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Preface

Cardiovascular disease continues to be the leading cause of morbidity and mortality
in both developed and developing countries. We all continue to struggle to have a
better outcome from cardiovascular diseases. Early diagnosis and management of
cardiovascular diseases play a major role to achieve this goal. However, appropriate
diagnoses of cardiovascular diseases—either ischemic heart disease or arrhythmias—
remains a challenge. The electrocardiogram (ECG) plays a major role in diagnosing
both ischemic heart disease and arrhythmia disorders. Hence, it plays a vital role in
the field of cardiology.

This book provides an excellent overview of the diagnosis of abnormal ECGs, and 
is divided into two sections, including basic and practical applications of ECGs. In
the first section, the authors provide an excellent discussion on the basic techniques
of obtaining and processing electrocardiogram signals through deep learning 
methods; these are optimal techniques that can link the processing and analysis of
nonstationary ECG signals, and the various statistical methods for converting ECG 
data into variant maps. In the second section, the authors provided a comprehensive
review of the practical applications of ECGs. They discuss the application of various
methods for identifying premature atrial beats, ECG characteristics of right and left
ventricular tachyarrhythmia, and conditions producing left ventricular hypertro-
phy, including hypertrophic cardiomyopathy. 

Although improvements in primary and secondary prevention of cardiac disease
have resulted in a substantial reduction in overall mortality from cardiovascular
diseases, the incidence and prevalence of sudden cardiac arrest have not declined. 
The most common cause of sudden cardiac arrest is ventricular tachycardia. It is
common knowledge that congestive heart failure is a major public health problem
worldwide. Patients with very low ejection fraction are at high risk of having 
ventricular tachycardia, which eventually leads to sudden cardiac arrest. In this
book, we have an excellent review of the management of ventricular tachycardia
in the setting of congestive heart failure. Similarly, hypertrophic cardiomyopathy
is another cardiac disease that can produce sudden cardiac arrest in a relatively
healthy population. This needs to be identified as soon as possible and action taken. 
Also provided is an excellent review addressing the genetic polymorphisms that
play a major role in the development of hypertrophic cardiomyopathy. I sincerely
believe that this will serve as a reference for clinicians who are involved in the
complex cardiac care of these patients. 

I gratefully acknowledge the invaluable organizational skills of the publisher
IntechOpen, the timely and invaluable assistance of publishing process manager
Ms. Rozmari Marijan, the design, technical generator, and information technol-
ogy staff, and finally the marketing representatives who are working constantly to
promote the book on various platforms. I sincerely appreciate and applaud all the
contributing authors for their excellence, and hard work and commitment to the
chapters. They have taken time from their personal and professional lives to com-
plete this task. I thank them profusely for that. 
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XIV

We hope that this book will serve as a reference for the techniques used to obtain 
and process electrical signals for ECGs. This book is dedicated to my mother Mrs. 
Jana (for her constant support, continued encouragement, and unconditional love) 
and to my little one Master Shawn who continues to inspire me and make my life 
blissful. 

Umashankar Lakshmanadoss MD FHRS
Mercy Heart Institute,

Cincinnati, OH, USA
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Chapter 1

Diagnosing Abnormal 
Electrocardiogram (ECG) via 
Deep Learning
Xin Gao

Abstract

In this chapter, we investigate the most recent automatic detecting algorithms on 
abnormal electrocardiogram (ECG) in a variety of cardiac arrhythmias. We pres-
ent typical examples of a medical case study and technical applications related to 
diagnosing ECG, which include (i) a recently patented data classifier on the basis of 
deep learning model, (ii) a deep neural network scheme to diagnose variable types 
of arrhythmia through wearable ECG monitoring devices, and (iii) implementation 
of the health cloud platform, which consists of automatic detection, data mining, 
and classifying via the Android terminal module. Our work establishes a cross-area 
study, which relates artificial intelligence (AI), deep learning, cloud computing on 
huge amount of data to minishape ECG monitoring devices, and portable interac-
tion platforms. Experimental results display the technical advantages such as 
saving cost, better reliability, and higher accuracy of deep learning-based models in 
contrast to conventional schemes on cardiac diagnosis.

Keywords: electrocardiogram (ECG), cardiac arrhythmia, deep learning,  
health cloud platform

1. Introduction

Statistical reports indicated that the leading cause of death in the world comes 
from cardiovascular diseases [9, 20]. The World Health Organization (WHO) 
reported that the total number of deaths from cardiovascular diseases in 2012 was 
approximately 17.5 million, compared with 17.7 million in 2015, and this number 
has been increasing every year [1, 3, 9]. With the accelerating pace of life, more 
and more young people suffer from great pressure related to work, and completely 
ignore physical examinations, which increases the risk of sudden death [9]. Hence, 
monitoring ECG and performing automatic diagnosis become particularly impor-
tant. In cardiology, the electrical actions of a human’s heart are simply and pain-
lessly recorded by electrocardiogram (ECG) via single or multiple-lead detections 
[8, 20]. The real-time ECG sequence of a patient represents one of the most useful 
clinical diagnostic features on cardiovascular diseases, reflecting the electrophysi-
ological activity of cardiac excitement, and indicating great importance on the 
aspects of basic heart functions and related pathological research [12]. Meanwhile, 
ECG is of crucial importance for analyzing and identifying various arrhythmias, 
which reflect the degree of myocardial damage, the corresponding development 
process, and the functional structure of both atria and ventricles [3, 12]. A few 
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research scholars have related medical evidence of ECG toward arrhythmias with 
the latest experimental study, see [3, 4, 12, 23, 29], and the references therein.

Typical anomaly behaviors in ECG refer to irregular heartbeats, which are often 
recognized as sinus arrhythmia, ectopic tachycardia, cardiac flutter and tremor, 
and heart block [12]. The ectopic tachycardia is also known as premature contrac-
tion, standing for the most common types of cardiac arrhythmias. Classification 
of arrhythmias can be in accordance with a cardiac pacemaker and the conduction 
process [9, 12]: abnormal pacemakers may lead to arrhythmias and fluctuated heart 
rates, including atrial fibrillation, ventricular fibrillation (either sinus, supraven-
tricular, or ventricular), tachycardia and bradycardia; abnormal cardiac conduction 
system results into heart blocks such as atrioventricular block and intraventricular 
block, etc. Atrioventricular block takes place in the atrioventricular node, the His 
bundle and its branches, while ventricular conduction block occurs in the left and 
right bundle branches. Specifically, no obvious symptoms appear in left bundle 
branch block, while coronary and rheumatic heart diseases as well as acute myocar-
dial infarction often accompany right bundle branch block. Healthy people come 
along with occasional atrial premature beats, while ventricular premature beats are 
often associated with some kind of organic lesion. Several distortions on QRS wave 
and ST segments could appear in those cardiac arrhythmias [12].

Previously reported medications and medical procedures such as pacemaker 
insertion and surgery offer well-established treatments for most arrhythmias; 
meanwhile, a large quantity of signal and image processing algorithms as well as 
sensor devices provided useful tools on electrocardiogram-assisted diagnosis [8, 
18, 20, 26, 31, 32]. Recently, many researchers have been devoting themselves on 
computer-aided ECG analysis, where the technical developments are enriched from 
the booming growth on machine learning and deep learning algorithms [6, 9, 11, 
13–17, 21, 24, 25, 27, 30, 33, 35–37]. Their methodology of study is broadly catego-
rized as conventional machine learning and deep learning. Traditional machine 
learning schemes are greatly affected by data, which demands complex preprocess-
ing such as noise removal and data normalization. Besides, it is also vulnerable to 
over-extract unnecessary features, requiring filter design and sorting out redundant 
features, and then finally input another algorithm for classification [10, 16, 19, 21, 
25–28]. While good effects on recognition got achieved, the overall procedure is 
more complicated than those of the deep learning schemes [1, 6, 9, 14, 17, 21, 25, 
27]. Hence, previous machine learnings are no longer suitable to be embedded into 
mobile devices or perform real-time analysis [15].

For some of the deep learning-based schemes [1, 9, 13–15, 17, 25, 27], it is not 
only unnecessary to perform accurate denoising on the data, but also automati-
cally extract the features in order to achieve the expected ideal recognition results. 
Common training modes of algorithmic ECG diagnosis usually compose single lead 
and multilead [9]. Multilead data combined with multichannel neural network 
algorithms (MCNN) are capable of achieving considerably good results; however, 
their shortcomings display on the relatively larger training parameters of models 
and much longer training time, which increases the difficulties to realize real-time 
monitoring associated with the existing mobile devices [9, 10, 31, 32]. Comparing to 
single-lead ECG data processing, the performance of recognition by multilead can 
be achieved with satisfactory, i.e., using the AlexNet structure, while the weakness 
lies on that these methods were regarded as relatively out of date [9].

The remainder of this chapter is organized as follows. In Section 2, several 
typical algorithms are briefly described on how deep learning-based light-quantity 
level algorithms recognize ECG data, and how the principles of deep learning are 
related on accurately diagnosing cardiac arrhythmia. Section 3 introduces a recently 
patented ECG data classifier with deep learning-based model. The automatic ECG 
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arrhythmia diagnosing system and Android health cloud platform are referenced in 
Section 4. The last Section 5 prospects the progress on cross-area study of artificial 
intelligence-(AI)-related ECG diagnosis and draws our conclusions.

2. Deep learning theory and automatic ECG diagnosis

Since ECG periodically reflects the variations on electrical activities of a human’s 
heart and real-time monitoring indicates parallel processing on amazing amount of 
data, automatic ECG diagnosis calls for efficient classification techniques on extract-
ing unsupervised data features in practical ways. Many previous statistical signal 
processing or machine learning schemes utilize some dimensional reduction methods 
(i.e., linear discriminate analysis (LDA), independent component analysis (ICA), 
principle component analysis (PCA), etc.) to release the complexity issues, while it 
is the fact that practically most of the feature selection schemes are still dependent 
on human labor [9]. Deep learning is developed from artificial neural networks to 
simulate the input and output of neurons and the process of excitatory transmission 
of signals [9, 21, 25]. While early neural network (perceptron) only aimed to solve the 
linear separable problem, deep learning models connect some hidden layer(s) with an 
activation function between the input and output layers to obtain multilayer percep-
tions (MLP) [9]. Expanded cascades on the hidden layer of neurons indicate that the 
ability of network learning is deepened, and hence, any arbitrary continuous func-
tion of arbitrary complexity was proved to be effectively approached (in any level of 
accuracy), given an expression of a functional model, while the by-products turn to 
be increased network parameters and difficulty on training [9].

Two representative training methods in deep learning-based ECG diagnosis 
include the back-propagation (BP) algorithm and deep belief network (DBN) 
[1, 8, 28], where the former still fails to overcome the error dissipation effect in the 
process of back-propagation, and the latter is suitable for layer-by-layer unsuper-
vised learning via using a small portion of labeled samples for global optimization; 
for feature learning, DBN makes full use of unlabeled data and reduces the cost via 
the strategy of “pretraining and minor tuning” [9]. Other applicable deep network 
structures applied in latest works on automatic ECG analysis comprise fundamen-
tal or variation schemes related to classical MLP, convolutional neural networks 
(CNN), and recurrent neural networks (RNN) [9, 22]. A schematic diagram of 
CNN-based arrhythmia classification is displayed in Figure 1 [9].

The three basic features of CNN, known as locally receptive field, shared 
weights and pooling, are reflected inside of the input and output layers in Figure 1 
as depicted above [9]: the convolutional layer exploits sample information frag-
ments in the form of moving windows (locally acceptable domain) to continuously 
learn the entire information of samples, and traverse to obtain multiple feature 
maps by weight sharing, which is the convolution layer. The pool layer performs 
data compression on the feature map of convolutional layer in order to simplify its 
output. Frequently used max-pool operation filters out all redundant values except 
the maximum value in the sample region, and then transforms the data to improve 
the algorithmic robustness. The upper fully layer corresponds to the network out-
put, and the combination of convolution layer, and pool layer can also be inserted 
with full layers to acquire middle outputs. Since diagnosing ECG is also a task of 
time series analysis, its information is mainly expressed by the spatial structure, 
and the information output by each channel of the multilead ECG is not identically 
the same. The chest V1 lead signal and the limb II lead signal are both inputs into 
the neural network, and the output layer performs classification on different types 
of arrhythmia [9].
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the same. The chest V1 lead signal and the limb II lead signal are both inputs into 
the neural network, and the output layer performs classification on different types 
of arrhythmia [9].
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While applying deep learning theory in automatic ECG diagnosis and arrhythmia 
classification, in addition to BP algorithm, CNN and fully connected feedforward 
neural network (FCFNN), the gradient descent training algorithm also suggests 
a feasible candidate [9, 22]. In the optimization process of training, the  follow-up 
methods such as target function selection, dropout technique, and Nesterov impulse 
update are capable of improving the training efficiency and reduce the probability 
of over-fitting on sequential processing of ECG data [9, 22]. Regarding to RNN as 
mentioned above, its variation model named as long-short-term memory (LSTM) 
[18, 22] had been applied to classify arrhythmia, where the two share the same net-
work structure, while the neurons in hidden layer got replaced with loop-connected 
memory units [18]. A standard memory unit contains single/multiple self-connected 
memory unit and three multiplication units (input/output gates and forgotten gate). 
Among the consecutive operations of “write,” “read,” and “reset,” the forgotten gate 
offers a self-reset scheme for memory units, which is crucial to demand LSTM to 
“forgot” the previously loaded tasks [18]. A single cell-unit-based classical LSTM 
memory unit model is depicted in Figure 2a, and the schematic diagram of LSTM-
based arrhythmia classification model is shown in Figure 2b.

The LSTM-based model represents another deep learning scheme on diagnosing 
abnormal ECG and performing automatic arrhythmia classification [18]. With an 
input layer and two hidden layers, it cascades the SoftMax classifier as the last layer, 

Figure 1. 
A schematic diagram of CNN-based automatic arrhythmia classification from ECG [9].

Figure 2. 
LSTM-based single cell-unit model and schematic diagram for arrhythmia classification [18].
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which comprises five nodes that correspondingly stands for N, S, V, F, and Q [18]. 
Preprocessed ECG segments were taken as input data into LSTM to proceed with 
layer-to-layer feature learning and mapping, then the deep-level ECG signal features 
were sent to SoftMax classifier to perform training, from which the acquired weights 
follow-up with the initialization step and weight optimization step by BP algorithm so 
as to converge into the global optimal of LSTM network model, and finally achieve the 
goal of arrhythmia classification [18, 22]. The LSTM model overcame the dependence 
of traditional features on ECG signals, solved the problem of gradient elimination that 
early neural networks occur, and achieved data mining on the distinctive deep features 
behind large pool of ECG data via the proposed self-learning style [18].

In 2017, computer scientists in Stanford University claimed that they have devel-
oped a deep learning scheme on accurate diagnosing various types of arrhythmia, 
which achieved the grading level of diagnosing as high as professional cardiologists 
[2, 38]. Such kind of deep learning-based schemes can sieve irregular heartbeats from 
sequential data of several hours. It is common to view arrhythmia from ECG, while 
doctors often supply patients with portable ECG that consecutively monitors their 
heartbeats since portable wearing devices are able to generate data in hundreds of hours 
[2]. Research scholars and a heartbeat monitoring company named as IRhythm have 
been working together to investigate accurate detection of deep CNN models toward 
large amount of concentrated, irregular ECG data [34, 38, 39]. It was claimed by these 
scholars that their proposed algorithm performed much better comparing to profes-
sional cardiologists when diagnosing 13 different types of arrhythmia [2]. Benefited 
from accelerating diagnosis and improving treatments, the algorithmic accuracy even 
exceeds those obtained by cardiological doctors. Besides, their ECG algorithm was 
expected to help people in remote areas gain some assistance from cardiological experts: 
performing some kind of anomaly detection, associated with processing various types 
of anomalous arrhythmia in high precision [2, 38]. Applying their algorithm to monitor 
ECG of potential arrhythmia patients can be imaged in the following scenarios: when 
patients first come to see the doctor in office, if the wearable ECG device does not detect 
any problem, doctors would possibly allow the potential patient to use portable devices 
and monitor heartbeats consecutively for 2 weeks; hence, the crossover range of time 
generating data by the device is longer than 300 hours. After the second appointment, 
doctors may analysis the data of every second to discover any hint on arrhythmia [2].

Analyzing arrhythmia was in fact a data processing problem, as was found by 
Dr. Andrew Ng, a well-known artificial intelligence (AI) expert leading Stanford’s 
machine learning team, where the deep learning algorithm they developed aims 
to diagnose different types of arrhythmias from ECG inputs [2]. Cooperating with 
companies, which provide wearable rhythm monitoring equipment, about 36,000 
ECG data samples were acquired to train a deep neural network model, which was 
later proved to be more accurate than a cardiologist in diagnosing arrhythmias, and 
performs even better than a doctor in most cases [2, 38]. Their trained 34-layer CNN 
model is depicted in Figure 3, where a single-lead wearable heart device monitors 
ECG, and the objective is oriented on correct detection of the sinus rhythm (SINUS) 
and atrial fibrillation (AFIB). The input after preactivation, followed by 33 convolu-
tion layers in cascades, one fully connected layer at the last and a SoftMax, contrib-
uted the entire architecture of this trained deep neural network [38].

Research scholars discovered that many types of arrhythmia are similar on occur-
rence, while their differences are trivial; however, it has a great impact on how to 
deal with a specific arrhythmia: for instance, two types of arrhythmias were known 
as secondary atrioventricular block and showed very similar appearance, while one 
requires no treatment and the other urges immediate observation [2, 12, 22]. Their 
research products are not only able to discover signs of arrhythmia, but also expose 
different types of arrhythmia with unprecedented high precision [22]. The advantage 
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which comprises five nodes that correspondingly stands for N, S, V, F, and Q [18]. 
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layer-to-layer feature learning and mapping, then the deep-level ECG signal features 
were sent to SoftMax classifier to perform training, from which the acquired weights 
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as to converge into the global optimal of LSTM network model, and finally achieve the 
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of traditional features on ECG signals, solved the problem of gradient elimination that 
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sequential data of several hours. It is common to view arrhythmia from ECG, while 
doctors often supply patients with portable ECG that consecutively monitors their 
heartbeats since portable wearing devices are able to generate data in hundreds of hours 
[2]. Research scholars and a heartbeat monitoring company named as IRhythm have 
been working together to investigate accurate detection of deep CNN models toward 
large amount of concentrated, irregular ECG data [34, 38, 39]. It was claimed by these 
scholars that their proposed algorithm performed much better comparing to profes-
sional cardiologists when diagnosing 13 different types of arrhythmia [2]. Benefited 
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exceeds those obtained by cardiological doctors. Besides, their ECG algorithm was 
expected to help people in remote areas gain some assistance from cardiological experts: 
performing some kind of anomaly detection, associated with processing various types 
of anomalous arrhythmia in high precision [2, 38]. Applying their algorithm to monitor 
ECG of potential arrhythmia patients can be imaged in the following scenarios: when 
patients first come to see the doctor in office, if the wearable ECG device does not detect 
any problem, doctors would possibly allow the potential patient to use portable devices 
and monitor heartbeats consecutively for 2 weeks; hence, the crossover range of time 
generating data by the device is longer than 300 hours. After the second appointment, 
doctors may analysis the data of every second to discover any hint on arrhythmia [2].

Analyzing arrhythmia was in fact a data processing problem, as was found by 
Dr. Andrew Ng, a well-known artificial intelligence (AI) expert leading Stanford’s 
machine learning team, where the deep learning algorithm they developed aims 
to diagnose different types of arrhythmias from ECG inputs [2]. Cooperating with 
companies, which provide wearable rhythm monitoring equipment, about 36,000 
ECG data samples were acquired to train a deep neural network model, which was 
later proved to be more accurate than a cardiologist in diagnosing arrhythmias, and 
performs even better than a doctor in most cases [2, 38]. Their trained 34-layer CNN 
model is depicted in Figure 3, where a single-lead wearable heart device monitors 
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and atrial fibrillation (AFIB). The input after preactivation, followed by 33 convolu-
tion layers in cascades, one fully connected layer at the last and a SoftMax, contrib-
uted the entire architecture of this trained deep neural network [38].

Research scholars discovered that many types of arrhythmia are similar on occur-
rence, while their differences are trivial; however, it has a great impact on how to 
deal with a specific arrhythmia: for instance, two types of arrhythmias were known 
as secondary atrioventricular block and showed very similar appearance, while one 
requires no treatment and the other urges immediate observation [2, 12, 22]. Their 
research products are not only able to discover signs of arrhythmia, but also expose 
different types of arrhythmia with unprecedented high precision [22]. The advantage 
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of this deep CNN-based algorithm lies that it never become exhausted and continu-
ously performs immediate diagnosis of arrhythmia, which further benefits patients 
who are unable to see a cardiologist in remote areas or a developing country [2]. When 
a potentially fatal heart rhythm appears in high-risk groups, one who wears a daily-
used rhythm monitoring device will immediately respond and notify emergency 
personnel to aid the individual(s) with professional arrhythmia diagnosis [2, 38].

3. Automatic ECG diagnosis via deep learning: lightweight classifier

Among the architecture model of deep learning-based schemes on automatic 
ECG diagnosis, reducing the computational cost, network parameters and training 
difficulties, will represent crucial problems. In order to solve these issues mentioned 
above, research scholars have been seeking for an ideal technical solution. A deep 
learning research lab in Zhengzhou University established a lightweight algorithm 
on automatic ECG data diagnosis, in which the elements on technical realization are 
displayed as below [40]: the objective is to provide a deep learning-based light-
weight algorithm for identifying ECG data, which aims at the deficiencies of the 
current techniques. This invention takes along with a technical plan of identifying 
the ECG data based on deep learning, which includes the following steps [40]:

Step 1: Perform rough extraction of data features. The extracted ECG data are 
conveyed through a standard convolution layer

Step 2: Pass the rough extracted data features through a pooling layer max-pooling, 
then send these features to the core Lite module to extract deep-level data features

Step 3: Send the deep-level data features through a pooling layer max-pooling, 
then the two full-connection layers, named as dense, will receive these features by 
turns and perform purification

Step 4: Transmit the purified data features to the classifier function and proceed 
with outputs after feature classification.

A flowchart on the operating procedures with respect to this invention is 
depicted in Figure 4, and the diagram of its core module, the deep learning-based 
light weight algorithm, is shown in Figure 5.

Figure 3. 
The trained 34-layer CNN on arrhythmia detection on time-series ECG of random length [38].
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Regarding to the core module as proposed on invention, the max-pooling layer 
plays an anti-overfitting effect in the entire structure model and ensures the classi-
fication accuracy. The activation function of each convolutional layer including the 
fully connected layer is named as LeakReLU [40]. When performing the optimiza-
tion step by the Adam optimizer, the learning rate was set as 0.001. The specific 
setting parameters of this algorithmic model are presented as below.

