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Preface

It is not exaggerating to state that the subject of chaos has reached nearly every
branch of the natural sciences. It has become common to talk about chaotic weather
patterns, chaotic evolution in population dynamics, and chaos in atomic physics and
chemical reactions. The latter is perhaps a bit surprising at first, since at the atomic
level, physics seems governed by the linear laws of quantum mechanics, while an
essential ingredient of chaos is nonlinearity in the dynamical equations.

The current volume presents seven very good contributions to this area of research.
One of the main contributions of the book is to illustrate the diversity of subjects
that have been influenced by this area of research. Of these seven chapters, there
are four that examine the issue of chaos in nonlinear and dynamical systems. These
look at chaos as it manifests itself in various types of differential equations and
systems of differential equations as well as its impact on mathematics in general.
There is also a chapter that briefly discusses chaos in quantum mechanics. This will
continue to be an important area of research in the future, as experimental tech-
niques have advanced to a level that can be investigated at the atomic and molecular
levels. The final two chapters track the progress of chaos into such diverse areas as
biology and economics.

The book has been assembled out of the hard work of an international group of
invited authors. It is a pleasure to thank them for their work and scientific contri-
butions. I am grateful to acknowledge with much thanks the assistance provided by
Ms. Sara Bacvarova, Author Service Manager, as well as the IntechOpen publishing
group for the opportunity to work on this volume.

Paul Bracken
Professor,

Department of Mathematics,
University of Texas,

USA
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Chapter 1

Introductory Chapter: Dynamical
Symmetries and Quantum Chaos
Paul Bracken

1. Introduction

Chaos and many ideas from the study of this area have permeated a very large
number of areas of science especially those which rely on mathematics. It is hoped
this will illustrate how deeply and powerfully these ideas have influenced such areas
as chemistry and physics.

Nature seems to be far too complicated to be linear at all levels all of the time.
The exact laws of nature cannot be linear, nor can they be derived from such, to
quote Einstein. Quantum mechanics, which is formally linear, is believed to be the
underlying system to understand nature [1–3]. These seemingly conflicting views
urge one to ask whether quantum mechanics can encompass nonlinear phenomena
as well. This question is related to the study of classical nonlinear phenomena [4, 5].
This leads one to wonder about the behavior of a quantum system if the classical
version is chaotic. To understand chaos in quantum mechanics requires a more
rigorous formulation of the fundamental structures of quantum theory [6, 7]. To do
this, one needs to formulate the quantum-classical correspondence, and at present,
such a formulation is lacking.

In classical mechanics a Hamiltonian system with N degrees of freedom is
defined to be integrable if a set of N constants of motion Fif g exist which are in
involution, so the Poisson bracket satisfies Fi;Fj

� � ¼ 0, with i, j ¼ 1,…, N.
When the system is integrable, motion is restricted to an invariant N torus in
2N-dimensional phase space and so is regular. If the system is perturbed by a small
nonintegrable term, the Kolmogorov-Arnold-Moser (KAM) theorem states that its
motion may still be restricted to the N-torus but be deformed. Chaos appears when
such perturbations increase to such a degree that some tori are destroyed, and their
behavior is characterized by positive Lyapunov exponents.

Attempts to investigate quantum chaos have focused on the quantization of
classical nonintegrable systems. Since the former in principle is only a limiting case
of the latter and most realistic quantum systems do not have a classical counterpart,
the latter approach is more general and natural. The classical limit is most often
approached by using Ehrenfest’s theorem, and three popular ways to study the
classical limit are given as follows. The Schrödinger approach is to develop a wave
packet whose time evolution follows classical trajectories, so the time evolution of
the coordinate and momentum expectation values solves not only Hamilton’s equa-
tions but also Schrödinger’s equation. Dirac’s approach is to construct a quantum
Poisson bracket such that the basic structure of classical and quantum mechanics is
placed in one-to-one correspondence. The third approach is the Feynman path
integral formalism, which expresses quantum mechanics in terms of classical
concepts by integrating overall possible paths for a given initial and final state.

The problem may be reviewed based on the axiomatic structure of quantum
mechanics, out of which the quantum dynamical degrees of freedom are defined
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and permit the construction of quantum phase space. This allows us to propose an
idea for what quantum integrability is as well as its relationship with dynamical
symmetry.

Quantum chaos is related to the question of the quantum-classical correspon-
dence at two levels, kinematical and dynamical. The kinematical quantum-classical
correspondence is a kind of reconciliation of the quantum and classical degrees of
freedom and their associated geometrical structures.

Consistency of quantum theory implies there must exist a fundamental structure
which can be used to determine the system’s Hilbert space structure before solving
the quantum dynamical equations. The axiomatic structure of quantum mechanics
implies such a fundamental structure is simply the given algebraic structure of the
system. The quantum mechanical Hilbert space is realized as a unitary irreducible
representation of an algebra denoted as g. For example, the harmonic oscillator is
mentioned described by the Heisenberg algebra h4 and specified by the operators
a; a†; a†a; If g. Here a, a† are creation and annihilation operators for the oscillator.

There is the spin system given by su(2) and spin operators S�; Sþ; S0f g and other
systems such as the hydrogen and helium atoms. The associated covering group
G of g carries a natural geometric manifold, and all representations of quantum
mechanics can be represented on such a geometrical manifold. Consequently, the
kinematical correspondence can be constructed out of the dynamical group
structure of the system, and the general solution is as follows.

A quantum system possesses a well-defined dynamical group G over a Hilbert
spaceH. This can be regarded as an irrep space. The number of quantum dynamical
degrees of freedom of the system is just the same number as the M independent
non-fully degenerate quantum numbers necessary to specify the space H. The
quantum phase space P is realized uniquely on a 2M- dimensional coset space G=H
where H⊂G is the maximal stability subgroup of a fixed state ∣ψ0i∈H of the
system. The coset space G=H and its global properties give a precise realization to
the kinematical quantum-classical correspondence sought after. The fixed state
∣ψ0i∈H is the lowest (highest) weight state of H when G is compact. When G is a
non-compact group, it is the lowest bound state of H.

To see what can be extracted from this statement, consider now some nontrivial
examples. In particular, let us clarify the idea of quantum dynamical degrees of
freedom. The non-fully degenerate quantum numbers are defined by the
nonconstant eigenvalues of a complete set of commuting operators in the associated
basis.

The harmonic oscillator whose dynamical group is the Heisenberg-Weyl
group H4 and Hilbert space is the Fock space with ∣ni as its basis is specified by the
non-fully degenerate quantum number n.

Next consider the spin system whose dynamical group is SU 2ð Þ. In its Hilbert
space, a given irrep space of SU 2ð Þ labeled ∣j, mi, the total spin quantum number is a
constant. The only non-fully degenerate quantum number to specify the basis is m,
and the quantum dynamical degree of freedom is one, as its Hilbert space, which is
an irrep space of SU 2ð Þ often denoted as j j;mf ig, has total quantum number one.

In the central potential problem, the dynamical group is SU 1; 1ð Þ, and its quan-
tum degree of freedom is one. The Hilbert space of SU 1; 1ð Þ is specified by two
quantum numbers k and n. The first is related to angular momentum, and the
second is the principal quantum number. Since the angular momentum is con-
served, the quantum number k is fully degenerate.

The hydrogen atom and the relativistic free Dirac particle are perhaps the
simplest and most realistic both having the dynamical group SO 4; 2ð Þ. For hydrogen
the three quantum dynamical degrees of freedom correspond to three non-fully
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degenerate quantum numbers, the principle quantum number n, angular momen-
tum quantum number j, and z-component m. These label the Hilbert space
completely, jn; j;mf ig.

For the harmonic oscillator, to construct the phase space, the fixed state used is
the vacuum state. The phase space is then H4=U 1ð Þ⊗U 1ð Þ, where U 1ð Þ⊗U 1ð Þ is
invariant with respect to the vacuum. The phase space structure is determined by
coherent state ∣zi of H4=U 1ð Þ⊗U 1ð Þ:

D αð Þ∣zi ¼ ∣zþ αi, D αð Þ∈H4=U 1ð Þ⊗U 1ð Þ:

The phase space is not complicated, just a one-dimensional complex space or
two-dimensional real space.

For a spin system, the dynamical group is SU 2ð Þ, and in an irrep space j j;mf ig,
the fixed state is ∣ j, � ji. The phase space is SU 2ð Þ=U 1ð Þ, and is isomorphic to a two-
sphere, and there is the coherent state:

∣Ωi ¼ D zð Þ∣ j, � ji ¼ exp zSþ � z ∗ S�ð Þ∣j, � ji, (1)

where s� are spin raising and lowering operators. In a geometrical representa-
tion, D zð Þ is

exp
0 z
�z ∗ 0

� �� �
¼

cos ∣z∣
z
∣z∣

sin ∣z∣

� z ∗

∣z∣
sin ∣z∣ cos ∣z∣

0
BB@

1
CCA ¼ xo x

�x ∗ xo

� �
, (2)

where xo is real and x ¼ x1 þ ix2. Unitarity of D zð Þ∈ SU 2ð Þ=U 1ð Þ requires
x2o þ x21 þ x22 ¼ 1, which describes a two-sphere. The phase space is nontrivial, and
canonical coordinates can be obtained from the coherent state basis as

q ¼ ffiffiffiffiffiffiffi
4jℏ

p
sin

θ

2
cosϕ, p ¼ � ffiffiffiffiffiffiffi

4jℏ
p

sin
θ

2
sinϕ:

2. Quenched quantum mechanics

The dynamical correspondence of quantum-classical mechanics is a fundamental
idea which should be addressed. In order to study the resultant singularity struc-
tures which result in a transition to chaos, it must be stated more precisely what this
limit entails. Quenched quantum mechanics suggests a possible origin for a param-
eter which maps out this limit. Instead of considering ℏ ! 0, it involves allowing a
parameter referred to as the quenching index τ, which is dimensionless, to tend to
infinity. In cases where τ turns out to be a fixed parameter, the system does not
possess a classical limit. To understand properties of τ, let us consider the case in
which the associated Lie algebra splits up in the form g ¼ h⊕ k with
h; h½ �∈ h, h; k½ �∈ k, k; k½ �∈ h, where h is the Lie algebra of H and the explicit form of
K z; zð Þ is

K z; zð Þ ¼ det I � Z†Z
� ��τ (3)

In Eq. (3), þ �ð Þ refers to the case where G is compact (non-compact) and Z a
matrix with elements z and τ is related to the matrix element 0jhij0h i with hi ∈ h.
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This gives rise to a geometrical interpretation for τ. This can be seen by looking at
the propagator on G=H.

To study quenched quantum mechanics, the propagator is expressed as

U ¼
ð
Dx exp

i
ℏ
S

� �
: (4)

In Eq. (4), Dx is the integration measure and S is the effective action given as

S ¼ θ �Hdt:

where v is the one-form of G=H and H the expectation value of the Hamiltonian
operator H ¼ H Tið Þ, Ti ∈G, that is,

V ¼ i
ℏ
2

∂lnK
∂zi

dzi � ∂lnK
∂z

dzi
� �

, H ¼ ΩjH Tið ÞjΩh i: (5)

The quantum equations depend on τ. Upon expanding with respect to this
parameter and not ℏ, the semi-quantal equations describing a classical-like system
result. This arises from purely quantum structures and provides a way to achieve a
classical limit:

lim
Q!∞

H ¼ HC ¼ H ΩjHjΩh ið Þ: (6)

This limit may be divergent, since the phase space derived from the quantum
geometry has not been scaled. Scaled canonical coordinates must be introduced to
obtain a convergent limit as

1ffiffiffiffiffiffiffiffi
2τℏ

p qþ ipð Þ ¼ Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Z†Z

p : (7)

Expectation values of observables in coherent states can have correct dimensions
in terms of p and q in such a coordinate system, and the semi-quantal dynamics in
terms of p; qð Þ in (7) is determined by the Hamilton equations:

dqi
dt

¼ ∂ p; qð Þ
∂pi

,
dpi
dt

¼ � ∂ℋ

∂qi
(8)

The difference between semi-quantal dynamics and classical mechanics is called
the quantum fluctuation or correlation H�Hc ¼ f z; z ∗; ηð Þ, which is clearly an
explicit function of η. Once the quantum fluctuation is fixed in a quantum system,
its dynamical evolution is determined by H not Hc.

3. Dynamical symmetry

Let us discuss now some basic concepts related to chaos. One way to proceed is
to study the behavior of quantum systems at the semi-quantal level by explicitly
exploring the dynamical effects of quantum fluctuations on classical chaos. It would
be good to find some general set of conditions which determine without great effort
whether systems become chaotic and when.

The central idea of quantum integrability is dynamical symmetry. Integrability
is a fundamental concept in the study of dynamical systems. Usually, the function
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of symmetry restricts the possible forms of Lagrangian, but not the associated
dynamics.

A quantum systemwith dynamical group G has a dynamical symmetry if and only
if the Hamiltonian of the system can be written in terms of the Casimir operators of
any particular subgroup chain Gα of G: H ¼ f Cα

ki

� �
, where k ¼ sα,…, 1; i ¼ 1,…, lαk.

Here α is fixed and labels the particular subgroup chain, Cα
ki is the i-th Casimir

operator of subgroup Gα
k and lαk the rank of subgroup Gα

k.
Dynamical symmetry is less restrictive on the system than pure, since the Ham-

iltonian and ground state are not necessarily invariant under a transformation of G.
Quantum integrability can be formulated from the classical definition once dynam-
ical degrees of freedom are specified and the quantum-classical correspondence of
dynamics is elaborated. The Heisenberg equation, the quantum dynamical equa-
tion, has a similar structure to the classical dynamical system.

A quantum system with M independent dynamical degrees of freedom and 2M-
dimensional quantum phase space is integrable if and only if there are M quantum
constants of the motion or good quantum numbers. The corresponding constants of
the motion have operators which commute with the Hamiltonian. From the defini-
tion of dynamical symmetry and quantum integrability, it can be shown that a
quantum system with a dynamical group G is integrable if such a system possesses a
dynamical symmetry of G.

Consider the example of an N-independent level system to illustrate the consis-
tency of quantum and classical integrability. Introduce annihilation and creation

operators for the state ∣ii such that ∣ii ¼ b†i ∣0i, ∣0i ¼ bi∣ii and bi; b†j
h i

¼ δij,

b†i ; b†j
h i

¼ bi; bj
� � ¼ 0, . Then the general form of the Hamiltonian is

H ¼
Xn
i, j¼1

Hijb
†
i bj: (9)

The generators of the dynamical group SU Nð Þ are given as Eij ¼ b†i bj, and H is
a linear operator composed of the Eij. From group theory, it is always possible
to assume there is a U Nð Þ transformation such that H ¼ ~H ¼ gHg�1 where
g∈U Nð Þ and

~H ¼
XN
i¼1

~HiiEii: (10)

It follows that ~H and H have the following dynamical symmetry

U Nð Þ⊃ … ⊃C ¼ U 1ð Þ⊗U 1ð Þ⊗…⊗U 1ð Þ, (11)

where C represents the Cartan subalgebra which is defined to be a product of N
factors of U 1ð Þ with the generators Eii. This implies the system is integrable. Con-
sider now the phase space representation of this operator from quenched quantum
mechanics, with phase space representation of Eij:

E11 ¼ N � 1
2

p2 þ q2
� �

,

E1j ¼ 1
2

qj þ ipj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N � p2 � q2
q

j 6¼ 1, E ij ¼ 1
2

qj þ ipj
� �

pi þ iqi
� �

,

E ji ¼ E ij
� �†, i, j 6¼ 1:

(12)
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where

p2 þ q2 ¼
XN
i¼2

p2i þ iq2i
� �

: (13)

The E ij has the same algebraic structure as the Eij, and the Hamiltonian function
is only a decoupled function of p2i þ q2i in quadrature. All of this implies that the
system is integrable, as might be expected on account of dynamical symmetry.

There is an important consequence of the results mentioned above.
Nonintegrability of a quantum system implies breaking of dynamical symmetry.
This means that if chaos is present, dynamical symmetry of the system must be
broken.

To develop this idea, if a system with l-rank, n-dimensional dynamical Lie group
G is nonautonomous, dynamical symmetry breaking implies the system becomes
nonintegrable. For an autonomous system, the energy is conserved, and it becomes
nonintegrable, and this means it is broken such that more than one of the
M≤ n � lð Þ=2 constants of motion are destroyed. It may be asked how much
dynamical symmetry needs to be broken so that perturbative expansions about the
dynamical symmetry basis will not converge.

Let us say that chaos will appear in a nonintegrable system when the breaking of
the dynamical symmetry is accompanied by a structural phase transition. So if a
structural phase transition takes place in a quantum system such that certain control
parameters are altered, then it passes from one dynamical symmetry limit to
another. Different dynamical symmetries connote different toroidal structures in
G=H, so the torus structure must also alter from one to another. Consequently,
dynamical symmetry breaking means that some or even all constants of motion are
destroyed along with the corresponding tori giving rise to chaotic phenomenon.

Let us present a simple model which consists of two-spin coupled system
governed by the Hamiltonian:

H ¼ 1� αð Þℏ S1z þ S2zð Þ þ αh2S1xS2x: (14)

In (14), α is a coupling constant. This system has the possible dynamical
symmetries:

SU1 2ð Þ⊗ SU2 2ð Þ⊃ SO1 2ð Þ⊗ SO2 2ð Þ , ið Þ
SU1þ2 2ð Þ⊃ SO1þ2 2ð Þ : iið Þ

(
(15)

The Hilbert space basis which carries the irreducible representations j1 j2
� �

of
SU1 2ð Þ⊗ SU2 2ð Þ are j j1; j2;m1;m2

� �
: m1 ¼ �j1;…; j1; m2 ¼ �j2;…; j2g and

j j1; j2; j;m
� �

; j ¼ j1 þ j2;…; j j1 � j2j; m ¼ �j… jg for the dynamical symmetry
chains (i) and (ii).

The dynamical symmetries of H are classified as: for α = 0, H has symmetries
(i) and (ii). For α = 1, the system is just in (i). However, when 0, α, 1, dynamical
symmetries are broken. The semi-quantal description can be used to see whether
there has been a structural phase transition in the symmetry breaking phase.
Coherent states are used to state the phase space is S2 ⊗ S2 and given as

∣p, qi ¼ exp
X2
i¼1

ziJiþ � z ∗
i Ji�

� �
∣ j1, j2; � j1, � j2i: (16)
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where the canonical coordinates p; qð Þ are given as

1ffiffiffiffiffiffiffiffi
4jiℏ

p qi þ ipi
� � ¼ zi

∣zi∣
sin ∣zi∣ ¼ sin

θi
2
e�iφi (17)

and p2i þ q2i ≤4jiℏ. The Hamiltonian determined by semi-quantal dynamics is

H ¼ p; qjHj p; qh i ¼ 1� αð Þ 1
2

p21 þ q21
� �þ 1

2
p22 þ q22
� �� j1ℏþ j2ℏ

� �� �

þ α

4
q1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j1ℏ� p21 � q21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2ℏ� p22 � q22

q
:

(18)

Finally, it may be stated that to understand quantum chaos, one has to under-
stand the dynamical behavior of a nonintegrable system when it deviates from the
classical dynamics by taking into account nonvanishing quantum fluctuations. It
may be asked whether the global phase space structure of classical dynamics can
survive when quantum fluctuations are included. There is also the question of what
governs the evolution of quantum fluctuations. It is required to have on hand a
procedure which allows one to obtain the classical limit from a quantum system
when one can only compute the deviations of the dynamics both close to and far
from the classical limit. These deviations provide knowledge as to whether quantum
fluctuations may alter classical dynamics and in what way. This is also deepening
the understanding of the quantum-classical correspondence. Based on this, it may
be asked whether the global phase space structure of classical mechanics can survive
when quantum fluctuations are included and what actually governs the evolution of
quantum fluctuations.
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Chapter 2

Loop-like Solitons
Vyacheslav O. Vakhnenko, E. John Parkes and
Dmitri B. Vengrovich

Abstract

The physical phenomena that take place in nature generally have complicated
nonlinear features. A variety of methods for examining the properties and
solutions of nonlinear evolution equations are explored by using the Vakhnenko
equation (VE) as an example. One remarkable feature of the VE is that it possesses
loop-like soliton solutions. Loop-like solitons are a class of interesting wave
phenomena, which have been involved in some nonlinear systems. The VE can be
written in an alternative form, known as the Vakhnenko-Parkes equation (VPE).
The VPE can be written in Hirota bilinear form. The Hirota method not only gives
the N-soliton solution but enables one to find a way from the Bäcklund transfor-
mation through the conservation laws and associated eigenvalue problem to the
inverse scattering transform (IST) method. This method is the most appropriate
way of tackling the initial value problem (Cauchy problem). The standard proce-
dure for IST method is expanded for the case of multiple poles, specifically, for the
double poles with a single pole. In recent papers some physical phenomena in
optics and magnetism are satisfactorily described by means of the VE. The ques-
tion of physical interpretation of multivalued (loop-like) solutions is still an open
question.

Keywords: nonlinear evolution equations, solutions, Vakhnenko equation,
Hirota method, Bäcklund transformation, inverse scattering problem,
N-soliton solution, spectral data
PACS: 00.30.Lk 02.30.Jr, 05.45.Yv

1. The high-frequency perturbations in a relaxing medium

From the nonequilibrium thermodynamic standpoint, models of a relaxing
medium are more general than equilibrium models. To develop physical models for
wave propagation through media with complicated inner kinetics, notions based on
the relaxational nature of a phenomenon are regarded to be promising. Thermody-
namic equilibrium is disturbed owing to the propagation of fast perturbations.
There are processes of the interaction that tend to return the equilibrium. The
parameters characterizing this interaction are referred to as the inner variables
unlike the macroparameters such as the pressure p, mass velocity u and density ρ.
In essence, the change of macroparameters caused by the changes of inner
parameters is a relaxation process.
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We restrict our attention to barotropic media. An equilibrium state equation of a
barotropic medium is a one-parameter equation. As a result of relaxation, an addi-
tional variable ξ (the inner parameter) appears in the state equation

p ¼ p ρ; ξð Þ (1)

and defines the completeness of the relaxation process. There are two limiting
cases with corresponding sound velocities:

i. Lack of relaxation (inner interaction processes are frozen) for which ξ ¼ 1:

p ¼ p ρ; 1ð Þ � pf ρð Þ, c2f ¼ dpf=dρ; (2)

ii. Relaxation which is complete (there is local thermodynamic equilibrium) for
which ξ ¼ 0:

p ¼ p ρ;0ð Þ � pe ρð Þ, c2e ¼ dpe=dρ: (3)

Slow and fast processes are compared by means of the relaxation time τp.
To analyse the wave motion, we use the following hydrodynamic equations in

Lagrangian coordinates:

∂V
∂t

� 1
ρ0

∂u
∂x

¼ 0,
∂u
∂t

þ 1
ρ0

∂p
∂x

¼ 0: (4)

The following dynamic state equation is applied to account for the relaxation effects:

τp
dp
dt

� c2f
dρ
dt

� �
þ p� pe
� � ¼ 0: (5)

Here V � ρ�1 is the specific volume and x is the Lagrangian space coordinate.
Clearly, for the fast processes ωτp ≫ 1

� �
, we have relation (2), and for the slow ones

ωτp ≪ 1
� �

, we have (3).
The closed system of equations consists of two motion equations (4) and dynamic

state equation (5). The motion equations (4) are written in Lagrangian coordinates
since the state equation (5) is related to the element of mass of the medium.

The substantiation of (5) within the framework of the thermodynamics of irre-
versible processes has been given in [1, 2]. We note that the mechanisms of the
exchange processes are not defined concretely when deriving the dynamic state
equation (5). In this equation the thermodynamic and kinetic parameters appear
only as sound velocities ce and cf and relaxation time τp. These are very common
characteristics and they can be found experimentally. Hence, it is not necessary to
know the inner exchange mechanism in detail.

Combining the relationships (4) and (5), we obtain for low-frequency pertur-
bations (τpω≪ 1) the Korteweg-de Vries-Burgers (KdVB) equation:

∂p
∂t

þ ce
∂p
∂x

þ αec3e p
∂p
∂x

� βe
∂
2p
∂x2

þ γe
∂
3p
∂x3

¼ 0,

βe ¼
c2eτp
2c2f

c2f � c2e
� �

, γe ¼
c3e τ

2
p

8c4f
c2f � c2e
� �

c2f � 5c2e
� �

,
(6)

whilst for high-frequency waves ðτpω≫ 1Þ, we have obtained the following
equation:
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∂
2p
∂x2

� c�2
f

∂
2p
∂t2

þ αf c2f
∂
2p2

∂x2
þ βf

∂p
∂x

þ γf p ¼ 0,

βf ¼
c2f � c2e
τpc2e cf

, γf ¼
c4f � c4e
2τ2pc4e c

2
f
:

(7)

Equation (6) with (βe ¼ 0) is the well-known the Korteweg-de Vries (KdV)
equation. The investigation of the KdV equation in conjunctionwith the nonlinear
Schrodinger (NLS) and sine-Gordon equations gives rise to the theory of solitons [4–13].

We focus our main attention on (7). It has a dissipative term βf ∂p=∂x and a
dispersive term γf p. Without the nonlinear and dissipative terms, we have a linear
Klein-Gordon equation.

Let us write down (7) in dimensionless form. In themoving coordinate systemwith
velocity cf , after factorization the equation has the form in the dimensionless variables

~x ¼
ffiffiffi
γf
2

q
x� cf t
� �

,~t ¼
ffiffiffi
γf
2

q
cf t, ~u ¼ αf c2f p (tilde over variables ~x,~t and ~u is omitted)

∂

∂x
∂

∂t
þ u

∂

∂x

� �
uþ α

∂u
∂x

þ u ¼ 0: (8)

The constant α ¼ βf=
ffiffiffiffiffiffiffi
2γf

p
is always positive. Equation (8) without the dissipa-

tive term has the form of the nonlinear equation [14, 15]:

∂

∂x
∂

∂t
þ u

∂

∂x

� �
uþ u ¼ 0: (9)

Historically, (9) has been called the Vakhnenko equation (VE), and we will
follow this name.

We note that (9) follows as a particular limit of the following generalized
Korteweg-de Vries equation:

∂

∂x
∂u
∂t

þ u
∂u
∂x

� β
∂
3u
∂x3

� �
¼ γu (10)

derived by Ostrovsky [16] to model small-amplitude long waves in a rotating
fluid (γu is induced by the Coriolis force) of finite depth. Subsequently, (9) was
known by different names in the literature, such as the Ostrovsky-Hunter equation,
the short-wave equation, the reduced Ostrovsky equation, and the Ostrovsky-
Vakhnenko equation depending on the physical context in which it is studied.

The consideration here of (9) has interest from the viewpoint of the investiga-
tion of the propagation of high-frequency perturbations.

2. Loop-like stationary solutions

The travelling wave solutions are solutions which are stationary with respect to
a moving frame of reference. In this case, the evolution equation (a partial
differential equation) becomes an ordinary differential equation (ODE) which is
considerably easier to solve.

For the VE (9) it is convenient to introduce a new dependent variable z and new
independent variables η and τ defined by

z ¼ u� vð Þ=∣v∣, η ¼ x� vtð Þ= vj j1=2, τ ¼ t vj j1=2, (11)
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where v is a nonzero constant [15]. Then the VE becomes begin equation:

zητ þ zzη
� �

η
þ zþ c ¼ 0, (12)

where c ¼ �1 corresponding to v≷0. We now seek stationary solutions of
(12) for which z is a function of η only so that zτ ¼ 0 and z satisfies the ODE:

zzη
� �

η
þ zþ c ¼ 0: (13)

After one integration (13) gives

1
2

zzη
� �2 ¼ f zð Þ,

f zð Þ ¼ � 1
3
z3 � 1

2
cz2 þ 1

6
A ¼ � 1

3
z� z1ð Þ z� z2ð Þ z� z3ð Þ:

(14)

where A is a constant, and for periodic solutions z1, z2 and z3 are real constants
such that z1 ≤ z2 ≤ z3. On using results 236.00 and 236.01 of [17], we may integrate
(14) to obtain

η ¼
ffiffiffi
6

p
z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z3 � z1
p F φ;mð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 z3 � z1ð Þ

p
E φ;mð Þ, (15)

sinφ ¼ z3 � z
z3 � z2

, m ¼ z3 � z2
z3 � z1

: (16)

where F φ;mð Þ and E φ;mð Þ are incomplete elliptic integrals of the first and
second kind, respectively. We have chosen the constant of integration in (15) to
be zero so that z ¼ z3 at η ¼ 0. The relations (15) give the required solution in
parametric form, with z and η as functions of the parameter φ.

For c ¼ 1 (i.e., v>0), there are periodic solutions for 0<A< 1 with λ<0,
z2 ∈ �1;0ð Þ and z3 ∈ 0;0:5ð Þ; an example of such a periodic wave is illustrated by
curve 2 in Figure 1. Here we introduce a new independent variable ζ defined by

dη
dζ

¼ z: (17)

A ¼ 1 gives the solitary wave limit:

u ¼ 3
2
v sech2 ζ=2ð Þ, η ¼ �ζ þ 3 tanh ζ=2ð Þ (18)

as illustrated by curve 1 in Figure 1. The periodic waves and the solitary wave
have a loop-like structure as illustrated in Figure 1. For c ¼ �1 (i.e., v<0), there are
periodic waves for �1<A<0 with λ>0, z2 ∈ 0; 1ð Þ and z3 ∈ 1; 1:5ð Þ; an example of
such a periodic wave is illustrated by curve 2 in Figure 2. When A ¼ 0 and λ ¼ 6,
then the periodic wave solution simplifies to

u ηð Þ=∣v∣ ¼ � 1
6
η2 þ 1

2
, � 3≤ η≤ 3, u ηþ 6ð Þ ¼ u ηð Þ: (19)

This is shown by curve 1 in Figure 2. For A≃ � 1 the solution has a sinusoidal
form (curve 3 in Figure 2). Note that there are no solitary wave solutions.

A remarkable feature of the equation (9) is that it has a solitary wave (18) which
has a loop-like form, i.e., it is a multivalued function (see Figure 1). Whilst loop
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solitary waves (18) are rather intriguing, it is the solution to the initial value
problem that is of more interest in a physical context. An important question is the
stability of the loop-like solutions. Although the analysis of stability does not link
with the theory of solitons directly, the method applied in [15] is instructive, since it
is successful in a nonlinear approximation. Stability of the loop-like solutions has
been proved in [15]. From a physical viewpoint, the stability or otherwise of
solutions is essential to their interpretation.

3. The Vakhnenko-Parkes equation

Themultivalued solutions obtained in Section 2 obviously mean that the study
of the VE (9) in the original coordinates x; tð Þ leads to certain difficulties.

Figure 2.
Travelling wave solutions with v< 0.

Figure 1.
Travelling wave solutions with v> 0.
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These difficulties can be avoided bywriting down the VE in new independent coordi-
nates.We have succeeded in finding these coordinates. Historically, working separately,
we (Vyacheslav Vakhnenko in Ukraine and John Parkes in the UK) independently
suggested such independent coordinates in which the solutions become one-valued
functions. It is instructive to present the two derivations here. In one derivation a
physical approach, namely, a transformation between Euler and Lagrange coordinates,
was used, whereas in the other derivation, a puremathematical approachwas used.

Let us define new independent variables X;Tð Þ by the transformation

φdT ¼ dx� udt, X ¼ t: (20)

The function φ is to be obtained. It is important that the functions x ¼ θ X;Tð Þ
and u ¼ U X;Tð Þ turn out to be single-valued. In terms of the coordinates X;Tð Þ, the
solution of the VE (9) is given by single-valued parametric relations. The transfor-
mation into these coordinates is the key point in solving the problem of the
interaction of solitons as well as explaining the multivalued solutions [3]. The
transformation (20) is similar to the transformation between Eulerian coordinates
x; tð Þ and Lagrangian coordinates X;Tð Þ. We require that T ¼ x if there is no
perturbation, i.e., if u x; tð Þ � 0. Hence φ ¼ 1 when u x; tð Þ � 0.

The function φ is the additional dependent variable in the equation system (22),
(24) to which we reduce the original Eq. (9). We note that the transformation
inverse to (20) is

dx ¼ φdT þ UdX, t ¼ X, U X;Tð Þ � u x; tð Þ: (21)

It follows that

∂x
∂X

¼ U,
∂x
∂T

¼ φ,
∂t
∂X

¼ 1,
∂t
∂T

¼ 0:

Hence

∂φ

∂X
¼ ∂U

∂T
(22)

and

∂

∂X
¼ ∂

∂t
þ u

∂

∂x
,

∂

∂T
¼ φ

∂

∂x
: (23)

By using (23), we can write Eq. (9) in terms of φ X;Tð Þ and U X;Tð Þ, namely,

UXT þ φU ¼ 0: (24)

Equations (22) and (24) are the main system of equations. It can be reduced to a
nonlinear equation (27) in one unknown W defined by

WX ¼ U: (25)

From (22), (25) and the requirement that φ ¼ 1 when U � 0, we have

φ ¼ 1þWT : (26)

Then, by eliminating φ and U between (24), (25) and (26), we arrive at a
transformed form of the VE (9), namely,
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WXXT þ 1þWTð ÞWX ¼ 0: (27)

Alternatively, by eliminating φ between (22) and (24), we obtain

UUXXT �UXUXT þ U2UT ¼ 0: (28)

Furthermore it follows from (21) that the original independent coordinates x; tð Þ
are given by

x ¼ θ X;Tð Þ ¼ x0 þ T þW, t ¼ X, (29)

where x0 is an arbitrary constant. Since the functions θ X;Tð Þ and U X;Tð Þ are
single-valued, the problem of multivalued solutions has been resolved from the
mathematical point of view.

Alternatively, in a pure mathematical approach, we may start by introducing
new independent variables X and T defined by

x ¼ T þ
ðX
�∞

U X0;Tð ÞdX0 þ x1, t ¼ X, (30)

where x1 is an arbitrary constant. From (30), we obtain (23) but with

φ X;Tð Þ ¼ 1þ
ðX
�∞

UT dX0: (31)

Now, on introducing (25), (30) and (31) may be identified with (29) and (26),
respectively. The derivation of (27) and (28) proceeds as before.

The transformation into new coordinates, as has already been pointed out, was
obtained by us independently of each other; nevertheless, we published the result
together [18, 19]. Following the papers [20–23] hereafter, Eq. (27) (or in alternative
form (28)) is referred to as the Vakhnenko-Parkes equation (VPE).

The travelling wave solution (15) and (16) for Equation (9) is also a travelling
wave solution when written in terms of the transformed coordinates (X,T). In order
to do this, we need to express the independent variable ζ, as introduced in (17), in
terms of X and T.

From the expressions for z in (11) and (17), we obtain

dη
dζ

¼ U � v
∣v∣

(32)

so that

∣v∣η ¼
ð
Udζ � vζ: (33)

From the definition of η in (17), and the expressions for x and t given by (29),
we obtain

∣v∣η ¼ vj j1=2 W � v X � VTð Þ½ �, where V≔ v�1: (34)

The expressions for ∣v∣η in (33) and (34) are equivalent if

ζ ¼ vj j1=2Z, where Z≔X � VT � X0 (35)
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where x1 is an arbitrary constant. From (30), we obtain (23) but with

φ X;Tð Þ ¼ 1þ
ðX
�∞

UT dX0: (31)

Now, on introducing (25), (30) and (31) may be identified with (29) and (26),
respectively. The derivation of (27) and (28) proceeds as before.

The transformation into new coordinates, as has already been pointed out, was
obtained by us independently of each other; nevertheless, we published the result
together [18, 19]. Following the papers [20–23] hereafter, Eq. (27) (or in alternative
form (28)) is referred to as the Vakhnenko-Parkes equation (VPE).

The travelling wave solution (15) and (16) for Equation (9) is also a travelling
wave solution when written in terms of the transformed coordinates (X,T). In order
to do this, we need to express the independent variable ζ, as introduced in (17), in
terms of X and T.

From the expressions for z in (11) and (17), we obtain

dη
dζ

¼ U � v
∣v∣

(32)

so that

∣v∣η ¼
ð
Udζ � vζ: (33)

From the definition of η in (17), and the expressions for x and t given by (29),
we obtain

∣v∣η ¼ vj j1=2 W � v X � VTð Þ½ �, where V≔ v�1: (34)

The expressions for ∣v∣η in (33) and (34) are equivalent if

ζ ¼ vj j1=2Z, where Z≔X � VT � X0 (35)
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and X0 is an arbitrary constant, so that

W ¼
ð
UdZ and U ¼ WZ: (36)

Hence, from (34), it follows that

W ¼
ffiffiffiffiffi
∣v∣

p
p

z1 þ cð Þwþ z3 � z1ð ÞE wjmð Þ½ � þW0, (37)

where w ¼ p
ffiffiffiffiffi
∣v∣

p
Z and W0 is an arbitrary constant. Then

U
∣v∣

¼ cþ z3 � z3 � z2ð Þsn2 wjmð Þ, where w ¼ p
ffiffiffiffiffi
∣v∣

p
Z: (38)

Eqs. (37) and (38) give the travelling wave solutions to the VPE in the forms
(27) and (28), respectively. Eq. (38) is also the travelling wave solution of the VE
(9) expressed in terms of the new coordinates (X,T). In the limiting case m ¼ 1,
(38) gives a solitary wave in the following two forms: For v>0

U=v ¼ 3
2
sech2 1

2
ffiffiffi
v

p
Z

� �
(39)

and, for v<0,

U=∣v∣ ¼ �1þ 3
2
sech2 1

2

ffiffiffiffiffi
∣v∣

p
Z

� �
: (40)

These two solutions are illustrated by curve 1 in Figures 3 and 4, respectively.
The other curves illustrate examples of the solution given by (38) when m 6¼ 1.
Curves 1 and 2 in Figure 3 relate to curves 1 and 2, respectively, in Figure 1. Curves
1, 2 and 3 in Figure 4 relate to curves 1, 2 and 3, respectively, in Figure 2.

