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Preface

Serotonin is a monoamine neurotransmitter in the central nervous system (CNS), 
whose well-known biological functions include modulating cognition, sleep, emo-
tion, learning, memory, and numerous physiological processes.

At any given time, over 4% of the global population suffers from a major depressive
disorder. Among approved depression treatments are selective serotonin reuptake
inhibitors (SSRIs). These are based on the serotonin hypothesis, which holds that
low levels of extracellular serotonin causes depression; consequently, increasing 
extracellular serotonin can treat depression. Since the introduction of SSRIs, many
books about serotonin have been published.

I started my neuroscience career by measuring serotonin in the brain of differ-
ent animals during my PhD study. Later on, I became involved in depression
mechanisms research and drug discovery. This scientific journey brought me from
Lanzhou in China, Leuven in Belgium, Bethesda in the USA, all the way to San
Diego.

Sometimes I pick up an assortment of scattered seashells while walking along the
beautiful Torrey Pines Beach in San Diego. Likewise, this book contains an assort-
ment of discussions of different aspects of serotonin to enrich our knowledge and 
understanding of this neurochemical.

Ying Qu, PhD
Leulan Bioscience,

San Diego, CA
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Chapter 1

Introductory Chapter: 
From Measuring Serotonin
Neurotransmission to Evaluating 
Serotonin Post-Receptor Signaling 
Transduction
Ying Qu

1. Introduction

Serotonin or 5-hydroxytryptamine (5-HT) is a well-established monoamine
neurotransmitter in the central nervous system (CNS). The discovery of 5-HT dates as
far back as 1868 and can be traced to its presence in the blood and in the gastrointesti-
nal tract [1]. Its well-known biological functions include modulating cognition, sleep,
emotion, learning, memory, and numerous physiological processes. 5-HT is primarily
found in the enteric nervous system located in the gastrointestinal tract [2], where it

Figure 1.
Model explaining PLA2 activation in response to serotonergic drugs. Under normal conditions, the 5-HT
that is released from presynaptic vesicles into the synaptic cleft binds to postsynaptic 5-HT receptors coupled 
via a G-protein to PLA2, thus hydrolyzing arachidonic acid (AA) from membrane phospholipids (PL). 
Administration serotonergic drugs activate PLA and increase incorporation of AA by different routes. 
(1) 5-HT2A/2C agonist, DOI directly binds to 5-HT2 receptors to activate this signal; (2) fluoxetine (SSRI) 
inhibits 5-HT uptake, thus increasing 5-HT in the synaptic cleft so as to increase PLA activation and 
AA release. This figure adapted from [23].
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regulates intestinal movements [2], and the remainder is synthesized in the serotoner-
gic neurons of the CNS, where it has various functions such as the regulation of mood, 
appetite, and sleep. Modulation of 5-HT at synapses is thought to be a major action of 
several classes of pharmacological antidepressants. Among these, selective serotonin 
reuptake inhibitors (SSRIs), such as fluoxetine and citalopram, are the most important 
class of antidepressant in the treatment of major depressive disorder (MDD) and anxi-
ety disorders [3]. The exact mechanism of action of SSRIs is not fully revealed. SSRIs 
are able to increase the extracellular level of the neurotransmitter 5-HT by inhibiting 
its reuptake into the presynaptic terminal, increasing the level of 5-HT in the synaptic 
cleft available to bind to the postsynaptic 5-HT receptor (as shown in Figure 1). SSRIs 
have different degrees of selectivity for the other monoamine transporters, and the 
most selective SSRI has weak affinity for the norepinephrine and dopamine transport-
ers. They are the most widely prescribed antidepressants in many countries, and their 
efficacy in mild or moderate cases of depression has been disputed [4] and may be 
outweighed by side effects [3]. I have been involved in 5-HT research for two decades. 
This chapter summarized my research on 5-HT-related projects from measuring 
5-HT concentration, attempting to discover a new generation of SSRIs to investigate 
5-HT-regulated post-receptor signaling transduction. This chapter also discusses some 
perspectives research that is important for SSRI and depression treatment.

2. Measuring serotonin in CNS system

In the early 1990s, liquid chromatography (LC) with an electrochemical detec-
tor (ED) had been widely used for the measurement of neurochemicals [5]. The 
first 5-HT project that I worked with was to develop a method for measuring 5-HT 
concentration in chicken brain tissue [6]. An isocratic LC-ED for the determina-
tion of L-3,4-dihydroxyphenylalanine, dopamine, norepinephrine, epinephrine, 
5-HT, and their major metabolites, 3,4-dihydroxyphenylacetic acid, 4-hydroxy-
3-methoxyphenylacetic acid, and 5-hydroxyindole-3-acetic acid in chicken brain 
tissue was developed in our lab. The method was applied to study the influence of 
food restriction on the concentration of 5-HT and other monoamine neurotransmit-
ters in different brain areas, known to be involved in the feeding and reproductive 
behavior of female broiler chickens. In the experiment, two to six micropunches 
from 20 different brain areas on 300 μm cryostat brain section were punched out 
and expelled into Eppendorf for homogenization and extraction. Supernatant was 
injected onto LC-ED, and over 1000 micro-punched tissue samples from ad libitum 
fed and food-restricted female broiler chickens were analyzed. Tissue pellets were 
dissolved in PBS buffer for protein content determination to express the results as 
pg monoamine/μg protein. Although the concentration of monoamines in the brain 
is not high, multiple tissue micropunches made enough amount of monoamine and 
5-HT to match the sensitivity of the assay. Our results provided a possible role for 
catecholamines and indolamines in the altered feeding and reproductive behavior of 
the broiler chicken [6]. To finish my Ph.D. thesis, I modified this method to measure 
5-HT and other monoamine neurotransmitters in cat visual cortex [7]. The role of 
monoaminergic neuromodulators in the reorganization of cortical topography fol-
lowing limited sensory deprivation in the adult cat was investigated in this study [8]. 
The total concentrations of dopamine, noradrenaline, 5-HT, and their major metabo-
lites were measured in the visual cortex of both control and experimental animals 
using this microbore LC-ED method. The sensory deprivation cats were subjected 
to a binocular retinal lesion corresponding to the central 10 degrees of vision and 
sacrificed 2 weeks post-lesion. The deprivation was confirmed in area 17 by measur-
ing immediate-early gene if-268 messenger RNA expression. The total concentration 
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of 5-HT was significantly lower in the deprived cortex, and the metabolite of 5-HT, 
5-hydroxyindole-3-acetic acid, was significantly higher in the nondeprived cortex 
than in deprived cortex and normal cortex. The levels of noradrenaline and dopa-
mine were significantly higher in the nondeprived cortex of retinal lesion cats than 
in the deprived cortex of retinal lesion cats and the cortex of normal animals. This 
pattern follows the release of the excitatory neurotransmitter glutamate under the 
same conditions. These results suggest that the modulation of 5-HT, noradrenaline, 
and dopamine is regulated by visual afferent activity [8].

To switch my scientific career to the pharmaceutical industry, I joined the 
CNS drug discovery team for making a new generation dual function SSRI [9] for 
depression treatment. Fluoxetine (Prozac) [10] is the first SSRI and widely used for 
the treatment of depression which was used as reference compounds for new SSRI 
discovery. Fluoxetine exerts its behavioral and clinical therapeutic effect by block-
ing the transport of 5-HT at the serotonin reuptake transporter (SERT), thereby 
increasing extracellular level of 5-HT in the serotonergic synaptic cleft of many 
brain regions as shown in Figure 1. In vivo microdialysis has been extensively used 
to document the changes of extracellular level of 5-HT in the rat brain after admin-
istration of fluoxetine [11]. Therefore, we designed a 21-hour in vivo microdialysis 
experiment and the effect of acute systemic administration of fluoxetine (3 and 
10 mg/kg s.c.) on extracellular level of 5-HT in the frontal cortex of freely moving 
rats was analyzed by LC with ESA CoulArray coulometric detector (an electro-
chemical detector) [9, 12]. In this experiment, the guide cannula was implanted 
on rats’ brain by surgery and secured in place with skull screws and dental cement. 
Animals were allowed at least 3 days to recover from surgery prior to experimenta-
tion. Dialysis probes were perfused with artificial cerebral spinal fluid (aCSF, 
47 mM NaCl, 4 mM KCl, 0.85 mM MgCl2, 2.3 mM CaCl2, pH 7.4) at a flow rate of 
1 μL/min. Samples were collected every 60 min. Microdialysates were analyzed by 
LC-ED. Separation was performed on a C18 column. All values for microdialysis 
studies were calculated as percentage change at each time point compared with the 
average of three baseline values. Due to the limitation of low recovery of microdi-
alysis probe (less than 20% in average) and low concentration of 5-HT in the frontal 
cortex of rat brain (about 100 fg/μL in this microdialysates), high sensitivity ana-
lytical tool is required. LC-ED was the most popular method to measure 5-HT. In 
recent years, liquid chromatography with tandem mass spectrometry (LC-MS/MS) 
was also used for this purpose [13].

Pharmacokinetic (PK) characterization and in vivo pharmacological proper-
ties of new chemical entities are important components during lead compound 
selection and optimization in the drug discovery process. Accordingly, reliable 
techniques are needed that can generate the requisite pharmacokinetic/pharma-
codynamic (PK/PD) information for an increased number of compounds. When 
dealing with compounds targeting the central nervous system (CNS), biophase 
PK may differ significantly from plasma PK, because blood-brain barrier (BBB) 
transport and brain distribution often do not occur instantaneously and to a full 
extent. In vivo microdialysis technique can be used to collect not only the extracel-
lular endogenous substances but also the extracellular free drug in the same local 
interstitial environment, which may reflect the amount of drug available at the 
pharmacological target. However, the application of this technique was highly 
limited by the lack of the proper sensitive analytical methods to determine the 
endogenous substance and exogenous drug. LC-MS/MS technique improvement 
provides a direct, structural-specific measurement of individual components with 
very high sensitivity. The mass spectrometer has minimal baseline drift and can be 
equilibrated very rapidly. For this purpose, we have developed a series of LC-MS/
MS methods, which enable us to monitor drug, citalopram, and 5-HT in the same 
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microdialysis samples [13]. These applications demonstrated in vivo microdialysis 
coupled with LC-MS/MS is a very important tool to evaluate the PK/PD relationship 
by comparing the time course of free drug versus biomarker. LC-MS/MS method 
measuring 5-HT concentration in the brain is possible, but not widely applied [13].

3. Evaluating PK/PD profile of the dual function SSRI

The World Health Organization (WHO) estimates that more than 300 mil-
lion individuals of all ages suffer from depression [14]. SSRIs have been the drugs 
for depression treatment. These drugs increase 5-HT levels in the synaptic cleft 
by inhibiting its reuptake into the presynaptic neuron through blockade of the 
SERT. Although many patients experience relief after treatment with one of the 
many marketed SSRIs, efficacy is noticeable only after weeks of treatment. Many 
physicians are reported to co-prescribe stimulants with SSRI to provide subjective 
relief during the beginning weeks of antidepressant therapy [15]. Most of these 
stimulants are increased dopamine release and produced robust behavioral activa-
tion, which had the risk of allowing patients to act on their suicidal ideation. It is 
very important to choose other classes of molecules that have been shown to produce 
wakefulness in animals without releasing dopamine or producing behavioral activa-
tion. Wake-promoting agents such as modafinil are used in the clinic as adjuncts to 
antidepressant therapy in order to alleviate lethargy. Histamine H3 receptor antago-
nist has been demonstrated having the wake-promoting action in numerous animal 
studies and may therefore be a viable strategy for use as an antidepressant therapy 
in conjunction with SSRIs. Therefore, some potential antidepressant molecules were 
created, which combined the wake-promoting effect of a histamine H3 receptor 
antagonist with 5-HT reuptake blockage effects of SERT inhibitor [9]. The synthetic 
approach and structure-activity relationships associated with this effort have been 
studied [16–18]. In vivo microdialysis experiments were used to examine whether 
a compound was capable of inducing a robust and persistent increase in 5-HT level 
over baseline. One of these molecules, JNJ-28583867 (2-methyl-4-(4-methylsulfanyl-
phenyl)-7-(3-morpholin-4-yl-propoxy)-1,2,3,4-tetrahydro-isoquinoline), is a 
selective and potent histamine H3 receptor antagonist (Ki = 10.6 nM) and inhibitor 
of the SERT (Ki = 3.7 nM), with 30-fold selectivity for SERT over the dopamine and 
norepinephrine transporters [9]. After subcutaneous administration, JNJ-28583867 
significantly increased cortical extracellular levels of 5-HT as shown in Figure 2A. 
Baseline measurements of 5-HT levels were performed for 4 h prior to administra-
tion of JNJ-28583867. At all doses, 5-HT levels remained elevated for the duration 
of the experiment up to 18 h after dosing. JNJ-28583867 was also tested in a classical 
test of antidepressant activity, the mouse tail suspension model. As was expected 
based on the neurochemical profile of JNJ-28583867, an increase in struggling time 
was observed. Some PK characterization of JNJ-28583867 was carried out in the rat. 
The behavioral experiments had indicated good oral bioavailability and this was 
confirmed. The half-life correlates well with the observation that effects could be 
observed up to 24 h after a single oral dose, as was the case in the head twitch test. 
The plasma and brain levels of JNJ-28583867 are sustained and correlated reasonably 
well with efficacy for an extended period of time as shown in Figure 2B [9]. Similar 
PK/PD profiles were observed from norfluoxetine, which is the metabolite of refer-
ence SSRI, fluoxetine [12]. Norfluoxetine is the most important active metabolite of 
the widely used antidepressant fluoxetine. Following subcutaneous administration 
of fluoxetine in rats, plasma, and brain PK of fluoxetine and norfluoxetine were 
monitored, respectively, by LC-MS/MS. The extracellular level of 5-HT in the frontal 
cortex was measured by microdialysis as a PD endpoint. Norfluoxetine when directly 
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administrated to rats caused a significant increase in the extracellular level of 5-HT 
in the frontal cortex and maintained for 18 hours as shown in Figure 2C. This result 
is correlated well with higher plasma and brain concentration and longer plasma and 
brain retention time of norfluoxetine (as shown in Figure 2D) [12]. In summary, 
these studies have shown that the combination of histamine H3 receptor antagonism 
with SSRI activity in a single molecule results in a pharmacology consistent with the 
combination of either class of molecule alone. JNJ-28583867 can be a prototype of 
such a compound to improve current SSRI efficacy and safety profiles [9].

4. Serotonin-mediated post-receptor signaling transduction

Although antidepressants are generally effective in the treatment of MDD, side 
effects still exist. Serotonin syndrome is a potentially life-threatening adverse drug 
reaction that results from therapeutic drug use and a predictable consequence of 
excess serotonergic agonism of CNS and peripheral serotonergic receptors [19]. 
In 2002, the Toxic Exposure Surveillance System, which receives case descrip-
tions from office-based practices, inpatients settings, and emergency department, 
reported 26,733 incidences of exposure to SSRIs that caused significant toxic effects 
in 7349 persons and resulted in 93 deaths [19, 20]. The development mechanism of 
serotonin syndrome is unknown. It is hypothesized that the level of 5-HT elevation 

Figure 2. 
(A). Effect of JNJ-28583867, administered s.c., on extracellular 5-HT levels in the frontal cortex of male 
Sprague-Dawley rats. Microdialysis time course. Results are expressed as the average ± S.E.M. of n = 3–6 rats 
per group. (B). Plasma levels of JNJ-28583867 after oral (10 mg/kg, square), intravenous (1 mg/kg, triangle), 
and subcutaneous (10 mg/kg, circle) administration to the rat. Results are shown as the average ± S.D. of 
n = 2–3 samples. (C). Effect of norfluoxetine on the extracellular level of 5-HT in the frontal cortex of free 
moving rat. Values are mean ± S.E.M. of extracellular 5-HT levels and expressed as a percentage of the 
average of three baseline samples (defined as 100%). Two-way ANOVA-post-hoc Duncan’s multiple range 
tests were used for comparison. Control (n = 5), 3 mg/kg (n = 6), and 10 mg/kg (n = 6) norfluoxetine were 
subcutaneously administrated. Asterisks indicate significance of overall effect of drug treatment versus vehicle, 
P < 0.01. (D). Time course of plasma concentrations of fluoxetine and norfluoxetine. Plasma concentrations 
(mean ± S.E., n = 10) of norfluoxetine were measured following subcutaneous administration of 3 or 10 mg/kg 
fluoxetine. Figure 4A and B was adapted from [9]; Figure 4C and D was adapted from [12].
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ence SSRI, fluoxetine [12]. Norfluoxetine is the most important active metabolite of 
the widely used antidepressant fluoxetine. Following subcutaneous administration 
of fluoxetine in rats, plasma, and brain PK of fluoxetine and norfluoxetine were 
monitored, respectively, by LC-MS/MS. The extracellular level of 5-HT in the frontal 
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in blood plasma has to be 10–15% above the baseline levels to result in 5-HT toxicity 
[21]. Several lines of evidence converge to suggest that agonism of 5-HT2A receptors 
contributes substantially to the condition [22].

To address this question, we studied 5-HT-mediated post-receptor signaling 
transduction [23]. The 5-HT2 receptor is G protein-coupled receptor and is recog-
nized to be coupled to the phospholipase A2 (PLA2) signaling pathway, stimulating 
the release of the second messenger, arachidonic acid (AA). This signaling pathway 
is illustrated in Figure 1. PLA2 activation can be initiated by serotonergic 5-HT2 
receptors via a G-protein. The in vivo fatty acid methods were developed in our 
lab to measure regional brain incorporation of a radiolabeled fatty acid, including 
[5,6,8,9,11,12,14,15-3H] arachidonic acid (3H-AA) in conscious rats. Tracer incorpo-
ration, represented as the incorporation coefficient k*, reflects PLA2-mediated AA 
release. Activation of PLA2 in the brain is revealed as increments in k* in different 
receptors or to change serotonergic neurotransmission (Figure 1). The fatty acid 
method can be used to evaluate serotonergic neurotransmission mediated by PLA2 
in awake rats. It can quantify and localize brain PLA2 signaling in response to differ-
ent drugs administered acutely or chronically.

