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Preface

“The fact is that Gutenberg led to books being put in shelves, and digitisation is 
taking books off shelves. If you start taking books off shelves then you are only going 
to find what you are looking for, which does not help those who do not know what 
they are looking for.”

- Jeanette Winterson

Modern technologies surround all of us and they are our most reliable partners 
for the future. The 21st century ushered in a new era of technology that has been 
reshaping everyday life, simplifying outdated processes, and even giving rise to 
entirely new business sectors. On the other hand, contemporary customers and 
users of products and services expect more and more personalized products and 
services that can meet their unique needs. Through good-quality work and deter-
mination, clients will share with you their business needs and requirements, certain 
that you will find the right solutions for them. Therefore, companies must continu-
ously improve their competitiveness and explore modern ways and techniques for 
the full experience of clients. For this, it is necessary to further develop existing 
methods, adapt them to new applications, or the discovering of new methods.

Methods that have an increasing impact on humanity today and can solve differ-
ent types of problems even in specific industries are: artificial intelligence, neural 
networks, machine learning, digital signal processing, spectroscopy, process 
optimization, methods for analyzing and predicting financial markets, time series 
analysis etc. Upgrading with Fourier Transformation gives a different meaning to 
the method. Methods based on Fourier Transformation have great application in all 
areas of science and engineering. New technologies support their development and 
have good projected acceleration in the future. The future has five faces: Innovation, 
Digitalization, Urbanization, Community, and Humanity. The scientific sector 
should develop each of these faces, but one that occupies a leading position is 
definitely Digitalization. Digitalization is transforming our industry and making it 
more efficient and customer-centric than ever before. It strives for the future every 
day and is struggling to overcome professional challenges.

This book provides a detailed overview of some Fourier Transformation based 
methods that have an increasing impact on humanity and can solve different types 
of problems.

The first chapter presents a mathematical theory of a Discrete Hankel Transform 
(DHT) that is shown to arise from a discretization scheme based on the theory of 
Fourier–Bessel expansions. The Hankel Transform (HT), also known as the Fourier-
Bessel Transform, is a significant integral transform that has been applied in many 
areas of science and engineering. HT is closely related to the Fourier Transform (HT 
of 0th order is a 2D FT of a rotationally symmetric function, HT appears in defining 
the 2D FT in polar coordinates and the spherical, as well as in the definition of the 
3D FT in spherical polar coordinates). The scientific contribution of this chapter 
is to present the theory of DHT as a ‘stand-alone’ transformation. The author has 
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XIV

systematically demonstrated the standard operating rules for multiplication, modu-
lation, shift, and convolution. Sampling and interpolation theorems were shown, 
as well as the theory and numerical steps to use the presented discrete theory for 
the purpose of approximating the continuous HT. Links to the publicly available, 
open-source numerical code were also included.

The application of the Fourier Transform for obtaining matrix equations (inho-
mogeneous and homogeneous generalized Fredholm equations) is described in the 
second chapter. The authors have systematically expanded on the scope of Fourier 
Transforms by application to a relatively new class (a vector generalization) of 
integral equations, named Generalized Fredholm Equations (GFE). They included 
the mathematical proofs for properties of the integral equations, the relationship 
between homogeneous and inhomogeneous equations, and the mechanism for 
release of the evanescent waves converting them to travelling ones. The scientific 
contribution of this chapter is the discovery of a strong relationship between the 
resonant solutions of the Generalized Homogeneous Fredholm Equations for the 
electromagnetic field and the resonances observed in scattering in nuclear phys-
ics. The physical interpretation of the new class of resonances makes it possible to 
discern completely new applications in different subjects such as electromagnetic 
wave propagation or the understanding of meta-materials.

The development of a new technique for spectral analysis for unevenly sampled 
data, called Non-Uniform Discrete Fourier Transform (NUDFT), is the subject 
of the third chapter. The new method of dealing with unevenly sampled data was 
developed and it has interesting anti-aliasing properties. Namely, unlike in elec-
tronic devices, it is very difficult to devise procedures to detect aliasing in humans. 
In electronic devices, aliasing can be easily detected by changing the sampling rate. 
In humans, fluctuations of heart rate are of the same order as the required changes 
in the sampling rates. It is therefore very important to develop a proper procedure 
for detecting aliasing in humans. One of the main points in this chapter is devoted 
to the problem of how to detect aliasing in the heart rate spectral analysis. The 
authors conducted an experiment that gave a clear insight into the mechanism of 
aliasing in the heart rate (R-R) interval spectrum. They discussed the relationship 
between the R-R interval spectral analysis and the spectral analysis of the cor-
responding electrocardiography (ECG) signal from which the R-R intervals were 
evaluated. The spectral analysis of the ECG signal is more sensitive and accurate 
compared to the R-R interval spectral analysis and is free from aliasing.

A method based on the principle of Fourier spectrum cloning for the denoising of 
images is proposed in the fourth chapter. This method improves the peak signal to 
noise ratio (PSNR) and the structural similarity (SSIM) ratio in comparison with 
spectrum masking denoising. Much refinement can be implemented in the future in 
order to improve these results obtained with the simplistic application of the clon-
ing principle. The construction of the synthetic replacement part of the spectrum 
could be synthesized considering different parameters such as border effects or 
statistical measures on the spectrum, which encourages further research.

The fifth chapter discusses the development of new methods for forecasting time 
series and application of existing techniques in different areas, which is a perma-
nent concern for both researchers and companies that are interested in gaining 
competitive advantages. Financial market analysis is important for investors who 
invest money on the market and want security in multiplying their investment. 

V

Between the existing techniques, artificial neural networks have proven to be very
good in predicting financial market performance. In this chapter, for time series
analysis and forecasting of specific values, the nonlinear autoregressive exogenous
(NARX) neural network is used. As an input to the network, both data in the time
domain and those in the frequency domain obtained using the Fourier Transform
are used. After the experiment was performed, the results were compared to
determine the potentially best time series for predicting, as well as the convenience
of the domain in which better results are obtained. In addition, the fifth chapter
presents valuable information on the various computational intelligence methods in
finance. Authors reported proposals for improving the neural network, which is of
particular importance.

The sixth chapter illustrates the importance of Fourier Transform (FT) and the
central role that FT plays in optical spectroscopy. FT is especially important in the
field of ultrafast spectroscopy because it enables new types of molecular dynamic
investigations. With its conceptual approach, without too much mathematical 
formalism and general technical capabilities, this chapter illustrates how FT helps
conceptualize light and helps characterize laser pulses. These pulses can be used 
to learn about the molecules with which they interact. Consequently, pulsed laser
spectroscopy has become an important tool for investigating and characterizing 
electronic and nuclear structure of protein complexes. In particular, this chapter
focuses on femto-second spectroscopy because such systems are now commercially
available and are becoming an essential tool to study molecular dynamics.

Chapter seven provides valuable information that can be used to develop a refer-
ence database of herbs in order to provide basic information on relevant medicinal 
products for the purpose of authenticity, since the product spectrum can be rapidly
matched to validate its geographical origin and predict the anthocyanin content
that has been reported as the key component in therapeutic studies. In this sense, 
the study focused on the database establishment for the authentication of Roselle
(Hibiscus sabdariffa) raw materials collected from seven selected locations on the
western coastline in Peninsular Malaysia. The contribution of this chapter is the
developed method of Assured ID software of Roselle, which can be used as a refer-
ence database for a sample from an unknown geographical location. The model was
based on FTIR spectrum and it showed that this method is rapid, non-destructive, 
and accurate for determining the geographical origin of a sample.

In the eighth chapter, the application of Fourier analysis of cerebral glucose
metabolism in color induced long-term potentiation is demonstrated. The study in
mice focuses on the implementation of the mechanistic strategies for brain function
in color processing using the Fourier analysis of the time series of the standardized 
uptake values (SUV) as a surrogate marker of cerebral metabolism of glucose. The
main aim of the evolutionary trend is to optimize perception of the ‘whole’ environ-
ment by functional coupling of the genes for complementarity of brain hemispheres
within self, and between genders. The potential use of these findings in animal 
models of memory deficits is of great interest to researchers in degenerative brain
diseases. This new approach can be useful in resolving the binding problem of
conscious experience. In addition, it can have a wide range of applications in several 
areas, including neuroscience and artificial intelligence. The authors suggested that
the latter approach be called functional positron emission tomography spectroscopy
(fPETS), analogous to the already known functional transcranial Doppler spectros-
copy (fTCDS).
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In addition, the reference list included in each chapter contains both historical and 
extensive analysis, which work together with the articles that describe several key 
breakthroughs in the mentioned areas of interest.
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Chapter 1

The Discrete Hankel Transform
Natalie Baddour

Abstract

The Hankel transform is an integral transform and is also known as the Fourier-
Bessel transform. Until recently, there was no established discrete version of the
transform that observed the same sort of relationship to its continuous counterpart
as the discrete Fourier transform does to the continuous Fourier transform. Previ-
ous definitions of a discrete Hankel transform (DHT) only focused on methods to
approximate the integrals of the continuous Hankel integral transform. Recently
published work has remedied this and this chapter presents this theory. Specifically,
this chapter presents a theory of a DHT that is shown to arise from a discretization
scheme based on the theory of Fourier-Bessel expansions. The standard set of shift,
modulation, multiplication, and convolution rules are shown. In addition to being a
discrete transform in its own right, this DHT can approximate the continuous
forward and inverse Hankel transform.

Keywords: Fourier-Bessel, Hankel transform, transform rules, discrete transform,
polar coordinates

1. Introduction

The Hankel transform has seen applications in many areas of science and engi-
neering. For example, there are applications in propagation of beams and waves, the
generation of diffusion profiles and diffraction patterns, imaging and tomographic
reconstructions, designs of beams, boundary value problems, etc. The Hankel
transform also has a natural relationship to the Fourier transform since the Hankel
transform of zeroth order is a 2D Fourier transform of a rotationally symmetric
function. Furthermore, the Hankel transform also appears naturally in defining the
2D Fourier transform in polar coordinates and the spherical Hankel transform also
appears in the definition of the 3D Fourier transform in spherical polar coordinates
[1, 2].

As useful as the Hankel transform may be, there is no discrete Hankel transform
(DHT) that exists that has the same relationship to the continuous Hankel trans-
form in the same way that the discrete Fourier transform (DFT) exists alongside the
continuous Fourier transform. By this, we mean that the discrete transform exists as
a transform in its own right, has its own mathematical theory of the manipulated
quantities, and finally as an added bonus, can be used to approximate the continu-
ous version of the transform, with relevant sampling and interpolation theories.
Until recently, a discrete Hankel transform merely implied an attempt to discretize
the integral(s) of the continuous Hankel transform, rather than an independent
discrete transform in its own right.

Such a theory of a DHT was recently proposed [3]. Thus, goal of this chapter is
to outline the mathematical theory for the DHT. The mathematical standard set of

1
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ous version of the transform, with relevant sampling and interpolation theories.
Until recently, a discrete Hankel transform merely implied an attempt to discretize
the integral(s) of the continuous Hankel transform, rather than an independent
discrete transform in its own right.

Such a theory of a DHT was recently proposed [3]. Thus, goal of this chapter is
to outline the mathematical theory for the DHT. The mathematical standard set of
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“DFT-like” rules of shift, modulation, multiplication and convolution rules are
derived and presented. A Parseval-like theorem is presented, as are sampling and
interpolation theorems. The manner in which this DHT can be used to approximate
the continuous Hankel transform is also explained.

2. Hankel transforms and Bessel series

To start, we define the Hankel transform and Fourier-Bessel series as used in this
work.

2.1 Hankel transform

The nth-order Hankel transform F ρð Þ of the function f rð Þ of a real variable, r≥0,
is defined by the integral [4]

F ρð Þ ¼ Hn f rð Þð Þ ¼
ð∞

0

f rð ÞJn ρrð Þrdr, (1)

where Jn zð Þ is the nth-order Bessel function of the first kind. If n is real and
n. � 1=2, the transform is self-reciprocating and the inversion formula is given by

f rð Þ ¼
ð∞

0

F ρð ÞJn ρrð Þρdρ: (2)

Thus, Hankel transforms take functions in the spatial r domain and transform them
to functions in the spatial frequency ρ domain f rð Þ⇔F ρð Þ. The notation⇔ is used to
indicate a Hankel transform pair.

2.2 Fourier Bessel series

It is known that functions defined on a finite portion of the real line 0;R½ �, can be
expanded in terms of a Fourier Bessel series [5] given by

f rð Þ ¼ ∑
∞

k¼1
f k Jn

jnkr
R

� �
, (3)

where the order, n, of the Bessel function is arbitrary and jnk denotes the kth root of
the nth Bessel function Jn zð Þ. The Fourier Bessel coefficients f k of the function f rð Þ
are given by

f k ¼
2

R2J2nþ1 jnk
� �

ðR

0

f rð ÞJn
jnkr
R

� �
rdr: (4)

Eqs. (3) and (4) can be considered to be a transform pair where the continuous
function f rð Þ is forward-transformed to the discrete vector f k given in (4). The
inverse transform is then the operation which returns f rð Þ if given f k, and is given
by the summation in Eq. (3). The Fourier Bessel series has the same relationship to
the Hankel transform as the Fourier series has to the Fourier transform.
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3. Sampling and interpolation theorems for band-limited and
space-limited functions

Sampling and interpolation theorems supply the answers to some important
questions. For example, given a bandlimited function in frequency space, a sam-
pling theorem answers the question of which samples of the original function are
required in order to determine the function completely. The interpolation theorem
shows how to interpolate those samples to recover the original function completely.
Here, a band-limit means boundedness in frequency. In many applications such as
tomography, the notion of a band-limit is not necessarily a property of a function,
but rather a limitation of the measurement equipment used to acquire measure-
ments. These measurements are then used to reconstruct some desired function.
Thus, the sampling theorem can also answer the question of how band-limits
(frequency sensitivities) of measurement equipment determine the resolution of
those measurements.

Given a space-limited function, the sampling theorem answers the question of
which samples in frequency space determine the function completely, i.e., those
that are required to reconstruct the original function. In other words, the sampling
theorem dictates which frequency measurements need to be made. As before, the
interpolation theorem will give a formula for interpolating those samples to recons-
truct the continuous function completely.

3.1 Sampling theorem for a band-limited function

We state here the sampling theorem in the same way that Shannon stated it for
functions in time and frequency: if a spatial function f rð Þ contains no frequencies
higher than W cycles per meter, then it is completely determined by a series of
sampling points given by evaluating f rð Þ at r ¼ jnk

Wρ
where Wρ ¼ 2πW.

Proof: suppose that a function f rð Þ is band-limited in the frequency Hankel
domain so that its spectrum F ρð Þ is zero outside of an interval 0; 2πW½ �. The interval
is written in this form since W would typically be quoted in units of Hz (cycles per
second) if using temporal units or cycles per meter if using spatial units. Therefore,
the multiplication by 2π ensures that the final units are in s�1 or m�1. Let us define
Wρ ¼ 2πW. Since the Hankel transform F ρð Þ is defined on a finite portion of the
real line 0;Wρ

� �
, it can be expanded in terms of a Fourier Bessel series as

F ρð Þ ¼ ∑
∞

k¼1
FkJn

jnkρ
Wρ

� �
: (5)

where the Fourier Bessel coefficients can be found from Eq. (4) as

Fk ¼ 2
W2

ρ J
2
nþ1 jnk
� �

ðWρ

0
F ρð ÞJn

jnkρ
Wρ

� �
ρdρ

¼ 2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� � (6)

In (6), we have used the fact that f rð Þ can be written in terms of its inverse Hankel
transform, Eq. (2), in combination with the fact that the function is assumed
band-limited.

Hence, a function bandlimited to 0;Wρ

� �
can be written as

3

The Discrete Hankel Transform
DOI: http://dx.doi.org/10.5772/intechopen.84399



“DFT-like” rules of shift, modulation, multiplication and convolution rules are
derived and presented. A Parseval-like theorem is presented, as are sampling and
interpolation theorems. The manner in which this DHT can be used to approximate
the continuous Hankel transform is also explained.

2. Hankel transforms and Bessel series

To start, we define the Hankel transform and Fourier-Bessel series as used in this
work.

2.1 Hankel transform

The nth-order Hankel transform F ρð Þ of the function f rð Þ of a real variable, r≥0,
is defined by the integral [4]

F ρð Þ ¼ Hn f rð Þð Þ ¼
ð∞

0

f rð ÞJn ρrð Þrdr, (1)

where Jn zð Þ is the nth-order Bessel function of the first kind. If n is real and
n. � 1=2, the transform is self-reciprocating and the inversion formula is given by

f rð Þ ¼
ð∞

0

F ρð ÞJn ρrð Þρdρ: (2)

Thus, Hankel transforms take functions in the spatial r domain and transform them
to functions in the spatial frequency ρ domain f rð Þ⇔F ρð Þ. The notation⇔ is used to
indicate a Hankel transform pair.

2.2 Fourier Bessel series

It is known that functions defined on a finite portion of the real line 0;R½ �, can be
expanded in terms of a Fourier Bessel series [5] given by

f rð Þ ¼ ∑
∞

k¼1
f k Jn

jnkr
R

� �
, (3)

where the order, n, of the Bessel function is arbitrary and jnk denotes the kth root of
the nth Bessel function Jn zð Þ. The Fourier Bessel coefficients f k of the function f rð Þ
are given by

f k ¼
2

R2J2nþ1 jnk
� �

ðR

0

f rð ÞJn
jnkr
R

� �
rdr: (4)

Eqs. (3) and (4) can be considered to be a transform pair where the continuous
function f rð Þ is forward-transformed to the discrete vector f k given in (4). The
inverse transform is then the operation which returns f rð Þ if given f k, and is given
by the summation in Eq. (3). The Fourier Bessel series has the same relationship to
the Hankel transform as the Fourier series has to the Fourier transform.

2

Fourier Transforms - Century of Digitalization and Increasing Expectations

3. Sampling and interpolation theorems for band-limited and
space-limited functions

Sampling and interpolation theorems supply the answers to some important
questions. For example, given a bandlimited function in frequency space, a sam-
pling theorem answers the question of which samples of the original function are
required in order to determine the function completely. The interpolation theorem
shows how to interpolate those samples to recover the original function completely.
Here, a band-limit means boundedness in frequency. In many applications such as
tomography, the notion of a band-limit is not necessarily a property of a function,
but rather a limitation of the measurement equipment used to acquire measure-
ments. These measurements are then used to reconstruct some desired function.
Thus, the sampling theorem can also answer the question of how band-limits
(frequency sensitivities) of measurement equipment determine the resolution of
those measurements.

Given a space-limited function, the sampling theorem answers the question of
which samples in frequency space determine the function completely, i.e., those
that are required to reconstruct the original function. In other words, the sampling
theorem dictates which frequency measurements need to be made. As before, the
interpolation theorem will give a formula for interpolating those samples to recons-
truct the continuous function completely.

3.1 Sampling theorem for a band-limited function

We state here the sampling theorem in the same way that Shannon stated it for
functions in time and frequency: if a spatial function f rð Þ contains no frequencies
higher than W cycles per meter, then it is completely determined by a series of
sampling points given by evaluating f rð Þ at r ¼ jnk

Wρ
where Wρ ¼ 2πW.

Proof: suppose that a function f rð Þ is band-limited in the frequency Hankel
domain so that its spectrum F ρð Þ is zero outside of an interval 0; 2πW½ �. The interval
is written in this form since W would typically be quoted in units of Hz (cycles per
second) if using temporal units or cycles per meter if using spatial units. Therefore,
the multiplication by 2π ensures that the final units are in s�1 or m�1. Let us define
Wρ ¼ 2πW. Since the Hankel transform F ρð Þ is defined on a finite portion of the
real line 0;Wρ

� �
, it can be expanded in terms of a Fourier Bessel series as

F ρð Þ ¼ ∑
∞

k¼1
FkJn

jnkρ
Wρ

� �
: (5)

where the Fourier Bessel coefficients can be found from Eq. (4) as

Fk ¼ 2
W2

ρ J
2
nþ1 jnk
� �

ðWρ

0
F ρð ÞJn

jnkρ
Wρ

� �
ρdρ

¼ 2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� � (6)

In (6), we have used the fact that f rð Þ can be written in terms of its inverse Hankel
transform, Eq. (2), in combination with the fact that the function is assumed
band-limited.

Hence, a function bandlimited to 0;Wρ

� �
can be written as

3

The Discrete Hankel Transform
DOI: http://dx.doi.org/10.5772/intechopen.84399



F ρð Þ ¼
∑
∞

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnkρ
Wρ

� �
ρ,Wρ

0 ρ≥Wρ

8>><
>>:

(7)

Eq. (7) states that the samples f jnk
Wρ

� �
determine the function f rð Þ completely

since (i) F ρð Þ is determined by Eq. (7), and (ii) f rð Þ is known if F ρð Þ is known.
Another way of looking at this is that band-limiting a function to 0;Wρ

� �
results in

information about the original function at samples rnk ¼ jnk
Wρ

. So, Eq. (7) is the

statement of the sampling theorem.
To verify that this sampling theorem is consistent with expectations, we recog-

nize that the zeros of Jn zð Þ are almost evenly spaced at intervals of π and that the
spacing becomes exactly π in the limit as z ! ∞. To determine the (bandlimited)

function f rð Þ completely, we need to sample the function at f jnk
Wρ

� �
¼ f jnk

2πW

� �
and

these samples are (eventually) multiples of π 2πWÞð ¼ 1 2WÞð
��

apart, which is consis-
tent with the standard Shannon sampling theorem which requires samples at mul-
tiples of 1 2WÞð

�
[6].

3.2 Interpolation theorem for a band-limited function

It follows from Eq. (7) that f rð Þ can be found by inverse Hankel transformation
to give

f rð Þ ¼
ðWρ

0

∑
∞

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnkρ
Wρ

� �( )
Jn ρrð Þρdρ

¼ ∑
∞

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� � ðWρ

0

Jn
jnkρ
Wρ

� �
Jn ρrð Þρdρ:

(8)

From Watson ([7], p. 134), we have the following result

ð
Jn αzð ÞJn βzð Þzdz ¼ z αJnþ1 αzð ÞJn βzð Þ � βJn αzð ÞJnþ1 βzð Þ� �

α2 � β2
(9)

Eq. (9) can be used to simplify (8) to give

f rð Þ ¼ ∑
∞

k¼1
f

jnk
Wρ

� �
2jnk

Jnþ1 jnk
� � Jn rWρ

� �

j2nk � r2W2
ρ

(10)

Eq. (10) gives the formula for interpolating the samples f jnk
Wρ

� �
to reconstruct the

continuous band-limited function f rð Þ. Each term used to reconstruct the original

function f rð Þ consists of the samples of the function f rð Þ at r ¼ jnk
Wρ

� �
multiplied by a

reconstructing function of the form

2jnk
Jnþ1 jnk

� � Jn rWρ

� �

j2nk � r2W2
ρ

: (11)
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3.3 Interpretation in terms of a jinc

Eq. (8) states

f rð Þ ¼ ∑
∞

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� � ðWρ

0

Jn
jnkρ
Wρ

� �
Jn ρrð Þρdρ (12)

In other research work [8], the generalized shift operator Rr0 indicating a shift of r0
acting on the function f rð Þ has been defined by the formula

Rr0 f rð Þ ¼
ð∞

0

F ρð ÞJn ρr0ð ÞJn ρrð Þρdρ: (13)

With this definition of a generalized shift operator, we recognize the integral in

Eq. (12) as the inverse Hankel transform of the Boxcar function shifted by jnk
Wρ

� �
.

More explicitly,

ðWρ

0

Jn
jnkρ
Wρ

� �
Jn ρrð Þρdρ ¼ R

jnk
Wρ|{z}

generalized

shift of
jnk
Wρ

   
ð∞

0

ΠWρ ρð ÞJn ρrð Þρdρ
8<
:

9=
;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inverse Hankel transform of

ΠWρ ρð Þ

¼ jnkW
2
ρ

j2nk � rWρ

� �2 Jnþ1 jnk
� �

Jn rWρ

� �

(14)

where

ΠWρ ρð Þ ¼ 1 0≤ ρ≤Wρ

0 otherwise

�
(15)

The boxcar function is a generalized version of the standard Rect function. The
Rect function is usually defined as the function which has value 1 over the interval
�1=2;�1=2½ � and is zero otherwise. Now this is interesting specifically because of
the interpretation of Eq. (14). Had we been working in the standard Fourier domain
instead of the Hankel domain, the Boxcar function would be replaced with the Rect
function and the Hankel transform would be replaced with a standard Fourier
transform. Proceeding with this line of thinking, the inverse Fourier transform of
the Rect function would be a sinc function, which is the standard interpolation
function of the classical Shannon interpolation formula. Hence, the Fourier equiva-
lent interpretation of Eq. (14) is a shifted sinc function. Thus, the formulation
above follows exactly the standard Shannon Interpolation formula (see the original
publication [9], or the classic paper reprint [6]).

For the relatively simple case of the zeroth-order Hankel transform, the inverse
Hankel transform of the Boxcar function is given by

ð∞

0

ΠWρ ρð ÞJ0 ρrð Þρdρ ¼
ðWρ

0

J0 ρrð Þρdρ

¼ Wρ

r
J1 Wρr
� � ¼ W2

ρ

J1 Wρr
� �
Wρr

:

(16)
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The function 2J1 rð Þ=r is often termed the jinc or sombrero function and is the polar
coordinate analog of the sinc function, so Eq. (16) is a scaled version of a jinc
function.

In fact, from Eqs. (13), (14) and (16), it follows that the generalized shifted
version of the jinc function is given by

R
j0k
Wρ

2J1 Wρr
� �
Wρr

� �
¼ 2j0kJ1 j0k

� �

j20k � rWρ

� �2 J0 rWρ

� �
: (17)

Hence, for a zeroth-order Fourier Bessel transform, Eq. (12), the expansion for
f rð Þ reads

f rð Þ ¼ ∑
∞

k¼1
f

j0k
Wρ

� �
1

J21 j0k
� � 2j0kJ1 j0k

� �
J0 rWρ

� �

j20k � rWρ

� �2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼R
j0k
Wρ

2J1 Wρrð Þ
Wρr

n o

(18)

Eq. (18) says that the interpolating function is a shifted jinc function, in analogy
with a scaled sinc being the interpolating function for the sampling theorem used
for Fourier transforms.

3.4 Sampling theorem for a space-limited function

Now consider a space-limited function f rð Þ so that f rð Þ is zero outside of an
interval 0;R½ �. It then follows that it can be expanded on 0;R½ � in terms of a Fourier
Bessel series so that

f rð Þ ¼ ∑
∞

k¼1
f kJn

jnkr
R

� �
, (19)

where the Fourier Bessel coefficients can be found from

f k ¼
2

R2J2nþ1 jnk
� �

ðR

0

f rð ÞJn
jnkr
R

� �
rdr ¼ 2

R2J2nþ1 jnk
� �F jnk

R

� �
: (20)

Here, we have used the definition of the Hankel transform F ρð Þ, Eq. (1), in the right
hand side of Eq. (20). Hence, the function can be written as

f rð Þ ¼ ∑
∞

k¼1

2
R2J2nþ1 jnk

� �F jnk
R

� �
Jn

jnkr
R

� �
r,R

0 r≥R

8<
: (21)

From Eq. (21), it is evident that the samples F jnk
R

� �
determine the function f rð Þ and

hence its transform F ρð Þ completely. Another way of looking at this is that space
limiting a function to 0;R½ � implies discretization in spatial frequency space, at
frequencies ρnk ¼ jnk

R .

3.5 Interpolation theorem for a space-limited function

The Hankel transform of the function can then be found from a forward Hankel
transformation as
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F ρð Þ ¼
ð∞

0

f rð ÞJn ρrð Þrdr

¼ ∑
∞

k¼1

2
R2J2nþ1 jnk

� �F jnk
R

� �ðR

0

Jn
jnkr
R

� �
Jn ρrð Þrdr

(22)

Using Eq. (9), Eq. (22) can be simplified to give

F ρð Þ ¼ ∑
∞

k¼1
F

jnk
R

� �
2jnk

Jnþ1 jnk
� � Jn ρRð Þ

j2nk � ρRð Þ2 (23)

Eq. (23) gives the formula for interpolating the samples F jnk
R

� �
to give the continu-

ous function F ρð Þ.

4. Intuitive discretization scheme for the Hankel transform

Based on the sampling theorems above, in this section we explore how assuming
that a function can be simultaneously band-limited and space-limited will naturally
lead to a discrete Hankel transform. Although it is known that it is not possible to
fulfill both of these conditions exactly, it is possible to keep the spectrum within a
given frequency band, and to have the space function very small outside some
specified spatial interval (or vice-versa). Hence, it is possible for functions to be
“effectively” space and band-limited.

4.1 Forward transform

We demonstrated above that a band-limited function, with ρ,Wρ ¼ 2πW can
be written as

F ρð Þ ¼ ∑
∞

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnkρ
Wρ

� �
: (24)

Evaluating the previous Eq. (24) at the sampling points ρnm ¼ jnmWρ

j nN
(for any integer

N) gives for m,N

F
jnmWρ

j nN

� �
¼ ∑

∞

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnk
Wρ

jnmWρ

j nN

� �
   m,N: (25)

For m,N, then ρnm ¼ jnmWρ

j nN
,Wρ, and Eq. (25), summing over infinite k, is exact.

For m≥N, then ρnm ¼ jnmWρ

j nN
≥Wρ and by the assumption of the bandlimited nature

of the function, F ρnmð Þ ¼ 0.
Now, suppose that in addition to being band-limited, the function is also effec-

tively space limited. As mentioned above, it is known that a function cannot be
finite in both space and spatial frequency (equivalently it cannot be finite in both
time and frequency if using the Fourier transform). However, if a function is
effectively space limited, this means that there exists an integer N for which

f jnk
Wρ

� �
≈0 for k.N. In other words, we can find an interval beyond which the

space function is very small. In fact, since the Fourier-Bessel series in (24) is known
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The function 2J1 rð Þ=r is often termed the jinc or sombrero function and is the polar
coordinate analog of the sinc function, so Eq. (16) is a scaled version of a jinc
function.

In fact, from Eqs. (13), (14) and (16), it follows that the generalized shifted
version of the jinc function is given by

R
j0k
Wρ

2J1 Wρr
� �
Wρr

� �
¼ 2j0kJ1 j0k

� �

j20k � rWρ

� �2 J0 rWρ

� �
: (17)

Hence, for a zeroth-order Fourier Bessel transform, Eq. (12), the expansion for
f rð Þ reads

f rð Þ ¼ ∑
∞

k¼1
f

j0k
Wρ

� �
1

J21 j0k
� � 2j0kJ1 j0k

� �
J0 rWρ

� �

j20k � rWρ

� �2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼R
j0k
Wρ

2J1 Wρrð Þ
Wρr

n o

(18)

Eq. (18) says that the interpolating function is a shifted jinc function, in analogy
with a scaled sinc being the interpolating function for the sampling theorem used
for Fourier transforms.

3.4 Sampling theorem for a space-limited function

Now consider a space-limited function f rð Þ so that f rð Þ is zero outside of an
interval 0;R½ �. It then follows that it can be expanded on 0;R½ � in terms of a Fourier
Bessel series so that

f rð Þ ¼ ∑
∞

k¼1
f kJn

jnkr
R

� �
, (19)

where the Fourier Bessel coefficients can be found from

f k ¼
2

R2J2nþ1 jnk
� �

ðR

0

f rð ÞJn
jnkr
R

� �
rdr ¼ 2

R2J2nþ1 jnk
� �F jnk

R

� �
: (20)

Here, we have used the definition of the Hankel transform F ρð Þ, Eq. (1), in the right
hand side of Eq. (20). Hence, the function can be written as

f rð Þ ¼ ∑
∞

k¼1

2
R2J2nþ1 jnk

� �F jnk
R

� �
Jn

jnkr
R

� �
r,R

0 r≥R

8<
: (21)

From Eq. (21), it is evident that the samples F jnk
R

� �
determine the function f rð Þ and

hence its transform F ρð Þ completely. Another way of looking at this is that space
limiting a function to 0;R½ � implies discretization in spatial frequency space, at
frequencies ρnk ¼ jnk

R .

3.5 Interpolation theorem for a space-limited function

The Hankel transform of the function can then be found from a forward Hankel
transformation as
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F ρð Þ ¼
ð∞

0

f rð ÞJn ρrð Þrdr

¼ ∑
∞

k¼1

2
R2J2nþ1 jnk

� �F jnk
R

� �ðR

0

Jn
jnkr
R

� �
Jn ρrð Þrdr

(22)

Using Eq. (9), Eq. (22) can be simplified to give
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k¼1
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jnk
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2jnk

Jnþ1 jnk
� � Jn ρRð Þ

j2nk � ρRð Þ2 (23)

Eq. (23) gives the formula for interpolating the samples F jnk
R

� �
to give the continu-

ous function F ρð Þ.

4. Intuitive discretization scheme for the Hankel transform

Based on the sampling theorems above, in this section we explore how assuming
that a function can be simultaneously band-limited and space-limited will naturally
lead to a discrete Hankel transform. Although it is known that it is not possible to
fulfill both of these conditions exactly, it is possible to keep the spectrum within a
given frequency band, and to have the space function very small outside some
specified spatial interval (or vice-versa). Hence, it is possible for functions to be
“effectively” space and band-limited.

4.1 Forward transform

We demonstrated above that a band-limited function, with ρ,Wρ ¼ 2πW can
be written as

F ρð Þ ¼ ∑
∞

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnkρ
Wρ

� �
: (24)

Evaluating the previous Eq. (24) at the sampling points ρnm ¼ jnmWρ

j nN
(for any integer

N) gives for m,N

F
jnmWρ

j nN

� �
¼ ∑

∞

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnk
Wρ

jnmWρ

j nN

� �
   m,N: (25)

For m,N, then ρnm ¼ jnmWρ

j nN
,Wρ, and Eq. (25), summing over infinite k, is exact.

For m≥N, then ρnm ¼ jnmWρ

j nN
≥Wρ and by the assumption of the bandlimited nature

of the function, F ρnmð Þ ¼ 0.
Now, suppose that in addition to being band-limited, the function is also effec-

tively space limited. As mentioned above, it is known that a function cannot be
finite in both space and spatial frequency (equivalently it cannot be finite in both
time and frequency if using the Fourier transform). However, if a function is
effectively space limited, this means that there exists an integer N for which

f jnk
Wρ

� �
≈0 for k.N. In other words, we can find an interval beyond which the

space function is very small. In fact, since the Fourier-Bessel series in (24) is known
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to converge, it is known that limk!∞ f jnk
Wρ

� �
¼ 0, which means that for any arbi-

trarily small ε, there must exist an integer N for which f jnk
Wρ

� �
, ε for k.N.

Hence, using the argument of “effectively space limited” in the preceding para-
graph, we can terminate the series in Eq. (25) at a suitably chosenN that ensures the
effective space limit. Terminating the series at k ¼ N is the same as assuming that
f rð Þ≈0 for r.R ¼ j nN

Wρ
. Noting that at k ¼ N, the last term in (25) is

Jn
jnNjnm
j nN

� �
¼ Jn jnm

� � ¼ 0, then after terminating at N, Eq. (25) becomes for

m ¼ 1::N � 1

F
jnmWρ

j nN

� �
¼ ∑

N�1

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnkjnm
j nN

� �
: (26)

In this case, the truncated sum in Eq. (26) does not represent F ρnmð Þ exactly due
to the truncation at N terms, but should provide a reasonably good approximation
since the Fourier-Bessel series is known to converge and we are assuming that we

have terminated the series at the point where additional f jnk
Wρ

� �
terms do not con-

tribute significantly.