Based on the analysis as described above, the activation functions of each con-
volutional layer and fully connected layer are implemented by LeakReLU, while 
the model is optimized using the Adam optimizer [40]: the learning rate is set as 
0.001. In Step 1, the convolution kernel of the standard convolutional layer is set 
as 1 × 5 with step size of 1; the convolution kernel size of the pooled layer max-
pooling is set as 1 × 2, with step size of 2; the convolution kernel size of the squeeze 
convolution layer and the first standard convolution layer are both set as 1 × 1 with 
step size of 1; similarly, with the same step size, convolution kernels of the second 

Figure 4. 
The flowchart of automatic ECG classifier.

Figure 5. 
Core modules of deep-learning based lightweight algorithm.
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and third standard convolutional layers are set as 1 × 2 and 1 × 3, respectively; the 
convolution kernels of the depthwise convolutional layers match the same size 
with their follow-up standard convolution layers, their step sizes are set as 1; and 
the convolution kernel of the pointwise convolution layer is also set as 1 × 1 with 
step size of 1.

In Step 2, the function of core module lite is to install the squeeze convolution 
layer on compressing feature data outputted by the upper layer; after the layer of 
squeezed convolutions, the standard convolutions of three different channels were 
set to extract data features of different local sizes; the rough data features are trans-
mitted through a depthwise convolution layer and a pointwise convolution layer 
after the second and the third standard convolutional layers; a residual connection 
is also constructed on the terminal right side of the squeeze convolution layer; 
finally, the outputs of filter concatenation are performed after the first standard 
convolution layer, pointwise convolution layer, and the residual connections [40].

It should be noted that the standard convolution layer in the invented automatic 
ECG classifier, performs a conventional convolution operation, which is named as 
standard convolutional layer for distinctions; the compression convolution layer 
is obtained by compressing the amount of feature data in the upper layer so as to 
reduce the computational load for convolution operation of the next layer. For 
example, if the upper layer outputs 10 feature data and the compressed convolution 
layer sets up five convolution kernels, then 5 feature data will be released, which 
means the input of next layer has five feature data. Deep convolution and pointwise 
convolution actually divide the ordinary standard convolution operation into two 
steps [40]: the first step is to exploit the deep convolution layer to perform convolu-
tion operations separately on each feature data of the previous layer, which indicates 
that a convolution kernel only convolves one feature data. In the second step, the 
pointwise convolution, which is the 1 × 1 convolution kernel, performs feature 
combination operations on the output after deep convolution.

By adopting the invented deep learning-based lightweight algorithm and through the 
setting of a core module, this model is trained to guarantee a certain accuracy in absence 
of demanding much computational cost. In contrast to other detection algorithms, 
the proposed scheme takes less time, displays faster prediction, and reduces personal 
consumption. The well-trained software platform can be embedded into a wearable ECG 
device or the mobile phone terminals to classify and monitor the collected ECG data, and 
triggers an alarm in case an abnormality is encountered. The embedded device is not only 
free of spending extra time affecting daily work, but also arouses people to pay enough 
attention on cardiac abnormalities and regularly perform physical examination; hence, 
the incidence of heart disease can be significantly reduced [40].

Comparing to the existing methods, this deep learning-based lightweight 
algorithm on invention has substantive features and significant advances, which can 
be specifically referred as [40]:

a. Core module stands for an innovative design module of structural fusion, which 
combines multilayer convolution kernel structure of the famous GoogleNet, the 
compressive convolution idea of SqueezeNet, and the depth-pointwise convo-
lution on parameter reduction of MobileNets. By implementing the classical 
AlexNet network structure, the entire framework was designed to ensure the 
stability of algorithmic model.

b. Compared with other algorithms, this invented model does not require many 
computational parameters while ensures certain recognition effects; it also has 
the capacity on automatically realizing the processing of sequential ECG data 
on limited network resources or running memory.
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As specified by several steps mentioned above, the lightweight algorithm for iden-
tifying ECG data based on deep learning can be realized via uniprocessors in parallel 
computing, in which the convolution manner of each convolution layer is convolution 
of one-dimensional ECG data [40]. Brief notation on implementation is presented as 
follows: x[n] and y[n] denote the input and the output sequences, respectively; h[n] 
represents the convolution kernel weight sequence, h[−k] represents the inversion 
of the h[k] sequence, h[N−k] indicates that h[−k] is moved by n points; m stands 
for the length of input sequence, while the length of output sequence is expressed as 
len(x[n]) + len(h[n]) − 1. Because the classifier function is a SoftMax function clas-
sifying five types of ECG data, each type of ECG data is recorded as a neuron in the 
SoftMax function, which appears in the form as a product of the upper neuron output 
and the weight of SoftMax function connected to the upper neuron [40]. Hence, by 
constructing the loss function and the linear regression model, the output probability of 
each neuron and each neural unit can be modeled through vector calculus and probabi-
listic interpretation, which finally achieves the prediction value of output.

To sum up, the technical invention [40] provides a deep learning-based light-
weight algorithm for automatic ECG data identification and diagnosis, where its 
procedure consists of extracting the extracted ECG data through a standard con-
volution layer, and performing rough extraction of data features; while a feature is 
passed through a max-pooling layer, the core module is sent to the kernel lite module 
to extract deep data features. Note that after passing the deep data features through 
a pooled layer max-pooling, those features will be sequentially loaded into two 
fully connected layers named as dense, in which purification is performed on the 
hierarchical data features; in the next step, the classifier function takes responsibil-
ity for feature classification on the output of purified data features. Compared with 
other similar schemes on automatic ECG diagnosis [5, 7, 16, 27, 31, 36], the invented 
lightweight algorithm has been released from requiring large set of calculation param-
eters but still ensures constant accuracy on recognition effects, which is able to realize 
parallel processing of ECG data despite of limited network resources or running 
memory on GPU [40].

4.  Automatic detection system for arrhythmias and the Android health 
cloud platform

While the current methods on network medical treatments are often restricted 
to the interactions between doctors and patients via modern communication tools, 
it is neither possible to establish mutual trust nor collect real-time data. Hence, 
wearable ECG monitoring systems and applicable software platforms (typically 
integrated into Android terminal modules in a cellphone, for daily use) are calling 
for proposal. Recently, the health cloud platform for arrhythmia detection [9] and 
the ThingSpeak cloud computing platform [41] on classifying and diagnosing ECG 
had been proposed to solve some prior problems at different levels. Utilizing deep 
learning tools and the intelligent information integration platform named as the 
Internet of Things (IoT) [9, 41], a new follow-up mode of automatic heart monitor-
ing system was developed for real-time remote services among doctors and patients 
in a long term. The system established a cloud platform on health inquiry, providing 
medical data management services for online patients. Aiming at reducing potential 
risks for cardiovascular diseases, this platform offers online assessment, diagnosis, 
and rehabilitation guidance by relevant doctors [9]. Regarding to offline services, 
this system relies on existing medical-level biosensors to construct terminals on 
signal acquisition and processing [9]. For real-time ECG sequence, it provides func-
tions such as collection, exhibition, and analytical monitoring of basic physiological 



Practical Applications of Electrocardiogram

10

and third standard convolutional layers are set as 1 × 2 and 1 × 3, respectively; the 
convolution kernels of the depthwise convolutional layers match the same size 
with their follow-up standard convolution layers, their step sizes are set as 1; and 
the convolution kernel of the pointwise convolution layer is also set as 1 × 1 with 
step size of 1.

In Step 2, the function of core module lite is to install the squeeze convolution 
layer on compressing feature data outputted by the upper layer; after the layer of 
squeezed convolutions, the standard convolutions of three different channels were 
set to extract data features of different local sizes; the rough data features are trans-
mitted through a depthwise convolution layer and a pointwise convolution layer 
after the second and the third standard convolutional layers; a residual connection 
is also constructed on the terminal right side of the squeeze convolution layer; 
finally, the outputs of filter concatenation are performed after the first standard 
convolution layer, pointwise convolution layer, and the residual connections [40].

It should be noted that the standard convolution layer in the invented automatic 
ECG classifier, performs a conventional convolution operation, which is named as 
standard convolutional layer for distinctions; the compression convolution layer 
is obtained by compressing the amount of feature data in the upper layer so as to 
reduce the computational load for convolution operation of the next layer. For 
example, if the upper layer outputs 10 feature data and the compressed convolution 
layer sets up five convolution kernels, then 5 feature data will be released, which 
means the input of next layer has five feature data. Deep convolution and pointwise 
convolution actually divide the ordinary standard convolution operation into two 
steps [40]: the first step is to exploit the deep convolution layer to perform convolu-
tion operations separately on each feature data of the previous layer, which indicates 
that a convolution kernel only convolves one feature data. In the second step, the 
pointwise convolution, which is the 1 × 1 convolution kernel, performs feature 
combination operations on the output after deep convolution.

By adopting the invented deep learning-based lightweight algorithm and through the 
setting of a core module, this model is trained to guarantee a certain accuracy in absence 
of demanding much computational cost. In contrast to other detection algorithms, 
the proposed scheme takes less time, displays faster prediction, and reduces personal 
consumption. The well-trained software platform can be embedded into a wearable ECG 
device or the mobile phone terminals to classify and monitor the collected ECG data, and 
triggers an alarm in case an abnormality is encountered. The embedded device is not only 
free of spending extra time affecting daily work, but also arouses people to pay enough 
attention on cardiac abnormalities and regularly perform physical examination; hence, 
the incidence of heart disease can be significantly reduced [40].

Comparing to the existing methods, this deep learning-based lightweight 
algorithm on invention has substantive features and significant advances, which can 
be specifically referred as [40]:

a. Core module stands for an innovative design module of structural fusion, which 
combines multilayer convolution kernel structure of the famous GoogleNet, the 
compressive convolution idea of SqueezeNet, and the depth-pointwise convo-
lution on parameter reduction of MobileNets. By implementing the classical 
AlexNet network structure, the entire framework was designed to ensure the 
stability of algorithmic model.

b. Compared with other algorithms, this invented model does not require many 
computational parameters while ensures certain recognition effects; it also has 
the capacity on automatically realizing the processing of sequential ECG data 
on limited network resources or running memory.

11

Diagnosing Abnormal Electrocardiogram (ECG) via Deep Learning
DOI: http://dx.doi.org/10.5772/intechopen.85509

As specified by several steps mentioned above, the lightweight algorithm for iden-
tifying ECG data based on deep learning can be realized via uniprocessors in parallel 
computing, in which the convolution manner of each convolution layer is convolution 
of one-dimensional ECG data [40]. Brief notation on implementation is presented as 
follows: x[n] and y[n] denote the input and the output sequences, respectively; h[n] 
represents the convolution kernel weight sequence, h[−k] represents the inversion 
of the h[k] sequence, h[N−k] indicates that h[−k] is moved by n points; m stands 
for the length of input sequence, while the length of output sequence is expressed as 
len(x[n]) + len(h[n]) − 1. Because the classifier function is a SoftMax function clas-
sifying five types of ECG data, each type of ECG data is recorded as a neuron in the 
SoftMax function, which appears in the form as a product of the upper neuron output 
and the weight of SoftMax function connected to the upper neuron [40]. Hence, by 
constructing the loss function and the linear regression model, the output probability of 
each neuron and each neural unit can be modeled through vector calculus and probabi-
listic interpretation, which finally achieves the prediction value of output.

To sum up, the technical invention [40] provides a deep learning-based light-
weight algorithm for automatic ECG data identification and diagnosis, where its 
procedure consists of extracting the extracted ECG data through a standard con-
volution layer, and performing rough extraction of data features; while a feature is 
passed through a max-pooling layer, the core module is sent to the kernel lite module 
to extract deep data features. Note that after passing the deep data features through 
a pooled layer max-pooling, those features will be sequentially loaded into two 
fully connected layers named as dense, in which purification is performed on the 
hierarchical data features; in the next step, the classifier function takes responsibil-
ity for feature classification on the output of purified data features. Compared with 
other similar schemes on automatic ECG diagnosis [5, 7, 16, 27, 31, 36], the invented 
lightweight algorithm has been released from requiring large set of calculation param-
eters but still ensures constant accuracy on recognition effects, which is able to realize 
parallel processing of ECG data despite of limited network resources or running 
memory on GPU [40].

4.  Automatic detection system for arrhythmias and the Android health 
cloud platform

While the current methods on network medical treatments are often restricted 
to the interactions between doctors and patients via modern communication tools, 
it is neither possible to establish mutual trust nor collect real-time data. Hence, 
wearable ECG monitoring systems and applicable software platforms (typically 
integrated into Android terminal modules in a cellphone, for daily use) are calling 
for proposal. Recently, the health cloud platform for arrhythmia detection [9] and 
the ThingSpeak cloud computing platform [41] on classifying and diagnosing ECG 
had been proposed to solve some prior problems at different levels. Utilizing deep 
learning tools and the intelligent information integration platform named as the 
Internet of Things (IoT) [9, 41], a new follow-up mode of automatic heart monitor-
ing system was developed for real-time remote services among doctors and patients 
in a long term. The system established a cloud platform on health inquiry, providing 
medical data management services for online patients. Aiming at reducing potential 
risks for cardiovascular diseases, this platform offers online assessment, diagnosis, 
and rehabilitation guidance by relevant doctors [9]. Regarding to offline services, 
this system relies on existing medical-level biosensors to construct terminals on 
signal acquisition and processing [9]. For real-time ECG sequence, it provides func-
tions such as collection, exhibition, and analytical monitoring of basic physiological 
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parameters, and constructs a communication platform for doctors and patients with 
respect to their practical demands. The deep learning-based detection algorithm 
was integrated into the arrhythmia automatic diagnosis system within the module 
of health monitoring control, which performs real-time remote surveillance and 
outputs feedbacks on the ECG signals collected by the biosensors [9].

The system hardware mainly comprises a monitor system and an Android terminal 
[9]: a monitor system module is responsible for measuring and collecting data of vital 
signs such as ECG, blood pressure and body temperature, etc., then transmitting 
real-time data to the Android terminal module via serial port or Bluetooth and thereby 
completing the tasks of uploading data and synchronous exhibition, followed by 
performing automatic diagnosis (including real-time analysis) of possible arrhythmia 
data in the ECG sequence. The hardware of system monitor module adopts PM6750 
for medical signal processing. RK3188 development motherboard with quad-core 
Cortex-A9 processor was chosen for hardware design on the Android terminal module. 
Original ECG data were sent to the terminal through the monitoring devices where 
the mode of asynchronous serial port transmission is applied, no parity bit exists, and 
the baud rate is 115,200 Baud. According to the protocol, Android terminal module 
parses the restored signal data including waveforms, heart rate and breathing, styles of 
single-lead or multilead, filtering, and signal gain. The parsed data can be uploaded to 
the cloud platform and saved as private health data for each client. Historical data can 
be viewed by each individual at any time through the browser to provide health chan-
nels and follow-up support on clinical treatments [9]. While ThingSpeak employed 
similar datasets on MIT database for ECG data, the proposed online monitoring system 
displays comparable outputs on ECG signals using principle component analysis 
(PCA), which is depicted in Figure 6 [41]. The online MATLAB programs are running 
through the ThingSpeak IoT cloud for automatic ECG data analysis, which enables 
doctors to monitor, diagnose, and improve the health of patients [41]; meanwhile, the 
call for emergency service ensures local first-aid institutions to respond at prompt time 
in order to minimize any risk issues in absence of proper treatments [9, 41].

In another scenario on the workflow of system, the automatic arrhythmia detec-
tion system starts with a network of bio-sensors, where the input signals follow the 
arranged entry to the bio-data acquisition module followed by the control module 
on health monitoring, and then uploaded into the cardiovascular health cloud 
platform for data analysis in Android systems [9]. Those mobile devices provide 
supplemental aid on building up virtual human models in digital physiological 
bases, simulating medical plans on treatment and predicting potential risks on 
disease. With the helpful support of remote clinical diagnosis in collaboration of 
artificial intelligence-based solutions such as electronic health and digital medicine 
plans, the comprehensive online medical cloud platform will come into reality very 
soon [9]. For broader applications on biomedical data management and access, 
Navale and Bourne [42] proposed a conceptual framework to show how the data 

Figure 6. 
The proposed ThingSpeak online monitoring system for ECG analytics using PCA [41].
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producers, consumers and repositories got integrated via a cloud-based platform; 
meanwhile, the open data and analytics must follow the principle of findable, acces-
sible, interoperable and reusable (FAIR) to upgrade the discovery and innovation of 
knowledge. The architecture-based conceptual framework was depicted in Figure 7, 
where API stands for applicable programming interface [42].

5. Discussions and conclusions

In this chapter, we have established a study on deep learning theory related to 
automatic diagnosis on abnormal electrocardiogram (ECG). We briefly introduced 
the most recent automatic detecting schemes such as convolutional neural networks 
(CNN), recurrent neural networks (RNN) [9, 22, 34, 39], and its variation of long-
short-term memory (LSTM) model [18, 22], which aims on analyzing different 
types of cardiac arrhythmias. We presented an investigation of practical examples 
and applications of deep learning on automatic ECG diagnosis [5, 7, 16, 27, 31, 36], 
which consists of a deep learning-based lightweight classifier on ECG data identifi-
cation, deep belief network (DBN) [1, 8, 28] on diagnosing cardiac arrhythmia via 
wearable ECG monitoring devices, and a health cloud platform on automatic ECG 
detection, data mining and classification. We combined the theoretical concepts 
of artificial intelligence (AI)-oriented topics such as deep learning, big data health 
cloud platform to real medical applications, i.e., minishape ECG monitoring devices 
[9, 41], domestic cardiac arrhythmia analyzer [40], automatic ECG diagnosis on 

Figure 7. 
The architecture of conceptual framework on cloud-based platform: variable data types flow between 
producers and consumers in support of the FAIR principle and in demands of different data level needs [42].
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Android terminal modules [9] and the conceptual framework on managing and 
accessing biomedical data [42]. Technical advantages such as low-power consump-
tion, higher accuracy, better reliability, and cost saving on the links of feasible 
software/hardware implementations to automatic cardiac arrhythmia diagnosis 
prospects broader applications of deep learning on ECG and other data analytics on 
medical imaging.
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Combination of the CEEM
Decomposition with Adaptive
Noise and Periodogram Technique
for ECG Signals Analysis
Azzedine Dliou, Samir Elouaham, Rachid Latif and
Mostafa Laaboubi

Abstract

The electrocardiogram (ECG) signal is a fundamental tool for patient treatment,
especially in the cardiology domain, due to the high mortality rate of heart diseases.
The main objective of this paper is to present the most optimal techniques that
can link the processing and analysis of ECG signals. This work is divided into two
steps. In the first one, we propose a comparison between some denoising tech-
niques that can reduce noise affecting the ECG signals; these techniques are the
empirical mode decomposition (EMD), the ensemble empirical mode decomposi-
tion (EEMD), and the complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN). In the second one, we make a comparison of three
time-frequency techniques: the Choi-Williams (CW), the periodogram (PE), and
the smoothed pseudo Wigner-Ville (SPWV). Firstly, the obtained results illustrate
the effectiveness of the CEEMDAN in reducing noise that interferes with ECG
signals compared to other denoising methods. Secondly, they show that the
periodogram time-frequency technique gives a good detection and localization of
the main components in the time-frequency plan of ECG signals. This work proves
the utility of the combination of the periodogram and CEEMDAN techniques in
analyzing the ECG signals.

Keywords: ECG, CEEMDAN, periodogram, time-frequency, denoising

1. Introduction

The heart function can be obtained by storing the voltage variations which occur
on some parts of the human body surface [1–3]. The electrocardiogram (ECG) is the
record of those voltage variations over time. This biomedical signal presents a
fundamental tool used in cardiology to detect cardiac diseases. The normal ECG
signal is characterized by a sequence of some well-defined components as P wave,
QRS complex, and T wave [1–3]. ECG signals are most of the time contaminated
by different noise sources, like power-line interference, baseline wander, muscle
noise and motion artifact, and other noises, which in different cases make the
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identification of standard ECG features very difficult and lead to a misjudgment of
patient diagnostic [4]. Consequently, to deal with this problem, a task of removing
noise from ECG signal, as preprocessing step, has become very important.

To tackle this problem, the first part of the current work proposes a comparison
study of the following denoising methods, empirical mode decomposition (EMD),
ensemble empirical mode decomposition (EEMD), and complete ensemble empiri-
cal mode decomposition with adaptive noise (CEEMDAN), to define which one
gives the best results in the case of the normal and abnormal ECG signals.

Huang et al. [5] have introduced the empirical mode decomposition (EMD)
method to analyze nonstationary and nonlinear signals. The EMD major advantage
is that the basic functions are derived from the signal itself; however, the EMD
process presents a mode mixing. To surmount this problem, we resort to ensemble
empirical mode decomposition (EEMD); this denoising method employs EMD to
integrated signals with white Gaussian noise [6]. Even so, signals with added noise
can produce a large number of iterations in the EEMD process, and signal result
holds residual noise after decomposition. These downsides are resolved with a
variant denoising method, called CEEMDAN; this technique achieves an accurate
original signal reconstruction. The CEEMDAN iteration number is minus than half
of the EEMD iteration number [7].

Traditionally, ECG signal, are analyzed in the time domain by skilled physicians.
However, detecting pathological conditions in the time domain is not always evi-
dent [8]. The precision and the exactitude of the diagnosis are in relation with the
cardiologist experience and the concentration rate.

This fact has incentive applying the frequency domain techniques, such as
Fourier transform (FT) analysis [9]. The development of the Cooley-Tukey algo-
rithm made Fourier techniques widely available; this algorithm allows the use of the
computation more efficient [10]. However, the ECG signals are multicomponent
nonstationary signals [8]; accurate time-varying spectral estimates can be
extremely difficult to obtain with Fourier techniques which give only globally
averaged information.

To overcome this problem, time-frequency techniques can be a good solution.
These techniques can reveal the multicomponent nature of such signals and how the
signal spectrum evolves over time [11–13].

Time-frequency techniques can be classified into two major categories: parametric
and nonparametric techniques. Nonparametric time-frequency techniques present a
good solution for analyzing multicomponent nonstationary signal [13–15]. However,
these techniques suffer from the presence of cross-terms [16–18], which can hide the
interesting signal information. A lot of efforts have been made to select the best time-
frequency technique which provides a low degree of cross-term effect [13–18].

The second part of the this work is consecrated to compare three time-frequency
techniques, Choi-Williams (CW), periodogram (PE), and smoothed pseudo
Wigner-Ville (SPWV), to deliver which one furnishes the best results in analysis
terms of this type of biomedical signals.

The signals that will be the subject of this comparative study are extracted from
[19]. These signals are chosen with different pathologies and variant forms in order
to make the study more credible.