In rats, 2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI), which is a 5-HT2A/2C 
receptor agonist, provokes head twitches, skin jerks, and forepaw tapping, behaviors 
that are considered part of a “5-HT syndrome” [24]. The responses usually appear 
at a dose of 1.0 mg/kg and peak at 2.5 mg/kg. In one of our studies, DOI, when 
administered to unanesthetized rats, produced widespread and significant increases, 
of the order of 60%, in k* for arachidonate, particularly in neocortical brain regions 
reported to have high densities of 5-HT2A receptors [25]. The increases could be 
entirely blocked by chronic pretreatment with mianserin, a 5-HT2 receptor antago-
nist, which is an atypical antidepressant [25]. The results suggest that the 5-HT2 
syndrome involves widespread brain activation of PLA2 via 5-HT2A receptors, leading 
to the release of the second messenger, arachidonic acid. Chronic mianserin, a 5-HT2 
antagonist, prevents this activation [25]. In another study, brain PLA2-mediated 
signal transduction in response to acute fluoxetine administration in unanesthetized 
rats had been imaged [26]. By inhibiting presynaptic 5-HT reuptake, fluoxetine is 
thought to act by increasing 5-HT in the synaptic cleft, thus 5-HT binding to postsyn-
aptic 5-HT2A/2C receptors, activates PLA2 pathway, and releases the second messenger 
AA from synaptic membrane phospholipids. To image this activation, fluoxetine 
(10 mg/kg) or saline vehicle was administered i.p. to unanesthetized rats, and 
regional brain incorporation coefficients k* of intravenously injected radiolabeled 
AA were measured after 30 min. Compared with vehicle, fluoxetine significantly 
increased k* in prefrontal, motor, somatosensory, and olfactory cortex, as well as in 
the basal ganglia, hippocampus, and thalamus. Many of these regions demonstrate 
high densities of the SERT and of 5-HT2A/2C receptors. The brain stem, spinal cord, 
and cerebellum, which showed no significant response to fluoxetine, have low densi-
ties of the transporters and receptors. The results show that it is possible to image 
quantitatively PLA2-mediated signal transduction in vivo in response to fluoxetine 
[26]. Fluoxetine’s therapeutic action when chronically administered has been ascribed 
to desensitization of pre-synaptic 5-HT1A and 5-HT1B auto-receptors, further aug-
menting extracellular 5-HT [27]. We thereby conducted a study to see if this signaling 
process in rat brain would be altered by chronic administration of fluoxetine followed 
by 3 days of washout of this SSRI [28]. [3H] AA was intravenously injected in unanes-
thetized rats and used quantitative autoradiography to determine the incorporation 
coefficient k* for AA (regional brain radioactivity/integrated plasma radioactivity), 
a marker of PLA2 activation, in each of 86 brain regions. k* was measured following 
acute i.p. saline or DOI (1.0 mg/kg i.p.), in rats injected for 21 days with 10 mg/kg i.p. 
fluoxetine or saline daily, followed by 3 days without injection. As shown in Figure 3, 
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acute DOI produced statistically significant increments in k* in brain regions with 
high densities of 5-HT2A/2C receptors, but the increments did not differ significantly 
between the chronic fluoxetine- and saline-treated rats. Additionally, chronic fluox-
etine is compared with saline widely and significantly increased baseline values of k*. 
These results suggest that 5-HT2A/2C receptor-initiated AA signaling is unaffected by 
chronic fluoxetine plus 3 days of washout in the rat, but that baseline AA signaling is 
nevertheless upregulated. This upregulation likely occurs because of significant active 
drug in the brain, considering the long brain half-lives of its metabolite, norfluoxetine 
[12]. To further understand SERT regulate brain serotonergic transmission and its 
mediated signaling transduction, we measured PLA2 activation in SERT knockout 
mice (SERT−/−) and their littermate controls (SERT+/+). Following administration 
of 1.5 mg/kg s.c. DOI to unanesthetized mice injected intravenously with radiolabeled 
AA, PLA2 activation, represented as the regional incorporation coefficient k* of AA, 
was determined with quantitative autoradiography in each of 71 brain regions. As 
shown in Figure 4, in SERT+/+ mice, DOI significantly increased k* in 27 regions 
known to have 5-HT2A/2C receptors, including the frontal, motor, somatosensory, 
pyriform and cingulate cortex, white matter, nucleus accumbens, caudate putamen, 
septum, CA1 of the hippocampus, thalamus, and hypothalamus. In contrast, DOI 
did not increase k* significantly in any brain region of SERT−/− mice. Head twitches 
following DOI, which also were measured, were robust in SERT+/+ mice but were 
markedly attenuated in SERT−/− mice. These results show that a lifelong elevation 
of the synaptic 5-HT concentration in SERT−/− mice leads to downregulation of 
5-HT2A/2C receptor-mediated PLA2 signaling via AA and of head twitches, in response 
to DOI. Compared with wild-type mice, DOI-induced k* increments were reduced in 

Figure 3. 
Coronal autoradiographs demonstrating arachidonic acid incorporation coefficients k. Brain of (A) control rat 
given acute saline 3 days after receiving i.p. saline for 21 days; (B) control rat given acute DOI (1.0 mg/kg i.p.), 
3 days after receiving i.p. saline for 21 days; (C) rat given fluoxetine (10 mg/kg i.p. daily) for 21 days, followed by 
3 day washout, and then i.p. Saline on day 24; (D) rat given fluoxetine (10 mg/kg i.p. daily) for 21 days, followed 
by 3 day washout, and then acute DOI (1.0 mg/kg i.p.). k is color-coded. Abbreviations: Fr (IV), frontal cortex, 
layer IV; FrPaM (IV), frontal motor (layer IV); Soms, somatosensory cortex; IPC, interpeduncular nucleus; 
CPU, caudate putamen; CA1, CA2, CA3, DG, regions of the hippocampus; Pir, pyriform cortex; PO, olfactory 
cortex; GrCbG, granular layer, cerebellar gray; CbW, cerebellar white; DR, dorsal raphe; MVe, medial vestibular 
nucleus; Abc, nucleus accumbens. This figure adapted from [28].
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SERT knock out mice [29], but there was no significant effect of 3 weeks of fluoxetine 
plus washout on DOI-induced k* increments in compared with baseline of chronic 
fluoxetine treated rats. The difference suggests that a life-long, but not a 3-week, 
elevation of synaptic 5-HT will downregulate 5-HT2A/2C receptor signaling involving 
PLA2.

In summary, these studies suggest that labeled AA can be used to examine 
in vivo brain PLA2 signaling initiated by a serotonergic drug. Eventually, brain 
5-HT2A/2C-mediated signaling coupled to PLA2 might be imaged in such subjects 
with positron emission tomography [30].

5. Monitoring therapeutic SSRI in patients

Depression is among the most prevalent psychiatric disorders with a highly 
variable treatment response and up to one-third of patients not achieving response 
[31]. SSRIs are the most commonly prescribed antidepressants and the best over-
all treatments for depression patients. However, therapeutic outcomes of SSRIs 
are often far from satisfactory for both patients and prescribing physicians [32]. 
Therefore, after having focused clinical research on the development of new drugs, 
growing evidence suggests that an improved application of available drug may still 
bring substantial benefit to patients [33, 34]. Moreover, there is a gap between the 
available pharmacological knowledge and its utilization in health care. The newest 
initiative to bridge this gap is “Precision Medicine.” It considers individual vari-
ability to build the evidence base needed to guide clinical practice [35]. Therapeutic 
drug monitoring (TDM) is a patient management tool for precision medicine 
[36]. It enables tailoring the dosage of the medications to the individual patient by 
combining the quantification of drug concentration in blood, information on drug 
properties, and patient characteristics [37]. Because patients differ in their ability 

Figure 4. 
Coronal autoradiographs demonstrating incorporation coefficients k* for arachidonic acid, from brain of 
SERT+/+ mouse given saline s.c.; SERT +/+ mouse given DOI (1.5 mg/kg s.c.); SERT−/− mouse given saline; 
SERT+/+ mouse given DOI. k* is color coded. This figure adapted from [29].
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to absorb, distribute, metabolize, and excrete drug due to concurrent disease, 
age, concomitant medication or genetic abnormalities, the drug’s steady-state 
concentration in the body may have a more than 20-fold interindividual variation 
when the same dose of drug is administrated [38, 39]. TDM quantifies the drug’s 
concentration in plasma or serum to adjust the dosage of individual patients, which 
increases probability of response and decreases risk of adverse drug reactions/ 
toxicity [40, 41]. Moreover, TDM has the potential to enhance the cost-effectiveness 
of antidepressant therapy [42–44]. The benefits of TDM for optimization of 
pharmacotherapy, however, can only be obtained when the method is adequately 
integrated into the clinical treatment process. Current TDM use in depression care 
is often suboptimal as demonstrated by systematic studies [45–47]. The suboptimal 
use of TDM wastes laboratory resources and bears the risk of misleading results that 
will adversely influence clinical decision making. Studies on TDM for antidepres-
sant will further specify the information on the imperfect use of TDM [48].

Among SSRIs, citalopram is the most SSRI [13], and some studies reported that 
it is more effective and better tolerated than other drugs for depression but has 
been associated with suicidality and worsening depression especially in adoles-
cents and young adults [49]. Citalopram is strongly recommended for TDM by the 
Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie 
(AFNP) guidelines and was recently upgraded into the level 1 recommendation drug 
[37, 50]. Its reported therapeutic reference ranges (50–110 ng/mL) are established 
and have been quantified. Controlled clinical trials have known beneficial effects 
of TDM, reports on decreased tolerability or intoxications [50]. Fluoxetine strongly 
inhibits 5-HT uptake with minimal effects on other neurotransmitter uptake system 
[51]. Norfluoxetine, an active metabolite of fluoxetine, contributes to the long 
elimination half-life (3-15 days) and overall clinical effect of fluoxetine [12]. TDM 
of fluoxetine is listed as “useful” AFNP guidelines [37, 50]. The therapeutic reference 
range of 120–500 ng/mL includes the quantification of fluoxetine and its long-lasting 
active metabolite, norfluoxetine. The total concentration of fluoxetine and norfluox-
etine in plasma is needed to be determined. Thus, there is a clinical demand for the 
detection of fluoxetine and norfluoxetine when patients are receiving fluoxetine. The 
clinical service for TDM of antidepressants needs to be established.
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SERT knock out mice [29], but there was no significant effect of 3 weeks of fluoxetine 
plus washout on DOI-induced k* increments in compared with baseline of chronic 
fluoxetine treated rats. The difference suggests that a life-long, but not a 3-week, 
elevation of synaptic 5-HT will downregulate 5-HT2A/2C receptor signaling involving 
PLA2.

In summary, these studies suggest that labeled AA can be used to examine 
in vivo brain PLA2 signaling initiated by a serotonergic drug. Eventually, brain 
5-HT2A/2C-mediated signaling coupled to PLA2 might be imaged in such subjects 
with positron emission tomography [30].

5. Monitoring therapeutic SSRI in patients

Depression is among the most prevalent psychiatric disorders with a highly 
variable treatment response and up to one-third of patients not achieving response 
[31]. SSRIs are the most commonly prescribed antidepressants and the best over-
all treatments for depression patients. However, therapeutic outcomes of SSRIs 
are often far from satisfactory for both patients and prescribing physicians [32]. 
Therefore, after having focused clinical research on the development of new drugs, 
growing evidence suggests that an improved application of available drug may still 
bring substantial benefit to patients [33, 34]. Moreover, there is a gap between the 
available pharmacological knowledge and its utilization in health care. The newest 
initiative to bridge this gap is “Precision Medicine.” It considers individual vari-
ability to build the evidence base needed to guide clinical practice [35]. Therapeutic 
drug monitoring (TDM) is a patient management tool for precision medicine 
[36]. It enables tailoring the dosage of the medications to the individual patient by 
combining the quantification of drug concentration in blood, information on drug 
properties, and patient characteristics [37]. Because patients differ in their ability 

Figure 4. 
Coronal autoradiographs demonstrating incorporation coefficients k* for arachidonic acid, from brain of 
SERT+/+ mouse given saline s.c.; SERT +/+ mouse given DOI (1.5 mg/kg s.c.); SERT−/− mouse given saline; 
SERT+/+ mouse given DOI. k* is color coded. This figure adapted from [29].
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to absorb, distribute, metabolize, and excrete drug due to concurrent disease, 
age, concomitant medication or genetic abnormalities, the drug’s steady-state 
concentration in the body may have a more than 20-fold interindividual variation 
when the same dose of drug is administrated [38, 39]. TDM quantifies the drug’s 
concentration in plasma or serum to adjust the dosage of individual patients, which 
increases probability of response and decreases risk of adverse drug reactions/ 
toxicity [40, 41]. Moreover, TDM has the potential to enhance the cost-effectiveness 
of antidepressant therapy [42–44]. The benefits of TDM for optimization of 
pharmacotherapy, however, can only be obtained when the method is adequately 
integrated into the clinical treatment process. Current TDM use in depression care 
is often suboptimal as demonstrated by systematic studies [45–47]. The suboptimal 
use of TDM wastes laboratory resources and bears the risk of misleading results that 
will adversely influence clinical decision making. Studies on TDM for antidepres-
sant will further specify the information on the imperfect use of TDM [48].

Among SSRIs, citalopram is the most SSRI [13], and some studies reported that 
it is more effective and better tolerated than other drugs for depression but has 
been associated with suicidality and worsening depression especially in adoles-
cents and young adults [49]. Citalopram is strongly recommended for TDM by the 
Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie 
(AFNP) guidelines and was recently upgraded into the level 1 recommendation drug 
[37, 50]. Its reported therapeutic reference ranges (50–110 ng/mL) are established 
and have been quantified. Controlled clinical trials have known beneficial effects 
of TDM, reports on decreased tolerability or intoxications [50]. Fluoxetine strongly 
inhibits 5-HT uptake with minimal effects on other neurotransmitter uptake system 
[51]. Norfluoxetine, an active metabolite of fluoxetine, contributes to the long 
elimination half-life (3-15 days) and overall clinical effect of fluoxetine [12]. TDM 
of fluoxetine is listed as “useful” AFNP guidelines [37, 50]. The therapeutic reference 
range of 120–500 ng/mL includes the quantification of fluoxetine and its long-lasting 
active metabolite, norfluoxetine. The total concentration of fluoxetine and norfluox-
etine in plasma is needed to be determined. Thus, there is a clinical demand for the 
detection of fluoxetine and norfluoxetine when patients are receiving fluoxetine. The 
clinical service for TDM of antidepressants needs to be established.
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Chapter 2

Serotonin Reuptake Inhibitors
and Their Role in Chronic Pain
Management
Adela Hilda Onuțu, Dan Sebastian Dîrzu
and Cristina Petrișor

Abstract

Serotonin has a particular place in the modulation of pain. Experimental studies
have described 5-HT1–7 receptors and their effects on facilitation or inhibition of
nociceptive input. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-
norepinephrine reuptake inhibitors showed efficient and safer than tricyclic anti-
depressants in neuropathic pain. Although there is evidence regarding the beneficial
impact of SSRIs in the multimodal acute pain management, studies are still
searching for the potentially favorable effect of these drugs in the prevention of
chronic postoperative pain. The scope of this chapter would be to update the
knowledge regarding serotonin involving in pain pathways and to highlight the
importance and contribution of serotonin reuptake inhibitors in the multimodal
pain management schemes.

Keywords: serotonin, pain, SSRIs, SNRIs, pain management

1. Introduction

Chronic pain is recognized today as a disease [1], affects almost 20% of the
population [2], and represents a significant cause of disability bringing along high
secondary social costs. The management of chronic pain involves pharmacological
and interventional tools and become a priority for healthcare systems. This chapter
aims to summarize the role of serotonin reuptake inhibitors (SRI) in the treatment
of chronic pain. SRI includes selective serotonin reuptake inhibitors (SSRI) and
serotonin-norepinephrine reuptake inhibitors (SNRI).

2. Chronic pain conditions

Defined as the pain that lasts more than 3 months, frequent after the disappear-
ance of the causal factor, chronic pain shows numerous risk factors (socio-
demographic, biological, clinical, and psychological). Thus, most affected are
females, older people, and people with low socio-economic level. A significant risk for
developing chronic pain is the pain itself (acute and chronic at other sites), and also
are incriminated the geographical background, occupational factors, and the history
of abuse and violence. Neuroimaging studies have already proved the changes in the
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brain with severe pain, reversible with proper treatment, and also suggested its
importance for preventing the chronicization of pain [3]. The treatment of chronic
pain is multi/interdisciplinary and multimodal, targeting different mechanisms of
pain. We summarized some critical pain syndromes, which benefit from the SRI
medication.

2.1 Diabetic neuropathy

Diabetes mellitus affects billions of people worldwide. The painful diabetic
neuropathy (PDPN) occurs in 20% of diabetes patients during the disease. Risk
factors include age, hypertension, obesity, alcohol abuse, and smoking.

Pathogenesis implies endoneurial microangiopathy and axonal loss, especially in
sensory nerves. Aldose reductase activation by increasing polyol flux and the depo-
sition of advanced glycated end-products are the primary determinants of PDPN.
Secondary ischemia leads to enhanced oxidative stress and high production of free
radicals, which leads to nerve damage [4].

