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Preface

The characterization of microscopic properties of materials over distances
comparable with, or smaller than, the nearest atoms’ separations and time-lapses
roughly matching “in-shell” rattling periods has become of critical relevance in
our society and has been the focus of intensive research, having both fundamental
and applicative aspects. From the experimental side, a relevant portion of these
studies is routinely carried out using large-scale X-ray of neutron facilities
research and relies on the use of sources, as well as more conventional X-ray
instrumentation.

Rather than providing a comprehensive overview of scientific opportunities offered
by this field of research, this book aims to give the reader a taste of a few novel
applications of two complementary scattering methods: high-resolution Inelastic
X-ray Scattering (IXS) and Powder Diffraction (XPD), respectively characterizing
dynamic (time-dependent) and static (structural) properties of materials at
mesoscopic scales.

In a scattering measurement, a beam of particles-waves impinges on a sample at
thermal equilibrium exchanging with it both energy and momentum, and being, as
a result, scattered in all directions. If the perturbation induced on the target sample
is weak, the dependence of the scattered beam intensity on the energy and
momentum exchanged is uniquely informative of equilibrium properties of the
sample. When the beam’s particles involved are X-rays, such a scattering intensity
ultimately conveys information on the positions and the movements of the target
sample’s molecules.

Conceptually, a scattering instrument resembles a microscope pointed on either the
structure or the dynamics of the target sample. Indeed, it can be zoomed in or out to
focus on various distances and time-lapses by a suitable variation of momentum and
energy transfers, respectively. Since the latter variables both increase upon
decreasing the incident beam wavelength, the use of short wavelength radiation, as
X-rays, can shed light phenomena occurring over extremely short distances and
timescales.

It is customary to distinguish between diffraction and inelastic scattering methods:
the first elucidates static properties of materials through the scanning of the
exchanged momentum, while the second offers the additional option of varying the
frequency, as required to investigate dynamic phenomena.

As mentioned, this book mainly deals with two specific examples of inelastic scat-
tering and a diffraction technique (IXS and XPD) and its chapters are organized as
follows.



The first, introductory chapter outlines relevant analytical steps toward a formal
expression of the IXS cross-section, eventually demonstrating its direct link with
spontaneous density fluctuations in fluids at equilibrium. It also provides an esti-
mate of the count rate achievable in typical IXS measurements, succinctly compar-
ing the outcome of an IXS measurement with a similar determination achieved by
the complementary terahertz technique, Inelastic Neutron Scattering (INS).

Even from this introductory chapter, it readily appears that the IXS signal from
disordered materials has a nearly structureless shape, whose interpretation is often
hampered by a limited energy resolution and count statistics accuracy. Not uncom-
monly, these inherent difficulties are overlooked when analyzing the measured
lineshape, while assuming overly invasive and inherently biased hypotheses on the
analytical form of such a profile. Furthermore, these models are sometimes arbi-
trary or contain an unreasonably large number of free parameters. This course of
events makes especially critical the need for a probabilistically grounded modeling
of the lineshape. A substantial improvement can be achieved by implementing
Bayesian inference methods, as discussed in Chapter 2. This chapter shows how
Bayesian inference principles can be used to perform hypothesis tests involving
competitive lineshape models. This approach inherently embodies, as a selection
criterion, the “Occam razor” principle, which states that, among alternative expla-
nations of some evidence, the one containing less adjustable parameters is always

preferable.

Overall, the chapter illustrates the benefits of this approach for the interpretation of
both frequency and time-resolved scattering results. This inherent versatility is of
special value for IXS, which can also be implemented as time-domain spectroscopy,
as discussed in Chapter 3. This chapter deals with the representation of IXS results in
the direct (space-time) domain, rather than in the more conventional reciprocal
(frequency-wave vector) one. Specifically, it shows how this representation makes
the interpretation of results more straightforward. Chapter 4 illustrates the potenti-
alities of ultra-high-resolution quasi-elastic Méssbauer gamma-ray spectroscopy with
energy resolution in the neV-window. This unique performance enables the study of
the microscopic dynamics over timescales included between nanoseconds and micro-
seconds. Results can be obtained either in the time or the energy domain using either
a time-domain interferometer or a nuclear Bragg monochromator, respectively.

As mentioned, the second technique dealt with in this book is the X-Ray Powder
Diffraction (XPD), presented in Chapters 5 and 6. These chapters focus on the
characterization of manufacturing materials using conventional X-ray laboratory
instruments. Chapter 5 explores the XPD from steels to identify and quantify the
phases, using the Rietveld method, a method potentially applicable in industrial
environments. Chapter 6 illustrates in situ XPD results, aiming at studying the
formations of secondary phases in titanium composite materials under the influence
of the fabrication parameters.

XIvV



In summary, we believe that this book is a useful reference for those who want to
use these techniques to improve the current knowledge of microscopic properties of

materials.
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Chapter 1

High-Resolution Inelastic X-Ray
Scattering: A Probe of Microscopic
Density Fluctuations in Simple

Fluids

Alessandro Cunsolo

Abstract

The explicit form of the inelastic X-ray scattering, IXS, cross-section is derived
within a time-dependent perturbative treatment of the scattering process. In this
derivation, the double differential cross-section is obtained from the Fermi Golden
Rule within a plane wave expansion of the vector potential. Furthermore, it is
assumed throughout that the Thompson term of the perturbative Hamiltonian
yields the overwhelming contribution to the scattering. The achievement of an
explicit form for the double differential scattering cross-section rests on the validity
of the adiabatic or Born-Oppenheimer approximation. As a result, it is here shown
that that the IXS double differential cross-section is proportional to the spectrum of
density fluctuations of the sample, which is thus the sample variable directly
accessed by IXS measurements. Although the whole treatment is valid for
monatomic systems only, under suitable approximations, it can be extended to
molecular systems.

Keywords: inelastic X-ray scattering, theory of the scattering,
theory of the line-shape, double differential scattering cross-section

1. Introduction

Inelastic scattering measurements are among the most powerful tools to investi-
gate the collective terahertz dynamics of disordered systems [1, 2]. Although this
subject has been the focus of intense scrutiny in the past few decades, it still pre-
sents many challenging aspects. In a spectroscopic measurement, the dynamic
response of the target system is stimulated via the exchange of an energy #® and
momentum #Q where # is the reduced Planck’s constant. A suitable choice of the
exchanged wavevector amplitude Q = |Q| and @ enables to tune the probe to
dynamic events occurring over different scales. For infinitesimal Q and w values,
the measurement probes slowly decaying, hydrodynamic, density fluctuation
modes either propagating or diffusing throughout the system, which resembles a
continuous and homogeneous medium [3]. Upon increasing Q’s and «’, probed
dynamic events become gradually faster and involve fewer atoms until the extreme,
single-particle limit is reached. In this limit, the probe couples with the free recoil of
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the single atom after the collision with the photon and before any interaction with
the first neighboring atomic cage [4].

Although the spectral profile is exactly known analytically in both hydrody-
namic and single-particle limits, its evolution at the crossover in between them still
eludes a firm understanding. Particularly insightful appears the study of the line-
shape in the mesoscopic range, which corresponds to 22/Q and 2n/® values roughly
matching nearest neighbor separations and ‘in cage’ rattling periods of atoms,
respectively.

This range is the natural domain of high-resolution inelastic scattering, IXS [5], a
spectroscopic method, which, since its development towards the end of the past
millennium, has substantially improved the current understanding of the terahertz
dynamics of condensed matter systems. This success partly owes to both inherent
and practical advantages that this technique offers compared to the complementary
terahertz spectroscopy, inelastic neutron scattering, INS. Intrinsic benefits include
the virtual absence of kinematic limitations, the straightforward implementation of
constant-Q energy scans, a mostly coherent cross-section and an often negligible
multiple scattering contribution. More practical strengths are instead the substan-
tially higher photon fluxes impinging on the sample and the smaller transversal size
of the beam. However, these undoubted advantages can only be obtained at the cost
of substantial count rate penalties. Indeed, the investigation of the collective
dynamics in disordered systems imposes the access to energy transfer E =fiw as
low as a few meV. For IXS spectrometers, typically operated at 2.110* eV, resolving
those energies imposes a resolving power of AE/E < 107’. The achievement of
such a challenging performance has held back for long the development of
high-resolution IXS, which was only made possible by the advent of
high-brilliance third-generation synchrotron sources and by parallel advances in the
X-ray optics [6, 7].

As an introduction to the field, this chapter is devoted to a derivation of the
cross-section of IXS measurements, thus elucidating its direct connection with the
Fourier transform of the atomic density fluctuations autocorrelation function. A
similar treatment, which can also be found in Refs. [5, 8], is strictly valid for
monatomic systems only, even though it can be easily generalized to the case of
molecular systems.

2. Generalities on an inelastic scattering measurement

In a typical IXS measurement, a beam of particles-waves, as, for example,
neutrons, X-rays or electrons, having well-defined energy, wavevector and polari-
zation impinges on a sample and, after the impact, it is scattered all over the solid
angle. A detector placed at a distance » from the sample is used to count the particles
deviated by an angle 20 within the small solid angle AQ and intercepting its
sensitive area A = r*AQ. Along the whole flight from the source to the detector,
photons pass through optical elements filtering their energy both upstream and
downstream of the sample, respectively referred to as monochromators and
analysers. Other devices, such as collimators, mirrors, compound reflective lenses
and so forth, are commonly used to shape the particle beam as required by experi-
mental needs, and, specifically, they define its angular divergence and, whenever
needed, its polarization.

At a long distance from the centre of the scattering, the electromagnetic wave
generated by the scattering event is the sum of a plane and a spherical wave [9], that
is, waves having respectively a planar and a spherical wavefront. In other terms, the
ultimate effect of the scattering source is to remove a part of the photons from their
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initial ‘plane wave’state and reradiate them into a spherical wave, which is
consistent with well-known Huygens-Fresnel principle [10]. However, it is always
safe to assume that the detector—which intercepts photons deviated by an angle
20—has sensitive area A = r*AQ small enough to safely approximate the spherical
wave impinging on it as a plane wave. As a consequence, the scattering event
probed in a real experiment can be portrayed as a transition of the photon states
between two different plane waves, as schematically shown in Figure 2. These are
characterized by well-defined wavevector k; ;s energy, o,y and polarization &z,
with the indices %’ and ‘f labelling the initial and final values, that is, the values
before and after the scattering, respectively. Here all vector variables are indicated
in bold.

As it appears from Figure 1, if one considers the plane defined by the two
vectors k; and k > only one angular coordinate, the scattering angle 20, is sufficient
to describe the scattering problem.

To derive an expression of the intensity detected in high-resolution IXS mea-
surements, it is useful to recognize that these measurements are typically executed
in transmission geometry, that is, by detecting the scattering signal downstream of
the sample."

For the sake of simplicity, a few more assumptions are here considered: (1) the
sample has a straightforward shape: a slab of thickness z;; (2) such a slab is crossed
by the incident beam orthogonally to its front area; (3) the beam cross-section Xp is
constant throughout the sample thickness, which implies that we are discarding the
focusing of the incident beam; and (4) finally, for most IXS measurements, one can
further assume that the beam only illuminates a limited portion of the whole cross-
sectional area of the sample. However, the detector has a sensitive area sufficiently

Plane wave

Figure 1.
A schematic rendering of the scattering process and the plane wave approximation (see text).

" For simple sample shapes, the treatment can be easily extended to the case of finite scattering angle by

using simple trigonometry.
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small, and a distance from the sample sufficiently large, that the scattered radiation
impinging on it is schematizable as a plane wave, having wavevector k; and
wavefront perpendicular to it.

Under these assumptions, we can write a general expression to estimate the
number of photons per unit time impinging on the detector, which is given by:

2

Tocdn,Spt, [ 22
s B‘(aQaEf

c )AQdEf, €y

where @ is the photon flux on the sample, defined as the number of photons
impinging on the sample per unit time and unit area, while 7, is the number of
scattering units per unit volume, which is here assumed constant throughout the
X-ray-illuminated sample.

The above formula introduces the double differential scattering cross-section:

Rate of photons scattered into d€2 with

d*c final energy between Ef and E¢ + dEf

dQdE; ®dQ dE; @)

which is the only parameter of Eq. (1) conveying non-trivial information on the
sample properties.

It can be recognized that the beam intensity across the sample thickness is not
constant, as a part of it gets absorbed by the sample itself. This intensity reduction
can be easily evaluated by expressing the attenuation caused by an elemental sample
slice of thickness dx and located at a distance x. This intensity loss reads as:

dl =I(x +dx) — I(x) = —Iudx, 3

where y is the absorption coefficient at the energy of the incident beam. The
integration of both members of the above equation leads to the conclusion that the
intensity transmitted through the sample experiences an exponential decay.
Assuming a forward scattering geometry, the attenuation factor can be simply
obtained as exp (—ut;) and inserted in Eq. (1), thus obtaining:

2

I = &n,Zpt exp (—/lf;)( ° )AQdEfA (4)

0Q0E

The above formula lends itself to a direct estimate of the ideal sample thickness,
which is identified by the dI/dt; = 0 condition, which yields z, = 1/u. In summary,
the optimal sample thickness should match the absorption length of the sample at
the energy of the incident beam. For typical incident beam energies of most
current IXS spectrometers, and for sample atomic species having electron number
Z > 4, the extinction of the incident intensity is primarily caused by the photo-
electric absorption process, which dominates over the Thomson scattering. The
photoabsorption length typically decreases upon increasing Z, and this implies that
IXS measurements on low Z materials require the use of relatively large samples,
with a thickness in the ¢ range. However, this requirement becomes prohibitive
for samples available in a small amount or that must be embedded in small
volumes, as is typically the case of high-pressure experiments in Diamond Anvil
Cells, DACs.



High-Resolution Inelastic X-Ray Scattering: A Probe of Microscopic Density Fluctuations...
DOI: http://dx.doi.org/10.5772/intechopen.93086

3. The interaction between impinging electromagnetic field and target
electrons

Given this preliminary discussion, the focus is now on the analytical derivation
of the IXS double differential cross-section d”c/d<2dE . An explicit analytical form
requires, in the first place, a suitable expression for the Hamiltonian describing the
interaction between the impinging photon beam and the electrons of the target
sample. If one discards the relativistic nature of electron movements and neglects
the usually weak contribution from the electron spin, such a Hamiltonian has the
following form [5]:

{pi - gA(ri)} ’ + ZV(V,‘) + ViS5, (5)

i

where 7; and p, are the position and the momentum of the ith electron, respec-
tively, V% ¢ is the electron—electron interaction potential averaged over the electron
clouds of target atoms, while V(#;) is the potential acting on the ith electron. The

above Hamiltonian can be cast in the following perturbative form:
H=Hg+HY+H?, (6)

where the unperturbed Hamiltonian, associated with the multielectron system in
the absence of the electromagnetic field, reads as:

2
Ha=Y LJI”V[ + V(ri)] + Ve, )

i e

plus the other two terms accounting for the perturbation induced by the
impinging electromagnetic field, that is, respectively:

—€

H{) = MZ{A(W)’E} (8)

and the so-called Thomson scattering term:
1
2
Hl(n'z = EV()ZA(V,) A(Vl) (9)

Here the symbol {, } denotes the anticommutator operator, while rq = ¢*/(M,c?)
is the classical electron radius expressed in cgs units. To its leading order, the
perturbation H 1(312 in Eq. (8) describes one-photon interactions with the sample as
absorption and emission, while two-photon processes, such as the scattering event,
come into play to the second-order only. Conversely, the Thomson term (Eq. (9)),
being quadratic in the vector potential, accounts to the first order for two photons
interactions such as the scattering event. Away from an energy resonance, the latter
term largely exceeds the second-order expansion of Eq. (8), thus providing an
overwhelming contribution to the scattering process, which will be hereafter
assumed to be entirely described by the Thomson term.

As mentioned, in a typical scattering measurement, the X-ray photons undergo a
transition between two different plane wave states. Therefore, one could, in princi-
ple, use the Fermi Golden Rule [11] to count all scattered photons emanating from a
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single incident plane wave and having wavevector pointing to a 26 direction to
within a solid angle AQ, thus deriving the double differential cross-section
explicitly.

This strategy would require, in principle, a proper normalization of the photon
wave functions, but, unfortunately, plane waves have normalization integral diverg-
ing for long distances. This difficulty is usually circumvented by confining the
description of the scattering problem to a cubic box of size L and eventually consid-
ering the limit for large L. Within this L-sized cubic box, the vector potential becomes
a linear combination of normalized plane waves which explicitly reads as [5]:

Alr) =" (T) Ca| k.0 exp (i - 7) + a , exp (~ik - 7)]. (10)
W, ’

Here the indexes ‘%’ and ‘o’ label, respectively, the wavevector and the polariza-

tion states of the wave; a;, and its Hermitian conjugate ] , are the annihilation and

creation operators, respectively; ¢ is the speed of light in vacuum and wy, is its
angular frequency. Notice that the plus and minus signs in the phases of the
exponential terms of Eq. (10) respectively define the upstream and downstream
propagation of the photon plane wave.

Coming back to the double differential scattering cross-section, one can express
it as:

d*c _dpiﬂfl d*n
dQdE;  dr ®dQdEf’

(11)

where dP;_ /dt is the probability rate per sample and probe units that a photon
experiences a transition between the initial and the final photon states, while the
term d’n/dQdE ¢ represents the density of final photon states. The probability rate
in Eq. (11) should be more appropriately written as a sum over all elementary
excitations in the sample possibly coupling with the scattering event. Hence,

dPiy _
ar

Z APr; .pfp (12)
~ dt

with P; s denoting the probability of a transition |I,i) — |F,f) between the
combined states of the photon and the sample, labeled by lower case and capital
fonts, respectively.

Eq. (12) is particularly useful as the term under summation can be derived
explicitly using the Fermi Golden Rule, according to which:

dP i—F, 271' dzn )

The last factor in the right-hand side of the above equation contains the
perturbative part of the Hamiltonian computed between initial and final combined
photon and sample states. As mentioned, we will assume that this term entirely
coincides with the Thomson term in Eq. (9).

At this stage, the derivation of the double differential cross-section requires one

to tackle the density of final states d*n/dQdE ¢ analytically, as discussed in the next
paragraph.
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4. Counting the photon states

It is worth noticing that the expedient of circumscribing the scattering within a
L-sized cubic box, besides enabling a proper normalization of the plane waves,
makes more straightforward the counting of the final state photon modes [11]. The
number of plane waves with energy included between E¢ and E¢ + dE¢ and
pointing to a direction 26 within a solid angle AQ2 is given by:

d*n

In the reciprocal space, the bandwidth dE corresponds to the volume 4V (kr) of
the spherical shell of infinitesimal thickness represented in Figure 2, for which one
can write dV (ks) = d.Qk?dk . The wavevectors’ components in the box L
representing the boundary of our scattering problem are:

ke = (2z/L)ne ky = 2z/L)n, ke = (27/L)ns, (15)

where 7y, 7, and 7, are generic integers.

The set of wavevectors defined in Eq. (15) identifies a lattice in k-space, whose
simplest self-replicating unit cell has a volume Vi, = (27/L)>. If this volume is
small enough—or, equivalently, if L is large enough—the number of lattice points
within the elemental volume is given by the ratio dV(k f) /Vmin (Figure 2).

S

Figure 2.
The elemental volumes in the reciprocal space. Here the cube enclosing a lattice point vepresents the unit cell of
size Vipin = (27/L)3 (see text).
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Therefore, one has

_d'n_ dEa0 =12 (L 3dk aQ (16)
dQdE; )7 T M2 ) T

For photons, the link between energy and wavevector is fixed by the linear law
Ey = fhck s, which can be differentiated to obtain dE ¢ = hcdk , thus eventually getting

d*n k} L\?
Therefore,
2 3 k2
dn L° Ry (18)

dQdE; ~ 8a2 e’
which, combined with Eq. (11), yields

do  LPkpdPg
dQdE; ~ 8n*hc dt

(19)

At this stage, the interaction term, that is, the squared matrix element appearing
in the Fermi Golden Rule (Eq. (13)), can be made explicit by inserting in it the
Thomson term in Eq. (9), while using the expression of the vector potential in
Eq. (10), thus eventually obtaining

> (Flexp (—iQ - R;)|I)(I|exp (iQ - R,,)|F), (20)
jm

where the vector R; is the position of the jth atom. The above formula embodies
the momentum conservation law as it was derived assuming the identity 7Q =
h (k = ki). Furthermore, when using Eq. (10), it was considered that w(k) is equal to
ck; and cky in the initial and the final photon states, respectively. Combining all

analytical steps illustrated above, one eventually obtains the following expression for
the double differential cross-section:

2
lia k
° 2t (& -2f)" x > Pi[(F> exp (iQ - R;)|I)| 8(hw + Er — Ey).  (21)
F,I j

0Q0E;  Ok;

Here, fiw is the energy gained by the photons in the scattering process, while the
5-function term accounts for the energy conservation in the scattering process, as it
ensures that Aw = —(Er — Ej) with Er — E; being the energy gained by the sample.
Notice that the cross-section defined above entails a sum over all states of the
system, where the factor P; represents the statistical population of the initial states
of the sample.

5. From the adiabatic approximation to the dynamic structure factor

The right-hand side of Eq. (21) contains three independent factors, the integral
term being the only one directly relating to the properties of the target sample. The
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latter can hardly be handled analytically, due to the complex interplay between
electrons belonging to different atoms, which couples electronic and nuclear coor-
dinates. However, it becomes treatable under the reasonable approximation that the
centre of mass of the electronic cloud drifts following with no delay the slow
nuclear motion. This assumption is customarily referred to as ‘adiabatic’, or Born-
Oppenheimer, approximation [11]; its use justifies the factorization of the target
system ‘ket’ as |S) = |S,)|S,), with nuclear and electronic states being labeled by the
suffixes #’ and ‘e’ respectively. The accuracy of this assumption ultimately owes to
the substantially different nuclear and electronic masses and the correspondingly
different timescales defining their dynamics. It holds validity when the energy
exchange is smaller than all excitation energies of electrons in bound core states,
which includes all cases of practical interest for this book. With |S,) being unaf-
fected by the scattering process, the difference between the initial |I) = |I,,)|I,) and
the final |F) = |F,)|F,) states of the sample is uniquely due to excitations associated
with atomic density fluctuations.

Within the validity of these assumptions, the double differential cross-section in
Eq. (18) reduces to

2
()20' kf N2 )
0Q0E; 6% (@ 2r) Fnz,;npfn <F"|;fj(Q)exP (1Q R))|L)| x 8(ha + Ep, — Er,),

(22)

where E;, and Ey, are the energies associated with the initial and final nuclear
states respectively, and

A
F1(Q)=(F| Y exp (iQ-7])IL) (23)

a=1

is the form factor of the jth atom. Here 7! is the coordinate of the ath electron in
the centre of mass frame of the jth atom, while |I,) coincides with the ground state
of the electronic wave function of a given atomic nucleus. In practice, f(Q) can be
approximated by the value calculated for a free atom, that is, in the perfect gas
phase, as the electronic cloud distribution is essentially unchanged upon phase
transition. The primary contribution to this factor comes from core electrons whose
orbits are more tightly bound to the much more massive atomic nucleus.

If a single atomic species is present in the sample, all atoms have the same form
factor, that is, f,(Q) = f(Q); this further simplifies the expression of the double

differential cross-section

2

0 RN Py (Y exp (1Q Ry 8l + B, —E)  (24)
o, m

0Q0E;

where K = 1352 (& - &7)’| f(Q).

The above expression can be cast in a more compact form after the few addi-
tional manipulations as the use of an integral representation of the §-function of
energy, the Heisenberg representation of a time-dependent operator and the com-
pleteness of the final eigenstate.

In its initial state, the sample is usually a many-atoms system at equilibrium, and
the sum over its initial state can be computed as an ordinary equilibrium average,
which leads to the following identity:

11
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> Py, (L] exp [~iQ - R (0)] exp [iQ - R;(t)]|I,) = Z<exp —iQ - R,(0)] exp [iQ - R;(t)]),

k.j
(25)

where as usual, the angle brackets ( ... ) denote the thermal average on the system
at equilibrium. The expression above is the time correlation function of the variable
> jexp [—iQ - R(¢)], which involves the pair composed by the jth and kth atoms. The

physical meaning of this variable will be discussed in the next section in further detail.
In summary, as a result of all manipulations mentioned above, the double
differential cross-section in Eq. (24) eventually reduces to

oo K (= N N
OQOE; mjwd“;; exp {iQ - [R;(t) — Ri| }) exp (—iat) (26)

where Ry, is the shorthand notation for R, (0).

