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Preface

The human body is colonized by a vast number of microorganisms that live on and 
in humans, which are collectively called the “human microbiome.” The scientific
expedition to define the human microbiome started with the efforts of Antonie
van Leewenhoek to compare oral and fecal microbiota in 1680. Since then, several 
attempts have been made to identify the role of microbes in human health and 
in the onset of infectious diseases. A number of discoveries have been made to
identify, classify, and characterize microbes responsible for host health and the
onset of diseases, factors affecting their pathogenicity, microbial physiology during 
the onset of diseases, as well as the role of antibiotic resistance in survivability. 
Simultaneously, it was found that the number of microbes defining the human
microbiome was almost tenfold higher than human cells, which collectively codes
for approximately 3.3 million genes compared to ~22,000 host-encoded genes. 
These outcomes redefine the human body as a “supraorganism” harboring a vast
collection of microbial and human cells working in close coordination for a healthy
host physiology. This book is aimed at providing an overview of the role of microbes
in human health and diseases, the functional role of microbes in the maintenance
of human health, and various scientific discoveries made to answer questions such
as “what are human commensals and pathogens?”, “how can a disequilibrium in
microbiome structure lead to the onset of diseases?”, and “how can the human
microbiome function and negotiate with pathogenic microbes to prevent diseases?” 
I hope this book will enrich the knowledge domain of readers and answer their
questions on the human microbiome and its function in host health and diseases.

Nar Singh Chauhan
Department of Biochemistry, 

Maharshi Dayanand University,
Rohtak, Haryana, India
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Chapter 1

Introductory Chapter: Human and
Microbes in Health and Diseases
Nar Singh Chauhan

1. Introduction

Microbes are ubiquitous in nature and humans are no exception. Microbes have
coevolved with humans and reside in and on human body to develop a host associ-
ated structure, called “Human Microbiome” or “Human Microbiota.” These micro-
bial counterparts account toward 10% of human body weight and outnumber
human cells by approximately by tenfold and considered as commensals. Human
microbiome is defined as the total genomes of microbes (constitute bacteria, bacte-
riophage, fungi, protozoa and viruses) that live inside or on the human body [1].
There are trillions of microbes living in/on human body plays a fundamental role in
normal functioning of metabolic, physiological and immune system. Microbiota is a
complex ecosystem consisting of bacteria, protozoa, viruses and fungi; all varies in
number even in body parts of same individual. Human body has 10 times more
bacteria than the number of human cells in our body [2]. Most of these bacteria are
present in gastrointestinal tract [3] which account for approximate 70% of the total
microbial load in or on human body (particular in large intestine) [4]. Humans are
born sterile and start acquiring human companion to shape resilient microbiome
structure. Establishment of microbiome starts with birth and matures with age.
Microbial introduction and the establishment of microbiome is a random process
influenced by many factor like mode of delivery, diet, sex, age, genetics, geograph-
ical location have a strong impact in shaping human microbiome structure [5–10].
These microbes are in symbiotic relationship, beside gut they are also found in
mouth, respiratory tract, vagina and skin.

2. Human and microbes

The study of human microbiome diversity started with Antonie Van Leeuwen-
hoek, when he had a comparison of his oral and fecal microbiota in 1680s. He found
that different microbes are present in different habitats and also different microbes
are present in healthy and diseased person [11, 12]. There is a growing evidence that
any change in microbiota composition leads to several metabolic diseases including
obesity, diabetes and cardiovascular. Different parts of intestinal tract have differ-
ent composition of microbes and it varies according to age, weight, site and diet.
Composition of microbiota in gut alters by nutrition, drugs, diet and genetic back-
ground and lifestyle. Microbiota regulates metabolic and physiological mechanisms
by producing metabolites. It has been found out that different species of microbiota
in gut works under same metabolic pathway [9]. Qualitative and quantitative alter-
ation in gut microbiota leads to dysbiosis by consuming antibiotics, physical and
psychological stress [13]. Recent studies shows evidence regarding change in com-
position by urban and rural environment, affects skin (allergic symptoms) of
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particular organisms. Age alter the environmental effects on individual such as alter 
microbiota variations in skin between children and teenager cause skin allergies 
[14]. Microbiome structure varies in respect of host anatomical and physiological 
sites. Normally, flora found in/on the body surface in stable condition to compete 
with pathogenic microbes in environment or those microbes entered in specific 
body parts [15]. As in addition to these permanent residents, a number of microbes 
known as causative agent for various infectious diseases. Likewise commensals, 
these infectious agents have evolved an efficient machinery to evade host protective 
gears for their successful proliferation in various anatomical locations. Normal 
bacteria defend host against the invasion of pathogenic microorganisms by inducing 
barrier against them [16]. It was observed that host commensals plays a critical role 
in balancing the abundance of pathogenic and nonpathogenic microbial strains and 
protects the host form the onset of any infectious diseases. However a number of 
factors like change in diet, variable host immune response, fluctuating environ-
mental conditions like pH, oxygen saturation, ionic strength, etc., could induce 
microbial dysbiosis and induce microbial community dynamics. These microbial 
community dynamics could induce favorable conditions for growth of earlier dor-
mant pathogenic microbes and result in onset of infectious diseases [16]. 

3. Conclusion 

Microbes have been identified to play a vital role in human health and diseases. 
Physiological characterization of these microbes and defining their functional 
molecular machinery could enable us to develop potential therapeutic and diagnos-
tic targets. Additionally, holistic overview of human microbiome structure, human 
microbe interactions and role of microbes in human health and diseases are the key 
areas of current research focus. In-depth information about host microbial interac-
tion in human health and diseases could enable to identify causative factors for 
development of host physiological/metabolic disorders. Current book comprises of 
various chapters defining a relation among human and microbes in health and 
diseases. 
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Chapter 2

The Therapeutic Potential of the
“Yin-Yang” Garden in Our Gut
Shabarinath Srikumar and Séamus Fanning

Abstract

The gut microbiota is made up of trillion microorganisms comprising bacteria,
archaea, and eukaryota living in an intimate relationship with the host. This is a
highly diverse microbial community and is essentially an open ecosystem despite
being deeply embedded in the human body. The gut microbiome is continually
exposed to allochthonous bacteria that primarily originates from food intake.
Comprising more than 1000 bacterial species, the gut microbiota endows so many
different functions—so many that can be considered as an endocrine organ of its
own. In this book chapter, we summarize the importance of gut microbiota in the
development and maintenance of a healthy human body. We first describe how
the gut microbiota is formed during the birth of a human baby and how a healthy
microflora is established overtime. We also discuss how important it is to maintain
the microbiota in its homeostatic condition. A discussion is also given on how
alterations in the microbiota are characteristic of many diseased conditions. Recent
investigations report that reestablishing a healthy microbiota in a diseased individual
using fecal microbial transplant can be used as a therapeutic approach in curing
many diseases. We conclude this chapter with a detailed discussion on fecal micro-
bial transplants.

Keywords: microbiome, microbiota, gut, antibiotic, IBD, FMT

1. Introduction

We, animals, live in a microbe-dominated planet. We are all covered, filled, 
and fueled by bacteria. All body surfaces like the skin, gastrointestinal tract, 
urogenital, and respiratory tract are in constant contact with the environment
and are, therefore, colonized by bacteria. The realities of life associated with a 
microbe-dominated planet have led to the coevolution of animals with bacteria. 
This coevolution has led to close inhabitation of bacteria on different surfaces of
the human body, especially the gut. Here, many bacteria and their phages, viruses, 
fungi, archaea, protists, and nematodes intermingle to form a microbial consortia
collectively called “microbiome” or “microbiota”. The presence and abundance of
each taxonomic group may vary within population based on their access to adequate
health care and local sanitation condition or within individuals based on their
metabolic, medical, diet, and various other factors.

Despite being embedded deeply in the human body, the gut is essentially an
open ecosystem—with constant exposure to environmental factors. The closure
of the NIH-funded human microbiome project has given advanced understanding
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about the composition and functional characteristics of the gut microbiota 
composition. The composition of the human microbiome varies significantly 
depending on the habitat [1]. For example, the gut microbiota is mainly populated 
by bacteria [2], while the skin harbors mainly fungi [3]. It was always considered 
that human microbiome outnumbered human nucleated cells by at least a factor of 
10. However, reports suggest that the ratio is closer to 1 [4]. Recently metagenomic 
analysis concluded that the gene set of the human microbiome is 150 times larger 
than the human gene complement raising the possibility that the large bacterial 
genetic repertoire aids the human component in performing the essential func-
tions that are not encoded by the human genome. Since more than 99% of these 
genes are bacterial in origin, the number of bacterial species were calculated to 
be around 1000–1150 bacterial species. The figures collectively emphasize the 
biological importance of the microbiome, and the genetic complement can be 
rightly considered as the second genome [2]. However, the taxonomic diversity of 
the gut microbiome notwithstanding, this chapter will deal only with the bacterial 
populations and all further references to gut microbiota means gut 
bacterial microbiota. 

A typical human gut microbiota contains about 1014 bacteria and is made up 
of more than 1000 bacterial species [5, 6]. The human gut microbiota is com-
posed of six bacterial phyla—Firmicutes, Proteobacteria, Bacteroides, Fusobacteria, 
Actinobacteria, and Verrucomicrobia. Of this, Bacteroides and Firmicutes occupy 
70–90% of the total bacteria present in a healthy gut, while others are pres-
ent in lower abundances [7]. Under healthy circumstances Proteobacteria and 
Verrucomicrobia members are also present but in lesser abundance [8]. The huge 
complexity and the variability of the microbiome make the determination of 
precise metabolic functions and the host-microbe cross talk very difficult. However, 
recent advances in deep sequencing and computational biology have contributed to 
large advances into understanding the unique biology of the gut microbiota and the 
subject is still in its infancy. 

The functions bestowed by the bacterial gut flora are so enormous that it can 
be considered as an endocrine organ on its own [9]. It is well understood that the 
gut microbiota and their metabolites play important roles in host homeostasis, 
such as providing important nutrients like secondary bile salts and B/K group 
vitamins [10, 11], help in fermenting the otherwise indigestible complex plant 
carbohydrates such as dietary fibers into short-chain fatty acids (SCFA) [12], 
contributing to an effective intestinal epithelial barrier and activation of both 
innate/adaptive immune responses of the host [13]. In addition, the healthy gut 
microbiome drives intestinal development by promoting vascularization, villus 
thickening, mucosal surface widening, mucus production, cellular proliferation, 
and maintaining epithelial junctions [14–16]. The influence of the gut microbiota, 
either directly or indirectly, affects the physiology of most host organs even the 
brain [14, 17–20]. 

The taxonomic composition of the microbiota is very subtle—subject to 
change with variations in the diet [21], feeding time changes [22], sleep wake 
cycles, and even jet lag [23]. The unique taxonomic signature of the gut micro-
biota has to be strictly maintained for a healthy gut. Any disruption of the 
taxonomic composition of the gut could lead to conditions such as inflamma-
tory bowel syndrome (IBS), asthma, obesity, metabolic syndrome, and cancer 
[24]. In some cases, resuscitation of the gut microbiota using probiotic bacteria 
like Bifidobacteria and Lactobacillus leads to the mitigation of gut inflammation 
consequently regaining health. 

In this chapter, we will sequentially detail how the microbiota establishes 
itself in a human body, how minor or major variations in the gut microbiome 
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introduces diseased conditions, and how the recent therapeutic approaches 
aimed at resuscitating the healthy microbiota can cure many dysbiotic microbi-
ota-associated conditions. 

2. Our internal garden—on how gut microbiota is planted and nurtured 

How do we become colonized with gut microbiota? Where do we get our initial 
inoculum from and how does this initial inoculum proceed in to a well-flourished, well-
established microbiota? The first step to understanding this is to identify the initial 
inoculum and how this inoculum develops into a the full-fledged adult ecosystem 
following a series of ecological succession steps. 

2.1 The initial colonization 

The most prevalent concept, and a very incorrect one, is that babies are borne 
sterile and after birth, the body becomes immediately colonized with microbes 
from the surrounding environment. Placental mammals such as humans are borne 
through a birth canal, which is colonized by microbes. A baby acquires its first 
inoculum from the birth canal. A healthy vaginal microbiota is composed of few 
bacterial species [25, 26] and is predominated by Lactobacilli [27]. Consequently, 
naturally borne babies acquire vaginal microbes like Lactobacillus, Prevotella, and 
Sneathia spp. [28]. The bacteria are present in the mouth, skin, and even in the 
meconium. Therefore, all neonates are colonized by essentially the same vaginally 
derived bacteria obtained vertically from the mother. Once this microbiota is estab-
lished, the microbiota becomes highly differentiated depending on their ability to 
colonize different body sites. For example, in the gut, facultative anaerobes estab-
lish and reduce the environment [29]. This highly reduced environment facilitates 
the colonization of obligate anaerobes [30–33]. In addition, breastfeeding will also 
enrich vaginally acquired lactic-acid-producing bacteria in the baby’s intestine [34]. 
From then on, it is the physiology of the host habitat that selects the community 
that becomes well adapted to colonize that particular habitat. For example, the 
physiochemical, immunological, and the diet play an important role in determining 
the microbial community that will colonize the small and large intestines. The host 
genotype also appeared to influence the composition of the gut microbiota [35]. 

Cesarean section babies, in contrast to vaginally borne babies, are domi-
nated by skin-associated bacteria like Staphylococcus, Corynebacterium, and 
Propionibacterium spp. [28]. The Staphylococcal-rich microbiota could be obtained 
from the skin of the humans the baby is in contact with. The lack of a natural first 
inoculum in C-section babies affects the bacterial community in the GI tract [36, 
37]. This variation from the naturally borne baby’s microbiome will increase the 
susceptibility of the C-section babies to certain pathogens. For example, about 70% 
of the MRSA-caused skin infection happens to C-section babies. In addition, there 
is an additional risk to atopic diseases [38], allergies, and asthma [28, 39]. 

2.2 Development of the microbiota 

The establishment, composition, and the density of the microbiome in the gas-
trointestinal (GI) tract depends on the biochemical factors like pH, oxygen gradi-
ent, antimicrobial peptides (AMPs), bile salts, etc. There is a pH gradient across the 
GI tract—lowest in the stomach and gradually increase to the terminal ileum, and a 
drop in caecum and increases toward the distal colon. Oxygen also exhibits a gradi-
ent across the length of the tract. The levels are highest in the upper GI tract, which 
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decrease to anaerobic conditions in the distal colon. Radially across the tract too, 
there exists a oxygen gradient. Anoxic conditions exist in the lumen, while there 
is an increase in the oxygen tension near the mucosa, and this oxygen is rapidly 
consumed by the facultative anaerobes [40]. Each area in the gut produces its own 
AMPs. Saliva contains lysozyme, which is antibacterial. Small intestine produces 
α-defensins, C-type lectins, lysozyme, and phospholipase A2. The large intestine 
produces β-defensins, C-type lectins, cathelicidins, galectins, and lipocalin. Mucus 
also plays an important role in the distribution of the gut microbiota. The mucus 
in the stomach and colon can be discriminated into two layers—outer loose layer, 
which is densely populated by bacteria, and the inner “solid” layer, where bacteria 
is sparce [41, 42]. Only mucin-degrading bacteria like Akkermansia muciniphila 
reach to the inner solid layer. Some pathogens like Helicobacter pylori, Salmonella, 
Yersinia, Campylobacter, etc. can also reach the inner mucus layer [43, 44]. All these 
factors play an important role in the establishment and the distribution of the gut 
microbiota. 

The initially colonized microbiome has relatively few bacterial species. But 
during the initial phase of life, bacterial diversity increases in the microbiota. 
This may be because of the constant exposure of the baby to the environment. 
The gradual increase in the length of the GI tract can also provide a new niche 
for the bacteria to colonize. The bacterial diversity also depends on the diet as the 
introduction of a more plant-based diet increases the proportion of the Firmicutes 
[45]. Though lifestyle, illness, puberty, and other variable factors affect the 
microbiome, family members tend to have similar microbiomes with shared 
bacterial strains [35]. Thus, during the first year of life, the microbiome proceeds 
through a very variable phase. A distinct composition resembling the “adult 
microbiome composition” is established once an adult diet is established after 
weaning [35]. Once established, the gut microbiome composition seems to remain 
stable for a long time, possibly lifelong [46]. 