Figure 3.
Travelling wave solutions with v> 0 in coordinates (X,T).
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There are two important observations to be made. Firstly, all the travelling wave
solutions in terms of the new coordinates are single-valued. Secondly, the periodic
solution shown by curve 1 in Figure 2, i.e., the solution consisting of parabolas, is
not periodic in terms of the new coordinates. Hence, we reveal some accordance
between curve 1 in Figure 3 and curve 1 in Figure 4. These features are important
for finding the solutions by the inverse scattering method [24–30].

4. From Hirota method to the inverse scattering method

The Hirota method gives the N-soliton solution as well as enables one to find a
way from the Bäcklund transformation through the conservation laws and associ-
ated eigenvalue problem to the inverse scattering method [24]. Thus, the Hirota
method allows us to formulate the inverse scattering method which is the most
appropriate way of tackling the initial value problem (Cauchy problem).

In the Hirota method the equation, in our case the VPE (27), under investigation
should be transformed into the Hirota bilinear form [9, 24]:

DTD3
X þD2

X

� �
f � f ¼ 0, (41)

with

W ¼ 6 ln fð ÞX, (42)

The Hirota bilinear D-operator is defined as (see Section 5.2 in [9])

Dn
TD

m
Xa � b ¼ ∂

∂T
� ∂

∂T0

� �n
∂

∂X
� ∂

∂X0

� �m

a T;Xð Þb T0;X0ð Þ
����
T¼T0,X¼X0

: (43)

Now we present a Bäcklund transformation for VPE (27) written in the bilinear
form (41). This type of Bäcklund transformation was first introduced by Hirota [31]

Figure 4.
Travelling wave solutions with v< 0 in coordinates (X,T).

21

Loop-like Solitons
DOI: http://dx.doi.org/10.5772/intechopen.86583



and X0 is an arbitrary constant, so that

W ¼
ð
UdZ and U ¼ WZ: (36)

Hence, from (34), it follows that

W ¼
ffiffiffiffiffi
∣v∣

p
p

z1 þ cð Þwþ z3 � z1ð ÞE wjmð Þ½ � þW0, (37)

where w ¼ p
ffiffiffiffiffi
∣v∣

p
Z and W0 is an arbitrary constant. Then

U
∣v∣

¼ cþ z3 � z3 � z2ð Þsn2 wjmð Þ, where w ¼ p
ffiffiffiffiffi
∣v∣

p
Z: (38)

Eqs. (37) and (38) give the travelling wave solutions to the VPE in the forms
(27) and (28), respectively. Eq. (38) is also the travelling wave solution of the VE
(9) expressed in terms of the new coordinates (X,T). In the limiting case m ¼ 1,
(38) gives a solitary wave in the following two forms: For v>0

U=v ¼ 3
2
sech2 1

2
ffiffiffi
v

p
Z

� �
(39)

and, for v<0,

U=∣v∣ ¼ �1þ 3
2
sech2 1

2

ffiffiffiffiffi
∣v∣

p
Z

� �
: (40)

These two solutions are illustrated by curve 1 in Figures 3 and 4, respectively.
The other curves illustrate examples of the solution given by (38) when m 6¼ 1.
Curves 1 and 2 in Figure 3 relate to curves 1 and 2, respectively, in Figure 1. Curves
1, 2 and 3 in Figure 4 relate to curves 1, 2 and 3, respectively, in Figure 2.

Figure 3.
Travelling wave solutions with v> 0 in coordinates (X,T).

20

Research Advances in Chaos Theory

There are two important observations to be made. Firstly, all the travelling wave
solutions in terms of the new coordinates are single-valued. Secondly, the periodic
solution shown by curve 1 in Figure 2, i.e., the solution consisting of parabolas, is
not periodic in terms of the new coordinates. Hence, we reveal some accordance
between curve 1 in Figure 3 and curve 1 in Figure 4. These features are important
for finding the solutions by the inverse scattering method [24–30].

4. From Hirota method to the inverse scattering method

The Hirota method gives the N-soliton solution as well as enables one to find a
way from the Bäcklund transformation through the conservation laws and associ-
ated eigenvalue problem to the inverse scattering method [24]. Thus, the Hirota
method allows us to formulate the inverse scattering method which is the most
appropriate way of tackling the initial value problem (Cauchy problem).

In the Hirota method the equation, in our case the VPE (27), under investigation
should be transformed into the Hirota bilinear form [9, 24]:

DTD3
X þD2

X

� �
f � f ¼ 0, (41)

with

W ¼ 6 ln fð ÞX, (42)

The Hirota bilinear D-operator is defined as (see Section 5.2 in [9])
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Now we present a Bäcklund transformation for VPE (27) written in the bilinear
form (41). This type of Bäcklund transformation was first introduced by Hirota [31]
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and has the advantage that the transformation equations are linear with respect
to each dependent variable. This Bäcklund transformation can be transformed
to the ordinary one [24]:

D3
X � λ

� �
f 0 � f ¼ 0, (44)

3DXDT þ 1þ μDXð Þf 0 � f ¼ 0, (45)

where λ ¼ λ Xð Þ is an arbitrary function of X and μ ¼ μ Tð Þ is an arbitrary
function of T.

The inverse scattering transform (IST) method is arguably the most important
discovery in the theory of solitons. The method enables one to solve the initial value
problem for a nonlinear evolution equation. Moreover, it provides a proof of the
complete integrability of the equation.

The essence of the application of the IST is as follows. The initial equation VPE
(27) is written as the compatibility condition for two linear equations. These equa-
tions are presented in (47) and (48). Then W X;0ð Þ is mapped into the scattering
S 0ð Þ for (47). It is important that since the variable W X;Tð Þ contained in the
spectral equation (47) evolves according to (27), the spectrum λ always retains
constant values. The time evolution of S Tð Þ is simple and linear. From a knowledge
of S Tð Þ, we reconstruct W X;Tð Þ.

The use of the IST is the most appropriate way of tackling the initial value
problem. In order to apply the IST method, one first has to formulate the associated
eigenvalue problem. This can be achieved by finding a Bäcklund transformation
associated with the VPE.

Now we will show that the IST problem for the VPE in the form (27) has a third-
order eigenvalue problem that is similar to the one associated with a higher-order
KdV equation [32, 33], a Boussinesq equation [33–37] and a model equation for
shallow water waves [9, 38].

Introducing the function

ψ ¼ f 0=f , (46)

and taking into account (42), we find that (44) and (45) reduce to

ψXXX þWXψX � λψ ¼ 0, (47)

3ψXT þ 1þWTð Þψ þ μψX ¼ 0, (48)

respectively, where we have used results similar to (X.1)–(X.3) in [9].
From (47) and (48), it can be shown that

3λψT þ 1þWTð ÞψXX �WXTψX þ WXXT þ 1þWTð ÞWX þ μλ½ �ψ ¼ 0 (49)

and

WXXT þ 1þWTð ÞWX½ �Xψ þ 3ψT þ μψð ÞλX ¼ 0: (50)

In view of (27), (49) becomes

3λψT þ 1þWTð ÞψXX �WXTψX þ λμψ ¼ 0, (51)

and (50) implies that λX ¼ 0 so the spectrum λ of (47) remains constant. Con-
stant λ is what is required in the IST problem. Equation (50) yields the equation
WXXT þ 1þWTð ÞWX ¼ h Tð Þ, where h Tð Þ is an arbitrary function of T.
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Now, according to (62) and (72), the inverse scattering method restricts the solu-
tions to those that vanish as ∣X∣ ! ∞, so h Tð Þ is to be identically zero. Thus, the pair
of equations (47) and (48) or (47) and (50) can be considered as the Lax pair for the
VPE (27).

Since (47) and (48) are alternative forms of Eqs. (44) and (45), respectively, it
follows that the pair of equations (47) and (48) is associated with the VPE (27)
considered here. Thus, the IST problem is directly related to a spectral equation of
third order, namely, (47). The inverse problem for certain third-order spectral
equations has been considered by Kaup [33] and Caudrey [34, 35]. As expected,
(47) and (48) are similar to, but cannot be transformed into, the corresponding
equations for the Hirota-Satsuma equation (HSE) (see Eq. (A8a) and (A8b) in
[39]). Clarkson and Mansfield [40] note that the scattering problem for the HSE is
similar to that for the Boussinesq equation which has been studied comprehensively
by Deift et al. [37].

5. The inverse scattering method for a third-order equation

5.1 Example of the use of the IST method to find the one-soliton solution

Consider the one-soliton solution of the VPE by application of the IST method.
Let the initial perturbation be

W X;0ð Þ ¼ 6k 1þ tanh ηð Þð Þ, η ¼ kX þ α: (52)

For convenience we introduce new notation ξ1 and β1 instead of parameters k
and α by

k ¼
ffiffiffi
3

p

2
ξ1, α ¼ 1

2
ln β1=2

ffiffiffi
3

p
ξ1

� �
(53)

then

W X;0ð Þ ¼ 6
ffiffiffi
3

p
ξ1

∂

∂X
ln 1þ β1

2
ffiffiffi
3

p
ξ1

exp
ffiffiffi
3

p
ξ1X

� �� �
(54)

is the initial condition for the VPE.
The first step in the IST method is to solve the spectral equation (47) with

spectral parameter λ for the given initial condition W X;0ð Þ. In our example it is
(54). The solution is studied over the complex ζ-plane, where ζ3 ¼ λ. One can verify
by direct substitution of (55) in (47) that the solution ψ X;0; ζð Þ of the linear ODE
(47), normalized so that ψ X;0; ζð Þ exp �ζXð Þ ! 1 at X ! �∞, is given by

ψ X;0; ζð Þ exp �ζXð Þ ¼ 1� β1 exp
ffiffiffi
3

p
ξ1X

� �

1þ β1
exp

ffiffi
3

p
ξ1Xð Þ

2
ffiffi
3

p
ξ1

ω2

iω2ξ1 � ζ
þ ω3

�iω3ξ1 � ζ

� �
, (55)

where ωj ¼ ei2π j�1ð Þ=3 are the cube roots of 1 (j ¼ 1, 2, 3). The constants β1 and ξ1,
as we will show, are associated with the local spectral data.

The second step in the IST method is to obtain the evolution of β1 and ξ1.
The time dependence of the solution ψ X;Tð Þ is described by Eq. (48). Analysing
Eq. (48), we may assume that
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Now, according to (62) and (72), the inverse scattering method restricts the solu-
tions to those that vanish as ∣X∣ ! ∞, so h Tð Þ is to be identically zero. Thus, the pair
of equations (47) and (48) or (47) and (50) can be considered as the Lax pair for the
VPE (27).

Since (47) and (48) are alternative forms of Eqs. (44) and (45), respectively, it
follows that the pair of equations (47) and (48) is associated with the VPE (27)
considered here. Thus, the IST problem is directly related to a spectral equation of
third order, namely, (47). The inverse problem for certain third-order spectral
equations has been considered by Kaup [33] and Caudrey [34, 35]. As expected,
(47) and (48) are similar to, but cannot be transformed into, the corresponding
equations for the Hirota-Satsuma equation (HSE) (see Eq. (A8a) and (A8b) in
[39]). Clarkson and Mansfield [40] note that the scattering problem for the HSE is
similar to that for the Boussinesq equation which has been studied comprehensively
by Deift et al. [37].

5. The inverse scattering method for a third-order equation

5.1 Example of the use of the IST method to find the one-soliton solution

Consider the one-soliton solution of the VPE by application of the IST method.
Let the initial perturbation be

W X;0ð Þ ¼ 6k 1þ tanh ηð Þð Þ, η ¼ kX þ α: (52)

For convenience we introduce new notation ξ1 and β1 instead of parameters k
and α by

k ¼
ffiffiffi
3

p

2
ξ1, α ¼ 1

2
ln β1=2

ffiffiffi
3

p
ξ1

� �
(53)

then

W X;0ð Þ ¼ 6
ffiffiffi
3

p
ξ1

∂

∂X
ln 1þ β1

2
ffiffiffi
3

p
ξ1

exp
ffiffiffi
3

p
ξ1X

� �� �
(54)

is the initial condition for the VPE.
The first step in the IST method is to solve the spectral equation (47) with

spectral parameter λ for the given initial condition W X;0ð Þ. In our example it is
(54). The solution is studied over the complex ζ-plane, where ζ3 ¼ λ. One can verify
by direct substitution of (55) in (47) that the solution ψ X;0; ζð Þ of the linear ODE
(47), normalized so that ψ X;0; ζð Þ exp �ζXð Þ ! 1 at X ! �∞, is given by

ψ X;0; ζð Þ exp �ζXð Þ ¼ 1� β1 exp
ffiffiffi
3

p
ξ1X

� �

1þ β1
exp

ffiffi
3

p
ξ1Xð Þ

2
ffiffi
3

p
ξ1

ω2

iω2ξ1 � ζ
þ ω3

�iω3ξ1 � ζ

� �
, (55)

where ωj ¼ ei2π j�1ð Þ=3 are the cube roots of 1 (j ¼ 1, 2, 3). The constants β1 and ξ1,
as we will show, are associated with the local spectral data.

The second step in the IST method is to obtain the evolution of β1 and ξ1.
The time dependence of the solution ψ X;Tð Þ is described by Eq. (48). Analysing
Eq. (48), we may assume that
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ξ1 Tð Þ ¼ ξ1 0ð Þ ¼ const:,

β1 Tð Þ ¼ β1 0ð Þ exp � 1ffiffiffi
3

p
ξ1
T

� �
:

(56)

Below, the assumption of these relationships will be justified. Indeed, we know
that the spectrum λ in (47) remains constant if W X;Tð Þ evolves according to
Eq. (27). Therefore, as will be proved, the spectrum data evolve as in (70). In
notations (77) and (78), from (70) we obtain the relations (56).

The final step in IST method is to select the solution W X;Tð Þ from (55) with
ξ1 Tð Þ, β1 Tð Þ as in (56). According to Eq. (2.7) in [33], we expand ψ X;T; ζð Þ as an
asymptotic series in ζ�1 to obtain

ψ X;0; ζð Þ exp �ζXð Þ ¼ 1� 1
3ζ

W Xð Þ �W �∞ð Þ½ � þ O ζ�2� �
, (57)

i.e., W Xð Þ �W �∞ð Þ ¼ limζ!∞ 3ζ 1� ψ exp �ζXð Þð Þ½ �. Taking into account the
functional dependence (56), we find the required one-soliton solution of the VPE in
form

W X;Tð Þ ¼ 6
ffiffiffi
3

p
ξ1

∂

∂X
ln 1þ β1

2
ffiffiffi
3

p exp
ffiffiffi
3

p
ξ1X � 1ffiffiffi

3
p

ξ1
T

� �� �
þ const: (58)

Thus, for the example of the one-soliton solution, we have demonstrated the IST
method.

5.2 The direct spectral problem

Let us consider the principal aspects of the inverse scattering transform problem
for a third-order equation. The inverse problem for certain third-order spectral
equations has been considered by Kaup [33] and Caudrey [34, 35]. The time evolu-
tion of ψ is determined from (48) or (51).

Following the method described by Caudrey [34], the spectral equation (47) can
be rewritten

∂

∂X
ψ ¼ A ζð Þ þ B X; ζð Þ½ � � ψ (59)

with

ψ ¼
ψ

ψX

ψXX

0
B@

1
CA, A ¼

0 1 0

0 0 1

λ 0 0

0
B@

1
CA, B ¼

0 0 0

0 0 0

0 �WX 0

0
B@

1
CA: (60)

The matrix A has eigenvalues λj ζð Þ and left and right eigenvectors ~vj ζð Þ and
vj ζð Þ, respectively. These quantities are defined through a spectral parameter λ as

λj ζð Þ ¼ ωjζ, λ3j ζð Þ ¼ λ,

vj ζð Þ ¼
1

λj ζð Þ
λ2j ζð Þ

0
BB@

1
CCA, ~vj ζð Þ ¼ λ2j ζð Þ λj ζð Þ 1

� �
,

(61)
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where, as previously, ωj ¼ e2πi j�1ð Þ=3 are the cube roots of 1 (j ¼ 1, 2, 3). Obvi-
ously the λj ζð Þ are distinct, and they and ~vj ζð Þ and vj ζð Þ are analytic throughout the
complex ζ-plane.

The solution of the linear equation (47) (or equivalently (59)) has been obtained
by Caudrey [34] in terms of Jost functions ϕj X; ζð Þ which have the asymptotic
behaviour:

Φj X; ζð Þ≔ exp �λj ζð ÞX� �
ϕj X; ζð Þ ! vj ζð Þ as X ! �∞: (62)

Caudrey [34] showed how Eq. (59) can be solved by expressing it as a Fredholm
integral equation.

The complex ζ-plane is to be divided into regions such that, in the interior of
each region, the order of the numbers Re λi ζð Þð Þ is fixed. As we pass from one region
to another, this order changes, and hence, on a boundary between two regions,
Re λi ζð Þð Þ ¼ Re λj ζð Þ� �

for at least one pair i 6¼ j. The Jost function ϕj is regular
throughout the complex ζ-plane apart from poles and finite singularities on the
boundaries between the regions. At any point in the interior of any region of the
complex ζ-plane, the solution of Eq. (59) is obtained by the relation (2.12) from
[34]. It is the direct spectral problem.

5.3 The spectral data

The information about the singularities of the Jost functions ϕj X; ζð Þ reside in the

spectral data. First let us consider the poles. It is assumed that a pole ζ kð Þ
i in ϕi X; ζð Þ

is simple, does not coincide with a pole of ϕj X; ζð Þ and j 6¼ i and does not lie on a
boundary between two regions. Then, as proven in [34], the residue is

Res ϕi X; ζ kð Þ
i

� �
¼ ∑

n

j ¼ 1
j 6¼ i

γ kð Þ
ij ϕj X; ζ kð Þ

i

� �
(63)

and it can be found because we know the solution (47) in any regular regions

from solving the direct problem (see Section 5.2). Note that, for ϕj X; ζ kð Þ
i

� �
, the

point ζ kð Þ
i lies in the interior of a regular region. The quantities ζ kð Þ

i and γ kð Þ
ij constitute

the discrete part of the spectral data.
Now we consider the singularities on the boundaries between regions. However,

in order to simplify matters, we first make some observations. The solution of the
spectral problem can be facilitated by using various symmetry properties. In view of
(47), we need only consider the first elements of

ϕi X; ζð Þ ¼
ϕi X; ζð Þ
ϕi X; ζð ÞX
ϕi X; ζð ÞXX

0
B@

1
CA, (64)

whilst the symmetry

ϕ1 X; ζ=ω1ð Þ ¼ ϕ2 X; ζ=ω2ð Þ ¼ ϕ3 X; ζ=ω3ð Þ (65)

means we need only to consider ϕ1 X; ζð Þ. In our case, for ϕ1 X; ζð Þ, the complex
ζ-plane is divided into four regions by two lines (see Figure 5) given by
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ξ1 Tð Þ ¼ ξ1 0ð Þ ¼ const:,

β1 Tð Þ ¼ β1 0ð Þ exp � 1ffiffiffi
3

p
ξ1
T

� �
:

(56)

Below, the assumption of these relationships will be justified. Indeed, we know
that the spectrum λ in (47) remains constant if W X;Tð Þ evolves according to
Eq. (27). Therefore, as will be proved, the spectrum data evolve as in (70). In
notations (77) and (78), from (70) we obtain the relations (56).

The final step in IST method is to select the solution W X;Tð Þ from (55) with
ξ1 Tð Þ, β1 Tð Þ as in (56). According to Eq. (2.7) in [33], we expand ψ X;T; ζð Þ as an
asymptotic series in ζ�1 to obtain

ψ X;0; ζð Þ exp �ζXð Þ ¼ 1� 1
3ζ

W Xð Þ �W �∞ð Þ½ � þ O ζ�2� �
, (57)

i.e., W Xð Þ �W �∞ð Þ ¼ limζ!∞ 3ζ 1� ψ exp �ζXð Þð Þ½ �. Taking into account the
functional dependence (56), we find the required one-soliton solution of the VPE in
form

W X;Tð Þ ¼ 6
ffiffiffi
3

p
ξ1

∂

∂X
ln 1þ β1

2
ffiffiffi
3

p exp
ffiffiffi
3

p
ξ1X � 1ffiffiffi

3
p

ξ1
T

� �� �
þ const: (58)

Thus, for the example of the one-soliton solution, we have demonstrated the IST
method.

5.2 The direct spectral problem

Let us consider the principal aspects of the inverse scattering transform problem
for a third-order equation. The inverse problem for certain third-order spectral
equations has been considered by Kaup [33] and Caudrey [34, 35]. The time evolu-
tion of ψ is determined from (48) or (51).

Following the method described by Caudrey [34], the spectral equation (47) can
be rewritten

∂

∂X
ψ ¼ A ζð Þ þ B X; ζð Þ½ � � ψ (59)

with

ψ ¼
ψ

ψX

ψXX

0
B@

1
CA, A ¼

0 1 0

0 0 1

λ 0 0

0
B@

1
CA, B ¼

0 0 0

0 0 0

0 �WX 0

0
B@

1
CA: (60)

The matrix A has eigenvalues λj ζð Þ and left and right eigenvectors ~vj ζð Þ and
vj ζð Þ, respectively. These quantities are defined through a spectral parameter λ as

λj ζð Þ ¼ ωjζ, λ3j ζð Þ ¼ λ,

vj ζð Þ ¼
1

λj ζð Þ
λ2j ζð Þ

0
BB@

1
CCA, ~vj ζð Þ ¼ λ2j ζð Þ λj ζð Þ 1

� �
,

(61)
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where, as previously, ωj ¼ e2πi j�1ð Þ=3 are the cube roots of 1 (j ¼ 1, 2, 3). Obvi-
ously the λj ζð Þ are distinct, and they and ~vj ζð Þ and vj ζð Þ are analytic throughout the
complex ζ-plane.

The solution of the linear equation (47) (or equivalently (59)) has been obtained
by Caudrey [34] in terms of Jost functions ϕj X; ζð Þ which have the asymptotic
behaviour:

Φj X; ζð Þ≔ exp �λj ζð ÞX� �
ϕj X; ζð Þ ! vj ζð Þ as X ! �∞: (62)

Caudrey [34] showed how Eq. (59) can be solved by expressing it as a Fredholm
integral equation.

The complex ζ-plane is to be divided into regions such that, in the interior of
each region, the order of the numbers Re λi ζð Þð Þ is fixed. As we pass from one region
to another, this order changes, and hence, on a boundary between two regions,
Re λi ζð Þð Þ ¼ Re λj ζð Þ� �

for at least one pair i 6¼ j. The Jost function ϕj is regular
throughout the complex ζ-plane apart from poles and finite singularities on the
boundaries between the regions. At any point in the interior of any region of the
complex ζ-plane, the solution of Eq. (59) is obtained by the relation (2.12) from
[34]. It is the direct spectral problem.

5.3 The spectral data

The information about the singularities of the Jost functions ϕj X; ζð Þ reside in the

spectral data. First let us consider the poles. It is assumed that a pole ζ kð Þ
i in ϕi X; ζð Þ

is simple, does not coincide with a pole of ϕj X; ζð Þ and j 6¼ i and does not lie on a
boundary between two regions. Then, as proven in [34], the residue is

Res ϕi X; ζ kð Þ
i

� �
¼ ∑

n

j ¼ 1
j 6¼ i

γ kð Þ
ij ϕj X; ζ kð Þ

i

� �
(63)

and it can be found because we know the solution (47) in any regular regions

from solving the direct problem (see Section 5.2). Note that, for ϕj X; ζ kð Þ
i

� �
, the

point ζ kð Þ
i lies in the interior of a regular region. The quantities ζ kð Þ

i and γ kð Þ
ij constitute

the discrete part of the spectral data.
Now we consider the singularities on the boundaries between regions. However,

in order to simplify matters, we first make some observations. The solution of the
spectral problem can be facilitated by using various symmetry properties. In view of
(47), we need only consider the first elements of

ϕi X; ζð Þ ¼
ϕi X; ζð Þ
ϕi X; ζð ÞX
ϕi X; ζð ÞXX

0
B@

1
CA, (64)

whilst the symmetry

ϕ1 X; ζ=ω1ð Þ ¼ ϕ2 X; ζ=ω2ð Þ ¼ ϕ3 X; ζ=ω3ð Þ (65)

means we need only to consider ϕ1 X; ζð Þ. In our case, for ϕ1 X; ζð Þ, the complex
ζ-plane is divided into four regions by two lines (see Figure 5) given by
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ið Þ ζ0 ¼ ω2ξ, where Re λ1 ζð Þð Þ ¼ Re λ2 ζð Þð Þ,

iið Þ ζ0 ¼ �ω3ξ, where Re λ1 ζð Þð Þ ¼ Re λ3 ζð Þð Þ,
(66)

where ξ is real (see Figure 5). The singularity of ϕ1 X; ζð Þ can appear only on
these boundaries between the regular regions on the ζ-plane, and it is characterized
by functions Q1j ζ

0ð Þ at each fixed j 6¼ 1. We denote the limit of a quantity, as
the boundary is approached, by the superfix � in according to the sign of
Re λ1 ζð Þ � λj ζð Þ� �

(see Figure 5).
In [34] (see Eq. (3.14) there) the jump of ϕ1 X; ζð Þ on the boundaries is calculated as

ϕþ
1 X; ζð Þ � ϕ�

1 X; ζð Þ ¼ ∑
3

j¼2
Q1j ζð Þϕ�

j X; ζð Þ, (67)

where, from (66), the sum is over the lines ζ0 ¼ ω2ξ and ζ0 ¼ �ω3ξ given by

ið Þ ζ0 ¼ ω2ξ, with Q 1ð Þ
12 ζ0ð Þ 6¼ 0, Q 1ð Þ

13 ζ0ð Þ � 0,

iið Þ ζ0 ¼ �ω3ξ, with Q 2ð Þ
12 ζ0ð Þ � 0, Q 2ð Þ

13 ζ0ð Þ 6¼ 0:

The singularity functions Q1j ζ
0ð Þ are determined by W X;0ð Þ through the matrix

B X; ζð Þ (60) (see Eq. (3.13) in [34])

Figure 5.
The regular regions for Jost functions ϕ1(X, ζ) in the complex ζ-plane. The dashed lines determine the
boundaries between regular regions. These lines are lines where the singularity functions Q1j(ζ0) are given.
The dotted lines are the lines where the poles appear.
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Q1j ζð Þ ¼ 1
~v j ζð Þ � vj ζð Þ ~vj ζð Þ �

ð∞

�∞

exp λ1 ζð Þ � λj ζð Þ� �
z

� �
B z; ζð Þ � ϕ�

1 X; ζð Þdz:

(68)

The quantities Q1j ζ
0ð Þ along all the boundaries constitute the continuum part of

the spectral data.
Thus, the spectral data are

S ¼ ζ kð Þ
1 ; γ kð Þ

1j ;Q1j ζ
0ð Þ; j ¼ 2; 3; k ¼ 1; 2;…;m

n o
: (69)

One of the important features which is to be noted for the IST method is as
follows. After the spectral data have been found from B X;0; ζð Þ, i.e., at initial time,
we need to seek the time evolution of the spectral data from Eq. (48). Analysing
(48) at X ! ∞ together with (62)

ϕi X;T; ζð Þ ¼ exp � 3λi ζð Þð Þ�1T
h i

ϕi X;0; ζð Þ,

the T-dependence is revealed as

ζ kð Þ
j Tð Þ ¼ ζ kð Þ

j 0ð Þ,

γ kð Þ
1j Tð Þ ¼ γ kð Þ

1j 0ð Þ exp � 3λj ζ kð Þ
1

� �� ��1
þ 3λ1 ζ kð Þ

1

� �� ��1
� �

T
� �

,

Q1j T; ζ
0ð Þ ¼ Q1j 0; ζ

0ð Þ exp � 3λj ζ0ð Þ� ��1 þ 3λ1 ζ0ð Þð Þ�1
h i

T
n o

:

(70)

The final step in the application of the IST method is to reconstruct B X;T; ζð Þ
from the evaluated spectral data. In the next section, we show how to do this.

5.4 The inverse spectral problem

The final procedure in IST method is that of the reconstruction of the matrix
B X;T; ζð Þ and W X;Tð Þ from the spectral data S.

The spectral data define Φ1 X; ζð Þ uniquely in the form (see Eq. (6.20) in [34]))

Φ1 X;T; ζð Þ ¼ 1� ∑
K

k¼1
∑
3

j¼2
γ kð Þ
1j Tð Þ

exp λj ζ kð Þ
1

� �
� λ1 ζ kð Þ

1

� �h i
X

n o

λ1 ζ kð Þ
1

� �
� λ1 ζð Þ

Φ1 X;T;ωjζ
kð Þ
1

� �

þ 1
2πi

ð
∑
3

j¼2
Q1j T; ζ

0ð Þ exp λj ζ
0ð Þ � λ1 ζ0ð Þ� �

X
� �

ζ0 � ζ
Φ�

1 X;T;ωjζ
0� �
dζ0:

(71)

Eq. (71) contains the spectral data, namely, K poles with the quantities γ kð Þ
1j for

the bound state spectrum as well as the functions Q1j ζ
0ð Þ given along all the bound-

aries of regular regions for the continuous spectrum. The integral in (71) is along all
the boundaries (see the dashed lines in Figure 5). The direction of integration is
taken so that the side chosen to be Re λ1 ζð Þ � λj ζð Þ� �

<0 is shown by the arrows in
Figure 5 (for the lines (66), ξ sweeps from �∞ to þ∞).
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ið Þ ζ0 ¼ ω2ξ, where Re λ1 ζð Þð Þ ¼ Re λ2 ζð Þð Þ,

iið Þ ζ0 ¼ �ω3ξ, where Re λ1 ζð Þð Þ ¼ Re λ3 ζð Þð Þ,
(66)

where ξ is real (see Figure 5). The singularity of ϕ1 X; ζð Þ can appear only on
these boundaries between the regular regions on the ζ-plane, and it is characterized
by functions Q1j ζ

0ð Þ at each fixed j 6¼ 1. We denote the limit of a quantity, as
the boundary is approached, by the superfix � in according to the sign of
Re λ1 ζð Þ � λj ζð Þ� �

(see Figure 5).
In [34] (see Eq. (3.14) there) the jump of ϕ1 X; ζð Þ on the boundaries is calculated as

ϕþ
1 X; ζð Þ � ϕ�

1 X; ζð Þ ¼ ∑
3

j¼2
Q1j ζð Þϕ�

j X; ζð Þ, (67)

where, from (66), the sum is over the lines ζ0 ¼ ω2ξ and ζ0 ¼ �ω3ξ given by

ið Þ ζ0 ¼ ω2ξ, with Q 1ð Þ
12 ζ0ð Þ 6¼ 0, Q 1ð Þ

13 ζ0ð Þ � 0,

iið Þ ζ0 ¼ �ω3ξ, with Q 2ð Þ
12 ζ0ð Þ � 0, Q 2ð Þ

13 ζ0ð Þ 6¼ 0:

The singularity functions Q1j ζ
0ð Þ are determined by W X;0ð Þ through the matrix

B X; ζð Þ (60) (see Eq. (3.13) in [34])

Figure 5.
The regular regions for Jost functions ϕ1(X, ζ) in the complex ζ-plane. The dashed lines determine the
boundaries between regular regions. These lines are lines where the singularity functions Q1j(ζ0) are given.
The dotted lines are the lines where the poles appear.
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Q1j ζð Þ ¼ 1
~v j ζð Þ � vj ζð Þ ~vj ζð Þ �

ð∞

�∞

exp λ1 ζð Þ � λj ζð Þ� �
z

� �
B z; ζð Þ � ϕ�

1 X; ζð Þdz:

(68)

The quantities Q1j ζ
0ð Þ along all the boundaries constitute the continuum part of

the spectral data.
Thus, the spectral data are

S ¼ ζ kð Þ
1 ; γ kð Þ

1j ;Q1j ζ
0ð Þ; j ¼ 2; 3; k ¼ 1; 2;…;m

n o
: (69)

One of the important features which is to be noted for the IST method is as
follows. After the spectral data have been found from B X;0; ζð Þ, i.e., at initial time,
we need to seek the time evolution of the spectral data from Eq. (48). Analysing
(48) at X ! ∞ together with (62)

ϕi X;T; ζð Þ ¼ exp � 3λi ζð Þð Þ�1T
h i

ϕi X;0; ζð Þ,

the T-dependence is revealed as

ζ kð Þ
j Tð Þ ¼ ζ kð Þ

j 0ð Þ,

γ kð Þ
1j Tð Þ ¼ γ kð Þ

1j 0ð Þ exp � 3λj ζ kð Þ
1

� �� ��1
þ 3λ1 ζ kð Þ

1

� �� ��1
� �

T
� �

,

Q1j T; ζ
0ð Þ ¼ Q1j 0; ζ

0ð Þ exp � 3λj ζ0ð Þ� ��1 þ 3λ1 ζ0ð Þð Þ�1
h i

T
n o

:

(70)

The final step in the application of the IST method is to reconstruct B X;T; ζð Þ
from the evaluated spectral data. In the next section, we show how to do this.

5.4 The inverse spectral problem

The final procedure in IST method is that of the reconstruction of the matrix
B X;T; ζð Þ and W X;Tð Þ from the spectral data S.

The spectral data define Φ1 X; ζð Þ uniquely in the form (see Eq. (6.20) in [34]))

Φ1 X;T; ζð Þ ¼ 1� ∑
K

k¼1
∑
3

j¼2
γ kð Þ
1j Tð Þ

exp λj ζ kð Þ
1

� �
� λ1 ζ kð Þ

1

� �h i
X

n o

λ1 ζ kð Þ
1

� �
� λ1 ζð Þ

Φ1 X;T;ωjζ
kð Þ
1

� �

þ 1
2πi

ð
∑
3

j¼2
Q1j T; ζ

0ð Þ exp λj ζ
0ð Þ � λ1 ζ0ð Þ� �

X
� �

ζ0 � ζ
Φ�

1 X;T;ωjζ
0� �
dζ0:

(71)

Eq. (71) contains the spectral data, namely, K poles with the quantities γ kð Þ
1j for

the bound state spectrum as well as the functions Q1j ζ
0ð Þ given along all the bound-

aries of regular regions for the continuous spectrum. The integral in (71) is along all
the boundaries (see the dashed lines in Figure 5). The direction of integration is
taken so that the side chosen to be Re λ1 ζð Þ � λj ζð Þ� �

<0 is shown by the arrows in
Figure 5 (for the lines (66), ξ sweeps from �∞ to þ∞).
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It is necessary to note that we should carry out the integration along the lines
ω2 ξþ iεð Þ and �ω3 ξþ iεð Þ with ε>0. In this case condition (62) is satisfied. Passing
to the limit ε ! 0, we can obtain the solution which does not satisfy condition (62).
However, for any finite ε>0, the restricted region on X can be determined where
the solution associated with a finite ε>0 (for which the condition (62) is valid) and
the solution associated with ε ¼ 0 are sufficiently close to each other. In this sense,
taking the integration at ε ¼ 0, we remain within the inverse scattering theory [34],
and so condition (62) can be omitted. The solution obtained at ε ¼ 0 can be
extended to sufficiently large finite X. Thus, we will interpret the solution obtained
at ε ¼ 0 as the solution of the VPE (27) which is valid for arbitrary but finite X.

By choosing appropriate values for ζ, the left-hand side in (71) can be

Φ1 X;T;ωjζ
kð Þ
1

� �
, or by allowing ζ to approach the boundaries from the appropriate

sides, the left-hand side can be Φ�
1 X;T;ωjζ

0� �
. We acquire a set of linear matrix/

Fredholm equations in the unknowns Φ1 X;T;ωjζ
kð Þ
1

� �
and Φ�

1 X;T;ωjζ
0� �
. The

solution of this equation system enables one to define Φ1 X;T; ζð Þ from (71).
By knowing Φ1 X;T; ζð Þ, we can take extra information into account, namely,

that the expansion of Φ1 X;T; ζð Þ as an asymptotic series in λ�1
1 ζð Þ connects with

W X;Tð Þ as follows (cf. Eq. (2.7) in [33]):

Φ1 X;T; ζð Þ ¼ 1� 1
3λ1 ζð Þ W X;Tð Þ �W �∞ð Þ½ � þ O λ�2

1 ζð Þ� �
: (72)

Consequently, the solution W X;Tð Þ and the matrix B X;T; ζð Þ can be
reconstructed from the spectral data.

6. The interaction of the loop-like solitons

We will discuss the exact N-soliton solution of the VPE via the inverse scattering
method [24]. To do this we consider (71) with Q1j ζð Þ � 0. Then there is only the
bound state spectrum which is associated with the soliton solutions.

