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Preface

Information technologies have changed people’s lives to a great extent, and now it is
almost impossible to imagine any activity that does not depend on computers in
some way. Since the invention of first computer systems, people have been trying to
avail computers in order to solve complex problems in various areas. The need for
computer systems in the calculation of different building and automotive construc-
tions has appeared with the development of industry. Traditional methods of cal-
culation have been replaced by computer programs that have the ability to predict
the behavior of structures under different loading conditions. Hence, expensive
experiments, tests and examinations had been replaced by cheaper and more pow-
erful computational methods that do not require the destruction of structure in
order to determine its capacity.

Computer simulation or a computer model has the task to simulate the behavior of
an abstract model of a particular system. Computer simulations have become a
useful part of mathematical modeling of many natural systems in physics, quantum
mechanics, chemistry and biology, then in economic systems, psychology and social
sciences, as well as in the engineering process of new technologies, in order to gain a
better insight into their way of working and behaving.

In comparison to classical modeling (model making, prototyping, etc.), mathemat-
ical and numerical modeling is more cost-effective and model itself can be checked
and examined much faster and in a more efficient way, therefore one does not need
to use considerable material resources - money, raw materials for modeling, energy,
etc. Mathematical modeling provides more freedom for engineers to utilize differ-
ent variations of components, elements and parameters of conceived technical
solutions. The advantage of this type of modeling is the fact that only important and
poorly tested elements of the system can be submitted to modeling.

Any kind of previously mentioned process of modeling requires the engineers’
excellent knowledge in the field one is considering, as well as the methods used for
solving the required task. The attained knowledge through permanent education
has the significant influence on the quality of designed model.

Computer simulations are different from computer programs. Contrary to com-
puter programs that run for a few minutes, simulations can be run on the local
network and can last for hours or even for days. It can be said that the simulations
exceeded many methods that use pencil and paper for solving any kind of mathe-
matical problems.

The first chapter of this book illustrates the usage of pilot Fortran software library
for the solution of Laplace’s Equation by the boundary element method (BEM). The
second chapter describes the optimal control of thermal pollution emitted by power
plants. In the third chapter, the authors present the finite difference solution of
conjugate heat transfer in double pipe with trapezoidal fins. The fourth chapter
deals with a photovoltaic system integrated into the buildings. The fifth chapter
presents the way in which computer simulation affect the practice of diagnosis in



Chapter 7 113
The Possibilities of Modeling Petri Nets and Their Extensions
by Goharik Petrosyan

Chapter 8 131
Line Impedance Emulator: Modeling, Control Design, Simulation
and Experimental Validation
by Marwa Ben Saïd-Romdhane, Sondes Skander-Mustapha
and Ilhem Slama-Belkhodja

II

Preface

Information technologies have changed people’s lives to a great extent, and now it is
almost impossible to imagine any activity that does not depend on computers in
some way. Since the invention of first computer systems, people have been trying to
avail computers in order to solve complex problems in various areas. The need for
computer systems in the calculation of different building and automotive construc-
tions has appeared with the development of industry. Traditional methods of cal-
culation have been replaced by computer programs that have the ability to predict
the behavior of structures under different loading conditions. Hence, expensive
experiments, tests and examinations had been replaced by cheaper and more pow-
erful computational methods that do not require the destruction of structure in
order to determine its capacity.

Computer simulation or a computer model has the task to simulate the behavior of
an abstract model of a particular system. Computer simulations have become a
useful part of mathematical modeling of many natural systems in physics, quantum
mechanics, chemistry and biology, then in economic systems, psychology and social
sciences, as well as in the engineering process of new technologies, in order to gain a
better insight into their way of working and behaving.

In comparison to classical modeling (model making, prototyping, etc.), mathemat-
ical and numerical modeling is more cost-effective and model itself can be checked
and examined much faster and in a more efficient way, therefore one does not need
to use considerable material resources - money, raw materials for modeling, energy,
etc. Mathematical modeling provides more freedom for engineers to utilize differ-
ent variations of components, elements and parameters of conceived technical
solutions. The advantage of this type of modeling is the fact that only important and
poorly tested elements of the system can be submitted to modeling.

Any kind of previously mentioned process of modeling requires the engineers’
excellent knowledge in the field one is considering, as well as the methods used for
solving the required task. The attained knowledge through permanent education
has the significant influence on the quality of designed model.

Computer simulations are different from computer programs. Contrary to com-
puter programs that run for a few minutes, simulations can be run on the local
network and can last for hours or even for days. It can be said that the simulations
exceeded many methods that use pencil and paper for solving any kind of mathe-
matical problems.

The first chapter of this book illustrates the usage of pilot Fortran software library
for the solution of Laplace’s Equation by the boundary element method (BEM). The
second chapter describes the optimal control of thermal pollution emitted by power
plants. In the third chapter, the authors present the finite difference solution of
conjugate heat transfer in double pipe with trapezoidal fins. The fourth chapter
deals with a photovoltaic system integrated into the buildings. The fifth chapter
presents the way in which computer simulation affect the practice of diagnosis in



the field of oral medicine and radiology. In the sixth chapter, the authors write
about the simulation and parametric inference of a mixed effects model with sto-
chastic differential equations using the Fokker – Planck equation solution. The
seventh chapter illustrates the possibilities of modeling Petri nets and their exten-
sions. Finally, the eighth chapter presents modeling, control design, simulation and
experimental validation of the line impedance emulator.

We would like to express our sincere gratitude to all the authors and coauthors for
their contribution. The successful completion of the book Numerical Modeling and
Computer Simulation has been the result of the cooperation between many people.
We would especially like to thank the Publishing Process Manager Ms. Dajana
Pemac for her support during the publishing process.
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Chapter 1

A Pilot Fortran Software Library
for the Solution of Laplace’s
Equation by the Boundary
Element Method
Stephen Kirkup and Javad Yazdani

Abstract

The boundary element method (BEM) is developed from the standpoint of
software design. The Fortran language is used to produce a structured library for
solving Laplace’s equation in various domain topologies and dimensions with
generalised boundary conditions. Subroutines that compute the discrete Laplace
operators, which are the core components for populating the matrices in the BEM,
are developed. The main subroutines for solving Laplace’s equation in 2D, 3D and
axisymmetric cases for open and closed boundaries are introduced. The methods
are demonstrated on test problems.

Keywords: boundary element method, Laplace’s equation, Fortran

1. Introduction

The boundary element method (BEM) has established itself as an important
numerical technique for solving partial differential equations (PDEs) over the last
half century [1, 2]. It distinguishes itself from competing methods, such as the finite
element method (FEM) [3] in that the latter method requires a mesh of the domain,
whereas the BEM only requires a mesh of the boundary (of the domain). The BEM
is not as widely applicable as the FEM, particularly in that it is much more of a
struggle to apply the BEM to non-linear problems. However, for problems to which
the boundary element method is viable, the advantage of only requiring a boundary
mesh is a significant one; the BEM is likely to be more efficient but also the relative
simplicity of meshing, and the method is easier to use and is more accessible. This
advantage is more notable for exterior problems; the domain is infinite, and
‘domain methods’ such as the FEM require special treatment, but for the BEM, only
a (finite) boundary mesh is required. Computational methods may be combined or
coupled [2].

The boundary element method is derived through the discretisation of an inte-
gral equation that is mathematically equivalent to the original partial differential
equation. The essential reformulation of the PDE that underlies the BEM consists of
an integral equation that is defined on the boundary of the domain and an integral
that relates the boundary solution to the solution at points in the domain. The
former is termed a boundary integral equation (BIE), and the BEM is often referred

3
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to as the boundary integral equation method or boundary integral method. There
are two classes of boundary element method, termed the direct and indirect
method. The direct method is based on Green’s second theorem, whereas the
indirect method is based on describing the solution in terms of layer potentials. In
this work the direct boundary element method is developed.

The simplest partial differential equation that is amenable to the BEM is
Laplace’s equation:

∑
N

i¼1

∂
2φ pð Þ
∂x2i

¼ 0 (1)

where N is the dimension of the space or, more concisely,

∇2φ ¼ 0: (2)

Laplace’s equation therefore acts as a model problem for developing the BEM.
Laplace’s equation also has a number of applications; steady-state heat conduction,
steady-state electric potential, gravitation and groundwater flow [4–13].

Initially, in this paper, the derivation of the direct boundary element method is
introduced for the interior two-dimensional Laplace problem. The boundary ele-
ment method is developed in Fortran for the 2D Laplace problem; then this is
extended to axisymmetric three-dimensional problems and to both interior and
exterior problems. The boundary element method can be extended to problems
where the body being modelled is ‘thin’, like a screen or discontinuity, and these are
also included. Test problems are applied to the codes, and the results are given for
all problem classes. There are a number of studies on numerical error in the bound-
ary element method [14–16].

There have been a number of works on coding the boundary element method
[17–19]. The focus of this work is the algorithms and the software for solving
Laplace problems by the BEM. As with the earlier works by the first author on
Laplace and Helmholtz (acoustic) problems [20–24], this is about continuing with
the development of a base library of methods and corresponding software. The
codes and guides can be found on the first author’s website [25].

The codes have been developed in Fortran 77, but the language is just used to
provide a simple template for exploring the methods and the organisation of coding.
The algorithms and coding for Laplace’s equation considered in this work also
provide a useful basis for the development of the BEM for other problems and add
to the library of numerical software [26].

2. The BEM and the 2D interior Laplace problem

The Laplace equation provides a useful model problem for the boundary element
method. The two-dimensional case is the simplest of these and is the best place to
start to learn about the method. In this section the solution of Laplace’s equation
in an interior domain by the direct BEM is outlined, and this also provides the
foundation for the 3D BEM development in later sections.

2.1 Boundary integral equation formulation of the interior Laplace problem

Laplace’s equation (2) governs the interior domain D enclosed by a boundary S.
The solution must also satisfy a boundary condition, and it is important in terms of
maintaining the generality of the method that this is in a general (Robin) form:
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α pð Þφ pð Þ þ β pð Þ ∂φ
∂np

pð Þ ¼ f pð Þ p∈ Sð Þ: (3)

In the direct BEM, Laplace’s equation is replaced by an equivalent integral
equation of the form:

ð

S

∂G p; q
� �
∂nq

φ q
� �

dSq þ 1
2
φ q
� � ¼

ð

S
G p; q
� � ∂φ q

� �
∂nq

dSq p∈ Sð Þ, (4)

ð

S

∂G p; q
� �
∂nq

φ q
� �

dSq þ φ q
� � ¼

ð

S
G p; q
� � ∂φ q

� �
∂nq

dSq p∈Dð Þ: (5)

The terminology ∂ ∗
∂nq

represents the partial derivative of the function* with

respect to the unit outward normal at point q on the boundary. The function G is
known as Green’s function. Physically, G(p, q) represents the effect observed at
point p of a unit source at point q. For the Laplace equation, Green’s function is
denoted by G and is defined as

G p;qð Þ ¼ � 1
2π

ln r (6)

for two-dimensional Laplace problems, where r ¼ ∣q� p∣.
Integral Eqs. (4) and (5) can be derived from the Laplace equation by applying

Green’s second theorem. The power of the formulation lies in the fact that Eq. (4)
relates the potential φ and its derivative on the boundary alone; no reference is
made to φ at points in the domain in this particular boundary integral equation. In a

typical boundary value problem, we may be given φ(q), ∂φ qð Þ
∂nq

or a combination of

such data on S. The boundary integral equation is a means of determining the
unknown boundary function(s), followed by the domain solution from the given
boundary data.

2.2 Operator notation

Operator notation is a useful shorthand in writing integral equations. Moreover,
it will be shown that it is a very powerful notation in that it clearly demonstrates the
connection between the integral equation and the linear system of equations that
results from its discretisation.

Integral equations can always be written in terms of integral operators. For
example, if ζ is a function defined on a (closed or open) boundary Г, then applying
the following operation to ζ for all points p on Г

ð

Г
G p; q
� �

ζ q
� �

dSq ¼ μ pð Þ p∈ Sð Þ (7)

gives a function μ. This may be viewed as the application of an operator to the
function ζ to return the function μ. More simply we may write

Lζf gГ pð Þ ¼ μ pð Þ: (8)

In Eq. (8) L represents the integral operator, and the subscript (Г) refers to the
domain of integration. Г is used as a variable, representing either a whole boundary
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the following operation to ζ for all points p on Г

ð

Г
G p; q
� �

ζ q
� �

dSq ¼ μ pð Þ p∈ Sð Þ (7)

gives a function μ. This may be viewed as the application of an operator to the
function ζ to return the function μ. More simply we may write

Lζf gГ pð Þ ¼ μ pð Þ: (8)

In Eq. (8) L represents the integral operator, and the subscript (Г) refers to the
domain of integration. Г is used as a variable, representing either a whole boundary

5

A Pilot Fortran Software Library for the Solution of Laplace’s Equation by the Boundary…
DOI: http://dx.doi.org/10.5772/intechopen.86507



or a part of the boundary. The other three important Laplace integral operators are
defined as follows:

Mζf gГ pð Þ ¼
ð

Г

∂G p; q
� �
∂nq

ζ q
� �

dSq, (9)

Mtζf gГ p; vp
� � ¼ ∂

∂vp

ð

Г
G p; q
� �

ζ q
� �

dSq, (10)

Nζf gГ p; vp
� � ¼ ∂

∂vp

ð

Г

∂G p; q
� �
∂nq

ζ q
� �

dSq, (11)

where vp is any unit vector. In operator notation of the previous subsection, the
integral equation formulation (3) can be written in the following form:

Mþ 1
2
I

� �
φ

� �

S
pð Þ ¼ Lvf gS pð Þ p∈ Sð Þ, (12)

φ pð Þ ¼ Lvf gS � Mφf gS p∈Dð Þ, (13)

where v q
� � ¼ ∂φ qð Þ

∂nq
.

2.3 Direct boundary element method

For the direct boundary element method solution of the interior Laplace prob-
lem, that is, developed in this section, the initial stage involves solving boundary
integral Eq. (4), returning (approximations to) both φ and ∂φ/∂n on S. The second
stage of the BEM involved finding the solution at any chosen points in the domain
D. The most straightforward method for solving integral equations like Eq. (4) is
that of collocation. Collocation may be applied in a remarkably elementary form,
which is termed C�1 collocation in this text since it is derived by approximating the
boundary functions by a constant on each panel. In this subsection the C�1 colloca-
tion method is briefly outlined.

To begin with, the boundary S is assumed to be expressed as a set of panels:

S ≈ eS ¼ ∑
n

j¼1
ΔeSj : (14)

Usually the panels have a characteristic form and cannot represent a given
boundary exactly. For example, a two-dimensional boundary can be approximated
by a set of straight lines. In order to complete the discretisation of the integral
equations, the boundary functions also need to be approximated on each panel. In
this work, it is the characteristics of the panel and the representation of the bound-
ary function on the panel that together define the element in the boundary element
method. By representing the boundary functions by a characteristic form on each
panel, the boundary integral equations can be written as a linear system of equa-
tions of the form introduced earlier.

The term element refers not only to the form of ΔSj but also to the method of
representing the boundary functions on ΔSj. The C�1 collocation method involves
representing the boundary function by a constant on each panel:

φ pð Þ ≈ φj, v pð Þ ≈ vj p∈ΔeSj

� �
: (15)
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The substitution of representations of this form for the boundary functions in
the integral equation reduces it to discrete form. The simplifications allow us to
rewrite Eq. (11) as the approximation:

∑
n

j¼1
Mþ 1

2
I

� �
e

� �

Δ~Sj

pð Þφj ≈ ∑
n

j¼1
Lef gΔ~Sj pð Þvj p∈eS

� �
, (16)

where e is the unit function (e � 1). Lef gΔ~Sj pð Þ, for example, for a specific point
p, are the numerical values of definite integrals that together can be interpreted as
the discrete form of the L integral operator.

The constant approximation is taken to be the value of the boundary functions at
the representative central point (the collocation point) on each panel. By finding the
discrete forms of the relevant integral operators for all the collocation points, a
system of the form

∑
n

j¼1
Mþ 1

2
I

� �
e

� �

Δ~Sj

pSi

� �
φj ≈ ∑

n

j¼1
Lef gΔ~Sj pSi

� �
vj pSi ∈eS
� �

, (17)

for i = 1, 2 and n is obtained by putting p ¼ pSi in the previous approximation. Note
that because of the approximation of the boundary functions (and also the boundary
approximation, if applicable), the discrete equivalent of Eq. (12) is an approximation
relating the exact values of the boundary functions at the collocation points.

This system of approximations can now be written in the matrix-vector form:

MSS þ 1
2
I

� �
φ̂
S
¼ LSSv̂S, (18)

with the matrix components defined by LSS½ �ij ¼ Lef gΔ~Sj pSi

� �
,

MSS½ �ij ¼ Mef gΔ~Sj pSi

� �
. The vectors φ̂

S
and v̂S are representative or approximate

values of φ and v at the collocation points. In the first stage of the boundary element,
the system (18) is solved alongside the discrete form of the boundary condition (3):

αiφi þ βivi ¼ f i for i ¼ 1, 2,…n: (19)

The discrete forms are definite integrals that need to be computed usually by
numerical integration. For the solution of Eqs. (18) and (19), the (approximation
to) boundary data is known at the collocation points.

Once the (approximations to) functions on the boundary are known, after
completing the initial stage of the boundary element method, the domain solution
can be found. In the case of the interior Laplace problem, Eq. (13) will yield the
domain solution. Similarly, the discrete equivalent of Eq. (11) may be derived:

φ pDi

� � ¼ ∑
n

j¼1
Lef gΔ~Sj pDi

� �
v̂j � ∑

n

j¼1
Mef gΔ~Sj pDi

� �
φ̂j pDi ∈ eD
� �

, (20)

for each point pDi in the domain eD. Let the solution be sought at m domain
points pDi for i ¼ 1, 2,…m, and then the equation above, for all the domain points, is
written as

φ̂
D
¼ LDSv̂S �MDSφ̂S

, (21)

where LDS½ �ij ¼ Lef gΔ~Sj pDi

� �
, MDS½ �ij ¼ Mef gΔ~Sj pDi

� �
.
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2.4 LIBEM2 and L2LC modules, test problem and results

This section includes an outline of the Laplace interior BEM 2D (LIBEM2) and
Laplace 2D linear boundary approximation constant element (L2LC) modules, and
they are demonstrated by means of a test problem. The LIBEM2 module solves
Laplace’s equation in an interior two-dimensional domain. L2LC is the most impor-
tant component module.

L2LC. The L2LC module computes the discrete Laplace operators for two-
dimensional problems. In the notation of this article, the routine computes
Lef gΔ~Sj pð Þ, Mef gΔ~Sj pð Þ, Mtef gΔ~Sj pð Þ and Nef gΔ~Sj pð Þ, where ΔeSj is the panel that is
the domain of integration and p is any point. The call to the subroutine has the
following form:

SUBROUTINE L2LC(P,VECP,QA,QB,LPONEL, LVALID,EGEOM,LFAIL,
* NEEDL,NEEDM,NEEDMT,NEEDN,L0,M0,M0T,N0),

where P is point p; VECP is a unit directional vector that passes through p; QA
and QB are the points, either side of the panel and hence defining the panel;
LPONEL is a logical switch that declares whether p is on the panel; and NEEDL is a
logical switch that states whether the discrete L operator is required and similar to
the other operators. The computed values for the integrals are output in L0, M0,
M0T and N0. For the straightforward direct BEM, developed in the previous sec-
tion, only L and M operators are required.

In general L2LC simply implements a Gaussian quadrature rule in order to deter-
mine the integral, using a higher-order rule when point p is close to the panel ΔeSj .
However, when point p is on the panel, then an exact integration is used [21, 22].

LIBEM2. The LIBEM2 module solves the interior Laplace problem and has the
following form:

LIBEM2(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* MAXPOINTS,NPOINT,POINTS,
* SALPHA,SBETA,SF,SINPHI,PINPHI,
* LSOL,LVALID,TOLGEOM,
* SPHI,SVEL,PPHI,
* L_SS,M_SSPMHALFI,L_PS,M_PS,
* PERM,XORY,C,workspace)

The boundary is set up through listing a set of nodal coordinates, and each panel
is determined through the two nodal indices for the endpoints of the panel. The
nodal coordinates are input through NODES and the panel information through
PANELS. The nodes are oriented clockwise on each panel for an outer boundary and
anticlockwise for any inner boundary. Usually, a solution in the domain is sought,
and for this a set of (interior) domain points are set in POINTS. The boundary
condition is set with the parameters SALPHA, SBETA and SF, setting αi, βi and f i
values in Eq. (19) for each panel.

Test problem. The test problem is that of solving Laplace’s equation on a unit
square with the boundary conditions defined as shown in Figure 1. The solution is
sought at the five interior points (0.25, 0.25), (0.75, 0.25), (0.25, 0.75), (0.75, 0.75)
and (0.5, 0.5), and these are also illustrated in the figure.

The test problem is set up in the file LIBEM2_T.FOR. The boundary is defined by
32 nodes and panels. The nodes are indexed, starting with 1: (0.0, 0.0), 2: (0.0, 0.125),
3: (0.0, 0.25) and continue clockwise around the boundary until the final node 32:
(0.125, 0.0). The panels are similarly set up in the clockwise sense with panel 1:1–2
(panel 1 links node 1 with node 2) and 2:2–3 until the final panel 32:32–1, linking the
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final node with the first node to complete the boundary. The boundary conditions
shown in Figure 1 are then applied.

The exact solution is φ pð Þ ¼ 10þ 10x; this is clearly a solution of Laplace’s
equation and satisfies the boundary conditions. The exact solution at the interior
points is therefore φ ¼ 12:5 at the two points on the left, φ ¼ 17:5 at the two points
on the right and φ ¼ 15:0 at the central point. The exact and computed results are
shown in Table 1.

A set of nodal coordinates and each panel is determined through the two nodal
indices for the endpoints of the panel.

The results from this test problem are also intuitively correct. With the left and
right sides of the square at different potentials, it is common sense to expect the
potential in the middle to be halfway between etc. The potentials can—most simply—
be interpreted as temperatures in a steady-state heat conduction problem.

3. The BEM and 3D Laplace problems

In this section, the boundary element method—introduced for two-dimensional
problems in the previous section—is extended to include three-dimensional prob-
lems in this section. In this section, the three-dimensional boundary may be general,
but the special case of axisymmetric problems is also developed in the modules
LBEM3 and LBEMA. The modules can solve interior and exterior Laplace problems.

For interior three-dimensional problems, the basic integral formulation is the
same as for 2D problems (12) and (13), except that Green’s function for three-
dimensional Laplace problems is

Figure 1.
The test problem of the unit square domain with boundary conditions.

Index Point Exact Computed (5 d.p.)

1 (0.25, 0.25) 12.5 12.49568

2 (0.75, 0.25) 17.5 17.50432

3 (0.25, 0.75) 12.5 12.49568

4 (0.75, 0.75) 17.5 17.50432

5 (0.5, 0.5) 15.0 15.00000

Table 1.
The results from the two-dimensional interior problem.
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G p; q
� � ¼ 1

4πr
, (22)

where r is the distance between points p and q and the integrals are over surfaces
rather than lines. The equations for the exterior problem are the same as for the
interior problem, but for some changes of sign

M� 1
2
I

� �
φ

� �

S
pð Þ ¼ Lvf gS pð Þ p∈ Sð Þ, (23)

φ pð Þ ¼ Mφf gS � Lvf gS p∈Eð Þ: (24)

For general three-dimensional problems, the simplest elements are triangular
panels, and for axisymmetric problems, they are lateral sections of a cone, with
surface functions approximated by a constant on each panel.

3.1 LBEMA and L3ALC modules, test problems and results

Let us start on the introduction of three-dimensional problems with the
axisymmetric codes. These codes are used in a very similar manner. As with the
two-dimensional problem, the component module L3ALC computes the integrals
over the panels and is called as follows:

SUBROUTINE L3ALC(P,VECP,QA,QB,LPONEL,LVALID,EGEOM,LFAIL,
* NEEDL,NEEDM,NEEDMT,NEEDN,DISL,DISM,DISMT,DISN).

For axisymmetric problems, the surface is defined by conical panels, which are
defined by piecewise straight lines along the generator. The parameters follow a
similar pattern as L2LC, except the points and vectors are in cylindrical r; zð Þ
coordinates. QA and QB are the two points either side of the panel on the generator.

The LBEMA subroutine computes the solution of the Laplace equation by the
direct boundary element method and has the following form:

LBEMA(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* LINTERIOR,MAXPOINTS,NPOINT,POINTS,
* SALPHA,SBETA,SF,SINPHI,PINPHI,
* LSOL,LVALID,TOLGEOM,
* SPHI,SVEL,PPHI,
* L_SS,M_SSPMHALFI,L_PS,M_PS,
* PERM,XORY,C,workspace)

In LBEMA, NODES lists the r; zð Þ coordinates of the nodes on the generator of
the surface, and PANELS states the two nodes that together define each panel.
LINTERIOR is a logical input, which is set to TRUE if an interior problem is to be
solved and FALSE for an interior problem.

The interior test problem is in file LBEMA_IT. The test problem is the unit
sphere with the exact solution:

φ ¼ r2 � 2z2, (25)

which is easily shown to be a solution of Laplace’s equation by writing
r2 ¼ x2 þ y2: A Dirichlet boundary condition is applied; the solution is sought at four
interior points, and the results for 18 elements are given in Table 2.

The exterior test problem is in file LBEMA_ET. The test problem is the unit
sphere (approximated by 18 elements) with the exact solution:
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φ ¼ 1
r
, (26)

where r is the distance from the origin. φ is a solution of Laplace’s equation as it
is a simple multiplication of Green’s function (22). A Dirichlet boundary condition
is applied to the upper hemisphere, and a Neumann boundary condition is applied
on the lower hemisphere. The solution is sought at four interior points, and the
results are given in Table 3.

3.2 LBEM3 and L3LC modules, test problems and results

The LBEM3 and L3LC subroutines implement the boundary element method
for general three-dimensional problems. As with the two-dimensional and
axisymmetric codes, the component module L3LC computes the integrals over the
panels. The L3LC subroutine is called as follows:

SUBROUTINE L3LC(P,VECP,QA,QB,QC,LPONEL,LVALID,EGEOM,LFAIL,
* NEEDL,NEEDM,NEEDMT,NEEDN,DISL,DISM,DISMT,DISN)

The parameters follow a similar purpose as did in the L2LC, except that the
points and vectors have three values. QA, QB and QC are the coordinates of the
vertices of the triangular panel.

The LBEM3 module solves Laplace’s equation in a general interior or exterior
three-dimensional domain and is called as follows:

LBEM3(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* LINTERIOR,MAXPOINTS,NPOINT,POINTS,
* SALPHA,SBETA,SF,SINPHI,PINPHI,
* LSOL,LVALID,TOLGEOM,
* SPHI,SVEL,PPHI,
* L_SS,M_SSPMHALFI,L_PS,M_PS,
* PERM,XORY,C,WKSPC1,WKSPC2,WKSPC3)

As with LIBEM2 and LBEMA, NODES and PANELS define the boundary. How-
ever, in this case, NODES lists the three coordinates of each surface node, and
PANELS lists the three nodal indices that make up each triangular panel.

Index Point Exact Computed (4 d.p.)

1 (0.0, 0.0) 0.0 �0.0013

2 (0.0, 0.5) �0.5 �0.4995

3 (0.0, �0.5) �0.5 �0.4995

4 (0.5, 0.0) 0.25 0.2477

Table 2.
The results from the axisymmetric interior problem.

Index Point Exact (4 d.p.) Computed (4 d.p.)

1 (0.0, 2.0) 0.5 0.4986

2 (1.0, 1.0) 0.7071 0.7051

3 (0.0, 100.0) 0.0100 0.0100

Table 3.
The results from the axisymmetric exterior problem.
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4πr
, (22)
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The exterior test problem is in file LBEMA_ET. The test problem is the unit
sphere (approximated by 18 elements) with the exact solution:
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φ ¼ 1
r
, (26)
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The interior test problem is that of a unit sphere approximated by 36 triangular
panels. The exact solution that is applied as a Dirichlet boundary condition is

φ ¼ xþ yþ z: (27)

The results at four interior points are given in Table 4.
The exterior test problem is that of a unit sphere approximated by 36 triangular

panels, as in the previous test. The exact solution that is applied as a Dirichlet
boundary condition is

φ ¼ 1
r
, (28)

where r is the distance from 0;0;0:5ð Þ: The results at four exterior points are
given in Table 5.

4. The solution of the 3D Laplace equation around a thin shell

Let us now consider the integral equation formulation for thin shells. An illus-
tration of a typical problem of a hollow hemispherical cap is illustrated in Figure 2.
In the traditional boundary element method, the boundaries are closed. This analy-
sis and software design extends the boundary element method to open boundaries
or discontinuities in the potential field.

In this section, the integral equations that are a reformulation of Laplace’s equa-
tion surrounding a thin shell are stated. Fortran codes that implement the boundary
element method for axisymmetric and general three-dimensional problems are
outlined in this section and demonstrated on simple test problems, similar to the
modelling of the steady-state electric field in a capacitor in Kirkup [9].

4.1 Integral equations and boundary element equations for thin shells

Following the work of Warham [27], the first step is to designate an ‘upper’ and
‘lower’ surface of a shell Γ and denote them by ‘+’ and ‘�’. We then introduce the

Index Point Exact Computed (4 d.p.)

1 (0.5, 0.0, 0.0) 0.5 0.4772

2 (0.0, 0.5, 0.0) 0.5 0.4836

3 (0.0, 0.0, 0.5) 0.5 0.4817

4 (0.1, 0.2, 0.3) 0.6 0.5802

Table 4.
The results from the three-dimensional interior problem.

Index Point Exact (4 d.p.) Computed (4 d.p.)

1 (2.0, 0.0, 0.0) 0.4851 0.4969

2 (0.0, 4.0, 0.0) 0.2481 0.2536

3 (0.0, 0.0, 8.0) 0.1333 0.1360

4 (2.0, 2.0, 2.0) 0.3123 0.3189

Table 5.
The results from the three-dimensional exterior problem.
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quantities of difference and average of the potential and its normal derivative across
the surface:

δ pð Þ ¼ φ pþ
� �� φ pþ

� �
p∈Γð Þ, (29)

Φ pð Þ ¼ 1
2

φ pþ
� �þ φ pþ

� �� �
p∈Γð Þ, (30)

ν pð Þ ¼ v pþ
� �þ v pþ

� �
p∈Γð Þ, (31)

V pð Þ ¼ 1
2

v pþ
� �� v pþ

� �� �
p∈Γð Þ: (32)

The integral equation formulations for the Laplace equation in the exterior
domain can now be written using the operator notation introduced earlier:

φ pð Þ ¼ Mδf gΓ pð Þ � Lνf gΓ pð Þ p∈Eð Þ, (33)

Φ pð Þ ¼ Mδf gΓ pð Þ � Lνf gΓ pð Þ p∈Γð Þ, (34)

V pð Þ ¼ Nδf gΓ pð Þ � Mtνf gΓ pð Þ p∈Γð Þ: (35)

The boundary condition may be expressed in the following form:

α pð Þδ pð Þ þ β pð Þν pð Þ ¼ f pð Þ p∈Γð Þ, (36)

A pð ÞΦ pð Þ þ β pð ÞV pð Þ ¼ F pð Þ p∈Γð Þ: (37)

The discrete equivalents of Eq. (21) are as follows:

φ̂
E
¼ MEΓδ̂Γ � LEΓν̂Γ, (38)

Φ̂Γ ¼ MΓΓδ̂Γ � LΓΓν̂Γ, (39)

bVΓ ¼ NΓΓδ̂Γ �Mt
ΓΓν̂Γ: (40)

4.2 LSEMA module, test problem and results

The LSEMA subroutine computes the solution of Laplace’s equation surrounding
thin shells or discontinuities. As with the LBEMA, the subroutine relies on L3ALC
to compute the matrix components in the systems (38)–(40). In this subsection, the
LSEMA routine is demonstrated through solving a test problem.

Figure 2.
A hemispherical shell.
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The integral equation formulations for the Laplace equation in the exterior
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The LSEMA subroutine computes the solution of Laplace’s equation surrounding
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The module LSEMA has the form:

LSEMA(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* MAXPOINTS,NPOINT,POINTS,
* HA,HB,HF,HAA,HBB,HFF,
* HIPHI,HIVEL,PINPHI,
* LSOL,LVALID,TOLGEOM,
* PHIDIF,PHIAV,VELDIF,VELAV,PPHI,
* AMAT,BMAT,L_EH, M_EH,
* PERM,XORY,C,WKSPC1,WKSPC2,WKSPC3).

The LSEMA parameters are similar to the LBEMA ones. However the expres-
sions of the boundary condition and the boundary function are different.

