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Preface

Nature has four phases: solid, liquid, gas, and plasma. All phases except solid 
are in flowing states without having fixed molecular structures. In physics, 
matter and energy are known as exchangeable quantities, and water is a vital 
resource for human life as it makes up more than 70 percent of the human 
body. In engineering practices, humans create an artificial non-equilibrium 
state and induce nature to seek a local equilibrium within a reasonable time 
scale. Gradients of some physical quantities such as mass, heat, and momentum 
generate their fluxes that are amounts passed through a unit surface area per 
unit time. Engineering can be understood as a set of processes that convert these 
spontaneous fluxes into available resources. Fluid dynamics stems from Newton’s 
second law for many individual particles interacting in viscous motion, which is 
represented using Navier–Stokes equations. Water is one of the representative 
fluids in engineering and sciences, having a pseudo-constant density, indifferent 
from temperature. A water molecule consists of one oxygen and two hydrogen 
molecules, of which molecular interactions determine the macroscopic proper-
ties. The hydraulic pressure can be explained, instead of force per unit area, as 
energy per unit volume that is equivalent to an energy density providing better 
understanding due to its scalar nature. Fluid mechanics is linked to statistical 
mechanics through pressure. The pressure is proportional to the negative gradi-
ent of the enthalpy per mass in an adiabatic system or Helmholtz energy per 
mass in an isothermal-isovolumetric system. Fluid dynamics is, by definition, a 
problem of solving the Navier–Stokes equation within a reasonable time frame. 
Computational fluid dynamics (CFD) is often used to analyze, optimize, and 
predict engineering phenomena and processes of practical interest. Transport of 
molecular matter such as salts, contaminants, reactants, and even macro-organ-
ics is often described using continuum equations that include convection, diffu-
sion, reaction, and sourcing processes. When particles and solutes move relative 
to a moving fluid, (simultaneous) translation and rotation of multiple particles 
provide the intrinsically coupled feedback to the local fluid motion. Coupled 
simulations of fluid and particles are possible in principle but computationally 
challenging due to the mathematical complexity and computation demand. CFD 
simulation results can be, therefore, much more efficiently used if simulation 
runtime is significantly reduced so that more candidates of probable engineering 
scenarios are thoroughly investigated. On the other hand, highly accurate results 
are also of great necessity in fluid dynamics fundamentals. Open problems in 
CFD research literature include seamlessly merging fluid and particle dynam-
ics while their relative motion is coupled due to the viscous characteristics of 
the solvent and rigorous analytic solutions for flow fields in geometrically less 
complex channels. In this vein, this book covers a wide range of state-of-the-art 
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CFD topics, providing future perspectives of advanced CFD methods as general 
tools of multi-physics simulations for sciences and engineering disciplines.

Albert S. Kim 
Department of Civil and Environmental Engineering, 

University of Hawaii at Manoa, 
Honolulu, Hawaii
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Chapter 1

A Coupling Algorithm of
Computational Fluid and Particle
Dynamics (CFPD)
Albert S. Kim and Hyeon-Ju Kim

Abstract

Computational fluid dynamics (CFD) and particle hydrodynamics (PHD) have
been developed almost independently. CFD is classified into Eulerian and Lagrang-
ian. The Eulerian approach observes fluid motion at specific locations in the space,
and the Lagrangian approach looks at fluid motion where the observer follows an
individual fluid parcel moving through space and time. In classical mechanics,
particle dynamic simulations include molecular dynamics, Brownian dynamics,
dissipated particle dynamics, Stokesian dynamics, and granular dynamics (often
called discrete element method). Dissipative hydrodynamic method unifies these
dynamic simulation algorithms and provides a general view of how to mimic parti-
cle motion in gas and liquid. Studies on an accurate and rigorous coupling of CFD
and PHD are in literature still in a growing stage. This chapter shortly reviews the
past development of CFD and PHD and proposes a general algorithm to couple the
two dynamic simulations without losing theoretical rigor and numerical accuracy of
the coupled simulation.

Keywords: computational fluid dynamics (CFD), computational fluid and particle
dynamics (CFPD), dissipative hydrodynamics, tetrahedron mesh,
mesh interpolation

1. Introduction

The first simulations of a liquid were conducted at the Los Alamos National
Laboratory in the early 1950s, using the Los Alamos computer, Mathematical Ana-
lyzer, Numerical Integrator, and Computer (MANIAC). This computer was devel-
oped under the direction of Nicholas Metropolis, who is the pioneer of the modern
(Metropolis) Monte Carlo simulation [1, 2]. The first MC simulation was conducted
using the Lennard-Jones potential to investigate the material properties of liquid
argon [3]. In the MC simulations, the phase space was searched to find more
probable thermodynamic states and calculate macroscopic material properties (i.e.,
experimentally observable) using averages of the same physical quantity over the
micro-thermodynamic states. In principle, the MC method assumes that the system
of interest is in a static equilibrium state, and therefore, the time evolution is
replaced by the phase-space averaging. The Boltzmann factor is used as a transition
probability between two energy states.
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The first CFD paper was published by Hess and Smith [4]. Their method is
known as panel method as the surface was discretized with many panels. More
accurate CFD work of advanced panel method can be found elsewhere [5, 6]. In
general, CFD research is categorized by Eulerian and Lagrangian approaches, which
are grid-dependent and meshfree, respectively. In the Eulerian category, the CFD
performance regarding numerical accuracy and computational speed depends on
how to discretize the computational domain. Popular methods include finite vol-
ume method (FVM) [7], finite element method (FEM), finite difference method
(FDM), spectral element method (SEM), boundary element (BEM), and high-
resolution discretization schemes.

The deterministic molecular dynamic (MD) method treats a particle as a point
mass, which has a finite mass and other physical properties but does not have any
volume and shape. Given external and interparticle forces, positions and velocities
in linear motion are predicted using Newton’s second law for N particles. When the
motion of solute molecules in the solvent fluid is of concern, then the deterministic
forces form solvent to solute molecules can be mathematically replaced by random
fluctuating forces. These random forces have a zero mean over time, and its mag-
nitude is determined by the dissipation fluctuation theorem [8].

Langevin’s equation includes the hydrodynamic drag balanced by the random
forces due to thermal fluctuation [9]. Solving N body Langevin equation is called
Brownian dynamics (BD) [10]. Although BD can include effects of particle sizes in
the dynamic simulations, it is fundamentally limited to the low concentration of
solutes due to the Oseen tensor (see Appendix for details). Brownian dynamics
(BD) was initially developed to reduce computational load by replacing determin-
istic interactions between a solute molecule and many solvent molecules by ran-
domly fluctuating, probabilistic interaction as a net driving force. BD presumes a
dilute solution, which means that a mean distance between solutes is much longer
than the size of the molecule. A large number of solvent molecules exist around
solutes, which is enough to exert random forces due to a tremendous number of
collisions. When BD is applied to the dynamic motion of multiple particles, the lack
of hydrodynamic interactions may provide erroneous results because the
fluctuation-dissipation principle is not quantitatively well balanced. This limitation
of BD to a single particle or a dilute solution is at the equivalent level of Stokes’ drag
coefficient, used to calculate the particle diffusivity.

Dissipative particle dynamics (DPD) is an updated version of BD, which
specifically includes the interparticle hydrodynamic forces [11, 12]. Two functions,
often denoted as wR and wD, are proposed to quantify the presumed relationship of
pair-wise hydrodynamic forces/torques, determined by the dissipation fluctuation
theorem. The proposed forms of the hydrodynamic interaction are vector wise
as the real viscous forces are tensor-wise. Dissipative particle dynamics (DPD)
updates BD by including an approximate form of tensor-wise hydrodynamic
interactions as a pair-wise vector form. A force exerted on a particle has three types
such as conservative, dissipative, and random forces, and DPD satisfies the
fluctuation-dissipation theorem by balancing the dissipative and random forces.

Stokesian dynamics (SD) uses the grand mobility matrix to include the far-field
hydrodynamic forces/torques [13]. In-depth comparative analyses of present parti-
cle dynamic methods can be found elsewhere [14]. This mobility matrix is inverted
and updated by adding differences between near-field lubrication forces and far-
field two-body interactions. As the lubrication force is proportional to the logarithm
of the surface-to-surface distance between two particles, it diverges during events
of particle collisions. Besides, if two particles are close to each other, i.e., the
surface-to-surface distance is much smaller than the particle diameter, the SD
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formalism of near-field hydrodynamic contribution to the global hydrodynamic
resistance (i.e., mobility inverted) often overestimates the real hydrodynamic
repulsion forces. One of the primary reasons is that the lubrication theory assumes
that particle surfaces are perfectly smooth, while in reality particle surfaces are
rough and therefore surface friction also plays an essential role during collision
events. Stokesian dynamics includes the most accurate estimation of the hydrody-
namic tensors using the grand mobility matrix and pair-wise lubrication interac-
tions. The fluctuation-dissipation theorem is better satisfied in SD by using many-
body hydrodynamic interactions. In SD simulations, the fluid flow is given at any
point in the computational domain as a combination of the unidirectional velocity,
vortex velocity, and the rate of strain that is traceless and symmetric. The feedback
interaction between a particle and fluid is already included in the expansion of
Faxen rule. Due to the logarithmic characteristics of the lubrication forces, if two
particles touch each other, they experience infinite repulsive forces. This character-
istic of the lubrication force indicates the hard-sphere behavior of the colliding
particles conceptually, implicitly assuming a perfectly elastic interparticle collision
i.e., ε ¼ 1 where ε is the coefficient of restitution.

Dissipative hydrodynamics (DHD) overcomes significant limitations of the par-
ticle dynamic method discussed above. DHD is a generalized method of which
special cases converge to MD, BD, DPD, and SD by turning on or off specific force
mechanisms. Details of DHD can be found elsewhere [14–16]. CFD and PHD were
developed and applied without strong mutual influences. Particle tracking method
can be viewed as a reasonable way to investigate the hydrodynamic motion of
particles under the influence of ambient fluid flow. But, it has several fundamental
limitations by neglecting particle density, particle shapes and sizes, and particle-
fluid interactions. More importantly, the basic two-body interactions due to colli-
sions, viscous flow, and electromagnetic properties are not included, and dispersion
forces were dropped. In this light, the particle tracking method does not track
particles but fluid elements moving along streamlines. While theories of particle
hydrodynamics are not rigorously applied to engineering processes, this chapter
includes a possible method to couple CFD and DHD in a seamless, robust way.

2. Dissipative hydrodynamics as unified particle dynamics

In this section, a unified view of preexisting particle dynamic method is
discussed.

2.1 Overview

In the deterministic simulations, particle dynamics can be classified based on
sizes of objects of interests. The purposes of particle dynamics are to provide the
exact solution of a complex problem, bridging the theory and experiments. Note
that the fundamental principles often provide governing equations, which were
proven to be valid. It is difficult to solve a governing equation of a problem, if it has
complex geometry and coupled boundary conditions. Experimental observations
show natural processes using quantified information. Dissipative hydrodynamics
is a generalized algorithm that unifies most of the preexisting particle dynamic
simulation algorithms [16, 17].

At microscale of an order of nanometers, molecular dynamics deals with the
motion of many molecules in various phases such as gas, liquid, and solid. Suppose
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that a system contains N molecules in volume V at temperature T. Newton’s second
laws of motion for this system is

mjaj ¼ mj
d2rj
dt2

¼ ∑
N

i¼1, i 6¼j
Fij (1)

where Fij is a force exerted on particle j of mass mj from particle i of mass mi at
time t. Position ri and velocity vi of molecule i are updated from time t to tþ δt, i.e.,
from its initial values of ri t ¼ 0ð Þ ¼ r0i and vi t ¼ 0ð Þ ¼ v0i , respectively, using the
acceleration ai determined using Eq. (1). Numerical evolution of Eq. (1) requires a
specific algorithm for double integration [18–21].

A macroscale of order of millimeters, granular dynamics often called the discrete
element method (DEM) includes specifically collision rules using the restitution and
friction coefficients. During inelastic collisions of nonrotating particles, the particle
kinetic energy is continuously lost, and their motion is decelerated. For a collision of
rotating spheres, the surface friction provides an effective torque (as action and
reaction) of the same magnitude and opposite directions to two colliding spheres.
Rotational motion of a non-touching particle in a fluid medium generates angular
dissipation of kinetic energy. Considering granules, i.e., non-Brownian particles, in
a gas phase often neglect solute molecules and approximate the system as multiple
particles undergoing the gravitational force field in a vacuum phase. As granular
particle mass is much higher than that of colloids or nanoparticles in an aqueous
solution, in a stationary phase the gravitational force is often balanced by normal
forces developed at interfaces of particles to touching neighbors or a rigid wall.
Implementation of the hydrodynamic lubrication interactions to granular particles
is a difficult task, which requires an in-depth understanding of microscopic surface-
deformation phenomena, linked to macroscopic particle motion.

A universal simulation method that can seamlessly include forces/torques
exerted on arbitrary particles is therefore of great necessity. The method, first of all,
should be able to:

1. Investigate the accelerating/decelerating motion of particles.

2. Satisfy the fluctuation-dissipation theorem for Brownian particles.

3. Include many-body hydrodynamic interactions.

4.Mimic inelastic collisions between spherical particles.

5. Apply constraint forces to form a nonspherical rigid body consisting of unequal
spherical particles.

Dissipative hydrodynamics (DHD) has all the features required to be a universal
simulation method for particle dynamics by taking specific advantages from MD,
BD, SD, DPD, and DEM. A detailed review can be found elsewhere [14].

2.2 DHD formalism

Particle relaxation time. For a single particle motion in a viscous fluid, the
governing equation can be in 1D space for simplicity:

m€x ¼ �βvþ f 0 tð Þ (2)
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where m is the particle mass at position x, β is the drag coefficient, and f 0 is a
random fluctuating force of zero mean:

f 0 tð Þ� � ¼ 0 (3)

f 0 0ð Þf 0 tð Þ� � ¼ 2kBTβδ tð Þ (4)

where T is the absolute temperature, kB is Boltzmann’s constant, and δ tð Þ is
Dirac’s delta function. Discarding the random force, one divides both sides of
Eq. (2) by m to have

dv
dt

¼ � v
m=β

(5)

which indicates that m=β has a dimension of time. This time scale is called the
particle relaxation time, define as

τp ¼ m
β

(6)

which is a time scale that after a particle noticeably slows down after it starts
moving with an initial velocity under the drag force. Stokes derived the drag
coefficient

β ¼ 6πμap (7)

where μ is the absolute fluid viscosity and ap is the radius of the primary
particle [22].

Governing equation. A governing equation of DHD simulation is as follows:

M � dv ¼ Qp � R � v� Uð Þ½ �dtþ B � dW (8)

where M is a diagonal matrix of mass and moment of inertia; v and U are
translational/rotational velocities of the particle and the fluid, respectively; Qp is
the generalized interparticle and conservative force/torque vector; R is the grand
resistance matrix; and B is the Brownian matrix of zero mean and finite variance:

Bh i ¼ 0 and Btr � Bh i ¼ 2kBTR (9)

where δ tð Þ is the Dirac-Delta function. And, dW is the Ito-Wiener process
[23, 24] having the following mathematical properties: Wk ¼ 0 at t ¼ 0, Wk tð Þ is
continuous, dWk � Wk tþ δtð Þ �Wk tð Þð Þ follows the normal distribution, and
finally dW � dW ¼ dt. The Brownian matrix B can be calculated by decomposing
the grand resistance matrix such as

R ¼ Atr � I �A (10)

where A is the decomposed matrix to be obtained and I is the identity matrix.
Statistically, the the identity matrix can be expressed as

I ¼ Ctr � Ch i (11)

where C is a vector with zero mean and unit variance, i.e., Ch i ¼ 0 and
C2� � ¼ 1, respectively. The Brownian matrix is defined as
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B ¼
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

p
C �A (12)

and substituted into (10) to provide

R ¼ Atr � Ctrð Þ � C �Að Þ ¼ C �Að Þtr � C �Að Þ ¼ Btr � B
2kBT

(13)

Therefore, B is obtained by calculating a square root of R matrix, which is equal
to A matrix of Eq. (10). The identity relationship of Eq. (11) is not satisfied at
specific time t but statistically by taking an average of Ctr �C for a much longer
period than the particle relaxation time τp. The effective force acting on a particle of
a swarm of many particles in a viscous fluid is then represented as

Qp � R � v� Uð Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

p
C �A �W0 (14)

where W0 ¼ dW=dt. Although A is deterministically calculated to satisfy
Eq. (10), Ctr � C ¼ I is not valid at an instance but statistically. In the same sense,
Eq. (11) is satisfied statistically.

Hydrodynamic tensors In Eq. (14), the generalized force requires a calculation
of the grand resistance matrix R, which will allow to generate A. Consider particle i
among Np particles in a given volume V, translating with a linear velocity vi and
rotating with an angular velocity ωi at an instantaneous position ri tð Þ. In the absence
of particles, the fluid flow at the center of particle i can be represented as U∞ rið Þ. At
a point r ¼ x; y; zð Þ∈ Si on surface Si of particle i from the particle center ri, the flow
field is described as

V rð Þ ¼ U∞ rið Þ þΩ∞ � r� rið Þ þ E∞ : r� rið Þ (15)

where U∞ is the unidirectional velocity, Ω∞ is the vorticity,

Ω∞ ¼ 1
2
∇�V (16)

and E∞ is the rate of strain

E∞
ij ¼ 1

2
∂Vi

∂xj
þ ∂Vj

∂xi

� �
(17)

which are evaluated at ri. Because the rate-of-strain matrix is symmetric and
traceless, the original nine components are reduced to

E∞
1 ¼ E∞

xx � E∞
zz ¼

∂Vx

∂x
� ∂Vz

∂z
(18)

E∞
2 ¼ 2E∞

xy ¼
∂Vx

∂y
þ ∂Vy

∂x
(19)

E∞
3 ¼ 2E∞

xz ¼
∂Vx

∂z
þ ∂Vz

∂x
(20)

E∞
4 ¼ 2E∞

yz ¼
∂Vy

∂z
þ ∂Vz

∂y
(21)

E∞
5 ¼ E∞

yy � E∞
zz ¼

∂Vy

∂y
� ∂Vz

∂z
(22)
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The disturbance velocity field at the particle surface Si is

vDi rð Þ ¼ ui � U∞ þ ωi �Ω∞ð Þ � r� rið Þ � E∞ : r� rið Þ, r∈ Si (23)

where ui and ωi are the translational and angular velocities of particle i, respec-
tively. The translational/angular velocities and the rate of strain of particle i relative
to the ambient flow field have then 11 degrees of freedom such as

ui � U∞;ωi �Ω∞;�E∞ð Þ ¼ vix � V∞
x ; viy � V∞

y ; viy � V∞
y

� �

þ ωix � Ω∞
x ;ωiy � ω∞

y ;ωiz � Ω∞
z

� �

þ �E∞
1 ;�E∞

2 ;�E∞
3 ;�E∞

4 ;�E∞
5

� �
(24)

For non-Brownian particles, the governing Eq. (8) is reduced back to that of
Stokesian dynamics, which is Langevin’s equation with the constant drag coefficient
β, replaced by the grand resistant matrix R.

When particle j is moving with linear and angular velocities of uj and ωj under
the influences of the ambient flow field characterized using U∞, Ω∞, and E∞, it
experiences the hydrodynamic force FH and torque TH. The stresslet SH can be
obtained but does not directly contribute to the particle acceleration. The general-
ized velocity and force are related through the grand mobility matrix μ∞. Here, we
use q, _q, and ~F for generalized coordinates, velocities, and forces, respectively:

q ¼ r; θð Þ, v ¼ u;ωð Þ, ~F ¼ F;Tð Þ

The generalized relative velocity is

Δv ¼ u� U∞;ω�Ω∞ð Þ

for both translational and angular motion. Then, the hydrodynamic interactions,
i.e., forces and torques exerted on N bodies, can be expressed as

Δvj
�E∞

j

" #
¼ � μ∞vF μ∞vS

μ∞EF μ∞ES

� �
~F
H
i

SHi

" #
(25)

where SH is the hydrodynamic stresslet. The matrix μ∞ (multiplied to ~F
H
i ; S

H
i

h itr
)

is called far-field grand mobility matrix. An inverse relationship of Eq. (25) is

~F
H
i

SHi

" #
¼ � R∞

Fv R∞
FE

R∞
Sv R∞

SE

� � Δvj
�E∞

j

" #
(26)

where the matrix R∞ (multiplied to Δvj;�E∞
i

� �tr) is the far-field grand
resistance matrix as an inverse of μ∞, having the mathematical identity as

μ∞vF μ∞vS
μ∞EF μ∞ES

� �
� R∞

Fv R∞
FE

R∞
Sv R∞

SE

� �
¼ I 0

0 I

� �
(27)

where I is the identity matrix. Note that μ∞ð Þ�1 ¼ R∞ and R∞ð Þ�1 ¼ μ∞ for grand
matrices but R∞

Fv

� ��1 6¼ μ∞vF for sub-matrices. The grand resistance matrix R in
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For non-Brownian particles, the governing Eq. (8) is reduced back to that of
Stokesian dynamics, which is Langevin’s equation with the constant drag coefficient
β, replaced by the grand resistant matrix R.
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where SH is the hydrodynamic stresslet. The matrix μ∞ (multiplied to ~F
H
i ; S

H
i

h itr
)

is called far-field grand mobility matrix. An inverse relationship of Eq. (25) is

~F
H
i

SHi

" #
¼ � R∞

Fv R∞
FE

R∞
Sv R∞

SE

� � Δvj
�E∞

j

" #
(26)

where the matrix R∞ (multiplied to Δvj;�E∞
i
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resistance matrix as an inverse of μ∞, having the mathematical identity as
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matrices but R∞
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Eq. (8) refers to R∞
Fv of Eq. (26), and R∞

FE � E∞
j is an extra forcing term due to the rate

of strain.
Note that at time t, the right-hand side of Eq. (25) is known, and one can

calculate the generalized hydrodynamic force ~FH by using an appropriate solver
in numerical linear algebra [25, 26]. As noted in Eq. (15), the required information
to evolve the motion of particle j, located at rj with linear and angular velocities of vj
and ωi, respectively, is the ambient flow field consisting of U∞; ;Ω∞;�E∞ð Þ at the
particle location. Unlike MD and BD, DHD explicitly includes the sizes of individual
spherical particles. In this case, rj indicates the position of the particle centroid or
center of mass, and the fluid field is calculated at rj without considering the pres-
ence of the particles. Therefore, the calculation of the ambient flow field is highly
dependent on a mesh structure used for CFD simulations.

3. Computational fluid dynamics coupled with dissipative
hydrodynamics

A general governing equation for fluid dynamics is Navier–Stokes equation, of
which most general form for incompressible fluid is

∂U
∂t

þU � ∇U ¼ � 1
ρ
∇Pþ η

ρ
∇2U (28)

where U is the flow velocity, P is pressure, η and ρ are the viscosity and density
of the fluid, respectively. In the adjacent space of particle j at rj, U can be expanded
as expressed in Eq. (15). Most fluid dynamic problems have at least three bound-
aries, which are the inlet, outlet, and side walls. For inlet and outlet surfaces,
Neuman and Dirichlet or mixed boundary conditions are often used to set values or
conditions of U and P. On the wall, zero velocity and zero-gradient pressure are
usually assigned. The former condition assumes that there are strong adhesion
forces between solvent molecules and wall surfaces. The solvent molecules are fixed
on the wall. The velocities of the wall-adsorbed solvent molecules are equal to
those of the solid walls, which is zero for non-moving walls. Values of U;Pð Þ are
calculated at grid points in internal spaces surrounded by the boundary surfaces.
The simulation accuracy and numerical convergence highly depend on the mesh
structures. When CFD is coupled with particle dynamics, which is in this study,
DHD, there are additional requirements that should be satisfied to evolve the
motion of multi-particles moving in a fluid flow:

1. To identify a cell of the constructed mesh grid, which contains the kth particle’s
position, rk, for k ¼ 1�Np

2. To calculate the distance between rk and wall surfaces, if the particle is close to
wall boundaries

3. To interpolate the flow field U∞; ;Ω∞;�E∞ð Þ at rk within a cell that contains
kth particle

Possible methods to satisfy the three requirements are dependent on available
CFD solvers and flexibility of applying customized modifications. Here we suggest
fundamental approaches to meet the requirement numerically.
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3.1 Geometric calculations

3.1.1 How to determine a cell containing the centroid position of my particle

Computational grid cells have various structures such as hexahedron,wedge, prism,
pyramid, tetrahedron, and tetrahedronwedge. Among them, hexahedron followed by
tetrahedron structures is widely used to generate mesh structure of bulk (internal)
spaces. Cubic and rectangular shapes are representative structures of hexahedrons,
consisting of eight vertices (points) and six rectangular (or square) surfaces. On the
other hand, a tetrahedron cell has only four vertices (as compared to eight in hexahe-
dron) and three triangular surfaces. Each of these two cell structures has its advantages
and disadvantages in CFD simulations. Formation of hexahedronmeshes is straightfor-
ward, and numerical solutions are well converged to provide accurate results within a
tolerable error, especially if edge lines are well aligned to the flow directions. However,
if a computational domain includes complex and curved surface structures such as
human faces or globes, the hexahedronmeshes often provide unrealistic small exuber-
ances instead of well-curved surfaces. As three triangular surfaces surround the tetra-
hedron volume, it can formwell-fitted boundary layers of arbitrary shapes. As edges of
tetrahedrons cannot be fully aligned on a straight line, the numerical convergence of
tetrahedronmeshes is oftenmore sensitive to the fineness of generatedmesh structures
than that of hexahedronmeshes. To overcome this limitation, one canmake tetrahe-
dronmeshes often finer than that of hexahedronmeshes to solve the sameproblemwith
similar accuracy. Nevertheless, there are uniquemathematical advantages of using
tetrahedronmeshes for coupled simulations of CFD and particle hydrodynamics.

Location test using volume calculation. A tetrahedron have four points, pi,
located at position ri for i ¼ 1� 4, where ri ¼ xi; yi; zi

� �
. The volume of the

tetrahedron can be calculated as

V ¼ 1
6
det Jð Þ (29)

where J is the Jacobian matrix given as

J 1; 2; 3; 4ð Þ ¼
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

2
664

3
775 (30)

Using this mathematical relationship, one can easily test whether a particle

position rp ¼ xp; yp; zp
� �

is inside or outside the tetrahedron. If rp is inside of the

tetrahedron, then the total volume of the tetrahedron can be divided by four small
pieces and their sum is equal to V:

V ¼ Vp (31)

using

Vp ¼ 1
6

J p; 2; 3;4ð Þ þ J 1; p; 3; 4ð Þ þ J 1; 2; p;4ð Þ þ J 1; 2; 3; pð Þ½ � (32)

where, for example, J p; 2; 3; 4ð Þ means the Jacobian matrix of Eq. (30) with the

first column 1; x1; y1; z1
� �tr replaced by 1; xp; yp; zp

� �tr
. Conversely, if rp is outside of

the tetrahedron, we have an inequality of
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∂U
∂t

þU � ∇U ¼ � 1
ρ
∇Pþ η

ρ
∇2U (28)

where U is the flow velocity, P is pressure, η and ρ are the viscosity and density
of the fluid, respectively. In the adjacent space of particle j at rj, U can be expanded
as expressed in Eq. (15). Most fluid dynamic problems have at least three bound-
aries, which are the inlet, outlet, and side walls. For inlet and outlet surfaces,
Neuman and Dirichlet or mixed boundary conditions are often used to set values or
conditions of U and P. On the wall, zero velocity and zero-gradient pressure are
usually assigned. The former condition assumes that there are strong adhesion
forces between solvent molecules and wall surfaces. The solvent molecules are fixed
on the wall. The velocities of the wall-adsorbed solvent molecules are equal to
those of the solid walls, which is zero for non-moving walls. Values of U;Pð Þ are
calculated at grid points in internal spaces surrounded by the boundary surfaces.
The simulation accuracy and numerical convergence highly depend on the mesh
structures. When CFD is coupled with particle dynamics, which is in this study,
DHD, there are additional requirements that should be satisfied to evolve the
motion of multi-particles moving in a fluid flow:

1. To identify a cell of the constructed mesh grid, which contains the kth particle’s
position, rk, for k ¼ 1�Np

2. To calculate the distance between rk and wall surfaces, if the particle is close to
wall boundaries

3. To interpolate the flow field U∞; ;Ω∞;�E∞ð Þ at rk within a cell that contains
kth particle

Possible methods to satisfy the three requirements are dependent on available
CFD solvers and flexibility of applying customized modifications. Here we suggest
fundamental approaches to meet the requirement numerically.
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3.1 Geometric calculations

3.1.1 How to determine a cell containing the centroid position of my particle

Computational grid cells have various structures such as hexahedron,wedge, prism,
pyramid, tetrahedron, and tetrahedronwedge. Among them, hexahedron followed by
tetrahedron structures is widely used to generate mesh structure of bulk (internal)
spaces. Cubic and rectangular shapes are representative structures of hexahedrons,
consisting of eight vertices (points) and six rectangular (or square) surfaces. On the
other hand, a tetrahedron cell has only four vertices (as compared to eight in hexahe-
dron) and three triangular surfaces. Each of these two cell structures has its advantages
and disadvantages in CFD simulations. Formation of hexahedronmeshes is straightfor-
ward, and numerical solutions are well converged to provide accurate results within a
tolerable error, especially if edge lines are well aligned to the flow directions. However,
if a computational domain includes complex and curved surface structures such as
human faces or globes, the hexahedronmeshes often provide unrealistic small exuber-
ances instead of well-curved surfaces. As three triangular surfaces surround the tetra-
hedron volume, it can formwell-fitted boundary layers of arbitrary shapes. As edges of
tetrahedrons cannot be fully aligned on a straight line, the numerical convergence of
tetrahedronmeshes is oftenmore sensitive to the fineness of generatedmesh structures
than that of hexahedronmeshes. To overcome this limitation, one canmake tetrahe-
dronmeshes often finer than that of hexahedronmeshes to solve the sameproblemwith
similar accuracy. Nevertheless, there are uniquemathematical advantages of using
tetrahedronmeshes for coupled simulations of CFD and particle hydrodynamics.

Location test using volume calculation. A tetrahedron have four points, pi,
located at position ri for i ¼ 1� 4, where ri ¼ xi; yi; zi

� �
. The volume of the

tetrahedron can be calculated as

V ¼ 1
6
det Jð Þ (29)

where J is the Jacobian matrix given as

J 1; 2; 3; 4ð Þ ¼
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

2
664

3
775 (30)

Using this mathematical relationship, one can easily test whether a particle

position rp ¼ xp; yp; zp
� �

is inside or outside the tetrahedron. If rp is inside of the

tetrahedron, then the total volume of the tetrahedron can be divided by four small
pieces and their sum is equal to V:

V ¼ Vp (31)

using

Vp ¼ 1
6

J p; 2; 3;4ð Þ þ J 1; p; 3; 4ð Þ þ J 1; 2; p;4ð Þ þ J 1; 2; 3; pð Þ½ � (32)

where, for example, J p; 2; 3; 4ð Þ means the Jacobian matrix of Eq. (30) with the

first column 1; x1; y1; z1
� �tr replaced by 1; xp; yp; zp

� �tr
. Conversely, if rp is outside of

the tetrahedron, we have an inequality of
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V <Vp (33)

If a particle is very close to one of the triangular surfaces of the tetrahedron, then
the inequality check of Eq. (33) may not be done accurately. In this case, this
location check can be extended to the nearest neighbor cells, especially one that
shares the triangular surface that the particle is closely located.

For rp within the tetrahedron, dividing both sides of Eq. (32) by V gives

1 ¼ ξ1 þ ξ2 þ ξ3 þ ξ4 (34)

where, for i ¼ 1� 4,

ξi ¼
J without ið Þ

6V
(35)

which is solely determined by the internal position rp. A relationship between rp
and ξ is

1

xp
yp
zp

2
6664

3
7775 ¼

1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

2
6664

3
7775

ξ1
ξ2
ξ3
ξ4

2
6664

3
7775 (36)

where the inverse of the 4� 4 matrix can be analytically available. Eq. (36)
assumes that rp is located within the tetrahedron, but it can also use the particle
location check as a better alternative to Eq. (33) because Eq. (36) requires one time
solving of a 4� 4 linear system, but Eq. (33) requires four times calculation of 4� 4
Jacobian matrices.

3.1.2 How to calculate a distance between wall surfaces to the position of my particle

Using the four vertices of r1; r2; r3; r4ð Þ of a tetrahedron cell, one can identify
four triangular surfaces of S1 r2; r3; r4ð Þ, S2 r1; r3; r4ð Þ, S3 r1; r2; r4ð Þ, and S4 r1; r2; r3ð Þ.
For example, let us consider S4 having vertices of r1; r2; r3ð Þ. If we calculate relative
position of vertices 2 and 3 with respect to vertex 1, denoted as

r2=1 ¼ r2 � r1 (37)

r3=1 ¼ r3 � r1 (38)

their cross product allows us to calculate a unit vector normal to surface S4:

n4 ¼ r2=1 � r3=1
r2=1 � r3=1
�� �� (39)

The particle position relative to r1 is rp=1 ¼ rp � r1. Then, the distance between
surface S4 and position rp is simply

d ¼ n4 � rp
�� �� (40)

where the absolute value is necessary because n can direct inside or outside the
tetrahedron volume, depending on choice of the reference position, r1. This wall-
particle distance calculation is necessary when the surface S4 is known as a wall
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boundary, so the distance d cannot be smaller than the particle radius ap. After a
single-step time evolution, if a particle is found overlapped with a wall surface, then
collision rule will be applied to return the particle to the tetrahedron interior.

3.1.3 How to interpolate the flow field at the position of my particle

If a particle k is found inside a tetrahedron (of index l), the flow field consisting
of U∞; ;Ω∞;�E∞ð Þ needs to be interpolated using values calculated adjacent
locations. A proper choice of a set of these locations are the vertex points of the
containing cell. Based on the definition of Ω∞ and E∞, the basic quantities needed
are U∞

i and ∂jUi � ∂Ui=∂xj for i and j ¼ 1� 3. (Note that pressure value is not
required to calculate the generalized hydrodynamic forces ~FH.)

Four vertices of a cell can be represented as rl ¼ xl; yl; zl
� �

for l ¼ 1� 4.
A scalar quantity of interest S at each vertex point can be denoted as Sl. Then, the

value of S at an arbitrary internal position rp ¼ xp; yp; zp
� �

can be calculated as a

linear superposition of Sl and ξl:

Sp ¼ S � ξ ¼ ∑
4

l¼1
Slξl (41)

For DHD simulations, Sp represents each element of the unidirectional velocity
U∞, vortex Ω∞, and the rate of strain E∞, which are calculated using U∞

i or its
gradient ∂jUi.

3.2 Collision rules

Suppose there are two particles colliding each other, which are particle i and j
located at ri and rj, translating with vi and vj and rotating with ωi and ωj,
respectively. Relative position of particle i with respect to particle j is defined as
rij ¼ ri � rj, and similarly the relative velocity of i to j is vij ¼ vi � vj. A normal
vector from j to i is denoted as

nij ¼
rij
∣rij∣

(42)

After an instantaneous collision, the two particle have the following
velocities [14]:

v0i ¼ vi �
μij
mi

� �
1þ εnð Þgnij þ

1� εt

1þ 1=~Jgtij

" #
(43)

v0j ¼ vj þ
μij
mj

� �
1þ εnð Þgnij þ

1� εt

1þ 1=~Jgtij

" #
(44)

ω0
i ¼ ωi þ

μij
miai

� �
1� εt

1þ ~J

� �
nij � gtij (45)

ω0
j ¼ ωj þ

μij
mjaj

� �
1� εt

1þ ~J

� �
nij � gtij (46)

13

A Coupling Algorithm of Computational Fluid and Particle Dynamics (CFPD)
DOI: http://dx.doi.org/10.5772/intechopen.86895



V <Vp (33)

If a particle is very close to one of the triangular surfaces of the tetrahedron, then
the inequality check of Eq. (33) may not be done accurately. In this case, this
location check can be extended to the nearest neighbor cells, especially one that
shares the triangular surface that the particle is closely located.

For rp within the tetrahedron, dividing both sides of Eq. (32) by V gives

1 ¼ ξ1 þ ξ2 þ ξ3 þ ξ4 (34)

where, for i ¼ 1� 4,

ξi ¼
J without ið Þ

6V
(35)

which is solely determined by the internal position rp. A relationship between rp
and ξ is

1

xp
yp
zp

2
6664

3
7775 ¼

1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

2
6664

3
7775

ξ1
ξ2
ξ3
ξ4

2
6664

3
7775 (36)

where the inverse of the 4� 4 matrix can be analytically available. Eq. (36)
assumes that rp is located within the tetrahedron, but it can also use the particle
location check as a better alternative to Eq. (33) because Eq. (36) requires one time
solving of a 4� 4 linear system, but Eq. (33) requires four times calculation of 4� 4
Jacobian matrices.

3.1.2 How to calculate a distance between wall surfaces to the position of my particle

Using the four vertices of r1; r2; r3; r4ð Þ of a tetrahedron cell, one can identify
four triangular surfaces of S1 r2; r3; r4ð Þ, S2 r1; r3; r4ð Þ, S3 r1; r2; r4ð Þ, and S4 r1; r2; r3ð Þ.
For example, let us consider S4 having vertices of r1; r2; r3ð Þ. If we calculate relative
position of vertices 2 and 3 with respect to vertex 1, denoted as

r2=1 ¼ r2 � r1 (37)

r3=1 ¼ r3 � r1 (38)

their cross product allows us to calculate a unit vector normal to surface S4:

n4 ¼ r2=1 � r3=1
r2=1 � r3=1
�� �� (39)
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particle distance calculation is necessary when the surface S4 is known as a wall
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boundary, so the distance d cannot be smaller than the particle radius ap. After a
single-step time evolution, if a particle is found overlapped with a wall surface, then
collision rule will be applied to return the particle to the tetrahedron interior.

3.1.3 How to interpolate the flow field at the position of my particle

If a particle k is found inside a tetrahedron (of index l), the flow field consisting
of U∞; ;Ω∞;�E∞ð Þ needs to be interpolated using values calculated adjacent
locations. A proper choice of a set of these locations are the vertex points of the
containing cell. Based on the definition of Ω∞ and E∞, the basic quantities needed
are U∞

i and ∂jUi � ∂Ui=∂xj for i and j ¼ 1� 3. (Note that pressure value is not
required to calculate the generalized hydrodynamic forces ~FH.)

Four vertices of a cell can be represented as rl ¼ xl; yl; zl
� �

for l ¼ 1� 4.
A scalar quantity of interest S at each vertex point can be denoted as Sl. Then, the

value of S at an arbitrary internal position rp ¼ xp; yp; zp
� �

can be calculated as a

linear superposition of Sl and ξl:

Sp ¼ S � ξ ¼ ∑
4

l¼1
Slξl (41)

For DHD simulations, Sp represents each element of the unidirectional velocity
U∞, vortex Ω∞, and the rate of strain E∞, which are calculated using U∞

i or its
gradient ∂jUi.

3.2 Collision rules

Suppose there are two particles colliding each other, which are particle i and j
located at ri and rj, translating with vi and vj and rotating with ωi and ωj,
respectively. Relative position of particle i with respect to particle j is defined as
rij ¼ ri � rj, and similarly the relative velocity of i to j is vij ¼ vi � vj. A normal
vector from j to i is denoted as

nij ¼
rij
∣rij∣

(42)

After an instantaneous collision, the two particle have the following
velocities [14]:

v0i ¼ vi �
μij
mi

� �
1þ εnð Þgnij þ

1� εt

1þ 1=~Jgtij

" #
(43)

v0j ¼ vj þ
μij
mj

� �
1þ εnð Þgnij þ

1� εt

1þ 1=~Jgtij

" #
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� �
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� �
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where 0≤ εn ≤ 1 and �1≤ εt ≤ 1 are restitution coefficients in the normal and
tangential directions, respectively, μij is a reduced mass defined as

μij ¼
mimj

mi þmj
, (47)

and gij is the relative velocity at the point of contact defined as

gij ¼ vij � aiωi þ ajωj
� �� nij (48)

whose normal and tangential components are

gnij ¼ gij � nij

� �
nij (49)

gtij ¼ �nij � nij � gij
� �

(50)

If a collision between a wall surface and particle i occurs, then the wall can be
represented as a stationary spherical particle j having infinite mass and radius, i.e.,
mj ! ∞, vj ! 0, and aj ! ∞:

v0i ¼ vi � 1þ εnð Þgnij þ
1� εt

1þ ~J�1
Þgtij

� ��
(51)

ω0
i ¼ ωi þ 1� εt

1þ ~J

� �nij � gtij
ai

(52)

v0j ¼ vj ¼ 0 (53)

ω0
j ¼ ωj ¼ 0 (54)

where

gij ! vi � ai ωi � nij
� �

(55)

nij ! n to particle i (56)

and n is the normal vector of the colliding wall surface inward to the liquid
volume. During the collision of particle i with the wall, the wall is not moving so
that ω

0
j ¼ ωj ¼ 0 and v0j ¼ vj ¼ 0.

4. Concluding remarks

Each of computational fluid dynamics and particle hydrodynamics is a challeng-
ing research topic, as applied to real engineering problems. Movements of particles
(viewed as small solid pieces) in a moving fluid require rigorous interfaces to couple
the two strongly correlated dynamic events. When the ambient flow pushes
suspended particles in a liquid, dynamic responses of particles to exerting fluid
change the fluid motion at the next time step, which returns to the particles with
modified magnitude and direction. This fluid-particle (or fluid–solid) interaction is
under the regime of Newton’s third law, i.e., action and reaction. Multi-body simu-
lations including the fluid-particle interaction are generally a difficult task. In this
chapter, we briefly reviewed the CFD and PHD literature and discussed a feasible
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method to simulate the coupled fluid-particle motion within a reasonable time
duration. A tetrahedron-based mesh is proposed to take the mathematical advan-
tages of tetrahedron structure, consisting of four vertices and four triangular sur-
faces. Advantages of tetrahedron meshes include the following features: first, to test
a location of particle within or outside a tetrahedron mesh-cell; second, to calculate
a distance between a particle surface and a wall surface; third, to interpolate a fluid
velocity and its gradient using those of values given at vertex locations; and finally
to track each particle from one cell to the other by using a pre-built list of nearest
neighbor cells. As DHD uses the SD algorithm for hydrodynamics of non-Brownian
particles and Ito-Weiner process for random fluctuating forces, it can be used as a
general particle hydrodynamic simulation method when it is coupled with CFD
using specific mesh structures. Hexahedron-based meshes can be used for the same
purpose with the intrinsic advantages of aligning grid edges to estimated streamline
directions. When particles move in a channel of complex geometry, boundary
surfaces can be better constructed using tetrahedron meshes. Open-sourced meshes
include gmsh, tetgen, and netgen, which can import structure files, generate
meshes, and export them to a CFD solver package. The current coupling algorithm
of CFD and DHD is limited to cases that particle Reynolds number does not exceed
1.0, but this restriction can be avoided by considering dominant forces/torques
exerted on particles and simulation time intervals as compared to the particle
relaxation time. The new coupling method covered in this chapter may provide a
new foundation in a coupled simulation of CFD and DHD including DEM.
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A. Appendix

A.1 The Oseen tensor and Faxen law

The Navier–Stokes equation for a laminar flow is from Eq. (28):

�∇pþ η∇2U ¼ �Fδ xð Þ (57)

∇ �U ¼ 0 (58)

where δ rð Þ is the Dirac-Delta function, which indicates

δ x 6¼ 0ð Þ ¼ 0 (59)
ð

V
� Fδ rð ÞdV 0 ¼ �F (60)

where V 0 is a volume enclosing the origin r ¼ 0. The fundamental solution for v
and p are

U xð Þ ¼ F � G xð Þ
8πη

(61)
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p xð Þ ¼ F � P xð Þ
8πη

(62)

The Oseen tensor G xð Þ for the fluid velocity is given by

Gij ¼ 1
r
δij þ 1

r3
xixj (63)

which is independent of fluid properties. The Oseen tensor for the pressure p is

P j xð Þ ¼ 2η
xj
r3

þ P∞
j (64)

where P∞
j is a constant at the ambient condition. The Faxen laws determine the

hydrodynamic force and torque, especially, exerted on a sphere of radius a, moving
with the linear and angular velocities of u and ω:

F ¼ 6πηa 1þ a2

6
∇2

� �
U xð Þ

� �

x¼0
� 6πηau (65)

T ¼ 8πηa3 Ω xð Þ � ω½ �x¼0 (66)

which indicates that the Stokes flow requires a quadrupole a2F∇2δ xð Þ in addition
to a monopole of �6πηau, which is a drag on a sphere undergoing steady
translation.
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p xð Þ ¼ F � P xð Þ
8πη

(62)

The Oseen tensor G xð Þ for the fluid velocity is given by

Gij ¼ 1
r
δij þ 1

r3
xixj (63)

which is independent of fluid properties. The Oseen tensor for the pressure p is

P j xð Þ ¼ 2η
xj
r3

þ P∞
j (64)

where P∞
j is a constant at the ambient condition. The Faxen laws determine the

hydrodynamic force and torque, especially, exerted on a sphere of radius a, moving
with the linear and angular velocities of u and ω:

F ¼ 6πηa 1þ a2

6
∇2

� �
U xð Þ

� �

x¼0
� 6πηau (65)

T ¼ 8πηa3 Ω xð Þ � ω½ �x¼0 (66)

which indicates that the Stokes flow requires a quadrupole a2F∇2δ xð Þ in addition
to a monopole of �6πηau, which is a drag on a sphere undergoing steady
translation.
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Chapter 2

Response Behavior of
Nonspherical Particles in
Homogeneous Isotropic Turbulent
Flows
Santiago Laín

Abstract

In this study, the responsiveness of nonspherical particles, specifically ellipsoids
and cylinders, in homogeneous and isotropic turbulence is investigated through
kinematic simulations of the fluid velocity field. Particle tracking in such flow field
includes not only the translational and rotational components but also the orienta-
tion through the Euler angles and parameters. Correlations for the flow coefficients,
forces and torques, of the nonspherical particles in the range of intermediate
Reynolds number are obtained from the literature. The Lagrangian time autocorre-
lation function, the translational and rotational particle response, and preferential
orientation of the nonspherical particles in the turbulent flow are studied as func-
tion of their shape and inertia. As a result, particle autocorrelation functions, trans-
lational and rotational, decrease with aspect ratio, and particle linear root mean
square velocity increases with aspect ratio, while rotational root mean square
velocity first increases, reaches a maximum around aspect ratio 2, and then
decreases again. Finally, cylinders do not present any preferential orientation in
homogeneous isotropic turbulence, but ellipsoids do, resulting in preferred orienta-
tions that maximize the cross section exposed to the flow.

Keywords: kinematic simulations, Lagrangian tracking, nonspherical particles,
response behavior, preferential orientation

1. Introduction

Nowadays, the use of numerical simulation techniques to assist the development
and optimization of industrial processes dealing with turbulent multiphase flow has
been included as one more step in their layout. Examples of them include pneu-
matic conveying, fluidized bed reactors, cyclones, classifiers, or flow mixers.
Industrial sectors where such processes are important are the chemical, food, or
paper industries as well as electric energy production. Due to the complexity of the
involved flow, a great majority of simulations are carried out under Reynolds-
averaged Navier-Stokes (RANS) in connection with an appropriate turbulence
model to describe the turbulent dynamics of the carrier phase.

Two main frames are employed for the description of complex multiphase
flows: the two-fluid model or Euler-Euler and the discrete particle models or
Euler-Lagrange. In both of them, particles are approximated as point masses being
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transported in the carrier phase flow field; the solution of the flow around individ-
ual elements is usually too expensive and cannot be afforded. In the two-fluid
model, both phases are conceived as two interpenetrating continua [1] whose
properties are described by sets of partial differential equations. In the Euler-
Lagrange approach, the discrete elements are considered as individual objects
whose dynamics is governed by a Lagrangian motion equation. Therefore, to obtain
the discrete phase variables in the computational domain, a large enough number of
discrete element trajectories must be computed. On each particle, appropriate
forces act reflecting the various microprocesses taking place at the element scale
such as fluid-particle turbulent interaction, particle-(rough) wall interactions, and
interparticle collisions [2]. Such technique is especially appropriate for the descrip-
tion of disperse multiphase flow, where usually particles have a size distribution, in
confined domains where particle-wall collisions play a predominant role as pneu-
matic conveying, separation, and classification processes. Both techniques, two-
fluid model and Euler-Lagrange, have been applied mainly considering spherical
particles. This means that the forces due to the flow (drag and lift) as well as the
microprocesses modeling, wall-particle and inter-particle interactions, are assumed
to be for spherical-shaped elements [3]. In practical situations, however,
nonspherical particles are encountered, either of irregular shape, either with well-
defined shapes (fibers or granulates). For example, the paper industry uses large
amounts of turbulent liquid to handle and transport the fibers that compose the
paper pulp. Besides, such particles in the flow experience particle Reynolds num-
bers larger than one, Re > 1. For such particles, the most relevant transport mecha-
nisms such as aerodynamic transport, wall-particle interactions, and interparticle
collisions are substantially different than those for spherical particles.

With the objective of performing the numerical simulation of turbulent flows
laden with nonspherical particles, additional information about the forces and
torques due to flow (drag and lift forces and pitching and rotational torques due to
the shear flow and particle rotation) is needed. It is known that for regular
nonspherical particles, that is, ellipsoids or fibers, such forces depend on particle
orientation with respect to the flow. For instance, fiber orientation plays a major
role in chemical processes as injection, compression molding, or extrusion in which
the mechanical properties of the suspensions are determined by the orientation
distribution.

For the Stokes regime, particle Reynolds number much lower than 1, the behav-
ior of the nonspherical particles can be determined by analytical methods. Forces
and torques acting on an ellipsoidal particle were analytically computed by Jeffery
[4]. In a series of papers, Brenner determined the forces due to the flow acting on
arbitrary-shaped nonspherical particles in the Stokes regime under different flow
configuration by means of theoretical methods [5]. In the creeping flow regime, also
with particle Reynolds number much lower than 1, Bläser [6] computed the forces
acting of the surface on an ellipsoid in free motion for different flow situations,
which allow him to suggest a simple criterion for particle breakup.

The drag coefficient for particle Reynolds number higher than 1 must be
obtained by experiments, physical or numerical, as the analytical methods are not
applicable any more.