4.2 Inverse transform

Concomitantly, we know that for any space-limited function then for r,R, we
can write

f rð Þ ¼ ∑
∞

m¼1

2
R2J2nþ1 jnm

� �F jnm
R

� �
Jn

jnmr
R

� �
: (27)

More specifically, suppose that we follow the logic from the previous section that
the function f rð Þ that was bandlimited but also “effectively space-limited” due the
truncation of the series in Eq. (25) at N. In that case then R ¼ j nN

Wρ
and the band-limit

implies that F ρð Þ ¼ 0 for ρ.Wρ. Following this logic and using R ¼ j nN
Wρ

, then

Eq. (27) becomes

f rð Þ ¼ ∑
N�1

m¼1

2W2
ρ

j2nNJ
2
nþ1 jnm
� �F jnmWρ

j nN

� �
Jn

jnmWρ

j nN
r

� �
(28)

where we truncated the series in Eq. (28) at N by using the fact that F ρð Þ ¼ 0 for

ρ≥Wρ to deduce that F jnmWρ

j nN

� �
¼ 0 for m≥N. Evaluating (28) at rnk ¼ jnkR

j nN
¼ jnk

Wρ

gives for k ¼ 1::N � 1

f
jnk
Wρ

� �
¼ ∑

N�1

m¼1
 

2W2
ρ

j2nNJ
2
nþ1 jnm
� �F jnmWρ

j nN

� �
Jn

jnmjnk
j nN

� �
: (29)

Compare Eq. (29) to the “forward” transform from Eq. (26), repeated here for
convenience, where we found that for m ¼ 1::N � 1

F
jnmWρ

j nN

� �
¼ ∑

N�1

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnk jnm
j nN

� �
: (30)
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Eqs. (29) and (30) are the fundamental relations used for the discrete Hankel
transform proposed in the following sections.

4.3 Intuitive discretization scheme and kernel

The preceding development shows that a “natural,” N-dimensional
discretization scheme in finite space 0;R½ � and finite frequency space 0;Wρ

� �
is

given by

rnk ¼
jnk
Wρ

¼ jnkR
j nN

ρnk ¼
jnk
R

¼ jnkWρ

j nN
k ¼ 1…N � 1: (31)

The relationshipWρR ¼ j nN can be used to change from finite frequency domain
to a finite space domain and vice-versa. The size of the transform N, can be
determined from WρR ¼ j nN .

It is pointed out in [10] that the zeros of Jn zð Þ are almost evenly spaced at
intervals of π and that the spacing becomes exactly π in the limit as z ! ∞. In fact, it
is shown in [10] that a simple asymptotic form for the Bessel function is given by

Jn zð Þ≈
ffiffiffiffiffi
2
πz

r
cos z� nþ 1

2

� �
π

2

� �
(32)

Eq. (32) becomes a better approximation to Jn zð Þ as z ! ∞. The zeros of the cosine
function are at odd multiples of π=2. Therefore, an approximation to the Bessel
zero, jnk is given by

jnk ≈ 2kþ n� 1
2

� �
π

2
: (33)

Using this approximation, then WρR ¼ j nN becomes

2πWR ¼ j nN ≈ 2N þ n� 1
2

� �
π

2
(34)

For larger values of N as would typically be used in a discretization scheme, then
we can write approximately

2WR≈ N þ n
2

� �
(35)

This is exactly analogous to the corresponding expression for Fourier transforms.
Specifically, for temporal Fourier transforms Shannon [6] argued that “If the func-
tion is limited to the time interval T and the samples are spaced 1/(2 W) seconds
apart (where W is the bandwidth), there will be a total of 2WT samples in the
interval. All samples outside will be substantially zero. To be more precise, we can
define a function to be limited to the time interval T if, and only if, all the samples
outside this interval are exactly zero. Then we can say that any function limited to
the bandwidth W and the time interval T can be specified by giving N ¼ 2WT
numbers”. Following this line of thinking, Eq. (35) states that for an nth-order
Hankel transform, any function limited to the bandwidth W and the space interval
R can be specified by giving N ¼ 2WR� n=2ð Þ numbers and it will certainly be true
that specifying N ¼ 2WR numbers will specify the function, in exact analogy to
Shannon’s result.
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to converge, it is known that limk!∞ f jnk
Wρ

� �
¼ 0, which means that for any arbi-

trarily small ε, there must exist an integer N for which f jnk
Wρ

� �
, ε for k.N.

Hence, using the argument of “effectively space limited” in the preceding para-
graph, we can terminate the series in Eq. (25) at a suitably chosenN that ensures the
effective space limit. Terminating the series at k ¼ N is the same as assuming that
f rð Þ≈0 for r.R ¼ j nN

Wρ
. Noting that at k ¼ N, the last term in (25) is

Jn
jnNjnm
j nN

� �
¼ Jn jnm

� � ¼ 0, then after terminating at N, Eq. (25) becomes for

m ¼ 1::N � 1

F
jnmWρ

j nN

� �
¼ ∑

N�1

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnkjnm
j nN

� �
: (26)

In this case, the truncated sum in Eq. (26) does not represent F ρnmð Þ exactly due
to the truncation at N terms, but should provide a reasonably good approximation
since the Fourier-Bessel series is known to converge and we are assuming that we

have terminated the series at the point where additional f jnk
Wρ

� �
terms do not con-

tribute significantly.

4.2 Inverse transform

Concomitantly, we know that for any space-limited function then for r,R, we
can write

f rð Þ ¼ ∑
∞

m¼1

2
R2J2nþ1 jnm

� �F jnm
R

� �
Jn

jnmr
R

� �
: (27)

More specifically, suppose that we follow the logic from the previous section that
the function f rð Þ that was bandlimited but also “effectively space-limited” due the
truncation of the series in Eq. (25) at N. In that case then R ¼ j nN

Wρ
and the band-limit

implies that F ρð Þ ¼ 0 for ρ.Wρ. Following this logic and using R ¼ j nN
Wρ

, then

Eq. (27) becomes

f rð Þ ¼ ∑
N�1

m¼1

2W2
ρ

j2nNJ
2
nþ1 jnm
� �F jnmWρ

j nN

� �
Jn

jnmWρ

j nN
r

� �
(28)

where we truncated the series in Eq. (28) at N by using the fact that F ρð Þ ¼ 0 for

ρ≥Wρ to deduce that F jnmWρ

j nN

� �
¼ 0 for m≥N. Evaluating (28) at rnk ¼ jnkR

j nN
¼ jnk

Wρ

gives for k ¼ 1::N � 1

f
jnk
Wρ

� �
¼ ∑

N�1

m¼1
 

2W2
ρ

j2nNJ
2
nþ1 jnm
� �F jnmWρ

j nN

� �
Jn

jnmjnk
j nN

� �
: (29)

Compare Eq. (29) to the “forward” transform from Eq. (26), repeated here for
convenience, where we found that for m ¼ 1::N � 1

F
jnmWρ

j nN

� �
¼ ∑

N�1

k¼1

2
W2

ρ J
2
nþ1 jnk
� � f jnk

Wρ

� �
Jn

jnk jnm
j nN

� �
: (30)
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Eqs. (29) and (30) are the fundamental relations used for the discrete Hankel
transform proposed in the following sections.

4.3 Intuitive discretization scheme and kernel

The preceding development shows that a “natural,” N-dimensional
discretization scheme in finite space 0;R½ � and finite frequency space 0;Wρ

� �
is

given by

rnk ¼
jnk
Wρ

¼ jnkR
j nN

ρnk ¼
jnk
R

¼ jnkWρ

j nN
k ¼ 1…N � 1: (31)

The relationshipWρR ¼ j nN can be used to change from finite frequency domain
to a finite space domain and vice-versa. The size of the transform N, can be
determined from WρR ¼ j nN .

It is pointed out in [10] that the zeros of Jn zð Þ are almost evenly spaced at
intervals of π and that the spacing becomes exactly π in the limit as z ! ∞. In fact, it
is shown in [10] that a simple asymptotic form for the Bessel function is given by

Jn zð Þ≈
ffiffiffiffiffi
2
πz

r
cos z� nþ 1

2

� �
π

2

� �
(32)

Eq. (32) becomes a better approximation to Jn zð Þ as z ! ∞. The zeros of the cosine
function are at odd multiples of π=2. Therefore, an approximation to the Bessel
zero, jnk is given by

jnk ≈ 2kþ n� 1
2

� �
π

2
: (33)

Using this approximation, then WρR ¼ j nN becomes

2πWR ¼ j nN ≈ 2N þ n� 1
2

� �
π

2
(34)

For larger values of N as would typically be used in a discretization scheme, then
we can write approximately

2WR≈ N þ n
2

� �
(35)

This is exactly analogous to the corresponding expression for Fourier transforms.
Specifically, for temporal Fourier transforms Shannon [6] argued that “If the func-
tion is limited to the time interval T and the samples are spaced 1/(2 W) seconds
apart (where W is the bandwidth), there will be a total of 2WT samples in the
interval. All samples outside will be substantially zero. To be more precise, we can
define a function to be limited to the time interval T if, and only if, all the samples
outside this interval are exactly zero. Then we can say that any function limited to
the bandwidth W and the time interval T can be specified by giving N ¼ 2WT
numbers”. Following this line of thinking, Eq. (35) states that for an nth-order
Hankel transform, any function limited to the bandwidth W and the space interval
R can be specified by giving N ¼ 2WR� n=2ð Þ numbers and it will certainly be true
that specifying N ¼ 2WR numbers will specify the function, in exact analogy to
Shannon’s result.
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4.4 Proposed kernel for the discrete transform

The preceding sections show that both forward and inverse discrete versions of
the transforms contain an expression of the form

2
J2nþ1 jnk

� � Jn
jnkjnm
j nN

� �
: (36)

This leads to a natural choice of kernel for the discrete transform, as shall be
outlined in the next section. To aid in in the choice of kernel for the discrete
transform, we present a useful discrete orthogonality relationship shown in [11]
that for 1≤m, i≤N � 1

∑
N�1

k¼1

4Jn
jnmjnk
j nN

� �
Jn

jnkjni
j nN

� �

J2nþ1 jnk
� � ¼ j2nNJ

2
nþ1 jnm
� �

δmi (37)

where jnm represents the mth zero of the nth-order Bessel function Jn xð Þ, and δmi is
the Kronecker delta function, defined as

δmn ¼
1 if m ¼ n
0 otherwise

:

�
(38)

If written in matrix notation, then the Kronecker delta of Eq. (38) is the identity
matrix.

Fisk-Johnson discusses the analytical derivation of Eq. (37) in the appendix of
[11]. Eq. (37) is exactly true in the limit as N ! ∞ and is true for N. 30 within the
limits of computational error �10�7� �

. For smaller values of N, Eq. (37) holds with
the worst case for the smallest value of N giving �10�3.

5. Transformation matrices

5.1 Transformation matrix

With inspiration from the notation in [11], and an additional scaling factor of
1=j nN, we define an N � 1ð Þ � N � 1ð Þ transformation matrix with the (m,k)th
entry given by

Y nN
m,k ¼

2
j nNJ

2
nþ1 jnk
� � Jn

jnmjnk
j nN

� �
1≤m, k≤N � 1: (39)

In Eq. (39), the superscripts n andN refer to the order of the Bessel function and the
dimension of the space that are being considered, respectively. The subscripts m
and k refer to the (m,k)th entry of the transformation matrix.

Furthermore, the orthogonality relationship, Eq. (37), states that

∑N�1
k¼1 Y

nN
i,k Y

nN
k,m ¼ ∑N�1

k¼1 4
Jn jnijnk=j nN

� �
Jn jnkjnm=j nN

� �

j2nNJ
2
nþ1 jnk
� �

J2nþ1 jnm
� � ¼ δim: (40)

Eq. (40) states that the rows and columns of the matrix Y nN
m,k are orthonormal and

can be written in matrix form as
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Y nNY nN ¼ Ι, (41)

where I is the N � 1 dimensional identity matrix and we have written the N � 1
square matrix Y nN

m,k as Y
nN . The forward and inverse truncated and discretized

transforms given in Eqs. (26) and (29) can be expressed in terms of Y nN . The
forward transform, Eq. (26), can be written as

F ρnmð Þ ¼ j nN
W2

ρ

∑
N�1

k¼1
Y nN
m,kf rnkð Þ: (42)

Similarly, the inverse transform, Eq. (29), can be written as

f rnkð Þ ¼ W2
ρ

j nN
∑
N�1

m¼1
Y nN
k,mF ρnmð Þ: (43)

5.2 Another choice of transformation matrix

Following the notation in [12], we can also define a different N � 1ð Þ � N � 1ð Þ
transformation matrix with the (m,k)th entry given by

T nN
m,k ¼ 2

Jn jnmjnk=j nN

� �

Jnþ1 jnm
� �

Jnþ1 jnk
� �

j nN
1≤m, k≤N � 1: (44)

In Eq. (44), the superscripts n and N refer to the order of the Bessel function and
the dimension of the space that are being considered, respectively. The subscriptsm
and k refer to the (m,k)th entry of the matrix. From (39), it can be seen that
T nN
m,k ¼ T nN

k,m so that T nN is a real, symmetric matrix. The relationship between the
T nN
m,k and Y nN

m,k matrices is given by

T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � ¼ Y nN

m,k: (45)

The orthogonality relationship, Eq. (37), can be written as

∑
N�1

k¼1
4
Jn jnmjnk=j nN

� �
Jn jnkjni=j nN

� �

J2nþ1 jnm
� �

J2nþ1 jnk
� �

j2nN
¼ ∑

N�1

k¼1
T nN
m,kT

nN
k, i ¼ δmi: (46)

Eq. (40) states that the rows and columns of the matrix T nN are orthonormal so that
T nN is an orthogonal matrix. Furthermore, T nN is also symmetric. Eq. (46) can be
written in matrix form as

T nNT nN ¼ T nN T nN� �T ¼ I: (47)

Therefore, the T nN matrix is unitary and furthermore orthogonal since the entries
are real.

Using the symmetric, orthogonal transformation matrix T nN, the forward
transform from Eq. (26) can be written in as
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4.4 Proposed kernel for the discrete transform

The preceding sections show that both forward and inverse discrete versions of
the transforms contain an expression of the form

2
J2nþ1 jnk

� � Jn
jnkjnm
j nN

� �
: (36)

This leads to a natural choice of kernel for the discrete transform, as shall be
outlined in the next section. To aid in in the choice of kernel for the discrete
transform, we present a useful discrete orthogonality relationship shown in [11]
that for 1≤m, i≤N � 1

∑
N�1

k¼1

4Jn
jnmjnk
j nN

� �
Jn

jnkjni
j nN

� �

J2nþ1 jnk
� � ¼ j2nNJ

2
nþ1 jnm
� �

δmi (37)

where jnm represents the mth zero of the nth-order Bessel function Jn xð Þ, and δmi is
the Kronecker delta function, defined as

δmn ¼
1 if m ¼ n
0 otherwise

:

�
(38)

If written in matrix notation, then the Kronecker delta of Eq. (38) is the identity
matrix.

Fisk-Johnson discusses the analytical derivation of Eq. (37) in the appendix of
[11]. Eq. (37) is exactly true in the limit as N ! ∞ and is true for N. 30 within the
limits of computational error �10�7� �

. For smaller values of N, Eq. (37) holds with
the worst case for the smallest value of N giving �10�3.

5. Transformation matrices

5.1 Transformation matrix

With inspiration from the notation in [11], and an additional scaling factor of
1=j nN, we define an N � 1ð Þ � N � 1ð Þ transformation matrix with the (m,k)th
entry given by

Y nN
m,k ¼

2
j nNJ

2
nþ1 jnk
� � Jn

jnmjnk
j nN

� �
1≤m, k≤N � 1: (39)

In Eq. (39), the superscripts n andN refer to the order of the Bessel function and the
dimension of the space that are being considered, respectively. The subscripts m
and k refer to the (m,k)th entry of the transformation matrix.

Furthermore, the orthogonality relationship, Eq. (37), states that

∑N�1
k¼1 Y

nN
i,k Y

nN
k,m ¼ ∑N�1

k¼1 4
Jn jnijnk=j nN

� �
Jn jnkjnm=j nN

� �

j2nNJ
2
nþ1 jnk
� �

J2nþ1 jnm
� � ¼ δim: (40)

Eq. (40) states that the rows and columns of the matrix Y nN
m,k are orthonormal and

can be written in matrix form as
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Y nNY nN ¼ Ι, (41)

where I is the N � 1 dimensional identity matrix and we have written the N � 1
square matrix Y nN

m,k as Y
nN . The forward and inverse truncated and discretized

transforms given in Eqs. (26) and (29) can be expressed in terms of Y nN . The
forward transform, Eq. (26), can be written as

F ρnmð Þ ¼ j nN
W2

ρ

∑
N�1

k¼1
Y nN
m,kf rnkð Þ: (42)

Similarly, the inverse transform, Eq. (29), can be written as

f rnkð Þ ¼ W2
ρ

j nN
∑
N�1

m¼1
Y nN
k,mF ρnmð Þ: (43)

5.2 Another choice of transformation matrix

Following the notation in [12], we can also define a different N � 1ð Þ � N � 1ð Þ
transformation matrix with the (m,k)th entry given by

T nN
m,k ¼ 2

Jn jnmjnk=j nN

� �

Jnþ1 jnm
� �

Jnþ1 jnk
� �

j nN
1≤m, k≤N � 1: (44)

In Eq. (44), the superscripts n and N refer to the order of the Bessel function and
the dimension of the space that are being considered, respectively. The subscriptsm
and k refer to the (m,k)th entry of the matrix. From (39), it can be seen that
T nN
m,k ¼ T nN

k,m so that T nN is a real, symmetric matrix. The relationship between the
T nN
m,k and Y nN

m,k matrices is given by

T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � ¼ Y nN

m,k: (45)

The orthogonality relationship, Eq. (37), can be written as

∑
N�1

k¼1
4
Jn jnmjnk=j nN

� �
Jn jnkjni=j nN

� �

J2nþ1 jnm
� �

J2nþ1 jnk
� �

j2nN
¼ ∑

N�1

k¼1
T nN
m,kT

nN
k, i ¼ δmi: (46)

Eq. (40) states that the rows and columns of the matrix T nN are orthonormal so that
T nN is an orthogonal matrix. Furthermore, T nN is also symmetric. Eq. (46) can be
written in matrix form as

T nNT nN ¼ T nN T nN� �T ¼ I: (47)

Therefore, the T nN matrix is unitary and furthermore orthogonal since the entries
are real.

Using the symmetric, orthogonal transformation matrix T nN, the forward
transform from Eq. (26) can be written in as
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F ρnmð Þ ¼ R2

j nN
∑
N�1

k¼1
T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � f rnkð Þ

¼ j nN
W2

ρ

∑
N�1

k¼1
T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � f rnkð Þ

(48)

Similarly, the inverse discrete transform of Eq. (29) can be written as

f rnkð Þ ¼ j nN
R2 ∑

N�1

m¼1
T nN
k,m

Jnþ1 jnk
� �

Jnþ1 jnm
� �F ρnmð Þ

¼ W2
ρ

j nN
∑
N�1

m¼1
T nN
k,m

Jnþ1 jnk
� �

Jnþ1 jnm
� �F ρnmð Þ:

(49)

6. Discrete forward and inverse Hankel transform

From the previous section is it clear that the two natural choices of kernel for a DHT
are either Y nN

m,k or T
nN
m,k. Y

nN
m,k is closer to the discretized version of the continuous

Hankel transform that we hope the discrete version emulates. However, T nN
m,k is an

orthogonal and symmetric matrix, therefore it is energy preserving and will be
shown to lead to a Parseval-type relationship if chosen as the kernel for the DHT.
Thus, to define a discrete Hankel transform (DHT), we can use either formulation:

Fm ¼ ∑
N�1

k¼1
Y nN
m,k f k or Fm ¼ ∑

N�1

k¼1
T nN
m,k f k: (50)

Here, the transform is of any N � 1 dimensional vector f k to any N � 1 dimensional
vector Fm for the integersm, k where 1≤m, k,N � 1. This can be written in matrix
form as

F ¼ Y nNf or F ¼ T nNf (51)

where F is any N � 1 dimensional column vector and f is also any column vector,
defined in the same manner.

The inverse discrete Hankel transform (IDHT) is then given by

f k ¼ ∑
N�1

m¼1
Y nN
k,mFm or f k ¼ ∑

N�1

m¼1
T nN
k,mFm: (52)

This can also be written in matrix form as

f ¼ Y nNF or f ¼ T nNF: (53)

We note that the forward and inverse transforms are the same.
Proof
We show the proof for the Y nN formulation, but it proceeds similarly if Y nN is
replaced with T nN . Substituting Eq. (52) into the right hand side of (50) gives

∑
N�1

k¼1
Y nN
m,k f k ¼ ∑

N�1

k¼1
Y nN
m,k ∑

N�1

p¼1
Y nN
k,pFp

" #
: (54)

Switching the order of the summation in Eq. (54) gives
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∑
N�1

p¼1
∑
N�1

k¼1
Y nN
m,kY

nN
k,p

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
δmp

Fp ¼ ∑
N�1

p¼1
δmpFp ¼ Fm (55)

The inside summations as indicated in Eq. (55) are recognized as yielding the Dirac-
delta function, the orthogonality property of Eq. (40) (or Eq. (46) if using T nN),
which in turn yields the desired result. This proves that the DHT given by (50) can
be inverted by (52).

7. Generalized Parseval theorem

Inner products are preserved and thus energies are preserved under the T nN

matrix formulation. To see this, consider any two vectors given by the transform
g ¼ T nNG, h ¼ T nNH then

gTh ¼ T nNG
� �T

T nNH ¼ GT T nN� �T
T nN

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼I

H ¼ GTH: (56)

The Y nN matrix formulation does not directly preserve inner products:

gTh ¼ Y nNG
� �T

Y nNH ¼ GT Y nN� �T
Y nNH: (57)

However, under the Y nN formulation, the inner product between gk
Jnþ1 jnkð Þ and

hk
Jnþ1 jnkð Þ is preserved. To see this, we calculate the inner product between them as

∑
N�1

k¼1

gk
Jnþ1 jnk

� � hk
Jnþ1 jnk

� � ¼ ∑
N�1

k¼1

1
J2nþ1 jnk

� � ∑
N�1

p¼1
Y nN
k,pGp ∑

N�1

q¼1
Y nN
k,qHq

¼ ∑
N�1

p¼1
∑
N�1

q¼1

1

J2nþ1 jnp
� � ∑

N�1

k¼1

4 jnkjnp=j nN

� �
Jn jnkjnq=j nN

� �

j2nNJ
2
nþ1 jnk
� �

J2nþ1 jnq
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δpq

HqGp

(58)

Making use of the now-present Dirac-delta function, Eq. (58) simplifies to give a
modified Parseval relationship

∑
N�1

k¼1

gk
Jnþ1 jnk

� �
 !

hk
Jnþ1 jnk

� �
 !

¼ ∑
N�1

p¼1

Hp

Jnþ1 jnp
� �

0
@

1
A Gp

Jnþ1 jnp
� �

0
@

1
A: (59)

In other words, under a DHT using the Y nN matrix, inner products of the scaled
functions are preserved but not the inner products of the functions themselves.

As a consequence of the orthogonality property of T nN, the T nN based DHT is
energy preserving, meaning that

FTF ¼ f
T
f : (60)

where the overbar indicates a conjugate transpose and the superscript T indicates a
transpose.

13

The Discrete Hankel Transform
DOI: http://dx.doi.org/10.5772/intechopen.84399



F ρnmð Þ ¼ R2

j nN
∑
N�1

k¼1
T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � f rnkð Þ

¼ j nN
W2

ρ

∑
N�1

k¼1
T nN
m,k

Jnþ1 jnm
� �

Jnþ1 jnk
� � f rnkð Þ

(48)

Similarly, the inverse discrete transform of Eq. (29) can be written as

f rnkð Þ ¼ j nN
R2 ∑

N�1

m¼1
T nN
k,m

Jnþ1 jnk
� �

Jnþ1 jnm
� �F ρnmð Þ

¼ W2
ρ

j nN
∑
N�1

m¼1
T nN
k,m

Jnþ1 jnk
� �

Jnþ1 jnm
� �F ρnmð Þ:

(49)

6. Discrete forward and inverse Hankel transform

From the previous section is it clear that the two natural choices of kernel for a DHT
are either Y nN

m,k or T
nN
m,k. Y

nN
m,k is closer to the discretized version of the continuous

Hankel transform that we hope the discrete version emulates. However, T nN
m,k is an

orthogonal and symmetric matrix, therefore it is energy preserving and will be
shown to lead to a Parseval-type relationship if chosen as the kernel for the DHT.
Thus, to define a discrete Hankel transform (DHT), we can use either formulation:

Fm ¼ ∑
N�1

k¼1
Y nN
m,k f k or Fm ¼ ∑

N�1

k¼1
T nN
m,k f k: (50)

Here, the transform is of any N � 1 dimensional vector f k to any N � 1 dimensional
vector Fm for the integersm, k where 1≤m, k,N � 1. This can be written in matrix
form as

F ¼ Y nNf or F ¼ T nNf (51)

where F is any N � 1 dimensional column vector and f is also any column vector,
defined in the same manner.

The inverse discrete Hankel transform (IDHT) is then given by

f k ¼ ∑
N�1

m¼1
Y nN
k,mFm or f k ¼ ∑

N�1

m¼1
T nN
k,mFm: (52)

This can also be written in matrix form as

f ¼ Y nNF or f ¼ T nNF: (53)

We note that the forward and inverse transforms are the same.
Proof
We show the proof for the Y nN formulation, but it proceeds similarly if Y nN is
replaced with T nN . Substituting Eq. (52) into the right hand side of (50) gives

∑
N�1

k¼1
Y nN
m,k f k ¼ ∑

N�1

k¼1
Y nN
m,k ∑

N�1

p¼1
Y nN
k,pFp

" #
: (54)

Switching the order of the summation in Eq. (54) gives
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∑
N�1

p¼1
∑
N�1

k¼1
Y nN
m,kY

nN
k,p

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
δmp

Fp ¼ ∑
N�1

p¼1
δmpFp ¼ Fm (55)

The inside summations as indicated in Eq. (55) are recognized as yielding the Dirac-
delta function, the orthogonality property of Eq. (40) (or Eq. (46) if using T nN),
which in turn yields the desired result. This proves that the DHT given by (50) can
be inverted by (52).

7. Generalized Parseval theorem

Inner products are preserved and thus energies are preserved under the T nN

matrix formulation. To see this, consider any two vectors given by the transform
g ¼ T nNG, h ¼ T nNH then

gTh ¼ T nNG
� �T

T nNH ¼ GT T nN� �T
T nN

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼I

H ¼ GTH: (56)

The Y nN matrix formulation does not directly preserve inner products:

gTh ¼ Y nNG
� �T

Y nNH ¼ GT Y nN� �T
Y nNH: (57)

However, under the Y nN formulation, the inner product between gk
Jnþ1 jnkð Þ and

hk
Jnþ1 jnkð Þ is preserved. To see this, we calculate the inner product between them as

∑
N�1

k¼1

gk
Jnþ1 jnk

� � hk
Jnþ1 jnk

� � ¼ ∑
N�1

k¼1

1
J2nþ1 jnk

� � ∑
N�1

p¼1
Y nN
k,pGp ∑

N�1

q¼1
Y nN
k,qHq

¼ ∑
N�1

p¼1
∑
N�1

q¼1

1

J2nþ1 jnp
� � ∑

N�1

k¼1

4 jnkjnp=j nN

� �
Jn jnkjnq=j nN

� �

j2nNJ
2
nþ1 jnk
� �

J2nþ1 jnq
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δpq

HqGp

(58)

Making use of the now-present Dirac-delta function, Eq. (58) simplifies to give a
modified Parseval relationship

∑
N�1

k¼1

gk
Jnþ1 jnk

� �
 !

hk
Jnþ1 jnk

� �
 !

¼ ∑
N�1

p¼1

Hp

Jnþ1 jnp
� �

0
@

1
A Gp

Jnþ1 jnp
� �

0
@

1
A: (59)

In other words, under a DHT using the Y nN matrix, inner products of the scaled
functions are preserved but not the inner products of the functions themselves.

As a consequence of the orthogonality property of T nN, the T nN based DHT is
energy preserving, meaning that

FTF ¼ f
T
f : (60)

where the overbar indicates a conjugate transpose and the superscript T indicates a
transpose.
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For the formulation with Y nN as the transformation kernel, the equivalent
expression is

FTF ¼ Y nNf
� �T

Y nNf ¼ f
T
Y nN� �T

Y nNf : (61)

It is obvious from Eq. (59) that if we define the “scaled” vector

f Scaledk ¼ f k
Jnþ1 jnk

� � and FScaled
p ¼ Fp

Jnþ1 jnp
� � , (62)

then by straighforward substitution of scaled vectors and their conjugates, it follows
that

FScaled� �T
FScaled ¼ fScaled

� �T

fScaled: (63)

8. Transform rules

In keeping with the development of the well-known discrete Fourier transform,
we develop the standard toolkit of rules for the discrete Hankel transform. In the
following, Y nN is used but all expressions apply equally if Y nN is replaced with T nN .

8.1 Transform of Kronecker-Delta function

The discrete counterpart of the Dirac-delta function is the Kronecker-delta
function, δkk0 . We recall that the DHT as defined above is a matrix transform from a
N � 1 dimensional vector to another. The vector δkko is interpreted as the vector as
having zero entries everywhere except at position k ¼ k0 (k0 fixed so δkk0 is a
vector), or in other words, the k0th column of the N � 1 sized identity matrix. The
DHT of the Kronecker-delta can be found from the definition of the forward
transform via

H δkkoð Þ ¼ ∑
N�1

k¼1
Ym,kδkko ¼ Y nN

m,k0 (64)

The symbol H �ð Þ is used to denote the operation of taking the discrete Hankel
transform. This gives us our first DHT transform pair of order n dimension N � 1,
and we denote this relationship as

δkko ⇔Yn,N
m,k0 (65)

Here, f k ⇔ Fm denotes a transform pair and Y nN
m,k0 is k0th column of the matrix

Y nN .

8.2 Inverse transform of the Kronecker Delta function

From Eq. (65), we can deduce the vector f k that transforms to the Kronecker-
delta vector δmmo function. Namely, we take the forward transform of

f k ¼ Yn,N
k,m0

: (66)
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As before, Y nN
k,m0

represents the m0th column of the transformation matrix Y nN .

From the forward definition of the transform, Eq. (50), the transform of Yn,N
k,m0

is
given by

Fm ¼ ∑
N�1

k¼1
Y nN
m,k f k ¼ ∑

N�1

k¼1
Y nN
m,kY

nN
k,m0

¼ δmm0 , (67)

where we have used the orthogonality relationship (40). This gives us another DHT
pair:

Yn,N
k,m0

⇔ δmmo : (68)

8.3 The generalized shift operator

For a one-dimensional Fourier transform, one of the known transform rules is
the shift rule, which states that

f x� að Þ ¼ F�1 e�iaω f̂ ωð Þ
n o

¼ 1
2π

ð∞

�∞

e�iaω f̂ ωð Þ
n o

eiωtdω: (69)

In Eq. (69), f̂ ωð Þ is the Fourier transform of f xð Þ, F�1 denotes an inverse Fourier
transform and e�iaω is the kernel of the Fourier transform operator. Motivated by
this result, we define a generalized-shift operator by finding the inverse DHT of the
DHT of the function multiplied by the DHT kernel. This is a discretized version of
the definition of a generalized shift operator as proposed by Levitan [8] (he
suggested the complex conjugate of the Fourier operator, which for Fourier trans-
forms is the inverse transform operator). We thus propose the definition of the
generalized-shifted function to be given by

f shift
k,ko ¼ ∑

N�1

p¼1
Y nN
k,p Y nN

p,koFp

n o
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
shift in Hankel

domain

, (70)

where 1≤ k, ko ≤N � 1 . For a single, fixed value of ko, then f shift
k,ko is another N � 1

vector, with the notation f shift
k,ko implying a k0-shifted version of f k. This generalizes

the notion of the shift, usually denoted f k�ko , which inevitably encounters difficulty
when the subscript k� ko falls outside of the range 1;N � 1½ �. We note that if all
possible shifts ko are considered, then f shift

k,ko is a N � 1 square matrix (in other words,
a two dimensional structure), whereas the original un-shifted f k is an N � 1 vector.
For the discrete Fourier transform, when the shifted subscript k� ko falls outside
the range of the indices, is it usually interpreted modulo the size of the DFT.
However, the kernel of the Fourier transform is periodic so this does not create
difficulties for the DFT. The Bessel functions are not periodic so the same trick
cannot be used with the Hankel transform. In fact, this lack of periodicity and lack
of simple relationship between Jn x� yð Þ and Jn xð Þ is the reason that the continuous
Hankel transform does not have a convolution-multiplication rule [13]. Thus, the
notation f k�ko would not make mathematical sense when used with the DHT. With
the definition given by Eq. (70), no such confusion arises since the definition is
unambiguous for all allowable values of k and ko.

15

The Discrete Hankel Transform
DOI: http://dx.doi.org/10.5772/intechopen.84399



For the formulation with Y nN as the transformation kernel, the equivalent
expression is

FTF ¼ Y nNf
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Y nNf ¼ f
T
Y nN� �T

Y nNf : (61)

It is obvious from Eq. (59) that if we define the “scaled” vector

f Scaledk ¼ f k
Jnþ1 jnk

� � and FScaled
p ¼ Fp

Jnþ1 jnp
� � , (62)

then by straighforward substitution of scaled vectors and their conjugates, it follows
that

FScaled� �T
FScaled ¼ fScaled

� �T

fScaled: (63)

8. Transform rules

In keeping with the development of the well-known discrete Fourier transform,
we develop the standard toolkit of rules for the discrete Hankel transform. In the
following, Y nN is used but all expressions apply equally if Y nN is replaced with T nN .

8.1 Transform of Kronecker-Delta function

The discrete counterpart of the Dirac-delta function is the Kronecker-delta
function, δkk0 . We recall that the DHT as defined above is a matrix transform from a
N � 1 dimensional vector to another. The vector δkko is interpreted as the vector as
having zero entries everywhere except at position k ¼ k0 (k0 fixed so δkk0 is a
vector), or in other words, the k0th column of the N � 1 sized identity matrix. The
DHT of the Kronecker-delta can be found from the definition of the forward
transform via

H δkkoð Þ ¼ ∑
N�1

k¼1
Ym,kδkko ¼ Y nN

m,k0 (64)

The symbol H �ð Þ is used to denote the operation of taking the discrete Hankel
transform. This gives us our first DHT transform pair of order n dimension N � 1,
and we denote this relationship as

δkko ⇔Yn,N
m,k0 (65)

Here, f k ⇔ Fm denotes a transform pair and Y nN
m,k0 is k0th column of the matrix

Y nN .

8.2 Inverse transform of the Kronecker Delta function

From Eq. (65), we can deduce the vector f k that transforms to the Kronecker-
delta vector δmmo function. Namely, we take the forward transform of

f k ¼ Yn,N
k,m0

: (66)
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As before, Y nN
k,m0

represents the m0th column of the transformation matrix Y nN .