HA stores the values of α on the shell panels, similarly HB, β; HAA, A; and HBB,
B: The main output from the subroutine is PHIDIF that corresponds to δ̂Γ; PHIAV,
Φ̂Γ; VELDIF, ν̂Γ; VELAV, V̂Γ; and PPHI, φ̂

E
.

The test problem is in file LSEMA_T. It consists of two circular coaxial parallel
plates in the r, θ plane, of radius 1.0 and a distance of 0.1 apart in the planes where
z ¼ 0:0 and z ¼ 0:1: A Dirichlet boundary condition is applied to both plates. On
the plate at z ¼ 0:0, the potential of 0.0 is applied, and a potential (δ = 0, Φ ¼ 0) of
1.0 is applied on the other plate (δ = 0, Φ ¼ 1). A complete analytic solution is not
available. However in the central region between the plates, a simple gradient of
potential is intuitive, as discussed. The results from the test problem are listed in
Table 6.

4.3 LSEM3 module, test problem and results

The LSEM3 module solves Laplace’s equation exterior to a thin shell in three
dimensions. The subroutine call has the following form:

LSEM3(MAXNODES,NNODE,NODES,MAXPANELS,NPANEL,PANELS,
* MAXPOINTS,NPOINT,POINTS,
* HA,HB,HF,HAA,HBB,HFF,
* HINPHI,HINVEL,PINPHI,
* LSOL,LVALID,TOLGEOM,
* PHIDIF,PHIAV,VELDIF,VELAV,PPHI,
* AMAT,BMAT,L_EH,M_EH,
* PERM,XORY,C,WKSPC1,WKSPC2,WKSPC3)

The definition of the important parameters can be found from the previous
notes on LBEM3 and LSEMA. The test problem is in the file LSEM3_T, and it is
similar to the test problem for LSEMA. This time, the open boundaries are two unit
square plates of in x� y planes. The two squares are 0.1 apart: one is at a potential of
zero and the other is at a potential of one. The squares are each divided into 32
panels. The results at points between the squares, along a central axis, are shown in
Table 7.

Index Point Expected (4 d.p.) Computed (4 d.p.)

1 (0.0, 0.025) 0.25 0.2495

2 (0.0, 0.05) 0.5 0.5000

3 (0.0, 0.075) 0.75 0.7506

Table 6.
The results from the axisymmetric shell problem.
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5. Conclusions

In this paper a design of a software library has been set out and implemented in
Fortran. In taking a ‘library’ approach, components can be developed that can be
shared. There is, therefore, an overall reduction in coding, in line with good soft-
ware engineering practice. For the three-dimensional problems, it is shown how
exterior problems can be solved with the same code as interior problems. It is also
shown how the core discrete operator components can be reused for codes solving
problems in the same dimensional space. The method for solving the linear system
of equations can also often be shared, as with LU factorisation, applied in these
codes. A test problem has been developed in order to demonstrate each code. The
library of codes and the way they are linked are set out in Appendix.

There are several areas for further development. It is good for software engi-
neering also to widen participation to provide strong validation in the BEM, so that
errors, for example, in the boundary mesh are noted before executing the BEM. In
this work the validation is developed through the VGEOM* modules.

In this paper, the BEM codes have been applied to a set of simple test problems.
It would be useful if a standard library of test problems emerged, so that all existing
and future codes can be benchmarked against the same tests, with information such
as error and processing time. More complex geometries—such as multiple surfaces
in exterior problems or cavities in the domain for interior problems—would benefit
from standard test problems. The codes are also adaptable to problems in which
there is an existing field that the boundary and boundary conditions modify (via the
*INPHI and *INVEL parameters), but these have not been tested.

Central to the efficiency of the method, as the number of elements increases, is
the method for solving the linear system of equations and the method of storing the
matrices. Computing the matrices in the BEM takes O n2ð Þ time and memory. Solv-
ing the linear system by a direct method, like LU factorisation used in this work,
takes O n3ð Þ time. Hence, in order to scale up the method, LU factorisation needs to
be replaced by an interative method, and methods of storing and computing the
matrices may also become an issue.

In the software engineering approach in this work, a generalised form of the
boundary condition is also operational, and interior and exterior problems in 3D are
dealt with in the same code. Further generality may be achieved by forming a
hybrid of the method that allows both open and closed surfaces [28–30].

A. Appendix

The main codes for solving Laplace problems by the boundary element method
in this work are LIBEM2 for the two-dimensional problem interior to a closed

Index Point Expected (4 d.p.) Computed (4 d.p.)

1 (0.5, 0.5, 0.1) 0.1 0.0962

2 (0.5, 0.5, 0.3) 0.3 0.02994

3 (0.5, 0.5, 0.5) 0.5 0.5000

4 (0.5, 0.5, 0.7) 0.7 0.7006

5 (0.5, 0.5, 0.9) 0.9 0.9041

Table 7.
The results from the three-dimensional shell problem.
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The module LSEMA has the form:
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E
.

The test problem is in file LSEMA_T. It consists of two circular coaxial parallel
plates in the r, θ plane, of radius 1.0 and a distance of 0.1 apart in the planes where
z ¼ 0:0 and z ¼ 0:1: A Dirichlet boundary condition is applied to both plates. On
the plate at z ¼ 0:0, the potential of 0.0 is applied, and a potential (δ = 0, Φ ¼ 0) of
1.0 is applied on the other plate (δ = 0, Φ ¼ 1). A complete analytic solution is not
available. However in the central region between the plates, a simple gradient of
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4.3 LSEM3 module, test problem and results
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there is an existing field that the boundary and boundary conditions modify (via the
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boundary condition is also operational, and interior and exterior problems in 3D are
dealt with in the same code. Further generality may be achieved by forming a
hybrid of the method that allows both open and closed surfaces [28–30].

A. Appendix

The main codes for solving Laplace problems by the boundary element method
in this work are LIBEM2 for the two-dimensional problem interior to a closed

Index Point Expected (4 d.p.) Computed (4 d.p.)

1 (0.5, 0.5, 0.1) 0.1 0.0962

2 (0.5, 0.5, 0.3) 0.3 0.02994

3 (0.5, 0.5, 0.5) 0.5 0.5000

4 (0.5, 0.5, 0.7) 0.7 0.7006

5 (0.5, 0.5, 0.9) 0.9 0.9041

Table 7.
The results from the three-dimensional shell problem.
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boundary, LBEM3 for the general three-dimensional problem interior or exterior to
a closed boundary, LBEMA for the axisymmetric three-dimensional problem inte-
rior or exterior to a closed boundary, LSEM3 for the general three-dimensional
problem exterior to an open boundary and LSEMA for the axisymmetric three-
dimensional problem exterior to an open boundary. The linkage between these and
the supporting codes in the library is shown in Table 8.

The main subroutines have the control parameters LSOL, LVALID and
TOLGEOM. LSOL is set to TRUE if the full solution is sought and FALSE if the
linear system is the output. LVALID is set to TRUE if validation is required and
FALSE if it is not. TOLGEOM sets the geometrical tolerance.

The GLS algorithm in file GLS2 carries out a column-swapping method [31] in
order to prepare the linear system for solution by a standard method. The standard
method in this work is LU factorization and back substitution in files LUFAC and
LUFBSUBS.

File/code Purpose of module LIBEM2 LBEMA LBEM3 LSEMA LSEM3

L2LC Computes the discrete Laplace operators
(2D)

X

L3ALC Computes the discrete Laplace operators
(axisym)

X X

L3LC Computes the discrete Laplace operators
(3D)

X X

GLS2 Solves a generalised linear system of
equations

X X X X X

LUFAC Carries out LU factorisation of the
matrix

X X X X X

LUFBSUB Carries out forward and back
substitution

X X X X X

GEOM2D Geometrical operations (2D) X X X

GEOM3D Geometrical operations (3D) X X X X

GLRULES Gauss-Legendre quadrature rules X X X

GLT7 7-point Gaussian quadrature rule for
triangle

X X

GLT25 25-point Gaussian quadrature rule for
triangle

X X

VGEOM2 Verifies the geometry (2D) X

VGEOMA Verifies the geometry (axisym) X X

VGEOM3 Verifies the geometry (3D) X X

VG2LC Verifies the use of the L2LC module X

L3ALCC Copy of L3ALC (to fake recursion) X X

Table 8.
The main codes and supporting library.
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Chapter 2

Optimal Control of Thermal
Pollution Emitted by Power Plants
Lèye Babacar,Tine Léon Matar and Sy Mamadou

Abstract

The coastal areas near thermal or nuclear plants are subject to hot water dis-
charges produced by cooling processes. These activities induce an increase of the
temperature near the outlet vicinity, which can extend for miles. The temperature
variation affects the metabolic rate of organisms and the level of dissolved oxygen.
Cooling by cold water from an additional discharge can be considered in order to
limit this thermal pollution. This paper present a methodology based on the imple-
mentation of a two-dimensional numerical model to study the dynamic of the
temperature originated from the industrial discharges. Moreover the optimal injec-
tion rate of cold water is sought to keep the water temperature as close as possible to
the survival of the ecosystem. Numerical simulations are performed to illustrate the
efficiency approach.

Keywords: CFD, power plant, modeling, thermal pollution, optimal control

1. Introduction

Thermal pollution is defined as the degradation of water quality by any process
that changes ambient water temperature [1]. Coastal areas are often subject to
thermal effluents originating from the cooling processes in industrial plants
(nuclear reactors, electric power plants, petroleum refineries, steel melting facto-
ries, etc.) [2]. The industries collect water from lakes, rivers, or ocean, for cooling
purpose, and return it in the environment at a high temperature. The hot water
affects aquatic life, causes the substitution of aquatic fauna and flora, increases the
mortality of certain species, and has indirect effects including bacterial develop-
ment. More precisely, increasing the water temperature often increases the suscep-
tibility of organisms to toxic substances (which are undoubtedly present in
contaminated water) [3–6].

Studying the thermal effluents in receiving environments can contribute to
efficiently manage the discharges, reducing environmental and economic impacts.
Hence the reduction of thermal pollution must be included in the installation of
cooling systems. Moreover distance between inlet and outlet must be carefully
determined to avoid a decrease of the power plant efficiency.

By the middle of the 1960s, there were many research projects concentrating on
thermal discharges, where major publications focus on the environmental impacts
of power plant thermal discharges. Early mathematical models took place with
works of [7]. The first treatments addressed the equilibrium iso-contour of elevated
temperature within the receiving waters. Slightly later more advanced models allow
the analysis of thermal plumes across extensive data in relation to seasonal and
climate change fluctuations [3, 8–11].
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In this research, thermal pollution due to industrial activities was modeled by a
system of partial differential equations, and optimal control is applied to reduce the
associated thermal pollution. The location of the understudy area is illustrated by
Figure 1.

The paper is organized as follows. First, the thermal pollution is modeled by a
coupling of Navier-Stokes and heat equations. The cold water injection rate is
minimum of a cost function, in order to reduce the temperature variation and the
energy required to refresh injected water. Afterward, the well-posedness of this
problem is investigated. It follows a numerical resolution of the optimal control by
means of a gradient descent algorithm. Finally, numerical simulations are
performed to illustrate our approach.

2. CFD modeling of the thermal dispersion

2.1 Geometry representation

We are interested in the evolution of the system in space and time. Then, we
denote x and t, respectively, as the space and time variables. Ω is the domain
occupied by the water. Its boundary is denoted as ∂Ω and is divided into three
disjoint subborders. It is written

∂Ω ¼ ΓN ∪ ΓIN ∪ ΓOUT, (1)

where ΓIN is the entering border, ΓOUT is the outflow boundary, and ΓN is the
impermeable part. Ω contains three subdomains Ω1, Ω2, and ΩOBS. Ω1 stands for
the industrial plants, where the source of pollution modeled by f x; tð Þ is defined.
In Ω2, cold water is injected at a rate U in order to control the temperature in ΩOBS.
The objective consists in finding the optimal rate Uopt so that the temperature in
ΩOBS will be as close as possible to a desired value Td. Td can be the temperature
favorable to the survival of the ecosystem. The geometric domain is illustrated
by Figure 1.

2.2 Mathematical model

We present the system of partial differential equations representing the
evolution of the river parameters (temperature, velocity, and pressure). Then,
the cost function to be minimized in order to reduce the thermal pollution is
described.

Figure 1.
Water domain Ω, industrial plants Ω1, control zone Ω2, observation zone ΩOBS, impermeable boundary ΓN ,
inflow boundary ΓIN , and outflow boundary ΓOUT .
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2.2.1 Temperature

By hypothesis, three processes influence the temperature evolution: the thermal
conduction, the convection, and the internal reactions. The thermal conduction
translates the fact that the heat flux is proportional to the temperature gradient. The
convection expresses the temperature transfer by the fluid velocity. The internal
reactions are represented by the different sources of temperature and the industrial
plant discharges in this situation. By taking into account these processes, for a time
Tf .0, the temperature dynamic in Ω��0, Tf ½ is described by the equation

∂T
∂t|{z}

variation

� kΔT|ffl{zffl}
diffusion

þ u:∇T|fflffl{zfflffl}
convection

¼ fψ1|{z}
discharges

þUψ2|ffl{zffl}
control

: (2)

T x; tð Þ represents the fluid temperature at position x∈Ω and time t∈ �0, Tf ½. k
stands for the thermal diffusion coefficient. u x; tð Þ is the fluid velocity inducing the
advection process. The velocity is obtained by solving the Navier-Stokes system,
described below. ψ1 xð Þ and ψ2 xð Þ are, respectively, Ω1 and Ω2 characteristic func-
tions. They allow to localize the source term f tð Þ and control U tð Þ, respectively, in
the subdomains Ω1 and Ω2. The source term f tð Þ is given, while the control U tð Þ
must be computed as a solution of an optimal control problem, described in the
sequel. Tin x; tð Þ is the temperature distribution in the inlet border:

T ¼ Tin on ΓIN��0, T :½ (3)

On the impermeable boundary, no heat flux boundary condition is considered:

�k
∂T

∂n!
¼ 0 on ΓN��0, T ,½ (4)

where the vector n! defined on the boundary constitutes the outward unit nor-
mal vector. On the outflux boundary, the heat flux is proportional to the velocity
and the temperature:

�k
∂T

∂n!
þ αT u: n!

� �
T ¼ 0 on ΓOUT��0, T ,½ (5)

where αT .0 is a constant. The boundary condition allows us, as we will see
in the sequel in Subsection 3.2, to obtain an explicit formula for the cost function
gradient. These boundary conditions for the temperature are summarized in
Figure 2.

Figure 2.
Boundary conditions for temperature.
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inflow boundary ΓIN , and outflow boundary ΓOUT .
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2.2.1 Temperature

By hypothesis, three processes influence the temperature evolution: the thermal
conduction, the convection, and the internal reactions. The thermal conduction
translates the fact that the heat flux is proportional to the temperature gradient. The
convection expresses the temperature transfer by the fluid velocity. The internal
reactions are represented by the different sources of temperature and the industrial
plant discharges in this situation. By taking into account these processes, for a time
Tf .0, the temperature dynamic in Ω��0, Tf ½ is described by the equation

∂T
∂t|{z}

variation

� kΔT|ffl{zffl}
diffusion

þ u:∇T|fflffl{zfflffl}
convection

¼ fψ1|{z}
discharges

þUψ2|ffl{zffl}
control

: (2)

T x; tð Þ represents the fluid temperature at position x∈Ω and time t∈ �0, Tf ½. k
stands for the thermal diffusion coefficient. u x; tð Þ is the fluid velocity inducing the
advection process. The velocity is obtained by solving the Navier-Stokes system,
described below. ψ1 xð Þ and ψ2 xð Þ are, respectively, Ω1 and Ω2 characteristic func-
tions. They allow to localize the source term f tð Þ and control U tð Þ, respectively, in
the subdomains Ω1 and Ω2. The source term f tð Þ is given, while the control U tð Þ
must be computed as a solution of an optimal control problem, described in the
sequel. Tin x; tð Þ is the temperature distribution in the inlet border:

T ¼ Tin on ΓIN��0, T :½ (3)

On the impermeable boundary, no heat flux boundary condition is considered:

�k
∂T

∂n!
¼ 0 on ΓN��0, T ,½ (4)

where the vector n! defined on the boundary constitutes the outward unit nor-
mal vector. On the outflux boundary, the heat flux is proportional to the velocity
and the temperature:

�k
∂T

∂n!
þ αT u: n!

� �
T ¼ 0 on ΓOUT��0, T ,½ (5)

where αT .0 is a constant. The boundary condition allows us, as we will see
in the sequel in Subsection 3.2, to obtain an explicit formula for the cost function
gradient. These boundary conditions for the temperature are summarized in
Figure 2.

Figure 2.
Boundary conditions for temperature.

23

Optimal Control of Thermal Pollution Emitted by Power Plants
DOI: http://dx.doi.org/10.5772/intechopen.88646



Function T0 xð Þ represents the distribution of the temperature at the initial time:

T 0ð Þ ¼ T0 on Ω: (6)

2.2.2 Velocity and pressure

The fluid velocity u is obtained by solving, in Ω��0, Tf ½, the incompressible
Navier-Stokes system:

∂u
∂t

� νΔuþ u:∇ð Þuþ ∇p ¼ f 1ψ1 þ f 2ψ2,

div uð Þ ¼ 0,
(7)

where p x; tð Þ is the water pressure; ν.0 is the kinematic viscosity; f 1 tð Þ and
f 2 tð Þ are, respectively, the velocity sources in Ω1 and Ω2. At the inlet, the velocity is
known and given by a function uin x; tð Þ. It is written

u ¼ uin on ΓIN��0, Tf :½ (8)

On the impermeable boundary, it is assumed that the velocity is equal to zeros
due to the viscosity:

u ¼ 0 on ΓN��0, Tf :½ (9)

On the outflow boundary, the pressure is equal to zeros:

p ¼ 0 on ΓOUT��0, Tf ,½ (10)

The boundary conditions applied to the velocity and the pressure are summa-
rized in Figure 3.

The system is also completed by the initial condition for the velocity:

u 0ð Þ ¼ u0 on Ω: (11)

2.2.3 Cost functional

In order to reduce the pollution in an arbitrary area ΩOBS, a freshwater is
introduced in the subdomain Ω2. We are seeking the optimal rate U at which the
freshwater is introduced, such that the temperature in ΩOBS must be as closed as
possible to a prescribed threshold denoted Td. This optimal control must be the
minimum of the cost function:

Figure 3.
Boundary conditions for the velocity and pressure.
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J T;Uð Þ ¼ 1
2

ðTf

0

ð

ΩOBS

T � Tdð Þ2dxdtþ β

ðTf

0

ð

Ω2

U �Udð Þ2dxdt

0
B@

1
CA, (12)

where Ud is the ideal control rate and β.0 is the cost-efficiency ratio. More β
is great; more energy must be provided to maintain the temperature in ΩOBS close
to Td.

3. Optimal control

3.1 Cost functional

The aim is to find an optimal control U minimizing the cost function:

~J vð Þ ¼ J T vð Þ; vð Þ, ∀v∈Uad, (13)

where Uad ¼ L2 Ω2ð Þ is the admissible function space. By considering the
symmetric, continuous, coercive bilinear form

π s; vð Þ ¼ ,T sð Þ � T0, T vð Þ � T0 . þ β, s�Ud, v� Ud . (14)

for all s, v∈Uad, and the linear bounded functional

F vð Þ ¼,Td � T0, T vð Þ � T0 . , (15)

the cost function is written

~J vð Þ ¼ 1
2

π v; vð Þ þ ∥Td � T0∥2
� �� F vð Þ: (16)

We are in the framework of Theorem 16.1 in [12] that establishes the existence
and uniqueness of solution to the minimization problem.

3.2 Directional derivative

First, for a fixed h∈L2ð�0, Tf ;Uad½ Þ, two function sequences

Tλ ¼ T U þ λ hð Þ, wλ ¼ Tλ � T (17)

are considered, for all λ.0.

3.2.1 Sequences convergence

The difference between equations satisfied by Tλ and T results to the
following one:

∂wλ

∂t
� kΔwλ þ u:∇wλ ¼ λhψ2 in Ω��0, Tf ½,

wλ ¼ 0 on ΓIN��0, Tf ½,

� k
∂wλ

∂n!
¼ 0 on ΓN��0, Tf ½,

(18)
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where Ud is the ideal control rate and β.0 is the cost-efficiency ratio. More β
is great; more energy must be provided to maintain the temperature in ΩOBS close
to Td.

3. Optimal control

3.1 Cost functional

The aim is to find an optimal control U minimizing the cost function:

~J vð Þ ¼ J T vð Þ; vð Þ, ∀v∈Uad, (13)

where Uad ¼ L2 Ω2ð Þ is the admissible function space. By considering the
symmetric, continuous, coercive bilinear form

π s; vð Þ ¼ ,T sð Þ � T0, T vð Þ � T0 . þ β, s�Ud, v� Ud . (14)

for all s, v∈Uad, and the linear bounded functional

F vð Þ ¼,Td � T0, T vð Þ � T0 . , (15)

the cost function is written

~J vð Þ ¼ 1
2

π v; vð Þ þ ∥Td � T0∥2
� �� F vð Þ: (16)

We are in the framework of Theorem 16.1 in [12] that establishes the existence
and uniqueness of solution to the minimization problem.

3.2 Directional derivative

First, for a fixed h∈L2ð�0, Tf ;Uad½ Þ, two function sequences

Tλ ¼ T U þ λ hð Þ, wλ ¼ Tλ � T (17)

are considered, for all λ.0.

3.2.1 Sequences convergence

The difference between equations satisfied by Tλ and T results to the
following one:

∂wλ

∂t
� kΔwλ þ u:∇wλ ¼ λhψ2 in Ω��0, Tf ½,

wλ ¼ 0 on ΓIN��0, Tf ½,

� k
∂wλ

∂n!
¼ 0 on ΓN��0, Tf ½,
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�k
∂wλ

∂n!
þ αT u: n!

� �
wλ ¼ 0 on ΓOUT��0, Tf ½,

wλ 0ð Þ ¼ 0 on Ω:
(19)

If u∈L∞ Ω�ð �0, Tf ½Þ, this previous system admits a unique weak solution
satisfying

∥wλ∥L2ð�0,Tf ;V½ Þ þ ∥wλ∥C 0;Tf½ �;Hð Þ þ ∥wλ∥L2ð�0,Tf ;L2 ΓOUTð Þ½ Þ ≤Cλ∥h∥L2ð�0,Tf ;Uad½ Þ: (20)

with C.0 [13]. The functional spaces are defined by H ¼ L2 Ωð Þ and

V ¼ v∈H1 Ωð Þ such that v ¼ 0 on ΓIN
� �

: (21)

It can be deduced from the preceding inequality that

lim
λ!0

wλ ¼ 0 in L2ð�0, Tf ;V½ Þ∩C 0;Tf
� �

;H
� �

: (22)

3.2.2 Directional derivative computation

A direct computation gives us

~J U þ λhð Þ � ~J Uð Þ ¼ 1
2

ðTf

0

, Tλ þ T � 2Tdð ÞψOBS;wλ . þ , λβ 2 U � Udð Þ þ λhð Þψ2; h.ð Þdt:

(23)

By dividing this last equality by λ, it becomes

~J U þ λhð Þ � ~J Uð Þ
λ

¼ 1
2

ðTf

0

, Tλ þ T � 2Tdð ÞψOBS;wu . þ , β 2 U �Udð Þ þ λhð Þψ2; h.ð Þdt,

(24)

where wu ¼ wλ
λ is solution of the equation:

∂wu

∂t
� kΔwu þ u:∇wu ¼ hψ2 in Ω��0, Tf ½,

wu ¼ 0 on ΓIN��0, Tf ½,

�k
∂wu

∂n!
¼ 0 on ΓN��0, Tf ½,

�k
∂wu

∂n!
þ αT u: n!

� �
wu ¼ 0 on ΓOUT��0, Tf ½,

wu 0ð Þ ¼ 0 on Ω:

(25)

By passing to the limit λ ! 0, the directional derivative is written

~J 0 Uð Þ � h ¼
ðTf

0

, T � Tdð ÞψOBS;wu . þ , β U � Udð Þψ2; h.ð Þdt: (26)
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Unfortunately, this directional derivative does not provide an explicit expression
of the gradient. To achieve this, the term

ðTf

0

, T � Tdð ÞψOBS, wu . dt (27)

must be written as a scalar product on h. In this scope, the Lagrangian approach
is used and consists of solving an adjoint system, stated below.

3.3 Explicit gradient

Equation (25) is multiplied by the adjoint function ~p and integrated over
Ω��0, Tf ½. The result is

ðTf

0

, hψΩ2
, ~p. dt ¼

ðTf

0

,
∂wu

∂t
� kΔwu þ u:∇wu, ~p. dt: (28)

Integrations by parts lead to

ðTf

0

, hψΩ2
, ~p. dt ¼

ðTf

0

, � ∂
~p
∂t

� kΔ~p � u:∇~p,wu . dtþ I1 þ I2, (29)

where

• I1 ¼
Ð
Ω wu Tf

� �
~p Tf
� ��wu 0ð Þ~p 0ð ÞÞdx,�

• I2 ¼
Ð Tf

0

Ð
∂Ω k∂ ~p

∂n!
þ αT u: n!

� �
~pÞwu � k ∂wu

∂n!
~p

� �
dσdt:

�

By using the initial and boundary conditions of wu, the terms I1 and I2 become

• I1 ¼
Ð
Ωwu Tf

� �
~p Tf
� �

dx,

• I2 ¼
Ð Tf

0 �ÐΓIN
k ∂wu

∂n!
~pdσ þ ÐΓN

k ∂~p
∂n!

þ αT u: n!
� �

~p
� �

wudσ þ ÐΓOUT
k ∂~p
∂n!
wudσ

� �
dt:

From the condition u ¼ 0 on ΓN, it becomes

I2 ¼
Ð Tf

0 �ÐΓIN
k ∂wu

∂n!
~pdσ þ ÐΓN ∪ ΓOUT

k ∂~p
∂n!
wudσ

� �
dt:

Hence, we assume that ~p is solution of the adjoint problem:

� ∂~p
∂t

� kΔ~p � u:∇~p ¼ T � Tdð ÞψOBS in Ω��0, Tf ½,

~p ¼ 0 on ΓIN��0, Tf ½,

k
∂~p

∂n!
¼ 0 on  ΓN ∪ ΓOUTð Þ��0, Tf ½,

~p Tð Þ ¼ 0 on Ω:

(30)

Consequently, it becomes I1 ¼ 0, I2 ¼ 0, and
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�k
∂wλ
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þ αT u: n!
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�k
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�
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k ∂wu
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~pdσ þ ÐΓN
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� �
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k ∂~p
∂n!
wudσ

� �
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From the condition u ¼ 0 on ΓN, it becomes

I2 ¼
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k ∂wu
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wudσ
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Hence, we assume that ~p is solution of the adjoint problem:

� ∂~p
∂t

� kΔ~p � u:∇~p ¼ T � Tdð ÞψOBS in Ω��0, Tf ½,
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k
∂~p

∂n!
¼ 0 on  ΓN ∪ ΓOUTð Þ��0, Tf ½,
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Consequently, it becomes I1 ¼ 0, I2 ¼ 0, and
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ðTf

0

, hψΩ2
, ~p. dt ¼

ðTf

0

, T � Tdð ÞψOBS, wu . dt: (31)

Using this above equality in relation (26), we obtain

~J
0
Uð Þ � h ¼

ðTf

0

, ~p þ β U � Udð ÞÞψΩ2
, h. dt,

�
(32)

hence

∇~J Uð Þ ¼ ~p þ β U � Udð ÞÞψΩ2
:

�
(33)

Figure 4.
Flow chart of the iterative algorithm of the solution to the optimal control problem.
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A change of variables p x; tð Þ ¼ ~p x;Tf � t
� �

is made where p is the solution of

∂p
∂t

� kΔp� u:∇p
� �

tð Þ ¼ ψOBS T � Tdð Þ Tf � t
� �

 in Ω��0, Tf ½,

p ¼ 0 on ΓIN��0, Tf ½,

k
∂p

∂n!
¼ 0 on  ΓN ∪ ΓOUTð Þ��0, Tf ½,

p 0ð Þ ¼ 0 on Ω:

(34)

The gradient becomes

∇~J Uð Þ tð Þ ¼ p Tf � t
� �þ β U � Udð Þ tð Þ� �

ψΩ2
: (35)

This gradient allows to solve the minimization problem (12). The gradient
descent algorithm is used to compute the optimal control.

3.4 Iterative algorithm

First, the Navier-Stokes system is solved on Ω� 0;Tf
� �

to obtain the fluid
velocity. Secondly, the optimal control U tð Þ, t∈ 0;Tf

� �
, is computed by means of a

descent algorithm with a fixed step. And finally, this optimal control is used in the
state equation to simulate the fluid temperature propagation. The optimal control is
the limit of the sequence:

U0 tð Þ∈Uad, Umþ1 tð Þ ¼ Um tð Þ � τ∇~J Umð Þ tð Þ, (36)

τ being the step. The algorithm used is described as follows:
Input: Initial control: U0 tð Þ, Maximal number of iterations: mmax, Tolerance: tol.
This algorithm is summarized by Figure 4.

Algorithm 1.
Optimal control algorithm.
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Figure 4.
Flow chart of the iterative algorithm of the solution to the optimal control problem.
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4. Numerical scheme

4.1 State equation

The state equation is solved by using a method of ℙ1 discontinuous Galerkin in
space and implicit finite difference in time. The fluid velocity is very high in
relation to its thermal conductivity. To stabilize the induced oscillations, streamline
diffusion [12] is introduced in the scheme; hence the solved state equation is as
follows:

∂T
∂t

� kΔT þ u:∇T þ H
∣u∣

uΔ uTð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

streamline diffusion

¼ fψ1 þUψ2, (37)

H being the maximal mesh element diameter.

4.2 Adjoint equation

As the state equation, the adjoint problem is solved by using a method of ℙ1
discontinuous Galerkin in space and implicit finite difference in time. Streamline
diffusion is introduced in the scheme; hence the solved adjoint state is as follows:

∂p
∂t

� kΔp� u:∇pþ H
∣u∣

uΔ upð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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CCCA tð Þ ¼ ψOBS T � Tdð Þ Tf � t

� �
: (38)

4.3 Navier-Stokes system

The Navier-Stokes system is solved by means of a P1 Lagrange finite element
method for the velocity and the pressure. The following algorithm proposed by
Chorin [14] is used for the time discretization:

1.Computation of an intermediate solution u ∗

u ∗ � un

Δt
¼ � un:∇ð Þun þ νΔun þ ~f n,

2.Computation of the pressure pnþ1

Δpnþ1 ¼ 1
Δt

∇:u ∗ ,

3.Computation of the velocity unþ1

unþ1 ¼ u ∗ � Δt∇pnþ1,

where un, pn, and ~f n, n∈N ∗ , are, respectively, the approximated velocity, pres-
sure, and source term at the nth time step. The mesh is frequently adapted to improve
the solution efficiency. For the numerical implementation, the solver of partial
differential equations FreeFem++ downloadable at http://www.freefem.org/ff++
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allows to do the domain meshing, the computation, and the post-processing of the
solution. The numerical code is run on a computer of characteristics ProBook 250
G2, processor Intel(R) Core(TM) I5-5200U CPU @ 2.20 GHz 2.20 GHz, and RAM
memory 8.00 Go.

5. Numerical results

This section presents numerical tests to illustrate the validity of our approach.
The river parameters are listed in Table 1.

The initial temperature is always constant and equal to T0 ¼ 30°C. The initial
velocity is given by u0 ¼ 0m:s�1. The temperature at the inlet boundary is set to
Tin ¼ 30°C, while the velocity profile is described by the parabolic function:

h x;y; t
� � ¼ umax ∗ y ∗ 2� y

� �
m:s�1: (39)

umax is the maximal value of the velocity. At the outflow boundary, mixed
boundary conditions are used with αT ¼ 10�8 and αu ¼ 10�8. The velocity source at
the discharge is given by

f 1 ¼ 0;�vmaxð Þ m: s�1, (40)

with vmax .0. For the optimal control, the target temperature in the observation
area is equal to Td ¼ 30°C, and the target control is of Ud ¼ 0°C:s�1. The cost-
efficiency ratio of the objective functional is defined by β ¼ 1. The time step is set to
Δt ¼ 0:1 s. The stopping criteria tolerance of the iterative algorithm is given by
tol ¼ 0:02, and the step of the descent gradient algorithm by τ ¼ 0:5.

5.1 Thermal pollution simulation

We assume that hot water is discharged in Ω1 by power plants. The distribution
of the water temperature at different time steps is shown in Figure 5. The flow
velocity is presented in Figure 6. It can be observed that flow displaces the thermal
plume from the power plants to the right hand side.