This paper is organized as follows: the “Theoretical background” section is
dedicated to present the chosen denoising methods, the three time-frequency tech-
niques, and the selected ECG signals. For a qualitative performance, comparison of
the denoising methods and the time-frequency techniques is performed in the
“Results and discussion” section, accompanied with a discussion of the obtained
results. Finally, this study is concluded with a “Conclusion” section.
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2. Theory background

2.1 Denoising techniques used

2.1.1 Empirical mode decomposition (EMD)

Huang et al. had defined a tool named EMD to decompose adaptively a signal in
a set of AM-FM components [5]. No mathematical foundations or analytical
expressions have been proposed for the technique theoretical study. In various
domains, such as biomedicine, acoustics, seismology, or study of climate phenom-
ena, the EMD has been used successfully in several works to treat real data [20, 21].
These studies had provided satisfaction and good results in signal processing,
especially for nonstationary ones. A nonstationary signal is decomposed
adaptively by the EMD technique into a sum of functions oscillatory band-limited
d(t). These functions, called intrinsic mode functions IMFJ(t), oscillate around
zero. The intrinsic mode functions can express the signal x(t) by the following
expression:

x tð Þ ¼ ∑
k

j¼1
dj tð Þ þ r tð Þ (1)

where r(t) is the low-frequency residue.
Two conditions must be satisfied by each IMFJ(t):

• The zero crossings and extreme signal numbers must be equal all over the
analyzed signal.

• The envelope average defined by signal local extreme must be equal to 0 at any
point. On the one hand, the low-oscillation components are represented by the
higher-order IMFJ(t), and on the other hand, the fast ones are presented by
lower-order IMFJ(t). The IMFJ(t) number is variable for different decomposed
signals and depends on the signal spectral content. The technical aspects of the
EMD implementation are decomposed on five steps given by the following
algorithm [5]:

Step 1: Extraction of the signal x(t) extreme.
Step 2: By the maximum interpolation (resp. minima), an upper envelope

emax(t) (resp. lower emin(t)) is deduced.
Step 3: The half envelope sum is defined as a local average m(t) by the following

expression:

m tð Þ ¼ emax tð Þ þ emin tð Þð Þ=2 (2)

Step 4: Deduction of dJ(t) = IMFJ(t), a local detail by

d tð Þ ¼ x tð Þ �m tð Þ (3)

Step 5: The expression (1) gives the iteration.
The high frequency terms are contained in the first IMF, which also involves the

following terms of decreasing frequency up to forwarding only a low-frequency
residue.
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2.1.2 Ensemble empirical mode decomposition (EEMD)

The ensemble empirical mode decomposition (EEMD) method was proposed to
surpass the mode mixing disadvantage which exists in EMD technique [22]. By
repeating the processes of decomposition, the EMD provides all solutions giving the
true IMF.

The following steps give the EEMD method algorithm:
Step 1: The analyzed signal is added with a predefined amplitude white noise.
Step 2: The resulted signal is decomposed by using the EMD method.
Step 3: The above signal decomposition is repeated with different fixed

amplitude white noises.
Step 4: Calculation of the final results is equal to the ensemble means of the

decomposition results.

As finite number of intrinsic mode functions (IMFs) and a residue, the signal x
(k) is decomposed:

x kð Þ ¼ ∑
n

i¼1
c_
i
þ r_ (4)

where n defines the IMF number, c_
i
is the i-th IMF which is the corresponding

IMF ensemble mean resulted from all of the decomposition processes, and r_ is the
residue mean obtained from all processes of the decomposition.

2.1.3 Complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN)

2.1.3.1 CEEMD algorithm

Although the mode mixing effect is mitigated by the EEMD method, if the
ensemble number is small, some noise will continue to exist in the corresponding
IMF(s). To deal with this problem and assure a noise-free IMF, a CEEMD algorithm
[7–23] is defined by the following steps:

Step 1: The target signal x(t) is added by positive and negative white noise
ε+,�(t) in order to create two new signals x+(t) and x�(t):

xþ tð Þ ¼ x tð Þ þ εþ tð Þ
x� tð Þ ¼ x tð Þ þ ε� tð Þ (5)

Step 2: Step 1 is repeated, and by using the EMD algorithm, each of the new
signals x+(t) and x�(t) is decomposed.

Step 3: For the x+(t) and x�(t) data sets, two IMF sets are obtained; (4) by
averaging the IMFi

k in Eq. (11), the decomposed result is calculated, where IMFi
k

defines the i-th IMF of the k-th iteration;

IMF1 nð Þ ¼ 1
I
∑
l

i¼1
IMFi

k nð Þ (6)

2.1.3.2 Complete ensemble empirical mode of decomposition with adaptive noise
(CEEMDAN)

On the one hand, using EEMD overcomes the EMD mode mixing problem, but
on the other hand, this technique presents a problem. The number of iterations
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required in EEMD process is higher, added to the residual noise remaining in the
reconstructed signal. So we have a new method called CEEMD; this technique
provides an exact reconstruction of the original signal and gives better separation
of modes with low computation cost. In this method the first mode IMF1 nð Þ is
obtained in the same way as in EEMD. It’s computed over an ensemble of r1(n)
plus different realizations of a given noise obtaining IMF2 nð Þ by averaging.
Here Ej [.] operator provides j

th mode obtained by EMD. wi is the white noise
[7–24].

The steps of CEEMDAN decomposition are as follows:
Step 1: Decompose x nð Þ þ ε0wi nð Þ to obtain the first mode by using:

IMF1 nð Þ ¼ 1
I
∑
l

i¼1
IMFi

k nð Þ (7)

where w0 is the added white noise amplitude and ε tð Þ is the white noise with unit
variance.

Step 2: Compute the difference signal:

r1 nð Þ ¼ x nð Þ � IMF1 nð Þ (8)

Step 3: Decompose r1 nð Þ þw1E1 εi nð Þ� �
, to obtain the first mode, and define the

second mode by

IMF2 nð Þ ¼ 1
I
∑
l

i¼1
E1 r1 nð Þ þ w1E1 εi nð Þ� �� �

(9)

For k = 2, …, K, calculate the k-th residue and obtain the first mode. Define the
(k + 1)-th mode as follows:

IMFkþ1 nð Þ ¼ 1
I
∑
l

i¼1
E1 rk nð Þ þwkEk εi nð Þ� �� �

(10)

where E1 is a function to extract the jth IMF decomposed by EMD.
Step 4: Continue this process until residue is no longer feasible. Final residue

R nð Þ ¼ x nð Þ � ∑
k

k¼1
IMFk (11)

So the given signal can be expressed as

x nð Þ ¼ R nð Þ þ ∑
k

k¼1
IMFk (12)

A quantitatively comparison of these three filtering methods’ performance will
be made based on two metrics: mean square error (MSE) and percent root mean
square difference (PRD). The MSE and PRD are used to evaluate the quality of the
information which is preserved in the denoised ECG signal. The MSE and the PRD
are computed as follows:

MSE ¼ 1
N

∑
N

n¼1
x nð Þ � x nð Þð Þ2 (13)
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PRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1 x nð Þ � x nð Þð Þ2
∑N

n¼1x2 nð Þ

s
∗ 100 (14)

where x(n) is the original ECG signal, x nð Þ denotes the reconstruction of the
ECG signal, and N is the number of ECG samples used.

2.2 Time-frequency techniques

In time-varying spectral analysis, time-frequency techniques have found a large
number of application [8–15]. There is no single time-frequency representation due
to the signal energy distribution which joints time and frequency coordinates. There
are many time-frequency techniques and many ways to define them. The most
popular time-frequency representation class is called the quadratic or Cohen (1989)
class. The Choi-Williams (CW), the periodgram (PE), and the smoothed pseudo
Wigner-Ville (SPWV) techniques were chosen from the different time-frequency
techniques belonging to this representation time-frequency set, due to its interest-
ing properties.

2.2.1 Choi-Williams distribution (CWD)

The Choi-Williams distribution CWD(t, f) was a significant step in the field of
time-frequency analysis where it opened the way for optimizing resolution with
cross-term reduction [25]:

CWDx t; fð Þ ¼ 1
4π2

ð∞

�∞

ð ðþ∞

�∞

exp�jθt�jτωþjθuϕ θ; τð ÞAududτdθ (15)

where

Au ¼ x uþ τ

2

� �
x ∗ u� τ

2

� �
(16)

and ϕ θ; τð Þ ¼ e
θ2τ2
σ .

The smoothing of the distribution is controlled by the constant σ. If σ ! ∞,
the Choi-Williams distribution (CWD) will simply converge to the Wigner-Ville
distribution, as the kernel goes to 1.

2.2.2 Periodogram technique

The minimum variance estimator, named Capon estimator (CA), does not fix
a model on the signal. At each frequency f, this method seeks a matched filter whose
response is 1 for the frequency f and 0 everywhere else [26]:

CA t; fð Þ ¼ a n; fð ÞHRxa t; fð Þ ¼ 1

ZH
f :Rx t½ ��1:Zf

(17)

where CA(n, f) means the filter Capon output power. By the discrete signal x(n)
sampled at the period te, this filter is excited; a(n, f) = (a0, …, ap) is the filter
impulse response at frequency n; Rx[n] = E{x[n]xT[n]} is the crossed x(n) autocor-
relation matrix of dimension (p + 1)*(p + 1); x[n] = (x(n � p), …, x(n)) is the
selected signal at time n; ZH

f (1, e
2iπft

e, …, e2iπfte
p) is the steering vector; (p + 1) is
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the number of filter coefficient and the exponent H for conjugate transpose and the
superscript T for transpose.

The periodogram (PE) is the derivate of the Capon (CA) technique. The spectral
estimator of this method is defined by the following equation [26]:

PE t; fð Þ ¼ ZH
f :Rx:Zf= pþ 1ð Þ2

� �
(18)

By sliding windows, the PE technique can be used. Theoretical criterion does not
exist for selecting window duration and filter order. The parametric technique
frequency response presents different properties according to the signal
characteristics. The time-frequency resolution depends principally of the window
choice. Usually, the PE estimator gives a better frequency resolution.

2.2.3 Smoothed pseudo Wigner-Ville technique (SPWV)

The Cohen class exhibits most nonparametric time-frequency techniques
[16, 17]. The smoothed pseudo Wigner-Ville technique belongs in particular to
this class [16, 17]. To overcome the major weakness of the Wigner-Ville
time-frequency representation, which is the covering of frequential
components, the SPWV has been proposed between the different existing nonpara-
metric time-frequency techniques; for that, the analytical signal xa(t) replaces the
real signal x(t). The following expression defines this signal:

xa tð Þ ¼ x tð Þ þ iH x tð Þf g (19)

where i2 = �1, H{x(t)} is the Hilbert transform of the signal with real
values, x(t).

Expression (20) defines the analytical signal xa(t) spectrum, Fa(k):

Fa kð Þ ¼
2X kð Þ if 0< k <N=2

X 0ð Þ if k ¼ 0, N=2

0 if N=2 < k <N

8><
>:

(20)

where X(k) represents the original signal x(t) Fourier transform and N is the
point number.

The function Wx(t, f) is the Wigner-Ville distribution related to a signal x(t), of
finished energy. This distribution depends on the temporal (t) and frequential (f)
parameters. The following expression defines this distribution [16, 17]:

Wxa t; fð Þ ¼
ðþ∞

�∞

xa tþ τ

2

� �
:x ∗

a t� τ

2

� �
e�2iπf τdτ (21)

where x*a(t) indicates the complex conjugate of xa(t).
The SPWV is used principally to decrease the problem of the interference

terms happening between the inner components that existed in Wigner-Ville
image. The time-frequency image visibility is reduced by these terms [13, 14]. The
SPWV technique is applied by using two smoothing windows h(t) and g(t). The
utility of these smoothing windows entered into the definition of the
Wigner-Ville technique is to guarantee an interference separate control both in
time (g) and in frequency (h). This representation is defined by the following
expression [16, 17]:
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the number of filter coefficient and the exponent H for conjugate transpose and the
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The periodogram (PE) is the derivate of the Capon (CA) technique. The spectral
estimator of this method is defined by the following equation [26]:
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By sliding windows, the PE technique can be used. Theoretical criterion does not
exist for selecting window duration and filter order. The parametric technique
frequency response presents different properties according to the signal
characteristics. The time-frequency resolution depends principally of the window
choice. Usually, the PE estimator gives a better frequency resolution.

2.2.3 Smoothed pseudo Wigner-Ville technique (SPWV)

The Cohen class exhibits most nonparametric time-frequency techniques
[16, 17]. The smoothed pseudo Wigner-Ville technique belongs in particular to
this class [16, 17]. To overcome the major weakness of the Wigner-Ville
time-frequency representation, which is the covering of frequential
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real signal x(t). The following expression defines this signal:
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X 0ð Þ if k ¼ 0, N=2

0 if N=2 < k <N

8><
>:

(20)

where X(k) represents the original signal x(t) Fourier transform and N is the
point number.
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where x*a(t) indicates the complex conjugate of xa(t).
The SPWV is used principally to decrease the problem of the interference

terms happening between the inner components that existed in Wigner-Ville
image. The time-frequency image visibility is reduced by these terms [13, 14]. The
SPWV technique is applied by using two smoothing windows h(t) and g(t). The
utility of these smoothing windows entered into the definition of the
Wigner-Ville technique is to guarantee an interference separate control both in
time (g) and in frequency (h). This representation is defined by the following
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SPWVx t; fð Þ ¼
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ðþ∞
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g t� uð Þxa uþ τ

2

� �
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a u� τ

2

� �
e�2iπf τdτdu

(22)

where h(t) is a smoothing frequential window and g(t) is a smoothing temporal
window.

We compare also the performance of these three time-frequency techniques by
using the same metrics that were used in the filtering method comparison.

2.3 Biomedical signals

Electrocardiogram signals allow to represent the human heart state. ECG signal
is a fundamental tool commonly used in the heart medical domain to treat patients
suffering from cardiac diseases. By measuring the potential difference between
electrodes posed in well-known places in the patient skin, these signals are usually
obtained. The ECG signal can be single channel or multichannel depending on how
many electrodes are used, one or several. Important knowledge is obtained by
cardiologists about the patient’s heart function only by analyzing a minute feature
of these signals.

The ECG signal has a well-defined P, QRS, and T signatures that represent each
heartbeat. The duration, shape, and amplitude of these waves are considered as
major features in time domain analysis.

Changes in the normal rhythmicity of a human heart may result in different
cardiac arrhythmias, which may be immediately fatal or cause irreparable damage
to the heart when sustained over a long period of time.

The following subsections present the different normal and abnormal ECG
signals chosen for this study. These data were obtained from [19].

2.3.1 Normal ECG

Figure 1 shows the time domain of a normal ECG signal. The sampling
frequency for this normal ECG signal was 128 samples/s and the signal length 8 s.

2.3.2 Atrial fibrillation ECG

Figure 2 shows a length of 4 s of an abnormal atrial fibrillation ECG signal
obtained from a patient with malignant ventricular arrhythmia. The sampling
frequency for this signal was 250 samples/s.

The atrial rate exceeds 350 beats per minute in this type of arrhythmias.
This arrhythmia occurs due to an uncoordinated activation and contraction of
different parts of the atrial which leads to ineffective pumping of blood into
the ventricles.

2.3.3 Ventricular tachyarrhythmia ECG

Figure 3 shows a length of 4 s of a ventricular tachyarrhythmia ECG signal with
a 250 samples/s sampling frequency.

This abnormal signal presents a misalignment of the third QRS complex.
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2.3.4 Malignant ventricular arrhythmia ECG

Figure 4 shows a length of 4 s of the time domain ECG signal obtained from a
patient with malignant ventricular arrhythmia. The sampling frequency for this
signal was 250 samples/s. The depolarization wave spreads through the ventricles
by an irregular and therefore slower pathway. The QRS complex is thus wide and
abnormal. Repolarization pathways are also different, causing the T wave to have an
unusual morphology.

Figure 2.
Atrial fibrillation ECG signal.

Figure 1.
Normal ECG signal.
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2.3.5 Supraventricular ECG

Figure 5 shows the time domain ECG signal of a patient with supraventricular
arrhythmia. The sampling frequency for this abnormal ECG signal was 128 samples/
s and the signal length 8 s. The shape of the QRS complex in this signal is abnormal
at the QR part.

Figure 3.
Ventricular tachyarrhythmia ECG signal.

Figure 4.
Malignant ventricular arrhythmia ECG signal.
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These normal and abnormal ECG signals were corrupted with noise CN gener-
ated by the following Eq. [4]:

CN ¼ wbw ∗BW þ wem ∗EMþ wma ∗MA
wbwþ wemþ wma

(23)

where BW is the baseline wander noise, EM is the electromyogram noise, and
MA is the motion artifact. Wbw, wem, and wma define the added noise percentage
of baseline wander, electromyogram noise, and motion artifact noises, respectively.
These parameters have been chosen with the following values wbw = 2, wem = 2,
and wma = 5, which signified that the predominant noise in the noisy ECG signal is
the motion artifact.

3. Results and discussion

3.1 Denoising methods

To evaluate the performance of the three denoising methods, EMD, EEMD, and
CEEMDAN, a set of normal and abnormal ECG signals with different shapes were
chosen. Before applying the proposed denoising methods, the ECG signals were
corrupted with different values of signal-to-noise ratio (SNR); these values are from
�5 dB to 20 dB with a 5 dB step.

Tables 1–5 report the performance of the denoising methods for the five ECG
recordings. These tables present the obtained results of the mean square error
(MSE), the root mean square error (RMSE), and the percent root mean square
difference (PRD) for the following ECG signals, respectively, a normal ECG, an
atrial fibrillation ECG, a ventricular tachyarrhythmia ECG, a malignant ventricular
arrhythmia ECG, and a supraventricular arrhythmia ECG.

Figures 6–10 present the RMSE comparison graphs of the results obtained by
using different denoising methods (EMD, EEMD, and CEEMDAN) to the five

Figure 5.
Supraventricular arrhythmia ECG signal.
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considered ECG signals: normal ECG, atrial fibrillation ECG, ventricular tachyar-
rhythmia ECG, malignant ventricular arrhythmia ECG, and supraventricular
arrhythmia ECG, respectively, at a SNR interval varying from �5 to 20 dB.

Figures 11–15 are presenting the obtained PRD results of the three denoising
methods (EMD, EEMD, and CEEMDAN) to all the chosen ECG signals, normal
ECG, atrial fibrillation ECG, ventricular tachyarrhythmia ECG, malignant ventric-
ular arrhythmia ECG, and supraventricular arrhythmia ECG, respectively, at a SNR
interval varying from �5 to 20 dB.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 1.179 1.086 192.033 1.011 1.006 177.847 1.047 1.023 180.914

0 0.450 0.671 118.580 0.320 0.565 99.966 0.357 0.597 105.620

5 0.227 0.476 84.191 0.101 0.318 56.303 0.136 0.368 65.094

10 0.136 0.368 65.104 0.032 0.180 31.820 0.064 0.253 44.812

15 0.055 0.235 41.628 0.010 0.101 17.900 0.042 0.205 36.252

20 0.038 0.196 34.604 0.003 0.059 10.359 0.034 0.185 32.695

Table 1.
MSE, RMSE, and PRD of the normal ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.780 0.883 179.314 0.768 0.877 177.928 0.767 0.876 177.727

0 0.254 0.504 102.241 0.243 0.493 100.025 0.243 0.493 100.150

5 0.097 0.311 63.129 0.077 0.277 56.300 0.078 0.280 56.837

10 0.042 0.204 41.404 0.025 0.157 31.797 0.026 0.163 33.003

15 0.023 0.153 31.050 0.008 0.087 17.760 0.010 0.099 20.117

20 0.017 0.132 26.796 0.003 0.051 10.373 0.005 0.070 14.131

Table 2.
MSE, RMSE, and PRD of the atrial fibrillation ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 1.590 1.261 177.669 1.590 1.261 177.694 1.589 1.261 177.640

0 0.513 0.716 100.957 0.505 0.711 100.173 0.503 0.709 99.905

5 0.173 0.416 58.550 0.159 0.399 56.224 0.159 0.399 56.195

10 0.057 0.240 33.782 0.051 0.225 31.769 0.050 0.224 31.618

15 0.029 0.169 23.884 0.016 0.127 17.906 0.016 0.127 17.863

20 0.016 0.126 17.685 0.005 0.074 10.403 0.005 0.072 10.151

Table 3.
MSE, RMSE, and PRD of the ventricular tachyarrhythmia ECG signal.
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3.2 Time-frequency techniques

To compare the performance of the three chosen time-frequency techniques,
Choi-Williams (CW), periodogram (PE), and smoothed pseudo Wigner-Ville
(SPWV), we applied these time-frequency methods to ECG signals presented in

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.918 0.958 177.481 0.922 0.960 177.902 0.920 0.959 177.673

0 0.291 0.539 99.900 0.291 0.540 99.946 0.291 0.539 99.921

5 0.092 0.303 56.142 0.092 0.304 56.221 0.092 0.303 56.214

10 0.029 0.171 31.672 0.029 0.171 31.692 0.029 0.171 31.628

15 0.009 0.096 17.863 0.009 0.096 17.856 0.009 0.096 17.846

20 0.003 0.056 10.291 0.003 0.055 10.214 0.003 0.055 10.122

Table 4.
MSE, RMSE, and PRD of the malignant ventricular arrhythmia ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.137 0.370 179.290 0.135 0.367 177.814 0.135 0.367 177.867

0 0.047 0.217 105.004 0.043 0.206 99.982 0.043 0.207 100.557

5 0.017 0.131 63.466 0.013 0.116 56.276 0.014 0.119 57.717

10 0.008 0.090 43.633 0.004 0.066 31.748 0.005 0.071 34.536

15 0.006 0.079 38.091 0.001 0.037 18.000 0.002 0.047 22.774

20 0.004 0.061 29.538 0.0005 0.021 10.400 0.001 0.037 17.705

Table 5.
MSE, RMSE, and PRD of the supraventricular arrhythmia ECG signal.

