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Preface

This Edited Volume is a collection of reviewed and relevant research chapters,
concerning the developments within the Quantum Electronics. The book includes
scholarly contributions by various authors and edited by a group of experts in the
field. Each contribution comes as a separate chapter complete in itself but directly
related to the book’s topics and objectives. The book includes chapters dealing with
the topics: Photonic Quasicrystals for Filtering Application, Synthesis of Curved
Surface Plasmon Fields through Thin Metal Films in a Tandem Array, Localized
Excitation of Single Atom to a Rydberg State with Structured Laser Beam for
Quantum Information and Single-Atom Field-Effect Transistor. The target
audience comprises scholars and specialists in the field.
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Chapter 1

Photonic Quasicrystals for
Filtering Application
Youssef Trabelsi

Abstract

In this chapter, we study the properties of specific one dimensional photonic
quasicrystal (PQCs), in order to design an output multichannel filter. We calculate
the transmittance spectrum which exhibits a photonic band gap (PBG), based on
the Transfer Matrix Method (TMM) and the two-fluid model. We show that the
generalized Thue-Morse (GTM) and generalized Fibonacci GF(m, n) distributions
provide a stacking of similar output multichannel with zero transmission when
the input was a sharp resonance of peaks at given n ¼ 2pm where p, is a positive
integer. Also, we consider GTM configuration and we apply a deformation
y ¼ xhþ1 along the PQC filter, which enhanced the band width of each channel
with respect to the number of peaks inside the main transmittance. Here, the
coefficient h represents the deformation degree, x and y are thicknesses of the
layers before and after the deformation, respectively. This improves the charac-
teristics of PBG.

Keywords: hybrid quasiperiodic PC, superconducting materials, GTM sequence,
GF sequence, multichannel optical filters, deformed 1D photonic quasicrystals

1. Introduction

Photonic quasicrystals (PQCs) which are made of alternating dielectric and
superconductor layers intervene in numerous researches due to their interesting
optical properties [1–5]. This type of crystal is an artificial super lattice which is
built according to quasiperiodic sequences. It is considerably different than pho-
tonic crystals (PCs) since it is a non-periodic structure with perfect long-range
order and lack translational and it can be considered as an intermediate class
between the random and periodic media. Our considered PQC consists of a stack
of two different layers A and B which represent building blocks having a self-
similarity distribution and long range order with no translational symmetry.

We mention that there are numerous examples of aperiodic chains constructed
by a substitution rule. These chains allow forming many deterministic PQCs struc-
tures such as: Fibonacci, Thue-Morse, Rudin-Shapiro, Cantor, and Doubly periodic
sequences.

Based on PQC heterostructure, many studies have been performed to carry out
new optical devices. In this direction, the introduction of superconducting materials
into the regular PQC photonic structure has been investigated in [5–7] in order to
improve the characteristics of photonic band gap structures (PBGs) by changing the
operating temperature of superconducting layers.

1
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Recently, 1D deterministic multilayered structure including superconducting 
layers have attracted much attention in developing new kinds of optical filters 
which make new PQCs devices for optoelectronic system [5, 8–11]. These quasipe-
riodic filters have been extended to thermally photonic crystals, including certain 
cascades superconducting/dielectric layers. It may be used in specific operations as 
specifying thermal sensors for remote sensing applications. In [12], the authors used 
superconductors instead of metals within the PC because of the damping of elec-
tromagnetic waves in metals. Moreover, the properties of PC including supercon-
ductors are mainly depending on the temperature T. In this chapter, based on 
hybrid dielectric/superconductor photonic quasicrystals, we develop a multi-
channel optical filter with tenability around two telecom wavelengths. The main 
multilayered stacks are organized following quasiperiodic sequences. Hence, a mul-
titude of channel frequencies with zero transmission can be created inside the main 
photonic band gap (PBG), which offers a resonance state due to the specific defects 
insert along the structures. 

The characteristics of PBGs depend on the parameters of sequences, the thick-
ness of the superconductor and the operating temperature. Furthermore, a multi-
tude of transmission peaks were created within the main PBG which shifted with 
temperature of superconductors and lattice parameters of the aperiodic sequence. 

We also show that, by monitoring the parameters of GTM, the transmission 
spectrum exhibit at limited gaps a cutoff frequency which is sensitive to the tem-
perature of superconducting layers. The properties of stop channel frequencies can 

hþ1be notably enhanced by applying a whole deformation y ¼ x . Here, x is the main 
PQC and y the structure after deformation. It is found that the gaps broad in with 
the increase of h. Thus, the main structure can be used to design a useful tunable 
multichannel filter in the optical information field. 

2. Problem formulation 

In all this work, the photometric response (transmission and reflection) through 
the 1D photonic quasicrystal which contains superconductors, are determined by 
using the Transfer Matrix Method (TMM). We use also the theoretical Gorter-
Casimir two-fluid model [13, 14] to describe the properties of the superconductor 
material (YBa2Cu3O7). 

The application of the two-fluid models and Maxwell’s equations through, imply 
that the superconducting materials’ electric field equation, obeys to the following 
equation: 

∇2E þ ks
2E ¼ 0 (1) 

Where the wave number satisfies the corresponding equality: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ω2 1

ks ¼ � (2)
c2 2λL 

pffiffiffiffiffiffiffiffiffiffi 
with μ0 and c ¼ 1= μ0ε0 denote the permeability and the speed of light in free 

space, respectively. 
As mentioned above, the electromagnetic response of superconducting materials 

with the absence of an external magnetic field was defined by the Gorter-Casimir 
two-fluid models (GCTFM) in [13, 14]. According to GCTFM, the complex con-
ductivity of a superconductor satisfies the following expression: 

2 
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�ie2nsσ ω  (3)ð Þ ¼  
mω 

Where ns is the electron density and ω is the frequency of incident electromag-
netic wave. Moreover, e and m represent the charge and the mass of electron, 
respectively. Under the approximation condition indicated in [14], the imaginary 
part of conductivity is given as follows: 

�i
σð Þw ≈ (4)

ωμ0λ
2 ð ÞTL 

where λL signifies the term of London penetration depths and satisfies the 
following equality: 

m
λ2L ¼ : (5)

μ0nse2 

The complex conductivity is given by this formula: σ ¼ σ1 � jσ2, where σ1 and σ2 

are the real and imaginary parts of σ. Thus, the complex conductivity satisfies [14]: 

1
σ2 ¼ ; (6)

ωμ0λ
2 Tð ÞL 

where ω is the operating frequency. The London temperature-dependent pene-
tration depth is: 

λ 0ð Þ
λL T pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð Þ ¼  (7)

1 � G Tð Þ  

Where λ 0 denotes the London temperature penetration depth at T 0 K, and G(T) ð Þ  = 

is the Gorter-Casimir function. In this case, G T  ð 2, where Tc and T are the ð Þ ¼ T=TcÞ 
critical and the operating temperatures of the superconductor, respectively. 

Based on the Gorter-Casimir theory, we obtain that the relative permittivity of 
lossless superconductors takes the following equality [14]: 

ω2 
thεs ¼ 1 � ; (8)
ω2 

where ωth is the threshold frequency of the bulk superconductor which satisfies: 
ω2 
th ¼� c2=λ2. 
Then, the refractive index of the superconductor is written as follows: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
pffiffiffiffi 1 

ns ¼ εs ¼ 1 � ; (9)
ω2μ0ε0λ

2 
L 

In the following, the photometric response through the 1D photonic quasicrystal 
which contains superconductors, is extracted using the Transfer Matrix Method 
(TMM). This approach shows that the determination of the reflectance R and the 
transmittance T depends on refractive indices ns and lower refractive indices nd . 

According to TMM, the transfer matrix Cj verifies the following expression [15]: 

" # " # 
m 

0 Cj mþ1Eþ Y Eþ 

¼ ; (10)
E� 
0 i¼1 

tj Em 
�
þ1 
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For both TM and TE modes, Cj satisfies: 

0     1 

B 
exp iφj rj exp  iφj C1 1 

Cj ¼ @     A; (11) 
rj exp iφj 1 exp  iφj 1 

Where φj 1 denotes the phase between the two succeed interfaces and it is given 
by the following formula 

2π 
nj ^φj 1dj 1cosθj 1 (12)1 ¼ λ 

For the two polarizations (p) and (s), the Fresnel coefficients tj and rj take the 
following equalities [15]: 

nj 1cosθj^  njcosθj 1^ n̂j 2 1cosθj 1 rjp ¼ 
nj 1cosθj^

; tjp ¼ þ njcosθj 1^ n̂j 1cosθj þ n̂jcosθj 1 

^ 

^ 

^ 

^ 

^ 

nj 1cosθj 1  njcosθj nj 
nj njcosθj nj njcosθj 

^ 

^ 

nj and θj are respectively the refractive indices and the angle of incidence 
nj 

^ 

^ 

^ 

(13)
2 1cosθj 1 rjs ¼ ; tjs ¼ ; 

1cosθj 1cosθj 1 þ 1 þ 

where 
in the jth layer which obey to the Snell’s law: ]1sinj 11 ¼ njsinj with j∈½1; m þ . 

Consequently, the transmittance satisfies [15]: 

n̂ 1 1þm 

θ θn cos n cos0 0 0 0^ 
^

    
^ 
1cosθmþ nmþ1cosθmþ2 2Trs ¼ Re ; Trp ¼ Re ; (14)j jtS j j  tP

3. Generalized quasiperiodic sequences 

3.1 Generalized Thue-Morse sequence 

A one dimensional GTM sequence is called aperiodic because it is more disor-
dered than the quasiperiodic one. In addition, the two different materials included 
in one dimensional GTM system should be structured by applying the substitution 
rule: σGTMðH; LÞ : H ! HmLn;L ! LmHn [16], where H and L represent the two 
layers, having the higher and the lower refractive indices, respectively. We note 
that the Fourier spectra of the GTM sequence is singular and continuous. Also, the 
GTM quasiperiodic chain is generated by a recursive deterministic sequence Sk+1 

n n
verifying: Skþ1 ¼ Smk Sk , where Sk is the conjugated sequence of Snk, m and n are the 
parameters of GTM sequence with order k. This rule can be applied to two dimen-
sions: horizontally and vertically. 

Based on GTM sequence Skþ1, we give Table 1 which illustrates an example of 
organized multilayered stacks (H, L) for m = n = 2. 

The configuration of the proposed 1D photonic dielectric/quasiperiodic 
superconducting layers which is built according to the GTM sequence is shown in 
Figure 1. 

3.2 Generalized Fibonacci sequence 

1D Fibonacci quasiperiodic sequences are constructed by applying the inflation 
rule in [17]: σGFðH; LÞ : H ! HL; L ! H for the two blocks H and L, where H 

4 
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Order of GTM Organized H; Lf g blocks according GTM(2, 2) sequence 

1 HHLL, with S0 = H  

2 HHLLHHLLLLHHLLHH 

3 HHLLHHLLLLHHLLHHHHLLHHLLLLHHLLHH 
LLHHLLHHHHLLHHLLLLHHLLHHHHLLHHLL 

Table 1. 
Repeated {H,L} blocks determined by applying the substitution rule σGTMðH; LÞ. 

Figure 1. 
Schematic drawing of 1D multilayered stacks made of dielectric (D)/superconducting materials (S), built 
according to the GTM(2, 2) sequence. 

denotes the material with the higher refractive index, and L denotes the material 
with the lower refractive index. The GF chain is generated using the substitution 
rule: σGFðH; LÞ : H ! HmLn;L ! H. Thus, the GF sequence Sk+1 satisfies the recur-
sion relation: Skþ1 ¼ Smk Sk

n 
‐1 with k is the order of GF sequence. 

The Fourier transform of Fibonacci class of quasicrystal gives discrete values 
which represent the significant property of crystals. We note that the eigenvalues of 
related matrix Fibonacci spectrum are Pisot numbers. For the Fibonacci-type, the 
material waves interfere constructively in appropriate length. The analysis of 
Fibonacci quasicrystals submitted to X-ray diffraction shows a multitude of Bragg 
peaks. Moreover, quasicrystals which are based on the Fibonacci distribution 
ordered at long distances, show a typical construction without a forbidden symme-
try. Hence, the generalized Fibonacci (GF) type gives some basic proprieties which 
are identical to those given by simple Fibonacci class such as Fourier spectrum with 
Bragg peaks, inflation symmetry and localized critical modes with zero transmission 
called pseudo band gaps. In a generic form of the organized multilayers (H, L) 
through Fibonacci sequence, the four multilayered stacks are grouped in Table 2. 

As an example, the third order of GF(m, n) quasiperiodic photonic structure 
containing alternate dielectric (D) and superconducting layers (S) with m = n = 2 is 
shown in Figure 2. 

Order of GF Organized H; Lf g chain according GF(2, 2) sequence 

1 HHLL, with S0 ¼ L and S1 ¼ H 

2 HHLLHHLLHH 

3 H2L2 H2L2HHH2L2H2L2HHH2L2H2L2 

4 H2L2H2L2HHH2L2H2L2HHH2L2H2L2H2L2 

H2L2HHH2L2H2L2HHH2L2H2L2H2L2H2L2HH H2L2H2L2HH 

Table 2. 
Generation of Fibonacci sequence and organized blocks (H, L) repeated by the substitution rule σGFðH; LÞ. 
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Figure 2. 
Schematic representation showing the third generation of 1D GF(m, n) quasi-periodic multilayered stacks 
consisting of alternate dielectric (D)/superconducting materials (S). 

4. Results and discussion 

4.1 Multichannel filter narrow bands by using GTM sequence 

4.1.1 Effect of GTM(m, n) parameters 

In this subsection, we give the transmission properties of GTM and GF quasi-
periodic one-dimensional photonic crystals (1DPCs) which contain 

Figure 3. 
Transmittance spectrum versus frequencies of hybrid GTM multilayered stack at given parameters: n is set at 2, 
3, 4 and 5 for m = 2. 
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superconductors. We recall that our one dimensional photonic quasicrystal is made 
of alternating superconductors and dielectrics (SiO2) with nL = 1.45. In particular, 
the superconductor is assumed to be YBa2Cu3O7 with a critical high-Tc temperature 
(Tc = 93 K) and a London penetration depth at zero temperature 
λLð0Þ ¼ λ0 ¼ 145 nm. 

We adopt TMM approach to exhibit the transmittance, band gaps and charac-
teristics of the hybrid GTM and GF photonic quasicrystals. 

Figure 3 shows the transmittance spectrum, at normal incident angle for differ-
ent n values. 

We remark that the spectrum give a stacking of similar channels with zero 
transmission covering the whole frequency range. We also observe that the number 
of gaps increases with an increase of the lattice parameter n of GTM. 

Also, sharp peaks of transmission appear for specific multiple frequencies. All 
peaks prohibit the stop band gaps and form a fine zone of propagation wave. This 
zone constitutes a little region of transmissions with small half bandwidth 
Δf ¼ 1:2 THz. Similarly, the size of the output channels becomes narrow as n 
increases. Then, a large PBG zone was created. Thus, we note that the characteris-
tics of channel filters are sensitive to lattice parameters of GTM sequence which 
organized the layers H and L. The similarity of transmission spectrum is caused by 
the self-similarity of geometrical GTM structures. 