5.2 Influence of the discharge rates

In Figure 7, we present the influence of different discharge rates on the thermal
plume area. For low rates, we observe a high temperature far from the discharge
area. However, for high rates, the temperature seems to be high near the emission
zone and small far from the discharge zone. In this last case, the polluted area is
more extended.

Parameters Notation Value Unit

Viscosity ν 8:84 ∗ 10�4 m2:s�1

Thermal diffusion k 1:5 ∗ 10�7 m2:s�1

Table 1
Physical parameters of the river.
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Figure 5.
Temperature contours. (a) Temperature contour after 0 second, (b) Temperature contour after 10 second,
(c) Temperature contour after 20 second, (d) Temperature contour after 30 second, (e) Temperature contour
after 40 second, and (f) Temperature contour after 50 second.

Figure 6.
Velocity fields. (a) Velocity field after 0 second, (b) Velocity field after 10 second, (c) Velocity field after 20
second, (d) Velocity field after 30 second, (e) Velocity field after 40 second, and (f) Velocity field after 50
second.
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5.3 Heat emission optimal control

Similarly to the first case, a source term f is applied on Ω1. The control on Ω2 is
initialized to U ¼ �1°C:s�1. The velocity sources on Ω1 and Ω2 are, respectively:

f 1 ¼ 0;�10ð Þm:s�1, f 2 ¼ 0;�10ð Þm:s�1: (41)

The cost function value according to the optimization iteration is represented
by Figure 8. At the initial step, we assume that U ¼ �1°C:s�1, thus obtaining a cost
function J T;Uð Þ ¼ 1:37274 ∗ 10�2 (Figure 9). The optimal solution is obtained
after 10 iterations, for an optimal control rate U tð Þ of order �10�2 illustrated by
Figure 12.

In Figure 10, the stopping criteria ∣∇~J Umð Þ∣=∣∇~J U0� �
∣ in terms of the number of

iterations are reported. At initial step, the stopping criteria is equal to 1 and then
decreases to reach 9:56428 ∗ 10�3 after 10 iterations. From this observation, it can be
deduced that the control sequence Um converges to the optimal control rate.

Figure 11 compares the temperature evolution in ΩOBS for the thermal plume
dispersion simulation U ¼ 0°C:s�1, the initial step U ¼ �1°C:s�1, and the optimal

Figure 7.
Temperature contours for different discharge rates. (a) vmax = 20, (b) vmax = 30, (c) vmax = 40, and
(d) vmax = 50.

Figure 8.
Cost functional after each iteration of the steepest descent algorithm.
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case. For the thermal dispersion, it can be noticed that after 8 s the temperature
increases to reach a maximum of 30.15°C. For the initial step U ¼ �1°C:s�1, the
temperature is lower than 30°C and reaches a minimum of 29.87. For the optimal

Figure 9.
Control rate after iterations 0, 4, and 10.

Figure 10.
Stopping criteria according to the number of iterations.

Figure 11.
Time series of water mean temperature in the observation zone ΩOBS. In blue, only hot water discharge in Ω1 is
considered. In green, simulations are carried out by using the initial control U ¼ �1°C:s�1. In red, temperature
evolution is corresponding to the optimal control.

34

Numerical Modeling and Computer Simulation

solution, the temperature is >30°C but does not exceed 30.08°C. Moreover for
all the time, it is closer to the optimal value than for the thermal dispersion case.
According to these remarks, it can be concluded that the computed optimal rate
allows to maintain the temperature in ΩOBS at a value close to the desired
threshold 30°C.

Figure 12 illustrates the temperature distributions at times 1, 5, 10, 30, 45,
and 59.9 s. A reduction of the thermal pollution is observed, due to the cold water
source in Ω2.

6. Conclusion

Numerical models are essential to predict the thermal effluent impacts on natu-
ral systems. This work is of particular relevance for the coastal area managements,

Figure 12.
Optimal control: temperature field (in °C) at time intervals of 1 (a), 5 (b), 10 (c), 30 (d), 45 (e),
and 59.9 s (f).
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by contributing to a better understanding of these consequences on coastal dynam-
ics. The cooling water discharge causes an increase of the water temperature. Model
simulations show that water dynamic plays a significant role on the temperature
dispersion. The optimal control of the model allows to define a strategy to limit this
pollution. The simulations show that an injection of freshwater, at an appropriate
rate, allows to reduce this pollution and keeps water temperature favorable for
ecosystem survival.

Author details

Lèye Babacar1*, Tine Léon Matar2 and Sy Mamadou3

1 Laboratoire Eaux, Hydro-Système et Agriculture, Rue de la Science, Institut
International d’Ingénierie de l’Eau et de l’Environnement, Ouagadougou,
Burkina Faso

2 Institut Camille Jordan UMR 5208, Université Claude Bernard Lyon 1,
Villeurbanne, France

3 Laboratoire d’Analyse Numérique et d’Informatique, Université Gaston Berger,
Saint-Louis, Sénégal

*Address all correspondence to: babacar.leye@2ie-edu.org

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

36

Numerical Modeling and Computer Simulation

References

[1] Precht H, Christophersen J,
Hensel H, Larcher W. Heat Exchange
with the Environment. Berlin,
Heidelberg: Springer; 1973. pp. 545-564

[2] Issakhov A, Zhandaulet Y. Numerical
study of technogenic thermal pollution
zones’ formations in the water
environment from the activities of the
power plant. Environmental Modeling
and Assessment. 2019;24:1-16

[3] Abbaspour M, Javid AH, Moghimi P,
Kayhan K. Modeling of thermal
pollution in coastal area and its
economical and environmental
assessment. International journal of
Environmental Science and Technology.
2005;2(1):13-26

[4] Coulter DP, Sepúlveda MS, Troy CD,
Höök TO. Thermal habitat quality of
aquatic organisms near power plant
discharges: Potential exacerbating
effects of climate warming. Fisheries
Management and Ecology. 2014;21(3):
196-210

[5] Hester ET, Doyle MW. Human
impacts to river temperature and their
effects on biological processes: A
quantitative synthesis 1. JAWRA Journal
of the American Water Resources
Association. 2011;47(3):571-587

[6] Kelso JRM, Milburn GS. Entrainment
and impingement of fish by power
plants in the great lakes which use the
once-through cooling process. Journal of
Great Lakes Research. 1979;5(2):182-194

[7] Edinger JE, Brady DK, Geyer JC.
Heat Exchange and Transport in the
Environment. Report No. 14. Technical
Report. NTIS Issue No. 198314. 1974,
p. 137

[8] El-Ghorab EAS. Physical model to
investigate the effect of the thermal
discharge on the mixing zone (case
study: North Giza Power Plant, Egypt).

Alexandria Engineering Journal. 2013;
52(2):175-185

[9] Hunt CD, Mansfield AD,
Mickelson MJ, Albro CS, Geyer WR,
Roberts PJW. Plume tracking and
dilution of effluent from the Boston
sewage outfall. Marine Environmental
Research. 2010;70(2):150-161

[10] Kalinowska MB, Rowiński PM.
Thermal Pollution in Rivers—Modelling
of the Spread of Thermal Plumes. Cham:
Springer International Publishing; 2015.
pp. 591-613

[11] Issakhov A, Zhandaulet Y.
Numerical simulation of thermal
pollution zones’ formations in the water
environment from the activities of the
power plant. Engineering Applications
of Computational Fluid Mechanics.
2019;13(01):279-299

[12] Quarteroni A. Numerical Models for
Differential Problems. New York, USA:
Springer; 1988

[13] Brézis H. Analyse fonctionelle:
Collection Mathématiques appliquées
pour la matrise. New York, USA:
Masson; 1983

[14] Chorin A. Numerical solution of the
Navier-Stokes equations. Mathematics
of Computation. 1968;22:10

37

Optimal Control of Thermal Pollution Emitted by Power Plants
DOI: http://dx.doi.org/10.5772/intechopen.88646



by contributing to a better understanding of these consequences on coastal dynam-
ics. The cooling water discharge causes an increase of the water temperature. Model
simulations show that water dynamic plays a significant role on the temperature
dispersion. The optimal control of the model allows to define a strategy to limit this
pollution. The simulations show that an injection of freshwater, at an appropriate
rate, allows to reduce this pollution and keeps water temperature favorable for
ecosystem survival.

Author details

Lèye Babacar1*, Tine Léon Matar2 and Sy Mamadou3

1 Laboratoire Eaux, Hydro-Système et Agriculture, Rue de la Science, Institut
International d’Ingénierie de l’Eau et de l’Environnement, Ouagadougou,
Burkina Faso

2 Institut Camille Jordan UMR 5208, Université Claude Bernard Lyon 1,
Villeurbanne, France

3 Laboratoire d’Analyse Numérique et d’Informatique, Université Gaston Berger,
Saint-Louis, Sénégal

*Address all correspondence to: babacar.leye@2ie-edu.org

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

36

Numerical Modeling and Computer Simulation

References

[1] Precht H, Christophersen J,
Hensel H, Larcher W. Heat Exchange
with the Environment. Berlin,
Heidelberg: Springer; 1973. pp. 545-564

[2] Issakhov A, Zhandaulet Y. Numerical
study of technogenic thermal pollution
zones’ formations in the water
environment from the activities of the
power plant. Environmental Modeling
and Assessment. 2019;24:1-16

[3] Abbaspour M, Javid AH, Moghimi P,
Kayhan K. Modeling of thermal
pollution in coastal area and its
economical and environmental
assessment. International journal of
Environmental Science and Technology.
2005;2(1):13-26

[4] Coulter DP, Sepúlveda MS, Troy CD,
Höök TO. Thermal habitat quality of
aquatic organisms near power plant
discharges: Potential exacerbating
effects of climate warming. Fisheries
Management and Ecology. 2014;21(3):
196-210

[5] Hester ET, Doyle MW. Human
impacts to river temperature and their
effects on biological processes: A
quantitative synthesis 1. JAWRA Journal
of the American Water Resources
Association. 2011;47(3):571-587

[6] Kelso JRM, Milburn GS. Entrainment
and impingement of fish by power
plants in the great lakes which use the
once-through cooling process. Journal of
Great Lakes Research. 1979;5(2):182-194

[7] Edinger JE, Brady DK, Geyer JC.
Heat Exchange and Transport in the
Environment. Report No. 14. Technical
Report. NTIS Issue No. 198314. 1974,
p. 137

[8] El-Ghorab EAS. Physical model to
investigate the effect of the thermal
discharge on the mixing zone (case
study: North Giza Power Plant, Egypt).

Alexandria Engineering Journal. 2013;
52(2):175-185

[9] Hunt CD, Mansfield AD,
Mickelson MJ, Albro CS, Geyer WR,
Roberts PJW. Plume tracking and
dilution of effluent from the Boston
sewage outfall. Marine Environmental
Research. 2010;70(2):150-161

[10] Kalinowska MB, Rowiński PM.
Thermal Pollution in Rivers—Modelling
of the Spread of Thermal Plumes. Cham:
Springer International Publishing; 2015.
pp. 591-613

[11] Issakhov A, Zhandaulet Y.
Numerical simulation of thermal
pollution zones’ formations in the water
environment from the activities of the
power plant. Engineering Applications
of Computational Fluid Mechanics.
2019;13(01):279-299

[12] Quarteroni A. Numerical Models for
Differential Problems. New York, USA:
Springer; 1988

[13] Brézis H. Analyse fonctionelle:
Collection Mathématiques appliquées
pour la matrise. New York, USA:
Masson; 1983

[14] Chorin A. Numerical solution of the
Navier-Stokes equations. Mathematics
of Computation. 1968;22:10

37

Optimal Control of Thermal Pollution Emitted by Power Plants
DOI: http://dx.doi.org/10.5772/intechopen.88646



Chapter 3

Finite Difference Solution of
Conjugate Heat Transfer in Double
Pipe with Trapezoidal Fins
Ghazala Ashraf, Khalid S. Syed and Muhammad Ishaq

Abstract

A conjugate heat transfer problem on the shell side of a finned double pipe heat
exchanger is numerically studied by suing finite difference technique. Laminar flow
with isothermal boundary conditions is considered in the finned annulus with fully
developed flow region to investigate the influence of variations in the fin height, the
number of fins and the fluid and wall thermal conductivities on the hydraulic and
thermal design of the exchanger. The governing momentum and energy equations
have been solved by a finite difference-based numerical algorithm. The improve-
ment in heat transfer rates, the exchanger performance and the optimum configu-
rations are discussed.

Keywords: incompressible, laminar flow, convective heat transfer, finned double
pipe, fully developed flow, conjugate heat transfer, isotherms

1. Introduction

The theory of heat transfer is widely used in many fields of engineering indus-
tries and also in applied sciences. Heat exchangers are being used in power genera-
tion houses and nuclear reactor centres, in order to generate and convert energy for
unlimited purposes. The design of the heat exchangers, according to its usage, also
is a matter of great importance.

As for boiling, condensing and radiating the fluid and other things, the size of
heat transfer equipment is always taken into account. In aerospace, equipment
requires the limitation of weights, while in nuclear reactors, a deep study of heat
transfer analysis is needed to avoid the unbearable damages [1]. In heating, gener-
ally these heat exchangers show the very low rate of heat transfer. The performance
of such heat exchanger can be signified by various techniques. Özisik [2] has given a
detailed study of augmented fin surfaces which are of great help in enhancement of
heat transfer rate. A similar study of heat flow was made by Nasiruddin and
Kamran [3], for vortex generation by applying baffles in circular ducts. A study on
convective heat transfer with variable fin heights was made by Zeitoun and Hegazy
[4], in which a rise in heat transfer rate was observed, with low friction factor.
Suryanarayana and Apparao [5] mentioned in his work that one of the criteria for
evaluating the performance of a heat exchanger with extended surfaces is the
pumping power required for a specified heat duty. He reported that average heat
transfer coefficient increases with an increase in the frequency of the number of
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convective heat transfer with variable fin heights was made by Zeitoun and Hegazy
[4], in which a rise in heat transfer rate was observed, with low friction factor.
Suryanarayana and Apparao [5] mentioned in his work that one of the criteria for
evaluating the performance of a heat exchanger with extended surfaces is the
pumping power required for a specified heat duty. He reported that average heat
transfer coefficient increases with an increase in the frequency of the number of
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fins. Another study for heat transfer was made by using elliptic pin finned tube by
Qingling et al. [6]. Adegun et al. [7] proposed a new method to increase the heat
transfer rate by using circular pipes making them inclined, with different inclina-
tions. They investigated that heat transfer rate is rapid till 15o inclination and fin
height H = 0.2 and increase in fin height is just a waste of material and causes more
expenses. But before the last few decades, it was not found by any good mathemat-
ical approach. Pagliarini [8] indicated that the idealization of infinite conduction
may cause unrealistic approach in the analysis of heat transfer characteristics. So,
they proposed the idea of finite conductivity offered by the material used in it.

The transfer of heat between fluid and solid while flowing in any heat exchanger
is governed by two different kinds of equations, as transfer of heat in fluid is
governed by the elliptical Navier-Stokes equation or by the parabolic boundary
layer equation, and the heat transfer inside the body is governed by the elliptical
Laplace equation or by the parabolic differential equation [9]. This forms a so-called
model of conjugate problem. Conjugate heat transfer problems have been analysed
in various geometric configurations. Kumar [10] examined two conjugate problems
of heat transfer in the laminar boundary layer at the boundary of a semi-infinite
porous medium on the assumption that fluid filters continuously through the
porous surface and that the injection velocity varies as x�1/2. Barozzi and Pagliarini
[11] used finite element method to examine a conjugate problem of a laminar flow
in a pipe when the outer wall is being heated uniformly to observe the effects of wall
conduction.

Mori et al. [12] investigated the conjugate problem in a circular pipe and observed
the conduction effects. In this study, it was proposed that conductivities of the wall
and of fluid make remarkable affects in heat transfer properties when thickness of the
wall is increased, while thin wall effects on the heat transfer properties are negligible.
An analysis on conjugate heat transfer by using three types of boundary conditions, as
constant heat flux, constant wall temperature and constant heat transfer coefficients,
was made by Sakakibara et al. [13]. They used Duhamel’s theorem to calculate the
interfacial temperature. They reported that conduction in the wall is inversely pro-
portional to the ratio of conductivities of solid to fluid.

Kettner et al. [14] numerically investigated that the ratio of thermal conductiv-
ities of the solid to fluid has no noticeable effect when the fins of the small height
are considered. However, this conductivity ratio has a significant effect when the
fin height relative to pipe radius is taken more than 0.4. A similar conjugate prob-
lem was studied in finned tube, and it was reported that fin efficiency has a great
influence on heat flux and heat transfer coefficient by Fiebig et al. [15]. The conju-
gate heat transfer problem was investigated in different geometries by Nguyen et al.
[16]. Nordstorm and Berg [17] investigated the Navier-Stokes equations for modi-
fied interface conditions. They have computed conjugate problem with two
approaches: one is by using heat equation for the transfer of heat in solid, and the
other is transfer of heat by using Navier-Stokes equations.

Sohail and Fakhir [18] gave numerical investigation of double-pipe heat
exchanger with circumferential fins in longitudinal to study the effect of fin pitch-
to-height (P/H) ratio on heat transfer and fluid flow characteristics at various
Reynolds numbers, using water as the working fluid. Systematic analysis is carried
out by changing geometric and flow parameters. Geometric parameters include
varying the pitch-to-height ratio from 0.55 to 26.4, while for the flow parameters,
Reynolds number varied from 200 to 1400.

Syed et al. [19] made numerical simulation of finned double-pipe heat
exchanger, where fins are distributed around the outer wall of the inner pipe. By
using H1 (constant heat flux) and T1 (constant wall temperature) boundary condi-
tions and one-dimensional fin equation, he concluded that the fin heat loss increases
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if we increase the conductivity of fin. Mazhar [20] extended the work of Syed [19]
by considering laminar conjugate heat transfer in the thermal entrance region of the
finned annulus. In his work, finite difference method (FDM) was used for the
simulation of the problem of hydrodynamically fully developed and thermally
developing and fully developed flow. The investigation made by him was clearly
showing that the entrance region is more affected by the ratio of conductivities and
rate of heat transfer rate at entrance is higher than that of the fully developed
region.

The methods in the previous discussion are conventional methods for enhancing
heat transfer rate. They have their own limitations such as the need of extended
surfaces, enhancement in thermal processing equipment sizes and increase in
pumping power to acquire the desirable efficiency level.

2. Iterative methods

In this chapter, a numerical algorithm for solving elliptic PDEs involving fluid
flow and of heat transfer analysis is described. This algorithm uses multigrid
discretization for nested iterations to accelerate the rate of convergence at higher
levels with less computation. The well-known successive over-relaxation (SOR)
method is used to solve the problem, by giving a fixed value to the relaxation
parameter. Problems of steady-state viscous flow and steady temperature can be
brought into the category of elliptic PDEs with appropriate boundary conditions.
In order to solve these PDEs numerically, a higher order accuracy rate with less
computation is more preferred. Moreover, estimation of error helps to ensure the
accuracy of the solution.

Iterative methods are widely used in order to solve the difference equations,
which are obtained from elliptic PDEs. Among these iterative methods, SOR
method is widely used for its fast convergence for a class of large linear systems
arising from difference equations. SOR method is a quick solver for a large number
of linear equations.

The momentum and energy equations are solved by using the algorithm given in
the next section, for the behaviour of fully developed laminar flow through a finned
double pipe. A comparative study of literature results and the present work are
shown in “Results” section.

2.1 Iterative scheme for Poisson equation

A general Poisson equation in two dimensions ∇2u ¼ f x; yð Þ (1)

can be approximated by the pictorial relation ∇2u ¼ 1
h2

1

1 �4 1

1:

8><
>:

9>=
>;

The function u x; yð Þ can be replaced by the value at the discrete nodes of the
region. In order to discretize the function, a square grid with step size h can be
helpful. The value of the exact solution function u x; yð Þ at a point P(xi, yjÞ is denoted
by u xi; yj

� �
, and its approximated value is denoted as u i; jð Þ. For the chosen

discretization of the function, the partial differential equations are approximated at
the grid points by using the discrete value of the function u i; jð Þ: The first- and
second-order partial derivatives are approximated by the difference quotients. For
this purpose central difference quotients are used as follows:

41

Finite Difference Solution of Conjugate Heat Transfer in Double Pipe with Trapezoidal Fins
DOI: http://dx.doi.org/10.5772/intechopen.82555



fins. Another study for heat transfer was made by using elliptic pin finned tube by
Qingling et al. [6]. Adegun et al. [7] proposed a new method to increase the heat
transfer rate by using circular pipes making them inclined, with different inclina-
tions. They investigated that heat transfer rate is rapid till 15o inclination and fin
height H = 0.2 and increase in fin height is just a waste of material and causes more
expenses. But before the last few decades, it was not found by any good mathemat-
ical approach. Pagliarini [8] indicated that the idealization of infinite conduction
may cause unrealistic approach in the analysis of heat transfer characteristics. So,
they proposed the idea of finite conductivity offered by the material used in it.

The transfer of heat between fluid and solid while flowing in any heat exchanger
is governed by two different kinds of equations, as transfer of heat in fluid is
governed by the elliptical Navier-Stokes equation or by the parabolic boundary
layer equation, and the heat transfer inside the body is governed by the elliptical
Laplace equation or by the parabolic differential equation [9]. This forms a so-called
model of conjugate problem. Conjugate heat transfer problems have been analysed
in various geometric configurations. Kumar [10] examined two conjugate problems
of heat transfer in the laminar boundary layer at the boundary of a semi-infinite
porous medium on the assumption that fluid filters continuously through the
porous surface and that the injection velocity varies as x�1/2. Barozzi and Pagliarini
[11] used finite element method to examine a conjugate problem of a laminar flow
in a pipe when the outer wall is being heated uniformly to observe the effects of wall
conduction.

Mori et al. [12] investigated the conjugate problem in a circular pipe and observed
the conduction effects. In this study, it was proposed that conductivities of the wall
and of fluid make remarkable affects in heat transfer properties when thickness of the
wall is increased, while thin wall effects on the heat transfer properties are negligible.
An analysis on conjugate heat transfer by using three types of boundary conditions, as
constant heat flux, constant wall temperature and constant heat transfer coefficients,
was made by Sakakibara et al. [13]. They used Duhamel’s theorem to calculate the
interfacial temperature. They reported that conduction in the wall is inversely pro-
portional to the ratio of conductivities of solid to fluid.

Kettner et al. [14] numerically investigated that the ratio of thermal conductiv-
ities of the solid to fluid has no noticeable effect when the fins of the small height
are considered. However, this conductivity ratio has a significant effect when the
fin height relative to pipe radius is taken more than 0.4. A similar conjugate prob-
lem was studied in finned tube, and it was reported that fin efficiency has a great
influence on heat flux and heat transfer coefficient by Fiebig et al. [15]. The conju-
gate heat transfer problem was investigated in different geometries by Nguyen et al.
[16]. Nordstorm and Berg [17] investigated the Navier-Stokes equations for modi-
fied interface conditions. They have computed conjugate problem with two
approaches: one is by using heat equation for the transfer of heat in solid, and the
other is transfer of heat by using Navier-Stokes equations.

Sohail and Fakhir [18] gave numerical investigation of double-pipe heat
exchanger with circumferential fins in longitudinal to study the effect of fin pitch-
to-height (P/H) ratio on heat transfer and fluid flow characteristics at various
Reynolds numbers, using water as the working fluid. Systematic analysis is carried
out by changing geometric and flow parameters. Geometric parameters include
varying the pitch-to-height ratio from 0.55 to 26.4, while for the flow parameters,
Reynolds number varied from 200 to 1400.

Syed et al. [19] made numerical simulation of finned double-pipe heat
exchanger, where fins are distributed around the outer wall of the inner pipe. By
using H1 (constant heat flux) and T1 (constant wall temperature) boundary condi-
tions and one-dimensional fin equation, he concluded that the fin heat loss increases

40

Numerical Modeling and Computer Simulation

if we increase the conductivity of fin. Mazhar [20] extended the work of Syed [19]
by considering laminar conjugate heat transfer in the thermal entrance region of the
finned annulus. In his work, finite difference method (FDM) was used for the
simulation of the problem of hydrodynamically fully developed and thermally
developing and fully developed flow. The investigation made by him was clearly
showing that the entrance region is more affected by the ratio of conductivities and
rate of heat transfer rate at entrance is higher than that of the fully developed
region.

The methods in the previous discussion are conventional methods for enhancing
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In this chapter, a numerical algorithm for solving elliptic PDEs involving fluid
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computation is more preferred. Moreover, estimation of error helps to ensure the
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The momentum and energy equations are solved by using the algorithm given in
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ux xi; yj
� �

¼ uiþ1, j � ui�1, j

2h
(2)

uy xi; yj
� �

¼ ui, jþ1 � ui, j�1

2h
(3)

uxx xi; yj
� �

¼ uiþ1, j � 2ui, jþui�1, j

h2
(4)

uyy xi; yj
� �

¼ ui, jþ1 � 2ui, jþui, j�1

h2
(5)

The Poisson equation can be approximated by using the above central difference
quotients:

uiþ1, j � 2ui, jþui�1, j

h2
þ ui, jþ1 � 2ui, jþui, j�1

h2
¼ f xi; yj

� �
(6)

The boundary conditions of the boundary value problem need to be applied in
accordance with the difference approximation of PDEs. The simplest of the
boundary conditions is the Dirichlet boundary condition. In this case the difference
equation can be applied to all interior points with unknown functions, and known
values of the function at each boundary can be directly replaced.

Here, a simple type of Neumann boundary condition is taken into consideration. It
is considered that boundary is taken at grid parallel to any of the axes here, e.g., x-axis.
This boundary condition requires the normal derivative to be disappeared. This deriv-
ative in normal direction can be approximated by the central difference quotients.

So;we approximate
∂u
∂n

����
p
¼ 0 as

uiþ1, j � ui�1, j

2h
¼ 0 (7)

which implies uiþ1, j ¼ ui�1, j (8)

The vanishing of normal derivative means that function u x; yð Þ is symmetric
about the boundary of the region.

2.2 Linear system solver

SOR is an iterative method, which is an important solver for the class of large
linear system arising from the finite difference approximation of PDEs. It is not
only an efficient solver but also a smoother. The method of relaxation is an iterative
scheme which permits one to select the best equation to be used for the faster rate of
convergence. Although Gauss Jacobi and Gauss Seidel are taken as one of the good
iterative methods, relaxation method is more advantageous because of its faster rate
of convergence depending upon the relaxation parameter ‘ω:’ When 0 < ω < 1, the
procedures are called under relaxation methods. When ω = 1, then relaxation
method is same as that of Gauss-Seidel method.

For 1 < ω < 2, the procedure is called over-relaxation.
The general Laplace equation is discretized by using finite differences, and the

boundary conditions are approximated by second-order central differences.
Fictitious points lying outside the domain, arising from the discretized form of
derivative boundary conditions, are expressed in terms of the points and then
incorporated into the governing finite difference equations. In order to have faster
rate of convergence, the discretized form of Laplace equation in Eq. (9) can be
approximated by using SOR method, which may take the form
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unþ1
i, j ¼ uni, j þ ω=4 f xi; yj

� �
� 4uni, j � aiþ1, juniþ1, j � ai�1, junþ1

i�1, j � ai, jþ1uni, jþ1 � ai, j�1unþ1
i, j�1

� ih

(9)

where the value of relaxation factor ‘ω’ is obtained by hit and trial method in
order to have faster rate of convergence.

The SOR iteration procedure can be terminated by using the following conver-
gence criteria depending upon the convergence nature of the system being solved.
In order to have computational results with a minimum number of iterations,
absolute norm is used to decide the convergence criteria, which is given below:

e i; jð Þ ¼ ui, j � ui, j
�� �� < ε (10)

where ε is the order of convergence for each iteration and its value is taken as
ε ¼ 0:00001.

3. Problem formulation

In convective forced flow, the assumptions of negligible wall thickness and infinite
conductivity of the fin and wall may cause unrealistic predictions of heat transfer
characteristics, because of such ideal assumptions. In the present study, we take into
account finite wall thickness of the inner pipe wall for realistic results. Also, we
consider finite conductivity of the fin and wall in order to avoid the overestimates of
heat transfer characteristics. This require coupling of the heat conduction problem in
the wall-fin assembly and convective heat transfer problem in the fluid, and this
coupled system is called conjugate heat transfer problem. The constant heat flux
boundary condition is applied to the inner side of the inner pipe, and adiabatic thermal
condition is applied at the inner wall of the outer pipe. At each solid-fluid interface,
the heat flux is continuous. Moreover, temperature is assumed to be continuous.

In order to describe the conjugate problem mathematically, we need to describe
the momentum, energy and heat equations that are to be solved simultaneously.
The momentum and energy equations will be described in the prescribed sections
and will be transformed into their dimensionless forms by the means of dimension-
less variables. Similarly, heat equation is treated and solved for the transfer of heat
in the solid part of the domain. A cross-sectional view of finned double pipe (FDP)
is shown in Figure 1.

The velocity field is then independent of the temperature field. Geometrical
symmetries shown in Figure 1 permit the equations to be only solved in the region
a≤ r≤ b and 0≤ θ≤ αþ β shown in Figure 2.

3.1 Momentum, heat and energy equations

The governing momentum, heat and energy equations in dimensionless form
are given in the Eqs. (11)–(13), as below by using the transformations defined in
Syed [19].

This problem is constrained in the region where ri ≤ r≤ ro and 0≤ θ≤ αþ β
because of its geometrical symmetry as shown in Figure 2:

∂
2u ∗

∂R2 þ 1
R
∂u ∗

∂R
þ 1
R2

∂
2u ∗

∂θ2
¼ 4

c
(11)

where C ¼ � 1� R2
m þ 2R2

mlnRm
� �
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The momentum and energy equations will be described in the prescribed sections
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is shown in Figure 1.
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symmetries shown in Figure 1 permit the equations to be only solved in the region
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are given in the Eqs. (11)–(13), as below by using the transformations defined in
Syed [19].

This problem is constrained in the region where ri ≤ r≤ ro and 0≤ θ≤ αþ β
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Figure 1.
Cross section of the finned double pipe.

Figure 2.
Computational domain.
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transformed into dimensionless form:

∂
2τf

∂R2 þ
1
R
∂τf

∂R
þ 1
R2

∂
2τf

∂θ2
¼ u ∗

A ∗
c u

∗ (12)

∂
2τs

∂R2 þ
1
R
∂τs

∂R
þ 1
R2

∂
2τs

∂θ2
¼ 0 (13)

where u ∗ is the dimensionless mean velocity.
The boundary conditions are applied due to the viscosity of the fluid and sym-

metry offered by the domain shown in Figure 2. The boundary conditions in
dimensionless form may be written as:

a. No slip conditions at the solid boundaries:

Ið Þ u ∗ ¼ 0 at R ¼ R̂,0≤ θ≤ α

IIð Þ u ∗ ¼ 0 at θ ¼ α, R̂ ≤R≤R1

IIIð Þ u ∗ ¼ 0 at R ¼ R1, α≤ θ≤ αþ β

IVð Þ u ∗ ¼ 0 at R ¼ 1,0≤ θ≤ αþ β

b.Symmetry conditions:

Vð Þ ∂u ∗=∂θ ¼ 0 at θ ¼ 0, R̂ ≤R≤R1

VIð Þ ∂u ∗=∂θ ¼ 0 at θ ¼ αþ β, R1 ≤R≤ 1

Constant flux boundary condition at the inner surface of the inner pipe

τ ¼ 0 at R ¼ Rw,0≤ θ≤ α (14)

An adiabatic wall temperature condition at the inner surface of the outer pipe

∂τ

∂θ
¼ 0 at R ¼ 1,0≤ θ≤ αþ β (15)

Boundary conditions at the lines of symmetry

∂τs

∂θ
¼ 0 at θ ¼ 0, Rw ≤R≤Ro (16)

∂τf

∂θ
¼ 0 at θ ¼ 0, R̂ ≤R≤ 1 (17)

∂τs

∂θ
¼ 0 at θ ¼ αþ β, Rw ≤R≤R1 (18)

∂τf

∂θ
¼ 0 at θ ¼ αþ β, R̂ ≤R≤ 1 (19)

There are three interfaces where the solid and fluid mediums are contact. These
three interfaces are termed here as inner pipe, fin lateral surface and fin tip inter-
faces. These may be defined as

Inner pipe interface is at r ¼ ri&0≤ θ≤ α: (20)

Fin lateral surface interface is at θ ¼ α&ri ≤ r≤ r1 (21)

Fin tip interface is at r ¼ r1 and α≤ θ≤ αþ β: (22)
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∂θ
¼ 0 at R ¼ 1,0≤ θ≤ αþ β (15)
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There are three interfaces where the solid and fluid mediums are contact. These
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45

Finite Difference Solution of Conjugate Heat Transfer in Double Pipe with Trapezoidal Fins
DOI: http://dx.doi.org/10.5772/intechopen.82555



On these interfaces, we impose the conditions of continuity of temperature and
that of heat flux in order to maintain the energy balance. These interface conditions
are used to couple conduction (Eq. (13)) in the solid with the energy (Eq. (12)) in
the fluid. This forms the so-called conjugate problem.

