population was lower as compared to the Evolutionary Algorithms with the Sto-
chastic Universal Sampling, Binary Tournament Selection, and Ranking Selection mechanisms. 
The computational time of all the developed Evolutionary Algorithms did not exceed 
142.81 sec over the considered problem instances, which can be considered as acceptable. 
Therefore, based on a comprehensive analysis of the commonly used non-parametric selection 
mechanisms, Stochastic Universal Sampling was found to be the most promising, as it was able 
to maintain the adequate population diversity throughout the algorithmic run and return good 
quality solutions at termination. Results from the conducted numerical experiments are 
expected to facilitate development of efficient Evolutionary Algorithms for the machine sched-
uling problems. Moreover, the developed problem instances and findings from this study can 
serve as benchmarks for the future machine scheduling studies. 

The future research directions for this study include the following: (1) application of scaling 
mechanisms for the fitness function; (2) evaluation of the Evolutionary Algorithms, which use 
a combination of various non-parametric selection mechanisms (e.g., Uniform Sampling is 
used at the parent selection stage, while Stochastic Universal Sampling is used at the offspring 
selection stage); (3) consider alternative stopping criteria for the developed Evolutionary 
Algorithms; (4) compare various non-parametric selection mechanisms for the Hybrid Evolu-
tionary Algorithms, which apply different local search heuristics along with the stochastic 
search operators; and (5) evaluate performance of the commonly used non-parametric selec-
tion mechanisms for other NP-hard problems (e.g., bin packing problem, Knapsack problem, 
traveling salesman problem). 

Nomenclature 

Sets 

I ¼ f1; …; mg set of arriving jobs 

J ¼ f1; …; ng set of available machines 
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K ¼ f1; …; pg set of job processing orders 

Decision variables 

xijk ∈ f0; 1g∀i ∈ I, j ∈ J, k ∈ K =1 if arriving job i is scheduled for processing on machine j in 
processing order k (=0 otherwise) 

Auxiliary variables 

IT ijk ∈ Rþ∀i ∈ I, j ∈ J, k ∈ K idling time of machine j between processing job i and preceding 
job processed in order (k � 1) (hours) 

SPT i ∈ Rþ∀i ∈ I start processing time for job i (hours) 

FPT i ∈ Rþ∀i ∈ I finish processing time for job i (hours) 

WT i ∈ Rþ∀i ∈ I waiting time of job i (hours) 

PDi ∈ Rþ∀i ∈ I delay in processing job i (hours) 

Parameters 

m ∈ N number of arriving jobs (jobs) 

n ∈ N number of available machines (machines) 

p ∈ N number of job processing orders (orders) 

ATi ∈ Rþ∀i ∈ I arrival time of job i (hours) 

HTij ∈ Rþ∀i ∈ I, j ∈ J handling time of job i on machine j (hours) 

DPi ∈ Rþ∀i ∈ I deadline for processing job i (hours) 

HCc ∈ Rþ∀i ∈ Ii unit handling cost for job i (USD/hour) 

WCc ∈ Rþ∀i ∈ Ii unit waiting cost for job i (USD/hour) 

DCc ∈ Rþ∀i ∈ Ii unit delayed processing cost of job i (USD/hour) 

PN ∈ Rþ large positive number 
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Abstract

This chapter presents an overview of optimization techniques followed by a brief survey
on several swarm-based natural inspired algorithms which were introduced in the last
decade. These techniques were inspired by the natural processes of plants, foraging
behaviors of insects and social behaviors of animals. These swam intelligent methods
have been tested on various standard benchmark problems and are capable in solving a
wide range of optimization issues including stochastic, robust and dynamic problems.