Let the bound state spectrum be defined by K poles. The relation (71) is reduced
to the form

Φ1 X;T; ζð Þ ¼ 1� ∑
K

k¼1
∑
3

j¼2
γ kð Þ
1j Tð Þ

exp λj ζ kð Þ
1

� �
� λ1 ζ kð Þ

1

� �h i
X

n o

λ1 ζ kð Þ
1

� �
� λ1 ζð Þ

Φ1 X;T;ωjζ
kð Þ
1

� �
:

(73)

Eq. (73) involves the spectral data, namely, the poles ζ kð Þ
1 and the quantities γ kð Þ

1j .
First we will prove that Reλ ¼ 0 for compact support. From Eq. (47) we have

ψXð ÞXXX þ UψXð ÞX � λψX ¼ 0, (74)

and together with Eq. (47), this enables us to write

∂

∂X
∂
2

∂X2 ψXψ
∗ � 3ψXXψ

∗
X þUψXψ

∗
� �

� 2ReλψXψ
∗ ¼ 0: (75)

Integrating Eq. (75) over all values of X, we obtain that, for compact support,
Reλ ¼ 0 since, in the general case,

Ð∞
�∞ ψXψ

∗ dX 6¼ 0.
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As follows from Eqs. (2.12), (2.13), (2.36) and (2.37) of [33], ψX ζð Þ is related to
the adjoint states ψA

X �ζð Þ. In the usual manner, using the adjoint states and Eq. (14)
from [35] and Eq. (2.37) from [33], one can obtain

ϕ1X X; ζð Þ ¼ iffiffiffi
3

p ϕ1X X;�ω2ζð Þϕ1 X;�ω3ζð Þ � ϕ1X X;�ω3ζð Þϕ1 X;�ω2ζð Þ½ �: (76)

It is easily seen that if ζ 1ð Þ
1 is a pole of ϕ1 X; ζð Þ, then there is a pole either at

ζ 2ð Þ
1 ¼ �ω2ζ

1ð Þ
1 (if ϕ1 X;�ω2ζð Þ has a pole) or at ζ 2ð Þ

1 ¼ �ω3ζ
1ð Þ
1 (if ϕ1 X;�ω3ζð Þ has a

pole). For definiteness let ζ 2ð Þ
1 ¼ �ω2ζ

1ð Þ
1 . Then, as follows from (76), �ω3ζ

2ð Þ
1

should be a pole. However, this pole coincides with pole ζ 1ð Þ
1 , since �ω3ζ

2ð Þ
1 ¼

�ω3 �ω2ð Þζ 1ð Þ
1 ¼ ζ 1ð Þ

1 . Hence, the poles appear in pairs, ζ 2n�1ð Þ
1 and ζ 2nð Þ

1 , under the

condition ζ 2nð Þ
1 =ζ 2n�1ð Þ

1 ¼ �ω2, where n is the pair number.
Let us consider N pairs of poles, i.e., in all there are K ¼ 2N poles over which the

sum is taken in (76). For the pair n n ¼ 1; 2;…;Nð Þ we have the properties

ið Þ ζ 2n�1ð Þ
1 ¼ iω2ξn, iið Þ ζ 2nð Þ

1 ¼ �iω3ξn: (77)

Since U is real and λ is imaginary, ξk is real. The relationships (77) are in line
with the condition (2.33) from [33]. These relationships are also similar to

Eqs. (6.24) and (6.25) in [34], whilst γ kð Þ
1j turns out to be different from ~γ kð Þ

1j for the
Boussinesq equation (see Eqs. (6.24) and (6.25) in [34]). Indeed, by considering

(76) in the vicinity of the first pole ζ 2n�1ð Þ
1 of the pair n and using the relation (73),

one can obtain a relation between γ kð Þ
12 and γ kð Þ

13 . In this case the functions ϕ1,X X; ζð Þ,
ϕ1 X;�ω2ζð Þ and ϕ1,X X;�ω2ζð Þ also have poles here, whilst the functions
ϕ1 X;�ω3ζð Þ and ϕ1,X X;�ω3ζð Þ do not have poles here. Substituting ϕ1 X; ζð Þ in the

form (73) into Eq. (76) and letting X ! �∞, we have the ratio γ 2nð Þ
13 =γ 2n�1ð Þ

12 ¼ ω2

and γ 2nð Þ
12 ¼ γ 2n�1ð Þ

13 ¼ 0. Therefore, the properties of γ kð Þ
ij should be defined by the

relationships

ið Þ γ 2n�1ð Þ
12 ¼ ω2βk, γ 2n�1ð Þ

13 ¼ 0,

iið Þ γ 2nð Þ
12 ¼ 0, γ 2nð Þ

13 ¼ ω3βk,
(78)

where, as it will be proved below, βk is real when U ¼ WX is real.
By defining

Ψk X;Tð Þ ¼ ∑
3

j¼2
γ kð Þ
1j Tð Þ exp λj ζ kð Þ

1

� �
X

n o
Φ1 X;T;ωjζ

kð Þ
1

� �
, (79)

we may rewrite the relationship (73) as (see, for instance, Eqs. (6.33) and (6.34)
in [34])

Φ1 X;T; ζð Þ ¼ 1� ∑
2N

k¼1

exp �λ1 ζ kð Þ
1

� �
X

n o

λ1 ζ kð Þ
1

� �
� λ1 ζð Þ

Ψk X;Tð Þ: (80)

From (72) and (80), it may be shown that (cf. Eq. (6.38) in [34])

W X;Tð Þ �W �∞ð Þ ¼ �3 ∑
2N

k¼1
exp �λ1 ζ kð Þ

1

� �
X

n o
Ψk X;Tð Þ ¼ 3

∂

∂X
ln detM X;Tð Þð Þ: (81)
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It is necessary to note that we should carry out the integration along the lines
ω2 ξþ iεð Þ and �ω3 ξþ iεð Þ with ε>0. In this case condition (62) is satisfied. Passing
to the limit ε ! 0, we can obtain the solution which does not satisfy condition (62).
However, for any finite ε>0, the restricted region on X can be determined where
the solution associated with a finite ε>0 (for which the condition (62) is valid) and
the solution associated with ε ¼ 0 are sufficiently close to each other. In this sense,
taking the integration at ε ¼ 0, we remain within the inverse scattering theory [34],
and so condition (62) can be omitted. The solution obtained at ε ¼ 0 can be
extended to sufficiently large finite X. Thus, we will interpret the solution obtained
at ε ¼ 0 as the solution of the VPE (27) which is valid for arbitrary but finite X.

By choosing appropriate values for ζ, the left-hand side in (71) can be

Φ1 X;T;ωjζ
kð Þ
1

� �
, or by allowing ζ to approach the boundaries from the appropriate

sides, the left-hand side can be Φ�
1 X;T;ωjζ

0� �
. We acquire a set of linear matrix/

Fredholm equations in the unknowns Φ1 X;T;ωjζ
kð Þ
1

� �
and Φ�

1 X;T;ωjζ
0� �
. The

solution of this equation system enables one to define Φ1 X;T; ζð Þ from (71).
By knowing Φ1 X;T; ζð Þ, we can take extra information into account, namely,

that the expansion of Φ1 X;T; ζð Þ as an asymptotic series in λ�1
1 ζð Þ connects with

W X;Tð Þ as follows (cf. Eq. (2.7) in [33]):

Φ1 X;T; ζð Þ ¼ 1� 1
3λ1 ζð Þ W X;Tð Þ �W �∞ð Þ½ � þ O λ�2

1 ζð Þ� �
: (72)

Consequently, the solution W X;Tð Þ and the matrix B X;T; ζð Þ can be
reconstructed from the spectral data.

6. The interaction of the loop-like solitons

We will discuss the exact N-soliton solution of the VPE via the inverse scattering
method [24]. To do this we consider (71) with Q1j ζð Þ � 0. Then there is only the
bound state spectrum which is associated with the soliton solutions.

Let the bound state spectrum be defined by K poles. The relation (71) is reduced
to the form

Φ1 X;T; ζð Þ ¼ 1� ∑
K

k¼1
∑
3

j¼2
γ kð Þ
1j Tð Þ

exp λj ζ kð Þ
1

� �
� λ1 ζ kð Þ

1

� �h i
X

n o

λ1 ζ kð Þ
1

� �
� λ1 ζð Þ

Φ1 X;T;ωjζ
kð Þ
1

� �
:

(73)

Eq. (73) involves the spectral data, namely, the poles ζ kð Þ
1 and the quantities γ kð Þ

1j .
First we will prove that Reλ ¼ 0 for compact support. From Eq. (47) we have

ψXð ÞXXX þ UψXð ÞX � λψX ¼ 0, (74)

and together with Eq. (47), this enables us to write

∂

∂X
∂
2

∂X2 ψXψ
∗ � 3ψXXψ

∗
X þUψXψ

∗
� �

� 2ReλψXψ
∗ ¼ 0: (75)

Integrating Eq. (75) over all values of X, we obtain that, for compact support,
Reλ ¼ 0 since, in the general case,

Ð∞
�∞ ψXψ

∗ dX 6¼ 0.
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As follows from Eqs. (2.12), (2.13), (2.36) and (2.37) of [33], ψX ζð Þ is related to
the adjoint states ψA

X �ζð Þ. In the usual manner, using the adjoint states and Eq. (14)
from [35] and Eq. (2.37) from [33], one can obtain

ϕ1X X; ζð Þ ¼ iffiffiffi
3

p ϕ1X X;�ω2ζð Þϕ1 X;�ω3ζð Þ � ϕ1X X;�ω3ζð Þϕ1 X;�ω2ζð Þ½ �: (76)

It is easily seen that if ζ 1ð Þ
1 is a pole of ϕ1 X; ζð Þ, then there is a pole either at

ζ 2ð Þ
1 ¼ �ω2ζ

1ð Þ
1 (if ϕ1 X;�ω2ζð Þ has a pole) or at ζ 2ð Þ

1 ¼ �ω3ζ
1ð Þ
1 (if ϕ1 X;�ω3ζð Þ has a

pole). For definiteness let ζ 2ð Þ
1 ¼ �ω2ζ

1ð Þ
1 . Then, as follows from (76), �ω3ζ

2ð Þ
1

should be a pole. However, this pole coincides with pole ζ 1ð Þ
1 , since �ω3ζ

2ð Þ
1 ¼

�ω3 �ω2ð Þζ 1ð Þ
1 ¼ ζ 1ð Þ

1 . Hence, the poles appear in pairs, ζ 2n�1ð Þ
1 and ζ 2nð Þ

1 , under the

condition ζ 2nð Þ
1 =ζ 2n�1ð Þ

1 ¼ �ω2, where n is the pair number.
Let us consider N pairs of poles, i.e., in all there are K ¼ 2N poles over which the

sum is taken in (76). For the pair n n ¼ 1; 2;…;Nð Þ we have the properties

ið Þ ζ 2n�1ð Þ
1 ¼ iω2ξn, iið Þ ζ 2nð Þ

1 ¼ �iω3ξn: (77)

Since U is real and λ is imaginary, ξk is real. The relationships (77) are in line
with the condition (2.33) from [33]. These relationships are also similar to

Eqs. (6.24) and (6.25) in [34], whilst γ kð Þ
1j turns out to be different from ~γ kð Þ

1j for the
Boussinesq equation (see Eqs. (6.24) and (6.25) in [34]). Indeed, by considering

(76) in the vicinity of the first pole ζ 2n�1ð Þ
1 of the pair n and using the relation (73),

one can obtain a relation between γ kð Þ
12 and γ kð Þ

13 . In this case the functions ϕ1,X X; ζð Þ,
ϕ1 X;�ω2ζð Þ and ϕ1,X X;�ω2ζð Þ also have poles here, whilst the functions
ϕ1 X;�ω3ζð Þ and ϕ1,X X;�ω3ζð Þ do not have poles here. Substituting ϕ1 X; ζð Þ in the

form (73) into Eq. (76) and letting X ! �∞, we have the ratio γ 2nð Þ
13 =γ 2n�1ð Þ

12 ¼ ω2

and γ 2nð Þ
12 ¼ γ 2n�1ð Þ

13 ¼ 0. Therefore, the properties of γ kð Þ
ij should be defined by the

relationships

ið Þ γ 2n�1ð Þ
12 ¼ ω2βk, γ 2n�1ð Þ

13 ¼ 0,

iið Þ γ 2nð Þ
12 ¼ 0, γ 2nð Þ

13 ¼ ω3βk,
(78)

where, as it will be proved below, βk is real when U ¼ WX is real.
By defining

Ψk X;Tð Þ ¼ ∑
3

j¼2
γ kð Þ
1j Tð Þ exp λj ζ kð Þ

1

� �
X

n o
Φ1 X;T;ωjζ

kð Þ
1

� �
, (79)

we may rewrite the relationship (73) as (see, for instance, Eqs. (6.33) and (6.34)
in [34])

Φ1 X;T; ζð Þ ¼ 1� ∑
2N

k¼1

exp �λ1 ζ kð Þ
1

� �
X

n o

λ1 ζ kð Þ
1

� �
� λ1 ζð Þ

Ψk X;Tð Þ: (80)

From (72) and (80), it may be shown that (cf. Eq. (6.38) in [34])

W X;Tð Þ �W �∞ð Þ ¼ �3 ∑
2N

k¼1
exp �λ1 ζ kð Þ

1

� �
X

n o
Ψk X;Tð Þ ¼ 3

∂

∂X
ln detM X;Tð Þð Þ: (81)
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The 2N � 2N matrix M X;Tð Þ is defined as in relationship (6.36) in [34] by

Mkl X;Tð Þ ¼ δkl � ∑
3

j¼2
γ kð Þ
1j 0ð Þ

exp � 3λj ζ kð Þ
1

� �� ��1
þ 3λ1 ζ kð Þ

1

� �� ��1
� �

T þ λj ζ kð Þ
1

� �
� λ1 ζ lð Þ

1

� �� �
X

� �

λj ζ kð Þ
1

� �
� λ1 ζ lð Þ

1

� � ,

(82)

and

n ¼ 1, 2,…, N,

λ1 ζ 2n�1ð Þ
1

� �
¼ iω2ξn, λ2 ζ 2n�1ð Þ

1

� �
¼ iω3ξn, γ 2n�1ð Þ

12 ¼ ω2βn, γ 2n�1ð Þ
13 ¼ 0,

λ1 ζ 2nð Þ
1

� �
¼ �iω3ξn, λ3 ζ 2nð Þ

1

� �
¼ �iω2ξn, γ 2nð Þ

12 ¼ 0, γ 2nð Þ
13 ¼ ω3βn:

For the N-soliton solution, there are N arbitrary constants ξn and N arbitrary
constants βn.

The final result for the N-soliton solution of the VPE is defined by relationship
(81) with (82).

6.1 Examples of one- and two-soliton solutions of the VPE

In order to obtain the one-soliton solution of the VPE (27)

WXXT þ 1þWTð ÞWX ¼ 0,

we need first to calculate the 2� 2 matrixM X;Tð Þ according to (82) with N ¼ 1.
We find that the matrix is

1� ω2β1ffiffiffi
3

p
ξ1

exp
ffiffiffi
3

p
ξ1X �

ffiffiffi
3

p
ξ1

� ��1
T

� �
iω3β1
2ξ1

exp 2iω3ξ1X �
ffiffiffi
3

p
ξ1

� ��1
T

� �

�iω2β1
2ξ1

exp �2iω2ξ1X �
ffiffiffi
3

p
ξ1

� ��1
T

� �
1� ω3β1ffiffiffi

3
p

ξ1
exp

ffiffiffi
3

p
ξ1X �

ffiffiffi
3

p
ξ1

� ��1
T

� �

0
BBBB@

1
CCCCA

(83)

and its determinant is

detM X;Tð Þ ¼ 1þ β1
2
ffiffiffi
3

p
ξ1

exp
ffiffiffi
3

p
ξ1 X � T

3ξ21

� �� �� �2

: (84)

Consequently, from Eq. (81) we have the one-soliton solution of the VPE

U X;Tð Þ ¼ WX X;Tð Þ ¼ 9
2
ξ21sech

2
ffiffiffi
3

p

2
ξ1 X � T

3ξ21

� �
þ α1

� �
, (85)

where α1 ¼ 1
2 ln β1=2

ffiffiffi
3

p
ξ1

� �
is an arbitrary constant. Since U is real, it follows

from (85) that β1 is real. Note that with β1=ξ1 <0 we have the real solution in the
form of the singular soliton [41].
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U X;Tð Þ ¼ 9
2
ξ21sinh

�2η, η ¼
ffiffiffi
3

p

2
ξ1 X � T

3ξ21

� �
þ α1: (86)

Let us now consider the two-soliton solution of the VPE. In this caseM X;Tð Þ is a
4� 4 matrix. We will not give the explicit form here, but we find that

detM X;Tð Þ ¼ 1þ q21 þ q22 þ b2q21q
2
2

� �2
, (87)

where

qi ¼ exp

ffiffiffi
3

p

2
ξi X � T

3ξ2i

 !
þ αi

" #
, b2 ¼ ξ2 � ξ1

ξ2 þ ξ1

� �2 ξ21 þ ξ22 � ξ1ξ2
ξ21 þ ξ22 þ ξ1ξ2

, (88)

and αi ¼ 1
2 ln βi=2

ffiffiffi
3

p
ξi

� �
are arbitrary constants. The two-soliton solution to the

VPE as found by the IST method is given by (81) together with (87).
Finally we note that comparison of (81) withW ¼ 6 ln fð ÞX from (42) shows that

ln detM X;Tð Þð Þ ¼ 2ln fð Þ: (89)

so that detM X;Tð Þ is a perfect square for arbitrary N.

6.2 The two-loop-like solitons of the VE

We discuss the two-loop soliton solution of the VE in more detail. Let us con-
sider what happens in x-t space. The relations (20), (25) and (29) determine the
solutions in x-t throughout the solutions in X-T. In these coordinates x-t, we have
the loop-like solitons.

The shifts, δi, of the two-loop solitons u1 and u2 in the positive x-direction due to
the interaction may be computed as follows. The larger loop soliton is always shifted
forwards by the interaction. However, for smaller u2 with r ¼ ξ1=ξ2, there is a value
rc ¼ 0:88867 in that we have a different form of the phase shift:

a. For rc < r< 1, δ1 <0 so the smaller loop soliton is shifted backwards.

b.For r ¼ rc, where rc ¼ 0:88867 is the root of ln bþ 3=r ¼ 0, δ1 ¼ 0, so the
smaller loop soliton is not shifted by the interaction.

c. For 0< r< rc, δ1 >0 so the smaller loop soliton is shifted forwards.

At first sight it might seem that the behaviour in (b) and (c) contradicts conser-
vation of ‘momentum’. That this is not so is justified as follows. By integrating (9)
with respect to x, we find that

Ð∞
�∞ udx ¼ 0; also, by multiplying (9) by x and

integrating with respect to x, we obtain
Ð∞
�∞ xudx ¼ 0. Thus, in x-t space, the ‘mass’

of each soliton is zero, and ‘momentum’ is conserved whatever δ1 and δ2 may be. In
particular δ1 and δ2 may have the same sign as in (c), or one of them may be zero as
in (b).

Cases (a), (b) and (c) are illustrated in Figures 6–8, respectively; in these
figures u is plotted against x for various values of t. For convenience in the
figures, the interactions of solitons are shown in coordinates moving with speed
v1 þ v2ð Þ=2.
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Figure 6.
The interaction process for two-loop solitons with ξ1 ¼ 0.99 and ξ2 ¼ 1 so that r ¼ 0.99 and δ1 < 0.

Figure 7.
The interaction process for two-loop solitons with ξ1 ¼ 0.88867 and ξ2 ¼ 1 so that r ¼ 0.88867 and δ1 = 0.
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7. Discussion on the loop-like solutions

We have already mentioned the important question on stability of loop-like
solutions (Section 2).

7.1 Remarks on the existence and uniqueness theorem

In [42], the existence and uniqueness theorem is formulated for system (one)
differential equations. The loop-like solutions take place on travelling waves. In this
case, the initial equation is reduced to an ordinary differential equation (ODE) (see
Section 2). It has been this equation which we are exploring. Now we note some
important remarks. In particular, in order to investigate the ODE (the solution on
travelling waves), it is still necessary to reconcile this solution with the initial
problem, which is described by the differential equation in partial derivatives (evo-
lution equation). Consequently, the ambiguous solutions for the ODE during their
reconstruction into the initial coordinates should be checked by means of some
restrictive conditions (see 7.2).

It is necessary to note that if the conditions of the existence and uniqueness
theorem break down, then nevertheless, this does not restrict the existence of
solutions. Hence, the solutions can exist, for example, the multivalued solutions.
Here we point out an example: the exact solutions for the Camassa-Holm
equation (CHE) and the Degasperis-Procesi equation (DPE) can be constructed
as the component solutions, through separate parts (branches) of solutions
(see [43]).

The selection of possible multivalued solutions will be discussed in 7.2.

Figure 8.
The interaction process for two-loop solitons with ξ1 ¼ 0.5 and ξ2 ¼ 1 so that r ¼ 0.5 and δ1 > 0.
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7.2 Selection for the loop-like solutions

Solutions must satisfy the following conditions:

1. At the point η ¼ 0, the solution must pass over the ellipse z2 þ 2vη2ð Þηη ¼ 0
(see Eq. (4.3) in [3]);

2. According to the conservation law
Ð�∞
∞ u x; tð Þdx ¼ const � 0 for t>0. The

‘mass’ of individual soliton equals to zero. This condition will be satisfied if
point 1 takes place.

3.As you know [3], taking into account dissipation in the physical process allows
one to select a solution from an array of possible solutions that are inherent to
the equation without dissipation. This condition also selects a solution as in a
point 1 if α ! 0.

4.During the interaction of the solitons [24, 29], you must take into account all
the parts of loop-like soliton (see end of Section 7.3). The soliton has a form
satisfying point 2.

Thus, we cannot arbitrarily combine the solutions at η ¼ 0. The solutions, in
particular, solitons should be specific loop-like form.

7.3 Physical interpretation of the multivalued solutions

From themathematical point of view, an ambiguous solution does not present
difficulties, whereas the physical interpretation of ambiguity always presents some
difficulties. In this connection the problem of ambiguous solutions is regarded as impor-
tant. The problem consists inwhether the ambiguity has a physical nature or is related to
the incompleteness of themathematical model, in particular to the lack of dissipation.

We will consider the problem related to the singular points when dissipation
takes place. At these points the dissipative term α ∂u

∂x tends to infinity. The question
arises: Are there solutions of Eq. (8) in a loop-like form? That the dissipation is
likely to destroy the loop-like solutions can be associated with the following well-
known fact [5]. For the simplest nonlinear equation without dispersion and without
dissipation, namely,

∂u
∂t

þ u
∂u
∂x

¼ 0, (90)

any initial smooth solution with boundary conditions

u x!þ∞ ¼ 0; uj jx!�∞ ¼ u0 ¼ const:>0

becomes ambiguous in the final analysis. When dissipation is considered, we
have the Burgers equation [47]:

∂u
∂t

þ u
∂u
∂x

þ μ
∂
2u
∂x2

¼ 0:

The dissipative term in this equation and in Eq. (6) for low frequency is coinci-
dent. The inclusion of the dissipative term transforms the solutions so that they
cannot be ambiguous as a result of evolution. The wave parameters are always
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unambiguous. What happens in our case for high frequency when the dissipative
term has the form αu (see Eq. (18) in [29])? Will the inclusion of dissipation give
rise to unambiguous solutions?

By direct integration of Eq. (8) (written in terms of the variables (11)) within
the neighbourhood of singular points z ¼ 0 where zη ! �∞ and zτ ≪ zη, it can be
derived (see [3]) that the dissipative term, with dissipation parameter less than
some limit value α ∗ , does not destroy the loop-like solutions. Now we give a
physical interpretation to ambiguous solutions.

Since the solution to the VE has a parametric form (15) and (16), there is a space
of variables in which the solution is a single-valued function. Hence, we can solve
the problem of the ambiguous solution. A number of states with their thermody-
namic parameters can occupy one microvolume. It is assumed that the interaction
between the separated states occupying one microvolume can be neglected in
comparison with the interaction between the particles of one thermodynamic state.
Even if we take into account the interaction between the separated states in accor-
dance with the dynamic state equation (5), for high frequencies, a dissipative term
arises which is similar to the corresponding term in Eq. (7) but with the other
relaxation time. In this sense the separated terms are distributed in space, but
describing the wave process, we consider them as interpenetratable. A similar
situation, when several components with different hydrodynamic parameters
occupy one microvolume, has been assumed in mixture theory (see, for instance,
[48]). Such a fundamental assumption in the theory of mixtures is physically
impossible (see [48], p.7), but it is appropriate in the sense that separated compo-
nents are multi-velocity interpenetratable continua.

Consequently, the following three observations show that, in the framework
of the approach considered here, there are multivalued solutions when we model
high-frequency wave processes: (1) All parts of loop-like solution are stable to
perturbations. (2) Dissipation does not destroy the loop-like solutions. (3) The
investigation regarding the interaction of the solitons has shown that it is
necessary to take into account the whole ambiguous solution and not just the
separate parts.

7.4 Conclusion

Loop-like solitons are a class of interesting wave phenomena, which take place in
some nonlinear systems. This interest consisted not only in the interpretation of the
solutions obtained but also in the explanation of the experimental results. The
ambiguous structure of the loop-like solutions is similar to the loop soliton solution
to an equation that models a stretched rope [44]. Loop-like solitons on a vortex
filament were investigated by Hasimoto [45] and Lamb, Jr. [46]. The loop-like
solutions appear in description of physical phenomena, in particular, electromag-
netic terahertz pulses in asymmetric molecules [49], high-frequency perturbations
in a relaxation medium [3, 50, 51] and soliton in ferrites [52]. As a typical
multivalued structure, loop soliton has been discussed in some possible physical
fields including particle physics [53] and quantum field theory [54].

It must be admitted that we are a long way still from complete awareness of
physical processes which can be described by loop-like solutions. However, the
approach, considered here, will hopefully be interesting and useful in understand-
ing the birth and death process for particles, since the mass and momentum of
individual loop-like soliton are zero. Furthermore, the investigations in optics,
magnetism and hydrodynamics clearly indicate the acceptability of the approach on
loop-like solitons. Indeed, the phase shifts observed at interaction of solitons can be
explained by means of loop-like solutions.
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Chapter 3

Complex Dynamical Behavior of a
Bounded Rational Duopoly Game
with Consumer Surplus
Wei Zhou and Tong Chu

Abstract

In this chapter, we assume that two bounded rational firms not only pursue
profit maximization but also take consumer surplus into account, so the objections
of all the firms are combination of their profits and the consumer surplus. And then
a dynamical duopoly Cournot model with bounded rationality is established. The
existence and stability of the boundary equilibrium points and the Nash equilibrium
of the model are discussed, respectively. And then the stability condition of the
Nash equilibrium is given. The complex dynamical behavior of the system varies
with parameters in the parameter space is studied by using the so-called 2D
bifurcation diagram. The coexistence of multiple attractors is discussed through
analyzing basins of attraction. It is found that not only two attractors can coexist, but
also three or even four attractors may coexist in the established model. Then, the
topological structure of basins of attraction and the global dynamics of the system are
discussed through invertible map, critical curve and transverse Lyapunov exponent.
At last, the synchronization phenomenon of the built model is studied.

Keywords: bifurcation, chaos, duopoly, consumer surplus, synchronization

1. Introduction

Oligopoly is a market between perfect monopoly and perfect competition [1].
With the application of chaos theory and nonlinear dynamic system into oligopoly
models, the static game evolves into a dynamic game. Especially in recent years,
with the rapid development of computer technology, a powerful tool has been
provided for dealing with the complex nonlinear problems. And hence, the econo-
mists and the mathematicians can simulate the complex dynamical behavior of
oligopoly market by using computer technology. Recently, a large number of
scholars have improved the oligopoly models, and introduced bounded rationality
(see [2, 3]), incomplete information [4], time delay [5], market entering and
entering barriers [6], differentiated products [7] and other factors [8, 9] into the
classical oligopoly models, and the bifurcation and chaos phenomenon were
founded in the process of repeated game.

However, all of the above discussions are mainly based on private enterprises,
which pursuit the maximization of their own profits. In fact, the public ownership
enterprises, which always aim at maximizing social welfare, and mixed ownership
enterprises, which always aim at maximizing the weighted average of the social
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welfare and their own profits, are also widespread in the real economic environ-
ment. De Fraja and Delbono [10] found that the social welfare might be higher when
a public ownership enterprise is a profit-maximizer rather than a social-welfare-
maximizer. Matsumura [11] proposed that the social welfare could be improved
through partial privatization of public enterprises. The research of Fujiwara [12]
suggested that partial privatized public enterprises are more efficient than private
enterprises. Elsadany and Awad [13] explored the complex dynamical behavior of
competition between two partial public enterprises under the assumption of
bounded rationality. However, the global dynamical behavior and synchronization
behavior of semi-public enterprises, which corporate social responsibility into their
objectives, are rarely studied. In this chapter, the occurrence of synchronization, the
coexistence of attractors and the global dynamic of a duopoly game corporate
consumer surplus are mainly discussed.

2. The model

Considering a duopolistic market where two firms produce homogeneous goods.
In order to study the long-term behaviors of the duopoly market with quantity
competition, we briefly present the economic setup leading to the final model in
this chapter. The price and quantity of product of firm i are given by pi and qi
respectively, with i ¼ 1, 2. We also assume the existence of a continuum of identical
consumers which have preferences toward q1 and q2.

Following Dixit [14] and Singh and Vives [15], we suppose that the utility
function used in this chapter is quadratic and can be given by,

U q1; q2
� � ¼ a q1 þ q2

� �� b
2

q21 þ 2q1q2 þ q22
� �

(1)

where q1, q2 are the quantity of goods produced by firm 1 and firm 2, respectively.
a>0 represents the maximum price of a unit’s commodity, b>0 represents the
amount of its price decreases when the price of the product increases by one unit.

Suppose that the budget constraint of consumer is,

p1q1 þ p2q2 ¼ M (2)

where p1 and p2 denote the prices of goods produced by firm 1 and firm 2,
respectively. And M denotes the budget of the consumers on the product. The
utility function of consumers is maximized under the budget constraint, and then
the inverse demand function of the two firms can be obtained as,

pi ¼ a� b q1 þ q2
� �

, i ¼ 1, 2 (3)

This chapter discusses homogenous products, so here it is assumed that all these
two players have the identical marginal cost. Therefore, the cost function of firm 1
and firm 2 are same and can be given by, C qð Þ ¼ cq, where c>0 denotes the marginal
cost of the goods and a> c always holds. Then, the profits of firm i, i ¼ 1, 2 can be
obtained as follows,

πi ¼ a� b q1 þ q2
� �� c

� �
qi, i ¼ 1, 2 (4)

In the real market, there are a lot of firms, who not only pursue their own profits
but also take corporate social responsibility into account. A large number of
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empirical studies have shown how the introduced corporate social responsibility
affects firm’s performance, where we interpret corporate social responsibility as
either consumer surplus (for short CS) or social welfare (for short SW). In this
chapter we take CS into account to analyze which firms have an incentive to exhibit
corporate social responsibility as a means of maximizing their profits in a Cournot
competition. Based on the above assumptions and the definition of consumer sur-
plus, CS can be written as,

CS ¼
ða
p

a� p
b

dp ¼ b q1 þ q2
� �2

2
(5)

where p∈ p; að Þ is the price variable.
According to the above assumptions, the objective function of the firm i can be

given as,

Oi ¼ 1� αið Þπi þ αiCS, 0≤ αi ≤ 1, i ¼ 1, 2 (6)

where αi represents the weight of the consumer surplus in the objective function
of firm i, and 0≤ αi ≤ 1 always holds. By substituting (4) and (5) into (6), the
objection function of firm i can be given by,

Oi ¼ 1� αið Þ a� b q1 þ q2
� �� c

� �
qi þ

1
2
αib q1 þ q2
� �2, i ¼ 1, 2 (7)

And the first-order condition of the objection function (7) is given as,

∂Oi

∂qi
¼ 1� αið Þ a� cð Þ þ 3αi � 2ð Þbqi þ 2αi � 1ð Þbqj, i, j ¼ 1, 2, i 6¼ j (8)

It is now significant to specify the information set of both players regarding the
objection functions, to determine the behaviors of the players with the change of
time. We assume a discrete time t∈Zþð Þ dynamic setting, where two firms with
bounded rationality make decisions at the same time. That is, all firms do not have
complete knowledge of their competitors’ decisions and the market demands. So it
can only use the local estimation of the steepest slope of the objection function at
period t to determine the output at period tþ 1. By following Bischi et al. [16] and
Fanti et al. [17], the adjustment mechanism of quantities with the change of time of
firm i can be obtained as,

qi tþ 1ð Þ ¼ qi tð Þ þ viqi tð Þ
∂Oi

∂qi
(9)

where vi >0, i ¼ 1, 2 is an adjustment parameter of firm i. The firm i will
increase its output at period tþ 1, if ∂Oi tð Þ

∂qi tð Þ >0. But the firm i will reduce its output at

period tþ 1, if ∂Oi tð Þ
∂qi tð Þ >0. By substituting (8) into (9), we can get a two-dimensional

map as,

T :
q1 tþ 1ð Þ ¼ q1 tð Þ þ v1q1 tð Þ 1� α1ð Þ a� cð Þ þ 3bα1 � 2bð Þq1 tð Þ þ 2bα1 � bð Þq2 tð Þ� �

q2 tþ 1ð Þ ¼ q2 tð Þ þ v2q2 tð Þ 1� α2ð Þ a� cð Þ þ 3bα2 � 2bð Þq2 tð Þ þ 2bα2 � bð Þq1 tð Þ� �
(

(10)

Since the output of a firm cannot be negative, the initial conditions of map T
belong to
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can only use the local estimation of the steepest slope of the objection function at
period t to determine the output at period tþ 1. By following Bischi et al. [16] and
Fanti et al. [17], the adjustment mechanism of quantities with the change of time of
firm i can be obtained as,

qi tþ 1ð Þ ¼ qi tð Þ þ viqi tð Þ
∂Oi

∂qi
(9)

where vi >0, i ¼ 1, 2 is an adjustment parameter of firm i. The firm i will
increase its output at period tþ 1, if ∂Oi tð Þ

∂qi tð Þ >0. But the firm i will reduce its output at

period tþ 1, if ∂Oi tð Þ
∂qi tð Þ >0. By substituting (8) into (9), we can get a two-dimensional

map as,

T :
q1 tþ 1ð Þ ¼ q1 tð Þ þ v1q1 tð Þ 1� α1ð Þ a� cð Þ þ 3bα1 � 2bð Þq1 tð Þ þ 2bα1 � bð Þq2 tð Þ� �

q2 tþ 1ð Þ ¼ q2 tð Þ þ v2q2 tð Þ 1� α2ð Þ a� cð Þ þ 3bα2 � 2bð Þq2 tð Þ þ 2bα2 � bð Þq1 tð Þ� �
(

(10)

Since the output of a firm cannot be negative, the initial conditions of map T
belong to

43

Complex Dynamical Behavior of a Bounded Rational Duopoly Game with Consumer Surplus
DOI: http://dx.doi.org/10.5772/intechopen.87200



F ¼ q1; q2
� �

: q1 ≥0; q2 ≥0; q1 þ q2 6¼ 0
� �

By setting qi tþ 1ð Þ ¼ qi tð Þ, i ¼ 1, 2 in system (10), the fixed points of the system
are obtained. Besides the trivial equilibrium E0 ¼ 0;0ð Þ, system (10) admits the
following non-trivial fixed points (boundary equilibrium points),

E1 ¼ 0;� a� cð ÞA2

bB2

� �
, E2 ¼ � a� cð ÞA1

bB1
;0

� �

and the only Nash equilibrium is

E ∗ ¼ a� cð Þ A2C1 � A1B2ð Þ
b B1B2 � C1C2ð Þ ;

a� cð Þ A1C2 � A2B1ð Þ
b B1B2 � C1C2ð Þ

� �

where A1 ¼ 1� α1, A2 ¼ 1� α2, B1 ¼ 3α1 � 2, B2 ¼ 3α2 � 2, C1 ¼ 2α1 � 1 and
C2 ¼ 2α2 � 1. The positivity of Ei i ¼ 1; 2ð Þ and E ∗ is ensured by requiring
S ¼ S1 ∪ S2, where

S1 ¼ A1;A1;B1;B2;C1;C2ð Þ B1 <0;B2 <0;B1B2 � C1C2 >0;A2C1 � A1B2 >0;A1C2 � A2B1 >0j gf
S2 ¼ A1;A1;B1;B2;C1;C2ð Þ B1 <0;B2 <0;B1B2 � C1C2 <0;A2C1 � A1B2 <0;A1C2 � A2B1 <0j gf

�

(11)

3. Stability properties

The local stability analyses of system (10) near the fixed points are too difficult
to carry on. For the sake of analyzing the local stability of the system, we firstly let
α1 ¼ α2 ¼ α in system (10). And the Jacobian matrix of map T at any fixed point
q1; q2
� �

can be given as,

J q1; q2
� � ¼ 1þ v1 1� αð Þ a� cð Þ þ 2v1 3bα� 2bð Þq1 þ v1 2bα� bð Þq2 v1 2bα� bð Þq1

v2 2bα� bð Þq2 1þ v2 1� αð Þ a� cð Þ þ 2v2 3bα� 2bð Þq2 þ v2 2bα� bð Þq1

� �

(12)

Then all the equilibrium points are substituted into the Jacobian matrix (12).
According to the characteristic values of the Jacobian matrix evaluated at each
equilibrium, the type and stability of the equilibrium can be analyzed and the
following results can be obtained.

Proposition 1. The equilibrium point E0 is always an unstable node.
Proof. It is clear that the Jacobian matrix of map T, evaluated at the boundary

equilibrium point E0 can be written as,

J E0ð Þ ¼ 1þ v1 1� αð Þ a� cð Þ 0

0 1þ v2 1� αð Þ a� cð Þ

� �
,

The eigenvalues of J E0ð Þ are given by λi ¼ 1þ vi 1� αð Þ a� cð Þ, i ¼ 1, 2. Since
(11) holds and vi >0, i ¼ 1; 2ð Þ then λi > 1, i ¼ 1; 2ð Þ which implies that E0 is an
unstable node.

Proposition 2. E1 is a saddle point, when v2 < 2
1�αð Þ a�cð Þ. And E1 is an unstable

node, when v2 > 2
1�αð Þ a�cð Þ.
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Proof. By substituting the equilibrium E1 into (11), the Jacobian matrix of map
T evaluated at the boundary equilibrium point E1 can be written as,

J E1ð Þ ¼
λ1 ¼ 1þ v1 1� αð Þ a� cð Þ α� 1

3α� 2
0

� v2 1� αð Þ a� cð Þ 2α� 1ð Þ
3α� 2

1� v2 1� αð Þ a� cð Þ

0
BB@

1
CCA,

The eigenvalues of J E1ð Þ are given by λ1 ¼ 1þ v1 1� αð Þ a� cð Þ α�1
3α�2 and

λ2 ¼ 1� v2 1� αð Þ a� cð Þ. Since (11) holds and v1 >0, then λ1 > 1 always meets.
According to (11) and v2 >0, we can deduce that λ2j j< 1 if and only if v2 < 2

1�αð Þ a�cð Þ.