4.1.2 Effect of the thickness of superconductor on GTM structure 

In this part, the superconductor’s thickness is changed by varying the permit-
tivity of its refractive index. Figure 4 shows that a large PBG augments with an 

Figure 4. 
The 3D reflectance spectrum through hybrid GTM(m, n) heterostructure at given values of superconductor’s 
thicknesses: ds is set at 20, 40, 60 and 80 nm. 
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augmentation the thickness. Full gaps were obtained for ds = 80 nm.  The ampli-
tude of oscillations around the channels with T = 0 decreases with an increase of 
ds. Also, a set of peaks is obtained for high values of thickness. Accordingly, the 
dip of each gap increases when the thickness of YBa2Cu3O7 increases, and the 
pseudo PBG becomes a gap with zero transmission. This improves the character-
istics of channel filters. 

4.1.3 Quality factor (Q) 

In this part, we calculate the quality factor based on the following formula: 
Q ¼� f =Δf , where Δf is the Full Width at Half Maximum (FWHM) of transmis-c 
sion peak and fc is the wavelength of maximum transmission. 

Our calculation is summarized in Figure 5 which gives the evolution of quality 
factor Q versus the frequency center of resonant transmission peak for different 
superconductor temperatures T. We remark that Q is very sensitive to the position 
of resonant peaks in 170–171 THz frequency range and it is inversely proportional to 
superconductor’s temperature T. The FWHM are approximately equal for the lower 
frequencies and it sharply increase for the higher frequencies range. Then, a high 
pass filter can be obtained for lower T. 

In order to show the consequences of the variation of parameter p of GTM 
sequence, we determine the transmittance T versus the frequency for p = 7. 

As it can be seen from Figure 6, the number of defect modes or channels 
depends on the superconductor’s thicknesses and the distribution of layers. More-
over, the transmission spectrum exhibit a stacking of narrow gaps without oscil-
latory behavior. The bandwidth of each gap decreases regularly for an increase 
of parameter n and it probably forms a great wide PBG covering all telecommu-
nication frequency range. The number of the transmission peaks increases as p 
increases. The band gaps are symmetrical about the separated transmission due to 
the symmetry of layers within the GTM structure. 

4.1.4 Effect of superconductor temperature on GTM structure 

In this subsection, we study the influence of superconductor’s tempera-
ture on transmission spectrum of 1D hybrid GTM structure for different 
incidence levels. Thus, we evaluate the characteristics of multichannel. Indeed, 

Figure 5. 
Variation of factor quality Q of the GTM quasiperiodic multilayered stack containing a superconducting 
material versus frequency f (THz) at the frequency range between 170 and 171 THz. 
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Figure 6. 
A schematic view of transmittance spectra through the one dimensional photonic quasicrystals arranged 
according to GTM sequence for n = 2 and p = 7. 

Figure 7. 
A schematic view of distributed transmission of hybrid GTM photonic heterostructure versus frequency and 
incident angle for T = 20, 40, 60 and 80 K. 

Figure 7 shows that GTM multilayer stack exhibits a specific zone with zero 
transmission (the yellow area) for different incident angles. In the corres-
ponding band, the propagation wave is prohibited and reached the maximum 
recovers for θ = 1.5 rad. 
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Moreover, the spectrum presented a stack of band gaps and separated by sharp 
transmission peaks (the blue areas) allows the propagation of wave in this specific 
region of frequencies. The size of propagate zone within all PBG is sensitive to 
temperature T of YBa2Cu3O7. The width of transmission peak within the channels 
increases progressively with the increase of T. A large zero of reflection bands is also 
noticed for T = 80 K, it covers all optical telecommunication frequency range and it 
constitutes perfect reflectors in these region. 

4.1.5 Enhancement of PBGs by applying a particular deformation 

In order to improve the characteristics of filtering channels, we apply a particu-
lar deformation h satisfying the following low y ¼ xhþ1, where, x and y represent the 
coordinates of the main and the deformed GTM heterostructures, respectively. 

We recall that in the main structure, two forms of layer, H and L are organized 
in a GTM sequence, where H and L are the superconductor and dielectric materials, 
respectively. 

Then, the optical phase becomes: φj�1 ¼ 2π=λx0 0 cos θj�1. Here, the optical thickness˜ ° 
jth � thafter deformation noted x0 0 satisfied the following form: x0 0 ¼ λ0=4 ð j � 1Þ . In 

this case, j and λ0 indicate the optical thickness of jth layer which depends on defor-
mation value h and the reference wavelength. According to this notion, Figure 8 
illustrates the distributed of H and L with low and high refractive indices of the main 
and deformed multilayered stack. We take h = 0.1  and  m = n = 2.  

Figure 9 shows the reflectance spectrum for a corresponding deformed GTM 
heterostructure. For the optimum value of deformation, similar peaks of transmis-
sion appear inside all PBGs. This selective channel of transmission is sensitive to 
parameter n of GTM. The reflection bands form a typical output multichannel. 
Also, the number of channels and transmission peaks within PBGs increase when n 
augments. The channel of each PBG becomes narrow as n increases. In this case, m 
was maintained fix at 2. As a result, the characteristics of PBG are improved by 
applying the deformation h. Consequently, it is possible to improve the filtering 
properties by varying the suitable configuration of GTM parameters and the defor-
mation h. 

In order to improve the characteristics of filtering channels, we apply a defor-
mation to the whole thicknesses of the main GTM structure. Figure 10 shows 
the distributed of transmission versus frequency for varying deformation h. 

Figure 8. 
Schematic representation of the main and deformed GTM photonic quasicrystals containing S and D materials, 
respectively. The deformation obeyed to the power law y = xh+1. 
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Figure 9. 
3D reflectance spectrum at normal incidence from 1D GTM multilayered stack as a function of frequency (Hz) 
and deformation h with parameter n set to be 2, 4, 6, and 8. 

The distribution of electric fields exhibits a stacking of a bending zone with zero 
transmission (yellow areas) and it is limited by harmonic peaks in blue fine zone. 
Then, these bending reflection bands are sensitive to superconductor’s temperature. 
Thus, the PBGs are enhanced for an increase of T. In addition, the zone of trans-
mission increases and the split peaks become narrow when T augments. Thus, the 
contrast indices of the two materials increases with T. Consequently, the considered 
factors cause broadening channels. Similarly, the intensity of transmission in all 
structures is reduced. 

4.2 Generalized Fibonacci (GF) multichannel filters 

4.2.1 The effect of GF(m, n) parameters 

In this subsection, we study the properties of filtering through the 1D quasipe-
riodic GF multilayered stacks which contain superconducting materials. The con-
sidered common sequence suggests a typical aperiodic distribution of two 
alternating layers H and L with high and lower refractive indices, respectively. 

The two constituent materials are arranged following the GF(m, n) sequence for 
m = pn, where p is a positive integer. We found that the transmission spectrum give 
similar band gaps which depend on the distributed layers initially fixed by the GF 
parameters (Figure 11). Therefore, the channel with zero transmission becomes 
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Figure 10. 
A schematic view of distributed transmission of hybrid GTM multilayer stacks as a function of deformation 
degree h and frequency for different temperature values. 

narrow when p increases. The hybrid GF heterostructure possess an oscillation 
transmission around all PBGs. Moreover, the stacking channels are symmetric 
around the reference frequency. 

4.2.2 The effect of contrast indices on hybrid GF(m, n) system 

In this subsection, we show the effect of the contrast indices between two 
alternating materials on the filtering properties. The contrast indices satisfy the 
following relation: Δn ¼ ns � nd with ns and nd represent the refractive indices of 
superconductor and dielectric, respectively. The same conditions are conserved to 
extract the transmission through the considered GF heterostructure. 

Figure 12 gives the transmittance spectrum for different values of contract 
indices. We mention that the GF form exhibits a large frequency range with 
zero transmission and shows at limited gap a sharp transition from 0 to 1 at 
given Δn. 

The intermediate point between inhibited and propagated waves indicates the 
cut-off frequency that allows the signal to propagate again, showing itself as a stop 
band filer. Moreover, we remark that the positions of the two cut-off frequencies fcL 

and fcH are very sensitive to the contrast indices. As long as Δn augments, the PBG 
increases similarly with the high cut-off frequency. Such interesting property may 
be applied to design a perfect reflector for high refractive index of superconductors. 
Thus, this type of reflectors exhibits a large bandwidth that contains the optical 
telecommunication frequency range. 
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Figure 11. 
Transmittance spectrums from 1D hybrid GF structure containing alternating dielectric/superconducting layers 
at given parameters: n set to be 2, 3 and 4 with m = 2. 

Figure 12. 
Schematic representation of transmittance spectrums from 1D GF multilayered stacks at given Δn: n set to be 
3,4 and 5 with nd = 1.45. 

5. Conclusion 

The filtering properties of the 1D hybrid heterostructure built according to the 
GTM and GF sequences are investigated in this study. It was observed that the two 
common quasiperiodic sequences exhibits a multitude of channels with zero 
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transmission for specific values of parameters m and n. In particular, the spectrum 
of GTM system possesses similar narrow gaps without oscillation beams at a given 
parameter: m = 2 pm. Indeed, a sharp transmission peak is appreciated in the 
whole frequency range whose positions are sensitive to superconductor tempera-
ture. Therefore, the considered system can be useful as a selective pass band 
multichannel filter whose narrow bandwidth can be adjusted by temperature. In 
addition, the main GTM system gives staking gaps which are enhanced by apply-
ing a specific deformation. Similarly, the GF heterostructure suggests an identical 
channel frequencies without transmission as compared to GTM system but their 
spectrum have particular oscillations around the cut-off frequency. Thus, the 
properties of filtering change by modifying the type of sequences and the 
parameters of constituent materials. 
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Chapter 2 

Synthesis of Curved Surface 
Plasmon Fields through Thin 
Metal Films in a Tandem Array 
Gabriel Martinez Niconoff, Marco Antonio Torres Rodriguez, 
Mayra Vargas Morales and Patricia Martinez Vara 

Abstract 

We describe the generation of plasmonic modes that propagate in a curved 
trajectory inducing magnetic properties. This is performed by masking a metal 
surface with two screens containing a randomly distributed set of holes that follow a 
Gaussian statistic. The diameter of the holes is less than the wavelength of the 
illuminating plane wave. By implementing scaling and rotations on each screen, we 
control the correlation trajectory and generate long-range curved plasmonic modes. 
Using the evanescent character of the electric field, the study is implemented for 
the transmission of a plasmonic mode propagating in a tandem array of thin metal 
films offering the possibility to generate localization effects. 

Keywords: plasmon mode, surface plasmon field, speckle, thin films, 
curved correlation trajectory 

1. Introduction 

During the last decade, the scientific community has shown an increasing inter-
est in the models of plasmon fields due to their potential applications, which occur 
practically in all branches of science and technology. In the present study, we 
emphasize the analysis of correlation trajectories on a metal surface with random 
structure. The resulting model offers applications to development of nano-antennas 
having the possibility of a tunable bandwidth [1]. This type of structure has appli-
cations in the synthesis of new light sources and the control of magnetic effects [2]. 
The tunable effects are controlled with the curvature parameter having applications 
in surface-enhanced Raman spectroscopy (SERS), also as the local excitation of 
quantum dots. Implementing the evanescent behavior of the plasmon field, the 
analysis is extended to the propagation of plasmon fields through a tandem array of 
metal films similar to photonic crystal structures [3, 4]. 

As a starting point, we describe the study of the electric field in the neighborhood of 
a nanoparticle using the electrostatic approximation [2]. The electric field corresponds 
to the plasmon particle. This model allows the description of the interaction between 
two plasmon particles. The interaction is extended to describe the plasmon fields 
propagating on a surface generating a wave behavior satisfying the Helmholtz equation 
where the wave number must have complex values in order to recover the traditional 
surface plasmon models. Controlling the random distribution of nanoparticles, we 

17 



Quantum Electronics 

analyze the correlation effects leading us to induce localization effects. This last state-
ment is obtained by masking thin metal surface with two independent random array 
hole distributions. Controlling the scale factors, we modify the curvature of the corre-
lation trajectory. The model is related with a speckle pattern emerging from a rough 
surface [5]. This configuration is similar to the configuration proposed by Reather for 
the coupling of plasmon fields. Experimental results are shown. 

2. Analysis of plasmon particle 

A nanoparticle is generated by a set of atoms; the plasmon particle corresponds 
with the surface current distribution of the atoms. The analysis is implemented 
applying the electrostatic approximation given by 

∇2ϕ ¼ 0, (1) 

where ϕ is the potential function. Using variable separation in Cartesian coordi-
nates on the x � y plane, the equation acquires the form 

∂
2ϕ ∂

2ϕ þ ¼ 0: (2)
∂x2 ∂y2 

Proposing the solution as 

ϕ ¼ X xð ÞY yð Þ, (3) 

we obtain the equation system 

€X � α2X ¼ 0 (4a) 

€Y þ α2Y ¼ 0, (4b) 

where the coupling constant α is a complex number having the form α ¼ a þ ib. 
This condition is necessary because perturbing the field, it must acquire a propa-
gating behavior as it is shown below. Solving for X, we have 

cx idx þ c2ecx �idxX ¼ c1e e e , (5) 

and the solution for Y is given by 

icy �dyY ¼ D1e e : (6) 

Then, the complete solution ϕ acquires the form 

ϕ ¼ Aecx idx �dy icye e e , (7) 

with c < 0 and d > 0. Eq. (7) represents the boundary condition for the plasmonic 
field. 

2.1 Description for the interaction between plasmon particles 

The model is extended to describe the propagation of the electric field. For this, 
we propose that the electrostatic approximation is no longer fulfilled, acquiring the 
form of the Helmholtz equation having the form 
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∇2ϕ þ k2ϕ ¼ 0: (8) 

Looking for propagation along the x-coordinate, the equation acquires the form 

∂
2ϕ ∂

2ϕ þ þ k2ϕ ¼ 0, (9)
∂x2 ∂y2 

where k is the complex wave number k ¼ k1 þ ik2. Proposing a solution of the 
form ϕ ¼ X xð ÞY yð Þ, we obtain the equation system given by 

˜ ° 
€X þ k2 � h2 X ¼ 0 (10a) 

Y þ α2Y ¼ 0, (10b) 

whose solution acquires the form 

iΩx �dy icyϕp ¼ Meγxe e e , (11) 

this equation must recover the structure of the electrostatic approximation for a 
single nanoparticle. 

From the previous solution, it is easy to identify its behavior. Along the 
y-coordinate the field is bounded by the exponential term, which remains 
unperturbed by the presence of a second particle; the interaction occurs mainly in 
the x-coordinate. This behavior may be generalized acquiring a wave effect. A 
balance relation between the complex wave number k and the constant coupling 
α can be predicted; this interaction decreases the evanescent term, and the 
propagating term becomes dominant. This interaction is sketched in Figure 1. 

In Figure 1a, the electrostatic approximation is valid for a single nanoparticle; the 
wave behavior is generated by another set of particles interacting shown in Figure 1c. 

Until this point we have described the generation of a wave propagating in the 
x-coordinate; this analysis can be extended to the propagation in the x � y plane, 
which is analyzed in the following section. 