The experimental studies to determine the drag coefficients for nonspherical
particles employ wind tunnels or sedimentation vessels. For a moderately wide
particle Reynolds number range, there exist results for thin discs [7], isometric
irregular particles [8], cylinders and plates [9], discs [10], and discs and cylinders
[11]. Drag coefficients were developed in all cases only for certain particle orienta-
tions. Compiling such results, different correlations have been developed in terms
of particle shape [12–14]. As representative parameter of the particle shape, two
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options appear to be dominant: the spherical particle equivalent diameter dp, and
the sphericity, defined as the ratio between the surface of the spherical particle
equivalent diameter and the actual surface of the nonspherical particle. None of
such correlations takes into account the dependence of the drag coefficient with the
particle orientation in the flow. There exist some correlations that consider such
dependence [15–17] and, therefore, they are appropriated to be implemented in a
Lagrangian computation scheme. Nevertheless, corresponding results for lift and
pitching torque coefficients are still not equally available. One of the first results for
the different coefficients in terms of the orientation of elliptic particles was
obtained by Hölzer and Sommerfeld [18] using the lattice Boltzmann method
(LBM). Vakil and Green [19] used DNS to study the drag and lift coefficients of
cylindrical particles depending on their orientation and aspect ratio, for Reynolds
number up to 40, providing a correlation for them. In such work, the underlying
flow field was assumed to be uniform and the flow around the particle was
completely resolved. More recently, Zastawny et al. [20] applied DNS in the frame
of the implicit mirroring immersed boundary (MIB) method to obtain the flow
coefficients for four different ellipsoids. The authors provide specific correlations
for the drag, lift, pitching torque, and rotational torque coefficients depending on
the particle Reynolds number and orientation but without including the effect of
the aspect ratio. The covered Reynolds number range was up to 300. Ouchene et al.
[21] determined with DNS the drag, lift, and pitching torque coefficients for prolate
ellipsoids with aspect ratio up to 32 and adjusted their results to proper correlations
that include the effects of particle orientation and aspect ratio up to a Reynolds
number of 300.

The first numerical computations of very small nonspherical particles in
pseudoturbulent flow were performed by Fan and Ahmadi [22] and Olson [23].
The hydrodynamic forces and torques were computed by the theoretical coeffi-
cients of the Stokes regime. Olson [23] estimated the time step for the translation
and rotation motions in function of the fiber length, obtaining the corresponding
dispersion coefficients. Fan and Ahmadi [22] showed that the dispersion of both,
translation and rotation, was reduced with the fiber length. However, Olson [23]
found a different result in the case of ellipsoidal particles. Lin et al. [24] investigated
numerically the distribution of the orientation of the fibers in a developing mixing
layer, comparing the obtained results with experiments. The fiber length was
smaller than the Kolmogorov scale, so they employed the forces due to the flow of
the Stokes regime. Zhang et al. [25], Mortensen et al. [26], and Marchioli et al. [27]
studied the transport and deposition of ellipsoidal particles in a turbulent channel
flow using direct numerical simulation (DNS). Again the hydrodynamic forces and
torques were computed with Stokes regime expressions. Beyond the Stokes regime,
van Wachem et al. [28] and Ouchene et al. [29] studied a turbulent channel flow
laden with ellipsoidal particles using LES and DNS, respectively, employing the
flow coefficients developed by themselves in previous works.

Rosendahl group developed a model for the numerical computation of cylindri-
cal and superellipsoidal particles in laminar and turbulent flows in the intermediate
Reynolds numbers regime [30–32]. Particle angular velocity and orientation were
computed by means of the Euler parameters. Using a linear relationship between
the drag coefficient and the ellipsoid parameters, it was possible to establish a
correlation valid up to Reynolds numbers of 1000. To estimate the influence of the
orientation, a correlation between the maximum (90°) and minimum (0°) drag was
employed. Drag force was calculated using the projected area perpendicularly to the
flow. The lift force was expressed in function of the drag coefficient and particle
orientation. Other lift forces, such as those due to the fluid velocity gradients or
particle rotation, were not considered. The study case was a combustion chamber
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with straw particles, which were quite well approximated by cylinders. It was found
that straw particles were better dispersed than spheres [30], a fact that properly
illustrates the importance of the correct modeling of nonspherical particles motion.
In a later work [32], other forces such as added mass and pressure force were also
included. Drag coefficient was computed using the Ganser [15] correlation, making
it possible to numerically compute the biomass combustion chamber.

This contribution aims to study the motion of nonspherical particles immersed
in homogeneous isotropic turbulent (HIT) velocity fields built from kinematic
simulation at moderate Reynolds numbers. Computations were performed in a
tailored in-house code. Properties analyzed include the Lagrangian time autocorre-
lation function, the translational and rotational particle response, and preferential
orientation of the nonspherical particles in the turbulent flow, all of them in terms
of particle aspect ratio and inertia.

2. Governing equations

2.1 Coordinate systems

To build the trajectory of a regular nonspherical particle, it is necessary to solve
for its translational as well as rotational motion. However, whereas translation is
solved in an inertial frame, rotation is solved referred to the so-called particle frame.
Thus, the relevant coordinate frames and the transformations between them have
to be introduced.

Figure 1 illustrates, in the case of a cylindrical particle, the employed coordinate
systems: x ¼ x y z½ � is the inertial frame; x0 ¼ x0 y0 z0½ � is the particle frame, whose
origin is in the particle center of mass and its axes are the particle principal axes;
and x

0 0 ¼ x
0 0
y
0 0
z
0 0� �

is the comoving frame, which has its origin at the same point
than particle frame but its axes are parallel to the inertial frame axes. In the particle

Figure 1.
Illustration of a cylindrical particle and the employed coordinate systems.
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frame, the z0 axis coincides with the particle symmetry axis and its position with
respect to the comoving frame determines particle orientation.

Goldstein [33] gives the transformation between the comoving and particle
coordinate systems, which is frequently employed in regular nonspherical particle
tracking [31].

x0 ¼ A � x00 (1)

A is the orthogonal matrix that performs the transformation. Its components
are the direction cosines of the particle axes in the comoving frame, written in
function of Euler angles θ;ϕ;ψð Þ. Such Euler angles are defined according to the
x-convention of [33]:

A ¼
cosψ cosϕ� cos θ sinϕ sinψ cosψ sinϕ� cos θ cosϕ sinψ sinψ sin θ

� sinψ cosϕ� cos θ sinϕ cosψ � sinψ sinϕþ cos θ cosϕ cosψ cosψ sin θ

sin θ sinϕ � sin θ cosϕ cos θ

2
64

3
75

(2)

The time evolution of such Euler angles depends on the particle angular velocity
regarding the particle frame axes. However, there is a difficulty in the sense that
such time evolution equations present an unavoidable singularity. Therefore,
instead of the Euler angles, the Euler parameters ε1; ε2; ε3; ηð Þ are used instead:
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A ¼
1� 2 ε22 þ ε23

� �
2 ε1ε2 þ ε3ηð Þ 2 ε1ε3 � ε2ηð Þ

2 ε1ε2 � ε3ηð Þ 1� 2 ε21 þ ε23
� �

2 ε3ε2 þ ε1ηð Þ
2 ε1ε3 þ ε2ηð Þ 2 ε3ε2 � ε1ηð Þ 1� 2 ε21 þ ε22

� �

2
64

3
75 (4)

In the present study, the initial particle orientations are assigned by means of the
Euler angles. From them, the corresponding Euler parameters are computed by
Eq. (3), and with them, the initial transformation matrix is evaluated using Eq. (4).
The Euler parameters evolve in time following Eq. (5), where the particle angular
velocities are expressed in the particle frame of reference x0 ¼ x0 y0 z0½ �.
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This contribution aims to study the motion of nonspherical particles immersed
in homogeneous isotropic turbulent (HIT) velocity fields built from kinematic
simulation at moderate Reynolds numbers. Computations were performed in a
tailored in-house code. Properties analyzed include the Lagrangian time autocorre-
lation function, the translational and rotational particle response, and preferential
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0 0 ¼ x
0 0
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z
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is the comoving frame, which has its origin at the same point
than particle frame but its axes are parallel to the inertial frame axes. In the particle

Figure 1.
Illustration of a cylindrical particle and the employed coordinate systems.
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frame, the z0 axis coincides with the particle symmetry axis and its position with
respect to the comoving frame determines particle orientation.

Goldstein [33] gives the transformation between the comoving and particle
coordinate systems, which is frequently employed in regular nonspherical particle
tracking [31].

x0 ¼ A � x00 (1)

A is the orthogonal matrix that performs the transformation. Its components
are the direction cosines of the particle axes in the comoving frame, written in
function of Euler angles θ;ϕ;ψð Þ. Such Euler angles are defined according to the
x-convention of [33]:

A ¼
cosψ cosϕ� cos θ sinϕ sinψ cosψ sinϕ� cos θ cosϕ sinψ sinψ sin θ

� sinψ cosϕ� cos θ sinϕ cosψ � sinψ sinϕþ cos θ cosϕ cosψ cosψ sin θ

sin θ sinϕ � sin θ cosϕ cos θ

2
64

3
75

(2)

The time evolution of such Euler angles depends on the particle angular velocity
regarding the particle frame axes. However, there is a difficulty in the sense that
such time evolution equations present an unavoidable singularity. Therefore,
instead of the Euler angles, the Euler parameters ε1; ε2; ε3; ηð Þ are used instead:

ε1 ¼ cos
ϕ� ψ

2
sin

θ

2
; ε2 ¼ sin

ϕ� ψ

2
sin

θ

2
; ε3 ¼ sin

ϕþ ψ

2
cos

θ

2
; η ¼ cos

ϕþ ψ

2
cos

θ

2
(3)

And the transformation matrix A is written as [33]:

A ¼
1� 2 ε22 þ ε23

� �
2 ε1ε2 þ ε3ηð Þ 2 ε1ε3 � ε2ηð Þ

2 ε1ε2 � ε3ηð Þ 1� 2 ε21 þ ε23
� �

2 ε3ε2 þ ε1ηð Þ
2 ε1ε3 þ ε2ηð Þ 2 ε3ε2 � ε1ηð Þ 1� 2 ε21 þ ε22

� �

2
64

3
75 (4)

In the present study, the initial particle orientations are assigned by means of the
Euler angles. From them, the corresponding Euler parameters are computed by
Eq. (3), and with them, the initial transformation matrix is evaluated using Eq. (4).
The Euler parameters evolve in time following Eq. (5), where the particle angular
velocities are expressed in the particle frame of reference x0 ¼ x0 y0 z0½ �.

dε1
dt

dε2
dt

dε3
dt

dη
dt

2
66666666666664

3
77777777777775

¼ 1
2

ηωx0 � ε3ωy0 þ ε2ωz0

ε3ωx0 þ ηωy0 � ε1ωz0

�ε2ωx0 þ ε1ωy0 þ ηωz0

�ε1ωx0 � ε2ωy0 � ε3ωz0

2
66664

3
77775

(5)

2.2 Particle motion equations

The nonspherical particle motion equations in a general fluid flow [34] are
written as:

23

Response Behavior of Nonspherical Particles in Homogeneous Isotropic Turbulent Flows
DOI: http://dx.doi.org/10.5772/intechopen.81045



Translational motion:

mp
dup

dt
¼ F (6)

Rotational motion:

Ix0
dωx0

dt
� ωy0ωz0 Iy0 � Iz0

� � ¼ Tx0

Iy0
dωy0

dt
� ωx0ωz0 Iz0 � Ix0ð Þ ¼ Ty0

Iz0
dωz0

dt
� ωy0ωx0 Ix0 � Iy0

� � ¼ Tz0

(7)

Here, mp is the mass of the particle, up ¼ upx upy upz
� �

is the translational veloc-
ity of the particle center of mass, referred to the inertial frame, and F ¼ Fx Fy Fz

� �
is

the external forces acting on the particle. The moments of inertia with respect to the
particle frame axes are Ix0 Iy0 Iz0

� �
, and Tx0 Ty0 Tz0

� �
are the torques experienced by

the particle. It should be remarked that the equations for the translation motion are
computed in the inertial frame but those of the rotation motion are expressed in the
particle frame. In case of the torque experienced by the particle, it has two contri-
butions: the pitching torque, due to the noncoincidence of the particle center of
mass and center of pressure (same fact that happens in an airfoil), and the rota-
tional torque, due to the viscous resistance experienced by a rotating body inside a
fluid, generated by the differences between fluid and particle rotational velocities.

In addition to a sphere, the four ellipsoids of Zawstawny et al. [20] have been
chosen. They have different sphericities and aspect ratio (see Table 1). In Table 1, a
denotes the major semiaxis and b the minor semiaxis.

Using DNS for ellipsoidal particles immersed in a uniform flow, Zastawny et al.
[20] determined correlations for the flow coefficients (drag CD, lift CL, pitching
torque CT, and rotational torque CR). Such coefficients are written as [20]:

CD ¼ FD
1
2 ρeu2 π

4 d
2
p

; CL ¼ FL
1
2 ρeu2 π

4 d
2
p

; CT ¼ FT
1
2 ρeu2 π

8 d
3
p

; CR ¼ FR

1
2 ρ

dp
2

� �5
Ωj j2

(8)

Here, dp is the volume equivalent particle diameter or the diameter of a sphere
with the same volume as the considered particle. The relative fluid velocity with
respect to the particle is eu ¼ u� up and Ω ¼ 1

2 ∇� u� ωp is the fluid relative
rotation with ωp being the particle angular velocity.

The developed correlations depend not only on particle Reynolds number
Re ¼ ρdpeu=μ and particle rotation number ReR ¼ ρd2p Ωj j=μ, but also on orientation φ.
They are written as [20]:

Shape Aspect ratio Sphericity

Ellipsoid 1 (prolate) a
b ¼ 5

2 0.88

Ellipsoid 2 (prolate) a
b ¼ 5

4
0.99

Disc (oblate) a
b ¼ 5

1 0.62

Fiber (prolate) a
b ¼ 5

1
0.73

Table 1.
Ellipsoids evaluated by Zastawny et al. [20]. a and b are the major and minor semiaxis, respectively.
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CD ¼ CD,0 þ CD,90 � CD,0ð Þ sin a0φ; CD,0 ¼ a1
Rea2

þ a3
Rea4

; CD,90 ¼ a5
Rea6

þ a7
Rea8

(9)

a values are listed in [20] as also coefficients b, c, r:

CL ¼ b1
Reb2

þ b3
Reb4

� �
sinφð Þb5þb6Reb7 cosφð Þb8þb9Reb10 (10)

CT ¼ c1
Rec2

þ c3
Rec4

� �
sinφð Þc5þc6Rec7 cosφð Þc8þc9Rec10 (11)

CR ¼ r1Rer2R þ r3
Rer4R

(12)

Moreover, for the cylinders, Vakil and Green [19] developed correlations for
drag and lift coefficients depending on orientation, Reynolds number based on its
diameter ReD, and aspect ratio AR. In this case, such coefficients are expressed in
terms of cylinder length L and diameter D:

CD,cyl ¼ FD
1
2 ρeu2LD

;CL,cyl ¼ FL
1
2 ρeu2LD

(13)

The correlations are expressed as:

CL,cyl φ;AR;ReDð Þ ¼ A2 AR;ReDð Þ sin 2φþ A4 AR;ReDð Þ sin 4φ (14)

CD,cyl

CD⊥
φ;AR;ReDð Þ ¼ A1 AR;ReDð Þ cos 2φþ A0 AR;ReDð Þ; CD⊥ AR;ReDð Þ ¼ κ1 þ κ2

AR

� �
Re

κ3þκ4
ARð Þ

D

(15)

Coefficients κ and those γ in functions Ai, i ¼ 0, 1, 2,4:

Ai AR;ReDð Þ ¼ βi1 ARð ÞlnReD þ βi2 ARð Þ; βij ARð Þ ¼ γij1 þ γij2 exp γij3AR
� �

j ¼ 1, 2

(16)

can be found in Vakil and Green [19].
However, expressions for the pitching and rotational torque coefficients are not

provided in [19]. Therefore, for the cylinders, the approach of [31] has been
assumed. In [31], the distance between the center of mass and the center or pressure
in a cylinder, lCP, in terms of AR and φ, was proposed to be:

lCP ¼ 0:25
L
2

1� e3 1�ARð Þ
� �

cos 3φ
�� �� (17)

Then, the pitching torque TP is just the cross-product between the particle
orientation unitary vector and the resultant force acting on it times lCP. Neverthe-
less, this torque is computed in the inertial frame of reference, so it should be
transformed to the particle frame before being included in Eq. (7) to calculate the
particle angular velocity. The approach to compute the viscous rotational torque TR
is to integrate along the particle length the torque due to the drag force with respect
the particle center of mass and it is described in [31]. This torque is given directly in
the particle frame.

Particle motion equations and correlations for cylinders and ellipsoids presented
in this section have been implemented in an in-house code. The numerical integra-
tion of the ordinary differential equations that govern the motion of nonspherical
particles has been performed by a fourth-order Runge-Kutta method, with small
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tional torque, due to the viscous resistance experienced by a rotating body inside a
fluid, generated by the differences between fluid and particle rotational velocities.
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denotes the major semiaxis and b the minor semiaxis.
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with the same volume as the considered particle. The relative fluid velocity with
respect to the particle is eu ¼ u� up and Ω ¼ 1

2 ∇� u� ωp is the fluid relative
rotation with ωp being the particle angular velocity.

The developed correlations depend not only on particle Reynolds number
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diameter ReD, and aspect ratio AR. In this case, such coefficients are expressed in
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However, expressions for the pitching and rotational torque coefficients are not

provided in [19]. Therefore, for the cylinders, the approach of [31] has been
assumed. In [31], the distance between the center of mass and the center or pressure
in a cylinder, lCP, in terms of AR and φ, was proposed to be:
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Then, the pitching torque TP is just the cross-product between the particle
orientation unitary vector and the resultant force acting on it times lCP. Neverthe-
less, this torque is computed in the inertial frame of reference, so it should be
transformed to the particle frame before being included in Eq. (7) to calculate the
particle angular velocity. The approach to compute the viscous rotational torque TR
is to integrate along the particle length the torque due to the drag force with respect
the particle center of mass and it is described in [31]. This torque is given directly in
the particle frame.

Particle motion equations and correlations for cylinders and ellipsoids presented
in this section have been implemented in an in-house code. The numerical integra-
tion of the ordinary differential equations that govern the motion of nonspherical
particles has been performed by a fourth-order Runge-Kutta method, with small
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enough time steps to avoid numerical instabilities [35, 36]. The fluid velocity field in
which particles are immersed has been built by the kinematic simulation technique
described in the next section. It is known that Runge-Kutta methods do not satisfy
the time-reversal property, a fact that makes such methods inappropriate for inte-
grating energy-conserving systems, for instance. However, particle equations are
dissipative systems (as they include viscous drag forces) and, for them, Runge-
Kutta algorithms can be used [37] provided that the time step is small enough to
keep the errors bounded.

3. Kinematic simulation

There exist different options to calculate the Lagrangian properties in a turbu-
lent flow. The starting point is the trajectory equation in which the position x x0; tð Þ
of a particle released at point x0 at time t = 0 is calculated solving:

dx
dt

¼ u x; tð Þ (18)

Here, u x; tð Þ is the Eulerian velocity field. If it is known, it is possible to solve
Eq. (18); however, finding u x; tð Þ is not an easy task. One possibility is to work with
Lagrangian statistics but then it would be needed to close the relevant Lagrangian
correlations. Another option to solve Eq. (18) is to use DNS to obtain u x; tð Þ;
however, this is computationally very expensive. A much more economical alter-
native is the use of kinematic simulation (KS) to compute the Lagrangian charac-
teristics of turbulent flow fields. In this technique, stochastic fluid velocity fields are
constructed in such a way that their statistical properties are in agreement with
those extracted from experiments or reliable DNS. The main advantage of KS is
that it employs an explicit continuous formula for computing u x; tð Þ, so it is not
needed to perform interpolation of the fluid velocity field. Moreover, KS results
of two particle statistics in HIT have been validated versus DNS showing good
agreement [38].

The three-dimensional Eulerian velocity field to be employed in Eq. (18) is built
as a series of random Fourier modes. The velocity field is solenoidal at each realiza-
tion by construction. Moreover, the energy spectrum of the Fourier modes is pre-
scribed, for example, by a power law, so the effects of small flow scales on
Lagrangian statistics are directly included. Such KS velocity field is written as [39]:

u x; tð Þ ¼ ∑
N

n¼1
An cos kn∙xþ ωntð Þ þ Bn sin kn∙xþ ωntð Þ (19)

kn represents the n-th wave number; coefficients An, Bn are random,
uncorrelated vectors perpendicular to kn, whose amplitudes are chosen according to
the prescribed energy spectrum E(k) [39]. Here, the energy spectrum has been the
Kolmogorov decay law of �5/3.

ωn is the n-th frequency, which determines the unsteadiness of the
corresponding mode; it is written proportional to the eddy-turnover time of the
n-th mode:

ωn ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3nE knð Þ

q
(20)

Here, λ is a parameter of order 1 that governs the unsteadiness of the velocity
field. In three-dimensional HIT flows, it has been demonstrated [38] that the
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statistical characteristics of two-particle diffusion are independent of λ. In particu-
lar, in this work, two values of the unsteadiness parameter of 0 and 0.5 have been
tested, without significant differences in the computed statistical properties.
Therefore, following the suggestions of [39], the value 0.5 has been adopted in the
present computations.

Because of the construction of the velocity field given by Eq. (19),
kn∙An ¼ kn∙Bn ¼ 0, it is solenoidal trajectory by trajectory. Moreover, as shown in
[40], such field includes in each realization turbulent-like patterns as eddying,
straining, and streaming regions.

To validate the spherical particles tracking in the KS velocity field, the values
of particle Reynolds stresses (RS) in HIT have been selected. In this configuration,
Hyland et al. [41] demonstrated that, as the fluid turbulence is homogeneous,
particle RS only depend on time and they can be written as u0piu0pj tð Þ

� �
= u0iu0j
� � ¼

q tð Þδij, that is, they are an isotropic tensor. Moreover, in the asymptotic limit,
q t ! ∞ð Þ ¼ βTL= 1þ βTLð Þ, where β is the inverse of particle relaxation time (see
Eq. (21) below) and TL is the Lagrangian time scale of fluid turbulence. Figure 2
presents the numerical results for particle RS computed with KS and the asymptotic
expression q t ! ∞ð Þ. As Figure 2 readily shows, the asymptotic particle RS are very
well reproduced by the numerical particle tracking in the KS velocity field in the
range of two decades for βTL.

4. Numerical simulation

Computations were performed in a tailored in-house code. The turbulent veloc-
ity field generated with KS resembles one of the fields worked in [39]. Such velocity
field is characterized by a fluctuating velocity u’ = 1 m/s, a fluid Reynolds number of
104 resulting in a Kolmogorov length scale ηK ≈ 6:286 mm, associated Kolmogorov
time scale τK ≈ 10 ms, and a fluid integral Lagrangian time scale of turbulence
TL ¼ 0:56 s. Those values are matched by the present KS.

The regular nonspherical particles studied have been the ellipsoids in [20] and
the cylinders in [19]. In all cases, particles have the same particle volume equivalent
diameter dp ¼ 200 μm, hence much smaller than ηK . Therefore, such particles can
be thought as immersed in a uniform flow field. The Stokes number has been
modified by adjusting the material density of particles being the Stokesian particle
relaxation time defined as:

Figure 2.
Comparison of spherical particle Reynolds stresses, obtained with KS versus theoretical values for i ¼ j.
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Therefore, following the suggestions of [39], the value 0.5 has been adopted in the
present computations.
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kn∙An ¼ kn∙Bn ¼ 0, it is solenoidal trajectory by trajectory. Moreover, as shown in
[40], such field includes in each realization turbulent-like patterns as eddying,
straining, and streaming regions.

To validate the spherical particles tracking in the KS velocity field, the values
of particle Reynolds stresses (RS) in HIT have been selected. In this configuration,
Hyland et al. [41] demonstrated that, as the fluid turbulence is homogeneous,
particle RS only depend on time and they can be written as u0piu0pj tð Þ

� �
= u0iu0j
� � ¼

q tð Þδij, that is, they are an isotropic tensor. Moreover, in the asymptotic limit,
q t ! ∞ð Þ ¼ βTL= 1þ βTLð Þ, where β is the inverse of particle relaxation time (see
Eq. (21) below) and TL is the Lagrangian time scale of fluid turbulence. Figure 2
presents the numerical results for particle RS computed with KS and the asymptotic
expression q t ! ∞ð Þ. As Figure 2 readily shows, the asymptotic particle RS are very
well reproduced by the numerical particle tracking in the KS velocity field in the
range of two decades for βTL.

4. Numerical simulation

Computations were performed in a tailored in-house code. The turbulent veloc-
ity field generated with KS resembles one of the fields worked in [39]. Such velocity
field is characterized by a fluctuating velocity u’ = 1 m/s, a fluid Reynolds number of
104 resulting in a Kolmogorov length scale ηK ≈ 6:286 mm, associated Kolmogorov
time scale τK ≈ 10 ms, and a fluid integral Lagrangian time scale of turbulence
TL ¼ 0:56 s. Those values are matched by the present KS.

The regular nonspherical particles studied have been the ellipsoids in [20] and
the cylinders in [19]. In all cases, particles have the same particle volume equivalent
diameter dp ¼ 200 μm, hence much smaller than ηK . Therefore, such particles can
be thought as immersed in a uniform flow field. The Stokes number has been
modified by adjusting the material density of particles being the Stokesian particle
relaxation time defined as:

Figure 2.
Comparison of spherical particle Reynolds stresses, obtained with KS versus theoretical values for i ¼ j.
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If the Kolmogorov time scale τK is taken as the fluid time scale, particle Stokes
number is defined as St ¼ τp=τK . According to this nondimensional number, three
particle inertia classes are considered: light (St ≈0:5), intermediate (St ≈ 10), and
heavy (St≈ 100). However, as cases with Re > 1 are considered, an effective particle
relaxation time is introduced as τp, eff ¼ τp=ReCD, allowing the introduction of an
effective Stokes number Steff ¼ τp, eff=τK . Therefore, the values of such effective
Stokes number are Steff ≈ 0.3 (light), 5 (intermediate), and 40 (heavy).

Simulations proceed in the following way: for each KS realization of HIT fluid
velocity field, a particle is located in the center of the domain with zero initial
velocity; particle translational and rotational motion is computed from Eqs. (6) and
(7), its orientation is calculated from Eq. (1), and its trajectory is built; particle
tracking lasts for around 10 fluid integral time scales; and particle properties are
stored every second for evaluation. Such process is carried out a sufficient number
of times to reach significant statistical results. In this study, statistics has been
performed based on 105 KS realizations.

In the following section, the results of the particle Lagrangian time autocorrela-
tion function, the translational and rotational particle response, and preferential
orientation of the nonspherical particles in the turbulent flow are analyzed as
function of their shape and effective Stokes number.

5. Results and discussion

The Lagrangian autocorrelation function RL, t τð Þ for translational motion is
expressed as:

RL,t τð Þ ¼ up 0ð Þ ∙up τð Þ� �

up ∙up 0ð Þ� � (22)

τ represents the time delay. With the objective of making results independent of
particle injection conditions, statistics are started to be collected after 2 s. The
obtained results for the Lagrangian autocorrelation function (LAF) of the ellipsoids
of Zastawny et al. [20] are presented in the left part of Figure 3, including the
results for spherical particles, whereas those of the cylinders of Vakil and Green
[19] are in the right side of such figure. Horizontal axis is the nondimensional time
delay, τ=TL. As the lighter particles have an autocorrelation function nearly equal to
that of the fluid (tracer limit), the corresponding curves are not shown in Figure 3.
Therefore, only the curves for intermediate and high inertia particles are presented.
Moreover, in Figure 3 also the fluid Lagrangian (brown curve) and Eulerian (cyan
curve) RL, t τð Þ’s are included for comparison.

As it can be readily seen from Figure 3, higher inertia particles are characterized
by larger integral Lagrangian time scales (ILTSs) (defined as the integral up to
infinity of RL, t τð Þ), as a result of their smaller responsiveness to the turbulent
fluctuations. Same as in [23], all particle LAFs are mainly in between the fluid LAF
and Eulerian autocorrelation function (EAF). As a consequence of inertia, for the
smallest values of τ, the heavy RL, t τð Þ overcomes the fluid EAF, differently from
[23] who considered only noninertial particles.

Moreover, for intermediate inertia, the curves for all particle shapes nearly
collapse in a single curve. On the other hand, a shape effect is noticeable for the
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heaviest particles, where the various shapes present differences in their curves. It is
interesting to realize that ILTSs of higher aspect ratio (AR) are below those of
smaller AR, for both ellipsoids and cylinders. This effect is a Reynolds number
effect due to the dependence of drag coefficient on shape and AR: an interaction
between translation and rotation motions occurs that results in a spreading of the
particle effective Stokes number. As a consequence, particles with higher Reynolds
numbers also have larger effective inertia (reflected on an increased Stokes num-
ber) and, therefore, their LAF decreases slower, implying a higher ILTS. In the
ellipsoids case, it happens that those of typ. 2 present a RL, t τð Þ curve slightly over
that of the spherical particle, as they have lower effective Stokes number. Also, the
LAF curve for the disc-like particles in this case is very similar to that of the fiber.

In an analogous way to translational LAF, a rotational autocorrelation function
(RAF) RL,r τð Þ can be defined in terms of the time delay τ as:

RL,r τð Þ ¼ ωp 0ð Þ ∙ωp τð Þ� �

ωp ∙ωp 0ð Þ� � (23)

where the particle angular velocity is denoted by ωp.
The obtained results for the Lagrangian rotational autocorrelation function of the

ellipsoids of Zastawny et al. [20] are shown in the left part of Figure 4, whereas those
of the cylinders of Vakil and Green [19] are in the right side of such figure. Again,
horizontal axis is the nondimensional time delay, τ=TL. Similar to the case of transla-
tional motion, the angular velocities of heavy particles keep correlated for longer
times than those of lighter particles. Such correlation time for ellipsoidal particles is
much shorter than that of the translational motion. Also, for all inertia cases, the RAF
of disc-like particles drops quicker than for the prolate ellipsoids. As mentioned for
the translational correlations, the RAF curves for the prolate ellipsoids collapse for the
lighter particles, but they show noticeable differences for the intermediate and large
inertia particles demonstrating an effect of the aspect ratio on RL,r τð Þ. Ellipsoid 2, with
the smallerAR, has the higher RAF curve of all prolate ellipsoids, while Ellipsoid 1 and
the fiber have very similar rotational correlation functions.

In the case of cylinders (Figure 4, right), the RAF curves for all AR and inertias
are different. For the smallest inertia particles, RAF decreases with increasing AR,
similar to what was found for LAFs in the translational motion. Moreover, the
RL,r τð Þ curve presents negative values for the two largest aspect ratios of 10 and 20.
For the intermediate particles, the RAF curves keep the same decreasing trend with
increasing aspect ratio as the light particles; however, in this case, correlation times

Figure 3.
Computed RL,t τð Þ curves for ellipsoidal particles [20] (left) and cylindrical particles [19] (right). Fluid
Lagrangian and Eulerian curves are included for comparison.
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If the Kolmogorov time scale τK is taken as the fluid time scale, particle Stokes
number is defined as St ¼ τp=τK . According to this nondimensional number, three
particle inertia classes are considered: light (St ≈0:5), intermediate (St ≈ 10), and
heavy (St≈ 100). However, as cases with Re > 1 are considered, an effective particle
relaxation time is introduced as τp, eff ¼ τp=ReCD, allowing the introduction of an
effective Stokes number Steff ¼ τp, eff=τK . Therefore, the values of such effective
Stokes number are Steff ≈ 0.3 (light), 5 (intermediate), and 40 (heavy).

Simulations proceed in the following way: for each KS realization of HIT fluid
velocity field, a particle is located in the center of the domain with zero initial
velocity; particle translational and rotational motion is computed from Eqs. (6) and
(7), its orientation is calculated from Eq. (1), and its trajectory is built; particle
tracking lasts for around 10 fluid integral time scales; and particle properties are
stored every second for evaluation. Such process is carried out a sufficient number
of times to reach significant statistical results. In this study, statistics has been
performed based on 105 KS realizations.

In the following section, the results of the particle Lagrangian time autocorrela-
tion function, the translational and rotational particle response, and preferential
orientation of the nonspherical particles in the turbulent flow are analyzed as
function of their shape and effective Stokes number.

5. Results and discussion

The Lagrangian autocorrelation function RL, t τð Þ for translational motion is
expressed as:

RL,t τð Þ ¼ up 0ð Þ ∙up τð Þ� �

up ∙up 0ð Þ� � (22)

τ represents the time delay. With the objective of making results independent of
particle injection conditions, statistics are started to be collected after 2 s. The
obtained results for the Lagrangian autocorrelation function (LAF) of the ellipsoids
of Zastawny et al. [20] are presented in the left part of Figure 3, including the
results for spherical particles, whereas those of the cylinders of Vakil and Green
[19] are in the right side of such figure. Horizontal axis is the nondimensional time
delay, τ=TL. As the lighter particles have an autocorrelation function nearly equal to
that of the fluid (tracer limit), the corresponding curves are not shown in Figure 3.
Therefore, only the curves for intermediate and high inertia particles are presented.
Moreover, in Figure 3 also the fluid Lagrangian (brown curve) and Eulerian (cyan
curve) RL, t τð Þ’s are included for comparison.

As it can be readily seen from Figure 3, higher inertia particles are characterized
by larger integral Lagrangian time scales (ILTSs) (defined as the integral up to
infinity of RL, t τð Þ), as a result of their smaller responsiveness to the turbulent
fluctuations. Same as in [23], all particle LAFs are mainly in between the fluid LAF
and Eulerian autocorrelation function (EAF). As a consequence of inertia, for the
smallest values of τ, the heavy RL, t τð Þ overcomes the fluid EAF, differently from
[23] who considered only noninertial particles.

Moreover, for intermediate inertia, the curves for all particle shapes nearly
collapse in a single curve. On the other hand, a shape effect is noticeable for the
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heaviest particles, where the various shapes present differences in their curves. It is
interesting to realize that ILTSs of higher aspect ratio (AR) are below those of
smaller AR, for both ellipsoids and cylinders. This effect is a Reynolds number
effect due to the dependence of drag coefficient on shape and AR: an interaction
between translation and rotation motions occurs that results in a spreading of the
particle effective Stokes number. As a consequence, particles with higher Reynolds
numbers also have larger effective inertia (reflected on an increased Stokes num-
ber) and, therefore, their LAF decreases slower, implying a higher ILTS. In the
ellipsoids case, it happens that those of typ. 2 present a RL, t τð Þ curve slightly over
that of the spherical particle, as they have lower effective Stokes number. Also, the
LAF curve for the disc-like particles in this case is very similar to that of the fiber.

In an analogous way to translational LAF, a rotational autocorrelation function
(RAF) RL,r τð Þ can be defined in terms of the time delay τ as:

RL,r τð Þ ¼ ωp 0ð Þ ∙ωp τð Þ� �

ωp ∙ωp 0ð Þ� � (23)

where the particle angular velocity is denoted by ωp.
The obtained results for the Lagrangian rotational autocorrelation function of the

ellipsoids of Zastawny et al. [20] are shown in the left part of Figure 4, whereas those
of the cylinders of Vakil and Green [19] are in the right side of such figure. Again,
horizontal axis is the nondimensional time delay, τ=TL. Similar to the case of transla-
tional motion, the angular velocities of heavy particles keep correlated for longer
times than those of lighter particles. Such correlation time for ellipsoidal particles is
much shorter than that of the translational motion. Also, for all inertia cases, the RAF
of disc-like particles drops quicker than for the prolate ellipsoids. As mentioned for
the translational correlations, the RAF curves for the prolate ellipsoids collapse for the
lighter particles, but they show noticeable differences for the intermediate and large
inertia particles demonstrating an effect of the aspect ratio on RL,r τð Þ. Ellipsoid 2, with
the smallerAR, has the higher RAF curve of all prolate ellipsoids, while Ellipsoid 1 and
the fiber have very similar rotational correlation functions.

In the case of cylinders (Figure 4, right), the RAF curves for all AR and inertias
are different. For the smallest inertia particles, RAF decreases with increasing AR,
similar to what was found for LAFs in the translational motion. Moreover, the
RL,r τð Þ curve presents negative values for the two largest aspect ratios of 10 and 20.
For the intermediate particles, the RAF curves keep the same decreasing trend with
increasing aspect ratio as the light particles; however, in this case, correlation times

Figure 3.
Computed RL,t τð Þ curves for ellipsoidal particles [20] (left) and cylindrical particles [19] (right). Fluid
Lagrangian and Eulerian curves are included for comparison.
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for angular velocities are very much increased and they are significantly higher than
for ellipsoids. The previous trend is reversed for the heavy particles as the RAF
curves augment with increasing AR; however, as Figure 4 (right) suggests, an
asymptotic value for L/D seems to exist because the curves for AR = 10 and 20 are
very close to each other. The change of behavior of the RAF with increasing inertia
could be due to the fact that for the small and intermediate inertia, the particle
relaxation time for rotation reduces with growing AR, whereas for heavy particles,
such relaxation time behaves in the opposite way. Nevertheless, this fact must be
further investigated, possibly using fully resolved simulations.

Next, the response of the nonspherical particles to the fluid fluctuating velocities
is analyzed for both translation and rotation motions. Figure 5(a) shows the
behavior of the particle’s relative linear root mean square (rms) velocity, that is,
u0p=u

0, where u0 is the fluid rms fluctuating translational velocity and u0p denotes the
same quantity but for the particles. The aspect ratio is in the horizontal axis,
whereas the different curves correspond to the various inertia cases. On the one
side, as it could be anticipated, u0p reduces with increasing particle inertia because
the more inertial particles are not able to follow all fluid velocity fluctuations. In
fact, as it was found for the LAF, the less inertial particles present, for both ellip-
soids and cylinders and for all values of AR, the same fluctuating velocities as the
fluid, indicating that they behave as fluid tracers.

As inertia increases, u0p=u
0 decreases monotonically, as expected. However, it

increases with growing aspect ratio for both cylinders and ellipsoids. There is one
exception that spherical particles have values of u0p=u

0 slightly above those of the

Figure 4.
Computed RL,r τð Þ curves for ellipsoidal particles [20] (left) and cylindrical particles [19] (right).

Figure 5.
Relative particle rms of particle linear velocity (a) and angular rms velocity (b). In all cases, the dependence on
aspect ratio and inertia is considered. Closed symbols refer to prolate ellipsoids and open symbols to cylinders.
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ellipsoid with AR = 1.25. The trend of increasing particle fluctuating velocities with
aspect ratio is consistent with the aforementioned fact that effective Stokes number
tends to reduce with growing AR; therefore, particles with lower AR respond less to
the fluid fluctuations than the more elongated ones. This result has been obtained
for particles much smaller than Kolmogorov length scale; therefore, such particles
can be considered to be immersed in a uniform flow field, just in the same condi-
tions as the flow coefficient correlations were developed. In the study of Hölzer and
Sommerfeld [42], nevertheless, a different result was found. Using a DNS based on
the lattice Boltzmann method (LBM), Hölzer and Sommerfeld [42] obtained that
relative particle fluctuating velocity reduced with increasing AR. The main differ-
ence with the present work is that Hölzer and Sommerfeld [42] employed particles
with size well above ηK . The authors explained the fact arguing that particles aver-
aged the fluid fluctuations on their surface, which augmented with increasing AR.
Let us remark that both results are not conflicting as the size range of the employed
particles in the two studies is very different. Further work combining DNS with
nonspherical point particles smaller than ηK is necessary to explain this point.

Figure 5(b) presents the behavior of the particle angular rms velocity, ω0
p. In

homogeneous and isotropic turbulence, the angular velocity of spherical particles is
zero because of viscous damping and the absence of pitching torque. The situation is
different in nonspherical particles because in them the geometrical and pressure
centers do not coincide, so a net pitching torque is produced that promotes nonzero
angular velocities. As illustrated in Figure 5(b), ω0

p increases with AR and reaches
up to a maximum of AR≈ 2 and decreases with higher values of aspect ratio. The
shape of the curve is the same for ellipsoids and cylinders. Such behavior was also
found in [42], and it was explained observing that, with increasing AR, the moment
of inertia along the major axis reduces and along the minor axis increases, which
would lead to higher and lower ω0

p, respectively. On the other hand, and similar to
what happened with u0p, for inertial particles, ω0

p decreases as inertia augments.
In the following, the correlation relative velocity direction-particle orientation is

analyzed depending on inertia and aspect ratio. A well-known fact is that regular
nonspherical particles falling through a still liquid at intermediate Reynolds num-
bers tend to be oriented in a determined direction. Cylinders and prolate ellipsoids
are prone to keep their symmetry axis (z’ in Figure 1) perpendicular to the flow,
thus maximizing drag. Differently, discs and oblate ellipsoids tend to move with the
symmetry axis aligned with the flow, also maximizing drag [43]. However, sphe-
roidal Stokes particles only show a preferential orientation if a persistent velocity
gradient exists [27]. Therefore, in HIT flow where there are no mean velocity
gradients, a Stokes particle will not have any preferred orientation.

Newsom and Bruce [44] analyzed the influence of turbulence on preferential
alignment of quite elongated fibers with Re ≈ 1. As explained by [44], preferential
orientation of such fibers falling through a still fluid can only be clarified if fluid inertial
effects are considered. In the Stokes regime, Khayat and Cox [43] demonstrate that the
force distribution on the fiber is symmetrically distributed along its axis, independent
of its orientation regarding the flow and, as a result, the fiber experiences a zero net
torque. Beyond the Stokes regime, Re > 1, when the fiber has an oblique orientation
with respect the flow, such distribution of the force is not any more symmetric and it
experiences a net pitching torque. Such torque will promote a rotation that drives the
fiber to adopt an orientationwhere its symmetry axis is orthogonal to the relative flow.
Interestingly, if the fiber is oriented orthogonal or parallel to the flow, the net experi-
enced torque is zero, due to the symmetry of the force distribution; however, in the
first case, this situation is stable, while in the second case, where the centers of gravity
and pressure do not coincide, this situation is unstable.
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for angular velocities are very much increased and they are significantly higher than
for ellipsoids. The previous trend is reversed for the heavy particles as the RAF
curves augment with increasing AR; however, as Figure 4 (right) suggests, an
asymptotic value for L/D seems to exist because the curves for AR = 10 and 20 are
very close to each other. The change of behavior of the RAF with increasing inertia
could be due to the fact that for the small and intermediate inertia, the particle
relaxation time for rotation reduces with growing AR, whereas for heavy particles,
such relaxation time behaves in the opposite way. Nevertheless, this fact must be
further investigated, possibly using fully resolved simulations.

Next, the response of the nonspherical particles to the fluid fluctuating velocities
is analyzed for both translation and rotation motions. Figure 5(a) shows the
behavior of the particle’s relative linear root mean square (rms) velocity, that is,
u0p=u

0, where u0 is the fluid rms fluctuating translational velocity and u0p denotes the
same quantity but for the particles. The aspect ratio is in the horizontal axis,
whereas the different curves correspond to the various inertia cases. On the one
side, as it could be anticipated, u0p reduces with increasing particle inertia because
the more inertial particles are not able to follow all fluid velocity fluctuations. In
fact, as it was found for the LAF, the less inertial particles present, for both ellip-
soids and cylinders and for all values of AR, the same fluctuating velocities as the
fluid, indicating that they behave as fluid tracers.

As inertia increases, u0p=u
0 decreases monotonically, as expected. However, it

increases with growing aspect ratio for both cylinders and ellipsoids. There is one
exception that spherical particles have values of u0p=u
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Figure 4.
Computed RL,r τð Þ curves for ellipsoidal particles [20] (left) and cylindrical particles [19] (right).

Figure 5.
Relative particle rms of particle linear velocity (a) and angular rms velocity (b). In all cases, the dependence on
aspect ratio and inertia is considered. Closed symbols refer to prolate ellipsoids and open symbols to cylinders.
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ellipsoid with AR = 1.25. The trend of increasing particle fluctuating velocities with
aspect ratio is consistent with the aforementioned fact that effective Stokes number
tends to reduce with growing AR; therefore, particles with lower AR respond less to
the fluid fluctuations than the more elongated ones. This result has been obtained
for particles much smaller than Kolmogorov length scale; therefore, such particles
can be considered to be immersed in a uniform flow field, just in the same condi-
tions as the flow coefficient correlations were developed. In the study of Hölzer and
Sommerfeld [42], nevertheless, a different result was found. Using a DNS based on
the lattice Boltzmann method (LBM), Hölzer and Sommerfeld [42] obtained that
relative particle fluctuating velocity reduced with increasing AR. The main differ-
ence with the present work is that Hölzer and Sommerfeld [42] employed particles
with size well above ηK . The authors explained the fact arguing that particles aver-
aged the fluid fluctuations on their surface, which augmented with increasing AR.
Let us remark that both results are not conflicting as the size range of the employed
particles in the two studies is very different. Further work combining DNS with
nonspherical point particles smaller than ηK is necessary to explain this point.

Figure 5(b) presents the behavior of the particle angular rms velocity, ω0
p. In

homogeneous and isotropic turbulence, the angular velocity of spherical particles is
zero because of viscous damping and the absence of pitching torque. The situation is
different in nonspherical particles because in them the geometrical and pressure
centers do not coincide, so a net pitching torque is produced that promotes nonzero
angular velocities. As illustrated in Figure 5(b), ω0

p increases with AR and reaches
up to a maximum of AR≈ 2 and decreases with higher values of aspect ratio. The
shape of the curve is the same for ellipsoids and cylinders. Such behavior was also
found in [42], and it was explained observing that, with increasing AR, the moment
of inertia along the major axis reduces and along the minor axis increases, which
would lead to higher and lower ω0

p, respectively. On the other hand, and similar to
what happened with u0p, for inertial particles, ω0

p decreases as inertia augments.
In the following, the correlation relative velocity direction-particle orientation is

analyzed depending on inertia and aspect ratio. A well-known fact is that regular
nonspherical particles falling through a still liquid at intermediate Reynolds num-
bers tend to be oriented in a determined direction. Cylinders and prolate ellipsoids
are prone to keep their symmetry axis (z’ in Figure 1) perpendicular to the flow,
thus maximizing drag. Differently, discs and oblate ellipsoids tend to move with the
symmetry axis aligned with the flow, also maximizing drag [43]. However, sphe-
roidal Stokes particles only show a preferential orientation if a persistent velocity
gradient exists [27]. Therefore, in HIT flow where there are no mean velocity
gradients, a Stokes particle will not have any preferred orientation.

Newsom and Bruce [44] analyzed the influence of turbulence on preferential
alignment of quite elongated fibers with Re ≈ 1. As explained by [44], preferential
orientation of such fibers falling through a still fluid can only be clarified if fluid inertial
effects are considered. In the Stokes regime, Khayat and Cox [43] demonstrate that the
force distribution on the fiber is symmetrically distributed along its axis, independent
of its orientation regarding the flow and, as a result, the fiber experiences a zero net
torque. Beyond the Stokes regime, Re > 1, when the fiber has an oblique orientation
with respect the flow, such distribution of the force is not any more symmetric and it
experiences a net pitching torque. Such torque will promote a rotation that drives the
fiber to adopt an orientationwhere its symmetry axis is orthogonal to the relative flow.
Interestingly, if the fiber is oriented orthogonal or parallel to the flow, the net experi-
enced torque is zero, due to the symmetry of the force distribution; however, in the
first case, this situation is stable, while in the second case, where the centers of gravity
and pressure do not coincide, this situation is unstable.
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Previous reasoning is valid too for another kind of nonspherical shapes as disc-
like, cylindrical, or ellipsoidal [45]. For high Reynolds numbers, that is, Re > 100
appears a secondary motion overimposed to the particles predominant movement
direction. Such secondary motion is promoted by a wake instability and vortex
detachment from the rear surface of the particles. Two main kinds of secondary
motion can be observed: large quasi-periodic swings along the main path, and a
more or less chaotic tumbling forming a definite angle with the main motion
direction. There is a coupling between this kind of oscillatory motion and the wake
instability [10]: a vortex detachment follows at the end of a particle swing. Never-
theless, in the present study, such secondary motions do not appear as the consid-
ered particle Reynolds number is not large enough, that is, Re < 40.

Let now θ be the angle formed by the relative velocity, u� up, and the particle
symmetry axis, z’. Therefore, cos θ can be used to determine the orientation of the
nonspherical particle with respect to the relative flow. In this work, particle prefer-
ential orientation is determined computing cos θj j along the trajectories of 105

particles. Computed values of cos θj j are sorted in equally distributed bins between
0 (particle axis orthogonal to relative velocity) and 1 (alignment between particle
axis and relative velocity), and the corresponding probability density functions
(Pdfs) are determined. Such Pdfs are shown in Figure 6 in terms of cos θj j.
Figure 6(a) shows the results for the prolate ellipsoids in terms of particle inertia,

Figure 6.
Orientations probability density functions (Pdfs) of prolate ellipsoids (a) and cylinders (b) regarding the
relative flow direction.
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and Figure 6(b) presents the curves for the cylinders also depending on their
inertia. Each inertia class is plotted in a separated frame. For the discs case, results
are presented in Figure 7.

As it is observed in Figure 6(a), it is found that prolate ellipsoids do manifest
preferential orientation with respect to the relative velocity. Of course, spherical
particles do not have a preferred orientation and the corresponding Pdf is a hori-
zontal line (black color). Prolate ellipsoids have a preference for orientating its
symmetry axis orthogonal to the relative flow, tending to maximize the drag,
similar to what occurs in particle sedimentation studies. The orientation preference
increases with inertia, which is quite similar for all aspect ratios considered in this
study.

On the other hand, as it is presented in Figure 6(b), cylinders seem not to have
any preferred orientation in the HIT KS velocity field, being all the curves pretty
flat. Only for the case of higher AR and lowest inertia, the curves show a trend to be
slightly higher for values of cos θj j closer to one than to zero. Such result is qualita-
tively similar to the DNS computations of [27] in the central region of the channel.

For the discs, Figure 7 shows that there is a clear trend of the particle symmetry
axis to be aligned with the relative flow, again maximizing drag, similar to the
results obtained for sedimenting particles in stagnant fluid. Such trend is more
marked when particle inertia increases.

6. Conclusions

In this study, regular nonspherical particle responsiveness to HIT flows has been
investigated in combination with KS of fluid velocity field. The main results
obtained are the following: the particle LAF reduces when particle AR is aug-
mented, because effective particle inertia decreases if aspect ratio increases; this is
true for both translational and rotational time autocorrelation functions. In the case
of cylinders, RL,r τð Þ is much higher than for ellipsoids, a fact that requires further
clarification through particle resolved simulations. Additionally, the fluctuating
particle velocity increases for growing AR in the considered case of particles much

Figure 7.
Orientation probability density functions (Pdfs) of disc-like particles regarding the relative flow direction.
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Previous reasoning is valid too for another kind of nonspherical shapes as disc-
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motion can be observed: large quasi-periodic swings along the main path, and a
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direction. There is a coupling between this kind of oscillatory motion and the wake
instability [10]: a vortex detachment follows at the end of a particle swing. Never-
theless, in the present study, such secondary motions do not appear as the consid-
ered particle Reynolds number is not large enough, that is, Re < 40.

Let now θ be the angle formed by the relative velocity, u� up, and the particle
symmetry axis, z’. Therefore, cos θ can be used to determine the orientation of the
nonspherical particle with respect to the relative flow. In this work, particle prefer-
ential orientation is determined computing cos θj j along the trajectories of 105

particles. Computed values of cos θj j are sorted in equally distributed bins between
0 (particle axis orthogonal to relative velocity) and 1 (alignment between particle
axis and relative velocity), and the corresponding probability density functions
(Pdfs) are determined. Such Pdfs are shown in Figure 6 in terms of cos θj j.
Figure 6(a) shows the results for the prolate ellipsoids in terms of particle inertia,

Figure 6.
Orientations probability density functions (Pdfs) of prolate ellipsoids (a) and cylinders (b) regarding the
relative flow direction.
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and Figure 6(b) presents the curves for the cylinders also depending on their
inertia. Each inertia class is plotted in a separated frame. For the discs case, results
are presented in Figure 7.