From the forward definition of the transform, Eq. (50), the transform of Yn,N
k,m0

is
given by

Fm ¼ ∑
N�1

k¼1
Y nN
m,k f k ¼ ∑

N�1

k¼1
Y nN
m,kY

nN
k,m0

¼ δmm0 , (67)

where we have used the orthogonality relationship (40). This gives us another DHT
pair:

Yn,N
k,m0

⇔ δmmo : (68)

8.3 The generalized shift operator

For a one-dimensional Fourier transform, one of the known transform rules is
the shift rule, which states that

f x� að Þ ¼ F�1 e�iaω f̂ ωð Þ
n o

¼ 1
2π

ð∞

�∞

e�iaω f̂ ωð Þ
n o

eiωtdω: (69)

In Eq. (69), f̂ ωð Þ is the Fourier transform of f xð Þ, F�1 denotes an inverse Fourier
transform and e�iaω is the kernel of the Fourier transform operator. Motivated by
this result, we define a generalized-shift operator by finding the inverse DHT of the
DHT of the function multiplied by the DHT kernel. This is a discretized version of
the definition of a generalized shift operator as proposed by Levitan [8] (he
suggested the complex conjugate of the Fourier operator, which for Fourier trans-
forms is the inverse transform operator). We thus propose the definition of the
generalized-shifted function to be given by

f shift
k,ko ¼ ∑

N�1

p¼1
Y nN
k,p Y nN

p,koFp

n o
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
shift in Hankel

domain

, (70)

where 1≤ k, ko ≤N � 1 . For a single, fixed value of ko, then f shift
k,ko is another N � 1

vector, with the notation f shift
k,ko implying a k0-shifted version of f k. This generalizes

the notion of the shift, usually denoted f k�ko , which inevitably encounters difficulty
when the subscript k� ko falls outside of the range 1;N � 1½ �. We note that if all
possible shifts ko are considered, then f shift

k,ko is a N � 1 square matrix (in other words,
a two dimensional structure), whereas the original un-shifted f k is an N � 1 vector.
For the discrete Fourier transform, when the shifted subscript k� ko falls outside
the range of the indices, is it usually interpreted modulo the size of the DFT.
However, the kernel of the Fourier transform is periodic so this does not create
difficulties for the DFT. The Bessel functions are not periodic so the same trick
cannot be used with the Hankel transform. In fact, this lack of periodicity and lack
of simple relationship between Jn x� yð Þ and Jn xð Þ is the reason that the continuous
Hankel transform does not have a convolution-multiplication rule [13]. Thus, the
notation f k�ko would not make mathematical sense when used with the DHT. With
the definition given by Eq. (70), no such confusion arises since the definition is
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The shifted function f shift
k,ko can also be expressed in terms of the original un-

shifted function f k . Using the definition of Fm from Eq. (50) and a dummy change
of variable, then Eq. (70) becomes

f shift
k,ko ¼ ∑

N�1

p¼1
Y nN
k,pY

nN
p,koFp ¼ ∑

N�1

p¼1
Y nN
k,pY

nN
p,ko ∑

N�1

m¼1
Y nN
p,mfm: (71)

Changing the order of summation gives

f shift
k,ko ¼ ∑

N�1

p¼1
Y nN
k,pY

nN
p,koFp ¼ ∑

N�1

m¼1
∑
N�1

p¼1
Y nN
k,pY

nN
p,koY

nN
p,m

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
shift operator

f m: (72)

As indicated in Eq. (72), the quantity in brackets can be considered to be a type of
shift operator acting on the original unshifted function. We can define this as

SnN
k,ko,m ¼ ∑

N�1

p¼1
Y nN
k,pY

nN
p,koY

nN
p,m: (73)

It then follows that Eq. (72) can be written as

f shift
k,ko ¼ ∑

N�1

m¼1
SnN
k,ko,m fm: (74)

This triple-product shift operator is similar to previous definitions of shift operators
for multidimensional Fourier transforms that rely on Hankel transforms [1, 2] and
of generalized Hankel convolutions [14–16].

8.4 Transform of the generalized shift operator

We now consider the forward DHT transform of the shifted function f shift
k,ko . From

the definition, the DHT of the shifted function can be found from

∑
N�1

k¼1
Y nN
m,k f

shift
k,ko ¼ ∑

N�1

k¼1
Y nN
m,k ∑

N�1

p¼1
Y nN
k,pY

nN
p,koFp: (75)

Changing the order of summation gives

∑
N�1

p¼1
∑
N�1

k¼1
Y nN
m,kY

nN
k,p

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼δmp

Y nN
p,koFp ¼ ∑

N�1

p¼1
δmpY nN

p,koFp ¼ Y nN
m,koFm: (76)

This yields another transform pair and is the shift-modulation rule. This rule
analogous to the shift-modulation rule for regular Fourier transforms whereby a
shift in the spatial domain is equivalent to modulation in the frequency domain:

f shift
k,ko ⇔Y nN

m,koFm: (77)

Note that Eq. (77) does not imply a summation over the m index. For a fixed value
of ko on the left hand side, the corresponding transformed value of Fm is multiplied
by the m; koð Þth entry of the Y nN matrix.
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8.5 Modulation

We consider the forward DHT of a function “modulated” in the space domain
f k ¼ Y nN

k,kogk. Here, the interpretation of f k ¼ Y nN
k,ko gk is that the kth entry of the

vector g is multiplied by the k; koð Þth entry of Y nN for a fixed value of ko. No
summation is implied so this is not a dot product; both f k and Y nN

k,ko gk are N � 1
vectors. Again, we implement the definition of the forward transform

∑
N�1

k¼1
Y nN
m,k f k ¼ ∑

N�1

k¼1
Y nN
m,kY

nN
k,ko gk, (78)

and write gk in terms of its inverse transform

gk ¼ ∑
N�1

p¼1
Y nN
k,pGp: (79)

Then Eq. (78) becomes

∑
N�1

k¼1
Y nN
m,k f k ¼ ∑

N�1

k¼1
Y nN
m,kY

nN
k,kogk ¼ ∑

N�1

k¼1
Y nN
m,kY

nN
k,ko ∑

N�1

p¼1
Y nN
k,pGp: (80)

Interchanging the order of summation gives

∑
N�1

p¼1
∑
N�1

k¼1
Y nN
m,kY

nN
k,koY

nN
k,p

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
shift operator

Gp ¼ Gshift
m,ko : (81)

By comparing Eq. (81) with Eqs. (72) and (73), we recognize the shift operator
as indicated in (81). This produces a modulation-shift rule as would be expected so
that the forward DHT of a modulated function is equivalent to a generalized shift in
the frequency domain. This yields another transform pair:

Y nN
k,kogk⇔Gshift

m,ko : (82)

In other words, Eq. (82) says that modulation in the space domain is equivalent to
shift in the frequency domain, as would be expected for a (generalized) Fourier
transform.

8.6 Convolution

We consider the convolution using the generalized shifted function previously
defined. The convolution of two functions is defined as

f k ¼ g∗hð Þk ¼ ∑
N�1

k0¼1
gkoh

shift
k,ko : (83)

The meaning of Eq. (83) follows from the traditional definition of a convolution:
multiply one of the functions by a shifted version of a second function and then sum
over all possible shifts.

Subsequently, from the definition of the inverse transforms, we obtain
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f k ¼ ∑
N�1

k0¼1
gkoh

shift
k,ko ¼ ∑

N�1

k0¼1
∑
N�1

q¼1
Y nN
ko,qGq

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gko

∑
N�1

p¼1
Y nN
k,pY

nN
p,koHp

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
h shift
k,ko

¼ ∑
N�1

q¼1
∑
N�1

p¼1
∑
N�1

k0¼1
Y nN
p,koY

nN
ko,q

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼δpq

Y nN
k,pHpGq:

(84)

But from the orthogonality relationship (40), the summation over k0 gives the
Kronecker delta function, so that Eq. (84) becomes

g∗hð Þk ¼ ∑
N�1

k0¼1
gkoh

shift
k,ko ¼ ∑

N�1

q¼1
∑
N�1

p¼1
δpqY nN

k,pHpGq

¼ ∑
N�1

p¼1
Y nN
k,p HpGp
� � (85)

The right hand side of Eq. (85) is clearly the inverse transform of the product of the
transforms HpFp. This gives us another transform pair

g∗hð Þk ¼ ∑
N�1

k0¼1
gkoh

shift
k,ko ⇔HmGm: (86)

It follows from Eq. (85) that interchanging the roles of g and h will yield the same
result, meaning

∑
N�1

k0¼1
g shiftk,ko hko ¼ ∑

N�1

p¼1
Y nN
k,pGpHp: (87)

Therefore, it follows that

h∗gð Þk ¼ ∑
N�1

k0¼1
g shiftk,ko hko ¼ ∑

N�1

k0¼1
gkoh

shift
k,ko ¼ g∗hð Þk: (88)

8.7 Multiplication

We now consider the forward transform of a product in the space domain
f k ¼ gkhk so that

∑
N�1

k¼1
Y nN
m,k gkhk ¼ ∑

N�1

k¼1
Y nN
m,k ∑

N�1

q¼1
Y nN
k,qGq

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gk

  ∑
N�1

p¼1
Y nN
k,pHp

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
hk

: (89)

Rearranging gives

∑
N�1

k¼1
Y nN
m,kgkhk ¼ ∑

N�1

q¼1
Gq ∑

N�1

p¼1
∑
N�1

k¼1
Y nN
m,kY

nN
k,qY

nN
k,p

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
shift operator

Hp

¼ ∑
N�1

q¼1
GqH shift

m,q ¼ G∗Hð Þm:

(90)
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This gives us yet another transform pair that says that multiplication in the
spatial domain is equivalent to convolution in the transform domain:

gkhk ⇔ ∑
N�1

q¼1
GqH shift

m,q ¼ G∗Hð Þm: (91)

Interchanging the roles of G and H in Eq. (91) demonstrates that convolution in the
transform domain also commutes:

G∗Hð Þm ¼ ∑
N�1

q¼1
GqH shift

m,q ¼ ∑
N�1

q¼1
Gshift

m,q Hq ¼ H∗Gð Þm: (92)

9. Using the DHT to approximate the continuous transform

9.1 Approximation to the continuous transform

Eqs. (26) and (29) show how the DHT can be used to calculate the continuous
Hankel transform at finite points. From Eqs. (26) and (29), it is clear that given a
continuous function f rð Þ evaluated at the discrete points rnk (given by Eq. (31)) in
the space domain (1≤ k≤N � 1), its nth-order Hankel-transform function F ρð Þ
evaluated at the discrete points ρnm (given in Eq. (31)) in the frequency domain
(1≤m≤N � 1), can be approximately given by

F m½ � ¼ α ∑
N�1

k¼1
Y nN
m,k f k½ � ) F ¼ αY nNf (93)

where α is a scaling factor to be discussed below, and F m½ � ¼ F ρnmð Þ,
f k½ � ¼ f rnkð Þ.

Similarly, given a continuous function F ρð Þ evaluated at the discrete points ρnm
in the frequency domain (1≤m≤N � 1), its nth-order inverse Hankel transform
f rð Þ evaluated at the discrete points rnk (1≤ k≤N � 1), can be approximately
given by

f k½ � ¼ 1
α
∑
N�1

m¼1
Y nN
m,kF m½ � ) f ¼ 1

α
Y nNF (94)

For both the forward and inverse transforms, α is a scaling factor and α ¼ R2

j nN
or

equivalently α ¼ j nN
W2

ρ
, where R is the effective space limit andWρ is the effective band

limit (in m�1). The scaling factor α chosen for using the DHT to approximate the
CHT depends on whether information is known about the band-limit or space-limit.
We already introduced the idea of an effective limit in the previous sections, where a
function was defined as being “effectively limited in space by R” means that if r.R,
then f rð Þ≈0 for all r.R. In other words, the function can be made as close to zero as
desired by selecting an R that is large enough. The same idea can be applied to the
spatial frequency domain, where the effective domain is denoted by Wρ.

The relationshipWρR ¼ j nN, derived in the previous sections, holds between the
ranges in space and frequency. Choosing N determines the dimension (size) of the
DHT and determines j nN . The determination of j nN (via choosing N) determines the
range in one domain once the range in the other domain is chosen. In fact, any two
of R,Wρ, j nN can be chosen but the third must follow from WρR ¼ j nN . A similar
relationship applies when using the discrete Fourier transform, any two of the range
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range in one domain once the range in the other domain is chosen. In fact, any two
of R,Wρ, j nN can be chosen but the third must follow from WρR ¼ j nN . A similar
relationship applies when using the discrete Fourier transform, any two of the range
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in each domain and the size of the DFT can be chosen independently. In previous
sections, we showed that the size of the DHT required can be quickly approximated
from 2WR ¼ WρR

π ≈ N þ n
2

� �
.

9.2 Sampling points

In order to properly use the discrete transform to approximate the continuous
transform, a function has to be sampled at specific discretization points. For a finite
spatial range 0;R½ � and a Hankel transform of order n, these sampling points are
given in the space domain as rnk and frequency domain by ρnm, given in Eq. (31) and
repeated here for convenience

rnk ¼
jnk
Wρ

¼ jnkR
j nN

ρnm ¼ jnm
R

¼ jnmWρ

j nN
k,m ¼ 1…N � 1 (95)

It is important to note that as in the case of the computation of the transforma-
tion matrix Y nN, the first Bessel zero jn1 used in computing the discretization points
is the first non-zero value. Eq. (95) demonstrates that some of the ideas known for
the DFT also apply to the DHT. That is, making the spatial domain larger (larger R)
implies making the sampling density tighter in frequency (the ρnm get closer
together). Similarly, making the frequency domain larger (larger Wρ) implies a
tighter sampling density (smaller step size) in the spatial domain. Although jnm are
not equispaced, they are nearly so for higher values of m and for purposes of
developing quick intuitions on ideas such as sampling density, if is convenient to
approximately think of jnk ≈ kþ n

2

� �
π.

9.3 Implementation and availability of the software

The software used to calculate the DHT is based on the MATLAB programming
language. The software can be downloaded from

• http://dx.doi.org/10.6084/m9.figshare.1453205

• https://github.com/uchouinard/DiscreteHankelTransform

The implementation of the discrete Hankel transform is decomposed into distinct
functions. These functions consist of various steps that have to be performed in
order to properly execute the transform. These steps are as follows:

• Calculate N Bessel zeros of the Bessel function of order n

• Generate of N sample points (if using the DHT to approximate the continuous
transform)

• Sample the function (if needed)

• Create the Y nN transformation matrix

• Perform the matrix-function multiplication

The steps are the same regardless if the function is in the space or frequency
domain. Furthermore, the Y nN transformation matrix is used for both the forward
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and inverse transform. The second and third steps in the list above are only needed
if the function (vector) to be transformed is not already given as a set of discrete
points. In the case of a continuous function, it is important to evaluate the function
at the sampling points in Eq. (95). Failing to do so results in the function not being
properly transformed since there is a necessary relationship between the sampling
points and the transformation matrix Y nN . In order to perform the steps listed
above, several Matlab functions have been developed. These functions are shown in
Table 1.

Additionally, the matlab script GuidetoDHT.m is included to illustrate the
execution of the necessary computational steps.

9.4 Verification of the software

The software was tested by using the DHT to approximate the computation of
both the continuous Hankel forward and inverse transforms and comparing the
results with known (continuous) forward and inverse Hankel transform pairs.
Different transform orders n were evaluated.

For the purpose of testing the accuracy of the DHT and IDHT, the dynamic error
was used, defined as [12]

e vð Þ ¼ 20 log 10
f vð Þ � f ∗ νð Þj j
max f ∗ vð Þj j

� �
(96)

This error function compares the difference between the exact function values f vð Þ
(evaluated from the continuous function) and the function values estimated via the
discrete transform, f ∗ νð Þ, scaled with the maximum value of the discretely esti-
mated samples. The dynamic error uses the ratio of the absolute error to the
maximum amplitude of the function on a log scale. Therefore, negative decibel
errors imply an accurate discrete estimation of the true transform value. The trans-
form was also tested for accuracy on itself by performing consecutive forward and
then inverse transformation. This is done to verify that the transforms themselves
do not add errors. For this evaluation, the average absolute error 1

N∑N
i¼1 f i � f i

∗�� ��was
used. The methodology of the testing is given in further detail in [18] and also in the
theory paper [3].

10. Summary and conclusions

In this chapter, the theory of the discrete Hankel transform as a “standalone”
transform was motivated and presented. The standard operating rules for

Function name Calling sequence Description

besselzero besselzero
(n,k,kind)

Calculation of k Bessel zeros of the nth-order Bessel function
of kind—developed in [17]

freqSampler freqSampler
(R,zeros)

Creation of sample points in the frequency domain
(Eq. (95))

spaceSampler spaceSampler
(R,zeros)

Creation of sample points in the space domain (Eq. (95))

YmatrixAssembly YmatrixAssembly
(n,N,zeros)

Creation of Y nN matrix from the zeros

Table 1.
Set of available functions.
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multiplication, modulation, shift and convolution were also demonstrated. Sam-
pling and interpolation theorems were shown. The theory and numerical steps to
use the presented discrete theory for the purpose of approximating the continuous
Hankel transform was also shown. Links to the publicly available, open-source
numerical code were also included.
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Chapter 2

Fourier Transforms for
Generalized Fredholm Equations
Juan Manuel Velazquez Arcos,
Ricardo Teodoro Paez Hernandez, Alejandro Perez Ricardez
and Jaime Granados Samaniego

Abstract

In this chapter we take the conventional Fredholm integral equations as a
guideline to define a broad class of equations we name generalized Fredholm
equations with a larger scope of applications. We show first that these new kind of
equations are really vector-integral equations with the same properties but with
redefined and also enlarged elements in its structure replacing the old traditional
concepts like in the case of the source or inhomogeneous term with the generalized
source useful for describing the electromagnetic wave propagation. Then we can
apply a Fourier transform to the new equations in order to obtain matrix equations
to both types, inhomogeneous and homogeneous generalized Fredholm equations.
Meanwhile, we discover new properties of the field we can describe with this new
technology, that is, mean; we recognize that the old concept of nuclear resonances is
present in the new equations and reinterpreted as the brake of the confinement of
the electromagnetic field. It is important to say that some segments involving
mathematical details of our present work were published somewhere by us, as part
of independent researches with different specific goals, and we recall them as a tool
to give a sound support of the Fourier transforms.

Keywords: Fredholm equations, electromagnetic resonances,
electromagnetic confinement, evanescent waves, left-hand materials,
Fourier transforms, vector-matrix equations

1. Introduction

There is a very broad class of problems on physics that requires a tool that not
only serves to handle the mathematical problem related to the solution of some
differential equation describing the behavior of a system but that gives us an
alternative description of them from a distinct point of view in a manner that allows
us to discover some hidden physical properties, that is, we need to generalize the
application of the Fourier transform from the conventional task to achieve a set of
algebraic equations to a complete alternative formulation in terms of the Fourier
transform of the integral Fredholm equations [1–5, 13, 17]. Many of the problems
we want to consider are those related with vector fields like the electromagnetic.
For this situation we dedicate the present chapter first to the integral equation
formulation of the electromagnetic traveling waves, and then, by the application of
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the Fourier transform, we obtain finally a matrix-vector formulation [9, 10, 12, 14,
18]. To this end we go from the conventional Fredholm equations to new vector-
integral equations we name generalized Fredholm equations proving that really
they have the same properties of the conventional scalar Fredholm equations. In the
meantime we discover that the new formulation brings a resonant behavior solution
when some specific conditions are accomplished. The resonant behavior can be
associated with the physical phenomenon of a brake of confinement of the so-called
evanescent waves [6–8, 10–12, 19, 20] which leaves the region known as the near-
field zone and is strongly related to the condition we name a left-hand material
condition of the propagation media. The name left-hand material conditions
describes the fact that are related with a negative refraction index observed in
artificial materials created by man and we have used for describe the propagation
media property in which in some embedded region the electromagnetic waves are
diffracted like in a left-hand material. We find in the first part of the present
chapter a brief discussion about the relation between the inhomogeneous general-
ized Fredholm equations or GIFE [9, 10, 12, 18] and the homogeneous generalized
Fredholm equations or GHFE. The GHFE are behind the presence of the resonant
behavior, and we show how a sudden change in a little set of physical parameters
related to propagation properties triggers the brake of the confinement of the
evanescent waves. Then we incorporate to our description the plasma sandwich
model or PSM and their own parameters in order to propose that the change in these
last parameters changes drastically the wave propagation properties of media. It is
important to advise that our procedures are applied to continuous systems and
therefore are strictly original, and only the topics related to the funds of the PSM
were taken from previous works that involved discrete systems.

2. Beginning of the generalized Fredholm equations

In this section we will build the generalized Fredholm equations mentioned in
the introduction of this chapter. To this end, we suppose that both electric and
magnetic fields have the linearity property, and for this reason we can relate their
values represented with the symbol at different times and places and

. Due to the mentioned linearity of the wave equation, we can write (bearing in
mind that we can have more general conditions different to empty space)

Fm r; tð Þ ¼ Fm ∘ð Þ r; tð Þ þ
ð

V

∑
3

n¼1

ð∞

�∞

Gmn ∘ð Þ r; t; r
0
; t

0
� �

Umn r
0

� �
Fn r

0
; t

0
� �

dt
0
dV

0
(1)

Here

ð2Þ

is the free Green’s function, and the complex dispersion coefficients are
which contain the complete linear or nonlinear space-dependent interaction, but
only time-independent ones are considered. By interchanging the volume and time
differentials on integrands in Eq. (1), we obtain

ð3Þ
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or

ð4Þ

This equation resembles inhomogeneous Fredholm’s integral equation (IFE) but
not as defined in scalar conventional form, and we will prove below that is strictly
the case, so we call it generalized inhomogeneous Fredholm’s integral equation or
GIFE and the homogeneous version generalized homogeneous Fredholm’s equation
or GHFE.

Also, we have used summation convention over n and defined the kernel:

ð5Þ

The signal can be written in terms of a well-behaved non-null func-
tion defined by

ð6Þ

For convenience, we return to Eq. (2), which can be written as

ð7Þ

On the other hand, we can express the Green’s function in terms of its Fourier
transform associated with frequency

ð8Þ

so that Eq. (7) becomes

ð9Þ

where we have defined the function

ð10Þ

That is, is the Fourier transform of
We also have
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GIFE and the homogeneous version generalized homogeneous Fredholm’s equation
or GHFE.

Also, we have used summation convention over n and defined the kernel:

ð5Þ

The signal can be written in terms of a well-behaved non-null func-
tion defined by

ð6Þ

For convenience, we return to Eq. (2), which can be written as

ð7Þ

On the other hand, we can express the Green’s function in terms of its Fourier
transform associated with frequency

ð8Þ

so that Eq. (7) becomes

ð9Þ

where we have defined the function

ð10Þ

That is, is the Fourier transform of
We also have
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ð11Þ

Substituting in Eq. (9) and performing some algebra, we obtain

ð12Þ

Now we introduce a very useful and powerful notation we call vector-matrix
form for Eq. (12) (vectors have another vectors as components, and also matrices
have matrices as components):

ð13Þ

(Einstein summation convention was used here)
where

K ∘ð Þ r; r
0
;ω

� �
� Umn rð ÞGmn ∘ð Þ

ω r; r
0

� �
(14)

and also define

ð

V

Umn r
0

� �
Gmn ∘ð Þ

ω r; r
0

� �
gndV

0 � Kmn ∘ð Þ ωð Þgn rð Þ

3. The vector-matrix forward equation

Eq. (13) can be inverted formally as

ð15Þ

By means of the development of this equation, we find the generalized Neu-
mann series [12] and obtain the Fourier transform of complete Green’s function

. The result is [1]

ð16Þ

Here we have defined

Km
n r; r

0
;ω

� �
¼ Umn r

0
� �

Gmn
ω r; r

0
� �

(17)

and the integral
ð

V

Umn r
0

� �
Gmn

ω r; r
0

� �
gm ∘ð Þ r

0
� �

dV
0 � Kmn ∘ð Þ ωð Þgm ∘ð Þ rð Þ
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Eqs. (16) and (17) comprise the basic tools needed to describe the forward
transmission of information but, as we will see in the next chapter, an incomplete
description for time reversal. We can use Eq. (16) to get experimental data on the
components of since the Fourier transforms of the original signals

are known, we can measure the arriving signals . In practice,
we may consider Eqs. (16) and (17) as our starting point instead of assuming that
there is no signal for t < 0.

4. The role of the Fourier transforms assisting time reverse

Nowadays, there is not any device capable to manipulate electromagnetic signals
in the easy way; we can manipulate sound waves mostly when we make a time
reverse on them. Nevertheless, we have proposed in another work a recipe to
handle this problem, so we are convinced that the treatment of the time reversal
process that we now describe corresponds to a completely possible fact. Suppose
that we have recorded a signal during a time T and now the reversed signal returns
to site r. Then we can write

ð18Þ

This Eq. (18) can be written in terms of the function as

ð19Þ

We can express Eq. (19) in terms of the Fourier transform

ð20Þ

in the form

ð21Þ

And recalling the Fourier transform for Zn r; tð Þ, this can be written as

ð22Þ
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At this point it is important to distinguish between functions related to forward
phenomena and those related to backward direction when necessary. So we will use
a different notation for both cases, and also, we introduce a quantum mechanics
resembling notation for the product between matrices and vectors; in this manner,
Eq. (22) can be written in vector (row vector) form like

ð23Þ

where we introduced the quantum mechanics resembling notation:

ð24Þ

Also we define

ð25Þ

and

ð26Þ

Factorizing in Eq. (28) and using definition Eq. (29)

ð27Þ

In the following we will use systematically Eqs. (23), (25), and (27).

5. Fourier transforms and Neumann series make up a powerful tool

It is possible to invert formally Eq. (27)

ð28Þ

Formally

ð29Þ
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or

ð30Þ

Now we substitute in Eq. (29) this last expression for

ð31Þ

Canceling parentheses we obtain

ð32Þ

We then obtain the Neumann series [12] for the Fourier transform of the inte-
gral equation solution for time reversal (for reference see Eq. (18)):

ð33Þ
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6. An algebraic equation for time reverse

Because the bracketed expression in Eq. (36) is convergent, then it must equal
the Fourier transform of complete Green’s function , so that we can
write

ð34Þ

Equation (34) can be written in a compact row vector form:

ð35Þ

In this equation, we define the kernel

ð36Þ

and also define

ð37Þ

Transposing Eq. (35) we obtain finally the column vector form (for real interac-
tions):

ð38Þ

Obviously, Eq. (38) is identical with Eq. (16) but with M ωð Þ instead of K ωð Þ.

7. Operators and resonances on continuum formulation

Eqs. (16) and (38) are algebraic representations of integral equations, that is,
they are strongly dependent on the Fourier transform of the Green function; indeed
the behavior of the late referred function determines the solution whether or not
the regime was resonant. For this reason it is convenient to analyze how the Green
function changes in the neighborhood of a resonance. With this purpose in mind,
we recall Eqs. (13) and (16):

ð39Þ

ð40Þ

By applying the operator from the left to Eq. (13) and summing over
m, we have
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ð41Þ

Then using Eq. (16), we obtain

ð42Þ

or

ð43Þ

In this expression is also a short notation for a “vector”whose components

are or as we have seen
Now, by spanning Eq. (41)

ð44Þ

This can be expressed as

ð45Þ

Then we can write

ð46Þ

and by rearrangement of terms and writing only the operators

ð47Þ

But we can now explicitly write Eq. (45) in terms of Green’s function:

ð48Þ

Here we have defined the product

Unm rð ÞGmn
ω r; r

0
� �

� UG ωð Þ½ �nm (49)

That is, the Fourier transform of Green’s function satisfies the equation

G ωð Þ ¼ G ∘ð Þ ωð Þ þK ωð ÞG ∘ð Þ ωð Þ (50)

And if we start with Eq. (39) (time reversal), we obtain by a similar procedure

ð51Þ
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Now, if we are near a resonance, Eqs. (48) and (49) are transformed in homo-
geneous equations with solutions we will denote as we ωð Þ, and if we denote the
interaction as U and the kernel K ∘ð Þ ωð Þ, then from Eqs. (48) or (49) without the
source term, we have the following relation:

w†
l ωð ÞUwu ωð Þ η�1

u � η�1
l

� � ¼ 0 (52)

This relation establishes that the resonant solutions are mutually orthogonal and
the functions η ωð Þ are known as the Fredholm eigenvalues.

8. The homogeneous Fredholm equation and Fredholm’s eigenvalue

As we saw in Section 8, the resonant solutions are orthogonal and in Eq. (50) the
Fredholm eigenvalues appear, but these last functions emerge when the inhomoge-
neous Fredholm equations are transformed in a homogeneous equation near a
resonance. The resulting homogeneous equation is

ð53Þ

According to the theory of homogeneous Fredholm equations [1, 2, 3, 5, 9, 15, 16],
one of the conditions for the existence of solutions is that first Fredholm’s minor

complies

ð54Þ

From Eqs. (51) and (52) and after a little algebra, we arrive to the following
equation:

ð55Þ

At this point, it is convenient to make the following definitions:

ð56Þ
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with also

ð57Þ

We can reduce the last equations to a compact one:

ð58Þ

It is clear that our procedure leads to an inhomogeneous Fredholm equation in
which it is possible to observe that the transit from a non-resonant regime to a
resonant regime is described by the generalized source term Φ ∘ð Þ r;ωð Þ.

9. The role of resonances on broadcasting applications

In precedent sections we have seen how we can go from inhomogeneous to
homogeneous Fredholm equations, that is, from non-resonant or conventional

Figure 1.
We show the superposition of three plasma layers subjected to local high electromagnetic potential creating
resonances and releasing evanescent waves: Layer M is composed of magnetic plasma, and the U layers are
composed of unmagnetized plasma.
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solutions to resonant ones. But we know that the resonant solutions are related with
a left-hand behavior of the transmitting media, that is, with negative refraction
index. On the other hand, Xiang-kun Kong et al. [7, 11] have studied the sign change
of the refraction index on devices with superposed layers of magnetized an
unmagnetized plasma. This experiment suggested us to propose the plasma sand-
wich model for transmitting media illustrated in Figure 1 that consists in itinerant
and random appearing of superposed magnetized and unmagnetized plasma layers
in high atmosphere that creates localized zones with negative refraction index.
According to the precedent results, the change to negative refraction index must
establish completely different conditions for the crossing of electromagnetic signals,
and we have the appropriate tool to handle these very important phenomena. That
is we can observe the transition from evanescent waves (non-traveling waves) to
traveling waves like an increase in the polarization effect. In Figure 1 three plasma
regions appear named U (unmagnetized), M (magnetized), and U (again
unmagnetized) representing a region on the atmosphere. When some local electro-
magnetic potential values occur, it is possible to reach left-hand material conditions.

10. Conclusions

In this chapter we have expanded the scope of Fourier transforms by application
to a relatively new class (really a vector generalization) of integral equations we
named generalized Fredholm equations (GFE). We think that the very relevant
subjects we discussed, not only because they are far-reaching implications but also
for they are not presented nowadays by other authors, are the properties we have
discovered about both the GFE and its own solutions. We have shown a strong
relation between the resonant solutions of the generalized homogeneous Fredholm
equations for the electromagnetic field and the resonances observed in scattering in
nuclear physics. The physical interpretation of the new class of resonances allows us
to discern completely new applications in different subjects like electromagnetic
wave propagation or the understanding of meta-materials. We give the mathemat-
ical proofs for properties of the integral equations, the relation between homoge-
neous and inhomogeneous equations, and the mechanism for release of the
evanescent waves converting them in traveling ones.
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The RR Interval Spectrum, the
ECG Signal, and Aliasing
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Abstract

We discuss the relationship between the RR interval spectral analysis and the
spectral analysis of the corresponding ECG signal from which the RR intervals were
evaluated. The ECG signal spectrum is bounded below the frequency fB by using an
electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from
spectral analysis. A similar procedure cannot be applied to the RR interval spectral
analysis, and in this case aliasing is possible. One of our main efforts in this chapter
is devoted to the problem of how to detect aliasing in the heart rate spectral analysis.
In order to get an insight, we performed an experiment with an adult man, in which
the ECG signal was detected in a case where the breathing rate was larger than half
the heart rate. A constant breathing rate for time intervals exceeding 5 minutes was
monitored with good accuracy using a special breathing procedure. The results
show distinctively a very sharp peak in the spectral analysis of the ECG signal, and
corresponding (diffused) aliasing peaks in the RR interval spectral analysis. A new
method of dealing with unevenly sampled data was developed, which has interest-
ing anti-aliasing properties. There are indications that the VLF peaks of the RR
spectrum are originated by aliasing. Some of the LF peaks may have the same
property. The chapter is fully based on the preprint arXiv:physics/9911017, submit-
ted on 11 Nov 1999, by authors A. Gersten, O. Gersten, A. Ronen, and Y. Cassuto.

Keywords: heart rate, ECG signal, spectral analysis, aliasing, HRV

1. Introduction

The RR interval spectral analysis is usually based on heart rate data collected in
two ways. In one method, the data are collected by analog to digital conversion of
the ECG signal and computer evaluation of the RR intervals from the ECG signal. In
the second method, devices are used whose output is the RR interval alone. The
advantage of the first method is the control of accuracy and flexibility of the
evaluations. The second method has the advantage of storing smaller amount of
data, and it can be easily used online.

In the first method, usually the number of collected data (sampled ECG signal)
is of two to three orders of magnitude larger than the RR interval data. Thus if only
RR interval is analyzed, a large amount of data is unused. In this paper we are trying
to take advantage of the ECG sampled signal and to derive new information in
addition to the conventional RR interval analysis [1–5].

The ECG signal spectrum is bounded below the frequency fB by using an
electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from
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spectral analysis of the corresponding ECG signal from which the RR intervals were
evaluated. The ECG signal spectrum is bounded below the frequency fB by using an
electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from
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1. Introduction

The RR interval spectral analysis is usually based on heart rate data collected in
two ways. In one method, the data are collected by analog to digital conversion of
the ECG signal and computer evaluation of the RR intervals from the ECG signal. In
the second method, devices are used whose output is the RR interval alone. The
advantage of the first method is the control of accuracy and flexibility of the
evaluations. The second method has the advantage of storing smaller amount of
data, and it can be easily used online.

In the first method, usually the number of collected data (sampled ECG signal)
is of two to three orders of magnitude larger than the RR interval data. Thus if only
RR interval is analyzed, a large amount of data is unused. In this paper we are trying
to take advantage of the ECG sampled signal and to derive new information in
addition to the conventional RR interval analysis [1–5].

The ECG signal spectrum is bounded below the frequency fB by using an
electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from
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spectral analysis [6]. A similar procedure cannot be applied to the RR interval
spectral analysis, and in this case an aliasing is possible. One of our main efforts in
this paper is devoted to the problem of how to detect aliasing in the RR interval
spectral analysis.

In order to get an insight, we performed an experiment, in which the ECG signal
of one of the authors (AG) was detected, while the breathing rate was larger than
half the heart rate. A constant breathing rate for a time exceeding 5 minutes was
monitored with good accuracy using a special breathing procedure with a metro-
nome. The results show distinctively a very sharp peak in the spectral analysis of the
ECG signal and corresponding (diffused) aliasing peaks in the RR interval spectral
analysis.

The spectral analysis of the ECG signal was performed with the standard FFT
procedures. The spectral analysis of the RR intervals was performed with several
techniques in order to take into consideration that the data were unevenly sampled.
This is presented in Section 2. In Section 3, we discuss the possibility of aliasing in
the spectral analysis of the RR intervals. In Section 4, we compare power estima-
tions of ECG’s and RR intervals of three experiments. In Section 5, we analyze the
results. In Section 6, summary and conclusions are presented.

2. Spectral analysis of unevenly sampled data

The methods of spectral analysis are well developed for evenly sampled data
[6, 7]. The RR interval data are unevenly sampled in time. In most cases an analysis
is performed with respect to beat numbers which are evenly spaced. We will below
justify this method using least square principles. But as was recently indicated by
Laguna et al. [8], the resampling of data is causing the appearance of additional
harmonics. They recommend to use a method developed by Lomb [9]. The errors of
resampling the beats can, to large extent, be overcome by using a cubic spline
interpolation. In this work we are suggesting a new method of treating unevenly
sampled data, which, unexpectedly, gave good results beyond the Nyquist
frequency.

2.1 Analysis according to beat numbers

Let us assume that the RR intervals are given at unevenly sampled times tn, with
the values s tnð Þ, where n is the beat number, n ¼ 1⋯N. Let us divide the interval
t1; tN½ � into equal subintervals:

Δτ ¼ tN � t1
N � 1

, (1)

and let us generate in the interval t1; tN½ � evenly sampled times:

τn ¼ n� 1ð ÞΔτ þ t1: (2)

We will use the discrete Fourier transform (DFT) for a basis formed from the
evenly sampled times τn. We will assume that

s tnð Þ ¼ 1
N

∑
N

k¼1
Sk exp iωkτnð Þ, ωk ¼ 2π k� 1ð Þ= NΔτð Þ: (3)

The coefficient Sk will be determined by minimizing the expression
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σ ¼ ∑
N

n¼1
s tnð Þ � 1

N
∑
N

k¼1
Sk exp iωkτnð Þ

� �
s tnð Þ � 1

N
∑
N

k¼1
S ∗
k exp �iωkτnð Þ

� �� �
(4)

with the result

Sk ¼ ∑
N

n¼1
s tnð Þ exp �iωkτnð Þ: (5)

Eqs. (3 and 5) can be handled easily with standard FFT programs. This is the
usual procedure which is adopted in most of the papers dealing with RR interval
analysis [4, 5].