Figure 6.
RMSE comparison of the three denoising methods at different SNR levels for the normal ECG signal.
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Table 1.
MSE, RMSE, and PRD of the normal ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.780 0.883 179.314 0.768 0.877 177.928 0.767 0.876 177.727

0 0.254 0.504 102.241 0.243 0.493 100.025 0.243 0.493 100.150

5 0.097 0.311 63.129 0.077 0.277 56.300 0.078 0.280 56.837
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15 0.023 0.153 31.050 0.008 0.087 17.760 0.010 0.099 20.117
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Table 2.
MSE, RMSE, and PRD of the atrial fibrillation ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 1.590 1.261 177.669 1.590 1.261 177.694 1.589 1.261 177.640

0 0.513 0.716 100.957 0.505 0.711 100.173 0.503 0.709 99.905

5 0.173 0.416 58.550 0.159 0.399 56.224 0.159 0.399 56.195

10 0.057 0.240 33.782 0.051 0.225 31.769 0.050 0.224 31.618

15 0.029 0.169 23.884 0.016 0.127 17.906 0.016 0.127 17.863

20 0.016 0.126 17.685 0.005 0.074 10.403 0.005 0.072 10.151

Table 3.
MSE, RMSE, and PRD of the ventricular tachyarrhythmia ECG signal.
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3.2 Time-frequency techniques

To compare the performance of the three chosen time-frequency techniques,
Choi-Williams (CW), periodogram (PE), and smoothed pseudo Wigner-Ville
(SPWV), we applied these time-frequency methods to ECG signals presented in

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.918 0.958 177.481 0.922 0.960 177.902 0.920 0.959 177.673

0 0.291 0.539 99.900 0.291 0.540 99.946 0.291 0.539 99.921

5 0.092 0.303 56.142 0.092 0.304 56.221 0.092 0.303 56.214

10 0.029 0.171 31.672 0.029 0.171 31.692 0.029 0.171 31.628

15 0.009 0.096 17.863 0.009 0.096 17.856 0.009 0.096 17.846

20 0.003 0.056 10.291 0.003 0.055 10.214 0.003 0.055 10.122

Table 4.
MSE, RMSE, and PRD of the malignant ventricular arrhythmia ECG signal.

SNR EMD EEMD CEEMDAN

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.137 0.370 179.290 0.135 0.367 177.814 0.135 0.367 177.867

0 0.047 0.217 105.004 0.043 0.206 99.982 0.043 0.207 100.557

5 0.017 0.131 63.466 0.013 0.116 56.276 0.014 0.119 57.717

10 0.008 0.090 43.633 0.004 0.066 31.748 0.005 0.071 34.536

15 0.006 0.079 38.091 0.001 0.037 18.000 0.002 0.047 22.774

20 0.004 0.061 29.538 0.0005 0.021 10.400 0.001 0.037 17.705

Table 5.
MSE, RMSE, and PRD of the supraventricular arrhythmia ECG signal.

Figure 6.
RMSE comparison of the three denoising methods at different SNR levels for the normal ECG signal.
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Figure 7.
RMSE comparison of the three denoising methods at different SNR levels for the atrial fibrillation ECG signal.

Figure 8.
RMSE comparison of the three denoising methods at different SNR levels for the ventricular tachyarrhythmia
ECG signal.

Figure 9.
RMSE comparison of the three denoising methods at different SNR levels for the malignant ventricular
arrhythmia ECG signal.
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Figure 10.
RMSE comparison of the three denoising methods at different SNR levels for the supraventricular arrhythmia
ECG signal.

Figure 11.
PRD comparison of the different denoising methods at different SNR levels for the normal ECG signal.

Figure 12.
PRD comparison of the different denoising methods at different SNR levels for the atrial fibrillation ECG signal.
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Figure 13.
PRD comparison of the different denoising methods at different SNR levels for the ventricular tachyarrhythmia
ECG signal.

Figure 14.
PRD comparison of the different denoising methods at different SNR levels for the malignant ventricular
arrhythmia ECG signal.

Figure 15.
PRD comparison of the different denoising methods at different SNR levels for the supraventricular arrhythmia
ECG signal.
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Section 2.3. Before applying the time-frequency techniques, these ECG signals were
corrupted with different values of signal-to-noise ratio, varying from �5 to 20 dB
with a 5 dB step.

Tables 6–10 report the obtained results of the mean square error (MSE), the
root mean square error (RMSE), and the percent root mean square difference
(PRD) after applying the three time-frequency methods (CW, PE, and SPWV) to
the ECG signals, normal ECG, atrial fibrillation ECG, ventricular tachyarrhythmia
ECG, malignant ventricular arrhythmia ECG, and supraventricular arrhythmia
ECG, respectively.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 14.590 3.820 768.692 0.243 0.493 566.139 14.084 3.753 787.649

0 2.247 1.499 338.207 0.029 0.171 254.753 1.910 1.382 332.290

5 0.470 0.686 160.505 0.004 0.067 123.148 0.367 0.606 158.078

10 0.124 0.352 80.891 0.001 0.030 62.893 0.092 0.303 79.802

15 0.037 0.192 42.531 0.0002 0.015 33.357 0.027 0.163 42.003

20 0.011 0.106 22.983 0.0001 0.008 18.122 0.008 0.090 22.712

Table 6.
MSE, RMSE, and PRD of the normal ECG signal.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 13.303 3.647 271.222 0.252 0.502 151.833 13.340 3.652 270.031

0 2.270 1.507 131.224 0.041 0.202 75.307 2.202 1.484 126.352

5 0.478 0.691 67.090 0.008 0.090 39.165 0.458 0.676 64.774

10 0.119 0.345 35.616 0.002 0.044 21.018 0.113 0.335 34.446

15 0.033 0.181 19.362 0.001 0.023 11.501 0.031 0.176 18.746

20 0.010 0.098 10.678 0.0001 0.012 6.367 0.009 0.095 10.345

Table 7.
MSE, RMSE, and PRD of the atrial fibrillation ECG signal.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 65.469 8.091 423.064 1.295 1.138 220.730 65.501 8.093 418.365

0 11.304 3.362 196.830 0.222 0.471 105.949 11.196 3.346 188.372

5 2.351 1.533 97.777 0.046 0.213 53.838 2.327 1.526 93.922

10 0.571 0.756 50.923 0.011 0.105 28.461 0.565 0.751 49.037

15 0.154 0.393 27.357 0.003 0.054 15.431 0.153 0.391 26.384

20 0.045 0.211 14.981 0.001 0.029 8.496 0.044 0.210 14.461

Table 8.
MSE, RMSE, and PRD of the ventricular tachyarrhythmia ECG signal.
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Figure 13.
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Figure 14.
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Figure 15.
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ECG signal.
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Figures 16–20 illustrate the RMSE comparison results obtained by using the
different time-frequency techniques (CW, PE, and SPWV), at a SNR interval vary-
ing from �5 to 20 dB, to the following signals, respectively: normal ECG, atrial
fibrillation ECG, ventricular tachyarrhythmia ECG, malignant ventricular arrhyth-
mia ECG, and supraventricular arrhythmia ECG.

Figures 21–25 show the comparison PRD results of the three time-frequency
techniques (CW, PE, and SPWV) to the five selected ECG signals.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 25.422 5.042 81.102 0.505 0.710 44.366 25.435 5.043 79.304

0 4.654 2.157 42.667 0.092 0.303 23.665 4.621 2.150 40.959

5 1.020 1.010 23.067 0.020 0.141 12.902 1.013 1.006 22.176

10 0.257 0.507 12.679 0.005 0.071 7.127 0.255 0.505 12.200

15 0.071 0.267 7.038 0.001 0.037 3.967 0.071 0.266 6.775

20 0.021 0.145 3.929 0.0004 0.020 2.218 0.021 0.144 3.783

Table 9.
MSE, RMSE, and PRD of the malignant ventricular arrhythmia ECG signal.

SNR Choi-Williams Periodogram SPWV

MSE RMSE PRD MSE RMSE PRD MSE RMSE PRD

�5 0.410 0.640 1496.14 0.008 0.087 1300.33 0.407 0.638 1562.32

0 0.071 0.267 618.458 0.001 0.035 541.681 0.068 0.262 618.646

5 0.015 0.124 277.450 0.0002 0.016 244.693 0.015 0.121 277.768

10 0.004 0.062 133.833 0.0001 0.008 118.663 0.004 0.060 134.056

15 0.001 0.033 68.259 2 10�5 0.004 60.743 0.001 0.032 68.391

20 0.0003 0.018 36.175 5 10�6 0.002 32.266 0.0003 0.017 36.250

Table 10.
MSE, RMSE, and PRD of the supraventricular arrhythmia ECG signal.

Figure 16.
RMSE comparison of the three time-frequency methods at different SNR levels for the normal ECG signal.
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Figure 17.
RMSE comparison of the three time-frequency methods at different SNR levels for the atrial fibrillation ECG
signal.

Figure 18.
RMSE comparison of the three time-frequency methods at different SNR levels for the ventricular
tachyarrhythmia ECG signal.

Figure 19.
RMSE comparison of the three time-frequency methods at different SNR levels for the malignant ventricular
arrhythmia ECG signal.
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Figure 17.
RMSE comparison of the three time-frequency methods at different SNR levels for the atrial fibrillation ECG
signal.

Figure 18.
RMSE comparison of the three time-frequency methods at different SNR levels for the ventricular
tachyarrhythmia ECG signal.

Figure 19.
RMSE comparison of the three time-frequency methods at different SNR levels for the malignant ventricular
arrhythmia ECG signal.
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Figure 20.
RMSE comparison of the three time-frequency methods at different SNR levels for the supraventricular
arrhythmia ECG signal.

Figure 21.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
normal ECG signal.

Figure 22.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
atrial fibrillation ECG signal.
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Figure 23.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
ventricular tachyarrhythmia ECG signal.

Figure 24.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
malignant ventricular arrhythmia ECG signal.

Figure 25.
PRD comparison of the three time-frequency techniques (CW, PE, and SPWV) at different SNR levels for the
supraventricular arrhythmia ECG signal.
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3.3 Discussion

The study was divided to two separate steps. The first part involved a compari-
son between three denoising methods, empirical mode decomposition (EMD) and
its two variants ensemble empirical mode decomposition (EEMD) and complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN). We
note from the obtained results (Tables 1–5 and Figures 6–15) that the EEMD and
the CEEMDAN methods for the most selected ECG signals for the different signal-
to-noise ratio (SNR) values yield the smallest values of MSE, RMSE, and PRD
compared to those obtained by the EMD method. Despite the EEMD method pro-
viding a slight advantage than CEEMDAN for a few degrees of SNR in some ECG
signals, we concluded that the most optimal technique for denoising this type of
biomedical signals is CEEMDAN, especially for the large number of iterations
required in EEMD process.

The second part of study presents a comparison of the different results of the
three time-frequency techniques Choi-Williams (CW), periodogram (PE), and
smoothed pseudo Wigner-Ville (SPWV). These time-frequency techniques were
applied to normal and abnormal ECG signals with different degrees of SNR varying
from �5 dB to 20 dB. We note that the PE technique provides the best results; it
furnishes the smallest values of MSE, RMSE, and PRD than those obtained by the
two other techniques, CW and SPWV.

After these two steps, we concluded that a combination of the two techniques,
CEEMDAN denoising method and PE time-frequency technique, would be ideal for
the ECG signal analysis. The CEEMDAN method will be reserved for the pre-
treatment phase to filter the noise, and in the second phase, the PE technique will be
applied to supply the evolution of the ECG signal fequential components over the
time in order to provide a good diagnosis.

4. Conclusion

The work purpose was to conduct two comparative studies to determine the best
techniques for ECG signal processing. The first one focused on the comparison
between techniques aimed at preprocessing ECG signals, namely, denoising
methods. The second one was to compare some time-frequency techniques that are
intended to analyze these biomedical signals. The obtained results show that, in the
first part, the CEEMDAN presents a high effectiveness in the noise elimination and,
in the second one, the periodogram provides the best solution for analyzing ECG
signals. We conclude that a combination of the CEEMDAN denoising method and
the PE time-frequency technique can be a good issue in analyzing the ECG signals.
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Chapter 3

Visualization of ECG Data on 
Variant Maps
Zhihui Hou and Jeffrey Zheng

Abstract

This chapter presents variant maps for showing potential features in ECG data 
sets. The variant map is a visualization method different from a traditional ECG. In 
this chapter, the ECG data sets obtained by clinical ECG monitoring are used as 
the data source, and the corresponding variant maps are obtained by the variant 
statistics method. This chapter mainly introduces the variant statistics method 
about converting ECG data into variant maps. From sample results, various visual 
properties can be observed, and further explorations are required.

Keywords: variant maps, ECG data, visualization feature

1. Introduction

Today, people still are in a state of high cardiovascular disease incidence. The 
world is paying attention to cardiovascular diseases [1], mainly relying on the 
detection of ECG signals to promote the research of cardiovascular diseases. 
ECG signals are the product of a wide range of clinical ECG technologies. The 
electrocardiogram represents cardiac function and graphic signals [2], which are 
important means of diagnosing abnormal cardiac activity.

With the development of the information age, signal acquisition, data process-
ing, and information analysis have become the main theme of scientific and tech-
nological development. In recent years, ECG signal research methods have made 
significant progress, such as the use of machine learning [3], clustering [4], partial 
fractal dimension [5], wavelet transform [6], and other methods for classification 
of arrhythmia detection [7]. Among the emerging ECG signal research methods, 
the most typical representative is the ECG scatter plot [8–10]. The ECG scatter plot 
observes the ECG signal in a new perspective, complementing traditional ECG 
detection.

The variant method is an emerging method for dealing with the phase change 
of the signal phase. Now the variant method has formed the theory of variant 
theory, variant logic function, and variant visualization method. In the 1990s, 
the application of variant method in the processing of binary image classifica-
tion and conversion [11, 12]. In 2010, the variant method had been improved 
[13, 14]. So far, the variant method has been continuously developed and applied 
to different data samples, quantum sequences [15, 16], random sequences [17], 
noncoding DNA [18–20], bat echo signals [21], ECG signals [22, 23], and variant 
construction [24].

The variant method can process massive random sequences and extract sta-
tistical measurement features from them. The ECG sequence is a natural random 
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sequence. It is a good fit to apply the variant method to the statistical measure-
ment characteristics of massive ECG sequences. It has research value. The main 
purpose of this chapter is to study the visual characteristics of ECG signals and 
to mine valuable information in ECG signals. This chapter introduces the overall 
architecture, module function, and core algorithm of the variant measurement 
system. The results of this study show that the variant maps provide a new obser-
vation angle for ECG signal feature detection, and it shows the resolution of ECG 
data in visual effect.

The experimental data samples and experimental results in this chapter will be 
introduced in the fourth part. The overall structure and workflow of the variant 
measurement system are introduced in the second part. The third part introduces 
core module function and algorithm and finally summarizes the research.

2. Variant map for ECG

2.1 Overall structure

The variant measurement system is divided into five modules as a whole, which 
are an input data source module, a variant processing module, a segmentation 
measurement module, a state statistics module, and an output variant map module. 
The structure of variant measurement is shown in Figure 1.

It can be seen in Figure 1 that each module has its specific function. The input 
data source module is mainly used to read the ECG sequence. The main function 
of the variant processing module is to discretize the continuous ECG sequence. 
Segmentation measurement module is to segment the sequence. The main 
function of the state statistics module is to count the state of the pseudogene 
sequence.

2.2 Workflow chart

The five modules in the variant measurement system are independent and con-
nected. The workflow of the entire variant measurement system is shown in Figure 2.

As can be seen from Figure 2, the five modules of the variant measurement 
system are arranged in order. The output of the previous module is the input of the 
next module. The input and output of each module are as follows:

1.  Input data source module: The input data set, the output is the length of N ECG 
sequence.

2.  Variable value processing module: Input is ECG sequence of length N, and the 
output is pseudogene sequence of length N.

Figure 1. 
The structure of variant measurement.
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3.  Segmentation measurement module: Input segment length value “m,” input 
pseudogene sequence of length N, output is divided into M segment pseudogene 
sequence, where N = M*m.

4.  State statistics module: Input the pseudogene sequence with length M 
(N = M*m), and output the corresponding variable measure value.

5.  Variable value graph output module: Input variant measure, output variant ECG 
scatter plot.

3. Core module

3.1 Variant processing module

The core function of the module is to process successive ECG sequences into 
discrete 4-primary pseudogene sequences.

The variant processing module includes three submodules, a parameter setting 
submodule, a data discretization submodule, and a variant processing submodule. 
The three submodules are closely related, and the workflow of the module is shown 
in Figure 3.

As can be seen from the workflow chart of the variant processing module, the 
input and output relationship of the module is:

Parameter setting:
Sliding window value “W,” ; threshold “R,” R is a natural number 

greater than 0.
Input:
The base sequence value of length N: , where N is a positive 

integer.
Procedure:
A conversion sequence of length N: , where N is a positive 

integer.
Output:
Pseudogene sequence of length N: , N belongs to a 

positive integer,  and  is an element in .
The above is the overall workflow of the variant processing module. Since the 

variant processing module includes a parameter setting submodule, a data dis-
cretization submodule, and a variant conversion submodule, the functions of each 
submodule and its core algorithm will be specifically described below.

3.1.1 Parameter setting submodule

The parameter setting is to set the sliding window value “W” and the thresh-
old “R” two parameters. It should be noted that the parameters have dynamic 
adjustability.

Figure 2. 
The workflow of variant measurement.
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3.1.2 Data discretization submodule

The specific variable discretization algorithm is divided into three steps: the first 
step calculates the average sequence corresponding to the base sequence, the second 
step calculates the truncated average sequence corresponding to the base sequence, 
and the third step calculates the conversion sequence corresponding to the base 
sequence. The calculation of these three steps is as follows:

1.  The first step is to calculate the average sequence corresponding to the base 
sequence. In the sliding window value, the sliding window is sequentially moved 
from the first position of the base sequence, one bit at a time, and the average 
value in the sliding window value obtained by each movement is calculated. The 
calculation process is:

Input:
The base sequence value of length N is , N is a positive 

integer; the sliding window value is “W,” .
Processing:
Here is an example of the process of calculating a sliding window. Suppose the 

base sequence in the sliding window value “W” is ; then the average 
value of the sequence is .

Output:
The average sequence of length N is .

Figure 3. 
The workflow of variant processing.
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2.  The second step calculates the truncated average sequence corresponding to the 
base sequence. In the sliding window value, the sliding window is sequentially 
moved from the first position of the base sequence, one bit at a time, and the 
truncated average value in the sliding window value obtained by each movement 
is calculated. The calculation process is:

Input:
Base sequence value of length N: , N is a positive integer; 

threshold “R,” R is a natural number greater than 0.
Processing:
Here is an example of the process of calculating a sliding window. Suppose the 

base sequence in the sliding window value “W” is ; then the maxi-
mum value of the elements in the sequence is , the minimum value is 

, then the truncated mean of the sequence is .
Output:
Truncated average sequence of length N: .

3.  The third step calculates the conversion sequence corresponding to the base 
sequence:

Input:
Threshold “R,” R is a natural number greater than 0;
the base sequence of length N is ;
the average sequence of length N is ; and
the truncated average sequence of length N is .
Processing:
For example, calculation of the i-th element  in the base sequence to the i-th 

element  in the conversion sequence: .
Output:
Conversion sequence of length N is , where N is a positive 

integer.

3.1.3 Variant processing submodule

The variant processing submodule is for processing the conversion sequence 
into a corresponding pseudogene sequence. The conversion rule is based on the 
threshold value, dividing the number axis into four intervals, and the four inter-
vals correspond to the four primitives of the gene sequence: A, G, C, and T. When 
the conversion value is greater than or equal to the threshold, the conversion value 
is defined as A. When the conversion value is less than or equal to the negative 
threshold, the conversion value is defined as T. When the conversion value is 
greater than 0 and less than the threshold, the conversion value is defined as G, 
and when the conversion value is less than 0. When the value is greater than the 
negative threshold, the conversion value is defined as C; the conversion rules are 
as follows:

Input:
A sequence of converted values   of length N: ; N is a positive 

integer; threshold “R,” R is a natural number greater than 0.
Processing:
For example, conversion rule between the i-th element  and the threshold in 

the conversion sequence:
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Output:
A pseudogene sequence of length N , where N is a 

positive integer.

3.2 Segmented measurement module

The segmentation measurement module is to segment the pseudogene sequence. 
The function of this step is simple, but it is essential to prepare for the state statistics 
module. It should be noted that the segmentation measurement method here is dif-
ferent from the sliding window value in the variable value processing module. The 
principle of sliding window operation in the variable value processing module is to 
perform correlation measurement in order of 1 interval and sliding window value 
as unit length. The segmentation measurement is based on the segment length and 
sequentially segments the data sequence. For example, when the segment length is 
m, the pseudogene sequence of length N can be divided into M segments, N = M*m. 
The workflow of segmented measurement is in Figure 4.

The input and output relationship of this module is:
Parameter setting:
The segment length value is recorded as “m,” .
Input:
Segmentation length value “m”; pseudogene sequence of length N: 

.
Processing:
Segmenting the pseudogene sequence of length N in turn at intervals of segment 

length m.
Output:
The segmentation length of m is divided into M groups of pseudogene sequences 

; where .

3.3 Variant state statistics module

This module statistically analyzes the sequence mathematically, revealing 
the patterns in the data and the relationship between the data. The module uses 

Figure 4. 
The workflow of segmented measurement.
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statistical ideas to calculate the measure values of the various primitives of A, G, 
C, and T in the pseudogene sequence. The measurement method is to count the 
number of each primitive in each group in the grouping sequence of the pseudogene 
sequence and mark the obtained value as a state statistical sequence. The workflow 
chart is shown in Figure 5.

As can be seen from Figure 5, the input and output relationship of the module is:
Input:
Segment length with m; pseudogene sequence 

; where .
Processing:
Processing includes variant conversion statistics and variant probability 

measurement.
Output: Probability measure sequence.
The rules for variant conversion statistics and variant probability measurement 

are defined as follows.

3.3.1 Variant conversion statistics

The process of variant conversion statistics is illustrated by taking the i-th group 
in the grouped pseudogene sequence as an example:

; where ,  is a pseudogene 
sequence consisting of all pseudogenes in the i-th group.

 represents the value of the number of A primitives in the i-th group;
 represents the value of the number of G primitives in the i-th group;
 represents the value of the number of C primitives in the i-th group; and
 represents the value of the number of T primitives in the i-th group.

Taking the i-th group as an example, the state measurement sequence 
 can be obtained by analogy.

Figure 5. 
The workflow of variable state statistics.
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perform correlation measurement in order of 1 interval and sliding window value 
as unit length. The segmentation measurement is based on the segment length and 
sequentially segments the data sequence. For example, when the segment length is 
m, the pseudogene sequence of length N can be divided into M segments, N = M*m. 
The workflow of segmented measurement is in Figure 4.

The input and output relationship of this module is:
Parameter setting:
The segment length value is recorded as “m,” .
Input:
Segmentation length value “m”; pseudogene sequence of length N: 

.
Processing:
Segmenting the pseudogene sequence of length N in turn at intervals of segment 

length m.
Output:
The segmentation length of m is divided into M groups of pseudogene sequences 

; where .

3.3 Variant state statistics module

This module statistically analyzes the sequence mathematically, revealing 
the patterns in the data and the relationship between the data. The module uses 

Figure 4. 
The workflow of segmented measurement.
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statistical ideas to calculate the measure values of the various primitives of A, G, 
C, and T in the pseudogene sequence. The measurement method is to count the 
number of each primitive in each group in the grouping sequence of the pseudogene 
sequence and mark the obtained value as a state statistical sequence. The workflow 
chart is shown in Figure 5.