That is, when v2 < 2
1�αð Þ a�cð Þ meets, the equilibrium E1 is a saddle point. Similarly, the

equilibrium E1 is an unstable node, when v2 > 2
1�αð Þ a�cð Þ.

Similar to the case of the equilibrium E1, it can be also proved that E2 is a saddle
point when v1 < 2

1�αð Þ a�cð Þ, and E2 is an unstable node when v1 > 2
1�αð Þ a�cð Þ.

For the purpose of research of the local stability near the Nash equilibrium, we
should compute the Jacobian matrix evaluated at the Nash equilibrium E ∗ as,

J q ∗
1 ; q

∗
2

� � ¼ 1þ v1 1� αð Þ a� cð Þ þ 2v1 3bα� 2bð Þq ∗
1 þ v1 2bα� bð Þq ∗

2 v1 2bα� bð Þq ∗
1

v2 2bα� bð Þq ∗
2 1þ v2 1� αð Þ a� cð Þ þ 2v2 3bα� 2bð Þq ∗

2 þ v2 2bα� bð Þq ∗
1

� �

(13)

It can be seen that the form of the Jacobian matrix is so complex. In order to
simplify the calculation, let

A ¼ 1� αð Þ a� cð Þ, B ¼ b 3α� 2ð Þ, D ¼ b 2α� 1ð Þ

Then the trace and the determinant of the Jacobian matrix evaluated at the Nash
equilibrium E ∗ can be given as,

Tr ¼ 2þ A v1 þ v2ð Þ þ 2v1Bþ v2Dð Þq ∗
1 þ 2v2Bþ v1Dð Þq ∗

2

Det ¼ 1þ v1 þ v2ð ÞAþ v1v2A2 þ v2Dþ v1v2ADþ 2v1Bþ 2v1v2ABð Þq ∗
1

þ 2v2Bþ 2v1v2ABþ v1Dþ v1v2ADð Þq ∗
2 þ 2v1v2BD q ∗

1

� �2 þ q ∗
2

� �2� �
þ 4v1v2B2q ∗

1 q
∗
2

According to Jury condition, if we substitute the specific mathematical expres-
sions of q ∗

1 , q
∗
2 into the above two equations, then the following set of inequalities

can be gotten through a complex calculation,

4� 2AB v1 þ v2ð Þ � v1v2A2 B�Dð Þ
BþD

>0

v1v2A2 B�D
BþD

>0

AB v1 þ v2ð Þ � v1v2A2 B�Dð Þ
BþD

>0

8>>>>>>>><
>>>>>>>>:

(14)

Since all the equilibrium points are non-negative when the parameters meet
0≤ α< 3

5, a> c and vi >0, i ¼ 1; 2ð Þ. So we can get A>0, B<0, BþD<0 and
B�D<0, then the set of inequalities (14) are equivalent to
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F ¼ q1; q2
� �

: q1 ≥0; q2 ≥0; q1 þ q2 6¼ 0
� �

By setting qi tþ 1ð Þ ¼ qi tð Þ, i ¼ 1, 2 in system (10), the fixed points of the system
are obtained. Besides the trivial equilibrium E0 ¼ 0;0ð Þ, system (10) admits the
following non-trivial fixed points (boundary equilibrium points),

E1 ¼ 0;� a� cð ÞA2

bB2

� �
, E2 ¼ � a� cð ÞA1

bB1
;0

� �

and the only Nash equilibrium is

E ∗ ¼ a� cð Þ A2C1 � A1B2ð Þ
b B1B2 � C1C2ð Þ ;

a� cð Þ A1C2 � A2B1ð Þ
b B1B2 � C1C2ð Þ

� �

where A1 ¼ 1� α1, A2 ¼ 1� α2, B1 ¼ 3α1 � 2, B2 ¼ 3α2 � 2, C1 ¼ 2α1 � 1 and
C2 ¼ 2α2 � 1. The positivity of Ei i ¼ 1; 2ð Þ and E ∗ is ensured by requiring
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S1 ¼ A1;A1;B1;B2;C1;C2ð Þ B1 <0;B2 <0;B1B2 � C1C2 >0;A2C1 � A1B2 >0;A1C2 � A2B1 >0j gf
S2 ¼ A1;A1;B1;B2;C1;C2ð Þ B1 <0;B2 <0;B1B2 � C1C2 <0;A2C1 � A1B2 <0;A1C2 � A2B1 <0j gf

�

(11)

3. Stability properties

The local stability analyses of system (10) near the fixed points are too difficult
to carry on. For the sake of analyzing the local stability of the system, we firstly let
α1 ¼ α2 ¼ α in system (10). And the Jacobian matrix of map T at any fixed point
q1; q2
� �

can be given as,

J q1; q2
� � ¼ 1þ v1 1� αð Þ a� cð Þ þ 2v1 3bα� 2bð Þq1 þ v1 2bα� bð Þq2 v1 2bα� bð Þq1

v2 2bα� bð Þq2 1þ v2 1� αð Þ a� cð Þ þ 2v2 3bα� 2bð Þq2 þ v2 2bα� bð Þq1

� �

(12)

Then all the equilibrium points are substituted into the Jacobian matrix (12).
According to the characteristic values of the Jacobian matrix evaluated at each
equilibrium, the type and stability of the equilibrium can be analyzed and the
following results can be obtained.

Proposition 1. The equilibrium point E0 is always an unstable node.
Proof. It is clear that the Jacobian matrix of map T, evaluated at the boundary

equilibrium point E0 can be written as,

J E0ð Þ ¼ 1þ v1 1� αð Þ a� cð Þ 0

0 1þ v2 1� αð Þ a� cð Þ

� �
,

The eigenvalues of J E0ð Þ are given by λi ¼ 1þ vi 1� αð Þ a� cð Þ, i ¼ 1, 2. Since
(11) holds and vi >0, i ¼ 1; 2ð Þ then λi > 1, i ¼ 1; 2ð Þ which implies that E0 is an
unstable node.

Proposition 2. E1 is a saddle point, when v2 < 2
1�αð Þ a�cð Þ. And E1 is an unstable

node, when v2 > 2
1�αð Þ a�cð Þ.
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Proof. By substituting the equilibrium E1 into (11), the Jacobian matrix of map
T evaluated at the boundary equilibrium point E1 can be written as,
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3α� 2
0
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0
BB@

1
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The eigenvalues of J E1ð Þ are given by λ1 ¼ 1þ v1 1� αð Þ a� cð Þ α�1
3α�2 and

λ2 ¼ 1� v2 1� αð Þ a� cð Þ. Since (11) holds and v1 >0, then λ1 > 1 always meets.
According to (11) and v2 >0, we can deduce that λ2j j< 1 if and only if v2 < 2

1�αð Þ a�cð Þ.

That is, when v2 < 2
1�αð Þ a�cð Þ meets, the equilibrium E1 is a saddle point. Similarly, the

equilibrium E1 is an unstable node, when v2 > 2
1�αð Þ a�cð Þ.

Similar to the case of the equilibrium E1, it can be also proved that E2 is a saddle
point when v1 < 2

1�αð Þ a�cð Þ, and E2 is an unstable node when v1 > 2
1�αð Þ a�cð Þ.

For the purpose of research of the local stability near the Nash equilibrium, we
should compute the Jacobian matrix evaluated at the Nash equilibrium E ∗ as,

J q ∗
1 ; q
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� � ¼ 1þ v1 1� αð Þ a� cð Þ þ 2v1 3bα� 2bð Þq ∗
1 þ v1 2bα� bð Þq ∗

2 v1 2bα� bð Þq ∗
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2 1þ v2 1� αð Þ a� cð Þ þ 2v2 3bα� 2bð Þq ∗
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1
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(13)

It can be seen that the form of the Jacobian matrix is so complex. In order to
simplify the calculation, let

A ¼ 1� αð Þ a� cð Þ, B ¼ b 3α� 2ð Þ, D ¼ b 2α� 1ð Þ

Then the trace and the determinant of the Jacobian matrix evaluated at the Nash
equilibrium E ∗ can be given as,

Tr ¼ 2þ A v1 þ v2ð Þ þ 2v1Bþ v2Dð Þq ∗
1 þ 2v2Bþ v1Dð Þq ∗

2

Det ¼ 1þ v1 þ v2ð ÞAþ v1v2A2 þ v2Dþ v1v2ADþ 2v1Bþ 2v1v2ABð Þq ∗
1

þ 2v2Bþ 2v1v2ABþ v1Dþ v1v2ADð Þq ∗
2 þ 2v1v2BD q ∗

1

� �2 þ q ∗
2

� �2� �
þ 4v1v2B2q ∗

1 q
∗
2

According to Jury condition, if we substitute the specific mathematical expres-
sions of q ∗

1 , q
∗
2 into the above two equations, then the following set of inequalities

can be gotten through a complex calculation,

4� 2AB v1 þ v2ð Þ � v1v2A2 B�Dð Þ
BþD

>0

v1v2A2 B�D
BþD

>0

AB v1 þ v2ð Þ � v1v2A2 B�Dð Þ
BþD

>0

8>>>>>>>><
>>>>>>>>:

(14)

Since all the equilibrium points are non-negative when the parameters meet
0≤ α< 3

5, a> c and vi >0, i ¼ 1; 2ð Þ. So we can get A>0, B<0, BþD<0 and
B�D<0, then the set of inequalities (14) are equivalent to
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4 BþDð Þ � 2AB v1 þ v2ð Þ þ v1v2A2 B�Dð Þ<0

B v1 þ v2ð Þ � v1v2A B�Dð Þ<0

(
(15)

Then the stability region of the Nash equilibrium can be obtained by substituting
A, B and D into inequalities (15), which are given as,

4 5α� 3ð Þ � 2 1� αð Þ a� cð Þ 3α� 2ð Þ v1 þ v2ð Þ � v1v2 1� αð Þ3 a� cð Þ2 <0

3α� 2ð Þ v1 þ v2ð Þ þ v1v2 1� αð Þ2 a� cð Þ<0

(
(16)

The stability condition of the Nash equilibrium gives a parameters region, in
which the Nash equilibrium is always stable. For the sake of better analysis of the
stability of the Nash equilibrium under different set of parameters, a useful tool
called “two-dimensional bifurcation diagram” (also called 2-D bifurcation diagram)
is employed. From (16), we can find that the stability region of the Nash equilibrium
is related to the difference of parameters a and c, that is a� c. So we only discuss the
values of a� c, rather than the values of a and c in the rest of this chapter.

Figure 1 is a two-dimensional bifurcation diagram of system (10) with a set of
fixed parameter a� c, b and α. Figure 1a is a two-dimensional bifurcation diagram
when a� c ¼ 2:1, α ¼ 0:50608821 and b ¼ 2:00232504. We can observe that there
are two different routes to chaos, when the parameters are chosen as this set of
parameters. The system enters chaos through flip bifurcation when the parameter
v1; v2ð Þ passes through green, yellow and light green from the brown region to the

Figure 1.
2D bifurcation diagram in the v1; v2ð Þ or α1; α2ð Þ parameters plane. (a) a� c ¼ 2.1, α ¼ 0.50608821,
b ¼ 2.00232504, (b) enlarged the square region in Figure 1a, (c) a� c ¼ 0.88017028, α ¼ 0.27445462,
b ¼ 0.52714274 and (d) enlarged the square region in the Figure 1c.

46

Research Advances in Chaos Theory

black region. It means that when the firms change their speed of adjustment
according to the path, a periodic fluctuation of system (10) will happen. That is, the
period motion will increase exponentially until it enters chaos. And the chaotic
behavior of this system can be understood as the confusion of the market competi-
tion, and one of the two firms may be even out of the market with an increasing
speed of adjustment. But if the parameter passes through the green region from the
brown region to the black region, the system will first undergo a flip bifurcation,
and then enters quasi-period motion through a Neimark-Sacker bifurcation. The
system enters quasi-period from period-2 when firms determine their speed of
adjustment along this path. Figure 1b is a partial amplification of Figure 1a, and we
can observe that there are many scattered points of different colors, which is caused
by the coexistence of multi-attractors with different period.

Figure 2a shows the coexistence of attractors with the parameters chosen as
v1 ¼ 2:44, and v2 ¼ 2:45, where the scatter points are shown in Figure 1b. we can
observe a period-6 cycle coexisting with a period-4 cycle. Figure 1c is the two-
dimensional bifurcation diagram, where the fixed parameters are given as
a� c ¼ 0:88017028, α ¼ 0:27445462 and b ¼ 0:52714274. At this set of parameters,
the system enters chaos through a flip bifurcation. Figure 1d is a partial enlarge-
ment of Figure 1c. Similarly, the parameter space of Figure 1d is also chosen
according to the area with scattered points of Figure 1c. Figure 2b shows the
coexisted attractors and their basins of attraction at this set of parameters. We can
observe that there are three attractors coexisting.

Figure 3 shows a series of two-dimensional bifurcation diagram under different
parameters. It shows a very beautiful gallery, from which we can enjoy the system
(10) with full complex dynamics phenomenon. We can observe from Figure 3 that
the difference between the maximum price of the unit product a and the marginal
cost c affects the size of the stable region. The weight of the consumer surplus α
affects the shape of the two-dimensional bifurcation diagram, while the parameter
b almost has hardly effect on the two-dimensional bifurcation of the system.
Therefore, the game can be balanced more quickly by reducing the difference a� c.
In Figure 3a, it can be observed that the chaotic area surrounded by the period-4
area is like a “hand” and the 8-period area is like a small “bottle” raised by the
beautiful hand. It is observed that the shape of Figure 3b is similar to Figure 3a due
to a tiny adjustment of parameter α. Since the difference between the parameters a
and c is reduced, the stability area of the Nash equilibrium becomes larger.
Figure 3c is like a “volcanic eruption.” It can be observed that there is an inward

Figure 2.
(a) A period-8 cycle coexists with a period-8 cycle with a� c ¼ 2.1, α ¼ 0.50608821, b ¼ 2.00232504,
v1 ¼ 2.44, and v2 ¼ 2.45 and (b) a attractor on the diagonal and a period-4 cycle coexists with a
period-8 cycle with a� c ¼ 0.88017028, α ¼ 0.27445462, v1 ¼ 4.16, b ¼ 0.52714274, and v2 ¼ 4.13.
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4 BþDð Þ � 2AB v1 þ v2ð Þ þ v1v2A2 B�Dð Þ<0

B v1 þ v2ð Þ � v1v2A B�Dð Þ<0

(
(15)

Then the stability region of the Nash equilibrium can be obtained by substituting
A, B and D into inequalities (15), which are given as,

4 5α� 3ð Þ � 2 1� αð Þ a� cð Þ 3α� 2ð Þ v1 þ v2ð Þ � v1v2 1� αð Þ3 a� cð Þ2 <0

3α� 2ð Þ v1 þ v2ð Þ þ v1v2 1� αð Þ2 a� cð Þ<0
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The stability condition of the Nash equilibrium gives a parameters region, in
which the Nash equilibrium is always stable. For the sake of better analysis of the
stability of the Nash equilibrium under different set of parameters, a useful tool
called “two-dimensional bifurcation diagram” (also called 2-D bifurcation diagram)
is employed. From (16), we can find that the stability region of the Nash equilibrium
is related to the difference of parameters a and c, that is a� c. So we only discuss the
values of a� c, rather than the values of a and c in the rest of this chapter.

Figure 1 is a two-dimensional bifurcation diagram of system (10) with a set of
fixed parameter a� c, b and α. Figure 1a is a two-dimensional bifurcation diagram
when a� c ¼ 2:1, α ¼ 0:50608821 and b ¼ 2:00232504. We can observe that there
are two different routes to chaos, when the parameters are chosen as this set of
parameters. The system enters chaos through flip bifurcation when the parameter
v1; v2ð Þ passes through green, yellow and light green from the brown region to the

Figure 1.
2D bifurcation diagram in the v1; v2ð Þ or α1; α2ð Þ parameters plane. (a) a� c ¼ 2.1, α ¼ 0.50608821,
b ¼ 2.00232504, (b) enlarged the square region in Figure 1a, (c) a� c ¼ 0.88017028, α ¼ 0.27445462,
b ¼ 0.52714274 and (d) enlarged the square region in the Figure 1c.
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black region. It means that when the firms change their speed of adjustment
according to the path, a periodic fluctuation of system (10) will happen. That is, the
period motion will increase exponentially until it enters chaos. And the chaotic
behavior of this system can be understood as the confusion of the market competi-
tion, and one of the two firms may be even out of the market with an increasing
speed of adjustment. But if the parameter passes through the green region from the
brown region to the black region, the system will first undergo a flip bifurcation,
and then enters quasi-period motion through a Neimark-Sacker bifurcation. The
system enters quasi-period from period-2 when firms determine their speed of
adjustment along this path. Figure 1b is a partial amplification of Figure 1a, and we
can observe that there are many scattered points of different colors, which is caused
by the coexistence of multi-attractors with different period.

Figure 2a shows the coexistence of attractors with the parameters chosen as
v1 ¼ 2:44, and v2 ¼ 2:45, where the scatter points are shown in Figure 1b. we can
observe a period-6 cycle coexisting with a period-4 cycle. Figure 1c is the two-
dimensional bifurcation diagram, where the fixed parameters are given as
a� c ¼ 0:88017028, α ¼ 0:27445462 and b ¼ 0:52714274. At this set of parameters,
the system enters chaos through a flip bifurcation. Figure 1d is a partial enlarge-
ment of Figure 1c. Similarly, the parameter space of Figure 1d is also chosen
according to the area with scattered points of Figure 1c. Figure 2b shows the
coexisted attractors and their basins of attraction at this set of parameters. We can
observe that there are three attractors coexisting.

Figure 3 shows a series of two-dimensional bifurcation diagram under different
parameters. It shows a very beautiful gallery, from which we can enjoy the system
(10) with full complex dynamics phenomenon. We can observe from Figure 3 that
the difference between the maximum price of the unit product a and the marginal
cost c affects the size of the stable region. The weight of the consumer surplus α
affects the shape of the two-dimensional bifurcation diagram, while the parameter
b almost has hardly effect on the two-dimensional bifurcation of the system.
Therefore, the game can be balanced more quickly by reducing the difference a� c.
In Figure 3a, it can be observed that the chaotic area surrounded by the period-4
area is like a “hand” and the 8-period area is like a small “bottle” raised by the
beautiful hand. It is observed that the shape of Figure 3b is similar to Figure 3a due
to a tiny adjustment of parameter α. Since the difference between the parameters a
and c is reduced, the stability area of the Nash equilibrium becomes larger.
Figure 3c is like a “volcanic eruption.” It can be observed that there is an inward

Figure 2.
(a) A period-8 cycle coexists with a period-8 cycle with a� c ¼ 2.1, α ¼ 0.50608821, b ¼ 2.00232504,
v1 ¼ 2.44, and v2 ¼ 2.45 and (b) a attractor on the diagonal and a period-4 cycle coexists with a
period-8 cycle with a� c ¼ 0.88017028, α ¼ 0.27445462, v1 ¼ 4.16, b ¼ 0.52714274, and v2 ¼ 4.13.
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cave in the diagonal that is like a “crater.” As the parameters vary, the hole in
Figure 3c continues to sink inward and become larger and larger. From Figure 3d
we can see that the period-4 arrives at a quasi-periodic motion directly. Therefore,
we should change the weight of consumer surplus α slightly in order to maintain the
market fluctuations not fierceness.

4. Global dynamics and synchronization

The type and stability of the equilibrium points have been analyzed as above.
And the boundary equilibrium E1 and the boundary equilibrium E2 are in symmet-
rical positions with respect to the main diagonal line Δ ¼ q1; q2

� �
∈R2

þ : q1 ¼ q2
� �

. It
is also clear that the unique Nash equilibrium E ∗ of system (10) is located on the
main diagonal Δ. So we mainly study the dynamical behavior of the system on the
diagonal. We choose the initial conditions near the diagonal, and the phenomenon
via finite iteration back to the diagonal is called synchronization. The synchroniza-
tion of chaotic systems was quite interesting and unexpected. In fact, due to the
nonlinear system usually has sensitive dependence on initial conditions, a property
which implies that the slightly change of initial conditions will lead to an exponen-
tial difference between the trajectories of two identical systems, making it impossi-
ble for two separated and even identical systems to synchronize. Therefore, the
small coupling between two chaotic oscillators makes the system asymptotically
converge to same trajectory, which is worth studying.

Figure 3.
2D bifurcation diagram in the (v1, v2) parameters plane, (a) with parameters a� c ¼ 1.83, α ¼ 0.278,
b ¼ 0.0012, (b) with parameters a� c ¼ 1.52, α ¼ 0.277, b ¼ 0.348, (c) with parameters a� c ¼ 1.66,
α ¼ 0.27, b ¼ 0.19 and (d) with parameters a� c ¼ 1.99, α ¼ 0.39, b ¼ 0.22.
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Subsequently, we assume that both firms have the same speed of adjustment. It
means that the latter discussion is based on v1 ¼ v2 ¼ v and α1 ¼ α2 ¼ α. In this case
the two players are identical; the system T can then be rewritten as follows,

T0 :
q1 tþ 1ð Þ ¼ q1 tð Þ þ vq1 tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq1 tð Þ þ 2bα� bð Þq2 tð Þ� �

q2 tþ 1ð Þ ¼ q2 tð Þ þ vq2 tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq2 tð Þ þ 2bα� bð Þq1 tð Þ� �
(

(17)

It can be proved that the map T0 has symmetry property, i.e., there exists a map
S : q1; q2
� �! q2; q1

� �
, which makes T0∘S ¼ S∘T0. The symmetry property of the map

T0 implies that the diagonal Δ is a one-dimensional sub-manifold of system (17), i.e.,
T0 Δð Þ⊆Δ. However, the phenomenon of synchronization occurs when the diagonal
Δ is invariant one-dimensional submanifold of the system (17). Therefore, the
phenomenon of synchronization of the system can be analyzed by studying the
invariant set. We can also use critical curve and noninvertible map to describe the
global dynamical behaviors of a 2-dimensional map.

4.1 Critical curve and noninvertible map

We divide the discrete dynamical system into invertible and noninvertible. The
invertible discrete dynamical system refers that an image q1

0; q2
0� �
of the map T0 is

correspond to the only preimage q1; q2
� �

. The noninvertible discrete dynamical system
implies that the map T0 is multi-valued, i.e., the image of T0 has more than one
preimages. In a noninvertible discrete dynamical system, the curve that divides the
phase space into regions with a different number of rank-1 preimages is called critical
curve, denoted by LC. And the regions can be represented by Zi, i∈Nð Þ. For example,
a point belonging to area Z0 has no preimage and a point belonging to area Z2 has two
preimages. Let us denote the rank-1 preimages of critical curve LC under map T0 as
LC�1. The set LC is the 2-dimensional generalization of the critical value or local
extremes of 1-dimensional noninvertible map. Its preimages LC�1 are corresponding
to local extreme point (critical point) in the one-dimensional noninvertible map. Since
the map (17) is a continuously differentiable map, LC�1 belongs to the locus of points
where the Jacobiandeterminant ofT0 vanishes, i.e.,LC�1 ¼ q1; q2

� �
∈R2 detDT0 ¼ 0j g�

.
In this case, curve LC�1 can be determined by the following equation,

1þ 2vAþ v2A2 þ vDþ v2ADþ 2vBþ 2v2AB
� �

q1 þ q2
� �þ 2v2BD q21 þ q22

� �þ 4v2Bq1q2 ¼ 0

(18)

LC is the rank-1 image of LC�1 under map T0. That is, LC ¼ T0 LC�1ð Þ. The
noninvertible properties play a significant role in analyzing the global behavior of a
nonlinear discrete dynamical model. So the critical curve is a powerful tool for us to
study these complex structures. Using the segment of critical curve as well as their
preimages of any rank, and we will get the boundary of the basins of attraction as
shown in Figure 10f.

4.2 Invariant sets

The dynamics of the system on the diagonal is studied by analyzing the invariant
sets. Firstly, we can prove that the coordinates are invariant sets of map T0. Let
q2 tð Þ ¼ 0, then we can obtain q2 tþ 1ð Þ ¼ 0, and the first equation of (17) can be
rewritten as,
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cave in the diagonal that is like a “crater.” As the parameters vary, the hole in
Figure 3c continues to sink inward and become larger and larger. From Figure 3d
we can see that the period-4 arrives at a quasi-periodic motion directly. Therefore,
we should change the weight of consumer surplus α slightly in order to maintain the
market fluctuations not fierceness.

4. Global dynamics and synchronization

The type and stability of the equilibrium points have been analyzed as above.
And the boundary equilibrium E1 and the boundary equilibrium E2 are in symmet-
rical positions with respect to the main diagonal line Δ ¼ q1; q2
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∈R2

þ : q1 ¼ q2
� �

. It
is also clear that the unique Nash equilibrium E ∗ of system (10) is located on the
main diagonal Δ. So we mainly study the dynamical behavior of the system on the
diagonal. We choose the initial conditions near the diagonal, and the phenomenon
via finite iteration back to the diagonal is called synchronization. The synchroniza-
tion of chaotic systems was quite interesting and unexpected. In fact, due to the
nonlinear system usually has sensitive dependence on initial conditions, a property
which implies that the slightly change of initial conditions will lead to an exponen-
tial difference between the trajectories of two identical systems, making it impossi-
ble for two separated and even identical systems to synchronize. Therefore, the
small coupling between two chaotic oscillators makes the system asymptotically
converge to same trajectory, which is worth studying.

Figure 3.
2D bifurcation diagram in the (v1, v2) parameters plane, (a) with parameters a� c ¼ 1.83, α ¼ 0.278,
b ¼ 0.0012, (b) with parameters a� c ¼ 1.52, α ¼ 0.277, b ¼ 0.348, (c) with parameters a� c ¼ 1.66,
α ¼ 0.27, b ¼ 0.19 and (d) with parameters a� c ¼ 1.99, α ¼ 0.39, b ¼ 0.22.
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Subsequently, we assume that both firms have the same speed of adjustment. It
means that the latter discussion is based on v1 ¼ v2 ¼ v and α1 ¼ α2 ¼ α. In this case
the two players are identical; the system T can then be rewritten as follows,

T0 :
q1 tþ 1ð Þ ¼ q1 tð Þ þ vq1 tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq1 tð Þ þ 2bα� bð Þq2 tð Þ� �

q2 tþ 1ð Þ ¼ q2 tð Þ þ vq2 tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq2 tð Þ þ 2bα� bð Þq1 tð Þ� �
(

(17)

It can be proved that the map T0 has symmetry property, i.e., there exists a map
S : q1; q2
� �! q2; q1

� �
, which makes T0∘S ¼ S∘T0. The symmetry property of the map

T0 implies that the diagonal Δ is a one-dimensional sub-manifold of system (17), i.e.,
T0 Δð Þ⊆Δ. However, the phenomenon of synchronization occurs when the diagonal
Δ is invariant one-dimensional submanifold of the system (17). Therefore, the
phenomenon of synchronization of the system can be analyzed by studying the
invariant set. We can also use critical curve and noninvertible map to describe the
global dynamical behaviors of a 2-dimensional map.

4.1 Critical curve and noninvertible map

We divide the discrete dynamical system into invertible and noninvertible. The
invertible discrete dynamical system refers that an image q1

0; q2
0� �
of the map T0 is

correspond to the only preimage q1; q2
� �

. The noninvertible discrete dynamical system
implies that the map T0 is multi-valued, i.e., the image of T0 has more than one
preimages. In a noninvertible discrete dynamical system, the curve that divides the
phase space into regions with a different number of rank-1 preimages is called critical
curve, denoted by LC. And the regions can be represented by Zi, i∈Nð Þ. For example,
a point belonging to area Z0 has no preimage and a point belonging to area Z2 has two
preimages. Let us denote the rank-1 preimages of critical curve LC under map T0 as
LC�1. The set LC is the 2-dimensional generalization of the critical value or local
extremes of 1-dimensional noninvertible map. Its preimages LC�1 are corresponding
to local extreme point (critical point) in the one-dimensional noninvertible map. Since
the map (17) is a continuously differentiable map, LC�1 belongs to the locus of points
where the Jacobiandeterminant ofT0 vanishes, i.e.,LC�1 ¼ q1; q2

� �
∈R2 detDT0 ¼ 0j g�

.
In this case, curve LC�1 can be determined by the following equation,

1þ 2vAþ v2A2 þ vDþ v2ADþ 2vBþ 2v2AB
� �

q1 þ q2
� �þ 2v2BD q21 þ q22

� �þ 4v2Bq1q2 ¼ 0

(18)

LC is the rank-1 image of LC�1 under map T0. That is, LC ¼ T0 LC�1ð Þ. The
noninvertible properties play a significant role in analyzing the global behavior of a
nonlinear discrete dynamical model. So the critical curve is a powerful tool for us to
study these complex structures. Using the segment of critical curve as well as their
preimages of any rank, and we will get the boundary of the basins of attraction as
shown in Figure 10f.

4.2 Invariant sets

The dynamics of the system on the diagonal is studied by analyzing the invariant
sets. Firstly, we can prove that the coordinates are invariant sets of map T0. Let
q2 tð Þ ¼ 0, then we can obtain q2 tþ 1ð Þ ¼ 0, and the first equation of (17) can be
rewritten as,
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q1 tþ 1ð Þ ¼ q1 tð Þ þ vq1 tð Þ1 1�αð Þ a�cð Þþ 3bα�2bð Þq1 tð Þ½ � (19)

It is easy to verify that the dynamics on the axis q2 is also controlled by the map
(19). It means that the system (17) can be regarded as a 1-dimensional map at the
coordinate axes. The map (19) is topologically conjugate to the standard logistic
map x tþ 1ð Þ ¼ ωx tð Þ 1� x tð Þð Þ through a linear transformation, which is given as,

q1 ¼
1þ v 1� αð Þ a� cð Þ

v 2b� 3bαð Þ
� �

x (20)

and the parameter ω can be presented as ω ¼ 1þ v 1� αð Þ a� cð Þ. Thus the
nonlinear dynamics of system (17) on the invariant axes can be analyzed through
the standard logistic map.

It can also be proved that the diagonal Δ is an invariant set of system (17), i.e.,
the trajectory starting from the diagonal Δ will stay forever on it. Therefore, the
dynamical behavior of system (17) can be analyzed through the map T0 which is
restricted to the diagonal. If we let q1 ¼ q2 ¼ q, then the dynamics generated by T0

on the diagonal Δ can be analyzed through the following map,

TΔ
0 : q tþ 1ð Þ ¼ q tð Þ þ vq tð Þ 1� αð Þ a� cð Þ þ 5bα� 3bð Þq tð Þð Þ (21)

Similarly, through the following linear transformation

q ¼ 1þ v 1� αð Þ a� cð Þ
v 3b� 5bαð Þ

� �
y (22)

we can also prove that the map (21) is topologically conjugate to the standard
logistic map y tþ 1ð Þ ¼ μy tð Þ 1� y tð Þð Þ, where

μ ¼ ω ¼ 1þ v 1� αð Þ a� cð Þ:

Through the standard logistic map, we can easily analyze the dynamical behav-
ior of the two-dimensional map T0 on the diagonal Δ. Under this situation, the Nash
equilibrium E ∗ of the system (10) is identical with the fixed point of map TΔ

0. Since
μ ¼ 1þ v 1� αð Þ a� cð Þ, we take different values of the bifurcation parameter μ of
the logistic map, and Figure 4a gives different bifurcation curves of the system on
the parameter plane α; vð Þ. The flip bifurcation occurs when the system parameter v
equals v ¼ 2

1�αð Þ a�cð Þ, and the Nash equilibrium E ∗ loses its stability and forms a

period-2 cycle around E ∗ . At v ¼
ffiffi
6

p
1�αð Þ a�cð Þ, the period-2 cycle generates a period-

4 cycle after a flip bifurcation. When μ≈3:5699, the standard period doubling
cascade ends and the system enters chaos. When v> 3

1�αð Þ a�cð Þ, the general trajectory
of the map TΔ

0 is divergent.
As shown in Figure 4b, which the parameters is the same as Figure 4a, a two-

dimensional bifurcation diagram of the system with v and α is obtained. Since it has
been proved that the map TΔ

0 is topologically conjugate to the logistic map, we can
find that the bifurcation curves of the two graphs are the same. In Figure 4a, the
curve C1 is correspond to the equation v ¼ 2

1�αð Þ a�cð Þ, and the region below it repre-
sents the set of points of v and α at 1< μ< 3. In this region, the fix point is stable.
That is, the synchronization trajectory converges to the Nash equilibrium point. In
Figure 4b, it corresponds to the period-1 region below the green region. When
the point above the curve C2 passes through the curve C0 in Figure 4a, the system
goes into chaos through a period doubling cascade. In Figure 4a, the curve C∞ is
correspond to the equation v ¼ 3

1�αð Þ a�cð Þ, where the parameters v and α of the
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upper area lead to the divergence of the trajectory, corresponding to the black
area in Figure 4b. Through the above analysis, the following proposition can be
derived,

Proposition 3. If we let v1 ¼ v2 ¼ v, the parameters a, b and c are fixed for
system (17). Then, a threshold α0 ¼ 1� 3

v a�cð Þ of the weight of consumer surplus α or

a threshold v0 ¼ 3
1�αð Þ a�cð Þ of the speed of adjustment v does exist such that synchro-

nized trajectories of the system (17) are divergent when ∀α∈ 0; α0½ Þ or ∀v∈ v0;þ∞ð Þ.
In order to analyze the effect of any slight perturbation of one parameter on the

system, we study the transverse stability of an attractor A of map T0. And the
Jacobian matrix of map T0 on the diagonal can be obtained as follow,

J q; qð Þ ¼ 1þ v 1� αð Þ a� cð Þ þ vq 8bα� 5bð Þ
vq 2bα� bð Þ

vq 2bα� bð Þ
1þ v 1� αð Þ a� cð Þ þ vq 8bα� 5bð Þ

 !

(23)

Then, the characteristic values of the Jacobian matrix J q; qð Þ evaluated at any
point on the diagonal are given by,

λk ¼ 1þ v 1� αð Þ a� cð Þ þ vq 10bα� 6bð Þ
λ⊥ ¼ 1þ v 1� αð Þ a� cð Þ þ vq 6bα� 4bð Þ (24)

where the corresponding eigenvectors are 1; 1ð Þ and 1;�1ð Þ, respectively. And
the eigenvalue λk is related to the invariant manifolds on the diagonal.

It is assumed that a period-k cycle q 1ð Þ; q 1ð Þð Þ; q 2ð Þ; q 2ð Þð Þ;⋯; q kð Þ; q kð Þð Þf g
embedded into the invariant set Δ of the map T0 is correspond to the cycle
q 1ð Þ; q 2ð Þ;⋯; q kð Þf g of the map TΔ

0 when the synchronized phenomenon occurs, the
two multipliers are given as,

λ kð Þ
k ¼

Yk
i¼1

1þ v 1� αð Þ a� cð Þ þ v 10bα� 6bð Þqi
� �

(25)

λ kð Þ
⊥ ¼

Yk
i¼1

1þ v 1� αð Þ a� cð Þ þ v 6bα� 4bð Þqi
� �

(26)

Figure 4.
(a) Bifurcation curves on the parameter plane (α, v) related to the bifurcation values of map TΔ for a� c ¼ 2
and (b) 2D bifurcation diagram in the parameter plane (α, v) for a� c ¼ 2 and b ¼ 0.4.
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equilibrium E ∗ of the system (10) is identical with the fixed point of map TΔ
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upper area lead to the divergence of the trajectory, corresponding to the black
area in Figure 4b. Through the above analysis, the following proposition can be
derived,

Proposition 3. If we let v1 ¼ v2 ¼ v, the parameters a, b and c are fixed for
system (17). Then, a threshold α0 ¼ 1� 3

v a�cð Þ of the weight of consumer surplus α or

a threshold v0 ¼ 3
1�αð Þ a�cð Þ of the speed of adjustment v does exist such that synchro-

nized trajectories of the system (17) are divergent when ∀α∈ 0; α0½ Þ or ∀v∈ v0;þ∞ð Þ.
In order to analyze the effect of any slight perturbation of one parameter on the

system, we study the transverse stability of an attractor A of map T0. And the
Jacobian matrix of map T0 on the diagonal can be obtained as follow,

J q; qð Þ ¼ 1þ v 1� αð Þ a� cð Þ þ vq 8bα� 5bð Þ
vq 2bα� bð Þ
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Then, the characteristic values of the Jacobian matrix J q; qð Þ evaluated at any
point on the diagonal are given by,

λk ¼ 1þ v 1� αð Þ a� cð Þ þ vq 10bα� 6bð Þ
λ⊥ ¼ 1þ v 1� αð Þ a� cð Þ þ vq 6bα� 4bð Þ (24)

where the corresponding eigenvectors are 1; 1ð Þ and 1;�1ð Þ, respectively. And
the eigenvalue λk is related to the invariant manifolds on the diagonal.