Figure 1. 
(a) Localized electric field for a plasmon particle. (b) Interaction between two plasmon particles. (c) Sketch to 
describe the generation of a plasmon field in an array of nanoparticles. 
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3. Description statistics of correlation trajectories 

In the present section, we describe the transfer of the statistical properties of an 
anisotropic two-dimensional random walk model to generate wave propagation on 
a metal surface, thus generating a curved surface plasmon mode. The model is 
conceptually simple. We describe a trajectory in a two-dimensional array, starting 
from a point P with coordinates ð0; 0Þ. The random walk is characterized by a set of 
points randomly distributed, and the trajectory can be obtained from the correlation 
function corresponding to the flows of current probability. The statistical properties 
of a random distribution of points can be transferred to induce and control impor-
tant physical effects. For example, it is known that the amplitude distribution of a 
speckle pattern follows Gaussian statistics [6, 7]. The statistic of the speckle pattern 
is matched with a random hole distribution, and it is transferred on a metal surface. 
The analysis is obtained by masking the surface metal which is considered to be 
formed by a set of square cells. The probability of a hole being present at the center 
of each cell is P; therefore, the probability of the absence of a hole is ð1 � PÞ. The 
surface contains N cells, and the probability of the surface contains n-holes, assum-
ing that a Bernoulli distribution is 

N N�nP nð  Þ ¼  Pnð1 � PÞ : (12)
n 

When the number of cells N increases, the Bernoulli distribution tends to a 
Gaussian distribution of the form 

1 � 
2x2þy 

2σ2ρðx; yÞ ¼ pffiffiffiffiffiffiffiffiffiffi e , (13)
2πσ2 

where σ2 is the variance. Interesting features can be identified by describing the 
self-correlation in this type of distribution. The simplest case occurs when two 
screens are superposed and, subsequently, one of them is rotated by a small angle. 
In order to understand the generation of the self-correlation trajectory, we focus on 
a single hole. In this case, it is evident that the hole follows a circular arc by joining 
all the points of constant probability and the complete correlation trajectory is a 
circle. The result in this case is shown in Figure 2a. The correlation trajectory can be 
controlled by inducing a scale factor in the distribution of random points. By 

Figure 2. 
(a) Set of points following a Gaussian distribution. (b) Correlation function between two Gaussian sets of 
points where one mask was rotated by a small angle. (c) Probability flow trajectories between two mask 
Gaussian points, one of them is scaled by approximately 95%, without rotation. (d) Same as in (c) but with a 
rotation of approximately 5° . 
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superposing the two screens again, it is evident that the scale factor shifts the point 
along a linear trajectory perpendicular to the regions of constant probability, which 
are sets of circles, as deduced from the argument of the Gaussian distribution. The 
analysis is presented in an equivalent way for a speckle pattern using the fact that 
both of them have the same probability distribution. In Figure 2b, we show these 
correlation trajectories. Finally, by introducing a small rotation, the linear trajecto-
ries are curved, as shown in Figure 2c. 

This result can be explained as follows: the correlation function of two scaled 
and rotated surfaces have the form 

21 x2 þ y, ,ρ1ðx; yÞ � ρ2ðx ; y Þ ¼ pffiffiffiffiffi exp � 
2πσ1σ2 2σ1

2 

( " ) (14)
2 2dðxcosθ þ ysenθ� þ ½dð�xsenθ þ ycosθÞ� � exp � 

2σ22 

Analyzing the argument of the exponential function as a quadratic form, it can 
be shown that the curves of constant correlation are ellipses, presenting a reference 
system where they acquire the canonical form 

x2 y2 

þ ¼ 1: (15)
a2 b2 

The probability flows through the orthogonal trajectories between the two 
regions of constant probability, whose differential equation is given by 

b2 y
y0 ¼ : (16)

a2 x 

Further, the corresponding solution is given by 

αy ¼ cx , (17) 

where c is an arbitrary constant and α ¼ b
a 

2

2, which carries the information about 
the scale between the two probabilistic processes. 

3.1 Graphical description and experimental implementation of the correlation 
trajectory 

A fundamental part of the chapter consists of describing a method to generate 
surface plasmon fields propagating along predetermined trajectories. This can be 
obtained analyzing the correlation function between two screens where each one has a 
random hole distribution following a predetermined probability density function. This 
method has the characteristic that the correlation trajectory geometry presents a tun-
able curvature which allows the possibility to generate long-range surface plasmon. 

An alternative model to generate the curved correlation trajectories is performed 
using a speckle pattern as it is shown in Figure 4. 

The optical system that rotates the image can be a prism-type Dove. Modifying the 
illumination configuration using a convergent beam and changing the relative dis-
tance between the two speckle patterns obtained by shifting one mirror a scale factor 
are introduced. The irradiance superposition between the two speckle patterns gen-
erates the desired correlation trajectories. The speckle pattern is shown in Figure 3. 

It is known that the irradiance function for the speckle pattern has associated 
a probability density function-type exponential decreasing function. The decreasing 
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Figure 3. 
Speckle pattern generated with a rough surface illuminated with a plane wave. 

term can be matched with the decaying ratio of the plasmon mode. This configura-
tion allows improving the generation of plasmon field avoiding the masking of the 
metal surface which must be made with lithography techniques. These comments 
represent novel applications of the speckle pattern. 

The correlation trajectories generated will be implemented in the following 
section to describe the surface plasmon. By the fact that the correlation occurs in a 
curved trajectory, we expect the surface plasmon to present a magnetic behavior. 

3.2 Generation of curved surface plasmon modes 

The previous statistical description will be employed for the synthesis of surface 
plasmonic modes. The expression for the electric field of an elementary surface 
plasmonic mode propagating along the z-axis is given by 

˜ ° 
^Eðx; z ia þ ^ exp f�αx fiβzg,Þ ¼  kb g exp (18) 

˜ ° 1=2 
where β ¼ w ε1ε2 ¼ ξ þ iη is the dispersion relation function and ε1, ε2 repre-c ε1þε2 

sent the permittivity of the dielectric and metal, respectively. Rotating the reference 
system along the x-axis, the elementary surface plasmon mode acquires the form 

˜ ° 
^E xð ; zÞ ¼  ia þ^ kbcosθ � exp f�α1xg exp f ð Þg: (19)jbsinθ þ ^ iβ zcosθ þ ysinθ 

Using the functional relation given by Eq. (17), the expression for the curved 
plasmonic mode is given by 

˜ ° 
α^Eðx; yÞ ¼  ia þ^ kbcosθ � exp �α1xg exp iβðy cosθ þ ysinθÞg:jbsinθ þ ^ f f (20) 

By means of the Maxwell equations, we can obtain the expression for the 
magnetic field and the energy flux given by the Poynting vector. 

22 



Synthesis of Curved Surface Plasmon Fields through Thin Metal Films in a Tandem Array 
DOI: http://dx.doi.org/10.5772/intechopen.81931 

Figure 4. 
Experimental setup to generate speckle correlation trajectories. 

For the experimental setup, we propose to illuminate a thin flat Au film (thick-
ness �20–40 nm) with a correlated speckle pattern as shown in Figure 4. The 
illumination consists in two speckle patterns: each one is visualized as a set of 
circular motes randomly distributed following a Gaussian probability density func-
tion. The wavelength is λ ¼ 1550 nm. The geometrical parameters are agreeing with 
those reported in [8]. The correlation curve corresponds to the surface plasmonic 
mode given by Eq. (20). Notably, the statistical properties of the speckle pattern are 
transferred to the metal surface as the plasmonic mode propagating along the 
correlation trajectory. In order to allow the generation of a long-range curved 
plasmonic mode, the correlation length must be less than 2μ to guarantee resonance 
effects [9, 10]; this can be controlled with the roughness parameters of the surface 
implemented to generate the speckle pattern avoiding the power decay along the 
correlation trajectory. The experimental setup is sketched in Figure 5. 

Figure 5. 
Masked metal surface: The typical wavelength is IR. 
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The analysis presented can be extended to other plasmonic configurations which 
are presented in the following section. 

4. Propagation in a tandem array of thin metal films 

The natural extension of the analysis presented is the transfer of the plasmonic 
mode to a tandem array of thin metal surface, shown in Figure 6. This is possible 
using the evanescent behavior along the x-axis of the curved surface plasmon field. 
This behavior has been implemented to generate an optical field redistribution 
propagating along an optical waveguide array [11]. In this model, the evanescent 
character is used to tunnel the optical field. 

The transmission of the plasmonic mode satisfies the following system of differ-
ential equations: 

dEni þ βEn þ Cnþ1Enþ1 þ Cn-1En-1 ¼ 0
dz 

(21a) 

n ¼ 1, 2, 3…:, (21b) 

where β is the dispersion relation function and Ci represents the coupling con-
stant, which depends on the relative separation between neighborhood surfaces 
[12]. The solution of the previous equation is similar to that presented in [11]; 
however, to associate a physical meaning to the coupling constant Ci, we present 
the analysis of two thin metal films. 

The simplest case occurs when the system is formed by two thin metal films 
separated by a dielectric medium whose thickness must be less than 50 nm. The 
evanescent decay depends on the modulus of the permittivity quotient [13], 
and at this thickness is possible to generate tunneling effects [11]. Subsequently, the 
system of Eq. (21a) acquires the simple form 

Figure 6. 
Tandem array to propagate the plasmon field: the width of the metal is 20 - 40 nm and that dielectric film is 
20 - 40 nm. 
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dE1i þ βE1 þ C2E2 ¼ 0, (22a)
dz 

dE2i þ βE2 þ C1E1 ¼ 0: (22b)
dz 

Rewriting it in matrix form, we obtain 

0 1 
dE1 B C β c2dziB C ¼ �  : (23)@ AdE2 c1 β 
dz 

It can be deduced that, as a consequence of the energy conservation, the matrix 
structure must be symmetric. This indicates that c1 ¼ c2 ¼ c, and the general 
solution is 

� �  � �  � �
E1 ξ1 η1¼ d1 ð  Þ þ  exp λ2z ,exp λ1z d2 ð Þ  (24)
E2 ξ2 η2 

where di represents arbitrary constants and ξ1,2 and η1,2 represent the eigenvec-
tors with eigenvalues λ1,2 satisfying the characteristic equation depending on the 
coupling constant: 

λ1, 2 ¼ β � c: (25) 

Moreover, it is known that the eigenvectors must be complex [14]. Subse-
quently, without loss of generality, the solution can be rewritten as 

� �  � �
E1 1 ¼ d1 ð Þ,exp λ1z (26)
E2 i 

which indicates that the shift generated between each plasmon mode presents 
similar features as the coupling mode theory [12]. This analysis leads to the expres-
sion for the plasmonic mode as 

! 
E1 ¼ A ξ exp � αx Þ ð Þ  (27a)ð j j exp iβs 

! 
E2 ¼ iA ξ exp � αx Þ ð Þ, (27b)ð j j exp iβs 

! 
where ξ is a unit vector tangent to the correlation curve and s is the arc length on 

the same curve; we remark that the correlation trajectory is given by Eq. (20). 
Eq. (24) describes the evanescent coupling through a tandem array of thin metal 

films. Notably, the boundary conditions of the electric field indicate that the geom-
etry of the plasmon field generated in the first thin metal film must be preserved in 
all the surfaces. This shows that the transmission of the curved plasmonic mode 
allows inducing magnetic properties in the system [15–18]. 

5. Conclusions 

The statistical properties of the distribution of random holes or equivalently the 
speckle pattern were transferred to a metal surface to stablish the conditions to 
generate long-range curved plasmonic modes. In the case of hole distribution, this 
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can be implemented by masking a thin metal film with two screens that allows 
controlling the correlation trajectory whose geometry corresponds to a curved long-
range surface plasmonic mode. Another possibility was illuminating the metal thin 
film with two correlated speckle patterns. An important consequence of these 
configurations is that the set of curved surface plasmonic modes presents a vortex 
structure that allows to induce magnetic properties [17]. Using the evanescent 
character of the plasmon modes, the electric field was transferred to the propaga-
tion in a tandem array of thin metal films offering applications to design photonic 
crystals with tunable and localized magnetic properties. 

The theoretical point of view presented in this study allows incorporating other 
effects such as percolation effects which consist in propagating the electric field 
through random structures. The main characteristic is that the plasmon field pre-
sents fractal properties which are the origin of interesting magnetic properties 
implicit in the curved trajectory of the set of plasmonic modes; more details can be 
found in [18]. The model presented can be extended by implementing different 
hole distribution geometries which modify the plasmonic resonance effects. Nota-
bly, the curved trajectories have associated focusing regions, and, subsequently, the 
corresponding magnetic singularity offers the possibility of implementation in the 
generation of plasmonic magnetic mirrors. 

Finally, we remark that the analysis presented offers applications to photonic 
crystal as a metamaterial design [19–23] since breaking the periodicity or incorpo-
rating another type of metal on a selected region is similar to doping the structure 
and then is possible to induce localization effects. The excitation of plasmon fields 
using a speckle patterns offers the possibility to incorporate the tunable behavior of 
the correlation trajectory offering interesting applications in the development of 
plasmonic antennas and synthesis of accelerating plasmon modes [21], extending 
the plasmonic optical models. 
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Chapter 3

Localized Excitation of Single
Atom to a Rydberg State with
Structured Laser Beam for
Quantum Information
Leila Mashhadi and Gholamreza Shayeganrad

Abstract

Sufficient control over the excitation of the Rydberg atom as a quantummemory
is crucial for the fast and deterministic preparation and manipulation of the quan-
tum information. Considering the Laguerre-Gaussian (LG) beam spatial features,
localized excitation of a four-level atom to a highly excited Rydberg state is
presented. The position-dependent AC-Stark shift of the first and Rydberg state in
the effective quadrupole two-level description of a far-detuned three-photon
Rydberg excitation results in a steep trapping potential for Rydberg state. The
transfer of optical orbital angular momentum from LG beam to the Rydberg state
via quadrupole transition in the last Rydberg excitation process offers a long-lived
and controllable qudit quantum memory. The effective quadrupole Rabi frequency
is presented as a function of ratio of the first to Rydberg excitation laser beam
waist and the center of mass position inside the trap. It depicts high accuracy of
detecting Rydberg atom at the center of the trap, which can pave the way for
implementation of high-fidelity qudit gate.

Keywords: Rydberg excitation, dipole-quadrupole trap, Laguerre-Gaussian beam,
qudit

1. Introduction

1.1 Trapped neutral atom as quantum memories

Photons are ideal carrier of quantum information for communication, but stor-
ing them for a long time is difficult. In optical quantum communication, a quantum
network can consist of spatially separated quantum memories to store and manipu-
late information which is encoded in internal quantum state of physical system such
as photons, ions, atoms, etc. [1]. In order to operate a successful long-distance
quantum communication and quantum information processing, the quantum
memory should have a high-storage efficiency, which is defined as the ratio of input
photon energy to long coherence time. Different physical systems such as cold
atoms trapped in optical lattices [2–8] or cold ions in electrostatic traps [9] are used
as quantum memories. Ions are electrically charged and therefore can be tightly
confined in deep traps for a long time. However, the strong Coulomb repulsion
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limits the number of ions that can be precisely controlled in a single trap. In 
contrast, more promising experiments could be made with the cold trapped neutral 
atoms. The neutral atoms usually interact only at very short range and can be 
collected in large ensembles without perturbing each other, and therefore the 
decoherence and losing the quantum information due to the interaction with the 
environment are low. In other words, single qubits [1] or even multi-qubits can be 
encoded in atomic states which afford long coherence times. Cooling and trapping 
of neutral atoms is one of the challenging techniques to achieve a higher signal-
to-noise ratio and to stabilize the system over long periods for more balanced 
memory efficiency and fully control of all physical degrees of freedom with long 
coherence times. To keep the atom in trap, it is necessary to raise the atomic trap 
depth to be comparable to or even larger than the thermal energy of background 
atoms. Although, in principle, there is no fundamental limit to the lifetime with 
sufficiently deep traps, there are practical limitations. Optical traps for neutral 
atoms cannot be arbitrarily deep since both the trap depth and the photon scattering 
rate, which causes decoherence, scale proportional to the optical power. Even in the 
absence of collisional losses as the main reason to lose the trapped atom, the heating 
due to fluctuations of the trapping potential can eventually cause trapped atoms to 
escape. As a result, the trapping system used to confine the atoms is switched off 
during the storage. Nevertheless, the residual electric and magnetic field still limits 
the lifetime of the quantum memory [10, 11]. For a quantum memory in a magneto-
optical trap (MOT), the atomic diffusion imposes a strict limitation on the storage 
time, which in turn limits the maximum distance for quantum communication in 
practical applications. On the contrary, the optical dipole trap can offer an array of 
spatial forms which can be rapidly switched as well [12]. Optical dipole traps rely on 
the induced atomic electric dipole interaction with electric component of the trap-
ping light. The power needed for trapping depends on the desired trap depth and 
the detuning from the nearest optical transitions. Small detuning gives deeper traps, 
with a depth scaling as 1/Δ, where Δ is the detuning from the nearest strong 
electronic transition. This must be balanced against the photon scattering rate, 
which causes heating and decoherence and scales as 1/Δ2 [13]. When the light 
frequency is far-detuned [12, 14, 15], a nearly conservative potential well with less 
influence from spontaneous photon scattering is created for the atom. The AC-Stark 
shift in the atomic state from the induced dipole gives sensitivity to intensity noise 
of lasers and atomic position. The nonuniform spatial intensity profile results in the 
intensity-dependent AC-Stark shift and defines the shape of associated atom trap. 
Therefore, the AC-Stark shift affects the qubit level, and fluctuation in laser field 
leads to broad the qubit line. 