Clinical PDPN may present as burning, stabbing, dull and aching, or sharp pain.
In some instances, allodynia (painful response to a normally non-noxious stimulus)
might accompany pain. PDPN is symptomatic mainly in the lower limbs and pro-
gresses proximally. Patients with PDPN show skin changes and loss of sensory that
could lead further to diabetic ulcers.

The medication of painful diabetic neuropathy includes duloxetine, venlafaxine,
tricyclic antidepressants (TAD), oxcarbazepine, and tapentadol. Overall, the quality
of life in patients with PDPN is poor [5].

2.2 Fibromyalgia

Fibromyalgia (FM) is a syndrome composed of widespread chronic pain, muscle
fatigue, and functional symptoms. It shows a genetic predisposition, but environ-
mental factors play a prominent place during the disease. FM pathogenesis involves
modified inflammatory response and oxidative stress [6].

Diagnosis is difficult because of the variety of clinical symptoms—75% of these
patients do not meet the inclusion criteria, thus often they lack the diagnosis.
Besides, these patients develop sleep disturbances and sexual dysfunction, altering
further the quality of life.

The current evidence suggest for FM management antidepressants, cardiovas-
cular exercise, and cognitive behavioral therapy [7]. Meta-analysis results agree that
the medication approved by FDA—milnacipran—and duloxetine are effective in
FM while there are concerns that the results showed only a moderate effect on pain
and sleep, and no impact on fatigue [8].

2.3 Tension-type headache

Tension-type headache (TTH) is a typical headache (up to 78%), caused by the
contractions of muscles of the scalp, neck, and jaw, and triggered mainly by stress
and emotional conflicts. It is described as a moderate pressure applied to the frontal
area, around the head or neck, and according to its frequency is classified as
infrequent, frequent, and chronic.

Chronic TTH results as a consequence of sensitization of the pain pathway due
to persistent pericranial myofascial nociceptive input. This TTH shows a frequency
of at least 15 days/month for at least 3 months. If nausea and vomiting are present,
exclude the diagnosis of TTH. Photophobia may occur in TTH.
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Treatment of the acute episodes of TTH includes nonsteroidal anti-
inflammatory drugs and acetaminophen, while their prevention associates pharma-
cologic and non-pharmacologic (physical and psychologic therapy) interventions.
Tricyclic antidepressants (amitriptyline) are the most studied drugs in TTH, but
new studies showed efficacy for other antidepressants including SRI—citalopram,
sertraline, venlafaxine, and paroxetine [9].

2.4 Somatoform pain

Somatoform pain (SP) is the primary symptom in an ambiguous and unclarified
category called somatization spectrum disorders (SSD), defined as the displaying of
somatic complaints as a result of social stress. It shows a growing incidence (up to
60%) and is a symptom generally unexplained by the medical condition of these
patients (which must be ruled out). The symptomatology—headache and musculo-
skeletal pain—overlaps with other chronic pain syndromes and may be associated
with psychiatric symptoms (depression, anxiety, personality disorders) and thus
makes the diagnosis difficult. The mechanism of this condition is a subject of
debate, but a genetic predisposition plus an altered interpersonal relationship in
childhood and adolescence are the determining factors [10].

Treatment is focused on psychotherapy and modulation of interpersonal rela-
tions, by learning to develop robust, safe, and supportive social relationships.
Besides, acupuncture and massage proved efficacy. Medication includes TADs and
SSRIs [11].

3. Selective serotonin reuptake inhibitors in chronic pain management

Due to the association between chronic pain states and depression and also due
to the continuous need and search for effective analgesic drugs, antidepressants
have long been considered for the treatment of chronic pain. Some antidepressants
are useful in the management of pain syndromes showing analgesic effects, but not
all antidepressants have analgesic properties [12]. TADs are recognized to have
analgesic effects in doses lower than the antidepressant ones. However, frequent
side effects preclude their widespread use.

Consequently, newer generations of antidepressants, like SSRIs and SNRIs, have
been studied in chronic pain management. For SSRIs, efficiency in chronic pain
conditions has been debated, and results are still inconclusive. It is felt that antide-
pressants with both noradrenergic and serotoninergic activities are superior anal-
gesics compared to drugs that possess only serotoninergic activity [13].

Currently available SSRIs are fluoxetine, sertraline, paroxetine, citalopram, and
escitalopram. Fluvoxamine is approved for the treatment of obsessive-compulsive
disorders but has sometimes been used off-label for the treatment of depression. SSRIs
are currently approved and used for the treatment of a wide range of diseases:
depression, anxiety and panic disorders, obsessive-compulsive disorders, post-
traumatic stress disorder, premenstrual dysphoric syndrome, dysthymia, irritable
bowel syndrome, eating disorders, alcohol abuse, and some personality disorders [14].

SSRIs utility for the treatment of chronic pain has been questioned but seems
attractive due to their better side-effect profile compared to first-generation anti-
depressants like TADs, as SSRIs selectively block serotonin reuptake (reabsorption
in the synaptic cleft).

How could SSRIs be useful in chronic pain management? Do they possess both anti-
depressant and intrinsic analgesic properties?
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Even though widely prescribed, the mechanism of action of SSRIs is not yet fully
understood. The traditional theories claim the fact that antidepressant drugs act by
influencing certain brain neurotransmitters [15]. Serotonin (5-HT) is one of the
neurotransmitters which carry signals between neurons. The monoamine signaling
theory of depression explains how SSRIs and other antidepressants work at the
synaptic level by inhibiting the reuptake of one or several neurotransmitters, an
effect which is almost immediate and leads to the increase of the extracellular level
of the mediator. SSRIs are selective inhibitors of the presynaptic 5-HT reuptake
transporter (SERT) that leads to an acute increase in serotonin concentrations in the
synaptic cleft. This effect does not explain why antidepressant drugs work 2–4
weeks after treatment commencement, which might be better explained by recep-
tor downregulation and delayed desensitization of presynaptic serotonin receptors
[16]. Recent findings also suggest changes in brain-derived neurotrophic factor
expression, which might even lead to SSRI antidepressant effect. Another newer
theory suggests that SSRIs impact brain levels of allopregnanolone, enhancing
gamma-amino butyric functions in the brain [14]. Apart from monoamine neuro-
transmitter’s imbalance, the inflammatory theory of depression claims the increased
serum levels of proinflammatory mediators in the depressed patients [17]. As
inflammation is the well-known cause of acute and some type of chronic pain,
proinflammatory mediators play the capital role in initiating nociception and
peripheral sensitization. In vitro experimental studies and early in vivo studies
suggested that SSRIs could inhibit the release of TNF-α, interferon γ, interleukin 1β,
and free radical superoxide [16, 18]. Probably one of the most plausible humoral
links between chronic pain conditions and depression is inflammation. If SSRIs have
intrinsic anti-inflammatory and anti-oxidative properties and could modulate
inflammatory processes, then this could be an explanation for their therapeutic
effect in chronic pain management. The detailed specificity of action for this mech-
anism remains unknown [19]. Intrinsic antihyperalgesic effects in animal models
have recently been described for SSRIs [20–23].

Possible side effects observed during antidepressant treatment with SSRIs also
need to be considered when prescribing SSRIs for chronic pain management.

These side effects include [12, 14, 24]:

• Drowsiness, dry mouth, blurred vision, dizziness

• Gastrointestinal effects: nausea, diarrhea or constipation, vomiting

• Central nervous system effects: insomnia, agitation or restlessness, headache,
tremors, increased sweating, rarely extrapyramidal symptoms, anorexia

• Syndrome of inappropriate antidiuretic hormone secretion with hyponatremia,
somnolence, delirium, confusion

• Sexual dysfunction

• Weight gain

• Platelet dysfunction and increased risk of bleeding

• Drug interactions due to the concomitant hepatic metabolism involving the
cytochrome P450

• Safety issues in pregnancy

18
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• Serotonin syndrome

Suicide might be a risk occurring early in the treatment, even though larger
epidemiological studies do not confirm this assumption [14].

SSRIs discontinuation syndrome is characterized by sensory and gastrointestinal
symptoms, dizziness, lethargy, and sleep disturbances [25].

3.1 Individual SSRIs and their efficiency in chronic pain conditions as
highlighted in clinical trials

3.1.1 Fluoxetine

Fluoxetine (Prozac™, Sarafem™) has been one of the first SSRIs available
for the treatment of depression. Its use for chronic pain management has been
highlighted in several clinical trials including modest numbers of patients
(Table 1). For chronic tension-type headache, fluoxetine administered in 20 mg
daily dose is equally efficient to desipramine [26]. For the treatment of painful
diabetic neuropathy, fluoxetine is no more effective than placebo and amelio-
rates pain in 48% of the patients, especially the depressed ones [27]. For
somatoform pain disorders, the analgesic effect is related to treatment duration
and is related to its antidepressant effect as depressive patients show greater
improvement compared to non-depressed ones [28]. Fluoxetine was found to
be efficient for the treatment of fibromyalgia when compared to placebo or
amitriptyline [29, 30].

3.1.2 Fluvoxamine

Fluvoxamine (Luvox™) is currently used for the treatment of obsessive-
compulsive disorders, and the therapeutic dose varies widely between 50 and
300 mg. Non-depressed patients with severe chronic tension-type headache
respond to fluvoxamine 50–100 mg daily [31], and it is efficient in central post-
stroke pain, cancer pain, and osteoarthritis [32–34]. However, for chronic can-
cer pain, its beneficial effect has not yet been proven [35].

Study Chronic pain
condition

Dose used for
chronic pain

(mg)

No
patients

Comparator Efficiency

Fluoxetine
10–80 mg/day
for depression
[14]

Walker
et al. [26]

Chronic
tension-type
headache

20 25 Desipramine Equally
efficient

Max et al.
[27]

Diabetic
neuropathy

40 46 Placebo Equally
efficient

Luo et al.
[28]

Somatoform
pain

disorders

20 80 Placebo Efficient for
depressed
patients

Goldenberg
et al. [29]

Fibromyalgia 20 19 Amitriptyline Effective

Arnold et al.
[30]

Fibromyalgia 45 � 25 60 Placebo Effective

Table 1.
Randomized controlled trials for fluoxetine in chronic pain management.
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3.1.3 Sertraline

Sertraline (Zoloft™) is recommended in single daily doses of 50–200 mg for the
treatment of depression. In small sample size studies, it has proven to be efficient in
non-cardiac chronic chest pain and chronic pelvic pain of prostatic origin in men
[36, 37], but not in women with chronic pelvic pain [38].

3.1.4 Paroxetine

Paroxetine (Paxil™, Seroxat™) is one of the most extensively studied SSRI for
chronic pain management (Table 2). For tension-type daily headache, two studies
failed to prove any beneficial effect [39, 40]. Foster et al. suggested that by
extending treatment periods up to 3–9 months, patients may benefit [41]. For
chronic low back pain, doses of 20 mg are less efficient than maprotiline, and the
effects are similar to placebo [42, 43]. In fibromyalgia, paroxetine improves overall
symptomatology, but the effect on pain is less robust [44]. Paroxetine has been
shown to be useful for the treatment of diabetic peripheral neuropathy, but not
more efficient than imipramine [45]. In a mixed study comparing paroxetine and
citalopram versus gabapentin, the comparable efficiency of these two SSRIs with
gabapentin was shown [46].

Study Chronic pain
condition

Dose
used for
chronic
pain
(mg)

No of
patients

Comparator Efficiency

Paroxetine
10–50 mg
daily for
depression
[14]

Langemark
and Olesen

[39]

Chronic
tension-type
headache

20–30 50 Sulpiride Less efficient

Holroyd et al.
[40]

Chronic
headache,

non-
responding to
amitriptyline

Up to 40 31 Placebo Modest effect

Foster and
Bafaloukos

[41]

Chronic daily
headache

10–50 48 Placebo Efficient when
used for 3–
9 months

Dickens et al.
[42]

Chronic low
back pain

20 91 Placebo Not efficient

Atkinson et al.
[43]

Chronic low
back pain

20 74 Maprotiline Less efficient

Patkar et al.
[44]

Fibromyalgia 12.5–
2.5 mg

116 Placebo Inconclusive

Sindrup et al.
[45]

Diabetic
peripheral
neuropathy

40 29 Placebo and
imipramine

Efficient compared
to placebo, less

efficient compared
to imipramine

Giannopoulos
et al. [52]

Diabetic
peripheral
neuropathy

20–40 101 Citalopram
or

paroxetine
versus

gabapentin

Comparable
efficiency

Table 2.
Randomized controlled trials for paroxetine in chronic pain management.
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3.1.5 Citalopram

Citalopram (Celexa™, Cipramil™) is administered in 10–80 mg dose once daily
for the treatment of depression (Table 3). It has been investigated for the treatment of
fibromyalgia and chronic tension-type headache, with no beneficial results [47–49],
while for somatoform pain disorders it has only moderate analgesic effect [50–52].

3.1.6 Escitalopram

Escitalopram (Cipralex™, Lexapro™) has antidepressive effects in 10–20 mg
daily dose. For chronic low back pain, citalopram has similar results compared to
duloxetine [53]. It has pain-relieving effects in painful diabetic neuropathy and
somatoform disorders [54, 55]. For the treatment of pain symptoms associated with
depression, escitalopram is equally effective with nortriptyline [56].

4. Serotonin norepinephrine reuptake inhibitors in pain management

SNRIs are first-line antidepressants known to inhibit the reuptake of serotonin
and norepinephrine almost exclusively by binding to their transporters (SERT and
NET). This category includes drugs with very different chemical structure and
includes venlafaxine, desvenlafaxine, duloxetine, milnacipran, and
levomilnacipran.

SNRIs show different pharmacokinetics and dynamics and also different affinity
to SERT and NET with consequences on their therapeutic actions (Table 4).

Study Chronic pain
condition

Dose used
for

chronic
pain (mg)

No of
patients

Comparator Efficiency

Citalopram
10–80 mg
for
depression
[14]

Nørregaard
et al. [46]

Fibromyalgia 20–40 43 Placebo No effect

Anderberg
et al. [47]

Fibromyalgia 20–40 40 Placebo Inconclusive

Aragona et al.
[48]

Somatoform pain
disorder

20 35 Reboxetine Moderate
effect

Bendsten
et al. [49]

Chronic tension-
type headache

20 40 Placebo and
amitriptyline

No significant
effect

Viazis et al.
[50]

Gastroesophageal
reflux disease

20 63 Efficient
when
administered
with proton
pump
inhibitors

Roohafza
et al. [51]

Pediatric
functional

abdominal pain

20 86 Placebo Effective

Giannopoulos
et al. [52]

Diabetic
peripheral
neuropathy

20–40 101 Citalopram or
paroxetine

versus
gabapentin

Comparable
efficiency

Table 3.
Randomized controlled trials for citalopram in chronic pain management.
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NET). This category includes drugs with very different chemical structure and
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Side effects of SNRIs are common to all antidepressants, but these drugs add dry
mouth and constipation due to increased levels of noradrenaline. The risk of with-
drawal because of side effects, in patients with chronic pain, was highest for
milnacipran and followed by venlafaxine and duloxetine [57].

4.1 Venlafaxine

Venlafaxine (Effexor™) is an SNRI with mixed action on amine reuptake. When
administrated in low doses, it inhibits SERT and at higher doses NAT. It is indicated
for major depressive disorder (MDD) and also for anxiety, panic disorders, and
social phobia management.

An experimental study showed its antihyperalgesic effect after a single adminis-
tration in a diabetic neuropathic pain model, a result reversed by pretreatment with
yohimbine and chloroamphetamine, but not by naloxone [58].

Long ago, a short case report raised attention to the potential beneficial effect of
venlafaxine in chronic pain management [59], and later others confirmed its bene-
ficial effects in managing neuropathic pain: peripheral neuropathy, postherpetic
neuropathy, headache, and multiple sclerosis. In a systematic review on neuro-
pathic pain, the authors found four trials (high quality evidence): two with positive
results at doses of 150–225 mg venlafaxine ER daily and two with negative results
(lower doses). The number needed to treat (NNT) was 6.4 and the number needed
to harm (NNH) was 11.8 [60].

In elderly patients with low back pain and depression, 150 mg venlafaxine
showed efficacy, but the authors suggested that patients who did not respond to
small doses may benefit from dose augmentation after a 2-week period [61].

Venlafaxine may be useful in the treatment of spinal cord injury (SCI) associ-
ated with MDD because this medication improved SCI-related disability and pain.
Still, further trials are needed to determine optimal doses and efficiency in patients
with SCI without MDD [62, 63].

Studiesinpatientswithtaxane-oxaliplatin-inducedneurotoxicityshowedclinical
improvementaftervenlafaxine(37.5mgbid)[64],andfurtherstudiesareinprogress[65].

Venlafaxine had good results in acute pain; in patients with cancer breast sur-
gery, the preoperative administration of 37.5 mg venlafaxine reduced the postoper-
ative opioid consumption and the incidence of chronic postoperative pain at 6
months [66].

SNRI Bioavailability
(%)

Elimination
half life

Elimination SERT
affinity

NAT
affinity

Active
metabolite

Venlafaxine 45 5 h (IR)
11 h (ER)

Renal High Low Yes

Duloxetine IR 50 12 h Renal + feces High High No

Milnacipran 85 8 h Renal (55%
unchanged)

Moderate Moderate No

Desvenlafaxine 80 11 h (IR)
13–14 h (ER)

Renal (45%
unchanged) at

72 h

High Low No

Levomilnacipran 92 12 h Renal 58%
unchanged

Low High No

SERT, serotonin transporter; NAT, noradrenaline transporter; IR, immediate release; ER, extended release.

Table 4.
SNRIs pharmacokinetics and pharmacodynamics.
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A former Cochrane meta-analysis reported little evidence to support the recom-
mendation of venlafaxine in neuropathic pain management and noted that venlafaxine
promoted fatigue, nausea, dizziness, and somnolence with a low incidence [67].