6. Introducing a key stochastic variable: the microscopic density
fluctuation

The expression between angle brackets is the equilibrium autocorrelation func-
tion of the dynamic variable #(Q, ) = >_; exp [iQ - R;(t)], which involves the posi-
tions of the generic kth and kth atom pair, that is, Ry (t) and R;(0) respectively,
evaluated at different times. The variable #(Q, ) is the Fourier transform of the
microscopic number density of the system, which, for a system of N atoms is
defined as:

N
n(r,t) =Y 8[r—R;()]. (27)
j=1

The interpretation of this function as a microscopic density is perhaps more
evident as one considers its average value over the whole sample volume:

n _1/VJ drn(r, )_1/VJ er& r—Ri(t)] =N/V, (28)

\%4 j=1

which is consistent with the macroscopic definition of number density. Notice
that the 6-function is an extremely irregular discontinuous profile, which however
adequately accounts for the atomistic, character of the system.

In the reciprocal space, one deals with the Fourier transform of the microscopic
density, namely

N

n(Q, J dr{Zé r—R }exp (iQ -r) = Z exp [iQ-Rj(r)].  (29)

j=1

Furthermore, since scattering phenomena arise from inhomogeneities or fluctu-
ation from equilibrium, we are here mainly interested in the microscopic density
fluctuation:

N
=S 6lr—R;0)] -, (30)

j=1
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Again, the variable of direct pertinence for a spectroscopic measurement is
instead the Fourier transform of such a fluctuation:

N
=Y exp [iQ - R;(1)] — n5(Q); (31)
j=1
in which it was considered that the Fourier transform of a constant function is a
5-function.

We can now introduce the intermediate scattering function as the space Fourier
transform of the correlation function between density fluctuations:

FQ,1) = %Jvdr(én(r, H)on(r, 0)) exp (iQ - 7) (32)

and its one-sided time Fourier transform

S(Q,w) = zlh[ dtF(Q,t) exp (—ia), (33)

which is customarily referred to as the spectrum of density fluctuations, or the
dynamic structure factor of the system.

7. The double differential cross-section and the dynamic structure
factor

Given the dynamic variables introduced in the previous section, it can be readily
verified that Eq. (26) can be cast in the more compact form:

Ao Vz kf 2
d.QdEf:Nh (k )(81 ‘Sf) | f(Q)I'S:(Q, w), (34)
where
1 .
Sx(Q,w) = mJ dt(n(Q,0)n(Q,t))exp (—iwt) (35)

is the spectrum associated with the dynamic variable #(Q, ). Notice that for a
homogeneous and isotropic system such as a liquid, such a variable does not
depend on the direction of the exchanged wavevector, but uniquely on its
amplitude Q = |Q].

Let us discuss here how the spectrum in Eq. (35) relates to the variable density
fluctuations as defined by Eq. (30). By definition, the spectrum of such a variable is
the Fourier transform of the autocorrelation function. Explicitly

Sén (Q’ )

> hNJ dat(on(Q,t)on(Q, 0)) exp (—iwt)
1

— | QOn(Q 0 exp (o) + Co)Q), (36

with C = n?/AN. At this stage, one can define the spectrum of the microscopic
density as

13
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54(Q, ) = S51(Q, @) +n*5(0)3(Q). (37)

It appears that the spectra of either #(Q,¢) or n(Q,t), which are labeled by
the respective indexes # and én, differ by a term proportional to the product
5(@)5(Q).

This term accounts for the forward transmitted elastic scattering, which is of no
relevance for a scattering experiment as it describes the signal from photons that
have exchanged no energy or momentum with the target sample.

In practice, such a signal is never detected by scattering measurements, as it does
not convey insight into non-trivial samples properties; furthermore, it fully over-
laps with the forward transmitted beam, which is often so intense to burn or
damage detectors. For these reasons, IXS measurements are always performed at
finite scattering angles, where one has

S" (Q’ w) = S&’l (Q’ 0)) = S(Q’ w)’ (38)
with
1 [+
S(Q, ) = HJ, dt(n(Q, 0)5n(Q, 1)) exp (—iaot), (39)

As discussed, the identity above entails the replacement of the microscopic
density #(Q, t) with its fluctuation from equilibrium 67(Q, )
d’c
dQdE;

= KS(Q, w), (40)

where K = N(r3 /) (ks /ki) (& - 27)°| F(Q)[*

This expression of the cross-section above has been derived assuming a target
sample composed by N identical atoms and within the Born-Oppenheimer
approximation. When different atomic species are present in the sample, within the
validity of the Born-Oppenheimer approximation, the derivation of the scattering
cross-section is similar, provided the system is isotropic, that is, invariant under
rotations, and a weak coupling exists between molecular rotations and centre of
mass movements. The ‘effective’ form factor, in this case, results from the average
value of the form factors of different atoms in the molecule. The general case, of a
system composed of molecules with a pronounced anisotropy, that is, a markedly
non-spherical shape, makes the computation of the cross-section slightly more
complicated.

A more detailed treatment of this problem within the hypothesis of random
molecular orientations and weak coupling between orientational and translational
degrees of freedom leads to the conclusion that the spectrum splits into a coherent
and an incoherent component. Consequently, the cross-section can be cast in the
following general form:

o
020w

= A{(F(Q))aSc(Q, @) + 5(F*(Q))aS1(Q, ) } (41)

where §(F(Q)*) = (F(Q)*)4 — (F(Q))%, where the suffix ‘@’ indicates an aver-
age over molecular orientations, while the suffixes ‘I’ and ‘C’ label the incoherent
and coherent parts of the dynamic structure factor.
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8. An estimate of the count rate

An estimate of the count rate achievable by an IXS measurement can be worked
out starting from the expression of the total scattering cross-section, while assum-
ing, for instance, a sample having an optimal thickness t; = 1/u. The flux of
scattered photons in the solid angle A£2 and the energy interval AEy is thus given by

. . n, dc

At this stage, both members of the equation can be integrated in time, and the
double integration over both solid angle and final energy must also be performed
to obtain the total cross-section of the IXS scattering. In the low Q limit, where

the atomic form factor f(Q) ~Z and that the approximation (ks /k;) (& - f)z =1,
one has:

N 2
N @ro)ms _oc (43)
Ny U o4

where 6¢c = (Zro)z, while 64 = n,/u is the absorption cross-section. An idea of
the counting efficiency of IXS is provided by Figure 3, which displays the value of
the o¢ /o4 ratio for an incident X-ray beam having 10 keV energy, as a function of
the atomic number. The abrupt increase of this parameter can be readily appreci-
ated at the absorption above the K-edge, that is, above the binding energy of the
innermost electron shell; these innermost electrons are those primarily interacting
with the incident X-ray.

8.1 The signal measured by a real instrument

As a result of the previous treatment, it was demonstrated that the cross-section
is proportional to S(Q, ). However, such a treatment is entirely classical, insofar as

0.11

Figure 3.
The cross-sections ratio defined in Eq. (45) is reported as a function of the atomic number Z, for a 10 keV energy
X-ray beam (courtesy of F. Sette).
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all relevant observables are treated as commuting variables. Quantum effects are
accounted for only through the so-called detailed balance principle, which takes
into account the statistical population of the various 7iw-states of the sample. These
effects ultimately result in an asymmetry of the spectrum respect to its elastic,

hw = 0, position. The most popular recipe for handling them is to assume that the
true spectrum S(Q, @) can be obtained from the classic, symmetric, counterpart
S(Q, w) by adding a suitable frequency-dependent factor. Explicitly,

_ fo 1
~ kpT |1 — exp (—hw/kpT)

5(Q, w) S(Q, ). (44)

Still, the above formula does not capture two essential aspects of the measured
scattering signal, as the contribution of the instrumental resolution and the spectral
background. These are explicitly accounted for by using the following general
expression for the intensity profile:

I=1(Q,») = A[S(Q,w) ®R(w)] + B(w) (45)

where A is an overall intensity factor, while the usually mildly frequency-
dependent coefficient B(w) accounts in principle for both the spectral background

S(Q.0)/'S(Q) (arbit. units)

Figure 4.

The spectral line-shapes measured by IXS (black line) and INS (shadowed blue line) on a D,0 sample at
ambient conditions. The spectra are veported after vescaling to the vespective integrated intensities. Data are
redrawn from vef. notice the remarkable difference in the explored w-range. Data are redvawn from Ref. [13].
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and the dark counts of a detector; when modeling the line-shape, sometimes the
latter coefficient is assumed either constant or linearly dependent on w.

The resolution profile represents the instrumental rendering of a spectral shape
having zero energy width, that is, the 8(w)—profile representing a perfectly elastic
scattering. In a typical IXS measurement, such a resolution is estimated by measur-
ing the scattering signal from an almost perfect elastic scatterer, often identified in a
sample of plexiglas at the Q-position of the first sharp diffraction peak.

8.2 A practical example: a comparison between an IXS and an INS
measurement

In general, the kinematic laws ruling the scattering process impose some limita-
tions to the dynamic Q,w region explorable by the measurement. These kinematic
constraints are especially severe for inelastic neutron scattering, INS [2]. Although
these limitations are irrelevant for IXS, the portion of the dynamic plane explored
by this technique is still limited in the low-energy, or low-frequency, side by the
finite instrumental energy resolution.

Figure 4 provides a clear example of how resolution and kinematic limitations
differently affect IXS and INS. Indeed, the plot compares the spectra measured in a
joint INS and IXS measurement on the same sample of heavy water [12], after
normalization of the respective areas. The elastic peak in the INS spectrum has a
spike-like shape. Such a sharp shape could be measured thanks to the 0.08 meV
broad Gaussian resolution function. Which enables a superior definition of the
spectral shape. However, this performance imposes an overall shrinkage of the
spanned frequency range, which does not include the high-frequency shoulder in
the IXS spectrum. On the other hand, the resolution of the IXS measurement is too
coarse to enable a proper definition of the quasielastic portion of the scattering
profile.

9. Conclusion

In conclusion, we illustrated the main analytical steps leading to a derivation of
the inelastic X-ray scattering, IXS signal, and demonstrated its direct link with the
terahertz spectrum of atomic density fluctuations.

Since its development in the mid-1990s, high-resolution IXS has rapidly
transitioned to its mature age, nowadays representing an essential tool to charac-
terize the terahertz dynamics of liquid and amorphous materials. Historically, the
mainstream scientific interest of the IXS community was mostly limited to simple
fluids and glass-forming materials. In recent years, such a focus has gradually
shifted towards nanostructured metamaterials and biological systems. Since the
high complexity of these systems often challenges a firm understanding of the
measurement outcome, a firm theoretical modeling of the IXS signal from these
highly heterogeneous systems would be highly beneficial.
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Chapter 2

Bayesian Approach for X-Ray and
Neutron Scattering Spectroscopy

Alessio De Francesco, Alessandro Cunsolo and Luisa Scaccia

Abstract

The rapidly improving performance of inelastic scattering instruments has
prompted tremendous advances in our knowledge of the high-frequency dynamics
of disordered systems, yet also imposing new demands to the data analysis and
interpretation. This ongoing effort is likely to reach soon an impasse, unless new
protocols are developed in the data modeling. This need stems from the increasingly
detailed information sought for in typical line shape measurements, which often
touches or crosses the boundaries imposed by the limited experimental accuracy.
Given this scenario, the risk of a bias and an over-parametrized data modeling
represents a concrete threat for further advances in the field. Being aware of the
severity of the problem, we illustrate here the new hopes brought in this area by
Bayesian inference methods. Making reference to recent literature results, we dem-
onstrate the superior ability of these methods in providing a probabilistic and
evidence-based modeling of experimental data. Most importantly, this approach
can enable hypothesis test involving competitive line shape models and is intrinsi-
cally equipped with natural antidotes against the risk of over-parametrization as it
naturally enforces the Occam maximum parsimony principle, which favors intrin-
sically simple models over overly complex ones.

Keywords: inelastic X-ray scattering, inelastic neutron scattering, Bayes analysis,
MCMC methods, model choice

1. Introduction

In the last decade, a large amount of inelastic neutron and X-ray scattering
measurements focused on the study of the collective atomic dynamics of disordered
system [1-5]. Although, across the years, the analysis of the line shape reported in
these measurements seldom benefited from the support of a Bayesian inference
analysis, the need of this statistical tool is becoming increasingly urgent. As a
general premise, it is worth stressing that a scattering measurement somehow
resembles a microscope pointed on the dynamics, whose “focus” can be adjusted by
suitable choice of the momentum #Q and the energy E = ho exchanged between
the particle beam and the target sample in the scattering event, where 7 is the
reduced Planck constant, Q is the wave vector transfer, and o is the angular
frequency. Specifically, upon increasing Q the probe “perceives” the response of the
system as an average over smaller and smaller distances ~2z/Q and over times
~2r/w including a decreasing number of elementary microscopic events, e.g.,
mutual interatomic collisions. The observable accessed by these spectroscopic
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methods is the spectrum associated to density fluctuations, either spontaneous or
scattering induced. When quasi-macroscopic distances are probed, i.e., in the Q — 0
limit, the detail of atomic structure is lost, and the target sample is perceived as a
continuum medium, whose dynamic behavior is recorded as an average over many
elementary events [6]. Being the mass conserved over macroscopic scales, at these
distances the liquid density tends to become a constant of motion, i.e., a time-
invariant. For this reason, quasi-macroscopic density fluctuations relax very slowly to
equilibrium, and collective density oscillations are correspondingly very long-living.
The typical spectral signature of this so-called hydrodynamic behavior is a very sharp
triplet reflecting the quasi-conserved nature of hydrodynamic density fluctuations. A
striking example of such sharp triplet shape is provided in panel A of Figure 1, where
the low — (Q, w) spectrum on liquid argon at the triple point is reported as measured
by Brillouin visible light scattering (BVLS) [7].

One could guess that such a sharp spectral shape does not leave any room for
interpretative doubts, also considering that the limiting hydrodynamic spectral
profile is exactly known as analytically treatable starting from the application of
mass, momentum, and energy conservation laws. Although these statements appear
partly true, the very concept of “interpretative doubt” sounds grossly ill-defined
before spelling out explicitly the accuracy required to the interpretation one alludes
to. Despite its pioneering nature, the quality of the measurements in panel A seems
certainly adequate for a precise determination of the side-peak position, probably
not much so for a detailed analysis of the spectral tails, which are dominated by the
slowly decaying resolution wings. Nonetheless such a shape might still appear a
more encouraging candidate for a line shape analysis than its counterpart reported
in panel B of Figure 1 which is featured by broad and loosely resolved spectral
features, besides a definitely poorer count statistics. Given that the latter result is
fairly prototypical of terahertz spectroscopic measurements on simple disordered
systems, one might wonder why, thus far, the analysis of these measurements failed
to benefit from Bayesian inference methods as routine line shape analysis tools.
Aside of hardly justifiable initial mistrusts, a likely explanation is that only recently
these spectroscopic techniques transitioned to a mature age in which the very
detection of collective modes in amorphous systems can no longer be considered a
discovery in itself, and detailed analyses of the spectral shape are more and more
common and required. Again, the take-on message of this course of events is that
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Figure 1.

Panel A: The Brillouin light scattering spectral intensity, 1(Q, E), measured in liquid argon at the triple point,
redrawn from Ref. [7]. Panel B: The inelastic X-ray scattering spectrum of another noble gas: neon at ambient
temperature and 0.3 GPa pressure [8]. Spectral profiles ave normalized to their maxima.
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the pivotal issue is the adequacy of a given measurement to provide the sought for
information, rather than the quality of the measurement in itself. The unbalance
between an unavoidably limited experimental performance and the rapidly
increasing interpretative needs dramatically enhances the risk of “good faith over-
interpretations” representing a lethal threat for the progress of knowledge.

Listen, the data talk! Every time we need to proceed with a data analysis, we
could be induced or even tempted, on the basis of our prior knowledge or intuition,
to somehow suggest the data what they should tell us about the properties of the
system we are investigating. Being driven by acquired knowledge is not necessarily
a wrong attitude, it is actually a natural demeanor which effectively drives the
cognitive process and the progress of knowledge. However it could become deceiv-
ing if we do not have well-consolidated insight about the system under investigation
and the observed data are not accurate enough or barely informative. In such cases,
in fact, it is highly probable that we just adapt a model to the data, which fits them
as well as many other possible models, with the only advantage to deliver results
and solutions we feel more at ease with, as they confirm our prior beliefs. This
model, of course, can be really plausible and reasonably pondered, and the solution
adopted can accidentally be the right one; however, it would be desirable a robust
method to quantify how much we can trust such a solution, either in itself or in
comparison with alternative ones. We surely want to avoid an aprioristic reliance in
a model, which might coerce data to confirm certain results preventing them from
providing new insights on the investigated system.

When dealing with neutron or X-ray scattering, the statistical accuracy of spec-
tral acquisition is the primary concern. For the most varied reasons, e.g., relating to
the scattering properties of the sample, the integration time, or the count rate of the
measurement, the achieved count statistics may either be adequate for a rigorous
data analysis or, as often happens, not as good as we would like it to be. In the latter
case, the experimental data might not be accurate enough to tell us everything
about the physical problem under scrutiny. They could tell us something, but not
everything! This is why we need a solid inferential method capable of extracting the
maximum amount of information from the data acquired and possibly providing us
with a quantitative probabilistic evaluation of the different models that are com-
patible with the data at hand. Especially when nothing or very little is known about
a specific sample or system, the point is, given the observed data, how plausible is a
specific model? What is the precision of the conclusions drawn from this model?
Are there other possible interpretations of the data at hand? To what extent are
different models and interpretations supported by the observed data?

A Bayesian inferential approach provides answers to all these questions on a
probabilistic basis, along with a sound criterion to integrate any prior knowledge in
the process of data analysis. Bayesian inference, in fact, recognizes the importance
of including prior knowledge in the analysis. When we do have well-established
prior knowledge about a sample property or a general law a physical phenomenon
must comply with, it would be insane and pointless not to use this information.
Such a prior knowledge, in fact, can protect us from the risk of making mistakes in
the description of experimental data, hence in their interpretation. In the Bayesian
framework, prior knowledge takes the form of probability statements so that dif-
ferent probabilities, ranging from zero to one, can be attributed to competitive
explanations of the data. In this way, less probable explanations are not excluded a
priori but simply given a smaller prior probability. The a priori probability of
different explanations is then updated, through the Bayes theorem, based on the
new information provided by the data. The results of this analysis, thus, assume the
form of posterior probabilities. On this basis, one can easily establish which model is
most supported by both data and prior knowledge, what are the posterior
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probabilities of alternative models and those of their parameters, and which pro-
vides a ground to appreciate the precision of their estimates. In addition, Bayesian
methods naturally embody the Occam’s razor principle, thus favoring simpler
models over unnecessarily complex ones. Last but not least, Bayesian estimation
algorithms are generally less affected by the presence of local optima in the param-
eter space and are not sensitive to the starting values used to initialize the estimation
process.

The aim of this chapter is to illustrate how Bayesian inference can be used in
X-ray and neutron scattering applications. The Bayesian approach proposed here is
implemented through an estimation algorithm, which makes use of Markov chains
Monte Carlo (MCMC) methods [9, 10] integrated, where appropriate, with a
reversible jump (R]) extension [11]. This Bayesian method has been already suc-
cessfully applied in a series of Brillouin inelastic neutron scattering works [12], as
well as inelastic X-ray scattering ones [13, 14] and, very recently, in the description
of the time correlation function decay in the time domain as measured by spin echo
neutron scattering [15, 16]. The rest of the work is organized as follows: Section 2
provides a motivating example; Section 3 revises the Bayes theorem and discusses
its different components, as well as some advantages inherent in the Bayesian
method; Section 4 applies the Bayesian inference to X-ray and neutron scattering
spectroscopy with special emphasis on model choice, parameter estimation, and
results interpretation.

2. An example: searching for differences

Depending on the problem at hand, our approach to data analysis can be very
different. Imagine that we want, as a toy or teaching example, to measure either the
neutron or the X-ray scattering spectrum from a system whose spectrum is well-
known and its interpretation unanimously agreed. For instance, we aim at
extracting the phonon dispersion curve from the thoroughly measured spectral
density S(Q, E) of a given sample. In our replica of past measurements, it is possible
that the proper discernment of the excitation lines is hampered by both the course
instrumental resolution and the limited statistical accuracy. The poor quality of data
could prevent us from easily identifying the spectral features (peaks, bumps,
shoulders), already measured and characterized by others. For instance, it could be
overly difficult to establish how many excitations are present in the spectra. Unless
we deliberately refute the conclusions previously reached by other scientists, it is
natural to enforce a line shape modeling well-established in the kinematic range
spanned and to verify ex post if the resulting spectral features are consistent with
those known from literature.

More often, we face a different problem, as we want to measure for the first time a
certain system on which we might not have previous knowledge. Alternatively, we
could have prior knowledge about that same system, yet in different thermodynamic
or environmental conditions— for instance, a liquid either in bulk or confinement
geometries—and possible effects of these peculiar conditions are under scrutiny.
Changes could also be very small, and, since detecting them is the focus of our
research, it is essential to take the most impartial and noninvasive approach. In this
second situation, it would be desirable not to rely too heavily on previous results when
choosing the model and to allow the measurement to reveal possible new features.

The two situations mentioned above notably differ in the amount of information
available on the system before analyzing the data. In the first case, we have a
complete knowledge of the system, while, in the second case, this knowledge is
partial or even lacking at all. In this second situation, a traditional approach would
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consist in either best fitting a model we deem adequate for the data, e.g., well-
assessed for the considered sample, albeit only in different thermodynamic or
environmental conditions, or fitting competing models to establish the one best
performing based on criteria agreed upon, e.g., the chi-square value. Following the
first path, we hinge too much on a specific model and on previous partial knowl-
edge, thus jeopardizing the chance of new findings. On the other hand, the second
path would be less coercive at the cost of completely ignoring previous partial
knowledge. In addition, the model chosen would be simply the one providing the
best fit, but no assessment can be made on the plausibility of this or any other fitting
model, based on the data measured. Conversely, a Bayesian approach to data anal-
ysis would, instead, allow to assign a different prior probability to the different
models (accounting for the uncertainty of available information on the system)
and, then, revise these probabilities in the light of the data to deliver the posterior
probability of each model, conditional on the data at hand.

3. Bayesian inference
3.1 The Bayes theorem

The Bayes theorem stems from the theorem of compound probability and from
the definition of conditional probability. If we consider two events A and B, the
compound probability theorem states that the probability of the two events occur-
ring simultaneously is given by:

P(A,B) = P(B|A)P(A) = P(A|B)P(B), 1)

where P(B|A) is the probability of observing B, once A has been observed.
Obviously, if A and B are independent, so that the occurrence of one of them does
not affect the probability of occurrence of the other one, the compound probability
theorem reduces to:

P(A,B) = P(A)P(B). (2)
From Eq. (1), we immediately get:

P(B|A)P(A)

P(AIB) = —F

(3

which is nothing else than the Bayes theorem.

Let us now consider A as the ensemble of the parameters of a certain model (or
class of models) we choose to describe experimental data. In a slightly different
notation, let this ensemble be denoted, from now on, as the vector ® =
(61,0, ..., 6,,), where each vector component 6,, is a parameter. Notice that a
component of ® might also be associated to a parameter that designates a particular
model among several proposed. Also, consider B as the entire set of experimental
data. Let us indicate this dataset with the vector y = (y,,, ...y, ), with n being the
sample size. In this new notation, the Bayes theorem reads obviously as:

(o) = “UE), @)

where P(®ly) is the posterior distribution of the parameters given the observed
data; P(0) is the prior distribution of the parameters before observing the data;
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P(y|0®) is the likelihood of the data, i.e., the probability of observing the data
conditional on a certain parameter vector; and P(y) is the marginal probability of
the data, which plays the role of normalizing constant so that Eq. (4) has a unit
integral over the variable ®. The different elements of Eq. (4) are thoroughly
discussed in the following sections.