As it is observed in Figure 6(a), it is found that prolate ellipsoids do manifest
preferential orientation with respect to the relative velocity. Of course, spherical
particles do not have a preferred orientation and the corresponding Pdf is a hori-
zontal line (black color). Prolate ellipsoids have a preference for orientating its
symmetry axis orthogonal to the relative flow, tending to maximize the drag,
similar to what occurs in particle sedimentation studies. The orientation preference
increases with inertia, which is quite similar for all aspect ratios considered in this
study.

On the other hand, as it is presented in Figure 6(b), cylinders seem not to have
any preferred orientation in the HIT KS velocity field, being all the curves pretty
flat. Only for the case of higher AR and lowest inertia, the curves show a trend to be
slightly higher for values of cos θj j closer to one than to zero. Such result is qualita-
tively similar to the DNS computations of [27] in the central region of the channel.

For the discs, Figure 7 shows that there is a clear trend of the particle symmetry
axis to be aligned with the relative flow, again maximizing drag, similar to the
results obtained for sedimenting particles in stagnant fluid. Such trend is more
marked when particle inertia increases.

6. Conclusions

In this study, regular nonspherical particle responsiveness to HIT flows has been
investigated in combination with KS of fluid velocity field. The main results
obtained are the following: the particle LAF reduces when particle AR is aug-
mented, because effective particle inertia decreases if aspect ratio increases; this is
true for both translational and rotational time autocorrelation functions. In the case
of cylinders, RL,r τð Þ is much higher than for ellipsoids, a fact that requires further
clarification through particle resolved simulations. Additionally, the fluctuating
particle velocity increases for growing AR in the considered case of particles much

Figure 7.
Orientation probability density functions (Pdfs) of disc-like particles regarding the relative flow direction.
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smaller than Kolmogorov length scale; such behavior is contrary, although not
conflicting, to the findings of [42] for fully resolved particles with sizes larger than
the Kolmogorov length scale. For both ellipsoids and cylinders, the particle angular
rms velocity first increases with aspect ratio, reaches a maximum of AR≈ 2, and
then decreases again, which is explained because with increasing aspect ratio, the
moment of inertia around the longitudinal axis decreases and around the radial axis
increases, which would lead to higher and lower rms angular velocities, respec-
tively. Finally, in agreement with Marchioli et al. [27], cylinders seem not to prefer
any specific orientation in the KS HIT velocity field; however, prolate ellipsoids
tend to be oriented with its symmetry axis orthogonal to the relative flow, maxi-
mizing the drag. Oblate ellipsoids and disc-like particles also show a preferential
orientation, tending to align their symmetry axis with the relative flow velocity.
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Chapter 3

An Eulerian-Lagrangian Coupled
Model for Droplets Dispersion
from Nozzle Spray
Carlos G. Sedano, César Augusto Aguirre and
Armando B. Brizuela

Abstract

In this chapter, an Euler-Lagrangian double-way coupled model is presented for
simulating the liquid particle dispersion ejected from a high-pressure nozzle. The
Eulerian code is advanced regional prediction system (ARPS), developed by Center
of Analysis and Prediction of Storm (CAPS) and Oklahoma University, USA, which
is specialized in weather simulation. This code is the double way coupled with a
Lagrangian one-particle model. The theoretical remarks of the double-way cou-
pling, the simulation of the liquid droplet trajectory, and, finally, the droplet colli-
sion in the spray cloud using a binary collision model are descripts. The results of
droplet velocities and diameters are compared with experimental laboratory mea-
surements. Finally, agrochemical spraying over a cultivated field in weak wind and
high air temperature conditions is showed.

Keywords: droplets, spray, multiphase flow, large-eddy simulation,
Lagrangian stochastic model

1. Introduction

Numerous engineering applications are focused on solving the problems of
dispersion of a sprayed droplet jet from a high-pressure nozzle into a gaseous
medium. Spraying is used in internal combustion engines, application of agro-
chemicals over cultivated fields and greenhouses, irrigation systems, among others.
Some questions raised by this topic of engineering can be studied using the compu-
tational simulation of multiphase flows. There are currently different ways to
implement these tools. In the Eulerian approach, the physical domain is subdivided
into cells of a grid space. Each cell has a portion of its volume filled by the liquid
phase and the other part by the air. Continuity, momentum, energy and species, for
a single-fluid mixture conservation equations, are solved in all pass time of the
simulation [1, 2]. On the other hand, the Lagrangian approach at one particle pro-
poses the velocities and positions of particles simulation (solids, liquid, vapor, or
scalar species) by solving a stochastic equation following the Markov chains. The
deterministic term is obtained from the average air velocity values, while the ran-
dom term is like a white noise following a Brownian motion. The coupled Eulerian
large-eddy simulation (LES) with Lagrangian one-particle stochastic method (STO)
has been proposed in order to obtain more details on the turbulent properties of the
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fluid carrying the particles. Several studies using this coupling methodology
(LES-STO) can be found [3–11]. In this chapter, we focus on the ejection of droplets
in air environment from a spray nozzle. The sprayed liquid is a water at 20°C
temperature, and the ejection pressure reaches 3 bar. The atmosphere temperature
is like the water ejected, but the air pressure is 1.013 bar. These conditions are like as
Nuyttens experience [12]. The author carries out paired measurements of droplet
diameters and velocities at 25 cm below the spray nozzle using phase Doppler
particle analyzer (PDPA) instrument. The particle’s Euler-Lagrangian double-way
coupling code LES-STO is proposed for to simulate the trajectory of these particles
in their liquid phase. The original finite-difference Eulerian LES code named
advanced regional prediction systems (ARPS) developed by the University of
Oklahoma’s Center for Analysis and Forecasting of Storms (CAPS) [13] has been
adapted by Aguirre [14] for the simulation of fluid particles in order to validate it
with measurements of concentration of a passive gas made in a wind tunnel over
flat ground [15] and in the presence of a gentle sloping hill [16]. First time, we
present a random ejection algorithm of droplet diameters whose probability density
function replies to the two-parameter Weibull distribution. These parameters are
previously obtained using laboratory experimental data. Second time, we present
the theoretical approach for obtaining the results of collision droplets into the spray.
The binary collision droplet model [17–19] has been performed in the LES-STO
code. This model uses the concept of symmetric weber number [20] to consider the
relationship between the kinetic and surface energy of the two colliding droplets.
Finally, an agrochemical spraying over a cultivated field in low wind velocity and
high air temperature conditions is showed.

2. Theoretical framework and techniques of numerical simulation

2.1 Conditions and simulation of liquid particle ejection

In this section, we present a random ejection algorithm for simulating different
diameters of droplets whose probability density function matches a Weibull distri-
bution. The scale and shape parameters of Weibull distribution are previously
obtained from laboratory experimental data using a phase Doppler particle analyzer
(PDPA) performed by Nuyttens [12] from an HARDI™ spray nozzle. The sprayed
liquid in laboratory experience has been water at 20°C temperature, and the ejec-
tion pressure reaches 3 bar. The atmosphere temperature is like the water ejected,
but the air pressure is 1.013 bar and a calm wind.

2.1.1 Initial conditions of the droplet positions and velocities

The initial conditions of ejection droplets are as follows:

• The nozzle height was located at h = 0.75 m over the ground.

• The elliptical shape A (Figure 1) for exit droplets. It was located at
Lc = 0.023 m below the nozzle because, according to the measurements of
Nuyttens [12], it is the region of detachment of droplets from the sheet of the
liquid film.

• The angle of the spray in the transverse direction is α = 110° according to the
technical specifications of the HARDI™ nozzle.
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• The minor semiaxis of A ellipse (transverse direction y) is dy0 = 0.0046 m.

• The major semiaxis of A ellipse (longitudinal direction x) is
dx0 ¼ tg α=2ð ÞLc ¼ 0:0328 m.

• The initial vertical velocity of liquid particles is adopted from the confined
fluid simulation [21] W0 = 16.356 m s�1.

• The initial horizontal component velocity of each liquid particle will depend on
the initial position within the A ellipse (Figure 1):

U0 ¼ xc
Lc

W0,

V0 ¼ yc
Lc

W0,

8><
>:

(1)

where (xc, yc) are the relative horizontal positions of the liquid particle at center
of the A ellipse. So, the horizontal velocity of droplets at initial time of the simula-
tion depends directly on these relative distances. To determine the initial horizontal
position (xc, yc), an algorithm of random variable is used:

xc ¼ 2dxo χ � 0:5ð Þ,

yc ¼ 2 dx2o � x2c
� � dx2o

dy2o

� �� �1=2 χ � 0:5ð Þ,
8<
: (2)

where χ is a continuous uniform random variable in the [0, 1] interval whose
average value is μχ ¼ 0:5 and standard deviation σχ ¼

ffiffiffi
3

p
=6.

All particles are located at the z = h � Lc height within the A ellipse at the initial
time of the simulation.

2.1.2 Initial distribution function of the liquid particles’ diameters

The Rosin-Rammler (R-R) distribution function is a cumulative function of
continuous random variable whose probability density function (p.d.f.) is a two-
parameter Weibull. This distribution function is used [22, 23] to adjust experimen-
tal data of droplet diameter measurements as a function of liquid-sprayed fraction
volume in order to obtain the shape m and scale k Weibull parameters. The exper-
imental data require very precise measurements of the diameters of liquid droplets.
The Doppler phase particle analyzer (PDPA) meets the necessary requirements and
has the advantage of obtaining paired velocity and diameter data of very small
droplets, which are ejected from the nozzle. Nuyttens [12] presents laboratory

Figure 1.
Spray cone HARDI ™ ISO F 110-O3 nozzle follows Nuyttens laboratory experience [12].
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fluid carrying the particles. Several studies using this coupling methodology
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2. Theoretical framework and techniques of numerical simulation

2.1 Conditions and simulation of liquid particle ejection

In this section, we present a random ejection algorithm for simulating different
diameters of droplets whose probability density function matches a Weibull distri-
bution. The scale and shape parameters of Weibull distribution are previously
obtained from laboratory experimental data using a phase Doppler particle analyzer
(PDPA) performed by Nuyttens [12] from an HARDI™ spray nozzle. The sprayed
liquid in laboratory experience has been water at 20°C temperature, and the ejec-
tion pressure reaches 3 bar. The atmosphere temperature is like the water ejected,
but the air pressure is 1.013 bar and a calm wind.

2.1.1 Initial conditions of the droplet positions and velocities

The initial conditions of ejection droplets are as follows:

• The nozzle height was located at h = 0.75 m over the ground.

• The elliptical shape A (Figure 1) for exit droplets. It was located at
Lc = 0.023 m below the nozzle because, according to the measurements of
Nuyttens [12], it is the region of detachment of droplets from the sheet of the
liquid film.

• The angle of the spray in the transverse direction is α = 110° according to the
technical specifications of the HARDI™ nozzle.
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• The minor semiaxis of A ellipse (transverse direction y) is dy0 = 0.0046 m.

• The major semiaxis of A ellipse (longitudinal direction x) is
dx0 ¼ tg α=2ð ÞLc ¼ 0:0328 m.

• The initial vertical velocity of liquid particles is adopted from the confined
fluid simulation [21] W0 = 16.356 m s�1.

• The initial horizontal component velocity of each liquid particle will depend on
the initial position within the A ellipse (Figure 1):
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tion depends directly on these relative distances. To determine the initial horizontal
position (xc, yc), an algorithm of random variable is used:
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where χ is a continuous uniform random variable in the [0, 1] interval whose
average value is μχ ¼ 0:5 and standard deviation σχ ¼

ffiffiffi
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=6.

All particles are located at the z = h � Lc height within the A ellipse at the initial
time of the simulation.

2.1.2 Initial distribution function of the liquid particles’ diameters

The Rosin-Rammler (R-R) distribution function is a cumulative function of
continuous random variable whose probability density function (p.d.f.) is a two-
parameter Weibull. This distribution function is used [22, 23] to adjust experimen-
tal data of droplet diameter measurements as a function of liquid-sprayed fraction
volume in order to obtain the shape m and scale k Weibull parameters. The exper-
imental data require very precise measurements of the diameters of liquid droplets.
The Doppler phase particle analyzer (PDPA) meets the necessary requirements and
has the advantage of obtaining paired velocity and diameter data of very small
droplets, which are ejected from the nozzle. Nuyttens [12] presents laboratory
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Spray cone HARDI ™ ISO F 110-O3 nozzle follows Nuyttens laboratory experience [12].
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measurements with this device for different working pressures with an HARDI ™
ISO F 110-O3 nozzle, among others, in calm air conditions. The values obtained in
the Nuyttens [12] measurement experiences are as follows: average droplet diame-
ters ϕ0 ¼ 267:6 μm, standard deviation of droplet diameters σϕ ¼ 110:3 μm, and a
modal value Mo ¼ 250:2 μm. These values allow finding the parameters of the
Weibull p.d.f. for the initial conditions of ejected droplet diameter. In this work, we
obtained the m and k parameters following the methodology presented [24] for the
droplet diameters that are ejected with an internal pressure of 3 bar. The properties
of the Weibull distribution and the fit with the experimental measurement data are
described in Appendix A.

2.1.3 Initial randomization of the droplet diameters

Once the shape and scale parameters of the Weibull p.d.f. are obtained, which
characterize the diameters of drops ejected from the spray nozzle, it is necessary to
carry out a temporal sequence for the simulation of these diameters. An algorithm
based on the function of the random variable χ, already used, is proposed for the
initial position of droplets in the A ellipse (Figure 1). The randomization algorithm
should allow the diameters to be assigned to each ejected droplets such that the
mean and standard deviation of p.d.f. droplets simulated over a long period time are
close to those corresponding to the Weibull p.d.f. Using the central limit theorem
for a set of values corresponding to the random variable χ, a normalized random
variable Z of mean value Z ¼ 0 and standard deviation σZ ¼ 1 can be obtained

Z ¼ χ � μχ
σχffiffi
n

p , (3)

where n is the sample size. Michelot [25] performed several tests with different n
values using 1 million particles to find an acceptable number from computational
cost time. The author concludes that n = 50 is a good value to obtain the standard
normal random variable for generating random numbers with χ whose μχ ¼ 0:5
and σχ ¼

ffiffiffi
3

p
=6.

With this method, it is possible to simulate diameters of liquid particles that
follow the normal distribution from random number generation

ϕ0 ¼ ϕ0 þ σϕZ, (4)

where ϕ0 and σϕ are the mean and standard deviation values of theWeibull p.d.f.,
respectively, whose expressions are given as:

ϕ0 ¼ k:Γ 1þ 1
m

� �
,

σϕ ¼ k: Γ 1þ 2
m

� �� Γ 1þ 1
m

� �� �2n o1=2

:

8>>><
>>>:

(5)

However, in Eq. (4), we do not consider the asymmetry of the Weibull p.d.f. For
this, it is necessary to incorporate the mode (Mo) of Weibull p.d.f. whose expres-
sion is given as:

Mo ¼ k
m� 1
m

� �1 m=

: (6)
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Incorporating this value into Eq. (4), the random variable ϕ can be written as:

ϕ0 ¼ Moþ σϕ:Z, ϕ0 ¼ Mo, symmetric normal p:d:f :ð Þ,

ϕ0 ¼ Moþ σϕ:Z: exp
Z

2 ϕ0 �Mo
� �

 !
, ϕ0 6¼ Mo, asymmetric Weibull p:d:f :ð Þ:

8><
>:

(7)

Eqs. (1), (2), and (7) provide the initial conditions of velocities, positions, and
diameters of the ejected liquid particles from the HARDI™ ISO F110-O3 nozzle.

2.1.4 Dynamic parameters of liquid particles

Several simplifications are imposed at ejection and trajectory simulation of liquid
particle phenomena:

• Particles are considered to have a constant spherical shape in their trajectory.

• The rotating motion of the particle is not considered.

• The ratio between droplet and air densities is very large.

Assuming these simplifications, the force per unit mass to which the liquid parti-
cles are submitted is based on a balance between gravity and drag forces per unit mass:

Fl i

ml
  ¼ Ui � Vi

τ|fflfflfflffl{zfflfflfflffl}
Drag

acceleration

� giδi3|ffl{zffl}
Gravity

acceleration

, (8)

where Fli is the force actuating over l liquid particle in i direction i = 1, 2, 3 (x, y, z)
on Cartesian coordinate system (Figure 1),ml is the mass of liquid particle, Ui is the
air velocity, Vi is the liquid particle velocity, and τ is the characteristic time response
or relaxation time of liquid particle, which represents the time required for the liquid
adapt to sudden changes in air velocity. This last parameter can be estimated [26] as:

τ ¼ 4
3

φ

CD

ρl
ρ

1
Ui � Vij j , (9)

where CD is the dynamic drag coefficient due to the air viscosity, ρl is the liquid
particle density, and ρ is the air density. It is important to note that, if the spray
injection pressure is increased, the relative velocity between the droplets and the air
will be higher. This implies that the relaxation time will be decreased. In addition, if
the diameter of the liquid particle decreases, the relaxation time will also be shorter.
As the droplet is considered spherical, the drag coefficient CD depends on both, the
diameter of droplet and the air viscosity, which is used for the calculation of the
Reynolds number referred to the droplet ℜel:

ℜel ¼ ϕ
Ui � Vij j

ν
: (10)

Several drag coefficient expressions have been analyzed [27]. The authors
showed that Turton expression [28] has given better results in this simulation case:
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measurements with this device for different working pressures with an HARDI ™
ISO F 110-O3 nozzle, among others, in calm air conditions. The values obtained in
the Nuyttens [12] measurement experiences are as follows: average droplet diame-
ters ϕ0 ¼ 267:6 μm, standard deviation of droplet diameters σϕ ¼ 110:3 μm, and a
modal value Mo ¼ 250:2 μm. These values allow finding the parameters of the
Weibull p.d.f. for the initial conditions of ejected droplet diameter. In this work, we
obtained the m and k parameters following the methodology presented [24] for the
droplet diameters that are ejected with an internal pressure of 3 bar. The properties
of the Weibull distribution and the fit with the experimental measurement data are
described in Appendix A.

2.1.3 Initial randomization of the droplet diameters

Once the shape and scale parameters of the Weibull p.d.f. are obtained, which
characterize the diameters of drops ejected from the spray nozzle, it is necessary to
carry out a temporal sequence for the simulation of these diameters. An algorithm
based on the function of the random variable χ, already used, is proposed for the
initial position of droplets in the A ellipse (Figure 1). The randomization algorithm
should allow the diameters to be assigned to each ejected droplets such that the
mean and standard deviation of p.d.f. droplets simulated over a long period time are
close to those corresponding to the Weibull p.d.f. Using the central limit theorem
for a set of values corresponding to the random variable χ, a normalized random
variable Z of mean value Z ¼ 0 and standard deviation σZ ¼ 1 can be obtained

Z ¼ χ � μχ
σχffiffi
n

p , (3)

where n is the sample size. Michelot [25] performed several tests with different n
values using 1 million particles to find an acceptable number from computational
cost time. The author concludes that n = 50 is a good value to obtain the standard
normal random variable for generating random numbers with χ whose μχ ¼ 0:5
and σχ ¼

ffiffiffi
3

p
=6.

With this method, it is possible to simulate diameters of liquid particles that
follow the normal distribution from random number generation

ϕ0 ¼ ϕ0 þ σϕZ, (4)

where ϕ0 and σϕ are the mean and standard deviation values of theWeibull p.d.f.,
respectively, whose expressions are given as:
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However, in Eq. (4), we do not consider the asymmetry of the Weibull p.d.f. For
this, it is necessary to incorporate the mode (Mo) of Weibull p.d.f. whose expres-
sion is given as:

Mo ¼ k
m� 1
m
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: (6)
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Incorporating this value into Eq. (4), the random variable ϕ can be written as:

ϕ0 ¼ Moþ σϕ:Z, ϕ0 ¼ Mo, symmetric normal p:d:f :ð Þ,

ϕ0 ¼ Moþ σϕ:Z: exp
Z

2 ϕ0 �Mo
� �

 !
, ϕ0 6¼ Mo, asymmetric Weibull p:d:f :ð Þ:
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Eqs. (1), (2), and (7) provide the initial conditions of velocities, positions, and
diameters of the ejected liquid particles from the HARDI™ ISO F110-O3 nozzle.

2.1.4 Dynamic parameters of liquid particles

Several simplifications are imposed at ejection and trajectory simulation of liquid
particle phenomena:

• Particles are considered to have a constant spherical shape in their trajectory.

• The rotating motion of the particle is not considered.

• The ratio between droplet and air densities is very large.

Assuming these simplifications, the force per unit mass to which the liquid parti-
cles are submitted is based on a balance between gravity and drag forces per unit mass:
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, (8)

where Fli is the force actuating over l liquid particle in i direction i = 1, 2, 3 (x, y, z)
on Cartesian coordinate system (Figure 1),ml is the mass of liquid particle, Ui is the
air velocity, Vi is the liquid particle velocity, and τ is the characteristic time response
or relaxation time of liquid particle, which represents the time required for the liquid
adapt to sudden changes in air velocity. This last parameter can be estimated [26] as:

τ ¼ 4
3

φ

CD

ρl
ρ

1
Ui � Vij j , (9)

where CD is the dynamic drag coefficient due to the air viscosity, ρl is the liquid
particle density, and ρ is the air density. It is important to note that, if the spray
injection pressure is increased, the relative velocity between the droplets and the air
will be higher. This implies that the relaxation time will be decreased. In addition, if
the diameter of the liquid particle decreases, the relaxation time will also be shorter.
As the droplet is considered spherical, the drag coefficient CD depends on both, the
diameter of droplet and the air viscosity, which is used for the calculation of the
Reynolds number referred to the droplet ℜel:

ℜel ¼ ϕ
Ui � Vij j

ν
: (10)

Several drag coefficient expressions have been analyzed [27]. The authors
showed that Turton expression [28] has given better results in this simulation case:
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CD ¼ 24
ℜel

1þ 0:173ℜe0:657l

� �þ 0:413
1þ 16300ℜe�1:09

l
, if ℜel < 2� 105

CD ¼ 0:465, if ℜel ≥ 2� 105

:

8<
: (11)

When the drag and gravity forces are balanced, the liquid particles reach the
sedimentation regime. In this case of free fall, the droplets have only vertical
velocity component. This velocity is named sedimentation velocity
Ui � Vij jδi3 ¼ Vs. From Eqs. (8) and (9):

Vs ¼ 4
3
ρlϕgiδi3
ρCD,s

� �1=2

: (12)

Note that CD,s is the drag coefficient at sedimentation regime. It depends on ℜel
(Eq. (11)) and therefore on the sedimentation velocity itself (Eq. (10)). So, Vs can
only be calculated iteratively.

The time elapsed until the particle reaches the sedimentation velocity can be
written as:

τs ¼ Vs

g
: (13)

This is an important parameter of liquid particles because if the time elapsed
until the liquid particle reaches the ground is longer than the sedimentation time, it
will be exposed to drift.

2.2 Euler-Lagrangian double-way coupled model

The double-way coupled model presents a bidirectional coupling between
the Eulerian and Lagrangian equation systems. Based on the Eulerian approach, the
large-eddy simulation (LES) technique is proposed to obtain a detailed turbulent
flow. The turbulent intensity of the fluid that transports the liquid particles is
taken into account in the simulation of its trajectories. In this approach, it is not
possible to obtain a full description of all eddies, so the LES technique is applied
for resolving the larges scales of turbulence. The small scales are modeled by
subgrid eddy viscosity model (SGS). A dynamic SGS model proposed by
Germano [29] is implemented in ARPS by Aguirre [14]. On the other hand, the
Lagrangian form is proposed to simulate the trajectories of the liquid particles. In
the double-way-coupled LES-STO model, it is considered that the intensity of
turbulent flow is taken into account in Lagrangian stochastic equation, and the
presence of the liquid particles is taken into account in the momentum equation
for LES.

2.2.1 The Lagrangian stochastic model

The governing equations of the liquid particles trajectories are based on a
Lagrangian stochastic model at a one-particle and one-time scale following the
classical equation of Langevin. The air velocity model at liquid particle position Ui

has a deterministic term and a random term:

dUi

dt
¼ hij Ui; tð Þ|fflfflfflfflffl{zfflfflfflfflffl}

Deterministic

þ qij Ui; tð Þηj tð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Random

: (14)
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The tensors hij Ui; tð Þ and qij Ui; tð Þ are determined dynamically according to the
characteristics of the turbulence at each position of the simulation and at each
instant time. This requires that the LES equations are coupling with Lagrangian
stochastic model. In Eq. (14), η tð Þ denotes the random characteristic variable of zero
mean and covariance:

ηi t
0ð Þηj t00ð Þ

D E
¼ δijδ t0 � t00ð Þ: (15)

2.2.2 The Eulerian flow model

It is necessary to simulate the air velocity at liquid particle position Ui. The LES
method decomposes in a resolved component and a fluctuation :

Ui ¼ u⊕i þ u�i : (16)

The LES code advanced regional prediction system (ARPS) developed by Center
of Analysis and Prediction of Storm (CAPS) and Oklahoma University [13] numer-
ically integrates the time-dependent equations of mass balance, forces and energy
of the largest turbulent scales. Filtered continuity as in Eq. (17), filtered momentum
of fluid velocity as in Eq. (18), and filtered momentum of scalars as in Eq. (19) are
described as follows:

∂~u⊕
i

∂xi
¼ 0, (17)

∂~u⊕
i

∂t
þ
∂ ~u⊕

i u
⊕
j

� �

∂xj
¼ ρgiB

⊕ � ∂p0⊕
∂xi

� ∂~τ ij
∂xj

þ 2ν
∂~S

a⊕
ij

∂xj
� Ii, (18)

∂~ψ⊕

∂t
þ
∂ ~u⊕

j ψ
⊕

� �

∂xj
¼ Φψ � ∂~τ iψ

∂xj
, (19)

where B⊕ is a buoyancy force, ~S
a
ij is the anisotropic deformation tensor, ν is the

molecular viscosity, and Φψ represents the sink and sources of the scalars variables ψ.
The variables with tilde indicate that they have been weighted by the density of air
~u⊕
i ¼ ρu⊕i

� �
, which is only dependent of z (vertical) height. The pressure equation is

obtained using the material derivative of the state equation for moist air and replacing
the time derivative of density by velocity divergence using the continuity equation.
The correlation terms containing unsolved scales ~τij and ~τiψ are modeled using the
dynamic Smagorinsky formulation [29].

2.2.3 Lagrangian to the Eulerian coupling

From Lagrangian stochastic equation to the Eulerian LES model taken into
account, the number of liquid particles is very large near the nozzle. The coupling
has been computed by adding term at filtered momentum of fluid velocity
Eq. (18), which expresses the additional momentum due to the presence of liquid
particles per volume of carrier fluid:

Ii ¼ 1
ΔV

∑
nΔ

l¼1
Fli (20)
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When the drag and gravity forces are balanced, the liquid particles reach the
sedimentation regime. In this case of free fall, the droplets have only vertical
velocity component. This velocity is named sedimentation velocity
Ui � Vij jδi3 ¼ Vs. From Eqs. (8) and (9):
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Note that CD,s is the drag coefficient at sedimentation regime. It depends on ℜel
(Eq. (11)) and therefore on the sedimentation velocity itself (Eq. (10)). So, Vs can
only be calculated iteratively.

The time elapsed until the particle reaches the sedimentation velocity can be
written as:

τs ¼ Vs
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: (13)

This is an important parameter of liquid particles because if the time elapsed
until the liquid particle reaches the ground is longer than the sedimentation time, it
will be exposed to drift.

2.2 Euler-Lagrangian double-way coupled model

The double-way coupled model presents a bidirectional coupling between
the Eulerian and Lagrangian equation systems. Based on the Eulerian approach, the
large-eddy simulation (LES) technique is proposed to obtain a detailed turbulent
flow. The turbulent intensity of the fluid that transports the liquid particles is
taken into account in the simulation of its trajectories. In this approach, it is not
possible to obtain a full description of all eddies, so the LES technique is applied
for resolving the larges scales of turbulence. The small scales are modeled by
subgrid eddy viscosity model (SGS). A dynamic SGS model proposed by
Germano [29] is implemented in ARPS by Aguirre [14]. On the other hand, the
Lagrangian form is proposed to simulate the trajectories of the liquid particles. In
the double-way-coupled LES-STO model, it is considered that the intensity of
turbulent flow is taken into account in Lagrangian stochastic equation, and the
presence of the liquid particles is taken into account in the momentum equation
for LES.

2.2.1 The Lagrangian stochastic model

The governing equations of the liquid particles trajectories are based on a
Lagrangian stochastic model at a one-particle and one-time scale following the
classical equation of Langevin. The air velocity model at liquid particle position Ui

has a deterministic term and a random term:

dUi

dt
¼ hij Ui; tð Þ|fflfflfflfflffl{zfflfflfflfflffl}

Deterministic

þ qij Ui; tð Þηj tð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Random
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The tensors hij Ui; tð Þ and qij Ui; tð Þ are determined dynamically according to the
characteristics of the turbulence at each position of the simulation and at each
instant time. This requires that the LES equations are coupling with Lagrangian
stochastic model. In Eq. (14), η tð Þ denotes the random characteristic variable of zero
mean and covariance:

ηi t
0ð Þηj t00ð Þ

D E
¼ δijδ t0 � t00ð Þ: (15)

2.2.2 The Eulerian flow model

It is necessary to simulate the air velocity at liquid particle position Ui. The LES
method decomposes in a resolved component and a fluctuation :

Ui ¼ u⊕i þ u�i : (16)

The LES code advanced regional prediction system (ARPS) developed by Center
of Analysis and Prediction of Storm (CAPS) and Oklahoma University [13] numer-
ically integrates the time-dependent equations of mass balance, forces and energy
of the largest turbulent scales. Filtered continuity as in Eq. (17), filtered momentum
of fluid velocity as in Eq. (18), and filtered momentum of scalars as in Eq. (19) are
described as follows:

∂~u⊕
i

∂xi
¼ 0, (17)

∂~u⊕
i

∂t
þ
∂ ~u⊕

i u
⊕
j

� �

∂xj
¼ ρgiB

⊕ � ∂p0⊕
∂xi

� ∂~τ ij
∂xj

þ 2ν
∂~S

a⊕
ij

∂xj
� Ii, (18)

∂~ψ⊕

∂t
þ
∂ ~u⊕

j ψ
⊕

� �

∂xj
¼ Φψ � ∂~τ iψ

∂xj
, (19)

where B⊕ is a buoyancy force, ~S
a
ij is the anisotropic deformation tensor, ν is the

molecular viscosity, and Φψ represents the sink and sources of the scalars variables ψ.
The variables with tilde indicate that they have been weighted by the density of air
~u⊕
i ¼ ρu⊕i

� �
, which is only dependent of z (vertical) height. The pressure equation is

obtained using the material derivative of the state equation for moist air and replacing
the time derivative of density by velocity divergence using the continuity equation.
The correlation terms containing unsolved scales ~τij and ~τiψ are modeled using the
dynamic Smagorinsky formulation [29].

2.2.3 Lagrangian to the Eulerian coupling

From Lagrangian stochastic equation to the Eulerian LES model taken into
account, the number of liquid particles is very large near the nozzle. The coupling
has been computed by adding term at filtered momentum of fluid velocity
Eq. (18), which expresses the additional momentum due to the presence of liquid
particles per volume of carrier fluid:

Ii ¼ 1
ΔV

∑
nΔ

l¼1
Fli (20)
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where is the force of the liquid particle l in i direction, ΔV = ΔxΔyΔz is the
grid cell volume, and nΔ is the number of liquid particles within the grid cell. Using
Eq. (8), the additional momentum is given by:

Ii ¼ 1
ΔV

∑
nΔ

l¼1
ml

Ui � Vi

τ
� gjδj3

� �� �
: (21)

2.2.4 Eulerian to Lagrangian coupling

Aguirre and Brizuela [11] show that the coupling LES-STO model allows to find
the expressions of the deterministic and random terms of Eq. (14) using the
velocity-filtered density function (VFDF) proposed by Gicquel et al. [30]:

hij Ui; tð Þ ¼ du⊕j
dt

þ αiju�j ,

qij Ui; tð Þ ¼ ffiffiffiffiffiffiffiffi
C0ε

p
δij:

8><
>:

(22)

The material derivatives of the velocity-filtered air flow, subgrid turbulent
kinetic energy K¬, and energy molecular dissipation ε are calculated using the ARPS
code at each position and time step of the simulation. The Kolmogorov constant
value is C0 = 2.1. Therefore, we only need to evaluate the αij tensor. Aguirre and
Brizuela [11] propose the expression of αij for inhomogeneous and anisotropic
turbulence:

αij ¼ 1
2K�

dK�

dt
δij � 3

4
C0

� �
ε

K� δij þ
Rij

2K� � δij
3

� �
ε

K� : (23)

The subgrid turbulent kinetic energy is solved by 1.5 order transport equation

[31] and Rij ¼ u�i u
�
j

� �⊕
is the Reynolds SGS stress tensor.

The unresolved velocity component u�j in Eq. (16) is obtained in discrete form
using the Markov chains:

u�j nð Þ ¼ u�j n�1ð Þ þ αij nð Þu�j n�1ð ÞΔtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C0εΔt

p
χ nð Þ, (24)

where the subscript (n) denotes the value at present time of the simulation,
while (n�1) is the value in the previous time step. The first pass time, subscript (0),
is considered as isotropic homogeneous turbulence [32]:

u�j 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3
K�

0ð Þ

r
χ 0ð Þ: (25)

With Eqs. (16) and (22–25), it is possible to calculate the air velocity at the liquid
particle position. The equations describing the motion of the liquid particle in its
discrete form are:

Vi nþ1ð Þ ¼ Vi nð Þ þ Δt
τ

Ui nð Þ � Vi nð Þ
� �� giΔtδi3, if τ >Δt,

Vi nþ1ð Þ ¼ Ui nð Þ � Vsδi3, if τ≤Δt,

8><
>:

Xi nþ1ð Þ ¼
Vi nþ1ð Þ � Vi nð Þ

2
Δt:

�
(26)
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It is necessary to note that in the first Eq. (26), the rate Δt=τmust be greater than
one for convergence of the numerical solution. Cases in which the liquid particle
diameter is very small, the second Eq. (26) must be used considering that the
sedimentation velocity Vs has been reached before Δt time step has elapsed. For this
reason, the simulation time step Δt must be chosen less than the relaxation time of
the smallest possible liquid particle. According to the experimental measurements
by Nuyttens [12], the liquid particles whose diameters are smaller to 50 μm are
exposed to drift before reaching the ground. These particles have relaxation times
less than 7.6 ms. So, a simulation time step Δt = 0.2 ms has been chosen due to little
size of cell grid ΔV, whereby liquid particles whose diameters are smaller than 7 μm
are being considered for calculation with the second Eq. (26).

2.3 Binary collision droplet model

Once the droplets ejected from the spray nozzle and having simulated their
positions, velocities and diameters along their trajectory, it is necessary to consider
the collision. Binary droplet collision models are a widely used theoretical approxi-
mation to obtain the outcome of the interaction droplets [17–20, 33–39]. This model
consists of estimating the positions, velocities, and diameters of droplets after the
collision. In addition, satellite droplets can be created from the ligament breakup as
a consequence of it.

2.3.1 Parameters of binary collision

The binary droplet collision is simulated using three important parameters. The
ratio of the droplet diameters Δ (Eq. (27)), the dimensionless symmetric Weber
number (Wes) [20] relating kinetic energy vs. surface energy (Eq. (28)), and the
dimensionless impact parameter (Imp) takes into account the way in which the two
droplets impact (Eq. (29)):

Δ ¼ ϕS

ϕL
, (27)

Wes ¼
ρlϕSΔ3 V

!
mS

���
���
2
þ V

!
mL

���
���
2

12σΔ 1þ Δ2� � , (28)

Imp ¼ 2X
ϕL þ ϕS

, (29)

where the subscripts S and L indicate the smaller and larger droplet, respec-

tively, σ denote the surface tension, V
!

mS and V
!

mL are the relative velocities to the
mass center of the incoming droplets, and X is the projection of the distance
between the droplet centers in the normal direction to the relative velocity

V
!

R ¼ V
!

S � V
!

L as shown in Figure 2.

V
!

mL ¼ V
!

L � V
!

mR,

V
!

mS ¼ V
!

S � V
!

mR

,

8<
: (30)

In Eq. (30), V
!

mR is the velocity of mass center. If the droplets have the same
density:
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where is the force of the liquid particle l in i direction, ΔV = ΔxΔyΔz is the
grid cell volume, and nΔ is the number of liquid particles within the grid cell. Using
Eq. (8), the additional momentum is given by:

Ii ¼ 1
ΔV

∑
nΔ

l¼1
ml

Ui � Vi

τ
� gjδj3

� �� �
: (21)

2.2.4 Eulerian to Lagrangian coupling

Aguirre and Brizuela [11] show that the coupling LES-STO model allows to find
the expressions of the deterministic and random terms of Eq. (14) using the
velocity-filtered density function (VFDF) proposed by Gicquel et al. [30]:

hij Ui; tð Þ ¼ du⊕j
dt

þ αiju�j ,

qij Ui; tð Þ ¼ ffiffiffiffiffiffiffiffi
C0ε

p
δij:
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(22)

The material derivatives of the velocity-filtered air flow, subgrid turbulent
kinetic energy K¬, and energy molecular dissipation ε are calculated using the ARPS
code at each position and time step of the simulation. The Kolmogorov constant
value is C0 = 2.1. Therefore, we only need to evaluate the αij tensor. Aguirre and
Brizuela [11] propose the expression of αij for inhomogeneous and anisotropic
turbulence:

αij ¼ 1
2K�

dK�

dt
δij � 3

4
C0

� �
ε

K� δij þ
Rij

2K� � δij
3

� �
ε

K� : (23)

The subgrid turbulent kinetic energy is solved by 1.5 order transport equation

[31] and Rij ¼ u�i u
�
j

� �⊕
is the Reynolds SGS stress tensor.

The unresolved velocity component u�j in Eq. (16) is obtained in discrete form
using the Markov chains:

u�j nð Þ ¼ u�j n�1ð Þ þ αij nð Þu�j n�1ð ÞΔtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C0εΔt

p
χ nð Þ, (24)

where the subscript (n) denotes the value at present time of the simulation,
while (n�1) is the value in the previous time step. The first pass time, subscript (0),
is considered as isotropic homogeneous turbulence [32]:

u�j 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3
K�

0ð Þ

r
χ 0ð Þ: (25)

With Eqs. (16) and (22–25), it is possible to calculate the air velocity at the liquid
particle position. The equations describing the motion of the liquid particle in its
discrete form are:

Vi nþ1ð Þ ¼ Vi nð Þ þ Δt
τ

Ui nð Þ � Vi nð Þ
� �� giΔtδi3, if τ >Δt,

Vi nþ1ð Þ ¼ Ui nð Þ � Vsδi3, if τ≤Δt,

8><
>:

Xi nþ1ð Þ ¼
Vi nþ1ð Þ � Vi nð Þ

2
Δt:

�
(26)
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It is necessary to note that in the first Eq. (26), the rate Δt=τmust be greater than
one for convergence of the numerical solution. Cases in which the liquid particle
diameter is very small, the second Eq. (26) must be used considering that the
sedimentation velocity Vs has been reached before Δt time step has elapsed. For this
reason, the simulation time step Δt must be chosen less than the relaxation time of
the smallest possible liquid particle. According to the experimental measurements
by Nuyttens [12], the liquid particles whose diameters are smaller to 50 μm are
exposed to drift before reaching the ground. These particles have relaxation times
less than 7.6 ms. So, a simulation time step Δt = 0.2 ms has been chosen due to little
size of cell grid ΔV, whereby liquid particles whose diameters are smaller than 7 μm
are being considered for calculation with the second Eq. (26).

2.3 Binary collision droplet model

Once the droplets ejected from the spray nozzle and having simulated their
positions, velocities and diameters along their trajectory, it is necessary to consider
the collision. Binary droplet collision models are a widely used theoretical approxi-
mation to obtain the outcome of the interaction droplets [17–20, 33–39]. This model
consists of estimating the positions, velocities, and diameters of droplets after the
collision. In addition, satellite droplets can be created from the ligament breakup as
a consequence of it.

2.3.1 Parameters of binary collision

The binary droplet collision is simulated using three important parameters. The
ratio of the droplet diameters Δ (Eq. (27)), the dimensionless symmetric Weber
number (Wes) [20] relating kinetic energy vs. surface energy (Eq. (28)), and the
dimensionless impact parameter (Imp) takes into account the way in which the two
droplets impact (Eq. (29)):

Δ ¼ ϕS

ϕL
, (27)

Wes ¼
ρlϕSΔ3 V

!
mS

���
���
2
þ V

!
mL

���
���
2

12σΔ 1þ Δ2� � , (28)

Imp ¼ 2X
ϕL þ ϕS

, (29)

where the subscripts S and L indicate the smaller and larger droplet, respec-

tively, σ denote the surface tension, V
!

mS and V
!

mL are the relative velocities to the
mass center of the incoming droplets, and X is the projection of the distance
between the droplet centers in the normal direction to the relative velocity

V
!

R ¼ V
!

S � V
!

L as shown in Figure 2.

V
!

mL ¼ V
!

L � V
!

mR,

V
!

mS ¼ V
!

S � V
!

mR

,

8<
: (30)

In Eq. (30), V
!

mR is the velocity of mass center. If the droplets have the same
density:
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mR ¼ V
!

Sϕ
3
S þ V

!
Lϕ

3
L

ϕ3
S þ ϕ3

L
(31)

The relative velocity droplets of the mass center can be resumed using Eq. (27):

V
!

mL ¼ þΔ3V
!

mR

Δ3 þ 1
,

V
!

mS ¼ � V
!

mR

Δ3 þ 1
:

8>>>><
>>>>:

(32)

For the impact parameter in Eq. (29), it is necessary to compute X variable. This
variable is the projection of segment b ¼ 0:5 ϕS þ ϕLð Þ on the plane perpendicular to

the relative velocity V
!

R. The impact factor will be equal to the cosine of γ angle:

Imp ¼ cos γ ¼ X
b
, (33)

sin γ ¼ Dp

b
, (34)

So, inserting Eq. (34) into Eq. (33) results in:

Imp ¼ cos γ ¼ 1� 2Dp

ϕS þ ϕL

� �2
" #1

2

: (35)

Figure 2.
Scheme of small droplet S and large droplet L before collision (dashed line) and at contact instant (solid line).
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It is necessary to obtain Dp. It is the distance from large droplet center

xL; yL; zL
� �

to the perpendicular plane at V
!

R velocity passing through the small
droplet center xS; yS; zS

� �
. This plane P-P is shown in green color in Figure 2.

The plane equation passing through the small drop center is uRxS þ vRyS þwRzSþ
D ¼ 0, where uR; vR;wRð Þ are the components of V

!
R. In this expression, D is a

constant of plane equation. This constant is obtained as: D ¼ �uRxS � vRyS � wRzR.
So, the Dp distance can be obtained as:

Dp ¼ uRxL þ vRyL þ wRzL þD

uR2 þ vR2 þwR
2ð Þ12

�����

�����: (36)

2.3.2 Numerical resolution of the impact coefficient

In each time of numerical simulation, it checks whether the collision between
two droplets occurs. For obtaining a more optimize algorithm, collision boxes are
placed around and inside the liquid particle ejection spray. The sizes of grid boxes
vary dynamically, adjusting to the boundaries of the particle domain as shown in
Figure 3a. The size of the boxes is the same as the Eulerian calculation grid in
horizontal direction Δb = Δx = Δy = 0.1 m. In this way, every drop inside this box
will be questioned about whether it collided with the other drops that are in the
same box. When a binary collision is successfully found (e.g., 5–6; 3–7 in
Figure 3b), the pairs are marked and removed from the next iteration of detection.
This technique was proposed by Michelot [25] and used by Aguirre [4, 14] to
consider the diffusion of chemical species that are carried by fluid particles. It is
evident that due to the temporal discretization of the numerical solution of droplet
motion equations, it is almost impossible that for an instant of discretized time
t(n) = t(n-1) + Δt, the contact between two drops can be concurrent. Most likely, by
that instant time t(n-1), the contact is about to occur and at instant time t(n), it has
already occurred. When the distance between the centers of the two drops inside a
collision box is less than the sum of their radii, then the drops collided. In this case,
the time Δt” elapsed from the collision to the computation instant time t(n) to be
calculated. The particles are repositioned at the moment of collision t” = t(n) � Δt”,
and the impact factor is calculated according to the positions of their centers as
shown in Figure 4. The lapse time Δt” for repositioning the droplets at instant of
collision is computed in resolving:

Figure 3.
(a) Collision boxes around and inside the spray ejection of droplets and (b) droplets inside the collision box at
t(n) instant time of the simulation.

49

An Eulerian-Lagrangian Coupled Model for Droplets Dispersion from Nozzle Spray
DOI: http://dx.doi.org/10.5772/intechopen.81110



V
!

mR ¼ V
!

Sϕ
3
S þ V

!
Lϕ

3
L

ϕ3
S þ ϕ3

L
(31)

The relative velocity droplets of the mass center can be resumed using Eq. (27):
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For the impact parameter in Eq. (29), it is necessary to compute X variable. This
variable is the projection of segment b ¼ 0:5 ϕS þ ϕLð Þ on the plane perpendicular to

the relative velocity V
!

R. The impact factor will be equal to the cosine of γ angle:

Imp ¼ cos γ ¼ X
b
, (33)

sin γ ¼ Dp

b
, (34)

So, inserting Eq. (34) into Eq. (33) results in:

Imp ¼ cos γ ¼ 1� 2Dp
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2

: (35)

Figure 2.
Scheme of small droplet S and large droplet L before collision (dashed line) and at contact instant (solid line).
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It is necessary to obtain Dp. It is the distance from large droplet center

xL; yL; zL
� �

to the perpendicular plane at V
!

R velocity passing through the small
droplet center xS; yS; zS

� �
. This plane P-P is shown in green color in Figure 2.

The plane equation passing through the small drop center is uRxS þ vRyS þwRzSþ
D ¼ 0, where uR; vR;wRð Þ are the components of V

!
R. In this expression, D is a

constant of plane equation. This constant is obtained as: D ¼ �uRxS � vRyS � wRzR.
So, the Dp distance can be obtained as:

Dp ¼ uRxL þ vRyL þ wRzL þD

uR2 þ vR2 þwR
2ð Þ12

�����

�����: (36)

2.3.2 Numerical resolution of the impact coefficient

In each time of numerical simulation, it checks whether the collision between
two droplets occurs. For obtaining a more optimize algorithm, collision boxes are
placed around and inside the liquid particle ejection spray. The sizes of grid boxes
vary dynamically, adjusting to the boundaries of the particle domain as shown in
Figure 3a. The size of the boxes is the same as the Eulerian calculation grid in
horizontal direction Δb = Δx = Δy = 0.1 m. In this way, every drop inside this box
will be questioned about whether it collided with the other drops that are in the
same box. When a binary collision is successfully found (e.g., 5–6; 3–7 in
Figure 3b), the pairs are marked and removed from the next iteration of detection.
This technique was proposed by Michelot [25] and used by Aguirre [4, 14] to
consider the diffusion of chemical species that are carried by fluid particles. It is
evident that due to the temporal discretization of the numerical solution of droplet
motion equations, it is almost impossible that for an instant of discretized time
t(n) = t(n-1) + Δt, the contact between two drops can be concurrent. Most likely, by
that instant time t(n-1), the contact is about to occur and at instant time t(n), it has
already occurred. When the distance between the centers of the two drops inside a
collision box is less than the sum of their radii, then the drops collided. In this case,
the time Δt” elapsed from the collision to the computation instant time t(n) to be
calculated. The particles are repositioned at the moment of collision t” = t(n) � Δt”,
and the impact factor is calculated according to the positions of their centers as
shown in Figure 4. The lapse time Δt” for repositioning the droplets at instant of
collision is computed in resolving:

Figure 3.
(a) Collision boxes around and inside the spray ejection of droplets and (b) droplets inside the collision box at
t(n) instant time of the simulation.
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The outcomes of collision droplets are computed using the map collision theory.
Once the droplets collided and the effects of collision are into account on the
droplets, they are repositioned by advancing the same pass time Δt”.

2.3.3 Binary droplet collision map

The outcomes of the binary droplet collision model propose different scenarios:

Coalescence: the two droplets that collide to form a single drop as a result of
the collision. In this case, the surface energy is relatively greater than the
kinetic energy.

Reflexive: the two colliding droplets almost head-on, so they join together as
one, but the kinetic energy is large enough to separate again and can generate
satellite droplets.

Stretching: the two drops collide tangentially, so they separate and can
generate satellite droplets.

Bouncing: the two colliding drops remain separated after collision without
exchanging mass between them.

Figure 5 shows a time sequence of the binary droplet collision for each outcome
described above. It is important to note that the result of the binary collision depends

Figure 4.
Positions of droplets before and after the collision for a time lapse Δt. Droplets before collision at t(n�1)
instant time. Droplets after collision at t(n) = t(n�1) + Δt instant time. Repositioning of droplets
at the instant of collision (t00 = t(n) – Δt00).
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not only on the velocity of both drops but also on their relative size and impact
coefficient. Two of the four possible outcomes of the binary collision are susceptible
to generating satellite droplets. These droplets are usually much smaller in size than
the parent-drops and are, therefore, more prone to drift and evaporation. If these
droplets are composed of a phosphonate-acid solution (such as glyphosate), then
after evaporation, the solute will drift away from the airflow very quickly.

The outcomes of collision droplets are defined using a map collision. This map is
the graphic representations between the Wes vs. Imp (Wes-Imp) frontier curves
among the different outcomes of binary collision that are displayed on this map.
Several researchers proposed equations for frontier curves. The transition impact
factor between coalescence and stretching separation (Impc-s) is according to Rabe
[20] as follows:

Impc‐s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:532 þ 4:24Wes

p
� 0:53

4Wes
: (38)

The transition impact factor between coalescence and reflexive separation
(Impc-r) is:

Impc‐r ¼ 0:3059

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:45

Wes

r
: (39)

The transition impact factor between reflexive and stretching separation appears
when the Wes > 2.5 and can be considered a constant value Impr–s = 0.28.

It should be noted that the boundary curve between coalescence and reflexive
separation Impc-r increases with the increase of Wes to the value of Imp = 0.28. This
behavior indicates that for low Imp values (on-head collision) and relatively low
droplet velocities before collision, surface energy is greater than kinetic energy and
the result of the collision is stable coalescence. However, for the same Imp values
but with higher velocities, the kinetic energy is predominant; the droplets have an
unstable coalescence and then separate. This separation can generate satellite drop-
lets. On the other hand, if the Imp is higher (tangential collision of the droplets),
then coalescence as a result of the collision is more improbable since only a fraction

Figure 5.
Time sequence diagram of the binary droplet collision and its outcomes.

51

An Eulerian-Lagrangian Coupled Model for Droplets Dispersion from Nozzle Spray
DOI: http://dx.doi.org/10.5772/intechopen.81110



ϕS þ ϕL

2

� �2

¼ xS � xL � uRΔt
0 0

� �2
þ yS � yL � vRΔt

0 0
� �2

þ zS � zL �wRΔt
0 0

� �2
:

(37)

The outcomes of collision droplets are computed using the map collision theory.
Once the droplets collided and the effects of collision are into account on the
droplets, they are repositioned by advancing the same pass time Δt”.