The interface conditions can be expressed mathematically as given below by
using same dimensionless transformations.

Continuity of fluxes at the solid-fluid interfaces

∂τs

∂R
¼ 1

Ω
∂τf

∂R
at R ¼ R̂ and 0≤ θ≤ α (23)

∂τs
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¼ 1

Ω
∂τf

∂R
at R ¼ R1 and α≤ θ≤ αþ β (24)

∂τs

∂θ
¼ 1

Ω
∂τf

∂θ
at θ ¼ α and R̂ ≤R≤R1 (25)

where Ω ¼ λf

λs is the ratio of conductivities of fluid by solid.
Continuity of temperature at the solid-fluid interfaces

τs ¼ τf at R ¼ R̂ and 0≤ θ≤ α (26)

τs ¼ τf atR ¼ R1 and α≤ θ≤ αþ β (27)

Ts ¼ Tf at θ ¼ α and R̂ ≤R≤R1 (28)

3.2 Numerical solutions

For numerical domain, Poisson equation given in Eq. (1) takes the form

Uiþ1, j � 2Ui, j þUi�1, j

h2
þ 1
Ri

Uiþ1, j � Ui�1, j

2h
þ 1
R2
i

Uiþ1, j � 2Ui, j þ Ui�1, j

k2
¼ 4

C
(29)

After combining the coefficient, we get

1
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2Rih

� �
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h2
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 !
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2 Ui, jþ1 þ 1

R2
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(30)

For our simplicity, writing the coefficient in some standardized form

eUiþ1, j þ pUi, j þwUi�1, j þ nUi, jþ1 þ sUi, j�1 ¼ rhs

where e ¼ 1

h2
þ 1
2Rih

� �
, p ¼ �2

h2
� 2

R2
i k

2

 !
,

w ¼ 1
h2 �

1
2Rih

� �
,n ¼ 1

R2
i k

2 , s ¼
1

R2
i k

2 , rhs ¼
4
C

For energy and heat equations, similar scheme is developed.

3.3 Error analysis and validity of results

The numerical algorithm described in Chapter 2 has been used to determine the
numerical results in the present study. The iterative convergence and interpolation
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procedure need to be validated. The error criterion given as ε ¼ 0:00001 was used to
terminate the iterative procedures. The present results of the friction factor and
Nusselt number for copper have been compared with literature results for β = 3°.
They were verified by comparing them with results present in literature with same
geometrical parameters of heat exchanger. The present results differ with the litera-
ture results by less than 0.5%. However, in two exceptional cases, the results are not
up to the same level of accuracy. The improved results obtained at all grid levels are
of comparable accuracy. The comparison given in Table 1 confirms the validity of
numerical algorithm. This difference between friction factor and Nusselt number
gives the overview; the percentage difference greater than ‘0’ depicts the
overestimation in present results, and difference less than ‘0’ shows the
underestimated values of the present study. Since the difference in the values pro-
vided in Table 1 is negligible, this gives the validity of results in the present study.

4. Result and discussion

4.1 Local results

4.1.1 Flow behaviour

In this section, velocity contours are given with respect to different geometrical
variations. Figure 3a and b show the velocity contours for R̂ ¼ 0:5, β ¼ 2o, H* = 0.6.
The effect of the number of fins is observed by firstly taking M = 6 and thenM = 18.

While observing the contours, it is clear that between two consecutive fins a
region of high velocity exists in the middle of annulus.

4.1.1.1 Velocity contours

Figure 3a shows the velocity contours, ForM=6, the annulus region is filled with
closed loops in the middle of the region, while near the inner wall of outer pipe
circular loops are formed. For this fin height, two dimensional effects are more
towards the outer pipe.

Figure 3b shows the velocity contours forM = 18, for H* = 0.6. For the increased
number of fins, the middle of region is surrounded by annular loops, which depict

Geometrical
parameters

Comparison of friction factor Comparison of Nusselt number

M H* fRe fRe Age change (%) Nu(Old) Nu(Cu) Age change (%)

6 0.2 21.117 21.1351 0.0857 4.5189 4.5212 0.0508

0.4 20.401 20.4185 0.0857 4.1846 4.1881 0.0836

0.6 18.848 18.8592 0.0594 3.9827 3.9873 0.1154

0.8 15.783 15.7868 0.0240 3.766 3.3789 �10.278

12 0.2 19.125 19.1580 0.1725 3.8433 3.4873 �9.262

0.4 19.358 19.3991 0.2123 3.1644 3.1705 0.1928

0.6 20.027 20.0653 0.1912 3.9256 3.9421 0.4203

0.8 17.145 17.1592 0.0828 4.2311 4.2401 0.2127

Table 1.
Validity of present results of momentum equation and energy equation for β ¼ 3°, R̂ ¼ 0.5.
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For energy and heat equations, similar scheme is developed.

3.3 Error analysis and validity of results

The numerical algorithm described in Chapter 2 has been used to determine the
numerical results in the present study. The iterative convergence and interpolation
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gives the overview; the percentage difference greater than ‘0’ depicts the
overestimation in present results, and difference less than ‘0’ shows the
underestimated values of the present study. Since the difference in the values pro-
vided in Table 1 is negligible, this gives the validity of results in the present study.
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that the region of high velocity starts to develop at the middle of annulus. Also,
when a number of fins are increased, then closed loop will break into annular loops.

We must have to notice that increase in the number of fins will also give rise to
the value of friction factor, which may slow down the fluid motion in the pipe.

4.1.2 Heat transfer analysis

The results of energy and heat equations are combined together for analytical
study of conjugate heat transfer, while fin and wall are offering finite heat conduc-
tion because of material used in them.

Figure 3.
(a) Velocity contours for R̂ = 0.5, H* = 0.8, M = 6. (b) Velocity contours for R̂ = 0.5, H* = 0.8, M = 6.
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The same geometrical parameters and grid points are taken as that for momen-
tum equation. A comparative study on behaviour of heat transfer is shown in
Figure 4a and b. While using copper for fin and wall geometry, it should be noted
that the isotherms corresponding to the zero level represent the geometry. Because
of the definition of the dimensionless temperature used, the higher the isotherm
level depicts, the lower the value of local temperature. The isotherms corresponding
to value 1 have local fluid temperature equal to mean fluid temperature. Those with
values lower than 1 have the local temperature greater than the mean temperature,
and while greater than 1 indicate that the local temperature is lesser than the meant
temperature. From these figures, it is clear that the region of high-temperature
gradient near the inner pipe wall and near fin surface shows the high rate of
convection. In order to comprise with interfaces and transfer of heat between fluid
and solid, continuity of fluxes and of temperature is considered.

Figure 4.
(a) Isotherms (copper) for R̂ = 0.5, H* = 0.6, M = 6. (b) Isotherms (copper) for R̂ = 0.5, H* = 0.6, M = 18.
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4.1.2.1 Isotherms

Figure 4a shows the isotherms for M = 6, R̂ = 0.5, H* = 0.6, which shows that a
region of higher temperature starts to develop in the middle of annulus and signif-
icant change occurs in temperature gradient. Whereas, Figure 4b shows the iso-
therms, when M = 18, the temperature gradient is higher in the entire cross section,
and higher temperature region appears near the outer wall of the inner pipe, while
lower near the inner wall of the outer pipe.

Apparently, in these isotherms conduction in wall and fin assembly is not being
shown, but if we increase the number of contours, the temperature gradient is
shown in the solid part of the domain too. This is because of the very high-
temperature gradient in fluid and because of convection and conduction.

The trend of isotherms is more understandable corresponding to the velocity
contours. From these figures, it is observed that the region of high-velocity gradi-
ents near the heated surfaces of the inner pipe and fin also has high-temperature
gradients indicating the high rate of convection.

There is an equivalent transfer of heat in fin and fluid on the interfaces; inter-
faces get smoother because of the continuity of fluxes. But in case of temperature
difference, it rises more rapidly in fluid than the solid (wall and fin).

4.2 Overall results

Figure 5a shows the plots of different values of Nusselt number of copper
against the number of fins H*∈ f0.2, 0.4, 0.6, 0.8} taking fixed value of ratio of
radii R̂ = 0.5. For fin height M = 6, the value of Nusselt number decreases as we
increase fin height. The plot of Nusselt number against these values shows mono-
tonic decreasing behaviour. However, the value of Nu(Cu) remains higher for the
H* = 0.2 than the fin height H* = 0.4 and others.

The plots of Nusselt numbers for M = 6 and M = 18 clearly depict that the
behaviour of Nusselt number significantly differs in these two graphs. An optimal
value of Nusselt number is observed for some particular value of H* = 0.2 used.
Thus, for M = 6, shorter fin gives better rate of heat conduction.

While taking the higher number of fins into account, forM = 18, Nusselt number
gradually decreases when fin height is increased from H* = 0.2 to H* = 0.4. Its shows
a parabolic behaviour. After reaching its lowest value, it starts increasing and attains
its optimal value at the longest fin.

It can be concluded that the value of Nusselt number for R̂ = 0.5 at H* = 0.6 and
H* = 0.8 is the best choice when M = 9 and M = 18 are taken, respectively.

Figure 5.
(a) H*-Nu(Cu), for R̂ = 0.5. (b) M-Nu(Cu), for R̂ = 0.7.
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Figure 5b shows the plots of different values of Nusslet number of copper
against number of fins H*∈ f0.2, 0.4, 0.6, 0.8} taking fixed value of ratio of radii
R̂ = 0.7.

For R̂ = 0.7, M = 6, heat transfer coefficient shows monotonic decreasing
behaviour as we increase fin height. For H* = 0.2, the value is Nusselt number is
highest.

While for the increased number of fins, M = 18, Nusselt number shows alternat-
ing behaviour for different values of fin height. It firstly decreases and then it starts
increasing. For H* = 0.6, it gives its largest value.

From the above two comparisons, we can deduce that for the less number of
fins, if we increase the fin height, it reduces the increase in heat transfer. While for
more number of fins, longer fins give more optimal results.

5. Conclusion

The results presented in previous sections can be concluded as follows:

• A comparison of present results with the literature results gives the validity
proof of the numerical study.

• The number of fin and fin heights are most effective geometrical parameters.

• The influences of geometrical parameters are dependent on each other.

• The location of the regions of high velocities is dependent on geometrical
parameters.

• Large velocity gradients exist near the fin tip and outer pipe inner surfaces.

• The value of R̂ affects the heat transfer rate significantly, for larger fins and for
higher number of fins.

• The value of Nusselt number at M = 18, R̂ ¼ 0:5, gives the optimal value for
H* = 0.8.

• For R̂ ¼ 0:7, the value of Nu(Cu) goes on increasing with higher values of M,
at H* = 0.8.
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Chapter 4

Control Analysis of
Building-Integrated Photovoltaic
System
Marwa Ben Saïd-Romdhane, Sondes Skander-Mustapha
and Ilhem Slama-Belkhodja

Abstract

In this chapter, a photovoltaic system integrated into the building is
investigated. The studied structure includes also a battery energy storage system.
The overall system is connected to a four-wire AC bus, with the possibility to supply
single-phase and three-phase loads. Each equipment is interfaced with a dedicated
power converter. This chapter examines the technical operation of all structure
components and gives a detailed mathematical study of the DC/AC power converter
control in case of two modes, namely, grid connected mode and standalone mode.
The investigated control is based on resonant controller. The resonant controller
parameters tuning, which is based on the generalized stability margin criterion, is
detailed in this chapter. To prove the performance of the proposed control
algorithm, several simulation tests developed under PSIM software were performed
and then validated by experimental results.

Keywords: photovoltaic systems, battery energy storage system,
building microgrid, DC/AC power converter control, standalone mode,
grid connected mode

1. Introduction

Nowadays, rooftop photovoltaic systems (PV) and building-integrated photo-
voltaic (BIPV) systems are becoming well known and commonly used. The growth
of these installations is due to their environmental advantages in addition to their
social and economic benefits. Indeed, since building electricity consumption
accounts for a large proportion of a country’s overall consumption, and tends to
increase further for the coming years, local generation offers an ideal solution [1–4].

Regarding the obstruction of PV systems’ fluctuating aspect, it can be derived in
various ways. The integration of battery energy storage system (BESS) is considered
as efficient and complementation solution, mainly for standalone microgrids [5].
Urban photovoltaic systems are usually connected to the distribution network,
but the operation in standalone is also possible [6, 7].

In order to ameliorate the PV system efficiency, an adequate control strategy
should be introduced. In the literature, several control techniques are developed:
integral proportional regulators, resonant correctors, hysteresis correctors, sliding
mode controls, predictive controls, and so on [8–11].
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This chapter investigates the operation of PV system devoted to building
application. It gives an overview of the control of all integrated power converters
and then explains in details the control of the DC/AC power converter in both
operation modes, namely, standalone mode and grid connected mode. For the grid
connected mode, the control must ensure that the AC bus voltage remains within
the acceptable range, and for standalone mode the DC/AC converter is controlled to
inject generated PV power into the AC-link.

This chapter first outlines overall system description, followed by a review of
each power converter control. A detailed mathematical study is dedicated to the
DC/AC converter control in grid connected and autonomous modes. Simulation
results and experimental validation are subsequently presented.

2. System description

The building solar system structure is given in Figure 1. It is composed of a PV
panels in parallel with a battery energy storage system which are linked to a DC
bus, a DC/AC power converter, and an LCL filter interfacing between
DC and AC bus. Single- and three-phase linear and nonlinear loads are connected
to the AC bus.

The linear building loads are modeled by a resistive load, and the nonlinear ones
are modeled by a rectifier connected to a capacitive filter at the DC side. This model
is conformed to many building loads, similar to televisions, personal computers,
and fluorescent lamp ballast [12]. In case of three-phase balanced loads, the neutral
current is zero, but since several building loads are single phase and include elec-
tronic converters, their waves include harmonics which induce a nonzero neutral
current. Regarding neutral wire, the more common considered structures are
presented in Figure 2. The first structure is based on DC-link neutral point where
the neutral wire is generated via two identical capacitors (Figure 2a). In the second
structure, the neutral wire is generated through a Delta/Star grounded transformer
as shown in Figure 2b [13]. As to the third configuration, it is based on four-leg

Figure 1.
Photovoltaic system including BESS.
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power converter (Figure 2c) [14–16]. In this chapter the structure with transformer
is adopted.

The PV system presents two operating modes according to the grid state:

• Grid connected mode: this mode is activated when the grid is available. In this
case, the power surplus is injected into the grid, and if the consumption is
superior to local generation, the power flow will be directed from the grid to
loads and eventually to charge batteries according to their stat of charge (SOC).

• Standalone mode: this mode is activated when the grid is absent. In this case,
building loads are supplied first by the PV system then if necessary by the
BESS. In case of power deficit, the shedding of non-priority loads is carried out.

3. Power converter control

An overview of the control of each converter presented in Figure 2b is
subsequently presented.

3.1 BESS DC/DC converter control

Batteries are frequently integrated to PV systems thanks to their special energy
characteristics. Indeed, batteries have a high energy density, which ensure long
time of stable operation. The charging time and number of cycles depend on the
adopted technology.

The battery power flow is bidirectional. In discharge mode, the power is
supplied by battery, and in charging mode, the power is absorbed by battery. For
both modes, the state of charge limits should be respected to not affect the battery
lifetime.

Figure 2.
Different structures that integrate the fourth wire.
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The BESS incorporates a DC/DC power converter that manages battery operation
modes according to the appropriate control. A cascade control is adopted, the inner
loop regulates the battery current, and the external one regulates the DC-link voltage.

The switches C1 and C2 (Figure 3) are controlled individually. In case of battery
charging, C1 is controlled and in case of battery discharging, C2 is controlled.

3.2 PV DC/DC converter control

The structure of the two-stage power conversion is adopted for the PV system;
this configuration is commonly privileged in the majority of the PV systems. The
difference with the conventional structure is that the Vdc regulation is ensured by
the BESS. As to the control of the DC/DC converter, it aims to ensure Maximum
Power Point Tracking (MPPT) (which corresponds to the peak point of the power
versus the voltage curve). In the case of this study, the Perturbation and Observa-
tion (P&O) algorithm is applied. The inputs of the P&O algorithm are the solar
radiation G and the temperature T as shown in Figure 4.

3.3 DC/AC converter control

3.3.1 Modeling of the DC/AC converter

The output of the DC/AC and the LCL filter are modeled in single phase as
shown in Figure 5. According to this figure, the obtained results are expressed as
follows:

Figure 3.
Control strategy of BESS.
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Vc ¼ Vi � L1IL1s (1)

Ic ¼ IL1 � IL2 (2)

Vc ¼ 1
C f s

Ic (3)

Based on Eq. (3), the transfer function between the current IL1 and the voltage
(Vi � Vc) is given by the following equation:

IL1
Vi � Vc

¼ 1
L1s

(4)

According to Eqs. (2) and (3), the transfer function between the voltage Vc and
the current (IL1 � IL2) is expressed as follows:

Vc

IL1 � IL2
¼ 1

C f s
(5)

Figure 5.
LCL filter single-phase modeling.

Figure 4.
Control of the PV DC/DC converter.
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The transfer functions given by Eqs. (4) and (5) allow the deduction of the
system block diagram given by Figure 6.

3.3.2 Control of the DC/AC converter

3.3.2.1 Standalone mode

In standalone mode, the DC/AC converter control ensures that the LCL filter
capacitor voltages are equal to their references. In that case, the converter control
includes two cascade loops as shown in Figure 7. The external loop is based on a
resonant controller RC1 used to regulate the voltage across the LCL filter capacitor.
This loop generates at its output the reference current Ic-ref. This current will be
added to the current I2 to provide the inner loop reference current I1-ref. The inner
loop is based on a resonant controller, and in this work, it simplified to a simple gain
G. In the following, the tuning of the parameters of the voltage external loop and
the current inner loop will be presented and detailed.

Figure 6.
System filter block diagram.

Figure 7.
Control strategy of DC/AC converter in the case of standalone mode.
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3.3.2.1.1 Tuning of the external loop resonant controller RC1

For simplification reasons, it is assumed that the internal current loop is faster
than the external voltage loop. Thus, it can be approximated equal to the unity by
associating it with the PWM function. The following block diagram is then obtained
for the determination of the external voltage loop resonant controller parameters
as presented in Figure 8.

According to Figure 4, the open and closed-loop system transfer functions are
expressed by Eqs. (7) and (8), respectively. Note that the transfer function of the
resonant controller RC1 is given by Eq. (6):

FCR1 sð Þ ¼ c2cs2 þ c1csþ c0c
s2 þ ω2

0
(6)

FOL‐Vc sð Þ ¼ Vc

Vc‐ref � Vc
¼ c2cs2 þ c1csþ c0c

C f s3 þ C fω2
0s

(7)

FCL‐Vc sð Þ ¼ Vc

Vc‐ref
¼ c2cs2 þ c1csþ c0c

C f s3 þ c2cs2 þ C fω2
0 þ c1c

� �
sþ c0c

(8)

The method chosen for the resonant controller parameters tuning is based on the
generalized stability margin criterion [17, 18]. The reference polynomial PGSMc

defined by this criterion is expressed as follows:

PGSMc sð Þ ¼ λc sþ rcð Þ sþ rc þ jωicð Þ sþ rc � jωicð Þ (9)

where λc, rc, and ωic are the factorization coefficient, the abscissa, and the
ordinate in the complex plane. On the other hand, the system characteristic
polynomial is deduced from Eq. (8), and it is expressed as follows:

Pc sð Þ ¼ C f s3 þ c2cs2 þ C fω
2
0 þ c1c

� �
sþ c0c (10)

According to the generalized stability margin criterion, the resonant controller
parameters are tuned by identifying the characteristic polynomial of the closed-loop
system Pc(s) with the reference polynomial PGSM(s) as shown in Eq. (11):

PGSMc sð Þ ¼ Pc sð Þ (11)

The identification of PGSM(s) and Pc(s) allows the deduction of the current inner
loop resonant controller parameters as shown in the following equation:

c2c ¼ 3rcλc
c1c ¼ λc 3r2c þ ω2

ic

� �� C fω
2
0

c0c ¼ λc r3c þ rcω2
ic

� �

λc ¼ C f

8>>><
>>>:

(12)

Figure 8.
Block diagram of the external voltage loop.
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We choose rc equal to 200 and ωic equal to ωg. For Cf equal to 30 μF, the resonant
controller RC1 parameters are given by the following equation:

c2c ¼ 0:018

c1c ¼ 3:6

c0c ¼ 832:17

8><
>:

(13)

For the obtained resonant controller parameters, Figure 9 shows the pole maps
of FCL-Vc(s). As shown in this figure, the system is stable and the expected stability
margin rc is obtained. Figure 10 shows the Bode diagram of FOL-Vc(s). This figure
shows that the obtained gain margins Gm and Pm are equal to infinity and 72.8°,
respectively. Figure 11 presents the gain of FCL-Vc(s) and shows that the bandwidth
of the external voltage loop is equal to 24 Hz. It should be noted here that the larger
is the bandwidth, the faster is the system.

3.3.2.1.2 Tuning of the inner loop gain G

According to Figure 6, the block diagram of the current inner loop is given by
Figure 12.

According to Figure 12, the open and closed-loop transfer functions are given by
Eqs. (14) and (15), respectively:

FOL‐IL1 sð Þ ¼ IL1 sð Þ
IL1‐ref sð Þ � IL1 sð Þ ¼

G
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(14)

FCL‐IL1 sð Þ ¼ IL1
IL1‐ref

¼ 1
L
G sþ 1

¼ 1
1þ τis

where τi ¼ L1

G
(15)

The inner current loop must ensure a response time much smaller than the
external voltage loop. To this purpose, the gain G is selected so that the real part of
the inverse of the closed-loop time constant τi is greater than the stability margin
chosen for the tuning of the voltage external loop (rc = 200) as shown in Eq. (16).
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We choose rc equal to 200 and ωic equal to ωg. For Cf equal to 30 μF, the resonant
controller RC1 parameters are given by the following equation:

c2c ¼ 0:018

c1c ¼ 3:6

c0c ¼ 832:17

8><
>:
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1
τi

>> 100 ) G
L1

>> 100 ) G>>0:1 (16)

We select G equal to 10. For this value, Figures 13 and 14 present the pole maps
of FCL-IL(s) and the Bode diagram of FOL-IL(s), respectively. These figures show that

Figure 13.
Pole map of FCL-IL(s).

Figure 14.
Bode diagram of FOL-IL(s).
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the system is stable and the obtained Gm is equal to infinity and the Pm is equal to
90.3°. Figure 15 presents the gain of FCL-IL(s) and shows that the bandwidth of the
inner current loop is equal to 785 Hz. This value is much higher than the bandwidth
of the voltage external loop and shows that the current inner loop is much faster
than the voltage external loop.

Figure 15.
Bode diagram of FCL-IL(s).

Figure 16.
Control strategy of DC/AC converter in case of grid connected mode.
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3.3.2.2 Grid connected mode

In grid connection operation mode, the DC/AC converter controls power
exchange with grid. In this mode, only the current loop is controlled. This loop is
based on a resonant controller as shown in Figure 16.

The simplified block diagram of the current loop is given by Figure 17.
Based on Figure 17, the open and closed-loop transfer functions are given by

Eqs. (18) and (19), respectively. The transfer function of the resonant controller
RC2 is given by Eq. (17):

FCR2 sð Þ ¼ i2is2 þ i1isþ i0i
s2 þ ω2

0
(17)

FOL‐i sð Þ ¼ IL1
IL1‐ref � IL1

¼ i2is2 þ i1isþ i0iω2
0

L1s3 þ L1ω2
0s

(18)

FCL‐i sð Þ ¼ IL1
IL1‐ref

¼ i2is2 þ i1isþ i0i
L1s3 þ i2is2 þ L1ω2

0 þ i1i1
� �

sþ i0i1
(19)

For the tuning of the internal loop resonant controller, the generalized stability
margin criterion is considered. The system characteristic polynomial Pi(s) is
deduced from Eq. (19), and it is expressed as follows:

Figure 17.
Block diagram of the current loop.

Figure 18.
Pole map of FCL-i(s).
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Pi sð Þ ¼ L1s3 þ i2is2 þ L1ω
2
0 þ i1i

� �
sþ i0i (20)

The identification between the system characteristic polynomial Pi(s) and the
generalized stability margin criterion reference polynomial PGSMi(s) [Eq. (21)] and
the resonant controller RC2 parameters are deduced as in Eq. (22):

PGSMi sð Þ ¼ λi sþ rið Þ sþ ri þ jωiið Þ sþ ri � jωiið Þ (21)

Figure 19.
Bode diagram of FOL-i(s).

Figure 20.
Bode diagram of FCL-i(s).
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i2i ¼ 3riλi
i1i ¼ λi 3r2i þ ω2

ii

� �� L1ω2
0

i0i ¼ λi r3i þ riω2
ii

� �

λi ¼ L1

8>>><
>>>:

(22)

We choose ri equal to 100 and ωii equal to ωg. For Li equal to 2 mH, the resonant
controller RC2 parameters are given by the following equation:

i2i ¼ 0:5

i1i ¼ 60

i0i ¼ 11870

8><
>:

(23)

For the obtained resonant controller parameters, Figure 18 shows the pole map
of FCL-i(s). Based on this figure, the stability margin ri is equal to the desired one.
Figure 19 gives the bode diagram of FOL-i(s). As mentioned on this figure, the gain
margins Gm and Pm are equal to infinity and 79.5°, respectively. Figure 20 presents
the gain of FCL-i(s) and shows that the bandwidth of the internal current loop is
equal to 40.8 Hz.

4. Simulation results

Several simulation tests developed under PSIM software were done. Figure 21
presents the LCL filter capacitor voltage in islanded mode for different values of
voltage reference Vc-ref-abc. As shown in this figure, the obtained voltages are equal
to their references. Figure 22 presents the power injected into the AC bus during
24 hours; this power corresponds to the PV generation. In this case all the batteries
are considered to be charged to their SOCmax. The deduced reference current is
presented in Figure 23.

Figure 21.
LCL filter capacitor voltage in islanded mode for different values of voltage reference Vc-ref-abc:
(a) Vc-ref-abc = 325 V, (b) Vc-ref-abc = 200 V, (c) Vc-ref-abc = 100 V, and (d) Vc-ref-abc = 30 V.
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5. Experimental results

Figure 24 shows the experimental test bench. The used AC/DC converter is
from SEMIKRON. Currents and voltages are censored via LEM LV25 and LEM
55LP, respectively, as given in Figure 24. The control algorithm is implemented on
the STM32F4 Discovery. The acquisition time is set to 100 μs. Figure 25 presents
the LCL filter capacitor voltage in islanded mode for different values of voltage
reference Vc-ref-abc. As shown in this figure, the obtained voltages are equal to their
references.

6. Conclusion

In this chapter, the control of power converters integrated in building solar
system is investigated. The studied system is composed of a PV panel in parallel
with a battery energy storage system which are linked to a DC bus, a DC/AC power
converter, and an LCL filter interfacing between DC and AC bus. Single- and
three-phase linear and nonlinear loads are connected to a four-wire AC bus.

Figure 23.
Reference current in case of connected mode.

Figure 22.
Power injected into AC bus in case of connected mode.
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� �
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8>>><
>>>:
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references.
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In this chapter, the control of power converters integrated in building solar
system is investigated. The studied system is composed of a PV panel in parallel
with a battery energy storage system which are linked to a DC bus, a DC/AC power
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Power injected into AC bus in case of connected mode.
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Figure 25.
Experimental results for LCL filter capacitor voltage in islanded mode for different values of voltage reference
Vc-ref-abc: (a) Vc-ref-abc = 325 V, (b) Vc-ref-abc = 200 V, (c) Vc-ref-abc = 100 V, and (d) Vc-ref-abc = 30 V.

Figure 24.
Experimental test bench.
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The neutral wire is generated through a Delta/Star grounded transformer. An over-
view of the control of each power converter is presented. This chapter focuses on
the control of the DC/AC power converter. The resonant controller is adopted. A set
of simulation and experimental tests were done to show the efficiency of the studied
control algorithm.
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Chapter 5

Computer Simulation and the 
Practice of Oral Medicine and 
Radiology
Saman Ishrat, Akhilanand Chaurasia  
and Mohammad Husain Khan

Abstract

The practice of Oral Medicine and Radiology has long been considered an art form. 
Collecting and collimating the enormous amount of information each patient brings 
has always tested the best of our abilities as diagnosticians. However, as the tide of 
smartphones, cheaper data access, and automation rises, it threatens to wash away 
all that we have held sacrosanct about conventional clinical practices. In this tussle 
between what is traditional and what is tantalizing, it is time to question, as diagnosti-
cians, how much can we accede to the invasion of algorithms. How does computer 
simulation affect the practice of diagnosis in the field of Oral Medicine and Radiology?

Keywords: computer simulation, artificial intelligence, diagnosis

1. Introduction

We have come a long way since the time our ancestors rolled off the first round 
piece of wood and invented a wheel. Over the years that tiny stroke of luck has rolled 
on and become a vastly sophisticated industry that demands state-of-the-art technol-
ogy, and even political and social changes to keep humanity on the move. Today, devel-
opments in one field set up ripples that affect the development of other fields. Like 
seismic waves, the repercussions of that change are felt all over. So, in a time defined 
largely by software, it is no surprise that technology today is the next second away and 
about to disrupt the practice of our profession. As with any change, it remains to be 
seen whether the growing dependence on computers will be for better or for worse.

2. Defining the diagnosis

According to Miller [1], diagnosis is way more than connecting the name of 
a disease or syndrome with the findings for a patient. It is a recurring process in 
which the details of a patient such as history, symptoms, signs and how the disease 
process has unfolded over time, and eventually how that process affects the patient’s 
life, count [1]. The diagnosis of an individual involves a series of information which 
includes history, symptoms, physical exams, laboratory tests and clinical image 
interpretations which potentially coincides with the etiology of the patient’s illness. 
The diagnosis of some of the diseases may involve the response of an individual to 
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“therapeutic intervention” and the response is studied to show characteristics of a 
particular disease [2]. For example, the dentist might prescribe antibiotic for 1 week 
to a patient with decayed tooth and tooth pain. The antibiotic resolves the infec-
tion and pain which shows that the patient had secondary infection going on in the 
carious tooth. The ultimate feature in the diagnosis of disease is to see if the planned 
therapy is working or if the disease is getting better or getting worse over a period 
of time, and have there been considerable side effects to the therapy [2]. Evaluation 
of the diagnoses is not only limited to living individuals. Post-mortem and autopsy 
examinations have proved to be a great tool in designing the diagnostic parameters. 
Artificial intelligence and computer learning have cashed upon the complex series 
of diagnosis in these days to assist humans in coming up with a module for diag-
nostic processes. In the current scenario, the possibility that artificial intelligence 
(abbreviated henceforth as AI) and computer aided systems may supersede humans 
in the diagnostic process, is an impending reality [1].

3. Factors influencing the diagnosis

The diagnostic process is considered to be a complex transition process which 
begins with the illness of the patient and ends into a result which serves as a data for 
reference that can be categorized. The diagnoses start from the doctor asking the 
patient about signs and symptoms of a disease/illness. A doctor’s treatment specific 
to a patient’s symptoms and its outcome is important for both the doctor and the 
patient to see the efficacy of the treatment provided.

The diagnoses are an amalgamation of various processes that broadly depends 
on three main factors:

3.1 Doctor’s knowledge

“The eye sees all, but the mind shows us what we want to see.”
      -Shakespeare.

The doctor’s knowledge serves as data set for the human brain to process the 
likes and similarities from the previous acquired data. This helps in differentiating 
the two processes. And thus helps to form an opinion regarding a process. This is 
really critical for diagnosis.

For example, while diagnosing a Central Giant Cell Granuloma of the jaw, the 
doctor must also be aware of the differential diagnoses, and their appearance to rule 
those out.

3.2 Doctor’s experience

The experience of a doctor plays an important role in the diagnosis of a disease. 
These experiences contribute in enriching the quality of the data and help in refin-
ing the data set and recreating subsets in the data. It is here that heuristics step into 
the picture. These subsets help in simplifying the data and make it comprehensible. 
The experiences can also be governed by the amount of different cases seen by the 
doctor, which in turn is greatly influenced by the geo-fencing of the same.

