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Preface

In recent years, Bayesian networks have experienced increased interest and widely varied
applications in numerous areas, including economics, risk analysis and assets and liabilities
management, AI and robotics, transportation systems planning and optimization, political
science analytics, law and forensic science assessment of agency and culpability, pharmacol‐
ogy and pharmacogenomics, systems biology and metabolomics, psychology, and policy-
making and social programs evaluation. This strong and diverse response results not least
from the fact that plausibilistic Bayesian models of structures and processes can be robust
and stable representations of causal relationships. Such stability and resilience to multi-
sourced data has allowed to design practical solutions that yield important and novel in‐
sights. Additionally, Bayesian networks’ amenability to incremental or longitudinal
improvement through incorporating new data affords extra advantages compared to tradi‐
tional frequentist statistical methods. We have created this volume with a view toward col‐
leagues in the field of machine learning and Bayesian networks and to students at the
graduate or postgraduate level.

In terms of epistemology, Bayesian networks promise to help achieve improved accuracy
regarding the truth of propositions of interest and regarding the causal and statistical basis
for their truth. Moreover, Bayesian networks can reveal relationships that have face-validity
to decision-makers and the public. To the degree that they illuminate a credible basis for
particular probabilistic solutions, such improvements can enable setting forth mechanisms
and principles in a defensible way, supported by a basis that can anchor just and stable poli‐
cy. The present volume includes new contributions from a number of innovators in Bayesi‐
an networks with emphasis on socially important applications.

In the Introduction, I call attention to the contemporary relevance of Bayesian networks, in a
time and culture that needs epistemological ‘ground truth’, or as near as one can come to
this, as a basis for rational, ethical management of social, engineering, and biological sys‐
tems. Bayesian networks are particularly effective in this connection insofar as the arcs that
are empirically learned or induced for the networks very often accurately represent the di‐
rection of causality. Events or states that share a de facto cause are likely to be conditionally
independent given the cause; arrows in the causal direction capture this independence. In a
naïve Bayes network, the arcs are often not in the right causal direction (e.g., diabetes does
not cause aging). But in non-naïve and other types, the arcs are highly accurate regarding
causality. This aspect is not only valuable as to low error rates in practical applications but
also affords a greater degree of face-validity, transparency, and social and psychological ac‐
ceptability compared to certain other machine-learning methods and AI model types.

Chapter 2 by Septia Yasmirullah and Nur Iriawan concerns growth model approaches using
hierarchical Bayesian methods. They address emerging economic imbalances within Indone‐
sian regions, subsequent to 2004. Economic development naturally entails issues of fairness
and equitability of resources application as well as determinations of programs' efficacy. Ac‐
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curate analyses to identify disparities and their causes are therefore fundamental to justice
and value creation in terms of public policy-making and program evaluation. A valuable
finding useful to others in the field is that one-level Bayesian modeling, with regional attrib‐
utes ignored and only national attributes retained, while Bayesian hierarchical structure
modeling, accounting as it does for regional attributes, are able to accurately characterize
interactions through the modeling of parameters of micro models with province-level cova‐
riates, achieving smaller DIC values and better explanatory power. The authors’ finding that
inter-regional variations are significantly affected by the regions' cities and province charac‐
teristics confirms natural intuitions and serves to further recommend the advantages and
strengths of the more comprehensive hierarchical method. The authors' work ably serves the
important public-sector goal in most countries, to enhance social wellbeing through effective
economic development in a manner that is trans-regionally fair and just.

Chapter 3 by Rosa Maria Arnaldo, Victor Fernando Gómez Comendador, Alvaro Rodriguez
Sanz, Eduardo Sanchez Ayra, Javier Alberto Pérez Castán, and Luis Perez Sanz presents an
approach for accurate analysis and engineering of aviation under conditions of uncertainty.
Commencing with a cogent survey of the work in applying Bayesian networks to aviation
and transportation industry decision-making, the authors show that Bayesian methods can
be used to select or parameterize input distributions for a probabilistic model. In this case,
the decision process may be made more acceptable in public policy or regulatory regimes
that are historically guided by frequentist statistics or are not yet reconciled to modern Baye‐
sian methods.

Chapter 4 by Bouchra Zoullouti, Nawal Sbiti, and Mustapha Amghar examines Bayesian
network analysis for descriptive and quantitative characterizations of risks associated with
health services. This approach allows to construct risk matrices concerning the safety out‐
comes of interest and accurately predict patients’ likelihood of experiencing each adverse
event or outcome. As such, Bayesian networks can be a means not only of guiding structure
and process improvements but also of individualizing therapeutic strategies. This promises
to become a valuable modality in contemporary precision medicine initiatives.

In recent work on operationalizing Bayesian networks, it is recognized that it is impossible
to achieve a reliably accurate description of the processes involved without new data being
collected or a large amount of data being stored that cannot be analyzed at once. Chapter 5
by Mirko Perkusich summarizes and elaborates some of the findings on the design of con‐
tinuous learning Bayesian networks to accommodate and adapt to new incoming informa‐
tion. Statistical power sufficient to justify model updating is an important issue that has not
been adequately covered in the research literature to date. To convert batch processing to a
continuous process for model updating one additionally needs to reconcile the rate of data
accrual with the perhaps short amount of time for updating the Bayesian network, a case
where the algorithm only updates the posterior probabilities of the parent lattices. Fried‐
man-Goldszmidt, Lam-Bacchus, Roure, and Shi-Tan serial Bayesian network updating are
examined, and a hybrid algorithm that offers computational complexity and accuracy ad‐
vantages is proposed.

Chapter 6 by Pedro Núñez, Eduardo Parente Ribeiro, Luis Manso, and Cristiano Premebida
analyzes the impact of fusion of disparate datatypes and sources (video and still cameras,
LiDAR, wearable sensors, trading transaction timeseries, etc.) on emulation of competent
human perception. This is important in regard to mobile robotics, advanced driver assis‐
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tance systems, multimodal sensor fusion for object detection, and a wide variety of other AI
and robotics applications. In this era of autonomous driving systems and other technologies
on which is conferred life-critical autonomy, the notion that perception involves Bayesian
inference is an increasingly popular position, one that merits elaboration and detailed criti‐
cal, quantitative study.

Chapter 7 by Oleg Kupervasser provides a detailed account of a Bayesian network basis for
evaluating medicinal chemistry (quantitative structure-activity relationships, QSAR, physio‐
logically based pharmacokinetics, etc.) in drug discovery and development. The emerging
importance of Bayesian network methods derives partly from the difficulty and inaccuracies
of present quantum chemical models and from the impracticality of sufficient characteriza‐
tion of structure of drug molecules and receptor active sites, including vicinal waters in and
around hydrophobic pockets in active sites. This is particularly so for biologicals (protein
and nucleic acid APIs) and target applications that exhibit extensive inter-receptor traffick‐
ing, genomic polymorphisms, and other system biology phenomena. The effectiveness and
accuracy of Bayesian methods for drug development likewise depends on certain prerequi‐
sites, such as an adequate distance metric by which to measure similarity/difference be‐
tween combinatorial library molecules and known successful ligand molecules targeting a
particular receptor and addressing a particular clinical indication. In this connection, the dis‐
tance metric proposed in the chapter and the associated Lemmas and Proofs are of substan‐
tial value in the future of high throughput screening (HTS), combinatorial library
management, and medicinal chemistry in the era of precision medicine and personalized
genomics-informed pharmaceutics. Today there is a growing number of compounds and
clinical indications for which de-risked "hit-to-lead" and "lead-to-candidate" prediction and
decision-making have been successfully accomplished using Bayesian network methods and
distance metrics. In this regard, the methods have growing interest for assisting in drug de‐
velopment and foundations’, NGOs’, and private venture financing of drug discovery and
M&A, particularly in indications that involve multi-receptor cross-talk, metabolomic cas‐
cades, rare and neglected diseases, and other complex system biology.

Bayesian network modeling in macroeconomics, illustrated by a 37-year epoch in the recent
experience of Nigeria, is the focus of the concluding chapter by David Olayungbo. This con‐
tribution elucidates what is, to date, an under-appreciated application of Bayesian methods
in a manner than can help guide economic policy-setting and fiscal program evaluation at
the societal level. Bayesian network models for competitiveness growth in economies reveal
and reflect the dynamics and the results of antecedent policies – the constituents of the con‐
ditions and the context for subsequent growth – and thereby inform stakeholders and deci‐
sion-makers regarding [causal] relationships bearing on alternative means for achieving
competitive catch-up or continued success.

I would like to thank and express gratitude to all the authors for their contributions. I wish
readers a fruitful and enlightening reading.

Douglas S. McNair MD PhD
Senior Advisor

Quantitative Sciences - AI & Knowledge Integration
Bill & Melinda Gates Foundation

Seattle, Washington, USA
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Introductory Chapter: Timeliness of Advantages of 
Bayesian Networks

Douglas S. McNair

Additional information is available at the end of the chapter

1. The timeliness of Bayesian networks in an era of problematized 
truth-claims

As a child, I was raised as a Lutheran, with an earnest interest and concern for scripture. I 
became notorious for asking my Sunday school teachers imponderable and impolitic ques-
tions. Upon encountering Genesis 3:11–13 around age 6, I noticed that God confronts Adam 
in the Garden of Eden and asks, “Have you eaten from the tree?” Adam prevaricates: “The 
woman whom you gave to be with me, she gave me fruit from the tree.” God inquires of 
Eve about this. She answers, “The serpent tricked me.” My youngster mind recognized this 
pattern of dialog as very much akin to my own defensive dissembling with my parents when 
I had been the cause of some accident or had done something wrong. I very much wanted to 
know why Adam’s and Eve’s reasoning was insufficient.

God asks “what,” but humans typically answer with proposals as to “why” (see [1], p. 24). 
We humans crave reasons and often we value causal explanations far more than facts. Adam 
and Eve believed that identifying causes outside themselves would exculpate them. This 
notion can be wrong, but the tendency in our species is strong and is an important aspect of 
computational (“artificial”) intelligence, particularly in the present era in which AI is being 
widely deployed and operationalized and bestowed with progressively greater autonomy 
and influence over our lives. The present volume is motivated in part in recognition of this 
trend and the fact that social acceptance of AI strongly depends upon transparency and face-
valid explanations that justify or satisfactorily legitimate authority that is exerted over us.

Bayesian networks (BNs) have come a long way since Rev. Bayes’ original paper [2], and the 
applications in which they excel are by now very diverse. For example, Kass and Raftery 
[3] set forth a summation of dozens of uses for, interpretations of, and advantages and 

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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1. The timeliness of Bayesian networks in an era of problematized 
truth-claims
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valid explanations that justify or satisfactorily legitimate authority that is exerted over us.

Bayesian networks (BNs) have come a long way since Rev. Bayes’ original paper [2], and the 
applications in which they excel are by now very diverse. For example, Kass and Raftery 
[3] set forth a summation of dozens of uses for, interpretations of, and advantages and 
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disadvantages of Bayes factors in hypothesis testing. Bayesian networks represent graphically 
uncertainties and decisions that expressly represent the relationships and the strengths of 
probabilistic dependences among the variables and the associated information flows. A chief 
advantage of BNs is that they allow to address uncertainties and evidence from disparate 
sources, such as expert judgment [4–6] and observable experience, being able to take into 
account common causes and influences of social and logistical aspects [7]. In BNs, variables 
and their interdependencies are encoded as nodes and directed arcs with conditional prob-
ability tables (CPTs) linked with the nodes. Under the assumption of conditional indepen-
dence, a BN represents the joint probability distribution of variables [8]. Bayesian networks, 
besides this natural transparency, revealing joint dependencies graphically in directed acyclic 
graphs (DAGs) whose nodes denote elements or factors associated with concepts that we can 
name and understand, have the notable advantage of modeling causality (more conveniently 
than by other methods, e.g., transfer entropy, Granger asymmetric/noncommutative correla-
tion, etc.), in a manner that yields empirically credible transmission of evidence or influence. 
This capability in turn produces stochastic classifiers that can be combined with utility func-
tions to automate optimal decision-making that emulates the decision-making embodied in 
the data from which the BN was learned.

2. Bayesian networks in use-cases involving epistemological or 
perceptual complexity

Other attributes of BNs that are timely and valuable for contemporary use-cases and applica-
tions include:

• facilitate incorporating causal knowledge resulting in probabilities that are easy to explain;

• enable consistent combining of information from various sources (including expert elicita-
tion and crowd-sourcing) and mixed data types;

• batch or continuous updating that can be responsive to newly acquired or incoming data;

• amenable to processes aimed at measuring and accounting for model structural uncertainty;

• amenable to modeling partially observed and unlabeled data; and

• can estimate certainties for the values of variables that are not observable (or whose cost or 
rate of change limits the extent or frequency of direct observation).

Bayesian networks function most effectively when the arcs that are learned or induced for the 
BN accurately represent the direction of causality. Events or states that share a common cause 
are likely to be conditionally independent given the cause; arrows in the causal direction 
capture this independence. Adam’s and Eve’s (and our) human nature and mortal suscep-
tibility to temptation were (are) common causes in just such a way, in a manner that even a 
child could grasp [9–11]. In a naïve Bayes network, the arcs are often not in the right causal 
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direction (e.g., diabetes does not cause aging). But in non-naïve and other BN types, the arcs 
are mostly accurate regarding causality (e.g., diabetes does cause insulin to be low or insulin 
sensitivity to be low), and this feature is sufficient to make such BNs not only useful but 
humanly understandable and socially endorsable, even in highly complex contexts [12–23].

Contributions in other chapters in the present volume explore a variety of novel ways in which 
BNs are becoming ever more relevant and impactful within the broader armamentarium of AI 
methods for real-world applications. My own recent engagement with Bayesian networks has 
been primarily directed to pharmacogenomics-related systems biology and physiologically 
based pharmacokinetics (PBPK) modeling for efficient drug development and personalized 
medicine. However, the aspect of credible (Bayesian) accounts of causation that were timely 
and salient to me at age 6 remain so now 60 years later and are exemplified by contemporary 
BNs. I anticipate that readers will likely find them so as well.

“A model is a simplification or approximation of reality and hence will not reflect all of reality. 
... [George E. P. Box] noted that ‘All models are wrong, but some are useful.’ While a model can 
never be [full, immutable, ground] ‘Truth,’ a model might be ranked from very useful, to useful, to 
somewhat useful to, finally, essentially useless.”—Kenneth Burnham and David Anderson (2002).
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Abstract

Economic growth can be used as an assessment for the success of the regional economic
establishment. Since the Regulation of the Republic Indonesia Number 32 of 2004 has been
implemented, the imbalance economic growth among the regencies in Indonesia is rising.
The imbalance in the conditions of economic growth differs between regions with the aim
of the government to improve social welfare by expanding economic activities in each
region. The purpose of this chapter is to elaborate whether there is a difference in eco-
nomic growth based on the distribution of bank credit for each regency in Indonesia. This
research analyzes the economic growth data using hierarchical structure model that
follows the normality-based modeling in the first level. The two modeling approaches
will be applied, i.e., a general one-level Bayesian approach and a two-level structure
hierarchical Bayesian approach. The success of these approaches has demonstrated that
the two-level hierarchical structure Bayesian has a better estimation than a general one-
level Bayesian. It demonstrates that all of the macro-level characteristics of provinces are
significantly influencing the different economic growth in every related province. These
variations are also significantly influenced by their cross-level interaction regency and
provincial characteristics.

Keywords: Bayesian, estimation, economic growth, normal distribution, hierarchical

1. Introduction

The rising economic development in a country or in such region can be shown by its economic
growth. It could be affected by three main factors, i.e., advances in technology, the capital
accumulation of investment, and the local workforce participation [1]. The indicator to mea-
sure the economic growth rate and to determine the shifts and economic structural changes are
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the gross domestic product (GDP). There were two kinds of GDP, i.e., GDP at constant
prices and GDP at current prices. GDP at constant prices was used to explain the economic
growth from year to year, while GDP at current prices was used to see the economic structural
changes [2].

The law of the Republic Indonesia Number 32 of 2004 states about the delegation of partial of
the central government authority to the local government for conducting and organizing its
own internal affairs. The increase of the economic activity in each regency and province in
order to improve the national economy is the main goal of the delegation. Local autonomy
welfare of society expected quickly can be realized through applied decentralization regula-
tion. Decentralization, on the other hand, can drive the imbalances in economic growth among
the regencies.

The Indonesian government issued the nine packages policy called Nawacita in 2014, a pro-
posed solution to overcome the imbalance of economic growth. The nine packages policy in
Nawacita consists of returning the state to have the main task of protecting all citizens and
providing a safe living environment; emerging clean, effective, trusted, and good democratic
governance; development of marginal areas; reforming law enforcement bureaus; improving
life quality; increasing productivity and competitiveness; promoting economic independence
by developing domestic strategic sectors; overhauling the nation character; and strengthening
the spirit of unity in diversity and social reform [3].

The seventh of the nine points in Nawacita states that the government would accomplish
economic independence by developing domestic strategic sectors. The economy sectors were
stressed as a priority sector for accompanying Nawacita, which fitted the classification Indo-
nesia Banking Statistics (named as Statistik Perbankan Indonesia or SPI). Economic growth is
significantly affected by these sectors. A significant example is that the distribution of financial
credit to economic priority sectors has been proven to have a significant contribution as a
positive impact on regional economic growth [4].

As a developing country, the banking sector in Indonesia is still dominating the financial
system. The development of the banking sector has a strong relationship with economic
growth. Some previous studies have shown that there is a positive relationship between the
number of bank credit with income per capita growth in both developed and developing
countries [5, 6]. The banking industry characteristic in Indonesia, however, is believed rela-
tively brittle [7], inefficient in financing intermediation in ASEAN [4].

This chapter discusses the bank credit influence on economic growth through an assessment of
the distribution of financial credit in Indonesia using two-level Bayesian hierarchical structure
modeling, each regency on the first level as a sample unit and provinces as the second level.
There are 284 regencies as the selected sample unit from the first level, which spread unbal-
anced in the 11 selected provinces. Demonstration of the ability to resolve the challenges of
modeling on this unbalance of a number of sample units, therefore, was a significant contribu-
tion of Bayesian hierarchical modeling. Different from the frequentist approaches, Bayesian
analysis treats all unknown parameters as random variables which have distribution [8]. The
results of this study are expected to provide guidance about financial credit distribution to
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priority sector and recommendation to policy-making in Bank Indonesia, the local govern-
ment, Statistics Indonesia (BPS), and other related institutions.

2. Background and methodology

Economic growth has always been a benchmark for the success of the economic development
of a country or a region. In a region, it can be conventionally measured by the increasing rate of
the gross regional domestic product (GRDP) value represented in percent. The important
indicators that represent the economic condition in a region for a certain reporting period were
GRDP. There were two types of GRDP, i.e., reported as current prices and reported as constant
prices. The performance of the economy over time in real terms could be seen through the
GRDP at constant prices, while GRDP at current prices was used to see the shifts and the
economic structures [2]. The economic growth rate in Indonesia during 2015 is lower than in
2014, i.e., 4.79% of 5.02%. Some provinces, however, have economic growth above national
economic growth, which are West Sumatra, North Sumatra, East Java, Central Java, West Java,
East Nusa Tenggara, Southeast Sulawesi, South Sulawesi, and Papua, while the economic
growth rate of South Sumatra (4.5%) is lower than the national economic growth. In 2015,
Papua Province was an exceptional province having the most fantastic rapid economic growth
rate, amounting to 7.97%. The second most rapid economic growth rate after Papua Province
belongs to South Sulawesi Province, achieving 7%. Five provinces were only able to reach the
economic growth rate of around 5–6%, and one province exactly had a growth of 6%. The
others grow below 5%. Almost all provinces that have GRDP at constant prices tend to
increase from 2014 to the year 2015, except Aceh Province. The deficit balance of trade, foreign
export oil, and imports are the main cause of decreasing its GRDP. They have reduced the level
of Aceh’s domestic economy (inter-regional) and sharpened differences in economic growth.

The secondary data recorded officially from the Economic Assessment and Surveillance Divi-
sion of Economic and Financial Advisory, Bank Indonesia Representative Office of East Java
Province, coupled with the data from Statistics Indonesia (BPS) are used in this study. There
are 17 micro predictor variables (x), four macro predictor variables (w), and a response variable
(y), i.e., economic growth rate. Figure 1 shows the design of the hierarchical data structure.
Due to the demand for the number of sample units as many as 17 variables in the modeling,
only 11 provinces were used from as many as 34 provinces in Indonesia which had at least 16
regencies. This considers the guarantee in approaching the fulfillment of the requirements of
the micro model that uses 17 predictor variables.

The procedures of analysis in this research follow the steps below:

1. Describing and exploring economic growth data each regency

2. Parameter estimation of a global one-level Bayesian model of all regencies

a. Write an algorithm to estimate parameters of the general one-level Bayesian model.

The parameters used for modeling in this study are τ and β. These are the parameters
of the normal distribution. The preliminary procedure that needs to be done in
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priority sector and recommendation to policy-making in Bank Indonesia, the local govern-
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The procedures of analysis in this research follow the steps below:
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2. Parameter estimation of a global one-level Bayesian model of all regencies

a. Write an algorithm to estimate parameters of the general one-level Bayesian model.

The parameters used for modeling in this study are τ and β. These are the parameters
of the normal distribution. The preliminary procedure that needs to be done in
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modeling with the one-level Bayesian approach is to determine the prior distribution
for the parameters to be estimated. This study uses an independent prior distribution,
i.e., the prior distribution of each parameter is independent of one another. These
independent prior distributions can be used to tackle problems in the modeling if it
suspects there is high collinearity between the explanatory variables.

Prior distributions are used for each element of the parameter vector in the one-level
Bayesian model-based normal distribution as follows:

yi ¼ β0 þ β1x1i þ β2x2i þ…þ βpxpi þ ei,

y � N μ; σ2I
� �

,
μ ¼ xβþ e,

τ ¼ 1
σ2

,

ei � N 0; σ2
� �

,

βs � N β̂s; σ
2
s

� �
,

σ2s � Gamma as; bsð Þ,
where i ¼ 1, 2,…, n; n is number of data,

s ¼ 0, 1, 2,…, p; p is number of micro predictor variables:

(1)

Determining the value of hyper-parameter of each parameter in the prior distribution
is done by a combination of the conjugate and pseudo priors [9]. This is done to ensure
that the iteration of the parameter estimation process will quickly meet convergence
and meet the properties of the Markov chain, i.e., irreducible, aperiodic, and recurrent.

b. Implement the algorithm into the syntax of WinBUGS and run.

The relationship between data and the prior distribution of parameters in Bayesian
modeling can be illustrated as a graphic model form using a directed acyclic graph
(DAG).

Figure 1. Hierarchical structure scheme.

Bayesian Networks - Advances and Novel Applications8

Figure 2 is a representation of the relationship among data, model parameters, and
their parameter prior being modeled. Box-shaped node is used for representing the
parameter or data which are constant, while the node ellipse is used for representing
the parameters changing stochastically or as a logical structure relationship. Between
nodes is connected by a single line and a dotted line. The single line is stating a
stochastic relationship, while the dotted lines express logical relationships.

c. Analyze the model by listing significant contributions of each predictor variable using
the concept of whether the zero value is inside the credible interval of its highest
posterior distribution (HPD).

d. Measure the accuracy of this general one-level Bayesian model by computing its
deviance information criterion (DIC) value.

3. Parameter estimation of the two-level hierarchical structure Bayesian model. The first-level
model is for the regency level modeling, and the second-level model is for the province
level modeling.

a. Write an algorithm to estimate parameters of the two-level hierarchical structure
Bayesian model.

The hierarchical model parameter has a multilevel structure, called hyper-parameter.
It is in line with the hierarchical design perspective in this problem, i.e., the hierarchy
between regency and province. There are two parameters on the first level, namely, β
and σ2y, and there are two parameters on the second level, i.e., γ and σ2sj. For the

parameters in the first level, σ2y represents the variance of normal error distribution,

and β represents the parameters of regression in the micro model, while the parame-
ters in the second level are referred to a hyper-parameter which is a prior distribution
of the parameter β. This parameter β will be set as a response in the regression model
which is explained by hyper-parameter as a combination of the covariate w in the
macro model.

The following important steps are determining the distribution and hyper-parameter
prior for all of the parameters to be estimated. As in the global one-level model, in this
two-level modeling, the independent prior distributions are used. Prior distributions

Figure 2. DAG one level Bayesian methods.
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are used for each element of a Bayesian hierarchical model parameter vector based on
the normal distribution as follows:

yij ¼ β0j þ β1jx1ij þ β2jx2ij þ…þ βpjxpij þ eij,

Y � N μy; σ
2
yI

� �
,

μy ¼ xβþ e,

βsj � N β̂sj; σ
2
βsj

� �
,

eij � N 0; σ2y
� �

,

β̂sj ¼ γ0s þ γ1sw1j þ γ2sw2j þ…þ γqswqj þ usj,

β̂j � N μβj; σ
2
βjI

� �
,

(2)

μβj ¼ γwþ u,

γts � N μγts
; σ2γts

� �
,

usj � N 0; σ2βsj

� �
,

σ2γts � Gamma aγts
; bγts

� �
,

where i ¼ 1, 2,…, nj; j ¼ 1, 2,…, m;
s ¼ 0, 1, 2,…, p; and t ¼ 0, 1, 2,…, q:

As in the global one-level model, in this two-level modeling, the determining of the
value of each parameter prior distribution is done by a combination of the conjugate
and pseudo priors.

b. Implement the algorithm into the syntax of WinBUGS and run.

The hierarchical relationship of model parameters, i.e., parameter priors and hyper-
parameter prior, in the Bayesian approach of such hierarchical scheme could be
described by the directed acyclic graph [10, 11]. Data, parameters, and parameter
prior models in the DAG are represented by nodes.

Figure 3 describes a Bayesian hierarchical model DAG for two-level model based on
the normal distribution, i.e., the first level is the regency, and the second level is the
provinces. For simplicity of writing, Regency-i, i ¼ 1, 2,…, nj, where nj is a number of
regency in the j-th province, and Province-j, j ¼ 1, 2,…, m, where m is a number of the
province. The parameter of regression in the first level is β; it can be written individ-
ually as βsj, where s ¼ 0, 1, 2,…, p; p is a number of the covariate in the micro model.

While the parameters of regression in the second level is γ, it can be written individ-
ually as γts, where t ¼ 0, 1, 2,…, q; q is a number of the covariate in the macro model.

c. Analyze the first and second level model by creating a list of the significant contribu-
tion of predictor variables in each regency and province by using the concept of
whether the zero value is inside the credible interval of its HPD.
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d. Determine the accuracy of this two-level hierarchical structure Bayesian models by
computing its DIC value.

4. Choosing the best model between the general one-level Bayesian model and two-level
hierarchical structure Bayesian model by comparing their DIC values

The selection of the best models from the two models can use a smaller DIC value. DIC of
the kth model can be determined through the following Equation [11]:

DIC kð Þ ¼ 2D θk; kð Þ �D θk; k
� �

¼ D θk; k
� �þ 2pk

(3)

where D θm;mð Þ D θk; kð Þ is a deviance that is equal to the negative value of twice the log-
likelihood as stated in Eq. (4):

D θk; kð Þ ¼ �2 log f yjθk; kð Þ (4)

where D θk; kð Þ is the average posterior and pk represents the number of parameters in the
kth model calculated as

pk ¼ D θk; kð Þ �D θk; k
� �

(5)

θk is average posterior of the parameter in the kth model. The better model has smaller
deviance value.

Figure 3. DAG hierarchical Bayesian methods.
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5. Draw a thematic map that plots the distribution of economic growth of the regency to
provinces.

6. Make an interpretation of the results of the modeling; then write conclusions and suggestions.

3. Characteristics of research variable

A hierarchical linear model is a regression modeling that can accommodate a hierarchical data
structure. The predictor variables were prepared at all predefined levels, while the response
variable was measured at the lowest level [10, 12]. The hierarchical structure model could be
established by two levels of models, i.e., the micro models (model at the first level) and macro
models (model at the second level). Micro models could be in the form of distribution of data
in the first level or the regression model between the observed response and predictor in the
first level. Macro models, on the other hand, are usually as the regression model between the
parameter of the distribution or the regression coefficients from micro models and the predic-
tor variables measured on the second level [13]. In this case, predictor variables measured in
the first level were financial credit distributions, i.e., 17 major economic sectors in the regency,
while in the macro modeling, variables related to the provincial level were employed. There
are six economic sectors that have the greatest contribution among the 17 major economic
sectors at the regency level to economic growth, i.e., trade (x7), manufacturing industry (x4),
construction (x6), agriculture (x1), transportation, warehousing and communication (x9), and
accommodation, food, and beverage services (x8). At the provincial level, for the variable
component macro model, on the other hand, they are inflation (w1), interest rates on loans
(w2), deposits (w3), and the ratio of the nonperforming loan (NPL) (w4).

The distribution of the response variable has to be determined in order to build the likelihood
distribution which will be applied in both general one-level Bayesian and hierarchical struc-
ture Bayesian approach. To do so, the goodness of fit (GOF) test has to be done to check the
suitability of the selected hypothetical distribution pattern with the distribution of the
observed data. In this study, the null hypothesis of “the response data follow a particular
distribution pattern” would be tested to the alternative hypothesis of “the response data do
not follow a particular distribution pattern” by using the Anderson-Darling (AD) test [14].
Eq. (6) represents the AD test statistic:

W2
n ¼ �n� 1

n

Xn

j¼1

2j� 1ð Þ log uj þ log 1� un�jþ1
� �� �

, (6)

where n is the number of observed sample units and uj is the cumulative distribution function

at the data observations. The null hypothesis would be rejected when W2
n is greater than a

critical value, cα [15], calculated as Eq. (7):

cα ¼ aα∗ 1þ b0
n
þ b1
n2

� �
, (7)
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where at the significance level α ¼ 5%, the value for aα ¼ 0:7514, b0 ¼ �0:795, and b1 ¼ �0:890
[15]. In this study, the response data was tested whether the pattern was normally distributed
or not by using the following hypothesis test.

H0: The economic growth distribution fits the normal distribution.

H1: The economic growth distribution is unfit for the normal distribution.

Results of the GOF test by using the AD test show that the economic growth (response variable)
of the selected 11 provinces follows the normal distribution. The Bayesian normal-based
approach employing the likelihood of normal distribution, therefore, is applicable for this case.

4. Indonesia’s economic growth modeling using general one-level
Bayesian methods

In the general one-level Bayesian modeling for economic growth, it must begin with the
assumption that all regencies in the 11 selected provinces have the same level of economic

Parameter Mean MC error 2.50% Median 97.50%

β0 5.54400 8.16E�04 5.26400 5.54400 5.825000

β1 �0.24950 0.001269 �0.66500 �0.24940 0.165100

β2 0.03708 0.001033 �0.29370 0.03742 0.363600

β3 0.01071 0.001133 �0.38670 0.01121 0.413800

β4 �0.02010 0.001788 �0.65760 �0.01853 0.621500

β5 �0.30450 9.90E�04 �0.61510 �0.30430 0.004251

β6 0.13530 0.003614 �1.17600 0.13380 1.468000

β7 0.32110 0.003616 �0.90150 0.32280 1.523000

β8 0.88960 0.003478 �0.40340 0.88640 2.198000

β9 �0.36810 0.003282 �1.41100 �0.36580 0.674800

β10 �0.26800 0.002072 �1.00700 �0.26790 0.461900

β11 �0.36240 0.003382 �1.49700 �0.36450 0.802700

β12 0.25370 9.14E�04 �0.06085 0.25490 0.570000

β13 �0.60620 0.002666 �1.58900 �0.60710 0.373700

β14 0.14230 0.001768 �0.48590 0.13990 0.778100

β15 �0.01639 0.004265 �1.53900 �0.01792 1.531000

β16 0.37940 0.002525 �0.51430 0.37870 1.274000

β17 �0.58840 7.76E�04 �0.89230 �0.58780 �0.288300

τ 0.15720 9.57E�05 0.13160 0.15660 0.185300

Table 1. Significance testing parameters of one-level Bayesian model.
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5. Draw a thematic map that plots the distribution of economic growth of the regency to
provinces.

6. Make an interpretation of the results of the modeling; then write conclusions and suggestions.
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β14 0.14230 0.001768 �0.48590 0.13990 0.778100

β15 �0.01639 0.004265 �1.53900 �0.01792 1.531000

β16 0.37940 0.002525 �0.51430 0.37870 1.274000

β17 �0.58840 7.76E�04 �0.89230 �0.58780 �0.288300

τ 0.15720 9.57E�05 0.13160 0.15660 0.185300

Table 1. Significance testing parameters of one-level Bayesian model.
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growth. All of the 17 variables were employed to model simultaneously and give the general
one-level Bayesian model as Eq. (8):

y ¼ 5:544� 0:2495x1 þ 0:03708x2 þ 0:01071x3 � 0:0201x4 � 0:3045x5 þ 0:1353x6
þ 0:3211x7 þ 0:8896x8 � 0:3681x9 � 0:268x10 � 0:3624x11 þ 0:2537x12 � 0:6062x13
þ 0:1423x14 � 0:01639x15 þ 0:3794x16 � 0:5884x17

(8)

The next step is to test the parameter significance of this one-level Bayesian model using
credible intervals. If the credible interval does not hold zero, then the estimated parameter is
significant. The result shown in Table 1 says that the intercept and the financial credit
distribution of international agencies and other extra-national agencies sector to total loans
(x17) have a significant influence to their economic growth, but the other 16 variables are
insignificant. The insignificance of the 16 variables means that the contribution of these 16
variables is not statistically influential enough for economic growth in each regency, but those
sectors cannot be interpreted that they should not be implemented in every regency to
support their economic growth. This insignificance can be caused by the random nature of
each sector’s activities among regions, where, naturally, it should be varied locally, but in this
modeling, it is treated and considered to be all the same and global for all regions, to the
response variable.