Keywords: optimization, artificial intelligence, swarm intelligence, nature-inspired and
bio-inspired computation

1. Introduction

Optimization is a form of mathematical procedure for determining optimal allocation of scare
resources. In recent years, the optimization area has received enormous attention primarily
due to the rapid emerging science and technology in computing, communication, engineering,
environment and society. Several types of optimization problems exist. Two important classes
of objects for most optimization problems are limited resources and activities. Resources
include land size, plant capacity and sales force. Whereas production activities are like produce
stainless steel, low carbon steel or high carbon steel; how we solve them will depend on the
circumstances to determine the best condition of activity levels using the resources available.
All optimization problems have an objective function, constraints, and choice variables which
will lead to the improvement in application or audience. For instance, tradeoffs between faster
algorithm with more consumption of memory and vice-versa are used to bring the greatest
interest to the audience [1].
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Three categories of optimizations techniques namely stochastic optimization (SO), robust optimi-
zation (RO) and dynamic optimization (DO) are presented in the following subsections with the 
conclusions given on the advantages and application in practice for each technique. The main 
motivation behind this study on the nature inspired computation is to identify among the 
connection, social conduct and rise. This work is needed in the current scientific community to 
utilize the use of computing to demonstrate the living marvels, to investigate and to enhance 
our life by using computers. This study will substantially contribute in bringing the inspiration 
of computerized solutions through a wide range of nature processes. 

1.1. Stochastic optimization 

Stochastic optimization (SO) process involves randomness in the minimization or maximiza-
tion of a function and lends itself to real-life phenomena which involve uncertainty and 
imprecision. The randomness may be present as either noise in measurements or Monte Carlo 
randomness in the search procedure, or both. Some common techniques of SO are: direct search 
methods, stochastic approximation, stochastic programming, simulated annealing, genetic algorithms, 
etc. These techniques can cope with the inherent system noise, and systems with high 
nonlinearity and high dimensional models. 

In other words, these models are derived, solved analytically or numerically and analyzed to 
extract information to be presented to decision makers [2]. SO is important in analyzing, 
designing and operating modern systems. Specific applications of SO in business include short 
and long-term investment decisions, aerospace engineering in designing missile or aircraft, 
new drug design and the network in traffic control. The challenge in real-life applications is 
hard to estimate the accurate probabilistic description of the randomness, if such information 
is available, stochastic programming can be applied as a powerful modeling tool. SO has the 
advantage of solving problems in polynomial time. Theoretically, it guarantees the quality of 
the solutions generated. Practically, SO is limited by its heavy dependency on the availability 
of historical data and complex modeling [3, 4]. 

1.2. Robust optimization 

Robust optimization (RO) is a rather new approach that deals with data uncertainty. The two 
motivational factors of RO are firstly the uncertainty model is rather deterministic and set-
based. This motivational concept is the most appropriate notion of parameter uncertainty in 
many applications. The second motivational factor is the computational tractability. For 
instance, for a given optimization problem, multiple robust versions exist depend on the 
structure of the uncertainty set, therefore maintaining tractability is important. The classifica-
tion models for RO includes local vs. global and probabilistic vs. non-probabilistic. Based on 
the nature of the problem, this technique is also known as min-max or worst-case approach. It 
provides a good guaranteed solution for most possible realizations of the uncertainty in the 
data. It is also useful if some of the parameters belong to the estimation process and contains 
estimation errors. 
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One important concept in defining and interpreting robustness and the resulting models is 
constraint robustness (model robustness) [5]. The application of RO in engineering is known 
as robust design optimization or reliability-based design optimization where the solutions remain 
feasible for all possible values of the uncertain inputs. RO methodology is applicable to 
every generic optimization problem in which numerical data can be separated from the 
structure of the problems. The challenge of RO is that it gives the same weight and values 
to all of the uncertain parameters. The advantages of RO formulation are cost saving and 
increment of stability, qualitative and quantitative robustness. The practical usage of RO is 
that it does not significantly increase the complexity of the considered optimization prob-
lems in most cases [6, 7]. 

1.3. Dynamic optimization 

Dynamic optimization (DO), also known as dynamic programming is a process of finding the 
optimal control profile of one or more control parameters of a system. It is used to find the 
possible number of solutions for a given problem. There are several approaches of DO such as 
based on the calculus variations, deal with optimization discrete time and extend the static 
optimization. Basically, the process of DO implementation involves a system controller, a 
performance criterion and an algorithm to execute the control. Two key attributes of DO are 
optimal substructure and overlapping sub-problems [8]. Four major steps on development of 
DO algorithm are: 

a. Characterize the structure of an optimal solution. 

b. Recursively define the value of an optimal solution. 

c. Compute the value of an optimal solution in a bottom-up fashion. 

d. Construct an optimal solution from computed information. 