For example, the diseases that are predominant in some areas of the world, 
like Lyme’s disease in the North Eastern American region, the physicians practic-
ing there will have more experience of those cases and will form a more accurate 
diagnosis in comparison to the physicians in any other part of the world. Basically 
the age old dictum at work here is that—if you hear hooves think horses, not zebras.
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3.3 Influencing factors

Human brain is a complex structure which plays a pivotal role in making a 
diagnosis. According to Charles Sherigton (c. 1920), some of the deepest mysteries 
facing science in the twenty-first century concern the higher functions of the cen-
tral nervous system: perception, memory, attention, learning, language, emotion, 
personality, social interaction, decision-making, motor control, and conscious-
ness. Nearly all psychiatric and many neurological disorders are characterized by a 
dysfunction in the neural systems that mediate these neural processes. In fact, all 
aspects of human behavior and hence human society are controlled by the human 
brain: economics and decision making, moral reasoning and law, arts and esthetics, 
social and global conflict, politics and political decision making, marketing and 
preference, etc. These functions are greatly altered by the level of stress and the 
mood that the person has. Thus, a diagnosis is also greatly influenced by the doctor’s 
state of mind, and stress level (Figure 1).

4.  Computer simulation: understanding AI (artificial intelligence) in 
computer-aided diagnosis (CAD)

AI and how to use it in CAD has become one of the hottest research topics 
in medical radiology both in imaging and diagnostics. Although, research in 
CAD is pretty much established and growing but most radiologists do not as yet, 
use CAD in their daily routine. The basics of AI and how to use it in CAD for 
detection and for quantification is defined by the various requirements such as 
performance, regulatory compliance, reading time reduction and cost efficiency 
are even today not as sophisticated/dependable as the human mind. Overall 
the performance of the CAD systems is still a major bottleneck for adaption. 
However, the usual machine learning and AI strategy can be used to improve 
CAD by using past and public databases for training and validation. This will 
create cognitive AI that will help tackle corner cases in CAD and eventually create 
superior algorithms [3].

Yet all said and done, there is a global consensus that the advent of computer 
simulation is a crisis in the making for radiology. Not only has the number of 
imaging studies gone up, but also the number of images per study has drastically 
increased [4]. Radiology is becoming a victim of its own success, i.e., the dispar-
ity and the gap between the overall workload and the number of radiologists 
has increased dramatically which has resulted in a cost increase. Therefore, new 

Figure 1. 
Diagnostic paradigm.
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solutions are needed to handle the spurt of data and workload. Computer simula-
tion may be the answer to this evident problem. The key is to use AI and CAD to 
quicken the diagnostic process and minimize diagnostic errors.

Although, CAD is far much more than just a detection tool but CAD is now 
widely used as a general term for detection that includes aided extraction of quan-
titative data from radiology images. A very interesting fact about the algorithm 
development is that detection and quantification both use the same underlying 
principle for algorithm creation.

The overall growth in computer simulation or CAD is driven by Moore’s  
law, i.e., the computational power doubles every 2 years [5]. This has been true  
for the last 5 decades and should continue for at least another decade. Futurists like 
Kurzweil [6] talk about singularity of AI, i.e., within a decade, a $1000 computer 
will have the computational strength of a human brain and eventually the power 
of hundreds of human brains by 2040. The availability of cheaper and faster 
hardware has allowed for quicker computations and bigger and cleaner databases 
for algorithm training. All this has led to quicker and better CAD performance and 
results.

5. History of computer simulation and artificial intelligence (AI)

In the 1980s, the Kurt Rossmann Laboratories for Radiologic Image Research in 
the Department of Radiology at the University of Chicago first started the system-
atic research in developing and designing the CAD systems for the diagnosis of 
the diseases. (Computer-Aided Diagnosis in Medical Imaging: Historical Review, 
Current Status and Future Potential). Before this there was a significant amount of 
studies and researches going on in the picture archiving and communication system 
(PACS) [7–25].

As a matter of fact, the PACS were useful in storing the pictures and reducing 
the cost for the storage to the hospitals but at that time, it was not thought that the 
stored pictures, nowadays referred to the data, might be of any clinical significance 
to the doctors or the clinicians? The storage was one of the fringe benefits of PACS,  
but the major value addition was the formation of a sample set or data. The 
researchers started thinking how this data could help the doctors in diagnostic 
process. This led to the theory of computer-aided diagnosis (CAD) and artificial 
intelligence (AI) led diagnosis [26].

6. Rise of artificial intelligence (AI) in healthcare: transformative future

The sophistication of artificial intelligence (AI) in doing what humans do has 
increased by leaps and bounds in the last one decade. In 2019, AI is a fact today and 
we have seen a shift in the conversation. We are no longer answering the question—
what is AI? Today, the primary concern is answering the question—how can we 
utilize the plethora of information to replicate the human actions in a more efficient 
and faster way? No other sector is answering this question better than Healthcare. 
Artificial intelligence and computer simulations are no longer a novelty and if 
things progress the way they are, these may soon be the norm.

The use cases for AI in healthcare are vast and ever evolving. Just like AI has 
become a seminal part of our daily lives, AI is also transforming our healthcare eco-
system. When AI is applied strategically to this ecosystem, it not only has the ability 
to deeply impact the way healthcare is delivered but also how that the healthcare 
impacts the overall cost structure.
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7. Innovation curve

Today, AI has pushed innovation in healthcare to the next level by combining 
the training data sets with cognitive computing to draw new insights and correla-
tions. This has been possible because of predictive capabilities, complex algorithms 
and analytics to deliver real time data that is clinically relevant, i.e., transforming 
healthcare in new ways.

First and foremost, is to help people stay healthy and eventually reducing 
the frequency of patient and doctor interaction. The new health apps encour-
age people to live a healthy lifestyle. AI equips healthcare professionals to better 
understand everyday health patterns and the needs of their patients. The increased 
use of consumer hardware technologies such as Apple Watch and other medical 
devices combined with AI is used in pilot projects such as detecting early-stage 
heart disease. Thus, helping healthcare professionals to better detect and monitor 
underlying life-threatening events at early, more treatable stages. With more and 
more money being invested in projects like Apple Health and Common Health of 
Android platform, the upheavals in how we practice as diagnosticians, are going to 
be tectonic.

Recently, life threatening diseases such as cancer are being detected more accu-
rately by AI in their early stages. Based on the study done by American Cancer Society, 
a large proportion of mammograms eventually result in false positives, i.e., 1 in 2 
healthy women are diagnosed with cancer when they have none. Using AI in review 
and translation process of mammograms may help to avoid unnecessary biopsies.

8.  Simulation and requirements for artificial intelligence (AI)-aided 
systems

AI has to meet several demands to be used widely in clinical practice. The major 
four requirements that we think, are of paramount importance for AI guiding 
computer simulations, to be helpful in the field of Oral Radiology, are:

a. AI should improve radiologists’ performance—which means that efficacy and the 
accuracy of detecting the aberrancy in the scan should be picked up by the AI 
system [3].

b. AI should save time—it should save the radiologist in detecting and diagnosing 
a disease. One of the important factors which adds efficacy of a system for any 
machine is that it reduces time. If an AI system is not decreasing the time for 
the diagnosis process then it is not helping the radiologist at its 100% [3].

c. AI must be seamlessly integrated into the workflow—The AI system should be a 
part of the diagnosis process without being a process in itself. It should make 
the diagnosis process easy and viable to the doctors [3].

d. AI should not impose liability concerns—The AI system used should be HIPAA 
compliant system and there should have a foolproof close system to prevent 
any data breach [3].

Most AI systems, and therefore computer simulations used in diagnostics 
that are based on these, today do not meet all requirements, and this is why most 
applications described in the rapidly growing body of scientific literature on CAD 
are not widely used in clinical practice.
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9. Artificial intelligence (AI) for lesion detection

Presently, the existing CAD systems are pushed as complementary tools 
for radiologists to further evaluate certain images that need attention. CADs 
have a limitation though, i.e., it does not detect all potential lesions and would 
limit the radiologist to focus only on the areas that the CAD system has identi-
fied. Therefore, it is imperative that the radiologist does the evaluation of the 
complete image. But the CAD system can help detect lesions that the radiologist 
might have missed [27–41].

10.  The heart of computer simulation: working of artificial intelligence 
(AI) system

It is very complicated and difficult for computers to decipher radiologic images. 
To understand an image, the CAD system breaks down the issue into multiple parts 
and does a step-by-step process to conclude whether a specific area on a radiology 
image looks suspicious. Therefore, it is important that radiologists have a basic 
understanding to comprehend why the output of the CAD is off from the usual 
even if it is because of human error.

10.1 Preprocessing

Most of the AI systems have an input or baseline dataset and starts preprocessing 
the data before it undergoes further changes through the scanning software. Series 
of calibrations are done to refine the data. These include resampling the data and 
removing the noises in the image. The basic reason for this process is to make sure 
that the existing dataset evolves. Since the AI system works on the knowledge from 
the previous data set which in turn comes from a binary data set (numbers 0 and 1) 
so the basic changes in the aberrancies from the data set can be easily pointed out 
for the doctors/radiologist to bring attention to. These aberrancies can be studied by 
the doctors (Figure 2) [3].

10.2 Demarcation

The second step is segmentation or demarcation of the normal structures in 
the data set. This step includes the demarcation, and consequent categorization of 
anatomic regions. This is the toughest step in the process and it is the most studied 
area. This also decides the accuracy of the AI system. As compared to the human 
knowledge which greatly relies on the differentiation of the structures and the 
artifacts from the prior knowledge the AI system greatly depend on the data sets. 
The more the data set the more refined algorithms are going to be (Figure 3) [28].

10.3 Detection of the aberrancy

The next big step is the aberrancy detected and identified matching the system 
to the subsets from the normal. These locations are called as the candidates. These 
candidates can be polyps, tumors, calcifications, dysplasia [3]. This step is very 
sensitivity driven. The AI system has to make sure the sensitivity crosses a certain 
threshold whereas the specificity can be low. It is important for us to understand 
these aberrancies may not necessarily be anomalies and are subject to the doctor’s 
acumen to decipher and diagnose (Figure 4).
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10.4 Scrutinizing the aberrancy

As mentioned previously, the extracted data has to be very sensitive for the next 
stage, which is scrutinizing the aberrancy. In this step each area is closely analyzed 
to rule out the normal variations. This is done by using the vector space paradigm, 
which means each aberrancy from the normal is given a feature which can be 
computed. Each candidate has a feature and has its own mean value and standard 
deviations. The border gradients are also described accordingly. This is paramount 

Figure 2. 
(a) The CBCT reconstruction image with the crude image that was just captured from the patient and stored in 
to the system. (b) Enhanced image after the preprocessing with the color defects fixed. (c) Enhanced image after 
the preprocessing with the noise defects fixed.
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because now each aberrancy pointed out in the last step, is represented by a vector. 
These vectors can be mathematically represented in the space which is important to 
gauge anything in the machine’s learning pattern, which is the basis of AI systems. 
These pattern analyses and machine learning can be used in any system to quantify 
the data and convert those into the computer’s language [29–32].

10.5 Stratification

The learning patterns and the recognitions are classified and stratified in the 
space where the normal and the abnormal candidates exist. The next step is train-
ing the classified data set. Consistency is a big deciding factor here. The normal 
candidates are classified and stratified consistently with the in one subsets whereas 
the abnormal candidates are classified with consistency in the other data set. This 
provides training for the AI system to form an opinion regarding the classified and 
stratified data. This training is done with the help of person who had prior knowl-
edge and could feed the data top provide reference standard with correct informa-
tion. For example, the doctor can point out to the location of the cherubism on the 
CBCT pantographic reconstruction view with prior knowledge of its location. Also, 
data, like age, can be a deciding factor which is fed into the system by the doctor 
and this too aids the diagnostic process [29–32].

This is a very complicated step because some of the basic aberrancies which 
might not be the disease may also have the same locations or some diseases may not 
be in their classical locations. Therefore, data enrichment and stratification should 
be done on a regular basis.

Figure 3. 
CBCT panoramic reconstruction with demarcation of the anatomic structure showing the lower border of the 
mandible.

Figure 4. 
CBCT panoramic reconstruction of a Cherubism showing aberrancy from the normal data set.
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The AI system, as discussed before, learns and adapts from the quality of the 
data set. So, we need more exposure to the data set to refine the results. AI research-
ers are always in the ongoing process of learning and experimenting with the 
classification schemes.

10.6 Output of AI

The process comes to completion when a degree of suspicion is assigned to each 
and every candidate in the strata or the group. The threshold decided by the doctor 
is the parameter used to test the degree of suspicion. These degrees of suspicion 
crossing the threshold are demarcated with the identifiers which can be circles 
or arrows. The AI system learns from the threshold and the final outcomes and 
enriches its data and subsets of the data. The results that come from the previous 
learning go to the computer’s learning curve. For example, in the CBCT shown 
below if features of cherubism are detected, and the doctor diagnosed it as a case 
of cherubism, then the result is saved in the system for future reference for other 
cases. If CBCT for the case of a swollen angle of jaw presents a similar data, then the 
computer uses its previous knowledge to make sure whether the indicated region is 
considered true or false positive [3].

11. Clinical applications

There is a big range of applications of the AI and CAD in various fields of 
medicine. These applications have received a premarket approval (PMA). This 
encompasses the devices which have been shown to pose serious levels of risk for 
the users. In these cases the FDA guidelines recommend newer devices could be 
safer and more effective in the near future.

In the last decade there has been a considerable increase in their accuracy as 
systems for diagnostic help [25, 26]. The AI systems in mammography have been 
successful in detecting differences between the mass lesions and micro-calcifi-
cations [42]. For micro-calcifications it has shown that the AI systems show high 
performance and sensitivity which is greatly used by doctors in making an educated 
decision during diagnosis making. The data from multiple views and combination 
of different modalities like ultrasonography (US), magnetic resonance (MR) imag-
ing, and digital breast tomosynthesis have shown to be really promising in enhanc-
ing the diagnosis and enriching the data for future diagnoses [34].

12. Computer simulation and the future of diagnostic expertise

In 1996, the American Journal of Roentgenology published a report of three 
cases of diagnostic errors in radiology. After assessing the clinicians’ defense 
of their decisions, the author concluded that the radiologists missed out on the 
diagnosis because they did not think of the lesion rather than not know of it. It is 
popularly known as the aunt Minnie effect—that is if a woman in a picture looks 
like Aunt Minnie, she must be aunt Minnie [43]. Improving patient care means, 
we have to look for ways to minimize diagnostic errors- an umbrella term that 
includes as varied factors as personal or social bias, heuristics and even failure 
of perception [44]. Debiasing programs work but may take a lifetime to refine, 
even doctors who are willing to accept error on their part [44]. In the present 
world however, where software changes by the day, we do not happen to have that 
luxury of time.
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Populations in countries have increased but investments in health and education 
have not kept pace with the same. Add to that an increasingly unstable world both 
politically and environmentally. All of these changes mean shifting populations 
and overburdened hospital based care provider. With the rise in longevity and 
polypharmacy, one diagnostician may not be and indeed, cannot be held account-
able, for missing out on a few pertinent points here and there, while assessing a 
case. In today’s outpatient medicine practice, especially, that of Oral Medicine and 
Radiology, there is hardly any time to think. And much to our chagrin, the reduced 
pay of practicing doctors, and increased work time of a hospital based doctor only 
means, what the New England Journal of Medicine, recently referred to as subsis-
tence-level intellectual mode [45]. In such a scenario, the probability of diagnostic 
errors grows by leaps and bounds.

Where computer simulation steps in, is this very ripe environment of piling 
information and very few humans, qualified to process it. As of now, there are 
gaping holes in the way AI processes the information it collects, and human mind 
is, as yet, ahead of it. AI is heavily reliant on data sets that its algorithms work on. 
The stark problem with these data sets is that they are not representative of the wide 
gamut of humanity out there that needs treatment. For AI to pick a patient on its 
scanner, first of all the patient should have access to a device that lets this patient 
connect to its virtual world. Disadvantaged populations or displaced populations 
may not have that. This inherent bias of the system leaves it firmly in the field of 
speculation over its accuracy and therefore dependability.

Algorithms, however, tend to improve themselves over time; deleting redundan-
cies and communicating across other platforms as they pick more and more data, as 
has been discussed earlier in the chapter. With the advent of quantum computing, in 
what has been defined by The Economist as the field’s Sputnik moment, Google has 
recently demonstrated its ability to perform a task in little over 3 min, what might 
take most powerful classical computers about 10,000 years to complete [46]. In a 
world, where Common Health of Android and Apple Health of iOS, will increas-
ingly guide the logistics of collecting and collimating data, medical or otherwise, 
from Electronic health records, medical devices, software, apps, and smartphones, 
the art of diagnosis will witness seismic changes. The quality of information being 
used to create data sets is one of the many hurdles.

Yet, as the horse carriage eventually gave way to sophisticated cars, we will have 
to yield a part of the field to computer simulation. But as we do that, we have to 
remember, the algorithm, as yet, does not have a totalitarian power over the mind. 
At the end of the day, the most important part of patient care is after all, care. 
And a responsive warm doctor in the field of Oral Medicine and Radiology is still 
very much preferred over subservience to any cold computing device. Computer 
simulations, then, are just another set of tools in our armamentarium and we need 
to research how to use the same for the benefit and better experience of everyone 
involved.

13. Conclusion

In a world, increasingly driven on ever evolving computation, diagnostic 
medicine has to adapt to change. Harnessing the power of AI to prevent logjams of 
channeling information collected into a cohesive whole will benefit both the doctor 
providing care and the patient receiving it. Computer simulation is a vital tool and 
how, and how much will it change the topography of diagnostic medicine, remains 
to be seen.
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Simulation and Parametric
Inference of a Mixed Effects
Model with Stochastic Differential
Equations Using the
Fokker-Planck Equation Solution
Bakrim Fadwa, Hamid El Maroufy and Hassan Ait Mousse

Abstract

This chapter is concerned with estimation method for multidimensional and
nonlinear dynamical models including stochastic differential equations containing
random effects (random parameters). This type of model has proved useful for
describing continuous random processes, for distinguishing intra- and
interindividual variability as well as for accounting for uncertainty in the dynamic
model itself. Pharmacokinetic/pharmacodynamic modeling often involves repeated
measurements on a series of experimental units, and random effects are incorpo-
rated into the model to simulate the individual behavior in the entire population.
Unfortunately, the estimation of this kind of models could involve some difficulties,
because in most cases, the transition density of the diffusion process given the
random effects is not available. In this work, we focus on the approximation of the
transition density of a such process in a closed form in order to obtain parameter
estimates in this kind of model, using the Fokker-Planck equation and the Risken
approximation. In addition, the chapter discusses a simulation study using Markov
Chain Monte Carlo simulation, to provide results of the proposed methodology and
to illustrate an application of mixed effects models with SDEs in the epidemiology
using the minimal model describing glucose-insulin kinetics.

Keywords: stochastic differential equations, mixed effects model, Fokker-Planck
equation, transition density, maximum likelihood estimators, genetic algorithm,
Markov Chain Monte Carlo simulation

1. Introduction

In pharmacokinetic/pharmacodynamic studies, repeated measurements are
performed on a sample of individuals (units/subjects), and responses for all exper-
imental subjects are assumed to be described by a common structural model. This
model contains both fixed and random effects to distinguish between individuals in
a population, leading to a mixed effects model in which fixed effects represent fixed
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imental subjects are assumed to be described by a common structural model. This
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a population, leading to a mixed effects model in which fixed effects represent fixed
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parameters for all individuals in the population and random effects account for
individual differences. Moreover, mixed effects modeling has been shown to be
useful in pharmacokinetic/pharmacodynamic studies; particularly for modeling
total variation in and between individuals, the models used in pharmacokinetic/
pharmacodynamic analysis are often presented by a system of deterministic differ-
ential equations (ordinary, partial, or delay). However, the pharmacological pro-
cesses in reality are always exposed to incomprehensible effects that are difficult to
model, and ignoring these effects can affect the parameter estimation results and
their interpretations. So, the introduction of stochastic components to deterministic
models is an important tool of analysis [1] and is more appropriate to model the
intra-individual variations rather than ODEs. In addition, the extension of ODEs to
the SDEs makes it possible to explain the differences between the observations and
the predictions by two types of noise: dynamic noise that enters through the
dynamics of the system and that can result from its random fluctuations or from the
shortages of model and the measurement error which is added in the case of an
indirectly observed process, which may be due to a test error or to the existence of
a disturbance and represent the uncorrelated part of the residual variability. In the
theory, there are rich and developed resources for mixed effects models whether
deterministic [2–6] or stochastic and linear or nonlinear models (see many applica-
tions of stochastic NLME models in biomedical [7–9] and in pharmacokinetic
[10–12] fields).

Parameter estimation in mixed effects models with SDEs, known by stochastic
differential mixed effects models, is not an obvious procedure except in some cases
simpler [14] because it is often difficult to write the likelihood function in its closed
form. In this context, we propose a review on estimation methods of SDME models
in [13, 15] and an example case that treats a generalized linear mixed models in [16]
and also an example to approximate the likelihood function of an NLME with the
likelihood of a linear mixed effects model in [17]. Moreover, to strengthen knowl-
edge on estimation methods of SDME, we refer to [18, 19] that propose an example
of stochastic mixed effects model with random effects log-normally distributed
with a constant diffusion term.

In general, it is difficult to obtain an explicit likelihood function because the
transition density of the stochastic process is often unknown or that the integral in
the likelihood given the random effects cannot be computed analytically, and
although the size of the random effects increases, the complexity of the problem
increases also rapidly. Therefore, this requires a significant need for approximate
methods to compute the transition density in an approximate closed form and for
effective numerical integration methods to compute or approximate the integral in
the likelihood function, using, for example, the Laplacian and Gaussian quadrature
approximation [3, 8, 20] or other approaches [21, 22]. In the literature, several
solutions have been proposed to approximate the transition density and have shown
their effectiveness despite certain limitations. For example, the transition density
could be approximated by the solution of the partial differential equations of Kol-
mogorov [23]; by the derivation of a Hermite expansion of closed form at the
transition density [24–26] (this method has been reviewed and applied for many
known stochastic processes for one-dimensional [8] and multidimensional [20]
time-homogeneous SDME model); or by simulating the process to Monte-Carlo-
integrate the transition density [27–29]. These techniques are very useful and can
solve the problem, but unfortunately, they involve intense calculations which make
the problem always complicated.

In this work, we focus on two fundamental issues concerning the implementa-
tion of SDEs in NLME models. The first is how the transition density of an SDME
model can be approximated when it is not known, and the second is about
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approximating methods of the likelihood function when the integral given the
random effects has no analytic solution. Then, we propose an optimization algo-
rithm to obtain maximum likelihood estimators in order to facilitate the estimation
procedure for these models. Finally, the methodology is evaluated by simulation
studies on the bidimensional Ornstein-Uhlenbeck model, and then it is
implemented on the minimal model describing the glucose and insulin kinetics.

2. Theoretical tools

Consider an N-dimensional continuous and stochastic process Yt in the state
space E⊂N described by the general first-order nonlinear stochastic differential
equations of the Itô type [30]:

dYi
t ¼ μ Yi

t, t, θ, b
i� �
dtþ Σ Yi

t, θ, b
i� �
dWi

t, Yi
0 ¼ yi0, i ¼ 1, … ,M, (1)

where Yi
t is defined as the solution of the SDME model Eq. (1) that exists

under some conditions that we suppose satisfied [31–33] and represents the obser-
vation of individual i from M different experimental units, (i ¼ 1, ::,M), at the
moment t≥ ti0, and Yi

0 ¼ Yi
t0 is the initial state of Yt for each subject. The process

Yi
t

� �
t≥0, i ¼ 1::M

n o
is assumed to verify the same model structure Eq. (1) according

to the individual parameters bi; θ∈Θ⊂p is a p-dimensional fixed effects parame-
ter which represents the same and common characteristics for all subjects, and
bi ∈B⊆q are the q-dimensional individual random parameters assumed mutually
independent, also called random effects because they are not the same for all
individuals; they change between them according to a distribution of density
PB bijΨ� �

depending on a population parameter Ψ; in the population approach, this
parameter vector allows for a data from several subjects to be considered simulta-
neously. Each component bil may follow a different distribution, l ¼ 1, … , qð Þ, and a
standard choice for the joint density function PB bijΨ� �

of the vector bi could be the
Gaussian distribution; however, any other distributions may be considered contin-
uous or discrete:

bi � i:i:d N ϑ,ϕð Þ: (2)

The joint density function of the vector bi is parameterized by a q-dimensional
parameter ϑ∈ υ⊂q and a q� q-dimensional matrix ϕ∈Φ⊂q�q representing the
covariance matrix of bi and specifying the parameters of the marginal distributions
of the components bil, 1≤ l≤ qð Þ; the components of ϕ and ϑ represent the popula-
tion parameters Ψ. For Yi

0, it is not necessarily known, and when its components are
unknown, they must be considered as random effects since they change between
individuals; but in some cases it can be known and assumed equal to a real constant.
Also, we assume that the distribution of Yi tð Þ given bi, θ

� �
and Yi t0ð Þ ¼ yt0 , t

0 < t, has
a strictly positive density with regard to the Lebesgue measure on E:

y ! PY y, t� t0j yt0 , bi, θ
� �

>0, y∈E: (3)

Wi tð Þ are the standard Brownian motions, and they are assumed mutually
independent with bj for all 1≤ i, j≤M. The functions μ �ð Þ : E� � Θ� B !  and

93

Simulation and Parametric Inference of a Mixed Effects Model with Stochastic Differential…
DOI: http://dx.doi.org/10.5772/intechopen.90751
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Σ �ð Þ : E� Θ� B ! þ represent, respectively, the drift and the diffusion term of
the model and are assumed to have some properties sufficiently regular to ensure a
unique solution to the model [33].

According to the model Eq. (1), the process Y is the same and follows the same
form for each individual of the population, and the SDME model of type Itô
expresses the dynamic of the individual i perturbed by the Brownian motion. So,
the differences between the subjects are modeled on the one hand by the different
realizations of the Brownian motion paths Wi

t

� �
t≥ ti0

and, on the other hand, by the

incorporation of the random parameters bi in the model. Therefore, the introduc-
tion of parameters varying randomly between subjects allows the model Eq. (1) to
explain the variability between individuals.

The goal is to estimate the vector of fixed parameters θ and the parameter vector
Ψ characterizing the distribution of random parameters bis, but the statistical
inference for such models is a difficult issue, and the level of difficulty is not the
same whether the transition density is explicit or not and whether the process is
observed directly or with measurement noise; in this work we assume that the
process was exactly observed and no observation noise was considered.

2.1 Maximum likelihood estimation in SDME model

The likelihood function of an SDME model is expressed as follows:

L θ,Ψð Þ ¼
YM
i¼1

P yijθ,Ψ
� �

¼
YM
i¼1

ð
PY yijbi, θ
� �

PB bijΨ� �
dbi (4)

with

PY yijbi, θ
� �

¼
Yni
j¼1

PY yij,Δ
i
jjyij�1, b

i, θ
� �

, (5)

where ni is the number of observations for the subject i at discrete points of time

ti0, t
i
1, … , tini

n o
, i ¼ 1, … ,M and Δi

j ¼ tij � tij�1, j ¼ 1, … , ni. The conditional den-

sity PY yij�
� �

is equal to the product of the transition densities Eq. (5) for given

random effects and θ, but the availability of the explicit transition density is the
second constraint for the statistical issue of model Eq. (1) to obtain an exact likeli-
hood function and exact estimators, since computing the transition density is not
always obvious and requires approximation methods. However, there are some
cases where the exact likelihood function is known, and the exact MLEs of θ are
obtained (see references in the introduction). In fact, to compute the likelihood
function in a closed form of an SDME model, we can encounter two types of
problems that require approximate methods to overcome them: First, when the

transition density PY yij,Δ
i
jjyij�1, b

i, θ
� �

is known but the integral in Eq. (4) has no

solution, in this case, the numerical methods of approximation of the integral are

required. Or, second, when PY yij,Δ
i
jjyij�1, b

i, θ
� �

cannot even be expressed explicitly

and must also be approximated, see next paragraphs. Usually, in realistic examples,
we have both an unknown transition density and an integral that is difficult to solve
analytically. In theory, several methods for approximating transition densities and
integrals have been proposed (see references cited in the introduction).
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In this work, we propose an approximate method to estimate the transition
density for a time-inhomogeneous NLME model with SDEs in a closed approximate
form. So, we suggest to derive the transition density by solving the motion equa-
tions of the process using the Fokker-Planck equation, and we deal with the use of
its solution given in [34]. Then, using the expression obtained, we get a closed form
approximation of the likelihood function that we maximize to obtain the approxi-
mated MLEs θ̂ and Ψ̂. The approximated transition density obtained from the

proposed method is denoted by P að Þ
Y Yi

j,Δ
i
jjYi

j�1, b
i, θ

� �
that we substitute in Eq. (4)

to obtain the following approximated likelihood function for the SDME model
Eq. (1):

L að Þ θ,Ψð Þ ¼
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ð Yni
j¼1
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Y yij,Δ
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i, θ
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2.1.1 Laplace approximation

For a multidimensional vector of random parameters, if the exact transition
density or its closed form approximation is available, we can use the Laplace
approximation method [16, 20, 35] to obtain an explicit expression of the likelihood
function to maximize, despite the fact that the integral in Eq. (4) has no closed
solution. So, for a q-dimensional random vector bi, the likelihood function Eq. (4)
can be approximated as:
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where
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and ∣ � ∣ denotes the determinant of the Hessian matrix H bijθ,Ψ� �
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∂~b
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∂~b

iT (9)

2.2 Approximate transition density for multidimensional and nonlinear SDME
model

Usually, a formal general solution of the stochastic differential equations as in
Eq. (1) cannot be given, which makes the calculation of the transition density for
this process more complicated. Moreover, this process has a lot of fluctuations that
its exact position cannot be determined but can be known given a region by its
probability density; with the FP equation, such a probability density can be deter-
mined. The FP equation is a differential equation for the distribution function
describing a Brownian motion by which the probability density of the stochastic
process can be calculated in a much simpler way by solving this equation. This
motion equation is usually used for variables describing a macroscopic but small
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always obvious and requires approximation methods. However, there are some
cases where the exact likelihood function is known, and the exact MLEs of θ are
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and must also be approximated, see next paragraphs. Usually, in realistic examples,
we have both an unknown transition density and an integral that is difficult to solve
analytically. In theory, several methods for approximating transition densities and
integrals have been proposed (see references cited in the introduction).
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Eq. (1) cannot be given, which makes the calculation of the transition density for
this process more complicated. Moreover, this process has a lot of fluctuations that
its exact position cannot be determined but can be known given a region by its
probability density; with the FP equation, such a probability density can be deter-
mined. The FP equation is a differential equation for the distribution function
describing a Brownian motion by which the probability density of the stochastic
process can be calculated in a much simpler way by solving this equation. This
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system, where the fluctuations are important as for some cases in physics, e.g., the
position and the speed of the Brownian motion of a small particle. However, it can
be also used for the larger system where, in spite of their small fluctuations, the
stochastic description remains necessary when the deterministic equations may not
be stable for this type of system.

So, under some assumptions, the transition density PY yij,Δ
i
jjyij�1, b

i, θ
� �

of the

process Y in the SDME model Eq. (1) is the solution of the following functional
partial differential Equation [23, 34]:

∂PY yij,Δ
i
jjyij�1, b

i, θ
� �

∂t
¼ LFPPY yij,Δ

i
jjyij�1, b

i, θ
� �

, (10)

where LFP is the FP operator and LFP ¼ �PN
k¼1

∂

∂Yk
μk Yi, t, θ, bi
� �� �þ

1
2

PN
k¼1
PN

l¼1
∂
2

∂Yk∂Yl
Σkl½ � and μk is the k-th element of the drift vector and Σkl is the kl-

th element of the diffusion matrix. We assume that the diffusion matrix is positive
definite so that its inverse exists Det Σð Þ 6¼ 0.

In [34], H. Risken deals in this book with the derivation of the FP equation and
its solution methods with some of its applications especially for problems of
Brownian motion. So, here, we propose to characterize the transition density of the
N-dimensional process Yi

t in Eq. (1) using the Risken approximation based on the
formal solution of Eq. (10) proposed in [34], p: 4.109, denoted by

P að Þ
Y yij,Δ

i
jjyij�1, b

i, θ
� �

:

P að Þ
Y Yi

j,Δ
i
jjYi

j�1, b
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� �
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ΠΔj

p� ��N
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2 ∗ exp
�
� 1
4Δj

XN
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k¼1

Σ�1� �
lk

Yi
j

� �
l
� Yi

j�1

� �
l
� μl Yi

j�1, t, θ, b
i

� �
Δi

j

h i
Yi
j

� �
k
� Yi

j�1

� �
k
� μk Yi

j�1, tj�1, θ, b
i

� �
Δi

j

h i� (11)

To test the effectiveness of this approach, we will guide our statistical methodology
by simulation studies in order to examine the flexibility of its application to deduce its

advantages and disadvantages. So, we substitute P að Þ
Y Yi

j,Δ
i
jjYi

j�1, b
i, θ

� �
in Eq. (6), and

by solving the integral with respect to the random effects density and maximizing the
obtained likelihood function, we get the approximated estimators θ̂ and Ψ̂.