5. Indonesia’s economic growth modeling using hierarchical structure
Bayesian methods

Two regression models would be established in this hierarchical structure Bayesian approach,
i.e., a regression model for the micro model (first level) and macro model (second level),
respectively. The regression model in the first level will use 17 variables, and it has to estimate
198 parameters, while the regression model in the second level will use 4 variables, and
therefore, it has to estimate 90 parameters. Table 2 shows six estimated parameters of 18
regression coefficients in micro models for selected six provinces.

Parameter Aceh West Java Central Java East Java South Sulawesi Southeast Sulawesi

β0 4.0630 4.3330 4.92000 3.0330 6.3470 4.741

β1 �0.1328* �1.0220* 0.28610* �0.0955* 3.3370* �2352.000

β2 �1.9210* 0.0192* �0.00404* �0.2382* 0.0821* �981.200

β3 �37.4500* �0.8488* 0.86100* �1.5820 �14.8400* �39.940

β4 �174.6000 �0.3119* �0.23360* 0.3850* 3.0480* �1023.000

β5 8.6950* �0.3027 0.40700* 0.9209* �0.5125* �340.000

*The estimated parameter was not significant at α ¼ 5%.

Table 2. Six estimated parameters of 18 regression coefficients in micro models for selected six provinces.
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Table 2 demonstrates that each estimated βi, i ¼ 0, 1,…, 5 is treated as variables, i.e., the values
of βi among provinces were different. This also applies to βi, i ¼ 6, 7,…, 17.βi, i ¼ 6, 7,…, 17: As
an example, in the intercept coefficient, the lowest belonged to the East Java Province, while
the greatest value belonged to Papua Province. These intercept variations of selected 11
provinces in micro models are presented as boxplot in Figure 4. This fluctuation of these
parameters would be explained by regressing these parameters to the four covariates in the
second level. This has to be done to find out the different effects of their different local policies
in implementing their provincial regulations when it is viewed from differences of parameter
values [12, 16]. This stage of regression is applied to each random resulted regression param-
eter of the first level to the covariate at the second level. Table 3, as an example, shows only 6 of
18 regressions of macro model. Combining this cross-level interaction hierarchically between
micro and macro models, the model of Aceh province, for example, for the randomly intercept
only, can be written as Eq. (9):

y1 ¼ 5:059þ 1:037w1 þ 0:2406w2 � 1:605w3 þ 1:153w4ð Þ � 0:1328x1
� 1:921x2 � 37:45x3 � 174:6x4 þ 8:695x5 � 11:91x6 � 0:5904x7
� 2:461x8 � 74:23x9 þ 111:7x10 þ 238:3x11 � 115:1x12 � 50:71x13
þ 22:8x14 þ 11:58x15 þ 0:1152x16 � 1:606x17

(9)

From the example of a hierarchical model for Aceh, a hierarchical structure model can demon-
strate its superiority in presenting a newmodel as a hierarchical cross-level interaction through
the modeling of the slope of micro models. This model can describe the differences in economic
growth between different provinces even though they have characteristics of regencies with
almost perfect similarities. In this case, the role of provincial characteristics is as an activator
variable in relation to the regency’s economic growth rate. The interpretation, therefore, could

Figure 4. Boxplot of intercept micro models.
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be derived from the micro models adapted to the characteristics of each province. In addition,
the creation of predictors by adding depth to the hierarchical level will be more adaptive in
capturing real phenomena in the field.

The results in the first line of Table 2 and Figure 4 showed that the intercept of micro models
varies among the provinces. It is due to the significant effect of the province characteristics as
shown by the first line of Table 3. All of the estimated parameters of the covariate w in the
second level, γt, t ¼ 0, 1, 2,…, q, are significant, except for γ0. This means that variables in the
second level, inflation (w1), interest rates on loans (w2), and NPL ratio (w4), are affecting the
different shifts in economic growth in each regency. Interpretation for parameters other than
intercepts can be done in the same way, namely, by substituting the results of parameter
estimates at level two in Table 3 of the second row into the first-level model.

6. The best model selection

Modeling of economic growth in Indonesia in this study is done using two methods, the
general one-level Bayesian and the two-level hierarchical structure Bayesian models. These
two models would be compared to see which model is a more representative model to
economic growth. The main point of view that needs to be highlighted in the modeling
differences is that in general one-level Bayesian modeling, all of the characteristics at the
provincial level are ignored and only the characteristics in the Regency are considered. In this
modeling view, the economic growth in all regencies was, therefore, treated equally. The
Bayesian hierarchical structure modeling, on the other hand, was smartly joining the

Parameter in micro model γ0 γ1 γ2 γ3 γ4

β0 5.0590 1.0370* 0.2406* �1.6050* 1.1530*

β1 4.7120E+04 �4.6160E+04 365.3001 9.610E+03 �6.1450E+04

β2 9.9490E+05 9.6220E+05 �7.2320E+05 �2.9160E+05 �7.3050E+05

β3 �7.4470E+04 �2.37E+05 1.5040E+05 7.2280E+04 �5.163E+03

β4 �4.0340E+05 3.4290E+05 4.6780E+04 �3.5150E+04 4.8380E+05

β5 1.0480E+04 �1,28E+05 3.4670E+04 2.9410E+04 �5.1220E+04

*The estimated parameter was not significant at α ¼ 5%.

Table 3. Summary of parameter estimation macro model regression.

Model DIC

General one-level Bayesian 1351.360

Hierarchical structure Bayesian 916.490

Table 4. Goodness-of-fit model.
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characteristics at the provincial level and at the regency level. Here, the economic growth
could be explained as a cross-level interaction hierarchically through the modeling of param-
eters of micro models to the province characteristics as its covariates. The criteria used to select
the best model are the value of DIC. Based on the smaller DIC in Table 4, the hierarchical
structure Bayesian model was better than the general one-level Bayesian model.

7. Thematic map of economic growth in Indonesia

The economic growth of each regency based on the one-level Bayesian method can be seen in
Figure 5. Each color in Figure 5 represents economic growth in a regency. Color code 64 is a
color code for the regency that is not included in the modeling. The higher the economic
growth in a region, the greater the color code. Nabire has the highest economic growth in
2015 among other regencies in Indonesia, i.e., 9.51%, so the color code for Nabire is 255.

Furthermore, the thematic map of economic growth of each regency based on the hierarchical
Bayesian method shown in Figure 6, where the color codes for regencies that are not included
modeling is code 83. Like a thematic map of economic growth based on the one-level Bayesian
method, these maps also show that the higher the economic growth in a region, the greater the
color code.

Based on Figures 5 and 6, the difference between economic growth modeling using the global
one-level Bayesian method and the hierarchical Bayesian method is easily seen. The difference
is the color in Figure 5 only influenced by covariates of regencies, whereas the difference in

Figure 5. Thematic Map One-Level Bayesian Model.
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color in Figure 6 is due to the collaboration and interaction between covariates in each regency
and province. In addition to this, collaboration and interaction of the characteristics of the
regency and province also affect the color difference in maps. Hierarchical Bayesian model is
better in representing the economic growth in each regency in Indonesia, as has been discussed
in Section 6. Figure 6 looks more clear in describing and representing Indonesia’s economic
growth in 2015.

8. Conclusion

Some conclusions could be gathered, i.e., (i) the economic growth model based on financial
credit distribution in Indonesia generally follows the normal distribution pattern, (ii) it would
be more appropriate to be modeled using the hierarchical Bayesian than using a global one-
level Bayesian method, and (iii) the results of hierarchical Bayesian modeling can also be seen
as a significant influence on the regression coefficients that describe a cross-level interaction of
the regency and provincial characteristics. The influence of the regency characteristics, there-
fore, cannot be generalized, so that the regency characteristics should be fitted to the province
characteristics.

There were also some recommendations to be given, i.e., (i) the local government and Bank
Indonesia should focus on addressing issues of inequality of economic growth in Indonesia,
especially in areas with slow rate of economic growth; and (ii) it was necessary to develop a
new method that (a) was capable to include the provinces with the regency number of less

Figure 6. Thematic Map Hierarchical Bayesian Model.

Bayesian Networks - Advances and Novel Applications18

than 17 variables in the model and (b) was able to model the different distribution patterns of
economic growth in the different regions into the generalized hierarchical Bayesian model.
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Abstract

Most decisions in aviation regarding systems and operation are currently taken under
uncertainty, relaying in limited measurable information, and with little assistance of formal
methods and tools to help decision makers to cope with all those uncertainties. This chapter
illustrates how Bayesian analysis can constitute a systematic approach for dealing with
uncertainties in aviation and air transport. The chapter addresses the three main ways in
which Bayesian networks are currently employed for scientific or regulatory decision-
making purposes in the aviation industry, depending on the extent to which decision
makers rely totally or partially on formal methods. These three alternatives are illustrated
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taken under the assumption that the values of the parameters describing the system perfor-
mance are equal to their estimates. However, this postulation is only valid as long as there are
sufficient data or precise expertise for an accurate estimation of the system parameters. This is
not the case in many occasions, particularly when the system, product or process is new and
limited measurable information about its performance is accessible. Additionally, in many
occasions, decision makers in aviation do not count with the assistance of formal methods
and tools to help them cope with all those uncertainties in the decision-making process,
particularly when it is necessary to evaluate risks or perform causal analysis.

A systematic approach for dealing with uncertainties in aviation and air transport is possible
through Bayesian analysis. Bayesian Networks (BNs) have been broadly applied to decision-
making problems in a wide variety of fields because they combine the benefits of formal
probabilistic methods, understandable easily visual form, and efficient computational tools
when exploring consequences and risks.

In this chapter, we revise the advantages of applying BNs to aviation and air transport
decision-making problems in environments affected by uncertainty. We characterise typical
problems existing in aviation and air transport, which could benefit from this systematisation;
and describe recent research work carried out in this field. More particularly, the chapter
illustrates works performed by the authors regarding:

i. How Bayesian reasoning can support an integrated methodology to assess and evaluate
compliance with system safety goals and requirements when there is uncertainty in the
assessment of systems performances.

ii. How Bayesian networks can be used to evaluate the risk of runway excursion at an
airport and decide whether an airline will be authorised to operate at that airport vis-a-
vis of the operational risk.

iii. How causal analysis through a BN can be used to understand the interdependencies
between factors influencing performance and delay (drivers and predictors) at busy
airports.

2. Bayesian networks for decision-making in aviation

In general, we may consider three main ways that Bayesian networks are currently employed
in causal and risk analysis for scientific or regulatory decision-making purposes in the aviation
industry. While in general decision makers prefer to rely on formal infrastructures to back up
its decisions, the extent up to what they totally or only partially trust on the formal methods is
in the origin of this triple approach.

i. In the first way, the Bayesian reasoning assumes the entire process of evaluation and
decision. In this case, the Bayesian approach applies to all the phases and steps in the
process and estimations, and decisions respond to an overall Bayesian framework. Typi-
cal decision problems normally tackled with this approach addresses questions such as:
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• Should a company be allowed to operate at a new airport?

• Does an on-board system satisfy the prescribed safety objectives?

• Should a new aircraft model be certified and allowed to fly?

Those in favour of this approach sustain that Bayesian reasoning is able to provide such
an all-inclusive and formal scheme to arrive at decisions, and that applying a scientifically
homogenous approach to all the phases of the decision-making process guarantee coher-
ent, objective and solid decisions. Those against this approach claim that with this
approach, the Bayesian analyst is put in charge and takes over the entire process and
endeavour. Although widely applied in other industries, its use is still rare in aviation.

ii. In the second option, Bayesian methods can be used just to estimate probability distribu-
tions. In this case, Bayesian analysis is still a central piece of the decision-making process,
although it is not anymore in charge of the whole process. Typical questions addressed by
this application of Bayesian methods are:

• What are the odds of an aircraft suffering a runway overshoot?

• What is the probability that a flight will experience a delay?

• What is the probability that passengers will lose their flight?

In this case, Bayesian analyst furnishes the quantities and probability distributions that
will help managers to take informed decisions but will not condition their decision,
which might be influenced by other factors. Therefore, the decision process is formally
isolated from the Bayesian analysis.

iii. At the opposite end, Bayesian methods can be used to select or parameterise input
distributions for a probabilistic model. In this case, neither the model nor the decision
process relay on the Bayesian methods. Bayesian analysis is reduced at a basic role and is
used to estimate the input parameters to many complex models, instead of answering
questions directly. This is the simplest application of Bayesian methods in a decision-
making process, and it normally constitutes the first application when Bayesian methods
are introduced in a new industry.

This application is of particular interest when there are too little data available to sustain
statistical analysis, and the only source of available information should be obtained from
expert knowledge. Most decisions in aviation are taken under the assumption that the
values of the parameters describing the system performance are equal to their estimates,
which is only valid as long as there are sufficient data or precise expertise for an accurate
estimation of the system parameters. It is not the case in many situations, particularly
when the system, product or process is new and tiny measurable information about its
performances is accessible. In these cases, BNs represent a framework of causal factors
linked by conditional probabilities, which are elicited from aviation experts. Best-expert
estimates will use the best available and accessible data.

Typical questions answered by this approach are:
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• What is the distribution of partial and total failures of an aircraft component?

• What is the in-service time of an aircraft component?

• What is the uncertainty about the probability of a critical event? and

• How can we characterise uncertainty about the aircraft trajectories or delays?

When talking about the different areas of aviation, the application of Bayesian networks is not
homogeneous. Several respected research groups and authors have initiated the application of
BNs in aviation. In fact, literature nowadays is wide enough to support reviews as the ones
recently performed by Broker in [1] or Roelen in [2], about BN applications for aviation risk
estimation.

Aviation safety and risk analysis are by far the domain where more BN applications can be
found. A thoughtful revision shows that this technique is particularly useful to provide addi-
tional insights into problems of “low probability-high consequence,” such as the aviation
safety domain where events occur very infrequently.

• In [3], Bayesian Belief Networks are applied to model a number of safety defensive
barriers in Air Traffic Control environment from airspace design, through tactical control,
and from the operation of aircraft safety net features to a potential accident.

• In [4], Luxhoj and Coit used Bayesian networks to model a certain aircraft accident type
known as Controlled Flight Into Terrain (CFIT).

• In [5], the authors develop causal models for air traffic using “event sequence diagrams,
fault-trees and Bayesian belief nets linked to form a homogeneous mathematical model
suitable as a tool to analyse causal chains and quantify risks…”.

• Some authors [6] have developed an inclusive aviation safety model to evaluate manage-
ment decisions potential impact.

• Ref. [7] introduces a BN for the evaluation of flight crew performance, and Delphi tech-
nique to complement data from accident reports

• Problems at very low level of detail regarding safety in operational issues have also
benefited from the application of Bayesian methods [8].

• Reducing aviation safety risk is a matter of concern also for NASA, who focuses on the
reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and
commercial software for the accident modelling [9].

• In [10], a BN analysis model is established by using 10 years of flight crew members’ error
data in China civil aviation incidents to analyse the probability distribution of flight crew
members’ errors in civil aviation incidents analysis.

• Several models have attempted to explain various factors influencing aeronautical acci-
dents: human, organisational, environmental and airport infrastructure factors. The
model by [11] permits to evaluate the influence of these factors and identify the depen-
dence and relationship among them.
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• A very initial attempt to assess aviation security can be found at [12], which addresses the
evaluation and mitigation of security risks in the aviation domain and realises a multi-
dimensional approach of complex systems.

• Bayesian networks are capable of providing real-time safety monitoring functionalities,
like those in [13] that integrates automatic video analysis algorithms and Bayesian models
to detect anomalous behaviours of ATCs and spatiotemporal details about how errors due
to fatigue and distractions eventually lead to near-ground incidents/accidents.

• In [14], Arnaldo et al. used Bayesian inference and hierarchical structures to predict
aircraft safety incidents.

The second domain where more BNs can be found is operational analysis, particularly delays
optimisation. BNs represent a paradigm shift in the study of aviation delays because they have
a structure that is machine-learned from data and do not require assumptions about “causal”
patterns; they can produce estimates even in situations with sparse or limited data, and they
can be used well in advance of the actual flight, as they can predict based on only partial
evidence.

• In [15], the random characteristics of civil aviation safety risk are analysed based on flight
delays, using a BN to build an aviation operation safety-assessment model based on flight
delay.

• The propagation of micro-level causes to create system-level patterns of delay, a problem
difficult to assess by traditional methods, has been assessed with BNs to investigate and
visualise propagation of delays among airports, demonstrating greater predictive accu-
racy than using linear regression [16].

• In [17], a new Bayesian Network algorithm, Negotiating Method with Competition and
Redundancy (NMCR), demonstrate excellent performances in estimating of arrival flight
delay, especially in flight chains mainly operated in China.

• The NextGen Advanced Concepts and Technology Development Group of the FAA (Fed-
eral Aviation Administration) have tackled this problem by developing Bayesian Net-
works for Departure Delay Prediction [18].

• The aviation supply chain has also been modelled through Bayesian networks to minimise
delays causing factors [19].

• Another relevant case on airport delay analysis can be found in [20]. This chapter
develops a functional analysis of the operations that represent the aircraft flow through
the airport airspace system. By considering the accumulated delay across the different
processes and its evolution, different metrics are proposed to evaluate the system’s state
and its ability to ensure an appropriate aircraft flow in terms of time saturation.

Another area that has received attention from Bayesian experts is the modelling of airline risk
considering reliability data, maintainability data and management data.

• Some attempts have been made to approach software health management based on a
rigorous Bayesian formulation to monitor the behaviour of software and operating
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system, to perform probabilistic diagnosis, and to provide information about the most
likely root causes of a failure or software problem. Three realistic scenarios from an
aircraft control system were considered: (1) aircraft system-based faults, (2) signal han-
dling faults, and (3) navigation faults due to inertial measurement unit (IMU) failure or
compromised Global Positioning System (GPS) integrity [21].

• Ref. [22] covers the construction of a probabilistic risk analysis model for the jet engines
manufacturing process, based on BN coupled to a bow-tie diagram. It considers the effects
of human, software and calibration reliability to identify critical risk factors in this pro-
cess. The application of this methodology to a particular jet engine manufacturing process
is presented to demonstrate the viability of the proposed approach

• BN has also been designed for fault detection and isolation schemes to detect the onset of
adverse events during operations of complex systems, such as aircraft and industrial
processes [23].

• Another relevant work on fault diagnosis is the one by [24] to study automatic fault
diagnosis of IFSD (in-flight shutdown).

• In the area of maintenance, BNs are also applied for improving Human reliability analysis
(HRA) in visual inspection [25].

Finally, one of the most attractive probabilistic modelling framework extensions of Bayesian
Networks for working under uncertainties from a temporal perspective, Dynamic Bayesian
Networks (DBNs), has also had some applications in aviation.

• DBNs have been used to model abnormal changes in environment’s data at a given time,
which may cause a trailing chain effect on data of all related environment variables in
current and consecutive time slices.

• In [26], an algorithm is proposed for pilot error detection, using DBNs as the modelling
framework for learning and detecting anomalous data, based on the actions of an aircraft
pilot, and a flight simulator is created for running the experiments. The proposed anom-
aly detection algorithm has achieved good results in detecting pilot errors and effects on
the whole system.

• Another application to dynamic operational problems can be found in [27], where the
variables which affect the Helicopter’s real-time aviation decision process are represented
on Structure Variable Discrete Dynamic Bayesian Network, building up a model that
could be used in real-time aviation decision process in perpetual variational air combat.

• From a point of view, less operational and more economical, BNs also help the aviation
industry and dynamically recommend airline managers relevant contents based on
predicting passengers’ choice to optimise the loyalty.

The remaining sections of the document illustrate the application of each one of the three
options, enumerated at the beginning of this section, through three aviation case studies that
reflect research works carried out by the authors.
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3. Case study 1: Bayesian framework for safety compliance assessment
and acceptance under uncertainty

In [28], we present a good example where Bayesian reasoning assumes the entire process of
evaluation and decision. This work presents an integrated methodology, based on Bayesian
inference, to assess and evaluate compliance with system safety goals and requirements when
there is uncertainty in the assessment of systems performances.

Compliance assessment process is addressed in this work as a Bayesian decision problem:

B ¼ A;N;P;W;Uh i, (1)

where

• A states for the decision maker actions space, ai, A ¼ a1; a2;…anf g
• N represents the space of possible “states of nature”, i.e. magnitudes about which there is

uncertainty, N ¼ Ns1;Ns2f g ¼ Cs;Cs
� �

• P represents the space of uncertainties about the state of nature of the system,
P ¼ P Ns1ð Þ;P Ns2ð Þ;f g ¼ P Cs jD, Ið Þ;P Cs jD, I

� �� �

• W represents the set of decision outcomes, W ¼ W11;W12;…;Wij;…;Wnm
� �

• U represents the set of utility functions, U ¼ u11; u12;…; uij;…;Wnm
� �

Each combination ai;Nsið Þ∈C ¼ A x N determines a consequence of a course of action for the
decision maker. The utility function uij cð Þ defines the predilections of the decision maker on a
course of action ai for a system with a state of safety complianceNsj.

The overall process of safety compliance assessment is addressed through a Bayesian approach
as illustrated in Figure 1. The rectangle at the left-hand part of the figure represents a decision
node, which displays the three potential actions, ai, which the decision maker can take as a
result of the safety compliance process:

• a1 - Judge the system compliant;

• a2 - Judge the system as non-compliant; or

• a3 - Judge the information insufficient.

The circles denote random nodes, which represent the “states of nature”, that is, the actual
state of system compliance, Nsj, where

• Ns1 ¼ Cs; Ns2 ¼ Cs

Being the notation of Cs the event that the system is actually compliant, whereas Cs denotes
the event that the system is not actually compliant. The uncertainties in the states of nature Pj
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industry and dynamically recommend airline managers relevant contents based on
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The remaining sections of the document illustrate the application of each one of the three
options, enumerated at the beginning of this section, through three aviation case studies that
reflect research works carried out by the authors.

Bayesian Networks - Advances and Novel Applications26

3. Case study 1: Bayesian framework for safety compliance assessment
and acceptance under uncertainty

In [28], we present a good example where Bayesian reasoning assumes the entire process of
evaluation and decision. This work presents an integrated methodology, based on Bayesian
inference, to assess and evaluate compliance with system safety goals and requirements when
there is uncertainty in the assessment of systems performances.

Compliance assessment process is addressed in this work as a Bayesian decision problem:

B ¼ A;N;P;W;Uh i, (1)

where

• A states for the decision maker actions space, ai, A ¼ a1; a2;…anf g
• N represents the space of possible “states of nature”, i.e. magnitudes about which there is

uncertainty, N ¼ Ns1;Ns2f g ¼ Cs;Cs
� �

• P represents the space of uncertainties about the state of nature of the system,
P ¼ P Ns1ð Þ;P Ns2ð Þ;f g ¼ P Cs jD, Ið Þ;P Cs jD, I

� �� �

• W represents the set of decision outcomes, W ¼ W11;W12;…;Wij;…;Wnm
� �

• U represents the set of utility functions, U ¼ u11; u12;…; uij;…;Wnm
� �

Each combination ai;Nsið Þ∈C ¼ A x N determines a consequence of a course of action for the
decision maker. The utility function uij cð Þ defines the predilections of the decision maker on a
course of action ai for a system with a state of safety complianceNsj.

The overall process of safety compliance assessment is addressed through a Bayesian approach
as illustrated in Figure 1. The rectangle at the left-hand part of the figure represents a decision
node, which displays the three potential actions, ai, which the decision maker can take as a
result of the safety compliance process:

• a1 - Judge the system compliant;

• a2 - Judge the system as non-compliant; or

• a3 - Judge the information insufficient.

The circles denote random nodes, which represent the “states of nature”, that is, the actual
state of system compliance, Nsj, where

• Ns1 ¼ Cs; Ns2 ¼ Cs

Being the notation of Cs the event that the system is actually compliant, whereas Cs denotes
the event that the system is not actually compliant. The uncertainties in the states of nature Pj
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are provided by the Bayesian estimation process. The belief or uncertainty about the compli-
ance state of the system Cs is dependent on the data D and information I available.

• P1 ¼ P Ns1ð Þ ¼ P Cs jD, Ið Þ;
• P2 ¼ P Ns2ð Þ ¼ P Cs jD, I

� � ¼ 1� P1

Each of the branches of the tree represents the set of possible (unpredictable) outcomesWij that
can occur under each action taken by the decision maker. The six possible outcomes, in this
case, correspond to:

• W11: The system is stated compliant and it is so;

• W12: The system is declared compliant although it is not;

• W21: The system is stated non-compliant although it is truly trustable;

• W22: The system is declared non-compliant and it is so;

• W31: The decision maker has no enough information although the system truly compliant;

• W32: The decision maker has no enough information and the system is in fact non-
compliant.

Safety compliance is assigned a probability of being true, which represents the decision maker
uncertainty (or state of knowledge), about its truth or falsity. Namely, the uncertainty on the
state of nature of the system compliance considering previous knowledge and information is
expressed as: P Nsnð Þ ¼ P Cs jD, Ið Þ, where a proposition D stands for data and I stands for
background information. This framework subscribes to the concept that probability is not a

Figure 1. Bayesian decision tree for safety acceptance of a system.
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frequency, rather a measure of uncertainty, belief or a state of knowledge. That is, probability
allows doing plausible reasoning in cases where we cannot reason with certainty.

The result is the predictive probability that the system meets the safety objectives for what it
has been designed, considering the envelope of data, knowledge and information gathered
from the system during its design, production and operation.

To that aim, compliance assessment is redefined as the determination of the degree of belief in
the fulfilment of the applicable failure probability objectives by the candidate system, for all
failure conditions N. The whole system is considered compliance if all the λn satisfy their
pertinent failure safety objective On: In this step, the principles of Bayesian inference are
applied to improve the estimation of the system/ component rate of failureλn.

The conditional probability distribution P λn jD, Ið Þ describes then the uncertainty in the param-
eter under study (λn) considering new events D and the prior understanding of the system I.
It represents the sampling distribution of the rate of failure conditional upon the observed data
and information and is precisely the form required for decision-making without the need for
approximation. It is determined using the Bayes’ theorem:

P λn jD, Ið Þ ¼ P Djλn, Ið Þ � P λn jIð Þ
P DjIð Þ (2)

where

• P λn jD, Ið Þ corresponds to the posterior distribution. The posterior distribution will the
foundation for all inference about the parameter λn;

• P Djλn, Ið Þ corresponds to the likelihood distribution, sometimes referred as sampling;

• P λn jIð Þ is the prior distribution; and
• P DjIð Þ is the failure of unconditional or marginal probability D.

Epistemic uncertainty is incorporated through the Prior distribution P λn jIð Þ. It epitomises the
degree of belief in model parameters λn and defines an initial state of knowledge. Prior
distribution can be non-informative or informative. Non-informative priors include very little
fundamental info regarding the unknown and facilitates data dominate the posterior distribu-
tion. Other terms for non-informative priors are diffuse priors, vague priors, flat priors, formal
priors, and reference priors. Informative priors provide essential information about the
unknown parameter. Historical data and expert judgement can be incorporated into the prior
probability distribution. Although the prior can take the form of any distribution, conjugate
priors simplify the evaluation of the previous equation and allow analytical solutions avoiding
the use of numerical integration. In practice, the Bayesian approach often leads to intractable
integrals and numerical simulation procedures need to be adopted. Normally, due to the
complexity of the distributions, the solution of Equation has to be accomplished by numeri-
cally Markov Chain Monte-Carlo (MCMC) simulation.

The resulting posterior distribution, P λn jD, Ið Þ, stands for updated knowledge about λn and
is the basis for all inferential statements about λn:
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applied to improve the estimation of the system/ component rate of failureλn.
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eter under study (λn) considering new events D and the prior understanding of the system I.
It represents the sampling distribution of the rate of failure conditional upon the observed data
and information and is precisely the form required for decision-making without the need for
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where
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• P Djλn, Ið Þ corresponds to the likelihood distribution, sometimes referred as sampling;

• P λn jIð Þ is the prior distribution; and
• P DjIð Þ is the failure of unconditional or marginal probability D.

Epistemic uncertainty is incorporated through the Prior distribution P λn jIð Þ. It epitomises the
degree of belief in model parameters λn and defines an initial state of knowledge. Prior
distribution can be non-informative or informative. Non-informative priors include very little
fundamental info regarding the unknown and facilitates data dominate the posterior distribu-
tion. Other terms for non-informative priors are diffuse priors, vague priors, flat priors, formal
priors, and reference priors. Informative priors provide essential information about the
unknown parameter. Historical data and expert judgement can be incorporated into the prior
probability distribution. Although the prior can take the form of any distribution, conjugate
priors simplify the evaluation of the previous equation and allow analytical solutions avoiding
the use of numerical integration. In practice, the Bayesian approach often leads to intractable
integrals and numerical simulation procedures need to be adopted. Normally, due to the
complexity of the distributions, the solution of Equation has to be accomplished by numeri-
cally Markov Chain Monte-Carlo (MCMC) simulation.

The resulting posterior distribution, P λn jD, Ið Þ, stands for updated knowledge about λn and
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The distribution P Djλn, Ið Þ represents the chance of the data D and model aleatory uncer-
tainties. It represents inefficiencies in the data collection as well as the failure mechanism or the
failure model. Likelihood functions commonly used in safety assessment are binomial,
Poisson, or exponential ones.

Finally, P DjIð Þ is just a normalisation constant.

P Csn jD, Ið Þ can be inferred from the posterior distributions P λnjD, Ið Þ through marginalisation
of the parameter λn, as indicated in the following equation.

P Csn jD, Ið Þ ¼
ð

^
P On,λn jD, Ið Þ:dλ ¼

ðOn

O
P Onjλnð ÞP λnjD, Ið Þ:dλ¼

ðOn

O
P Onjλnð ÞP Djλn, Ið Þ � P λn jIð Þ

P DjIð Þ :dλ (3)

Eq. (3) computes an average of the model uncertainty integrating the sampling distribution
P Onjλnð Þ over the posterior distribution P λn jIð Þ. The output is a predictive probability of a
failure condition meeting its safety objective.

This Bayesian framework espoused is exemplified over a practical case. This practical case
corresponds to a real situation with current hypothesis, requirements and data: a new ANSP
initiates the provision of Tower Control and CNS (Communications, Navigation and Surveil-
lance) services at the new international airport of Castellón (Spain).

The service provider is subject to supervision by the National Aeronautical Authority and
must demonstrate compliance with applicable safety requirements. At Castellón airport, air
navigation service comprises ground-based radio navigation aids, very high-frequency omni-
directional range (VOR), distance measuring equipment (DME), and precision approach and
landing aids, instrument landing system (ILS). The functionalities of each of these systems and
the applicable requirements are regulated at international level. Providers of air navigation
services must prove that their operating procedures and working methods are compliant with
the prescriptions and standards of ICAO Annex 10. They must guarantee the accuracy, conti-
nuity, availability and integrity, as well as the quality level, of their services.

4. Case study 2: runway excursion

In [29], the authors work on a representative example of the option where Bayesian methods
are used to estimate probability distributions. Statistics about commercial aircraft fleet accident
produced by Boeing (2012) states that around 37% of the accidents took place during landing
and final approach flight phases, and among them, runway excursions accounted for 25% of
all accidents. In particular, within the runway excursions, those that are produced by a too
long landing (overrun excursion) represent 96%, and the 10-year moving average during 1992–
2011 indicates a deteriorating tendency.

Bayesian Networks - Advances and Novel Applications30

This section summarises the work done by the authors to develop a Bayesian model to
evaluate the runway overrun risk at a given airport and operational conditions. The model
allows comparing the probability of excursion at landing at several runways or airports. The
model relates overrun probabilities with possible generating factors, then suggesting the
outline of mitigation actions.

The probabilistic influence diagram for runway overrun Bayesian network (see Figure 2) is
based on the information from safety authorities, operators and manufacturers [30–32]. The
network combines expert judgement and data analysed with the aid of the GeNIe SW.

The critical variable chosen as network outcome is “the remaining runway at 80 kt (I), mea-
sured in ft”, since, as indicated by the FSF SLGs [33], the risk of a runway overrun increases
significantly if when there are just 2000 ft. (610 m) of landing distance available (LDA) the
aircraft is not decelerated below 80 kt. The nodes in the network account for:

• Relevant Runway. It is a categorical variable: (A).

• Crosswind component at threshold. Unit of measurements is knots: (B).

• Speed of the aircraft which it is discretised to the nearest integer in the avionic: (kt).

• Tailwind component at threshold. Unit of measurements is knots: (C).

• Stabilised/unstabilised state at the approach: (D).

• Maximum reverse thrust, which describes the maximum reverse thrust is applied during
ground roll. It is measured in seconds: (E).

• Autobrake state at landing, which has three values: low, medium, and no autobrake: (F).

• Difference between the Indicated AirSpeed (IAS) and the Final Approach Speed (Vapp): (G)

Figure 2. BN for overrun events.
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• Aircraft height at threshold, measured in feet (ft): (H).

The safety issue analysed in this work is among the group of most frequently reported
accident/incident types all over the world, and it is considered as a big threat to aviation safety.
Runway excursions take place with very low frequency, but their consequences may be quite
severe. Very low probabilities of occurrence are an added challenge for a risk analyst. Reduc-
ing landing overruns is a priority for international aviation organisations that are actively
investigating and proposing safety strategies to contain this risk.

The work carried out by the authors in this study uses public information provided by safety
agencies, operators and manufacturers; as well as expert judgement and data to create an
influence diagram and a probabilistic model.

The model is illustrated with a case study in which three runways are benchmarked in terms of
runway excursion risk. The critical event considered to evaluate the risk of runway excursion
was the probability that the aircraft not being below 80 kts when just 2000 ft. (610 m) of LDA
remains Pr (I < 2000). The case study is a representative of the decision problems, and airline
has to cope with when opening new routes and evaluating operation at new airports or with
new fleet. To illustrate the usability of the model and its benefits, the case study uncovered the
following issues:

• For this specific case study, the Bayesian network and the supporting data allow discarding
correlation between cross and tailwind components.

• Although in general, landing with windy, both crosswind and tailwind components,
increases the probability of unstabilised approach, however, tailwind influence is not so
determinant at runways 2.

• The variables with the toughest effect on the lasting runway at 80 kt were:

i. the LDA, available landing distance,

ii. the used of the autobrake system, and

iii. the difference between the Vapp and the IAS at the threshold.