2.2 Other methods

FFT can be applied more efficiently if the unevenly sampled data are interpo-
lated at evenly spaced intervals of Eq. (2). The cubic spline interpolation is one of
the good ways to do it.

The Lomb method [9] was extensively analyzed in Ref. [8]. We give here only
the formulae in the form of the Lomb normalized periodogram:

PX ωkð Þ ¼ 1
2σ2

∑N
n¼1 s tnð Þ � s½ � cos ωk tn � τð Þð Þ

h i2

∑N
n¼1 cos 2 ωk tn � τð Þð Þ þ

∑N
n¼1 s tnð Þ � s½ � sin ωk tn � τð Þð Þ

h i2

∑N
n¼1 sin 2 ωk tn � τð Þð Þ

8><
>:

9>=
>;

(6)

where s and σ2 are the mean and variance of the data and the value of τ is
defined as

tan 2ωkτð Þ ¼ ∑N
n¼1 sin 2ωktnð Þ

∑N
n¼1 cos 2ωktnð Þ : (7)

2.3 Nonuniform discrete Fourier transform (NUDFT)

We present here a new method of treating unevenly spaced events which we call
the “nonuniform discrete Fourier transform” (NUDFT).

Let us assume that s τnð Þ are the exact values of the signal at the points given by
Eq. (2). The corresponding DFT is

Sk ¼ ∑
N

n¼1
s τnð Þ exp �iωkτnð Þ: (8)

Our aim is to find a good approximation to this expression in terms of the
unevenly sampled signal s tnð Þ.

We start with the Euler summation formula:

∑
N

n¼1
f τnð Þ ¼ 1

Δτ

ðτN
τ1

f τð Þdτ þ 1
2

f τ1ð Þ þ f τNð Þ½ � þ Δτ
12

f 0 τNð Þ � f 0 τ1ð Þ� �þ O Δτ2
� �

(9)

and make the following decomposition of the integral on the right hand side of
Eq. (9)
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ðτN
τ1

f τð Þdτ ¼
ðt2
t1
f τð Þdτ þ

ðt3
t2
f τð Þdτ þ⋯þ

ðtN
tN�1

f τð Þdτ (10)

and approximate each of the integrals on the right hand side with the trapezoidal
rule

ðτN
τ1

f τð Þdτ ¼ 1
2

f t1ð Þ þ f t2ð Þ½ � t2 � t1ð Þ þ⋯þ 1
2

f tN�1ð Þ þ f tNð Þ½ � tN � tN�1ð Þ þ O Δτð Þ:

(11)

From Eqs. (9) and (11), we obtain:

∑
N

n¼1
f τnð Þ ¼ 1

2Δτ
f t1ð Þ þ f t2ð Þ½ � t2 � t1ð Þ þ⋯þ f tN�1ð Þ þ f tNð Þ½ � tN � tN�1ð Þf g

þ 1
2

f t1ð Þ þ f tNð Þ½ � þO Δτð Þ:
(12)

When tn are equally spaced, Eq. (12) becomes an identity with the O Δτð Þ ¼ 0;
therefore it seems to us that Eq. (12) is satisfied with an higher accuracy than just
O Δτð Þ: Eq. (12) can be applied to approximate Eq. (8) with the substitution

f tnð Þ ¼ s tnð Þ exp �iωktnð Þ, (13)

and the final result, the approximation to Eq. (8), after rearranging the terms,
becomes

Sk ¼ ∑
N

n¼1
cns tnð Þ exp �iωktnð Þ þO Δτð Þ, (14)

where

c1 ¼ Δτ þ t2 � t1
2Δτ

,

c2 ¼ t3 � t1
2Δτ

,

⋮

cN�1 ¼ tN � tN�2

2Δτ
,

cN ¼ Δτ þ tN � tN�1

2Δτ
,

(15)

with the inverse formula

s τnð Þ ¼ 1
N

∑
N

k¼1
Sk exp iωkτnð Þ þO Δτð Þ, ωk ¼ 2π k� 1ð Þ= NΔτð Þ, (16)

which is an interpolation formula for s tnð Þ at the evenly spaced points τ1⋯τN .

3. Aliasing

Aliasing is a result of undersampling and is a well-known phenomenon. In Ref.
[10], aliasing was looked upon from the point of view of symmetry. It is an example
of wrong symmetry and as such should be given more attention. It is the outcome of
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an incomplete basis. It was found in Ref. [10] that for evenly sampled data with a
sampling rate f S, the spectral amplitude S fð Þ evaluated with FFT has the following
symmetry properties:

S fð Þj j ¼ S f � f S
� ��� �� ¼ S �f � f S

� ��� �� ¼ S �f � nf S
� ��� ��, (17)

where f is the frequency and n is an arbitrary integer.
In order to avoid the aliasing symmetry of Eq. (17), the frequencies should be

bounded by the Nyquist frequency (denoted here by f B) according to

f B ¼ f S
2
: (18)

The ECG signal was sampled with sampling rate 250 Hz, and an electronic filter
was applied, which have eliminated practically all frequencies above 32 Hz, thus
aliasing cannot occur at frequencies below 125 Hz or even below 32 Hz. The RR
intervals were calculated directly from the ECG signal. The sampling rate for RR
intervals can be defined only for evenly sampled data and for the methods that
interpolate the unevenly sampled data, or one can consider the average sampling
rate from Eq. (1) in both cases:

f S ¼ 1=Δτ ¼ 2f N, (19)

where f N is the Nyquist frequency for the RR intervals. As the ECG signal con-
tains frequencies much greater than f N and the RR intervals are derived from the
ECG signal, one cannot be sure that the spectral analysis of the RR intervals is free
from aliasing. As a matter of fact, there are indications of aliasing in some rare cases
[11–16]. One way to identify aliasing is to change the sampling rate and follow the
changes in the spectrum. Unfortunately, for the RR intervals, one cannot speak about
a definite sampling rate but rather can consider a distribution of sampling rates. The
changes in sampling rate required to observe aliasing are of the same order as the
fluctuations in the sampling rate. Therefore in practice it is almost impossible to
observe consistent changes in the spectrum slightly changing the heart rate.

Another possibility of detecting aliasing is by comparing the heart rate spectrum
with the ECG signal spectrum. Marked differences below the Nyquist frequency for
the power distribution of the RR intervals compared to the ECG signal power
distribution in the same range may indicate aliasing. But we do not have yet a sound
basis to treat this problem.

We have devised an experiment which definitely demonstrates the aliasing in
the RR interval spectrum. To the best of our knowledge, this is the first experiment
in which one can exactly know the correct frequency above the Nyquist frequency
and can follow the development of the aliasing, which appears to be diffused to
great extent because the symmetry of Eq. (17) is represented not by one sampling
rate but by a distribution of sampling rates, as the RR interval is unevenly sampled.

Below we describe three experiments. One of them was devised to demonstrate
aliasing and the other two for learning about the relations between the RR interval
spectrum and the spectrum of the ECG signal.

4. Three experiments

We present below results of three experiments. In the first experiment, the ECG
signal was collected in a normal resting state. The aim of this experiment was to
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an incomplete basis. It was found in Ref. [10] that for evenly sampled data with a
sampling rate f S, the spectral amplitude S fð Þ evaluated with FFT has the following
symmetry properties:

S fð Þj j ¼ S f � f S
� ��� �� ¼ S �f � f S

� ��� �� ¼ S �f � nf S
� ��� ��, (17)

where f is the frequency and n is an arbitrary integer.
In order to avoid the aliasing symmetry of Eq. (17), the frequencies should be

bounded by the Nyquist frequency (denoted here by f B) according to

f B ¼ f S
2
: (18)

The ECG signal was sampled with sampling rate 250 Hz, and an electronic filter
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f S ¼ 1=Δτ ¼ 2f N, (19)

where f N is the Nyquist frequency for the RR intervals. As the ECG signal con-
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[11–16]. One way to identify aliasing is to change the sampling rate and follow the
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the power distribution of the RR intervals compared to the ECG signal power
distribution in the same range may indicate aliasing. But we do not have yet a sound
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We have devised an experiment which definitely demonstrates the aliasing in
the RR interval spectrum. To the best of our knowledge, this is the first experiment
in which one can exactly know the correct frequency above the Nyquist frequency
and can follow the development of the aliasing, which appears to be diffused to
great extent because the symmetry of Eq. (17) is represented not by one sampling
rate but by a distribution of sampling rates, as the RR interval is unevenly sampled.

Below we describe three experiments. One of them was devised to demonstrate
aliasing and the other two for learning about the relations between the RR interval
spectrum and the spectrum of the ECG signal.

4. Three experiments

We present below results of three experiments. In the first experiment, the ECG
signal was collected in a normal resting state. The aim of this experiment was to
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compare the ECG spectrum with the RR interval spectrum. In the second experi-
ment, very slow breathing was monitored at a rate of 0.04 Hz. Again the ECG and
RR interval spectra were compared. In the third experiment, very fast breathing
was accurately monitored at the rate of 74/min and 84/min. These respiratory rates
were above half of the heart rates, thus allowing to observe in detail the develop-
ment of aliasing.

4.1 The first experiment

In this experiment (linked with the names of Zahi and Ori, where the second is
one of the authors: O.G), which was done in normal, resting conditions, we com-
pare the power estimation of the RR interval and the ECG signal, from which the RR
interval was obtained. The ECG signal was sampled at a rate of 250 Hz. Stable
intervals of 7-minute duration were chosen for analysis.

In Figure 1a the power distribution of the ECG signal of Zahi is depicted. The
attenuation of the power with increasing frequency above 12 Hz is due to the action

Figure 1.
The relative power of the ECG signal of Zahi, (a) in the spectral range of 0–36 Hz and (b) in the spectral range
of 0–12 Hz.

44

Fourier Transforms - Century of Digitalization and Increasing Expectations

of an electronic filter. Above 32 Hz the contribution is practically zero. The average
heart rate was 0.97 Hz. The above results were zoomed to the interval [0–12] Hz in
Figure 1b. One can see distinctively the peak around the average heart rate and the
higher harmonics of this peak. The second harmonic is missing, but the third, fourth,
fifth, and sixth are distinctively visible; higher harmonics became more and more
smeared and indistinguishable above the sixth harmonic. One should also note the
large difference in power in the heart rate range, below the Nyquist frequency of
0.49 Hz, which is much smaller than the peak around the average heart rate 0.97 Hz.

The power distribution of the RR intervals in the range {0–0.5} Hz was com-
puted according to the methods discussed in Section 2 and is presented in Figure 2a
(DFT, beat number analysis), Figure 2b (Spline interpolation), and Figure 2c
(NUDFT). For comparison also the power distribution of the ECG signal in the
above range is presented in Figure 2d.

The results of Figure 2a–c are quite similar, but the spline interpolation
(Figure 2b) and the NUDFT (Figure 2c) are practically identical. The three graphs
show the structure commonly found in the power estimation analysis of RR inter-
vals, namely, the existence of the “high-frequency” (HF), “low-frequency” (LF),
and the “very low-frequency” (VLF) peaks. The ECG spectrum shows qualitatively
the same structure (but not a quantitative agreement), except that the ECG spec-
trum is highly suppressed below 0.04 Hz, in the VLF region, indicating a possibility
of aliasing in this region in the RR analysis.

In Figures 3 and 4a–d, the results of Ori are presented. The conclusions are
similar to those of Zahi, except that in the ECG spectrum, both VLF and LF peaks
are missing, indicating the possibility of aliasing in these regions for the RR analysis.
Also in the ECG spectrum of Ofek, VLF and LF, present in Figure 5a, are missing.
VLF is missing in J.C.’s ECG spectrum (see Figure 6a–6b).

Figure 2.
The relative power computed (from the ECG signal of Zahi) by four different methods, in the spectral range of 0–
0.5 Hz, (a) by DFT, (b) by spline interpolation of the RR data, (c) by NUDFT, and (d) from the ECG signal.
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4.2 The second experiment

In this experiment (linked again with the name Ori), we have checked the ECG
spectrum near the VLF region, as the VLF was absent in the ECG spectrum for the
resting state in the first experiment. The question was whether such a result persists
in all ECG spectra. Therefore we have probed the VLF region by monitoring very

Figure 3.
The relative power of the ECG signal of Ori.

Figure 4.
The relative power computed (from the ECG signal of Ori) by four different methods, in the spectral range of
0–0.52 Hz. (a) by DFT, (b) by spline interpolation of the RR data, (c) by NUDFT, (d) from the ECG signal.
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prolonged breathing with a rate of 0.04 Hz. For the spectrum of RR intervals, we
found that the DFT, spline interpolation, and NUDFT give similar results, and again
NUDFT was practically identical to the spline interpolation. Therefore we present
only the results of NUDFT, which are presented in Figure 7a. For comparison the
spectrum of the ECG signal is given in Figure 7b. In Figure 7a one can see a very
clean pattern of a peak at 0.04 Hz and its higher harmonics. In Figure 7b one can
see a similar but somewhat diffused pattern. Thus this experiment indicates that
similar respiratory patterns exist in both the RR and in the ECG signals.

4.3 The third experiment

In this experiment (linked to the name Alex, who is one of the authors: AG),
very fast breathing was accurately monitored at the rate of 74/min and 84/min,
respectively. These rates were well above half of the average heart rate, thus
allowing to observe in detail the development of aliasing. In Figure 8 the ECG
spectrum is dominated by the very high and narrow peak at the frequency
f 1 ¼ 1:234Hz; also its higher harmonics can be distinctively seen. The frequency f 1
is just the breathing frequency 74/min. In the same figure, one can also see the
diffused peaks near the average heart rate frequency of 1.636 Hz and its higher

Figure 5.
The relative power computed (from the ECG signal of Ofek) by two different methods, in the spectral range of
0–0.6 Hz, (a) by spline interpolation of the RR data, (b) from the ECG signal.
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harmonics. One should observe aliasing at about 1:636Hz� f 1 ¼ 0:402Hz. Indeed
one can see diffused peaks around that frequency in Figure 9a, which displays the
power estimation of the RR intervals using the NUDFT (which the Nyquist rate
below is similar to the spline interpolation). The width of this region can be esti-
mated by noting that the RR intervals have different instantaneous sampling rates
which are equal to the inverse of the RR interval time. In Figure 10 we have
calculated the distribution of the sampling rates by dividing the frequency region
into 100 beans. We have shifted that distribution by subtracting f 1. As one can see,
the results are confined approximately to the region 0.32–0.47 Hz. Indeed the
aliasing peaks of Figure 9a appear in this region. The pictures below the Nyquist
frequency are very similar for the DFT, NUDFT, the spline interpolation, and the
Lomb method (Figure 9b) with a similar aliasing behavior.

In principle the NUDFT and the Lomb methods should not be used above the
Nyquist frequency. Surprisingly enough we have found that both methods have a
sharp peak at f 1, as can be seen in Figure 9a and b. Both methods do not have the
aliasing symmetry of the DFT as given by Eq. (17); therefore the results are not
symmetric with respect to the Nyquist frequency (half the sampling rate), as it is
satisfied, for example, in the case of the spline interpolation. We have found an

Figure 6.
The relative power computed (from the ECG signal of J.C.) by two different methods, in the spectral range of 0–
0.46 Hz, (a) by spline interpolation of the RR data, (b) from the ECG signal.
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Figure 7.
The relative power computed (from the ECG signal of Ori with breathing rate of 0.04 Hz) by two different
methods, in the spectral range of 0–0.62 Hz, (a) by NUDFT, (b) from the ECG signal.

Figure 8.
The relative power of the ECG signal of Alex with a breathing rate of 1.234 Hz.
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Figure 9.
The relative power computed (from the ECG signal of Alex with a breathing rate of 1.234 Hz) by two different
methods, in the spectral range of 0–1.5 Hz, (a) by NUDFT, (b) from the ECG signal.

Figure 10.
A 100 bin histogram of the heart rates of Alex which are subtracted by the breathing rate of 1.234 Hz.
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Figure 11.
The relative power of the ECG signal of Alex with a breathing rate of 1.404 Hz.

Figure 12.
The relative power computed (from the ECG signal of Alex with a breathing rate of 1.404 Hz) by two different
methods, in the spectral range of 0–1.6 Hz, (upper figure) by NUDFT, (lower figure) from the ECG signal.
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exact result at f 1 and a diffused aliasing around 0.4 Hz. It is interesting to note that
both methods give almost the same result below and above the Nyquist frequency.
One can interpret the appearance of the sharp peak at f 1 as a result of a partial
destruction of aliasing symmetry due to uneven samplings.

Similar results for the breathing frequency 84/min are presented in Figures 11–12.

5. Further developments

Since our experiment, which demonstrated how aliasing is developing in
human beings, nobody had performed experiments on human beings. The reason is
that till now, nobody dared (except one of us, AG) to do extremely fast breathing of
74 breaths/min and 84/min, for more than 5 minutes. After reading our preprint,
Campbell [17] and his colleagues found an aliasing in fish [17]. Other researchers
were more concerned with preventing aliasing, observing the phenomenon in
speeded heart rate, and in constructing aliasing filters [18–21].

6. Summary and conclusions

The ECG signal spectrum is bounded below the Nyquist frequency fB by using
an electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from
spectral analysis. A similar procedure cannot be applied to the RR interval spectral
analysis, and in this case an aliasing is possible. One of our main efforts in this paper
was devoted to the problem of how to detect aliasing in the RR interval spectral
analysis.

In order to get insight into this problem, three experiments have been analyzed.
In the first experiment, the ECG signal was collected in a normal resting state. The
aim of this experiment was to compare the ECG spectrum with the RR interval
spectrum. In the second experiment very slow breathing was monitored at a rate of
0.04 Hz. Again the ECG and RR interval spectra were compared. In the third
experiment, very fast breathing was accurately monitored at the rate of 74/min and
84/min, respectively. These respiratory rates were above half of the heart rates, thus
allowing to observe in detail the development of aliasing.

The experiments which were described above led us to the following conclusions:

1. The spectral analysis of the ECG signal is more sensitive and accurate than
the RR interval spectral analysis and is free from aliasing. Still in the present
stage, it contains too much information to be of practical use. Efforts should be
made to understand what will be the best way to extract information (not
related to the heart condition alone as in the standard analysis of ECG) about
the external influences on the heart signal.

2.We have conducted an experiment which gave a clear insight about the
mechanism of aliasing in the RR interval spectrum. The very sharp peak in the
spectrum of the ECG signal, which came as the result of enforced quick
breathing, reappeared as a diffused signal in the RR spectrum. The extension of
the diffuseness agrees with the extension of the sampling rates of unevenly
sampled data.

3. The VLF peak observed in the RR interval spectrum is usually missing in the
ECG spectrum. This leads us to suspect that the VLF observed in the RR
spectrum has its origin in aliasing.
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4.In some cases the LF peak does not show up in the ECG spectrum. This led us
to suspect that part of the LF peak is of aliasing origin.

5. Unlike in electronic devices, it is very difficult to devise procedures to detect
aliasing in humans. In electronic devices aliasing can be easily detected by
changing the sampling rate. In humans the fluctuations of the heart rate are of
the same order as the required changes in the sampling rates. It will be an
important task to develop a proper procedure for detecting aliasing in humans.

6.We have developed a new technique for spectral analysis for unevenly sampled
data called nonuniform discrete Fourier transform (NUDFT). When employed
to the RR data, below the Nyquist frequency, it gave similar results as those
obtained by interpolating the data with a cubic spline. Above the Nyquist
frequency, the correct peak in the spectrum was detected with great accuracy.
A similar result was obtained with the recently rediscovered Lomb method.
We interpret this unexpected result by a partial destruction of aliasing
symmetry in both methods. More efforts should be made in order to
understand the anti-aliasing properties of the above methods.

7.We consider aliasing to be a wrong symmetry, resulting from the use of an
incomplete basis, which has intrinsic symmetries inconsistent with the
properties of the signal. Aliasing can be partially removed by reducing the
symmetry of the basis.
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Chapter 4

Directional Denoising Using
Fourier Spectrum Cloning
Laurent Navarro and Jérôme Molimard

Abstract

Fourier filtering for image denoising consists in masking parts of the Fourier
spectrum of an image and using inverse Fourier transform of the masked image to
obtain the denoised one. In cases of directional noise, this process can induce
artifacts, mainly because of the spatial coherence that exists in the theoretical noise-
free image. Moreover, it can lead to loss of low-frequency content that is important
in applications such as fringe projection technique, which aims at measuring 3D
elevations of a surface. A method based on the principle of Fourier spectrum
cloning for the denoising of images is proposed in this chapter. This method
improves the PSNR and the SSIM ratio in comparison with spectrum masking
denoising. The method will be detailed first, and then examples of image denoising
in two different applications will be presented.

Keywords: Fourier transform, fringe projection, image denoising,
spectrum cloning, periodic noise

1. Introduction

Fourier filtering is one of the main techniques used for the denoising of images
corrupted by periodic noise. Most of image processing denoising algorithms tend to
consider statistically defined noises, such as Gaussian, Poisson, or speckle noises [1].
However, in a relatively high number of cases, noises encountered in images are
quasiperiodic and directional. These noises can be viewed as first-order, structured
noises. Quasiperiodic noises are essentially due to AC perturbations or acquisition
and reconstruction process errors in the case of three-dimensional reconstruction
images. This type of noise is usually removed using filtering in the Fourier domain
[2]. The Fourier transform is intrinsically well adapted, because it decomposes a
signal on a basis of sine and cosine function which have an infinite support. The
principle of Fourier filtering is usually the same: the Fourier spectrum exhibits some
peaks that correspond to the frequencies of the noise, and the denoising operation
consists in masking the part of the spectrum that contains the peaks after having
detected them with the eye or simple or more complex algorithms. The removal of
the Fourier spectrum peaks has a major drawback: the abrupt removal of all the
Fourier coefficients induces artifacts and missing spatial frequencies in the
reconstructed images.

The idea developed in this chapter consists in cloning the values of the module of
the spectrum around the removed part and to use a combination of these values to
fill the removed part. The observed result is a reduced noise with fewer oscillations

57



Chapter 4

Directional Denoising Using
Fourier Spectrum Cloning
Laurent Navarro and Jérôme Molimard

Abstract

Fourier filtering for image denoising consists in masking parts of the Fourier
spectrum of an image and using inverse Fourier transform of the masked image to
obtain the denoised one. In cases of directional noise, this process can induce
artifacts, mainly because of the spatial coherence that exists in the theoretical noise-
free image. Moreover, it can lead to loss of low-frequency content that is important
in applications such as fringe projection technique, which aims at measuring 3D
elevations of a surface. A method based on the principle of Fourier spectrum
cloning for the denoising of images is proposed in this chapter. This method
improves the PSNR and the SSIM ratio in comparison with spectrum masking
denoising. The method will be detailed first, and then examples of image denoising
in two different applications will be presented.

Keywords: Fourier transform, fringe projection, image denoising,
spectrum cloning, periodic noise

1. Introduction

Fourier filtering is one of the main techniques used for the denoising of images
corrupted by periodic noise. Most of image processing denoising algorithms tend to
consider statistically defined noises, such as Gaussian, Poisson, or speckle noises [1].
However, in a relatively high number of cases, noises encountered in images are
quasiperiodic and directional. These noises can be viewed as first-order, structured
noises. Quasiperiodic noises are essentially due to AC perturbations or acquisition
and reconstruction process errors in the case of three-dimensional reconstruction
images. This type of noise is usually removed using filtering in the Fourier domain
[2]. The Fourier transform is intrinsically well adapted, because it decomposes a
signal on a basis of sine and cosine function which have an infinite support. The
principle of Fourier filtering is usually the same: the Fourier spectrum exhibits some
peaks that correspond to the frequencies of the noise, and the denoising operation
consists in masking the part of the spectrum that contains the peaks after having
detected them with the eye or simple or more complex algorithms. The removal of
the Fourier spectrum peaks has a major drawback: the abrupt removal of all the
Fourier coefficients induces artifacts and missing spatial frequencies in the
reconstructed images.

The idea developed in this chapter consists in cloning the values of the module of
the spectrum around the removed part and to use a combination of these values to
fill the removed part. The observed result is a reduced noise with fewer oscillations

57



due to the phase content rupture. The underlying hypothesis is that the phase of an
image is very coherent on high amplitudes because it carries most of the informa-
tion linked to the structure of the image [3]. Thus, creating a hole in the spectrum
harms the phase of the image and the continuity of information. Moreover, the
structure of an image is related to the content of this image, but the phase of a
periodic noise, which is related to an acquisition or a reconstruction process,
is statistically different. In other words, it means that the phase content of the
theoretical noise-free image in the Fourier domain is relatively self-consistent [4],
but not consistent with that of the noise.

Images based on reconstruction principles often exhibit periodic noises. A good
example of this is fringe projection technique images. These images result in the
projection of a sinusoidal pattern with an angle on a surface. Then, the image is
observed perpendicular to this surface, with a digital camera. Variations of topog-
raphy induce a phase shift of the sinusoidal pattern, and a phase unwrapping
operation allows the three-dimensional reconstruction of the surface.

The chapter is organized as follows. First, some recalls about denoising using
Fourier transform are given in one and two dimensions. Second, the principle of
spectrum cloning is introduced as an extension of Fourier denoising. In this case
too, it is proposed in one and two dimensions. Then, a section presents results on a
synthetic example consisting of the Lena image with a periodic noise added. Peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) measure are used to
highlight the possible improvement of the spectrum cloning versus the classical
Fourier filtering. The following section deals with an example of denoising on fringe
projection technique images. This type of images greatly benefit from Fourier
spectrum cloning due to the whole process of image formation.

2. Recalls on Fourier denoising

In this section, we recall the basic principles of Fourier denoising in one and two
dimensions. These principles rely on the assumption of additive noise. The model
for additive noise is

g tð Þ ¼ f tð Þ þ n tð Þ (1)

where t is the time, g tð Þ is the observed signal, f tð Þ is the theoretical noise-free
signal, and n tð Þ is the noise.

This model implies that the noise is a function that does not depend on the signal
intensity and as a consequence that it is possible to remove it with a simple sub-
traction if it is fully characterized. In the case of periodic noise, the exact expression
of the noise is not known, but it is well localized in the frequency domain. That is
why Fourier denoising using spectrum manipulation is efficient for this type of
signals.

2.1 One-dimensional Fourier denoising

Consider the Fourier transform of the signal g tð Þ:

G fð Þ ¼
ð∞

�∞

f tð Þ þ n tð Þð Þe�2iπftdt (2)

As the Fourier transform of a sum of functions is the sum of the individual
Fourier transforms, and considering Eq. (1), one can write:
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G fð Þ ¼ F fð Þ þN fð Þ (3)

where F fð Þ and N fð Þ are, respectively, the Fourier transforms of f tð Þ and n tð Þ.
One can theoretically recover f tð Þ using the inverse Fourier transform and a

subtraction if the exact expression of the noise n tð Þ is known:

f tð Þ ¼
ð∞

�∞

G fð Þ �N fð Þð Þe2iπftdf (4)

However, in most cases the expression of the noise is usually not known, so f tð Þ
cannot be recovered exactly. In order to obtain an approximation f tð Þ of f tð Þ, it is
common to set a part of G fð Þ to zero:

ef tð Þ ¼
ð∞

�∞

Gf fð Þe2iπftdf (5)

with

Gf fð Þ ¼ G fð Þ if f ∈ �∞; f 1
� �

∪ f 2;∞
� �

0 if f ∈ f 1; f 2
� �

(

where f 1 and f 2 are frequency bounds, with f 1 . f 2, and Gf fð Þ is the filtered
spectrum of G fð Þ.

2.2 Two-dimensional Fourier denoising

In the two-dimensional case, we consider a two-dimensional spatial function
f x; yð Þ∈R2, with x and y as the spatial coordinates. The additive model for the noise
is the same, in two dimensions.

The Fourier transform of f x; yð Þ is

F u; vð Þ ¼
ð∞

�∞

ð∞

�∞

f x; yð Þe�2iπ vxþuyð Þ dx dy (6)

The same principle applies, and we can also obtain an approximation ef x; yð Þ of
f x; yð Þ with

ef x; yð Þ ¼
ð∞

�∞

ð∞

�∞

Gf u; vð Þe2iπ vxþuyð Þ dx dy (7)

with

Gf u; vð Þ ¼ G x; yð Þ if x2 þ y2ð Þ∈ �∞; r1ð Þ∪ r22;∞
� �

0 if x2 þ y2ð Þ∈ r21; r
2
2

� �
(

where r1 and r2 are the radii of the part of the two-dimensional spectrum set to
zero, with r1, r2, and Gf x; yð Þ is the filtered spectrum of G fð Þ. It is important to
note that in two dimensions it is better to define a two-dimensional torus for the
masked part or more adequately two-dimensional torus sectors to take into account
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2
2

� �
(
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the symmetry of the Fourier transform. Actually, in most applications this principle
is not applied, and ellipses are used to mask the spectrum peaks.

3. Fourier spectrum cloning

The main drawback of Fourier denoising using spectrum subtraction is that the
whole spectrum is removed. Indeed, the operation leaves a hole in the spectrum,
which can cause oscillations in the inverse Fourier transform process. In fact, one
can easily understand the phenomenon considering the inverse Fourier transform
of a rectangular “hole”:

ð∞

�∞

β fð Þeéiπftdf ¼ � 1
π
sinc tð Þ (8)

where

β fð Þ ¼ 0 if fj j, 1

1 if fj j. 1

�

As can be seen in Figure 1, the Fourier transform of such an inverse rectangular
pulse is a sinc function which oscillates to the infinity. In addition, the masked part
of the spectrum implies that all frequencies in the f 1; f 2

� �
or c1; c2½ � ranges will not

be present in the signal at all.

Figure 1.
(Left) Inverse rectangular pulse in frequency. (Right) Fourier transform of an inverse rectangular pulse in time.
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3.1 One-dimensional Fourier spectrum cloning

The purpose of Fourier spectrum cloning is to use the values of spectrum sur-
rounding the masked parts to create a synthetic replacement. More precisely, the
part of the spectrum that has been removed is replaced by a mean of surrounding
parts. In order to obtain the new approximation ef tð Þ of f tð Þ, one can write

ef tð Þ ¼
ð∞

�∞

Gfc fð Þe2iπftdf (9)

with

Gfc fð Þ ¼
G fð Þ if f ∈ �∞; f 1

� �
∪ f 2;∞
� �

G f � f 2 þ f 1
� �þ G f þ f 2 � f 1

� �
2

if f ∈ f 1; f 2
� �

8<
:

where Gfc fð Þ is the filtered and cloned spectrum of G fð Þ. This expression
implies that the previous part of the spectrum that was set to zero is now the mean
of the part before and the part after the removed portion.

This operation utilizes the information of the signal itself to create false spec-
trum content. Indeed, it takes into account the nature of the signal which has its
own regularity to construct the replacement part of the spectrum.

3.2 Two-dimensional Fourier spectrum cloning

The same principle can apply in two dimensions. To obtain an approximation
ef x; yð Þ of f x; yð Þ, one can write

ef x; yð Þ ¼
ð∞

�∞

ð∞

�∞

Gfc u; vð Þe2iπ vxþuyð Þ dx dy (10)

where

Gfc u; vð Þ ¼
G x; yð Þ if x2 þ y2ð Þ∈ �∞; r21

� �
∪ r22;∞
� �

G x� xr2 þ xr1 ; y� yr2 þ yr1

� �
þ G x� xr1 þ xr2 ; y� yr1 þ yr2

� �

2
if x2 þ y2
� �

∈ r21; r
2
2

� �

8><
>:

and
xri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ y2

p
and yri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ x2

p
, for i ¼ 1; 2f g.

As the cloning operation actually creates information instead of the missing part
of the spectrum, it can be desirable to add a setting parameter α that will be
optimized for the best results. Thus, Gfc x; yð Þ becomes

Gfc u; vð Þ ¼
G x; yð Þ if x2 þ y2ð Þ∈ �∞; r1ð Þ∪ r22;∞

� �

α
G x� xr2 þ xr1 ; y� yr2 þ yr1

� �
þ G x� xr1 þ xr2 ; y� yr1 þ yr2

� �

2
if x2 þ y2
� �

∈ r21; r
2
2

� �

8><
>:

Practically, this principle should be the best for isotropic or orthotropic periodic
noise. However, in real applications, the Fourier spectrum does not present well-
localized peaks but more singular lines crossing the zero frequency point and the
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This operation utilizes the information of the signal itself to create false spec-
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Practically, this principle should be the best for isotropic or orthotropic periodic
noise. However, in real applications, the Fourier spectrum does not present well-
localized peaks but more singular lines crossing the zero frequency point and the
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peaks. As a consequence, it is sometimes better to clone the whole line containing
the targeted frequency range.

4. Results on the Lena image

In this section, we present results on a test signal consisting of the Lena image
with a sinusoidal noise added. The Lena image can be considered as a natural image
because it has been acquired with a camera and then digitalized. In this example the
image range is 0; 255½ �, and the noise has an amplitude of 50.

One can observe Figure 2 that the Fourier transforms of the noise and the noisy
Lena exhibit the vertical lines mentioned in the previous section.

Increasing values of α ranging from 0 to 1 have been tested in order to observe
the evolution of two classical image quality measurement indices. The first one is
the peak signal-to-noise (PSNR) ratio. Even if the validity of this metric for human
quality perception is discussed today, it remains interesting for specific applications
such as images resulting from reconstruction processes. Indeed, these kinds of
images, such as fringe projection images, contain geometrical information. As the
PSNR is based on the calculus of the mean squared error (MSE), it makes sense to
use it on this type of images. The second metric we used is the structural similarity
(SSIM) measure. The SSIM has been developed for video quality assessment. It is
based on the structure of the images, contrary to the PSNR which is pixel-based.
This makes it closer to the human vision which is more attached to the structures
contained in images.

Figure 2.
(a) Lena image and (b) its Fourier spectrum. (c) Noisy Lena image and its (d) Fourier spectrum. (e) Noise
and its (f) Fourier spectrum.
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4.1 Peak signal-to-noise ratio (PSNR)

The PSNR ratio is defined as

PSNR ¼ 10 Log10
max imageð Þ

MSE

� �
(11)

where max imageð Þ is the maximum possible value in the images and with

MSE ¼ 1
m:n

∑
m�1

i¼0
∑
n�1

j¼0
f i; jð Þ � g i; jð Þ½ �2

where m:n is the total number of pixels in the image and f and g are the images
between those the PSNR is calculated.

As one can observe Figure 3, the optimum value for α is around 0:8, with a
PSNR of 36:2. The value α ¼ 0 corresponds to the classical case of simple suppres-
sion of a part of the spectrum. This example highlights, in this specific case, the
differences between classical spectrum masking and the spectrum cloning method
in terms of PSNR.

4.2 Structural similarity (SSIM) measure

The default SSIM [5] between two images f and g is defined by

SSIM f ; gð Þ ¼
2μfμg þ c1
� �

2σfg þ c2
� �

μ2f þ μ2g þ c1
� �

σ2f þ σ2g þ c2
� � (12)

Figure 3.
PSNR values between noise-free Lena and denoised Lena as a function of α.
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where μf , μg, σf , σg, and σfg are the local means, standard deviations, and cross-

covariance for images f and g. c1 ¼ k1Lð Þ2 and c2 ¼ k2Lð Þ2 with L the dynamic range
of the images and k1 ¼ 0:01 and k2 ¼ 0:03.

Figure 4 shows that an optimum is reached for α ¼ 0:55. This value is lower than
the value found for the PSNR. This can be explained by the fact that these two

Figure 4.
SSIM values between noise-free Lena and denoised Lena as a function of α.

Figure 5.
(a) Lena image and (b) its Fourier spectrum. (c) Denoised Lena image with α ¼ 0:8 and its (d) Fourier
spectrum.
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metrics do not focus on the same properties of the image quality after denoising.
The authors of [6] discussed this particular point by measuring sensitivities of the
two metrics to different types of degradation: PSNR is more sensitive to additive
Gaussian noise, whereas SSIM is more sensitive to jpeg compression.

4.3 Visual assessment

An example of denoising operation on the Lena image with parameter α ¼ 0:8
gives the result in Figure 5 and with α ¼ 0:55 in Figure 6. One can observe that
even if the noise has been well removed, some artifacts remain in the image. In the
two cases, this does not affect the readability of the image, but the artifacts present
in the α ¼ 0:55 case appear more natural to the eye.