It is assumed that a period-k cycle q 1ð Þ; q 1ð Þð Þ; q 2ð Þ; q 2ð Þð Þ;⋯; q kð Þ; q kð Þð Þf g
embedded into the invariant set Δ of the map T0 is correspond to the cycle
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0 when the synchronized phenomenon occurs, the
two multipliers are given as,
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k ¼
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i¼1
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Figure 4.
(a) Bifurcation curves on the parameter plane (α, v) related to the bifurcation values of map TΔ for a� c ¼ 2
and (b) 2D bifurcation diagram in the parameter plane (α, v) for a� c ¼ 2 and b ¼ 0.4.
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Since the stability conditions of the period-k cycle on the diagonal Δ of system
(17) is same with the one-dimensional map TΔ

0, here we only study the transverse
stability of the one-dimensional map TΔ

0. Under this situation, the transverse
eigenvalue evaluated at the Nash equilibrium point E ∗ is given by

λE
∗

⊥ ¼ 1þ v a� cð Þ 1� αð Þ2
5α� 3

(27)

Through Eq. (27), we can draw the following conclusions directly. That is, when
all the parameters satisfy 0< v a� cð Þ 1� αð Þ2 þ 5α< 3, the Nash equilibrium E ∗ is
transversely attractive.

As we know that an attractor A of T0 is asymptotically stable if and only if all the
trajectories that belong to attractor A are transversely attractive. To study the
stability of the attractor, we can calculate its transverse Lyapunov exponent as,

Λ⊥ ¼ lim
n!∞

∑
n

i¼0
ln λ⊥ q ið Þð Þj j (28)

where q 0ð Þ∈A and q ið Þ is a generic trajectory generated by the map TΔ. If the
initial condition q 0ð Þ belongs to a period-k cycle, then Λ⊥ ¼ ln λk⊥

�� ��. In this case, if
Λ⊥ <0, then the period-k cycle is transversely stable. When the initial condition
q 0ð Þ belongs to a generic aperiodic trajectory embedded in the chaotic attractors,
then the transverse Lyapunov exponent Λ⊥ is the natural transverse Lyapunov
exponent Λnat

⊥ . Since many unstable cycles along the diagonal are embedded in the
chaotic attractor A, a spectrum of transverse Lyapunov exponents can be deter-
mined by the inequality

Λmin
⊥ ≤⋯≤Λnat

⊥ ≤⋯≤Λmax
⊥ (29)

If all cycles embedded in A are transversely stable (Λmax
⊥ <0) then A is asymp-

totically stable in the Lyapunov sense. If some cycles embedded in the chaotic
attractor A are transversely unstable (Λmax

⊥ >0 and Λnat
⊥ <0) then A is not stable in

the Lyapunov sense, but it is a stable Milnor attractor. So we can look for the Milnor
attractors by transverse Lyapunov exponents.

Figure 5 gives the natural transverse Lyapunov exponent and the bifurcation
diagram with the fixed parameter v when a� c ¼ 5:15, b ¼ 0:1911895 and α ¼ 0:4.

Figure 5.
Bifurcation diagram for the restriction of the map TΔ to the invariant diagonal and the corresponding transverse
Lyapunov exponent for v∈ [0.78, 0.91] given a� c ¼ 5.15, b ¼ 0.1911895 and α ¼ 0.4.
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Later, we will exhibit the attractors and their basins of attraction corresponding to
different values v under this set of parameters, and analyze the changes of attractors
and their basins of attraction when the parameter v varies.

4.3 Global bifurcation and basins of attraction

A closed invariant set A is a attractor which means that it is asymptotically
stable, i.e., a neighborhood U of A does exist such that T0 Uð Þ⊆U and

T0 mð Þ q1; q2
� �! A when m ! ∞,∀ q1; q2

� �
∈A. We also define a asymptotically

stable invariant set as attractor. A basin of attraction may contain one or more
attractors that may coexist with a set of repel points that produce either intermit-
tent chaos or a blurry boundary. The basin of attraction of attractor A is the set of
those initial conditions that cause the trajectory to converge to A, i.e.,

B Að Þ ¼ q1 0ð Þ; q2 0ð Þ� �
Tm q1 0ð Þ; q2 0ð Þ� �! A as m ! ∞
�� �

:
�

For the sake of analyzing the topological structure of the basin of attraction
B Að Þ, we study the boundary of B Að Þ firstly. Suppose that the map T0 has a unique
attractor A at finite distance, let ∂B Að Þ be the boundary of the basin B Að Þ, then it is
also the boundary of the basin of infinity B ∞ð Þ generated by unbounded trajecto-
ries. Firstly, we take the dynamics of system (17) into account and restrict it to
the invariant axis. When v 1� αð Þ a� cð Þ< 3, if the initial conditions belong to the
interval εi ¼ 0;0i

�1

� �
, i ¼ 1; 2ð Þ, according to map (17), we can obtain the bounded

trajectories along the invariant axes, where 0i
�1, i ¼ 1; 2ð Þ is the rank-1 preimage of

the origin. It has been obtained previously that the dynamical behavior of system
(17) on the coordinate axis is governed by the map (19), so that 0i

�1, i ¼ 1; 2ð Þ can be
computed by the following algebraic system

q1 tð Þ þ vq tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq1 tð Þ� � ¼ 0 (30)

The result is given as,

01
�1 ¼ 02

�1 ¼
1þ v 1� αð Þ a� cð Þ

vb 3α� 2ð Þ (31)

Since ε1 and ε2 are the segments of the boundary ∂B Að Þ, and ∂B Að Þ is also the

boundary of the basin of infinity B ∞ð Þ, their rank-k preimages T0 �kð Þ εið Þ, i ¼ 1; 2ð Þ
also belong to ∂B Að Þ. We can compute the rank-1 preimages of a point
P ¼ p;0ð Þ∈ ε1 or P ¼ 0; pð Þ∈ ε2 that belongs to εi ¼ 0;0i

�1

� �
, i ¼ 1, 2, according to

the algebraic system as follows

q tð Þ þ vq tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq tð Þ½ � ¼ p
q tð Þ þ vq tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq tð Þ½ � ¼ 0

�
(32)

We can easily obtain the rank-1 preimages of the origin, which are
O1

�1 ¼ 01
�1;0

� �
and O2

�1 ¼ 0;02
�1

� �
, there are itself and O3

�1 besides, i.e.,

O3
�1 ¼

1þ v 1� αð Þ a� cð Þ
vb 5α� 3ð Þ ;

1þ v 1� αð Þ a� cð Þ
vb 5α� 3ð Þ

� �
(33)

Through the discussion above, we can get the following propositions,
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Later, we will exhibit the attractors and their basins of attraction corresponding to
different values v under this set of parameters, and analyze the changes of attractors
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A closed invariant set A is a attractor which means that it is asymptotically
stable, i.e., a neighborhood U of A does exist such that T0 Uð Þ⊆U and

T0 mð Þ q1; q2
� �! A when m ! ∞,∀ q1; q2

� �
∈A. We also define a asymptotically

stable invariant set as attractor. A basin of attraction may contain one or more
attractors that may coexist with a set of repel points that produce either intermit-
tent chaos or a blurry boundary. The basin of attraction of attractor A is the set of
those initial conditions that cause the trajectory to converge to A, i.e.,

B Að Þ ¼ q1 0ð Þ; q2 0ð Þ� �
Tm q1 0ð Þ; q2 0ð Þ� �! A as m ! ∞
�� �

:
�

For the sake of analyzing the topological structure of the basin of attraction
B Að Þ, we study the boundary of B Að Þ firstly. Suppose that the map T0 has a unique
attractor A at finite distance, let ∂B Að Þ be the boundary of the basin B Að Þ, then it is
also the boundary of the basin of infinity B ∞ð Þ generated by unbounded trajecto-
ries. Firstly, we take the dynamics of system (17) into account and restrict it to
the invariant axis. When v 1� αð Þ a� cð Þ< 3, if the initial conditions belong to the
interval εi ¼ 0;0i

�1

� �
, i ¼ 1; 2ð Þ, according to map (17), we can obtain the bounded

trajectories along the invariant axes, where 0i
�1, i ¼ 1; 2ð Þ is the rank-1 preimage of

the origin. It has been obtained previously that the dynamical behavior of system
(17) on the coordinate axis is governed by the map (19), so that 0i

�1, i ¼ 1; 2ð Þ can be
computed by the following algebraic system

q1 tð Þ þ vq tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq1 tð Þ� � ¼ 0 (30)

The result is given as,

01
�1 ¼ 02

�1 ¼
1þ v 1� αð Þ a� cð Þ

vb 3α� 2ð Þ (31)

Since ε1 and ε2 are the segments of the boundary ∂B Að Þ, and ∂B Að Þ is also the

boundary of the basin of infinity B ∞ð Þ, their rank-k preimages T0 �kð Þ εið Þ, i ¼ 1; 2ð Þ
also belong to ∂B Að Þ. We can compute the rank-1 preimages of a point
P ¼ p;0ð Þ∈ ε1 or P ¼ 0; pð Þ∈ ε2 that belongs to εi ¼ 0;0i

�1

� �
, i ¼ 1, 2, according to

the algebraic system as follows

q tð Þ þ vq tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq tð Þ½ � ¼ p
q tð Þ þ vq tð Þ 1� αð Þ a� cð Þ þ 3bα� 2bð Þq tð Þ½ � ¼ 0

�
(32)

We can easily obtain the rank-1 preimages of the origin, which are
O1

�1 ¼ 01
�1;0

� �
and O2

�1 ¼ 0;02
�1

� �
, there are itself and O3

�1 besides, i.e.,

O3
�1 ¼

1þ v 1� αð Þ a� cð Þ
vb 5α� 3ð Þ ;

1þ v 1� αð Þ a� cð Þ
vb 5α� 3ð Þ

� �
(33)

Through the discussion above, we can get the following propositions,
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Proposition4. Let 1< v 1� αð Þ a� cð Þ< 3 and εi ¼ 0;0i
�1

� �
, i ¼ 1, 2 be the segments

of the coordinate axes qi, i ¼ 1, 2, thenwe can obtain the boundary of B Að Þ as follow,

∂B Að Þ ¼ ⋃
∞

k¼0
T0 �kð Þ ε1ð Þ

� �
∪ ⋃

∞

k¼0
T0 �kð Þ ε2ð Þ

� �
(34)

Basins of attraction may be connected or not. The connected basins of attraction
are divided into simple connected and complex one, and the complex connected
basins of attraction means the existence of holes. If A is a connected attractor, the
direct basin of attraction D0 of A is the largest connected area of the entire attractor
domain D containing A. The system (17) has the coexistence of attractors in a set of
given parameters, the basin of attraction D refers to the union of the domain of
attraction of all attractors in such a situation.

Figure 6 shows the coexistence of attractors and their basins of attraction for
given parameters a� c ¼ 5:3, b ¼ 0:234 and v ¼ 0:85. In Figure 6a, the parameter α
is chosen as α ¼ 0:4, there are two attractors coexisting, one is a Milnor attractor A
located on the diagonal and the other consisting of 4-piece chaos attractor is in
symmetrical positions with respect to the diagonal, i.e., F ¼ ∪ 4

i¼1Fi. The basin of
attraction is composed of the union of the attractive domain of two attractors. The
attractive domain of the Milnor attractor A is the complex connected set, and the
attraction domain of the attractor F is non-connected set. And the boundary of the
4-piece chaos attractor is just contact with the critical curve, and it is because of this
contact that the system undergoes a global bifurcation. Figure 6b is the attractor
and the attractive basin at α ¼ 0:387275 after the global bifurcation occurred in the
Figure 6a. We can find 4 attractors coexisted in this figure the attractor F in
Figure 6a undergoes a global bifurcation and turns into 3 period-4 cycles, and the
attractor A is also a Milnor attractor. The attraction domain of the period-4 cycle is
composed of some complex connected sets being in symmetrical positions with
respect to the diagonal. As is shown in Figure 6b, there are many holes in the
attracting domain, but it is a non-connected set. The basin of attraction of the
Milnor attractor lying on the diagonal is still a complex connected set.

We have analyzed the global bifurcations that occur when the attractor’s
boundary contact to the critical curve, and we discuss the global bifurcation when
the attractor contacts to the boundary of its basin of attraction. We also denote
global bifurcation as “boundary crisis,” the attractor is destroyed when it contacts to
its basin of attraction. Figure 7 shows the coexistence of attractors and their basins

Figure 6.
Basin of attractions for parameters a� c ¼ 5.3, b ¼ 0.234 and v ¼ 0.85. (a) α ¼ 0.4, a four-cyclic chaotic
attractor coexists with a Milnor attractor on the diagonal and (b) α ¼ 0.387275, a four-cyclic chaotic attractor
has undergone a global bifurcation and three period-4 attractors coexist with a Milnor attractor.
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of attraction corresponding to the parameter a� c, when the parameters are chosen
as α ¼ 0:5023335, b ¼ 0:4 and v1 ¼ v2 ¼ 0:85. We can see that as the difference
between the maximum price a of a unit commodity and the marginal cost c
increases, a period-4 cycle turns into 4-piece chaos attractor being in symmetrical
positions with respect to the diagonal and finally merges into 2-piece chaos attrac-
tor. However, the 2-piece attractor being in symmetrical positions with respect to
the diagonal grows larger as the parameter a� c increasing, until it contacts to its
basin’s boundary, and eventually occurs a global bifurcation, causing itself and its
basin are destroyed until it disappears. We can also see its “ghost” in Figure 7d. This
means that trajectories of the initial conditions that belong to the basin of attraction
spend a long number of steps in the region occupied by the former attractor before
converging to the other attractor. Figure 8 is the bifurcation diagram of the system
at this set of parameters, and the bifurcation parameter is chosen as a� c.

Figures 6 and 7 give two different global bifurcations, such bifurcations which
can be restored clearly by numerical simulation method only. With the set of
parameters in Figure 9 being identical to Figure 4, we select different speed of
adjustment to analyze the change of attractors and their basins of attraction. We can
observe that as the speed of adjustment changes from 0.79 to 0.9, the period-4 cycle
being in symmetrical positions with respect to the diagonal of the system generates
smooth limit cycle via a Neimark-Sacker bifurcation, as shown in Figure 9b, and
the limit cycle becomes non-smooth gradually, and finally forms four-piece chaotic
attractor, as shown in Figure 9d. The basin of attraction shrinks as the speed of
adjustment v increasing. It is implied that when both firms choose a lower speed of

Figure 7.
Basin of attractions for parameters b ¼ 0.4, α ¼ 0.502335 and v ¼ 0.85 (a) a� c ¼ 6, a two-piece chaotic
attractor coexists with a period-4 cycle, (b) a� c ¼ 6.1, the 4-piece chaotic attractor coexist with a two-piece
chaotic attractor, (c) a� c ¼ 6.1896, the 2-piece chaotic attractor formed by the a 4-piece chaotic attractor
coexist with a two-piece chaotic attractor, and the many holes created by the global bifurcation and (d) a� c ¼
6.26, a two-piece chaotic has a contact with its basin’s boundary, and it is destroyed.
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Proposition4. Let 1< v 1� αð Þ a� cð Þ< 3 and εi ¼ 0;0i
�1

� �
, i ¼ 1, 2 be the segments

of the coordinate axes qi, i ¼ 1, 2, thenwe can obtain the boundary of B Að Þ as follow,

∂B Að Þ ¼ ⋃
∞

k¼0
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� �
∪ ⋃

∞

k¼0
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� �
(34)

Basins of attraction may be connected or not. The connected basins of attraction
are divided into simple connected and complex one, and the complex connected
basins of attraction means the existence of holes. If A is a connected attractor, the
direct basin of attraction D0 of A is the largest connected area of the entire attractor
domain D containing A. The system (17) has the coexistence of attractors in a set of
given parameters, the basin of attraction D refers to the union of the domain of
attraction of all attractors in such a situation.

Figure 6 shows the coexistence of attractors and their basins of attraction for
given parameters a� c ¼ 5:3, b ¼ 0:234 and v ¼ 0:85. In Figure 6a, the parameter α
is chosen as α ¼ 0:4, there are two attractors coexisting, one is a Milnor attractor A
located on the diagonal and the other consisting of 4-piece chaos attractor is in
symmetrical positions with respect to the diagonal, i.e., F ¼ ∪ 4

i¼1Fi. The basin of
attraction is composed of the union of the attractive domain of two attractors. The
attractive domain of the Milnor attractor A is the complex connected set, and the
attraction domain of the attractor F is non-connected set. And the boundary of the
4-piece chaos attractor is just contact with the critical curve, and it is because of this
contact that the system undergoes a global bifurcation. Figure 6b is the attractor
and the attractive basin at α ¼ 0:387275 after the global bifurcation occurred in the
Figure 6a. We can find 4 attractors coexisted in this figure the attractor F in
Figure 6a undergoes a global bifurcation and turns into 3 period-4 cycles, and the
attractor A is also a Milnor attractor. The attraction domain of the period-4 cycle is
composed of some complex connected sets being in symmetrical positions with
respect to the diagonal. As is shown in Figure 6b, there are many holes in the
attracting domain, but it is a non-connected set. The basin of attraction of the
Milnor attractor lying on the diagonal is still a complex connected set.

We have analyzed the global bifurcations that occur when the attractor’s
boundary contact to the critical curve, and we discuss the global bifurcation when
the attractor contacts to the boundary of its basin of attraction. We also denote
global bifurcation as “boundary crisis,” the attractor is destroyed when it contacts to
its basin of attraction. Figure 7 shows the coexistence of attractors and their basins

Figure 6.
Basin of attractions for parameters a� c ¼ 5.3, b ¼ 0.234 and v ¼ 0.85. (a) α ¼ 0.4, a four-cyclic chaotic
attractor coexists with a Milnor attractor on the diagonal and (b) α ¼ 0.387275, a four-cyclic chaotic attractor
has undergone a global bifurcation and three period-4 attractors coexist with a Milnor attractor.
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of attraction corresponding to the parameter a� c, when the parameters are chosen
as α ¼ 0:5023335, b ¼ 0:4 and v1 ¼ v2 ¼ 0:85. We can see that as the difference
between the maximum price a of a unit commodity and the marginal cost c
increases, a period-4 cycle turns into 4-piece chaos attractor being in symmetrical
positions with respect to the diagonal and finally merges into 2-piece chaos attrac-
tor. However, the 2-piece attractor being in symmetrical positions with respect to
the diagonal grows larger as the parameter a� c increasing, until it contacts to its
basin’s boundary, and eventually occurs a global bifurcation, causing itself and its
basin are destroyed until it disappears. We can also see its “ghost” in Figure 7d. This
means that trajectories of the initial conditions that belong to the basin of attraction
spend a long number of steps in the region occupied by the former attractor before
converging to the other attractor. Figure 8 is the bifurcation diagram of the system
at this set of parameters, and the bifurcation parameter is chosen as a� c.

Figures 6 and 7 give two different global bifurcations, such bifurcations which
can be restored clearly by numerical simulation method only. With the set of
parameters in Figure 9 being identical to Figure 4, we select different speed of
adjustment to analyze the change of attractors and their basins of attraction. We can
observe that as the speed of adjustment changes from 0.79 to 0.9, the period-4 cycle
being in symmetrical positions with respect to the diagonal of the system generates
smooth limit cycle via a Neimark-Sacker bifurcation, as shown in Figure 9b, and
the limit cycle becomes non-smooth gradually, and finally forms four-piece chaotic
attractor, as shown in Figure 9d. The basin of attraction shrinks as the speed of
adjustment v increasing. It is implied that when both firms choose a lower speed of

Figure 7.
Basin of attractions for parameters b ¼ 0.4, α ¼ 0.502335 and v ¼ 0.85 (a) a� c ¼ 6, a two-piece chaotic
attractor coexists with a period-4 cycle, (b) a� c ¼ 6.1, the 4-piece chaotic attractor coexist with a two-piece
chaotic attractor, (c) a� c ¼ 6.1896, the 2-piece chaotic attractor formed by the a 4-piece chaotic attractor
coexist with a two-piece chaotic attractor, and the many holes created by the global bifurcation and (d) a� c ¼
6.26, a two-piece chaotic has a contact with its basin’s boundary, and it is destroyed.
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adjustment, they can reach the balance easily in the game. However, the period-
2 cycle embedded in the diagonal becomes a period-4 cycle, period-8 cycle, etc.
That is, a flip-bifurcation happens. And finally a Milnor attractor forms with the
increasing speed of adjustment. Its basin of attraction increases with the increasing
speed of adjustment gradually. In the bifurcation diagram of Figure 5b, we can
observe the process of entire bifurcation process.

Figure 8.
One-dimensional bifurcation diagram with respect to a� c for the set of parameters in Figure 7.

Figure 9.
Basin of attractions for parameter a� c ¼ 5.15, b ¼ 0.1911895 and α ¼ 0.4. (a) v ¼ 0.79, an attracting
four-period cycle coexists with the two-period cycle on the diagonal, (b) v ¼ 0.83, a period-4 cycle has
undergone a Neimark-Sacker bifurcation and an attractor formed by four smooth curves coexist with a
period-8 cycle, (c) v ¼ 0.872, a four-cyclic chaotic attractor formed by the four smooth curves coexists with the
Milnor attractor and (d) v ¼ 0.9, a four-piece chaotic attractor exists outside the diagonal.
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4.4 Synchronization

In this section we study the formation mechanism of the synchronization tra-
jectories. The trajectories starting from different initial conditions return to the
diagonal eventually, i.e., q1 0ð Þ 6¼ q2 0ð Þ. A t ∗ does exist such that q1 tð Þ ¼ q2 tð Þ when
t> t ∗ , and we define such trajectories as synchronization. However, when the
diagonal Δ is an invariant sub-manifold, synchronized dynamics occur. We have
proved that the map T0 can be obtained by two identical one-dimensional coupling
maps, and the synchronization trajectory can be controlled by a map TΔ

0 which is
topologically conjugate to the standard logistic map. When we choose the

Figure 10.
Parameter values are chosen as v ¼ 1, a� c ¼ 5 and b ¼ 0.234. (a) Four-piece Milnor attractor of system T
belonging to the diagonal for α ¼ 0.48365, (b) the displacement q1 � q2 versus time for the same parameters as
in (a), (c) α ¼ 0.485092, a 16-cyclic chaotic attractor is in symmetrical positions with respect to the diagonal,
(d) α ¼ 0.437609, a trajectory in the phase space (q1, q2) whose transient part is out of diagonal that
synchronizes along the Milnor attractor in the long run, (e) α ¼ 0.476955, a two-cyclic chaotic attractor
coexists with a period-2 cycle and (f) boundary of the chaotic area obtained by ∂A ¼ ∪ 6

k¼1T
0 kð Þ Γð Þ.
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adjustment, they can reach the balance easily in the game. However, the period-
2 cycle embedded in the diagonal becomes a period-4 cycle, period-8 cycle, etc.
That is, a flip-bifurcation happens. And finally a Milnor attractor forms with the
increasing speed of adjustment. Its basin of attraction increases with the increasing
speed of adjustment gradually. In the bifurcation diagram of Figure 5b, we can
observe the process of entire bifurcation process.

Figure 8.
One-dimensional bifurcation diagram with respect to a� c for the set of parameters in Figure 7.

Figure 9.
Basin of attractions for parameter a� c ¼ 5.15, b ¼ 0.1911895 and α ¼ 0.4. (a) v ¼ 0.79, an attracting
four-period cycle coexists with the two-period cycle on the diagonal, (b) v ¼ 0.83, a period-4 cycle has
undergone a Neimark-Sacker bifurcation and an attractor formed by four smooth curves coexist with a
period-8 cycle, (c) v ¼ 0.872, a four-cyclic chaotic attractor formed by the four smooth curves coexists with the
Milnor attractor and (d) v ¼ 0.9, a four-piece chaotic attractor exists outside the diagonal.
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4.4 Synchronization

In this section we study the formation mechanism of the synchronization tra-
jectories. The trajectories starting from different initial conditions return to the
diagonal eventually, i.e., q1 0ð Þ 6¼ q2 0ð Þ. A t ∗ does exist such that q1 tð Þ ¼ q2 tð Þ when
t> t ∗ , and we define such trajectories as synchronization. However, when the
diagonal Δ is an invariant sub-manifold, synchronized dynamics occur. We have
proved that the map T0 can be obtained by two identical one-dimensional coupling
maps, and the synchronization trajectory can be controlled by a map TΔ

0 which is
topologically conjugate to the standard logistic map. When we choose the

Figure 10.
Parameter values are chosen as v ¼ 1, a� c ¼ 5 and b ¼ 0.234. (a) Four-piece Milnor attractor of system T
belonging to the diagonal for α ¼ 0.48365, (b) the displacement q1 � q2 versus time for the same parameters as
in (a), (c) α ¼ 0.485092, a 16-cyclic chaotic attractor is in symmetrical positions with respect to the diagonal,
(d) α ¼ 0.437609, a trajectory in the phase space (q1, q2) whose transient part is out of diagonal that
synchronizes along the Milnor attractor in the long run, (e) α ¼ 0.476955, a two-cyclic chaotic attractor
coexists with a period-2 cycle and (f) boundary of the chaotic area obtained by ∂A ¼ ∪ 6

k¼1T
0 kð Þ Γð Þ.
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parameters as v ¼ 1, a� c ¼ 5 and b ¼ 0:234, the weight α varies, and we can
observe that the dynamic behavior of system is controlled by the attractor on the
diagonal in Figure 10. When α ¼ 0:4837015, we can observe a Milnor attractor in
Figure 10a. This means that cycle embedded in the diagonal are transversely
unstable and blowout phenomenon occurs when the trajectory is near diagonal. The
trajectory converges to the unique Milnor attractor embedded in the diagonal after
experiencing a long transient. Figure 10b shows that the evolution of q1 � q2 versus
time and synchronization is observed after a long transient. This is a typical on-off
intermittency phenomenon. We can observe 16-piece chaos attractor being in sym-
metrical positions with respect to the diagonal in Figure 10c, when α increases to
0:485092. Figure 10d shows a chaotic attractor when α decreases to 0:437609, then
synchronization occurs. As shown in Figure 10f, we adopt the trial-and-error
method, with suitable part of LC�1 taken as the starting part of Γ ¼ A∩LC�1 to
obtain the boundary of the chaotic attractor A and the entire basin of attraction in

Figure 10e, i.e., the boundary of the chaotic attractor A is ∂A ¼ ∪ 6
k¼1T

0 kð Þ Γð Þ.

5. Conclusion

In this chapter, the nonlinear dynamics of a Cournot duopoly game with
bounded rationality is investigated. Unlike the existing literature, we suppose that
the two firms not only pursue profit maximization but also take consumer surplus
into account. Meanwhile, the objection of firms is supposed as the weighted sum of
profit and consumer surplus. Based on the theory of gradient adjustment, all the
firms adjust the output of next period according to the estimation of “marginal
goal.” The existence and stability of fixed points are analyzed. It is found that the
boundary equilibrium point is always unstable, no matter what the parameters of
the system are satisfied. At the same time, with the two-dimensional bifurcation
diagram as the tool, the stability of the Nash equilibrium is analyzed. We found that
the Nash equilibrium will lose its stability when the speed of adjustment of firms is
too large, which maybe lead the market into chaos. The stability region of the Nash
equilibrium will be only affected by the weight of consumer surplus. And the
parameters a� c and b have hardly effect on the stability region of the Nash
equilibrium. Meanwhile, we found that the two-dimensional bifurcation diagram
have a beautiful fractal structure, but there are also many scattered points which is
due to the coexistence of multiple attractors of the system through numerical
simulation. By selecting corresponding parameters in the two-dimensional bifurca-
tion diagram with scattered points, we draw the corresponding basin of attraction,
and found the model not only has two attractors coexistence phenomenon, but also
has 3, or even 4 attractors coexistence phenomenon.

Moreover, with the theory of invertible mapping and the critical curves of the
system, the topological structure of basin of attraction is analyzed. By calculating
the transverse Lyapunov exponent, the weak chaotic attractor of the system in the
sense of Milnor is found, and the synchronization of the system is further studied. If
we fix the other parameters of the system, and only change the weight of the firm to
the consumer surplus, we can find on-off intermittency phenomenon and synchro-
nization phenomenon. With the increasing of α, the synchronization phenomenon
is vanished and a 16-piece chaotic attractor being in symmetrical position with
respect to the main diagonal is produced. Under another set of parameters, and the
parameter α is chosen as the bifurcation parameter. Through numerical simulation,
it can be found that when the critical curve contact with the boundary of the basin,
a global bifurcation is obtained. The global bifurcation makes the basin of attraction
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of the attractor non connected. In addition, if we fixed parameters of the system,
and change the values of the parameters a� c only, we find another global bifurca-
tion called “boundary crisis,” i.e., when the attractor contact with its boundary of
the basin of attraction, one of the attractors and its basin of attraction will be
destroyed.

Author details

Wei Zhou1* and Tong Chu2

1 School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, China

2 School of Law, Zhejiang University of Finance and Economics, Hangzhou, China

*Address all correspondence to: wei_zhou@vip.126.com

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

59

Complex Dynamical Behavior of a Bounded Rational Duopoly Game with Consumer Surplus
DOI: http://dx.doi.org/10.5772/intechopen.87200



parameters as v ¼ 1, a� c ¼ 5 and b ¼ 0:234, the weight α varies, and we can
observe that the dynamic behavior of system is controlled by the attractor on the
diagonal in Figure 10. When α ¼ 0:4837015, we can observe a Milnor attractor in
Figure 10a. This means that cycle embedded in the diagonal are transversely
unstable and blowout phenomenon occurs when the trajectory is near diagonal. The
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tion diagram with scattered points, we draw the corresponding basin of attraction,
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Abstract

The dynamical behavior of pulse and traveling hole in a one-dimensional system
depending on the boundary conditions, obeying the complex Ginzburg-Landau
(CGL) equation, is studied numerically using parameters near a subcritical bifurca-
tion. In a spatially extended system, the criterion of Benjamin-Feir-Newell (BFN)
instability near the weakly inverted bifurcation is established, and many types of
regimes such as laminar regime, spatiotemporal regime, defect turbulence regimes,
and so on are observed. In finite system by using the homogeneous boundary
conditions, two types of regimes are detected mainly the convective and the
absolute instability. The convectively unstable regime appears below the threshold
of the parameter control, and beyond, the absolute regime is observed. Controlling
such regimes remains a great challenge; many methods such as the nonlinear
diffusion parameter control are used. The unstable traveling hole in the one-
dimensional cubic-quintic CGL equation may be effectively stabilized in the chaotic
regime. In order to stabilize defect turbulence regimes, we use the global time-delay
auto-synchronization control; we also use another method of control which consists
in modifying the nonlinear diffusion term. Finally, we control the unstable regimes
by adding the nonlinear gradient term to the system. We then notice that the
chaotic system becomes stable under strong nonlinearity.

Keywords: Benjamin-Feir-Newell instability, subcritical bifurcation, complex
Ginzburg-Landau equation, unstable traveling hole

1. Introduction

Many complex systems evolve in a non-equilibrium environment. Further out of
the equilibrium [1], these systems tend to display progressively more complicated
dynamics. The non-chaotic patterned state and spatiotemporal chaos are observed
in the system. In the domain of the envelope equations, the quintic complex
Ginzburg-Landau (CGL) equation is appropriate to obtain stable localized solutions
(pulses, holes) [1, 2]. Among physical applications of the quintic CGL equation, one
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can mention binary fluid convection [3], spiral waves in the Couette-Taylor flow
between counterrotating cylinders [4], wave propagation in nonlinear optical fibers
with gain and spectral filtering [5], the oscillatory chemical reaction [6], hydrody-
namic turbulence [7], chemical turbulence [8, 9], and electrical turbulence in the
cardiac muscle [10]. Our work focuses on two types of systems: the spatially
extended system and the finite system. In the case of spatially extended systems, we
use as initial conditions a traveling-hole solution with periodic boundary conditions
[11–15]. All the dynamical regimes obtained during our work are summarized in a
phase diagram. In the case of the finite domain, we use as initial condition a pulse
solution. Wave patterns are described by CGL equation in which the amplitude of
the wave pattern vanishes at the lateral boundaries of the domain in order to
retrieve numerically some coherent structures observed experimentally, in the case
of absolute or convective instabilities [16–18].

Over the past decade, problems of chaos control and synchronization started to
play a central role in the studies of chaotic dynamics [19] in many different areas
such as chemistry [20], laser physics [21], electronic circuits [22], plasma [23], and
mechanical systems. Since the pioneering work of Ott et al. [24] on the control of
low-dimensional chaos in nonlinear systems based on Floquet theory, chaos control
techniques have been well developed [25, 26]. Up to date, many control techniques
have been suggested to control low-dimensional chaos by stabilizing unstable
periodic orbits or fixed points. The realization of chaos control mainly includes
feedback and non-feedback methods, both of which have advantages and disad-
vantages. Pyragas is one of the first to work on a delayed feedback loop called time-
delay auto-synchronization (TDAS) [25]. Another part of our works is to control
turbulence regimes observed, in particular the defect turbulence regime by
employing the methods already successfully used in the cubic case, namely, the
nonlinear diffusion technique [20], the feedback method [27], and the lower-order
complex Ginzburg-Landau (LOCGL) equation [28–31]. The LOCGL equation
which describes a system exhibiting a subcritical bifurcation to traveling waves
must contain a quintic nonlinearity. It is obtained by adding nonlinear terms to the
system. The effects of the nonlinear gradient terms are confirmed by using some
indicators such as the Lyapunov exponent and the energy bifurcation diagram.
Most of the results related to these different aspects are presented in the rest of
this work.

2. Dynamics of traveling hole in one-dimensional systems near
subcritical bifurcation

2.1 Model description

We consider a subcritical Hopf bifurcation, with a one-dimensional complex
amplitude A x; tð Þ and complex coefficients given by

∂A
∂t

¼ 1þ ic1ð Þ ∂
2A
∂x2

þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4A, (1)

where c1, c3, c5, and μ are real constants. μ is the parameter control, and t and x
represent, respectively, temporal and spatial variables. This equation is a paradig-
matic model for the study of spatiotemporal dynamics [11]. It admits many differ-
ent types of stable pulses [32] and hole-like [17] solutions. We have imposed on the
complex amplitude the following boundary conditions: We consider a system in
which we impose periodic boundary conditions:
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A x; tð Þ ¼ A xþ L; tð Þ, (2)

where L is the length of the domain. These boundary conditions are realized in
different extended systems, where the pattern amplitude vanishes near lateral
boundaries. We have chosen as initial condition a hole solution given by [15]:

A x;0ð Þ ¼ exp i qexxþ π=2ð Þtanh γxð Þ� �� �
: (3)

The precise form of the initial condition is not important here as long as we have
a one-parameter family of localized phase-gradient peaks. This is because the left
moving and right moving coherent holes for fixed c1, c1, and qex are each unique and
have one unstable mode only. As γ is varied, three possibilities can arise for the time
evolution of the initial peak: evolution toward a defect. The nonzero qex breaks the
left-right symmetry and results in the differing periods of the left and right moving
edge holes [15].

2.2 Results of numerical simulation

The parameters c3,, γ, and qex were fixed at c3 = 0.50, μ ¼ 1, γ ¼ 1:0, and
qex ¼ �0:03. And, we have varied c1 and c5. This variation enabled us to identify, in
the parameter space (c1, c5), zones in which the patterns exhibit different behaviors.
The different asymptotic phases observed are summarized in the state diagram of
Figure 1, where the solid line corresponds to analytical results and represents the
BFN line, while dashed lines are numerical ones. Dashed lines are obtained by
varying c1 and c5 which gave us regions of different regimes. We have identified
plane waves, spatiotemporal intermittency, phase turbulence, and weak turbulence
and defect turbulence regimes.

2.2.1 Plane wave regime

The plane wave regime is a laminar state where no chaos is observed. The plane
wave is localized below the BFN line in a zone called stable zone. The spatial profile

Figure 1.
Phase diagram of an initial traveling hole of the quintic CGLE showing different types of dynamical regimes:
plane wave (PW), spatiotemporal intermittency (STI), phase turbulence (PT), weak turbulence (WT), defect
turbulence (DT). c3 ¼ 0.5, and μ ¼ 1.0.
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of the wave patterns in the plane wave regime is shown in Figure 2. We notice that
by the growing of the time, the regime still stable, and laminar regime is observed.

2.2.2 Spatiotemporal intermittency regime

It consists of space-time regions of stable plane waves separated by localized
objects evolving and interacting in a complex manner [33]. It represents a special
scenario of transition to turbulence in extended systems: it is characterized by the
coexistence of laminar (ordered) and turbulent (disordered) domains that occur
randomly in different places of the system for the same values of the control
parameters [13, 33]. It has been observed in many experiments such as plane
Couette flow, counterrotating Taylor-Couette flow, and Taylor-Dean system. In 1D
extended systems, spatiotemporal intermittency has been observed in rectangular
and annular Rayleigh-Bénard cells at large values of the Rayleigh number [15]. This
spatiotemporal intermittency occurs via a subcritical bifurcation from purely lami-
nar state, and the coexistence of two different stable states can be described phe-
nomenologically using an amplitude equation derived from a Lyapunov function.
We have plotted in Figure 3 the characteristic pattern of a spatiotemporal inter-
mittency in which a global mode coexists with a chaotic attractor: the state consists
of patches of plane waves, which are separated y various holes. Figure 3b and c
shows in detail how a hole generates a phase defect and in turn generates two
daughter holes close-up of the amplitude ∣A∣ and close-up of the complex phase.

2.2.3 Phase turbulence regime

Just above the BFN line, the phase turbulence regime is observed (Figure 4). It
is best defined by the absence of space-time defects. In this regime, the region is a
weakly disordered one in which ∣A x; tð Þ∣ remains away from zero. The absence of
phase singularities implies that the “localwavenumber” given by

ν ¼ 1
L

ðL
0
dx∂xΨ x; tð Þ, (4)

where Ψ x; tð Þ is the phase, is a conserved quantity. A global wave number of the
configuration can be defined as k � 2π=L. Chaos is very weak (see Figure 4). So the
global phase difference becomes the constant of the motion and is conserved. This is
corroborated by the flat shoulder of the spatial power spectrum of ∣A x; tð Þ∣ at low

Figure 2.
Space-time plot of the wave amplitude ∣A∣ in the case of the Benjamin-Feir stability for c1 ¼ 2.5, c3 ¼ 2.0,
and c5 ¼ 0.4.
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Figure 3.
Space-time gray-scale plots showing the invasion of a plane wave state by hole-defect chaos: (a) wave
amplitude, ∣A∣ (dark: ∣A∣ ≈ 0), and (b) close-up of c3 ¼ 0.5; c5 ¼ 1.1 showing in detail how a hole generates a
phase defect that, in turn, generates two daughter holes: c1 ¼ 0.59, c3 ¼ 0.5, c5 ¼ 1.1.
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Figure 4.
Phase turbulence regime of ∣A∣, for c1 ¼ 1.5, c3 ¼ 0.5, and c5 ¼ 0.5.
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wavenumbers, reminiscent of the Kuramoto-Sivashinsky equation (KS). The
dynamics is in fact very similar to that of KS, which is not surprising since this
equation was originally derived to describe the phase dynamics of CGL equation
near the BFN line.