3. Maintain the flora!—on how any alterations could be disastrous 

Biologically, the gut microbiome is very essential for the normal functioning of 
the human body. This complex ecosystem is responsible for many critical functions 
like (1) metabolism and energy regulation [47]—up to 10% of our daily consumed 
calories are provided by the microbes who break down complex plant-derived 
carbohydrates into short-chain fatty acids (SCFA), the main energy source of the 
enterocytes. From this perspective, alterations in the gut microbiome can contrib-
ute to obesity [48, 49] and consequently type II diabetes [50]; (2) immune system 
activation [51–53]—the colonic mucosal immune system plays a dual role and in 
that it must tolerate the gut microbiome and at the same time react against patho-
genic organisms. This homeostasis is achieved by the intricate interplay between the 
microbiome and the host; (3) colonization resistance—physiologically colonized 
body surfaces are intrinsically protected from pathogen colonization. It is the 
intricate interplay between the above mentioned three major functions of the gut 
microbiota that brings about the physiological healthy state of the host. 

Colonization resistance is the native ability of the host to suppress the inva-
sion by exogenous microorganisms [54]. The concept of colonization resistance 
originated from the studies of Dubos in 1965 who demonstrated that indigenous gut 
microbiota neutralize colonization by a potential pathogen [55]. Slightly earlier, it 
was noted that loss of obligate anaerobic bacterial population in the lower intestinal 
tract correlated with infection, suggesting that the commensal anaerobic organ-
isms were providing colonization resistance [56–59]. At the time, colonization 

12 



  
 

  
  

 
 

 

   

 

 
  

  
 

 

  
 

  
  

 
 

    
   

   
 

  
   

   
 

  

The Therapeutic Potential of the “Yin-Yang” Garden in Our Gut 
DOI: http://dx.doi.org/10.5772/intechopen.80881 

resistance was thought to result from microbe-mediated inhibition. We now know 
that the multiple mechanisms like microbiota-mediated activation of host immune 
responses are also involved. Colonization resistance provides broad protection 
against bacteria, virus, and other categories of pathogens [60]. On the other hand 
pathogenic microorganisms can out compete commensal microorganisms, subvert 
the immune response and invade the epithelia. For example, some pathogens can 
cause inflammation in the gut and utilize the consequent nutrient-rich inflamma-
tory environment to outgrow other Proteobacteria. However, in a healthy intestine, 
the gut microbiota maintains the stiff colonization resistance by three mechanisms 
(1) directly inhibiting or killing the invading organism, (2) maintaining a protec-
tive musical barrier, and (3) stimulating a strong immune response that can neu-
tralize a pathogen. 

3.1 Direct inhibition 

Bacteria produce many bioactive molecules, such as antimicrobial peptides, 
bacteriocins, etc., to selectively kill or inhibit the growth of competing bacteria 
[61]. These bioactive molecules are the primary source of antibiotics in the pharma-
ceutical industry [62]. 

3.2 Barrier maintenance 

Gut microbiota regulates the strength of the intestinal barrier and sequesters 
themselves within the intestine. For example, the mucus layer is an important 
deterrent for many pathogenic microorganisms to reach the underlying epithelial 
cells. Mucus production is enhanced when a germ-free mice epithelium is exposed 
to some bacterial products [63], which means that an intact microbiota is essential 
to maintain the required thickness of the mucosal layer to keep pathogenic microor-
ganism at bay. Diet can also influence the thickness of the mucosal layer. An assess-
ment of intestinal microbiota localization with immunofluorescence shows that 
the absence of microbiota-accessible carbohydrates in the diet resulted in a thinner 
mucosal layer, thus exposing the underlying epithelial cells to pathogenic organisms 
[64]. The thinning of the mucosal layer made mouse susceptible to colitis. 

3.3 Immune maturation and inflammation 

A healthy microbiota is essential for a healthy immune system. Almost one and 
half decades ago, it was observed that microbial products secreted from the micro-
biota induced the colonic immune system by activating anti-inflammatory cells and 
cytokines. In 2005, a polysaccharide from Bacteroides fragilis, an important member 
of the gut microbiota, was shown to be important in the cellular and physical 
maturation of a developing immune system [51]. Perhaps, the most immunologically 
characterized bacterial metabolite synthesized by the microbiota is the Short Chain 
Fatty Acid (SCFA). In 2009, it was shown that SCFA directly bind G-protein-coupled 
receptor (GPR43) and activated immune responses [65]. Butyrate is the most charac-
terized SCFA. Butyrate was shown to induce the differentiation of colonic regulatory 
T cells (Treg) cells in mice. A comparative NMR-based metabolome analysis showed 
that the concentration luminal butyrate correlated with the number of Treg cells in 
the colon [52]. Treg cells expressing transcription factor Foxp3 are also important in 
regulating intestinal inflammation. It was also found that SCFA plays an important 
role in regulating the function and the size of the colonic Treg pool [53]. 

Microbes can also directly activate the colonic immune system. Segmented 
filamentous bacterium (SFB) from the microbiota was shown to adhere tightly 
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to epithelial cells of the terminal ileum with Th17 cells, and this adherence cor-
related with the induction of inflammatory/antimicrobial defense genes [66]. 
More recently, bacteria in human feces were subjected to selection based on their 
potential to induce anti-inflammatory T regulatory cells. It was found that bacteria 
belonging to cluster XIVa clostridial group induced anti-inflammatory T regula-
tory cells along with bacteroides species [67, 68]. Gut microbiota can also activate 
the expression of bacterial C-type lectins in intestinal epithelial cells. The lectin, 
RegIIIγ, is essential to create a 50-μm clearance zone between the gut microbiota 
and small intestinal epithelial cells. Abrogation of the RegIIIγ synthesis increased 
the proximity of gut microbiota to the epithelial cells [69]. This shows that 
microbiota-activated lectin synthesis can directly act to suppress bacterial activ-
ity. In addition, gut microbiota can also enhance systemic antiviral activity [70]. 
Therefore, it is very important to maintain a healthy microbiota to drive efficient 
pro-inflammatory and anti-inflammatory immune responses in the host. 

Simple alterations to the gut microbiota can often lead to very unhealthy con-
sequences. For example, in the esophagus, the composition of the microbiome is 
heavily dependent on the microbes originating from the oral cavity and is domi-
nated by Streptococcus, Prevotella, Veillonella, and Fusobacterium [71–73]. Any altera-
tion to the microbiota composition could lead to inflammation and tumorigenesis. 
Such altered microbiota compositions were consistent with conditions like gastro-
esophageal reflux disease (GERD), Barrett’s esophagus (BE), and adenocarcinoma 
of the gastro-esophageal (GE) junction. Here, Streptococcus were found to be 
depleted while Veillonella, Prevotella, Campylobacter, Fusobacterium, Haemophilus, 
and Neisseria were enriched [74, 75]. Certain taxa present in the oral cavity like 
Campylobacter concisus and Campylobacter rectus were found to be enriched in the 
diseased mucosa-associated with GERD and BE [76, 77]. Similarly, for eosinophilic 
esophagitis (EoE), increased levels of Neisseria, Corynebacterium, and Haemophilus 
are reported [78]. 

The most important stomach associated bacterium is H. pylori. H. pylori has 
symbiotically co-evolved with humans and therefore are highly adapted to humans 
[79]. Early life time infection of H. pylori is beneficial for humans because it sig-
nificantly lowers the risk of asthma in later years [80]. This beneficial association is 
brought about by the immune system modulation by the bacterium due to the high 
induction of regulatory T cells. The bacterium therefore qualifies for the position of 
a pathobiont -host determines whether the bacteria remains as a harmless symbiont 
or becomes pathogenic in nature. In a diseased condition of the host, the bacterium 
outcompetes the normal microbiota in numbers and becomes the most dominant 
pathogen. 

Sampling the fecal material represents the colonic microbial population. 
However, sampling the small intestine is difficult because it is accessible only by 
invasive sampling. The small intestine is populated by distinct microbial com-
munities that are less diverse and are dominated by Veillonella, Streptococcus, 
Lactobacillus, and Clostridium [81–83]. In the small intestine, alterations in the 
microbiome are associated with celiac disease (CeD). Gut microbiota is able to 
differentially degrade gluten. In CeD patients, there is an over growth of an oppor-
tunistic pathogen Pseudomonas aeruginosa producing a elastase called LasB. This 
enzyme degrades gluten and releases peptides that translocate the intestinal barrier, 
triggering a T-cell response [84]. A small-intestine-associated autoimmune disease 
where microbiome plays an important role is graft versus host disease (GvHD)— 
caused by the activation of T cells where host cells are recognized as antigens cause 
autoimmune attacks in the GI tract, liver, lung, and skin [85]. Germ-free mice had 
less propensity to develop GvHD—this led to the thought that microbiome could 
play an important role [86–88]. Loss of microbiome diversity and consequent 
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butyrate deprivation pushed cells to apoptosis bearing hallmark histological signs 
associated with GvHD. An overabundance of Enterococcus (E. faecium and E. 
faecalis) was observed in patients with GvHD associated with hematopoietic stem 
cell transfer confirming the association of GvHD with alteration in the microbiome 
diversity [89]. 

3.4 Antibiotic-associated colitis 

Antibiotics considered as “wonder drugs” were implemented into therapy 
years before and have saved millions of lives. Even though antibiotics can reduce 
morbidity and mortality associated with bacterial illness, no antibiotic is pathogen 
selective. The application of antibiotics lead to collateral damage of accompanying 
microorganisms in a population, for example in a microbiota. Studies investigating 
the impact of antibiotics on microbiota confirm that antibiotic treatment increases 
the susceptibility of an individual to bacterial pathogens by compromising coloni-
zation resistance [90–93]. 

The observation that antibiotic therapy reduced colonization resistance making 
the host susceptible to bacterial infections was observed very early in the literature 
[56–59]. Gut microbial compositional analysis of an antibiotic-treated mice showed 
the expansion of γ-proteobacteria and enterococci, suggesting that gut microbiota 
somehow suppressed the expansion of oxygen-tolerant species [94, 95]. A study 
on healthy volunteers treated for a week or less with antibiotics reported persistent 
effects on their bacterial flora that included a loss of biodiversity on the gut flora, 
insurgence of antibiotic resistance strains, and upregulation of antibiotic resistance 
genes [96]. Antibiotic treatment can also induce long-term defects in the micro-
biota. For example, a single dose of clindamycin induced long-term susceptibility 
to Clostridium difficile infection [92]. A prior treatment with antibiotics not only 
disturbed the gut microbiota enabling the expansion of pathogenic commensals 
but also helped exogenic bacterial pathogens to establish inside the gut. When 
antibiotic-treated mice was infected with vancomycin-resistant Enterococci (VRE), 
the bacteria displaced the whole normal microbiota of the small and large intestine. 
In the clinical setting, this initial domination by the VRE preceded the bloodstream 
infections in patients undergoing hematopoietic stem cell transplant [91]. 

Microbiota establishes itself very early in the life cycle of every human, and this 
development is very crucial for a healthy lifestyle [97]. So, administration of antibi-
otics in the early stages of life predisposes the individual to diseases in late infancy 
or adulthood, particularly allergic or metabolic syndromes [28]. Antibiotic exposed 
prenatal mice resulted in exacerbated asthma following intranasal challenge with 
ovalbumin [98]. This case is true in children who are administered with antibiotics 
in the first year of life and may develop asthma during sixth or the seventh year 
[99]. Early use of marcolids in Finnish children led to the development of asthma 
and increased BMI associated with a dysbiotic gut microbiota [100]. Effects of anti-
biotic administration in early life are not limited to development of asthma alone 
but also to obesity. A low dose of penicillin delivered at birth transiently shifted the 
microbiota, and this transient shift induced sustained effects in body composition, 
leading to obesity [101]. All these reports emphasize the detrimental microbiota-
associated effects of antibiotics and their implications in health. 

Clostridium difficile is perhaps the most characterized pathogen associated with 
antibiotic associated colitis [102]. With >25,000 annual cases worldwide, 
C. difficile colitis is almost always associated with prior antibiotic use. The suspicion 
that microbiota-mediated colonization resistance resisted C. difficile in the gut was 
finally proven in 2013 [103]. 16S rDNA sequencing alone could distinguish between 
C. difficile-associated diarrhea and C. difficile-negative diarrhea [104]. Antibiotic 
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treatment reduces secondary bile salt production making the host susceptible to 
C. difficile infection [105, 106]. Apart from C. difficile, Klebsiella oxytoca also caused 
antibiotic-associated hemorrhagic colitis (AAHC)—a patchy hemorrhagic colitis 
usually observed after penicillin therapy typically dominating the right colon. 
Here, the pathogen is intrinsically resistant to β-lactams and the production of 
enterotoxin tilivalline can lead to intestinal epithelial apoptosis and colitis [107, 
108]. Antibiotic-treated mice had impaired innate and adaptive antiviral immune 
response, and when the mucosa was exposed to influenza virus, the clearance was 
substantially delayed. On the other hand, these mice had severe bronchiole epithe-
lial degeneration and increased host mortality when exposed to influenza. This is 
due to the macrophages from an antibiotic-treated mice had decreased expression 
of genes associated with antiviral immunity [70]. 

3.5 Inflammatory bowel disease (IBD) 

IBD perhaps is the first diseased condition where alterations in microbiota 
are studied most extensively. IBD is a term mainly used to describe two disease 
conditions—Crohn’s disease and ulcerative colitis. Here, intestinal cells play an 
important role in integrating the interactions among intestinal microbiota, mucosal 
immune system, and environmental factors [109]. It was observed very early that 
IBD conditions had a genetic component—there was a 10-fold increase in risk if 
related closely to the patient [110]. Genome-wide association studies (GWAS) 
reported many genetic factors that are associated with IBD [111]. As more GWAS 
based studies began identifying genetic factors associated with IBD, it was soon 
noted that some IBD genetic factors were also associated with other disease condi-
tions like diabetes [112]. Curiously, GWAS and meta-analysis identified consider-
able overlap between susceptibility loci for IBD and mycobacterial infections [113]. 
The genetic associations notwithstanding, alterations in the gut microbiome of IBD 
patients have always been an interesting topic for microbiome researchers. The most 
significant alteration in the composition of the gut microbiome associated with 
IBD is the reduction in the abundance of the protective bacterium Faecalibacterium 
prausnitzii [114]. However, patterns of gut microbiota dysbiosis was not con-
sistent across different studies. In a large cohort study involving more than 400 
pediatric cases, multiple samples obtained from multiple locations of the GI tract 
before and after the onset of Crohn’s disease were analyzed. Increased abundance 
of Enterobacteriaceae, Pasteurellaceae, Veillonellaceae, and Fusobacteriaceae and 
decreased abundance of Erysipelotrichales, Bacteroidales, and Clostridiales were 
found to be strongly consistent with the diseased condition. Oddly enough, there 
seems to be prevalence of oral bacteria in IBD and Crohn’s disease patients. For 
example, the prevalence of oral and stomach-associated C. concisus was very high in 
both diseased conditions [115]. Furthermore, another Gram-negative oral bacteria 
Fusobacterium nucleatum was found to be abundant in Crohn’s disease [116]. F. 
nucleatum was shown to be highly proinflammatory and protumorigenic [117–119]. 
The bacterium can activate the epithelial cell proliferation and induce a protomeric 
microenvironment, while inactivating the immunological tumor surveillance. 