In red-detuned far-off resonance optical dipole trap (FORT) [16, 17], the laser 
beam is focused to attract atoms to the region, where the intensity is high. The large 
detuning efficiently suppresses the effect of scattered photons. On the other hand, 
the blue-detuned FORT [18, 19] can confine the atom in the dark region of the blue-
detuned laser beams. The blue-detuned FORT has several advantages over the 
bright trap of the red-detuned laser. As the atoms are trapped in the “dark” place, 
the photon scattering rate due to the trapping laser can be greatly reduced, while in 
the bright trap, this rate can be reduced only by increasing the detuning of the 
trapping laser. A quantum memory of this sort thus has a potential storage time of 
seconds [13]. In conclusion all the abovementioned issues, such as linear and 
nonlinear scattering, recoil heating, intensity fluctuation, and pointing instabilities 
of the trapping beams, result in dipole-force fluctuations, and collisions with the 
background gas lead to heating up the qubit atom and therefore escaping from the 
trap [20]. This motivates the researchers to look for a way to create more stable 
quantum memories with longer storage time. 
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1.2 Rydberg atoms for quantum information 

The optical degrees of freedom of single atoms such as polarization, wavelength, 
transverse mode, etc., can provide qubits or qudits for quantum information. Thus 
control and manipulation of single atoms are now of great interest given the poten-
tial to create quantum registers with single-atom techniques [21–24]. Furthermore, 
the observation of entanglement between a single atom and a single photon [25] 
provides the precondition for quantum communication and computation. Ground 
atomic states are ideal for preserving quantum coherence [26], but implementation 
of fast and deterministic quantum operations is challenging due to their weak 
interactions. Such considerations suggest to employ a quantum superposition of a 
ground and a Rydberg state to achieve both fast and deterministic quantum opera-
tions and long-lived memory [27]. A Rydberg atom is an atom in a highly excited 
state, typically with a principal quantum number n ≫ 1. The excited valence elec-
tron can travel microns from the nucleus, while still remaining bound to it. Because 
the Rydberg electron is so far from the core of the atom, the Rydberg atom develops 
exaggerated properties, such as high polarizability. The strong dipolar interactions 
between Rydberg atoms can potentially be used for fast quantum gates between 
qubits stored in stable ground states of neutral atoms [28, 29]. The electric dipole 
strength of highly excited Rydberg atoms results in the Rydberg excitation blockade 
[28–33] which can be used in combination with electromagnetically induced trans-
parency (EIT) [34, 35] to generate quantum states of light, entanglement of several 
atoms, and quantum logic gates [36–38]. The mapping of Rydberg interactions onto 
photons by means of EIT has emerged as a powerful approach to realizing few-
photon optical nonlinearities [39–41] and provides the possibility to control the 
interaction between photons, which is a key ingredient to the goal of quantum 
information processing. Due to the nature of Rydberg blockade, the Rydberg 
nonlinearity is a sufficiently large and long range to build an optical quantum 
computer. The possibility to coherently control the quantum state of photon via 
dark-state Rydberg polaritons opens up interesting applications in reversible quan-
tum memories for light waves [42] and shall find a possibility for a fast transfor-
mation [43]. 

1.3 Structured laser beam and atom 

The development of structured laser beams such as Laguerre-Gaussian (LG) 
beams has enabled the coherent production of large number of identical spiral 
photons [44–47], which opens a new set of research in quantum optics in atomic 
level. LG beams are characterized by three quantum numbers: (i) the wave number 
k, (ii) the intertwined helical wave fronts l (an integer number) of azimuthal phase-
dependent that features a screw dislocation, and (iii) the radial nodes p [48, 50]. 
Each spiral photon in the LG beams carries lℏ of intrinsic orbital angular momen-
tum (OAM) along the direction of propagation [51], which is arising from their 
nonuniform spatial intensity distribution. The characteristic shape of the intensity 
distribution of LG beams as well as their intrinsic orbital angular momentum can be 
observed as a result of this interaction. The exchange of angular momentum induces 
a torque and an azimuthal shift in the resonant frequency besides the usual axial 
Doppler shift and recoil shift which tailored the control of the motion of the center 
of mass of the atoms to rotate about the beam axis [52, 53]. In higher order quadru-
pole transition processes, the internal motion of the atom participates in orbital 
angular momentum exchange between structured light and atom [54–57]. How-
ever, in dipole transition, the interaction of LG beam with atom and therefore 
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transferring of OAM from LG beam to the external degree of freedom of the atom 
presents in the quantization of the center of mass motion of the atom [58]. 

A Rydberg atom with near classical size comparable to the wavelength of photon 
is big enough to feel phase differences of the helical wave front of LG beams. The 
LG beam has an advantage of control and narrows the resonances in electromag-
netically induced transparency. The orbital angular momentum of LG beams has 
emerged as a popular choice for experiments on high-dimensional quantum infor-
mation [59]. The dark center of blue-detuned Laguerre-Gaussian beam is emerged 
as an important feature to trap neutral atoms to decrease the atomic heating and 
decoherence rates and minimize the AC-Stark shift [60, 61]. In quantum informa-
tion processing and data transmission, optical orbital angular momentum of spiral 
photons can provide an extra degree of entanglement [48] to carry quantum infor-
mation in the different degrees of freedom by the higher dimensionality of the 
Hilbert space. In other words, the information carried by each photon can be 
increased significantly, from a qubit to a qudit, where d is the number of orthogonal 
basis vectors of the Hilbert space in which the photon lives. 

1.4 Rydberg excitation 

The excitation of a trapped neutral atom to a highly excited Rydberg state with 
long coherent time of ground-Rydberg transition is a promising platform for fast 
multi-qubit gates. The Rydberg state lifetime must be taken into account since the 
Rydberg state needs to be populated in order to implement two-qubit logical oper-
ations. The elementary operations necessary with Rydberg atoms in quantum 
information rely on the ability to coherently excite a Rydberg state and then 
returning them back to the ground state in controlled way so that the Rydberg atom 
is available for further processing. The lack of widely tunable frequency-stabilized 
ultraviolet wavelength diode lasers required for the direct excitation from the 
ground state to Rydberg states as well as weak direct excitation cross section has led 
to the use of multistep processes involving visible and near-infrared wavelengths 
[62–64]. To limit the spontaneous emission from the intermediate states in 
multistep excitation, which destroys the coherence, the population of the interme-
diate states can be manipulated by enlarging the detuning of the excitation laser 
frequency from the respective resonance frequency compared to the Rabi 
frequency of single-photon excitation. For large enough detunings, the intermediate 
states can be eliminated and a four-level system can be approximated to a two-level 
system with a total coupling strength. In this case, to obtain coherent coupling 
between the ground state and the Rydberg state, it is necessary to achieve an 
effective Rabi-frequency Ω well larger than the linewidth of the Rydberg state or of 
the driving laser fields. The coherent excitation of individual atoms trapped in tight 
optical dipole using two-photon excitation process has recently been described 
[65–68]. Also in order to cancel Doppler and recoil effects in Rydberg excitation, 
which limit the fidelity of the quantum gate [69], three-photon Rydberg excitation 
configuration is already proposed [70]. However, selectively localized and coherent 
excitation of atom to a highly excited Rydberg state and creation of a perfect 
blockade are still challenging [3, 71]. Firstly, the common red-detuned dipole traps 
can store atoms in the ground state with low decoherence, but they do not trap 
Rydberg states, and moreover, an atom in the Rydberg state moves in different 
optical potential than that experienced by the ground state. Secondly, the photo-
ionization near the core due to the red-detuned trapping light, the sensitivity to the 
stray fields because of the large electron orbit and large polarizability that scales as 
∝ n7 [72], and the motional-induced dephasing presents crucial limits to the usable 
spectrum. Thirdly, although the intermediate state detuning reduces spontaneous 
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emission, however, the small spontaneous emission besides of atomic motion and 
collisions [73] can limit storage times and therefore the ground-Rydberg atomic 
coherence time. Fourthly, the weak oscillator strength between ground and highly 
excited Rydberg state and very large electric dipole requires high laser excitation 
intensity to achieve the required signal-to-noise ratio. Fifthly, in most 
implementations using lattices or trap arrays generated with diffractive optics, it is 
relatively difficult to control the trap intensity and avoid perturbation of the atomic 
energy levels induced by inhomogeneous light distributions. Finally, in highly 
excited state, the energy separation is very small so that the selective excitation of 
the atom to a highly excited Rydberg state requires experimental technique with 
extremely high resolution. 

To reduce errors in Rydberg excitation experiments, one solution is turning off 
the trapping system before the Rydberg excitation. However, it can cause problem 
for implementations with many qubits and creates unwanted Doppler shifts. This 
can be addressed by choosing a trap that works for both ground and Rydberg state 
of the atom. On the other hand, for the implementation of Rydberg-based quantum 
computing protocols with neutral atoms [3, 74–76], one can use a magic wavelength 
at which two atomic states (ground and Rydberg states) experience the same AC-
Stark shift in a light field. In this chapter, a four-level Rydberg atom as a quantum 
memory in far-off resonance optical dipole-quadrupole trap is introduced. The 
controlling of the quantum state of localized Rydberg atom by tuning the excitation 
parameters is presented. It is shown that the ability to control the quantum state of 
Rydberg atom opens some interesting prospects for advances in quantum informa-
tion processing. 

2. High precision excitation and manipulation of a localized single atom 
to a highly excited Rydberg state 

In this section, the theory of the three-step axial Doppler-free GGLG excitation 
of an alkali atom (e.g., Rb) from the ground state to the desired Rydberg state at the 
level of a single atomic excitation which is crucial for applications to quantum 
information processing is presented. The Rydberg excitation process is based on far-
off resonance dipole-dipole-quadrupole transition. The quadrupole Rydberg transi-
tion in the last step is via LG-polarized laser beam. The Rydberg atom is localized at 
the dark center of structured beam, where the effect of atomic vibrations as well as 
AC-Stark shift is completely disappeared. The geometry of excitation as well as 
unique properties of LG-Rydberg excitation beam provides qudit of quantum 
memory in less disrupting effects such as motional heating effect, spontaneous 
emission due to high power, AC-Stark and Doppler, and recoil shift at the center of 
the trap which guarantee the high-fidelity gate. 

2.1 Excitation configuration 

The schematic diagram of a four-level atomic system is shown in Figure 1. We 
denote |0 > to be the atomic ground state and |i > with i = 1,2,3 to be the respective 
first, second, and third excited states separated by energy Ei-Ei-1. The atom is cooled 
down to the recoil temperature and localized at the intersecting point of the excita-
tion laser beams in the transversal plane z = 0 as sketched in Figure 2(a). The wave 
vectors ki, i = 1, 2, 3, lie in x-z surface with the z axis directed along the LG-Rydberg 
excitation laser beams wave vector, k3. While the first and second Gaussian excita-
tion laser beams wave vectors, k1 and k2, have the respective incidence angles θ1 and 
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Figure 1. 
Energy-level diagram three-photon Rydberg excitation [77]. 

Figure 2. 
(a) Geometry of Rydberg excitation via three-photon dipole-dipole-quadrupole transition. (b) Details of 
vectors and quantities involving in the excitation process [77]. 
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θ2 to the z axis. As it is explained in the following section, this special geometry 
provides the possibility for Doppler and recoil-free excitation. 

The Rydberg atom-field interaction considered here corresponds to situations, 
where firstly the Rydberg atom’s size is comparable to the LG-beam waist in the 
third Rydberg excitation and the Rydberg electron sees the variation of the light 
intensity. Different parts of the atom can feel different electric fields, and the 
quadrupole transition, which seems to be negligible in most situations due to a 
much stronger simultaneous effect of the dipole one, is considerably increased. 
Secondly, the Rydberg and two intermediate states decay by spontaneous emission, 
and it is assumed that the lifetime of the Rydberg state is much longer than the 
other states, and so its decay can be neglected during the time scales relevant to the 
excitation process. Finally, the dipole-dipole interaction between the Rydberg 
atoms, which may induce the blockade, is omitted to focus on the single-atom 
excitation mechanism. 

2.2 Excitation laser beams 

The four-level atom is driven by three laser fields, the Gaussian first and second 
excitation laser field with respective frequency ω1 and ω2 and the LG-Rydberg 
excitation laser field with frequency ω3. Neglecting the focusing and the radial 
complexity and the mode curvature of the excitation laser beams, the electric field 
of each one-photon transition in the cylindrical-polar coordinates is given by 

iðΘ1,2ðRÞÞE1,2ðR⊥; Φ; ZÞ ¼ e1,2E01, 2 f G1,2ðR⊥Þe , (1) 

� pffiffiffi �j jℓ
2 ð ÞÞiðΘ3 Rð ð Þe , (2)Eℓp R⊥; Φ; ZÞ ¼ e3E03ξℓp w03 

f LG3 R⊥ 

where 

R2 
⊥ 

f G1,2ðR⊥Þ ¼ e w
01
2 
,2 , (3) 

R2 � � � 2R2 
j jℓ w j j  ⊥03 L ℓðR⊥Þ ¼ R⊥ e 

2 
⊥ 

, (4)f LG3 p w2 
03 

Θ1, 2ðRÞ ¼ k � R, (5) 

and 

Θ3ðRÞ ¼ ℓφ þ k3 � R: (6) 

Here ei, w0i, and ki are the polarization, beam waist at z = 0, and wave vector of 
the ith excitation laser field, respectively. The electric field amplitudes E0i are 
connected to the laser intensity Ii via E0i = √(2Ii/cε0), where c is the speed of light 
and ε0 is the vacuum permittivity. In Eq. (2), ℓ corresponds to the optical orbital 
angular momentum, the mode index p represents the number of radial nodes of LGqffiffiffiffiffiffiffiffiffiffiffiffiffi 

2p! j j  beam, ξℓp ¼ is the normalization constant, and L ℓ is the Laguerre poly-πðpþj jℓ Þ p 

nomial. The last excitation LG beam propagating along the z-direction in the plane 
of the focus of the beam appears as rings with radius Rl that is scaled linearly to the 
optical angular momentum and proportional to the beam waist [78]. The polariza-
tion ei determines the particular transition conditions happened in ith laser beam. 
The appearance of the polarization vector ei depends explicitly upon the choice of 
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coordinate orientation. In the basis of eσ, where σ = {1, �1, 0} corresponds to the 
right circular, left circular, and linear polarization vector attached to the quantiza-
tion axis z in xyz frame, the ei are given by 

eiðθi; φiÞ ¼ ∑ siσ ðθi; φiÞeσ , (7) 
σ 

where siσ ðθi; φiÞ is the relation coefficient and φi is the azimuthal angle of 
respective polarization according to Figure 2(b). 

