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Preface

Some things are absolute and some things are relative. This is a fact of life. If I look
at the teapot on my desk, I see that it sits to the left of my cup. If you are sitting
opposite me, you will see the teapot to the right of my cup. “Left” and “right” are
relative. Whether or not an object is found to the left or to the right of another
depends on the observer. While this may be true, if the cup is filled to the top with
coffee, all observers should approve this as actual fact, no matter where they sit.
That, it’d seem, is an absolute statement, independent of who makes the
observation.

The theory of relativity usually incorporates two interconnected theories by
Albert Einstein: special relativity and general relativity. Einstein’s special theory of
relativity (special relativity) conceived in 1905, available within the paper “On the
Electrodynamics of Moving Bodies”, is about what’s relative and what’s absolute
about time, space, and motion.

General relativity centers on gravitational, electromagnetic, and velocity fields, as
well as functions of space and time, and density distributions that define masses and
charges. Space–time is that the arena within which these fields accomplish their
combined evolutions. It’s therefore clear that we must first grasp the structure and
geometry of space–time. Unluckily, because the velocity of light is so big, routine
experience leads us to amass various false impressions about the geometry of space–
time. This set of mistaken beliefs is known as Newtonian, or Galilean, space–time.
The true (or truer) geometry of space–time was revealed through the improvement
of Einstein’s theory of special relativity. The foundation of this theory is the princi-
ple of relativity, in line with which the laws of physics are similar in all inertial
reference frames. Einstein ran into the current principle by his investigation of
Maxwell’s equations.

Special relativity is restricted to things that are moving with regard to inertial
frames of reference. That is, during a state of uniform motion with regard to each
other, one cannot, by purely mechanical experiments, distinguish one from the
opposite. Beginning with the behavior of light (and all other electromagnetic radia-
tion), the theory of special relativity draws conclusions that conflict with daily
knowledge, but is fully set by tests that examine subatomic particles at high speeds
or measure minor changes between clocks traveling at different velocities. Special
relativity discovered that the speed of light is a limit that cannot be reached by any
material thing. It is the origin of the famous scientific equation E = mc2, which states
that mass and energy are identical physical entities and might be changed one into
the other.

Together with quantum mechanics, the theory of relativity is fundamental to
modern physics.

This volume deals with extensions of special relativity, general relativity, and their
applications in relation to intragalactic and extragalactic dynamics.
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In addition, fundamental problems of these extensions are addressed, both classi-
cally and quantum mechanically, in Hamiltonian, Lagragian, and matrix formalisms
by Richard P. Bocker and B. Roy Frieden in Chapter 2, Sikarin Yoo-Kong in Chapter
5, and Big-Alabo Akuro in Chapter 14, respectively.

Thus, extensions of special relativity are presented extensively by Richard
Sauerheber in Chapter 3.

Extensions of general relativity are presented by Francis T.S. Yu in Chapter 6.

The foundations of these extensions are given special attention in the form of
Lagrangian formalism by Kadiata Ba in Chapter 7, canonical formalism by Lawrence
P. Horwitz in Chapter 9, and variational formalism by Giorgio Turchetti and
Federico Panichi in Chapter 10.

In terms of applications, special attention is paid to the nature of light and dark
matter, as well as dynamics involving exotic materials such as black holes, worm-
holes, and other structures involving special topologies. These topics are covered by
Joás Venâcio and Carlos Batista in Chapter 1, S. D. Prijmenko and K.A. Lukin in
Chapter 4, Maricel Agop et al. in Chapter 8, Giorgio Turchetti and Federico Panichi
in Chapter 10, Radosz Andrzej in Chapters 11 and 12, and Fomin Igor in Chapter 13.

Calin Gheorghe Buzea
National Institute of Research and Development for Technical Physics,

Iasi, Romania
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Chapter 1

Quasinormal Modes of Dirac Field
in Generalized Nariai Spacetimes
Joás Venâncio and Carlos Batista

Abstract

The exact electrically charged solutions to the Dirac equation in higher-
dimensional generalized Nariai spacetimes are obtained. Using these solutions,
the boundary conditions leading to quasinormal modes of the Dirac field are
analyzed, and their correspondent quasinormal frequencies are analytically
calculated.

Keywords: quasinormal modes, generalized Nariai spacetimes, Dirac field,
boundary conditions

1. Introduction

Quasinormal modes (QNMs) are eigenmodes of dissipative systems. For
instance, if a spacetime with an event or cosmological horizon is perturbed from its
equilibrium state, QNMs arise as damped oscillations with a spectrum of complex
frequencies that do not depend on the details of the excitation. In fact, these
frequencies depend just on the charges of the black hole, such as the mass, electric
charge, and angular momentum [1, 2]. QNMs have been studied for a long time,
and its interest has been renewed by the recent detection of gravitational waves,
inasmuch as these are the modes that survive for a longer time when a background
is perturbed and, therefore, these are the configurations that are generally measured
by experiments [3–29]. Mathematically, this discrete spectrum of QNMs stems
from the fact that certain boundary conditions must be imposed to the physical
fields propagating in such background [30]. In this chapter, we consider a
higher-dimensional generalization of the charged Nariai spacetime [31], namely,
dS2 � S2 �…� S2, and investigate the dynamics of perturbations of the electrically
charged Dirac field (spin 1/2). In such a geometry, the spinorial formalism [32–34]
is used to show that the Dirac equation is separable [35] and can be reduced to a
Schrödinger-like equation [36] whose potential is contained in the Rosen-Morse
class of integrable potentials, which has the so-called Pöschl-Teller potential
as a particular case [37, 38]. Finally, the boundary conditions leading to QNMs
are analyzed, and the quasinormal frequencies (QNFs) are analytically obtained
[5, 39].

1



Chapter 1

Quasinormal Modes of Dirac Field
in Generalized Nariai Spacetimes
Joás Venâncio and Carlos Batista

Abstract

The exact electrically charged solutions to the Dirac equation in higher-
dimensional generalized Nariai spacetimes are obtained. Using these solutions,
the boundary conditions leading to quasinormal modes of the Dirac field are
analyzed, and their correspondent quasinormal frequencies are analytically
calculated.

Keywords: quasinormal modes, generalized Nariai spacetimes, Dirac field,
boundary conditions

1. Introduction

Quasinormal modes (QNMs) are eigenmodes of dissipative systems. For
instance, if a spacetime with an event or cosmological horizon is perturbed from its
equilibrium state, QNMs arise as damped oscillations with a spectrum of complex
frequencies that do not depend on the details of the excitation. In fact, these
frequencies depend just on the charges of the black hole, such as the mass, electric
charge, and angular momentum [1, 2]. QNMs have been studied for a long time,
and its interest has been renewed by the recent detection of gravitational waves,
inasmuch as these are the modes that survive for a longer time when a background
is perturbed and, therefore, these are the configurations that are generally measured
by experiments [3–29]. Mathematically, this discrete spectrum of QNMs stems
from the fact that certain boundary conditions must be imposed to the physical
fields propagating in such background [30]. In this chapter, we consider a
higher-dimensional generalization of the charged Nariai spacetime [31], namely,
dS2 � S2 �…� S2, and investigate the dynamics of perturbations of the electrically
charged Dirac field (spin 1/2). In such a geometry, the spinorial formalism [32–34]
is used to show that the Dirac equation is separable [35] and can be reduced to a
Schrödinger-like equation [36] whose potential is contained in the Rosen-Morse
class of integrable potentials, which has the so-called Pöschl-Teller potential
as a particular case [37, 38]. Finally, the boundary conditions leading to QNMs
are analyzed, and the quasinormal frequencies (QNFs) are analytically obtained
[5, 39].

1



2. Presenting the problem

In D dimensions, the dynamics of general relativity in spacetimes with a
cosmological constant Λ is described by the Einstein-Hilbert action1

S ¼ 1
16π

ð
dDx

ffiffiffiffiffi
gj j

q
R� D� 2ð ÞΛ½ � þ Sm, (1)

where R is the Ricci scalar and Sm stands for the action of all matter fields Φif g
coupled to gravity appearing in the theory, which can be scalar, spinorial, vectorial,
and so on. The least action principle allows to find the equations of motion for the
fields gμν and Φi which are given, respectively, by

Rμν �
1
2
Rgμν þ

D� 2ð Þ
2

Λgμν ¼ 8πT μν,
δSm
δΦi

¼ 0, (2)

where T μν is the symmetric stress-energy tensor associated to Φi defined by the
equation

T μν ¼ 2ffiffiffiffiffi
gj j

p δSm
δgμν

: (3)

Since any symmetry has been imposed, the general solution of the system of
Eq. (2) is some metric and fields in the background this metric

ds2 ¼ gμν xð Þdxμdxν, Φi ¼ Φi xð Þ: (4)

Now, let the pair g 0ð Þ
μν and Φ 0ð Þ

i be a solution for the equations of motion Eq. (2).
Then, in order to study the perturbations around this particular solution, we write
our fields as a sum of the unperturbed fields g 0ð Þ

μν and Φ 0ð Þ
i and the small perturba-

tions hμν and Ψi

gμν ¼ g 0ð Þ
μν þ hμν, Φi ¼ Φ 0ð Þ

i þΨi, (5)

where by “small”we mean that we neglect the quadratic and higher-order powers
of the perturbation fields. Inserting the above equation into Eq. (2), we are left with a
set of linear equations satisfied by the perturbed fields hμν and Ψi . In general, these
equations are coupled, namely, Ψi is a source for hμν and vice versa. However, in the

special case in whichΦ 0ð Þ
i ¼ 0, the equations governing the perturbed fieldsΨi can

be decoupled from the metric perturbation hμν and vice versa. The reason why this

happen is that when Φ 0ð Þ
i ¼ 0, the stress-energy tensor T μν can be set to zero at first

order in the perturbation, since T μν is typically quadratic or of higher order in the
matter fields and, therefore, can be neglected. Therefore, investigating the linear
dynamics of generic small perturbations of the matter fields with T μν ¼ 0 is equiva-
lent to studying the test fields Ψi in the background g 0ð Þ

μν .
In what follows, let us consider a specific matter field Ψ propagating in a

generalized version of the Nariai spacetime described in Ref. [31]. Here, Ψ is an

1 The coefficient of Λ in S can be chosen of several manners. In particular, for any dimension D, in order

to insure that the pure dS or pure AdS spacetimes are described by gtt ¼ 1� Λ=3ð Þr2, as occurs in the case

D ¼ 4, this coefficient should be D� 1ð Þ D� 2ð Þ.
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electrically charged spinorial field of mass m that obeys the Dirac equation mini-
mally coupled to an electromagnetic field in such spacetime. In D ¼ 2d, this
spacetime is formed from the direct product of the de Sitter space dS2 with d� 1ð Þ
copies of the unit spheres S2 possessing different radii Rj. Thus, the natural line
element of the higher-dimensional version of the Nariai spacetime is given by

ds2 ¼ g0μνdx
μdxν ¼ �f rð Þdt2 þ 1

f rð Þ dr
2 þ

Xd
j¼2

R2
j dΩ

2
j , (6)

where f rð Þ is a function of the coordinate r and dΩ2
j is the line element of the jth

unit sphere S2 as follows

f rð Þ ¼ 1� r2

R2
1
, dΩ2

j ¼ dθ2j þ sin 2θj dϕ2
j : (7)

The radii R1 and Rj are given by

R1 ¼ Λ� 1
2
Q2

1 þ
Q

2 D� 2ð Þ

� ��1=2

, Rj ¼ Λþ 1
2
Q2

j þ
Q

2 D� 2ð Þ

� ��1=2

, (8)

where Q1 is an electric charge and Qj are magnetic charges, while Q is
defined by

Q ¼ Q2
1 �

Xd
j¼2

Q2
j : (9)

This spacetime is a locally static solution of Einstein’s equation with a cosmolog-
ical constant Λ and electromagnetic field ℱ ¼ dA whose gauge field A is given by

A ¼ Q1 rdtþ
Xd
j¼2

QjR
2
j cos θj dϕj: (10)

The coordinates in the metric are also called static, because they do not depend
explicitly on the time coordinate t. One may notice that, in this coordinate system,
this background has a local Killing vector ∂t whose norm vanishes at r ¼ �R1.
Indeed, r ¼ �R1 define closed null surfaces that surround the observer at all times,
known as event horizons. The boundary conditions defining QNMs in our
spacetime will be posed at these surfaces, as discussed in [39]. For this reason, the
dependence of all the components of the field Ψ on the coordinates along the
Killing vector ∂t is assumed to be of the form e�iωt. Usually, the articles consider
that the coordinate r in de Sitter space assume values in the interval r∈ 0, R1ð Þ
[40–42]. However, this is just justified for de Sitter with D> 2, but not for D ¼ 2;
see [39] for more details. By this reason, our domain of interest will be r∈ �R1, R1ð Þ.
In such domain, it is useful to introduce the tortoise coordinate x defined by the
equation

dx ¼ 1
f rð Þ dr ) x ¼ R1 arctanh

r
R1

� �
, (11)

in terms of which the line element Eq. (6) becomes

3
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copies of the unit spheres S2 possessing different radii Rj. Thus, the natural line
element of the higher-dimensional version of the Nariai spacetime is given by

ds2 ¼ g0μνdx
μdxν ¼ �f rð Þdt2 þ 1

f rð Þ dr
2 þ

Xd
j¼2

R2
j dΩ

2
j , (6)

where f rð Þ is a function of the coordinate r and dΩ2
j is the line element of the jth

unit sphere S2 as follows

f rð Þ ¼ 1� r2

R2
1
, dΩ2

j ¼ dθ2j þ sin 2θj dϕ2
j : (7)

The radii R1 and Rj are given by

R1 ¼ Λ� 1
2
Q2

1 þ
Q

2 D� 2ð Þ

� ��1=2

, Rj ¼ Λþ 1
2
Q2

j þ
Q

2 D� 2ð Þ

� ��1=2

, (8)

where Q1 is an electric charge and Qj are magnetic charges, while Q is
defined by

Q ¼ Q2
1 �

Xd
j¼2

Q2
j : (9)

This spacetime is a locally static solution of Einstein’s equation with a cosmolog-
ical constant Λ and electromagnetic field ℱ ¼ dA whose gauge field A is given by

A ¼ Q1 rdtþ
Xd
j¼2

QjR
2
j cos θj dϕj: (10)

The coordinates in the metric are also called static, because they do not depend
explicitly on the time coordinate t. One may notice that, in this coordinate system,
this background has a local Killing vector ∂t whose norm vanishes at r ¼ �R1.
Indeed, r ¼ �R1 define closed null surfaces that surround the observer at all times,
known as event horizons. The boundary conditions defining QNMs in our
spacetime will be posed at these surfaces, as discussed in [39]. For this reason, the
dependence of all the components of the field Ψ on the coordinates along the
Killing vector ∂t is assumed to be of the form e�iωt. Usually, the articles consider
that the coordinate r in de Sitter space assume values in the interval r∈ 0, R1ð Þ
[40–42]. However, this is just justified for de Sitter with D> 2, but not for D ¼ 2;
see [39] for more details. By this reason, our domain of interest will be r∈ �R1, R1ð Þ.
In such domain, it is useful to introduce the tortoise coordinate x defined by the
equation

dx ¼ 1
f rð Þ dr ) x ¼ R1 arctanh

r
R1

� �
, (11)

in terms of which the line element Eq. (6) becomes
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ds2 ¼ 1
cosh 2 x=R1ð Þ

�dt2 þ dx2
� �

þ
Xd
j¼2

R2
j dΩ

2
j , (12)

and the gauge field can be rewritten as

A ¼ Q1R1 tanh x=R1ð Þdtþ
Xd
j¼2

QjR
2
j cos θj dϕj: (13)

In particular, note that the tortoise coordinate maps the domain between two
horizons, r∈ �R1, R1ð Þ, into the interval x∈ �∞,∞ð Þ.

The QNMs accounting for an important class of fields are associated toΨwhich are
solutions to the equations ofmotion that satisfy specific boundary conditions imposed at
thehorizonsof the spacetime inwhich the field is propagating; see [5, 6, 43, 44] formore
details. In this chapter, wewill use the boundary conditions as illustrated in Figure 1.

From the mathematical of view, since we are assuming that the time dependence
of Ψ is e�iωt, this boundary condition means that near the horizons r ¼ �R1, that is,
as x ! �∞, the radial component of the fieldΨ should behave as e�iω tþxð Þ at x ! ∞,
while it should go as e�iω t�xð Þ at x ! �∞. The eigenfrequencies of this problem are
complex, the reason why they are called QNFs. The real part of the QNFs is
associated with the oscillation frequencies of the signal, while the imaginary part is
related to its decay in time. This decay in time is closely related to the fact that the
event horizon has a dissipative nature.

One interesting feature of this spacetime is that we can compute exactly the QNMs.
The exactly solvable systems are usually limits of more realistic systems and allow us to
study in detail some properties of a physical process and test somemethods which can
be used to analyze more complicated systems. Thus they are powerful tools in many
research lines. Thereforewe expect that the exactly computedQNFs forD-dimensional
generalized Nariai spacetimemay play an important role in future research [27].

3. Dirac equation in D-dimensional generalized Nariai spacetime

Let us present the construction of a solution to the Dirac equation minimally
coupled to the electromagnetic field ofD-dimensional generalized Nariai spacetime.

Figure 1.
Illustration of the boundary condition associated to QNMs in our spacetime. The wavy arrows represent the
direction of the perturbation field at the boundaries r ¼ �R1, while the cones are the local light cones.
Mathematically, the wavy arrow pointing to the right represents e�iω t�xð Þ, while the wavy arrow pointing to the
left represents e�iω tþxð Þ. For more details, see Ref. [39].
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A field of spin 1=2 with electric charge q and mass m propagating in such spacetime
is a spinorial field obeying the following version of the Dirac equation:

Γα ∇α � iqAαð ÞΨ ¼ mΨ, (14)

where Aα stands for the components of the background gauge field. In D ¼ 2d
dimensions, the Dirac matrices Γα represent faithfully the Clifford algebra by 2d �
2d matrices obeying the relation

ΓαΓβ þ ΓβΓα ¼ g eα, eβ
� �

d, (15)

with d standing for the 2d � 2d identity matrix. The index α, β, γ run from 1 to 2d
and label the vector fields of an orthonormal frame eαf g. In order to solve the Dirac
equation, we must introduce a suitable orthonormal frame of vector fields, which in
the case of our background is given by

e1 ¼ �i cosh x=R1ð Þ∂t , ej ¼
1

Rj sin θj
∂ϕj

,

e~1 ¼ cosh x=R1ð Þ∂x , e~j ¼
1
Rj

∂θj ,
(16)

where the index j ranges from 2 to d. In particular, note that

g eα, eβ
� �

¼ δαβ $

g ea, ebð Þ ¼ δab,

g ea, e~b
� �

¼ 0,

g e~a, e~b
� �

¼ δ~a~b,

8>>><
>>>:

(17)

where a and ~a are indices that range from 1 to d. The index a labels the first d
vector fields of the orthonormal frame eaf g, while the index ~a labels the remaining d
vectors of the frame eaf g. The derivatives of the frame vector fields determine the
spin connection according to the following relation:

∇α eβ ¼ ω γ
αβ eγ: (18)

Since the metric g is a covariantly constant tensor, it follows that the coefficients
of the spin connection with all low indices ωαβγ ¼ ω ε

αβ δεγ are antisymmetric in their
two last indices, ωαβγ ¼ �ωαγβ. Note that the indices of the spin connection are
raised and lowered with δαβ and δαβ, respectively, so that frame indices can be raised

and lowered unpunished. In particular, ωβγ
α ¼ ω βγ½ �

α , where indices inside the
square brackets are antisymmetrized. The covariant derivative of a spinorial field Ψ
is, then, given by

∇αΨ ¼ ∂αΨ� 1
4
ω βγ
α ΓβΓγΨ, (19)

with ∂α denoting the partial derivative along the vector field eα.
Our aim is to separate the Dirac Eq. (14). In order to accomplish this, it is

necessary to use a suitable representation for the Dirac matrices. We recall that

σ1 ¼
0 1

1 0

� �
, σ2 ¼

0 �i
i 0

� �
, σ3 ¼

1 0

0 �1

� �
, (20)
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related to its decay in time. This decay in time is closely related to the fact that the
event horizon has a dissipative nature.

One interesting feature of this spacetime is that we can compute exactly the QNMs.
The exactly solvable systems are usually limits of more realistic systems and allow us to
study in detail some properties of a physical process and test somemethods which can
be used to analyze more complicated systems. Thus they are powerful tools in many
research lines. Thereforewe expect that the exactly computedQNFs forD-dimensional
generalized Nariai spacetimemay play an important role in future research [27].

3. Dirac equation in D-dimensional generalized Nariai spacetime

Let us present the construction of a solution to the Dirac equation minimally
coupled to the electromagnetic field ofD-dimensional generalized Nariai spacetime.
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Illustration of the boundary condition associated to QNMs in our spacetime. The wavy arrows represent the
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A field of spin 1=2 with electric charge q and mass m propagating in such spacetime
is a spinorial field obeying the following version of the Dirac equation:

Γα ∇α � iqAαð ÞΨ ¼ mΨ, (14)

where Aα stands for the components of the background gauge field. In D ¼ 2d
dimensions, the Dirac matrices Γα represent faithfully the Clifford algebra by 2d �
2d matrices obeying the relation

ΓαΓβ þ ΓβΓα ¼ g eα, eβ
� �

d, (15)

with d standing for the 2d � 2d identity matrix. The index α, β, γ run from 1 to 2d
and label the vector fields of an orthonormal frame eαf g. In order to solve the Dirac
equation, we must introduce a suitable orthonormal frame of vector fields, which in
the case of our background is given by

e1 ¼ �i cosh x=R1ð Þ∂t , ej ¼
1

Rj sin θj
∂ϕj

,

e~1 ¼ cosh x=R1ð Þ∂x , e~j ¼
1
Rj

∂θj ,
(16)

where the index j ranges from 2 to d. In particular, note that

g eα, eβ
� �

¼ δαβ $

g ea, ebð Þ ¼ δab,

g ea, e~b
� �

¼ 0,

g e~a, e~b
� �

¼ δ~a~b,

8>>><
>>>:

(17)

where a and ~a are indices that range from 1 to d. The index a labels the first d
vector fields of the orthonormal frame eaf g, while the index ~a labels the remaining d
vectors of the frame eaf g. The derivatives of the frame vector fields determine the
spin connection according to the following relation:

∇α eβ ¼ ω γ
αβ eγ: (18)

Since the metric g is a covariantly constant tensor, it follows that the coefficients
of the spin connection with all low indices ωαβγ ¼ ω ε

αβ δεγ are antisymmetric in their
two last indices, ωαβγ ¼ �ωαγβ. Note that the indices of the spin connection are
raised and lowered with δαβ and δαβ, respectively, so that frame indices can be raised

and lowered unpunished. In particular, ωβγ
α ¼ ω βγ½ �

α , where indices inside the
square brackets are antisymmetrized. The covariant derivative of a spinorial field Ψ
is, then, given by

∇αΨ ¼ ∂αΨ� 1
4
ω βγ
α ΓβΓγΨ, (19)

with ∂α denoting the partial derivative along the vector field eα.
Our aim is to separate the Dirac Eq. (14). In order to accomplish this, it is

necessary to use a suitable representation for the Dirac matrices. We recall that

σ1 ¼
0 1

1 0

� �
, σ2 ¼

0 �i
i 0

� �
, σ3 ¼

1 0

0 �1

� �
, (20)
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are the Hermitian Pauli matrices and  denote the 2� 2 identity matrix. Using
this notation, a convenient representation of the Dirac matrices is the following:

Γa ¼ σ3 ⊗…⊗|fflfflfflfflfflffl{zfflfflfflfflfflffl}
a�1ð Þ times

σ1 ⊗ ⊗…⊗ |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
d�að Þ times

,

Γ~a ¼ σ3 ⊗…⊗|fflfflfflfflfflffl{zfflfflfflfflfflffl}
a�1ð Þ times

σ2 ⊗ ⊗…⊗ |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
d�að Þ times

,
(21)

where  stands for the 2� 2 identity matrix. Indeed, we can easily check that the
Clifford algebra given in Eq. (15) is properly satisfied by the above matrices.2 In this
case, spinorial fields are represented by the column vectors on which these matrices
act. We can introduce a basis of this representation by the direct products of spinors
ξs given by

ξþ ¼
1

0

� �
, ξ� ¼

0

1

� �
, (22)

which, under the action of the Pauli matrices, satisfy concisely the relations

σ1ξ
s ¼ ξ�s, σ2ξ

s ¼ i sξ�s, σ3ξ
s ¼ sξs: (23)

Indeed, in D ¼ 2d dimensions, a general spinor field has 2d degrees of freedom
and can be written as

Ψ ¼
X
sf g
Ψs1s2…sdξs1 ⊗ ξs2 ⊗…⊗ ξsd , (24)

where each of the indices sa can take the values “+1” and “�1.” Since every sa can
take just two values, it follows that the sum over sf g � s1, s2,…, sdf g comprises 2d

terms, which is exactly the number of components of a spinorial field in D ¼ 2d
dimensions.

In the representation (Eq. (21)), the operator Γα∇α, called Dirac operator, is then
represented by

Γα∇α ¼
Xd
a¼1

Γa∇a þ Γ~a∇~að Þ ¼
Xd
a¼1

σ3 ⊗…⊗|fflfflfflfflfflffl{zfflfflfflfflfflffl}
a�1ð Þ times

Da ⊗ ⊗…⊗ |fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
d�að Þ times

, (25)

where

Da ¼ σ1∇a þ σ2∇~a, (26)

is the Dirac operator on ℝ2 with coordinates xa, yaf g. The spinorial basis intro-
duced previously is very convenient, since the action of the Dirac matrices on the
spinor fields can be easily computed. Indeed, using Eqs. (21), (23), and (24), we
eventually arrive at the following equation

2 In D ¼ 2dþ 1, besides the 2d Dirac matrices Γa and Γ~a, we need to add one further matrix, which will

be denoted by Γdþ1 given by Γdþ1 ¼ σ3 ⊗ σ3…⊗ σ3|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
d times

.
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ΓaΨ ¼
X
sf g

s1s2…sa�1ð ÞΨs1s2…sd ξs1 ⊗ ξs2 ⊗…⊗ ξsa�1 ⊗ ξ�sa ⊗ ξsaþ1 ⊗

… ⊗ ξsd ¼
X
sf g

s1s2…sað ÞΨs1s2…sa�1 �sað Þsaþ1…sd ξs1 ⊗ ξs2 ⊗

… ⊗ ξsa�1 ⊗ ξsa ⊗ ξsaþ1 ⊗…⊗ ξsd ,

(27)

where from the first to the second line we have changed the index sa to �sa,
which does not change the final result, since we are summing over all values of sa,
which comprise the same list of the values of �sa. Moreover, we have used sað Þ2 ¼ 1.
Analogously, we have:

Γ~aΨ ¼
X
sf g

s1s2…sa�1ð Þ isað ÞΨs1s2…sdξs1 ⊗ ξs2 ⊗…⊗ ξsa�1 ⊗ ξ�sa ⊗ ξsaþ1 ⊗

…⊗ ξsd ¼ �i
X
sf g

s1s2…sað Þ saΨs1s2…sa�1 �sað Þsaþ1…sd ξs1 ⊗ ξs2 ⊗

…⊗ ξsa�1 ⊗ ξsa ⊗ ξsaþ1 ⊗…⊗ ξsd :

(28)

All that was seen above are necessary tools to attack our initial problem of
separating the general Eq. (14). In order to solve such an equation, we need to
separate the degrees of freedom of the field, which can be quite challenging in
general. Fortunately, the spacetime considered here is the direct product of two-
dimensional spaces of constant curvature, which is exactly the class of spaces
studied in Ref. [39]. Indeed, in this latter paper, it is shown that the Dirac equation
minimally coupled to an electromagnetic field is separable in such backgrounds. In
particular, assuming that the components of the spinor field Eq. (24) can be
decomposed in the form

Ψs1s2…sd ¼ Ψs1
1 t, xð ÞΨs2

2 Φ2, θ2ð Þ…Ψsd
d Φd, θdð Þ, (29)

where each index sa can take the values sa ¼ �1, the fields Ψs1
1 t, xð Þ satisfy the

following differential equation (the reader is invited to demonstrate the equation
below or consult more details in [39]):

∂~1 þ
ω1~11

2
� iqA~1 � is1 ∂1 þ

ω~11~1

2
� iqA1

� �h i
Ψs1

1 ¼ L� i s1mð ÞΨ�s1
1 : (30)

The separation constant L in the above equation depends on the angular modes.
In particular, in the special case of vanishing magnetic charges Qj, it is determined

by the eigenvalues λj of the Dirac operator on unit sphere S2 according to the
following relation

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ22 þ λ23 þ…þ λ2d

q
, λj ¼ �1, � 2, � 3,…, (31)

as demonstrated in Appendix A of Ref. [39]. In our frame of vectors, the only
components of the spin connection that are potentially nonvanishing are

ω1~11 ¼ �ω11~1 ¼ � 1
R1

sinh x=R1ð Þ,

ωj~jj ¼ �ωjj~j ¼
1
Rj

cot θj,

8>>><
>>>:

(32)
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where
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is the Dirac operator on ℝ2 with coordinates xa, yaf g. The spinorial basis intro-
duced previously is very convenient, since the action of the Dirac matrices on the
spinor fields can be easily computed. Indeed, using Eqs. (21), (23), and (24), we
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ΓaΨ ¼
X
sf g

s1s2…sa�1ð ÞΨs1s2…sd ξs1 ⊗ ξs2 ⊗…⊗ ξsa�1 ⊗ ξ�sa ⊗ ξsaþ1 ⊗

… ⊗ ξsd ¼
X
sf g

s1s2…sað ÞΨs1s2…sa�1 �sað Þsaþ1…sd ξs1 ⊗ ξs2 ⊗

… ⊗ ξsa�1 ⊗ ξsa ⊗ ξsaþ1 ⊗…⊗ ξsd ,

(27)

where from the first to the second line we have changed the index sa to �sa,
which does not change the final result, since we are summing over all values of sa,
which comprise the same list of the values of �sa. Moreover, we have used sað Þ2 ¼ 1.
Analogously, we have:

Γ~aΨ ¼
X
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All that was seen above are necessary tools to attack our initial problem of
separating the general Eq. (14). In order to solve such an equation, we need to
separate the degrees of freedom of the field, which can be quite challenging in
general. Fortunately, the spacetime considered here is the direct product of two-
dimensional spaces of constant curvature, which is exactly the class of spaces
studied in Ref. [39]. Indeed, in this latter paper, it is shown that the Dirac equation
minimally coupled to an electromagnetic field is separable in such backgrounds. In
particular, assuming that the components of the spinor field Eq. (24) can be
decomposed in the form

Ψs1s2…sd ¼ Ψs1
1 t, xð ÞΨs2

2 Φ2, θ2ð Þ…Ψsd
d Φd, θdð Þ, (29)

where each index sa can take the values sa ¼ �1, the fields Ψs1
1 t, xð Þ satisfy the

following differential equation (the reader is invited to demonstrate the equation
below or consult more details in [39]):

∂~1 þ
ω1~11

2
� iqA~1 � is1 ∂1 þ

ω~11~1

2
� iqA1

� �h i
Ψs1

1 ¼ L� i s1mð ÞΨ�s1
1 : (30)

The separation constant L in the above equation depends on the angular modes.
In particular, in the special case of vanishing magnetic charges Qj, it is determined

by the eigenvalues λj of the Dirac operator on unit sphere S2 according to the
following relation

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ22 þ λ23 þ…þ λ2d

q
, λj ¼ �1, � 2, � 3,…, (31)

as demonstrated in Appendix A of Ref. [39]. In our frame of vectors, the only
components of the spin connection that are potentially nonvanishing are

ω1~11 ¼ �ω11~1 ¼ � 1
R1

sinh x=R1ð Þ,

ωj~jj ¼ �ωjj~j ¼
1
Rj

cot θj,

8>>><
>>>:

(32)
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and the nonzero components of the gauge field can be written as

A1 ¼ �iQ1R1 sinh x=R1ð Þ, Aj ¼ QjRj cot θj: (33)

Now, since the components of the metric are independents of the coordinate t,
the vector ∂t is a Killing vector for this metric. So, it is useful to assume the
following time dependence for the field Ψs1

1 t, xð Þ

Ψs1
1 t, xð Þ ¼ e�iωtψ s1 xð Þ: (34)

Inserting this field along with the gauge field Eq. (33), and taking into account
the first relation of the Eq. (32) into the Eq. (30), we end up with the following
coupled system of differential equations:

d
dx

þ is1ωþ i sqQ1R1 �
1

2R1

� �
tanh x=R1ð Þ

� �
ψ s1 ¼ L� is1mð Þ

cosh x=R1ð Þ ψ
�s1 : (35)

In order to solve these equations, we should first decouple the fields ψ s1 and
ψ�s1 . Eliminating ψ�s1 we obtain a second-order equation for ψ s1 . Indeed, we can
prove that the fields ψ s1 satisfy the following second-order ordinary differential
equation

d2

dx2
þ ω2 � V xð Þ

" #
ψ s1 ¼ 0, (36)

which is a Schrödinger-like equation with V being a potential of the form

V xð Þ ¼ Aþ B tanh x=R1ð Þ þ C
cosh 2 x=R1ð Þ

, (37)

where the parameters A, B, and C are given by

A ¼ 1
4R2

1
� qQ1 is1 þ qQ1R

2
1

� �
,

B ¼ � ω

R1
is1 þ 2qQ1R

2
1

� �
,

C ¼ m2 þ L2 þ 1
4R2

1
þ q2Q2

1R
2
1:

8>>>>>>>>>><
>>>>>>>>>>:

(38)

These are known as potentials of Rosen-Morse type, which are generalizations of
the Pöschl-Teller potential [37, 38]. It is straightforward to see that this potential
satisfies the following properties:

V !
Aþ B at x ! þ∞,

A� B at x ! �∞:

(
(39)

In many cases, the potential function V is regular at r ¼ 0 x ¼ 0ð Þ, in particular V
can be equal to a constant different from zero. In fact, in our case, we find that

V ! Aþ C at x ! 0, (40)
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which clearly is regular. So, we point out that for this potential both limits
(Eqs. (39) and (40)) are finite, and thus there is no reason to demand for a regular
solution in this point.

Thus, the problem of finding the QNMs is reduced to the searching of the
corresponding spectrum of QNFs ω of Eq. (36). Most of the problems concerning
the QNMs fall into Schrödinger-like equation with real potentials which vanish at
both horizons [5], highlighting the fact that the solutions can be taken to be plane
waves. However, clearly this is not the case. Although it is possible to make field
redefinitions in order to make the potential real, we shall not do this here. For such
procedure we refer the reader to [36]. Once an analytical form for the QNFs of
Rosen-Morse type potential is not known, we must find an analytical exact solution
of Eq. (36) and impose physically appropriate boundary conditions at the horizons,
x ! �∞, which define the QNFs in a unique way.

In order to solve Eq. (36), let us make the following change of variable

y ¼ 1
2
þ 1
2
tanh x=R1ð Þ: (41)

In particular, notice that y is defined on the domain y∈ 0, 1ð Þ with the bound-
aries x ! �∞ being given by y ¼ 0 and y ¼ 1. In addition to this change of inde-
pendent variable, if we now set the Ansatz

ψ s1 xð Þ ¼ yα 1� yð ÞβHs1 yð Þ, (42)

with the parameters α and β being constants conveniently chosen as

α ¼ R1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B� ω2

p
, β ¼ �R1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B� ω2

p
, (43)

the functions Hs1 must be solutions of the following differential equation

y 1� yð Þ d
2Hs1

dy2
þ 2αþ 1� 2þ 2αþ 2βð Þy½ � dH

s1

dy
� CR2

1 þ αþ βð Þ 1þ αþ βð Þ
� �

Hs1 :

(44)

This new variable as well as the Ansatz that we have been using are really
interesting because in terms of these, it is immediate to see that the functions Hs1

satisfy a hypergeometric equation. Indeed, comparing with the standard
hypergeometric differential equation

y 1� yð Þ d
2Hs1

dy2
þ c� 1þ aþ bð Þy½ � dH

s1

dy
� abHs1 ¼ 0, (45)

we find that the constants a, b, and c are given by

a ¼ 1
2
þ αþ β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� CR2

1

r
,

b ¼ 1
2
þ αþ β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� CR2

1

r
,

c ¼ 2αþ 1:

8>>>>>>>><
>>>>>>>>:

(46)
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and the nonzero components of the gauge field can be written as

A1 ¼ �iQ1R1 sinh x=R1ð Þ, Aj ¼ QjRj cot θj: (33)

Now, since the components of the metric are independents of the coordinate t,
the vector ∂t is a Killing vector for this metric. So, it is useful to assume the
following time dependence for the field Ψs1

1 t, xð Þ

Ψs1
1 t, xð Þ ¼ e�iωtψ s1 xð Þ: (34)

Inserting this field along with the gauge field Eq. (33), and taking into account
the first relation of the Eq. (32) into the Eq. (30), we end up with the following
coupled system of differential equations:

d
dx

þ is1ωþ i sqQ1R1 �
1

2R1

� �
tanh x=R1ð Þ

� �
ψ s1 ¼ L� is1mð Þ

cosh x=R1ð Þ ψ
�s1 : (35)

In order to solve these equations, we should first decouple the fields ψ s1 and
ψ�s1 . Eliminating ψ�s1 we obtain a second-order equation for ψ s1 . Indeed, we can
prove that the fields ψ s1 satisfy the following second-order ordinary differential
equation

d2

dx2
þ ω2 � V xð Þ

" #
ψ s1 ¼ 0, (36)

which is a Schrödinger-like equation with V being a potential of the form

V xð Þ ¼ Aþ B tanh x=R1ð Þ þ C
cosh 2 x=R1ð Þ

, (37)

where the parameters A, B, and C are given by

A ¼ 1
4R2

1
� qQ1 is1 þ qQ1R

2
1

� �
,

B ¼ � ω

R1
is1 þ 2qQ1R

2
1

� �
,

C ¼ m2 þ L2 þ 1
4R2

1
þ q2Q2

1R
2
1:

8>>>>>>>>>><
>>>>>>>>>>:

(38)

These are known as potentials of Rosen-Morse type, which are generalizations of
the Pöschl-Teller potential [37, 38]. It is straightforward to see that this potential
satisfies the following properties:

V !
Aþ B at x ! þ∞,

A� B at x ! �∞:

(
(39)

In many cases, the potential function V is regular at r ¼ 0 x ¼ 0ð Þ, in particular V
can be equal to a constant different from zero. In fact, in our case, we find that

V ! Aþ C at x ! 0, (40)
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which clearly is regular. So, we point out that for this potential both limits
(Eqs. (39) and (40)) are finite, and thus there is no reason to demand for a regular
solution in this point.

Thus, the problem of finding the QNMs is reduced to the searching of the
corresponding spectrum of QNFs ω of Eq. (36). Most of the problems concerning
the QNMs fall into Schrödinger-like equation with real potentials which vanish at
both horizons [5], highlighting the fact that the solutions can be taken to be plane
waves. However, clearly this is not the case. Although it is possible to make field
redefinitions in order to make the potential real, we shall not do this here. For such
procedure we refer the reader to [36]. Once an analytical form for the QNFs of
Rosen-Morse type potential is not known, we must find an analytical exact solution
of Eq. (36) and impose physically appropriate boundary conditions at the horizons,
x ! �∞, which define the QNFs in a unique way.

In order to solve Eq. (36), let us make the following change of variable

y ¼ 1
2
þ 1
2
tanh x=R1ð Þ: (41)

In particular, notice that y is defined on the domain y∈ 0, 1ð Þ with the bound-
aries x ! �∞ being given by y ¼ 0 and y ¼ 1. In addition to this change of inde-
pendent variable, if we now set the Ansatz

ψ s1 xð Þ ¼ yα 1� yð ÞβHs1 yð Þ, (42)

with the parameters α and β being constants conveniently chosen as

α ¼ R1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� B� ω2

p
, β ¼ �R1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B� ω2

p
, (43)

the functions Hs1 must be solutions of the following differential equation

y 1� yð Þ d
2Hs1

dy2
þ 2αþ 1� 2þ 2αþ 2βð Þy½ � dH

s1

dy
� CR2

1 þ αþ βð Þ 1þ αþ βð Þ
� �

Hs1 :

(44)

This new variable as well as the Ansatz that we have been using are really
interesting because in terms of these, it is immediate to see that the functions Hs1

satisfy a hypergeometric equation. Indeed, comparing with the standard
hypergeometric differential equation

y 1� yð Þ d
2Hs1

dy2
þ c� 1þ aþ bð Þy½ � dH

s1

dy
� abHs1 ¼ 0, (45)

we find that the constants a, b, and c are given by

a ¼ 1
2
þ αþ β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� CR2

1

r
,

b ¼ 1
2
þ αþ β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� CR2

1

r
,

c ¼ 2αþ 1:

8>>>>>>>><
>>>>>>>>:

(46)
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Such an equation admits two linearly independent solutions whose linear com-
bination furnishes the following general solution:

Hs1 yð Þ ¼ D2F1 a, b, c;yð Þ þ Ey 1�cð Þ
2F1 1þ aþ c, 1þ bþ c, 2� c;yð Þ, (47)

where 2F1 is the hypergeometric function and D and E are arbitrary integration
constants. Given the hypergeometric solution for Hs1 is known, one can immediately
find the general solution for ψ s1 . Indeed, from Eqs. (42), (46), and (47), we conclude
that the solution of Eq. (36), which is regular at the origin, can be written as

ψ s1 ¼ 1� yð Þ
1
2 aþb�cð Þ½Dy

1
2 c�1ð Þ

2F1 a; b; c; yð Þ

þ Ey�
1
2 c�1ð Þ

2F1 1þ a� c; 1þ b� c; 2� c; yð Þ�:
(48)

In order to fix the integration constants D and E, we need to apply the appro-
priate boundary conditions. Inverting the Eq. (41) we find that, near the boundaries
x ! �∞, the relation between the coordinates x and y assumes the simpler form

y≃ eþ2x=R1 at x ! �∞,

1� y≃ e�2x=R1 at x ! þ∞:

(49)

Thus, taking into account the latter relation and using the fact that at y ¼
0 x ! �∞ð Þ the hypergeometric function 2F1 a, b, c;0ð Þ ¼ 1, one eventually obtains
that near the boundary x ! �∞ the field ψ s1 behaves as

ψ s1 jx!�∞ ≃De c�1ð Þx=R1 þ Ee� c�1ð Þx=R1 : (50)

On the other hand, in order to apply the boundary conditions at y ¼ 1 x ! ∞ð Þ,
it is useful to write the hypergeometric functions as functions of 1� yð Þ, so
that they become united at the boundary. This can be done by rewriting the
hypergeometric functions appearing in Eq. (48) by means of the following
identity [45]:

2F a, b, c;yð Þ¼ Γ cð ÞΓ c� a� bð Þ
Γ c� að ÞΓ c� bð Þ2

F a, b, aþ b� cþ 1;1� yð Þ

þΓ cð ÞΓ aþ b� cð Þ
Γ að ÞΓ bð Þ 1� yð Þ c�a�bð Þ

2F c� a, c� b, c� a� bþ 1;1� yð Þ,

(51)

where Γ stands for the gamma function. Doing so, and using Eq. (49), we
eventually arrive at the following behavior of the solution at x ! þ∞:

ψ s1 jx!þ∞ ≃ D
Γ c� a� bð ÞΓ cð Þ
Γ c� að ÞΓ c� bð Þ þ E

Γ c� a� bð ÞΓ 2� cð Þ
Γ 1� að ÞΓ 1� bð Þ

� �
e� aþb�cð Þx=R1

þ D
Γ aþ b� cð ÞΓ cð Þ

Γ að ÞΓ bð Þ þ E
Γ aþ b� cð ÞΓ 2� cð Þ

Γ a� cþ 1ð ÞΓ b� cþ 1ð Þ

� �
e aþb�cð Þx=R1 :

(52)

Now, from parameters Eqs. (38) and (43), we find that the constants appearing
in the hypergeometric equation can be written as
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a ¼ iR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ q2Q2

1R
2
1 þ L2

q
þ 1þ s1ð Þ 1

4
� iω

R1

2

� �
� i 1� s1ð Þ qQ1R

2
1

2
,

b ¼ �iR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ q2Q2

1R
2
1 þ L2

q
þ 1þ s1ð Þ 1

4
� iω

R1

2

� �
� i 1� s1ð Þ qQ1R

2
1

2
,

c ¼ 1
2
þ is1 qQ1R

2
1 � ωR1

� �
:

(53)

In particular, the following relations hold

c� 1ð Þ=R1 ¼ �is1ωþ is1qQ1R1 �
1

2R1
, (54)

aþ b� cð Þ=R1 ¼ �iω� iqQ1R1 þ s1
1

2R1
: (55)

Now we are ready to impose the boundary conditions. Obviously, without loss of
generality, we can consider that the spin s1 is already chosen and fixed at s1 ¼ þ or
s1 ¼ � since the QNFs should not depend on the choice of s1 ¼ �. Let us impose, for
instance, the boundary conditions for the component s1 ¼ þ of the spinorial field.
In this case, using the identity Eq. (54) along with the Eq. (34), we eventually arrive
at the following behavior of the solution at x ! ∞:

Ψþ
1 t, xð Þ

��
x!�∞ ¼ De�iω tþxð Þ e

iqQ1R1� 1
2R1

� �
x
þ Ee�iω t�xð Þ e

� iqQ1R1� 1
2R1

� �
x
: (56)

Now, Figure 1 tells us that the field is assumed to move toward higher values of
x at the boundary x ! �∞, while at the boundary x ! �∞ it should move toward
lower values of x. Then, since the time dependence of the field Ψþ

1 is of the type
e�iωt, this means that Ψþ

1 should behave as e�iω t�xð Þ at x ! �∞, while it should go as
e�iω tþxð Þ at x ! þ∞. Thus, from Eq. (55), we conclude that we must set D ¼ 0. In
such a case, from Eq. (52), the field Ψþ

1 becomes

Ψþ
1

��
x!þ∞ ≃E

Γ c� a� bð ÞΓ 2� cð Þ
Γ 1� að ÞΓ 1� bð Þ

� �
e�iω t�xð Þ e

iqQ1R1� 1
2R1

� �
x

þE
Γ aþ b� cð ÞΓ 2� cð Þ

Γ a� cþ 1ð ÞΓ b� cþ 1ð Þ

� �
e�iω tþxð Þ e

�iqQ1R1þ 1
2R1

� �
x
:

(57)

Finally, to satisfy the QNM boundary condition near the boundary at x ! ∞, we
must eliminate the term e�iω t�xð Þ of the above equation. Since E cannot be zero (as
otherwise the field would vanish identically), we need the combination of the
gamma functions to be zero. Now, once the gamma function has no zeros, the way
to achieve this is to let the gamma functions in the denominator diverge, Γ 1� að Þ ¼
∞ or Γ 1� bð Þ ¼ ∞. Since the gamma functions diverge only at nonpositive integers,
we are led to the following constraint:

1� a ¼ �n or 1� b ¼ �n, where n∈ 0, 1, 2,…f g: (58)

Using the Eq. (53), we find that these constraints translate to

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2Q2

1R
2
1 þ L2

q
þ i
R1

nþ 1
2

� �
, (59)
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Such an equation admits two linearly independent solutions whose linear com-
bination furnishes the following general solution:

Hs1 yð Þ ¼ D2F1 a, b, c;yð Þ þ Ey 1�cð Þ
2F1 1þ aþ c, 1þ bþ c, 2� c;yð Þ, (47)

where 2F1 is the hypergeometric function and D and E are arbitrary integration
constants. Given the hypergeometric solution for Hs1 is known, one can immediately
find the general solution for ψ s1 . Indeed, from Eqs. (42), (46), and (47), we conclude
that the solution of Eq. (36), which is regular at the origin, can be written as

ψ s1 ¼ 1� yð Þ
1
2 aþb�cð Þ½Dy

1
2 c�1ð Þ

2F1 a; b; c; yð Þ

þ Ey�
1
2 c�1ð Þ

2F1 1þ a� c; 1þ b� c; 2� c; yð Þ�:
(48)

In order to fix the integration constants D and E, we need to apply the appro-
priate boundary conditions. Inverting the Eq. (41) we find that, near the boundaries
x ! �∞, the relation between the coordinates x and y assumes the simpler form

y≃ eþ2x=R1 at x ! �∞,

1� y≃ e�2x=R1 at x ! þ∞:

(49)

Thus, taking into account the latter relation and using the fact that at y ¼
0 x ! �∞ð Þ the hypergeometric function 2F1 a, b, c;0ð Þ ¼ 1, one eventually obtains
that near the boundary x ! �∞ the field ψ s1 behaves as

ψ s1 jx!�∞ ≃De c�1ð Þx=R1 þ Ee� c�1ð Þx=R1 : (50)

On the other hand, in order to apply the boundary conditions at y ¼ 1 x ! ∞ð Þ,
it is useful to write the hypergeometric functions as functions of 1� yð Þ, so
that they become united at the boundary. This can be done by rewriting the
hypergeometric functions appearing in Eq. (48) by means of the following
identity [45]:

2F a, b, c;yð Þ¼ Γ cð ÞΓ c� a� bð Þ
Γ c� að ÞΓ c� bð Þ2

F a, b, aþ b� cþ 1;1� yð Þ

þΓ cð ÞΓ aþ b� cð Þ
Γ að ÞΓ bð Þ 1� yð Þ c�a�bð Þ

2F c� a, c� b, c� a� bþ 1;1� yð Þ,

(51)

where Γ stands for the gamma function. Doing so, and using Eq. (49), we
eventually arrive at the following behavior of the solution at x ! þ∞:

ψ s1 jx!þ∞ ≃ D
Γ c� a� bð ÞΓ cð Þ
Γ c� að ÞΓ c� bð Þ þ E

Γ c� a� bð ÞΓ 2� cð Þ
Γ 1� að ÞΓ 1� bð Þ

� �
e� aþb�cð Þx=R1

þ D
Γ aþ b� cð ÞΓ cð Þ

Γ að ÞΓ bð Þ þ E
Γ aþ b� cð ÞΓ 2� cð Þ

Γ a� cþ 1ð ÞΓ b� cþ 1ð Þ

� �
e aþb�cð Þx=R1 :

(52)

Now, from parameters Eqs. (38) and (43), we find that the constants appearing
in the hypergeometric equation can be written as
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a ¼ iR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ q2Q2
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2
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q
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4
� iω
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2

� �
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2
1

2
,

b ¼ �iR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ q2Q2

1R
2
1 þ L2

q
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4
� iω
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2

� �
� i 1� s1ð Þ qQ1R

2
1

2
,

c ¼ 1
2
þ is1 qQ1R

2
1 � ωR1

� �
:

(53)

In particular, the following relations hold

c� 1ð Þ=R1 ¼ �is1ωþ is1qQ1R1 �
1

2R1
, (54)

aþ b� cð Þ=R1 ¼ �iω� iqQ1R1 þ s1
1

2R1
: (55)

Now we are ready to impose the boundary conditions. Obviously, without loss of
generality, we can consider that the spin s1 is already chosen and fixed at s1 ¼ þ or
s1 ¼ � since the QNFs should not depend on the choice of s1 ¼ �. Let us impose, for
instance, the boundary conditions for the component s1 ¼ þ of the spinorial field.
In this case, using the identity Eq. (54) along with the Eq. (34), we eventually arrive
at the following behavior of the solution at x ! ∞:

Ψþ
1 t, xð Þ

��
x!�∞ ¼ De�iω tþxð Þ e

iqQ1R1� 1
2R1

� �
x
þ Ee�iω t�xð Þ e

� iqQ1R1� 1
2R1

� �
x
: (56)

Now, Figure 1 tells us that the field is assumed to move toward higher values of
x at the boundary x ! �∞, while at the boundary x ! �∞ it should move toward
lower values of x. Then, since the time dependence of the field Ψþ

1 is of the type
e�iωt, this means that Ψþ

1 should behave as e�iω t�xð Þ at x ! �∞, while it should go as
e�iω tþxð Þ at x ! þ∞. Thus, from Eq. (55), we conclude that we must set D ¼ 0. In
such a case, from Eq. (52), the field Ψþ

1 becomes

Ψþ
1

��
x!þ∞ ≃E

Γ c� a� bð ÞΓ 2� cð Þ
Γ 1� að ÞΓ 1� bð Þ

� �
e�iω t�xð Þ e

iqQ1R1� 1
2R1

� �
x

þE
Γ aþ b� cð ÞΓ 2� cð Þ

Γ a� cþ 1ð ÞΓ b� cþ 1ð Þ

� �
e�iω tþxð Þ e

�iqQ1R1þ 1
2R1

� �
x
:

(57)

Finally, to satisfy the QNM boundary condition near the boundary at x ! ∞, we
must eliminate the term e�iω t�xð Þ of the above equation. Since E cannot be zero (as
otherwise the field would vanish identically), we need the combination of the
gamma functions to be zero. Now, once the gamma function has no zeros, the way
to achieve this is to let the gamma functions in the denominator diverge, Γ 1� að Þ ¼
∞ or Γ 1� bð Þ ¼ ∞. Since the gamma functions diverge only at nonpositive integers,
we are led to the following constraint:

1� a ¼ �n or 1� b ¼ �n, where n∈ 0, 1, 2,…f g: (58)

Using the Eq. (53), we find that these constraints translate to

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, (59)
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which are the QNFs of the Dirac field propagating in D-dimensional generalized
Nariai spacetimes. The real part of a QNF is associated with the oscillation fre-
quency, while the imaginary part is related to its decay rate. At this point, it is worth
recalling that L is a separation constant of the Dirac equation that is related to the
angular mode of the field.

Likewise, imposing the boundary condition to the component s1 ¼ � of the
spinorial field, we find that we must set E ¼ 0 at Eq. (50) and then c� a ¼ �n or
c� b ¼ �n, with n being a nonnegative integer. This, in its turn, leads to the same
spectrum obtained for the component s1 ¼ þ as expected, namely, Eq. (59).

4. Conclusions

In this chapter we have investigated the perturbations on a spinorial field prop-
agating in a generalized version of the charged Nariai spacetime. Besides the sepa-
rability of the degrees of freedom of these perturbations, one interesting feature of
this background is that the perturbations can be analytically integrated. They all
obey a Schrödinger-like equation with an integrable potential that is contained in
the Rosen-Morse class of integrable potentials. Such an equation admits two linearly
independent solutions given in terms of standard hypergeometric functions. This is
a valuable property, since even the perturbation potential associated to the humble
Schwarzschild background is nonintegrable, despite the fact that it is separable. We
have also investigated the QNMs associated to this spinorial field. Analyzing the
Eq. (59), namely,

ωD ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2Q2

1R
2
1 þ L2

q
þ i
R1

nþ 1
2

� �
, (60)

it is interesting to note that the imaginary parts of the QNFs, which represent the
decay rates, do not depend on any details of the perturbation; rather, they only
depend on the charges of the gravitational background through the dependence on
R1. On the other hand, the real parts of the QNFs depend on the mass of the field
and on the angular mode of the perturbations. Another fact worth pointing out is
that the fermionic field always has a real part in its QNFs spectrum, meaning that it
always oscillates. This is not reasonable. Indeed, for Klein-Gordon and Maxwell
perturbations in the D-dimensional Nariai spacetime, their QNFs are equal to [39].

ωKG ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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j

� 1
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2

� �
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� �

R2
j

� 1
4R2

1

s
� i
R1

nþ 1
2

� �
,

(61)

where ℓj and mj are integers, ∣mj∣ ≤ℓj, and ℓ≥0. Due to the negative factor
�1= 4R2

1

� �
inside the square root appearing in the bosonic spectrum, it follows that

for small enough R1, along with small enough mass and angular momentum, the
argument of the square root can be negative, so that this term becomes imaginary.

To finish, we believe that a good exercise is to calculate the QNFs of the gravi-
tational field in D-dimensional generalized charged Nariai spacetime. Research on
the latter problem is still ongoing and, due to the great number of degrees of
freedom in the gravitational field, shall be considered in a future work. The next
interesting step is the investigation of superradiance phenomena for the spin 1=2
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field. Although bosonic fields like scalar, electromagnetic, and gravitational fields
can exhibit superradiant behavior in four-dimensional Kerr spacetime [46],
curiously, this is not the case for the Dirac field [36]. Thus, it would be interesting to
investigate whether an analogous thing happens in the background considered
here [47].
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Chapter 2

Eight-by-Eight Spacetime Matrix
Operator and Its Applications
Richard P. Bocker and B. Roy Frieden

Abstract

A recent journal article by the authors introduced the eight-by-eight spacetime
matrix operator M̂ which played a key role in the formulation of Lorentz invariant
matrix equations for both the classical electrodynamic Maxwell field equations and
the quantum mechanical relativistic Dirac equation for free space. Those new
equations we referred to as the Maxwell spacetime matrix and the Dirac spacetime
matrix equations. These matrix equations will be briefly reviewed at the beginning
of this chapter. Next we will show how the same matrix operator M̂ plays a central
role in the matrix formulation of other fundamental equations in both electro-
magnetic and quantum theories. These include the electromagnetic wave and
charge continuity equations, the Lorentz conditions and electromagnetic potentials,
the electromagnetic potential wave equations, and the quantum mechanical
Klein-Gordon equation. In addition, a new generalized spacetime matrix equation,
again employing the operator M̂, will be described which is a generalization of the
Maxwell and Dirac spacetime matrix equations. We will explore time-harmonic
plane-wave solutions of this equation as well as the properties of these solutions.

Keywords: special theory of relativity, matrix operators, classical electrodynamics,
relativistic quantum mechanics, matter waves, electromagnetic waves, optics,
applied mathematics

1. Introduction

The eight-by-eight spacetime matrix operator M̂ plays a key role in the matrix
formulation of a number of well-known fundamental equations in both the fields of
classical electrodynamics and relativistic quantum mechanics (see [1]). The
spacetime matrix operator is defined by Eq. (1):

M̂ �

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666664

3
77777777777775

: (1)
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equations we referred to as the Maxwell spacetime matrix and the Dirac spacetime
matrix equations. These matrix equations will be briefly reviewed at the beginning
of this chapter. Next we will show how the same matrix operator M̂ plays a central
role in the matrix formulation of other fundamental equations in both electro-
magnetic and quantum theories. These include the electromagnetic wave and
charge continuity equations, the Lorentz conditions and electromagnetic potentials,
the electromagnetic potential wave equations, and the quantum mechanical
Klein-Gordon equation. In addition, a new generalized spacetime matrix equation,
again employing the operator M̂, will be described which is a generalization of the
Maxwell and Dirac spacetime matrix equations. We will explore time-harmonic
plane-wave solutions of this equation as well as the properties of these solutions.

Keywords: special theory of relativity, matrix operators, classical electrodynamics,
relativistic quantum mechanics, matter waves, electromagnetic waves, optics,
applied mathematics

1. Introduction

The eight-by-eight spacetime matrix operator M̂ plays a key role in the matrix
formulation of a number of well-known fundamental equations in both the fields of
classical electrodynamics and relativistic quantum mechanics (see [1]). The
spacetime matrix operator is defined by Eq. (1):

M̂ �

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666664

3
77777777777775

: (1)
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The partial derivative symbols are defined by the following:

∂1 �
∂

∂x
∂2 �

∂

∂y
∂3 �

∂

∂z
∂4 � 1

ic
∂

∂t
: (2)

The imaginary quantity i represents the square root of minus one, and the
physical quantity c corresponds to the speed of light in free space.

Eight compact matrix equations are listed in Table 1, each containing the
spacetime matrix operator M̂. Each of these equations, as well as the ket ∣ i vector
appearing in these equations, will be discussed in greater detail in the following
sections of this chapter. An excellent introduction to bra ∣h and ket ∣i vector
notation may be found in [2]. The Gaussian system of units (see [3], p. 781) is
employed throughout this chapter.

2. Eight-by-eight spacetime matrix operator properties

The spacetime matrix operator M̂, defined in Eq. (1), may also be expressed by
the following equation:

M̂ ¼ M1∂1 þM2∂2 þM3∂3 þM4∂4: (3)

The four eight-by-eight matrices Mμ, where μ ¼ 1; 2; 3; 4, are simply referred to
as the spacetime matrices. These matrices have the following properties:

1. Each matrix Mμ is equal to its own multiplicative inverse

Mμ ¼ M�1
μ : (4)

2. These matrices satisfy the anti-commutation relation

MμMν þMνMμ ¼ 2δμνI: (5)

3. Each matrix Mμ is Hermitian

Mμ ¼ M†
μ: (6)

Compact matrix equation Compact matrix equation description

M̂∣ f i ¼ ∣oi Maxwell spacetime matrix equation for free space

M̂∣ f i ¼ ∣ ji Maxwell matrix equation with charges and currents

M̂M̂∣ f i ¼ M̂∣ ji Charge continuity and electromagnetic wave equations

M̂∣ai ¼ ∣ f i Lorentz conditions and electromagnetic potentials

M̂M̂∣ai ¼ ∣ ji Electromagnetic potential wave equations

M̂∣ϕi þ κ∣ϕi ¼ ∣oi Dirac spacetime matrix equation for free space

M̂M̂∣ϕi � κ2∣ϕi ¼ ∣oi Klein-Gordon spacetime matrix equation for free space

M̂∣ψi þ κ∣ψi ¼ ∣oi Generalized spacetime matrix equation for free space

Table 1.
Compact matrix equations where the spacetime matrix operator M̂ plays a central role.
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4.In addition

M̂M̂ ¼ M̂
2 ¼ I □2: (7)

The symbol δμν is the Kronecker delta, and I represents the eight-by-eight
identity matrix. The d’Alembertian (see [4], p. 290) and the Laplacian (see [4],
p. 15) operators are defined by

□2 � ∇2 � 1
c2

∂
2

∂t2
and ∇2 � ∂

2

∂x2
þ ∂

2

∂y2
þ ∂

2

∂z2
: (8)

Some authors use the □ symbol to represent the d’Alembertian operator.

3. Maxwell spacetime matrix equation

The Maxwell field equations play a fundamental role in both classical
electrodynamics and physical optics. The propagations of electromagnetic waves
through free space (see [4], pp. 514–522), nonconducting media (see [3],
pp. 295–309), thin-film optical filters [5], and solid-state crystalline materials [6]
are just a few examples where the Maxwell field equations play an important role.

3.1 Maxwell spacetime matrix equation for free space

An earlier eight-by-eight matrix representation of the Maxwell field equations
was first introduced by the authors back in 1993 [7]. An improved updated version
using the spacetime matrix operator M̂ was published recently [1]. For free space,
in the absence of charges and currents, this later version is given by

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666664

3
77777777777775

iE1

iE2

iE3

0

B1

B2

B3

0

2
66666666666664

3
77777777777775

¼

0

0

0

0

0

0

0

0

2
66666666666664

3
77777777777775

: (9)

The compact matrix form of Eq. (9) is given by

M̂∣ f i ¼ ∣oi: (10)

The wave function ∣ f i is an eight-by-one ket vector containing, in general, six
nonzero scalar components associated with the electric field vector E ¼ E1 E2 E3ð Þ
and the magnetic induction vector B ¼ B1 B2 B3ð Þ. The elements (4,1) and (8,1) in
∣ f i have purposely been set equal to zero. The case when these two elements are
nonzero will be considered when the generalized spacetime matrix equation for free
space is discussed. The ket vector ∣oi represents the eight-by-one null vector.

The Maxwell spacetime matrix equation (9) when expanded is equivalent to two
divergences and two curl equations, namely,

∇ � E ¼ 0 and ∇ � B ¼ 0 (11)
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The partial derivative symbols are defined by the following:

∂1 �
∂

∂x
∂2 �

∂

∂y
∂3 �

∂

∂z
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ic
∂

∂t
: (2)
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sections of this chapter. An excellent introduction to bra ∣h and ket ∣i vector
notation may be found in [2]. The Gaussian system of units (see [3], p. 781) is
employed throughout this chapter.

2. Eight-by-eight spacetime matrix operator properties

The spacetime matrix operator M̂, defined in Eq. (1), may also be expressed by
the following equation:

M̂ ¼ M1∂1 þM2∂2 þM3∂3 þM4∂4: (3)

The four eight-by-eight matrices Mμ, where μ ¼ 1; 2; 3; 4, are simply referred to
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4.In addition

M̂M̂ ¼ M̂
2 ¼ I □2: (7)

The symbol δμν is the Kronecker delta, and I represents the eight-by-eight
identity matrix. The d’Alembertian (see [4], p. 290) and the Laplacian (see [4],
p. 15) operators are defined by

□2 � ∇2 � 1
c2

∂
2

∂t2
and ∇2 � ∂

2

∂x2
þ ∂

2

∂y2
þ ∂

2

∂z2
: (8)

Some authors use the □ symbol to represent the d’Alembertian operator.

3. Maxwell spacetime matrix equation

The Maxwell field equations play a fundamental role in both classical
electrodynamics and physical optics. The propagations of electromagnetic waves
through free space (see [4], pp. 514–522), nonconducting media (see [3],
pp. 295–309), thin-film optical filters [5], and solid-state crystalline materials [6]
are just a few examples where the Maxwell field equations play an important role.

3.1 Maxwell spacetime matrix equation for free space

An earlier eight-by-eight matrix representation of the Maxwell field equations
was first introduced by the authors back in 1993 [7]. An improved updated version
using the spacetime matrix operator M̂ was published recently [1]. For free space,
in the absence of charges and currents, this later version is given by

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666664

3
77777777777775

iE1

iE2

iE3

0

B1

B2

B3

0

2
66666666666664

3
77777777777775

¼

0

0

0

0

0

0

0

0

2
66666666666664

3
77777777777775

: (9)

The compact matrix form of Eq. (9) is given by

M̂∣ f i ¼ ∣oi: (10)

The wave function ∣ f i is an eight-by-one ket vector containing, in general, six
nonzero scalar components associated with the electric field vector E ¼ E1 E2 E3ð Þ
and the magnetic induction vector B ¼ B1 B2 B3ð Þ. The elements (4,1) and (8,1) in
∣ f i have purposely been set equal to zero. The case when these two elements are
nonzero will be considered when the generalized spacetime matrix equation for free
space is discussed. The ket vector ∣oi represents the eight-by-one null vector.

The Maxwell spacetime matrix equation (9) when expanded is equivalent to two
divergences and two curl equations, namely,

∇ � E ¼ 0 and ∇ � B ¼ 0 (11)
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∇� Eþ 1
c
∂

∂t
B ¼ 0 and ∇� B� 1

c
∂

∂t
E ¼ 0: (12)

We recognize these four equations as the traditional Maxwell field equations
(Gaussian units) for free space in the absence of charges, currents, and ordinary
matter terms (see [8], pp. 362–368).

For electromagnetic waves, time-harmonic plane-wave solutions of the form

E r; tð Þ ¼ Eo exp i k � r� ωtð Þf g and B r; tð Þ ¼ Bo exp i k � r� ωtð Þf g (13)

will next be substituted back into the previous four vector equations. This yields
the following set of equations:

k � Eo ¼ 0 and k � Bo ¼ 0 (14)

k� Eo ¼ þω

c
Bo and k� Bo ¼ �ω

c
Eo: (15)

The quantities k and ω correspond to the wave vector and the angular frequency
associated with the electromagnetic wave; r and t represent the position vector and
the instantaneous time. From the preceding equations, we find the vectors Eo, Bo,
and k are mutually perpendicular. That is,

k⊥Eo Eo ⊥Bo k⊥Bo: (16)

These properties represent transverse electromagnetic waves. We also obtain the
important results

Eo ¼ Bo (17)

and

ω ¼ kc λf ¼ c where ω ¼ 2πf k ¼ 2π=λ: (18)

The quantities k, f, and λ represent the wave number, the frequency, and the
wavelength, respectively, associated with the electromagnetic wave. So for free
space, the magnitudes of the electromagnetic field vectors Eo and Bo are equal, a
well-known result in electromagnetic wave propagation. Recall we are using
Gaussian units.

3.2 Maxwell spacetime matrix equation with charges and currents

The Maxwell spacetime matrix equation, with the addition of charge and current
terms [1], is given by

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0
0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666664

3
77777777777775

iE1

iE2

iE3

0
B1

B2

B3

0

2
66666666666664

3
77777777777775

¼ 4π
c

Je1
Je2
Je3
cρm
iJm1

iJm2

iJm3

�icρe

2
66666666666664

3
77777777777775

: (19)

20

Progress in Relativity

The compact matrix form of the Maxwell spacetime matrix equation is given by

M̂∣ f i ¼ ∣ ji: (20)

Eq. (19), when expanded, is equivalent to two divergences and two curl equa-
tions. The resulting four vector equations are referred to as the microscopic Max-
well field equations (see [8], pp. 283–290). They are given by

∇ � E ¼ þ4πρe and ∇ � B ¼ þ4πρm (21)

∇� Eþ 1
c
∂

∂t
B ¼ � 4π

c
Jm and ∇� B� 1

c
∂

∂t
E ¼ þ 4π

c
Je: (22)

The various scalar and vector quantities appearing in the microscopic Maxwell
vector equations are the electric field vector E ¼ E1 E2 E3ð Þ, the magnetic induction
vector B ¼ B1 B2 B3ð Þ, the electric current density vector Je ¼ Je1 Je2 Je3ð Þ, the
magnetic current density vector Jm ¼ Jm1 Jm2 Jm3ð Þ, the electric charge density ρe,
the magnetic charge density ρm, and the speed of light c in free space. Both magnetic
charge and magnetic current density (see [8], pp. 283–290) have been included in
the Maxwell vector equations for purposes of completeness. They, of course, may
be set equal to zero since hypothetical magnetic monopoles have not been
discovered in nature. The ket vector ∣ f i represents the eight-by-one column vector
on the left-hand side of Eq. (19). The ket vector ∣ ji corresponds to the eight-by-one
column vector on the right-hand side of Eq. (19) multiplied by the factor 4π=c.

3.3 Charge continuity and electromagnetic wave equations

Charge continuity equations for electric (see [8], p. 15) and magnetic charges as
well as the electromagnetic wave equations involving electric and magnetic charges
and currents may be easily obtained by simply multiplying both sides of the Max-
well spacetime matrix equation in compact form (20) by the spacetime matrix
operator M̂. That is,

M̂M̂∣ f i ¼ M̂∣ ji: (23)

Expanding this single matrix equation yields the charge continuity and electro-
magnetic wave equations:

∇ � Je þ
∂

∂t
ρe ¼ 0 and ∇ � Jm þ ∂

∂t
ρm ¼ 0 (24)

□2E ¼ 4π
c2

∂

∂t
Je þ 4π∇ρe þ

4π
c
∇� Jm and □2B ¼ 4π

c2
∂

∂t
Jm þ 4π∇ρm � 4π

c
∇� Je:

(25)

3.4 Lorentz conditions and electromagnetic potentials

By using the spacetime matrix operator M̂, we can determine the relationship
between electromagnetic fields and vector-scalar potentials as well as determine
expressions for the Lorentz conditions (see [9], pp. 179–181) in a single matrix
equation. The following matrix equation provides the desired relation:
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c
∂

∂t
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∂

∂t
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We recognize these four equations as the traditional Maxwell field equations
(Gaussian units) for free space in the absence of charges, currents, and ordinary
matter terms (see [8], pp. 362–368).

For electromagnetic waves, time-harmonic plane-wave solutions of the form
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will next be substituted back into the previous four vector equations. This yields
the following set of equations:

k � Eo ¼ 0 and k � Bo ¼ 0 (14)

k� Eo ¼ þω

c
Bo and k� Bo ¼ �ω

c
Eo: (15)

The quantities k and ω correspond to the wave vector and the angular frequency
associated with the electromagnetic wave; r and t represent the position vector and
the instantaneous time. From the preceding equations, we find the vectors Eo, Bo,
and k are mutually perpendicular. That is,

k⊥Eo Eo ⊥Bo k⊥Bo: (16)

These properties represent transverse electromagnetic waves. We also obtain the
important results

Eo ¼ Bo (17)

and

ω ¼ kc λf ¼ c where ω ¼ 2πf k ¼ 2π=λ: (18)

The quantities k, f, and λ represent the wave number, the frequency, and the
wavelength, respectively, associated with the electromagnetic wave. So for free
space, the magnitudes of the electromagnetic field vectors Eo and Bo are equal, a
well-known result in electromagnetic wave propagation. Recall we are using
Gaussian units.

3.2 Maxwell spacetime matrix equation with charges and currents

The Maxwell spacetime matrix equation, with the addition of charge and current
terms [1], is given by

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0
0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666664

3
77777777777775

iE1

iE2

iE3

0
B1

B2

B3

0

2
66666666666664

3
77777777777775

¼ 4π
c

Je1
Je2
Je3
cρm
iJm1

iJm2

iJm3

�icρe

2
66666666666664

3
77777777777775

: (19)
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The compact matrix form of the Maxwell spacetime matrix equation is given by

M̂∣ f i ¼ ∣ ji: (20)

Eq. (19), when expanded, is equivalent to two divergences and two curl equa-
tions. The resulting four vector equations are referred to as the microscopic Max-
well field equations (see [8], pp. 283–290). They are given by

∇ � E ¼ þ4πρe and ∇ � B ¼ þ4πρm (21)

∇� Eþ 1
c
∂

∂t
B ¼ � 4π

c
Jm and ∇� B� 1

c
∂

∂t
E ¼ þ 4π

c
Je: (22)

The various scalar and vector quantities appearing in the microscopic Maxwell
vector equations are the electric field vector E ¼ E1 E2 E3ð Þ, the magnetic induction
vector B ¼ B1 B2 B3ð Þ, the electric current density vector Je ¼ Je1 Je2 Je3ð Þ, the
magnetic current density vector Jm ¼ Jm1 Jm2 Jm3ð Þ, the electric charge density ρe,
the magnetic charge density ρm, and the speed of light c in free space. Both magnetic
charge and magnetic current density (see [8], pp. 283–290) have been included in
the Maxwell vector equations for purposes of completeness. They, of course, may
be set equal to zero since hypothetical magnetic monopoles have not been
discovered in nature. The ket vector ∣ f i represents the eight-by-one column vector
on the left-hand side of Eq. (19). The ket vector ∣ ji corresponds to the eight-by-one
column vector on the right-hand side of Eq. (19) multiplied by the factor 4π=c.

3.3 Charge continuity and electromagnetic wave equations

Charge continuity equations for electric (see [8], p. 15) and magnetic charges as
well as the electromagnetic wave equations involving electric and magnetic charges
and currents may be easily obtained by simply multiplying both sides of the Max-
well spacetime matrix equation in compact form (20) by the spacetime matrix
operator M̂. That is,

M̂M̂∣ f i ¼ M̂∣ ji: (23)

Expanding this single matrix equation yields the charge continuity and electro-
magnetic wave equations:

∇ � Je þ
∂

∂t
ρe ¼ 0 and ∇ � Jm þ ∂

∂t
ρm ¼ 0 (24)

□2E ¼ 4π
c2

∂

∂t
Je þ 4π∇ρe þ

4π
c
∇� Jm and □2B ¼ 4π

c2
∂

∂t
Jm þ 4π∇ρm � 4π

c
∇� Je:

(25)

3.4 Lorentz conditions and electromagnetic potentials

By using the spacetime matrix operator M̂, we can determine the relationship
between electromagnetic fields and vector-scalar potentials as well as determine
expressions for the Lorentz conditions (see [9], pp. 179–181) in a single matrix
equation. The following matrix equation provides the desired relation:
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�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666666664

3
77777777777777775

�Ae1

�Ae2

�Ae3

�ϕm

�iAm1

�iAm2

�iAm3

iϕe

2
66666666666666664

3
77777777777777775

¼

iE1

iE2

iE3

0

B1

B2

B3

0

2
66666666666666664

3
77777777777777775

: (26)

The compact matrix form of Eq. (26) is given by

M̂∣ai ¼ ∣ f i: (27)

The ket vector ∣ai corresponds to the eight-by-one column vector on the
left-hand side of Eq. (26). Equation (26), when expanded, yields the Lorentz
conditions and the relationship between electromagnetic fields and potentials:

∇ �Ae þ
1
c
∂

∂t
ϕe ¼ 0 and ∇ �Am þ 1

c
∂

∂t
ϕm ¼ 0 (28)

E ¼ �∇ϕe �
1
c
∂

∂t
Ae � ∇�Am and B ¼ �∇ϕm � 1

c
∂

∂t
Am þ ∇�Ae: (29)

The new scalar and vector quantities appearing in the above equations are the
electric vector potential Ae ¼ Ae1 Ae2 Ae3ð Þ, the magnetic vector potential
Am ¼ Am1 Am2 Am3ð Þ, the electric scalar potential ϕe, and the magnetic scalar
potential ϕm. So again we see how the eight-by-eight spacetime matrix operator M̂
plays a central role in tying together important electromagnetic relations.

3.5 Electromagnetic potential wave equations

It is well-known that the electromagnetic vector and scalar potentials satisfy
wave equations (see [9], pp. 179–181). This can be easily shown by multiplying both
sides of Eq. (27) by the spacetime matrix operator M̂. This gives

M̂M̂∣ai ¼ M̂∣ f i: (30)

Next replace the term M̂∣ f i by the ket vector ∣ ji using Eq. (20). This yields

M̂M̂∣ai ¼ ∣ ji: (31)

Expanding this single matrix equation yields eight partial differential equations
which can be easily combined to form the following four potential wave equations:

□2ϕe ¼ �4πρe and □2ϕm ¼ �4πρm (32)

□2Ae ¼ � 4π
c
Je and □2Am ¼ �4π

c
Jm: (33)

The single compact matrix (Eq. (31)) is therefore equivalent to these four
potential wave equations.
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4. Dirac spacetime matrix equation

The nonrelativistic Schrödinger wave equation (see [10], pp. 143–146) plays a
fundamental role in quantum mechanical phenomena where the spin property of
nonrelativistic particles may be ignored. This equation is usually first met in modern
physics textbooks. However, when a particle with half-integer spin and/or moving
at relativistic speeds is involved, the relativistic Dirac equation [11] comes into play.

4.1 Dirac spacetime matrix equation for free space

Using the spacetime matrix operator M̂, the authors introduced in their most
recent publication [1] a modified version of the traditional Dirac equation, referred
to as the Dirac spacetime matrix equation. In the absence of electromagnetic poten-
tials [11], the Dirac spacetime matrix equation for free space is given by

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
666666666666664

3
777777777777775
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iU3

0

L1

L2

L3

0

2
666666666666664

3
777777777777775

þ κ

iU1

iU2

iU3

0

L1

L2

L3

0

2
666666666666664

3
777777777777775

¼

0

0

0

0

0

0

0

0

2
666666666666664

3
777777777777775

: (34)

The compact matrix form of Eq. (34) is given by

M̂∣ϕi þ κ∣ϕi ¼ ∣oi: (35)

The wave function ∣ϕi is an eight-by-one ket vector containing, in general, six
nonzero scalar components associated with two vector quantities U ¼ U1 U2 U3ð Þ
and L ¼ L1 L2 L3ð Þ. The elements (4,1) and (8,1) in ∣ϕi have purposely been set
equal to zero. The case when these two elements are nonzero will also be considered
when the generalized spacetime matrix equation for free space is discussed later in
this chapter. The ket vector ∣oi represents the eight-by-one null vector. The con-
stant κ is defined by

κ � moc=ℏ: (36)

Here mo represents the rest mass of the matter-wave particle under consider-
ation, c again is the speed of light in free space, and ℏ is equal to the Planck constant
h divided by 2π.

The Dirac spacetime matrix equation (34) when expanded is equivalent to eight
partial differential equations. These eight equations can be rewritten as two diver-
gence and two curl equations [1], namely,

∇ �U ¼ 0 and ∇ � L ¼ 0 (37)

∇�U ¼ � 1
c
∂

∂t
L� iκL and ∇� L ¼ þ 1

c
∂

∂t
U� iκU: (38)

We refer to these equations as the Dirac spacetime vector equations for free
space. It is noted that these equations resemble the four Maxwell field equations for
free space in the absence of charge, current, and ordinary matter terms.
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¼
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: (26)

The compact matrix form of Eq. (26) is given by

M̂∣ai ¼ ∣ f i: (27)

The ket vector ∣ai corresponds to the eight-by-one column vector on the
left-hand side of Eq. (26). Equation (26), when expanded, yields the Lorentz
conditions and the relationship between electromagnetic fields and potentials:

∇ �Ae þ
1
c
∂

∂t
ϕe ¼ 0 and ∇ �Am þ 1

c
∂

∂t
ϕm ¼ 0 (28)

E ¼ �∇ϕe �
1
c
∂

∂t
Ae � ∇�Am and B ¼ �∇ϕm � 1

c
∂

∂t
Am þ ∇�Ae: (29)

The new scalar and vector quantities appearing in the above equations are the
electric vector potential Ae ¼ Ae1 Ae2 Ae3ð Þ, the magnetic vector potential
Am ¼ Am1 Am2 Am3ð Þ, the electric scalar potential ϕe, and the magnetic scalar
potential ϕm. So again we see how the eight-by-eight spacetime matrix operator M̂
plays a central role in tying together important electromagnetic relations.

3.5 Electromagnetic potential wave equations

It is well-known that the electromagnetic vector and scalar potentials satisfy
wave equations (see [9], pp. 179–181). This can be easily shown by multiplying both
sides of Eq. (27) by the spacetime matrix operator M̂. This gives

M̂M̂∣ai ¼ M̂∣ f i: (30)

Next replace the term M̂∣ f i by the ket vector ∣ ji using Eq. (20). This yields

M̂M̂∣ai ¼ ∣ ji: (31)

Expanding this single matrix equation yields eight partial differential equations
which can be easily combined to form the following four potential wave equations:

□2ϕe ¼ �4πρe and □2ϕm ¼ �4πρm (32)

□2Ae ¼ � 4π
c
Je and □2Am ¼ �4π

c
Jm: (33)

The single compact matrix (Eq. (31)) is therefore equivalent to these four
potential wave equations.
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4. Dirac spacetime matrix equation

The nonrelativistic Schrödinger wave equation (see [10], pp. 143–146) plays a
fundamental role in quantum mechanical phenomena where the spin property of
nonrelativistic particles may be ignored. This equation is usually first met in modern
physics textbooks. However, when a particle with half-integer spin and/or moving
at relativistic speeds is involved, the relativistic Dirac equation [11] comes into play.