Eventually, two recent reviews (11 and 13 trials) found that venlafaxine was bene-
ficial in neuropathic pain management with good tolerability claiming the necessity for
further research to expand these findings [68, 69]. There are contradictory findings in
these recent reviews, but there is need for further good quality evidence.

4.2 Desvenlafaxine

Desvenlafaxine (Pristiq™) is the third SNRI with FDA approval and only
indication for MDD management (50–400 mg daily). The daily recommended
dose is 50 mg. Desvenlafaxine is the salt of an active metabolite of venlafaxine,
and the ER form allows 1 day administration. It presents a good bioavailability
(Table 4) and shows a low binding to plasma proteins (30%). Desvenlafaxine
binds to SERT 10 times more than to NAT and also has a weak affinity for
dopamine transporter. Adverse effects are dose-dependent and typical to all anti-
depressants. Doses of 200–400 mg showed efficacy in DPN management, with
effect sizes similar to duloxetine [70] and with increased side effects at higher
doses. At the moment, there is a lack of evidence to support the use of
desvenlafaxine in chronic pain management.

4.3 Duloxetine

Duloxetine (Cymbalta™; DLX) is probably the most used drug from this
class of antidepressants. Aside from MDD and urinary incontinence, duloxetine
is indicated for anxiety disorder, chronic pain in diabetic neuropathy, fibromy-
algia, musculoskeletal pain, and osteoarthritis. DLX is a potent SNRI, with a
high affinity for both SERT and NAT. It has a moderate bioavailability, with an
elimination half-time of 12 h. It is metabolized in the liver and does not possess
any active metabolite. Duloxetine exerts antihyperalgesic and allodynic effects,
by impairing nociception at a peripheral level (blocks NaV 1.7 current) and by
inhibiting neuronal firing [71]. With acute administration, DLX leads to ele-
vated levels of NA and 5-HT, and with chronic treatment, it does not affect
further basal levels of these monoamines [72]. Even if the significant pain-
relieving effect was found after 7 weeks of treatment [73], others showed that
patients treated with DLX for OA knee pain or low lumbar pain who have <10%
reduction in pain after 4 weeks treatment have low chance to reach moderate
pain reduction by the end of 12 weeks [74]. DLX’s recommended dose for the
first week is 30 mg, raising the dose to 60 mg in the second week in order to
avoid a high incidence of side effects.

Because of interfering with platelet function, it is indicated to stop its adminis-
tration 4 days before surgery.

Data from animal pain models and clinical studies on DLX administration in
perioperative setting (spine, knee, breast surgery) suggested its analgesic
effects. Pre- and postoperative duloxetine reduced 24-h opioid consumption,
delayed first analgesic requirement, and reduced incidence of chronic postoper-
ative pain at 6 months, being of primary interest for patients with preoperative
chronic pain and spine surgery [75–77]; results from ongoing studies will
respond to questions remained unanswered. Duloxetine shows good tolerability
with dizziness and nausea, dry mouth, and constipation, as more frequent side
effects [78].
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While duloxetine proved its efficacy in chronic nociceptive/neuropathic pain
[79–83] (Table 5), it is yet unrevealed its possible impact on acute postoperative
pain and chronic postoperative pain.

4.4 Milnacipran

Milnacipran (Savella™) described in 1998 by Briley as a potent SNRI that
showed similar inhibition on both monoamine re-uptakes, in vitro and in vivo,
was approved in Europe for the treatment of depression. It did not link to alpha
adrenoreceptors, muscarinic cholinergic, and histaminic receptors and showed
no effect on beta-adrenergic receptors sensitivity, thus having reduced side
effects. The drug has an excellent bioavailability with a mean peak plasma
concentration reached between 0.5 and 4 h after the oral administration. About
13% binds to plasma proteins and is wholly eliminated after 36 h [84]. Studies
on the efficacy of milnacipran in psychiatric patients revealed its significant
superiority when compared to SSRIs. Most frequent adverse effects were nau-
sea, dry mouth, and headaches [85]. Milnacipran has FDA approval for the
management of fibromyalgia.

In 2006, Obata et al. found that intrathecal administration of milnacipran
reduced allodynia in a rat neuropathic pain model [86].

Other experimental data confirmed these findings regarding milnacipran’s
antiallodynic and antihyperalgesic effects [87] and showed its effectiveness in
treating allodynia in vincristine-induced neuropathic pain [88].

In a Cochrane meta-analysis, Cording et al. analyzed six studies (4238 patients)
that compared milnacipran 100/200 mg with placebo in fibromyalgia. By using a
“conservative”method of analysis, they found 26% positive response with
milnacipran as compared to 19% for placebo and an increased rate of side effects [89].

Despite the evidence that milnacipran (100 or 200 mg) was found to be useful in
neuropathic pain, as compared with placebo, Derry et al.’s meta-analysis did not

Study Pathology No trials Number of
patients

Findings

Lunn et al.
[79]
60 mg

Diabetes
fibromyalgia

14
8-DPN; 6-

FM

6407 In both category showed efficacy
DPN-NNT 5
FM-NNT 8

Quilici et al.
[80]

Diabetes 11 679 Effective in DPN
NNT = 5

Good toleration
Superior to placebo

Discontinuation due to AE

Wang et al.
[81]
60/120 mg
(QD)

Knee
osteoarthritis

3 1011 Significant pain reduction
Improved function

Reported “acceptable” AE

Lee and Song
[82]

Fibromyalgia 9 5140 Results showed equal efficacy and
tolerability

Hauser et al.
[83]

Fibromyalgia 10 6038 Small benefit over placebo

QD, quaque die; DLX, duloxetine; MLC, milnacipran; DPN, diabetes polyneuropathy; NNT, number needed to
treat; FM, fibromyalgia; AE, adverse effect.

Table 5.
Meta-analysis for duloxetine in chronic pain management.
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obtain enough data to confirm former data and support its recommendation in
chronic neuropathic pain [90]. Future trials are needed to establish milnacipran’s
possible favorable effects in pain management.

4.5 Levomilnacipran

Levomilnacipran (Fetzima™) is the enantiomer ofmilnacipranwith the highest
activity, and its primary indication isMDD.Atusual doses, this drug is known topossess
a higher potency for norepinephrine (twofold) reuptake inhibition, as comparedwith 5-
HT [91]; butwith higher doses, it showed equal efficacy in increasing 5-HT andNE
levels [92].

Regarding tolerability, the most frequently recorded adverse effects were nau-
sea, constipation, and sweating, although a small proportion (3–6%) of patients
recorded increased blood pressure and heart rate [93]. We have not found any data
regarding its use in chronic pain patients.

5. Double function serotonin reuptake inhibitors

A particular category of drugs includes SRIs with double mechanism: 5-HT
reuptake inhibition and interaction with 5-HT receptors. Animal studies have
suggested that these receptors are included in the descending pain inhibitory sys-
tems [94, 95], and their activation is involved in reducing the acute nociceptive and
neuropathic pain [96].

5.1 Trazodone

Trazodone (Desyrel™, Oleptro™) is the first non-tricyclic antidepressant
approved for the treatment of MDD (1981), and it is also used to treat anxiety,
alcohol dependence, insomnia, and chronic pain (off-label). It was developed for
the treatment of “mental pain,”which was recognized to occur in depression [97]. It
acts as a SRI, antagonist of 5-HTA2 receptor, and a partial agonist for 5-HTA1

receptors. Secondary acts as an antagonist to α1-adrenergic receptors and lacks any
effect on cholinergic receptors. The drug shows a 65% oral bioavailability, 90%
plasma protein binding capacity, and is metabolized in the liver (via CYP3A4) to an
active metabolite—mCPP. The main excretion route is renal, and the biological
half-time is 7 h. Side effects are not only shared with the other antidepressants but
also list dry mouth, orthostatic hypotension, cardiac arrhythmias, and priapism.

Trazodone showed some efficacy in several chronic pain conditions represented
in Table 6, but future studies are needed.

5.2 Nefazodone

Nefazodone (Serzone™) is related to trazodone but with fewer side effects. Doses
of 300–600 mg are indicated for the treatment of MDD, panic disorders, and aggres-
sive behavior. It acts as an antagonist of 5-HTA2 and 5-HTC2 receptors and serotonin,
norepinephrine, and dopamine reuptake inhibitor. Its effects on the mentioned
receptors enhance neurotransmission by an increased binding on the 5-HTA1 recep-
tors. Nefazodone shows an affinity for α1 and less for β-adrenoreceptors and does not
interact with muscarinic cholinergic receptors. It has low bioavailability; it is metab-
olized in the liver (CYP3A4) and has four metabolites (mCPP active). Nefazodone
has a biological half-time between 2 and 4 h and is excreted in urine. Frequent side
effects are dry mouth, dizziness, and sleepiness, and rare, severe liver damage [98].
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Study Pathology No trials Number of
patients

Findings
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8-DPN; 6-

FM
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NNT = 5
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Table 5.
Meta-analysis for duloxetine in chronic pain management.
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obtain enough data to confirm former data and support its recommendation in
chronic neuropathic pain [90]. Future trials are needed to establish milnacipran’s
possible favorable effects in pain management.

4.5 Levomilnacipran

Levomilnacipran (Fetzima™) is the enantiomer ofmilnacipranwith the highest
activity, and its primary indication isMDD.Atusual doses, this drug is known topossess
a higher potency for norepinephrine (twofold) reuptake inhibition, as comparedwith 5-
HT [91]; butwith higher doses, it showed equal efficacy in increasing 5-HT andNE
levels [92].

Regarding tolerability, the most frequently recorded adverse effects were nau-
sea, constipation, and sweating, although a small proportion (3–6%) of patients
recorded increased blood pressure and heart rate [93]. We have not found any data
regarding its use in chronic pain patients.

5. Double function serotonin reuptake inhibitors

A particular category of drugs includes SRIs with double mechanism: 5-HT
reuptake inhibition and interaction with 5-HT receptors. Animal studies have
suggested that these receptors are included in the descending pain inhibitory sys-
tems [94, 95], and their activation is involved in reducing the acute nociceptive and
neuropathic pain [96].

5.1 Trazodone

Trazodone (Desyrel™, Oleptro™) is the first non-tricyclic antidepressant
approved for the treatment of MDD (1981), and it is also used to treat anxiety,
alcohol dependence, insomnia, and chronic pain (off-label). It was developed for
the treatment of “mental pain,”which was recognized to occur in depression [97]. It
acts as a SRI, antagonist of 5-HTA2 receptor, and a partial agonist for 5-HTA1

receptors. Secondary acts as an antagonist to α1-adrenergic receptors and lacks any
effect on cholinergic receptors. The drug shows a 65% oral bioavailability, 90%
plasma protein binding capacity, and is metabolized in the liver (via CYP3A4) to an
active metabolite—mCPP. The main excretion route is renal, and the biological
half-time is 7 h. Side effects are not only shared with the other antidepressants but
also list dry mouth, orthostatic hypotension, cardiac arrhythmias, and priapism.

Trazodone showed some efficacy in several chronic pain conditions represented
in Table 6, but future studies are needed.

5.2 Nefazodone

Nefazodone (Serzone™) is related to trazodone but with fewer side effects. Doses
of 300–600 mg are indicated for the treatment of MDD, panic disorders, and aggres-
sive behavior. It acts as an antagonist of 5-HTA2 and 5-HTC2 receptors and serotonin,
norepinephrine, and dopamine reuptake inhibitor. Its effects on the mentioned
receptors enhance neurotransmission by an increased binding on the 5-HTA1 recep-
tors. Nefazodone shows an affinity for α1 and less for β-adrenoreceptors and does not
interact with muscarinic cholinergic receptors. It has low bioavailability; it is metab-
olized in the liver (CYP3A4) and has four metabolites (mCPP active). Nefazodone
has a biological half-time between 2 and 4 h and is excreted in urine. Frequent side
effects are dry mouth, dizziness, and sleepiness, and rare, severe liver damage [98].

25

Serotonin Reuptake Inhibitors and Their Role in Chronic Pain Management
DOI: http://dx.doi.org/10.5772/intechopen.80711



Murine studies yielded the capacity of nefazodone to potentiate opioid analgesia
by acting through μ1 and μ2 receptors without affecting mortality [99]. Other results
indicated that rats treated with nefazodone have shown an increased expression of
μ-opioid receptors in the area of the central nervous system related to pain percep-
tion and modulation [100].

Even if it shows an excellent clinical profile, at this time we found only
a two-center open-label study on the efficacy of nefazodone on
preventing chronic daily headache. The study included 52 patients
who received nefazodone between 100 and 450 mg (300 mg median) for
12 weeks. The results showed significantly lower incidence and intensity of
daily headache and a good tolerance for nefazodone [101].

5.3 Vilazodone

Vilazodone (Viibryd™) approved by FDA (2011) for the treatment of MDD is a
partial agonist to the 5-HTA1 receptor, GABA agonist, and SRI. Currently is pre-
sumed that it increases serotoninergic neurotransmission and it shows fast onset
and good effect at daily doses between 10 and 40 mg. Vilazodone has 72% bioavail-
ability when it is taken with food, is metabolized in the liver (via CYP3A4), and it
did not possess active metabolites. It is excreted in urine and feces and has a
biological half-time of 25 h [102]. Side effects include nausea, vomiting, diarrhea,
and insomnia (>5%). Sexual adverse reactions and low influence on weight-gain
were reported [103]. Even if it presumed that vilazodone should add value in the
treatment of patients with the depression-pain syndrome, there are not yet available
data on its efficacy in pain states.

Study Chronic pain
condition

Dose Number
of

patients

Comparator Efficiency

Wilson
[103]

Diabetic
neuropathy

50–100 mg 31 — Effective

Ventafridda
et al. [104]

Deafferentation
pain

— 45 Amitriptyline Equal efficacy

Goodkin
et al. [105]

Chronic low back
pain

201 mg (average) 42 Placebo Similar effect

Morillas-
Arques et al.
[106]

Fibromyalgia 50–300 mg 66 — Effective

Calandre
et al. [107]

Fibromyalgia 50–300 mg
trazodone + 75–

450 mg
pregabalin

41 — Pregabalin enhanced
the favorable effects

of trazodone

Davidoff
et al. [108]

Dysesthetic pain
following spinal

cord injury

150 mg 18 placebo Similar effect

Battistella
et al. [109]

Migraine
(pediatric 7–
18 years)

1 mg/kg 40 placebo Effective

Frank et al.
[110]

Rheumatoid
arthritis

1.5 mg/kg 47 — No effect

Table 6.
Trials for trazodone in chronic pain management.
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6. Conclusions

SSRIs seem to be effective in most chronic pain conditions, and they are well
tolerated [41]. The efficacy of SSRIs might be comparable to TADs and SNRIs, but
their tolerability and safety are superior [30]. For some chronic pain conditions,
valuable, while for others their utility is limited:

• For migraine, SSRIs are not better than placebo for reducing the number of
attacks, and results of studies on migraine are conflicting [24, 111].

• Patients with chronic tension-type headache seem to benefit from SSRIs [24].

• There are conflicting results regarding the use of SSRIs for pelvic pain.

• Non-cardiac chest pain might benefit from SSRIs.

• Low back pain does not seem to respond well to SSRIs.

• The effects of SSRIs on fibromyalgia are uncertain [112].

• Diabetic neuropathy looks to improve from SSRIs treatment.

• Post stroke central pain might improve with fluvoxamine.

• Evidences support that antidepressants are useful for the treatment of irritable
bowel syndrome [113].

• There is no evidence from randomized controlled trials to recommend
antidepressants to treat chronic non-cancer pain in children and adolescents
[114] or adults.

Even though several clinical trials were published, the results remain inconclu-
sive. That happens because the sample sizes are quite modest rendering the studies
slightly underpowered. Primary outcomes are variable: self-reported pain scores,
effect on pain symptoms observed by the physician, complex pain questionnaires,
and effects on quality of life and functionality. Current drug classes available for
chronic pain treatment include anti-inflammatory drugs, opioids, gabapentinoids
along with interventional or surgical management, and physical activity. Heteroge-
neity of the chronic pain syndromes, many currently available drugs and treatment
modalities, and drug-drug and drug-interventional management associations
should be considered when designing future larger scale trials.

In conclusion, compared to all other antidepressants in the management of
chronic pain, for SSRIs, the data are still inconclusive, and studies are fewer in
number. For depression, SSRIs are considered first-line agents due to a favorable
side-effect profile and good tolerability. However, they have not yet entered first-
line use for neuropathic pain conditions [12]. Probably, it would be advisable to
restrict their use for those patients failing to respond to other medications or who do
not tolerate side effects.

From SNRIs category, in particular duloxetine is already a first-line treatment
for DPN and other chronic pain syndromes (fibromyalgia, musculoskeletal pain,
and osteoarthritis), showing good results and an acceptable safety profile. It also
showed favorable effects on chronic postoperative pain and life quality with the
perioperative administration in surgery with a high incidence of chronic pain
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(spine, breast). Venlafaxine is a drug of choice for the treatment of fibromyalgia.
Milnacipran proved antiallodynic and antihyperalgesic effects and might show fur-
ther positive results in chronic pain management; well-designed trials are still
required.

SRIs seem to play their role through the spinal modulation pain pathways being
less involved in reducing nociception, and that is probably why their effects are
more evident in patients with chronic pain states.
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Chapter 3

Serotonin and Emotional 
Decision-Making
Sara Puig Pérez

Abstract

Serotonin is one of the most important neurotransmitters involved in emotional 
regulation, which affect decision-making. In fact, specific genes regulate the trans-
porter protein of serotonin, making people prone to show or not higher amygdala 
activation. Higher activation of specific components of the limbic system, such as 
amygdala, results in a higher susceptibility to make decision taking into account 
the environmental and emotional aspects and not only rational elaborations of 
the facts. It makes the response of decision-making more visceral or emotional in 
contrast to people with lower amygdala activation. Therefore, the importance of 
serotonin regulations impacts on daily and important decisions.