2.3.3 Binary droplet collision map

The outcomes of the binary droplet collision model propose different scenarios:

Coalescence: the two droplets that collide to form a single drop as a result of
the collision. In this case, the surface energy is relatively greater than the
kinetic energy.

Reflexive: the two colliding droplets almost head-on, so they join together as
one, but the kinetic energy is large enough to separate again and can generate
satellite droplets.

Stretching: the two drops collide tangentially, so they separate and can
generate satellite droplets.

Bouncing: the two colliding drops remain separated after collision without
exchanging mass between them.

Figure 5 shows a time sequence of the binary droplet collision for each outcome
described above. It is important to note that the result of the binary collision depends

Figure 4.
Positions of droplets before and after the collision for a time lapse Δt. Droplets before collision at t(n�1)
instant time. Droplets after collision at t(n) = t(n�1) + Δt instant time. Repositioning of droplets
at the instant of collision (t00 = t(n) – Δt00).
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not only on the velocity of both drops but also on their relative size and impact
coefficient. Two of the four possible outcomes of the binary collision are susceptible
to generating satellite droplets. These droplets are usually much smaller in size than
the parent-drops and are, therefore, more prone to drift and evaporation. If these
droplets are composed of a phosphonate-acid solution (such as glyphosate), then
after evaporation, the solute will drift away from the airflow very quickly.

The outcomes of collision droplets are defined using a map collision. This map is
the graphic representations between the Wes vs. Imp (Wes-Imp) frontier curves
among the different outcomes of binary collision that are displayed on this map.
Several researchers proposed equations for frontier curves. The transition impact
factor between coalescence and stretching separation (Impc-s) is according to Rabe
[20] as follows:

Impc‐s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:532 þ 4:24Wes
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The transition impact factor between coalescence and reflexive separation
(Impc-r) is:

Impc‐r ¼ 0:3059
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The transition impact factor between reflexive and stretching separation appears
when the Wes > 2.5 and can be considered a constant value Impr–s = 0.28.

It should be noted that the boundary curve between coalescence and reflexive
separation Impc-r increases with the increase of Wes to the value of Imp = 0.28. This
behavior indicates that for low Imp values (on-head collision) and relatively low
droplet velocities before collision, surface energy is greater than kinetic energy and
the result of the collision is stable coalescence. However, for the same Imp values
but with higher velocities, the kinetic energy is predominant; the droplets have an
unstable coalescence and then separate. This separation can generate satellite drop-
lets. On the other hand, if the Imp is higher (tangential collision of the droplets),
then coalescence as a result of the collision is more improbable since only a fraction

Figure 5.
Time sequence diagram of the binary droplet collision and its outcomes.
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of the volume of the drops interacts during the collision. The contact surface of both
drops is smaller and therefore the surface energy as well. This reduces the likelihood
of stable coalescence as a consequence of the collision. This behavior is evident in
the Impc-s frontier curve, which decreases the coalescence area as the Imp increases.

For bounce, the model proposed by Estrade [35] calculates the number of tran-
sition Weber Web according to the Imp, Δ and a shape parameter, φ:

Web ¼
Δ 1þ Δ2� �

4φ� 12ð Þ
ξ 1� Imp2� � , (40)

where ξ is computed as:

ξ ¼
1� 2� λð Þ2 1þ λð Þ

4
if λ > 1,

λ2 3� λð Þ
4

if λ≤ 1,

8>><
>>:

(41)

and λ = (1� Imp)(1 + Δ). The shape parameter φ can be computed as Zhang [19]:

φ ¼ 3:351
ρl
1:16

� �2
3
: (42)

The transition bounces into Wes-Imp map collision droplets, and the Weber
symmetric bounce frontier Wesb is used. So, it is obtained from Web (Eq. (40)) as:

Wesb ¼ Web
Δ2

12 1þ Δ3� �
1þ Δ2� � , (43)

The Wes-Imp map collision droplets define areas , , and where the
outcomes of the binary droplet collision are represented. These areas are bounded
by frontiers curves as proposed in Eqs. (38)–(43). The areas with frontier curves are
shown in Figure 6. The frontier curves between and change their
position as a function of Δ.

2.3.4 Numerical models of the binary droplet collision

The binary droplet collision model allows obtaining the diameters and velocities
of the droplets after the collision. The values of these variables are obtained
according to the proposed models [17–19, 34] (coalescence, reflexive, and
stretching separations) and [35] (bounce outcome).

2.3.4.1 Coalescence

For coalescence outcome, the two droplets coalesce into one. This occurs pref-
erably at low Weber numbers as surface tensions exceed kinetic energy. The new

droplet velocity is the velocity of mass center before the collision V
!

newð Þ ¼ V
!

mR

(Eq. (31)). For droplets of the same density, its diameter is ϕ newð Þ ¼ ϕ3
L þ ϕ3

S

� �1=3 .

2.3.4.2 Stretching

Munnannur and Reitz [17] calculate the interaction volume between the drop-
lets. This volume is released from both drops creating a ligament that gives rise
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(or not) to satellite droplets. This volume is computed and taken into account the
magnitude of the opposing surface (Esurten), stretching (Estrtch), and viscous dissi-
pation energies (Edissip) by using a separation coefficient (CVS):

CVS ¼
Estrtch � Esurten � Edissip

Estrtch þ Esurten þ Edissip
, (44)

Case CVS ≤ 0: if this coefficient is carried at negative value, it is assumed that
fragmentation of droplets does not occur. The drops only lose kinetic energy. The
center mass of droplet velocities is affected by Z coefficient indicating the fraction
of energy that is dissipated during collision. For this case, Kim [18] proposes:

Z ¼ Imp� ffiffiffiffiffiffiffiffi
ecoal

p
1� ffiffiffiffiffiffiffiffi

ecoal
p , (45)

where ecoal ¼ min 1:0; 2:4 f We�1� �
is the coalescence efficiency,

f ¼ Δ�3 � 2:4Δ�2 þ 2:7Δ�1, and We ¼ ρlϕSΔ3σ�1 V
!

R

���
���
2
, is the Weber number,

which follow O’Rourke model [40].
The relative velocities of mass center after collision can be written by using

momentum conservation equation:

Figure 6.
Map collision droplets with areas of outcomes collision. Coalescence, reflexive separation, stretching

separation, and bounce. Bounce frontiers: Δ = 1, Δ = 0.75, Δ = 0.5, and
Δ = 0.1.
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of the volume of the drops interacts during the collision. The contact surface of both
drops is smaller and therefore the surface energy as well. This reduces the likelihood
of stable coalescence as a consequence of the collision. This behavior is evident in
the Impc-s frontier curve, which decreases the coalescence area as the Imp increases.

For bounce, the model proposed by Estrade [35] calculates the number of tran-
sition Weber Web according to the Imp, Δ and a shape parameter, φ:

Web ¼
Δ 1þ Δ2� �

4φ� 12ð Þ
ξ 1� Imp2� � , (40)

where ξ is computed as:

ξ ¼
1� 2� λð Þ2 1þ λð Þ

4
if λ > 1,

λ2 3� λð Þ
4

if λ≤ 1,

8>><
>>:

(41)

and λ = (1� Imp)(1 + Δ). The shape parameter φ can be computed as Zhang [19]:

φ ¼ 3:351
ρl
1:16

� �2
3
: (42)

The transition bounces into Wes-Imp map collision droplets, and the Weber
symmetric bounce frontier Wesb is used. So, it is obtained from Web (Eq. (40)) as:

Wesb ¼ Web
Δ2

12 1þ Δ3� �
1þ Δ2� � , (43)

The Wes-Imp map collision droplets define areas , , and where the
outcomes of the binary droplet collision are represented. These areas are bounded
by frontiers curves as proposed in Eqs. (38)–(43). The areas with frontier curves are
shown in Figure 6. The frontier curves between and change their
position as a function of Δ.

2.3.4 Numerical models of the binary droplet collision

The binary droplet collision model allows obtaining the diameters and velocities
of the droplets after the collision. The values of these variables are obtained
according to the proposed models [17–19, 34] (coalescence, reflexive, and
stretching separations) and [35] (bounce outcome).

2.3.4.1 Coalescence

For coalescence outcome, the two droplets coalesce into one. This occurs pref-
erably at low Weber numbers as surface tensions exceed kinetic energy. The new

droplet velocity is the velocity of mass center before the collision V
!

newð Þ ¼ V
!

mR

(Eq. (31)). For droplets of the same density, its diameter is ϕ newð Þ ¼ ϕ3
L þ ϕ3

S

� �1=3 .

2.3.4.2 Stretching

Munnannur and Reitz [17] calculate the interaction volume between the drop-
lets. This volume is released from both drops creating a ligament that gives rise
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(or not) to satellite droplets. This volume is computed and taken into account the
magnitude of the opposing surface (Esurten), stretching (Estrtch), and viscous dissi-
pation energies (Edissip) by using a separation coefficient (CVS):

CVS ¼
Estrtch � Esurten � Edissip

Estrtch þ Esurten þ Edissip
, (44)

Case CVS ≤ 0: if this coefficient is carried at negative value, it is assumed that
fragmentation of droplets does not occur. The drops only lose kinetic energy. The
center mass of droplet velocities is affected by Z coefficient indicating the fraction
of energy that is dissipated during collision. For this case, Kim [18] proposes:

Z ¼ Imp� ffiffiffiffiffiffiffiffi
ecoal

p
1� ffiffiffiffiffiffiffiffi

ecoal
p , (45)

where ecoal ¼ min 1:0; 2:4 f We�1� �
is the coalescence efficiency,

f ¼ Δ�3 � 2:4Δ�2 þ 2:7Δ�1, and We ¼ ρlϕSΔ3σ�1 V
!

R

���
���
2
, is the Weber number,

which follow O’Rourke model [40].
The relative velocities of mass center after collision can be written by using

momentum conservation equation:

Figure 6.
Map collision droplets with areas of outcomes collision. Coalescence, reflexive separation, stretching

separation, and bounce. Bounce frontiers: Δ = 1, Δ = 0.75, Δ = 0.5, and
Δ = 0.1.
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V
!

mS newð Þ ¼ ZV
!

mS

V
!

mL newð Þ ¼ ZV
!

mL

:

8<
: (46)

The velocities after collision can be obtained by using Eqs. (30) and (31). The
diameters of droplets after collision are unaltered.

Case CVS > 0: the separation volumes from droplets determine the evolution of
the temporary fluid ligament that would form between them. In this model, it is
assumed that the ligament has a uniform cylindrical shape, and the radius ro of
ligament at initial instant time of the temporal evolution with a momentum balance
equation can be obtained:

1
6
π ΨSϕ

3
S þΨLϕ

3
L

� � ¼ πr20η, (47)

where ΨS and ΨL are the fraction of volumes lost from the smaller and large
droplets to form the ligament [17, 18], and η is its initial time instantaneous length
(Figure 7). Another assumption is η = ro. In this model, a time scale of temporal
evolution ligament is proposed: T ¼ 0:75k2

ffiffiffiffiffiffiffiffiffiffi
We0

p
. If T ≤ 2, the ligament contracts in

a single satellite whose radius is ro. k2 = 0.45 and We0 ¼ 2r0 ρl=σð Þ V!R

���
���
2
. Otherwise,

it is necessary to compute the evolution time of ligament radius equation for
obtaining the final value rbu:

3
4
ffiffiffi
2

p k1k2
ffiffiffiffiffiffiffiffiffiffi
We0

p rbu
r0

� �7=2

þ rbu
r0

� �2

� 1 ¼ 0, (48)

k1 = 11.5 following Kim [18]. Eq. (48) can be solved by iteration with an initial
value rbu=r0ð Þ ¼ 1 and Δt = 1 � 10�2.

The diameter of satellite droplets can be determined by following Georjon [41]:

ϕsat ¼ 3:78rbu: (49)

The number of satellite droplets is calculated from the mass conservation by
assuming uniform satellites size Nsat ¼ 6 r0=ϕsatð Þ3. The velocities of satellite drop-
lets can be obtained from momentum equation where the velocities of parent
droplets after collision are computed by Eq. (46).

V
!

sat ¼
ϕ3
LV
!

L � ϕ3
L newð ÞV

!
L newð Þ

� �
þ ϕ3

SV
!

S � ϕ3
S newð ÞV

!
S newð Þ

� �

Nsatϕ
3
sat

, (50)

Figure 7.
Collision model for the stretching outcome. (a) Formation instant time of ligament and (b) temporal evolution
ligament.
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where the diameters of parent droplets after collision are:

ϕL newð Þ ¼ 1�ΨLð Þ 1
6
πϕ3

L

ϕS newð Þ ¼ 1� ΨSð Þ 1
6
πϕ3

S

:

8><
>:

(51)

2.3.4.3 Reflexive

The volume of ligament is the entire temporarily merged mass of two droplets.
The model of satellite droplet formation is similar at stretching outcome, but the
initial radius of ligaments is r30 ¼ ϕL=2ð Þ3 þ ϕS=2ð Þ3. The model proposed by
Munnannur [17] for reflexive outcome uses the time scale of temporal evolution
ligament. When T ≤ 3, a single satellite droplet is formed and the three droplets
(considering the ligament breaks up into two end-droplets and one-satellite drop-
let) have same size. However, according to the experimental studies of Ashrgiz
[34], Kim [18] affirms that no uniform droplet sizes are obtained for the end-
droplets and a single satellite droplet after reflexive collision. We have adopted the
last criteria, so the satellite droplet diameters are computed with Eqs. (48) and (49),
but the number of satellite droplets is Nsat ¼ 6 r0=ϕsatð Þ3 � 2. If Nsat ≤ 0, it is
assumed that the ligament breaks up without satellite droplet and the two end-
droplets have their own radius. If 0 < Nsat ≤ 1, it is assumed that a single satellite
droplet is formed that is smaller than the two end-droplets after collision. The
diameter of single satellite droplets is ϕsat and the end-droplets after collision have
identical diameters:

ϕL newð Þ ¼ ϕS newð Þ ¼
8r30 � ϕ3

sat

2

� �1=3

: (52)

When Nsat > 1, the ligament breaks up into uniform droplets with identical
diameters ϕL newð Þ ¼ ϕS newð Þ ¼ ϕsat. The velocities of end-droplets and satellite
droplets are computed with Eqs. (46) and (50).

2.3.4.4 Bounce

In this case, the droplets bounce maintaining their diameters after the impact. In
the general case, oblique collision between droplets is considered. The droplet
velocities after collision must be decomposed into a normal component and a
tangential component to the plane of impact. The tangential component after
impact remains unchanged, but the normal component is affected by a soft inelastic
rebound assuming a restitution coefficient en,p = 0.97 by following Almohammed
[42]. This restitution coefficient takes into account the dissipation of kinetic energy
during the impact. The normal velocities of droplets at instant of collision are as
follows:

Vn L ¼ Vi L
xi Rj j
b

Vn S ¼ Vi S
xi Rj j
b

,

8>><
>>:

(53)

where xi R ¼ xi S � xi L is the relative position between the droplets in i = 1, 2, 3
(x, y, z) and b is the center droplet distance (Figure 2). The normal component
velocities after collision are given as:
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!

mS newð Þ ¼ ZV
!

mS

V
!

mL newð Þ ¼ ZV
!

mL

:

8<
: (46)

The velocities after collision can be obtained by using Eqs. (30) and (31). The
diameters of droplets after collision are unaltered.

Case CVS > 0: the separation volumes from droplets determine the evolution of
the temporary fluid ligament that would form between them. In this model, it is
assumed that the ligament has a uniform cylindrical shape, and the radius ro of
ligament at initial instant time of the temporal evolution with a momentum balance
equation can be obtained:

1
6
π ΨSϕ

3
S þΨLϕ

3
L

� � ¼ πr20η, (47)

where ΨS and ΨL are the fraction of volumes lost from the smaller and large
droplets to form the ligament [17, 18], and η is its initial time instantaneous length
(Figure 7). Another assumption is η = ro. In this model, a time scale of temporal
evolution ligament is proposed: T ¼ 0:75k2

ffiffiffiffiffiffiffiffiffiffi
We0

p
. If T ≤ 2, the ligament contracts in

a single satellite whose radius is ro. k2 = 0.45 and We0 ¼ 2r0 ρl=σð Þ V!R

���
���
2
. Otherwise,

it is necessary to compute the evolution time of ligament radius equation for
obtaining the final value rbu:

3
4
ffiffiffi
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p k1k2
ffiffiffiffiffiffiffiffiffiffi
We0

p rbu
r0

� �7=2

þ rbu
r0
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� 1 ¼ 0, (48)

k1 = 11.5 following Kim [18]. Eq. (48) can be solved by iteration with an initial
value rbu=r0ð Þ ¼ 1 and Δt = 1 � 10�2.

The diameter of satellite droplets can be determined by following Georjon [41]:

ϕsat ¼ 3:78rbu: (49)

The number of satellite droplets is calculated from the mass conservation by
assuming uniform satellites size Nsat ¼ 6 r0=ϕsatð Þ3. The velocities of satellite drop-
lets can be obtained from momentum equation where the velocities of parent
droplets after collision are computed by Eq. (46).
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Figure 7.
Collision model for the stretching outcome. (a) Formation instant time of ligament and (b) temporal evolution
ligament.
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where the diameters of parent droplets after collision are:

ϕL newð Þ ¼ 1�ΨLð Þ 1
6
πϕ3

L

ϕS newð Þ ¼ 1� ΨSð Þ 1
6
πϕ3

S

:

8><
>:

(51)

2.3.4.3 Reflexive

The volume of ligament is the entire temporarily merged mass of two droplets.
The model of satellite droplet formation is similar at stretching outcome, but the
initial radius of ligaments is r30 ¼ ϕL=2ð Þ3 þ ϕS=2ð Þ3. The model proposed by
Munnannur [17] for reflexive outcome uses the time scale of temporal evolution
ligament. When T ≤ 3, a single satellite droplet is formed and the three droplets
(considering the ligament breaks up into two end-droplets and one-satellite drop-
let) have same size. However, according to the experimental studies of Ashrgiz
[34], Kim [18] affirms that no uniform droplet sizes are obtained for the end-
droplets and a single satellite droplet after reflexive collision. We have adopted the
last criteria, so the satellite droplet diameters are computed with Eqs. (48) and (49),
but the number of satellite droplets is Nsat ¼ 6 r0=ϕsatð Þ3 � 2. If Nsat ≤ 0, it is
assumed that the ligament breaks up without satellite droplet and the two end-
droplets have their own radius. If 0 < Nsat ≤ 1, it is assumed that a single satellite
droplet is formed that is smaller than the two end-droplets after collision. The
diameter of single satellite droplets is ϕsat and the end-droplets after collision have
identical diameters:

ϕL newð Þ ¼ ϕS newð Þ ¼
8r30 � ϕ3

sat

2

� �1=3

: (52)

When Nsat > 1, the ligament breaks up into uniform droplets with identical
diameters ϕL newð Þ ¼ ϕS newð Þ ¼ ϕsat. The velocities of end-droplets and satellite
droplets are computed with Eqs. (46) and (50).

2.3.4.4 Bounce

In this case, the droplets bounce maintaining their diameters after the impact. In
the general case, oblique collision between droplets is considered. The droplet
velocities after collision must be decomposed into a normal component and a
tangential component to the plane of impact. The tangential component after
impact remains unchanged, but the normal component is affected by a soft inelastic
rebound assuming a restitution coefficient en,p = 0.97 by following Almohammed
[42]. This restitution coefficient takes into account the dissipation of kinetic energy
during the impact. The normal velocities of droplets at instant of collision are as
follows:

Vn L ¼ Vi L
xi Rj j
b

Vn S ¼ Vi S
xi Rj j
b

,

8>><
>>:

(53)

where xi R ¼ xi S � xi L is the relative position between the droplets in i = 1, 2, 3
(x, y, z) and b is the center droplet distance (Figure 2). The normal component
velocities after collision are given as:
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Vn L newð Þ ¼ Vn L � Δ3

1þ Δ3 f ddn

Vn S newð Þ ¼ Vn S þ 1
1þ Δ3 f ddn

,

8>><
>>:

(54)

where f ddn is the normal impulse of a droplet-droplet collision:

f ddn ¼ � 1þ en,p
� �

Vn S � Vn Lð Þ.

3. Results and discussion

3.1 Ejection of liquid particle simulation

In order to obtain the Weibull p.d.f. corresponding to the droplet diameters as
described in Section 2.1, the scale k = 301.228 and shape m = 2.606 parameters were
obtained with R-R method. Figure 8 shows the minimum square adjusted of
regression line with a correlation coefficient R2 = 0.9965.

3.2 Effects of the Eulerian-Lagrangian double-way coupling

The trajectories of liquid particles are simulated with an Euler-Lagrangian double-
way coupled model descript in Section 2.2. The influence of droplets to air velocity is
shown in Figure 9 (a) for t = 1 s instant time and (b) for t = 20 s instant time of the
simulation. The vertical velocities of airW are shown in color scale. Eddies around the
spray plume are formed and extend up to 3 m from the center of the spray (c). It is
observed that eddies are formed by influence of jet droplets. This effect should be
taken into account as droplets of very small diameters are captured by eddies and are
prone to contribute to drift. This effect can be seen in Figure 10 where the small
droplets follow the streamlines of eddies on both sides of the sprayer.

The results of the vertical droplet velocities distribution as a function of the
droplet diameters obtained at 0.35 m below the nozzle are shown in Figure 11.
These are compared with the laboratory measurements of Nuyttens [12]. It is

Figure 8.
Regression line of R-R distribution function and data measurement of droplet diameters.
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Figure 9.
Influence of droplets to air velocity at different instant times of the simulation. (a) t = 1 s, (b) t = 20 s, (c) zoom
of eddy formed at 2.5 m from center spray at 20 s, and W is a vertical component of air velocity around the
spray.
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8>><
>>:

(54)

where f ddn is the normal impulse of a droplet-droplet collision:
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Vn S � Vn Lð Þ.
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described in Section 2.1, the scale k = 301.228 and shape m = 2.606 parameters were
obtained with R-R method. Figure 8 shows the minimum square adjusted of
regression line with a correlation coefficient R2 = 0.9965.

3.2 Effects of the Eulerian-Lagrangian double-way coupling

The trajectories of liquid particles are simulated with an Euler-Lagrangian double-
way coupled model descript in Section 2.2. The influence of droplets to air velocity is
shown in Figure 9 (a) for t = 1 s instant time and (b) for t = 20 s instant time of the
simulation. The vertical velocities of airW are shown in color scale. Eddies around the
spray plume are formed and extend up to 3 m from the center of the spray (c). It is
observed that eddies are formed by influence of jet droplets. This effect should be
taken into account as droplets of very small diameters are captured by eddies and are
prone to contribute to drift. This effect can be seen in Figure 10 where the small
droplets follow the streamlines of eddies on both sides of the sprayer.

The results of the vertical droplet velocities distribution as a function of the
droplet diameters obtained at 0.35 m below the nozzle are shown in Figure 11.
These are compared with the laboratory measurements of Nuyttens [12]. It is
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Figure 9.
Influence of droplets to air velocity at different instant times of the simulation. (a) t = 1 s, (b) t = 20 s, (c) zoom
of eddy formed at 2.5 m from center spray at 20 s, and W is a vertical component of air velocity around the
spray.
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observed that the dispersion of velocity values for each diameter class is greater in
laboratory measurements than in simulation. In addition, for diameters less than
200 μm, the model slightly underestimates the vertical velocity values relative to
the laboratory results.

3.3 Binary collision droplet map

The collision map for binary droplet model descripted in Section 2.3 is shown in
Figure 12. The map allows showing the events of coalescence, bounce, reflexive,

Figure 10.
Position of droplets at t = 20 s of the simulation classified by their diameters.

Figure 11.
Distribution of vertical droplet velocities in (m/s) as a function of the diameters (μm). Droplet simulation.

Mean and extreme range values measured by Nuyttens [12].
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and stretching separation. When considering the total number of droplet binary
collision events, 21.1% corresponds to coalescence, 0.6% to reflexive separation,
8.8% to stretching separation, and 69.5% to bounce. The amount of satellite droplets
arising from the separation by reflexive and stretching is displayed with numbers. It
is noted that the number of satellite drops increases with the number of symmetri-
cal Weber for both separately. This behavior indicates that the greater velocity the
droplets are ejected from the spray nozzle, the more likely it is that satellite droplets
will appear as a result of reflexive and stretching separation. As mentioned above,

Figure 12.
Map outcomes from binary droplet collision model. Coalescence, reflexive, stretching, and bounce. The
numbers next to the symbols indicate the number of satellite droplets formed.

Figure 13.
Drift of spraying droplets from a nozzle at 0.75 m over ground.
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laboratory measurements than in simulation. In addition, for diameters less than
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the laboratory results.
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The collision map for binary droplet model descripted in Section 2.3 is shown in
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and stretching separation. When considering the total number of droplet binary
collision events, 21.1% corresponds to coalescence, 0.6% to reflexive separation,
8.8% to stretching separation, and 69.5% to bounce. The amount of satellite droplets
arising from the separation by reflexive and stretching is displayed with numbers. It
is noted that the number of satellite drops increases with the number of symmetri-
cal Weber for both separately. This behavior indicates that the greater velocity the
droplets are ejected from the spray nozzle, the more likely it is that satellite droplets
will appear as a result of reflexive and stretching separation. As mentioned above,

Figure 12.
Map outcomes from binary droplet collision model. Coalescence, reflexive, stretching, and bounce. The
numbers next to the symbols indicate the number of satellite droplets formed.

Figure 13.
Drift of spraying droplets from a nozzle at 0.75 m over ground.
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this can cause an increase in the proportion of sprayed product not reaching its
destination, leaving it adrift.

3.4 Simulation of droplet dispersion from a nozzle in a cultivated field

Figure 13 shows the drift simulation of droplets spraying over cultivate field
with a nozzle at 0.75 m above the ground.

The meteorological conditions of air temperature at nozzle level are 30°C with
2 m s�1 velocity wind. The simulation time shown in Figure 13 is 20 s after the start
of spraying. The drift of small droplets (less than 50 μm in diameter) exceeds 8 m in
the area of application. Of the total liquid sprayed, 0.43% corresponds to droplets
smaller than 50 μm measured by Nuyttens [12] in wind tunnel at 50 cm below the
spray nozzle. In the simulation shown in Figure 13, this percentage does not change
because the satellite droplets generated are greater than 80 μm. The number of
satellite droplets generated by stretching and reflective separation in these condi-
tions was obtained. Of the 120 satellite droplets analyzed, 35.3% have diameters less
than 150 μm, 61.3% have diameters between 150 and 250 μm, and 3.4% have
diameters between 250 and 350 μm. There were no satellite droplets with diameters
larger than 350 μm.

4. Conclusions

In the present work, it was possible to simulate and validate the ejection velocity
of the liquid particles from an HARDI™ ISO F110 03 nozzle placed at 0.75 m over
ground. The diameters of the drops were randomized to the volume applied fol-
lowing a procedure of Rosin-Rammler distribution function for obtaining the
parameters of Weibull probability density function with a correlation coefficient
R2 = 0.997. The double-way coupled Euler-Lagrangian model has been used for
obtaining the trajectory of droplet spraying. Eddies at both sides of spraying have
been captured by the model. These extend up to 3 m from the center of the spray.
The vertical component droplet velocity was simulated and validated with labora-
tory measurements. The velocity of droplets smaller than 200 μm slightly underes-
timates with respect to laboratory data. The binary collision models have been
implemented into the code to consider particle collision events. A collision detection
algorithm using collision boxes was presented and used to optimize computation
times. The drift of droplets with air temperature of 30°C and wind speed value
2 m s�1 has been simulated in cultivated fields. The drift of droplets smaller than
50 μm diameter exceeds 8 m of the application area. No satellite droplets smaller
than 80 μm are generated under field simulation conditions. The largest proportion
of satellite droplets generated as a result of the droplet collision has a diameter
between 80 and 250 μm.
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A. Appendix A

The Weibull probability density function (Weibull p.d.f.) can be used
for describing a lot of technical applications for which the distribution of
ground material, particles dispersion, or droplet diameters in spray jet normally
in the μm-band have behaviors with a random characteristic. In this case, the
diameters of droplets ejected from a spray nozzle are simulated using a
Weibull p.d.f.

Let us name the random variable ϕ0 that represents the initial diameter
of the liquid particles, and the expression of Weibull p.d.f. for this random
variable is:

f ϕ0ð Þ ¼ m
km

ϕm�1
0 exp � ϕ0

k

� �m� �
, if ϕ0 ≥0,

f ϕ0ð Þ ¼ 0, if ϕ0 < 0:

8<
: (55)

In this p.d.f., m > 0 is the shape parameter and k > 0 is the scale parameter. The
form of the density function of theWeibull distribution changes drastically with the
value of m parameters. The k parameter does not change the shape of the distribu-
tion, but it extends along the random variable ϕ0. In this way, if the parameters m
and k are chosen correctly, it is possible to obtain the shape and stretch of the
Weibull p.d.f. that fits the experimentally measured diameter data.

To take these data into account, the cumulative function of the Weibull distri-
bution, named Rosin-Rammler (R-R), is used.

The R-R distribution function F ϕ0ð Þ is expressed as:

F ϕ0ð Þ ¼ 1� exp � ϕ0

k

� �m� �
: (56)

Eq. (A.2) can be written as:

Ln �Ln 1� F ϕ0ð Þ½ �f g ¼ m:Ln ϕ0ð Þ �m:Ln kð Þ: (57)

If we associate Eq. (A.3) with a linear equation f(X) = mX + a where the
dependent variable is f Xð Þ ¼ Ln �Ln 1� F ϕ0ð Þ½ �f g and the independent variable is
X ¼ Ln ϕ0ð Þ, m is the slope and a = �mLn(k) is intercept, in which the line cuts on
the Y = f(X) axis. The method to obtain the Weibull p.d.f. parameters consists of
plotting over logarithmic scale; the results of the experimental measurements
Ln �Ln 1� F ϕ0ð Þ½ �f g vs. Ln ϕ0ð Þand approximate the point cloud to a linear regres-
sion by the least squares to obtain the slope (shape parameter) m and the constant
term a. The k scale parameter is obtained by k ¼ exp �a=mð Þ.

With these two parameters (m, k), it is possible to obtain the Weibull p.d.f.
that describes the droplet diameter’s distribution corresponding to the experiment
measurements.
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this can cause an increase in the proportion of sprayed product not reaching its
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times. The drift of droplets with air temperature of 30°C and wind speed value
2 m s�1 has been simulated in cultivated fields. The drift of droplets smaller than
50 μm diameter exceeds 8 m of the application area. No satellite droplets smaller
than 80 μm are generated under field simulation conditions. The largest proportion
of satellite droplets generated as a result of the droplet collision has a diameter
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Chapter 4

Scalar Conservation Laws
Baver Okutmuştur

Abstract

We present a theoretical aspect of conservation laws by using simplest scalar
models with essential properties. We start by rewriting the general scalar conserva-
tion law as a quasilinear partial differential equation and solve it by method of
characteristics. Here we come across with the notion of strong and weak solutions
depending on the initial value of the problem. Taking into account a special initial
data for the left and right side of a discontinuity point, we get the related Riemann
problem. An illustration of this problem is provided by some examples. In the
remaining part of the chapter, we extend this analysis to the gas dynamics given in
the Euler system of equations in one dimension. The transformations of this system
into the Lagrangian coordinates follow by applying a suitable change of coordinates
which is one of the main issues of this section. We next introduce a first-order
Godunov finite volume scheme for scalar conservation laws which leads us to write
Godunov schemes in both Eulerian and Lagrangian coordinates in one dimension
where, in particular, the Lagrangian scheme is reformulated as a finite volume
method. Finally, we end up the chapter by providing a comparison of Eulerian and
Lagrangian approaches.

Keywords: conservation laws, Burgers’ equation, shock and rarefaction waves,
weak and strong solutions, Riemann problem, Euler system, Godunov schemes,
Eulerian coordinates, Lagrangian coordinates

1. Introduction

We present a general form of scalar conservation laws with further properties
including some basic models and provide examples of computational methods for
them. The equations described by

∂tuþ ∂x f uð Þ ¼ 0, t.0, x∈R (1)

in one dimension are known as scalar conservation laws where u ¼ u t; xð Þ is
the conserved quantity and f ¼ f uð Þ is the associated flux function depending on t
and x. Whenever an initial condition u 0; xð Þ ¼ u0 xð Þ is attached to Eq. (1), the
problem is called the Cauchy problem the solution of which is a content of this
chapter. The outlook of chapter is as follows. We introduce basic concepts and
provide particular examples of scalar conservation laws in the first part. The equa-
tion of gas dynamics in Eulerian coordinates in one dimension is the main issue
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of the second part. After providing further instruction for these equations, we
provide a transformation of the Eulerian equations in the Lagrangian coordinates.
In the final part, we give as an example of computational methods for conservation
laws, the Godunov schemes for the Eulerian, and the Lagrangian coordinates,
respectively.

1.1 Conservation laws: integral form and differential form

We start by investigating the relation of the equations in gas dynamics with
conservation laws. We take into account the equation of conservation of mass in
one dimension. The density and the velocity are assumed to be constant in the tube
where x is the distance and ρ t; xð Þ is the density at the time t and at the point x. Then
if we integrate the density on x1; x2½ �, we get total mass

R x2
x1

ρ t; xð Þdx at time t.
Assigning the velocity by u t; xð Þ, then mass flux at becomes ρ t; xð Þu t; xð Þ: It follows
that the rate of change of the mass in x1; x2½ � is

d
dt

Z x2

x1
ρ t; xð Þdx ¼ ρ t; x1ð Þu t; x1ð Þ � ρ t; x2ð Þu t; x2ð Þ: (2)

The last equation is called integral form of conservation law. Integrating this
expression in time from t1 to t2, we get

Z x2

x1
ρ t2; xð Þdx�

Z x2

x1
ρ t1; xð Þdx ¼

Z t2

t1
ρ t; x1ð Þu t; x1ð Þdt�

Z t2

t1
ρ t; x2ð Þu t; x2ð Þdt:

(3)

Using the fundamental theorem of calculus after reduction of Eq. (3), it follows
that

ρ t; x2ð Þu t; x2ð Þ � ρ t; x1ð Þu t; x1ð Þ ¼
Z x2

x1
∂x ρ t; xð Þu t; xð Þð Þdx: (4)

As a result, we get

Z t2

t1

Z x2

x1
∂tρ t; xð Þ þ ∂xρ t; xð Þu t; xð Þf g dx dt ¼ 0: (5)

Here the end points of the integrations are arbitrary; that is, for any x1; x2½ � and
t1; t2½ �, the integrant must be zero. It follows that the conservation of mass yields

∂tρþ ∂x uρð Þ ¼ 0, (6)

which is said to be the differential form of the conservation law.

1.2 A first-order quasilinear partial differential equations

A general solution to a quasilinear partial differential equation of the form

a t; x; uð Þ∂tuþ b t; x; uð Þ∂xu ¼ c t; x; uð Þ (7)

where a, b, c are non-zero and smooth on a given domain D∈R3 follows by the
characteristic method where the characteristic curves are defined by
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dt
a t; x; uð Þ ¼

dx
b t; x; uð Þ ¼

du
c t; x; uð Þ : (8)

By applying a parametrization of c, the relation (8) is transformed to a system of
ordinary differential equation (ODE):

dt
dc

¼ a t; x; uð Þ, dx
dc

¼ b t; x; uð Þ, du
dc

¼ c t; x; uð Þ: (9)

In addition to these equations, if an initial condition u0 ¼ u x0ð Þ is also given,
then by the existence theorem of ODE, there is a unique characteristic curve passing
from each point t0; x0; u0ð Þ leading to an integral surface which is the solution
to Eq. (7).

Observe that the scalar conservation law (1) is a particular example of Eq. (7) if
we assign a t; x; uð Þ ¼ 1, b t; x; uð Þux ¼ f uð Þð Þx, and c t; x; uð Þ ¼ 0. The conserved
quantity can be observed by integrating equation (1) over x0; x1½ �. Indeed

d
dt

Z x1

x0
u t; xð Þdx ¼

Z x1

x0
∂tu t; xð Þdx ¼ �

Z x1

x0
f u t; xð Þð Þx dx

¼ f u t; x1ð Þð Þ � f u t; x0ð Þð Þ

¼ inflow at the point x1½ � � outflow at the point x0½ �:

(10)

This means, the quantity u t; xð Þ is conserved so that it depends on the difference
of the flux functions between the points x0 and x1:

1.3 Strong (classical) solutions

We consider the initial value problem

∂tuþ ∂x f uð Þð Þ ¼ 0, t.0, x∈R
u 0; xð Þ ¼ u0 xð Þ, x∈R

(11)

where the initial data is assumed to be continuously differentiable, that is,
u0 xð Þ∈C1 Rð Þ. Applying the chain rule to the relation (11), it follows that

∂tuþ f 0 uð Þ∂xu ¼ 0, t.0, x∈R,
u 0; xð Þ ¼ u0 xð Þ, x∈R,

(12)

where we define characteristic curves of Eq. (12) to be the solution of
d
dt x tð Þ ¼ f 0 u t; x tð Þð Þð Þ ¼ f 0 uð Þ. Then a solution to the system (12) in a domain Ω∈R
is said to be a strong (or classical) solution if it satisfies Eq. (11), and it is continu-
ously differentiable on a domain Ω∈R: Let u be a strong solution and the initial data
u0 be differentiable. Observe that (12) is equivalent to a quasilinear form:

∂tuþ λ uð Þ∂xu ¼ 0, (13)

with λ uð Þ ¼ f 0 uð Þ. Applying the method of characteristics to Eq. (13), the partial
differential equation is transformed to a system of ordinary differential equations.
We consider the characteristic curve passing through the point 0; x0ð Þ:
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∂tx ¼ λ u t; x tð Þð Þð Þ
x 0ð Þ ¼ x0:

(14)

Along this characteristic curve,

∂tu t; x tð Þð Þ ¼ ∂tu t; x tð Þð Þ þ ∂tx∂xu t; x tð Þð Þ ¼ ∂tuþ λ uð Þ∂xu ¼ 0 (15)

is satisfied, that is, u is constant. Hence, the characteristic curves are straight
lines satisfying

x ¼ x0 þ λ u0 x0ð Þð Þt ¼ 0: (16)

Hence we can define smooth solutions by u t; xð Þ ¼ u0 x0ð Þ. If the slope of the
characteristics is mchar ¼ 1

λ u0 xið Þð Þ , then depending on the behavior of λ, the solution
takes different forms. If λ u0 xð Þð Þ is increasing, then the slopes of the characteristics
are decreasing. As a result, the characteristics do not intersect, and thus solution can
be defined for all t which is greater than zero. On the other hand, if λ u0 xð Þð Þ is
decreasing, then the slopes of the characteristics will be increasing which implies
that the characteristics intersect at some point. But at the intersection point, solu-
tion cannot take both values u0 x1ð Þ and u0 x2ð Þ. Therefore, we cannot define the
strong solution for all t.0.

1.4 Linear advection equation

The basic example of the scalar conservation law is the linear advection equa-
tion. It can be obtained by setting a t; x; uð Þ ¼ 1, b t; x; uð Þ ¼ λ, and c t; x; uð Þ ¼ 0 in
Eq. (7). The flux function takes the form f uð Þ ¼ λu where λ is a constant. Then the
following quasilinear partial differential equation

∂tuþ λ∂xu ¼ 0 (17)

is a linear advection equation. Similar to Eqs. (11) and (12), an initial value
problem for linear advection equation is described by

∂tuþ ∂xf uð Þ ¼ 0, �∞, x,∞, t≥0,

u 0; xð Þ ¼ u0 xð Þ ¼ f x0ð Þ, �∞, x,∞:
(18)

Applying the method of characteristics, it follows that dt
1 ¼ dx

λ ¼ du
0 or equivalently

u ¼ c1,
dx
dt

¼ λ ¼ c1, x ¼ c1tþ c2, (19)

where c1 and c2 are constant and x� λt ¼ c2: As a conclusion, the solution is

u t; xð Þ ¼ u0 x� λtð Þ, t≥0: (20)

Here λ is the wave speed, and the characteristic lines x� λt ¼ c2 are wavefronts
which are constants.

1.5 Burgers’ equation

Burgers’ equation is the simplest nonlinear partial differential equation and is
the one of the most common models used in the scalar conservation laws and fluid
dynamics. The classical Burgers’ equation is described by
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∂tuþ u∂xu ¼ ν∂xxu, (21)

where ν∂xxu is the viscosity term. Equation (21) can be considered as a combi-
nation of nonlinear wave motion and linear diffusion term so that it is balance
between time evolution, nonlinearity, and diffusion. The term u∂xu is a convection
term that may have an effect to wave breaking, and the term ν∂xxu is a diffusion
term that may cause to efface the wave breaking and to flatten discontinuities, and
thus we expect to achieve a smooth solution. We try to find a traveling wave
solution of Eq. (21) of the form

u t; xð Þ ¼ g ξð Þ ¼ g x� λ tð Þ, with ξ ¼ x� λt, (22)

where g and λ are to be determined. Applying the chain rule, we get

∂tu ¼ �λ g0 ξð Þ, ∂xu ¼ g0 ξð Þ, ∂xxu ¼ g″ ξð Þ: (23)

Plugging these terms in Eq. (21), we get

�λ g0 ξð Þ þ g ξð Þg0 ξð Þ � ν g″ ξð Þ ¼ 0: (24)

Taking integration with respect to ξ gives

�λ g þ 1
2
g2 � ν g0 ¼ C, C : constant: (25)

Rewriting Eq. (25) by

g � g1
� �

g � g2
� � ¼ g2 � 2 λ g � 2C ¼ 2ν dg=dξ, (26)

it follows that g1, 2 ¼ λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 2C

p
. Supposing that g1, g2 are real implies g1 . g2.

Using separation of variable and then integrating equation (26), we get

g ξð Þ ¼ g1 þ g2e
g1�g2
2νð Þξ

1þ e
g1�g2
2νð Þξ ¼ g1 þ g2

2
� g1 � g2

2
tan h

g1 � g2
4ν

ξ
� �

(27)

As a result the explicit form of traveling wave solution of Eq. (21) becomes

u t; xð Þ ¼ λ� g1 � g2
2

tan h
1
4ν

g1 � g2
� �

x� λtð Þ
� �

(28)

where λ ¼ g1þg2
2 is the wave speed. We can observe that limξ!�∞ g ξð Þ ¼ g1 and

limξ!∞ g ξð Þ ¼ g2 with g0 ξð Þ,0 for all ξ. This means the solution g ξð Þ decreases
monotonically with ξ from the value g1 to g2. At ξ ¼ 0, u ¼ g1þg2

2 ¼ λ, that is the wave
form g ξð Þ travels from left to right with speed λ equal to the average value of its
asymptotic values. The solution resembles to a shock form as it connects the asymp-
totic states g1 and g2. Without the viscosity term, the solutions to Burgers equation
allow shock forms which finally break. The diffusion term prevents incrementally
deformation of the wave and its breaking by withstanding the nonlinearity. As a
conclusion, there exists a balance between nonlinear advection term and the linear
diffusion term. The wave form is notably affected by the diffusion coefficient ν. If ν
is smaller, then the transition layer between two asymptotic values of solution is
sharper. In the limit ν ! 0, the solutions converge to the step shock wave solutions
to the inviscid Burgers’ equation.
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decreasing, then the slopes of the characteristics will be increasing which implies
that the characteristics intersect at some point. But at the intersection point, solu-
tion cannot take both values u0 x1ð Þ and u0 x2ð Þ. Therefore, we cannot define the
strong solution for all t.0.

1.4 Linear advection equation

The basic example of the scalar conservation law is the linear advection equa-
tion. It can be obtained by setting a t; x; uð Þ ¼ 1, b t; x; uð Þ ¼ λ, and c t; x; uð Þ ¼ 0 in
Eq. (7). The flux function takes the form f uð Þ ¼ λu where λ is a constant. Then the
following quasilinear partial differential equation

∂tuþ λ∂xu ¼ 0 (17)

is a linear advection equation. Similar to Eqs. (11) and (12), an initial value
problem for linear advection equation is described by

∂tuþ ∂xf uð Þ ¼ 0, �∞, x,∞, t≥0,

u 0; xð Þ ¼ u0 xð Þ ¼ f x0ð Þ, �∞, x,∞:
(18)

Applying the method of characteristics, it follows that dt
1 ¼ dx

λ ¼ du
0 or equivalently

u ¼ c1,
dx
dt

¼ λ ¼ c1, x ¼ c1tþ c2, (19)

where c1 and c2 are constant and x� λt ¼ c2: As a conclusion, the solution is

u t; xð Þ ¼ u0 x� λtð Þ, t≥0: (20)

Here λ is the wave speed, and the characteristic lines x� λt ¼ c2 are wavefronts
which are constants.

1.5 Burgers’ equation

Burgers’ equation is the simplest nonlinear partial differential equation and is
the one of the most common models used in the scalar conservation laws and fluid
dynamics. The classical Burgers’ equation is described by

72

Advanced Computational Fluid Dynamics for Emerging Engineering Processes…

∂tuþ u∂xu ¼ ν∂xxu, (21)

where ν∂xxu is the viscosity term. Equation (21) can be considered as a combi-
nation of nonlinear wave motion and linear diffusion term so that it is balance
between time evolution, nonlinearity, and diffusion. The term u∂xu is a convection
term that may have an effect to wave breaking, and the term ν∂xxu is a diffusion
term that may cause to efface the wave breaking and to flatten discontinuities, and
thus we expect to achieve a smooth solution. We try to find a traveling wave
solution of Eq. (21) of the form

u t; xð Þ ¼ g ξð Þ ¼ g x� λ tð Þ, with ξ ¼ x� λt, (22)

where g and λ are to be determined. Applying the chain rule, we get

∂tu ¼ �λ g0 ξð Þ, ∂xu ¼ g0 ξð Þ, ∂xxu ¼ g″ ξð Þ: (23)

Plugging these terms in Eq. (21), we get

�λ g0 ξð Þ þ g ξð Þg0 ξð Þ � ν g″ ξð Þ ¼ 0: (24)

Taking integration with respect to ξ gives

�λ g þ 1
2
g2 � ν g0 ¼ C, C : constant: (25)

Rewriting Eq. (25) by

g � g1
� �

g � g2
� � ¼ g2 � 2 λ g � 2C ¼ 2ν dg=dξ, (26)

it follows that g1, 2 ¼ λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 2C

p
. Supposing that g1, g2 are real implies g1 . g2.

Using separation of variable and then integrating equation (26), we get

g ξð Þ ¼ g1 þ g2e
g1�g2
2νð Þξ

1þ e
g1�g2
2νð Þξ ¼ g1 þ g2

2
� g1 � g2

2
tan h

g1 � g2
4ν

ξ
� �

(27)

As a result the explicit form of traveling wave solution of Eq. (21) becomes

u t; xð Þ ¼ λ� g1 � g2
2

tan h
1
4ν

g1 � g2
� �

x� λtð Þ
� �

(28)

where λ ¼ g1þg2
2 is the wave speed. We can observe that limξ!�∞ g ξð Þ ¼ g1 and

limξ!∞ g ξð Þ ¼ g2 with g0 ξð Þ,0 for all ξ. This means the solution g ξð Þ decreases
monotonically with ξ from the value g1 to g2. At ξ ¼ 0, u ¼ g1þg2

2 ¼ λ, that is the wave
form g ξð Þ travels from left to right with speed λ equal to the average value of its
asymptotic values. The solution resembles to a shock form as it connects the asymp-
totic states g1 and g2. Without the viscosity term, the solutions to Burgers equation
allow shock forms which finally break. The diffusion term prevents incrementally
deformation of the wave and its breaking by withstanding the nonlinearity. As a
conclusion, there exists a balance between nonlinear advection term and the linear
diffusion term. The wave form is notably affected by the diffusion coefficient ν. If ν
is smaller, then the transition layer between two asymptotic values of solution is
sharper. In the limit ν ! 0, the solutions converge to the step shock wave solutions
to the inviscid Burgers’ equation.
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Remark. If the initial data is smooth and very small, then the uxx term is negligi-
ble compared to other terms before the beginning of wave breaking. As the wave
breaking starts, the uxx term raises faster than ux term. After a while, the term uxx
becomes comparable to the other terms so that it keeps the solution smooth, giving
rise to avoid breakdown solutions.

1.6 Inviscid Burgers’ equation

Whenever ν ¼ 0, Eq. (21) is called the inviscid Burgers’ equation. This equation
can be obtained by substituting f uð Þ ¼ u2=2 in the scalar conservation law (1),
that is

∂tuþ ∂x u2=2
� � ¼ ∂tuþ u∂xu ¼ 0: (29)

Observe that f uð Þ is a nonlinear function of u; thus, the inviscid Burgers’ equa-
tion is a nonlinear equation. Equation (29) is now equivalent to Eq. (17) with λ ¼ u.
We know the solution of Eq. (17); so, plugging λ ¼ u into the relation (20) implies
that the solution of Eq. (29) is

u t; xð Þ ¼ f x� utð Þ ¼ u0 x� utð Þ: (30)

Recall that the characteristic speed λ is constant for linear advection equation;
that is, the characteristic curves become parallel for Eq. (17). In contrast, for the
inviscid Burgers’ equation (29), the characteristic speed λ ¼ u depends on u. As a
result the characteristic lines are not parallel. If we apply the implicit function
theorem to Eq. (29), the solution can be written as a function of t and x as u0 is
differentiable. More particularly, differentiating Eq. (30) with respect to t, we get

∂tu ¼ �u00 uttþ uð Þ ) ∂tu ¼ � u00u
1þ u00t

; (31)

and differentiating equation (30) with respect to x, we get

∂xu ¼ u00 1� uxtð Þ ) ∂xu ¼ u00
1þ u00t

: (32)

Thus, substituting Eqs. (31) and (32) in (29), we can recover the inviscid
Burgers’ equation. Consequently, the relations (31) and (32) imply that the solu-
tions of Eq. (1) and particularly of Eq. (29) depend on the initial value u0. It can be
observed that whenever u00 xð Þ.0, then by Eq. (32), ∂xu decreases in time because
1þ u00 t.0 for t.0. In other words, the profile of the wave flattens as time
increases. On the other hand, whenever u00 xð Þ,0, then ∂xu increases in time as
1þ u0t,0: Hence ux in Eq. (32) tends to ∞ as 1þ u00t approaches to zero. As a
result, wave profile become sharp after some time. For further details on the
Burgers’ equations, we refer the reader to [12, 13, 22] and the references therein.

1.7 Shock waves

Let the constants uL and uR are given with a linear function, φ tð Þ ¼ λt. Then

u t; xð Þ ¼ uR if x. λt,
uL if x, λt,

�
(33)
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is a simple example of discontinuous solution of the conservation law (11). If
uL 6¼ uR, the relation (33) is called a shock wave connecting uL to uR with shock
speed λ. As an example, if we take into account the characteristics of the inviscid
Burgers’ equations which are of the form dx

dt ¼ u t; xð Þ, it follows that

x tð Þ ¼ u0 x0ð Þtþ x0 (34)

where u0 xð Þ ¼ u 0; xð Þ and x0 ¼ x 0ð Þ; thus, the characteristics are straight
lines. Depending on the behavior of these characteristics, we have two cases. If
uL . uR, characteristics intersect, the solution will have an infinite slope, and the
wave will break; as a result a shock is obtained. This is illustrated in Figure 1. On
the other hand, if uR . uL, the characteristics do not intersect, and hence a region
without characteristic will appear which is physically unacceptable. This is shown in
Figure 2. We get rid of this by introducing the rarefaction waves.