The advantage of this paradigm: it performs the optimization recursively by dividing the 
problems into a collection of simpler sub-problems. Each sub-problem is solved only once 
using either top-down or bottom-up approach. To facilitate its lookup, a technique called 
memorization is applied where the solutions of subproblems are indexed based on its input 
parameter values, thereby solving computation time at the expense of modest expenditure in 
storage space. Practically, the concept of DO is universal and flexible which can be applied to 
the execution of any effort [9]. 

2. Algorithms 

Artificial intelligence (AI) has been viewed as a regulation in computer science. It has been 
developing and examining frameworks which work logically. Bio-inspired computation, 
metaheuristics and computational intelligence are the common examples of algorithms from 
numerous parts of AI. Bio-inspired computation utilizes the computing power to demonstrate 
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the living marvels. Computational intelligence which emphasizes on strategy and outcome can 
be broadly divided into five dominant fields: swarm intelligence, evolutionary computation, 
artificial neural networks, artificial immune system and fuzzy systems. This chapter will be 
focusing on a few swarm intelligence-based algorithms which are inspired by their natural 
processes. 

3. Swarm intelligence 

Swarm intelligence (SI) is evaluated as an adaptive strategy which takes collective intelligence 
as a behavior without centralized control structure on how an individual should behave. The 
rules of SI are simple, self-organizing, co-evolution and being widely applied in the domains of 
optimizing, searching methods, research in DNA computing improvement, heating system 
planning etc. SI paradigm includes bird flocking, cuckoo search, animal herding and fish 
schooling etc. However, the two dominant subfields of SI are ant colony optimization, inspired 
by pheromone-trail of the ant behavior and particle swarm optimization, inspired by flocking 
and swarming behavior [10]. 

However, providing a complete review to all the swarm-based algorithms is rather impossible. 
The next sub-sections present the inspiration, working, metaphor and heuristic of eight popu-
larly known swarm-based methods. These methods have been introduced and implemented in 
the last decade. The main challenges of the field and their future trends have also been 
discussed. 

3.1. Bat algorithm 

Bat algorithm (BA) [11] helps in simplicity and flexibility. It is found to be very efficient in 
handling nonlinear and multi objective issues. Bats have a special high-level capability of bio-
sonar (echolocation) which is used to find their prey, obstacles, roosting crevices detection and 
discriminate different types of insects. 

The efficiency of BA depends on the features below: 

a. Automatic zooming: this capability is performed based on the automatic switch from 
explorative direction to the local insensitive exploitation. 

b. Frequency tuning: the variation of frequency is performed on the echolocation. 

Microbats are the famous examples among all the bat species. The echolocation attribute of 
microbat is used to model BA. Literature has reported a diverse range of BA applications such 
as loading pattern of nuclear core in engineering optimization, nonlinear economic dispatch 
problem, design of a power system stabilizer, size optimization for the skeletal structures 
which consist of truss and frame, multilevel image thresholding which is an image processing 
technique. In the context of inverse problem and parameter estimation, bat calculations have 
been utilized in solving numerical improvement, advancing the brushless DC wheel engines, 
and enhancing topological shape in microelectronic applications [12–15]. 
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There are some successful implementations of BA in SO. In their work of stochastic resonance for 
MR images enhancement [16], proposed a neuron model that tapped on the BA multi-objective 
optimization property to tune the parameters. In their work, the BA is utilized to maximize both 
the image performance indices contrast enhancement factor and the mean opinion score. Their 
results show that the method has improved the gray-white matter differentiation, which has 
been found useful to diagnose MR images. In another work by [17], BA is adapted with inclusion 
of two operations—(1) iterative local search, and (2) stochastic inertial weight to improve its 
performance in terms of accuracy, speed and convergence stability. It is claimed that BA is easy to 
fall into local optima and has unstable optimization results due to low global exploration ability. 
The authors overcome the weaknesses of BA when their iterative local search algorithm disturbs 
the local optimum and do some local re-search, such that the BA has better ability to get out of 
the local optima. Adding with their stochastic inertial weight to disrupt the velocity updating 
equation, it enhances the diversity and flexibility of bat population. They proved their results 
based on 10 classic benchmark functions, CEC 2005 benchmark suite, and two (2) real-world 
problems, in which they concluded with improved performance. 