Keywords: serotonin, amygdala, decision-making, behavior

1. Introduction

Nowadays, decision-making has been considered as one of the most complex 
cognitive functions that use other superior processes such as learning, memory, and 
feedback sensibility [1]. Theoretically, when people have to make a decision, they 
are placed on a continuum of uncertainty being “complete ignorance” one pole and 
“certainty” the other one [2]. In this case, there are difficulties to identify the level 
of uncertainty (ambiguity), it could be impossible to determine the probability 
of gain or loss, regardless of the fact that consequences are established and clearly 
known. In contrast, in those situations where there is risk of uncertainty, although 
the consequences are stable and clearly known too, gain of fail result can be calcu-
lated. So, accordingly, decisions can be made considering as key construct the range 
of ambiguity or risk of uncertainty [2, 3].

The cognitive-experiential theory supported by Epstein’s group [4] distinguishes 
between two qualitative systems of information processing in decision-making: the 
rational and the experiential system. The rational style of thinking is character-
ized by a free emotional perspective, which results in a more analytic, conscious, 
and effortful process. In contrast, the experiential system is based on emotions, 
being more automatic, effortless, imaginative, and unconscious (Epstein, 2010). 
Interestingly, the way people process the inputs from the environment and make 
decisions is considered in two ways: analytical and intuitive [5]. So, the thinking 
styles and the decision-making styles probably share an important background. 
But, decision-making is considered independently from emotional processes and 
brain neurochemical balance. In this chapter, we will summarize the physiological 
overlapping between emotional and decision-making processes and the effect of 
serotonin neurotransmitter on the modulation of these cognitive functions.
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2. Main brain regions involved in emotions and decision-making

The main brain structure involved in decision-making is the prefrontal cortex 
(PFC), which is considered nowadays as the main location of executing cogni-
tive functions. In fact, it has been considered the PFC as the central key structure 
for cognitive functions as attention for relevant environmental stimuli, objective 
selection, cognitive control, planning, and monitoring performance [6, 7]. For 
goal-directed behavior [8] and attention [9–11], subcortical and thalamic regions 
are involved together with the PFC leading to a complex top-down cognitive control 
network. In this line, behaviors controlled by other subcortical or cortical areas out 
of PFC control network become habits or inflexible behaviors, mostly dependent on 
simple sensory motor associations [12].

It is important to take into account that the PFC region is controlled by subcorti-
cal regions involved in emotional processing such as amygdala or nucleus accum-
bens (NAc) [13, 14]. Both are considered key structures in processing the signal of 
the environmental stimuli, taking into account the emotional valence, in order to 
classify them as appetitive or aversive [15–17]. At the same time, PFC is connected 
with the orbitofrontal cortex (OFC) in voluntary choices and to the anterior cingu-
late cortex (ACC) in monitoring the outcome of our choices [18, 19]. These connec-
tions support the well-known effect of emotions on decision-making. In fact, lesion 
model studies performed with rats and nonhuman primates showed that NAc injury 
affects negatively response inhibition and cognitive flexibility [20–22]; meanwhile, 
amygdala inactivation or lesion affects the selection of relevant information, which 
is needed in situations with emotional value to coordinate cognitive, physiological, 
and behavioral responses [17, 23, 24].

Interestingly, although the dorsolateral prefrontal cortex (DLPFC) has been 
considered as the cognitive brain region per excellence [25, 26], there is growing 
evidence suggesting that DLPFC plays an important role in emotional regulation 
and motivated behavior [27–32].

3. Physiological overlapping between emotions and decision-making

When someone has to choose between doing something or not, he balances the 
immediate reward of doing it as well as the risk of incurring future negative conse-
quences. This fact is known as the concept of willpower, which involves two brain 
systems’ activation: the impulsive system and the reflective system [33] (see Figure 1). 
According to that, the decision-making process will mainly depend on neural sub-
strates, which are affected by emotions because of the modulation that feelings make 
on neurotransmitter systems.

Main structures involved in the impulsive system are amygdala and striatum 
[33], which are the structures involved in short lived and very quick responses 
[34]. As we explained above, amygdala is responsible for attributing affective or 
emotional value to stimuli perceived evoked through hypothalamus and autonomic 
brainstem nuclei, which produce changes in internal milieu and visceral structures 
(e.g., striatum and periaqueductal gray) [35]. Amygdala plays a role in emotional 
decision-making, even in stimuli with an affective value learned by experience 
(e.g., money or drugs). It has been shown that autonomic response to the gain or 
loss of important amounts of money depends on the amygdala integrity [1]. In the 
same line, in addicts, it has been show an exacerbated autonomic response similar to 
monetary gains [36], which could be related to abnormal activity in the amygdala-
ventral striatum system that probably would result in a heightened reward percep-
tion of the stimuli [37].
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In contrast, the reflective system involves hippocampus, insula, AC, and PFC 
structures (ventromedial prefrontal cortex—VMPC, lateral orbitofrontal, inferior 
frontal gyrus, and DLPFC) [33]. The VMPC is crucial to induce affective states 
from recall to imagination, because it is responsible to reactivate the pattern of the 
affective state experienced in the past of reward or punishment that was developed 
from the brainstem nuclei [35] and to which the brain preserves the neural pattern [1]. 
In fact, patients with damage or people with functional abnormalities in VMPC 
[1] (Erns and Paulus, 2005) show impairments in decision-making. However, the 
normal function of the VMPC depends on the integrity of other neural systems. The 
insula, hippocampus, DLPFC, and somatosensory cortices need to be preserved for 
representing patterns of emotional or affective states and memory, but they need to 
preserve their integrity for the correct functioning of the VMPC too. Impairments 
in decision -making in patients with right parietal damage [1] and in people with 
functional abnormalities (Erns and Paulus, 2005), including the insula and somato-
sensory cortex, have been observed. Same difficulties in decision-making have been 
observed in patients with damage on DLPFC (Clark, Cools and Robbins, 2004). For 
these reasons, it can be concluded that the decision-making process depends directly 
on the correct functioning of other brain systems involved in memory and emotional 
regulation [33]. This neural overlapping suggests a functional interconnection 
between memory, emotions, and decision-making cognitive processes, being all con-
nections between these brain systems are located in VMPC [1] (Clark et al., 2004).

In line with those exposed above, Rolls [38] highlights the importance of emo-
tions in decision-making processes giving the fact that the resulting behavior of a 
decision is the consequence of two brain systems (see Figure 2). On the one hand, 
the emotional system is responsible for the behavior directed to reward or avoidance 
of punishment in terms of aptitude to natural selection [39–41]. OFC and amygdala 
have been related to the reward process [39], giving a reward/affective value of the 
stimulus processed firstly by sensorial main structures (see Figure 2). In contrast, the 
cognitive system depends on the frontoparietal network and responds to declarative 
knowledge and explicit goals [38]. The main contribution of Rolls [38, 39] was the 
stablishment of the role of lateral PFC, which is considered the hub of modulation of 
emotion circuity able to bias our behavior and conduct it agreeing to our explicit goals.

Figure 1. 
Diagram from key structures involved in the impulsive (red) and reflective system (blue). A: amygdala, 
VMPC: ventromedial prefrontal cortex, AC: anterior cingulate, DLPC: dorsolateral prefrontal cortex, hip: 
hippocampus, DA: dopamine, and 5-HT: serotonin. Extracted from Ref. [33].



Serotonin

38

2. Main brain regions involved in emotions and decision-making

The main brain structure involved in decision-making is the prefrontal cortex 
(PFC), which is considered nowadays as the main location of executing cogni-
tive functions. In fact, it has been considered the PFC as the central key structure 
for cognitive functions as attention for relevant environmental stimuli, objective 
selection, cognitive control, planning, and monitoring performance [6, 7]. For 
goal-directed behavior [8] and attention [9–11], subcortical and thalamic regions 
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network. In this line, behaviors controlled by other subcortical or cortical areas out 
of PFC control network become habits or inflexible behaviors, mostly dependent on 
simple sensory motor associations [12].

It is important to take into account that the PFC region is controlled by subcorti-
cal regions involved in emotional processing such as amygdala or nucleus accum-
bens (NAc) [13, 14]. Both are considered key structures in processing the signal of 
the environmental stimuli, taking into account the emotional valence, in order to 
classify them as appetitive or aversive [15–17]. At the same time, PFC is connected 
with the orbitofrontal cortex (OFC) in voluntary choices and to the anterior cingu-
late cortex (ACC) in monitoring the outcome of our choices [18, 19]. These connec-
tions support the well-known effect of emotions on decision-making. In fact, lesion 
model studies performed with rats and nonhuman primates showed that NAc injury 
affects negatively response inhibition and cognitive flexibility [20–22]; meanwhile, 
amygdala inactivation or lesion affects the selection of relevant information, which 
is needed in situations with emotional value to coordinate cognitive, physiological, 
and behavioral responses [17, 23, 24].

Interestingly, although the dorsolateral prefrontal cortex (DLPFC) has been 
considered as the cognitive brain region per excellence [25, 26], there is growing 
evidence suggesting that DLPFC plays an important role in emotional regulation 
and motivated behavior [27–32].

3. Physiological overlapping between emotions and decision-making

When someone has to choose between doing something or not, he balances the 
immediate reward of doing it as well as the risk of incurring future negative conse-
quences. This fact is known as the concept of willpower, which involves two brain 
systems’ activation: the impulsive system and the reflective system [33] (see Figure 1). 
According to that, the decision-making process will mainly depend on neural sub-
strates, which are affected by emotions because of the modulation that feelings make 
on neurotransmitter systems.

Main structures involved in the impulsive system are amygdala and striatum 
[33], which are the structures involved in short lived and very quick responses 
[34]. As we explained above, amygdala is responsible for attributing affective or 
emotional value to stimuli perceived evoked through hypothalamus and autonomic 
brainstem nuclei, which produce changes in internal milieu and visceral structures 
(e.g., striatum and periaqueductal gray) [35]. Amygdala plays a role in emotional 
decision-making, even in stimuli with an affective value learned by experience 
(e.g., money or drugs). It has been shown that autonomic response to the gain or 
loss of important amounts of money depends on the amygdala integrity [1]. In the 
same line, in addicts, it has been show an exacerbated autonomic response similar to 
monetary gains [36], which could be related to abnormal activity in the amygdala-
ventral striatum system that probably would result in a heightened reward percep-
tion of the stimuli [37].
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In contrast, the reflective system involves hippocampus, insula, AC, and PFC 
structures (ventromedial prefrontal cortex—VMPC, lateral orbitofrontal, inferior 
frontal gyrus, and DLPFC) [33]. The VMPC is crucial to induce affective states 
from recall to imagination, because it is responsible to reactivate the pattern of the 
affective state experienced in the past of reward or punishment that was developed 
from the brainstem nuclei [35] and to which the brain preserves the neural pattern [1]. 
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in decision -making in patients with right parietal damage [1] and in people with 
functional abnormalities (Erns and Paulus, 2005), including the insula and somato-
sensory cortex, have been observed. Same difficulties in decision-making have been 
observed in patients with damage on DLPFC (Clark, Cools and Robbins, 2004). For 
these reasons, it can be concluded that the decision-making process depends directly 
on the correct functioning of other brain systems involved in memory and emotional 
regulation [33]. This neural overlapping suggests a functional interconnection 
between memory, emotions, and decision-making cognitive processes, being all con-
nections between these brain systems are located in VMPC [1] (Clark et al., 2004).

In line with those exposed above, Rolls [38] highlights the importance of emo-
tions in decision-making processes giving the fact that the resulting behavior of a 
decision is the consequence of two brain systems (see Figure 2). On the one hand, 
the emotional system is responsible for the behavior directed to reward or avoidance 
of punishment in terms of aptitude to natural selection [39–41]. OFC and amygdala 
have been related to the reward process [39], giving a reward/affective value of the 
stimulus processed firstly by sensorial main structures (see Figure 2). In contrast, the 
cognitive system depends on the frontoparietal network and responds to declarative 
knowledge and explicit goals [38]. The main contribution of Rolls [38, 39] was the 
stablishment of the role of lateral PFC, which is considered the hub of modulation of 
emotion circuity able to bias our behavior and conduct it agreeing to our explicit goals.

Figure 1. 
Diagram from key structures involved in the impulsive (red) and reflective system (blue). A: amygdala, 
VMPC: ventromedial prefrontal cortex, AC: anterior cingulate, DLPC: dorsolateral prefrontal cortex, hip: 
hippocampus, DA: dopamine, and 5-HT: serotonin. Extracted from Ref. [33].
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4. Serotonin as key neurotransmitter in emotional decision-making

Why is serotonin the hub of decision-making? Considering the neural correla-
tion explained above which regulates emotions and decision-making, the following 
question to consider is which neurotransmitter regulates these networks.

Neuroanatomical studies described the brain regions mainly regulated by 
serotonin. It has been stated that serotoninergic neurons are located mainly in 
the brainstem raphe nuclei [42] and project to numerous cortical and subcortical 
regions. The innervation of serotoninergic neuron from this area projects to the 
PFC, amygdala, and NA as well as to the ventral tegmental area (VTA), which have 
been related to reward processes, emotions, and decision-making [13, 14, 43]. 
Interestingly, the medial areas from PFC play a top-down regulation from these 
serotoninergic regions acting as a self-feedback regulation mechanism [44]. But 
there is a big amount of brain regions sensible to the serotonin neurotransmitter, 
the effect of which depends on the receptor located in the region. Specifically, 
5-HT1A receptors are found mainly at hippocampus, hypothalamus, and septum 

Figure 2. 
Schematic diagram showing some of the connections of the taste, olfactory, somatosensory, and visual pathways 
in the brain. V1, primary visual (striate) cortex; V2 and V4, further cortical visual areas. PFC, prefrontal 
cortex. VPL, ventroposterolateral nucleus of the thalamus, which conveys somatosensory information to the 
primary somatosensory cortex (areas 1–3). VPMpc, ventro-postero-medial nucleus pars parvocellularis of the 
thalamus, which conveys the taste information to the primary taste cortex. Pregen Cing, pregenual cingulate 
cortex. For the purpose of description, the stages can be described as Tier 1, representing what object is present 
independently of reward value; Tier 2 in which reward value is represented; and Tier 3 in which decisions 
between stimuli of different values are taken, and in which the value is interfaced to behavioral output systems. 
Extracted from Rolls [39].
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which are part of the brain networks suggested as part of the different ways of 
decision-making process [45]. In contrast, 5-HT1B receptors are found mainly on 
deep subcortical structures as globus pallidus, substantia nigra, ventral pallidum, 
and dorsal subiculum [46, 47]. The 5-HT2A receptors from medial PFC are located 
practically exclusively on dendrites of local neuron circuits and spines of pyramidal 
neurons [48]. Moreover, 5-HT2A receptors can be found on amygdala, hippocam-
pus, and frontal, piriform and entorhinal cortices, as it happens with 5-HT2C [49]. 
Finally, 5-HT6 receptors are mainly expressed on the cerebral cortex, NA, striatum, 
and hippocampus [50].

Apart from neuroanatomical evidence highlighting the sensitivity from brain 
structures related to emotional processing and decision-making processes, one of 
the most important evidence of the key role of serotonin in these processes is using 
drugs to regulate serotonin release [51]. For example, the use of serotonin reuptake 
inhibitors (SSRIs) is one of the most important antidepressants used in depression 
and obsessive compulsive disorder [52, 53]. Interestingly, there are evidence that 
SSRI treatment, being effective reducing depressive symptom, improves decision-
making and the sensitivity to positive feedback [54]. In this line, serotonin helps 
to predict future punishment [55] and affects the process of positive stimuli [54]. 
Increasing serotonin levels can block the uptake of serotonin released in synaptic 
space using, for example, SSRIs. These drugs, applied acutely, increase serotonin 
concentration in terminal regions, as well as reduce serotonin concentrations in 
raphe nuclei due to the activate 5-HT1A receptor [56, 57]. Although these drugs have 
been considered one of the most efficient ways to increase serotonin levels, it has 
been observed negative effects on brain development when they have been used 
in young individuals [58], and to several alterations of the balance of other neu-
rotransmitter systems [59].

Interestingly, there is a big amount of studies interested on genetic basis of 
serotonin, mood disorders, and cognitive functioning. Along the different genetic 
studies done about serotonin, it can be highlighted the role of 5-HTTLPR s-allele, 
which has been strongly related to anxiety traits, poor SSRI treatment response and 
increase of prefrontal activity [60]. C(−1019)G 5-HT1A polymorphism increases 
the risk of depressive disorder as well as reduces the efficacy of SSRI drug treatment 
[61]. And in the case of G-697C, polymorphism from 5-HT2C is related to suicide 
[62]. Regarding 5-HT3A and 5-HT3B, which show a large variety of polymorphisms, 
they have been related to major depressive disorder [63].