3.6 Colorectal cancers (CRC) 

CRC is the fourth leading causes of death causing cancer and is the third impor-
tant cause of malignancy. The CRC incidence is growing fast worldwide in low 
and middle east countries and is expected to increase by 60% by 2030 worldwide 
[120]. The transformation from a healthy epithelial cell to a malignant cell requires 
three steps: (1) induction of oncogenic mutations within Lgr5+ intestinal stem 
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cells, (2) altered β-catenin/Wnt signaling, and (3) proinflammatory cascades such 
as TNFα-NFκB and IL16-STAT3 catalyzing CRC development (Garret 2015 EN). 
Initially, there was increasing evidence about the role of bacteria in CRC. Bacteria 
such as Fusobacterium nucleatum, E. coli, and Bacteroides fragilis were shown 
to be associated with CRC [117, 121]. F. nucleatum was first shown to be highly 
enriched in tumors [117, 122]. The bacterium produces the FadA antigen, a ligand 
of E-cadherin in the intestinal epithelial cells that activate the β-catenin pathway 
leading to uncontrolled cell growth [119]. Furthermore, F. nucleatum is shown 
to be overrepresented in the colonic mucosa in the cases where the CRC relapses 
postchemotherapy. This was shown to be an interplay of intricate mechanisms 
including TLRs, miRNAs, and autophagy induction [123]. Some strains of E. 
coli harbor the polyketide synthase (pks) island encoding colibactin, capable of 
inducing DNA damage and mutation in epithelial cells [121]. A metagenome-wide 
association study on stools collected from patients with advanced adenomas, 
CRC, and healthy controls identified that certain Bacteroides species (B. dorei, 
B. vulgaris, B. massiliensis) and E. coli were overrepresented in the microbiome. 
Similarly, Parvimonas, Bilophila wadsworthia, Fusobacterium nucleatum, and 
Alistipes spp. were also overrepresented, suggesting that the gut microbiome 
signature can be used for early diagnosis and treatment [124]. 

4. The therapeutic potential of the gut microbiota 

Humans have used live bacteria, particularly probiotic bacteria, for thera-
peutic purposes from time immemorial. We have seen some examples in earlier 
sections of this chapter. Perhaps, the best example of using live bacteria to cure 
infectious disease comes from antibiotic-associated CDI illness. Clostridium 
scindens, an obligate anaerobic bacterial species that inhabits the colon, has the 
rare ability to convert primary bile salts to secondary bile salts and is highly 
associated with resistance to C. difficile colitis [125]. Administration of C. scindens 
to susceptible mice resuscitated the secondary bile salt deficiency and rendered 
the animal more resistant to CDI. C. scindens and C. difficile have a negative 
correlation-could be the reason for C. difficile resistance in a healthy human gut 
microbiota [105]. However, the clinical benefit of using a single bacteria is lim-
ited. This is because, as we have seen earlier, many of the disorders are caused by 
a dysbiotic microbiota. Since a microbiota is very diverse in nature, resuscitation 
of a healthy gut microbiota cannot be achieved by the administration of a single 
bacterium. The concept of “putting back the bugs” was demonstrated in 1993 by 
using a combination of probiotic strains to cure chronic constipations and IBS 
[126]. Even with CDI, a cocktail of 10 gut commensal bacteria including obligate 
anaerobes could effect a cure [127]. Since then, many experiments have shown 
that by replenishing the healthy composition of a normal microbiota, many 
disease conditions can be controlled. Therefore targeting gut microbiota has gath-
ered much attention and many options are currently being evaluated to achieve 
this goal of re-establishing the healthy gut microbiota to regain health—leading to 
the concept of fecal microbiota transplant (FMT). 

FMT is the procedure where fecal matter is collected from a tested donor, diluted 
in an isotonic solution, strained, and transplanted into the patient using colonos-
copy, endoscopy, sigmoidoscopy, or enema. The history of using stool of healthy 
donors to treat human diseases dates back to the fourth century in China, during 
the Dong Jin dynasty (AD 300–400 years) [128]. Fecal suspensions or “yellow 
soup” was used to treat serious disorders such as food poisoning, febrile disease, 
typhoid fever, etc., becoming the first record of the utilization of human feces to 
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treat human diseases. There are striking similarities between the earlier yellow soup 
and modern day FMT technology—(1) the inoculum originated from human fecal 
matter, (2) administration route is digestive tract, and (3) the fecal matter re-
establishes the microbiota thereby treating the disease. This long tradition might be 
the reason why FMT is so well accepted in China [129]. In Europe, the first report of 
using fecal enema to treat pseudomembranous colitis came in 1958 [130]. Currently, 
FMT stands in the threshold of becoming a great technology to cure many disorders 
considered incurable in the past. 

4.1 In treating diseases associated with gut microbiota-associated dysbiosis 

CDI perhaps was the first condition in which a treatment was attempted using 
FMT. In 1983, it was shown that by re-establishing the healthy gut microbiota using 
FMT, mitigation of CDI can be achieved (Schwan 1983 EN). Severe CDI cases 
can lead to intensive care admission, sepsis, toxic megacolon, and can prove fatal. 
Colectomy is the standard method of treatment, but the mortality rate is 50%. In a 
study involving 29 patients who underwent FMT plus vancomycin for severe CDI 
cases, 62% of the patients were cured in a single FMT, while 38% needed multiple 
FMTs. Taken together, FMT was highly efficient for CDI infections [131]. The 
primary and secondary cure rates with FMT using fresh fecal sample to cure CDI 
is 91 and 98% [132]. FMT from frozen fecal sample also gave similar efficacies in 
treating CDI [133, 134]. By 2013, FMT was made officially the treatment strategy 
for CDI [103, 135]. Many pharmaceutical firms are actively working to bring easily 
consumable CDI-targeted drugs based on FMT. A defined microbial ecosystem 
therapeutics (MET-1 or RePOOPulate) was developed to cure recurrent CDI [136, 
137]. The closest enema-based drug that is awaiting clinical approval is RBX2660, 
which depends upon the microbial suspension provided from the donor and is 
formulated for therapeutic delivery. With positive results in phase 2, the drug is 
currently in phase 3. 

Similar to CDI, IBD is also a dysbiotic-associated disease where FMT is a 
potential therapy. However, in IBD, the use of FMT is a bit complicated and less 
efficient than in CDI. Early studies using FMT to treat IBD showed very promising 
result with good microbiota remission reported over long-term follow up [138]. 
With years, the outcomes started to differ depending upon sample size, treatment 
approaches, and study designs [139]. Even within IBD patients, remission rates were 
different. Crohn’s disease had a higher remission of 61%, while ulcerative colitis 
patients had a remission rate of 22%. It is clear that the FMT treatment for IBD 
is complicated by numerous factors like differences in treatment regimens, stool 
preparation/formulation, and dosing frequencies. Varied levels of dysbiosis and dif-
ference in the microbiota composition between donor and patient also complicate 
FMT treatments. However, it was reported that FMT with intensive doses and mul-
tiple donors induced clinical remission and endoscopic improvement in ulcerative 
colitis patients, and this treatment had distinctive improvements in the microbiota 
composition [140]. It was also shown that a second FMT 3 months past the first one 
greatly improved the efficacy and safety in treating IBD with FMT [141, 142]. Here, 
the patients received FMT repeatedly in 3 month intervals—in a procedure called 
step-up FMT. The efficacy of the procedure increased at each step and was best 
suggested for patients with refractory IBD and immune-related diseases [143, 144]. 
There are currently 27 ongoing clinical trials using FMT targeting IBD with two 
additional trials on children with IBD [145]. 

Cancers like colorectal cancers that are associated with a dysbiotic microbiome 
opening the possibility for a therapeutic intervention using FMT. It was shown 
that bacteria like Enterococcus hirae and Barnesiella intestinihominis strengthen 
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cyclophosphamide-induced therapeutic immunomodulatory effects in cancer [146]. 
This has been highlighted very recently with evidence that microbiome influences 
with body’s ability to respond to antibody therapy for cancers [147, 148]. A correla-
tion was observed between commensal microbial composition and clinical response 
to anti-PD-L1 therapy through abundance of bacterial species like Bifidobacterium 
longum, Collinsella aerofaciens, and Enterococcus faecium [149]. When fecal matter 
from responding patients were transplanted to germ-free mice, the animals were 
noted with stronger tumor control, augmented T cell responses, and better efficacy 
[150]. Gut microbiota could also affect anticancer responses with CTLA-4 [151]. 
The effects of radiation in gut microbiota and the clinical implications of a modified 
microbial balance postradiotherapy are now being investigated [152]. The micro-
biota can be modified to improve its efficacy and reduce the toxic burden of these 
treatments [153]. FMT can be used to reduce the radiation-induced toxicity and the 
increase the survival rate in irradiated mice. Here, the WBCs, GI tract function, 
and intestinal epithelial cell integrity were improved [154]. The research advances 
notwithstanding, therapeutic approaches associated with FMT is still in its nascent 
stage. However, considerable progress made in this area of research indicate that the 
application of FMT based therapy to mitigate mortality associated with diseases like 
cancer is a near possibility. 

FMT is also showing great promise in patients undergoing hematopoietic stem 
cell transplantation surgery. Administration of a series of prophylactic antibiot-
ics during surgery can result in the loss of microbial gut diversity and antibiotic 
resistant strains like Streptococcus viridans, Enterococcus faecium, and other 
Enterobacteriaceae can expand their population in the gut. This loss of microbial 
diversity during stem cell transplantation is associated with marked increase in 
mortality [91, 155, 156]. Restoration of a healthy microbiota by eliminating the 
dominant pathogenic microorganisms therefore becomes very important strategy 
from a therapeutic point of view. FMT involving a consortium of obligate anaerobic 
commensal bacteria containing especially Barnesiella is shown to eliminate E. fae-
cium in mice [157], opening up a new therapeutic approach for stem cell transplant 
patients. 

4.2 Collection, preparation, and delivery of FMT samples 

Collection and preservation of the stool samples carry the primary importance 
in FMT. Freshly collected feces can either be immediately used, lyophilized, or 
cryopreserved. The efficacy of FMT in treating CDI using fresh or frozen feces 
varied but not significantly [158]. The cure rate was 100% in patients receiving 
fresh feces, 83% for the lyophilized group, and 78% for patients receiving frozen 
feces. But the efficacy was more pronounced in treating IBD, and this was dem-
onstrated to be caused due to loss of bacteria in frozen feces [143]. The laboratory 
preparation methods of FMT is also critical for the success of FMT. Recent studies 
have reported that some preparation methods can stress the living microbial 
cells affecting the efficacy of FMT [159] emphasizing the need for extreme care. 
For example, Faecalibacterium prausnitzii is affected when the fecal sample is 
exposed to oxygen. Currently, the preparation methods can be classified into 
“rough filtration” (RF), “filtration plus centrifugation” (FPC), and “microfiltra-
tion plus centrifugation” (MPC) [141, 142]. Manual preparation methods takes 
about 6 hours to complete [160]. With the introduction of automated systems and 
close cooperation between laboratory scientists and clinicians, the time period of 
preparation from “defecation to freezing” has been shortened to 1 hour [160]— 
has effectively increased the efficacy of FMT when tested against IBD patients 
[143]. Current FMT delivery technologies include delivery of the microbiota to 
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upper, mid, and the lower gut [161]. Oral intake of capsular microbiota deliv-
ers it to the upper gut [134, 162]. A suspension of microbiota infusion can be 
transferred to the small intestine beyond the second duodenal segment through 
endoscopy [163], nasojejunal tube [143], mid-gut transendoscopic enteral tubing 
(TET) [164], and percutaneous endoscopic gastro-jejunostomy (PEG-J) [161]. 
The TET procedure for microbiota transplant is considered very successful [164]. 
Delivery of microbiota to the lower gut could be through colonoscopy, enema, 
distal ileum stoma, colostomy, and colonic TET [161]. Colonic TET is recom-
mended for patients needing frequent FMT. 

Several groups are developing stool products that can be packaged, transported, 
commercialized, and easily administered by physicians or consumed by patients. 
These products range from basic (frozen or freeze-dried stool) to more advanced 
products like capsules of synthetic stool grown in culture and assembled. The most 
basic products, from stool banks like OpenBiome and Advancing Bio, provide 
hospitals with screened frozen material ready for clinical use. More advanced are 
products like RBX2660, a cryopreserved filtered microbiota derived from stool 
of selected donors and administered via an enema system. The most advanced is 
a lyophilized powder that can be reconstituted by rectal infusions developed by 
CIPAC Therapeutics. 

4.3 Precision microbiome reconstitution 

The lack of regulatory protocol and stiff resistance from clinicians treat-
ing chronically ill patients has dampened efforts to introduce FMT as a viable 
therapy. This led to the development of the concept of “precision microbiome 
reconstitution,” where a single bacterium can be used to restore colonization 
resistance in C. difficile patients [105]—providing a more targeted approach 
where a consortia of specific bacterial strains are identified to treat a particular 
diseased condition, and this will enable greater specificity and quality control. 
In germ-free mice, a murine isolate belonging to the family Lachnospiraceae 
partially restored colonization resistance against C. difficile [165]. An elaborate 
study using mouse models, clinical studies, metagenomic analysis, and math-
ematical modeling identified C. scindens as an intestinal bacterium associated 
with resistance to C. difficile. C. scindens produces growth inhibitory or spore 
germination inhibitory secondary bile acids to inhibit C. difficile. Furthermore, 
colonic induction of anti-inflammatory T regulatory cells can be used to develop 
immunity against dysbiotic conditions. A community of 17 strains including C. 
scindens induced the development of anti-inflammatory T regulatory cells, and 
this reduced colitis [67]. They also identified that the concentration of short-
chain fatty acids increased upon the colonization of these 17 isolates. The fact 
that short-chain fatty acids modulated a Treg cell response suggested a common 
pathway by which different microbes modulated an induction of Treg cells. 
This opportunity was utilized to identify many more strains mostly belonging 
to bacteroides that are capable to induce an immune response that can restore 
colonization resistance from a dysbiotic condition [68]. However, even though 
a single strain may be able to resist a single organism of interest, a community 
of organisms reflecting the diversity of microbiota might be needed to restore 
baseline colonization resistance. This specific targeted approach is used by phar-
maceutical firms to develop targeted drugs—for example, Seres Therapeutics is 
developing SER-109—comprising bacterial spores enriched and purified from 
healthy stool and packaged into capsules. The product can restructure a dysbiotic 
gut to a healthy microbiome. Vedanta Biosciences are identifying and developing 
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bacterial strains that can suppress chronic gut inflammation. Similarly, a micro-
bial assemblage derived from stool and grown in culture called RePOOPulate has 
been developed to treat CDI infections. 

4.4 The importance of SAFE FMT 

Safety of the patient should be of prime importance when an FMT procedure 
is considered, especially if the patient is having a poor immune status [166, 167]. 
Middle gut FMT procedures can cause vomiting and aspiration [168]. The nasoje-
junal tube could put the patient at high risk of aspiration and should be conducted 
with anesthesia [143]. There is enough evidence that the long-term safety of the 
patient should be considered as well. Generally, a tested donor fecal sample is 
used for FMT. However, this carries the disadvantage that unwanted or potentially 
pathogenic bacterial phenotypes maybe carried from donors to recipients. A 
particular case was reported where the patient developed new onset obesity after 
obtaining a stool sample from a heterologous donor [169]. Using the patient’s own 
stool sample can avoid the problems associated with donor stool samples. Here, 
a fecal sample of the patient is banked in the hospital before any procedure that 
requires antibiotic treatment. The banked sample may provide the vital resource to 
avoid hospital-acquired infections and to replenish the patient’s own microbiota. 
Preservation of the patient’s own or donor feces pose a second challenge [170]. 
There are reports that fecal matter from patients with colon cancer promoted 
tumorigenesis in germ-free and carcinogenic mice. Potential cardiometabolic, 
autoimmune, and neurological disease also have been discussed. All these points to 
the tough screening and regulations are needed before a donor is selected for fecal 
sample prior FMT. 