A robust tuning of power system stabilizer is demonstrated to be possible by using BA [18]. In 
such scenario of RO application, the stability of the power system is highly critical. This paper 
proposed BA to optimize the gain and the pole-zero parameters of the stabilizer. They com-
pared that the BA approach is superior than PSO optimization method. The optimization was 
performed with objective function based on eigenvalue shifting to guarantee the stability of 
nonlinear plant for a wide range of operating conditions. 

A dynamic perceptive BA [19] is used to optimize particle filter for multiple targets tracking. 
This is an example of DO in which the authors proposed a multiple-maneuvering-target 
tracking algorithm and combined it with the BA to optimize particle filter typically used in a 
modern radar tracking system. Their combined algorithm regards the particles as bats and it 
simulates the behavior of bats preying by dynamically adjusting the radar tracking system’s 
components of frequency, volume and pulse rate. This dynamic control of adjusting the 
particle filter, adding with a joint probabilistic data association has enabled an improved 
accuracy in target tracking even under a complex environment. 

In other relevant applications, BA has been reported in data mining techniques of classifications 
and clustering. BA has been applied in grouping microarray information, minimization of make 
span and mean flow time to study half breed flow shop booking issues [20]. In the application of 
image processing, BA has been utilized for full body human stance estimation. In this study, BA 
has outperformed particle swarm optimization, particle filter and annealed particle filter. Bat based 
model has also shown its effectiveness in envision coordinating as compared in evolution and 
genetic algorithms [15]. In fuzzy logic and other applications, BA has been applied in investigating 
the ideal capacitor position for misfortune decrease in dispersion frameworks. BA and fluffy 
frameworks have also been utilized for energy displaying and energy changes in a gas turbine [15]. 

3.2. Firefly algorithm 

The current population of firefly species is over 2000. The short and rhythmic blazing light of 
fireflies is an astounding sight in the sky of the tropical and calm areas. This nature capability 
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of fireflies inspired the firefly algorithm (FA) [21]. Bioluminescence is the process of generating 
the flash light. The light is used to model the warning signals. Each objective function of 
optimization problem is represented by different light intensity. They are some similarities 
between FA and bacterial foraging algorithm. Their attractions are based on objective function, 
fitness and distance respectively. FA can solve discrete and continuous optimization problems. 
Kwiecien and Filipowicz [22] have applied FA in cost optimization of queueing systems. A 
study carried out by Gandomi et al. [23] has proven that FA is better than other nonlinear 
optimization techniques in designing the stepped cantilever beam. FA has been reported in the 
recent literature as an efficient computational procedure for simultaneously generating multi-
ple different alternatives to an optimal solution [24]. 

FA has a wide spread of applications since its introduction, attributed mainly to its simplicity 
of implementation as compared to some traditional approaches. In content-based image 
retrieval, feature extraction has been done with the Euclidean distance estimation between 
the pixels. However, such approach needs more precision, and this has motivated [25] to 
employ FA to optimize the image features. Their work is closely related to SO as the potential 
image features are stochastically found by FA. They benchmarked their FA image optimization 
results with PSO and GA and discovered the differences of each model in terms of precision 
and image recall. [26] also applied FA to solve a SO problem in linear phase finite impulse 
response filter (FIR) design. Differential evolution (DE) is known as one of the best performer 
in used for such problem. However, they proved through their simulation of designing FIR 
filters that FA is better than other relevant algorithms (inclusive of PSO and GA). The improve-
ment was recorded not only in the convergence speed but also in the performance of the 
designed filter. 