4.1 Dirac spacetime matrix equation for free space

Using the spacetime matrix operator M̂, the authors introduced in their most
recent publication [1] a modified version of the traditional Dirac equation, referred
to as the Dirac spacetime matrix equation. In the absence of electromagnetic poten-
tials [11], the Dirac spacetime matrix equation for free space is given by
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The compact matrix form of Eq. (34) is given by

M̂∣ϕi þ κ∣ϕi ¼ ∣oi: (35)

The wave function ∣ϕi is an eight-by-one ket vector containing, in general, six
nonzero scalar components associated with two vector quantities U ¼ U1 U2 U3ð Þ
and L ¼ L1 L2 L3ð Þ. The elements (4,1) and (8,1) in ∣ϕi have purposely been set
equal to zero. The case when these two elements are nonzero will also be considered
when the generalized spacetime matrix equation for free space is discussed later in
this chapter. The ket vector ∣oi represents the eight-by-one null vector. The con-
stant κ is defined by

κ � moc=ℏ: (36)

Here mo represents the rest mass of the matter-wave particle under consider-
ation, c again is the speed of light in free space, and ℏ is equal to the Planck constant
h divided by 2π.

The Dirac spacetime matrix equation (34) when expanded is equivalent to eight
partial differential equations. These eight equations can be rewritten as two diver-
gence and two curl equations [1], namely,

∇ �U ¼ 0 and ∇ � L ¼ 0 (37)

∇�U ¼ � 1
c
∂

∂t
L� iκL and ∇� L ¼ þ 1

c
∂

∂t
U� iκU: (38)

We refer to these equations as the Dirac spacetime vector equations for free
space. It is noted that these equations resemble the four Maxwell field equations for
free space in the absence of charge, current, and ordinary matter terms.
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The simplest solutions of these vector equations are time-harmonic plane-wave
solutions of the form

U r; tð Þ ¼ Uo exp i p � r� Etð Þ=ℏf g and L r; tð Þ ¼ Lo exp i p � r� Etð Þ=ℏf g: (39)

The quantities p and E correspond to the linear momentum and the total energy
of the associated matter-wave particle; r and t represent the position vector and the
instantaneous time. For particles with nonzero rest mass mo, the following special
theory of relativity equations (see [10], pp. 21–25) may also be useful:

E ¼ γmoc2 p ¼ γmov where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

q
β ¼ v=c: (40)

The quantities γ and β are known as the Lorentz factor and the speed parameter,
respectively. The symbol v represents the relativistic speed of the matter-wave
particle. Substitution of the preceding time-harmonic plane-wave solutions back
into the Dirac spacetime vector equations yield the following set of vector equations
for matter waves:

pc �Uo ¼ 0 and pc � Lo ¼ 0 (41)

pc� Uo ¼ þE
γ � 1ð Þ
γ

Lo and pc� Lo ¼ �E
γ þ 1ð Þ
γ

Uo: (42)

From the previous equations we find the three vectors Uo, Lo, and pc are
mutually perpendicular. That is,

pc⊥Uo Uo ⊥Lo pc⊥Lo (43)

These properties represent transverse waves. In addition, we also obtain the
important result:

γ þ 1ð Þ U2
o ¼ γ � 1ð Þ L2

o: (44)

The magnitudes of the vectors Uo and Lo are related through the Lorentz factor
γ, which depends on the speed parameter β, which ultimately depends on the speed
v of the nonzero rest-mass particle. Note, for γ much greater than unity, character-
istic of a relativistic particle, the magnitudes of the vectors Uo and Lo are nearly
equal. On the other hand, for γ close to unity, characteristic of a nonrelativistic
particle, the magnitude of the vector Lo is much greater than the magnitude of the
vector Uo. One other important result is

E2 ¼ p2c2 þm2
oc

4 which implies E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

oc4
q

: (45)

The � sign is associated with the quantum mechanical energy E of a matter-
wave particle, like a half-integer spin electron. This was first interpreted by Paul A.
M. Dirac. He recognized the negative energy levels predicted by his relativistic
equation could not be ignored. This led to his concept of a hole theory of positrons.
For a detailed discussion on negative energy states (see [11]).

4.2 Klein-Gordon spacetime matrix equation

The Klein-Gordon equation (see [12], pp. 118–129) is yet another quantum
mechanical relativistic equation which is the field equation of the quanta associated
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with spin-less (spin-0) particles. An example of a spin-less particle is the recently
discovered Higgs boson.

A version of the Klein-Gordon equation can be easily derived by simply starting
with the compact matrix form of the Dirac spacetime matrix equation for free
space, namely, Eq. (35). Multiply both sides by the spacetime matrix operator M̂.
This gives

M̂M̂∣ϕi þ κM̂∣ϕi ¼ ∣oi: (46)

Next replace the term M̂∣ϕi with �κ∣ϕi using Eq. (35). We obtain

M̂M̂∣ϕi � κ2∣ϕi ¼ ∣oi: (47)

We refer to this equation as the Klein-Gordon spacetime matrix equation for
free space. Using the fourth property of the spacetime matrix operator M̂, it can be
easily shown that Eq. (47) is equivalent to the following two equations involving the
vectors U and L:

□2U� κ2U ¼ 0 and □2L� κ2L ¼ 0: (48)

Therefore, the vectors U and L also satisfy Klein-Gordon type equations.

5. Generalized spacetime matrix equation

In this section, we will introduce for the first time a new matrix equation where
again the spacetime operator M̂ plays a central role. We will refer to this equation as
the generalized spacetime matrix equation for free space.

5.1 Big unanswered questions and mysteries in physics and astronomy

The number of unanswered questions and mysteries regarding the universe
from the smallest to the largest, in the fields of physics and astronomy, is
unimaginable. There are many references, too numerous to list here, which address
this topic. However, an excellent comprehensive list of unsolved problems in phys-
ics appears in [13] for various broad areas of physics. These areas include general
physics, quantum physics, cosmology, general relativity, quantum gravity, high-
energy physics, particle physics, astronomy, astrophysics, nuclear physics, atomic
physics, molecular physics, optical physics, classical mechanics, condensed matter
physics, plasma physics, and biophysics. The following is a partial list of some of the
most important questions and mysteries being addressed today by physicists and
astronomers around the globe:

How did the universe begin and what is the ultimate fate of the universe?
Is the universe infinite or just very big?
Why is there more matter than antimatter in the universe?
What came before the big bang?
Why are the galaxies distributed in clumps and filaments?
Are there additional dimensions?
Is spacetime fundamentally continuous or discrete?
How can we create a quantum theory of gravity?
What is dark energy and dark matter?
Do dark gravity, dark charge, and dark antimatter exist?
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The simplest solutions of these vector equations are time-harmonic plane-wave
solutions of the form
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of the associated matter-wave particle; r and t represent the position vector and the
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The quantities γ and β are known as the Lorentz factor and the speed parameter,
respectively. The symbol v represents the relativistic speed of the matter-wave
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These properties represent transverse waves. In addition, we also obtain the
important result:
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The magnitudes of the vectors Uo and Lo are related through the Lorentz factor
γ, which depends on the speed parameter β, which ultimately depends on the speed
v of the nonzero rest-mass particle. Note, for γ much greater than unity, character-
istic of a relativistic particle, the magnitudes of the vectors Uo and Lo are nearly
equal. On the other hand, for γ close to unity, characteristic of a nonrelativistic
particle, the magnitude of the vector Lo is much greater than the magnitude of the
vector Uo. One other important result is
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4 which implies E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2

oc4
q

: (45)

The � sign is associated with the quantum mechanical energy E of a matter-
wave particle, like a half-integer spin electron. This was first interpreted by Paul A.
M. Dirac. He recognized the negative energy levels predicted by his relativistic
equation could not be ignored. This led to his concept of a hole theory of positrons.
For a detailed discussion on negative energy states (see [11]).
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The Klein-Gordon equation (see [12], pp. 118–129) is yet another quantum
mechanical relativistic equation which is the field equation of the quanta associated
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with spin-less (spin-0) particles. An example of a spin-less particle is the recently
discovered Higgs boson.

A version of the Klein-Gordon equation can be easily derived by simply starting
with the compact matrix form of the Dirac spacetime matrix equation for free
space, namely, Eq. (35). Multiply both sides by the spacetime matrix operator M̂.
This gives

M̂M̂∣ϕi þ κM̂∣ϕi ¼ ∣oi: (46)

Next replace the term M̂∣ϕi with �κ∣ϕi using Eq. (35). We obtain

M̂M̂∣ϕi � κ2∣ϕi ¼ ∣oi: (47)

We refer to this equation as the Klein-Gordon spacetime matrix equation for
free space. Using the fourth property of the spacetime matrix operator M̂, it can be
easily shown that Eq. (47) is equivalent to the following two equations involving the
vectors U and L:

□2U� κ2U ¼ 0 and □2L� κ2L ¼ 0: (48)

Therefore, the vectors U and L also satisfy Klein-Gordon type equations.

5. Generalized spacetime matrix equation

In this section, we will introduce for the first time a new matrix equation where
again the spacetime operator M̂ plays a central role. We will refer to this equation as
the generalized spacetime matrix equation for free space.

5.1 Big unanswered questions and mysteries in physics and astronomy

The number of unanswered questions and mysteries regarding the universe
from the smallest to the largest, in the fields of physics and astronomy, is
unimaginable. There are many references, too numerous to list here, which address
this topic. However, an excellent comprehensive list of unsolved problems in phys-
ics appears in [13] for various broad areas of physics. These areas include general
physics, quantum physics, cosmology, general relativity, quantum gravity, high-
energy physics, particle physics, astronomy, astrophysics, nuclear physics, atomic
physics, molecular physics, optical physics, classical mechanics, condensed matter
physics, plasma physics, and biophysics. The following is a partial list of some of the
most important questions and mysteries being addressed today by physicists and
astronomers around the globe:

How did the universe begin and what is the ultimate fate of the universe?
Is the universe infinite or just very big?
Why is there more matter than antimatter in the universe?
What came before the big bang?
Why are the galaxies distributed in clumps and filaments?
Are there additional dimensions?
Is spacetime fundamentally continuous or discrete?
How can we create a quantum theory of gravity?
What is dark energy and dark matter?
Do dark gravity, dark charge, and dark antimatter exist?
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What happens inside a black hole and do naked singularities exist?
Why does time seem to flow only in one direction?
Is time travel really possible?
Is string theory or M-theory a viable theory of everything?
What kind of physics underlies the standard model?
Are there really just three generations of leptons and quarks?
Do gravitons exist?
Are protons unstable?
Do magnetic monopoles exist?
What are the masses of neutrinos?
Do the quarks or leptons have any substructure?
Do tachyons exist and can information travel faster than light?
Why do the particles have the precise masses they do?
Do fundamental physical constants vary over time?
Why are the strengths of the fundamental forces what they are?
Do parallel universes exist and is there a multiverse?
Was our spatially 3-D universe formed out of a vacuum by a 2-D hologram?
Was the hologram formed by a flow of information? If so, what form?
Does pair production formed, spontaneously, out of a vacuum?
Are they likewise formed out of a flow of information?
Do life processes, such as ion flows through cell membranes, form likewise as
flows of information?

As we can see, even with all of the discoveries made over the past several
hundred years, there is so much we do not understand and so much yet to be
discovered about our universe and possibly beyond.

So far we have described the first seven compact matrix equations listed in
Table 1 where the spacetime matrix operator M̂ plays a fundamental role. We
found that each of these seven equations correspond to a variety of fundamental
equations, in both classical electrodynamics and relativistic quantum mechanics. In
the next subsection, we will discuss in detail the eighth compact matrix equation
listed in Table 1. This eighth equation is associated with a new matrix equation
which we will refer to as the generalized spacetime matrix equation for free space.
As we will see, there are several theoretical implications resulting from our study of
the generalized spacetime matrix equation which perhaps may be added as unan-
swered questions or mysteries to the preceding list.

5.2 Generalized spacetime matrix equation for free space

We define the generalized spacetime matrix equation for free space by the
following equation:

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666664

3
77777777777775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

þ κ

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

¼

0

0

0

0

0

0

0

0

2
66666666666664

3
77777777777775

: (49)
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The compact matrix form of Eq. (49) is given by

M̂∣ψi þ κ∣ψi ¼ ∣oi: (50)

This is the eighth compact matrix equation in Table 1. Note the similarity
between the generalized spacetime matrix equation for free space and the Dirac
spacetime matrix equation for free space (34) when κ ¼ moc=ℏ and the Maxwell
spacetime matrix equation for free space (9) when κ ¼ 0. In those equations we
purposely set the (4,1) and (8,1) elements in the ket vectors identically equal to zero.
Doing so allowed us to convert those matrix equations to vector equations (involving
three-dimensional vectors only) which are described in greater detail in [1].

In Eq. (49), we no longer restrict elements (4,1) and (8,1) to be equal to zero.
The wave function ∣ψi can be thought of as being composed of two four-
dimensional vectors Δ ¼ Δ1 Δ2 Δ3 Δ4ð Þ and Ω ¼ Ω1 Ω2 Ω3 Ω4ð Þ. The implications
by avoiding the earlier restrictions on elements (4,1) and (8,1) will be investigated
shortly. We will find some new predictions and surprises by removing these
restrictions.

5.3 Eigenvalue spacetime matrix equations

Our primary goal now is to determine the properties of time-harmonic
plane-wave solutions satisfying the generalized spacetime matrix (Eq. (49)) for free
space. The approach we will take is to cast Eq. (49) into an eigenvalue equation and
use the methods of linear algebra to determine the set of orthonormal eigenvectors
and corresponding eigenvalues satisfying this eigenvalue equation. (For an excel-
lent book on linear algebra and the solution of eigenvalue equations; see [14],
pp. 189–190.) For now let κ ¼ moc=ℏ, the same constant in the Dirac spacetime
matrix equation. Later on we will look at the special case when κ ¼ 0.

We first multiply Eq. (49) by the factor ℏcM4. The matrixM4 is the fourth of the
spacetime matrices first introduced in Eq. (3). After doing so, with minor algebraic
manipulation, we obtain the following matrix equation:

ℏc

�κ 0 0 0 0 þ∂3 �∂2 þ∂1

0 �κ 0 0 �∂3 0 þ∂1 þ∂2

0 0 �κ 0 þ∂2 �∂1 0 þ∂3

0 0 0 �κ �∂1 �∂2 �∂3 0

0 þ∂3 �∂2 þ∂1 þκ 0 0 0

�∂3 0 þ∂1 þ∂2 0 þκ 0 0

þ∂2 �∂1 0 þ∂3 0 0 þκ 0

�∂1 �∂2 �∂3 0 0 0 0 þκ

2
66666666666664

3
77777777777775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

¼ iℏ
∂

∂t

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

: (51)

The compact matrix form of this equation is given by

Ĥ∣ψi ¼ iℏ
∂

∂t
∣ψi: (52)

This equation has the same identical form as the nonrelativistic Schrödinger
equation (see [12], pp. 118–129). However, the Hamiltonian matrix operator Ĥ is
entirely different. This equation represents the canonical form of the generalized
spacetime matrix (Eq. (49)).
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What happens inside a black hole and do naked singularities exist?
Why does time seem to flow only in one direction?
Is time travel really possible?
Is string theory or M-theory a viable theory of everything?
What kind of physics underlies the standard model?
Are there really just three generations of leptons and quarks?
Do gravitons exist?
Are protons unstable?
Do magnetic monopoles exist?
What are the masses of neutrinos?
Do the quarks or leptons have any substructure?
Do tachyons exist and can information travel faster than light?
Why do the particles have the precise masses they do?
Do fundamental physical constants vary over time?
Why are the strengths of the fundamental forces what they are?
Do parallel universes exist and is there a multiverse?
Was our spatially 3-D universe formed out of a vacuum by a 2-D hologram?
Was the hologram formed by a flow of information? If so, what form?
Does pair production formed, spontaneously, out of a vacuum?
Are they likewise formed out of a flow of information?
Do life processes, such as ion flows through cell membranes, form likewise as
flows of information?

As we can see, even with all of the discoveries made over the past several
hundred years, there is so much we do not understand and so much yet to be
discovered about our universe and possibly beyond.

So far we have described the first seven compact matrix equations listed in
Table 1 where the spacetime matrix operator M̂ plays a fundamental role. We
found that each of these seven equations correspond to a variety of fundamental
equations, in both classical electrodynamics and relativistic quantum mechanics. In
the next subsection, we will discuss in detail the eighth compact matrix equation
listed in Table 1. This eighth equation is associated with a new matrix equation
which we will refer to as the generalized spacetime matrix equation for free space.
As we will see, there are several theoretical implications resulting from our study of
the generalized spacetime matrix equation which perhaps may be added as unan-
swered questions or mysteries to the preceding list.

5.2 Generalized spacetime matrix equation for free space

We define the generalized spacetime matrix equation for free space by the
following equation:

�∂4 0 0 0 0 �∂3 þ∂2 �∂1

0 �∂4 0 0 þ∂3 0 �∂1 �∂2

0 0 �∂4 0 �∂2 þ∂1 0 �∂3

0 0 0 �∂4 þ∂1 þ∂2 þ∂3 0

0 þ∂3 �∂2 þ∂1 þ∂4 0 0 0

�∂3 0 þ∂1 þ∂2 0 þ∂4 0 0

þ∂2 �∂1 0 þ∂3 0 0 þ∂4 0

�∂1 �∂2 �∂3 0 0 0 0 þ∂4

2
66666666666664

3
77777777777775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

þ κ

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

¼

0

0

0

0

0

0

0

0

2
66666666666664

3
77777777777775

: (49)
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The compact matrix form of Eq. (49) is given by

M̂∣ψi þ κ∣ψi ¼ ∣oi: (50)

This is the eighth compact matrix equation in Table 1. Note the similarity
between the generalized spacetime matrix equation for free space and the Dirac
spacetime matrix equation for free space (34) when κ ¼ moc=ℏ and the Maxwell
spacetime matrix equation for free space (9) when κ ¼ 0. In those equations we
purposely set the (4,1) and (8,1) elements in the ket vectors identically equal to zero.
Doing so allowed us to convert those matrix equations to vector equations (involving
three-dimensional vectors only) which are described in greater detail in [1].

In Eq. (49), we no longer restrict elements (4,1) and (8,1) to be equal to zero.
The wave function ∣ψi can be thought of as being composed of two four-
dimensional vectors Δ ¼ Δ1 Δ2 Δ3 Δ4ð Þ and Ω ¼ Ω1 Ω2 Ω3 Ω4ð Þ. The implications
by avoiding the earlier restrictions on elements (4,1) and (8,1) will be investigated
shortly. We will find some new predictions and surprises by removing these
restrictions.

5.3 Eigenvalue spacetime matrix equations

Our primary goal now is to determine the properties of time-harmonic
plane-wave solutions satisfying the generalized spacetime matrix (Eq. (49)) for free
space. The approach we will take is to cast Eq. (49) into an eigenvalue equation and
use the methods of linear algebra to determine the set of orthonormal eigenvectors
and corresponding eigenvalues satisfying this eigenvalue equation. (For an excel-
lent book on linear algebra and the solution of eigenvalue equations; see [14],
pp. 189–190.) For now let κ ¼ moc=ℏ, the same constant in the Dirac spacetime
matrix equation. Later on we will look at the special case when κ ¼ 0.

We first multiply Eq. (49) by the factor ℏcM4. The matrixM4 is the fourth of the
spacetime matrices first introduced in Eq. (3). After doing so, with minor algebraic
manipulation, we obtain the following matrix equation:

ℏc

�κ 0 0 0 0 þ∂3 �∂2 þ∂1

0 �κ 0 0 �∂3 0 þ∂1 þ∂2

0 0 �κ 0 þ∂2 �∂1 0 þ∂3

0 0 0 �κ �∂1 �∂2 �∂3 0

0 þ∂3 �∂2 þ∂1 þκ 0 0 0

�∂3 0 þ∂1 þ∂2 0 þκ 0 0

þ∂2 �∂1 0 þ∂3 0 0 þκ 0

�∂1 �∂2 �∂3 0 0 0 0 þκ

2
66666666666664

3
77777777777775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

¼ iℏ
∂

∂t

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

: (51)

The compact matrix form of this equation is given by

Ĥ∣ψi ¼ iℏ
∂

∂t
∣ψi: (52)

This equation has the same identical form as the nonrelativistic Schrödinger
equation (see [12], pp. 118–129). However, the Hamiltonian matrix operator Ĥ is
entirely different. This equation represents the canonical form of the generalized
spacetime matrix (Eq. (49)).
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For time-harmonic plane-wave solutions, the ket vector ∣ψimay be expressed as

∣ψi ¼ ∣ψoi exp þi p � r� Etð Þ=ℏ½ �: (53)

Again the quantities p and E correspond to the linear momentum vector and the
total energy; r and t represent the position vector and the instantaneous time. After
substituting the eight-by-one ket vector ∣ψi back into Eq. (51), we obtain the
following eigenvalue equation:

pc

�μ 0 0 0 0 þiα3 �iα2 þiα1
0 �μ 0 0 �iα3 0 þiα1 þiα2
0 0 �μ 0 þiα2 �iα1 0 þiα3
0 0 0 �μ �iα1 �iα2 �iα3 0

0 þiα3 �iα2 þiα1 þμ 0 0 0

�iα3 0 þiα1 þiα2 0 þμ 0 0

þiα2 �iα1 0 þiα3 0 0 þμ 0

�iα1 �iα2 �iα3 0 0 0 0 þμ

2
66666666666664

3
77777777777775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

¼ E

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

: (54)

We will refer to Eq. (54) as the eigenvalue spacetime matrix equation. The
compact matrix form of Eq. (54) is represented by

H∣ψi ¼ E∣ψi: (55)

The eight-by-eight matrix H is Hermitian which implies the eigenvalues E are
real (see [14], p. 222). The following equations define various quantities appearing
in Eq. (54):

μ � moc2=pc and p � p α1 α2 α3ð Þ: (56)

The quantity p is the magnitude of the linear momentum vector p, and α1, α2, α3
represent the direction cosines, associated with the direction of the linear momen-
tum vector p.

5.4 Wave propagation along the +z direction for κ ¼ moc=ℏ

Without loss of generality, let us consider matter-wave propagation along the +z
direction, that is,

p ¼ p 0 0 1ð Þ: (57)

Eq. (54) reduces to the following simplified form:

�Eo 0 0 0 0 þipc 0 0

0 �Eo 0 0 �ipc 0 0 0

0 0 �Eo 0 0 0 0 þipc
0 0 0 �Eo 0 0 �ipc 0

0 þipc 0 0 þEo 0 0 0

�ipc 0 0 0 0 þEo 0 0

0 0 0 þipc 0 0 þEo 0

0 0 �ipc 0 0 0 0 þEo

2
66666666666664

3
77777777777775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

¼ E

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

(58)
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where

Eo � moc2: (59)

The matrix in Eq. (58) is an eight-by-eight square matrix. A compact matrix
version of Eq. (58) may be expressed as follows:

H∣ψni ¼ En∣ψni n ¼ 1, 2, 3, :::8: (60)

At this point we are now in a position to determine eight eigenvectors ∣ψni and
the corresponding eigenvalues En satisfying the eigenvalue (Eq. (58)). We chose to
use the matrix software program MATLAB [15] for determining the eigenvalues
and eigenvectors. As it turns out, there are only two unique eigenvalues given by

Eþ ¼ þE and E� ¼ �E where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
o þ p2c2

q
: (61)

From the special theory of relativity (see [10], pp. 21–25), the following relations
may also be of use:

E ¼ γEo p ¼ γmov pc ¼ γβEo γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

q
β ¼ v=c: (62)

As before, γ and β are referred to as the Lorentz factor and speed parameter,
respectively. For each of the two eigenvalues, there are four unique eigenvectors.
The eight eigenvectors ∣ψni form an orthonormal set, that is,

ψmjψnh i ¼ δmn: (63)

The symbol δmn represents the Kronecker delta. In Table 2 is a summary of the
eigenvalues and orthonormal eigenvectors satisfying the eigenvalue spacetime
matrix (Eq. (58)).

The constants a and b appearing in Table 2 are defined by

a �
ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffi
γ þ 1
γ

s
a2 þ b2 ¼ 1 b �

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffi
γ � 1
γ

s
: (64)

Inspection of the contents of Table 2 reveals the following important results:

1. ∣ψ1i and ∣ψ2i represent transverse waves with positive energy þγEo.

2. ∣ψ3i and ∣ψ4i represent transverse waves with negative energy �γEo.

3. ∣ψ5i and ∣ψ6i represent non-transverse waves with positive energy þγEo.

4.∣ψ7i and ∣ψ8i represent non-transverse waves with negative energy �γEo.

For wave propagation in the +z direction, the transverse waves have eigenvector
solutions ∣ψi where elements (3,1), (4,1), (7,1), and (8,1) are identically equal to
zero. In other words, Δ ¼ Δ1 Δ2 0 0ð Þ and Ω ¼ Ω1 Ω2 0 0ð Þ. For this case, Δ1, Δ2

and Ω1, Ω2 correspond to the x and y components. Thus, for wave propagation in
the +z direction, the transverse wave solutions only have x and y vector components
characteristic of a transverse wave in three dimensions.

29

Eight-by-Eight Spacetime Matrix Operator and Its Applications
DOI: http://dx.doi.org/10.5772/intechopen.86982



For time-harmonic plane-wave solutions, the ket vector ∣ψimay be expressed as

∣ψi ¼ ∣ψoi exp þi p � r� Etð Þ=ℏ½ �: (53)

Again the quantities p and E correspond to the linear momentum vector and the
total energy; r and t represent the position vector and the instantaneous time. After
substituting the eight-by-one ket vector ∣ψi back into Eq. (51), we obtain the
following eigenvalue equation:

pc

�μ 0 0 0 0 þiα3 �iα2 þiα1
0 �μ 0 0 �iα3 0 þiα1 þiα2
0 0 �μ 0 þiα2 �iα1 0 þiα3
0 0 0 �μ �iα1 �iα2 �iα3 0

0 þiα3 �iα2 þiα1 þμ 0 0 0

�iα3 0 þiα1 þiα2 0 þμ 0 0

þiα2 �iα1 0 þiα3 0 0 þμ 0

�iα1 �iα2 �iα3 0 0 0 0 þμ

2
66666666666664

3
77777777777775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

¼ E

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

: (54)

We will refer to Eq. (54) as the eigenvalue spacetime matrix equation. The
compact matrix form of Eq. (54) is represented by

H∣ψi ¼ E∣ψi: (55)

The eight-by-eight matrix H is Hermitian which implies the eigenvalues E are
real (see [14], p. 222). The following equations define various quantities appearing
in Eq. (54):

μ � moc2=pc and p � p α1 α2 α3ð Þ: (56)

The quantity p is the magnitude of the linear momentum vector p, and α1, α2, α3
represent the direction cosines, associated with the direction of the linear momen-
tum vector p.

5.4 Wave propagation along the +z direction for κ ¼ moc=ℏ

Without loss of generality, let us consider matter-wave propagation along the +z
direction, that is,

p ¼ p 0 0 1ð Þ: (57)

Eq. (54) reduces to the following simplified form:

�Eo 0 0 0 0 þipc 0 0

0 �Eo 0 0 �ipc 0 0 0

0 0 �Eo 0 0 0 0 þipc
0 0 0 �Eo 0 0 �ipc 0

0 þipc 0 0 þEo 0 0 0

�ipc 0 0 0 0 þEo 0 0

0 0 0 þipc 0 0 þEo 0

0 0 �ipc 0 0 0 0 þEo

2
66666666666664

3
77777777777775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

¼ E

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

(58)
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where

Eo � moc2: (59)

The matrix in Eq. (58) is an eight-by-eight square matrix. A compact matrix
version of Eq. (58) may be expressed as follows:

H∣ψni ¼ En∣ψni n ¼ 1, 2, 3, :::8: (60)

At this point we are now in a position to determine eight eigenvectors ∣ψni and
the corresponding eigenvalues En satisfying the eigenvalue (Eq. (58)). We chose to
use the matrix software program MATLAB [15] for determining the eigenvalues
and eigenvectors. As it turns out, there are only two unique eigenvalues given by

Eþ ¼ þE and E� ¼ �E where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
o þ p2c2

q
: (61)

From the special theory of relativity (see [10], pp. 21–25), the following relations
may also be of use:

E ¼ γEo p ¼ γmov pc ¼ γβEo γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

q
β ¼ v=c: (62)

As before, γ and β are referred to as the Lorentz factor and speed parameter,
respectively. For each of the two eigenvalues, there are four unique eigenvectors.
The eight eigenvectors ∣ψni form an orthonormal set, that is,

ψmjψnh i ¼ δmn: (63)

The symbol δmn represents the Kronecker delta. In Table 2 is a summary of the
eigenvalues and orthonormal eigenvectors satisfying the eigenvalue spacetime
matrix (Eq. (58)).

The constants a and b appearing in Table 2 are defined by

a �
ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffi
γ þ 1
γ

s
a2 þ b2 ¼ 1 b �

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffi
γ � 1
γ

s
: (64)

Inspection of the contents of Table 2 reveals the following important results:

1. ∣ψ1i and ∣ψ2i represent transverse waves with positive energy þγEo.

2. ∣ψ3i and ∣ψ4i represent transverse waves with negative energy �γEo.

3. ∣ψ5i and ∣ψ6i represent non-transverse waves with positive energy þγEo.

4.∣ψ7i and ∣ψ8i represent non-transverse waves with negative energy �γEo.

For wave propagation in the +z direction, the transverse waves have eigenvector
solutions ∣ψi where elements (3,1), (4,1), (7,1), and (8,1) are identically equal to
zero. In other words, Δ ¼ Δ1 Δ2 0 0ð Þ and Ω ¼ Ω1 Ω2 0 0ð Þ. For this case, Δ1, Δ2

and Ω1, Ω2 correspond to the x and y components. Thus, for wave propagation in
the +z direction, the transverse wave solutions only have x and y vector components
characteristic of a transverse wave in three dimensions.
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On the other hand, for wave propagation in the +z direction, the non-transverse
waves have eigenvector solutions ∣ψi where elements (1,1), (2,1), (5,1), and (6,1)
are identically equal to zero. That is to say, Δ ¼ 0 0 Δ3 Δ4ð Þ and Ω ¼ 0 0 Ω3 Ω4ð Þ.
This implies, Δ3 and Ω3 represent z-components. Δ4 and Ω4 represent the fourth
components (unknown origin) in a four-dimensional space. Thus, for wave propa-
gation in the +z direction, the non-transverse wave solutions have a z vector com-
ponent (longitudinal in nature) and a fourth vector component (neither transverse
nor longitudinal in nature, perhaps a “time” component) of a non-transverse wave
in four dimensions.

5.5 Traditional Dirac equation

The authors, in their most recent publication [1], indicated solutions of their
Dirac spacetime matrix equation for free space could be mapped into solutions
satisfying the traditional Dirac matrix equation. We wish to explore this in greater
detail. The traditional Dirac equation, in the absence of electromagnetic potential
terms, is given by

þ∂4 0 �i∂3 �∂2 � i∂1
0 þ∂4 þ∂2 � i∂1 þi∂3

þi∂3 þ∂2 þ i∂1 �∂4 0

�∂2 þ i∂1 �i∂3 0 �∂4

2
6664

3
7775

Σ1

Σ2

Σ3

Σ4

2
6664

3
7775þ κ

Σ1

Σ2

Σ3

Σ4

2
6664

3
7775 ¼

0

0

0

0

2
6664

3
7775 (65)

This equation corresponds to the special case employing the Dirac representa-
tion (see [12], pp. 694–706) for details. The compact matrix form of Eq. (65) is
given by

D̂∣σi þ κ∣σi ¼ ∣oi: (66)

The Dirac matrix operator D̂ represents the four-by-four matrix operator on
the left-hand side of Eq. (65), ∣σi is the four-by-one ket vector appearing twice

En E1 E2 E3 E4 E5 E6 E7 E8

E +γEo +γEo �γEo �γEo +γEo +γEo �γEo �γEo

∣ψni ∣ψ1i ∣ψ2i ∣ψ3i ∣ψ4i ∣ψ5i ∣ψ6i ∣ψ7i ∣ψ8i

Δ1 0 +b 0 +a 0 0 0 0

Δ2 +ib 0 +ia 0 0 0 0 0

Δ3 0 0 0 0 +b 0 +a 0

Δ4 0 0 0 0 0 +ib 0 +ia

Ω1 �a 0 +b 0 0 0 0 0

Ω2 0 �ia 0 +ib 0 0 0 0

Ω3 0 0 0 0 0 �a 0 +b

Ω4 0 0 0 0 �ia 0 +ib 0

Table 2.
Eigenvalues and orthonormal eigenvectors associated with the generalized spacetime matrix equation for wave
propagation in the +z direction when κ ¼ moc=ℏ.
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on the left-hand side, and ∣oi is the four-by-one null ket vector appearing on the
right-hand side. For time-harmonic plane-wave solutions, the ket vector ∣σi may be
expressed as

∣σi ¼ ∣σoi exp þi p � r� Etð Þ=ℏ½ �: (67)

Substituting this time-harmonic plane-wave solution back into the traditional
Dirac equation (65) ultimately leads to the corresponding eigenvalue equation:

pc

þμ 0 þα3 �iα2 þ α1

0 þμ þiα2 þ α1 �α3

þα3 �iα2 þ α1 �μ 0

þiα2 þ α1 �α3 0 �μ

2
666664

3
777775

Σ1

Σ2

Σ3

Σ4

2
666664

3
777775
¼ E

Σ1

Σ2

Σ3

Σ4

2
666664

3
777775
: (68)

For the special case of wave propagation in the +z direction, the preceding
eigenvalue equation reduces to the following simplified form:

þEo 0 þpc 0

0 þEo 0 �pc

þpc 0 �Eo 0

0 �pc 0 �Eo

2
666664

3
777775

Σ1

Σ2

Σ3

Σ4

2
666664

3
777775
¼ E

Σ1

Σ2

Σ3

Σ4

2
666664

3
777775
: (69)

Again using the matrix software MATLAB, the four orthonormal eigenvectors
and corresponding eigenvalues satisfying Eq. (69) are listed in the Table 3.

The quantities a and b appearing in Table 3 are defined by

a �
ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffi
γ þ 1
γ

s
a2 þ b2 ¼ 1 b �

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffi
γ � 1
γ

s
: (70)

Note, the quantities a and b appearing in the traditional Dirac equation eigen-
vectors listed in Table 3 are the same a and b quantities appearing in the generalized
spacetime matrix equation eigenvectors listed in Table 2 for κ ¼ moc=ℏ.

En E1 E2 E3 E4

E þγEo þγEo �γEo �γEo

∣σni ∣σ1i ∣σ2i ∣σ3i ∣σ4i

Σ1 �
ffiffi
2

p

2 a �
ffiffi
2

p

2 a þ
ffiffi
2

p

2 b þ
ffiffi
2

p

2 b

Σ2 �
ffiffi
2

p

2 a þ
ffiffi
2

p

2 a þ
ffiffi
2

p

2 b �
ffiffi
2

p

2 b

Σ3 �
ffiffi
2

p

2 b �
ffiffi
2

p

2 b �
ffiffi
2

p

2 a �
ffiffi
2

p

2 a

Σ4 þ
ffiffi
2

p

2 b �
ffiffi
2

p

2 b þ
ffiffi
2

p

2 a �
ffiffi
2

p

2 a

Table 3.
Eigenvalues and orthonormal eigenvectors associated with the traditional Dirac equation for wave propagation
in the +z direction when κ ¼ moc=ℏ.
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On the other hand, for wave propagation in the +z direction, the non-transverse
waves have eigenvector solutions ∣ψi where elements (1,1), (2,1), (5,1), and (6,1)
are identically equal to zero. That is to say, Δ ¼ 0 0 Δ3 Δ4ð Þ and Ω ¼ 0 0 Ω3 Ω4ð Þ.
This implies, Δ3 and Ω3 represent z-components. Δ4 and Ω4 represent the fourth
components (unknown origin) in a four-dimensional space. Thus, for wave propa-
gation in the +z direction, the non-transverse wave solutions have a z vector com-
ponent (longitudinal in nature) and a fourth vector component (neither transverse
nor longitudinal in nature, perhaps a “time” component) of a non-transverse wave
in four dimensions.

5.5 Traditional Dirac equation

The authors, in their most recent publication [1], indicated solutions of their
Dirac spacetime matrix equation for free space could be mapped into solutions
satisfying the traditional Dirac matrix equation. We wish to explore this in greater
detail. The traditional Dirac equation, in the absence of electromagnetic potential
terms, is given by

þ∂4 0 �i∂3 �∂2 � i∂1
0 þ∂4 þ∂2 � i∂1 þi∂3

þi∂3 þ∂2 þ i∂1 �∂4 0

�∂2 þ i∂1 �i∂3 0 �∂4

2
6664

3
7775

Σ1

Σ2

Σ3

Σ4

2
6664

3
7775þ κ

Σ1

Σ2

Σ3

Σ4

2
6664

3
7775 ¼

0

0

0

0

2
6664

3
7775 (65)

This equation corresponds to the special case employing the Dirac representa-
tion (see [12], pp. 694–706) for details. The compact matrix form of Eq. (65) is
given by

D̂∣σi þ κ∣σi ¼ ∣oi: (66)

The Dirac matrix operator D̂ represents the four-by-four matrix operator on
the left-hand side of Eq. (65), ∣σi is the four-by-one ket vector appearing twice

En E1 E2 E3 E4 E5 E6 E7 E8

E +γEo +γEo �γEo �γEo +γEo +γEo �γEo �γEo

∣ψni ∣ψ1i ∣ψ2i ∣ψ3i ∣ψ4i ∣ψ5i ∣ψ6i ∣ψ7i ∣ψ8i

Δ1 0 +b 0 +a 0 0 0 0

Δ2 +ib 0 +ia 0 0 0 0 0

Δ3 0 0 0 0 +b 0 +a 0

Δ4 0 0 0 0 0 +ib 0 +ia

Ω1 �a 0 +b 0 0 0 0 0

Ω2 0 �ia 0 +ib 0 0 0 0

Ω3 0 0 0 0 0 �a 0 +b

Ω4 0 0 0 0 �ia 0 +ib 0

Table 2.
Eigenvalues and orthonormal eigenvectors associated with the generalized spacetime matrix equation for wave
propagation in the +z direction when κ ¼ moc=ℏ.
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on the left-hand side, and ∣oi is the four-by-one null ket vector appearing on the
right-hand side. For time-harmonic plane-wave solutions, the ket vector ∣σi may be
expressed as

∣σi ¼ ∣σoi exp þi p � r� Etð Þ=ℏ½ �: (67)

Substituting this time-harmonic plane-wave solution back into the traditional
Dirac equation (65) ultimately leads to the corresponding eigenvalue equation:

pc

þμ 0 þα3 �iα2 þ α1

0 þμ þiα2 þ α1 �α3

þα3 �iα2 þ α1 �μ 0

þiα2 þ α1 �α3 0 �μ

2
666664

3
777775

Σ1

Σ2

Σ3

Σ4

2
666664

3
777775
¼ E

Σ1

Σ2

Σ3

Σ4

2
666664

3
777775
: (68)

For the special case of wave propagation in the +z direction, the preceding
eigenvalue equation reduces to the following simplified form:

þEo 0 þpc 0

0 þEo 0 �pc

þpc 0 �Eo 0

0 �pc 0 �Eo

2
666664

3
777775

Σ1

Σ2

Σ3

Σ4

2
666664

3
777775
¼ E

Σ1

Σ2

Σ3

Σ4

2
666664

3
777775
: (69)

Again using the matrix software MATLAB, the four orthonormal eigenvectors
and corresponding eigenvalues satisfying Eq. (69) are listed in the Table 3.

The quantities a and b appearing in Table 3 are defined by

a �
ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffi
γ þ 1
γ

s
a2 þ b2 ¼ 1 b �

ffiffiffi
2

p

2

ffiffiffiffiffiffiffiffiffiffiffi
γ � 1
γ

s
: (70)

Note, the quantities a and b appearing in the traditional Dirac equation eigen-
vectors listed in Table 3 are the same a and b quantities appearing in the generalized
spacetime matrix equation eigenvectors listed in Table 2 for κ ¼ moc=ℏ.

En E1 E2 E3 E4

E þγEo þγEo �γEo �γEo

∣σni ∣σ1i ∣σ2i ∣σ3i ∣σ4i

Σ1 �
ffiffi
2

p

2 a �
ffiffi
2

p

2 a þ
ffiffi
2

p

2 b þ
ffiffi
2

p

2 b

Σ2 �
ffiffi
2

p

2 a þ
ffiffi
2

p

2 a þ
ffiffi
2

p

2 b �
ffiffi
2

p

2 b

Σ3 �
ffiffi
2

p

2 b �
ffiffi
2

p

2 b �
ffiffi
2

p

2 a �
ffiffi
2

p

2 a

Σ4 þ
ffiffi
2

p

2 b �
ffiffi
2

p

2 b þ
ffiffi
2

p

2 a �
ffiffi
2

p

2 a

Table 3.
Eigenvalues and orthonormal eigenvectors associated with the traditional Dirac equation for wave propagation
in the +z direction when κ ¼ moc=ℏ.
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5.6 Linear transformation equation

For the special case of a matter wave traveling through free space in the + z
direction, we found the orthonormal set of eigenvectors and corresponding eigen-
values, for both the generalized spacetime matrix (Eq. (49)) and the traditional
Dirac equation (65), when κ ¼ moc=ℏ. These two sets of orthonormal eigenvectors
are related [1] through the following linear transformation matrix equation:

Σ1

Σ2

Σ3

Σ4

2
6664

3
7775 ¼

ffiffiffi
2

p

2

0 0 0 0 þ1 �i þ1 �i
0 0 0 0 þ1 þi �1 �i
�1 þi �1 þi 0 0 0 0

�1 �i þ1 þi 0 0 0 0

2
6664

3
7775

Δ1

Δ2

Δ3

Δ4

Ω1

Ω2

Ω3

Ω4

2
66666666666664

3
77777777777775

: (71)

The compact matrix form of Eq. (71) is given by

∣σi ¼ Z∣ψi: (72)

When we substitute each the eight eigenvectors ∣ψni from Table 2 back into
Eq. (71), we obtain the following results:

1. The four transverse eigenvectors in Table 2 map into the four eigenvectors in
Table 3:

∣σ1i ¼ Z∣ψ1i ∣σ2i ¼ Z∣ψ2i ∣σ3i ¼ Z∣ψ3i ∣σ4i ¼ Z∣ψ4i: (73)

2. The four non-transverse eigenvectors in Table 2 map into the same four
eigenvectors in Table 3:

∣σ1i ¼ Z∣ψ5i ∣σ2i ¼ Z∣ψ6i ∣σ3i ¼ Z∣ψ7i ∣σ4i ¼ Z∣ψ8i: (74)

Therefore, whether we use the four transverse eigenvector solutions or the
four non-transverse eigenvector solutions satisfying the generalized spacetime
matrix (Eq. (49)), the same four eigenvector solutions satisfying the traditional
Dirac equation (65) are obtained using Eq. (71). It is noted the four transverse
eigenvector solutions could have been obtained from the four Dirac vector
equations (37) and (38).

5.7 Wave propagation along the +z direction for κ=0

For the special case of wave propagation in the +z direction, when κ ¼ 0,
time-harmonic plane-wave solutions satisfying the generalized spacetime matrix
equation for free space (49) yield the set of eigenvectors and eigenvalues presented
in Table 4. The eight eigenvectors ∣ψni also form an orthonormal set, that is,

ψmjψnh i ¼ δmn: (75)
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The constants a and b appearing in Table 4 are now defined by

a �
ffiffiffi
2

p

2
a2 þ b2 ¼ 1 b �

ffiffiffi
2

p

2
(76)

Inspection of the contents of Table 4 reveals the following important results:

1. ∣ψ1i and ∣ψ2i represent transverse waves moving with speed þc.

2. ∣ψ3i and ∣ψ4i represent transverse waves moving with speed �c.

3. ∣ψ5i and ∣ψ6i represent non-transverse waves moving with speed þc.

4.∣ψ7i and ∣ψ8i represent non-transverse waves moving with speed �c.

For wave propagation in the +z direction, the transverse waves have eigenvector
solutions ∣ψi where elements (3,1), (4,1), (7,1), and (8,1) are identically equal to
zero. In other words, Δ ¼ Δ1 Δ2 0 0ð Þ and Ω ¼ Ω1 Ω2 0 0ð Þ. For this case, Δ1, Δ2

and Ω1, Ω2 correspond to the x and y components. Thus, for wave propagation in
the +z direction, the transverse wave solutions only have x and y vector compo-
nents, characteristic of a transverse wave in three dimensions. Only those waves
propagating at a speed in free space of +c represent real electromagnetic waves.

On the other hand, for wave propagation in the +z direction, the non-transverse
waves have eigenvector solutions ∣ψi where elements (1,1), (2,1), (5,1), and (6,1)
are identically equal to zero. That is to say, Δ ¼ 0 0 Δ3 Δ4ð Þ and Ω ¼ 0 0 Ω3 Ω4ð Þ.
This implies, Δ3 and Ω3 represent z-components. Δ4 and Ω4 represent the fourth
components in a four-dimensional space. Thus, for wave propagation in the +z
direction, the non-transverse wave solutions have a z vector component (longitu-
dinal in nature) and a fourth vector component (neither transverse nor longitudinal
in nature) of a non-transverse wave in four dimensions. Perhaps there is new
physics regarding these additional solutions.

En E1 E2 E3 E4 E5 E6 E7 E8

pnc þpc þpc �pc �pc þpc þpc �pc �pc

∣ψni ∣ψ1i ∣ψ2i ∣ψ3i ∣ψ4i ∣ψ5i ∣ψ6i ∣ψ 7i ∣ψ8i

Δ1 0 þb 0 þa 0 0 0 0

Δ2 þib 0 þia 0 0 0 0 0

Δ3 0 0 0 0 þb 0 þa 0

Δ4 0 0 0 0 0 þib 0 þia

Ω1 �a 0 þb 0 0 0 0 0

Ω2 0 �ia 0 þib 0 0 0 0

Ω3 0 0 0 0 0 �a 0 þb

Ω4 0 0 0 0 �ia 0 þib 0

vn v1 v2 v3 v4 v5 v6 v7 v8

þc þc �c �c þc þc �c �c

Table 4.
Eigenvalues and orthonormal eigenvectors associated with the generalized spacetime matrix equation for wave
propagation in the +z direction when κ ¼ 0.
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5.6 Linear transformation equation

For the special case of a matter wave traveling through free space in the + z
direction, we found the orthonormal set of eigenvectors and corresponding eigen-
values, for both the generalized spacetime matrix (Eq. (49)) and the traditional
Dirac equation (65), when κ ¼ moc=ℏ. These two sets of orthonormal eigenvectors
are related [1] through the following linear transformation matrix equation:
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p
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77777777777775

: (71)

The compact matrix form of Eq. (71) is given by

∣σi ¼ Z∣ψi: (72)

When we substitute each the eight eigenvectors ∣ψni from Table 2 back into
Eq. (71), we obtain the following results:

1. The four transverse eigenvectors in Table 2 map into the four eigenvectors in
Table 3:

∣σ1i ¼ Z∣ψ1i ∣σ2i ¼ Z∣ψ2i ∣σ3i ¼ Z∣ψ3i ∣σ4i ¼ Z∣ψ4i: (73)

2. The four non-transverse eigenvectors in Table 2 map into the same four
eigenvectors in Table 3:

∣σ1i ¼ Z∣ψ5i ∣σ2i ¼ Z∣ψ6i ∣σ3i ¼ Z∣ψ7i ∣σ4i ¼ Z∣ψ8i: (74)

Therefore, whether we use the four transverse eigenvector solutions or the
four non-transverse eigenvector solutions satisfying the generalized spacetime
matrix (Eq. (49)), the same four eigenvector solutions satisfying the traditional
Dirac equation (65) are obtained using Eq. (71). It is noted the four transverse
eigenvector solutions could have been obtained from the four Dirac vector
equations (37) and (38).

5.7 Wave propagation along the +z direction for κ=0

For the special case of wave propagation in the +z direction, when κ ¼ 0,
time-harmonic plane-wave solutions satisfying the generalized spacetime matrix
equation for free space (49) yield the set of eigenvectors and eigenvalues presented
in Table 4. The eight eigenvectors ∣ψni also form an orthonormal set, that is,

ψmjψnh i ¼ δmn: (75)

32

Progress in Relativity
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2
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Inspection of the contents of Table 4 reveals the following important results:

1. ∣ψ1i and ∣ψ2i represent transverse waves moving with speed þc.

2. ∣ψ3i and ∣ψ4i represent transverse waves moving with speed �c.

3. ∣ψ5i and ∣ψ6i represent non-transverse waves moving with speed þc.

4.∣ψ7i and ∣ψ8i represent non-transverse waves moving with speed �c.

For wave propagation in the +z direction, the transverse waves have eigenvector
solutions ∣ψi where elements (3,1), (4,1), (7,1), and (8,1) are identically equal to
zero. In other words, Δ ¼ Δ1 Δ2 0 0ð Þ and Ω ¼ Ω1 Ω2 0 0ð Þ. For this case, Δ1, Δ2

and Ω1, Ω2 correspond to the x and y components. Thus, for wave propagation in
the +z direction, the transverse wave solutions only have x and y vector compo-
nents, characteristic of a transverse wave in three dimensions. Only those waves
propagating at a speed in free space of +c represent real electromagnetic waves.

On the other hand, for wave propagation in the +z direction, the non-transverse
waves have eigenvector solutions ∣ψi where elements (1,1), (2,1), (5,1), and (6,1)
are identically equal to zero. That is to say, Δ ¼ 0 0 Δ3 Δ4ð Þ and Ω ¼ 0 0 Ω3 Ω4ð Þ.
This implies, Δ3 and Ω3 represent z-components. Δ4 and Ω4 represent the fourth
components in a four-dimensional space. Thus, for wave propagation in the +z
direction, the non-transverse wave solutions have a z vector component (longitu-
dinal in nature) and a fourth vector component (neither transverse nor longitudinal
in nature) of a non-transverse wave in four dimensions. Perhaps there is new
physics regarding these additional solutions.

En E1 E2 E3 E4 E5 E6 E7 E8

pnc þpc þpc �pc �pc þpc þpc �pc �pc

∣ψni ∣ψ1i ∣ψ2i ∣ψ3i ∣ψ4i ∣ψ5i ∣ψ6i ∣ψ 7i ∣ψ8i

Δ1 0 þb 0 þa 0 0 0 0

Δ2 þib 0 þia 0 0 0 0 0

Δ3 0 0 0 0 þb 0 þa 0

Δ4 0 0 0 0 0 þib 0 þia

Ω1 �a 0 þb 0 0 0 0 0

Ω2 0 �ia 0 þib 0 0 0 0

Ω3 0 0 0 0 0 �a 0 þb

Ω4 0 0 0 0 �ia 0 þib 0

vn v1 v2 v3 v4 v5 v6 v7 v8

þc þc �c �c þc þc �c �c

Table 4.
Eigenvalues and orthonormal eigenvectors associated with the generalized spacetime matrix equation for wave
propagation in the +z direction when κ ¼ 0.
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5.8 Unresolved issues regarding the generalized spacetime matrix equation

The eigenvectors and eigenvalues associated with the generalized spacetime
matrix equation, for the special case of a time-harmonic plane-wave propagating in
free space in the +z direction, have been determined for both κ ¼ moc=ℏ and κ ¼ 0.
The following are the key points found in this analysis:

1. For the case when κ ¼ moc=ℏ, we found there were four orthonormal
eigenvectors (two having positive energy eigenvalues þγEo and two having
negative energy eigenvalues �γEo) describing waves having transverse
properties. From Table 2, each of these four eigenvectors have components
Δ3 ¼ Δ4 ¼ Ω3 ¼ Ω4 ¼ 0: Using the linear transformation equation (71), these
eigenvectors map nicely into four orthonormal eigenvectors satisfying the
traditional Dirac equation.

2. For the case when κ ¼ moc=ℏ, we found there were also four orthonormal
eigenvectors (again two having positive energy eigenvalues þγEo and two
having negative energy eigenvalues �γEo) describing waves having non-
transverse properties. From Table 2, each of these four eigenvectors have
components Δ1 ¼ Δ2 ¼ Ω1 ¼ Ω2 ¼ 0: Again, using the linear transformation
equation (71), these four eigenvectors map nicely into the same four
orthonormal eigenvectors satisfying the traditional Dirac equation as
mentioned in Case 1.

3. Therefore, for the case when κ ¼ moc=ℏ, the generalized spacetime matrix
equation (49) for free space provides eight orthonormal eigenvector solutions
(both transverse and non-transverse) which map into four orthonormal
eigenvector solutions satisfying the traditional Dirac equation (65).

4.For the case when κ ¼ 0, we found there were four orthonormal
eigenvectors (two associated with waves propagating in free space with
speed +c and two associated with waves propagating in free space with
speed -c) describing waves having transverse properties. From Table 4, each
of these four eigenvectors have components Δ3 ¼ Δ4 ¼ Ω3 ¼ Ω4 ¼ 0: For
the case of transverse waves propagating with +c, these eigenvectors are
associated with real electromagnetic waves predicted by the traditional
Maxwell equations.

5. For the case when κ ¼ 0, we found there were also four orthonormal
eigenvectors (two associated with waves propagating in free space with speed
+c and two associated with waves propagating in free space with speed -c)
describing waves having non-transverse properties. From Table 4, each of
these four eigenvectors has components Δ1 ¼ Δ2 ¼ Ω1 ¼ Ω2 ¼ 0:

6.The generalized spacetime matrix equation for κ ¼ 0 when Δ4 � 0 and Ω4 � 0
is simply the Maxwell spacetime matrix equation for free space. The
generalized spacetime matrix equation for κ ¼ moc=ℏ when Δ4 � 0 and Ω4 � 0
is simply the Dirac spacetime matrix equation for free space. In addition, the
Dirac spacetime matrix equation for free space is equivalent to the four Dirac
spacetime vector equations (37) and (38) for free space resembling the four
Maxwell vector equations (11) and (12) for free space.
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In the de Broglie-Bohm picture of quantum mechanics, Hardy [16] and Bell [17]
suggest empty waves represented by wave functions propagating in spacetime,
but not carrying energy or momentum, can exist. This same concept was called
ghost waves or ghost fields by Albert Einstein (see [18]). The controversy as to
whether matter waves correspond to real waves or ghost waves has been and is
still a subject of debate and controversy.

In Section 5.1, we mentioned that the number of unanswered questions and
mysteries regarding the universe from the smallest to the largest, in the fields of
physics and astronomy, is unimaginable. Allowing the elements Δ4 and Ω4 to have
nonzero values in the generalized spacetime matrix equation certainly raises a
number of unanswered questions. The following is the author’s list of 12 unan-
swered questions and mysteries regarding our analysis of the generalized spacetime
matrix equation for free space:

For relativistic quantum mechanics—matter waves:
What class of particles do the transverse eigenvectors represent?
Do the transverse eigenvectors represent real or ghost waves?
What class of particles do the non-transverse eigenvectors represent?
Do non-transverse eigenvectors represent real or ghost waves?
Are the transverse and non-transverse eigenvectors equivalent in some way?

For classical electrodynamics—electromagnetic waves:
What can be said about those waves propagating with speed -c?
Do these represent a new type of electromagnetic wave?
What can be said about those waves having a longitudinal component?
What can be said about those waves having a fourth component?
Could these be associated with undiscovered electromagnetic waves?

And two last questions:
Why do the Dirac and Maxwell vector equations resemble each other?
Does the spacetime matrix operator M̂ have more surprises in store?

6. Conclusions

1. The four classical electromagnetic microscopic Maxwell field equations have
been rewritten as a single matrix equation, referred to as the Maxwell
spacetime matrix equation, using the spacetime matrix operator M̂. The
Maxwell spacetime matrix equation is relativistic invariant under a Lorenz
transformation.

2. The square eight-by-eight matrix operator M̂ has several benefits as
summarized next. Other fundamental equations of electromagnetic theory
have also been expressed as single matrix equations using the spacetime matrix
operator M̂, namely, the electromagnetic wave and charge continuity
equations, the Lorentz conditions and electromagnetic potentials, and the
electromagnetic potential wave equations.

3. The traditional relativistic Dirac equation for free space has been expressed as a
new matrix equation, referred to as the Dirac spacetime matrix equation for
free space, using the same spacetime matrix operator M̂. The Dirac spacetime
matrix equation is also relativistic invariant under a Lorenz transformation.
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4.Solutions of the new Dirac spacetime matrix equation can be easily
transformed into solutions satisfying the traditional relativistic Dirac equation
using the linear transformation matrix Z.

5. The Dirac spacetime matrix equation is equivalent to four new relativistic
quantum mechanical vector equations. We referred to these equations as
the Dirac spacetime vector equations. In the absence of electromagnetic
potentials, these vector equations resemble the four classical electromagnetic
microscopic Maxwell field vector equations in the absence of charge and
current densities.

6.Multiplication of the Dirac spacetime matrix equation by the spacetime
matrix operator M̂ leads to the relativistic Klein-Gordon spacetime matrix
equation.

7. Four transverse orthonormal eigenvectors as well as the four non-transverse
orthonormal eigenvectors satisfying the Dirac spacetime matrix equation map,
via the linear transformation matrix Z, into the same set of four orthonormal
eigenvectors satisfying the traditional Dirac equation.

8.A new generalized spacetime matrix equation employing the operator M̂ was
introduced. This equation is a generalization of the Maxwell and Dirac
spacetime matrix equations for free space. We explored time-harmonic plane-
wave solutions of this equation as well as their properties. Some of results
obtained may suggest new physics.
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8.A new generalized spacetime matrix equation employing the operator M̂ was
introduced. This equation is a generalization of the Maxwell and Dirac
spacetime matrix equations for free space. We explored time-harmonic plane-
wave solutions of this equation as well as their properties. Some of results
obtained may suggest new physics.
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Chapter 3

Clarifying Special Relativity
Richard Sauerheber

Abstract

Special relativity for light requires substantial correction. The notion that time 
dilates for observers in motion has been disproven theoretically, experimentally, and 
mathematically. Absolute time is not altered by the motion of objects or human activ-
ity. The original concept used distance and light velocity improperly to compute time. 
When the displacement of objects in relation to the traveling direction of a photon 
of light is considered properly, both stationary and moving observers compute time 
for any particular event that is equal. Light photons travel at intrinsic speed c in the 
propagation direction but have component velocities less than c. Although light veloc-
ity c cannot be altered by motion of its source in the propagation direction, photons 
from a lateral moving source experience a lateral velocity component and angle travel 
from the source at speed c in that direction. Due to motion of the earth in its orbit, 
objects that are seen are images from a former location when the light departed. More 
or less time is required for light to traverse objects in motion than when stationary. 
This is not due to dilation of absolute time. Fixed light speed ensures that differing 
distances require differing times for light to travel.

Keywords: light, time, relative measurements, nature of light

1. Introduction to relativity

Most all measurements in the physical world are subject to relativity. Any object 
viewed from a distance appears smaller than its size seen at a closer distance. 
Its actual size however is the same, independent of the distance from which it is 
viewed. Likewise, time can feel very long when one is bored but very short when 
one is entertained, when the actual time is the same independent of such feelings. 
Relativity is this fact that perceptions for a particular object or event can differ for 
different observers and can depend on one’s vantage point.

It is true that different observers watching a given event will describe that event 
differently. In this way relativity can be of particular value. The different disciples’ 
accounts of Jesus reflect features differently that present a more complete picture 
for those reading the gospels. In other cases, relativity may be a hindrance that must 
be adjusted for, such as when determining the actual true value of a scientific mea-
surement. Relativity can cause a measurement to be made incorrectly. Even though 
the absolute time for an event itself does not respond to physical changes of matter 
and is independent of whether matter exists or not, a long-held notion called time 
dilation is widely taught as fact in many Physics texts and must be explained. Time 
dilation stemmed from thoughts regarding the use of light and physical objects to 
attempt to measure time. Some examples use a lateral moving “light box” contain-
ing a light source that is represented to measure time, and other instances use a 
linear moving rod or train car that must be traversed by light. In all cases, observers 
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Special relativity for light requires substantial correction. The notion that time 
dilates for observers in motion has been disproven theoretically, experimentally, and 
mathematically. Absolute time is not altered by the motion of objects or human activ-
ity. The original concept used distance and light velocity improperly to compute time. 
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of light is considered properly, both stationary and moving observers compute time 
for any particular event that is equal. Light photons travel at intrinsic speed c in the 
propagation direction but have component velocities less than c. Although light veloc-
ity c cannot be altered by motion of its source in the propagation direction, photons 
from a lateral moving source experience a lateral velocity component and angle travel 
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1. Introduction to relativity

Most all measurements in the physical world are subject to relativity. Any object 
viewed from a distance appears smaller than its size seen at a closer distance. 
Its actual size however is the same, independent of the distance from which it is 
viewed. Likewise, time can feel very long when one is bored but very short when 
one is entertained, when the actual time is the same independent of such feelings. 
Relativity is this fact that perceptions for a particular object or event can differ for 
different observers and can depend on one’s vantage point.

It is true that different observers watching a given event will describe that event 
differently. In this way relativity can be of particular value. The different disciples’ 
accounts of Jesus reflect features differently that present a more complete picture 
for those reading the gospels. In other cases, relativity may be a hindrance that must 
be adjusted for, such as when determining the actual true value of a scientific mea-
surement. Relativity can cause a measurement to be made incorrectly. Even though 
the absolute time for an event itself does not respond to physical changes of matter 
and is independent of whether matter exists or not, a long-held notion called time 
dilation is widely taught as fact in many Physics texts and must be explained. Time 
dilation stemmed from thoughts regarding the use of light and physical objects to 
attempt to measure time. Some examples use a lateral moving “light box” contain-
ing a light source that is represented to measure time, and other instances use a 
linear moving rod or train car that must be traversed by light. In all cases, observers 
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moving with the device perceive a different distance of travel than that for observ-
ers who are stationary who notice the motion of the device. In reality, light must 
travel farther to reach a receding target or less to reach an approaching target, 
whether a box, train, or rod that moves during the photon travel time, all while the 
time required to travel that distance is a single correct value. The true time for any 
event is not affected by one’s position to observe the event. Umpires not in a posi-
tion to observe well a play in a sports event often make incorrect decisions. Likewise 
measurement of time using fixed-speed light that interacts with matter depends on 
the relative motion of that matter. If it is observed easily, the correct time may be 
determined. If not, and not properly corrected, a meaningless time will result.

All scientific instruments must be calibrated for variables that affect readings, or 
the readings will be incorrect, and this includes the measurement of time using light. A 
watch with a lead weight placed on its hands ticks more slowly and reports a wrong time 
for an event. And this does not change the actual time required for the event to occur! 
Time cannot be measured correctly with a moving light box, or train or rod UNLESS 
the direction and magnitude of motion of the box or rod or train in relation to the 
propagating photon are known, and used to determine actual displacement of the light 
in the direction at which its velocity is known. Any light clock velocity unequal to zero, 
or moisture in the air that slows light speed, causes light clocks to report a time that is 
not the correct time. Real time for an event is not subject to motion of a device attempt-
ing to measure it. Real time is determined by the event itself, independent of whether 
an observer runs away, runs toward, or remains still with respect to the event. Twins are 
the same age, whether one runs differently than the other or travels in spacecraft.

2. Light is massless and propagates at fixed speed c

A photon of light is electromagnetic energy that can only exist while traveling at a 
fixed fast speed in a given medium and that propagates in perpetuity if uninterrupted 
by physical matter. James Clerk Maxwell (1865) successfully derived mathematically 
the speed with which light must propagate in a given medium from the point in space at 
which it is produced, where c = E/B = 1/(ευ)1/2. E and B are the amplitudes of the elec-
trical and magnetic field orthogonal components of light, and ε and υ are the electrical 
permittivity and magnetic permeability of the particular translucent medium in which 
light propagates. In vacuum, the speed of light is approximately c = 2.99792 × 108 m/s. 
The Nobel prize-winning American physicist from Poland, Albert Michelson, directly 
measured the speed of light experimentally in the San Gabriel mountains of California 
in 1926. The round-trip for light to travel from Mount Wilson near Pasadena to Lookout 
mountain at Mt. Baldy (Mt. San Antonio) near Alta Loma is a ground distance of 
44 miles. Knowing the rotation speed of a rotating slotted set of mirrors and thus the 
time between successive slots through which light passed, the speed of light was com-
puted to 6 digit accuracy at 2.99792 × 108 m/s, confirming experimentally the correct-
ness of the Maxwell theoretic derivation. We now know that because the earth orbits 
the sun and light travels in fixed straight paths at a speed that does not add to that of the 
earth, that the true time to travel this 44 mile round-trip is slightly different because the 
total travel distance is larger due to the earth’s motion during the photon travel time.

3.  Time for light to traverse a moving object is relative:  
one-dimensional case

The distance between two trees along the ground is D km (Figure 1). Because the 
speed of light in its propagation direction is c from the spatial coordinate at which 
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it departs its source (that is, a stationary point in space) then the time required for a 
light photon to travel from the pine to the oak here would be t = D/c if the earth were 
stationary. However the earth orbits the sun at 30 km/s and, ignoring any contri-
bution from any translational or rotational motion of the solar system, the more 
accurate distance the photon actually travels between the trees is directed distance D 
plus the distance the earth moves parallel to D (in the direction the photon travels) 
during the photon travel time between the trees, where t = (D + 30 t)/c so that  
t = D/(c − v) = D/(c − 30). Thus the true time for an event involving light interacting 
with material mass must be computed with proper vector algebra where the actual 
distance of travel must be known. Moreover, a stationary observer on earth easily 
computes an incorrect time as D/c because it is simple to assume the actual distance 
traveled is only D when it is not. The total distance is greater than D when the earth 
moves in the direction the photon travels and less than D when the earth moves 
opposite to the photon. Note that c in this case is the magnitude of the velocity of the 
photon in its travel direction and thus c and D are both vector quantities in this case.

The original notion of time dilation derived from thoughts regarding a forward 
moving rod traversed by light. It was assumed that an observer on the rod would 
compute the time for light to traverse the rod forward and then backward again as 
2 L/c where L is the length of the rod. A stationary observer watching the moving 
rod would notice the distance traveled by the rod while light was traversing it and 
would compute a different time than 2 L/c. On closer inspection it is clear that the 
actual time required for light to make such a round trip on a moving rod depends on 
the velocity of the rod (1, 3) and when computed properly by the moving observer 
matches the time computed by the stationary observer. If the rod were to move at 
very fast sub-light speeds, the light would not reach the end of the rod for a long time 
interval but using a clock instead of the length of the rod by the moving observer 
would report that prolonged time correctly. It was mistakenly assumed that the 
shorter time for light to return to the rod, where the relative velocity would be c + v 
when the rod approaches the light, would cancel the longer time the light requires 
to reach the end of the receding rod on the forward trip. This is not the case, where 
the total travel round-trip time is given by t = D/(c − v) + D/(c + v) = 2D/(c − v2/c). 
Notice that if v = c, t would be infinite since the light would not catch the rod end. 
When v is zero then t = 2D/c, the time for a round-trip travel for light on a station-
ary rod. The faster the v of the rod, the longer is the time required to round-trip 
the rod. There is no dilation of absolute time, simply a longer time is required for a 
longer trip to be completed.

Figure 1. 
The ground distance traveled by a photon from one tree to another tree differs from the actual distance the photon 
travels because the trees move along with the orbiting earth while the speed of light is nevertheless constant.



Progress in Relativity

40

moving with the device perceive a different distance of travel than that for observ-
ers who are stationary who notice the motion of the device. In reality, light must 
travel farther to reach a receding target or less to reach an approaching target, 
whether a box, train, or rod that moves during the photon travel time, all while the 
time required to travel that distance is a single correct value. The true time for any 
event is not affected by one’s position to observe the event. Umpires not in a posi-
tion to observe well a play in a sports event often make incorrect decisions. Likewise 
measurement of time using fixed-speed light that interacts with matter depends on 
the relative motion of that matter. If it is observed easily, the correct time may be 
determined. If not, and not properly corrected, a meaningless time will result.

All scientific instruments must be calibrated for variables that affect readings, or 
the readings will be incorrect, and this includes the measurement of time using light. A 
watch with a lead weight placed on its hands ticks more slowly and reports a wrong time 
for an event. And this does not change the actual time required for the event to occur! 
Time cannot be measured correctly with a moving light box, or train or rod UNLESS 
the direction and magnitude of motion of the box or rod or train in relation to the 
propagating photon are known, and used to determine actual displacement of the light 
in the direction at which its velocity is known. Any light clock velocity unequal to zero, 
or moisture in the air that slows light speed, causes light clocks to report a time that is 
not the correct time. Real time for an event is not subject to motion of a device attempt-
ing to measure it. Real time is determined by the event itself, independent of whether 
an observer runs away, runs toward, or remains still with respect to the event. Twins are 
the same age, whether one runs differently than the other or travels in spacecraft.

2. Light is massless and propagates at fixed speed c

A photon of light is electromagnetic energy that can only exist while traveling at a 
fixed fast speed in a given medium and that propagates in perpetuity if uninterrupted 
by physical matter. James Clerk Maxwell (1865) successfully derived mathematically 
the speed with which light must propagate in a given medium from the point in space at 
which it is produced, where c = E/B = 1/(ευ)1/2. E and B are the amplitudes of the elec-
trical and magnetic field orthogonal components of light, and ε and υ are the electrical 
permittivity and magnetic permeability of the particular translucent medium in which 
light propagates. In vacuum, the speed of light is approximately c = 2.99792 × 108 m/s. 
The Nobel prize-winning American physicist from Poland, Albert Michelson, directly 
measured the speed of light experimentally in the San Gabriel mountains of California 
in 1926. The round-trip for light to travel from Mount Wilson near Pasadena to Lookout 
mountain at Mt. Baldy (Mt. San Antonio) near Alta Loma is a ground distance of 
44 miles. Knowing the rotation speed of a rotating slotted set of mirrors and thus the 
time between successive slots through which light passed, the speed of light was com-
puted to 6 digit accuracy at 2.99792 × 108 m/s, confirming experimentally the correct-
ness of the Maxwell theoretic derivation. We now know that because the earth orbits 
the sun and light travels in fixed straight paths at a speed that does not add to that of the 
earth, that the true time to travel this 44 mile round-trip is slightly different because the 
total travel distance is larger due to the earth’s motion during the photon travel time.

3.  Time for light to traverse a moving object is relative:  
one-dimensional case

The distance between two trees along the ground is D km (Figure 1). Because the 
speed of light in its propagation direction is c from the spatial coordinate at which 

41

Clarifying Special Relativity
DOI: http://dx.doi.org/10.5772/intechopen.86401

it departs its source (that is, a stationary point in space) then the time required for a 
light photon to travel from the pine to the oak here would be t = D/c if the earth were 
stationary. However the earth orbits the sun at 30 km/s and, ignoring any contri-
bution from any translational or rotational motion of the solar system, the more 
accurate distance the photon actually travels between the trees is directed distance D 
plus the distance the earth moves parallel to D (in the direction the photon travels) 
during the photon travel time between the trees, where t = (D + 30 t)/c so that  
t = D/(c − v) = D/(c − 30). Thus the true time for an event involving light interacting 
with material mass must be computed with proper vector algebra where the actual 
distance of travel must be known. Moreover, a stationary observer on earth easily 
computes an incorrect time as D/c because it is simple to assume the actual distance 
traveled is only D when it is not. The total distance is greater than D when the earth 
moves in the direction the photon travels and less than D when the earth moves 
opposite to the photon. Note that c in this case is the magnitude of the velocity of the 
photon in its travel direction and thus c and D are both vector quantities in this case.

The original notion of time dilation derived from thoughts regarding a forward 
moving rod traversed by light. It was assumed that an observer on the rod would 
compute the time for light to traverse the rod forward and then backward again as 
2 L/c where L is the length of the rod. A stationary observer watching the moving 
rod would notice the distance traveled by the rod while light was traversing it and 
would compute a different time than 2 L/c. On closer inspection it is clear that the 
actual time required for light to make such a round trip on a moving rod depends on 
the velocity of the rod (1, 3) and when computed properly by the moving observer 
matches the time computed by the stationary observer. If the rod were to move at 
very fast sub-light speeds, the light would not reach the end of the rod for a long time 
interval but using a clock instead of the length of the rod by the moving observer 
would report that prolonged time correctly. It was mistakenly assumed that the 
shorter time for light to return to the rod, where the relative velocity would be c + v 
when the rod approaches the light, would cancel the longer time the light requires 
to reach the end of the receding rod on the forward trip. This is not the case, where 
the total travel round-trip time is given by t = D/(c − v) + D/(c + v) = 2D/(c − v2/c). 
Notice that if v = c, t would be infinite since the light would not catch the rod end. 
When v is zero then t = 2D/c, the time for a round-trip travel for light on a station-
ary rod. The faster the v of the rod, the longer is the time required to round-trip 
the rod. There is no dilation of absolute time, simply a longer time is required for a 
longer trip to be completed.

Figure 1. 
The ground distance traveled by a photon from one tree to another tree differs from the actual distance the photon 
travels because the trees move along with the orbiting earth while the speed of light is nevertheless constant.



Progress in Relativity

42

This system involves both classical and special relativity to understand. 
Classically distances traveled by any object moving at a particular speed toward a 
target that is also moving always depend on the relative motion of the target. The 
actual distance traveled may be greater or less than the original distance to the tar-
get at the time the light departs its source. The actual distance traveled by a photon 
to the target is relative to the distance moved by the target. One may perceive the 
photon only traveled the distance of separation between the source and target, 
when in actuality the photon travels a different path since the target moved during 
the time of travel for the light, while light speed is fixed.

Also in the light trees example here, since light speed is fixed at c with respect 
to a stationary coordinate in space, this special behavior of light requires one only 
use this speed or its proper component in relation to the travel directions of the 
light and the moving target. The speed of light is fixed in a given medium, unlike 
physical objects which pick up additional speed and energy 1/2 mv2 from moving 
sources. Both sound waves and light waves also travel at a fixed speed even from 
moving sources. The frequency and wavelength of the sound or light are changed, 
but not the speed which is the product of frequency f times wavelength λ and for 
light we write c = fλ. Although the frequency of light and its intrinsic energy E = hf 
where h is Planck’s constant are increased by a source moving in its propagation 
direction, it is not possible to increase its speed which is fixed at c. A rifle bullet 
travels between the two trees on the moving earth at a combined speed of muzzle 
velocity plus earth orbit velocity, so the time to reach the target tree is simply D 
divided by the muzzle velocity because the extra distance moved by the trees during 
the bullet travel time is matched and overcome by the extra velocity the bullet has 
from the moving earth. This is not the case for light which must travel at fixed speed 
c independent of motion of its source or the target toward which it speeds. This is 
the key aspect of special relativity. Light, but not true for physical objects, emanat-
ing from moving sources requires different times to travel to a target in motion than 
when stationary.

Another special property of light is that it is massless and its propagation speed 
c is not exceeded by any object having mass. However before proceeding to the two 
dimensional light box case, it must be emphasized that light velocity is simple to exceed, 
because light is only velocity c specifically in its travel direction [1]. Velocity components 
for a light ray are less than c and may be easily exceeded by physical objects. Merely point 
a laser light North and you walk East and you will reach an Eastern target that the light 
does not, because you exceeded the Eastward component velocity of the light ray.

From the above relativity considerations, to compute time for an event that 
involves using light interacting with physical objects, it is necessary to match 
distance and velocity vectors, or the computed time will simply be incorrect. The 
original concept of time dilation unfortunately did not consider vector algebra 
when computing time for theoretic light timing devices in either the linear or lateral 
motion cases and these have now been corrected. The concept of dilation of time, 
presumed to occur when light is used as a time piece, has been disproven, theoreti-
cally, mathematically, and experimentally (1–3).

3.1 Two-dimensional case: a light box

A light photon in a stationary light box travels the height of the box d in time 
 d/c (Figure 2).

However, in a lateral moving light box, a photon must have a horizontal compo-
nent velocity equal to that of the box v in order to hit the moving box top spot. A 
stationary observer sees the true path r of the photon (Figure 3) and calculates the 
correct time r/c.
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The vector r does not represent a beam of light, but rather the path traced by 
a single photon. This is because the photon that arrives at the top of the box left 
the source when it was at its leftward position earlier as shown. The source at the 
time of arrival is vertically directly under the arriving photon in the box, and pho-
tons leaving the source at that time begin their angled path from this new source 
location and will arrive at the target after it shifts to another location. So photons 
all angle travel with this bearing and arrive at the target later at another shifted 
position. Several photons produced in succession cause the illusion that all trav-
eled vertically to the target, when actually all angle travel distance r to arrive. An 
observer inside the box who only notices the vertical component of the photons 
could falsely compute time as if it were d/c. But light photons in the moving box 
did not follow the path along vector d. Each actually follows a vector parallel to 
r to reach the moving spot on the box top. d/c is false because it is a vector mis-
match. Correct displacements for light must be determined not by appearance, 
but by truth, before time can be calculated correctly. Just like a virtual image 
is not a real image, the appearance that light followed d for the moving box is a 
mirage, not the real displacement path r. Notice that a stationary observer far to 
the right might also assume the photons only moved upward distance d and could 
compute time incorrectly, so the incorrect computation has nothing to do with 
motion (or not) of an observer.

It is improper to claim that time “slows down” for some event simply 
because an observer moves during that event. Light cannot sense that an 
observer is in motion, to adjust its time required to travel a particular distance. 
Stated simply, a longer distance requires a longer travel time for light at a 
fixed velocity than a shorter distance, regardless of the state of motion of any 
observer.

To avoid a vector algebra blunder, it is always mathematically necessary to 
couple the correct light velocity component with the vector component actually 
traveled with that velocity. In this way, time calculated for any particular event is 
the same for any observer, regardless of their state of motion. Note that in time 
d/c, the photon above travels distance d (since velocity c times time t equals dis-
tance: d = c(d/c) = d). This means that the photon traveling along vector r travels 
a distance d in time d/c but of course has not yet reached the box top at r.

Experiments conducted at Palomar Community College with a laser light [1–3] 
demonstrate that light photons that propagate at speed c pick up lateral velocity 
when produced by a lateral moving source and thus have a component velocity 

Figure 2. 
The arrow represents the path a photon could take from its source to the top of a box with height d that is 
imagined to be stationary.

Figure 3. 
The arrow represents the path of a photon emitted from its source to the top of the box of height d when the box 
is imagined to be moving rapidly laterally. The path distance to reach the to of the box is now length r.
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This system involves both classical and special relativity to understand. 
Classically distances traveled by any object moving at a particular speed toward a 
target that is also moving always depend on the relative motion of the target. The 
actual distance traveled may be greater or less than the original distance to the tar-
get at the time the light departs its source. The actual distance traveled by a photon 
to the target is relative to the distance moved by the target. One may perceive the 
photon only traveled the distance of separation between the source and target, 
when in actuality the photon travels a different path since the target moved during 
the time of travel for the light, while light speed is fixed.

Also in the light trees example here, since light speed is fixed at c with respect 
to a stationary coordinate in space, this special behavior of light requires one only 
use this speed or its proper component in relation to the travel directions of the 
light and the moving target. The speed of light is fixed in a given medium, unlike 
physical objects which pick up additional speed and energy 1/2 mv2 from moving 
sources. Both sound waves and light waves also travel at a fixed speed even from 
moving sources. The frequency and wavelength of the sound or light are changed, 
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light we write c = fλ. Although the frequency of light and its intrinsic energy E = hf 
where h is Planck’s constant are increased by a source moving in its propagation 
direction, it is not possible to increase its speed which is fixed at c. A rifle bullet 
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divided by the muzzle velocity because the extra distance moved by the trees during 
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presumed to occur when light is used as a time piece, has been disproven, theoreti-
cally, mathematically, and experimentally (1–3).

3.1 Two-dimensional case: a light box

A light photon in a stationary light box travels the height of the box d in time 
 d/c (Figure 2).

However, in a lateral moving light box, a photon must have a horizontal compo-
nent velocity equal to that of the box v in order to hit the moving box top spot. A 
stationary observer sees the true path r of the photon (Figure 3) and calculates the 
correct time r/c.
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the right might also assume the photons only moved upward distance d and could 
compute time incorrectly, so the incorrect computation has nothing to do with 
motion (or not) of an observer.

It is improper to claim that time “slows down” for some event simply 
because an observer moves during that event. Light cannot sense that an 
observer is in motion, to adjust its time required to travel a particular distance. 
Stated simply, a longer distance requires a longer travel time for light at a 
fixed velocity than a shorter distance, regardless of the state of motion of any 
observer.

To avoid a vector algebra blunder, it is always mathematically necessary to 
couple the correct light velocity component with the vector component actually 
traveled with that velocity. In this way, time calculated for any particular event is 
the same for any observer, regardless of their state of motion. Note that in time 
d/c, the photon above travels distance d (since velocity c times time t equals dis-
tance: d = c(d/c) = d). This means that the photon traveling along vector r travels 
a distance d in time d/c but of course has not yet reached the box top at r.