The ith laser excitation beam carries linear momentum ℏki, and spin angular 
momentum �ℏ per photon relates to the excitation laser polarization, if circularly 
polarized, while the last LG beam with an azimuthal phase dependence exp (ilϕ) 
in addition to linear and spin angular momentum carries orbital angular momen-
tum that can be many times greater than the spin [49]. The combination of energy 
selectivity, associated with the laser light frequency, and sublevel selectivity, 
associated with polarization as well as angular momentum of light beam, provides 
good controls and manipulation over the qudits in quantum information 
processing. 

2.3 The interaction of a four-level atom with three excitation laser fields 

Let us begin with the four-level atom introduced in Figure 1. In general, the 
state of the atom for the coupled atom-laser system can be written in terms of the 
eigenstates of Hatom, the unperturbed Hamiltonian for the atomic system in the 
absence of the excitation laser, as 

�iE0 �iEi ℏ t 0 ℏ t i 
i 

jψð Þr; t i ¼ c0ð Þt ψ0ð Þr e j  i þ∑ cið Þt ψ ið Þr e j i, (8) 

where ci (i =  0, 1, 2, 3) is the probability amplitude of ith state. The Hamiltonian 
for the system can be taken as 

H¼ Hatom þH int, (9) 

where H int ¼ Hd þHq, 
where EðR⊥; Φ; ZÞ ¼ E1ðR⊥; Φ; ZÞ þ E1ðR⊥; Φ; ZÞ þ E3lpðR⊥; Φ; ZÞ is the total 

electric field of excitation lasers, and where Hd and Hq are the coupling to the 
electric dipole and quadrupole moment, respectively [79]. The first two excitations 
proceed via dipole transition employing the first two Gaussian laser beams, while 
the Rydberg excitation takes place through the quadrupole transition using the 
polarized LG beam. 

To study the dynamics of the population of the different levels of the atom, we 
need to know ci (t) by solving the Schrodinger equation: 

∂ _ 0 ψ r; tiℏ ψ r; t i ¼H j ð Þi,j ð Þ  (10)
∂t 

where 

_ ___ _ ∂ _�1H 0 ¼UHU �1 þ�iℏ U U : (11)
∂t 

In matrix notation, the Schrodinger equation after rotating wave approximation 
can be given by 
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0 1
Ω10 0 0
210 10 ð Þt ð Þtc0 c0Ω1 Ω2Δ1 0iΔ1t iΔ1tð Þt e ð Þtc1 c1 e∂ 2 2¼ �i : (12)Þt Þt 

CCCA 

BBBBBBBBBB@ 

CCCCCCCCCCA 

BBB@ c2∂t 

BBB@ c2 

CCCAiðΔ2 þΔ1 Ω2 Ω3 iðΔ2þΔ1ð Þt e ð Þt eΔ1 þ Δ20 
2 2eiΔt ð Þt eiΔtð Þtc3 c3

Ω30 0 Δ
2 

Here 

and 

ð13Þ 

2e2I3 
� 

2
1 

2r⊥r2!3 diφffiffiffi ð eΩ3ðR⊥Þ ¼  ð Þ  (14)f LG3 R⊥θ3; φ3� e3 Þp
ℏ2cε0 dR⊥πw03 

are the first and second dipole and the last quadrupole Rydberg excitation Rabi 
frequencies, respectively, where ri�1!i ¼ hi � 1jψ∗ ð Þr rψ ið Þr j ii stand for the atomic i�1 
dipole momentums between states i�1 and i, with respective eigenfunctions ψi-1(r) 

Ei�1and ψi(r); Δi ¼ ωi � Ei� þ ΔiD is the detuning of state i affected by residual ℏ 
Doppler shifts: 

ΔiD ¼ ∇Θi:vi (15) 

due to the random very small displacements and vibrations of the atom (see 
Eqs. (3) and (4)), even though the atom is cooled and trapped at the center of the 

LG beam, and Δ ¼ ∑3
1Δi ¼ E3 � E0 �∑i ωi stands for the total detuning to the i¼ 

Rydberg state. 
According to Eq. (14), the quadrupole Rabi frequency of the Rydberg excitation 

step in addition to the polarization depends on the orbital angular momentum of the 
LG beam. The phase factor eiφ changes the parity symmetry and transfers one unit 
of optical orbital angular momentum to the internal motion of atom. The quadratic 
radial, r⊥r2!3, in Eq. (14) is the consequence of the transversal variation of the LG-
beam intensity. 

2.3.1 Doppler and recoil shift compensation 

The axial Doppler shift of the first, second, and Rydberg states by inserting 
Eqs. (3) and (4) in Eq. (14) can be, respectively, given as 

Δ1D ¼ �k1v1 cos θ1 þ k1v1 sin θ1, 
Δ2D ¼ �k2v2 cos θ2 � k2v2 sin θ2, (16) 

Δ3D ¼ k3v3 þ ΔLG: 

It is noticeable that Δ3D contains the azimuthal Doppler shift [80], ΔLG ¼ R
vΦ 

⊥
, in 

addition to the axial Doppler shift, where vΦ is the azimuthal velocity of the atom. 
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Doppler broadening due to atomic motion leads to imperfect Rydberg excitation 
which limits the fidelity of the entanglement that is created using Rydberg interac-
tions. By adjusting θi, it is possible to get rid of the recoil and axial Doppler shift. 
According to Figure 2(a), the excitation is recoil-free when 

k1 sin θ1 ¼ k2 sin θ2: (17) 

By substituting Eqs. (5) and (6) into Eq. (16), it is found that this flexible 
geometry of the excitation system results in the axial Doppler-free excitation con-
dition in which the total detuning Δ is independent from the atomic vibrations but 
not rotations. 

2.3.2 Adiabatic approximation and effective two-level transition 

With the presence of decoherency, the evolution of the atomic states in 
memoryless environment will be expressed as density matrix formalism [81]. 
However, storing quantum information for long periods needs a decoherence-free 
quantum memory. In order to have coherent excitation, the spontaneous photon 
scattering should be limited by far detuning of laser excitation frequency from the 
respective excited state. In the limit of very large intermediate detuning such that, 
|Δi| ≫ Ωi and |Δi| ≫ |Δ|, the population of intermediate states is very low, and the 
system can behave as a two-level system with an effective coupling between ground 
and Rydberg states [77]. Supposing that the atom is initially in the ground state |0>, 
the time dependence of the Rydberg state population by the GGLG-beam excitation 
scheme can be obtained from Eq. (12) as 

2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
2 Ωeff c3 ¼ 2 sin 2 Ωeff 

2 þ Δeff t , (18)j j  2 
2 þΩeff Δeff 

where 

Ω2
3ð Þ  1 R⊥R⊥ Ω2ð Þ

Δeff R⊥ Δ þ þ þ (19)ð Þ ¼  ΔLG,4Δ3 4Δ1 

and 

Ω1 R⊥ Ω2ð Þ  R⊥ð Þ  R⊥ Ω3ð Þ  ð Þ ¼  (20)Ωeff R⊥ 4Δ1Δ3 

are the effective detuning and resonant Rabi frequency characterizing effective 
quadrupole coupling between ground and Rydberg states due to the dipole-
dipole-quadrupole transition under the adiabatic approximation. 

The transverse profile of three-photon GGLG effective quadrupole Rabi 
frequency has a narrow central peak compared to the one-photon quadrupole LG Rabi 
frequency without any sidelope. Then, according to Eq. (18), the nonzero excitation 
probability is limited to the position of a single atom which is localized at the center of 
the trap leading to enhancement of the high-accuracy single-atom excitation. 

2.3.3 Transition selection rules 

To coherently excite a single atom to a Rydberg state for quantum information 
processing, it is crucial to determine the strength of the radial and angular momen-
tum couplings between the ground and Rydberg states. Moreover, the quantum 
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qudit encoding is based on the spin and orbital angular momentum exchange in the 
interaction of atom with excitation laser beams, which is expressed in angular 
momentum coupling term. The internal atomic wave function in spherical polar 
coordinate is written as 

ψnlmð Þ ¼r unlð Þr Ylmðθ; φÞ, (21) 

where unl(r) is the radial part of the electron wave function, which for a Rydberg 
state can be approximated using quantum defect theory [82], and n, l, and m are 
quantum numbers, which characterize the atom states. Substituting Eq. (21) into 
Eqs. (13) and (14) and considering the polarization orientation with respect to the 
quantization axis, the Rabi frequency of each transition can be given by 

� �1 2ðπðπ 
28πI1Ω1ð  Þ ¼0 eRn0l0!n1l1 ð Þr ∑σ s1σ ðθ1; φ1Þ sin θdθdφYm0 ∗Y1 

σYm1 
l0 l13ℏ2ε0c 

0 0 (22) 
� �1 

22I1¼ eRn0 l0!n1l1 ð Þr β1dpℏ2ε0c 

� �1 2ðπðπ 
28πI2Ω2 0 eRn1l1!n2l2 ð Þ∑σs2σ ð Þ sin θdθdφYm

l1
1 

1Y
m
l2

2ð  Þ ¼  r θ2; φ2 ∗Yσ 

3ℏ2ε0c 
0 0 (23) 

� �1 
22I2¼ eRn1l1!n2l2 ð Þr β2dpℏ2ε0c 

� �1rffiffiffiffiffi 2ðπðπ 
2 n3l38πI3 32 eRn2l2! ð Þr

Ω3ð  Þ ¼0 ∑σ s3σ ðθ3; φ3Þ sin θdθdφYm2 ∗Yσ 
1Y1

1Ym3 
l2 l33ℏ2ε0c 3 w3 

0 0 

� �1 

16I3 2 eRn2l2!n3l3 ð Þr 
β3qp¼ 

πℏ2ε0c w03 

(24) 

where Rni�1, li�1 ! ni, li represent the overlap integral between the radial wave 
functions of the electron and the dipole-quadrupole moment and βli� 

are the 
1mi�1!limi 

angular coupling expressed in terms of Clebsch-Gordan coefficients [77]. 
βli�1 mi�1!limi 

contributes in precise quadrupole Rydberg excitation with elemental 
parameters θi and Φi. Different combinations of θi and Φi provide all possible 
transitions accessible, which is applicable in precision measurements [83]. In case of 
θ3 = 0 as shown in Figure 2(a), for left and right circularly polarized LG beam with 
p = 0 and ℓ = 1, the angular momentum transferred to the internal motion of the 
Rydberg atom via quadrupole transition is |Δm| = 2 and 0, respectively. Therefore, 
there is a possibility for the Rydberg atom to gain two units of angular momentum 
due to the quadrupole LG excitation: one from the polarization and the other from 
optical orbital angular momentum of LG beam. Additionally, the radial overlap 
integral of the quadrupole transition Rn2l2!n3l3 ð Þr is considerable for high-lying 
Rydberg state with respect to w03, which increases the quadrupole Rabi frequency. 
Moreover, the w03-dependence of the Rydberg excitation Rabi frequency reflects 
the fact that the electric quadrupole transitions for an LG beam scales with w03 

(compared to the plane wave, which scales with wave number k). Therefore, a 
relevant focusing with respect to the diffraction limit in addition to sufficient LG-
beam power enhances the probability of the effective quadrupole excitation. 
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2.3.4 Localized Rydberg excitation in dipole-quadrupole potential landscape 

Considering red- and blue-far-off resonance detuned first, second, and Rydberg 
excitation laser beams, respectively, due to the position-dependent AC-Stark shift 
of ground and Rydberg states as derived in Eq. (19), a position-dependent dipole-
quadrupole potential landscape is found: 

UFORDQT ðR⊥Þ ¼ ULG3 þUG1, (25) 

where 

˜ ° 2d
UqLG3 ¼ U03 R⊥ð Þ  ,f LG3dR⊥ 

(26) 

and 

UdG1 ¼ �U01 f 
2 ðR⊥ÞÞ (27)G1 

are the optical quadrupole and dipole potentials, respectively. In these expres-
2jΩ3ð Þ0 j 2jΩ1ð Þ0 jℏ ℏsions U03 ¼ and U01 ¼ are quadrupole and dipole potential depth. 4 jΔ3 R;V 4 Δ1 R;Vð Þj j ð Þj 

The first and the last excitation parameters are contributing in the self-trapping 
potential landscape called far-off resonance optical dipole-quadrupole trap 
(FORDQT), while the second deriving laser with high intensity increases the exci-
tation probability. Turning the trap off also results in mechanical heating and 
decoherence due to entanglement between the qubit state and the center of mass 
motion. The far detuning from all atomic resonances substantially reduces the 
photon scattering rate, and the atom is localized in an almost conservative potential. 
It can be seen that the magnitude and direction of the force exerted on the atom 
depend on both the magnitude and sign of the intensity gradient and the detuning 
which pushes the atom back toward the dark center of the trap. The flexible 
geometry of the excitation configuration results in the axial Doppler- and recoil-free 
excitation at the center of the trap. The localized Rydberg excitation in FORDQT 
potential can pave the way to establish a new record for the length of the time that 
quantum information can be stored in and retrieved from a localized trapped 
Rydberg atom. 

2.3.5 Optimization of the system by tuning the excitation parameters 

The probability of coherent writing and reading a quantum state into and out of 
Rydberg atom as a long-lived memory depends on coherence time and strength of 
coupling between ground and Rydberg state. Substituting the Rabi frequencies 
defined in Eqs. (22)–(24) into Eqs. (19), (20) and (25), Δeff, Ωeff, and UFORDQT can 
be interpreted in terms of key parameters of excitation: the orientation of the 
excitation beams with respect to the quantum axis (θi), the intensity of laser exci-
tation beams (Ii), the detuning from intermediate states (Δi), the laser polarization 
azimuthal angle (φi), and the orbital angular momentum and the beam waist of the 
Rydberg excitation LG beam. By adjusting θi the geometry of excitation can be 
constructed for a Doppler- and recoil-free excitation. The clever choice of φi results 
in the excitation to a desirable state. While Δi fulfills the far-off resonance condi-
tion, the intensity Ii can be adjusted to boost the effective quadrupole excitation 
with less effect of AC-Stark shift. Finally, the proper choice of excitation laser beam 
waists can result in a great reduction of trapping size. In the GGLG excitation 
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Figure 3. 
(a) The far-off resonance optical dipole-quadrupole trapping potential normalized to the quadrupole potential 
versus transversal position of center of mass of the Rydberg atom, for the case Ω1 = Ω3, |Δ1| = |Δ3|, and 
ω01 = ω02 = 0.2 ω03 (blue line) [77]. 

process, the Rydberg atom confines in the FORDQT potential, which is sensitive to 
the Rydberg atom position with respect to the transversal variations of the intensity 
of the excitation lasers which keeps the Rydberg atom at the minimum noise 
position of the trapping center and thus controls localized qudit state in longer 
coherent time reasonable for quantum information processing. Comparing to the 
Rydberg dipole excitation via LG beam, the Rydberg GGLG excitation system 
localizes the atom in a much smaller region. According to Figure 3, if the LG beam 
is focused into some micron waist, then in this self-trapping excitation system, the 
atom can be excited to a Rydberg state while tightly confined and controlled to sub-
micron dimensions. Consequently, in a high-dimensional quantum information 
experiments via Rydberg excitation, care should be taken to relative control over all 
these parameters. 