• Height at the threshold and maximum reverse thrust variables does have a minor effect on
the risk of excursions at the three compared runways.

• The network faithfully reflects operational aspects the propensity to pitch down prior to
the threshold to increase the distance available for landing, commonly known as “ducking
under” effect.

• The probability of slowing the aircraft at 80 kt in the last 2000 ft. of the runway rises as
wind, both components crosswind and tail, increase, except for runway 2.

• Crosswind results are coherent with normal operations. With a severe crosswind, the use
of the autobrake system is recommended, since it is more difficult to control and deceler-
ate the aircraft.

• Unstabilised approaches are prone to the most hazardous conditions.
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• Longer periods of maximum reverse thrust operation, favour reduction of remaining
runway at 80 kt, and consequently have a negative effect on risk of runway excursion.
Prolonged operation of the maximum reverse thrust may indicate difficulties to decelerate
the aircraft during the ground roll. This variable could then be used as a proxy for runway
excursion risk by the airlines Flight Data Monitoring (FDM) teams.

• Runway excursion risk increases with longer operation of reverse thrust, which might be
an indicator of difficulties to slow down during the ground run. Accordingly, it is
recommended to consider this variable as a precursor of runway excursion risk, and
closely monitored it in the Airline’s Flight Data Monitoring (FDM) programs.

5. Case study 3: airport operation uncertainty characterisation

In [34], the authors analysed the aircraft flow through the Airport focusing on the airspace/
airside integrated operations and characterising the different temporal aircraft operation mile-
stones through the airport based on an aircraft flow’s Business Process Model and Airport
Collaborative Decision-Making methodology. Probability distributions of the factors influencing
aircraft processes are estimated, as well as conditional probability relationship among them. The
work turned up in a Bayesian network, which manages uncertainties in the aircraft operating
times at the airport. This case study constitutes a representative example of the third manner
Bayesian networks are currently employed decision-making purposes in the aviation industry.

The work is based on the collection and analysis of nearly 34,000 turnaround operations at the
Adolfo Suárez Madrid-Barajas Airport and concluded with several lessons learned regarding
the characterisation of delay propagation, time saturation, uncertainty precursors and system
recovery.

The BN structure is represented in Figure 3 and the network variables. It was organised in
different layers attending to the nature of the data to facilitate the understanding of the causal
relationships among influence parameters. Colours in Figure 3 represent the different BN layers.

• Nodes 1–5 refer to meteorological conditions.

• Nodes 6–13 count for variables regarding the arrival airspace: timestamps and congestion
metrics (throughput, queues and holdings).

• Nodes 14–15, 26 and 38–39 refers to the airport infrastructure.

• Nodes 16, 22–25 and 40 account for the operator, aircraft, route and flight data.

• Nodes 17–21, 27–37 and 41–42 include data about airside operational times and flight
regulations

• Nodes 43–49 stand for delay causes.

The probabilistic Bayesian Network is able to predict outbound delays probability distribution
given the probability of having different values of the causal control variables, and by setting a
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target to the output delay, the model provided the optimal configuration for the input nodes.
The main outcomes of this work were:

• the statistical characterisation of processes and uncertainty drivers and

• the causal model for uncertainty management (BN).

The case study showed that considering the 34,000 aircraft operations analysed Madrid Airport:

• Arrival delay increases and accumulates its impact over the day, due to network effects.

• However, departure delay does not follow arrival delay’s pattern.

• The airport is capable of absorbing a fraction of the arrival delay.

• The main potential drivers for delay include:
i. time of the day,

ii. congestion at ASMA,

iii. weather conditions,

iv. amount of arrival delay,

v. scheduled duration of processes,

vi. runway configuration,

Figure 3. BN model to explain the interdependencies between factors that influence delay performance and system
saturation.
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vii. airline business model,

viii. handling agent,

ix. aircraft type,

x. route origin/destination, and

xi. existence of ATFCM regulations.

• Departure delay is highly influenced by the event of longer duration, which at the same
time, are the event offering greater possibilities for recovery delays.

6. Conclusions

As stated at the introduction of this chapter, important decisions in aviation systems and
operation are currently taken in less than optimal circumstances, under high levels of uncer-
tainty, with only limited amount of data and reliable information, and without the assistance
of formal methods and tools.

Based on a thoughtful revision of the available the literature, to determine what domains in
aviation and air transport Bayesian Networks applications, the chapter characterises the three
main ways that Bayesian networks are currently employed for scientific or regulatory decision-
making purposes in the aviation industry, depending on the extent to which decision makers
rely totally or partially on formal methods:

i. Bayesian reasoning assumes the entire process of evaluation and decision.

ii. Bayesian methods are used just to estimate probability distributions.

iii. Bayesian methods are used to select or parameterise input distributions for a probabilistic
model.

These three alternatives have been illustrated with three case studies that reflect research
work carried out by the authors and accounts for the following research questions:

iv. Use of Bayesian decision theory under uncertainty to evaluate compliance with system
safety goals and requirements.

v. Runway excursion risks evaluation at an airport, using Bayesian networks to decide
about airline initial operation considering the operational risk.

vi. Understand the interdependencies between factors influencing performance and delay
(drivers and predictors) at busy airports with using Bayesian networks.

In this work, the authors pretend to highlight the advantages of Bayesian networks as a useful
systematic approach to help decision makers to cope with all those uncertainties and difficulties
in the decision-making process, particularly when it is necessary to evaluate risks or perform
causal analysis.
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Abstract

To ensure patient safety, the healthcare service must be of a high quality, safe and effective.
This work aims to propose integrated approaches to risk management for a hospital
system. To improve patient’s safety, we should develop methods where different aspects
of risk and type of information are taken into consideration. The first approach is designed
for a context where data about risk events are available. It uses Bayesian networks for
quantitative risk analysis in the hospital. Bayesian networks provide a framework for
presenting causal relationships and enable probabilistic inference among a set of vari-
ables. The methodology is used to analyze the patient’s safety risk in the operating room,
which is a high risk area for adverse event. The second approach uses the fuzzy Bayesian
network to model and analyze risk. Fuzzy logic allows using the expert’s opinions when
quantitative data are lacking and only qualitative or vague statements can be made. This
approach provides an actionable model that accurately supports human cognition using
linguistic variables. A case study of the patient’s safety risk in the operating room is used
to illustrate the application of the proposed method.

Keywords: risk assessment, patient’s safety, fuzzy Bayesian network, fuzzy logic,
Bayesian network

1. Introduction

Medical error is a leading cause of death and injury. Each year, between 210,000 and 440,000
patients who go to the hospital for care suffer from some types of preventable harm that
contribute to their death [1]. High error rates with serious consequences are most likely to
occur in the operating room [2]. A strong patient’s safety culture in the operating room is very
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important to improve quality and reduce risks of adverse event and medical errors. Thus, a
flexible risk analysis technique becomes crucial.

A lot of methods and techniques, such as fault tree analysis (FTA) and failure mode and effect
criticality analysis (FMECA), have been used for safety risk analysis in the healthcare system.
However, these methods have a limitation when dealing with rare event and complex systems.
Khakzad indicated FTA unsuitable for complex problems with its limitation in explicitly
representing dependencies of events, updating probabilities, and coping with uncertainties
[3], while FMECA does not take into account multiple failure scenarios and causes. Bayesian
Network (BN) is a powerful method for risk analysis. In contrast with other classical methods
of dependability analysis, Bayesian networks provide a lot of benefits. Some of these benefits
are the ability to model complex systems, to make predictions as well as diagnostics, to
compute exactly the occurrence probability of an event, to update the calculations according
to evidences, to represent multimodal variables, and to help modeling user-friendly by a
graphical and compact approach [4].

In this chapter, we propose two methods which can help to assess patient safety in different
contexts using Bayesian network.

2. Case of the data availability about risks

In this part, we propose a method for the context of data availability. We will explain how we
can use the classical Bayesian network for safety assessment in healthcare system.

2.1. Methodology of risk analysis of the operating room

In the following, a methodology of risk analysis of the operating room using Bayesian net-
works is proposed. The methodology follows four steps (Figure 1) and it is part of continuous
improvement process (CIP) [5].

The first step involves determining the aim of the risk assessment process, the description of
the problem, and the definition of the scope.

Example: risk of patient’s safety in the operating room.

The second step is to identify potential risks that can affect the quality and the efficiency of the
operating room process. In this step, we may encourage creativity and involvement of the
operating room team.

The third step is the risk modeling. It consists in the development of the Bayesian networks
graph (definition and choice of the variables to represent the nodes, describe the states of each
node, and build the structure of Bayesian networks in terms of links between the predefined
nodes) and establishment of the quantitative relation between nodes through conditional
probability. In this step, we can use the hospital data source and the expert’s judgment to feed
the model.

Bayesian Networks - Advances and Novel Applications40

The last step is the analysis of the results: The model should give the best understanding of the
risk problem. It is useful to discuss the goodness or appropriateness of the model. It is
important to validate and calibrate the model using all available source of information (expert
judgment, observation, statistical data…). We should then analyze and interpret the result of
risk measures to support decision-making for safety improvement.

Finally, continuous improvement efforts must incorporate a risk assessment process to ensure
the effectiveness and the quality of the process. The model must be updated with the new risks
and factors.

2.2. Application: patient safety risk analysis in the operating room

2.2.1. Determining the aim of the risk assessment process

The operative processes include the preoperative, intraoperative, and postoperative stages of a
surgery. We are going to study the operating room processes and in particular, the
intraoperative stage. It starts when the patient enters the operating room and all members of
the surgical team are expected to be in the operating room at this particular time. The process
ends when the patient is able to leave the operating room. During this process, the patient is
monitored, anesthetized, and prepped and the operation is performed. Because of the lack of
availability of actual data risk, we will forward a risk analysis based on different sources
accidents described in the international literature. We will limit our study to events that cause
a significant deviation of the operating room process compared to normal process and which
have serious consequences for the patient (re-intervention, hospitalization in intensive care,
extension of the period of hospitalization, additional care, death…).

2.2.2. Development of the Bayesian network model

To create and validate the structure of the network, we use Hugin software and more precisely
Hugin Lite Evaluation.

Figure 1. Methodology of risk analysis for operating room using Bayesian network.
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surgery. We are going to study the operating room processes and in particular, the
intraoperative stage. It starts when the patient enters the operating room and all members of
the surgical team are expected to be in the operating room at this particular time. The process
ends when the patient is able to leave the operating room. During this process, the patient is
monitored, anesthetized, and prepped and the operation is performed. Because of the lack of
availability of actual data risk, we will forward a risk analysis based on different sources
accidents described in the international literature. We will limit our study to events that cause
a significant deviation of the operating room process compared to normal process and which
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Figure 1. Methodology of risk analysis for operating room using Bayesian network.
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Figure 2 illustrates the Bayesian network model of patient’s safety showing interrelationships
of events that may lead to patient’s injury. The model has 13 nodes with one utility node. The
nodes are assessed using a literature source. We present below the description of each nodes.

Surgery infection: the incidence of surgical site infections (SSI) depends upon the patient risk
factors, surgical procedure, and practices observed by the operating team.

Surgical foreign body: leaving things inside the patient’s body, after surgery, is an uncommon
but a dangerous error. Sponges and scissors used during surgery have been left inside patients’
bodies.

Operating on the wrong part of the body or wrong-site or wrong-patient or wrong-
procedure surgeries: the frequency of surgery admissions experiencing a wrong site or wrong
side or wrong patient or wrong procedure or wrong implant is 0.028 per 1000 admissions [6].

Medication error: wrong-dose, wrong-time, wrong-medication, or transcription errors. “A
medication error is any preventable event that may cause or lead to inappropriate medication
use or patient harm while the medication is in the control of the health care professional,
patient or consumer. Such events may be related to professional practice, health care products,
procedures and systems including prescribing, order communication, product labelling, pack-
aging and nomenclature; compounding; dispensing; distribution; administration; education;
monitoring; use” [7]. In a review of medical records from hospitals in two American states,
there was a significantly higher incidence of preventable drug-related adverse events in
patients aged >64 than in patients aged 16–64 years (5% compared with 3%) [8]. Errors are also
significantly more likely in children.

Anesthesia equipment failure: anesthesia equipment problems may contribute to morbidity
and mortality. The frequency of anesthetic equipment problems is 0.05% during regional
anesthesia, and 0.23% during general anesthesia [9].

Operation error: an error may occur in surgery due to different adverse events.

Figure 2. Bayesian network for patient safety model for the operating room.
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Patient injury: an error may or may not cause an adverse event. Adverse events are injuries
that cause harm to the patient (death, life-threatening illness, disability at the time of discharge,
prolongation of the hospital stay, etc.).

In the following, some risk factors are given:

Patient risk:we consider two states for patient’s risk, high and normal. The risk in surgery can
come from patients themselves.

Age: for the age factor, we assume that the patient may be child, elderly, or adult. The age can
increase the patient’s risk, the risk of fall, and the risk of medication error. These risks are much
higher for elderly and child than adult.

Anesthesia type: we consider two categories of anesthesia, regional and general. We assumed
that “failure in anesthesia equipment” depends on anesthesia type as explained in [9].

The conditional probabilities of states of different nodes and the marginal probabilities of some
adverse events have been given as input data. Each risk of adverse events is considered with
two states (true if the risk exists and false if not). The probabilities are given in Tables 1–7.

To aggregate the impact of injuries into a single risk measure, we use utility node “Patient
Death.” So the task is to find the probability of patient’s death after a surgery by using only the
correlations and the marginal frequencies.

Operation error True False

Patient risk High Normal High Normal

No 0.01 0.01 0.99 1

Small 0.18 0.81 0.009 0

Severe 0.81 0.18 0.001 0

Table 1. Conditional probability for patient injury.

Age Adult Elderly Child

True 1.16E-5 1.16E-4 1.16E-4

False 0.9999884 0.999884 0.999884

Table 2. Conditional probability for patient fall.

Age Adult Elderly Child

True 0.03 0.05 0.06

False 0.97 0.95 0.94

Table 3. Conditional probability for medication error.
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adverse events have been given as input data. Each risk of adverse events is considered with
two states (true if the risk exists and false if not). The probabilities are given in Tables 1–7.

To aggregate the impact of injuries into a single risk measure, we use utility node “Patient
Death.” So the task is to find the probability of patient’s death after a surgery by using only the
correlations and the marginal frequencies.
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2.2.3. Analysis of the result

After the structure of the Bayesian network is completed and probabilities are determined, the
inference can be performed to estimate the probability of patient’s safety risk. We conduct the
calculation using Hugin software. The dependency and the correlation among risks and factors
are captured in nodes “Operation error” and “Patient injury.” Hence, the task is to find the
probabilities of patient’s death after surgery by using only the correlations and the probabili-
ties of adverse events and the frequency of influencing factors. The probability of the death of
patient is 6.37 � 10�3. If the state of one or more variables is known, the model can be updated
and the probability of patient injury and operation error will change. This should result in

Physical state Weak Normal

Age Adult Elderly Child Adult Elderly Child

High 0.6 0.8 0.9 0 0 0

Normal 0.4 0.2 0.1 1 1 1

Table 4. Conditional probability for patient risk.

Anesthesia type Regional General

True 5 � 10�5 2.3 � 10�3

False 1–(5 � 10�5) 0.9977

Table 5. Conditional probability for failure in anesthesia equipment.

Risk Probabilities

Surgery infection 2.5 � 10�2

Wrong site 2.6 � 10�5

Foreign bodies 10�3

Table 6. Probability of some adverse events.

Factor State Occurrence

Anesthesia type Regional
General

0.5
0.5

Physical state Weak
Normal

0.1
0.9

Age Adult
Elderly
Child

0.5
0.2
0.3

Table 7. Probability of some factors.
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decision of not to operate the patient or postpone the surgery. For instance, the risk is much
higher when the patient has a weak physical state; it is 0.02 instead of 5.03� 10�3 for the risk of
death if the patient has a normal physical state. Knowing the age of patient, we can estimate
the risk of death; it is 4.98 � 10�3 for adult, 7.08 � 10�3 for elderly patient, and 8.2 � 10�3 for
child (Table 8). It should be noted that the model and data used in this chapter have limita-
tions. The model should be enhanced by taking into account different causes of adverse events.
Data should be prevented from an adverse event database reporting system and from expert’s
judgment.

Several actions can be done to reduce risk and improve the safety of the patient in operating
room. For instance, we can reduce the risk of retained foreign body during operation by using
an appropriate sponge count and obtaining X-rays if needed to check for any retained foreign
body. If we reduce this risk by 95%, the risk of the death of patient becomes 6.28 � 10�3.
Furthermore, if we reduce the risk of surgery infection by 80%, the risk of the death of patient
passes to 4.5 � 10�3 instead of 6.28 � 10�3. By acting only on “retained foreign body” and
“surgery infection” adverse events, the risk can be reduced by 30%.

3. Case of the lack of data about risk

Due to the lack of data about adverse event and the fact that the adverse event reporting system
does not exist, the input data of risk modeling will be provided by expert’s opinion. The quality
of such data must be discussed. We must help experts to provide reliable quantitative data. This
can be done with the fuzzy set theory. Including the expert’s judgment in the risk model is
essential for providing a reliable risk picture supporting the decision-making. The second
approach uses the FBN to analyze risk. Fuzzy Bayesian networks are a powerful approach for
risk modeling and analysis. This is especially noticed when quantitative data are lacking and
only qualitative or vague statements can be made as well when historical adverse events data are
unavailable or insufficient to be used for safety assessment [10]. In this part, we present a real
case of the children hospital in Rabat. To feed the model by the probabilities, we interviewed
experts of the operating room. The calculation of probabilities is done out of Hugin software to
conduct the fuzzy inference.

Risk Probabilities

Death of patient 6.37 � 10�3

Death of weak physical state patient 0.02

Death of normal physical state patient 5.03 � 10�3

Death of child patient 8.2 � 10�3

Death of adult patient 4.98 � 10�3

Death of elderly patient 7.08 � 10�3

Table 8. Probability of the death of patient.
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3.1. Methodology of risk analysis for the operating room using fuzzy Bayesian network
(FBN)

In the following, a methodology of risk analysis of the operating room using FBN is proposed.
The methodology follows five steps (Figure 3) and is part of the continuous improvement
process (CIP). The first three steps are the same as the first proposed methodology explained
above.

The fourth step is the fuzzy assessment of probability. We investigate the expert’s judgment to
feed the model. Experts use a linguistic variable to describe the probabilities of occurrence of
adverse events. We transform the linguistic expressions into fuzzy numbers. Since we have
more than one expert, we must aggregate the different opinions. For that, we use the weight of
the expert to take into account the reliability of the data.

The last step is the analysis of the results: we should then analyze and interpret the results of
risk measures to support decision-making for safety improvements.

Finally, the model must be implemented in Upgrading way as explained in the first method.

3.2. Application: patient safety risk analysis in the operating room

3.2.1. Risk modeling

Let us consider the previous example that we modify according to expert’s opinion. Figure 4
illustrates the BN model of patient’s safety after modification. It shows interrelationships of
events that may lead to patient’s injury. The model has eight nodes with one utility node
added to estimate the risk of the patient’s death after surgery due to an error.

Figure 3. Methodology of risk analysis for operating room using fuzzy Bayesian network.
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3.2.2. Fuzzy probability assessment

Surgeons and operating team of the children’s hospital IBN SINA of RABAT Morocco were
asked to give judgments about the fuzzy probabilities regarding all the nodes. They use
linguistic terms to describe the fuzzy probabilities and then refine them with membership
functions. For example, “Very low” was assigned to node “PatientFall” and “Average” was
assigned to technical defect and then were defined by the membership function (a, b, c). The
other probabilities are given in Table 11 according to the answers given by experts. The
likelihood of each criterion (Table 9) was represented by a range of five discrete values
identified by the following linguistic terms: “extremely low” (L1), “very low” (L2), ”low”
(L3), “average” (L4), and “high” (L5). The severity of each adverse event (Table 10) was
represented by a range of five discrete values identified by the following linguistic terms:
“negligible“ (S1), “minor“ (S2), “medium“ (S3), “major“ (S4), and “catastrophic“ (S5). These
five values represent the states of the node “patient’s injury.”

We interviewed three individuals from the operative team (surgeon, crew chief, and anesthesia
nurse). They have a different point of view and confidence level toward their own subjective
judgments due to the difference in background, working experience, and risk attitudes. Thus, a
certain deviation exists in the data reliability among different interviewed individuals.

Figure 4. Bayesian network for patient safety model for the operating room.

Set Linguistic variable Meaning

L1 Extremely low Never seen

L2 Very low One time in my career

L3 Low Occur in another hospital

L4 Average Occur in our hospital

L5 High Occur in my domain

Table 9. Scale of the likelihood.
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Table 11 represents the weight of each expert. Expert 1 has more experience and more precise
answers about adverse events than the others, so he was given the higher weight 1/2, 1/3 was
assigned to expert 2, and 1/6 to expert 3.

To deal with the deviation of experts answers, the aggregated fuzzy importance of each
criterion, whose properties are used to produce a scalar measure of consensus degree, is
computed by the weight of the criteria according to the judgment of the expert (Eq. (1)).

M1 ¼
μe1b1 ⋯ μekb1

⋮ ⋱ ⋮
μe2bn ⋯ μekbn

0
B@

1
CA (1)

The expert’s judgment about the likelihood and the severity of adverse events is given in
Table 12. For instance, the probability (“high,” “L5”) and the severity (“catastrophic,” S5) have
been assigned to the node “foreign body” by expert E1; expert E2 had a different judgment
about the likelihood of the same event (L3, “Low”). As you can see, experts have different
opinions; that is why we used the weight of each expert.

Table 13 represents the fuzzification of the probabilities linguistic variable. For example, the
triangular fuzzy number (0.00, 10�8, 2� 10�8) is assigned to the linguistic variable (“Extremely
low,” “L1”). The point (10�8, 1),with membership grade of 1, is the mean value; 0 and 2 � 10�8

are the left hand and right hand spreads of the triangular number, respectively (Table 13).

M2 represents the vector of probabilities of basic nodes obtained using Eq. (2) and the matrix of
fuzzy probabilities estimated by experts and the weight of each expert are given in Table 5.
This step aims to determine the fuzzy probabilities of basic events.

Expert Weight

E1 W1 = 1/2

E2 W2 = 1/3

E3 W3 = 1/6

Table 11. Weight of expert’s opinion.

Set Linguistic variable Meaning

S1 Negligible Consequence minor without prejudice (simple delay)

S2 Minor Incident with prejudice (disorganization)

S3 Medium Incident with impact postponement, prolongation of hospitalization,
not expected transfer in reanimation)

S4 Major Serious Consequence (re-intervention; permanent or partial disability)

S5 Catastrophic Very serious Consequence (disability, death)

Table 10. Scale of the severity.

Bayesian Networks - Advances and Novel Applications48

M2 ¼
μb1 xð Þ

⋮
μbn xð Þ

0
B@

1
CA ¼

μe1b1 ⋯ μekb1

⋮ ⋱ ⋮
μe2bn ⋯ μekbn

0
B@

1
CA�

w1
⋮
wk

0
B@

1
CA (2)

Table 14 describes the conditional probability of the node “Equipment Failure” represented by
the variable N1, this variable has two states, namely true if the risk exists and false if not. If one
of the three events B1, B2, and B3 occurs, the risk exists. 1f and 0f represent the crisp values 1
and 0 considered here as fuzzy number 1f (1,1,1) and 0f (0,0,0).

Nodes Variable E1 E2 E3

L S L S L S

Lack of training B1 L4 S3 L3 S3 L4 S4

Lack of materiel B2 L4 S3 L3 S3 L4 S4

Technical defect B3 L4 S3 L3 S2 L4 S4

Patient fall B4 L2 S3 L3 S2 L1 S2

Medication error B5 L5 S5 L3 S5 L2 S3

Surgery infection B6 L5 S4 L3 S4 L3 S3

Foreign body B7 L5 S5 L3 S5 L2 S4

Wrong site B8 L4 S4 L3 S4 L2 S3

Table 12. Expert’s judgment about the likelihood and the severity of adverse events.

Set Linguistic term Function

L1 Extremely low μ1(x) = (0.00, 10�8, 2 � 10�8)

L2 Very low μ2(x) = (1.5 � 10�8, 10�7, 10�6)

L3 Low μ3(x) = (0.9 � 10�6, 10�5, 2 � 10�5)

L4 Average μ4(x) = (1.5 � 10�5, 10�4, 2 � 10�4)

L5 Very high μ5(x) = (1.5 � 10�4, 10�3, 2 � 10�3)

Table 13. Fuzzification of likelihood.

N1 B4 B5 B6 B7 B8 S1 S2 S3 S4 S5

True False False False False False 0f 0f 1f 0f 0f

False True False False False False 0f 1f 0f 0f 0f

False False True False False False 0f 0f 0f 0f 1f

False False False True False False 0f 0f 0f 1f 0f

False False False False True False 0f 0f 0f 0f 1f

False False False False False True 0f 0f 0f 1f 0f

Table 14. Conditional occurrence probability of “patient injury”.
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Table 11 represents the weight of each expert. Expert 1 has more experience and more precise
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fuzzy probabilities estimated by experts and the weight of each expert are given in Table 5.
This step aims to determine the fuzzy probabilities of basic events.

Expert Weight

E1 W1 = 1/2

E2 W2 = 1/3

E3 W3 = 1/6

Table 11. Weight of expert’s opinion.

Set Linguistic variable Meaning

S1 Negligible Consequence minor without prejudice (simple delay)

S2 Minor Incident with prejudice (disorganization)

S3 Medium Incident with impact postponement, prolongation of hospitalization,
not expected transfer in reanimation)

S4 Major Serious Consequence (re-intervention; permanent or partial disability)

S5 Catastrophic Very serious Consequence (disability, death)

Table 10. Scale of the severity.
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M2 ¼
μb1 xð Þ

⋮
μbn xð Þ

0
B@

1
CA ¼

μe1b1 ⋯ μekb1

⋮ ⋱ ⋮
μe2bn ⋯ μekbn

0
B@

1
CA�

w1
⋮
wk

0
B@

1
CA (2)

Table 14 describes the conditional probability of the node “Equipment Failure” represented by
the variable N1, this variable has two states, namely true if the risk exists and false if not. If one
of the three events B1, B2, and B3 occurs, the risk exists. 1f and 0f represent the crisp values 1
and 0 considered here as fuzzy number 1f (1,1,1) and 0f (0,0,0).

Nodes Variable E1 E2 E3

L S L S L S

Lack of training B1 L4 S3 L3 S3 L4 S4

Lack of materiel B2 L4 S3 L3 S3 L4 S4

Technical defect B3 L4 S3 L3 S2 L4 S4

Patient fall B4 L2 S3 L3 S2 L1 S2

Medication error B5 L5 S5 L3 S5 L2 S3

Surgery infection B6 L5 S4 L3 S4 L3 S3

Foreign body B7 L5 S5 L3 S5 L2 S4

Wrong site B8 L4 S4 L3 S4 L2 S3

Table 12. Expert’s judgment about the likelihood and the severity of adverse events.

Set Linguistic term Function

L1 Extremely low μ1(x) = (0.00, 10�8, 2 � 10�8)

L2 Very low μ2(x) = (1.5 � 10�8, 10�7, 10�6)

L3 Low μ3(x) = (0.9 � 10�6, 10�5, 2 � 10�5)

L4 Average μ4(x) = (1.5 � 10�5, 10�4, 2 � 10�4)

L5 Very high μ5(x) = (1.5 � 10�4, 10�3, 2 � 10�3)

Table 13. Fuzzification of likelihood.

N1 B4 B5 B6 B7 B8 S1 S2 S3 S4 S5

True False False False False False 0f 0f 1f 0f 0f

False True False False False False 0f 1f 0f 0f 0f

False False True False False False 0f 0f 0f 0f 1f

False False False True False False 0f 0f 0f 1f 0f

False False False False True False 0f 0f 0f 0f 1f

False False False False False True 0f 0f 0f 1f 0f

Table 14. Conditional occurrence probability of “patient injury”.
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Table 15 represents the conditional probability of the node “Patient injury,” the node has five
states S1–S5 according to the severity of the harm caused to the patient. Here, the conditional
probability is considered as crisp value according to the expert’s opinion. Based on the harm
observed, experts gave a precise answer about severity.

3.2.3. Result and sensitive analysis

After the structure of the BN is developed and probabilities are determined, the inference can
be performed to estimate the probability of patient’s safety risk. The dependency and the
correlation among risks and factors are captured in node “Patient injury.” Hence, the task is
to find the probabilities of patient’s death after surgery by using the correlations and the fuzzy
probabilities of adverse events. Using the fuzzy Bayesian rule, the probability that the injury
severity will be catastrophic can be calculated as given in Eq. (3):

P T ¼ S5ð Þ ¼
X
i

P B ¼ bið Þ⊗P T ¼ S5=B ¼ bið Þ (3)

The probability that the injury severity will be catastrophic (S5) is (1.5 � 10�4, 10�3, 2 � 10�3).
Assuming that 80% of patients having a catastrophic injury die, the probability of the death of
a patient after surgery due to an adverse event is (1.2 � 10�4, 0.8 � 10�3, 1.6 � 10�3). Using the
center of the gravity method (Eq. (4)), we obtained COG = (8.4 � 10�4, 1/3). The probability of
the death of a patient after surgery is the x-axis 8.4 � 10�4.

ZCOG ¼
Ð
zμA zð ÞzdzÐ
zμA zð Þdz (4)

Several actions can be done to reduce risk and improve the safety of the patient in operating
room. Using this model, if we reduce the risk of retained foreign body by 60%, the risk of the
death of patient becomes 3.36 � 10�4.

If the state of one or more variables is known, the model can be updated and the probability of
patient injury will change.

One of the main advantages of BN is their ability to help us to conduct inverse interference. For
example, it is interesting to know, when a death is observed, what the posterior probability of a
patient’s infection is. In addition, if the model contains more details witch integrate the main

B1 B2 B3 N1 = True N1 = False

True True True 1f 0f

False 1f 0f

False True 1f 0f

False 1f 0f

False True True 1f 0f

False 1f 0f

False True 1f 0f

False 0f 1f

Table 15. Conditional occurrence probability of “equipment failure”.
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causes of adverse events, we can obtain more interesting results such as the probability of the
death of the patient due to human error or lack of training or malfunction in the organization.

The model presented must be updated when new information is available to better estimate
the risk of patient safety in the operating room. The model should be enhanced by taking into
account different causes of adverse events. The use of adverse event database reporting system
may be very useful for getting statistics and determining the probabilities of occurrence of
some adverse events. The model allows integrating a mixture source of information (probabil-
ities from database and expert’s opinion).

4. Conclusion

Safety is very essential in the healthcare system. Therefore, we should use effective and flexible
methods for risk analysis to improve safety. Bayesian Networks methods are used to model and
analyze risk in the operating room. The second method uses, in addition to Bayesian Network,
the fuzzy logic. It allows us to use the data provided by expert and deal with the vagueness and
imprecision of information. Fuzzy Bayesian network seems more flexible and interpretable than
conventional Bayesian network, especially in the context of lack of data concerning risk events.
This approach supports human cognition using linguistic variables which is closer to reality.

The application of the two approaches has been explained by the use of a simple model. The
aim of this chapter is to propose flexible and effective methods in different context (data
availability and lack of data) using Bayesian network.

However, when the size of the graph is important, the model becomes incomprehensive. We
can resolve that by using object-oriented Bayesian network (OOBN). OOBN is a type of
Bayesian network, comprising both instance node and usual node. An instance node is a
subnetwork representing another Bayesian network. Using OOBNs, a large complex Bayesian
network can be constructed as a hierarchy of sub-networks with desired levels of abstract and
different levels of detail [11]. For instance, we can transform the node ‘surgery infection’ to a
sub-network by analyzing and modeling the causes of this kind of injuries. Therefore, model
construction is facilitated and communication between the model’s subnetworks is more
effectively performed. OOBN has a better model readability which facilitates the extension
and improvement of the model.

Remedy actions are always conducted by doctors and nurses upon hazardous occurrences.
Timely rescue can largely reduce the practical risks of patient’s injury. By contrast, delayed
remedies are of less use. It is therefore necessary to take into account the time. Consideration
and incorporation of time-dependent in the risk assessment to represent equipment failure or
human reliability are very important. This can be done through dynamic Bayesian network
(DBN) models. DBN is an extension of Bayesian network; it is used to describe how variables
influence each other over time based on the model derived from past data. A DBN can be
thought as a Markov chain model with many states or a discrete time approximation of a
differential equation with time steps. A dynamic Bayesian network methodology has been
developed to model domino effects in [12]. Another application of DBN is presented in [13] to
evaluate stochastic deterioration models.
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Table 15 represents the conditional probability of the node “Patient injury,” the node has five
states S1–S5 according to the severity of the harm caused to the patient. Here, the conditional
probability is considered as crisp value according to the expert’s opinion. Based on the harm
observed, experts gave a precise answer about severity.

3.2.3. Result and sensitive analysis

After the structure of the BN is developed and probabilities are determined, the inference can
be performed to estimate the probability of patient’s safety risk. The dependency and the
correlation among risks and factors are captured in node “Patient injury.” Hence, the task is
to find the probabilities of patient’s death after surgery by using the correlations and the fuzzy
probabilities of adverse events. Using the fuzzy Bayesian rule, the probability that the injury
severity will be catastrophic can be calculated as given in Eq. (3):

P T ¼ S5ð Þ ¼
X
i

P B ¼ bið Þ⊗P T ¼ S5=B ¼ bið Þ (3)

The probability that the injury severity will be catastrophic (S5) is (1.5 � 10�4, 10�3, 2 � 10�3).
Assuming that 80% of patients having a catastrophic injury die, the probability of the death of
a patient after surgery due to an adverse event is (1.2 � 10�4, 0.8 � 10�3, 1.6 � 10�3). Using the
center of the gravity method (Eq. (4)), we obtained COG = (8.4 � 10�4, 1/3). The probability of
the death of a patient after surgery is the x-axis 8.4 � 10�4.