Regardless of the evidence showed till now, recent studies are still trying to 
clarify the role of serotonin in the decision-making process. In fact, decision-
making should be considered as a complex sequence of different superior process, 
making difficult to deeply understand the role of serotonin in each phase of brain 
subtasks that involves the decision-making process. In fact, the main subprocesses 
of decision-making with serotonin that has been considered key moderator are 
reversal learning, attentional set shifting, reinforce devaluation, delay discounting, 
and response inhibition (see [51]). In fact, Homberg [51] concluded that sero-
tonin acts as an integrating internal and external information, affecting cognitive 
functioning: when serotonin is high, there is a high vigilance behavior increasing 
therefore the top-down PFC control which leads to an improved reversal learning, 
attentional set shifting, and response inhibition meanwhile decreases delay dis-
counting. In contrast, when serotonin is low, the top-down PFC is low too leading to 
an impaired reversal learning, reduced attentional set shifting as well as decreased 
response inhibition; meanwhile, delay discounting turns high. In conclusion, 
serotonin regulation affects brain region functioning involved in the subtask, which 
depends on the decision-making process.
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which are part of the brain networks suggested as part of the different ways of 
decision-making process [45]. In contrast, 5-HT1B receptors are found mainly on 
deep subcortical structures as globus pallidus, substantia nigra, ventral pallidum, 
and dorsal subiculum [46, 47]. The 5-HT2A receptors from medial PFC are located 
practically exclusively on dendrites of local neuron circuits and spines of pyramidal 
neurons [48]. Moreover, 5-HT2A receptors can be found on amygdala, hippocam-
pus, and frontal, piriform and entorhinal cortices, as it happens with 5-HT2C [49]. 
Finally, 5-HT6 receptors are mainly expressed on the cerebral cortex, NA, striatum, 
and hippocampus [50].

Apart from neuroanatomical evidence highlighting the sensitivity from brain 
structures related to emotional processing and decision-making processes, one of 
the most important evidence of the key role of serotonin in these processes is using 
drugs to regulate serotonin release [51]. For example, the use of serotonin reuptake 
inhibitors (SSRIs) is one of the most important antidepressants used in depression 
and obsessive compulsive disorder [52, 53]. Interestingly, there are evidence that 
SSRI treatment, being effective reducing depressive symptom, improves decision-
making and the sensitivity to positive feedback [54]. In this line, serotonin helps 
to predict future punishment [55] and affects the process of positive stimuli [54]. 
Increasing serotonin levels can block the uptake of serotonin released in synaptic 
space using, for example, SSRIs. These drugs, applied acutely, increase serotonin 
concentration in terminal regions, as well as reduce serotonin concentrations in 
raphe nuclei due to the activate 5-HT1A receptor [56, 57]. Although these drugs have 
been considered one of the most efficient ways to increase serotonin levels, it has 
been observed negative effects on brain development when they have been used 
in young individuals [58], and to several alterations of the balance of other neu-
rotransmitter systems [59].

Interestingly, there is a big amount of studies interested on genetic basis of 
serotonin, mood disorders, and cognitive functioning. Along the different genetic 
studies done about serotonin, it can be highlighted the role of 5-HTTLPR s-allele, 
which has been strongly related to anxiety traits, poor SSRI treatment response and 
increase of prefrontal activity [60]. C(−1019)G 5-HT1A polymorphism increases 
the risk of depressive disorder as well as reduces the efficacy of SSRI drug treatment 
[61]. And in the case of G-697C, polymorphism from 5-HT2C is related to suicide 
[62]. Regarding 5-HT3A and 5-HT3B, which show a large variety of polymorphisms, 
they have been related to major depressive disorder [63].

Regardless of the evidence showed till now, recent studies are still trying to 
clarify the role of serotonin in the decision-making process. In fact, decision-
making should be considered as a complex sequence of different superior process, 
making difficult to deeply understand the role of serotonin in each phase of brain 
subtasks that involves the decision-making process. In fact, the main subprocesses 
of decision-making with serotonin that has been considered key moderator are 
reversal learning, attentional set shifting, reinforce devaluation, delay discounting, 
and response inhibition (see [51]). In fact, Homberg [51] concluded that sero-
tonin acts as an integrating internal and external information, affecting cognitive 
functioning: when serotonin is high, there is a high vigilance behavior increasing 
therefore the top-down PFC control which leads to an improved reversal learning, 
attentional set shifting, and response inhibition meanwhile decreases delay dis-
counting. In contrast, when serotonin is low, the top-down PFC is low too leading to 
an impaired reversal learning, reduced attentional set shifting as well as decreased 
response inhibition; meanwhile, delay discounting turns high. In conclusion, 
serotonin regulation affects brain region functioning involved in the subtask, which 
depends on the decision-making process.
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Abstract

Serotonin (5-HT) is a neurotransmitter that has important functions such as the 
physiological regulation of hemostasis, blood clotting, bone metabolism, cardiovas-
cular growth, contractile activity and gastrointestinal motility, renal function, and 
stress and sexual behavior, among others. In this review, we consider the potential 
of 5-HT to contribute to the development of various pathological conditions, 
including metabolic, vascular, and nervous disorders in horses. The values of 5-HT 
in circulation are modified under common pathological conditions. Thus, laminitis, 
endotoxemia, surgical cramps, recurrent airway obstruction, Cushing’s syndrome, 
central fatigue, and certain behavioral alterations such as stereotypes and other 
acute or chronic conditions can cause increased levels of 5-HT.

Keywords: horse, pathology, plasma serotonin

1. Introduction

Serotonin (5-hydroxytryptamine, 5-HT) is an important neurocrine messenger 
that is synthesized from tryptophan (TRP) by tryptophan hydroxilase in the brain 
and mastocytes and enterochromaffin (EC) cells in the gastrointestinal (GI) tract 
[1]. TRP is able to cross the blood-brain barrier and metabolize into 5-HT in the 
raphe nuclei within the brain stem. In the intestinal tract, 5-HT is produced by EC 
and to a lesser extent by serotonergic neurons and released upon mucosal stimula-
tion. The synthesis of 5-HT is identical in the central nervous system (CNS) and in 
the gut, where TRP is first converted to 5-hydroxytryptophan (5-HTP) via trypto-
phan hydroxylase (TPH), the rate-limiting enzyme in the biosynthesis of enzyme. 
5-HT is eliminated from the interstitium by 5-HT transporters on enterocytes 
and neurons; 5-HT overflow from the gut reaches the intestinal lumen and portal 
circulation. In the circulation, it is quickly removed from the plasma by uptake into 
platelets (PLTs) or metabolized by monoamine oxidase (MAO) into 5-hydroxy-
indoleacetic acid (5-HIAA) in hepatic and lung endothelial cells. Plasma 5-HT is 
quickly transported into the PLTs via 5-HT reuptake transporter (5-HT transporter; 
SERT) on the PLT membrane. PLTs accumulate, store, and release 5-HT in an analo-
gous manner to central serotoninergic synaptosomes. The free plasma 5-HT exerts 
important systemic functions, modulating PLT aggregation, and has been reported 
to be also involved in vasomotor function [1, 2].

In GI tract, 5-HT interacts with receptors on afferent neurons, initiating peri-
staltic, secretion, and secretory reflexes. On the other hand, 5-HT induces smooth 
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1. Introduction

Serotonin (5-hydroxytryptamine, 5-HT) is an important neurocrine messenger 
that is synthesized from tryptophan (TRP) by tryptophan hydroxilase in the brain 
and mastocytes and enterochromaffin (EC) cells in the gastrointestinal (GI) tract 
[1]. TRP is able to cross the blood-brain barrier and metabolize into 5-HT in the 
raphe nuclei within the brain stem. In the intestinal tract, 5-HT is produced by EC 
and to a lesser extent by serotonergic neurons and released upon mucosal stimula-
tion. The synthesis of 5-HT is identical in the central nervous system (CNS) and in 
the gut, where TRP is first converted to 5-hydroxytryptophan (5-HTP) via trypto-
phan hydroxylase (TPH), the rate-limiting enzyme in the biosynthesis of enzyme. 
5-HT is eliminated from the interstitium by 5-HT transporters on enterocytes 
and neurons; 5-HT overflow from the gut reaches the intestinal lumen and portal 
circulation. In the circulation, it is quickly removed from the plasma by uptake into 
platelets (PLTs) or metabolized by monoamine oxidase (MAO) into 5-hydroxy-
indoleacetic acid (5-HIAA) in hepatic and lung endothelial cells. Plasma 5-HT is 
quickly transported into the PLTs via 5-HT reuptake transporter (5-HT transporter; 
SERT) on the PLT membrane. PLTs accumulate, store, and release 5-HT in an analo-
gous manner to central serotoninergic synaptosomes. The free plasma 5-HT exerts 
important systemic functions, modulating PLT aggregation, and has been reported 
to be also involved in vasomotor function [1, 2].

In GI tract, 5-HT interacts with receptors on afferent neurons, initiating peri-
staltic, secretion, and secretory reflexes. On the other hand, 5-HT induces smooth 
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muscle cell contraction and proliferation but stimulates endothelial cells to release 
vasodilating substances and acts as a “helper agonist” of PLT aggregation [2, 3].

Measurement of 5-HT in whole blood gives a reasonable approximation of 5-HT 
in PLTs [4], and the free 5-HT/whole blood-5-HT (f-5HT/WB-5-HT) ratio may be a 
marker of PLT activation [5]. The concentration of free 5-HT is typically measured 
in PLT-poor plasma (PPP), produced by prolonged or high-speed centrifugation of 
plasma and containing <10,000 PLTs/μl [6]. Several researchers reported PPP 5-HT 
values in healthy horses range from 2.5 ng/ml to 90 ng/ml, with a majority varying 
between 3 ng/ml and 30 ng/ml [7–16]. Plasma 5-HT is the fraction which shows the 
equilibrium state between synthesis by EC cells, the inactivation by liver and lung 
by MAO and PLT uptake.

5-HT plasma concentrations in horses are subject to physiological variations 
such as age [17, 18], exercise [7–9], stress [19], seasonal, circadian and nycthemeral 
rhythms [15, 20], altitude [21], reproductive status [22], and type of anticoagulant 
and laboratory technique [23–25]. In addition, these factors also influence the 
analytical results of this neurotransmitter. Even in healthy horses, reported refer-
ence values for 5-HT are not consistent, which hampers further research into the 
role of 5-HT in equine diseases. One possible explanation for this inconsistency is 
the use of different biological samples and analytical methods for 5-HT determina-
tion. Indeed, to determine the concentrations of 5-HT in whole blood high-pressure 
liquid chromatography (HPLC) [7] and in serum, commercially available enzyme-
linked immunosorbent assays (ELISA) or radioimmunoassays (RIAs) [19] have 
been used. Torfs et al. [24] showed that for accurate determination of plasma levels 
of 5-HT, it is essential to use PPP. It is believed that 5-HT in PPP reflects the amount 
of 5-HT synthesized and recently secreted in EC cells. Although ELISA [23] and 
HPLC [18, 21] have been used, the tandem chromatographic mass spectrometry 
(LC-MS/MS) method is suitable for determining the plasma reference values of 
5-HT and analyzing changes in 5-HT associated with pathological conditions.

2. Role of serotonin in the equine clinic

In horses, changes in 5-HT levels are associated with gastrointestinal pathologies 
such as ileus, colic or endotoxemia, vascular dysfunctions such as digital hypoper-
fusion causing laminitis, recurrent airway obstruction and endocrine disruption 
such as intermediate equine pituitary dysfunction (PPID) or Cushing syndrome, 
and behavioral alterations such as stereotypes [26, 27].

2.1 Gastrointestinal diseases: ileus, colic, and endotoxemia

In the intestine, there are three types of cells that produce 5-HT, such as immune 
cells, nerve cells and EC cells [26]. Free plasma 5-HT concentration is a potential 
predictive parameter for postoperative ileus, since it may reflect intestinal integrity, 
as well as the circulatory effects associated with inflammation or endotoxemia. 
Therefore, 5-HT quantitation might be an aid in prognosticating the outcome in 
horses with postoperative colic. The knowledge of plasma 5-HT changes in colic 
horses is also important in the quest for an effective treatment for ileus, since 
certain classes of prokinetic drugs target 5-HT receptors [26]. A risk of receptor 
desensitization [27] might exist when these drugs are used in patients with already 
elevated 5-HT levels.

5-HT contractile receptors have been identified in the longitudinal and circular 
layers of the smooth muscle [28] and myenteric neurons of descending colon, ileum 
and submucosal neurons of ileum, and duodenum in horses [29, 30], in which 5-HT 
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exerts local actions, causing the activation of intrinsic and extrinsic afferent neu-
rons. This initiates secretory and peristaltic responses to transmit the information to 
the CNS [27]. While the interaction of 5-HT with 5-HT2, 5-HT3, and 5-HT4 receptors 
stimulates contractibility, 5-HT1 and 5-HT7 receptors induce relaxing effects in the 
GI tract [31]. Among these types of receptors, 5-HT4 exerts important control over 
intestinal motility. Indeed, a prokinetic effect occurs following the administration 
of 5-HT4 agonists, such as Tegaserod and Mosapride [32].

In horses with intestinal hypomotility, the agonist of 5-HT4 receptor 
Prucalopride can increase motor contractility of the duodenum, cecum, and colon, 
30–90 minutes after oral administration. This motor activity is maximal in the 
duodenum, with a minimal increase in the cecum and left colon related with other 
intestinal segments [33]. Tegaserod is other selective agonist of 5-HT4 receptor 
that induces increase in the frequency and amplitude of contractions in equine 
ileum and pelvic flexion [34], speeding up GI transit time and increases frequency 
of bowel sounds and defecation [29]. In this way, Tegaserod can offer therapeutic 
potential in horses suffering from impaction or paralytic ileus. Cisapride is an 
indirect cholinergic prokinetic agent that acts by promoting the release of acetyl-
choline from intramural nerve terminals (myenteric plexus) through stimulation 
of 5-HT4 receptors [35]. Mosapride is other selective agonist of 5-HT4 receptors. 
The use of this agonist improves gastric, jejunal, and cecal motility in horses [36]. 
A disadvantage of this medication is the oral administration route. This complicates 
the use in horses with postoperative ileus. Unfortunately, the availability of this 
drug is also limited. On the other hand, Tegaserod with a higher risk of cardiac 
events in humans has been suspected (as for cisapride), its availability is limited, 
as well as its application in equine practice, explaining the lack of more clinical 
reports. This drug is a potent dopamine D2 receptor antagonist, a moderate 5-HT3 
receptor antagonist, and 5-HT4 receptor agonist [29] that increases the contractility 
of smooth muscle [37] and improved in vivo motility of the jejunum [36].

The final effects of 5-HT in the intestine will depend on plasma concentrations 
and the balance between activation and desensitization of these receptors. The 
concentrations of 5-HT in the intestinal mucous membrane and its association with 
postoperative bowel recovery may better reflect the net effects of 5-HT on intestinal 
motility [38].

5-HT is a very potent proinflammatory, vasoconstrictor, and immunomodula-
tory agent. Although Delesalle et al. [11] reported an increase in plasma concentra-
tions of 5-HT in horses with intestinal strangulation, Ayala et al. [19] showed a 
decrease in serum concentration of 5-HT in horses with acute abdominal pain.

Several authors have observed higher concentrations of 5-HT after ischemia-
reperfusion in the peritoneal fluid intestinal lumen and mesenteric, portal, and 
hepatic veins [11, 39]. Increased plasma of 5-HT can have important consequences 
in colic horses. It has been shown in vitro and in vivo that 5-HT is an important and 
very powerful vasoconstrictor agent [16]. The accumulation of 5-HT in the systemic 
circulation of horses that have colic may reinforce continuous intestinal ischemia. 
Both local lesions in the intestinal wall and the associated inflammatory and endo-
toxemic systemic reactions promote the development of ileus. The concentration 
of free 5-HT in plasma is a possible predictive parameter in cases of postoperative 
ileus, as it may reflect the integrity of the intestine, as well as the circulatory effects 
associated with inflammation or endotoxemia. For this reason, the quantification 
of 5-HT in horses could be an important tool to predict postsurgical evolution as a 
consequence of colic [26, 40].

Coagulation of circulating PLTs, as well as EC from necrotizing intestinal 
segments, could serve as a source of 5-HT. In horses, it is argued that intestinal 
ischemia makes the mucosa more permeable. This event leads to an important 
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muscle cell contraction and proliferation but stimulates endothelial cells to release 
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rhythms [15, 20], altitude [21], reproductive status [22], and type of anticoagulant 
and laboratory technique [23–25]. In addition, these factors also influence the 
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in colic horses. It has been shown in vitro and in vivo that 5-HT is an important and 
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Both local lesions in the intestinal wall and the associated inflammatory and endo-
toxemic systemic reactions promote the development of ileus. The concentration 
of free 5-HT in plasma is a possible predictive parameter in cases of postoperative 
ileus, as it may reflect the integrity of the intestine, as well as the circulatory effects 
associated with inflammation or endotoxemia. For this reason, the quantification 
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translocation of endotoxins and amines from the diet, among which 5-HT passes 
from intestinal contents to systemic circulation [28]. Indeed, Davis et al. [41] 
showed liver lesions in horses suffering from proximal duodenitis-jejunitis. In 
addition to the lesion caused by the ascending bile duct infection, these authors 
also propose the absorption of endotoxins or inflammatory mediators of portal 
circulation. In addition, hepatic hypoxia resulting from systemic inflammation and 
endotoxemic shock may be possible causes of liver injury.

Intestinal microorganisms are also important for the 5-HT synthesis. Yano 
et al. [42] estimated that 90% of peripheral 5-HT is produced by the intestinal 
microbiota. These authors found that in germ-free mice, the production of 5-HT 
was approximately 60% less in comparison to mice with normal intestinal bacteria. 
Indeed, when bacterial colonies were restored in the intestines of germ-free mice, 
5-HT levels are recovered. Several metabolic byproducts of the intestinal microbiota 
are controlled by the mixture of spore-forming bacteria acting on EC to alter 5-HT 
production. However, bacteria are capable to produce 5-HT on their own. In fact, 
Lactobacillus spp. produce acetylcholine and GABA; Bifidobacterium spp. produce 
GABA, Escherichia produce norepinephrine, 5-HT, and dopamine; and Streptococcus 
and Enterococcus produce 5-HT. Bacillus species have also been shown to produce 
norepinephrine and dopamine [43].