However, recent reports suggest that FMT is gaining wide acceptance among 
patients. A survey showed that among patients of Crohn’s disease who received 
FMT, 56% showed satisfactory clinical efficacy, 74% showed willingness for 
a second FMT, and 89% expressed willingness to recommend FMT to other 
patients [171]. Also, the cost efficacy of FMT has been demonstrated worldwide 
[172–176, 177]. FMT is still very far from being implemented into routine ther-
apy. The technique needs to undergo rigorous process of standardization before 
the therapy becomes applied in daily practice. Nevertheless the importance of 
gut microbiota in maintenance of a healthy lifestyle is demonstrated without 
doubt. In future therapeutic approaches including antibiotic therapy should 
take into consideration the impact it has on the gut microbiota and the clinicians 
should be mindful of the impact of the devastating secondary effects of these 
therapeutic approaches on the patient. 
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Chapter 3

The Role of Leather Microbes in
Human Health
Richard O. Oruko, John O. Odiyo and Joshua N. Edokpayi

Abstract

Leather tanned from raw hides and skins have been used to cover and protect
the human body since early man. The skin of an animal carries thousands of
microbes. Some are beneficial and protect the animal while others are pathogenic
and cause diseases. Some microbes have no defined roles in animals. These
microbes end up in the human body through contact with the animal skin. In
recent years, the human body has been studied as an ecosystem where trillions of
microorganisms live as a community called microbiome. Humans need beneficial
microbes like Bacillus subtilis on the skin surface to stay healthy. Many microbes
need the human body to survive. Not many studies have looked into the close
link between animal leather and the human microbiome. The assumption is that
conventional leather processes inhibit the pathogens on skins from carrying any
risk of microbial hazard to the human body. This chapter identifies endemic
microbes of “animal skin microbiome” that withstand extreme acidity and
alkalinity of leather manufacture and their transmission to humans. Some cause
allergic reactions, skin lesion,  infections or death to tannery employees with
weakened immune systems. This promotes the need to look at leather product
microbiome impact on human health.

Keywords: human health, human microbiome, leather-making processes, microbial
hazard, pathogens, raw hide and skin and tanned leather

1. General introduction

Skin is the largest organ in the animal’s body and acts as the entry point of
microbes from the outside world [1, 2]. The diverse population of microbes found 
in human and animal resides on the skin. About 1000 different species of bacteria, 
fungi, viruses and other microbes live on the skin. The majority are harmless and 
even beneficial to human and animal hosts. Microbe colonisation of the skin is
normally variable and relies on endogenous host factors, topographical location and 
exogenous environmental factors [3]. Over a long period of time, microbes, humans
and other animals have established complex relationships with each other [2]. 
For example, to remain healthy, humans and other animals require microbes and 
many microbes also require specific environments provided by the human and the
animal’s bodies to sustain their lives. Humans, other animals, and microbes depend 
on these interactions to grow and stay healthy. Diverse species of microbes reside in
different places in and on human and other animals and they are adapted to those
conditions and places. Human, animals and their microbial flora form a complex
ecosystem whose equilibrium acts as a reliable adaptation system [2]. In realisation
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of this important complex relationship, the United States government in 2008 
launched the human microbiome project. The above-mentioned project emphasised 
the need for comprehensive characterisation of different body parts for microbial 
communities of humans [4]. 

Microbiome research study in animals has lagged behind human research 
because of lack of investment, towards relating the animal microbiome in human 
health and disease [4]. “Animal microbiome” is wider in scope than humans, and 
as such, there is a lot of data specific to each animal species, their body parts, and 
their products. However, there is a need for animal products microbiome data as 
that of the human condition, particularly in One Health mindset concept. In this 
concept, it is necessary to consider the health of the animal and their products, 
as being closely linked to the health of humans. Globally everybody uses animal 
skin and leather products in one way or the other in their daily lives. This implies 
that microbes in them might be interacting with human health either positively or 
negatively. Microbiome research in this topic is still in nascent’s stage and needs to 
be studied in detail to show the link as this is important, due to the fundamental 
biology of these invisible microbes in animal skins/leather products and their roles 
in human health. 

2. Microbes reported in animal skins and leather products 

Live animals bodies host thousands and thousands of microbes. Some are 
harmful while others are not. Among the pathogenic microbes are those which 
can cause diseases in animal and human. These diseases are known as zoonotic 
diseases. A zoonotic disease or zoonosis is defined as any disease of animals 
that can be transmitted to people [5]. The first recognised zoonoses with an 
occupational relationship relevant to the leather industry are those that cause 
skin lesions and have short incubation periods, such as ringworm infections, 
cutaneous anthrax and glanders [5]. Anthrax infection among tannery workers 
has been reported in Bangladesh [6]. The first documented case of anthrax 
in the United States of America occurred in Florida state in 1974. Cutaneous 
anthrax occurred due to contact with a goat skin bongo drum bought in Haiti 
while inhalation anthrax occurred in Scotland in 2006. This happened because 
of handling contaminated hide drums from West Africa [7]. The most common 
fungal disease in animal skin is ringworm, also known as Dermatophytosis. This 
is not a worm at all, but a fungus called Dermatophytes that grows on the skin. 
It affects workers who handle raw skins without wearing protective gears in the 
tanning industry [7]. 

Other microbes on the live animal skin only cause infection and damage to 
the skin [8]. It is yet to be known if they can affect humans that handle them. The 
most important bacterium that causes damage to the skin during the animal’s 
life is Dermatophilus congolensis, which occurs as a secondary infection, in bovine 
demodicosis lesions. Staphylococcus aureus, Staphylococcus albus, and Streptococcus 
pyogenes are all reported to be associated with lesions of demodectic mange in 
sheepskin. Staphylococcus aureus, Corynebacterium pyogenes, Pseudomonas aeruginosa, 
Bacillus subtilis, and Morexella bovis have been isolated as secondary infections where 
bovine demodicosis was found to be present [8]. Some of these microbes have potential 
to cause pathogens on the host. They are normally transferred from the animal skin to 
human skin whenever people get into contact with the live animal in the fields or dead 
animal skin during slaughter. This is common in developing countries where not all 
skins that reach curing premises and tanneries come from licenced slaughterhouses. 
Some originate from individual homes; such skins are called “fallen hide/skin”. Some 
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come from individual homes located deep in the interior villages, where veterinary 
services are lacking. This results into skins of a diseased animal, which have not been 
inspected by a veterinary inspector. The potential to infect the people handling them 
is always very high if they are affected by the zoonotic disease. This is the first stage of 
exposure to the workers in the leather manufacture chains and therefore it has become 
a source of concern about tannery worker health. 

As soon as the animal is slaughtered the processes of decay on the flesh side 
begins. Animal skin undergoes microbiological decay since as an organic material 
it is a source of food for microbes [8]. Organisms involved in hide and skin 
putrefaction in slaughterhouses include Staphylococci and Micrococcus organisms. 
The majority of Staphylococci isolated so far includes Staphylococcus xylosus, 
Staphylococcus sciuri, Staphylococcus cohnii, Staphylococcus simulans, Staphylococcus 
hyicus and Staphylococcus epidermidis. The Micrococcus found in this study was 
Micrococcus varians [9]. In one study, 414 micro-organisms from 80 cattle hide 
and 80 sheep skin swab samples were isolated in Sudan. Out of the above figure, 
134 isolates were characterised from fresh and washed cattle hides and sheep 
skins which included;- Staphylococcus spp., Micrococcus spp., Corynebacterium spp., 
Aerococcus homorri, Enterococcus casseliflavus, Aerococcus viridans, Enterococcus 
faecalis, Gemella haemolysans, Stomatococcus spp., Pseudomonas spp. and Escherichia 
coli. The samples taken from the slaughterhouse hides and skins were predominately 
Staphylococcus spp., Micrococcus spp., Bacillus spp. and Corynebacterium spp. along 
with Staphylococcus albus, Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus 
subtilis and Corynebacterium pyogenes [10]. 

From the slaughterhouses, the skins are normally moved to curing premises for 
preservation before they are delivered to the tannery for processing into leather. 
Preservation methods used range from sun drying, air drying on frames, salting, 
brining and chilling. Although these methods stop putrefaction of hides and 
skins, some microbes still survive and eventually move to the tanning process. 
Bacteria isolated from hides and skins delivered directly to the tannery without 
prior treatment include Staphylococcus spp., Micrococcus spp., Corynebacterium 
spp., Lactobacillus jensenii, Streptococcus spp., Enterococcus spp., Stomatococcus 
mucilaginous, Bacillus spp., Aerococcus viridans, Pseudomonas vulgaris biogroup II, 
Escherichia coli and Pseudomonas spp. 

Hides and skins showing signs of putrefaction in the curing premises 
normally give off an offensive odour and show hair slipping on the grain 
side. Bacteria involved in putrefaction of those areas have been identified 
as Staphylococcus saccharolyticus, Staphylococcus capitis, Staphylococcus hyicus, 
Micrococcus lylae, Corynebacterium bovis, Cory xerosis, Lactobacillus jensenii, 
Bacillus cereus, Staphylococcus intermedius, Bacillus amylogliguesta, Staphylococcus 
saprophyticus, Staphylococcus auricularis, Staphylococcus hominis, Staphylococcus 
epidermidis, Staphylococcus xylosus, Micrococcus varians and Micrococcus lentus. In 
general Staphylococcus spp., Micrococcus spp., Corynebacterium spp., Bacillus spp., E. 
coli and Pseudomonas spp were found to be common [10]. The following bacteria; 
Staphylococcus gallinarum, Dermacoccus nishinomiyaensis, Gardnerella vaginalis and 
Staphylococcus equorum were isolated from putrefied hides and skins for the first 
time [10]. Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus kloosii 
and Bacillus mycoides were found to be growing well in dried hides and skins [11]. 
The Staphylococcus spp. and Micrococcus spp. are therefore considered to be part of 
the normal microflora of cattle hides and sheep skins [11, 12]. 

Gram-positive and Gram-negative bacteria have also been isolated from goat and 
sheepskins. Gram-positive bacteria were identified to be 78.7% [13]. The isolated 
bacteria were identified as Bacillus cereus, Bacillus subtilis, Bacillus megaterium, 
Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus fermentum, Micrococcus 
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luteus, Neisseria flavescens, Neisseria sicca, Proteus mirabilis, Proteus spp, Pseudomonas 
spp, Staphylococcus luteus, Staphylococcus aureus, Staphylococcus epidermis, and 
Streptococcus faecalis. The writers found out that the Gram-positive Bacilli and 
Cocci with proteolytic activity are the most responsible for the degradation of goat 
and sheep skins [13]. These microbes might end up on the bodies of workers in 
the leather manufacture chain. Their consequences on the health of these tannery 
workers could be detrimental if they are potentially pathogenic. 

Many curing premises use salt to preserve green hides and skins. In the salted 
cattle hides and sheepskins the following bacteria have been isolated; Staphylococcus 
spp, Micrococcus spp., Corynebacterium spp., Enterococcus spp., Stomatococcus 
mucilaginosus, Bacillus spp., Moraxella bovis, Proteus vulgaris biogroup II, Pseudomonas 
spp. and Escherichia coli [14]. These bacteria are considered salt-resistant species 
especially Staphylococcus, Micrococcus, Corynebacterium, Stomatococcus, Lactobacillus, 
and Bacillus. The writers consider them halophilic bacteria since they can grow well 
in salt concentrations of 5–15% [15]. Other reported studies indicate that on a salted 
raw hide, the proliferation of halophilic bacteria results in the production of a range 
of pigments giving red and violet spots. From these coloured spots Micrococcus roseus, 
Micrococcus luteus and Micrococcus morrhuae have most frequently been isolated 
[15, 16]. Fungi have also been confirmed to be natural inhabitants of hides/skins. 
Fungi species can tolerate high NaCI concentrations of 20–30% (w/v) [17]. This is a 
higher concentration than that tolerated by bacteria. Aspergillus terreus, Aspergillus 
niger, Aspergillus fumigatus, Penicillium restrictum, Penicillium citrinum, Altemia spp. 
and Cladosporium spp. were isolated from salted sheepskins [17]. From the curing 
premises, the raw hides and skins are taken to tanneries for processing. The first 
stage of tanning is the beamhouse yard. 

In the beamhouse operations, six perforation-causing strains of bacteria 
have been isolated and identified as belonging to Bacillus subtilis, Bacillus 
megaterium, Bacillus anthracoides, Bacillus pumilus and Pseudomonas aeruginosa. 
They were isolated from soaking water for raw skin in the beam house [18]. An 
environmental mycological survey carried out at the liming section of the Tannery 
and Footwear Corporation (TAFCO) at Kanpur, India, in 1985, isolated and 
characterised 33 fungal species. Aspergillus spp. and Penicillium spp. were the two 
predominantly isolated fungal species. The other isolated species were Alternaria 
spp., Cephalosporium spp., Chaetomium spp., Cladosporium spp., Cunninghamella 
spp., CUNularia spp., Drechslera spp., Fusarium spp., Mucor spp., Phoma spp., 
Rhizopus spp. and Trichoderma spp [18]. The following isolated fungal species 
from beamhouse have been reported to have potential allergens. They include 
Aspergillus flavus, Aspergillus oryzae, Aspergillus sulphureus, Aspergillus sydowii, 
Aspergillus terreus, Mucor geophila and Rhizopus stolonifer [18]. Various fungal 
species such as Penicillium spp., Aspergillus spp., Alternaria spp., Scopulariopsis 
spp. and Cladosporium spp. have also been isolated from 14 tanneries in Istanbul, 
Turkey. Penicillium spp. was found to be the most commonly isolated fungal 
species followed by Aspergillus spp [19]. The authors, therefore concluded that the 
allergen from the isolated fungal species may be the reason for the development of 
respiratory infections in tannery workers thus the need to pay more attention to the 
skin microbes from leather industries even those which are undergoing processing. 

From the beamhouse yard, the leather processing moves to tanyard operation. 
Here we have chrome-tanned leather (known technically as wet blue) with the 
formation of red spots which is a frequent phenomenon in the tanned leather. The 
originators of the red colour on tanned leather have been identified as Paecilomyces 
ehrlichii (=Penicillium klebanii), Penicillium aculeatum, Penicillium purpurogenum 
and Penicillium Roseopurpureum [20]. The red spots on the wet blue are not limited 
to one type of leather only, since these fungi attack and cause red colouration 
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even in box sides, horse chevreau, pig-skin splits and goat skins, among others. 
From tanyard operations, leather processing moves to crust and finishing yard. 
During drying of finished leathers, moulds may also develop due to favourable 
humidities and temperatures inside the drying rooms [20]. On the other hand, the 
biodeterioration becomes visible as spots of various sizes in green, yellow-brown, 
dark-brown, grey and brown-green shades on the finished leather. Associated with 
this type of damage, various workers have isolated Aspergillus ochraceus, Aspergillus 
wentii, Penicillium rugulosum, Penicillium funiculosum, Penicillium variotii and V. 
glaucum. They are noted for attacking skin substrates with high grease content, but 
a far larger range of fungal types than these cause damage during leather drying 
process. 

Major damage on finished leathers is caused by fungi. The types of fungus that 
are encountered in tanneries are well-known contaminants of leather materials [21]. 
Those that are frequently isolated includes; Penicillium chrysogenum, Penicillium 
luteum, Penicillium brevicompactum, Penicillium decumbens, Penicillium rugulosum, 
Penicillium aculeatum, Penicillium funiculosum, Aspergillus niger, Aspergillus 
fumigatus, Aspergillus ochraceus, Aspergillus wentii, Aspergillus < avus-oryzae (group), 
Mucor mucedo, Rhizopus nigricans, Paecilomyces variotii, S. brevicaulis, V. glaucum and 
Trichoderma viride. The above mentioned fungi utilise tanning conditions for their 
growth and development, hence they can even be found on the finished leathers as 
well as on the surface of vegetable-tanning solutions. In these solutions, they cause 
fermentation of the tanning agent due to the effect of “tannase” enzymes especially 
in the production of vegetable-tanned sole leathers. A poor growth of the yeasts 
Candida albicans and the moderate growth of Staphylococcus aureus were observed 
on the finished leather specimen [21]. The reported researches have proved that 
Penicillium, Aspergillus, and Trichoderma are the main microbes growing on the wet 
blue leather [22]. 

A new kind of bacterial defect, different from well-known bacteria-borne 
defects (like hair slip, red discolouration, and grain pilling) on the leather has 
also been identified. It is called the bio-film. A biofilm defect is explained to be 
composed of a single or multiple species of bacteria, embedded in the polyanionic 
extracellular polymeric substances which are attached to the surface of leather 
[23]. Different bacterial and fungal species, for example, the Genus of Bacillus, 
Corynebacterium, Clostridium, Staphylococcus, Penicillium, Aspergillus, Paecilomyces, 
Candida, and Cryptococcus are responsible for destruction and degradation of 
leather and their products [24, 25]; therefore, these microbes with potential 
pathogens could pose a real threat to the health of tannery workers and even the 
population that use leather goods. 