3.2 The prior distribution

Let us consider the different elements of Eq. (4), starting with the prior distri-
bution (or simply prior) P(®). This is the distribution function elicited for the
parameters, given the information at our disposal before data collection. Using a
slightly more redundant notation, the prior can be explicitly denoted as P(O|I),
where I represents the a priori information. This prior probability includes all prior
knowledge (or lack of it) we might have, and it can be more or less informative
depending on the amount of information on the problem under investigation. Using
the same explicit notation, the Bayes formula in Eq. (4) can be rewritten as:

POy, I) = W. )

Just to make a few examples, it might be possible that a certain parameter 6
included in the model is known, or either already measured or somehow evaluated
independently, and its value is 8*. In this case, we can assume that the parameter
takes the specific value 6* with probability equal to one. Otherwise, if we want to be
less coercive, we can adopt for the parameter a Gaussian prior centered on * and
with a variance opportunely chosen to limit the parameter variability to a certain
interval around 6*. In this way, values closer to * will be given a higher a priori
probability.

In other situations, the information available on the parameters might be more
vague. For example, we might simply know that a certain parameter must be
nonnegative or that it must range in a limited interval, as often the case of neutron
scattering hampered by severe kinematic constraints. Nonnegative parameters can
be a priori assumed to follow, for example, a truncated Gaussian or a gamma
distribution, and, if no other information is available, the prior distribution will be
adjusted to make allowance for a large parameter variability, reflecting the
noninformative initial guess. Parameters having random or hardly quantifiable
variations within limited windows can be assumed to approximately follow a
uniform distribution over such a window. Also, whenever feasible, any mutual
entanglement between parameters, as well as any selection, conservation, or sum
rule, should be embodied in a usable distribution function complementing our prior
knowledge I in the cognitive process.

Notice that, even if it is common practice to assume that the parameters are a
priori independently distributed, correlation between them can be naturally
induced by the data, through the combination of the likelihood and the prior.
Parameters can be a posteriori correlated, even if they are a priori independent.

3.3 The likelihood function

The likelihood function is the joint probability of the observed data, conditional
on the model adopted and its parameter values. Notice that for continuous data, the
likelihood becomes a density of probability. Lety = (yy,%,, ...y, ) be a sample of
data. Each datum y, can be portrayed as a particular realization of a random variable
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Y; distributed as f(Y;; ©). In fact, if we had to collect data again, even under the
same experimental conditions, we would obtain a different sample of data. This
means that, before collecting data, the i-th result is to be considered a random
variable Y;. Once the data have been collected, y; is the particular realization
observed of the random variable Y;, and the sample y = (y;,%,, ...,,) is the
particular realization observed of the multiple random variable Y = (Y1, Y2, ... Y,),
whose components Y; are independent and identically distributed as f(Y;; ®). Then,
the joint (density of) probability of the observed data is the probability that, simul-
taneously, each variable Y; takes the value y, (or takes a value in the interval

iy + Ay,]), foriel, ..,n,ie,f(¥1,9, -7, ©). Given the independence of the
variables Y;, fori€1, ..., n, and using the compound probability theorem, we
obtain:

F01929,30) =f (13 0)f (30)f (1,5 ©). (6)

The left side of Eq. (6) is the likelihood function for the observed sample y =
V1Y ¥, which depends on the unknown parameter vector ©. If we condition on
a particular value of ®, we can compute the probability (or density) of the observed
sample, conditional on ®, i.e., P(y|®) in Eq. (3).

To be more specific, we can consider spectroscopic data. The observable directly
accessed by a spectroscopic measurement is the spectrum of the correlation
function of density fluctuation, or dynamic structure factor S(Q, E), which, in a
scattering experiment, is a unique function of the energy, E = fiw, and the momen-
tum, 7Q, exchanged between the probe particles and the target sample in the
scattering process. One has:

9 =S(Q,Ej) + &, 7)

where S(Q, E) is the model used for the dynamic structure factor, depending on a
vector of unknown parameters ©, and € = (&1, £, -+, &) is a vector of random errors,
here assumed to be independently and normally distributed, i.e., & ~ N (0, 6?), for
i€1l, .., n.Notice that assuming heteroscedastic errors, we are not imposing any
restriction other than normality on the error term. The heteroscedastic model embeds
the homoscedastic one, and since the parameters aiz are estimated from the data, it
might reduce to it if the data were compatible with the homoscedasticity constraint.

Under the assumption above, the likelihood function is:

n 1 _Lv,'—S,-<Q2,El->12 _sn 1tvl-—S<Q2,Ei>12
Pie) =[] e 7 —este Q
i1 \V/270]

Conditional on a certain value of the parameter vector ® (which might also
include the variance 67 of the error term), we can compute S(Q, E;) and, thus, P(y|®).

3.4 The posterior distribution and its normalizing constant

The term on the left-hand side of Eq. (3) is the joint posterior distribution of the
model parameters, given prior knowledge and measured data, i.e., after data collec-
tion. It incorporates both prior knowledge and the information conveyed by the
data, and Bayesian inference completely relies on it. In practice, prior knowledge
about the investigated problem is modified by the data evidence (through the
likelihood function) to provide the final posterior distribution (Figure 2). Estimates
for a single parameter 6, can be obtained by marginalizing, i.e., by integrating
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Figure 2.
Sketch of how the prior distribution and therefore our prior knowledge about a model parameter are changed by
the data evidence.

(summing) the posterior over all the other parameters to get P(6|y) =
f@,kP(Qb’)d@—k’ where ©_, is the whole parameter vector except 6;. Then, the mean

of P(6|y) is taken as a point estimate of 6}, while the square root of its variance
provides a measure of the estimation error. Also, the probability that the parameter
0. belongs to a certain interval can be inferred from its marginal posterior.

The term in the denominator of Eq. (3):

P(y) = JP(y|®)P(®)d® 9)

is generally called the marginal likelihood and represents the probability of
observing the measured data y,(i = 1, ---n), averaged over all possible values of the
model parameters. It represents the normalization constant for the posterior distri-
bution, and it is required in the evaluation of P(8|y). However, in most cases, P(y)
does not have a closed analytical expression, as its determination would require the
computation of high-dimensional integrals. Hence, the posterior distribution can
only be obtained up to a normalizing constant, namely:

P(6ly) xP(y|©)P(®). (10)

For this reason, Bayesian inference usually needs to resort to MCMC methods to
simulate the joint posterior distribution. MCMC algorithms, in fact, allow to draw
values from distributions known up to a normalizing constant, as is often the case
for P(®ly). Inference is then carried out on the basis of the simulated, rather than
analytical, joint posterior distribution. More details on these methods will be given
in Section 3.6 (see also Refs. [9, 10]).

To illustrate an interesting point, let us go back to the example considered
before, in which we want to analyze spectroscopic data that can be modeled as in
Eq. (7) and for which the likelihood is given in Eq. (8). Imagine to have no prior
information at all on the parameters of the model so that the only sensible choice for
the prior is a uniform distribution on the parameter space. Then, from Eqs. (8) and
(10), it follows that:

“ 2 n 2
P@) ]| ! exp <_ M) x exp (_ M>

2 2
207 — 20;

(11)
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which implies that the posterior distribution is a multivariate Gaussian. As
already mentioned, parameters can be estimated taking the mean of the posterior
distribution, which, for a Gaussian distribution, corresponds to the median, mode,
and maximum of the distribution. Therefore Bayesian parameter estimates are

2
. .. i—S(Q, E; . ..
obtained as those values of © that maximize exp (—Zl’-’_l w> This maximi-
bi-s@.E)]’
zation is equivalent to the minimization of the y? = = | )"T function and

thus provides the same estimates we would obtain through standard fitting pro-
cedures [13]. Therefore, whenever no prior information is available, which trans-
lates into a uniform prior, and a normal error distribution is assumed, the posterior
distribution coincides up to a constant to the classical likelihood function, and
Bayesian and classical estimates are equivalent. This result can be extended to the
case of an informative prior, for which, again, Bayesian and traditional approaches
provide asymptotically the same results. In particular, as sample size increases, the
posterior distribution of the parameter vector approaches a multivariate normal
distribution, which is independent of the prior distribution. These posterior
asymptotic results [17] formalize the notion that the importance of the prior
diminishes as 7 increases. Only when # is small, the prior choice is an important part
of the specification of the model. In such situations it is essential that the prior truly
reflects existing and well-documented information on the parameters so that its use
can significantly improve the precision of the estimates.

Despite the asymptotic equivalence, sometimes parameters are much easier
estimated in a Bayesian rather than in a frequentist perspective. Frequentist esti-
mation, in fact, is generally based on least squares or maximum likelihood methods,
and this might be a problem in the presence of local optima. If, for example, the
starting values of the parameters, needed to initialize the optimization algorithm,
are close to a local optimum, the algorithm might be trapped in this suboptimal
solution. As a consequence, different starting values might determine different
solutions and, thus, parameter estimates. The Bayesian estimate of a parameter, as
stated before, is instead obtained as the mean of its posterior distribution, margin-
alized with respect to all other parameters. This estimation procedure does not
involve any minimization or maximization, and, thus, the fitting algorithm does not
risk to get trapped in local optima, and the results are independent from starting
values used in the MCMC algorithm used to simulate the posterior distribution (see
Section 3.6). It might happen, obviously, that the posterior of one or more param-
eters is bimodal or multimodal. The presence of different parameter regions with
high posterior density might suggest that the data show some evidence in favor of a
more complex model but not enough for this model to have the highest posterior
probability. In this case, it is not reasonable to use the mean as a point estimate for
the parameters, since it might fall in a low posterior density region, and the mode of
the posterior distribution can be used in its place. In such situations of posterior
multimodality, it is evident how the whole posterior distribution conveys a much
richer information than the simple parameter estimate.

3.5 The Occam’s razor principle

Even if Bayesian and classical analysis asymptotically give the same results,
Bayesian results always have a probabilistic interpretation, and this is particularly
relevant when we need to compare different models and determine, for instance,
the number of spectral excitations (in the frequency domain) or the number of
relaxations (in the time domain). In addition, the Bayesian method represents a
natural implementation of the Occam’s razor [18-20]: this principle is intrinsic to
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Bayesian inference and is a simple consequence of the adoption of the Bayes theo-
rem. In model choice problems, in fact, the posterior probabilities of the different
models naturally penalize complex solutions with respect to simple ones, thus
conforming to the parsimony principle.

To see this, consider Eq. (4), and imagine that the parameter vector also includes
a model indicator parameter M, forj =1, ..., k. To make this more explicit, we can
rewrite Eq. (4) as P(@,Mj |y) ocP(y|®,Mj)P(®,Mj). Then, Bayesian model choice
simply consists in choosing the model with the highest posterior probability
P(M;ly) = JoP(8,M;ly)d® o« [P (y|®, M;)P(©,M;)d® = P(M;) oP (7|0, M;)
P(©|M;)d® = P(y|M;)P(M;). Thus, if the same a priori probability is attributed to
the models, i.e., P(My) = P(M,) = --- = P(M), the posterior probability P(M;y) is
simply proportional to the marginal likelihood:

PRIM,) = J@P(y|®,Mj)P(®|Mj)d® (12)

Now, consider for simplicity just two possible models, the first one, denoted as
M3, more complex and characterized by a larger number of parameters and the
second one, denoted as M,, simpler and characterized by a smaller number of
parameters. Clearly, the more complex model is able to generate a much wider
range of possible datasets (i.e., for which the model would provide a reasonable fit)
than the smaller model. Therefore, the marginal likelihood P(y|M;) is more dis-
persed than P(y|M,) (cf. Figure 28.3 of Ref. [20]). This implies that dataset in
accordance with both M; and M, have P(y|M;) > P(y|M3), while those in accordance
with just the more complex model M; have P(y|M,) < P(y|M,) (with P(y|M,) = 0).
If the two models are a priori given the same probability, for datasets in accordance
with both models, the inequality P(M,|y) > P(M;y) holds for the posterior proba-
bilities, determining the choice of the simplest model to represent the data.

3.6 Bayesian computation of model parameters

As already stated, Bayesian inference completely relies on the joint posterior
distribution P(®|y). However, for a complex model, it is often impossible to compute
this posterior distribution analytically, and the latter is only known up to a normaliz-
ing constant. The MCMC methods allow to draw values from distributions known up
to a normalizing constant and, thus, to obtain the simulated joint posterior distribu-
tion. In practice, MCMC methods consist in constructing an ergodic Markov chain
(Figure 3) with states ®”, m = 1.--M, and stationary distribution corresponding to
the joint posterior distribution. M is the number of states, i.e., the number of

A Markov chaln iz a stochastic process (Markov process) in
a discrete stare space in which the probability of jumpling In
4 new Etame d-!:"l.ll:"l'ld& only on the stae reached In the
previous step

Figure 3.
Parameter updating. © is the pavameter vector. @™ is a particular set of parameter values in the parameter
hyperspace.
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updating of the parameter values, and is generally called the number of sweeps of the
MCMC algorithm. At each sweep of the algorithm, a new draw of © from its posterior
is obtained updating all the parameters in turn, drawing each of them from its
posterior distribution, conditional on the value of all the other parameters. If this
posterior conditional distribution is known, the parameter is updated using a Gibbs
sampling step, which simply draws the new value of the parameter from this known
distribution. Otherwise, if this posterior conditional distribution is known only up to
a normalizing constant, the parameter needs to be updated through a Metropolis-
Hasting move [21]. This move is built as follows. Suppose that, at a given sweep of the
algorithm, the current value of a certain parameter is 6. A new candidate value ¢’ can
be drawn from an opportunely chosen proposal distribution ¢(-|0), which generally
depends on the current value 6. The new value ¢’ is then accepted with a probability
equal to min (1, R), where R is given by:

_ Pp|O) P(6')q(6]¢)

R=P0/0) Po) 4(016)

(13)

where @' is the whole parameter vector with the parameter 6 replaced by the
new value ¢, P(y|®) is the likelihood, and finally P(6) is the prior on that parameter.
In other words, R is nothing else but the ratio between the joint posterior distribu-
tion calculated with the updated parameter values and the posterior distribution
calculated with the current ones, multiplied by the ratio between the proposals,
q(010')/q(6'|0). The higher the posterior ratio, the larger R and hence the probability
to move to the new parameter value. In practice, to decide whether or not a
candidate value is accepted, a random number is drawn from a uniform distribution
defined between 0 and 1 and compared with the calculated value for R. If the
random number is less than R, the parameter is updated to the new value; otherwise
the new value is rejected. The way the acceptation rule in Eq. (13) is built ensures
that the resulting Markov chain has the joint posterior distribution P(®ly) as sta-
tionary distribution.

Concerning the proposal distribution, this should be chosen as a distribution
from which it is easy to sample. It could be, for instance, a normal distribution
centered on the current value of the parameter and with a certain variance which
can be adjusted and used as a tuning parameter. This locution alludes to the cir-
cumstance that adjustments of this parameter can literally tune the step of the
parameter updates. For a normal proposal distribution, a large variance allows the
new value @' to substantially change from the current value. However, if we already
are in a high posterior distribution region for the parameter, values far from the
current one will fall in low-density regions and are accepted with a very low
probability. As a consequence, the algorithm will remain stuck on the same value of
the parameter for a long time, causing an inefficient exploration of the parameter
space. On the contrary, a small variance will constrain ¢ to be close to 6. In this case,
the new value has a high probability of being accepted, but the algorithm would
move slowly and take a long time to reach convergence to the stationary distribu-
tion. The tuning parameters can be appropriately chosen so that the algorithm
explores the parameter space efficiently. A rule of thumb states that this happens
when the acceptance ratio for each parameter is about 30% [22].

When the parameter vector also includes a model indicator parameter, a further
move needs to be considered to update this parameter and to allow the algorithm to
explore different models. This move is a reversible jump [11] step, which is specif-
ically designed to allow the Markov chain to move between states having different
dimensions (since the dimension of the parameter space varies accordingly to the
model considered).
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As a final remark, consider that when the MCMC algorithm reaches convergence,
after a so called “burn-in” period, the draws not only effectively represent samples
from the joint posterior distribution but are also theoretically independent from the
starting values of each parameter. Few examples about this point are shown in
Table 1 of Ref. [12]. Notice, however, that the time required to reach convergence
might vary a lot depending on the data and the prior. For example, peaked unimodal
posterior distributions (i.e., highly informative data) generally speed up convergence,
as well as the availability of an important prior information, which reduces the size of
the effectively accessible parameter space. On the contrary, the presence of many
high posterior density regions can hinder and slow down convergence.

4. The Bayesian approach in neutron and X-ray scattering spectroscopy
4.1 Neutron and X-ray Brillouin scattering

One of the models commonly used to analyze either neutron or X-ray scattering
data is the so-called damped harmonic oscillator (DHO) profile, which we report
here below:

d (Q)QXQ)T;
4 8B+ 1 L QB+ A4/Q2(Qr,(Q
) 7= [EZ—Qﬁ(Q)} + 4[[j(Q)E]

(14)

S(Q’ E) = Ae(Q)‘S(E)

2

where 5(E) is the Dirac delta function describing the elastic response of the

system modulated by an intensity factor 4,(Q), n(E) = (e?/kT — 1) “is the Bose
population factor expressing the detailed balance condition, and the term in curly
brackets is the sum of a Lorentzian central contribution, characterized by the
parameters Ao and 2¢, and the contribution of k pairs of peaks, the DHO doublets,
symmetrically shifted from the elastic (E = 0) position. The generic j-th DHO is
characterized by its undamped oscillation frequency Q;(Q), damping I';(Q), and
intensity factor A;(Q). The Lorentzian contribution, not necessarily present,
accounts for the quasielastic response of the system. We have intentionally
expressed the inelastic contribution as an indefinite sum of k terms, as the scattering
signal from amorphous systems is often poorly structured and the number of
inelastic modes contributing to it is often hard to guess. A series of concomitant
factors, such as the instrument energy resolution, the limited statistical accuracy,
and the intrinsically weak scattering signal, can make the line shape modeling

not straightforward. In a Bayesian perspective, the number of inelastic features
can be treated as a parameter to be estimated along with the other model
parameters.

To fit the experimental data, the model in Eq. (14) needs to be convoluted with
the instrument resolution, and it can conceivably sit on top of an unknown linear
background. Overall, the final model used to approximate the measured line shape
is given by

S(Q.E) = R(Q,E) ®S(Q. E) + (o + KiE)- (15)
where “® ” represents the convolution operator. For neutron scattering, the

instrument resolution function has often a Gaussian shape; thus the final model
reads as:
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For IXS, Eqgs. (14-16) are still formally valid although the instrument resolution
function has usually a slightly more complex shape which appears in the convolu-
tion of Eq. (15) either as approximated by an analytical model or measured from the
signal of an almost elastic scatterer; obviously, in the latter case, the convolution is
computed numerically. The final model is further corrupted by an additive Gauss-
ian noise, having a variance that, for instance, can be taken proportional to each
data point. Thus, the experimental data points are given by:

Vi= S(Q’ El) + £(Q, Ei), (17)

with
(Q,Ei) " N (0,6%8(Q, E)), (18)

where o is the proportionality constant. Thus, the likelihood for model in
Eq. (17) is simply given in Eq. (8), with S(Q, E;) replaced by S(Q, E;) defined in
Eq. (16) and 6?7 = 6°S(Q, E).

The whole parameter vector for the model in Eq. (17) is © =
(k,A, Q, F,Ae,AQ,Zo,ﬂo,ﬂl,Gz), with A = (Al, ---,Ak), Q= (Ql, seey Qk), and T =
(T1, -+, Iy), so that the dimension of the parameter vector depends on the number
of inelastic modes, k. In a Bayesian perspective, suitable priors need to be chosen for
each component of ®. For example, k can be safely assumed as uniformly distrib-
uted between 1 and a certain value km,x opportunely fixed so that all models are a
priori given the same probability. All parameters only attaining nonnegative values
such as (A, Q,T, A, Ao,z and 6?) can, instead, be assumed distributed according to
a Gamma distribution or a Gaussian distribution truncated in zero. Finally, §, and
f; are assumed to follow a normal distribution, centered in zero and with a large
variance, to keep the priors scarcely informative.

Bayesian inference is, then, based on the joint posterior of the whole parameter
vector ®. However, as mentioned, given the complexity of the model S (Q,E;) in
Eq. (17), the normalizing constant in Eq. (9) cannot be analytically evaluated, and it
is necessary to resort to MCMC methods to obtain a simulated joint posterior. Since
the parameter space dimension depends on the number of inelastic modes, k, a RJ
step needs to be added to allow the exploration of a parameter space of variable
dimension. The updating of the parameter k can be implemented according to
different types of moves, which, for instance, can enable either the creation (the
birth) of a new component in Eq. (14) or the suppression (the death) of an existing
one, i.e., the so-called birth-death moves; or they can promote the splitting of an
existing component into two components or the combination of two existing com-
ponents into one (split-combine move). These moves are described in Ref. [12]. In
practice, at each step, the algorithm tries to jump to another value of k (from 1 to 2,
from to 2 to 1 or 3, from 3 to 2 or 4, and so on). The new value of k is accepted with
an acceptance probability that guarantees the convergence of the algorithm to the
joint posterior distribution.

Once the convergence is attained, after a burn-in period, at each sweep m =
1, -+, M, the Rf MCMC algorithm draws a vector:

(™, 407, @0, 10, A, 4G 27, 7, B, 02, (19)

e
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from the joint posterior P(®[y). In practice, the output of the algorithm is a
matrix of the form:

gl) Aél) Zf)l) ﬂgl) ﬁgl) o2
2D 40 @ 1@ AEZ) AE)Z) ZE)Z) ﬂg) ﬂ;Z) 522

(20)
pm o plm) om)  im) Aim) AE;”) Z(m) ﬂgﬂ) ﬂYﬂ) &2m)

EM A M) M) 4 (M) 4 (M) ZE)M> ﬂg\/ﬂ ﬁgM) 2(M)
where each row is a particular draw of the whole parameter vector © from its
joint posterior P(®|y), while each column refers to a particular parameter and
represents the whole simulated marginal posterior distribution for that parameter,
independently from the values observed for all the other parameters. Model choice
can, then, be accomplished considering the first column of the matrix in Eq. (20),
that is, the simulated marginal posterior P(k|y). This column contains a string of
values fork (e.g.,1,1,1,2,2,3,2,3,4,3,3,3,2 . ... 4,5,4,3,4,3,2 ). Therefore, the
posterior probability that the number of modes is equal to a specific value
¢,P(k = ?|y), is given by the relative frequency of occurrence of the value # in the
strings, and the model chosen will be the one corresponding to the value of k with
the highest occurrence.

Once a particular model with, let us say, k = ¢ inelastic modes has been chosen,
the parameters of this model can be estimated conditionally on k& = ¢. This means
that we only need to consider a submatrix of the matrix in Eq. (20), made up of
those rows for which the first column is equal to ¢. Then, a certain parameter 6 can
be estimated taking the mean (or the mode) of the corresponding column of this
sub-matrix, which represents the simulated posterior distribution for 8, condition-
ally on the model with # modes and marginalized with respect to all the other
parameters, i.e., P(0ly, k = ©).

In assessing convergence, a valuable tool is provided by trace plots, which show
the sampled values of a parameter over the sweeps of the algorithm. Ideally, a trace
plot should exhibit rapid up-and-down variation with no long-term trends or drifts.
Imagining to break up this plot into a few horizontal sections, the trace within any
section should not look much different from the trace in any other section. This
indicates that the algorithm has converged to the posterior distribution of the
parameters. Other convergence criteria can be found, for example, in Ref. [23].
Figure 4 shows the trace plots of three DHO-mode frequencies (Q1,53) the algo-
rithm found, fitting a spectrum relative to IXS data on pure water recently mea-
sured (data not published) at room temperature and at a wave vector transfer
Q = 3nm 1, after the first 1000 (a), 10,000 (b), and 100,000 (c) sweeps. In plot
(a), it can be seen how rapidly ©, and 3 reach their respective high-density
regions, while €; has more problems in exploring the parameter space. Plot (b)
shows that, after nearly 2000 sweeps, also Q; finally starts oscillating around its
mean, according to its posterior distribution. Plot (c) illustrates that a burn in of, for
example, 10,000 sweeps is large enough to ensure convergence of the algorithm: the
trace plots for the three parameters stabilize well before the end of the burn in
period.