ZCOG ¼
Ð
zμA zð ÞzdzÐ
zμA zð Þdz (4)

Several actions can be done to reduce risk and improve the safety of the patient in operating
room. Using this model, if we reduce the risk of retained foreign body by 60%, the risk of the
death of patient becomes 3.36 � 10�4.

If the state of one or more variables is known, the model can be updated and the probability of
patient injury will change.

One of the main advantages of BN is their ability to help us to conduct inverse interference. For
example, it is interesting to know, when a death is observed, what the posterior probability of a
patient’s infection is. In addition, if the model contains more details witch integrate the main

B1 B2 B3 N1 = True N1 = False

True True True 1f 0f

False 1f 0f

False True 1f 0f

False 1f 0f

False True True 1f 0f

False 1f 0f

False True 1f 0f

False 0f 1f
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causes of adverse events, we can obtain more interesting results such as the probability of the
death of the patient due to human error or lack of training or malfunction in the organization.

The model presented must be updated when new information is available to better estimate
the risk of patient safety in the operating room. The model should be enhanced by taking into
account different causes of adverse events. The use of adverse event database reporting system
may be very useful for getting statistics and determining the probabilities of occurrence of
some adverse events. The model allows integrating a mixture source of information (probabil-
ities from database and expert’s opinion).

4. Conclusion

Safety is very essential in the healthcare system. Therefore, we should use effective and flexible
methods for risk analysis to improve safety. Bayesian Networks methods are used to model and
analyze risk in the operating room. The second method uses, in addition to Bayesian Network,
the fuzzy logic. It allows us to use the data provided by expert and deal with the vagueness and
imprecision of information. Fuzzy Bayesian network seems more flexible and interpretable than
conventional Bayesian network, especially in the context of lack of data concerning risk events.
This approach supports human cognition using linguistic variables which is closer to reality.

The application of the two approaches has been explained by the use of a simple model. The
aim of this chapter is to propose flexible and effective methods in different context (data
availability and lack of data) using Bayesian network.

However, when the size of the graph is important, the model becomes incomprehensive. We
can resolve that by using object-oriented Bayesian network (OOBN). OOBN is a type of
Bayesian network, comprising both instance node and usual node. An instance node is a
subnetwork representing another Bayesian network. Using OOBNs, a large complex Bayesian
network can be constructed as a hierarchy of sub-networks with desired levels of abstract and
different levels of detail [11]. For instance, we can transform the node ‘surgery infection’ to a
sub-network by analyzing and modeling the causes of this kind of injuries. Therefore, model
construction is facilitated and communication between the model’s subnetworks is more
effectively performed. OOBN has a better model readability which facilitates the extension
and improvement of the model.

Remedy actions are always conducted by doctors and nurses upon hazardous occurrences.
Timely rescue can largely reduce the practical risks of patient’s injury. By contrast, delayed
remedies are of less use. It is therefore necessary to take into account the time. Consideration
and incorporation of time-dependent in the risk assessment to represent equipment failure or
human reliability are very important. This can be done through dynamic Bayesian network
(DBN) models. DBN is an extension of Bayesian network; it is used to describe how variables
influence each other over time based on the model derived from past data. A DBN can be
thought as a Markov chain model with many states or a discrete time approximation of a
differential equation with time steps. A dynamic Bayesian network methodology has been
developed to model domino effects in [12]. Another application of DBN is presented in [13] to
evaluate stochastic deterioration models.
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The Bayesian network presented is a model for assessing risk of patient’s safety in operating
room. The model aims to capture and measure risks in the background knowledge (namely
common causes and observed adverse events). Including the expert’s judgment in the risk
model is essential for providing a reliable risk picture supporting the decision-making. The use
of adverse event database reporting system may be very useful for getting statistics and
determine the probabilities of occurrence of the adverse events.
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Abstract

Bayesian networks can be built based on knowledge, data, or both. Independent of the 
source of information used to build the model, inaccuracies might occur or the applica-
tion domain might change. Therefore, there is a need to continuously improve the model 
during its usage. As new data are collected, algorithms to continuously incorporate the 
updated knowledge can play an essential role in this process. In regard to the continu-
ous learning of the Bayesian network’s structure, the current solutions are based on its 
structural refinement or adaptation. Recent researchers aim to reduce complexity and 
memory usage, allowing to solve complex and large-scale practical problems. This study 
aims to identify and evaluate solutions for the continuous learning of the Bayesian net-
work’s structures, as well as to outline related future research directions. Our attention 
remains on the structures because the accurate parameters are completely useless if the 
structure is not representative.

Keywords: Bayesian network, structure learning, continuous learning, structural 
adaptation, structural refinement

1. Introduction

Bayesian networks (BNs) are probabilistic graphs used to deal with the uncertainties of 
a domain [1]. These graphs represent the random variables of this domain and their con-
ditional dependencies. The use of Bayesian networks, also known as Bayesian belief net-
works, has several points to highlight. Among them, stands out the explicit treatment of 
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uncertainty, the ease of estimating the state of certain variables given some evidence, as 
well as having support methods for decision analysis and quick responses by the user [2].

The application domains of Bayesian networks have been extensive [3]. A large number of 
applications are in the field of medicine [4, 5], being one of the most addressed. There are 
also applications in the field of forecasting [6], control [7], and modeling for human under-
standing [8]. In the context of software engineering, fields such as project planning [9], risk 
management [10], and quality management [11] are addressed. Motivated by the extensive 
application cited, methods to improve the construction of these graphic models have become 
a focus of research.

A Bayesian network is defined by a directed acyclic graph (DAG) and a set of parameters for 
this DAG (NPT). Therefore, in order to build a Bayesian network, the definition of both the 
graph and the NPT must be considered. Several researches are being carried out with the 
intention of assisting these definitions [12–14]. However, the solutions proposed are based, 
for the most part, on the batch process. This process is infeasible in some application domains. 
Companies, for example, are increasingly storing huge databases with knowledge about 
their business processes. New knowledge is acquired every time. It is virtually impossible 
to achieve a highly accurate description of the processes involved without new data being 
collected or a large amount of data being stored that cannot be analyzed at once. Therefore, 
the need arose for solutions that continuously incorporate the updated knowledge to prior 
knowledge.

Ref. [15] investigated the main continuous learning solutions proposed until the development 
of his study. A comparative analysis between incremental algorithms and an experiment to 
support this analysis were performed. However, extensions of these, as well as new studies, 
have since been developed. This chapter aims to describe and analyze existing solutions for 
continuous learning of Bayesian network structures. A systematic review of the literature is 
carried out, and the algorithms found are divided into two groups according to their concepts: 
refinement and structural adaptation. Some guidelines for future research are also described.

2. Learning Bayesian networks

In probability theory, a domain  D  and its uncertainties can be modeled by a set of random 
variables  D =  { X  

1
  , … ,  X  

n
  }  . Each random variable   X  

i
    has a set of possible values that combined 

make up the basis for the modeling of domain  D . The occurrence of each possible combina-
tion is measured using probabilities that are specified by joint probability distribution, a key 
concept of probability theory.

In many domains, there is a high number of variables  n , requiring the use of probabilistic 
graphical models for the definition of joint probability distribution. Bayesian networks (BNs) 
belong to the family of these models that are used to represent a domain and its uncertainties 
[1]. A BN is a directed acyclic graph (DAG) that encodes a joint probability distribution over a 
set of random variables  D  [16]. Formally, a network for  D  is defined by the pair  B =  {G, 𝜽𝜽}  .
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The first component,  G , is a DAG whose vertices correspond to the random variables   X  
1
  , … ,  X  

n
   , 

and the edges represent directed dependencies between variables. The vertices are represented 
by circles. The edges are represented by arrows indicating the direction of the causal connec-
tion between the variables; nevertheless, the information can propagate in any direction in the 
graph [17].

The chain rule of probability, Eq. (1), can be rewritten as Eq. (2) based on conditional inde-
pendence rule. Two sets of variables   D  

x
    and   D  

y
    are independent given   D  

z
    if  P ( D  

x
   |  D  

y
  ,  D  

z
  )  = P ( D  

x
   |  D  

z
  )   

whenever  P ( D  
y
  ,  D  

z
  )  > 0 .

  P ( X  1  , … ,  X  n  )  =  ∏ 
i=1

  
n
    P ( X  i   |  X  1  , … ,  X  i−1  )    (1)

  P ( X  1  , … ,  X  n  )  =  ∏ 
i=1

  
n
    P ( X  i   |  Pa  i  )   (2)

In Eq. (2),   Pa  
i
    denotes the set of parents of the variable   X  

i
   .

The second component,  𝜽𝜽 , represents the set of parameters that quantifies the network. This 
set contains a parameter    θ  
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   . An example of a Bayesian network is shown in Figure 1.

In this case, it is desired to calculate the likelihood of a person having lung cancer given the 
history of cancer in their family and if this person is a smoker. The node probability tables 
(NPTs) of the parent nodes represent a prior knowledge of these variables. The NPT of the 
child node represents the likelihood of a person having cancer given each possible combina-
tion of values of the parent nodes.

The goal of the learning process of a Bayesian network is to find a network (or only its struc-
ture) that best encodes the joint probability distribution of a domain. Bayesian network learn-
ing can be stated as [18]:

Figure 1. BN example.

Continuous Learning of the Structure of Bayesian Networks: A Mapping Study
http://dx.doi.org/10.5772/intechopen.80064

57



uncertainty, the ease of estimating the state of certain variables given some evidence, as 
well as having support methods for decision analysis and quick responses by the user [2].

The application domains of Bayesian networks have been extensive [3]. A large number of 
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(NPTs) of the parent nodes represent a prior knowledge of these variables. The NPT of the 
child node represents the likelihood of a person having cancer given each possible combina-
tion of values of the parent nodes.

The goal of the learning process of a Bayesian network is to find a network (or only its struc-
ture) that best encodes the joint probability distribution of a domain. Bayesian network learn-
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Figure 1. BN example.

Continuous Learning of the Structure of Bayesian Networks: A Mapping Study
http://dx.doi.org/10.5772/intechopen.80064

57



Definition 1 (Bayesian network learning): Given a data set, infer the topology for the belief net-
work that may have generated the data set together with the corresponding uncertainty distribution.

The learning problem of Bayesian networks can be decomposed into two subproblems: con-
struct the structure, that is, DAG, and define the NPT [19]. Although there are many stud-
ies related to the importance of learning NPTs, this study focuses on the first subproblem 
described. The accurate parameters are completely useless if the structure is not representa-
tive. In [20], the importance of the structure of a network in the independence and relevance 
relationships between the variables concerned is described. Also, in [20], an analysis about the 
influence of probabilistic networks in the difficulty of representing the uncertainties present 
in the domain is presented.

The structure can be constructed from data only using machine learning or search techniques, 
such as those presented in [12, 21–23]. To optimize the definition of structure, the data can 
be enhanced with expert knowledge. One approach is to consult experts about the posterior 
probabilities of the structure to reduce the search space, such as presented in [13, 24].

In [25, 26], solutions are presented to complement a Bayesian network with the knowledge of 
domain experts through the addition of new factors in the model. In this way, it is possible to 
predict rare events, often not represented in the available databases.

Finally, the structure can be defined only according to the knowledge of specialists, where 
it is assumed that there are no data available before the structure construction process. In 
this case, the structure can be defined according to the elicited knowledge of one or multiple 
experts, as presented in [27, 28].

Most of the solutions to previously reported problems, as well as all of the solutions cited 
so far, operate as a batch process. The batch process (or batch learning) can be summarized 
in the delivery of a block of knowledge to an algorithm so that it learns a structure. All 
the knowledge available to date is used during this process. However, it is inevitable that 
such information will be inaccurate during the modeling of the domain [29]. For example, 
if knowledge is acquired from domain experts, the lack of communication between this 
expert and the expert on graphical models may result in errors in the Bayesian network. 
Similarly, if the network is being built from a data set, the data set may be inappropriate 
or inaccurate.

On the other hand, it is neither efficient nor, in some cases, possible to always keep the 
stored data in search of more representative models using batch learning algorithms [30]. To 
improve the use of data in the learning problem of Bayesian network structures, it’s required 
solutions that present a continuous process of learning. In the following section, solutions for 
the continuous learning of the Bayesian network structures are presented.

3. Continuous learning of Bayesian networks’ structure

The incentive in the application of processes that realize the learning of Bayesian networks 
in stages was based, initially, on the observation of the human learning by some researchers. 
However, the paradigm shift that provided multiple domains generated and stored more and 
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more data also propelled its development. Continuous (or incremental) learning approaches 
have some widely accepted definitions found in the literature [31].

In [32], the following precise definition was stated.

Definition 2 (Incremental learner): A learner  L  is incremental if  L  inputs one training experience 
at a time, does not reprocess any previous experiences, and retains only one knowledge structure in 
memory.

In this definition, there are three constraints so that an algorithm can be classified as incre-
mental. In Ref. [32], another definition with a different way of knowledge maintenance was 
presented.

Definition 3 (Incremental procedure): A Bayesian network learning procedure is incremental if 
each iteration  l , it receives a new data instance   u  

l
    and then produces the next hypothesis   S  

l+1
   . This 

estimate is then used by to perform the required task on the next instance   u  
l+1

   , which in turn is used 
to update the network and so on. The procedure might generate a new model after some number of  k  
instances are collected.

This definition relaxes the constraints imposed by Definition 2. For Definition 3, an incre-
mental algorithm can be allowed to process at most  k  previous instances after encountering 
a new training instance or to keep  k  alternative knowledge bases in memory. In [34], another 
definition is based on Definition 2.

Definition 4 (Incremental algorithm): An incremental algorithm should meet the following con-
straints: (i) it must require small constant time per record; (ii) it must be able to build a model using 
at most one scan of the data; (iii) it must use only a fixed amount of main memory, irrespective of 
the total number of records it has seen; (iv) it must make a usable model available at any point in 
time, as opposed to only when it is done with processing the data; and (v) it should produce a model 
that is equivalent (or nearly identical) to the one that would be obtained by the corresponding batch 
algorithm.

Like previous definitions, this definition imposes constraints related to time, memory, and 
knowledge addressed. The Definition 4 increments the constraint related to the availability of 
a useful model imposed by Definition 3. Now, a lot due to its application in data streams [34], 
it is needed to make a usable model available at any point in time, as opposed to only when it 
is done with processing the data.

Based on the aforementioned definitions of an incremental learning algorithm and in [31], 
solutions were found that present different learning methodologies. Two groups separate 
these solutions. The main difference between them is in how they use the acquired knowl-
edge. In one of these groups, denoted by refinement solutions, the data are used according to 
the knowledge already possessed. This knowledge is maintained in the probabilistic graphic 
already developed, being only refined with the new data. On the other group, denoted by 
structural adaptation solutions, the solutions maintain one or more candidate structures and 
apply to these structures the observations received. This new data set is used to update the 
sufficient statistics needed to build that candidate structures.

The concepts and information about the type of solutions found in this research are mapped, 
in an outlined (due to space constraints) and schematic way, in Figure 2.
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Definition 1 (Bayesian network learning): Given a data set, infer the topology for the belief net-
work that may have generated the data set together with the corresponding uncertainty distribution.

The learning problem of Bayesian networks can be decomposed into two subproblems: con-
struct the structure, that is, DAG, and define the NPT [19]. Although there are many stud-
ies related to the importance of learning NPTs, this study focuses on the first subproblem 
described. The accurate parameters are completely useless if the structure is not representa-
tive. In [20], the importance of the structure of a network in the independence and relevance 
relationships between the variables concerned is described. Also, in [20], an analysis about the 
influence of probabilistic networks in the difficulty of representing the uncertainties present 
in the domain is presented.

The structure can be constructed from data only using machine learning or search techniques, 
such as those presented in [12, 21–23]. To optimize the definition of structure, the data can 
be enhanced with expert knowledge. One approach is to consult experts about the posterior 
probabilities of the structure to reduce the search space, such as presented in [13, 24].

In [25, 26], solutions are presented to complement a Bayesian network with the knowledge of 
domain experts through the addition of new factors in the model. In this way, it is possible to 
predict rare events, often not represented in the available databases.

Finally, the structure can be defined only according to the knowledge of specialists, where 
it is assumed that there are no data available before the structure construction process. In 
this case, the structure can be defined according to the elicited knowledge of one or multiple 
experts, as presented in [27, 28].

Most of the solutions to previously reported problems, as well as all of the solutions cited 
so far, operate as a batch process. The batch process (or batch learning) can be summarized 
in the delivery of a block of knowledge to an algorithm so that it learns a structure. All 
the knowledge available to date is used during this process. However, it is inevitable that 
such information will be inaccurate during the modeling of the domain [29]. For example, 
if knowledge is acquired from domain experts, the lack of communication between this 
expert and the expert on graphical models may result in errors in the Bayesian network. 
Similarly, if the network is being built from a data set, the data set may be inappropriate 
or inaccurate.

On the other hand, it is neither efficient nor, in some cases, possible to always keep the 
stored data in search of more representative models using batch learning algorithms [30]. To 
improve the use of data in the learning problem of Bayesian network structures, it’s required 
solutions that present a continuous process of learning. In the following section, solutions for 
the continuous learning of the Bayesian network structures are presented.

3. Continuous learning of Bayesian networks’ structure

The incentive in the application of processes that realize the learning of Bayesian networks 
in stages was based, initially, on the observation of the human learning by some researchers. 
However, the paradigm shift that provided multiple domains generated and stored more and 
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more data also propelled its development. Continuous (or incremental) learning approaches 
have some widely accepted definitions found in the literature [31].

In [32], the following precise definition was stated.

Definition 2 (Incremental learner): A learner  L  is incremental if  L  inputs one training experience 
at a time, does not reprocess any previous experiences, and retains only one knowledge structure in 
memory.

In this definition, there are three constraints so that an algorithm can be classified as incre-
mental. In Ref. [32], another definition with a different way of knowledge maintenance was 
presented.

Definition 3 (Incremental procedure): A Bayesian network learning procedure is incremental if 
each iteration  l , it receives a new data instance   u  
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    and then produces the next hypothesis   S  

l+1
   . This 

estimate is then used by to perform the required task on the next instance   u  
l+1

   , which in turn is used 
to update the network and so on. The procedure might generate a new model after some number of  k  
instances are collected.

This definition relaxes the constraints imposed by Definition 2. For Definition 3, an incre-
mental algorithm can be allowed to process at most  k  previous instances after encountering 
a new training instance or to keep  k  alternative knowledge bases in memory. In [34], another 
definition is based on Definition 2.

Definition 4 (Incremental algorithm): An incremental algorithm should meet the following con-
straints: (i) it must require small constant time per record; (ii) it must be able to build a model using 
at most one scan of the data; (iii) it must use only a fixed amount of main memory, irrespective of 
the total number of records it has seen; (iv) it must make a usable model available at any point in 
time, as opposed to only when it is done with processing the data; and (v) it should produce a model 
that is equivalent (or nearly identical) to the one that would be obtained by the corresponding batch 
algorithm.

Like previous definitions, this definition imposes constraints related to time, memory, and 
knowledge addressed. The Definition 4 increments the constraint related to the availability of 
a useful model imposed by Definition 3. Now, a lot due to its application in data streams [34], 
it is needed to make a usable model available at any point in time, as opposed to only when it 
is done with processing the data.

Based on the aforementioned definitions of an incremental learning algorithm and in [31], 
solutions were found that present different learning methodologies. Two groups separate 
these solutions. The main difference between them is in how they use the acquired knowl-
edge. In one of these groups, denoted by refinement solutions, the data are used according to 
the knowledge already possessed. This knowledge is maintained in the probabilistic graphic 
already developed, being only refined with the new data. On the other group, denoted by 
structural adaptation solutions, the solutions maintain one or more candidate structures and 
apply to these structures the observations received. This new data set is used to update the 
sufficient statistics needed to build that candidate structures.

The concepts and information about the type of solutions found in this research are mapped, 
in an outlined (due to space constraints) and schematic way, in Figure 2.
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3.1. Methodology

The continuous learning Bayesian networks structure is kept like an open problem in many 
application domains. In this study, a systematic literature review is used to identify and 
evaluate solutions for the continuous learning of the Bayesian networks’ structures, as well as 
to outline related future research directions. A combination of strings was used for title and 
keyword to identify articles related to continuous learning. Scopus is used as an electronic 
database.

In the initial search, 4150 items from Scopus were found, but only the first 400 results were 
checked. This stop was performed because, of these first 400 results, sorted by relevance, a 
sequence of 150 articles totally unrelated to the search was found. To verify this relationship, 
three reading steps were performed. Initially, articles were selected considering only the title 
and abstract. A superficial reading of the remaining articles was then performed. This step 
consisted of reading and interpreting section titles, figures, graphs, conclusions, and other 

Figure 2. Mind map about solutions.
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elements. In the remaining articles, a critical reading was carried out seeking to interpret and 
analyze the complete text. The following sections present a description of these efforts.

3.2. Buntine’s solution

In [35], a theory refinement-based approach has been proposed. The key task of theory refine-
ment is to update the initial partial theory, usually the expert’s prior domain knowledge, as 
far as new cases produce a posterior knowledge about the space of possible theories, being 
one of the fundamentals of continuous learning. Given a set of new data and total ordering 
of the domain variables, the solution updates both the knowledge about the structure and the 
parameters using different BNs.

For extending and modifying the structure, [35] proposed a batch algorithm that uses the 
score-and-search–based Bayesian approach. However, using some guidelines presented by 
the author, it is possible to convert the batch learning into continuous learning process.

The batch algorithm of [35] requires a set of ordered variables   X =  { X  
1
  , … ,  X  

n
  |   X  

i
   ≺  X  

i+1
  , … ,  X  

n
   }     

according to the prior domain knowledge, where, for the expert, the variables that come first 
have influence over the others. For each variable   X  

i
   , a set of reasonable alternative parent sets   

Π  
i
   =  { Pa  

i1
  , … ,  Pa  

im
  }   is kept according to some criteria of reasonableness. Each parent set   Pa  

ij
    is a 

subset of   {Y | Y ≺  X  
i
  }  .

A set of alternative parent sets   Π  
i
    for the variable   X  

i
    is denoted by the parent lattice for   X  

i
   . This 

parent lattice is a lattice structure where subset and superset parent sets are linked together 
in a web. To access all alternative parent sets   Pa  

j
   ∈  Π  

i
    efficiently, only those parent sets with 

significant posterior probabilities are stored in the parent lattice for   X  
i
   . The root node of the 

parent lattice for   X  
i
    is empty set, and the leaves are the sets   Pa  

j
    which have no supersets con-

tained in   Π  
i
   .

The batch algorithm also requires tree parameters  1 > C > D > E . These are used to vary the 
search. The algorithm uses these parameters as base to classify the parent sets as Alive, 
Asleep, or Dead. The parameter  C  is used to separate the parent sets that finally take part on 
the space of alternative networks. The parameter  D  is used to select the reasonable alterna-
tives to Alive parent sets. The alternatives of Alive parent sets are beams searched by the 
algorithm. The parameter  E  is used to select the reasonable alternatives to Dead parent sets. 
Dead parent sets are alternatives that have been explored and forever determined to be 
unreasonable alternatives and are not to be further explored. On the other hand, Asleep 
parent sets are similar but are only considered unreasonable for now and may be made alive 
later on.

Set the tree parameters  C ,  D , and  E  to 1 will make the algorithm to be reduce to the K2 algo-
rithm. For this, many researchers cite this algorithm as a generalization of the K2 algorithm 
[30, 31, 36]. At the end, a structure of alternative networks results from the set of parent sets 
and the network parameters, denoted by a combined Bayesian network. A pseudo-code for 
batch algorithm is described in [35].
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elements. In the remaining articles, a critical reading was carried out seeking to interpret and 
analyze the complete text. The following sections present a description of these efforts.

3.2. Buntine’s solution

In [35], a theory refinement-based approach has been proposed. The key task of theory refine-
ment is to update the initial partial theory, usually the expert’s prior domain knowledge, as 
far as new cases produce a posterior knowledge about the space of possible theories, being 
one of the fundamentals of continuous learning. Given a set of new data and total ordering 
of the domain variables, the solution updates both the knowledge about the structure and the 
parameters using different BNs.

For extending and modifying the structure, [35] proposed a batch algorithm that uses the 
score-and-search–based Bayesian approach. However, using some guidelines presented by 
the author, it is possible to convert the batch learning into continuous learning process.
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The batch algorithm also requires tree parameters  1 > C > D > E . These are used to vary the 
search. The algorithm uses these parameters as base to classify the parent sets as Alive, 
Asleep, or Dead. The parameter  C  is used to separate the parent sets that finally take part on 
the space of alternative networks. The parameter  D  is used to select the reasonable alterna-
tives to Alive parent sets. The alternatives of Alive parent sets are beams searched by the 
algorithm. The parameter  E  is used to select the reasonable alternatives to Dead parent sets. 
Dead parent sets are alternatives that have been explored and forever determined to be 
unreasonable alternatives and are not to be further explored. On the other hand, Asleep 
parent sets are similar but are only considered unreasonable for now and may be made alive 
later on.

Set the tree parameters  C ,  D , and  E  to 1 will make the algorithm to be reduce to the K2 algo-
rithm. For this, many researchers cite this algorithm as a generalization of the K2 algorithm 
[30, 31, 36]. At the end, a structure of alternative networks results from the set of parent sets 
and the network parameters, denoted by a combined Bayesian network. A pseudo-code for 
batch algorithm is described in [35].
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To convert this batch into continuous learning algorithm, [35] describes two situations that 
vary according to the time available for the update. In the case where there is a short amount 
of time for updating the BNs, the algorithm only updates the posterior probabilities of the 
parent lattices. To this, it is necessary to store posterior probabilities and the counters   N  

ijk
    for 

each alternative set of Alive parent sets.

On the other hand, both structure and posterior updates are updated according to new data. 
For each variable   X  

i
    of the combined Bayesian network, it is necessary to: (i) update the pos-

terior probabilities of all alive sets of the lattice, (ii) calculate the new best-posterior, and (iii) 
expand nodes from the open-list and continue with the search.

The generation of different networks needs to update the posterior probabilities of all alive 
sets of the lattice. This solution uses sufficient statistics of data that only contains counts of 
different entries in data instead of data entries, requiring constant time to update sufficient 
statistics only when new records arrive. Furthermore, [33, 35] performs an additional search 
over the space of alternative Bayesian networks.

3.3. Friedman and Goldschmidt’s solution

Like the previous solution, [34] also addressed the problem of sequential update of the prior 
domain knowledge. Through the use of sufficient statistics maintained in memory for each 
network structure at a defined frontier, the knowledge is continuously learned. In this way, 
this solution provides a method that trades off between accuracy, that is, quality of structure, 
and storage, that is amount of information about the past observations.

In Ref. [34], three different solutions to sequentially learn BNs have been proposed. Among 
them, there are two extremes. The naive approach, as it is called, stores all the previously 
seen data and repeatedly invokes a batch learning procedure after each new observation is 
recorded. However, despite using as much information as possible, thus increasing the qual-
ity of the structure generated, this approach has a high storage cost. In addition, reusing batch 
learning increases the amount of time and processing spent.

On the other hand, the maximum a posteriori (MAP) probability approach uses a model to 
store all the information that is considered useful for the next steps in the knowledge update. 
However, the use of a single model can strongly bias the continuous learning of the model 
and lose information.

Aware of the disadvantages of previous approaches, [34] presents a new approach, called 
incremental, which proposes a tradeoff between extremes. The incremental approach does 
not store all data, unlike the naive approach, and it does not use a single network to repre-
sent the prior knowledge, unlike the MAP probability approach. Moreover, it allows flexible 
choices in the tradeoff between space and quality of the induced networks.

The basic component of this procedure is a module that maintains a set  S  of sufficient statistics 
records. The set of sufficient statistics for G, denoted by  Suff (G)  , can be founded by  Suff (G)  =  

 { N  
 X  

i
  , Pa  

i
  
   : 1 ≤ i ≤ n}  . Similarly, given a set S of sufficient statistics records, the set of network struc-

tures, denoted by  Nets (S)  , can be evaluated using the records in  S  by  Nets (S)  =  {G : Suff (G)  ⊆ S}  .
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Two structures can easily keep track by maintaining a slightly larger set of statistics, for 
example, suppose on the deliberating choice between two structures  G  and   G   ′  . To evaluate  G , 
in order to use a scoring function, it is needed to maintain the set  Suff (G)  . On the other hand, to 
evaluate   G   ′  , it is needed to maintain the set  Suff ( G   ′ )  . Now, supposing that  G  and   G   ′   differ only by 
one arc from   X  

i
    to   X  

j
   , note a large overlap between  Suff (G)   and  Suff ( G   ′ )  . Namely,   (G) ∪   Suff ( G   ′ )  = Suff 

(G)  ∪  { N  
 X  

j
  , Pa  

j
  
  }  , where    Pa  

j
    is the parent set of  Y  in   G   ′  . That argument can be useful when one consid-

ers the use of the greedy hill climbing search procedure, for example. Note that it is possible 
to evaluate the set of neighbors of  S  by maintaining a bounded set of sufficient statistics.

Generalizing this discussion, the incremental approach can be applied to any search proce-
dure that can define a search frontier. This frontier, denoted by  F , consists of all the networks 
it compares in the next iteration. The choice of  F  determines which sufficient statistics are 
maintained in memory. After a new instance is received (or, in general, after some number 
of new instances are received), the procedure uses the sufficient statistics in  S  to evaluate and 
select the best scoring network in the frontier  F  or in  Nets (S)  . A pseudo-code for incremental 
approach is described in [34].

When this approach is instantiated with the greedy hill climbing procedure, the frontier  F  
consists of all the neighbors of   B  

n
   . With bean search, on the other hand, the frontier  F  consists 

of all  j  candidates.

Many scoring functions can be used to evaluate the “fitness” of networks with respect to the 
training data and then to search for the best network. However, the incremental approach 
collects different sufficient statistics in different moments of the learning process. Thus, they 
need to compare Bayesian networks with respect to different data sets. This problem happens 
because, unlike [35, 34] may consider those structures that, previously, were considered as 
non-promising (the ones that were out of the frontier).

The two main scoring functions commonly used to learn Bayesian networks, Bayesian scores 
[37] and minimal description length (MDL) [38], are inappropriate for this problem. In order 
to overcome this problem, [34] proposed an averaged MDL measure   S  

MDL
  ′   (G | D)  =  S  

MDL
   (G | D)  / N , 

where  N  is the number of instances of the data set. This score measures the average encoding 
length per instance.

Analyzing both [35, 34] like hill-climbing searchers, they perform, for each node, operations 
to increase the score of the resulting structure, without introducing a cycle into the network 
and based on the assumption that they start from an arc-less network, as can be observed in 
their pseudo-code. Both stop when performing a single operation cannot increase the net-
work’s score. The difference between [35, 34] is the neighborhood composition. While [35] 
uses only the addition operator to construct neighbors, [34] uses the addition, reversion, and 
deletion of an arc.

3.4. Roure’s solution

The conversions of the batch learning approaches present in [35, 34] in continuous learning 
approaches paved the way for popular batch algorithms like the B, K2 [37] and HCMC [39] 
algorithms to be turned into incremental ones [31].
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To convert this batch into continuous learning algorithm, [35] describes two situations that 
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ijk
    for 

each alternative set of Alive parent sets.
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i
    of the combined Bayesian network, it is necessary to: (i) update the pos-
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However, the use of a single model can strongly bias the continuous learning of the model 
and lose information.

Aware of the disadvantages of previous approaches, [34] presents a new approach, called 
incremental, which proposes a tradeoff between extremes. The incremental approach does 
not store all data, unlike the naive approach, and it does not use a single network to repre-
sent the prior knowledge, unlike the MAP probability approach. Moreover, it allows flexible 
choices in the tradeoff between space and quality of the induced networks.

The basic component of this procedure is a module that maintains a set  S  of sufficient statistics 
records. The set of sufficient statistics for G, denoted by  Suff (G)  , can be founded by  Suff (G)  =  
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where  N  is the number of instances of the data set. This score measures the average encoding 
length per instance.

Analyzing both [35, 34] like hill-climbing searchers, they perform, for each node, operations 
to increase the score of the resulting structure, without introducing a cycle into the network 
and based on the assumption that they start from an arc-less network, as can be observed in 
their pseudo-code. Both stop when performing a single operation cannot increase the net-
work’s score. The difference between [35, 34] is the neighborhood composition. While [35] 
uses only the addition operator to construct neighbors, [34] uses the addition, reversion, and 
deletion of an arc.

3.4. Roure’s solution

The conversions of the batch learning approaches present in [35, 34] in continuous learning 
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In Ref. [40], two heuristics to change a batch hill-climbing search (HCS) into an incremental 
hill-climbing search algorithm based on combining of sufficient statistics with reduced search 
space have been proposed. In the batch version of HCS algorithm, a search on the space called 
neighborhood is performed to examine all possible local changes that can be made in order to 
maximize the scoring function.

Similar to the frontier presented in [34], a neighborhood of a model  B  consists of all models 
that can be build using one or more operators of a set of operators  OP =  {     "  Add  Edge   " ,      "   Delete Edge   " ,       

"   Reverse Edge   " }   and argument pairs A. Taking that into account, the sequence of operators and 
argument pairs added to obtain the final model   B  

f
    can be denoted by search path. Let   B  

0
    be an 

initial model, a final model obtained by a hill-climbing search algorithm can be described by    B  
f
   =  

op  
n
   (…  ( op  

1
  ,  A  

1
  ) , …) ,  A  

n
   )    , where the search path   O  

op
   =  { ( op  

1
  ,  A  

1
  ) , … ,  ( op  

n
  ,  A  

n
  ) }   was used to build   B  

f
   .

The heuristics presented in [40] are based on two main problems: when and which part to update, 
and how to calculate and store sufficient statistics. The first heuristic is called by traversal opera-
tors in correct order (TOCO). TOCO verifies the already learned model and its search path for 
new data. If the new data alter the search path, then it is worth to update an already learned 
model. The second heuristic is called by reduced search space (RSS). RSS identified when the 
current structure needs to be revised. At each step of the search path, it stores top  k  models in 
a set  B  having the score close to the best one. The set  B  reduces the search space by avoiding to 
explore those parts of the space where low-quality models were found during former search 
steps. A pseudo-code for incremental hill-climbing search algorithm is described in [40].