5. Results on real applications

In this section, we focus on one application, the fringe projection technique,
which benefits highly from the Fourier spectrum cloning denoising.

The fringe projection method has already been described by many authors (see,
e.g., [7–10]). Basically, a periodic pattern of white and black lines is projected on an
object; the light is diffused by the object and captured by a CCD video camera. The
deformation of the fringes depends on the shape of the illuminated object. In order
to observe this deformation, the angle between the projected fringes and the
observed diffused light must not be null. The result is a 3D map that can be viewed
as an image, with z elevation corresponding to the gray levels.

Figure 6.
(a) Lena image and (b) its Fourier spectrum. (c) Denoised Lena image with α ¼ 0:55 and its (d) Fourier
spectrum.
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5.1 Fringe projection technique basics

5.1.1 Optical setup

The fringe projection setup for shape measurement is based on a pocket projec-
tor (3M© MPRO 110), 800 � 600, and a Imaging Source CCD camera, 1280 � 960,
8 bits. This solution is adapted to fields of investigation from 10 � 7 to
200 � 150 mm2 (see Figure 7).

5.1.2 Basic principle

Light intensities on an object illuminated by a set of fringes can be described by a
periodic function Ili, with a perturbation corresponding to the object shape:

Ili x; yð Þ ¼ I0 x; yð Þ 1þ γ x; yð Þ cos 2π
p x; yð Þ yþΦ x; yð Þ

� �� �
(13)

where I0 is the average intensity and γ is the fringe contrast. These values should
be constant over the whole map, but some low-frequency variations due to illumi-
nation inhomogeneities or diffusivity changes on top of the surface can occur.
Consequently, both average intensity and contrast have to be considered as local
quantities, typically calculated over few fringe periods, and can be denoted I0 x; yð Þ
and γ x; yð Þ. The fringe period p is the distance between two light peaks on a flat
surface. Of course, due to perspective effects, this pitch can change over the map.
Last, the object is responsible for a phase shift Φ x; yð Þ at each point of the field that
can be written as

Φ x; yð Þ ¼ 2π
tan θ x; yð Þð Þ

p x; yð Þ z x; yð Þ (14)

In this expression, the sensitivity is proportional to the angle θ between the CCD
video camera and the video projector and to the fringe density 1=p. As expressed by
the equation, the sensitivity varies over the field because usual video projector and
the CCD camera commonly use divergent lens. Here, pinhole model parameters

Figure 7.
Experimental fringe projection setup.

66

Fourier Transforms - Century of Digitalization and Increasing Expectations

were identified through an identification procedure. Readers should refer to [11] for
detailed explanations.

5.1.3 Phase extraction

Then, phase extraction is a classical topic in optics applied to mechanics. Con-
sidering Eq. (13), extraction of the phase from intensity map(s) can be done from a
single image, using a category of methods known as spatial phase shifting [12], but
better results are usually obtained using temporal phase shifting techniques. The
choice only depends on the situation: if temporal effects are expected, spatial phase
shifting is more appropriate, because it only requires one image [13]. If not, tem-
poral phase shifting technique should be preferred for its higher spatial resolution.
The Photomechanix toolbox, developed in the laboratory, has genuine implementa-
tion of both techniques, as prescribed by Surrel ([14, 15]).

Here, only temporal phase shifting is described: a set of n� q fringe patterns
with a known phase shift q=2π is projected successively on the surface, first and last
fringe pattern being shifted by a n� 2π, n∈ℤ phase. Then, the intensity variation
at each point (i.e., each camera pixel) corresponds to a sine wave function with an
initial phase shift. The phase is evaluated using the Fourier transform:

Φ r; sð Þ ¼ arctan2π

∑nq
k¼1 sin k 2π

q

� �
Ik r; sð Þ

∑nq
k¼1 cos k 2π

q

� �
Ik r; sð Þ

0
@

1
A (15)

This shape measurement setup shows interesting metrological performances
compared to the classical techniques (line projection, stereovision): the spatial res-
olution is 1 pixel (8–156 μm, depending on the field of view), and the resolution is
σ ¼ 1=100th fringe, i.e., 10 μm at best. This capacity is very important for high-
frequency phenomena monitoring: a skin submitted to mechanical load, metal
instability under forming process, etc.

The signal-to-noise ratio (SNR) being usually high, no further signal processing
is required; but some considerations on the quality of the images must be done. If
the illumination is not controlled, then the sine wave is distorted. Another noise
source lies in the phase shift: a drift would add noise, as demonstrated by Cordero
[16]. The consequence in both cases is that parasitic harmonics enter in the shape
field. Surrel proposed an algorithm robust to phase drift [14]; Kemao published a
procedure to characterize the intensity period and remove most of the harmonics
[17], but he used a strong assumption on intensity modeling that is not always
completed. As a matter of fact, it is commonly admitted that a careful tuning is the
best solution.

5.1.4 Experimental test: Case 1. Digitalization of a bas-relief

Arts have already been an important field of applications of fringe projection.
For example, the support stability of the Mona Lisa paint has been evaluated by
[18], but wider projects of heritage object recording should be contemplated [19]. In
this specific case, obviously, no surface preparation is possible before scanning, and
illumination is an issue. Here, we illustrate a possible drawback with a bas-relief
that has to be scanned and duplicated. A time-shifting approach was used in order
to get the better spatial resolution, but an image turned to be corrupted, resulting in
a phase shift drift.

Figure 8 shows a photograph of the bas-relief (a) as well as the basic shape
reconstruction (b). Parasitic fringes are clearly visible because of its structure, even
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were identified through an identification procedure. Readers should refer to [11] for
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if the intensity is very low compared to the heights in the field. In this first example,
even if some noise remains in the final image, the global shape is not affected. The
final objective being the duplication, it is better to refine some parts of the 3D model
by hands after a first denoising operation that does not introduce structure errors.

5.1.5 Experimental test: Case 2. Skin characterization

The skin is a challenging topic for topology reconstruction. Skin structure is
multi-scale, with a global shape containing wrinkles and fine lines. Each scale has its
own topological properties, in particular the orientation, and experts would like to
separate wrinkles and fine lines because the dermatologic treatment associated to
each is different.

Besides these characteristics that are followed as a marker of cosmetic efficiency,
it is important to note that the light diffusion of the skin is not perfect for fringe
projection. Moreover, it depends on many parameters that should be considered as

Figure 8.
Bas-relief intensity image (a) and shape (b). The classical Gaussian low-pass (σ = 10 px) (c) filter shows better
parasitic fringe removal but loses details compared to the FSC filter (μ = 110, δ = 22) (d).
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natural (melatonin concentration, skin moisture, tobacco, etc.) or interventional
(cleaning procedure, cosmetic treatment). Then, it is difficult to change the skin
surface for the sake of better experimental conditions, and the physicist has to adapt
the signal processing to these conditions.

A particular point in skin texture analysis is the global amplitude of the shape
variations. On a square-centimeter area, elevation variations are typically close to
∓1 mm, but the wrinkle roughness should be as small as σRMS≈10 μm. Conse-
quently, in some cases, the roughness might be only ten times higher than the noise,
and if this noise has an organized texture, it interferes in the human perception of
the surface topology.

We propose here two illustrations from Lorica™ replica of the skin taken on the
forearm or on the forehead. On the basic reconstruction, it is possible to distinguish
some periodic lines almost horizontal. These lines can be associated with the fringes
considering their orientation and wavelength. A classical way of removing noise in
this case is to use a Gaussian low-pass filter. Here, it has been set to σ ¼ 10 px
(pixels) according to the user’s practice.

Qualitatively, both filters remove the targeted parasitic lines. The Gaussian
filtered image seems blurry, as it could be expected, while the Fourier spectrum
cloning (FSC) filter seems to respect the image sharpness. Quantitatively, three
basic topographic data are extracted for the whole image: a mean roughness indica-
tor (RMS roughness, σRMS), a pic-to-valley indicator (skewness, Sk), and a shape
indicator (kurtosis, Kt). In this situation, it is worth recording that there is no
ground truth. It can be observed after all that σRMS and Sk are dramatically
changed with Gaussian filter and not with the FSC filter (Figures 9 and 10).

Figure 9.
Intensity image of the skin taken at the forearm (a) and texture reconstruction of the skin after high-pass
filtering to remove the global shape σRMS = 20.1 μm, Sk = �0.231, Kt = 3.274 (b). The classical Gaussian
low-pass (σ = 10 px) σRMS = 18.0 μm, Sk = �0.169, Kt = 3.253 (c) filter shows good parasitic fringe removal
but loses details compared to the FSC filter (μ = 48, δ = 10) σRMS = 20.0 μm, Sk = �0.225, Kt = 3.287 (d).
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basic topographic data are extracted for the whole image: a mean roughness indica-
tor (RMS roughness, σRMS), a pic-to-valley indicator (skewness, Sk), and a shape
indicator (kurtosis, Kt). In this situation, it is worth recording that there is no
ground truth. It can be observed after all that σRMS and Sk are dramatically
changed with Gaussian filter and not with the FSC filter (Figures 9 and 10).

Figure 9.
Intensity image of the skin taken at the forearm (a) and texture reconstruction of the skin after high-pass
filtering to remove the global shape σRMS = 20.1 μm, Sk = �0.231, Kt = 3.274 (b). The classical Gaussian
low-pass (σ = 10 px) σRMS = 18.0 μm, Sk = �0.169, Kt = 3.253 (c) filter shows good parasitic fringe removal
but loses details compared to the FSC filter (μ = 48, δ = 10) σRMS = 20.0 μm, Sk = �0.225, Kt = 3.287 (d).
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6. Conclusions

In this chapter, we proposed the Fourier spectrum cloning principle. After some
recalls about Fourier denoising, we gave the basis of Fourier spectrum cloning with
a tuning parameter α∈ 0; 1½ � allowing to choose the amount of cloned spectrum. We
proposed to measure the performances of the algorithm on the Lena image without
optimization to observe the benefits of the method. To do so we used the peak
signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) which are
good metrics for measuring differences between images.

Fringe projection has been chosen as a first application field. The analysis of the
skin microreliefs (wrinkles, fine lines) requires an optimal system and a good post-
processing, the signal-to-noise ratio being limited. The potential of FSC filter is
clearly outlined: a periodic noise can be removed and make the image easier to
interpret, without major changes in the topographical characteristics. Anyway, in
this application, only one frequency band has been removed, and a multiple choice
could be necessary in practice; interactions between various filtering processes
would have to be studied then.

As a conclusion, this chapter aims at presenting a simple concept and giving
some results and interpretations. Many refinements can be implemented in the
future, in order to improve these results obtained with the simplistic application of
the cloning principle. Actually, the construction of the synthetic replacement part
of the spectrum could be synthesized considering different parameters such as
border effects or statistical measures on the spectrum. Further research will address
these different paths.

Figure 10.
Intensity image of the skin taken at the forehead (a) and texture reconstruction of the skin after high-pass
filtering to remove the global shape σRMS = 38.5 μm, Sk = �0.013, Kt = 3.411 (b). The classical Gaussian
low-pass (σ = 10 px) σRMS = 37.6 μm, Sk = �0.008, Kt = 3.364 (c) filter shows good parasitic fringe removal
but loses details compared to the FSC filter (μ = 42, δ = 12) σRMS = 38.5 μm, Sk = �0.013, Kt = 3.410 (d).
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Chapter 5

Analysis of Financial Time Series 
in Frequency Domain Using 
Neural Networks
Stefan Nikolić and Goran Nikolić

Abstract

Developing new methods for forecasting of time series and application of exist-
ing techniques in different areas represents a permanent concern for both research-
ers and companies that are interested to gain competitive advantages. Financial 
market analysis is an important thing for investors who invest money on the market 
and want some kind of security in multiplying their investment. Between the exist-
ing techniques, artificial neural networks have proven to be very good in predicting 
financial market performance. In this chapter, for time series analysis and forecast-
ing of specific values, nonlinear autoregressive exogenous (NARX) neural network 
is used. As an input to the network, both data in time domain and those in the 
frequency domain obtained using the Fourier transform are used. After the experi-
ment was performed, the results were compared to determine the potentially best 
time series for predicting, as well as the convenience of the domain in which better 
results are obtained.

Keywords: financial market, time series, forecasting, currency pair,  
stock exchange index, NARX neural network, Fourier transform

1. Introduction

The future has five faces: innovation, digitalization, urbanization, community, 
and humanity. The scientific sector should develop each of them, but one that occu-
pies a leadership position is definitely digitalization. It strives for the future every 
day and is struggling to overcome professional challenges, but in fact it is already 
the present. Modern technologies surround all of us, and they are our most reliable 
partners for the future. Through good-quality work and determination, clients will 
share with you their business needs and requirements, certain that you will find the 
right solutions for them.

Nowadays, many companies and organizations are involved in collecting data 
in large scale, in order to discover the necessary knowledge from them to help 
managers gain a competitive advantage. Timely and accurate analysis of such data 
is a difficult task, and it is not always possible to do it using conventional methods. 
Considering the effect that could be obtained, new horizons are opening, and chal-
lenges are created for researchers in order to extract useful information [1].

The concept that is very important and where more companies are investing in 
development is data science in order to find new ways to discover the real needs, 
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behaviors, and intentions of the users, as well as their detailed analysis. The analy-
sis, improved by the methods of machine learning and, in general, training the 
data, gives a complete experience as a mix of business and technology. The main 
purpose is a good mechanism in order to meet the increasing demands of users and 
even overcome its challenges, because this is the biggest competitive advantage of 
the companies of every modern business. Neural networks are certainly an indis-
pensable part of it.

One of the modern directions of the development of information technologies, 
which is a perspective and which has found an application in practice, is undoubt-
edly the development of artificial neural networks. Neural networks represent one 
of the learning models based on the work of biological neural networks such as the 
human brain. From such a learning model, a system that adapts to changes, which 
are very common on market, can be made and therefore would have more success. 
This stems from the desire to create an artificial system capable of performing 
sophisticated and intelligent calculations and represents a perspective in the future.

The aim of this chapter is to predict the financial time series using a neural 
network that has been trained and tested both in the foreign exchange market and 
the stock market. Historical data has been collected and analyzed to create a model 
that would establish a link between the corresponding variables.

2. Methods and techniques of problem solving

The development of the neural network is currently oriented in two directions. 
The first is to increase the availability of modern computers and develop software 
tools for easy use, which enables the rapid development of neural networks by 
the individuals and the groups that has only basic knowledge about these areas. 
Other direction is the notable success of neural networks in areas where traditional 
computer systems have many problems and disadvantages. Nevertheless, there are 
many other methods that deal with the same or similar problems, so some of them 
will be listed.

A method that is increasingly used in predicting financial time series is support 
vector machines (SVM). There are many scientific papers comparing this method 
with neural networks in that which is more precise, which corresponds better to the 
set goals and its advantages in relation to the others [2, 3].

As a commonly used method in solving this type of problem, there is also a ran-
dom walk method. It is used as a financial theory that describes changes in the stock 
market as accidentally and unpredictably. Changes have a statistical distribution, 
and an appropriate model is developed. Then statistical testing of the hypothesis is 
performed, and a certain conclusion is made, whether price changes depend on one 
another or are completely independent.

In finance, the main problem is unstable nature of observed time series and its 
heteroscedasticity, making it impossible to apply certain time series models. This 
study empirically investigates the forecasting performance of generalized autore-
gressive conditional heteroscedastic (GARCH) model for NASDAQ-100 return 
over the period of 6 years, which prove to be a financial time series characterized 
by heteroscedasticity. Volatility performance is found to be significantly improved. 
Generally, ARCH and GARCH model along with their extensions provide a statisti-
cal stage on which many theories of asset pricing, portfolio analysis, value at risk, 
or index volatility can be exhibited or tested. Volatility has been the subject of many 
researches in financial markets, especially as an essential input to many financial 
decision-making models. Investment decisions strongly depend on the forecast of 
expected returns and volatilities of the assets. The introduction of ARCH model has 
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created a new approach and has application for financial econometricians, becom-
ing a popular tool for volatility modeling and forecasting [4].

Also known as econometric models for time series are generalized autoregressive 
conditional heteroscedastic and exponential generalized autoregressive conditional 
heteroscedastic (EGARCH), but in other papers, in comparative analysis they have 
proved less effective than NARX, so in this paper, they will not be considered or 
compared to the network [5].

Traditionally, Box-Jenkins or autoregressive integrated moving-average 
(ARIMA) model has been dominating over time series for forecasting the time 
series and includes the identification, evaluation, and checking of the suitability of 
the selected time series model. Although it is rather flexible and can be used for a 
large number of time series, the main limitation is the assumption of the linearity 
of the model, and it is used to model nonstationary time series. The model cannot 
explain nonlinear behavior, which is at the core of financial time series. The connec-
tion between conventional statistical approaches and neural networks for this use is 
complementary. The neural network is not transparent and has the corresponding 
stochastic part. It should be trained several times, after which the average value is 
taken to see how stable the solution is obtained afterwards. Also, statistical predic-
tive techniques have reached their limitations when it comes to nonlinearity in data, 
while neural networks increasingly (except in the prediction) are applied in the 
classification and pattern recognition [6, 7].

2.1 NARX neural networks

Neural networks are computer simulations programmed to learn on the basis of 
available data. They are used to solve a wide range of problems related to cluster-
ing, classification, pattern recognition, optimization, function approximation, 
and prediction. They are characterized by the layers—the input layer, the hidden 
layer, the output layer from the network, and the connections between all of them. 
The number of these connections along with the weight coefficients represents the 
real power of the neural network. Input neurons accept information, while output 
neurons generate signals for specific actions [8].

The types of networks are grouped into five main classes:

• Single-layer feedforward networks

• Multilayer feedforward networks

• Simple recurrent networks, such as the Elman simple recurrent neural networks

• Radial basis function networks

• Self-organizing maps

Depending on the algorithm, it determined what kind of network propagation 
will be in relation to the type of network. The most important thing in this paper 
is the hidden layer whose number of nodes determines the complexity for which 
a prediction model is made. The activation function as an indispensable part is 
necessary for the neural network to be able to learn nonlinear functions, especially 
because of their importance to the network. Without nonlinearity, the network 
would be able to model only linear data dependencies.

By combining linear functions, a linear function is obtained, so it is advis-
able to choose a nonlinear function for the activation function. The network 
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compares the obtained and expected results and, based on this, if there are 
differences, modifies the neural connections in order to reduce the difference 
between the current and the desired output. During the learning process, the 
existing synaptic weights are corrected in order to get a better and more reliable 
output. The net is trained continuously, until the samples do not lead to a change 
in coefficients. As a good and highly efficient predictor of time series, NARX 
neural networks are used very often. The structure of NARX neural network is 
shown in Figure 1.

Previously, for predicting time series, linear parametric models such as autore-
gressive (AR), moving-average (MA), or autoregressive integrated moving-average 
model were used. They were not able to solve problems related to nonstationary 
signals and signals whose mathematical model is not linear. On the other hand, neu-
ral network is a powerful tool when applying to problems whose solutions require 
knowledge that is difficult to specify and express, but there is sufficient representa-
tion in examples and practices.

Nonlinear autoregressive exogenous neural network is a dynamic neural archi-
tecture that is used to model nonlinear dynamic systems. The nonlinear autore-
gressive (NAR) network differs in that it has, besides the standard input, another 
additional time series with external data, which gives an increased accuracy of the 
prediction. For applications related to the prediction of time series, it is designed as 
a feedforward neural network with time delay (TDNN). The equation represented 
by the NARX model [8] is

  𝑦𝑦(𝑡𝑡) = 𝑓𝑓(𝑦𝑦(𝑡𝑡−1),𝑦𝑦(𝑡𝑡−2),𝑥𝑥(𝑡𝑡−1),𝑥𝑥(𝑡𝑡−2))  (1)

where 𝑦𝑦 is the output of the NARX neural network with delays (2 legs) and 𝑥𝑥 is 
input of the NARX neural network with delays (2 legs).

In the NARX neural network model, multilayer perceptron (MLP) is used. The 
task of the program is to learn how to assign to the new, unmarked data the accurate 
output. When the variables that need to be predicted are continuous, then the 
problem is defined as regression. If the predicted values can only contain a limited 
set of discrete values, then the problem is defined as a classification. Each time the 
data is trained, the results can give a different solution considering the initial weight 
w and the value of the bias b.

2.2 Fourier transform

The methods based on Fourier transform have a great application in all areas of 
science and engineering. Fourier transform is used in signal processing, for solving 
differential equations, or in analyzing the dynamics of the market and stock market 
with the same possibilities. In addition to many other tools, the frequency used 

Figure 1. 
The structure of the NARX model (www.degruyter.com).
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along with transformation is convolution, which is often applied in the same areas. 
It is known that it is not possible to define the product of two random distributions, 
and there it finds its application, especially in the field of finance (securities) when 
performing the necessary formulas.

Fourier series represents a periodic function as an infinite sum of the sinus and 
cosine functions in the domain of frequency expressed below (Eq. (2)). The applica-
tion of the price system of options, which is uniquely determined by the characteristic 
functions within the Fourier analysis, is shown. To describe, the random stochastic 
Levi processes are often mentioned in the fields of insurance and finance, as well as 
the assumption of the Black-Scholes model that the price of the substrate is followed 
by the geometric Braun motion model. This is precisely one of the disadvantages with 
the assumption of constant volatility over time. It is difficult to determine whether 
these are really disadvantages or simply the market is ineffective, which is significant 
to investors as information about the risk protection they are trying to achieve:

   𝑔𝑔(𝑡𝑡)=𝑎𝑎  0    +∑𝑎𝑎  𝑚𝑚    cos(2𝜋𝜋𝑚𝑚𝑡𝑡/𝑇𝑇)+∑𝑏𝑏  𝑛𝑛   sin(2𝜋𝜋𝑛𝑛𝑡𝑡/𝑇𝑇)  (2)

However, Fourier transform is rarely suitable for the processing of nonstationary 
signals or those whose frequency content changes over time, where the periodic 
signal should be centered around the integer multiplicity of selection frequencies. 
Then this signal is divided into smaller time segments and analyzes the frequency 
content of each individual part. Because of that, there is wavelet transformation 
with the possibility of dilatation and translation of waves as the basic function of 
transformation [9].

3. Data description and data analysis

The six Forex major traded currency pairs are EUR/USD, GBP/USD, AUD/USD, 
USD/CAD, USD/JPY, and USD/CHF. In this chapter for the time series analysis, 
a pair of EUR/USD was selected considering its share in the total trading volume 
(27%). Often, cross currency pairs, which do not include the US dollar, have a 
smaller trading volume and larger spreads than the major currency pairs, so they are 
less suitable for analysis.

Unlike Forex, which is characterized by large oscillations, it may be better to 
notice a certain trend that changes slowly over time. Based on this, it might be 
assumed that the S&P 500 index will show better features related to the prediction 
of the series.

Relevant historical currency pair data for more than 10 years have been down-
loaded from the website of Fusion Media Limited [10]. In the analysis of time series 
from the stock exchange, a representative index S&P 500 was used with the histori-
cal data downloaded from the website of Yahoo! Finance [11].

The collected data are related to the prices (high, low, open, close) in the period 
from 2003 to September 2018, for each day four prices, but the close price will be 
used in the analysis. The graph of the time series for the S&P 500 stock index in 
the time domain, returns based on 3950 observations in the period 31/12/2002–
07/09/2018 is shown in Figure 2.

After determining the returns and application of FFT (fast Fourier transform), 
the graph shown in Figure 3 is plotted.

The time series graph for the EUR/USD currency pair in the time domain by 
observing the returns based on 4093 observations in the period 01/01/2003–
07/09/2018 is shown in Figure 4. After determining the returns and application of 
FFT (fast Fourier transform), the graph shown in Figure 5 is plotted.
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From Figures 2 to 4, the conclusion is that the time series of the prices is not 
stationary, while the returns are a stationary time series, as can be seen in Figures 3 
and 5. It is also concluded that prices don’t have the normal distribution and deviate 
significantly from it, but returns have significantly better statistical characteristics.

In this case, the time series of the returns are much closer to the normal dis-
tribution, and the normal distribution with thick tails occurs. This shows that 
unexpected events occur more often than in the normal distribution, which is 
characteristic of the analysis of financial data and forecasts.

Linear dependence, which is very important for observation during the analysis 
of time series, is autocorrelation. In general, there is doubt whether the explana-
tory variables are determined by a stochastic member or there is an exact linear 
dependence between the explanatory variables. The absence of autocorrelation 
means that random errors are uncorrelated and that the covariance between them is 
equal to 0. This would mean that there is no any pattern in the correlation structure 
of random errors. Otherwise if there is autocorrelation and covariance is different 
from 0, then accidental errors are correlated and followed by a recognizable pattern 

Figure 2. 
Time series S&P500 in the time domain.

Figure 3. 
Time series S&P500 in the frequency domain.
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in movement. In this case the results of the statistical tests are biased, the confi-
dence intervals are imprecise, and the prediction is unreliable. Autocorrelation can 
also be accurate if it is a consequence of the nature of the data and false if the model 
is incorrectly set.

The Ljung-Box Q statistical test is significant for analyzing those time series 
in which autocorrelation is different from 0. Ideally, a series of errors should be a 
process with an independent random variable from the same distribution, and there 
is a white noise; however, often in the series of errors, there is a dependence. The 
greater absence of autocorrelation or its complete absence indicates that the market 
is mature.

The autocorrelation function of S&P 500 index and EUR/USD currency is 
shown in Figures 6 and 7, respectively.

Figure 6 shows the deviation of the autocorrelation value beyond the confidence 
interval for the first 2 legs, and therefore, in the network architecture, the default 
value 2 should be used as a time delay. Due to the lack of statistically significant 

Figure 4. 
Time series of the EUR/USD currency pair in the time domain.

Figure 5. 
Time series of the EUR/USD currency pair in the frequency domain.
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autocorrelation in the data, the NARX neural network will be used for analyzing  
the time series.

Observing variances of random errors and their differentiation by individual 
observations, there is the phenomenon of heteroscedasticity. The cause of this 
phenomenon may be specification errors, exclusion of an important regressor 
whose influence will be covered by the error or the existence of extreme values 
in the sample. As a method of elimination, the method of the least squares is 
applied. The idea is that in the process of minimizing the sum of the quadrate of 
the residual, a smaller weight is given to those residues that are greater by abso-
lute value and vice versa.

Engle’s ARCH test allows to see if there is heteroscedasticity or not. For the 
obtained value 1 as a result of the test, it was established for both time series that the 
zero hypothesis is rejected (the residual series does not show heteroscedasticity), so 
it can be concluded that it exists in both time series.

Figure 6. 
Autocorrelation function of returns for time series S&P 500.

Figure 7. 
Autocorrelation function of returns for time series EUR/USD.
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4. Development of the NARX network architecture

In this section, a brief review of well-known and useful mathematical tools from 
the field of machine learning is presented. For predicting indexes and prices on 
Forex and stock exchanges, NARX neural network architecture is developed. The 
input data for the analysis both in the time domain and in the frequency domain are 
obtained after applying the Fourier transform to the historical data [12, 13].

The tool used is MATLAB® with a special set of functions known as the Neural 
Network Toolbox applicable to finance. With the help of the functions, a training, 
evaluation, and test set can be generated from the original set with the correspond-
ing percentile division. Then, several NARX networks are generated that are trained 
on train data. Subsequently, networks are evaluated on the evaluation data in order 
to determine the network with appropriate behavior and predict this behavior on 
the test set of data.

The NARX model can be implemented in many ways, but the simpler is devel-
oped by using a feedforward neural network with the embedded memory plus 
a delayed connection from the output of the second layer to input. In practice 
it was observed that forecasting of a time series will be enhanced by analyzing 
related time series. A two-layered feedforward network is used, where the sigmoid 
function is in a hidden layer and that is the most common form of a transmission 
function, which is nondecreasing and nonlinear. The linear transfer function is in 
the output layer. The neural network is shown in Figure 8.

The prediction method in the given experiment applies to changes in the 
exchange rate or changes in the stock exchange index over a certain period of 
time. The goal is to go beyond the assumption and to notice the specific pattern 
of observations along with the usual fluctuations. These fluctuations would 
mean that a certain inheritance or some kind of random variation occurred over a 
period of time. Finally, based on the data, a series with damped random fluctua-
tions should be obtained, which indicates exactly the long-term trend or trend 
present in the time series, and then it is used to predict the future values of the 
time series.

Levenberg-Marquardt (LMA), a combination of gradient descent and Gauss-
Newton algorithm, is used as an algorithm for learning, as opposed to Elman’s 
recurrent networks, using gradient discent with a momentum. It is known as 
the advanced and fast algorithm for nonlinear optimization, whereby, unlike 

Figure 8. 
The structure of two-layered feedforward network (www.mathworks.com).
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Figure 8. 
The structure of two-layered feedforward network (www.mathworks.com).
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the Quasi-Newton algorithm, LMA does not need to compute Hessian matrix, 
so it has significantly better performance. The Jacobian matrix, which contains 
the first network error, is used, and it is expressed by a backpropagation algo-
rithm, which is easier than calculation of the Hessian matrix. It is necessary 
to reach the proximity of the minimal error function and get closer as soon as 
possible [14].

The data for analysis are divided in the following way: 70% training, 15% evalu-
ation, and 15% test.

After training the network, the results are shown in Figures 9–11. The epoch 
represents the number of iterations during the training in which it was attempted to 
minimize the error function.

The network architecture is such that the initial number of hidden neurons is set 
to 10 with 2 time delays. The network will be applied to returns instead of prices for 
both time series that are observed in the time and frequency domain. The smallest 
mean squared error occurred in the third epoch and is 1.11455 × 10−4. It represents 
a deviation of the predicted value in relation to the actual value. If the number is 
closer to 0, it means that the results obtained are more accurate.

The training error is significantly higher than the error during testing, which 
means that the model did not overfitting as shown in Figures 10 and 11.

After ten consecutive training of the network, the smallest mean squared error 
after appeared in the seventh epoch and is 1.11092 × 10−4. As in the analysis of the 
previous time series, the same training algorithm was used, and the subsets for 
training, validation, and testing were obtained for the same percentile values. The 
network architecture is identical with sigmoid function in the hidden and linear 
function in the output layer. In the analysis of this time series, the smallest mean 
squared error occurred in the ninth epoch and is 3.71 × 10−5. It represented the 
deviation of the predicted values in relation to the actual value.

The first network for the stock exchange index S&P 500 was tested as a feed-
forward network. The smallest MSE for training was 1.23081 × 10−4; for validation, 
1.0336 × 10−4; and for testing, 1.1380 × 10−4. The network for the currency pair 
EUR/USD was tested also as a feedforward network. The smallest MSE was smaller 
than for the first network: 3.6199 × 10−5 for training, 3.4246 × 10−5 for validation, 
and 3.4792 × 10−5 for testing.

The algorithm is also trained at 70% of the data, evaluated at 15%, and 
tested at 15%. Each network consists of two hidden layers. The first hidden 

Figure 9. 
Mean squared error with best validation performance.
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layer has ten neurons with a sigmoid transfer function, and the other one is a 
neuron with a linear transfer function. In the second network, a smaller aver-
age mean squared error was detected than in the first one. Also, the standard 
deviation of the secondary squared error for the other network is lower than 
for the first one for all three stages of training, validation, and testing, respec-
tively. The results for each iteration and summary of mean squared error are 
presented in Tables 1 and 2 for S&P 500.

The results for each iteration and summary of mean squared error are presented 
in Tables 3 and 4 for EUR/USD currency pair, respectively.

Unlike the analysis of time series in the time domain, in the frequency domain, 
it is interesting to consider the spectrum of the amplitude (relative share of a 
certain frequency component relative to the other) of the historical price for the 
stock index S&P 500 and the currency pair EUR/USD in several different aspects. 
These analyses include the spectral analysis of time series, which are usually used 
for stationary time series. This is a good assumption for adjusted stock prices in the 
frequency domain statistics [15].

Figure 11. 
Histogram of time series errors for time series EUR/USD.

Figure 10. 
Histogram of time series errors for time series S&P 500.
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certain frequency component relative to the other) of the historical price for the 
stock index S&P 500 and the currency pair EUR/USD in several different aspects. 
These analyses include the spectral analysis of time series, which are usually used 
for stationary time series. This is a good assumption for adjusted stock prices in the 
frequency domain statistics [15].

Figure 11. 
Histogram of time series errors for time series EUR/USD.

Figure 10. 
Histogram of time series errors for time series S&P 500.



Fourier Transforms - Century of Digitalization and Increasing Expectations

86

For converting to the frequency fk, it should be emphasized that, if daily prices 
are used as an input signal, the sampling frequency is equal to 1 [1/day], which 
means that the frequencies must be reallocated.

Summary Mean squared error

Train Validation Test

Min 1.2308 × 10−4 1.0336 × 10−4 1.1380 × 10−4

Max 1.3680 × 10−4 1.5599 × 10−4 8.7369 × 10−4

Average 1.2923 × 10−4 1.1841 × 10−4 2.1569 × 10−4

Standard deviation 4.9307 × 10−6 1.5685 × 10−5 2.3228 × 10−4

Table 2. 
Summary—S&P 500.

Iterations Mean squared error

Train Validation Test

1 1.3568 × 10−4 1.1455 × 10−4 1.1280 × 10−4

2 1.3680 × 10−4 1.1922 × 10−4 8.7396 × 10−4

3 1.3512 × 10−4 1.1848 × 10−4 1.1948 × 10−4

4 1.2437 × 10−4 1.0698 × 10−4 1.6513 × 10−4

5 1.2820 × 10−4 1.0336 × 10−4 1.5894 × 10−4

6 1.2941 × 10−4 1.5599 × 10−4 1.2687 × 10−4

7 1.2601 × 10−4 1.3396 × 10−4 1.3046 × 10−4

8 1.2619 × 10−4 1.0994 × 10−4 1.5612 × 10−4

9 1.2308 × 10−4 1.1070 × 10−4 1.7836 × 10−4

10 1.2748 × 10−4 1.1092 × 10−4 1.3480 × 10−4

Table 1. 
Mean squared error—S&P 500.

Iterations Mean squared error

Train Validation Test

1 3.6199 × 10−5 3.7105 × 10−5 4.1646 × 10−5

2 3.7100 × 10−5 3.7924 × 10−5 3.8488 × 10−5

3 3.8090 × 10−5 3.6691 × 10−5 3.7361 × 10−5

4 3.7694 × 10−5 3.4246 × 10−5 3.8251 × 10−5

5 3.6808 × 10−5 3.7144 × 10−5 3.8759 × 10−5

6 3.8302 × 10−5 3.5430 × 10−5 3.4792 × 10−5

7 3.7862 × 10−5 3.4881 × 10−5 3.7759 × 10−5

8 3.6938 × 10−5 3.7867 × 10−5 3.7924 × 10−5

9 3.8322 × 10−5 3.7484 × 10−5 3.6947 × 10−5

10 3.8169 × 10−5 3.5506 × 10−5 3.5472 × 10−5

Table 3. 
Mean squared error—EUR/USD.
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The unit of a new set of discrete frequencies is [1/day] and has the form of the real 
frequencies required in this analysis. Also, according to the sampling theorem, it is 
known that only those signal components who having a frequency less than or equal 
to Fs/2 = 0.5 days−1, without aliasing effect, will be measured. Considering these 
facts, it is necessary to limit the frequency coordinates to the range from 0 to 0.5.

In order to better understand the shape of the spectrum, a log-log scale is used, 
and logarithm of the amplitude values obtained after application of FFT is used. 
Observing the slope of such a curve could be observed if the spectrum of the 
amplitude is close to the special power-law form 1/f. Using a logarithmic format is a 
good way to avoid overestimating high-frequency components.

After applying FFT on prices and returns, equivalent time series in the 
frequency domain are obtained. As in the above procedure, in order to better 
detect the spectrum, a modulus representing the amplitude was found, and then 
the result was logarithmic. The obtained values of the S&P 500 index and EUR/
USD currency pair were used to train the NARX neural network. The average 
mean squared error obtained after ten consecutive training is 1.5738 × 10−1 and 
4.8713 × 10−1, respectively, which represents a significantly higher number than 
the one obtained in the time domain. The conclusion is that, regardless of the 
time series being analyzed, the results are significantly worse and the prediction 
is less reliable.