Other variants of FA have also found their applications in several various disciplines. [27] 
proposed a hybrid PSO-FA to solve a combinatorial optimization issue in floor planning. [28] 
introduced a hybrid FA and DE method to estimate the parameters of the nonlinear biological 
model. In the optimization design of sewer pipes, [29] has proposed a novel method by 
combining a support vector regression and the FA to predict the minimum velocity required 
to avoid sediment settling in the pipe channels. 

3.3. Lion optimization algorithm 

Lion optimization (LO) [30] is a population-based algorithm which was inspired by lion’s 
social system and collaboration characteristics which can be described with the term ‘pride’. 
The uniqueness of lion’s social behavior makes them the strongest mammal in the world. LO is 
modeled based on two unique behaviors of lion: territorial defense and territorial takeover. 
Based on these two behaviors, the solutions of LO are generated through three steps: (1) to 
differentiate whether each cub solution is an original or a derived solution; (2) territorial 
defense will proceed to evaluate and compare the existing and new solutions; (3) if the existing 
solution is better than the new solution, then territorial takeover will keep the existing solution 
to further improve it. LO can perform huge search space to solve continuous, single variable 
and multi-variable optimization problems. LO algorithm has been validated using De-Jong’s 
Type 1 function and the performance has been compared against evolutionary programming. 
The results shown that LO performed better than evolutionary programming. 
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LO is still in its early stage of application, both [31, 32] have experimented on its optimiza-
tion capability and benchmarked it on some function optimization problems. Both authors 
concluded on the high performance of LO in functions optimization. While [33] has taken LO 
further to perform clustering of data by utilizing the optimization capability of LO. Such 
data clustering approach is very much a SO problem. In their work, the LO is modified with 
the fractional theory to search the cluster centroids of data instead of typical distance 
measurement. 

3.4. Chicken swarm optimization algorithm 

Chickens are sociable birds that they live in groups. Chicken swarm optimization (CSO) 
algorithm [34] was inspired by the social behavior of chickens. Every chicken has their own 
motion laws. The fitness values of the chickens will identify themselves as the roosters, hens 
and chicks. These identities will put them into groups. The fittest, the weakest and the 
intermediate chickens are simulated as a rooster, as a chick and as hens accordingly. The 
hierarchal order plays a vital part in the group of chickens and this characteristic is used to 
model CSO algorithm. CSO has been applied in solving the design of speed reducer effi-
ciently. In that research, a gearbox has been created with the design of most efficient speed. 
The research on CSO has been promising. It has been used to improve the performance of the 
greedy algorithm [35]. 

A deadlock-free migration of virtual machine consolidation is optimized using CSO [36]. In 
such consolidation of services, two separate but related issues of virtual machine placement 
and migration is a challenging optimization task. The authors proposed a consolidation 
scheme utilizing CSO that turns the virtual machine consolidation problem into a vector 
packing optimization based on deadlock-free migration. The optimization also helps to mini-
mize the energy consumptions. The proposed method achieved higher convergence rate as 
compared to several other deadlock-free migration algorithms. 

CSO is also applied to a classical job-shop scheduling problem in the work of [37]. An 
improved version of CSO is also being applied to identifying the maximum power point 
tracking control of a photovoltaic system [38]. CSO has also seek its application in disaggrega-
tion of non-invasive domestic appliances [39]. 

3.5. Social spider algorithm 

Social spiders are organism living in groups. They are solitary and having aggressive charac-
ters among their own species. Their foraging behaviors and their corporation in performing 
daily tasks are used to model social spider algorithm (SSA) [40]. In SSA, two different 
evolutionary operators are created based on the gender of male and female spiders to divide 
their tasks for predation, web design and mating. This algorithm can solve a wide range of 
continuous optimization problems including minimization of molecular potential energy 
function [41, 42]. SSA has been validated using standard benchmark problems to study its 
performance. An analysis has been carried out on the performance SSA against particle 
swarm optimization and artificial bee colony. The results shown that SSA has outperformed 
the other techniques. 
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SSA has some wide application in recent researches. An SSA is proposed to solve a non-convex 
economic load dispatch problem [43]. Economic load dispatch (ELD) is one of the essential 
components in power system control and operation. Most modern power system introduces 
new models of the power units which are non-convex, non-differentiable, and sometimes non-
continuous; such RO problem is hence difficult to be solved by conventional mathematical 
techniques. In this paper, the authors modified the SSA to suit the characteristics of ELD, and 
their simulation results show that such ELD problem can be solved by SSA effectively and 
efficiently. 