3.5. Lam and Bacchus’s solution

In [41], another continuous learning solution based on an extension of batch solution is pre-
sented. The batch solution used as base is presented in [42]; however, it will not be presented 
here because the new solution is not coupled to their batch algorithm. The proposed extension 
aims to perform a review of the BN structure incrementally as new data about a subset of 
variables were available.

This revision is done using the structure of the BN as prior probability under the implicit 
assumption that the existent network is already a fairly accurate model of the database. This 
assumption is a way to incorporate domain knowledge into the problem; however, the new 
refined network structure should be similar to the existing one, skewing the process.

The solution of [41] also proved, like [35] and based on the MDL measure, that if partial 
network structure of the whole structure gets, by changing its topology, better score to scoring 
function, then the whole network structure be improved if no cycles are introduced. Based on 
this, [41] developed an algorithm to update the BN by improving parts of it. This algorithm 
produces a new partial network structure based on new data set and the existing network 
using an extension of MDL. It then locally modifies the old structure comparing and changing 
correspond part according to new partial network.

The source data to algorithm consists of two components: the new data and the existent net-
work structure. Considering the MDL principle states, finding a partial network   G  

p
    is a must 

that minimizes the sum of the of the length of the encoding of: (i) the partial network   G  
p
   , (ii) the 
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new data given the network   G  
p
   , and (iii) the existent network given the network   G  

p
   . To calculate 

the encoding length of the first two items, there are guidelines in [41]. To calculate the length of 
the encoding of the third item, it is needed to compute the description of the complete existent 
network  G  given the network   G  

p
   , that is, to describe the differences between  G  and   G  

p
   . These 

differences are described by: (i) a listing of reversed arcs, (ii) the additional arcs of  G , and (iii) 
the missing arcs of  G .

A simple way to encode an arc is to describe the source node and the destination node.  2 log n  
bits are required to describe an arc, since is required  log n  to identify one, provided that exists  
n   nodes. Let  r ,  a , and  m  be, respectively, the number of reversed, additional, and missing arcs 
in  G  with respect   G  

p
   , the description length  G  given the network   G  

p
    is   (r + a + m)  2 log n .

In order to learn the local structure, the batch algorithm proposed by [42] or other algorithm 
using the scoring function for each node of the partial structure is presented by Eq. (3).

  D  L  i   =   |  Pa  i   |   + log n +  ∑ 
 X  i  ∈ Pa  i  

     I ( X  i  ;  X  j  )  +  ( r  i   +  a  i   +  m  i  )  2 log n   (3)

With the third term of the equation, [41] avoided using the sufficient statistics of the old data.

After the new partial structure is learned, the review process continues with the attempt to 
obtain a refined structure of lower total description length with the aid of the existent struc-
ture  G  and the partial structure   G  

p
   . The review problem now is reduced to choosing appropri-

ate subgraphs, denoted by the marked subgraph [41], for which we should perform parent 
substitution in order to achieve a refined structure of lowest total description length.

In an attempt to avoid creating cycles during each subgraph substitution, [41] uses best-first 
search to find the set of subgraph units that yields the best reduction in description length 
without generating any cycles. In addition, a list  S =  { S  

1
  , … ,  S  

n
  }   containing a ranking of all sub-

graphs in ascending order of the benefit gained.

3.6. Shi and Tan’s solution

In [43], an efficient hybrid incremental learning algorithm is proposed. All solutions presented 
so far are score-and-search–based solutions. This solution consists of a polynomial-time 
constraint-based technique and a hill-climbing search procedure. In this way, this solution 
provides a hybrid algorithm that offers considerable computational complexity savings and 
slightly better model accuracy.

The first fragment that composes the solution is based on a constraint-based technique. The 
purpose of this technique is to select candidate parent set for each variable on data. For each 
variable   X  

i
   , a candidate parents set   S  

 X  
i
  
    is set up containing all the other variables at first. If 

variable   X  
j
    was independent from   X  

i
    conditioned on some variables set  C  in previous learning 

procedures, the algorithm reperforms the conditional independent test and remove   X  
j
    from   S  

 X  
i
  
    

if the independence still holds.

After this, a heuristic procedure called HeuristicIND is proposed to reduce   S  
 X  

i
  
    further. This 

procedure tries to find out a variable set to separate   X  
i
    and   X  

j
    conditionally. Using the current 
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p
   , (ii) the 
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The first fragment that composes the solution is based on a constraint-based technique. The 
purpose of this technique is to select candidate parent set for each variable on data. For each 
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    was independent from   X  
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procedures, the algorithm reperforms the conditional independent test and remove   X  
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if the independence still holds.
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network structure, a tree-shaped undirected skeleton is then built up using [44]. The pseudo-
codes for this procedure and for the polynomial-time constraint-based technique and a hill-
climbing search procedure are described in [43].

3.7. Others continuous learning solutions

In [45], an improvement in the refinement process of [34] is presented. In this study, an incre-
mental method for learning Bayesian networks based on evolutionary computing, denoted 
by IEMA, is developed.

The solutions presented so far assume that a stationary stochastic process produces all knowl-
edge, that is, the ordering of the database is inconsequential. However, in many application 
domains of BNs, such as financial problems [46], the processes vary according to the time, 
the data are non-stationary or piecewise stationary distributed, which would reduce the 
adequacy of the solutions already mentioned. In [47], the assumption on stationary data is 
relaxed and an incremental learning Bayesian network based on non-stationary data domains 
is developed.

In [48], the streaming data prediction is addressed. A parallel and incremental solution for 
learning of BNs from massive, distributed, and dynamically changing data by extending the 
classical scoring and search algorithm and using MapReduce is presented.

Ref. [37] also presents an algorithm for stream and online data, more precisely, data that 
are privately and horizontally shared among two or more parties. This algorithm is based 
on an efficient version of sufficient statistics to learning privacy-preserving Bayesian 
networks.

In [49], an active and dynamic method of diagnosis of crop diseases has been proposed based 
on Bayesian networks and incremental learning. To incremental learning, a new algorithm 
for dynamically updating the Bayesian network-based diagnosis model over time also is 
proposed.

Ref. [50] transformed the local structure identification part of Max-min Hill-climbing (MMHC) 
algorithm into an incremental fashion by using heuristics and applied incremental hill-climbing  
to learn a set of candidates-parent-children for a target variable.

In [51], an incremental algorithm for BN structure learning that can deal with high dimen-
sional domains has been proposed.

In [52], the concept of influence degree is used to describe the influence of new data on the 
existing BN. A scoring-based algorithm for revising a BN iteratively by hill-climbing search 
for reversing, adding, or deleting edges has been proposed.

In [53], an approach to incremental structure optimize is presented. Based on a specific 
method, this approach decomposes the initial network into several subnets created from a 
junction tree developed using information about the joint probability of the network. With 
some adaptations, it can be used as a continuous learning algorithm.
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It is also important to point out that studies are found that denominate their algorithm as 
incremental, but these algorithms result in incremental learning of variables or small parts 
of the network as they are available and do not necessarily generate a new model, as it is 
constrained in the definition.

3.8. Comments and future research

Some comments comparing some solutions have already been made during your descrip-
tions. However, to facilitate the understanding of the methodologies used, some techniques 
and characteristics were compared below. A summary table among some solutions is pre-
sented in Table 1.

Some features of the solutions were discussed in Table 1. These features are important for the 
differentiation of the proposal of each algorithm. It is noteworthy that, among the outstand-
ing solutions, none proposes to use the domain specialist as a source of posterior knowledge, 
only as a source of prior knowledge. This knowledge can be increased over time and can be 
used to improve the built network. In addition, changes that are not able to be identified only 
with the use of data, such as adding factors and incomprehensibility of the model, can be 
identified.

When checking the stochastic process, it is noted that only [47] adopts a non-stationary 
domain, even considering the increasing diversity of domain. The other quoted solutions kept 
their focus on stationary domains, more common at the time of their developments. Still con-
sidering the domain, the effectiveness of the algorithms is rarely validated in a real domain, 
even if it is done with experiments that use data coming from real domains.

The local search is a standard present among the search procedures used. Despite their high 
computational complexity, methods were developed so that this was not a constraint and 

Solution Domain expert Type of structure 
changes

Scoring 
function

Search 
procedure

CI Stochastic 
process

[36] Prior 
knowledge

Adding edges Any Any local 
search

— Stationary

[34] Prior 
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Adding, deleting, 
or reversing edges
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— Stationary

[40] Prior 
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— Stationary

[41] Prior 
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Extension of 
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Best-first 
search

— Stationary

[43] Prior 
knowledge

Adding, deleting, 
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— Hill-climbing 
search

InfoChi Stationary

[47] Prior 
knowledge
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or reversing edges

— Any local 
search

— Non-stationary
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network structure, a tree-shaped undirected skeleton is then built up using [44]. The pseudo-
codes for this procedure and for the polynomial-time constraint-based technique and a hill-
climbing search procedure are described in [43].
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method, this approach decomposes the initial network into several subnets created from a 
junction tree developed using information about the joint probability of the network. With 
some adaptations, it can be used as a continuous learning algorithm.
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incremental, but these algorithms result in incremental learning of variables or small parts 
of the network as they are available and do not necessarily generate a new model, as it is 
constrained in the definition.

3.8. Comments and future research

Some comments comparing some solutions have already been made during your descrip-
tions. However, to facilitate the understanding of the methodologies used, some techniques 
and characteristics were compared below. A summary table among some solutions is pre-
sented in Table 1.

Some features of the solutions were discussed in Table 1. These features are important for the 
differentiation of the proposal of each algorithm. It is noteworthy that, among the outstand-
ing solutions, none proposes to use the domain specialist as a source of posterior knowledge, 
only as a source of prior knowledge. This knowledge can be increased over time and can be 
used to improve the built network. In addition, changes that are not able to be identified only 
with the use of data, such as adding factors and incomprehensibility of the model, can be 
identified.

When checking the stochastic process, it is noted that only [47] adopts a non-stationary 
domain, even considering the increasing diversity of domain. The other quoted solutions kept 
their focus on stationary domains, more common at the time of their developments. Still con-
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they then continued to be used. Only one solution made use of conditional independence (CI) 
tests. Ref. [43] developed a new technique that is used as the basis for CI tests. Considering 
scoring functions, some solutions leave open the use of any function. However, an adaptation 
to their applications is necessary in sufficient statistics used in some, for example, in [34]. On 
the other hand, some solutions use the MDL measure, but already adapted, either to reduce 
computational complexity or to achieve better results in different data set data. Other features 
can be addressed in future reviews, such as computational complexity, procedure focus, and 
the type of application domain, among others.

4. Conclusions

This chapter presents a survey based on a systematic literature review of continuous learning 
solutions of Bayesian network structures. It searches articles with an algorithm or approach 
considered as incremental according to the definitions presented in the text.

The solutions found can be classified as structural adaptation or refinement. The first group, 
in short, uses the new data set to maintain sufficient statistics that are used to store the exist-
ing knowledge about the domain. The second group uses this new set of data to perform a 
refinement in the network, based on previous knowledge coupled in the old structure.

Finally, the presence of the posterior knowledge of the domain specialist during the incre-
mental learning process and experiments in real domains for the validation of some solutions 
findings are in the future works.
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Abstract

In order to make machines perceive their external environment coherently, multiple 
sources of sensory information derived from several different modalities can be used 
(e.g. cameras, LIDAR, stereo, RGB-D, and radars). All these different sources of informa-
tion can be efficiently merged to form a robust perception of the environment. Some of 
the mechanisms that underlie this merging of the sensor information are highlighted in 
this chapter, showing that depending on the type of information, different combination 
and integration strategies can be used and that prior knowledge are often required for 
interpreting the sensory signals efficiently. The notion that perception involves Bayesian 
inference is an increasingly popular position taken by a considerable number of research-
ers. Bayesian models have provided insights into many perceptual phenomena, showing 
that they are a valid approach to deal with real-world uncertainties and for robust clas-
sification, including classification in time-dependent problems. This chapter addresses 
the use of Bayesian networks applied to sensory perception in the following areas: mobile 
robotics, autonomous driving systems, advanced driver assistance systems, sensor fusion 
for object detection, and EEG-based mental states classification.

Keywords: Bayesian networks, machine learning, multimodal robotic perception

1. Introduction

Bayesian networks (BNs) allow a tractable graph-based representation for probabilistic rea-
soning (or inference), under uncertainty, about a given problem or domain. A recurrent prob-
lem in robotics is to reason about the class of an object in the environment, given evidence 
(from sensors, e.g. RGB-D cameras), and probabilistic models (e.g. probability outputs of a 
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Abstract

In order to make machines perceive their external environment coherently, multiple 
sources of sensory information derived from several different modalities can be used 
(e.g. cameras, LIDAR, stereo, RGB-D, and radars). All these different sources of informa-
tion can be efficiently merged to form a robust perception of the environment. Some of 
the mechanisms that underlie this merging of the sensor information are highlighted in 
this chapter, showing that depending on the type of information, different combination 
and integration strategies can be used and that prior knowledge are often required for 
interpreting the sensory signals efficiently. The notion that perception involves Bayesian 
inference is an increasingly popular position taken by a considerable number of research-
ers. Bayesian models have provided insights into many perceptual phenomena, showing 
that they are a valid approach to deal with real-world uncertainties and for robust clas-
sification, including classification in time-dependent problems. This chapter addresses 
the use of Bayesian networks applied to sensory perception in the following areas: mobile 
robotics, autonomous driving systems, advanced driver assistance systems, sensor fusion 
for object detection, and EEG-based mental states classification.
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classifier) in the domain that represents the problem. For example, a robot would be needed 
to detect and then recognise a particular type of object (such as a mug) in a given place (e.g. 
kitchen) [1]. Another example would be an autonomous vehicle that has to detect road users; 
hence, the object categories of interest would be pedestrian, cyclist, car and van, bus and 
truck, and motorised two-wheelers.

The topology, or structure, of a BN graph is the first step in solving the problem, and it should 
provide the relationship (dependencies represented by links) among the nodes (variables in 
the problem domain). The next step is to define the conditional probabilities for the nodes 
and, then, the joint probability of the BN has to be considered in order to allow computing the 
posterior probability of the form  P (Class | Evidences)  , i.e. a posteriori of the class, or category, given 
the evidences from a set of sensor-based models [1].

In this chapter, we will address BN with similar topologies to the one illustrated in Figure 1. 
The structure shown in Figure 1 is a ‘common effect’ chain [2], which means that all parent 
nodes contribute to the node C designated by the ‘class’. The node C is the label variable and 
takes values such as: C = {person, non-person}, or C = {1, 0}, or in multiple class case, C = {mug, 
spoon, knife, fork, plate, can} or C = {concentrated, relaxed, neutral}. The evidence nodes, as illus-
trated in Figure 1, provide probability values per class of interest; thus, such nodes are mod-
elled by a classifier (e.g. convolutional neural network [CNN], SVM, and Bayes classifier). 
The node called ‘context’ might represent evidence from the environment, or information 
shared by the infrastructure (e.g. cameras mounted on the scenario), or any other evidence 
not directly related to a given learning classifier using data/features from sensors onboard 
the robot.

The remainder of this chapter is organised as follows: Section 2 briefly describes the use of 
BNs for supervised classification problems. Use cases on object manipulation, pedestrian clas-
sification, and EEG-based Mental State Classification are described in Sections 3–5, respec-
tively. Finally, Section 6 presents a summary and remarks.

Figure 1. Topology of a BN where all the parent nodes {X1, X2, …, Xn} contribute to a common effect, which is the set of 
classes (node C) of interest in a given robotic domain.
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2. Bayesian networks for supervised classification

In a more general and high-level perspective, a BN is characterised by nodes that represent 
a finite set of random variables, i.e. a variable/function whose outputs outcome from a ran-
dom measured process (belonging to the domain of interest) and links (i.e. directed arcs) that 
represent the direct dependencies between the nodes. Hereafter, the link dependencies will 
assume the form of conditional probabilities. By examining Figure 1, we can see that each node  
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learning model—in the form of supervised classifiers. On the other hand, which is common in 
some classification problems, the nodes may represent features as extracted from observed data.

Let  P (X | C)   be the outcome of a learning classifier given the observed/measured sensor data. 
The variable X can represent a learned model, using a probabilistic classifier, based on super-
vised and measured data from a camera, a LIDAR, an RGB-D sensor, or a combination of 
multimodality data. We could represent the conditional probability as  P (X, θ | C)   to explicitly 
show that the output also depends on a learning model (here represented by  θ ).

In a nutshell and considering the use cases described in the sequel, BNs are used to express 
the joint probability of events (represented by the nodes) that model a classification system 
where the relationships between events are expressed by conditional probabilities. Given the 
observations/measurements (evidence) and prior knowledge, statistical inference is accom-
plished using the Bayes' theorem. The goal is to calculate the posterior  P (C |  X  

i
  )   of the set of 

classes given the evidential nodes   X  
i
  , i = 1, … , n . So, inference in supervised classification appli-

cations aims to estimate the probability of the classes given the class-conditional probabilities, 
priors and observations.

In this work, in one of the approaches presented, we consider BN structures where the sen-
sory data are transformed to a feature space which is then feed into a trained classifier. The 
classifier is assumed to output a class-conditional probability which is then used to calculate 
the a posteriori. When multiple sensors are considered, the conditional independency property 
between sensors will be satisfied, for example:  P ( X  

sensor1
   |  X  

sensor2
  ,  X  

sensor3
  )  = P ( X  

sensor1
  )  . The following sec-

tions will present three different study cases where BN are employed as a supervised classifier.

3. Use case in object shape representation through in-hand 
exploration

Accurate modeling of the world (environment and its components) is important in autono-
mous robotics applications. More precisely, for grasping applications dealing with objects 
used in everyday tasks, the object information (intrinsic and extrinsic) acquired before the 
robot executes a task is crucial for grasp strategies. The object geometry (size and shape) plays 
an important role in such applications, where its representation is also valuable for classifica-
tion into a class of known objects and also for identification of regions on the object surface 

Multimodal Bayesian Network for Artificial Perception
http://dx.doi.org/10.5772/intechopen.81111

75



classifier) in the domain that represents the problem. For example, a robot would be needed 
to detect and then recognise a particular type of object (such as a mug) in a given place (e.g. 
kitchen) [1]. Another example would be an autonomous vehicle that has to detect road users; 
hence, the object categories of interest would be pedestrian, cyclist, car and van, bus and 
truck, and motorised two-wheelers.

The topology, or structure, of a BN graph is the first step in solving the problem, and it should 
provide the relationship (dependencies represented by links) among the nodes (variables in 
the problem domain). The next step is to define the conditional probabilities for the nodes 
and, then, the joint probability of the BN has to be considered in order to allow computing the 
posterior probability of the form  P (Class | Evidences)  , i.e. a posteriori of the class, or category, given 
the evidences from a set of sensor-based models [1].

In this chapter, we will address BN with similar topologies to the one illustrated in Figure 1. 
The structure shown in Figure 1 is a ‘common effect’ chain [2], which means that all parent 
nodes contribute to the node C designated by the ‘class’. The node C is the label variable and 
takes values such as: C = {person, non-person}, or C = {1, 0}, or in multiple class case, C = {mug, 
spoon, knife, fork, plate, can} or C = {concentrated, relaxed, neutral}. The evidence nodes, as illus-
trated in Figure 1, provide probability values per class of interest; thus, such nodes are mod-
elled by a classifier (e.g. convolutional neural network [CNN], SVM, and Bayes classifier). 
The node called ‘context’ might represent evidence from the environment, or information 
shared by the infrastructure (e.g. cameras mounted on the scenario), or any other evidence 
not directly related to a given learning classifier using data/features from sensors onboard 
the robot.

The remainder of this chapter is organised as follows: Section 2 briefly describes the use of 
BNs for supervised classification problems. Use cases on object manipulation, pedestrian clas-
sification, and EEG-based Mental State Classification are described in Sections 3–5, respec-
tively. Finally, Section 6 presents a summary and remarks.

Figure 1. Topology of a BN where all the parent nodes {X1, X2, …, Xn} contribute to a common effect, which is the set of 
classes (node C) of interest in a given robotic domain.

Bayesian Networks - Advances and Novel Applications74

2. Bayesian networks for supervised classification

In a more general and high-level perspective, a BN is characterised by nodes that represent 
a finite set of random variables, i.e. a variable/function whose outputs outcome from a ran-
dom measured process (belonging to the domain of interest) and links (i.e. directed arcs) that 
represent the direct dependencies between the nodes. Hereafter, the link dependencies will 
assume the form of conditional probabilities. By examining Figure 1, we can see that each node  
  X  

i
  , i = 1, … , n,  is conditionally independent of all the nodes, while the node C is conditionally depen-

dent of all its parent nodes   X  
1
  ,  X  

2
  , … ,  X  

n
   . This is a simple BN structure where the nodes represent 

learning model—in the form of supervised classifiers. On the other hand, which is common in 
some classification problems, the nodes may represent features as extracted from observed data.

Let  P (X | C)   be the outcome of a learning classifier given the observed/measured sensor data. 
The variable X can represent a learned model, using a probabilistic classifier, based on super-
vised and measured data from a camera, a LIDAR, an RGB-D sensor, or a combination of 
multimodality data. We could represent the conditional probability as  P (X, θ | C)   to explicitly 
show that the output also depends on a learning model (here represented by  θ ).

In a nutshell and considering the use cases described in the sequel, BNs are used to express 
the joint probability of events (represented by the nodes) that model a classification system 
where the relationships between events are expressed by conditional probabilities. Given the 
observations/measurements (evidence) and prior knowledge, statistical inference is accom-
plished using the Bayes' theorem. The goal is to calculate the posterior  P (C |  X  

i
  )   of the set of 

classes given the evidential nodes   X  
i
  , i = 1, … , n . So, inference in supervised classification appli-

cations aims to estimate the probability of the classes given the class-conditional probabilities, 
priors and observations.

In this work, in one of the approaches presented, we consider BN structures where the sen-
sory data are transformed to a feature space which is then feed into a trained classifier. The 
classifier is assumed to output a class-conditional probability which is then used to calculate 
the a posteriori. When multiple sensors are considered, the conditional independency property 
between sensors will be satisfied, for example:  P ( X  

sensor1
   |  X  

sensor2
  ,  X  

sensor3
  )  = P ( X  

sensor1
  )  . The following sec-

tions will present three different study cases where BN are employed as a supervised classifier.

3. Use case in object shape representation through in-hand 
exploration

Accurate modeling of the world (environment and its components) is important in autono-
mous robotics applications. More precisely, for grasping applications dealing with objects 
used in everyday tasks, the object information (intrinsic and extrinsic) acquired before the 
robot executes a task is crucial for grasp strategies. The object geometry (size and shape) plays 
an important role in such applications, where its representation is also valuable for classifica-
tion into a class of known objects and also for identification of regions on the object surface 

Multimodal Bayesian Network for Artificial Perception
http://dx.doi.org/10.5772/intechopen.81111

75



proper for a stable grasp. Since the robotic end-effector usually relies on the knowledge of 
object geometry to plan or to estimate grasp candidates, the more accurate the geometry of 
the object, the higher is the likelihood of success when estimating the candidate’s grasp for 
that object. Many techniques can be used to reconstruct and represent an object using differ-
ent sensors, such as vision-based systems, laser range finders, etc., where the most common 
is through visual information.

Mapping techniques such as occupancy grid [3, 4] have been used in robotics to describe the 
environment of mobile robots. Two-dimensional grids have been used for static indoor mapping 
as shown in [5]. The idea is to estimate the probability of each cell to be occupied or empty after 
the sensors’ observation. Probabilistic volumetric maps are also useful in robotics by providing 
means of integrating different occupancy belief maps in order to update a central multimodal 
map using Bayesian filtering. A grid divides the workspace into equally sized voxels, and the 
edges are aligned with one of the axes of a reference coordinate frame. The coverage of each 
voxel given the sequence of batches of measurements is modelled through a probability density 
function. The probabilistic approach for building volumetric maps of unknown environments 
can also be based on information theory. Each sensor (e.g. vision, laser, etc.) can adopt an entropy 
gradient-based exploration strategy to define the occupied regions (most explored) in the map.

Object in-hand exploration is the procedure of exploring the shape of objects using tactile 
information and fingers motion around the object surface to reconstruct its shape [6]. In order 
to acquire the probabilistic representation of an object using a volumetric map, it is necessary 
to have an a priori estimation of the area, where the object is placed for mapping. There are 
two scenarios in which in-hand exploration can be applied: a static object placed at a specific 
location or an object being explored in-hand in constant motion (dynamic exploration with 
moving object). The sensors used for this task is a cyberglove that measures fingers flexure 
(0–255 range), with six electromagnetic motion sensors (Polhemus sensors), where each sen-
sor provides 6D information (x, y, z, yaw, pitch, and roll), and tactile sensors in each fingertip 
and palm (Tekscan pressure sensor) that measure the force (0–255 range). Figure 2 depicts the 
experimental setup and sensors used for object in-hand exploration.

When the object exploration is in-hand and the object is moving, then it is needed to perform a 
registration to map the object displacements into a single frame of reference. We can consider 
that, for every motion of the object, a local map is built, so that all local maps should be inte-
grated into a global map to have the whole representation of the object shape exploration in the 
same frame of reference. Knowing the object initial position and the object displacements, we 
can compute the transformations to have all points in the same frame of reference. Given that 
the sensor attached to the object has six DoF (x, y, z, yaw, pitch, and roll), we can compute the 
rotation and translation of the object. We compute the rotation matrix of the object in a specific 
point in time using α = yaw (rotation in z axis), β = pitch (rotation in y), and φ = roll (rotation in x).

To map the point cloud in the same frame of reference, for all points, we find the translation 
of the fingertip sensor to the object sensor and then we apply the rotation to that point, p′ = 
Rot, where p′ is the new position of the 3D point that we are mapping to the same frame of 
reference of the object sensor; Ro is the rotation matrix 3 × 3 of the object sensor; and t the 
translation of the fingertip sensor to the object sensor.

Bayesian Networks - Advances and Novel Applications76

The Bayesian volumetric map [6] is an occupancy grid, i.e. discrete random fields, wherein 
each cell has an assigned value, which represents the probability of the cell being occupied. 
The dimensions of the voxels define the spatial resolution of the representation. The edges of 
the grid are aligned with one of the axes of the world frame of reference W. In this work, the 
map is a 3D grid comprised of a set of cells c ∈ M, denoted as voxels, wherein each voxel is a 
cube with edge ε ∈ R. The voxels divide the workspace into equally sized cubes with volume 
ε3. The occupancy of each individual voxel is assumed to be independent from the other vox-
els occupancy, and thus, Oc is a set of independent random variables as follows:

• c ∈ M: Index a cell on the Map;

• Oc ∈ [0, 1]: Probability describing if the cell c is empty or occupied;

• Zc: Measurement that influences the cell c. It represents the measurements acquired from 
five sensors, each one returns the 3D location of each finger movement in the map;

• P(Oc): Probability distribution of preliminary knowledge describing the occupancy of the 
cell c, initially as a uniform distribution (0.5 for each state: empty or occupied); and

• P(Zc|Oc): Probability density function corresponding to the set of measurements that 
influences the cell c taken from the in-hand exploration measurements. This distribution is 
computed from the in-hand exploration sensor model.

The knowledge about the occupancy of a voxel c in the map M, after Z measurements received 
at time t from the sensors, is represented by the probability density function P(Oc|Zc

t). 
Updating the 3D probabilistic representation of the manipulated object shape upon a new 
measurement Zt means updating the probability distribution function P([Oc = 1]|Zc

t) of the 
voxel c influenced by the measurement Z at time t. Voxels are influenced by a measurement 

Figure 2. Experimental setup: (a) workspace for mapping (grid 35 cm × 35 cm × 35 cm equally divided, where each 
voxel is sized with 0.5 cm); (b) Polhemus Liberty Motion Tracking System: magnetic sensors attached to the cyberglove 
(fingertips and back of the hand).
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Zt if the location associated with the sample computed from the sensor model P (Zc
t|[Oc = 1]) 

is contained in that voxel location c. For each voxel c, the set of measurements Zc
t contains n 

measurements Zc influencing a voxel c along the time t. The probability density function of 
the object shape representation of voxel c given the Zc measurements influencing such voxel 
is represented by P(Zc

t |[Oc = 1]). To update the occupancy estimation of a cell in the map, the 
Bayes rule is applied:

  P ( [Oc = 1]  |  Z  c  t )  =   
 P ( Z  c  t  |  [Oc = 1] ) P ( [Oc = 1] ) 

   _________________________________________    
P ( Z  c  t  |  [Oc = 0] ) P (   [  Oc = 0 )   + P ( Z  c  t  |  [Oc = 1] ) P ( [Oc = 1] ) 

  ,  (1)

where P([Oc = 0]) = 1 − P([Oc = 1]); P(  Z  
c
  t    |[Oc = 1]) is given by the probability density function 

computed from the sensor model and P(  Z  
c
  t   |[Oc = 0]) is a uniform distribution.

Assuming that consecutive measurements Zt are independent given the cell occupancy, the 
following expression is obtained:

  P ( [Oc = 1]  |  Z  c  t )  = β × P (Oc)   ∏ 
t=1

  
T
    P ( Z  c  t  |  [Oc = 1] ) ,  (2)

where β is a constant representing a normalization, factor ensuring that the left side of the 
equation sums up to one over all Oc.

The cells occupancy in the map are probabilities that are updated over time as long as the 
sensors measurements are active. At the end of the in-hand exploration of the object, the cells 
are allowed to represent only two states: occupied or empty, Oc ∈ [0, 1], so that a threshold is 
used for each cell to consider one of the two states:

  Oc =  {0, P ( Z  c  t  )  < 0.5 1, P (Oc |  Z  c  t )  ≥ 0.5 } .  (3)

Figure 3 shows an example of the probabilistic volumetric map and its utility. The map can 
be used to represent the full model of the object as well as partial volume of the object and 
contact.

Each magnetic sensor attached to the fingertips returns the 3D coordinates of the finger loca-
tion based on the sensor frame of reference (source/emitter of the Polhemus Liberty tracking 
system). The frame rate of each sensor was defined to be up to 15 Hz. During data acquisi-
tion, a workspace (35 cm3) is defined in the experimental area for mapping. The grid space 
is divided into equally sized voxels (also denoted as cells) of 0.5 cm3. Due to the size of each 
cell, relative to the standard deviation of the magnetic tracking sensors measurements (up to 
3 mm), inside each cell a 3D isotropic Gaussian probability distribution is defined, P(  Z  

c
  t   |Oc), 

centred at the cell central point with the standard deviation 0.3 cm and mean value equal to 
the central point coordinates of the cell. In other words, this means that the model attempts 
to ensure that, upon receiving a measurement from the sensor attached to the fingertip, the 
closer the finger position is to the centre of a specific cell of the map, the more probable that 
cell is occupied. Furthermore, during the object surface exploration, the more often that the 
finger passes through that cell, the cell probability is updated with higher certainty in which 
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that given point position actually belongs to the object surface. The probability that a mea-
surement belongs to a cell is given by a normal distribution using the known sensor position 
error as the standard deviation and the sensors positions relative to the centre of each cell in 
the map as follows:

  P (Oc)  =   1 _____________ 
2  Π   3/2     | Σ |     

1/2
 
   e (−   1 __ 2     (x − μ)    T   Σ   −1  (x − μ) )  ,  (4)

where P(  Z  
c
  t   |Oc) represents the probability distribution of the sensor measurement given a 

specific cell Oc; |Σ| represents the determinant of Σ (sensor noise variation). It can also repre-
sent a scalar value. After normalization, it takes the form:

  P ( [Oc = 1] )  = exp  (−   
  (x −  u  x  )    2  +   (x −  u  y  )    2  +   (x −  u  z  )    2   __________________  2  σ   2   ) ,  (5)

where (x, y, z) are the coordinates of the 3D point on the object surface, and u is the central 
coordinate of the cell (for each axis). The in-hand exploration of objects can be performed by 
using the thumb and other fingers, i.e. the occupancy grid can be influenced by them over 
time, thus, expanding on the model for cell update, the contribution of the sensor on each 
finger through time can be made explicit on the decomposition as follows:

  P ( Z  thumb  t=0  , … ,  Z  thumb,  T    Z  i  t=0 , … ,  Z  i  T , Oc)  = P (Oc)   ∏ 
t=0

  
T
    P ( z  thumb  t   | Oc)   ∏ 

i=1
  

N
    P ( z  i   | Oc) ,  (6)

where T represents the current time instant and N = 4, the remaining four fingers of the hand. 
This process for updating the cell over time recursively (i.e. initially using the cell probability 
as a uniform distribution: empty or occupied, and later the cell probability—updated with the 
Bayes rule—is used as prior for the next update), represents a Bayesian network.

The BN representation of the formalism applied to the decomposition of the joint distribu-
tion in which the sensor model was used is shown in Figure 4. The plate notation relies on 
assumptions of duplicated subgraph as many times as the associated repetition number (in 

Figure 3. Examples of the Bayesian volumetric map. Left image: real object; middle image: partial volume of the object 
obtained during in-hand exploration; right image: map of the full object model and contact points overlaid on the object 
surface (red voxels representing the contact points and blue voxel representing the centroid of the object to define its 
frame of reference).
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this particular case the hand fingers); the variables in the subgraph are indexed according to 
the repetition number; the links that cross a plate boundary are replicated for each subgraph 
repetition; the distributions are in the joint distribution as an indexed product of the sequence 

Figure 6. Object shape representation by in-hand exploration of a spray bottle. The first image (left to right) is the raw data 
(point cloud), next three images are different views of the voxels representation of the object shape, and the last image 
is the occupancy representation of the cells, the darkest ones represent the lower probabilities (less explored regions).

Figure 5. Object representation using the probabilistic volumetric map: sponge and its computed map.