As can be seen from Figure 5, the input and output relationship of the module is:
Input:
Segment length with m; pseudogene sequence 

; where .
Processing:
Processing includes variant conversion statistics and variant probability 

measurement.
Output: Probability measure sequence.
The rules for variant conversion statistics and variant probability measurement 

are defined as follows.

3.3.1 Variant conversion statistics

The process of variant conversion statistics is illustrated by taking the i-th group 
in the grouped pseudogene sequence as an example:

; where ,  is a pseudogene 
sequence consisting of all pseudogenes in the i-th group.

 represents the value of the number of A primitives in the i-th group;
 represents the value of the number of G primitives in the i-th group;
 represents the value of the number of C primitives in the i-th group; and
 represents the value of the number of T primitives in the i-th group.

Taking the i-th group as an example, the state measurement sequence 
 can be obtained by analogy.

Figure 5. 
The workflow of variable state statistics.



Practical Applications of Electrocardiogram

52

3.3.2 Variant probability measurement

The following describes the process of probability measurement by taking the 
i-th group in the pseudogene sequence as an example:

  

  

  

  

  

Taking the i-th group as an example, the probability measurement sequence 
 can be obtained by analogy.

4. Sample results and brief analysis

4.1 Data source description

ECG data samples from the First People’s Hospital of Yunnan Province. This 
batch of data sets was initially analyzed by hospital experts. In order to facilitate 
the experimental research, an ECG database was established to classify ECG data. 
Among them, the normal ECG data is about 138 MB, and the abnormal ECG data is 
about 362 MB. The data samples obtained by collation are shown in Figure 6.

As can be seen in Figure 6, ECG data belongs to multivalued data and has a 
plurality of different attribute values, including pr interval, qt interval, p wave, 
qrs wave, and the like. In the medical field, the diagnosis of P-wave signals is a key 
point and difficulty in research. The P wave is the key to the diagnosis of arrhyth-
mia; as shown in Figure 7, it is the normal ECG signal that marks P.

Based on the above background, this chapter selects the P-wave data in the ECG 
data provided by the First People’s Hospital of Yunnan Province to perform vari-
able value visualization analysis. In order to ensure the rigor of the experiment, the 
normal P wave and the abnormal P wave of the same data amount were selected 

Figure 6. 
Sample of ECG data.
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for research. By comparing the variant maps between the normal P wave and the 
abnormal P wave, the useful information in the ECG data is mined.

4.2 Meaning of selected variable value map

Input:
data source and parameter value; the data source is a normal P-wave ECG sequence 

of length 10,254, an abnormal P-wave ECG sequence of length 10,254; the parameter 
is the sliding window value “W,” and the threshold “R,” a segment length value “m”;

Processing:
The process is completed by the variant measurement system.
Output:
Variant maps: the X-axis represents the probability measure of G in the four primi-

tives A, G, C, and T, and the Y-axis represents the probability measure of C in the four 
primitives A, G, C, and T. Marked on the variable map as X = St(G), Y=St(C).

4.3 Visualization features

Figure 8 shows an example of normal P-wave and anomalous P-wave variation 
map. This example is a variable value map obtained under the condition that the 

Figure 7. 
The normal ECG signal that marks P.

Figure 8. 
Normal P-wave and abnormal P-wave characteristics. (a) Normal P-wave variant map. (b) Abnormal 
P-wave variant map.
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for research. By comparing the variant maps between the normal P wave and the 
abnormal P wave, the useful information in the ECG data is mined.

4.2 Meaning of selected variable value map

Input:
data source and parameter value; the data source is a normal P-wave ECG sequence 

of length 10,254, an abnormal P-wave ECG sequence of length 10,254; the parameter 
is the sliding window value “W,” and the threshold “R,” a segment length value “m”;

Processing:
The process is completed by the variant measurement system.
Output:
Variant maps: the X-axis represents the probability measure of G in the four primi-

tives A, G, C, and T, and the Y-axis represents the probability measure of C in the four 
primitives A, G, C, and T. Marked on the variable map as X = St(G), Y=St(C).

4.3 Visualization features

Figure 8 shows an example of normal P-wave and anomalous P-wave variation 
map. This example is a variable value map obtained under the condition that the 

Figure 7. 
The normal ECG signal that marks P.

Figure 8. 
Normal P-wave and abnormal P-wave characteristics. (a) Normal P-wave variant map. (b) Abnormal 
P-wave variant map.
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parameter sliding window value W = 24, the threshold R = 0.85, and the segment 
length value m = 100 are selected. It can be seen that there are obvious differences 
in the shape characteristics of the normal P-wave and the abnormal P-wave scatter 
cluster, and the distribution characteristics of the scatter cluster between the two 
are also different. The normal P-wave characteristics are mainly concentrated in the 
interior of the quadrilateral formed by “(0.3, 0.4), (0.4, 0.1), (0.8, 0.4), (0.8, 0.7).” 
The abnormal P-wave characteristics are mainly concentrated inside the triangle 
formed by “(0, 1), (0.4, 0.4), (1, 1).”

In order to better display the variant features, the following will be shown as an 
example of the visualization results under different “m” values (Figure 9).
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5. Summary

This chapter is closely related to the measurement model, processing method, 
and variant maps to study ECG signals. To some extent, the variant maps and the 
traditional clinical ECG can be compared:

Figure 9. 
A list of variant maps on parameters M = {50,80,110,140,170,200}; (a1)–(a6) is a list of normal P wave; and 
(b1)–(b6) is a list of abnormal P wave. (a1) m = 50, (a2) m = 80, (a3) m = 110, (a4) m = 140, (a5) m = 170, and 
(a6) m = 200; and (b1) m = 50, (b2) m = 80, (b3) m = 110, (b4) m = 140, (b5) m = 170, and (b6) m = 200.
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5. Summary

This chapter is closely related to the measurement model, processing method, 
and variant maps to study ECG signals. To some extent, the variant maps and the 
traditional clinical ECG can be compared:
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provided the original work is properly cited. 

1. The electrocardiogram is a characteristic map obtained by processing the 
individual ECG signal. The variant maps, which mainly target massive ECG 
signals, can process individual ECG signals and can also process cluster ECG 
signals to provide visual analysis of points and surfaces.

2. The waveform features on the electrocardiogram have strong professionalism 
and complexity, while variant maps show waveform features from another 
perspective in the form of scatter clusters; variant maps visualization features 
are simple and clear. Nonprofessional ECG experts can also see the difference 
between normal and abnormal ECG characteristics.

The experimental results in this chapter demonstrate the visual characteristics 
of the differences in ECG data, giving a simple and clear visual experience, but the 
research in this chapter still has some shortcomings: due to the differences in the 
detection instruments, the different backgrounds of the times, the different data 
sources, and the lack of specific ECG diagnostic experts to guide these factors in the 
reality, the basic research of this chapter needs to be further improved.

Further cooperation with hospital ECG experts in the later stage is expected, 
combined with computer method technology, to process more targeted ECG data 
and further improve the variant measurement system to form a standard model, 
and combined with pathological conditions; the corresponding quantitative evalua-
tion criteria were studied.

It is necessary to specifically note here that the parameters selected in the 
experiments in this chapter are selected after a large number of experiments, and 
the selection is based on the integrity, usability, and stability of the image features 
in the visualization results.
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Chapter 4

Characteristics of Atrial Premature
Beat ECG Signals on Variant Maps
Lihua Leng, Jeffery Zheng and Jing Zhang

Abstract

Premature heartbeat is also known as extrasystole. It means the foundation of
sinus or ectopic heart rhythm, a certain pacemaker in the heart excitable earlier
than the basic rhythm, cause the heart to be local or all happening prematurely
remove pole. Premature atrial beats may lead to cardiomyopathy. The experimental
data in this chapter are provided by Xishan People’s Hospital of Wuxi city, includ-
ing normal ECG signals and abnormal ECG signals (atrial premature beat). The two
types of ECG data sequences are processed experimentally through the variant
measurement model, and the differences in the variant maps are compared.

Keywords: atrial premature beat, ECG signal, data sequence, arrhythmia,
variant maps

1. Introduction

Cardiovascular diseases are common diseases that seriously threaten human
health [1], and the mortality rate caused by cardiovascular diseases continues to
increase globally. ECG signal is the direct response of heart activity and the most
effective way to analyze cardiovascular diseases. The object of this chapter is the
atrial premature beat ECG signal in atrial arrhythmia. The experimental method is
variant measurement model [2]. The provider of ECG data is Xishan People’s
Hospital of Wuxi city, Jiangsu Province China, and the later calibrator of ECG data
is the First People’s Hospital of Yunnan Province China. This chapter includes
relevant background to introduce atrial premature beat [3], variant measurement
model, experimental data, and variant maps of atrial premature beat signals. There
is a significant difference between the variant maps of normal and atrial premature
beat ECG signals obtained through variant measurement schemes.

This chapter uses the variant measurement model and the visualization method
of feature clustering to study the variant measurement of ECG signal data
sequences. ECG signal utilizes multivalued logic function and variant principle to
form variant logic symbol on n-element ECG signal sequence and output variant
maps and observe the difference between different ECG signal data. The obtained
variant maps can analyze the ECG data from the macroscopic level and express the
information that cannot be reflected by the traditional ECG in an intuitive way. The
application of variant maps in ECG signal is an extension of the original ECG signal
methods. In practical applications, it is expected that the variant maps can assist the
application of traditional ECG in the medical field and help clinicians to diagnose
the test results more conveniently.
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than the basic rhythm, cause the heart to be local or all happening prematurely
remove pole. Premature atrial beats may lead to cardiomyopathy. The experimental
data in this chapter are provided by Xishan People’s Hospital of Wuxi city, includ-
ing normal ECG signals and abnormal ECG signals (atrial premature beat). The two
types of ECG data sequences are processed experimentally through the variant
measurement model, and the differences in the variant maps are compared.

Keywords: atrial premature beat, ECG signal, data sequence, arrhythmia,
variant maps

1. Introduction

Cardiovascular diseases are common diseases that seriously threaten human
health [1], and the mortality rate caused by cardiovascular diseases continues to
increase globally. ECG signal is the direct response of heart activity and the most
effective way to analyze cardiovascular diseases. The object of this chapter is the
atrial premature beat ECG signal in atrial arrhythmia. The experimental method is
variant measurement model [2]. The provider of ECG data is Xishan People’s
Hospital of Wuxi city, Jiangsu Province China, and the later calibrator of ECG data
is the First People’s Hospital of Yunnan Province China. This chapter includes
relevant background to introduce atrial premature beat [3], variant measurement
model, experimental data, and variant maps of atrial premature beat signals. There
is a significant difference between the variant maps of normal and atrial premature
beat ECG signals obtained through variant measurement schemes.

This chapter uses the variant measurement model and the visualization method
of feature clustering to study the variant measurement of ECG signal data
sequences. ECG signal utilizes multivalued logic function and variant principle to
form variant logic symbol on n-element ECG signal sequence and output variant
maps and observe the difference between different ECG signal data. The obtained
variant maps can analyze the ECG data from the macroscopic level and express the
information that cannot be reflected by the traditional ECG in an intuitive way. The
application of variant maps in ECG signal is an extension of the original ECG signal
methods. In practical applications, it is expected that the variant maps can assist the
application of traditional ECG in the medical field and help clinicians to diagnose
the test results more conveniently.
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2. Relevant background

2.1 Atrial premature beats

Atrial arrhythmia is the most common arrhythmia clinically, which refers to a
kind of arrhythmia caused by conduction obstruction when ectopic excitations are
located in the atrium or conduction system passing through the atrium. It is mainly
active arrhythmia, and atrial premature beat is the most common type of atrial
arrhythmia. Atrial premature beats can be seen in normal healthy people, but in
healthy people, there are few frequent atrial premature beats [4]. Atrial premature
beats is more common in organic heart disease patients, Hyperthyroidism, Coro-
nary heart disease, Cardiomyopathy patients if frequent atrial premature beat, is the
precursor of Atrial fibrillation, Acute myocardial infarction can also occur frequent
atrial premature beat. Figure 1 shows the comparison between normal ECG and
atrial premature beat ECG.

The picture is the atrial premature beat ECG. Patient information: male, 46 years
old, arrhythmia, mean heart rate 62 bpm, early occurrence of P0-QRS-T in limb
leads, 160 ms in P’R interval, incomplete compensatory interval, such expression is
a atrial premature beat.

2.2 Variant measurement model

In 2010, variant model [5] was proposed with the stability of cellular automata
as an example; the effect of variant and non-variant functions on binary logic
functional space was explained. In 2011, the conditional probability statistical dis-
tribution of the variant measurement structure [6] is discussed. By simulating the
two-state quantum interaction system, the variant two-path simulation model was
established. With the continuous development of variant construction, this model
has been applied in many fields: coding and non-coding DNA [7] sequence detec-
tion, random sequence testing [8], classification of cellular automata [7], classifica-
tion of echolocation in bats [9], ECG signals [10, 11], and variant construction [12].

2.3 Variant logic

The core theory of variant measurement model is variant logic, which is
extended and evolved on the basis of classical logic. In the variant logic function,
assuming that the input sequence is long , the output data sequence

is N-1 according to the variant rule. On the basis of the variant logical
function, the variant measurement model defines four basic variant logical symbols:

Figure 1.
Atrial premature beats ECG.
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. The transformation rules of the four variant symbols are shown in
Table 1. Therefore, in this chapter, long ECG signal is converted into long
variant logical operator through variant logical function.

2.4 Variant visualization

The variant measurement model describes the measurement as the four meta
symbols: . The 16 subsets of meta symbol set are as follows: , , , ,

, , , , , , , , , , , and .
The 16 subsets correspond to the 16 measures:

Here, the statistical
quantity of is defined as 0 and the corresponding definitions of 16 variant
measures are shown in Table 2.

If any measure is selected as the value of in the variant maps and any measure
is selected as the value of in the variant maps, there are a total of
combinations of such two-dimensional maps, which are specifically shown in
Table 3. In this chapter, the three-dimensional variant maps are also adopted, and
the Z-axis is added on the basis of the two-dimensional maps. The selection princi-
ple is the same as the selection method of and .

2.5 ECG signal variant measurement structure

Variant measurement structure is composed of three components: input,
processing, and output. The input ECG signal is provided by Wuxi Xishan People’s
Hospital. The data processing module is the core module of variant measurement
and consists of variant module, statistical measurement module, and visualization

Conversion type Variant sign Statistical sign Statistical total

Table 1.
Variant sign conversion rule.

Sign subset Variant measure Sign subset Variant measure

Table 2.
Definition of 16 variant measures.
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module. The final output is variant maps. The structure of ECG signal variant
measurement is shown in Figure 2.

2.6 Data processing module

The data processing module is divided into three parts: variant module, mea-
surement statistics module, and visualization module. The variant module is the
most important part of the variant measurement model. It is mainly responsible for
transforming the original ECG signal sequence into the sequence of four basic
variant logic symbols through mapping rules. The specific definitions of
the parameters involved in the transformation process will be given in the
core module. The measurement statistics module is mainly responsible for grouping
the variant logical symbol sequence by setting a reasonable segment
length M according to total length of the sequence. After grouping, the
sequence in each group is counted and denoted as . The visualiza-
tion module is to generate the final variant maps, in which the variant maps can be
two-dimensional map and three-dimensional map. The specific visualization pro-
cess will be given in the chapter of the core module. The structure diagram of the
data processing module is shown in Figure 3.

2.7 Core module

2.7.1 Variant module

The variant module is the most core module in the variant measurement model.
It is mainly responsible for converting the obtained ECG signal sequence into four
variant logical symbol sequences through variant logic. The transformation
process involves parameters , and the definition is shown in Eqs. (1)–(4).

(1)

(2)

...

...

...

... ... ... ... ... ...

...

...

Table 3.
Combinations of visualization of 256 variant measures.

Figure 2.
Structure diagram of ECG sequence variant measurement.
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(3)

(4)

Considering that the difference value can reflect the increase or decrease of
adjacent ECG data, the difference value of the overall ECG data can reflect the
fluctuation of the sequence; the mean value can reflect the level of adjacent ECG
data, so the mean value of the overall ECG data can reflect the overall level of the
sequence. In the process of data transformation, the variant module selects the
difference, global difference, mean, and global mean as the measurement parame-
ters. Using the parameters defined in Eqs. (1)–(4), the corresponding
parameter values can be calculated for the input n-long ECG signal sequence as the
parameter support of the variant module. According to the mapping principle of
Eq. (5), the original ECG sequence was mapped to sequence by setting
parameters.

(5)

2.7.2 Measurement statistics module

As shown in Figure 3, for n-1 long variant logic symbol sequence, set the segment
length parameter , the number of groups is , and then . According to
the grouping situation, the number of “ ” ,“ ” ,“ ” and “ ” in each group is recorded

Figure 3.
Structure diagram of ECG data processing.
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as “ ”, “ ”, “ ” and “ ”, “ ” represents the number of statistics of the variant
logic symbol “ ” in this group. After statistical process, the whole output group is
generated . For each set of statistical results, including
meet long variant logical sym-
bol sequence is converted into S group statistical array .

2.7.3 Visualization module

The visualization module determines the selection of coordinates and gen-
erates a variant graph. According to the results obtained from the measurement
statistics module and the definition of variant visualization, this chapter selects
overall two-dimensional maps, two-dimensional combination maps, and three-
dimensional combination maps to display the visualization results. The overall two-
dimensional maps define normal and abnormal ECG signals as of 256
combinations, respectively. The two-dimensional combination maps is to form the
scatter diagram of normal and abnormal ECG signals by the same mapping method,
and it is easier to observe the differences between them on the same maps. Three-
dimensional combination maps are a combination method added on the basis of
two-dimensional combination maps. In three-dimensional space, the characteristics
between normal ECG signal and abnormal ECG signal are more abundant.

3. Data sets

The ECG data is provided by the people’s hospital of Wuxi Xishan. The CB series
ECG review analyzer is used to measure blood pressure of ECG data. Through the
system of the patient’s ECG information is stored in 18 data files, one of .dat files is
stored in the patient’s ECG data, by reviewing the ECG blood pressure of CB series
data of ECG analysis system is read as shown in Figure 4.

As shown in Figure 4, the patient’s ECG was collected with three-lead, and the
heart rate data of CH1 lead was recorded at a sampling point of 1.5 s on average. The
ECG signal was imported into the database for variant measurement experiment.
This set of ECG data includes 105 patients. By analyzing the diagnosis results of
each patient, this data set can be divided into two categories: normal and abnormal.
Abnormal ECG data includes four types of symptoms: atrial premature beat, 64
cases; ventricular/atrial premature beats and T changes, 9 cases; premature ven-
tricular/atrial beats and complete right bundle branch conduction block, 4 cases;
atrial fibrillation and ST-T changes, 4 cases; and normal, 24 cases. In this chapter,
atrial premature beat and normal ECG data were selected for variant measurement.

Figure 4.
ECG data diagram of Xishan People’s Hospital.
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4. Experimental results

4.1 Two-dimensional overall maps

As shown in Figure 5, the red diagram on the left is a variant map of normal
ECG signals; the blue on the right is a variant map of atrial premature ECG signals,

Figure 5.
Overall two-dimensional maps of normal ECG data and atrial premature beat.

Figure 6.
Two-dimensional combination maps of normal ECG data and atrial premature beat.
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with the same mapping of , formed when the
insets. At the top of each small map is the mapping mode corresponding

to that diagram.

4.2 Two-dimensional combination maps

As shown in Figure 6, the two-dimensional combination maps put the results of
the variant of the normal ECG signal and the atrial premature beat ECG signal in
one picture, and the four combinations in Figure 6 are
and ; the values of are all limited to the sum of the two subsets.

As shown in Figure 7, the two-dimensional combination maps also put the
results of the variant of the normal ECG signal and the atrial premature beat ECG
signal in a single graph. The 12 combinations in Figure 7 are

and
the value of

is limited to the sum of two subsets, and the value of is limited to the sum of the
three subsets.

Figure 7.
Two-dimensional combination maps of normal ECG data and atrial premature beat.
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4.3 Three-dimensional combination maps

As shown in Figures 8–10, the three-dimensional combination maps are a
combination of the normal ECG signal and the atrial premature beat ECG signal in
the three-dimensional space. The mode of the (X, Y, Z) combination in Figure 8 is

the combination of (X, Y, Z) in Figure 9 is and the
combination of (X, Y, Z) in Figure 10 is ; the values of X and Y are
both defined as the sum of the two subsets, and the values of Z are all limited to the
sum of the three subsets.

Figure 8.
Three-dimensional combination maps of normal ECG data and atrial premature beat.

69

Characteristics of Atrial Premature Beat ECG Signals on Variant Maps
DOI: http://dx.doi.org/10.5772/intechopen.83551



with the same mapping of , formed when the
insets. At the top of each small map is the mapping mode corresponding

to that diagram.

4.2 Two-dimensional combination maps

As shown in Figure 6, the two-dimensional combination maps put the results of
the variant of the normal ECG signal and the atrial premature beat ECG signal in
one picture, and the four combinations in Figure 6 are
and ; the values of are all limited to the sum of the two subsets.

As shown in Figure 7, the two-dimensional combination maps also put the
results of the variant of the normal ECG signal and the atrial premature beat ECG
signal in a single graph. The 12 combinations in Figure 7 are

and
the value of

is limited to the sum of two subsets, and the value of is limited to the sum of the
three subsets.

Figure 7.
Two-dimensional combination maps of normal ECG data and atrial premature beat.

68

Practical Applications of Electrocardiogram

4.3 Three-dimensional combination maps

As shown in Figures 8–10, the three-dimensional combination maps are a
combination of the normal ECG signal and the atrial premature beat ECG signal in
the three-dimensional space. The mode of the (X, Y, Z) combination in Figure 8 is

the combination of (X, Y, Z) in Figure 9 is and the
combination of (X, Y, Z) in Figure 10 is ; the values of X and Y are
both defined as the sum of the two subsets, and the values of Z are all limited to the
sum of the three subsets.

Figure 8.
Three-dimensional combination maps of normal ECG data and atrial premature beat.

69

Characteristics of Atrial Premature Beat ECG Signals on Variant Maps
DOI: http://dx.doi.org/10.5772/intechopen.83551



5. Results analysis

Through the display of two-dimensional integral maps, two-dimensional com-
bination maps, and three-dimensional combination maps, we can observe that:

The two-dimensional integral maps are to show the macro difference between
the normal ECG signal and the atrial premature beat ECG signal through the variant
experiment. From the two-dimensional whole figure, there are significant differ-
ences in the distribution shape and range between normal and abnormal ECG
signals. The variant maps of the normal ECG signal show that the scattered points
are disperse, even spreading the entire canvas, and the shape of the atrial premature

Figure 9.
Three-dimensional combination maps of normal ECG data and atrial premature beat.
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beat ECG signal appears as an irregular cone. As the mapping mode changes, the
shape of the variant maps also change, but the normal and abnormal ECG signals
always exhibit different variant characteristics.