2.2.4 Weak turbulence regime

Beyond the BFN line, we observe that for the parameter equations (c1, c5)
larger, a weak turbulence regime is observed [2] (see Figure 5). Weak turbulence
theory was developed in the 1960s to provide equations which quantitatively
describe the transfer of energy among turbulent, weakly nonlinear, and disper-
sive waves in fluids [34]. The basic or kinetic equations produced by weak
turbulence theory have been applied to analyze energy transfer including internal
and surface waves with small aspect ratios in the atmosphere and ocean [35].
They are also observed in the case of two spatial dimensions [3, 36]. As we
observe in Figure 5, holes move across the system (darker lines in Figure 5),
while the amplitude of wave patterns at their cores changes. A black region along
a gray line indicates amplitude ∣A∣ near zero at the core of the hole. Each hole may
spawn new holes, which in turn contribute to the loss of spatial coherence of the
solution. Figure 6 shows the evolution of one hole of Figure 5 from its creation to
its disappearance.

2.2.5 Defect turbulence

Father away from the BFN line a spatiotemporally disordered regime called
amplitude or defect turbulence is observed (see Figure 7). The behavior in this
region is characterized by defects. The defect turbulence regime is the dynamical
regime wherein the fluctuations of ∣A∣ become dominant over the phase dynamics.

Figure 5.
Weak turbulence regime observed for c1 ¼ 1.5, c3 ¼ 0.5, and c5 ¼ 0.9.
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The complex field experiences therefore large amplitude oscillations which can
(locally and occasionally) cause ∣A∣ to vanish. As a consequence, at all those points
(hereinafter called space-time defects or phase singularities), the global phase of the

field Φ � arctan Im Að Þ
Re Að Þ
h i

shows a singularity.

3. Nonlinear structures of traveling waves in subcritical systems with
finite geometries

3.1 The cubic-quintic complex Ginzburg-Landau equation in a finite domain

The one-dimensional cubic-quintic CGL equation in this case is given by:

∂A
∂t

¼ ν
∂A
∂x

þ 1þ ic1ð Þ ∂
2A
∂x2

þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4A, 0≤ x≤L:

(5)

Figure 6.
(a) Formation and (b) disappearance of a hole between t ¼ 61.5 and t ¼ 64.5 in the numerical simulation of
Figure 5.

Figure 7.
Defect turbulence regime observed for ∣A∣, with c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1.
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This equation describes the envelope of a traveling wave propagating at the
group velocity v toward negative x [18]. L is the length of the domain. This model
equation arises in physics as an amplitude equation, providing a reduced universal
description of weak nonlinear spatiotemporal phenomena in extended continuous
media in the proximity of a subcritical Hopf bifurcation. The homogeneous
boundary conditions are given by:

A x ¼ 0; tð Þ ¼ A x ¼ L; tð Þ ¼ 0: (6)

Figure 8 illustrates the deterministic evolution of wave pattern amplitude for
convective instability and absolute instability regimes. In the case of convective
regime, the wave patterns disappear with the time, while in the case of the absolute
instability, they propagate in the whole system.

3.2 Stability of wave patterns of the 1D cubic-quintic CGLE

Let us note that, in the convective regime, the localized disturbances of the basic
state are growing but step away from the source. This is why we have restricted the
study to the dynamics of pattern for parameters corresponding to the absolute insta-
bility regime. When the criticality parameter μ increases, the linear stability fails, and
the waves can involve into new localized structures. The periodic basic solution loses
its stability, a secondary instability appears, and we can observe new states in the
domain (see Figure 9) [18, 37]. As we can see in Figure 9, for a value the control
parameter μ greater than a critical value μc, secondary structures will appear at the left
boundary of the system and destabilize the system [4, 18]. These secondary structures
create spatiotemporal chaos regime (regimes with defect, holes, etc.) into the system.

3.3 Numerical simulations of the 1D cubic-quintic CGLE

We investigate the effects of the quintic nonlinear dispersion coefficient c5 in
Eq. (5) with the homogeneous boundary conditions. The simulation was started

Figure 8.
Profiles of the amplitude of an initial perturbation at different times for v ¼ 1.0, c1 ¼ 0.45, c3 ¼ 2.0, c5 ¼ 2.0,
and L ¼ 100: in the convective instability (CI) regime with μ = 0.15 (dashed lines) and in the absolute
instability (AI) regime with μ ¼ 0.3 (solid lines).
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from an approximation of a pulse-like solution with a low amplitude. We investi-
gate the effects of the quintic nonlinear coefficient c5 with the homogeneous
Dirichlet boundary conditions. Solving the 1D cubic-quintic CGLE for several
values of c5 in the absolute instability regime leads to bifurcation of the global mode
to new states that are summarized in the phase diagram of Figure 10 for c5 and ε
[�1.5;3.5]. We have found that the threshold of convective-absolute instability is
μα = 0.207. Our phase diagram is obtained only in the absolute instability regime
(μ>μα). For the positive values of c5, global mode regime and chaotic regimes are
observed; they are separated by the line L1. The global mode is a stable regime. The
secondary structures are created by the secondary front which is close to the

Figure 9.
Graph of Re A1ð Þ for c1 ¼ 0.45, c3 ¼ 2.0, c5 ¼ 2.0, L ¼ 100, μ ¼ 1.4, Ω ¼ 1.2, and v ¼ 1.0.

Figure 10.
Phase diagram in (μ,c5), with c1 ¼ 0.45, c3 ¼ 2.0, c5 ¼ 2.0, L ¼ 100, and v ¼ 1.0. PD and PH stand for
periodic defects and periodic hole regions, respectively.
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downstream boundary. The global mode regime is represented by the phase plots in
Figure 11. This figure demonstrates the selection of the stable waves in the global
mode. It reveals that the wave patterns are decreasing in time and propagate in only
one direction toward the left. The variation of the coefficient c5 leads to bifurcation
of the global mode to new states which is observed in Figure 12. It reveals that the
solution can break up into several disjoint states with different properties separated
by more fronts defined by the location of the states. The regular pattern is
destabilized and gives rise to spatiotemporal turbulent state near the wall x = 0
(space x1), which is followed by a modulated state in space and time (space x2),
while, near the end x = L, the wave pattern remains non-modulated, and the regular
wave train is observed (space x3) [18, 37]. Defect and holes can be detected in the
chaotic space. Defects and holes are local structures that play a crucial role in the
intermediate regime between laminar states and hard chaos. Defects are points in
the space-time diagram where the amplitude of the wave vanishes and the phase is
not defined. In two and higher dimensions, such defects can disappear only via
collisions with other defects and act as long-living seeds for local structures like
spirals [38]. We have noticed that when c5 further increases, the chaotic region

Figure 11.
Space-time variation of the Re(A) for μ ¼ 0.3, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ 2.0, L ¼ 100 and ν ¼ 1, showing
global modes.

Figure 12.
Space-time variation of the wave pattern amplitude ∣A∣, for μ ¼ 0.65, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ 2.37,
L ¼ 100, and ν ¼ 1, indicating the appearance of the secondary structures.
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propagates into the domain toward the upstream boundary and the system becomes
more and more chaotic. For negative values of c5, the regimes observed are differ-
ent. The domain exhibits global modes, amplitude defects, holes, and spatiotempo-
ral intermittency. Figure 13 reveals that the wave patterns are stable at the first part
of the domain until the three quarter of the domain. Near the upstream boundary,
the news structures are revealed (hole, defects, etc.). The defects appear at regular
time intervals around x = 80, and for this reason we call them time-periodic defects
(PD). The periodic topological defects have been observed, for example, in many
experiences like the miscible fluid convection [39] and the system of Taylor-Dean
[40]. Near the right boundary, holes are observed and also before the PD, around
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Figure 13.
Space-time variation of the wave amplitude ∣A∣, for μ ¼ 0.35, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ ?0.2, L ¼ 100, and
ν ¼ 1, denoting coherence structure with PD and PH.

Figure 14.
Space-time variation of the wave pattern amplitude ∣A∣ showing also coherence structures with PD and PH, for
μ ¼ 0.3, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ ? 0.25, L ¼ 100, and ν ¼ 1.
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x = 70. Holes which appear near the upstream boundary are regular in time interval,
and we call them periodic holes (PH). Figure 14 is obtained for another value of c5.
It shows a periodic sequence of phase jumps propagating in the advection direction,
i.e., to the left; the wave pattern amplitude is modulated in this region. We notice
that periodic defects and periodic holes are advected toward the upstream bound-
ary. For the increasing values of c5, the space-time of Figure 15 reveals that the
system becomes a more disordered regime and more complex. This space-time
reveals the disordered regimes in the domain and the behavior of the patterns
become more complex. The figure reveals the presence of the core of defects around
x = 85 which are periodic. Before the periodic defects, a disordered regime is
observed. This disordered regime is a spatiotemporal intermittency regime.

4. Controlling spatiotemporal chaos in one-dimensional systems near
subcritical bifurcation

4.1 The dynamical model

The modified cubic-quintic CGLE is given by [20]:

∂A
∂t

¼ 1þ ic1 þ λ
Aj j2
A0j j2 � 1

 ! !
∂
2A
∂x2

þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4A,

(7)

where λ ¼ λr þ iλi is a complex constant. Notice that the term λ Aj j2
A0j j2 � 1
� �

vanishes

identically for A = A0. The added term also preserves the phase invariance of the
solution of the original cubic-quintic CGLE,A ! Aeiϕ, with ϕ being an arbitrary phase.

4.2 Numerical simulation

We start by assuming that the system is in a deeply chaotic region, i.e., param-
eters are chosen from defect turbulence area in order to verify the results obtained
from the linear stability analysis. Figure 16 plots the trajectory in phase space, in

Figure 15.
Space-time variation of the wave pattern amplitude ∣A∣, for μ ¼ 0.3, c1 ¼ 0.450, c3 ¼ 2.0, c5 ¼ ?0.6,
L ¼ 100, and ν ¼ 1, displaying spatiotemporal intermittency, defects, and holes.
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Figure 16.
Plot of (k, c1) for c3 ¼ 0.5, c5 ¼ 1.1 with (a) λr ¼ 0.0, et λi ¼ 0.0, (b) λr ¼ 1.0, et λi ¼ 0.0, (c) λr ¼ 2.5, et
λi ¼ 1.1, (d) λr ¼ 3.0, et λi ¼ 1.5, with σ ¼ 0.008, k ¼ 0.85, the dashed lines correspond to the BFN line of the
original cubic-quintic CGLE, the solid lines correspond to the BFN line of the modified cubic-quintic CGLE.
The shadowed region corresponds to the stability region.
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Figure 17.
Transition from chaotic behavior to quasi-periodic state for c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1: When (a) λr ¼ 0 and
λi ¼ 0 (chaos with defects); (b) λr ¼ 2.0 and λi ¼ 0.5 (phase turbulence); (c) (plane wave) λr ¼ 3.2 and
λi ¼ 1.8, with σ ¼ 0.008, k ¼ 0.85, and N ¼ 1200 grid points, leading to the plane wave regime.
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Transition from chaotic behavior to quasi-periodic state for c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1: When (a) λr ¼ 0 and
λi ¼ 0 (chaos with defects); (b) λr ¼ 2.0 and λi ¼ 0.5 (phase turbulence); (c) (plane wave) λr ¼ 3.2 and
λi ¼ 1.8, with σ ¼ 0.008, k ¼ 0.85, and N ¼ 1200 grid points, leading to the plane wave regime.

73

Nonlinear Dynamical Regimes and Control of Turbulence through the Complex…
DOI: http://dx.doi.org/10.5772/intechopen.88053



which the system parameters are exemplified as c1 = 2.5, c3 = 0.5, and c5 = 1.1 [15].
The chaotic motion is obvious: the amplitude of variable incidentally drops to zero
to produce defects (see Figure 16a). Now we control spatiotemporal chaos by
performing nonlinear diffusion parameters. As an example, we let λr = 2.0 and
λr = 0.5; the trajectory of system is illustrated in Figure 16b. The real part of system
variable is confined into a finite range, and defect turbulence is no longer being
observed, whereas the chaotic motion is not eliminated completely. For other values
of the diffusion parameter as λr = 3.0 and λr = 1.5, for example, the chaotic motion is
suppressed, and period-doubled states are observed as is illustrated in Figure 16c.
The solution has double periodicity since double loop is observed. For the value of λ
being more larger, the chaotic motion is still suppressed, but the periodic states are
observed. The system is more stable. The double loop is merged into a single loop, as
is shown in Figure 16d. To get also an idea of how the spatiotemporal dynamics of
the system changes in the parameter range of ∣λ∣ between turbulence and uniform
oscillations, we show in Figure 17a a series of space-time plots of asymptotic
dynamical states reached for different values of ∣λ∣. For the increasing values of ∣λ∣,
the transition from defect turbulence to plane wave regime is observed
(Figure 17a–c).

5. Time-delay auto-synchronization control of defect turbulence in
cubic-quintic complex Ginzburg-Landau equation

5.1 Model equation

To control the different turbulence regimes observed in the domain, a global
feedback term can be introduced. The modified cubic-quintic CGL eqiuation is
given by [27, 41, 42].

∂A
∂t

¼ 1þ ic1ð Þ ∂
2A
∂x2

þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ F, (8)

F tð Þ ¼ αei χ0þωτð ÞA t� τð Þ, (9)

where

A tð Þ ¼ 1
L

ðL
0
A x; tð Þdx (10)

denotes the spatial average of A over a one-dimensional medium of length L.
The parameter α describes the feedback strength, and χ0 characterizes a phase shift
between the feedback and the dynamics. ω denotes the frequency of the oscillation
and τ is the delay time. When delay time is short τ< < 1ð Þ, the slowly varying
average amplitude A tð Þ does not significantly change within the delay time, and the
delays in this term could be neglected. We obtain then the following equation:

∂A
∂t

¼ 1þ ic1ð Þ ∂
2A
∂x2

þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ αeiχA tð Þ, (11)

where χ ¼ χ0 þ ωτ. Eq. (11) does not include any delay. Nonetheless, the delay
time τ plays an important role here, because it determines the effective phase shift χ
in the equation. The variation of τ provides a simple way for changing the phase
shift of the global feedback and thus the feedback effects.
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5.2 Numerical simulation

In this section, we present the results of a numerical study of Eq. (11). We
analyze the stability of the unstable wave patterns observed inside a defect
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Figure 19.
Transition from defect turbulence to spatiotemporal intermittency regime for c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼ π=6, and μ ¼ 1.0, when (a) α ¼ 8.0, (b) α ¼ 12.0, (c) α ¼ 15.

Figure 18.
Phase diagram of (χ, α) showing different types of dynamical regimes: Defect turbulence (DT), spatiotemporal
intermittency (STI), phase turbulence (PT), standing wave (SW), and plane wave (PW) for c1 ¼ 2.5, c3 ¼
0.5, c5 ¼ 1.1. Phase diagram of (χ, α) showing different types of dynamical regimes: Defect turbulence (DT),
spatiotemporal intermittency (STI), phase turbulence (PT), standing wave (SW), and plane wave (PW) for
c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1, μ ¼ 1.0, μ ¼ 1.0.
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which the system parameters are exemplified as c1 = 2.5, c3 = 0.5, and c5 = 1.1 [15].
The chaotic motion is obvious: the amplitude of variable incidentally drops to zero
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λr = 0.5; the trajectory of system is illustrated in Figure 16b. The real part of system
variable is confined into a finite range, and defect turbulence is no longer being
observed, whereas the chaotic motion is not eliminated completely. For other values
of the diffusion parameter as λr = 3.0 and λr = 1.5, for example, the chaotic motion is
suppressed, and period-doubled states are observed as is illustrated in Figure 16c.
The solution has double periodicity since double loop is observed. For the value of λ
being more larger, the chaotic motion is still suppressed, but the periodic states are
observed. The system is more stable. The double loop is merged into a single loop, as
is shown in Figure 16d. To get also an idea of how the spatiotemporal dynamics of
the system changes in the parameter range of ∣λ∣ between turbulence and uniform
oscillations, we show in Figure 17a a series of space-time plots of asymptotic
dynamical states reached for different values of ∣λ∣. For the increasing values of ∣λ∣,
the transition from defect turbulence to plane wave regime is observed
(Figure 17a–c).

5. Time-delay auto-synchronization control of defect turbulence in
cubic-quintic complex Ginzburg-Landau equation

5.1 Model equation

To control the different turbulence regimes observed in the domain, a global
feedback term can be introduced. The modified cubic-quintic CGL eqiuation is
given by [27, 41, 42].

∂A
∂t

¼ 1þ ic1ð Þ ∂
2A
∂x2

þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ F, (8)

F tð Þ ¼ αei χ0þωτð ÞA t� τð Þ, (9)

where

A tð Þ ¼ 1
L

ðL
0
A x; tð Þdx (10)

denotes the spatial average of A over a one-dimensional medium of length L.
The parameter α describes the feedback strength, and χ0 characterizes a phase shift
between the feedback and the dynamics. ω denotes the frequency of the oscillation
and τ is the delay time. When delay time is short τ< < 1ð Þ, the slowly varying
average amplitude A tð Þ does not significantly change within the delay time, and the
delays in this term could be neglected. We obtain then the following equation:

∂A
∂t

¼ 1þ ic1ð Þ ∂
2A
∂x2

þ μAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ αeiχA tð Þ, (11)

where χ ¼ χ0 þ ωτ. Eq. (11) does not include any delay. Nonetheless, the delay
time τ plays an important role here, because it determines the effective phase shift χ
in the equation. The variation of τ provides a simple way for changing the phase
shift of the global feedback and thus the feedback effects.
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5.2 Numerical simulation

In this section, we present the results of a numerical study of Eq. (11). We
analyze the stability of the unstable wave patterns observed inside a defect
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Figure 19.
Transition from defect turbulence to spatiotemporal intermittency regime for c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼ π=6, and μ ¼ 1.0, when (a) α ¼ 8.0, (b) α ¼ 12.0, (c) α ¼ 15.

Figure 18.
Phase diagram of (χ, α) showing different types of dynamical regimes: Defect turbulence (DT), spatiotemporal
intermittency (STI), phase turbulence (PT), standing wave (SW), and plane wave (PW) for c1 ¼ 2.5, c3 ¼
0.5, c5 ¼ 1.1. Phase diagram of (χ, α) showing different types of dynamical regimes: Defect turbulence (DT),
spatiotemporal intermittency (STI), phase turbulence (PT), standing wave (SW), and plane wave (PW) for
c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1, μ ¼ 1.0, μ ¼ 1.0.
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turbulence regime by using global feedback term [27]. We study the effects of the
feedback term on the system. A sufficient strong feedback can suppress spatiotem-
poral chaos and establishes uniform oscillations. We show that for certain values of
the global feedback term and the delay time, the system which initially was chaotic
becomes completely stable. The dynamic regimes observed during the numerical
study are summarized in the state diagram of Figure 18. The five regimes observed
are defect turbulence, spatiotemporal intermittency, phase turbulence, standing
waves, and plane waves. We remark that as the feedback intensity is increased
starting from zero, global oscillations set in, and defect turbulent regimes are
replaced by other interesting regimes until the appearance of the laminar state.

For certain values of α, amplitude defects disappear from some parts of the
system, and thus, an intermittent state is developed. Figure 19 illustrates three
examples of intermittent regimes depending on the values of α and χ in a 1D system
[27, 42]. Figure 19a shows that turbulent bursts which occupy most of the system
and laminar areas are relatively rare, while Figure 19b and c shows the coexistence
between turbulence and laminar state filled with standing wave (see Figure 19b) or
plane waves (see Figure 19c). By further increasing the feedback intensity from the
states of intermittent turbulence, uniform oscillations are observed for the phase
shift in the interval 0 < χ < 3π=4. For appropriate values of α and χ, the domain is
still always turbulent, but the defects disappeared completely. The wave pattern is
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Figure 20.
Phase turbulence regime of wave pattern amplitude |A| obtained for α ¼ 6.0, c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼7π/4, μ ¼ 1.0.
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Figure 21.
Space-time variation of the wave pattern amplitude |A| obtained for α ¼ 9.0, c1¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼ 7π/4, μ ¼ 1.0.
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in the phase turbulence regime. It is illustrated in Figure 20. In this regime, the
amplitude is always bounded away from zero. The amplitude A never reaches zero
and remains saturated. We notice that for certain values of α and χ, standing waves,
also called stationary wave, are observed (see Figure 21). Standing waves have been
observed in the model of CO oxidation under intrinsic gas phase coupling [43, 44].

6. Discussion

Let us now introduce to the CGL equation the global time-delay feedback and
study its effects on the system. The new CGL equation with time-delay auto-
synchronization is given by:

∂A
∂t

¼ 1þ ic1ð Þ ∂
2A
∂x2

þ μ� iωð ÞAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ F, (12)

where F is a feedback term given by

Figure 22.
Space-time variation of the wave pattern amplitude ∣A∣, χ ¼ π=2, c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1, μ ¼ 1.0, and
τ ¼ 1.2 for (a) α ¼ 0.0 showing DT, (b) α ¼ 12.0 showing WT, (c) α ¼ 15 showing PT, and α ¼ 15 showing
PW.
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Figure 20.
Phase turbulence regime of wave pattern amplitude |A| obtained for α ¼ 6.0, c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼7π/4, μ ¼ 1.0.
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Figure 21.
Space-time variation of the wave pattern amplitude |A| obtained for α ¼ 9.0, c1¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1,
χ ¼ 7π/4, μ ¼ 1.0.
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in the phase turbulence regime. It is illustrated in Figure 20. In this regime, the
amplitude is always bounded away from zero. The amplitude A never reaches zero
and remains saturated. We notice that for certain values of α and χ, standing waves,
also called stationary wave, are observed (see Figure 21). Standing waves have been
observed in the model of CO oxidation under intrinsic gas phase coupling [43, 44].

6. Discussion

Let us now introduce to the CGL equation the global time-delay feedback and
study its effects on the system. The new CGL equation with time-delay auto-
synchronization is given by:

∂A
∂t

¼ 1þ ic1ð Þ ∂
2A
∂x2

þ μ� iωð ÞAþ 1� ic3ð Þ Aj j2A� 1� ic5ð Þ Aj j4Aþ F, (12)

where F is a feedback term given by

Figure 22.
Space-time variation of the wave pattern amplitude ∣A∣, χ ¼ π=2, c1 ¼ 2.5, c3 ¼ 0.5, c5 ¼ 1.1, μ ¼ 1.0, and
τ ¼ 1.2 for (a) α ¼ 0.0 showing DT, (b) α ¼ 12.0 showing WT, (c) α ¼ 15 showing PT, and α ¼ 15 showing
PW.
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F tð Þ ¼ αeiχ A t� τð Þ � A tð Þ� �
, (13)

and

A tð Þ ¼ 1
L

ðL
0
A x; tð Þdx, (14)

with the amplitude and frequency given by

A1j j2 ¼ 1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 μþ α cos χ � Ωτð Þ � cos χð Þ½ �ð Þ

p� �
, (15)

and

Ω ¼ �ω� A1j j2 c3 � c5 A1j j2
� �

þ α sin χ � Ωτð Þ � sin χð Þ½ �: (16)

A cubic CGL equation with a similar feedback scheme has been investigated
in Refs. [13, 35]. In their work, they have shown how the strongly disordered
state can be stabilized in the system. The initially unstable system undergoes several
transformations successively and become stable; we have in order defect turbu-
lence, phase turbulence, standing wave state, and uniform oscillations. The results
of our numerical study of Eq. (12) are given in Figure 22. This figure shows the
progressive transition from defect turbulence to plane wave state. In the absence of
feedback (see Figure 22a, with α = 0), defect turbulence is observed. For small α,
weak turbulence is observed (see Figure 22b). When the feedback term grows, the
system displays a disordered state of phase turbulence (see Figure 22c), stationary
standing wave patterns (see Figure 22d), and uniform oscillations (see Figure 22e),
respectively.

7. Effects of nonlinear gradient terms on the defect turbulence regime
in weakly dissipative systems

The LOCGL equation which describes a system exhibiting a subcritical bifurca-
tion to traveling waves must contain a quintic nonlinearity; at this order, it is
necessary to include the lower-order nonlinear gradient terms:

At þ VAx ¼ χr þ iχið ÞAþ 1þ ic1ð ÞAxx þ 1� ic3ð Þ Aj j2A�

1� ic5ð Þ Aj j4A� q1 Aj j2Ax � q2 Aj j2xA� q3A
2A ∗

x ,
(17)

with q1 ¼ q1r þ iq1i, q2 ¼ q2r þ iq2i, and q3 ¼ q3r þ iq3i. Here, A x; tð Þ describes
the amplitude of extended spatial patterns. The values q1, q2, and q3 represent
coefficients of nonlinear gradient terms. Two of these nonlinear gradient terms, i.e.,
Aj j2Ax and A2A ∗

x , appear naturally in the asymptotic derivation [30, 31, 45–47].
Since we take the periodic boundary conditions, the convective term VAx may be
transformed away by going into a moving frame of reference. Also, the parameter
χ ¼ χr þ iχi, which is proportional to the distance from criticality, can be taken as
real, since the imaginary part can be transformed away by a simple transformation.

The aim is to see the impact of these nonlinear gradient terms on a defect
turbulence regime. We use the indicators such as the Lyapunov exponent and the
energy bifurcation diagram to confirm the nature of the regime.
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7.1 Numerical simulations

7.1.1 Dynamical indicators

We will essentially characterize the different types of dynamical behavior of the
system by the energy function Q and the largest Lyapunov exponent λmax. The first
one is defined by

Q tð Þ ¼ 1
2L

ðL
�L

A x; tð Þj j2dx, (18)

which is frequently used to characterize non-regular dynamics in optics [48],
localized patterns in fluids, and other physical systems, respectively [49]. The one-
dimensional system is assumed to be of length 2L. In order to check more dynamical
behaviors of the system and provide a more quantitative aspect of the dynamics, we
calculate the largest Lyapunov exponent defined by [50, 51].

λmax ¼ lim
t!∞

1
t
ln

∥∣δA x; tð Þ∥∣
∥∣δA x;0ð Þ∥∣
� �� �

, with kδA x; tð Þk ¼
ðx¼L

x¼�L
δA x; tð Þj j2dx

� �1=2

,

(19)

where δA is a small perturbation such as A ¼ A0 þ δA and A0 is the initial value
of the amplitude wave. Here, δA x;0ð Þ ¼ 10�4A0, and δA satisfies the linearized
evolution equation

∂δA
∂t

¼ J � δA, (20)

where J is the Jacobian matrix. The largest Lyapunov exponent is the dynamical
invariant most easily and accurately estimated from experimental time series. This
method has been extensively used for many different dynamical systems to quan-
tify chaos [30]. The value λmax can be positive or negative. Complex behaviors such
as chaos and spatiotemporal chaos are confirmed by positive λmax. On the other
hand, periodic or quasi-periodic solutions and non-chaotic attractors are character-
ized by negative λmax.

7.1.2 Numerical results

We will present here some of data obtained for systems with the presence of the
nonlinear gradient terms. The results are summarized in Figures 23–28. In particu-
lar, we study the influence of the nonlinear gradient terms in the defect turbulence
regime. Figure 23 shows the wave patterns and the energy as a function of time
corresponding to the laminar regime. We notice that the system that was initially
chaotic becomes completely stable by the presence of the nonlinear gradient terms.
The chaos has been eliminated. By changing the values of nonlinear gradient terms,
the dynamics of the system also change; it is confirmed by Figures 24 and 25 which
represent the oscillating patterns. The corresponding largest Lyapunov exponent is
zero.

The plot observed in Figure 24 is the running waves. They are quasi-periodic
states; they move in one direction with constant speed, according to its initial
condition; and this is the so-called oriental symmetry breaking. A double periodicity
in time and in space is observed. In Figure 25, we have another type of the
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oscillating patterns in a color-coded space-time plot (see Figure 25a). After a tran-
sient time, the waves propagate uniformly, with a well-defined wave number and
constant amplitude. We note also the presence of an attractor into the system which
annihilate the wave patterns (see Figure 25b). The drop observed near x ¼ 0
expresses the fact that the initial condition is a hole. Figures 26–28 show the largest
Lyapunov exponent λmax and the bifurcation diagram of the pattern state as a func-
tion of the control parameter χr for Eq. (17). They allow us to see clearly how the

Figure 24.
(a) Running wave regime, for χ ¼ 0.6 q1 ¼ 0.5 þ 0.9i, q2 ¼ 0.6 þ 0.6i, q3 ¼ 0.9 þ 0.9i, and (b) phase
portrait of running waves.

Figure 25.
Oscillating regime in system, for χ ¼ 0.6 q1 ¼1.5 þ 0.5i, q2 ¼ 0.6 þ 0.6i, q3 ¼ 1.5 þ 0.9i: (a) space-time plot
of ∣A∣ propagating in one dimension and (b) phase portrait of wave patterns.

Figure 23.
(a) Laminar regime and (b) pattern energy Q, as function of time for q1 ¼ 1.5 þ 0.5i, q2 ¼ q3 ¼ 1.5 þ 1.5i.
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system changes its dynamical behavior with the presence of the nonlinear gradient
terms. Figure 26a, which express the case without the nonlinear gradient terms, is
obtained by taking repeatedly the maximum value of the energy function Qmax in a

Figure 26.
(a) Bifurcation diagram of Qmax and (b) largest Lyapunov exponent λmax as function of χr, without nonlinear
gradient terms.

Figure 27.
(a) Bifurcation diagram of Qmax and (b) largest Lyapunov exponent λmax as function of χr, with
q1 ¼ 0.1 þ 0.1i, q2 ¼ 0.2 þ 0.2i, and q3 ¼ 0.3 þ 0.3i.
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given time interval at different times (well after the transient is dead); this is done for
very many different values of the control parameter χr. As can be seen, the system is
briefly stable, and then, the instability is present in the whole system. In fact, if there
is a uniqueQmax, then the system is stationary or periodic, while for finite continuous
distribution of Qmax values, the behavior is either quasi-periodic or chaotic.

The Lyapunov exponent shown in Figure 26b indicates the dynamical behavior
of the system and confirms the results. Figure 27 is obtained for increasing values of
the nonlinear gradient terms. We observe several transitions between regular and
chaotic states. In particular, there is a small stability part of the system in the range
χr ∈ 0:0;0:3ð Þ. Beyond the point χr ¼ 0:44, the system becomes stable again until
the value χr ¼ 0:55, with another bifurcation point at χr ¼ 0:6. On the other hand,
the transition from regular to chaotic wave patterns is flat. In the plot of the
Lyapunov exponent (see Figure 27b), the chaotic motions identified are validated
by the positive values of λmax, while the stable region corresponds to the negative
values of λmax. For the large value of the nonlinear gradient terms, the system
becomes more and more stable as is seen in Figure 28.

8. Conclusion

The numerical investigation of the 1D quintic CGL equation in such systems
represents a big topic in the understanding of many physical systems with pattern
formation. Concerning the extended system, we have summarized in a phase dia-
gram all the regimes that have been observed. On the phase diagram, we have the
BFN line that divides the regions in two regions: the stable zone which contains
laminar state and spatiotemporal intermittency regime and the unstable zone with

Figure 28.
(a) Bifurcation diagram of Qmax and (b) largest Lyapunov exponent λmax as function of χr, with
q1 ¼ 0.7 þ 0.7i.

82

Research Advances in Chaos Theory

chaotic regimes as phase turbulence, weak turbulence, and defect turbulence [49].
For the case of finite system, we have described from the 1D cubic-quintic CGL
equation the effects of the boundaries on the waves traveling in a preferred direc-
tion. We have used the homogeneous boundary conditions, and the waves were
nonlinear dissipative waves. We have studied the nature of convective or absolute
instabilities of wave patterns. In our simulations, we have found new states that
were similar from those obtained in the cubic CGL equation with homogeneous
boundary conditions or with the Neumann boundary conditions. The presence of
the quintic term has a large influence in the wave pattern. All the dynamic regimes
observed have been summarized in a state diagram. The regimes as the global mode
regime, turbulence regime observed in the secondary structures, and spatiotempo-
ral intermittency regimes have been detected, but their shape and behavior are
different depending on the sign of c5. Such defects, holes, and spatiotemporal
intermittency regime have been observed in the spiral wave pattern in the
counterrotating Couette-Taylor system, in the Taylor-Dean system, and in
Rayleigh-Bénard convection. These results were different from those that used
periodic boundary conditions. The numerical investigation of the 1D cubic-quintic
CGL equation with homogeneous boundary conditions for different values of the
control parameters represents a big topic in the understanding of many physical
systems with pattern formation. One of the great challenges is to control these
instabilities. We have used three types of control. Many significant technological
applications, such as mixing, optical fiber manufacture, and chemical reaction could
crucially benefit from the control of instabilities leading to complex spatiotemporal
dynamics. Firstly, we have proposed a method based on a nonlinear diffusion
parameter control which lies to the modified cubic-quintic CGL equation in the
extended system. In the first time, we have briefly presented the model equation of
cubic-quintic CGL equation and summarized the dynamic regimes observed in the
phase diagram of BFN. This method is based on the modification of the nonlinear
coefficient term with the preservation of the intrinsic phase invariance of the
original equation. By using hole solutions as initial conditions, we have simulated
the modified cubic-quintic CGL equation. Then, spatiotemporal chaos regimes
obtained with the original cubic-quintic CGL equation have been stabilized by using
a nonlinear diffusion term. The results show that, the defect turbulence regime
which is initially observed, become progressively stable by modifying the values of
the nonlinear diffusion term, i.e., at the end, plane wave regime is observed. Then,
by using another type of control called time-delay auto-synchronization, which
consists in adding the feedback term to the CGL equation, the results were excellent.
We have noticed by this method that one can control or avoid the spatiotemporal
chaos observed into the system. The last method control used is the adding of the
nonlinear gradient terms to the CGL equation called the lowest-order CGL equation.
By considering also the wave patterns in the chaotic regions in particular in a defect
turbulence regime, it was shown that the presence of the nonlinear gradient terms
changes the dynamical behavior of the system; the chaos can disappear progressively
in the domain. The fact that the nonlinear gradient terms can stabilize the system
leads us to conclude that they can be considered as the stabilizing terms.
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Chapter 5

Ubiquitous Filtering for Nonlinear
Problems
Valeri Kontorovich and Fernando Ramos-Alarcon

Abstract

This chapter develops and extends the general theoretical results, previously
published in the chapter “Nonlinear filtering of weak chaotic signals”, and presents
detailed implementations of a computationally simple, robust (filtering fidelity
almost insensitive to changes of the desired input signal properties) and rather
precise approach for the filtering of weak signals of different physical nature
(biological, seismic, voice, etc.) in presence of white Gaussian noise. The
implementations rely on non-linear filtering techniques that in general can be
considered as either one-moment or multi-moment, in the sense that they operate
with a single sample (instantaneous fashion) or with various adjacent samples
(non-instantaneous fashion). Chaotic modeling of the real input signals allows
achieving an almost ubiquitous filtering approach with a computationally simple
implementation. Application of the linearization strategies (for both one and two-
moment filtering) provide, additionally, “invariance” of the processing algorithms
to variations on the nature and statistics of the input signals.

Keywords: system identification toolbox, linearized models, weak chaos,
quasi-linear filtering algorithms

1. Introduction

The signal filtering plays a fundamental role in the design of signal processing
algorithms for many problems, that is, the first step is to remove (to filter) the
background noise from the input (incoming) signal, and the second step is to
perform the corresponding signal processing [1, 2]. In this sense, the filtering
approach based on the theory of dynamic systems [3–5] pops up immediately as one
of the possible ways to address this issue. The dynamic filtering approach, such as
classic linear Kalman filtering, has been applied for many problems long ago [6] and
recently as well [7]. However, in the following the dynamic filtering is proposed
adopting a different (nonlinear) angle [8, 9], namely, using signals from nonlinear
chaotic attractors as a model for the desired signals arriving at the filtering struc-
ture. The modeling of real phenomena using chaos has been used for more than 50
years, and there is a wide range of scientific and practical applications, such as
seismology [10–12], statistical theory of communication [13, 14], control, geophys-
ics, biomedical telemetry [15, 16] under water signal processing [17], and many
other areas related to applied physics as well [18].

When the signals of interest are significantly weak (smaller than the background
additive white Gaussian noise, AWGN), the problem is far from trivial. The

89



Chapter 5

Ubiquitous Filtering for Nonlinear
Problems
Valeri Kontorovich and Fernando Ramos-Alarcon

Abstract

This chapter develops and extends the general theoretical results, previously
published in the chapter “Nonlinear filtering of weak chaotic signals”, and presents
detailed implementations of a computationally simple, robust (filtering fidelity
almost insensitive to changes of the desired input signal properties) and rather
precise approach for the filtering of weak signals of different physical nature
(biological, seismic, voice, etc.) in presence of white Gaussian noise. The
implementations rely on non-linear filtering techniques that in general can be
considered as either one-moment or multi-moment, in the sense that they operate
with a single sample (instantaneous fashion) or with various adjacent samples
(non-instantaneous fashion). Chaotic modeling of the real input signals allows
achieving an almost ubiquitous filtering approach with a computationally simple
implementation. Application of the linearization strategies (for both one and two-
moment filtering) provide, additionally, “invariance” of the processing algorithms
to variations on the nature and statistics of the input signals.