In Figure 5, we report an example of Bayesian analysis applied to neutron
Brillouin scattering data from liquid gold [12] at different values of the momentum
transfer Q. In this work, after a proper removal of spurious effects such as
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background, self-absorption, and multiple scattering, the data look indeed rather
structured so that inferring the number of inelastic components seems rather obvi-
ous and the result confirms the findings of a previous work [24]. Estimates were
obtained from 10° sweeps of the algorithm, after a burn in of 10* sweeps, and the
running time for the algorithm was of approximately 5/10 minutes for each spec-
trum. We chose a precautionary large value for the burn-in, but convergence was
normally achieved in a few hundreds of sweeps.

Even in this straightforward case, however, additional insights can be obtained
from the posterior distributions delivered by the Bayesian inference. For example,
in Figure 6, it can be noticed that, as the value of Q increases, the posterior
probability of k = 2 also increases. This trend in the discrete distribution for k as a
function of Q could possibly convey interesting insights on the actual onset of a
second excitation or simply indicate a progressive degradation of the experimental
data or, still, suggest that, as the damping becomes more and more effective, the
determination of the number of inelastic features becomes more controversial.

To investigate these issues, one can look, for example, at the posterior distribu-
tions for the excitation frequency Q, conditional to £ = 1 and to k = 2, respectively
(see Figure 7 for an example on the same data of Figure 5 for a Q value of 16 nm™1).
Considering the matrix in Eq. (20), as explained above, for k£ = 1, all the values in
the column referring to Q;, and in correspondence with the rows for which k£ =1,
are draws from P(€|y,k = 1), and a histogram of these values can be used to
visualize the marginal posterior distribution of 4, conditional to k¥ = 1. In the same
way, for k = 2, all the values in the column referring to Q;, and in correspondence
with the rows for which k = 2, are draws from P(€;|y, k = 2), while those in the
column referring to Q, and in the same rows represent draws from P(; |y, k = 2).
Figure 7 illustrates, from left to right, the distributions P(€4|y, k = 1), P(Q4]y, k = 2),
and P(Q|y,k =2) at Q = 16nm™ .

(a) : (b) €
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Figure 4.

Typical trace plots for the three DHO-mode frequencies as obtained after the first 1000 (a), 10000 (b) and
100000 (c) sweeps of the algorithm for IXS data on pure water at room temperature and at a wave vector
transfer Q = 3nm™*. The frequencies are indexed in increasing order with vespect to their value.
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Dynamic structure factor of liquid gold at five Q values measured on the Brillouin neutron spectrometer BRISP
at ILL (Grenoble, France). The experimental data (blue dots) are broadened by the instrumental energy
resolution. The RJ-MCMC best fit (red line) takes detailed-balance asymmetry and vesolution into account.
Reproduced from Ref. [12], Copyright (2016) of American Physical Society.

The shape of these posterior distributions provides a measure of the precision
with which the parameter is estimated. For example, P(Q4]y, k = 1) is well-shaped,
i.e., unimodal and approximately symmetric, yet quite dispersed. Its mean is equal
to 23.8 meV, but there is a 95% probability that the value of Q; lies in the large
interval 22.3-25.2 meV. This large interval tells us that many different values of Q,
are compatible with the data, signifying that the inelastic mode at Q = 16 nm ™1 is
largely damped—as confirmed also by the large I'; value (= 7.5meV)—and less
defined, which reveals the large uncertainty in the estimation of the undamped
oscillation frequency of the DHO excitation. If we now look at the posteriors for
P(|y,k =2) and P(Q,|y, k = 2), we can see that these are much worse shaped than
P(Q1ly,k = 1), with unreasonably large or small values having nonvanishing proba-
bility. Their mean are, respectively, 17.6 and 25.5 meV and are outside the proba-
bility interval obtained for €, when k = 1. Therefore, based on these findings, the
Q-evolution of the posterior probability of k seems to simply reveal the increasingly
elusive discernment of distinct inelastic features as their damping, or broadening,
increases. In practice, at the highest Q explored (16 nm 1), the oscillation mode
becomes so highly damped that it can be fitted equally well either by two distinct
DHO peaks or by a (broader) single one in the middle of the two. At this stage, the
Occam’s razor comes into play, naturally integrated in the Bayesian model choice,
which ultimately privileges the model with only one DHO, as it involves fewer free
parameters. Imagine, instead, that P(Q1|y, k = 1) were bimodal, with the two modes
corresponding to the single modes of P(€4y, k = 2) and P(€,|y, k = 2), respectively,
as observed, for instance, in Ref. [25]. In this case, the bimodality of P(Q;]y,k = 1)
would have provided stronger support to the actual presence of two DHOs, thus
suggesting that the finding P(k = 1|y) > P(k = 2|y) only stemmed from the scarcity
of data. Should this have been the case, additional observations would have proba-
bly led to privilege a more complex model.

Data discussed in Ref. [25] provide another example of the efficacy of Bayesian
inference in enforcing the parsimony principle. Specifically, we refer to the case of
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Figure 6.
Posterior probability for the number of modes k at different values of Q for the spectra of Figure 5. Reproduced
from Ref. [12], Copyright (2016) of American Physical Society.

an IXS measurement from a suspension of gold nanoparticles in water which has
been analyzed with a model similar to the one in Eq. (14), yet with the DHO terms
replaced by Dirac delta functions, due to the extremely narrow width of the mea-
sured excitations. For all Q's explored, the posterior distributions for the number
of inelastic modes have a maximum (Figure 8), which is smaller than k.

In particular, we can also observe that the most probable number of modes and the
related probability change from one dataset to the other; this partly reflects the
physics of the phenomenon under study but also drawbacks of the modeling, such
as the limited count statistics and the increasingly intertwined nature of spectral
features at high Q's.

As a further remark, we would like to stress again the fact that results from
Bayesian inference are always to be interpreted in a probabilistic nuance. For
instance, we stated before that the oscillation mode € lies in the interval (22.3,25.2),
with a probability of 95%. This interval, called credibility interval, is obtained by
sorting the values of Q;, drawn from its posterior conditional to £ = 1, and taking the
two values below which we can find, respectively, the 2.5% and 97.5% of all simulated
values of Q. In practice, the values inside the interval are those with the highest
density given the observed data and so the most credible. Classical confidence inter-
val, obtained in the frequentist approach, does not have such a probabilistic interpre-
tation. The interpretation of confidence intervals is that, if we imagine to repeat data
sampling indefinitely under the same conditions and to build a confidence interval at
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Simulated posterior distributions for the excitation frequency Q, and ., in the case of the model with k = 1
(panel on the left) and k = 2 (central and right panel) for liquid gold at a momentum transfer of
Q =16nm™*.
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Posterior probability for the number of k modes at different values of the momentum transfer Q in an inelastic
scattering experiment performed on a gold nanoparticle suspension in water: (a) Q = 3.5nm™*, (b) Q =
s5.5nm ", (c) Q=7.5nm ", (d) Q=9.57mm ", and(e) Q = 13.5nm ™. Adapted with permission from
Ref. [13], Copyright (2018) American Chemical Society.
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a certain 1 — a confidence level for each of the datasets, then (1-a)% of these
confidence intervals will contain the true fixed value of the parameter. However, we
have no guarantee that the single confidence interval, calculated on the basis of the
only dataset actually observed, contains the true parameter value. We can only be
confident [at the (1-a)% level] that it does so, since it comes from a set of intervals,
(1~a)% of which do contain the parameter value. In practice, under a frequentist
approach, data are random variables and give rise to random intervals that have a
specific probability of containing the fixed, but unknown, value of the parameter.
The single interval is also fixed and might or not contain the fixed parameter, but we
cannot associate any probability measure to this possibility. In the Bayesian approach,
the parameter is random in the sense that we have a prior belief about its value, while
the interval can be thought of as fixed, once the data have been observed. In sum-
mary, the frequentist approach do provide a definition of confidence intervals,
which, however, are endowed with a robust probabilistic ground only with respect to
the hypothetic space of all possible repetitions of the measurement experiment but
not with respect to the unique dataset at hand.

4.2 Bayesian inference in the time domain

Time correlation function decays can be modeled in terms of an expansion of the
intermediate scattering function I(Q,t) in exponentials, and the aim is often to
determine the number of time decay channels that could be envisaged in the
relaxation of I(Q,t). In Ref. [15], the dynamics of polymer-coated gold
nanoparticles in D,0 was tackled by neutron spin echo (NSE) scattering and
analyzed within a Bayesian approach with the goal of establishing how many char-
acteristic relaxations were present in a given spin echo time window and if they
could be described by either simple or stretched exponentials or by a combination
of the two. The data were assumed to be sampled by the following model:

k B,
t. ]
Y, =7 g Ajexp —(—Z> > +¢e, fori=1,..,n (21)
- Ti
j=1 ]

where y is a proportionality constant possibly enabling a data normalization, k
represents the number of exponential relaxations, A; is the weight of the j-th
component of the exponential mixture, 7; its relaxation time, and f; its stretching
parameter. The ¢;, fori =1, ..., n, are random noises, accounting for statistical
errors in the measurements. These are assumed to be independent and identically
distributed with a normal distribution A (0, vaiz), where o; is the measurement error
corresponding to the i-th observation and v is a proportionality constant. As a
consequence, the likelihood of the data is a product of normal densities, each having

A\Pi .
mean y%*_,A;exp (_ (%) j ) and variance vo?.

The value of k is, obviously, unknown, and its determination is of great rele-
vance. Therefore, also in this case, k is considered a stochastic variable to be
estimated based on the data and conditional to all the other model parameters.
Imagine that we have no clue about how many relaxations are necessary to describe
the observed behavior of the time correlation function. However, we are aware that,
in a case like this, the risk to over-parametrize the model is high, and we certainly
know that, given the finite time window covered by the experiment and the limited
number of experimental data, the number of relaxations should not be too large;
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otherwise the results could be meaningless, hardly justifiable, and unlikely. There-
fore, it seems a priori reasonable that k has a uniform distribution on the discrete
values k = 1, -+, kmax, Where k. is a small integer, as previously assumed when
dealing with the number of excitations in the energy spectrum. Also, the relaxation
times 7; are supposed uniformly distributed on a continuous range of nonnegative
values. The prior on A is tailored to ensure that the combination of relaxation terms

fulfills the constraints ijzlA ;=1and A; > 0. The natural choice for the prior of

A = (A1, A, -+, Ap) is, then, a Dirichlet density, which takes values on the standard
simplex. A crucial prior is that of the stretching parameter f3;. This is specifically
meant, in fact, to discern whether the relaxations in the given time window are
simple exponential decays, stretched exponential decays, or a combination of the
two. A simple exponential decay corresponds to §; = 1, and thus a positive proba-
bility mass can be assigned to this specific value. The remaining probability can be
assigned to ; values within the interval (0; 1). Therefore, a reasonable prior for f3;
can be a mixed distribution made up of a probability mass in 1 and a continuous
beta density, i.e., B~ {Bx,w) + (11— C)5ﬂj,1, independently forj = 1, ---, k, where «
and y are parameters of the beta density, & 1 is an indicator function equal to 1
when f; = 1and 0 otherwise, and { is a weight denoting our prior support in favor
of a stretched, rather than simple, exponential components. Once the { = 0 and

¢ = 1 weights are, respectively, assigned to the sums of simple and stretched expo-
nential terms in Eq. (21), other 0 < { <1 weights will be associated to mixed combi-
nations of these decay terms. In particular, a { = 0.5 means that the j-th exponential
can be either stretched or not with a priori the same probability, for allj =1, ---, k.
In addition, setting x = 1 and y = 1 allows to assume that the stretching parameters
are uniformly distributed on the interval (0;1). This corresponds to an
uninformative prior giving a probability of 0.5 to both a stretched or unstretched
component and, for a stretched component, assigning the same density to any value
of p ; in (0;1). Obviously, more informative priors can be chosen, e.g., by assigning
different values to k, y and ¢, so to favor, for example, a Zimm or Rouse model
specification (see discussion in Ref. [15]) when dealing with polymer dynamics. A
similar prior probability can be adopted for the proportionality constant y, i.e.,
mixed distribution made up of a continuous beta density and a probability mass in
1, corresponding to no need for a refinement of the data normalization process.
Finally, the proportionality constant in the error variance, v, can be, for example,
assumed to have a priori a gamma density so that only nonnegative values are
allowed.

Let us consider one of the datasets in Ref. [15], representing the time correlation
decay of a polymer solution of polyethylene glycol with a molecular weight of
2000D (PEG2000) as measured in a NSE scattering experiment and collected at a
momentum transfer Q = 0.091 A. Also in this case, we allowed for 10° sweeps of
the algorithm and a burn-in of 10* sweeps, resulting in approximately 5/10 minutes
of computing time. From the output of the MCMC-R] algorithm, values for the
discrete posterior distribution function of k are found in Table 1.

The most visited model is the one with two exponential functions. The fit is
shown in the figure below (Figure 9).

The values reported in Table 1 clearly show that the posterior distribution of k
has a maximum. In fact, this is a general result (see, e.g., Figures 8 and 10).

When we model a spectroscopic dataset through a homogeneous mixture, e.g., a
linear combination of exponentials, Lorentzians or DHO functions, the posterior
distribution for the number of components always has at least a maximum, unless
the data are so scarcely informative that the posterior for k£ simply reproduces the
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k P(kly)%
1 8.47
2 61.83
3 2391
4 4.41
5 112
6 0.26
Table 1.

Posterior distribution for the number of time corvelation decay channels for a polymer solution of polyethylene
glycol with a molecular weight of 2000D(PEG2000) as measured in a NSE experiment and collected at a
momentum transfer Q = 0.091TA.

prior, which might be uniform. In principle, when jumping in a more complicated
model characterized by a larger number of parameters, the 4 tends to decrease, and
the likelihood tends to increase. However, according to the Bayes theorem, the
posterior for k is computed averaging the likelihood over all the parameters value
(see Eq. (12)). Therefore, models that are under-parametrized will perform poorly
on average since they just cannot fit the data well enough and have a small likeli-
hood, while models that are over-parametrized will also perform poorly on average,
because the subset of the parameter space that fit the data well (and where the
likelihood is high) becomes tiny compared to the whole volume of the parameter
space. This means that adding components to the mixture model increases the
posterior distribution of k only until the increment in the likelihood more than
compensates for the augmentation of the “wasted” parameter space; overall the
competition of these effects ensures the presence of a maximum in P(k[y). It is
worth noticing that assuming a model with more free parameters does not neces-
sarily mean a better fit, once the likelihood has saturated. To see this, we report here
below (Figure 11) the fit we get with a number of relaxation channels k # 2. We
can observe how the fit with three relaxation components or more is not better than
the one more supported by the available data and estimated by the MCMC-R]
algorithm. Moreover it is insane and hopeless to confer a distinct physical meaning
to each one of the corresponding characteristic relaxation times.

1{Q.t)/1(Q,0)

t {ns)

Figure 9.
1(Q,t)/I1(Q, 0) vs. time (ns). The black line is the best fit as determined with the RI-MCMC. The two red lines
are the two exponential components.
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Figure 10.

Posterior probability for the number of k modes at different values of the momentum transfer Q in an NSE
experiment performed on polymer solution of polyethylene glycol with a molecular weight of 2000D (PEG2000)
in D,O.

Let us introduce a quantity which could resemble the y?, namely:
n _ 2
2= Z (J’z );calc) , (22)
i-1 Oi

which measures the distance between the experimental data and the best fit
determined with the RJ-MCMC algorithm, where # is the number of experimental
observations, y; are the experimental data, y,,,. are the best fit calculated values, o;
are the experimental errors. This variable differs from the usual y* as the model
parameters are not estimated by least squares minimization, but are the averages, of
the corresponding marginal posterior distributions. Nevertheless we can use this
quantity to show what follows. If we calculate the quantity in Eq. (22) for each
value of k, we get for s* the values reported in Table 2 which indicates an overall
decrease upon increasing the number of exponentials. Actually, s? does not strictly
decrease with the numbers of parameters, because, as mentioned before, the fit is
not calculated with parameter values which minimize the y2. If, for example, in
particular situations (e.g., for £ = 3), the algorithm faces some challenges in deter-
mining a parameter and its posterior distribution is very broad and slowly decaying,
the average of this parameter could be severely affected by the presence of these
sizable distribution tails. In these cases, the mode of the distribution should be used
instead to estimate the parameter.
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@) (b)

{c) (d)

Figure 11.
1(Q,t)/1(Q, 0) vs. line (ns). The black line is the best fit as determined with the RI-MCMC. The two red lines
are the two exponential components. (a) k=1, (b) k=3, (c) k=4, and(d) k= 6.

k s

1 13.26
2 9.07
3 10.92
4 9.00
5 8.57
6 8.57

Table 2.

Values of the quantity s> as defined in Eq. (22) calculated for the different values of k and considering the
averages of the model parameter posterior distribution.

Nevertheless, s> shows that even with a distance between experimental and
fitted values which is effectively decreasing as the number of parameters increases,
the most probable model from Table 1 is the one with £ = 2 and not the one with
k = kmax. The effect of the razor is evident. It can also be noted that the fit with
k = 2 is not only the most probable but it is also the best (in the sense that it is much
better than the one with k£ = 1 and it is not worse than those obtained using a larger
number of exponentials). More interestingly, we observe also that increasing the
number of parameters, the y? (or any other measure of the distance between the
fitted and the observed data) is not decreasing much for large values of k, because
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obviously at the end, this quantity is going to saturate (and so does the likelihood).
The fit with & = 2 determines a value of s2, which is not too different from the one
we get with k£ = 6. Incidentally, as it is largely discussed in Ref. [15], the model with
two relaxation channels has also a perfectly plausible and consistent explanation,
which would not be possible if a more complicated model were chosen.

In summary, we have here shown some of the opportunity offered by a Bayesian
inference analysis of experimental results and, in particular, those obtained with
spectroscopic methods. As possible future development, it appears very promising
the opportunity of applying similar methods to the joint analysis of complementary
time or frequency-resolved measurements. Also, we can envisage the use of more
informative priors implementing the fulfillment of sum rules of the spectra or any
other known physical constraint of the measurement. We are confident that, in the
long run, these methods will improve the rigor of routine data analysis protocols,
supporting a probability-based, unprejudiced interpretation of the experimental
outcome.
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Chapter 3

Atomic Dynamics in Real Space
and Time

Takeshi Egami

Abstract

Atomic and molecular dynamics in strongly disordered matter, such as liquid,
cannot be fully described in terms of phonons, because they are marginalized and
often overdamped. Their dynamic and transport properties depend on local atomic
rearrangements which are strongly correlated. To describe such local dynamics, the
usual representation in momentum (Q) and energy (E) space in terms of the
dynamic structure factor, S(Q, E), is not effective. We discuss an alternative
approach in real space () and time (¢), with the van Hove function, G(r, t), and
show how this approach facilitates understanding of real-space local dynamics of
liquids and other disordered systems in the length scale of A and time scale of
pico-second.

Keywords: local atomic dynamics, van Hove function, liquid, glass,
correlated dynamics

1. Introduction

In crystalline solids, phonons are the elementary excitations of lattice dynamics.
They can be observed with well-defined dispersions in the dynamic structure fac-
tor, S(Q, E), where Q is the momentum exchange and E (= Aw) is the energy
exchange in scattering. The S(Q, E) can be measured by inelastic X-ray scattering
(IXS) as discussed in this book or by inelastic neutron scattering (INS). However, in
strongly disordered materials, shortwave phonons have very short mean free path
and lifetime. Only long-wave phonons, for which the atomic structure is irrelevant
and the material acts as a continuum elastic body, propagate over some distance.
However, the total spectral weight of long-wave phonons is small, because the
phonon density of states increases as E°. For this reason, a majority of phonons are
overdamped, and some of them are localized, particularly in liquid.

Atomic dynamics in liquid and soft matter is usually studied by quasi-elastic
scattering (QES) at low Q, where the QES intensity is dominated by the self-
correlation and the auto-correlation of the same atom. The energy width of QES is
proportional to DQ?, where D is the diffusion constant. For hydrogen, which has a
very large incoherent cross section, the value of D determined by QES at low Q is
the isotopic diffusivity, D;, determined by the diffusion profile of isotopes mea-
sured by sectioning. The chemical diffusivity, D,, which characterizes the flow of
elements responding to concentration gradient, is usually different from D;, because
of the backflow of diffusing atoms. The ratio, f = D./D;, is known as the correlation
factor and describes how diffusive atomic jumps are correlated.
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This example illustrates the importance of studying the distinct atomic correla-
tion and the dynamic correlation among different atoms. The importance of know-
ing the distinct terms of the correlation function is beginning to be recognized
[1, 2], but the difficulty of measurement delayed advances. Only recently the
progress in IXS instrumentation [3, 4] and the advent of pulsed neutron sources [5]
made it feasible to measure S(Q, E) over wide ranges of Q and E in a reasonable
time and opened the possibility of garnering information on distinct atomic
correlations.

Conversely, even though the substantial progress in instrumentation allowed us
to collect a much larger amount of data which contain vastly richer information, the
IXS data are mostly processed in the same way, just by focusing on the phonon
dispersion and its width [6]. Similarly, usually only the diffusivity is obtained from
the QES data. What is missing is the analysis of the diffuse IXS intensity which is
usually discarded as background. This situation is a perfect analog of the structural
analysis of disordered crystals. The conventional methods of crystallographic anal-
ysis focus only on the Bragg peaks, and the diffuse scattering intensity is processed
separately to determine the short-range order. However, by combining the Bragg
and diffuse intensities as the total scattering intensity and Fourier-transforming it
into the atomic pair distribution function (PDF), precise local structural informa-
tion can be obtained [7]. In the same manner, by including the diffuse IXS intensity,
valuable information on local dynamics can directly be obtained.

2. Van Hove function
2.1 Definition

After the correction for absorption and normalization, the IXS intensity, I(Q,
E), is reduced to S(Q, E) [8],

SQE) =5 Y J<exp [Q - (1:(0) — 15(0))]) exp <—%t)dt, (1)
L]

where 7;(¢) is the position of the atom 7 at time ¢. It is useful to separate it into the
self-part (i =), S,(Q, E), and the distinct-part (i #j), S,(Q, E).

For isotropic matter such as liquid, we use the spherical average,

S(QE) =4, | S@ By )

where Q = |Q| and Q is the solid angle in Q space. Upon the Fourier transfor-
mation into the time-domain, we obtain the intermediate scattering function [8],

F(Q,t) = JS(Q,E) exp (i%t)dE, 4)

which has been widely used in the analysis of soft matter dynamics [9-11].
Another step of the Fourier transformation, this time from momentum space to real
space, leads to the van Hove function [12],

48



Atomic Dynamics in Real Space and Time
DOI: http://dx.doi.org/10.5772/intechopen.88334

G(r,t) =1+ %JF(Q, t) sin (Qr)QdQ

2mlpor

1 (5)
B W;jé(r— I%(0) — 55(0)]).

Again it is useful to divide it into the self-part, G(7, t), and the distinct-part,
G,4(r, t). Although the van Hove function has been known for a long time, its
experimental determination has rarely been done [13] because it requires S(Q, E) to
be known over wide ranges of Q and E. Only recently it became practical [14, 15]

because of the progress in instrumentation as noted above and discussed below.

In the regular X-ray diffraction measurement, the energy resolution is of the
order of 1 eV, far greater than the phonon excitation energies. Therefore what is
measured is the energy-integrated intensity,

S(Q) = js<Q,E>dE, ©)

which leaves only the same-time (¢ = 0) contribution in Eq. (1). Therefore its
Fourier transform, the PDF,

1
2m2p,r

gr) =1+ j S(Q) - 1]sin (Qr)Q4Q, @

is equal to G(r, 0). In other words the van Hove function describes how the PDF,
the snapshot correlation function, decays with time.