Another example of employing SSA to a DO problem is proposed by [42] to solve the trans-
mission expansion planning in electrical power system. The authors tested SSA in solving the 
transmission expansion planning problem of three benchmark systems having 6-busses, 46-
busses, and 87-busses. They achieved great performance as well as reduction in the total 
investment cost. 

In a multi-objective optimization problem of QoS-aware web services, [44] applied SSA to 
perform optimized selection of numerous functionality in the web services involving complex 
tasks delivery. They studied current approaches of GA and PSO to realize that the time 
performance of such approaches is still a great concern. The proposed SSA has outperformed 
PSO in terms of both execution time and fitness. 

3.6. Spider monkey optimization algorithm 

Spider monkey (SM) [45] is a population-based optimization algorithm which was inspired by 
the intelligent ways of spider monkeys to search for the most suitable food sources. The 
excellency of food source corresponds to the fitness of a solution. Major characteristics and 
the strategies of SM algorithm are similar to artificial bee colony algorithm. The exploration 
and exploitation functions allowed SM algorithm to perform huge search space and generate 
greatest feasible solutions. SM algorithm is simple and speedy. It is used to solve numerical 
optimization problems. 

An example of SM application in continuous numerical optimization can be found in the work 
of [46]. They modified SM to enable it for solving some constrained optimization problems. 
Their proposed SM was tested on the well-defined constrained optimization problems of 
CEC2006 and CEC2010 benchmark sets. The algorithm acquired some promising results when 
compared to PSO, artificial bee colony and DE methods. 

Although SM could be best to implement for a numerical problem, several other researchers 
have applied it to some wider scope of optimization problems. Both [47, 48] in their separate 
studies, have proposed SM to solve antenna optimization. [47] focuses their work in the 
thinning of concentric circular antenna arrays. While such thinning problem is a binary opti-
mization, the original SM might not be suitable. Hence, they suggested their version of binary 
SM in which it must handle the logical operators of the thinning problem. Their results proved 
the competence and superiority of a binary SM as compared to existing metaheuristic algo-
rithms. On the other hand, [48] applies SM to synthesize the factor of a linear antenna’s array 
and to optimally design an E-shaped patch antenna. They discovered that their SM, when 
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compared to traditional method for such optimization problem, can reach optimum solutions 
with less number of iterations. 

3.7. African buffalo optimization algorithm 

African buffalo optimization (ABO) algorithm [49] was inspired by the practice of African 
buffalos in the vast African forests and savannahs in finding pastures. Three specific charac-
teristics of these animals are used to model ABO algorithm. Firstly, these animals have high 
memory capacity. This skill enables them to monitor their routes up to thousands of kilometers 
in Africa continent. Secondly, they communicate among themselves using two specific vocali-
zations: ‘maa’ and ‘waa’ to support each other in surviving. Lastly, African buffalos practice 
‘democracy’ system in making decisions. 

The information of every buffalo’s past and current location is used in tackling the issue of 
premature convergence. Leading buffalo’s search space and the experience of all other buffalos 
complement to the exploration and exploitation strategies in ABO. This algorithm utilizes only 
learning parameters, therefore it is a simple and yet easy to implement algorithm which 
guarantees quick convergence. The efficiency and powerful features of this algorithm are 
capable in solving knapsack problems. ABO has been validated using traveling salesman 
benchmark problems to study its cost effectiveness. A study has been carried out on the 
comparative CPU time for ABO against Genetic Algorithm, Honey Bee Mating Optimization, 
Ant Colony Optimization, Simulated Annealing and Adaptive Simulated Annealing with 
Greedy Search. ABO has outperformed all other techniques to obtain the solutions at an 
incredibly fast rate. 