Experiments conducted at Palomar Community College with a laser light [1–3] 
demonstrate that light photons that propagate at speed c pick up lateral velocity 
when produced by a lateral moving source and thus have a component velocity 
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The arrow represents the path a photon could take from its source to the top of a box with height d that is 
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equal to that of the source (Figure 4). While a photon travels at speed c 30 m to a 
target, an observer on earth, orbiting with the source and target, would be incor-
rect to computer time as 30/c because the photon actually travels farther than the 
ground distance to the target. Since the earth orbits at 30 km/s, the target and 
source move laterally 3 mm West at noon (or 3 mm East at midnight) during the 
time required for a photon to propagate 30 m North. Thus the true travel time to 
arrive at the new target position is slightly longer than if the earth were stationary. 
A stationary observer in outer space could see such an angled travel path, while a 
moving observer on earth would not and the photon travel distance would then 

Figure 4. 
Diagram depicting the experiment conducted with a laser light continuously illuminating a target 30 m distant 
while on the rotating and orbiting earth. Light photons travel north to the target, while earth and target orbit 
65,000 mph laterally around the Sun. This experiment proves that light photons angle-travel in a straight line 
and catch the target on earth which shifts laterally 1.3 mm during the time it takes for the photon to arrive. The 
photons do not simply travel 30 m north and miss the center of the target. Because the earth spins like a twirling 
figure skater also circling a rink, the 3 mm shift is east of its original position when the photon left the source at 
midnight but 3 mm west of its original position when a photon leaves at noon. The light continuously on for 24 h 
periods nevertheless always lands on the center of the target. The photon travel path is thus always larger than 
the 30 m distance along the ground to the target, because the earth never stops orbiting. Thus photons take longer 
to reach the target because the earth target is always shifting away from the light. This extension of travel time is 
not a “dilation” of absolute time due to the motion, but is simply due to the longer distance traveled compared to 
the time to travel 30 m if the earth were not moving. Anyone who computes time as 30/c rather than (30 + d)/c is 
sincere, but wrong. Time does not slow down or dilate when objects move. Motion has nothing to do with the fact 
that absolute time marches on. The special theory of relativity is here modified to indicate that time dilation does 
not exist, while light remains special in propagating at fixed forward speed independent of motion of the source.
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need to be calculated. This distance must be used by either stationary or moving 
observers in order to compute a correct time interval when using light to measure 
time. Light boxes are inferior timepieces because physical objects on the orbiting 
rotating earth are always in motion.

Light speed in fog is slower than in dry air. So the number of light box ticks 
(photon round-trips) in fog is always less than for dry air, for any specific event 
being timed by a ‘light clock”. Twins 1 year from now will not be different in age 
simply because one lives in fog and measures time with a foggy light box. This foggy 
clock reports a different time for an event compared to what a dry clock reports, not 
because the actual time is different, but because the clock is affected. Light “clocks” 
must be calibrated for humidity, or else the reported time is incorrect.

As for any scientific instrument, all variables affecting its operation must be 
calibrated. Light boxes are affected by lateral velocity from the point at which the 
light leaves its source. The equation for this dependence is correctly derived in Physics 
textbooks as: t = d/(c2 − v2)1/2, where v is the lateral velocity of the box with respect to a 
stationary point. At v = 0, the box is stationary, and the time reported by the clock is d/c 
for the event where light travels d. But the clock in motion reports a smaller number of 
ticks (or round-trips for a light photon inside the box) for that same given event being 
timed. The observer inside the box who uses t = d/c for the moving box has wrongly 
placed 0 for v into the formula. The formula must be followed to obtain a correct time, 
and v is not 0 for the moving box. d/c is a nonsensical computation for a moving box 
because more time is required for a tick at the longer distance required by light to travel. 
Time doesn’t slow, it is simply that it takes longer for light to arrive.

Only when velocity of the box (and humidity of the air inside) is calibrated can 
a correct time interval be reported. Humidity is needed to know the value of c, and 
v is needed to know the displacement distance that photons travel before the clock 
registers a tick.

The typical Physics textbook conclusion, that since a moving light box ticks more 
slowly then absolute time itself “slows” [4] does not appreciate that the clock opera-
tion is altered by its own motion, similar to being slowed when operating in fog. 
The explanations of the Hafele-Keating experiment with atomic clocks in airplanes, 
environmental muon lifespans, the perihelion progression of the planet Mercury, 
or the actual meaning of the Michelson-Morley split light beam interferometer data 
have all been presented earlier without need to invent the notion of time dilation [2].

An additional proper way to calculate t for the moving observer inside a light 
box, moving lateral with velocity vx, is to match the vertical net displacement d 
with the velocity component for the photon in that vertical direction, which is 
vy = csinθ (where θ is the angle made by the vector r from the horizontal). Here sinθ 
is d/r. Time then becomes t = d/csinθ = d/(cd/r) = r/c, the same time as properly 
computed by the stationary observer. Although there are several other possible 
incorrect ways to compute time for this event, these are not further discussed here.

Note that if the light box moves in the direction of the long axis of the box, the box 
top recedes from the propagating photon, and the equation for time is t = d/(c − v) 
(from Einstein, 1905) [5]. This is because the relative, net velocity of the photon 
toward the top of the box, c − v, depends directly on the receding velocity v of the 
box. The equation becomes very complicated if the box velocity is neither perpen-
dicular nor parallel to the orientation of the box. If the box were to remain aligned 
with the Y axis, then the time for a photon to traverse the moving box with horizontal 
velocity vx and vy is t = [2vy ± (4vy

2 + 4d2 + c2 = vx
2 = vy

2))1/2]/c. If the box velocity 
involves three dimensions, the equation becomes even more complex, which proves 
that a light box is an improper device for measuring the time for an event. (A light box 
is however a good motion detector since light arrives at a position other than a target 
spot when only slight motion of the source with respect to the detector occurs).
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equal to that of the source (Figure 4). While a photon travels at speed c 30 m to a 
target, an observer on earth, orbiting with the source and target, would be incor-
rect to computer time as 30/c because the photon actually travels farther than the 
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need to be calculated. This distance must be used by either stationary or moving 
observers in order to compute a correct time interval when using light to measure 
time. Light boxes are inferior timepieces because physical objects on the orbiting 
rotating earth are always in motion.

Light speed in fog is slower than in dry air. So the number of light box ticks 
(photon round-trips) in fog is always less than for dry air, for any specific event 
being timed by a ‘light clock”. Twins 1 year from now will not be different in age 
simply because one lives in fog and measures time with a foggy light box. This foggy 
clock reports a different time for an event compared to what a dry clock reports, not 
because the actual time is different, but because the clock is affected. Light “clocks” 
must be calibrated for humidity, or else the reported time is incorrect.

As for any scientific instrument, all variables affecting its operation must be 
calibrated. Light boxes are affected by lateral velocity from the point at which the 
light leaves its source. The equation for this dependence is correctly derived in Physics 
textbooks as: t = d/(c2 − v2)1/2, where v is the lateral velocity of the box with respect to a 
stationary point. At v = 0, the box is stationary, and the time reported by the clock is d/c 
for the event where light travels d. But the clock in motion reports a smaller number of 
ticks (or round-trips for a light photon inside the box) for that same given event being 
timed. The observer inside the box who uses t = d/c for the moving box has wrongly 
placed 0 for v into the formula. The formula must be followed to obtain a correct time, 
and v is not 0 for the moving box. d/c is a nonsensical computation for a moving box 
because more time is required for a tick at the longer distance required by light to travel. 
Time doesn’t slow, it is simply that it takes longer for light to arrive.

Only when velocity of the box (and humidity of the air inside) is calibrated can 
a correct time interval be reported. Humidity is needed to know the value of c, and 
v is needed to know the displacement distance that photons travel before the clock 
registers a tick.

The typical Physics textbook conclusion, that since a moving light box ticks more 
slowly then absolute time itself “slows” [4] does not appreciate that the clock opera-
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The explanations of the Hafele-Keating experiment with atomic clocks in airplanes, 
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have all been presented earlier without need to invent the notion of time dilation [2].
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box, moving lateral with velocity vx, is to match the vertical net displacement d 
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top recedes from the propagating photon, and the equation for time is t = d/(c − v) 
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spot when only slight motion of the source with respect to the detector occurs).



Progress in Relativity

46

4. Simultaneity is not relative

A similar problem affects textbook examples attempting to prove that simultaneity 
is somehow dependent on motion of an observer [6]. Either two events occurred at 
the same time t, or they occurred at two different times. For example, two light waves 
or sound waves of fixed speed, produced at the same instant, arrive at an observer at 
different times if the observer is in motion and shifts from the midpoint. This is due 
to different distances for each wave to reach him. This does not mean that the waves 
were themselves produced at different times, but that they traveled different dis-
tances to reach him. The stationary observer directly at the midpoint between the two 
sources would of course conclude correctly that the waves were produced simultane-
ously. A moving observer must adjust the distance to the source origins by the amount 
he shifted from the midpoint during the wave travel time, to know whether they were 
simultaneously produced.

5. Special relativity

Relativity for light is indeed special because light is special. Unlike for objects 
with mass, light speed from its origin in space in the propagation direction is fixed 
in a given medium. Firing a bullet inside a lateral moving box similar to the light 
box example does not change the time required for the bullet to reach the top of 
the box. This is because for physical objects that have no fixed speed, the intrinsic 
muzzle speed provided by the source adds to the additional velocity provided by 
the moving box so that the total speed is greater. Thus the time to arrive at the top 
of the box, traveling the additional distance due to motion of the box, is the same 
as that required to reach the top of the box when stationary, d/v where v is the 
intrinsic velocity in the vertical direction for the bullet. Whether the box is mov-
ing or not, v in the vertical direction remains the same. The horizontal component 
is in addition to its intrinsic component in the vertical direction, so the bullet has 
more kinetic energy due to the added lateral velocity. Light however must travel at 
fixed intrinsic speed c = E/B which is always a constant in a given medium in the 
direction it propagates, regardless of motion of its source. Indeed, sunlight from 
the edge of the spinning sun that recedes from view is redshifted compared to light 
from the edge spinning toward the earth which is blue shifted, while the various 
colors of light all travel at the same intrinsic speed c. A forward moving light source 
produces light with greater energy but it is not kinetic energy and is rather intrinsic 
electromagnetic energy. Light reflected or scattered from physical objects, such as 
the well-known Compton scattering, loses some energy and departs with a lower 
energy and lower frequency but travels with a longer wavelength, again at required 
speed c. These properties of light mean that a light box would be a useful device for 
measuring relative motions of objects, such as during earthquakes or the ground 
motion associated with tidal drift, but would not be useful to measure time because 
light speed does not add to source speed.

6. General relativity

General relativity usually centers on the notion that force fields can be indistin-
guishable in some experiments and attempts to explain the nature of gravity. But it 
is mistaken to extrapolate that force fields, whether due to gravity or due to contact 
forces, are identical and indistinguishable. For example, gravity requires no physical 
contact with the object being accelerated, as Newton wrote gravity generates forces 
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from great distances. Contact forces that replicate that magnitude of acceleration 
do require physical contact. If a box were accelerated laterally by either gravity or a 
physically applied force, then differences would be simple to notice. A weight hang-
ing on a string from the roof for example would not accelerate together with the box 
if an applied force were responsible for accelerating of the box, while the ball and 
string would accelerate along with the box if gravity were the responsible agent. 
There is no solid evidence for general relativity that is non-classical.

The notion is also mistaken that light has mass and is subject to gravity. The 
expression E = mc2 reflects the fact that mass contains latent energy. This was 
proven directly with the atomic bomb where annihilated mass in a nuclear reaction 
causes the release of vast amounts of energy per gram of matter. Radiant energy 
from the sun likewise is produced from the annihilation of mass due to nuclear 
fusion reactions. And in reverse, the formation of mass when the universe of matter 
was Created must have been from the conversion of massive amounts of energy. 
However the formula is not a statement of congruence, and rather is a relation 
expressing equal magnitudes but not necessarily quality of energy. For example, the 
radiant energy from the sun’s mass becomes fast traveling light photons, and light is 
not mass. And mass is not light. So the relation is being misused when one assumes 
that m = E/c2 somehow proves that “light has mass.” Likewise mass is not light, even 
though the relation was used properly by deBroglie to help prove that electrons 
with mass oscillate in orbitals around nuclei with wavelengths much like light has. 
Although the calculated deBroglie wavelengths for an electron in a hydrogen atom 
match the circumferences of orbitals in the hydrogen atom, mass is not light, just as 
light is not mass and is not subject to gravity as masses are. Light of course can be 
bent or refracted by the sun’s corona matter, but gravity alone cannot act on light 
because light has no mass.

Recent photographs of a structure in deep space referred to as a black hole is not 
a hole. The belief is that material inside it is so dense that light is prevented from 
escaping it, but if matter is in its center then it is not a black hole, but rather a black 
body. And there is no proof that light is absent in it since light is invisible unless it 
is detected by either an eye or a camera. The object appears to block light behind 
it much like an eclipse, and there is no proof that light is swallowed into it, rather 
than either being extinguished by absorption or blocked forming a shadow. Again, 
gravity acts on masses, not light which is massless.

7. Nature of gravity

Earlier work [7] discussed the uniqueness of gravity that is distinct from electric 
or magnetic fields and from light. Gravity emanates from all objects with mass. 
Important characteristics of gravity are what it is not. Gravity is not energy, does 
not require loss of mass or loss of energy to exist around an object [8], is not a wave 
or a force, and is not spatially reducible. Gravity is an accelerating region in which 
masses produce a force. Gravity is not diffracted or reflected like light and is not 
attenuated or diminished by objects in its presence like electric fields are. Even a 
miniscule electron has gravity emanating around it because electrons have mass. 
Two neutrons separated by distance r have a gravitational force between them 
of F = Gm2/r2 where m is the mass of a neutron and G is the universal gravitation 
constant. There is no region in space around one neutron where the other neutron 
is able to escape the gravitation from the other. This is found by experiment and 
indicates that gravity should not be considered a force field characterized with field 
lines since this could imply that at some distance r from the mass that there could be 
a spatial position at that distance where that gravity might be absent.
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4. Simultaneity is not relative

A similar problem affects textbook examples attempting to prove that simultaneity 
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different times if the observer is in motion and shifts from the midpoint. This is due 
to different distances for each wave to reach him. This does not mean that the waves 
were themselves produced at different times, but that they traveled different dis-
tances to reach him. The stationary observer directly at the midpoint between the two 
sources would of course conclude correctly that the waves were produced simultane-
ously. A moving observer must adjust the distance to the source origins by the amount 
he shifted from the midpoint during the wave travel time, to know whether they were 
simultaneously produced.

5. Special relativity

Relativity for light is indeed special because light is special. Unlike for objects 
with mass, light speed from its origin in space in the propagation direction is fixed 
in a given medium. Firing a bullet inside a lateral moving box similar to the light 
box example does not change the time required for the bullet to reach the top of 
the box. This is because for physical objects that have no fixed speed, the intrinsic 
muzzle speed provided by the source adds to the additional velocity provided by 
the moving box so that the total speed is greater. Thus the time to arrive at the top 
of the box, traveling the additional distance due to motion of the box, is the same 
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from great distances. Contact forces that replicate that magnitude of acceleration 
do require physical contact. If a box were accelerated laterally by either gravity or a 
physically applied force, then differences would be simple to notice. A weight hang-
ing on a string from the roof for example would not accelerate together with the box 
if an applied force were responsible for accelerating of the box, while the ball and 
string would accelerate along with the box if gravity were the responsible agent. 
There is no solid evidence for general relativity that is non-classical.
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proven directly with the atomic bomb where annihilated mass in a nuclear reaction 
causes the release of vast amounts of energy per gram of matter. Radiant energy 
from the sun likewise is produced from the annihilation of mass due to nuclear 
fusion reactions. And in reverse, the formation of mass when the universe of matter 
was Created must have been from the conversion of massive amounts of energy. 
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though the relation was used properly by deBroglie to help prove that electrons 
with mass oscillate in orbitals around nuclei with wavelengths much like light has. 
Although the calculated deBroglie wavelengths for an electron in a hydrogen atom 
match the circumferences of orbitals in the hydrogen atom, mass is not light, just as 
light is not mass and is not subject to gravity as masses are. Light of course can be 
bent or refracted by the sun’s corona matter, but gravity alone cannot act on light 
because light has no mass.

Recent photographs of a structure in deep space referred to as a black hole is not 
a hole. The belief is that material inside it is so dense that light is prevented from 
escaping it, but if matter is in its center then it is not a black hole, but rather a black 
body. And there is no proof that light is absent in it since light is invisible unless it 
is detected by either an eye or a camera. The object appears to block light behind 
it much like an eclipse, and there is no proof that light is swallowed into it, rather 
than either being extinguished by absorption or blocked forming a shadow. Again, 
gravity acts on masses, not light which is massless.

7. Nature of gravity

Earlier work [7] discussed the uniqueness of gravity that is distinct from electric 
or magnetic fields and from light. Gravity emanates from all objects with mass. 
Important characteristics of gravity are what it is not. Gravity is not energy, does 
not require loss of mass or loss of energy to exist around an object [8], is not a wave 
or a force, and is not spatially reducible. Gravity is an accelerating region in which 
masses produce a force. Gravity is not diffracted or reflected like light and is not 
attenuated or diminished by objects in its presence like electric fields are. Even a 
miniscule electron has gravity emanating around it because electrons have mass. 
Two neutrons separated by distance r have a gravitational force between them 
of F = Gm2/r2 where m is the mass of a neutron and G is the universal gravitation 
constant. There is no region in space around one neutron where the other neutron 
is able to escape the gravitation from the other. This is found by experiment and 
indicates that gravity should not be considered a force field characterized with field 
lines since this could imply that at some distance r from the mass that there could be 
a spatial position at that distance where that gravity might be absent.
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Gravity intensity at a given distance from a mass is spatially irreducible. This is 
because even a miniscule electron senses its presence at any position at which it is located 
at a distance r. Pluto is a huge 6 billion km from the sun and nevertheless is smoothly 
turned by gravity at every position in its orbit, not only preventing its escape into space 
but also causing the tracing of an orbit that follows an elliptic mathematical function. 
Gravity is not reducible at any spatial position along the orbit. All planets in the solar 
system fall endlessly in perpetuity along elliptic paths in a dynamic equilibrium that is 
always striving to increase entropy while minimizing orbital energy [9]. Orbiting bodies 
around the sun instantly detect changes in gravity from the wobbling travel pattern of 
the sun even at great distances, which causes the bodies to change speed to travel in a 
smooth elliptic orbit. Galaxies in the universe may also behave in such a way, where each 
are gravitationally attracted to maintain order in the universe of matter where rotating 
galaxies maintain relative positions possibly in a dynamic equilibrium steady state.

8. Position is relative

The question, where are you?, requires context and relativity to answer. If the 
position of a person is desired in relation to the longitude and latitude coordinates 
on earth’s surface, or in relation to a street address or city on earth, then an answer 
can be given because the spatial coordinate is provided in relation to a particular 
described position. However since the earth and all objects in the solar system are in 
constant motion, the true spatial coordinate of where one is located is not actually 
known with respect to a theoretic stationary 3-D (x, y, z) coordinate in space that 
one might refer to as an origin from which other coordinates may be measured and 
stated. And even if the entire universe of matter (as a whole unit) were not rotat-
ing or undergoing translational motion so that an origin point in space could be 
defined, the answer would also depend on time. Due to motion of the particular 
galaxy and solar system on which one might be located, the position one provides is 
technically only true at the particular time when the answer was given. The spatial 
coordinate is quickly changing while one provides the answer. Finally, the definition 
of you is also relative, where the position in space of the head is different than the 
feet or the body’s center of mass, all at different elevations in 3-D space.

Figure 5 shows the position of the moon in perigee (at its closest approach to the 
earth) in relation to a tree on earth as a function of time. The moon shifts toward 
the tree about 5° of angular rotation in 20 min. This observation cannot distinguish 
whether the shift is caused by the orbiting motion of the moon (that does not spin), 
being accelerated while continuously changing its direction, or rather is due to either 
the spinning or to the orbiting motions of the earth. However, with extra data it is 
indeed possible to determine the major contributor. The moon orbits the earth and 
returns to its full moon position again in 28.3 days, at an angular velocity of 9.4 h 

Figure 5. 
Photographs of the full moon Feb 23, 2019 traversing behind a pine tree as time proceeds.
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to shift 5°. The earth spins or rotates on its own axis 360° in 24 h, or 20 min for 5°, 
and thus is mostly responsible for the observed shift. In reality of course the actual 
observed shift is also affected by the fact that the moon and earth co-orbit around a 
common barycenter. In any event, the specific causes of effects that involve general 
relativity can indeed be determined by collection of additional information.

9. Nature of light

Unlike gravity that contains no energy itself, light is composed of individual 
photons of electromagnetic energy hf, formed from electrons that drop to lower 
energy levels in a source such as the sun, or a tungsten filament in a bulb, or a radio 
antenna. Light consists of orthogonal electric and magnetic field components that 
self-induce and self-annihilate rhythmically in perpetuity when uninterrupted. 
Thomas Young (1801) first demonstrated the wave nature of light which thus can 
undergo diffraction and interference and can be reflected, scattered, refracted, 
and absorbed by various media. Light in the visible frequency range is actually not 
visible to the naked eye. For example most light from the sun emanates into outer 
space and is not seen. Only light that reaches one’s eyes is sensed. This means that 
anything assumed to be seen is actually a sensed image made by light reflected from 
the object at an earlier time. Since physical objects in the universe and on earth are 
always in a state of motion, objects are actually in a different spatial position at the 
time their light image is sensed. For example it takes 7.5 min for sunlight to reach 
the earth, so sunrise and sunset actually occurred 7.5 min before these events are 
actually sensed or “seen”.

Photographs of light reflected from a candle prove that light emanates in all 
three dimensional space even though that light cannot be directly seen (Figure 6). 
The mirror reflects light directly toward the camera for detection from any posi-
tion, reflecting light that was produced by the candle on the right while the light 
that exists on the left is invisible. The light on the left is made visible upon reflection 
by the mirror relocated on the left, while the original light that still exists on the 
right remains invisible.

Similarly, because light from sources such as stars propagates in all dimensional 
space even though it cannot be seen, distances to stars can be directly and conclu-
sively determined by parallax. A star is at a particular time of night from an earth 
location positioned among background stars in shifted locations depending on the 
location of earth in its orbit. At summertime, the earth shown on the right in Figure 7  
detects light emanated from a star, while light from that star of course exists on 
the left but is invisible, being not reflected to the eye. In the winter when the earth 
is positioned on the left, the light is detected from the star while light on the right 
still exists but remains invisible. From the shifted relative position of the star 
between summer and winter, the distance to that star can be properly computed 

Figure 6. 
Light from a source propagates in all directions in space but is invisible. It is sensed by either directly entering 
the eye (as seen here directly from the candle) or after reflecting the invisible light from the candle to the eye.
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observed shift is also affected by the fact that the moon and earth co-orbit around a 
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and absorbed by various media. Light in the visible frequency range is actually not 
visible to the naked eye. For example most light from the sun emanates into outer 
space and is not seen. Only light that reaches one’s eyes is sensed. This means that 
anything assumed to be seen is actually a sensed image made by light reflected from 
the object at an earlier time. Since physical objects in the universe and on earth are 
always in a state of motion, objects are actually in a different spatial position at the 
time their light image is sensed. For example it takes 7.5 min for sunlight to reach 
the earth, so sunrise and sunset actually occurred 7.5 min before these events are 
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Photographs of light reflected from a candle prove that light emanates in all 
three dimensional space even though that light cannot be directly seen (Figure 6). 
The mirror reflects light directly toward the camera for detection from any posi-
tion, reflecting light that was produced by the candle on the right while the light 
that exists on the left is invisible. The light on the left is made visible upon reflection 
by the mirror relocated on the left, while the original light that still exists on the 
right remains invisible.

Similarly, because light from sources such as stars propagates in all dimensional 
space even though it cannot be seen, distances to stars can be directly and conclu-
sively determined by parallax. A star is at a particular time of night from an earth 
location positioned among background stars in shifted locations depending on the 
location of earth in its orbit. At summertime, the earth shown on the right in Figure 7  
detects light emanated from a star, while light from that star of course exists on 
the left but is invisible, being not reflected to the eye. In the winter when the earth 
is positioned on the left, the light is detected from the star while light on the right 
still exists but remains invisible. From the shifted relative position of the star 
between summer and winter, the distance to that star can be properly computed 

Figure 6. 
Light from a source propagates in all directions in space but is invisible. It is sensed by either directly entering 
the eye (as seen here directly from the candle) or after reflecting the invisible light from the candle to the eye.
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by triangulation. For example the secant of the elevation angle is r/(1 AU) where r 
is the distance from the earth to the star and 1 AU is 93 million miles. The picture 
is distorted intentionally for clarity, where the nearest star to the sun is the Alpha 
Centauri group at 4.37 light years away (25.6 trillion miles or 266,000 AUs) so that 
its elevation angle is actually greater than 89.9°. The farthest stars capable of being 
triangulated with modern space telescopes have a parallax angle so close to 0° that 
the distance is over 6000 light years. This means the these stars, where light is now 
arriving here on earth from them, must be at least as old as 6000 years and are at 
a distance of about 35 quadrillion miles from earth [(6000 years) (365 days/year) 
(24 h/day) (3600 s/h) (186,000 miles/s)].

Newton first proved in 1665 at Woolsthorpe Manor in England that light 
beams are actually composed of individual units he called corpuscles which we 
now call photons. Light has no mass since each photon must propagate in a given 
medium at a fixed speed c = E/B determined by properties of that medium. 
Photons speed up upon entering a more favorable medium and slow and retain 
that lesser fixed speed c in a less favorable medium. Photons follow one another 
in succession along a fixed bearing in cases where the light source is either 
stationary (which does not exist in nature since all galaxies rotate, and perhaps 
undergo translational motion and may vibrate with respect to each other over 
time, etc.) or moving in the direction photons propagate. Most light from either 
natural or artificial sources is actually composed of photons that are traveling in 
directions determined by the lateral motion of its source. This is because the first 
photon is emitted when the source is at location (x, y, z) but the next photon is 
produced when the source is at a slightly shifted location due to star or galactic 
motion. A laser light beam directed to a target while the source and target are in 
lateral motion consists of photons that traveled different paths to arrive at the 

Figure 7. 
Earth view of star in relation to distant background stars at summer and winter.
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Figure 8. 
A light ray made visible in a steam cloud. Over the distance of 0.25 m there are approximately 500,000 photons 
(= 0.25 m/500 × 10−9 m per wavelength) that illuminate the field in about 0.9 ns. Because the speed of the 
orbiting earth is small compared to light, each photon travels one after another forming a light ray where the 
paths of each successive photon essentially overlap. If the light source moved at near light speeds, the linear ray 
would be composed of photons having the same bearing but from shifted locations in space, where the photon 
arriving at the target on the right traveled the longest distance to arrive there, having left the source when at 
an earlier position. The photon on the left was produced last from the position where the source is now located. 
This is essential to understand why lateral moving light clocks do not prove that time dilates, but rather that 
travel distances for light depend on the relative motion of the source and target.

Figure 9. 
Light produced by a lateral moving source actually forms a ray consisting of photons having slightly different 
travel path histories. Each photon departs from the moving source at different spatial coordinates. The photon 
shown arriving at the target actually left the source when it was at the leftward position. Photons produced 
from the source when the original photon arrives at the target are produced from the source in its pictured 
location and will arrive at the target when at its future shifted location further rightward.
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shifted target because each photon departs from a different location during the 
lateral motion of the source [3]. A ray in a steam cloud (Figure 8) made continu-
ously visible by reflection to an observer appears to have traveled in a direct, 
follow-the-leader path by an observer moving along with the source and target. 
A theoretic observer at some fixed coordinate could notice the actual travel path 
the photons all followed along linear but shifted diagonals if the source were 
moving laterally (if light could be made visible). Like an airplane that points 
at an angle skewed from a runway when a lateral wind is present, light photons 
would point toward a bearing other than the direction the ray follows. But since 
earth and planetary speeds are miniscule compared to that for light, this effect 
would not be observable but could be computed. Although Physics texts com-
monly claim that the illusion sensed by the moving observer means that time 
dilates for him, it is simply that a longer time is required for light to reach a shift-
ing target, because the actual path traveled is determined by the photons, not 
the observer. Here each photon travels slightly further than 0.25 m because each 
leaves the source at propagation direction speed c from different coordinates, 
while forming a ray having a component velocity less than c [3]. The fact that 
photons in a linear ray would have distinct travel path histories if the source were 
moving laterally at near light speed (which is of course not actually possible for 
sources with mass) is diagrammed in Figure 9.

10. Intrinsic and relative velocity

From the photographs of the moon it is clear that the earth rotates on its axis 
10° every 20 min. Since the earth latitude radius is 6372 km (3960 mi) in Southern 
California, then the tangential velocity of the observer due to earth rotation is 
v = rω = 1036 mi/h. However the relative motion between the moon and earth do 
not detect the additional velocity of the earth and moon system that co-orbits with 
the sun around their common barycenter near the edge of the sun, at 30 km/s. 
Further, the rotation of the Milky Way galaxy must add to the total velocity of the 
observer, and it is very possible that the entire universe of matter exhibits a transla-
tional velocity while drifting through space although this is not known for certain. 
Therefore the actual velocity of the observer with respect to some stationary point 
from which it travels is far different than the particular velocity due to earth’s 
rotation alone. In most cases the total velocity of objects with mass are not actually 
known with certainty. However, as is evident from the above discussion, for light 
which has an intrinsic speed in its propagation direction of constant c in a given 
medium, since physical motions of its source cannot alter light speed c, this means 
that light velocity with respect to its spatial point of origin is fixed and known. This 
is the intrinsic speed of light c. The intrinsic velocity of light however is relative to 
the direction in which it is desired to be used, where component intrinsic velocities 
of light have magnitudes that are less than c.

Moreover, relative speed and velocity are different from c for light when detec-
tors (not sources) move toward or away from the light front. Otis first reported that 
detectors moving toward light in its propagation direction detect a higher frequency 
of light, while the source does not change the wavelength of the light produced and 
the intrinsic speed of light remains c [6]. Thus from velocity (in the propagation 
direction) c’ = fλ, a higher (or lower) frequency causes a higher (c’ = c + v)  
(or lower, c’ = c − v) relative velocity c’ between the detector and light front due 
to the velocity v of the source. The simplistic notion that light speed cannot be 
exceeded also needs to be clarified. Two light beams traveling in opposite directions 
illuminate space at speed 2c, while each beam propagates at fried intrinsic speed c,  
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as shown by experiment earlier [2]. Further, evidence has been presented that 
changing gravity magnitude may be sensed between two distant masses at a speed 
greater than c [7, 9].

The new Palomar Community College library pictured in Figure 10 is about 
300 feet long situated East–West. The time required for light to travel from one end 
to the other if the earth were stationary would be about 0.3 ms. Since the earth travels 
this Eastward direction at 65,000 miles/h at midnight, the time required to reach 
the other end is longer by 0.03 ns because the library retreats from the light 9.2 mm 
Eastward while light traverses the building. Because the earth also rotates on its own 
axis, the time required would be 0.03 ns less at noon when the earth orbits Westward, 
like a twirling figure skater who also orbits a rink. Moreover, rotation of the galaxy 
plus any translational motion of the universe of matter would also alter the actual 
time. These effects seem small but nevertheless emphasize that all matter in the 
universe is in constant motion with variable velocity components, while massless light 
is fixed at propagation speed c from a stationary coordinate from which it departs. A 
ray travels speed c across the library but has a vertical component of velocity vy = 0. A 
ray shined upward would travel up at speed c with a horizontal component of velocity 
vx = 0, where light velocity, but not speed in its travel direction, varies from −c to 0 to 
+c depending on the direction of interest used in a problem.

11. Conclusion

To avoid misunderstanding or false conclusions, relativity must be considered 
for most questions asked in Physics. Christians are to be grateful for Creation, and 
gratitude is expressed here for gravity which keeps us from drifting into deep space, 
and for light that allows us to see.
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Figure 10. 
Palomar Community College Library Learning Resource Center, San Marcos, CA.
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monly claim that the illusion sensed by the moving observer means that time 
dilates for him, it is simply that a longer time is required for light to reach a shift-
ing target, because the actual path traveled is determined by the photons, not 
the observer. Here each photon travels slightly further than 0.25 m because each 
leaves the source at propagation direction speed c from different coordinates, 
while forming a ray having a component velocity less than c [3]. The fact that 
photons in a linear ray would have distinct travel path histories if the source were 
moving laterally at near light speed (which is of course not actually possible for 
sources with mass) is diagrammed in Figure 9.

10. Intrinsic and relative velocity

From the photographs of the moon it is clear that the earth rotates on its axis 
10° every 20 min. Since the earth latitude radius is 6372 km (3960 mi) in Southern 
California, then the tangential velocity of the observer due to earth rotation is 
v = rω = 1036 mi/h. However the relative motion between the moon and earth do 
not detect the additional velocity of the earth and moon system that co-orbits with 
the sun around their common barycenter near the edge of the sun, at 30 km/s. 
Further, the rotation of the Milky Way galaxy must add to the total velocity of the 
observer, and it is very possible that the entire universe of matter exhibits a transla-
tional velocity while drifting through space although this is not known for certain. 
Therefore the actual velocity of the observer with respect to some stationary point 
from which it travels is far different than the particular velocity due to earth’s 
rotation alone. In most cases the total velocity of objects with mass are not actually 
known with certainty. However, as is evident from the above discussion, for light 
which has an intrinsic speed in its propagation direction of constant c in a given 
medium, since physical motions of its source cannot alter light speed c, this means 
that light velocity with respect to its spatial point of origin is fixed and known. This 
is the intrinsic speed of light c. The intrinsic velocity of light however is relative to 
the direction in which it is desired to be used, where component intrinsic velocities 
of light have magnitudes that are less than c.

Moreover, relative speed and velocity are different from c for light when detec-
tors (not sources) move toward or away from the light front. Otis first reported that 
detectors moving toward light in its propagation direction detect a higher frequency 
of light, while the source does not change the wavelength of the light produced and 
the intrinsic speed of light remains c [6]. Thus from velocity (in the propagation 
direction) c’ = fλ, a higher (or lower) frequency causes a higher (c’ = c + v)  
(or lower, c’ = c − v) relative velocity c’ between the detector and light front due 
to the velocity v of the source. The simplistic notion that light speed cannot be 
exceeded also needs to be clarified. Two light beams traveling in opposite directions 
illuminate space at speed 2c, while each beam propagates at fried intrinsic speed c,  
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as shown by experiment earlier [2]. Further, evidence has been presented that 
changing gravity magnitude may be sensed between two distant masses at a speed 
greater than c [7, 9].

The new Palomar Community College library pictured in Figure 10 is about 
300 feet long situated East–West. The time required for light to travel from one end 
to the other if the earth were stationary would be about 0.3 ms. Since the earth travels 
this Eastward direction at 65,000 miles/h at midnight, the time required to reach 
the other end is longer by 0.03 ns because the library retreats from the light 9.2 mm 
Eastward while light traverses the building. Because the earth also rotates on its own 
axis, the time required would be 0.03 ns less at noon when the earth orbits Westward, 
like a twirling figure skater who also orbits a rink. Moreover, rotation of the galaxy 
plus any translational motion of the universe of matter would also alter the actual 
time. These effects seem small but nevertheless emphasize that all matter in the 
universe is in constant motion with variable velocity components, while massless light 
is fixed at propagation speed c from a stationary coordinate from which it departs. A 
ray travels speed c across the library but has a vertical component of velocity vy = 0. A 
ray shined upward would travel up at speed c with a horizontal component of velocity 
vx = 0, where light velocity, but not speed in its travel direction, varies from −c to 0 to 
+c depending on the direction of interest used in a problem.

11. Conclusion

To avoid misunderstanding or false conclusions, relativity must be considered 
for most questions asked in Physics. Christians are to be grateful for Creation, and 
gratitude is expressed here for gravity which keeps us from drifting into deep space, 
and for light that allows us to see.
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Chapter 4

Radiation and Energy Flux of
Electromagnetic Fields by a Segment
of Relativistic Electron Beam
Moving Uniformly in Vacuum
Sergey Prijmenko and Konstantin Lukin

Abstract

A finite-length segment of filamentous relativistic electron beam (REB),
moving uniformly in vacuum, radiates hybrid electromagnetic waves, compound of
potential and vortex electric fields, as well as a vortex magnetic field. The strengths
of electric and magnetic fields radiated by the segment edges have the opposite
signs. The electromagnetic fields in the wave zone are considered as superposition
of the electromagnetic waves radiated by the beginning and the end of the REB
segment, which, in particular, leads to formation of the field’s interference compo-
nents. In both the near and the intermediate zones, there is a flow of electrical
energy due to the electric potential field and the field of displacement current.

Keywords: relativistic electron beam or REB segment, potential field, vortex field,
radiation of EM waves, near field zone, intermediate zone and far field (wave)
zone, EM energy flux

1. Introduction

The physics of charged particle beam is an area where relativistic effects
manifest themselves substantially. Here, one has to deal with a moving object, so
both a fixed (laboratory) coordinate system and a moving coordinate system are to
be used. A charged particle moves relative to the laboratory coordinate system,
while in the moving coordinate system, it is at rest. Hence, in a laboratory coordi-
nate system, the problem is to be considered as an electrodynamical one, and in a
moving coordinate system, the problem belongs to the area of electrostatics. Thus,
electrostatic phenomena in a charged particle set at rest are transformed into
electrodynamic ones when it moves. Electromagnetic fields in these two inertial
reference systems are tied via the Lorentz transform ([1], p. 79).

In the wave zone, the dynamic component of the electric field strength and the
axially symmetric magnetic field form both a constant flux into a given solid angle,
i.e., electromagnetic radiation, and a flux per time unit directed along the normal to
the conical surface of the solid angle. The potential component of the electric field,
directed along the radius, and the axially symmetric magnetic field form a flux
oriented along the polar direction, i.e., along the normal to the above conical
surface. The fluxes crossing the conical surface do not depend on the distance
between the source point and the observation point. In the wave zone, the
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radiations from the beginning and end of the REB segment are added up, while the
fluxes through the above conical surface caused by dynamic and potential compo-
nents of electric field, are subtracted.

To date, the issue of influence of the finite length of a charged particle beam,
moving uniformly in vacuum on the radiation of electromagnetic fields remains
poorly studied, with an exception of publication [2], where its experimental part
deserves special attention.

This chapter presents the results of our theoretical analysis of the electromag-
netic field radiated by a finite-length segment of filamentous relativistic electron
beam (REB). The REB segment moves uniformly in vacuum along its own axis
which we will address as the longitudinal direction. The stepped varying of the
charge density at the edges of the REB segment creates point-like sources of the
potential electric field; the strength of which is inversely proportional to the dis-
tance between the source point and the observation point. In addition, the time
variation of the REB current density forms at the REB edges the point-like sources
of both potential and vortex electric fields, as well as the vortex magnetic field, with
their strengths being also inversely proportional to the distance between the source
point and the observation point [3].

The filamentary REB edges are considered as relativistic point-like radiators of the
electromagnetic energy propagating to the wave zone. The presence of a potential
electric field in the wave zone is due to the fact that the electric scalar potential in the
wave zone is proportional to the electricmonopolemoment ([4], p. 51), which equals
to the total charge in the selected volume ([5], p. 280). As follows from the Jefimenko’s
generalization of the Coulomb law ([3], p. 246), the potential electric field strength in
the wave zone is proportional to the time derivative of the electric monopole moment.

In the intermediate zone, there is a flow of electrical field energy, due to the
electric potential field and the field of the displacement current. The electrical
energy flux in the intermediate zone is due to the electric potential field and field of
the displacement current. The REB part with a constant charge density between its
edges forms a quasi-static electromagnetic field in the near zone.

Note that a similar problem has been considered in [6], but it was devoted to
similarity of the solutions obtained with the help of two different methods: retarded
field integral and transformation equations of the special theory of relativity. Unlike
our work, it does not contain expressions for scalar and vector potentials, as well
as the electromagnetic energy flux.

2. Formulation of the problem

Consider a filamentary REB segment of length L and electric charge density Q
moving uniformly along its axis direction with velocity ve. Charge density of the
REB segment may be written as follows:

ρ t, r x, y, z
� �� �

L ¼ Q
L
δ xð Þ � δ y

� �
� h z � vetð Þ � h z � vet þ Lð Þð Þ½ � (1)

where h xð Þ is Heaviside step function; δ xð Þ and δ y
� �

are Dirac delta functions of

coordinates. The electric scalar potential ψ t, rð Þ and vector potential A
!

t, rð Þ, taking
into account Eq. (1), satisfy the wave equations [3, 7]:

divgrad� 1
c2

∂
2

∂t2

� �
ψ t, rð Þ ¼ � ρ t, rð Þ

ε0
, (2)
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graddiv� rotrot � 1
c2

∂
2

∂t2

� �
A
!

t, rð Þ ¼ �μ0ρ t, rð Þvek
!
0, (3)

where ε0 and μ0 are the dielectric and magnetic permeability of vacuum,

respectively; and k
!
0 is the unit vector along the REB axis, the Oz axis.

3. Potentials

A potential part of the vector potential A
!
 p t, rð Þ is related to the scalar potential

by the Lorentz calibration [3, 7]:

div A
!
 p t, rð Þ ¼ � 1

c2
∂

∂t
ψ t, rð Þ, (4)

Using the Green’s function for the wave equation ([3], p. 243), we obtain:

ψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ � Q
L4πε0

ðvet0þL

vet0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z � z0ð Þ2

q
t0¼t�

r!� r! 0j j
c

���
, (5)

A
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ �Q μ0
L4π

ðvet0þL

vet0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z� z0ð Þ2

q
t0¼t�

r!� r! 0j j
c

���
, (6)

where the hatched coordinates refer to the source point at the time instant t0 of
the field radiation, and the non-hatched coordinates refer to the observation point
at the time instant t.

The formula for the scalar potential can be obtained in the closed form using the
table integral ([8], p. 34):

ψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ

¼ Q
L4πε0

ln z� vet0 þ Lð Þð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z� vet0 þ Lð Þð Þ2

q����
����
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���

� Q
L4πε0

ln z� vet0ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z� vet0ð Þ2

q����
����
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
(7)

where the expressions in the first and second summands refer to the REB
segment end and its beginning, respectively.

4. The electromagnetic field strengths

For estimation of the electric and magnetic fields, we use standard formulas
([7], p. 432):
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segment end and its beginning, respectively.

4. The electromagnetic field strengths

For estimation of the electric and magnetic fields, we use standard formulas
([7], p. 432):
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E
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ � ∂A
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ
∂t

�

�gradrψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ, (8)

H
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ 1
μ0

rotrA
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ, (9)

where it is necessary to perform the differentiation over the coordinates of the
observation point, taking into account the retardation effect ([7], p. 432) and ([4],
p. 43) as well as the differentiation of integrals by the integration limits and by the
parameter ([9], p. 58). Using Eqs. (5), (6), and (8), we get:

Ep
x t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αx z0 ¼ vet0ð Þ½ �
κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ

���
���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
�

� Qve
L4πε0c

cos αx z0 ¼ vet0 þ Lð Þ½ �
κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ

���
���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
þ

þ Q
L4πε0

ðvet0þL

vet0

cos αx z0ð Þ½ �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
, dz0 (10)

Ep
y t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αy z0 ¼ vet0ð Þ
� �

κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
�

� Qve
L4πε0c

cos αy z0 ¼ vet0 þ Lð Þ
� �

κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
þ

þ Q
L4πε0

ðvet0þL

vet0

cos αy z0ð Þ
� �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
, dz0 (11)

Ez t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αz z0 ¼ vet0ð Þ½ �
κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ

���
���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
�

� Qve
L4πε0c

cos αz z0 ¼ vet0 þ Lð Þ½ �
κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ

���
���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
�
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�Qμ0ve2

L4π
1

κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
þ

þQμ0ve2

L4π
1

κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
þ

þ Q
L4πε0

ðvet0þL

vet0

cos αz z0ð Þ½ �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
, dz0 (12)

where

cos αx z0 ¼ vet0ð Þ½ � ¼ x

r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
, (13)

cos αx z0 ¼ vet0 þ Lð Þ½ � ¼ x

r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
, (14)

cos αy z0 ¼ vet0ð Þ
� �

¼ y

r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
, (15)

cos αy z0 ¼ vet0 þ Lð Þ
� �

¼ y

r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
, (16)

cos αz z0 ¼ vet0ð Þ½ � ¼ z� vet0ð Þ
r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
, (17)

cos αz z0 ¼ vet0 þ Lð Þ½ � ¼ z� vet0 þ Lð Þð Þ
r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
, (18)

and

κ z0 ¼ vet0ð Þ ¼ ½1� ve
c

cos αz z0 ¼ vet0ð Þ½ �, (19)

κ z0 ¼ vet0 þ Lð Þ ¼ ½1� ve
c

cos αz z0 ¼ vet0 þ Lð Þ½ � (20)

are the retardation factors ([3], p. 246).
The transverse components of the electric field strength Ep

x t0, r0 x0, y0, z0 t0ð Þð Þ;ð
 t, r x, y, zð ÞÞ and Ep

y t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ are potential relative to the space
coordinates, and the longitudinal component Ez t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ
consists of both a potential component relative to the space coordinates and a
dynamic component.

The transverse components of the magnetic field strength Hx t0, r0 x0, y0, z0 t0ð Þð Þ;ð
 t, r x, y, zð ÞÞ and Hy t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ, according to the Eq. (6) and (9),
are:
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E
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ � ∂A
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ
∂t

�

�gradrψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ, (8)

H
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ 1
μ0

rotrA
!

t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ, (9)

where it is necessary to perform the differentiation over the coordinates of the
observation point, taking into account the retardation effect ([7], p. 432) and ([4],
p. 43) as well as the differentiation of integrals by the integration limits and by the
parameter ([9], p. 58). Using Eqs. (5), (6), and (8), we get:

Ep
x t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αx z0 ¼ vet0ð Þ½ �
κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ

���
���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
�

� Qve
L4πε0c

cos αx z0 ¼ vet0 þ Lð Þ½ �
κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ

���
���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
þ

þ Q
L4πε0

ðvet0þL

vet0

cos αx z0ð Þ½ �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
, dz0 (10)

Ep
y t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αy z0 ¼ vet0ð Þ
� �

κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
�

� Qve
L4πε0c

cos αy z0 ¼ vet0 þ Lð Þ
� �

κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
þ

þ Q
L4πε0

ðvet0þL

vet0

cos αy z0ð Þ
� �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
, dz0 (11)

Ez t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve
L4πε0c

cos αz z0 ¼ vet0ð Þ½ �
κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ

���
���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
�

� Qve
L4πε0c

cos αz z0 ¼ vet0 þ Lð Þ½ �
κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ

���
���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
�
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�Qμ0ve2

L4π
1

κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
þ

þQμ0ve2

L4π
1

κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
þ

þ Q
L4πε0

ðvet0þL

vet0

cos αz z0ð Þ½ �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
, dz0 (12)

where

cos αx z0 ¼ vet0ð Þ½ � ¼ x

r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
, (13)

cos αx z0 ¼ vet0 þ Lð Þ½ � ¼ x

r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
, (14)

cos αy z0 ¼ vet0ð Þ
� �

¼ y

r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
, (15)

cos αy z0 ¼ vet0 þ Lð Þ
� �

¼ y

r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
, (16)

cos αz z0 ¼ vet0ð Þ½ � ¼ z� vet0ð Þ
r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
, (17)

cos αz z0 ¼ vet0 þ Lð Þ½ � ¼ z� vet0 þ Lð Þð Þ
r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
, (18)

and

κ z0 ¼ vet0ð Þ ¼ ½1� ve
c

cos αz z0 ¼ vet0ð Þ½ �, (19)

κ z0 ¼ vet0 þ Lð Þ ¼ ½1� ve
c

cos αz z0 ¼ vet0 þ Lð Þ½ � (20)

are the retardation factors ([3], p. 246).
The transverse components of the electric field strength Ep

x t0, r0 x0, y0, z0 t0ð Þð Þ;ð
 t, r x, y, zð ÞÞ and Ep

y t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ are potential relative to the space
coordinates, and the longitudinal component Ez t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ
consists of both a potential component relative to the space coordinates and a
dynamic component.

The transverse components of the magnetic field strength Hx t0, r0 x0, y0, z0 t0ð Þð Þ;ð
 t, r x, y, zð ÞÞ and Hy t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ, according to the Eq. (6) and (9),
are:
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Hx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ �Qve2

L4πc
cos αy z0 ¼ vet0ð Þ
� �

κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���

þQve2

L4πc
cos αy z0 ¼ vet0 þ Lð Þ
� �

κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���

�Qve
L4π

ðvet0þL

vet0
dz0

cos αy z0ð Þ
� �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
(21)

Hy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve2

L4πc
cos αx z0 ¼ vet0ð Þ½ �

κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
�

�Qve2

L4πc
cos αx z0 ¼ vet0 þ Lð Þ½ �

κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
þ

þQve
L4π

ðvet0þL

vet0
dz0

cos αx z0ð Þ½ �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
(22)

The strengths of the electric fields in Eqs. (10)–(12) and magnetic fields with
Eqs. (21) and (22), formed by the ends and the main part of the beam, decrease
inversely proportional to the first and second powers of the distance from the
source point to the observation point.

5. Displacement current

We take into account that the displacement current density j
!

d t, rð Þ ([7],
p. 87):

j
!

d t, rð Þ ¼ ∂

∂t
D
!

d t, rð Þ ¼ ∂

∂t
ε0E

!
t, rð Þ, (23)

where the D
!

d t, rð Þ ¼ ε0E
!

t, rð Þ is the electric displacement vector. Taking into
account the Eqs. (10)–(12) and (23), we get

jpdx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve2

L4πc
cos αx z0 ¼ vet0ð Þ½ � � cos αz z0 ¼ vet0ð Þ½ � � 1

κ2 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
2

þ Qve3

L4πc2
cos αx z0 ¼ vet0ð Þ½ �

κ3 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
3 ½ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
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� cos αz z0 ¼ vet0ð Þ½ � z� vet0ð Þ�þ

þQve2

L4πc
cos αx z0 ¼ vet0ð Þ½ � cos αz z0 ¼ vet0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
2 �

� 2Qve2

L4πc
cos αx z0 ¼ vet0 þ Lð Þ½ � � cos αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2 �

� Qve3

L4πc2
cos αx z0 ¼ vet0 þ Lð Þ½ �

κ3 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
3

� r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���� cos αz z0 ¼ vet0 þ Lð Þ½ � � z� vet0 þ Lð Þð Þ
h i

þ

þQve
L4π

cos αx z0 ¼ vet0 þ Lð Þ½ �
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���

���
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L4π
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���

���
2 (24)

jpdy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve2

L4πc
cos αy z0 ¼ vet0ð Þ
� �

� cos αz z0 ¼ vet0ð Þ½ ��

� 1
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���

���
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���
3
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L4πc
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� �
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κ2 z0 ¼ vet0ð Þ r!� ¼ vet0Þ� z� vet0ð Þ�ðt0, z0 ¼ vet0Þ
���

���
2
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L4πc
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� �
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���

���
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L4πc2
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� �
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���

���
3 r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
h

� cos αz z0 ¼ vet0 þ Lð Þ½ � � z� vet0 þ Lð Þð Þ�

þQve
L4π

cos αy z0 ¼ vet0 þ Lð Þ
� �
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���

���
2

�Qve
L4π

cos αy z0 ¼ vet0ð Þ
� �

κ2 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
2 (25)

jdz t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ �Qve2

L4πc
sin 2 αz z0 ¼ vet0ð Þ½ ��
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Hx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼
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���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���

þQve2

L4πc
cos αy z0 ¼ vet0 þ Lð Þ
� �

κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���

�Qve
L4π

ðvet0þL

vet0
dz0

cos αy z0ð Þ
� �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
(21)

Hy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve2

L4πc
cos αx z0 ¼ vet0ð Þ½ �

κ z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0ð Þj j
c

���
�

�Qve2

L4πc
cos αx z0 ¼ vet0 þ Lð Þ½ �

κ z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
t0¼t�

r!� r! 0 t0 ,z0¼vet0þLð Þj j
c

���
þ

þQve
L4π

ðvet0þL

vet0
dz0

cos αx z0ð Þ½ �

r! � r! 0 t0, z0ð Þ
���

���
2

t0¼t�
r!� r! 0 t0 ,z0ð Þj j

c

���
(22)

The strengths of the electric fields in Eqs. (10)–(12) and magnetic fields with
Eqs. (21) and (22), formed by the ends and the main part of the beam, decrease
inversely proportional to the first and second powers of the distance from the
source point to the observation point.

5. Displacement current

We take into account that the displacement current density j
!

d t, rð Þ ([7],
p. 87):

j
!

d t, rð Þ ¼ ∂

∂t
D
!

d t, rð Þ ¼ ∂

∂t
ε0E

!
t, rð Þ, (23)

where the D
!

d t, rð Þ ¼ ε0E
!

t, rð Þ is the electric displacement vector. Taking into
account the Eqs. (10)–(12) and (23), we get

jpdx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve2

L4πc
cos αx z0 ¼ vet0ð Þ½ � � cos αz z0 ¼ vet0ð Þ½ � � 1

κ2 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
2

þ Qve3

L4πc2
cos αx z0 ¼ vet0ð Þ½ �

κ3 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
3 ½ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
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� cos αz z0 ¼ vet0ð Þ½ � z� vet0ð Þ�þ

þQve2

L4πc
cos αx z0 ¼ vet0ð Þ½ � cos αz z0 ¼ vet0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
2 �

� 2Qve2

L4πc
cos αx z0 ¼ vet0 þ Lð Þ½ � � cos αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2 �

� Qve3

L4πc2
cos αx z0 ¼ vet0 þ Lð Þ½ �

κ3 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
3

� r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���� cos αz z0 ¼ vet0 þ Lð Þ½ � � z� vet0 þ Lð Þð Þ
h i

þ

þQve
L4π

cos αx z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2 �

�Qve
L4π

� cos αx z0 ¼ vet0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
2 (24)

jpdy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ Qve2

L4πc
cos αy z0 ¼ vet0ð Þ
� �

� cos αz z0 ¼ vet0ð Þ½ ��

� 1

κ2 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
2 þ

Qve3

L4πc2
cos αy z0 ¼ vet0ð Þ
� �

κ3 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
3

r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���� cos αz z0 ¼ vet0ð Þ½ � z� vet0ð Þ
h i

þ

þQve2

L4πc
cos αy z0 ¼ vet0ð Þ
� �

cos αz z0 ¼ vet0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r!� ¼ vet0Þ� z� vet0ð Þ�ðt0, z0 ¼ vet0Þ
���

���
2

� 2Qve2

L4πc
cos αy z0 ¼ vet0 þ Lð Þ
� �

� cos αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2 � Qve3

L4πc2

cos αy z0 ¼ vet0 þ Lð Þ
� �

κ3 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
3 r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
h

� cos αz z0 ¼ vet0 þ Lð Þ½ � � z� vet0 þ Lð Þð Þ�

þQve
L4π

cos αy z0 ¼ vet0 þ Lð Þ
� �

κ2 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2

�Qve
L4π

cos αy z0 ¼ vet0ð Þ
� �

κ2 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
2 (25)

jdz t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ �Qve2

L4πc
sin 2 αz z0 ¼ vet0ð Þ½ ��
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� 1

κ2 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
2 þ

Qve3

L4πc2
cos αz z0 ¼ vet0ð Þ½ �

κ3 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
3 �

� r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���� cos αz z0 ¼ vet0ð Þ½ � z� vet0ð Þ
h i

þ Qve2

L4πc
cos 2 αz z0 ¼ vet0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
2

�Qve2

L4πc
sin 2 αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2 þ

Qve3

L4πc2
�

� cos αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���
3

� ½ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���� cos αz z0 ¼ vet0 þ Lð Þ½ ��

� z� vet0 þ Lð Þð Þ� þ Qve2

L4πc
cos 2 αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2 �

Qve4

L4πc3
1

κ3 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
3 r! � r!0 t0, z0 ¼ vet0ð Þ
���

���� cos αz z0 ¼ vet0ð Þ½ � z� vet0ð Þ
h i

�

� Qve3

L4πc2
cos αz z0 ¼ vet0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
2

þ Qve4

L4πc3
1

κ3 z0 ¼ vet0 þ Lð Þ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���
3 �

� r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���� cos αz z0 ¼ vet0 þ Lð Þ½ � z� vet0 þ Lð Þð Þ
h i

þ

þ Qve3

L4πc2
cos αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2

� Qve
L4π

cos αz z0 ¼ vet0ð Þ½ �

κ z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
2 (26)

The transverse components of the displacement current density
jpdx t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ and jpdy t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ are
potential with respect to space coordinates, and the longitudinal component
jdz t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ consists of potential and dynamic components.
Displacement current densities are decreasing inversely proportional to the second
power of the distance from the source point to the observation point.
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6. Flux of electrical energy

The electrical energy flux density per unit time S
!ψ

t, rð Þ, according to ([10],
p. 125) Eq. (15) and [11] Eqs. (7) and (8), has the form

S
!ψ

t, rð Þ ¼ ψ t, rð Þ � j
!

d t, rð Þ (27)

Taking into account the Eq. (5) or the Eq. (7) and the Eqs. (24)–(26), we can
write

Sψx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼
¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ�

jpdx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ (28)

Sψy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ�

� jpdy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ (29)

Sψz t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼
¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ�

jpdz t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ (30)

The electrical energy flux density S
!ψ

t, rð Þ decreases inversely proportional to the
third power of the distance from the source point to the observation point. The
electrical energy flux per unit time into a given solid angle decreases inversely
proportional to the first power of the distance from the source point to the obser-
vation point. The flux takes place both in the near and the intermediate zones.

7. Pointing vector

The Poynting vector or the flux density of electromagnetic energy per unit time
is determined by the formula ([3], p. 259)

S
!

t, rð Þ ¼ E
!

t, rð Þ �H
!

t, rð Þ (31)

The Poynting vector along the Ox axis estimated according to Eq. (31) with the
help of Eqs. (12) and (22) may be written as follows:

Sx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼
¼ �Ez t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ�
�Hy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ

¼ �fEp
z z0 ¼ vet0ð Þ þ Ep

z z0 ¼ vet0 þ Lð Þ
þEr

z z0 ¼ vet0ð Þ þ Er
z vet0 , z0 , vet0 þ Lð Þg�

Hy z0 ¼ vet0ð Þ þHy z0 ¼ vet0 þ Lð Þ þ þHc
y vet0 , z0 , vet0 þ Lð Þ

n o
(32)
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� 1

κ2 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
2 þ

Qve3

L4πc2
cos αz z0 ¼ vet0ð Þ½ �

κ3 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
3 �

� r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���� cos αz z0 ¼ vet0ð Þ½ � z� vet0ð Þ
h i

þ Qve2

L4πc
cos 2 αz z0 ¼ vet0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
2

�Qve2

L4πc
sin 2 αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2 þ

Qve3

L4πc2
�

� cos αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���
3

� ½ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���� cos αz z0 ¼ vet0 þ Lð Þ½ ��

� z� vet0 þ Lð Þð Þ� þ Qve2

L4πc
cos 2 αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r! 0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2 �

Qve4

L4πc3
1

κ3 z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
3 r! � r!0 t0, z0 ¼ vet0ð Þ
���

���� cos αz z0 ¼ vet0ð Þ½ � z� vet0ð Þ
h i

�

� Qve3

L4πc2
cos αz z0 ¼ vet0ð Þ½ �

κ2 z0 ¼ vet0ð Þ r! � r! 0 t0, z0 ¼ vet0ð Þ
���

���
2

þ Qve4

L4πc3
1

κ3 z0 ¼ vet0 þ Lð Þ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���
3 �

� r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���� cos αz z0 ¼ vet0 þ Lð Þ½ � z� vet0 þ Lð Þð Þ
h i

þ

þ Qve3

L4πc2
cos αz z0 ¼ vet0 þ Lð Þ½ �

κ2 z0 ¼ vet0 þ Lð Þ r! � r!0 t0, z0 ¼ vet0 þ Lð Þ
���

���
2

� Qve
L4π

cos αz z0 ¼ vet0ð Þ½ �

κ z0 ¼ vet0ð Þ r! � r!0 t0, z0 ¼ vet0ð Þ
���

���
2 (26)

The transverse components of the displacement current density
jpdx t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ and jpdy t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ are
potential with respect to space coordinates, and the longitudinal component
jdz t0, r0 x0, y0, z0 t0ð Þð Þ; t, r x, y, zð Þð Þ consists of potential and dynamic components.
Displacement current densities are decreasing inversely proportional to the second
power of the distance from the source point to the observation point.
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6. Flux of electrical energy

The electrical energy flux density per unit time S
!ψ

t, rð Þ, according to ([10],
p. 125) Eq. (15) and [11] Eqs. (7) and (8), has the form

S
!ψ

t, rð Þ ¼ ψ t, rð Þ � j
!

d t, rð Þ (27)

Taking into account the Eq. (5) or the Eq. (7) and the Eqs. (24)–(26), we can
write

Sψx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼
¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ�

jpdx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ (28)

Sψy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼

¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ�

� jpdy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ (29)

Sψz t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼
¼ ψ t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ�

jpdz t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ (30)

The electrical energy flux density S
!ψ

t, rð Þ decreases inversely proportional to the
third power of the distance from the source point to the observation point. The
electrical energy flux per unit time into a given solid angle decreases inversely
proportional to the first power of the distance from the source point to the obser-
vation point. The flux takes place both in the near and the intermediate zones.

7. Pointing vector

The Poynting vector or the flux density of electromagnetic energy per unit time
is determined by the formula ([3], p. 259)

S
!

t, rð Þ ¼ E
!

t, rð Þ �H
!

t, rð Þ (31)

The Poynting vector along the Ox axis estimated according to Eq. (31) with the
help of Eqs. (12) and (22) may be written as follows:

Sx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼
¼ �Ez t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ�
�Hy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ

¼ �fEp
z z0 ¼ vet0ð Þ þ Ep

z z0 ¼ vet0 þ Lð Þ
þEr

z z0 ¼ vet0ð Þ þ Er
z vet0 , z0 , vet0 þ Lð Þg�

Hy z0 ¼ vet0ð Þ þHy z0 ¼ vet0 þ Lð Þ þ þHc
y vet0 , z0 , vet0 þ Lð Þ

n o
(32)
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where the summands in curly brackets are defined by Eq. (12) and Eq. (22),
respectively. Rewriting the Eq. (32) in the following form:

Sx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ
¼ iSx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ þ piSx z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ

þ f Scx vet0 , z0 , vet0 þ Lð Þ,
(33)

where the iSx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ there is a flux of electromagnetic energy
in a unit time that goes into the wave zone, the piSx z0 ¼ vet0, z0 ¼ð vet0 þ
L, vet0 , z0 , vet0 þ LÞ there is a flux of electromagnetic energy in the intermediate
zone, the f Scx vet0 , z0 , vet0 þ Lð Þ there is a flux of electromagnetic energy in the
near zone. As this takes place

iSx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ iSx z0 ¼ vet0ð Þþ

þiSx z0 ¼ vet0 þ Lð Þ þ iSψAx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ, (34)
iSx z0 ¼ vet0ð Þ ¼ iSψAx z0 ¼ vet0ð Þ þ iSAx z0 ¼ vet0ð Þ ¼

¼ �Ep
z z0 ¼ vet0ð Þ �Hy z0 ¼ vet0ð Þ � Er

z z0 ¼ vet0ð Þ �Hy z0 ¼ vet0ð Þ, (35)

iSx z0 ¼ vet0 þ Lð Þ ¼ iSψAx z0 ¼ vet0 þ Lð Þ þ iSAx z0 ¼ vet0 þ Lð Þ ¼
�Ep

z z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ � Er
z z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ, (36)

iSψAx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ �Ep
z z0 ¼ vet0ð Þ �Hy z0 ¼ vet0 þ Lð Þ � Ep

z z0 ¼ vet0 þ Lð Þ
�Hy z0 ¼ vet0ð Þ � Er

z z0 ¼ vet0ð Þ �Hy z0 ¼ vet0 þ Lð Þ
� Er

z z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0ð Þ:
(37)

The energy fluxes, iSx z0 ¼ vet0ð Þ, iSx z0 ¼ vet0 þ Lð Þ, iSψAx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ,
are determined by point sources of radiation at the REB segment beginning, the
REB segment end, and the REB segment interference, respectively.

piSx z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ ¼
�Ep

z z0 ¼ vet0ð Þ �Hc
y vet0 , z0 , vet0 þ Lð Þ � Ep

z z0 ¼ vet0 þ Lð Þ �Hc
y vet0 , z0 , vet0 þ Lð Þ

�Er
z z0 ¼ vet0ð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ � Er
z z0 ¼ vet0ð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ

Ec
z vet0 , z0 , vet0 þ Lð Þ �Hy z0 ¼ vet0ð Þ � Ec

z vet0 , z0 , vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ:
(38)

f Scx vet0 , z0 , vet0 þ Lð Þ ¼ �Ec
z vet0 , z0 , vet0 þ Lð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ: (39)

The Poynting vector along the Oy axis, taking into account Eqs. (12), (21), (31),
similarly to Eqs. (33)–(39), is represented by:

Sy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼ iSy z0 ¼ vet0, z0 ¼ vet0 þ Lð Þþ

þpiSy z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ þ f Scy vet0 , z0 , vet0 þ Lð Þ, (40)

iSy z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ iSy z0 ¼ vet0ð Þ þ iSy z0 ¼ vet0 þ Lð Þþ

þiSψAy z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ (41)
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iSy z0 ¼ vet0ð Þ ¼ iSψAy z0 ¼ vet0ð Þ þ iSAy z0 ¼ vet0ð Þ ¼

¼ Ep
z z0 ¼ vet0ð Þ �Hx z0 ¼ vet0ð Þ þ Er

z z0 ¼ vet0ð Þ �Hx z0 ¼ vet0ð Þ (42)
iSy z0 ¼ vet0 þ Lð Þ ¼ iSψAy z0 ¼ vet0 þ Lð Þ þ iSAy z0 ¼ vet0 þ Lð Þ ¼

¼ Ep
z z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ þ Er

z z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ,
(43)

iSψAy z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ Ep
z z0 ¼ vet0ð Þ �Hx z0 ¼ vet0 þ Lð Þ þ Ep

z z0 ¼ vet0 þ Lð Þ�

�Hx z0 ¼ vet0ð Þ þ Er
z z0 ¼ vet0ð Þ �Hx z0 ¼ vet0 þ Lð Þ þ Er

z z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0ð Þ,
(44)

piSy z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ ¼

Ep
z z0 ¼ vet0ð Þ �Hc

x vet0 , z0 , vet0 þ Lð Þ þ Ep
z z0 ¼ vet0 þ Lð Þ �Hc

x vet0 , z0 , vet0 þ Lð Þþ
þEr

z z0 ¼ vet0ð Þ �Hc
x vet0 , z0 , vet0 þ Lð Þ þ Er

z z0 ¼ vet0ð Þ �Hc
x vet0 , z0 , vet0 þ Lð Þþ

þEc
z vet0 , z0 , vet0 þ Lð Þ �Hx z0 ¼ vet0ð Þ þ Ec

z vet0 , z0 , vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ, (45)
f Scy vet0 , z0 , vet0 þ Lð Þ ¼ �Ec

z vet0 , z0 , vet0 þ Lð Þ �Hc
x vet0 , z0 , vet0 þ Lð Þ: (46)

The Poynting vector along the Oz axis, taking into account Eqs. (10), (11), (21),
(22), and (31), may be written as follows:

Sz t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼ iSz z0 ¼ vet0, z0 ¼ vet0 þ Lð Þþ

þpiSz z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ þ f Scz vet0 , z0 , vet0 þ Lð Þ, (47)
iSz z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ iSz z0 ¼ vet0ð Þþ

þiSz z0 ¼ vet0 þ Lð Þ þ iSψAz z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ (48)
iSz z0 ¼ vet0ð Þ ¼ iSψAz z0 ¼ vet0ð Þ ¼

¼ Ep
x z0 ¼ vet0ð Þ �Hy z0 ¼ vet0ð Þ � Ep

y z0 ¼ vet0ð Þ �Hx z0 ¼ vet0ð Þ (49)

iSz z0 ¼ vet0 þ Lð Þ ¼ iSψAz z0 ¼ vet0 þ Lð Þ ¼
¼ Ep

x z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ � Ep
y z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ (50)

iSψAz z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ Ep
x z0 ¼ vet0ð Þ �Hy z0 ¼ vet0 þ Lð Þþ

þEp
x z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0ð Þ � Ep

y z0 ¼ vet0ð Þ �Hx z0 ¼ vet0 þ Lð Þ�

�Ep
y z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0ð Þ (51)

piSz z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ ¼
Ep
x z0 ¼ vet0ð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ þ Ep
x z0 ¼ vet0 þ Lð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þþ

þEc
x vet0 , z0 , vet0 þ Lð Þ �Hy z0 ¼ vet0ð Þ þ Ec

x vet0 , z0 , vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ�

�Ep
y z0 ¼ vet0ð Þ �Hc

x vet0 , z0 , vet0 þ Lð Þ � Ep
y z0 ¼ vet0 þ Lð Þ �Hc

x vet0 , z0 , vet0 þ Lð Þ�

�Ec
y vet0 , z0 , vet0 þ Lð Þ �Hx z0 ¼ vet0ð Þ � Ec

y vet0 , z0 , vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ,
(52)

f Scz vet0 , z0 , vet0 þ Lð Þ ¼ Ec
x vet0 , z0 , vet0 þ Lð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ�

�Ec
e vet

0 , z0 , vet0 þ Lð Þ �Hc
x vet0 , z0 , vet0 þ Lð Þ: (53)
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where the summands in curly brackets are defined by Eq. (12) and Eq. (22),
respectively. Rewriting the Eq. (32) in the following form:

Sx t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ
¼ iSx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ þ piSx z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ

þ f Scx vet0 , z0 , vet0 þ Lð Þ,
(33)

where the iSx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ there is a flux of electromagnetic energy
in a unit time that goes into the wave zone, the piSx z0 ¼ vet0, z0 ¼ð vet0 þ
L, vet0 , z0 , vet0 þ LÞ there is a flux of electromagnetic energy in the intermediate
zone, the f Scx vet0 , z0 , vet0 þ Lð Þ there is a flux of electromagnetic energy in the
near zone. As this takes place

iSx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ iSx z0 ¼ vet0ð Þþ

þiSx z0 ¼ vet0 þ Lð Þ þ iSψAx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ, (34)
iSx z0 ¼ vet0ð Þ ¼ iSψAx z0 ¼ vet0ð Þ þ iSAx z0 ¼ vet0ð Þ ¼

¼ �Ep
z z0 ¼ vet0ð Þ �Hy z0 ¼ vet0ð Þ � Er

z z0 ¼ vet0ð Þ �Hy z0 ¼ vet0ð Þ, (35)

iSx z0 ¼ vet0 þ Lð Þ ¼ iSψAx z0 ¼ vet0 þ Lð Þ þ iSAx z0 ¼ vet0 þ Lð Þ ¼
�Ep

z z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ � Er
z z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ, (36)

iSψAx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ �Ep
z z0 ¼ vet0ð Þ �Hy z0 ¼ vet0 þ Lð Þ � Ep

z z0 ¼ vet0 þ Lð Þ
�Hy z0 ¼ vet0ð Þ � Er

z z0 ¼ vet0ð Þ �Hy z0 ¼ vet0 þ Lð Þ
� Er

z z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0ð Þ:
(37)

The energy fluxes, iSx z0 ¼ vet0ð Þ, iSx z0 ¼ vet0 þ Lð Þ, iSψAx z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ,
are determined by point sources of radiation at the REB segment beginning, the
REB segment end, and the REB segment interference, respectively.

piSx z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ ¼
�Ep

z z0 ¼ vet0ð Þ �Hc
y vet0 , z0 , vet0 þ Lð Þ � Ep

z z0 ¼ vet0 þ Lð Þ �Hc
y vet0 , z0 , vet0 þ Lð Þ

�Er
z z0 ¼ vet0ð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ � Er
z z0 ¼ vet0ð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ

Ec
z vet0 , z0 , vet0 þ Lð Þ �Hy z0 ¼ vet0ð Þ � Ec

z vet0 , z0 , vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ:
(38)

f Scx vet0 , z0 , vet0 þ Lð Þ ¼ �Ec
z vet0 , z0 , vet0 þ Lð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ: (39)

The Poynting vector along the Oy axis, taking into account Eqs. (12), (21), (31),
similarly to Eqs. (33)–(39), is represented by:

Sy t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼ iSy z0 ¼ vet0, z0 ¼ vet0 þ Lð Þþ

þpiSy z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ þ f Scy vet0 , z0 , vet0 þ Lð Þ, (40)

iSy z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ iSy z0 ¼ vet0ð Þ þ iSy z0 ¼ vet0 þ Lð Þþ

þiSψAy z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ (41)
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iSy z0 ¼ vet0ð Þ ¼ iSψAy z0 ¼ vet0ð Þ þ iSAy z0 ¼ vet0ð Þ ¼

¼ Ep
z z0 ¼ vet0ð Þ �Hx z0 ¼ vet0ð Þ þ Er

z z0 ¼ vet0ð Þ �Hx z0 ¼ vet0ð Þ (42)
iSy z0 ¼ vet0 þ Lð Þ ¼ iSψAy z0 ¼ vet0 þ Lð Þ þ iSAy z0 ¼ vet0 þ Lð Þ ¼

¼ Ep
z z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ þ Er

z z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ,
(43)

iSψAy z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ Ep
z z0 ¼ vet0ð Þ �Hx z0 ¼ vet0 þ Lð Þ þ Ep

z z0 ¼ vet0 þ Lð Þ�

�Hx z0 ¼ vet0ð Þ þ Er
z z0 ¼ vet0ð Þ �Hx z0 ¼ vet0 þ Lð Þ þ Er

z z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0ð Þ,
(44)

piSy z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ ¼

Ep
z z0 ¼ vet0ð Þ �Hc

x vet0 , z0 , vet0 þ Lð Þ þ Ep
z z0 ¼ vet0 þ Lð Þ �Hc

x vet0 , z0 , vet0 þ Lð Þþ
þEr

z z0 ¼ vet0ð Þ �Hc
x vet0 , z0 , vet0 þ Lð Þ þ Er

z z0 ¼ vet0ð Þ �Hc
x vet0 , z0 , vet0 þ Lð Þþ

þEc
z vet0 , z0 , vet0 þ Lð Þ �Hx z0 ¼ vet0ð Þ þ Ec

z vet0 , z0 , vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ, (45)
f Scy vet0 , z0 , vet0 þ Lð Þ ¼ �Ec

z vet0 , z0 , vet0 þ Lð Þ �Hc
x vet0 , z0 , vet0 þ Lð Þ: (46)

The Poynting vector along the Oz axis, taking into account Eqs. (10), (11), (21),
(22), and (31), may be written as follows:

Sz t0, x0 ¼ 0, y0 ¼ 0, vet0 , z0 , vet0 þ L; t, r x, y, zð Þð Þ ¼ iSz z0 ¼ vet0, z0 ¼ vet0 þ Lð Þþ

þpiSz z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ þ f Scz vet0 , z0 , vet0 þ Lð Þ, (47)
iSz z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ iSz z0 ¼ vet0ð Þþ

þiSz z0 ¼ vet0 þ Lð Þ þ iSψAz z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ (48)
iSz z0 ¼ vet0ð Þ ¼ iSψAz z0 ¼ vet0ð Þ ¼

¼ Ep
x z0 ¼ vet0ð Þ �Hy z0 ¼ vet0ð Þ � Ep

y z0 ¼ vet0ð Þ �Hx z0 ¼ vet0ð Þ (49)

iSz z0 ¼ vet0 þ Lð Þ ¼ iSψAz z0 ¼ vet0 þ Lð Þ ¼
¼ Ep

x z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ � Ep
y z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ (50)

iSψAz z0 ¼ vet0, z0 ¼ vet0 þ Lð Þ ¼ Ep
x z0 ¼ vet0ð Þ �Hy z0 ¼ vet0 þ Lð Þþ

þEp
x z0 ¼ vet0 þ Lð Þ �Hy z0 ¼ vet0ð Þ � Ep

y z0 ¼ vet0ð Þ �Hx z0 ¼ vet0 þ Lð Þ�

�Ep
y z0 ¼ vet0 þ Lð Þ �Hx z0 ¼ vet0ð Þ (51)

piSz z0 ¼ vet0, z0 ¼ vet0 þ L, vet0 , z0 , vet0 þ Lð Þ ¼
Ep
x z0 ¼ vet0ð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ þ Ep
x z0 ¼ vet0 þ Lð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þþ

þEc
x vet0 , z0 , vet0 þ Lð Þ �Hy z0 ¼ vet0ð Þ þ Ec

x vet0 , z0 , vet0 þ Lð Þ �Hy z0 ¼ vet0 þ Lð Þ�

�Ep
y z0 ¼ vet0ð Þ �Hc

x vet0 , z0 , vet0 þ Lð Þ � Ep
y z0 ¼ vet0 þ Lð Þ �Hc

x vet0 , z0 , vet0 þ Lð Þ�

�Ec
y vet0 , z0 , vet0 þ Lð Þ �Hx z0 ¼ vet0ð Þ � Ec

y vet0 , z0 , vet0 þ Lð Þ �Hx z0 ¼ vet0 þ Lð Þ,
(52)

f Scz vet0 , z0 , vet0 þ Lð Þ ¼ Ec
x vet0 , z0 , vet0 þ Lð Þ �Hc

y vet0 , z0 , vet0 þ Lð Þ�

�Ec
e vet

0 , z0 , vet0 þ Lð Þ �Hc
x vet0 , z0 , vet0 þ Lð Þ: (53)
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8. Numerical results

We have considered the filamentary REB of the length L ¼ 3 m, moving along
the Oz axis with velocity ve ¼ 0:94 c ( c is the speed of light) and having overall
charge Q ¼ �1ð Þ � 10�10C.

In the laboratory coordinate system, the dependence of the electric field strength
Ep
x t0 ¼ 0, x0 ¼ 0, y0 ¼ 0, z0 ¼ 0; t, r x, y ¼ 0, z ¼ 0ð Þð Þ, radiated by the beginning of

the REB segment r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ 0ð Þ, on the transverse coordinate x was cal-
culated using Eq. (10), (Figure 1). The signal radiation time t0 was selected equal to
zero t0 ¼ 0. The observation point r x, y ¼ 0, z ¼ 0ð Þwas selected in the cross section
z ¼ 0 at y ¼ 0. The observation time t was determined by the formula t ¼ xj j

c .
The dependence of the potential electric field strength Ep

x t0, x0 ¼ 0, y0 ¼ 0,ð z0 ¼
vet0; t, r x ¼ 0:3m, y ¼ 0, z ¼ 0ð ÞÞ, radiated by the beginning of the REB segment
r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0ð Þ, on the signal generation time t0 calculated with the help
of Eq. (10), is represented in Figure 2 where r x ¼ 0:3m,ð y ¼ 0, z ¼ 0Þ is the
observation point coordinates.

The dependence of the magnetic field strength Hy t0 ¼ 0, x0 ¼ 0, y0 ¼ 0,ð z0 ¼
L; t, r x, y ¼ 0, z ¼ 0ð ÞÞ radiated by the REB segment end r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ Lð Þ
on the transverse coordinate x was calculated using Eq. (22) (Figure 3). The signal

Figure 1.
The potential electric field strength Ep

x t0 ¼ 0,x0 ¼ 0, y0 ¼ 0, z0 ¼ 0;t, r x, y ¼ 0, z ¼ 0
� �� �

radiated by the
REB segment beginning.

Figure 2.
The potential electric field strength Ep

x t0, x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0
� �� �

radiated by
the REB segment beginning.
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generation time t0 was selected equal to the zero, t0 ¼ 0 where
r x ¼ 0:3m, y ¼ 0, z ¼ 0ð Þ is the observation point coordinates. The observation time

t was determined by the formula t ¼
ffiffiffiffiffiffiffiffiffiffi
x2þL2

p
c :

The dependence of the magnetic field strength Hy t0,x0 ¼ 0, y0 ¼ 0,
�

z0 ¼ vet0 þ L;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0
� �

Þ, radiated by the REB segment end
r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0 þ L
� �

, on the signal radiation time t0 calculated using
Eq.(22), is represented in Figure 4 where r x ¼ 0:3m,ð y ¼ 0, z ¼ 0Þ is the
observation point coordinates.

The dependence of the electromagnetic energy flux iSz t0 ¼ 0,x0 ¼ 0,ð
y0 ¼ 0, z0 ¼ 0;t, r x, y ¼ 0, z ¼ 0

� �
Þ, radiated by the REB segment beginning

r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ 0
� �

, on the transverse coordinate x was calculated with the
help of Eqs. (49), (10), (11), (21), and (22) (Figure 5). The signal generation time t0

was selected equal to the zero, t0 ¼ 0. The r x, y ¼ 0, z ¼ 0
� �

is the observation point

coordinates. The observation time t was determined by the formula t ¼ xj j
c .

The dependence of the electromagnetic energy flux iSz t0, x0 ¼ 0, y0 ¼ 0,
�

z0 ¼ vet0; t, r x ¼ 0:3m, y ¼ 0, z ¼ 0
� �

Þ, radiated by the REB segment
r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0
� �

, on the signal generation time t0, calculated by Eqs. (49),

Figure 3.
Magnetic field strengthHy t0 ¼ 0,x0 ¼ 0, y0 ¼ 0, z0 ¼ L;t, r x, y ¼ 0, z ¼ 0

� �� �
radiatedby theREB segment end.

Figure 4.
Magnetic field strength Hy t0,x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0 þ L;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0

� �� �
radiated by the

REB segment end.
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8. Numerical results

We have considered the filamentary REB of the length L ¼ 3 m, moving along
the Oz axis with velocity ve ¼ 0:94 c ( c is the speed of light) and having overall
charge Q ¼ �1ð Þ � 10�10C.

In the laboratory coordinate system, the dependence of the electric field strength
Ep
x t0 ¼ 0, x0 ¼ 0, y0 ¼ 0, z0 ¼ 0; t, r x, y ¼ 0, z ¼ 0ð Þð Þ, radiated by the beginning of

the REB segment r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ 0ð Þ, on the transverse coordinate x was cal-
culated using Eq. (10), (Figure 1). The signal radiation time t0 was selected equal to
zero t0 ¼ 0. The observation point r x, y ¼ 0, z ¼ 0ð Þwas selected in the cross section
z ¼ 0 at y ¼ 0. The observation time t was determined by the formula t ¼ xj j
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The dependence of the potential electric field strength Ep

x t0, x0 ¼ 0, y0 ¼ 0,ð z0 ¼
vet0; t, r x ¼ 0:3m, y ¼ 0, z ¼ 0ð ÞÞ, radiated by the beginning of the REB segment
r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0ð Þ, on the signal generation time t0 calculated with the help
of Eq. (10), is represented in Figure 2 where r x ¼ 0:3m,ð y ¼ 0, z ¼ 0Þ is the
observation point coordinates.