2.2 Evolution with time

At a short time scale (~0.1 ps), atomic motions are ballistic, but after atoms
leave the neighbor cage, they become diffusive. Then the self-term of the van Hove
function in the diffusive regime should be

3
1/ 1 \} 7
Gilrt) = (47[D,~t> P (_ 4D,~t>‘ ®)

Therefore the self-diffusion coefficient, D;, can be determined from the self-part
of the van Hove function. The double Fourier transform of Eq. (8) is

2
5.(Quo) = 2T ©)
w? + (DiQZ)

which can be measured by QES and is routinely used for determining D;. In the
case of quasi-elastic neutron scattering (QENS) from hydrogen, because the inco-
herent cross section of hydrogen is so large, the scattering intensity is totally dom-
inated by S,(Q, w), and the measurement readily yields the value of D;. In general,
however, there can be some contributions from the distinct-part to the low-angle
QES, which can make the measurement inaccurate. On the other hand in the van
Hove function the self-part is cleanly separated, at least initially, resulting in more
accurate determination of D;,.

The decay of the first peak of the PDF with time describes how the nearest
neighbor shell of an atom, known as the first-neighbor cage, disintegrates with
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time. The van Hove function depicts this decay nicely and can relate the time scale
of decay to the topological relaxation time and to viscosity as shown below.

The early prediction on the distinct-part of the van Hove function was that it
could be expressed by the convolution of the PDF by the self-part (Eq. (8)) [16].
Then the QES width should be equal to DQ?, by Eq. (9). But de Gennes noted that
QES becomes anomalously narrow in the vicinity of the first peak in S(Q) [17]. He
suggested that this phenomenon, now known as the de Gennes narrowing, was due
to the collective nature of the dynamics represented by the first peak in S(Q). Since
then it became customary to equate the observation of the de Gennes narrowing to
the confirmation of collective excitations. A recent study [18], however, showed
otherwise. It was found that even in high-temperature liquid, in which atomic
motions are uncorrelated, the decay time of G(r, t) depends linearly on distance. In
general,

X
t(r) =10 + 7 (;) , (10)

1

where 7; is the position of the nearest neighbor peak of the PDF. As shown in
Figure 1, the exponent y depends on dimensionality d approximately as y = (d-1)/2;
thus y = 1 for three dimensions. This is because at large , each PDF peak describes
not just one atomic distance but many. Therefore its decay with time does not
correspond to the single atom dynamics. The number of pairs of atoms in each peak,
N,, is proportional to the surface area, 47/ . Then its fluctuation is proportional to
VN, ~ r@=1/2; therefore y = (d-1)/2. Now the first peak of S(Q) represents the
medium-range part of the PDF, beyond the first peak [19], so its decay is slow,
reflecting the behavior of the PDF beyond the first peak. This argument proves that
the de Gennes narrowing does not necessary imply collective excitations but can be
just the natural consequence of geometry.
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— ' ] w
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Figure 1.

The r-dependent relaxation time ©(r) for model liquid iron in 2D (ved triangle) y = 0.66, 3D (black circle)

X =1.04, and 4D y = 1.45, beyond the first peak. The data points are shown in the form of log{[t(r)-7,]/7,}
versus log(v/r,) to highlight y from the expected power law dependence. The short dashed lines serve as guides to
the eye [18].
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3. Local dynamics of water and aqueous solution of salt
3.1 Van Hove function of water

Figure 2 shows the S(Q, E) of water at room temperature, determined by the
IXS experiment at the beam line XL35 of the SPring-8 facility [14]. Earlier IXS
experiments to observe phonons did not cover the Q space much beyond 1 A™*

[6, 20, 21]. The S(Q, E) is dominated by QES, and as is given it is not easy to garner
useful information without extensive modeling. Converting the data into the van
Hove function makes local dynamics directly visible as shown in Figure 3. Because
hydrogen is almost invisible to X-rays, the van Hove function is dominated by
oxygen-oxygen correlation. To minimize the termination error for stopping the
integration by Eq. (4) at a maximum Q value, F(Q, t) can be extended to large Q

0.06
0.05

0.04

0.03
0.02
0.01
0

2 3 4 5 6 7 8 9
Q(A™)
Figure 2.

The S(Q, E) of water at room temperatuve, determined by the IXS experiment at the beam line XL35 of the
SPring-8 facility [14].
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Figure 3.
The van Hove function of water [14].
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by adding S(Q) exp. (—D(Q)Q%), which is justified for the self-correlation
function [14].

In Figure 3 the data at ¢ = 0 is the snapshot PDF which can be obtained by the
conventional diffraction measurement. Att = co G(r, ) =1, so that G(r, t) - 1
describes the correlation. The decay of the PDF to G(r, o) = 1 is not uniform, with
each peak behaving in different ways. In particular the first peak moves away, while
the second peak moves in, indicating that the local dynamics is highly correlated. As
the nearest neighbor moves away, the second neighbor comes in to take its place to
maintain the coordination unchanged. The area of the first peak above G(r,t) = 1
shows a two-step decay,

A(f) = Age " 4 A", (an

The first term (z; = 0.32 ps) describes the ballistic motion of the atom,
whereas the second term with the temperature-dependent 7, describes the
change in molecular bond. Earlier through molecular dynamics (MD) simulations,
it was found that the time scale of losing one nearest neighbor, 7y ¢, is directly
related to viscosity through 71 ¢ = 7y = #/G, where 7y is the Maxwell relaxation
time, 7 is viscosity, and G, is instantaneous shear modulus [22]. By relating 7, to
71c through simulation (for water 7, = 71¢), this relationship was proven for
water [14, 23].

3.2 Self-diffusion

The portion of the van Hove function near » = 0 describes the self-correlation,
G;(r, t). Indeed it follows Eq. (8) quite well for water as shown in Figure 4 [24].

T ®)
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© 10] E 0 ].Cll .
107 100 T
0.0 0.0 0.2 0.4 0.6 0.8 1.C
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(C) (D)
10% o - 107 4
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2 g E 9 10l
107 T T r— T 10°
0.0 0.2 0.4 0.6 0.8 1.0 0.0
RIA RiA
Figure 4.

The self-part of the van Hove function for water at (A) 285 K, (B) 295 K, (C) 310 K, and (D) 318 K.
(circles) experimental data and (dashed line) the vesult of fitting by Eq. (8).
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However, the values of diffusivity determined from Eq. (8) vary from the values
obtained by other methods [24]. The origin of this discrepancy is yet to be determined.

3.3 Van Hove function of salty water

About 70% of the earth is covered by salty water, and 80% our body is also made
of salty water. Therefore it is important to know how salt affects the properties of
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The van Hove functions around the first-neighbor correlation peak, R ~ 2.9 A: (A) pure water, (B) m = 0.75
mol/kg, (C) 1.5 mol/kg, (D) 2.26 mol/kg, and (E) 3.0 mol/kg. The solid lines at R = 3.21 A show the Ro,_ +
Rei. The dashed line at R = 2.42 A shows the Ro, + Ry, The dash-dotted line at R = 2.8 A shows the

Ro,_ + Ro,_. The range between the dotted lines (R, and R,") was used to calculate the avea, A(t), of the first
neighbor. The upper limit of this range is changed within the gray-shaded avea to estimate the uncertainties [25].
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water, such as viscosity. We studied the local dynamics of aqueous solution of NaCl
up to 2 mol/kg by IXS [24] using the BLX-43 beam line of SPring-8 which has as
many as 24 analyzer crystals. With this setup a dataset similar to that shown in
Figure 2 can be collected in 12 h.

10-1 o
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Figure 6.

Temporal evolution in the avea of the first-neighbor peak, A, (t), and the enlarged view (inset): (open circles)
pure water, (triangles) m = 0.75 mol/kg, (squares) 1.5 Mol/kg, (closed circles) 2.26 mol/kg, and (diamonds)
3.0 mol/kg. The shaded areas represent uncertainties of each dataset. The solid and dashed lines vepresent the
linear combination of time evolution for m = 0 and 2.26 mol/kg [25].
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Figure 7.

One-dimensional profiles of G—s(r,t) for 0 <t < 2 ps and their intensity maps. The molality of sample is
0.75, 1.5, 2.26, and 3.0 mol/kg fmmﬂthe left to the right. The solidn lines, dashed lines, and the dasfl-dotted lines
in the top figures represent R = 3.21 A (Ro,— + Rgy—), R=2.42 A (Ro,— + Rna.), and R = 2.8 A

(Ro,— + Ro,_), respectively.
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Figure 8.
Time evolution of peak height at around R = 3.21 A. the solid line shows the vesult of fitting using two
(compressed) exponential functions (Eq. (12)) [25].

As shown in Figure 5, the height of the first peak of the van Hove function is
reduced by salt. The time dependence of the area of the first peak above G(r, t) = 1,
shown in Figure 6, demonstrates that the addition of salt increases the slow
decaying component. Furthermore it is possible to decompose the van Hove func-
tion to that of the water—water correlation, G,,_, and that of the water-salt corre-
lation, G,,_q,

G(V, t) =wy wGuw-w (V7 t) + wy—sGu (Va t)) (12)

where w;,_, and w,,_ are the X-ray scattering weight for each component. The
salt-salt correlation was neglected because the concentration of salt was low. If we
assume that G,, ., is the same as for pure water, we can determine G,,  from
Eq. (12). As shown in Figure 7, G,,  is almost the same for all concentrations. The
decay of the area of the sub-peak at 3.2 A, corresponding to the Cl-O distance, is
also the same for all concentrations as shown in Figure 8, proving the effect of salt
on dynamics is local.

4, Limitations of the method

For the determination of the van Hove function, the current setup of IXS is
ideally suited to the study of local dynamics in the time scale of 0.1-2 ps and length
scale up to 5 A. The energy resolution (~ 1.5 meV) sets the long-time limit to 2 ps.
The effect of resolution is mitigated by the data analysis, by correcting the inter-
mediate function for resolution,

F(Q,t) = Fabs(Q7 t)/Fres(Q; t): (13)

where F,(Q, t) is the Fourier transformation (Eq. (3)) of the energy resolution
function. However, when F,(Q, t) becomes too small at long ¢, this correction is no
longer sufficient. This represents a severe limitation for the IXS-derived van Hove
function. To go beyond this limit, we have to resort either to neutron scattering
which offers better energy resolution or to develop the method of X-ray photon
correlation spectroscopy (XPCS) with free-electron X-ray laser [26]. At the
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moment, because the method was only recently proven to be feasible, there are
many low-hanging fruits which we are busy collecting.

5. Concluding remarks

As the instrumentation for IXS is improved, it became possible to carry out
many Q-E scans in a relatively short time, covering wide Q-E space. This enables us
to convert the dataset of the dynamic structure factor S(Q, E) into the van Hove
function G(r, t) which describes dynamics in real space and time. This new capa-
bility allows us to visualize local dynamics directly rather than through the model-
ing for S(Q, E). Even though the van Hove function is just the Fourier transform, in
order to determine it, we have to measure S(Q, E) over a wide Q-E space, which
forces us to collect much more information than we normally do. This alone brings
us to a new territory. Furthermore, by visualizing it, we gain much intuition. For
instance, the behavior of the first and second peaks of water shown in Figure 3 was
totally unexpected. Only after seeing it, we understand right away what this means,
but no one would have anticipated it before it is seen. It is fully expected that such
surprises will occur when this approach is applied further to the study of local
dynamics in liquids, glasses, and soft matter in general.
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Chapter 4

Synchrotron Radiation-Based
Quasi-Elastic Scattering Using
Mossbauer Gamma Ray with

neV-Energy Resolution

Makina Saito, Toshiji Kanaya and Ryo Mashita

Abstract

Gamma rays of energy 14.4 keV from excited >’Fe nuclei show a very narrow
energy width of 4.67 neV by the Mdssbauer effect. Méssbauer gamma rays are
utilised as probe beams in unique quasi-elastic scattering spectroscopy with neV-
energy resolution. The technique enables measurements of atomic/molecular
dynamics on timescales between nanoseconds and microseconds for various con-
densed matter systems, such as supercooled liquids, glasses and soft materials. The
microscopic dynamics is measured in time domain or energy domain based on
synchrotron radiation using a time-domain interferometer or a nuclear Bragg
monochromator, respectively. We introduce state-of-the-art spectroscopic tech-
niques, application results and future perspectives of quasi-elastic Méssbauer
gamma ray scattering based on synchrotron radiation.

Keywords: Mdssbauer gamma ray, synchrotron radiation, quasi-elastic scattering,
glass transition, slow dynamics

1. Introduction

The recoilless nuclear excitation of a gamma ray and its reversal process of
recoilless gamma ray emission were first reported by Mdssbauer [1]. These phe-
nomena occur in solids when the recoil momentum of gamma rays in absorption
and emission processes is taken up by the whole crystal. Consistently, this physical
phenomenon is referred to as the Méssbauer effect [2]. For >Fe nuclei, the excita-
tion energy to the first excited state is 14.4 keV, whereas the uncertainty width of
the excited state Iy ~ 4.67 neV is relatively very narrow. Therefore, the gamma
rays emitted from the excited >’Fe nuclei by the Méssbauer effect show an energy
E¢~14.4 keV and a natural energy width I'g ~4.67 neV. The photon emitted by the
nuclei is called the gamma ray because it originates at the nucleus. However,
Mossbauer gamma rays have lower energy than gamma rays involved in astronomy
physics and are, instead, closer to the energy range of hard X-rays. In this chapter,
we refer to such gamma rays as Mdssbauer gamma rays. In these cases, the ratio of
the gamma rays’ energy to the natural energy width reaches I'g/Eq ~ 10~ %, indi-
cating that the Mdssbauer gamma rays exhibit very high monochromaticity. The
surrounding electrons affect nuclear excitation energies through hyperfine
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interactions. Therefore, electronic states around the specific Mdssbauer nuclei can
be selectively studied from the measured nuclear excitation energies via the
Méssbauer effect. This spectroscopic technique, known as Méssbauer spectroscopy,
has been widely used for more than 40 elements and 70 nuclear species (referred to
as the Mossbauer nuclear species) to resolve various challenges in the fields of
chemistry, physics, geology and biology [2].

Microscopic dynamics in condensed matter, which do not contain Mdssbauer
nuclear species, have been studied since the 1960s with Mdssbauer gamma rays [3].
In these experiments, the Mossbauer effect is utilised to generate the monochro-
matic gamma rays from a radioactive isotope (RI) source, and a quasi-elastic scat-
tering experiment is performed for some samples [3]. In this chapter, we refer to
the methods as quasi-elastic gamma ray scattering (QEGS) spectroscopy based on
conventional nomenclature, such as inelastic/quasi-elastic neutron/X-ray scattering
though this method has often been referred to as the Rayleigh-scattering of Méssbauer
radiation method. The neV-energy resolution of the gamma rays from *Fe nuclei
allows the dynamics to be measured on timescales of about 100 ns. However, the
measurements require much longer times because gamma rays from RI sources do
not have parallel beams with enough brilliance for the QEGS experiment.

Recently, synchrotron radiation (SR)-based QEGS spectroscopic techniques
using a *’Fe-nuclear Bragg monochromator (NBM) [4, 5] and a time-domain inter-
ferometer (TDI) of >Fe gamma rays [6] have been developed. These methods have
enabled much faster measurements of the atomic/molecular dynamics than RI-
based QEGS spectroscopy, owing to the high brilliance and directionality of the SR
source. To date, alloys, supercooled molecular liquids, polymers, ionic liquid, liquid
crystals and polymer nanocomposite systems have been studied by SR-based QEGS
spectroscopy.

In this chapter, we consider Méssbauer gamma rays from *'Fe nuclei because the
gamma ray is most frequently used for QEGS spectroscopy. The length scales of the
density correlation function currently observable by SR-based QEGS spectroscopy
using TDI range from 0.1 to 6 nm, and the fluctuation timescales vary from few
nanoseconds to sub-microseconds, as shown in Figure 1. The figure demonstrates
how QEGS spectroscopy enables us to study density fluctuations, which are quite
difficult to study by conventional spectroscopies in the microscopic range. Many
unsolved issues are related to these time and length scales, including microscopic
activation processes, which are related to the nature of the glass transition, start to
occur in glass-forming materials in the time and length scales with cooling.
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Figure 1.
Various experimental techniques and the covered time and length scales. Quasi-elastic scattering spectroscopy
using gamma rays from >’ Fe covers a unique time- and length-scale region.
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This chapter is organised as follows: In section 2, basic concepts of quasi-elastic
scattering are introduced, and QEGS spectroscopic techniques are explained. In
section 3, experimental results of application studies on several supercooled glass
formers are described. In section 4, we conclude this chapter by describing future
perspectives of QEGS.

2. Quasi-elastic scattering spectroscopy using Mdssbauer gamma rays

In this section, we introduce the quasi-elastic scattering technique using
Mossbauer gamma rays. In section 2.1, basic concepts of the quasi-elastic scattering
technique are described. In section 2.2, we introduce energy-domain spectroscopic
techniques of QEGS using Mdssbauer gamma rays from conventional RI and SR
sources. In section 2.3, time-domain measurement techniques of QEGS spectros-
copy using single-line and multi-line TDI are described.

2.1 Introduction to quasi-elastic scattering

In this scattering process, gamma rays with wavevector k are emitted from the
excited >’Fe nuclei by the Méssbauer effect and Mdssbauer gamma rays impinge on
a sample. The geometry of the resulting Rayleigh-scattering process is shown in
Figure 2, where k' is the wavevector of the scattered gamma rays and g = k' — k is
the transferred momentum vector of the gamma rays to the sample [7]. The elec-
tron density field in the sample can be written as p(r,t) = Zf\il 8(r—mr;(t)), where r
and ¢ are the space coordinate and the time, respectively, N is the molecular number
in the sample and 7; is the centre position of atom i. In the momentum transfer
(wavenumber) space, the density field g(g,) is written as g(q,t) =

SN exp {iq - ri(t) }. Due to atomic/molecular motions in the sample, the gamma
rays transfer energy to the sample and vice versa. In quasi-elastic scattering pro-
cesses, a neV-energy broadening of the gamma rays energy is observed, as shown in
Figure 2. This peak broadening is due to energy transfers that occur at neV-
energies, which are thus much smaller than the incident gamma rays’ energy, for
which we can thus assume |k| ~ |k/|. Consequently, the amplitude of the transferred
momentum is g = 2 |k| sin(@), where 20 is the scattering angle. When the sample
shows disordered structures, as in liquids and glasses, the relevant variable is the
absolute value g rather than the vector q.
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Figure 2.
Schematic picture of the quasi-elastic scattering process of Mdssbauer gamma rays from a sample.
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We introduce the spatial correlation function of the electron density G(r) as
G(r) = (p(ro+7.to)p(ro,to)), where (---) denotes the equilibrium average over z¢
and position 7g, and 7 is a distance. The static structure factor S (q) is defined as its
space Fourier transform S(q) = [ G(r) exp (iq - )dr. For simple monoatomic lig-
uids, the scattering intensity I(g) is related to S(q) as I(q) = N S(q). From this
definition, it appears that the scattering at a given g is mainly caused by atomic pair
correlations roughly occurring over distances 2r/g, in a very simple picture. At
atomic scales, S(g) is obtained via X-ray and neutron diffraction experiments.

We introduce the time and space correlation function G(r,t) =
(p(ro+r,to +1t)p(ro,to)) describing the microscopic structural dynamics. Its g-
domain representation, often called the intermediate scattering function, is
S(g.,t) = [ G(r,t) exp (ig - r)dr and can be measured by neutron spin echo spectros-
copy and photon correlation spectroscopy. The spectral intensity of the scattered
gamma rays at a given q is I(q, E) = NS(q,E), where S(q,E) =
| G(r,t) exp [i(q - v — tE/h)|drdr is called the dynamics structure factor.
Inelastic/quasi-elastic X-ray scattering using meV-high energy resolution mono-
chromators and neutron scattering using triple-axis spectrometers measure S(q, E).
Both S(g, E) and S(g,t) show quantitatively equivalent information for G(r,t).

2.2 Energy-domain spectroscopy of QEGS

In this section, we consider QEGS-based energy-domain spectroscopic tech-
niques using Méssbauer gamma rays from conventional RI and SR sources.
Figure 3a shows the common experimental design of the technique [8, 9]. In the
setup, monochromatic Méssbauer gamma rays impinge on the sample. The quasi-
elastic broadening of the scattered gamma ray’s energy is analysed by the *'Fe-
Mossbauer absorber, as explained below. As Figure 3b shows, S(g, E) is observed as
a transmittance-type spectrum I(q, E), which is conceptually written as
I(q,E)x1— [dE'S(q,E')R(E — E'), where R(E) is the resolution function.

2.2.1 RI-based QEGS spectroscopy: Rayleigh-scattering Missbauer radiation

Rayleigh-scattering Mossbauer radiation (RSMR) spectroscopy is a conventional
QEGS spectroscopic technique that uses RI as the source of the gamma ray probe.
RSMR spectroscopy has been used to study microscopic dynamics in glass formers,
proteins and liquid crystals as summarised in a review by Champeney [8]. In this
method, monochromatic Mdssbauer gamma rays (e.g., from a radioactive *'Co
source with an energy Eq of 14.4 keV and an energy width of 4.67 neV) are sent to
the sample. A broadening of the energy width of the quasi-elastically scattered
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Figure 3.

Energy-domain QEGS experimental setup and typical spectrum. (a) Schematic figures of QEGS experimental
setups for energy-domain measurement and (b) energy spectra of the resolution function (solid line) and QEGS
energy spectra in the presence of measurable dynamics (dashed line).
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gamma rays from a sample is detected by an absorption spectroscopy method
commonly used in Méssbauer spectroscopy (Figure 3a). A transmittance-type
energy spectrum is obtained by scanning the velocity v of a movable >’Fe gamma
ray absorber with a single-line excitation profile. The absorber acts as the energy
analyser, since its velocity determines the relative energy shift E = Eqv/c via the
Doppler effect, where c is the speed of light. RSMR measurements require ample
measuring time (at least several weeks) to obtain a spectrum with enough statistics
for analysis because the RI source emits gamma rays in all directions, and limited
flux is introduced to the sample.

2.2.2 SR-based QEGS spectroscopy using > Fe-nuclear Bragg monochromator

The QEGS-based energy-domain spectroscopic technique using an SR source
was developed with the >’Fe-NBM [4, 5]. NBM is used for a specific condition, in
which conventional X-ray diffraction by electrons is forbidden, while nuclear reso-
nant diffraction with nuclear excitation and deexcitation processes is allowed. In
such cases, we can detect almost pure Mdssbauer gamma rays on a 10 neV-energy
width scale due to the specific Bragg angle selectively from a very intense incident
SR. Therefore, the SR-NBM system is often called as synchrotron Mdssbauer source
[10]. The SR-based QEGS experiment has higher efficiency than conventional
RSMR using RI because the monochromatic gamma rays from the NBM exhibited
high directivity [10]. Moreover, the energy width of the Mdssbauer gamma ray
probe could be controlled to be much larger than the natural-line width (i.e., up to
peV) [11]. This unique characteristic of SR-based QEGS spectroscopy using NBM
allows us to measure microscopic dynamics up to sub-nanosecond timescales.

2.3 Time-domain measurement of QEGS

The time-domain spectroscopy of QEGS is achieved using TDI. In this section,
we introduce time-domain spectroscopic techniques.

2.3.1 SR-based QEGS using single-line TDI

The measurement principles of QEGS using the simplest TDI (usually referred to
as single-line TDI) are described here. We discuss TDI using Mdssbauer gamma rays
from *’Fe because it exhibits the highest utility among nuclear species potentially
available for TDI. Figure 4a shows the schematic experimental setup [6, 12, 13].