Figure 4. BN for object representation by in-hand exploration using occupancy grid. The left image shows the labels: 
prior, posterior, and respective distributions, yet not necessary in dynamic BN representations. The variables are 
defined in terms of their notation and conditional dependence. The instantiation is defined with their parameters and 
the random variables that support the model are fully described (i.e. their significance and measurable space). The right 
image shows the plate notation applied to the BN formalism to represent the in-hand exploration of objects, making 
explicit the contribution of the sensors over time.
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of variables. Bayesian formalisms for probabilistic model construction and some BN examples 
of occupancy grid model can also be seen in [6, 7].

Figures 5 and 6 shows different household objects explored in-hand for shape retrieval.

4. Use case in pedestrian classification

A pedestrian detection system is one of the key components in Advanced Driver Assistance 
Systems (ADAS) and also in autonomous driving vehicles. Recently, pedestrian detection 
has regained particular attention from academia, automotive industry, and society [8]. In this 
chapter, pedestrian classification is studied based on a multimodal Bayesian network, where 
the BN’s structure has a node representing the binary class (pedestrian and nonpedestrian) 
and the parent nodes are represented by machine learning models in the form of supervised 
classifiers. In terms of sensory data, we will consider a LIDAR sensor as an intermodality 
technology, which provides range (distance) and reflectance (intensity return). In order to 
study multimodality between two sensor technologies, a colour (RGB) camera is also consid-
ered in the BN. The classifiers are modelled by a deep convolutional neural network (CNN). 
Data from a LIDAR enter into the CNN classifier in the form of high-resolution distance/
depth (DM) and reflectance maps (RMs). Distance and intensity (reflectance) raw data from 
the LIDAR are transformed to high-resolution (dense) maps as described in [9, 10].

A multimodal BN is then used to combine the likelihoods from CNN-classifiers learned using 
data from a LIDAR (based on DM and RM) and from a camera. Pedestrian recognition is 
evaluated on a ‘binary classification’ dataset created from the KITTI Vision Benchmark Suite, 
which provides data from a colour camera and from a Velodyne HDL-64E LIDAR. The perfor-
mance results using the BN are compared with the CNNs having a single modality as input, 
and against nonlearning rules, namely: minimum, maximum, and average.

We will formulate the classification problem in such a way that the class node ( C ) of the BN 
is inferred from the classification nodes (  X  

RGB
  ,  X  

DM
  ,  X  

RM
   ); therefore, the ‘full’ joint distribution is 

expressed by:

  P (C,  X  RGB  ,  X  DM  ,  X  RM  )  = P (C) P ( X  RGB   | C) P ( X  DM   |  X  RGB  , C) P ( X  RM   |  X  DM  ,  X  RGB  , C) ,  (7)

assuming each classifier node contributes independently to explain  C  and also assuming the 
classifiers are independent of each other but not independent of the class so, e.g.   P ( X  

DM
   |  X  

RGB
  , C)  = 

P (   X  
DM

  | C)  , we can express the class-conditional a posteriori as:

  P (C |  X  RGB  ,  X  DM  ,  X  RM  )  ∼ P (C) P ( X  RGB   | C) P ( X  DM  , C) P ( X  RM  , C) .  (8)

We will consider the class a-priori probability to be uniform and equally distributed; thus, the 
probability of being pedestrian or nonpedestrian ( P (C)  ) can be dropped out from the equation 
above. Therefore, the inference problem resumes to a product of the outputs probabilities 
from the CNN models.
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classifiers. In terms of sensory data, we will consider a LIDAR sensor as an intermodality 
technology, which provides range (distance) and reflectance (intensity return). In order to 
study multimodality between two sensor technologies, a colour (RGB) camera is also consid-
ered in the BN. The classifiers are modelled by a deep convolutional neural network (CNN). 
Data from a LIDAR enter into the CNN classifier in the form of high-resolution distance/
depth (DM) and reflectance maps (RMs). Distance and intensity (reflectance) raw data from 
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is inferred from the classification nodes (  X  

RGB
  ,  X  

DM
  ,  X  

RM
   ); therefore, the ‘full’ joint distribution is 

expressed by:

  P (C,  X  RGB  ,  X  DM  ,  X  RM  )  = P (C) P ( X  RGB   | C) P ( X  DM   |  X  RGB  , C) P ( X  RM   |  X  DM  ,  X  RGB  , C) ,  (7)

assuming each classifier node contributes independently to explain  C  and also assuming the 
classifiers are independent of each other but not independent of the class so, e.g.   P ( X  

DM
   |  X  

RGB
  , C)  = 

P (   X  
DM

  | C)  , we can express the class-conditional a posteriori as:

  P (C |  X  RGB  ,  X  DM  ,  X  RM  )  ∼ P (C) P ( X  RGB   | C) P ( X  DM  , C) P ( X  RM  , C) .  (8)

We will consider the class a-priori probability to be uniform and equally distributed; thus, the 
probability of being pedestrian or nonpedestrian ( P (C)  ) can be dropped out from the equation 
above. Therefore, the inference problem resumes to a product of the outputs probabilities 
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To evaluate the multimodal BN described here, a pedestrian classification dataset was cre-
ated based on the 2D object-detection dataset of KITTI. The labelled classes are given in the 
form of 2D bounding box tracklets: ‘Pedestrian’, ‘Car’, ‘Truck’, ‘Tram’, ‘Van’, ‘Person (sit-
ting)’, ‘Cyclist’ and ‘Misc’. The classes were separated in two categories of interest: pedestrian 
and nonpedestrian, i.e. a binary problem. The number of positives examples is 4487 cropped 
images (labelled bounding boxes of type ‘Pedestrian’), while the negative class has 47,378 
cropped images (types: ‘Cyclist’. ‘Car’, ‘Person (sitting)’ and so on). It was considered 70% for 
the training set (10% of that for validation) and the remaining 30% for the testing set. Table 1 
gives a summary of the dataset used in this use case.

Among several convolutional neural networks, we opted to use AlexNet CNN architecture 
with batch normalization in the first two layers and the last layer, the softmax activation func-
tion with two classes and dropout of 50%. The network was trained from scratch for the 
pedestrian and nonpedestrian classes [10]. Through the bounding boxes provided by the 
KITTI dataset, we cropped the objects contained in the depth and reflectance maps images. 
All objects were resized to the size of 227 × 227 because this is the network input size. The 
network was trained with the following parameter settings: 30 epochs, batch size equal 64, 
stochastic gradient descent optimizer with lr = 0:001 (learning rate), decay = 10 − 6 (learning 
rate decay over each update), momentum = 0.9, and categorical cross-entropy as loss function.

Denoting  P ( X  
i
   | C)   the confidence (i.e. the class-conditional probability) yielded by deep models 

CNNi (i = 1, …, n), where n is the number of models, CNN1 and CNN2 denote CNN models 
learned from DM and RM (reflectance), respectively, while CNN3 denotes a model using 
RGB data. Three nonlearning fusion rules are considered: average (AVE), maximum (MAX), 
and minimum (MIN). The average rule calculates the simple mean of the CNN-classifiers 
outputs F-ave =    1 __ n    ∑ 

i=1
  n    P ( X  

i
   | C) .  The maximum rule outputs the maximum value over the classifier 

responses, F-max =  max  {P ( X  
i
   | C) }   , while the minimum rule is F-min =  min  {P ( X  

i
   | C) }   .

The pedestrian classification results are reported using Precision (Pre), Recall (Rec), and 
F-score (F1) performance measures, allowing a more detailed and accurate analysis of the 
results. The F-scores values were obtained considering a threshold of 0.5. A number of pedes-
trian and nonpedestrian examples are unbalanced, as shown in Table 1; thus, F-score is here 
considered because it is a suitable performance measure for unbalanced cases. The results 
obtained using the BN and the rules AVE, MAX, and MIN are shown in Figure 7.

Summary of dataset for pedestrian classification

Training set n# positives = 2827

n# negatives = 29,849

Validation set n# positives = 314

n# negatives = 3316

Testing set n# positives = 1346

n# negatives = 14,213

Table 1. Pedestrian dataset.
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Results show that decision rules like minimum and maximum tend to have poor results, in 
terms of F-score, compared to the average rule and the multimodal BN. However, the values 
of Precision and Recall (or True Positive rate) are very high for Min and Max, respectively. 
The Average and the BN achieved close classification performance in all measures, although 
the BN’s results were slightly better.

5. Use case in EEG-based mental states classification

AI-enabled wearable technology has the ability to enhance the capabilities of today’s user-
centred devices and analytics toward promoting humans’ quality of life and enabling an 
improved health care by monitoring humans’ complex bio-signals, reducing risks, detect-
ing anomalous situations, thus, optimising standards of care. A good example is the EEG-
based brain-controlled devices that can serve as powerful aids for severely disabled people 
in their daily life, especially to help them to move voluntarily. The EEG-based brain-machine 
interfaces are one of the many alternatives that can be used to interact with devices using 
the superficial brain activity signals. These signals, called electroencephalograms or EEG for 
short, convey information regarding the voltage measured by electrodes (dry or wet) placed 
around the scalp of an individual. Recently, new applications for restoring function to those 
with motor impairments using EEG-based brain machine interfaces for conveying messages 
and commands to devices such as robot arm, wheelchair, and any other devices using bio-
signals have been developed. A good example where EEG is employed is to detect mental 
states. The ability to autonomously detect mental states, whether cognitive or affective, is 
useful for multiple purposes in many domains such as robotics, health care, education, neu-
roscience, etc. The importance of efficient human-machine interaction mechanisms increases 
with the number of real life scenarios where smart devices, including autonomous robots, can 
be applied. One of the many alternatives that can be used to interact with machines is through 

Figure 7. Classification performance, in terms of Pre, Rec, and F-1, considering a multimodal BN in comparison with 
deterministic rules (Min, Max, Average).
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superficial brain activity signals. A major challenge in brain-machine interface applications is 
inferring how momentary mental states are mapped into a particular pattern of brain activity. 
One of the main issues of classifying EEG signals is the amount of data needed to properly 
describe the different states, since the signals are complex. The signals are considered station-
ary only within short intervals, that is, why the best practice is to apply short-time windowing 
technique in order to detect local discriminative features to meet this requirement.

This section presents how Bayesian inference can be used to classify mental states. The framework 
consists of (i) statistical and temporal features extraction using time window technique, (ii) attri-
butes selection to keep only the relevant information from the signals, and (iii) Bayesian classifica-
tion technique to categorise multiple mental states (e.g. relaxed, neutral, and highly concentrated).

5.1. Data acquisition

The sensor Muse Headband was used for data collection. The Muse is a commercial EEG sens-
ing device with five dry-application sensors, one used as a reference point (NZ, at the centre 
of the forehead) and four (at points TP9, AF7, AF8, TP10, i.e. around the forehead Figure 8) to 
record brain wave activity. To prevent the interference of electromyographic signals, nonver-
bal tasks that required little to no movement were set. Blinking, though providing interference 
to the AF7 and AF8 sensors, was neither encouraged nor discouraged to retain a natural state. 
This was due to the dynamicity of blink rate being linked to tasks requiring differing levels of 
concentration, and as such, the classification algorithms would take these patterns of signal 
spikes into account. In addition, subjects were asked not to close their eyes during any of the 
tasks. Three stimuli were devised to cover the three mental states available from the Muse 
Headband—relaxed, neutral, and concentrating. A dataset was created after five participants 
performing the three mental states, where each session lasted 1 minute. The relaxed task had 
the subjects listening to low-tempo music and sound effects designed to aid in meditation 
while being instructed on relaxing their muscles and resting. For a neutral mental, a similar 
test was carried out, but with no stimulus at all, this test was carried out prior to any others to 
prevent lasting effects of a relaxed or concentrative mental state. Finally, for concentration, the 
subjects were instructed to follow the ‘shell game’ in which a ball was hidden under one of the 
three cups, which were then switched, the task was to try and follow which cup hid the ball. 
After a short amount of time into the stimulus starting, as to not gather data with an inaccurate 
class, the EEG data from the Muse Headband were automatically recorded for 60 seconds. The 
data were observed to be streaming at a variable frequency within the range of 150–270 Hz.

5.2. Feature extraction

Feature extraction and classification of EEG signals are primary goals in brain–computer 
interface (BCI) applications. One challenging problem when it comes to EEG feature extrac-
tion is the complexity of the signal. Nonstationary signals can be observed during the change 
in alertness and wakefulness, during eye blinking, and also during transitions of mental 
states. Discriminative features rely on statistical techniques such as mean, standard devia-
tion, autocorrelation, statistical moments of third and fourth order (skewness and kurtosis 
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to measure the asymmetry of the data and also the peakedness of the probability distribu-
tion of the data), time-frequency based on fast Fourier transform (FFT), Shannon entropy, 
max-min features in temporal sequences, log-covariance given a set of statistical data, and 
derivatives of the features from different time instants. These features are computed in 
terms of the temporal distribution of the signal in a time window of 1 second, with overlap 
of half second between the sliding windows. Details about the modeling and implementa-
tion of the features can be found in [12]. Another important point to compute the features 
is the signals from the EEG Muse headband. Since it returns five types of signal frequencies 
(alpha, beta, theta, delta, and gamma), then, we compute all set of features for each signal. 
The aforementioned set of features for all signals are around 2100 feature values. In order to 
reduce and optimise the classification performance, feature selection is needed.

5.3. Feature selection

There are various well-known algorithms for features selection in the state of the art. These 
types of algorithms aim at reducing the number of attributes present in a dataset while retain-
ing a model’s predictive accuracy. The following algorithms were used to compare the accuracy 
performance when used with a Naïve Bayes classifier (NB) and a Bayesian Network (BN): (i) 
OneR calculates error rate of each prediction based on one rule and selects the lowest risk clas-
sification [13]; (ii) Information Gain assigns a worth to each individual attribute by measuring 
the information gain with respect to the class (difference of entropy) [14]; and (iii) Evolutionary 

Figure 8. The International 10-20 EEG electrode placement standard [11]. The sensors of the Muse Headband are denoted 
in yellow. The NZ placement (green) is used as a reference for calibration.
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Algorithm creates a population of attribute subsets and ranks their effectiveness with a fitness 
function to measure their predictive ability of the class [15]. At each generation, solutions are 
bred to create offspring, and weakest solutions are killed off in a tournament of fitness.

5.4. Classification

Two models were trained on Bayes' theorem, a formula of conditional probability based on 
hypothesis H and evidence E. The theorem states that the probability of the hypothesis being 
true before evidence P(H) is related to the probability of the hypothesis after reading the evi-
dence P(H|E) and is given as follows:  P (H | E)  =   

P (E | H) P (H) 
 _______________________________  

 ∑  
j
   P (E | H) P (H) 

    . A simplistic Naive Bayes model has 
been used, which has a non-cosideration of the relationships between the features models. It 
uses the maximum a posteriori decision rule   y  ̂  =  argmaxk∈ {1,…,K}    

    P ( C   k )   ∏ 
i=1

  n    P ( x  
i
   |  C   k )  . A BN (Bayes Net) 

model was also trained. This method generates a probabilistic graphical model via represent-
ing probabilities of variables to classes on a directed acyclic graph (DAG) as follows:  P ( C   t−1:t−T  |  
X   t:t−T )  =   1 __ β    ∏ 

k=t
  T−t    P ( X   k  |  C   k ) P ( C   k ) .  The goal is to infer the current time value of Ct given the data Xt:t–T = {Xt, 

Xt−1, …, Xt–T} and the prior knowledge of the class, which is attained by the a-posteriori prob-
ability P(Ct|Ct−1:t–T, Xt:t–T). The superscript notation denotes the set of values over a time interval.

5.5. Experimental results

The five generated sets from the original dataset classified by NB and BN are shown in 
Table 1. The most effective model for this EEG dataset using Bayesian inference was the BN 
along with the OneR Attribute Selector, which had a high accuracy of 73.67% using around 
2% of the total of features extracted when classifying the data into one of the three men-
tal states. For each test, 10-fold cross-validation was used to train the model. The lowest 
performance is 54.2% (Information Gain dataset with a NB classifier). It is reasonable to 
assume that the naivety in not considering attribute relationships has led to poorer results. 
These preliminary results show that a BN can be considered for EEG data classification. 
However, other methods of classification can achieve better performance with the same 
set of features. In order to improve the performance, we can adopt the strategy of fusion of 
multiple classifiers using the Bayes' theorem for fusion as shown in [1, 16] Table 2 presents 
the result of Bayesian inference combined with feature selection algorithms. Better results 
are attained when using OneR algorithm for features selection followed by classification 
via Bayesian networks.

Dataset Accuracy %

Naive Bayes Bayesian network Number of selected features (%)

OneR 56.30 73.67 44 (2.05)

Information gain 54.20 71.64 31 (1.44)

Evolutionary algorithm 55.04 70.31 99 (4.61)

Table 2. Accuracy of trained models.
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6. Summary

Approaches based on Bayesian network (BN) have been described considering three case 
studies: Bayesian volumetric map for object perception, pedestrian classification for auton-
omous-vehicles perception and for EEG-based mental states classification. BNs were formu-
lated and applied in supervised pattern classification problems. In all cases, the BNs assumed 
conditional independence between sensors’ modalities or feature models.

In summary, this chapter has addressed BN with examples, where other machine learning tech-
niques were employed and combined with BN to sensory perception in applications related to 
robotics (multimodal sensor fusion for object detection), advanced driver assistance systems 
for autonomous driving systems, and EEG-based mental states classification, which can be 
used to control devices (e.g. robots) or in health-related areas for mental health monitoring.
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Abstract

Previously, computational drag design was usually based on simplified laws of molecular
physics, used for calculation of ligand’s interaction with an active site of a protein-
enzyme. However, currently, this interaction is widely estimated using some statistical
properties of known ligand-protein complex properties. Such statistical properties are
described by quantitative structure-activity relationships (QSAR). Bayesian networks can
help us to evaluate stability of a ligand-protein complex using found statistics. Moreover,
we are possible to prove optimality of Naive Bayes model that makes these evaluations
simple and easy for practical realization. We prove here optimality of Naive Bayes model
using as an illustration ligand-protein interaction.

Keywords: quantitative structure-activity relationship, Naive Bayes model, optimality,
Bayes classifier, Bayesian networks, protein-ligand complex, computational drag design,
molecular recognition and binding, ligand-active site of protein, likelihood, probability

1. Introduction

The determination within the chapter is based on a paper [1]. Bayes classifiers are broadly
utilized right now for recognition, identification, and knowledge discovery. The fields of
application are, for case, image processing, personalized medicine [2], chemistry (QSAR (quan-
titative structure-activity relationship) [3, 4]; see Figure 1). The especial importance Bayes
Classifiers have in Medical Diagnostics and Bioinformatics. Cogent illustrations of this can be
found in the work of Raymer and colleagues [5].
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Let us give some example of using QSAR from papers [3, 4]:

“Molecular recognition and binding performed by proteins are the background of all biochem-
ical processes in a living cell. In particular, the usual mechanism of drug function is effective
binding and inhibition of activity of a target protein. Direct modeling of molecular interactions
in protein-inhibitor complexes is the basis of modern computational drug design but is an
extremely complicated problem. In the current paradigm, site similarity is recognized by the
existence of chemically and spatially analogous regions from binding sites. We present a novel
notion of binding site local similarity based on the analysis of complete protein environments
of ligand fragments. Comparison of a query protein binding site (target) against the 3D
structure of another protein (analog) in complex with a ligand enables ligand fragments from
the analog complex to be transferred to positions in the target site, so that the complete protein
environments of the fragment and its image are similar. The revealed environments are simi-
larity regions and the fragments transferred to the target site are considered as binding
patterns. The set of such binding patterns derived from a database of analog complexes forms
a cloudlike structure (fragment cloud), which is a powerful tool for computational drug
design.”

However, these Bayes classifiers have momentous property—by strange way the Naive Bayes
classifier more often than not gives a decent and great description of recognition. More
complex models of Bayes classifier cannot progress it significantly [1]. In the paper [6] creators
clarify this exceptional property. In any case, they utilize a few suspicions (zero–one misfor-
tune) which diminish all-inclusiveness and simplification of this proof. We allow in this
chapter a common verification of Naive Bayes classifier optimality. The induction within the
current chapter is comparative to [1]. The consequent attractive consideration of Naive Bayes
classifier optimality problem was made in [7, 8]. Be that as it may, shockingly these papers do
not incorporate any investigation of the past one [1].

We would like to prove Naive Bayes classifier optimality using QSAR terminology. Indeed, we
use QSAR only for clearness; the proof is correct for any field of use of Naive Bayes classifier.

Figure 1. Quantitative structure-activity relationship.
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Let us define the essential issue that we attempt to unravel within the chapter. Assume that we
have a set of states for a complex of ligand-active site of protein and a set of factors that
characterize these states. For each state, we know the likelihood dispersion for each factor. In
any case, we have no data of the approximate relationships of the factors. Presently, assume
that we know factor values for some test of the state. What is the probability that this test
corresponds to some state? It could be a commonplace issue of recognition over a condition of
incomplete data.

In the simplest case, we can define two states for “ligand-active site of protein” complex. It is 0
(ligand is not bound to active site of protein) or 1 (ligand is not bound to active site of protein).

The next step is definition of factors (reliabilities below) that characterize strength of a bond for
“ligand-active site of protein” complex. Let us grant an illustration of factors (reliabilities
below) from experience of QSAR in papers [3, 4]:

“First, consider the protein 5 A�-environment A = {a1, a2,…aN} of one ligand atom X in the
analog protein, that is, all atoms from the binding site that are in the 5 A�-neighborhood of X.
Suppose that the complete target binding site T consists of N0 atoms: T = {t1, t2,…tN’} and there
exists a subset T0 ⊆ T of size n (N0 ≥ n ≥ 4) such that n atoms from T0 are similar to n atoms
A0 = {ai1, ai2,…ain} ⊆ A in their chemical types and spatial arrangement. The search for A0 and
T0 is performed using a standard clique detection technique in the graph whose nodes repre-
sent pairs (ai, ti) of chemically equivalent atoms and edges reflect similarity of corresponding
pairwise distances. If the search is successful, the optimal rigid motion superimposing
matched protein atoms is applied both to the initial ligand atom X and its complete environ-
ment A (Figure 2(a) in [3]). The atoms are thus transferred to the target binding site. Then we
extend the matching between A0 and T0 by such atom pairs (ai,ti) that ai and ti have the same
chemical atom type in the coarser 10-type typification mentioned above, and the distance
between ti and the image a0i of atom ai is below a threshold. Next, a reliability value R, with
0 ≤ R ≤ 1, is assigned to the image X0 of X in the target site and reflects the similarity between
the environments of X and its image X0. If the environments are highly similar (R ≈ 1) we expect
that the position of X0 is the place where an atom with chemical type identical to X can be
bound by the target, since the environment of X0 contains only atoms required for binding with
no “alien” atoms. However, as illustrated in Figure 2(a) in [3], the analog site may contain
extra binding atoms (shown on the lower side) that decrease the reliability value. In a simple
form, the reliability R can be defined as the sum of the number of matched atoms divided by
the total number of analog and target atoms in the 5 A�-environments of X and X0, respectively
(Figure 2(b) in [3]):

R = 2n/(N + N0), using the notation presented above. In fact, we use a somewhat more
complicated definition that accounts for the quality of spatial superposition of matched atoms
and their distance from X0.”

We do not want to discuss here these definitions for these factors and states. Our purpose is not
the demonstration of effectiveness of these definitions or effectiveness of QSAR. The interested
reader can learn it from papers [3, 4] and references inside of these papers. As we said above,
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we use QSAR only for clearness; the proof is correct for any field of use of Naive Bayes
classifier.

Let us consider the case when no relationships exist between reliabilities. In this case, the Naive
Bayes model is a correct arrangement of the issue. We demonstrate in this chapter that for the
case that we don’t know relationships between reliabilities even approximately—the Naive Bayes
model is not correct, but ideal arrangement in a few senses. More point by point, we demonstrate
that the Naive Bayes model gives minimal mean error over all conceivable models of relation-
ship. We assume in this confirmation that all relationship models have the same likelihood. We
think that this result can clarify the depicted over secretive optimality of Naive Bayes model.

The Chapter is built as described in the following statements. We grant correct numerical
description of the issue for two states and two reliabilities in Section 2. We characterize our
notations in Section 3. We define general form of conditional likelihood for all conceivable
relationships of our reliabilities in Section 4. We characterize the limitations of the functions
depicting the relationships in Section 5. We find the formula for an interval between two
models of probability (correlation) in Section 6. We discover constraints for our fundamental
functions in Section 7. We illuminate our primary issue; we demonstrate Naive Bayes model’s
optimality for uniform distribution of all conceivable relationships in Section 8. We discover
mean error between the Naive Bayes model and a genuine model for uniform distribution of all
conceivable relationships in Section 9. We consider the case of more than two states and reliabil-
ities in Section 10. We make conclusions in Section 11.

2. Definition of the task

Suppose that A is a state for “ligand-active site of protein” complex. It is 0 (ligand is not bound
to active site of protein) or 1 (ligand is not bound to active site of protein). Accept that the
apriori likelihood P Að Þ ¼ P A ¼ 1ð Þ is known, and indicate it by θ. Let X1, X2 be two reliability
values (defined above), with values in a set 0; 1½ �. However, for generality, we will define X1, X2

in a set [�∞;+∞], but probability density to find X1, X2 in [�∞; 0] or [1;+∞] is equal to zero. We

Figure 2. Function Γopt α; β;θ
� �

: 0; 1½ �3 ! 0; 1½ �.
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have the taking after data: X1 ¼ x1 and X2 ¼ x2 (gotten through estimation). Moreover, we
have two functions, “classifiers,” which for given x1 and x2 give us

P A ¼ 1=X1 ¼ x1ð Þ ¼ P A=x1ð Þ � α,

P A ¼ 1=X2 ¼ x2ð Þ ¼ P A=x2ð Þ � β:

We want to find the likelihood

P A ¼ 1=X1 ¼ x1;X2 ¼ x2ð Þ ¼ P A=x1; x2ð Þ

in terms of α, β and θ. More particularly we wish to discover a function Γopt α; β;θ
� �

which on
the average is the most excellent estimation for P A=x1; x2ð Þ in a sense to be characterized
expressly within the following consideration (see Figure 2).

3. Notation and preliminaries

rX1,X2
x1; x2ð Þ—joint PDF (probability density function) for X1 and X2.

rX1,X2=A x1; x2ð Þ ¼ h x1; x2ð Þ—joint PDF for X1 and X2, known A ¼ 1. In terms of h x1; x2ð Þ and θ,
we can find P A=x1; x2ð Þ as follows:

P A=x1; x2ð Þ ¼ θh x1; x2ð Þ
θh x1; x2ð Þ þ 1� θð Þh x1; x2ð Þ , (1)

here

h x1; x2ð Þ � rX1 ,X2=A
x1; x2ð Þ—joint PDF for X1 and X2, known A ¼ 0.

We can find

rX1
x1ð Þ ¼

ðþ∞

�∞

rX1,X2
x1; x2ð Þdx2,

rX2
x2ð Þ ¼

ðþ∞

�∞

rX1,X2
x1; x2ð Þdx1,

h1 x1ð Þ � rX1=A x1ð Þ ¼
ðþ∞

�∞

h x1; x2ð Þdx2,

h2 x2ð Þ � rX2=A x2ð Þ ¼
ðþ∞

�∞

h x1; x2ð Þdx1,
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ðþ∞

�∞
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h1 x1ð Þ � rX1=A
x1ð Þ ¼

ðþ∞

�∞

h x1; x2ð Þdx2,

h2 x2ð Þ � rX2=A
x2ð Þ ¼

ðþ∞

�∞

h x1; x2ð Þdx1:

4. Generic form of P A=x1; x2ð Þ

Let us define the function g x1; x2ð Þ and g x1; x2ð Þ

g x1; x2ð Þ � h x1; x2ð Þ
h1 x1ð Þh2 x2ð Þ ,

g x1; x2ð Þ � h x1; x2ð Þ
h1 x1ð Þh2 x2ð Þ :

Let us say that if X1 and X2 are conditionally independent, i.e.,

h x1; x2ð Þ ¼ rX1X2=A x1; x2ð Þ ¼ rX1=A x1ð ÞrX2=A x2ð Þ
¼ h1 x1ð Þh2 x2ð Þ,

then

g x1; x2ð Þ ¼ g x1; x2ð Þ ¼ 1:

Let us define the following monotonously nondecreasing probability distribution functions:

H1 x1ð Þ �
ðx1

�∞

h1 zð Þdz,

H2 x2ð Þ �
ðx2

�∞

h2 zð Þdz,

H1 x1ð Þ �
ðx1

�∞

h1 zð Þdz,

H2 x2ð Þ �
ðx2

�∞

h2 zð Þdz:
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Take attention that since H1 x1ð Þ, H2 x2ð Þ, H1 x1ð Þ and H2 x2ð Þ are monotonous (At this point we
can assume that h1 x1ð Þ, h2 x2ð Þ, h1 x1ð Þ, h2 x2ð Þ > 0 so that H1 x1ð Þ, H2 x2ð Þ, H1 x1ð Þ and H2 x2ð Þ are
monotonously increasing. However, such limitation will be unnecessary as we will see within

the following conclusion.), the inverse functions H�1
1 x1ð Þ, H�1

2 x2ð Þ, H�1
1 x1ð Þ and H

�1
2 x2ð Þ must

exist. As a result, we can characterize

J a; bð Þ � g H�1
1 að Þ;H�1

2 bð Þ� �
,

J a; bð Þ � g H
�1
1 að Þ;H�1

2 bð Þ
� �

:

To be brief, let us use the following concise designation:

J � J H1 x1ð Þ;H2 x2ð Þð Þ ¼ g H�1
1 H1 x1ð Þð Þ� �

, H�1
2 H2 x2ð Þð Þ ¼ g x1; x2ð Þ,

J � J H1 x1ð Þ;H2 x2ð Þ� � ¼ g H
�1
1 H1 x1ð Þ� �

;H
�1
2 H2 x2ð Þ� �� �

¼ g x1; x2ð Þ:

By the definition

h x1; x2ð Þ ¼ Jh1 x1ð Þh2 x2ð Þ, (2)

h x1; x2ð Þ ¼ J h1 x1ð Þh2 x2ð Þ: (3)

We currently obtain

h1 x1ð Þ � rX1=A x1ð Þ ¼ rX1
x1ð ÞP A=x1ð Þ
P Að Þ ¼ αrX1

x1ð Þ
θ

, (4)

h2 x2ð Þ � rX2=A x2ð Þ ¼ rX2
x2ð ÞP A=x2ð Þ
P Að Þ ¼ βrX2

x2ð Þ
θ

, (5)

h1 x1ð Þ � rX1=A
x1ð Þ ¼ rX1

x1ð ÞP A=x1
� �

P A
� � ¼ 1� αð ÞrX1

x1ð Þ
1� θ

, (6)

h2 x2ð Þ � rX2=A
x2ð Þ ¼ rX2

x2ð ÞP A=x2
� �

P A
� � ¼ 1� αð ÞrX2

x2ð Þ
1� θ

: (7)

As a result from Eqs. (2) and (3)

h x1; x2ð Þ ¼ J
αβrX1

x1ð ÞrX2
x2ð Þ

θ2 ,

h x1; x2ð Þ ¼ J
1� αð Þ 1� β

� �
rX1

x1ð ÞrX2
x2ð Þ

1� θð Þ2 :
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x1ð ÞP A=x1ð Þ
P Að Þ ¼ αrX1

x1ð Þ
θ

, (4)

h2 x2ð Þ � rX2=A x2ð Þ ¼ rX2
x2ð ÞP A=x2ð Þ
P Að Þ ¼ βrX2

x2ð Þ
θ

, (5)

h1 x1ð Þ � rX1=A
x1ð Þ ¼ rX1

x1ð ÞP A=x1
� �

P A
� � ¼ 1� αð ÞrX1

x1ð Þ
1� θ

, (6)

h2 x2ð Þ � rX2=A
x2ð Þ ¼ rX2

x2ð ÞP A=x2
� �

P A
� � ¼ 1� αð ÞrX2

x2ð Þ
1� θ

: (7)

As a result from Eqs. (2) and (3)

h x1; x2ð Þ ¼ J
αβrX1

x1ð ÞrX2
x2ð Þ

θ2 ,

h x1; x2ð Þ ¼ J
1� αð Þ 1� β

� �
rX1

x1ð ÞrX2
x2ð Þ

1� θð Þ2 :
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Now from Eq. (1)

P A=x1; x2ð Þ ¼
J
θ
αβrX1

x1ð ÞrX2
x2ð Þ

J
θ
αβrX1

x1ð ÞrX2
x2ð Þ þ J

1� θð Þ 1� αð Þ 1� β
� �

rX1
x1ð ÞrX2

x2ð Þ

¼ αβ

αβþ J
J

θ
1� θ

1� αð Þ 1� β
� � :

(8)

Note, that for values of J ¼ J ¼ 1 (conditional independence of x1 and x2) equation (8) becomes
the exact solution for the optimal model:

Γ α; β;θ
� � ¼ P A=x1; x2ð Þ:

5. Limitations for the functions J a; bð Þ and J a; bð Þ

We can write

h1 x1ð Þ ¼
ðþ∞

�∞

J H1 x1ð Þ;H2 x2ð Þð Þh1 x1ð Þh2 x2ð Þdx2: (9)

As a result

1 ¼
ðþ∞

�∞

J H1 x1ð Þ;H2 x2ð Þð Þh2 x2ð Þdx2 ¼
ð1

0

J H1 x1ð Þ;H2 x2ð Þð ÞdH2 x2ð Þ: (10)

Thus, we obtain the following condition:

ð1

0

J a; bð Þdb ¼ 1, (11)

and similarly

ð1

0

J a; bð Þda ¼ 1: (12)

Similarly, we can get
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ð1

0

J a; bð Þda ¼ 1

ð1

0

J a; bð Þdb ¼ 1:

(13)

Obviously

J a; bð Þ, J a; bð Þ ≥ 0, (14)

ð1

0

ð1

0

J a; bð Þdadb ¼
ð1

0

ð1

0

J a; bð Þdadb ¼ 1: (15)

All the solutions of Eqs. (11)–(15) together with (8) can define the set of all possible realizations
of P A=x1; x2ð Þ.
Let us give some example of a solution of (11), (12) and (14), (15):

Let r xð Þ be a function such that r xð Þ ≥ 0 and
ð1

0

r xð Þdx ¼ 1

J a; bð Þ ¼ r a� bð Þ , a ≥ b
r a� bþ 1ð Þ , a < b

�
,

satisfy Eqs. (11), (12), (14), and (15).