Finished leather is normally used to make leather items like the belt, purse, 
shoes, upholstery and boots, among others. A study carried out around 2015 in 
Mauritius found that purses used by almost everybody globally could be a potential 
reservoir for bacteria, in particular, those made out of leather and synthetic 
materials [26]. In roughly half of the purses sampled in that study, there was 
only a single type of bacterial growth isolated and identified. In the other half 
of the samples, there was the identification of mixed growth. In most cases, 
these microbes are normally carried harmlessly on the skin of most people. It is 
reported by some authors that infection only occur if a person has a weak immune 
system or if the skin is wounded, allowing the bacteria to enter the body [26]. 
Therefore, it is worth noting that even finished leather items are potential sources 
of pathogenic microbes. Besides that, finished leather products such as footwear 
may be colonised by fungi and bacteria [27]. The carbon source for bacterial growth 
is sweat compounds of footwear users and other compounds contained in shoe 
materials. Footwear, especially those often and intensively used, provides an ideal 
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environment for microbial growth, including pathogenic species, causing athlete’s 
foot (tinea pedis) and bacterial foot infections. This is connected with a favourable 
temperature and high moisture content inside the shoes, enhancing microbial 
growth [27]: A poor growth of yeasts Candida albicans and moderate growth of 
Staphylococcus aureus was observed under specimens of leather finished without 
essential oils. However, no growth of Escherichia coli was recorded [28], thus 
microbes in the raw skin go beyond the tanning process and therefore it is relevant 
to take note of the leather microbiome and their possible effect on human health. 
This can be done by adding effective fungicides and bacteriocides on processed 
leather with less effect on human health. 

3. Reported cases of beneficial microbes on humans from leather 
products 

Micro-organisms with the symbiotic relationship with the skin occupy a wide 
range of skin niches and can protect it against invasion by harmful organisms. One 
such type of bacteria that is known to protect the skin is Bacillus subtilis. It produces 
bacitracin on the skin surface, a toxin that helps it in fighting with other intruding 
microbes [1, 2]. These skin microflora may also have a role in educating billions of 
T cells, making them ready to respond to similarly marked pathogen [3]. Most of 
the time in our lifetime, we share our bodies harmoniously with the 90 trillion or so 
microbes [29]. By simply taking or applying antibiotics, we could be disturbing the 
stable ecosystem in our body by killing not only disease-causing micro-organisms 
but also good bacteria, like Lactobacillus acidophilus which protects the body against 
pathogenic bacteria. A balanced co-existence between microbes and human bodies 
requires appropriate use of antibiotic and reserving the good role these organisms 
play in the animal and human health. Some resident microbes are known to protect 
animals against pathogens. Evidence attributed to this comes mainly from studies 
performed with germ-free animals, which were found to be extremely sensitive to 
infection and some died following the administration of a pathogen [30]. 

Microbes on the skin and other parts of the body have been known to protect 
it against environmental toxic materials, such as heavy metals, hydrazine, fungal, 
plant toxins, oxalic acid among others [30]. It is also speculated that changes in 
temperature, present problem to some animals that cannot use their skin to regulate 
their body temperature. This regards how to carry out cellular metabolism at both 
high and low temperatures. Some microbiotas can help solve this problem by 
providing enzymes optimised for different temperatures. On the other hand, an 
animal’s microbial symbiotic partners may as well play a significant role in helping 
select the trait of endothermy. The constant high temperature of the surrounding 
environment speeds up bacterial fermentation by providing rapid and sustained 
energy input for the host. These benefits become apparent when comparing 
conventional to germ-free mammals, which sometimes require one-third more food 
to maintain the same body mass [30]. Some good bacteria inhibit fungal growth 
in parts of the skins. For, an example in the forearm of a human there are over 100 
species of bacteria that keep the skin healthy. On average, it is reported that the 
skin supports about 1 trillion bacteria species. The most common among them are 
Staphylococcus, Streptococcus, and Corynebacterium, which metabolise sweat on skin 
surface to produce the bad odour. Most of these mentioned bacteria actually help 
to keep the skin healthy by competing with dangerous pathogens for nutrients and 
growth space. Firmicutes and Bacteroides are known to break down carbohydrates 
and make essential nutrients like vitamins K and B12 for the animal’s body 
development. They also block out harmful bacteria from invading the skin. 
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Other evidence suggested by different authors, states that commensal skin 
microbes are necessary and sufficient for the generation of optimal skin immunity. 
This has been observed from germ-free mice in an experiment. The mice failed to 
mount an adequate immune response to Leishmania disease. Recolonisation of the 
mice gut with microbes was unable to restore cutaneous immune function to this 
animal, but exposing the skin of these mice to S. epidermidis alone was sufficient 
to restore the effect or T cell levels and rescue the immune deficiency from total 
collapse. These observations according to the writer were linked to IL-1 signalling, 
as germ-free mice showed significant decreases in cutaneous IL-1α production. The 
evidence adduced here suggests that communication between commensal microbes 
and skin-resident cells is important for proper tuning of the local inflammatory 
milieu [1, 2, 30]. The potential impacts of commensal microbiota from leather on 
the response and development of an effective immune environment on the human 
skin are still unclear and therefore require further studies. 

Fungi are also beneficial partners in symbiosis with the animal’s skin [31]. This 
microbe has the ability to grow on vertebrate animal skins. Some fungi species can 
attack insects and nematodes in the skin and in the long run play an important 
role in keeping populations of these animals under control. Insect-attacking 
fungi are called “Entomopathogens,” and they include a wide range of fungi in 
phyla Ascomycota, Zygomycota, and Chytridiomycota. Some of the best-known and 
most spectacular Entomopathogens among them belong to the Ascomycota genus 
Ophiocordyceps [31]. Beneficial microbes that are not mentioned here have other 
roles inside the animal’s body. There are also some microbes with unknown roles in 
the skin of the animals yet they occur there abundantly. Some have been isolated 
but others are yet to be isolated and cultured. They make the study of leather 
microbiome necessary. 

4. Mechanism of microbes transfer from animal skins and leather 
products to humans 

The human skin might also be affected by the microbes from the animal’s skin 
with which they get into close contact [32]. Previous studies as reported by other 
authors on European populations have shown that the skin microbial communities 
of dog owners are closely similar to the microbial communities of their dogs than 
those of other dogs. The report goes on to confirm that close contact with dogs 
significantly influences the microbial communities on the human hand that touches 
them regularly [33, 34]. Research on animal owners in Madagascar in Africa found 
out the connection between human skin and animal skin microbes. As expected, 
the animal skin microbiota was established to be more similar to its owner’s body 
parts [35]. Animal owner and non-owner body parts after comparison were found 
to be made up of similar proportions of Proteobacteria, Actinobacteria, Bacteroidetes, 
Firmicutes (the four dominant human skin bacterial phyla) and Cyanobacteria 
[36]. In contrast, their animals were majorly dominated by Proteobacteria (88.5%). 
Animal owner’s skins were found to have higher proportions of Actinobacteria 
and Firmicutes. The authors further found out that contact with the animal might 
not really be a major driver of skin microbial communities on their owners. This 
is because, certain bacterial taxa may be better suited to colonising human skin 
than animal skin, perhaps based on differences attributed to factors such as hair, 
sweat glands, pH or host genetics [37]. These findings suggest that interactions 
within the shared environment of all humans, regardless of animal ownership, can 
homogenise the skin microbiome, but that different body sites may harbour distinct 
microbial communities due to dispersal from environmental microbes [37, 38]. 
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Animal hides and skins could also act as a mechanism for the transmission of 
bacteria and other microbes, due to its high content of moisture and nutrients 
(carbohydrates, fats, and proteins). These raw materials for making leather also 
contribute to the indoor environment of a tannery. The indoor environment inside 
the tanning industry has been associated with some human diseases attributed to 
biological agents. Conducted studies report that livestock and tannery workers 
have contracted diseases such as Tetanus, Anthrax, Leptospirosis, ‘Q’ fever, Brucellosis, 
afta epizootic, Dermatosis and Micotoxicosis due to infection and contamination of 
raw hide or skin, poor working conditions and to some extent processed leather. In 
addition, the above, genuses of fungi have also been reported in this environment, 
and they include species such as Aspergillus niger and Penicillium glaucum. Yeast 
genera that include Rhodotorula, Cladosporium Torulopsis have also been reported. 
Prolonged exposure of tannery workers to the tannery environment and their 
processed products has been closely linked with the development of allergies and 
asthma as well as the long-term exposure to fungi microbes. This ends up in the 
development of respiratory infections and other diseases [39]. For example, in 
Bangladesh, the common health problems diagnosed among the tannery workers 
were reported as shown in Table 1. 

On the other hand, it would be interesting to determine if the above-mentioned 
taxa, are transient members of the human skin community as a result of temporary 
contact between the human body and this animal by-product, or it is due to long-
term contact with animals and their products (and the shared environment) results 
in fundamental shifts in human skin communities that allow taxa that are typically 
considered animal and their products microbes to become residents [41]. When a 
beneficial microbe of animal skin is transferred to the human skin through the use 
of leather products, where there are a resident species of the same genera, what 
happens between the introduced species and indigenous microbes is still unknown. 
For example, Bacillus subtilis is known to protect the skin against other microbes. 

Diseases reported among tannery workers Number of cases reported (%) 

Asthma 138 (49.9) 

Diarrhoea 198 (71.7) 

Jaundice/typhoid 120 (43.5) 

Blood pressure 144 (52.2) 

Gastrointestinal problem 198 (71.7) 

Eye problem 129 (46.7) 

Scabies 204 (73.9) 

Nail discoloration 192 (69.6) 

Urticaria 165 (59.7) 

Miliaria and folliculitis 156 (56.6) 

Contact dermatitis 108 (39.13) 

Sores 105 (38.04) 

Pruritus 90 (32.61) 

Hand eczema 81 (29.35) 

Fungal infection 75 (27.2) 

Table 1. 
Prevalence of diseases including occupational dermatitis among tannery workers of Bangladesh (adapted from 
Mahamudul [40]). 
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What happens when the one from animal skin/leather product is introduced 
into the human skin which is occupied by resident human Bacillus subtilis?. This 
is still unclear and provides an area worth looking into in future studies of the 
leather microbiome. This is because it is not known whether they live mutually, 
commensally, compete or they kill one another to get or retain the space. Clear 
explanation about this interaction is now necessary considering the fact that leather 
plays a basic role in human daily life. 

5. Possible reported ways to hinder the transmission pathway of 
microbes to humans 

The microorganisms grow on raw hides firstly because of their ability to 
hydrolyse the proteins present. This is due to their proteolysis degrading effect of 
the raw hide/skin substance [42]. In the literature, various authors have shown 
concern with halophilic micro-organisms and the problem of the colouration of 
cured hides/skins. The role of halophilic and non-halophilic bacteria producing 
or not producing coloured spots on salted hide/skin is still not yet clear, because 
the individual types can manifest themselves successively to a point that their 
individual hydrolytic effects are hidden from detection by various methods. Various 
bacterial species isolated from fresh calf skins are reported to have the ability to 
withstand a high level of salt (NaCI) concentrations (1.5–9% w/v) [42]. These 
isolated bacterial species included Bacillus coli, Bacillus proteus, Bacillus megaterium, 
Bacillus mycoides, Bacillus subtilis, Staphylococcus albus, Staphylococcus aureus, 
Sarcina lutea and Micrococcus roseus. Bacillus subtilis and Bacillus mycoides were 
found to survive in the dormant state at a high salt concentration (20% w/v) [42]. 
Bacteria called Mesophiles, such as tuberculosis known to be causing Mycobacterium 
tuberculosis can survive best at normal room temperature and are likely to thrive 
longer than cold-loving Psychrophiles or heat-loving Thermophiles. Other microbes 
do form exoskeleton-like spores as a defence mechanism, like the bacteria called 
Staphylococcus aureus. It is responsible for toxic shock syndrome and wound 
infections. The Bacillus anthracis, anthrax-causing bacteria, can also form spores 
and survive tens to hundreds of years [6]. The use of salt as a bacteriostat is to 
inhibit the growth of these microbes on the green hides and skin in curing premises. 

When converting skin into finished leather, collagen which is the basic fibre 
component must be protected since many characteristics of finished leather, 
particularly its durability, rely on collagen protein. Thus, bactericides with a broad 
spectrum are widely preferred in the main soaking process to stop bacterial attacks. 
However, fungi and bacteria displaying proteolytic and lipolytic activities at a 
remarkable level on raw hides and skins and in the pre-tanning floats should be 
taken into consideration and monitored. This is due to, the fact that these microbes 
are able to survive in extreme conditions [43]. A number of bacterial species such 
as Bacillus sp., Pseudomonas sp., Alcaligenes sp., Escherichia coli, and Shewanella alga 
are reported to have Cr6+ detoxification capability due to the presence of reductases 
enzyme soluble in cytosol [44]. In Pseudomonas maltophilia and Bacillus megaterium, 
the Cr6+ reduction is associated with membrane cell fractions [16]. However, at 
present, it is still unclear whether the reduction of Cr5+ to Cr4+ and Cr4+ to Cr3+ is 
coordinated or enzymes regulated process. The NADH, NADPH, and electrons 
from the endogenous reservoir are suspected to be the electron donors in the Cr6+ 

reduction process. However, unlike Cr6+ reductases enzymes isolated from aerobes 
microbes, the Cr6+ reducing activities of anaerobes microbes are associated with 
their electron transfer systems ubiquitously catalysing the electron shuttle alone 
[16]. During the reduction reaction, the enzyme Cr6+ reductase (ChrR) transiently 

45 

http://dx.doi.org/10.5772/intechopen.81125


  
 

 
 

  
 

 

 
 

 

 
 

 
  

  

  
 

  
  

  
 

  
 

 

  
 

 
 

 
 

 
 

 
        

  

 

 
 

 

Role of Microbes in Human Health and Diseases 

reduces Cr6+ with a one-electron shuttle reaction to form Cr5+ followed by a two-
electron transfer to form Cr3+ [46]. Although a proportion of the Cr5+ intermediate 
is spontaneously reoxidised to generate reactive oxygen species (ROS), its reduction 
reaction through two-electron transfer catalysed by ChrR reduces the chances to 
produce harmful radicals which can harm the cell. Several facultative anaerobes 
such as Pseudomonas dechromaticans, Pseudomonas chromatophila, Aeromonas 
chromatica, Mycobacterium spp, Geobacter metallireducens, Shewanella putrefaciens, 
Pantoea agglomerans, and Agrobacterium radiobacter EPS-916 are also reported to 
catalyse the biotransformation change of Cr6+ to Cr3+ under anoxic conditions [45]. 

Biodeterioration is reported to be an important factor that can impair aesthetic, 
functional and other properties of leather and other biopolymers or organic 
materials and the products made from them globally. This process takes place 
particularly under conditions of high relative humidity that enable bacteria, 
actinomycetes fungi or other microbes to grow fast [15]. Biodeterioration in the 
leather industry has been mentioned to results from the activity of macro- and 
micro-organisms on raw hides and skins, during leather manufacture and also 
during storage of finished leathers and leather articles [20, 46, 47]. Because of its 
protein and lipids nature, leather provides a suitable substrate for many micro-
organisms. The biodeterioration process also happens on detanning (removal of 
chrome tannin on leather) effect and growth of Penicillium spp. The cross-link 
between collagen protein and chromium tanning agent is weakened during the 
biodeterioration reaction. It is speculated that protease enzymes that are produced 
by the Penicillium spp could be the degrading agent for chromium tanned leather. 
At the beginning of biodeterioration reaction, the Penicillium spp could be using the 
uncross-linked collagen protein as nourishment to grow and multiply, leading to the 
damaging of the collagen molecule. The Penicillium spp growth and multiplication 
makes tanning effect much weaker and susceptible. The detanned chromium 
leather becomes much easier for the Penicillium spp digesting enzymes and the 
biodeterioration begin slowly until the whole leather is affected completely [48]. 