The dependence of the magnetic field strength Hy t0 ¼ 0, x0 ¼ 0, y0 ¼ 0,ð z0 ¼
L; t, r x, y ¼ 0, z ¼ 0ð ÞÞ radiated by the REB segment end r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ Lð Þ
on the transverse coordinate x was calculated using Eq. (22) (Figure 3). The signal
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generation time t0 was selected equal to the zero, t0 ¼ 0 where
r x ¼ 0:3m, y ¼ 0, z ¼ 0ð Þ is the observation point coordinates. The observation time

t was determined by the formula t ¼
ffiffiffiffiffiffiffiffiffiffi
x2þL2

p
c :

The dependence of the magnetic field strength Hy t0,x0 ¼ 0, y0 ¼ 0,
�

z0 ¼ vet0 þ L;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0
� �

Þ, radiated by the REB segment end
r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0 þ L
� �

, on the signal radiation time t0 calculated using
Eq.(22), is represented in Figure 4 where r x ¼ 0:3m,ð y ¼ 0, z ¼ 0Þ is the
observation point coordinates.
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y0 ¼ 0, z0 ¼ 0;t, r x, y ¼ 0, z ¼ 0

� �
Þ, radiated by the REB segment beginning

r0 x0 ¼ 0, y0 ¼ 0, z0 ¼ 0
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, on the transverse coordinate x was calculated with the
help of Eqs. (49), (10), (11), (21), and (22) (Figure 5). The signal generation time t0

was selected equal to the zero, t0 ¼ 0. The r x, y ¼ 0, z ¼ 0
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is the observation point

coordinates. The observation time t was determined by the formula t ¼ xj j
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Figure 5.
The electromagnetic energy flux iSz t0 ¼ 0, x0 ¼ 0, y0 ¼ 0, z0 ¼ 0;t, r x, y ¼ 0, z ¼ 0

� �� �
radiated by the REB

segment beginning.

Figure 6.
The electromagnetic energy flux iSz t0, x0 ¼ 0, y0 ¼ 0, z0 ¼ vet0;t, r x ¼ 0:3m, y ¼ 0, z ¼ 0

� �� �
radiated by the

REB segment beginning.

Figure 7.
The electromagnetic energy flux iSz t0 ¼ 0, x0 ¼ 0, y0 ¼ 0, z0 ¼ L;t, r x, y ¼ 0, z ¼ 0

� �� �
radiated by the REB

segment end.
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, on the transverse coordinate x was calculated with the
help of Eqs. (50), (10), (11), (21), (22) (Figure 7). The signal radiation time t0 was
selected equal to the zero t0 ¼ 0. The r x, y ¼ 0, z ¼ 0
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to Eqs. (50), (10), (11), (21), (22), is shown in Figure 8 where r x ¼ 0:3m,ð
y ¼ 0, z ¼ 0Þ is the observation point coordinates.

9. Conclusions

The applicability of relativity in the physics of charged particle beams has been
shown from the example of radiation by a filamentary REB segment uniformly
moving in vacuum along a linear direction.

In electrodynamics, in a moving coordinate system, the relative distance
between a charged object and an observer does not change. The phenomenon of
relativity associated with the field dynamics degenerates to electrostatic processes.
In rest, or laboratory, coordinate system, the relative distance is changing with
time, the charge density also varies with the time, and as a result, the retardation
phenomena came to the scene and the Poisson equation is to be substituted by the
wave equation.

The expressions have been obtained to describe the strengths of the electric and
magnetic fields and the electric and electromagnetic energy fluxes in all three zones:
near field zone, intermediate, and wave zones. The filamentary REB edges are
relativistic point-like sources of electromagnetic energy propagating in the wave
zone. The REB edges form a potential component of the electric field strength,
which is inversely proportional to the distance from the source point to the obser-
vation point. In the wave zone, strength of this field is comparable with that of the
dynamic component of the electric field.
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The dynamic component of the electric field strength and the axially symmetric
magnetic field form both a constant flux into the given solid angle, i.e. electromagnetic
radiation, and a flux per time unit directed along the normal to the conical surface of
the above solid angle. The potential component of the electric field, directed along
the radius, and the axially symmetric magnetic field form a flux oriented along the
polar direction, i.e., along the normal to the conical surface. The fluxes crossing the
above conical surface are independent of the distance between the source point and
the observation point. In the wave zone, the radiations from the beginning and end
of the REB segment are added up, while the fluxes through the above conical surface
caused by dynamic and potential components of electric field, are subtracted.

Relativistic point-like sources create in the wave zone the vortex components
of the magnetic field. The REB edges radiate hybrid electromagnetic waves, com-
prising of potential and vortex electric fields, as well as a vortex magnetic field.
The electric and magnetic field strengths radiated by the REB segment edges have
opposite signs. In the wave zone, the radiated electromagnetic field fluxes are
compound of the electromagnetic energy fluxes, produced by both the REB seg-
ment beginning and its end, as well as of their interference components. In the
intermediate zone, the electrical energy flux takes place due to the electric potential
field and the displacement current. The REB segment, between the beam edges,
having a constant charge density, produces a quasi-static electromagnetic field in
the near zone.
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Chapter 5

On the Nonuniqueness of the
Hamiltonian for Systems with
One Degree of Freedom
Sikarin Yoo-Kong

Abstract

The alternative Hamiltonians for systems with one degree of freedom are solved
directly from the Hamilton’s equations. These new Hamiltonians produce the same
equation of motion with the standard one (called the Newtonian Hamiltonian).
Furthermore, new Hamiltonians come with an extra-parameter, which can be used
to recover the standard Hamiltonian.

Keywords: Hamiltonian, Lagrangian, nonuniqueness, variational principle,
inverse problem of calculus of variations

1. Introduction

It was well known that the Lagrangian possesses the nonuniqueness property. It
means that the constant can be added or multiplied into the Lagrangian:
LN _x, xð Þ ! αLN _x, xð Þ þ β

Furthermore, the total derivative term can also be added to the Lagrangian
without alternating the equation of motion: LN _x, xð Þ ! αLN _x, xð Þ þ β þ df=dt,

where ¼ f x, tð Þ. This fact can be seen immediately from the variational principle
with the action functional:

S x½ � ¼
ðT
0
dt αLN _x, xð Þ þ β þ df

dt

� �
¼
ðT
0
dt αLN _x, xð Þ þ βð Þ þ f Tð Þ � f 0ð Þ (1)

Obviously, the last two terms contribute only at the boundary. Then
the variation x ! xþ δx on the action and δS x½ � ¼ 0, with conditions δx 0ð Þ ¼ δx Tð Þ
¼ 0, give us the same Euler-Lagrange equation:

∂

∂x
LN _x, xð Þ � d

dt
∂

∂ _x
LN _x, xð Þ ¼ 0 (2)

The standard Lagrangian takes the form

LN _x, xð Þ ¼ T _xð Þ � V xð Þ (3)

where T _xð Þ is the kinetic energy and V xð Þ is the potential energy of the system.
For a system with one degree of freedom, the kinetic energy is T _xð Þ ¼ m _x2=2.
The equation of motion associated with the Lagrangian Eq. (1) is
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€x ¼ � 1=mð ÞdV xð Þ=dx ¼def Q (4)

Recently, it has been found that actually there is an alternative form of the
Lagrangian called the multiplicative form [1–3]: L _x, xð Þ ¼ F _xð ÞG xð Þ, where F and G
are to be determined. Putting this new Lagrangian into the Euler–Lagrange Eq. (2),
we obtained

Lλ _x, xð Þ ¼ mλ2 e�
E x, _xð Þ
mλ2 þ _x

λ2

ð _x

0
e�

E x, _qð Þ
mλ2 d _q

� �
(5)

where E x, _xð Þ ¼ m _x2=2þ V xð Þ is the energy function and mλ2 is in the energy
unit. We find that under the limit λ which is very large lim λ!∞ Lλ _x, xð Þ �mλ2

� �
¼

LN _x, xð Þ, we recover the standard Lagrangian. The derivation of Eq. (5) can be
found in the Appendix. Interestingly, this new Lagrangian can be treated as a
generating function producing an infinite hierarchy of the Lagrangian:

Lλ _x, xð Þ ¼
X∞
j¼0

1
j!

�1
mλ2

� �j�1

Lj _x, xð Þ (6)

where

Lj _x, xð Þ ¼
Xj

k¼0

j!Tj�kVk

j� kð Þ!k! 2j� 2kþ 1ð Þð Þ

� �
(7)

These new Lagrangians Lj _x, xð Þ, however, produce the same equation of motion.
Equations (6) and (7) provide an alternative way to modify the Lagrangian Eq. (3).

The problem studied in [1–3] that is actually related to the inverse problem of
calculus of variations in the one-dimensional case. The well-known result can be
dated back to the work of Sonin [4] and Douglas [5].

Theorem (Sonin): For every function Q, there exists a solution g,Lð Þ of the
equation:

g Q � €xð Þ ¼ ∂

∂x
L _x, xð Þ � d

dt
∂

∂ _x
L _x, xð Þ:whereg ¼ ∂

2

∂ _x2
L _x, xð Þ 6¼ 0 (8)

What we did in [1–3] is that we went further to show that actually Eq. (8) admits
infinite solutions.

In the present chapter, we will construct the Hamiltonian hierarchy for the
system with one degree of freedom. In Section 2, the multiplicative Hamiltonian
will be solved directly from Hamilton’s equations. In Section 3, the physical mean-
ing of the parameter λ will be discussed. In Section 4, the redundancy of the
Hamiltonians and Lagrangians will be explained. In the last section, a summary will
be delivered.

2. The multiplicative Hamiltonian

To obtain the Hamiltonian, we may use the Legendre transformation:

HN p, xð Þ ¼ p _x� LN _x, xð Þ (9)
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where p ¼ ∂L=∂ _x ¼ m _x is the momentum variable. The standard form of the
Hamiltonian is

HN p, xð Þ ¼ p2

2m
þ V xð Þ (10)

which is nothing but the total energy of the system. The action is then

S p, x½ � ¼
ðT

0

dt p _x�HN p, xð Þð Þ (11)

With the variations x ! xþ δx and p ! pþ δp, with conditions δx 0ð Þ ¼
δx Tð Þ ¼ 0, the least action principle δS x½ � ¼ 0 gives us

_x ¼ ∂

∂p
HN p, xð Þ, _p ¼ � ∂

∂x
HN p, xð Þ (12)

which are known as a set of Hamilton’s equations.
We now introduce a new Hamiltonian, called the multiplicative Hamiltonian, in

a form

H p, xð Þ ¼ K pð ÞW xð Þ, (13)

where K pð Þ and W xð Þ are to be determined. Equations (12) and (3) give us a
new equation:

0 ¼ 1
m

∂

∂x
HN p, xð Þ þ _p

∂
2

∂p2
HN p, xð Þ þ p

m
∂
2

∂x∂p
HN p, xð Þ (14)

Replacing HN by H and inserting Eqs. (13) into (14), we obtain

0 ¼ d2K
dp2

þ 1
m _pW

dW
dx

p
dK
dp

þ K
� �

(15)

Now we define

A ¼def 1
m _pW

dW
dx

(16)

where A is a constant to be determined. Equation (16) can be immediately
solved and result in

W xð Þ ¼ ae�mAV xð Þ (17)

where a is a constant of integration. Substituting Eq. (17) into Eq. (15), we find
that the function K pð Þ is in the form

K pð Þ ¼ be�
Ap2

2 (18)

where b is another constant. Then the multiplicative Hamiltonian Eq. (13)
becomes
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where A is a constant to be determined. Equation (16) can be immediately
solved and result in

W xð Þ ¼ ae�mAV xð Þ (17)

where a is a constant of integration. Substituting Eq. (17) into Eq. (15), we find
that the function K pð Þ is in the form

K pð Þ ¼ be�
Ap2

2 (18)

where b is another constant. Then the multiplicative Hamiltonian Eq. (13)
becomes
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H p, xð Þ ¼ ce�
Ap2

2 �mAV xð Þ (19)

where c ¼ ab. If we now choose c ¼ �mλ2 and A ¼ 1=m2λ2, the Hamiltonian
Eq. (19) becomes

Hλ p, xð Þ ¼ �mλ2e�
HN p,xð Þ

mλ2 (20)

Inserting Eq. (20) into Eq. (14), we find that

� dV xð Þ
dx

� p2

m2λ2
þ 1

� �
¼ _p � p2

m2λ2
þ 1

� �

� dV xð Þ
dx

¼ _p

(21)

which is the equation of motion of the system. Then this new Hamiltonian
Eq. (20) gives us the same equation of motion as Eq. (10).

For the case mλ2 ≫HN p, xð Þ, we find that the multiplicative Hamiltonian

Hλ p, xð Þ≈�mλ2 þHN p, xð Þ (22)

gives back the standard Hamiltonian. The constant �mλ2 does not alter the
equation of the motion of the system.

We find that the multiplicative Hamiltonian Eq. (20) can also be directly
obtained from the Legendre transformation:

Hλ p, xð Þ ¼ pλ _x� Lλ _x, xð Þ (23)

where

pλ ¼
∂

∂ _x
Lλ _x, xð Þ ¼ 1

λ2

ðp

0

e�
ζ2

2m2λ2
dζ
m

(24)

Inserting Eqs. (24) and (5) into Eq. (23), we obtain

Hλ p, xð Þ ¼ mλ2
1
λ2

ðp

0

e�
ζ2

2m2λ2
dζ
m

0
@

1
A p

m

2
4

�mλ2 e�
p2

2mλ2

�
þ p
m2λ2

ðp

0

e�
ζ2

2m2λ2
dζ
m

1
A
3
5e�V xð Þ

mλ2

¼ �mλ2e�
HN p,xð Þ

mλ2 (25)

which is identical to Eq. (20).
Furthermore, we can rewrite the multiplicative Hamiltonian Eq. (20) in terms of

the series:

Hλ p, xð Þ ¼
X∞
j¼0

1
j!

�1
mλ2

� �j�1

Hj p, xð Þ (26)
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where Hj p, xð Þ � Hj
N ¼ p2=2mþ V xð Þð Þj. It is not difficult to see that Hj p, xð Þ

produces exactly the equation of motion Eq. (21).
From the structure of Eqs. (26) and (6), it must be a hierarchy of the Legendre

transformation. To establish such hierarchy, we start to rewrite the momentum
Eq. (24) in the form

pλ ¼
1
λ2

ðp

0

e�
ζ2

2m2λ2
dζ
m

¼
X∞
j¼0

1
j!

�1
mλ2

� �j�1

pj (27)

where

pj p, xð Þ ¼ j! pj�1V xð Þ þ p2j�1

j� 1ð Þ 2j�1� �
2j� 1ð Þmj�1

" #
, j≥ 1 and p ¼ m _x (28)

Then the Legendre transformation Eq. (23) becomes

0 ¼
X∞
j¼0

1
j!

�1
mλ2

� �j�1

Lj _x, xð Þ � pj _xþHj p, xð Þ
h i

(29)

Eq. (29) holds if

Lj _x, xð Þ ¼ pj _xþHj p, xð Þ (30)

which are the Legendre transformations for each pair of the Hamiltonian
Hj p, xð Þ and Lagrangian Lj _x, xð Þ in the hierarchy.

Next, we consider the total derivative dHj p, xð Þ ¼ d pj _x
� �

� dLj _x, xð Þ resulting in

dx
∂Hj

∂x
þ _p

∂pj
∂p

� �
þ dp

∂Hj

∂p
� _x

∂pj
∂p

� �
¼ 0 (31)

Eq. (31) holds if

∂Hj

∂x
¼ � _p

∂pj
∂p

,
∂Hj

∂p
¼ _x

∂pj
∂p

(32)

Eq. (32) can be considered as the modified Hamilton’s equations for each
Hj p, xð Þ in the hierarchy. Obviously, for j ¼ 1, we retrieve the standard Hamilton’s
Eq. (12), since p1 ¼ p ¼ m _x.

From the structure of the multiplicative Hamiltonian Eq. (20), it seems to suggest
that the exponential of the function, defined on phase space, is always a solution of
the Eq. (14). Then we now introduce an ansatz form of the Hamiltonian as

Ha,b p, xð Þ ¼ beaZ p,xð Þ (33)

where a and b are constants to be determined. Substituting Eq. (33) into
Eq. (14), we obtain

0 ¼ 1
m
∂Z
∂x

þ _p
∂
2Z
∂p2

þ p
m

∂
2Z

∂x∂p
þ a _p

∂Z
∂p

� �2

þ p
m
∂Z
∂p

∂Z
∂x

" #
(34)
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where Hj p, xð Þ � Hj
N ¼ p2=2mþ V xð Þð Þj. It is not difficult to see that Hj p, xð Þ

produces exactly the equation of motion Eq. (21).
From the structure of Eqs. (26) and (6), it must be a hierarchy of the Legendre
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Then the Legendre transformation Eq. (23) becomes
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1
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�1
mλ2

� �j�1

Lj _x, xð Þ � pj _xþHj p, xð Þ
h i

(29)

Eq. (29) holds if

Lj _x, xð Þ ¼ pj _xþHj p, xð Þ (30)

which are the Legendre transformations for each pair of the Hamiltonian
Hj p, xð Þ and Lagrangian Lj _x, xð Þ in the hierarchy.

Next, we consider the total derivative dHj p, xð Þ ¼ d pj _x
� �

� dLj _x, xð Þ resulting in

dx
∂Hj

∂x
þ _p

∂pj
∂p

� �
þ dp

∂Hj

∂p
� _x

∂pj
∂p

� �
¼ 0 (31)

Eq. (31) holds if

∂Hj

∂x
¼ � _p

∂pj
∂p

,
∂Hj

∂p
¼ _x

∂pj
∂p

(32)

Eq. (32) can be considered as the modified Hamilton’s equations for each
Hj p, xð Þ in the hierarchy. Obviously, for j ¼ 1, we retrieve the standard Hamilton’s
Eq. (12), since p1 ¼ p ¼ m _x.

From the structure of the multiplicative Hamiltonian Eq. (20), it seems to suggest
that the exponential of the function, defined on phase space, is always a solution of
the Eq. (14). Then we now introduce an ansatz form of the Hamiltonian as

Ha,b p, xð Þ ¼ beaZ p,xð Þ (33)

where a and b are constants to be determined. Substituting Eq. (33) into
Eq. (14), we obtain

0 ¼ 1
m
∂Z
∂x

þ _p
∂
2Z
∂p2

þ p
m

∂
2Z

∂x∂p
þ a _p

∂Z
∂p

� �2

þ p
m
∂Z
∂p

∂Z
∂x

" #
(34)
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We find that if we take HN p, xð Þ ¼ Z p, xð Þ to be the standard Hamiltonian, the
first three terms in Eq. (34) give us back Eq. (14). Then the last bracket must vanish
and gives us an extra-relation:

0 ¼ _p
∂HN

∂p

� �2

þ p
m
∂HN

∂p
∂HN

∂x
(35)

or

0 ¼ _p
∂HN

∂p
þ p
m
∂HN

∂x
(36)

We immediately see that actually Eq. (36) is a consequence of the conservation
of the energy of the system:

0 ¼ dHN

dt
¼ ∂HN

∂p
∂p
∂t

þ ∂HN

∂x
∂x
∂t

¼ _p
∂HN

∂p
þ p
m
∂HN

∂x
(37)

Then what we have here is another equation that can be used to determine for
the Hamiltonian subject to the equation of motion Eq. (21). To see this, we may
start with the standard form of the Hamiltonian HN p, xð Þ ¼ T pð Þ þ V xð Þ, where
T pð Þ is a function of the momentum and to be determined. Inserting the Hamilto-
nian into Eq. (36), we obtain

0 ¼ _p
dT
dp

þ p
m
dV
dx

(38)

Using Eqs. (21) and (38), it can be rewritten in the form

0 ¼ _p
dT
dp

� p
m

� �
(39)

Since _p 6¼ 0, it means that the term inside the bracket must be zero and

ð
dT ¼

ð
p
m
dp ! T pð Þ ¼ p2

2m
þ C (40)

where C is a constant which can be chosen to be zero. So we successfully solved
the standard Hamiltonian.

Next, we put Z p, xð Þ ¼ K pð ÞW xð Þ which is in the multiplicative form Eq. (13)
into Eq. (36), and we obtain

0 ¼ W _p W
dK
dp

� �
þ p
m

K
dW
dx

� �� �
(41)

or

m
Kp

dK
dp

¼ 1
W

dW
dV

(42)

We see that both sides of Eq. (42) are independent to each other. Then Eq. (42)
holds if both sides equal to a constant β. We have now for the left-hand side
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m
Kp

∂K
∂p

¼ β

ð
dK
K

¼ β

ð
p
m
dp ! K pð Þ ¼ C1eβT pð Þ (43)

where C1 is a constant to be determined. Next, we consider the right-hand side

1
W

dW
dV

¼ β

ð
dW
W

¼ β

ð
dV ! W xð Þ ¼ C2eβV xð Þ (44)

where C2 is a constant to be determined. Then finally the function Z p, xð Þ
becomes

Z p, xð Þ ¼ C1C2eβHN p,xð Þ (45)

where HN p, xð Þ is the standard Hamiltonian. If we now choose C1C2 ¼ �mλ2 and
β ¼ �1=mλ2, the function Z p, xð Þ is exactly the same with Eq. (20).

We see that with Eq. (36) the Hamiltonian can be easily determined. Here we
come with the conclusion that in every function Q 0 ¼ � dV

dx , there exist infinite
Hamiltonians of equation

Q 0 � _p ¼ _p
∂H
∂p

þ p
m
∂H
∂x

(46)

The existence of solutions of Eq. (46) implies that actually we can do
an inverse problem of the Hamiltonian for the systems with one degree of
freedom.

Remark: The perspective on nonuniqueness of Hamiltonian, as well as
Lagrangian, here in the present work is quite different from those in Aubry-
Mather theory [6, 7] (see also [8]). What they had been investigating is the
modification of the Tonelli Lagrangian Lη≔L� η̂, where mechanical Lagrangian
LN _x, xð Þ ¼ T _xð Þ � V xð Þ is one of Tonelli Lagrangians. Here η̂ ¼ < η xð Þ, _x> :

TM !  and η xð Þ is a closed 1-from on the manifold M. This means that
Ð
dtLη

and
Ð
dtL will have the same extremals and therefore the same Euler-Lagrange

evolution, since δ
Ð
dtη̂ ¼ 0. Thus for a fixed L, the extreamise of the action will

depend only on the de Rham cohomology class c ¼ η½ �∈H1 M,ð Þ. Then we have a
family of modified Lagrangians, parameterized over H1 M,ð Þ. With the modified
Tonelli Lagrangian Lη, one can easily find the associated Hamiltonian Hη x, pð Þ ¼
H x, η xð Þ þ pð Þ, where the momentum is altered: p ! pþ η xð Þ. Then we also have a
family of modified Hamiltonians, parameterized over H1 M,ð Þ. To make all this
more transparent, we better go with a simplest example. Consider the modified
Lagrangian Lϵ≔LN þ ϵ _x, where ϵ is a constant. We find that a new action differs
from an old action by a constant depending on the endpoints,

Ð b
a dtLϵ ¼

Ð b
a dtLN þ

ϵ x bð Þ � x að Þð Þ, and they give exactly the same Euler-Lagrange equation (see also
Eq. (1)). With this new Lagrangian Lϵ, we can directly obtain the Hamiltonian
Hϵ x, pð Þ ¼ HN x, pþ ϵð Þ.
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3. Harmonic oscillator

In this section, we give an explicit example, e.g., the harmonic example, and also
give the physical interpretation of the parameter λ. The standard Hamiltonian for
the harmonic oscillator reads

H p, xð Þ ¼ p2

2m
þ kx2

2
(47)

Then the multiplicative Hamiltonian for the harmonic oscillator is

Hλ p, xð Þ ¼ �mλ2e�
1

mλ2
p2

2mþkx2
2

� �
(48)

Now we introduce η ¼ x, pð Þ, and then we consider

dη
dtλ

¼ J
∂Hλ

∂η
where

∂

∂η
¼

∂=∂x
∂=∂p

� �
(49)

where tλ is a time variable associated with the multiplicative Hamiltonian and J is
the symplectic matrix given by

J ¼
0 1

�1 0

� �
(50)

Inserting Eq. (48) into Eq. (49), we obtain

dη
dtλ

¼
X∞

k¼0

1
k!

�1
mλ2

� �k�1

J
∂Hk

∂η
¼def
X∞

k¼0

dη
dtk

(51)

where

d
dtk

¼ Ek�1

k� 1ð Þ! mλ2
� �k�1

d
dt

(52)

where E ¼ T þ V is the energy function and t is the standard time variable
associated with the Hamiltonian Eq. (47). Equation (51) suggests that the λ-flow is
comprised of infinite different flows on the same trajectory on the phase space (see
Figure 1).

This means that we can choose any Hamiltonian in the hierarchy to work with.
The physics of the system remains the same but with a different time scale. Then we
may say that the parameter λ plays a role of scaling in the Hamiltonian flow on the
phase space. From Eq. (52), we see that as mλ2 ! ∞, only the standard flow
survives, and of course we retrieve the standard evolution t1 ¼ t of the system on
phase space.

Next we consider the standard Lagrangian of the harmonic oscillator

LN _x, xð Þ ¼ m _x2

2
� kx2

2
(53)

and the multiplicative Lagrangian is
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Lλ _x, xð Þ ¼ mλ2 e�
E x, _xð Þ
mλ2 þ _x

λ2

ð _x

0
e�

E x, _qð Þ
mλ2 d _q

� �
(54)

where E x, _xð Þ ¼ m _x2=2þ kx2=2 is the energy function. We know that Lagrang-
ian Eq. (54) can be rewritten in the form

Lλ _x, xð Þ ¼
X∞
j¼0

1
j!

�1
mλ2

� �
Lj _x, xð Þ (55)

where

Lj _x, xð Þ ¼
Xj

k¼0

j! m _x2=2
� �j�k

kx2=2ð Þk

j� kð Þ!k! 2j� 2kþ 1ð Þð Þ

 !
(56)

The action of the system is given by

S x½ � ¼
ðT
0
dtLλ _x, xð Þ ¼

X∞
j¼1

ðT
0
dtjLj _x, xð Þ (57)

where

dtj ¼
1
j!

1
mλ2

� �k�1

dt (58)

The variation x ! xþ δx with conditions δx 0ð Þ ¼ δx Tð Þ ¼ 0 results in

δS x½ � ¼
X∞
j¼1

ðT
0
dtj

∂Lj

∂x
� d
dtj

∂Lj

∂xj

� �
(59)

where xj ¼ dx=dtj. Least action principle δS x½ � ¼ 0 gives infinite Euler-Lagrange
equations

0 ¼
∂Lj

∂x
� d
dtj

∂Lj

∂xj
, j ¼ 1, 2, 3 (60)

Figure 1.
Differential flows on the same trajectory on the phase space.
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H p, xð Þ ¼ p2

2m
þ kx2

2
(47)

Then the multiplicative Hamiltonian for the harmonic oscillator is

Hλ p, xð Þ ¼ �mλ2e�
1

mλ2
p2

2mþkx2
2

� �
(48)
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dη
dtλ

¼ J
∂Hλ

∂η
where

∂

∂η
¼

∂=∂x
∂=∂p

� �
(49)

where tλ is a time variable associated with the multiplicative Hamiltonian and J is
the symplectic matrix given by

J ¼
0 1

�1 0

� �
(50)

Inserting Eq. (48) into Eq. (49), we obtain

dη
dtλ

¼
X∞

k¼0

1
k!

�1
mλ2

� �k�1

J
∂Hk

∂η
¼def
X∞

k¼0

dη
dtk

(51)

where

d
dtk

¼ Ek�1

k� 1ð Þ! mλ2
� �k�1

d
dt

(52)

where E ¼ T þ V is the energy function and t is the standard time variable
associated with the Hamiltonian Eq. (47). Equation (51) suggests that the λ-flow is
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Figure 1).

This means that we can choose any Hamiltonian in the hierarchy to work with.
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phase space. From Eq. (52), we see that as mλ2 ! ∞, only the standard flow
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Next we consider the standard Lagrangian of the harmonic oscillator

LN _x, xð Þ ¼ m _x2

2
� kx2

2
(53)

and the multiplicative Lagrangian is
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Lλ _x, xð Þ ¼ mλ2 e�
E x, _xð Þ
mλ2 þ _x

λ2

ð _x

0
e�

E x, _qð Þ
mλ2 d _q

� �
(54)

where E x, _xð Þ ¼ m _x2=2þ kx2=2 is the energy function. We know that Lagrang-
ian Eq. (54) can be rewritten in the form

Lλ _x, xð Þ ¼
X∞
j¼0

1
j!

�1
mλ2

� �
Lj _x, xð Þ (55)
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Lj _x, xð Þ ¼
Xj

k¼0

j! m _x2=2
� �j�k

kx2=2ð Þk

j� kð Þ!k! 2j� 2kþ 1ð Þð Þ

 !
(56)

The action of the system is given by

S x½ � ¼
ðT
0
dtLλ _x, xð Þ ¼

X∞
j¼1

ðT
0
dtjLj _x, xð Þ (57)

where

dtj ¼
1
j!

1
mλ2

� �k�1

dt (58)

The variation x ! xþ δx with conditions δx 0ð Þ ¼ δx Tð Þ ¼ 0 results in
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ðT
0
dtj

∂Lj

∂x
� d
dtj

∂Lj

∂xj

� �
(59)

where xj ¼ dx=dtj. Least action principle δS x½ � ¼ 0 gives infinite Euler-Lagrange
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Differential flows on the same trajectory on the phase space.

83

On the Nonuniqueness of the Hamiltonian for Systems with One Degree of Freedom
DOI: http://dx.doi.org/10.5772/intechopen.88069



which produce the equation of motions

d2x
dt2j

¼ � kx
m

(61)

associated with different time variables. Again in this case, we have the same
structure of equation of motion for each Lagrangian in hierarchy but with a differ-
ent time scale. From Eq. (58), we see that as mλ2 ! ∞, only the standard flow
survives, and of course we retrieve the standard evolution t1 ¼ t of the system. Then
the parameter λ also plays the role of scaling in the Lagrangian structure.

4. Redundancy

From previous sections, we see that there are many forms of the Hamiltonian
that you can work with. One may start with the assumption that any new Hamilto-
nian is written as a function of the standard Hamiltonian HN : H ¼ f HNð Þ. Inserting
this new Hamiltonian into Hamilton’s equations, we obtain

f 0 Eð Þ ∂H
∂x

¼ � ∂p
∂τ

, f 0 Eð Þ ∂H
∂p

¼ ∂x
∂τ

(62)

where f 0 Eð Þ ¼ df HNð Þ=HN with fixing HN ¼ E and t ¼ f 0 HNð Þτ is the rescaling of
time parameter. This result agrees with what we have in Section 3, rescaling the
time evolution of the system. However, there are some major different features as
follows. The first thing is that our new Hamiltonians contain a parameter λ, since
the explicit forms of the Hamiltonian are obtained. With this parameter, it makes
our rescaling much more interesting with the fact that the rescaling time variables
depend on also the parameter (see Eq. (52)). Then it means that we know how to
move from one scale to another scale and of course we know how to obtain the
standard time evolution by playing with the limit of the parameter λ. Without
explicit form of the new Hamiltonian, which contains a parameter, we cannot see
this fine detail of family of rescaling time variables, since there is only a fixed
parameter E. The second thing is that actually the new Hamiltonian Eq. (20), which
is a function of the standard Hamiltonian, can be obtained from the Lagrangian
Eq. (5) by means of Legendre transformation. What we have seen is that Lagrang-
ian Eq. (5) is nontrivial and is not a function of the standard Lagrangian. Again this
new Lagrangian contains a parameter λ, the same with the one in the new Hamilto-
nian. With this parameter, the Lagrangian hierarchy Eq. (7) is obtained. What we
have here is a family of nontrivial Lagrangians to work with, producing the same
equation of motion, as a consequence of nonuniqueness property. An importance
thing is that there is no way you can guess the form of this family of Lagrangian
without our mechanism in the appendix. This means that the Hamiltonian in the
form H ¼ f HNð Þ cannot deliver all these fine details. The explicit form of the
Hamiltonian Eq. (20) allows us to study in more detail and is definitely richer than
the standard one.

5. Summary

We show that actually there exist infinite Hamiltonian functions for the systems
with one degree of freedom. We may conclude that there exists the reverse
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engineering of the calculus of variation on phase space (see Eq. (44)). Furthermore,
the solution of Eq. (44) exists not only as one but infinite. Interesting fact here is
that these new Hamiltonians come with the extra-parameter called λ. We give the
interpretation that the term mλ2 involves the time scaling of the system. This means
that we can pick any Hamiltonian or Lagrangian to study the system, but the
evolution will be in different scales.

In the case of many degrees of freedom, the problem turns out to be very
difficult. Even in the case of two degrees of freedom, the problem is already hard
to solve from scratch. We may start with an anzast form of the Lagrangian:
L _x, _y, x, yð Þ ¼ F _x, _yð ÞG x, yð Þ. This difficulty can be seen from the fact that we have
to solve a non-separable coupled equation. A mathematical trig or further
assumptions might be needed for solving F _x, _yð Þ and G x, yð Þ. The investigation is
now monitored.

Furthermore, promoting the Hamiltonian Eq. (20) to be a quantum operator in
the context of Schrodinger’s equation is also an interesting problem. This seems to
suggest that an alternative form of the wave function for a considering system is
possibly obtained. This can be seen as a result from that fact that with new Hamil-
tonian operator, we need to solve a different eigenvalue equation, and of course a
new appropriate eigenstate is needed. From the Lagrangian point of view, extension
to the quantum realm in the context of Feynman path integrals is quite natural to
address. However, this problem is not easy to deal with since the Lagrangian
multiplication is not in the quadratic form. Then a common procedure for
deriving the propagator is no longer applicable. Further study is on our program of
investigation.
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Notes

The content in this chapter is collected from a series of papers [1–3].

Appendix

In this section, we will demonstrate how to solve the multiplicative Lagrangian
Eq. (5). We introduce here again the Lagrangian L _x, xð Þ ¼ F _xð ÞG xð Þ, where F and G
are to be determined. Inserting the Lagrangian into the action and performing the
variation x ! xþ δx, with conditions δx 0ð Þ ¼ δx Tð Þ ¼ 0, we obtain

δS x½ � ¼
ðT

0

dt � d
dt

G
dF
d _x

� �
þ F

dG
dx

� �
δx (63)

The least action principle states that the system will follow the path which
δS ¼ 0 resulting in
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� d
dt

G
dF
d _x

� �
þ F

dG
dx

¼ 0 (64)

Eq. (64) can be rewritten in the form

d2F
d _x2

� 1
€xG

dG
dx

F � _x
dF
d _x

� �
¼ 0 (65)

Using equation of motion, we observe that the coefficient of the second term
depends only x variable. Then we may set

1
€xG

dG
dx

¼def A ! 1
G
dG
dx

¼ �A
m
dV
dx

(66)

We find that it is not difficult to see that the function G that satisfies Eq. (66) is

G xð Þ ¼ α1e�AV xð Þ=m (67)

where α1 is a constant to be determined. Inserting Eq. (66) into Eq. (65), we
obtain

d2F
d _x2

� A F � _x
dF
d _x

� �
¼ 0 (68)

and the solution F is given by

F _xð Þ ¼ α2 _x� α3 e�A _x2=2 þ _xA
ð_x

0

dve�Av2=2

0
@

1
A (69)

where α2 and α3 are constants. Then the multiplicative Lagrangian is

L _x, xð Þ ¼ k1 _x� k2 e�A _x2=2 þ _xA
ð_x

0

dve�Av2=2

0
@

1
A

2
4

3
5e�AV xð Þ=m (70)

where k1 ¼ α1α2 and k2 ¼ α1α3 are new constants to be determined. We find
that if we choose k1 ¼ 0,A ¼ 1=λ2 which is a unit of inverse velocity squared and
k2 ¼ �mλ2 which is in energy unit, Lagrangian Eq. (70) can be simplified to

lim
λ!∞

Lλ _x, xð Þ �mλ2
� �

¼ m _x2

2
� V xð Þ ¼ LN _x, xð Þ (71)

the standard Lagrangian at the limit λ approaching to infinity. Therefore, the
Lagrangian Eq. (70) is now written in the form

Lλ _x, xð Þ ¼ mλ2 e� _x2=2λ2 þ _x
λ2

ð_x

0

dve�v2=2λ2

0
@

1
Ae�V xð Þ=mλ2 (72)

which can be considered as the one-parameter extended class of the standard
Lagrangian.
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Chapter 6

From Relativity to Creation of
Temporal (t > 0) Universe
Francis T.S. Yu

Abstract

One of the important aspects of science must be the substantiated physical
realities, which were built by the fundamental laws of physics that cannot be simply
substituted by unsubstantiated virtual reality. In writing this chapter we have
mostly based on the constraints of the current laws of physics to illustrate the
enigmatic time as the origin for creating our physical space (i.e., temporal uni-
verse). The differences between physical reality and virtual reality are that physical
reality is existing within the rule of time and supported by the laws of science, while
virtual reality is created without the constraints of time and mostly not substanti-
ated by the laws of physics. One of the important aspects of temporal (i.e., t > 0)
space is that any emerging science has to be proven to exist within our temporal
universe; otherwise it is fictitious and virtual as mathematics is.

Keywords: relativity theory, Einstein energy equation, temporal space, creation of
universe, time and space

1. Introduction

One of the most intriguing variables in science must be time. Without time,
there would be no physical substances, no space, and no life. In other words, time
and substance have to coexist. In the chapter, I will start with Einstein’s relativity
theory to show his famous energy equation, derived from in which we will show
that energy and mass can be traded. Since mass is equivalent to energy and energy is
equivalent to mass, we see that mass can be treated as an energy reservoir. We will
show any physical space cannot be embedded in an absolute empty space and it
cannot have any absolute empty subspace in it and empty space is a timeless (i.e.,
t = 0) space. We will show that every physical space has to be fully packed with
substances (i.e., energy and mass), and we will show that our universe is a subspace
within a more complex space. We see that our universe could have been one of the
many universes outside our universal boundary. We will also show that it takes time
to create a subspace, and it cannot bring back the time that has been used for the
creation. Since all physical substances exist with time, all subspaces are created by
time and substances (i.e., energy and mass). This means that our cosmos was
created by time with a gigantic energy explosion, for which every subspace coexists
with time. This means that without time the creation of substances would not have
happened. We see that our universe is in a temporal (i.e., t > 0) space, and it is still
expanding based on current observation. This shows that our universe has not
reached its half-life yet, as we have accepted the big bang creation. We are not alone
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with almost absolute certainty. Someday, we may find a planet that once upon a
time had harbored a civilization for a period of light-years. In short, the burden of a
scientific postulation is to prove a solution exists within our temporal universe;
otherwise it is not real or virtual as mathematics is.

Professor Hawking was a world renowned astrophysicist, a respected cosmic
scientist, and a genius who passed away last year on March 14, 2018. As you will see,
our creation of universe was started with the same root of the big bang explosion,
but it is not a sub-universe of Hawking’s. You may see from this chapter that the
creation of temporal universe is somewhat different from Hawking’s creation.

2. Relativity to Einstein energy equation

The essence of Einstein’s special theory of relativity [1] is that time is a relative
quantity with respect to velocity as given by

Δt0 ¼ Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (1)

where Δt0 is the relativistic time window as compared with a standstill subspace,
Δt is the time window of the standstill subspace, v is the velocity of a moving
subspace, and c is the velocity of light.

We see that the time window Δt0 of a moving subspace, with respect to the time
window Δt of a standstill subspace, appears to be wider as velocity of the moving
subspace increases. In other words, velocity of a moving subspace changes the
relative time speed as with respect to a standstill subspace. For instance, the time
speed goes slower for a moving subspace as with respect to a standstill subspace. We
see that time speed within the subspaces is invariant or constant. In other words, the
speed of time goes as it is within the subspaces but is relatively different between
the subspaces at different velocities. As a matter of fact, the speed of time within a
subspace is governed by the speed of light (such as 1 s, 2 s, etc.) as will be seen in
how our temporal universe was created.

Equivalently, Einstein’s relativity equation can be shown in terms of relative
mass as given by

m ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2ð Þ

p ¼ m0 1� v2=c2
� ��1=2

(2)

where m is the effective mass (or mass in motion) of a particle, mo is the rest
mass of the particle, v is the velocity of the moving particle, and c is the speed of
light. In other words, the effective mass (or mass in motion) of a particle increases
at the same amount with respect to when the relative time window increases.

With reference to the binomial expansion, Eq. (2) can be written as

m ¼ m0 1þ 1
2
∙
v2

c2
þ terms of order

v4

c4

� �
(3)

By multiplying the preceding equation with the velocity of light c2 and noting
that the terms with the orders of v4/c2 are negligibly small, the above equation can
be approximated by

m≈m0 þ
1
2
m0v2

1
c2

(4)
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which can be written as

m�m0ð Þc2 ≈ 1
2
m0v2 (5)

The significance of the preceding equation is that m � mo represents an increase
in mass due to motion, which is the kinetic energy of the rest mass mo. And
(m � mo)c

2 is the extra energy gain due to motion.
What Einstein postulated, as I remembered, is that there must be energy

associated with the mass even at rest. And this was exactly what he had proposed:

ε≈mc2 (6)

where ε represents the total energy of the mass and

εo ≈moc2 (7)

the energy of the mass at rest, where v = 0 and m ≈ mo.
We see that Eq. (6) or equivalently Eq. (7) is the well-known Einstein energy

equation.

3. Time and energy

One of the most enigmatic variables in the laws of science must be “time.” So
what is time? Time is a variable and not a substance. It has no mass, no weight, no
coordinate, and no origin, and it cannot be detected or even be seen. Yet time is an
everlasting existing variable within our known universe. Without time there would
be no physical matter, no physical space, and no life. The fact is that every physical
matter is associated with time which includes our universe. Therefore, when one is
dealing with science, time is one of the most enigmatic variables that are ever
present and cannot be simply ignored. Strictly speaking, all the laws of science as
well every physical substance cannot exist without the existence of time.

On the other hand, energy is a physical quantity that governs every existence of
substance which includes the entire universe. In other words without the existence
of energy, there would be no substance and no universe! Nonetheless based on our
current laws of science, all the substances were created by energy, and every
substance can also be converted back to energy. Thus energy and substance are
exchangeable, but it requires some physical conditions (e.g., nuclei and chemical
interactions and others) to make the conversion start. Since energy can be derived
from mass, mass is equivalent to energy. Hence every mass can be treated as an
energy reservoir. The fact is that our universe is compactly filled with mass and
energy. Without the existence of time, the trading (or conversion) between mass
and energy could not have happened.

4. Time-dependent energy equation

Let us now start with Einstein’s energy equation which was derived by his
special theory of relativity [1] as given by

ε≈mc2 (8)

where m is the rest mass and c is the velocity of light.
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current laws of science, all the substances were created by energy, and every
substance can also be converted back to energy. Thus energy and substance are
exchangeable, but it requires some physical conditions (e.g., nuclei and chemical
interactions and others) to make the conversion start. Since energy can be derived
from mass, mass is equivalent to energy. Hence every mass can be treated as an
energy reservoir. The fact is that our universe is compactly filled with mass and
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and energy could not have happened.
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Since all the laws in science are approximations, for which we have intentionally
used an approximated sign. Strictly speaking the energy equation should be more
appropriately presented with an inequality sign as described by

ε<mc2 (9)

This means that in practice, the total energy should be smaller or at most
approaching to the rest mass m times square of light speed (i.e., c2).

In view of Einstein’s energy equation of Eq. (8), we see that it is a singularity-
point approximation and timeless equation (i.e., t = 0). In other words, the
equation needs to convert into a temporal (i.e., t > 0) representation or time-
dependent equation for the conversion to take place from mass into energy.
We see that, without the inclusion of time variable, the conversion would not have
taken place. Nonetheless, Einstein’s energy equation represents the total amount
of energy that can be converted from a rest mass m. Every mass can be viewed
as an energy reservoir. Thus by incorporating with the time variable, the
Einstein’s energy equation can be represented by a partial differential equation as
given by [2]

∂ε tð Þ
∂t

¼ c2
∂m tð Þ
∂t

, t>0 (10)

where ∂ε tð Þ=∂t is the rate of increasing energy conversion, ∂m tð Þ=∂t is the
corresponding rate of mass reduction, c is the speed of light, and t > 0 represents
a forward time variable. We see that a time-dependent equation exists at time
t > 0, representing a forward time variable that only occurs after time excitation at
t = 0. Incidentally, this is a well-known causality constraint (i.e., t > 0) [3] as
imposed by our universe.

5. Trading mass and energy

One of the important aspects in Eq. (10) must be that energy and mass can be
traded, for which the rate of energy conversion from a mass can be written in terms
of electromagnetic (EM) radiation or Radian Energy as given by [4]

∂ε

∂t
¼ c2

∂m
∂t

¼ ∇ � S vð Þ½ � ¼ � ∂

∂t
1
2
∈E2 vð Þ þ 1

2
μH2 vð Þ

� �
, t>0 (11)

where ϵ and μ are the permittivity and the permeability of the physical space,
respectively, v is the radian frequency variable, E2(v) and H2(v) are the respective
electric and magnetic field intensities, the negative sign represents the outflow
energy per unit time from a unit volume, ∇ð Þ is the divergent operator, and S is
known as the Poynting vector or energy vector of an electromagnetic radiator [4] as
can be shown by S(v) = E(v) � H(v). Again we note that it is a time-dependent
equation with t > 0 added to present the causality constraint. In view of the
preceding equation, we see that radian energy (i.e., radiation) diverges from the
mass, as mass reduces with time. In other words we see that Eq. (11) is not just a
piece of mathematical formula; it is a symbolic representation, a description, a
language, a picture, or even a video as can be seen that it has transformed from a
point-singularity approximation to a three-dimensional representation and it is
continually expanding as time moves on.
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Similarly the conversion from energy to mass can also be presented as

∂m
∂t

¼ 1
c2
∂ε

∂t
¼ � 1

c2
∇∙S vð Þ½ � ¼ 1

c2
∂

∂t
1
2
ϵE2 vð Þ þ 1

2
μH2 vð Þ

� �
, t>0 (12)

The major difference of this equation, as compared with Eq. (11), must be the
energy convergent operator �∇�S(v), where we see that the rate of energy as in the
form of EM radiation converges into a small volume for the mass creation, instead
of diverging from the mass. Since mass creation is inversely proportional to c2, it
requires a huge amount of energy to produce a small quantity of mass. Nevertheless
in view of the cosmological environment, availability of huge amount of energy has
never been a problem.

Incidentally, black hole [5, 6] can be considered as one of the energy convergent
operators. Instead the convergent force is relied more on the black hole’s intense
gravitational field. The black hole still remains an intriguing physical substance to
be known. Its gravitational field is so intense even light cannot be escaped.

By the constraints of the current laws of science, the observation is limited by the
speed of light. If light is totally absorbed by the black hole, it is by no means that the
black hole is an infinite energy sink [6]. Nonetheless, every black hole can actually be
treated as an energy convergent operator, which is responsible for the eventuality in
part of energy to mass conversion, where an answer remained to be found.

6. Physical substances and subspaces

In our physical world, every matter is a substance which includes all the elemental
particles; electric, magnetic, and gravitation fields; and energy. The reason is that they
were all created by means of energy or mass. Our physical space (e.g., our universe) is
fully compacted with substances (i.e., mass and energy) and left no absolute empty
subspace within it. As a matter of fact, all physical substances exist with time, and no
physical substance can exist forever or without time, which includes our universe.
Thus, without time there would be no substance and no universe. Since every physical
substance described itself as a physical space and it is constantly changing with
respect to time. The fact is that every physical substance is itself a temporal space (or a
physical subspace), as will be discussed in the subsequent sections.

In view of physical reality, every physical substance cannot exist without time;
thus if there is no time, all the substances which include all the building blocks in
our universe and the universe itself cannot exist. On the other hand, time cannot
exist without the existence of substance or substances. Therefore, time and sub-
stance must mutually coexist or inclusively exist. In other words, substance and
time have to be simultaneously existing (i.e., one cannot exist without the other).
Nonetheless, if our universe has to exist with time, then our universe will eventually
get old and die. So the aspects of time would not be as simple as we have known. For
example, for the species living in a far distant galaxy moving closer to the speed of
light, their time goes somewhat slower relatively to ours [1]. Thus, we see that the
relativistic aspects of time may not be the same at different subspaces in our
universe (e.g., at the edge of our universe).

Since substances (i.e., mass) were created by energy, energy and time have to
simultaneously exist. As we know every conversion, either from mass to energy or
from energy to mass, cannot get started without the inclusion of time. Therefore,
time and substance (i.e., energy and mass) have to simultaneously exist. Thus we
see that all the physical substances, including our universe and us, are coexisting
with time (or function of time).
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requires a huge amount of energy to produce a small quantity of mass. Nevertheless
in view of the cosmological environment, availability of huge amount of energy has
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were all created by means of energy or mass. Our physical space (e.g., our universe) is
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7. Absolute empty and physical subspaces

Let us define various subspaces in the following, as they will be used in the
subsequence sections:

An absolute empty space has no time, no substance, and no coordinate and is not
event bounded or unbounded. It is a virtual space and timeless space (i.e., t = 0),
and it does not exist in practice.

A physical space is a space described by dimensional coordinates, which existed
in practice, compactly filled with substances, supported by the current laws of
science and the rule of time (i.e., time can only move forward and cannot move
backward; t > 0). Physical space and absolute empty space are mutually exclusive.
In other words, a physical space cannot be embedded in an absolute empty space,
and it cannot have absolute empty subspace in it. In other words, physical space is a
temporal space in which time is a forward variable (i.e., t > 0), while absolute
empty space is a timeless space (i.e., t = 0) in which nothing is in it.

A temporal space is a time-variable physical space supported by the laws of
science and rule of time (i.e., t > 0). In fact, all physical spaces are temporal spaces
(i.e., t > 0).

A spatial space is a space described by dimensional coordinates and may not be
supported by the laws of science and the rule of time (e.g., a mathematical virtual
space).

A virtual space is an imaginary space, and it is generally not supported by the
laws of science and the rule of time. Only mathematicians can make it happen.

As we have noted, absolutely empty space cannot exist in physical reality. Since
every physical space needs to be completely filled with substances and left no
absolutely empty subspace within it, every physical space is created by substances.
For example, our universe is a gigantic physical space created by mass and energy
(i.e., substances) and has no empty subspaces in it. Yet, in physical reality all the
masses (and energy) existed with time. Without the existence of time, then there
would be no mass, no energy, and no universe. Thus, we see that every physical
substance coexists with time. As a matter of fact, every physical subspace is a
temporal subspace (i.e., t > 0), which includes us and our universe.

Since a physical space cannot be embedded within an absolute empty space and
it cannot have any absolute empty subspace in it [7], our universe must be embed-
ded in a more complex physical space. If we accepted our universe is embedded in a
more complex space, then our universe must be a bounded subspace.

How about time? Since our universe is embedded in a more complex space, the
complex space may share the same rule of time (i.e., t > 0). However, the complex
space that embeds our universe may not have the same laws of science as ours but
may have the same rule of time (i.e., t > 0); otherwise our universe would not be
bounded. Nevertheless, whether our universe is bounded or not bounded is not the
major issue of our current interest, since it takes a deeper understanding of our
current universe before we can move on to the next level of complex space revela-
tion. It is however our aim, abiding within our current laws of science, to investi-
gate the essence of time as the enigma origin of our universe.

8. Time and physical space

One of the most intriguing questions in our life must be the existence of time. So
far, we know that time comes from nowhere, and it can only move forward, not
backward, not even stand still (i.e., t = 0). Although time may somewhat relatively
slow down, based on Einstein’s special theory of relativity [1], so far time cannot
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move backward and cannot even stand still. As a matter of fact, time is moving at a
constant rate within our subspace, and it cannot move faster or slower. We stress
that time moves at the same rate within any subspace within the universe even
closer the boundary of our universe, but the difference is the relativistic time. Since
time is ever existing, then how do we know there is a physical space? One answer is
that there is a profound connection between time and physical space. In other
words, if there is no time, then there would be no physical space. A physical space is
in fact a temporal (i.e., t > 0) space, in contrast to a virtual space. Temporal space
can be described by time, while virtual space is an imaginary space without the
constraint of time. Temporal space is supported by the laws of science, while virtual
space is not.

A television video image is a typical example of trading time for space. For
instance, each TV displayed an image of (dx, dy) which takes an amount of time to
be displayed. Since time is a forward-moving variable, it cannot be traded back at
the expense of a displayed image (dx, dy). In other words, it is time that determines
the physical space, and it is not the physical space that can bring back the time that
has been expended. And it is the size (or dimension) of space that determines the
amount of time required to create the space (dx, dy). Time is distance and distance
is time within a temporal space. Based on our current constraints of science, the
speed of light is the limit. Since every physical space is created by substances, a
physical space must be described by the speed of light. In other words, the dimen-
sion of a physical space is determined by the velocity of light, where the space is
filled with substances (i.e., mass and energy). And this is also the reason that speed
of time (e.g., 1 s, 2 s, etc.) is determined by the speed of light.

Another issue is why the speed of light is limited. It is limited because our
universe is a gigantic physical space that is filled with substances that cause a time
delay on an EM wave’s propagation. Nevertheless, if there were physical substances
that travel beyond the speed of light (which remains to be found), their velocities
would also be limited, since our physical space is fully compacted with physical
substances and it is a temporal (i.e., t > 0) space. Let me further note that a
substance can travel in space without a time delay if and only if the space is
absolutely empty (i.e., timeless; t = 0), since distance is time (i.e., d = ct, t = 0).
However, absolute empty space cannot exist in practice, since every physical space
(including our universe) has to be fully filled with substances (i.e., energy and
mass), with no empty subspace left within it. Since every physical subspace is
temporal (i.e., t > 0), in which we see that timeless and temporal spaces are
mutually exclusive.

9. Electromagnetic and laws of physics

Strictly speaking, all our laws of physics are evolved within the regime of EM
science. Besides, all physical substances are part of EM-based science, and all the
living species on Earth are primarily dependent on the source of energy provided by
the sun. About 78% of the sunlight that reaches the surface of our planet is well
concentrated within a narrow band of visible spectrum. In response to our species’
existence, which includes all living species on Earth, a pair of visible eyes (i.e.,
antennas) evolved in us humans, which help us for our survival. And this narrow
band of visible light led us to the discovery of an even wider band of EM spectral
distribution in nature. It is also the major impetus allowing us to discover all the
physical substances that are part of EM-based physics. In principle, all physical
substances can be observed or detected with EM interaction, and the speed of light
is the current limit.
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Then there is question to be asked, why is the speed of light limited? A simple
answer is that our universe is filled with substances that limit the speed of light. The
energy velocity of an electromagnetic wave is given by [3]

v ¼ 1ffiffiffiffiffi
με

p (13)

where (μ, ε) are the permeability and the permittivity of the medium. We see
that the velocity of light is shown by

c ¼ 1ffiffiffiffiffiffiffiffiffiffi
μ0ε0

p (14)

where (μ0, ε0) are the permeability and the permittivity of the space.
In view of Eq. (13), it is apparent that the velocity of electromagnetic wave

(i.e., speed of light) within an empty subspace (i.e., timeless space) is instant
(or infinitely large) since distance is time (i.e., d = ct, t = 0).

A picture that is worth more than a thousand words [8] is a trivial example to
show that EM observation is one of the most efficient aspects in information trans-
mission. Yet, the ultimate physical limitation is also imposed by limitation of the
EM regime, unless new laws of science emerge. The essence of Einstein’s energy
equation shows that mass and energy are exchangeable. It shows that energy and
mass are equivalent and energy is a form of EM radiation in view of Einstein’s
equation. We further note that all physical substances within our universe were
created from energy and mass, which include the dark energies [9] and dark matter
[10]. Although the dark substances may not be observed directly using EM interac-
tion, we may indirectly detect their existence, since they are basically energy-based
substances (i.e., EM-based science). It may be interesting to note that our current
universe is composed of 72% dark energy, 23% dark matter, and 5% other physical
substances. Although dark matter contributes about 23% of our universe, it repre-
sents a total of 23% of gravitational fields. With reference to Einstein’s energy
equation (Eq. (8)), dark energy and dark matter dominate the entire universal
energy reservation, well over 95%. Furthermore, if we accept the big bang theory
for our universe creation [11], then creation could have been started with Einstein’s
time-dependent energy formula of Eq. (11) as given by

∂ε

∂t
¼ c2

∂M
∂t

¼ ∇ � S vð Þ½ � ¼ � ∂

∂t
1
2
∈E2 vð Þ þ 1

2
μH2 vð Þ

� �
, t>0 (15)

where [∇�S(v)] represents a divergent energy operation. In this equation, we see
that a broad spectral band intense radian energy diverges (i.e., explodes) at the
speed of light from a compacted matter M, where M represents a gigantic mass of
energy reservoir. It is apparent that the creation is ignited by time and the exploded
debris (i.e., matter and energy) starts to spread out in all directions, similar to an
expanding air balloon. The boundary (i.e., radius of the sphere) of the universe
expands at the speed of light, as the created debris is disbursed. It took about 15
billion chaotic light-years [12–14] to come up with the present state of constellation,
in which the boundary is still expanding at the speed of light beyond the current
observation. With reference to a recent report using the Hubble Space Telescope,
we can see galaxies about 15 billion light-years away from us. This means that the
creation process is not stopping yet and at the same time the universe might have
started to de-create itself, since the big bang started, due to intense convergent
gravitational forces from all the newly created debris of matter (e.g., galaxies and
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dark matter). To wrap up this section, we would stress that one of the viable aspects
of Eq. (15) is the transformation from a spatially dimensionless equation to a space-
time function (i.e., ∇�S); it describes how our universe was created with a huge
explosion. Furthermore, the essence of Eq. (15) is not just a piece of mathematical
formula; it is a symbolic representation, a description, a language, a picture, or even
a video as may be seen from its presentation. We can visualize how our universe
was created, from the theory of relativity to Einstein’s energy equation and then to
temporal space creation.

10. Trading time and subspace

Let us now take one of the simplest connections between physical subspace and
time [15]:

d ¼ vt (16)

where d is the distance, v is the velocity, and t is the time variable. Notice that
this equation may be one of the most profound connections between time and
physical space (or temporal space). Therefore, a three-dimensional (Euclidean)
physical (or temporal) subspace can be described by

dx; dy; dzð Þ ¼ vx; vy; vzð Þt (17)

where (vx, vy, vz) are the velocities’ vectors and t is the time variable. Under the
current laws of science, the speed of light is the limit. Then, by replacing the
velocity vectors equal to the speed of light c, a temporal space can be written as

dx; dy; dzð Þ ¼ ct; ct; ctð Þ (18)

Thus, we see that time can be traded for space and space cannot be traded for
time, since time is a forward variable (i.e., t > 0). In other words, once a section of
time Δt is expended, we cannot get it back. Needless to say, a spherical temporal
space can be described by

r ¼ ct (19)

where radius r increases at the speed of light. Thus, we see that the boundary
(i.e., edge) of our universe is determined by radius r, which is limited by the light
speed, as illustrated in a composite temporal space diagram of Figure 1. In view of
this figure, we see that our universe is expanding at the speed of light well beyond
the current observable galaxies. Figure 2 shows a discrete temporal space diagram,
in which we see that the size of our universe is continuously expanding as time
moves forward (i.e., t > 0). Assuming that we have already accepted the big bang
creation, sometime in the future (i.e., billions of light-years later), our universe will
eventually stop expanding and then start to shrink back, preparing for the next
cycle of the big bang explosion. The forces for the collapsing universe are mainly
due to the intense gravitational field, mostly from giant black holes and matter that
were derived from merging (or swallowing) with smaller black holes and other
debris (i.e., physical substances). Since a black hole’s gravitational field is so intense,
even light cannot escape; however, a black hole is by no means an infinite energy
reservoir. Eventually, the storage capacity of a black hole will reach a limit for
explosion, as started for the mass to energy and debris creation.
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speed, as illustrated in a composite temporal space diagram of Figure 1. In view of
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moves forward (i.e., t > 0). Assuming that we have already accepted the big bang
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In other words, there will be one dominant giant black hole within the shrinking
universe, to initiate the next cycle of universe creation. Therefore, every black hole
can be treated as a convergent energy sink, which relies on its intense gravitation
field to collect all the debris of matter and energies. Referring to the big bang
creation, a gigantic energy explosion was the major reason for the universe’s crea-
tion. In fact, it can be easily discerned that the creating process has never slowed
down since the birth of our universe, as we see that our universe is still continuingly
expanding even today. This is by no means an indication that all the debris created
came from the big bang’s energy (e.g., mc2); there might have been some leftover
debris from a preceding universe. Therefore, the overall energy within our universe

Figure 1.
Composite temporal space universe diagram. r = ct, r is the radius of our universe, t is time, c is the velocity of
light, and ε0 and μ0 are the permittivity and permeability of the space.

Figure 2.
Discrete temporal universe diagrams; t is time.
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cannot be restricted to just the amount that came from the big bang creation. In
fact, the conversion processes between mass and energy have never been totally
absent since the birth of our universe, but they are on a much smaller scale. In fact,
right after birth, our universe started to slow down the divergent process due to the
gravitational forces produced by the created matter. In other words, the universe
will eventually reach a point when overall divergent forces will be weaker than the
convergent forces, which are mostly due to gravitational fields coming from the
newly created matter, including black holes. As we had mentioned earlier, our
universe currently has about 23% dark matter, which represents about 23% of the
gravitational fields within the current universe. The intense localized gravitational
field could have been produced from a group or a giant black hole, derived from
merging with (or swallowing up) some smaller black holes, nearby dark matter, and
debris. Since a giant black hole is not an infinite energy sink, eventually it will
explode for the next cycle of universal creation. And it is almost certain that the
next big bang creation will not occur at the same center of our present universe.
One can easily discern that our universe will never shrink to a few inches in size, as
commonly speculated. It will, however, shrink to a smaller size until one of the giant
black holes (e.g., swallowed-up sufficient physical debris) reaches the big bang
explosive condition to release its gigantic energy for the next cycle of universal
creation. The speculation of a possible collapsing universe remains to be observed.
Nonetheless, we have found that our universe is still expanding, as observed by the
Doppler shifts of the distant galaxies at the edge of our universe, about 15 billion
light-years away [12–14]. This tells us that our universe has not reached its half-life
yet. In fact, the expansion has never stopped since the birth of our universe, and our
universe has also been started to de-create since the big bang started, which is
primarily due to convergent gravitational forces from the newly created debris
(e.g., galaxies, black holes, and dark matter).

11. Relativistic time and temporal (t > 0) space

Relativistic time at a different subspace within a vast universal space may not be
the same as that based on Einstein’s special theory of relativity [1]. Let us start with
the relativistic time dilation as given by

Δt0 ¼ Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (20)

where Δt0 is the relativistic time window, compared with a standstill subspace, Δt
is the time window of a standstill subspace, v is the velocity of a moving subspace, and
c is the velocity of light. We see that time dilation Δt0 of the moving subspace, relative
to the time window of the standstill subspace Δt, appears to be wider as velocity
increases. For example, a 1-s time window Δt is equivalent to the 10-s relative time
window Δt’. This means that a 1-s time expenditure within the moving subspace is
relative to about a 10-s time expenditure within the standstill subspace. Therefore, for
the species living in an environment that travels closer to the speed of light (e.g., at the
edge of the universe), their time appears to be slower than ours, as illustrated in
Figure 3. In this figure, we see an old man traveling at a speed closer to the velocity of
light; his relative observation time window appears to be wider as he is looking at us,
and the laws of science within his subspace may not be the same as ours.

Two of the most important pillars in modern physics must be Einstein’s relativity
theory and Schrödinger’s quantum mechanics [15]. One is dealing with very large
objects (e.g., universe), and the other is dealing with very small particles
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convergent forces, which are mostly due to gravitational fields coming from the
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universe currently has about 23% dark matter, which represents about 23% of the
gravitational fields within the current universe. The intense localized gravitational
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merging with (or swallowing up) some smaller black holes, nearby dark matter, and
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creation. The speculation of a possible collapsing universe remains to be observed.
Nonetheless, we have found that our universe is still expanding, as observed by the
Doppler shifts of the distant galaxies at the edge of our universe, about 15 billion
light-years away [12–14]. This tells us that our universe has not reached its half-life
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Two of the most important pillars in modern physics must be Einstein’s relativity
theory and Schrödinger’s quantum mechanics [15]. One is dealing with very large
objects (e.g., universe), and the other is dealing with very small particles
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(e. g., atoms). Yet, there exists a profound connection between them, by means of
the Heisenberg’s uncertainty principle [16]. In view of the uncertainty relation, we
see that every temporal subspace takes a section of time Δt and an amount of energy
ΔE to create. Since we cannot create something from nothing, everything needs an
amount of energy ΔE and a section of time Δt to make it happen. By referring to the
Heisenberg uncertainty relation as given by

ΔE � Δt≥h (21)

where h is the Planck’s constant. We see that every subspace is limited by ΔE
and Δt. In other words, it is the h region, but not the shape, that determines the
boundary condition. For example, the shape can be either elongated or compressed,
as long as it is larger than the h region.

Incidentally, the uncertainty relationship of Eq. (21) is also the limit of reliable
bit information transmission as pointed out by Gabor in [17]. Nonetheless, the
connection with the special theory of relativity is that the creation of a subspace
near the edge of our universe will take a short relative time with respect to our
planet earth, since Δt’ > Δt. The “relativistic” uncertainty relationship within the
moving subspace, as with respect to a standstill subspace, can be shown as

ΔE � Δt’½1–ðv=cÞ2� ½ ≥ h (22)

where we see ΔE energy is conserved. Thus a narrower time-width can be
achieved as with respect to standstill subspace. It is precisely possible that one can
exploit for time-domain digital communication, as from ground station to satellite
information transmission.

On the other hand, as from satellite to ground station information transmission,
we might want to use digital bandwidth (i.e., Δv) instead. This is a frequency-
domain information transmission strategy, as in contrast with time domain, which
has not been exploited yet. The “relativistic” uncertainty relationship within the
standstill subspace as with respect to the moving subspace can be written as

ΔEΔtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

c

� �2q ≥ h (23)

Figure 3.
Effects on relativistic time.
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Or equivalently we have

Δv∙Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

c

� �2q ≥ 1 (24)

in which we see that a narrower bandwidth Δv can be in principle use for
frequency-domain communication.

12. Time and physical space

Every physical (or temporal) subspace is created by substances (i.e., energy and
mass), and substances coexist with time. In this context, we see that our universe
was essentially created by time and energy and the universe is continuously evolv-
ing (i.e., changing) with time. Although relativistic time may not be the same at the
different subspaces within our universe, the rule of time may remain the same. As
for the species living closer to the speed of light, relativistic time may not be
noticeable to them, but their laws of science within their subspace may be different
from ours. Nonetheless, our universe was simultaneously created by time with a
gigantic energy explosion. Since our universe cannot be embedded in an empty
space, it must be embedded in a more complex space that remains to be found.
From an inclusive point of view, mass is energy or energy is mass, which was
discovered by Einstein almost a century ago [1]. And it is this basic fundamental law
of physics that we have used for investigating the origin of time. Together with a
huge energy explosion (i.e., big bang theory [11]), time is the igniter for the crea-
tion of our universe. As we know, without the existence of time, the creation of our
universe would not have happened. As we have shown, time can be traded for
space, but space cannot be traded for time. Our universe is in fact a temporal
physical subspace, and it is continuously evolving or changing with time (i.e., t > 0).
Although every temporal subspace is created by time (and substances), it is not
possible for us to trade any temporal subspace for time. Since every physical sub-
stance has a life, our universe (a gigantic substance) cannot be excluded. With
reference to the report from a recent Hubble Space Telescope observation [12–14],
we are capable of viewing galaxies about 15 billion light-years away and have also
learned that our universe is still by no means slowing down in expansion. In other
words, our universe has still not reached its half-life, based on our estimation. As we
have shown, time ignited the creation of our universe, yet the created physical
substances presented to us the existence of time.

13. Essence of our temporal (i.e., t > 0) universe

In view of the preceding discussion, we see that our universe is a time-invariant
system (i.e., from system theory stand point); as in contrast with an empty space, it
is a not a time-invariant system and it is a timeless or no-time space. We see that
timeless solution cannot be directly implemented within our universe. Since science
is a law of approximation and mathematics is an axiom of absolute certainty, using
exact math to evaluate inexact science cannot guarantee its solution to exist within
our temporal (i.e., t > 0) universe. One important aspect of temporal universe is
that one cannot get something from nothing: There is always a price to pay; every
piece of temporal subspace (or every bit of information [7]) takes an amount of
energy (i.e., ΔE) and a section of time (i.e., Δt) to create. And the subspace
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[i.e., f(x, y, z; t), t > 0] is a forward time-variable function. In other words, time
and subspace coexist or are mutually inclusive. This is the boundary condition and
constrain of our temporal universe [i.e., f(x, y, z; t), t > 0], in which every existence
within our universe has to comply with this condition. Otherwise it is not existing
within our universe, unless new law emerges since laws are made to be broken.
Thus we see that any emerging science has to be proven to exist within our temporal
universe [i.e., f(x, y, z; t), t > 0]. Otherwise it is a fictitious science, unless it can be
validated by repeated experiments.

In mathematics, we see that the burden of a postulation is first to prove if there
exists a solution and then search for a solution. Although we hardly have had, there
is an existent burden in science. Yet, we need to prove that a scientific postulation is
existing within our temporal universe [i.e., f(x, y, z; t), t > 0]; otherwise it is not
real or virtual as mathematics is. For example such as the superposition principle in
quantum mechanics, in which we have proven [18] it is not existed within our
temporal universe (i.e., t > 0), since Schrödinger’s quantummechanics is timeless as
mathematics is.

There is however an additional constrain as imposed by our temporal universe
which is the affordability. As we have shown that everything (e.g., any physical
subspace) existed within our universe has a price tag, in terms of an amount of
energy ΔE and a section of time Δt (i.e., ΔE, Δt). To be precise, the price tag also
includes an amount of “intelligent” information ΔI or an equivalent amount of
entropy ΔS (i.e., ΔE, Δt, ΔI) [7]. For example, creation of a piece of simple facial
tissue will take a huge amount of energy ΔE, a section of time Δt, and an amount of
information ΔI (i.e., equivalent amount of entropy ΔS). We note that on this planet
Earth, only humans can make it happen. Thus we see that every physical subspace
(or equivalently substance) within our universe has a price tag (i.e., ΔE, Δt, ΔS),
and the question is that can we afford it?

14. Are we not alone?

Within our universe, we can easily estimate there were billions and billions of
civilizations that had emerged and faded away in the past 15 billion light-years. Our
civilization is one of the billions and billions of current consequences within our
universe, and it will eventually disappear. We are here, and will be here, for just a
very short moment. Hopefully, we will be able to discover substances that travel
well beyond the limit of light before the end of our existence, so that a better
observational instrument can be built. If we point the new instrument at the right
place, we may see the edge of our universe beyond the limit of light. We are not
alone with almost absolute certainty. By using the new observational equipment, we
may find a planet that once upon a time had harbored a civilization for a period of
twinkle thousands of (Earth) years.

15. Remarks

We have shown that time is one of the most intriguing variables in the universe.
Without time, there would be no physical substances, no space, and no life. With
reference to Einstein’s energy equation, we have shown that energy and mass can be
traded. In other words, mass is equivalent to energy, and energy is equivalent to
mass, for which all mass can be treated as an energy reservoir. We have also shown
that a physical space cannot be embedded in an absolute empty space or a timeless
(i.e., t = 0) space, and it cannot even have any absolute empty subspace in it. In
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reality, every physical space has to be fully packed with physical substances (i.e.,
energy and mass). Since no physical space can be embedded in an absolute empty
space, it is reasonable to assume that our universe is a subspace within a more
complex space, which remains to be found. In other words, our universe could have
been one of the many universes outside our universal boundary, which comes and
goes like bubbles. We have also shown that it takes time to create a physical space
and the time that has been used for the creation cannot be brought back. Since all
physical substances exist with time, all physical spaces are created by time and
substances (i.e., energy and mass). This means that our cosmos was created by time
and a gigantic energy explosion, in which we see that every substance coexists with
time. That is, without time, the creation of physical substances would not have
happened. We have further noted that our universe is in a temporal space and it is
still expanding based on current observation. This shows that our universe has not
reached its half-life yet, as we have accepted the big bang creation. And it is noted
that we are not alone with almost absolute certainty. Someday, we may find a planet
that once upon a time had harbored a civilization for a period of light-years. We
have further shown that the burden of a scientific postulation is to prove it exists
within our temporal universe [i.e., f(x, y, z; t), t > 0]; otherwise it is not real or
virtual as mathematics is.

Finally, I would like to take this opportunity to say a few words on behalf of
Professor Stephen Hawking, who passed away last year on March 14, 2018. Profes-
sor Hawking was a world-renowned astrophysicist, a respected cosmic scientist,
and a genius. Although the creation of temporal universe started with the same root
of the big bang explosion, it is not a subspace of Professor Hawking’s universe. You
may see from the preceding presentation that the creation of temporal universe is
somewhat different from Hawking’s creation. One of the major differences may be
at the origin of big bang creation. My temporal universe was started with a big bang
creation within a “non-empty” space, instead within of an empty space which was
normally assumed.
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Chapter 7

Hot Compression Tests Using
Total Lagrangian SPH Formulation
in Energy-Based Framework
Kadiata Ba

Abstract

Limitations of the finite element method (FEM) in some cases involving large
deformations as in forging or high compression tests are overcome nowadays by
meshless methods such as the smoothed particle hydrodynamic (SPH) method. This
paper presents a corrected total Lagrangian SPH formulation for problems encoun-
tering large deformations in solid mechanics. The continuum is modeled as a Ham-
iltonian system of particles (energy-based framework). The total Lagrangian
formulation proposed overcomes some problems faced by standard SPH in simu-
lating solid mechanic problems such as tensile instability. Numerical applications
compared with experimental results are presented to show the capabilities of this
novel formulation.

Keywords: SPH, Hamiltonian system, total Lagrangian, thermomechanical,
solid mechanics

1. Introduction

The use of the smoothed particle hydrodynamic (SPH) method [1–5] (Figure 1)
in solid mechanics is quite recent (in the 1990s) compared to the SPH fluid
formulation. Libersky and Petschek [6] and Libersky et al. [4] are cited as the first
to use SPH in solid mechanics, for impacts modeling at high speeds and phenomena
of rupture, perforation, and fragmentation. As SPH is a meshless method, there
is no mesh to distort; it can efficiently handle large deformations. SPH is an efficient
numerical method for applications in forging processes [7], machining [8–10], and
welding [11]. Classical approach is widely used to describe SPH equations but faces
drawbacks such as lack of completeness and tensile instability (numerical
fragmentation). Total Lagrangian corrected SPH formulation is then used to fix the
cited problems. In this paper, a Hamiltonian formulation is proposed for dynamic
and steady-state problem simulation focusing on numerical efficiency such as accu-
racy and simulation time. The governing equations are derived following a
Lagrangian variational principle leading to a Hamiltonian system of particles
[12–14]. With the Hamiltonian SPH formulation, local conservation of momentum
between particles is respected, and they remain locally ordered during the process
as wanted in solid mechanic problems.

Total Lagrangian formulation reduces also the computational time by avoiding
the search for neighboring particles for the construction of the kernel function at
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lating solid mechanic problems such as tensile instability. Numerical applications
compared with experimental results are presented to show the capabilities of this
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1. Introduction

The use of the smoothed particle hydrodynamic (SPH) method [1–5] (Figure 1)
in solid mechanics is quite recent (in the 1990s) compared to the SPH fluid
formulation. Libersky and Petschek [6] and Libersky et al. [4] are cited as the first
to use SPH in solid mechanics, for impacts modeling at high speeds and phenomena
of rupture, perforation, and fragmentation. As SPH is a meshless method, there
is no mesh to distort; it can efficiently handle large deformations. SPH is an efficient
numerical method for applications in forging processes [7], machining [8–10], and
welding [11]. Classical approach is widely used to describe SPH equations but faces
drawbacks such as lack of completeness and tensile instability (numerical
fragmentation). Total Lagrangian corrected SPH formulation is then used to fix the
cited problems. In this paper, a Hamiltonian formulation is proposed for dynamic
and steady-state problem simulation focusing on numerical efficiency such as accu-
racy and simulation time. The governing equations are derived following a
Lagrangian variational principle leading to a Hamiltonian system of particles
[12–14]. With the Hamiltonian SPH formulation, local conservation of momentum
between particles is respected, and they remain locally ordered during the process
as wanted in solid mechanic problems.

Total Lagrangian formulation reduces also the computational time by avoiding
the search for neighboring particles for the construction of the kernel function at
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each time step. Through axial and lateral compression tests, the accuracy of the new
formulation is shown. Results are compared to a classical formulation based on
differential equations for solid mechanic applications.

2. Discrete equations of motion from energy-based formulation

The governing equations are derived following a Lagrangian variational
principle leading to a Hamiltonian system of particles (energy-based) [12, 17–19]
where the motion of each particle is given by the classical Lagrange equations.
Therefore, as explained by Bonet et al. [18], constants of the motion such as linear
and angular momentum are conserved.

For each particle, the physical quantities are calculated through interpolation
over neighbor particles. Every particle is considered as a moving thermodynamic
subsystem [12]. The volume of each particle is given by

Vi ¼ mi=ρi (1)

Figure 1.
(a) Schematic representation of the discretization of the domain Ω by a set of points i [15] and (b) seen in
the space of a B-spline [16].
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where mi is the mass of the particle and ρi its density.
To proceed with a variational formulation of the equations of motion of the

continuum, the kinetic K, internal
Q

int, and external energy
Q

ext of the system need
to be defined.

With dissipative effects such as plasticity, the equations of motion of the system
of particles representing the continuum can be evaluated following the classical
Lagrangian formalism. For more details, readers can refer to Ba and Gakwaya [12]:

d
dt

∂L
∂vi

� ∂L
∂xi

¼ � ∂Πdis

∂vi
(2)

where xi and vi are the spatial position and velocity of the particle i, Πdis is the
dissipative energy, and L is the Lagrangian given by

L xi;við Þ ¼ K við Þ � Πext xið Þ � Πint xið Þ (3)

By substituting Eq. (3) into Eq. (2), it leads to

d
dt

∂K
∂vi

¼ � ∂Πext

∂xi
� ∂Πint

∂xi
� ∂Πdis

∂vi
(4)

The total kinetic energy of the system can be approximated as the sum of the
kinetic energy of each particle:

K ¼ 1
2
∑
i
mi vi:við Þ (5)

For a common case where the external forces result from a gravitational field g,
the total external energy is

Πext ¼ �∑
i
mi xi:g
� �

(6)

The total internal energy can be expressed as the sum of the products of particle
masses by the amount of energy accumulated per unit mass π that depends on the
deformation, density, or other constitutive parameters:

Πint ¼ ∑
i
miπ ρi;…ð Þ (7)

The dissipative energy can also be expressed as

Πdisp ¼ ∑
i¼1

miπdisp dð Þ (8)

where πdisp is the dissipative energy per unit mass and d is the rate of deforma-
tion tensor.

d ¼ 1
2

∇vþ ∇vT� �
(9)

with the velocity gradient given by

∇vi ¼ ∑
j

mj

ρj
vj � vi
� �

∇W xi � xj; h
� �

(10)
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where W xi � xj; h
� �

is the SPH kernel function and h is the smoothing length.

3. Corrected total Lagrangian SPH formulation for solid mechanics

Total Lagrangian formulation [20, 21] is well suited for solid mechanic problems
as the SPH particles change less often their neighbors than in fluid mechanics [12].
The SPH kernels and their gradients are then expressed in the initial configuration
(material coordinates X are used). The proposed corrected kernel is to address the
lack of completeness and interpolation consistency; the smoothing length h is con-
sidered as a functional variable in the calculation of the gradient of the kernel
function ∇W [19].

Lagrangian and spatial coordinates are connected through the gradient of defor-
mation tensor F:

F ¼ ∂x
∂X

¼ ∂ Xþ uð Þ
∂X

(11)

where u is the displacement of a material point.
The expression of the corrected gradient of deformation tensor F, in total

Lagrangian formulation, is given by

Fih i ¼ �∑
j

uj � ui
� �

⊗∇XjW Xi �Xj; h0
� �

V0
j

 !
Bþ I (12)

where ∇Xj is the gradient with respect to a material point X, V0
j is the initial

volume of particle j, h0 is the initial smoothing length, and I is the identity matrix.
B is the expression of the correction of the gradient expressed as [20]

B ¼ ∑
j

mj

ρj
Xi �Xj; h0
� �

⊗∇XiW Xi �Xj; h0
� �

 !�1

(13)

The corrected mass conservation equation for particle i is

ρ0i ¼ ρiJ ¼ ρidetFi (14)

where J and ρ0 are the Jacobian and the initial density.
The corrected momentum equation for a particle i is

aih i ¼ �∑
j

Pj � Pi
� �

⊗∇Xj
~W Xi �Xj; h0
� �

V0
j þ f i

 !
: B (15)

where a, ~W , and f i are the acceleration, the normalized smoothing function, and
the body force.

P is the first Piola-Kirchhoff stress.

P ¼ JσF�T (16)

where σ is the Cauchy stress tensor and F�T is the inverse of the transpose of the
gradient of deformation tensor.

The corrected energy conservation equation for particle i is
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_eih i ¼ Pj :
�∑

j

mj

ρiρj
vj � vi; h0
� �

⊗∇XiW Xi �Xj; h0
� �

V0
j

þk∇Ti þ rpl

0
@

1
AB

2
4

3
5 (17)

where _e is the energy rate, rpl is the mechanical contribution (heat generated by
the plastic dissipation), k is the conductivity, and T is the temperature of the
particle.