The two-dimensional combination map puts the variant maps of the two types
of ECG signals on one canvas, and the difference between the normal and abnormal
variant obtained by the same mapping method is more clear on one canvas. The
mapping method selected in this chapter is more comprehensive, so the obtained
variant map results are also universal.

The three-dimensional combination map is based on the two-dimensional com-
bination maps subjoining the Z-axis to form a spatial distribution display of the

Figure 10.
Three-dimensional combination maps of normal ECG data and atrial premature beat.
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variant maps. The (X, Y, Z) combination of the three-dimensional combination
map selects , and and combines the two
subsets and three subsets. The combination of the two is well integrated and is a
more comprehensive illustration of the variant of normal and abnormal ECG sig-
nals. In the graphic display, five kinds of views are selected for each mapping
method, which are (X, Y, Z), (Y, X, Z), (X, Z), (Y, Z), and (X, Y) as the screenshot
of the main view. Through the results, we can see that there are also large differ-
ences in the three-dimensional spatial distribution of normal ECG signals and atrial
premature beat ECG signals.

6. Summary and outlook

In this chapter, the variant measurement model is used to perform the variant
experiment on the acquired batch ECG data. Finally, the experimental results of the
variant measurement are displayed through three visualization methods. It is found
through experiments that the variant measurement model can be well applied to the
classification of normal ECG signals and atrial premature beat ECG signals.

In the future, we hope to get more abundant ECG data and can cooperate with
the hospital to implement the application of the variant measurement model in the
classification of ECG signals, so that it can assist the traditional ECG application in
the clinical field.
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Ventricular Tachycardia and Heart 
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Abstract

Ventricular tachycardia (VT) is a common arrhythmia seen in patients with 
heart failure (HF) and is now seen more frequently as these patients survive longer 
with modern therapies. In patients with HF, half of the deaths are sudden due to 
life-threatening ventricular arrhythmias, including VT. Although disease modifying 
drugs, such as beta blockers, mineralocorticoid drugs, and angiotensin receptor 
neprilysin inhibitors, prevent the occurrence of VT to some extent, the mainstay of 
therapy is the antiarrhythmic drug therapy, implantable cardioverter-defibrillator 
(ICD) implantation, and traditional radiofrequency catheter ablation. Autonomic 
nerve system modulation and stereotactic body radiation therapy have emerged 
as novel techniques for the management of refractory VT cases. Patients with 
refractory VT and repetitive ICD shocks should be further evaluated regarding the 
candidacy for left ventricular assist device and transplantation.

Keywords: ventricular tachycardia, heart failure, antiarrhythmic therapy, 
implantable-cardioverter defibrillator, ablation

1. Introduction

Ventricular tachycardia (VT) is common in patients with heart failure (HF). The 
presence and severity of VT increase as the severity of HF increases. Larger infarcts 
with greater left ventricle (LV) systolic dysfunction are more likely to be associated 
with VT. VT forms one of the most common electrical mechanisms responsible 
for sudden cardiac death (SCD) in HF. Patients with LV systolic dysfunction 
who develop VT are at increased risk of SCD from subsequent VT or ventricular  
fibrillation [1].

Patients with VT and HF may present either with cardiac arrest to the emer-
gency department or with palpitations, syncope, chest pain, or ICD shocks to 
cardiology outpatient clinics, varying according to the hemodynamic stability of 
VT. Both non-sustained VT (VT duration < 30 sec) and sustained VT (VT dura-
tion > 30 sec) in patients with HF are associated with significant morbidity and 
mortality. VT storm (three or more separate episodes of sustained VT requiring 
intervention (such as ICD shock or ATP) within 24 hours) is the most troublesome 
condition related with VT and HF.

Although half of the patients with HF have preserved ejection fraction and SCD 
is also a common issue in these patients, there is no proved treatment either by ICD 
or drugs [2]. Because of this, VT and HF will be discussed in the context of HF with 
reduced ejection fraction (HFREF).
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1. Introduction

Ventricular tachycardia (VT) is common in patients with heart failure (HF). The 
presence and severity of VT increase as the severity of HF increases. Larger infarcts 
with greater left ventricle (LV) systolic dysfunction are more likely to be associated 
with VT. VT forms one of the most common electrical mechanisms responsible 
for sudden cardiac death (SCD) in HF. Patients with LV systolic dysfunction 
who develop VT are at increased risk of SCD from subsequent VT or ventricular  
fibrillation [1].

Patients with VT and HF may present either with cardiac arrest to the emer-
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cardiology outpatient clinics, varying according to the hemodynamic stability of 
VT. Both non-sustained VT (VT duration < 30 sec) and sustained VT (VT dura-
tion > 30 sec) in patients with HF are associated with significant morbidity and 
mortality. VT storm (three or more separate episodes of sustained VT requiring 
intervention (such as ICD shock or ATP) within 24 hours) is the most troublesome 
condition related with VT and HF.

Although half of the patients with HF have preserved ejection fraction and SCD 
is also a common issue in these patients, there is no proved treatment either by ICD 
or drugs [2]. Because of this, VT and HF will be discussed in the context of HF with 
reduced ejection fraction (HFREF).
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2. Epidemiology

Ventricular tachycardia is common in patients with HF, with up to 20% of 
patients developing VT in 5 years after an ICD was placed [3]. In patients with HF, 
SCD occurs 6–9 times more often than the general population [4]. The most studied 
and proven predictor of ventricular tachyarrhythmia and SCD is left ventricle 
ejection fraction (LVEF) [5]. It has been shown that once the LVEF recovered, the 
incidence of ventricular tachyarrhythmia decreases [6].

The threshold of LVEF <35% represents an accepted threshold at which SCD 
risk is increased and primary prevention is indicated. Several other risk predictors 
of VT, such as non-sustained VT, programmed ventricular stimulation on electro-
physiological study (EPS), microvolt T-wave alternans, late potentials on signal-
averaged electrocardiogram, absence of heart rate variability, QT wave dispersion, 
baroreflex sensitivity, and heart rate turbulence have been proposed for patients 
with HF. However, none of these predictors has influenced the clinical practice.

3. Pathophysiology

There are multiple mechanisms that play a role in the occurrence of VT in 
patients with HF (Table 1). Adverse remodeling and progressive fibrosis occur 
in the ventricle following myocardial infarction (MI) or in association with non-
ischemic cardiomyopathy. These structural alterations as well as the ion channel 
changes form the essential substrate for the induction of VT [7].

The most common mechanism for VT is electrical reentry within and around 
patches of heterogenous myocardial fibrosis, most commonly occurring in areas of 
scar post-myocardial infarction or non-ischemic cardiomyopathy [8]. The scar-
related VT is typically monomorphic with single QRS morphology. Induction of 
monomorphic VT during EPS predicts patients who have the risk of spontaneous 
VT. Polymorphic VT is defined as a continually changing QRS morphology, often 
associated with acute ischemia, drugs which lead to QT prolongation or electrolyte 
imbalance.

Increased sympathetic nervous system (SNS) activation is another trigger for 
induction of VT. SNS activation, via beta-adrenoreceptors activates ryanodine 
receptor on the sarcoplasmic reticulum inside the cardiomyocytes leading to efflux 
of calcium and increase of intracellular concentration which is a trigger for VT. This 
is the rationale under the effect of beta blockers in suppressing VT, as well as SCD in 
HF patients.

Mechanisms

Positive remodeling and fibrosis

Myocardial scar

Electrolyte abnormalities

Increased sympathetic tone

Ischemia

Abnormal calcium handling

Delayed after depolarization

Drugs

Table 1. 
Mechanisms of VT occurrence in patients with heart failure.
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VT occurring within 24–48 hours of acute MI is called primary VT, and acute 
ischemia is considered to be the transient or correctable cause of VT in this case. 
Revascularization is the primary management form of primary VT. VT occurring 
after 48 hours of acute MI is called secondary VT, which is associated with worse 
clinical outcomes.

Increased diastolic calcium levels, early and delayed after depolarizations, and 
some of the drugs also cause VT. Antiarrhythmic drugs are the foremost drugs causing 
VT. Digoxin that is commonly used in the management of HF is an arrhythmogenic 
drug. Dobutamine treatment for acute decompensated HF has also been associated 
with VT [9]. Because of this, patients should be continuously monitorized during 
treatment with dobutamine. VT can also present as a complication of left ventricular 
assist device in an advanced HF patient. Most of these types of VT occur periopera-
tively [10]. It is important to find out the definite mechanism of VT in order to imple-
ment the best effective treatment. In patients with sarcoidosis, for example, VT can 
occur as a result of inflammation, scar or both. If VT is thought to be due to inflamma-
tion, best treatment is antiarrhythmic drug and immunosuppressive, whereas if VT is 
of scar related, best treatment is antiarrhythmic drug and catheter ablation [11].

4. Management

Management of VT in heart failure poses a great challenge to cardiologists since 
antiarrhythmic drugs are limited by incomplete efficacy and unfavorable adverse 
effect profile, ICD is complex and expensive and may affect the quality of life 
adversely because of inappropriate shocks, and invasive catheter ablation owns the 
risk of complication and recurrence. Therefore, multidisciplinary team approach 
including electrophysiologists, heart failure specialists, general cardiologists, inten-
sivists, and cardiovascular surgeon should be used to tackle such a difficult disease.

VT is a life-threatening condition and needs urgent management. Acute man-
agement of VT in HF patients depends on the hemodynamic stability of the patient. 
In hemodynamically unstable VT, the priority is electrical direct current cardio-
version [12]. If the patient is hemodynamically stable, a trial of antiarrhythmic 
treatment should be applied. Intravenous amiodarone is the most effective and safe 
antiarrhythmic treatment in this case [12].

Slow VT (<150 beats/minute) may be tolerated in the short term (Figure 1). 
However, slow VT in the presence of poor ventricular function may cause hemody-
namic compromise in the long term. It is important to closely monitor the patient 
while administering antiarrhythmic therapy. If the antiarrhythmic therapy does 
not cardiovert the patient, shock should be applied as early as possible since sus-
tained VT can compromise hemodynamic status of the patient with left ventricular 
dysfunction in due course. The initial approach to the management of VT should 
include evaluation for correctable causes of VT (e.g., electrolyte abnormalities and 
ischemia). Electrolyte abnormalities, particularly hypokalemia and hypomagnese-
mia which are known to facilitate VT in HF patients should be corrected. Potassium 
and magnesium levels should be kept >4 meq/l and > 2 meq/l, respectively. Agents, 
for example, digoxin, that may induce arrhythmia should be withheld.

For chronic management of VT, optimization of guideline-directed medical 
treatment is very important especially in patients with HFREF. Until recently, 
these treatments consisted of angiotensin converting enzyme inhibitors (ACEis) or 
angiotensin receptor blockers (ARBs), beta blockers (BBs), and mineralocorticoid 
receptor antagonists (MRAs). Of these guideline-directed medical treatments, 
BB and MRA have been proved to prevent sudden cardiac death [13, 14]. These 
drugs have the ability to improve reverse modeling which reduces VT. BBs are the 
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first-line therapy for the management of VT in HF patients. In MADIT-II trial 
(the Multicenter Automatic Defibrillator Implantation Trial II), patients with ICD 
treated with the highest dose of BB experienced less ICD treatment compared to 
patients not taking BB [15].

A meta-analysis compared medical treatment with ICD preventing SCD in 
patients with HF and left ventricular systolic dysfunction. MRAs were found to 
be the most effective drug when added to ACEi and BB, in preventing SCD [16]. 
Zannad et al. also showed that MRAs were equally effective in preventing SCD in 
patients with ICD as without ICD [17].

A newly emerged drug in HFREF, angiotensin receptor neprilysin inhibi-
tor (ARNi), was compared with enalapril in PARADIGM-HF trial (prospective 
comparison of angiotensin neprilysin inhibitor (ARNI) with ACE-i to determine 
impact on global morbidity and mortality in heart failure) [18]. ARNi was shown 
to be superior in reducing cardiovascular death and hospitalization compared to 
enalapril. ARNi also reduced SCD by 20% compared to enalapril. European Society 
of Cardiology 2016 HF guideline has made a class 1 recommendation regarding the 
use of BB, MRA, and ARNi in patients with HFREF and VT [19].

Optimum use of guideline-directed medical treatment prevents development 
of VT to some extent. If the patient continues to be at risk of VT because of low 
ejection fraction, non-sustained or sustained VT, antiarrhythmic drugs, ICD 
implantation, and VT ablation are the subsequent treatment options for chronic 
management of VT. General use of antiarrhythmic drugs in HF is not recommended 
for VT since these drugs, except amiodarone, have been shown to increase mortality 
in patients with HF due to proarrhythmic or negative inotropic effects.

Notorious CAST trial (Cardiac Arrhythmia Suppression Trial) showed that class 
1C agents, encainide, and flecainide increases mortality and non-fatal cardiac arrest 
when used to suppress VT post-myocardial infarction [20]. CAST trial was planned 
to answer the question of whether suppressing ventricular premature beats (VPB) 
also aid in reducing mortality. Patients who had myocardial infarction within the 
preceding 2 years and >6 VPBs on holter recording were enrolled. Those who had MI 
within 90 days were required to have EF < 55%, and those who had MI after this period 
were required to have EF < 40%. Patients were randomly assigned to class1C agents 
(encainide, flecainide, or moricizine). Patients whose PVBs were suppressed were allo-
cated to the treatment with one of the class 1C agent or placebo. The trial was prema-
turely stopped based on the in-term analysis that showed that encainide and flecainide 
used to suppress VPBs increased the mortality by 2.5 times. It is likely that mortality 
excess can be attributed to the proarrhythmic effects of encainide and flecainide.

Figure 1. 
Slow VT at a rate of approximately 125/bpm in a patient on high dose of beta blocker and amiodarone.
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Amiodarone is the sole agent that can be used safely for suppression of VT in HF 
patients. Amiodarone has been studied extensively in patients with left ventricular 
dysfunction. Its efficacy for decreasing mortality in patients with VT and LV dys-
function has not been shown in SCD-HeFT trial (the Sudden Cardiac Death in Heart 
Failure Trial) [21]. However, a meta-analysis including 8522 patients post-myocar-
dial infarction or with systolic HF showed that amiodarone reduced SCD and car-
diovascular mortality [22]. Its safety, unlike class 1 antiarrhythmic agents, has been 
confirmed in this patient population. In patients with more severe HF, amiodarone 
use is associated with adverse prognosis [21]. Amiodarone cannot be used for a long 
period of time because it is associated with multiple side effects, primarily affecting 
thyroid, lung, liver, skin, and eye [23]. Therefore, regular monitoring of lung, liver, 
and thyroid function is required. Due to these side effects, discontinuation rates of 
amiodarone have been noted to be high [22].

Sotalol, a group III antiarrhythmic drug, with BB properties, is highly effective 
in suppressing VT but it is contraindicated in HF patients since increased mortality 
was demonstrated when D-sotalol was used in patients with left ventricular dys-
function after myocardial infarction in SWORD trial [24]. Dofetilide, another class 
III antiarrhythmic drug, failed to reduce arrhythmic death in patients with HF [25]. 
If VT occurs despite amiodarone therapy, mexiletine can be used as an adjunct to 
amiodarone.

Electrophysiologic study was once used for identification of successful antiar-
rhythmic therapy and also the patients who require other advanced therapies. 
Patients were given certain antiarrhythmic drugs after VT was induced at pro-
grammed stimulation. Patients on chronic oral antiarrhythmic drug were then 
assessed whether VT could be induced again [26].

Of the therapies currently available to manage VT, ICD is by far the most 
effective one and has the best supported safety and efficacy data from the trials 
and registries. An ICD has two important components: an ICD generator and a 
lead for sensing, pacing, and shock delivery (Figure 2). ICD improves the survival 
of patients who had VT and syncope, patients who had VT and LVEF<40%, and 
hemodynamic compromise [27]. ICD has been shown to prevent sudden cardiac 
death prophylactically in patents with LVEF <35% resulting both from ischemic or 
non-ischemic cardiomyopathy [21, 28, 29]. The important issue in these primary 
prevention groups is that they should have already received guideline-directed 
medical treatment for at least 3 months before ICD implantation is planned. 
Electrophysiologic study is no longer a required procedure before planning ICD for 
primary prevention.

Figure 2. 
A schematic representation of an intracardiac defibrillator implanted to right ventricle of heart failure patient.
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Figure 1. 
Slow VT at a rate of approximately 125/bpm in a patient on high dose of beta blocker and amiodarone.
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Amiodarone is the sole agent that can be used safely for suppression of VT in HF 
patients. Amiodarone has been studied extensively in patients with left ventricular 
dysfunction. Its efficacy for decreasing mortality in patients with VT and LV dys-
function has not been shown in SCD-HeFT trial (the Sudden Cardiac Death in Heart 
Failure Trial) [21]. However, a meta-analysis including 8522 patients post-myocar-
dial infarction or with systolic HF showed that amiodarone reduced SCD and car-
diovascular mortality [22]. Its safety, unlike class 1 antiarrhythmic agents, has been 
confirmed in this patient population. In patients with more severe HF, amiodarone 
use is associated with adverse prognosis [21]. Amiodarone cannot be used for a long 
period of time because it is associated with multiple side effects, primarily affecting 
thyroid, lung, liver, skin, and eye [23]. Therefore, regular monitoring of lung, liver, 
and thyroid function is required. Due to these side effects, discontinuation rates of 
amiodarone have been noted to be high [22].

Sotalol, a group III antiarrhythmic drug, with BB properties, is highly effective 
in suppressing VT but it is contraindicated in HF patients since increased mortality 
was demonstrated when D-sotalol was used in patients with left ventricular dys-
function after myocardial infarction in SWORD trial [24]. Dofetilide, another class 
III antiarrhythmic drug, failed to reduce arrhythmic death in patients with HF [25]. 
If VT occurs despite amiodarone therapy, mexiletine can be used as an adjunct to 
amiodarone.

Electrophysiologic study was once used for identification of successful antiar-
rhythmic therapy and also the patients who require other advanced therapies. 
Patients were given certain antiarrhythmic drugs after VT was induced at pro-
grammed stimulation. Patients on chronic oral antiarrhythmic drug were then 
assessed whether VT could be induced again [26].

Of the therapies currently available to manage VT, ICD is by far the most 
effective one and has the best supported safety and efficacy data from the trials 
and registries. An ICD has two important components: an ICD generator and a 
lead for sensing, pacing, and shock delivery (Figure 2). ICD improves the survival 
of patients who had VT and syncope, patients who had VT and LVEF<40%, and 
hemodynamic compromise [27]. ICD has been shown to prevent sudden cardiac 
death prophylactically in patents with LVEF <35% resulting both from ischemic or 
non-ischemic cardiomyopathy [21, 28, 29]. The important issue in these primary 
prevention groups is that they should have already received guideline-directed 
medical treatment for at least 3 months before ICD implantation is planned. 
Electrophysiologic study is no longer a required procedure before planning ICD for 
primary prevention.

Figure 2. 
A schematic representation of an intracardiac defibrillator implanted to right ventricle of heart failure patient.
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ICD has antitachycardia pacing (ATP) treatment in addition to defibrillator 
shock and also programs which can discriminate supraventricular tachycardia 
from VT which aids to minimize inappropriate shocks. ATP consists of one or more 
sequence of pacing stimuli, generally expressed as a percentage of tachycardia cycle 
length for a given RR interval. In case of burst ATP, pacing stimuli is delivered at 
constant coupling intervals, whereas ramp ATP consists of pacing stimuli with 
decrement coupling interval (Figure 3). Once VT is confirmed, first therapy in 
the form of ATP was given, and if ATP does not work, then shock is delivered. 
Generally ICD’s VT detection zone is programmed to >167 beats/min and ven-
tricular fibrillation detection zone to >185–200 beats/min. Antiarrhythmic drugs 
commonly prolong VT cycle length and hence cause slow VT, a condition which 
may require to lower the detection zone for VT (Figure 1). In secondary prevention 
patients with HF, the programming of detection zone depends on the cycle length 
of the VT occurred. Generally, the detection zone is programmed 20 bpm slower 
than the rate of the VT occurred before. ATP for faster VT (188–250 bpm) may 
also be programmed with the aim for reducing shocks. ICD shocks are related with 
poor prognosis and quality of life. For this reason, every effort should be made to 
reduce shocks. It was shown that reducing defibrillator shocks was associated with 
increased survival [30].

Cardiac resynchronization therapy (CRT) is also an important milestone in 
the management of moderate to severe HF patients with prolonged QRS dura-
tion (>150 msn and LBBB morphology). CRT without defibrillator (CRT-P) 
can prevent SCD by improving reverse remodeling. CARE-HF Trial (Cardiac 
Resynchronization—Heart Failure) showed that CRT-P prevents SCD by 46% in the 
long term follow-up [31]. Although CRT was shown to reduce new onset VT, it had 
no effect on recurrent VTs [32].

In patients with HF who are refractory to antiarrhythmic therapy, radiofre-
quency catheter ablation has emerged as an important therapeutic option. The 
success rate of this technique varies according to the type of cardiomyopathy. The 
American Heart Association(AHA)/the Heart Rhythm Society (HRS) recommends 
the use of VT ablation in patients with prior myocardial infarction and recurrent 
VT, unresponsive or intolerant to antiarrhythmic treatment [8]. Electrophysiologic 
study (EPS) with programmed electrical stimulation is recommended before abla-
tion in case of sustained monomorphic VT in patients with prior MI [33]. Catheter 
ablation can be effective, but acute complications and long-term VT recurrence risk 
necessitating repeat ablation should be recognized. And worth notifying, procedure 

Figure 3. 
Antitachycardia pacing (ATP) therapy of intracardiac defibrillator. (A) Burst ATP; pacing stimuli at lower 
than VT and constant coupling interval. (B) Ramp ATP; pacing stimuli starting with lower than VT cycle 
length and coupling intervals decreasing at each stimuli.
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of ablation lasts for long hours with extended recovery times. If VT remains refrac-
tory to catheter ablation, repeat ablation may be tried. If the first ablation was done 
by endocardial mapping, repeat ablations may be carried by epicardial mapping. 
Surgical ablation is indicated in patients with VT refractory to antiarrhythmic drugs 
whose catheter ablation has failed [12]. It was shown that surgical cryoablation 
guided by endocardial and epicardial mapping along with aneurysmectomy when 
indicated was a successful way of terminating VT in patients who underwent bypass 
operation [34].