In most cases, the Pseudomonas spp are normally present on the skin surface. Fur 
and skin layer might also contribute to the Bacillus spp. The presence of antibiotic-
resistant plasmid harbouring E.coli has also been reported in leather and leather 
products [49]. Staphylococcus aureus generally has been present in epidermal and 
dermal layers of the animal’s skin. These isolates were detected to have antigenic 
structures that enable them to resist antibiotics. The resistance development 
may be due to the nonspecific mechanism with gene regulation of plasmids and 
chromosomes, which may be heritable or transferable due to the presence of the 
resistance factor (R-factor) [49]. These structures enable the microbes to withstand 
extreme alkalinity and acidity in the tanning process; as such these microbes pose a 
real health hazard to the tannery workers. 

Various studies have been carried out in order to develop clean or cleaner 
technologies to reduce the pollution load during leather manufacturing processes. 
These clean and cleaner technologies are also known by other name as best available 
technologies (BAT) [50]. Initially, it was assumed that the replacement of hazardous 
chemicals with non-hazardous chemicals may provide suitable conditions for 
microbial growth because of the shift in pH concentration. The growth and survival 
of micro-organisms, particularly pathogenic bacteria related to health issues, at 
various stages of the leather manufacturing processes (both conventional and 
BAT) has been investigated using Bacillus cereus, Pseudomonas aeruginosa, and 
Staphylococcus. At the end of the study, no considerable differences were observed 
between the effect of the conventional and BAT leather making processes on 
these bacterial growths. This study confirmed one fundamental issue of interest 
and concern, that is, the ability of bacterial cells to recover and regenerate during 
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leather manufacture [50]. This is an important point to note when dealing with 
processed leather and leather products and their relation to the health of tannery 
workers. 

Careful consideration is still necessary regarding pathogen-related health 
issues even though the bacterial (Bacillus cereus, Pseudomonas aeruginosa, and 
Staphylococcus) counts were found to be low in processed leather. This is because, 
the risk of bacterial infections in humans may depend on many other factors, such 
as the tannery environment, the leather making procedures and the personnel 
involved in leather making processes. There is a likelihood that pathogenic bacteria 
may still be present and caution is recommended when dealing with hides/skins 
and leather products at any stage. Growth and proliferation of fungi in the hide/ 
skin and leather products also still require investigation, as various studies have 
shown that leather production may provide suitable conditions for fungal growth 
as BAT studies reported here did not include fungal study [51]. In addition to the 
above mentioned, areas for further qualitative and quantitative analysis is required 
to determine the presence of microorganisms in the tannery based solid waste as 
well, such as sludge, the fleshing, shavings, hair, buffing dust, and trimmings which 
are generated during leather processing. This is due to the fact that these wastes are 
now being recycled into different products and used for different purposes by the 
general populace. 

6. Pathogenic microbes on humans and on the leather products 

Although the majority of the isolated microbial species are non-harmful and do not 
cause infections to humans, studies also show that some species in the genera Bacillus, 
Staphylococcus, Pseudomonas, Klebsiella, Aspergillus, and Candida are considered 
pathogens or potential pathogens [52]. These microbes and others associated with 
animal skin and leather product cause diseases in human. For example, Escherichia 
coli and Enterobacter species can cause urinary tract infection, wound infection and 
abscesses septicaemia. Lactobacilli species are a rare cause of septicaemia, endocarditis, 
and meningitis [52]. Staphylococcus epidermidis, Staphylococcus aureus is the most 
common microbes found on the human skin and nose. About 25% of healthy people 
in the world carry these bacteria, according to the Centre for Disease Control and 
Prevention (CDC). Staphylococcus bacteria coexist peacefully on our body. If a person 
with low immunity gets the infection from someone else’s Staphylococcus, the bacteria 
can cause nasty skin infections, and pneumonia [52]. 

Klebsiella species may cause urinary tract infection, respiratory infection, and 
septicaemia. Klebsiella pneumoniae, Klebsiella oxytoca, Klebsiella granulomatis bacteria 
are generally found in human intestines, where they generally exist peacefully 
with others. However, different types of the bacteria can spread in the body and 
cause infection in sick patients in hospital environment, including pneumonia, 
blood infections, skin infections, and meningitis. Haemophilus influenza bacteria 
was mistakenly believed to be the culprit behind flu virus outbreaks long ago 
when it was first discovered in 1892. While most strains do not cause disease in 
humans, the bacteria can cause respiratory tract and heart valve infections and 
sexually transmitted chancre sores in those with weakened immune systems [52, 
49]. Streptococcus mitis, Streptococcus salivarius, Streptococcus mutans, Streptococcus 
pneumonia, Streptococcus pyogenes bacteria range greatly in their potential to cause 
disease and how they are spread in the environment. Group A of the Streptococcus, 
generally lives harmoniously in the throat or on the skin but can cause mild illnesses 
such as strep throat and skin infections. Group B of Streptococcus infections tend to 
be more severe and are more common in older or sick adults with the weak immune 
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system. Group B infections are reported to be the leading cause of meningitis and 
blood infections in newborn children. 

Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria lactamica, Neisseria 
cinerea, Neisseria polysaccharea, Neisseria mucosa, Neisseria flavescens, 
Neisseria sicca, Neisseria subflava, Neisseria elongata, Neisseria gonorrhoeae and 
Neisseria meningitidis are bacteria that live in humans. Only two Neisseria spp 
causes disease. These types are most notoriously known for causing meningitis 
and gonorrhoeae, which thrive in mucous membranes and they are normally 
spread through sexual contact. Neisseria generally live in the upper respiratory 
tract and are not harmful to humans. Bacteroides caccae, Bacteroides distasonis, 
Bacteroides eggerthii, Bacteroides fragilis, Bacteroides merdae, Bacteroides ovatus, 
Bacteroides stercoris, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides 
vulgatus bacteria have a complicated relationship with humans [52, 49]. When 
they are isolated from the gut, they assist in breaking down food and synthesising 
nutrients and energy for the body to use. When they escape the intestines, they 
can cause deadly infections in the blood and even form abscesses all over the body 
which is normally seen on the skin as signs of infection. 

Clostridium perfringens, Clostridium difficile, Clostridium tetani (only 
transiently associated with humans, do not colonise the intestines) bacteria are 
commonly found in the soil and human intestines, and generally do not cause 
problems. A few strains of clostridium can produce potent toxins, including 
botulism, tetanus, and an irritation of the intestines and cause a mild to a life-
threatening illness called Clostridium difficile, which causes inflammation of the 
intestines. Mycobacterium bacteria is most notorious for causing severe illnesses 
such as tuberculosis, leprosy, and Hansen’s disease, though most species of 
Mycobacteria in nature are benign in humans, unless in cases of those who have 
weakened immune systems. The Pseudomonas aeruginosa microbe is extremely 
versatile and can live in a wide range of environments, including soil, water, 
animals, plants, sewage, and hospitals in addition to humans. It seldom makes 
healthy people sick, but more typically causes blood infections and pneumonia in 
those who are hospitalised or have weakened immune systems. Mycoplasmas are 
particularly tricky to detect, diagnose, and eradicate in the human body. Though 
Mycobacteria belong to the normal flora in humans, most species of Mycobacteria 
are harmful and can cause respiratory and urinary tract infections [52, 49]. 
Thus microbes found in animal skins and are able to survive through the leather 
tanning process and reach human skin might cause diseases in people with weak 
immune system. 

7. Conclusion 

The most common bacteria found growing on leather purses are Micrococcus 
and Staphylococcus species each accounting for around two-thirds, followed by 
Bacillus (14%). Micrococcus was found to be more common on the men’s purses, 
while Bacillus was found only on women’s purses. In general, the study found out 
that the most common bacteria and fungus prevalence in leather are Micrococcus, 
Bacillus, Staphylococcus, Aspergillus spp, Trichoderma and Penicillium spp. Some 
are non-harmful and do not cause infections in humans. Other species within the 
genera of Bacillus, Staphylococcus, Pseudomonas, Klebsiella, Aspergillus, and Candida 
are pathogens or potential pathogens; therefore, they need to be monitored and 
controlled in skin and leather products to avoid their cross transfer as they can 
spread diseases in human. Thus, further studies on “leather microbiome” are of the 
essence to human health and disease. 
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Chapter 4

Extra Pulmonary Tuberculosis: An
Overview
Onix J. Cantres-Fonseca, William Rodriguez-Cintrón, 
Francisco Del Olmo-Arroyo and Stella Baez-Corujo

Abstract

Mycobacterium tuberculosis is the bacterium that as a single agent is known
to cause the infection with the most morbidity and mortality around the world.
It is known to cause pulmonary infection in immunocompetent patient, but
its dissemination outside the lungs has been linked to a high degree of cellular
immunosuppression as seen in the advance stages of human immunodeficiency
virus infection, and after chemotherapy. Despite extensive research, screening,
education, and continuous efforts to try to eradicate and control the infection,
tuberculosis is still one of the most prevalent infections throughout the world.
Even the cases of extra pulmonary dissemination are seen to have increased.
Extra pulmonary tuberculous dissemination has a very variable presentation
that depends on the organ involved. The diagnosis is difficult and many times
a long time passes between diagnosis and initial presentation. In this chapter,
we will review how tuberculosis infection presents when the bacilli invades any
tissue outside the pulmonary parenchyma, what the literature recommends for
the proper work up and diagnosis, and general treatment for major organ system
infection.

Keywords: tuberculosis, extra pulmonary, infection, mycobacterium

1. Introduction

Although it is well known that Mycobacterium tuberculosis can be pathologic to
any organ system, its manifestations can be so variable that sometimes it becomes a
challenge for the clinician to identify or even consider it as the cause of the patient’s
symptomatology. Most of the times, an extensive work up with invasive interven-
tions is required for proper diagnosis.

Extra pulmonary tuberculosis (EPTB), described this way when the tuberculous
mycobacterium invades areas outside the pulmonary parenchyma, has nonspecific
clinical findings developing insidiously [1] mimicking other noninfectious condi-
tions [2]. It requires a high clinical suspicion and carries a lengthy period from the
initial symptoms to the final diagnosis.

Nevertheless, its presentation can be extremely acute causing a life threatening 
condition [1]. Clinical presentation will vary according to the organ system involved 
and more than one organ could be involved at the same time. The initial step in
early identification is having knowledge of its findings in the proper clinical setting 
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and including them within the differential diagnosis. Even though some patients do 
not have the expected risk factors, tuberculosis is identified as the culprit of symp-
toms associated with other conditions. 

This illustrates the ample spectrum of extra-pulmonary tuberculosis manifesta-
tions. Vast medical knowledge helps the clinician to identify this condition in the 
adequate clinical scenario to pursue its diagnosis. 

In this chapter, a review of the most important clinical manifestations of extra-
pulmonary tuberculosis will be discussed. It will also review the required work up 
and specific treatment for other organs involved. 

2. Epidemiology 

Mycobacterium tuberculosis, as a single infectious agent, causes more deaths than 
any other infection [3]. Outside infectious diseases, it is the ninth leading cause 
of death worldwide [3]. According to the World Health Organization (WHO) 
and the Global Tuberculosis report, in 2016, the largest incidence of tuberculosis 
occurred in areas of Korea and Africa [3]. In 2016, more than 10 millions of people 
were infected with tuberculosis around the world [3]. Active tuberculosis occurs 
in approximately 10% of the infected patients, involving lung parenchyma only in 
approximately 85% of subjects [7], but the incidence of other organ involvement 
varies widely in endemic and nonendemic areas. 

Worldwide, the incidence of extra-pulmonary involvement of tuberculosis 
occurs in approximately 17–52% of all cases reported [4]. In other publications, 
the incidence from reported cases varies from 15 to 40%, with approximately 3–3.5 
cases per 100,000 of the population from 2002 to 2011 [5]. Although, the incidence 
has been stable or decreased in some areas, a report from 2003 to 2008 showed an 
increased worldwide incidence from 30.6 to 37.6% secondary to longer life expec-
tancy of immunosuppressed patients due to better medical care [6]. In the United 
States, the incidence of EPTB increased from 15.7% of the cases in 1993 to 21.0% 
in 2006 [8]. Therefore, EPTB continues to be an important presentation within 
tuberculosis infectious spectrum. 

The demography of EPTB cases varies widely among documented case series. 
A review published in Clinical Infectious Diseases in 2009 [6] revealed that from 
253,299 of tuberculosis cases reported in the USA from 1999 to 2006, 19% were 
extra pulmonary, while 8% were disseminated or concurrently pulmonary and 
EPTB. The mean age of this group was 44 years old, with a proportion of male 
to female almost one to one. Children (described in this population as less than 
15 years old) with reported EPTB were approximately 6% of the cases. This same 
publication revealed predominance of genitourinary and bone and joint involve-
ment in older patients (more than 60-year old), while children accounted for most 
of the cases of meningeal and lymphatic involvement. 

3. Organ involvement 

Tuberculosis can invade practically any organ. The proportions of organ 
involved in multiple publications suggest that most extra pulmonary tuberculous 
cases are seen with pleural, bone, and lymphatic involvement [6, 9]. In rare cases, 
the involvement can be localized to a specific organ [2], while 2–10% of the cases 
are reported to be disseminated within more than two organ systems [6, 9]. Most 
cases occur secondary to activation of previous pulmonary contagion. 
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4. Risk factors 

Multiple populations with tuberculosis have been studied. In a case series 
described by García-Rodríguez et al., the mean age of patients with EPTB was 
higher than patients with pulmonary disease [6]. EPTB cases increased with the 
age, but the anatomical sites varied according to the age [6]. More cases of lym-
phatic, joint, and bone involvement were seen as patients become older. The female 
to male ratio varied according to the organ involvement, but in general, the male to 
female ratio was similar to other publications, which was one to one. 

Although immunosuppression seen to be a risk factor for EPTB, a study pub-
lished in International Journal Tuberculosis Lung Disease in 2009 suggested that 
diabetes mellitus was a risk factor for pulmonary tuberculosis, but not for EXPTB 
[10]. The protective mechanism for extra pulmonary dissemination of tuberculosis 
is known. The same study concluded that patients with end stage renal disease had a 
predisposition for EPTB. A possible mechanism that increases the risk for dissemi-
nation is a decrease cell-mediated immune response. 

Other risk factors identified for extra-pulmonary dissemination include cirrho-
sis, malignancy, immunosuppressive drug use, alcoholism, HIV infection, chronic 
obstructive pulmonary disease (COPD), congestive heart failure, intravenous drug 
use, previous history of pulmonary tuberculosis, and history of cerebrovascular 
accident. There is not statistical analysis that linked all those causes as a direct risk 
factor for disseminated infection [10]. 

Cell-mediated immunosuppression has been linked to the development of tuber-
culosis and an increased risk of dissemination. Multiple reports and publications 
have linked HIV infection to the risk of developing EPTB. Among HIV patients 
admitted due to tuberculosis, almost 50% have extra pulmonary involvement [11]. 
Concomitant pulmonary and multi-organ involvement is common. Low counts 
of CD4 lymphocytic cells, which are in charge of cellular immune response, have 
been reported to be directly proportional to systemic dissemination, increasing 
the incidence of central nervous system (CNS) infection. Those patients with CNS 
involvement have higher mortality. Therefore, HIV infection predispose patients to 
EPT and its severity increase when CD4 levels decline to 200 cell/mm3. 

5. Pathophysiology 

Tuberculosis infection is caused by aerobic bacteria, Mycobacterium tuberculosis. 
Mycobacteria have a cell wall with considerable amount of a fatty acid, mycolic 
acid, attached to a peptidoglycan-bound polysaccharide arabinogalactan, which 
provide a strong barrier resistant to antibiotics and (natural) defense mechanisms 
[12]. Pulmonary tuberculosis is acquired throughout airborne droplets that get into 
lungs and lead to pulmonary infection. Most of the bacteria are trapped in alveolar 
macrophages and destroyed. The mechanism of macrophages engulfment includes 
complement cascade activation when protein C3 binds to the cell wall and enhances 
recognition of the mycobacteria by macrophages. Mycobacterium phagocytosis 
initiates a cascade of events that results in either successful control of the infection, 
followed by latent tuberculosis, or progression to active disease. 