The equation of motion and the equation of the thermal energy of each particle
can be put after discretization and evaluation of all the interactions in the following
forms:

ai ¼ €ui ¼
1
mi

f ext ið Þ � f int ið Þ
� �

(18)

_Ti ¼
1
Ci

hk
ext ið Þ � hk

int ið Þ

� �
(19)

where f int ið Þ and f ext ið Þ are the internal and external forces, hk
int ið Þ and hk

ext ið Þ are
the internal and the external heat flux, and C is the capacitance matrix.

The expression for the internal force for a given particle can be expressed by
differentiating the internal energy per unit mass with respect to the nodal positions
as

f int ið Þ ¼ ∑
n

j¼1
V0

j PjGi Xj
� �

(20)

where G is the gradient function and contains the corrected kernel gradients
∇�W at the initial reference configuration.

Gi Xj
� �

¼ Vi∇
�0

Wi Xj
� �

(21)

Internal heat flux can be expressed as

hint ið Þ ¼ kiTi (22)

where k is the heat conductivity matrix and T the vector of nodal temperatures.
Explicit finite difference method is used to solve numerically the differential

equation presented in this section through explicit dynamic algorithm to update the
velocity, position, and temperature of each SPH particle.

4. Temporal integration scheme

A typical integration scheme used for integrating SPH equations is the leapfrog
algorithm (Figure 2), an extension of the Verlet algorithm with low storage mem-
ory during computation.

The heat transfer equations are integrated using the explicit forward-difference
time integration rule [22].

T tþΔtð Þ ¼ T tð Þ þ Δt tþ1ð Þ _T tð Þ (23)

_Tt is computed at the beginning of the increment by
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_T tð Þ ¼ C�1 ht
ext � ht

int

� �
(24)

The stability time is given by

ΔtT ≈
Δr2min

2α
(25)

where Δrmin is the smallest interparticle distance and α is the diffusivity of the
material.

α ¼ k
ρs

(26)

where k is the conductivity and s is the specific heat.
For the mechanical part, an explicit central-difference integration rule is used to

integrate the equation of motion. The nodal accelerations €u at time t is given by

€u tð Þ ¼ M�1 P tð Þ � I tð Þ
� �

(27)

where M, P tð Þ, and I tð Þ represent the mass matrix and the external and internal
forces.

The integration leads to the nodal velocity _u (Eq. 28) and the nodal displacement
u (Eq. 29).

_u tþΔt
2ð Þ ¼ _u t�Δt

2ð Þ þ
Δt tþΔtð Þ þ Δt tð Þ
� �

2
€u tð Þ (28)

u tþΔtð Þ ¼ u tð Þ þ Δt tþΔtð Þ _u tþΔt
2ð Þ (29)

The stable time is calculated as follows:

Δt ¼ min
Le

cd

� �
(30)

where Le and cd are, respectively, the characteristic length of the element and the
dilatational wave speed of the material.

Figure 2.
SPH code structure [23].
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The whole thermomechanical problem is solved by explicit coupling; both the
forward-difference (for the thermal problem) and central-difference (for the
mechanical problem) integrations are explicit.

The structure of the SPH code is described below (Figure 2). The time
integration routine is the main subroutine. It calculates the new variables (density,
acceleration, external force, internal force).

5. Material behavior

Johnson-Cook model [24–26] is used in this work, and the flow stress is
expressed as follows:

σf ¼ Aþ B εp
� �n� �

1þ Cln
ε˙p
ε˙p0

 !" #
1� T � Tr

Tm � Tr

� �m� �
(31)

where ε is the plastic strain, _ε s�1ð Þ is the plastic strain rate, _ε0 s�1ð Þ is the
reference plastic strain rate, Tm is the melting temperature, Tr is the reference
temperature, T is the current temperature, A is the yield stress, B is the coefficient
of strain hardening, C is the coefficient of strain rate hardening, n is the strain
hardening exponent, and m is the thermal softening exponent.

The material used for the simulations (see Section 6) is an Al-Zn-Mg-Cu alumi-
num alloy. The Johnson-Cook material parameters are shown in Table 1.

6. Applications

6.1 Axial compression test

A cylindrical sample (diameter, 25.4 mm; length, 25.4 mm) was subjected to the
uniaxial compression test at constant velocity (2.54 mm s�1) and high temperature
(400°C). Both experimental and numerical tests were performed (Figure 3). The
aim of this test is to demonstrate the efficiency of the proposed total Lagrangian
SPH formulation. We compared the numerical stress-strain curve with the

A (MPa) B (MPa) c n m _ε0 (s�1) Tm (°C) Tr (°C)

420 465 0.862 0.5088 0.081 0.1 641 25

Table 1.
Johnson-Cook material parameters [12].

Figure 3.
Axial compression test setup in SPH.
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experimental ones to verify the accuracy and the stability of the code
(see Figure 4). To confirm the validity of the experimental result, the tests were
repeated three times.

6.2 Lateral compression test

Lateral compression test is performed in this section (Figure 5). Eulerian and
Lagrangian simulation time are compared, and tensile instability is verified. The test
is carried out at 30 mm s�1, and cylindrical sample (diameter 25.4 mm, length
25.4 mm) with 5313 particles was used. This is a case of a large deformation test; the

Figure 4.
Stress-strain curves: experimental vs. SPH.

Figure 5.
Lateral compression test: Eulerian vs. Lagrangian.

Simulation time Number of particles

Eulerian SPH 4 h 04 min 5313

Lagrangian SPH 1 h 36 min 5313

Table 2.
Simulation time comparison.
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initial diameter of the sample was reduced over 50% during the test. See compari-
son of results at Table 2.

6.3 Discussion

Figures 4 and 5 and Table 2 gather the tests results. From Figure 4 (axial
compression test), we can see that the SPH result is very accurate compared to the
experimental ones. Less than 5% of error is noted between the curves. The simu-
lated sample shows no clustered particles, meaning there is no tensile instability.

Figure 5 and Table 2 show the results of the lateral compression test and
confirm the previous result. Even in very large deformation test, particles keep their
initial neighbors and do not suffer from tensile instability. In addition, the simula-
tion time is very interesting compared to classical SPH formulation; simulation time
is reduced drastically (from 4 h 04 min to 1 h 36 min); a good numerical efficiency
is reached.

7. Conclusion

A corrected SPH particle approximation in energy-based framework is
presented. Stability (no tensile instability), accuracy, and fast result production are
shown leading to the conclusion that the total Lagrangian SPH formulation is very
well suited to simulate solid mechanic problems. This is particularly interesting in
simulating large deformation problems with physical fragmentation where the
numerical fragmentation (tensile instability) will not corrupt the results.
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shown leading to the conclusion that the total Lagrangian SPH formulation is very
well suited to simulate solid mechanic problems. This is particularly interesting in
simulating large deformation problems with physical fragmentation where the
numerical fragmentation (tensile instability) will not corrupt the results.
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Chapter 8

Dynamics of Biostructures on
a Fractal/Multifractal Space-Time
Manifold
Maricel Agop, Calin Buzea, Decebal Vasincu
and Daniel Timofte

Abstract

A theory of space-time is built on a fractal/multifractal variety. Thus, consider-
ing that both the spatial coordinates and the time are fractal/multifractal, it is
shown that both the energy and the non-differentiable mass of any biostructure
depend on both the “state” of the biostructure and a speed limit of constant value.
For the dynamics on Peano fractal/multifractal curves and Compton scale resolu-
tions, it is shown that our results are reduced to those of Einstein relativity. In such
a context, it has been shown that the “chameleon effect” of cholesterol corresponds
to the HDL-LDL state transfer dictated by the spontaneous symmetry breaking
through a fractal/multifractal tunnel effect. Then both HDL and LDL become dis-
tinct states of the same biostructure as in nuclear physics where proton and neutron
are distinct states of the same nucleon.

Keywords: fractal/multifractal tunnel effect, biostructures, cholesterol,
spontaneous symmetry breaking, chameleon effect

1. Mathematical model

1.1 Time as a fractal/multifractal

Analyzing the nonrelativistic dynamics of a particle in a fractal/multifractal
space [1–4], we observe a big discrepancy between the space coordinates and the
temporal one (considered as affine parameter of motion curve). If the space coor-
dinates are fractal/multifractal, the temporal coordinate is not a fractal/multifractal.
This discrepancy has an important consequence: the particle travels on an infinite
length curve in a finite time span, and so, it has an infinite velocity. In order to
eliminate this contradiction, in the following we will assume that not only the space
coordinates are fractal/multifractal but also the temporal one is a fractal/
multifractal. Practically, we shall build dynamics of biostructures on a non-
differentiable space-time manifold. In this framework, the most important ele-
ments from the nonrelativistic approach of scale relativity theory with arbitrary
constant fractal dimension, as described in [5–7], remain valid, but the time differ-
ential element dt is now replaced by the proper time differential element dτ. In this
way, not only the space but the entire space-time continuum is considered to be
non-differentiable and, therefore, fractal/multifractal.
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1.2 Consequences of non-differentiability on a space-time manifold

Let us suppose that on a space-time manifold, the motions of biostructures take
place on continuous but non-differentiable curves (in particular fractal/multifractal
curves). The non-differentiability of motion curves implies the following [2]:

(i) Any continuous but non-differentiable curve is explicitly scale dependent
(which will be referred as δτ). In other words, its length tends to infinity
when its proper time interval, Δτ, tends to zero (an extension of the Lebesgue
theorem on a space-time manifold). Consequently, in this limit, a curve in a
space-time manifold is zigzagged as one can imagine. Thus, it exhibits the
property of self-similarity in all its points of a space-time manifold, which
can be translated into an extension property of holography (every part of a
space-time manifold reflects the whole of the same space-time manifold).

Then a continuous but non-differentiable space-time is fractal/multifractal in
Mandelbrot’s sense:

(ii) The differential proper time reflection invariance of any variable is broken.
For example, the proper time derivative of four-coordinate Xμ, where μ = 0,
1, 2, 3, can be written two fold:

dXμ

dτ

� �

þ
¼ lim

Δτ!0þ

Xμ τ þ Δτð Þ � Xμ τð Þ
Δτ

dXμ

dτ

� �

�
¼ lim

Δτ!0�

Xμ τð Þ � Xμ τ � Δτð Þ
Δτ

(1)

These relations are equivalent in the differentiable case, Δτ ! �Δτ. In the non-
differentiable case, the previous definitions fail since the limits Δτ ! 0� are no
longer defined. In the approach of the non-differentiable model, the biophysical
phenomena are related to the behavior of the function during the “zoom” operation
on the proper time resolution δτ: then, by means of the substitution principle, δτwill
be identified with the differential element dτ, i.e., δτ � dτ, and will be considered as
independent variable. Thus, every classical variable Q(τ) is replaced by the non-
differentiable variable Q(τ,dτ) explicitly dependent on the proper time resolution
interval whose derivative is undefined only in the limit, Δτ ! 0. As a consequence,
two derivatives of every non-differentiable variable as explicit functions of τ and dτ
will be defined. For example, the two derivatives of the four-coordinate Xμ(τ,Δτ)
takes the following form:

dþXμ

dτ
¼ lim

Δτ!0þ

Xμ τ þ Δτ,Δτð Þ � Xμ τ,Δτð Þ
Δτ

d�Xμ

dτ
¼ lim

Δτ!0�

Xμ τ,Δτð Þ � Xμ τ � Δτ,Δτð Þ
Δτ

(2)

The sign + corresponds to the forward biophysical process and the sign � to the
backward one:

(iii) The differential of four-coordinate dXμ(τ,Δτ) can be expressed as the sum of
two differentials, one not scale dependent (differentiable part d�x

μ(τ)) and
other scale dependent (non-differentiable part d�ξ

μ(τ,dτ)), i.e.,

d�Xμ τ,Δτð Þ ¼ d�xμ τð Þ þ d�ξμ τ,Δτð Þ (3)
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(iv) The non-differentiable part of the four-coordinate satisfies the non-
differentiable equation

d�ξμ τ,Δτð Þ ¼ λμ� dτð Þ1=DF (4)

where λ�
μ are constant coefficients whose statistical significance will be given in

what follows and DF is the fractal dimension of the motion curves from the space-
time manifold.

In our opinion, the complexity of the biophysical processes implies dynamics on
geodesics with various fractal dimensions. Precisely, DF = 2 is a characteristic to the
biophysical processes of quantum type, DF < 2 is a characteristic to the biophysical
processes of correlative type, while DF > 2 is a characteristic to the biophysical
processes of non-correlative type. Since such dynamics simultaneously are opera-
tional on a given biophysical system, the space-time manifold will exhibit
multifractal type properties [2].

(v) The differential proper time reflection invariance is recovered by combining
the derivatives d+/dτ and d�/dτ in the non-differentiable operator:

d̂
dτ

¼ 1
2

dþ þ d�
dτ

� �
� i
2

dþ � d�
dτ

� �
(5)

This specific procedure is called, according to [8], “differentiability by extension
in complex on a space-time manifold” (Cresson’s theorem). Applying now the non-
differentiable operator to the four-coordinate Xμ yields the complex velocity:

V̂
μ ¼ d̂Xμ

dτ
¼ 1

2
dþXμ þ d�Xμ

dτ

� �
� i
2

dþXμ � d�Xμ

dτ

� �

¼ 1
2

dþxμ þ d�xμ

dτ
þ dþξμ þ d�ξμ

dτ

� �
� i
2

dþxμ � d�xμ

dτ
þ dþξμ � d�ξμ

dτ

� �
¼ Vμ � iUμ

(6)

with

Vμ ¼ 1
2

vμþ þ vμ�
� �

,Uμ ¼ 1
2

vμþ � vμ�
� �

, vμþ ¼ dþxμ þ dþξμ

dτ
, vμ� ¼ d�xμ þ d�ξμ

dτ
(7)

The real part Vμ is differentiable and scale resolution independent, while the
imaginary one Uμ is non-differentiable and scale resolution dependent.

(vi) An infinite number of geodesics can be found relating any pair of points of a
space-time manifold, and this is true on all scale resolutions of the dynamics of
biostructures. Then, in the space-time manifold, all the entities of the biostructures
are substituted with the geodesics themselves so that any external constraint can be
interpreted as a selection of geodesics in the same space-time manifold. The infinity
of geodesics in the bundle, their non-differentiability, the two values of the deriva-
tive, etc., imply a generalized statistical fluidlike description (fractal/multifractal
fluid). In this way, one provides the fractalization/multifractalization type through
stochastic processes. From such a perspective, averages, variances, covariances, etc.
of the fractal/multifractal fluid variables (by means of which now we can describe
the dynamics of the biostructures) must be considered in the sense of the stochastic
process associated with fractalization/multifractalization. In such a context, the
choice of the average of d�X

i in the form
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i in the form
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d�Xi� �
� d�xi (8)

implies through (3)

d�ξi
� �

¼ 0 (9)

1.3 Motion non-differentiable operator on a space-time manifold

Let us now consider that the movement curves (continuous and non-
differentiable) are immersed in the space-time and that Xμ are the four coordinates
of a point on the curve. We also consider a variable Q(Xμ,τ) and the following
Taylor expansion, up to the second order

d�Q Xμ, τ, dτð Þ ¼ ∂τQdτ þ ∂μQd�Xμ þ 1
2
∂μ∂νQd�Xμd�Xν (10)

where

∂τ ¼
∂

∂τ
, ∂μ ¼

∂

∂Xμ , ∂μ∂ν ¼
∂
2

∂Xμ
∂Xν

Relations (10) are valid in any point of the space-time manifold and more for the
points “Xμ” on the non-differentiable curve which we have selected in relation (10).

From here, forward and backward average values of (10) become

d�Q Xμ, τ, dτð Þh i ¼ ∂τQdτh i þ ∂μQd�Xμ
� �

þ 1
2
∂μ∂νQ d�Xμd�Xνh i (11)

Wemake the following stipulations: the average values of the variables Q(Xμ,τ,dτ)
and its derivatives coincide with themselves, and the differentials d�X

μ and dτ are
independent. Therefore, the average of their products coincides with the product of
their averages. In these conditions, (11) takes the form

d�Q Xμ, τ, dτð Þ ¼ ∂τQdτ þ ∂μQ d�Xμh i þ 1
2

∂μ∂νQd�Xμd�Xν
� �

(12)

or using (3), (8), and (9)

d�Q Xμ, τ, dτð Þ ¼ ∂τQdτ þ ∂μQd�xμ þ
1
2
∂μ∂νQ d�xμd�xν þ d�ξμd�ξνh ið Þ (13)

Even the average values of the 4-non-differentiable coordinate d�ξ
μ is null, for

the higher order of the four-non-differentiable coordinate average, the situation can
be different. Let us focus now on the mean <d�ξ

μd�ξ
ν>. Using (4), we can write

d�ξμd�ξνh i ¼ �λμ�λ
ν
� dτð Þ 2=DF�1ð Þdτ (14)

using the convention that the sign + corresponds to dτ > 0, while the sign �
corresponds to dτ < 0.

Then (13) takes the form:

d�Q Xμ, τ, dτð Þ ¼ ∂τQdτ þ ∂μQd�xμ þ
1
2
∂μ∂νQd�xμd�xν �

1
2
∂μ∂νQλμ�λ

ν
� dτð Þ 2=DF�1ð Þdτ

(15)
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If we divide by dτ and neglect the terms that contain differential factors, using
the method from [5–7], we obtain:

d�Q Xμ, τ, dτð Þ
dτ

¼ ∂τQ þ νμ�∂μQ � 1
2
λμ�λ

ν
� dτð Þ 2=DF�1ð Þ

∂μ∂νQ (16)

These relations also allow us to define the operators:

d�
dτ

¼ ∂τ þ νμ�∂μ �
1
2
λμ�λ

ν
� dτð Þ 2=DF�1ð Þ

∂μ∂ν (17)

Under these circumstances, let us calculate d̂=dτ. Taking into account (5), (6),
and (17), we obtain:

d̂Q
dτ

¼ 1
2

dþQ þ d�Q
dτ

� �
� i

dþQ � d�Q
dτ

� �� �

¼ ∂τQ þ V̂
μ
∂μQ þ 1

4
dτð Þ 2=DF�1ð ÞDμν

∂μ∂νQ (18)

where

Dμν ¼ dμν � id
μν

dμν ¼ λμþλ
ν
þ � λμ�λ

ν
�, d

μν ¼ λμþλ
ν
þ þ λμ�λ

ν
�, i ¼

ffiffiffiffiffiffi
�1

p
(19)

The relation also allows us to define the motion non-differentiable operator:

d̂
dτ

¼ ∂τ þ V̂
μ
∂μ þ

1
4

dτð Þ 2=DF�1ð ÞDμν
∂μ∂ν (20)

If the non-differentiability of motion curves is realized through Markov type
stochastic process [2, 4].

λμþλ
ν
þ ¼ λμ�λ

ν
� ¼ �λημν (21)

where ημν is the Minkowski metric and λ is the coefficient associated with the
differentiable-non-differentiable transition, then the motion non-differentiable
operator takes the form

d̂
dτ

¼ ∂τ þ V̂
μ
∂μ þ i

λ

2
dτð Þ 2=DF�1ð Þ

∂μ∂
μ (22)

If the non-differentiability of motion curves is realized through non-Markov
type stochastic process [2, 4].

λμþλ
ν
þ � λμ�λ

ν
� ¼ λ1η

μν

λμþλ
ν
þ þ λμ�λ

ν
� ¼ �λ2η

μν (23)

where λ1 and λ2 are two coefficients associated with the differentiable-non-differ-
entiable transition, then the motion non-differentiable operator takes the form

d̂
dτ

¼ ∂τ þ V̂
μ
∂μ þ

1
4

λ1 þ iλ2ð Þ dτð Þ 2=DF�1ð Þ
∂μ∂

μ (24)
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1.4 Non-differentiable geodesics on a space-time manifold

In what follows, let us consider the functionality of the scale covariance princi-
ple [5–7]: the biophysics laws are simultaneously invariant both with respect to the
four-coordinate transformation and with respect to scale transformations. Then the
passage from differentiable biophysics in a space-time manifold to the non-
differentiable biophysics in a same space-time, manifold which is considered here,
can be implemented by replacing the standard derivative d/dτ by the non-
differentiable operator d̂=dτ. This operator plays the role of a “covariant derivative
operator,” namely, it is used to write the fundamental equations of dynamics of
biostructures under the same form as in the classical (differentiable) case. Thus,
applying the operator (20) to the complex velocity (6), the geodesics equation
becomes:

d̂V̂
μ

dτ
¼ ∂τV̂

μ þ V̂
ν
∂νV̂

μ þ 1
4

dτð Þ 2=DF�1ð ÞDαβ
∂α∂βV̂

μ � 0 (25)

or, also using (6), through separation of motions on scale resolutions (the real
part from the imaginary one):

d̂Vμ

dτ
¼ ∂τVμ þ Vν

∂νVμ � Uν
∂νUμ þ 1

4
dτð Þ 2=DF�1ð Þdαβ∂α∂βVμ

� 1
4

dτð Þ 2=DF�1ð Þd
αβ
∂α∂βUμ ¼ 0

d̂Uμ

dτ
¼ ∂τUμ þ Vν

∂νUμ þUν
∂νVμ þ 1

4
dτð Þ 2=DF�1ð Þdαβ∂α∂βUμ

þ 1
4

dτð Þ 2=DF�1ð Þd
αβ
∂α∂βVμ ¼ 0 (26)

For motions on non-differentiable curves realized through Markov type sto-
chastic process [1, 2, 4], the geodesics equation takes the form

d̂V̂
μ

dτ
¼ ∂τV̂

μ þ V̂
ν
∂νV̂

μ � i
λ

2
dτð Þ 2=DF�1ð Þ

∂
ν
∂νV̂

μ ¼ 0 (27)

or through separation of motions on scale resolutions:

d̂Vμ

dτ
¼ ∂τVμ þ Vν

∂νVμ � Uν � λ

2
dτð Þ 2=DF�1ð Þ

∂
ν

� �
∂νUμ ¼ 0

d̂Uμ

dτ
¼ ∂τUμ þ Vν

∂νUμ þ Uν � λ

2
dτð Þ 2=DF�1ð Þ

∂
ν

� �
∂νVμ ¼ 0 (28)

For motions on non-differentiable curves realized through non-Markov type
stochastic process [1, 2, 4], the geodesics equation becomes

d̂V̂
μ

dτ
¼ ∂τV̂

μ þ V̂
ν
∂νV̂

μ þ 1
4

λ1 þ iλ2ð Þ 2=DF�1ð Þ
∂ν∂

νV̂
μ ¼ 0 (29)

or through separation of motions on scale resolutions:
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d̂Vμ

dτ
¼ ∂τVμ þ Vν

∂νVμ � Uν � λ2
4

dτð Þ 2=DF�1ð Þ
∂
ν

� �
∂νUμ þ λ1

4
dτð Þ 2=DF�1ð Þ

∂ν∂
νVμ ¼ 0

d̂Uμ

dτ
¼ ∂τUμ þ Vν

∂νUμ þ Uν � λ2
4

dτð Þ 2=DF�1ð Þ
∂
ν

� �
∂νVμ þ λ1

4
dτð Þ 2=DF�1ð Þ

∂ν∂
νUμ ¼ 0

(30)

1.5 Non-differentiable geodesics in terms of the scalar complex field
on a space-time manifold

Let us choose V̂
μ
in terms of the scalar complex field Ψ:

V̂
α ¼ iλ dτð Þ 2=DF�1ð Þ

∂α lnΨ (31)

Then the geodesics equation (27) becomes

d̂V̂α

dτ
¼ λ dτð Þ 2=DF�1ð Þ

∂τ∂α lnΨ

þ iλ dτð Þ 2=DF�1ð Þ
∂
μ lnΨþ i

λ

2
dτð Þ 2=DF�1ð Þ

∂
μ

� �
∂μ∂α iλ dτð Þ 2=DF�1ð Þ lnΨ

h i
¼ 0 (32)

Since

∂α ∂μ lnΨ∂μ lnΨ
� �

¼ 2∂μ lnΨ∂α∂μ lnΨ

∂α∂μ∂
μ lnΨ ¼ ∂

μ
∂μ∂α lnΨ

∂α ∂μ lnΨ∂μ lnΨþ ∂μ∂
μ lnΨ

� �
¼ ∂α

∂μ∂
μΨ
Ψ

� �
(33)

Equation (32) takes the form:

iλ dτð Þ 2=DF�1ð Þ
∂τ∂α lnΨþ λ2 dτð Þ 4=DF�2ð Þ

∂α
∂μ∂

μΨ
Ψ

� �
¼ 0 (34)

By integrating the above relation, we obtain:

λ2 dτð Þ 4=DF�2ð Þ
∂μ∂

μΨþ iλ dτð Þ 2=DF�1ð Þ
∂τΨþ F2 τð ÞΨ ¼ 0 (35)

where F2(τ) is an arbitrary function depending on τ.
Consequently, the non-differentiable geodesics (35) in terms of Ψ are well

defined up to an arbitrary function F2(τ) depending on τ. A particular form of F2(τ)
can be obtained, for instance, based on a correspondence with the standard Klein-
Gordon equation.

1.6 Non-differentiable geodesics in terms of Klein-Gordon equation of fractal/
multifractal type

If Ψ is independent on τ, i.e., ∂τΨ = 0 and F2(τ) = V0
2 = const., with V0 a limit

velocity with constant value, the geodesics (35) become the Klein-Gordon equation
of fractal/multifractal type
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∂μ∂
μΨþ 1

Λ2 Ψ � 0 (36)

with

Λ ¼ Λ0 dτð Þ 2=DF�1ð Þ,Λ0 ¼ λ

V0
(37)

From (37) it results in a scale resolution dependence of the fundamental length
Λ, where Λ0 is the fundamental unscaled length. For relativistic motions on Peano
curves, DF = 2, at Compton scale Λ0 ¼ λ=V0 � ℏ= m0cð Þ, λ ¼ ℏ=m0,V0 � c with ħ the
reduced Planck constant, m0 the rest mass of the biophysical system entity, and c
the velocity light in vacuum, (37) takes the usual form of Klein-Gordon equation:

∂μ∂
μΨþ m0c

ℏ

� �2
Ψ � 0

1.7 Non-differentiable specific potential force and energy

Using the explicit form of the function, Ψ ¼ √ρeiS, where √ρ is an amplitude
and S is a phase, the expression of Uα becomes

Uα ¼ �λ∂α ln√ρ (38)

Thus it results in

Uμ �
λ

2
dτð Þ 2=DF�1ð Þ

∂μ

� �
∂
μUα ¼ λ2 dτð Þ 4=DF�2ð Þ

∂
μ ln

ffiffiffi
ρ

p
∂μ∂α ln

ffiffiffi
ρ

p þ 1
2
∂
μ
∂μ∂α ln

ffiffiffi
ρ

p
� �

(39)

Since the identities from (33) work in variable ln√ρ, Eq. (39) becomes

Uμ �
λ

2
dτð Þ 2=DF�1ð Þ

∂μ

� �
∂
μUα ¼

λ2

2
dτð Þ 4=DF�2ð Þ

∂α ∂
μ ln

ffiffiffi
ρ

p
∂μ ln

ffiffiffi
ρ

p þ ∂
μ
∂μ ln

ffiffiffi
ρ

p� �

¼ λ2 dτð Þ 4=DF�2ð Þ
∂α

∂
μ
∂μ

ffiffiffi
ρ

p
ffiffiffi
ρ

p
� �

(40)

which implies through the specific non-differentiable potential
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the specific non-differentiable force
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Thus, the first equation (28) takes the form
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If
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and more, for ∂τVα ¼ 0:
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Now, by a suitable choice of the constant integration and knowing that [2]:
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we obtain the non-differentiable energy expression in the form
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For relativistic motions on Peano curves, DF = 2 at Compton scale, Λ0 ¼
λ=V0 � ℏ= m0cð Þ, λ ¼ ℏ=m0,V0 ¼ c, the fractal energy (48) is reduced to the de
Broglie’s relation:

E ¼ �c m0cð Þ2 þ p2 þ ℏ2 □
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p
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ρ

p
� �1=2

(49)

Relation (48) specifies the following: (i) information propagates with a limit
speed V0 which differs from one biophysical structure to another; (ii) energy,
through □ ffiffiffi

ρ
p

=
ffiffiffi
ρ

p
, depends on the state of the biophysical structure; and (iii) the

non-differentiable mass
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(50)
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depends also on the state of the biophysical structure, through □ ffiffiffi
ρ

p
=
ffiffiffi
ρ

p
.

1.8 Non-differentiable state density conservation law

Let us consider Eq. (35) and its complex conjugate:

λ2 dτð Þ 4=DF�2ð Þ
∂μ∂

μΨ� iλ dτð Þ 2=DF�1ð Þ
∂τΨþ F2 τð ÞΨ ¼ 0 (51)

Multiplying (35) by iλð Þ�1 dτð Þ1�2=DFΨ, (51) by iλð Þ�1 dτð Þ1�2=DFΨ and subtracting
the results, one obtains the state density conservation law:

∂τρþ ∂μjμ ¼ 0 (52)

where

ρ ¼ ΨΨ, jμ ¼ iλ dτð Þ 2=DF�1ð Þ Ψ∂μΨ�Ψ∂μΨ
� �

(53)

In the above relations, ρ defines the state density, while jμ defines the state
density 4-current. If Ψ does not depend on τ, which implies ∂τρ � 0, then for
relativistic motions on Peano curves, DF = 2 at Compton scale Λ0 ¼ ℏ= m0cð Þ, and
relation (52) reduces to the state density standard conservation law:

∂μjμ ¼ 0 (54)

2. Applications of the mathematical model

2.1 Stationary dynamics of the cholesterol at fractal/multifractal scale
resolutions

Since cholesterol in any of its forms (principally LDL and HDL) is a fundamental
component of blood, its dynamics will be dictated by those of the blood at fractal/
multifractal scale resolutions having in view the average dimensions of the choles-
terol particles (9–10 nm for HDL and 20–27 nm for LDL [9–12]).

In such a framework, nonrelativistic equations of the non-differentiable hydro-
dynamics at fractal/multifractal scale resolutions for the stationary case write like

f i ¼ Ui þ λ dtð Þ 2=DF�1ð Þ
∂l

� �
∂
lUi ¼ 0 (55)

∂lUl ¼ 0, i ¼ 1, 2, 3 (56)

results obtained from Eq. (28) under the conditions Vi � 0 and |Ui| << V0.
The first of these equations corresponds to the canceling of specific multifractal

force at a differentiable scale resolution, while the second equation corresponds to
the incompressibility of the blood at non-differentiable scale.

Generally, it is difficult to obtain an analytical solution for our previous equation
system, taking into account its nonlinear nature (induced both by means of non-
differentiable convection Ul

∂lUi and by the non-differentiable dissipation
λ dtð Þ2=DF

�1
∂l∂

lUi).
We can still obtain an analytic solution in the case of a plane symmetry (in x, y

coordinates) of the dynamics of the blood. For this purpose, let us consider the
equation system (55) and (56) in the form:
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u∂xuþ v∂yu ¼ ν∂2yyu (57)

∂xuþ ∂yv ¼ 0 (58)

where we substituted

Ux ¼ u x, yð Þ,Uy ¼ v x, yð Þ, υ ¼ λ dtð Þ2=DF
�1 (59)

Using the similarities method given in [6, 7] to solve the equation system (57)
and (58) with limit conditions

lim
y!0

v x, yð Þ ¼ 0, lim
y!0

∂u
∂y

¼ 0, lim
y!∞

u x, yð Þ ¼ 0 (60)

and a constant flux momentum per unit of depth,

q ¼ ρ

ðþ∞

�∞

u2dy ¼ const:, (61)

we obtain the field of velocities as solutions of the equation system (57) and (58)
in the form:
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9>=
>;

(63)

The above equations are simplified greatly if we introduce both non-dimensional
variables and non-dimensional parameters:

X ¼ x
x0

,Y ¼ y
y0

,U ¼ u
w0

,V ¼ v
w0

, (64)

ξ ¼ υ

υ0
, υ0 ¼ y0

3
2

x0

q
6ρ

� �1
2

,w0 ¼ 1

y0
� �1

2

q
6ρ

� �1
2

, (65)

where x0, y0, w0, and ν0 are lengths, velocity, and “multifractality degree”
specific to the blood. The normalized velocity field is obtained:

U ¼ 1:5

ξXð Þ
1
3
sech2

0:5Y

ξXð Þ
2
3

" #
, (66)

V ¼ 1:9

ξXð Þ
1
3

Y

ξXð Þ
2
3
sech2

0:5Y

ξXð Þ
2
3

" #
� tanh

0:5Y

ξXð Þ
2
3

" #( )
, (67)

Any of Eqs. (62)–(65) specifies the nonlinearity of the velocity fields: a
multifractal soliton for the velocity field across the Ox axis, respectively, “mixtures”
of multifractal soliton-multifractal kink for the velocity fields across the Oy axis.
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where x0, y0, w0, and ν0 are lengths, velocity, and “multifractality degree”
specific to the blood. The normalized velocity field is obtained:
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Any of Eqs. (62)–(65) specifies the nonlinearity of the velocity fields: a
multifractal soliton for the velocity field across the Ox axis, respectively, “mixtures”
of multifractal soliton-multifractal kink for the velocity fields across the Oy axis.
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The multifractality of the system is “explained” through its dependence from scale
resolutions [Figures 1a–c and 2a–c].

The velocity fields (66) and (67) induce the multifractal minimal vortex
(Figure 3a–c).
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Figure 1.
Normalized velocity field U for various fractal degrees: (a) ξ = 0.4; (b) ξ = 1.0; (c) ξ = 1.9.
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Since the fractal degree depends on the dimensions of the cholesterol particle
(the bigger, the lower the fractal degree), from the analysis of both the velocity field
and the vortex field, it results that the LDL particles will deposit at the wall, while
the HDL particles will not deposit themselves at the wall.

2.2 On the chameleonic behavior of cholesterol

Cholesterol fractions, especially LDL and HDL cholesterol, are frequently ana-
lyzed biomarkers in clinical laboratories [9]. Observational studies have shown that
LDL and HDL have opposing associations with the risk of myocardial infarction,
with LDL cholesterol being a positive factor and HDL cholesterol being a negative
(protective) factor [10]. Observational studies cannot separate the causal role in the
pathological process from the role of a marker of the underlying pathophysiology.
The results of both randomized trials of LDL-cholesterol-lowering treatments [11]
and from human Mendelian diseases [12] are suggesting that plasma LDL

Figure 2.
Normalized velocity field V for various fractal degrees: (a) ξ = 0.4; (b) ξ = 1.0; (c) ξ = 1.9.

129

Dynamics of Biostructures on a Fractal/Multifractal Space-Time Manifold
DOI: http://dx.doi.org/10.5772/intechopen.90360



The multifractality of the system is “explained” through its dependence from scale
resolutions [Figures 1a–c and 2a–c].

The velocity fields (66) and (67) induce the multifractal minimal vortex
(Figure 3a–c).

Ω ¼ ∂U
∂Y

� ∂V
∂Y

� �
¼ 0:57Y

ξXð Þ2
þ 0:63ξ

ξXð Þ
4
3
tanh

0:5Y

ξXð Þ
2
3

" #
þ 1:9Y

ξXð Þ2
sech2

0:5Y

ξXð Þ
2
3

" #
�

Figure 1.
Normalized velocity field U for various fractal degrees: (a) ξ = 0.4; (b) ξ = 1.0; (c) ξ = 1.9.

128

Progress in Relativity

�0:57Y

ξXð Þ2
tanh 2 0:5Y

ξXð Þ
2
3

" #
� 1:5

ξX
þ 1:4Y2

X ξXð Þ
5
3

" #
sech2

0:5Y

ξXð Þ
2
3

" #
tanh

0:5Y

ξXð Þ
2
3

" #
, (68)

Since the fractal degree depends on the dimensions of the cholesterol particle
(the bigger, the lower the fractal degree), from the analysis of both the velocity field
and the vortex field, it results that the LDL particles will deposit at the wall, while
the HDL particles will not deposit themselves at the wall.

2.2 On the chameleonic behavior of cholesterol

Cholesterol fractions, especially LDL and HDL cholesterol, are frequently ana-
lyzed biomarkers in clinical laboratories [9]. Observational studies have shown that
LDL and HDL have opposing associations with the risk of myocardial infarction,
with LDL cholesterol being a positive factor and HDL cholesterol being a negative
(protective) factor [10]. Observational studies cannot separate the causal role in the
pathological process from the role of a marker of the underlying pathophysiology.
The results of both randomized trials of LDL-cholesterol-lowering treatments [11]
and from human Mendelian diseases [12] are suggesting that plasma LDL

Figure 2.
Normalized velocity field V for various fractal degrees: (a) ξ = 0.4; (b) ξ = 1.0; (c) ξ = 1.9.
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cholesterol is related to the risk of myocardial infarction. However, few proofs are
available for the causal relevance of HDL cholesterol from randomized trials or
Mendelian diseases, and the existing ones are inconsistent [10, 11]. Moreover, more
and more studies are starting to oppose the idea that raising plasma HDL cholesterol
will surely translate into a risk reduction of myocardial infarction [9–12]. Therefore
both LDL and HDL cholesterol can constitute risk factors for myocardial infarction.
Such a behavior has been called by experts in the field the “chameleonic effect” of
cholesterol [9–12]. In the present paragraph, using our previous mathematical
model, LDL and HDL cholesterol dynamics is proposed. In such a context, a fractal/
multifractal tunneling effect for biostructures with spontaneous symmetry breaking
is analyzed. If the spontaneous symmetry breaking is assimilated to an inflamma-
tion (in the form of a specific scalar potential), then two fractal/multifractal states
can be observed. In these conditions, these two states, which have been associated
with biostructures such as LDL and HDL, transfer their states through a fractal/
multifractal tunneling effect. As a result, in our opinion, the widely used notions of
“good” and “bad” cholesterol must be redefined as two different states of the same
biostructure named “cholesterol,” such as in nuclear physics the neutron and proton
are two different states of the same particle named nucleon.

Figure 3.
Multifractal minimal normalized vortex fieldΩ for various fractal degrees: (a) ξ = 0.4; (b) ξ = 1.0; (c) ξ = 1.9.
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With this aim in view, let us reconsider the differential equation (35) with
F2 τð Þ ¼ 0 subjected to an external constraint independent on τ given as a scalar
potential U. One gets

λ2 dτð Þ 4=DF�2ð Þ
∂μ∂

μΨþ iλ dτð Þ 2=DF�1ð Þ
∂τΨ�U

2
Ψ ¼ 0 (69)

For nonrelativistic dynamics, Eq. (69) in the one-dimensional case admits the
fractal/multifractal stationary solution:

ψ z, tð Þ ¼ θ zð Þ exp � i

m0λ dtð Þ 2=DFð Þ�1 Et

" #
(70)

where E is the fractal/multifractal energy of the fractal/multifractal stationary
cholesterol state θ(x) and m0 is the rest mass of the cholesterol particle. Then θ(x)
becomes a fractal/multifractal solution of the fractal/multifractal space equation:

∂zzθ zð Þ þ 1

m0λ
2 dtð Þ 4=DFð Þ�2 E� Uð Þθ zð Þ ¼ 0 (71)

If, in such a context, we suppose that the state transfer between LDL and HDL
cholesterol implies spontaneous symmetry breaking [13], then U = V(z) from (71)
must have the form of an effective potential, as shown in Figure 4.

In these conditions, the stationary fractal/multifractal equation becomes

d2θα
dz2

þ 1

m0λ
2 dtð Þ 4=DFð Þ�2

E� Vα½ �θα ¼ 0, α ¼ 1, 3 (72)

Figure 4.
The effective potential of a fractal/multifractal tunneling effect in the dynamics of biostructures with
spontaneous symmetry breaking.
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For each of the three regions, the solutions of the equations are

θ1 zð Þ ¼ Cþeikz þ C�e�ikz

θ2 zð Þ ¼ Beqz þ Ce�qz

θ3 zð Þ ¼ Dþeikz þD�e�ikz

(73)

with

k ¼ E

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2

q ¼ V0 � E

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2 (74)

and

Cþ,C�,B,C,Dþ,D�

integration constants.
Due to the infinite potential in the two extreme regions, zj j>l, the fractal/

multifractal state function continuity in z ¼ �l implies

θ2 �lð Þ ¼ Cþe�ikl þ C�eikl ¼ 0

θ3 lð Þ ¼ Dþeikl þD�e�ikl ¼ 0
(75)

Since the state density Ψj j2 is not altered by the multiplication of the fractal/
multifractal state function in the form of a constant phase factor, the two equations
for C� and D� can be immediately solved by imposing the forms:

Cþ ¼ A
2i
eikl,C� ¼ �A

2i
e�ikl

Dþ ¼ D
2i
e�ikl,D� ¼ �D

2i
eikl

(76)

so that θ1,3 are given through simple expressions:

θ1 zð Þ ¼ A sin k zþ lð Þ½ �
θ3 zð Þ ¼ D sin k z� lð Þ½ �

(77)

These, along with θ2, lead to the concrete form of “alignment conditions” in
z = �d

θ1 �dð Þ ¼ θ2 �dð Þ, θ2 dð Þ ¼ θ3 dð Þ
dθ1
dz

�dð Þ ¼ dθ2
dz

�dð Þ, dθ2
dz

dð Þ ¼ dθ3
dz

dð Þ
(78)

namely

e�qdBþ eqdC ¼ A sin k l� dð Þ½ �
qe�qdB� qeqdC ¼ kA cos k l� dð Þ½ � in z ¼ �d
eqdBþ e�qdC ¼ �D sin k l� dð Þ½ �
qeqdB� qe�qdC ¼ kD cos k l� dð Þ½ � in z ¼ d

(79)
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Due to the algebraic form of the two equation pairs, in order to establish the
actual expression of the “secular equation” (for eigenvalues E of the energy),
Δ[E] = 0, we avoid calculating the 4th order determinant, Δ[k(E), q(E)], formed
with the fractal/multifractal amplitude coefficients A, B, C, D, by employing the
following: we note with ρ the ratio C/B, and we divide the first equation to the
second one, for each pair. It results in

e2qdρþ 1
e2qdρ� 1

¼ � q
k
tan k l� dð Þ½ �

e�2qdρþ 1
e�2qdρ� 1

¼ q
k
tan k l� dð Þ½ �

(80)

which leads to the equation for ρ:

e2qdρþ 1
e2qdρ� 1

þ e�2qdρþ 1
e�2qdρ� 1

¼ 0 (81)

We find

ρ2 ¼ 1

which implies

ρ� ¼ �1, ρþ ¼ 1 (82)

For ρ+ = 1, the amplitude function, θ2 zð Þ ffi coth qzð Þ, is symmetric just as the
fractal/multifractal states of cholesterol with regard to the (spatial) reflectivity
against the origin. Then the permitted value equation of the energy of these states,
Es, has the actual form:

tan kS l� dð Þ½ � ¼ �
coth qSd

� �
qS

kS (83)

where

kS ¼
ES

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2

qS ¼
V0 � ES

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2 (84)

For ρ� = �1, the amplitude function θ2 zð Þ ffi sinh qzð Þ, so that the states will be
antisymmetric and permitted values equation, EA, becomes

tan kA l� dð Þ½ � ¼ �
tanh qAd

� �
qA

kA (85)

where

kA ¼ EA

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2

qA ¼ V0 � EA

m0λ
2 dtð Þ 4=DFð Þ�2

" #1=2 (86)
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It results in, for now, at least qualitatively that the presence of the barrier (of
finite height V0) between -d and d leads to the splitting of the fundamental level E0

into two sublevels Es and EA accounting for the two types of fractal/multifractal
states, symmetric and antisymmetric, respectively, in which the system can be
found (both states can be associated to LDL and HDL). Because both eigenvalue
equations are strongly transcendent, a direct estimation of solutions Es,A could be
possible only by means of numerical methods, which in our case is not necessary.
More precisely, we can see here a process of coupling between two different fractal/
multifractal (LDL and HDL) states, made possible through a fractal/multifractal
tunneling effect.

Taking the above into account, we can thus state that LDL and HDL are two
different states of the same biostructure, like in the case of neutron and proton
which are two different states of the same particle, named nucleon. The state
transfer between LDL and HDL occurs by means of a fractal/multifractal tunneling
effect (Figure 5).

The fact presented above is in accordance with the latest study results. Thus, we
can unequivocally state that the role of cholesterol fractions must be clearly
reconsidered. Our model could offer an explanation of why high values of HDL
cholesterol can be “toxic” or why, in certain conditions, LDL cholesterol can be a
protective factor. We can practically discuss about different states of the same
entity, HDL and LDL being expressions of a unique entity—cholesterol—with a
pro- or antiatherogenic effect modeled by the instant state and the alternation
between the two possible sides. As a consequence, as long as cholesterol fractions
maintain a continuous “fluidity,” the maximum benefit will be attained if the total
cholesterol, in absolute value, is decreased. Our mathematical model only enforces
the recent medical findings in the field, which are more and more frequent. At the
same time, in our opinion, the present mathematical model confirms and explains
the apparent paradoxes from clinical studies.

Figure 5.
Schematic representation of the chameleonic behavior of cholesterol.
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The mathematical model developed here allows also some numerical evaluations
on both the time of transfer between the LDL and HDL states and on the probability
of achieving such a transfer. Thus, having in view the nonrelativistic relations,

E ¼ 2m0λ dtð Þ 2=DF�1ð Þ 1
τ

(87)

E ¼ m0v20
2

one gets through λ = αv0, in the case of motion on Peano curves of the choles-
terol particles, a time of transfer τ, of the state, of the form

τ ¼ 4α
v0

(88)

In the relations (87) and (88), α is the dimension of the cholesterol particle and
v0 the blood flow speed, e.g., knowing that in the arteries the average speed of the
blood flow is v0 ≈ 12 cm/s [10, 11] and the average dimensions of the cholesterol
particles are αHDL ≈ 9 nm and αLDL ≈ 25 nm, then through (88) we get
τHDL ≈ 0.189 μs and τLDL ≈ 0.526 μs. Accordingly, the HDL ! LDL transition is
faster than the inverse one.

3. Conclusions

The main conclusions of the present work are as follows: (i) we develop a
dynamics of the biological systems on a fractal space-time manifold. In such a
context, we build the motion operator and the equations of geodesics for rotational
and irrotational motions on non-differentiable curves induced by Markov and non-
Markov type stochasticities, and we establish correlations with known theories of
motion (relativity theory, de Broglie relativistic model, etc.). (ii) In the two-
dimensional relativistic case, we determine both the velocity field and the vortex
one of the cholesterol type biological structure. Based on these we show that the
process of wall deposition of the LDL cholesterol is much more accentuated than the
HDL cholesterol; (iii) using a multifractal Schrödinger-type equation, we show that
by spontaneous symmetry breaking HDL transforms into LDL and vice versa by
means of a fractal tunneling effect. We calculate the time transfer probability
HDL $ LDL, and we show that the HDL ! LDL process is more probable than the
inverse one.
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Chapter 9

Stueckelberg-Horwitz-Piron
Canonical Quantum Theory in
General Relativity and Bekenstein-
Sanders Gauge Fields for TeVeS
Lawrence P. Horwitz

Abstract

A consistent (off-shell) canonical classical and quantum dynamics in the frame-
work of special relativity was formulated by Stueckelberg in 1941 and generalized to
many-body theory by Horwitz and Piron in 1973 (SHP). This theory has been
embedded into the framework of general relativity (GR), here denoted by SHPGR.
The canonical Poisson brackets of the SHP theory remain valid (invariant under
local coordinate transformations) on the manifold of GR and provide the basis for
formulating a canonical quantum theory. The relation between representations
based on coordinates and momenta is given by Fourier transform; a proof is given
here for this functional relation on a manifold. The potential which may occur in the
SHP theory emerges as a spacetime scalar mass distribution in GR. Gauge fields,
both Abelian and non-Abelian on the quantum mechanical SHPGR Hilbert space in
both the single particle and many-body theory, may be generated by phase trans-
formations. Application to the construction of Bekenstein and Sanders in their
solution to the lensing problem in TeVeS is discussed.

Keywords: relativistic dynamics, general relativity, quantum theory on curved space,
non-Abelian gauge fields, Bekenstein-Sanders field, TeVeS

1. Introduction

The relativistic canonical Hamiltonian dynamics of Stueckelberg, Horwitz, and
Piron (SHP) [1] with scalar potential and gauge field interactions for single- and
many-body theories can, by local coordinate transformation, be embedded into the
framework of general relativity (GR). This embedding provides a basis for the work
of Horwitz et al. [2, 3] in their discussion of the origin of the field introduced by
Bekenstein and Sanders [4] to explain gravitational lensing in the TeVeS formula-
tion of modified Newtonian dynamic (MOND) theories [5–10].

The theory was originally formulated for a single particle by Stueckelberg in
[11–13]. Stueckelberg envisaged the motion of a particle along a world line in
spacetime that can curve and turn to flow backward in time, resulting in the phe-
nomenon of pair annihilation in classical dynamics. The world line was then
described by an invariant monotonic parameter τ. The theory was generalized by
Horwitz and Piron in [14] (see also [15, 16]) to be applicable to many-body systems
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by assuming that the parameter τ is universal (as for Newtonian time, enabling them
to solve the two-body problem classically, and later, a quantum solution was found by
Arshansky and Horwitz [17–19], both for bound states and scattering theory).

Performing a coordinate transformation to general coordinates, along with the
corresponding transformation of the momenta (the cotangent space of the original
Minkowski manifold), one obtains [20] the SHP theory in a curved space of general
coordinates and momenta with a canonical Hamilton-Lagrange (symplectic) struc-
ture. We shall refer to this generalization as SHPGR. We discuss the extension of
the Abelian gauge theory described in Ref. [20] to the non-Abelian gauge discussed
in [2, 3].

The invariance of the Poisson bracket under local coordinate transformations
provides a basis for the canonical quantization of the theory, for which the evolu-
tion under τ is determined by the covariant form of the Stueckelberg-Schrödinger
equation [1].

In this chapter, we assume a τ-independent background gravitational field; the
local coordinate transformations from the flat Minkowski space to the curved space
are taken to be independent of τ, consistently with an energy momentum tensor
that is τ independent. In a more dynamical setting, when the energy momentum
tensor depends on τ, the spacetime is evolved nontrivially [20, 21].

2. Embedding of single particle dynamics with external potential in GR

We write the SHP Hamiltonian [1, 11–13] as

K ¼ 1
2M

ημνπμπν þ V ξð Þ (1)

where ημν is the flat Minkowski metric �þþþð Þ and πμ, ξμ are the spacetime
canonical momenta and coordinates in the local tangent space of a general manifold,
following Einstein’s use of the equivalence principle.

The existence of a potential term (which we assume to be a Lorentz scalar),
representing nongravitational forces, implies that the “free fall” condition is
replaced by a local dynamics carried along by the free falling system (an additional
force acting on the particle within the “elevator” according to the coordinates in the
tangent space).

The canonical equations are

_ξμ ¼ ∂K
∂πμ

_πμ ¼ � ∂K
∂ξμ

¼ � ∂V
∂ξμ

, (2)

where the dot here indicates d
dτ, with τ the invariant universal “world time.”

Since then

_ξμ ¼ 1
M

ημνπν,

or πν ¼ ηνμM _ξμ,

(3)

the Hamiltonian can then be written as

K ¼ M
2
ημν _ξ

μ _ξν þ V ξð Þ: (4)
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It is important to note that, as clear from (3), that _ξ0 ¼ dt
dτ has a sign opposite to π0

which lies in the cotangent space of the manifold, as we shall see in the Poisson
bracket relations below. The energy of the particle for a normal timelike particle
should be positive (negative energy would correspond to an antiparticle [1, 11–13]).
The physical momenta and energy therefore correspond to the mapping

πμ ¼ ημνπμ, (5)

back to the tangent space. Thus, equivalently, from (2), _ξμ ¼ 1=Mð Þπμ. This sim-
ple observation will be important in the discussion below of the dynamics of a particle
in the framework of general relativity, for which the metric tensor is nontrivial.

We now transform the local coordinates (contravariantly) according to the
diffeomorphism

dξμ ¼ ∂ξμ

∂xλ
dxλ (6)

to attach small changes in ξ to the corresponding small changes in the
coordinates x on the curved space, so that

_ξμ ¼ ∂ξμ

∂xλ
_xλ: (7)

The Hamiltonian then becomes

K ¼ M
2
gμν _x

μ _xν þ V xð Þ, (8)

where V xð Þ is the potential at the point ξ corresponding to the point x
(a function of ξ in a small neighborhood of the point x) and

gμν ¼ ηλσ
∂ξλ

∂xμ
∂ξσ

∂xν
(9)

Since V has significance as the source of a force in the local frame only through
its derivatives, we can make this pointwise correspondence with a globally defined
scalar function V xð Þ.1

The corresponding Lagrangian is then

L ¼ M
2
gμν _x

μ _xν � V xð Þ, (10)

In the locally flat coordinates in the neighborhood of xμ, the symplectic structure
of Hamiltonian mechanics implies that the momentum2 πμ, lying in the cotangent
space of the manifold ξμf g, transforms covariantly under the local transformation
(5), that is, as does ∂

∂ξμ, so that we may define

1 Since V xð Þ has the dimension of mass, one can think of this function as a scalar mass field, reflecting

forces acting in the local tangent space at each point. It may play the role of “dark energy” [2, 3]. If

V ¼ 0, our discussion reduces to that of the usual general relativity, but with a well-defined canonical

momentum variable.
2 We shall call the quantity πμ in the cotangent space as canonical momentum, although it must be

understood that its map back to the tangent space πμ corresponds to the actual physically measureable

momentum.
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pμ ¼
∂ξλ

∂xμ
πλ: (11)

This definition is consistent with the transformation properties of the momen-
tum defined by the Lagrangian (10):

pμ ¼
∂L x; _xð Þ
∂ _xμ

, (12)

yielding

pμ ¼ Mgμν _x
ν: (13)

The second factor in the definition (9) of gμν in (13) acts on _xν; with (7) we then
have (as in (11))

pμ ¼ Mηλσ
∂ξλ

∂xμ
_ξσ

¼ ∂ξλ

∂xμ
πλ:

(14)

As we have remarked above for the locally flat space in (5), the physical energy
and momenta are given, according to the mapping,

pμ ¼ gμνpν ¼ M _xν (15)

back to the tangent space of the manifold, which also follows directly from the
local coordinate transformation of (3) and (5).

It is therefore evident from (15) that

_pμ ¼ M€xμ: (16)

We see that _pμ, which should be interpreted as the force acting on the particle, is
proportional to the acceleration along the orbit of motion (a covariant derivative plus a
gradient of the potential), as described by the geodesic-type relation. This
Newtonian-type relation in the general manifold reduces in the limit of a flat
Minkowski space to the corresponding SHP dynamics and in the nonrelativistic
limit, to the classical Newton law.We remark that this result does not require taking
a post-Newtonian limit, the usual method of obtaining Newton’s law from GR.

We now discuss the geodesic equation obtained by studying the condition

€ξμ ¼ � 1
M

_πμ ¼ � 1
M

ημν
∂V ξð Þ
∂ξν

: (17)

To do this, we compute

€ξμ ¼ d
dτ

∂ξμ

∂xλ
_xλ

� �
¼ ∂

2ξμ

∂xλ∂xγ
_xγ _xλ

þ ∂ξμ

∂xλ
€xλ ¼ � 1

M
ημν

∂xλ

∂ξν
∂V xð Þ
∂xλ

,

(18)

so that, after multiplying by ∂xσ
∂ξμ and summing over μ, we obtain
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€xσ ¼ � ∂xσ

∂ξμ
∂
2ξμ

∂xλ∂xγ
_xγ _xλ

� 1
M

ημν
∂xλ

∂ξν
∂xσ

∂ξμ
∂V xð Þ
∂xλ

:

(19)

Finally, with (9) and the usual definition of the connection

Γσ
λγ ¼

∂xσ

∂ξμ
∂
2ξμ

∂xλ∂xγ
(20)

we obtain the modified geodesic-type equation

€xσ ¼ �Γσ
λγ _xγ _xλ � 1

M
gσλ

∂V xð Þ
∂xλ

, (21)

from which we see that the derivative of the potential V ξð Þ is mapped, under
this coordinate transformation into a force resulting in a modification of the accel-
eration along the geodesic-like curves, that is, (16) now reads

_pμ ¼ M€xν ¼ �MΓσ
λγ _xγ _xλ � gσλ

∂V xð Þ
∂xλ

(22)

The procedure that we have carried out here provides a canonical dynamical
structure for motion in the curvilinear coordinates. We now remark that the
Poisson bracket remains valid for the coordinates x; pf g. In the local coordinates
ξ; πf g, the τ derivative of a function F ξ; πð Þ is

dF ξ; πð Þ
dτ

¼ ∂F ξ; πð Þ
∂ξμ

_ξμ þ ∂F ξ; πð Þ
∂πν

_πμ

¼ ∂F ξ; πð Þ
∂ξμ

∂K
∂πμ

� ∂F ξ; πð Þ
∂πμ

∂K
∂ξν

� F;K½ �PB ξ; πð Þ:

(23)

If we replace in this formula

∂

∂ξμ
¼ ∂xλ

∂ξμ
∂

∂xλ

∂

∂πμ
¼ ∂ξμ

∂xλ
∂

∂pλ
,

(24)

we immediately (as assured by the invariance of the Poisson bracket under local
coordinate transformations) obtain

dF ξ; πð Þ
dτ

¼ ∂F
∂xμ

∂K
∂pμ

� ∂F
∂pμ

∂K
∂xν

� F;K½ �PB x; pð Þ (25)

In this definition of Poisson bracket, we have, as for the ξμ, πν relation,

xμ; pν
� �

PB x; pð Þ ¼ δμν: (26)
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The Poisson bracket of xμ with the (physical energy momentum) tangent space
variable pμ has then the tensor form

xμ; pν½ �PB x; pð Þ ¼ gμν: (27)

In the flat space limit, this relation reduces to the SHP bracket,

ξμ; πν½ �PB ξ; πð Þ ¼ ημν: (28)

Continuing our analysis with pμ (we drop the x; pð Þ label on the Poisson bracket
henceforth),

pμ;F xð Þ
h i

PB
¼ � ∂F

∂xμ
, (29)

so that pμ acts infinitesimally as the generator of translation along the coordinate
curves and

xμ;F pð Þ½ �PB ¼ ∂F pð Þ
∂pμ

, (30)

so that xμ is the generator of translations in pμ. In the classical case, if F pð Þ is a
general function of pμ, we can write at some point x,3

xμ;F pð Þ½ �PB ¼ gμν xð Þ ∂F pð Þ
∂pν

: (31)

This structure clearly provides a phase space which could serve as the basis for
the construction of a canonical quantum theory on the curved spacetime.

We now turn to a discussion of the dynamics introduced into the curved space
by the procedure outlined above.

We may also write (22) in terms of the full connection form by noting that
with (9),

∂gλγ
∂xμ

¼ ηαβ
∂
2ξα

∂xλ∂xμ
∂ξβ

∂xγ
þ ∂ξα

∂xλ
∂
2ξβ

∂xγ∂xμ

� �
: (32)

Multiplying by _xγ _xλ, the two terms combine to give a factor of two. We then
return to the original definition of Γ in (20) in the form

∂
2ξα

∂xλ∂xμ
¼ ∂ξα

∂xσ
Γσ

λμ, (33)

so we can write

∂gλγ
∂xμ

_xγ _xλ ¼ 2ηαβ
∂ξα

∂xσ
∂ξβ

∂xγ
Γσ

λμ _xγ _xλ

¼ 2gσγΓ
σ
λμ _xγ _xλ:

(34)

3 In the quantized form, the factor gμν xð Þ cannot be factored out from polynomials, so, as for Dirac’s

quantization procedure [22–25], some care is required.
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We therefore have

_pμ ¼ � ∂V xð Þ
∂xμ

þMgσγΓ
σ
λμ _xγ _xλ: (35)

3. Quantum theory on the curved space

The Poisson bracket formulas (25) and (26) can be considered as a basis for
defining a quantum theory with canonical commutation relations

xμ; pν
� �

¼ iℏδμν, (36)

so that

pμ;F xð Þ
h i

¼ �iℏ
∂F
∂xμ

, (37)

and

xμ;F pð Þ½ � ¼ iℏ
∂F pð Þ
∂pμ

: (38)

The transcription of the Stueckelberg-Schrödinger equation for a wave function
ψτ xð Þ can be taken to be (see also [26–28])

i
∂

∂τ
ψτ xð Þ ¼ Kψτ xð Þ, (39)

where the operator valued Hamiltonian can be taken to be the Hermitian form
(42), written below, on a Hilbert space defined with scalar product (with invariant
measure; we write g ¼ �det gμνf g),

ψ ; χð Þ ¼
ð
d4x

ffiffiffi
g

p
ψ ∗

τ xð Þχτ xð Þ: (40)

To construct a Hermitian Hamiltonian, we first study the properties of the
canonical momentum in coordinate representation. Clearly, in coordinate repre-
sentation, �i ∂

∂xμ is not Hermitian due to the presence of the factor ffiffiffigp in the
integrand of the scalar product. The problem is somewhat analogous to that of
Newton and Wigner [29] in their treatment of the Klein-Gordon equation in
momentum space. It is easily seen that the operator

pμ ¼ �i
∂

∂xμ
� i
2

1ffiffiffiffiffiffiffiffiffi
g xð Þ

p ∂

∂xμ

ffiffiffiffiffiffiffiffiffi
g xð Þ

q
(41)

is essentially self-adjoint in the scalar product (40), satisfying as well as the
commutation relations (36).4

4 The physically observable momentum can be defined, as in (15), as 1
2 gμν; pν
� �

, with commutation

relations of the form (27). This operator can be transformed, as for the Newton-Wigner operator [29], to

the form �i ∂

∂xμ by the Foldy-Wouthuysen transformation [30] g xð Þð Þ
1
4pμ g xð Þð Þ�

1
4.
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Since pμ is Hermitian in the scalar product (41), we can write the Hermitian
Hamiltonian as

K ¼ 1
2M

pμ g
μνpν þ V xð Þ, (42)

consistent with the local coordinate transformation of (1). The integration (40)
must be considered as a total volume sum with invariant measure on the whole
space, consistent with the notion of Lebesgue measure and the idea that the norm is
the sum of probability measures on every subset contained. We return to this point
in our discussion of the Fourier transform below.

4. Canonical quantum theory and the Fourier transform

To complete the construction of a canonical quantum theory on the curved space
of GR, we discuss first the formulation of the Fourier transform f xð Þ ! ~f pð Þ for a
scalar function f xð Þ (we shall use xμ and the canonically conjugate pμ in this
discussion). Let us define (g � �detgμν)

~f pð Þ ¼
ð
d4x

ffiffiffiffiffiffiffiffiffi
g xð Þ

q
eipμx

μ

f xð Þ: (43)

The inverse is given by

ð
e�ipμx

μ~f pð Þd4p ¼
ð
d4pe�ipμ xμ�x0μð Þf x0ð Þ

ffiffiffiffiffiffiffiffiffiffi
g x0ð Þ

q
d4x0 ¼ 2πð Þ4f xð Þ

ffiffiffiffiffiffiffiffiffi
g xð Þ

q
(44)

so that

~f 0 pð Þ ¼ 1

2πð Þ4
ffiffiffiffiffiffiffiffiffi
g xð Þ

p
ð
e�ipμx

μ~f pð Þd4p: (45)

One sees immediately that under diffeomorphisms, for which with the scalar
property f xð Þ ¼ f 0 x0ð Þ, ~f pð Þ ! ~f 0 pð Þ. The Fourier transform of f 0 x0ð Þ is

~f 0 pð Þ ¼
ð
d4x0

ffiffiffiffiffiffiffiffiffiffi
g x0ð Þ

q
eipμx0

μ

f 0 x0ð Þ, (46)

By change of integration variables, we have

~f 0 pð Þ ¼
ð
d4x

ffiffiffiffiffiffiffiffiffi
g xð Þ

q
eipμx

μ

f 0 xð Þ, (47)

In Dirac notation,

f xð Þ ¼ < x∣f>, (48)

and we write as well

~f pð Þ ¼ < p∣f>: (49)

For
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< x∣p> ¼ 1

2πð Þ4
ffiffiffiffiffiffiffiffiffi
g xð Þ

p e�ipμx
μ

< p∣x> ¼
ffiffiffiffiffiffiffiffiffi
g xð Þ

q
eipμx

μ

,

(50)

we have, for example, the usual action of transformation functions

ð
< x∣p>< p∣f>d4p ¼ < x∣f>, (51)

where we have used

Ð
< x∣p>< p∣x0>d4p ¼ 1

2πð Þ4
ffiffiffiffiffiffiffiffiffi
g xð Þ

p
ð
d4pe�ipμx

μ

eipμx0
μ
ffiffiffiffiffiffiffiffiffiffi
g x0ð Þ

q

¼ δ4 x� x0ð Þ:
(52)

Note that the transformation functions < x∣p> and < p∣x> are not simple com-
plex conjugates of each other, but require nontrivial factors of

ffiffiffiffiffiffiffiffiffi
g xð Þ

p
and its inverse

to satisfy the necessary transformation laws on the manifold. Conversely (the
factors

ffiffiffiffiffiffiffiffiffi
g xð Þ

p
and its inverse cancel), we should obtain

ð
< p0∣x>< x∣p>d4x ¼ δ4 p0 � pð Þ: (53)

The validity of (53) is not obvious on a curved space. We therefore provide a
simple, but not trivial, proof of (53). For

ð
d4peipμ xμ�x0μð Þ ¼ 2πð Þ4 δ

4 x� x0ð Þffiffiffigp (54)

we must have

~f pð Þ ¼ 1

2πð Þ4
ð
d4x

ð
d4p0ei pμ�p0μð Þxmu~f p0ð Þ, (55)

that is, exchanging the order of integrations, on the set ~f pð Þg
n

,

Δ p� p0ð Þ ¼ 1

2πð Þ4
ð
d4xei pμ�p0μð Þxμ ¼ δ4 p� p0ð Þ: (56)

We now represent the integral as a sum over small boxes around the set of points
xBf g that cover the space and eventually take the limit as for a Riemann integral.5 In

each small box, the coordinatization arises from an invertible transformation from
the local tangent space in that neighborhood. We write

xμ ¼ xBμ þ ημ ∈ box B (57)

where

5 We follow here essentially the method discussed in Reed and Simon [31] in their discussion of the

Lebesgue integral.
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μ
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,
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xBf g that cover the space and eventually take the limit as for a Riemann integral.5 In

each small box, the coordinatization arises from an invertible transformation from
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where

5 We follow here essentially the method discussed in Reed and Simon [31] in their discussion of the

Lebesgue integral.
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ημ ¼ ∂xμ

∂ξλ
ξλ (58)

and ξλ is in the flat local tangent space at xB.
We now write the integral (56) as

Δ p� p0ð Þ ¼ 1

2πð Þ4
ΣB

ð

B
d4ηei pμ�p0μð Þ xBμþημð Þ

¼ 1

2πð Þ4
ΣBei pμ�p0μð ÞxBμ

ð

B
d4ηei pμ�p0μð Þημ :

(59)

Let us call

IB ¼
ð

B
d4ηei pμ�p0μð Þημ : (60)

In this neighborhood, call

∂xμ

∂ξλ
¼ aμλ Bð Þ, (61)

which we assume a constant matrix (Lorentz transformation) in each box. In
(60), we then have

IB ¼
ð

B

d4ξffiffiffiffiffiffiffiffiffiffi
deta

p ei pμ�p0μð Þaμλ Bð Þξλ : (62)

However, we can make a change of variables; we are left with

IB0 ¼
ð

B
d4ξei pμ�p0μð Þξμ : (63)

in each box.
However, the transformations aμλ Bð Þ in the neighborhood of each point B may

be different, and therefore the set of transformed boxes may not cover (boundary
deficits) the full domain of spacetime coordinates (one can easily estimate that the
deficit from an arbitrarily selected set can be infinite in the limit).

We may avoid this problem by assuming geodesic completeness of the manifold
and taking the covering set of boxes, constructed of parallel transported edges,
along geodesic curves. Parallel transport of the tangent space boxes then fills the
space in the neighborhood of the geodesic curve we are following, and each infini-
tesimal box may carry an invariant volume (Liouville-type flow) transported along
a geodesic curve. For successive boxes along the geodesic curve, since the bound-
aries are determined by parallel transport (rectilinear shift in the succession of local
tangent spaces), there is no volume deficit between adjacent boxes.

We may furthermore translate a geodesic curve to an adjacent geodesic by the
mechanism discussed in [32], so that boxes associated with adjacent geodesics are
also related by parallel transport. In this way, we may fill the entire geodesically
accessible spacetime volume.

Let us assign a measure to each point B:

Δμ B; p� p0ð Þ � IB: (64)
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We may then write (59) as

Δ p� p0ð Þ ¼ 1

2πð Þ4
ΣBei pμ�p0μð ÞxBμΔμ B; p� p0ð Þ, (65)

Our construction has so far been based on elements constructed in the tangent
space in the neighborhood of each point B. Relating all points along a geodesic to the
corresponding tangent spaces and putting each patch in correspondence by conti-
nuity, we may consider the set xBf g to be in correspondence with an extended flat
space ξf g, for which xB � ξB to obtain6

Δ p� p0ð Þ ¼ 1

2πð Þ4
ΣBei pμ�p0μð ÞξBμΔμ ξB; p� p0ð Þ, (66)

In the limit of vanishing spacetime box volume, this approaches the Lebesgue-
type integral on a flat space:

Δ p� p0ð Þ ¼ 1

2πð Þ4
ð
ei pμ�p0μð Þξμdμ ξ; p� p0ð Þ: (67)

If the measure is differentiable, we could write

dμ ξ; p� p0ð Þ ¼ m ξ; p� p0ð Þd4ξ: (68)

Since the kernel Δ p� p0ð Þ is to act on elements of a Hilbert space ~f pð Þ
n o

, the

support for p0 ! ∞ vanishes, so that p� p0 is essentially bounded, as we discuss
below. In the small box, say, size ϵ,

Ð ϵ=2
�ϵ=2 dξ

0dξ1dξ2dξ3ei pμ�p0μð Þξμ ¼ 2ið Þ4Πj¼3
j¼0

sin pj � p0j
� � ϵ

2
pj � p0j
� �

! ϵ4 � d4ξ,

(69)

so that m ξ; p� p0ð Þ ¼ 1, and we have

Δ p� p0ð Þ ¼ 1

2πð Þ4
ð
ei pμ�p0μð Þξμd4ξ, (70)

or7

Δ p� p0ð Þ ¼ δ4 p� p0ð Þ: (71)

It is clear that the assertion (69) requires some discussion. For ϵ ! 0 we must
be sure that p0 does not become too large, so that our local measure is equivalent to
d4ξ. In one of the dimensions, what we want to find are conditions for which

sinpϵ
p

! ϵ (72)

6 Similar to the method followed in the simpler case of constant curvature by Georgiev [33].
7 Note that Abraham et al. [34] apply the formal Fourier transform on a manifold in three dimensions

without proof.
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n o

, the

support for p0 ! ∞ vanishes, so that p� p0 is essentially bounded, as we discuss
below. In the small box, say, size ϵ,

Ð ϵ=2
�ϵ=2 dξ

0dξ1dξ2dξ3ei pμ�p0μð Þξμ ¼ 2ið Þ4Πj¼3
j¼0

sin pj � p0j
� � ϵ

2
pj � p0j
� �

! ϵ4 � d4ξ,

(69)

so that m ξ; p� p0ð Þ ¼ 1, and we have

Δ p� p0ð Þ ¼ 1

2πð Þ4
ð
ei pμ�p0μð Þξμd4ξ, (70)

or7

Δ p� p0ð Þ ¼ δ4 p� p0ð Þ: (71)

It is clear that the assertion (69) requires some discussion. For ϵ ! 0 we must
be sure that p0 does not become too large, so that our local measure is equivalent to
d4ξ. In one of the dimensions, what we want to find are conditions for which

sinpϵ
p

! ϵ (72)

6 Similar to the method followed in the simpler case of constant curvature by Georgiev [33].
7 Note that Abraham et al. [34] apply the formal Fourier transform on a manifold in three dimensions

without proof.
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for ϵ ! 0, where we have written p for p� p0. As a distribution, on functions
g pð Þ, the left member of (72) acts as

G ϵð Þ �
ð∞
�∞

sinpϵ
p

g pð Þ: (73)

The functionG ϵð Þ is analytic in the neighborhood of ϵ ¼ 0 if png pð Þ has a Fourier
transform for all n and the series is convergent in this neighborhood, since G 0ð Þ is
identically zero and successive derivatives correspond to the Fourier transforms of
png pð Þ (differentiating under the integral). This implies that if the (usual) Fourier
transform of g pð Þ is a C∞ function (as a simple sufficient condition) in the local
tangent space ξf g and we have appropriate convergence properties, we can reliably
use the first order term in the Taylor expansion;

d
dϵ

G ϵð Þ ϵ¼0 ¼
ð
cos ϵp g pð Þ

����
����
ϵ¼0

(74)

so that, for ϵ ! 0,

G ϵð Þ ! ϵ~g 0ð Þ, (75)

where ~g ξð Þ is the Fourier transform of g pð Þ. As a distribution on such functions
g pð Þ, the assertion (3.39) then follows.

5. Application to the Bekenstein-Sanders fields

We have discussed the construction of a canonical quantum theory in terms of
an embedding of the SHP relativistic classical and quantum theory into general
relativity. We show in this section that this systematic embedding provides a
framework for the method developed by Bekenstein and Milgrom for understand-
ing the MOND [5–10] that appeared necessary to explain the galactic rotation
curves [35].

The remarkable development of observational equipment and power of compu-
tation has resulted in the discovery that Newtonian gravitational physics leads to a
prediction for the dynamics of stars in galaxies that is not consistent with observa-
tion. It was proposed that there should be a matter present which does not radiate
light which would resolve this difficulty, but so far no firm evidence of the exis-
tence of such matter has emerged. Milgrom [5–10] proposed a modification of
Newton’s law (MOND) which could resolve the problem. However, since Newton’s
law of gravitation emerges in the “post-Newtonian approximation” to the geodesic
motion in Einstein’s theory of gravity [35], the modification of Newton’s law must
involve a modification of Einstein’s theory.8 Such a modification was proposed by
Bekenstein and Milgrom [5–10] in terms of a conformal factor multiplying the usual
Einstein metric.

The origin of such a conformal factor can be found in the potential term of the
special relativistic SHP theory. The embedding of this theory in GR [20] brings this
potential term as a world scalar. The Hamiltonian for the general relativistic case
then has the form (8). It was shown by Horwitz et al. [37] that a very sensitive test

8 Yahalom [36] has proposed an alternative view involving the retardation effects associated with

gravitational waves, presently being tested and developed. We do not discuss this approach further here.
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by geodesic deviation can be formulated by to study stability by transforming a
standard nonrelativistic Hamiltonian of the form

H ¼ p2

2M
þ V rð Þ (76)

to the form

H ¼ 1
2M

pig
ij rð Þpj, (77)

with

gij rð Þ ¼ ϕ rð Þ E
E� V

δij, (78)

that is, a conformal factor on the original metric. Applying the same idea to the
Hamiltonian (8), with the gμν xð Þ of Einstein replaced by the conformal form

~gμν xð Þ ¼ ϕ xð Þgμν xð Þ (79)

where

ϕ xð Þ ¼ k
k� V xð Þ , (80)

with k a point in the spectrum of K, so that

H ¼ 1
2M

pμ~gμν xð Þpν: (81)

We see that we can in this way achieve the structure proposed by Bekenstein
and Milgrom [5–10] systematically. Moreover, in addition to providing a mecha-
nism for achieving a realization of the MOND theory, in the original form (8), the
world scalar term V xð Þ could represent the so-called dark energy [2, 3], establishing
a relation between the MOND picture and the anomalous expansion of the universe,
a question presently under study.

The theory proposed by Bekenstein and Milgrom [5–10] did not, however,
account for the lensing of light observed when light passes a galaxy. To solve this
problem, Bekenstein and Sanders [4] proposed the introduction of a vector field
nμ xð Þ, satisfying the normalization constraint

nμnμ ¼ �1, (82)

so that the vector is timelike.
This vector field can then be used to construct a modified meric of the form

~gμνT ¼ ϕ gμν xð Þ þ nμ xð Þnν xð Þð Þ þ ϕ�1nμ xð Þnν xð Þ: (83)

With this modification, Bekenstein and Sanders [4] could explain the lensing
effect. In the following, we show that this new field may arise from a non-Abelian
gauge transformation [38, 39] on the quantum theory that we have discussed in
Section 3. Although Contaldi et al. [40] point out that a gauge field in this context
can have caustic singularities due to the presence of a massive system, Horwitz et al.
[2, 3] show that in the limit in which the gauge field approaches the Abelian limit, as
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required by Bekenstein and Sanders [4], there is a residual term that can cancel the
caustic singularities.

To preserve the normalization condition (83), it is clear that we have the possi-
bility of moving the n field on a hyperbola with a Lorentz transformation, which we
can perform by a gauge transformation.

A Lorentz transformation on nμ is noncommutative, and therefore the gauge
field is non-Abelian [21].

An analogy can be drawn to the usual Yang-Mills gauge on SU 2ð Þ, where there
is a two-valued index for the wave function ψα xð Þ. The gauge transformation is a
two-by-two matrix function of x and acts only on the indices α. The condition of
invariant absolute square (probability) is

X
α

X
β

Uαβψβ

�����

�����
2

¼
X

ψαj j2 (84)

Generalizing this structure, one can take the indices α to be infinite
dimensional, and even continuous, so that (84) becomes (in the spectral
representation for nμ)

ð
dnð Þ

ð
dn0ð ÞU n; n0ð Þψ n0; xð Þ

����
����
2

¼
ð

dnð Þ ψ n; xð Þj j2, (85)

implying that U n; n0ð Þ (at each point x) is a unitary operator on a Hilbert space
L2 dnð Þ. Since we are assuming that nμ lies on a hyperbola determined by (83), the
measure is

dnð Þ ¼ d3n
n0

, (86)

that is, a three-dimensional Lorentz invariant integration measure.
We now examine the gauge condition:

pμ � ϵn0μð ÞUψ ¼ U pμ � ϵnμð Þψ (87)

Since the Hermitian operator pμ acts as a derivative under commutation rela-
tions, we obtain

n0μ ¼ UnμU�1 � i
ϵ
∂U
∂xμ

U�1, (88)

in the same form as the Yang-Mills theory [38, 39]. It is evident in the Yang-
Mills theory, due to the operator nature of the second term, the field will be algebra-
valued, and thus we have the usual structure of the Yang-Mills non-Abelian gauge
theory. Here, if the transformation U is a Lorentz transformation, the numerical-
valued field nμ would be carried, at least in the first term, to a new value on a
hyperbola. However, the second term is operator valued on L2 dnð Þ, and thus, as in
the Yang-Mills theory, n0μ would become operator valued. Therefore, in general, the
gauge field nμ is operator valued.

It follows from (87) that the “field strengths”

f μν ¼ ∂nμ

∂xν
� ∂nν

∂xμ
þ iϵ nμ; nν½ �: (89)
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Under a gauge transformation nμ ! n0μ, the new fields create field strengths in
the transformed form

f 0μν ¼ ∂n0μ

∂xν
� ∂n0ν

∂xμ
þ iϵ n0μ; n0ν½ � (90)

according to

f 0μν xð Þ ¼ Uf μν xð ÞU�1, (91)

just as in the finite-dimensional Yang-Mills theories.
For

U ffi 1þ iG, (92)

where G is infinitesimal, (87) becomes

n0μ ¼ nμ þ i G; nμ½ � þ 1
ϵ
∂G
∂xμ

þO G2� �
: (93)

Then,

n0μn0μ ffi nμnμ þ i nμ G; nμ
� �

þ G; nμ½ �
� �

nμ

þ 1
ϵ

∂G
∂xμ

nμ þ nμ
∂G
∂xμ

� �
:

(94)

Let us take

G ¼ � iϵ
2

X
ωλγ n; xð Þ; nλ

∂

∂nγ
� nγ

∂

∂nλ

� �� �

� ϵ
2

X
ωλγ n; xð Þ;Nλγ
� �

(95)

where symmetrization is required since ωλγ is a function of n as well as x and

Nλγ ¼ �i nλ
∂

∂nγ
� nγ

∂

∂nλ

� �
: (96)

Our investigation in the following will be concerned with a study of the infini-
tesimal gauge neighborhood of the Abelian limit, where the components of nμ do
not commute and therefore still constitute a Yang-Mills-type field. We shall show in
the limit that the corresponding field equations acquire nonlinear terms and may
therefore nullify the difficulty found by Contaldi et al. [40] demonstrating a
dynamical instability for an Abelian vector-type TeVeS gauge field. They found that
nonlinear terms associated with a non-Maxwellian-type action, such as divnð Þ2,
could nullify this caustic singularity, so that the nonlinear terms we find as a residue
of the Yang-Mills structure induced by our gauge transformation might achieve this
effect in a natural way.

Now, the second term of (94), which is the commutator of G with nμnμ, van-
ishes, since this product is Lorentz invariant (the symmetrization in G does not
affect this result).

We now consider the third term in (94).
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∂
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1
ϵ
∂G
∂xμ

nμ þ nμ
∂G
∂xμ

¼ 1
2

∂ωλγ

∂xμ
;Nλγ

� �
nμ þ nμ

∂ωλγ

∂xμ
;Nλγ

� �

¼ 1
2
Nλγ ∂ωλγ

∂xμ
nμ þ

∂ωλγ

∂xμ
Nλγnμ þ nμNλγ ∂ωλγ

∂xμ
þ nμ

∂ωλγ

∂xμ
Nλγ

(97)

There are two terms proportional to

∂ωλγ

∂xμ
nμ:

If we take

ωλγ n; xð Þ ¼ ωλγ kνxνð Þ, (98)

where kνnν ¼ 0, then

∂ωλγ

∂xμ
nμ ¼ kμnμω0

λγ ¼ 0: (99)

For the remaining two terms,

nμNλγ ∂ωλγ

∂xμ
þ ∂ωλγ

∂xμ
Nλγnμ

¼ Nλγnμ
∂ωλγ

∂xμ

þ nμ;Nλγ
� � ∂ωλγ

∂xμ
þ ∂ωλγ

∂xμ
nμNλγ

þ ∂ωλγ

∂xμ
Nλγ; nμ
� �

:

(100)

The commutators contain only terms linear in nμ and they cancel; the remaining
terms are zero, and therefore the condition nμnμ ¼ �1 is invariant under this gauge
transformation. It involves the coefficient ωλγ which is a function of the projection
of xμ onto a hyperplane orthogonal the nμ. The vector kμ of course depends on nμ.
We take, for definiteness, kμ ¼ nμ n � bð Þ þ bμ, for some bμ 6¼ 0.