1.8 Rarefaction waves

A rarefaction wave is a strong solution which is a union of characteristic lines.
A rarefaction fan is a collection of rarefaction waves. These waves are constant on
the characteristic line x� x0 ¼ αt. Here α∈ f 0 uLð Þ; f 0 uRð Þ� �

where uL and uR are the
values of u at the edge of the rarefaction wave fan. If moreover f 0 is invertible, then
the solution u ¼ u t; xð Þ satisfies

u x; tð Þ ¼ f 0
� ��1 x� x0

t

� �
: (35)

If, for instance, f is convex, then the rarefaction waves are increasing. If we
consider again the inviscid Burgers’ equation with the initial values, then the region
without characteristics in Figure 2 will be covered by rarefaction solution which is
described by

u t; xð Þ ¼
uL if x=t≤ f 0 uLð Þ,
f 0
� ��1 x=tð Þ if f 0 uLð Þ≤ x=t≤ f 0 uRð Þ,
uR if f 0 uRð Þ≤ x=t:

8><
>:

(36)

Figure 1.
For the initial value uL . uR, characteristics, and shock wave.

Figure 2.
For the initial value uR . uL, characteristics and rarefaction waves.
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Remark. If the initial data is smooth and very small, then the uxx term is negligi-
ble compared to other terms before the beginning of wave breaking. As the wave
breaking starts, the uxx term raises faster than ux term. After a while, the term uxx
becomes comparable to the other terms so that it keeps the solution smooth, giving
rise to avoid breakdown solutions.

1.6 Inviscid Burgers’ equation

Whenever ν ¼ 0, Eq. (21) is called the inviscid Burgers’ equation. This equation
can be obtained by substituting f uð Þ ¼ u2=2 in the scalar conservation law (1),
that is

∂tuþ ∂x u2=2
� � ¼ ∂tuþ u∂xu ¼ 0: (29)

Observe that f uð Þ is a nonlinear function of u; thus, the inviscid Burgers’ equa-
tion is a nonlinear equation. Equation (29) is now equivalent to Eq. (17) with λ ¼ u.
We know the solution of Eq. (17); so, plugging λ ¼ u into the relation (20) implies
that the solution of Eq. (29) is

u t; xð Þ ¼ f x� utð Þ ¼ u0 x� utð Þ: (30)

Recall that the characteristic speed λ is constant for linear advection equation;
that is, the characteristic curves become parallel for Eq. (17). In contrast, for the
inviscid Burgers’ equation (29), the characteristic speed λ ¼ u depends on u. As a
result the characteristic lines are not parallel. If we apply the implicit function
theorem to Eq. (29), the solution can be written as a function of t and x as u0 is
differentiable. More particularly, differentiating Eq. (30) with respect to t, we get

∂tu ¼ �u00 uttþ uð Þ ) ∂tu ¼ � u00u
1þ u00t

; (31)

and differentiating equation (30) with respect to x, we get

∂xu ¼ u00 1� uxtð Þ ) ∂xu ¼ u00
1þ u00t

: (32)

Thus, substituting Eqs. (31) and (32) in (29), we can recover the inviscid
Burgers’ equation. Consequently, the relations (31) and (32) imply that the solu-
tions of Eq. (1) and particularly of Eq. (29) depend on the initial value u0. It can be
observed that whenever u00 xð Þ.0, then by Eq. (32), ∂xu decreases in time because
1þ u00 t.0 for t.0. In other words, the profile of the wave flattens as time
increases. On the other hand, whenever u00 xð Þ,0, then ∂xu increases in time as
1þ u0t,0: Hence ux in Eq. (32) tends to ∞ as 1þ u00t approaches to zero. As a
result, wave profile become sharp after some time. For further details on the
Burgers’ equations, we refer the reader to [12, 13, 22] and the references therein.

1.7 Shock waves

Let the constants uL and uR are given with a linear function, φ tð Þ ¼ λt. Then

u t; xð Þ ¼ uR if x. λt,
uL if x, λt,

�
(33)
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is a simple example of discontinuous solution of the conservation law (11). If
uL 6¼ uR, the relation (33) is called a shock wave connecting uL to uR with shock
speed λ. As an example, if we take into account the characteristics of the inviscid
Burgers’ equations which are of the form dx

dt ¼ u t; xð Þ, it follows that

x tð Þ ¼ u0 x0ð Þtþ x0 (34)

where u0 xð Þ ¼ u 0; xð Þ and x0 ¼ x 0ð Þ; thus, the characteristics are straight
lines. Depending on the behavior of these characteristics, we have two cases. If
uL . uR, characteristics intersect, the solution will have an infinite slope, and the
wave will break; as a result a shock is obtained. This is illustrated in Figure 1. On
the other hand, if uR . uL, the characteristics do not intersect, and hence a region
without characteristic will appear which is physically unacceptable. This is shown in
Figure 2. We get rid of this by introducing the rarefaction waves.

1.8 Rarefaction waves

A rarefaction wave is a strong solution which is a union of characteristic lines.
A rarefaction fan is a collection of rarefaction waves. These waves are constant on
the characteristic line x� x0 ¼ αt. Here α∈ f 0 uLð Þ; f 0 uRð Þ� �

where uL and uR are the
values of u at the edge of the rarefaction wave fan. If moreover f 0 is invertible, then
the solution u ¼ u t; xð Þ satisfies

u x; tð Þ ¼ f 0
� ��1 x� x0

t

� �
: (35)

If, for instance, f is convex, then the rarefaction waves are increasing. If we
consider again the inviscid Burgers’ equation with the initial values, then the region
without characteristics in Figure 2 will be covered by rarefaction solution which is
described by

u t; xð Þ ¼
uL if x=t≤ f 0 uLð Þ,
f 0
� ��1 x=tð Þ if f 0 uLð Þ≤ x=t≤ f 0 uRð Þ,
uR if f 0 uRð Þ≤ x=t:

8><
>:

(36)

Figure 1.
For the initial value uL . uR, characteristics, and shock wave.

Figure 2.
For the initial value uR . uL, characteristics and rarefaction waves.
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An illustration of rarefaction waves and rarefaction fan in Eq. (36) is given in
Figure 3.

Remark. Whenever characteristics intersect, we may have multiple valued
solution or no solution; but we have no more classical (strong) solution. To get rid
of this situation, we introduce a more wide-ranging notion of solution, the weak
solution, in the next part. By this arrangement, we may have non-differentiable and
even discontinuous solutions.

1.9 Weak solution

Weak solutions occur whenever there is no smooth (classical) solution. These
solutions may not be differentiable or even not continuous. Considering
ϕ : R� Rþ ! R as a smooth test function with a compact support and multiplying
the scalar conservation law (1) by this test function ϕ, it follows after integration by
parts that

Z ∞

0

Z ∞

�∞
ϕ∂tuþ ϕ∂xf uð Þdxdt

¼
Z ∞

�∞
ϕu
���
∞

0
dx�

Z ∞

0

Z ∞

�∞
u∂tϕdxdtþ

Z ∞

0
ϕf uð Þ

���
∞

�∞
dt�

Z ∞

0

Z ∞

�∞
f uð Þ∂xϕdxdt

¼ �
Z ∞

0

Z ∞

�∞
u∂tϕdxdt�

Z ∞

0

Z ∞

�∞
f uð Þ∂xϕdxdt�

Z ∞

�∞
uϕ
����
t¼0

dx:

(37)

Putting the initial condition u0 xð Þ ¼ u 0; xð Þ to the above relation, it follows that

Z ∞

0

Z ∞

�∞
uϕt þ f uð Þϕxdxdtþ

Z ∞

�∞
u 0; xð Þϕ xð Þdx ¼ 0: (38)

Observe that there are no more derivatives of u and f which may lead less
smoothness. In other words, the smoothness requirement is reduced for finding a
solution. Thus, the function u t; xð Þ is said to be the weak solution of the initial value
problem (11) if the relation (38) satisfied for all test function ϕ:Here it is significant
to note that u needs not be smooth or continuous to satisfy Eq. (38). Consequently,
by weak solutions, we extend the solutions so that discontinuous solutions may also
be covered. However, in general weak solutions are not unique. We can also notice

Figure 3.
Rarefaction fan.
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that strong solutions are also weak solutions and a weak solution which is continu-
ous and piecewise differentiable is also strong solution.

1.10 Riemann problem

The Riemann problem is a Cauchy problem with a particular initial value which
consists a conservation law together with piecewise constant data having a single
discontinuity. We consider the Riemann problem for a convex flux described by

∂tuþ ∂x f uð Þð Þ ¼ 0, x∈R, t∈Rþ,

u 0; xð Þ ¼
uL if x,0,

uR if x.0:

(
(39)

The solution is a set of shock and rarefaction waves depending on the relation
between uL and uR: There are two cases to investigate:

Case 1: uL . uRð Þ A shock is obtained because the left-hand side wave moves
faster than the right-hand side one. Thus the solution

u t; xð Þ ¼ uL if x=t, λ,
uR if x=t. λ,

�
(40)

is a shock wave satisfying the shock speed λ ¼ f uRð Þ�f uLð Þ
uR�uL

:

Case 2: (uL , uR) The solution given in Case 1 is also a solution for this case. In
addition, we have rarefaction solutions of the form (36) illustrated by Figure 3.

1.11 Rankine-Hugoniot jump condition

A jump discontinuity along the characteristic line is controlled by the Rankine-
Hugoniot jump condition. Integrating the scalar conservation law (1) in x1; x2½ �, it
follows that

d
dt

Z x2

x1
u t; xð Þdxþ f uð Þ

���
x2

x1
¼ 0: (41)

Suppose that there is a discontinuity at the point x ¼ ξ tð Þ∈ x1; x2ð Þ where u and
u0 are continuous on the x1; ξ tð Þ½ Þ and ξ tð Þ; x2ð �, respectively. Suppose also that
whenever x1 ! ξ tð Þ� and x2 ! ξ tð Þþ, their limits exist. Next, Eq. (41) can be
rewritten as

d
dt

Z ξ tð Þ

x1
u t; xð Þdxþ d

dt

Z x2

ξ tð Þ
u t; xð Þdx ¼ � f t; x2ð Þ � f t; x1ð Þð Þ: (42)

By the fundamental theorem of calculus, the relations (41) and (42) yield

u ξ�; xð Þξ0 tð Þ � u ξþ; xð Þξ0 tð Þ þ d
dt

Z ξ tð Þ

x1
ut t; xð Þdxþ d

dt

Z x2

ξ tð Þ
ut t; xð Þdx: (43)

Taking the limit whenever x1 ! ξ tð Þ� and x2 ! ξ tð Þþ, it follows that

ξ0 tð Þ x2 � x1ð Þ ¼ f x2ð Þ � f x1ð Þ ) λ ¼ ξ0 tð Þ ¼ f x2ð Þ � f x1ð Þ
x2 � x1

: (44)
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An illustration of rarefaction waves and rarefaction fan in Eq. (36) is given in
Figure 3.

Remark. Whenever characteristics intersect, we may have multiple valued
solution or no solution; but we have no more classical (strong) solution. To get rid
of this situation, we introduce a more wide-ranging notion of solution, the weak
solution, in the next part. By this arrangement, we may have non-differentiable and
even discontinuous solutions.

1.9 Weak solution

Weak solutions occur whenever there is no smooth (classical) solution. These
solutions may not be differentiable or even not continuous. Considering
ϕ : R� Rþ ! R as a smooth test function with a compact support and multiplying
the scalar conservation law (1) by this test function ϕ, it follows after integration by
parts that
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ϕ∂tuþ ϕ∂xf uð Þdxdt

¼
Z ∞

�∞
ϕu
���
∞

0
dx�

Z ∞

0

Z ∞

�∞
u∂tϕdxdtþ
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dt�
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����
t¼0

dx:

(37)

Putting the initial condition u0 xð Þ ¼ u 0; xð Þ to the above relation, it follows that
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Z ∞

�∞
uϕt þ f uð Þϕxdxdtþ

Z ∞

�∞
u 0; xð Þϕ xð Þdx ¼ 0: (38)

Observe that there are no more derivatives of u and f which may lead less
smoothness. In other words, the smoothness requirement is reduced for finding a
solution. Thus, the function u t; xð Þ is said to be the weak solution of the initial value
problem (11) if the relation (38) satisfied for all test function ϕ:Here it is significant
to note that u needs not be smooth or continuous to satisfy Eq. (38). Consequently,
by weak solutions, we extend the solutions so that discontinuous solutions may also
be covered. However, in general weak solutions are not unique. We can also notice

Figure 3.
Rarefaction fan.
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that strong solutions are also weak solutions and a weak solution which is continu-
ous and piecewise differentiable is also strong solution.

1.10 Riemann problem

The Riemann problem is a Cauchy problem with a particular initial value which
consists a conservation law together with piecewise constant data having a single
discontinuity. We consider the Riemann problem for a convex flux described by

∂tuþ ∂x f uð Þð Þ ¼ 0, x∈R, t∈Rþ,

u 0; xð Þ ¼
uL if x,0,

uR if x.0:

(
(39)

The solution is a set of shock and rarefaction waves depending on the relation
between uL and uR: There are two cases to investigate:

Case 1: uL . uRð Þ A shock is obtained because the left-hand side wave moves
faster than the right-hand side one. Thus the solution

u t; xð Þ ¼ uL if x=t, λ,
uR if x=t. λ,

�
(40)

is a shock wave satisfying the shock speed λ ¼ f uRð Þ�f uLð Þ
uR�uL

:

Case 2: (uL , uR) The solution given in Case 1 is also a solution for this case. In
addition, we have rarefaction solutions of the form (36) illustrated by Figure 3.

1.11 Rankine-Hugoniot jump condition

A jump discontinuity along the characteristic line is controlled by the Rankine-
Hugoniot jump condition. Integrating the scalar conservation law (1) in x1; x2½ �, it
follows that

d
dt

Z x2

x1
u t; xð Þdxþ f uð Þ

���
x2

x1
¼ 0: (41)

Suppose that there is a discontinuity at the point x ¼ ξ tð Þ∈ x1; x2ð Þ where u and
u0 are continuous on the x1; ξ tð Þ½ Þ and ξ tð Þ; x2ð �, respectively. Suppose also that
whenever x1 ! ξ tð Þ� and x2 ! ξ tð Þþ, their limits exist. Next, Eq. (41) can be
rewritten as

d
dt

Z ξ tð Þ

x1
u t; xð Þdxþ d

dt

Z x2

ξ tð Þ
u t; xð Þdx ¼ � f t; x2ð Þ � f t; x1ð Þð Þ: (42)

By the fundamental theorem of calculus, the relations (41) and (42) yield

u ξ�; xð Þξ0 tð Þ � u ξþ; xð Þξ0 tð Þ þ d
dt

Z ξ tð Þ

x1
ut t; xð Þdxþ d

dt

Z x2

ξ tð Þ
ut t; xð Þdx: (43)

Taking the limit whenever x1 ! ξ tð Þ� and x2 ! ξ tð Þþ, it follows that

ξ0 tð Þ x2 � x1ð Þ ¼ f x2ð Þ � f x1ð Þ ) λ ¼ ξ0 tð Þ ¼ f x2ð Þ � f x1ð Þ
x2 � x1

: (44)
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The relation (44) is said to be the Rankine-Hugoniot jump condition. Geo-
metrical meaning of the Rankine-Hugoniot jump condition is that the shock speed is
the slope of the secant line through the points uL; f uLð Þð Þ and uR; f uRð Þð Þ on the
graph of f .

1.12 Entropy functions

Entropy and entropy flux are defined for attaining physically meaningful solu-
tions. If u is the smooth solution of the conservation law (1), then the relation

∂tG uð Þ þ ∂xF uð Þ ¼ 0 (45)

is satisfied for continuously differentiable functions G and F where the pair
G;Fð Þ is called as entropy pair so that G is entropy and F is entropy flux. If in
addition u is smooth, then Eq. (45) becomes

G0 uð Þ∂tuþ F0 uð Þ∂xu ¼ 0 (46)

which looks like to the scalar conservation law (1). Indeed, if we multiply Eq. (1)
by G0 uð Þ, it follows that

G0 uð Þ∂tuþG0 uð Þf 0 uð Þ∂xu ¼ 0: (47)

It follows that Eqs. (46) and (47) are equivalent with F0 uð Þ ¼ G0 uð Þf 0 uð Þ: Here
the function u t; xð Þ is said to be the entropy solution of Eq. (1) if

∂tG uð Þ þ ∂xF uð Þ≤0

holds for all convex entropy pairs G uð Þ;F uð Þð Þ.

1.13 Entropy condition

Weak solutions to conservation laws may contain discontinuities as a result of a
discontinuity in the initial data or of characteristics that cross each other or because
of the jump conditions which are satisfied across the discontinuities. Although the
Rankine-Hugoniot jump condition is satisfied, the uniqueness of the solution may
always not be guaranteed. In order to eliminate the nonphysical solutions among the
weak solutions, we need an additional condition, so-called entropy condition. It is
described by the following: A discontinuity propagating with the characteristic
speed λ given by the Rankine-Hugoniot jump condition satisfies the entropy condi-
tion if holds.

f 0 uLð Þ. λ. f 0 uRð Þ (48)

Example 1.1. The weak solutions to conservation laws need not be unique. If we
write the inviscid Burgers’ equation in quasilinear form and multiply by 2u, we
obtain 2u∂tuþ 2u2∂xu ¼ 0. In conservative form it becomes

∂t u2
� �þ ∂x

2
3
u3

� �
¼ 0, with f u2

� � ¼ 2
3

u2
� �3=2

: (49)

The inviscid Burgers’ equation and Eq. (49) have exactly the same smooth
solutions. But their weak solutions are different. A shock traveling speed for the
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inviscid Burgers’ equation is λ1 ¼ uL þ uRð Þ=2; however for Eq. (49), we have

λ2 ¼ 2
3

u3L�u3R
u2L�u2R

� ��
. That is λ1 6¼ λ2 whenever uL 6¼ uR, and thus these two equations

have different weak solutions.
Example 1.2. We first consider the initial value problem for uL . uR given by

∂tuþ ∂x u2=2
� � ¼ 0, u0 ¼ 1 if x≤0,

0 if x.0:

�
(50)

Applying the method of characteristics for t.0, it follows that

du
dt

¼ 0,
dx
dt

¼ 1 if x≤0,

0 if x.0:

�
(51)

Next if we integrate Eq. (51) with respect to t, we get the characteristic curves

x ¼ t� c if x≤0,

b if x.0,

�
(52)

where c.0 and b are constants. Due to the discontinuity at the point x ¼ 0,
there is no strong (classical) solution. The speed of propagation is λ ¼ uLþuR

2 ¼ 0:5:
Moreover, the weak solution for t≤ λ ¼ 0:5 becomes

u t; xð Þ ¼
1 if

x
t
≤0:5

0 if
x
t
.0:5

,

8><
>:

(53)

which satisfies both the jump condition and the entropy condition as
uL ¼ 1. uR ¼ 0. The characteristic curves can be observed in Figure 4.

Example 1.3. We now interchange the roles of uL and uR of the Example 1.2 so
that uL , uR to get an initial value problem:

∂tuþ ∂x u2=2
� � ¼ 0, u0 ¼ 0 if x≤0,

1 if x.0:

�
(54)

By the method of characteristics, we obtain a solution

u1 t; xð Þ ¼
0 if

x
t
≤ 1

1 if
x
t
. 1

8><
>:

(55)

Figure 4.
For initial value uL . uR, the characteristic solutions.
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which is a classical (strong) solution on both sides of the characteristic line x
t ¼ 1.

Since it satisfies the Rankine-Hugoniot jump condition along the discontinuity
curve, it is a weak solution. However, the entropy condition is not satisfied. It yields
an empty region between the characteristic lines shown in Figure 4. In order to
cover this empty state, we consider another solution described by

u2 t; xð Þ ¼

0 if x≤0,
x
t

if 0≤
x
t
≤ 1,

1 if
x
t
≥ 1

8>>><
>>>:

(56)

which satisfies both jump and entropy conditions. Here we can observe the
rarefaction fan arising on the interval 0≤ x

t ≤ 1. An illustration of this solution is
supplied in Figure 5.

2. The gas dynamic equations in one dimension

The equation of fluid dynamics can be represented in Eulerian and Lagrangian
forms. Eulerian coordinates are related to the coordinates of a fixed observer. On
the other hand, Lagrangian coordinates are in usual related to the local flow veloc-
ity. That is, due to the velocity taking different values in different parts of the fluid,
the change of coordinates is different from one point to another one.

2.1 Eulerian coordinates

The equations of gas dynamics in Eulerian coordinates can be written in the
following conservative forms:

∂t ρð Þ þ ∂x ρuð Þ ¼ 0,

∂t ρuð Þ þ ∂x ρu2 þ pð Þ ¼ 0,

∂t ρeð Þ þ ∂x ρeþ pð Þuð Þ ¼ 0

8><
>:

(57)

where we ignored the heat conduction. If we denote

U ¼
ρ

ρu
ρe

0
B@

1
CA, F Uð Þ ¼

ρe
ρu2 þ p
ρeuþ pu

0
B@

1
CA, (58)

then Eq. (57) can be written by

∂tU þ ∂xF Uð Þ ¼ 0 (59)

Figure 5.
For initial value uL , uR, characteristic solutions u1 t; xð Þ and u2 x; tð Þ with rarefaction fan.
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where ρ is density, p is pressure, u is velocity, and e is the specific internal
energy.

2.2 Hyperbolicity of the Euler system

If we do not neglect the heat conduction, then the U and F terms in Eq. (59)
become

U ¼
ρ

ρu
E

0
B@

1
CA and F ¼

ρu
ρu2 þ p
Eþ pð Þu

0
B@

1
CA, (60)

where E is total energy such that E ¼ 1
2 ρu

2 þ ρe, e ¼ p
δ�1ð Þρ, and for perfect gases

δ ¼ cp=cv is the ratio of specific heats. Rewriting Eq. (59) in quasilinear form, we get

∂tU þ A Uð Þ∂xU ¼ 0, (61)

where A Uð Þ ¼ ∂F
∂U is the Jacobian matrix. The eigenvalues of A Uð Þ then are

λ1 ¼ u, λ2 ¼ u� a, λ3 ¼ uþ a where a is the sound speed given by a ¼
ffiffiffiffi
δp
ρ

q
.

Moreover the corresponding eigenvectors are

E 1ð Þ ¼
1

u
1
2
u2

0
BB@

1
CCA, E 2ð Þ ¼

1

u� a
H � ua

0
B@

1
CA, E 3ð Þ ¼

1

uþ a
H þ ua

0
B@

1
CA (62)

which are real, and the eigenvectors are linearly independent implying that the
Euler equations for perfect gases are hyperbolic.

2.3 Rankine-Hugoniot conditions for the Euler system

Using the results in the previous part, the Rankine-Hugoniot jump conditions for
the Euler system will be of the form

s ρ1 � ρ2ð Þ ¼ m2 �m1,

s m2 �m1ð Þ ¼ m2
2

ρ2
þ p2 �

m2
1

ρ1
� p1,

s ρ2E2 � ρ1E1ð Þ ¼ m2H2 �H1m1,

(63)

where the indices 1 and 2 refer to the left and right of the shock, respectively,
and s denotes the wave speed.

2.4 Riemann problem for the Euler system

The Riemann problem for the one-dimensional Euler equation (57) is
represented by

∂tU þ ∂x F Uð Þð Þ ¼ 0, x∈R, t.0,

U 0; xð Þ ¼ U0 xð Þ ¼
UL if x,0,

UR if x.0:

(
(64)

The reader is addressed to the references [18, 24] for further details.
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where ρ is density, p is pressure, u is velocity, and e is the specific internal
energy.
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If we do not neglect the heat conduction, then the U and F terms in Eq. (59)
become

U ¼
ρ
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0
B@

1
CA and F ¼

ρu
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Eþ pð Þu

0
B@
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CA, (60)

where E is total energy such that E ¼ 1
2 ρu

2 þ ρe, e ¼ p
δ�1ð Þρ, and for perfect gases

δ ¼ cp=cv is the ratio of specific heats. Rewriting Eq. (59) in quasilinear form, we get

∂tU þ A Uð Þ∂xU ¼ 0, (61)

where A Uð Þ ¼ ∂F
∂U is the Jacobian matrix. The eigenvalues of A Uð Þ then are

λ1 ¼ u, λ2 ¼ u� a, λ3 ¼ uþ a where a is the sound speed given by a ¼
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which are real, and the eigenvectors are linearly independent implying that the
Euler equations for perfect gases are hyperbolic.

2.3 Rankine-Hugoniot conditions for the Euler system

Using the results in the previous part, the Rankine-Hugoniot jump conditions for
the Euler system will be of the form

s ρ1 � ρ2ð Þ ¼ m2 �m1,
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2

ρ2
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1

ρ1
� p1,

s ρ2E2 � ρ1E1ð Þ ¼ m2H2 �H1m1,

(63)

where the indices 1 and 2 refer to the left and right of the shock, respectively,
and s denotes the wave speed.

2.4 Riemann problem for the Euler system

The Riemann problem for the one-dimensional Euler equation (57) is
represented by

∂tU þ ∂x F Uð Þð Þ ¼ 0, x∈R, t.0,
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2.5 Lagrangian coordinates

We aim to transform the equations of gas dynamics (57) given in the Eulerian
coordinates into the Lagrangian coordinates for one-dimensional case. We start
denoting by u ¼ u t; xð Þ the velocity field of the fluid flow and consider the differ-
ential system

dx
dt

¼ u t; xð Þ: (65)

We set the following change of coordinates from Euler coordinates to Lagrange
coordinates for space and time as t; xð Þ ! t0; ξð Þ where ξ ¼ ξ1; ξ2; ξ3ð Þ∈R3 so that

t0 ¼ t,
∂x t0; ξð Þ

∂t0
¼ u t0; x t0; ξð Þð Þ, x0 ¼ x 0; ξð Þ ¼ ξ: (66)

It follows that t0; ξð Þ ¼ t; ξ1; ξ2; ξ3ð Þð Þ are the Lagrangian coordinates associated
with the velocity field u. We set

J t; ξð Þ ¼ det
∂xi
∂ξj

t; ξð Þ
 !

, (67)

which gives

∂J
∂t

t; ξð Þ ¼ J t; ξð Þ divuð Þ t; x t; ξð Þð Þ, where, div u ¼ ∑
3

j¼1

∂uj
∂xj

: (68)

It follows by some algebraic manipulations that the gas dynamic equations
become

∂t ρJð Þ ¼ 0, Conservation of massð Þ,
∂t ρuJð Þ þ ∂ξ pð Þ ¼ 0, Conservation of momentumð Þ,
∂t ρeJð Þ þ ∂ξ puð Þ ¼ 0, Conservation of energy

� �
:

8><
>:

(69)

In order to derive a more convenient form of the system (69), we derive firstly
the equation of conservation of mass:

ρJ ¼ ρ0 ¼ ρ 0; ξð Þ (70)

where ρ0 ξð Þ ¼ ρ 0; ξð Þ: Assuming that ρ.0, we introduce the specific volume
τ ¼ 1=ρ, and by using Eq. (68) we get

J ¼ ρ0τ, and ∂t J ¼ J∂xu ¼ ∂ξu (71)

which yields

ρ0∂tτ � ∂ξu ¼ 0: (72)

Hence the second and third equations of Eq. (69) become

ρ0∂tuþ ∂ξp ¼ 0, Conservation of momentumð Þ,
ρ0∂teþ ∂ξ puð Þ ¼ 0, Conservation of energy

� �
:

(73)
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Moreover, we define a mass variable m by

m ξð Þ ¼
Z ξ

0
ρ 0; yð Þdy, or equivalently, dm ¼ ρ 0; ξð Þdξ ¼ ρ0dξ: (74)

Finally, using Eqs. (69) and (73), the Euler system (57) can be written in
Lagrangian coordinates with the mass variable in the form

∂tτ � ∂mu ¼ 0,

∂tuþ ∂mp ¼ 0,

∂teþ ∂m puð Þ ¼ 0,

8><
>:

(75)

where p ¼ p τ; ξð Þ ¼ p τ; e� u2=2ð Þ. If we set V ¼
τ

u
e

0
B@

1
CA, F Vð Þ ¼

�u
p
pu

0
B@

1
CA with

τ.0, u∈R, e� u2=2.0, we obtain a scalar conservation law of the form

∂tV þ ∂mF Vð Þ ¼ 0 (76)

which is strictly hyperbolic. This can be verified by checking the Jacobian matrix
of the flux calculated with respect to the variables τ; u; eð Þ

0 �1 0

pτ �upε pε
upτ p� u2pε upε

0
B@

1
CA (77)

with e ¼ εþ 1
2 u

2. The eigenvalues are σ1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipτ � ppε
p

, σ2 ¼ 0, σ3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipτ � ppε
p so that they are all distinct, and thus the system is strictly hyperbolic.

In fact there are different versions of the gas dynamics in Lagrangian coordi-
nates. In this part we followed the approaches stated in [9, 10, 12]. For further
details we cite these works with references therein.

2.6 Rankine-Hugoniot conditions for the Lagrangian system

Similarly as in the Euler system, the Rankine-Hugoniot jump conditions for the
Lagrangian system (79) are of the form

σ τ1 � τ0ð Þ ¼ � u1 � u0ð Þ,
σ u1 � u0ð Þ ¼ p1 � p0,
σ e1 � e0ð Þ ¼ p1u1 � p0u0,

(78)

where σ denotes the speed of propagation of the discontinuity with respect to
the mass variable.

Remark. The Eulerian and Lagrangian Rankine-Hugoniot relations are equiva-
lent. Moreover, Eulerian entropy relations are equivalent to all Lagrangian entropy
relations (see [9] for further detail).

Example 2.1. For simplicity of notation, we take t; xð Þ as the Lagrangian coordi-
nates. Then the system of equations

∂tτ � ∂xu ¼ 0,

∂tuþ ∂xp τð Þ ¼ 0,

�
(79)
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σ u1 � u0ð Þ ¼ p1 � p0,
σ e1 � e0ð Þ ¼ p1u1 � p0u0,

(78)

where σ denotes the speed of propagation of the discontinuity with respect to
the mass variable.

Remark. The Eulerian and Lagrangian Rankine-Hugoniot relations are equiva-
lent. Moreover, Eulerian entropy relations are equivalent to all Lagrangian entropy
relations (see [9] for further detail).

Example 2.1. For simplicity of notation, we take t; xð Þ as the Lagrangian coordi-
nates. Then the system of equations

∂tτ � ∂xu ¼ 0,

∂tuþ ∂xp τð Þ ¼ 0,

�
(79)
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is a one-dimensional isentropic gas dynamics in Lagrangian coordinates which is
also known as p-system. It is the simplest nontrivial example of a nonlinear system
of conservation laws. Here τ is the specific volume, u is the velocity, and the
pressure p ¼ p τð Þ is given as a function of τ by

p τð Þ ¼ κτ�γ, γ.0, κ ¼ γ � 1ð Þ2
4γ

: (80)

The system (79) is equivalent to

∂tV þ ∂x f Vð Þ ¼ 0, with V ¼ τ

u

� �
, f Vð Þ ¼ �u

p τð Þ
� �

, (81)

where τ.0 and τ; uð Þ∈R2: If we assume that p0 τð Þ,0, it follows that the
Jacobian matrix of f

J fð Þ ¼ 0 �1

p0 τð Þ 0

� �
(82)

has two real distinct eigenvalues σ1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�p0 τð Þðp , σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�p0 τð Þp

. In other
words, the system (81) is strictly hyperbolic. On the other hand, for the case
p0 τð Þ.0, it becomes elliptic. Moreover, one can verify that the solutions of the
p-system (79) and the Euler system (57) are equivalent.

3. Godunov schemes

The Godunov scheme deals with solving the Riemann problem forward in time
for each grid cell and then taking the mean value over these cells. The Riemann
problem is solved per mesh point at each time step iteratively. If there are no strong
shock discontinuities, this process may cost much and will not be effective. To get
rid of such a situation, we establish approximate Riemann solvers that are easier to
implement and also low cost to use. Eulerian and Lagrangian Godunov schemes are
current Godunov scheme in literature. Both have advantages and disadvantages
depending on the structure of the problem. A brief comparison of the method for
these two approaches is presented in the last part of the chapter. In this work we
will not go further in numerical examples and details of these methods; instead, we
aim to present a general form of Godunov schemes for gas dynamics in Eulerian and
Lagrangian coordinate. Before introducing these, we present a first-order Godunov
scheme for scalar conservation laws.

3.1 First-order Godunov scheme

Consider the scalar conservation law (1). Godunov scheme is a numerical
scheme which takes advantage of analytical solutions of the Riemann problem
for the conservation law (1). The numerical flux functions are evaluated at the
spatial steps xj�1=2 and xjþ1=2 by handling the solutions of the Riemann problem.
On each grid cell I i ¼ xj�1=2; xjþ1=2

� �
, we have a piecewise constant

function. The Riemann problem for (1) for the left and right sides of I i are
described by
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uL xð Þ ¼ unj�1 ; x,0,

unj ; x.0,
uR xð Þ ¼

unj ; x,0,

unjþ1 ; x.0,

((
(83)

respectively. These two solutions to the Riemann problem will be the numerical
solution ~u t; xð Þ. Once establishing the solution over the mesh tn; tnþ1½ �, we approxi-
mate the solution at the next time step tnþ1 by the average value

Unþ1
j ¼ 1

Δx

Z xjþ1=2

xj�1=2

~u x; tnþ1� �
dx: (84)

Proceeding this process, we define the solution ~u x; tnþ1ð Þ iteratively. Then Unþ1
j

can be calculated by using the integral form of the conservation law (1) in the
following way: We integrate (1) for u t; xð Þ over each grid cell tn; tnþ1½ � � Ij :

Z xjþ1=2

xj�1=2

~un x; tnþ1� �
dx�

Z xjþ1=2

xj�1=2

~un x; tnð Þdx

¼
Z tnþ1

tn
f ~un

j�1=2

� �
dt�

Z tnþ1

tn
f ~un

jþ1=2

� �
dt:

(85)

Dividing both parts by Δx and using the fact that ~u x; tnð Þ ¼ unj is constant at the
end points xj�1=2 and xjþ1=2, we get

unþ1
j ¼ unj �

Δt
Δx

f ~un
j�1=2

� �
� f ~un

jþ1=2

� �� �
: (86)

Thus, Godunov method is a conservative numerical scheme. It can be restated in
an alternative form. Assigning the constant value of unj at the points xj�1=2 and xjþ1=2

by u ∗ ðUn
j�1, U

n
j Þ and u ∗ ðUn

j , U
n
jþ1Þ, respectively, the numerical flux functions

become

f ~un
j�1=2

� �
¼ f u ∗ Un

j�1;U
n
j

� �� �
¼ F Un

j�1;U
n
j

� �
,

f ~un
jþ1=2

� �
¼ f u ∗ Un

j ;U
n
jþ1

� �� �
¼ F Un

j ;U
n
jþ1

� �
:

(87)

Therefore, a first-order Godunov method takes the form

Unþ1
j ¼ Un

j �
Δt
Δx

F Un
j ;U

n
jþ1

� �
� F Un

j�1;U
n
j

� �� �
: (88)

Here the constant value of ~un depends on the initial data. In other words, the
Godunov method considers the Riemann problem as constant in each grid interval
I i. It follows that, at the subsequent time stage, the exact solutions of the problem
are picked as the numerical fluxes at the grid boundary.

The Godunov method is consistent with the exact solution of the Riemann prob-
lem for the conservation law (1). If we suppose that unj ¼ unþ1

j ¼ u, then ~un
jþ1=2 ¼ u

and F u; uð Þ ¼ f uð Þ. For the stability, CFL condition requires that

sup
x∈R, t.0

∣f 0 u t; xð Þð Þ∣ Δt
Δx

≤ 1 (89)
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n
j

� �� �
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Godunov method considers the Riemann problem as constant in each grid interval
I i. It follows that, at the subsequent time stage, the exact solutions of the problem
are picked as the numerical fluxes at the grid boundary.
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lem for the conservation law (1). If we suppose that unj ¼ unþ1

j ¼ u, then ~un
jþ1=2 ¼ u

and F u; uð Þ ¼ f uð Þ. For the stability, CFL condition requires that

sup
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for each unj . Next, if assigning u ∗ as the intermediate value over the grid I i in the
Riemann solution, it implies that

u ∗ uL; uRð Þ ¼ uL, λ.0,

uR, λ,0,

�
(90)

where λ is the wave propagation speed. Hence the numerical flux for Godunov’s
method can be generalized by

f uL; uRð Þ ¼
min

uL ≤u≤uR
f uð Þ, if uL ≤ uR,

max
uL ≥u≥uR

f uð Þ, if uR , uL:

8<
: (91)

For numerical illustration of Godunov schemes, we cite the articles [14, 20, 27].

3.2 Godunov method in Eulerian coordinates

We consider Eq. (59) with (60). The eigenvalues of F0 Uð Þ are
σ1 ¼ u� c, σ2 ¼ u, σ3 ¼ uþ c. Then the Riemann problem at the point xiþ1=2

between the states Ui and Uiþ1 which is solved by the Godunov scheme can be
written by

ρnþ1
i ¼ ρni �

Δt
Δxi

ρuð Þniþ1=2 � ρuð Þni�1=2

� �

ρuð Þnþ1
i ¼ ρuð Þni �

Δt
Δxi

ρu2 þ p
� �n

iþ1=2 � ρu2 þ p
� �n

i�1=2

� �
:

ρeð Þnþ1
i ¼ ρeð Þni �

Δt
Δxi

ρeþ pð Þuð Þniþ1=2 � ρeþ pð Þuð Þni�1=2

� �

8>>>>>><
>>>>>>:

(92)

3.3 Godunov method in Lagrangian coordinates

Consider the initial condition for a quantity v given by the mean value

v0i ¼ 1
Δξi

Z ξiþ1=2

ξi�1=2

v ξ;0ð Þdξ: (93)

The eigenvalues satisfy σ1 , σ2 ¼ 0, σ3: Setting uiþ1=2 and piþ1=2 as the values of
u and p at the contact discontinuity between Vn

i and Vn
iþ1, it follows that

F wR 0;Vn
i ;V

n
iþ1

� �� �� � ¼ �uniþj=2; p
n
iþj=2; puð Þniþj=2

� �T
: (94)

Then Godunov scheme for the Lagrangian coordinates takes the form

τnþ1
i ¼ τni þ

Δt
Δmi

uniþ1=2 � uni�1=2

� �

unþ1
i ¼ uni �

Δt
Δmi

pniþ1=2 � pni�1=2

� �

enþ1
i ¼ eni �

Δt
Δmi

puð Þniþ1=2 � puð Þni�1=2

� �

8>>>>>><
>>>>>>:

(95)
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where

Δmi ¼ ρ0i Δξi, pni ¼ p τni ; ε
n
i

� �
, εni ¼ eni �

uni
� �2
2

: (96)

If we now consider the moving coordinates, Godunov scheme can also be
derived equivalently by the following. Setting xiþ1=2 ¼ ξiþ1=2 with the approxima-
tion of u ¼ dx=dt, it follows that the Eulerian coordinate xiþ1=2 of the interface ξiþ1=2

at tn is upgraded with respect to

xnþ1
iþ1=2 ¼ xniþ1=2 þ Δtuniþ1=2: (97)

Next we deduce

ρni xniþ1=2 � xni�1=2

� �
¼ Δmi (98)

by a simple induction process. Hence the Lagrangian Godunov schemes become

Δmi ¼ ρ0i x0iþ1=2 � x0i�1=2

� �

xnþ1
iþ1=2 ¼ xniþ1=2 þ Δtuniþ1=2

8<
: (99)

with

ρnþ1
i ¼ xnþ1

iþ1=2 � xnþ1
i�1=2

� ��1
Δmi

unþ1
i ¼ uni �

Δt
Δmi

pniþ1=2 � pni�1=2

� �
:

enþ1
i ¼ eni �

Δt
Δmi

puð Þniþ1=2 � puð Þni�1=2

� �

8>>>>>>><
>>>>>>>:

(100)

Notice that the Lagrangian Godunov schemes can be reformulated as a finite
volume method. Equation (100) can be written in conservative form:

∂t φJð Þ þ ∂ξ f ¼ 0: (101)

If we integrate these equations on ξi�1=2; ξi�1=2
� �

it follows that

d
dt

Z xiþ1=2

xi�1=2

φdξþ f iþ1=2 � f i�1=2

� �
¼ 0: (102)

Here we omit the dependency of f ,φ and x on t. Moreover, if we suppose that
φ is constant in each cell ξi�1=2; ξi�1=2

� �
, it follows by an explicit one-step method

that is

Δxnþ1
i φnþ1

i ¼ Δxni φ
n
i � Δt f niþ1=2 � f ni�1=2

� �
: (103)

Moreover, if ρ; u; eð Þ are constant in each cell with v ¼ u, we get the Godunov
scheme:
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Δ xni ρ
n
i ¼ Δmi

Δmnþ1
i unþ1

i ¼ Δmn
i u

n
i � Δt pniþ1=2 � pni�1=2

� �

Δmnþ1
i enþ1

i ¼ Δmn
i e

n
i � Δt puð Þniþ1=2 � puð Þni�1=2

� �

8>>><
>>>:

(104)

provided uniþ1=2; p
n
iþ1=2

� �
are determined by the solution of the Riemann prob-

lem, which is the desired result.

3.4 Comparison of Eulerian and Lagrangian schemes

In the literature there are two types of Godunov schemes: the Eulerian and
Lagrangian. To compare one with the other, both have advantages and disadvan-
tages. These are briefly listed in the following:

3.4.1 Eulerian approach

It is more nature; that is the properties of a flow field are described as functions
of the coordinates which are in the natural physical space and time. The flow is
determined by examining the behavior of the functions. Eulerian coordinates cor-
respond to the coordinates of a fixed observer. This approach is ease of implemen-
tation and computation. The computational grids derived from the geometry
constraints are generated in advance. The computational cells are fixed in space,
and the fluid particles move across the cell interfaces. Since the Eulerian schemes
consider the implementation at the nodes of a fixed grid, this may lead to spurious
oscillations for the problems like diffusion-dominated transport equations. By
adding artificial diffusion, one can get rid of these oscillations; however the nature
of the problem may differ from the original one. Besides, refining the grids may also
lead to remove numerical oscillations, but this process may augment the computa-
tion cost. Besides, while refining the grids, it may cause restriction of the size of
time step which is limited by CFL condition. This restriction does not occur in
Lagrangian case.

3.4.2 Lagrangian approach

It is based on the notion of mass coordinate denoted by m ξð Þ. An important
feature of the mass coordinate is that two segments have the same length if the mass
contained in these segments is the same. This leads to face with a disadvantage; that
is, at each iteration time step, the problem has to be converted from the natural
coordinate system to the mass coordinate system. Once the solution at the next step
is known, it has to be remapped into the natural coordinate system. As a result, this
process raises the cost of the computation. Lagrangian coordinates are associated to
the local flow velocity. In other words, as the velocity has different values in
different parts of the fluid, then the change of coordinates is different from one
point to another one in Lagrangian coordinates. Thus Lagrangian coordinates are
equivalent to the Eulerian coordinates at another time. Lagrangian description
states the motions and properties of the given fluid particles as they travel to
different locations. Hence the computational grid points are precisely fluid parti-
cles. Since the particle paths in steady flow coincide with the streamlines, no fluid
particles will cross the streamlines. Hence, there is no convective flux across cell
boundaries, and the numerical diffusion is minimized. As a result, Godunov method
in a Lagrangian grid is easier to handle. Moreover, in the case of higher schemes, the
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subsonic character of the flow makes the transformation much easier than in
Eulerian schemes. Lagrangian schemes consider the implementation in a grid that
moves with the flow which is an advantage for the problems like the transport
equations since the advective and diffusion terms can separately be examined.

Apart from the two main approaches, there is another method which is a com-
bination of both, so-called Eulerian-Lagrangian methods. It combines the advan-
tages and eliminates disadvantages of both approaches to get a more efficient
method. For further details we address the reader to the reference in the next part.

Notes

We have tried to present only the theoretical aspects of scalar conservation laws
with some basic models and provide some examples of computational methods for
the scalar models. There are plenty of contributors to the subject; however, we just
cite some important of these and the references therein. Scalar conservation laws
are thoroughly studied in particular in [12]; for a more general introduction includ-
ing systems, see [13, 15, 18, 19, 22] and the references therein. There are some
important works related to the concept of entropy provided by [7, 15, 16]. A more
precise study of the shock and rarefaction waves can be found in [23]. A simple
analysis for inviscid Burgers’ equation is done by [21]. The readers who are deeply
interested in systems of conservation laws and the Riemann problem should see
[8, 13, 15, 22, 24]. A well-ordered work of the propagation and the interaction of
nonlinear waves are provided by [26]. We refer the reader to the papers [1, 17] for
the theory of hyperbolic conservation laws on spacetime geometries and finite
volume analysis with different aspects. A widely introductory material for finite
difference and finite volume schemes to scalar conservation laws can be found in
[18]. In this chapter we have studied the one-dimensional gas dynamics on the
Eulerian and Lagrangian coordinates. For the detail on the Lagrangian conservation
laws, we refer [10]; moreover for both Eulerian and Lagrangian conservation laws,
we cite [11]. The proof of the equivalency of the Euler and Lagrangian equations for
weak solutions is given in [25]. There are several numerical works for Lagrangian
approach; some of the basic works on Lagrangian schemes are given in [2–6]. We
refer the reader to the book [7] for a detailed analysis of the mathematical stand-
point of compressible flows. Moreover Godunov-type schemes are precisely
analyzed in [14, 27]; whereas, Lagrangian Godunov schemes can be found in
[2, 12, 20]. As a last word, we must cite [9] as a recent and more general book
consisting of scalar and system approaches of both Eulerian and Lagrangian
conservation laws with theoretical and numerical parts which can be a basic source
for the curious readers.
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Chapter 5

Unsteady CFD with Heat and Mass
Transfer Simulation of Solar
Adsorption Cooling System for
Optimal Design and Performance
Wahiba Yaïci and Evgueniy Entchev

Abstract

The purpose of the work described here was to investigate the effects of design
and operating parameters on the performance of an adsorption cooling system. An
unsteady Computational Fluid Dynamics (CFD) coupled with heat a mass transfer
model was created for predicting the flow behaviour, pressure, temperature, and
water adsorption distributions. Silica gel and zeolite 13X were both considered as
possible adsorbents, though the study included silica gel given the lower working
temperature range required for operation, which makes it more appropriate for
residential cooling applications powered by solar heat. Validation of the unsteady
computation results with experimental data found in the literature has shown a
good agreement. Different computation cases during the desorption process were
simulated in a parametric study that considered adsorbent bed thickness (lbed), heat
exchanger tube thickness (b), heat transfer fluid (HTF) velocity (v), and adsorbent
particle diameter (dp), to systematically analyse the effects of key geometrical and
operating parameters on the system performance. The CFD results revealed the
importance of v, lbed and dp while b had relatively insignificant changes in the
system performance. Moreover, the coupled CFD with heat and mass transfer
model is suitable as a valuable tool for simulating and optimising adsorption cooling
systems and for predicting their performance.

Keywords: CFD analysis, adsorption cooling, solar thermally activated chiller,
silica gel, zeolite, fluid flow, heat transfer, mass transfer, design, performance

1. Introduction

Conventional vapour compression cooling systems are major consumers of
electricity. In addition, these systems use non-natural refrigerants, which have high
global warming as well as ozone layer depletion potentials and are responsible for
the emission of CO2 and other greenhouse gases such as chlorofluorocarbons
(CFCs) and hydrochlorofluorocarbons (HCFCs). From this perspective, interest in
adsorption systems powered by solar energy or waste heat has been increased as
they do not use ozone-depleting substances as the working fluid nor do they need
electricity or fossil fuels as driving sources. Furthermore, adsorption cooling
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systems have many other advantages, such as simple construction, no solution
pumps, powered directly by solar energy or waste heat and no need for
electricity [1–3].

Adsorption is the adhesion of atoms, ions, molecules of gas, liquid, or dissolved
solids to a surface. This process creates a film of the adsorbate on the surface of the
adsorbent. The desorption is the reverse of adsorption. It is a surface phenomenon.
The adsorption process is usually considered as physisorption, specific of weak van
der Waals forces or chemisorption, specific of covalent bonding. Adsorption is
generally stated by way of isotherms, which represent the quantity of adsorbate
(vapour or liquid phase) on the adsorbent (solid phase) as a function of its concen-
tration (if liquid) or pressure (if gas) at constant temperature. For convenience, the
adsorbed phase is normalised by the amount of the adsorbent in order to facilitate
comparison of various adsorbent-adsorbate pairs [4–6].

An adsorption cooling system consists of adsorbing material (adsorbent) packed
in a vessel (adsorber) and an evacuated vessel (the evaporator). The working fluid,
generally water, is the adsorbate. The working principle of the system consists in
adsorbing the vapour produced in the evaporator, generating a cooling effect.
Water constantly evaporates at low pressure, cooling the process air while the heat
produced simultaneously in the adsorption process is removed by the cooling water,
from the adsorber. At the end of the adsorption process, the desorption stage begins
by heating the adsorber, using hot water, synthetic oil or any appropriate means.
The extracted vapour is directed to the condenser and eventually returns as liquid to
the evaporator. The thermodynamic cycle of the complete process is therefore
ended. As an energy cost-effective solution, hot water/oil can be heated by free
solar energy or waste heat. The two adsorption/desorption chambers of the adsorp-
tion cooling systems operate alternatively so that to generate continuous cooling
power [7].

Numerous heat-pumping, refrigeration and desalination applications have been
studied using various adsorbent and adsorbate pairs. Most of the cycles need
medium and/or high temperature heat sources to work as the powering sources. But
adsorption cycles using the silica gel/water and zeolite/water (adsorbent-adsorbate)
pairs, exhibit a distinctive benefit above other systems in their capability to be
driven by heat of quite low, near-ambient temperatures, so that heat from solar
panels or waste heat below 100°C can be recovered, which is highly desirable,
especially if flat plat collectors are used [8–11].

Nevertheless, conventional vapour compression systems still dominate in prac-
tically all applications, because adsorption cooling has some drawbacks, which
require to be improved. The recognised limitation of adsorption cycles is that the
heat and mass transfer coefficients of the bed are relatively small due to low
conductivity of adsorbent pellets/particles and high contact resistance between
particles and metal tubes/fins. The performance of an adsorbent bed is affected
adversely by the heat and mass transfer limitations inside the bed, such as reduced
thermal conductivity of the solid adsorbent, and internal (intra-particle) and exter-
nal (inter-particle) mass transfer resistances. The other adverse consequences on
the performance are: (a) lengthy adsorption/desorption cycle time; (b) low coeffi-
cient of performance (COP), resulting to enlarged energy consumption and expen-
diture; and (c) small specific cooling power (SCP), resulting to a bulky and outsized
system [11–13].

To simulate and optimise the performance of adsorptive heat pump/cooling
systems, various numerical models and several approaches have been proposed and
reported in the literature.