3. Summary 

In this chapter, the Doppler- and recoil-free three-photon GGLG excitation 
promises to extend a single localized atom to a highly excited Rydberg state, which 
has application in the control and transformation of high-dimensional quantum 
states [16]. The adiabatic approximation results in an effective quadrupole Rabi 
frequency with a rich geometrical dependency. The quadrupole interaction in the 
last step of the LG excitation transfers a unit of orbital angular momentum to the 
Rydberg state in addition to the spin angular momentum. The GGLG excitation 
system allows to greatly reducing the rate of photon scattering and suppresses the 
loss rate due to collision, while the trapping potential of FORODQT localizes the 
Rydberg excitation and increases excitation coherency and allows for high detection 
efficiency and long detection time. A wide range of properties characterizing the 
excitation configuration can be controlled in real time through changes in geome-
try, polarization and orbital angular momentum, focal spot size, intensity, and 
frequency of the laser excitation beams to provide the ability to encode qudit in the 
internal degree of freedom of Rydberg atom independently to the center-of-mass 
motion. This aspect is vital to store and manipulate the quantum state of qudits in 
high-dimensional quantum information processing. 

43 

http://dx.doi.org/10.5772/intechopen.82319


Quantum Electronics 

Author details 

Leila Mashhadi1* and Gholamreza Shayeganrad2 

1 Independent Researcher, Basel, Switzerland 

2 Department of Biomedical Engineering, University of Basel, Allschwil, 
Switzerland 

*Address all correspondence to: leila.mashhadi@yahoo.com 

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/ 
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

44 

http://creativecommons.org/licenses
mailto:leila.mashhadi@yahoo.com


Localized Excitation of Single Atom to a Rydberg State with Structured Laser Beam for Quantum… 
DOI: http://dx.doi.org/10.5772/intechopen.82319 

References 

[1] Lvovsky AI, Sanders BC, Tittel W. 
Optical quantum memory. Nature 
Photonics. 2009;3:706-714 

[2] Bloch I. Quantum coherence and 
entanglement with ultracold atoms in 
optical lattices. Nature. 2008;453:1016 

[3] Saffman M, Walker TG. Analysis of a 
quantum logic device based on dipole-
dipole interactions of optically trapped 
Rydberg atoms. Physical Review A. 
2005;72:022347 

[4] Specht HP, Nölleke C, Reiserer A, 
Uphoff M, Figueroa E, Ritter S, et al. A 
single-atom quantum memory. Nature. 
2011;473:190-193 

[5] Negretti A, Treutlein P, Calarco T. 
Quantum computing implementations 
with neutral particles. Quantum 
Information Processing. 2011;10:721 

[6] Weitenberg C, Kuhr S, Mølmer K, 
Sherson JF. Quantum computation 
architecture using optical tweezers. 
Physical Review A. 2011;84:032322 

[7] Ritter S et al. An elementary 
quantum network of single atoms in 
optical cavities. Nature. 2012;484:195 

[8] Hofmann J et al. Heralded 
entanglement between widely separated 
atoms. Science. 2012;337:72 

[9] Duan LM, Monroe C. Colloquium: 
Quantum networks with trapped ions. 
Reviews of Modern Physics. 2010;82: 
1209 

[10] Chen S et al. Deterministic and 
storable single-photon source based on a 
quantum memory. Physical Review 
Letters. 2006;97:173004 

[11] Chen Y-A et al. Memory-built-in 
quantum teleportation with photonic 
and atomic qubits. Nature Physics. 
2008;4:103 

[12] Grimm R et al. Optical dipole traps 
for neutral atoms. Advances in Atomic, 
Molecular, and Optical Physics. 2000; 
42:95 

[13] Davidson N et al. Long atomic 
coherence times in an optical dipole 
trap. Physical Review Letters. 1995;74: 
1311 

[14] Lengwenus A, Kruse J, Volk M, 
Ertmer W, Birkl G. Coherent 
manipulation of atomic qubits in optical 
micropotentials. Applied Physics B. 
2007;86:377 

[15] Miller JD, Cline RA, Heinzen DJ. 
Far-off-resonance optical trapping of 
atoms. Physical Review A. 1993;47: 
R4567 

[16] Schlosser N, Reymond G, Protsenko 
I, Grangier P, Schlosser N, Reymond G, 
et al. Sub-poissonian loading of single 
atoms in a microscopic dipole trap. 
Nature. 2001;411:1024 

[17] Volz J, Weber M, Schlenk D, 
Rosenfeld W, Kurtsiefer C, Weinfurter 
H. An atom and a photon. Laser Physics. 
2007;17:1007 

[18] Puppe T, Schuster I, Grothe A, 
Kubanek A, Murr K, Pinkse PWH, et al. 
Trapping and observing single atoms in 
a blue-detuned intracavity dipole trap. 
Physical Review Letters. 2007;99: 
013002 

[19] Nelson KD, Li X, Weiss DS. Imaging 
single atoms in a three-dimensional 
array. Nature Physics. 2007;3:556 

[20] Phoonthong P, Douglas P, 
Wickenbrock A, Renzoni F. 
Characterization of a state-insensitive 
dipole trap for cesium atoms. Physical 
Review A. 2010;82:013406 

[21] Weber M, Volz J, Saucke K, 
Kurtsiefer C, Weinfurter H. Analysis of 

45 

http://dx.doi.org/10.5772/intechopen.82319


Quantum Electronics 

a single-atom dipole trap. Physical 
Review A. 2006;73:043406 

[22] Schlosser N, Reymond G, Protsenko 
I, Grangier P. Sub-poissonian loading of 
single atoms in a microscopi dipole trap. 
Nature. 2001;411:1024-1027 

[23] Zoller P. Quantum optics: Tricks 
with a single photon. Nature. 2000;404: 
340-341 

[24] Khudaverdyan M, Alt W, Dotsenko 
I, Kampschulte T, Lenhard K, 
Rauschenbeutel A, et al. Controlled 
insertion and retrieval of atoms coupled 
to a high-finesse optical resonator. New 
Journal of Physics. 2008;10:073023 

[25] Blinov BB, Moehring DL, Duan LM, 
Monroe C. Observation of 
entanglement between a single trapped 
atom and a single photon. Nature. 
2004;428:153-157 

[26] Dudin YO, Li L, Kuzmich A. Light 
storage on the minute scale. Physical 
Review A. 2013;87:031801 

[27] Li L, Kuzmich A. Quantum memory 
with strong and controllable Rydberg-
level interactions. Nature 
Communications. 2016;7:13618 

[28] Saffman M, Walker TG, Mølmer K. 
Quantum information with Rydberg 
atoms. Reviews of Modern Physics. 
2010;82:2313 

[29] Jaksch D et al. Fast quantum gates 
for neutral atoms. Physical Review. 
2000;85:2208 

[30] Choi JH, Knuffman B, Leibisch TC, 
Reinhard A, Raithel G. Cold Rydberg 
atoms. Advances in Atomic, Molecular, 
and Optical Physics. 2007;54:131 

[31] Jaksch D, Cirac JI, Zoller P, Rolston 
SL, Côté R, Lukin MD. Fast quantum 
gates for neutral atoms. Physical Review 
Letters. 2000;85:2208 

[32] Heidemann UR, Bendkowsky V, 
Butscher B, Löw R, Santos L, Pfau T. 
Evidence for coherent collective 
Rydberg excitation in the strong 
blockade regime rolf. Physical Review 
Letters. 2007;99:163601 

[33] Gaëtan A, Evellin C, Wolters J, 
Grangier P, Wilk T, Browaeys A. 
Analysis of the entanglement between 
two individual atoms using global 
Raman rotations. New Journal of 
Physics. 2010;12:065040 

[34] Firstenberg O, Adams CS, 
Hofferberth S. Nonlinear quantum 
optics mediated by Rydberg 
interactions. Journal of Physics B: 
Atomic, Molecular and Optical Physics. 
2016;49:152003 

[35] Mohapatra AK et al. A giant electro-
optic effect using polarizable dark 
states. Nature Physics. 2008;4:890 

[36] Isenhower L, Saffman M, Mølmer 
K. Multibit Ck NOT quantum gates via 
Rydberg blockade. Quantum 
Information Processing. 2011;10:755 

[37] Muller MM, Murphy M, 
Montangero S, Calarco T, Grangier P, 
Browaeys A. Implementation of an 
experimentally feasible controlled-
phase gate on two blockaded Rydberg 
atoms. Physical Review A. 2014;89: 
032334 

[38] Das S, Grankin A, Iakoupov I, Brion 
E, Borregaard J, Boddeda R, et al. 
Photonic controlled-PHASE gates 
through Rydberg blockade in optical 
cavities. Physical Review A. 2016;93: 
040303(R) 

[39] Peyronel T, Firstenberg O, Liang Q, 
Hofferberth S, Gorshkov A, Pohl T, 
et al. Quantum nonlinear optics with 
single photons enabled by strongly 
interacting atoms. Nature. 2012;488:57 

[40] Pritchard JD, Maxwell D, Gauguet 
A, Weatherill KJ, Jones MPA, Adams 

46 



Localized Excitation of Single Atom to a Rydberg State with Structured Laser Beam for Quantum… 
DOI: http://dx.doi.org/10.5772/intechopen.82319 

CS. Cooperative atom-light interaction 
in a blockaded Rydberg ensemble. 
Physical Review Letters. 2010;105: 
193603 

[41] Pritchard JD,Weatherill KJ, Adams 
CS. Nonlinear quantum optics mediated 
by Rydberg interactions. In: Madison 
KW et al., editors. Annual Review of 
Cold Atoms and Molecules. Vol. 1. 2013. 
pp. 301-350 

[42] Kozhekin AE, Mølmer K, Polzik E. 
Quantum memory for light. Physical 
Review A. 2000;62:033809 

[43] Müller MM, Haakh HR, Calarco T, 
Koch CP, Henkel C. Prospects for fast 
Rydberg gates on an atom chip. 
Quantum Information Processing. 2011; 
10:771 

[44] Beijersbergen M, Coerwinkel R, 
Kristensen M, Woerdman J. Helical-
wavefront laser beams produced with a 
spiral phaseplate. Optics 
Communications. 1994;112:321 

[45] Curtis JE, Koss BA, Grier DG. 
Molecular distributed sensors using dark 
soliton array trapping tools. Optics 
Communications. 2002;207:169 

[46] Mirhosseini M, na Loaiza OSM, 
Chen C, Rodenburg B, Malik M, Boyd 
RW. Rapid generation of light beams 
carrying orbital angular momentum. 
Optics Express. 2013;21:30196 

[47] Beijersbergen M, Allen L, van der 
Veen H, Woerdman J. Astigmatic laser 
mode converters and transfer of orbital 
angular momentum. Optics 
Communications. 1993;96:123 

[48] Wang J et al. Terabit free-space data 
transmission employing orbital angular 
momentum multiplexing. Nature 
Photonics. 2012;6(7):488-496 

[49] Allen L et al. Orbital angular-
momentum of light and the 
transformation of Laguerre-Gaussian 

laser modes. Physical Review A. 1992; 
45(11):8185-8189 

[50] Mashhadi L, Mehrafarin M. Paraxial 
propagation in amorphous optical media 
with screw dislocation. Journal of 
Optics. 2010;12:035703 

[51] Berry M. Paraxial beams of spinning 
light. Proceedings of SPIE. 1998;3487:6 

[52] Allen L et al. Atom dynamics in 
multiple Laguerre-Gaussian beams. 
Physical Review A. 1996;54(5): 
4259-4270 

[53] Jáuregui R. Rotational effects of 
twisted light on atoms beyond the 
paraxial approximation. Physical 
Review A. 2004;70:033415-033411-
033419 

[54] Babiker M et al. Orbital angular 
momentum exchange in the interaction 
of twisted light with molecules. Physical 
Review Letters;89(14):143601 

[55] Van Enk JK. Selection rules and 
center of mass motion of ultra cold 
atoms. Quantum Opt. 1994;6:445-457 

[56] Alexandrescu A et al. Electronic and 
centre of mass transitions driven by 
Laguerre-Gaussian beams. Journal of 
Optics B: Quantum and Semiclassical 
Optics. 2005;7:87-92 

[57] Kumar Mondal P, Deb B, Majumder 
S. Angular momentum transfer in 
interaction of Laguerre-Gaussian beams 
with atoms and molecules. Physical 
Review A. 2014;89:063418 

[58] Muthukrishnan A, Stroud CR Jr. 
Entanglement of internal and external 
angular momenta of a single atom. 
Journal of Optics B: Quantum and 
Semiclassical Optics. 2002;4:S73-S77 

[59] Krenn M, Malik M, Erhard M, 
Zeilinger A. Orbital angular momentum 
of photons and the entanglement of 
Laguerre-Gaussian modes. Philosophical 

47 

http://dx.doi.org/10.5772/intechopen.82319


Quantum Electronics 

Transactions of the Royal Society A. 
2017;375(2087):20150442 

[60] Isenhower L, Williams W, 
Dally A, Saffman M. Atom trapping 
in an interferometrically generated 
bottle beam trap. Optics Letters. 2009; 
34:1159 

[61] Ng J, Lin Z, Chan CT. Theory of 
optical trapping by an optical vortex 
beam. Physical Review Letters. 2010; 
104:103601 

[62] Miroshnychenko Y et al. Coherent 
excitation of a single atom to a Rydberg 
state. Physical Review A. 2010;82: 
013405 

[63] Fahey DP, Michael W. Noel 
excitation of Rydberg states in rubidium 
with near infrared diode laser. Optics 
Express. 2011;19:17002 

[64] Johnson LAM, Majeed HO, Varcoe 
BTH. Applied Physics B: Lasers and 
Optics. 2012;106:257 

[65] Fahey DP, Noel MW. Excitation of 
Rydberg states in rubidium with near 
infrared diode lasers. Optics Express. 
2011;19:17002 

[66] Sheng J, Chao Y, Kumar S, Fan H, 
Sedlacek J, Shaffer JP. Intracavity 
Rydberg-atom electromagnetically 
induced transparency using a high-
finesse optical cavity. Physical Review 
A. 2017;96:033813 

[67] Johnson LAM, Majeed HO, 
Sanguinetti B, Becker T, Varcoe BTH. 
Absolute frequency measurements of 
85RbnF7/2 Rydberg states using purely 
optical detection. New Journal of 
Physics. 2010;12:063028 

[68] Johnson TA, Urban E, Henage T, 
Isenhower L, Yavuz DD, Walker TG, 
et al. Rabi oscillations between ground 
and Rydberg states with dipole-dipole 

atomic interactions. Physical Review 
Letters. 2008;100:113003 

[69] Keating T, Cook RL, Hankin AM, 
Jau Y-Y, Biedermann GW, Ivan H. 
Deutsch Robust quantum logic in 
neutral atoms via adiabatic Rydberg 
dressing. Physical Review A. 2015;91: 
012337 