Keywords: system identification toolbox, linearized models, weak chaos,
quasi-linear filtering algorithms

1. Introduction

The signal filtering plays a fundamental role in the design of signal processing
algorithms for many problems, that is, the first step is to remove (to filter) the
background noise from the input (incoming) signal, and the second step is to
perform the corresponding signal processing [1, 2]. In this sense, the filtering
approach based on the theory of dynamic systems [3–5] pops up immediately as one
of the possible ways to address this issue. The dynamic filtering approach, such as
classic linear Kalman filtering, has been applied for many problems long ago [6] and
recently as well [7]. However, in the following the dynamic filtering is proposed
adopting a different (nonlinear) angle [8, 9], namely, using signals from nonlinear
chaotic attractors as a model for the desired signals arriving at the filtering struc-
ture. The modeling of real phenomena using chaos has been used for more than 50
years, and there is a wide range of scientific and practical applications, such as
seismology [10–12], statistical theory of communication [13, 14], control, geophys-
ics, biomedical telemetry [15, 16] under water signal processing [17], and many
other areas related to applied physics as well [18].

When the signals of interest are significantly weak (smaller than the background
additive white Gaussian noise, AWGN), the problem is far from trivial. The

89



following material will show the effectiveness of using a dynamic nonlinear strategy
(introduced in [4, 5]) for filtering signals, belonging to different types of real
phenomena, which are modeled through components of chaotic attractors, all this
in presence of strong AWGN, which concretely means a signal to noise ratio, SNR,
< 1 (<0 dB). Note that even though weak signals are treated in the literature,
[10, 12], their processing is not addressed from the dynamic filtering point of view,
and therefore (in our opinion) optimum fidelity solutions are still required.

In the following the term, effective filtering is used to indicate high precision
which is evaluated considering values of the normalized mean square error, NMSE,
<1% (in the following the normalization of the MSE will be considered in relation to
the variance of the desired input signal). In the regular practice, there might be
several precision measures corresponding to each specific filtering scenario. The use
of the NMSE, or RMSE (root mean square error for nonstationary scenarios), as a
measure of precision (fidelity) for filtering is well established from the statistical
theory [19], and so, it can be considered as “universal” because its formal definition
is the same irrespectively to specific filtering scenarios [1, 2]. Also note that the case
of small values of the NMSE might adequately correspond to concrete practical
criteria of fidelity [3, 19].

The proposed strategy is robust but not in the sense used in control theory,
where the term “robust” means that the filter’s structure is invariant to a priori
unknown features of the input signals. The proposed chaotic filtering is considered
as robust in the sense that its fixed structure and fidelity are almost invariant to
signals from rather different filtering scenarios, which in the following correspond
to seismic signals, heart beat signals, voice-like signals, and radio frequency inter-
ference (RFI) signals. Actually one can see that such invariance makes the filtering
“ubiquitous.”

For conditions when the SNR ≤ 0 dB, the term “weak chaotic signals” will be
used, keeping in mind that chaos modeling is applied for the abovementioned
filtering scenarios. Chaos modeling might be immensely useful because almost all
quasi-optimum filtering algorithms (which formally are nonlinear but are essen-
tially quasi-linear) show rather high precision in the sense of low NMSE (≤1%) and
exhibit low computational complexity among other benefits. These properties were
broadly discussed in [8, 9], where theoretical proofs can be found. The material
presented here contains some experimental applications, for rather different sce-
narios that apply and extend the ideas presented in [9], and so, both have to be
considered together. In [9] it was impossible for the authors to include the present
material, not even partially, for the lack of space.

2. Extraction of some theoretical principles

2.1 Chaotic modeling and filtering

Let us assume that a chaos vector process x(t) can be generated from the
following ordinary differential equation (ODE) of certain attractor [18]:

_x ¼ F x; tð Þ (1)

where the initial condition is x(t0) = x0 and F(∙) is a vector function, which
(for any real application) is a priori unknown (together with the initial conditions)
and needs to be somehow identified beforehand and moreover is usually time
varying. It is worth mentioning that the identification problem for F(∙) has
attracted a lot of interest in the last decades, but being rather complex, it has not
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been accomplished so far, at least to the author’s knowledge. The reason behind
this is the identification of Eq. (1) is an identification of the “inertial vector
nonlinear system” which does not have an unique solution and can be formulated
only for a previously defined class of nonlinear systems; the complexity of this task
has been addressed elsewhere [8, 9, 18, 20] and will not be considered in the
following. As examples for F(∙), which will be used in the following, there are the
equations for the chaotic attractors corresponding to Rossler, Lorenz, and Chua
types [8, 9]:

Continuous time: Discrete time:

Rossler

_x tð Þ ¼ �y tð Þ � z tð Þ
_y tð Þ ¼ x tð Þ þ 0:2y tð Þ
_z tð Þ ¼ 0:2� z tð Þ 5:7 � x tð Þð Þ

xkþ1 ¼ xk þ Ts �yk � zk
� �

ykþ1 ¼ yk þ Ts xk þ 0:2yk
� �

zkþ1 ¼ zk þ Ts 0:2� zk 5:7 � xkð Þð Þ
(2)

Lorenz

_x tð Þ ¼ 10 x tð Þ � y tð Þð Þ
_y tð Þ ¼ 28x tð Þ � y tð Þ þ x tð Þ � z tð Þ
_z tð Þ ¼ � 8

3
z tð Þ þ x tð Þ � y tð Þ

xkþ1 ¼ xk þ Ts 10 xk � yk
� �� �

ykþ1 ¼ yk þ Ts 28xk � yk þ xk � zk
� �

zkþ1 ¼ zk þ Ts � 8
3
zk þ xk � yk

� � (3)

Chua

_x tð Þ ¼ 9:205 y tð Þ � U x tð Þð Þð Þ,
_y tð Þ ¼ x tð Þ � y tð Þ þ z tð Þ,
_z tð Þ ¼ �14:3y tð Þ:

xkþ1 ¼ xkþ1 þ Ts 9:205 yk �U xkð Þ� �� �
,

ykþ1 ¼ ykþ1 þ Ts xk � yk þ z3
� �

,

zkþ1 ¼ zkþ1 þ Ts �14:3yk
� �

,

(4)

where U xkð Þ ¼ m1xk þ 1
2 m0 �m1ð Þ xk þ 1j j � xk � 1j j½ �, m0 ¼ � 1

7, and m1 ¼ 2
7 and

TS is the sampling time.
In order to neglect the uncertainty effects of the initial conditions, at least for

real data filtering, the approach used in [21], based on the fundamental statement of
statistical dynamics for deterministic systems related to Kolmogorov and Max Born
[18], together with the introduction of the so-called additive “process noise” in
Eq. (1), can be applied. The latter transforms the ODE Eq. (1) into a stochastic
differential equation (SDE) [20]. The transformation of Eq. (1) into SDE is relevant
for the following material.

The equation for strange attractor Eq. (1) can be transformed into the equivalent
stochastic form as a stochastic differential equation (SDE), which “generates” the
n-dimensional Markov stochastic process [18, 20]:

_x ¼ f x tð Þð Þ þ εξ tð Þ (5)

where f(x(t)) is identical to F(x(t)) from Eq. (1). The influence of a weak
external source of white noise is denoted by ξ(t); the noise intensities are given in a
matrix form ε = [εij]nxn.

The solutions proposed hereafter might be encountered from the structural
analysis of the quasi-optimum filtering algorithms for weak chaos in presence of
AWGN [8, 9] and are synthesized in the following for convenience.

When one uses the SDE Eq. (5) as a model for chaos, the first strategy that
comes up immediately to mind is the nonlinear filtering of chaotic signals which
was rigorously developed in [8, 9]. The kernel presented in [8] is the Stratonovich-
Kushner equation (SKE) [4, 5], which allows to describe the dynamic equation for
the a posteriori probability density function for the chaos x(t). For the filtering with
this generalized approach, some additional information from the received aggregate
signal has to be incorporated on several sequential time instants, i.e., the
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information has to be considered in the block manner by aggregating data, in our
case, from several time instants (multi-moment processing). Multi-moment algo-
rithms are carried out through the generalization of the Stratonovich-Kushner
Equations for the corresponding multi-moment data. In this way the resulting
heuristics are not arbitrary; they are actually generalized heuristics from the stan-
dard one-moment SKE. All this gives hope that one can achieve rather good MSE
for successively lower thresholds of the SNR using an algorithm with rather low
complexity.

Note that the time evolution for the a posteriori PDF for x(t) is completely
described by the SKE, but, unfortunately, it does not provide exact analytical
solutions. There are very few exceptions: linear SDE Eq. (4) which yields the well-
known Kalman filtering algorithm [4, 22] and some others [4, 5]. Due to this the
nonlinear filtering algorithms are practically always simplified, as quasi-optimum
or even quasi-linear [4, 5]. In practical applications quasi-linear filters are broadly
applied [4, 5].

One might wonder, what is the reason behind the application of chaotic model-
ing for weak signal filtering? The kernel for this lies in the “singular” properties of
the solution of the SKE (see Eqs. (9) and (10) in reference [9]) for the dynamic
ODE for chaos Eq. (1), when the solution of the SKE is almost “tuned” to the
deterministic chaos from Eq. (1) without any dependence to the SNR [8]. Sure, this
statement has to be interpreted as a qualitative explanation for the solution proper-
ties of the SKE, and it is almost true for the behavior of the quasi-linear algorithms
as well [8, 9].

The following is a list of several quasi-linear filtering algorithms for chaotic
signals, based on so-called “Local Gaussian Approximation Approach for the a
posteriori PDF” [4, 9], which was found as rather opportunistic for real-time
implementations:

1.Extended Kalman filter (EKF)

2.Unscented Kalman filter (UKF)

3.Kalman quadrature filter (KQF)

4.Gauss-Hermite quadrature filter (GQF)

5.Conditionally optimum filter

All these algorithms certainly show different filtering precision for a fixed SNR
and completely different computational complexity for a fixed filtering fidelity. So,
in the selection of a concrete filtering algorithm for a concrete scenario, one has to
consider as possible selecting criteria the MSE (NMSE and RMSE) together with the
computational complexity.

Theoretically, the simplest way to get a comparative analysis of the
abovementioned algorithms for the case of weak chaos filtering is in the framework
of the so-called stochastic equivalent approximation of the observable component
of the chaotic attractor, considered as an adequate model of the real process for
filtering.

2.2 Stochastic differential equation of the first order (SDE-1)

The idea of the stochastically equivalent dynamic system (or SDE) was
presented for the first time by Stratonovich and Kushner in [5] and extensively
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developed for many real scenarios [20]. Let a chaotic attractor with certain observ-
able component in Eq. (1) together with its stochastic characterization be a model of
the input data. One might consider a random process, generated by a stochastic
differential equation of the first order (SDE-1), and name it as a stochastic equiva-
lent as long as it has the same probability density function (PDF) and the same
covariance function as the observable component. So, if one assumes that the
stochastic equivalent (through the solution of the scalar SDE-1) is an adequate
approach to substitute the model of the real phenomena (in the form of an observ-
able component of the multidimensional chaotic attractor), then the actual model is
[5, 20]:

_x ¼ f xð Þ þ
ffiffiffiffi
K

p
ξ tð Þ (6)

where the local characteristics, here denoted as K2(x) and K1(x) for Eq. (6), are
K1(x) = f (x), K2(x) = K, and ξ(t) is AWGN with unitary intensity [5, 20, 23].1 If the
input signal for filtering is:

y tð Þ ¼ S x; tð Þ þ n0 tð Þ (7)

where n0(t) is AWGN with intensity N0, then applying the standard procedure
of local Gaussian approximation approach for the a posteriori PDF (which for this
particular case includes Taylor series representation for all nonlinearities and also
includes the PDF exponent and is limited to only quadratic terms at the SKE [4, 5]),
one can get the following quasi-optimum filtering algorithms:

_̂x ¼ f x̂ð Þ þ 2P11 tð Þ
N0

y tð Þ � S x̂; tð Þ½ � ∂S x̂; tð Þ
∂x

_P11 tð Þ ¼ K
2
þ 2∂f x̂ð Þ

∂x
P11 � 2

N0

∂S x̂ð Þ
∂x

� �2
P2
11

(8)

where x̂ tð Þ and P11(t) are a posteriori mean (estimated value) and variance
(error) of filtering, respectively. Applying then the well-known standard EKF syn-
thesis procedure [4] for Eqs. (6) and (7), one can also easily obtain the algorithm
Eq. (8). It is worth mentioning that the difference between the above-listed algo-
rithms for the local Gaussian approximation depends only on the way the localiza-
tion of the instantaneous estimation of x(t) is chosen (as it will be commented in the
following).

For the case of high filtering accuracy, all other algorithms that apply local
Gaussian approximation [8] can be successfully approximated by the EKF, because
the true value of the filtered process and the reference point for application of the
Gaussian approximation are obviously very “close.”

The algorithm Eq. (8) is related to the so-called one-moment (1MM) regime
which is classical for the EKF. In the 1MM regime during each processing cycle, one
sample from one instant of time is processed (instantaneous processing). The 2MM
regime was exhaustively presented at [8, 9] as a special case of multi-moment
filtering and could be easily reviewed by the interested reader. In the 2MM
regime during each cycle, two samples from two instants of time are processed
(non-instantaneous processing). The main parameter for 2MM algorithm is “ρ”,
which is the correlation coefficient between two adjacent samples of the processing
algorithm.

1

One can see that for the SDE Eq. (5) the Stratonovich and Ito forms for K1(x) and K2(x) are identical.

93

Ubiquitous Filtering for Nonlinear Problems
DOI: http://dx.doi.org/10.5772/intechopen.88409



information has to be considered in the block manner by aggregating data, in our
case, from several time instants (multi-moment processing). Multi-moment algo-
rithms are carried out through the generalization of the Stratonovich-Kushner
Equations for the corresponding multi-moment data. In this way the resulting
heuristics are not arbitrary; they are actually generalized heuristics from the stan-
dard one-moment SKE. All this gives hope that one can achieve rather good MSE
for successively lower thresholds of the SNR using an algorithm with rather low
complexity.

Note that the time evolution for the a posteriori PDF for x(t) is completely
described by the SKE, but, unfortunately, it does not provide exact analytical
solutions. There are very few exceptions: linear SDE Eq. (4) which yields the well-
known Kalman filtering algorithm [4, 22] and some others [4, 5]. Due to this the
nonlinear filtering algorithms are practically always simplified, as quasi-optimum
or even quasi-linear [4, 5]. In practical applications quasi-linear filters are broadly
applied [4, 5].

One might wonder, what is the reason behind the application of chaotic model-
ing for weak signal filtering? The kernel for this lies in the “singular” properties of
the solution of the SKE (see Eqs. (9) and (10) in reference [9]) for the dynamic
ODE for chaos Eq. (1), when the solution of the SKE is almost “tuned” to the
deterministic chaos from Eq. (1) without any dependence to the SNR [8]. Sure, this
statement has to be interpreted as a qualitative explanation for the solution proper-
ties of the SKE, and it is almost true for the behavior of the quasi-linear algorithms
as well [8, 9].

The following is a list of several quasi-linear filtering algorithms for chaotic
signals, based on so-called “Local Gaussian Approximation Approach for the a
posteriori PDF” [4, 9], which was found as rather opportunistic for real-time
implementations:

1.Extended Kalman filter (EKF)

2.Unscented Kalman filter (UKF)

3.Kalman quadrature filter (KQF)

4.Gauss-Hermite quadrature filter (GQF)

5.Conditionally optimum filter

All these algorithms certainly show different filtering precision for a fixed SNR
and completely different computational complexity for a fixed filtering fidelity. So,
in the selection of a concrete filtering algorithm for a concrete scenario, one has to
consider as possible selecting criteria the MSE (NMSE and RMSE) together with the
computational complexity.

Theoretically, the simplest way to get a comparative analysis of the
abovementioned algorithms for the case of weak chaos filtering is in the framework
of the so-called stochastic equivalent approximation of the observable component
of the chaotic attractor, considered as an adequate model of the real process for
filtering.

2.2 Stochastic differential equation of the first order (SDE-1)

The idea of the stochastically equivalent dynamic system (or SDE) was
presented for the first time by Stratonovich and Kushner in [5] and extensively

92

Research Advances in Chaos Theory

developed for many real scenarios [20]. Let a chaotic attractor with certain observ-
able component in Eq. (1) together with its stochastic characterization be a model of
the input data. One might consider a random process, generated by a stochastic
differential equation of the first order (SDE-1), and name it as a stochastic equiva-
lent as long as it has the same probability density function (PDF) and the same
covariance function as the observable component. So, if one assumes that the
stochastic equivalent (through the solution of the scalar SDE-1) is an adequate
approach to substitute the model of the real phenomena (in the form of an observ-
able component of the multidimensional chaotic attractor), then the actual model is
[5, 20]:

_x ¼ f xð Þ þ
ffiffiffiffi
K

p
ξ tð Þ (6)

where the local characteristics, here denoted as K2(x) and K1(x) for Eq. (6), are
K1(x) = f (x), K2(x) = K, and ξ(t) is AWGN with unitary intensity [5, 20, 23].1 If the
input signal for filtering is:

y tð Þ ¼ S x; tð Þ þ n0 tð Þ (7)

where n0(t) is AWGN with intensity N0, then applying the standard procedure
of local Gaussian approximation approach for the a posteriori PDF (which for this
particular case includes Taylor series representation for all nonlinearities and also
includes the PDF exponent and is limited to only quadratic terms at the SKE [4, 5]),
one can get the following quasi-optimum filtering algorithms:

_̂x ¼ f x̂ð Þ þ 2P11 tð Þ
N0

y tð Þ � S x̂; tð Þ½ � ∂S x̂; tð Þ
∂x

_P11 tð Þ ¼ K
2
þ 2∂f x̂ð Þ

∂x
P11 � 2

N0

∂S x̂ð Þ
∂x

� �2
P2
11

(8)

where x̂ tð Þ and P11(t) are a posteriori mean (estimated value) and variance
(error) of filtering, respectively. Applying then the well-known standard EKF syn-
thesis procedure [4] for Eqs. (6) and (7), one can also easily obtain the algorithm
Eq. (8). It is worth mentioning that the difference between the above-listed algo-
rithms for the local Gaussian approximation depends only on the way the localiza-
tion of the instantaneous estimation of x(t) is chosen (as it will be commented in the
following).

For the case of high filtering accuracy, all other algorithms that apply local
Gaussian approximation [8] can be successfully approximated by the EKF, because
the true value of the filtered process and the reference point for application of the
Gaussian approximation are obviously very “close.”

The algorithm Eq. (8) is related to the so-called one-moment (1MM) regime
which is classical for the EKF. In the 1MM regime during each processing cycle, one
sample from one instant of time is processed (instantaneous processing). The 2MM
regime was exhaustively presented at [8, 9] as a special case of multi-moment
filtering and could be easily reviewed by the interested reader. In the 2MM
regime during each cycle, two samples from two instants of time are processed
(non-instantaneous processing). The main parameter for 2MM algorithm is “ρ”,
which is the correlation coefficient between two adjacent samples of the processing
algorithm.

1

One can see that for the SDE Eq. (5) the Stratonovich and Ito forms for K1(x) and K2(x) are identical.
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Let us stress here that the concept of stochastic equivalence of the observable
component together with the SDE-1 was used only to make our statements in a
simple and “friendly” way and to provide computationally simple algorithms. For
the general case of the vector SDE (vector ODE) Eq. (1), when the stochastic
equivalence in the above presented form cannot be applied, because the high-order
statistics (HOS) play a significant role [4], all of the above qualitative comments are
true as well; the term ∂S x̂;tð Þ

∂x at Eq. (8) has to be substituted by the Jacobian matrix,
which is usually considered as a “linearization coefficient” at the point x ¼ x̂ [4]. It
follows that the synthesis approach for the filtering algorithms (in the framework of
the local Gaussian approximations for the a posteriori PDF) can be considered as an
instantaneous (miscellaneous) linearization approach.

2.3 Computational complexity

The next issue, which has to be analyzed here, is the computational complexity
of the quasi-linear algorithms. This subject is crucial for the applications addressed
in the next section.

For the general case, when EKF, UKF, GHF, and QKF algorithms are applied
considering Chua, Lorenz, and Rössler attractor signals as desired input signals, the
computational complexity for the processing is presented in the following table,
where all operations, additions (subtractions), multiplications (divisions), Cholesky
decompositions, Jacobian calculation (linearization), and nonlinear propagation are
included.

From Table 1, it can be easily seen that UKF involves the bigger complexity,
while EKF seems to be the simplest algorithm. However, the linearization process
performed by the Jacobian calculation involves partial derivatives. For that reason,
and depending on the mathematical model of the attractor, the EKF may not always
be the fastest algorithm. It follows from Table 1 that the EKF algorithm provides
the simplest implementation. Moreover, as it will be shown in the following section,
the EKF fidelity for weak signal detection is acceptable in all practical cases.
Together with the simple theoretical analysis, the EKF can be considered as an
opportunistic approach for applications (see the next section as well).

But one has to notice that for the robust (ubiquitous) solution and applications
(see above) the EKF has to be additionally modified by the following heuristics. One
can assume, as an alternative to the quasi-linear EKF algorithms, where the linear-
ization is instantaneously updated, that the robust solution for the EKF applications
might be found if a “fixed linearization” (with predefined linearization matrix) is
used instead of an “instantaneous” one. It actually means that instead of the EKF,
the standard Kalman filtering (SKF) approach is applied [3–7], and obviously one
has to admit some “losses” in the filtering accuracy for this case. At the same time, it

EKF UKF GHF QKF

Additions 8 50 25 25

Multiplications 15 77 33 40

Cholesky decomposition 1 2 2 2

Nonlinear propagation 0 15 21 6

Jacobian calculation 1 0 0 0

Table 1.
Computational complexity.
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has to be taken into account that the local Gaussian approximation of the a
posteriori PDF assumes that actually all the model components are almost linear and
therefore the accuracy losses might be rather moderate.

These filtering assumptions seem to be valid for several practical problems such as
interference mitigation, seismology, biomedical telemetry, etc. For weak chaotic
signals, in this condition it is possible to consider the EKF with “linear” Jacobian
matrix or even SKF instead of the EKF, which additionally simplifies the problem. To
obtain the linearization procedure, i.e., operate with a linear matrix A(t) at Eq. (1),
that comes from the linear approximation of the attractor’s model for chaos, one can
use the broadly applied “system identification toolbox” (SIT), [24, 25], which actu-
ally provides a solution for A(t) with the spectral properties of the real data. It is
worth mentioning that the way how the SIT identifies the linear matrix A(t) follows
from four “canonical representations” for the linear systems stated at [3].

Once more, it is only an approximation of an instantaneous linearization proce-
dure required by the quasi-optimum filtering using local Gaussian approximation,
but it gives a hope that for a high filtering precision NMSE of about 1% or less (see
comments above) the filtering precision losses (by use of the mentioned identifica-
tion approach) might be moderate and rather acceptable for practice (see also
results of the experimental setup). As a final comment, let us note that the “linear-
ization ideology,” as an approach, is rather common (see the references already
cited above) for quasi-optimum filtering algorithms with varying input data.

3. Results and discusion

The aim of this section is twofold and it will be considered separately. On one
side the aim is to show that the stochastic equivalent approach (SDE-1) is efficient
and has good accuracy for filtering purposes, taking the sufficiently nonlinear Chua
attractor Eq. (4) as the most attractive example. On the other side, the aim is to
illustrate the efficiency of the proposed methodology when it is applied to several
real-world signals, of absolutely different physical nature, namely, seismic signals,
electrocardiogram (ECG) signals, voice-like signals, and RFI signals. These experi-
mental settings have been associated to nonlinear chaotic signals [10–12, 15, 26, 27],
and very often, the scenario of such kind of signals includes a strong AWGN
background, and so the desired signals are rather weak.

An experimental real-time test bed was developed, containing block generators
for the AWGN, the EKF estimation (with their SDE-1 equivalents), the SKF esti-
mation (with the linearization matrix coefficients evaluated from the SIT block),
and the real input signals. The chaos EKF segment is a discrete implementation of
the EKF which internally contains the discrete version of the equations for the
strange attractors of Rossler, Lorenz, and Chua. It also performs a linearization by
calculating the Jacobian in each processing cycle. For each signal setting, one of the
attractor components (x, y or z) has to be adapted as a possible signal model.

For this purpose, first, the sampling time of the chaotic discrete equations is
varied so as to achieve a “match” between the temporal variations of the selected
attractor component and the desired signal (make the time scales as close as possi-
ble). Second, the desired signal is normalized in relation to the mean and variance of
the attractor component. The material of [8, 9] shows that the x-component of the
three strange attractors might be suitable for modeling the signals from the exper-
imental settings.

The SKF segment is a discrete implementation of the standard Kalman filter
which in this case is tridimensional in order to make a fair comparison with the
tridimensional EKF. In this segment the linearization matrix is obtained from the
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For the general case, when EKF, UKF, GHF, and QKF algorithms are applied
considering Chua, Lorenz, and Rössler attractor signals as desired input signals, the
computational complexity for the processing is presented in the following table,
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From Table 1, it can be easily seen that UKF involves the bigger complexity,
while EKF seems to be the simplest algorithm. However, the linearization process
performed by the Jacobian calculation involves partial derivatives. For that reason,
and depending on the mathematical model of the attractor, the EKF may not always
be the fastest algorithm. It follows from Table 1 that the EKF algorithm provides
the simplest implementation. Moreover, as it will be shown in the following section,
the EKF fidelity for weak signal detection is acceptable in all practical cases.
Together with the simple theoretical analysis, the EKF can be considered as an
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(see above) the EKF has to be additionally modified by the following heuristics. One
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used instead of an “instantaneous” one. It actually means that instead of the EKF,
the standard Kalman filtering (SKF) approach is applied [3–7], and obviously one
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has to be taken into account that the local Gaussian approximation of the a
posteriori PDF assumes that actually all the model components are almost linear and
therefore the accuracy losses might be rather moderate.

These filtering assumptions seem to be valid for several practical problems such as
interference mitigation, seismology, biomedical telemetry, etc. For weak chaotic
signals, in this condition it is possible to consider the EKF with “linear” Jacobian
matrix or even SKF instead of the EKF, which additionally simplifies the problem. To
obtain the linearization procedure, i.e., operate with a linear matrix A(t) at Eq. (1),
that comes from the linear approximation of the attractor’s model for chaos, one can
use the broadly applied “system identification toolbox” (SIT), [24, 25], which actu-
ally provides a solution for A(t) with the spectral properties of the real data. It is
worth mentioning that the way how the SIT identifies the linear matrix A(t) follows
from four “canonical representations” for the linear systems stated at [3].

Once more, it is only an approximation of an instantaneous linearization proce-
dure required by the quasi-optimum filtering using local Gaussian approximation,
but it gives a hope that for a high filtering precision NMSE of about 1% or less (see
comments above) the filtering precision losses (by use of the mentioned identifica-
tion approach) might be moderate and rather acceptable for practice (see also
results of the experimental setup). As a final comment, let us note that the “linear-
ization ideology,” as an approach, is rather common (see the references already
cited above) for quasi-optimum filtering algorithms with varying input data.

3. Results and discusion

The aim of this section is twofold and it will be considered separately. On one
side the aim is to show that the stochastic equivalent approach (SDE-1) is efficient
and has good accuracy for filtering purposes, taking the sufficiently nonlinear Chua
attractor Eq. (4) as the most attractive example. On the other side, the aim is to
illustrate the efficiency of the proposed methodology when it is applied to several
real-world signals, of absolutely different physical nature, namely, seismic signals,
electrocardiogram (ECG) signals, voice-like signals, and RFI signals. These experi-
mental settings have been associated to nonlinear chaotic signals [10–12, 15, 26, 27],
and very often, the scenario of such kind of signals includes a strong AWGN
background, and so the desired signals are rather weak.

An experimental real-time test bed was developed, containing block generators
for the AWGN, the EKF estimation (with their SDE-1 equivalents), the SKF esti-
mation (with the linearization matrix coefficients evaluated from the SIT block),
and the real input signals. The chaos EKF segment is a discrete implementation of
the EKF which internally contains the discrete version of the equations for the
strange attractors of Rossler, Lorenz, and Chua. It also performs a linearization by
calculating the Jacobian in each processing cycle. For each signal setting, one of the
attractor components (x, y or z) has to be adapted as a possible signal model.

For this purpose, first, the sampling time of the chaotic discrete equations is
varied so as to achieve a “match” between the temporal variations of the selected
attractor component and the desired signal (make the time scales as close as possi-
ble). Second, the desired signal is normalized in relation to the mean and variance of
the attractor component. The material of [8, 9] shows that the x-component of the
three strange attractors might be suitable for modeling the signals from the exper-
imental settings.

The SKF segment is a discrete implementation of the standard Kalman filter
which in this case is tridimensional in order to make a fair comparison with the
tridimensional EKF. In this segment the linearization matrix is obtained from the
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experimental signal (seismic, EGG, voice-like) using MATLAB’s SIT. The matrix
evaluation is made offline, calling the MATLAB’s command “ident.” Once the signal
is loaded in the workspace, the identification is made selecting the option “state
space models” [3, 22] for the tridimensional case. The program offers three estima-
tion options, and at the end it yields the confidence percentage for the selected
estimation option. It was found experimentally that the PEM option (prediction
error method) gives the best confidence for the estimated matrix. Note that for a
fixed scenario from the real life, the matrix should be evaluated for each incoming
signal offline before the signal processing is done (to obtain information both a
priori and (or) from experimental data) as it is illustrated in Figure 1 by introducing
a “virtual” delay “ρ,” which means the separation in time of the matrix identifica-
tion and filtering procedure; as the signals are stationary, the identification made
for a large vector signal will suffice for any short vector signal. This experimental
strategy is shown at Figure 1.

In the following, the experimental results apply the 1MM and 2MM filtering
strategies. The 2MM strategy requires for its processing the correlation between two
samples which in our case was set to ρ = 0.85. The 2MM shows a bit better NMSE
values as it is intuitively expected. For the scenario of seismic signals, it was not
possible to calculate the linearization matrix from the SIT, as the signals are not
tractable (limited signal durations for the spectral analysis). For all filtering scenar-
ios, a weak process noise value (Q) has been introduced (EKF and SKF) in order to
exclude the uncertainty of the initial conditions and is indicated in the
corresponding tables.

3.1 Experiment one

This experiment shows the efficiency of the stochastic equivalent SDE-1 for
filtering. For illustration purposes, the intended signal here is the x-component of
the chaotic attractor from Chua. It is worth noticing that upon taking x(t) in Eq. (4)
as the observable component, the correspondent PDF is bimodal due to the function
U(�) [20]. The statistically equivalent SDE-1 for the case of Chua’s x-component can
be obtained straightforward from Eq. (8) [8, 9]:

_̂x1 ¼ �2Kx̂1 p1 þ q1
� �þ 2 y tð Þ � x̂1ð Þ

N0

_̂P11 ¼ �K
2
þ P̂2

11

N0
þ 4K p1 þ q1

� �
P̂11 (9)

where p1 = 3.5 and q1 = 1.5.

Figure 1.
Block diagram of the experimental test bed.
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Figure 2 shows the result for the NMSE. The dotted line corresponds to the SDE-1
filtering according to Eq. (9) and the continuous line to the 1MM 3D EKF using
Eq. (4) in (A3), and in both cases the input signal is the Chua’s x-component. The
reason for doing this is that when one filters the input signal (Chua’s x-component)
using the Chua’s Eq. (4), it is almost the best one can do (quasi-optimum solution),
and that is why it gives the most adequate benchmark. From Figure 2 it is possible to
see that there are some very moderate losses due to the use of the SDE-1 methodology,
as it is logically expected; however the NMSE for the SDE-1 does not differ too much
from the 1MM 3D EKF, and so the SDE-1 approach offers almost the best accuracy.

The following examples are devoted to the filtering of real data, which obviously
differ from the theoretical chaos. The NMSE will increase because there is a mismatch
between the input signal and the “chaotic signal component” from the filtering
algorithm. This “mismatch” as it was mentioned above can be “compensated” by
introducing a process noise with intensity Q, in the filtering structure (A3).

3.2 Experiment two: fetal electrocardiogram signals (FECG)

The experimental data were obtained from a database ATM at PhysioNet [28].
The signal for this experiment corresponds to a baby’s heart in fetal stage at the 36th
week of the pregnancy cycle. For an SNR = �3 dB, Figure 3 shows the original
signal and the filtered signal using 1MM EKF with Rossler x-component as a model.
Full results for the NMSE are shown in Table 2.

Figure 2.
Comparison between SDE method and 3D EKF.

Figure 3.
Snapshot for signals in experiment two.
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Figure 2 shows the result for the NMSE. The dotted line corresponds to the SDE-1
filtering according to Eq. (9) and the continuous line to the 1MM 3D EKF using
Eq. (4) in (A3), and in both cases the input signal is the Chua’s x-component. The
reason for doing this is that when one filters the input signal (Chua’s x-component)
using the Chua’s Eq. (4), it is almost the best one can do (quasi-optimum solution),
and that is why it gives the most adequate benchmark. From Figure 2 it is possible to
see that there are some very moderate losses due to the use of the SDE-1 methodology,
as it is logically expected; however the NMSE for the SDE-1 does not differ too much
from the 1MM 3D EKF, and so the SDE-1 approach offers almost the best accuracy.

The following examples are devoted to the filtering of real data, which obviously
differ from the theoretical chaos. The NMSE will increase because there is a mismatch
between the input signal and the “chaotic signal component” from the filtering
algorithm. This “mismatch” as it was mentioned above can be “compensated” by
introducing a process noise with intensity Q, in the filtering structure (A3).

3.2 Experiment two: fetal electrocardiogram signals (FECG)

The experimental data were obtained from a database ATM at PhysioNet [28].
The signal for this experiment corresponds to a baby’s heart in fetal stage at the 36th
week of the pregnancy cycle. For an SNR = �3 dB, Figure 3 shows the original
signal and the filtered signal using 1MM EKF with Rossler x-component as a model.
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Comparison between SDE method and 3D EKF.
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Snapshot for signals in experiment two.

97

Ubiquitous Filtering for Nonlinear Problems
DOI: http://dx.doi.org/10.5772/intechopen.88409



3.3 Experiment three: voice sounds

For this experiment sustained vowel sounds were used. These kinds of signals
are used for voice synthesis procedures [26]. Figure 4 shows the snapshot (contin-
uous line) of the vowel sound “O” (recorded in a sustained fashion for 5 s at
22050 Hz) and also the filtered signal (broken line) using 2MM SKF with its matrix
evaluated with the SIT. Almost identical results as in the previous experiments are
shown in Table 3. For this experiment none of the components from the Lorenz
attractor were suitable as a model for the voice-like signals.

3.4 Experiment four: seismic signals

For this experiment a MATLAB simulator based on the seismic models of [29]
was used. For an SNR = �3 dB, Figure 5 shows the seismic signal and its filtered
version using 2MM EKF with Rossler x-component as a model. Full results are
presented in Table 4. For the seismic signals, it was not possible to obtain an
adequate linearization matrix, and so the SKF was not applied for this scenario.

3.5 Experiment five: radio frequency interference (RFI) signals

This experiment considers the RFI generated by computing equipment [27, 30]
that affects the transmission of the desired information signals. For an SNR =�3 dB,

SNR 0 dB �3 dB �10 dB Processing time

SKF Q = 0.04 (with matrix from SIT)

1MM 0.0025 0.0037 0.0078 0.43 s

2MM 0.0021 0.0032 0.0065 0.89 s

EKF Rossler x Q = 0.21

1MM 0.0026 0.0040 0.0098 1.825 s

2MM 0.0023 0.0036 0.0079 3.503 s

EKF Lorenz x Q = 0.42

1MM 0.0029 0.0042 0.010 1.782 s

2MM 0.0023 0.0034 0.0083 3.59 s

EKF Chua x Q = 0.075

1MM 0.0034 0.0053 0.015 1.812 s

2MM 0.0026 0.0042 0.012 3.61 s

Table 2.
NMSE results for experiment two.

Figure 4.
Snapshot for signals in experiment three.
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Figure 6 shows the RFI signal and its filtered version using 1MM SKF with its
matrix evaluated with the SIT. Full results are presented in Table 5.

The simulation results obtained from the linearization approach, applying SIT,
are presented at Tables 2, 3, and 5. Comparative analysis of the data in the tables
allows the following conclusions. All the filtering approaches presented above are
rather effective, as all of them show low values of NMSE. One can notice that for the
worst-case scenario (�10 dB), signals are visually impossible to be distinguished

SNR 0 dB �3 dB �10 dB Processing time

SKF Q = 0.0081 (with matrix from SIT)

1MM 0.0025 0.0037 0.0079 0.47 s

2MM 0.0015 0.0024 0.0053 0.95 s

EKF Rossler x Q = 0.23

1MM 0.0029 0.0044 0.0124 1.792 s

2MM 0.0027 0.0039 0.011 3.611 s

EKF Chua x Q = 0.76

1MM 0.0031 0.0048 0.0137 1.81 s

2MM 0.0025 0.0043 0.0130 3.58 s

Table 3.
NMSE results for experiment three.

Figure 5.
Snapshot for signals in experiment four.

SNR 0 dB �3 dB �10 dB Processing time

EKF Rossler x Q = 0.35

1MM 0.0048 0.0074 0.0178 1.79 s

2MM 0.0047 0.0073 0.0135 3.53 s

EKF Lorenz x Q = 0.135

1MM 0.0058 0.0093 0.0245 1.807 s

2MM 0.0054 0.0081 0.0187 3.62 s

EKF Chua x Q = 0.135

1MM 0.0057 0.0095 0.029 1.816 s

2MM 0.0051 0.0084 0.023 3.65 s

Table 4.
NMSE results for experiment four.
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2MM 0.0023 0.0036 0.0079 3.503 s

EKF Lorenz x Q = 0.42

1MM 0.0029 0.0042 0.010 1.782 s

2MM 0.0023 0.0034 0.0083 3.59 s
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1MM 0.0034 0.0053 0.015 1.812 s

2MM 0.0026 0.0042 0.012 3.61 s

Table 2.
NMSE results for experiment two.