First, we consider the nuclear forward scattering (NFS) case, which often pro-
vides a calibration for the QEGS measurement because it is not affected by the
dynamics of the sample. In the upper panel of Figure 4a, we show the experimental
design for the NFS experiment using TDI. The incident SR crosses two identical
materials with a single-line >’Fe nuclear excitation profile corresponding to the
nuclear time response function G(z) ultimately detected by the detector. Most of the
SR beam crosses the >’Fe materials without any interaction. A small portion
(typically ~10°) of SR excites the *’Fe nuclei in the materials, causing the gamma
rays to emit when the excited >’Fe nuclei decay. The gamma rays travel undeflected
towards the forward detector because of the high directivity inherited from the
incident SR. The gamma rays can be distinguished from the much more intense SR
because they are delayed from the SR pulse by a typical delay time coincident with
the lifetime of the excited > Fe nuclei (~100 ns). The upstream material is moved
with a constant velocity to change the relative nuclear excitation energy AE through
the Doppler effect and consequently the energy spectrum of the gamma rays at the
detector position shows two peaks due to the difference in the gamma ray energy
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Figure 4.
NFS and QEGS using single-line gamma rays TDL. (a) Experimental setups and examples of (b) energy spectra
and (c) time spectra for NFS and QEGS using single-line TDIL.

between the two materials (see the upper panel of Figure 4b). The time resolution
of the detector is typically 1 ns, which is much shorter than the lifetime of excited
>’Fe, which enables to measure the time spectrum of the delayed gamma rays with
high precision. The upper panel of Figure 4c shows the corresponding time spec-
trum. We can see the decay of the gamma rays’ intensity on the timescale of excited
*’Fe. On the time spectrum, there is a beating pattern caused by the interference of
the gamma rays with two peaks in the energy spectrum.

Next, we consider the QEGS case, corresponding to the scattering of the sample
at a finite angle. In the lower panel of Figure 4a, we show the QEGS experimental
design. The incident SR is scattered by a sample and detected by the detector. Two
identical materials with a single-line *'Fe nuclear excitation profile are placed on the
beam path in front of and behind the sample. This system is called the single-line
TDI because each material that emits gamma rays (here, referred to as single-line
emitter) shows a single-line nuclear excitation profile. A typical energy spectrum of
gamma rays at the detector position is shown in the lower panel of Figure 4b. The
gamma rays from the upstream emitter (denoted as ‘up’ in Figure 4b) are quasi-
elastically scattered by the sample and the energy width is broadened as I". How-
ever, the energy width of the gamma rays from the downstream emitter (denoted as
‘down’ in Figure 4b) is not broadened because it is emitted by the sample after the
scattering process.

Next, we considered the time spectrum of the gamma rays obtained by the
detector for the QEGS case. When the energy shift is sufficiently large
(AE>I'pand AE > I'), the radiative coupling effect can be neglected [6, 12, 13].
Additionally, we can assume that the incident SR showed a temporal pulse structure
with negligible width. In such cases, the electric field E(g,t) at detector position at
an angle corresponding to g can be written as

E(q.t) x6(t) +g(q.t)G(t)e +¢g(q,0)G(r) M

where wq = AE/# is the angular frequency of the beating pattern. We ignored
the coefficient of the transmittance because it does not affect the final spectrum
shape. The first, second and third terms of Eq. (1) represent the electric field
amplitudes of the prompt SR, gamma rays emitted from the upstream and down-
stream emitters, respectively. The delayed gamma rays’ measurement for part of
the obtained time spectrum I(q,t) is written as

I(q,t) < |G(2)|*S(q) [1 + (g, t) cos (wqt)]. @)
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In Eq. (2), S'(q, t) is the intermediate scattering function normalised by S(q),
that is, S'(q,t) = S(q,t)/S(q) and the static structure factor S(q) is S(q) =

<|g(q, t)|2> = <\g(q, 0)|2> [6, 12, 13]. We assume that the scattering from a sample

with a macroscopic number of atoms was measured with an acquisition time long
enough to provide a reliable determination of the relevant average ensembles. For an
NFS experiment under the same emitter conditions, the NFS time spectrum is
expressed by Eq. (2) with S(q) = 1and S'(q,t) = 1. Examples of time spectra for NFS
and QEGS cases with a relaxation time 7 of 100 ns are shown in the upper and lower
panels of Figure 4c, respectively. For the actual fitting of the spectra, the time resolu-
tion of the detector and constant background noise would need to be considered.

Next, we considered the meaning of the time spectrum. The broadening of the
gamma rays by an energy width I” reflects the dynamics in a sample. The broaden-
ing induces the distribution of the beat frequency in a time domain and this effect is
seen as the relaxation of the beating pattern with the relaxation time r = 27/I" in the
simplest case. Further consideration revealed that the relaxation time of the beating
pattern coincides with the relaxation time of the density correlation in the sample
(namely, the intermediate scattering function) [6, 12, 13]. This analysis is a basic
interpretation of how the time spectrum reflects the dynamics in a sample. We note
that an intrinsic relaxation of S'(¢,t) caused by an external vibration, for example,
should also be considered for the actual dynamics study.

2.3.2 SR-based QEGS spectroscopy using multi-line TDI

Here, we consider QEGS spectroscopy using multi-line TDI [14]. In this case,
emitters with several nuclear excitation energies are used for TDI. We assume again
that the two emitters show different excitation energies from each other. Generally,
the nuclear time response functions in emitters are different from each other in
multi-line cases. Therefore, we introduce the time response functions for the
upstream and downstream emitters as G1(¢) and G»(t), respectively. In such cases,
we obtain the expression E (q,t) as E(q,t) x5(t) +¢g(q,t)G1(¢) + 2(¢, 0)G,(t) from
Eq. (1). The intensity of the delayed gamma rays can be written as

1.0 <S@{IGIOF + |G +8§(g.0G" (OG0 + GG @]} (3)

As an example of multi-line TDI, we considered a-iron foils as emitters, where the
nuclear excitations are allowed for six different energies without an external mag-
netic field. Figure 5a shows an experimental setup using a-iron emitters. When the
magnetic field is applied to the a-iron foils, as shown in Figure 5a, the transitions
allowed in the two emitters are selected to be different from each other. Conse-
quently, the gamma rays’ energy emitted from these two emitters is different, as
shown in Figure 5b, where the gamma rays from the upstream and downstream
emitters are denoted as ‘up’ and ‘down’, respectively. Examples of the energy spectra
of gamma rays for cases without atomic motion and motion with a relaxation time of
100 ns are shown. Figure 5c depicts the corresponding time spectra. The beating
pattern changes following the decay of S'(¢,t). By introducing the multi-line condi-
tion, the interference beating pattern of the gamma rays on the time spectrum
becomes more complex than the single-line case. However, the incident SR can be
more effectively utilised for experiments and the gamma rays’ count rate increases.
Additionally, it can be shown that the time spectrum changes more drastically,
reflecting the dynamics [14]. These properties of the multi-line TDI greatly improve
the measurement efficiency in comparison to the single-line method.
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Examples of quasi-elastic scattering using multi-line gamma rays TDI. (a) Experimental setup and examples of
(b) energy spectra and (c) time spectra in the cases of no relaxation and t = 100 ns.

2.3.3 SR-based QEGS using TDI considering energy resolution of incident SR

Here, we consider the effect of the energy width of the incident SR on the
gamma rays’ time spectrum obtained by the QEGS experiment. After the first
induced heat load from the Si(111) monochromator, the SR showed a relatively
broad energy profile; an energy width of the eV order could be considered white for
the QEGS system. However, the incident SR is usually further monochromatised by
using a high-resolution monochromator (HRM). This device generates typical
energy widths in the meV range to suppress radiation damage to the system [6,
12-14]. The meV-energy interval is equivalent to or smaller than the energy scale of
phonons in samples. Therefore, a portion of the incident SR transfers a larger
amount of energy to the sample by interacting with the phonons. We found that the
inelastic scattering process affects the intensity ratio of the gamma rays from the
upstream and downstream emitters. Considering this effect, we modify Eq. (3) as

I(q;1) 0<S(q){|G1(t)|2 +1Ga(t)* +8'(q, )[G1" (1) Ga(t) + Ga(t)Ga ™ (8)] — (1 —f u5) le(t)|2}7
(4)

where f - is the factor reflecting the sample dynamics on a meV-energy
scale [14]. It was confirmed that the QEGS time spectrum obtained using TDI
with multi-line gamma rays could be nicely analysed using Eq. (4) [14].
Additionally, we showed that QEGS spectroscopy using HRM originally has two
resolution functions on neV- and meV-energy scales. By using multi-line TDI in
the condition |G (£)]* # |G (t)[, dynamical information, such as the elastic
scattering intensity, can be obtained simultaneously on nanosecond and sub
picosecond timescales [14].

3. Application results of SR-based QEGS using TDI

To date, SR-based QEGS spectroscopy has been used to study glass-forming
molecular liquids [15-19], polymers [20], polymer nanocomposites [21], ionic lig-
uids [22], alloys [23] and liquid crystals [24].
3.1 Microscopic dynamics in glass formers

The general mechanism of the liquid-glass transition phenomenon, which has

not been revealed, has attracted much interest. It is widely accepted that a relaxa-
tion process, known as the o process, is closely related to glass transitions [25-27].
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Therefore, atomic and molecular dynamics of supercooled glass formers have been
energetically investigated to understand glass transitions. The temperature (T)
dependencies of the a-relaxation time and viscosity of some glass formers show
super-Arrhenius behaviour when cooled towards the glass transition temperature
[28]. These behaviours are often fitted by the Vogel-Fulcher-Tammann (VFT) law:
n(T), 7(T) « exp [DTo /(T — T)], where D is the fragility index and T is the Vogel-
Fulcher temperature [25-27]. The slope of this super-Arrhenius behaviour is deter-
mined by the fragility index and its physical origin still has not been fully eluci-
dated; this limitation remains one of the central challenges in studying glass
transitions.

The other challenging task in these systems is understanding the origin of the
dynamical change of the a process, which starts to occur at a temperature of ~1.2 T,
upon cooling, where T, is the glass transition temperature. The changing tempera-
ture is recognised as the dynamical crossover temperature T, [29]. In addition to the
a process, various processes have been observed in relaxation maps, which summa-
rise the temperature dependence of processes in glass formers. Among the various
relaxation processes subjected to a thorough scrutiny, it is worth mentioning the
Johari-Goldstein (JG)-p process, which emanates from the a process in relaxation
maps and, instead, follows Arrhenius behaviour 7(T) « exp [Ea/(RT)] even below
the glass transition temperature, where Ey is the activation energy and R is the gas
constant [30]. Recently, the JG-f process was believed to commonly exist in
supercooled glass formers and relate to the nature of the glass transition mechanism
[27]. The branching temperature of the JG-p process from the o process Ty is
frequently seen near the dynamical crossover temperature 7. This synchronism is
believed to be an intrinsic feature of supercooled glass formers. However, the
dynamical crossover and branching phenomena are far from being understood
fully. Conventional methods, such as dielectric relaxation spectroscopy, do not
provide spatial-scale information on the dynamics, and the o and JG-p processes are
not clearly discerned around T, and T',4. Therefore, T, has been estimated as a
crossing point of the a-relaxation time and an extension of the JG-f relaxation time
by assuming the Arrhenius law [27].

Understanding the microscopic dynamics around T, and T4 is indispensable to
elucidating the glass transition mechanism. SR-based QEGS spectroscopy is a method
ideally suited to understand the microscopic dynamics in deeply supercooled glass
formers around T, and T,; and its evolution towards the glass transition. This tech-
nique enables to measure the atomic/molecular dynamics with specification of its
spatial scale on a nanosecond/microsecond timescale, where the JG-§ process com-
monly occurs [27]. We performed SR-based QEGS experiments using single-line and
multi-line TDI on various glass formers. We introduce the results on o-terphenyl in
section 3.2 and polybutadiene in section 3.3. Additionally, the application results of a
polymer nanocomposite system are discussed in section 3.4.

3.2 Results on o-terphenyl

o-terphenyl (OTP) is widely studied as a model system of glass formers. For
deeply supercooled OTP, it has been reported that a change in the VFT parameters
of the a-relaxation timescale occurs at around 290 K [31]. Additionally, decoupling
of the rotational and translational diffusion coefficients of the tracer molecules [32],
an abrupt decrease of the stretching parameter of the a-relaxation form [33] and
formation of a cusp in the temperature dependence of f,,; [34] have been reported
at 290 K upon cooling. From these observations, 290 K can be recognised as the
dynamical crossover temperature T,. Additionally, dielectric relaxation spectroscopy
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studies have revealed that the branching temperature T3 ~290 K is almost the same
as T, for OTP [35] Again, T should be carefully interpreted because it was esti-
mated by the extrapolation assumption whose validity has not been confirmed.
Moreover, the details of the branching phenomenon of the o and JG-f processes and
the relationship between T and T, are still unclear.

We studied OTP using single-line >’Fe gamma rays TDI for the QEGS measure-
ments [16, 20]. Detectors were placed at angles corresponding to g values shown in
the inset of Figure 6. For analysing the time spectra, we applied Eq. (2) assuming

the Kohlrausch-Williams-Watts (KWW) function f exp {f(t/ o) KWW] for the relax-

ation of §'(g,t), where f is the amplitude of the relaxation, 7 is the relaxation time,
and fww is the stretching parameter. In the obtained QEGS time spectra, the
values of fiyww were determined to be 0.56 (4+0.31) for g values ranging from 27 to
50 nm ™" (265 K), 0.64 (£0.15) for 14 nm ™" (285 K) and 0.66 (+0.25) for 16-

31 nm ' (285 K) [16]. Therefore, we analysed all QEGS time spectra by using a
tixed Pxww of 0.6 [34]. The 7 obtained by fitting was transformed to a mean
relaxation time (t) using the equation (r) = 7 I'(1/fxww)/Pxww> Where I is the
gamma function. In Figure 6, we show the obtained relaxation map with spatial-
scale information of the dynamics as a ¢ dependence.

Figure 6 depicts the temperature dependence of (t). At q = 14 nm ", the
temperature dependence obeys the VFT law, as suggested by the comparison with
best-fitting curve obtained by the least-squares method. The best-fitting VFT
parameters were determined to be D = 3.1(£+0.3) and T = 235(£26) K. We con-
firmed that the obtained (t) values are consistent with reported a-relaxation times
[35]. This agreement suggests that the relaxation observed at g = 14 nm ™" is caused
by the o process.

In the larger ¢ region (18 < q < 42 nm™ "), the temperature dependencies of (t)
were found to obey the VFT law above 278 K, as shown in Figure 6; however, these
data follow the Arrhenius law below 278 K (1000/T ~ 3.6 K™ 1). The turning
temperature of 278 K appears to be independent of ¢ within experimental error. The
obtained (7) values at g = 18 nm " are similar to the JG-p relaxation times obtained
by dielectric relaxation spectroscopy (shown as a dashed line in Figure 6) [31].
Further consideration revealed that the relaxations observed at the large ¢ region
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Figure 6.

Temperature dependence of (t) at typical q values. The solid lines are curves fitted by the Arrhenius and VFT
laws. The inset shows S(q) and corresponding q values of the measurement. The dashed line shows the JG-f
relaxation time obtained by dielectric relaxation spectroscopy.
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below 278 K are mainly caused by the JG-p process [16]. Since the T dependence of
() above 278 K at ¢ = 14 nm ™" is similar to the one observed at larger ¢ values, we
deduce that above 278 K, a-relaxations dominate. Therefore, the temperature of
278 K can be identified as the branching temperature T, at which, at sufficiently
large ¢’s, the main relaxation changes from the a to JG-f type upon cooling.
Furthermore, since JG-f emerges only at large ¢ values (18 < g < 42 nm '), these have
a mainly local character [36-38]. The obtained branching temperate To3~278 K is
clearly different from the one, T,3~290 K, previously obtained from the extrapola-
tion of the JG-p relaxation time. This discrepancy suggests that this extrapolation
method is not appropriate as also shown in Ref. [16]. Additionally, we found a clear
correlation in which: T~ 290 K> T, ~278 K. This relation suggests that the
branching of the JG-f process requires further cooling from the onset temperature
of the a process dynamical change, which is in contrast to previous reports.

3.3 Results on polybutadiene

As mentioned in section 3.2, the nature of glass transition is still not fully
understood despite thorough investigative efforts [39]. In the last three decades,
extensive studies on glass transitions have been performed theoretically, experi-
mentally and by computer simulations. One of the most important experimental
results constructed relaxation time maps of several glass-forming materials [35] by
predicting the decoupling of the JG-p process from the a process. Extensive exper-
imental studies have been performed to reveal the decoupling mechanism using
various techniques such as NMR [40], dielectric relaxation (DR) [41] and neutron
spin echo (NSE) [42-44]. We performed QEGS measurements using single-line
TDI on polybutadiene (PB), which is a typical glass-forming polymer, to decouple
the JG-p process from the o process [20].

The sample used in this experiment was 1,4-cis-trans-polybutadiene (PB),
which is never crystallised because of the microstructure of cis:trans:vinyl = 47:46:7.
The T, determined by differential scanning calorimetry (DSC) was 170 K. The same
QEGS measurements were performed on PB as OTP, and the observed time spectra
were analysed in the same manner as OTP using Eq. (2). In the analyses, we
employed a stretched exponential function with an exponent fgyww of 0.45 as an
intermediate scattering function [42-44].

The average relaxation time (rgww) obtained from the fitting curve is shown in
Figure 7 as a function of the inverse of absolute temperature 1/T at q = 9.6, 15, 21,
27,32 and 39 nm . The average relaxation times (zxww) evaluated from the fitting
curve are consistent with those reported in the literature [20, 40-44]. The viscosity
timescale 7,,(T) of PB is shown as a thick dashed line in Figure 7. This timescale was
derived from the viscosity of the polymer melts via the Rouse model, which con-
nects the viscosity # with the monomeric friction coefficient ¢ through
7,(T) ~ {(T)/T [43]. The temperature dependence here is described by the VFT
law. The temperature of (rxww) atq = 9.6 and 15 nm 3, that is, slightly below and at
the first peak in S(g), shows very similar temperature dependence (the VFT law) to
the viscosity timescale 7,(T'). Therefore, the VFT law was fitted to the observed
(rkww) at ¢ = 9.6 and 15 nm ™. The lines in the figure are the results of the fits at
various ¢ values. The fact that the relaxation times observed atg = 9.6 and 15 nm™
follow the same temperature dependencies as the viscosity timescale suggests that
(tkww) at 9.6 and 15 nm  is dominated by the a process. On the other hand, the
temperature dependencies of (rgxww) at ¢ = 21, 27, 32 and 39 nm ! above the valley
in S(q) are very different from those at 9.6 and 15 nm ™. At temperatures above
~210 K (T,p), it follows the VFT law, whereas it changes to Arrhenius behaviour

1
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Temperature dependence of the mean relaxation time (txww) obtained for PB at q = 9.6 (O, chain line),

15 (@, thin solid line), 21 (U, dotted line), 27 (M, dashed line), 32 (A, two-dot chain line) and 39 (A, thick
solid line) nm and fitting curves given by symbols and lines, vespectively. Thick dashed line represents
temperature dependence of viscosity timescale 7, (T).

below Tg. Here T, denotes the transition temperature. Therefore, the VFT law was
used to fit data above T, at each g, whereas the Arrhenius equation was used for
data below T,3. We thus conclude that the a process occurs above Ty, as suggested
by the corresponding VFT behaviour, and it changes to the JG-p process below T,
similar to what was observed in OTP. The observation here that the a process
changes to the JG-p process at T, above the first peak in S(g) contradicts the NSE
results on PB [44] where no transition was observed in the high ¢ range. It should be
emphasised that this new transition finding at the higher g range can be attributed
to the appropriate time and spatial resolutions of the SR-based QEGS technique for
observing the branching phenomenon.

An extended mode coupling theory (eMCT) has been proposed to account for
hopping processes [45]. This theory predicts a dynamical transition from the o
process to a local, hopping-dominated, relaxation process at T. In other words, this
transition corresponds to the switch of the temperature dependence from the VFT
law to the Arrhenius law. In the eMCT framework, the transition from the a process
to the JG-p process corresponds to the transition from the hydrodynamic continu-
ous motion to the hopping motion. The fact that the transition above the first peak
occurs near T, supports this interpretation. In the present experiment, however, we
observed that the o process persisted even below T (~T,) near the first S(q) peak.
In other words, no transition occurred near the first peak. In this sense, the eMCT
cannot be directly applied to our results.

The question still remains as to why the a process lasts even below T at the first
peak. Richter et al. have intensively studied relaxation processes in PB using NSE
[42, 43] and found that the o process was observed at the first peak in S(q), whereas
the JG-P process was observed at the valley in S(q) as mentioned above. These
results agree with our observations below T,g. The key point of their results is that
the intermolecular interaction is very important for understanding the transition. It
has been demonstrated that the first peak in S(g), the intermolecular correlation, is
the strongest, leading to cooperative motion. However, at the valley, the
intermolecular correlations are weaker than the first peak, and molecules move less
cooperatively or freely. Hence, the cooperative a process is dominant at the first
peak, and the isolated motion or the slow JG-§ process is dominant at the valley.
According to the eMCT, the a-relaxation changes to the JG-f one (hopping process)

72



Synchrotron Radiation-Based Quasi-Elastic Scattering Using Mossbauer Gamma Ray...
DOI: http://dx.doi.org/10.5772 /intechopen.88898

at around T even at the first peak of S(g); however, in our experiment, the «
process was still observed below T (~Tg) at the first peak. This discrepancy must
be due to the strong cooperativity of the relaxation over distances roughly
corresponding to the first S(q) peak, which was not included in the eMCT.

3.4 Results on polybutadiene with nano-silica

Tyre rubber has been continuously developed to improve various aspects of its
performance, such as its grip, fuel consumption and wear resistance, by adding
fillers such as silica nanoparticles and cross-linking agents [46, 47]. However, the
microscopic mechanisms behind these improvements are still not fully elucidated
and a better understanding is needed to further improve tyre products. Many
studies have shown that confined polymer layers around nanoparticles affect the
rubber’s macroscopic properties [48-57]. Molecular-scale dynamics studies have
also revealed that the presence of nanoparticles slows down the microscopic seg-
mental a-relaxation motion and increases its heterogeneity [52, 53]. However, we
still do not have a complete picture of the microscopic dynamics for these systems.
Additionally, the effect of the particle size on the microscopic dynamics has not
been elucidated.

To elucidate the effect of nanoparticles on the microscopic a-relaxation dynam-
ics of polymers, we studied the microscopic dynamics of a polybutadiene (PB) and
silica nanoparticle mixture by SR-based QEGS using multi-line TDI. Two types of
samples were used for this experiment: pure 1,4-PB and 1,4-PB nanocomposites
with silica nanoparticles. Two PB nanocomposites, PB-silica20 and PB-silical00,
were prepared with 20 vol% of silica nanoparticles with average diameters of 20
and 100 nm, respectively. The glass transition temperature T, of pure PB was
determined to be ~180 K and no T, difference could be detected among the three
samples.

Figure 8 shows the obtained wide-angle X-ray scattering (WAXS) profile of the
two nanoparticle samples. From these WAXS results, we confirmed that the posi-
tion of the main peak, mainly reflecting the intermolecular correlation of the PB,
had changed very little and was covered by the g region in the quasi-elastic scatter-
ing measurements (see the bar in the figure). Least-squares fits were performed for
the obtained PB time spectrum using Eq. (4) modelling the normalised intermediate
scattering function with a KWW profile. The value of fxww for pure PB was
determined to be 0.48 & 0.10 at ¢ ~ 14 nm ™', which is consistent with the previ-
ously reported fww value of 0.45 [42]. We obtained 7 by setting fxww to be 0.45
for the pure PB spectra and then calculated the mean relaxation time (r) from
(r)y = 1 I'(1/Pxww)/Prww> where I is the gamma function [42].