[50] has used ABO to solve the well-studied Traveling Salesman’s Problem (TSP). They 
performed ABO on 33 benchmark symmetric TSP and observed excellent exploration and 
exploitation of the search space through regular communication, cooperation, good memory 
of its previous individual and collective exploits. They concluded that ABO is as competitive as 
other algorithms superior in TSP. 

In another DO example, ABO is used to optimize parameters tuning of proportional-integral-
derivative (PID) controller [51]. The PID controller in their study is used to automatically 
regulate voltage. It was noted that existing metaheuristic tuning methods have been proven 
to be quite successful, but the authors wanted to improve the gain overshoot and steady state 
errors of the system. They gained some encouraging results with ABO when it was compared 
to several other optimization algorithms. 

3.8. Flower pollination algorithm 

The goal of plants, like any other living organism is producing offspring for the next gener-
ation. Pollination is the process of transferring pollen grains from the male anther of a flower 
to the female stigma. Two types of pollinations process are self-pollination and cross pollina-
tion. When pollen grains are produced, pollinators will spread it among the flowers to either 
local or global flow of pollination. The process of passing the pollen grains from the stamens 
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to the ovule-bearing organs during pollination is used to model flower pollination algorithm 
(FPA) [52]. 

The assumption on the current version of FPA: each flower only produces one pollen gamete. 
The time complexity of FPA is shorter; therefore, it is flexible and easy to implement. A study 
has been carried in structural engineering to evaluate the cost optimization of tubular column 
under compressive load using FPA against Cuckoo search algorithm, fuzzy rules and engi-
neering optimization techniques. The results showed that FPA is the most efficient method and 
the convergence of the algorithm is very effective. This algorithm has been applied for solving 
continuous, single objective and multi-objective optimization problems. It can be improved 
further to apply in the areas of image compression and graph coloring. FPA has successfully 
converged in shape matching problem based on a relatively new branch called atomic poten-
tial matching model [53]. 

FPA is applied to a visual tracking problem in the work of [54]. In their model, visual tracking 
is considered to be a process of optimal reproduction of flowering plants. This is a typical 
example of DO. FPA is then presented with a switch probability that changes dynamically 
with generation numbers. To compare the tracking ability of the FPA tracker, the tracking 
accuracy of particle filter, mean shift and PSO are studied as well. Comparative results show 
that their method outperforms the other three trackers. Other applications of FPA can be found 
in the works of [55–57]. [55] proposed a FPA to optimize a SO problem of static economic 
dispatch incorporating wind farm. [56] worked on the sizing optimization of truss structures. 
Again, this is another example of SO. While [57] applied FPA on a DO problem of photovoltaic 
parameters optimization. Through their simulation, FPA is recommended as the fastest and 
the most accurate optimization technique for the optimal parameters extraction process, after 
benchmarking it on several other methods. 

4. Conclusion 

All different creatures survive with their own unique behaviors and features. Their character-
istics are concealing in the natural world. This chapter has reviewed eight natural inspired 
algorithms mainly from the field of swarm intelligence. These techniques are becoming pow-
erful in numerical optimization and have shown remarkable robustness, high accuracy and 
have immense capacity in solving different types of optimization problems. 

In dealing with real world problems of optimization, we are now presented with even more 
choices of algorithm thanks to inspirations form the nature, as well as persistence research 
contributions by many researchers. However, with more choices means it could be even harder 
to decide which one of the algorithms is a better candidate for a problem at hand. Based on 
No-Free-Lunch theorem, there is surely no single best algorithm for every problem. The 
complexity, characteristics and diversity of optimization problems mean that it is very unlikely 
to have a single method that can handle all types of optimization problems. This is very much 
the current state of research in optimization, despite the abundance of nature inspired algo-
rithms being added to the solution pool. 
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Moving ahead, the research community is definitely not looking for a single most powerful 
algorithm to solve all types of problem. Indeed, we might witness even more successful 
variants of algorithm being developed from their current counterparts. This is a trend we have 
observed since any introduction of a new algorithm being inspired. It is also possible that more 
and more new optimization algorithms are to be inspired, given that the vast unknown and 
untested phenomena in the nature are still beyond our exploration. 
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