6. Definition of distance

We define the distance between the proposed approximation of P A=x1; x2ð Þ-Γ α; β;θ
� �

and the
actual function P A=x1; x2ð Þ as follows:

Γ α; β;θ
� �� P A=x1; x2ð Þ�� �� ¼

ð ðþ∞

�∞

rX1X2
x1; x2ð Þ Γ α; β;θ

� �� P A=x1; x2ð Þ� �2dx1dx2:

Now we have from Eqs. (2) and (3) and Eqs. (4)–(7)

rX1X2
x1; x2ð Þ ¼ θh x1; x2ð Þ þ 1� θð Þh x1; x2ð Þ

¼ θJh1 x1ð Þh2 x2ð Þ þ 1� θð ÞJh1 x1ð Þh2 x2ð Þ

¼ J
αβ
θ

þ J
1� αð Þ 1� β

� �
1� θð Þ

� �
rX1

x1ð ÞrX2
x2ð Þ,
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Now from Eq. (1)

P A=x1; x2ð Þ ¼
J
θ
αβrX1

x1ð ÞrX2
x2ð Þ

J
θ
αβrX1

x1ð ÞrX2
x2ð Þ þ J

1� θð Þ 1� αð Þ 1� β
� �

rX1
x1ð ÞrX2

x2ð Þ

¼ αβ

αβþ J
J

θ
1� θ

1� αð Þ 1� β
� � :

(8)

Note, that for values of J ¼ J ¼ 1 (conditional independence of x1 and x2) equation (8) becomes
the exact solution for the optimal model:

Γ α; β;θ
� � ¼ P A=x1; x2ð Þ:

5. Limitations for the functions J a; bð Þ and J a; bð Þ

We can write
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ðþ∞
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J H1 x1ð Þ;H2 x2ð Þð Þh1 x1ð Þh2 x2ð Þdx2: (9)

As a result

1 ¼
ðþ∞

�∞

J H1 x1ð Þ;H2 x2ð Þð Þh2 x2ð Þdx2 ¼
ð1

0

J H1 x1ð Þ;H2 x2ð Þð ÞdH2 x2ð Þ: (10)

Thus, we obtain the following condition:

ð1

0

J a; bð Þdb ¼ 1, (11)

and similarly

ð1

0

J a; bð Þda ¼ 1: (12)

Similarly, we can get
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ð1

0

J a; bð Þda ¼ 1

ð1

0

J a; bð Þdb ¼ 1:

(13)

Obviously

J a; bð Þ, J a; bð Þ ≥ 0, (14)

ð1

0

ð1

0

J a; bð Þdadb ¼
ð1

0

ð1

0

J a; bð Þdadb ¼ 1: (15)

All the solutions of Eqs. (11)–(15) together with (8) can define the set of all possible realizations
of P A=x1; x2ð Þ.
Let us give some example of a solution of (11), (12) and (14), (15):

Let r xð Þ be a function such that r xð Þ ≥ 0 and
ð1

0

r xð Þdx ¼ 1

J a; bð Þ ¼ r a� bð Þ , a ≥ b
r a� bþ 1ð Þ , a < b

�
,

satisfy Eqs. (11), (12), (14), and (15).

6. Definition of distance

We define the distance between the proposed approximation of P A=x1; x2ð Þ-Γ α; β;θ
� �

and the
actual function P A=x1; x2ð Þ as follows:

Γ α; β;θ
� �� P A=x1; x2ð Þ�� �� ¼

ð ðþ∞

�∞

rX1X2
x1; x2ð Þ Γ α; β;θ

� �� P A=x1; x2ð Þ� �2dx1dx2:

Now we have from Eqs. (2) and (3) and Eqs. (4)–(7)

rX1X2
x1; x2ð Þ ¼ θh x1; x2ð Þ þ 1� θð Þh x1; x2ð Þ

¼ θJh1 x1ð Þh2 x2ð Þ þ 1� θð ÞJh1 x1ð Þh2 x2ð Þ

¼ J
αβ
θ

þ J
1� αð Þ 1� β

� �
1� θð Þ

� �
rX1

x1ð ÞrX2
x2ð Þ,
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Γ α; β;θ
� �� P A=x1; x2ð Þ�� �� ¼

ð ðþ∞

�∞

rX1
x1ð ÞrX2

x2ð Þ J
αβ
θ

þ J
1� αð Þ 1� β

� �
1� θð Þ

� �
� Γ α; β;θ

� �� P A=x1; x2ð Þ� �2dx1dx2

¼
ð1

0

ð1

0

Jαβ
θ

þ J 1� αð Þ 1� β
� �

1� θð Þ

" #
� Γ α; β;θ

� �� P A=x1; x2ð Þ� �2dF1 x1ð ÞdF2 x2ð Þ:

(16)

Here

F1 x1ð Þ ¼
ðx1
�∞

rX1
zð Þdz,

F2 x2ð Þ ¼
ðx2
�∞

rX2
zð Þdz:

7. Constraints for basic functions

We will consider further all functions with arguments 1 ≥F1, F2 ≥ 0, but not x1, x2. We have six
functions of F1, F2, which define Eq. (16): J, J, H1, H2,α, β. Let us to write the functions by help
these functions (F1, F2) and find restrictions for these functions:

α ¼ P A=x1ð Þ ¼ θh1 x1ð Þ=rX1
x1ð Þ ¼ θðdH1=dx1Þ= dF1=dx1ð Þ ¼ θ

dH1

dF1
:

By the same way

β ¼ θ
dH2

dF2
:

We know that functions H1, F1, H2, F2 are cumulative distribution functions of x1,x2, corre-
spondingly. These functions are monotonously nondecreasing and change from 0 to 1 from the
definition of cumulative distribution functions. Therefore, we can conclude the following
restraints for functions H1, H2 as functions of F1, F2 exist:

H1 1ð Þ ¼ H2 1ð Þ ¼ 1,

H1 0ð Þ ¼ H2 0ð Þ ¼ 0,

0 ≤ α ¼ θ
dH1

dF1
, β ¼ θ

dH2

dF2
≤ 1,

0 ≤ θ ≤ 1,
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H1 x1ð Þ ¼
ðx1
�∞

h1 x1ð Þdx1

¼
ðx1
�∞

1� αð ÞrX1
x1ð Þ

1� θ
dx1

¼ 1
1� θ

ðx1
�∞

rX1
x1ð Þdx1 � θ

1� θ

ðx1
�∞

αrX1
x1ð Þ

θ
dx1

¼ F1
1� θ

� θ
1� θ

H1 x1ð Þ:

By the same way

H2 x2ð Þ ¼ F2
1� θ

� θ
1� θ

H2 x2ð Þ,

J H1 F1ð Þ;H2 F2ð Þð Þ : J H1 F1ð Þ;H2 F2ð Þð Þ ≥ 0ð1
0
J a; bð Þdb ¼ 1

ð1
0
J a; bð Þda ¼ 1,

J H1 F1ð Þ;H2 F2ð Þ� �
: J H1 F1ð Þ;H2 F2ð Þ� �

≥ 0
ð1
0
J a; bð Þdb ¼ 1

ð1
0
J a; bð Þda ¼ 1,

P A=x1; x2ð Þ ¼
Jαβ
θ

Jαβ
θ þ J 1�αð Þ 1�βð Þ

1�θ

: (17)

8. Optimization

We shall find the best approximation of Γ α; β;θ
� �

as follows:

minΓ α;β;θð ÞE Γ α; β;θ
� �� P A=x1; x2ð Þ�� ��� �! Γ α; β;θ

� �
,

where the expected value (or expectation or mathematical expectation or mean or the first
moment) E …½ � is taken with respect to the joint PDF of possible realizations of J, J,α, β, H1, H2

for given F1 and F2.

For the sake of brevity, we denote

C � Jαβ
θ

þ J 1� αð Þ 1� β
� �

1� θ

D � Jαβ
θ

:
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Γ α; β;θ
� �� P A=x1; x2ð Þ�� �� ¼

ð ðþ∞

�∞

rX1
x1ð ÞrX2

x2ð Þ J
αβ
θ

þ J
1� αð Þ 1� β

� �
1� θð Þ

� �
� Γ α; β;θ

� �� P A=x1; x2ð Þ� �2dx1dx2

¼
ð1

0

ð1

0

Jαβ
θ

þ J 1� αð Þ 1� β
� �

1� θð Þ

" #
� Γ α; β;θ

� �� P A=x1; x2ð Þ� �2dF1 x1ð ÞdF2 x2ð Þ:

(16)

Here

F1 x1ð Þ ¼
ðx1
�∞

rX1
zð Þdz,

F2 x2ð Þ ¼
ðx2
�∞

rX2
zð Þdz:

7. Constraints for basic functions

We will consider further all functions with arguments 1 ≥F1, F2 ≥ 0, but not x1, x2. We have six
functions of F1, F2, which define Eq. (16): J, J, H1, H2,α, β. Let us to write the functions by help
these functions (F1, F2) and find restrictions for these functions:

α ¼ P A=x1ð Þ ¼ θh1 x1ð Þ=rX1
x1ð Þ ¼ θðdH1=dx1Þ= dF1=dx1ð Þ ¼ θ

dH1

dF1
:

By the same way

β ¼ θ
dH2

dF2
:

We know that functions H1, F1, H2, F2 are cumulative distribution functions of x1,x2, corre-
spondingly. These functions are monotonously nondecreasing and change from 0 to 1 from the
definition of cumulative distribution functions. Therefore, we can conclude the following
restraints for functions H1, H2 as functions of F1, F2 exist:

H1 1ð Þ ¼ H2 1ð Þ ¼ 1,

H1 0ð Þ ¼ H2 0ð Þ ¼ 0,

0 ≤ α ¼ θ
dH1

dF1
, β ¼ θ

dH2

dF2
≤ 1,

0 ≤ θ ≤ 1,
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H1 x1ð Þ ¼
ðx1
�∞

h1 x1ð Þdx1

¼
ðx1
�∞

1� αð ÞrX1
x1ð Þ

1� θ
dx1

¼ 1
1� θ

ðx1
�∞

rX1
x1ð Þdx1 � θ

1� θ

ðx1
�∞

αrX1
x1ð Þ

θ
dx1

¼ F1
1� θ

� θ
1� θ

H1 x1ð Þ:

By the same way

H2 x2ð Þ ¼ F2
1� θ

� θ
1� θ

H2 x2ð Þ,

J H1 F1ð Þ;H2 F2ð Þð Þ : J H1 F1ð Þ;H2 F2ð Þð Þ ≥ 0ð1
0
J a; bð Þdb ¼ 1

ð1
0
J a; bð Þda ¼ 1,

J H1 F1ð Þ;H2 F2ð Þ� �
: J H1 F1ð Þ;H2 F2ð Þ� �

≥ 0
ð1
0
J a; bð Þdb ¼ 1

ð1
0
J a; bð Þda ¼ 1,

P A=x1; x2ð Þ ¼
Jαβ
θ

Jαβ
θ þ J 1�αð Þ 1�βð Þ

1�θ

: (17)

8. Optimization

We shall find the best approximation of Γ α; β;θ
� �

as follows:

minΓ α;β;θð ÞE Γ α; β;θ
� �� P A=x1; x2ð Þ�� ��� �! Γ α; β;θ

� �
,

where the expected value (or expectation or mathematical expectation or mean or the first
moment) E …½ � is taken with respect to the joint PDF of possible realizations of J, J,α, β, H1, H2

for given F1 and F2.

For the sake of brevity, we denote

C � Jαβ
θ

þ J 1� αð Þ 1� β
� �

1� θ
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:
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Then from Eqs. (17) and (16)

Γ α; β;θ
� �� P A=x1; x2ð Þ�� �� ¼

ð1

0

ð1

0

C Γ α; β;θ
� ��D=C

� �2dF1dF2

¼
ð1

0

ð1

0

dF1dF2 D2Cþ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

:

(18)

Thus

minΓ α;β;θð ÞE Γ α; β;θ
� �� P A=x1; x2ð Þ�� ��� �

¼ minΓ α;β;θð ÞE
ð1

0

ð1

0

dF1dF2 D2Cþ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

2
4

3
5

¼ minΓ α;β;θð ÞE
ð1

0

ð1

0

dF1dF2 D2C
� �

2
4

3
5

þminΓ α;β;θð ÞE
ð1

0

ð1

0

dF1dF2 Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

2
4

3
5

¼ ConstþminΓ α;β;θð ÞE
ð1

0

ð1

0

dF1dF2 Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

2
4

3
5:

(19)

It remains to calculate the expected value in Eq. (19).

We have by obvious assumptions

rJ, J,α,β,H1H2=F1 ,F2 J; J;α; β;H1;H2=F1; F2
� � ¼ rJ=H1,H2

J=H1;H2ð ÞrJ=H1 ,H2
J=H1;H2
� �

rα=F1 α=F1ð Þ
� rH1=αF1 H1=α; F1ð Þrβ=F2 β=F2

� �
rH2=β, F2 H2=β; F2

� �
:

(20)

Lemma 1

E J a; bð Þ½ � ¼
ðþ∞

0
rJ a;bð Þ=a, b J a; bð Þ=a; bð ÞJ a; bð ÞdJ ¼ 1,

E J a; bð Þ� � ¼
ðþ∞

0
rJ a;bð Þ=a, b J a; bð Þ=a; b� �

J a; bð ÞdJ ¼ 1:

Proof: We can take into the consideration the function rJ a;bð Þ=a,b. The domain of the function
J a; bð Þ is square 0 ≤ a, b ≤ 1. By dividing this square into small squares i; jð Þ, we can get sampling
of the function J. Then, on every square i, j, we can define the value of the function Jij. We can
write the following restraints for function J ∗∗∗ð Þ:
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Jij ≥ 0,

1
N

XN

i¼1

Jij ¼ 1,

1
N

XN

j¼1

Jij ¼ 1:

Here i ¼ 1,…, N, j ¼ 1,…, N.

All matrixes Jij
� �

that satisfy the above conditions have the same probability. So we can define

probability density function

r J11;…; Jij;…; JNN

� �
:

This density function should be symmetric according to transpositions of columns and rows of

the matrix Jij
� �

, because the density function has the same probability for all matrixes Jij
� �

that satisfy the above conditions. Indeed, these conditions are also symmetric according to

transpositions of columns and rows of matrix Jij
� �

. From symmetry conditions that define this

function rð Þ according to transpositions of columns and rows of matrix Jij
� �

, it is possible to

conclude that this function rð Þ also does not transform according to these transpositions.

We can consider function ru=ij u=ijð Þ that is a discretization of the function rJ a;bð Þ=a, b J a; bð Þ=a; bð Þ:

ru=ij u=ijð Þ ¼
ð
…
ðþ∞

0
r J11;…Jnk;…Jij ¼ u;…; JNN

� �Y
lmð Þ6¼ ijð ÞdJlm:

We can transpose columns and rows Jij
� �

in such a way that element Jij will be replaced by the

other element Jnk, and after it the function r J11;…ð Þwill not be transformed. So from the above
equation, we can get

ru=ij u=ijð Þ ¼
ð
…
ðþ∞

0
r J11;…Jnk;…Jij ¼ u;…; JNN

� �Y
lmð Þ6¼ nkð ÞdJlm ¼ ru=nk u=nkð Þ:

From this equation we can conclude that ru=ij u=ijð Þ does not depend on ij so rJ=a, b J=a; bð Þ does
not depend on ab and

rJ=a, b J=a; bð Þ ¼ rJ Jð Þ,

and

E J a; bð Þ½ � ¼
ðþ∞

0
rJ Jð ÞJdJ ¼ Const, (21)
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Then from Eqs. (17) and (16)

Γ α; β;θ
� �� P A=x1; x2ð Þ�� �� ¼

ð1

0

ð1

0

C Γ α; β;θ
� ��D=C

� �2dF1dF2

¼
ð1

0

ð1

0

dF1dF2 D2Cþ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

:

(18)

Thus

minΓ α;β;θð ÞE Γ α; β;θ
� �� P A=x1; x2ð Þ�� ��� �

¼ minΓ α;β;θð ÞE
ð1

0

ð1

0

dF1dF2 D2Cþ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

2
4

3
5

¼ minΓ α;β;θð ÞE
ð1

0

ð1

0

dF1dF2 D2C
� �

2
4

3
5

þminΓ α;β;θð ÞE
ð1

0

ð1

0

dF1dF2 Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

2
4

3
5

¼ ConstþminΓ α;β;θð ÞE
ð1

0

ð1

0

dF1dF2 Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

2
4

3
5:

(19)

It remains to calculate the expected value in Eq. (19).

We have by obvious assumptions

rJ, J,α,β,H1H2=F1 ,F2 J; J;α; β;H1;H2=F1; F2
� � ¼ rJ=H1,H2

J=H1;H2ð ÞrJ=H1 ,H2
J=H1;H2
� �

rα=F1 α=F1ð Þ
� rH1=αF1 H1=α; F1ð Þrβ=F2 β=F2

� �
rH2=β, F2 H2=β; F2

� �
:

(20)

Lemma 1

E J a; bð Þ½ � ¼
ðþ∞

0
rJ a;bð Þ=a, b J a; bð Þ=a; bð ÞJ a; bð ÞdJ ¼ 1,

E J a; bð Þ� � ¼
ðþ∞

0
rJ a;bð Þ=a, b J a; bð Þ=a; b� �

J a; bð ÞdJ ¼ 1:

Proof: We can take into the consideration the function rJ a;bð Þ=a,b. The domain of the function
J a; bð Þ is square 0 ≤ a, b ≤ 1. By dividing this square into small squares i; jð Þ, we can get sampling
of the function J. Then, on every square i, j, we can define the value of the function Jij. We can
write the following restraints for function J ∗∗∗ð Þ:
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1
N

XN

i¼1

Jij ¼ 1,

1
N

XN

j¼1

Jij ¼ 1:

Here i ¼ 1,…, N, j ¼ 1,…, N.

All matrixes Jij
� �

that satisfy the above conditions have the same probability. So we can define

probability density function

r J11;…; Jij;…; JNN

� �
:

This density function should be symmetric according to transpositions of columns and rows of

the matrix Jij
� �

, because the density function has the same probability for all matrixes Jij
� �

that satisfy the above conditions. Indeed, these conditions are also symmetric according to

transpositions of columns and rows of matrix Jij
� �

. From symmetry conditions that define this

function rð Þ according to transpositions of columns and rows of matrix Jij
� �

, it is possible to

conclude that this function rð Þ also does not transform according to these transpositions.

We can consider function ru=ij u=ijð Þ that is a discretization of the function rJ a;bð Þ=a, b J a; bð Þ=a; bð Þ:

ru=ij u=ijð Þ ¼
ð
…
ðþ∞

0
r J11;…Jnk;…Jij ¼ u;…; JNN

� �Y
lmð Þ6¼ ijð ÞdJlm:

We can transpose columns and rows Jij
� �

in such a way that element Jij will be replaced by the

other element Jnk, and after it the function r J11;…ð Þwill not be transformed. So from the above
equation, we can get

ru=ij u=ijð Þ ¼
ð
…
ðþ∞

0
r J11;…Jnk;…Jij ¼ u;…; JNN

� �Y
lmð Þ6¼ nkð ÞdJlm ¼ ru=nk u=nkð Þ:

From this equation we can conclude that ru=ij u=ijð Þ does not depend on ij so rJ=a, b J=a; bð Þ does
not depend on ab and

rJ=a, b J=a; bð Þ ¼ rJ Jð Þ,

and

E J a; bð Þ½ � ¼
ðþ∞

0
rJ Jð ÞJdJ ¼ Const, (21)
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From

ð1

0

ð1

0

J a; bð Þdadb ¼ 1,

we can conclude that

ð1

0

ð1

0

E J a; bð Þ½ �dadb ¼ 1:

So we can obtain that Const ¼ 1 in Eq. (21).

Lemma 2: Probability distribution functions α and β do not depend on F1 and F2:

rα=F1 α=F1ð Þ ¼ rα αð Þ,

rβ=F2 β=F2
� � ¼ rβ β

� �
:

Proof: Let us make sampling of the function α F1ð Þ by dividing the domain of this function
F1, 0; 1½ � on intervals of 1=N,N≫ 1. Then restriction conditions for αk, k ¼ 1,…, N

0 ≤ αk ≤ 1,

1
N

XN

k¼1

αk ¼
ð1

0

θdH1 F1ð ÞdF1dF1 ¼ θ:

All columns αkð Þ that are satisfied by these conditions have equal probability. We can consider
respective function r α1;…;αk;…;αl;…;αNð Þ. From symmetry conditions that define this func-
tion according to transpositions αk ! αl, function r α1;…;αk;…;αl;…;αNð Þ also does not
transform according to such transpositions. As a result, it is possible to write

rk uð Þ ¼
ð1

0

r α1;…;αk ¼ u;…;αl;…;αNð Þ
Y

n 6¼k
dαn

¼
ð1

0

r α1;…;αk;…;αl ¼ u;…;αNð Þ
Y

n 6¼l
dαn

¼ rl uð Þ:

From this equation, we can conclude that function rα=F1 α=F1ð Þ does not depend on F1:

rα=F1 α=F1ð Þ ¼ rα αð Þ:
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From (20) we obtain

E Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� � ¼

ð1

0

ð1

0

rα αð Þrβ β
� �

dαdβ

�
ð1

0

ð1

0

rH1=α, F1 H1=α; F1ð ÞrH2=β, F2 H2=β; F2
� �

dH1dH2

ð∞
0

ð∞
0
rJ Jð ÞrJ J

� �

� Γ2 α; β;θ
� � Jαβ

θ
þ J 1� αð Þ 1� β

� �
1� θ

" #
� 2Γ α; β;θ

� � Jαβ
θ

" #
dJdJ

¼
ð1

0

ð1

0

rα αð Þrβ β
� �

dαdβ

� Γ2 α; β;θ
� � E J½ �αβ

θ
þ E J

� �
1� αð Þ 1� β

� �
1� θ

" #
� 2Γ α; β;θ

� �E J½ �αβ
θ

" #
:

Let us define

C ¼ αβ
θ

þ 1� αð Þ 1� β
� �

1� θ
,

D ¼ αβ
θ

:

By Lemma 1, E J½ � ¼ E J
� � ¼ 1. Hence

E Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� � ¼

ð1

0

ð1

0

Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �

rα αð Þrβ β
� �

dαdβ:

It remains to find

minΓ α;β;θð Þ
ð1

0

ð1

0

dF1dF2

ð1

0

ð1

0

dαdβrα αð Þrβ β
� �

Γ2 α; β;θ
� �� �

C� 2Γ α; β;θ
� �

D�: (22)

Since

rα αð Þrβ β
� �

≥ 0,

if the expression in square brackets is minimized at each point, then the whole integral in
Eq. (22) is minimized. Thus, we may proceed as follows:
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N
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αk ¼
ð1

0
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respective function r α1;…;αk;…;αl;…;αNð Þ. From symmetry conditions that define this func-
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rk uð Þ ¼
ð1

0
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Y
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dαn

¼
ð1

0

r α1;…;αk;…;αl ¼ u;…;αNð Þ
Y

n 6¼l
dαn

¼ rl uð Þ:

From this equation, we can conclude that function rα=F1 α=F1ð Þ does not depend on F1:

rα=F1 α=F1ð Þ ¼ rα αð Þ:
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0
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� � E J½ �αβ

θ
þ E J
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1� αð Þ 1� β

� �
1� θ

" #
� 2Γ α; β;θ

� �E J½ �αβ
θ

" #
:

Let us define

C ¼ αβ
θ

þ 1� αð Þ 1� β
� �

1� θ
,

D ¼ αβ
θ

:
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� � ¼ 1. Hence
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0

ð1

0
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rα αð Þrβ β
� �
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ð1

0

ð1

0

dF1dF2

ð1

0

ð1

0

dαdβrα αð Þrβ β
� �

Γ2 α; β;θ
� �� �

C� 2Γ α; β;θ
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Since

rα αð Þrβ β
� �

≥ 0,

if the expression in square brackets is minimized at each point, then the whole integral in
Eq. (22) is minimized. Thus, we may proceed as follows:
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∂
∂Γ

Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� � ¼ 2Γ α; β;θ

� �
C� 2D ¼ 0:

Hence the optimum Γ α; β;θ
� �

is given by

Γopt α; β;θ
� � ¼ D

C
¼

αβ
θ

αβ
θ þ 1�αð Þ 1�βð Þ

1�θ

:

9. Mean distance between the proposed approximation of
P A=x1; x2ð Þ � Γ α;β;θ

� �
and the actual function P A=x1; x2ð Þ

The mean distance from (18) is

DIS ¼ E Γ α; β;θ
� �� P A=x1; x2ð Þ�� ��� �

¼
ð1
0

ð1

0

rα αð Þrβ β
� �

dαdβ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� �þ Const,

where Const in this equation is defined by

Const ¼ E
ðþ∞

�∞

ðþ∞

�∞

rX1X2
x1; x2ð Þ P A=x1; x2ð Þ½ �2dx1dx2

2
4

3
5:

From this equation we can find boundaries of the Const. From 0 ≤ P A=x1; x2ð Þ ≤ 1 we can
conclude

Const ≤ E
ðþ∞

�∞

ðþ∞

�∞

rX1,X2 , x1; x2ð ÞP A=x1; x2ð Þdx1dx2
2
4

3
5 ¼ E θ½ � ¼ θ:

The second condition is

0 ≤ E
ðþ∞

�∞

ðþ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ � θ½ �2dx1dx2

2
4

3
5

¼ E
ðþ∞

�∞

ðþ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ2 þ θ2 � 2P A=x1; x2ð Þθ

h i
dx1dx2

2
4

3
5

¼ E
ðþ∞

�∞

ðþ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ½ �2dx1dx2

2
4

3
5� θ2:
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So from these two equations, we can conclude

θ2 ≤ Const ≤ θ:

In the next step, we would like find function rα αð Þ (rβ β
� �

) in the equation for DIS.

Restrictions for function α F1ð Þ, 0 ≤ F1 ≤ 1 are the following:

ð1

0

α F1ð ÞdF1 ¼ θ,

0 ≤ α F1ð Þ ≤ 1:

In discrete form (for N ! ∞), we can rewrite αset ¼ α1;α2;…;αNf g

1
N

XN

i¼1

αi ¼ θ,

0 ≤ αi ≤ 1, i ¼ 1, 2,…, N:

Let us define a function U αsetð Þ in the following way:

U αsetð Þ ¼
PN

i¼1 αi for 0 ≤ αi ≤ 1 , i ¼ 1, 2,…, N
þ∞ otherwise

(
,

U αsetð Þ ¼
XN

i¼1

Ui αið Þ,

Ui αið Þ ¼ αi for 0 ≤ αi ≤ 1
þ∞ otherwise

�
:

Then the function that satisfies equal probability distribution with considering restrictions (i)
and (ii) is the following:

rαset
αsetð Þ ¼ 1

C
δ U αsetð Þ �Nθð Þ: (23)

here δ is the Dirac delta function.

We can define the constant C by

ðþ∞

�∞

…
ðþ∞

�∞

rαset
αsetð Þdα1…dαN ¼ 1:
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∂
∂Γ

Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
� � ¼ 2Γ α; β;θ

� �
C� 2D ¼ 0:

Hence the optimum Γ α; β;θ
� �

is given by

Γopt α; β;θ
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αβ
θ

αβ
θ þ 1�αð Þ 1�βð Þ

1�θ

:

9. Mean distance between the proposed approximation of
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� �
and the actual function P A=x1; x2ð Þ

The mean distance from (18) is

DIS ¼ E Γ α; β;θ
� �� P A=x1; x2ð Þ�� ��� �

¼
ð1
0

ð1

0

rα αð Þrβ β
� �

dαdβ Γ2 α; β;θ
� �

C� 2Γ α; β;θ
� �

D
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where Const in this equation is defined by

Const ¼ E
ðþ∞

�∞

ðþ∞

�∞

rX1X2
x1; x2ð Þ P A=x1; x2ð Þ½ �2dx1dx2

2
4

3
5:

From this equation we can find boundaries of the Const. From 0 ≤ P A=x1; x2ð Þ ≤ 1 we can
conclude

Const ≤ E
ðþ∞

�∞

ðþ∞

�∞

rX1,X2 , x1; x2ð ÞP A=x1; x2ð Þdx1dx2
2
4

3
5 ¼ E θ½ � ¼ θ:

The second condition is

0 ≤ E
ðþ∞

�∞

ðþ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ � θ½ �2dx1dx2

2
4

3
5

¼ E
ðþ∞

�∞

ðþ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ2 þ θ2 � 2P A=x1; x2ð Þθ

h i
dx1dx2

2
4

3
5

¼ E
ðþ∞

�∞

ðþ∞

�∞

rX1 ,X2
x1; x2ð Þ P A=x1; x2ð Þ½ �2dx1dx2

2
4

3
5� θ2:
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So from these two equations, we can conclude

θ2 ≤ Const ≤ θ:

In the next step, we would like find function rα αð Þ (rβ β
� �

) in the equation for DIS.

Restrictions for function α F1ð Þ, 0 ≤ F1 ≤ 1 are the following:

ð1

0

α F1ð ÞdF1 ¼ θ,

0 ≤ α F1ð Þ ≤ 1:

In discrete form (for N ! ∞), we can rewrite αset ¼ α1;α2;…;αNf g

1
N

XN

i¼1

αi ¼ θ,

0 ≤ αi ≤ 1, i ¼ 1, 2,…, N:

Let us define a function U αsetð Þ in the following way:

U αsetð Þ ¼
PN

i¼1 αi for 0 ≤ αi ≤ 1 , i ¼ 1, 2,…, N
þ∞ otherwise

(
,

U αsetð Þ ¼
XN

i¼1

Ui αið Þ,

Ui αið Þ ¼ αi for 0 ≤ αi ≤ 1
þ∞ otherwise

�
:

Then the function that satisfies equal probability distribution with considering restrictions (i)
and (ii) is the following:

rαset
αsetð Þ ¼ 1

C
δ U αsetð Þ �Nθð Þ: (23)

here δ is the Dirac delta function.

We can define the constant C by

ðþ∞

�∞

…
ðþ∞

�∞

rαset
αsetð Þdα1…dαN ¼ 1:
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It can be proved for N ! ∞ that distribution (23) is equal to the following distribution (from
“statistical mechanics” [9]; transform from microcanonical to canonical distribution):

rαset
αsetð Þ ¼ 1

Z
e�KU αsetð Þ:

Here we can find Z and K from the following equations:

ðþ∞

�∞

…
ðþ∞

�∞

rαset
αsetð Þdα1…dαN ¼ 1, (24)

ðþ∞

�∞

…
ðþ∞

�∞

U αsetð Þrαset
αsetð Þdα1…dαN ¼ Nθ: (25)

Quest function rα αð Þ can be found by

rα αð Þ ¼
ðþ∞

�∞

…
ðþ∞

�∞

rαset
α1;…;αj ¼ α;…;αN
� � YN

i¼1, i 6¼j

dαi ¼ 1
D
e�KUj αJ¼αð Þ, (26)

where

DN ¼ Z: (27)

From Eqs. (24) and (25), we can find

1
Z
¼ K

1� e�K

� �N

, (28)

θ ¼ Λ Kð Þ, (29)

where Λ Kð Þ is the decreasing function

Λ Kð Þ ¼

1 forK ¼ �∞

0 forK ¼ þ∞

1=2 forK ¼ 0

1
K
� 1
eK � 1

otherwise

8>>>>>>>><
>>>>>>>>:

:

If K is the root of Eq. (29), we can write from Eqs. (26)–(29) for function rα αð Þ
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rα αð Þ ¼

For K ¼ 0

1 for 0 ≤ α ≤ 1

0 otherwise α

8>><
>>:

For K ¼ þ∞

2δ αð Þ 0 ≤ α ≤ 1

0 otherwise α

8>><
>>:

For K ¼ �∞

2δ α� 1ð Þ 0 ≤ α ≤ 1

0 otherwise α

8>><
>>:

For otherwise K
1
D
e�Kα 0 ≤ α ≤ 1

0 otherwise α

8>>><
>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

,

where 2
ð1
0
δ α� 1ð Þdα ¼ 2

ð1

0

δ αð Þdα ¼ 1 and 1
D ¼ K

1�e�K :

10. The case of more than two states A and reliabilities X

Let A be a state, with values in set 0, 1,…, L. This number can characterize strength of a bond.
Assume that the apriori probability P A ¼ ið Þ is known, and denote it by θi; here i ¼ 1,…, L. Let
X1,…, XK be random variables, with values in some set, say � � ∞; þ ∞½. We have the following
information: X1 ¼ x1,...,XK ¼ xK (obtained through measurement). Furthermore, we have sys-
tems, “classifiers,” which for given x1,...,xK produce

P A ¼ i=Xj ¼ xj
� � � αij:

We want to find the probability P A ¼ i=X1 ¼ x1;…;XK ¼ xKð Þ in terms of αij and θi. In more

detail, we want to find a function Γopt,M αij;θi
� �

, which is the best approximation for
P A ¼ M=x1;…; xKð Þ on the average. By the same way, in case of two variables, it is possible to
find that the Γopt,M αij;θi

� �
can be defined by the following equation:

Γopt,M αij;θi
� � ¼

QK
j¼1 αMj

� �
=θK�1

M
PL

i¼1
QK

j¼1 αij

� �
=θK�1

i

:

We have evidential restraints for αij,θi
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It can be proved for N ! ∞ that distribution (23) is equal to the following distribution (from
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X1,…, XK be random variables, with values in some set, say � � ∞; þ ∞½. We have the following
information: X1 ¼ x1,...,XK ¼ xK (obtained through measurement). Furthermore, we have sys-
tems, “classifiers,” which for given x1,...,xK produce

P A ¼ i=Xj ¼ xj
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We want to find the probability P A ¼ i=X1 ¼ x1;…;XK ¼ xKð Þ in terms of αij and θi. In more

detail, we want to find a function Γopt,M αij;θi
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, which is the best approximation for
P A ¼ M=x1;…; xKð Þ on the average. By the same way, in case of two variables, it is possible to
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11. Conclusions

Using as an illustration the QSAR, we demonstrated effectively that the Naive Bayes model
gives minimal mean error over uniform dispersion of all conceivable relationships between
characteristic reliabilities. This result can clarify the portrayed over secretive optimality of
Naive Bayes model. We too found the mean error that the Naive Bayes model gives for
uniform distribution of all conceivable relationships of reliabilities.