After macrophage engulfment, they present the mycobacteria to T cell lym-
phocytes, which generate the formation of granulomas around the organisms. 
Granulomas have low levels of nutrients that restrict mycobacteria growth and 
therefore control the infection. Those patients with decreased immune response 
fail to control the infection and develop primary pulmonary infection. In patients 
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infected, droplets produced during coughing can further spread the infection to 
other patients. Dissemination of the mycobacteria to other organ systems can occur 
when the bacilli get into a blood vessel or throughout the lymphatic system. 

Reports suggest that most tuberculous empyemas and patients with vertebral 
bone involvement (Pott’s disease) develop after the transport of tubercle bacilli 
from the pleural spaces to the parasternal and the para-aortic lymph nodes and the 
breakdown of caseous foci in these nodes [13]. These reports also explain investiga-
tions in which guinea pigs were injected with various doses of virulent tubercle 
bacilli inside their pleural cavity, developing granulomas in the liver, parasternal 
and para-aortic lymph nodes, spleen and kidneys, suggesting systemic dissemina-
tion. It all begins after the pleural space is invaded, disseminating to the thoracic 
lymph nodes and blood vessels, further seeding in distant organs. 

6. Tuberculosis and organ system involvement 

6.1 Central nervous system 

Central nervous system tuberculous involvement occurs in approximately 
5–10% of extra pulmonary cases [14]. It is a rare disease within the whole tuber-
culosis spectrum. This presentation has the most dangerous and catastrophic 
consequences. 

Developing of CNS tuberculous infection has been linked to decreased cellular 
immune response as seen in HIV patients, malnutrition, alcoholism, malignancies, 
and the use of immunosuppressive agents [14]. Children and adolescents are more 
commonly involved with meningitis as the clinical presentation compared to adults 
(>15-year-old patients). In a study published in 2011, the mean age of patients with 
meningeal involvement is reported to be lower than those patients with infection in 
other organs such as lymphatic, bone and/or joint, and genitourinary [6]. 

Cases of EPTB are more common in older patients; however, a study from 
2011 suggested that patients with ages less than 15 years old accounted for 5.4% 
of all TB patients. Although children were less likely to have EPTB, 13.8% of 
them presented as meningitis [6]. Peak of meningeal presentation was higher in 
patients younger than 24-year old. However, another study suggests that 40–70% 
of children with meningeal tuberculous involvement were exposed by older 
patients [15]. Risk factors related to meningitis by tuberculosis in children are 
similar to those related to infections in other sites, most cases related to some kind 
of immunosuppression. Median age of young patients with meningitis is approxi-
mately 4 y/o, and it is uncommon for children less than 6 months old to present 
with meningitis [15]. 

The most common clinical presentation of central nervous system involvement 
is meningitis. Most patients present with a history of nonspecific symptoms as mal-
aise, anorexia, fatigue, fever, myalgia, and headache for approximately 2–8 weeks 
prior to the development of meningeal irritation [14]. In addition, neck rigidity and 
typical meningitis symptoms are more common in adults. These symptoms include 
depressed consciousness and nonspecific behavioral changes [14]. Tuberculosis 
can also cause focal nervous system deficits. Intracranial tuberculoma is the least 
common presentation. They are mass-like lesions that can be found in 1% of extra 
pulmonary patients with cerebral involvement and present with symptoms and 
signs of focal neurological deficit without the evidence of systemic disease [17]. 
Involvement of the spine occurs in less than 1% of TB patients, and it can be sec-
ondary to subjacent bone or soft tissue involvement [14]. Approximately 10% of 
patients with CNS tuberculosis have evidence of pulmonary tuberculosis [16]. 
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Diagnosis of intracranial mycobacterium tuberculosis infection requires cerebral 
spinal fluid (CSF) cultures or acid fast stains obtained by spinal tap or tissue biopsy. 
Rates of CSF culture positivity for clinically diagnosed cases range from 25 to 70% 
[14]. In some cases, large volume spinal tap is required for diagnosis. However, HIV 
patients usually require less amount of fluid for diagnosis. Drug sensitivity testing is 
important for appropriate treatment. CSF sensitivity for culture and smear staining 
decrease significantly after treatment has been started [14], for which rapid diagno-
sis is essential to warrant the best outcome. 

Polymerase chain reaction for Mycobacterium tuberculosis has also been used with 
variable results. Moreover, tuberculin skin tests and interferon gamma release assays 
could suggest exposure, but has limited utility for active disease diagnosis. Cerebral 
spinal fluid analysis for adenosine deaminase protein (ADA), an enzyme produced 
by lymphocytic proliferation differentiation during cell-mediated immunity, has 
also variable sensitivity for CNS infection. But standardized cutoffs have not been 
established. It has been used to predict CNS infection sequel that suggests poor out-
comes in patients with higher values [14]. However, ADA levels in CNS can be high 
in other infections and noninfectious CNS pathologies. Therefore, correct diagnosis 
still requires CSF or tissue sample for AFB stains and cultures for mycobacterium. 

Prompt therapy initiation with intravenous medications is extremely important 
for the treatment of tuberculous meningitis. First, line therapy for tuberculous 
CNS infection includes a combination of isoniazid, rifampicin, pyrazinamide, and 
ethambutol, which has to be taken daily. The recommended minimum duration 
is 10 months of therapy, which can be extended to 12 months if any interruption 
occurs during therapy. All medications have good hematoencephalic penetrance. 
On the other hand, monotherapy is not recommended due to the risk of developing 
an antimycobacterial therapy resistance, especially with isoniazid. 

CNS lesions causing mass effect and hydrocephalus may require neurosurgical 
evaluation and cerebral decompression. 

Systemic anti-inflammatory therapy with steroids should be started con-
comitantly (see Table 1). The use of anti-inflammatory medication has shown to 
decrease mortality without additional risk of adverse events [18]. Based on animal 
studies, the benefit of steroid therapy results from the reduction of the inflam-
matory process with a subsequent decrease in cerebral and spinal cord edema and 
brain pressure [18], with less disruptions in blood flow and cerebral perfusion. 

In view of this, early diagnosis and initiation of antituberculous therapy with 
systemic steroids are vital to decrease mortality and improve outcome in patient 
with CNS tuberculous infection. 

6.2 Thoracic extra pulmonary tuberculosis 

It is believed that the development of extra pulmonary manifestation starts after 
mycobacterium bacilli invade pleural cavity from subjacent pulmonary paren-
chyma and then migrates to the lymphatic system, blood vessels, and eventually 
to other organs outside the thoracic cavity. For this reason is important to rule out 
pulmonary parenchymal tuberculosis when a patient is suspected to have a pleural 
effusion secondary to pleural invasion. Manifestations of tuberculosis in the pleural 
cavity could present either as pleural effusion or empyema. Pneumothorax as a 
result to parenchymal cavitary lesion rupture can also be seen. All pleural tubercu-
lous involvements can end up in pleural tissue fibrosis or fibrothorax. 

Fluid accumulates in the pleural cavity as a consequence of a hypersensitivity 
reaction to bacilli mycobacterium in the pleural space. Pleural tuberculosis occurs 
approximately in 5% of patient with tuberculosis in USA and can reach as high 
a 30% of patients within high prevalence populations [19]. Tuberculous pleural 
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Infection site First line therapy Duration Adjunctive therapy 

Central nervous 1. Isoniazid, Rifampicin, 1. 9–12 months 1. Systemic steroids 
system Pyrazinamide* 2.9–12 months 2.Surgical Resection 
1. Meningitis Isoniazid, Rifampicin, (if mass effect or 
2.Mass like lesion Pyrazinamide* hydrocephalus) 

Thoracic extra Isoniazid, Rifampicin, 6 months Percutaneous drainage or 
pulmonary Pyrazinamide and surgical evacuation 
tuberculosis Ethambutol 
1. Tuberculous 

Pleurisy 
2.Empyema 

Gastrointestinal Isoniazid, Rifampicin, 9–12 months 
tuberculosis Pyrazinamide and 

Ethambutol** 

Genitourinary Isoniazid, Rifampicin, 6–12 months (2 Surgical resection in case of 
tuberculosis Pyrazinamide and months of the 4 genito-urinary obstruction 

Ethambutol drugs followed 
by 4 months of 
Isoniazid and 
Rifampin) 

Skeletal tuberculosis Isoniazid, Rifampicin, 6–12 months (2 Surgical resection in case of 
Pyrazinamide and months of the 4 abscess formation or cord 
Ethambutol* drugs followed compression 

by 4 months of 
Isoniazid and 
Rifampin) 

Cutaneous Isoniazid, Rifampicin, 6–12 months Colchicine, NSAID’s, 
tuberculosis Pyrazinamide and potassium iodine, 

Ethambutol dapsone, tetracyclines and 
antimalarial 

*Streptomycin can be added based in susceptibility. 
**Therapy also can be based on susceptibility including Levofloxacin, Linezolid and Streptomycin. 

Table 1. 
Extra pulmonary tuberculosis treatment. 

effusions usually occur in the right side; these are small to moderate in size and are 
characterized as an exudate fluid. Fluid analysis is characterized with high protein 
levels (>5 g/dL), cell count around thousands, and lymphocytic predominance. It 
usually presents with more than 80% of lymphocytic predominance, and depend-
ing on the time of diagnosis, variable amounts of lymphocytes from 20 to 90% has 
been seen. In addition, low pH and low glucose levels can also be seen in pleural 
fluid analysis. Long standing effusions result in a highly acidic fluid. Lactate dehy-
drogenase enzyme (LDH) levels usually range above 500 IU/L [19]. 

Adenosine deaminase (ADA) levels (see CNS involvement) are of particular util-
ity in suspected tuberculous pleural effusions. The diagnostic use of ADA depends 
on its sensitivity and specificity and the regional prevalence of the infection. In a 
high prevalence population, an elevated ADA level (>40 U/L) is considered con-
firmatory with a clear indication for therapy. In low prevalence populations, a low 
ADA level (<40 U/L) has a high negative predictive value and therefore, rules out 
the diagnosis [19]. There are cases where ADA levels are not considered reliable, for 
example, in patients with pulmonary, pleural or hematologic malignancies, nontu-
berculous bacterial infections and also in those who underwent pleural procedures. 

Acid fast staining and culture test have limited diagnostic utility. Patients with 
pleural effusions of unknown etiology should be evaluated for a possible infectious 
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cause, including tuberculosis. This is essential in patients with history of TB expo-
sure, immunosuppression (including HIV), and pleural effusions with nonspecific 
characteristics, and lymphocytic cell count predominance. 

Acid-fast smears are almost always negative. Positive cultures for mycobacte-
rium tuberculosis have been reported in 10–70% of the cases [19], and consequently 
pleural fluid culture analysis has a low diagnostic yield. Positive culture is directly 
proportional to the level of immunosuppression. In an HIV patient, the yield 
doubles (20%) compared to the immunocompetent patient (10%). It is more com-
mon to obtain a positive culture in a liquid media versus solid media [19]. Positive 
pleural fluid cultures are useful for drug therapy sensitivity and should be obtained 
in every case of suspected tuberculous pleural effusion. 

Pleural biopsy is considered one of the best diagnostic methods when tubercu-
lous pleurisy is suspected. Definite diagnosis is obtained if mycobacterial bacillus 
is detected in the smear, culture or pleural tissue biopsy. In the appropriate clinical 
setting, the presence of granuloma obtained after pleural biopsy is highly suggestive 
of tuberculous pleurisy and demands treatment. 

Percutaneous biopsy has a yield of almost 90% when guided by ultrasound 
[18]. When pleural biopsy is performed, the instruments and technique used 
varies, but the yield improves when at least six samples are taken from different 
quadrants [20]. More invasive procedures such as thoracoscopy and open surgical 
biopsies have good diagnostic yields. Access to these techniques is limited in areas of 
endemic tuberculosis, and for this reason, less invasive work up is the usual diag-
nostic approach. When a pleural effusion is suspected to be of tuberculosis origin, 
without evidence of pulmonary parenchymal involvement, a positive ADA in 
endemic areas is considered diagnostic. A low ADA level (<40) needs further work 
up including pleural biopsy. In low prevalence populations, a low ADA almost rules 
out tuberculosis and in these cases other etiologies must be considered [18]. 

Treatment for isolated pleural tuberculosis does not differ from pulmonary 
tuberculosis. Unless the effusion is characterized as an empyema, drainage is not 
required, and the effusion is expected to resolve by itself in weeks after commence-
ment of treatment. 

6.3 Gastrointestinal tuberculosis (abdominal tuberculosis) 

Gastrointestinal tuberculosis (GI Tb) is relatively rare in the United States and 
is the sixth most common extrapulmonary location. Populations at risk include 
immigrants to the United States, the homeless, prisoners, residents of long-term care 
facilities, and the immunocompromised. The peritoneum and the ileocecal region are 
the most likely sites of infection and are involved in the majority of cases by hema-
togenous spread or through swallowing of infected sputum from primary pulmonary 
tuberculosis. Pulmonary tuberculosis is apparent in less than half of patients. 

GI TB is a major health problem in many underdeveloped countries. In those 
with HIV infection, it is more present. 

In those with pulmonary Tb, intestinal involvement was largely present before 
effective therapy was available. 

However, approximately 20–25% of patients with GI TB have pulmonary 
TB. The ileum and colon are the common sites involved [21]. 

Other comorbidities associated with lower GI tract TB have been in other series 
type II diabetes mellitus (23%) and alcoholism (23%). Half of the stool cultures for 
Mycobacterium tuberculosis yields positive for it. This is similar to what is found with 
biopsy cultures of affected GI tract [22]. 

Treatment with 6 months antituberculous therapy has been found to be as effec-
tive as 9 months of therapy in patients with intestinal TB [23]. 
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6.4 Specific situations 

Esophageal Tb is the least common site of Tb in the GI tract [24]. Stomach and 
duodenal involvement by TB is rare because of (1) the high acidity of peptic secre-
tions and (2) diminished amount of lymphoid tissue in the first part of the GI tract. 
Dyspepsia, diffuse abdominal pain, is frequent. 

Clinical features of intestinal TB include abdominal pain, weight loss, anemia, 
and fever with night sweats. Patients may present with symptoms of obstruction, 
right sided pain [25]. 

Malabsorption may be caused by obstruction that leads to bacterial overgrowth, 
a variant of stagnant loop syndrome. Involvement of the mesenteric lymphatic 
system, known as tabes mesenterica, may retard chylomicron removal because of 
lymphatic obstruction and result in malabsorption. 

The ileum is more commonly involved than the jejunum. Ileocecal involvement 
is seen in 80–90% of patients with GI TB. The latter is due to the abundance of 
lymphoid tissue in the distal ileum [26, 27]. 

If ascites is present, the measurement of ascitic fluid adenosine deaminase levels 
is reasonable. Laparoscopic biopsy samples from the peritoneum should be stained 
for acid-fast bacilli (AFB), and cultures should also be obtained with a reasonable 
yield [28, 29]. 

6.5 Genitourinary tuberculosis 

Tuberculosis usually goes into the genitourinary system after reactivation of 
previous acquired disease. This is the second most common presentation of extra 
pulmonary disease, following lymphatic spread of infection [30]. Tuberculous 
bacilli infect renal and reproductive organs after they travel through the circulatory 
system. Genital involvement also occurs by cutaneous lesions during sexual contact 
or by contaminated instrumentation. 

Genitourinary involvement mostly occurs after reactivation of latent disease, 
and time to reactivation occurs years after primary infection. Cases reported usu-
ally involve older patients with a median age above 40 year old and mostly affects 
male patients [23]. The urinary tract is usually involved and it can manifest as a 
simple cystitis or pyelonephritis with or without hematuria and renal failure. 

When renal function is affected, the patient has urinary tract obstruction or 
an interstitial nephritis. The prostate, seminal vesicles, and epididymis are rarely 
affected. Epididymis is the most common genital organ involved in men followed 
by prostate [30]. Testicles involvement is very rare. In women, fallopian tubes and 
uterus are the most common genital organs involved and can cause infertility in 
small percent of young women [30]. 

Diagnosis is done showing evidence of bacilli in stain or cultures in urine or tis-
sue obtained from the genitourinary tract. Granulomas and acid-fast bacilli can also 
be seen in tissue specimens from kidneys and reproductive organs [31]. Treatment 
is usually the same as pulmonary tuberculosis, with approximately 6–8 months as 
the recommended duration of therapy. 