Next, for the PB nanocomposites with silica nanoparticles, the polymer dynam-
ics was studied through the analysis of the relaxation time extracted from the
intermediate scattering function, while also considering its non-relaxing component
originating from the stable nanoparticles. For the polymer nanocomposite systems,
it is known that the contribution of the a-relaxation of polymers to the intermediate
scattering function can be treated as a KWW function [48, 49]. Therefore, we used

the function F(q,t) =f(q) exp {f[t/f(q)]ﬂkw""@} + ¢(g) to fit the normalised inter-

mediate scattering function for the time spectra of PB-silical00 and PB-silica20,
where ¢(g) is the contribution of the non-relaxing component. By fitting the time
spectra obtained for PB-silical00 at 250 K, we determined that the contribution of
the non-relaxing component was ¢ = 0.22 4 0.07 at ¢ ~ 14 nm™ ', assuming

Prww = 0.45. We used these values to analyse the time spectra of both PB-silica20
and PB-silical00 because (i) the volume fraction of silica nanoparticles was the
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Figure 8.
WAXS profile obtained for pure PB and PB-Si100 at room temperature, and for PB-silica20 at 270 K. The bar
represents the q region of the quasi-elastic scattering measurements.
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Temperature dependence of the averaged relaxation times obtained for pure PB, PB-silica20 and PB-silica100
at q = 14 nm™". The ervor bars indicate the standard deviations, and the line indicates the a-relaxation times
obtained by dielectric relaxation spectroscopy [58].

same for both samples and the ¢ value could also be assumed to be the same and (ii)
the non-relaxing component of the polymer was found to be negligible in a mixture
of PB and carbon black nanoparticles in the g range of the first peak [48, 49].
Figure 9 shows the temperature dependence obtained for (7). The a-relaxation
times of pure PB obtained by dielectric relaxation spectroscopy (depicted as a line in
Figure 9) demonstrate that our results are consistent with the dielectric relaxation
spectroscopy results [58]. The temperature dependencies of (z) obtained for PB-
silica20 and PB-silical00 also show divergent behaviour, although the VFT param-
eters appear to be different compared to pure PB. At 250 K, the a-relaxation times
obtained at g = 14 nm ™" for PB-silica20 and PB-silical00 were longer than those for
pure PB, and this relation holds true throughout the studied temperature region.
These data suggest that the nanoparticles cause the polymer a-relaxation motion
to slow down. Moreover, the dynamics of PB-silica20 were much slower than
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PB-silical00. Here, the volume fractions of silica nanoparticles in the PB-silica20
and PB-silical00 nanocomposites were the same, but the PB-silica20 surface area
was on average 25 times larger than the PB-silical00 surface area. Therefore, the
obtained results suggest that the polymer a-relaxation dynamics was restricted by
contact with the surfaces of the nanoparticles and became even more restricted as
the surface area increased. This result is consistent with the conventional idea that
the a-relaxation times of polymers slow down due to interactions (chemical attach-
ment and physical absorption) between the polymer and the silica nanoparticles on
the surface [46, 47]. Additionally, these results demonstrate that QEGS can be used
to reveal the polymer dynamics in nanocomposites and for characterising their
microscopic dynamics; these insights will be important for advancing industrial
materials such as tyre rubber. In the future, investigating the confinement effects of
surface polymers/silica nanoparticles that are more similar to industrial tyre rubber
will yield more specific information about improving tyre performance. The details
of this work can be found in Ref. [21].

4. Conclusions and perspectives

Quasi-elastic scattering techniques using Méssbauer gamma rays are promising
approaches for revealing nanosecond and microsecond dynamics directly from the
microscopic viewpoint. Currently, quasi-elastic scattering systems using the gamma
rays TDI have been developed and utilised for application studies. Additionally, by
using a band-width variable >’Fe-NBMs, we expect that the timescale of measurable
dynamics will be expanded (e.g., up to sub 100 pico-second). Developing tech-
niques that expand the timescales of measurements (i.e., between sub 100 pico-
seconds and sub-microseconds), such as energy-domain quasi-elastic scattering
systems combined with time-domain quasi-elastic scattering systems, is highly
desirable.

Moreover, various new X-ray-based techniques are proposed for studying
microscopic dynamics, based on focusing monochromators [59], or X-ray echo
spectroscopy [60] or free electron lasers (e.g., four-wave mixing experiments) [61].
The combination of these new X-rays (and gamma rays)-based techniques expands
the timescales of the measurements significantly (e.g., from femtoseconds to
microseconds). Future studies will open new methodologies for depicting the
microscopic structural dynamics of condensed matter by X-rays.
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Identification and Quantification
of Phases in Steels by X Ray
Ditfraction Using Rietveld
Refinement

Adriana da Cunha Rocha and Gabriela Ribeiro Pereirva

Abstract

X-ray diffraction has been applied in the investigation of phase formation in steels,
operating in industrial environments. In this work, identification and quantification
of phases by X-ray diffraction and peak fitting, using the Rietveld method, were
employed. In a first scenario, two different types of steels, subjected to abrasive
surface cleaning, suffered contamination from the blasting operation that compro-
mise between 10 and 36% of the blasted surface, as revealed by the quantitative phase
analysis. Such high values of particulates can jeopardize the corrosion protection
offered by posterior coating application. In a second scenario, duplex steels (DS)
subjected to aggressive environments and high temperatures of service went through
phase transformation that formed amounts up to 3.5% of a deleterious phase, known
as sigma phase. This phase compromises the steel mechanical resistance and corrosion
protection, and its quantification is crucial for the assurance of the material integrity.
The quantitative phase analysis (QPA) by X-ray diffraction provided the diagnosis of
forthcoming problems related to the presence of such phases in the investigated steels,
allowing the optimization of techniques and the choice of correct process parameters.

Keywords: X-ray diffraction, steels, Rietveld refinement, phase quantification

1. Introduction

Steel is the most common material used on earth. Applications vary from simple
cutlery to spacecraft parts and are so vast; one finds even hard to list it all. This is
mainly due to the versatility found in this type of iron and carbon alloy, in terms of
physical, mechanical, and chemical properties. Also, when compared to other types
of materials, steels are economically affordable. Therefore, steel has been studied for
many decades and will continue to be so in the forthcoming years. Industrial plants
have most of their equipment made of steel. Applications involving the oil and gas
industry are very demanding in terms of optimizing the use of these steels for high
performance in constant aggressive environments. In this case, the ultimate need is
for steels that can resist both heavy loads and aggressive corrosive environments.

Some new classes of steels, such as the duplex steels, are of very much of interest
nowadays, because of their good compromise between mechanical resistance and
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corrosion protection [1, 2]. As any other metallic material though, they usually
need thermal-mechanical processing in order to be adequate to the different

uses. Thermal-activated processes may lead to the creation of new phases in the
steel—some intentionally promoted, but some not. The knowledge of phase trans-
formations in steels is mandatory to forecast the properties the material will acquire
after such transformations [3]. Because steel has a long of range periodic atomic
structure, with well-defined crystallographic aspects [4], X-ray diffraction [5] is
one of the most important analytical techniques to identify those structures, in
order to understand steel properties.

Lately, the identification and quantification of phases have been upgraded by
many methods of peak refinement. These methods provide a good calculation of
crystallographic parameters, enabling precise measurements to be performed in
different materials. Among those methods, the Rietveld refinement [6] has been
gaining space among crystallographers due to its analytical capabilities. A general
overview of the Rietveld profile fitting and quantitative phase analysis is provided
in the following sections. Then, two specific applications of X-ray diffraction for
steel phase analysis are described. The first case refers to the quantification of
contaminants on steel substrates after jet impingement, aiming corrosion resistance
by organic coatings. The second case is related to the phase transformations occur-
ring in a type of steel used in oil and gas applications, when this material is subjected
to high temperatures due to welding procedures or operation in service. In both
situations, peak refinement is made, for the calculation of crystallographic
parameters and for quantitative phase calculations.

2. Peak refinement and quantitative phase analysis: the Rietveld method

X-ray profile fitting provides important crystallographic information from the
analyzed material. There are several different techniques nowadays, but one of
them, known as the Rietveld refinement method, has many advantages over the
others. In this method, first presented by Hugo Rietveld to refine nuclear and
magnetic structures [6] and lately developed by many scientists [7], least-squares
refinements are carried out until the best fit is obtained between the entire observed
powder diffraction pattern and the full calculated pattern. The quantity minimized
in the least-squares refinement is the residual Sy:

Sy = Z Wi (Yi_YCi)Z (€))

where y; = observed intensity at the i-th step; y,; = calculated intensity at the i-th
step; w; = 1/y;.

The equation model applied for the method (Eq. 2) considers the following
parameters:

* The Bragg reflections contributing to a specific intensity y; at every specific i
point in the whole pattern

¢ A scale factor s

The Miller indices, h, k, 1, for a Bragg reflection, represented by K
* The Lorentz polarization and multiplication factors Lk

* The reflection profile function @
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* The preferred orientation function Py
* The absorption factor A
* The structure factor modulus for the k™ Bragg reflection |Fy]

* The background intensity at the i-th step, yu;

Ve = SZ L|Fk|” @ (26; — 26) PkA + vy, @
K

Quantitative phase analysis using the Rietveld method [8] employs the relative
weight fraction W of each phase p in a mixture of n phases calculated according to
the equation:

n
W, = (s, ZMV)/ > s (ZMV); A3)
i=1
where s is the Rietveld scale factor, Z is number of formula units per unit cell, M is
the mass of the formula unit (atomic mass unit), and V is the unit cell volume (A%).
The following sections will present two specific cases of the utilization of the
Rietveld refinement method with further quantitative phase analysis (QPA). Those
practical cases demonstrate how this methodology was applied for the analysis of
steel parts, addressing the presence of unwanted phases and phase unbalance due
to thermal treatments performed in specific steels.

3. Case 1: abrasive blasting in steel surfaces—addressing contamination
by X-ray diffraction quantitative analysis

Duplex and super duplex steels (DS and SDS, respectively) have been widely
used in oil and gas industries because of their advantages over other steel types in
terms of mechanical properties and corrosion resistance [1, 2]. The harsh environ-
ments where those steels are in service require protection from degradation that
can be found in organic coatings [9, 10].

The coating performance is highly dependent on the surface pretreatment and
the application procedures [11, 12]. Those must be in accordance with standard
documents [13, 14], which include procedures for blast cleaning. Blasting processes
though might affect the coating adhesion and corrosion rate, depending on the
degree of contamination from the abrasive particulate material used, as those par-
ticulates can promote local pH changes and/or galvanic effects [15]. The common
abrasives employed for surface treatment of steels are aluminum oxide and mar-
tensitic steel abrasives due to their high values of hardness. Pulverization of the
grits, however, can lead to undesired particulate depositions over the steel surfaces
(Figure 1), which induce local alkalization, decreasing the protection. Because of all
these factors, substrate contamination needs to be engaged in an efficient fashion,
to avoid damages on the performance of the whole system.

Determination of the inclusion or second-phase constituent, by metallographic
analysis [16], can be used to account for such contamination. However, the tech-
nique can be quite time-consuming. Quantitative phase analysis by X-ray diffrac-
tion though can be used for such task [17-22]. The Rietveld method can provide
very accurate estimative of the relative and/or absolute amount of the component
phases [22-25] and has advantages over traditional internal-standard-based
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| I Metallic Substrate
(d)

Figure 1.
(a, b) Abrasive particles hitting a metal substrate surface and (c) abrasive fragments deposited over the surface.
(d) A real micrographs of a particulate allocated in the valley created by the particle impact in the surface.

techniques. Surface roughness effects can also be considered and compensated by
correction functions, which makes the Rietveld method more interesting to this
type of process.

3.1 Surface roughness corrections

In Rietveld analysis of X-ray powder diffraction patterns, the effect of surface
roughness (SR) of absorbing polycrystalline samples can be a source of systematic
errors [26-30]. The SR effect can reduce the intensity of low-angle reflections and
lead to anomalous low values of refined atomic displacement parameters. Depending
on the degree of SR, the isotropic atom displacement can lead to negative values,
which have no physical meaning. To correct such effects, a SR Suortti Model [31] has
been used to guarantee a higher flexibility in terms of angular ranges.

3.2 Experimental parameters

ASTM A516 G60 carbon steel (CS) and UNS 32760 super duplex steel (SDS)
samples were used as metallic substrates subjected to the blasting process. The
abrasives used encompassed two types of aluminum oxide particulate (sintered
bauxite (SB) and demagnetized alumina (DA)). A D8 Discover Bruker AXS was
the equipment used for data acquisition. The diffraction parameters are listed as
following:

* Radiation: Co Ka (A = 1789 A).

¢ Current and voltage: 40 mA 35 kV.

* Primary optics: Co Gobel Mirror, two slits of 1 mm and 6 mm and a soller slit
with 2 cm x 1 cm aperture.

* Secondary optics: K filter, 8 mm slit, axial soller slit with divergence of 2.5°.
* Detector: point scanning detector—PSD type.

* 20 range = 10° to 110°.

* Step-size: 0.001°.

* Scanning velocity was 0.5 s/step.
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Rietveld analysis was carried out using Diffrac PlusTOPAS (ver 4.2)
software [32, 33].

3.3 X-ray analysis results

Diffraction patterns were obtained for both substrate bulks, prior to the blasting
process, to work as a reference pattern when measuring the degree of contamina-
tion of the samples subsequently analyzed. In the blasted surfaces, a-Fe (ferrite)
[34] was observed in CS substrate, while a-Fe and y-Fe [35] (ferrite and austenite,
respectively) were present in the SDS substrate.

The commercial SB abrasive showed a predominance of phase alpha alumina
(a-Al,0O3) [36] which was verified in the SB abrasive, while the DA abrasive
presented a majority of kappa alumina (x-Al,O3) [37]. Figure 2 presents the
diffraction patterns for the carbon steel substrate before and after abrasive blasting
(a) and for the super duplex steel before and after blasting (b), respectively.

Figure 3 shows the detailed refined scan for the carbon steel substrate blasted
with k-AL O3 from the DA abrasive and a-Al,O; originated from the SB abrasive.
In the same manner, Figure 4 presents the result of the refined scan from the SDS
substrate blasted with k-Al,O3 from the DA abrasive and a-Al,O; originated from
the SB abrasive.

3.3.1 Fitting parameters
The structure refinement functions and parameters are listed as following:

* Chebyshev polynomial of fourth degree [38] and Topas 1/x background
function and (background fitting intensities, ;;)

* Preferred orientation (PO) March-Dollase model [39-41] for calculating the
preferred crystal orientations of a-Fe and y-Fe phases (this is mandatory

especially for processed steel products like ingots, sheets, and pipe sections)

* PO spherical harmonics [42] model of order 6 for the alumina phase

| B8 D4 |

| S04 Sulninpie

L5 Sutwingio 1 . i

Number 1 2 3 4

Phase Fe-a Fe-y o=Ala04 K=-Alx03

Figure 2.
(a) CS substrate after DA and SB blasting and (b) SDS substrate after DA and SB blasting. When blasting is
performed with Al,O; abrasives, one can see contamination by the new peaks introduced to the scans.
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Figure 3.

Carbon steel substrate blasted with (a) DA and (b) SB abrasives. Observed data are indicated by thicker lines
and calculated data by a solid thinner line. The gray lower curve presents the difference (vesidue) between the
observed and calculated powder diffraction patterns.

Zero error (20) sample displacement, absorption (1/cm), and lattice parameters
of the phases were not fixed to provide the best calculated fitting.

3.3.2 Fitting criteria

Fitting criteria is a way to analyze the accuracy and precision of fitting. Based on
the R-weighted pattern (R,;,) and the R-expected pattern (R.), it is possible to
calculate the “goodness of fit,” or simply GOF, to address the calculated values.
Egs. 4 and 5 present the variables used for the calculations for the R-values, which
are then used to calculate the GOF [43-45]:

Ryp = [(Z wi (y;(obs) — y;(calc)) ) (Z wi (y;(obs) )]1/2 (4)
Rexp = [ (Z w1 .(obs)2 )] 1/2 5)

GOF = [(,)/(N — P)]1/2 = Ryp/Rexp (6)

where y; = intensity at the ith step; w; = weighting factor; N = number of
observations; P = number of parameters; obs = observed and calc = calculated.

Table 1 presents the GOF values for each calculation. The calculated values lied
between 1 and 1.5, which is an indication of a satisfactory fitting. Numbers greater
than 1.5 are usually seen as an inadequate model or false minimum, whereas those
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Figure 4.
Super duplex steel substrate blasted with (a) DA and (b) SB abrasives.

Abrasive CS substrate SDS substrate

SB 1.14 + 0.008 1.05 + 0.007

DA 1.13 + 0.010 1.07 + 0.010

MCS 1.09 £+ 0.012 1.06 + 0.010

MSS 1.09 + 0.011 1.06 + 0.011
Table 1.

Fitting criteria for Rietveld calculations: calculated average goodness of fitness for the set of four samples of each
substrate per abrasive.

% a-Fe % y-Fe %A1,03
SB abrasive
Super duplex 38.79 £ 1.84 25.01 £2.13 36.20 £2.92
Carbon steel 79.79 +2.37 * 20.21 +£2.37
DA abrasive
Super duplex 47.31+2.21 36.92 +£ 1.16 15.77 £2.52
Carbon steel 89.56 + 0.59 * 10.45 + 0.59

Table 2.

Quantitative phase calculations results (calculated average and standard deviation for a set of four blasted
samples).

lower than 1.0 show a model that contain more parameters than can be justified by
the quality of the data, as insufficient counting time for processing or high influence
of background, for example.
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Table 2 presents the quantitative phase analysis results for abrasive contamina-
tion in both CS and DSS substrates. 36.20% of the SDS and 20.21% of the carbon
steel blasted area were contaminated by SB particles. When analyzing the DA
abrasive, 15.77% of the SDS area was contaminated, while 10.45% of the CS sub-
strate depicted particle contamination. The higher percentage of contamination on
the SDS substrate can be related with its high values of hardness. The consequences
of such higher particle contamination, for the performance of anticorrosive organic
coatings, can be found in a subsequent work [46].

4. Case 2: ferrite/austenite (a/y) ratio in duplex steels and the
occurrence of sigma phase: quantification of unbalanced phase
formation and precipitation due to thermal treatments on the steel

Super duplex stainless steel (SDSS) is a class of steels that retain two equal
balanced main phases within their microstructure, BCC a-Fe (ferrite) and FCC y-Fe
(austenite). In that manner, this material can combine good mechanical properties
with high corrosion resistance. However, when subjected to welding or to high-
temperature applications, thermal-activated diffusion mechanisms promote the
precipitation of some deleterious phases in the SDSS matrix in addition to creating
an unbalanced volume of ferrite and austenite. The unequal proportions of
ferrite/austenite and the occurrence of phases such as sigma phase (also known as o
phase) can highly compromise the ability of these steels to support loads and to
avoid corrosion, leading to higher rates of degradation. Therefore, it is mandatory
that investigations on thermal cycles are carried on determining the critical time/
temperature values that lead to this kind of phase unbalance.

Previous studies in different classes of duplex steels [47] have identified the
temperature range of 300-1000°C as a critical range for phase transformations.
Therefore, a series of heat treatments, involving different temperature ranges and
time intervals, were performed in a UNS S32750 to study the phase formation in this
specific class of duplex steel and to determine the amounts of ferrite, austenite,
and sigma phase formed after each treatment. For this specific calculation, X-ray
diffraction was displayed as a crucial tool for precise phase quantification in a
specific volume of material. After all the samples were scanned, phase amounts
were calculated using quantitative phase analysis by Rietveld refinement. These
calculations lead to further experimental investigations using nondestructive
evaluation techniques [48].

4.1 Heat treatments for different amounts of phase formation

Samples were cut as 70 mm x 40 mm x 6 mm steel plates. All samples were
submitted to a preliminary solution heat treatment in order to obtain a balance of
approximately 50% of « and y phases. Then, aging treatments were performed to
create the a/y unbalance and the precipitation of sigma phase. Figure 5 shows a
schematic of the heat treatment steps.

The solution heat treatment was conducted as follows:

1. Three samples remained in the as-received condition, i.e., without any heat
treatment for further comparison with the heat-treated samples.

2.The remaining samples were subjected to a solubilization treatment, which
consists of heating up to 1220°C for 1 h, followed by water quenching.
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3.Three of the solubilized samples did not receive any additional aging heat
treatment and remained in the solubilized condition.

4.Then, a group of 14 samples received an additional aging heat treatment to
introduced different fractions of sigma phase. The aging heat treatment was
conducted at 1000°C for different time intervals, followed by water
quenching.

5.Finally, seven samples were heat treated at 1320 and at 1350°C for different
intervals, in order to have high amounts of delta phase but no sigma phase
at all.

4.2 X-ray analysis results

Phase volumetric fractions were measured in nine different regions of each
sample, as depicted in Figure 6. Diffraction parameters used were the same
presented in item 3.2 from this chapter.

As-received Mo solubilization or any
L other type of haat
Condition treatment.

_| 27 samyples _l 3 samples

Saluhilization
Treatment

1 ozul breodoze o fon eoie ceura.
122007 b=l ned B weakar
narnrh ng

[ 23 camples

Aging Treatment 1

Heat treated 3t Mo Aging treatment LAging Treatment 2

1000°C for different P 2 Heat treated at
intorvalsand wator EI] 1320°C and at 1350"C
gquenching, lor dillerenl intervals,
! 14 samples I
7 samples
Figure 5.

Schematics of heat treatments performed in the SDSS samples.

Figure 6.
Schematics of a sample with its nine analyzed points.
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Figure 7.
XRD spectrum for two different conditions. Sample number 18 without o phase and sample number 01 with
3.4% of o phase.

Samples Temperature (°C) Time (min) v phase (%) o phase (%) ¢ phase (%)
01 1000 60 64.0 £2.3 325+£27 34+£1.0
02 1000 45 49.3 £3.0 475+ 3.5 31+0.9
03 1000 22 64.3 + 3.9 32.6 +4.0 3.0+ 0.6
04 1000 45 62.4 + 4.3 348 £4.1 27+0.7
05 1000 25 522+12.1 451+ 115 2.6 £12
06 1000 25 65.1+9.8 31.7+78 24+11
07 1000 5 68.1+79 29.6 +8.2 22+0.7
08 1000 60 61.1+5.0 36.6 + 4.9 21+19
09 1000 20 64.4+ 4.5 33.4 £45 21+0.2
10 1000 20 56.7 £ 6.5 412+ 6.9 2.0+£0.7
11 1000 1 579 +5.5 40.4 +£5.3 1.6 + 0.6
12 1000 1 59.3+71 39.0+71 1.6 £0.2
13 1000 6 68.5 £ 3.6 299 +£3.6 1.5+ 0.4
14 1000 10 61.6 £5.4 37.0£53 1.2+ 0.4
15 As received 47.7 £2.0 522 +2.0 0.0

16 As received 442+ 49 55.7+ 4.9 0.0

17 As received 471+1.6 528+1.6 0.0

18 1220 60 502 +£7.8 49.7+77 0.0

19 1220 60 56.8 +£5.1 431+5.1 0.0
20 1220 60 543 +57 457 £5.7 0.0
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Samples Temperature (°C) Time (min) v phase (%) o phase (%) ¢ phase (%)
21 1320 60 38.8+3.3 61.1+29 0.0
22 1320 60 283 +5.1 71.6 £ 5.0 0.0
23 1320 120 448 £3.0 55.1+3.0 0.0
24 1320 60 362+74 637 +£7.4 0.0
25 1320 240 417 £ 6.9 582+ 6.9 0.0
26 1350 60 344+ 64 657 £6.3 0.0
27 1350 60 405+ 8.7 59.4 + 8.6 0.0
Table 3.

Phase volume contents according to heat treatment temperatures and time intervals.

4.2.1 Fitting parameters

The structure refinement used the fifth-degree Chebyshev polynomial [38] to fit
the background intensities, y;, (according to Eq. 2), as well as the 1/x background
function, from Topas 4.2. a-Fe and y-Fe and sigma phases were fitted to the
preferred orientation March-Dollase model [39-41].

4.2.2 Fitting criteria

The fitting criteria followed the same methodology applied in Case 1, using
Egs. (4)-(6). For every sample, the GOF was within the range of 1.0-1.5.

4.2.3 Phase calculations

Figure 7 depicts two diffractograms—one from a sample containing only ferrite
and austenite and another containing both phases and sigma. QPA (using Rietveld
refinement) was carried on each one of the nine described points for each sample,
generating similar scans to the ones presented in Figure 7. Each scan was then
carefully analyzed and adjusted accordingly to the chosen fitting parameters to
assure a GOF between 1.0 and 1.5, i.e., the best fit possible.

The values obtained for each point were then summed and averaged and the
standard deviation calculated for each sample average. Table 3 presents those
calculated values.