[70] Ryabtsev II, Beterov II, Tretyakov 
DB, Entin VM, Yakshina EA, Rzhanov 
AV. Doppler- and recoil-free laser 
excitation of Rydberg states via three-
photon transitions. Physical Review A. 
2011;84:053409 

[71] Baur S, Tiarks D, Rempe G, Dürr S. 
Single-photon switch based on Rydberg 
blockade. Physical Review Letters. 2014; 
112:073901 

[72] Heckötter J, Freitag M, Fröhlich D, 
Aßmann M, Bayer M, Semina MA, et al. 
Scaling laws of Rydberg excitons. 
Physical Review B. 2017;96:125142 

[73] Niederprüm T, Thomas O, Manthey 
T, Weber TM, Ott H. Giant cross section 
for molecular ion formation in ultracold 
Rydberg gases. Physical Review Letters. 
2015;115:013003 

[74] Safronova MS, Williams CJ, 
Clark CW. Frequency-dependent 
polarizabilities of alkali atoms from 
ultraviolet through infrared spectral 
regions. Physical Review A. 2003;67: 
040303 

[75] Piotrowicz MJ, Lichtman M, Maller 
K, Li G, Zhang S, Isenhower L, et al. 
Two-dimensional lattice of blue-
detuned atom traps using a projected 
Gaussian beam array. Physical Review 
A. 2013;88:013420 

[76] Zhang S, Robicheaux F, Saffman M. 
Magic-wavelength optical traps for 
Rydberg atoms. Physical Review A. 
2011;84:043408 

48 



Localized Excitation of Single Atom to a Rydberg State with Structured Laser Beam for Quantum… 
DOI: http://dx.doi.org/10.5772/intechopen.82319 

[77] Mashhadi L. Three-photon 
Gaussian–Gaussian–Laguerre–Gaussian 
excitation of a localized atom to a highly 
excited Rydberg state. Journal of Physics 
B: Atomic, Molecular and Optical 
Physics. 2017;50:245201 

[78] Curtis JE, Grier DG. Structure of 
optical vortices. Physical Review 
Letters. 2003;90:133901 

[79] Lembessis VE, Babiker M. Enhanced 
quadrupole effects for atoms in optical 
vortices. Physical Review Letters. 2013; 
110:083002 

[80] Allen L, Babiker M, Powerb WL. 
Azimuthal Doppler shift in light beams 
with orbital angular momentum. Optics 
Communication;112:141 

[81] Blum K. Density Matrix Theory and 
Applications. New York: Plenum Press; 
1981 

[82] Seaton MJ. The quantum defect 
method. Monthly Notices of the Royal 
Astronomical Society. 1958;118:504 

[83] Kreuter A, Becher C, GPT L, Mundt 
AB, Russo C, Häffner H, et al. 
Experimental and theoretical study of 
the 3d2D-level lifetime of 40ca+. 
Physical Review A. 2005;71:032504 

49 

http://dx.doi.org/10.5772/intechopen.82319


Chapter 4

Single-Atom Field-Effect
Transistor
Er'el Granot

Abstract

A simple single-atom transistor configuration is suggested. The transistor con-
sists of only a nanowire, a single-point impurity (the atom), and an external capac-
itor. The transistor gate is controlled by applying a transverse voltage on the
capacitor. The configuration does not rely on tunneling current and, therefore, is
less sensitive to manufacturing processes since it requires less accuracy and fewer
production processes. Moreover, unlike resonant-tunneling devices, the proposed
transistor configuration does not suffer from a compromise between high speed and
high extinction ratio. In fact, it is shown that this transistor can be extremely fast,
without affecting the signal’s extinction ratio, which can be as high as 100%.

Keywords: quantum dots, quantum point defect, point impurity, quantum
transistor, single-atom transistor, field-effect transistor

1. Introduction

Despite the fact that the field-effect transistor (FET) was patented long before the
formal invention of the transistor by Lilenfeld (in 1926) and Heil (in 1934), it was
produced only two decades later when its patent expired. Nevertheless, its benefits
were soon realized, and it became the building block of every integrated chip.

In 1975, Gordon Moore made a bold statement, which he updated a decade later,
that the number of transistors on an integrated chip doubles every couple of years
[1, 2]. This Moore’s law is surprisingly still valid. In fact, it seems that this is the only
parameter, which keeps growing exponentially for five consecutive decades. A
simple extrapolation of this trend reveals that within a decade, the size of the
average transistor should be no larger than the dimensions of a single atom.

The idea to manufacture few atom-based electronic devices was first
suggested by Richard Feynman, but it has become a reality only after the scanning
tunneling microscope (STM) was invented, and manipulations of single atoms
became feasible [3].

Recently there have been several attempts to fabricate nano-devices, which are
based on several atoms and even on a single atom [4–9]. These devices can operate
as single-atom transistors [10–13]. The main problem with these devices is that
while the device’s core is based on a single atom, the connectors are considerably
larger, and consequently, it is extremely complicated to model the device since the
models are spread over several length scales.

In order to simplify the model, the atom and the leads should both be presented
in the simplest form possible.
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That was the main motivation to create a model, in which the entire transistor is 
within the leads [14]. This configuration is in high agreement with the experiment 
of a single-atom transistor [10] and, at the same time, can be simulated by a 
relatively simple model. The solutions of this model can be expressed, with great 
accuracy, by analytical expressions. 

However, since this configuration is based on quantum tunneling, the single 
atom is not directly connected to the conducting leads (for resonant tunneling via a 
point defect without the insulators, see [15, 16]). Such a device is very difficult to 
manufacture, since the atom has to be encapsulated by the surrounding (other) 
atoms; it has to be located with great accuracy, and due to the resonant nature of the 
device, the atom must be located exactly at the center of the device; otherwise, the 

s efficiency exponentially decreases. ’device 
However, resonant tunneling is not essential to achieve fine control. For 

example, it has been shown that a single-point defect in a nanowire can be a perfect 
reflector for certain energies. Moreover, the point defect can cause a universal 
conduction reduction. At certain Fermi energies, the conductance drops at exactly 

’ 

22e =h [17]. 
s bound state can be modified, then aSince the energy level of the point defect 

’ 

simple nanowire with a single defect (a single atom) can be used as a nanotransistor. 
This is a much simpler device, which can be produced in fewer production stages 
than resonant-tunneling devices. 

However, to control the resonance energy of the point defect, an external elec-
tric field should be applied. The field affects the entire device and does not selec-
tively influence only the defect. Therefore, there is a need for a complete model, 
which integrates the nanowire, the point defect, and the electric field. 

The object of this chapter is to present such a model of a nanotransistor, which is 
governed not by resonant-tunneling process but by Fano anti-resonance [18], 
which is generated by the interaction between the point defect and the nanowire. In 

s gate is controlled by an external electric this transistor configuration, the FET 
field. 

2. The model 

The system is presented in Figure 1. The system consists of an infinite nanowire 
(in the longitudinal x-direction), whose width (in the transverse y-direction) is w, a  
point defect, whose distance from the boundary of the nanowire is wε, and an 
external capacitor, whose voltage and charge can be controlled by a power source. 

Figure 1. 
Model schematic. The capacitor creates the transverse electric field, and the point defect simulates the single 
atom. 
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Mathematically, the model can be described by the 2D stationary Schrödinger 
equation 

∂
2ψ ∂

2ψ þ þ ðE �U y  Þψ ¼ �Dðr � r0Þψ (1)ð  Þ þ Fy
∂x2 ∂y2 

in which normalized units (where Planck constant is ℏ ¼ 1 and the electron’s 
mass is m ¼ 1=2) were used. In this equation 

( 
0  0<  y < w 

U yð  Þ ¼  (2)
∞ else 

is the boundaries’ potential, which confines the dynamics to the wire’s geometry. 
F is the electric field. 

The point defect, which models the single atom, is presented by the asymmetric 
impurity D function (IDF) [19–21] 

pffiffiffi 
2 πδð Þy exp ð�x2=ρ2Þ

D r (3)ð  Þ � lim 
ρ!0 ρ ln ðρ0 =ρÞ 

which is located at r0 ¼ ŷε, and ρ0 is related to the impurity’s bound eigenenergy 
by 

16 exp ð�γÞ 8:98
E0 ¼ �  ffi �  (4)

ρ2 ρ2 
0 0 

where γ ffi 0:577 is Euler constant [22]. On the other hand, the relation between 
ρ0 and the physical properties of a real physical impurity (which has a finite radius a 
and a finite local potential V0) is 

2 γ 
ρ0 ¼ 2a exp þ : (5)

V0a2 2 

The homogeneous eigenstates solutions of the wire, i.e., solutions without the 
point defect, are 

ψn,Eðx; yÞ ¼  exp ðiknxÞχnð Þy (6) 

where χ ð Þy are the eigenstates of the one-dimensional differential equation n 

∂
2χ ð Þyn þ ðEn �U yð  Þ þ FyÞχ ð  Þ ¼y 0 (7)n
∂y2 

with the corresponding eigenvalues 

k2 ¼ E � En: (8)n 

These eigenstates can be written using the Airy functions Ai and Bi [22] and the 
normalized parameter 

� � � � � � 
ξ � yF1=3 þ E � k2 =F2=3 ¼ F1=3 y þ E � k2 =Fn n 
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as 

χ ξ f ð ÞBiðξ0 ð ÞBi ξ (9)ð  Þ ¼ N Ai ξ Þ � Ai ξ0 ð Þgn 

where N is the normalization constant, ξ0 � F1=3fEn =Fg, where the eigenvalues 
En are determined by the infinite solutions of the transcendental equation. 

χnðξwÞ ¼ 0, when ξw � F1=3fw þ En =Fg. 
In the case of a weak electric field, the eigenstates can be written to a first order 

in the electric field as a superposition of the free (zero electric field) eigenstates 
rffiffiffiffi 

2
ϕm y sin ðmπy=wÞ (10)ð  Þ ¼  

w 

namely, 
mþqð�1Þ � 1 mq 8

χ y y ϕqð Þð  Þ ¼ ϕmð  Þ þ Fw3 ∑ y (11)m 3 3 
q 2 ðm þ qÞ ðm � qÞ π4 

with the corresponding eigenenergies (again to the first order in F) 

12En ffi ðnπ=wÞ þ Fw: (12)
2 

Clearly, in the absence of the point defect (the atom), there is no coupling 
between the transverse direction and the longitudinal one, i.e., the capacitor cannot 
affect the longitudinal conductance. 

There is an exception, of course, if the capacitor occupies a finite region in 
space, in which case the electric field does create a coupling between the modes. 
But in the regime of a weak electric field, this coupling amq is also very weak 

mþqð�1Þ � 1 mq 8 
amq ¼ Fw3 : (13)3 32 ðm þ qÞ ðm � qÞ π4 

Even to adjacent modes (where most of the energy is transferred), the coupling 
is very weak 

ð Þ 8 
am, m�1 ¼ ∓Fw3 m m  � 1 

(14)3 π4ð2m � 1Þ 

For example, the coupling between the first and the second modes is as small as 
a1,2 ffi 0:0061Fw3. 

However, the presence of the point defect breaks the Cartesian symmetry and 
increases the coupling between the modes. 

The general solution, which takes the point defect into account, is 

Gþðr; r0Þψincð Þ  
ð 

ψ r r Ð r0 dr0Dðr0 � r0Þ (15)ð  Þ ¼ ψincð  Þ �  
1 þ dr0Gþðr0; r0ÞDðr0 � r0Þ 

where ψincð Þr is the incoming wavefunction, which can be chosen as one of the 
eigenmodes χ ð Þy , which in the case of a weak electric field can be approximated by n 

Eq. (11) (or Eq. (10), i.e., by ϕmð Þy ); Gþðr; r0Þ is the outgoing 2D Green function, 
i.e., Gþðr; r0Þ is the solution of the partial differential equation 

�∇2Gþðr; r0Þ þ ½U yð  Þ � E � Fy�Gþðr; r0Þ ¼ �δðr � r0Þ (16) 
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which can be written in terms of the 1D eigenstates χmð Þy as 

χnð Þy χ∗ ð Þ0 � pffiffiffiffiffiffiffiffiffiffiffiffiffiffi �yn 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
∞
∑Gðr; r0Þ ¼  i E � En (17)jx � x j :expp 
n¼1 2i E � En 

The scattered solution is therefore 

∞
∑ An,mχψ r ð χð Þ ¼ exp iknxÞ n yð Þ �  mð Þy exp ðikmj jx Þ (18) 
m¼1 

with the coefficients 

ð Þε χ∗ ð Þεχn m 
2ikm 

χ ð Þε ð Þεq

An,m � lim 
ρ!0 � : (19) 

�ρ2=4 
∞
∑ χ∗ 

qln ðρ0 =ρÞ ��E � Eqþ exp2π 2ikq
q¼1 

The transmitted solution (x > 0) is thus 

ψ rð Þ ¼  
∞
∑ exp ðikmxÞχmð Þy fδn,m � An,mg: (20) 
m¼1 

Eq. (18) is a generic solution; however, there are two types of energies, for 
which the solution reveals a universal pattern. 

3. Universal transition patterns 

When the particle’s energy is equal exactly to one of transverse eigenenergies, 
i.e., when E ! EQ , then the wavefunction reduces to a simple but universal 
expression 

( )
χ ð Þε � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi � χ ð Þεn ni 

∞
∑ψ rð Þ ¼  exp ðikmxÞχ ð Þy δn,m � δQ,mm EQ � Enx χ ð Þ � χQyn¼ exp ð Þy :

χQ ð Þε χQ ð Þεm¼1 

(21) 

A similar universality was shown for zero-field wire [23] (for other patterns, see 
[24]) 

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q � � �� �nπy Qπy
ψ rð Þ ¼ exp iπ Q2 � n2x sin � sin 

w w 
sin nπε=wð Þ 

,
sin Qπε=wð Þ (22) 

but Eq. (21) solution is valid in the presence of an electric field as well. 
This solution is universal in the sense that it is totally independent of the point 

defect’s strength (potential), which is manifested by the parameter ρ0 —a parameter 
that does not appear in Eq. (21). This pattern is presented in the upper panel of 
Figure 2. 

Clearly, when the defect is close to the surface, i.e., ε=w < < 1, then the solution is 
even independent of ε 

� qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi � � � � � 
nπy Qπy n

ψð Þ ffir exp iπ Q2 � n2x sin � sin : (23)
w w Q 
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Figure 2. 
A false color presentation of the conductance pattern. The spatial distribution in the wire of the probability 

2density jψð Þr j2 is plotted at the transition energy E ¼ E2 ffi ð2π=wÞ þ Fw=2 (upper panel) and at the zero-
current energy E ¼ Emin (lower panel). The crosses represent the point defect’s location.2 

At this operation point, the transistor experiences maximum transmission with 
maximum current, which is universal and is independent of the point defect 
parameters. The defect deforms the conducting pattern, but it does not transfer any 
current to the mth mode. Consequently, the current remains in the initial nth mode, 
as if the defect is absent. 