We now consider the derivation of field equations from a Lagrangian
constructed with the ψ s and f μνf μν. We take the Lagrangian to be of the form

L ¼ Lf þ Lm, (101)

where

Lf ¼ � 1
4
f μνf μν (102)

and

Lm ¼ ψ ∗ i
∂

∂τ
� 1
2M

pμ � ϵnμð Þ pμ � ϵnμ
� �

�Φ
� �

ψ þ c:c: (103)

In carrying out the variation of Lm, the contributions of varying the ψs with
respect to n vanish due to the field equations (Stueckelberg-Schrödinger equation)
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obtained by varying ψ ∗ (or ψ), and therefore in the variation with respect to n, only
the explicit presence of n in (103) need be taken into account.

Note that for the general case of n generally operator valued, we can write

ψ ∗ pμ � ϵnμð Þ pμ � ϵnμ
� �

ψ ¼ pμ � ϵnμð Þψð Þ ∗ pμ � ϵnμ
� �

ψ , (104)

since the Lagrangian density (108) contains an integration over dn0ð Þ dn00ð Þ (in
spectral representation, considered in lowest order, as well as an integration over
dxð Þ

ffiffiffiffiffiffiffiffiffi
g xð Þ

p
in the action). In the limit in which n is evaluated in the spectral repre-

sentation, and noting that pμ is represented by an imaginary differential operator,
we can write this as

ψ ∗ pμ � ϵnμð Þ pμ � ϵnμ
� �

ψ ¼ � pμ þ ϵnμð ÞÞψ ∗ pμ � ϵnμ
� �

ψ , (105)

that is, replacing explicitly pμ by �i ∂=∂xμð Þ � �i∂μ (since it acts by commutator
with the fields); we have

δnLm ¼ �iϵ
2M

ψ ∗
∂μ � iϵnμ
� �

ψ � ∂μ þ iϵnμ
� �

ψ ∗� �
ψ

� �
δnμ, (106)

or

δnLm ¼ jμ n; xð Þδnμ, (107)

where jμ has the usual form of a gauge invariant current.
For the calculation of the variation of Lf , we note that the commutator term in

(89) is, in lowest order, a c-number function.
Calling

ω0
λ
μnλ � vμ, (108)

we compute the variation of

n0μ; n0ν½ � ¼ 2i kνvμ � kμvνð Þ (109)

Then, for

δn n0μ; n0ν½ � ¼ δnγ
∂

∂nγ
n0μ; n0ν½ �, (110)

we compute

∂

∂nγ
n0μ; n0ν½ � ¼ 2i

∂kν

∂nγ
vμ þ kν

∂vμ

∂nγ
� μ $ νð Þ

� �
: (111)

With our choice of kν ¼ nν n � bð Þ þ bν,

∂kν

∂nγ
¼ δνγ n � bð Þ þ nνbγ, (112)

so that
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∂xμ

nμ þ nμ
∂G
∂xμ

¼ 1
2

∂ωλγ

∂xμ
;Nλγ

� �
nμ þ nμ

∂ωλγ

∂xμ
;Nλγ

� �

¼ 1
2
Nλγ ∂ωλγ

∂xμ
nμ þ

∂ωλγ

∂xμ
Nλγnμ þ nμNλγ ∂ωλγ

∂xμ
þ nμ

∂ωλγ

∂xμ
Nλγ

(97)

There are two terms proportional to

∂ωλγ

∂xμ
nμ:

If we take

ωλγ n; xð Þ ¼ ωλγ kνxνð Þ, (98)

where kνnν ¼ 0, then

∂ωλγ

∂xμ
nμ ¼ kμnμω0

λγ ¼ 0: (99)

For the remaining two terms,

nμNλγ ∂ωλγ

∂xμ
þ ∂ωλγ

∂xμ
Nλγnμ

¼ Nλγnμ
∂ωλγ

∂xμ

þ nμ;Nλγ
� � ∂ωλγ

∂xμ
þ ∂ωλγ

∂xμ
nμNλγ

þ ∂ωλγ

∂xμ
Nλγ; nμ
� �

:

(100)

The commutators contain only terms linear in nμ and they cancel; the remaining
terms are zero, and therefore the condition nμnμ ¼ �1 is invariant under this gauge
transformation. It involves the coefficient ωλγ which is a function of the projection
of xμ onto a hyperplane orthogonal the nμ. The vector kμ of course depends on nμ.
We take, for definiteness, kμ ¼ nμ n � bð Þ þ bμ, for some bμ 6¼ 0.

We now consider the derivation of field equations from a Lagrangian
constructed with the ψ s and f μνf μν. We take the Lagrangian to be of the form

L ¼ Lf þ Lm, (101)

where

Lf ¼ � 1
4
f μνf μν (102)

and

Lm ¼ ψ ∗ i
∂

∂τ
� 1
2M

pμ � ϵnμð Þ pμ � ϵnμ
� �

�Φ
� �

ψ þ c:c: (103)

In carrying out the variation of Lm, the contributions of varying the ψs with
respect to n vanish due to the field equations (Stueckelberg-Schrödinger equation)
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obtained by varying ψ ∗ (or ψ), and therefore in the variation with respect to n, only
the explicit presence of n in (103) need be taken into account.

Note that for the general case of n generally operator valued, we can write

ψ ∗ pμ � ϵnμð Þ pμ � ϵnμ
� �

ψ ¼ pμ � ϵnμð Þψð Þ ∗ pμ � ϵnμ
� �

ψ , (104)

since the Lagrangian density (108) contains an integration over dn0ð Þ dn00ð Þ (in
spectral representation, considered in lowest order, as well as an integration over
dxð Þ

ffiffiffiffiffiffiffiffiffi
g xð Þ

p
in the action). In the limit in which n is evaluated in the spectral repre-

sentation, and noting that pμ is represented by an imaginary differential operator,
we can write this as

ψ ∗ pμ � ϵnμð Þ pμ � ϵnμ
� �

ψ ¼ � pμ þ ϵnμð ÞÞψ ∗ pμ � ϵnμ
� �

ψ , (105)

that is, replacing explicitly pμ by �i ∂=∂xμð Þ � �i∂μ (since it acts by commutator
with the fields); we have

δnLm ¼ �iϵ
2M

ψ ∗
∂μ � iϵnμ
� �

ψ � ∂μ þ iϵnμ
� �

ψ ∗� �
ψ

� �
δnμ, (106)

or

δnLm ¼ jμ n; xð Þδnμ, (107)

where jμ has the usual form of a gauge invariant current.
For the calculation of the variation of Lf , we note that the commutator term in

(89) is, in lowest order, a c-number function.
Calling

ω0
λ
μnλ � vμ, (108)

we compute the variation of

n0μ; n0ν½ � ¼ 2i kνvμ � kμvνð Þ (109)

Then, for

δn n0μ; n0ν½ � ¼ δnγ
∂

∂nγ
n0μ; n0ν½ �, (110)

we compute

∂

∂nγ
n0μ; n0ν½ � ¼ 2i

∂kν

∂nγ
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∂nγ
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� �
: (111)

With our choice of kν ¼ nν n � bð Þ þ bν,

∂kν

∂nγ
¼ δνγ n � bð Þ þ nνbγ, (112)

so that

155

Stueckelberg-Horwitz-Piron Canonical Quantum Theory in General Relativity and Bekenstein…
DOI: http://dx.doi.org/10.5772/intechopen.88154



∂

∂nγ
n0μ; n0ν½ � ¼ 2ið δνγ n � bð Þ þ nνbγ

� �
vμ

þ kν
∂vμ

∂nγ
� μ $ νð ÞÞ:

(113)

Here,

∂vμ

∂nγ
¼ ω0μγ þ ω00

λ
μnλ

∂kσ
∂nγ

xσ,

so we see that

∂

∂nγ
n0μ; n0ν½ � � Oγ

μν, (114)

where the quantity Oγ
μνδnγ depends on the first and second derivatives of ωμ

λ , in
general, nonlinear in nμ. We therefore have

δn n0μ; n0ν½ � ¼ Oγ
μνδnγ (115)

In the limit that ω ! 0, its derivative and higher derivatives which appear in
Oγ

μν may not vanish (somewhat analogous to the case in gravitational theory when
the connection form vanishes, but the curvature does not), so that this term can
contribute in the limit of the an Abelian gauge.

Returning to the variation of Lf , we see that

δLf ¼ � 1
4
ð ∂

μδnν � ∂
νδnμ þ iϵδ nμ; nμ½ �

� �
f μν

þ f μν ∂μδnν � ∂νδnμ þ iϵδ nμ; nμ
� �� �

Þ

¼ �∂
νf μνδn

μ þ 2if μνδ n
μ; nν½ �,

(116)

where we have taken into account the fact that nμ; nμ
� �

is a c-number function
and integrated by parts the derivatives of δn. We then obtain

δLf ¼ �∂
νf μνδn

μ þ 2iϵf λσO
λσ

μδnμ (117)

Since the coefficient of δnμ must vanish, we obtain the Yang-Mills equations for
the fields given the source currents:

∂
νf μν ¼ jμ � 2iϵf λσO

λσ
μ, (118)

which is nonlinear in the fields nμ, as we have seen, even in the Abelian limit,
where, from (106),

jμ ¼ �i
ϵ
2M

ψ ∗
∂μ � iϵnμ
� �

ψ � ∂μ þ iϵnμ
� �

ψ ∗� �
ψ

� �
: (119)

6. Summary

In this chapter, we have shown that the formulation of MOND theory by
Bekenstein and Milgrom [5–10] can have a systematic origin within the framework
of the embedding of the SHP [1] theory into general relativity [20]. The SHP
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formalism admits a scalar potential term that appears both in the conformal factor
giving rise to the MOND functions in the galaxy and, in the original form of the
Hamiltonian, to a possible candidate for “dark energy.” The solution of the lensing
problem by Bekenstein and Sanders [4] by introduction of a local vector field was
also shown to arise in a natural way in terms of a non-Abelian gauge field, for
which, in the Abelian limit, there is a residual term that can cancel the caustic
singularity found by Contaldi et al. [40] which can arise in a purely Abelian gauge
theory.

Author details

Lawrence P. Horwitz1,2,3

1 School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel

2 Department of Physics, Bar Ilan University, Ramat Gan, Israel

3 Department of Physics, Ariel University, Ariel, Israel

*Address all correspondence to: larry@tauex.tau.ac.il

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

157

Stueckelberg-Horwitz-Piron Canonical Quantum Theory in General Relativity and Bekenstein…
DOI: http://dx.doi.org/10.5772/intechopen.88154



∂

∂nγ
n0μ; n0ν½ � ¼ 2ið δνγ n � bð Þ þ nνbγ

� �
vμ

þ kν
∂vμ

∂nγ
� μ $ νð ÞÞ:

(113)

Here,

∂vμ

∂nγ
¼ ω0μγ þ ω00

λ
μnλ

∂kσ
∂nγ

xσ,

so we see that

∂

∂nγ
n0μ; n0ν½ � � Oγ

μν, (114)

where the quantity Oγ
μνδnγ depends on the first and second derivatives of ωμ

λ , in
general, nonlinear in nμ. We therefore have

δn n0μ; n0ν½ � ¼ Oγ
μνδnγ (115)

In the limit that ω ! 0, its derivative and higher derivatives which appear in
Oγ

μν may not vanish (somewhat analogous to the case in gravitational theory when
the connection form vanishes, but the curvature does not), so that this term can
contribute in the limit of the an Abelian gauge.

Returning to the variation of Lf , we see that

δLf ¼ � 1
4
ð ∂

μδnν � ∂
νδnμ þ iϵδ nμ; nμ½ �

� �
f μν

þ f μν ∂μδnν � ∂νδnμ þ iϵδ nμ; nμ
� �� �

Þ

¼ �∂
νf μνδn

μ þ 2if μνδ n
μ; nν½ �,

(116)

where we have taken into account the fact that nμ; nμ
� �

is a c-number function
and integrated by parts the derivatives of δn. We then obtain

δLf ¼ �∂
νf μνδn

μ þ 2iϵf λσO
λσ

μδnμ (117)

Since the coefficient of δnμ must vanish, we obtain the Yang-Mills equations for
the fields given the source currents:

∂
νf μν ¼ jμ � 2iϵf λσO

λσ
μ, (118)

which is nonlinear in the fields nμ, as we have seen, even in the Abelian limit,
where, from (106),

jμ ¼ �i
ϵ
2M

ψ ∗
∂μ � iϵnμ
� �

ψ � ∂μ þ iϵnμ
� �

ψ ∗� �
ψ

� �
: (119)

6. Summary

In this chapter, we have shown that the formulation of MOND theory by
Bekenstein and Milgrom [5–10] can have a systematic origin within the framework
of the embedding of the SHP [1] theory into general relativity [20]. The SHP

156

Progress in Relativity

formalism admits a scalar potential term that appears both in the conformal factor
giving rise to the MOND functions in the galaxy and, in the original form of the
Hamiltonian, to a possible candidate for “dark energy.” The solution of the lensing
problem by Bekenstein and Sanders [4] by introduction of a local vector field was
also shown to arise in a natural way in terms of a non-Abelian gauge field, for
which, in the Abelian limit, there is a residual term that can cancel the caustic
singularity found by Contaldi et al. [40] which can arise in a purely Abelian gauge
theory.

Author details

Lawrence P. Horwitz1,2,3

1 School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel

2 Department of Physics, Bar Ilan University, Ramat Gan, Israel

3 Department of Physics, Ariel University, Ariel, Israel

*Address all correspondence to: larry@tauex.tau.ac.il

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

157

Stueckelberg-Horwitz-Piron Canonical Quantum Theory in General Relativity and Bekenstein…
DOI: http://dx.doi.org/10.5772/intechopen.88154



References

[1] Horwitz L. Relativistic Quantum
Mechanics, Fundamental Theories of
Physics. Vol. 180. Dordrecht: Springer;
2015

[2] Horwitz LP, Gershon A, Schiffer M.
Map to conformal modification of
spacetime metric: Kaluza Klein and
TeVeS. Foundations of Physics. 2010;41:
141

[3] Gershon A, Horwitz LP. Kaluyza-
Klein theory as a dynamics in a dual
geometry. Journal of Mathematical
Physics. 2009;50:102704

[4] Bekenstein JD, Sanders RH.
Gravitational lenses and unconventional
gravity theories. The Astrophysical
Journal. 1994;429:480

[5] Milgrom M. A modification of the
dynamics as a possible alternative to the
hidden mass hypothesis. The
Astrophysical Journal. 1983;270:365

[6] Milgrom M. A modification of the
Newtonian dynamics-Implications for
galaxies I. The Astrophysical Journal.
1983;270:371

[7] Milgrom M. A modification of the
Newtonian dynamics-Implications for
galaxies II. The Astrophysical Journal.
1983;270:384

[8] Bekenstein JD, Milgrom M. Does the
missing mass problem signal the
breakdown of Newtonian gravity?. The
Astrophysical Journal. 1984;286:7

[9] Bekenstein JD. Relativistic
gravitation theory for the modified
Newtonian dynamics. Physical Review
D. 2004;70:083509

[10] Bekenstein JD. The modified
newtonian dynamics -MOND, and its
implications for new physics.
Contemporary Physics. 2006;47:387

[11] Stueckelberg ECG. Pair annihilation
in classical physics. Helvetica Physica
Acta. 1941;14:372

[12] Stueckelberg ECG. Le significance
de temps propre en mecanique
ondulatoire. Helvetica Physica Acta.
1941;14:588

[13] Stueckelberg ECG. Helvetica
Physica Acta. 1942;15:23

[14] Horwitz LP, Piron C. Relativistic
dynamics. Helvetica Physica Acta. 1973;
66:316

[15] Collins RE, Fanchi JR. Relativistic
quantum mechanics: A space-time
formalism for spin-zero particles. Il
Nuovo Cimento. 1978;48A:314

[16] Fanchi JR. Parametrized Relativistic
Quantum Theory. Dordrecht: Kluwer;
1993

[17] Arshansky RI, Horwitz LP. The
relativistic two body bound state I: The
spectrum. Journal of Mathematical
Physics. 1989;30:66

[18] Arshansky RI, Horwitz LP. The
relativistic two body bound state II: The
induced representation of SL(2,C).
Journal of Mathematical Physics. 1989;
30:380

[19] Arshansky RI, Horwitz LP.
Relativistic potential scattering and
phase shift analysis. Journal of
Mathematical Physics. 1989;30:213

[20] Horwitz LP. An elementary
canonical classical and quantum
dynamics for general relativity. The
European Physical Journal Plus. To be
published. arXiv: 1810.09248

[21] Land M. Journal of Physics: Speeds
of light in Stueckelberg-Horwitz-Piron

158

Progress in Relativity

Theory. Conference Series - IOPscience.
2017;845:012024

[22] Dirac PAM. Quantum Mechanics.
1st ed. London: Oxford University Press;
1930

[23] Dirac PAM. QuantumMechanics. 3rd
ed. London: OxfordUniversity Press; 1947

[24] van Hove L. Sur certaines
representations unitaires d’un groupe
infini de transformations. Proceedings
of the Royal Academy of Science,
Letters and Fine Arts of Belgium. 1951;
26:1

[25] Groenwold HJ. On the principles of
elementary quantum Mechanics.
Physica. 1946;12:405

[26] Schwinger J. On gauge invarianca
dn vascuum polarization. Physical
Review. 1951;82:664

[27] DeWitt BS. Quantum field theory in
curved spacetime. Physics Reports.
1975;19:295

[28] DeWitt BS. The Global Approach to
Quantum Field Theory. Oxford: Oxford
University Press; 2002

[29] Newton TD, Wigner E. Localized
states for elementary systems. Reviews
of Modern Physics. 1949;21:400

[30] Foldy LL, Wouthuysen SA. On the
dirac theory of spin 1/2 particles and its
non-relativistic limit. Physics Review.
1950;78:29

[31] Reed M, Simon B. Methods of
Modern Mathematical Physics I,
Functional Analysis. New York:
Academic Press; 1979

[32] Strauss Y, Horwitz LP, Levitan J,
Yahalom A. Quantum field theory of
hamiltonian chaos. Journal of
Mathematical Physics. 2015;56:072701

[33] Georgiev V. Chapter 8: Fourier
transform on manifolds with constant
negative curvature. In: Semilinear
Hyperbolic Equations. Japan: Tokyo
Mathematical Society; 2005. p. 126

[34] Abraham R, Marsden JE, Ratiu T.
Manifolds, tensor analysis and
applications. In: Applied Mathematical
Sciences. Vol. 75. New York: Springer-
Verlag; 1988

[35] Weinberg S. Gravitation and
Cosmology. New York: John Wiley and
Sons; 1972

[36] Yahalom A. The effect of
retardation on galactic rotation curves.
Journal of Physics: Conference Series -
IOPscience. 2019;1239:012006

[37] Horwitz LP, Ben Zion Y, Lewkowicz
M, Schiffer M, Levitan J. Geometry of
hamiltonian chaos. Physical Review
Letters. 2007;98:234301

[38] Yang CN. Magnetic monopoles,
fiber bundles and gauge fields. Annals of
the New York Academy of Sciences.
1977;294:86

[39] Yang CN, Mills R. Conservation of
isotopic spin and isotopic gauge
invariance. Physics Review. 1954;96:191

[40] Contaldi CR,Wiseman T,Withers B.
TeVeS gets caught on caustics. Physical
Review D. 2008;78:044034

159

Stueckelberg-Horwitz-Piron Canonical Quantum Theory in General Relativity and Bekenstein…
DOI: http://dx.doi.org/10.5772/intechopen.88154



References

[1] Horwitz L. Relativistic Quantum
Mechanics, Fundamental Theories of
Physics. Vol. 180. Dordrecht: Springer;
2015

[2] Horwitz LP, Gershon A, Schiffer M.
Map to conformal modification of
spacetime metric: Kaluza Klein and
TeVeS. Foundations of Physics. 2010;41:
141

[3] Gershon A, Horwitz LP. Kaluyza-
Klein theory as a dynamics in a dual
geometry. Journal of Mathematical
Physics. 2009;50:102704

[4] Bekenstein JD, Sanders RH.
Gravitational lenses and unconventional
gravity theories. The Astrophysical
Journal. 1994;429:480

[5] Milgrom M. A modification of the
dynamics as a possible alternative to the
hidden mass hypothesis. The
Astrophysical Journal. 1983;270:365

[6] Milgrom M. A modification of the
Newtonian dynamics-Implications for
galaxies I. The Astrophysical Journal.
1983;270:371

[7] Milgrom M. A modification of the
Newtonian dynamics-Implications for
galaxies II. The Astrophysical Journal.
1983;270:384

[8] Bekenstein JD, Milgrom M. Does the
missing mass problem signal the
breakdown of Newtonian gravity?. The
Astrophysical Journal. 1984;286:7

[9] Bekenstein JD. Relativistic
gravitation theory for the modified
Newtonian dynamics. Physical Review
D. 2004;70:083509

[10] Bekenstein JD. The modified
newtonian dynamics -MOND, and its
implications for new physics.
Contemporary Physics. 2006;47:387

[11] Stueckelberg ECG. Pair annihilation
in classical physics. Helvetica Physica
Acta. 1941;14:372

[12] Stueckelberg ECG. Le significance
de temps propre en mecanique
ondulatoire. Helvetica Physica Acta.
1941;14:588

[13] Stueckelberg ECG. Helvetica
Physica Acta. 1942;15:23

[14] Horwitz LP, Piron C. Relativistic
dynamics. Helvetica Physica Acta. 1973;
66:316

[15] Collins RE, Fanchi JR. Relativistic
quantum mechanics: A space-time
formalism for spin-zero particles. Il
Nuovo Cimento. 1978;48A:314

[16] Fanchi JR. Parametrized Relativistic
Quantum Theory. Dordrecht: Kluwer;
1993

[17] Arshansky RI, Horwitz LP. The
relativistic two body bound state I: The
spectrum. Journal of Mathematical
Physics. 1989;30:66

[18] Arshansky RI, Horwitz LP. The
relativistic two body bound state II: The
induced representation of SL(2,C).
Journal of Mathematical Physics. 1989;
30:380

[19] Arshansky RI, Horwitz LP.
Relativistic potential scattering and
phase shift analysis. Journal of
Mathematical Physics. 1989;30:213

[20] Horwitz LP. An elementary
canonical classical and quantum
dynamics for general relativity. The
European Physical Journal Plus. To be
published. arXiv: 1810.09248

[21] Land M. Journal of Physics: Speeds
of light in Stueckelberg-Horwitz-Piron

158

Progress in Relativity

Theory. Conference Series - IOPscience.
2017;845:012024

[22] Dirac PAM. Quantum Mechanics.
1st ed. London: Oxford University Press;
1930

[23] Dirac PAM. QuantumMechanics. 3rd
ed. London: OxfordUniversity Press; 1947

[24] van Hove L. Sur certaines
representations unitaires d’un groupe
infini de transformations. Proceedings
of the Royal Academy of Science,
Letters and Fine Arts of Belgium. 1951;
26:1

[25] Groenwold HJ. On the principles of
elementary quantum Mechanics.
Physica. 1946;12:405

[26] Schwinger J. On gauge invarianca
dn vascuum polarization. Physical
Review. 1951;82:664

[27] DeWitt BS. Quantum field theory in
curved spacetime. Physics Reports.
1975;19:295

[28] DeWitt BS. The Global Approach to
Quantum Field Theory. Oxford: Oxford
University Press; 2002

[29] Newton TD, Wigner E. Localized
states for elementary systems. Reviews
of Modern Physics. 1949;21:400

[30] Foldy LL, Wouthuysen SA. On the
dirac theory of spin 1/2 particles and its
non-relativistic limit. Physics Review.
1950;78:29

[31] Reed M, Simon B. Methods of
Modern Mathematical Physics I,
Functional Analysis. New York:
Academic Press; 1979

[32] Strauss Y, Horwitz LP, Levitan J,
Yahalom A. Quantum field theory of
hamiltonian chaos. Journal of
Mathematical Physics. 2015;56:072701

[33] Georgiev V. Chapter 8: Fourier
transform on manifolds with constant
negative curvature. In: Semilinear
Hyperbolic Equations. Japan: Tokyo
Mathematical Society; 2005. p. 126

[34] Abraham R, Marsden JE, Ratiu T.
Manifolds, tensor analysis and
applications. In: Applied Mathematical
Sciences. Vol. 75. New York: Springer-
Verlag; 1988

[35] Weinberg S. Gravitation and
Cosmology. New York: John Wiley and
Sons; 1972

[36] Yahalom A. The effect of
retardation on galactic rotation curves.
Journal of Physics: Conference Series -
IOPscience. 2019;1239:012006

[37] Horwitz LP, Ben Zion Y, Lewkowicz
M, Schiffer M, Levitan J. Geometry of
hamiltonian chaos. Physical Review
Letters. 2007;98:234301

[38] Yang CN. Magnetic monopoles,
fiber bundles and gauge fields. Annals of
the New York Academy of Sciences.
1977;294:86

[39] Yang CN, Mills R. Conservation of
isotopic spin and isotopic gauge
invariance. Physics Review. 1954;96:191

[40] Contaldi CR,Wiseman T,Withers B.
TeVeS gets caught on caustics. Physical
Review D. 2008;78:044034

159

Stueckelberg-Horwitz-Piron Canonical Quantum Theory in General Relativity and Bekenstein…
DOI: http://dx.doi.org/10.5772/intechopen.88154



Chapter 10

Fast Indicators for Orbital
Stability: A Survey on Lyapunov
and Reversibility Errors
Giorgio Turchetti and Federico Panichi

Abstract

We present a survey on the recently introduced fast indicators for Hamiltonian
systems, which measure the sensitivity of orbits to small initial displacements,
Lyapunov error (LE), and to a small additive noise, reversibility error (RE). The LE
and RE are based on variational methods and require the computation of the tan-
gent flow or map. The modified reversibility error method (REM) measures the
effect of roundoff and is computed by iterating a symplectic map forward and
backward the same number of times. The smoothest indicator is RE since it damps
the oscillations of LE. It can be proven that LE and RE grow following a power law
for regular orbits and an exponential law for chaotic orbits. There is a numerical
evidence that the growth of RE and REM follows the same law. The application to
models of celestial and beam dynamics has shown the reliability of these indicators.

Keywords: variational principles, reversibility error, additive noise, roundoff

1. Introduction

The global stability properties of Hamiltonian systems and symplectic maps
have a solid theoretical foundation [1, 2]. Nevertheless, the determination of the
orbital stability by computing the maximum Lyapunov exponent is a procedure
difficult to implement numerically, because of the t ! ∞ limit. For this reason a
variety of fast indicators has been developed during the last two decades [3–7]. The
variational methods mentioned above measure the sensitivity to initial conditions of
the orbit computed for finite times. The spectral methods [8, 9] relate the stability
to the behavior of the Fourier spectrum of the orbit computed for finite times.

In the framework of the variational methods, we have proposed two indicators
[10–12] the Lyapunov error (LE) and the reversibility error (RE) introducing also
the modified reversibility error method (REM). The LE is due to a small displace-
ment of the initial condition, the RE is due to an additive noise, and REM is due to
roundoff. The reversibility error due to the roundoff or noise is more convenient
with respect to the error occurring in the forward evolution of the map.1

1 The forward error (FE) due to additive noise in the forward evolution of a map can be defined and

written in terms of the tangent map. However, RE is very simply related to LE, whereas FE is not. In

addition the error due to roundoff in the forward evolution requires in principle the evaluation of the

exact orbit or, in practice, its evaluation with a much higher accuracy.
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variety of fast indicators has been developed during the last two decades [3–7]. The
variational methods mentioned above measure the sensitivity to initial conditions of
the orbit computed for finite times. The spectral methods [8, 9] relate the stability
to the behavior of the Fourier spectrum of the orbit computed for finite times.

In the framework of the variational methods, we have proposed two indicators
[10–12] the Lyapunov error (LE) and the reversibility error (RE) introducing also
the modified reversibility error method (REM). The LE is due to a small displace-
ment of the initial condition, the RE is due to an additive noise, and REM is due to
roundoff. The reversibility error due to the roundoff or noise is more convenient
with respect to the error occurring in the forward evolution of the map.1

1 The forward error (FE) due to additive noise in the forward evolution of a map can be defined and

written in terms of the tangent map. However, RE is very simply related to LE, whereas FE is not. In

addition the error due to roundoff in the forward evolution requires in principle the evaluation of the

exact orbit or, in practice, its evaluation with a much higher accuracy.
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In the limit of a vanishing amplitude of the initial displacement or of the random
displacement, the LE and RE are defined by using the tangent map along the orbit.
Furthermore, RE is related to LE by a very simple formula. A reversibility error is
always present in numerical computations due to roundoff even when no additive
noise is introduced. We compute REM by iterating n times the map M, then its
inverse n times, and dividing the norm of the displacement from the initial point, by
the roundoff amplitude. The procedure is extremely simple and does not require the
knowledge of the tangent map. Though the effect of roundoff on a single iteration is
not equivalent to a random displacement, after many iterations the cumulative
result is comparable if the computational complexity of the map is sufficiently high.
The main difference is that for an additive noise, the error is defined as the root
mean square deviation of the noisy orbit with respect to the exact one, obtained by
averaging over all possible realizations of the noise, whereas for the roundoff a
unique realization is available. As a consequence REM fluctuates with the iteration
number n, whereas RE does not. A statistical analysis of roundoff compared to a
random noise was previously performed using the fidelity method [13, 14], and a
comparison of REM with other fast indicators was initially carried out for the
standard map [15]. The growth of errors, for REM-, RE-, and Lyapunov-based
indicators, is governed by the tangent map. For LE a small initial displacement is
propagated and amplified along the orbit. For RE or REM, a random or pseudoran-
dom displacement is introduced at any (forward or backward) iteration of the map
and is propagated and amplified along the orbit. The final random displacement is
the sum of the global displacements triggered by the local displacements (due to
noise or roundoff) occurring at any iteration. Therefore, it is not surprising that the
square of RE is twice the sum of the squares of LE computed along the orbit and that
all the numerical experiments suggest that REM exhibits a similar behavior even
though with larger fluctuations.

For an integrable map, the growth of LE and RE follows asymptotically a power
law nα, and the exact analytical result is known. This result can be extended to quasi
integrable maps by using the normal forms theory. For uniformly chaotic maps
(hyperbolic automorphisms of the torus), the LE and RE have an exponential
growth eλn. For generic maps, the asymptotic growth of LE and RE follows a power
law in the regions of regular motion and an exponential law in the regions of chaotic
motion, and the same behavior is observed for REM. For an integrable or quasi
integrable map, LE has an asymptotic linear growth α ¼ 1 with oscillations, whereas
RE has an asymptotic power law growth with α ¼ 3=2 without oscillations, since
they are rapidly damped. The oscillations of LE disappear when the map is written
in normal coordinates. For a linear map conjugated to a rotation, the power law
exponents are α ¼ 0 for LE and α ¼ 1=2 for RE. For REM the power law exponent α
varies between 0 and 1, its value depending on the computational complexity of the
map and therefore on the choice of coordinates.

The definition of LE we propose differs from fast Lyapunov indicator (FLI) [3]
or orthogonal fast Lyapunov indicator (OFLI) [4], which are based on the growth
along the orbit of the norm of a given initial displacement vector. Indeed, we
compute the growth of the vectors of an orthogonal basis, which amounts to defin-

ing LE, which we denote as eLn , as the square root of Tr DMn x0ð Þð ÞTDMn x0ð Þ
� �

where M xð Þ is the map, DM xð Þ denotes the tangent map, and x0 is the initial
condition. This definition has the obvious advantage of insuring the correct asymp-
totic growth.

Indeed the anomalies in the behavior of FLI [16], due to the choice of the initial
vector, are not met. The use of exponential growth factor of nearby orbits
(MEGNO) [17] allows to filter the oscillations which are still present in LE. The RE
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is obtained from the covariance matrix which is computed from the tangent map.
We denote this error by eRn , which has a very simple relation with LE given by the

square root of eL0
� �2 þ 2 eL1

� �2 þ…þ 2 eLn�1

� �2 þ eLn
� �2. We first analyze the case of

linear maps to explore the behavior of REM. A systematic comparison of LE, RE,
and REM is presented for two basic models: the standard map and the Hénon map.
The asymptotic power law exponents are computed by using the MEGNO filter. For
nonlinear two-dimensional maps, the behavior of the errors has been compared
moving along a one-dimensional grid in the phase plane: crossing of islands has a
clear signature, the chaotic regions are very neatly distinguished, and good agree-
ment with the theoretical predictions is found.

A rectangular region of phase plane has been examined by choosing a grid and
using a color, logarithmic scale for the errors at each point. Also in this case, a good
correspondence with the phase space portrait is found. On the basis of the analysis
presented here and the experience gained in investigating more complex models
from celestial mechanics [18] and beam dynamics [19], we suggest to compare RE
and REM with LE, possibly, filtered with MEGNO, to damp the oscillations2. For
maps of dimension 4 or higher, a direct geometric inspection of the orbits is not
possible since the Poincaré section requires an interpolation Hamiltonian. As a
consequence the use of fast indicators is the only practical approach to analyze the
orbital stability. Hamiltonian systems have a continuous time flow, and the errors
LE and RE denoted by eL tð Þ and eR tð Þ, respectively, are computed by using the

fundamental matrix L tð Þ of the tangent flow. In this case eL tð Þ ¼ Tr LT tð ÞL tð Þ
� �� �1=2

and eR tð Þ are given by the square root of 2
Ð t
0 ds eL sð Þ

� �2, whose trapezoidal rule
approximation gives the relation found for the maps [12]. Standard procedures
allow to approximate the orbit x tð Þ by the iteratesMn x0ð Þ of a symplectic integrator
map M (see [20]) and the fundamental matrix L tð Þ by DMn x0ð Þ (see [21]). The
paper has the following structure. In Section 2, we recall the definitions for LE and
RE and obtain their mutual relation. In Section 3, we present the analytical results
on LE and RE together with the numerical results on REM for integrable maps. In
Section 4, the key features of two prototype models, the standard map and the
Hénon map, are summarized. In Section 5, we present a detailed numerical analysis
of LE, RE, and REM for the standard map. In Section 6, the same analysis is
presented for the Hénon map. In Section 7, the summary and conclusions are
presented.

2. Definition of errors

Given a symplectic map M xð Þ where x∈R2d, we consider the orbits
xn ¼ Mn x0ð Þ and yn ¼ Mn y0

� �
for two initial points x0 and y0 ¼ x0 þ ϵη0, respec-

tively, where η is a unit vector. We consider the normalized displacement ηn at
iteration n defined by

ηn ¼ lim
ϵ!0

yn � xn

ϵ
¼ lim

ϵ!0

M yn�1

� �
�M xn�1ð Þ
ϵ

(1)

2 The application of MEGNO to RE is not necessary due to the absence of oscillations, whereas its

application to REM is not recommended because the fluctuations are not filtered and the computational

cost is quadratic rather than linear in the iteration order.
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which satisfies the linear recurrence

ηn ¼ DM xn�1ð Þηn�1 DMð Þij ¼
∂Mi

∂xj
(2)

where DM is the tangent map. For any finite ϵ, we have yn ¼ xn þ ϵηn þ O ϵ2ð Þ.
We might define the error as the norm of ηn which is closely related to the fast
Lyapunov indicator FLI (see [3]) as

en η0ð Þ ¼ ∥ηn∥ ¼ ∥DMn x0ð Þη0∥ FLIð Þn ¼ max
1≤ k≤ n

log ek η0ð Þ (3)

and to its variants such as OFLI [4]. The mean exponential growth factor of
nearby orbits, MEGNO [17], denoted by Yn ¼ Y enð Þ is the double average of the
slope, and we denote it as Δe2n. When n is a continuous variable, then
Δe2n ¼ d log e2n=d log n. When n is an integer, the standard definition is

Δe2n ¼ n log e2n � log e2n�1

� �
Yn ¼ Δe2n

� �� �
: (4)

2.1 Lyapunov error

We propose a definition of the Lyapunov error which is independent from the
choice of the initial vector:

eLn ¼ Tr AT
n An

� �� �1=2
An ¼ DMn x0ð Þ ¼ DM xn�1ð ÞAn�1 A0 ¼ I

(5)

It is immediate to verify that given an orthonormal basis η0k, we have

eLn ¼
X2d

k¼1

e2n η0kð Þ
 !1=2

(6)

and obviously the result does not depend on the choice of the basis. The com-
putational cost of en η0ð Þ is 2d times higher with respect to eLn, but this difference is
negligible with respect to the computational cost of the matrix DM xn�1ð Þ, which
recursively gives ηn and An. A similar definition is proposed in the case of Hamilto-
nian flows (see the last Subsection 2.6 and [12] for more details). An advantage of
the proposed definition is that it takes into account the error growth on all possible
directions of the initial displacement vector. As a consequence, no spurious effects
due to the choice of the initial vector have to be faced (see [16]).

2.2 Forward error

When an additive noise of amplitude ϵ is introduced, the reference orbit xn is
replaced by the noisy one (yn) having the same initial condition:

yn ¼ M yn�1

� �
þ ϵξn y0 ¼ x0 (7)

where ξn are independent random vectors satisfying

ξnh i ¼ 0 ξn ξ
T
m

� �
¼ I δnm (8)
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The global stochastic displacement satisfies a linear nonhomogeneous equation
and is defined by

Ξn ¼ lim
ϵ!0

yn � xn

ϵ
Ξn ¼ DM xn�1ð ÞΞn�1 þ ξn (9)

with initial condition Ξ0 ¼ 0. Letting Σ2F
n ¼ ΞnΞT

n

� �
be the covariance matrix

the forward error is defined by

eFn ¼ Ξn � Ξnh i1=2 ¼ Tr Σ2F
n

� �� �1=2
(10)

The explicit solution for Ξn is given by

Ξn ¼
Xn

k¼1

DMn�k xkð Þξk ¼
Xn�1

k¼0

Bk ξn�k Bk ¼ DMk xn�kð Þ (11)

where Bk can be evaluated recursively as

Bk ¼ Bk�1DM xn�kð Þ B0 ¼ I: (12)

The expression for the forward error finally reads

eFn ¼
Xn�1

k¼0

Tr BT
k Bk

� � !1=2

: (13)

The computation cost of Bn is negligible, once we have evaluated the tangent
map, but the storage of the tangent map along the orbit up to n is required.

2.3 Reversibility error

We have just defined the forward error, but it will not be used, because it is only
an intermediate step toward the definition of the reversibility error. Consider the
backward evolution yn,�k, given by the inverse map M�1, with initial point
yn,0 ¼ yn. The point yn is reached by iterating n times the map M with a random
displacement of amplitude ϵ at each step, starting from y0 ¼ x0 (see the previous
subsection). The orbit yn,�k is obtained by iterating k times the map M�1 with a
random displacement of the same amplitude at each step:

yn,�k ¼ M�1 yn,�kþ1

� �
þ ϵξ�k k ¼ 1,…, n (14)

The random backward displacements ξ�k are independent from the forward
displacements ξk0 , namely, ξ�k ξk0h i ¼ 0 and ξ�k ξ�k0h i ¼ I δkk0 , for any k, k0>0. We
consider then the stochastic process Ξn,�k defined by

Ξn,�k ¼ lim
ϵ!0

yn,�k � xn�k

ϵ
Ξn,�k ¼ DM�1 xn�kþ1ð ÞΞn,�kþ1 þ ξ�k (15)

with initial condition Ξn, 0 ¼ Ξn. The solution of the recurrence reads

Ξn, �k ¼ DM�k xnð ÞΞn þ
Xk
j¼1

DM� k�jð Þ xn�j
� �

ξ�j (16)
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For k ¼ n, we obtain the global normalized displacement ΞR
n ¼ Ξn,�n after n

forward and n backward iterations with noise of vanishing amplitude:

ΞR
n ¼ DM�n xnð ÞΞn þ

Xn
j¼1

DM� n�jð Þ xn�j
� �

ξ�j (17)

Letting Σ2R
n ¼ ΞR

n ΞR
n

� �TD E
be the covariance matrix, the reversibility error (RE)

is defined by

eRn ¼ ΞR
n � ΞR

n

� �1=2 ¼ TrΣ2R
n

� �2
(18)

and using Eqs. (17) and (8), an explicit expression involving only the tangent
maps is obtained. Indeed the global stochastic displacement reads

ΞR
n ¼

Xn

k¼1

DM�n xnð ÞDMn�k xkð Þξk þ
Xn

k¼1

DM� n�kð Þ xn�kð Þξ�k: (19)

Taking into account the independence of ξk and ξ�k0 , the expression for the

reversibility error eRn ¼ ΞR
n � ΞR

n

� �1=2
is immediately obtained.

2.4 Analytical relation between RE and LE indicators

The RE can be obtained from LE in a very simple way. We first notice that

DM�n xnð ÞDMn�k xkð Þ ¼ DM�k xkð Þ (20)

We prove this relation by writing M�n Mn�k xð Þ
� �

¼ M�k xð Þ, computing the
tangent map DM�n Mn�k xð Þ

� �
DMn�k xð Þ ¼ DM�k xð Þ, and evaluating it for x ¼ xk.

As a consequence the expression for the reversibility error becomes

eRn
� �2 ¼ Tr ΞR

n ΞR
n

� �TD E
¼
Xn

k¼1

Tr DM�k xkð Þ
� �T

DM�k xkð Þ
� �h i

þ
�

þ Tr DM� n�kð Þ xn�kð Þ
� �T

DM� n�kð Þ xn�kð Þ
� ��

¼

¼ 2
Xn�1

k¼1

Tr DM�k xkð Þ
� �T

DM�k xkð Þ
� �h i

þ

þ Tr DM�n xnð Þð ÞTDM�n xnð Þ
h i

þ Tr Ið Þ

(21)

Starting fromM�k Mk xð Þ
� �

¼ x, computing the tangent map, and evaluating it at
x ¼ x0, it follows that

DM�k xkð Þ ¼ DMk x0ð Þ
� ��1

(22)

Given any symplectic matrix L3, we can prove that

3 A symplectic matrix L is defined by LJLT ¼ J where J is antisymmetric and J2 ¼ �I. As a consequence

L�1 ¼ �JLTJ, and L�1� �T ¼ �JLJ so that Tr L�1T L�1� �
¼ Tr JLJ2LTJ

� �
¼ Tr LLT� �

.
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Tr L�1� �T
L�1

� �
¼ Tr LTL

� �
: (23)

As a consequence in Eq. (21), we can use the following relation:

Tr DM�k xkð Þ
� �T

DM�k xkð Þ
� �h i

¼ Tr DMk x0ð Þ
� �T

DMk x0ð Þ
� �h i

¼ eLk
� �2

: (24)

Finally, the relation between LE and RE is given by

eRn
� �2 ¼

Xn

k¼1

eLk
� �2 þ eLn�k

� �2� �
¼ 2

Xn�1

k¼1

eLk
� �2 þ 1

2
eL0
� �2 þ 1

2
eLn
� �2

 !
: (25)

This relation clearly shows how the error due to random kicks along the orbit is
related to the error due to initial orthogonal kicks.

2.5 Roundoff-induced reversibility error

The reversibility error method (REM) is a very simple procedure based on n
iterations of the map M followed by n iterations of the inverse map. The distance
from the initial point normalized by the roundoff amplitude ϵ defines the REM
error. Denoting with Mϵ the map with roundoff, we have

eREMn ¼ ∥M�n
ϵ ∘ Mn

ϵ x0ð Þ � x0∥
ϵ

� �
(26)

where ϵ is the roundoff amplitude. For the eight-byte representation of reals, we
choose ϵ ¼ 10�17. If the map has a sufficiently high computational complexity, the
displacement ξ defined by Mϵ xð Þ �M xð Þ ¼ ϵξ is almost random, but a unique
realization is available. (For a discussion on the roundoff error, see [22]). As a
consequence, the eREMn has large fluctuations, whereas eRn has a smooth dependence
on n since it is defined by an average overall possible realizations of the stochastic
displacements occurring at each iteration.

2.6 Errors for Hamiltonian flows

For Hamiltonian flows, we define the Lyapunov error eL tð Þ according to

eL tð Þ ¼ Tr LT tð ÞL tð Þ
� �� �1=2

(27)

where L tð Þ is the fundamental matrix for the tangent flow, which satisfies the
linear equation dL=dt ¼ JHL, H denotes the Hessian of the Hamiltonian computed
along the orbit Hij ¼ ∂

2H=∂xi∂xj, and the initial condition for the matrix L tð Þ is
L 0ð Þ ¼ I. The relation with the standard fast indicators is the same as for the
symplectic maps. Let ΞR tð Þ be the stochastic displacement from x0 after a noisy
evolution up to time t and backward to t ¼ 0, divided by the noise amplitude ε in
the limit ε ! 0. It has been proven [12] that ΞR tð Þ satisfies a linear Langevin
equation whose solution reads

ΞR tð Þ ¼
ðt
0
L�1 sð Þ ξ sð Þ � ξ s� tð Þð Þds: (28)
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For k ¼ n, we obtain the global normalized displacement ΞR
n ¼ Ξn,�n after n

forward and n backward iterations with noise of vanishing amplitude:
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Xn
j¼1

DM� n�jð Þ xn�j
� �

ξ�j (17)
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n ΞR
n

� �TD E
be the covariance matrix, the reversibility error (RE)
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n

� �1=2 ¼ TrΣ2R
n

� �2
(18)

and using Eqs. (17) and (8), an explicit expression involving only the tangent
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DM� n�kð Þ xn�kð Þξ�k: (19)
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n
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� �h i

þ
�

þ Tr DM� n�kð Þ xn�kð Þ
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DM� n�kð Þ xn�kð Þ
� ��

¼
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Tr DM�k xkð Þ
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DM�k xkð Þ
� �h i

þ
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(21)

Starting fromM�k Mk xð Þ
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¼ x, computing the tangent map, and evaluating it at
x ¼ x0, it follows that
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(22)

Given any symplectic matrix L3, we can prove that

3 A symplectic matrix L is defined by LJLT ¼ J where J is antisymmetric and J2 ¼ �I. As a consequence

L�1 ¼ �JLTJ, and L�1� �T ¼ �JLJ so that Tr L�1T L�1� �
¼ Tr JLJ2LTJ

� �
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L�1

� �
¼ Tr LTL

� �
: (23)
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eLn
� �2
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This relation clearly shows how the error due to random kicks along the orbit is
related to the error due to initial orthogonal kicks.

2.5 Roundoff-induced reversibility error

The reversibility error method (REM) is a very simple procedure based on n
iterations of the map M followed by n iterations of the inverse map. The distance
from the initial point normalized by the roundoff amplitude ϵ defines the REM
error. Denoting with Mϵ the map with roundoff, we have

eREMn ¼ ∥M�n
ϵ ∘ Mn

ϵ x0ð Þ � x0∥
ϵ
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(26)

where ϵ is the roundoff amplitude. For the eight-byte representation of reals, we
choose ϵ ¼ 10�17. If the map has a sufficiently high computational complexity, the
displacement ξ defined by Mϵ xð Þ �M xð Þ ¼ ϵξ is almost random, but a unique
realization is available. (For a discussion on the roundoff error, see [22]). As a
consequence, the eREMn has large fluctuations, whereas eRn has a smooth dependence
on n since it is defined by an average overall possible realizations of the stochastic
displacements occurring at each iteration.

2.6 Errors for Hamiltonian flows

For Hamiltonian flows, we define the Lyapunov error eL tð Þ according to

eL tð Þ ¼ Tr LT tð ÞL tð Þ
� �� �1=2

(27)

where L tð Þ is the fundamental matrix for the tangent flow, which satisfies the
linear equation dL=dt ¼ JHL, H denotes the Hessian of the Hamiltonian computed
along the orbit Hij ¼ ∂

2H=∂xi∂xj, and the initial condition for the matrix L tð Þ is
L 0ð Þ ¼ I. The relation with the standard fast indicators is the same as for the
symplectic maps. Let ΞR tð Þ be the stochastic displacement from x0 after a noisy
evolution up to time t and backward to t ¼ 0, divided by the noise amplitude ε in
the limit ε ! 0. It has been proven [12] that ΞR tð Þ satisfies a linear Langevin
equation whose solution reads

ΞR tð Þ ¼
ðt
0
L�1 sð Þ ξ sð Þ � ξ s� tð Þð Þds: (28)
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The reversibility error in this case is defined by the mean square deviation of the

random displacement eR tð Þ ¼ ΞR tð Þ � ΞR tð Þ
� �1=2

. As shown in [12] and from
Eq. (28), we immediately obtain

eR tð Þ ¼ 2
ðt
0

eL sð Þ
� �2

ds
� �1=2

: (29)

If the continuous time t is replaced by an integer n and we approximate the
integral with the trapezoidal rule, we recover the relation in Eq. (25) obtained for a
symplectic map.

3. Integrable maps

We evaluate the errors for integrable maps with an elliptic fixed point at the
origin, whose normal form is a rotation R Ωð Þ with a frequency Ω depending on the
distance from the origin. The LE asymptotic growth is linear, and oscillations are
present unless the coordinates are normal. The RE asymptotic growth follows a
power law nα with exponent α ¼ 3=2. If the map is linear, its asymptotic growth
follows a power law with α ¼ 0 for LE and α ¼ 1=2 for RE. The oscillations reflect
the loss of rotational symmetry when generic coordinates are used. The roundoff
induced reversibility error REM is also sensitive to the choice of coordinates, and a
comparison between RE and REM is presented in the next sections.

3.1 Change of coordinate system

In generic coordinates an integrable map M xð Þ is conjugated to its normal form
N Xð Þ by a symplectic coordinate transformation x ¼ Φ Xð Þ; as a consequence the
conjugation equation and its iterates read

M xð Þ ¼ Φ ∘ N ∘ Φ�1 xð Þ Mn xð Þ ¼ Φ ∘ Nn ∘ Φ�1 xð Þ (30)

which imply that the orbits xn ¼ Mn x0ð Þ and Xn ¼ Nn X0ð Þ are related by
xn ¼ Φ Xnð Þ. The tangent maps are given by

DMn x0ð Þ ¼ DΦ Xnð ÞDNn X0ð ÞDΦ�1 x0ð Þ ¼ DΦ Xnð ÞDNn X0ð Þ DΦ X0ð Þð Þ�1 (31)

where we used DΦ Xð ÞDΦ�1 xð Þ ¼ I, a relation which is proved to hold by com-
puting the Jacobian of Φ ∘ Φ�1 xð Þ ¼ x. As a consequence, the expression for the
Lyapunov error in both coordinate systems is

eLn X0ð Þ
� �2 ¼ Tr DNn X0ð Þð ÞT ðDNn X0ð Þ

h i

eLn x0ð Þ
� �2 ¼ Tr DMn x0ð Þð ÞT ðDMn x0ð Þ

h i (32)

Taking Eq. (31) into account, the last equation can be written as

eLn x0ð Þ
� �2 ¼ Tr V�1 X0ð Þ DNn X0ð Þð ÞTV Xnð ÞDNn X0ð Þ

h i

V Xð Þ ¼ DΦ Xð Þð ÞTDΦ Xð Þ
(33)
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Notice that V is a positive-defined matrix and that its determinant is equal to 1 if
Φ is symplectic. For a two-dimensional map, we can write

V �
a b
b c

� �
V�1 ¼

c �b
�b a

� �
(34)

where ac� b2 ¼ 1.

3.2 Isochronous rotations: oscillations in LE and RE

If the given map is linear and two-dimensional and M xð Þ ¼ Lx with ∣Tr L∣ < 2,
then the map is conjugated to a rotation R ωð Þ:

L ¼ TR ωð ÞT�1 R ωð Þ ¼
cos ωð Þ sinω

� sin ωð Þ cos ωð Þ

� �
(35)

Letting xn ¼ Lnx0 and Xn ¼ RnX0, the orbits in the coordinate x and the normal
coordinate X ¼ T�1x and the Lyapunov errors are given by

eLn X0ð Þ
� �2 ¼ Tr R �nωð ÞR nωð Þ½ � ¼ 2

eLn x0ð Þ
� �2 ¼ Tr V�1 R �nωð ÞVR nωð Þ

� �
¼ 2 cos 2 nωð Þ þ a2 þ c2 þ 2b2

� �
sin 2 nωð Þ ¼

¼ aþ cð Þ2

2
þ 2� aþ cð Þ2

2

 !
cos 2nωð Þ

(36)

where V ¼ TTT, and we have used the representation given by Eq. (34) where
DΦ ¼ T. The error is constant in normal coordinate X and oscillates between 2 and
aþ cð Þ2 � 2 ¼ a2 þ c2 þ 2b2 in the coordinate x. The geometric interpretation is
obvious since the orbits of the map belong to an ellipse rather than a circle. The
result for the reversibility error is given by

eRn X0ð Þ
� �2 ¼ 4n

eRn x0ð Þ
� �2 ¼ 2n

aþ cð Þ2

2
þ 2� aþ cð Þ2

2

 !
f nð Þ

f nð Þ ¼
Xn

k¼1

cos 2kωð Þ þ cos 2 n� kð Þωð Þð Þ ¼ cos 2nωð Þ þ cos 2 n� 1ð Þωð Þ � cos 2nωð Þ
1� cos 2ωð Þ

(37)

We shall first consider the dependence of the errors on the iteration order n from
n ¼ 1 up to a maximum value N. Then, we shall consider the dependence on the
initial condition x0 when it is varied on a one-dimensional grid crossing the origin
for the value N of the iteration number. We choose the linear map L which depends
on a single parameter λ, and its relation with the rotation frequency is

L ¼
1� λ 1

�λ 1

� �
sin

ω

2
¼

ffiffiffi
λ

p

2
0≤ λ≤4 (38)

The rotation R ωð Þx is the linear part for the Hénon map, whereas Lx is the linear
part of the standard map that will be discussed in the next sections. The behavior of
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The reversibility error in this case is defined by the mean square deviation of the

random displacement eR tð Þ ¼ ΞR tð Þ � ΞR tð Þ
� �1=2

. As shown in [12] and from
Eq. (28), we immediately obtain

eR tð Þ ¼ 2
ðt
0

eL sð Þ
� �2

ds
� �1=2

: (29)

If the continuous time t is replaced by an integer n and we approximate the
integral with the trapezoidal rule, we recover the relation in Eq. (25) obtained for a
symplectic map.

3. Integrable maps

We evaluate the errors for integrable maps with an elliptic fixed point at the
origin, whose normal form is a rotation R Ωð Þ with a frequency Ω depending on the
distance from the origin. The LE asymptotic growth is linear, and oscillations are
present unless the coordinates are normal. The RE asymptotic growth follows a
power law nα with exponent α ¼ 3=2. If the map is linear, its asymptotic growth
follows a power law with α ¼ 0 for LE and α ¼ 1=2 for RE. The oscillations reflect
the loss of rotational symmetry when generic coordinates are used. The roundoff
induced reversibility error REM is also sensitive to the choice of coordinates, and a
comparison between RE and REM is presented in the next sections.

3.1 Change of coordinate system

In generic coordinates an integrable map M xð Þ is conjugated to its normal form
N Xð Þ by a symplectic coordinate transformation x ¼ Φ Xð Þ; as a consequence the
conjugation equation and its iterates read

M xð Þ ¼ Φ ∘ N ∘ Φ�1 xð Þ Mn xð Þ ¼ Φ ∘ Nn ∘ Φ�1 xð Þ (30)

which imply that the orbits xn ¼ Mn x0ð Þ and Xn ¼ Nn X0ð Þ are related by
xn ¼ Φ Xnð Þ. The tangent maps are given by

DMn x0ð Þ ¼ DΦ Xnð ÞDNn X0ð ÞDΦ�1 x0ð Þ ¼ DΦ Xnð ÞDNn X0ð Þ DΦ X0ð Þð Þ�1 (31)

where we used DΦ Xð ÞDΦ�1 xð Þ ¼ I, a relation which is proved to hold by com-
puting the Jacobian of Φ ∘ Φ�1 xð Þ ¼ x. As a consequence, the expression for the
Lyapunov error in both coordinate systems is

eLn X0ð Þ
� �2 ¼ Tr DNn X0ð Þð ÞT ðDNn X0ð Þ

h i

eLn x0ð Þ
� �2 ¼ Tr DMn x0ð Þð ÞT ðDMn x0ð Þ

h i (32)

Taking Eq. (31) into account, the last equation can be written as

eLn x0ð Þ
� �2 ¼ Tr V�1 X0ð Þ DNn X0ð Þð ÞTV Xnð ÞDNn X0ð Þ

h i

V Xð Þ ¼ DΦ Xð Þð ÞTDΦ Xð Þ
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Notice that V is a positive-defined matrix and that its determinant is equal to 1 if
Φ is symplectic. For a two-dimensional map, we can write

V �
a b
b c

� �
V�1 ¼

c �b
�b a

� �
(34)

where ac� b2 ¼ 1.

3.2 Isochronous rotations: oscillations in LE and RE

If the given map is linear and two-dimensional and M xð Þ ¼ Lx with ∣Tr L∣ < 2,
then the map is conjugated to a rotation R ωð Þ:

L ¼ TR ωð ÞT�1 R ωð Þ ¼
cos ωð Þ sinω

� sin ωð Þ cos ωð Þ

� �
(35)

Letting xn ¼ Lnx0 and Xn ¼ RnX0, the orbits in the coordinate x and the normal
coordinate X ¼ T�1x and the Lyapunov errors are given by

eLn X0ð Þ
� �2 ¼ Tr R �nωð ÞR nωð Þ½ � ¼ 2
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� �2 ¼ Tr V�1 R �nωð ÞVR nωð Þ
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¼ 2 cos 2 nωð Þ þ a2 þ c2 þ 2b2
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sin 2 nωð Þ ¼

¼ aþ cð Þ2

2
þ 2� aþ cð Þ2
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 !
cos 2nωð Þ

(36)

where V ¼ TTT, and we have used the representation given by Eq. (34) where
DΦ ¼ T. The error is constant in normal coordinate X and oscillates between 2 and
aþ cð Þ2 � 2 ¼ a2 þ c2 þ 2b2 in the coordinate x. The geometric interpretation is
obvious since the orbits of the map belong to an ellipse rather than a circle. The
result for the reversibility error is given by

eRn X0ð Þ
� �2 ¼ 4n

eRn x0ð Þ
� �2 ¼ 2n

aþ cð Þ2

2
þ 2� aþ cð Þ2

2

 !
f nð Þ

f nð Þ ¼
Xn

k¼1

cos 2kωð Þ þ cos 2 n� kð Þωð Þð Þ ¼ cos 2nωð Þ þ cos 2 n� 1ð Þωð Þ � cos 2nωð Þ
1� cos 2ωð Þ

(37)

We shall first consider the dependence of the errors on the iteration order n from
n ¼ 1 up to a maximum value N. Then, we shall consider the dependence on the
initial condition x0 when it is varied on a one-dimensional grid crossing the origin
for the value N of the iteration number. We choose the linear map L which depends
on a single parameter λ, and its relation with the rotation frequency is

L ¼
1� λ 1

�λ 1

� �
sin

ω

2
¼

ffiffiffi
λ

p

2
0≤ λ≤4 (38)

The rotation R ωð Þx is the linear part for the Hénon map, whereas Lx is the linear
part of the standard map that will be discussed in the next sections. The behavior of
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LE and RE for these maps is provided by Eqs. (36) and (37). The error growth
follows a power law with exponent α ¼ 0 for LE and α ¼ 1=2 for RE. Oscillations are
present when the coordinates are not normal.

For a generic map such as L defined by Eq. (38), the growth of REM follows a
power law exponent α ¼ 1=2 as RE, for almost any value of λ, as shown by Figure 1,
right panel, where the plot of MEGNO corresponding to 2α is shown. The result for
the map R ωð Þ in normal coordinates is shown in the left panel of the same figure,
and the exponent is α ¼ 1 for almost all the values of ω.

Letting X ¼ X;Pð ÞT and ϕ; Jð Þ be the action angle coordinates defined by
X ¼ 2Jð Þ1=2 cosϕ and P ¼ � 2Jð Þ1=2 sinϕ, the rotation in the X plane becomes a
translation on the cylinder:

ϕn ¼ ϕn�1 þ ω mod 2π Jn ¼ Jn�1 (39)

and in this case REM vanishes. These results show that REM strongly depends on
the computational complexity of the map. The error growth always follows a power
law, but, depending on the choice of the coordinates, the exponent α varies in the
range 0; 1½ �. Unlike RE, we observe that REM depends linearly on the distance of the
initial condition x0 from the origin. In Figure 2, we plot eREMN as a function of the
initial condition when it varies on a one-dimensional grid issued from the origin for

Figure 1.
Left frame: twice the asymptotic power law exponent provided by the MEGNO filter YN with N ¼ 1000
applied to REM for a rotation R ωð Þ where ω=2π varies in the interval 0; 1=2½ �. The initial condition is
x0 ¼ 0:1, p0 ¼ 0. Right frame: twice the asymptotic power law exponent provided by the MEGNO filter YN

with N ¼ 1000 applied to REM for a linear map L given by Eq. (38) whose parameter λ varies in 0; 1½ �. Initial
condition x0 ¼ 0:1, p0 ¼ 0.

Figure 2.
Left frame: reversibility error due to roundoff eREMN for a rotation R ωð Þ with ω ¼ 2π

ffiffiffi
2

p
� 1

� �
and N ¼ 1000

when the initial condition is varied. We choose x0 ∈ 0;0:5½ �, p0 ¼ 0. The dependence on x0 is evident and a
linear fit f x0ð Þ ¼ 5000x0 is shown, purple line. Right frame: computation of the error for the linear map with
λ ¼ 4 sin 2 ω=2ð Þ where ω has the same value. The linear fit is the same.
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the rotation R ωð Þ and the linear map L. The linear dependence is evident in both
cases, even though the fluctuations are large for the linear map.

3.3 Anisochronous rotations

An integrable map M in normal coordinates and the tangent map DMn read

M xð Þ ¼ R Ω Jð Þð Þx DMn xð Þ ¼ R nΩð Þ þ nΩ0R0 nΩð ÞxxT (40)

where J ¼ ∥x∥2=2 is the action. The square of the Lyapunov error4 reads

eLn
� �2 ¼ Tr DMnð ÞTDMn

� �
¼ 2þ n2 2JΩ0ð Þ2 (41)

and the square of the reversibility error is given by

eRn
� �2 ¼

Xn

k¼1

eLk
� �2 þ eLn�k

� �2� �
¼ 4nþ 2JΩ0ð Þ2

Xn

k¼1

n� kð Þ2 þ
Xn

k¼1

k2
 !

¼ 4nþ 2JΩ0ð Þ2 2 n3

3
þ n
6

� � (42)

For a fixed value of the invariant J, the slope of eRn
� �2, whose asymptotic value is

2α, is defined as d log eRn
� �2

=d log n, and its double average is given by MEGNO
Yn � Y enð Þ. The range of variation is [1, 3]. One can prove that for a given initial
condition, the intermediate value Yn ¼ 2 is reached for

n ¼ 14:5
2J ∣Ω0∣

¼ 14:5
x20 þ p20
� �

∣Ω0∣
(43)

In Figure 3, we show the variation with n∈ 1; 1000½ � of Yn computed for RE
given by Eq. (42), corresponding to the map presented in Eq. (40), where Ω Jð Þ is a
linear function of J, and find a perfect agreement with the analytical estimate of the
value of n for which the value Yn ¼ 2 is reached. In Figure 4, we show the variation
of eRN and the corresponding MEGNO filter YN with the initial condition chosen on a
one-dimensional grid crossing the origin for N ¼ 1000. The integrable map is given
by Eq. (40), where Ω0 is constant. The error reaches a minimum value at the origin,
and a similar behavior for YN is observed. Also eREMN decreases by approaching the
origin so that the behavior is similar even though in this case the fluctuations are
large. We notice that MEGNO does not eliminate the fluctuations of REM. In order
to compute Yn, one needs the sequence eREMm for m ¼ 1,…, n whose computational
cost is of the order of n2. This can be avoided by storing the sequence xε,m and
computing êmREM ¼ ∥M�m

ε xε,nð Þ � xn�m∥ which turns out to be comparable with
eREMm .

4 The standard definition for an initial displacement along the unit vector η0 is eLn η0ð Þ ¼ ∥DMnη0∥where

∥DMnη0∥
2 ¼ 1þ nΩ0ð Þ2∥x∥2 η0 � xð Þ2 þ 2nΩ0 η0 � xð Þ η0 � Jxð Þ and J ¼

0 1

�1 0

� �
. The sum

����DMn 1

0

� �����
2

þ
����DMn 0

1

� �����
2

gives the Lyapunov error eLn
� �2.
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LE and RE for these maps is provided by Eqs. (36) and (37). The error growth
follows a power law with exponent α ¼ 0 for LE and α ¼ 1=2 for RE. Oscillations are
present when the coordinates are not normal.

For a generic map such as L defined by Eq. (38), the growth of REM follows a
power law exponent α ¼ 1=2 as RE, for almost any value of λ, as shown by Figure 1,
right panel, where the plot of MEGNO corresponding to 2α is shown. The result for
the map R ωð Þ in normal coordinates is shown in the left panel of the same figure,
and the exponent is α ¼ 1 for almost all the values of ω.

Letting X ¼ X;Pð ÞT and ϕ; Jð Þ be the action angle coordinates defined by
X ¼ 2Jð Þ1=2 cosϕ and P ¼ � 2Jð Þ1=2 sinϕ, the rotation in the X plane becomes a
translation on the cylinder:

ϕn ¼ ϕn�1 þ ω mod 2π Jn ¼ Jn�1 (39)

and in this case REM vanishes. These results show that REM strongly depends on
the computational complexity of the map. The error growth always follows a power
law, but, depending on the choice of the coordinates, the exponent α varies in the
range 0; 1½ �. Unlike RE, we observe that REM depends linearly on the distance of the
initial condition x0 from the origin. In Figure 2, we plot eREMN as a function of the
initial condition when it varies on a one-dimensional grid issued from the origin for

Figure 1.
Left frame: twice the asymptotic power law exponent provided by the MEGNO filter YN with N ¼ 1000
applied to REM for a rotation R ωð Þ where ω=2π varies in the interval 0; 1=2½ �. The initial condition is
x0 ¼ 0:1, p0 ¼ 0. Right frame: twice the asymptotic power law exponent provided by the MEGNO filter YN

with N ¼ 1000 applied to REM for a linear map L given by Eq. (38) whose parameter λ varies in 0; 1½ �. Initial
condition x0 ¼ 0:1, p0 ¼ 0.

Figure 2.
Left frame: reversibility error due to roundoff eREMN for a rotation R ωð Þ with ω ¼ 2π

ffiffiffi
2

p
� 1

� �
and N ¼ 1000

when the initial condition is varied. We choose x0 ∈ 0;0:5½ �, p0 ¼ 0. The dependence on x0 is evident and a
linear fit f x0ð Þ ¼ 5000x0 is shown, purple line. Right frame: computation of the error for the linear map with
λ ¼ 4 sin 2 ω=2ð Þ where ω has the same value. The linear fit is the same.
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the rotation R ωð Þ and the linear map L. The linear dependence is evident in both
cases, even though the fluctuations are large for the linear map.

3.3 Anisochronous rotations

An integrable map M in normal coordinates and the tangent map DMn read

M xð Þ ¼ R Ω Jð Þð Þx DMn xð Þ ¼ R nΩð Þ þ nΩ0R0 nΩð ÞxxT (40)

where J ¼ ∥x∥2=2 is the action. The square of the Lyapunov error4 reads

eLn
� �2 ¼ Tr DMnð ÞTDMn

� �
¼ 2þ n2 2JΩ0ð Þ2 (41)

and the square of the reversibility error is given by

eRn
� �2 ¼

Xn

k¼1

eLk
� �2 þ eLn�k

� �2� �
¼ 4nþ 2JΩ0ð Þ2

Xn

k¼1

n� kð Þ2 þ
Xn

k¼1

k2
 !

¼ 4nþ 2JΩ0ð Þ2 2 n3

3
þ n
6

� � (42)

For a fixed value of the invariant J, the slope of eRn
� �2, whose asymptotic value is

2α, is defined as d log eRn
� �2

=d log n, and its double average is given by MEGNO
Yn � Y enð Þ. The range of variation is [1, 3]. One can prove that for a given initial
condition, the intermediate value Yn ¼ 2 is reached for

n ¼ 14:5
2J ∣Ω0∣

¼ 14:5
x20 þ p20
� �

∣Ω0∣
(43)

In Figure 3, we show the variation with n∈ 1; 1000½ � of Yn computed for RE
given by Eq. (42), corresponding to the map presented in Eq. (40), where Ω Jð Þ is a
linear function of J, and find a perfect agreement with the analytical estimate of the
value of n for which the value Yn ¼ 2 is reached. In Figure 4, we show the variation
of eRN and the corresponding MEGNO filter YN with the initial condition chosen on a
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by Eq. (40), where Ω0 is constant. The error reaches a minimum value at the origin,
and a similar behavior for YN is observed. Also eREMN decreases by approaching the
origin so that the behavior is similar even though in this case the fluctuations are
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computing êmREM ¼ ∥M�m

ε xε,nð Þ � xn�m∥ which turns out to be comparable with
eREMm .
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If the coordinates are not normal, which is usually the case for a quasi integrable
map, the correspondence between RE and REM is better, and it is confirmed by
comparing the results for MEGNO. Just a shift of 1=2 in the exponent of the power
law nα occurs close to the origin, if the linear part is a rotation R, as for the Hénon
map. If the linear part is L as for the standard map, there is no shift. The better
correspondence is not surprising since the computational complexity of the map is
higher when the coordinates are not normal.

4. Non-integrable maps

We examine here the behavior of the proposed dynamical indicators for two
basic models, the standard map and the Hénon map.

The standard map is defined as a map on the torus T2 and reads

pnþ1 ¼ pn �
λ

2π
sin 2πxnð Þ mod 1 xnþ1 ¼ xn þ pnþ1 mod 1 (44)

where x, p belong to the interval �1=2; 1=2½ � whose ends are identified. For λ≪ 1
and ∣p∣≫

ffiffiffi
λ

p
, it is just a weakly perturbed rotator, and x, p are action angle coordi-

nates. The origin is an elliptic fixed and very close to it; the map is approximated by
a linear map

Figure 4.
Left frame: plot or the error eRN with N ¼ 1000 for the integrable map as a function of the initial condition
x0, p0 ¼ 0 with Ω0 Jð Þ ¼ 0:1 (red line) and Ω0 Jð Þ ¼ 1 (blue line). Center frame: same plot with eREMN for
ω ¼ 2π

ffiffiffi
2

p
� 1

� �
and Ω0 Jð Þ ¼ 0:1, gray line, compared with eRn , red line. Right frame: plot of YN for the

integrable map with Ω0 ¼ 0:1 (red line) and Ω0 Jð Þ ¼ 1(blue line).

Figure 3.
Left frame: plot of MEGNO Yn on the error eRN for 1≤ n≤N with N ¼ 1000 for the integrable map with
Ω0 ¼ 0:1 and initial condition x0 ¼ 0:5, p0 ¼ 0 (blue line). The green line refers to a modified definition YMn,
where n loge2n � loge2n�1

� �
is replaced with loge2n � loge2n�1

� �
= logn� log n� 1ð Þð Þ, which, applied to the sequence

en ¼ nα, gives 2α for any n. The vertical line gives the theoretical estimate of the value of n for which Yn ¼ 2 (see
Eq. (43)) Right frame: the same for x0 ¼ 1, p0 ¼ 0.
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xnþ1 ¼ 1� λð Þxn þ pn pnþ1 ¼ �λxn þ pn (45)

This map is conjugated to a rotation R ωð Þ for 0 < λ < 2 where sin ω=2ð Þ ¼
ffiffiffi
λ

p
=2.

The point x ¼ �1=2, p ¼ 0 is hyperbolic, and for λ≪ 1 the corresponding orbit is
approximated by the separatrix of the Hamiltonian:

H ¼ p2

2
� λ

2πð Þ2
cos 2πxð Þ (46)

which is the interpolating Hamiltonian of the map when λ ! 0. We observe that
the frequency for small oscillations is ω ¼

ffiffiffi
λ

p
(see Eq. (38)) when λ ! 0. Since the

time scale of the Hamiltonian H is T ¼ 2π=
ffiffiffi
λ

p
≫ 1, the symplectic integrator in

Eq. (44), obtained for a time step Δt ¼ 1, provides a good approximation to the
orbit. Conversely, the Hamiltonian provides a good interpolation to the orbit of the
map. The equation for the separatrix of H is given by

p ¼ �
ffiffiffi
λ

p

π
cos πxð Þ: (47)

As a consequence, for λ small the width of the separatrix is 2
ffiffiffi
λ

p
=π. When λ

increases, non-integrable features appear, such as chains of islands corresponding to
resonances and a chaotic region near the separatrix due to homoclinic intersections.

The Hénon map is defined by

xnþ1

pnþ1

 !
¼ R ωð Þ

xn
pn þ x2n

� �
R ωð Þ ¼

cosω sinω

� sinω cosω

� �
(48)

Close to the origin, this is just a rotation with frequency ω. For ω ! 0 this is a
good symplectic integrator of the Hamiltonian:

H ¼ ω
p2 þ x2

2
� x3

3
(49)

with time step Δt ¼ 1. The approximation is good since the characteristic
time is the period of the linear rotation T ¼ 2π=ω. The motion is bounded
by the orbit issued from the hyperbolic fixed point of the map
x ¼ 2 tan ðω=2Þ; p ¼ �2 tan 2 ω=2ð Þð Þ which corresponds to the critical point
x ¼ ω; p ¼ 0ð Þ of the Hamiltonian. The stability boundary is approximated by
H x; pð Þ ¼ ω3=6 whose orbit explicitly reads p ¼ � ω� xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ 2xð Þ=3

p
. The

Birkhoff normal forms provide an integrable approximation to the map and the
corresponding interpolating Hamiltonian, from which the errors may be analyti-
cally computed.

5. The standard map

We have analyzed the errors en for a fixed initial condition by varying n up to a
maximum value N, by varying the initial condition on a one-dimensional grid for
n ¼ N and by choosing a grid in the phase plane for n ¼ N. The LE shows oscilla-
tions with n, RE grows without oscillations, and the behavior of RE is similar to RE
although with large fluctuations. The results obtained by filtering the errors with
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If the coordinates are not normal, which is usually the case for a quasi integrable
map, the correspondence between RE and REM is better, and it is confirmed by
comparing the results for MEGNO. Just a shift of 1=2 in the exponent of the power
law nα occurs close to the origin, if the linear part is a rotation R, as for the Hénon
map. If the linear part is L as for the standard map, there is no shift. The better
correspondence is not surprising since the computational complexity of the map is
higher when the coordinates are not normal.

4. Non-integrable maps

We examine here the behavior of the proposed dynamical indicators for two
basic models, the standard map and the Hénon map.

The standard map is defined as a map on the torus T2 and reads

pnþ1 ¼ pn �
λ

2π
sin 2πxnð Þ mod 1 xnþ1 ¼ xn þ pnþ1 mod 1 (44)

where x, p belong to the interval �1=2; 1=2½ � whose ends are identified. For λ≪ 1
and ∣p∣≫

ffiffiffi
λ

p
, it is just a weakly perturbed rotator, and x, p are action angle coordi-

nates. The origin is an elliptic fixed and very close to it; the map is approximated by
a linear map

Figure 4.
Left frame: plot or the error eRN with N ¼ 1000 for the integrable map as a function of the initial condition
x0, p0 ¼ 0 with Ω0 Jð Þ ¼ 0:1 (red line) and Ω0 Jð Þ ¼ 1 (blue line). Center frame: same plot with eREMN for
ω ¼ 2π
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and Ω0 Jð Þ ¼ 0:1, gray line, compared with eRn , red line. Right frame: plot of YN for the

integrable map with Ω0 ¼ 0:1 (red line) and Ω0 Jð Þ ¼ 1(blue line).

Figure 3.
Left frame: plot of MEGNO Yn on the error eRN for 1≤ n≤N with N ¼ 1000 for the integrable map with
Ω0 ¼ 0:1 and initial condition x0 ¼ 0:5, p0 ¼ 0 (blue line). The green line refers to a modified definition YMn,
where n loge2n � loge2n�1

� �
is replaced with loge2n � loge2n�1

� �
= logn� log n� 1ð Þð Þ, which, applied to the sequence

en ¼ nα, gives 2α for any n. The vertical line gives the theoretical estimate of the value of n for which Yn ¼ 2 (see
Eq. (43)) Right frame: the same for x0 ¼ 1, p0 ¼ 0.
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xnþ1 ¼ 1� λð Þxn þ pn pnþ1 ¼ �λxn þ pn (45)

This map is conjugated to a rotation R ωð Þ for 0 < λ < 2 where sin ω=2ð Þ ¼
ffiffiffi
λ

p
=2.

The point x ¼ �1=2, p ¼ 0 is hyperbolic, and for λ≪ 1 the corresponding orbit is
approximated by the separatrix of the Hamiltonian:

H ¼ p2

2
� λ

2πð Þ2
cos 2πxð Þ (46)

which is the interpolating Hamiltonian of the map when λ ! 0. We observe that
the frequency for small oscillations is ω ¼

ffiffiffi
λ

p
(see Eq. (38)) when λ ! 0. Since the

time scale of the Hamiltonian H is T ¼ 2π=
ffiffiffi
λ

p
≫ 1, the symplectic integrator in

Eq. (44), obtained for a time step Δt ¼ 1, provides a good approximation to the
orbit. Conversely, the Hamiltonian provides a good interpolation to the orbit of the
map. The equation for the separatrix of H is given by

p ¼ �
ffiffiffi
λ

p

π
cos πxð Þ: (47)

As a consequence, for λ small the width of the separatrix is 2
ffiffiffi
λ

p
=π. When λ

increases, non-integrable features appear, such as chains of islands corresponding to
resonances and a chaotic region near the separatrix due to homoclinic intersections.

The Hénon map is defined by

xnþ1

pnþ1

 !
¼ R ωð Þ

xn
pn þ x2n

� �
R ωð Þ ¼

cosω sinω

� sinω cosω

� �
(48)

Close to the origin, this is just a rotation with frequency ω. For ω ! 0 this is a
good symplectic integrator of the Hamiltonian:

H ¼ ω
p2 þ x2

2
� x3

3
(49)

with time step Δt ¼ 1. The approximation is good since the characteristic
time is the period of the linear rotation T ¼ 2π=ω. The motion is bounded
by the orbit issued from the hyperbolic fixed point of the map
x ¼ 2 tan ðω=2Þ; p ¼ �2 tan 2 ω=2ð Þð Þ which corresponds to the critical point
x ¼ ω; p ¼ 0ð Þ of the Hamiltonian. The stability boundary is approximated by
H x; pð Þ ¼ ω3=6 whose orbit explicitly reads p ¼ � ω� xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ 2xð Þ=3

p
. The

Birkhoff normal forms provide an integrable approximation to the map and the
corresponding interpolating Hamiltonian, from which the errors may be analyti-
cally computed.

5. The standard map

We have analyzed the errors en for a fixed initial condition by varying n up to a
maximum value N, by varying the initial condition on a one-dimensional grid for
n ¼ N and by choosing a grid in the phase plane for n ¼ N. The LE shows oscilla-
tions with n, RE grows without oscillations, and the behavior of RE is similar to RE
although with large fluctuations. The results obtained by filtering the errors with
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MEGNO confirm this observation. In Figure 5, we plot the errors en for λ ¼ 0:1 and
Y enð Þ by varying n. The fast oscillations of LE and the large fluctuations of REM are
clearly visible.

When the orbit is chaotic, the growth of all errors is exponential. However, LE
and RE can grow until the overflow is reached, whereas REM can grow only up to
1=ϵ where ϵ is the machine accuracy. Typically in double precision, the overflow
corresponds to 10300 where ϵ�1 � 1017. The same limitation is met when the
Lyapunov error is computed using the shadow orbit method without
renormalization rather than with the variational method. In Figure 6, we show the
errors for a chaotic orbit when λ ¼ 0:8. Both LE and RE exhibit an exponential
growth after an initial transitory phase. The behavior of REM is very similar until
n≤ 300. For higher values the saturation to 1017 is evident, and REM ceases to grow
exponentially.

5.1 Initial conditions on a one-dimensional grid

Figure 7 shows the variation of LE, RE, and REM for λ ¼ 0:1, with the initial
condition chosen on a regular grid in the vertical axis p for a fixed order N. The LE
oscillates when the initial condition varies, RE does not oscillate, and REM fluctu-
ates. When the MEGNO filter is applied, LE and RE are equally smooth, whereas
REM still fluctuates.

Figure 5.
Left frame: plot of the errors for the standard map with λ ¼ 0:1 and initial condition x0 ¼ 0, p0 ¼ 0:075.
Lyapunov error eLn (blue line), reversibility errors eRn (red line), and eREMn (gray line), for 1≤ n≤ 2500. Right
frame: plots for the MEGNO filter Yn for the same errors.

Figure 6.
Left frame: plot of the errors for the standard map with λ ¼ 0:8 and initial condition x0 ¼ 0, p0 ¼ 0:26
corresponding to a chaotic orbit. Lyapunov error eLn (blue line), reversibility errors e

R
n (red line), and eREMn (gray

line), for n≤ 500. Right frame: plots for the MEGNO filter Yn for the same errors.
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In Figure 8, the same results are shown for a higher value of the parameter
λ ¼ 0:8 at which the dynamical structure is rich due to the presence of many
resonances and small chaotic regions. The effectiveness in detecting the resonances
is evident.