Torfs et al. [24] showed that the plasma concentrations of 5-HT are significantly 
lower in horses with small bowel surgical colic compared to healthy animals. In 
addition, it was demonstrated that 5-HT concentrations remained low until at least 
the first morning after surgery. A previous study on horses with signs of acute colic 
showed significantly lower concentrations of 5-HT compared to healthy ones [19]. 
However, this earlier study focused on serum concentration of 5-HT used the ELISA 
method of analysis. This situation complicates the comparison of these results with 
the current ones. In contrast to these achievements, Delesalle et al. [11] indicated 
an increase in plasma concentrations of 5-HT, measured by HPLC, in a small group 
of horses undergoing small bowel surgery. In addition to the analytical differences 
between these studies, there are multiple possible physiological and pathological 
explanations for variations in the results obtained.

2.2 Vascular dysfunctions: Laminitis

The GI flora produces relatively high concentrations of dietary amines by 
fermenting the consumed amino acids [44, 45]. It is thought that the link between 
the GI system and the equine foot occurs through dietary amines.

The bacteria responsible for the fermentation of carbohydrates produce enzymes 
(amino acid decarboxylase) that convert free amino acids to monoamines. Then, 
the fermentation of large amounts of carbohydrates in the large intestine is associ-
ated with a greater number of Gram-positive bacteria (Streptococci and Lactobacilli) 
and elevated production of dietary amines [12]. These bacteria increase in the 
production of lactate, which is responsible for the decrease in intraluminal pH caus-
ing death of Gram-negative bacteria and therefore an increase in endotoxin release 
(lipopolysaccharide, LPS). Tryptamine is the most potent amine in the cecum. It 
causes vasoconstriction both in vitro and in vivo through direct activation of seroto-
nergic receptors and 5-HT displacement of PLTs. Monoamines found in the horse’s 
cecum could potentially induce hemodynamic disturbances in the hoof resulting in 
lamellar ischemia and therefore laminitis [46–50]. Besides, these monoamines pres-
ent in the cecum can also be detected at much lower concentrations in blood plasma.

Leukocytes can be indirectly activated by PLTs and mainly by LPS. Therefore, 
endotoxin may contribute to the initiation of early inflammatory changes observed 
in experimental models of acute laminitis [13]. This may occur because the amines 
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are able to mimic and potentiate the effects of the biogenic amines (5-HT, epi-
nephrine, norepinephrine, and dopamine) in the circulation. Gut-derived amines 
mimic the actions of the endogenous biogenic amines by displacing 5-HT from PLTs 
or norepinephrine from sympathetic nerve ending or by directly activating the 
receptors for these amines on the vasculature [49]. The potentiation of the action 
of endogenous amines is produced by two processes: inhibition of absorption in 
endothelial cells and PLTs [47, 48] or by competition between amines derived from 
the intestines and endogenous amines by the metabolism of the enzyme amine 
oxidase [12, 47, 48].

Dietary amines are similar to substances normally produced by the body, 
including catecholamines and 5-HT. Since 5-HT is a potent vasoconstrictor that is 
mainly stored in PLTs, it helps to maintain low plasma concentrations that reduce its 
effects. Bailey et al. [46] reported that the absorption of 5-HT by PLTs is a saturable 
process in horses. The most efficient way to work is at substrate concentrations 
below the micromole. The noncompetitive inhibition of 5-HT absorption by other 
natural monoamines may result in increased plasma concentrations of 5-HT and 
endotoxin release. The amines present in the diet inhibit the uptake of 5-HT from 
the PLTs. As a result, plasma concentration of 5-HT would increase above the level 
at which digital vasoconstriction occurs [44, 51]. However, other peripheral blood 
vessels are unaffected, since digital vessels are much more sensitive to the vaso-
constriction effects of 5-HT [52, 53]. Dietary amines can also cause digital vaso-
constriction directly [49]. The overall result is the digital ischemia and subsequent 
reperfusion, which could lead to the activation of metalloproteinases.

Endotoxins act as a mechanism that triggers laminitis. These substances activate 
the coagulation cascade directly through the Hageman factor (factor XII, in the 
intrinsic coagulation pathway). They are called the contact factor because the 
activation occurs by contact with nonendothelial and foreign surfaces. In addition, 
endotoxins are the initial stage of intrinsic plasma coagulation. They also cause 
damage to endothelial cells and favor the addition of PLTs, thereby establishing a 
blood profile compatible with disseminated intravascular coagulation (DIC). As a 
result, peripheral vasoconstriction initially results in decreased capillary perfusion 
of the hoof with some degree of ischemia [47, 48].

The aggregation of PLTs and the formation of microthrombi in the capillaries of 
the hull contribute to maintain vascular occlusion ischemia. In addition, a potent 
vasoconstrictor such as thromboxane A2 is released from PLTs, which adds to 
increase the process. At the same time, the inflammatory response begins with the 
release of autacoids such as histamine, 5-HT, bradykinin, prostanoids, leukotrienes, 
and interleukin 1. Histamine plays a very important role in acute inflammation. 
It has a vasodilatory action on arterioles, but the role in inflammation is more 
important, since it improves the action of other mediators such as histamine and 
bradykinin. This results in arteriolar dilation, increased capillary permeability, and 
hyperalgesia. Leukotriene B4 is also involved in the passage of leukocytes to inflam-
matory exudate [16].

The relationship between the appearance of digital hypoperfusion and increases 
in plasma concentration of 5-HT is consistent. This is because PLTs-derived media-
tors are associated with LPS-induced laminitis. These experimental data support 
the use of antiPLT therapy in the prevention of laminitis related to endotoxemic 
diseases [16].

2.3 Endocrine diseases: pituitary pars intermedia dysfunction

Pituitary pars intermedia dysfunction (PPID) or Cushing’s disease is character-
ized by hypertrophy and hyperplasia of the Pituitary Pars Intermedia and is argued 
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from intestinal contents to systemic circulation [28]. Indeed, Davis et al. [41] 
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GABA, Escherichia produce norepinephrine, 5-HT, and dopamine; and Streptococcus 
and Enterococcus produce 5-HT. Bacillus species have also been shown to produce 
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lower in horses with small bowel surgical colic compared to healthy animals. In 
addition, it was demonstrated that 5-HT concentrations remained low until at least 
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showed significantly lower concentrations of 5-HT compared to healthy ones [19]. 
However, this earlier study focused on serum concentration of 5-HT used the ELISA 
method of analysis. This situation complicates the comparison of these results with 
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(lipopolysaccharide, LPS). Tryptamine is the most potent amine in the cecum. It 
causes vasoconstriction both in vitro and in vivo through direct activation of seroto-
nergic receptors and 5-HT displacement of PLTs. Monoamines found in the horse’s 
cecum could potentially induce hemodynamic disturbances in the hoof resulting in 
lamellar ischemia and therefore laminitis [46–50]. Besides, these monoamines pres-
ent in the cecum can also be detected at much lower concentrations in blood plasma.

Leukocytes can be indirectly activated by PLTs and mainly by LPS. Therefore, 
endotoxin may contribute to the initiation of early inflammatory changes observed 
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the PLTs. As a result, plasma concentration of 5-HT would increase above the level 
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It has a vasodilatory action on arterioles, but the role in inflammation is more 
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in plasma concentration of 5-HT is consistent. This is because PLTs-derived media-
tors are associated with LPS-induced laminitis. These experimental data support 
the use of antiPLT therapy in the prevention of laminitis related to endotoxemic 
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ized by hypertrophy and hyperplasia of the Pituitary Pars Intermedia and is argued 
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to be due to a reduction in dopamine synthesis or degeneration of periventricular 
pituitary dopaminergic neurons [54]. PPID is more frequent in adult horses and 
result of a progressive loss of the neurotransmitter at central and peripheral level as 
result of the degeneration of the pineal gland [15].

The role of 5-HT in the regulation of the PPID it is not clear. Treatment of PPID 
in horse includes 5-HT antagonists [55], such as cyproheptadine. Antagonist of 
5-HT is potent secretagogue of ACTH in pituitary rat tissue, and it was used effec-
tively in human Cushing’s disease. Cyproheptadine decreases the 5-HT-induced 
stimulation to the pituitary pars intermedia, the synthesis of pro-opiomelano-
cortin (POMC), and finally, ACTH secretion. Cyproheptadine (0.25–0.5 mg/kg 
PO, SID, or BID) was used for the treatment of PPID result in an improvement in 
clinical status and normalization of laboratory parameters within 1–2 months of 
treatment initiation, being effective in 28–60% of cases [56]. However, similar 
improvements were achieved with improved nutrition, preventive care, and 
management alone [57].

Additionally, Bailey et al. [46] measured peripheral plasma concentrations of 
5-HT in summer, autumn, winter, and spring in clinically normal ponies and those 
predisposed to laminitis, and no significant differences were observed. Although 
light/dark differences were not investigated in the latter work, nycthemeral 
increases in serum 5-HT in the healthy, athletic horse have been reported [20]. 
Later, Haritou et al. [15] reported seasonal changes in circadian peripheral plasma 
concentrations of melatonin, 5-HT, dopamine, and cortisol in aged horses with 
PPID. Six horses and ponies with PPID were matched with six controls to test the 
hypothesis that aged horse responds differently to changes in season because of 
deficiency in melatonin production. They also examined the link between the 
presence or absence of the clinical signs of PPID and peripheral plasma concen-
tration of 5-HT, dopamine, and cortisol. Results showed that the 24-h pattern of 
plasma melatonin concentrations during the four seasons of the year was similar in 
both groups, indicating that impaired melatonin output is unlikely to play a role in 
PPID. However, 5-HT profiles were affected by season, with lower 5-HT detected 
in PPID horses in the summer and winter. Although the reasons for this reduc-
tion remain unknown, enhanced conversion of 5-HT to melatonin could account, 
at least in part, for the lowered circulating level. The total amount of dopamine 
released was dependent on season and markedly lower in PPID horses versus 
controls. These results implicate both serotonin and dopamine in the pathogenesis 
of the disease [15].

2.4 Behavioral alterations: stereotypes

Most frequently observed stereotypies in domestic horses are crib biting, weav-
ing, box walking, wind sucking, and wood chewing. However, there is no scientific 
consensus as to whether wood chewing is definitely a stereotypy [58]. More 
recently, some morphological variations of these stereotypic activities have also 
been identified as equine stereotypies, such as licking the environment, lip licking, 
sham chewing or teeth grinding, self-biting, and rubbing self, as well as locomotion 
stereotypies, including pawing, tail swishing, door kicking or box kicking, and head 
tossing/nodding [59]. The most common forms of equine stereotypies are within 
two general categories, oral and locomotion stereotypic behaviors.

The neurobiological consequences of equine stereotypies focus on neurotrans-
mitter systems, specifically the serotonergic and dopaminergic pathways [59, 60]. 
5-HT is implicated in the underlying pathology of stereotypies. Indeed, Lebelt et al. 
[61] found a trend for lower basal 5-HT levels in crib-biting compared to nonstereo-
typic horses, suggesting that the serotonergic system of crib-biters may differ from 
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that of noncrib biting horses (mean 201.5 vs. 414.3 nmol/l). The precise role of 5-HT 
in the development or maintenance of the behavior remains unclear however, and 
the results obtained by these authors have yet to be confirmed or refuted through 
additional experimental studies of the serotonergic system in crib-biting horses.

However, blood levels of 5-HT in horses with weaving is more than triple 
compared to healthy horses. Thus, 5-HT is recognized as the “happiness hormone” 
or “pleasure hormone” [62]. It can be assumed that during the demonstration of 
stereotypical disorder, horses are “happy,” and that repetitive disturbance is a means 
of increasing 5-HT levels in the blood and therefore the feeling of comfort [63].

Serotonin reuptake inhibitors (SRI) are a type of drug which acts as a reuptake 
inhibitor of the neurotransmitter serotonin (5-hydroxytryptamine (5-HT)) by 
blocking the action of the serotonin transporter (SERT). This in turn leads to 
increased extracellular concentrations of serotonin and, therefore, an increase in 
serotonergic neurotransmission. Although administration of SRIs drugs has been 
associated with the reduction of stereotypies, it was dubious if such medications 
decreased stereotypic behaviors due to general sedative effects or selectively influ-
enced stereotypic behavior. These uncertainties were due to general sedative effects 
or selective influence on the type of behavior. As previously expressed, the specific 
role of 5-HT in the development or maintenance of behavior remains uncertain  
[60, 61, 64, 65], and further studies are needed to provide a more accurate interpre-
tation of stereotypes.

Pharmacological preparations containing TRP are marketed worldwide as 
relaxing agents for treating excitable horses. The few studies in which TRP has been 
administered to horses suggest that low doses cause mild excitation. However, high 
doses reduce endurance capacity and cause acute hemolytic anemia when given 
orally due to the presence of a toxic metabolite in the intestine [65, 66]. Despite 
questions about its effectiveness, TRP is marketed as an equine sedative and is 
related to sedation, inhibition of aggression, fear, and stress.

Because TRP competes with other amino acids to bind to protein transport and 
cross the blood-brain barrier, researchers are now using a ratio of TRP with other 
large neutral amino acids (ANNALs) to estimate the production of 5-HT in the CNS 
[67]. Besides, previous researchers showed that the age, breed, and gender modify 
the response of serotoninergic system due to changes in dietary TRP [17, 68]. While 
all of these factors may play a role in the permeability of the blood-brain barrier, the 
effectiveness of supplemental TRP on 5-HT biosynthesis, it is also worth consider-
ing that these types of treatments may be most effective in horses with dysfunction-
ing serotoninergic system.

Although the safety of TRP doses should be confirmed, there is no evidence 
to suggest that a single dose is an effective analgesic in horses. In fact, given that 
TRP continues to be used as a tranquilizer, there is an urgent need for research to 
confirm its efficacy and establish a range of safe therapeutic doses. In the mean-
time, available data suggest that it would be unwise to rely on the TRP to calm the 
excitable horse. Instead, more efforts should be made to identify the underlying 
causes of excitability and explore other more appropriate nonpharmacological 
solutions. Indeed, when evaluating the use of calming supplements or drugs, it is 
important to consider the welfare of the horse. While calmative compounds may be 
beneficial in alleviating short-term stress and anxiety, the cause of such emotions 
should also be evaluated. Horses kept in unnatural environments, managed poorly, 
or asked to perform beyond their level of training may show signs of stress and 
anxiety. Chronic health issues, such as ulcers or lameness, may also be the culprit. 
Sedative drugs and supplements are often utilized to limit unwanted behaviors 
such as spooking, bolting, rearing, or bucking. Looking into the potential causes of 
unwanted behaviors should be the first step before owners turn to calming drugs or 
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to be due to a reduction in dopamine synthesis or degeneration of periventricular 
pituitary dopaminergic neurons [54]. PPID is more frequent in adult horses and 
result of a progressive loss of the neurotransmitter at central and peripheral level as 
result of the degeneration of the pineal gland [15].

The role of 5-HT in the regulation of the PPID it is not clear. Treatment of PPID 
in horse includes 5-HT antagonists [55], such as cyproheptadine. Antagonist of 
5-HT is potent secretagogue of ACTH in pituitary rat tissue, and it was used effec-
tively in human Cushing’s disease. Cyproheptadine decreases the 5-HT-induced 
stimulation to the pituitary pars intermedia, the synthesis of pro-opiomelano-
cortin (POMC), and finally, ACTH secretion. Cyproheptadine (0.25–0.5 mg/kg 
PO, SID, or BID) was used for the treatment of PPID result in an improvement in 
clinical status and normalization of laboratory parameters within 1–2 months of 
treatment initiation, being effective in 28–60% of cases [56]. However, similar 
improvements were achieved with improved nutrition, preventive care, and 
management alone [57].

Additionally, Bailey et al. [46] measured peripheral plasma concentrations of 
5-HT in summer, autumn, winter, and spring in clinically normal ponies and those 
predisposed to laminitis, and no significant differences were observed. Although 
light/dark differences were not investigated in the latter work, nycthemeral 
increases in serum 5-HT in the healthy, athletic horse have been reported [20]. 
Later, Haritou et al. [15] reported seasonal changes in circadian peripheral plasma 
concentrations of melatonin, 5-HT, dopamine, and cortisol in aged horses with 
PPID. Six horses and ponies with PPID were matched with six controls to test the 
hypothesis that aged horse responds differently to changes in season because of 
deficiency in melatonin production. They also examined the link between the 
presence or absence of the clinical signs of PPID and peripheral plasma concen-
tration of 5-HT, dopamine, and cortisol. Results showed that the 24-h pattern of 
plasma melatonin concentrations during the four seasons of the year was similar in 
both groups, indicating that impaired melatonin output is unlikely to play a role in 
PPID. However, 5-HT profiles were affected by season, with lower 5-HT detected 
in PPID horses in the summer and winter. Although the reasons for this reduc-
tion remain unknown, enhanced conversion of 5-HT to melatonin could account, 
at least in part, for the lowered circulating level. The total amount of dopamine 
released was dependent on season and markedly lower in PPID horses versus 
controls. These results implicate both serotonin and dopamine in the pathogenesis 
of the disease [15].

2.4 Behavioral alterations: stereotypes

Most frequently observed stereotypies in domestic horses are crib biting, weav-
ing, box walking, wind sucking, and wood chewing. However, there is no scientific 
consensus as to whether wood chewing is definitely a stereotypy [58]. More 
recently, some morphological variations of these stereotypic activities have also 
been identified as equine stereotypies, such as licking the environment, lip licking, 
sham chewing or teeth grinding, self-biting, and rubbing self, as well as locomotion 
stereotypies, including pawing, tail swishing, door kicking or box kicking, and head 
tossing/nodding [59]. The most common forms of equine stereotypies are within 
two general categories, oral and locomotion stereotypic behaviors.