2.2.1 Approximated estimators

For a nonlinear SDME model with Gaussian random effects using Eqs. (6), (7),
and (11), we obtain the following approximated likelihood function:

logL að Þ θ,Ψð Þ≃
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�
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2
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2
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log 2
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� 1
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j

� �
l
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� �
l
� μl Yi

j�1, t, θ, ~b
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j

h i
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k
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k
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j�1, tj�1, θ, ~b
i� �
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h i�
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þ q
2
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log det �H ~b

ijθ,Ψ
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:

(12)

The MLEs of θ,Ψð Þ can be obtained using one of the optimization tools and
numerical computation software, especially when it is complicated to compute the
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gradients of the likelihood analytically. Here, we propose to use the genetic algo-
rithm as an optimization tool to maximize the approximate likelihood function
Eq. (12) using MATLAB software:

θ̂, Ψ̂
� �

¼ argminGA � log L að Þ θ,Ψð Þ
� �� �

: (13)

2.3 Genetic algorithm

The genetic algorithm is a random search technique to look for an exact or
approximated optimum points for optimization problems [36–38]. It is based on
the concepts of natural genetic evolution which contains the following stages: the
reproduction, the crossing, and the mutation of a constantly evolving population.
It sets up the evolution of a random population of potential solutions of the N
cardinal; then, the N simultaneous iterative trajectories interact with each
other by following or imitating the biological evolution, for a convergence
of certain elements of the population towards an optimal point of the fitness
function.

The GA can search in multiple directions to explore all the search space by the
possibility of jumping across them, so that the seeds spread uniformly over the
whole search space. In this algorithm, we have a diversity of initial populations
which gives the global optimum faster than other algorithms, where the initial value
is very important and should be enough close to the global optimum. All of these
features allows the GA to be regarded as a driving tool of evolution giving good
results for optimization processes [37, 39]. In the literature, there were many works
about the application of GA in optimizing problems specially for likelihood function
[40, 41]. For the use of GA, we must first define some parameters of the algorithm:
Population size N, EN, SR, CP, MP, fitness function, and convergence criteria. In
the following we present the GA steps:

Steps of GA:

1. Generate initial population β 0ð Þ
1 , β 0ð Þ

2 , … , β 0ð Þ
N

n o
,m ¼ 0 via an initialization

strategy (random generation), in our case β ¼ θ,Ψð Þ.
For m ¼ 0:

2. Evaluate the Fitness function log �L að Þ θ mð Þ,Ψ mð Þ
� �� �

.

3. While (convergence criteria are not satisfied):
Do:
4. Replacement step (by using SR and EN): At the SR rate, individuals with the

worst results in step 2 of fitness function are replaced by new ones randomly
generated, and a number EN of individuals is selected and accepted for the next
step.

5. Selection operator by using roulette wheel method, based on the fact that the
more the individual has a good result of fitness function, the more likely he will be
selected.

6. Crossover operator by using CP and mutation operator by using MP: It is a
mechanism of perturbation on the candidate individuals (parents) according to CP
and MP to generate new groups of individuals, and we obtain a new mþ 1ð Þnd
population β mþ1ð Þ

1 , β mþ1ð Þ
2 , … , β mþ1ð Þ

N

n o
.

Else:
7. Evolution stops; get GA output.
8. m ¼ mþ 1.
End For.
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system, where the fluctuations are important as for some cases in physics, e.g., the
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stochastic description remains necessary when the deterministic equations may not
be stable for this type of system.
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by solving the integral with respect to the random effects density and maximizing the
obtained likelihood function, we get the approximated estimators θ̂ and Ψ̂.
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The MLEs of θ,Ψð Þ can be obtained using one of the optimization tools and
numerical computation software, especially when it is complicated to compute the
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gradients of the likelihood analytically. Here, we propose to use the genetic algo-
rithm as an optimization tool to maximize the approximate likelihood function
Eq. (12) using MATLAB software:

θ̂, Ψ̂
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¼ argminGA � log L að Þ θ,Ψð Þ
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: (13)

2.3 Genetic algorithm

The genetic algorithm is a random search technique to look for an exact or
approximated optimum points for optimization problems [36–38]. It is based on
the concepts of natural genetic evolution which contains the following stages: the
reproduction, the crossing, and the mutation of a constantly evolving population.
It sets up the evolution of a random population of potential solutions of the N
cardinal; then, the N simultaneous iterative trajectories interact with each
other by following or imitating the biological evolution, for a convergence
of certain elements of the population towards an optimal point of the fitness
function.

The GA can search in multiple directions to explore all the search space by the
possibility of jumping across them, so that the seeds spread uniformly over the
whole search space. In this algorithm, we have a diversity of initial populations
which gives the global optimum faster than other algorithms, where the initial value
is very important and should be enough close to the global optimum. All of these
features allows the GA to be regarded as a driving tool of evolution giving good
results for optimization processes [37, 39]. In the literature, there were many works
about the application of GA in optimizing problems specially for likelihood function
[40, 41]. For the use of GA, we must first define some parameters of the algorithm:
Population size N, EN, SR, CP, MP, fitness function, and convergence criteria. In
the following we present the GA steps:

Steps of GA:

1. Generate initial population β 0ð Þ
1 , β 0ð Þ
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,m ¼ 0 via an initialization

strategy (random generation), in our case β ¼ θ,Ψð Þ.
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2. Evaluate the Fitness function log �L að Þ θ mð Þ,Ψ mð Þ
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.

3. While (convergence criteria are not satisfied):
Do:
4. Replacement step (by using SR and EN): At the SR rate, individuals with the

worst results in step 2 of fitness function are replaced by new ones randomly
generated, and a number EN of individuals is selected and accepted for the next
step.

5. Selection operator by using roulette wheel method, based on the fact that the
more the individual has a good result of fitness function, the more likely he will be
selected.

6. Crossover operator by using CP and mutation operator by using MP: It is a
mechanism of perturbation on the candidate individuals (parents) according to CP
and MP to generate new groups of individuals, and we obtain a new mþ 1ð Þnd
population β mþ1ð Þ
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Else:
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In the simulation studies paragraphs, the GA is implemented using the MATLAB
software, where the function “ga,” to generate the genetic algorithm, requires
inputs that are chosen according to the constraints of each example (see the help
window in MATLAB). Moreover, the algorithm parameters are chosen according to
what is early used in the literature [39], EN ¼ 4, MP ¼ 0:2, CP ¼ 0:8 and SR ¼
1=3, and the search spaces are around the confidence interval of the minimal model
parameters (see [42] and references therein).

3. Simulation studies for SDME model

3.1 The two-dimensional Ornstein-Uhlenbeck process

To apply the proposed methodology and evaluate its effectiveness, we consider
the two-dimensional OU process that is very useful in pharmacokinetic/pharmaco-
dynamic studies and in biology [43], physics, engineering, finance, and neurosci-
ence applications [14, 44]. Indeed, the choice of this process is due to the fact that it
is one of the few known multivariate SDME models with known transition density.
For this reason, we choose the OU process to evaluate the methodology presented
above, and we perform a comparison study between the results obtained using the
proposed transition density in Eq. (11) and those obtained using the exact density.
The model is defined as follows:

dY 1ð Þi tð Þ ¼ � β11b
i
11 Y 1ð Þi tð Þ � α1
� �

þ β12b
i
12 Y 2ð Þi tð Þ � α2
� �� �

dtþ Σ11dW 1ð Þi tð Þ, Yi
0 ¼ y 1ð Þi

0 , i ¼ 1, … ,M

dY 2ð Þi tð Þ ¼ � β21b
i
21 Y 1ð Þi tð Þ � α1
� �

þ β22b
i
22 Y 2ð Þi tð Þ � α2
� �� �

dtþ Σ22dW
2ð Þi tð Þ, Yi

0 ¼ y 2ð Þi
0 , i ¼ 1, … ,M

(14)

With Yi tð Þ ¼ Y 1ð Þi tð Þ
Y 2ð Þi tð Þ

 !
; β ¼ β11 β12

β21 β22

� �
; α ¼ α1

α2

� �
; Σ ¼ Σ11 0

0 Σ22

� �
;

Wi tð Þ ¼ W 1ð Þi tð Þ
W 2ð Þi tð Þ

 !
; Yi 0ð Þ ¼ Y 1ð Þi 0ð Þ

Y 1ð Þi 0ð Þ

 !
and bi ¼ bi11 bi12
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, l, l0 ¼ 1, 2; i ¼ 1, … ,M.

We rewrite the system in matrix notation under the Itô formula; we denote by
�ð Þ the elementwise multiplication:

dYi tð Þ ¼ β � bi α� Yi tð Þ� �
dtþ ΣdWi tð Þ, Yi

0 ¼ yi0, i ¼ 1, … ,M: (15)

Here, the random effects bi are a matrix and not a vector in order to have a
uniform dimension writing of the Eq. (15) and are assumed mutually independent
and independent of Yi

0 and Wi. The fixed parameter vector is θ ¼ β11, β12,ð
β21, β22, α1, α2, Σ11, Σ22Þ, and the population parameter vector is Ψ ¼
r11, r12, r21, r22ð Þ. The exact transition density of model Eq. (15) for a given
realization of the random effects is a bivariate normal:
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with mean vector μ ¼ αþ Yi
tj�1

� α
� �
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� �
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j

� �
and covariance matrix
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� �0� �
: (17)

We assume that the matrices β:bi and Σ have full rank and the real parts of the
eigenvalues of β:bi are positive definite in order that a stationary solution to Eq. (15)
exists. Under these assumptions, we derive from Eqs. (14) and (11) the following
approximated transition density of Y:
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(18)

In Figure 1, we illustrate in (a) the simulation of the OU process using the Euler
scheme [45] with the following set of parameters:

Figure 1.
A sample path of the OU process in the third graph of (a) for the given parameters set with the initial condition:
Y0 ¼ (3,3) and time interval [3,10]; and the transition density for a transition from Yj to Yjþ1 in (b).
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In the simulation studies paragraphs, the GA is implemented using the MATLAB
software, where the function “ga,” to generate the genetic algorithm, requires
inputs that are chosen according to the constraints of each example (see the help
window in MATLAB). Moreover, the algorithm parameters are chosen according to
what is early used in the literature [39], EN ¼ 4, MP ¼ 0:2, CP ¼ 0:8 and SR ¼
1=3, and the search spaces are around the confidence interval of the minimal model
parameters (see [42] and references therein).
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Here, the random effects bi are a matrix and not a vector in order to have a
uniform dimension writing of the Eq. (15) and are assumed mutually independent
and independent of Yi

0 and Wi. The fixed parameter vector is θ ¼ β11, β12,ð
β21, β22, α1, α2, Σ11, Σ22Þ, and the population parameter vector is Ψ ¼
r11, r12, r21, r22ð Þ. The exact transition density of model Eq. (15) for a given
realization of the random effects is a bivariate normal:
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with mean vector μ ¼ αþ Yi
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and covariance matrix
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We assume that the matrices β:bi and Σ have full rank and the real parts of the
eigenvalues of β:bi are positive definite in order that a stationary solution to Eq. (15)
exists. Under these assumptions, we derive from Eqs. (14) and (11) the following
approximated transition density of Y:
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(18)

In Figure 1, we illustrate in (a) the simulation of the OU process using the Euler
scheme [45] with the following set of parameters:

Figure 1.
A sample path of the OU process in the third graph of (a) for the given parameters set with the initial condition:
Y0 ¼ (3,3) and time interval [3,10]; and the transition density for a transition from Yj to Yjþ1 in (b).
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β11 ¼ 2:8, β12 ¼ 2:5, β21 ¼ 1:8, β22 ¼ 2, α1 ¼ 0:8, α2ð ¼ 1:5,Σ11 ¼ 0:3,Σ22 ¼ 0:5, r11 ¼
45, r12 ¼ 100, r21 ¼ 100, r22 ¼ 125Þ, and a time step of Δj ¼ 0:001 and represent in
(b) the graph of the two transition densities given by Eqs. (16) and (18) for Yj to
Yjþ1 using the same set of parameters and time step.

3.1.1 Simulation results

In this simulation study, we generate 1000 artificial datasets of dimension 2�
nþ 1ð Þ �M from Eq. (15), where M is the number of subjects and n presents the
number of repetitions of the experiment for each subject; then we estimate the
parameters using the proposed approximated method, and we obtain 1000 sets
of parameter estimates. The observations are obtained by linear interpolation
from simulated trajectories using the Euler-Maruyama scheme with step size
equal to 10�3.

By plugging Eq. (16) in Eq. (4) and Eq. (18) in Eq. (6), we obtain a huge
expression of the likelihood function but without a closed solution of integrals, so
the exact estimators of θ and Ψ are unavailable. Therefore, in both cases, either
using the exact or the approximated transition density, the Hessian matrix in
Laplace approximation can be obtained analytically after a tedious calculation; then
we apply the GA to obtain parameter estimates. But we cannot ignore the time
consumed by this algorithm to get the results because of the long and complex
expressions.

Table 1 shows that, for the given sample size, the results can be correctly
identified using this estimated approach; even if some of parameters are
overestimated or underestimated, the results remain acceptable because the results
belong to the confidence interval. However, we believe that these results could be
further proven by using other sample sizes and by adding alternative assumptions
for the model that we did not consider in the methodology proposed in this chapter,
which could further complicate the problem and be more time-consuming, as well
as the present methodology suffers from some limitations. For the random param-
eters, the estimates can be provided using the optimization algorithm on Eq. (8)
using the obtained estimate results of the parameters vector Ψ. Moreover, we
conduct this simulation study using Figure 2, which shows that the empirical

True
values

Mean and (Std) (M ¼ 40, n ¼ 10)

β11 β12 β21 β22 β̂11 β̂12 β̂21 β̂22

2.8 2.5 1.8 2 3.10–3.25 2.48–2.56 1.72–1.65 2.11–2.37

(0.164)–(0.283) (0.015)–(0.283) (0.095)–(0.189) (0.153)–(0.255)

α1 α2 Σ11 Σ22 α̂1 α̂2 Σ̂11 Σ̂22

0.8 1.5 0.3 0.5 1.06–1.13 1.57–1.64 0.28–0.37 0.56–0.45

(0.071)–(0.102) (0.109)–(0.158) (0.026)–(0.073) (0.023)–(0.061)

r11 r12 r21 r22 r̂11 r̂12 r̂21 r̂22

45 100 100 25 44.75–52.43 100–112.75 102.35–89.64 24.72–31.02

(0.523)–(9.372) (01.166)–(28.113) (01.04)–(22.05) (2.297)–(11.20)

Table 1.
Ornstein-Uhlenbeck model: maximum likelihood estimates from 1000 simulations of model Eq. (14), using the
exact and the approximated transition density.
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distribution of the most approximated estimators seems to be reasonably close to a
normal distribution:

3.2 Stochastic minimal model

The minimal model describes the glucose-insulin kinetics and the dynamics of
these processes illustrating the diabetes disease mechanisms. The diabetes is one of
the most prevalent diseases in individuals and the nature and degree of its assign-
ment changes from an individual to another and depends on certain individual
characteristics, which implies that the concepts of stochastic modeling with random
effects could be a good approach to modeling this disease. The Diabetes may be due
to the insufficient insulin production (type 1 diabetes) or to the fact that the cells do
not respond to the secreted insulin (type 2 diabetes) and the T2D patients tend to
have substantially lower insulin sensitivity than healthy individuals, so that the T2D
can be characterized by the level of insulin sensitivity for each individual. There-
fore, to model the T2D, we observe how a person’s body responds to insulin in the
process of transporting glucose to tissues by measuring his insulin sensitivity. So,
we present in this section the estimation of the minimal model which represents a
powerful model describing the glucose-insulin kinetics for an individual’s body in
three differential equations, see the mathematical formulation of the model in
[46–49]. So, it is already clear that the model will contain both fixed and random
effects, because the study of diabetes disease takes into account the response of each
individual according to his own parameters and other common parameters that
describe the process of glucose-insulin for the entire population. See the description
of the glucose-insulin kinetics in Figure 3.

From the mentioned literature and Figure 3, the glucose-insulin disposal can be
represented, with respect to time, by the following nonlinear stochastic differential
equations, perturbed by the stochastic terms σ1dw1 tð Þ, σ2dw2 tð Þ, and σ3dw3 tð Þ:

dG tð Þ ¼ � p1 þ X tð Þ� �
G tð Þ þ p1Gb

� �
dtþ σ1dw1 tð Þ, G 0ð Þ ¼ G0

dX tð Þ ¼ �p2X tð Þ þ p3 I tð Þ � Ibð Þ� �
dtþ σ2dw2 tð Þ, X 0ð Þ ¼ 0

dI tð Þ ¼ �n I tð Þ � Ibð Þ þ γ G tð Þ � hð Þt½ �dtþ σ3dw3 tð Þ, I 0ð Þ ¼ I0,

(19)

where G tð Þ and I tð Þ are, respectively, the concentration of glucose and insulin at
time t in the blood. Gb and Ib indicate the basal level of glucose and insulin
concentration before the glucose injection, this injection will cause a disturbance of
the concentrations according to the mechanism described in these equations, and
these values are assumed known for each individual. And, G0 and I0 are the
theoretical measure of the concentrations at glucose injection moment at the begin-
ning of the experiment.

Figure 2.
Empirical distribution of estimates obtained using the exact and approximated transition density.
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β11 ¼ 2:8, β12 ¼ 2:5, β21 ¼ 1:8, β22 ¼ 2, α1 ¼ 0:8, α2ð ¼ 1:5,Σ11 ¼ 0:3,Σ22 ¼ 0:5, r11 ¼
45, r12 ¼ 100, r21 ¼ 100, r22 ¼ 125Þ, and a time step of Δj ¼ 0:001 and represent in
(b) the graph of the two transition densities given by Eqs. (16) and (18) for Yj to
Yjþ1 using the same set of parameters and time step.

3.1.1 Simulation results

In this simulation study, we generate 1000 artificial datasets of dimension 2�
nþ 1ð Þ �M from Eq. (15), where M is the number of subjects and n presents the
number of repetitions of the experiment for each subject; then we estimate the
parameters using the proposed approximated method, and we obtain 1000 sets
of parameter estimates. The observations are obtained by linear interpolation
from simulated trajectories using the Euler-Maruyama scheme with step size
equal to 10�3.

By plugging Eq. (16) in Eq. (4) and Eq. (18) in Eq. (6), we obtain a huge
expression of the likelihood function but without a closed solution of integrals, so
the exact estimators of θ and Ψ are unavailable. Therefore, in both cases, either
using the exact or the approximated transition density, the Hessian matrix in
Laplace approximation can be obtained analytically after a tedious calculation; then
we apply the GA to obtain parameter estimates. But we cannot ignore the time
consumed by this algorithm to get the results because of the long and complex
expressions.

Table 1 shows that, for the given sample size, the results can be correctly
identified using this estimated approach; even if some of parameters are
overestimated or underestimated, the results remain acceptable because the results
belong to the confidence interval. However, we believe that these results could be
further proven by using other sample sizes and by adding alternative assumptions
for the model that we did not consider in the methodology proposed in this chapter,
which could further complicate the problem and be more time-consuming, as well
as the present methodology suffers from some limitations. For the random param-
eters, the estimates can be provided using the optimization algorithm on Eq. (8)
using the obtained estimate results of the parameters vector Ψ. Moreover, we
conduct this simulation study using Figure 2, which shows that the empirical
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distribution of the most approximated estimators seems to be reasonably close to a
normal distribution:

3.2 Stochastic minimal model

The minimal model describes the glucose-insulin kinetics and the dynamics of
these processes illustrating the diabetes disease mechanisms. The diabetes is one of
the most prevalent diseases in individuals and the nature and degree of its assign-
ment changes from an individual to another and depends on certain individual
characteristics, which implies that the concepts of stochastic modeling with random
effects could be a good approach to modeling this disease. The Diabetes may be due
to the insufficient insulin production (type 1 diabetes) or to the fact that the cells do
not respond to the secreted insulin (type 2 diabetes) and the T2D patients tend to
have substantially lower insulin sensitivity than healthy individuals, so that the T2D
can be characterized by the level of insulin sensitivity for each individual. There-
fore, to model the T2D, we observe how a person’s body responds to insulin in the
process of transporting glucose to tissues by measuring his insulin sensitivity. So,
we present in this section the estimation of the minimal model which represents a
powerful model describing the glucose-insulin kinetics for an individual’s body in
three differential equations, see the mathematical formulation of the model in
[46–49]. So, it is already clear that the model will contain both fixed and random
effects, because the study of diabetes disease takes into account the response of each
individual according to his own parameters and other common parameters that
describe the process of glucose-insulin for the entire population. See the description
of the glucose-insulin kinetics in Figure 3.

From the mentioned literature and Figure 3, the glucose-insulin disposal can be
represented, with respect to time, by the following nonlinear stochastic differential
equations, perturbed by the stochastic terms σ1dw1 tð Þ, σ2dw2 tð Þ, and σ3dw3 tð Þ:
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G tð Þ þ p1Gb

� �
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where G tð Þ and I tð Þ are, respectively, the concentration of glucose and insulin at
time t in the blood. Gb and Ib indicate the basal level of glucose and insulin
concentration before the glucose injection, this injection will cause a disturbance of
the concentrations according to the mechanism described in these equations, and
these values are assumed known for each individual. And, G0 and I0 are the
theoretical measure of the concentrations at glucose injection moment at the begin-
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The insulin sensitivity is defined by combining the two rates p3 and p2 as SI ¼
p3=p2, representing insulin’s ability to increase the net glucose utilization [51].

Finally, the stochastic minimal model under the Itô sense re-parameterized by
SG and SI can be rewritten as:

dYi tð Þ ¼

� SiG þ X tð Þi
� �

G tð Þi þ SiGG
i
b

�p2 X tð Þi þ SiI I tð Þi � Iib
� �� �

�n I tð Þi � Iib
� �

þ γ G tð Þi � h
� �

t

0
BBBB@

1
CCCCA

dtþ ΣdW tð Þ; Yi
0 ¼

Gi
0

0

Ii0

0
B@

1
CA ,

(20)

where Yi tð Þ ¼
G tð Þi
X tð Þi
I tð Þi

0
B@

1
CA and Σ is the diagonal diffusion matrix which contains

the unknown constants σ1, σ2, and σ3. The parameters SiG, p2, S
i
I, n, γ, h,G

i
0 and Ii0 are

unknown in the model and will be estimated. The parameters SiG, S
i
I, Ii0 and Gi

0 are
assumed random, because they represent individual parameters that change from
an individual to another. Each person has its own insulin sensitivity SiI which allows
to know if the cells of his body react correctly or not to the insulin and if the insulin
produced by the pancreas is sufficient or not, which can make some people with
T2D and others without diabetes. Also, for glucose effectiveness SiG, which repre-
sents the glucose’s own ability to be eliminated independently of insulin, it is unique
to each individual and changes from a person to another, as well as for the mea-
surement of glucose and insulin concentration. For the rest of the parameters, we
consider them fixed since they describe the common side of the glucose-insulin

Figure 3.
At first, glucose and insulin concentrations in the blood are described by two sets of differential equations (see
[50]); at a rate p1, glucose leaves and enters the glucose space in proportion to the difference between the plasma
glucose concentration G(t) and the basal plasma concentration Gb that represent the known pre-injection
glucose level for each individual. Therefore, the parameter p1 represents the glucose’s own ability to be
eliminated in muscles, liver, and tissues independently of insulin which is called glucose efficiency and denoted
by SG. Then, the glucose disappears from the glucose space at a rate proportional to insulin concentration in the
insulin compartment X tð Þwhich represents the dynamic of insulin response according to the two rates p2 and p3.
These two parameters represent, respectively, the decreased glucose absorption capacity in tissues and its
increased insulin dependency. For insulin secretion I(t), it is secreted by the pancreas independently of the
glucose concentration, and proportional to a rate n to its own level already in the body and to the glucose level
deferred from a threshold h at a rate γ when G tð Þ is above h, the insulin secretion does not only depend on the
hyperglycemia level but also to the time spent since glucose injection.
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process for the entire population (all individuals). So, we have the following ran-
dom effect vector bi ¼ SiG, SiI, Ii0, Gi

0

� �
, and we assume that:

SiG � N μSG , σSG
� �

, SiI � N μSI , σSI
� �

, Ii0 � N μI0 , σI0
� �

, Gi
0 � N μG0

, σG0

� �
: (21)

Random effects are assumed to be independent with a multinormal joint density
function, with the mean ϑ ¼ μSG , μSI , μI0 , μG0

� �
and the covariance matrix ϕ ¼

diag σSG , σSI , σI0 , σG0ð Þ, so we have Ψ ¼ μSG , μSI , μI0 , μG0
, σSG , σSI , σI0 , σG0

� �
and θ ¼

p2, n, γ, h, σ1, σ2, σ3ð Þ.
So, here we deal with a time-inhomogeneous NLME model with SDE describing

the glucose-insulin kinetics (see [52] for the implementation of SDE time-
inhomogeneous model) and [53] where the maximum likelihood estimation for a
time-inhomogeneous stochastic differential model of glucose dynamics was treated.
The measurements in the model Eq. (20) are assumed directly observed without
measurement errors as well as in the theoretical approach presented above.

So, we wish to estimate θ,Ψð Þ given the observations y ¼ y1, … , yM
� �

from

model Eq. (20). By using the approximated transition density (Eq. (11)), we get the
following approximated likelihood function for model Eq. (20):

L að Þ θ,Ψð Þ ¼
YM
i¼1
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We have no closed form solution to this integral, so exact estimators of θ and Ψ
are unavailable. So, we use the Laplace approximation method described in Section
2 to obtain a closed form approximation to the log-likelihood function
log L að Þ θ,Ψð Þ� �

for the model Eq. (20); then by applying the GA, we get the
approximate estimates θ̂ and Ψ̂.

3.2.1 Simulation results

We start this study with an application on artificial data generated on the intra-
venous glucose tolerance test principle (see [53] for a mathematical modeling of the
test where glucose and insulin concentrations in plasma are subsequently sampled
after an intravenous glucose injection). We generate 5000 sets of simulated artificial
data of dimension ni þ 1ð Þ �M from Eq. (20) using the Euler-Maruyama scheme
[45] with a step size of 10�3 and a set of true parameters that are chosen according to
[53, 54] representing the normal range of parameters values to simulate healthy
subjects (without diabetes), with M being the number of units and ni being the
number of observations or repeated measurements collected on each unit i.

For each data from 5000 generated data sets, we estimate θ,Ψð Þ by applying the
proposed method. We first assume that the number of repeated measurements
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The insulin sensitivity is defined by combining the two rates p3 and p2 as SI ¼
p3=p2, representing insulin’s ability to increase the net glucose utilization [51].

Finally, the stochastic minimal model under the Itô sense re-parameterized by
SG and SI can be rewritten as:
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where Yi tð Þ ¼
G tð Þi
X tð Þi
I tð Þi

0
B@

1
CA and Σ is the diagonal diffusion matrix which contains

the unknown constants σ1, σ2, and σ3. The parameters SiG, p2, S
i
I, n, γ, h,G

i
0 and Ii0 are

unknown in the model and will be estimated. The parameters SiG, S
i
I, Ii0 and Gi

0 are
assumed random, because they represent individual parameters that change from
an individual to another. Each person has its own insulin sensitivity SiI which allows
to know if the cells of his body react correctly or not to the insulin and if the insulin
produced by the pancreas is sufficient or not, which can make some people with
T2D and others without diabetes. Also, for glucose effectiveness SiG, which repre-
sents the glucose’s own ability to be eliminated independently of insulin, it is unique
to each individual and changes from a person to another, as well as for the mea-
surement of glucose and insulin concentration. For the rest of the parameters, we
consider them fixed since they describe the common side of the glucose-insulin

Figure 3.
At first, glucose and insulin concentrations in the blood are described by two sets of differential equations (see
[50]); at a rate p1, glucose leaves and enters the glucose space in proportion to the difference between the plasma
glucose concentration G(t) and the basal plasma concentration Gb that represent the known pre-injection
glucose level for each individual. Therefore, the parameter p1 represents the glucose’s own ability to be
eliminated in muscles, liver, and tissues independently of insulin which is called glucose efficiency and denoted
by SG. Then, the glucose disappears from the glucose space at a rate proportional to insulin concentration in the
insulin compartment X tð Þwhich represents the dynamic of insulin response according to the two rates p2 and p3.
These two parameters represent, respectively, the decreased glucose absorption capacity in tissues and its
increased insulin dependency. For insulin secretion I(t), it is secreted by the pancreas independently of the
glucose concentration, and proportional to a rate n to its own level already in the body and to the glucose level
deferred from a threshold h at a rate γ when G tð Þ is above h, the insulin secretion does not only depend on the
hyperglycemia level but also to the time spent since glucose injection.
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process for the entire population (all individuals). So, we have the following ran-
dom effect vector bi ¼ SiG, SiI, Ii0, Gi

0

� �
, and we assume that:
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Random effects are assumed to be independent with a multinormal joint density
function, with the mean ϑ ¼ μSG , μSI , μI0 , μG0

� �
and the covariance matrix ϕ ¼
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� �
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So, here we deal with a time-inhomogeneous NLME model with SDE describing

the glucose-insulin kinetics (see [52] for the implementation of SDE time-
inhomogeneous model) and [53] where the maximum likelihood estimation for a
time-inhomogeneous stochastic differential model of glucose dynamics was treated.
The measurements in the model Eq. (20) are assumed directly observed without
measurement errors as well as in the theoretical approach presented above.
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We have no closed form solution to this integral, so exact estimators of θ and Ψ
are unavailable. So, we use the Laplace approximation method described in Section
2 to obtain a closed form approximation to the log-likelihood function
log L að Þ θ,Ψð Þ� �

for the model Eq. (20); then by applying the GA, we get the
approximate estimates θ̂ and Ψ̂.

3.2.1 Simulation results

We start this study with an application on artificial data generated on the intra-
venous glucose tolerance test principle (see [53] for a mathematical modeling of the
test where glucose and insulin concentrations in plasma are subsequently sampled
after an intravenous glucose injection). We generate 5000 sets of simulated artificial
data of dimension ni þ 1ð Þ �M from Eq. (20) using the Euler-Maruyama scheme
[45] with a step size of 10�3 and a set of true parameters that are chosen according to
[53, 54] representing the normal range of parameters values to simulate healthy
subjects (without diabetes), with M being the number of units and ni being the
number of observations or repeated measurements collected on each unit i.

For each data from 5000 generated data sets, we estimate θ,Ψð Þ by applying the
proposed method. We first assume that the number of repeated measurements
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collected on each unit is constant ni ¼ m and Δi
j ¼ Δ for all 1≤ i≤M and 1≤ j≤ ni;

then we apply the GA after choosing the good algorithm parameters (N, EN, SR, CP,
MP), and we get 5000 sets of parameters estimates. We repeat this for large and small
data with different possibilities of repetition of the experiment m,Mð Þ ¼
40, 60ð Þ; 40, 10ð Þ and 10, 20ð Þ; for each parameter the sample mean and standard
deviation are reported in Table 2. The simulation study on small data is treated in
order to see if the size of the sample influences on the results and if the number of
measures taken over time has a negligible effect or not, in other words, to see if it is
possible to select only the essential measuring moments without repeating the mea-
surements several times to well simulate a subject. We treat this issue in relation to
our model and its study context, since in epidemiology the availability of data (mea-
surements) at any point of time is an interesting constraint. We note that quantities
of Gb and Ib are randomly simulated from the normal range of healthy subjects.