The simulation performed with the input that represents the logarithmic value 
of the amplitude and the frequency as an exogenous input did not show the pos-
sibility of good training and convergence even after the maximum possible 1000 
iterations or the corresponding statistical characteristics, and hence, its analysis 
would make no sense.

Due to its wide practical application in various fields, Fourier transform is 
increasingly in the focus of international scientific meetings, as well as numerous 
publications (scientific monographs, journals, chapters, etc.), whether it is eco-
nomics, biomedicine, chemical engineering, electronics, or art [16].

5. Various computational intelligence methods in finance

Considering the domain in which one of the methods of computational intel-
ligence is applied in this chapter, other methods are often applied. Bankruptcy 
prediction is one of the main issues threatening many companies and governments 
and a complex process that consists of numerous inseparable factors. Financial dis-
tress begins when an organization is unable to meet its scheduled payments or when 
the projection of future cash flows points to an inability to meet the payments in the 
near future. The causes leading to business failure and subsequent bankruptcy can 
be divided into economic, financial, fraud, disaster, and others. With more accurate 

Summary Mean squared error

Train Validation Test

Min 3.6199 × 10−5 3.4246 × 10−5 3.4792 × 10−5

Max 3.8302 × 10−5 3.7924 × 10−5 4.1646 × 10−5

Average 3.7548 × 10−5 3.6427 × 10−5 3.7739 × 10−5

Standard deviation 7.3840 × 10−7 1.3108 × 10−6 1.8784 × 10−6

Table 4. 
Summary—EUR/USD.
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bankruptcy detection techniques, companies could take some preventive measures 
in order to minimize the risk of falling to bankruptcy [17].

There are two dominant approaches when it comes to predicting bankruptcy: 
one that used multi-discriminant analysis, univariate approach (net income to total 
debt has highest predictive ability), and developing stochastic model such as logit 
and probit. The other one approach refers to using artificial intelligence and adapts 
it for predicting bankruptcy (decision tree, fuzzy set theory, genetic algorithm, and 
support vector machine). Also neural networks such as BPNN (backpropagation-
trained neural network), PNN (probabilistic neural networks), or SOM (self-orga-
nizing map) could be developed. In this paper, three LC models are tested whether 
they are able to improve Altman Z-score as a benchmark model for bankruptcy 
prediction. Even though LC method shows more accurate results, Altman model 
behaves slightly better for gray-zone companies, where it is important to reduce 
number of bankrupt firms identified as an active.

In modern approaches it is necessary to introduce different approaches to model-
ing similarity specially using IBA with two main steps to perform it. First thing is 
data preprocessing (data normalization, detection of attribute nature, and their 
potential interaction), where normalization functions may be adapted depending 
on data range and distribution. Also, it is recommended to use correlation to detect 
similar nature between attribute data, because the existence of significant correla-
tion in attribute data could overemphasize certain attributes and cause incoherent 
model results. IBA similarity modeling (attribute-by-attribute comparison, com-
parison on the level of the object and general approach) show what kind of aggrega-
tion is appropriate for similarity modeling.

In this case it is proven that IBA-based similarity framework has a solid math-
ematical background and can also be expanded to model nonmonotonic inference. 
The practical advantage is evaluated on two numerical examples. The first example 
confirms motivation and reasoning behind the novel OL comparison with impor-
tance of when one object’s attributes is logically dependent or can be compensated 
by another attribute. In the second example the proposed similarity framework is 
applied for predicting corporate bankruptcy with different KNN classifiers [18].

6. Conclusion

Analysis of time series is a specific topic, which is indispensable in dealing with 
the data science and statistical analysis. By combining an analysis with a tool such 
as a neural network, especially in an increasingly important area such as finance, it 
is certain that in the future it can conquer new territories and have a global impact. 
Looking for the financial protection from losses and safe investments without risky 
investment, it is necessary to apply modern methods with continuous upgrading 
and improvement. In cooperation with existing platform with varied parameters 
and transactional data, this tool would be a good prerequisite for successful fore-
casting of trends and secure business.

The obtained results of the time series analysis confirmed the possibility of 
a good prediction. Better forecasting can be done for time series in Forex (EUR/
USD), in the time domain without applying Fourier transform to input data. In this 
sense, NARX proved to be a good method for solving the given type of problem in 
the time domain, but in the frequency domain, it is recommended that the analysis 
be carried out by a classical feedforward neural network with the backpropagation 
algorithm. The results of the research indicated that NARX is capable of providing 
a certain amount of security to those entities that invest their funds, as well as to 
point out future expectations. On the other hand, the results of this paper give only 
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a proposal and advice on how to behave on the market during trading. It should 
always be cautious, given the already mentioned market variability. Timeliness is 
also important, because when a particular news arrives on the market, then it reacts 
to certain changes. The news is then incorporated into the price and the market 
returns to the previous state where it was before the news arrived.

Proposals for the improvement of the neural network are:

• Include new input parameters that can be reached by new research, or do a 
different preparation of data for the training to make sure of the credibility of 
this network in a dynamic environment.

• Change the number of neurons in the hidden layer, time delay, or activation 
function in the hidden and output layer.

• Use network results as entering the new network together with a change in 
the time period, which can give a broader picture of the trend of the observed 
currency pair or stock exchange index.
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Chapter 6

Fourier Transform in Ultrafast 
Spectroscopy
Adrien A.P. Chauvet

Abstract

Laser technology allows to generate femtoseconds-long pulses of light. These 
light pulses can be used to learn about the molecules with which they interact. 
Consequently, pulsed laser spectroscopy has become an important tool for inves-
tigating and characterizing electronic and nuclear structure of protein complexes. 
These spectroscopic techniques can either be performed in the time or frequency 
domain. Both the time and frequency domain are linked by Fourier Transform (FT) 
and thus, FT plays a central role in optical spectroscopy. Ultimately, FT is used to 
explain how light behaves. It is used to explain spectroscopic techniques and enables 
the development of new techniques. Finally, FT is used to process and analyze data. 
This chapter thus illustrates the centrality of FT in ultrafast optical spectroscopy.

Keywords: Fourier transform, ultrafast spectroscopy, pulsed laser, wave packet, 
molecular dynamics

1. Introduction

The theoretical description of light and molecular motion using Fourier 
Transform (FT) dates back to a century ago, with the development of quantum 
mechanics and its famous relation to the uncertainty principle [1]. However, it is 
only since the early 80’s that FT found practical applications in molecular spec-
troscopy thanks to the development of femto-second pulsed lasers, which enabled 
the pioneering investigations of molecular dynamics in the femto-second regime 
by Prof. Zewail [2]. Ever since, the development in ultrafast laser systems has been 
closely followed by the development of new spectroscopic techniques. For example, 
lasers are now able to generate high harmonics radiations up to the soft X-ray 
regime and enables spectroscopies with an atto-second resolution [3].

The developments in lasers and spectroscopy techniques would however not 
be feasible without the use of FT. Indeed, time-resolved spectroscopy is the study 
of spectra (i.e. frequencies) over time. Thus, by linking the time domain to the 
frequency domain, FT provides the theoretical background to conceptualize the 
spectroscopic techniques. Furthermore, FT is used to describe short pulses of light 
as well as molecular motions, and how both, light and molecules, interact with each 
other. FT is consequently at the heart of ultrafast optical spectroscopy.

Optical spectroscopy is not the only type of spectroscopy that uses FT. The 
most well-known field that has been transformed using FT is probably that of 
nuclear magnetic resonance (NMR); where FT considerably reduced the acquisition 
time and resolution, to the point of rendering non-FT NMR techniques obsolete. 
Similarly, FT enhances optical spectroscopies by increasing the data acquisition 
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speed and the amount of information acquired from the sample. In this sense, FT 
revolutionizes the field of optical spectroscopy.

The goal of this chapter is to appreciate the central role that FT plays in optical 
spectroscopy. In particular, this chapter focuses on femto-second spectroscopy 
because such systems are now commercially available and are becoming an essential 
tool to study molecular dynamics. In this aim, the first section illustrates how FT is 
used to model and characterize short pulses of light. The second section describes 
two increasingly common experimental techniques and how they make use of 
FT. The third section shows how FT is used to extract molecular dynamics from the 
acquired data. In order to remain accessible to non-specialist, this chapter takes a 
conceptual approach. The mathematical formalism and technical subtilities are left 
available in the different cited works.

2. Fourier transform in the experimental setup

With the recent development of laser technology, spectroscopic techniques 
have reached unprecedented precision. In particular, in the field of optical 
spectroscopy, the use of pulsed lasers allows to monitor chemical reactions as 
they are taking place. Commercially available ultrafast spectroscopic systems are 
now able to generate femto-second-long pulses of light. In this time scale, these 
setups enable researchers to investigate energy, electronic and nuclear dynamics 
of specific molecular and atomic structures. Such precision would however not 
be possible without a complete understanding of light and its manipulation. This 
section will thus illustrate the role that FT plays in conceptualizing and modeling 
light pulses.

2.1 Light pulse representation by FT

Light can be considered as an electro-magnetic wave [4]. As shown in Figure 1, 
a ray of light can be characterized by the amplitude of the (Real part of complex) 
electric field  E (x, t)  , its wavelength  λ  or period T of oscillation (which defines its 
color or energy), and phase  φ  (which is the shift of the oscillatory pattern of the 
electric field with respect to an arbitrary reference point).

Laser-light differs from sun light and common light bulbs by the phase and 
spectrum of the emitted wavelengths. In a laser, all wavelengths have the same 

Figure 1. 
Representation of light as an electromagnetic (plane) wave.   E  0    is the amplitude of the electric field 
component,  λ  is the wavelength in unit distance,  k  is the wave vector in radiant per unit distance,  T  is the 
period in unit time,  ω  is the angular frequency in radiant per unit time,  φ  is the phase shift in radiant; 
with  λ / T = ω / k = c , the speed of light, in vacuum. Re and ℐm stands for the real and imaginary part of the 
complex electric field.
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phase and belong to a narrow spectral range. Pulsed lasers differ from continuous 
lasers by the fact that they produced short bursts of light. These pulses are gener-
ated when laser-light is trapped in a cavity. The most popular pulsed lasers to date 
are based on a titanium-doped sapphire (Ti:S) crystal. The crystal is placed between 
two mirrors, which form a cavity [5]. The titanium atoms are continuously excited 
(typically, by a frequency-doubled 532-nm Nd:YAG laser) and relax by emitting 
a range of wavelength around 800 nm. One way to look at the emitted light being 
trapped in the cavity, of length L, is that each generated wavelength  λ  that satisfies 
the condition  L = m𝜆𝜆 / 2,  where m is an integer number, creates a standing wave. 
The different standing waves will interfere with each other. They interfere con-
structively only in a restricted region of space, and destructively anywhere else, as 
illustrated in Figure 2. The highly localized oscillations represent a series of wave 
packets (WP) or pulses of light.

In a typical Ti:S cavity, the number of allowed modes (i.e. wavelengths emitted 
by a Ti:S crystal that satisfy the above standing wave condition) is in the order of 
105, which results in pulse duration of few 10’s of femto-seconds.

The time-evolution of each standing waves will displace the WP within the 
cavity as if it was traveling back and forth between the two mirrors [6]. Each 
time the WP goes through the Ti:S crystal, it will trigger the in-phase stimulated 
emission of the excited titanium atoms, which will add to the magnitude of the 
WP. From a particle point of view, the WP indicates the region of space where we 
have the highest chance of finding the actual photons that comprises this pulse 
of light. The photons travel together and bounce back and forth between the 
two mirrors of the cavity, and each time they pass through the Ti:S crystal, they 
stimulate the emission of new photons.

If one of the cavity mirrors is only partially reflective, it will allow the WP to 
leak out of the cavity, which generates a train of identical and equally spaced pulses. 
Each WP contains a range of frequencies (defined by the Ti:S crystal, also called 
the gain medium) that can be resolved via FT. The different frequencies produced 
within a cavity follow an approximate Gaussian distribution. The time-dependent 
Gaussian wave packet,  ψ (x, t)  , can be described by the FT of its spectral compo-
nents as follow (excluding normalization factors):

  ψ (x, t)  =   ∫ 
−∞

  
∞

   A (k)   e   i (kx−ω (k) t)   dk  (1)

Figure 2. 
Superposition of 20 standing waves (colored curves) rendering a series of pulses (black curve).
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with the Gaussian distribution:

  A (k)  =  e   −  (k− k  0  )    2 /2 σ   2    (2)

and  ω (k)  = kc / n (k)   for plane-waves, with c, the speed of light and  n (k)  , the 
index of refraction [4].

The WP, or pulse, is defined by its central frequency  ω ( k  0  )   and variance   σ   2   (full 
width at half maximum (FWHM) =  2  √ 

_____
 2 ln 2   σ ). Typical Ti:S lasers produce pulses with 

a frequency of ~80 MHz and centered around 800 nm with a FWHM of ~35 nm [7].
Technically, in order to resolve the spectral components comprising the pulse, 

the pulse is passed onto a spectrometer. The spectrometer includes a grating that 
will reflect each wavelength at slightly different angle, as illustrated in Figure 3.

It is said that the grating performs a FT on the pulse [8] (Ch4.1), i.e. the temporal 
structure of the pulse’s electric field,  E (t)  , is destroyed to allow the monitoring of its 
spectral components,  E (ω)  . Both  E (t)   and  E (ω)   are linked by FT as follow: [9].

  E (ω)  =   ∫ 
−∞

  
∞

   E (t)   e   i𝜔𝜔t  dt  (3)

2.2 FT limited pulse and characterization

As shown in Eq. (1), the FT links the duration of a pulse with its spectral compo-
nent. A FT-limited (or bandwidth-limited) pulse is then defined as a pulse that has 
the minimum possible duration for a given spectral bandwidth. FT-limited pulses 
have a constant phase across all frequencies.

However, the air and the different optical components, through which the pulse 
propagates, have an index of refraction,  n (k)  , that affect each frequency differently, 
as indicated in Eqs. (1) and (2). By traveling through such dispersive medium the 
pulse broadens [4, 10]. For spectroscopic purposes, in order to achieve the best 

Figure 3. 
Light diffraction by a grating.
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temporal resolution, the phase of each wavelength that comprises the pulses must 
be manipulated so that the FT-limit is obtained at the sample position. As depicted 
in Figure 1, the relative phase between two light rays is defined as a difference in 
angle at specific time and position. Hence a phase shift can be introduced either by 
modulating the distance traveled by one of the rays or the speed at which the ray 
goes through a given medium. Consequently, different technique can be employed 
to obtain FT pulses. Most adaptative methods require to spectrally decompose the 
pulse so that the entire spectrum is split in narrow frequency ranges whose phase 
can be modified independently. In this aim, the pulse is passed onto a grating, which 
performs an FT on the pulse, as seen previously. Figure 4 shows that the diffracted 
beam will be recollimated and either be reflected by a deformable mirror, [11] or 
passed through a spatial light modulator (SLM) [12].

In the case of the deformable mirror, the phase of the light is modulated by 
displacing the surface of the mirror backward or forward by means of piezo-electric 
components, therefore retarding or advancing certain wavelength with respect 
to others. In the case of the SLM, the phase of the light is modulated by changing 
the relative orientation of each liquid crystal domains. The changes in orientation 
induce changes in refractive index of the medium, which, in turns, affects the speed 
at which the light travels through. Once modulated, the different spectral compo-
nents are recombined by means of a second grating, which thus performs an inverse 
FT. Such adaptative methods are useful when the actual phase of the pulse in not 
known. When governed by (genetic or evolutionary) algorithms, they can achieve 
FT-limit by iteration, automatically [13]. Other passive methods will make use, for 
example, of grating and prism pairs, or chirp-mirrors to induce or compensate a 
pre-defined phase structure.

In order to characterize the actual pulse, any diffractive method will distort 
the actual phase and temporal structure. Hence, to retrieve these characteris-
tics, a reference pulse is used, and both are made to interfere. The interference 
signal, which can be clearly distinguished from any background signals, contains 
information about both pulses. If the reference pulse is well-defined, the spec-
tral components and relative phase of the other pulse can be deduced by means 
of FT. One of the most common methods employed is the frequency-resolved 
optical gating (FROG) [14]. FROG is a type of autocorrelation in the sense that 
the reference is played by the replicate of the actual pulse. However, the autocor-
relation method implies that the reference is unknown and that the solution has 
to be guessed. In order to monitor the complex electric field of the pulse and its 
replicate in FROG, both are made to interact into a non-linear crystal (BBO). 
The response signal is then passed onto a spectrometer which performs a FT, as 
shown in Figure 5, so that the signal can be resolved spectrally.

Figure 4. 
Schematic of pulse shaping device using (a) deformable mirror, DM, and (b) spatial light modulator, SLM. FT 
and FT −1 stands for Fourier Transform and inverse Fourier Transform, respectively.
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The response signal is then passed onto a spectrometer which performs a FT, as 
shown in Figure 5, so that the signal can be resolved spectrally.

Figure 4. 
Schematic of pulse shaping device using (a) deformable mirror, DM, and (b) spatial light modulator, SLM. FT 
and FT −1 stands for Fourier Transform and inverse Fourier Transform, respectively.
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A spectrogram of the response signal is recorded for each time delay,  τ , to build 
a so-called FROG trace: a 2D time-frequency map of the non-linear signal intensity. 
In the case where the non-linear signal is the second harmonic (SHG FROG), the 
frequency and time dependent signal,   ℐ  SHG FROG   (ω, τ)  , can be fully written in the 
time domain via the FT expression as follow:

   ℐ  SHG FROG   (ω, τ)  =   |  ∫ 
−∞

  
∞

   E (t) E (t − τ)   e   −i𝜔𝜔t  dt|    
2
   (4)

with  E (t)   and  E (t − τ)   being the time-dependent electric field of the pulse and 
that of its delayed duplicate (reference).

As mentioned, the reference is unknown and the exact solution for  E (t)   and  E (t − τ)   
that reproduces the specific FROG trace is retrieved by iterative algorithm guesses [14]. 
Fortunately, a typical FROG trace contains many more data points (and thus equations) 
than unknown variables, which means that the guesses are well informed. The conver-
sion of the algorithm results in the retrieved spectral, temporal and phase information 
of the initial pulse. There exists variations of the FROG and other ways to characterize 
the temporal structure, phase and spectral component of ultrashort pulses of light, all 
of which will make use of FT [15, 16].

3. Fourier transform in data processing

Whenever a molecule is investigated by light, whether it is in the X-ray, 
ultra-violet, visible or infra-red regime, the desired information is often 
extracted by means of FT. In the field of spectroscopy, FT is either performed 
by using optical components, often through a grating, and/or numerically, after 
acquisition of the signal. In this section we will describe two types of UV–visible 
spectroscopy techniques in which FT plays a central role: absorption spectros-
copy and 2D-FT electronic spectroscopy, also called photon echo or four wave-
mixing spectroscopy.

3.1 Linear absorption spectroscopy

In (steady-state) absorption spectroscopy, the continuous probe beam acquires 
information about the sample by passing through it. The probe is modulated by 

Figure 5. 
Scheme of a FROG setup. The inset represents a typical FROG trace.
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the sample’s absorption. In order to visualize these spectral modulations, the probe 
beam is diffracted by a grating and the full spectrum is compared to a reference 
spectrum, as illustrated in Figure 6a. The comparison (log of the ratio) of both 
beams yields the absorption spectrum of the sample.

Similarly, in ultrafast transient absorption spectroscopy, the sample is probed by 
a short pulse of light, after excitation by the pump pulse, [17] as shown in Figure 6. 
Each probe pulse thus contains information about the excited states of the sample. 
If the duration of the pump and probe pulses is shorter than the relaxation or 
chemical reaction taking place, the probe will contain the information about that 
specific transient molecular state. The pulses are then FT by means of a grating and 
spectrally resolved. By varying the delay between pump and probe, we can spec-
trally resolve all intermediate states, from the instant of the excitation all the way 
to the recovery of the ground state. Since the delay between pump and probe can be 
precisely controlled (sub-femto-second precision) by simple elongation of the path 
of light (via a delay stage), the temporal resolution of the technique is limited by 
the duration of the pulses themselves (10’s of femto-seconds). In these time scales, 
we can monitor intra- and inter-molecular energy transfers, electronic transitions, 
charge transfer and molecular vibrations [18].

3.2 2D-FT spectroscopy

In comparison to pump-probe spectroscopy, which has only one excitation pulse, 
the desired photon echo in 2D-FT electronic spectroscopy is a result of three con-
secutive laser interactions with the sample. The photon echo is consequently called 
a third order signal, as shown in Figure 7a. The 2D-FT electronic spectroscopy is the 
ultimate third order experiment in the sense that it harvests the maximal amount 
of information about the sample given the number of excitation pulses [19]. In such 
experiment, the data is acquired, and the information is retrieved by a series of FTs.

The generation of the photon echo is conceptually similar to that of the free 
induction decay in pulsed NMR spectroscopy. However, due to the slow response of 
the detectors, direct recording of the photon echo would result in integrating its fast 

Figure 6. 
Scheme of (a) steady-state spectrometer and (b) pump-probe spectroscopy setup. The insets represent typical data 
acquired (from the Photosystem ℐ molecular complex) with each setup, along with the equation used to compute the 
absorbance,  A , and changes in absorbance,  ΔA , in function of the intensity of light,  ℐ .
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Each probe pulse thus contains information about the excited states of the sample. 
If the duration of the pump and probe pulses is shorter than the relaxation or 
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of light (via a delay stage), the temporal resolution of the technique is limited by 
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oscillating electric field over time. This is called homodyne or integrated detection 
[19]. However, such configuration would not allow to retrieve the time and phase 
structure of the photon echo. Furthermore, the amplitude of the photon echo is 
typically weak and comparable to the noise amplitude [20]. In order to properly 
resolve the photon echo, it is made to interfere with a reference pulse called local 
oscillator (LO). The condition for interferences to take place is that both, the photon 
echo and the LO, are colinear, have similar spectrum and are within pico-second 
from each other. In such configuration, the photon echo is said to be heterodyned.

The heterodyned photon echo is then passed onto a spectrometer, which 
performs the first FT (via a grating) and is imaged, in the frequency domain, as 
depicted in Figure 7b. While the signal is FTed by the spectrometer, the detector 
does an intensity measurement, which corresponds to the square of the signal’s 
electric field. The monitored signal is now composed of 3 components: the (neg-
ligible) spectral intensity of the photon echo, that of the LO and the interference 
term that contains the desired information: the autocorrelation function [16] or 
spectral interferogram [19]. Once acquired, the interferogram signal is FTed from 
the frequency back to the time domain, as shown in Figure 7c: the FT of the spectral 
intensities of photon echo and LO gives signal around 0, while the interferogram 
gives signal at +/− the time delay between the two pulses (tLO-t).

By selecting the non-zero signal at positive times only (for causation), one 
can filter out most of the noise and retrieve, via FT, the phase and intensity of the 
photon echo at particular coherence time  τ  and population time  T , as illustrated in 
Figure 7d. Incrementing the coherence time  τ  enables to acquire the desired full 
2D spectrum, for particular population times  T . The experience is then repeated 
for different population times in order to monitor the evolution of the 2D spec-
trum (Figure 7e).

In summary, the heterodyned FT technique allows to monitor weak signals, such 
as a photon echo, to filter out most noise contributions and to retrieve the desired 
temporal and phase information of the signal.

Figure 7. 
(a) Scheme of a 2D-FT electronic spectroscopy in a so-called box-CARS geometry [21] with  τ  being the coherence 
time,  T  the population time and   t  LO    the delay between the third pulse that triggers the emission of the photon echo and 
the local oscillator (LO). (b) Typical data acquired (from dye molecule). (c)–(e) Signal processing. FT −1 stands for 
inverse FT.
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4. Fourier transform in data analysis

FT-based laser spectroscopic techniques enable to acquire first and third order 
responses, as seen previously, and even up to the fifth order optical response [22]. 
But the use of FT is not bound to the acquisition of the signals. Once the optical 
response signal of the sample is resolved over time, FT can also help analyze and 
extract the dynamics of the sample. In particular, when the duration of the laser 
pulses used are shorter than the oscillation period of the molecular vibration, one 
can resolve, using these techniques, the optical modulations caused by the vibration 
of the molecule. The use of FT thus helps distinguish between the different modes 
of vibration present in the optical signal, as illustrated in Figure 8.

Normal modes of vibrations in a molecule, in either the ground or excited electronic 
states, can be represented by Morse-like potential curves along the reaction coordinate 
[25]. In the inflection of each potential curve lies a stack of vibrational levels. In this pic-
ture, the molecule can be described by a time-dependent wave function. The amplitude 
of the square of that wave function forms a wave packet, as illustrated in Figure 8c. In 
this context, the spread of the WP represents the uncertainty of finding the molecule at 
a particular position along the reaction coordinate at a certain time [10].

We can picture this wave packet as traveling on a particular energy level back 
and forth along the reaction coordinate, as delimited by the Morse-like potential 
curve, i.e. the molecule vibrates [6, 10].

Typical UV–vis (steady state) spectroscopy probes all (vertical) transitions that can 
take place in between two vibronic (e.g. that involve vibrational and electronic) levels. 
Similarly, in ultrafast transient spectroscopy, the probe pulse interrogates the excited 
molecules and “sees” all transitions that are available to the traveling wave packet, 
at a specific time. The energy of a particular electronic transitions (e.g. from excited 
to ground state) thus fluctuates in time, as depicted in Figure 8c for the emission 
of an excited molecule. Similarly, the absorption of an excited molecule will also be 
modulated, depending on the relative position between the different electronic states. 

Figure 8. 
(a) Kinetic trace ( for free-based tetraphenyl porphyrin excited by a 500-nm 40-fs pulse) and (b) its FT and 
corresponding Raman analysis. Possible representation of (c) wave packet (d) nuclear dynamics. * and **, the 
frequencies reported from transient absorption and resonance Raman experiments are taken from, [23, 24] 
respectively.
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In molecules, it is often the case that a single laser pulse excites many normal modes of 
vibrations [25]. Accordingly, the amplitude of the probe signal reflects the oscillations 
of all WPs. The frequencies of each normal mode of vibration present in the probe 
signal can be extracted by means of FT.

In the case of molecules, the solvent and other molecular interactions imply that 
each molecule has slightly different vibrational energy levels, thus slightly different 
oscillation frequencies. Furthermore, each excited molecule will lose energy over 
time, which can be depicted by the WP going down the vibrational ladder within a 
particular electronic state. Differences in environment and vibrational relaxation 
will also modulate the frequency of oscillation. Hence, specific normal modes of 
vibration will lose their coherence and the oscillations present in the probe signal 
will be damped (Figure 8a). Competing with decoherence is the exponential decay 
of the excited state population. Both, the life time of the excited state and decoher-
ence mechanisms restricts the monitoring of the wave packet dynamics, generally, 
to the first few picoseconds after excitation.

In practice, the oscillatory pattern is first extracted from the usually much 
larger population state signal via exponential fit of the kinetic trace. FT of the first 
few picoseconds is then performed on the residual signal to retrieve the different 
frequencies present (Figure 8b). The phase associated with each normal mode of 
vibration is indicative of the electronic state from which the oscillation originates 
[23]. Alternative fitting method such as the Linear Predictive Singular Value 
Decomposition (LPSVD) can also be used to extract damped oscillations [26]. 
The resulting amplitude spectrum of the FT or LPSVD power spectrum can then 
be compared to the low frequency Raman spectrum in the region around 200–
400 cm−1 [23, 24]. It is worth mentioning that Raman spectroscopy usually does 
not resolve vibrations bellow 100 cm−1. Thus, the advantage of using kinetic traces 
to retrieve the normal modes of oscillations is to resolve vibration in the frequency 
range from 0 to 100 cm−1.

5. Conclusion

In conclusion, this chapter illustrates how FT helps conceptualize light and helps to 
characterize laser pulses. It is the use of these well characterized laser pulses that opens 
the door to time-resolved optical spectroscopy. FT is especially important in the field 
of ultrafast spectroscopy because it enables new types of molecular dynamic investiga-
tions. In brief, FT allows to resolve the spectral, temporal and phase information of 
optical response signals. While FT allows spectroscopic techniques to develop, from 
typical pump-probe to multi-pulse experiments, the data analysis is also enhanced 
by FT. In the case of molecules, for example, FT enables retrieval of the phase and 
frequency of molecular wave packets in a frequency range that is not accessible by 
other common tools. Furthermore, FT helps to distinguish between the different 
normal modes of vibration and assign them to specific electronic states. Because FTs 
are present in all stages of ultrafast spectroscopy, from conception to data acquisition 
and data analysis, FT is inherent to the field of ultrafast spectroscopy. Accordingly, FT 
helps to better understand and control the world in which we live.
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Chapter 7

Establishment of FTIR Database 
of Roselle Raw Material Originated 
From Western Coastline in 
Peninsular Malaysia
Choong Yew Keong, Nor Syaidatul Akmal Mohd Yousof,  
Jamia Azdina Jamal and Mohd Isa Wasiman

Abstract

Herbs from different geographical regions may differ qualitatively and quan-
titatively, hence it is crucial to determine the active components of herbs from 
different regions and build a reference database. This study focused on the database 
establishment for the authentication of the raw material of roselle (Hibiscus sab-
dariffa) collected at seven selected locations of the western coastline in Peninsular 
Malaysia. The validation on the unknown sample at the end of the study is to verify 
the accuracy of the established database. The inter-material distance (IMD) was 
presented as the mean distance of each sphere created by each batch of data from 
different locations. They were clustered with different folders and discriminated 
by Soft independent modelling by class analogy (SIMCA) algorithm. All materials 
from seven farms achieved 100% separation rate. The average IMD of these seven 
locations was 9.04. The FTIR techniques established in this study can be used to 
distinguish the geographical origin of the selected H. sabdariffa farm samples.

Keywords: Hibiscus sabdariffa, FTIR, database, geographical origin

1. Introduction

The genus Hibiscus (Malvaceae) is distributed in tropical and subtropical zones 
[1]. Hibiscus sabdariffa (L.) planted in Malaysia endures high humidity and warmer 
climates. The main part of the plant with medicinal use is the edible red to pale yellow 
calyces or sepals that contain anthocyanin [2]. The various colour tones of the calyx 
rely on the location of planting and the composition of the soil. The factors such as 
genotype, types and intensity of light, orchard temperature, crop load and agronomic 
factors, including agrochemical application, irrigation, pruning and fertilisation, play 
certain roles in the quality of growth and products of roselle plant. Most of the roselle 
plantations are planted on Beach Ridges Interspersed with Swales (BRIS) soil in 
Malaysia [3]. Basically, this type of soil is not suitable for planting due to its high sur-
face soil temperature and infiltration rate with low organic matter, nutrients content 
and water retention. Naimah et al. [4] reported that 20% of regulated deficit irriga-
tion (80% irrigation) courses were required to enhance the roselle yield and preserve 
plant growth progression without adversely affecting calyx quality on BRIS soil.
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According to statistics of industrial crops of roselle in 2016 [5], mostly short-
listed for western coastline of Peninsular Malaysia, Johor was the largest state with 
planted area of roselle and also achieved the highest production of roselle, fol-
lowed by Penang, Selangor, Perak and Kedah. Roselle can be commercially grown 
throughout the year in Malaysia. Many constraints limit roselle production, includ-
ing climatic variability such as flood and draught in certain district. The limited 
suitable land is also another factor.

H. sabdariffa is a potential herbal medicine in the treatment of hypertension  
[6, 7], by inhibiting the production of angiotensin converting enzyme [8] and 
exert an angioprotective effect in rat [9]. The identified anthocyanin contents of 
H. sabdariffa included delphinidin-3-sambubioside, cyanidin-3-sambubioside, 
delphinidin-3-monoglucoside and cyanidin-3-monoglucoside.

Juhari et al. reported that the discrepancies of anthocyanin contents of H. 
sabdariffa reflected the difference in geographic origin of the plants which were 
selected randomly in the experiments, as the composition of anthocyanin was 
based on the geographic origin of the plants [10]. The anthocyanin content, how-
ever, reached 1.7–2.5% of dry weight of the calyces in all the strains examined [11]. 
Therefore, both biomass and production and anthocyanin biosynthesis rely on the 
nutritional factors which include type and concentration of carbon, nitrogen source 
and phosphate level [12].

Commercial H. sabdariffa products in various forms have been mushrooming 
in the market. The quality in term of the content of anthocyanin in these com-
mercial products is a major concern since herbs from different geographical regions 
may differ qualitatively and quantitatively [13]. In addition, different processing 
methods including the harvest period, material of sample used and the time of 
delivery could be the factors affecting the quality of the roselle products. Hence, it 
is crucial to determine the active components of herbs qualitatively from different 
regions and build a reference database. There are many quality control technolo-
gies in this new era. Commonly, the types of chromatography consist of high 
performance liquid chromatography, gas chromatography mass spectroscopy and 
liquid chromatography-mass spectrometry. Fourier transform infrared (FTIR) 
is widely used as a new technology for many purposes [14–16], such as analysis 
of anthocyanin [17]. The advantages of FTIR are rapid, less-destructive and cost 
saving. Such information acquired can be utilised for the development of refer-
ence database of H. sabdariffa to provide basic information on the product for the 
purpose of authentication, as the spectrum of a product can be rapidly matched for 
validation of its geographical origin and to predict the anthocyanin contents. This 
study therefore focused on the database establishment for the authentication of 
roselle raw materials collected from seven selected locations of western coastline in 
Peninsular Malaysia.

2. Materials and methods

2.1 Plant material

Only one variety of H. sabdariffa L. was obtained from seven different farms 
recognised by the State Agriculture Department along the western coastline in 
Peninsular Malaysia. The calyces of each individual plant were randomly collected 
(Table 1). The number of individual plants chosen depended on the size of farm 
and an average of 15–20 pieces of calyces from each individual plant were collected. 
A voucher specimen (PID 050515-05) was submitted to the Forest Biodiversity Unit 
at Forest Research Institute Malaysia (FRIM).
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According to statistics of industrial crops of roselle in 2016 [5], mostly short-
listed for western coastline of Peninsular Malaysia, Johor was the largest state with 
planted area of roselle and also achieved the highest production of roselle, fol-
lowed by Penang, Selangor, Perak and Kedah. Roselle can be commercially grown 
throughout the year in Malaysia. Many constraints limit roselle production, includ-
ing climatic variability such as flood and draught in certain district. The limited 
suitable land is also another factor.
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nutritional factors which include type and concentration of carbon, nitrogen source 
and phosphate level [12].

Commercial H. sabdariffa products in various forms have been mushrooming 
in the market. The quality in term of the content of anthocyanin in these com-
mercial products is a major concern since herbs from different geographical regions 
may differ qualitatively and quantitatively [13]. In addition, different processing 
methods including the harvest period, material of sample used and the time of 
delivery could be the factors affecting the quality of the roselle products. Hence, it 
is crucial to determine the active components of herbs qualitatively from different 
regions and build a reference database. There are many quality control technolo-
gies in this new era. Commonly, the types of chromatography consist of high 
performance liquid chromatography, gas chromatography mass spectroscopy and 
liquid chromatography-mass spectrometry. Fourier transform infrared (FTIR) 
is widely used as a new technology for many purposes [14–16], such as analysis 
of anthocyanin [17]. The advantages of FTIR are rapid, less-destructive and cost 
saving. Such information acquired can be utilised for the development of refer-
ence database of H. sabdariffa to provide basic information on the product for the 
purpose of authentication, as the spectrum of a product can be rapidly matched for 
validation of its geographical origin and to predict the anthocyanin contents. This 
study therefore focused on the database establishment for the authentication of 
roselle raw materials collected from seven selected locations of western coastline in 
Peninsular Malaysia.