5.2 Initial conditions on a two-dimensional domain

We compare here LE, RE, and REM when the initial conditions are chosen in a
two-dimensional phase space domain and the iteration number has a fixed value N.
The most effective way of analyzing the results is to plot the errors using a loga-
rithmic, color scale. Following the conclusions of our previous section, we show LE,
RE, and REM, in a logarithmic color scale. We choose a regular two-dimensional
grid in a square (or rectangular) domain of phase space with Ng �Ng points, where
we compute the errors and show the result using a color scale. In order to analyze
the details, smaller squares may be chosen eventually increasing the iteration num-
ber. In Figure 9, we show for N ¼ 500 and Ng ¼ 200 the color plots for the errors
of the standard map with λ ¼ 0:8 and in Figure 10 for λ ¼ 1:5. In the first case, the
measure of chaotic orbits is small with respect to the regular ones. We observe that
LE has some weak structures within the main regular component surrounding the
origin, visible when the figure is sufficiently magnified. Such structures of LE,
related to the oscillating growth with n, disappear when MEGNO is computed and

Figure 7.
Left frame: variation for the standard map with λ ¼ 0:1 of the errors LE (blue line), RE (red line), REM (gray
line) computed at N ¼ 1000 with the initial condition x0 ¼ 0, p0 ∈ �0:15; 1;0:15½ �. Right frame: the same for
MEGNO YN .

Figure 8.
Left frame: variation for the standard map with λ ¼ 0:8 of the errors LE (blue line), RE (red line), and REM
(gray line), computed at N ¼ 1000 with the initial condition x0 ¼ 0, p0 ∈ 0; 0:5½ �. Right frame: magnification
in the interval p0 ∈ 0:25;0:5½ �.
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MEGNO confirm this observation. In Figure 5, we plot the errors en for λ ¼ 0:1 and
Y enð Þ by varying n. The fast oscillations of LE and the large fluctuations of REM are
clearly visible.

When the orbit is chaotic, the growth of all errors is exponential. However, LE
and RE can grow until the overflow is reached, whereas REM can grow only up to
1=ϵ where ϵ is the machine accuracy. Typically in double precision, the overflow
corresponds to 10300 where ϵ�1 � 1017. The same limitation is met when the
Lyapunov error is computed using the shadow orbit method without
renormalization rather than with the variational method. In Figure 6, we show the
errors for a chaotic orbit when λ ¼ 0:8. Both LE and RE exhibit an exponential
growth after an initial transitory phase. The behavior of REM is very similar until
n≤ 300. For higher values the saturation to 1017 is evident, and REM ceases to grow
exponentially.

5.1 Initial conditions on a one-dimensional grid

Figure 7 shows the variation of LE, RE, and REM for λ ¼ 0:1, with the initial
condition chosen on a regular grid in the vertical axis p for a fixed order N. The LE
oscillates when the initial condition varies, RE does not oscillate, and REM fluctu-
ates. When the MEGNO filter is applied, LE and RE are equally smooth, whereas
REM still fluctuates.

Figure 5.
Left frame: plot of the errors for the standard map with λ ¼ 0:1 and initial condition x0 ¼ 0, p0 ¼ 0:075.
Lyapunov error eLn (blue line), reversibility errors eRn (red line), and eREMn (gray line), for 1≤ n≤ 2500. Right
frame: plots for the MEGNO filter Yn for the same errors.
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Left frame: plot of the errors for the standard map with λ ¼ 0:8 and initial condition x0 ¼ 0, p0 ¼ 0:26
corresponding to a chaotic orbit. Lyapunov error eLn (blue line), reversibility errors e
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n (red line), and eREMn (gray

line), for n≤ 500. Right frame: plots for the MEGNO filter Yn for the same errors.
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In Figure 8, the same results are shown for a higher value of the parameter
λ ¼ 0:8 at which the dynamical structure is rich due to the presence of many
resonances and small chaotic regions. The effectiveness in detecting the resonances
is evident.

5.2 Initial conditions on a two-dimensional domain

We compare here LE, RE, and REM when the initial conditions are chosen in a
two-dimensional phase space domain and the iteration number has a fixed value N.
The most effective way of analyzing the results is to plot the errors using a loga-
rithmic, color scale. Following the conclusions of our previous section, we show LE,
RE, and REM, in a logarithmic color scale. We choose a regular two-dimensional
grid in a square (or rectangular) domain of phase space with Ng �Ng points, where
we compute the errors and show the result using a color scale. In order to analyze
the details, smaller squares may be chosen eventually increasing the iteration num-
ber. In Figure 9, we show for N ¼ 500 and Ng ¼ 200 the color plots for the errors
of the standard map with λ ¼ 0:8 and in Figure 10 for λ ¼ 1:5. In the first case, the
measure of chaotic orbits is small with respect to the regular ones. We observe that
LE has some weak structures within the main regular component surrounding the
origin, visible when the figure is sufficiently magnified. Such structures of LE,
related to the oscillating growth with n, disappear when MEGNO is computed and

Figure 7.
Left frame: variation for the standard map with λ ¼ 0:1 of the errors LE (blue line), RE (red line), REM (gray
line) computed at N ¼ 1000 with the initial condition x0 ¼ 0, p0 ∈ �0:15; 1;0:15½ �. Right frame: the same for
MEGNO YN .

Figure 8.
Left frame: variation for the standard map with λ ¼ 0:8 of the errors LE (blue line), RE (red line), and REM
(gray line), computed at N ¼ 1000 with the initial condition x0 ¼ 0, p0 ∈ 0; 0:5½ �. Right frame: magnification
in the interval p0 ∈ 0:25;0:5½ �.
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are not present in the RE and REM plots. The spurious structures observed in FLI,
which depend on the choice of the initial vector, are not present in LE, because in
our definition the error does not depend on the choice of an initial displacement
vector. Notice that the chosen scales have maximum equal to 1010 for LE and 1015

for RE and REM. This choice is suggested by the asymptotic behavior nα of the error
for regular orbits where α ¼ 1 for LE and α ¼ 3=2 for RE.

6. The Hénon map

We briefly report in this section the numerical results on the errors computed on
domains of dimensions 1 and 2 in phase space. Close to the origin, the linear map in
this case is a rotation R ωð Þ. As a consequence the power law exponent of REM varies
from 1 to 2, whereas the exponent for RE varies from 1/2 to 3/2. Within the main
island, the variation range of the exponent for RE and REM is the same 1=2; 3=2½ �.
The behavior of LE and RE close to the origin is analytically obtained by using the
normal forms. The frequency Ω Jð Þ, from normal forms at the lowest order, reads

Ω≃ωþ JΩ2 Ω2 ¼ � 1
8

3 cot
ω

2

� �
þ cot

3ω
2

� �� �
(50)

a formula valid for frequencies ω=2π not approaching the unstable resonances 0
and 1/3 where Ω2 diverges.

In the normal coordinates X;Pð Þ, the behavior of errors is given by Eqs. (41) and
(42). In the original coordinates x; pð Þ, the error could be evaluated using Eq. (33).

Figure 9.
Left frame: standard map with λ ¼ 0:8 color plot of LE in a logarithmic scale for N ¼ 500 and a grid with
Ng ¼ 200. Center frame: standard map with λ ¼ 0:8 color plot of RE in a logarithmic scale for N ¼ 500 and a
grid with Ng ¼ 200. Right frame: color plot of REM in a logarithmic scale.

Figure 10.
Left frame: standard map with λ ¼ 0:8 color plot of LE in a logarithmic scale for N ¼ 500 and a grid with
Ng ¼ 200. Center frame: standard map with λ ¼ 1:5 color plot of RE in a logarithmic scale for N ¼ 500 and a
grid with Ng ¼ 200. Right frame: color plot of REM in a logarithmic scale.
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In normal coordinates, the errors grow as 2J ∣Ω2∣nα where α ¼ 1 for LE and α ¼ 3=2
for RE. When the frequency attains a low resonant value, a chain of islands appears.
Close to the separatrix J ¼ Js, the frequency vanishes as Ω � 1= log Js � Jð Þ and
consequently Ω0 Jð Þ � Js � Jð Þ�1 as Js is approached, up to a logarithmic correction.
The errors diverge by approaching the separatrix even though the power law
growth does not change except on the separatrix itself. As a consequence, LE and
RE can detect the separatrix. If the remainder in the normal form interpolating
Hamiltonian is taken into account, then the separatrix becomes a thin chaotic region
where the errors have an exponential growth and MEGNO rises linearly with n. The
REM behaves as RE neglecting its fluctuations. The Hénon map, we consider here,
has a linear frequency ω=2π ¼ 0:21 which is close to the resonance 1=5. As a conse-
quence a chain of five islands appears before reaching the dynamic aperture,
namely, the boundary of the stability region, beyond which the orbits escape to
infinity.

In Figure 11, we show the variation of LE, RE, and REM computed at a fixed
order N and after filtering them with MEGNO, when the initial conditions are
chosen on a one-dimensional grid. The resonance 1=5 is met, as shown by the
appearance of a large chain of islands, since Ω Jð Þ is monotonically decreasing. The
chaotic layer at the border of the islands chain is very thin so that LE and RE grow
by approaching it, as for an integrable map with a separatrix.

In Figure 12, we show the color plots of LE, RE, and REM in a square domain of
phase space. The weakly chaotic separatrix is detectable in LE and is more clearly
visible in RE. The REM plot differs from RE for the up-shit 1/2 of the power law
exponent before the thin chaotic separatrix and for the presence of fluctuations.

Figure 11.
Left frame: errors for the Hénon with ω ¼ 0:21� 2πð Þ: LE (blue line), RE (red line), and REM (gray line)
computed at iteration number N ¼ 1000 along the line x ¼ r cos α, p ¼ r sin α with α ¼ 14o joining the origin
with the center of the first of five islands. Center frame: computation of MEGNO with N ¼ 1000 for LE (blue
line), RE (red line), and REM (gray line). Right frame: phase portrait of the Hénon map. The initial conditions
for the errors in the left and right frames are chosen on the red segment.

Figure 12.
Left frame: Hénon map with ω ¼ 0:21� 2πð Þ color plot of LE in a logarithmic scale for N ¼ 500 and a grid
with Ng ¼ 200. The white points belong to the unstable region beyond the dynamic aperture. Center frame:
color plot of RE in a logarithmic scale. Right frame: color plot of REM in a logarithmic scale.
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7. Conclusions

We have presented a detailed analysis of the stability indicators LE, RE, and
REM recently proposed. Defining the square of LE as the trace of the tangent map
times, its transpose renders this indicator independent from the choice of an initial
vector, which can introduce spurious structures. The RE is the reversibility error
due to additive random noise, whereas REM is the reversibility error due to the
roundoff. A very simple relation is found between RE and LE. The oscillations,
which affect the fast Lyapunov indicator, can be filtered with MEGNO. Since RE
has a smooth behavior and does not exhibit oscillations, filtering it by MEGNO is
not necessary. The asymptotic behavior of REM is similar to RE even though it
exhibits large fluctuations. The displacements caused by roundoff are almost ran-
dom vectors, if the map has a high computational complexity, but since just a single
realization of the process is available, the fluctuations cannot be averaged.

We have first examined the behavior of LE and RE for linear maps and for
integrable maps. If the fixed point is elliptic, then the asymptotic growth follows a
power law nα, and the exponent does not depend on the chosen coordinates for LE
and RE. Conversely, the presence of oscillations and their amplitude depends on the
choice of coordinates. The growth of REM also follows a power law, but the choice
of coordinates affects the exponent itself.

For a generic map which has regular and chaotic components, the error growth
follows a power law and an exponential law, respectively. For the standard map and
the Hénon map, the behavior of LE, RE, and REM has been compared first by
varying the iteration order n up to a some value N, for a selected initial condition.
Then the errors for n ¼ N have been compared when the initial point moves on a
line. The theoretical predictions concerning the power law growth in the regular
regions and the exponential growth in the chaotic ones are confirmed. For two-
dimensional maps, the error plots for initial conditions in a rectangular domain of
phase space are very similar, and the correspondence with the phase space portraits
is excellent. Moreover, the different plots allow a quantitative comparison of the
orbital sensitivity to initial displacements, noise, and roundoff. For maps of dimen-
sion 4 or higher, the proposed error plots on selected phase planes allow to inspect
the orbital stability. Hamiltonian flows must be approximated with a high accuracy
by symplectic maps, with algorithms which provide simultaneously the
corresponding tangent maps [20, 21], in order to compute the errors discussed so
far. A special care is required in comparing RE with REM when the chosen phase
plane is invariant. Indeed given an initial point in the invariant plane, the noise
brings the orbit out of it, whereas the roundoff usually does not. In this case a
random kick before reversing the orbit is sufficient to bring the orbit out of the
invariant plane and to restore the correspondence between REM and RE. The
satisfactory results obtained so far, not only in the simple models presented here but
also in high dimensional models of celestial mechanics, prove that the method we
propose has a wide range of applicability.
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Chapter 11

BH M87: Beyond the Gates of Hell
Pawel Gusin, Andy T. Augousti and Andrzej Radosz

Abstract

The supermassive black hole located in the galaxy M87 (BH M87) is four times
larger than our solar system. If it is spherically symmetric, then a capsule free falling
from a distance of 1 light year would cross BHM87’s event horizon within some tens
of years. Continuing that journey, any unfortunate astronomer traveling within the
capsule would remain alive for a few further tens of hours; if the capsule were
equipped with a powerful engine and could slow down, their lifetime inside the
horizon beyond “the gates of Hell”would be slightly extended. How is this so?What
are the other properties of the interior of BH M87? Maintaining the assumption of
spherical symmetry of the exterior of BH M87, we briefly discuss some simple but
intriguing properties of its interior, a region that turns out to be highly anisotropic,
both expanding and contracting at the same time.

Keywords: Schwarzschild and Reissner-Nordström space-times, supermassive
black hole M87, isotropic exterior, event horizon, anisotropic interior

1. Introduction

On April 10, 2019, the first ever image of a black hole was displayed. Due to the
extensive efforts of very many teams of astronomers, working in parallel a picture
of a supermassive black hole, of 6.5 billion solar masses, located in the galaxy M87,
at a distance of 55 Mly, belonging to the Virgo supercluster, was produced. The size
of that object, despite being four times the size of the solar system, is nonetheless
still too small to be pictured by a single telescope, so worldwide cooperation
through the Event Horizon Telescope project led to a synthesized Earth size-like
device and the final vision (see Figure 1) [1].

The visible presence of such a supermassive black hole puts old questions in a
new light. Traveling toward such an object, reaching its “edge”—the event horizon
—crossing it, and entering the interior, what would be the experience of such a
traveler, an unfortunate astronaut, who would be unable to share his/her views and
experiences with colleagues who remain at the starting point in a “Mother Station?”

We will describe some particular features of such a trip focusing on the bizarre
properties of the interior of the black holes.

In general there are four possible kinds of black holes (see, e.g., [2–4]). Isotropic,
i.e., spherically symmetric and static, BHs are of the Schwarzschild type; rotating—
hence axially symmetric—BHs are called Kerr BHs; both of these types could also be
charged; then they are referred to as Reissner-Nordström and Kerr-Newman,
respectively. The outer edge of the BHs, an event horizon, acts as a semitransparent
membrane that might be crossed once and in one direction only. Apart from the
Schwarzschild BH, the other three types of BH also possess an inner horizon
referred to as a Cauchy horizon.
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In our considerations we will limit our discussion to the case of spherically
symmetric, static BHs: the Schwarzschild (S) and Reissner-Nordström (RN) types.
In these two cases, the space-time metric tensor is diagonal in spherical polar
coordinates t, r, θ,φ and is described by the line element:

ds2 ¼ gttc
2dt2 � g�1

tt dr
2 � r2dΩ2 (1)

where dΩ2 ¼ dθ2 þ sin 2θdφ2 is a unit sphere element. The ttf g element of the
metric tensor takes the following form:

g ið Þ
tt ¼

1� 2GM
c2r

i ¼ S

1� 2GM
c2r

þ Q2

r2
i ¼ RN

8>><
>>:

(2)

where M is the mass and Q is the charge of the BH. Hereafter we will use the

notation c ¼ G ¼ 1. The zero value of g Sð Þ
tt determines the location of the event

horizon or gravitational radius, rg :

rg ¼ 2M (3)

There are two zeros of g RNð Þ
tt ,

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

q
(4)

determining an outer, rþ, event horizon and an inner, r� Cauchy horizon.

2. A capsule radially falling toward a black hole horizon

Consider the case of a test object, a capsule radially freely falling in a spherically
symmetric and static space-time (1). We shall assume that capsule A (for Alice, see
below) starts from rest at some initial position located at a Mother Station (MS)
fixed at radial position rMS. We will describe this radial infall answering some
simple questions:

1.How long does it take, measured by an observer, termed A for Alice, within
capsule A to reach the event horizon?

Figure 1.
First ever image of the black hole in galaxy Messier 87, here denoted as BH M87 (55 Mly from the Earth),
April 10, 2019.
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2.How much time does such a trip take from the point of view of another
observer, termed static observer (SO) located at the Mother Station?

3.How does the speed of A change during this journey?

4.How can we verify these predictions?

Before doing this we will introduce some useful definitions. Firstly, every
observer O whose history in the space-time is described by a world line, xμO τð Þ

� �
such that

dτ2 ¼ gαβdx
αdxβ (5)

is specified by a unit velocity four-vector uμO τð Þ ¼ dxμ
dτ

� �
,

u2 � gαβu
αuβ ¼ 1: (6)

Light rays xμ σð Þf g belong to light cones, and they are specified by a null wave
vector kμ σð Þ ¼ dxμ

dσ

� �
,

k2 � gαβk
αkβ ¼ 0, (7)

where σ is an affine parameter of the null geodesic. Due to the symmetry
properties of the static and isotropic character of the S and RN space-times, there
are two conservation laws: energy and angular momentum are conserved quantities
(see, e.g., [5]). Energy conservation means that the t-component of the covariant
velocity ut/wave kt vector is conserved:

ut ¼ gtβu
β � gttu

t ¼ ε, (8)

kt ¼ gtβk
β � gttk

t ¼ ω: (9)

Conservation of the angular momentum results in the planar motion of both
time-like geodesics (8) and light-like geodesics (9). Without loss of generality,
one can consider then equatorial planar motion, θ ¼ π

2, where the corresponding
velocity/wave vector component vanishes:

uθ ¼ 0, (10)

kθ ¼ 0: (11)

The value of the angular momentum is conserved, i.e.,

uφ ¼ gφφu
φ � L, (12)

kφ ¼ gφφk
φ � l: (13)

Therefore, geodesics determined by three nonvanishing components of the
tangent vector, which is the velocity vector for the time-like world lines, Eq. (6),
and the wave vector for the light-like world lines, Eq. (7), may be found from the
two conservation laws and the normalization condition:
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2.How much time does such a trip take from the point of view of another
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observer O whose history in the space-time is described by a world line, xμO τð Þ

� �
such that

dτ2 ¼ gαβdx
αdxβ (5)

is specified by a unit velocity four-vector uμO τð Þ ¼ dxμ
dτ

� �
,

u2 � gαβu
αuβ ¼ 1: (6)

Light rays xμ σð Þf g belong to light cones, and they are specified by a null wave
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properties of the static and isotropic character of the S and RN space-times, there
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(see, e.g., [5]). Energy conservation means that the t-component of the covariant
velocity ut/wave kt vector is conserved:
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2, where the corresponding
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The value of the angular momentum is conserved, i.e.,
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φ � L, (12)
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ur ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt 1þ L2

r2

� �s
, (14)

kr ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � gtt

l2

r2

s
: (15)

A special class of non-geodesic trajectories represents static observers (SO),
whose position is fixed r0, θ0,φ0ð Þ. Their only nonvanishing component of the
velocity vector is a temporal one utSO. It is determined by the normalization condi-
tion (Eq. (6)):

utSO ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt r0ð Þ

p : (16)

Hence one can describe the trajectory of A, which is radially infalling, and the
Mother Station (MS), which is static at r0, by using their velocity vectors uA and uMS:

uA ¼ utA, u
r
A, 0, 0

� �
¼ ε

gtt
,�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

q
, 0, 0

� �
, (17)

uMS ¼ utMS, 0, 0, 0
� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ

p , 0, 0, 0

 !
, (18)

If A starts from the location of the Mother Station, being initially at rest, then

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ

q
(19)

(see also below).
During the infall of A, one can measure its speed at some intermediate point r1

(between rMS and the event horizon) by arranging at r1 an observer O determined
by velocity vector uO who measures an infinitesimal “distance of A” covered within
an infinitesimal “time period.” This results in a speed for A as measured by O, vA Oð Þ
expressed in terms of a scalar product uAuO:

uAuO ¼ gαβu
α
Au

β
O ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2A
p : (20)

If O is a static observer located at r1, then

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt r1ð Þ

p
ε

(21)

as one can verify by using Eqs. (20) and (16).

2.1 How long does it take to Alice to reach the event horizon?

Now we can answer the questions concerning the duration associated with the
infall of A. Applying the equations for the nonvanishing components of its velocity
vector (Eq. (17))
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dt
dτ

¼ ε

gtt
, (22)

dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

q
, (23)

one obtains the equations for the coordinate time t and for the proper time τ:

tþ C ¼ �
ð

ε

gtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr, (24)

τ þ C0 ¼ �
ð

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr: (25)

The proper time is actually the time measured by Alice (A) traveling within the
capsule. Hence the trip from MS to the event horizon of the BH is completed by
Alice within the period:

τ rMS; rg
� �

¼ �
ðrg
rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr: (26)

Specific examples of the free fall for both Schwarzschild and Reissner-
Nordström space-times will be presented later. The important fact is that expression
(26) leads to a finite value of the time τ rMS; rg

� �
recorded by Alice.

On the other hand, the coordinate time corresponding to the trip from MS to the
event horizon is infinite (see also [6]):

t rMS; rð Þ ¼ �
ðr

rMS

ε

gtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ��!r!rg
∞ (27)

(see, however, below, Section 5). Coordinate time is associated with the time
recorded by an observer(s) belonging to “our” part of the universe. It means that
the perception of observers located outside the event horizon of a black hole is such
that Alice would never complete her trip toward the horizon. In other words she
could never reach the horizon in a finite time period.

This process of the asymptotic approach to the BH horizon as perceived by MS
observers can be illustrated in a way presented in the following subsection.

2.2 Communication between the capsule and the Mother Station

Let us consider an exchange of electromagnetic signals, light rays between two
observers: Alice, traveling within the capsule and Bob located at the Mother Station.
Such signals are represented by radial rays (9) and (15) where l ¼ 0 and

k ¼ ω

gtt
,�ω, 0, 0

� �
: (28)

The frequency of the signal recorded by an arbitrary observer O, ωO, is given by
the projection of the appropriate wave vector, k, on the unit time-like vector of O,
i.e., on the four-velocity vector uO. It is a scalar product k � uO, and

ωO ¼ k � uO � gαβk
αuβO: (29)
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as one can verify by using Eqs. (20) and (16).
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Now we can answer the questions concerning the duration associated with the
infall of A. Applying the equations for the nonvanishing components of its velocity
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Nordström space-times will be presented later. The important fact is that expression
(26) leads to a finite value of the time τ rMS; rg
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recorded by Alice.

On the other hand, the coordinate time corresponding to the trip from MS to the
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rMS

ε

gtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ��!r!rg
∞ (27)

(see, however, below, Section 5). Coordinate time is associated with the time
recorded by an observer(s) belonging to “our” part of the universe. It means that
the perception of observers located outside the event horizon of a black hole is such
that Alice would never complete her trip toward the horizon. In other words she
could never reach the horizon in a finite time period.

This process of the asymptotic approach to the BH horizon as perceived by MS
observers can be illustrated in a way presented in the following subsection.

2.2 Communication between the capsule and the Mother Station

Let us consider an exchange of electromagnetic signals, light rays between two
observers: Alice, traveling within the capsule and Bob located at the Mother Station.
Such signals are represented by radial rays (9) and (15) where l ¼ 0 and

k ¼ ω

gtt
,�ω, 0, 0

� �
: (28)

The frequency of the signal recorded by an arbitrary observer O, ωO, is given by
the projection of the appropriate wave vector, k, on the unit time-like vector of O,
i.e., on the four-velocity vector uO. It is a scalar product k � uO, and
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Hence, Alice sends back signals that are recorded by Bob (at MS), and the
frequency ratio of the recorded, ωr

B vs. emitted, ωe
A signals, found from Eqs. (28),

(29), (9), (15), (17) and (18) is (see also [7]):

ωr
B

ωe
A
¼

gαβk
αuβB

gαβk
αuβA

¼ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ

p ωε

gtt rAð Þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt rAð Þ

p
ε

 !" #�1

¼ gtt rAð Þ
gtt rMSð Þ

1
1þ vA

� 1� vA:

(30)

One can see that the signals are found to be redshifted: the frequency of the
recorded signals is lower than the frequency of the emitted signals. But in this case it
turns out to be of a special form: it may be referred to as a critical redshift as it
tends to zero as A approaches the horizon. Indeed, the speed vA of the capsule, once
measured by the static observer, tends to the speed of light in a vacuum, vA ! 1
(e.g., [6]) as the capsule approaches the horizon, gtt rg

� �
¼ 0 (see Eq. (21)). And it is

themanifestation of the fact that from Bob’s perspective, the capsule approaches event
horizon asymptotically and will never reach the horizon (see however Section 5!): the
frequency of the signals incoming from the capsule gradually decreases and eventually
goes beyond the lower limits (however small!) of the sensitivity of recording devices.

Summarizing the findings of this section, one would like to point out some of
intuitive and counterintuitive conclusions. Obviously the speed of the capsule freely
falling toward the BH horizon increases as measured by static observers placed
above the event horizon. Quite non-obvious is that this value tends to the speed of
light as it approaches the horizon. And what is even more important is that this
outcome is independent of the initial conditions: wherever the capsule starts from,
the rest of the value of its speed asymptotically approaches the value of the speed of
light. Moreover, there are no static observers residing on the horizon, so one cannot
claim that a test object reaches the speed of light when crossing the BH horizon (see
also Refs. [8, 9]). Accompanying this highly nonclassical behavior of the free fall
speed is the duration of this trip toward the horizon—it turns out to be infinite for
an observer located beyond the event horizon (see also Section 5). Nevertheless the
trip is completed within a well-defined time period for a traveler, Alice, who is
confined within the capsule. This may be regarded as a most dramatic illustration of
time dilation where both kinematic and gravitational time dilations are combined. It
is confirmed by the generalized Doppler frequency shift: signals emitted by Alice
and recorded by Bob at MS are critically redshifted.

3. Approaching and crossing the event horizon

When Alice, confined to the capsule, approaches the event horizon and then if
the BH is massive enough—greater than millions of solar masses—then tidal forces
are not particularly large (see, e.g., [9]), and it is believed that she would not even
notice the instant of crossing the horizon. But the further consequences would be
quite dramatic: one may cross the event horizon only once and only in one direction
toward the BH. One may ask the general question: in such a situation of free fall,
would it be possible to identify the presence of the horizon?

On the one hand, there is an obvious outcome arising from the equivalence
principle: in a freely falling frame, one cannot determine an external gravitational
field. But this refers to possible experiments performed within a freely falling
frame. It has recently been shown [7] that by using an appropriate communication
channel Alice could identify the presence of the event horizon quite precisely, in
order to stop the capsule, if it is equipped with a powerful enough engine, or to
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determine the instant of crossing the horizon. Indeed, by recording the electromag-
netic signals coming from Bob (placed at MS), with kr ¼ þω (see Eq. (28)), Alice
finds the following frequency ratio of recorded ωr

A and emitted ωe
B signals:

ωr
A

ωe
B
¼ 1

1þ vA
: (31)

This ratio tends to 1
2 as the capsule approaches the horizon (see Eq. (21)). And

this is the way to identify the presence of the horizon in general and to identify
crossing instant in particular: the redshift of signals coming from MS equals ½.

One of the specific features of the event horizon relates to the singular character
of time dilation described above for the trip toward the horizon: nobody residing
in “our” part of universe could record the instant when the capsule (or any other
test particle) reaches the edge of an (arbitrary) BH. This results in an effect referred
to as “image collision” [10, 11] (also termed touching ghosts). If capsule A is
followed by another capsule C (carrying Cindy), which started its free fall later
than A, how would Cindy perceive capsule A crossing the horizon? This problem
could be formulated in the following way. Let Alice release a signal “I’m crossing
the Black Hole horizon!” at the particular instant (known perfectly well to her
from the method described above) just as she passes the horizon. It does not need
to be the message—it could be a specific, encoded light ray signal. How would
such a signal be recorded by Cindy? One can answer this question in various ways,
for instance by illustrating this using Kruskal-Szekeres coordinates (see Ref. [11])
or invoking an analytical description within a different singularity-free coordinate
frame. But one also can give a reverse argument! Cindy must record Alice’s signal
only when she, herself, crosses the horizon. Otherwise, recording this signal
before reaching the horizon, Cindy would be able to share this message with
other residents in our part of the universe; she could even stop her capsule. But
this would contradict the above paradigm, namely, that one cannot record in our
part of the universe the event horizon crossing instant by capsule A (or any other
test particle).

4. The interior of black holes: there is no black hole inside a black hole

There are two singularities in the expression for the line element (1). One is
defined as the horizon of a BH—a horizon of a BH (1) is determined from the zero
value of gtt or as a singularity of grr ¼ g�1

tt . It is well known (see e.g., [12]) that
there are different coordinate systems, other than that used in (1), that are free
of this singular characteristic at the horizon. These include Gullstrand-Painleve,
Kruskal-Szekeres, Eddington-Finkelstein coordinates, and many others [9, 12]. The
other type of singularity corresponds to r ¼ 0 and cannot be removed or avoided by
applying a different system of coordinates. One uses then the phrase “coordinate
singularity” to refer to the former type as a “horizon singularity as opposed to the
“true singularity” representing the latter one. By applying an appropriate frame of
reference, we no longer deal with singular behavior at the event horizon.

4.1 Cylindrical-like shape

Hence, the interior of a BH could be described within such a singularity-free
frame of reference. It has been shown, however [13], that the interior of a
Schwarzschild BH may also be described in the terms of above-the-horizon
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Hence, Alice sends back signals that are recorded by Bob (at MS), and the
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p ωε
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ε2 � gtt rAð Þ

p
ε
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confined within the capsule. This may be regarded as a most dramatic illustration of
time dilation where both kinematic and gravitational time dilations are combined. It
is confirmed by the generalized Doppler frequency shift: signals emitted by Alice
and recorded by Bob at MS are critically redshifted.

3. Approaching and crossing the event horizon

When Alice, confined to the capsule, approaches the event horizon and then if
the BH is massive enough—greater than millions of solar masses—then tidal forces
are not particularly large (see, e.g., [9]), and it is believed that she would not even
notice the instant of crossing the horizon. But the further consequences would be
quite dramatic: one may cross the event horizon only once and only in one direction
toward the BH. One may ask the general question: in such a situation of free fall,
would it be possible to identify the presence of the horizon?

On the one hand, there is an obvious outcome arising from the equivalence
principle: in a freely falling frame, one cannot determine an external gravitational
field. But this refers to possible experiments performed within a freely falling
frame. It has recently been shown [7] that by using an appropriate communication
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determine the instant of crossing the horizon. Indeed, by recording the electromag-
netic signals coming from Bob (placed at MS), with kr ¼ þω (see Eq. (28)), Alice
finds the following frequency ratio of recorded ωr

A and emitted ωe
B signals:

ωr
A

ωe
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¼ 1

1þ vA
: (31)

This ratio tends to 1
2 as the capsule approaches the horizon (see Eq. (21)). And

this is the way to identify the presence of the horizon in general and to identify
crossing instant in particular: the redshift of signals coming from MS equals ½.

One of the specific features of the event horizon relates to the singular character
of time dilation described above for the trip toward the horizon: nobody residing
in “our” part of universe could record the instant when the capsule (or any other
test particle) reaches the edge of an (arbitrary) BH. This results in an effect referred
to as “image collision” [10, 11] (also termed touching ghosts). If capsule A is
followed by another capsule C (carrying Cindy), which started its free fall later
than A, how would Cindy perceive capsule A crossing the horizon? This problem
could be formulated in the following way. Let Alice release a signal “I’m crossing
the Black Hole horizon!” at the particular instant (known perfectly well to her
from the method described above) just as she passes the horizon. It does not need
to be the message—it could be a specific, encoded light ray signal. How would
such a signal be recorded by Cindy? One can answer this question in various ways,
for instance by illustrating this using Kruskal-Szekeres coordinates (see Ref. [11])
or invoking an analytical description within a different singularity-free coordinate
frame. But one also can give a reverse argument! Cindy must record Alice’s signal
only when she, herself, crosses the horizon. Otherwise, recording this signal
before reaching the horizon, Cindy would be able to share this message with
other residents in our part of the universe; she could even stop her capsule. But
this would contradict the above paradigm, namely, that one cannot record in our
part of the universe the event horizon crossing instant by capsule A (or any other
test particle).

4. The interior of black holes: there is no black hole inside a black hole

There are two singularities in the expression for the line element (1). One is
defined as the horizon of a BH—a horizon of a BH (1) is determined from the zero
value of gtt or as a singularity of grr ¼ g�1

tt . It is well known (see e.g., [12]) that
there are different coordinate systems, other than that used in (1), that are free
of this singular characteristic at the horizon. These include Gullstrand-Painleve,
Kruskal-Szekeres, Eddington-Finkelstein coordinates, and many others [9, 12]. The
other type of singularity corresponds to r ¼ 0 and cannot be removed or avoided by
applying a different system of coordinates. One uses then the phrase “coordinate
singularity” to refer to the former type as a “horizon singularity as opposed to the
“true singularity” representing the latter one. By applying an appropriate frame of
reference, we no longer deal with singular behavior at the event horizon.

4.1 Cylindrical-like shape

Hence, the interior of a BH could be described within such a singularity-free
frame of reference. It has been shown, however [13], that the interior of a
Schwarzschild BH may also be described in the terms of above-the-horizon
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coordinates, t, r, θ,φ (see Eq. (1)). There are two important consequences of such an
approach. The first is the singular character at the horizon, r ¼ rg. The second is
even more important: inside the horizon one has to accept the interchange of the
roles of coordinates t and r. The former takes on the role of a spatial coordinate, and
the latter has to be regarded as a temporal coordinate. This means that within the
BH’s horizon, gtt <0 and r can only decrease, and dr<0 representing the passage of
time. This interchange leads to a new interpretation of the conservation law associ-
ated with the t-invariance in this case. Outside the horizon it is interpreted as
energy conservation (Eqs. (8) and (9)); inside the horizon it is manifested as
momentum, t-component, and conservation. One arrives then at the first rather
counterintuitive property of a BH.

The interior of spherically symmetric black holes described by Eq. (1) turns out
to be a cylindrical-like shape, homogeneous along its axis with spheres at the two
ends.

Other counterintuitive properties are associated with the dynamical character of
the interior. Indeed, inside the horizon of BHs r< rg, where r plays the role of a
temporal coordinate, one can see in expression (1) that all of the metric tensor
elements are r, “time” dependent. Therefore, it is a dynamical space-time, or in other
words, it may be regarded as a cosmology. What are the properties of such a cosmol-
ogy, for instance compared to our homogenous and isotropic, expanding universe?

One can start with an extension of the case considered above of capsule A
crossing the horizon and continuing its trip within the bounds of the horizon. As
already mentioned we may apply the coordinates used outside the horizon remem-
bering the important interchange of the roles of coordinates t and r. Hence, inside
the horizon the velocity vector is still given by expression (17) where utA and urA
refer now to spatial and temporal components, respectively. Alice, confined within
the capsule, and being inside the horizon of the BH (and being aware of this!, see
Section 3), still receives the electromagnetic signals released at the fixed location of
MS by Bob. These are described by formula (28). Therefore, inside the horizon the
frequency ratio

ωr
A

ωe
C
¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2�gtt rAð Þ

p
ε

�!r!0
0 (32)

decreases further below the horizon’s value of ½ and tends to zero at the final

singularity, �gtt rð Þ �!r!0 ∞.
This description may be deceptive when interpreted through the automatic

application of formulae (31) naively leading to the (wrong!) conclusion that the

speed of A, vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2�gtt r1ð Þ

p
ε �!r!0 ∞. What is wrong with such an extension of the

former interpretation?
One can ask for the speed of capsule A within the horizon measured in a way

similar to the one applied outside the horizon. In order to do this, we need to
introduce an analogue of a static observer, called an r-observer, ro (see below). This
is one whose only velocity component is a “temporal” one, i.e.,

uro ¼ 0, urro, 0, 0
� �

¼ 0,�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt rð Þ

q
, 0, 0

� �
: (33)

The speed ~vA of capsule A within the horizon measured by ro (see Eq. (33)), by
definition, is given as (see also Eq. (20))
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uA � uro ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~v2A
q (34)

which turns out to be:

~vA ¼ εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt r1ð Þ

p : (35)

Hence inside the horizon, the speed of the capsule that has already crossed over
the edge and entered that region is given by the expression that is formally inverse
to the corresponding one above the horizon (c.f. Eqs. (18) and (35)). This outcome
might be surprising only at first sight. Indeed, as the meaning of speed is the ratio of
an (elementary) “distance”/(elementary) “time” and the numerator and denomi-
nator have already reversed their roles, then the ratio known as “speed” is expressed
(formally) as the inverse of the one outside the horizon. That is why the speed
outside the horizon, vA Eq. (18), and the speed inside the horizon, ~vA Eq. (35), are
expressed as mutually inverse quantities.

Another interesting feature of the speed inside the horizon ~vA (35) is that its
value decreases from the asymptotic value 1 at the horizon to zero at the final
singularity, r ¼ 0. For different values of ε ¼ gtt rMSð Þ, i.e., different initial positions
of the capsule, the speed changes differently (see Figure 2), but the asymptotic
values at the horizon and at the ultimate singularity remain fixed.

The capsule’s speed is plotted along the vertical axis (velocity) as a function of r
forM ¼ 1 and rg ¼ 2, and the horizontal axis represents distance for different initial
conditions: the red line represents a fall from infinity, ε ¼ 1.

This discussion throws new light on a BH’s interior: the velocity of a freely falling
test particle, which grows as it falls outside horizon, appears to decrease within the
horizon (see also [7]).

To illustrate the behavior of the interior further, let us consider two r-observers
placed along the axis of homogeneity t, exchanging electromagnetic signals. The
frequency shift would in this case be a significant source of information about the
dynamics of the BH’s interior.

Figure 2.
The case of Schwarzschild space-time.
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p
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One can ask for the speed of capsule A within the horizon measured in a way

similar to the one applied outside the horizon. In order to do this, we need to
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q
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to the corresponding one above the horizon (c.f. Eqs. (18) and (35)). This outcome
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(formally) as the inverse of the one outside the horizon. That is why the speed
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expressed as mutually inverse quantities.
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value decreases from the asymptotic value 1 at the horizon to zero at the final
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of the capsule, the speed changes differently (see Figure 2), but the asymptotic
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The capsule’s speed is plotted along the vertical axis (velocity) as a function of r
forM ¼ 1 and rg ¼ 2, and the horizontal axis represents distance for different initial
conditions: the red line represents a fall from infinity, ε ¼ 1.

This discussion throws new light on a BH’s interior: the velocity of a freely falling
test particle, which grows as it falls outside horizon, appears to decrease within the
horizon (see also [7]).

To illustrate the behavior of the interior further, let us consider two r-observers
placed along the axis of homogeneity t, exchanging electromagnetic signals. The
frequency shift would in this case be a significant source of information about the
dynamics of the BH’s interior.

Figure 2.
The case of Schwarzschild space-time.
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4.2 Expansion - exchange of electromagnetic signals along the t-axis

Let us consider then the exchange of signals between two observers located on
the t-axis: Diana (D) receives signals sent by George (G), rD < rG < rg. The fre-
quency ratio is in this case expressed as follows:

ωr
D

ωe
G
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt rGð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt rDð Þ

p (36)

It leads to distinct conclusions in S and RN space-times.
In the case of a Schwarzschild BH, �gtt rð Þ ¼ 2

r � 1 is a monotonic function of r,
and Eq. (36)

ωr
d

ωe
G
< 1 (37)

describes a Doppler-like redshift (see Figure 3). Hence, regarding this as a
“cosmology,” Eq. (36) represents a “cosmological redshift” due to expansion (along
the t-axis!; see below).

In the case of a Reissner-Nordström BH, �gtt rð Þ ¼ 2
r � 1� Q2

r2 is a non-monotonic
function of r, and Eq. (36) leads to:

a Doppler redshift,

ωr
D

ωs
G
< 1, (38)

for rm < rD < rG, and a Doppler blueshift

ωr
D

ωs
G
> 1 (39)

for rD < rG < rm ¼ Q2. This is illustrated in Figure 4, the ratio (36) in the RN
case, M = 1, Q ¼ 0:6, for fixed rG ¼ 1:6.

In this case Eq. (36) represents “cosmological redshift” due to expansion,
followed by “cosmological blueshift” due to contraction (along homogeneity t-axis).

Figure 3.
The frequency shift inside the horizon of a Schwarzschild BH: signals propagating along the axis of homogeneity
(t), Eq. (36) are redshifted (red), and signals propagating perpendicularly to the t-axis (57) are blueshifted
(blue); M ¼ 1ð Þ, rA ¼ 1:75.
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4.3 Contraction – exchange of electromagnetic signals perpendicular to the t-axis

One may ask what happens if the exchanged signals travel perpendicularly to the
t-direction? This means that the t-component of the position of Diana and George is
the same. Assuming that the trajectory of the signal, the light ray, is confined within
an equatorial plane, then it travels between φG and φD where D and G are placed at
tD ¼ tG, π

2 ,φD
� �

, tG, π
2 ,φG

� �
. The signal is emitted at instant rG and then recorded at

instant rD, so one will find (see [14]) both for S and RN BHs:

ωr
D

ωs
G
¼ rG

rD
> 1 (40)

A Doppler blueshift is found in both S and RN space-times. This represents a
contraction of this cosmology in a hyperplane perpendicular to the direction of
homogeneity.

Therefore the cylindrically shaped interior of spherically symmetric, static (out-
side the horizon!), Schwarzschild and Reissner-Nordström black holes reveals
anisotropic dynamics: they turn out to expand along the cylindrical axis of homo-
geneity and contract perpendicularly to this axis. In the case of Reissner-Nordström
black holes, M = 1, the expansion stops at some instant, rm ¼ Q2, and then contrac-
tion follows. It should be pointed out that the contraction perpendicular to the t-axis
may simply be observed due to the form of the line element (1) inside the horizon,
where the coefficient of its angular part, r2dΩ2, is an ever-decreasing coordinate r.

5. Traveling toward BH M87

The black hole in galaxy Messier 87, BH M87, is located at a distance of 55 Mly
from the solar system. Its mass is estimated at 6.5 billion solar masses and its size,
given as

RM87 �
2GMBHM87

c2
, (41)

appears to be 20 billion kilometers, four times the size of the solar system itself.
It is probably rotating, so it cannot be regarded as spherically symmetric.

Figure 4.
Frequency shift inside the horizon of a RN BH (M = 1, Q ¼ 0:6), for signals propagating along the t-axis
r� ¼ 0:2< rD < rG ¼ 1:6: initial redshift Eq. (38) is followed by the final blueshift Eq. (39) (due to expansion
followed by contraction).
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In our discussion we will assume, however, that this supermassive black hole,
whose image was issued for the first time in history on April 10, 2019 (it looks like
the gate to Hell) [1], is spherically symmetric and static—this implies that it is of
Schwarzschild or Reissner-Nordström type. Having in mind our discussion above,
we will try to indicate the specific features of such a trip, being of course absolutely
fatal (as we will argue) once “the Gate” of the horizon of BH M87 has been crossed.

5.1 Free fall toward BH M87

Let us consider a spaceship starting its free fall from a Mother Station located at
rMS applying a coordinate system given by (1). We will consider various cases
corresponding to different values of rMS:

a. MS located at the Earth—rMS ¼ 55 Mly ¼ 5:5 � 1023m.

b. MS located within M 87—rMS ¼ 1 000 ly ¼ 1019m.

c. MS located (very) close to BH M87—rMS ¼ 1 ly ¼ 1016m.

Our aim is to describe the trip itself and its perception by two specific observers:
an astronaut, Archibald (A), located within a spaceship and a static observer,
Barbara (B), located at MS. We will assume that A and B communicate simply by
the exchange of electromagnetic signals and radial light rays of fixed frequency,
characterized by a wave vector (28).

Firstly, free fall toward BH M87, the crossing of its horizon and eventually
reaching the final outcome, will be considered within the two scenarios: fall from the
rest (I) and fall with some nonzero initial speed simulating free fall from infinity (II).

5.1.1 How long does it take to reach position rX?

The time to reach position rX as measured by A is determined as follows (see
Eq. (26)):

τ rMS; rXð Þ ¼ �
ðrX

rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ¼
�
Ð rX
rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ � gtt

p dr

�
Ð rX
rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr

8>>><
>>>:

(42)

for cases I and II, respectively. For Schwarzschild space-time, Q ¼ 0, one finds
in the scenarios (a)–(c) listed above the following results in cases I and II:

τs rMS; rXð Þ ¼ �
ðrX

rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ¼ T0Is rMS; rXð Þ (43)

T0 ¼
Rg

c
¼ 6:4 � 104s (44)

Is r2; r1ð Þ ¼
�
Ðr1
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ � gtt

p dr ¼ IMS r2; r1ð Þð Þ ¼ x3=2MS arctgyþ y
1þ y2

� �y1

y2

�
Ðr1
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr ¼ I∞ r2; r1ð Þ ¼ 2
3

x3=22 � x3=21

� �

8>>><
>>>:

(45)
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x ¼ r
Rg

y ¼ ffiffiffiffiffiffiffiffi
xMS

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
x
� 1
xMS

r
(46)

a: rX ¼ rMS

2

τs rMS; rXð Þ ¼
τMS ¼ T0x

3=2
MS arctgyþ y

1þy2

� �y1
y2
� 1021s � 3 � 1013y

τ∞ ¼ T0
2
3

x3=22 � x3=21

� �
� 1020s � 3 � 1012y

8>><
>>:

(47)

τs rMS; rXð Þ ¼
� 106y

� 5 � 105y

(
(48)

τs rMS; rXð Þ ¼
τMS � 30y

τ∞ � 10y

(
(49)

b: rX ¼ 1:1rg

τ rMS; rXð Þ ¼
τMS �� 3 � 1013y

τ∞ �� 3 � 1012y

(
(50)

τ rMS; rXð Þ ¼
τMS � 106y

τ∞ � 5 � 105y

(
(51)

τ rMS; rXð Þ ¼
τMS � 30y

τ∞ � 13:5y

(
(52)

Barbara may make her own measurements of the time representing the instants
indicated above in different ways: recording signals coming from A, communicat-
ing with A about his perception of time, etc. One may prefer to use a compromise
based on this variety of approaches, namely, indicating the coordinate instant tX
corresponding to τ rMS; rXð Þ. Indeed one or other method of measuring the instant
when reaching coordinate position rX by A applied by B refers to tX and is deter-
mined by (see also Eq. (42)):

tX � t rMS; rXð Þ ¼ �
ðrX

rMS

ε

gtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ¼
�
ÐrX
rMS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ

p

gtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ � gtt

p dr

�
ÐrX
rMS

1
gtt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr

8>>>><
>>>>:

(53)

for cases I and II, respectively. As indicated in former sections, the coordinate
time period becomes singular (goes to infinity) as A approaches the horizon, inde-
pendently of the initial conditions:

rX ! rg, tX ! ∞: (54)

In analogy with the above results for A, one finds for B the following outcomes:

t∞X � t rMS; rXð Þ ¼ �
ðrX
rMS

1
gtt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr ¼ T0I∞t (55)
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In our discussion we will assume, however, that this supermassive black hole,
whose image was issued for the first time in history on April 10, 2019 (it looks like
the gate to Hell) [1], is spherically symmetric and static—this implies that it is of
Schwarzschild or Reissner-Nordström type. Having in mind our discussion above,
we will try to indicate the specific features of such a trip, being of course absolutely
fatal (as we will argue) once “the Gate” of the horizon of BH M87 has been crossed.

5.1 Free fall toward BH M87

Let us consider a spaceship starting its free fall from a Mother Station located at
rMS applying a coordinate system given by (1). We will consider various cases
corresponding to different values of rMS:

a. MS located at the Earth—rMS ¼ 55 Mly ¼ 5:5 � 1023m.

b. MS located within M 87—rMS ¼ 1 000 ly ¼ 1019m.

c. MS located (very) close to BH M87—rMS ¼ 1 ly ¼ 1016m.

Our aim is to describe the trip itself and its perception by two specific observers:
an astronaut, Archibald (A), located within a spaceship and a static observer,
Barbara (B), located at MS. We will assume that A and B communicate simply by
the exchange of electromagnetic signals and radial light rays of fixed frequency,
characterized by a wave vector (28).

Firstly, free fall toward BH M87, the crossing of its horizon and eventually
reaching the final outcome, will be considered within the two scenarios: fall from the
rest (I) and fall with some nonzero initial speed simulating free fall from infinity (II).

5.1.1 How long does it take to reach position rX?

The time to reach position rX as measured by A is determined as follows (see
Eq. (26)):

τ rMS; rXð Þ ¼ �
ðrX

rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ¼
�
Ð rX
rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ � gtt

p dr

�
Ð rX
rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr

8>>><
>>>:

(42)

for cases I and II, respectively. For Schwarzschild space-time, Q ¼ 0, one finds
in the scenarios (a)–(c) listed above the following results in cases I and II:

τs rMS; rXð Þ ¼ �
ðrX

rMS

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ¼ T0Is rMS; rXð Þ (43)

T0 ¼
Rg

c
¼ 6:4 � 104s (44)

Is r2; r1ð Þ ¼
�
Ðr1
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ � gtt

p dr ¼ IMS r2; r1ð Þð Þ ¼ x3=2MS arctgyþ y
1þ y2

� �y1

y2

�
Ðr1
r2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr ¼ I∞ r2; r1ð Þ ¼ 2
3

x3=22 � x3=21

� �

8>>><
>>>:

(45)
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x ¼ r
Rg

y ¼ ffiffiffiffiffiffiffiffi
xMS

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
x
� 1
xMS

r
(46)

a: rX ¼ rMS

2

τs rMS; rXð Þ ¼
τMS ¼ T0x

3=2
MS arctgyþ y

1þy2

� �y1
y2
� 1021s � 3 � 1013y

τ∞ ¼ T0
2
3

x3=22 � x3=21

� �
� 1020s � 3 � 1012y

8>><
>>:

(47)

τs rMS; rXð Þ ¼
� 106y

� 5 � 105y

(
(48)

τs rMS; rXð Þ ¼
τMS � 30y

τ∞ � 10y

(
(49)

b: rX ¼ 1:1rg

τ rMS; rXð Þ ¼
τMS �� 3 � 1013y

τ∞ �� 3 � 1012y

(
(50)

τ rMS; rXð Þ ¼
τMS � 106y

τ∞ � 5 � 105y

(
(51)

τ rMS; rXð Þ ¼
τMS � 30y

τ∞ � 13:5y

(
(52)

Barbara may make her own measurements of the time representing the instants
indicated above in different ways: recording signals coming from A, communicat-
ing with A about his perception of time, etc. One may prefer to use a compromise
based on this variety of approaches, namely, indicating the coordinate instant tX
corresponding to τ rMS; rXð Þ. Indeed one or other method of measuring the instant
when reaching coordinate position rX by A applied by B refers to tX and is deter-
mined by (see also Eq. (42)):

tX � t rMS; rXð Þ ¼ �
ðrX

rMS

ε

gtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ¼
�
ÐrX
rMS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ

p

gtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ � gtt

p dr

�
ÐrX
rMS

1
gtt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr

8>>>><
>>>>:

(53)

for cases I and II, respectively. As indicated in former sections, the coordinate
time period becomes singular (goes to infinity) as A approaches the horizon, inde-
pendently of the initial conditions:

rX ! rg, tX ! ∞: (54)

In analogy with the above results for A, one finds for B the following outcomes:

t∞X � t rMS; rXð Þ ¼ �
ðrX
rMS

1
gtt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr ¼ T0I∞t (55)
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I∞t ¼
ðxX
xMS

ffiffiffi
x

p
dx

1� 1
x

� � dr

¼ 2
3

x3=2MS � x3=2X

� �
þ 2

ffiffiffiffiffiffiffiffi
xMS

p � ffiffiffiffiffiffi
xX

pð Þ þ ln
xMS � 1
xMS þ 1

����
����� ln

xX � 1
xX þ 1

����
���� (56)

t∞X ¼ T0
2
3

x3=2MS � x3=2X

� �
þ 2

ffiffiffiffiffiffiffiffi
xMS

p � ffiffiffiffiffiffi
xX

pð Þ þ ln
xMS � 1
xMS þ 1

����
����� ln

xX � 1
xX þ 1

����
����

� �
(57)

The dominant term in the coordinate time is the first one if the final position, rX,
is not too close to the horizon:

t∞X ≈T0
2
3

x
3
2
2 � x

3
2
1

� �� �
¼ τ∞X (58)

If the destination station, X gets close to the horizon, the duration of travel (45)
becomes dominated by the last term which tends to infinity:

t∞X ≈T0 � ln
x1 � 1
x1 þ 1

����
����

� �
��!x1!1 ∞ (59)

However, in practical terms, i.e., in all of the cases listed above

t∞X ≈T0
2
3

x
3
2
2 � x

3
2
1

� �� �
¼ τ∞X: (60)

The last term starts to dominate for

� ln
x1 � 1
x1 þ 1

����
���� ¼ x

3
2
2 (61)

i.e., it depends on the initial conditions. In case (c), the logarithmic term starts to
dominate incrementally close to the horizon (on the horizon in fact, see below):

rX ¼ Rg 1þ e�6000� �
(62)

The meaning of this result is that the coordinate time is the corrected proper
time, and the correction is moderate up to the vicinity of the horizon. In the close
vicinity of the horizon, the singular term starts to dominate, and the coordinate
time tends to infinity in this range. However, as shown above the “close vicinity of
the horizon” means

ΔrX ¼ Rge�6000 (63)

“effectively on the horizon!”
If the initial conditions are those described in (a) and (b), then that range is

(formally) even smaller, i.e., it is a “stronger” zero.
Before entering the interior of the Schwarzschild BH, we will illustrate trip A via

the Doppler shift.

5.1.2 Doppler shift

A and B are exchanging electromagnetic signals of fixed (emitter) frequency. Let
us present the list of frequency ratios at various rX � rA as in the former subsection.
Applying expressions (30) and (31), one finds:
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v2A ¼ ε2 � gtt rAð Þ
ε2

¼

gtt rMSð Þ � gtt rAð Þ
gtt rMSð Þ ¼

Rg

rA
� 1
xMS

1�
Rg

rMS

¼ 1
xMS

rMS

rA
� 1

1� 1
xMS

I

Rg

rA
¼ 1

xMS

rMS

rA
II

8>>>>>><
>>>>>>:

(64)

a: rA ¼ rMS

2

• v2A ¼

1
xMS

rMS

rA
� 1

1� 1
xMS

¼ 1
xMS

1

1� 1
xMS

≈
1

xMS
I

2
1

xMS
II

8>>>>>><
>>>>>>:

• 
ωr
A

ωe
B
¼ 1

1þ vA
≈ 1� vA ¼

1� 1ffiffiffiffiffiffiffiffiffi
2:75

p � 10�5 I

1� 10�5 II

8<
:

• 
ωr
B

ωe
A
¼ 1� vA

• 
ωr
A

ωe
B
¼ 1

1þ vA
≈ 1� vA ¼

1� 1
7
� 10�2 I

1�
ffiffiffi
2

p

7
� 10�2 II

8>><
>>:

• 
ωr
B

ωe
A
¼ 1� vA

• 
ωr
A

ωe
B
¼ 1

1þ vA
≈ 1� vA ¼

1� 1
22

I

1�
ffiffiffi
2

p

22
II

8>><
>>:

• 
ωr
B

ωe
A
¼ 1� vA

b: rA ¼ 1:1RM87

• v2A ¼
≈

1
1:1

I

Rg

rA
¼ 1

1:1
II

8>><
>>:

• 
ωr
A

ωe
B
¼ 1

1þ vA
¼ 0:512

• 
ωr
B

ωe
A
¼ 1� vA ≈0:046

and (c) the same as (a)

c: rA ¼ 1:01RM87

• 
ωr
A

ωe
B
¼ 1

1þ vA
¼ 0:5012
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� � dr

¼ 2
3

x3=2MS � x3=2X

� �
þ 2
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����

� �
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The dominant term in the coordinate time is the first one if the final position, rX,
is not too close to the horizon:
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1
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¼ τ∞X (58)

If the destination station, X gets close to the horizon, the duration of travel (45)
becomes dominated by the last term which tends to infinity:

t∞X ≈T0 � ln
x1 � 1
x1 þ 1

����
����

� �
��!x1!1 ∞ (59)

However, in practical terms, i.e., in all of the cases listed above

t∞X ≈T0
2
3

x
3
2
2 � x

3
2
1

� �� �
¼ τ∞X: (60)

The last term starts to dominate for

� ln
x1 � 1
x1 þ 1

����
���� ¼ x

3
2
2 (61)

i.e., it depends on the initial conditions. In case (c), the logarithmic term starts to
dominate incrementally close to the horizon (on the horizon in fact, see below):

rX ¼ Rg 1þ e�6000� �
(62)

The meaning of this result is that the coordinate time is the corrected proper
time, and the correction is moderate up to the vicinity of the horizon. In the close
vicinity of the horizon, the singular term starts to dominate, and the coordinate
time tends to infinity in this range. However, as shown above the “close vicinity of
the horizon” means

ΔrX ¼ Rge�6000 (63)

“effectively on the horizon!”
If the initial conditions are those described in (a) and (b), then that range is

(formally) even smaller, i.e., it is a “stronger” zero.
Before entering the interior of the Schwarzschild BH, we will illustrate trip A via

the Doppler shift.

5.1.2 Doppler shift

A and B are exchanging electromagnetic signals of fixed (emitter) frequency. Let
us present the list of frequency ratios at various rX � rA as in the former subsection.
Applying expressions (30) and (31), one finds:
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• 
ωr
B

ωe
A
¼ 1� vA ≈0:00496

and (c) the same as (a)

d: rA ¼ 1:001RM87

• v2A ¼ 1
1:001

• 
ωr
A

ωe
B
¼ 1

1þ vA
¼ 0:50012

• 
ωr
B

ωe
A
¼ 1� vA ≈0:0004996:

When A approaches the horizon of BH M87, rX ! RM87, the frequency of signals
reaching B tends to zero

ωr
B

ωe
A
! 0 (65)

and the signals themselves gradually disappear from the recording devices. Such
a process becomes unboundedly extended in time. On the other hand, A receives
the signals from B as redshifted toward a well-defined limit, and one finds in all
cases (a–c)

ωr
A

ωe
B

rX ¼ RM87ð Þ ¼ 0:5 (66)

as the indicator of the instant of crossing the horizon (see also Section 3).

5.2 Beyond “the gate of BH M87”: how much time remains?

Archibald knows precisely the instant of his crossing of the horizon: whatever
his starting point was, (a)–(c), he passes the horizon BH M87 when the frequency
ratio hits ½. It is the irreversible instant in the whole trip: after this there is no way
back. One may ask, however, the provocative question: why is there no way back?

Let us briefly discuss this point. During the radial fall toward BH M87, outside
the horizon, r>RM87, A can “see” both MS and BH M87, i.e., he can perceive the
signals coming from B (located at MS) as well as the signals coming from regions
located closer to BH M87 than his own current location. Radial light rays can
obviously propagate along both increasing r and diminishing r. Upon crossing the
horizon, the situation becomes quite different. The coordinate r changes its char-
acter—it becomes time-like, such that dr<0. This means that the r coordinate only
diminishes, reducing from RM87 to 0. Therefore, there is no way “back to the
horizon” inside BH M87 because the horizon is “an instant in the past”—there is
no way to “travel” to the past. It should be pointed out that this conclusion
presented within this “pathological” (i.e., singular behavior at the horizon) system
of coordinates remains valid as this also occurs in other, nonsingular coordinate
systems.

Therefore, after crossing the horizon BH M87, Archibald no longer travels
toward the center of black hole M87, but he travels along the t-axis of homogeneity
until the final instant, r ¼ 0.
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How much time does this trip take? The answer is given by applying expression
(42) to the interior of BH M87, r<RM87 � rX, gtt <0,

τ rX; 0ð Þ ¼ �
ð0
rX

εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � gtt

p dr ¼
�
Ð 0
rX

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt rMSð Þ � gtt

p dr

�
Ð 0
rX

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gtt

p dr

8>>><
>>>:

(67)

and it depends on the scenario, i.e., the boundary conditions, I or II.
Hence, in the case of free fall from infinity (or its simulation), one finds:

τ∞ rX; 0ð Þ ¼ 12 hrs (68)

In case I, a) – c) one obtains the same outcome:
Archibald, upon entering the interior of BH M87, would be left with only

12 hours in this fatal trip. Could this period be extended? Or what would be, if it
were to exist, the maximal period, the maximal lifetime inside BH M87, hereafter
termed lft BH M87?

As illustrated above lft BH M87 depends on the history (i.e., the initial condi-
tions) of the trip, and it gets longer once MS gets closer to the horizon (much closer
than 1 light year!). Actually as one finds from expression I (69), its maximal value
corresponds to the case gtt rMSð Þ ¼ 0. This cannot be achieved but it should be
regarded as a limiting case. This limit represents the situation of Archibald’s space-
ship stopping just before reaching the horizon and then being released, maybe
without Archibald who would prefer to avoid the particular experience of crossing
the horizon. Then one finds the value of maximal lifetime of BH M87 as

τmax rX; 0ð Þ ¼ �
ð0
rX

1ffiffiffiffiffiffiffiffiffi�gtt
p dr ¼ 28:4hrs: (69)

This is then the maximal extension of time, the maximal lifetime within the
black hole M87.

So despite the fact that BH M87 is an enormously large object, you do not have
much time left once you have crossed its border.

5.2.1 Tidal forces at the gate and beyond

Discussing even a hypothetical trip to the interior of BH M87, one should take
into account aspects of human frailty. One of them concerns the forces applied to
the human body during this particular journey. There are tidal forces applied to the
body of the astronaut, in this case Archibald. They turn out to be quite moderate on
the horizon in the case of a supermassive black hole as is a well-known fact. So at
the horizon, r ffi RM87, the differential force acting along Archibald’s body, leads to a
pressure of the order of (see, e.g., [9]) 10�15 atm. This effect increases, however,
and at some stage, when r ffi 1

1000000RM87, it leads to a limiting value of the pressure,
some 102 atm. And for Archibald who decided to undergo the unique experience of
crossing the horizon of BH M87, that would be the ultimate end.

5.3 RN scenario

What changes if BH M87 is electrified with a charge Q? Then BH M87 is of the
RN kind; it is a little smaller, but its radius cannot never be smaller than half of the
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ratio hits ½. It is the irreversible instant in the whole trip: after this there is no way
back. One may ask, however, the provocative question: why is there no way back?

Let us briefly discuss this point. During the radial fall toward BH M87, outside
the horizon, r>RM87, A can “see” both MS and BH M87, i.e., he can perceive the
signals coming from B (located at MS) as well as the signals coming from regions
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obviously propagate along both increasing r and diminishing r. Upon crossing the
horizon, the situation becomes quite different. The coordinate r changes its char-
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horizon” inside BH M87 because the horizon is “an instant in the past”—there is
no way to “travel” to the past. It should be pointed out that this conclusion
presented within this “pathological” (i.e., singular behavior at the horizon) system
of coordinates remains valid as this also occurs in other, nonsingular coordinate
systems.

Therefore, after crossing the horizon BH M87, Archibald no longer travels
toward the center of black hole M87, but he travels along the t-axis of homogeneity
until the final instant, r ¼ 0.
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How much time does this trip take? The answer is given by applying expression
(42) to the interior of BH M87, r<RM87 � rX, gtt <0,
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and it depends on the scenario, i.e., the boundary conditions, I or II.
Hence, in the case of free fall from infinity (or its simulation), one finds:
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In case I, a) – c) one obtains the same outcome:
Archibald, upon entering the interior of BH M87, would be left with only

12 hours in this fatal trip. Could this period be extended? Or what would be, if it
were to exist, the maximal period, the maximal lifetime inside BH M87, hereafter
termed lft BH M87?

As illustrated above lft BH M87 depends on the history (i.e., the initial condi-
tions) of the trip, and it gets longer once MS gets closer to the horizon (much closer
than 1 light year!). Actually as one finds from expression I (69), its maximal value
corresponds to the case gtt rMSð Þ ¼ 0. This cannot be achieved but it should be
regarded as a limiting case. This limit represents the situation of Archibald’s space-
ship stopping just before reaching the horizon and then being released, maybe
without Archibald who would prefer to avoid the particular experience of crossing
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This is then the maximal extension of time, the maximal lifetime within the
black hole M87.

So despite the fact that BH M87 is an enormously large object, you do not have
much time left once you have crossed its border.

5.2.1 Tidal forces at the gate and beyond

Discussing even a hypothetical trip to the interior of BH M87, one should take
into account aspects of human frailty. One of them concerns the forces applied to
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RN kind; it is a little smaller, but its radius cannot never be smaller than half of the

199

BH M87: Beyond the Gates of Hell
DOI: http://dx.doi.org/10.5772/intechopen.90482



Schwarzschild value (see Eq. (4)), GMM87
c2 � MM87 ¼ 1013m. Moreover, for particular

values of the electric charge, the estimations of this section remain to be verified,
leading to different final outcomes. However, the qualitative character of the results
remains unchanged: the frequency ratio at the horizon hits ½ for A, and signals
coming to B are critically redshifted; there is the most dramatic manifestation of
time dilation illustrating the “image collision” or “touching ghosts” effect, and there
is a significant difference between the interiors of these two kinds of BHs. If BH
M87 is electrically charged, then it possesses an inner horizon, and the process of
expansion along the homogeneity axis, the t-axis, would stop at the instant

rmin �
Q2

MM87
> r� (70)

and then contraction would follow. That process of contraction would continue
up to the instant

r ¼ r� (71)

During contraction along the homogeneity axis, it becomes of infinite length
apart from the final instant (86) when its length suddenly becomes zero – the
system reaches its inner horizon. However, the physical character of the inner
horizon remains a questionable point (see [12]).

6. Concluding remarks

Supermassive BH M87 is a very large object with a size of some 20 light hours.
Located at a distance 55 Mly, it does not seem to be reachable from the Earth.
However, looking at its image (the very first of a black hole), it might be of interest to
consider and present some issues representing and characterizing this kind of object.
As a supermassive black hole, it exerts a very strong gravitational pull (see also:
“strong gravitational fields” [15–17]). To illustrate this one could consider free fall due
to the gravitational attraction of BHM87. The trip from the Earth would last 10,000
times longer than the age of the universe. But a test object falling from a distance of 1
light year would reach the BH M87 event horizon within some 30 years. On the other
hand, traveling with a constant speed of 300,000 km/h (at the moment the greatest
speed achieved by an object produced by humans), one could cover a distance of 1
light year within 3600 years, 120 times longer than the period given above.

Assuming it is spherical, we have presented a variety of features related to the
hypothetical trip toward and within BH M87, emphasizing the dynamics of its
anisotropic interior.

Finally we would like to comment on a remark on the image of BH M87 made by
an anonymous columnists who said:

“… it looks like the Gate to Hell”.
Considering a hypothetical trip toward BH M87, one finds that the anonymous

columnist was wrong: looking at the image of BH M87, one has to remember that in
fact it functions in a way much worse than the Gate to Hell. After crossing such an
“invisible, so apparently gentle gate,” you are trapped: there is no way back and you
are left with no more than 28 hours. By that time, your body would be stretched and
compressed at the same time with no limits.

If BH M87 confines an electric charge, then it is possible that the process of
stretching would be stopped, and contraction would follow. But this could hardly
change your perspective: your lifetime within the horizon could never be substan-
tially extended. And there is no way out.
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Dark Matter within the MilkyWay
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Abstract

Dark matter is an invisible substance that seems to make almost 85% of all the
mass and roughly 26% of mass-energy content of our Universe. We briefly present
the history of its discovery, and we discuss the main attempts to resolve the prob-
lem of the origin of dark matter. Those attempts are as follows: dark matter particles
(WIMPs), unseen astrophysical objects (MACHOs), or interactions of dark matter
with ordinary (luminous) matter. We also introduce a different approach claiming
no need for existence of the dark matter (MOND) and recent findings about the
ultra-diffuse galaxies. Finally we present 21-cm line observations of neutral hydro-
gen in the Milky Way made by using 3 m in diameter radio telescope in the
Astronomical Observatory of the Jagiellonian University. These studies yield rota-
tional curve of our galaxy. Rotational curve we obtained is compared to those
present in literature and constitutes a proof of presence of dark matter in the
Milky Way.

Keywords: dark matter, WIMP, MACHO, MOND, rotational curve,
ultra-diffuse galaxies, gravitational lensing, milky way

1. Introduction

In 1933 Fritz Zwicky [1] indicated a problem related to the galaxy cluster Coma.
Galaxy cluster studied by Zwicky appeared to contain some 400 times more matter
than an ordinary, visible, i.e., luminous matter. The content of the luminous
matter was estimated form the amount of light emitted by the cluster. However,
there was no response for that finding. Only 40 years later in 1970s the problem was
rediscovered and concerned almost all of the galaxies. Research of Vera Rubin
discovered that the galaxies rotate in a way that cannot be explained by taking into
account visible, luminous matter. Today we know that most of the matter in the
Universe is dark. Various attempts to resolve the problem of the existence of a
mysterious form of matter, dark matter, have been taken ever since. One such idea
is to find a particle to possibly complete the standard model. The most important
property of such particle would be that it is not a subject to electromagnetic force;
hence the dark matter is invisible in all electromagnetic wavelengths. In order to
detect such particle, sensitive detectors are built, but still final conclusion has not
been made. Another attempt of explaining the problem of missing matter was based
on the assumption of existence of astrophysical objects such as black hole or dim
brown dwarfs. This idea has rather been discredited as the abundance and masses of
such objects are too small comparing to the amount of the matter that is missing. On
different grounds stands the idea of modifying gravity in low acceleration regime.
Modified Newtonian dynamics (MOND) proposed by M. Milgrom in 1983 is
a phenomenological approach attempting to provide explanation of rotation of
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Abstract

Dark matter is an invisible substance that seems to make almost 85% of all the
mass and roughly 26% of mass-energy content of our Universe. We briefly present
the history of its discovery, and we discuss the main attempts to resolve the prob-
lem of the origin of dark matter. Those attempts are as follows: dark matter particles
(WIMPs), unseen astrophysical objects (MACHOs), or interactions of dark matter
with ordinary (luminous) matter. We also introduce a different approach claiming
no need for existence of the dark matter (MOND) and recent findings about the
ultra-diffuse galaxies. Finally we present 21-cm line observations of neutral hydro-
gen in the Milky Way made by using 3 m in diameter radio telescope in the
Astronomical Observatory of the Jagiellonian University. These studies yield rota-
tional curve of our galaxy. Rotational curve we obtained is compared to those
present in literature and constitutes a proof of presence of dark matter in the
Milky Way.
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1. Introduction

In 1933 Fritz Zwicky [1] indicated a problem related to the galaxy cluster Coma.
Galaxy cluster studied by Zwicky appeared to contain some 400 times more matter
than an ordinary, visible, i.e., luminous matter. The content of the luminous
matter was estimated form the amount of light emitted by the cluster. However,
there was no response for that finding. Only 40 years later in 1970s the problem was
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Universe is dark. Various attempts to resolve the problem of the existence of a
mysterious form of matter, dark matter, have been taken ever since. One such idea
is to find a particle to possibly complete the standard model. The most important
property of such particle would be that it is not a subject to electromagnetic force;
hence the dark matter is invisible in all electromagnetic wavelengths. In order to
detect such particle, sensitive detectors are built, but still final conclusion has not
been made. Another attempt of explaining the problem of missing matter was based
on the assumption of existence of astrophysical objects such as black hole or dim
brown dwarfs. This idea has rather been discredited as the abundance and masses of
such objects are too small comparing to the amount of the matter that is missing. On
different grounds stands the idea of modifying gravity in low acceleration regime.
Modified Newtonian dynamics (MOND) proposed by M. Milgrom in 1983 is
a phenomenological approach attempting to provide explanation of rotation of
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galaxies without invoking hidden matter at all. Yet such an approach seems to be in
tension with recent findings of van Dokkum et al. about the ultra-diffuse galaxies.
There appear to exist galaxies devoided of dark matter—then what about MOND
predictions? This contribution is completed with the rotational curve of the Milky
Way determined with 3 m in diameter radio telescope in the Astronomical Obser-
vatory of the Jagiellonian University. Obtained rotational curve is flat which
indicates the presence of dark matter in the halo of our galaxy.

2. The dark matter problem

The term “dark matter” (DM) was introduced due to the contribution by Fritz
Zwicky as early as in 1930s of the twentieth century. Studying the Coma cluster (of
galaxies) located 320 million light-years away, Zwicky estimated [1] masses of the
galaxies that make up this cluster based on the amount of light they emit. It turned
out that such an amount of (luminous) matter wasn’t large enough to explain the
trajectories and velocities of those galaxies. Zwicky claimed then that the gravita-
tional attraction exerted by the luminous matter was not enough to hold the cluster
together and if there wasn’t some kind of additional, nonluminous matter that
provide extra gravity force, the galaxies would fly apart. These findings seemingly
intriguing by themselves had not been taken seriously by scientific community.
And only findings of Vera Rubin [2], some 40 years later, led to the formulation of
the fundamental and still unresolved problem. Rubin studied rotational curves of
galaxies. Rotational curve of a galaxy is a plot presenting how the orbital velocity
of objects in this galaxy changes with increasing distance from the galaxy’s center
(see Figure 1). It turned out that the shapes of the curves did not comply with
the theoretical predictions based on the mount of matter estimated due to the
emitted light.

Figure 1 illustrates this discrepancy. When being close to the center of the
galaxy, the plot agrees with what one would expect: the rotational curve increases

Figure 1.
Figure schematically representing discrepancy between observed (B) and predicted (A) rotational curves of
galaxies that indicates presence of dark matter in halos of such galaxies. Credit: PhilHibbs, Wikipedia, https://
pl.wikipedia.org/wiki/Krzywa_rotacji_galaktyki#/media/Plik:GalacticRotation2.svg, Creative Commons
Attribution-Share Alike 3.0 Unported license.
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rapidly that reflects an obvious fact that the velocity of a test object (a “star”)
increases as the effective gravitational force is growing (at a given radius, only the
mass enclosed within a sphere of that radius is relevant in terms of excreting
gravitational force—Newton’s Shell Theorem). Past a certain distance though
(when increasing a distance from the massive center of galaxy does not enclose
adequately bigger amounts of mass), the effective force of gravity should decline
(as R2 will increase faster than the mass enclosed in a sphere of a radius being that
distance from the center so the force of gravity will decline) which should result in
lower orbital velocities.

Vera Rubin and Kent Ford published their first rotational curve in paper [2].
They presented there the rotation of Andromeda based on spectroscopic survey of
emission regions applying neutral hydrogen, Hα, and [NII] λ6583 emission lines.
Further works, see, e.g., [3], revealed that most of the galaxies have rather flat
rotational curves like the one in Figure 1. The fact that more distant stars have
almost constant velocity attracted the attention of scientists. The circular velocities
of the stars are due to gravity which plays the role of centripetal force. Combining
Newton’s law of gravity with an expression for centripetal force yields the
following relation:

GM
R2 ¼ V2

R
, (1)

where G is universal gravitational constant, M is mass exerting a gravitational
force, V denotes velocity of a (test) object orbiting mass M, and R is the distance
between them. One obtains from Eq. (1)

M ¼ GV2R: (2)

Since G is constant and V appears to be constant as we can see in rotational
curves (see Figure 1), it would mean that the mass of a galaxy increases linearly
with the distance from its center:

M Rð Þ � R: (3)

As we know most of galaxies including the Milky Way have a bright massive
center, a bulge, with majority of stars placed in that range and possibly a
supermassive black hole in the middle. The farther away from the center, the fainter
the regions are, i.e., less stars hence less matter is present, and linear dependence
(3) is almost impossible to be obeyed. Computer simulations show that the galaxies
move in a way we can observe them only if there is another than ordinary, lumi-
nous, form of matter, namely, dark matter. The amount of dark matter should be as
large as almost five times more than the amount of ordinary matter. This is in
agreement with calculations made within lambda-cold dark matter model (Λ-CDM)
and the data from Wilkinson Microwave Anisotropy Probe (WMAP) [4] as well as
Planck mission [5]. Λ-CDMmodel is a parametrization of the Big Bang cosmological
model in which the Universe contains three major components: first, a cosmological
constant denoted by lambda (Greek Λ) and associated with dark energy; second, the
postulated cold dark matter (abbreviated CDM); and third, ordinary matter. It is
often referred to as the standard model of Big Bang cosmology because it is the
simplest model that provides a reasonably good description of the content of the
Universe. WAMP was a satellite designed to map the cosmic microwave back-
ground (CMB) radiation over the entire sky in five frequency bands. The agreement
between Λ-CDM model and the data from WAMP is good enough, which supports
the validity of this model [4, 5]. The Λ-CDM model indicates that the matter the
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stars (and us) are made of is just a tiny part of the mass-energy content of the
Universe (see Figure 2).

3. Possible solutions and even more problems

3.1 Wimps

Hypothetical particles that constitute the dark matter are called WIMPs which
stands for weakly interacting massive particles. All the matter that we know (and
us) is made of baryonic matter, i.e., the matter is made of baryons. WIMPS would
be a new type of particles beyond the standard model. Those should be massive,
subject to the gravitational force, and possibly other forces that are comparable to
the weak force. One such candidate for WIMP could be a stable supersymmetric
particle. Supersymmetric model has a particle of this property which was even
called a “Wimp Miracle,” but we have not yet observed any trace of supersymme-
try, moreover, WimpMiracle in any of the particle colliders. WIMPs also should not
interact via electromagnetism; hence the DM is not visible in any wavelength. We
only can “see” the DM due to its gravitational interactions, which are strong enough
to cause a phenomenon known as gravitational lensing.

3.1.1 Gravitational lensing

This phenomenon is observed when the light rays passing near a very massive
object are deflected (due to the curvature of space–time produced by this object) in

Figure 2.
Estimated distribution of matter and energy in the universe based on Planck data. Credit: ESA, Planck reveals
an almost perfect Universe.
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such a way that a distant observer observes it lensed. Figure 3 illustrates gravita-
tional lensing: the stretched structures are distant galaxies, whose light was bent by
the DM between them and the observer. This allows to calculate the mass required
to cause such phenomenon [6]. Large aggregations of massive DM particles are able
to produce such image letting us to know it’s out there.

3.2 MACHOs

Massive astrophysical compact halo objects (MACHOs) was another hypothesis
invoked to explain the presence of large amount of nonluminous matter in galactic
halos. Those, contrary to theWIMPS, would have been regular astrophysical objects
emitting little or no radiation such as black holes, neutron stars, as well as brown
dwarfs and unassociated planets, which drift unseen through interstellar space
providing extra gravity. Thorough investigations have shown that this concept
rather fails to explain the expected amount of the DM. One way to detect MACHOS’
influence, as described in [7], is to look for events of microlensing caused by them.
Such microlensing would cause observable apparent amplification of star’s flux. In
[7] it was shown that the number of such events is far too less that would have been
expected. That rules out MACHOS as the candidates for DM. Moreover, the studies
of abundance of baryons created in the Big Bang show that baryon density is
consistent with the mean cosmic density of matter visible optically and in X-rays. It
implies that most of the baryons in the Universe are visible but not dark and that
most of the matter in the Universe consists of nonbaryonic DM [7].

3.3 MOND

In the former sections, we have discussed the attempts of solving or explaining
the problem of the missing matter. That is to find or to claim existence of unknown,
invisible substance. Yet there is another idea based on a different assumption. In
1983 Milgrom [8] proposed an idea that maybe it is the theory that needs to be

Figure 3.
An image of gravitational lensing obtained with Hubble space telescope showing a distant image of galaxies
which had been stretched due to the warping of space–time caused by a massive object between them and the
observer. Credit: ESA/Hubble https://www.spacetelescope.org/images/potw1506a/.
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modified rather than an invisible matter to be found. Modified Newtonian dynam-
ics (MOND) is an empirically motivated modification of Newtonian dynamics at
low accelerations, suggested as an alternative to dark matter concept [8, 9]. In Ref.
[8] Milgrom considered the possibility that Newton’s second law does not describe
the motion of objects under the conditions which prevail in galaxies and systems of
galaxies. Newton’s laws have been tested in high-acceleration environment like the
Earth or the solar system. The stars in the outer parts of the galaxies move in the
circumstances of extremely low accelerations compared to what we know from
everyday life. To illustrate how small such accelerations might be, let us calculate
the acceleration of average star (the Sun) located on the suburbs of average galaxy
(the Milky Way):

a ¼ V2

R
¼

220 km
s

� �2
8:5 kpc

≈ 1:845� 10�10 m
s2

(4)

Milgrom proposed then a generalized form of Newton’s second principle,
claiming the inertia term not to be simply proportional to the acceleration of an
object but being rather a more general function of it:

m � μ a=a0ð Þa! ¼ F
!
: (5)

In expression (5) m is gravitational mass, a is acceleration, a0 is some accelera-
tion constant, and μ is a nonlinear function with the following properties:

μ x≫ 1ð Þ≈ 1, μ x≪ 1ð Þ≈ x (6)

The acceleration constant is found to be a0 ¼ 1:2� 0:2� 10�10 m
s2 [8]. Phenome-

nological success of MOND is that applying it produces flat rotation curves of
galaxies as observed and that this simple law is sufficient to make predictions for a
broad range of galactic phenomena.