4. Universal conductance reduction 

Another important case, which is going to be relevant to the transistor operation, 
occurs below the next energy transition where there is a dip in the transmission 

2coefficient, and the conductance decreases by exactly 2e =h. 
Let the incoming particle energy be within the energy range EQp1 < E < EQ ; for 

which case it is convenient to split the denominator of the coefficient, i.e., to rewrite 
Eq. (19) as 

χnð Þε χ∗ 
mð Þε 

ikmAn, m = lim 
ρ!0 ln ðρ0 =ρÞ 1 χq ð Þε χq 

∗ð Þε χQ ð Þε χQ 
∗ ð Þε χqð Þε χq 

∗ð Þε     þ∑Qp pffiffiffiffiffiffiffiffiffi p pffiffiffiffiffiffiffiffiffi p∑∞ pffiffiffiffiffiffiffiffiffi exp p E p Eq ρ2=4π q¼1 i E Eq p q¼Qþ1 Eq Ep EQ E p 

(24) 

or 
χ∗ ð Þε χnð Þεmpffiffiffiffiffiffiffiffiffi 
i EpEmAn,m = χ∗ χ∗ , (25)

ln ðρ0 =Rð Þε Þ 1 χq ð Þε qð Þε χQ ð Þε Q ð Þε þ∑q
Q 
¼
p 
1 

pffiffiffiffiffiffiffiffiffi p pffiffiffiffiffiffiffiffiffi 
π i EpEq EQ pE 

where 
" # 

∞ χqð Þε χ∗ 
qð Þε     

ln R ε ln ρ þ π pffiffiffiffiffiffiffiffiffiffiffiffiffiffi   ρ2 =4 : (26)ð Þ = lim ∑ exp p E p Eq
ρ!0 p Eq¼Qþ1 Eq 

56 



� � � �
� � � � 

� � � � 

Single-Atom Field-Effect Transistor 
DOI: http://dx.doi.org/10.5772/intechopen.81526 

The device’s conductance can be evaluated as ([25, 26]) 

1
G ¼ ∑ Tml, (27)

π m, l < n 

where 

8 2 < j1 � An,nj n ¼ m 
2 kmTn,m ¼ jδn,m � An,mj ¼ 2 k (28)mkn : jAn,mj n ¼6 m

kn 

are the transmission coefficients (from the nth to the mth modes) of the wire 
with the impurity. 

At the transition points, i.e., when E ¼ EQ (kQ ¼ 0), the conductance is exactly 

1
G ¼ ðQ � 1Þ, (29)

π 

which is G ¼ 2 e
2 ðQ � 1Þ in ordinary physical units. h 

minOn the other hand, at the minimum transmission point (E ¼ E < EQ), when Q 

the real part of the denominator of Eq. (25) vanishes, i.e., when 

ln ðρ0 =Rð Þε Þ χQð Þε χ∗ 
Qð Þε ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi , (30)

π minEQ � EQ 

then 

χ∗ ð Þε χ ð Þεm npffiffiffiffiffiffiffiffiffi 
i E�Em 1 1

An,m � ¼ pffiffiffiffiffiffiffiffiffi ¼ : (31)�1 χqð Þε χq 
∗ð Þε E�Em �1 χqð Þε χq 

∗ð Þε km �1 χqð Þε χq 
∗ ð Þε∑Q pffiffiffiffiffiffiffiffiffi ∑Q pffiffiffiffiffiffiffiffiffi ∑Q 

q¼1 i E�Eq χm 
∗ ð Þε χnð Þε q¼1 E�Eq χm 

∗ ð Þε χnð Þε q¼1 kq 

Using the definition 

Q�1 χqð Þε χ∗ ð Þε Q�1 χqð Þε χ∗ ð Þεq qσ � ∑ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ ∑ (32) 
q¼1 E� Eq q¼1 kq 

2 kmthe conductance G ¼ π 
1 ∑n,m< Q jδn,m � An,mj k is equal exactly to 

n 

" # 
21 � χ∗ ð Þε χ ð Þε �2 k 1 χ∗ ð Þε χ ð Þε �χ∗ ð Þε χ ð Þε � k Q � 2

G ¼ ∑ �δn,m � m n � m ¼ ∑ δn,m � 2 m n þ � m n � m ¼ 
π , < Q k σ kn π , < Q k σ kmσ kn πn m m n m m 

(33) 

which is G ¼ 2 e
2 ðQ � 2Þ in ordinary physical units. h 

Therefore, there is exactly a one unit of conductance reduction between the 
mintransition energy EQ and the minimum point just below it EQ 

min 1ΔG ¼ G EQ �G E  ¼ π� , (34)Q 

2which is 2e =h in ordinary physical units. 
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Figure 3. 
The nanowire’s conductance as a function of the particles’ Fermi energy. The lower panel is a magnification of 
the transition zone. The dashed perpendicular line stands for the transition energy formula (Eq. (12)) E ¼ E2, 
and the dotted line corresponds to the zero-current energy formula (Eq. (30)) E ¼ Emin .2 

This result is a generalization of [17]. The probability density at the point of 
minimum conductance is presented in the lower panel of Figure 2, and the depen-
dence of the conductance on the particles’ Fermi energy is presented in Figure 3. 
The minima are clearly seen. 

Moreover, the approximate analytical expressions of the transition energy Eq. 
(12) and the minimum energy Eq.(30) are presented by horizontal lines. 

5. Zero transmission point 

The current can vanish only when the Fermi energy is within the energy range 
π2 2=w2 < EF < 4π2=w , in which case only the first mode is propagating. The trans-
mission of the first mode is 

( pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " #)�12i E2 � E1 ln ðρ0 =Rð Þε Þ jχ2ð Þε j
t1,1 ¼ 1 � 1 þ �pffiffiffiffiffiffiffiffiffiffiffiffiffiffi , (35)2 π E2 � Ejχ1ð Þε j 

in which case the zero-current energy is approximately 

4π2jχ2ð Þε j
ER ffi E2 � (36)

ln 2ðρ0 =Rð Þε Þ 

and in the case of weak fields, it can be written 

8 2 39 > pffi ffi > 
�1 

< = iπ 3 6 ln ðρ0 =Rð Þε Þ 2 sin 2ð2πε=wÞ 7t1,1 ¼ 1 � 1 þ 4 � qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi5 (37)> 2 sin 2ðπε=wÞ π 2 >: w ð2π=wÞ þ 1 Fw � E ;2 
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Figure 4. 
The dotted curve stands for Fw3 ¼ 0; the solid curve stands for Fw3 ¼ 5; and the dashed curve stands for 
Fw3 ¼ 10. 

with the zero-current (zero transmission) energy of 

˜ °  
2π 2 1 4π2 sin 4ð2πε=wÞ

ER ffi þ Fw � : (38)
w 2 w2 ln 2ðρ0 =Rð Þε Þ 

In the case of a surface defect, i.e., when the atom is close to the wire’s boundary 
(see Appendix A), 

RðεÞ ffi  4ε exp ðγ=2Þ, (39) 

and then the zero-current energy is approximately 

˜ °  
2π 2 1 ε4ð2π=wÞ6 

ER ffi þ Fw � : (40)
w 2 ln 2ðρ0 exp ð�γ=2Þ=4εÞ 

Therefore, the zero-current energy has a linear dependence on the electric field 
(and thus on the applied external voltage). In Figure 4 this property is presented by 
plotting the conductance for three different transverse electric fields. 

6. The transistor working point 

In Figure 5, the conductance as a function of the normalized applied electric 
field is plotted. The transistor can work as a digital device, where the field varies 
between the binary cases: 

˛
0 for F ¼ FR

T1,1 ¼ (41)
1 for F ¼ 0 

where 

˜ °  ˜ °2 2 61 2π 4π2 sin 4ð2πε=wÞ 2π ε4ð2π=wÞ
FRw � EF � þ ffi EF � þ :

2 w w2 ln 2ðρ0 =Rð Þε Þ w ln 2ðρ0 exp ð�γ=2Þ=4εÞ 
(42) 
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Figure 5. 
2Plot of the conductance as a function of the applied electric field for the particles’ energy E ¼ 4ðπ=wÞ . 

But the transistor can also work in an analog mode as an amplifier, in which case 
the applied voltage should be modulated with respect to the bias voltage F∗w, which 
is the center of the linear regime, i.e., 

" # 
2 

2 jχ1ð Þε j δ
F∗w=2 ¼ EF � ð2π=wÞ þ δ2 1 � 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi : (43)2jχ2ð Þε j E2 � E1 

Using this bias voltage, the transmission coefficient can be written 

8 2 39�1 > >< = δ 
t1,1 ¼ 1 � 1 þ ic461 �qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi57 (44)> >: δ2 =ð1 � c�1Þ2 þ ðF � F∗Þw=2 ; 

where 
pffiffiffiffiffiffiffiffiffiffi 2 pffiffiffi E2�E1 jχ2ð Þε j 2 2 

2c � ffi 4π 3=δ, and δ � πjχ2ð Þε j = ln ðρ0 =Rð Þε Þ ffi 4πð2πεÞ = δ jχ1 ð Þε j 
½w3 ln ðρ0 exp ð�γ=2Þ=4εÞ�. 

Therefore, the transistor gain at the working point is the ratio between the 
change in conductance and the applied transverse voltage Δv ¼ ðF � F∗Þw, which is 

ΔG cð1 � c�1Þ3 

gain ¼ ¼ (45)
Δv 4πδ2 

when the point defect is a surface one, i.e., ε < < 1, then δ < < 1 and c>>1 
pffiffiffi pffi ffi 
3 3w9 ln 3ðρ0 exp ð�γ=2Þ=4εÞ

gain ffi ¼ , (46)
δ3 3 6ð Þ4π ð2πεÞ 

which can be extremely large. 

7. Fast switching 

When the dip of the resonances is very narrow, the gain is very high; however, 
in this case, the transistor response is very slow, because it takes a substantial 
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amount of time to establish the resonance. In fact, the gain is proportional to the 
transistor’s time response τ, i.e., 

� ��1
gain ∝ 4π2 =w2 � E ∝ τ: (47) 

However, the value of both can be controlled by changing the defect’s parame-
ters. Since 

" # 
γ sin 2ð2πε=wÞ 

ρ0 ffi 4ε exp þ 2π pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi , (48)
2 w 4π2=w2 � E 

the parameter ρ0 can be chosen to place the resonance dip at any point in the 
regime π2=w2 < E <4π2=w2 and thus to determine the transistor time response 

γ 2π pffiffiffi 
ρ0 ffi 4ε exp þ sin 2ð2πε=wÞ τ : (49)

2 w 

Therefore, the transistor with the quickest response is the one with a surface 
defect with 

ρ0 ffi 4ε exp ðγ=2Þ: (50) 

In this case, the transistor time response is determined by the wire’s width, i.e., 

τ � ðw=πÞ2 , (51) 

2which in ordinary physical units is τ � m wð =hÞ , i.e., the narrower the wire, the 
shorter the transistor’s time response is. 

Eq. (50) teaches that such a single-atom nanotransistor can be faster than any of 
the cutting-edge available transistors. 

It should be emphasized that the point defect does not necessarily have to be an 
atom. It could be a molecule or any quantum dot that can be designed of having the 
necessary de-Broglie wavelength ρ0. 

8. Summary and conclusions 

An innovative single-atom transistor configuration is suggested, which can be 
simplified and simulated by a simple model. The model consists of a narrow 
conducting wire, a single-point defect, and an electric field. This device’s configu-
ration does not require fine atomic-size gate contact and atomic-size accuracy for 
positioning the single atom. The device’s mechanism is not based on resonant 
tunneling, and therefore, high accuracy is less essential. The gate is a capacitor that 
can be considerably larger than the point defect. Moreover, it was shown that this 
device can be extremely fast with a time response much shorter than any cutting-
edge transistor. 

The temporal analysis reveals a clear advantage of this configuration over 
resonant-tunneling ones (like [10, 14]). In resonant-tunneling devices, the signal’s 
extinction ratio depends on the resonance state’s lifetime. That is, there is no “zero-
current” in resonant-tunneling devices. The minimum current (“zero”) is actually a 
tunneling current, which is inversely proportional to the resonance state’s lifetime. 
Therefore, in resonant-tunneling devices, “fast device” and “low minimum 
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current” are competing demands. When seeking the former, one has to compromise 
on the latter, and vice versa. 

No such compromise is required in the proposed transistor configuration since it 
has been shown that this configuration always keeps (at least theoretically) extinc-
tion ratio of 100%. 

A. Appendix A: derivation of Eq. (39) 

The expression (26), i.e., 

2 � � 32 
χ ð Þε∞

∑64 
q 75� �ρ2� E � Eq =4R εð  Þ ¼  exp lim ln ρ þ π pffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp
Eq � Eρ!0 q¼3 

as a function of the defect’s location ε is plotted for several energy values in the 
energy range π2=w2 < E <4π2=w2 in Figure A1. 

As can be seen from this figure, while there are considerably large variations 
around ε ffi 0:2, the differences in the value of Rð Þε for ε ffi 0:5, i.e., when the defect 
is located at the center of the wire, are relatively mild, and in which case R εð  Þ ffi 0:3. 
Moreover, in the case of a surface defect, i.e., ε < < 1, Rð Þε is independent of the 
particles’ energy. 

Using the definition ξ � πqρ=w and the weak field approximation 

2 3 

sin 2ðξε=ρÞ∞
∑

2
ln R εð  Þ � lim 

ρ!0 

6 4 ln ρ þ 7
π2ρ2 =w2 �ξ2 =4π exp ρ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5expq

w ξ2 � ð4πρÞ2 =w2q¼3 

(A1) 

which can be written as an integral 

Figure A1. 
Plots of Rð Þε as a function of the point defect’s position in the wire ε for various energies. The dashed line is the 
small ε=w <  < 1  approximation (Eq. (39)). 
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2 3 
∞ 

6 ð 
sin 2ðξε=ρÞ � � 7ln RðεÞ �  lim 4 ln ρ þ 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp �ξ2 =4 dξ5: (A2)

ρ!0 Þ2 
π3ρ ξ2 � ð4πρ =w2 

And due to the limit, 
2 3∞ð

sin 2ðξε=ρÞ � �4RðεÞ ffi  exp lim ln ρ þ 2 exp �ξ2 =4 dξ5: (A3)
ρ!0 ξ 

0 

Now, since for ρ=w <  < 1  
∞ � �ð �ξ2exp =4 

ln ðρ=wÞ ffi  ln 2 � γ=2 � dξ, (A4)
ξ 

ρ=w 

then 
2 3 

ð ð∞ � � ∞ 

6 exp �ξ2 =4 sin 2ðξε=ρÞ � �ξ2 
� 7RðεÞ ffi  exp lim 4 ln 2w � γ=2 � dξ þ 2 exp =4 dξ5 ¼ 

ρ!0 ξ ξ 
2 

ρ=w 0 3 : (A5)
∞ ρð=w 

6 ð 
cos ð2ξε=ρÞ � � sin 2ðξε=ρÞ � � 7 exp lim 4 ln 2w � γ=2 � exp �ξ2 =4 dξ þ 2 exp �ξ2 =4 dξ5 

ρ!0 ξ ξ 
ρ=w 0 

Moreover, since, ρ=ε ! 0 but also ε=w ! 0, then in both integrals, the expo-
nents can be ignored, i.e., 

2 3 
ð∞ ρð=w 

cos ð2ξε=ρÞ sin 2ðξε=ρÞ
RðεÞ ffi  exp lim 64 ln 2w � γ=2 � dξ þ 2 dξ75 (A6)

ρ!0 ξ ξ 
ρ=w 0 

which finally yields the analytical expression 
� � γ2RðεÞ ffi  exp ln 2w � γ=2 þ Cið2ε=wÞ þ  ε2 =w ¼ 4ε exp , (A7)

2 

where Ci(x) is the cosine integral function [22]. 
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