In Table 2, we report the results obtained on large and small data by maximizing
Eq. (22) using the GA. We notice that, for the case of the large data, the true values

True
values

(M,m) Mean and (Std)

p2 n γ h p̂2 n̂ γ̂ ĥ

0.074 0.10 0.0007 90 (40,60) 0.0737
(0.0014)

0.100
(0.0013)

0.00073
(2.02 � 10�4)

89.08
(0.031)

(40,10) 0.0784
(0.0059)

0.209
(0.0295)

0.00068
(2.54 � 10�4)

91.34
(0.712)

(10,20) 0.0794
(0.0402)

0.156
(0.046)

0.00054
(0.0016)

62.11 (1.13)

σ1 σ2 σ3 σSG σ̂1 σ̂2 σ̂3 σ̂SG

0.01 0.06 0.03 0.006 (40,60) 0.009
(0.0012)

0.0616
(0.0011)

0.0343
(0.0027)

0.0061
(0.00010)

(40,10) 0.014
(0.0023)

0.0708
(0.0060)

0.0340
(0.0035)

0.0073
(0.00030)

(10,20) 0.015 (0.0031) 0.0938
(1.0196)

0.0480
(0.0108)

0.0067
(0.0006)

σSI σI0 σG0 μSG σ̂SI σ̂I0 σ̂G0 μ̂SG

0.000025 46 50 0.03 (40,60) 0.000021
(3 � 10�6)

44.98
(1.25)

45.96 (2.11) 0.0315
(0.0007)

(40,10) 0.000029
(4.4 � 10�6)

43.94
(1.75)

45.16 (2.53) 0.0349
(0.0036)

(10,20) 0.000016
(0.8 � 10�5)

41.09
(2.82)

44.64 (3.07) 0.0178
(0.0051)

μSI μI0 μG0
μ̂SI μ̂I0 μ̂G0

0.0002 95 320 (40,60) 0.00021
(1.2 � 10�6)

94.20
(1.12)

321.2 (1.07)

(40,10) 0.00025
(1.6 � 10�6)

92.05
(2.25)

318.6 (3.11)

(10,20) 0.00037
(1.35 � 10�5)

122.51
(2.51)

281.5 (4.88)

Table 2.
Approximated maximum likelihood estimates and standard deviation from simulations of model Eq. (20),
using the approximated transition density Eq. (11) with large and small DATA.
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of the parameters are well identified with the exception of some in which, in all the
simulations and samples, the true value does not belong to the estimated confidence
interval, such as σSI , σI0 , and σG0 ; nevertheless, the results are more satisfactory
when the sample size M is large for all parameters. As mentioned before, we cannot
ignore the limitations of this method, and the results could be improved by elimi-
nating these limits and improving this approach, but for the given assumptions and
tools, we can say that the results are still satisfactory even for a sample of M ¼ 10
with 20measures taken on each subject. So, we can conclude that we can rely on the
results obtained from small samples with a small number of measurement repeti-
tions of at least 20 observations. In addition, although we can use a relatively small
number of measurements, we need to know how to choose the time points to
perform the measurements in the blood, as this could, physiologically, affect
selected observations and results. Thus, it is specified here that the essential task is
to know how to choose the good moments of measurement after the injection, even
in small numbers, chosen according to medical knowledge. Figure 4 shows that, in
the case of M;mð Þ ¼ 40; 60ð Þ, the empirical distribution of the most approximated
estimates seems to be reasonably close to a normal distribution.

Finally, from this simulation study where we have considered two SDME
models, we can conclude that the parameters values of the models appear to be
correctly identified using the proposed approach based on the Risken approxima-
tion to approximate the transition density of a stochastic process.

4. Conclusions

In this work, we have proposed a procedure to estimate the parameters of a
mixed effects model containing stochastic differential equations, known by the
SDME models, by proposing an approach to approximate its likelihood function to
obtain the MLEs. This method has been evaluated by simulation studies on two
SDME models in epidemiology: the two-dimensional Ornstein-Uhlenbeck process
and stochastic minimal model. In fact, in models with SDEs instead of ODEs with
random effects, the estimation of parameters is still not obvious even for one
individual (one trajectory) because of the difficulties in deriving the transition
densities, and difficulties become more interesting in using the population approach
that treats the entire population simultaneously. The derivation of the exact density

Figure 4.
SMM: empirical distribution of population parameter estimates obtained using (18) for (M, m) = (40,60).
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collected on each unit is constant ni ¼ m and Δi
j ¼ Δ for all 1≤ i≤M and 1≤ j≤ ni;

then we apply the GA after choosing the good algorithm parameters (N, EN, SR, CP,
MP), and we get 5000 sets of parameters estimates. We repeat this for large and small
data with different possibilities of repetition of the experiment m,Mð Þ ¼
40, 60ð Þ; 40, 10ð Þ and 10, 20ð Þ; for each parameter the sample mean and standard
deviation are reported in Table 2. The simulation study on small data is treated in
order to see if the size of the sample influences on the results and if the number of
measures taken over time has a negligible effect or not, in other words, to see if it is
possible to select only the essential measuring moments without repeating the mea-
surements several times to well simulate a subject. We treat this issue in relation to
our model and its study context, since in epidemiology the availability of data (mea-
surements) at any point of time is an interesting constraint. We note that quantities
of Gb and Ib are randomly simulated from the normal range of healthy subjects.

In Table 2, we report the results obtained on large and small data by maximizing
Eq. (22) using the GA. We notice that, for the case of the large data, the true values

True
values

(M,m) Mean and (Std)

p2 n γ h p̂2 n̂ γ̂ ĥ
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(0.0014)
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0.000025 46 50 0.03 (40,60) 0.000021
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(0.0007)
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of the parameters are well identified with the exception of some in which, in all the
simulations and samples, the true value does not belong to the estimated confidence
interval, such as σSI , σI0 , and σG0 ; nevertheless, the results are more satisfactory
when the sample size M is large for all parameters. As mentioned before, we cannot
ignore the limitations of this method, and the results could be improved by elimi-
nating these limits and improving this approach, but for the given assumptions and
tools, we can say that the results are still satisfactory even for a sample of M ¼ 10
with 20measures taken on each subject. So, we can conclude that we can rely on the
results obtained from small samples with a small number of measurement repeti-
tions of at least 20 observations. In addition, although we can use a relatively small
number of measurements, we need to know how to choose the time points to
perform the measurements in the blood, as this could, physiologically, affect
selected observations and results. Thus, it is specified here that the essential task is
to know how to choose the good moments of measurement after the injection, even
in small numbers, chosen according to medical knowledge. Figure 4 shows that, in
the case of M;mð Þ ¼ 40; 60ð Þ, the empirical distribution of the most approximated
estimates seems to be reasonably close to a normal distribution.

Finally, from this simulation study where we have considered two SDME
models, we can conclude that the parameters values of the models appear to be
correctly identified using the proposed approach based on the Risken approxima-
tion to approximate the transition density of a stochastic process.

4. Conclusions

In this work, we have proposed a procedure to estimate the parameters of a
mixed effects model containing stochastic differential equations, known by the
SDME models, by proposing an approach to approximate its likelihood function to
obtain the MLEs. This method has been evaluated by simulation studies on two
SDME models in epidemiology: the two-dimensional Ornstein-Uhlenbeck process
and stochastic minimal model. In fact, in models with SDEs instead of ODEs with
random effects, the estimation of parameters is still not obvious even for one
individual (one trajectory) because of the difficulties in deriving the transition
densities, and difficulties become more interesting in using the population approach
that treats the entire population simultaneously. The derivation of the exact density

Figure 4.
SMM: empirical distribution of population parameter estimates obtained using (18) for (M, m) = (40,60).
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is not always possible for a stochastic and continuous process in an SDME model, so
the search for an approximation of this density is an important step and requires an
expensive calculation. This task is very interesting to give good results with good
statistical properties of the estimators obtained by maximizing the likelihood func-
tion. In this work, the proposed estimation method has been applied to
multidimensional and nonlinear SDME models with many random parameters nor-
mally distributed that can be extended to random parameters of any distribution.

So, an approximation of the transition density P að Þ
Y is obtained in a closed form using

the Risken approximation for the formal solution of the Fokker-Planck equation
proposed by Risken [34], and then the approximated likelihood is obtained using
the Laplace approximation method and optimized using the genetic algorithm;
these calculation procedures can be obtained using any numerical calculation soft-
ware or with symbolic computing capabilities.

The classical inference of SDME models implies the problem of the numerical
evaluation of the integral for the given random effects in the likelihood function,
which becomes complicated especially when the model contains more than two
random parameters. In the literature, several methods have been proposed and
tested for the approximation of the integral (see references in the introduction) and
the following examples: [8] which proposes the Gaussian quadrature method to
solve the integrals for the case of an SDME models with a single random effect and
[20] where the study was revised for a general case with several random parameters
using the Laplace approximation to compute the integral in Eq. (4) and Eq. (6)
numerically. For the mixed effects framework, see [3, 16, 55, 56]. In the case of
using the Laplace method, as in this chapter, the calculation of the Hessian matrix
can be done analytically when it is possible, as the examples in Section 2, or with
the help of a symbolic calculus software or the automatic differentiation (AD)
tools [57].

The results of simulation studies are satisfactory and can be obtained either by
using moderate values for the number of experimental units M and of observations
n taken for each experimental unit or by using a small sample size but with a
number of measurements taken for each subject of 10 at least; this is relevant for
applications where large sets of data are not available, such as biomedical applica-
tions where the mixed effect theory is widely applied.

The advantages of this approach, compared to those proposed in the literature
for multidimensional SDME models with more than one random parameter [26],
are that the computation of the approximate density is very easy and does not
require a lot of time to calculate it or to program it in a software; the only task that
can be time-consuming is in the optimization step to search for the optimum
solution of the likelihood function, and also the proposed method is effective even
with large data with a MATLAB program on a common PC (Intel Pentium IV
3.0 GHz with 512 MB of RAM). Nevertheless, the method suffers some limitations,
for example, when the conditions to use Eq. (11) are not verified when, e.g., the
inverse of the diffusion term does not exist and when, in certain cases, it is not
obvious to derive the gradients and Hessians terms. Another limitation is that
measurement errors are not considered in this work, and for a good stochastic
version, it will be better to include noise on process increments and noise on
observations that may be significant compared to system noise. These limitations
may provide a perspective towards a more elaborate extension of the statistical
study for SDME models, particularly in the field of epidemiology.

In conclusion, in this work, we proposed a method of parameter estimation for a
mixed effects models with SDEs proposing an approximation method for the tran-
sition density in the case when it cannot be obtained in a closed form, with an
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approximation method of integral computation for the case of an SDME model with
several random parameters. We have treated two examples to illustrate the effec-
tiveness of this approach using computer tools. Indeed, we believe that this type of
models is very interesting and provides a powerful and flexible modeling approach
for repeated measurement studies such as biological and pharmacokinetic/pharma-
codynamic and financial studies, as they combine the good characteristics of mixed
effects and stochastic increments in intra-subject dynamics for a good modeling of a
phenomenon.
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is not always possible for a stochastic and continuous process in an SDME model, so
the search for an approximation of this density is an important step and requires an
expensive calculation. This task is very interesting to give good results with good
statistical properties of the estimators obtained by maximizing the likelihood func-
tion. In this work, the proposed estimation method has been applied to
multidimensional and nonlinear SDME models with many random parameters nor-
mally distributed that can be extended to random parameters of any distribution.

So, an approximation of the transition density P að Þ
Y is obtained in a closed form using

the Risken approximation for the formal solution of the Fokker-Planck equation
proposed by Risken [34], and then the approximated likelihood is obtained using
the Laplace approximation method and optimized using the genetic algorithm;
these calculation procedures can be obtained using any numerical calculation soft-
ware or with symbolic computing capabilities.

The classical inference of SDME models implies the problem of the numerical
evaluation of the integral for the given random effects in the likelihood function,
which becomes complicated especially when the model contains more than two
random parameters. In the literature, several methods have been proposed and
tested for the approximation of the integral (see references in the introduction) and
the following examples: [8] which proposes the Gaussian quadrature method to
solve the integrals for the case of an SDME models with a single random effect and
[20] where the study was revised for a general case with several random parameters
using the Laplace approximation to compute the integral in Eq. (4) and Eq. (6)
numerically. For the mixed effects framework, see [3, 16, 55, 56]. In the case of
using the Laplace method, as in this chapter, the calculation of the Hessian matrix
can be done analytically when it is possible, as the examples in Section 2, or with
the help of a symbolic calculus software or the automatic differentiation (AD)
tools [57].

The results of simulation studies are satisfactory and can be obtained either by
using moderate values for the number of experimental units M and of observations
n taken for each experimental unit or by using a small sample size but with a
number of measurements taken for each subject of 10 at least; this is relevant for
applications where large sets of data are not available, such as biomedical applica-
tions where the mixed effect theory is widely applied.

The advantages of this approach, compared to those proposed in the literature
for multidimensional SDME models with more than one random parameter [26],
are that the computation of the approximate density is very easy and does not
require a lot of time to calculate it or to program it in a software; the only task that
can be time-consuming is in the optimization step to search for the optimum
solution of the likelihood function, and also the proposed method is effective even
with large data with a MATLAB program on a common PC (Intel Pentium IV
3.0 GHz with 512 MB of RAM). Nevertheless, the method suffers some limitations,
for example, when the conditions to use Eq. (11) are not verified when, e.g., the
inverse of the diffusion term does not exist and when, in certain cases, it is not
obvious to derive the gradients and Hessians terms. Another limitation is that
measurement errors are not considered in this work, and for a good stochastic
version, it will be better to include noise on process increments and noise on
observations that may be significant compared to system noise. These limitations
may provide a perspective towards a more elaborate extension of the statistical
study for SDME models, particularly in the field of epidemiology.

In conclusion, in this work, we proposed a method of parameter estimation for a
mixed effects models with SDEs proposing an approximation method for the tran-
sition density in the case when it cannot be obtained in a closed form, with an
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approximation method of integral computation for the case of an SDME model with
several random parameters. We have treated two examples to illustrate the effec-
tiveness of this approach using computer tools. Indeed, we believe that this type of
models is very interesting and provides a powerful and flexible modeling approach
for repeated measurement studies such as biological and pharmacokinetic/pharma-
codynamic and financial studies, as they combine the good characteristics of mixed
effects and stochastic increments in intra-subject dynamics for a good modeling of a
phenomenon.
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Chapter 7

The Possibilities of Modeling Petri
Nets and Their Extensions
Goharik Petrosyan

Abstract

This chapter is dedicated to several structure features of Petri nets. There is
detailed description of appropriate access in Petri nets and reachable tree mecha-
nism construction. There is an algorithm that describes the minimum sequence of
possible transitions. The algorithm developed by us finds the shortest possible
sequence for the network promotion state, which transfers the mentioned network
state to the coverage state. The corresponding theorem is proven, which states that
due to the describing algorithm, the number of transitions in the covering state is
minimal. This chapter studies the interrelation of languages of colored Petri nets
and traditional formal languages. The Venn diagram, modified by the author, is
presented, which shows the relationship between the languages of the colored Petri
nets and some traditional languages. As a result, it is shown that the language class
of colored Petri nets includes an entire class of context-free languages and some
other classes. The results obtained show that it is not possible to model the Patil
problem using the well-known semaphores P and V or classical Petri nets, so the
mentioned systems have limited properties.

Keywords: petri nets, colored petri nets, traditional languages, transition, position

1. Introduction

Modeling and designing systems cannot be imagined without the use of com-
puter technology. When creating automated systems and designing them, the
problem of choosing a formal model for representing systems first arises. From the
model through the algorithmic to the software—this is the way of modern modeling
and system design. When considering lumped physical systems, a convenient
model is a linear graph, each vertex of which corresponds to a functional or con-
structive component, and an arc to a causal relationship.

Petri nets are a mathematical apparatus for modeling dynamic discrete systems.
Their feature is the ability to display parallelism, asynchrony, and hierarchy. They
were first described by Karl Petri in 1962.

The Petri net is a bipartite oriented graph consisting of two types of vertices—
positions and transitions—connected by arcs between each other; vertices of the
same type cannot be directly connected. Positions can be placed tags (markers) that
can move around the network [1].

Petri net—a tool for modeling dynamic systems. The theory of Petri nets makes
it possible to model a system with a mathematical representation of it in the form of
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a Petri net, the analysis of which helps to obtain important information about the
structure and dynamic behavior of the simulated system.

There are several ways of practical application of Petri nets in the design and
analysis of systems. In one of the approaches, the Petri nets are considered as an
auxiliary analysis tool. Here, to build the system, generally accepted design methods
are used, then the constructed system is modeled by the Petri net, and the
constructed model is analyzed.

In another approach, the entire process of design and characterization is carried
out in terms of Petri nets. In this case, the task is to transform the representation of
the Petri net into a real information system [2].

The undoubted advantage of Petri nets is a mathematically rigorous description
of the model. This allows their analysis with the help of modern computing tech-
niques (including those with a massively parallel architecture) [1].

In modern society, reliable transmission and protection of information are of
wide use and are topical tasks. The main task of Petri nets is the modeling of
realistic systems from the point of view of optimization. Systematic study of the
properties of Petri nets and the possibility of using them for solving applied
problems, mainly problems related to models and means of parallel processing of
information.

The following issues can serve as examples of those problems that often arise in
the design and study of discrete systems:

• Does the system perform the functions for which it is intended?

• Does it function effectively?

• Can mistakes and emergencies occur in it?

• Does it have potential bottlenecks?

• Is it possible to simplify the system or replace its individual components and
subsystems with more perfect ones, without disturbing its overall functioning?

• Is it possible to design more complex systems that meet the specified
requirements from these systems, etc.?

These tasks are basically “qualitative” not quantitative.
The goal of in-depth study of various extensions of Petri nets (from the point of

view of optimization) for modeling real-time systems brings to the design of such
technical equipment where one has to minimize resource costs and time and max-
imize speed.

Colored petri net (CPN) modeling mechanisms are a convenient graphic lan-
guage for designing, modeling, and testing systems [3–7]. They are well suited for
systems that discuss interaction issues and synchronize. The colored Petri nets are
well suited for modeling distributed systems, automated production systems, and
for the design of VLSI circuit chips [8–10].

Colored Petri nets are called if the chips are the values of some types of data,
which are usually called color sets. Expressions are assigned to arcs in such a
network. When transitions are triggered, the values of expressions on arcs are
calculated. The results of the calculations are extracted from the markup of the
input transition points and placed in the marking of the output points. Transitions
may be assigned with security expressions. If the guard expression assumes the
value “false,” the transition is prohibited [3–6, 11, 12].
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The language generated by CPN allows to represent a model that is a collection
of modules, allowing you to hierarchically represent complex networks or systems.

In classical Petri nets, the tokens do not differ from each other; they are color-
less. In colored Petri nets, a position can contain chips that are of arbitrary complex-
ity, such as lists, etc., that allow you to simulate more reliable models [8–10, 13].

2. The algorithm description of the shortest possible sequence of
transitions in petri nets

To build models of discrete systems, it needs various components of the system
with abstract operations: switching the transition from one state to another; the
action of a program operator, machine, or conveyor; interruptions in the operating
system; phase completion in the project; etc. The same system can work differently
under different conditions, generating many processes that will bring nondeter-
ministic work. In real systems, cases occur at certain periods and last a certain time.
In synchronous models of discrete systems, events are correctly associated with
certain pauses, moments during which all components simultaneously change the
state of the system, changing the state of the system.

The modeling approach has several drawbacks when dealing with large systems.
To make the model look impressive, first of all, with every change, the system

must take into account all the components of its general condition.
Secondly, with the above approach, information in systems disappears between

random links.
Thirdly, the so-called asynchronous systems can cause undefined events at time

intervals.
Petri nets and the above types of models are called asynchronous.
Causal relationships make it possible to more clearly describe the structural

features of the system.
Asynchronous models of nonformal description of the case, in particular, Petri

nets, must involve relationships of time (early, late, not at the same time, etc.),
when it is convenient or accepted, but they represent a causal relationship. Great
interplay of asynchronous systems, typically, has a complex dynamic structure.

The relationship between the two will be described more clearly if not immedi-
ate contacts are marked, or cases and situations in which the case can be realized. In
this case, the conditions of implementation of the system of global situations are
formed in the named local operations.

The term has its capacity. The term is not fulfilled (capacity is equal to 0), the
term is fulfilled (capacity is equal to 1), and the term is fulfilled in n times (capacity
is equal to n, where n- is a positive integer).

Most systems are suitable as discrete structures that consist of two elements:
type of events and terms. Cases and terms in Petri nets, sets that do not intersect
with each other, respectively, are called positions and transitions. Transitions are
vertical lines and places with circles in a graphical representation of Petri nets [1, 2].

2.1 The relationship of petri nets, reachable states, and reachable trees

Definition 1: Petri nets are M C, μð Þ, where C ¼ P,T, I,Oð Þ is the network
structure and μ is the network condition. P is positions and T is transitions, which
are finite sets. I : T ! P∞,O : T ! P∞ are input and output functions, respectively,
where P∞ are all possible multisets (repetitive elements) of P. μ : P ! N0 is the
function of condition, where N0 ¼ 0, 1,⋯f g is the set of integers and included 0.
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Now, we will define a function that determines the number of elements in their
entering numbers in the collection [8]. X element enters into collection of B, which
we will appoint as # X,Bð Þ (called: X number in B). If we limit the number of
elements in the collection so that 0≤# X,Bð Þ≤ 1, then we will reach the idea of the
set. Since # X, Bð Þ function determines the X element entering collection of B, it
follows that # X, Bð Þ≥0, the grouping of all the X and B. X element of the B
collection, if # X, Bð Þ>0, i.e. X ∈B,: Identically, if # X, Bð Þ ¼ 0, then X ∉ B:

Let us set empty collection of ∅, which has members (i.e., all X : # X,Bð Þ ¼ 0).
∣B∣ is the capacity of the entire number of elements entering B collection:

∣B∣ ¼
X
X

# X,Bð Þ:

Saying net state, we will understand the following:

μ P1ð Þ, μ P2ð Þ, … , μ Pnð Þð Þ, n ¼ ∣P∣,P ¼ P1, … ,Pnf g

Suppose we have M ¼ C, μð Þ:
We will say that in μ state tj ∈T transition is allowed to implement if for

∀Pi ∈ I tj
� �

there is

μ Pið Þ≥# Pi, I tj
� �� �

:

Suppose in μ state tj transition is allowed to implement and it is actually acted. In
this case the net will appear in its new state, μ0, which is solved in the following way:

∀Pi ∈P, μ0 Pið Þ ¼ μ Pið Þ � # Pi, I tj
� �� �þ # Pi,O tj

� �� �

Let us name R C, μ0ð Þ as the reachable state set:

1.μ0 ∈R C, μ0ð Þ,

2. If μ0 ∈R C, μ0ð Þ and ∃tj ∈T have transition in the way that δ μ0, tj
� � ¼ μ”, then

μ00∈R C, μ0ð Þ.

3.Other states do not belong to R C, μ0ð Þ. The R C, μ0ð Þ can be infinite

μ” marking covers μ0 marking if

μ00≥ μ0:

First, build a reachability tree. Then you need to look for the peak as
follows. If there is no such peak, then the marking is not covered by any achievable
marking, if it is located inside and gives an accessible marking that covers [14–16].

We construct the reachability tree of Petri nets in Figure 1. The state of this
network is (1101), which shows the presence of tokens in the network at this
moment. Tokens shown in Figure 1, which are depicted with small dots, correspond
to the availability of resources. The network state changes due to the movement of
tokens.

Let the states correspond to the vertices and transitions to the sides. The root
corresponds to the first state of the network.

Figure 1 corresponds to Figure 2, in which the reachable tree is infinite. To
make the tree finite, we impose restrictions. If any peak is blocked, we will call it a
terminal. If there is a state in any peak and there is another peak in the tree with the
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Figure 1.
An example of petri nets. The way in the tree.

Figure 2.
The petri net reachable infinite tree.
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same state that has already been developed, then we will call the new peak repeated
and will not develop it.

If there is a path like / ** / in the tree, then the path through the second peak may
repeat, and the states grow. Let us introduce the idea of infinite much as ω:

ω≥ω, ωþ a ¼ ω, and ω� a ¼ ω, where a ¼ const: for example, instead of (5,⋯),
we will write ω,⋯ð ). In this case the tree will become as finite, and we will have loss
of information [2].

Let us give several definitions, which will be used in the entire work.
Definition 2. A peak is called a boundary if it is in a processing state.
Definition 3. The peak is called a terminal if it does not contain a subtree.
Definition 4. The peak is called internal if it has already been processed.
Definition 5. The boundary peak is repeated if there is an internal peak with the

same state.
A description of the structure of the reachability tree algorithm can be seen in an

earlier published article [8].
With the help of this algorithm, we will build (as in Figure 1) the Petri net

reachable tree (see Figure 3).

2.2 The algorithm for finding the minimum number of transitions in a coverage
state

Consider the Petri net in Figure 1 and the corresponding reachable tree TT (see
Figure 3).

We note the set of states in Petri nets with P. Let T* denote the succession of
transitions from the root TT to y, the transition sequence with G the succession of
the peaks in T*.

Consider μ x½ � ¼ 0, 1, 15, 13ð Þ state. Let us find the y peak of this reachable tree for
which the following inequality holds: μ y½ �≥ μ x½ � .

Assume that such peaks are y1, … , ym. Let us choose one peak among the peaks
on which we will use the algorithm.

For every yi peak, we profile μ yi
� �

.
Suppose in μ yi

� �
there is ω in μ yi

� �
i1, … , μ yi

� �
ik. For each μ yi

� �
we count

S ¼Pik
j¼i1zj tð Þ, where.

zj tð Þ ¼ # Pj, I tkð Þ� �
,∀tk ∈T ∗ :

We take the yi for which the S is the minimum. If for any peak, these numbers
are equal, then we take the yi in which T ∗ height is the minimum.

For example, μ x½ �, we will cover the following peak:

• y1 μ y1
� � ¼ 1, 1,ω,ωð Þ, T ∗ ¼ t2, t3f g.

• y2 μ y2
� � ¼ 0, 2,ω,ωð Þ, T ∗ ¼ t2, t3, t1f g.

• y3 μ y3
� � ¼ 1, 1,ω,ωð Þ, T ∗ ¼ t2, t3, t2f g.

• y4 μ y4
� � ¼ 1, 1,ω,ωð Þ, T ∗ ¼ t2, t3, t3f g.

• y5 μ y5
� � ¼ 1, 1,ω,ωð Þ, T ∗ ¼ t3, t2, t3f g.

• y6 μ y6
� � ¼ 0, 2,ω,ωð Þ, T ∗ ¼ t3, t1, t2, t3f g.
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• S y1
� � ¼ 1 S y4

� � ¼ 2

• S y2
� � ¼ 2 S y5

� � ¼ 2

• S y3
� � ¼ 1 S y6

� � ¼ 3

We found out that in minimum number, S y1
� � ¼ S y3

� �
, T ∗ y1

� ��� �� ¼ 2, and
T ∗ y3
� ��� �� ¼ 3 ) need to take a y1 peak. Choosing the appropriate peak coverage, we

use the algorithm. Let it be a covering peak.

1.We choose the path connecting the root of the tree withy and T ∗ ; for our
example t2, t3 let us mark t0i ¼ tj,1≤ i≤ T ∗j j, and tj ∈T ∗ . We get t01 ¼ t2, and
t02 ¼ t3.

2.For each chosen transitions, t0i is corresponded with ai numbers in the
following way:

• If for t0i transition ∃1≤ j≤ Pj j in the way thatδ μ y0½ �, t0i
� �

j ¼ ω, y0 ∈G then

ai ¼ μ x½ �j in which case t0i transition corresponds with Pj position.

• If for the same t0i transition ∃1≤ k 6¼ j≤ Pj j in the way that δ μ y0½ �, t0i
� �

k ¼ ω,

then ai ¼ max μ x½ �j, μ x½ �k
n o

.

Moreover, for t0i transition we will correspond Pj and Pk positions. If instead of

t0i σ ¼ t0i1 … t0ik t0ik ¼ t0i
� �

for ∃1≤ j≤ Pj j in the way that δ μ y0½ �, σð Þj ¼ ω, y0 ∈G, then we

will correspond ai with σ and ai ¼ μ xð Þj.
In this case, we will correspond σ with Pj position. In the opposite case, if there is

no t0i transition for 1≤ j≤ Pj j in the way that δ μ y0½ �, t0i
� �

j ¼ ω, then ai ¼ 1, in which

case there is no related position for t0i.

Figure 3.
The petri net reachable tree.
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same state that has already been developed, then we will call the new peak repeated
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For example:

• a1 ¼ 13 a2 ¼ 15

• t01 � P4 t02 � P3.

Now, we will define the following action for ai:

ai ¼
ai � n
m

, if ai � nð Þmodm ¼ 0

ai � n
m

h i
þ 1, if ai � nð Þmodm 6¼ 0

8><
>:

where n to t0i or in σ corresponding Pj position, the number of tokens are in their
first position, and m from t0i or σ to the number of the arrows in the state:
# Pj,O t0i

� �� �
.

If for t0i transition P1,⋯,Pk positions correspond, then we will take the P1

position for which μ x½ �1 ¼ ai. In this case n ¼ μ0 P1½ �, and m ¼ # Pj,O t0i
� �� �

.
If there is no corresponding position for t0i transition, then we will leave ai to

remain the same.
For example:

a1 ¼ a1 � 1ð Þ=1 ¼ 13� 1ð Þ=1 ¼ 12

a2 ¼ a2 � 0ð Þ=1 ¼ 15� 0ð Þ=1 ¼ 15:

Let us mark b1i ¼ ai. For example:

b11 ¼ a1 ¼ 12

b12 ¼ a2 ¼ 15:

2.2.1 Cumulative move

We will take T ∗ last transition or the succession of transition, fix it and mark
as tα.

tα corresponding b1i is marked as α which we also fix. The fixed bji does not
change in the next moves.

We consider all T ∗ items from the right to left, starting from tα.
Suppose t0k is the considered transition or the transition succession and P1 is the

corresponding position of t0k.

If P1 ∈ I tαð Þ, then t0k corresponding bji in the next move will get the following

value: bjþ1
i ¼ bji þ α � l, where l from P1 position tα is the number of arrows.

Suppose t0k corresponds with P1,⋯,Pl positions. If ∃1≤ j≤ l in the way

thatPj ∈ I tαð Þ, then bjþ1
i ¼ bji þ α � l, where l ¼ # Pj, I tαð Þ� �

. In the opposite case,

bjþ1
i ¼ bji.
After that, we fix tα the previous transition action and denote it as tα.
We denote the new tα corresponding to bji as α and go to the second step again.
It follows that for each transition or sequence of transitions, there will be a

correspondingly fixed number bji, which will mark the number of implementation
of the transition or sequence of transitions. For example:
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t01 t02
12 15

27 15

The above shows that the t01 transition must be implemented for 27 times and t02
transition for 15 times.

Given our denote, we get that state μ x½ � ¼ 0, 1, 15, 13ð Þ covers state μ y½ � ¼
1, 1,ω,ωð Þ: To achieve the goal, we need to implement the t2 transition 27 times and
the t3 transition for 15 times.

Let us assign ts yð Þ ¼Pl
i¼1b

j
i, l ¼ T ∗ yð Þj j. Which means ts yð Þ is y the number of

enabled transitions.
Lemma 1. Suppose there are y1 and y2 peaks in the way that

μ y1
� �

≥ μ x½ �&μ y2
� �

≥ μ x½ �. In that case ts y1
� �

≤ ts y2
� �

.
Proof: We have.

S yð Þ ¼ Pik
j¼i1

zj tð Þ, where zj tð Þ ¼ # Pj, I tkð Þ� �
,∀tk ∈T ∗ .

ts yð Þ ¼P
k

i¼1
b0i, where k ¼ T ∗ y1

� ��� ��.

In this number some b0is are equal to 1. Without breaking the sense we will
suppose that the first d0 number of b0is is equal to 1. We will get

ts y1
� � ¼ d0 þ

Xk

i¼d0þ1

b0i ¼ d0 þ
Xk

i¼d0þ1

μ x½ �l þm0 � b0� �

We have ts y2
� � ¼Pk0

i¼1b
00
i , where k0 ¼ T ∗ y2

� ��� ��.
Suppose for b00i s, number of d00 is equal to 1. Moreover d00 ≤ d0, as S y1

� �
< S y2
� �

,

ts y2
� � ¼ d00 þ

Xk0

i¼d00þ1

μ x½ �l þ n00i � b00
� �

≥ d0 þ
Xk

i¼d0þ1

μ x½ �l þ n0i � b0
� � ¼ ts y1

� �

) ts y1
� �

≤ ts y2
� �

The lemma is proven.
Lemma 2. Suppose y1 and y2 are covering peaks. There is S y1

� � ¼ S y2
� �

& T ∗
1

�� ��
< T ∗

2

�� �� : in this case ts y1
� �

< ts y2
� �

.
Proof:

ts y1
� � ¼ d0 þ

Xk

i¼d0þ1

b0i ¼ dþ
Xk

i¼d0þ1

μ x½ �l þ n0i � b0
� �

<
d0 < d00

d00 þ
Xk0

i¼d00þ1

μ x½ �l þ n00i � b00
� �

¼ ts y2
� �

:

The lemma is proven.
Theorem. Through the abovementioned number of covering state, transition

algorithm is in its minimal state.
Proof: Let y be the covering peak in our algorithm and t01,⋯, t0k the succession of

transitions. It must be shown that the number of t01,⋯, t0k move is in minimal state.
For this we need to show that �∃y0 covering peak has less number of transitions than
the number of t01,⋯, t0k.
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Let us consider two cases:

1.y 6¼ y0

Suppose the transition number of y0 is less than t01,⋯, t0k implementation number.
According to the algorithm: S yð Þ< S y0ð Þ or

S yð Þ ¼ S y0ð Þ& T ∗
1

�� ��< T ∗
2

�� ��:

If S yð Þ< S y0ð Þ ) according to Lemma 1: ts yð Þ≤ ts y0ð Þ. We’ve come into
a controversy.