Medicinal chemistry (quantitative structure-activity relationships, QSAR) prediction increas-
ingly relies on Bayesian network-based methods. Its importance derives partly from the diffi-
culty and inaccuracies of present quantum chemical models (e.g., in SYBYL and other
software) and from the impracticality of sufficient characterization of structure of drug mole-
cules and receptor active sites, including vicinal waters in and around hydrophobic pockets in
active sites. This is particularly so for biologicals (protein and nucleic acid APIs (nucleic acid
active pharmaceutical ingredients)) and target applications that exhibit extensive inter-
receptor trafficking, genomic polymorphisms, and other system biology phenomena. The
effectiveness and accuracy of Bayesian methods for drug development likewise depend on
certain prerequisites, such as an adequate distance metric by which to measure similarity/
difference between combinatorial library molecules and known successful ligand molecules
targeting a particular receptor and addressing a particular clinical indication. In this connec-
tion, the distance metric proposed in Section 6 of the chapter manuscript and the associated
Lemmas and Proofs are of substantial value in the future of high-throughput screening (HTS)
and medicinal chemistry.

However, our purpose here was not demonstration of effectiveness of these definitions or
effectiveness of QSAR. The interested reader can learn it from papers [3, 4] and references
inside of these papers. As we said above, we use QSAR only for clearness; the proof is correct
for any field of use of Naive Bayes classifier.
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Abstract

This study applies Bayesian graphical networks (BGN) using Bayesian graphical vector
autoregressive (BGVAR) model with efficient Markov chain Monte Carlo (MCMC)
Metropolis-Hastings (M-H) sampling algorithm in a dynamic interaction among mone-
tary policies and macroeconomic performances in Nigeria for the period of 1986Q1–
2017Q4. The motivation stems from the instability in the movement of exchange rate,
inflation rate and interest rate in Nigeria over the past years as a result of the structure of
the economy. In this way, the monetary authority periodically applies the various policy
instruments to stabilize the economy using reserve and money supply as at when due.
This study adapts VAR and SVAR structure to examine the dynamic interaction among
variables of interest, using BN, to provide a better understanding of the monetary policy
dynamics and fit the changing structure of the Nigeria’s economy as regards the dynamics
in her economic structure. Our results show that inflation is the strong predictor of interest
rate in Nigeria. A monetary policy of broad inflation targeting is recommended for the
country.

Keywords: Bayesian graphical networks, SVAR, MCMC, M-H, Granger-causal inference,
Nigeria

1. Introduction

A network can be described as a set of items, with nodes or vertices that are related by edges or
links for a specific purpose. There are different types of networks. These networks can be
social, economic, informational, technological, biological and so on. However, in this paper,
we are interested in Bayesian graphical network (BGN) to investigate causal inferences among
monetary policies and macroeconomic performances in Nigeria. Causal effects have been used
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in economic literature starting from Granger [1], Engle and Granger [2] and Sims [3] using
vector autoregression (VAR) to Amisano and Giannini [4] and Blanchard and Quah [5] using
structural vector autoregression (SVAR). The progression from VAR to SVAR has been a result
of over-parameterization and identification problem associated with VAR that have limited its
use for forecasting [6]. SVAR, in a way, has been able to overcome these problems through the
application of the recursive and the non-recursive structural model [5]. The advantage of the
BGN is that there are directed acyclic graphs (DAG) with nodes or vertices called variables
having edges that indicate structural dependence among the variables of interest. Studies that
have used graphical models to causal relationships are Pearl [7], Spirites et al. [8], Demiralp
and Hoover [9] and Moneta [10], among others. Our intention is to combine BGN with SVAR,
in order to examine interrelationship among monetary policies and macroeconomic perfor-
mances in Nigeria. However, many previous studies have worked on causal inference using
BGN-SVAR in developed countries, studies like Swanson and Granger [11], Demiralp and
Hoover [9], Moneta and Spirites [12], Corander and Villani [13] and more recently Ahelegbey
et al. [6]. The advantage of the BGN-SVAR is that causal influences are tracked down among
variables of interest either instantaneously or with time lags using conditional probabilistic
inference on the structural model.

Importantly, in this present study, we adopted the BGN-SVAR approach used by Ahelegbey
et al. [6] and deal with the identification structure to derive the Bayesian networks using DAG.
The Bayesian structural model is then simulated using the multi-move Markov chain Monte
Carlo Metropolis-Hastings sampling algorithm. The analyses are done with a view to examine
the causal relationship among monetary policy actions and macroeconomic performances in
Nigeria. The BGN-SVARmethod is more superior to the usual standard Granger causality test,
thereby providing an important tool for policy implications, especially for an emerging coun-
try like Nigeria where monetary policy stance is a major factor to the macroeconomic perfor-
mance of the economy. The paper is as follows. Section 2 gives the data source, variable
definition and the descriptive statistics, and Section 3 provides an overview of the BGN-SVAR
model. While Section 4 highlights the empirical discussion, Section 5 concludes and states the
policy recommendation.

2. Data source and variable definition

All the data used for this study were sourced from the Statistical Bulletin [14] published by the
Central Bank of Nigeria. The data range from the first quarter of 1986 to the fourth quarter
of 2017. The choice of the scope of study is strictly informed by data availability. Monetary
policy variable is measured using broad money supply normally referred to as M2, which is
defined as the sum of currency in circulation, demand deposit and time deposit in the banking
sector. The industrial output (Ind) comprises of crude oil petroleum, natural gas, solid min-
erals, coal mining, metal ores, quarrying, mining, manufacturing, oil refining and cement
production. In addition, interest rate is measured with lending rate (Intr) on banks’ credit to
the public. Inflation rate (Infl) is measured by the average price index of consumer goods over
the period of study. Exchange rate (Exch), on the other hand, is the rate of change of the local
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currency, naira, to the United State (US) dollar. The industrial output and money supply are
measured in the local currency, naira, while the exchange rate is measured in US dollars.

2.1. Descriptive statistics of variables

The descriptive statistics as presented in Table 1 shows industrial output, exchange rate,
inflation rate, interest rate and money supply variables in their unit form with 124 observations
for the period of study. The difference between the average mean value and the maximum
value of exchange rate, inflation rate and interest shows the high volatility of these variables.
The average values for exchange rate, inflation rate and interest rate are 93.86, 19.25 and 14.1%,
respectively, while the maximum values are 304.72, 73.1 and 26.7%. The differences between
the average values and the minimum values also support the volatility behaviour of the vari-
ables. In addition, the volatility movement in these variables as shown in Figure 1 equally
confirms their fluctuation. The skewness of all the variables implies positive skewness of the
data distribution. Finally, the significance of the probability of the Jarque-Bera at 5% indicates
that all the variables reject the acceptance of the null hypothesis of normal distribution except
for the exchange rate variable.

2.2. Unit root test

In order to ascertain the order of integration of our variables, we used both augmented [15, 16]
tests. The results from Table 2 show that all the variables are nonstationary using ADF test.
The PP, on the other hand, shows all the variables to be nonstationary except industrial output.
Given the stationarity of industrial output with PP, we further conducted structural break
following Perron [17] in that its presence can bias the unit root result. The structural break
results show that all the variables are nonstationary and support the ADF test. The structural

Industrial output Exchange rate Inflation rate Interest rate Money supply

Mean 32,497.84 93.86 19.25 14.1 4,916,951

Median 30,995.49 117.16 11.25 13.66 1,294,950

Maximum 52,931.79 304.72 73.1 26.7 23,388,300

Minimum 18,998.23 3.76 2.14 6 22,730.8

Std. dev 7778.25 69.49 18.1 4 6,665,696

Skewness 0.53 0.24 1.5 0.39 1.244417

Kurtosis 2.65 2.53 3.88 3.87 3.17

Jarque-Bera 6.53 2.36 50.67 7.17 32.15

Prob. 0.03 0.31 0.00 0.03 0.00

Sum 4030 11,638.86 2386.88 1748.6 6.10E + 08

Sum sq. dev 7.44E + 09 593,982.6 4.03E+04 1977.4 5.47E + 15

Observation 124 124 124 124 124

Table 1. Descriptive statistics for selected variables.
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break result is not presented here but available upon request. Given the nonstationarity of all
the variables, we proceeded to examine their cointegrating relationship over the period of
study.

2.3. Cointegration test

We followed Johansen [18] cointegration technique that compares the trace and the eigen-
value with their critical values for the rejection or acceptance of the null hypothesis of no
cointegration. The optimal lag lenght of 1 was chosen following Schwarz Criterion’s (SC) result
in Table A4 at the Appendix. The cointegration results presented in Table 3 show that the trace

Figure 1. The volatility behaviour of exchange rate, inflation rate and interest rate.
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statistics is greater than the critical value at 5% significance level at r ¼ 0. This hypothesis
testing takes us to the next cointegrating vector, r ≤ 1, where the trace statistics is less than the
critical value. We therefore conclude that there is a long-run relationship among the variables.

3. Bayesian graphical VAR model

The starting point of the BGVAR is from VAR process proposed by Sim [3] as dynamic
endogenous variables specified as

Augmented Dickey-Fuller Phillips-Peron

Variables Levels First diff. Variables Level First diff.

Ind �1.7046 �6.2244 Ind �4.2882 —

Exch 0.8368 �8.4777 Exch 1.2655 �8.3739

Infl 1.4409 �6.4756 Infl �2.8021 �10.695

Intr �2.8834 �10.4781 Intr �2.7495 �11.2467

M2 5.1489 �11.3326 Mss 5.5596 �11.7113

Note: The critical values at 1, 5 and 10%, respectively, are �3.4846, �2.8853 and �2.5749 for both ADF and PP. Ind, Exch,
Infl, Intr and M2 indicate industry output, exchange rate, inflation rate, interest rate and money supply, respectively.

Table 2. Unit root tests.

Coint. rank Eigenvalue Trace stat. Critical value Prob.

r ¼ 0 0.44 108.64 69.82 0.00

r ≤ 1 0.13 37.29 47.86 0.33

r ≤ 2 0.09 19.89 29.8 0.43

r ≤ 3 0.05 8.28 15.5 0.44

r ≤ 4 0.01 1.79 3.84 0.18

Coint. rank Eigenvalue Eigen stat. Critical value Prob.

r ¼ 0 0.44 71.35 33.88 0.00

r ≤ 1 0.13 17.39 27.58 0.54

r ≤ 2 0.09 11.61 21.13 0.58

r ≤ 3 0.05 6.48 14.26 0.55

r ≤ 4 0.01 1.8 3.84 0.18

Note: The null hypothesis, H0, of no cointegration is rejected when the value of the trace and maximal eigen statistics is
greater than the critical values at 5% significance level.

Table 3. Johansen cointegration results.
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Table 2. Unit root tests.

Coint. rank Eigenvalue Trace stat. Critical value Prob.

r ¼ 0 0.44 108.64 69.82 0.00

r ≤ 1 0.13 37.29 47.86 0.33

r ≤ 2 0.09 19.89 29.8 0.43

r ≤ 3 0.05 8.28 15.5 0.44

r ≤ 4 0.01 1.79 3.84 0.18

Coint. rank Eigenvalue Eigen stat. Critical value Prob.
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r ≤ 1 0.13 17.39 27.58 0.54
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Table 3. Johansen cointegration results.
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Yt ¼ B0 þ B1Yt�1 þ B2Yt�2 þ⋯þ BrYt�r þ εt (1)

Eq. (1) is a vector autoregressive process of order r, and it can be respecified in a reduced
form as

Yt ¼ B0 þ
Xr

i¼1

BiYt�i þ εt (2)

Eq. (2) can further be specified in SVAR process following Amisano and Giannini [4] and
Blanchard and Quah [5] with a lower triangular matrix A as

AYt ¼ B0 þ
Xr

i¼1

BiYt�i þ εt (3)

Eq. (3) can be written in an inverted form as

Yt ¼ β0 þ
Xr

i¼1

βiYt�i þ ut (4)

where β0 ¼ A�1B0, βi ¼ A�1Bi and 1 ≤ i ≤ r are lags of the parameter matrices and ut ¼ A�1Σεt
where Σ is a diagonal matrix of variance and covariance matrix. Assume in econometric term

that Yt�i ¼ Xt�ið Þ0 ; then Eq.(4) can be expressed as

Yt ¼ β0 þ
Xr

i¼1

βiXt�i þ ut (5)

Eq. (5) can be written in matrix form as

Y ¼ β
0
XþU (6)

The solution to the SVAR model can be achieved through the parameter identification by
placing restrictions on the lower triangular matrix A or the B diagonal matrix following the
relevant economic theories for the underlying variables. The general method of solving the
structural dynamics of the SVAR model after placing the necessary restrictions to attain
identification is to determine the effects of the shocks on the contemporaneous variables
through the impulse response functions. The impulse response function can be represented
through the diagonal matrix of the covariance matrix as

Σ ¼ A�1Σεt A�1� �
(7)

where Σεt ¼ εtε
0
t and the covariance matrix are assumed to be an identity matrix. The

Cholesky decomposition where all the elements above the diagonal are zero (lower triangular
matrix) is the usual way of solving the identification problem in SVAR to identify the structural

shocks. The system thus becomes exactly identified by comparing the known elements, n2þn
2 ,
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and the unknown elements, n2 � nþ n, of the covariance matrix [5]. Interestingly, the graphi-
cal model can be represented in the form of SVAR following Ahelegbey et al. [6] exposition. A
graphical model can be described as the representation of the conditional relationships among
random variables. Graphical models are generated in nodes and edges. The nodes house the
variables, while the edges point to their relationships. A bivariate graphical model can be
written as X ! Y, meaning Xcauses Y, where Y (child) is the dependent variable and X
(parent) is the independent variable. In a multivariate setting, the graphical model can be
expressed as X ! Y ! Z and can be interpreted to mean that the relationship between Xand

Z is conditional on variable Y: Assume Yt ¼ Y1
t�1;Y

2
t�2;⋯;Yn

t�n

� �
where Yi

t is a realization of
the ith variable at time t. The graphical network of a DAG can be written in the form of Eq. (1)

as YJ
t�s ! Yi

t where B∗
r, ij 6¼ 0 and 0 ≤ s ≤ r. This implies that past value of YJ

t�s at time lag s, with

s < tð Þ, causes the future value of Yi
t. This explains the notion that cause precedes effect in

time. Therefore, following past studies such as Corander and Villani [13] and Ahelegbey et al.
[6] among others, a network structure of a DAG is described as G ¼ V;Að Þ, where Vis a finite

set of nodes symbolizing Yt ¼ Y1
t�1;Y

2
t�2;⋯;Yn

t�n

� �
in this case, while A is also a finite set of

directed edges denoting YJ
t�s ! Yi

t stated earlier. In other words, the graphical model can be
specified in VAR representation as Bs ¼ GS;φs

� �
, where s is a period lag, B is the structural

parameters of the interdependent variable Yt, Gs is the binary connectivity matrix and φs is a
matrix of coefficient of lag s: At period s for 0 ≤ s ≤ r, Gs, ij ¼ 1 implies a causal effect of

YJ
t�s ! Yi

t, and Gs, ij ¼ 0 implies no causal relationship between YJ
t�s and Yi

t with φs, ij indicating

the quantity of the causal effects of YJ
t�s ! Yi

t: The graphical model can further be written in a
VAR form from Eq. (2) as.

Yt ¼ G0;φ0

� �þ
Xr

i¼1

Gi;φi

� �
Yt�i þ εt (8)

Following Koop [19], Geweke [20] and Olayungbo [21], the posterior distribution in Bayes’
theorem can be written in continuous form as

P θjYð Þ ¼ P Yjθð ÞP θð ÞÐ
P Yjθð ÞP θð Þdθ (9)

where P Yjθð Þ is the likelihood function and P θð Þ is the prior. In proportionality form, Eq. (9)
becomes

P θjYð Þ∝P Yjθð ÞP θð Þ (10)

Given the parameters to be estimated in our models, the posterior becomes

P μ;Σ�1
y ;GjY

� �
∝P Yjμ;Σ�1

y ;G
� �

P Σ�1
y jG

� �
(11)

where μ ¼ 0 and the likelihood function is generated with respect to Eq. (8) as
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t where B∗
r, ij 6¼ 0 and 0 ≤ s ≤ r. This implies that past value of YJ
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t. This explains the notion that cause precedes effect in
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in this case, while A is also a finite set of

directed edges denoting YJ
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t stated earlier. In other words, the graphical model can be
specified in VAR representation as Bs ¼ GS;φs
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, where s is a period lag, B is the structural

parameters of the interdependent variable Yt, Gs is the binary connectivity matrix and φs is a
matrix of coefficient of lag s: At period s for 0 ≤ s ≤ r, Gs, ij ¼ 1 implies a causal effect of

YJ
t�s ! Yi

t, and Gs, ij ¼ 0 implies no causal relationship between YJ
t�s and Yi

t with φs, ij indicating

the quantity of the causal effects of YJ
t�s ! Yi

t: The graphical model can further be written in a
VAR form from Eq. (2) as.

Yt ¼ G0;φ0

� �þ
Xr

i¼1

Gi;φi

� �
Yt�i þ εt (8)

Following Koop [19], Geweke [20] and Olayungbo [21], the posterior distribution in Bayes’
theorem can be written in continuous form as

P θjYð Þ ¼ P Yjθð ÞP θð ÞÐ
P Yjθð ÞP θð Þdθ (9)

where P Yjθð Þ is the likelihood function and P θð Þ is the prior. In proportionality form, Eq. (9)
becomes

P θjYð Þ∝P Yjθð ÞP θð Þ (10)

Given the parameters to be estimated in our models, the posterior becomes

P μ;Σ�1
y ;GjY
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∝P Yjμ;Σ�1
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� �

P Σ�1
y jG
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(11)

where μ ¼ 0 and the likelihood function is generated with respect to Eq. (8) as
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P YjΣ�1
y ;G

� �
¼ 2πð Þ�nT

2 Σ�1
y

���
���
T
2
exp �1

2
Σ�1
y ;
XT
t¼1

YtY
0
t

 )(
(12)

The prior density, P Gð Þ, is chosen from a uniform prior as P Gð Þ∝ 1; the inverse of the variance-
covariance matrix of the error term follows a Wishart distribution, i.e., Σ�1

y �

W ν,
PT
t¼1

Y0Y
0
0

� ��1
�

; and β is set to 0:5: The prior density is then written as

P Σ�1
y jG

� �
¼ 1

Knðν, Y0Y0ð Þ0 Σ�1
y

���
���

ν�n�1ð Þ
2

exp � 1
2

Σ�1
y ;
XT
t¼1

Y0Y
0
0

 )(
(13)

The posterior distribution is written with the likelihood function and prior density in Eqs. (12)
and (13) as.

P μ;Σ�1
y jY

� �
∝ 2πð Þ�nT

2 Σ�1
y

���
���
T
2
exp �1

2

�
Σ�1
y ;
XT
t¼1

YtY
0
t

)(

:
1

Knðν, Y0Y0ð Þ0 Σ�1
y

���
���

ν�n�1ð Þ
2

exp � 1
2

�
Σ�1
y ;
XT
t¼1

Y0Y
0
0

( ) (14)

Eq. (14) which is the posterior distribution with the likelihood function and the prior density in
Eqs. (12) and (13) is estimated with Markov chain Monte Carlo sampling methods and
Metropolis-Hastings recursively to obtain the posterior means. Samples are drawn from the

posterior distribution, P Σ�1
y ;GjY

� �
, given P YjΣ�1

y ;G
� �

and P Σ�1
y jG

� �
by using the MCMC

and M-H algorithm (see Ahelegbey et al. [6] for more exposition).

3.1. Granger causality test

Following Granger [1], a pairwise Granger causal (P-GC) relationship that conditions a vari-
able on other variables and their time lags is investigated. The reality about the P-GC causality
in the graphical network analysis is that it is a directed and forward causal relationship among
the dependence variable structures. The P-GC VAR rð Þ model is stated as

Yi
t ¼

Xr

s¼1

αsYi
t�s þ

Xr

s¼0

βsY
j
t�s (15)

4. Empirical analysis and discussion

Following Ahelegbey et al. [6], we sampled and derive separately the multivariate auto-
regressive (MAR) and the multivariate instantaneous (MIN) system using M-H algorithm
specified in Appendix 2. The MAR network is a contemporaneous interaction of the variables
from their past realizations to current realizations, while the MIN network is a contemporaneous
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interaction of the variables in their current realizations. At the implementation level, we
ordered our variables in the Yt vector as Yt ¼(M2, Ind, Infl, Intr, Exch) from Eq. (2). It should
be noted that our results are not sensitive to the variable ordering, in which case, any order can
be taken.

After choosing an optimal lag length of 1 using Akaike information criterion (AIC) and
Schwarz criterion (SC) (see Appendix 1), the BGN-VAR model ran 20,000 Gibbs iteration each
for the MAR and MIN, making a total number of iteration to be 40,000, out of which 20,000
was set as burn-ins to achieve convergence. The results of the P-GC VAR for the MIN and
MAR are presented in Figures 2 and 3. The dark green (light) color implies strong (weak)
dependence between the dependent and independent variables. The row variables are the
independent or explanatory variables, while the column variables are the dependent or
response variables. The result of the MIN in Figure 2 shows strong evidence of causal relation-
ship with M2!Infl, Ind!Infl, Infl!Intr. The results can be interpreted to mean a stronger
evidence of effects of both money supply and industrial output on inflation rate in Nigeria.
This implies that the increase of money in circulation increases industrial demand and produc-
tion; however, the resultant effects lead to inflationary rate due to high cost of production in
Nigeria. High cost of production for firms and companies generates increase in prices of goods
and services due to the use of generators to produce. The country generates 5000 megawatts
(MW) of electricity which is not enough in residential needs let alone industrial needs; hence,
most firms result to the use of generating set which results to high cost of production and high
prices. We also found stronger effects of inflation rate behaviour on interest rate movement in
Nigeria. This implies that instantaneous change in money supply and industrial output are
major determinants of inflation rate in Nigeria. We also found strong effects of inflation rate on
interest rate. This implies that resultant inflationary effects compel monetary authority and
commercial banks to choose high interest rate to stabilize and ensure reasonable returns on
investment. Furthermore, Figure 3 gives the contemporaneous autoregressive structure of the
variable of interest. The MAR result shows the causal edges as, firstly, M2t�1 !M2, Ind and

Figure 2. Multivariate instantaneous structure (MIN).

Bayesian Graphical Model Application for Monetary Policy and Macroeconomic Performance in Nigeria
http://dx.doi.org/10.5772/intechopen.87994

119



P YjΣ�1
y ;G

� �
¼ 2πð Þ�nT

2 Σ�1
y

���
���
T
2
exp �1

2
Σ�1
y ;
XT
t¼1

YtY
0
t

 )(
(12)

The prior density, P Gð Þ, is chosen from a uniform prior as P Gð Þ∝ 1; the inverse of the variance-
covariance matrix of the error term follows a Wishart distribution, i.e., Σ�1

y �

W ν,
PT
t¼1

Y0Y
0
0

� ��1
�

; and β is set to 0:5: The prior density is then written as

P Σ�1
y jG

� �
¼ 1

Knðν, Y0Y0ð Þ0 Σ�1
y

���
���

ν�n�1ð Þ
2

exp � 1
2

Σ�1
y ;
XT
t¼1

Y0Y
0
0

 )(
(13)

The posterior distribution is written with the likelihood function and prior density in Eqs. (12)
and (13) as.

P μ;Σ�1
y jY

� �
∝ 2πð Þ�nT

2 Σ�1
y

���
���
T
2
exp �1

2

�
Σ�1
y ;
XT
t¼1

YtY
0
t

)(

:
1

Knðν, Y0Y0ð Þ0 Σ�1
y

���
���

ν�n�1ð Þ
2

exp � 1
2

�
Σ�1
y ;
XT
t¼1

Y0Y
0
0

( ) (14)

Eq. (14) which is the posterior distribution with the likelihood function and the prior density in
Eqs. (12) and (13) is estimated with Markov chain Monte Carlo sampling methods and
Metropolis-Hastings recursively to obtain the posterior means. Samples are drawn from the

posterior distribution, P Σ�1
y ;GjY

� �
, given P YjΣ�1

y ;G
� �

and P Σ�1
y jG

� �
by using the MCMC

and M-H algorithm (see Ahelegbey et al. [6] for more exposition).

3.1. Granger causality test

Following Granger [1], a pairwise Granger causal (P-GC) relationship that conditions a vari-
able on other variables and their time lags is investigated. The reality about the P-GC causality
in the graphical network analysis is that it is a directed and forward causal relationship among
the dependence variable structures. The P-GC VAR rð Þ model is stated as

Yi
t ¼

Xr

s¼1

αsYi
t�s þ

Xr

s¼0

βsY
j
t�s (15)

4. Empirical analysis and discussion

Following Ahelegbey et al. [6], we sampled and derive separately the multivariate auto-
regressive (MAR) and the multivariate instantaneous (MIN) system using M-H algorithm
specified in Appendix 2. The MAR network is a contemporaneous interaction of the variables
from their past realizations to current realizations, while the MIN network is a contemporaneous

Bayesian Networks - Advances and Novel Applications118

interaction of the variables in their current realizations. At the implementation level, we
ordered our variables in the Yt vector as Yt ¼(M2, Ind, Infl, Intr, Exch) from Eq. (2). It should
be noted that our results are not sensitive to the variable ordering, in which case, any order can
be taken.

After choosing an optimal lag length of 1 using Akaike information criterion (AIC) and
Schwarz criterion (SC) (see Appendix 1), the BGN-VAR model ran 20,000 Gibbs iteration each
for the MAR and MIN, making a total number of iteration to be 40,000, out of which 20,000
was set as burn-ins to achieve convergence. The results of the P-GC VAR for the MIN and
MAR are presented in Figures 2 and 3. The dark green (light) color implies strong (weak)
dependence between the dependent and independent variables. The row variables are the
independent or explanatory variables, while the column variables are the dependent or
response variables. The result of the MIN in Figure 2 shows strong evidence of causal relation-
ship with M2!Infl, Ind!Infl, Infl!Intr. The results can be interpreted to mean a stronger
evidence of effects of both money supply and industrial output on inflation rate in Nigeria.
This implies that the increase of money in circulation increases industrial demand and produc-
tion; however, the resultant effects lead to inflationary rate due to high cost of production in
Nigeria. High cost of production for firms and companies generates increase in prices of goods
and services due to the use of generators to produce. The country generates 5000 megawatts
(MW) of electricity which is not enough in residential needs let alone industrial needs; hence,
most firms result to the use of generating set which results to high cost of production and high
prices. We also found stronger effects of inflation rate behaviour on interest rate movement in
Nigeria. This implies that instantaneous change in money supply and industrial output are
major determinants of inflation rate in Nigeria. We also found strong effects of inflation rate on
interest rate. This implies that resultant inflationary effects compel monetary authority and
commercial banks to choose high interest rate to stabilize and ensure reasonable returns on
investment. Furthermore, Figure 3 gives the contemporaneous autoregressive structure of the
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Infl; secondly, Indt�1 !Exch; thirdly, Inflt�1 !Intr, Infl and Ind; fourthly, Intrt�1 !Intr; and,
lastly, Excht�1 !Exch. The causal edges can be interpreted to mean that inflation rate, indus-
trial output and money supply respond strongly to immediate past lag of money supply.
Furthermore, we found past value of industrial output to Granger-cause exchange rate. In
addition, past value of inflation Granger causes interest rate, current inflation and industrial
output. This outcome corroborates the MIN result that inflation rate is a strong predictor of
interest rate in Nigeria. The fourth and last causal edges can be explained to mean both past
interest rate and exchange rate are strong predictors of their current states.

5. Conclusion and policy recommendations

This study examines the dynamic interactions among monetary policies and macroeconomic
performances in Nigeria over the period of 1986Q1–2017Q4 with the application of BNG-
SVAR. The use of the BNG-SVAR comes from the dynamic response of monetary policy to
macroeconomic indicators in Nigeria. The nonstationary process of the data used led to test for
their cointegration. The cointegration results show the existence of long-run relationship
among the variables of interest. The P-GC results from the BNG-SVAR with the MCMC and
M-H sampling techniques show that inflation is a strong predictor of interest rate in Nigeria
given both the contemporaneous instantaneous (MIN) and the contemporaneous
autoregressive (MAR) results. This is more reason why the Central Bank of Nigeria (CBN) in
its period monetary policy committee (MPC) targets the inflation rate by choosing appropriate
monetary policy rate (MPR) in response to the inflation rate in the country. This study, there-
fore, recommends that the inflation targeting in Nigeria should be broad and not limited to
changing the MPR only. The fiscal discipline should be ensured from the Ministry of finance
and the executive arm of the government. In any case, any fiscal policy should be directed
towards the productive sectors of the economy. A major determinant of inflationary pressure

Figure 3. Multivariate autoregressive structure (MAR).
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in Nigeria is incessant supply of electricity. There should be massive investment in power
generation and transmission in the country to eliminate the additional cost of production that
drives prices up through the use of generating sets for production. Finally, the exchange rate
policy should be to ensure domestic production to drive prices down rather than reliance on
imported goods that promote imported inflation.

A. Appendices

A.1. Appendix 1

See the Table A4.

A.2. Appendix 2

The MCMC and the M-H algorithms are a proposal distribution to sample a new graph
G∗conditioned on a graph G with acceptance probability given as.

M G∗jGð Þ ¼ min P YjG∗ð Þ
P YjGð Þ

P G∗ð Þ
P Gð Þ

Z GjG∗ð Þ
Z G∗jGð Þ ; 1

n o
where P YjGð Þ is the likelihood function, P Gð Þ is the

prior density and, finally, Z G∗jGð Þis the proposal distribution.

VAR lag order selection criteria

Endogenous variables: M2, Ind, Infl, Intr, Exch

Lag LogL LR FPE AIC SC

0 �4973.01 NA 7.41e + 29 82.96683 83.08297

1 �4220.51 1429.753 4.02e + 24* 70.84180* 71.53868*

2 �4206.64 25.18928 4.85e + 24 71.02738 72.30498

3 �4190.38 28.18071 5.64e + 24 71.17307 73.03140

4 �4168.07 36.81222 5.96e + 24 71.21790 73.65696

5 �4122.25 71.78438* 4.28e + 24 70.87090 73.89069

6 �4100.89 31.68685 4.66e + 24 70.93154 74.53205

7 �4081.64 26.94965 5.32e + 24 71.02738 75.20861

8 �4056.97 32.48824 5.61e + 24 71.03280 75.79476

*Indicates the optimal lag length, where LogL, LR, FPE, AIC and SC indicate log likelihood, likelihood ratio, final
prediction error, Akaike information criterion and Schwarz criterion.

Table A4. Optimal lag selection results
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and the executive arm of the government. In any case, any fiscal policy should be directed
towards the productive sectors of the economy. A major determinant of inflationary pressure

Figure 3. Multivariate autoregressive structure (MAR).
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in Nigeria is incessant supply of electricity. There should be massive investment in power
generation and transmission in the country to eliminate the additional cost of production that
drives prices up through the use of generating sets for production. Finally, the exchange rate
policy should be to ensure domestic production to drive prices down rather than reliance on
imported goods that promote imported inflation.

A. Appendices

A.1. Appendix 1

See the Table A4.

A.2. Appendix 2

The MCMC and the M-H algorithms are a proposal distribution to sample a new graph
G∗conditioned on a graph G with acceptance probability given as.

M G∗jGð Þ ¼ min P YjG∗ð Þ
P YjGð Þ

P G∗ð Þ
P Gð Þ

Z GjG∗ð Þ
Z G∗jGð Þ ; 1

n o
where P YjGð Þ is the likelihood function, P Gð Þ is the

prior density and, finally, Z G∗jGð Þis the proposal distribution.

VAR lag order selection criteria

Endogenous variables: M2, Ind, Infl, Intr, Exch

Lag LogL LR FPE AIC SC

0 �4973.01 NA 7.41e + 29 82.96683 83.08297

1 �4220.51 1429.753 4.02e + 24* 70.84180* 71.53868*

2 �4206.64 25.18928 4.85e + 24 71.02738 72.30498

3 �4190.38 28.18071 5.64e + 24 71.17307 73.03140

4 �4168.07 36.81222 5.96e + 24 71.21790 73.65696

5 �4122.25 71.78438* 4.28e + 24 70.87090 73.89069

6 �4100.89 31.68685 4.66e + 24 70.93154 74.53205

7 �4081.64 26.94965 5.32e + 24 71.02738 75.20861

8 �4056.97 32.48824 5.61e + 24 71.03280 75.79476

*Indicates the optimal lag length, where LogL, LR, FPE, AIC and SC indicate log likelihood, likelihood ratio, final
prediction error, Akaike information criterion and Schwarz criterion.

Table A4. Optimal lag selection results
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A.3. Appendix 3

Inverse Wishart Prior Posterior MCMC

The procedure for Gibbs sampling for the independent-normal Wishart prior is as follows:

1. Draw G kð Þ
i from the normal p GijY;Σð Þ.

2. Draw Σ�1 kð Þ
i from the Wishart p Σ�1

i jY;Gi
� �

.

3. Repeat steps 1 and 2N (20,000) times, and discard the firstNburn (10,000) iterations as burn-ins.

A.4. Appendix 4

Identification structure of the BGN-VAR results.

B�r ¼

�0:9 0 0 0 0
0:6 0 0:5 0 0
0:7 0 �0:5 0 0
0 0 0:5 0:7 0
0 0:6 0 0 0:6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

B_0 ¼

0 0 �0:8 0 0
0 0 0 0 0
0 0 0 0 0
0 0:5 0 0 �0:5
0 0 0 0 0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
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