2. Materials and methods

2.1 Plant material

Only one variety of H. sabdariffa L. was obtained from seven different farms 
recognised by the State Agriculture Department along the western coastline in 
Peninsular Malaysia. The calyces of each individual plant were randomly collected 
(Table 1). The number of individual plants chosen depended on the size of farm 
and an average of 15–20 pieces of calyces from each individual plant were collected. 
A voucher specimen (PID 050515-05) was submitted to the Forest Biodiversity Unit 
at Forest Research Institute Malaysia (FRIM).
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2.2 Sample processing

Each of the individual calyces collected were processed individually. After 
removing the seed, the calyces were washed and air-dried at room temperature. 
After about 80% of dryness was achieved, the calyces were continually dried in the 
oven at 50°C for 3–4 days. The dried calyces were pulverised with a blender to the 
finest size for further use. The processing was repeated for all the individual calyces 
collected from the seven locations.

2.3 FTIR method

The measurements were carried out using a Fourier Transform infrared (FTIR) 
spectrometer Spectrum GX, Perkin-Elmer Ltd., England, equipped with a deuter-
ated triglycine sulphate (DTGS) detector. Infrared spectra were recorded at 32 scans 
at a range of 4000–400 cm−1 with a resolution of 4 cm−1[18]. The dried calyces 
were ground with potassium bromide (KBr) powder in the ratio of 1:200 under the 
lowest humidity environment. The KBr and sample mixture were pressed not more 
than 10 psi to form a thin disc to be scanned for mid-infrared spectrum. The spec-
trum that achieved more than 60% transmission was chosen for further use [19]. 
Three discs were produced from each plant calyces and scanned.

2.4 Assured ID for chemometric analysis

Software Assured ID (Assured ID Method Explorer 2015, PerkinElmer) was 
used for chemometric analysis. The chemometric SIMCA was chosen by selecting 
wave number in the range of 1900–515 cm−1 (Figure 1) instead of function with icon 

Figure 1. 
The construction of the database model with method editor. Spectral of roselle raw material from seven 
locations of Western coastline in Peninsular Malaysia were imported to the functional icon ‘Materials’.
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“COMPARE” in the software. The outlaying spectrum was excluded in the developed 
method (Figure 2) when troubleshooting under the Coomans skill (Figures 3 and 4).

2.5 Validation on unknown location sample

Validation was done on three batches of roselle given by a colleague for testing 
the established database. These roselle samples were labelled as A, B, C, D, E and 
F. The validation was also done on a roselle sample purchased from a Chinese shop 
in Georgetown, Penang, Malaysia.

The sample was in the dried form and pulverised with blender. The finest 
samples were obtained by sieving with a 150-μm sieve (Standard Test Sieve, “CE”). 
The finest powder form of sample was mixed with KBr and followed the similar 
procedure of FTIR method, as mentioned in Section 2.3. The spectrum of unknown 
sample was copied to seven sets and labelled in a series (such as A-1, A-2, A-3, A-4, 
A-5, A-6 and A-7) and imported into the established database. Later, each copy of 
the spectrum was given a location based on the location of the established database. 
The specified material total distance ratios (SMTDR) of the generated results were 
used to predict its geographical origin. The system has a default of specific mate-
rial distance ratio limit with a value of 1.000 estimated by a ratio of the edge of the 
sphere with the diameter of the sphere. In fact, the SMTDR was less than 1.000, 
and the position of the spectrum was considered located in the area of the sphere.

Figure 2. 
Pre-processing step in the system. The wavenumber of the spectral was selected in the range of 1900–515 cm−1.
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3. Results and discussion

3.1 Authentication of roselle sample

Voucher specimen (PID 050515-05) of roselle was authenticated as Hibiscus 
sabdariffa var. UMKL-1.

3.2 Classification and performance report

The software “Assured ID” has successfully separated the spectra of the seven 
H. sabdariffa location samples based on different cluster of spheres. The analysis 
consisted of samples with extreme data (1.04% of excluded data) that were 
excluded from the system. All the materials from the seven farms achieved 100% 
rejection rate (Figure 5), showing that each of the H. sabdariffa spectra from the 
same location was distinguishable from the other locations when the software 
made a border line for the group of spectra from the same location. The 125 roselle 

Figure 4. 
Process of troubleshooting of sample from Pulau Pinang (Kepala Batas). The right-hand side indicated 
the sample leverage and the left-hand side indicated the residual distance. The cross spot above the dashed-line 
is considered extreme and would be excluded.

Figure 3. 
Individual sphere of each location sample spectra and their overlapping to other location by Coomans graph. 
This figure showed the example of samples from Pulau Pinang (Kepala Batas) under ‘review’ of ID model.
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samples spectra from Penang derived a mean spectrum and used as reference, 
whereas 88 samples from Kedah were incorporated into another mean spectrum. 
Roselle sample spectra from other locations were also included in this database. 
All the raw data were tested with chemometric SIMCA. Analysis of the sample 
shown only the group of spectra from Johor (Muar) achieved 100% (69/69) 
recognition rate. The lowest recognition rate (92%) was the samples from Perak 
(Lenggong), as out of a total of 108 spectra of samples from Lenggong, 99 spectra 
were recognised to the cluster of Lenggong. The other nine spectra were consid-
ered different from the Lenggong spectra cluster. This different spectrum was 
not overlapping with another cluster; nevertheless, they were not incorporated 
into the cluster of Lenggong. Samples from Sabak Bernam, Dengkil and Batu 
Pahat reported 3–6% elimination of perfect recognition rate. Figure 5 showed the 
tabulated IMD of all the locations at western coastline in Peninsular Malaysia.

3.3 Inter-material distances (IMD)

Inter-material distance is the mean model distance created by the software 
based on the cluster of spectra which include the residual and compared with the 
other cluster of spectra in the same model. IMD indicated the average separation 
distance of two clusters of spectra. IMD with greater value suggested each cluster 
was separated far apart and their components were possibly different. On the other 
hand, IMD with zero value represented each cluster possessed similar components.

The 3D principal component graph (Figure 6) illustrated the position of each 
cluster of spheres, which was viewed from different direction since their inter-
material distances varied. The 3D graph was established by three axes: PC1, PC2 
and PC3. Each of the spheres was developed by the group of samples from their 
different locations. The spectrum of each sample was transferred to a particular 
dot form. They were surrounded by the residues and the whole sphere represented 
the mean of all spectra of the group. They were separated based on the inter-
material distance from the centre of the sphere. When the inter-material distance 

Figure 5. 
Inter-material distances and classification performance report of seven roselle farm locations in 
Western coastline in Peninsular Malaysia.
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was closer, the two spheres would be overlapped. Since most of the inter-material 
was more than zero, the software was able to differentiate each group of samples. 
The areas of the spheres varied and relied on the derivative of the spectra from the 
main spectrum. When the size of sphere was smaller, the differences of each dot 
in the group from the mean spectrum were less and vice versa. Figure 6 illustrated 
that the seven area spheres were associated closely in a three-dimensional graph, 
which was viewed from different direction since the inter-material distances 
varied. The IMD with high value reflected the far distance of the sphere’s separa-
tion. Some of the spheres overlapped at certain portion meaning they were having 
very small value of IMD.

Figure 6. 
(A–F) were the 3D principle component graph of seven locations of collected roselle spectral rotated from 
different degree of axis-X and axis-Y.  = Penang (Kepala Batas),  = Kedah (Sik),  = Perak (Lenggong), 

 = Selangor (Dengkil),  =Johor (Muar),  = Johor (Batu Pahat), and  = Selangor (Sabak Bernam).
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The average inter-material distance of these seven locations was 9.04. The 
highest inter-material distance was 20.1 between samples from Kedah (Sik) and 
Selangor (Sabak Bernam). The prediction of this scenario was that the develop-
ment of H. sabdariffa from Sik in Kedah and Sabak Bernam in Selangor could 
be different in terms of their growing environment. The IMD from the Perak 
(Lenggong) and Johor (Batu Pahat) samples were lowest (4.07), showing that 
they shared 97.84% similarities of components in roselle grown under similar 
conditions of soil, water, pH and weather (Table 1). The analysis by software 
“Assured ID” indirectly also indicated that the sample from these two locations 
showed very similar spectra and the ingredients of the calyces were produced 
under similar conditions. Samples from Kepala Batas showed IMD of less than 
5.00 similar to samples from Lenggong, Muar and Batu Pahat. Samples of H. 
sabdariffa from Kepala Batas might have produced comparable chemical content 
as samples from these three locations. The IMD value of Muar and Batu Pahat was 
almost similar, as both locations are only 60 km apart. The soil condition, water 
and climate are less different. The IMD value of more than 10 for samples from 
Selangor (Sabak Bernam) showed that samples from Kepala Batas had different 
quality compared with them. Samples from Sik showed lowest IMD (6.52) similar 
to Batu Pahat when compared with other locations. Samples from Lenggong 
scored higher IMD value compared with sample from Dengkil and could pos-
sibly be due to the organic fertiliser and soil used in Dengkil farm. Higher rate of 
organic fertiliser increased the stem diameter and stem height, leaves number and 
leaves area as well as the biomass and number of calyx [20]. This could explain 
why the samples from Dengkil achieved higher IMD among all the samples even 
though samples from Sabak Bernam were obtained from same state. In compari-
son, samples from Muar showed lower IMD compared with Batu Pahat and Sabak 
Bernam, as these two locations are located in the middle of western coastline of 
Peninsular Malaysia. However, samples from Batu Pahat and Sabak Bernam still 
produced IMD greater than 10. This could be due to other factors such as the 
expanding of roselle disease [21] in two different locations. This kind of disease 
affected the yields and products of roselle as they caused leaf spot, stem rots and 
root rots.

3.4 Validation of unknown sample

Three batches of raw roselle sample showed the SMTDR value of more than 
1.000 (Table 2). This could be due to the raw material used included many overlap-
ping spectral points. The spectra used for database have wide range of variation. 
Thus, the sphere was built by covering varied sizes. The exclusion process was 
done to eliminate the variation. During the trouble shooting step, the rare spec-
trum points discarded from the system also affected the average of the sphere size 
and diameter, and another spectra point could appear and needs to be excluded. 
Therefore, exclusion plays a key in validation.

Since the SMTDR would not achieve less than 1.000, the prediction of the 
validation was based on the lowest value of SMTDR for the best result. By right, 
the range of SMTDR value of more than 1.000 was not mentioned in the system. 
There is no setting of SMTDR greater than 1.000, as the variation of database is 
built up by pure compound and theoretically the SMTDR of less than 1.000 for 
sample is validated within that specific sphere area. The validation of the sample 
needs to be conducted in a case by case manner. In the first batch of the sample, 
only sample F was predicted correctly. It is from Batu Pahat (Johor) with lowest 
SMTDR (5.6660). The prediction of the rest of the samples was inaccurate with 
SMTDR within the range of 6.000–9.000. Only sample B was predicted with 
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highest SMTDR and totally out of the range, indicating that the sample was not in 
the list of the database. The result showed more than half of the sample was related 
to Batu Pahat (Johor).

Special 
material

Sample 
batch 1

Special 
material 

total 
distance 

ratio

Sample 
batch 2

Special 
material 

total 
distance 

ratio

Sample 
batch 3

Special 
material 

total 
distance 

ratio

Penang (Kepala 
Batas)

S-1 9.7776

A-1 8.8082 A-1 9.5434 A-1 24.8195

B-1 25.8999 B-1 9.8203 B-1 5.3455

C-1 9.7891 C-1 7.5025 C-1 3.7961

D-1 9.5658 D-1 5.5987 D-1 9.4683

E-1 9.2071 E-1 12.1207 E-1 5.3179

F-1 9.0800 F-1 28.9541 F-1 6.7045

Kedah (Sik) S-2 32.3659

A-2 22.2249 A-2 25.7125 A-2 59.8511

B-2 57.9594 B-2 16.1543 B-2 19.8495

C-2 30.0014 C-2 29.5158 C-2 16.5201

D-2 20.2289 D-2 15.9132 D-2 12.5893

E-2 18.5137 E-2 28.1610 E-2 16.1842

F-2 23.5354 F-2 63.4393 F-2 23.2004

Perak 
(Lenggong)

S-3 10.2886

A-3 14.5125 A-3 12.8746 A-3 38.6313

B-3 42.7954 B-3 15.4265 B-3 9.6765

C-3 17.8026 C-3 10.5554 C-3 11.1555

D-3 16.9881 D-3 14.1552 D-3 14.1690

E-3 16.8321 E-3 12.4323 E-3 10.6477

F-3 11.5372 F-3 45.9675 F-3 10.7965

Selangor 
(Dengkil)

S-4 20.2622
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D-4 26.1163 D-4 19.5813 D-4 30.7206

E-4 32.4657 E-4 29.7071 E-4 14.2706

F-4 25.6752 F-4 38.4939 F-4 16.9643

Johor (Muar) S-5 7.8401

A-5 11.6067 A-5 8.3794 A-5 26.2286

B-5 28.0251 B-5 12.2636 B-5 5.9889

C-5 12.2153 C-5 6.7131 C-5 7.8547

D-5 13.0211 D-5 9.8193 D-5 10.4310

E-5 13.9058 E-5 11.4562 E-5 7.0655

F-5 8.8815 F-5 31.1604 F-5 5.8570
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Sample E in the second batch of the samples was correctly validated from 
Batu Pahat (Johor). Sample B was validated from Johor also, but from Mersing 
another district, but the SMTDR was lower than sample E, showing that the 
established database was not able to distinguish the sample from another dis-
trict ever though the SMTDR was lower. The prediction of the location of the 
unknown sample was 100% relied on the value of SMTDR. Sample F was vali-
dated with highest SMTDR of 28.9541 and was absolutely as a sample not from 
the western coastline. The other samples were validated with SMTDR of around 
5.000–9.000.

The pattern of results for the third batch of the validation sample was similar to 
first and second batch samples. Sample B was validated correctly from Batu Pahat 
(Johor). Sample A which originated from Kuala Rompin (Pahang) was validated 
with highest SMDR. The rest of the samples were validated in the range of SMTDR 
3.000–8.000. In summary, most of the result of validation referred to the sphere 
with bigger size, in this case, Batu Pahat (Johor) and Kepala Batas (Penang). The 
average of the SMTDR was around 3.000–9.000 for these batches of roselle sam-
ples. Calculated SMTDR not within this range is considered roselle sample located 
far away.

Validation of certain samples based on the established database showed the 
limitation and the reliability of the method. The database of samples from different 
locations with great variations caused the different sizes of the sphere in 3D graph. 
This phenomenon could affect the outcome, as it is preferable to possess bigger 
size sphere. The limitation of the established database includes the inaccuracy of 
determining the actual origin of the sample, since the outcome is only based on the 
SMTDR which is calculated by the software.

Special 
material

Sample 
batch 1

Special 
material 

total 
distance 

ratio

Sample 
batch 2

Special 
material 

total 
distance 

ratio

Sample 
batch 3

Special 
material 

total 
distance 

ratio

Johor (Batu 
Pahat)

S-6 10.2300

A-6 7.2980 A-6 8.7694 A-6 31.2373

B-6 31.6953 B-6 5.8974 B-6 4.9123

C-6 10.3410 C-6 5.6070 C-6 6.9651

D-6 7.8224 D-6 7.3348 D-6 7.8226

E-6 7.8653 E-6 7.6492 E-6 5.8147

F-6 5.6660 F-6 36.3964 F-6 7.0601

Selangor 
(Sabak 
Bernam)

S-7 13.3286

A-7 24.6931 A-7 20.9941 A-7 46.7027

B-7 51.7277 B-7 29.6644 B-7 14.3989

C-7 12.6569 C-7 16.9875 C-7 18.2554

D-7 29.4725 D-7 24.2281 D-7 28.2599

E-7 41.6178 E-7 22.0678 E-7 18.9226

F-7 20.8477 F-7 58.2088 F-7 14.8515

Yellow highlight refers to the samples that correctly validated the location. Blue highlight refers to the samples with 
stranger SMTDR.

Table 2. 
Testing the sample purchased from Penang (S) and three batches of roselle samples from different locations.
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highest SMTDR and totally out of the range, indicating that the sample was not in 
the list of the database. The result showed more than half of the sample was related 
to Batu Pahat (Johor).
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4. Conclusion

H. sabdariffa is the herbal plant adaptable to almost every state in Malaysia. 
It is easy to grow and prefers mineral soil with lower acidic pH. The calyces of 
H. sabdariffa are made into herbal tea and consumed by local Malaysians. Their 
anthocyanin contents have been reported as the key component in therapeutic 
studies. This project was sampled of the roselle farm in the western coastline of 
Peninsular Malaysia. There are some considerations when establishing the database 
with Assured ID. The preparation of the sample is important in ensuring accu-
rate determination. Firstly, the sample size of the KBr disc should be minimum 
above 50. The exclusion of extreme spectrum may minimise the sample size. This 
is crucial to ensure the data are representative of the actual condition of the sample 
in the area. Secondly, the sample processing procedures must be simple and time 
saving. The selection of region of wavenumber must include the range of finger-
print of the sample, which is exhibited in the raw material spectrum. The IMD of 
the sample must be more than one. It is preferable to collect the sample over a wide 
area in order to minimise the error of determining the location of unknown sample. 
When the location of an unknown sample could not be determined from the 
established database, it is possible that its SMTDR value could be out of the range of 
the average.

In this study, roselle raw material spectrum database was established by import-
ing the spectrum of each individual plant into the system. Each of the sample 
spectrum from different locations has formed their own position in the 3-D 
principle component graphs and combined to form the sphere separated by IMD. 
Validation of given simples was used to test the established database for its accuracy. 
The validation showed that only one out of six samples from each batch of sample 
was validated correctly, indicating a success rate of only 17%. On the other hand, 
the method successfully discriminated sample location in western coastline. It is 
concluded that with this established database, more than 50% of the validation 
detected the sample within the range of western coastline.

The established method of Assured ID database of roselle can be used as a refer-
ence database for roselle sample from unknown geographical locations in Malaysia 
with few limitations, but further improvement is needed.
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Chapter 8

Application of Fourier Analysis of
Cerebral Glucose Metabolism in
Color-Induced Long-Term
Potentiation: A Novel Functional
PET Spectroscopy ( fPETS) Study
in Mice
Philip C. Njemanze, Mathias Kranz and Peter Brust

Abstract

Fourier time-series analysis could be used to segregate changes in the ventral
and dorsal streams of the visual system in male and female mice. Color memory
processes of long-term potentiation and long-term depression could be identified
through spectral analysis. We used small animal positron emission tomography
and magnetic resonance imaging (PET/MRI) to measure the accumulation of [18F]
fluorodeoxyglucose ([18F]FDG) in the mouse brain during light stimulation with
blue and yellow filters compared to darkness condition. The mean standardized
uptake values (SUV) of [18F]FDG for each stimulus condition was analyzed using
standard Fourier analysis software to derive spectral density estimates for each
condition. Spectral peaks were identified as originating from the subcortical region
(S-peak) by subcortical long-term potentiation (SLTP) or depression (SLTD), and
originating from the cortical region (C-peak) by cortical long-term potentiation
(CLTP) or depression (CLTD). Luminance opponency occurred at S-peak by SLTP
in the dorsal stream in the left visual cortex in male mice. On the other hand,
chromatic opponency occurred by wavelength-differencing at C-peak by CLTP in
the cortico-subcortical pathways in the ventral stream in the left visual cortex in
male mice. In contrast in female mice, during luminance processing, there was
resonance phenomenon at C-peak in the ventral stream in the right visual cortex.
Chromatic opponency occurred at S-peak by SLTP in the dorsal stream in the right
visual cortex in female mice. Application of Fourier analysis improved spatial and
temporal resolutions of conventional fPET/MRI methods. Computation of color
processing as a conscious experience has wide range applications in neuroscience
and artificial intelligence.

Keywords: chromatic opponency, brain, light stimulation, sex, asymmetry,
spectroscopy, memory
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1. Introduction

Humans could discern as many as 10 million colors within the visible spectrum
between 380 and 740 nm under normal conditions. Color processing is a memory
computation within specific areas in the visual cortex. Conventionally, the visual
system is segregated into the primary and secondary visual cortex. The primary
visual cortex is organized into a ventral occipitotemporal stream for representation
of “what” system, while the dorsal occipitoparietal stream demonstrates the
“where” [1, 2]. The ventral stream implements hierarchical processing for object
recognition, while the dorsal stream uses same for complex computation for motion
in three-dimensional space. However, there is integration of information from both
ventral and dorsal streams [3]. We applied conventional functional positron emis-
sion tomography and magnetic resonance imaging (fPET/MRI) technique to dem-
onstrate gender-related cerebral metabolic changes during color processing in a
mouse model [4]. The latter conventional approach could not segregate processes in
the ventral and dorsal streams, respectively. We employed the use of conventional
methods of animal PET/MR imaging [5] before we explored the use of Fourier
analysis of the time series of the surrogate marker of cerebral metabolism of glucose
during color processing.

The two visual streams are segregated in their arterial networks for blood flow
supply in the visual cortex. The blood flow from the territories of the posterior
(PCA) and middle (MCA) cerebral arteries [6] supply the visual pathways and
extrastriate cortex “color centers” [5]. Color processing takes place within cortico-
subcortical circuits working through the basal ganglia via the ventromedial occipital
region to the posterior inferior temporal cortex, the latter is located along the
anterior third of the calcarine sulcus [7]. The arteries of the circle of Willis segregate
into two independent arterial systems called the cortical and ganglionic arteries,
which do not communicate in any region of their peripheral distribution. Both
systems are separated by a borderline of diminished nutritive activity [6].

The three primary qualities of color are hue, saturation (chroma), and lightness
(value), and humans can differentiate over 10 million colors. Color vision impli-
cates two main memory processes of simultaneous color contrast and color con-
stancy [8–13]. The phenomenon that surround colors profoundly influence the
perceived color has been attributed to simultaneous color contrast [9]. It is pre-
sumed that, simultaneous color contrast involves having a chromatic contrast
detector subserving one area of the chromatic space, excite a chromatic detector of
opposite type, and/or inhibit a chromatic detector of the same type in neighboring
areas of chromatic space [8]. The mechanism for simultaneous color contrast may
involve wavelength-differencing [13]. In human studies indexed using transcranial
Doppler measured mean cerebral blood flow velocity (mCBFV) demonstrated
selective response to colors of different wavelengths [14]. The application of Fou-
rier time-series analysis of mCBFV described as functional transcranial Doppler
spectroscopy (f TCDS) was used to demonstrate changes related to color processing
[15–17] and facial processing [18, 19] in humans. Fourier analysis was applied to
segregate the changes in the ventral and dorsal streams in the visual cortex [20].

There is need to develop reliable indices to characterize cellular processes
occurring in specific regions in the visual cortex. Conventional imaging techniques
do not provide specific indices with prerequisite resolution. However, PET images
rendered in units of standardized uptake values (SUV) of [18F]FDG can be
subjected to simple semi-quantitative analysis in animal models. Blood flow and
metabolism, therefore, have been considered virtually equivalent, indirect
indices of brain function [21]. Even though, some have demonstrated that there is
regional uncoupling of CBF and CMRO2, during neuronal activation induced by
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somatosensory stimulation [22]. Conversely, rCBF has been found to correlate with
mCBFV [23]. Brain neuronal activity, blood flow, and metabolism share common
characteristics in the frequency domain, hence methods that uncover the spectral
behavior of such systems could provide useful insight. It has been established that,
there is a rationale for application of Fourier analysis to characterize the periodicity
of biological systems and in particular the cerebrovascular system [24–26]. The
presumption is that the vessels of the cortical arterial system are not so strictly
“terminal” as those of the ganglionic system, and perfuse areas that could be
mapped to retinotopic structures in the mouse visual cortex [27]. Therefore, the
application of Fourier analysis could separate the frequency peaks from the cortical
branches of the “ventral stream” from that of the ganglionic branches of the sub-
cortical “dorsal stream.” In prior human studies indexed by fTCDS, we differenti-
ated processes in the cortical branches of the “ventral stream” at C-peak, from
processes in the subcortical “dorsal stream” at S-peak [15, 16, 19]. The latter enabled
us to localize brain function associated with the cortical (C-peak) processes within
the ventral stream and differentiate them from subcortical (S-peak) processes
within the dorsal stream of the visual cortex, in men and women, respectively.

Color is a brain computational process that involves memory. The color memory
formation implicated known models of synaptic and cellular events [28, 29]. We
propose to test the hypothesis that, Fourier time-series analysis of mean SUV values
as surrogate marker of cerebral metabolism could uncover the underlying memory
mechanisms associated with the phenomena of long-term potentiation (LTP) [28]
and long-term depression (LTD) [29]. The effects of color stimulation are induced
by the physical characteristics of light stimulus. Light has a dual nature of wave and
particle, which conditions wavelength-differencing and frequency-differencing
processes [15–17, 20] in the brain. The LUMINANCE effect responsiveness was
demonstrated by comparing Dark versus Light conditions. The luminance axis is
orthogonal (opposite) in direction to that of the chromatic axis. When the effects of
longer wavelength color (Yellow) were accentuated over shorter wavelength color
(Blue), it was presumed that WAVELENGTH-encoding is present [15]. On the
other hand, when the effects of higher frequency color (Blue) were accentuated
over lower frequency color (Yellow), ENERGY-encoding is present [15]. The
occurrence of WAVELENGTH-encoding main effect at S-peaks, and at least a
tendency for ENERGY-encoding at C-peaks results in WAVELENGTH-
differencing [15]. WAVELENGTH-differencing could be accomplished [15], when
a chromatic contrast detector in one area of chromatic space, activates a chromatic
detector of opposite type, or on the other hand inhibits a chromatic contrast detector
of similar function in adjoining areas of chromatic space [11]. FREQUENCY-
differencing implements ENERGY-encoding main effect which accentuates C-peaks
by cortical long-term potentiation (CLTP) process, and at least a tendency at S-
peaks due to attenuation by subcortical long-term depression (SLTD). The converse
processes are also feasible by subcortical long-term potentiation (SLTP) accentuat-
ing S-peaks and cortical long-term depression (CLTD) attenuating C-peaks.

The results in human studies demonstrated gender differences in mechanism of
color memory processing indexed as processes analogous to long-term potentiation
(LTP) [28] and long-term depression (LTD) [29]. In men, there was wavelength-
differencing by CLTD and CLTP in the right hemisphere [16, 17], synchronously in
the contralateral left hemisphere, there is cortical short-term depression (CSTD)
and subcortical short-term potentiation (SSTP), coupled to exponential increase in
synaptic strength, which may implicate NMDA receptors [16, 17, 28, 29], and
thereafter, decays to asymptotic level. It was postulated that in men, in the contra-
lateral left hemisphere, memory activation implicated “exponential expansion” by
CSTD and SSTP processes. Conversely, in women, the processes of CLTP and SLTD
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conditioned frequency-differencing within the left hemisphere [16, 17, 30].
Simultaneously, in the ipsilateral selective area in the left hemisphere, there was
cortical short-term potentiation (CSTP) and subcortical short-term depression
(SSTD) [11, 12, 17]. This was followed by logarithmic decay in synaptic strength to
asymptotic levels, that maybe related to action of NMDA receptors. In contrast to
that seen in men, in women, there was ipsilateral left hemisphere memory activa-
tion involving “logarithmic compression” by CSTP and SSTD processes. Analogous
synaptic and cellular activities with opposite hemispheric localization have been
observed in animal experiments [30, 31].

The origin of the C-peak and S-peak was demonstrated in human studies inves-
tigated using functional transcranial Doppler spectroscopy (fTCDS). The peaks
were presumed to originate from peripheral reflection sites such as the tip of the
fingers, the terminal end of the lenticulostriate subcortical arteries, and the terminal
end of the cortical branches of the MCA. The peaks were designated as F-(funda-
mental), C-(cortical), and S-(subcortical) peaks and occurred at regular frequency
intervals of 0.125, 0.25, and 0.375, respectively. If we assume that the fundamental
frequency of cardiac oscillation is the mean heart rate, then these frequencies could
be converted to cycles per second (Hz). The fundamental frequency f of the first
harmonic is the mean heart rate per second, given by 74 bpm/60 seconds or 1.23 Hz
in a normal person [18]. Therefore, the F-, C-, and S-peaks occurred at multiples of
the first harmonic, at second and third harmonics, respectively. The calculated
arterial lengths approximate visible arterial length of the lenticulostriate vessels
from the main stem of the MCA on carotid angiograms [32]. Others have suggested
that the estimated distances may not correlate exactly with known morphometric
dimensions of the arterial tree [33].

We postulate that, the Fourier time-series analysis of the frequency-domain of
cerebral metabolism may uncover the underlying memory mechanisms explained
by LTP and [28] LTD [29], primarily because the models have properties expected
of a synaptic associative memory mechanism, such as rapid induction, associative
interactions, persistence, synapse specificity, and dependence on correlated
synaptic activity. LTP and LTD remain only models of the synaptic and cellular
events that may underlie memory formation.

The physical characteristics of light stimulus relate to its dual nature as a wave
and particle. Light has the physical properties of amplitude, phase difference,
wavelength, frequency, and resonance phenomenon. The mechanistic strategies for
processing the physical properties of light could be separated into five categories:
(a) variations in peak amplitude associated with excitatory processes of CLTP that
result in accentuation of C-peak or SLTP that cause accentuation of S-peak from
baseline [15–20]. Conversely, the change in peak amplitude maybe induced by
inhibitory processes of CLTD resulting in attenuation of C-peak below baseline
condition or SLTD causing attenuation of S-peak below baseline condition [15–20].
The patterns of activation could be in the right hemisphere (-R) or left hemisphere
(-L). When changes in the cortical C-peak amplitudes are higher than that in the
subcortical region, it was designated as cortico-subcortical activation pattern origi-
nating in the ventral stream. Conversely, when higher changes in amplitude occur
for subcortical S-peak, it was designated as subcortico-cortical activation pattern
originating in the dorsal stream. (b) Phase difference could be precluded if the
oscillator generates a periodic signal and the phase detector compares the phase of
that signal with the phase of the input periodic signal, adjusting the oscillator to
keep the phases matched. The matched phases by mutual phase locking would mean
keeping the same frequency as observed in neurons [34], otherwise frequency
entrainment of the two oscillators. The latter is the basis of neuronal entrainment
which refers to the capacity for natural synchronization of brain wave frequency
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with the rhythm of periodic external stimuli, which could be visual, auditory, or
tactile. The cortical (C-peak) and subcortical (S-peak) peaks are a result of the brain
phase-locked loop which generates harmonic frequencies at multiples of the funda-
mental frequency [15–20], which is dependent on the heart rate. (c) Wavelength-
differencing is a mechanism of chromatic opponency that separates the effects of
longer wavelength color yellow from that of shorter wavelength color blue [15–20].
(d) Frequency-differencing is a mechanism of chromatic opponency that selectively
detects colors of high-frequency color such as blue distinct from low-frequency
colors such as yellow [15–20]. (e) Resonance is the ability of neurons to respond
selectively to input at preferred frequencies [34]. The frequency oscillations that
result to resonance could cause a synchronization phenomenon by adjustment of
the rhythms of self-sustained periodic oscillations [34]. Luminance opponency is
the difference between the effects of white light stimulation compared to the “color
dark” light-absent condition. Spatial opponency was determined by significant
differences between C-peak and S-peak for the same color such as the “color dark”
otherwise expressed as value/lightness of colors. Within the three-dimensional
color space, color and luminance interact at orthogonal planes [17].

Color is one aspect of an object, and another is the form, and the puzzle is on
how it all comes together in the human perception of the object, which is commonly
referred to as the “binding problem.” New techniques are required to investigate
the binding problem which presents as a major challenge to cognitive neuroscien-
tists and philosophers over several millennia. The first aspect of the problem
(problem 1) is the segregation problem which attempts to understand the mecha-
nistic strategies the brain employs to segregate elements in complex patterns of
sensory inputs so that they are allocated to “discrete objects.” In other words a blue
cube and a yellow disc are perceived as they are and not vice versa. The second
aspect of the problem (problem 2) is the brain combinatorial computation
employed to synthesize a holistic conscious experience [35, 36]. Both the binding
problems 1 and 2 are inter-related and would require mechanistic strategies in both
spatial and temporal dimensions. We postulate that problems 1 and 2 are resolved
by combination of responses involving processes of cortical and subcortical long-
term potentiation and depression (CLTP, CLTD, SLTP, and SLTD), within the
ventral and dorsal streams in the visual cortex. Furthermore, other brain areas
become implicated by synchronization within the same hemisphere or through
trans-callosal connections to the contralateral hemisphere. There may be gender
differences in cerebral asymmetry for color processing [15–20].

We aim to demonstrate the implementation of the mechanistic strategies for
brain function in color processing using Fourier analysis of the time series of the
SUV as a surrogate marker of cerebral metabolism of glucose. We hope that this
new approach would be useful to resolve the binding problem of conscious experi-
ence. The latter approach we suggest to be called functional positron emission
tomography spectroscopy ( f PETS), analogous to f TCDS we already described
elsewhere [15–19].

2. Methodological procedures

2.1 Mice

The experimental setup (Figure 1) has been described in detail elsewhere [5].
Briefly, five male and five female CD-1 mice (70–84 days old, 22–28 g) were housed
in a vented temperature-controlled animal cabinet (HPP108, MEMMERT GmbH &
Co. KG; Germany) under a 12 hour: 12 hour light:dark cycle (lights one at 7:00 am)
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cerebral metabolism may uncover the underlying memory mechanisms explained
by LTP and [28] LTD [29], primarily because the models have properties expected
of a synaptic associative memory mechanism, such as rapid induction, associative
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synaptic activity. LTP and LTD remain only models of the synaptic and cellular
events that may underlie memory formation.

The physical characteristics of light stimulus relate to its dual nature as a wave
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with the rhythm of periodic external stimuli, which could be visual, auditory, or
tactile. The cortical (C-peak) and subcortical (S-peak) peaks are a result of the brain
phase-locked loop which generates harmonic frequencies at multiples of the funda-
mental frequency [15–20], which is dependent on the heart rate. (c) Wavelength-
differencing is a mechanism of chromatic opponency that separates the effects of
longer wavelength color yellow from that of shorter wavelength color blue [15–20].
(d) Frequency-differencing is a mechanism of chromatic opponency that selectively
detects colors of high-frequency color such as blue distinct from low-frequency
colors such as yellow [15–20]. (e) Resonance is the ability of neurons to respond
selectively to input at preferred frequencies [34]. The frequency oscillations that
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the difference between the effects of white light stimulation compared to the “color
dark” light-absent condition. Spatial opponency was determined by significant
differences between C-peak and S-peak for the same color such as the “color dark”
otherwise expressed as value/lightness of colors. Within the three-dimensional
color space, color and luminance interact at orthogonal planes [17].

Color is one aspect of an object, and another is the form, and the puzzle is on
how it all comes together in the human perception of the object, which is commonly
referred to as the “binding problem.” New techniques are required to investigate
the binding problem which presents as a major challenge to cognitive neuroscien-
tists and philosophers over several millennia. The first aspect of the problem
(problem 1) is the segregation problem which attempts to understand the mecha-
nistic strategies the brain employs to segregate elements in complex patterns of
sensory inputs so that they are allocated to “discrete objects.” In other words a blue
cube and a yellow disc are perceived as they are and not vice versa. The second
aspect of the problem (problem 2) is the brain combinatorial computation
employed to synthesize a holistic conscious experience [35, 36]. Both the binding
problems 1 and 2 are inter-related and would require mechanistic strategies in both
spatial and temporal dimensions. We postulate that problems 1 and 2 are resolved
by combination of responses involving processes of cortical and subcortical long-
term potentiation and depression (CLTP, CLTD, SLTP, and SLTD), within the
ventral and dorsal streams in the visual cortex. Furthermore, other brain areas
become implicated by synchronization within the same hemisphere or through
trans-callosal connections to the contralateral hemisphere. There may be gender
differences in cerebral asymmetry for color processing [15–20].

We aim to demonstrate the implementation of the mechanistic strategies for
brain function in color processing using Fourier analysis of the time series of the
SUV as a surrogate marker of cerebral metabolism of glucose. We hope that this
new approach would be useful to resolve the binding problem of conscious experi-
ence. The latter approach we suggest to be called functional positron emission
tomography spectroscopy ( f PETS), analogous to f TCDS we already described
elsewhere [15–19].