Figure 4.
Snapshot for signals in experiment three.
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Figure 6 shows the RFI signal and its filtered version using 1MM SKF with its
matrix evaluated with the SIT. Full results are presented in Table 5.

The simulation results obtained from the linearization approach, applying SIT,
are presented at Tables 2, 3, and 5. Comparative analysis of the data in the tables
allows the following conclusions. All the filtering approaches presented above are
rather effective, as all of them show low values of NMSE. One can notice that for the
worst-case scenario (�10 dB), signals are visually impossible to be distinguished

SNR 0 dB �3 dB �10 dB Processing time
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2MM 0.0015 0.0024 0.0053 0.95 s
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1MM 0.0029 0.0044 0.0124 1.792 s

2MM 0.0027 0.0039 0.011 3.611 s

EKF Chua x Q = 0.76

1MM 0.0031 0.0048 0.0137 1.81 s

2MM 0.0025 0.0043 0.0130 3.58 s

Table 3.
NMSE results for experiment three.

Figure 5.
Snapshot for signals in experiment four.

SNR 0 dB �3 dB �10 dB Processing time

EKF Rossler x Q = 0.35

1MM 0.0048 0.0074 0.0178 1.79 s

2MM 0.0047 0.0073 0.0135 3.53 s

EKF Lorenz x Q = 0.135

1MM 0.0058 0.0093 0.0245 1.807 s

2MM 0.0054 0.0081 0.0187 3.62 s

EKF Chua x Q = 0.135

1MM 0.0057 0.0095 0.029 1.816 s

2MM 0.0051 0.0084 0.023 3.65 s

Table 4.
NMSE results for experiment four.
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from noise; however, the NMSE is around 1% for both strategies (SKF and EKF)
with either 1MM or 2MM.

The tables also show the average time (in seconds) required to process 5000
samples applied for statistical processing, for each filtering scenario. One has to
notice that the 2MM approach consumes more time than the 1MM algorithm but
(roughly speaking) no more than the double of the time required for the 1MM
processing, as an upper bound. Second, the use of SKF is faster (almost 3 times)
because there is no time consumed for the linearization process. The processing
time together with the filtering complexity and fidelity might be considered as
“criteria” while choosing the appropriate filtering algorithm for concrete
implementations.

The SKF with the linearization approach yielded the best results; this once more
confirms what was pointed above that for the processing of the quasi-linear algo-
rithms of filtering, the influence of the spectral properties of the input data for these
algorithms prevails over the influence of the “non-Gaussian” statistics of the data.
The values of the NMSE, obtained by simulations, can be regarded as below or equal
to the requirements for many cases of the practice, at least from the study of the
corresponding references [1, 2] and the author’s knowledge as well. Moreover, one
can see that the NMSE values are rather close for all filtering scenarios, and for the
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Table 5.
NMSE results for experiment five.
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practice, it is not so important what particular model of chaotic attractor or linear-
ization matrix from SIT is applied!

Why it happened? This spectacular issue was briefly mentioned above, but in
the following the feasible explanation is presented once more. It is worth to stress
that all the chaotic attractors mentioned and applied for modeling of the real data
are “generating” chaos as quasi-deterministic stochastic process Eqs. (1) and (5).
Therefore all quasi-optimum filtering algorithms listed before (including EKF and
its modifications) that apply chaotic modeling are working in almost “singular”
regime, i.e., the shape of the a posteriori PDF is “concentrated” along the a priori
PDF of the desired signal “irrespective” to the value of the SNR [8, 9]. That is why it
is possible to obtain so low values of NMSE for weak signals (SNR <0 dB and down
to �10 dB). Thus, for high filtering fidelity, the linear term of the Taylor expansion
for the quasi-linear algorithm [4, 5, 22] significantly prevails over the terms related
to the “nonlinearities” (Jacobian matrix, etc.), i.e., the linear approximation is
“enough.” So the influence of the nonlinear character of the ODE of the attractors
on the value of the NMSE will be relatively small, which follows from the
experimental data in tables. Sure, the explanation above is “qualitative” but
well corresponding to the theoretic development of the quasi-optimum
algorithms [4, 22].

4. Conclusions

In this material a rather simple and robust structure for weak signal filtering is
proposed, based on the EKF algorithm and its 2MM modification. In addition, the
linearized filtering approach is considered as well.

Based on this it is possible to suggest, for chaotic modeling of input of non-
Gaussian data, a “high degree of freedom” for the filtering block design depending
on certain fidelity requirements and computational complexity.

Taking advantage of the quasi-linear character of the effective real-time filtering
algorithms for stochastic non-Gaussian real signals, an approach using the well-
known “system identification toolbox” was proposed as well and might be
selected as a reasonable compromise between computational complexity and
filtering accuracy.

The experimental results show that the filtering accuracy losses for the lineari-
zation case and even for the application of the simplified SDE-1 equivalent
approach are very moderate and almost negligible for practical implementations.
This issue might significantly simplify the theoretical study applied for comparative
selection of the filtering algorithms.

For the interested reader, it is highly recommended to consider together the
material of the previous chapter “nonlinear filtering of weak chaotic signals” and
the material presented above as it gives a complete “panorama” of the
recommended algorithms and their real-life implementations.

All the results presented in the plots and in the tables clearly show that the
implementation of the proposed strategy for solving filtering problems might be
recommended for the practical scenarios.
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Chapter 6

Chaos in Human Brain Phase
Transition
Mibaile Justin, Malwe Boudoue Hubert, Gambo Betchewe,
Serge Yamigno Doka and Kofane Timoleon Crepin

Abstract

From a theoretical equation, modeling the dynamic of the time-dependent
coefficients of the first and the second Karhunen-Loeve (KL) expansion of a
superconducting quantum interference device (SQUID) signal, chaotic phase
transition has been studied in the human brain. Through numerical investigations,
the bifurcation diagram and the dynamic of Lyapunov exponent have been plotted.
These diagrams reveal that throughout the variation of the control parameter here
the frequency of the acoustic stimulus, the brain bifurcates from chaotic states to
periodic or to quasiperiodic one. Also a chaotic phase portrait of the KL modes and
its corresponding Poincaré section have been plotted. The origin of chaos in the
human brain could be due to the self-organizing processes of nonequilibrium phase
transition occurring in the electrochemical physiological phenomena of the complex
nerve cells and neural assembly. Besides, the occurrence of chaos in the absence of
stimuli has been remarked and thought to be due to the fact that an intrinsic brain
could be chaotic. Moreover it has been found that the range of frequency for which
the brain is forced to behave periodically could be harmful to the thinking process.

Keywords: human brain, Karhunen-Loeve coefficients, phase transition,
self-organizing phenomena, chaos

1. Introduction

Nonlinearity is one of the most ubiquitous phenomena in nature and in our
society. A system is said to be nonlinear if its output is not proportional to its input.
The study of nonlinear system can be divided into six domains: fractal, pattern
formation, soliton, complex systems, cellular automata, and chaos [1]. Many
researches have been carried out in those six domains by scientists through the
study of the dynamics of numerous systems. Generally, those systems exhibit
spontaneous orders and patterns of organization governed by the self-organizing
phenomena. Through the variation of an order parameter, a system can move from
one state to another: this is the bifurcation phenomena, which is extremely linked to
the phenomena of phase transition in some systems.

Among all the nonlinear phenomena, chaos is one of the most attractive and
studied. The word “chaos” was first used in science by Li and York, who are mathe-
maticians [2]. The Greek word chaos was originally a verb meaning to gape open and
was used to refer the primeval emptiness of the universe before a thing comes into
being (Encyclopedia Britannica, Vol. 5, p. 276; [3]). More simply, it means:
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• Utter disorder and confusion

• The unformed original state of the universe

For scientists, chaos is known as a nonperiodic oscillatory state, which stems
from the nonlinear nature of a given system [4]. It has been observed in condensed
matter physics, turbulent fluid dynamics, the Belousov-Zhabotinsky reaction in
chemistry, charge density wave in low dimensional conductors, and nonlinear car-
rier transport in semiconductors [5]. Chaos has also been reported in economics, in
social sciences, and in biological sciences.

Chaos was widely studied in human physiological systems and particularly in the
human brain. The brain is the most complex and fascinating organ of the human
body [6]. The human brain is constituted of many elements: neurons, neural stem
cells, blood vessels, and glial cells. The neurons are about 100 billions, and for each
neuron, there are more than 104 connections to others [7]. These neuronal and non-
neuronal cells are located in the cerebral cortex, outer surface of the cerebral hemi-
spheres or the cerebrum. The brainstem lies under the cerebrum. The cerebellum is
situated behind the brainstem and under the cerebrum.

The study of chaos in the brain started in the 1980s [8] when scientists observed
that when rabbits inhale an odorant, their electroencephalograms (EEGs) display
oscillations in the high-frequency range of 20–80 Hz. Bressler and Freeman have
named that behavior “gamma” in analogy to the high end of the X-ray spectrum [9].
The carrier wave of that odor information has exhibited an aperiodic behavior
leading to the conclusion that activity of the olfactory bulb is chaotic. Therefore,
chaos has been investigated in human brain elements, ranging from subcellular to
cellular levels [10]. Chaos has also been studied in single neurons, in coupled
neurons, in axonal membranes, and in synapses. Additionally, from the model of
Hodgkin and Huxley [11, 12], chaotic dynamics of some neuron’s ion conduction
has been recorded.

The study of chaos in the human brain has an importance which could no longer
be demonstrated. It has been reported that chaos plays an important role in cortical
hormone secretion and suppression [13]. Moreover, chaotic behavior stemming
from self-organization processes in the human brain could explain “randomness” in
neural synchronization related to cognitive functions and consciousness and also in
mental disorganization related to psychopathological phenomena such as schizo-
phrenia [14]. In addition, it has been argued that epilepsy is an example of chaos in
the human brain [15]. Besides, some researchers think about the dreaming brain as a
brain in which some self-organizing processes occur and exhibit chaos-like stochas-
tic properties that are highly sensitive to internal influences [16].

In this paper, we deal with a synergetic view of the human brain. In this view the
brain acts by means of self-organization processes through which nonequilibrium
phase transitions occur. By means of 37 superconducting quantum interference
devices (SQUID), the values of the magnetic field generated by the intracellular
dendritic current of the brain of a subject exposed to acoustic stimuli have been
recorded [17]. From that experiment, Fuchs and co-workers studied the human
brain phase transition and chaos [18, 19]. The aim of this paper is to theoretically
study chaos from equations derived by Jirsa and co-workers [20] based on the
works of Kelso and co-workers. To reach such a goal, we outline our work as
follows: Section 2 deals with the presentation of the equation model and its linear
stability, Section 3 describes the numerical studies of chaos, and the paper ends with
concluding remarks.
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2. Presentation of the model and its linear stability

2.1 Origin of the model

Here we will describe how the equation modeling the brain phase transition was
derived. This equation is based on the experimental study carried out by Kelso and
co-workers [17]. In that study, a set of 37 SQUID collect the values of the magnetic
field generated by the intracellular dendritic current of the brain of a subject
exposed to periodic acoustic stimuli. This noninvasive brain exploration was ren-
dered possible because the skull and the scalp are permeable to the magnetic field
generated inside the brain. The stimuli served as control parameter, and the subject
was invited to press a button in two successive tones. The spatiotemporal behavior
of the brain signals was known after the application of a Karhunen-Loeve expansion
to the magnetic field collected by the SQUID array. Based on the observations of
results of this experiment, Jirsa and co-workers have introduced a mathematical
model which mimics the brain behavior [20]. That model was made of two
nonlinearly coupled oscillators describing the coefficients of the first KL modes that
are driven by the acoustic stimuli. That model provided a mathematical description
of the switching from the first KL mode that oscillated at the stimuli frequency to
the second KL mode that oscillated at twice the stimuli frequency [20].

The following mathematical model is a set of differential equations [20]:

€x þ γ1 þ A1x2 þ B1y2
� �

_x þ ω2
01 1þ ϵ1 sin 2Ωtð Þð Þxþ C1y2 sin Ωtð Þ ¼ 0, (1)

€y þ γ2 þ A2y2 þ B2x2
� �

_y þ ω2
02 1þ ϵ2 sin 2Ωtð Þð ÞyþD _x ¼ 0: (2)

where the parameters x and y represent the time-dependent coefficients of the
first and the second Karhunen-Loeve expansions of SQUID signals, respectively.
Also, the coefficients γi, Ai, Bi, ω0i, i ¼ 1; 2ð Þ, C1, and D are adjustable but then
fixable parameters [20]. The control parameter of the system here is Ω which is the
frequency of the acoustic signal used to stimulate the subject. Here we neglect the
random processes.

2.2 Study of the linear stability of the model

In others to study easily Eqs. (1) and (2), we set

_x ¼ u, (3)

_y ¼ v, (4)

θ ¼ Ωt: (5)

This leads to

_x ¼ u, (6)

_u þ γ1 þ A1x2 þ B1y2
� �

uþ ω2
01 1þ ϵ1 sin 2Ωtð Þð Þxþ C1y2 sin θð Þ ¼ 0, (7)

_y ¼ v, (8)

_v þ γ2 þ A2y2 þ B2x2
� �

vþ ω2
02 1þ ϵ2 sin 2θð Þð ÞyþDu ¼ 0 (9)

_θ ¼ Ω: (10)
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For Ω ¼ 0, Eqs. (6)–(10) possesses a circle of fixed points X(0,0,0,0, θ) with θ
in R mod 2π. This circle of fixed points becomes a limit cycle of Eqs. (1) and (2).
The corresponding Jacobian matrix for Ω ¼ 0 is then given as

J ¼

0 1 0 0 0

�ω2
01 �γ1 0 0 0

0 0 0 1 0

0 �D2 �ω2
02 �γ2 0

0 0 0 0 0

2
6666664

3
7777775
: (11)

The associate Eigenvalues are

0

�1=2γ2 þ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ22 � 4ω2

02

p

�1=2γ2 � 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ22 � 4ω2

02

p

�1=2þ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 � 4ω2

01

p

�1=2� 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 � 4ω2

01

p

2
666666664

3
777777775
: (12)

When Ω 6¼ 0, the corresponding Jacobian matrix is then given as

J ¼

0 1 0 0 0

�ω2
01 1þ ε1 sin 2Ωð Þð Þ �γ1 0 0 0

0 0 0 1 0

0 �D2 �ω2
02 1þ ε2 sin 2Ωð Þð Þ �γ2 0

0 0 0 0 0

2
6666664

3
7777775
: (13)

The associate Eigenvalues are

0

�1=2γ2 þ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ22 � 4ω2

02 � 4ω2
02ε2 sin 2Ωð Þ

p

�1=2γ2 � 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ22 � 4ω2

02 � 4ω2
02ε2 sin 2Ωð Þp

�1=2þ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 � 4ω2

01 � 4ω2
01ε1 sin 2Ωð Þ

p

�1=2� 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 � 4ω2

014ω
2
01ε1 sin 2Ωð Þ

p

2
6666664

3
7777775
: (14)

It is clear that depending on the values of the parameters γi and ωi i ¼ 1; 2ð Þ, the
fixed points could either be stable or unstable.

3. Chaos: numerical simulation and discussions

For numerical investigations of chaos, we consider a subject with the following
constant parameters: γ1 ¼ 0:1, γ2 ¼ 0:1, A1 ¼ 3, A2 ¼ 9:8, B1 ¼ 2:2, ϵ1 ¼ 17:09,
ϵ2 ¼ 2:99,ω1 ¼ 2π,ω2 ¼ 2π, D2 ¼ 10, B2 ¼ 2:2 and C1:

The numerical simulations are carried out via Runge-Kutta algorithm. The
dynamic of the maximum of the Lyapunov exponent, (i.e., the greatest Lyapunov
exponent among the five related to the degree of freedom of the system), is given
by Figure 1. It has been plotted by following the algorithm of Wolf et al. [4] which
is an appropriate tool for numerical calculation of Lyapunov exponents.
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It has been obtained through the variation of the order parameter Ω for the
values of 0–100.

The bifurcation diagram associated with this system is depicted at Figure 2 for
the same range of parameter values as for the Lyapunov exponent. This diagram has
been obtained by means of Runge-Kutta algorithm with a finish value of time of 90,
a transient of 30, and a time step of 1.

The analysis of these two diagrams reveals the fact that depending on parameter
range, the system is subject to various behaviors. For example, for Ωϵ[0, 0.1] the
system behaves chaotically, while for Ωϵ[0.1, 0.12] it behaves periodically.
Throughout the variation of the control parameter, the system bifurcates from
chaotic states to periodic or to quasiperiodic ones. This means that the brain

Figure 1.
Dynamics of the maximum of the Lyapunov exponents obtained through the variation of the stimuli frequency
Ω. It has been plotted by using the following initial conditions (0.1 0.6 0.1 0.8 0.2) and parameters of the text.

Figure 2.
Bifurcation diagram corresponding to the maximum of the first KL coefficient (i.e., x). It has been obtained for
the same range of parameters as for the Lyapunov exponent.
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It has been obtained through the variation of the order parameter Ω for the
values of 0–100.
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Bifurcation diagram corresponding to the maximum of the first KL coefficient (i.e., x). It has been obtained for
the same range of parameters as for the Lyapunov exponent.
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experiences periodic states, quasiperiodic states, intermittencies, and chaos. The
fact that chaos occurs even for Ω ¼ 0 could explain the chaotic behavior of an
intrinsic human brain, the dreaming brain, for example [15].

In addition to the above diagrams, we present the 2D phase portrait (x, y) of the
KL given by Figure 3 for Ω ¼ 15 with the parameters of Figure 2.

The topological mixed nature of this phase portrait reveals its chaotic nature.
Figure 4 represents the Poincaré section corresponding to the 2D phase portrait of
Figure 3. It has been obtained by cutting the 3D phase space (x, u, y) at u = 5.

Figure 3.
2D phase portrait (x, y) of the KL coefficients obtained for Ω = 15.

Figure 4.
2D Poincare section of the previous phase portrait obtained by cutting the 3D phase space (x, u, y) at u = 5.
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Its non-ordered nature confirms that the previous phase portrait is really
chaotic.

The origin of chaos in the human brain could be due to the self-organizing
process of nonequilibrium phase transition occurring in the electrochemical
physiological phenomena of the complex nerve cells and neural assembly.

The chaotic wave form of the second KL coefficients obtained for Ω ¼ 15 is
represented by Figure 5. The wave does not conserve its form throughout the time
meaning that there is a loss of memory while the system evolves.

4. Conclusion

In this study, we dealt with chaos in the human brain. By means of numerical
investigations through an equation modeling a human brain phase transition, some
interesting results have been found. The linear stability of the equation model has
been done: the system possesses one fixed point which could either be stable or
unstable depending on the values of some parameters. Additionally, the bifurcation
diagram and the dynamic of the Lyapunov exponent have been plotted. The exam-
ination of those diagrams reveals the fact that the brain can undergo periodic phase
transition, quasiperiodic phase transition, and chaotic phase transition. Chaos may
be due to a nonequilibrium phase transition, happening even when there are no
stimuli, meaning that an intrinsic brain could be a chaotic one. The Lyapunov
exponent and the unrepeatable waveform of the second KL coefficients underline
the loss of memory by the system revealing that nonequilibrium phase transition of
the brain is not reversible. Therefore the electrochemical physiological phenomenon
of the brain is a dissipative one.

There are two opinions about human brain chaos. Chaos was firstly discovered
at a neural level and has led researchers to a thing about chaos as a source of some
diseases: schizophrenia, insomnia, and epilepsy [21]. The studies of chaos on the
macroscopic level by other researchers reveal the fact that chaos is related to
thinking and only the brain of falling sickness is periodic [22]. Also chaos helps the
brain to quickly recognized previously learned patterns and behaviors [23]. From

Figure 5.
Chaotic wave form of the second KL coefficients obtained for Ω = 15.
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these above ideals, the importance of chaos in the brain is no longer to be demon-
strated.

In this study, we have realized that there are some frequencies for which the
brain behaves periodically and others for which its behavior is chaotic. This means
that some acoustic stimulus at some frequencies could alter the brain functioning.
For example, for >20, the brain is forced to behave periodically and could have
some harmful feedback on the thinking process.

Also, this study can help for the development of neuromorphic and artificial
neural network architectures since such technologies are based on human brain
functioning. The understanding of chaos in human brain electromagnetic activity
could help for deeper understanding of the role of chaos in the brain. This could be
the object of future work.
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these above ideals, the importance of chaos in the brain is no longer to be demon-
strated.

In this study, we have realized that there are some frequencies for which the
brain behaves periodically and others for which its behavior is chaotic. This means
that some acoustic stimulus at some frequencies could alter the brain functioning.
For example, for >20, the brain is forced to behave periodically and could have
some harmful feedback on the thinking process.

Also, this study can help for the development of neuromorphic and artificial
neural network architectures since such technologies are based on human brain
functioning. The understanding of chaos in human brain electromagnetic activity
could help for deeper understanding of the role of chaos in the brain. This could be
the object of future work.
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Chapter 7

Global Indeterminacy and
Invariant Manifolds Near
Homoclinic Orbit to a Real Saddle
Beatrice Venturi

Abstract

In this paper we investigate the dynamic properties of the Romer model. We
determine the whole set of conditions which lead to global indeterminacy and the
existence of a homoclinic orbit that converges in both forward and backward time
to a real saddle equilibrium point. The dynamics near this homoclinic orbit have
been investigated. The economic implications are discussed in the conclusions.

Keywords: externality, endogenous growth model, homoclinic orbits to real saddle,
stable cycle, global indeterminacy

1. Introduction

In this note we prove the existence of a homoclinic orbit in an extension (see
[1]) of well-known endogenous growth two-sector technological change Romer
model [2], introduced in [3]. It represents the first attempt to make formal a model
of endogenous growth, through research and development (R&D) activities.

In this model, the knowledge is composed of two components, human capital,
which defines the specific knowledge of every person, and the so-called technology,
that, in general, is available for everybody.

The first component ascribes the rivalry feature to its employment because it is
incorporated in the physical person. Indeed, a human resource used by a firm
cannot be used by another firm. The second component of knowledge ascribes the
feature of non-rivalry good, because it can be used by different firms in the same
time. The consequence of the human capital rivalry, who invests in human capital
accumulation, receives the profit of this accumulation too, while the non-rivalry
feature implies the spillover effects diffusion, that is, the inventor of a new tech-
nology will not be the only beneficiary of the positive effects related to this discov-
ery. It is impossible to him to take total possession of his fruits. This fact implies the
development of an externality that, in turn, reduces the single person efforts to
improve the productive technology under the level that should be socially advisable.

An externality is an economic action effect that involves another subject, not
directly implicated in this action (change, production, or consumption action).

The market equilibrium in the presence of externalities is not optimal, because
expenses and private utilities do not coincide to expenses and social utilities (e.g.,
pollution). Therefore, the external effects, positive and negative, are not,
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respectively, remunerated or compensated. Both the human capital and the tech-
nology are fruits of conscious human choices.

Moreover the research activity is intensive in the use of human capital and
technology too, without physical capital K and skilled labor is employed in research.

In several papers the question of the uniqueness of the equilibrium trajectory has
been studied for this model. Benhabib, Perli, and Xie (BPX), in [3], used numeri-
cally analysis for proving the existence of stable periodic solutions in a generalized
version of the Romer model in which they consider the complementarity between
different intermediary capital goods.

Finally, [2] extends BPX model by tightening the parameter restrictions neces-
sary to obtain an interior steady state and studies the stability of the steady state in
BPX model without unskilled labor.

Following [4], we consider the three-dimensional reduced version of the model,
obtained by a standard change of variables, related with the growth rate of the
fundamental variables.

By using the method of undetermined coefficients (see [5]), we are able to prove
the existence of a homoclinic orbit that converges both forward and backward to
the unique equilibrium point whose linearization matrix admits two positive and
one negative real eigenvalues. The stable and unstable manifolds are locally
governed by real eigenvalues. The concept of homoclinic bifurcations is very
important from a dynamic point of view. Such phenomena causes global
rearrangements in phase space, including changes to basins of attractions and
generation of chaotic dynamics [6].

We show that such a homoclinic orbit gives rise to global indeterminacy in a
parameter set commonly investigated by means of the instruments of the local
analysis.

The paper develops as follows. In the second section, we analyze the optimal
control model, and we introduce the equivalent three-dimensional continuous time
abstract stationary system. The third section is devoted to the steady-state analysis
of the model in reduced form. In the fourth section, we apply the procedure
developed by [5], and we show that a homoclinic loop emerges as a solution trajec-
tory. In the last section, we consider a homoclinic bifurcation of dimension one. The
economic implications are discussed in the conclusions.

2. The model

We consider now the three-dimensional reduced version of the Romer model.
In the original optimal control model, the state variables are k, the physical capital;
A, the level of knowledge currently available [1, 2]; and

k
:

¼ Y �: C ¼ ηγkγAξ�γhαLβ (1)

ξ ≥ 1 is the degree of complementarity, γ is a positive externality parameter in
the production of physical capital, β is the share of capital, and α is defined by the
following relationship α = 1- γ -β. The control variables are h the human capital, the
skilled labor employed in the final sector Y, C is the consumption, ρ is a positive
discount factor, and σ is the inverse of the intertemporal elasticity of substitution.
The only consumption good C is measured in units of the final output Y. The final
output is produced with two capital goods, the physical capital k and human
capital h.
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We consider the following substitution:

r ¼ kA
αþβþγ
αþβ ; h ¼ h; q ¼ c

k
(2)

where r is the interest rate. We set Λ = αξ/(γ � ξ)
The deterministic reduced form of this model is given by

r=rð Þ ¼ 1= 1� αð Þð Þ ξ� 1þ βð Þδ 1� hð Þ � β ξ= γ2
� �� �

r� q
� �� α r� δ=Λð Þhð Þ� �

h=hð Þ ¼ 1= 1� αð Þð Þ ξ� 1� γð Þδ 1� hð Þ � γ ξ= γ2
� �� �

r� q
� �� α r� δ=Λð Þhð Þ� �

q=qð Þ ¼ r� ρð Þ=σð Þ � ξ= γ2
� �� �

rþ q

8>><
>>:

Sð Þ

(3)

The set of parameters ω � (β, ξ, α, δ, γ, ρ, σ) lives inside a significant economic
parameter set Ω � {(0, 1) � þþ � � � � þþ � þþ- {1}}.

3. Steady-states analysis

A stationary (equilibrium) point P ∗ = P (r∗, h∗, q∗) of the system (S) is any
solution of the following system:

1= 1� αð Þ ξ� 1þ βð Þδ 1� hð Þ � β ξ= γ2
� ��

r� q
� �� α r� δ=Λð Þhð � ¼ 0

1= 1� αð Þ ξ� 1� γÞδ 1� hð Þ � γ ξ= γ2
� �� �

r� q
� �� α r� δ=Λð Þhð� � ¼ 0

r� ρð Þ=σÞ � ξ= γ2
� �� �

rþ q ¼ 0

8>><
>>:

(4)

We get only one admissible steady state:

h ∗ ¼ Λ

δ

� �
σ ξ� γð Þ � ξ� 1ð Þð Þ � ρ 1� γðð ÞÞ

ðΛ σ ξ� γð Þ � ξ� 1ð Þð Þ � 1� γð Þ
� �

r ∗ ¼ 1

1� 1
σ

� �

0
BB@

1
CCA

δ

Λ

� �
h ∗ � δ 1� h ∗ð Þ � ρ

σ

� �� �
σ 6¼ 1

r ∗ ¼ 1
1� γð Þ

� �
ξ� 1� γð Þ ∗ δ 1� h ∗ð Þ þ δ

Λ

� �
h ∗ � ρ

σ

� �� �
σ ¼ 1

q ∗ ¼ ξ= γ2
� �� �� 1=σð� �

r ∗ � ρ=σð Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(5)

We denote J = J P ∗ð Þ the Jacobian matrix J of the system (S) evaluated in the
equilibrium point P ∗ , given by

J P ∗ð Þ ¼

r ∗
1� αð Þ

� �
αþ β

ξ

γ2

� �
δ

1� αð Þ
� �

r ∗ α=Λð Þ � ξ� 1þ βð Þð Þ β

1� αð Þ r ∗
h ∗
1� αð Þ

� �
ξ

γ
� 1

� �
δ

1� αð Þ
� �

h ∗ 1=Λð Þ � ξ� 1� γð Þð Þ γ

1� αð Þ
� �

h ∗

q ∗ 1=σð Þ � ξ

γ2
0 q ∗

0
BBBBBBB@

1
CCCCCCCA

(6)
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respectively, remunerated or compensated. Both the human capital and the tech-
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sary to obtain an interior steady state and studies the stability of the steady state in
BPX model without unskilled labor.
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fundamental variables.
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Lemma: We consider the following two subsets of the parameters space Ω:

Ω1 ¼
ω∈Ω : δH σ ξ � γð Þ � ξ � 1ð Þð Þ � ρ 1� γð Þ<0 ρ> δ=Λð ÞH

1� σð Þ ξ � γð ÞδH � 1þ Λð Þð Þ � ρ 1� γð ÞÞ>0

(
(7)

Ω₂ ¼
ω∈Ω : δH σ ξ � γð Þ � ξ � 1ð Þð Þ � ρ 1� γð ÞÞ <0 ρ < δ=Λð ÞH

1� σð Þ ξ � γð ÞδH � 1þ Λð Þð Þ � ρ 1� γð ÞÞ<0

(
(8)

(a) If the model parameters belong to set Ω2, then as shown in [1], the unique
interior steady state is determinate.

(b) If the model parameters belong to set Ω1, then as shown in [1], the unique
interior steady state is indeterminate or unstable.

4. The existence of a saddle with three purely real eigenvalue
state analyses

We are interested in the special case in which J = J P ∗ð Þ has three real eigen-
values. To this end, we analyze the dynamics of the model around the equilibrium
point: P ∗ in Ω1:

Lemma:We consider the following subsets of the parameters space Ω1:

ΩIR = {ω∈ Ω1: J(P ∗ ) possesses real eigenvalues}. (9)

Let ω∈ ΩIR be. Then J(P ∗ ) has one positive and two negative purely real
eigenvalues.

Proof: We apply the Cardano’s formula to (S) and we get the result.
Example: Set (β, ξ, α, δ, γ, ρ, σ) � (0.6, 2.7, 0.3, 0.02, 0.1, 0.03, 0.01).
This economy has.
P ∗ =P (r∗, h∗, q∗) ≃ (0.03, 0, 0.9981, 0.2250000000).
The computation of the eigenvalues of J(P ∗ ) leads to λ1 ≃ 0.1970612707,
λ₂ ≃ �0.2753036128, λ3 ≃ 0.3412714849 with |λ1| > λ3, and |λ₂| > λ3.

5. The existence of a homoclinic orbit

The second step of our calculations is the explicit calculus of the homoclinic orbit
in J(P∗ ).

Theorem: Existence of homoclinic orbits to the real saddle in P∗ :Let ω∈ΩIR. Then

Ω1H ¼ ω∈ΩIR : Sð Þ possesses a homoclinic orbit Γ P∗ð Þf g 6¼ Ø: (10)

In order to construct the homoclinic orbit analytically, we apply the procedure
developed by [5]. We compute the stable and unstable manifolds, of the saddle
equilibrium point J(P*), respectively, Ws and Wu, with the undetermined coeffi-
cients method. We show that a homoclinic loop emerges as a solution trajectory of
system (S) for parameter values belonging to the set Ω1H ⊂ ΩIR. The application of
the method leads to the following relationship:

ϕ ζð Þ ¼ ψ2 F3d

λ3 þ 2λ1Þ
� �

þ 1
λ3

� �
ψ2 F2d λ2 þ 2λ3

� �

F2f λ2 � 2λ1
� �� �

 !
F2f ¼ 0 (11)
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where ζ and ψ are arbitrary constants with (ξ, ψ)∈(0,1)2, the F i, j coefficients,
i = 1, 2, 3 and j = e, d, f, and F i, j are intricate combinations of the original
parameters of the model and of three scaling factors (C1, C₂, C3) associated with the
choice of the eigenvectors. We now introduce a normal topological form for
homoclinic bifurcation (see [7]). We consider a two-dimensional cross-section Σ
with coordinates (ζ, ψ) of Wu, the unidimensional unstable manifold. Suppose that
ζ = 0 corresponds to the intersection of Σ with the stable manifold Ws of P∗. Let
conversely the point with coordinates (ζu ψu) correspond to the intersection of Wu,
with Σ. Then, the following occurs.

Definition: A split function can be defined as ϕ = ζu. Its zero ϕ = 0 gives a
condition for the homoclinic bifurcation in 3.

It might be impossible to characterize the system for a full set of parameter
spaces and the boundary of the homoclinic orbit region. Using σ as a bifurcation
parameter, a homoclinic orbit can emerge as solution trajectories of the system (S).
We observe a parameter set that remains inside Ω1H.

We found this result after many maple simulations (see Figure 1).

6. Conclusions

In this paper from an economic point of view, we show that a low inverse
intertemporal elasticity of substitution plays a crucial role in determining global
indeterminacy. We have focused on the parameter regions around a saddle equilib-
rium point with purely real eigenvalues.

We have applied the procedure developed by [5], and we have shown that a
homoclinic loop emerges as a solution trajectory of the reduced system for an
economic set of parameter values.

In order to get a homoclinic bifurcation, we have introduced a normal topolog-
ical form. By varying the exponent of the inverse of elasticity of substitution, we
consider a homoclinic bifurcation of dimension one.

As clearly pointed out in the literature [8], the homoclinic orbit connecting the
unique steady state to itself implies the existence of a tubular neighborhood of the
original homoclinic orbit. Any initial condition starting inside this tubular

Figure 1.
A neighborhood of the homoclinic orbit.
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(8)
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Lemma:We consider the following subsets of the parameters space Ω1:

ΩIR = {ω∈ Ω1: J(P ∗ ) possesses real eigenvalues}. (9)

Let ω∈ ΩIR be. Then J(P ∗ ) has one positive and two negative purely real
eigenvalues.

Proof: We apply the Cardano’s formula to (S) and we get the result.
Example: Set (β, ξ, α, δ, γ, ρ, σ) � (0.6, 2.7, 0.3, 0.02, 0.1, 0.03, 0.01).
This economy has.
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The computation of the eigenvalues of J(P ∗ ) leads to λ1 ≃ 0.1970612707,
λ₂ ≃ �0.2753036128, λ3 ≃ 0.3412714849 with |λ1| > λ3, and |λ₂| > λ3.

5. The existence of a homoclinic orbit

The second step of our calculations is the explicit calculus of the homoclinic orbit
in J(P∗ ).

Theorem: Existence of homoclinic orbits to the real saddle in P∗ :Let ω∈ΩIR. Then

Ω1H ¼ ω∈ΩIR : Sð Þ possesses a homoclinic orbit Γ P∗ð Þf g 6¼ Ø: (10)

In order to construct the homoclinic orbit analytically, we apply the procedure
developed by [5]. We compute the stable and unstable manifolds, of the saddle
equilibrium point J(P*), respectively, Ws and Wu, with the undetermined coeffi-
cients method. We show that a homoclinic loop emerges as a solution trajectory of
system (S) for parameter values belonging to the set Ω1H ⊂ ΩIR. The application of
the method leads to the following relationship:
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where ζ and ψ are arbitrary constants with (ξ, ψ)∈(0,1)2, the F i, j coefficients,
i = 1, 2, 3 and j = e, d, f, and F i, j are intricate combinations of the original
parameters of the model and of three scaling factors (C1, C₂, C3) associated with the
choice of the eigenvectors. We now introduce a normal topological form for
homoclinic bifurcation (see [7]). We consider a two-dimensional cross-section Σ
with coordinates (ζ, ψ) of Wu, the unidimensional unstable manifold. Suppose that
ζ = 0 corresponds to the intersection of Σ with the stable manifold Ws of P∗. Let
conversely the point with coordinates (ζu ψu) correspond to the intersection of Wu,
with Σ. Then, the following occurs.

Definition: A split function can be defined as ϕ = ζu. Its zero ϕ = 0 gives a
condition for the homoclinic bifurcation in 3.

It might be impossible to characterize the system for a full set of parameter
spaces and the boundary of the homoclinic orbit region. Using σ as a bifurcation
parameter, a homoclinic orbit can emerge as solution trajectories of the system (S).
We observe a parameter set that remains inside Ω1H.

We found this result after many maple simulations (see Figure 1).

6. Conclusions

In this paper from an economic point of view, we show that a low inverse
intertemporal elasticity of substitution plays a crucial role in determining global
indeterminacy. We have focused on the parameter regions around a saddle equilib-
rium point with purely real eigenvalues.

We have applied the procedure developed by [5], and we have shown that a
homoclinic loop emerges as a solution trajectory of the reduced system for an
economic set of parameter values.

In order to get a homoclinic bifurcation, we have introduced a normal topolog-
ical form. By varying the exponent of the inverse of elasticity of substitution, we
consider a homoclinic bifurcation of dimension one.

As clearly pointed out in the literature [8], the homoclinic orbit connecting the
unique steady state to itself implies the existence of a tubular neighborhood of the
original homoclinic orbit. Any initial condition starting inside this tubular

Figure 1.
A neighborhood of the homoclinic orbit.
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neighborhood gives rise to perfect-foresight equilibrium. Finally, with similar argu-
ments introduced in [9], we are able to show global indeterminacy of the equilib-
rium for the model, since the result is valid beyond the small neighborhood relevant
for the local analysis.
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