If S yð Þ ¼ S y0ð Þ& T ∗
1

�� ��< T ∗
2

�� ��) according to Lemma 2: ts yð Þ≤ ts y0ð Þ. We’ve come
into a controversy.

2.y ¼ y0

Suppose succession transitions of y0 is s1,⋯, sr. As the tree does not contain any
cycle, y ¼ y0 ) t01,⋯, t0k and s1,⋯, sr are the same ) ts yð Þ≤ ts y0ð Þ. The theorem is
proven.

2.3 Conclusion

The proven theorem and research reveal some important features of Petri nets
from the point of view of optimization, that is, if the idea of Petri nets is used in
technical devices, then the idea of sequential transitions save resources and time.

3. Interrelation of languages of colored Petri nets and some traditional
languages

Definition. The mathematical definition of colored Petri net: CPN is
a nine-tuple CPN ¼ Σ,P,T,A,N,C,G,E, Ið Þ, where:

P
is a finite set of non-empty types called color sets [17].

P is a finite set of places which are depicted as ovals/circles.
T is a finite set of transitions which are depicted as rectangles.
A is a finite set of arches which are depicted as directed edges; moreover.

P∩T ¼ P∩A ¼ T ∩A ¼ ∅:

N is a node function, A ! P� T ∪T � P.
C is a color function, C : P ! Σ.
G is a guard function. It is defined from T into expressions such that

t∈T : Type G tð Þð Þ ¼ B&Type Var G tð Þð Þð Þ⊆Σ½ �:
E is an arc expression function, which is defined as follows:

∀a∈A : Type E að Þð Þ ¼ C pð ÞMS&Type Var E að Þð Þð Þ⊆Σ
� �

,

I is an initialization function [3–6, 9, 10],

∀p∈P : Type I pð Þð Þ ¼ C pð ÞMS

� �
:
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The distribution of tokens, called marking, determines the state of the simulated
system. The dynamic behavior of CPN is due to the triggering of a transition that
transfers the system from one state to another. A transition is enabled if the associ-
ated arc expressions of all input arches can be evaluated as a multi-set, which is
compatible with the current tokens in corresponding input places, and its guard is
satisfied. After the transition is triggered, tokens are removed from the input places,
respectively, by the specified expression of the arches of all incoming arches, and
tokens are placed in the output places, respectively, by the specified expressions of
the outgoing arches [3–6, 17].

3.1 The example of modeling consumers’ process with CPN

Let us suppose that there are two processes of producers and consumers [1, 9].
The following picture shows the process diagram (Figure 4).
There is a distribution problem in the described system. To use the channel, the

pair P1, C1ð Þ must have priority toward P2, C2ð Þ in the sense of using the channel.
This is described as follows: while the buffer is not empty, the channel cannot report
data from the buffer to the consumer. It is impossible to solve this problem with the
help of classical Petri nets, since it is permissible in nature. The proof of this fact is
described in the literature [1].

To solve that problem, it is needed to extend Petri net’s several properties in such
a manner that the proposed properties are headed toward the opportunity of
checking the zero in Petri nets [13].

3.2 Declaration

Color E = {e};
Color Control = {0;1};
Color S = product E*Control;
Var ct:Control;

The CPN (Figure 5) is the model of the solved problem of priority usage
[17, 19].

Figure 4.
The consumers’ process with the common usage and buffer is an action.
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3.3 The modeling of context-free languages with colored Petri nets:
the diagram of interrelation of colored Petri nets and traditional languages

It is known that the class of regular languages is one of themost studied simple classes
of formal languages and any regular language is the language of Petri nets [2, 18].

There are context-free languages that are not languages of Petri nets. Such
examples of the context-free languages are ωωR=ω∈Σ ∗� �

,L ∗ ¼ L∪LL∪LLL…

(in particular, anbn=n> 1f g).
The noted fact shows the limitation of Petri nets as a mechanism that generates

languages [2].
In Petri nets one can only remember a sequence of limited length (similar to

finite automata) [2].
It is clear that Petri nets do not possess the “capacity of pushdown memory”

necessary for generating context-free languages. The relationship of the languages of
Petri nets with other classes of languages (Venn diagram) is shown in Figure 6 [2, 10].

3.4 Results

A model of the L ∗ ¼ L∪LL∪LLL… language (Klins’ star) is constructed using
colored Petri nets, in particular L ¼ anbn=n≥ 1f g.

Colored Petri net (Figure 7) generates such a language, which proves that the
colored Petri net is a more powerful tool than the classical Petri nets. The following
declaration is for the concept of data types.

Figure 5.
The modeling of consumer problem with colored petri net.
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Figure 6.
Interrelation of petri nets and traditional languages (T-0, the general type of languages; CS, context-sensitive
languages; PNL; petri net languages; CF, context-free languages; BCF, bonded context-free languages; R,
regular languages).

Figure 7.
Modeling L ∗ ¼ L∪LL∪LLL… language by colored petri net.
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The operation of the colored Petri net shown in Figure 7 is described in more
detail in the literature [3, 10].

Тhe colored Petri net (Figure 7), which is built for L ∗ ¼ L∪LL∪LLL… lan-
guage, suggests the following relationship between the languages of the colored
Petri nets with some classes of traditional languages (see Figure 8) [10].

The Venn diagram, modified by the author (Figure 8), shows the relationship
between the languages of the colored Petri nets and some traditional languages. This
fact illustrates that the language class of colored Petri nets includes an entire class of
languages without context.

4. On a solution to the cigarette smoker’s problem with colored
Petri nets

In 1971 Patil proved that P and V actions have insufficient capacity for resolving
synchronization issues. His proposed solution to model problem is called smoking
a cigarette [9].

The actions of the smokers without the coordination are as follows.
Let X be the smoker with tobacco, Y the smoker with paper, Z the smoker with

matches, and A the agent (see Table 1).
It is proven that the problem of smokers has no solution using semaphores [9].
Patil showed that there is no sequence of P and V actions to correctly solve the

problem [1, 2]. Modeling the problem using the classical Petri net, we get an
inactive network. Since all tokens in classical Petri nets are of the same type, the
ingredients will not differ from each other.

Theauthor simulatedaproblemwith thecoloredPetrinet (seeFigure9)[3–6,9, 18, 19].
The operation of the colored Petri net shown in Figure 9 is described in more

detail in the literature [9].
If we were to represent this problem using the classical Petri net, then we need

to use three transitions instead of one T transition. It also means that minimization
of the network is ensured, which implies a reduction in costs due to the reduction of
arches in positions and transitions.

Figure 8.
Interrelation of colored petri nets and traditional languages. (CPNL, language of colored petri net).

Processes AX Processes AY Processes AZ

Pick up the paper
Pick up the match
Roll the cigarette
Light the cigarette
Smoke the cigarette
Return to AX

Pick up the tobacco
Pick up the match
Roll the cigarette
Light the cigarette
Smoke the cigarette
Return to AY

Pick up the tobacco
Pick up the paper
Roll the cigarette
Light the cigarette
Smoke the cigarette
Return to AZ

Table 1.
The actions of the smokers.
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4.1 Declaration

Color INT ¼ integer;
Color U ¼ t;
Color N ¼ P;
Color Q ¼ m;
Color E ¼ Product N ∗Q OR Product U ∗Q OR Product N ∗Uf g;
Var K, lð Þ : E;
n : INT;

4.2 Conclusion

In the problem, we identify certain advantages of colored Petri net to P and V
operations and classical Petri net with the synchronization problem. The mentioned
studies allow identification of synchronization modeling opportunities with the
help of colored Petri net.
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Figure 9.
The modeling of cigarette smoker’s problem with colored petri nets.

127

The Possibilities of Modeling Petri Nets and Their Extensions
DOI: http://dx.doi.org/10.5772/intechopen.90275



The operation of the colored Petri net shown in Figure 7 is described in more
detail in the literature [3, 10].

Тhe colored Petri net (Figure 7), which is built for L ∗ ¼ L∪LL∪LLL… lan-
guage, suggests the following relationship between the languages of the colored
Petri nets with some classes of traditional languages (see Figure 8) [10].

The Venn diagram, modified by the author (Figure 8), shows the relationship
between the languages of the colored Petri nets and some traditional languages. This
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In 1971 Patil proved that P and V actions have insufficient capacity for resolving
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The actions of the smokers without the coordination are as follows.
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matches, and A the agent (see Table 1).
It is proven that the problem of smokers has no solution using semaphores [9].
Patil showed that there is no sequence of P and V actions to correctly solve the

problem [1, 2]. Modeling the problem using the classical Petri net, we get an
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Theauthor simulatedaproblemwith thecoloredPetrinet (seeFigure9)[3–6,9, 18, 19].
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detail in the literature [9].
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to use three transitions instead of one T transition. It also means that minimization
of the network is ensured, which implies a reduction in costs due to the reduction of
arches in positions and transitions.

Figure 8.
Interrelation of colored petri nets and traditional languages. (CPNL, language of colored petri net).

Processes AX Processes AY Processes AZ

Pick up the paper
Pick up the match
Roll the cigarette
Light the cigarette
Smoke the cigarette
Return to AX

Pick up the tobacco
Pick up the match
Roll the cigarette
Light the cigarette
Smoke the cigarette
Return to AY

Pick up the tobacco
Pick up the paper
Roll the cigarette
Light the cigarette
Smoke the cigarette
Return to AZ

Table 1.
The actions of the smokers.
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4.1 Declaration

Color INT ¼ integer;
Color U ¼ t;
Color N ¼ P;
Color Q ¼ m;
Color E ¼ Product N ∗Q OR Product U ∗Q OR Product N ∗Uf g;
Var K, lð Þ : E;
n : INT;

4.2 Conclusion

In the problem, we identify certain advantages of colored Petri net to P and V
operations and classical Petri net with the synchronization problem. The mentioned
studies allow identification of synchronization modeling opportunities with the
help of colored Petri net.
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Chapter 8

Line Impedance Emulator:
Modeling, Control Design,
Simulation and Experimental
Validation
Marwa Ben Saïd-Romdhane, Sondes Skander-Mustapha
and Ilhem Slama-Belkhodja

Abstract

The variation of line impedance has always been a great concern for grid
operators and industrial users. The problem is that the reliability and quality of the
supplied power are influenced by this variation. Indeed, several standards and
grid requirements fix strict rules and rigorous standards when connecting or
disconnecting from the public grid. In this context, this chapter proposes a full
study of a line impedance emulator, which includes the power design and the
control. The line impedance emulator is useful for small scale laboratories that
develop distributed energy generation. Developed line impedance emulator is based
on a three-phase power converter. For these converters, different controls are
applied, including proportional integral and resonant controllers. For the generation
of voltage reference values that correspond to expected line impedance, two
algorithms are studied, namely, trigonometric functions-based algorithm and
voltage drop-based algorithm. The theoretical study is supported by simulation and
experimental results.

Keywords: power quality, distributed energy generation, microgrid,
line impedance emulation, resonant controller

1. Introduction

Nowadays, with the tremendous increase of distributed energy generation
(DEG), the concept of power quality (PQ) has become a growing concern for grid
operators around the world [1–4]. Many research teams working on this topic
are developing small or large-scale DEG laboratories (Figure 1) [3–9] as well as
algorithms for critical situations is the grid emulator. This grid emulator is also
used to confirm the compliance with standards and different grid codes [10–13].

This chapter covers one of the functionalities of the grid emulator, which is the
line impedance emulation. Indeed, line impedance deviation can be caused by
several circumstances, such as, a remote grid fault, or a connection disconnection of
a large load in the distribution network [14].

131



Chapter 8

Line Impedance Emulator:
Modeling, Control Design,
Simulation and Experimental
Validation
Marwa Ben Saïd-Romdhane, Sondes Skander-Mustapha
and Ilhem Slama-Belkhodja

Abstract

The variation of line impedance has always been a great concern for grid
operators and industrial users. The problem is that the reliability and quality of the
supplied power are influenced by this variation. Indeed, several standards and
grid requirements fix strict rules and rigorous standards when connecting or
disconnecting from the public grid. In this context, this chapter proposes a full
study of a line impedance emulator, which includes the power design and the
control. The line impedance emulator is useful for small scale laboratories that
develop distributed energy generation. Developed line impedance emulator is based
on a three-phase power converter. For these converters, different controls are
applied, including proportional integral and resonant controllers. For the generation
of voltage reference values that correspond to expected line impedance, two
algorithms are studied, namely, trigonometric functions-based algorithm and
voltage drop-based algorithm. The theoretical study is supported by simulation and
experimental results.

Keywords: power quality, distributed energy generation, microgrid,
line impedance emulation, resonant controller

1. Introduction

Nowadays, with the tremendous increase of distributed energy generation
(DEG), the concept of power quality (PQ) has become a growing concern for grid
operators around the world [1–4]. Many research teams working on this topic
are developing small or large-scale DEG laboratories (Figure 1) [3–9] as well as
algorithms for critical situations is the grid emulator. This grid emulator is also
used to confirm the compliance with standards and different grid codes [10–13].

This chapter covers one of the functionalities of the grid emulator, which is the
line impedance emulation. Indeed, line impedance deviation can be caused by
several circumstances, such as, a remote grid fault, or a connection disconnection of
a large load in the distribution network [14].

131



The line impedance variation is able to considerably affect reactive power shar-
ing between parallel loads [15, 16], and it can also induce operation instability in
case of standalone microgrid [17, 19]. In addition, line impedance value has an
influence on the quality of voltage and line current in the point of common coupling
of the microgrid [19]. In another hand, tests introducing line impedance variation
are used for the compliance with many relevant standards especially those dealing
with anti-islanding.

This chapter explains in details the steps of the line impedance emulator design
based on power converters. Regarding line impedance emulation algorithm, refer-
ence voltage values are deduced in view of the phase shift with the input AC grid
voltage, according to the equipment under test (EUT) active and reactive power.
Presented emulator guarantee flexible tests with decoupled variation range of
impedance component.

This chapter first outlines modeling of line impedance emulator, followed by a
description of the control methodology for the overall, simulation results and
experimental validation are then developed.

2. Line impedance emulator presentation

The line impedance emulator is installed between the grid and the EUT and used
for the emulation of variable line impedance. The structure of the studied line
impedance emulator system is shown in Figure 2. It incorporates two power con-
verters joined by dc-link capacitor: an EUT side converter (EsC) and a grid side
converter (GsC). The GsC and the EsC are AC/DC and DC/AC converters, respec-
tively. To mitigate switching harmonics, an LCL filter is employed at the output of
the EsC. The EsC control aims to maintain the voltage through the LCL filter
capacitor Vc(abc) equal to the programmed references. The GsC has the intention of
regulating the system power factor (PF) and the voltage at the DC bus Vdc. As
presented in Figure 2, the line impedance emulator output Vout(abc) is equal to
Vc(abc), while its output Vin(abc) is considered comparable to the grid voltage Vg(abc).

The flowchart of the line impedance emulator process is given by Figure 3. The
first step of this flowchart consists in initializing the different functions and the
microcontroller peripherals such as the ADC, Timers and the General Purpose
Input/Output (GPIO) as well as the analog-to-digital conversion of the measured

Figure 1.
Example of a microgrid including line impedance emulators.
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voltages and currents. The next step is to control of the GsC. The objective of this
control is voltage at the DC bus regulation. In parallel with these steps, the imped-
ance emulation algorithm provides the capacitor voltage references Vc(a,b,c)

*

according to programmed impedance. Once Vdc is equal to its reference and the
capacitor voltage references Vc(a,b,c)

* are generated, the operator proceeds to the
control of the EsC. The desired line impedance is consequently achieved.

Figure 4 summarizes the different steps of the line impedance emulator design.
As mentioned, the first step consists in modeling the two power converters of the
line impedance emulator giving the system equations and transfer functions. After
that, the operator selects the appropriate control converters control in terms of
dynamic response, THD value, steady state error and sensitivity to perturbation and
parametric variation. In this chapter, the control of the line impedance emulator
converters employed resonant controllers and PI regulators. This choice is due to

Figure 2.
Power converter-based three-phase line impedance emulator.

Figure 3.
Line impedance emulator process flowchart.
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their simple use (tuning parameters and implementation), while ensuring simulta-
neously acceptable dynamic response, THD value and steady state error. Then, based
on the obtained system transfer functions, the control parameters are deduced. After
that, the operator should select the appropriate line impedance emulator algorithm. In
this chapter, two impedance emulator algorithms will be presented. The next step of
the design methodology consists in simulating the whole system including the power
converters, the control strategy and the line impedance emulation algorithm. When
the simulation results verify the proper system operation, the control will be
implemented on a digital board. The last step of the design methodology consists in
the experimental validation of the line impedance emulator.

3. Line impedance emulator modeling

The GsC power circuit single phase representation is depicted on Figure 5,
where Lg denotes the grid impedance. According to this figure, the GsC electric
equation in the abc reference frame is given by Eq. (1).

Ui ¼ Vg � Lg
dig
dt

(1)

The EsC power circuit single phase representation is given by Figure 6. Based on
this Figure, the equations related to the EsC are given by Eq. (2), Eq. (3), Eq. (4)
and Eq. (5). The obtained single phase simplified block diagram of the LCL-EsC is
depicted on Figure 7.

Figure 4.
Methodology of the design of a line impedance emulator.

Figure 5.
GsC power circuit.
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i1 ¼ Vi � Vc

sL1
(2)

i1 ¼ i2 þ ic (3)

Vc ¼ ic
sCf

(4)

i2 ¼ Vc � VE

sL2
(5)

4. Line impedance emulation control

4.1 Grid side converter control

Figure 8 shows the GsC control. It incorporates two control loops. The internal
loop controls in the abc reference frame the grid currents ig(abc) and it is based on

Figure 6.
EsC power circuit single phase representation.

Figure 7.
LCL-EsC simplified block diagram.

Figure 8.
Block diagram of GsC control.
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resonant controller. The external loop regulates, via a PI regulator, the voltage at the
DC bus Vdc and provides grid current reference on d axis igd

*. The grid current
reference on the q axis igq* is selected to have the desired PF. For the abc grid current
reference components ig(abc)*, they are obtained via the application of Park trans-
formation to igd* and igq*. In the following, the tuning of the PI and the resonant
controller parameters will be detailed.

4.1.1 Tuning of the PI regulator of the voltage at the DC bus

Based on Figure 9, the current idc at the output of the GsC is expressed as in
Eq. (6). By applying the Laplace transform to Eq. (6), Eq. (7) is obtained.

idc ¼ ic þ is ¼ C
dVdc

dt
þ is (6)

Vdc ¼ 1
Cs

idc � isð Þ (7)

Since the current idc is instantaneously equal to�ig and the current regulation loop
time constant is insignificant compared to the one of the DC bus voltage regulation
loop, Figure 9 gives simplified DC bus voltage regulation loop block diagram.

The transfer function of the PI regulator is given by Eq. (8). Based on this
equation and neglecting the load current is, the closed-loop transfer function of the
Vdc control is given by Eq. (9).

Gc sð Þ ¼ i ∗dc
ΔVdc

¼ Kpdc þ Kidc

s
(8)

Vdc

V ∗
dc
¼

Kpdc

C sþ Kidc
C

s2 þ Kpdc

C sþ Kidc
C

¼
Kpdc

C sþ Kidc
C

s2þ 2ξcωncsþ ω2
nc

(9)

The transfer function of Eq. (9) is a second-order system whose denominator
can be written in the canonical form of a second-order system given by the right-
hand side of Eq. (9). By identifying the terms of Eq. (9), the obtained transfer
function is characterized by a damping ratio ξc and a natural frequency of oscillation
ωnc that satisfy Eq. (10) and Eq. (11).

2ξcωnc ¼
Kpdc

C
(10)

ω2
nc ¼

Kidc

C
(11)

Figure 9.
DC bus voltage regulation loop simplified block diagram.

136

Numerical Modeling and Computer Simulation

Then, the form and the dynamics of the response of the DC bus voltage Vdc are
imposed by setting the natural frequency of the oscillations ωnc and a damping
coefficient ξc. Thus, the gains Kpdc and Kidc can be obtained based on equations
Eq. (12) and Eq. (13).

Kpdc ¼ 2Cξcωnc (12)

Kpdc ¼ Cω2
nc (13)

4.1.2 Tuning of the resonant controller of the grid side current

The use of the PWM makes it possible to have a fundamental of the voltage Ui

equal to its reference Ui
*. Thus, based on Eq. (1), we obtain the simplified

single-phase block diagram the grid side regulation loop given by Figure 10.
Considering Figure 10, the closed-loop system transfer function (Tcig) is given

by Eq. (14).

Tcig sð Þ ¼ ig sð Þ
i ∗g sð Þ � ig sð Þ ¼

Kpigs2 þ Kiigsþ Kpigω2
0

Lgs3 þ Kpigs2 þ Lgω2
0 þ Kiig

� �
sþ Kpigω2

0
(14)

For the synthesis of the resonant controller parameters, we consider the pole
placement method and more precisely the Naslin criterion [20–21]. The n order
polynomial of this criterion is expressed by Eq. (15).

PNaslin sð Þ ¼ n0 1þ sτ þ s2
τ2

α

� �
þ s3

τ3

α3

� �
þ ::… þ sn

τn

αn n�1ð Þ=2

� �� �
(15)

From Eq. (14), we deduce the system characteristic polynomial given by
Eq. (16).

Pig sð Þ ¼ Lgs3 þ Kpigs2 þ Kiig þ Lgω
2
0

� �
sþ Kpigω

2
0 (16)

The identification between the system characteristic polynomial Pig and the
second order Naslin polynomial makes it possible the deduction of resonant con-
troller parameters Kpig, et Kiig as shown in Eq. (17) and Eq. (18).

Kpig ¼ Lg
α2

τ
(17)

Kiig ¼ Lg
α3

τ2
� ω2

0

� �
¼ Lg α2 � 1

� �
ω2
0 (18)

Figure 10.
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resonant controller. The external loop regulates, via a PI regulator, the voltage at the
DC bus Vdc and provides grid current reference on d axis igd

*. The grid current
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dVdc

dt
þ is (6)
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Cs

idc � isð Þ (7)
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Gc sð Þ ¼ i ∗dc
ΔVdc

¼ Kpdc þ Kidc

s
(8)

Vdc

V ∗
dc
¼

Kpdc

C sþ Kidc
C

s2 þ Kpdc

C sþ Kidc
C

¼
Kpdc

C sþ Kidc
C

s2þ 2ξcωncsþ ω2
nc

(9)
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2ξcωnc ¼
Kpdc

C
(10)

ω2
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Kidc

C
(11)

Figure 9.
DC bus voltage regulation loop simplified block diagram.
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Then, the form and the dynamics of the response of the DC bus voltage Vdc are
imposed by setting the natural frequency of the oscillations ωnc and a damping
coefficient ξc. Thus, the gains Kpdc and Kidc can be obtained based on equations
Eq. (12) and Eq. (13).
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Kpdc ¼ Cω2
nc (13)
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� �
sþ Kpigω2

0
(14)
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� �
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� �
þ ::… þ sn

τn

αn n�1ð Þ=2

� �� �
(15)
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4.2 EUT side converter control

The control based on resonant controller for the EsC is depicted on Figure 11.
This control includes an external and an internal loops. The external one controls
the voltages through the filter capacitor Vc(a,b,c). The internal one controls the
inverter side current i1(a,b,c) and generates then the inverter voltages references
Vi(a,b,c). For the external loop, a resonant controller is adopted. For the internal
loop, the resonant controller is replaced by a constant gain (G) in order to ensure a
faster loop than the external one. In the following, the tuning of the resonant
controller parameters will be detailed and discussed in order to ensure good control
performances.

4.2.1 Tuning of the resonant controller of the voltage through the LCL filter capacitor

For reasons of simplification, it is assumed that the internal loop of the current is
faster than the external loop of the voltage. Thus, we can approximate it equal to the
unity by associating the PWM function. Consequently, the block diagram of the
voltage regulation loop is given by Figure 12.

Hence, the closed loop system transfer function (Tc) is given by Eq. (19).

Tc sð Þ ¼ Vc

V ∗
c
¼ a2cs2 þ a1csþ a0c

Cf s3 þ a2cs2 þ Cfω2
0 þ a1c

� �
sþ a0c

(19)

Figure 11.
Block diagram of the EsC control.

Figure 12.
Voltage regulation loop simplified block diagram.
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The method chosen for the computation of the resonant controller parameters is
based on the generalized stability criterion [22]. In this case, the n order polynomial
is expressed as in Eq. (20).

PGSC sð Þ ¼ λ sþ rð Þ
Yn
i¼1

sþ rþ jωið Þ sþ r� jωið Þ½ �

λ, r,ωi ∈ℜ; i, n∈Nf g
(20)

On the other hand, based on Eq. (19), the system characteristic polynomial Pc is
given by Eq. (21).

Pc sð Þ ¼ Cf s3 þ a2cs2 þ Cfω
2
0 þ a1c

� �
sþ a0c (21)

The identification of Pc and second order generalized stability criterion polyno-
mial allows the deduction of the resonant controller parameters as shown in
Eq. (22).

a2c ¼ 3rcλc
a1c ¼ λc 3r2c þ ω2

i

� �� Cfω
2
0

a0c ¼ λc r3c þ rcω2
i

� �

Avec λc ¼ Cf

8>>><
>>>:

(22)

4.2.2 Tuning of the gain of the current i1

The simplified internal current regulation loop block diagram is given by
Figure 13.

Hence, the transfer function of the closed-loop system Ti1(s) is given by
Eq. (23).

Ti1 sð Þ ¼ i1 sð Þ
i ∗1 sð Þ ¼

1
L
G sþ 1

¼ 1
1þ τcs

where τc ¼ L1

G
(23)

G is chosen so that the real part of the inverse of the closed-loop time constant
(1/τc) is greater than the stability margin chosen for the synthesis of the voltage
external loop in order to ensure that the internal loop is faster than the external one.

5. Line impedance emulation algorithms

In this section, two methods of the line impedance emulator algorithm synthesis
are presented: the trigonometric functions-based algorithm and the voltage
drop-based algorithm.

Figure 13.
Current regulation loop simplified block diagram.
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5.1 Trigonometric functions-based algorithm

The impedance emulation conception is based on the phasor diagram depicted
on Figure 14 According to this Figure, the apparent power S is expressed as in
Eq. (24).

S ¼ VgI ∗ ¼ Vg
Vg � Vc

Z

� � ∗

¼ Vg
2

Z
ejθ � VgVc

Z
ej θþδð Þ (24)

According to Figure 14, the reactive power Q and active power P are given by
Eqs. (25) and (26), respectively. These equations allow the deduction of tanδ and
the voltage magnitude Vout given, respectively, by Eqs. (27) and (28). On the other
hand, the Q and P can be also written as a function of αβ output current and voltage
components as shown in Eqs. (29) and (30), respectively.

Q ¼ Vg

R2 þ X2 �RVc sin δþ X Vg � Vc cos δ
� �� �

(25)

P ¼ Vg

R2 þ X2 R Vg � Vc cos δ
� �þ XVc sin δ

� �
(26)

tanδ ¼ PX �QR
V2

g � PX þQRð Þ (27)

Vc ¼ PX � QR
Vg sin δ

(28)

Q ¼ 3
2

Vcβi2α þ Vcαi2β
� �

(29)

P ¼ 3
2

Vcαi2α þ Vcβi2β
� �

(30)

Figure 15 shows the trigonometric-based line impedance emulation algorithm. The
first step consists in measuring the grid voltage Vg(a,b,c) and computing its RMS value.
From the obtained value, we compute the phase shifting δ relatively to the grid voltage.
After that, the emulated impedance is computed based on the previous equations.

5.2 Voltage drop-based algorithm

This algorithm is based on a voltage drop Vv that matches with the emulated line
impedance Z as shown in Figure 16 This voltage is a function of programmed
inductance and resistance variations as presented in Eq. (31). The voltage drop-
based line impedance emulator algorithm is presented in Figure 17.

Vv ¼ Zi2 ¼ Rþ jXð Þi2

Figure 14.
Line impedance and phasor diagram.
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6. Simulation and discussion

Simulation tests were performed under PSIM software. The proposed control
was applied to a 20kVA line impedance emulator. Table 1 gives the line impedance
emulator parameters. In Figure 18 is presented the Vdc response to a step reference
of 100 V. Based on this result, the steady state error of the Vdc voltage becomes null
in the steady state, which prove that this voltage is well regulated. Figure 19 shows
that the voltage Vc(abc) is well regulated in both transient and steady state operation
even reference magnitude change at 0.9 s. To show the voltage drop-based line
impedance emulation algorithm performances, a control scenario is presented in
Figure 20. This scenario consists in imposing in the interval [0, 1 s] equivalent real
impedance in series with L2 and in the interval [1 s, 1.5 s] the line impedance
emulator is activated. Figure 21 shows results for a line impedance Z characterized
by X = 1.5 Ω and R = 1 Ω in case of real and emulated impedance. As shown in this
figure, the same current value is generated for real and programmed line
impedances.

Figure 15.
Line impedance emulator algorithm-based trigonometric functions.

Figure 16.
Voltage drop line impedance emulator principle.

Figure 17.
Reference voltage according to fixed line impedance.
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Description Symbol Value Unit

Nominal voltage line-line Vg 400 V

GsC nominal power SGsCnom 20 kVA

EsC nominal power SEsCnom 20 kVA

LCL filter Converter side inductor L1 2 mH

EUT side filter inductor L2 2 mH

Capacitor Cf 30 μF

Switching frequency fs 10 kHz

Table 1.
Line impedance emulator parameters.

Figure 18.
Vdc response to a step reference of 100 V.

Figure 19.
Line impedance emulator output in case of voltage reference magnitude change.

Figure 20.
Simulation control scenario.
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7. Experimental validation

Figures 22 and 23 show the experimental prototype and the test bench for the line
impedance emulator. It includes (1) an auto transformer used in order to vary the
voltage peak magnitude; (2) an L filter (composed of three inductors (20 mH/20A)

Figure 21.
System output for real and programmed impedance for X = 1.5 Ω and R = 1 Ω.

Figure 22.
Experimental prototype.

Figure 23.
Experimental test bench.
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with 0.3 Ω internal resistors; (3) a 20 kVA AC/DC converter (GsC); (4) a dc-link
capacitor (1100 μF/800 V); (5) a 20 kVA DC/AC converter (EsC); (6) an LCL filter
(composed of three inductors (2 mH/10 A) with 0.1 Ω internal resistors, three
capacitors (4 μF/400 V) and three inductors (2 mH/10A) with 0.1 Ω internal resis-
tors); (7) a measurement board (LEM LA55 and LEM LV25 for currents and voltage
measuring, respectively); and (8) the STM32F4-Discovery digital solution. It is worth
noting here that two STM32F4-Discovery cards were used in the experimental test
bench; the first one is dedicated to the GsC control and the second one is dedicated to
the EsC control.

For both GsC and EsC controls, the switching frequency was fixed equal to
10 kHz. For experimental tests, the switching frequency is equal to 10 kHz, the
voltage at the DC bus Vdc is initially charged at 55 V. Figure 24 presents the voltage
at the DC bus Vdc response. As shown is this figure, Vdc is well controlled during
steady state operation. Figure 25 presents the response of the line impedance
emulator output for a reference change from 20 to 10 V. This test shows that the
EsC control ensures an acceptable dynamic response and it is well controlled at
steady state. Figure 26 presents the line impedance emulator input and the output
that matches with various values of line impedance.

Figure 24.
DC bus measured voltage and reference values.

Figure 25.
Emulator output voltage Vc(abc) for voltage reference change from 20 to 10 V.
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8. Conclusion

In this chapter, line impedance emulator was studied. This equipment is used in
small scale laboratories studying distributed energy generation. It ensures power
tests with variable line impedance. Presented line impedance emulator is based on
two power converters connected via a dc-link capacitor. Theoretical study is
detailed and validated by simulation and experimental tests. The proposed study
describes in detail the control design of each power converter. In addition, two
variants of line impedance emulator algorithms were synthesized. To prove the
efficiency of the presented study, a test with a real impedance and an emulated one
was performed and obtained results show the similarity of system responses with
both equipment.
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Figure 26.
Line impedance emulator input Vina and output Vouta for different values of R and L.
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