For example, Yong and Sumathy [14] reviewed various categories of mathemat-
ical models, used to predict the functioning and effectiveness of adsorption cooling
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cycles. The models were sorted into three main groups: lumped parameter, ther-
modynamics, and heat and mass transfer models. Among the various models
existing in the literature, Computational Fluid Dynamics (CFD) models based on
heat and mass transfer are especially important, as they provide understanding into
the operation dynamics of the adsorber in the related cooling system. A heat and
mass transfer model solving the problem in the form of partial differential equa-
tions is featured, with the temperature or the mass content of adsorbate varies with
space and time. Based on the geometry of the adsorption cooling system, the models
can be clustered under one-dimensional (1D), two-dimensional (2D) and three-
dimensional (3D) models. In general, heat and mass transfer processes are not taken
into account in thermodynamic models. While heat transfer is reflected in the
lumped parameters model, the temperature variation with space is not considered
in it (zero-dimensional (0D) model), which is considered in the heat and mass
transfer model. The distinction between the diverse models applied to simulate
adsorptive cooling systems, usually relates with the variations in the simplifying
assumptions, numerical solution methods, design and utilisation of the modelled
system [14, 15].

Some of the previous models, which may be categorised either as uniform-
temperature models [16–18] or as uniform-pressure models [19–21], considered
only heat transfer while neglecting mass transfer in the adsorbent. Hajji and Worek
[22] suggested a model allowing for only convection term for heat flow to assess the
effect of design and operating parameters on the system performance of a zeolite
heat pump system. Alam et al. [23] investigated the design parameters of the fluid
side on the system performance by developing a two-dimensional heat equation for
both the fluid and adsorbent sides. They used the model to explore the effect of heat
exchanger design parameters on the system performance of a two-bed silica
gel/water adsorption cooling unit, as well as the effect of switching speed on the
system performance.

It is only lately that a number of numerical studies with consideration of using
CFD and coupled heat and mass transfer have been presented. Using Darcy’s law to
account for the mass transfer resistance among adsorbent pellets, Sun et al. [24]
studied the momentum and heat transfer in an adsorption cooling system with two
adsorbent-adsorbate pairs. Their findings suggested that for low-density adsor-
bates, like water or methanol, the operation dynamics of the adsorber may possibly
be critically controlled by mass transfer resistance within the adsorption unit if its
size is bulky. Their model is 1D. Amar et al. [25] analysed a 2D model, which
similarly took into account the combined heat and mass transfers in the adsorber to
investigate the impacts of different functional parameters on the performance of a
thermal wave regenerative heat pump. A three-dimensional model was investigated
by Zhang and Wang [11] and Zhang [12] to study the effect of coupled heat and
mass transfer in adsorbent beds on the performance of a waste heat adsorption
cooling unit. They also studied the effect of reactor configuration on the perfor-
mance. Solmus et al. [26, 27] presented numerical studies of heat and mass transfer
within the adsorbent bed of a silica gel/water adsorptive cooling system by means of
the local volume averaging method. They utilised a transient 1D local thermal non-
equilibrium model, which taken into account both internal and external mass
transfer resistances. Their results showed the significance of spatial temperature
and pressure gradients clearly indicated that external mass transfer resistance and
heat transfer were important. Caglar et al. [28] developed a 2D mathematical model
of the heat and mass transfer inside a cylindrical adsorption bed for a thermal wave
adsorption cycle, with a heat transfer fluid flowing through an inner tube and the
adsorbent in the annulus. He investigated the effect of determining factors that
enhance the heat and mass transfer inside the adsorbent bed. Çağlar [29] used a 2D
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systems have many other advantages, such as simple construction, no solution
pumps, powered directly by solar energy or waste heat and no need for
electricity [1–3].

Adsorption is the adhesion of atoms, ions, molecules of gas, liquid, or dissolved
solids to a surface. This process creates a film of the adsorbate on the surface of the
adsorbent. The desorption is the reverse of adsorption. It is a surface phenomenon.
The adsorption process is usually considered as physisorption, specific of weak van
der Waals forces or chemisorption, specific of covalent bonding. Adsorption is
generally stated by way of isotherms, which represent the quantity of adsorbate
(vapour or liquid phase) on the adsorbent (solid phase) as a function of its concen-
tration (if liquid) or pressure (if gas) at constant temperature. For convenience, the
adsorbed phase is normalised by the amount of the adsorbent in order to facilitate
comparison of various adsorbent-adsorbate pairs [4–6].

An adsorption cooling system consists of adsorbing material (adsorbent) packed
in a vessel (adsorber) and an evacuated vessel (the evaporator). The working fluid,
generally water, is the adsorbate. The working principle of the system consists in
adsorbing the vapour produced in the evaporator, generating a cooling effect.
Water constantly evaporates at low pressure, cooling the process air while the heat
produced simultaneously in the adsorption process is removed by the cooling water,
from the adsorber. At the end of the adsorption process, the desorption stage begins
by heating the adsorber, using hot water, synthetic oil or any appropriate means.
The extracted vapour is directed to the condenser and eventually returns as liquid to
the evaporator. The thermodynamic cycle of the complete process is therefore
ended. As an energy cost-effective solution, hot water/oil can be heated by free
solar energy or waste heat. The two adsorption/desorption chambers of the adsorp-
tion cooling systems operate alternatively so that to generate continuous cooling
power [7].

Numerous heat-pumping, refrigeration and desalination applications have been
studied using various adsorbent and adsorbate pairs. Most of the cycles need
medium and/or high temperature heat sources to work as the powering sources. But
adsorption cycles using the silica gel/water and zeolite/water (adsorbent-adsorbate)
pairs, exhibit a distinctive benefit above other systems in their capability to be
driven by heat of quite low, near-ambient temperatures, so that heat from solar
panels or waste heat below 100°C can be recovered, which is highly desirable,
especially if flat plat collectors are used [8–11].

Nevertheless, conventional vapour compression systems still dominate in prac-
tically all applications, because adsorption cooling has some drawbacks, which
require to be improved. The recognised limitation of adsorption cycles is that the
heat and mass transfer coefficients of the bed are relatively small due to low
conductivity of adsorbent pellets/particles and high contact resistance between
particles and metal tubes/fins. The performance of an adsorbent bed is affected
adversely by the heat and mass transfer limitations inside the bed, such as reduced
thermal conductivity of the solid adsorbent, and internal (intra-particle) and exter-
nal (inter-particle) mass transfer resistances. The other adverse consequences on
the performance are: (a) lengthy adsorption/desorption cycle time; (b) low coeffi-
cient of performance (COP), resulting to enlarged energy consumption and expen-
diture; and (c) small specific cooling power (SCP), resulting to a bulky and outsized
system [11–13].

To simulate and optimise the performance of adsorptive heat pump/cooling
systems, various numerical models and several approaches have been proposed and
reported in the literature.

For example, Yong and Sumathy [14] reviewed various categories of mathemat-
ical models, used to predict the functioning and effectiveness of adsorption cooling
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cycles. The models were sorted into three main groups: lumped parameter, ther-
modynamics, and heat and mass transfer models. Among the various models
existing in the literature, Computational Fluid Dynamics (CFD) models based on
heat and mass transfer are especially important, as they provide understanding into
the operation dynamics of the adsorber in the related cooling system. A heat and
mass transfer model solving the problem in the form of partial differential equa-
tions is featured, with the temperature or the mass content of adsorbate varies with
space and time. Based on the geometry of the adsorption cooling system, the models
can be clustered under one-dimensional (1D), two-dimensional (2D) and three-
dimensional (3D) models. In general, heat and mass transfer processes are not taken
into account in thermodynamic models. While heat transfer is reflected in the
lumped parameters model, the temperature variation with space is not considered
in it (zero-dimensional (0D) model), which is considered in the heat and mass
transfer model. The distinction between the diverse models applied to simulate
adsorptive cooling systems, usually relates with the variations in the simplifying
assumptions, numerical solution methods, design and utilisation of the modelled
system [14, 15].

Some of the previous models, which may be categorised either as uniform-
temperature models [16–18] or as uniform-pressure models [19–21], considered
only heat transfer while neglecting mass transfer in the adsorbent. Hajji and Worek
[22] suggested a model allowing for only convection term for heat flow to assess the
effect of design and operating parameters on the system performance of a zeolite
heat pump system. Alam et al. [23] investigated the design parameters of the fluid
side on the system performance by developing a two-dimensional heat equation for
both the fluid and adsorbent sides. They used the model to explore the effect of heat
exchanger design parameters on the system performance of a two-bed silica
gel/water adsorption cooling unit, as well as the effect of switching speed on the
system performance.

It is only lately that a number of numerical studies with consideration of using
CFD and coupled heat and mass transfer have been presented. Using Darcy’s law to
account for the mass transfer resistance among adsorbent pellets, Sun et al. [24]
studied the momentum and heat transfer in an adsorption cooling system with two
adsorbent-adsorbate pairs. Their findings suggested that for low-density adsor-
bates, like water or methanol, the operation dynamics of the adsorber may possibly
be critically controlled by mass transfer resistance within the adsorption unit if its
size is bulky. Their model is 1D. Amar et al. [25] analysed a 2D model, which
similarly took into account the combined heat and mass transfers in the adsorber to
investigate the impacts of different functional parameters on the performance of a
thermal wave regenerative heat pump. A three-dimensional model was investigated
by Zhang and Wang [11] and Zhang [12] to study the effect of coupled heat and
mass transfer in adsorbent beds on the performance of a waste heat adsorption
cooling unit. They also studied the effect of reactor configuration on the perfor-
mance. Solmus et al. [26, 27] presented numerical studies of heat and mass transfer
within the adsorbent bed of a silica gel/water adsorptive cooling system by means of
the local volume averaging method. They utilised a transient 1D local thermal non-
equilibrium model, which taken into account both internal and external mass
transfer resistances. Their results showed the significance of spatial temperature
and pressure gradients clearly indicated that external mass transfer resistance and
heat transfer were important. Caglar et al. [28] developed a 2D mathematical model
of the heat and mass transfer inside a cylindrical adsorption bed for a thermal wave
adsorption cycle, with a heat transfer fluid flowing through an inner tube and the
adsorbent in the annulus. He investigated the effect of determining factors that
enhance the heat and mass transfer inside the adsorbent bed. Çağlar [29] used a 2D
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coupled heat and mass transfer model to analyse both finless and finned tube-type
adsorbent bed for a thermal wave adsorption cooling cycle with silica gel/water as
the working pair. He showed that a significant enhancement in the heat transfer is
obtained using a finned tube such that the temperature of the adsorbent in the
finned tube adsorbent bed.

Despite the continuous research effort about the dynamic behaviour of heat and
mass transfers inside the adsorbent bed and attempts to enhance the overall system
performance, there remains comprehensive research effort to be made for the
accurate design and performance prediction of adsorption cooling systems.
Although the limited number of studies have dealt recently with multi-dimensional
effects, most of the modelling efforts have focused on a one-dimensional descrip-
tion of the adsorption process for its simplicity, either on adsorption or desorption
processes. However, 0D or 1D model cannot describe the flow structure, the
dynamic behaviour and interactions of heat and mass transfers inside the adsorbent
bed and the heat exchanger. In addition, in the analyses, by assuming an equilib-
rium adsorption state, the internal mass transfer resistance is not taken into
account, which can be very limiting for performance enhancement when the cycle
time is small.

In the present work, the configuration and operating conditions influence on the
performance of a solar heat driven adsorption cooling system operating in desorp-
tion mode is simulated. A 3D/2D unsteady CFD coupled with heat and mass transfer
model using silica gel/water or zeolite/water pairs is created, and validated from
literature data. Effects of the adsorption bed with a finned tube heat exchanger
geometry as well as the operating conditions on the system performance are then
fully investigated in detail. Distinct characteristics of significance to optimum
design and operation that have effects on the adsorption cooling system are dem-
onstrated and analysed. The CFD model developed in this study may be useful to
design and optimise a new and more efficient adsorption cooling bed. It also pro-
vides a tool for optimisation of adsorption cooling systems driven by solar heat or
low-grade/waste heat.

For this purpose, the rest of the paper is organised as follows. In Section 2, in
depth steps taken for developing the CFD coupled with heat and mass transfer
model of a solar adsorption cooling system, including the physical model, the
governing equations, boundary conditions, and the numerical procedure are thor-
oughly described. The validation of the model is provided in Section 3. Section 4
discusses in detail the base case simulation and the parametric study results of the
solar-driven adsorption cooling system. Finally, Section 5 summarises the main
conclusions of the work.

2. CFD model details

2.1 Physical model

A heat exchanger in adsorption cooling system is a device that is in thermal
contact with the adsorbent (solid phase) and helps to heat and cool the adsorbent
throughout the desorption and adsorption periods, respectively. The plate-finned
bed can take various configurations, such as the finned tube type, the fin plate type,
and the flat-pipe type [15, 30]. A basic design of a finned tube heat exchanger is
displayed in Figure 1.

From the possible adsorber bed geometries, the finned tube was selected to
study. Figure 2a and b present the geometric model of the finned tube adsorption
cooling unit. Figure 2a shows the full geometry consisting of a single copper tube
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with fins extending off of the tube. The HTF flows in though the bottom of the tube
and exits through the top to control the temperature of the unit. Around the tube is
the adsorbent material that is secured between the copper fins. There are a total of
38 fins in the full geometry. The system is symmetrical, thus the computational
domain is modelled with symmetric boundary conditions; the geometry was
reduced a 2D axisymmetric face of the 3D geometry, as visualised in Figure 2a.
Figure 2b depicts the schematic of the model with fully labelled geometric lengths,
which will be investigated in the parametric study.

Unsteady flow models in desorption mode were built in the commercial soft-
ware Multiphysics COMSOL [29]. It was used as the grid generator and as the CFD
solver. In order to better predict the different field characteristics, the optimised
solution-adaptive mesh refinement is used. More cells were added at locations
where significant phenomena changes are expected, for example near the
adsorber/heat exchanger walls and inlet/outlet ports. The resulting mesh thus
enabled the features of the different fields to be better resolved. The symmetric

Figure 1.
A simple annular-finned tube used in adsorption cooling system [15].

Figure 2.
Simulated finned tube adsorber: (a) geometric selection and domains and (b) schematic of the geometry and
nomenclature.

97

Unsteady CFD with Heat and Mass Transfer Simulation of Solar Adsorption Cooling System…

DOI: http://dx.doi.org/10.5772/intechopen.81144



coupled heat and mass transfer model to analyse both finless and finned tube-type
adsorbent bed for a thermal wave adsorption cooling cycle with silica gel/water as
the working pair. He showed that a significant enhancement in the heat transfer is
obtained using a finned tube such that the temperature of the adsorbent in the
finned tube adsorbent bed.

Despite the continuous research effort about the dynamic behaviour of heat and
mass transfers inside the adsorbent bed and attempts to enhance the overall system
performance, there remains comprehensive research effort to be made for the
accurate design and performance prediction of adsorption cooling systems.
Although the limited number of studies have dealt recently with multi-dimensional
effects, most of the modelling efforts have focused on a one-dimensional descrip-
tion of the adsorption process for its simplicity, either on adsorption or desorption
processes. However, 0D or 1D model cannot describe the flow structure, the
dynamic behaviour and interactions of heat and mass transfers inside the adsorbent
bed and the heat exchanger. In addition, in the analyses, by assuming an equilib-
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time is small.

In the present work, the configuration and operating conditions influence on the
performance of a solar heat driven adsorption cooling system operating in desorp-
tion mode is simulated. A 3D/2D unsteady CFD coupled with heat and mass transfer
model using silica gel/water or zeolite/water pairs is created, and validated from
literature data. Effects of the adsorption bed with a finned tube heat exchanger
geometry as well as the operating conditions on the system performance are then
fully investigated in detail. Distinct characteristics of significance to optimum
design and operation that have effects on the adsorption cooling system are dem-
onstrated and analysed. The CFD model developed in this study may be useful to
design and optimise a new and more efficient adsorption cooling bed. It also pro-
vides a tool for optimisation of adsorption cooling systems driven by solar heat or
low-grade/waste heat.

For this purpose, the rest of the paper is organised as follows. In Section 2, in
depth steps taken for developing the CFD coupled with heat and mass transfer
model of a solar adsorption cooling system, including the physical model, the
governing equations, boundary conditions, and the numerical procedure are thor-
oughly described. The validation of the model is provided in Section 3. Section 4
discusses in detail the base case simulation and the parametric study results of the
solar-driven adsorption cooling system. Finally, Section 5 summarises the main
conclusions of the work.

2. CFD model details

2.1 Physical model
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bed can take various configurations, such as the finned tube type, the fin plate type,
and the flat-pipe type [15, 30]. A basic design of a finned tube heat exchanger is
displayed in Figure 1.

From the possible adsorber bed geometries, the finned tube was selected to
study. Figure 2a and b present the geometric model of the finned tube adsorption
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solver selected here accounts for the three-dimensional effects. Mixed topology of
unstructured grids was utilised, and the final mesh was composed of about
35,305–85,000 elements depending on the volume of the finned tube adsorption
bed considered. Details on the grid system and selected mesh elements can be
found in Section 2.3.

2.2 Governing equations and boundary conditions

The Navier-Stokes and the mass and energy equations in three-dimensional
form were used to solve for the transient fluid dynamics with the coupled heat and
mass transfer fields inside the finned tube adsorption bed system with silica
gel/water or zeolite/water as the adsorbent/adsorbate working pairs. The mass
balance describes the rate of adsorption or desorption within the adsorbent bed.
The models were created in the COMSOL Multiphysics software package includ-
ing the CFD, Heat Transfer and Chemical Reaction Engineering modules [31].

The governing equations of mass, momentum and energy conservation were
solved by using the finite element method, based on the following assumptions:

• the finned tube adsorption bed operates under unsteady-state, non-
equilibrium conditions;

• the surface porosity is considered to be equal to the total porosity;

• the volume fraction of the gas phase is assumed to be equal to the total
porosity;

• the absorbent particles are assumed to have uniform size, shape and porosity;

• the adsorbate’s water phase is assumed to be a liquid;

• the adsorbate’s water vapour phase is assumed to be an ideal gas;

• the adsorbed phase is considered to be a liquid, while the gas phase is assumed
to be an ideal gas;

• the working fluid is water at high velocity is assumed to be Newtonian,
incompressible flow inside the tubes, resulting in a constant tube-surface
temperature; the viscous dissipation and viscous work are neglected; there are
no body forces;

• the work done by pressure changes, radiative heat transfer and viscous
dissipation is neglected; and

• the wall thickness of the vacuum tube is assumed to be very thin and hence, its
thermal resistance was neglected.

Therefore, the resulting governing equations can be stated as follows. For
conciseness, the basic variables defined in the following equations can be found in
[12–14, 24, 26, 28].

Conservation of mass:

ε
∂ρv
∂t

þ 1� εð Þρs
∂X
∂t

�DmΔ2ρv þ Δ uρvð Þ ¼ 0 (1)
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Conservation of momentum:
The momentum balance expresses the motion of the HTF within the tube.

ρ
∂u
∂t

þ ρ u � ∇ð Þu ¼ ∇ � �pI þ μ ∇uþ ∇uð Þ2
� �h i

(2)

ρ∇ � uð Þ ¼ 0 (3)

Conservation of energy:
The energy transfer within the system can be described with respect to the

three discrete domains involved: the HTF, the metal tube and fins, and the adsor-
bent. The adsorbent domain is assumed to be under local thermal equilibrium
between the adsorbed and vapour phase. Therefore, the equation has three addi-
tional terms to take into account for the change of temperature due to the water
vapour, water adsorbed and the heat of adsorption associated with the adsorption
process.

Heat transfer in the HTF:

ρf cf
∂Tf

∂t
� kfΔ2Tf þ ρf cf vfΔTf ¼ 0 (4)

Heat transfer in the metal:

ρtct
∂Tt

∂t
� ktΔ2Tt ¼ 0 (5)

Heat transfer in the adsorbent:

1� εð Þρscs
∂Ts

∂t
� ερvcp,v

∂Ts

∂t
þ 1� εð ÞρsXcp, l

∂Ts

∂t

� 1� εð Þρs ΔHj j ∂X
∂t

� ksΔ2Ts þ ρvcp,vuΔTs ¼ 0
(6)

The heat of adsorption (kJ/kg) changes linearly with the amount of water
adsorbed to the adsorbent [13]:

ΔH ¼ 2950� 1400X (7)

The velocity of the water vapour is calculated using Darcy’s equation, which
defines the external mass transfer resistance in the water adsorption process.
Darcy’s equation is valid in this condition since the adsorbent is porous and both the
velocity and the pressure are relatively low.

The 2D cylindrical and 3D Cartesian coordinate expressions are both
represented:

u ¼ � κ

μ

∂P
∂r

, v ¼ � κ

μ

∂P
∂z

(8)

u ¼ � κ

μ

∂P
∂x

, v ¼ � κ

μ

∂P
∂y

, w ¼ � κ

μ

∂P
∂z

(9)

The internal mass transfer resistance for the water adsorption process is defined
by means of a linear driving force expression as follows:

∂X
∂t

¼ km Xe � Xð Þ (10)

where X represents the amount adsorbed and Xe is the equilibrium adsorption
capacity of the adsorbent-adsorbate pair under study, provided in Eqs. (13)–(18).
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Conservation of momentum:
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ρ
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The temperature dependent mass transfer coefficient and diffusion coefficient
are calculated as follows [25]:

km ¼ 15
r2p

Dm (11)

Dm ¼ Do exp � Ea

RTS

� �
(12)

where Do is reference diffusivity and rp is the particle radius.

2.2.1 Kinetic expression for regular density (RD) silica gel

Regular density (RD) silica gel is the most widespread type of silica gel and is
obtainable from any supplier that retails silica gel. Because of its capacity for high
moisture uptake in the low RH (relative humidity) range, it is a very effective
desiccant.

The equilibrium adsorption capacity characterises the theoretical maximum
capacity that the adsorbent bed can adsorb for a given pressure and temperature [32].

For RD silica gel, the following pressure dependent isotherm is used as follows:

Xe ¼ a
P
Psat

� �b

(13)

The values of a and b are temperatures dependent are provided in the next
section, Table 1 and given as follows [33]:

a ¼ a0 þ a1Ts þ a2T2
s þ a3T3

s (14)

b ¼ b0 þ b1Ts þ b2T2
s þ b3T3

s (15)

The saturated water pressure (kPa) for the adsorbate is provided by Antoine’s
equation [34].

Psat ¼ 0:1333 � 108:07131� 1730:63
Ts�39:724 (16)

2.2.2 Kinetic expression for zeolite 13X

The equilibrium adsorption capacity for zeolite 13X is determined with the
following Dubinin-Astakhov (D-A) equation as the adsorption isotherm where the
values of B and n are constants [35]:

Xe ¼ Xo exp �B
Ts

Tsat
� 1

� �n� �
(17)

The saturated water temperature (K) for the adsorbate is given by Antoine’s
equation [34] as follows:

Tsat ¼ 39:724þ 1730:63
8:07131� log 10 7:500638 � 10�3 � P� � (18)

Assuming symmetry conditions, the boundary conditions in a view of the 2D
axisymmetric finned adsorbent, used in this work are depicted Figure 3. At the
upstream or inlet boundary, Dirichlet boundary conditions, uniform flow with

100

Advanced Computational Fluid Dynamics for Emerging Engineering Processes...

Category Description Variable Unit Validation
zeolite

13X/water

Base case
silica

gel/water

Temperature
pressure

Hot temperature Thot K 473 338

Cold temperature Tcold K 313 298

Condenser pressure Pc kPa 4.247 4.246

Evaporator pressure Pe kPa n/a 1.228

Adsorption initial
concentration

Xa0 kg/kg — 0.024

Desorption initial
concentration

Xd0 kg/kg — 0.72

Geometry Bed thickness lbed mm 13 12

Fin distance d mm 10 15

Tube thickness (copper) b mm 1 1

Adsorbent particle diameter dp mm 1.25 3

Absorber length L mm 500 600

Tube radius rt mm 13 13

Tube thickness bt mm 1 1

Void fraction ε — 0.635 0.635

Permeability κ m2 3.04e-7 3.4e�9

Mass Reference diffusivity Do m2/s 5.8e-9 2.54e�4

Activation energy of surface
diffusion

Ea J/mole 1.0e5 3.36e4

Fluid density ρf kg/m3 914 f(T)

Absorbent density ρs kg/m3 1000 670

Tube density ρt kg/m3 8700 8700

Dynamic viscosity μ kg/m s 1.0e-5 1.5e�5

Thermal
properties

Fluid velocity v m/s 0.001 0.001

Thermal conductivity of bed ks W/m K 1 0.3

Thermal conductivity of fluid kf W/m K 0.155 f(T)

Thermal conductivity of tube kt W/m K 400 400

Convective heat transfer
coefficient: tube and adsorbent

ho W/m2 K 100 100

Convective heat transfer
coefficient: tube and fluid

hi W/m2 K 100,000 100,000

Specific heat of fluid cf J/kg K 1930 f(T)

Specific heat of particle liquid cpl J/kg K 4180 4180

Specific heat of particle vapour cpv J/kg K 1880 1880

Specific heat of adsorbent solid cs J/kg K 837 f(T)

Specific heat of tube ct J/kg K 385 f(T)

Kinetics Water adsorbed reference Xo kgw/kgs 0.261 —

D-A constant B — 5.36 —

D-A constant n — 1.73 —
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The temperature dependent mass transfer coefficient and diffusion coefficient
are calculated as follows [25]:

km ¼ 15
r2p

Dm (11)

Dm ¼ Do exp � Ea

RTS

� �
(12)

where Do is reference diffusivity and rp is the particle radius.

2.2.1 Kinetic expression for regular density (RD) silica gel
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Xe ¼ a
P
Psat

� �b

(13)

The values of a and b are temperatures dependent are provided in the next
section, Table 1 and given as follows [33]:

a ¼ a0 þ a1Ts þ a2T2
s þ a3T3

s (14)

b ¼ b0 þ b1Ts þ b2T2
s þ b3T3

s (15)

The saturated water pressure (kPa) for the adsorbate is provided by Antoine’s
equation [34].

Psat ¼ 0:1333 � 108:07131� 1730:63
Ts�39:724 (16)

2.2.2 Kinetic expression for zeolite 13X

The equilibrium adsorption capacity for zeolite 13X is determined with the
following Dubinin-Astakhov (D-A) equation as the adsorption isotherm where the
values of B and n are constants [35]:

Xe ¼ Xo exp �B
Ts

Tsat
� 1

� �n� �
(17)

The saturated water temperature (K) for the adsorbate is given by Antoine’s
equation [34] as follows:

Tsat ¼ 39:724þ 1730:63
8:07131� log 10 7:500638 � 10�3 � P� � (18)

Assuming symmetry conditions, the boundary conditions in a view of the 2D
axisymmetric finned adsorbent, used in this work are depicted Figure 3. At the
upstream or inlet boundary, Dirichlet boundary conditions, uniform flow with
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Category Description Variable Unit Validation
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Ea J/mole 1.0e5 3.36e4

Fluid density ρf kg/m3 914 f(T)

Absorbent density ρs kg/m3 1000 670

Tube density ρt kg/m3 8700 8700

Dynamic viscosity μ kg/m s 1.0e-5 1.5e�5
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Kinetics Water adsorbed reference Xo kgw/kgs 0.261 —

D-A constant B — 5.36 —

D-A constant n — 1.73 —
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constant velocity and constant temperature are assumed. At the downstream end of
the computational domain or outlet, the Neumann boundary condition is used, i.e.
stream wise gradients for all the variables are set to zero. No-slip boundary condi-
tion is used at the adsorbent fin surfaces. These surfaces are assumed to be solid
walls with no slip wall boundary condition; the velocity of the fluid at the wall is
zero and constant wall temperature is presumed. This sweeping statement relates to
isothermal wall boundary condition. The fins and tube are presumed to be made of
copper. As copper is a rather high thermal conductivity material, constant wall
temperature boundary condition can be confidently supposed throughout the shells.
In the right side of the figure, is shown the adsorbent bed under vacuum, where
there is zero flux for mass transfer.

Category Description Variable Unit Validation
zeolite

13X/water

Base case
silica

gel/water

Kinetic constant a0 — — �6.5314

Kinetic constant a1 — — 0.072452

Kinetic constant a2 — — �0.00023951

Kinetic constant a3 — — 2.5493e�7

Kinetic constant b0 — — �15.587

Kinetic constant b1 — — 0.15915

Kinetic constant b2 — — �0.00050612

Kinetic constant b3 — — 5.329e�7

Misc. Universal gas constant R J/mole
K

8.314 8.314

Ideal gas constant for water
vapour

Rv J/kg K 461.5 461.5

Table 1.
Parameter settings for the validation and parametric studies.

Figure 3.
View of the 2D axisymmetric finned tube adsorber: computational domain with boundary conditions.
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For energy transfer, symmetry, inlet and outlet of the metal tube, have the same
definitions as in the momentum transfer physics. However, the metal tube surface
with the fins shown in green and purple lines, define the heat transfer between the
three domains. The convective heat transfer boundary conditions between the heat
transfer fluid, metal tube and the adsorbent are defined as follows:

HTF to metal tube:

qi ¼ hi Tt � Tf
� �

(19)

where hi is the convective heat transfer coefficient between tube and fluid.
Metal tube to adsorbent:

qo ¼ ho Ts � Ttð Þ (20)

where h0 is the convective heat transfer coefficient between tube and adsorbent.

2.3 Numerical procedure

The governing equations of mass, momentum and energy conservation are
solved by using the finite element method, based on the assumptions listed in
Section 2.2. The governing equations are discretised on the computational domain,
linearised in an implicit manner and solved by the finite element method using a
pressure-based coupled solver (PBCS). This latter solves pressure and momentum

Figure 4.
Overview of the pressure-based coupled solver algorithm.
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simultaneously. Figure 4 represents an overview of the PBCS algorithm. SIMPLEC
(Semi-Implicit Method for Pressure Linked Equations-Consistent) algorithm is
applied for the pressure-velocity coupling; the second order upwind discretisation
scheme is used for the convection terms and each governing equation is solved
using QUICK (Quadratic Upwind Interpolation) scheme [36].

It is required to carry out independency verification of the grid system before
CFD computation. The mesh independence study is examined by utilising three
different mesh sizes (normal, fine and finest meshes) of 23,083, 35,305, and 84,992
for the finned tube adsorption cooling bed are adopted for computation for the
baseline case. The relative error compared to the fine mesh, in the average bed
temperature and the total water adsorbed as a function of time, are 2.85 and 1.84%,
and 0.13 and 0.07%, respectively, before settling to a fine mesh for the geometry of
the computational adsorption cooling bed cases. Computations were then run for a
geometry comprising about 35,305 meshes, which was considered satisfactory in
terms of accuracy and efficiency.

Furthermore, the solution is iterated until convergence is achieved, that is,
residual for each equation achieves values less than 10�6, and variations in energy,
mass and temperature, respectively become negligible. A workstation with 2 (R)
Xeon processors and a 2 core 2.4 GHz CPU with an installed memory of 32 GB
(RAM), which took between 4 and 8 hours of CPU time depending on the compu-
tation case, was utilised to execute the necessary task.

3. Model validation

Experimental data of a finned tube adsorption bed with zeolite/water (adsor-
bent/adsorbate) as the working pair, zeolite as the adsorbent material by Çağlar
et al. [28] have been used to validate the CFD model in the present study. The
finned tube heat exchanger geometry was modified to have the identical geometric
dimensions and operating conditions as found in [27]. Table 1 shows the parameter
settings associated with the experimental operation with particular settings associ-
ated with the experimental tests for t, k, v, lbed and r shown in Figure 5. In Figure 4

Figure 5.
Comparison of simulation results with experimental results of Çağlar et al. [28] in finned tube adsorption
cooling system using zeolite/water for validation study.
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shows the results of the simulated temperature profile in COMSOL Multiphysics
along r = 0.02 m of the unit. It can be seen that the experimental data for the
desorption mode compared to the CFD simulation results provide good agreement
between the each other with deviation of no more than 5.8%. The difference
between the experimental and numerical results is higher at the inlet of the unit.
This may be due to the experimental uncertainties due to the temperature mea-
surement errors because of lower heat transfer resulted from flow maldistribution
or various losses. However, the observed uncertainties are well within the uncer-
tainties of sensor measurements. This CFD model of the adsorption cooling system
was therefore utilised for further transient analysis with supporting reliability of the
computation.

4. Results and discussion

The selected adsorption chiller applied a finned tube geometry with a silica
gel/water working pair. A base line case on desorption mode is initially simulated
and studied to determine the intrinsic behaviour of the system. The parameter
values for the base case and for the parametric study are presented in Table 1.

4.1 Base case

Figure 6 presents a 3D qualitative assessment of the pressure, temperature and
water desorption distributions at operation times of 200, 600 and 1200 s. The
temperature profile captures the heat transfer characteristics of the system
throughout the entire system while the pressure and adsorbed water only capture
phenomena in the adsorbent bed. Desorption is the mode of operation highlighted
in this study. The HTF inlet temperature is 338 K while the bed temperature is
298 K. The HTF enters the tube at z = 0 and exits at z = 0.6 m. A white set of arrows

Figure 6.
Pressure, temperature and adsorbed water distributions at t = 200, 600 and 1200 s of the 3D geometry for the
baseline case under desorption mode.
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along r = 0.02 m of the unit. It can be seen that the experimental data for the
desorption mode compared to the CFD simulation results provide good agreement
between the each other with deviation of no more than 5.8%. The difference
between the experimental and numerical results is higher at the inlet of the unit.
This may be due to the experimental uncertainties due to the temperature mea-
surement errors because of lower heat transfer resulted from flow maldistribution
or various losses. However, the observed uncertainties are well within the uncer-
tainties of sensor measurements. This CFD model of the adsorption cooling system
was therefore utilised for further transient analysis with supporting reliability of the
computation.

4. Results and discussion

The selected adsorption chiller applied a finned tube geometry with a silica
gel/water working pair. A base line case on desorption mode is initially simulated
and studied to determine the intrinsic behaviour of the system. The parameter
values for the base case and for the parametric study are presented in Table 1.

4.1 Base case

Figure 6 presents a 3D qualitative assessment of the pressure, temperature and
water desorption distributions at operation times of 200, 600 and 1200 s. The
temperature profile captures the heat transfer characteristics of the system
throughout the entire system while the pressure and adsorbed water only capture
phenomena in the adsorbent bed. Desorption is the mode of operation highlighted
in this study. The HTF inlet temperature is 338 K while the bed temperature is
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Pressure, temperature and adsorbed water distributions at t = 200, 600 and 1200 s of the 3D geometry for the
baseline case under desorption mode.
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show the direction of the fluid flow. The kinetics of the adsorbed water is slow
enough that there exists a time delay between reaching the thermodynamic tem-
perature and establishing the equilibrium. The adsorbent is fully saturated after
2000 s, but this is not illustrated on the figure for brevity. For desorption the initial
pressure of the system increases to 4.246 kPa and the initial adsorbed water begins
at 0.72 kg/kg and reaches 0.08 kg/kg upon completion. The pressure of the system
closely follows the behaviour of the temperature profile and affects the equilibrium
water adsorption.

Figure 7 presents a 2D qualitative assessment of the pressure, temperature and
desorbed water distributions. The same layout and results are chosen to be
displayed as in Figure 6 for an alternative, but more insightful, assessment of the
simulation results. From this visual perspective, the profiles for all simulated mea-
sures may be better compared in the parametric study.

4.2 Parametric study

A parametric study applying the developed transient CFD coupled with heat
and mass transfer model, was conducted in an effort to predict the influence of
various parameters on the design and performance of an adsorption cooling
system during the desorption process. The effect of these parameters on the
governing independent parameters influencing the fluid flow, the heat and mass
transfer on the adsorber performance, are the geometrical, particle size, physical-
chemical, thermodynamic and thermal property parameters of the adsorber. The
parameters investigated in this study are the adsorbent bed thickness (lbed), the
heat exchanger tube thickness (b), the HTF velocity (v), and the adsorbent particle
diameter (dp).

Figure 7.
Pressure, temperature and adsorbed water distributions at t = 200, 600 and 1200 s of the 2D geometry for the
baseline case under desorption mode.
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The basic aim of the analysis is to better understand the optimum design of the
adsorption cooling system with heat exchanger configurations using CFD approach
and, thereby, learn how to successfully maximise the overall heat and mass transfer
performance of the system such as temperature and desorption rates whilst
minimising the pressure drop.

Table 2 depicts the four-parameter settings, which were selected in the study.
Eight cases were investigated.

4.2.1 Effect of adsorbent bed thickness (lbed)

The effect of adsorbent bed thickness on the dependent variables pressure,
temperature and amount of water adsorbed within the adsorption cooling system is
investigated for adsorbent bed thicknesses of 12 (baseline case), 30 and 45 mm.
Figure 8 presents the effect of bed thickness on simulated transient average bed
pressure, average bed temperature and adsorption of water profiles. Figure 9 shows
the simulated temperature and water adsorbed distributions at t = 600 s.

The results reveals that the thickness of adsorbent bed has a substantial effect on
the desorption performance. As the bed thickness increases, the bed temperature
takes more time to increase. Therefore, the rate of the pressure drop is lower and
the water adsorption takes a greater extent of time. The pressure, temperature and
the amount of water adsorbed distributions inside the bed reaches equilibrium after
about 1500, 2500 and 3000 s for bed thicknesses of 12, 30 and 45 mm, respectively.
The desorption bed produced decreased average pressure values of 0.8 and 1.6%,
for adsorption bed thicknesses of 30 and 40 mm relative to the baseline case having
a bed thickness of 12 mm, respectively. Alternatively, under the same conditions,
the desorption bed produced the same amounts of decreased average temperature
and decreased adsorbed water values of 15.3 and 35.0%, respectively.

As adsorbent bed thickness increases, more adsorbent is used, external mass
transfer resistances increase with increasing mass of adsorbent. Thus, more heat is
expected to be required to increase the temperature of the entire unit; the thermal
resistances across the adsorbent bed are substantially increased. Fin temperature is
reduced and cannot generate a sufficient heat transfer since the contact resistances
between fins and adsorbent material increase. This causes reduced mass transfer,
smaller amounts of adsorption capacities and increased cycle times. This same

Case description Geometry Fluid flow and particle size
properties

Case Case
no.

Case description Bed
thickness

Tube
thickness

HTF
velocity

Adsorbent particle
diameter

lbed (mm) b (mm) v (m/s) dp (mm)

1 1 Base 12 1 0.001 3

2 2 Bed thickness 30 1 0.001 3
3 45

3 4 Tube thickness 12 1.5 0.001 3
5 2

4 6 Fluid velocity 12 1 0.005 3
7 0.015

5 8 Adsorbent particle
diameter

12 1 0.001 2
9 5

Table 2.
Summary of the simulation matrix with the input data of the adsorption cooling system.
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outcome has been documented by previous researches in heat exchangers in gen-
eral. Heat transfer in the radial direction is improved by reducing the adsorbent bed
thickness. For design considerations, a reduced adsorbent bed thickness will pro-
duce a reduced cycle time and an enhanced specific cooling power. Increasing bed
thickness has then an adverse effect on the heat transfer within the bed. There is a
trade-off to consider; decreasing bed thickness, results in an improvement in the
heat transfer across the adsorbent bed at the expense of a reduction in the mass of
adsorbent and hence, of the adsorption capacity.

4.2.2 Effect of tube thickness (b)

The effect of tube thickness on the dependent variables pressure, temperature
and amount of water adsorbed within the adsorption cooling system is examined for
tube thickness of 1 (baseline case), 1.5 and 2 mm. Figure 10 shows the effects of
tube thickness on simulated transient average bed pressure, average bed tempera-
ture and adsorption of water profiles. Figure 11 presents the simulated temperature
and water adsorbed distributions at t = 600 s.

Figure 8.
Effect of bed thickness (lbed) on desorption 1D profile as a function of time for average bed pressure drop,
average bed temperature and adsorption of water.

Figure 9.
Effect of bed thickness (lbed) on desorption 2D temperature and adsorbed water distributions at t = 600 s.
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The data in the figures disclose that as the tube thickness increases, neither the
bed temperature, pressure or water adsorption shows any significant variance from
the baseline case. It is expected that as tube thickness increases, a greater amount of
heat should be transferred to the adsorbent bed, and thus should have a positive
impact on the overall performance. However, the limited process is controlled by
the heat and mass transfer phenomena in the adsorption cooling system. Heat and
mass transfer coefficients of the bed are quite small due to low conductivity of
adsorbent particles, and high contact resistance between particles and metal tubes/
fins. Therefore, the performance of the adsorbent bed is affected unfavourably by
the heat and mass transfer constraints inside the bed, with reduced thermal con-
ductivity of the solid adsorbent, and internal (intra-particle) and external (inter-
particle) mass transfer resistances.

4.2.3 Effect of HTF velocity (v)

The effect of HTF velocity on the dependent variables pressure, temperature
and amount of water adsorbed within the adsorption cooling system is evaluated for
velocity of 0.001 (baseline case), 0.005 and 0.015 m/s. Figure 12 shows the effects
of HTF velocity on simulated transient average bed pressure, average bed temper-
ature and adsorption of water profiles. Figure 13 presents the simulated tempera-
ture and water adsorbed distributions at t = 600 s.

Figure 10.
Effect of tube thickness (b) on desorption 1D profiles as a function of time for average bed pressure drop,
average bed temperature and adsorption of water.

Figure 11.
Effect of tube thickness (b) on desorption 2D temperature and adsorbed water distributions at t = 600 s.
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outcome has been documented by previous researches in heat exchangers in gen-
eral. Heat transfer in the radial direction is improved by reducing the adsorbent bed
thickness. For design considerations, a reduced adsorbent bed thickness will pro-
duce a reduced cycle time and an enhanced specific cooling power. Increasing bed
thickness has then an adverse effect on the heat transfer within the bed. There is a
trade-off to consider; decreasing bed thickness, results in an improvement in the
heat transfer across the adsorbent bed at the expense of a reduction in the mass of
adsorbent and hence, of the adsorption capacity.

4.2.2 Effect of tube thickness (b)

The effect of tube thickness on the dependent variables pressure, temperature
and amount of water adsorbed within the adsorption cooling system is examined for
tube thickness of 1 (baseline case), 1.5 and 2 mm. Figure 10 shows the effects of
tube thickness on simulated transient average bed pressure, average bed tempera-
ture and adsorption of water profiles. Figure 11 presents the simulated temperature
and water adsorbed distributions at t = 600 s.

Figure 8.
Effect of bed thickness (lbed) on desorption 1D profile as a function of time for average bed pressure drop,
average bed temperature and adsorption of water.

Figure 9.
Effect of bed thickness (lbed) on desorption 2D temperature and adsorbed water distributions at t = 600 s.
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The data in the figures disclose that as the tube thickness increases, neither the
bed temperature, pressure or water adsorption shows any significant variance from
the baseline case. It is expected that as tube thickness increases, a greater amount of
heat should be transferred to the adsorbent bed, and thus should have a positive
impact on the overall performance. However, the limited process is controlled by
the heat and mass transfer phenomena in the adsorption cooling system. Heat and
mass transfer coefficients of the bed are quite small due to low conductivity of
adsorbent particles, and high contact resistance between particles and metal tubes/
fins. Therefore, the performance of the adsorbent bed is affected unfavourably by
the heat and mass transfer constraints inside the bed, with reduced thermal con-
ductivity of the solid adsorbent, and internal (intra-particle) and external (inter-
particle) mass transfer resistances.

4.2.3 Effect of HTF velocity (v)

The effect of HTF velocity on the dependent variables pressure, temperature
and amount of water adsorbed within the adsorption cooling system is evaluated for
velocity of 0.001 (baseline case), 0.005 and 0.015 m/s. Figure 12 shows the effects
of HTF velocity on simulated transient average bed pressure, average bed temper-
ature and adsorption of water profiles. Figure 13 presents the simulated tempera-
ture and water adsorbed distributions at t = 600 s.

Figure 10.
Effect of tube thickness (b) on desorption 1D profiles as a function of time for average bed pressure drop,
average bed temperature and adsorption of water.

Figure 11.
Effect of tube thickness (b) on desorption 2D temperature and adsorbed water distributions at t = 600 s.
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The results reveal that as the HTF velocity increases, the bed temperature
and pressure response increase substantially, as well as the water desorbed.
With an increase of HTF velocity from 0.001 to 0.005 m/s the water desorption
response almost decreases an upper threshold. Alike, for the fluid flow and
thermal properties, as fluid velocity of the tube increases, the temperature
profile evolution should rise. The desorption bed produced increased average
pressure and temperature values of 1.3 and 1.7% for HTF velocity of 0.055 and
0.015 relative to the baseline case having a HTF velocity of 0.001 m/s, respec-
tively. On the other hand, under the same conditions, the desorption bed pro-
duced decreased average adsorbed water values of 18 and 21%, respectively.
The adsorbent bed reached a steady state uniform temperature profile at the
cycle maximum temperature of 338 K at 500, 700 and 1500 s, respectively. The
cycle time increases with the decrease of the HTF velocity in the heat
exchanger. An optimal velocity value corresponding to maximum overall per-
formance of the adsorption cooling system, such as a high COP and specific
cooling power would be in the range between 0.005 and 0.015 m/s. The HTF
velocity should be well selected in order to obtain a good heat transfer effi-
ciency, but also a positive effect on the mass transfer inside the adsorbent bed
and on the overall system performance. A too slow HTF will increase cycle time
and decrease specific cooling power. A faster velocity will reduce thermal gra-
dient, but will need more pumping energy.

4.2.4 Effect of adsorbent particle diameter (dp)

The effect of adsorbent particle diameter on the dependent variables pressure,
temperature and amount of water adsorbed within the adsorption cooling system is
assessed for particle diameter of 2, 3 (baseline case) and 5 mm. Figure 14 presents

Figure 12.
Effect of HTF velocity (v) on desorption 1D profiles as a function of time for average bed pressure drop, average
bed temperature and adsorption of water.

Figure 13.
Effect of HTF velocity on desorption 2D temperature and adsorption of water distributions at t = 600 s.
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the effects of particle diameter on simulated transient adsorption of water profile.
Figure 15 shows the water adsorbed distributions at t = 600 s. The temperature and
pressure profiles are not shown because of limited space.

The desorption bed produced decreased/increased average temperature and
pressure values of about 1.6% for adsorbent particle diameter of 2 mm and 5 mm
relative to the baseline case having a particle diameter of 3 mm, respectively.
Alternatively, the desorption bed produced decreased average adsorbed water value
of 6% for adsorbent particle diameter of 2 mm, and increased value of 22% for
adsorbent particle diameter of 5 mm, relative to the baseline case having a particle
diameter of 3 mm. The adsorbent bed achieved a steady state uniform temperature
profile at the cycle maximum temperature of 338 K at 1000, 1500 and 2000 s,
respectively. The smaller the particle diameter the faster the water adsorption
response. The kinetics is directly dependent upon the particle packing as seen by the
kinetic expressions in Section 2. As the adsorbent particle diameter decreases, the
specific area of adsorbent increases, the internal mass transfer resistances decrease.
Therefore, the bed temperature, the pressure and the desorption rate increase. The
particle diameter should be kept as smaller as possible.

5. Conclusions

In this work, a transient CFD coupled with heat and mass transfer model has
been created for a solar adsorption cooling system. Transient simulations have been

Figure 14.
Effect of particle diameter (dp) on desorption 1D profiles as a function of time for adsorption of water.

Figure 15.
Effect of particle diameter (dp) on desorption 2D adsorbed water distributions at t = 600 s.
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The results reveal that as the HTF velocity increases, the bed temperature
and pressure response increase substantially, as well as the water desorbed.
With an increase of HTF velocity from 0.001 to 0.005 m/s the water desorption
response almost decreases an upper threshold. Alike, for the fluid flow and
thermal properties, as fluid velocity of the tube increases, the temperature
profile evolution should rise. The desorption bed produced increased average
pressure and temperature values of 1.3 and 1.7% for HTF velocity of 0.055 and
0.015 relative to the baseline case having a HTF velocity of 0.001 m/s, respec-
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duced decreased average adsorbed water values of 18 and 21%, respectively.
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cycle maximum temperature of 338 K at 500, 700 and 1500 s, respectively. The
cycle time increases with the decrease of the HTF velocity in the heat
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formance of the adsorption cooling system, such as a high COP and specific
cooling power would be in the range between 0.005 and 0.015 m/s. The HTF
velocity should be well selected in order to obtain a good heat transfer effi-
ciency, but also a positive effect on the mass transfer inside the adsorbent bed
and on the overall system performance. A too slow HTF will increase cycle time
and decrease specific cooling power. A faster velocity will reduce thermal gra-
dient, but will need more pumping energy.

4.2.4 Effect of adsorbent particle diameter (dp)

The effect of adsorbent particle diameter on the dependent variables pressure,
temperature and amount of water adsorbed within the adsorption cooling system is
assessed for particle diameter of 2, 3 (baseline case) and 5 mm. Figure 14 presents

Figure 12.
Effect of HTF velocity (v) on desorption 1D profiles as a function of time for average bed pressure drop, average
bed temperature and adsorption of water.

Figure 13.
Effect of HTF velocity on desorption 2D temperature and adsorption of water distributions at t = 600 s.
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the effects of particle diameter on simulated transient adsorption of water profile.
Figure 15 shows the water adsorbed distributions at t = 600 s. The temperature and
pressure profiles are not shown because of limited space.

The desorption bed produced decreased/increased average temperature and
pressure values of about 1.6% for adsorbent particle diameter of 2 mm and 5 mm
relative to the baseline case having a particle diameter of 3 mm, respectively.
Alternatively, the desorption bed produced decreased average adsorbed water value
of 6% for adsorbent particle diameter of 2 mm, and increased value of 22% for
adsorbent particle diameter of 5 mm, relative to the baseline case having a particle
diameter of 3 mm. The adsorbent bed achieved a steady state uniform temperature
profile at the cycle maximum temperature of 338 K at 1000, 1500 and 2000 s,
respectively. The smaller the particle diameter the faster the water adsorption
response. The kinetics is directly dependent upon the particle packing as seen by the
kinetic expressions in Section 2. As the adsorbent particle diameter decreases, the
specific area of adsorbent increases, the internal mass transfer resistances decrease.
Therefore, the bed temperature, the pressure and the desorption rate increase. The
particle diameter should be kept as smaller as possible.

5. Conclusions

In this work, a transient CFD coupled with heat and mass transfer model has
been created for a solar adsorption cooling system. Transient simulations have been
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Effect of particle diameter (dp) on desorption 1D profiles as a function of time for adsorption of water.

Figure 15.
Effect of particle diameter (dp) on desorption 2D adsorbed water distributions at t = 600 s.
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carried out to investigate the influence of several design and operating parameters
during the desorption process. Silica gel and zeolite 13X are both investigated as
possible adsorbents, though the study incorporated the working pair silica gel/water
given the lower working temperature range required for operation which makes it
more suitable for residential cooling applications powered by solar heat. Flow
behaviour, heat and mass transfer performances have been analysed in detail. The
CFD model was validated against the experimental data using zeolite 13X/water
pair available in the literature. Good agreement with experimental results was
obtained, which demonstrates the effectiveness of the model. Therefore, the CFD
model was utilised in the present study with confidence that it can predict the
pressure, temperature and water adsorption of the system accurately.