2. Methodological procedures

2.1 Mice

The experimental setup (Figure 1) has been described in detail elsewhere [5].
Briefly, five male and five female CD-1 mice (70–84 days old, 22–28 g) were housed
in a vented temperature-controlled animal cabinet (HPP108, MEMMERT GmbH &
Co. KG; Germany) under a 12 hour: 12 hour light:dark cycle (lights one at 7:00 am)
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at 24°C (Figure 1D), There was free access to food and water. The vital signs
including heart rate, respiration, and anesthetic airflow were monitored. All pro-
cedures were in compliance with the “Principles of laboratory animal care” (NIH
publication no. 85e23, revised 1985) and were approved by the Institutional Animal
Care and Use Committee in the state of Saxony, Germany as recommended by the
responsible local animal ethics review board (Regierungspräsidium Leipzig,
TVV08/13, Germany).

2.2 Statistical analysis

The results were presented as mean � SD and graphic plots show mean/SE/
1.96*SE where applicable. We performed paired t-test statistics and one-way analy-
sis of variance (ANOVA) for comparison of stimulus and dark conditions, for
assessment of stimulus effects. Multivariate analysis of variance (MANOVA) with
repeated measures was used where applicable. The latter was followed by planned
t-tests to examine specific differences. The level of significance was at p<0.05.

2.3 Fourier analysis

Prior to undertaking the time-series analysis, we examined the stationarity of
the series by applying the Augmented Dickey-Fuller (ADF) test using the STATA
(Stata Corp LLC, College Station, TZ, USA) as described in detail elsewhere [20].
The ADF suggest that the time series data were strongly stationary without trans-
formation. Fourier analysis was applied to examine the cyclical patterns of data of
the mean � SD SUV values. It was presumed that the cyclical components may
correlate to the frequency of neuronal discharges in a given region of the brain
during the observed phenomenon. The analysis was to uncover a few recurring
cycles of different lengths in the time series of metabolic activity that may reveal
the random noise of neuronal activity. The software analyses were performed using
Statistica for Windows (StatSoft, OK, USA) and SPSS Version 20 (IBM). The
module for Fourier transform algorithm used is called the time-series and forecast-
ing module (Statistica for Windows, StatSoft, OK, USA). The spectrum analysis was
applied to the mean � SD SUV values provided in Table 3.

Figure 1.
Shows the experimental setup with the Chromatoscope in close view of the mouse. The heart rate, respiration,
and anesthetic airflow were monitored.
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The Fourier analysis decomposed the original time series into components of
sine and cosine functions at different frequencies, so as to reveal the important
frequency region. The wavelength v of a sine or cosine function is expressed as the
number of cycles per unit time (frequency). The length of time required for one full
cycle is denoted as the period T of a sine or cosine function, given by T = 1/v. The
equation was restated as a linear multiple regression model, where the dependent
variable is the observed time series, and the independent variables are the sine
functions of all possible (discrete) frequencies. Thus the multiple regression model
could be expressed as:

xt ¼ a0 þ ∑
q

k¼1
(1)

The lambda (λ) notation is the frequency expressed in radians per unit time,
given by = 2*π*ν, where π = 3.1416. The degree of correlation with the data is
represented as the regression coefficients for the cosine parameters ak and sine
parameters bk. The different sine and cosine functions are denoted as q; where there
are n/2 + 1 cosine functions and n/2–1 sine functions. The series could be completely
replicated from the underlying functions of many different sinusoidal waves as
there are data points. For a sinusoidal function to be identified, there must be at
least two data points of high peak and low trough. The Fourier algorithm requires
that the length of the input series is equal to a power of 2 [24], if the number of data
points in the series are odd, then the last data point is ignored or additional compu-
tations have to be performed. The Fourier algorithm identifies the correlation of
sine and cosine functions at different frequencies in observed time-series data.
When a large correlation is identified, this suggests strong periodicity of the
respective frequencies in the data.

The Fourier time-series analysis of any periodic signal is a summation of mutu-
ally independent sine and cosine functions of orthogonal pair of matrices with one
fundamental frequency and infinite number of harmonics. The periodogram is the
summed squared coefficients at each frequency given by:

Pk ¼ sine coeff :k2 ∗ cosine coeff :k2 ∗n=2 (2)

where Pk denotes the periodogram value at frequency vk and n is the overall
length of the time series. Many chaotic periodogram spikes result from substan-
tial random fluctuation of the periodogram values. Of practical importance are
the plots at frequencies with the greatest spectral densities, which consists of
many adjacent frequencies. These frequencies contribute most to the overall
periodic behavior of the series. The smoothing of the periodogram values was
made via a weighted moving average transformation. As described in detail
elsewhere [20], we applied the Hamming window, which for each frequency, the
weights for the weighted moving average of the periodogram values are com-
puted as follows:

wj ¼ 0:54þ 0:46 ∗ cos π ∗ j=pð Þ (3)

(for j = 0 to p)

w�j ¼ wj (4)

(for j 6¼ 0)
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The greatest weight functions to the observation being smoothed are assigned in
the center of the window and increasingly smaller weights are given to values that
are further away from the center. The periodogram values of “white noise” input
series will result in an exponential distribution.

The time-series was obtained as 20 data points for each stimulus condition for
male and female mice, respectively, as shown in Table 2. The software analysis
begins in Fourier analysis dialog, by choosing spectral density estimates and the
Hamming window. Then select Plot to display cyclical patterns in graphs for male
and female mice, respectively. The single series Fourier analysis was used to derive
spectral density estimates that were plotted, and the frequency regions with the
highest estimates were marked as peaks. The peak (as maxima) was identified as the
spectral density estimates between two minima, and was used to examine the
effects of stimuli on cortical and subcortical sites, respectively. The spectral density
peak identified as cortical (C-peak) occurred at 0.2 and subcortical (S-peaks)
occurred at 0.4, respectively. The stimulus responses was evaluated using the area
under the curve derived for a particular stimulus compared to that derived from
another stimulus or baseline condition. The region included in the analysis com-
prised five data points from trough-to-peak-to-trough for the C-peak and S-peak,
respectively, shown as Fourier spectral density coefficients in Table 2.

2.4 Preclinical PET-MR

Figure 1 shows the mouse on a special mouse bed in prone position, while
heated up to 37°C. The head was affixed to a mouth piece for the anesthetic gas
supply with isoflurane in 40% air and 60% oxygen (Anesthesia unit U-410,
AgnTho’s AB, Sweden; Gas blender 100, MCQ Instruments, Italy). The respiration,
gas flow, and anesthesia were monitored. The animals were injected intra-
peritoneal with about 15 MBq of [18F]FDG, followed by a PET-MR scan using a
preclinical PET-MR Scanner (nanoScan®, Mediso Medical Imaging Systems, Hun-
gary). For the image processing, the PET image were corrected for scatter, dead
time, attenuation (AC), and random coincidences, based on a whole body (WB)
MR scan. Image reconstruction parameters for the list mode data were 3D-ordered
subset expectation maximization (OSEM), which included four iterations, six sub-
sets, energy window: 400–600 keV, coincidence mode: 1–5, and ring difference 81.

The procedure involved that the PET data were collected by a continuous WB
scan during the entire investigation. The latter was followed by a T1 weighted WB
gradient echo sequence (GRE, TR = 20 ms; TE = 6.4 ms) performed for AC and
anatomical orientation. The SUV is calculated by two ways: first pixel-wise yielding
a parametric image and over a volume of interest (VOI). This procedure was
followed for any image acquired at time point t, and for all images of a dynamic
series acquired at multiple time points. The mean SUV is defined as the ratio of
(1) the tissue radioactivity concentration c (e.g. in MBq/kg = kBq/g) at time point t
and (2) the injected activity (e.g. in MBq, extrapolated to the same time t) divided by
the body weight (e.g. in kg). PET studies were conducted on the same animals
repeatedly on consecutive days without randomization to keep the daytime of
measurement (e.g. the glucose/insulin levels) constant, considering the diurnal
circadian rhythm. The weight was monitored and there was no significant change in
weight of the animals over the several days of study in male and female mice
(Table 1). The intraperitoneally injected radiotracer ([18F]FDG) dose in male and
female mice did not vary significantly over the several days of the study (Table 1).

The measurements of male (10.1 � 1.5 mmol/L) and female (7.8 � 1.8 mmol/L)
mice random blood sugar levels were similar. All animals were at the end of the
study euthanized by cervical dislocation under anesthesia.
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2.5 Light stimulation studies

Light stimulation was accomplished using a custom-made device comprising a
double barrel tunnel placed around both eyes and the nose ridge to separate both
visual fields. At the end, there is a white screen illuminated by a remote light source.
There is a groove in the light path before the screen that allows insertion of filters
into the right or left visual fields, respectively. We used a tungsten coil filament
light source of a general service lamp (OSL2 High-Intensity Fiber Light Source,
Thorabs Inc., Newton, New Jersey, USA) ran at a constant 21 V and 150 W. The
maximum light output of the bulb was 40,000 foot candles (430,000 lux) with
power at tip of fiber at a maximum bulb intensity of 1.4 W/m2. The color temper-
ature was about 3200 K and approximately 20 lumens/watt. The anesthetized mice
had both eyes open at all times. At onset before stimulation, the animal was posi-
tioned with both eyes open and fixed peeping through the double barrel tunnel
connected to a light source behind the white screen.

The stimulations’ duration was 20 minutes and included: (1) Dark in both eyes—
the left and right eyes were covered with 5% dexpanthenol ointment (Bepanthen,
Bayer, Germany); (2) Right monocular light (Light Rt_eye)—the right eye is open
and fixed peeping through one open barrel connected to the light source, while the
left eye is covered with ointment. (3). Left monocular light (Light Lt_eye)—the left
eye is open and fixed peeping through one open barrel connected to the light
source, while the right eye is covered with ointment. (4). Right monocular blue
light (Blue Rt_eye)—the right eye is open and fixed peeping through one open
barrel affixed with Deep Blue filter (No. 47B, short dominant wavelength (λ) of
Sλ = 452.7 nm) connected to the light source, while the left eye is covered with
ointment. (5). Left monocular blue light (Blue Lt_eye)—the left eye is open and
fixed peeping through one open barrel affixed with Deep Blue Wratten filter
(No. 47B, short dominant wavelength λ of Sλ = 452.7 nm) connected to the light
source, while the right eye is covered with ointment. (6). Right monocular yellow
light (Yellow Rt_eye)—the right eye is open and fixed peeping through one open
barrel affixed with Deep Yellow Wratten filter (No. 12) connected to the light
source, while the left eye is covered with ointment. (7). Left monocular yellow light
(Yellow Lt_eye)—the left eye is open and fixed peeping through one open barrel
affixed with Deep Yellow Wratten filter (No. 12) connected to the light source,
while the right eye is covered with ointment.

Experimental days Body weight (g) Dose of radiotracer i.p (MBq)

Male mice Female mice Male mice Female mice

Day 1 34.5 � 2.8 25.6 � 1.7 12.05 � 1.23 12.7 � 1.23

Day 2 34.4 � 2.4 25.4 � 1.3 12 � 0.9 12.7 � 1.3

Day 3 33.7 � 2.3 25.5 � 1.5 11.7 � 1.2 12.6 � 0.9

Day 4 34.7 � 2.3 25.6 � 1.2 10.6 � 0.5 13.9 � 0.7

Day 5 34.3 � 2.5 26.4 � 1.4 12.1 � 1.7 11.4 � 0.9

Day 6 34.6 � 2.5 26.2 � 1.4 10.8 � 1.2 12.3 � 1.2

Day 7 34.1 � 2.6 26.5 � 1.3 11.9 � 1 12 � 1.4

Table 1.
The body weight and dose of injected radiotracer in male and female mice during the study.
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2.6 Rationale for visual stimulation

Color stimulation was accomplished using opponent blue/yellow colors of opti-
cal homogenous filters placed in the light path of the animal Chromatoscope. The
Kodak Wratten filters were Deep Blue (No. 47B) of short Sλ = 452.7 nm, Deep
Yellow (No. 12) of medium Mλ = 510.7 nm, dominant wavelengths. The excitation
purity and luminous transmittance for each filter were given in the manual (Kodak
Photographic Filters Handbook (Publication No. B-3), Eastman Kodak Company,
Rochester, New York, 1990). The color stimuli were designed to elicit responses
from V1 ocular dominance columns. Most V1 neurons respond preferentially to
inputs from one eye or the other. Human studies have shown that cells with com-
mon preference are organized into columns that alternate with columns of neurons
with the opposite preference [8, 10, 11]. During monocular stimulations through
one aperture of the double barrel, the other was closed to light reflected from the
remote light source. Closure of the one aperture was used to maximize stimulation
of the right or left visual pathways of the contralateral eye that projects to the area
17 and extrastriate visual cortex and also precludes binocular interaction due to
stereopsis [8]. The dark condition was not a quiescent “resting state” but was rather
considered a light stimulus-absent condition with non-photic signal transduction of
the “color Dark” through the visual pathways.

2.7 Data analysis

Measurements of SUV values were obtained over time for Group A (males) and
Group B (females) under conditions of Dark, light, blue, yellow stimulations, for
the whole brain, and in the right and left hemispheres, respectively. The registration
and evaluation of the images were performed with ROVER (ABX advanced bio-
chemical compounds, Radeberg, Germany, v.2.1.15) (Figure 2A). The anatomic
orientation of the right and left hemispheres was performed using the MR informa-
tion from the GRE scan. The PET/MR data were coregistered to delineate the
volume of interest (VOI), and the data analysis was performed by two observers.
The steps included: first, to manually coregister the PET images to the respective T1
weighted MR data of each animal. Then the next step was to identify using the MRI
information from the GRE scan, the right and left hemispheres. We selected the
VOI in a space stretching from the primary visual cortex to the extrastriate cortex.
The region is perfused by both the ganglionic branches of lenticulostriate arteries
and the cortical branches from the main stems of the MCA and PCA [6]. The VOI
included a region in the visual cortex with radiotracer concentration in a sample

Figure 2.
The positioning of VOI on PET/MR images. The brain images of [18F]FDG PET (A, B) and MR images (C, D)
for male and female CD-1 mouse are shown in coronal (A, C) and transverse (B, D) sections. The color scale is
displayed on the right side, and regions of highest SUV levels are shown in red. The MR T1 weighted images
shown in coronal (C) and transverse (D) views were obtained by a gradient echo sequence with TE = 6.4 ms
and TR = 20 ms. Figure 2E shows the distribution of ganglionic and cortical arteries in the ventral and dorsal
streams as branches of the middle cerebral artery in the mouse brain.
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volume of a cylindrical mask. The contour VOI is defined as a stack of planar, closed
polygons called regions-of-interest (ROI) (Figure 2A–F), in male and female mice,
respectively. The contours on the loaded images were outlined manually and semi-
automatically to contain pixels within the contour boundaries for the VOI statistics.
The contour vertices coordinates in triples (x, y, z) are defined as offsets are in
[mm] in the x, y and z axes from the image origin. Further statistical analysis are
performed in the two separated VOIs delineated (Figure 2A–F) which included two
right and left sub-volumes (VOIs) with mask (x, y, z) pixel size (10, 10, 10) or
(0.3, 0.3, 0.3 cm) placed in the visual cortex from the midpoint to the right border
(visCtxR) and to the left border (visCtxL) of the midline.

3. Results

3.1 Experimental setup

Figure 1 shows the actual experimental setup for eye stimulation. The animals
were placed in an animal cabinet with controlled day-light regimen, free access to
water and food. The respiration and anesthetic gas flow were continually monitored
during the experiment. The mice were placed in prone position on a special heated
mouse pad with head affixed to a mouth piece. The eyes were fixed for 20 minutes
light stimulation through the double barrel of the light source chromatoscope,
described in detail elsewhere [5]. A whole body PET scan was started for a duration
of 20 minutes using a preclinical scanner.

The distribution of ganglionic and cortical arteries in the ventral and dorsal
streams as branches of the middle cerebral artery in the mouse brain is shown in
Figure 2E.

The baseline condition was defined as Dark stimulus absent-condition in both
eyes. The Dark condition could also elicit the perception of the “color Dark” and has
been associated with changes in mCBFV indexed by transcranial Doppler [14].

We analyzed the mean � SD SUV data obtained in direct measurements
(Table 2). We performed a MANOVA with repeated measures on the mean � SD
SUV values, with a 7 � 2 � 2 design: the stimulation of the visual cortex included
seven levels of stimulations (both eyes Dark, right eye Light R, left eye Light L,
right eye Blue R, left eye Blue L, right eye Yellow R, and left eye Yellow L), two
levels of visual cortex (right visCtxR and left visCtxL), and two levels of gender
(male and female). The mean � SD SUV was used as the dependent variables
during stimulations. The F-statistics [20] for the observed main effect for stimula-
tions was F(6,228) = 7.621, MS = 0.356, p<0.05. The main effect for the visual
cortex was F(1,38) = 7.157; MS = 0.026, p<0.05. The gender main effect was
(F(1,38) = 15.15, MS = 2.065, p<0.05. The observed interactions were stimulation �
gender: F(6,228) = 6.405, MS = 0.299, p<0.05 and stimulations � visual cortex F
(6,228) = 4.21, MS = 0.0141, p<0.05.

The Fourier spectral density coefficients obtained from the times series analysis
of mean SUV are provided in Table 3. A MANOVA with repeated measures was
performed with a 7 � 2 � 2 � 2 design. The dependent variables included seven
levels of stimulations (Dark, Light R, Light L, Blue R, Blue L, Yellow R, and
Yellow L), two levels of visual cortex (visCtxR and visCtxL), two levels of peaks
(C-peak and S-peak), and two levels of gender (male and female). The results
showed that the main effect for stimulations: F(6,102) = 8.65, MS = 0.094, p<0.05.
The main interactions were stimulations � gender: F(6,102) = 7.68, MS = 0.083, p<
0.05, stimulations � visual cortex � gender: F(6,102) = 3.4, MS = 0.00098, p<0.05,
and stimulations � visual cortex � peaks: F(6,102) = 3.4, MS = 0.00075, p<0.05.
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from V1 ocular dominance columns. Most V1 neurons respond preferentially to
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of the right or left visual pathways of the contralateral eye that projects to the area
17 and extrastriate visual cortex and also precludes binocular interaction due to
stereopsis [8]. The dark condition was not a quiescent “resting state” but was rather
considered a light stimulus-absent condition with non-photic signal transduction of
the “color Dark” through the visual pathways.

2.7 Data analysis

Measurements of SUV values were obtained over time for Group A (males) and
Group B (females) under conditions of Dark, light, blue, yellow stimulations, for
the whole brain, and in the right and left hemispheres, respectively. The registration
and evaluation of the images were performed with ROVER (ABX advanced bio-
chemical compounds, Radeberg, Germany, v.2.1.15) (Figure 2A). The anatomic
orientation of the right and left hemispheres was performed using the MR informa-
tion from the GRE scan. The PET/MR data were coregistered to delineate the
volume of interest (VOI), and the data analysis was performed by two observers.
The steps included: first, to manually coregister the PET images to the respective T1
weighted MR data of each animal. Then the next step was to identify using the MRI
information from the GRE scan, the right and left hemispheres. We selected the
VOI in a space stretching from the primary visual cortex to the extrastriate cortex.
The region is perfused by both the ganglionic branches of lenticulostriate arteries
and the cortical branches from the main stems of the MCA and PCA [6]. The VOI
included a region in the visual cortex with radiotracer concentration in a sample

Figure 2.
The positioning of VOI on PET/MR images. The brain images of [18F]FDG PET (A, B) and MR images (C, D)
for male and female CD-1 mouse are shown in coronal (A, C) and transverse (B, D) sections. The color scale is
displayed on the right side, and regions of highest SUV levels are shown in red. The MR T1 weighted images
shown in coronal (C) and transverse (D) views were obtained by a gradient echo sequence with TE = 6.4 ms
and TR = 20 ms. Figure 2E shows the distribution of ganglionic and cortical arteries in the ventral and dorsal
streams as branches of the middle cerebral artery in the mouse brain.
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volume of a cylindrical mask. The contour VOI is defined as a stack of planar, closed
polygons called regions-of-interest (ROI) (Figure 2A–F), in male and female mice,
respectively. The contours on the loaded images were outlined manually and semi-
automatically to contain pixels within the contour boundaries for the VOI statistics.
The contour vertices coordinates in triples (x, y, z) are defined as offsets are in
[mm] in the x, y and z axes from the image origin. Further statistical analysis are
performed in the two separated VOIs delineated (Figure 2A–F) which included two
right and left sub-volumes (VOIs) with mask (x, y, z) pixel size (10, 10, 10) or
(0.3, 0.3, 0.3 cm) placed in the visual cortex from the midpoint to the right border
(visCtxR) and to the left border (visCtxL) of the midline.

3. Results

3.1 Experimental setup

Figure 1 shows the actual experimental setup for eye stimulation. The animals
were placed in an animal cabinet with controlled day-light regimen, free access to
water and food. The respiration and anesthetic gas flow were continually monitored
during the experiment. The mice were placed in prone position on a special heated
mouse pad with head affixed to a mouth piece. The eyes were fixed for 20 minutes
light stimulation through the double barrel of the light source chromatoscope,
described in detail elsewhere [5]. A whole body PET scan was started for a duration
of 20 minutes using a preclinical scanner.

The distribution of ganglionic and cortical arteries in the ventral and dorsal
streams as branches of the middle cerebral artery in the mouse brain is shown in
Figure 2E.

The baseline condition was defined as Dark stimulus absent-condition in both
eyes. The Dark condition could also elicit the perception of the “color Dark” and has
been associated with changes in mCBFV indexed by transcranial Doppler [14].

We analyzed the mean � SD SUV data obtained in direct measurements
(Table 2). We performed a MANOVA with repeated measures on the mean � SD
SUV values, with a 7 � 2 � 2 design: the stimulation of the visual cortex included
seven levels of stimulations (both eyes Dark, right eye Light R, left eye Light L,
right eye Blue R, left eye Blue L, right eye Yellow R, and left eye Yellow L), two
levels of visual cortex (right visCtxR and left visCtxL), and two levels of gender
(male and female). The mean � SD SUV was used as the dependent variables
during stimulations. The F-statistics [20] for the observed main effect for stimula-
tions was F(6,228) = 7.621, MS = 0.356, p<0.05. The main effect for the visual
cortex was F(1,38) = 7.157; MS = 0.026, p<0.05. The gender main effect was
(F(1,38) = 15.15, MS = 2.065, p<0.05. The observed interactions were stimulation �
gender: F(6,228) = 6.405, MS = 0.299, p<0.05 and stimulations � visual cortex F
(6,228) = 4.21, MS = 0.0141, p<0.05.

The Fourier spectral density coefficients obtained from the times series analysis
of mean SUV are provided in Table 3. A MANOVA with repeated measures was
performed with a 7 � 2 � 2 � 2 design. The dependent variables included seven
levels of stimulations (Dark, Light R, Light L, Blue R, Blue L, Yellow R, and
Yellow L), two levels of visual cortex (visCtxR and visCtxL), two levels of peaks
(C-peak and S-peak), and two levels of gender (male and female). The results
showed that the main effect for stimulations: F(6,102) = 8.65, MS = 0.094, p<0.05.
The main interactions were stimulations � gender: F(6,102) = 7.68, MS = 0.083, p<
0.05, stimulations � visual cortex � gender: F(6,102) = 3.4, MS = 0.00098, p<0.05,
and stimulations � visual cortex � peaks: F(6,102) = 3.4, MS = 0.00075, p<0.05.
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To examine luminance and chromatic opponency, paired t-test comparison was
used and the results are summarized in Table 4 and Figure 3A–H. In male mice,
during dark versus light stimulation, the luminance opponency was accomplished
by wavelength-differencing at S-peak by SLTP in the dorsal stream in the left visual
cortex, p<0.05 (Figure 3B). There was concurrent contralateral energy-encoding at
C-peak in the ventral stream in the right visual cortex. There was concurrent
energy-encoding occurred at the C-peak by CLTD in the ventral stream in the
contralateral right visual cortex, p<0.05 (Figure 3A). The chromatic opponency of
blue versus yellow pairs, occurred by wavelength-differencing at cortical C-peak by
CLTP in the ventral stream in the left visual cortex (Figure 3D).

In female mice, white light stimulation caused a resonance effect at C-peak in
the ventral stream in the right visual cortex over a broad range of frequencies
(Figure 3E), but not by luminance opponency response as seen in male mice,
p = NS. Chromatic opponency by wavelength-differencing effects occurred at S-
peak by SLTP in the dorsal stream in the right visual cortex, p<0.05, (Figure 3G).
Concurrently, there was a contralateral left hemisphere subcortical energy-
encoding frequency-differencing at S-peak by SLTP within the dorsal stream in the
left visual cortex, p<0.05, (Figure 3H).

4. Discussion

4.1 Origins of spectral C-peak and S-peak

Fourier series could be applied to the periodic and quasi-periodic phenomena in
the cerebrovascular system [15–20, 24–26]. Once the times series is proven to be
stationary [20], as was in the present study, the two basic postulates for Fourier
analysis namely, periodicity and linearity are usually satisfied for the oscillatory
components of the cerebrovascular system [25, 26]. Specialized neurons processing
the light stimuli would cause modulation of the frequency response to the stimuli,
hence it is expected that there would be a change in the area under the spectral
density curves at C-peak and S-peak compared to non-response or stimulus-absent
condition. In the present study, as in previous studies [18, 20], the origin of C-peak
and S-peak could be derived from the spectral analysis. The C-peak and S-peak
occurred at multiples of the first harmonic, at the second and third harmonics,
respectively. It has been demonstrated that, in the vascular system, the first five
harmonics contain 90% of the pulsatile energy of the system [37]. The frequencies
obtained in the spectral plots could be converted to cycles per second (Hz),

Figure 3.
Spectral density plots of Fourier coefficients for male (A–D) and female mice, (E–H), respectively.
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To examine luminance and chromatic opponency, paired t-test comparison was
used and the results are summarized in Table 4 and Figure 3A–H. In male mice,
during dark versus light stimulation, the luminance opponency was accomplished
by wavelength-differencing at S-peak by SLTP in the dorsal stream in the left visual
cortex, p<0.05 (Figure 3B). There was concurrent contralateral energy-encoding at
C-peak in the ventral stream in the right visual cortex. There was concurrent
energy-encoding occurred at the C-peak by CLTD in the ventral stream in the
contralateral right visual cortex, p<0.05 (Figure 3A). The chromatic opponency of
blue versus yellow pairs, occurred by wavelength-differencing at cortical C-peak by
CLTP in the ventral stream in the left visual cortex (Figure 3D).

In female mice, white light stimulation caused a resonance effect at C-peak in
the ventral stream in the right visual cortex over a broad range of frequencies
(Figure 3E), but not by luminance opponency response as seen in male mice,
p = NS. Chromatic opponency by wavelength-differencing effects occurred at S-
peak by SLTP in the dorsal stream in the right visual cortex, p<0.05, (Figure 3G).
Concurrently, there was a contralateral left hemisphere subcortical energy-
encoding frequency-differencing at S-peak by SLTP within the dorsal stream in the
left visual cortex, p<0.05, (Figure 3H).

4. Discussion

4.1 Origins of spectral C-peak and S-peak

Fourier series could be applied to the periodic and quasi-periodic phenomena in
the cerebrovascular system [15–20, 24–26]. Once the times series is proven to be
stationary [20], as was in the present study, the two basic postulates for Fourier
analysis namely, periodicity and linearity are usually satisfied for the oscillatory
components of the cerebrovascular system [25, 26]. Specialized neurons processing
the light stimuli would cause modulation of the frequency response to the stimuli,
hence it is expected that there would be a change in the area under the spectral
density curves at C-peak and S-peak compared to non-response or stimulus-absent
condition. In the present study, as in previous studies [18, 20], the origin of C-peak
and S-peak could be derived from the spectral analysis. The C-peak and S-peak
occurred at multiples of the first harmonic, at the second and third harmonics,
respectively. It has been demonstrated that, in the vascular system, the first five
harmonics contain 90% of the pulsatile energy of the system [37]. The frequencies
obtained in the spectral plots could be converted to cycles per second (Hz),

Figure 3.
Spectral density plots of Fourier coefficients for male (A–D) and female mice, (E–H), respectively.
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assuming that the fundamental frequency of cardiac oscillation was the mean heart
rate in mice. In mice, the mean heart rate per second of CD-1 mice = 515 � 30 bpm/
60 seconds = 8.6 Hz as the fundamental frequency f of the first harmonic [38].
Hence, the reflection site for the fundamental frequency emanates from a distance
at D1 = ¼λ or c/4f or 1.91 m/s/(4*8.6 Hz) = 0.055 m/s or 5.5 cm, where
c = 1.91 � 0.44 m/s, is the wave propagation velocity [38]. The calculated distances
only approximate the actual arterial lengths. If we account for vascular tortuosity,
the estimated distance (5.5 cm) is from the terminal vessels in the brain to an
imaginary site of summed reflections at the aorto-iliac junction in the mice. The
reflection site for the C-peak which occurred at the second harmonic, could be
estimated to originate from an arterial length given by D2 = 1/8λ or c/8 � 2f, or
1.91 m/s/(8*(2*8.6 Hz or 17.2 Hz)) = 0.0139 m or 1.4 cm. The latter arterial length
approximates the visible length from the main stem of the major cortical arteries
around the cerebral convexity to the end occipitotemporal junction as shown in
mouse brain (Figure 2). Similarly, we can estimate the origin of the S-peak which
occurred at the third harmonic, at a distance given by D3 = 1/16λ or c/16 � 3f, or
1.91 m/s/(16*(3*8.6 Hz or 25.8 Hz)) = 0.0046 m or 0.46 cm or 4.6 mm. The latter
arterial length approximates the visible length from the main stem of the major
cortical arteries to the distal arterioles of the ganglionic branches [6]. The derived
frequencies also correspond to known electrical activity in the brain [39], for
example, the cortical frequency of 17 Hz is within the beta rhythm range
(�14–18 Hz) which is implicated in cortical areas of higher visual hierarchy in
top-down feed-back processing in the visual system [39]. This may suggest that, beta
rhythms could predominate in cortico-subcortical patterns of activation in male mice.
On the other hand, in female mice, 25 Hz is the frequency of the rhythm of gamma
waves [40] implicated in the subcortico-cortical circuits during visual processing. The
ratio of the length of the ganglionic branches to the cortical branches is 1:3 in mice,
this same ratio is found in human subjects [18, 19]. This may suggest that the cerebral
vaso-architecture was optimized in mammals to facilitate vascular harmonic oscilla-
tions with matched frequency of neuronal activity within the brain.

4.2 Gender differences in asymmetry for color processing and memory
formation

Memory processing in mice has been fairly well studied, particularly the left-
right dissociation [41]. It has been shown that silencing CA3 area of the left hippo-
campus impaired associative spatial long-term memory, whereas the equivalent
manipulation in the right hippocampus did not [41]. In the present study, in male
mice, chromatic opponency of yellow/blue pair was associated with significant
differentiation of CLTP processes at cortical C-peaks, which may suggest that the
wavelength-differencing of color and its associative memory processes were inte-
grated within the same cortical-subcortical circuits in the left hemisphere. On the
other hand, in female mice, the chromatic opponency involved significant differ-
entiation at S-peak by SLTP for yellow from blue by SLTD (Figure 3G). This would
imply that, the associative color memory processes would require contralateral left
hemisphere retrieval from subcortical memory circuits. Hence, in female mice, we
observed significant right visual cortex wavelength-differencing by SLTP concur-
rently with left visual cortex energy-encoding frequency-differencing of blue by
SLTP processes (Figure 3H). In other words, in male mice, color processing and
associated memory retrieval implicated ipsilateral cortico-subcortical circuits in the
left visual cortex. In contrast, in female mice, color processing occurred in the right
visual cortex, while associated memory retrieval involved contralateral left visual
cortex through right-to-left transcallosal subcortical circuits.
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There are important features, LTP and LTD models, that characterize synaptic
and cellular events that may underlie memory formation. LTP model exhibits
numerous properties expected of a synaptic associative memory mechanism, such
as rapid induction, associative interactions, persistence, synapse specificity, and
dependence on correlated synaptic activity. The changes in LTP and LTD would
alter the frequency domain, hence, Fourier time-series analysis could provide useful
insights into the mechanistic strategies employed in memory processing. The
mechanisms underlying long-term potentiation and long-term depression could be
deduced from what is known. The main excitatory neurotransmitter in the brain is
glutamate. The role of glutamate in the processes that induce potentiation have not
been fully elucidated. However, it has been suggested that the mechanism by which
LTP is induced does not involve AMPA (alpha amino-3-hydroxy-5-
methylisoxazole-4-propionic acid) receptors, but the synaptic response of potenti-
ation implicates AMPA receptor activity [28, 29, 42]. The latter processes critical for
LTP development begins with sufficient depolarization of the cell membrane
containing the NMDA (N-methyl-D-aspartate) channels, that cause Mg2+ to leave
the channels, and glutamate activation of the NMDA receptors opens the channels,
allowing Ca2+ to rush into the neuron [28, 29, 42]. On the other hand, in the
subcortical region, a counter trend develops due to combined activation of other
receptors such as the metabotropic receptor, which results in a paradoxical long-
lasting decrease in the responsiveness of the AMPA receptors to glutamate release
[28, 29, 42]. Although, these cellular processes cannot be tracked in vivo, there is
now the prospect of using this new imaging approach (fPETS/MRI) to study LTP
and LTD in the ventral and dorsal streams, respectively. It is hoped that, this may
offer insight into processes within the cortico-subcortical neural networks, which
may correlate with findings from cellular studies of deep structures in the dorsal
striatum, accumbens, and prefrontal cortex following stimulation of fornix-fimbria
bundle [28, 29, 42, 43]. Moreover, it has been suggested that gamma-amino-butyric
acid (GABA) modulates the color-opponent bipolar cells either through activating
GABA receptors on these cells directly or those on cone terminals indirectly [44].

4.3 Resolving the binding problem

The findings in this chapter suggest that a hypothesis for the binding problem
could be postulated. The first binding problem involving segregation of the differ-
ent colors (up to 10 million) [45] occurs by generation of continuous highly
dynamic variation of cortical long-term potentiation when modulated by inputs
from wavelength-sensitive retinal S-cones through retino-geniculate-cortical path-
ways to specialized cortical neuronal cells in the ventral stream in male mice. For
the second binding problem, in male mice, there is ipsilateral left hemisphere color
memory combinatorial computation. On the other hand, in female mice, the process
of segregation of colors occurred by subcortical long-term potentiation in the dorsal
stream in the right visual cortex. The second binding problem of combinatorial
computation occurred through synchronous activation by subcortical long-term
potentiation and frequency differencing in the left visual cortex. In male mice, there
is a distinct spatial separation of luminance and chromatic signal processing in
different orthogonal axes (Figure 3B), with subcortico-cortical luminance axis, and
an orthogonal cortico-subcortical chromatic axis (Figure 3D), within the same
ipsilateral color space. On the other hand, in female mice, the color space appears
different, where luminance is completely independent outside the color space. The
chromatic axis for wavelength-differencing in the right visual cortex (Figure 3G)
runs in opposite direction to the chromatic axis for frequency-differencing in
the left visual cortex (Figure 3H), in female mice. Similar observations of
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reversed color space in female subjects compared to males have been made in
human studies [17].

In conclusion, Fourier time-series analysis was helpful to improve both spatial
and temporal resolution of fPET/MRI for study of color processing in the visual
system. Spatial resolution and temporal sequence underlies the perceptive and
memory processes. The present study demonstrated gender differential responses
to light and color stimuli that confirm the proposed light hypothesis for cerebral
asymmetry which posits that, there is a phenotypic neuroadaptation to the envi-
ronmental physical constraints of light, which leads to phenotypic evolution and
genetic variation of X-Y gene pairs that determined hemispheric asymmetry. The
main aim of the evolutionary trend is to optimize perception of the “whole” envi-
ronment by functional coupling of the genes for complementarity of brain hemi-
spheres within self, and between genders [16, 17]. There is potential for use of these
findings in animal models of memory deficits in brain degenerative diseases. The
application to the binding problem needs further exploration, moreover, it has
been proposed that the spatio-temporal synchronization of the iterative processes
culminate in phenomenal awareness [46]. The present work, by demonstrating the
potential of fPETS as a computational approach for studying the effects of color
processing of conscious experience, has a wide range of applications in several areas
including in neuroscience and artificial intelligence.
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