Due to multiple mechanisms of VT in idiopathic dilated cardiomyopathy, the 
success rate of catheter ablation is less than in ischemic cardiomyopathy. It has been 
shown that ablation in this type of cardiomyopathy results in higher recurrence 
rate of VT than ischemic cardiomyopathy [35]. Catheter ablation of VT in dilated 
cardiomyopathy should only be done in patients with clear mechanism of VT (e.g., 
bundle branch reentry) only in experienced centers. Despite these shortcomings, 
successful VT ablation in non-ischemic dilated cardiomyopathy has increased. 
Predictors of recurrence after VT ablation in non-ischemic dilated cardiomyopathy 
were found to be inducibility of sustained VT in the programmed stimulation study, 
poor systolic function (EF < 35%), and delayed intervention time [36].

Worth mentioning, there are some types of VTs occurring in the structurally 
normal heart, termed idiopathic VT. Idiopathic VT is further categorized according 
to the anatomic location in the heart. Most of them originate from the right ventric-
ular outflow tract (RVOT) and have left bundle branch block (LBBB) pattern on the 
electrocardiogram. The second most common idiopathic VT originating from the 
conduction system is termed as fascicular VT. The other idiopathic VT originates 
from the mitral or tricuspid annulus and termed as annular VT. The clinical course 
of idiopathic VT is usually benign; however, if they occur in the form of inces-
sant VT, they may cause LV systolic dysfunction, termed as arrhythmia-induced 
cardiomyopathy (AIC). It is important to differentiate AIC from non-ischemic 
dilated cardiomyopathy because RF ablation is the first line treatment and curative 
in the former [8]. VT originating from left ventricular outflow tract (LVOT) is rare 
compared to VT originating from RVOT. Some form of VTs originating from LVOT 
cannot be ablated by using conventional approach. This unique type of VT with 
LBBB inferior axis and early precordial transition can successfully be ablated from 
the aortic root, using either the left or non-coronary aortic sinus of valsalva [37]. 
VTs can also originate from papillary muscle of left or right ventricle. Ablation of 
papillary muscle VT is difficult compared to other idiopathic VTs. However, there is 
a case report showing successful ablation of incessant VT originating from pos-
terior papillary muscle of right ventricle [38]. EPS is highly recommended before 
ablation of VT in structurally normal hearts which are suspected to be originated 
from RVOT, LVOT, aortic cusps, and epicardial VT [33]. EPS has also a role in case 
of sustained monomorphic VT in patients with arrhythmogenic right ventricular 
dysplasia (ARVD). It was shown that inducibility of sustained monomorphic VT 
during EPS highly predicts SCD, heart transplantation, VT with hemodynamic 
compromise, or syncope in patients with ARVD [39].

Another form of VT occurring in the structurally normal heart is catecholamin-
ergic polymorphic VT. This type of VT should be suspected when syncope trig-
gered by emotion or physical effort occurs in young patients with normal heart and 
QT interval. First line treatment is BBs. Hypertrophic cardiomyopathy (HCM), 
a common cause of SCD in young athletes, is a heterogenous group of cardiomy-
opathy with increased wall thickness. HCM with mid-ventricular obstruction and 
apical aneurysm is a rare form of HCM which is associated with frequent occur-
rence of VT. Prophylactic ICD is the main treatment, but RF ablation is required 
for repetitive VTs [40].
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guided by endocardial and epicardial mapping along with aneurysmectomy when 
indicated was a successful way of terminating VT in patients who underwent bypass 
operation [34].

Due to multiple mechanisms of VT in idiopathic dilated cardiomyopathy, the 
success rate of catheter ablation is less than in ischemic cardiomyopathy. It has been 
shown that ablation in this type of cardiomyopathy results in higher recurrence 
rate of VT than ischemic cardiomyopathy [35]. Catheter ablation of VT in dilated 
cardiomyopathy should only be done in patients with clear mechanism of VT (e.g., 
bundle branch reentry) only in experienced centers. Despite these shortcomings, 
successful VT ablation in non-ischemic dilated cardiomyopathy has increased. 
Predictors of recurrence after VT ablation in non-ischemic dilated cardiomyopathy 
were found to be inducibility of sustained VT in the programmed stimulation study, 
poor systolic function (EF < 35%), and delayed intervention time [36].

Worth mentioning, there are some types of VTs occurring in the structurally 
normal heart, termed idiopathic VT. Idiopathic VT is further categorized according 
to the anatomic location in the heart. Most of them originate from the right ventric-
ular outflow tract (RVOT) and have left bundle branch block (LBBB) pattern on the 
electrocardiogram. The second most common idiopathic VT originating from the 
conduction system is termed as fascicular VT. The other idiopathic VT originates 
from the mitral or tricuspid annulus and termed as annular VT. The clinical course 
of idiopathic VT is usually benign; however, if they occur in the form of inces-
sant VT, they may cause LV systolic dysfunction, termed as arrhythmia-induced 
cardiomyopathy (AIC). It is important to differentiate AIC from non-ischemic 
dilated cardiomyopathy because RF ablation is the first line treatment and curative 
in the former [8]. VT originating from left ventricular outflow tract (LVOT) is rare 
compared to VT originating from RVOT. Some form of VTs originating from LVOT 
cannot be ablated by using conventional approach. This unique type of VT with 
LBBB inferior axis and early precordial transition can successfully be ablated from 
the aortic root, using either the left or non-coronary aortic sinus of valsalva [37]. 
VTs can also originate from papillary muscle of left or right ventricle. Ablation of 
papillary muscle VT is difficult compared to other idiopathic VTs. However, there is 
a case report showing successful ablation of incessant VT originating from pos-
terior papillary muscle of right ventricle [38]. EPS is highly recommended before 
ablation of VT in structurally normal hearts which are suspected to be originated 
from RVOT, LVOT, aortic cusps, and epicardial VT [33]. EPS has also a role in case 
of sustained monomorphic VT in patients with arrhythmogenic right ventricular 
dysplasia (ARVD). It was shown that inducibility of sustained monomorphic VT 
during EPS highly predicts SCD, heart transplantation, VT with hemodynamic 
compromise, or syncope in patients with ARVD [39].

Another form of VT occurring in the structurally normal heart is catecholamin-
ergic polymorphic VT. This type of VT should be suspected when syncope trig-
gered by emotion or physical effort occurs in young patients with normal heart and 
QT interval. First line treatment is BBs. Hypertrophic cardiomyopathy (HCM), 
a common cause of SCD in young athletes, is a heterogenous group of cardiomy-
opathy with increased wall thickness. HCM with mid-ventricular obstruction and 
apical aneurysm is a rare form of HCM which is associated with frequent occur-
rence of VT. Prophylactic ICD is the main treatment, but RF ablation is required 
for repetitive VTs [40].
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5. Management of ICD repetitive shocks

Despite ICD can effectively terminate ventricular tachycardia either by anti-
tachycardia pacing or defibrillation shock, it cannot prevent VT recurrences. 
In patients with ICD, prevention of VT recurrence is required to minimize ICD 
shocks which can not only be quite uncomfortable for the patient leading to poor 
quality of life but also cause early battery depletion. Apart from these, recur-
rent shocks lead to HF progression, frequent hospitalization, and mortality. Use 
of antiarrhythmic drugs, particularly amiodarone can reduce ICD appropriate 
shocks by 34% [41]. In the OPTIC study (the Optimal Pharmacological Therapy 
in Cardioverter Defibrillator Patients), beta blocker and amiodarone combina-
tion were shown to be superior in suppression of VT recurrence compared to BB 
alone or sotalol [42]. Drug discontinuation rate at 1 year was found to be 18.2% 
for amiodarone, 23.5% for sotalol, and 5.3% for BB. Mexiletine, a class 1b antiar-
rhythmic drug, was shown to reduce VT recurrence as an adjunct to amiodarone in 
amiodarone-refractory VT in patients with ICD [43]. Ranolazine, a late Na chan-
nel inhibitor, was also shown to reduce VT burden and ICD shocks in patients with 
drug refractory VT and ICD [44].

Radiofrequency catheter ablation can be lifesaving in patients with ICD and 
repetitive shocks. In ischemic cardiomyopathy, some trials such as SMASH-VT 
(Substrate Mapping and Ablation in Sinus Rhythm to Halt Ventricular 
Tachycardia), VTACH (Ventricular Tachycardia Ablation in Coronary Heart 
Disease), and VANISH trials have shown the superiority of ablation for reducing 
ICD shocks [45–47]. The SMASH-VT trial compared ICD implantation plus pro-
phylactic ablation to ICD implantation alone in patients with recent VT. Ablation 
reduced ICD shocks significantly from 31 to 9% and reduced VT from 33 to 12%. 
The VTACH trial assessed the effect of catheter ablation in patients with isch-
emic cardiomyopathy and mappable VT. Ablation significantly prolonged time 
to recurrent VT. The VANISH trial compared catheter ablation to escalation of 
antiarrhythmic therapy on top of first-line antiarrhythmic therapy in patients 
with VT. Ablation significantly reduced composite outcome of death, appropriate 
ICD shocks, and VT storm. Repetitive ICD shocks should also warrant referral to 
an advanced heart failure unit, capable for left ventricular assist device (LVAD) 
implantation and transplantation [48]. Catheter ablation of VT has risk of compli-
cation like all other invasive procedures. Complications related to these procedures 
are cardiac perforation, systemic embolism including myocardial infarction/stroke, 
vascular complications, and mortality.

Autonomic modulation procedures may also be applied for VT refractory to 
ablation. It was shown that videoscopic surgical cardiac sympathetic denervation 
may reduce the number of ICD shocks in refractory cases [49]. The surgery involves 
removal of the lower half of the stellate ganglion and T2-T4 stellate ganglia. This 
technique is especially effective when sympathetic denervation was made bilater-
ally. Renal denervation was also shown to reduce VT recurrences [50].

Stereotactic body radiation therapy (SBRT) for VT in HF patients has recently 
emerged as a new way of suppression of VT. SBRT is a technique that delivers 
high dose of radiation (25 gray) to target tissues with reduced exposure to normal 
adjacent tissues. SBRT has been used for decades to target various cancers. First, 
Cuculich et al. showed a 99.9% reduction in VT burden with cardiac SBRT in a 
case series of five patients with a high burden of drug-refractory VT, who had 
been suffering through repeated ICD shocks [51]. And recently, ENCORE VT trial 
showed that SBRT reduced VT and premature ventricular contraction episodes 94% 
at 6 months among 18 patients with treatment refractory VT, over half of whom 
presented with VT storm [52].
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In selected cases with recurrent VT which cannot be managed with the treat-
ment recommendation given above, implantation of LVAD could temporarily 
stabilize patient hemodynamically, as well as improve reverse remodeling. LVAD 
is a battery-operated mechanical pump, which takes the blood from failed LV and 
pumps it to the aorta to be transmitted to the rest of the body (Figure 4). There are 
not many heart failure patients with LVAD. However, the management of VT in this 
patient population requires mention since it is somewhat different than HF patients 
without LVAD. LVAD may be able to continue maintaining cardiac output in spite of 
sustained VT, and most of the LVAD patients have ICD in place. When such patients 
present to the emergency department, first patient hemodynamic status should be 
assessed. If the blood pressure checked by Doppler ultrasonography is okay, it is 
reasonable to transfer the patient to a tertiary center where there is LVAD specialist 
and electrophysiologist. If there is hemodynamic compromise, then the patient 
should be immediately converted to normal sinus rhythm with electrical shock [53]. 
If the patient is a candidate neither for transplantation nor LVAD, end-of-life care 
should be applied for palliation. Shared decision making with the patient and rela-
tives should be done, and discussion regarding measures such as ICD deactivation 
may be applied in these patients.

Figure 4. 
A schematic representation of a left ventricle assist device (LVAD) showing battery-operated mechanical pump 
taking blood from left ventricle and pumping it to aorta.
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VT storm is a medical emergency requiring prompt intervention. Reversible 
causes of VT, such as hypokalemia, hypomagnesemia, ischemia, and hypoxia 
should be sought and corrected where applicable. Beta blocker dose should be 
uptitrated to decrease the sympathetic tone. Another intervention to reduce sym-
pathetic drive is sedation. Radiofrequency catheter ablation has been shown to be 
effective in controlling VT storm [54].

6. Conclusion

Ventricular tachycardia is a frequent event in HF population and is one of the 
poor prognostic factors related with HF. Management of VT is important because 
it is associated with SCD which is the responsible cause of death in 50% of patients 
with HF. Optimization of guideline-directed treatment is the most important step 
to prevent occurrence of VT in these patients. ICD has resulted marked improve-
ment in survival of patients with HF and VT. However, repetitive ICD shocks due 
to recurrent VT poses a great problem and decreases survival. Antiarrhythmic 
therapy and VT ablation generally offer a complementary treatment in patients with 
ICD. Patients with VT who have failed standard therapy (antiarrhythmic therapy 
and catheter ablation) have limited options, with one-year survival below 20%. 
Autonomic modulation procedures and stereotactic body radiation therapy could be 
applied in patients with refractory VT. Patients with recurrent VT despite all other 
measures should be referred to tertiary centers where they are evaluated in respect 
of indications for LVAD implantation and transplantation.
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VT storm is a medical emergency requiring prompt intervention. Reversible 
causes of VT, such as hypokalemia, hypomagnesemia, ischemia, and hypoxia 
should be sought and corrected where applicable. Beta blocker dose should be 
uptitrated to decrease the sympathetic tone. Another intervention to reduce sym-
pathetic drive is sedation. Radiofrequency catheter ablation has been shown to be 
effective in controlling VT storm [54].

6. Conclusion

Ventricular tachycardia is a frequent event in HF population and is one of the 
poor prognostic factors related with HF. Management of VT is important because 
it is associated with SCD which is the responsible cause of death in 50% of patients 
with HF. Optimization of guideline-directed treatment is the most important step 
to prevent occurrence of VT in these patients. ICD has resulted marked improve-
ment in survival of patients with HF and VT. However, repetitive ICD shocks due 
to recurrent VT poses a great problem and decreases survival. Antiarrhythmic 
therapy and VT ablation generally offer a complementary treatment in patients with 
ICD. Patients with VT who have failed standard therapy (antiarrhythmic therapy 
and catheter ablation) have limited options, with one-year survival below 20%. 
Autonomic modulation procedures and stereotactic body radiation therapy could be 
applied in patients with refractory VT. Patients with recurrent VT despite all other 
measures should be referred to tertiary centers where they are evaluated in respect 
of indications for LVAD implantation and transplantation.
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Chapter 6

Genetic Polymorphisms that 
Playing Role in Development of 
Hypertrophic Cardiomyopathy
Nevra Alkanli and Arzu Ay

Abstract

Hypertrophic cardiomyopathy (HCM) is a complex heart disease with various 
physiopathological, morphological, functional, and clinical features. In this disease, 
HCM is known to be an autosomal genetic disease in more than half of the cases. 
Mutations in sarcomeric genes are thought to play an important role in the patho-
genesis of the disease. Modifying genes and environmental factors also together 
affect the phenotypic expression and severity of HCM. The phenotypic expression 
of HCM is determined by causal sarcomeric gene mutations and the regulatory 
genetic basis of genes. HCM, a multi-factorial disease, involves the effects of many 
environmental gene modifiers and the sarcomeric/cytoskeletal genes. The single 
nucleotide polymorphisms occurring in the human genome differ in terms of sus-
ceptibility to disease in various populations. Therefore, the determination of genetic 
polymorphisms involved in the development of HCM disease is very important for 
the diagnosis of the disease.

Keywords: hypertrophic cardiomyopathy, gene polymorphisms, LVH, PCR

1. Introduction

HCM is a complex cardiac disease with major clinical heterogeneity and diag-
nostic and prognostic effects specific to each mutation. At the same time, this 
disease has different physiopathological, morphological, functional, and clinical 
features. HCM, with left ventricular hypertrophy (LVH), is a primary cardiac 
disorder and occurs when there is no cardiac or systemic disease. Throughout 
life, it is known that it has a clinical course ranging from symptomatic patients to 
heart failure symptoms and sudden deaths. It is an autosomal dominant genetic 
disease in more than half of cases, but it still does not have a fully defined etiol-
ogy [1]. Modifying genes and environmental factors play an important role in the 
pathogenesis of HCM. Phenotypic expression and the formation of cardiovascular 
events are affected by means of these factors [2]. The cardiac β-myosin heavy chain 
(MYHC) gene, cardiac troponin T (cTnT) gene, α-tropomyosin gene, myosin-
binding protein C (MYBP-C) gene, cardiac troponin I gene, and regulatory and 
essential myosin light chain genes are found among genes encoding the proteins of 
sarcomere [1]. These genes encoding sarcomeric proteins are localized on differ-
ent chromosomes. It is known that the first gene identified from these genes is 
the βMYHC gene encoding the major contractile protein. In HCM patients, due to 
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defects in sarcomeric proteins, mutations such as MYBP-C, α-tropomyosin, cTnT, 
ventricular myosin essential and regulatory light chains, cardiac troponin I, and 
cardiac α-actin and titin have been described. This disease, known to be caused by 
the defects in sarcomeric proteins, is called sarcomere disease [3]. In addition to 
mutations in sarcomeric and non-sarcomeric genes, many other gene mutations 
also lead to metabolic disorders with similar phenotypes in HCM [4]. So far, more 
than 1400 mutations have been identified in many genes, and the most important 
genes of these mutations have been identified to encode the protein components of 
cardiac sarcomere that perform contractile, structural, and regulatory functions 
[5]. The purpose of this chapter, in addition to giving general information about 
HCM, is to summarize the studies that investigated the relationship between gene 
polymorphisms that play a role in the development of HCM and the risk of develop-
ing HCM.

2. Hypertrophic cardiomyopathy

HCM, a cardiac disease, is characterized by marked hypertrophy and genetic 
variability. It is known as a disease characterized by LVH which may cause 
primary or systemic hypertrophy when there is no other disease [6]. LVH, known 
as a physiological adaptation to increased workload of the heart, usually develops 
in clinical conditions such as hypertension, valvular disease, and myocardial 
infarction. In some patients, cardiac hypertrophy develops when there are no 
clinical conditions causing cardiac overload. This condition is considered to be the 
basic form of LVH, and it is thought that this form, which is frequently familial, is 
caused by mutations in sarcomeric genes. This form of the most common heredi-
tary heart disease is defined as HCM [7]. HCM is one of the leading causes of 
sudden deaths in young people and athletes. One person in 500 people worldwide 
is affected by this disease [6]. HCM is a common heterogeneous disease with high 
morbidity and mortality in the elderly, and it is characterized by enlarged heart, 
abnormally thickened left ventricular walls, and reduced chamber capacity [8]. 
Histologically, in this disease, characterized by left ventricular thickness resulting 
from cardiomyocyte hypertrophy, cardiomyocytes lose their cleavage ability in 
the first week after birth. Thus, cardiomyocyte hypertrophy is effective instead of 
cardiomyocyte proliferation in postnatal growth of the heart. Postpartum cardiac 
growth is a physiological response of myocardium to stress signals as well as its 
role in cardiomyocyte hypertrophy. It is known that the response of cardiomyo-
cytes to stress signals is characterized by reactivation of fetal gene program [4]. 
This disease is thought to be caused by contractile proteins encoding genes that 
cause contractile dysfunction and then hypertrophy. Familial HCM, defined as 
an autosomal dominant disorder, is usually disseminated by incomplete pen-
etrance due to heterozygous pathogenic gene mutations [8]. HCM is a genetically 
transmitted, cardiovascular disease with heterogeneous clinical features. Sudden 
cardiac death in HCM occurs as a frequent complication of 2–3% per year. HCM 
can be seen form of autosomal dominant feature as a familial disorder; on the 
other, it can also occur as a sporadic disease that may develop due to novo muta-
tions. These familial and sporadic forms represent different parts of the same 
spectrum. According to phenotypic models, HCM phenotypes, asymmetric septal 
hypertrophy (ASH), apical hypertrophy (AH), diffuse hypertrophy (DH), and 
left ventricular free wall hypertrophy (FH) are classified as. The etiology of the 
disease is multifactorial, and the majority of cases occur due to secondary muta-
tions in sarcomere myofilament genes. The sarcomere myofilament genes are 
genes that contribute to heterogeneity in the phenotype of the disease. HCM has a 
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wide familial variability ranging from severe symptomatic individuals to asymp-
tomatic individuals [4]. Cardiac phenotype and variability in clinical course not 
only depend on pathogenic genes but also depend on environmental factors [3]. 
Important information can be obtained in terms of prognosis and treatment 
of the disease through the identification of these environmental and genetic 
factors [4].

3. Genetic polymorphisms

3.1 Sarcomeric gene polymorphisms

3.1.1 βMYHC versus MYBP-C gene polymorphisms

Mutations in cardiac β-myosin encoded by the MYH7 gene and myosin-binding 
protein C sarcomere proteins encoded by MYBC3 gene have been associated with 
the development of HCM disease. Mutations in these genes are responsible for 
50–70% of HCM’s genetic cases. β-myosin is a large protein containing 1935 amino 
acids and is localized on chromosome 14 (14q11) in human. During muscle contrac-
tion 2q13 interacts with the thin filament, and this gene consists of 40 exons. The 
MYBP-C gene is also localized on chromosome 11 (11p.11.2), and 14 mutations have 
been identified in this gene so far. It has been reported that four of these mutations 
to be caused by nucleotide changes and eight of which by truncated mutations. 
The most important feature of these mutations is moderate hypertrophy and low 
penetration until a certain period of life. About 40 mutations have been identified 
in β-MYHC that may cause disease, and it is known that most of these mutations 
occur as a result of the translocation of DNA nucleotides. Displacement in nucleo-
tides also causes amino acid changes in the protein sequence. This change is particu-
larly observed in the familial form of HCM. Among these 40 mutations, there are 
mutations with high, medium, and low sudden death risks. Arg403Gln, Arg453Cys, 
and Arg719Gln mutations are known to be malignant. Arg403Gln-related pheno-
types were observed in many families, and it is determined that these phenotypes 
were associated with high penetrance, high incidence of sudden death, and severe 
hypertrophy. Glu930Lys and Arg249Gln polymorphisms were associated with the 
middle risk of sudden death. However, Leu908Val, Gly256Glu, Val606Met, and 
Fhe513Cys polymorphisms have been reported to be associated with benign prog-
nostic and normal survival. Myosin, a hexameric protein, consists of two heavy and 
two light chains. Light chains contain two light chains as the regulatory light chain 
(RLC) and the basic light chain (ELC). The myosin heavy chain is also divided into 
three parts as the lower part 1 (S1), the lower part 2 (S2), and the light meromyosin 
(LMM). Regulatory and essential myosin light chains were first found in 1996. The 
regulatory MYL2 gene is localized on chromosome 12 (12q23-q24.3). The essential 
gene is localized on chromosome 3 (3p) [1]. A large number of mutations have been 
identified in most S1 and S2 regions, which are associated with HCM in the MYH7 
gene. The frequency of these mutations is variable and is known to be associated 
with marked hypertrophy. MYH7 and MYBPC3 genes are responsible for about 
70% of genotyped HCM cases. Mutations in the MYH7 gene are missense mutations 
and localized at the head of globular myosin. The MYH7 gene is also known to be 
associated with dilated cardiomyopathy, and a large number of mutations have been 
identified in the rod region of the gene. There are many studies that demonstrate 
a relationship between mutations in the MYH7 gene and the family history of 
HCM. Studies to investigate MYH7 mutations have generally been limited by the 
analysis of regions encoding the head and neck domains of βMYHC. However, it is 
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determined that mutations in the tail region of the protein may be related to the risk 
of developing HCM. Mutations in the MYH7 gene are known as a cause of HCM, 
and sudden death was significantly higher in the family history and in patients with 
severe left ventricular hypertrophy. In a previous study, four new mutations are 
identified. In some of these mutations, the relationship between genotype and phe-
notype is constant. There are significant differences between phenotypes in other 
mutations [9]. In a study conducted with the Venezuelan population, no missense 
mutation identified in the MYH7 gene was found. In the same study, the frequency 
of mutation of MYH7 gene in adult HCM patients was found to be low. In another 
study performed by Ronkaratti et al., in the Italian population, it is found that the 
frequency of mutations determined in the MYH7 gene was found to be very low. 
Many factors, such as modifying genes, epigenetic factors, microRNAs, posttrans-
lational protein modifications, and environmental factors, may affect the clinical 
course of HCM disease [1, 10]. Genetic studies are required to understand the clini-
cal and prognostic heterogeneity of HCM. The obtained information of clinical and 
morphological characteristics of different mutation carriers is important in terms of 
clinical decision-making in their genetic studies [9].