The neurobiological consequences of equine stereotypies focus on neurotrans-
mitter systems, specifically the serotonergic and dopaminergic pathways [59, 60]. 
5-HT is implicated in the underlying pathology of stereotypies. Indeed, Lebelt et al. 
[61] found a trend for lower basal 5-HT levels in crib-biting compared to nonstereo-
typic horses, suggesting that the serotonergic system of crib-biters may differ from 
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that of noncrib biting horses (mean 201.5 vs. 414.3 nmol/l). The precise role of 5-HT 
in the development or maintenance of the behavior remains unclear however, and 
the results obtained by these authors have yet to be confirmed or refuted through 
additional experimental studies of the serotonergic system in crib-biting horses.

However, blood levels of 5-HT in horses with weaving is more than triple 
compared to healthy horses. Thus, 5-HT is recognized as the “happiness hormone” 
or “pleasure hormone” [62]. It can be assumed that during the demonstration of 
stereotypical disorder, horses are “happy,” and that repetitive disturbance is a means 
of increasing 5-HT levels in the blood and therefore the feeling of comfort [63].

Serotonin reuptake inhibitors (SRI) are a type of drug which acts as a reuptake 
inhibitor of the neurotransmitter serotonin (5-hydroxytryptamine (5-HT)) by 
blocking the action of the serotonin transporter (SERT). This in turn leads to 
increased extracellular concentrations of serotonin and, therefore, an increase in 
serotonergic neurotransmission. Although administration of SRIs drugs has been 
associated with the reduction of stereotypies, it was dubious if such medications 
decreased stereotypic behaviors due to general sedative effects or selectively influ-
enced stereotypic behavior. These uncertainties were due to general sedative effects 
or selective influence on the type of behavior. As previously expressed, the specific 
role of 5-HT in the development or maintenance of behavior remains uncertain  
[60, 61, 64, 65], and further studies are needed to provide a more accurate interpre-
tation of stereotypes.

Pharmacological preparations containing TRP are marketed worldwide as 
relaxing agents for treating excitable horses. The few studies in which TRP has been 
administered to horses suggest that low doses cause mild excitation. However, high 
doses reduce endurance capacity and cause acute hemolytic anemia when given 
orally due to the presence of a toxic metabolite in the intestine [65, 66]. Despite 
questions about its effectiveness, TRP is marketed as an equine sedative and is 
related to sedation, inhibition of aggression, fear, and stress.

Because TRP competes with other amino acids to bind to protein transport and 
cross the blood-brain barrier, researchers are now using a ratio of TRP with other 
large neutral amino acids (ANNALs) to estimate the production of 5-HT in the CNS 
[67]. Besides, previous researchers showed that the age, breed, and gender modify 
the response of serotoninergic system due to changes in dietary TRP [17, 68]. While 
all of these factors may play a role in the permeability of the blood-brain barrier, the 
effectiveness of supplemental TRP on 5-HT biosynthesis, it is also worth consider-
ing that these types of treatments may be most effective in horses with dysfunction-
ing serotoninergic system.

Although the safety of TRP doses should be confirmed, there is no evidence 
to suggest that a single dose is an effective analgesic in horses. In fact, given that 
TRP continues to be used as a tranquilizer, there is an urgent need for research to 
confirm its efficacy and establish a range of safe therapeutic doses. In the mean-
time, available data suggest that it would be unwise to rely on the TRP to calm the 
excitable horse. Instead, more efforts should be made to identify the underlying 
causes of excitability and explore other more appropriate nonpharmacological 
solutions. Indeed, when evaluating the use of calming supplements or drugs, it is 
important to consider the welfare of the horse. While calmative compounds may be 
beneficial in alleviating short-term stress and anxiety, the cause of such emotions 
should also be evaluated. Horses kept in unnatural environments, managed poorly, 
or asked to perform beyond their level of training may show signs of stress and 
anxiety. Chronic health issues, such as ulcers or lameness, may also be the culprit. 
Sedative drugs and supplements are often utilized to limit unwanted behaviors 
such as spooking, bolting, rearing, or bucking. Looking into the potential causes of 
unwanted behaviors should be the first step before owners turn to calming drugs or 
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supplements. Providing more training, turnout time, or treatment for an underly-
ing disease or condition could result in a more sustainable way to reduce a horse’s 
unwanted behaviors and could improve welfare for the animal [65].

Equine self-mutilation syndrome (ESMS) includes glancing or biting at the flank 
or pectoral areas, bucking, kicking, vocalizing, rubbing, spinning, or rolling. Eight 
flank-biting horses with ESMS were enrolled for a behavioral study, and the effects 
of drugs that either stimulate or inhibit central opioid, dopamine, norepineph-
rine, and 5-HT neurotransmitter systems were reported. Behaviors were recorded 
hourly during the study and were compared with those of a saline control baseline 
to determine whether there were significant differences among the treatments. 
The suppression of ESMS activities with Buspirone (0.5 mg/kg) suggests a role for 
serotonergic modulation of the behavior. However, the clomipramine, a preferential 
5-HT reuptake blocker, does not produce any significant effect on ESMS behavior in 
horses [69].

Horses with compulsive disorder may help the fluoxetine at dose of  
0.25–0.5 mg/kg/day PO. Fluxetine is a selective serotonin reuptake inhibitor (SSRI) 
that increases 5-HT levels within CNS by preventing the reuptake of 5-HT at level 
of the presynaptic neuron. This allows 5-HT to accumulate in the synaptic cleft and 
affect the postsynaptic neuron. While no cases of fluoxetine-induced colic have 
been reported in horses being treated for behavior problems and because there are 
many 5-HT receptors in the gut, it is advisable to begin administering the drug at 
the lowest dose and increase it gradually in horses that do not improve and have not 
exhibited adverse effects [70].

The ability to train and control horses is an important behavioral trait for the 
handling and training of animals. Hori et al. [71] inform that horses carrying allele 
A located at c. 709G > A had a lower capacity to be handled. These results provide 
the first evidence that a polymorphism in a 5-HT-related gene may affect the man-
agement of horses with a partially different sex-related effect.

2.5 Recurrent airway obstruction

Based on the results reported in humans, in which PLTs contribute to the patho-
genesis of allergic airway disease, Hammon et al. [14] compared PLT aggregation 
induced by the activating factor PLTs (PAF), thromboxane (Tx), plasma Tx, and 
5-hydroxytryptamine (5-HT) production in ponies with recurrent airway obstruc-
tion (RAO) before and after antigen exposure. Plasma 5-HT was significantly higher 
in ponies with RAO but did not increase more by exposure to the antigen. There 
were also no differences between the aggregation of PLTs induced by PAF or the 
production of Tx or plasma Tx before or after exposure. These evidences suggest 
that there may be a difference between 5-HT uptake of PLTs in RAO and normal 
ponies. However, they do not provide evidence of PLTs activation after exposure to 
the antigen. This bronchoconstriction can be mediated by 5-HT. However, the effect 
or pathway of 5-HT may be deactivated during the development of small airway 
disease [72].

2.6 Central fatigue

Accordingly, the synthesis and metabolism of 5-HT in the CNS increase in 
response to exercise [73]. Increased 5-HT concentration in the brain is associated 
with central fatigue markers, such as decreased motivation, lethargy, fatigue, or 
loss of motor coordination [74].

It has been shown that nutritional status can alter cerebral neurochemistry, 
especially carbohydrates and 5-HT [75]. Therefore, it has been hypothesized that 
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infusion of TRP may increase the ratio of fTrp (free TRP) and fTrp to BCAA while 
decreasing the resistance of endurance horses to treadmill. Therefore, central 
fatigue may limit resistance in horses, and by manipulating fTrp and BCAA, 
exercise capacity could be altered in a predictable way [76]. However, TRP infu-
sion results are consistent with the central fatigue hypothesis where an increase in 
plasma fTrp concentration is related to the early onset of fatigue during prolonged 
exercise [77]. Piccione et al. [20] reported that if exercise is performed at the 
time of the rhythmic acrophase of the TRP (18:45, 18:16), it is likely that exercise 
performed at the time of the acrophase of the TRP rhythm (18:45, 18:16) affects 
the onset of physiological fatigue, thus turning on the body’s exercise adaptation 
mechanisms in order to maintain better physical performance.

2.7 Other conditions

Virus of Borna’s disease (BDV) can enter into the brain and infect neurons, 
often the limbic system. It can also remain active for long periods of time in the 
CNS without generating neuronal lysis. The BDV virus is unique in the order of 
mononegavirals because it replicates in the cell nucleus. Alterations include falling, 
tremor, abnormal posture, hyperactivity or hypoactivity, increased aggression, and 
paralysis. In some rodent species, BDV can cause mild or asymptomatic symptoms, 
while in other animal species such as horses, it can cause severe CNS symptoms 
that often lead to death. In humans, a common treatment for psychiatric illnesses 
such as depression or anxiety disorders is the use of SSRIs. The function of these 
drugs is to increase extracellular 5-HT. Interestingly, there are viruses that can exert 
the opposite action and reduce levels of 5-HT and therefore theoretically have an 
opposite effect to SSRI [78].

Equine hepatic encephalopathy is caused by direct damage to the liver or by 
toxins derived from the intestine that overwhelm or evade this organ. These toxins 
act on the CNS, giving rise to signs of encephalopathy. Secondary hepatic encepha-
lopathy in horses occurs more often than liver failure. This may be due to megalo-
cytic liver disease caused by ingestion of plants containing pyrrolizidine alkaloid 
(Senecio, Crotalaria and Amsinckia), Theiler’s or Tyzzer’s disease, cholangiohepati-
tis, chronic active hepatitis, liver neoplasia, toxic liver disease, and portosystemic 
shunts [79]. Because the liver is incapacitated, normal detoxification activities 
cannot be performed in all these conditions. Therefore, toxins derived from IG 
enter the CNS through the bloodstream.

In horses, hyperammonemia has been linked to clinical signs of encephalopathy 
without evidence of liver disease, which promotes the formation of Alzheimer’s 
cells II [80]. It is also suggested that alteration of amino acid metabolism with 
upward regulation of aromatic amino acids and downward regulation of BCAA 
lead to direct neuronal inhibition secondary to effects on CNS. Alteration of gamma 
aminobutyric acid (GABA) and glutamate during liver failure plays an important 
role in the physiopathology of hepatic encephalopathy. Liver impairment leads to an 
increase in substances similar to endogenous benzodiazepines that inhibit neuronal 
excitation. Therefore, the most likely scenario is that there are multiple mechanisms 
working in synergy with each other to create signs of encephalopathy.

3. Conclusions

Serotonin is a neurotransmitter associated with important physiological, diges-
tive, and vascular functions of the central nervous system. This review describes 
the involvement of serotonin in the most common pathological processes of equine 
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supplements. Providing more training, turnout time, or treatment for an underly-
ing disease or condition could result in a more sustainable way to reduce a horse’s 
unwanted behaviors and could improve welfare for the animal [65].

Equine self-mutilation syndrome (ESMS) includes glancing or biting at the flank 
or pectoral areas, bucking, kicking, vocalizing, rubbing, spinning, or rolling. Eight 
flank-biting horses with ESMS were enrolled for a behavioral study, and the effects 
of drugs that either stimulate or inhibit central opioid, dopamine, norepineph-
rine, and 5-HT neurotransmitter systems were reported. Behaviors were recorded 
hourly during the study and were compared with those of a saline control baseline 
to determine whether there were significant differences among the treatments. 
The suppression of ESMS activities with Buspirone (0.5 mg/kg) suggests a role for 
serotonergic modulation of the behavior. However, the clomipramine, a preferential 
5-HT reuptake blocker, does not produce any significant effect on ESMS behavior in 
horses [69].

Horses with compulsive disorder may help the fluoxetine at dose of  
0.25–0.5 mg/kg/day PO. Fluxetine is a selective serotonin reuptake inhibitor (SSRI) 
that increases 5-HT levels within CNS by preventing the reuptake of 5-HT at level 
of the presynaptic neuron. This allows 5-HT to accumulate in the synaptic cleft and 
affect the postsynaptic neuron. While no cases of fluoxetine-induced colic have 
been reported in horses being treated for behavior problems and because there are 
many 5-HT receptors in the gut, it is advisable to begin administering the drug at 
the lowest dose and increase it gradually in horses that do not improve and have not 
exhibited adverse effects [70].

The ability to train and control horses is an important behavioral trait for the 
handling and training of animals. Hori et al. [71] inform that horses carrying allele 
A located at c. 709G > A had a lower capacity to be handled. These results provide 
the first evidence that a polymorphism in a 5-HT-related gene may affect the man-
agement of horses with a partially different sex-related effect.

2.5 Recurrent airway obstruction

Based on the results reported in humans, in which PLTs contribute to the patho-
genesis of allergic airway disease, Hammon et al. [14] compared PLT aggregation 
induced by the activating factor PLTs (PAF), thromboxane (Tx), plasma Tx, and 
5-hydroxytryptamine (5-HT) production in ponies with recurrent airway obstruc-
tion (RAO) before and after antigen exposure. Plasma 5-HT was significantly higher 
in ponies with RAO but did not increase more by exposure to the antigen. There 
were also no differences between the aggregation of PLTs induced by PAF or the 
production of Tx or plasma Tx before or after exposure. These evidences suggest 
that there may be a difference between 5-HT uptake of PLTs in RAO and normal 
ponies. However, they do not provide evidence of PLTs activation after exposure to 
the antigen. This bronchoconstriction can be mediated by 5-HT. However, the effect 
or pathway of 5-HT may be deactivated during the development of small airway 
disease [72].

2.6 Central fatigue

Accordingly, the synthesis and metabolism of 5-HT in the CNS increase in 
response to exercise [73]. Increased 5-HT concentration in the brain is associated 
with central fatigue markers, such as decreased motivation, lethargy, fatigue, or 
loss of motor coordination [74].

It has been shown that nutritional status can alter cerebral neurochemistry, 
especially carbohydrates and 5-HT [75]. Therefore, it has been hypothesized that 
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infusion of TRP may increase the ratio of fTrp (free TRP) and fTrp to BCAA while 
decreasing the resistance of endurance horses to treadmill. Therefore, central 
fatigue may limit resistance in horses, and by manipulating fTrp and BCAA, 
exercise capacity could be altered in a predictable way [76]. However, TRP infu-
sion results are consistent with the central fatigue hypothesis where an increase in 
plasma fTrp concentration is related to the early onset of fatigue during prolonged 
exercise [77]. Piccione et al. [20] reported that if exercise is performed at the 
time of the rhythmic acrophase of the TRP (18:45, 18:16), it is likely that exercise 
performed at the time of the acrophase of the TRP rhythm (18:45, 18:16) affects 
the onset of physiological fatigue, thus turning on the body’s exercise adaptation 
mechanisms in order to maintain better physical performance.

2.7 Other conditions

Virus of Borna’s disease (BDV) can enter into the brain and infect neurons, 
often the limbic system. It can also remain active for long periods of time in the 
CNS without generating neuronal lysis. The BDV virus is unique in the order of 
mononegavirals because it replicates in the cell nucleus. Alterations include falling, 
tremor, abnormal posture, hyperactivity or hypoactivity, increased aggression, and 
paralysis. In some rodent species, BDV can cause mild or asymptomatic symptoms, 
while in other animal species such as horses, it can cause severe CNS symptoms 
that often lead to death. In humans, a common treatment for psychiatric illnesses 
such as depression or anxiety disorders is the use of SSRIs. The function of these 
drugs is to increase extracellular 5-HT. Interestingly, there are viruses that can exert 
the opposite action and reduce levels of 5-HT and therefore theoretically have an 
opposite effect to SSRI [78].

Equine hepatic encephalopathy is caused by direct damage to the liver or by 
toxins derived from the intestine that overwhelm or evade this organ. These toxins 
act on the CNS, giving rise to signs of encephalopathy. Secondary hepatic encepha-
lopathy in horses occurs more often than liver failure. This may be due to megalo-
cytic liver disease caused by ingestion of plants containing pyrrolizidine alkaloid 
(Senecio, Crotalaria and Amsinckia), Theiler’s or Tyzzer’s disease, cholangiohepati-
tis, chronic active hepatitis, liver neoplasia, toxic liver disease, and portosystemic 
shunts [79]. Because the liver is incapacitated, normal detoxification activities 
cannot be performed in all these conditions. Therefore, toxins derived from IG 
enter the CNS through the bloodstream.

In horses, hyperammonemia has been linked to clinical signs of encephalopathy 
without evidence of liver disease, which promotes the formation of Alzheimer’s 
cells II [80]. It is also suggested that alteration of amino acid metabolism with 
upward regulation of aromatic amino acids and downward regulation of BCAA 
lead to direct neuronal inhibition secondary to effects on CNS. Alteration of gamma 
aminobutyric acid (GABA) and glutamate during liver failure plays an important 
role in the physiopathology of hepatic encephalopathy. Liver impairment leads to an 
increase in substances similar to endogenous benzodiazepines that inhibit neuronal 
excitation. Therefore, the most likely scenario is that there are multiple mechanisms 
working in synergy with each other to create signs of encephalopathy.

3. Conclusions

Serotonin is a neurotransmitter associated with important physiological, diges-
tive, and vascular functions of the central nervous system. This review describes 
the involvement of serotonin in the most common pathological processes of equine 
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to endocrine, vascular, or nervous disorders in the horse. Therefore, new additional 
studies are needed to continue showing the physiopathological mechanisms with 
implications of serotoninemia in other organs of the horse.
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clinic. Deficiencies or excesses in plasma serotonin concentrations may predispose 
to endocrine, vascular, or nervous disorders in the horse. Therefore, new additional 
studies are needed to continue showing the physiopathological mechanisms with 
implications of serotoninemia in other organs of the horse.
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