The key parameters considered in this work were geometrical and operating
factors such as bed thickness (lbed), heat exchanger tube thickness (b) and HTF
velocity (v), and adsorbent particle diameter (dp). The results have not only
confirmed some observations reported in earlier researches, but also provided an
envelope for the optimum design parameters when the operating conditions and
geometrical factors were varied for performance enhancement. In order of
highest impact on the system, the parameters are listed as follows: v>dp>lbed>b.
The results disclosed that from the four parameters; only the first three stated are
the most influential factors of performance and significantly change the cycle
time. In the design phase, the most important geometric parameter to consider is
the bed thickness. As the bed thickness increases, the amount of water adsorbed
increases but so does the cycle time. While selecting the adsorbent material, a
smaller particle diameter is desired to minimise the cycle time. A lower threshold
of 2 mm was identified. During operation, the fluid velocity should be operated at
a higher velocity to minimise the cycle time. A upper threshold of 0.005 m/s was
identified.

It is concluded that the present modelling approach provides a useful means of
identifying significant features, which influence the levels of the pressure drops,
temperature and water adsorption from adsorption cooling systems and for
assessing the performance characteristic of proposed adsorption chiller configura-
tions. Moreover, the coupled CFD with heat and mass transfer model is a useful tool
to simulate and optimise adsorption cooling systems and detect the parameters in
the adsorber that are responsible for excessive pressure drops and low performance
levels. The effort to alleviate these problems can be directly evaluated. In addition,
the influence of any modification that is made to help improve performance char-
acteristics on other operating or geometrical parameters is easily evaluated.

As a final point, this work should lead to accurate design and optimisation of
solar/heat-driven adsorption cooling systems in terms of better control of the heat
and mass transfer levels over the entire adsorption/desorption operating range and
improved overall system performance.
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Nomenclature

a kinetic constant
b kinetic constant
b tube thickness, m
bt tube thickness, m
C specific heat capacity, J/kg K
COP coefficient of performance
d fin distance, m
Do reference diffusivity, m2/s
Dm molecular diffusivity, m2/s
D-A Dubinin-Astakhov
dp adsorbent particle diameter, m
Ea activation energy of surface diffusion, J/mol
hi convective heat transfer coefficient: tube and fluid, W/m2 K
ho convective heat transfer coefficient: tube and adsorbent, W/m2 K
ΔH heat of adsorption, kJ/kg
I identity tensor
k thermal conductivity, W/m K
km mass transfer coefficient, 1/s
L adsorbent bed total length, m
lbed bed thickness, m
P pressure, kPa
rp particle radius
R universal gas constant, J/mol K
RD regular density
Rv ideal gas constant for water vapour, J/kg K
SPC specific cooling power, W/kg
T temperature, K
u velocity vector, m/s
v fluid velocity, m/s
X adsorption of water, kgw/kgs

Greek letters
Δ gradient operator
Δ2 Laplacian operator
ε void fraction
κ permeability, m2

μ dynamic viscosity, kg/m s
ρ density, kg/m3

Subscripts
0 initial condition
a adsorption
b adsorbent bed
c condenser
cold low temperature setting
d desorption
e equilibrium or evaporator
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carried out to investigate the influence of several design and operating parameters
during the desorption process. Silica gel and zeolite 13X are both investigated as
possible adsorbents, though the study incorporated the working pair silica gel/water
given the lower working temperature range required for operation which makes it
more suitable for residential cooling applications powered by solar heat. Flow
behaviour, heat and mass transfer performances have been analysed in detail. The
CFD model was validated against the experimental data using zeolite 13X/water
pair available in the literature. Good agreement with experimental results was
obtained, which demonstrates the effectiveness of the model. Therefore, the CFD
model was utilised in the present study with confidence that it can predict the
pressure, temperature and water adsorption of the system accurately.

The key parameters considered in this work were geometrical and operating
factors such as bed thickness (lbed), heat exchanger tube thickness (b) and HTF
velocity (v), and adsorbent particle diameter (dp). The results have not only
confirmed some observations reported in earlier researches, but also provided an
envelope for the optimum design parameters when the operating conditions and
geometrical factors were varied for performance enhancement. In order of
highest impact on the system, the parameters are listed as follows: v>dp>lbed>b.
The results disclosed that from the four parameters; only the first three stated are
the most influential factors of performance and significantly change the cycle
time. In the design phase, the most important geometric parameter to consider is
the bed thickness. As the bed thickness increases, the amount of water adsorbed
increases but so does the cycle time. While selecting the adsorbent material, a
smaller particle diameter is desired to minimise the cycle time. A lower threshold
of 2 mm was identified. During operation, the fluid velocity should be operated at
a higher velocity to minimise the cycle time. A upper threshold of 0.005 m/s was
identified.

It is concluded that the present modelling approach provides a useful means of
identifying significant features, which influence the levels of the pressure drops,
temperature and water adsorption from adsorption cooling systems and for
assessing the performance characteristic of proposed adsorption chiller configura-
tions. Moreover, the coupled CFD with heat and mass transfer model is a useful tool
to simulate and optimise adsorption cooling systems and detect the parameters in
the adsorber that are responsible for excessive pressure drops and low performance
levels. The effort to alleviate these problems can be directly evaluated. In addition,
the influence of any modification that is made to help improve performance char-
acteristics on other operating or geometrical parameters is easily evaluated.

As a final point, this work should lead to accurate design and optimisation of
solar/heat-driven adsorption cooling systems in terms of better control of the heat
and mass transfer levels over the entire adsorption/desorption operating range and
improved overall system performance.

Acknowledgements

Funding for this work was provided by Natural Resources Canada through the
Program of Energy Research and Development.

Conflict of interest

The authors declare no conflict of interest.

112

Advanced Computational Fluid Dynamics for Emerging Engineering Processes...

Nomenclature

a kinetic constant
b kinetic constant
b tube thickness, m
bt tube thickness, m
C specific heat capacity, J/kg K
COP coefficient of performance
d fin distance, m
Do reference diffusivity, m2/s
Dm molecular diffusivity, m2/s
D-A Dubinin-Astakhov
dp adsorbent particle diameter, m
Ea activation energy of surface diffusion, J/mol
hi convective heat transfer coefficient: tube and fluid, W/m2 K
ho convective heat transfer coefficient: tube and adsorbent, W/m2 K
ΔH heat of adsorption, kJ/kg
I identity tensor
k thermal conductivity, W/m K
km mass transfer coefficient, 1/s
L adsorbent bed total length, m
lbed bed thickness, m
P pressure, kPa
rp particle radius
R universal gas constant, J/mol K
RD regular density
Rv ideal gas constant for water vapour, J/kg K
SPC specific cooling power, W/kg
T temperature, K
u velocity vector, m/s
v fluid velocity, m/s
X adsorption of water, kgw/kgs

Greek letters
Δ gradient operator
Δ2 Laplacian operator
ε void fraction
κ permeability, m2

μ dynamic viscosity, kg/m s
ρ density, kg/m3

Subscripts
0 initial condition
a adsorption
b adsorbent bed
c condenser
cold low temperature setting
d desorption
e equilibrium or evaporator

113

Unsteady CFD with Heat and Mass Transfer Simulation of Solar Adsorption Cooling System…

DOI: http://dx.doi.org/10.5772/intechopen.81144



f fluid
hot high temperature setting
pl particle liquid
pv particle vapour
s solid adsorbent
v vapour
t tube
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Chapter 6

Modeling of Fluid-Solid
Two-Phase Geophysical Flows
Zhenhua Huang and Cheng-Hsien Lee

Abstract

Fluid-solid two-phase flows are frequently encountered in geophysical flow
problems such as sediment transport and submarine landslides. It is still a challenge
to the current experiment techniques to provide information such as detailed flow
and pressure fields of each phase, which however is easily obtainable through
numerical simulations using fluid-solid two-phase flow models. This chapter
focuses on the Eulerian-Eulerian approach to two-phase geophysical flows. Brief
derivations of the governing equations and some closure models are provided, and
the numerical implementation in the finite-volume framework of OpenFOAM® is
described. Two applications in sediment transport and submarine landslides are also
included at the end of the chapter.

Keywords: granular flows, submarine landslides, sediment transport, scour,
continuum model, OpenFOAM®

1. Introduction

Fluid-solid two-phase flows are important in many geophysical problems such as
sediment erosion, transport and deposition in rivers or coastal environment, debris
flows, scour at river or marine structures, and submarine landslides. Behaviors of
fluid-solid two-phase flows are very different from those of liquid-gas two-phase
flows where bubbles are dispersed in the liquid or droplets dispersed in the gas. Vast
numbers of experiments on various scales have been carried out for different
applications of fluid-solid two-phase flows; these experiments have advanced our
understanding of bulk behaviors of some important flow characteristics. However,
development of measurement techniques suitable for collecting data that contribute
to understanding important physics involved in fluid-solid two-phase flows is a
still-evolving science. With the modern computer technology, many data that are
not obtainable currently in the experiment can be easily produced by performing
time-dependent, multidimensional numerical simulations. Of course, empirical clo-
sure models required to close the governing equations still need high-quality exper-
imental data for model validation.

Numerical approaches to two-phase flows include Eulerian-Eulerian approach,
direct numerical simulations (DNS) based on Eulerian-Lagrangian formulations
(Lagrangian point-particle approach), and fully resolved DNS approach [1]. Fully
resolved DNS can resolve all important scales of the fluid and particles, but these
simulations are currently limited to about 10 k uniform-size spheres on a Cray XE6
with 2048 cores [2], and it is not practical to use this method to model large-scale
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geophysical flow problems in the foreseeable future [1]. Lagrangian point-particle
approach uses Eulerian formulation for the fluid phase and Lagrangian formulation
for tracking the instantaneous positions of the particles. Lagrangian point-particle
simulations make use of semiempirical relationships to provide both hydrodynamic
force and torque acting on each particle and thus avoid modeling processes on scales
smaller than Kolmogorov scale [1], making it possible to include more particles and
run in a domain larger than that for fully resolved DNS. The application of
Lagrangian point-particle approach is crucially dependent on the availability and
accuracy of such semiempirical relationships. A recent study shows that good
results can be obtained for about 100k uniform-size spherical particles in a vertical
channel flow [3]; however, using this approach to investigate large-scale two-phase
flow problems is still beyond the current computing capacity. Two-phase Eulerian-
Eulerian approach treats both the fluid and particle phases as continuum media and
is suitable for solving large-scale two-phase flow problems.

Eulerian-Eulerian two-phase flow models based on large-eddy-simulations solve
a separate set of equations describing conservation of mass, momentum, and kinetic
energy for each phase [4–7] and thus have the potential to consider all important
processes involved in the interactions between the two phases through parameter-
ization of particle-scale processes. This chapter introduces the basics of Eulerian-
Eulerian two-phase flow modeling, its implementation in the finite-volume frame-
work of OpenFOAM®, and two applications in geophysical flow problems.

2. Governing equations for fluid-solid two-phase flows

Let us consider a mixture of fluid and solid particles. Fluid can be gas, water, or a
mixture of water and gas. In DNS and Lagrangian point-particle approaches to two-
phase flows, the flow field is solved by solving the Navier-Stokes equations, and the
motion of each particle is determined by the Newton’s equation of motion. In
Eulerian-Eulerian two-phase flow approaches, however, the motions of individual
particles are not of the interest, and the focus is on the macroscopic motion of the
fluid and solid particles instead. For this purpose, the solid particles are modeled as
a continuum mass through an ensemble averaging operation, which is based on the
existence of possible equivalent realizations. After taking ensemble average, the
mixture of fluid and particles consists of two continuous phases: the fluid (water,
gas, or a mixture of water and gas) is the fluid phase, and the solid particle is the
solid phase. Both phases are incompressible. The motions of the fluid and solid
phases are governed by their own equations, which are obtained by taking ensemble
average of the microscopic governing equations for each phase [8]. Even though
some aspects of fluid-solid interaction can be considered through the ensemble
average, the ensemble averaging operation itself, however, does not explicitly
introduce any turbulent dispersion in the resulting equations. To consider the tur-
bulent dispersion in the Eulerian-Eulerian description of the fluid-solid two-phase
flows, another averaging operation (usually a Favre average) is needed to consider
the correlations of turbulent components [5, 9].

2.1 Ensemble averaged equations

At the microscopic scale, the fluid-solid mixture is a discrete system. The pur-
pose of performing an ensemble averaging operation is to derive a set of equations
describing this discrete system as a continuous system at the macroscopic scale,
where the typical length scale should be much larger than one particle diameter.
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In the Eulerian-Eulerian approach to two-phase flows, it is assumed that the
equations governing the motion of phase k (for the fluid phase k ¼ f and for the
solid phase k ¼ s) at the microscopic scale are the following equations for the
conservation of mass and momentum [8, 10]:

∂ρk
∂t

þ ∇ � uk ¼ 0, (1)

and

∂ρuk

∂t
þ ∇ � ρkukukð Þ ¼ ∇ � Tk þ ρg, (2)

where ρk is the density, uk is the velocity, and g is the acceleration due to gravity.
The stress tensor Tk includes two components:

Tk ¼ �pkIþ τk (3)

where pk is the microscopic pressure and τk is the microscopic stress tensor.
Because the fluid phase and the solid phase are immiscible, at any time t, a point

in space x can be occupied only by one phase, not both. This fact can be described
mathematically by the following phase function ck x; tð Þ for phase k:

ck x; tð Þ ¼ 1, if  the point x is occupied by phase k
0, if  the point x is not occupied by phase k

:

�
(4)

The volumetric concentration of phase k is directly related to the probability of
occurrence of phase k at a given location x at the time t and can be obtained by
taking ensemble average of ck. Using the phase function given in Eq. (4), the
volumetric concentration of phase k is obtained by taking the ensemble average of
ck, denoted by ckh i. The operator ⋯h i means taking an ensemble average of its
argument.

There are several methods to derive the ensemble averaged equations governing
the motion of phase k. This chapter treats the phase function as a general function
and uses it to define the derivatives of the phase function ck with respect to time and
space and the equation governing the evolution of ck. As stated in Drew [8], the
phase function ck can be treated as a generalized function whose derivative can be
defined in terms of a set of test functions. These test functions must be sufficiently
smooth and have compact support so that the integration of a derivative of the
phase function, weighed with the test function, is finite. The equation describing
the evolution of ck is

∂ck
∂t

þ ui � ∇ck ¼ 0, (5)

where ui is the velocity of the interface between the region occupied by the fluid
phase and the region occupied by the solid phase. It is stressed here that ∇ck is zero
except at the interface between two phases where ∇ck behaves like a delta-
function [8].

The ensemble averaged equations governing the motion of phase k are
obtained by multiplying Eqs. (1) and (2) with ck and performing an ensemble
average operation on every term in the resulting equations. When performing
ensemble average operations, Reynolds’ rules for algebraic operations, Leibniz’
rule for time derivatives, Gauss’ rule for spatial derivatives, and the following two
identities are used:
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ck
∂ϕk

∂t
¼ ∂ckϕk

∂t
� ϕk

∂ck
∂t

¼ ∂ckϕk

∂t
þ ϕku

i � ∇ck, (6)

and

ck∇ � ρkukð Þ ¼ ∇ � ckρkukð Þ � ρkukð Þ � ∇ck: (7)

The resulting equations governing the ensemble average motion of phase k
are [8]

∂ ckρkh i
∂t

þ ∇ � ckρkukh i ¼ ρk uk � ui� � � ∇ck
� �

, (8)

and

∂ ckρkukh i
∂t

þ ∇ � ckρkukukh i ¼ ∇ � ckTkh i þ ckρkg
� �þ ~mk (9)

with

~mk ¼ ρkuk uk � ui� �� Tk � ∇ck
� �

, (10)

Note that ∇ck is not zero only on the interface of the region occupied by phase
k (grain boundary). For the fluid-solid two-phase flows, the interface of phase k
must satisfy the no-slip and no-flux conditions; therefore, uk � ui ¼ 0. As a result,
the right-hand side of Eq. (8) is zero and

~mk ¼ � Tk � ∇ckh i, (11)

which is the density of the interfacial force [8]. Physically, Tk � ∇ck is the micro-
scopic density of the force acting on a surface whose normal direction is defined
by ∇ck.

After using Eq. (3) for Tk in Eq. (9), the ensemble averaged equations can be
further written in terms of the ensemble averaged qualities describing the motion of
phase k as

∂~c~ρk
∂t

þ ∇ � ~c~ρkûk� ¼ 0
�

(12)

and

∂~ck~ρkûk

∂t
þ ∇ � ~c~ρkûkûk

� � ¼ ~c~ρkg þ ∇ � ~c ~pkIþ ~τkÞ
� �þ ∇ � ~c~τ 0k

� �þ ~mk,
�

(13)

where ~ck ¼ ckh i is the volumetric concentration of phase k. Other ensemble aver-
aged quantities used in Eqs. (12) and (13) to describe the motion of phase k at the
macroscopic scale are density ~ρk, pressure ~pk, stress tensor ~τk, and velocity ûk,
defined by

~ρk ¼
ckρkh i
ckh i , ~pk ¼

ckpk
� �
ckh i , ~τk ¼

ckτkh i
ckh i , ûk ¼ ckρkukh i

ckρkh i (14)

and ~t 0k represents the c-weighted ensemble average of microscopic momentum flux
associated with the fluctuation of the velocity uk around the ensemble averaged
velocity ûk
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~τ 0k ¼ � ckρku0
ku

0
k

� �
ckh i , u0

k ¼ uk � ûk (15)

For compressible materials ~ρk is not a constant. However, for incompressible
materials

~ρk ¼
ckρkh i
ckh i � ρk, ûk ¼ ckρkukh i

ckρkh i ¼ ckukh i
ckh i (16)

Now we examine the limiting case where the fluid-solid system is at its
static state. Because the phase functions for the two phases satisfy cf þ cs ¼ 1,
both phases are not moving, and ~mf þ ~ms ¼ 0, the governing equations
reduce to

0 ¼ 1� ~csÞ~ρfg � ∇ 1� ~csÞ~pf
� i

� ~ms,
h�

(17)

for the fluid phase, and

0 ¼ ~cs~ρsg � ∇ ~cs~ps� þ ~ms,
�

(18)

for the solid phase.
Because ~pf is the hydrostatic pressure in this case, i.e., ∇~pf ¼ ~ρfg, it then

follows that

~ms ¼ ~pf∇~cs (19)

which, physically, is the buoyancy acting on the solid phase. Now Eq. (18) becomes

0 ¼ ~cs~ρsg � ∇ ~cs~ps
� �þ ~pf∇~cs (20)

which states that the weight of the solid particles is supported by the buoyancy and
the interparticle forces. Therefore, the ensemble pressure of the solid phase can be
written as ~ps ¼ ~pf þ �ps, with ~pf being the total fluid pressure and �ps accounting for
the contributions from other factors such as collision and enduring contact to the
ensemble averaged pressure.

For brevity of the presentation, we shall denote simply cs by c as well cf by
1� c and drop the symbols representing the ensemble averages hereinafter.
The ensemble averaged equations governing the motion of the fluid phase are

∂ 1� cð Þρf
∂t

þ ∇ � 1� cð Þρfuf

h i
¼ 0, (21)

and

∂ 1� cð Þρfuf

∂t
þ∇ � 1� cð Þρfufuf

h i

¼ 1� cð Þρfg þ ∇ � 1� cð Þ �pf Iþ τf
� �h i

þ ∇ � 1� cð Þτ0f
h i

�m:

(22)
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ck
∂ϕk

∂t
¼ ∂ckϕk

∂t
� ϕk

∂ck
∂t

¼ ∂ckϕk

∂t
þ ϕku

i � ∇ck, (6)

and

ck∇ � ρkukð Þ ¼ ∇ � ckρkukð Þ � ρkukð Þ � ∇ck: (7)

The resulting equations governing the ensemble average motion of phase k
are [8]

∂ ckρkh i
∂t

þ ∇ � ckρkukh i ¼ ρk uk � ui� � � ∇ck
� �

, (8)

and

∂ ckρkukh i
∂t

þ ∇ � ckρkukukh i ¼ ∇ � ckTkh i þ ckρkg
� �þ ~mk (9)

with

~mk ¼ ρkuk uk � ui� �� Tk � ∇ck
� �

, (10)

Note that ∇ck is not zero only on the interface of the region occupied by phase
k (grain boundary). For the fluid-solid two-phase flows, the interface of phase k
must satisfy the no-slip and no-flux conditions; therefore, uk � ui ¼ 0. As a result,
the right-hand side of Eq. (8) is zero and

~mk ¼ � Tk � ∇ckh i, (11)

which is the density of the interfacial force [8]. Physically, Tk � ∇ck is the micro-
scopic density of the force acting on a surface whose normal direction is defined
by ∇ck.

After using Eq. (3) for Tk in Eq. (9), the ensemble averaged equations can be
further written in terms of the ensemble averaged qualities describing the motion of
phase k as

∂~c~ρk
∂t

þ ∇ � ~c~ρkûk� ¼ 0
�

(12)

and

∂~ck~ρkûk

∂t
þ ∇ � ~c~ρkûkûk

� � ¼ ~c~ρkg þ ∇ � ~c ~pkIþ ~τkÞ
� �þ ∇ � ~c~τ 0k

� �þ ~mk,
�

(13)

where ~ck ¼ ckh i is the volumetric concentration of phase k. Other ensemble aver-
aged quantities used in Eqs. (12) and (13) to describe the motion of phase k at the
macroscopic scale are density ~ρk, pressure ~pk, stress tensor ~τk, and velocity ûk,
defined by

~ρk ¼
ckρkh i
ckh i , ~pk ¼

ckpk
� �
ckh i , ~τk ¼

ckτkh i
ckh i , ûk ¼ ckρkukh i

ckρkh i (14)

and ~t 0k represents the c-weighted ensemble average of microscopic momentum flux
associated with the fluctuation of the velocity uk around the ensemble averaged
velocity ûk
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~τ 0k ¼ � ckρku0
ku

0
k

� �
ckh i , u0

k ¼ uk � ûk (15)

For compressible materials ~ρk is not a constant. However, for incompressible
materials

~ρk ¼
ckρkh i
ckh i � ρk, ûk ¼ ckρkukh i

ckρkh i ¼ ckukh i
ckh i (16)

Now we examine the limiting case where the fluid-solid system is at its
static state. Because the phase functions for the two phases satisfy cf þ cs ¼ 1,
both phases are not moving, and ~mf þ ~ms ¼ 0, the governing equations
reduce to

0 ¼ 1� ~csÞ~ρfg � ∇ 1� ~csÞ~pf
� i

� ~ms,
h�

(17)

for the fluid phase, and

0 ¼ ~cs~ρsg � ∇ ~cs~ps� þ ~ms,
�

(18)

for the solid phase.
Because ~pf is the hydrostatic pressure in this case, i.e., ∇~pf ¼ ~ρfg, it then

follows that

~ms ¼ ~pf∇~cs (19)

which, physically, is the buoyancy acting on the solid phase. Now Eq. (18) becomes

0 ¼ ~cs~ρsg � ∇ ~cs~ps
� �þ ~pf∇~cs (20)

which states that the weight of the solid particles is supported by the buoyancy and
the interparticle forces. Therefore, the ensemble pressure of the solid phase can be
written as ~ps ¼ ~pf þ �ps, with ~pf being the total fluid pressure and �ps accounting for
the contributions from other factors such as collision and enduring contact to the
ensemble averaged pressure.

For brevity of the presentation, we shall denote simply cs by c as well cf by
1� c and drop the symbols representing the ensemble averages hereinafter.
The ensemble averaged equations governing the motion of the fluid phase are

∂ 1� cð Þρf
∂t

þ ∇ � 1� cð Þρfuf

h i
¼ 0, (21)

and

∂ 1� cð Þρfuf

∂t
þ∇ � 1� cð Þρfufuf

h i

¼ 1� cð Þρfg þ ∇ � 1� cð Þ �pf Iþ τf
� �h i

þ ∇ � 1� cð Þτ0f
h i

�m:

(22)
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The ensemble averaged equations governing the motion of the solid phase are

∂cρs
∂t

þ ∇ � cρsusð Þ ¼ 0, (23)

and

∂cρsus

∂t
þ ∇ � cρfusus

h i
¼ ρscg þ ∇ � c �pf I� psIþ τs

� �h i
þ ∇ � cτ0s

� �þm: (24)

where ps denotes the contributions from interparticle interactions such as collision
and enduring contact to the ensemble averaged pressure of the solid phase.

To close the equations for the fluid and solid phases, closure models are needed
for τ0s, τ

0
f , τs, τf , ps, and m.

It is remarked here that the definitions of the ensemble averages given in
Eq. (14) do not consider the contribution from the correlations between the fluctu-
ations of the velocities and the fluctuations of phase functions at microscopic scale;
therefore, the effects of turbulent dispersion are not directly included in the
ensemble averaged equations describing the motion of the each phase. In the liter-
ature, two approaches have been used to consider the turbulent dispersion:
(i) considering the correlation between the fluctuations of ckh i and u f associated
with the turbulent flow [9] and (ii) including a term in the model for m to account
for the turbulent dispersion [8]. This chapter considers the turbulent dispersion
using the first approach in the next section by taking another Favre averaging
operation.

In the absence of the turbulent dispersion from m, the interphase force m
should include the so-called general buoyancy pf∇c and a component f
which includes drag force, inertial force, and lift force

m ¼ f þ pf∇c � f � c∇pf þ ∇ cpf
� �

: (25)

This expression for m has been derived by [11] using a control volume/surface
approach. For most fluid-solid two-phase geophysical flows, the drag force domi-
nates f [9] and thus f can be modeled by

f ¼ cρs
uf � us

τp
, (26)

where τp is the so-called particle response time (i.e., a relaxation time of the
particle to respond the surrounding flow). As expected, the particle response time
should be related to drag coefficient and grain Reynolds number.

2.2 Favre averaged equations

The volumetric concentration and the velocities can be written as

c ¼ cþ c00, pf ¼ pf þ p00f , uf ¼ uf þ u00
f , us ¼ us þ u00

s , (27)

where the Favre averages are defined as

ρs ¼
cρs
c
, ρf ¼

1� cð Þρf
1� c

,us ¼ cρsus

cρs
,uf ¼

1� cð Þρfuf

1� cð Þρf
, (28)

and the overline stands for an integration with respect to time over a time scale
longer than small-scale turbulent fluctuations but shorter than the variation of the
mean flow field.
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The averaged equations for the mean flow fields of the two phases are obtained
by taking the following steps: (i) substituting Eq. (25) with Eq. (26) in Eqs. (22)
and (24), (ii) substituting Eq. (27) in the equations obtained at step (i), and (iii)
taking average of the equations obtained at step (ii) to obtain the following
equations:

∂ρf 1� cð Þ
∂t

þ ∇ � ρf 1� cð Þuf

h i
¼ 0, (29)

∂ρf 1� cð Þuf

∂t
þ∇ � ρf 1� cð Þufuf

h i
¼ ρf 1� cð Þg � 1� cð Þ∇pf þ c00∇p00f

þ∇ � 1� cð Þ τf þ τ0f þ τ00f
� �

� cρs
uf � us

τp
� ρs
τp

cu00
f

� �
,

(30)

for the fluid phase, with τ00f being defined by

τ00f ¼ �ρfu
00
f u

00
f , (31)

and

∂ρsc
∂t

þ ∇ � ρscus½ � ¼ 0, (32)

∂ρscus

∂t
þ∇ � ρscusus½ � ¼ ρscg � c∇pf � c00∇p00f � ∇cps

þ∇ � c τs þ τ0s þ τ00s
� � þ cρs

uf � us

τp
þ ρs
τp

cu00
f

� �
,

(33)

for the solid phase, with τ00s being defined by

τ00s ¼ �ρsu
00
s u

00
s (34)

It is remarked here that the terms 1� ~cð Þ∇~pf in Eq. (30) and ~c∇~pf in Eq. (33) have
been obtained by using the expression for m given in Eq. (25).

In order to close these averaged equations, closure models are required for the

following terms: c τs þ τ0s þ τ00s
� �

, 1� cð Þ τf þ τ0f þ τ00f
� �

, cu00
f , and c00∇p00f . The last term

can be neglected based on an analysis of their orders of magnitude by Drew [12].
The term cu00

f is approximated by the following gradient transport hypotheses:

cu00
f ¼ � νft

σc
∇c (35)

where νft is the eddy viscosity and σc is the Schmidt number, which represents the
ratio of the eddy viscosity of the fluid phase to the eddy diffusivity of the solid
phase. Furthermore, the following approximations are introduced:

c τs þ τ0s þ τ00s
� � ¼ cτs, 1� cð Þ τf þ τ0f þ τ00f

� �
¼ 1� cð Þτf , cps ¼ cps (36)

For brevity of the presentation, the symbols representing Favre averages are
dropped hereinafter, and the final equations governing the conservation of mass
and momentum of each phase are

∂ρf 1� cð Þ
∂t

þ ∇ � ρf 1� cð Þuf ¼ 0, (37)
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The ensemble averaged equations governing the motion of the solid phase are

∂cρs
∂t

þ ∇ � cρsusð Þ ¼ 0, (23)

and

∂cρsus

∂t
þ ∇ � cρfusus

h i
¼ ρscg þ ∇ � c �pf I� psIþ τs

� �h i
þ ∇ � cτ0s

� �þm: (24)

where ps denotes the contributions from interparticle interactions such as collision
and enduring contact to the ensemble averaged pressure of the solid phase.

To close the equations for the fluid and solid phases, closure models are needed
for τ0s, τ

0
f , τs, τf , ps, and m.

It is remarked here that the definitions of the ensemble averages given in
Eq. (14) do not consider the contribution from the correlations between the fluctu-
ations of the velocities and the fluctuations of phase functions at microscopic scale;
therefore, the effects of turbulent dispersion are not directly included in the
ensemble averaged equations describing the motion of the each phase. In the liter-
ature, two approaches have been used to consider the turbulent dispersion:
(i) considering the correlation between the fluctuations of ckh i and u f associated
with the turbulent flow [9] and (ii) including a term in the model for m to account
for the turbulent dispersion [8]. This chapter considers the turbulent dispersion
using the first approach in the next section by taking another Favre averaging
operation.

In the absence of the turbulent dispersion from m, the interphase force m
should include the so-called general buoyancy pf∇c and a component f
which includes drag force, inertial force, and lift force

m ¼ f þ pf∇c � f � c∇pf þ ∇ cpf
� �

: (25)

This expression for m has been derived by [11] using a control volume/surface
approach. For most fluid-solid two-phase geophysical flows, the drag force domi-
nates f [9] and thus f can be modeled by

f ¼ cρs
uf � us

τp
, (26)

where τp is the so-called particle response time (i.e., a relaxation time of the
particle to respond the surrounding flow). As expected, the particle response time
should be related to drag coefficient and grain Reynolds number.

2.2 Favre averaged equations

The volumetric concentration and the velocities can be written as

c ¼ cþ c00, pf ¼ pf þ p00f , uf ¼ uf þ u00
f , us ¼ us þ u00

s , (27)

where the Favre averages are defined as

ρs ¼
cρs
c
, ρf ¼

1� cð Þρf
1� c

,us ¼ cρsus

cρs
,uf ¼

1� cð Þρfuf

1� cð Þρf
, (28)

and the overline stands for an integration with respect to time over a time scale
longer than small-scale turbulent fluctuations but shorter than the variation of the
mean flow field.
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The averaged equations for the mean flow fields of the two phases are obtained
by taking the following steps: (i) substituting Eq. (25) with Eq. (26) in Eqs. (22)
and (24), (ii) substituting Eq. (27) in the equations obtained at step (i), and (iii)
taking average of the equations obtained at step (ii) to obtain the following
equations:

∂ρf 1� cð Þ
∂t

þ ∇ � ρf 1� cð Þuf

h i
¼ 0, (29)

∂ρf 1� cð Þuf

∂t
þ∇ � ρf 1� cð Þufuf

h i
¼ ρf 1� cð Þg � 1� cð Þ∇pf þ c00∇p00f

þ∇ � 1� cð Þ τf þ τ0f þ τ00f
� �

� cρs
uf � us

τp
� ρs
τp

cu00
f

� �
,

(30)

for the fluid phase, with τ00f being defined by

τ00f ¼ �ρfu
00
f u

00
f , (31)

and

∂ρsc
∂t

þ ∇ � ρscus½ � ¼ 0, (32)

∂ρscus

∂t
þ∇ � ρscusus½ � ¼ ρscg � c∇pf � c00∇p00f � ∇cps

þ∇ � c τs þ τ0s þ τ00s
� � þ cρs

uf � us

τp
þ ρs
τp

cu00
f

� �
,

(33)

for the solid phase, with τ00s being defined by

τ00s ¼ �ρsu
00
s u

00
s (34)

It is remarked here that the terms 1� ~cð Þ∇~pf in Eq. (30) and ~c∇~pf in Eq. (33) have
been obtained by using the expression for m given in Eq. (25).

In order to close these averaged equations, closure models are required for the

following terms: c τs þ τ0s þ τ00s
� �

, 1� cð Þ τf þ τ0f þ τ00f
� �

, cu00
f , and c00∇p00f . The last term

can be neglected based on an analysis of their orders of magnitude by Drew [12].
The term cu00

f is approximated by the following gradient transport hypotheses:

cu00
f ¼ � νft

σc
∇c (35)

where νft is the eddy viscosity and σc is the Schmidt number, which represents the
ratio of the eddy viscosity of the fluid phase to the eddy diffusivity of the solid
phase. Furthermore, the following approximations are introduced:

c τs þ τ0s þ τ00s
� � ¼ cτs, 1� cð Þ τf þ τ0f þ τ00f

� �
¼ 1� cð Þτf , cps ¼ cps (36)

For brevity of the presentation, the symbols representing Favre averages are
dropped hereinafter, and the final equations governing the conservation of mass
and momentum of each phase are

∂ρf 1� cð Þ
∂t

þ ∇ � ρf 1� cð Þuf ¼ 0, (37)
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∂ρf 1� cð Þuf

∂t
þ∇ � ρf 1� cð Þufuf

h i

¼ ρf 1� cð Þg � 1� cð Þ∇pf þ ∇ � 1� cð Þτf

� cρs
uf � us

τp
þ ρs
τp

νft
σc

∇c
� �

,

(38)

for the fluid phase and

∂ρsc
∂t

þ ∇ � ρscus ¼ 0, (39)

∂ρscus

∂t
þ ∇ � ρscususð Þ
¼ ρscg � c∇pf � ∇ cps

� �þ ∇ � cτs

þ cρs
uf � us
� �

τp
� ρs
τp

νft
σc

∇c
� �

,

(40)

for the solid phase.

3. Closure models

3.1 Stresses for the fluid phase

The stress tensor for the fluid phase τf includes two parts: a part for the viscous
stress, τvf , and the other part for the turbulent Reynolds stress, τtf

τf ¼ τvf þ τtf (41)

The viscous stress tensor τvf is usually computed by

τvf ¼ �ρf
2
3
νf∇ � uf

� �
Iþ 2ρf νfDf (42)

where νf is the kinematic viscosity of the fluid phase and Df ¼ ∇uf þ ∇uf
� �Th i

=2,

where the superscript T denotes a transpose. Some studies [13] suggested modify-
ing νf to consider the effect of the solid phase; other studies [14], however, obtained
satisfactory results even without considering this effect.

The stress tensor τtf is related to the turbulent characteristics, which need to be
provided by solving a turbulent closure model such as k� ϵ or k� ω model. For a
k� ϵ model with low-Reynolds-number correction [15], τtf can be computed by

τtf ¼ �ρf
2
3
kþ 2

3
νtf∇ � uf

� �
Iþ 2ρf ν

t
fDf (43)

where k is the turbulence kinetic energy and νtf is the eddy viscosity of the fluid
phase, given by

νtf ¼ f μCμk
2=ϵ (44)
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with ϵ being the turbulent dissipation of the fluid phase to be provide by solving the

k� ϵ equation. The coefficient f μ ¼ exp �3:4= 1þ Ret=50ð Þ2
h i

represents the low-

Reynolds-number correction with Ret ¼ k2=νf ϵ. The coefficient Cμ is usually
assumed to be a constant.

The equations governing k and ϵ are similar to those for clear water [15]

∂ρf 1� cð Þk
∂t

þ ∇ � ρf 1� cð Þuf k
h i

¼ 1� cð Þtf : ∇uf � ρf 1� cð Þϵ

þ∇ � ρf
νtf
σc

1� cð Þk
" #

� ρs � ρf

� � νtf
σc

∇c � g þ 2ρsc 1� αð Þk
τp

( )
,

(45)

and

∂ρf 1� cð Þϵ
∂t

þ ∇ ρf 1� cð Þuf ϵ
h i

¼ ϵ
k

Cϵ1 f 1 1� cð Þτf : ∇uf � Cϵ2 f 2ρf 1� cð Þϵ
h i

þ∇ � ρf
νtf
σϵ

1� cð Þϵ
" #

� ϵ
k
Cϵ3 ρs � ρf

� � νff
σc

∇c � g þ 2ρsc 1� αð Þk
τp

8<
:

9=
;,

(46)

where coefficients Cϵ1, Cϵ2, σϵ, σk, and f 2 are model parameters, whose values can
be taken the same as those in the k� ϵ model for clear fluid under low-Reynolds-
number conditions [15]. There are two terms inside the curly brackets, and both
terms account for the turbulence modulation by the presence of particles: the first
term is associated with the general buoyancy, and the second term is due to the
correlation of the fluctuating velocities of solid and fluid phases. Cϵ3 ¼ 1 is usually
adopted in the literature [28]; however, it is remarked that the value of Cϵ3 is not
well understood at the present and a sensitivity test to understand how the value
of this Cϵ3 on the simulation results is recommended. The parameter α reflects the
correlation between the solid-phase and fluid-phase turbulent motions and is
given by

α ¼ 1þ τp
min τl; τcð Þ

� ��1

, (47)

where τl ¼ 0:165k=ϵ is a time scale for the turbulent flow and τc is a time scale for
particle collisions given by [16]

τc ¼
crcp
c

� �1
3 � 1

� �
d

ρs
ps

� �1=2

(48)

with crcp being the random close packing fraction and d being the particle diameter.

crcp is 0.634 for spheres [17]. The term crcp=c
� �1=3 � 1 is related to the ratio of the

mean free dispersion distance to the diameter of the solid particle.
It is remarked here that the presence of solid particles in the turbulent flow may

either enhance (for large particles) or reduce (for small particles) the turbulence
[18]. The k� ϵ model given here can only reflect the reduction of turbulence and
thus is not suitable for problems with large particles. Other turbulence models
[7, 18] include a term describing the enhancement of turbulence; however, includ-
ing that term in the present model may induce numerical instability in some cases.
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∂ρf 1� cð Þuf

∂t
þ∇ � ρf 1� cð Þufuf

h i

¼ ρf 1� cð Þg � 1� cð Þ∇pf þ ∇ � 1� cð Þτf

� cρs
uf � us

τp
þ ρs
τp

νft
σc

∇c
� �

,

(38)

for the fluid phase and

∂ρsc
∂t

þ ∇ � ρscus ¼ 0, (39)

∂ρscus

∂t
þ ∇ � ρscususð Þ
¼ ρscg � c∇pf � ∇ cps

� �þ ∇ � cτs

þ cρs
uf � us
� �

τp
� ρs
τp

νft
σc

∇c
� �

,

(40)

for the solid phase.

3. Closure models

3.1 Stresses for the fluid phase

The stress tensor for the fluid phase τf includes two parts: a part for the viscous
stress, τvf , and the other part for the turbulent Reynolds stress, τtf

τf ¼ τvf þ τtf (41)

The viscous stress tensor τvf is usually computed by

τvf ¼ �ρf
2
3
νf∇ � uf

� �
Iþ 2ρf νfDf (42)

where νf is the kinematic viscosity of the fluid phase and Df ¼ ∇uf þ ∇uf
� �Th i

=2,

where the superscript T denotes a transpose. Some studies [13] suggested modify-
ing νf to consider the effect of the solid phase; other studies [14], however, obtained
satisfactory results even without considering this effect.

The stress tensor τtf is related to the turbulent characteristics, which need to be
provided by solving a turbulent closure model such as k� ϵ or k� ω model. For a
k� ϵ model with low-Reynolds-number correction [15], τtf can be computed by

τtf ¼ �ρf
2
3
kþ 2

3
νtf∇ � uf

� �
Iþ 2ρf ν

t
fDf (43)

where k is the turbulence kinetic energy and νtf is the eddy viscosity of the fluid
phase, given by

νtf ¼ f μCμk
2=ϵ (44)
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with ϵ being the turbulent dissipation of the fluid phase to be provide by solving the

k� ϵ equation. The coefficient f μ ¼ exp �3:4= 1þ Ret=50ð Þ2
h i

represents the low-

Reynolds-number correction with Ret ¼ k2=νf ϵ. The coefficient Cμ is usually
assumed to be a constant.

The equations governing k and ϵ are similar to those for clear water [15]

∂ρf 1� cð Þk
∂t

þ ∇ � ρf 1� cð Þuf k
h i

¼ 1� cð Þtf : ∇uf � ρf 1� cð Þϵ

þ∇ � ρf
νtf
σc

1� cð Þk
" #

� ρs � ρf

� � νtf
σc

∇c � g þ 2ρsc 1� αð Þk
τp

( )
,

(45)

and

∂ρf 1� cð Þϵ
∂t

þ ∇ ρf 1� cð Þuf ϵ
h i

¼ ϵ
k

Cϵ1 f 1 1� cð Þτf : ∇uf � Cϵ2 f 2ρf 1� cð Þϵ
h i

þ∇ � ρf
νtf
σϵ

1� cð Þϵ
" #

� ϵ
k
Cϵ3 ρs � ρf

� � νff
σc

∇c � g þ 2ρsc 1� αð Þk
τp

8<
:

9=
;,

(46)

where coefficients Cϵ1, Cϵ2, σϵ, σk, and f 2 are model parameters, whose values can
be taken the same as those in the k� ϵ model for clear fluid under low-Reynolds-
number conditions [15]. There are two terms inside the curly brackets, and both
terms account for the turbulence modulation by the presence of particles: the first
term is associated with the general buoyancy, and the second term is due to the
correlation of the fluctuating velocities of solid and fluid phases. Cϵ3 ¼ 1 is usually
adopted in the literature [28]; however, it is remarked that the value of Cϵ3 is not
well understood at the present and a sensitivity test to understand how the value
of this Cϵ3 on the simulation results is recommended. The parameter α reflects the
correlation between the solid-phase and fluid-phase turbulent motions and is
given by

α ¼ 1þ τp
min τl; τcð Þ

� ��1

, (47)

where τl ¼ 0:165k=ϵ is a time scale for the turbulent flow and τc is a time scale for
particle collisions given by [16]

τc ¼
crcp
c

� �1
3 � 1

� �
d

ρs
ps

� �1=2

(48)

with crcp being the random close packing fraction and d being the particle diameter.

crcp is 0.634 for spheres [17]. The term crcp=c
� �1=3 � 1 is related to the ratio of the

mean free dispersion distance to the diameter of the solid particle.
It is remarked here that the presence of solid particles in the turbulent flow may

either enhance (for large particles) or reduce (for small particles) the turbulence
[18]. The k� ϵ model given here can only reflect the reduction of turbulence and
thus is not suitable for problems with large particles. Other turbulence models
[7, 18] include a term describing the enhancement of turbulence; however, includ-
ing that term in the present model may induce numerical instability in some cases.
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3.2 Stresses for the solid phase

The closure models for ps and τs used in Lee et al. [16] will be described here. In
order to cover flow regimes with different solid-phase concentrations (dilute flows,
dense flows, and compact beds), Lee et al. [16] suggested the following model for ps:

ps ¼ pts þ prs þ pes , (49)

where pts accounts for the turbulent motion of solid particles (important for dilute
flows); prs reflects the rheological characteristics of dense flows and includes the
effects such as fluid viscosity, enduring contact, and particle inertial; pes accounts for
the elastic effect, which is important when the particles are in their static state in a
compact bed.

For solid particles in a compact bed, the formula proposed by Hsu et al. [19] can
be used to compute pes

pes ¼ K max c� co;0ð Þ½ �χ 1þ sin max
c� co

crcp � co
;0

� �
π � π

2

� �� �
, (50)

where co is random loose packing fraction and coefficients K and χ are model
parameters. For spheres, co ranges from 0.54 to 0.634, depending on the friction
[17]. The coefficient K is associated with the Young’s modulus of the compact bed,
and the other terms are related to material deformation.

The closure models for prs and pts are closely related to the stress tensor and the
visco-plastic rheological characteristics for the solid phase. The stress tensor for the
solid phase can be computed by

ts ¼ � 2
3
ρsνs∇ � us

� �
þ 2ρsνsDs, (51)

The kinematic viscosity of the solid phase νs is computed by the sum of two
terms:

νs ¼ νvs þ νts, (52)

where νvs and νts represent the visco-plastic and turbulence effects, respectively. This
model for νs can consider both the turbulence behavior (for dilute flows) and the
visco-plastic behavior (for dense flows and compact beds).

Based on an analysis of heavy and small particles in homogeneous steady turbu-
lent flows, Hinze [20] suggests that pts and νts can be computed by

pts ¼
2
3
ρsαk, (53)

and

νts ¼ ανtf : (54)

where the coefficient α is the same as that in Eqs.(45) and (46).
For dense fluid-solid two-phase flows, the visco-plastic rheological characteris-

tics depend on a dimensionless parameter I ¼ Iv þ aI2i , where Iv is the viscous
number, Ii is the inertial number, and a is a constant [21]. The viscous number is
defined by Iv ¼ 2ρfνfD

s=cps where νf is the kinematic viscosity of the fluid and Ds is
the second invariant of the strain rate. Physically, the viscous number describes the
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ratio of the viscous stress to the quasi-static shear stress associated with the weight
(resulting from the enduring contact). The inertial number is defined by
Ii ¼ 2dDs=

ffiffiffiffiffiffiffiffiffiffiffiffi
cps=ρs

p
, which describes the ratio of the inertial stress to the quasi-static

stress. The relative importance of the inertial number to the viscous number can be
measured by the Stokes number stv ¼ I2i =Iν. Some formulas have been proposed in
the literature to describe c� I and η� I relationships, where η ¼ Ts=ps with Ts being
the second invariant of τs.

Following the work of Boyer et al. [22], Lee et al. [16] assumed

c ¼ cc
1þ bI1=2

(55)

where cc is a critical concentration and b is a model parameter. Trulsson et al. [21]
proposed

η ¼ η1 þ
η2 � η1

1þ Io=I1=2
, (56)

where η1 ¼ tan θs with θs being the angle of repose and η2 and Io are constants.
Based on Eqs. (56) and (55), the following expressions for prs and νvs can be
derived [16]:

νvs ¼
prs þ pes
� �

η

2ρsDs
, (57)

which considers the solid phase in its static state as a very viscous fluid and

prs ¼
2b2c

cc � cð Þ2 ρf νf þ 2aρsd
2Ds

� �
Ds, (58)

where b is a constant. In Lee et al. [7], a ¼ 0:11 and b ¼ 1 were taken.

3.3 Closure models for particle response time

The drag force between the two phases is modeled through the particle response
time τp. Three representative models for particle response time are introduced in
this section.

3.3.1 A model based on the particle sedimentation in still water

The first model is based on particle sedimentation in still water, which can be
simplified as a one-dimensional problem, where the steady sedimentation assures
that there are no stresses in both the solid and fluid phases in the vertical direction z.
In this case, Eqs. (38) and (40) reduce to

�ρf 1� cð Þg � 1� cð Þ
∂pf
∂z

� cρs wf � ws
� �

τp
¼ 0, (59)

and

�ρscg � c
∂pf
∂z

þ cρs wf �ws
� �

τp
¼ 0, (60)
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the literature to describe c� I and η� I relationships, where η ¼ Ts=ps with Ts being
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Based on Eqs. (56) and (55), the following expressions for prs and νvs can be
derived [16]:
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, (57)

which considers the solid phase in its static state as a very viscous fluid and

prs ¼
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2Ds

� �
Ds, (58)

where b is a constant. In Lee et al. [7], a ¼ 0:11 and b ¼ 1 were taken.

3.3 Closure models for particle response time

The drag force between the two phases is modeled through the particle response
time τp. Three representative models for particle response time are introduced in
this section.

3.3.1 A model based on the particle sedimentation in still water

The first model is based on particle sedimentation in still water, which can be
simplified as a one-dimensional problem, where the steady sedimentation assures
that there are no stresses in both the solid and fluid phases in the vertical direction z.
In this case, Eqs. (38) and (40) reduce to

�ρf 1� cð Þg � 1� cð Þ
∂pf
∂z

� cρs wf � ws
� �

τp
¼ 0, (59)

and

�ρscg � c
∂pf
∂z

þ cρs wf �ws
� �

τp
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where wf and ws are the vertical velocities of the fluid and solid phases, respec-
tively.

Because net volume flux through any horizontal plane must be zero, we have

1� cð Þwf þ cws ¼ 0: (61)

Combining Eqs. (59) and (61) yields

�
∂pf
∂z

¼ �cρsws

1� cð Þ2τp
þ ρf g: (62)

Substituting Eqs. (61) and (62) into Eq. (60) leads to

τp ¼ ρsws

1� cð Þ2 ρs � ρf

� �
g
, (63)

where the solid-phase velocity ws is also called the hindered settling veloc-
ity [23]. The hindered velocity is smaller than the terminal velocity of a
single particle, w0, due to the influence of volumetric concentration (including
many-body hydrodynamic interactions). Richardson and Zaki [24] suggested

ws

w0
¼ 1� cð Þn, (64)

where the coefficient n is related to the particle Reynolds number Res ¼ w0d=νf

n ¼

4:65, Res ,0:2

4:4Re�0:33
s , 0:2≤Res , 1

4:4Re�0:1
s , 1≤Res , 500

2:4, 500≤Res

:

8>>><
>>>:

(65)

The terminal velocity of a single particle w0 can be computed by

w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4dg
3Cd

ρs � ρf
ρf

s
, (66)

where Cd is the drag coefficient for steady flows passing a single particle [25, 26].
For spheres, the following formula of White [27] can be used:

Cd ¼ 24
Rep

þ 6
1þ ffiffiffiffiffiffiffi

Rep
p þ 0:4, (67)

where Rep ¼ ∣uf � us∣d=νf . Combing Eqs. (63)–(67) yields

τp ¼ ρs
ρf

d2

νf

1� cð Þn�2

18þ 4:5= 1þ ffiffiffiffiffiffiffi
Rep

p� �
þ 0:3

� �
Rep

: (68)

It is remarked that Eq. (64) is validated only for c,0:4 [28]. When the concentra-
tion c is so high that contact networks form among particles, ws, becomes zero;
when this happens, Eq. (64) is no longer valid any more.
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3.3.2 A model based on the pressure drop in steady flows through a homogeneous porous
media

Another model for particle response time can be derived by examining the
pressure drop in the steady flow through a porous media. For a one-dimensional
problem of a horizontal, steady flow through porous media, the terms containing
the stresses of the fluid phase disappear, and Eq. (38) reduces to

�
∂pf
∂x

¼ cρsuf
1� cð Þτp , (69)

where the horizontal coordinate x points in the direction of the flow and u is the
velocity component in x-direction.