5. Conclusions

X-ray diffraction has demonstrated to be an effective tool for phase analysis in
metallic materials, especially in steels. Because this type of material is the most used
material on earth nowadays, due to its versatility in terms of physical, mechanical,
and chemical properties, knowledge of the phase transformations that might occur
during service and processing is ultimate.

Steel surfaces subjected to abrasive surface cleaning, which suffered contamina-
tion from the blasting operation, and duplex steels subjected to aggressive environ-
ments and high temperatures of service, which experienced phase transformation,
were analyzed by X-ray diffraction using peak refinement, by the Rietveld method.

The refinement method demonstrated that phase identification and quantifica-
tion enabled the diagnosis of forthcoming problems related to the presence of such
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phases in the investigated steels, allowing the optimization of techniques and the
choice of correct process parameters.
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In Situ Titanium Composites: XRD
Study of Secondary Phases Tied

to the Processing Conditions and
Starting Materials

Eva Maria Pérez-Soriano, Cristina M. Arévalo-Mora
and Isabel Montealegre-Meléndez

Abstract

Nowadays, the development of high specific modulus materials involves
studies of new materials and novel manufacturing routes. From the point of view
of composite materials, titanium composites (TMCs) have been long studied for
their interesting properties, as a result of the conjunction of low-density and high
mechanical properties, as well as corrosion resistance. Among various processing
techniques, the in situ reinforced method shows many advantages above the rest. The
reactions between matrix and reinforcement drive up the final properties of TMCs.
Varying the processing conditions, in addition to reinforcement type and content,
significant variations are expected in TMCs’ behaviour. In this regard, the present
study draws on previous author works. The specimens studied were manufactured
by hot consolidation processes, inductive hot pressing (iHP) and direct hot pressing
(DHP), at different operational parameters and compositions. X-ray powder
diffraction (XRD) investigations tied formations of secondary phases to substantive
changes in TMC behaviour under the influence of the fabrication parameters.

Keywords: XRD analysis, titanium composites, secondary phases, in situ reaction,
matrix strengthening

1. Introduction

Over the last decades, investigations about composite materials have made
great advances in understanding the importance of the starting materials and the
manufacturing process, for the development of novel materials with outstanding
properties [1]. In this regard, in the field of metal matrix composites, research
studies have been conducted to achieve optimal bounding matrix reinforcement,
improving the strength of the metal matrix composites (MMCs) [2]. Light metal
matrix composites are valued, particularly in certain applications where low density
should be balanced with mechanical requirements [3]. In particular, titanium
composites (TMCs) offer these advantages over other light metal matrices [1, 4].
Their good corrosion behaviour and high specific properties make TMCs one of the
most suitable candidates for aerospace applications [5].
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Several authors have described several classifications of these materials. One of
these classifications could be considered based on the kind of reinforcements: con-
tinuous or discontinuous reinforcement [6, 7]. Other classifications could be done
according to the manufacturing route: traditional methods or powder metallurgy
techniques [8-12]. An interesting route to promote the strengthening of the matrix
is the “in situ” formation of secondary phases. This method allows a clean and well
bounding between the matrix and the reinforcement [9]; consequently, better final
behaviour of the TMCs may be expected [13, 14].

On the basis of previous and recent studies, this work focuses on TMCs which
were manufactured employing discontinuous ceramic reinforcement. These
ceramic phases were selected according to their reactivity with the titanium matrix.
Many authors show the great variety of ceramic reinforcements; however, in this
investigation TiC, TiB,, B, and B,C particles were studied. They were considered as
precursors of secondary phase formation by in situ techniques [15-20].

From the manufacturing process point of view, powder metallurgy techniques
of hot consolidation have proved useful at the study of in situ composites [21].
Therefore, for the development of TMCs, inductive hot pressing has been selected
among other manufacturing processes. The experience of the authors in this
technique had led to laying the basis of this study [22-28].

By a thorough analysis of the properties of the produced specimens via induc-
tive hot pressing at different temperatures by the use of several starting material
compositions, specific features of the TMCs could be studied. In this regard, the
employment of the XRD technique is crucial in understanding the reaction phenom-
ena between the matrix and the reinforcement. Furthermore, the behaviour of the
ceramic particles in the matrix could be unpredictable and variable depending upon
many factors; this study is the main objective to analyse the phenomena that could
occur when factors as starting powder composition and processing parameters are
varied and ultimately how these factors affect the final properties of the TMCs.

2. Materials and methods

The interest in understanding the influence of the starting materials on the final
behaviour of TMCs motived the study of three ceramic materials as reinforcements
testing various concentrations in titanium matrices. Hence, for the TMC manufac-
ture, diverse starting blends were prepared. The innovation of this investigation lies in
the phase analysis carried out in specimens made from these blends. The employment
of several operation temperatures and reinforcement typologies and concentrations
allowed for the searching of significant differences, among the fabricated TMCs,
while all these specimens have been processed at similar processing conditions.

The titanium grade 1 employed was manufactured by TLS GmbH (Bitterfeld,
Germany). This titanium powder showed a spherical morphology and D5, below 45 pm.
The four ceramic reinforcements were chosen considering their reactive behaviour in
respect of the secondary phases’ formation in titanium matrices. The supplier for TiC
powder was H.C. STARK GmBH (Goslar, Germany) and for B,C powders was abcr
GmbH (Karlsruhe, Germany), and the company for TiB, was Treibacher Industrie AG
(Althofen, Austria). The characterization of all the powders was carried out to verify
the manufacturers’ data about their size and morphology. The particle size distribution
of the powders was measured by laser diffraction analysis (Mastersizer 2000, Malvern
Instruments, Malvern, United Kingdom); these results are shown in Table 1.

X-ray powder diffraction analysis was done using a Bruker D8 Advance A25
(Billerica, Massachusetts, United States of America) with Cu-K, radiation for the
phase characterisation of as-received Ti, TiC, TiB,, and B4,C powders and studying
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Material Morphology D5 (pm)

Ti Spherical 29.05

TiC Faceted 4.9

TiB, Irregular 4.76

B,C Faceted 63.76
Table 1.

Characteristics of the starting materials.
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Figure 1.
XRD analysis of the starting powders: Ti grade 1, TiC, TiB,, and B,C.
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the phase evolution of sintered TMCs. The reference intensity ratio (RIR) analysis
was performed to semi-quantitatively determine the phases. This method is based
on setting the diffraction data to the diffraction of standard reference materials.
The intensity of a diffraction peak profile is a convolution of diverse factors, being
the most representative of the concentration of the analysed species.

In Figure 1, the X-ray diffraction spectra of the starting materials (as-received)
are shown. Based on the obtained diffraction patterns, these materials consist of
only Ti, TiC, TiB,, and B,C, respectively.

Previously in the TMC consolidation, the raw material blends were prepared
according to the fixed percentages in volume (see Table 2). The mixing procedure
was described in previous authors’ work [28]. Next, the specimens were sintered.
To consolidate the TMCs, a self-made hot pressing machine, inductive hot pressing
(iHP) equipment of RHP-Technology GmbH & Co. KG (Seibersdorf, Austria), was
used. This machine enabled the operational cycle time to be reduced thanks to its
advantageous high heating rate, which in turn is due to its special inductive heating
setup. The prepared powders were inserted in the graphite die; it was lined with
thin graphite paper and a protective coating of boron nitride (BN). The same pro-
cedure and die were used for all the iHP cycles (punch @ 20 mm). Methods based
on this rapid hot consolidation are considered as preferred techniques for in situ
fabrication of nearly fully dense TMCs [29]. In Table 2, the processing conditions
are shown. Likewise, the curves of the process cycle are represented graphically in

Timatrix and Processing parameters

reinforcement

Reinforcement material Volume Temperature Time Pressure

(%] [°C] [min] [MPa]

TiC 10, 20, 30 1000, 1100, 1200 15 50

TiB, 10, 20, 30 1000, 1100, 1200 15 50

B,C 10, 20, 30 1000, 1100, 1200 15 50
Table 2.

Reinforcement percentages and processing parameters.
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Figure 2.

Diagram of the inductive hot-pressing cycle: time vs. temperature and piston displacement.
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Figure 2. The iHP equipment worked in vacuum conditions (5 10~* bar), the cycle
heating rate being 50°C/min. Following the consolidation, the specimens were
dislodged from the graphite die and cut in half vertically.

After a thorough metallographic preparation on the cross section of the speci-
mens, the X-ray analysis and the microstructural study were performed. It was
studied by means of SEM, using JEOL 6460LV (Tokyo, Japan) and FEI Teneo
(Oregon, United States of America). Furthermore, the hardness measurement was
carried out; seven indentations were performed on each specimen, avoiding the
ceramic particles. A tester model, Struers Duramin A300 (Ballerup, Denmark), was
employed to ascertain the Vickers hardness (HV2). An ultrasonic method (Olympus
38DL, Tokyo, Japan) was employed to calculate the Young modulus by measur-
ing longitudinal and transversal propagation velocities of acoustic waves [30].
Archimedes’ method (ASTM C373-14) was set for the density measurement.

3. Results and discussions
3.1 X-ray diffraction analysis and microstructural study

This section has been structured according to the employed reinforcement, in
order to present the results and to perform their discussion clearly and concisely.
Therefore, there have been three subparts taking into account the ceramic materials
used as starting reinforcements in the TMC manufacturing.

3.1.1TiC

The X-ray diffraction spectra of TMCs made from TiC-Ti blends are shown in
Figure 3. Based on the obtained diffraction patterns, these materials consist of Ti and
TiCy phases. On the one hand, the X-ray analysis reveals that there are only Ti and
TiC phases in specimens produced at 1000°C, regardless of whether the highest or
the lowest TiC concentration (vol.%) was used in the starting blend. Likewise, only
TiC stoichiometric phase is detected in specimens made from 10 vol.% of TiC, even
in specimens produced at 1100 and 1200°C. On the other hand, the peak intensity of
the Ti phase decreased; meanwhile, there was an apparition of slight diffraction peaks
of nonstoichiometric TiC phase named TiCy ;. It suggested that there were possible
reactions between the Ti and diffused C from the TiC particles at high concentrations
(20 vo0l.% TiC and 30 vol.% TiC). The intensification of the nonstoichiometric TiC
peaks from 1100 to 1200°C indicates the increase in the volume fraction of this phase,
which can be confirmed by the RIR semi-quantification analysis. The results from
RIR analysis are shown in Table 3. These results may lead to the assumption that the
phenomenon of C diffusion was more significant at the highest TiC concentration
(30 vol.%) and the highest operational temperature (1200°C). In agreement with the
values of the RIR semi-quantification analysis in Table 3, the higher the TiC in starting
materials was used, the higher the TiC phase values in the RIR analysis was detected.

To clarify the distribution of the nonstoichiometric TiC, phases in TMCs,
energy-dispersive X-ray spectroscopy (EDS) analysis was performed. In Figure 4,
the EDS result revealed that there were concentration gradients between the centres
of the TiC particles and the matrix. This clearly demonstrated the value of the
temperature and the starting material compositions as influencing factors in the
final behaviour of the TMCs. Moreover, it can be observed from Figure 4 that C
was diffused in the region, which is rich in titanium. This is in accordance with the
slight displacement of the Ti peaks in the TMC patterns when the specimens were
consolidated especially at 1200°C.
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Figure 3.
XRD patterns of TMCs reinforced using (a) 10 vol.% of TiC, (b) 20 vol.% of TiC and (c) 30 vol.% of TiC.

Temperature (°C) vol.% Ti (%) TiC (%) TiCo¢7 (%)
1000 10 97.8 22
20 96.3 6.4
30 88.5 11.5
1100 10 96.9 31
20 91.9 81
30 844 15.6
1200 10 94.6 36 1.8
20 914 8.6
30 81.0 19.0
Table 3.

Reinforcement percentages and processing parameters.

From the microstructural point of view, there were several differences observed in
the specimens, which depended not only on the processing temperature employed but
also on the starting reinforcement concentration. In this regard, the lower the concen-
tration of TiC (10 vol.%), the fewer the pores observed in the TMC microstructure.
Moreover, some agglomerations of the TiC particles could be clearly appreciated in
specimens made from the blend with 30 vol.% of TiC; there are little pores observed
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Elements [Atomic %]
’ Spots Ti C
1 60.94 39.06
b 2 51.36 48.64
3 85.51 14.49

T |

Figure 4.
On the left, SEM image of TMCs processed at 1200°C, with starting TiC composition of 20 vol.%. On the right,
EDX analysis of three spots on the cross section of such TMC.

Figure 5.
SEM images of TMCs made from composition of 30 vol.% of TiC hot consolidated at (a) 1000°C and
(b) 1200°C.

in the centre of these ceramic particles’ agglomerations in the titanium matrices
(Figure 5a). The pores tended to close with the increase in temperature. In line with
the diffusion phenomenon mentioned above, a possible reason for the porous reduc-
tion may be the diffusion of the C element and, consequently, the formation of TiCy
phases. Furthermore, the cited pores could also be caused by material removal during
the metallographic preparation, which suggested that major bonding between TiC
particles and the matrix decreases the material removal. It indicates that the reaction
between the C sourced by TiC particles and Ti from the matrix involved a strong
interfacial bonding. Therefore, the rising of the temperature benefited, and it was
very useful to obtain major densification. It is worth noting that the reinforcement
agglomeration could be a problem as a barrier for affecting the diffusion phenomenon
and the interfacial contact. For that reason, the pores are only observed in the centre
of the mentioned agglomerations (see Figure 5).

3.1.2 TiB,

Figure 6 shows the XRD patterns of the TMCs reinforced with TiB, particles. In
this respect, particular attention will be devoted to the existence of peaks of Ti;B4,
while there was an increment of the temperature from 1100 to 1200°C. Likewise, it
can be seen that the XRD patterns of the specimens produced at 1000°C only con-
tain strong diffraction peaks of TiB, phase and slight diffraction peaks of TiB phase.
The Ti;B, peaks appear independently of the starting TiB, concentration (vol.%),
being only related to the processing temperature (1100 and 1200°C).

Table 4 shows the semi-quantification analysis of the TMCs reinforced by TiB, par-
ticles. As many authors describe [9, 12, 13, 16, 19, 22, 29], there are reactions between B
from TiB, particles and the Ti matrix, resulting in the in situ TiB phase. Thus, it would
be expected that the percentages of in situ TiB phase were proportional to the initial
composition of TiB, in the starting blend. However, observing the values presented
in Table 4, the key parameter was the temperature instead of the concentration,
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Figure 6.
XRD patterns of TMCs reinforced in the stavting blend with (a) 10 vol.% of TiB,, (b) 20 vol.% of TiB,, and
(¢) 30 vol.% of TiB,.

Timatrix and TiB,
Temperature [°C] vol.% Ti (%) TiB, (%) TiB TisB4 (%)
1000 10 913 4.7 4.0
20 78.2 19.0 2.8
30 68.3 281 29
1100 10 90.2 41 39 1.8
20 779 12.0 6.8 33
30 65.0 24.8 74 2.8
1200 10 88.5 2.5 6.2 26
20 76.7 39 12.3 71
30 729 35 209 34
Table 4.

RIR semi-quantification analysis of TMCs made from Ti-TiB, blends, manufactured at different temperatures
(by iHP).
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promoting the apparition of TiB as in situ formed phase. Owing to the rising tempera-
ture, the diffusion mechanism was driven by the temperature increments of 100°C
(from 1000 to 1100°C and from 1100 to 1200°C). The highest temperature (1200°C)
played a major role in the formation of TiB, independently of the operational tempera-
ture. Obviously, at the same temperature, there was more TiB detected in specimens
made from starting powder with the higher TiB, composition (30 vol.% of TiB,).

Microstructural study of these TMCs confirmed the visual existence of the in
situ TiB, phases. Moreover, some pores were detected in areas where the TiB, par-
ticles were slightly agglomerated. As mentioned in the results of the microstructural
analysis of TMC reinforced by TiC, phases, the referred pores were located in the
centre of particle agglomeration. The higher the concentration of particles and the
lower the operational temperature, the more significant the apparition of pores in
the TMCs. In Figure 7, the commented pores can be recognized.

The influence of the temperature was relevant once again to close these pores,
as in similitude with the TiC. Many studies [31] attempted to show the importance
of strong bonding between the matrix and the TiB, phases; the no contact between
the reinforcement and the matrix, in addition to the inappropriate processing
temperature, inhibited the formation of in situ secondary phases. By increasing the
operational temperature, improvement in the diffusion phenomenon was expected.

SEM images of the microstructure of TMCs processed at 1100°C are shown in
Figure 8. The results about homogenous distribution and increase in the volume of
reinforcements in the Ti matrix are in accordance to the RIR analysis. In Figure 8a,
the reinforcements on the matrix can be easily recognized. Observing the micro-
structural evolution by increment of the composition, the smaller TiB, particles
were surrounded by the in situ formed phases when the starting composition of
TiB, was the lowest. However, in Figure 8c, coarse TiB, particles were also sur-
rounded by phases with minor size.

Figure7.
SEM image of TMC reinforced with 30 vol.% of TiB, particles consolidated at 1000°C.
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Figure 8.
SEM images of TMCs processed at 1100°C with different percentages of TiB, in the starting blends:
(a) 10 vol.%, (b) 20 vol.%, and (c) 30 vol.%.
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Figure 9.
SEM image of TMC with 10 vol.% of TiB, in the starting blend, processed at 1200°C.

The rising in temperature was crucial for reactions between the matrix and the
TiB, particles. At 1200°C, there were major diffusion of B through the matrix and
more formation of the in situ TiB, phases. Figure 9 shows two different areas on
a cross section (iHP at 1200°C), where the B distribution varied considerably; the
darkest region in the centre corresponds with the highest concentration of B. It
suggests that the dark grey areas were originally the TiB, particles, which were sur-
rounded by the in situ TiBy phases.

3.1.3B,C

The use of B,C offers considerable scope for diversification and development
of in situ secondary phases (TiC and TiB). Hence, a wide range of studies intended
to demonstrate the suitability of B,C as a source of B and C for in situ secondary
phases, owing to its reactive behaviour with the Ti matrix. The B4C particles can
trigger reactions whose products contribute to enhance the TMC properties. In this
regard, TiC and TiB phases may expect to be observed and analysed in this type of
TMCs. Figure 9 shows the XRD patterns of the TMCs reinforced with B,C particles.
It can be verified that the highest temperature of the iHP process and the holding
time (15 minutes) were insufficient for a full reaction between the boron carbide
particles and the titanium matrices, even at the lowest concentration of B,C. Thus,
this fact occurred independently of the starting compositions, confirmed by the

Timatrix and B,C

Temperature [°C] B,C vol.% Ti (%) B4C (%) TiB (%) TiC (%)

1000 10 922 57 1.6 0.5
20 86.4 10.8 1.8 1.0
30 78.0 183 22 15

1100 10 90.6 57 2.7 1.0
20 81.2 10.3 6.5 2.0
30 733 179 6.5 23

1200 10 89.0 4.9 5.0 11
20 80.6 10.0 7.0 23
30 64.4 171 14.3 4.2

Table 5.

RIR semi-quantification analysis of TMCs made from Ti-B,C blends, manufactured at different temperatures
(by iHP).
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existence of peaks related to the boron carbide. Likewise, there were observed peaks
matching TiB and TiC patterns.

The intensification of TiB and TiC peaks from 1000 to 1200°C reflects the
increase in the volume fraction of these phases, which can also be seen in the RIR
analysis shown in Table 5.

The microstructural study shows the homogenous dispersion of the B,C particles
in the matrix. In this context, there were no agglomerations visually detected. This
suggests that there was no porosity related to particles agglomerations as commented
previously in TMCs reinforced by TiB, and TiC. It could be considered as an advantage
of the B,C as reinforcement in comparison with other ceramic particles. Figure 11
shows TMCs processed at the same temperature with different B,C percentages.

Regarding the processing temperature, there were significant differences related
to the reaction between the matrix and the B and C from the B,C particles. At the
lowest temperature (1000°C), the formation of the in situ TiB and TiC phases was
proportional to the starting content of B,C. Employing 10 vol.% of B,C, small pro-
portions of in situ phases were detected (see Table 5). However, increasing the tem-
perature to 1100°C and using 10 vol.% of B,C, the percentage of in situ TiC phase
doubled its value, also, by the employment of 20 and 30 vol.%. This is in agreement
with the intensity of the peaks of this phase in the TMC patterns (Figure 10). As
expected, the major in situ formation of secondary phases took place at 1200°C.

Figure 12 reveals how the in situ phases surrounded the B,C particles, being a reac-
tion layer clearly defined. Obviously, the higher the starting B,C composition, the more
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Figure 10.
XRD patterns of TMCs reinforced in the stavting blend with (a) 10 vol.% of B,C, (b) 20 vol.% of B,C, and
(¢) 30 vol.% of B,C.
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Figure 11.

SEM images of TMCs produced at 1000°C with (a) 10 vol.% of B,C, (b) 20 vol.% of B,C, and (c) 30 vol.% of B,C.

Figure 12.
SEM images of TMCs produced at 1200°C with (a) 10 vol.% B,C, (b) 20 vol.% B,C, and (c) 30 vol.% B,C.
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Figure 13.
Hardness (HV2) and Young modulus values vs. operational temperature of the TMCs made from the different
blends.

the formation of in situ phases. Regardless of the starting compositions, the morpholo-
gies of the in situ phases TiC and TiB are similar to the ones observed previously. On
the one hand, there were precipitates with the particular whisker shape of TiB in the
matrix. On the other hand, the presence of TiC can be seen as globular precipitated;
both in situ phase morphologies have been wide and thoroughly studied [32].

3.2 Physical properties of the TMCs.

The relative density of the specimens was around 99.5% in the majority of the
specimens, even in those whose microstructures had a few pores. It means that the
processing parameters were suitable to achieve full densification.

As expected, the highest values of hardness and Young modulus were recorded
in specimens whose starting blends were made from the highest ceramic particle
contents. Figure 13 shows a comparison of the hardness and Young modulus values
of the TMCs produced at the three processing temperatures (1000, 1100, and
1200°C) and using the three compositions (10, 20, and 30 vol.%).

The operational temperature contributed to enhancing the hardness and the
Young modulus; however, its influence varied depending on the type of ceramic par-
ticles employed in the starting blend, as reflected in Figure 13. TMCs reinforced by
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TiB-TiB, phases showed the highest hardness measured. This development is closely
related to the content of in situ formed TiB. Although there was also in situ formed
TiB in TMCs made from blends with B,C particles, the maximum percentage formed
(14 vol.%) in these specimens was lower than in TMCs made from the blend with
TiB, (20 vol.%). In both cases, the TMCs were processed at 1200°C and 30 vol.%. In
similar conditions, the highest Young modulus was also observed in TMCs reinforced
with TiB-TiB, phases, in agreement with the commented results above.

In specimens made from blends with TiC, the main variation was only caused
by the addition of more TiC content. Hardness and Young modulus values hardly
increased by temperature, despite the diffusion of the C in the matrix and the
TiC0.67 formed.

Contrary to common thinking, the B,C reinforcement did not behave as the
best precursor of in situ phases. Consequently, the expected properties may vary
from the obtained values of hardness and Young modulus. The TiC and TiB formed
were slightly lower than the in situ TiB formed in TMCs with TiB,. That means
that the diffusion of B alone was major and the C could decelerate such diffusion.
Furthermore, it should be highlighted that in specimens made from B4C, the values
of hardness and Young modulus showed a wide standard deviation. This could be
related to the in situ formed precipitates and their dispersion in the matrix.

4, Conclusions

The conclusions of the current study which analyse the influence of the starting
materials and operational temperature in the TMC properties are drawn:

* Reinforcing the titanium matrix with ceramic materials results in an enhance-
ment of the TMC mechanical properties caused by the formation of in situ
phases.

* XRD analysis states that the diffusion phenomenon of B and C elements into
the matrix increases by the rising temperature; it is becoming increasingly
important in the apparition of secondary phases.

* In evaluating the appropriateness of the operational parameters, the lower
the temperature, the less the reactivity reinforcement matrix. This phenom-
enon was more significant when the concentration of reinforcement was the
lowest one.

* The highest hardness and Young modulus of the TMCs were measured in
specimens reinforced by TiB, particles.

* The densification of the specimens was achieved at the processing parameters
tested.
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