3.4 Ultra-diffuse galaxies

Recent studies of van Dokkum et al. [10, 11] have uncovered new class of object
referred to as ultra-diffuse galaxies. NGC1052-DF2 and NGC1052-DF4 are large,
faint galaxies with an excess of luminous globular clusters, and they have a very
low-velocity dispersion. Velocity dispersion is the dispersion of radial velocities
about the mean velocity for a group of objects. Low-velocity dispersion indicates
that the galaxy has little or no dark matter. NGC1052-DF2 was studied with the
Keck Cosmic Web Imager (KCWI), a new instrument on the Keck II telescope that
was optimized for precision sky-limited spectroscopy of low surface brightness
phenomena at relatively high spectral resolution. The spectroscopy data was used to
describe kinematics of the galaxy. This result was based on the radial velocities of
globular clusters that were assumed to be associated with the galaxies. It was
claimed in Ref. [10] that taking observational uncertainties into account, the deter-
mined intrinsic velocity dispersion is consistent with the expected value found for
the stars alone and lower than expected from DM halo (see Figure 4). The dynam-
ical mass of NGC1052-DF2 determined in [10] was 1:3� 0:8� 108Mʘ, and the
stellar mass, i.e., luminous matter, was found to be 1� 0:2� 108Mʘ.

To give a reader some intuition and place this in some context, it is worth to
notice that the stellar mass of the Milky Way found in [12] was 6:08� 1:14�
1010Mʘ. It is broadly accepted in literature, and as will the following section
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present, the Milky Way contains big amount of the dark matter. The velocity
dispersion of our galaxy is 75 km/s [13]. The NGC1052-DF2 is about 100 times
lighter than the Milky Way; however, the velocity dispersion of NGC1052-DF2 was
found to be only roughly 8.5 km/s [10]. If the galaxies can be formed and exist
without the dark matter, i.e., the dark matter is not present in all existing galaxies,
then the attempts to explain their dynamics by applying MOND might be at risk.

4. Detection of dark matter

4.1 Gravitational interaction with ordinary matter

In 2012 Moni Bidin et al. [14] published a paper in which they estimated surface
mass density in the solar neighborhood. Results obtained match the expectations of
visible matter alone without the need of adding the dark matter component. The
difference between the measured mass of matter (derived in this study) and the
mass of visible matter (i.e., mass of matter that is estimated in the independent way
based on the amount of emitted) provides an estimate of the amount of DM in the
volume under analysis, and constraints on the shape of the DM halo can be derived.
The fundamental basis for this measurement is the application of the Poisson–
Boltzmann and Jeans equations to a virialized system in steady state. This allows to
estimate either the local density at the solar position or the surface density (mass

Figure 4.
Constraints on the intrinsic velocity dispersion of NGC1052-DF2. The result found in [8] (red dot star) is
consistent with two other studies mentioned by authors and shows that such velocity dispersion indicates lack of
the dark matter. Credit: [10].

209

Dark Matter within the Milky Way
DOI: http://dx.doi.org/10.5772/intechopen.90267



modified rather than an invisible matter to be found. Modified Newtonian dynam-
ics (MOND) is an empirically motivated modification of Newtonian dynamics at
low accelerations, suggested as an alternative to dark matter concept [8, 9]. In Ref.
[8] Milgrom considered the possibility that Newton’s second law does not describe
the motion of objects under the conditions which prevail in galaxies and systems of
galaxies. Newton’s laws have been tested in high-acceleration environment like the
Earth or the solar system. The stars in the outer parts of the galaxies move in the
circumstances of extremely low accelerations compared to what we know from
everyday life. To illustrate how small such accelerations might be, let us calculate
the acceleration of average star (the Sun) located on the suburbs of average galaxy
(the Milky Way):

a ¼ V2

R
¼

220 km
s

� �2
8:5 kpc

≈ 1:845� 10�10 m
s2

(4)

Milgrom proposed then a generalized form of Newton’s second principle,
claiming the inertia term not to be simply proportional to the acceleration of an
object but being rather a more general function of it:

m � μ a=a0ð Þa! ¼ F
!
: (5)

In expression (5) m is gravitational mass, a is acceleration, a0 is some accelera-
tion constant, and μ is a nonlinear function with the following properties:

μ x≫ 1ð Þ≈ 1, μ x≪ 1ð Þ≈ x (6)

The acceleration constant is found to be a0 ¼ 1:2� 0:2� 10�10 m
s2 [8]. Phenome-

nological success of MOND is that applying it produces flat rotation curves of
galaxies as observed and that this simple law is sufficient to make predictions for a
broad range of galactic phenomena.

3.4 Ultra-diffuse galaxies

Recent studies of van Dokkum et al. [10, 11] have uncovered new class of object
referred to as ultra-diffuse galaxies. NGC1052-DF2 and NGC1052-DF4 are large,
faint galaxies with an excess of luminous globular clusters, and they have a very
low-velocity dispersion. Velocity dispersion is the dispersion of radial velocities
about the mean velocity for a group of objects. Low-velocity dispersion indicates
that the galaxy has little or no dark matter. NGC1052-DF2 was studied with the
Keck Cosmic Web Imager (KCWI), a new instrument on the Keck II telescope that
was optimized for precision sky-limited spectroscopy of low surface brightness
phenomena at relatively high spectral resolution. The spectroscopy data was used to
describe kinematics of the galaxy. This result was based on the radial velocities of
globular clusters that were assumed to be associated with the galaxies. It was
claimed in Ref. [10] that taking observational uncertainties into account, the deter-
mined intrinsic velocity dispersion is consistent with the expected value found for
the stars alone and lower than expected from DM halo (see Figure 4). The dynam-
ical mass of NGC1052-DF2 determined in [10] was 1:3� 0:8� 108Mʘ, and the
stellar mass, i.e., luminous matter, was found to be 1� 0:2� 108Mʘ.

To give a reader some intuition and place this in some context, it is worth to
notice that the stellar mass of the Milky Way found in [12] was 6:08� 1:14�
1010Mʘ. It is broadly accepted in literature, and as will the following section

208

Progress in Relativity

present, the Milky Way contains big amount of the dark matter. The velocity
dispersion of our galaxy is 75 km/s [13]. The NGC1052-DF2 is about 100 times
lighter than the Milky Way; however, the velocity dispersion of NGC1052-DF2 was
found to be only roughly 8.5 km/s [10]. If the galaxies can be formed and exist
without the dark matter, i.e., the dark matter is not present in all existing galaxies,
then the attempts to explain their dynamics by applying MOND might be at risk.

4. Detection of dark matter

4.1 Gravitational interaction with ordinary matter

In 2012 Moni Bidin et al. [14] published a paper in which they estimated surface
mass density in the solar neighborhood. Results obtained match the expectations of
visible matter alone without the need of adding the dark matter component. The
difference between the measured mass of matter (derived in this study) and the
mass of visible matter (i.e., mass of matter that is estimated in the independent way
based on the amount of emitted) provides an estimate of the amount of DM in the
volume under analysis, and constraints on the shape of the DM halo can be derived.
The fundamental basis for this measurement is the application of the Poisson–
Boltzmann and Jeans equations to a virialized system in steady state. This allows to
estimate either the local density at the solar position or the surface density (mass

Figure 4.
Constraints on the intrinsic velocity dispersion of NGC1052-DF2. The result found in [8] (red dot star) is
consistent with two other studies mentioned by authors and shows that such velocity dispersion indicates lack of
the dark matter. Credit: [10].

209

Dark Matter within the Milky Way
DOI: http://dx.doi.org/10.5772/intechopen.90267



per unit area) of the mass within a given volume. Authors in Ref. [14] derive
analytical expression for surface density as a function of distance from the galactic
disk plane Σ(Z) to estimate the surface mass density between 1.5 and 4.5 kpc
distance from the galactic disk plane using data from of the kinematics studies of
about 400 red giants kinematics. The authors in [14] claimed that the estimate of
the surface mass density matches the expectation of visible mass alone and the
degree of overlap between the two curves is striking. There is no need for any dark
component to account for the results: the measured Σ(Z) implies a local DM density
ρʘDM ¼ 0� 1Mʘ � 10�3pc�3 a. Further the authors in [14] compared this results
with models of DM disk present in literature such as Ref. [15] hereafter OM; Ref.
[16] hereafter SMH, which is standard DM halo model; or Ref. [17]—the model
with minimal local DM density—hereafter MIN. Comparison of these findings is
presented in Figure 5. Authors in Ref. [14] claim that the OMmodel is excluded at 8
sigma confidence level, SHM at 6 sigma, and even MIN model at 4.1 sigma. (Sigma
confidence level says how many values lie within the number of standard deviation
of the mean. For example, in particle physics there is a convention of a five-sigma
effect being required to qualify as a discovery, that is to say that 99.99994% of the
values must lay within 5 standard deviations of the mean; 8 sigma is even higher
confidence level). Authors conclude that the measurement of the mass surface
density at the solar galactocentric position between 1.5 and 4 kpc from the galactic
plane accounts for the visible mass only. The DM density in the solar neighborhood,
extrapolated from the observed curve of Σ(Z), is at variance with the general

Figure 5.
Observational results for the surface mass density, as a function of distance from the galactic plane (black
curve), compared to the expectations of the models discussed in the text (thick gray curves). The dotted and
dashed lines indicate the observational 1σ and 3σ strip, respectively. Expectations for the known visible mass are
indicated by the thick gray curve labeled as VIS. Credit: [14].
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consensus that it must be in the range 5� 13 Mʘ � 10�3pc�3 (e.g., [18, 19]). Lack of
DM is observed by using measurements of the thick disk kinematics and is inde-
pendent of the choice of data, because very similar results were obtained by means
of other kinematical results in the literature. It is clear that the local surface density
as measured in Ref. [14], extrapolated to the rest of the galaxy, cannot retain the
Sun in a circular orbit at a speed of �220 km s�1. A deep missing mass problem is
therefore confirmed by this study, and this finding tells us that indirect attempts to
detect the dark matter by investigating its interactions with ordinary matter in that
way have a little chance of success.

4.2 Direct detection

The experiments that aim at the direct detection due to scattering do not agree
with each other yielding different constraints on the mass of the DM particles. The
DAMA/LIBRA experiment [20] is the only one to claim positive result of detection
which however has not been yet confirmed by the other groups (detectors). The
aim of this experiment is detecting low-energy recoil photons from the scintillator
crystals of thallium-doped sodium iodide NaI(Tl) placed in the detectors under the
ground. Such photons would be emitted when the DM particle collides with one of
the scintillators. If what we know about the DM is right, then since the Earth orbits
the Sun, the DM particles should pass through the planet and hence have a chance
to collide with those of the detectors. The idea of the experiment is that if one takes
into account the revolution of the Earth around the Sun and the revolution of the
Sun around the center of our galaxy, then the signals coming from the collisions
should be modulated as in June the relative velocity of the Earth and the DM flux is
the biggest hence yielding the biggest number of collisions. The data collected from
the phase II of the experiment have all traits required to claim the presence of the
DM in our part of the galaxy. The annual modulation is present only in the events
concerning the photons with energies exactly within the energetic range theoreti-
cally predicted for the DM particles. Yet the DAMA/LIBRA is a singular case.
Several groups have been working to develop experiments aiming at reproducing
DAMA/LIBRA’s results using the same target medium. To determine whether there
is evidence for an excess of events above the expected background in sodium iodide
and to look for evidence of an annual modulation, the COSINE-100 experiment [21]
uses the same target medium to carry out a model-independent test of DAMA/
LIBRA’s claim. Their results from the initial operation of the COSINE-100 experi-
ment were published in [21], and no excess of signal-like events above the expected
background in the first 59.5 days of data from COSINE-100 has been observed.
Assuming the so-called standard DM halo model, this result rules out spin-
independent WIMP–nucleon interactions as the cause of the annual modulation
observed by the DAMA/LIBRA collaboration. Another such experiment is the
XENON100 experiment that searches for electronic recoil event rate modulation by
measuring the scintillation light from a particle interacting in the liquid xenon. The
results of this experiment published in [22] also exclude the DAMA/LIBRA results.

4.3 Others

We will present here very briefly the other two methods of detection of DM:

• Production of DM particles in colliders—If the DM particles were created, for
instance, in LHC, they would escape through the detectors unnoticed (due to
their non-electromagnetic nature). However, they would carry away energy
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and momentum, so one could infer their existence from the amount of energy
and momentum “missing” after a collision. The LHC also search for existence
of supersymmetric particles which are one of the candidates for DM particle.

• Searching for products of annihilation of its particles—Indirect detection. This
experiments search for the products of the self-annihilation or decay of DM
particles in outer space. For example, in regions of high DM density (e.g., the
center of our galaxy), two DM particles could annihilate to produce gamma
rays or standard model particle–antiparticle pairs. Alternatively if the DM
particle is unstable, it could decay into standard model (or other) particles.
These processes could be detected indirectly through an excess of gamma
rays, antiprotons, or positrons emanating from high-density regions in the
galaxy or others.

5. Milky way rotation curve

DM manifests its existence through the shape of rotational curves of galaxies, in
particular, through the rotational curve of our own galaxy, the Milky Way. This is
what motivated us to take a glimpse on that topic and to compare results to those
present in literature [23]. We have studied the rotational curve of Milky Way with
radio telescope located in the Astronomical Observatory of the Jagiellonian Univer-
sity provided by EU-HOU project (EU-HOU project was founded with support
from the European Commission, grant 510,308-LLP-1-2010-FR-COMENIUS-CMP.
https://www.astro.uni-bonn.de/hisurvey/euhou/LABprofile/).

5.1 The method

This 3 m in diameter telescope runs observations on 1420 MHz frequency which
is the emission line of neutral hydrogen. When the hydrogen atom undergoes a
transition from the state of higher energy when the spins of the proton and the
electron are parallel to the state of lower energy that is when the spins are antipar-
allel, emitted photon is equivalent to radiation roughly 21 cm wavelength in vacuum
(see Figure 6). Even though such process occurs very rarely, given the abundance
of the hydrogen in the Universe (i.e., 74% of its baryonic mass), it is a common
phenomenon. Hence the hydrogen is also present in the interstellar space around
the stars, and radio observations yield information on how the matter is distributed
inside the galaxy, and knowing the Doppler shift of the observed radiation, one can
calculate the velocity of the hydrogen cloud from which it comes from. This in turn
gives us an idea how the hydrogen and the nearby matter move within the galaxy,
i.e., orbit around its center. Knowing the velocities and distance of such hydrogen
clouds, one can plot the rotational curve of the galaxy. This is called tangent point
method. Thus using the data obtained from the telescope, the Doppler equation:

Vr ¼
f 0 � f
f 0

� c (7)

one can calculate the source’s velocity (speed) relative to us (Vr). f 0 is the
frequency emitted by the hydrogen atom, f is the frequency the radio telescope
receives, and c denotes the speed of light. The frequencies registered by the radio
telescope are of course slightly different than 1420 MHz which is the frequency
of emitted photon as measured at the lab and as emitted by the hydrogen atom.
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The hydrogen atoms that we study are moving relatively to us so the signal coming
from them is a subject to the same phenomenon as for the ambulance’s siren
applies. That is the change in frequency that enables us to calculate the radial
velocity of such hydrogen cloud along the line of sight (which is defined by
galactic longitude).

To find the speed of the hydrogen cloud, a simple fact is used, that is the radial
velocity results in difference between the projection of ours (Sun’s) velocity on the
line of sight and the hydrogen cloud’s velocity on the line of sight (see Figure 7).
The line of sight is determined along the galactic longitude (see Figure 8) on which
we set the radio telescope.

This results in the following equation for velocity of observed hydrogen cloud:

Vr ¼ V
R0

R
sin lð Þ � V0 sin lð Þ (8)

Among the objects observed along the given line of sight, the one with the
smallest distance will have the biggest velocity. The smallest possible distance
between us and the source is when it lies in the tangent point; hence simple
trigonometry allows us to determine the distance:

R ¼ R0 sin lð Þ (9)

which simplifies Eq. (8) to

V ¼ Vr þ V0 sin lð Þ: (10)

Eqs. (8) and (9) provide all required information to plot a rotational curve of the
galaxy. This method works for objects in I and IV Quadrants of galactic longitude, that
is for 0°< l< 90°and 270°< l< 360° and inside the galactocentric radius of the Sun.

Figure 6.
Hydrogen 21-cm emission line.
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5.2 Results

Twenty-nine objects with galactic longitude 0°< l< 90° have been studied. Their
positions on the map of the Milky Way are presented in Figure 9. Tangent point
method applied to the data results in rotational curve presented in Figure 10.

Our rotational curve plot, Figure 10, is comparable to the plot obtained from
data from LAB survey [24] and consistent with the ones that can be found in
literature [23, 25]. We follow [25] in their choice of function to fit the data, namely

V
V0

¼ a
R
R0

� �b

þ c (11)

where we put V0 ¼ 220 km
s and R0 ¼ 8:5 kpc and find the coefficients to be

a ¼ �5:495e� 06, b ¼ �21:28, and c ¼ 0:9808.
We conclude that the rotational curve reveals the existence of dark matter

within the Milky Way. Taking (nonrelativistic) law of gravity, that is, the force of
gravity is proportional to inverse squared distance, one would expect that the
farther away the hydrogen clouds (constituting the distribution of matter) are from
the massive center of the galaxy, the lower their velocities will be. As one see from
the rotational curve, Figure 10, this is not the case; the velocities seem to be
constant over a distance of roughly 3 kpc. Which means there is nonluminous
matter distributed in such a way just to “keep up” with the increasing distance from

Figure 7.
Figure presenting two objects (A, B) along the line of sight. Hence object B lies in tangent point, i.e., its distance
from the center of the galaxy is smaller, and its velocity is greater than the velocity of object A.
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Figure 8.
Figure presenting galactic longitude. L = 0° is direction from the solar system to the center of galaxy. Credit: File:
Artist’s_impression_of_the_Milky_Way.Jpg: NASA/JPL-Caltech/ESO/R.hurt.

Figure 9.
Map of the hydrogen clouds used to determine the rotational curve of the Milky Way.
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the center of galaxy and make it so that the velocities of hydrogen atoms are almost
constant as the distance increases.

6. Conclusions

The problem of missing matter discovered by Fritz Zwicky in 1933 appears to be
still an open question. The most important premise of existence of the dark matter
is the shape of rotational curves of galaxies, introduced as a tool for studying galaxy
rotation by Vera Rubin. With our current understanding of the Universe, the dark
matter, still a mysterious substance, makes up 86% of all the matter in the Universe.
Throughout the years various attempts have been made to explain its nature. Some
of the ideas have been proven unlikely (MACHOs). Some of them contradict each
other (DAMA/LIBRA, the COSINE-100 collaboration). Yet even simple Milky
Way’s observations as presented in Section 5 lead to the conclusion that the dark
matter is present in the halo of our galaxy.

Figure 10.
Rotational curve obtained from 21-cm line observations of the Milky Way. Note that the velocity of the studied
objects appears to be constant over roughly 3 kpc distance.
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Chapter 13

The Early Universe as a Source of
Gravitational Waves
Vladimir Gladyshev and Igor Fomin

Abstract

In this chapter we consider the issues of the origin and evolution of relic gravi-
tational waves (GW), which appear as a result of quantum fluctuations of the
scalar field and the corresponding perturbations of the space-time metric at the
early inflationary stage of the evolution of the universe. The main provisions of the
inflationary paradigm and the methods of the construction of current cosmological
models on its basis are considered. The influence of relic gravitational waves on
the anisotropy and polarization of the relic radiation and the importance of
estimating such an effect on the verification of cosmological models are
discussed as well.

Keywords: universe, inflation, scalar field, cosmological perturbations,
gravitational waves

1. Introduction

The general relativity (GR) theory proposed by A. Einstein more than a
100 years ago currently finds new confirmations. The possible existence of gravita-
tional waves was predicted by A. Einstein on the basis of solving the equations of
general relativity when calculating the power of gravitational radiation [1, 2].

Gravitational waves (GW) are space-time curvature disturbances, which prop-
agate at the speed of light. They occur at any movements of material bodies, leading
to inhomogeneous gravity force variation in the environment. Gravitational radia-
tion was predicted by A. Einstein in the general relativity (GR) theory, but so far
not detected by direct measurements.

According to general relativity, space-time is curved around the bodies due to
the action of gravity and is represented by a symmetric tensor gμν with 10 indepen-
dent components. However, far from the masses (the case of weak gravitational
fields), the tensor can be divided into two terms gμν ¼ ημν þ hμν where the first
term, i.e., tensor ημν, corresponds to the flat space-time of the special theory of
relativity and has only four components. The second tensor hμν contains informa-
tion about the curvature caused by the gravitational field and makes small correc-
tions. In the case of gravitational disturbances propagating far from their sources,
the components of the tensor hμν can be calculated by the method proposed by
Einstein [1], similar to that used in electrodynamics for delayed potentials.

The first evidence was received by experimental studies of Joseph H. Taylor and
Joel M. Weisberg et al., who studied the effect of slowing down the period of the
binary star system PSR 1913 + 16 due to energy losses on gravitational radiation [3].
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Abstract

In this chapter we consider the issues of the origin and evolution of relic gravi-
tational waves (GW), which appear as a result of quantum fluctuations of the
scalar field and the corresponding perturbations of the space-time metric at the
early inflationary stage of the evolution of the universe. The main provisions of the
inflationary paradigm and the methods of the construction of current cosmological
models on its basis are considered. The influence of relic gravitational waves on
the anisotropy and polarization of the relic radiation and the importance of
estimating such an effect on the verification of cosmological models are
discussed as well.
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gravitational waves
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Joel M. Weisberg et al., who studied the effect of slowing down the period of the
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Until recently, however, there has remained the main task: the direct recording of
gravitational waves from space radiation sources by means of ground-based or
space gravitational antennas.

Over the years, several methods have been proposed for recording gravitational
radiation. Experimental work began in the 1960s of the twentieth century, but
before the beginning of the twenty-first century, there was no reliable experimental
proof of the ground-based recording of gravitational radiation [4].

This is due to the fact that gravitational waves have small amplitude; in addition,
the proposed detection methods have insufficient sensitivity and are rather compli-
cated in technical implementation.

These are broadband gravitational antennas, which offer a lot of opportunities as
to the methods of recording gravitational waves and extracting signals, as well as
the use of quantum non-perturbative measurements and the inclusion of
gravitational antennas in the network.

The creation of new-generation gravitational antennas designed to reliably
receive gravitational waves from remote space sources involves the use of high-
power lasers, complex computer systems for processing large data arrays, the use
of complex seismic protection systems, and the solution of other complex
engineering and physical problems.

At present large international experience has been gained in the field of creating
laser gravitational antennas, which ensured the ground-based recording of gravita-
tional waves from black hole collision [5, 6] and neutron star merger [7]. Further-
more, the gravitational wave propagation velocity was estimated, which appeared
to be equal to the speed of light in vacuum with an accuracy of 10�15 based on
almost simultaneous recording of gravitational waves and a short gamma-ray burst
from neutron star merger [8].

The modern theory of the early universe is based on the inclusion of the infla-
tionary stage which precedes the stage of the hot universe. The theory of cosmo-
logical inflation [9] explains the origin of a large-scale structure and corresponds to
observational data [10]. Inflationary expansion of the universe during very early
times, once the universe emerged from the quantum gravity (Planck) era, has been
proposed in the late 1970s and mainly in the beginning of the 1980s and is becoming
more accepted as a necessary stage which modifies the standard Big Bang theory
model. According to the theory of inflation, the primordial perturbations appear
from quantum fluctuations. These fluctuations had essential amplitudes in scales of
Planck length, and during inflation they generate the primordial perturbations
which then lead nearer to scales of galaxies with almost the same amplitudes [11].

Thus, the theory of cosmological inflation connects large-scale structure of the
universe with microscopic scales. The resultant range of inhomogeneities practically
doesn’t depend on scenarios of inflation and has a universal form. It leads to
unambiguous predictions for a range of anisotropy of the background radiation.

The small quantum perturbations of the scalar field and the corresponding
perturbations of the metric generate the relic gravitational waves. This type
of gravitational waves was not directly observed; however, the possibility of such
observations plays a key role to understand the physical processes in the early
universe.

2. Inflationary stage of the early universe

The models of inflationary (accelerated) expansion of the universe at the early
stage of its evolution, that is, at times close to the Planck time, are becoming

222

Progress in Relativity

increasingly convincing as a necessary step modifying the standard Big Bang theory,
which is based on solutions of Einstein’s equations for the universe filled with
ordinary baryonic matter with a positive energy density obtained by Friedmann.
However, the extrapolation of Friedmann solutions to early times leads to many
insoluble problems when constructing on their basis the evolution scenarios of the
universe [9].

The exponential (de Sitter) expansion, suggesting p ¼ �ρ, or a close expansion
of the early universe based on the evolution of a certain substance with the equation
of state p≈� ρ, i.e., with a negative pressure, is a feature of inflation models which
allow to solve the problems of the standard model of the Big Bang theory, namely,
the problems of the horizon, flatness, homogeneity, isotropy, low concentration of
exotic states of matter (domain walls, monopoles, etc.), anisotropy of the back-
ground radiation, the initial singularity, and some other problems [9].

Thus, the cosmological models containing a combination of Friedmann solutions
and (quasi) de Sitter solutions provide the basis for a current description of the
evolution of the universe. In the context of the inflationary paradigm, the early
universe expands for some time accelerated and, further, goes into a power-law
expansion mode without acceleration corresponding to Friedmann solutions.

In most cosmological models, the geometric description of the universe is based
on the Friedmann-Robertson-Walker (FRW) homogeneous isotropic space (space-
time) model, which is associated with a high degree of isotropy of space, measured
on the basis of the cosmic microwave background (CMB) radiation research. This
identification also relies on a formal result known as the Ehlers-Geren-Sachs theo-
rem, which refers to the universe filled with any ideal barotropic fluid [12].

The metric of Friedmann-Robertson-Walker (FRW) space-time is written
as follows:

ds2 ¼ �dt2 þ a2 tð Þ dr2

1� kr2
þ r2 dθ2 þ sin 2θdφ2� � !

(1)

where a tð Þ is a scale factor which characterizes the size of the universe, r; θ;φf g
are the spherical coordinates, and the values k ¼ 0, k ¼ 1, and k ¼ �1 correspond to
a spatially flat, closed, and open model of the universe.

The source of the accelerated expansion of the early universe with the equation
of state p ¼ �ρ is a vacuum; the equation of the state p≈� ρ corresponds to a scalar
(bosonic) field. The Bose-Einstein statistics for an ensemble of bosons, in contrast
to an ensemble of fermions obeying the Pauli exclusion principle, implies that there
can be several particles in one quantum state, which leads to the formation of boson
condensate in which the increase in the concentration of massless bosons is associ-
ated with a decrease in the effective pressure corresponding to the equation of state
p≈� ρ. The initial (quasi) exponential expansion associated with a negative pres-
sure, due to the exotic equation of state, is unstable, which leads to a phase transi-
tion, the termination of accelerated expansion, and the fragmentation of the
original volume into many areas in which further evolution corresponds to the
Friedmann solutions.

Also, the presence of a scalar field violates the symmetry of the system, which
leads to the appearance of a mass of initially massless particles, for example, in the
Higgs field [9].

Thus, the inclusion of the scalar field into cosmological models makes it possible
to move from (quasi) de Sitter solutions to the Friedmann ones.

To prevent the rapid decay of the state of p≈� ρ, it is necessary to assume the
existence of some potential barrier, that is, the minimum potential energy of a
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increasingly convincing as a necessary step modifying the standard Big Bang theory,
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ordinary baryonic matter with a positive energy density obtained by Friedmann.
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(bosonic) field. The Bose-Einstein statistics for an ensemble of bosons, in contrast
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223

The Early Universe as a Source of Gravitational Waves
DOI: http://dx.doi.org/10.5772/intechopen.87946



scalar field. Consequently, in realistic inflation models, the scalar field evolves from
a state of “false vacuum” with a non-zero potential energy to a state of “true
vacuum,” corresponding to the minimum of a potential V ϕð Þ. In other words, the
scalar field rolls down (or tunnels) from some initial state to the minimum of V ϕð Þ,
and the nature of this process is determined by the shape of the potential.

At the moment, there are many models of cosmological inflation with different
potentials of a scalar field and different specifics of its evolution. A large number of
current models of the early universe on the basis of the inflationary paradigm are
considered in the review [13].

The physical justification for the inclusion of scalar fields in cosmological models
is based on the experimental detection of the Higgs boson in the experiment at the
Large Hadron Collider [14]. Thus, the scalar field corresponding to the Higgs
bosons can be considered as the source of the gravitational field of the early uni-
verse. Moreover, the Higgs field can be considered as “inflation,” leading to early
accelerated expansion of the universe.

Now, in the system of units 8πG ¼ c ¼ 1, we write the action that determines the
dynamics of a scalar field ϕ based on Einstein’s theory of gravity:

SE ¼
ð
d4x

ffiffiffiffiffiffi�g
p 1

2
R� gμν

1
2
∂μϕ∂νϕ� V ϕð Þ

� �
(2)

where R is the Ricci scalar and V ϕð Þ is the potential of a scalar field.
From the variation of this action with respect to the metric (1) and a field ϕ, for

the case of the spatially flat universe, we obtain the equations defining the dynamics
of a scalar field [9]:

3H2 ¼ 1
2
_ϕ2 þ V ϕð Þ (3)

�2 _H � 3H2 ¼ 1
2
_ϕ2 � V ϕð Þ (4)

€ϕ þ 3H _ϕ þ dV ϕð Þ
dϕ

¼ 0 (5)

where H ¼ _a=a is the Hubble parameter, X ¼ 1
2
_ϕ2 is the kinetic energy of a

canonical scalar field ϕ, and the dot denotes the derivative with respect to cosmic
time _a ¼ da=dt.

Also, the state parameter w of a scalar field can be calculated as

w ¼ p
ρ
¼ X � V

X þ V
¼ �1� 2

3

_H
H2 (6)

To build a consistent model of cosmological inflation, the following conditions
must be met:

a. The presence of the stage of accelerated expansion, which implies ‐1<w< ‐1=3

b.The completion of the stage of accelerated expansion w ¼ ‐1=3

c. The reheating of the scalar field with the subsequent formation of photons, i.e.,
the transition to the stage of predominance of radiation with w ¼ 1=3

Currently, along with other models, several types of cosmological inflationary
models are considered, which differ in both by the type of potential and the initial
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conditions under which an inflationary stage occurs: namely, a scalar field can be
located at one of its potential minima, or accelerated expansion occurs for any
conditions permitting the onset of inflation for scalar field energy density values
comparable to the Planck mass [9].

The form of the scalar field’s potential is determined from the physics of ele-
mentary particles and theories of the unification of fundamental interactions, such
as supersymmetric theories and string theories in the context of the inflationary
paradigm. Physical mechanisms corresponding to a large number of inflationary
potentials were discussed in the review [14]. Due to the fact that the potential of the
scalar field has a great importance for determining the physical processes at the
stage of cosmological inflation, the potential V ϕð Þ is given to build models of the
early universe.

However, the finding of exact solutions to the system of Eqs. (3)–(5) for a given
potential is impossible in most cases due to their nonlinearity. For this reason, a
convenient tool for analyzing inflationary models based on a given scalar field
potential is the “slow-roll approximation” which implies that V ϕð Þ>>X and €ϕ≈0
and, therefore, simplifies the initial dynamic equations [9].

The dynamics of the expansion of the universe which determined by the scale
factor a tð Þ is no less important when analyzing cosmological models. By setting the
expansion law a tð Þ, it is often possible to find the exact solutions of the system of
Eqs. (3)–(5) and restore the evolution of the scalar field ϕ tð Þ and the potential V ϕð Þ.
The different methods for constructing exact and approximate solutions of the
equations of cosmological dynamics (3)–(5) can be found, for example, in the
papers [15, 16]. We also note that the system of Eqs. (3)–(5) has many solutions that
satisfy all the conditions for the inflationary stage that were outlined earlier.

Now, we consider the parameters that are necessary for the analysis of infla-
tionary stage, namely, the e-fold number and the slow-roll parameters.

The e-fold number is usually noted as the natural logarithm of the ratio of
the scale factor at the end of inflation to the scale factor at the beginning of
inflation [9]:

N tð Þ ¼ ln
a tendð Þ
a tið Þ ¼

ðtend

ti

Hdt (7)

where ti and tend are the times of the beginning and ending of the inflation. The
value of the number of e-folds at the end of the inflationary stage is estimated as
N ¼ 50� 60 [9].

When analyzing inflationary models, the slow-roll parameters are important,
and these parameters are defined as follows [13]:

ϵ � 2
H0

ϕ

H

� �2

¼ �
_H

H2 (8)

δ � 2
H″

ϕ

H
¼ ϵ� _ϵ

2Hϵ
¼ �

€H
2H _H

(9)

ξ � 4
H0

ϕH
‴
ϕ

H2 ¼ 1
H

_ϵ � _δ
� �

(10)

Based on the relations (8)–(10), one can consider the slow-roll parameters as a
function of time or field. During the inflationary stage, ϵ< 1 and its completion are
determined by the condition ϵ ¼ 1.
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c. The reheating of the scalar field with the subsequent formation of photons, i.e.,
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Currently, along with other models, several types of cosmological inflationary
models are considered, which differ in both by the type of potential and the initial
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conditions under which an inflationary stage occurs: namely, a scalar field can be
located at one of its potential minima, or accelerated expansion occurs for any
conditions permitting the onset of inflation for scalar field energy density values
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The form of the scalar field’s potential is determined from the physics of ele-
mentary particles and theories of the unification of fundamental interactions, such
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paradigm. Physical mechanisms corresponding to a large number of inflationary
potentials were discussed in the review [14]. Due to the fact that the potential of the
scalar field has a great importance for determining the physical processes at the
stage of cosmological inflation, the potential V ϕð Þ is given to build models of the
early universe.

However, the finding of exact solutions to the system of Eqs. (3)–(5) for a given
potential is impossible in most cases due to their nonlinearity. For this reason, a
convenient tool for analyzing inflationary models based on a given scalar field
potential is the “slow-roll approximation” which implies that V ϕð Þ>>X and €ϕ≈0
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The different methods for constructing exact and approximate solutions of the
equations of cosmological dynamics (3)–(5) can be found, for example, in the
papers [15, 16]. We also note that the system of Eqs. (3)–(5) has many solutions that
satisfy all the conditions for the inflationary stage that were outlined earlier.

Now, we consider the parameters that are necessary for the analysis of infla-
tionary stage, namely, the e-fold number and the slow-roll parameters.

The e-fold number is usually noted as the natural logarithm of the ratio of
the scale factor at the end of inflation to the scale factor at the beginning of
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3. Cosmological perturbations

Cosmological perturbations are the source of the evolution of large-scale struc-
ture of the universe. An explanation of the distribution of galaxies and clusters of
galaxies at large distances in the observable part of the universe on the basis of
cosmological perturbations was originally proposed in the works of Harrison [17]
and Zeldovich [18]. In the context of inflationary paradigm, the source of cosmo-
logical perturbations is quantum fluctuations of a scalar field and the corresponding
fluctuations of the metric, which, in a linear order, correspond to three modes that
evolve independently.

It is known from the classical theory of cosmological perturbations that the
analysis of metric inhomogeneities can be simplified to the study of one perturbed
quantity [11]. Thus, the quantum theory of cosmological perturbations can be
reduced to the quantum description of the fluctuations of a certain scalar field.

Since the background in which the scalar field evolves depends on time, the field
mass will also depend on time. This dependence of the field’s mass on time will lead
to the appearance of particles if the evolution begins with a certain vacuum state.
Quantum particle production corresponds to the development and growth of cos-
mological perturbations.

In inflation models with one scalar field, at the crossing of the Hubble radius,
cosmological perturbations “freeze,” and their quantum state begins to change in
such a way that the condition of constant amplitude is satisfied. The freezing of the
vacuum state leads to the appearance of the classical properties [11]. Thus, the
theory of cosmological perturbations provides a consistent approach for considering
the generation and evolution of cosmological perturbations.

The influence of cosmological perturbations on the anisotropy and polarization
of the background radiation is determined on the basis of spectral parameters and
observational restrictions on the values of which form the basis of the experimental
verification of theoretical models of the early universe. Also, within the framework
of the cosmological perturbation theory, it is possible to calculate the spectra of
initial density perturbations and relic gravitational waves depending on the values
of the parameters of theoretical models [11].

After the end of the inflationary stage, the scalar field reheating and the forma-
tion of the first light particles of baryon matter begin. In the hot dense plasma, due
to scattering on electrons, photons propagate much slower than the speed of light.
When the universe expands so much that the plasma cools down to the recombina-
tion temperature, the electrons begin to connect with the protons, forming neutral
hydrogen, and the photons begin to spread freely.

The points from which the photons reach the observer form the last scattering
surface, whose temperature at the time of recombination is �3000 K and rapidly
decreases with the expansion of the universe. The background radiation tempera-
ture is isotropic with an accuracy of 10�5. The low anisotropy manifests itself as the
temperature difference in different directions and its value is approximately equal
to 3 mK [10].

The kinetic component of the anisotropy of the cosmic background radiation is
due to the movement of the observer relative to the background radiation, which
corresponds to the dipole harmonic.

In addition to the kinetic component in the anisotropy of the CMB, there are
potential terms associated with effects in gravitational fields of very large scales that
are comparable to the distance to the last scattering surface, namely:

a. Sachs-Wolfe effect, which corresponds to a change in the photon energy in a
variable gravitational field of the universe
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b.Silk effect due to adiabatic compression of radiation and baryon acoustic
oscillations prior to the recombination epoch in high- and low-density zones

In the zero order of the cosmological perturbation theory, the universe is
described by a single function of time, namely, by the scale factor a tð Þ. In the first
(linear) order, the perturbations of the metric are the sum of three independent
modes—scalar, vector, and tensor (relic gravitational waves), each of which is
characterized by the spectral function of the wave number k [11].

For the inflationary stage in the linear approximation, one can write the
Mukhanov-Sasaki equations for Fourier modes of the scalar vk and tensor uk
perturbations [11]:

d2vk
dη2

þ k2 � 1
z
d2z
dη2

 !
vk ¼ 0 (11)

d2uk
dη2

þ k2 � 1
a
d2a
dη2

 !
uk ¼ 0 (12)

where z ¼ a _ϕ=H, k is a wave number, and η is the conformal time.
Eqs. (11) and (12) allow finding the power spectra PS and PT and spectral

indices nS and nT of the scalar and tensor perturbations. The formulas for
calculating the main cosmological parameters at crossing the Hubble radius
k ¼ aHð Þ [19] are

PS kð Þ ¼ 1
2ϵ

H
2π

� �2

(13)

PT kð Þ ¼ 2
H
2π

� �2

(14)

nS � 1 ¼ 2
δ� 2ϵ
1� ϵ

� �
(15)

nT ¼ � 2ϵ
1� ϵ

(16)

r ¼ PT

PS
¼ 4ϵ (17)

The data on the effects of scalar and tensor modes can be obtained from
observations of the anisotropy and polarization of the cosmic microwave back-
ground (CMB) radiation, which arose as a result of the joint effect on the photon
distribution of the perturbation modes. Observational restrictions on the values of
the parameters of cosmological perturbations according to the data of the
PLANCK are [10]

109PS ¼ 2:142� 0:049 (18)

nS ¼ 0:9667 � 0:0040 (19)

r<0:065 (20)

In the context of such verification of cosmological models, let us pay attention to
the tendency for the upper limit to decrease by the value of the tensor-scalar ratio
for updated observational data [10].
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Also, we note that the relic gravitational waves were not directly observed,
which leads to a large number of theoretical models of cosmological inflation,
which provide an explanation of the origin and evolution of the large-scale structure
of the universe and correspond to the observational constraints.

4. Generalized exponential power-law inflation

The scheme for constructing models of the early universe based on the evolution
of the scalar field in the context of the inflationary paradigm can be represented
as follows:

a. The generating solutions of background dynamic equations (excluding
quantum fluctuations of the scalar field) for a given potential, the law of
accelerated expansion of the early universe, or the evolution of a scalar field.

b.Analysis of the quantum fluctuations of a scalar field and the corresponding
metric perturbations on the basis of the theory of cosmological perturbation
for the previously obtained background solutions. The result of this analysis
is the values of the spectral parameters of cosmological perturbations
which can be calculated from Eqs. (13)–(17).

c. Comparison of the obtained spectral parameters of cosmological perturbations
with the corresponding observational data (18)–(20).

To build cosmological models corresponding to observational data, we propose
the principle of constructing the inflationary models with generalized exponential
power-law expansion. For this aim we consider any exact solutions ϕ;H;Vf g of
Eqs. (3)–(5) for which the substitution of the slow-roll parameters (8)–(10) into
Eqs. (13)–(17) doesn’t correspond to observational constraints (17)–(18).

After the following transformations

H ¼ nH þ λ (21)

a tð Þ ¼ Can tð Þeλt, C ¼ a0=an0 (22)

φ ¼
ffiffiffi
n

p
ϕ (23)

V ϕð Þ ¼ 3n2H2 þ 6λnH � nH02
ϕ þ 3λ2, V φð Þ ¼ V ϕ φð Þð Þ (24)

one has new exact solutions φ;H;V
� �

with new slow-roll parameters

ϵ ¼ nϵ nþ λ

H ϵð Þ

� ��2

(25)

δ ¼ δ nþ λ

H ϵð Þ

� ��1

(26)

and with the conformity to observational constraints which can be achieved by
choosing the values of free constant parameters n and λ.

The proposed approach has two limitations:

a. The original scale factor a tð Þ doesn’t violate the law of accelerated expansion.

228

Progress in Relativity

b.The potential V φð Þ corresponding to the scale factor (20) implies the evolution
of the scalar field φ, according to the inflationary paradigm.

Transformations (21)–(24) define a class of models with the generalized expo-
nential power-law dynamics, and the original scale factor a tð Þ may not correspond
to the condition of accelerated expansion €a>0; however, the resulting scale factor
a tð Þ implies a combination of the de Sitter solution (for n ¼ 0) and the power-law
expansion (for λ ¼ 0), which corresponds to the basic feature of the inflationary
paradigm implying a graceful exit from the stage of accelerated expansion to the
power-law non-accelerated expansion.

5. Relic gravitational waves

As an additional verification tool for cosmological models, we consider the
possibility of direct detection of the relic gravitational waves. The detection of relic
gravitational waves is extremely important for determining the parameters of the
models of early universe. Additionally, such a detection enhances the position of the
inflationary paradigm compared to alternative scenarios, for example, the models
with a rebound from singularity in which cosmological gravitational waves are
absent [19].

As the main observational characteristic of relic gravitational waves, we consider
the energy density, which is usually determined by the dimensionless quantity [20]:

ΩGW fð Þ ¼ 1
ρc

dρGW
dln f

(27)

where f is the linear frequency, ρc ¼ 3H2
0 is the critical energy density, H0 is the

value of the Hubble parameter in the modern era, and ρGW is the energy density of
gravitational waves.

Also, the energy density of relic gravitational waves can be represented in terms
of the power spectrum:

ΩGW kð Þ ¼ k2

12H2
0
PT kð Þ (28)

The frequency and energy density of relic gravitational waves are limited by the
following conditions [20]:

a. The energy density of relic gravitational waves should not exceed

ð∞

f 0

ΩGWdln f < 1:1� 10�5 (29)

where f 0≈10
�9 Hz.

a. The temperature of the scalar field T ∗ and the frequency of gravitational
waves f at the end of the inflation stage are

T ∗ ¼ 5:85� 106 f
Hz

� �
g ∗

106:75

� �1=6

GeV (30)
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f ¼ 1:71� 10�7 T ∗

GeV

� �
g ∗

106:75

� ��1=6

Hz (31)

where g ∗ is the effective number of the degrees of freedom (in standard model
of elementary particles g ∗ ¼ 106:75).

Therefore, conditions (18) and (21)–(23) impose restrictions on the parameters
of relic gravitational waves.

The application to the analysis of the models of the early universe only of the
slow-roll approximation implies a low-frequency spectrum of relic gravitational
waves in the range of 10�18 � 10�16 Hz [20]. However, the predominance of the
kinetic energy of the scalar field during the evolution of the early universe provides
a theoretical justification for the existence of high-frequency relic gravitational
waves in models with one scalar field in the range of 102 � 104 Hz [21] which can be
used as affordable means of verification of models of the early universe in the
presence of physical effects that increase the sensitivity of the detector to the
required level.

Currently, the most productive method of direct detection of gravitational
waves is the use of interferometers as detectors, which was proposed in the
article by Gertsenshtein and Pustovoit [22]. This principle is widely used in
modern laser interference gravitational antennas, the main element of which is
the Fabry-Perot interferometer. These are broadband gravitational antennas,
which offer a lot of opportunities as to the methods of recording of
gravitational waves and extracting signals, as well as the use of quantum
non-perturbative measurements and the inclusion of gravitational antennas in
the network. The main element of laser interference gravitational antennas, as a
rule, is Fabry-Perot multipath free-mass resonator, on whose properties the
sensitivity and noise immunity of the entire gravitational antenna largely
depend [4, 23, 24].

After creating the first laser interferometer for detecting gravitational waves,
systematic work began on the creation and improvement of such devices in various
laboratories around the world. The experience of gravitational antenna projects by
VIRGO (Italy, France), LIGO (USA), TAMA (Japan), CLIO (Japan), GEO-600
(Germany), and OGRAN (Russia) will certainly be used to create more compact
and highly sensitive antennas of new generation [4]. Also, as the most promising
project for the direct detection of gravitational waves, work on the creation of a
space interferometer in a helio-stationary orbit should be noted, in which the
distance between the mirrors will be about 1 million kilometers. This project is
called Laser Interferometer Space Antenna (LISA) [25]. The implementation of the
LISA project is scheduled for 2029.

One of the promising methods for increasing the sensitivity of gravitational
antennas in the high-frequency region of the spectrum is to use the phenomenon of
low-frequency optical resonance, which distinguishes this approach from other
projects on the detection of gravitational waves. The presence of this effect in
Fabry-Perot interferometers was first considered in [23, 24]. At the moment, there
is a high-frequency gravitational wave detector, which was built at the University
of Birmingham, United Kingdom [26]. Also, it is planned to build the
high-frequency gravitational wave detectors in Japan [27].

Thus, at the moment there are a large number of promising methods for
direct observation of gravitational waves, which correspond to the ability to
measure the characteristics of relic gravitational waves for a better understanding
of the physical processes occurring in the early universe.
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6. Conclusion

We considered the basis of building and verifying of the inflationary models of
early universe. As the method for constructing the exact cosmological solutions
corresponding to observational constraints, the models with generalized
exponential power-law dynamics are proposed.

The verification of the relevance of such models is related to the estimation of
the contribution of relic gravitational waves to the anisotropy and polarization
of the cosmic microwave background radiation. Therefore, there are a lot of infla-
tionary models with different scalar field potentials that will satisfy the
observational constraints.

The most obvious way to significantly reduce the number of theoretical models
of cosmological inflation is direct detection of relic gravitational waves.

The most promising methods in this area of experimental research are using the
interferometers as detectors. The interesting direction of the observation is the
detection of high-frequency relic gravitational waves using the effect of
low-frequency optical resonance proposed in [23, 24].
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Chapter 14

Periodic Solution of Nonlinear
Conservative Systems
Akuro Big-Alabo and Chinwuba Victor Ossia

Abstract

Conservative systems represent a large number of naturally occurring and arti-
ficially designed scientific and engineering systems. A key consideration in the
theory and application of nonlinear conservative systems is the solution of the
governing nonlinear ordinary differential equation. This chapter surveys the recent
approximate analytical schemes for the periodic solution of nonlinear conservative
systems and presents a recently proposed approximate analytical algorithm called
continuous piecewise linearization method (CPLM). The advantage of the CPLM
over other analytical schemes is that it combines simplicity and accuracy for strong
nonlinear and large-amplitude oscillations irrespective of the complexity of the
nonlinear restoring force. Hence, CPLM solutions for typical nonlinear Hamiltonian
systems are presented and discussed. Also, the CPLM solution for an example of a
non-Hamiltonian conservative oscillator was presented. The chapter is aimed at
showcasing the potential and benefits of the CPLM as a reliable and easily
implementable scheme for the periodic solution of conservative systems.

Keywords: Hamiltonian system, conservative system, nonlinear vibration,
continuous piecewise linearization method, periodic solution, nonnatural system,
perturbation method

1. Introduction

1.1 Hamiltonian and non-Hamiltonian conservative systems

Conservative systems can be defined as oscillating or vibrating systems in which
the total energy content of the system remains constant. In order words, the total
energy in the system is conserved. Ideally, such a system will continue to be in
periodic oscillatory motion ad infinitum because the energy content of the system
does not diminish due to the absence of dissipative force or increase due to addi-
tional energy input. However, for real cases where dissipative mechanisms such as
friction or viscous damping cannot be completely eliminated, a conservative system
can be thought of as one in which the energy dissipated is negligible during the time
range under consideration. For example, the first few seconds of the oscillation of a
simple pendulum may be considered conservative since the effect of air friction is
negligible, but in the long run, the initial energy content is gradually dissipated until
the pendulum comes to a halt. Other examples of practical conservative systems
include mass-spring oscillator, structural elements (i.e., beams, plates, and shells),
slider-crank mechanism [1], human eardrum [2], relativistic oscillator [3],
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planetary orbits around the sun [3], and current-carrying conductor in the electric
field of an infinite rod [4]. Hence, a large number of oscillating physical systems can
be studied as conservative systems.

At any point in time, the energy of a conservative system is composed of kinetic
(T) and potential (V) energies except at critical points where the total energy may
be only kinetic (Tmax) or potential (Vmax). Generally, it is expected that T ¼ T q, _qð Þ
and V ¼ V q, _qð Þ, where q is the generalized displacement. Naturally, q and _q are not
expected to form a product in the function T q, _qð Þ, but in some cases, they do:
Therefore, two types of conservative systems are distinguished namely: natural and
nonnatural conservative systems. The natural conservative systems are those in
which the kinetic energy can be expressed as a pure quadratic function of velocity,
i.e., does not contain a product of the velocity and displacement. They are also
known as Hamiltonian systems because they admit a Hamiltonian function
(H q, _qð Þ ¼ T q, _qð Þ þ V q, _qð Þ) that is always constant at any point in time. While this
definition of Hamiltonian systems is a physical one, a mathematical definition has
been discussed by Jordan and Smith [3]. Examples of Hamiltonian systems include
mass-spring oscillator, simple pendulum, and a mass attached to the mid-point of
an elastic spring. On the other hand, there are conservative systems in which the
kinetic energy cannot be expressed as a pure quadratic function of the velocity
because the kinetic energy expression contains a product of velocity and displace-
ment. This second group of conservative systems is referred to as nonnatural
because their kinetic energy is not a pure quadratic function of velocity.
Although the total energy in such systems is conserved, their Hamiltonian function
(H q, _qð Þ) is not constant [4]. Hence, the nonnatural conservative systems may be
referred to as non-Hamiltonian conservative systems. Examples of this category of
conservative systems abound in artificial systems and include slider-crank mecha-
nism [1], particle sliding on a vertical rotating parabola [4], pendulum attached to
massless rolling wheel [4], rigid rod rocking on a circular surface without slip [4],
and circular sector oscillator [5]. An important quality of the non-Hamiltonian
conservative systems is that their vibration equation, which is normally derived by
the Lagrangian approach, does not conform to the standard representation of con-
servative systems that clearly shows the restoring force. Rather, the derived vibra-
tion equation has a quadratic velocity term, which represents a coordinate-
dependent parameter rather than a dissipative parameter.

1.2 Recent advances in solution schemes for nonlinear conservative oscillators

Exact analytical solutions for the nonlinear vibration models of conservative
systems can be derived only in very few situations, and the solutions are usually
derived in terms of special functions. Alternatively, highly accurate numerical
solutions can be obtained for the nonlinear vibration model of any conservative
system. However, as it is well recognized among the nonlinear science community,
numerical solutions often have the limitations of lack of physical insight and
convergence issues. Furthermore, there is the possibility of obtaining inaccurate
convergent solutions for a nonlinear ordinary differential equation (ODE) [6], thus
necessitating the independent verification of the convergent numerical solution by
another numerical or analytical method. These limitations have driven the search
for approximate analytical schemes capable of providing periodic solutions to
nonlinear conservative oscillators. It can be rightly concluded that this search
has been very fruitful considering the many approximate analytical schemes that
now appear in the nonlinear science literature. The purpose of this section is to
provide a brief survey of some of the notable achievements in the development of
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approximate analytical schemes for the periodic solution of nonlinear conservative
oscillators. It should be noted that an approximate analytic method for nonlinear
oscillators is considered adequate if it gives accurate predictions for the frequency-
amplitude response and the oscillation history as well [7, 8].

Approximate analytical techniques to solve the nonlinear ODE governing the
oscillations of a conservative system have been formulated for at least 100 years and
can be classified as perturbation and nonperturbation methods. The first attempts
were based on perturbation theory and are referred to as classical perturbation
methods. The perturbation methods are formulated based on the concept that an
unknown nonlinear system can be studied by introducing a small disturbance to a
known linear system in equilibrium. For this reason, the classical perturbation
methods (see Nayfeh [9] for a comprehensive treatment of classical perturbation
methods) depend on the assumption of a small parameter. The problem with the
small parameter assumption is that it has a small range of validity and only produces
reliable solutions for cases of small-amplitude oscillations and weak nonlinearity.
Nevertheless, the classical perturbation methods are still very relevant today for
introducing and investigating various nonlinear concepts.

More recently, in the last four decades, a number of approximate analytical
schemes have been proposed. Most of these recent schemes are nonperturbation
methods, but some recent perturbation methods that attempt to improve on their
classical counterparts have been formulated too. The recent perturbation methods
include δ-method [10], Homotopy perturbation method [11] and its variants [12–17],
modified Lindstedt-Poincare method [18–21], book-keeping parameter method [22],
iteration perturbation method [23], parameterized perturbation method [24], per-
turbation incremental method [25], and linearized perturbation method [26]. A
review article on some of the recent perturbation methods has been published by He
[27]. The main point of the recent perturbation methods is to deal with the issue of
the small parameter in order to formulate solutions that are applicable to small- and
large-amplitude oscillations and also weak and strong nonlinear oscillations. Although
the higher order approximations of the recent perturbation methods have been very
successful in producing accurate estimates of the frequency-amplitude response, the
same cannot be said of their estimation of the oscillation history. Studies [7, 28] have
shown that the higher order approximations of the recent perturbation methods
produce large unbounded errors in the oscillation history during large-amplitude
oscillations and are, therefore, not better than the classical perturbation methods in
this regard. A plausible explanation for this observation is that it occurs because
perturbation methods are based on asymptotic series that are inherently divergent
for amplitudes greater than unity [28]. Therefore, it may not be possible to formulate
perturbation schemes that would correctly predict the oscillation history of large-
amplitude vibrations.

In contrast to the perturbation methods, the nonperturbation methods do not
use any small or artificial parameter. Examples include Adomian decomposition
method [29], Homotopy analysis method [30], Variational iteration method [31],
Energy balance method [2] and its modifications [32–34], He Chengtian’s interpo-
lation method [27] also called max-min approach, amplitude-frequency formulation
[35], Hamiltonian approach [36], global error minimization method [37], Harmonic
balance method [4] and its modifications [38–42], cubication methods [43–46],
variational methods [47–49], differential transform method [50], and continuous
piecewise linearization method [8]. Nonperturbation methods also have various
limitations. For instance, a study [51] showed that the Adomian decomposition
method does not converge to the correct solution in some cases, and the study
proposed an optimal convergence acceleration parameter to deal with this issue.
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Also, methods that rely on a simple harmonic approximation of the oscillation
history, such as the energy balance method, amplitude-frequency formulation,
Hamiltonian approach, max-min approach, and variational methods, can only give
reliable estimate of the frequency-amplitude response. Sometimes these methods
perform poorly in predicting the oscillation history during large-amplitude and/or
strong nonlinear vibrations. Other methods that usually require high-order approx-
imations, such as Adomian decomposition method, harmonic balance method, and
variational iteration method, present algebraic complexities in their determination
of higher order solutions and may be impractical for oscillators with highly complex
nonlinearities such as the slider-crank mechanism [1] and the bifilar pendulum [52].
Furthermore, it has been observed that higher order estimates do not always
improve the solution of the oscillation history [27]. Finally, some nonperturbation
methods are heuristic in nature (e.g., energy balance method and variational
methods) and require experience to choose the initial trial function and the
condition for error minimization [8].

The continuous piecewise linearization method (CPLM) is an iterative analytic
algorithm that was formulated to overcome most of the above challenges by pro-
viding simple and accurate solutions for the oscillation history and frequency-
amplitude response of Duffing-type oscillators. In another study [53], the CPLM
was modified in order to generalize it so that it can handle more complicated
nonlinear conservative oscillators. Interestingly, the CPLM does not require higher
order approximations or any small, artificial, or embedded parameter. Also, the
algorithm is inherently stable, straightforward, and based on closed-form analytical
approximations. This chapter is aimed at presenting the generalized CPLM algo-
rithm as a veritable approach for accurate periodic solution of Hamiltonian and
non-Hamiltonian conservative oscillators with complex nonlinearity. As is shown
later, the CPLM retains the same simplicity in its implementation irrespective of
the complexity of the nonlinear conservative system.

2. Continuous piecewise linearization method

2.1 Concept of the continuous piecewise linearization method

The main idea of the CPLM is based on the piecewise linearization of the
nonlinear restoring force of a conservative oscillator. The linearization technique
used by the CPLM was first applied in another algorithm [6, 54] for the solution of
half-space impact models called force indentation linearization method (FILM).
The FILM has been applied to formulate theoretical solutions for rigid body motions
and local compliance response during nonlinear elastoplastic impact of dissimilar
spheres [55]. However, because the FILM is limited to impact excitations that are
nonoscillatory, it cannot be applied to nonlinear conservative oscillators. Hence, the
CPLM applies the piecewise linearization technique of the FILM to provide a peri-
odic solution for nonlinear conservative oscillators.

Essentially, the linearization technique of the CPLM involves n equal
discretization of the nonlinear restoring force with respect to displacement
(Figure 1) and formulating a linear restoring force for each discretization. There-
fore, a linear ODE can be derived for each discretization. The solution of the linear
ODE approximates the solution of the original nonlinear oscillator for a time-range
that is automatically determined by the CPLM and updated continuously from one
discretization to the next. Details on the discretization and linearization technique
of the CPLM can be found in the following references [6, 8, 54], while the applica-
tions of the CPLM to nonlinear conservative systems are presented in [8, 56].
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2.2 Mathematical formulation of the continuous piecewise linearization
method

The standard form for representation of a nonlinear conservative oscillator
moving in the u-direction is given as:

€uþ f uð Þ ¼ 0, (1)

where f uð Þ is the nonlinear restoring force as shown in Figure 1. In Figure 1, the
numbering on the horizontal axis represents the boundary points of the
discretization. The sth discretization represents a general discretization with start
point at r and endpoint at s ¼ rþ 1. Figure 1 shows that for each discretization, the
slope of the linear approximation of the restoring force can either be positive or
negative. To account for this possibility, the linearized force for the sth discretization
can be expressed as:

Frs uð Þ ¼ � Krsj j u� urð Þ þ Fr, (2)

where Krs ¼ f usð Þ � f urð Þ½ �= us � urð Þ is the linear slope of Frs uð Þ and Fr ¼ f urð Þ.
Since Frs uð Þ is an approximation of f uð Þ for the sth discretization, then substitut-

ing Eq. (2) in (1) gives the approximate equation of motion for each discretization
as follows:

€u� Krsj ju ¼ � Krsj jur � Fr: (3)

Eq. (10) is a nonhomogeneous linear ODE and its solution depends on whether
the sign is positive or negative.

2.2.1 Solution for positive linearized stiffness

If Krs >0, the solution for the displacement and velocity can be expressed as:

u tð Þ ¼ Rrs sin ωrstþΦrsð Þ þ Crs (4a)

_u tð Þ ¼ ωrsRrs cos ωrstþΦrsð Þ, (4b)

Figure 1.
Discretization of the restoring force of a typical nonlinear oscillator.
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tions of the CPLM to nonlinear conservative systems are presented in [8, 56].
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2.2 Mathematical formulation of the continuous piecewise linearization
method
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moving in the u-direction is given as:
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where ωrs ¼
ffiffiffiffiffiffiffi
Krs

p
, Crs ¼ ur � Fr=Krs, and Rrs ¼ ur � Crsð Þ2 þ _ur=ωrsð Þ2

h i1=2
. The

initial conditions and other parameters are determined based on the oscillation
stage. For the oscillation stage that moves from þA to �A, the initial conditions for

each discretization are ur ¼ ur 0ð Þ ¼ A� rΔu and _ur ¼ _ur 0ð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Ð ur
A � f uð Þdu

�� ��q
,

where Δu ¼ A=n, and the other parameters are calculated as:

Φrs ¼
0:5π _ur ¼ 0

π þ tan �1 ωrs ur � Crsð Þ= _ur½ � _ur <0

�
(5a)

Δt ¼
0:5π �Φrsð Þ=ωrs us � Crsð Þ≥Rrs

0:5π þ cos �1 us � Crsð Þ=Rrs½ � �Φrsð Þ=ωrs us � Crsð Þ<Rrs

(
: (5b)

For the oscillation stage that moves from �A to þA, the initial conditions are

ur ¼ ur 0ð Þ ¼ �Aþ rΔu and _ur ¼ _ur 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Ð ur
A � f uð Þdu

�� ��q
; the other parameters

are calculated as:

Φrs ¼
�0:5π _ur ¼ 0

tan �1 ωrs ur � Crsð Þ= _ur½ � _ur <0

�
(6a)

Δt ¼
0:5π �Φrsð Þ=ωrs us � Crsð Þ≥Rrs

0:5π � cos �1 us � Crsð Þ=Rrs½ � �Φrsð Þ=ωrs us � Crsð Þ<Rrs

�
: (6b)

The time at the end of each discretization is ts ¼ tr þ Δt, and the end conditions
us and _us are calculated by replacing r with s in the formulae for the initial
conditions.

2.2.2 Solution for negative linearized stiffness

If Krs <0, the solution for the displacement and velocity can be expressed as
follows:

u tð Þ ¼ Arseωrst þ Brse�ωrst þ Crs (7a)

_u tð Þ ¼ ωrs Arseωrst � Brse�ωrstð Þ, (7b)

whereωrs ¼
ffiffiffiffiffiffiffiffiffi
Krsj j

p
;Crs ¼ ur þ Fr= Krsj j. Applying the initial conditions to Eqs. (7a)

and (7b) gives:Ars ¼ 1
2 ur þ _ur=ωrs � Crsð Þ; Brs ¼ 1

2 ur � _ur=ωrs � Crsð Þ. The initial and
end conditions are determined in the same way as for Krs >0 above. The end condi-
tions are applied in Eq. (7a) to get the time interval for each discretization as:

Δt ¼

1
ωrs

log e

us � Crsð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
us � Crsð Þ2 � 4ArsBrs

q

2Ars

2
4

3
5 us � Crsð Þ> 2

ffiffiffiffiffiffiffiffiffiffiffiffi
ArsBrs

p

1
ωrs

log e
us � Crs

2Ars

� �
us � Crsð Þ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
ArsBrs

p

8>>>>><
>>>>>:

:

(8)

The sign before the square root in Eq. (8) is negative for the oscillation stage that
moves from þA to �A and vice versa. We note that if _ur ¼ 0, then Ars ¼ Brs ¼
1
2 ur � Crsð Þ and
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u tð Þ ¼ ur � Crsð Þ cosh ωrstð Þ þ Crs: (9)

Therefore,

Δt ¼ 1
ωrs

cosh �1 us � Crs

ur � Crs

� �
: (10)

2.2.3 Solution for zero linearized stiffness

In very rare situations, we may have Krs ¼ 0 for one or two discretization
around the turning points or relatively flat regions of the restoring force. This is
likely when Δu is very small, i.e., for very large n, and can be eliminated by
increasing or decreasing n slightly. However, if we want to account for Krs ¼ 0,
then we get [53]:

u tð Þ ¼ Hrs þGrst�
1
2
Frt2, (11)

where Grs ¼ _ur þ Frtr and Hrs ¼ ur � _urtr � 1
2Frt2r . Hence, the time interval is

derived from Eq. (11) as:

Δt ¼
Grs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

rs þ 2Fr Hrs � usð Þ
q

Fr
: (12)

2.3 Remarks on the CPLM algorithm

1.From the above presentation of the CPLM formulation, it is obvious that the
CPLM algorithm is simple and can be implemented by undergrads without
difficulty.

2.The CPLM is inherently stable and does not have convergence issues [8].

3.For few discretization, say n≤ 10, the CPLM algorithm can be implemented
with reasonable accuracy using a pocket calculator. However, the CPLM is
better executed using a simple code in any programming language such as
MATLAB and Mathematica or using a customized MS Excel spreadsheet.

4.When dealing with conservative oscillators with odd nonlinearity, which
are symmetrical about the origin, discretization of the restoring force is only
required for 0 to A. This means that there will be 2n discretizations from
�A to A.

5.The CPLM algorithm retains the same simplicity in implementation
irrespective of the complexity of the restoring force. Only the Krs constant and
the integral of the restoring force are to be evaluated anew for any oscillator.

6.The CPLM relies on the explicit expression of restoring force, which means
that the model for the oscillator must be expressed in the form of Eq. (1). For
Hamiltonian systems, the oscillator model is formulated naturally in the form
of Eq. (1). For non-Hamiltonian conservative systems, the oscillator model is
not formulated naturally in the form of Eq. (1). Therefore, there is a need to
transform the model of non-Hamiltonian conservative systems into the form
of Eq. (1) before applying the CPLM algorithm. Fortunately, this
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CPLM algorithm is simple and can be implemented by undergrads without
difficulty.
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transformation only requires a simple algebraic manipulation as demonstrated
in Section 4.

7.The phase equation gives the relationship between the state variables
(displacement and velocity) and can be derived exactly in closed-form for all
conservative systems. The CPLM extends this bilateral relationship into a
tripartite one by finding the value of the corresponding independent variable
(i.e., time) that matches the values of the state variables in each discretization.

8.For few discretization, say n≤ 20, it would be necessary to extract values
within each discretization in order to obtain a smooth plot of the oscillation
history. The values can be extracted using the approximate solution of the
displacement. However, for many discretizations, say n≥ 50, there is no need
to extract values from any discretization.

9.The usual initial conditions investigated for nonlinear conservative oscillators
are nonzero displacement and zero velocity. However, the CPLM algorithm can
comfortably handle nonzero initial conditions for displacement and velocity.

3. Periodic solution of typical Hamiltonian systems

3.1 Nonlinear simple pendulum

The simple pendulum is arguably the most investigated physical system and
provides very interesting insights into nonlinear phenomena. Butikov [57] calls it
“an antique but evergreen physical model.” The undamped oscillation of a simple
pendulum is a Hamiltonian system governed by the well-known nonlinear ODE as
shown:

€uþ Ω2
0 sin u ¼ 0, (13)

where u is the angular displacement, Ω0 ¼
ffiffiffiffiffiffi
g=l

p
, l is the length of the pendulum,

and g ¼ 9:8 m=s2. The initial conditions are given as u 0ð Þ ¼ A and _u 0ð Þ ¼ 0. The
same initial conditions are applicable to all other oscillators discussed subsequently.
The exact solution to Eq. (13) is expressed in terms of elliptic functions. The
displacement and natural frequency are given as [58]:

uex tð Þ ¼ 2 sin �1 ksn Ω0tþ K k2
� �

; k
� �� �

(14)

ωex ¼
πΩ0

2K k2
� � , (15)

Where sn is the Jacobi elliptic sine function, k ¼ sin A=2ð Þ, and K k2
� �

is the
complete elliptic integral of the first kind given as:

K k2
� �

¼
ðπ=2
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin 2ϕ

q dϕ: (16)

From Eq. (13), the restoring force for the pendulum is f uð Þ ¼ Ω2
0 sin u and looks

like the plot in Figure 1. This means that Krs ¼ Ω2
0 sin us � sin urð Þ= us � urð Þ and

_u ¼ �Ω0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos u� cosAð Þ

p
. The initial and final velocities for each discretization
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are determined using the expression for _u, and all the other constants for the
solution of each discretization are determined based on Krs. A plot of the frequency-
amplitude response for the simple pendulum when Ω0 ¼ 1:0 is given in Figure 2a
and the corresponding error of the CPLM solution in comparison with the exact
solution (Eq. (15)) is shown in Figure 2b. We see that for A≤ 178°, the maximum
error in the CPLM estimate is less than 0.45% for n ¼ 50 and 0.14% for n ¼ 100.
Also, the oscillation history for moderate-amplitude (A ¼ 45°) and large-amplitude
(A ¼ 135°) is shown in Figure 3 and an excellent agreement between the CPLM
solution for n ¼ 100 and the exact solution (Eq. (14)) is observed. We noted that
trigonometric nonlinearity is usually difficult to deal with and that is why the
CPLM shows a relatively slow convergence to accurate results. Hence, many
discretizations (e.g., n ¼ 50� 100) are required to get an accuracy that is within
1.0% of the exact solution during large-amplitude oscillations (90°<A< 180°) of
the simple pendulum.

3.2 Motion of satellite equidistant from twin stars

Consider the motion of a satellite along a path that is equidistant from two
identical massive stars with mutually interacting gravitational fields. If the distance
between the two stars is 2d and the coordinate of the satellite motion is u, then the
equation of motion of the satellite is given as [3]:

€uþ 2Mu

d2 þ u2
� �3=2 ¼ 0, (17)

Figure 2.
(a) Frequency-amplitude response of the simple pendulum for 0°<A< 180°. (b) CPLM error analysis.

Figure 3.
Oscillation history of the simple pendulum for (a) A ¼ 45° and (b) A ¼ 135°. CPLM estimate—Lines; exact
solution—Markers.
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transformation only requires a simple algebraic manipulation as demonstrated
in Section 4.
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solution (Eq. (15)) is shown in Figure 2b. We see that for A≤ 178°, the maximum
error in the CPLM estimate is less than 0.45% for n ¼ 50 and 0.14% for n ¼ 100.
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where M is the mass of a star and the restoring force is f uð Þ ¼ 2Mu= d2 þ u2
� �3=2

.
Eq. (17) shows that the satellite-star interaction results in a conservative oscillation
of the satellite. Figure 4 shows the nonlinear restoring force, which is an irrational
force because of the bottom square root. The restoring force spikes on both sides of
the vertical axis close to the origin. The spikes indicate the point when the satellite is
most influenced by the mutual gravitational field of the stars. Away from the origin,
the restoring force decreases gradually and approaches the horizontal axis asymp-
totically. This means that the satellite is far away from the stars and experiences a
much smaller gravitational force. This problem was discussed qualitatively by Jor-
dan and Smith [3] and Arnold [59], but here, the periodic solution was investigated.

The main CPLM constant is Krs ¼ 2M d2 þ u2s
� ��3=2 � d2 þ u2r

� ��3=2
h i

and the

velocity was derived as: _u ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M d2 þ u2
� ��1=2 � d2 þ A2� ��1=2
h ir

. The periodic

solutions obtained by the CPLM and exact numerical solution are shown in
Figures 5 and 6. The numerical solution was obtained by solving Eq. (17) using
the NDSolve function in Mathematica™. The NDSolve function is a Mathematica
subroutine for solving ordinary, partial, and algebraic differential equations
numerically. In its basic form, it automatically selects the numerical method to use
from a list of standard methods such as implicit Runge–Kutta, explicit Runge–
Kutta, symplectic partitioned Runge–Kutta, predictor–corrector Adams, and back-
ward difference methods. In some cases, the NDSolve function can combine two or

Figure 4.
Restoring force for Eq. (18): M ¼ 105 kg½ �; d ¼ 100 m½ �; A ¼ 500.

Figure 5.
(a) Frequency-amplitude response for satellite. (b) CPLM error analysis.

244

Progress in Relativity

more methods to obtain the required solution. This basic form is preferable because
the NDSolve function uses the method(s) that best solves the differential equation
considering accuracy and solution time. Hence, the NDSolve function was used in
its basic form for all numerical solutions obtained in this chapter.

The input values used for simulation are M ¼ 105 kg½ � and d ¼ 1000 m½ �. In
contrast to the simple pendulum, the oscillation of the satellite requires less
discretization for accurate results because there is no trigonometric nonlinearity.
The maximum error of the CPLM estimate for the frequency-amplitude response is
less than 0.55% for n ¼ 10 and 0.20% for n ¼ 20. Significantly higher accuracies can
be achieved by increasing n, but the results show that n ¼ 10 gives reasonably
accurate estimates.

On the other hand, Figure 6 shows the oscillation history of the satellite during
small-amplitude (A ¼ 50) and large-amplitude (A ¼ 1500) oscillations. The former
gives a simple harmonic response with a natural frequency that is independent of

the amplitude and approximately equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=d3

q
, while the latter exhibits

an anharmonic response with a natural frequency that depends strongly on the
amplitude.

3.3 Mass-spring oscillator with fractional nonlinearity

An interesting oscillator that has been the subject of several studies [60–65] is
the Hamiltonian oscillator with odd fractional nonlinearity. For the purpose of the
present investigation, we consider an oscillator that is characterized by a general
fractional nonlinearity as follows [65]:

€uþ u1= 2mþ1ð Þ ¼ 0, (18)

where the restoring force, f uð Þ ¼ u1= 2mþ1ð Þ, has a fractional index for all

m ϵ ℤþf g. The main CPLM constant is evaluated as Krs ¼ u1= 2mþ1ð Þ
s � u1= 2mþ1ð Þ

r

h i
=

us � urð Þ and the velocity as _u ¼ � 2mþ 1ð Þ= mþ 1ð Þ½ �1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 2mþ2ð Þ= 2mþ1ð Þ � u 2mþ2ð Þ= 2mþ1ð Þ

p
.

The periodic solution for the case of m ¼ 1, i.e., u1=3 oscillator, is shown in Figures 7
and 8. The exact frequency-amplitude response used for the verification of the CPLM
solution is [63]:

ωex ¼
2πΓ 5=4ð Þffiffiffi

6
p

Γ 3=4ð ÞΓ 1=2ð ÞA1=3 ¼
1:070451

A1=3 : (19)

Figure 6.
Oscillation history of satellite for (a) A ¼ 50 and (b) A ¼ 1500. CPLM estimate—Lines; exact solution—
Markers.
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more methods to obtain the required solution. This basic form is preferable because
the NDSolve function uses the method(s) that best solves the differential equation
considering accuracy and solution time. Hence, the NDSolve function was used in
its basic form for all numerical solutions obtained in this chapter.

The input values used for simulation are M ¼ 105 kg½ � and d ¼ 1000 m½ �. In
contrast to the simple pendulum, the oscillation of the satellite requires less
discretization for accurate results because there is no trigonometric nonlinearity.
The maximum error of the CPLM estimate for the frequency-amplitude response is
less than 0.55% for n ¼ 10 and 0.20% for n ¼ 20. Significantly higher accuracies can
be achieved by increasing n, but the results show that n ¼ 10 gives reasonably
accurate estimates.
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while the exact oscillation history was obtained by the numerical solution of
Eq. (18) using the NDSolve function in Mathematica™. The CPLM solution dem-
onstrates an excellent agreement with the exact solution.

Figure 7 compares the CPLM estimates of the frequency-amplitude response
with Eq. (19), and the maximum error of the CPLM solution is 0.22% for n ¼ 10
and 0.076% for n ¼ 20. The error in the CPLM estimate is approximately constant
for all amplitudes, and the maximum error is well below 1.0% for n ¼ 10. The
results also reveal that the frequency approaches zero as A ! ∞. In Figure 8, the
oscillation history for small-amplitude (A ¼ 0:01) and large-amplitude (A ¼ 10:0)
oscillations is shown to exhibit similar anharmonic response, which is an indication
of strong nonlinearity. Therefore, it can be concluded that the u1=3 oscillator is
highly nonlinear for all amplitudes. This quality of possessing strong nonlinearity
for all amplitudes is in contrast to most Hamiltonian oscillators that are linear for
small amplitudes, e.g., the oscillators considered in Sections 3.1 and 3.2 above.
Another Hamiltonian oscillator that possesses strong nonlinearity for all amplitudes
is the geometrically nonlinear crank [1].

4. Periodic solution of non-Hamiltonian conservative systems

The non-Hamiltonian conservative systems are generally more complex and
difficult to solve compared with the Hamiltonian systems. In order to demonstrate
the application of the CPLM algorithm to non-Hamiltonian conservative systems,
we consider the motion of a particle on a rotating parabola. This system consists of a
frictionless mass sliding on a vertical parabolic wire described by y ¼ qu2 for q>0

Figure 7.
(a) Frequency-amplitude response for u1=3 oscillator. (b) CPLM error analysis.

Figure 8.
Oscillation history of u1=3 oscillator for (a) A ¼ 0:01 and (b) A ¼ 10. CPLM estimate—lines; exact solution—
markers.
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and rotating at a constant speed, Ω, about the y-axis (Figure 9a). The u-axis
represents the perpendicular displacement of the mass from the y-axis. The kinetic
and potential energies of the system are given as [4]:

T ¼ 1
2
m 1þ 4q2u2
� �

_u2 þ Ω2u2
� �

;V ¼ mgqu2: (20)

Hence, the Lagrangian is:

L ¼ T � V ¼ 1
2
m 1þ 4q2u2
� �

_u2 þ Ω2u2
� �

�mgqu2: (21)

Next, we substitute Eq. (21) into the Euler–Lagrange equation to derive the
equation of motion. The Euler–Lagrange equation can be written as:

d
dt

∂L
∂ _u

� �
� ∂L

∂u
¼ 0: (22)

Therefore, using Eqs. (21) and (22), the motion of a particle on a rotating
parabola is governed by:

1þ 4q2u2
� �

€uþ 4q2u _u2 þ Λu ¼ 0, (23)

where Λ ¼ 2gq�Ω2 and the initial conditions are: u 0ð Þ ¼ A and _u 0ð Þ ¼ 0.
To solve Eq. (23) using the CPLM, it must be recast in the form of Eq. (1). The

conservation of energy for Eq. (23) is given as [4]:

1þ 4q2u2
� �

_u2 þ Λu2 ¼ h, (24)

where h is a constant representing the total energy in the system. Eq. (24)
confirms that the Hamiltonian, H ¼ T þ V ¼ 1

2m 1þ 4q2u2ð Þ _u2 þ Λþ 2Ω2� �
u2

� �
¼

1
2m hþ 2Ω2u2
� �

, is not constant. Applying the initial conditions, we get h ¼ ΛA2 so
that _u2 ¼ Λ A2 � u2

� �
= 1þ 4q2u2ð Þ. Substituting this expression for _u2 in Eq. (24) and

after algebraic simplification, we get:

€uþ
Λ 1þ 4q2A2� �

u

1þ 4q2u2ð Þ2
¼ 0: (25)

Figure 9.
(a) Schematic of particle on a rotating parabola. (b) Restoring force when q ¼ 1:0; Λ ¼ 10:0; A ¼ 2:0.
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Therefore, the restoring force is f uð Þ ¼ Λ 1þ 4q2A2� �
u= 1þ 4q2u2ð Þ2. Figure 9b

shows that f uð Þ is linear at small amplitudes and strongly nonlinear at large ampli-

tudes. The main CPLM constant was calculated as Krs ¼ Λ 1þ 4q2A2� �
1= 1þ 4q2u2s
� �2�

h

1= 1þ 4q2u2r
� �2�, and the velocity was evaluated as _u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ A2 � u2
� �

= 1þ 4q2u2ð Þ
q

.

The exact time period for this oscillator can be derived in terms of elliptic function
as follows [4]:

Tex ¼ 4 1þ 4q2A2� �
=Λ

� �1=2
E k2
� �

, (26)

where E k2
� �

¼
Ð π=2
0 1� k2 sin 2ϕ
� �1=2

dϕ is the complete elliptic integral of the
second kind and k2 ¼ 4q2A2= 1þ 4q2A2� �

. Then, the exact frequency was computed
as ωex ¼ 2π=Tex, while the exact oscillation history was obtained by solving Eq. (25)
numerically using the NDSolve function in Mathematica™.

A comparison of CPLM frequency estimate and the exact frequency is shown in
Figure 10, while the oscillation histories for A ¼ 0:50 and A ¼ 2:0 are shown in
Figure 11. As demonstrated in [4], periodic solutions for this system exist only for
Λ>0. Hence, the simulations in Figures 10 and 11 were conducted for Λ ¼ 10 and
q ¼ 1:0. An excellent agreement is observed between the CPLM estimates and the
exact results. For 0<A≤ 20, the maximum error in the CPLM estimate of the
frequency-amplitude response is 0.642% for n ¼ 10 and 0.101% for n ¼ 20, both of
which are well below 1.0%. Also, the CPLM solution gives an accurate prediction of
the strong anharmonic response in the oscillation history as shown in Figure 11.

Figure 10.
(a) Frequency-amplitude response for particle on a rotating parabola. (b) CPLM error analysis.

Figure 11.
Oscillation history of particle on a rotating parabola for (a) A ¼ 0:50 and (b) A ¼ 2:0. CPLM estimate—
Lines; exact solution—Markers.
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5. Concluding remarks

Conservative oscillators generally exhibit nonlinear response, and they form a
large class of natural and artificially vibrating systems. Hence, the study of the
dynamic response of nonlinear conservative systems is important for understanding
many physical phenomena and the design of systems. The main challenge in the
theoretical analysis of nonlinear conservative systems is that exact solutions are
normally not available except for a few special cases where exact solutions are
derived in terms of special functions.

To date, many approximate analytical methods have been formulated for the peri-
odic solution of nonlinear conservative oscillators. This chapter provides a brief survey
of the recent advances in the formulation of approximate analytical schemes and then
introduced a recent approximate analytical algorithm called the continuous piecewise
linearization method. The CPLM has been shown to overcome the challenges of solu-
tion accuracy and simplicity usually encountered in usingmost of the existing approx-
imate analytical methods. The CPLM combines major desirable features of solution
schemes such as inherent stability, accuracy, and simplicity. It is simple enough to be
introduced at the undergraduate level and is capable of handling conservative oscilla-
tors with very complex nonlinearity. Conservative systems of broad interest were used
to demonstrate the wide applicability of the CPLM algorithm. As demonstrated above,
an accuracy of less than 1.0% relative error can be achieved for most oscillators using
few discretizations, say n≤ 20, except for oscillators with trigonometric nonlinearity
where such accuracy is achieved with many discretizations. This chapter has been
designed to stimulate interest in the use of CPLM for analyzing various types of
conservative systems, especially those with complex nonlinearity.
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5. Concluding remarks
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