For this problem, Forchheimer [29] suggested

�
∂pf
∂x

¼ aFρf 1� cð Þuf þ bFρf 1� cð Þ2u2f , (70)

where aF and bF are two model parameters. Several formulas for computing aF and
bF can be found in previous studies. The following two expressions for aF and bF
suggested by Engelund [25] are recommended for the applications presented at the
end of this chapter:

aF ¼ aEc3νf
1� cð Þ2d2 , bF ¼ bEc

g 1� cð Þ3d , (71)

Comparing Eqs. (69) and (70) and using Eq.(71) give

τp ¼ ρsd
2

ρf νf

1
aEc2 þ bERep

, (72)

where aE and bE are two model parameters depending on the composition of the
solid phase. The parameter aE is associated with kp as will be shown later. For
d≈ 2� 10�4 m, kp ≈ 10�10 � 10�11m2 [30], which gives aE ≈ 1:6� 103 � 1:6� 104

for c ¼ 0:5. The parameter bE varies from 1.8 to 3.6 or more [28, 31, 32].
For flow in a porous media, the particle response time can also be related to its

permeability κp. According to Darcy’s law for seepage [29], the pressure gradient
can also be written as

�
∂pf
∂x

¼ ρfνf 1� cð Þuf
κp

, (73)

where κp is the permeability. Combining Eqs. (69) and (73) gives

τp ¼
cρsκp

1� cð Þ2ρf νf
(74)

When the flow is very slow, Eqs. (70), (71), and (73) suggest that

aE ¼ d2

kp 1� cð Þ2 , (75)

which means that the particle response time can be related to the permeability.
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3.3.3 A hybrid model

Equation (64) is validated only for c,0:4 [28]. To extend Eq. (64) to high
concentration regions, Camenen [33] modified Eq. (64) to

w
ws

¼ 1� cð Þn�1 max 1� c=cm;0ð Þ½ �cm , (76)

where cm is the maximum concentration at which w ¼ 0. In this study, cm ¼ co is
adopted because when c≥ co, contact networks can form in the granular material.

Combining Eqs. (63), (76), and (66)–(67) gives

τp ¼ ρs
ρf

d2

νf

1� cð Þn�3 max 1� c=cm;0ð Þ½ �cm
18þ 4:5= 1þ ffiffiffiffiffiffiffi

Rep
p� �

þ 0:3
� �

Rep
: (77)

We stress that c ¼ cm will lead to τp ¼ 0 and thus an infinite drag force. Physically,
when the volumetric concentration is greater than some critical value, say cr,
Eq. (63) ceases to be valid, and Eq. (72) should be used. To avoid unnaturally large
drag force between the two phases, we propose the following model for particle
response time:

τp ¼

ρs
ρf

d2

νf

1� cð Þn�3 max 1� c=cm;0ð Þ½ �cm
18þ 4:5= 1þ ffiffiffiffiffiffiffi

Rep
p� �

þ 0:3
� �

Rep
, for c, cr

ρsd
2

ρf νf

1
aEc2 þ bERep

, for c≥ cr

8>>>>><
>>>>>:

(78)

where cr is the concentration at the intercept point of Eq. (72) and Eq. (77). The
transition from Eq. (77) to Eq. (72) is continuous at the intercept point where c ¼ cr.
The concentration at the point joining the two models (cr) is problem-dependent
and can be found in principle by solving the following equation:

1� crð Þn�3 max 1� cr=cm;0ð Þ½ �cm
18þ 4:5= 1þ ffiffiffiffiffiffiffi

Rep
p� �

þ 0:3
� �

Rep
¼ 1

aEc2r þ bERep
: (79)

For given values of aE and bE, Eq. (79) implicitly defines cr as a function of Rep.

4. Numerical implementation with OpenFOAM

4.1 Introduction to OpenFOAM

This section introduces how to use OpenFOAM® to solve the governing equa-
tions with the closure models presented in the previous section. OpenFOAM® is a
C++ toolbox developed based on the finite-volume method; it allows CFD code
developers to sidestep the discretization of derivative terms on unstructured grids.

4.2 Semidiscretized forms of the governing equations

To avoid numerical noises occurring when c ! 0, Rusche [34] suggests that the
momentum equations (Eqs. (38) and (40)) should be converted into the following
“phase-intensive” form by dividing ρf 1� cð Þ and ρsc:
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∂uf

∂t
þ ∇ � ufuf

� � � ∇ � uf
� �

uf ¼ g � 1
ρf

∇pf þ
1
ρf

∇ � τf �
τf � ∇c

ρf 1� cð Þ

� cρs
ρf 1� cð Þ

uf � us
� �

τp
þ ρs
ρf 1� cð Þτp

νtf
σc

∇c
(80)

and

∂us

∂t
þ ∇ � ususð Þ � ∇ � usð Þus ¼ g � 1

ρs
∇pf �

1
ρsc

∇cps

þ 1
ρs
∇ � τs þ τs � ∇c

ρsc
þ uf � us
� �

τp
� 1
cτp

νtf
σc

∇c
(81)

The solutions of Eqs. (80) and (81) are expressed in the following semidiscretized
forms:

uf ¼ Af
H

Af
D

þ g

Af
D

�
∇pf
ρfA

f
D

þ ρscus

ρfA
f
D 1� cð Þτp

þ ρs

ρfA
f
D 1� cð Þτp

νtf
σc

∇c (82)

us ¼ As
H

As
D
þ g
As

D
�

∇pf
ρsA

s
D
� ∇ps
ρsA

s
D
� ps∇c
ρsA

s
Dc

þ ρsuf

As
Dτp

� 1
As

Dcτp

νtf
σc

∇c (83)

where Aβ (β = s or f ) denotes the systems of linear algebraic equations arising from
the discretization of either Eqs. (82) or (83). The matrix Aβ is decomposed into a
diagonal matrix, Aβ

D, and an off-diagonal matrix, Aw
O. Also, A

w
H ¼ bw �Aβ

Ou
β with

bβ relating to the second to final terms on the right-hand side of either Eqs. (82) or
(83). OpenFOAM® built-in functions are used to compute Aβ

D and Aβ
H, which

depend on the discretization schemes. For example, Lee et al. [16] and Lee and
Huang [35] used a second-order time-implicit scheme and a limited linear interpo-
lation scheme for all variables except for velocity. To interpolate velocities, the
total-variation-diminishing (TVD) limited linear interpolation scheme is adopted
for velocity.

4.3 A prediction-correction method

If Eq. (83) is directly used to calculate us and Eq. (39) to calculate c, then c may
increase rapidly toward cc, leading to an infinite ps for large c. This can be avoided
by using a prediction-correction method to compute uf and us. This is achieved by
splitting Eq. (83) into a predictor u∗

s and a corrector. The predictor is

u∗
s ¼

As
H

As
D
þ g
As

D
�

∇pf
ρsA

s
D
þ ρsuf

As
Dτp

(84)

which is corrected by the following corrector

us ¼ u∗
s �

ps∇c
ρsA

s
Dc

� 1
As

Dcτp

νtf
σc

∇c

 !
(85)

This predictor-corrector scheme can improve the numerical stability by intro-
ducing a numerical diffusion term. To see this, we combine Eqs. (39) and (85) to
obtain the following equation describing the evolution of c:
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3.3.3 A hybrid model

Equation (64) is validated only for c,0:4 [28]. To extend Eq. (64) to high
concentration regions, Camenen [33] modified Eq. (64) to

w
ws

¼ 1� cð Þn�1 max 1� c=cm;0ð Þ½ �cm , (76)

where cm is the maximum concentration at which w ¼ 0. In this study, cm ¼ co is
adopted because when c≥ co, contact networks can form in the granular material.

Combining Eqs. (63), (76), and (66)–(67) gives

τp ¼ ρs
ρf

d2

νf

1� cð Þn�3 max 1� c=cm;0ð Þ½ �cm
18þ 4:5= 1þ ffiffiffiffiffiffiffi
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p� �
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� �

Rep
: (77)

We stress that c ¼ cm will lead to τp ¼ 0 and thus an infinite drag force. Physically,
when the volumetric concentration is greater than some critical value, say cr,
Eq. (63) ceases to be valid, and Eq. (72) should be used. To avoid unnaturally large
drag force between the two phases, we propose the following model for particle
response time:
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1� cð Þn�3 max 1� c=cm;0ð Þ½ �cm
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� �
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, for c, cr

ρsd
2

ρf νf
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aEc2 þ bERep
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8>>>>><
>>>>>:

(78)

where cr is the concentration at the intercept point of Eq. (72) and Eq. (77). The
transition from Eq. (77) to Eq. (72) is continuous at the intercept point where c ¼ cr.
The concentration at the point joining the two models (cr) is problem-dependent
and can be found in principle by solving the following equation:

1� crð Þn�3 max 1� cr=cm;0ð Þ½ �cm
18þ 4:5= 1þ ffiffiffiffiffiffiffi

Rep
p� �

þ 0:3
� �

Rep
¼ 1

aEc2r þ bERep
: (79)

For given values of aE and bE, Eq. (79) implicitly defines cr as a function of Rep.

4. Numerical implementation with OpenFOAM

4.1 Introduction to OpenFOAM

This section introduces how to use OpenFOAM® to solve the governing equa-
tions with the closure models presented in the previous section. OpenFOAM® is a
C++ toolbox developed based on the finite-volume method; it allows CFD code
developers to sidestep the discretization of derivative terms on unstructured grids.

4.2 Semidiscretized forms of the governing equations

To avoid numerical noises occurring when c ! 0, Rusche [34] suggests that the
momentum equations (Eqs. (38) and (40)) should be converted into the following
“phase-intensive” form by dividing ρf 1� cð Þ and ρsc:
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∂uf
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and
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The solutions of Eqs. (80) and (81) are expressed in the following semidiscretized
forms:
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where Aβ (β = s or f ) denotes the systems of linear algebraic equations arising from
the discretization of either Eqs. (82) or (83). The matrix Aβ is decomposed into a
diagonal matrix, Aβ

D, and an off-diagonal matrix, Aw
O. Also, A

w
H ¼ bw �Aβ

Ou
β with

bβ relating to the second to final terms on the right-hand side of either Eqs. (82) or
(83). OpenFOAM® built-in functions are used to compute Aβ

D and Aβ
H, which

depend on the discretization schemes. For example, Lee et al. [16] and Lee and
Huang [35] used a second-order time-implicit scheme and a limited linear interpo-
lation scheme for all variables except for velocity. To interpolate velocities, the
total-variation-diminishing (TVD) limited linear interpolation scheme is adopted
for velocity.

4.3 A prediction-correction method

If Eq. (83) is directly used to calculate us and Eq. (39) to calculate c, then c may
increase rapidly toward cc, leading to an infinite ps for large c. This can be avoided
by using a prediction-correction method to compute uf and us. This is achieved by
splitting Eq. (83) into a predictor u∗

s and a corrector. The predictor is

u∗
s ¼

As
H

As
D
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∇pf
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s
D
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which is corrected by the following corrector

us ¼ u∗
s �

ps∇c
ρsA

s
Dc

� 1
As

Dcτp

νtf
σc
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 !
(85)

This predictor-corrector scheme can improve the numerical stability by intro-
ducing a numerical diffusion term. To see this, we combine Eqs. (39) and (85) to
obtain the following equation describing the evolution of c:
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þ 1
As

Dτp

νtf
σc

 !
∇c (86)

The right-hand side of Eq. (86) now has a diffusive term introduced by the numer-
ical scheme. High sediment concentration and large ps increase the numerical dif-
fusion (the right-hand side of Eq. (86)) and thus can avoid a rapid increase of c and
the numerical instability due to high sediment concentration.

For the velocity-pressure coupling, Eq. (82) is similarly solved using a predictor
u∗
f and a corrector. The predictor is

u∗
f ¼

Af
H

Af
D

þ g

Af
D

þ ρscus

ρfA
f
D 1� cð Þτp

þ ρs

ρfA
f
D 1� cð Þτp

νtf
σc

∇c (87)

which is corrected by the following corrector

uf ¼ u∗
f �

∇pf
ρfA

f
D

(88)

Substituting Eq. (88) into Eq. (37) gives a pressure equation. However, when using
this pressure equation to simulate air-water flows, numerical experiments have
shown that the lighter material is poorly conserved [36]. The poor conservation of
lighter material can be avoided by combining Eqs. (37) and (39) into the following
Eq. (37):

∇ � 1� cð Þuf þ cus
� � ¼ 0 (89)

and using Eq. (89) to correct pf . The method proposed [37] can help avoid the
numerical instability. To show this, we follow Carver [37] and define

ûs ¼ As
H

As
D
þ g
As

D
� ∇ps
ρsA

s
D
� ps∇c
ρsA

s
Dc

þ ρsuf

As
Dτp

� 1
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Dcτp

νtf
σc

∇c (90)

and combine Eqs. (83) and (88)–(90) to obtain the following equation

∇ � 1� cð Þûf þ cûs
� � ¼ ∇ � 1� c

ρfA
f
D

þ c
ρsA

s
D

" #
∇pf (91)

The numerical diffusion term on the right-hand side of Eq. (91) can help
improve the numerical stability.

The prediction-correction method presented here deals with velocity-pressure
coupling and avoids the numerical instability caused by high concentration. The
turbulence closure k� ϵ model is also solved in “phase-intensive” forms. For other
details relating to the numerical treatments, the reader is referred to
“twoPhaseEulerFoam,” a two-phase solver provided by OpenFOAM®.

4.3.1 Outline of the solution procedure

When c ! 0, Eq. (83) becomes singular. To avoid this, 1=c is replaced by
1= cþ δcð Þ in numerical computations, where δc is a very small number, say 10�6.
When c≤ δc, only a very small amount of solid particles are moving with the fluid;
replacing 1=c by 1= cþ δcð Þmay introduce error in computing us; to avoid this error,
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we can set us ¼ uf , which means the solid particles completely follow the water
particles; this does not affect the computations of other variables because the
momentum of the solid phase cus is very small when c≤ 10�6. Because the maxi-
mum value of c is always smaller than 1, there is no singularity issue with Eq. (82).

An iteration procedure is needed to solve the governing equations at each time
step for the values of c,uf , ûs, and pf obtained at the previous time step, and it is
outlined below:

1. Solve Eqs. (80) and (81).

2. Compute u∗
s from Eq. (84).

3. Solve Eq. (86) for c.

4. Compute us from Eq. (85).

5. Compute ûs from Eq. (90).

6. Compute u∗
f from Eq. (87).

7. Solve Eq. (91) for pf .

8. Repeat Eqs. (5)–(7) for n times (say n = 1).

9. Compute uf from Eq. (88).

10.Set us ¼ uf for very dilute region, specifically c≤ 10�6.

11. Repeat Eqs. (1)–(10) with the updated c, uf , ûs, and pf until the residuals of

Eqs. (80), (86), and (91) are smaller than the tolerance (say 10�5).

12. Solve Eqs. (45) and (46) for k and ϵ, and compute the related coefficients.

Figure 1 is a flowchart showing these 12 solution steps.
In the absence of the solid phase, the numerical scheme outlined here reduces to

the “PIMPLE” scheme, which is a combination of the “pressure implicit with split-
ting of operator” (PISO) scheme and the “semi-implicit method for pressure-linked
equations” (SIMPLE) scheme. Iterations need to be done separately to solve
Eq. (80) for uf , Eq. (81) for us, Eq. (86) for c, Eq. (91) for pf , Eq. (45) for k, and

(46) for ϵ; the convergence criteria are set at the residuals not exceeding 10�8.
Because Eqs. (80), (81), (86), and (87) are coupled, additional residual checks need
to be performed at step 11; however, the residual for Eq. (81) is not checked because
us ¼ uf is enforced in step 10.

To ensure the stability of the overall numerical scheme, the Courant-
Friedrichs-Lewy (CFL) condition must be satisfied for each cell. The local Courant
number for each cell, which is related to the ratio between the distance of a
particle moving within Δt and the size of the cell where such particle is located, is
defined as

CFL ¼ ∑
abs u j � S j� �

2V
Δt, (92)
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The right-hand side of Eq. (86) now has a diffusive term introduced by the numer-
ical scheme. High sediment concentration and large ps increase the numerical dif-
fusion (the right-hand side of Eq. (86)) and thus can avoid a rapid increase of c and
the numerical instability due to high sediment concentration.

For the velocity-pressure coupling, Eq. (82) is similarly solved using a predictor
u∗
f and a corrector. The predictor is

u∗
f ¼

Af
H

Af
D

þ g

Af
D

þ ρscus

ρfA
f
D 1� cð Þτp

þ ρs

ρfA
f
D 1� cð Þτp

νtf
σc

∇c (87)

which is corrected by the following corrector
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Substituting Eq. (88) into Eq. (37) gives a pressure equation. However, when using
this pressure equation to simulate air-water flows, numerical experiments have
shown that the lighter material is poorly conserved [36]. The poor conservation of
lighter material can be avoided by combining Eqs. (37) and (39) into the following
Eq. (37):

∇ � 1� cð Þuf þ cus
� � ¼ 0 (89)

and using Eq. (89) to correct pf . The method proposed [37] can help avoid the
numerical instability. To show this, we follow Carver [37] and define
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and combine Eqs. (83) and (88)–(90) to obtain the following equation

∇ � 1� cð Þûf þ cûs
� � ¼ ∇ � 1� c

ρfA
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The numerical diffusion term on the right-hand side of Eq. (91) can help
improve the numerical stability.

The prediction-correction method presented here deals with velocity-pressure
coupling and avoids the numerical instability caused by high concentration. The
turbulence closure k� ϵ model is also solved in “phase-intensive” forms. For other
details relating to the numerical treatments, the reader is referred to
“twoPhaseEulerFoam,” a two-phase solver provided by OpenFOAM®.

4.3.1 Outline of the solution procedure

When c ! 0, Eq. (83) becomes singular. To avoid this, 1=c is replaced by
1= cþ δcð Þ in numerical computations, where δc is a very small number, say 10�6.
When c≤ δc, only a very small amount of solid particles are moving with the fluid;
replacing 1=c by 1= cþ δcð Þmay introduce error in computing us; to avoid this error,

134

Advanced Computational Fluid Dynamics for Emerging Engineering Processes…

we can set us ¼ uf , which means the solid particles completely follow the water
particles; this does not affect the computations of other variables because the
momentum of the solid phase cus is very small when c≤ 10�6. Because the maxi-
mum value of c is always smaller than 1, there is no singularity issue with Eq. (82).

An iteration procedure is needed to solve the governing equations at each time
step for the values of c,uf , ûs, and pf obtained at the previous time step, and it is
outlined below:

1. Solve Eqs. (80) and (81).

2. Compute u∗
s from Eq. (84).

3. Solve Eq. (86) for c.

4. Compute us from Eq. (85).

5. Compute ûs from Eq. (90).

6. Compute u∗
f from Eq. (87).

7. Solve Eq. (91) for pf .

8. Repeat Eqs. (5)–(7) for n times (say n = 1).

9. Compute uf from Eq. (88).

10.Set us ¼ uf for very dilute region, specifically c≤ 10�6.

11. Repeat Eqs. (1)–(10) with the updated c, uf , ûs, and pf until the residuals of

Eqs. (80), (86), and (91) are smaller than the tolerance (say 10�5).

12. Solve Eqs. (45) and (46) for k and ϵ, and compute the related coefficients.

Figure 1 is a flowchart showing these 12 solution steps.
In the absence of the solid phase, the numerical scheme outlined here reduces to

the “PIMPLE” scheme, which is a combination of the “pressure implicit with split-
ting of operator” (PISO) scheme and the “semi-implicit method for pressure-linked
equations” (SIMPLE) scheme. Iterations need to be done separately to solve
Eq. (80) for uf , Eq. (81) for us, Eq. (86) for c, Eq. (91) for pf , Eq. (45) for k, and

(46) for ϵ; the convergence criteria are set at the residuals not exceeding 10�8.
Because Eqs. (80), (81), (86), and (87) are coupled, additional residual checks need
to be performed at step 11; however, the residual for Eq. (81) is not checked because
us ¼ uf is enforced in step 10.

To ensure the stability of the overall numerical scheme, the Courant-
Friedrichs-Lewy (CFL) condition must be satisfied for each cell. The local Courant
number for each cell, which is related to the ratio between the distance of a
particle moving within Δt and the size of the cell where such particle is located, is
defined as

CFL ¼ ∑
abs u j � S j� �

2V
Δt, (92)
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where in u j ¼ 1� cð Þuj
f þ cuj

s, the subscript “j” represents the jth face of the cell, S j

is a unit normal vector, V is the volume of the cell, and Δt is the time step.
The Courant number must be less than 1 to avoid numerical instability.
Generally, max (CFL) <0.1 is suggested. The values of CFL for high
concentration regions should be much smaller than those for low concentration
regions so that rapid changes of c can be avoided. Therefore, it is recommended

that max CFLjc>co
� �

< 0.005. The time step is recommended to be in the range of

10�5 and 10�4 s.

5. Applications

This section briefly describes two examples that have been studied using the
two-phase flow models described. The problem descriptions and numerical setups
for these two problems are included here; for other relevant information, the reader
is referred to Lee and Huang [35] and Lee et al. [38].

5.1 Scour downstream of a sluice gate

A sluice gate is a hydraulic structure used to control the flow in a water channel.
Sluice gate structures usually have a rigid floor followed by an erodible bed. The

Figure 1.
A flow chart showing the solution procedure using OpenFOAM®.
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scour downstream of a sluice gate is caused by the horizontal submerged water jet
issuing from the sluice gate. It is of practical importance to understand the maxi-
mum scour depth for the safety of a sluice gate structure. Many experimental
studies have been done to investigate the maximum scour depth and the evolution
of scour profile (e.g., Chatterjee et al. [39]). For numerical simulations, this prob-
lem includes water (fluid phase) and sediment (solid phase) and is best modeled by
a liquid-solid two-phase flow approach. In the following, the numerical setup and
main conclusions used in Lee et al. [38] are briefly described. The experimental
setup of Chatterjee et al. [39] is shown in Figure 2. To numerically simulate the
experiment of [8], we use the same sand and dimensions to set up the numerical
simulations: quartz sand with ρs ¼ 2650 kg/m3 and d ¼ 0:76 mm is placed in the
sediment reservoir, with its top surface being on the same level as the top surface of
the apron; the sluice gate opening is 2 cm; the length of apron is 0:66 m; the
sediment reservoir length is 2:1 m; the overflow weir on the right end has a height of
0:239 m; the upstream inflow discharge rate at the sluice opening is 0:204 m2/s,
which translates into an average horizontal flow velocity V ¼ 1:02 m/s under the
sluice gate. As an example, the computed development of scour depth ds is shown in
Figure 3 together with the measurement of Chatterjee et al. [39].

The problem involves also an air-water surface, which can be tracked using a
modified volume-of-fluid method introduced in [38]. A nonuniform mesh is used in
the two-phase flow simulation because of the air-water interface, the interfacial
momentum transfer at the bed, and the large velocity variation due to the water
jet. The finest mesh with a vertical mesh resolution of 2d is used in the vicinity of
the sediment-fluid interface; this fine mesh covers the dynamic sediment-fluid

Figure 2.
A sketch of the experimental setup for scour induced by a submerged water jet.

Figure 3.
Comparison of the computed scour depth with measurements of Chatterjee et al. [39].
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5.1 Scour downstream of a sluice gate

A sluice gate is a hydraulic structure used to control the flow in a water channel.
Sluice gate structures usually have a rigid floor followed by an erodible bed. The
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A flow chart showing the solution procedure using OpenFOAM®.
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scour downstream of a sluice gate is caused by the horizontal submerged water jet
issuing from the sluice gate. It is of practical importance to understand the maxi-
mum scour depth for the safety of a sluice gate structure. Many experimental
studies have been done to investigate the maximum scour depth and the evolution
of scour profile (e.g., Chatterjee et al. [39]). For numerical simulations, this prob-
lem includes water (fluid phase) and sediment (solid phase) and is best modeled by
a liquid-solid two-phase flow approach. In the following, the numerical setup and
main conclusions used in Lee et al. [38] are briefly described. The experimental
setup of Chatterjee et al. [39] is shown in Figure 2. To numerically simulate the
experiment of [8], we use the same sand and dimensions to set up the numerical
simulations: quartz sand with ρs ¼ 2650 kg/m3 and d ¼ 0:76 mm is placed in the
sediment reservoir, with its top surface being on the same level as the top surface of
the apron; the sluice gate opening is 2 cm; the length of apron is 0:66 m; the
sediment reservoir length is 2:1 m; the overflow weir on the right end has a height of
0:239 m; the upstream inflow discharge rate at the sluice opening is 0:204 m2/s,
which translates into an average horizontal flow velocity V ¼ 1:02 m/s under the
sluice gate. As an example, the computed development of scour depth ds is shown in
Figure 3 together with the measurement of Chatterjee et al. [39].

The problem involves also an air-water surface, which can be tracked using a
modified volume-of-fluid method introduced in [38]. A nonuniform mesh is used in
the two-phase flow simulation because of the air-water interface, the interfacial
momentum transfer at the bed, and the large velocity variation due to the water
jet. The finest mesh with a vertical mesh resolution of 2d is used in the vicinity of
the sediment-fluid interface; this fine mesh covers the dynamic sediment-fluid

Figure 2.
A sketch of the experimental setup for scour induced by a submerged water jet.

Figure 3.
Comparison of the computed scour depth with measurements of Chatterjee et al. [39].
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interface during the entire simulation. In regions away from the sediment-fluid
interface or regions where the scouring is predicted to be negligible (e.g., further
downstream the scour hole), the mesh sizes with a vertical resolution ranging from 3
to 5 mm are used. The aspect ratio of the mesh outside the wall jet region is less than
3.0. Since in the wall jet, horizontal velocity is significantly larger than the vertical
velocity, the aspect ratio of the local mesh in the wall jet region is less than 5.0.

The scour process is sensitive to the model for particle response time used in the
simulation. Because Eq. (72) can provide a better prediction of sediment transport
rate for small values of Shields parameter, it is recommended for this problem. The
two-phase flow model can reproduce well the measured scour depth and the loca-
tion of sand dune downstream of the scour hole.

5.2 Collapse of a deeply submerged granular column

Another application of the fluid-solid two-phase flow simulation is the simula-
tion of the collapse of a deeply submerged granular column. The problem is best
described as a granular flow problem, which involves sediment (a solid phase) and
water (fluid phase). Many experimental studies have been reported in the literature
on this topic. This section describes a numerical simulation using the fluid-solid
two-phase flow model described in this chapter.

Figure 4 shows the experimental setup of Rondon et al. [40]. A 1:1 scale two-
phase flow simulation was performed by Lee and Huang [35] using the fluid-solid
two-phase flow model presented in this chapter. The diameter and the density of
the sand grain are 0.225 mm and 2500 kg/m3, respectively. The density and the
dynamic viscosity of the liquid are 1010 kg/m3 and 12 mPa s, respectively. Note that
the viscosity of the liquid in the experiment is ten times larger than that for water at
room temperature. For this problem, using a mesh of 1.0 � 1.0 mm and the particle
response model given by Eq. (78), the fluid-solid two-phase flow model presented
in this chapter can reproduce well the collapse process reported in Rondon et al.
[40]. Figure 5 shows the simulated collapsing processes compared with the mea-
surement for two initial packing conditions: initially loosely packed condition and
initially densely packed condition.

The two-phase model and closure models presented in this chapter are able to
deal with both initially loose packing and initially dense packing conditions and
reveal the roles played by the contractancy inside the granular column with a loose
packing and dilatancy inside a granular column with a dense packing. One of the
conclusions of Lee and Huang [35] is that the collapse process of a densely packed
granular column is more sensitive to the model used for particle response time than
that of a loosely packed granular column. The particle response model given by
Eq. (78) performs better than other models; this is possibly because the liquid used
in Rondon et al. [40] is much viscous than water.
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A sketch of the experimental setup for the collapse of a deeply submerged granular column.
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6. Summary

This chapter presented a brief introduction to the equations and closure models
suitable for fluid-solid two-phase flow problems such as sediment transport, sub-
marine landslides, and scour at hydraulic structures. Two averaging operations
were performed to derive the governing equations so that the turbulent dispersion,
important for geophysical flow problems, can be considered. A new model for the
rheological characteristics of sediment phase was used when computing the stresses
of the solid phase. The k� ϵ model was used to determine the Reynolds stresses. A
hybrid model to compute the particle response time was introduced, and the
numerical implementation in the framework of OpenFOAM® was discussed. A
numerical scheme was introduced to avoid numerical instability when the concen-
tration is high. Two applications were describe to show the capacity of the two-
phase flow models presented in this chapter.
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Chapter 7

CFD Simulation of Flow 
Phenomena in Selected 
Centrifugal Pumps, Industrial 
Fans and Positive Displacement 
Pumps
Wieslaw Fiebig, Paulina Szwemin and Maciej Zawislak

Abstract

The chapter presents simulation models for the analysis of centrifugal pumps, 
fans and positive displacement pumps. In centrifugal pumps based on the “sliding 
mesh” method, a CFD model was created to calculate the flow characteristics, and 
the pump operating parameters were determined at which an unfavourable phe-
nomenon of cavitation occurs. In the case of a radial fan, the CFD model was used to 
determine the influence of inlet channel geometry on the efficiency of an industrial 
installation. The main purpose of the CFD simulation was to obtain the pressure 
distributions and determine the areas in which cavitation may occur. To investigate 
the flow phenomena that occur in external gear pumps and double-acting vane 
pumps, the “immersed solid” method was used. The results of 2D and 3D simulation 
studies for various operating parameters of pumps have been presented.

Keywords: CFD simulation, pumps, cavitation, industrial fans, flow analysis

1. Introduction

Industrial machines and devices with rotating operating parts are difficult to 
model due to their complex geometry, the transition of elements of the discrete 
model between the rotating and non-rotating parts, the importance of the quality 
of elements of the discrete model, and the fact that in most cases, it is necessary to 
take into account the time step (elements rotate in relation to the casing). It is also 
troublesome that very often the calculations are stabilised only after a few rota-
tions of the operating element. However, the use of computational fluid dynamics 
methods to model this group of machines and equipment is justified, as it enables:

• Determining the internal and external characteristics of machines and devices 
in virtual space

• Imaging and observing the flow phenomena in the machine itself (especially 
when for various reasons it is impossible to measure physical quantities of the 
flowing medium)
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• Designing equipment for which there are no design guidelines (e.g. differen-
tials, mixers)

• Improving the efficiency of machinery and equipment

In this chapter, selected examples of numerical calculations will be 
described, showing the possibility of using CFD methods to solve machine and 
equipment problems with a rotating operating element, often found in indus-
trial practice.

2. Vane pump: flow analysis

The innovative vane pump described in study [1] was subjected to the analysis of 
flow phenomena. In this solution, the pump is integrated into the BLDC permanent 
magnet electric motor. Due to its design, which differs from the standard solutions, 
it was necessary to check whether cavitation could occur in the suction channel of 
the pump. The main objective of the CFD simulation was to determine the areas 
where cavitation is likely to occur [2] and its intensity depending on the rotational 
velocity. The subject of the study is a positive displacement pump with integrated 
electric drive, consisting of an impeller embedded in a casing. Unlike conventional 
gear and vane pumps [3–10], the pump impeller and motor stator are immovable 
components, while the pump casing rotates with the rotor of the electric motor. 
Figure 1 shows the 3D model of the analysed pump.

An important problem is to examine the flow in the suction channel of the 
pump, as it is exposed to the adverse effects of cavitation, which can develop as a 
result of a too high value of negative pressure occurring in the suction area.

On the basis of the three-dimensional model of the pump, a geometric model 
of the volume of operating fluid filling its interior was prepared (Figure 1b). As 
expected, the result is a very complex structure in terms of geometry. Due to the 
particular interest in the phenomena occurring in the suction channel of the pump, 
the calculations used a fragment of the geometric model of the operating fluid 
volume filling the interior of the pump, which is the volume of oil filling the pump 
from the inlet to the suction kidneys supplying the fluid to the inter-vane spaces 
(Figure 2a). The separated volume is contained in the immovable elements of the 
structure, which further simplifies the formulation of the flow problem and the 
choice of calculation parameters.

Figure 1. 
(a) 3D model of the vane pump with integrated mechatronic electric drive and (b) 3D model of the operating 
fluid volume filling the pump.
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Based on the three-dimensional pump model, the simplified geometric model 
of the operating fluid volume filling the suction channel was discretized using a 
tetrahedral grid. The result is a geometric model divided into 144,390 tetrahedral 
elements with 29,711 nodes, as shown in Figure 2b.

The next step in formulating the flow problem is to select the type and define the 
boundary conditions for relevant fragments of the geometry. In the analysed case, the 
conditions concerning the fluid inflow and outflow were set as shown in Figure 2a.

Figure 2. 
(a) Suction channel geometry and (b) discrete model.

Figure 3. 
Generic geometry—suction channel pressure distribution for different rotational velocities: (a) 500 rpm, (b) 
1000 rpm, (c) 1500 rpm, (d) 2000 rpm, (e) 2500 rpm and (f) 3000 rpm.
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Figure 1. 
(a) 3D model of the vane pump with integrated mechatronic electric drive and (b) 3D model of the operating 
fluid volume filling the pump.
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Based on the three-dimensional pump model, the simplified geometric model 
of the operating fluid volume filling the suction channel was discretized using a 
tetrahedral grid. The result is a geometric model divided into 144,390 tetrahedral 
elements with 29,711 nodes, as shown in Figure 2b.

The next step in formulating the flow problem is to select the type and define the 
boundary conditions for relevant fragments of the geometry. In the analysed case, the 
conditions concerning the fluid inflow and outflow were set as shown in Figure 2a.

Figure 2. 
(a) Suction channel geometry and (b) discrete model.

Figure 3. 
Generic geometry—suction channel pressure distribution for different rotational velocities: (a) 500 rpm, (b) 
1000 rpm, (c) 1500 rpm, (d) 2000 rpm, (e) 2500 rpm and (f) 3000 rpm.
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Figure 4. 
Generic geometry—suction channel velocity distribution for different velocities: (a) 500 rpm, (b) 1000 rpm, 
(c) 1500 rpm, (d) 2000 rpm, (e) 2500 rpm and (f) 3000 rpm.

In order to obtain the most accurate results of the simulation, the “pressure 
inlet” condition at the inlet and the “mass flow rate” at the outlet were assumed. 
The mass flow rate was determined using the formula:

  q = 2zb [  π __ z   ( R  2  2  −  R  1  2 )  − w ( R  2   −  R  1  ) ]   (1)

where q is the specific mass flow rate; z is the number of vanes; b is the width of 
a vane; w is the thickness of a vane; R1 is the small race radius; and R2 is the large 
race radius.

On this basis, the numerical values entered into the simulation for each impeller 
velocity were obtained. Within the framework of the study, the analysis of the oper-
ating medium flow through the suction channel of the vane pump was performed 
for various rotational velocity values—changed within the range of 500–3000 rpm.

Figure 3 shows the pressure distributions in the suction channel of the tested 
pump for the generic geometry. For each of the cases considered, the lowest pres-
sure occurs in one of the channels supplying fluid to the suction kidneys directly 
at the inlet to the channel. It was found that the negative pressures for the whole 
range of rotational velocities are higher than the pressure of oil evaporation, which 
prevents the occurrence of cavitation phenomena.
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The results of the calculations, apart from pressure distributions, were presented in 
the form of velocity distributions in the considered area, which are presented in Figure 4.  
From the obtained velocity distributions, it appears that the rotational velocity of the 
pump significantly influences the velocity of fluid flow in one of the supply channels 
for both the generic and the modified geometry. It is worth noting that the area where 
the highest velocities were identified corresponds to the area of the lowest pressures 
observed in the suction channel. The velocity of the fluid decreases with the lowering of 
the rotational velocity, but in the case of simplified geometry, it is slightly lower.

Figure 5 shows the fluid flow in the form of streamlines, for which the inflow 
plane to the domain is assigned as the beginning. The results obtained confirm the 
previous assumptions that the fluid flows evenly and without major turbulences 
through both inlet channels. Uneven velocity distribution and different pressure 
values due to asymmetrical layout of channels did not affect the fluid flow. The 
results obtained on the basis of numerical calculations are the basis for evaluation 
of the structure of channels supplying fluid to the inter-vane volumes.

3. Radial fan: characteristics and performance improvement

Another object under consideration with rotating operating elements was a 
radial fan. The aim of the numerical simulation was to improve its efficiency. The 
flow of real gas through a fan with a finite amount of blades is carried out by the 
cost of loss of energy, called hydraulic losses. Those losses are a consequence of 
the friction of air molecules occurring on the blade walls and fan housing, vortexes 
developed in the gas stream, etc. The influence of hydraulic losses on the working 
characteristic of the radial fan is described by a hydraulic efficiency coefficient, 
which is defined as the ratio of the useful power to the power delivered by the 
impeller. This coefficient also defines the real delivery height to the theoretical 
delivery height—obtained for the finite amount of impeller blades. The impeller 
geometry considered in possible options, i.e. with eight (factory option) and nine 
(suggested option) vanes, are shown in Figures 6 and 7.

Figure 5. 
Generic geometry—streamlines in the investigated suction channel area for different velocities: (a) 500 rpm, 
(b) 1000 rpm, (c) 1500 rpm, (d) 2000 rpm, (e) 2500 rpm and (f) 3000 rpm.
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Figure 8. 
Discrete model with division into tetrahedral elements on the impeller and vanes.

Figure 7. 
Impeller shape: nine vanes.

Figure 6. 
Impeller shape: eight vanes.

Figure 9. 
Comparison of the calculation results and the results of the technical documentation for the impeller with the 
eight and nine vanes.
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For the calculations, the model of impeller according to the enclosed documentation 
was used as the output model. Calculations have been made for both impeller variants. 
For both of the cases, the discrete model was based on tetrahedral elements (as exem-
plary shown in Figure 8). Elements near walls were compacted. The flow was modelled 
as turbulent, using the RANS method and the two-equation turbulence model k-ε.

In the first stage of the study, the analysis of the impeller with eight (Figure 6)  
and nine (Figure 7) vanes was carried out. For the eight vanes, the results of 
the simulation were also compared with the available results in the technical 

Figure 10. 
Total velocity [m/s] distribution for calculated impeller operating points with eight and nine vanes.
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documentation and found to be similar (Figure 9). Furthermore, the overall per-
formance of the two types of impellers found with aid of CFD calculation maintains 
in similar level.

In order to verify the correctness of the calculation of the main dimensions of 
the impeller, a theoretical design process was carried out. On the basis of known 
designs, the influence of impeller parameters on its performance, compression and 
efficiency was simulated. It was necessary to maintain the existing parameters of 
the impeller, improving only its efficiency. The modifications were limited by the 
external dimensions of the impeller in order to be able to work with the existing 
collecting volute.

After a number of variant combinations, the outlet angle of the vane was 
changed to 23° and the vane profile modified to improve efficiency. The results 
show that by changing the outlet angle, the average efficiency for the eight-vane 
impeller was increased by 2.3% and for the nine-vane impeller by 2.9% in relation to 
the basic eight-vane impeller.

Figure 10 shows a comparison of the flow images for the impellers with eight 
and nine vanes with a 23° outlet angle.

The best results were obtained for the nine-vane impeller and the changed outlet 
angle. An average efficiency increase of 2.9% was achieved in relation to the impel-
ler from the technical documentation. The flow images are correct. There are no 
particularly dangerous phenomena, such as interruption of flow or turbulence.

4.  Centrifugal pump with collecting channel: undetermined flow with 
cavitation

Another object of the study was a single-stage centrifugal pump with a spiral 
volute cooperating with two similar types of impellers, commonly used in such 
a device. Those impellers are denoted as W13 and W17. The W17 impeller dif-
fers from the W13 impeller only by the shape of a vane. Both impellers had eight 
vanes each. The analysis of the impellers with the two-dimensional peculiarity 
method for non-viscous medium suggested higher cavitation resistance of the W13 
impeller.

In the first stage, calculations were made of the undetermined flow through 
the pump without cavitation in order to determine the most favourable boundary 
conditions to be applied when analysing the flow through the pump and determin-
ing the calculation characteristics of the pump and the impeller.

The calculations reflect the full three-dimensional geometry of the pump 
(Figure 11) consisting of a straight section of the pipeline before the inlet to the 
impeller, a centrifugal impeller, a spiral collecting volute, a diffuser, and a short 
section of pipeline after the pump.

Separate discreet models have been built in the inlet and outlet impeller areas. 
On the cylindrical surface between the impeller and the volute, these models were 
not connected by common nodes and remained unfit. Thus, during the calculation 
it was possible to use the “sliding mesh” technique, which is used to model the rota-
tion of the impeller in relation to the stationary casing. The discrete model is built 
with approximately 1.3 million tetrahedral elements in total. The elements were 
also compacted near the vane surface and in the area between the impeller and the 
collecting channel (Figure 12).

The mathematical model of the flow is described by the Reynolds-averaged 
Navier-Stokes equations (RANS). For the description of the turbulence, a two-
equation k-ε model was used. The following control surfaces were used, where 
static pressure was monitored during the calculation:
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• The inlet section at the beginning of the suction channel (A-A)

• The cylindrical surface at the outlet from the impeller inter-vane channel (B-B)

• The cross section at the end of the diffuser (C-C)

• The outlet section at the end of the cylindrical section of the pipeline (D-D)

Calculations were made according to the scheme:
In the inlet section (A-A), a homogeneous velocity field was set with the value 

resulting from the flow rate and the channel section area c = Q/A and the direction 
corresponding to the connector axis (“velocity inlet” boundary condition). In 
cross section (D-D), a high static pressure of 1000 kPa was set so that the pressure 
in the impeller would not drop below the saturation vapour pressure (“pressure 
outlet” boundary condition). A two-phase flow “mixture” model was selected 
for the calculations. During the calculations, equations describing the formation 
of the gaseous phase (cavitation) were excluded. This approach is suggested by 
ANSYS Fluent.

Figure 11. 
The calculation area under consideration and its characteristic cross sections (W13 impeller pump).

Figure 12. 
Discrete model by type of tetrahedral element of the impeller surface, on the hub and rear disc side.
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Figure 13. 
Example pressure pulsation diagram as pressure difference between vane outlet (interface_2) and inlet (inlet), 
depending on iteration (time).

Figure 14. 
Pump and impeller flow characteristics W13 determined by calculation of the transient flow (spiral collecting 
channel model): comparison with experimental data.

On the internal walls of the flow channel, the condition of zero velocity of the fluid 
in relation to the wall was set. The increase of static pressure (increase of hydrostatic 
height) between inlet and outlet cross sections of the pump was the expected value and 
allowed to reproduce flow characteristics. During the calculations, the average static 
pressure was monitored on the four control surfaces mentioned above. The calculations 
were interrupted after repeated oscillations of the static pressure on these surfaces 
were obtained, which took place after 6–8 rotations of the impeller. An example of a 
pressure pulsation diagram is shown in Figure 13. A fixed time step of Δt = 5,75E–5 s, 
corresponding to an impeller rotation by 1°, was used for the calculations.

The calculated flow characteristics of the entire pump and the W13 impeller are 
presented in Figure 14. The course of the relevant experimental characteristics is 
also presented.

The pump characteristics indicate a pressure increase between the cross sections A-A 
and C-C, characteristics of the impeller—between sections A-A and B-B. The pressure 
drop in the suction channel is insignificant compared to the pressure drop in the impeller.
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Cavitation in the pump is associated with a pressure drop in the suction area of 
the first degree [11]. This causes the fluid-vapour biphasic flow to occur and the 
continuity of the flow through the pump to be interrupted. In centrifugal pumps, 
cavitation shall be characterised by a clearly visible disturbance in the follow-
ing characteristics: flow H = f(Q ), power consumption P = f(Q ) and efficiency 
η = f(Q ). If the suction height increases at a given velocity and flow rate (or the 
intake height decreases), then the boundary value of the suction height at which 
the pump enters the cavitation state is obtained. In this way, taking into account a 
certain safety margin, it is possible to obtain a curve of the required excess of the 
energy of a fluid at the pump inlet section over the energy of evaporation of this 
fluid in the form of NPSH = f(Q ) (net positive suction head). The NPSH parameter 
expresses the “suction power” of the pump:

  NPSH =    p  s   −  p  v   _____ γ   +    c  s  2  __ 2g    (2)

where ps is the absolute pressure at the inlet cross section of the pump and cs is 
the fluid velocity at the pump inlet cross section (average). Typically, this surplus is 
related to a state where the first-stage total head drops by 3% (NPSH3).

Determination of the cavitation state in the impeller for a given flow rate 
requires many calculations of the pressure distribution in the inter-vane space at 
the decreasing inlet pressure. The simulation assumes that a simplified geometric 
model of a collective channel can be used to determine the flow characteristics of 
the impeller itself. Instead of a spiral, an axial-symmetrical guide was used as a 
drainage element for the medium.

Due to the symmetry of geometry, the flow through the impeller is determined. 
The elimination of pressure pulsations has significantly accelerated the iterative cal-
culation process. The flow field in the impeller still remained a periodic-symmetric 
field, but it was the same in all the vane channels. This allowed the calculation area 
to be limited to one inter-vane channel of the impeller. As a result, the calculation 
time corresponding to one characteristic point has been reduced.

A discrete model consisting of about 300,000 hexahedral cells was used. Since 
the discrete model remains stationary during the calculation, a moving reference 
frame was used which rotates at the impeller velocity.

For the calculations, the “velocity inlet” and “pressure outlet” boundary condi-
tions were used on the outer surface of the annular collecting channel and the 
two-phase flow “mixture” model. During the calculation, the average static pressure 
value at the cross sections A-A (inlet) and B-B (outlet from the impeller inter-vane 
channel) was monitored.

Cavitation test in the impeller was performed for several selected values of the 
flow rate. Calculations were carried out in which equations describing cavitation 
and two-phase flow were included. The static pressure at the outlet was gradually 
reduced from 800 to 580 kPa.

It was found that the lowest pressure in the impeller was initially higher than the 
saturated vapour pressure pmin > pv; then it was already limited by the pv value. For 
each set outlet pressure, the static inlet pressure was recorded. In the W13 impeller, 
cavitation occurs on the impeller vanes, close to the incidence edge on the concave 
side of the vane. In the W17 impeller, cavitation appears on the convex side of 
the vane (for Q = 70 m3/h). Selected images of the development of cavitation are 
presented in Figures 15 and 16.

When the outlet pressure is further reduced, it reaches a constant boundary 
value, depending on the flow rate—fully developed cavitation. Further lowering of 
the outlet pressure leads to a loss of convergence and interruption of the calculation.
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time corresponding to one characteristic point has been reduced.
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frame was used which rotates at the impeller velocity.

For the calculations, the “velocity inlet” and “pressure outlet” boundary condi-
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two-phase flow “mixture” model. During the calculation, the average static pressure 
value at the cross sections A-A (inlet) and B-B (outlet from the impeller inter-vane 
channel) was monitored.

Cavitation test in the impeller was performed for several selected values of the 
flow rate. Calculations were carried out in which equations describing cavitation 
and two-phase flow were included. The static pressure at the outlet was gradually 
reduced from 800 to 580 kPa.

It was found that the lowest pressure in the impeller was initially higher than the 
saturated vapour pressure pmin > pv; then it was already limited by the pv value. For 
each set outlet pressure, the static inlet pressure was recorded. In the W13 impeller, 
cavitation occurs on the impeller vanes, close to the incidence edge on the concave 
side of the vane. In the W17 impeller, cavitation appears on the convex side of 
the vane (for Q = 70 m3/h). Selected images of the development of cavitation are 
presented in Figures 15 and 16.

When the outlet pressure is further reduced, it reaches a constant boundary 
value, depending on the flow rate—fully developed cavitation. Further lowering of 
the outlet pressure leads to a loss of convergence and interruption of the calculation.
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Figure 16. 
Cavitation development image on the impeller W17 disc surface at Q = 70 m3/h and decreasing static inlet 
pressure (percentage of gas phase is given).

Cavitation image – model with spiral collection channel and immovable impeller 
(Moving Reference Frame) – Figure 17. Cavitation image – model with spiral collect-
ing channel and rotating impeller (Moving Mesh) – Figure 18.

The cavitation fields for the axial-symmetric model are correctly symmetrical. 
However, the behaviour of the tested impellers is different:

• Impeller W13: cavitation is formed on the concave side of the vane.

• Impeller W17: cavitation is formed on the convex side of the vane.

The calculations converge quickly. However, the cavitation fields in the mov-
ing reference frame model are non-physical, and the cavitation area expands very 

Figure 15. 
Cavitation development image on the impeller W13 disc surface at Q = 70 m3/h and decreasing static pressure at 
the inlet (percentage of gas phase is given).
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quickly. Cavitation starts in the direction of the smallest radius of the collect-
ing spiral. The moving mesh model produces the best results (mainly physical). 
However, the problem is the slow convergence of calculations and their long 
duration.

Figure 17. 
Cavitation area for parameters: (a) inlet = 189 kPa and outlet = 800 kPa, (b) inlet = 95 kPa and 
outlet = 700 kPa, (c) inlet = 58 kPa and outlet = 650 kPa, (d) inlet = 27 kPa and outlet = 622 kPa and (e) 
inlet = 27 kPa and outlet = 600 kPa. The percentage of gas phase is given.

Figure 18. 
Cavitation area for parameters: (a) inlet = 28.3 kPa and outlet = 675 kPa, (b) inlet = 27.8 kPa and 
outlet = 650 kPa and (c) inlet = 27.8 kPa and outlet = 622 kPa. The percentage of gas phase is given.
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5. Cavitation resistance of the pump

The different cavitation properties of the two impellers can be explained by the 
significantly different inlet angle of the β1 vane—30°40′ (W13) and 21° (W17)—as 
with the same other geometric data, resulted in a very different position of the ideal 
inflow point. This is confirmed by the experimental characteristics of the pumps 
H = f(Q ) and η = f(Q ) from operation.

The analyses indicated the possibility of obtaining information on cavitation 
resistance of the designed structure through the rational use of CFD programs. 
The alternative solution of designing a prototype pump and carrying out a series of 
experiments may be challenging.

6. Conclusion

The CFD analysis made it possible to identify areas where cavitation is more 
likely to occur and to assess its intensity in relation to the rotational velocity. 
The results showed that one of the inlet channels has both negative pressure 
and increased fluid flow velocity. Calculations made for different pump rota-
tional velocities and different suction channel geometries have shown that the 
intensity of these phenomena increases with the rotational velocity. However, 
these phenomena are not strong enough to contribute to the development of the 
phenomenon of cavitation. A series of simulations for different suction channel 
geometries have confirmed that no modification of the suction channel geometry 
is required. Considering the designs presented here the cavitation occurred either 
on the convex or concave side of the vane. The main difference between the vanes 
was the angle of its inclination. Hence there is a specific angle between 30 and 21° 
at which the transition occurs. The volumetric flow rate was unchanged in both 
of the impeller designs, although the inlet pressures were found to be different. 
For blades inclined at 30°, the inlet pressures were almost twice lower than in 
the case of 21°. Hence lower inclination of blades is more immune to cavitation 
development.

The CFD calculations were made to check the selection of the main dimensions 
of the radial fan. After performing many variant calculations, it was found that 
by changing the number of blades and the outlet angle of the blades, it is possible 
to increase the efficiency of the fan. It appeared that the efficiency is greater for 
impellers with greater amount of vanes. Furthermore the efficiency increased 
when the vanes were inclined to 23°, and as stated above, at such angle the cavita-
tion occurs at higher inlet pressures and represent higher immunity to cavitation. 
Therefore the increase of efficiency may be partially a consequence of lack of 
cavitation.

It was found that the characteristics of the centrifugal pump from CFD cal-
culations are consistent with the characteristics obtained experimentally. Based 
on the CFD analysis, cavitation resistance of the designed centrifugal pump was 
determined.
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