6.6 Skeletal tuberculosis 

Skeletal tuberculosis presents with certain variability. It is responsible about 
10% of all cases of extrapulmonary tuberculosis in the United States of America, 
with a highest prevalence among those immigrants who come from endemic areas. 
The proportion is no different between those patients infected with HIV versus 
those not infected. The most common affected area is the spine, follow tuberculous 
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arthritis, and follow by extraspinal osteomyelitis. Young individuals are more likely 
to be affected in highly endemic are while adult patients are more frequently in low 
endemic together with a late presentation [32, 33]. 

The associated pathogenesis resides in disease confinement at the bone and 
the synovial fluid. It results after seeding during primary infection. Cellular and 
adaptive response are responsible of disease containment until reactivation which 
related to immunity failing which can be seen in different settings including 
older age, renal failure, malnutrition, and acquired immune deficiencies. Skeletal 
involvement shows histopathological pattern of caseous exudative or granular. The 
first occurs more frequently in children and it is characterized by inflammatory 
changes, bone destruction, abscess, and sinus tract formation. The last is much 
slower and much less destructive. Any bone can be infected with tuberculosis. 
Clinical manifestations include spondylitis, arthritis, and osteomyelitis [33, 34]. 

Tuberculous spondylitis (also known as Pott’s disease) is the most common 
presentation. It is responsible for one half of the bone-related cases and most com-
monly affects the lower thorax and upper lumbar region. The infection starts at the 
anterior area of the vertebral joint and locally spreads to the anterior ligament after 
that it will affect the local vertebral body. Once the adjacent vertebra is affected, 
it proceeds to involve the intervertebral disk space with vertebral narrowing and 
further collapse. This finding may lead to distortion of the spinal canal anatomy and 
possible neurologic compromise. Although continuous spinal infection is uncom-
mon, it has been documented [35]. Less than 40% of the patients presents with fever 
and weight loss. Symptoms include progressive local pain over the weeks with asso-
ciated muscle spam and rigidity. The patient may present with an erect posture with 
associated short steps. Unfortunately, due to the lack of medical access on endemic 
regions, many of these patients will present with cord compression. Radiography 
changes are first appreciated in the anterior part of the vertebral body showing areas 
of demineralization and loss of margin contour. Findings of next vertebral involve-
ment are common. Sclerotic changes persist but the rest of the vertebra remains 
without involvement [36]. Although the disk is commonly obliterated, collected 
data show that multiple sites and sparing of the disk are possible [37]. 

Arthritis may occur as part of direct infectious process to the joint or due to an 
inflammatory response. The infectious process is monoarticular and may affect 
any joint but most commonly the hip. The symptoms progress from weeks to 
months and presents with chronic swelling, pain, and loss of function without 
erythema. Constitutional symptoms occur in less than 30% of the cases [38]. The 
joint presents with effusion and loss of function with associated granulomatous 
changes, such changes lead to distortion and deformity of the joint. Treatment may 
include total hip replacement if debridement and antituberculous treatment is given 
[39]. Prosthetic joints can also be affected but it is very rarely. While arthroplasty 
may have an adequate outcome, infections related to hardware may co-exist with 
other bacterial infections. The same is painful, and hardware needs to be removed. 
On the other hand, symmetrical polyarthritis may involve large and small joints 
without local evidence of active TB, despite the presence of military, pulmonary, or 
extrapulmonary manifestations of the disease. Poncet’s disease, other name given 
to the condition, seems to be immune-mediated and related to HIV co-infection. 
The inflammation resolves after starting antitubercular treatment without evidence 
of joint destruction [40]. Phemister triad may be observed in this case. The same 
consists of juxta-articular osteopenia or osteoporosis, peripheral osseous erosions, 
and gradual narrowing of the joint space. Although there is also evidence of local 
swelling and bode destruction, there is a preservation of the cartilage space. 

Osteomyelitis may occur in any bone of the body, and it is more commonly 
insidious but the case has described acute and subacute onsets, which are very rare. 
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Clinical scenarios may include suspected malignancies or metastasis, but those find-
ings are due to lytic tubercular lesions. It presents in unusual areas such as symphysis 
pubis, elbow, and sacroiliac joint [41]. Small bones may be affected without evidence 
of active pulmonary disease [38]. Ribs and sternum may also be affected. The firs 
may be confused as a breast or chest wall mass. The second may occur after coronary 
bypass surgery due to previous mediastinal involvement or as primary focus [42]. 
Radiological evident is usually present at the time of clinical presentation. There 
is osteolytic changes with minimal or none inflammatory changes, periarticular 
osteopenia, soft tissue swelling, and minimal or periosteal elevation [43]. 

Musculoskeletal involvement may also be seen at the epidural space, as an 
extraspinal mass or psoas abscess. The presentation may cause cord compression, 
rib erosion, and sinus tracts to the groin, respectively. 

The diagnosis of musculoskeletal tuberculosis is challenging considering its 
indolent progression and clinical presentation. Caliceal suspicion is warrant and 
detail travel history and exposition in needed. In addition, although, a chest X-ray 
neither includes nor excludes the presence of extrapulmonary manifestation, and it 
may give a clue of current situation or evidence of previous infection. Other studies 
such as computer tomography, myelography, and MRI help to describe in detail joint 
and spinal cord involvement. Biopsy with microscopy and culture of the suspected 
or infected area is need for drug testing and identification of isolates. Synovial 
biopsy is needed in case of TB arthritis is considered. The fluid may be aspirate and 
verified but findings and usually nonspecific. In case of findings or with draining 
sinus, culture of the latter may help to identify the pathogen, although polymicro-
bial isolates and fungal results may be present and misleading [44]. 

Treatment is very similar to pulmonary TB. However, the course of therapy 
relies in whether the drug regime includes rifampin or not. Data suggest that dose 
that include rifampin may be shorter and as equally as effective as longer treatments 
(6–9 vs. 9–12 months). Shorter courses such as 6 months may be suitable on those 
cases that involve radical surgical resections [45]. Also, randomized clinical trials 
show comparable results after 5 years of treatment on those patients who received 
isoniazid with rifampin for 6–9 months vs. those who received isoniazid with either 
paraminosalicylic acid or ethambutol. Sixteen surgeries are required in different 
settings such as chest wall abscess, spinal diseases with a kyphosis of more than 
40°, and spinal disease with progressive neurological deficits while on treatment 
or just advance neurological deterioration. This would lead to different alternatives 
such as decompression, drainage, debridement, and hardware placement for spine 
stabilization [46]. 

6.7 Cutaneous manifestations of tuberculosis 

Although uncommon, tuberculosis also has skin manifestations. The same 
have been documented since 1826 and occurs in 1–2% of the infected individuals. 
Cutaneous classification varies, and it depends not only on clinical appearance but 
also on the method of infection, predisposing factors, and pre-existing TB expo-
sure. The bacterial load may be variable, the same may be easily or difficult to detect 
[47]. Mode of infection may be due to inoculation secondary to exogenous source, 
endogenous (continue infection), or hematogenous spread. 

Exogenous inoculation can occur due to primary inoculation or due to tuber-
culosis verrucosa cutis (TBVC). Primary inoculation is rare and occurs after direct 
skin invasion of a previous nonsensitized patient. Children of endemic areas are 
more affected. However, surgical procedure with infected equipment, piercing, 
and tattoos has been identified as causals. The infection is clinically apparent by the 
fourth week. A painless brown papule or nodule shallow about 1 cm affecting the 
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face and extremities. The lesion progresses slowly, and regional painless lymphade-
nopathy develops. The same may cause sinus draining tracks following skin perfora-
tion. Diagnosis relies on the tissue sample, acid fast, and culture. If left untreated, 
the patient became sensitize to tuberculin test. Hematogenous spread is possible 
resulting military pattern [48]. 

On the other hand, TBVC occurs after direct inoculation in a patient who is already 
sensitized with TB. Children of endemic areas are at high risk and those who are occu-
pationally related. In children, the buttocks and ankles are more commonly affected, 
while in adults, it occurs more frequently at the fingers and the dorsum of the hands. 
It also presents with red-brown painless but warty plaques that grows peripherally. 
Ulceration and regional lymphadenopathy is not common, it may co-exist with bacte-
rial infection. Diagnose may be challenge. Culture form the lesion are usually negative, 
tuberculin test is positive, and interferon gamma assay may play a role in the diagnosis. 
Biopsy superficial dermal pseudoepitheliomatous hyperplasia with hyperkeratosis and 
microabscess in the dermis or pseudoepitheliomatous rete pegs. The upper and middle 
dermis shows inflammatory infiltrates of giant and epithelioid cells. Patient usually 
responds to anti-TB treatment. If left untreated, lesions may persist [49]. 

Cutaneous involvement may also be causes by contiguous spread presenting as 
Scrofuloderma, tuberculosis cutis orificialis, and lupus vulgaris. Scrofuloderma 
are painless red-brown nodules subcutaneously located most commonly at the 
axillar, neck, and groin areas. The infection occurs because of direct extension of 
the infection from deeps structures invading the skin. Cervical nodes are the most 
common site of infection. They tend to enlarge forming ulcers and sinus tracts and 
may follow a line lymphoid distribution. Although the infection has been related to 
Mycobacterium tuberculosis, it has been described in other in mycobacterial infec-
tions other than tuberculosis such as bovis and following BCG vaccination [49]. 
The lesion may be healed spontaneously, but it may take a long time to leave a scar. 
Lupus vulgaris may be developed in association to the later. Children, adolescents, 
and older adults are more commonly affected. Diagnosis is made by smear, culture, 
and biopsy. Tuberculin test is usually positive, and concomitant pulmonary disease 
is common [50]. 

Tuberculosis cutis orificialis (TBCO) is a rare manifestation of characterized by 
painful ulcers with pseudomembranous fibrous base from a prior red-yellow nodule 
with associated inflammation. The lesion may be sited at the oral, nasal, or anogenital 
area. It affects middle age and older adults with advance immunodeficient disease (cell-
mediated). Most of these patients already have a progressive, pulmonary, gastrointes-
tinal, or genitourinary advance TB disease. Tuberculin test is usually positive. Clinical 
course is usually poor leading to disseminated military TB. Diagnosis relies on biopsy 
smear and bacilli identification with the identification of them at the ulcer. The same is 
also associated with tubercular granulomas at the edge of the ulcer and deep dermis. 

Lupus vulgaris results as a manifestation of TB reactivation. Is a chronic mani-
festation that can occur by direct extension, lymphatics, or hematogenous spread? 
It occurs more frequently on females than males, and it is the most common for old 
TB skin manifestation in Europe. Despite this, it has a different distribution which 
varies with geographical location. For example, in western countries, the distribution 
is more common located at the head and neck areas, while in subtropical or tropical 
areas is more common at the lower extremities [49]. The skin lesion is red-brown 
papule that progresses into a nonpainful plaque. The same grows up to 10 cm devel-
oping areas of atrophy with associated central clearing. There are also variations of 
the lesion, where it can develop hypertrophy and ulcerations. It may also infect with 
other infections. As can be appreciated in other forms of granulomatous disease, 
lesion can have a yellow-brown contour with “apple jelly” appearance [49]. Diagnosis 
may be difficult, since it cannot be detected by culture or histopathology. PCR plays 
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a role in the identification of the mycobacteria. Although some cases have described, 
Mycobacterium bovis has potential pathogen. Pathology will show tuberculoid 
granulomas with central caseated lesions at the dermal area. The epidermal area may 
reveal atrophy acanthosis, hyperkeratosis. The disease, also known as Lupus TB, 
requires the use of anti Tb treatment. If not, the size of the lesion progresses develop-
ing ulceration of the skin with loss of architecture. Also, progression to skin-related 
cancer, such as squamous cell carcinoma, has been documented [50]. 

Skin lesion may also result from hematogenous spread from primary site of 
infection leading to metastatic tuberculous abscess, acute military TB, or lupus 
vulgaris. The first, metastatic tuberculous abscess occurs after developing cell-
mediated immunodeficiency occurring in adults and malnourished children. The 
abscess may be single or multiple forms subcutaneous nontender nodules that 
progress to ulcer and sinus tract formation without lymphadenopathy [49, 51]. Any 
part of the skin may be affected more commonly the extremities. The metastatic 
infection usually confers a poor prognosis in the predispose individuals. Diagnosis 
is done after the findings of bacillus formation in culture, smears, or biopsies. 
Histopathological, there is evidence of ample skin necrosis, may show granulomas 
at the dermis. Unfortunately, tuberculin test results are variable [51]. 

Acute miliary TB is a rare manifestation that occurs more frequently in patients 
with deficient cell-mediated immunity such as infants and acquired immunodefi-
ciency syndrome. Lesions are pinpoint red-bluish or purpuric papules with associ-
ated vesicles that furtherly become crusted. The lesion may resolve in the following 
weeks leaving hypopigmented scar like tissue. Skin biopsy plays a role in the diagno-
sis where mycobacteria are frequently identified. TST is usually negative [51]. 

Patient who have a higher immunity may develop hypersensitivity reaction 
manifestation as tuberculid. The lesions may be papulonecrotic, lichen scrofuloso-
rum, and erythema induratum of Bazin (EIB). The identification of a tuberculid 
is supported after the following: presence of detectable infection such a TST and 
interferon gamma release assay, identification of granulomatous lesion in the skin, 
failure to identify Mycobacterium tuberculosis in cultures and stains, and noted, the 
resolution of the skin lesions after anti-Tb treatment. 

Papulonecrotic tuberculid is the most common. It occurs more frequently in 
children and young adults. It is a dark violaceous papule that progress to pus-
tular and necrosis. It is more commonly located in the face, neck, extremities 
extensor areas, and buttocks. It may be recurrent if left without treatment [51]. 
Constitutional symptoms occur prior the lesions and lymphadenitis can be appreci-
ated [51]. The lesions may resolve alone leaving residual scars. Diagnosis is based 
on history of TB and evidence of wedge necrosis at the dermal and epidermal areas 
with granulomatous inflammation, mycobacterial DNA identification, and prob-
able focus. TST is usually positive, and lesion resolves with anti-TB treatment. 

Lichen scrofulosorum is rare and presents more frequently in children and 
young adult with previous infection at the lung, bone, lymph nodes, or intracranial. 
The lesion is small 1–5 mm red-brown -yellow commonly located at the truncal area 
[49, 51]. The lesions may resolve spontaneously without treatment. It does not leave 
a scar, and anti-TB treatment brings complete resolution. As other tuberculid, the 
diagnosis is based on clinical presentation, histopathologic findings (tuberculid 
granulomas at the upper dermis and tuber, glands, and hair follicles). TST is usually 
positive with negative mycobacterial culture. 

Panniculitis of the lower extremity (EIB) may be seen in patients with TB. The 
manifestation usually occurs in middle age young females. The lesion is tender, 
red, subcutaneously located at the posterior aspects of the leg. The nodules may 
progress forming draining ulcers. Its course is chronic and resolves alone leaving 
scars. Anti-TB treatment is recommended. If panniculitis is associated to TB, TST is 
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often positive. Diagnosis is based on clinical history and histopathological find-
ings. Mycobacterial DNA may be identified by PCR but not always. Biopsy needs to 
include subcutaneous fat in a wedge fashion. The sample should reveal lobular with 
or without septal panniculitis, poorly form granulomas, necrosis of the fat with 
mixed inflammatory cells. Vasculitis may also. Other treatment alternatives include 
colchicine, NSAID’s, potassium iodide, dapsone, tetracyclines, and antimalarial. 
Other kind of tuberculid, similar to EIB, is the nodular pattern occurs at the same 
areas but the granulomatous findings occur at the dermal-subcutaneous fat junction 
without ulceration or evidence of panniculitis. 

7. Conclusions 

Tuberculosis can invade almost any organ through the lymphatic system and 
blood dissemination. The manifestations of extra pulmonary tuberculosis can be 
variable depending on the organ and the system involved. The diagnosis is made 
through a high suspicion in the predisposed populations, and many times, extensive 
diagnostic tests that usually involve cultures and/or biopsies of the infected tissue. 
This is one of the infectious affections with a greater range of presentations, capable 
of pretending to be other noninfectious diagnoses. 
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