3.1.2 Cardiac troponin T gene polymorphisms

The cardiac troponin T gene is localized on chromosome 1 (1q3), and so far eight 
mutations have been identified in this gene. The most important feature of these 
mutations is that they cause hypertrophy and high incidence of sudden death in 
younger patients under 30 years of age [1].

3.1.3 Alpha tropomyosin gene polymorphisms

Alpha tropomyosin gene is localized on chromosome 15 (15q2), and two muta-
tions of this gene have been observed to date. It is observed in a low proportion of 
HCM cases and is known to be associated with normal survival [1].

3.2 TLR4 gene polymorphisms

Studies have shown that the immune system and multiple proinflammatory fac-
tors play an important role in the pathogenesis of HCM. Toll-like receptor 4 (TLR4), 
a member of the pattern recognition receptors, plays an important role as mediation 
in inflammatory response. TLR4 consists of three exons involved in immunoregu-
lation and is localized in region 9q32-q33. It acts by suppressing T lymphocyte 
proliferation and regulating macrophage function. The lack of TLR4, which is 
known to play an important role in the development of cardiovascular diseases, has 
been reported to be associated with doxorubicin-induced cardiomyopathy in mice. 
A significant relationship between abnormal expression or genetic polymorphisms 
and cardiovascular remodeling, which is considered to be an important risk factor 
for metabolic syndrome, has been found. TLR4, which can trigger protein kinase 
signaling and innate immune response active with mitogen, leads to activation of 
proinflammatory cytokines and Chemokines. Common polymorphisms in the TLR4 
gene are the rs4986791 and rs4986790 polymorphisms. In addition to these poly-
morphisms, new polymorphisms have been identified in the promoter region and in 
the 3′ untranslated region (3′-UTR) of TLR4. Even if the polymorphisms occurring 
in the promoter region do not alter the gene’s coding sequence, the initiation of gene 
transcription is affected when these gene polymorphisms lead to pathogenicity. 
Cohort studies aimed at determining the relationship between cardiovascular dis-
eases and TLR4 gene polymorphisms were performed, and inconsistent results were 
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obtained in these studies. In a study by Lindstrom et al., TLR4 gene polymorphisms 
were associated with decreased risk of prostate cancer. In another study by Castano 
et al., TLR4 was found to be associated with increased gastric cancer risk in the 3′-
UTR region. In a study by Kiechl et al., it was concluded that TLR4 gene polymor-
phisms were associated with heart diseases such as atherogenesis. No large number 
of studies have been carried out to determine whether TLR4 gene polymorphisms 
are genetic risk factors for HCM. In a study conducted with the Han-China popula-
tion, TLR4 gene polymorphisms were found to be genetic risk factors in the devel-
opment of HCM. In this study, it was determined that rs11536865 and rs10983755 
gene polymorphisms in the promoter region of the TLR4 gene are important risk 
factors for HCM development. In this study, the potential relationships of TLR4 
gene polymorphisms with the sensitivity and prognosis of HCM have been revealed. 
It is determined that it is associated with decreased plasma TLR4 levels of the GG 
genotypes of −728G > C polymorphism and GG genotypes of −2081G > A polymor-
phism in HCM patients. However, the C allele of the −728G > C polymorphism and 
the A-allele of −2081G > A polymorphism were found to be related to the highest 
plasma TLR4 levels. Inflammation and innate immunity are also contributed to 
the development of cardiomyopathy. Accordingly, it is believed that TLR4 gene 
polymorphisms affect the progression of natural immunity or inflammation, thus 
altering the expression level of TLR4, which is involved in the development of 
HCM. When studies with larger populations are performed, different results are 
likely to occur [8]. Primer sequences for −728G > C and −2081G > A gene polymor-
phisms are presented in Table 1.

3.3 HOPX gene polymorphisms

Homeodomain only protein x (HOPX) is a homeodomain protein that regulates 
the serum response factor (SRF)-dependent gene expression. In addition, HOPX 
is thought to play a role as tumor suppressor gene in some tissues, and expression 
is silenced in human carcinomas such as choriocarcinoma, lung cancer, head and 
neck squamous carcinoma, and esophageal cancer during cardiac hypertrophy, SRF 
activity, which controls the transcription of genes, including cellular immediate-
early genes, and cell skeletal and contractile proteins, is controlled by cofactors 
such as myocardium and compressors such as HOPX. The expression of the HOPX 
gene encoding a homeodomain protein is under the control of the two promoter 
regions. One of these promoters is regulated by the cardiac-specific transcription 
factor Nkx2–5. The HOPX gene plays a role as SRF antagonist, and it is effective in 
prenatal cardiomyocyte proliferation and postnatal cardiomyocyte hypertrophy. 
This antagonistic effect performed through by the take of histone deacetylase. In 
addition, HOPX is thought to play a role as tumor suppressor gene in some tissues, 
and expression is silenced in human carcinomas such as choriocarcinoma, lung can-
cer, head and neck squamous carcinoma, and esophageal cancer. HOPX has a role 
coactivator on SRF activity. Through this, it plays an active role in cardiac hypertro-
phy. HOPX gene expression is known to be downregulated in kalp insufficiency, but 

SNPs Forward primer (5′–3′) Reverse primer (5′–3′)

−728G > C 5′-TGATAGACCCCACAACTCCT-3′ 5′-TGATTTCCCCC- CATAGGATG-3′

−2081G > A 5′-TACCACCACTGTTCGCTCAG-3′ 5′-GGTTATGAGGGACATTGGAT-3′

PCR, polymerase chain reaction; SNP, single nucleotide polymorphism.

Table 1. 
Primer sequences used in PCR for TLR4 gene polymorphisms.
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determined that mutations in the tail region of the protein may be related to the risk 
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Many factors, such as modifying genes, epigenetic factors, microRNAs, posttrans-
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morphological characteristics of different mutation carriers is important in terms of 
clinical decision-making in their genetic studies [9].

3.1.2 Cardiac troponin T gene polymorphisms

The cardiac troponin T gene is localized on chromosome 1 (1q3), and so far eight 
mutations have been identified in this gene. The most important feature of these 
mutations is that they cause hypertrophy and high incidence of sudden death in 
younger patients under 30 years of age [1].
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Alpha tropomyosin gene is localized on chromosome 15 (15q2), and two muta-
tions of this gene have been observed to date. It is observed in a low proportion of 
HCM cases and is known to be associated with normal survival [1].

3.2 TLR4 gene polymorphisms

Studies have shown that the immune system and multiple proinflammatory fac-
tors play an important role in the pathogenesis of HCM. Toll-like receptor 4 (TLR4), 
a member of the pattern recognition receptors, plays an important role as mediation 
in inflammatory response. TLR4 consists of three exons involved in immunoregu-
lation and is localized in region 9q32-q33. It acts by suppressing T lymphocyte 
proliferation and regulating macrophage function. The lack of TLR4, which is 
known to play an important role in the development of cardiovascular diseases, has 
been reported to be associated with doxorubicin-induced cardiomyopathy in mice. 
A significant relationship between abnormal expression or genetic polymorphisms 
and cardiovascular remodeling, which is considered to be an important risk factor 
for metabolic syndrome, has been found. TLR4, which can trigger protein kinase 
signaling and innate immune response active with mitogen, leads to activation of 
proinflammatory cytokines and Chemokines. Common polymorphisms in the TLR4 
gene are the rs4986791 and rs4986790 polymorphisms. In addition to these poly-
morphisms, new polymorphisms have been identified in the promoter region and in 
the 3′ untranslated region (3′-UTR) of TLR4. Even if the polymorphisms occurring 
in the promoter region do not alter the gene’s coding sequence, the initiation of gene 
transcription is affected when these gene polymorphisms lead to pathogenicity. 
Cohort studies aimed at determining the relationship between cardiovascular dis-
eases and TLR4 gene polymorphisms were performed, and inconsistent results were 
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obtained in these studies. In a study by Lindstrom et al., TLR4 gene polymorphisms 
were associated with decreased risk of prostate cancer. In another study by Castano 
et al., TLR4 was found to be associated with increased gastric cancer risk in the 3′-
UTR region. In a study by Kiechl et al., it was concluded that TLR4 gene polymor-
phisms were associated with heart diseases such as atherogenesis. No large number 
of studies have been carried out to determine whether TLR4 gene polymorphisms 
are genetic risk factors for HCM. In a study conducted with the Han-China popula-
tion, TLR4 gene polymorphisms were found to be genetic risk factors in the devel-
opment of HCM. In this study, it was determined that rs11536865 and rs10983755 
gene polymorphisms in the promoter region of the TLR4 gene are important risk 
factors for HCM development. In this study, the potential relationships of TLR4 
gene polymorphisms with the sensitivity and prognosis of HCM have been revealed. 
It is determined that it is associated with decreased plasma TLR4 levels of the GG 
genotypes of −728G > C polymorphism and GG genotypes of −2081G > A polymor-
phism in HCM patients. However, the C allele of the −728G > C polymorphism and 
the A-allele of −2081G > A polymorphism were found to be related to the highest 
plasma TLR4 levels. Inflammation and innate immunity are also contributed to 
the development of cardiomyopathy. Accordingly, it is believed that TLR4 gene 
polymorphisms affect the progression of natural immunity or inflammation, thus 
altering the expression level of TLR4, which is involved in the development of 
HCM. When studies with larger populations are performed, different results are 
likely to occur [8]. Primer sequences for −728G > C and −2081G > A gene polymor-
phisms are presented in Table 1.

3.3 HOPX gene polymorphisms

Homeodomain only protein x (HOPX) is a homeodomain protein that regulates 
the serum response factor (SRF)-dependent gene expression. In addition, HOPX 
is thought to play a role as tumor suppressor gene in some tissues, and expression 
is silenced in human carcinomas such as choriocarcinoma, lung cancer, head and 
neck squamous carcinoma, and esophageal cancer during cardiac hypertrophy, SRF 
activity, which controls the transcription of genes, including cellular immediate-
early genes, and cell skeletal and contractile proteins, is controlled by cofactors 
such as myocardium and compressors such as HOPX. The expression of the HOPX 
gene encoding a homeodomain protein is under the control of the two promoter 
regions. One of these promoters is regulated by the cardiac-specific transcription 
factor Nkx2–5. The HOPX gene plays a role as SRF antagonist, and it is effective in 
prenatal cardiomyocyte proliferation and postnatal cardiomyocyte hypertrophy. 
This antagonistic effect performed through by the take of histone deacetylase. In 
addition, HOPX is thought to play a role as tumor suppressor gene in some tissues, 
and expression is silenced in human carcinomas such as choriocarcinoma, lung can-
cer, head and neck squamous carcinoma, and esophageal cancer. HOPX has a role 
coactivator on SRF activity. Through this, it plays an active role in cardiac hypertro-
phy. HOPX gene expression is known to be downregulated in kalp insufficiency, but 

SNPs Forward primer (5′–3′) Reverse primer (5′–3′)

−728G > C 5′-TGATAGACCCCACAACTCCT-3′ 5′-TGATTTCCCCC- CATAGGATG-3′

−2081G > A 5′-TACCACCACTGTTCGCTCAG-3′ 5′-GGTTATGAGGGACATTGGAT-3′

PCR, polymerase chain reaction; SNP, single nucleotide polymorphism.

Table 1. 
Primer sequences used in PCR for TLR4 gene polymorphisms.
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the association between gene polymorphisms in the HOPX gene and heart disease 
such as heart failure or HCM has not been well established. HOPX protein is not a 
component of sarcomere and plays a role as a modifying gene. In a study investigat-
ing the relationship between HOPX gene polymorphism and SRF-dependent gene 
expression, it was determined that the expression decreased in heart muscles of 
mutant mice. Sequence variations in the HOPX gene in particular in the regulatory 
region have been shown to be associated with HCM. The relationship between 
HOPX and syncope in HCM is classified in two ways as dependent on SRF and 
independent on SRF. The HOPX gene plays a modifying role in HCM pathogenesis 
through SRF-dependent genes, and it is thought that the modifying effect may be 
more pronounced in patients with mutations in target genes. In a previous study 
performed in HCM patients, no mutation was detected in the coding sequence 
of the HOPX gene, but two noncoding polymorphisms associated with syncope 
were detected. In these polymorphisms, it is determined that homozygous states 
are protective against syncope and heterozygote cases are a genetic risk factor for 
syncope. The epigenetic status and genetic variations of the HOPX gene are impor-
tant as modifying factors in HCM [4]. Primer sequences for HOPXe1, HOPXe2, and 
HOPXe3 gene polymorphisms are presented in Table 2.

3.4 PRKHC gene polymorphisms

The PRKCH gene is a susceptibility gene that plays an important role in atheroscle-
rotic diseases such as cerebral infarction and is associated with the development and 
progression of atherosclerosis in humans. This gene encodes protein kinase C (PKC), 
and PKC is activated by diacylglycerol which calcium and secondary messenger. Protein 
kinase C (PKC) functions as an important signal transduction pathway in the develop-
ment of cardiac hypertrophy, and studies performed with cell culture and animal mod-
els explain this function. It is serine-threonine kinase which is effective in regulating 
various important cellular functions including proliferation, differentiation, and apop-
tosis. Members of the PKC family which phosphorylate a wide variety of protein targets 
are associated with several signalization pathways. There are studies showing that PKC 
activation is important in the pathology of cardiovascular diseases. The PRKCH gene is 
located in the ATP-binding region of PKCη in exon 9. PKCη, expressed in the skin and 
heart tissues, is effective by the way of contributing to cellular processes such as prolif-
eration, differentiation, secretion, and apoptosis. PKCη also plays an important role in 
immune functions such as regulation of TLR2 responses in macrophages, T-cell prolif-
eration, and homeostasis. The 1425G/A (Val374Ie) polymorphism in the PRKCH gene 
localized on 14q22-q23 in human increases the kinase activity. In a study conducted 
by Centurione et al., PKCη has been reported to regulate hypertrophic and apoptotic 
events, NF-Kb signaling system, and intrinsic mitochondrial apoptotic pathway in rat 
neonatal heart. In a study conducted with a Chinese population, the PRKCH 1425G/A 
gene polymorphism was found to be a genetic risk factor in the development of hyper-
trophic obstructive cardiomyopathy (HOCM). In studies conducted with Chinese and 

SNPs Forward primer (5′–3′) Reverse primer (5′–3′)

HOPXe1 5′-AACGTGCTATCAGCAGCCTG-3′ 5′-GACGAACAGGACCGCCCAGC-3′

HOPXe2 5′-CGACCGCCTTCCTTCGCTGC-3′ 5′-CCTTCATGGAGTGAAGCTGTC-3′

HOPXe3 5′-CTTGTGCCACAGAGGCTACC-3′ 5′-CCTTCATGGAGTGAAGCTGTC-3′

PCR, polymerase chain reaction; SNP, single nucleotide polymorphism.

Table 2. 
Primer sequences used in PCR for HOPX gene polymorphisms.
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Japanese populations, PRKCH 1425G/A gene polymorphism was found to be associated 
with increased ischemic stroke and the risk of cerebral hemorrhage. More studies 
should be performed related to molecular mechanisms to determine the relationship 
between the risk of developing PRKCH and HOCM [5]. Primer sequences for PRKCH 
1425G/A gene polymorphisms are presented in Table 3.

3.5 SCN10A gene polymorphisms

The SCN10A gene encodes NaV1.8, a neuronal sodium channel isoform. NaV1.8 
is an alpha subunit of sodium channels with voltage door. NaV1.8 localized in the 
peripheral nervous system is associated with chronic and neuropathic pain. With rapid 
and sustained stimulation, long-term action potential is observed and excitability is 
maintained. SCN10A identified in the human heart was found to be associated with 
changes in cardiac and atrioventricular conduction. Significant relationships were 
found between the PR interval, QRS duration, and SCN10A gene polymorphisms in 
recent genome-wide association studies. Starting from this, it is concluded that NaV1.8 
plays an important role in cardiac electrophysiology. In a study by Chambers et al., 
rs6795970 gene polymorphism has been shown to result in the amino acid exchange 
A1073V in the IDII/III intracellular cycle of NaV1.8. In another study, it was deter-
mined that the A-allele of the rs6795970 gene polymorphism occurring in the SCN10A 
gene may be related to the cardiac conduction abnormalities observed in HCM 
patients. In addition, significant correlations were found between the A-allele of the 
rs6795970 gene polymorphism and the increase in the risk of first-degree heart block, 
bundle brunch block, and bifascicular heart block [2].

3.6 HSP 70 gene polymorphisms

Heat shock protein 70 (HSP 70) is localized on 6p21.3 and is located in the class 
III region of the major histocompatibility complex (MHC). This gene is expressed 
in response to heat shock and stress stimulators such as oxidative free radicals 
and toxic metal ions. Some of the HSPs play an important role in controlling 
protein folding, translocation, or degradation and are structurally expressed in 
non-stressed cells. There are three gene modifiers such as HSP 70-1, HSP 70-2, and 
HSP 70-Hom. HSP 70-1 and HSP 70-2 are those that encode an identical protein 
of the heat-inducible HSP 70. HSP 70-Hom is expressed at structurally low levels; 
it encodes a protein non-inducible with heat. There are studies showing that the 
overexpression of heat shock proteins has a cardioprotective role and that genetic 
variants of HSP 70 may reduce the ability of cells to protect against ischemia. The 
genetic polymorphisms in the HSP 70 gene have been found to play an important 
role in various diseases such as Parkinson’s disease, schizophrenia, breast carci-
noma, ischemic stroke, and coronary artery disease. The relationship between HSP 
70 specific genotypes and hypertrophic cardiomyopathy has not been reported so 
far. In a previous study, the modifying role of HSP 70 has been described. In the 
study, it was found that HSP plays a regulatory role in HCM-related inflammatory 

SNPs Common primer (5′–3′) Allele-specific primer (A)
Allele-specific primer (G)

PRKCH
1425G/A

5′-GCAGAATCACGTCCTTC 
TTCAG-3′

5′-CATAGGTGATGCTTGCAAGAA-3′

5′-CATAGGTGATGC TTGCAAGAG-3′

PCR, polymerase chain reaction; SNP, single nucleotide polymorphism.

Table 3. 
Primer sequences used in PCR for PRKCH gene polymorphism.
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component of sarcomere and plays a role as a modifying gene. In a study investigat-
ing the relationship between HOPX gene polymorphism and SRF-dependent gene 
expression, it was determined that the expression decreased in heart muscles of 
mutant mice. Sequence variations in the HOPX gene in particular in the regulatory 
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through SRF-dependent genes, and it is thought that the modifying effect may be 
more pronounced in patients with mutations in target genes. In a previous study 
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of the HOPX gene, but two noncoding polymorphisms associated with syncope 
were detected. In these polymorphisms, it is determined that homozygous states 
are protective against syncope and heterozygote cases are a genetic risk factor for 
syncope. The epigenetic status and genetic variations of the HOPX gene are impor-
tant as modifying factors in HCM [4]. Primer sequences for HOPXe1, HOPXe2, and 
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progression of atherosclerosis in humans. This gene encodes protein kinase C (PKC), 
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els explain this function. It is serine-threonine kinase which is effective in regulating 
various important cellular functions including proliferation, differentiation, and apop-
tosis. Members of the PKC family which phosphorylate a wide variety of protein targets 
are associated with several signalization pathways. There are studies showing that PKC 
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located in the ATP-binding region of PKCη in exon 9. PKCη, expressed in the skin and 
heart tissues, is effective by the way of contributing to cellular processes such as prolif-
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immune functions such as regulation of TLR2 responses in macrophages, T-cell prolif-
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localized on 14q22-q23 in human increases the kinase activity. In a study conducted 
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Japanese populations, PRKCH 1425G/A gene polymorphism was found to be associated 
with increased ischemic stroke and the risk of cerebral hemorrhage. More studies 
should be performed related to molecular mechanisms to determine the relationship 
between the risk of developing PRKCH and HOCM [5]. Primer sequences for PRKCH 
1425G/A gene polymorphisms are presented in Table 3.

3.5 SCN10A gene polymorphisms

The SCN10A gene encodes NaV1.8, a neuronal sodium channel isoform. NaV1.8 
is an alpha subunit of sodium channels with voltage door. NaV1.8 localized in the 
peripheral nervous system is associated with chronic and neuropathic pain. With rapid 
and sustained stimulation, long-term action potential is observed and excitability is 
maintained. SCN10A identified in the human heart was found to be associated with 
changes in cardiac and atrioventricular conduction. Significant relationships were 
found between the PR interval, QRS duration, and SCN10A gene polymorphisms in 
recent genome-wide association studies. Starting from this, it is concluded that NaV1.8 
plays an important role in cardiac electrophysiology. In a study by Chambers et al., 
rs6795970 gene polymorphism has been shown to result in the amino acid exchange 
A1073V in the IDII/III intracellular cycle of NaV1.8. In another study, it was deter-
mined that the A-allele of the rs6795970 gene polymorphism occurring in the SCN10A 
gene may be related to the cardiac conduction abnormalities observed in HCM 
patients. In addition, significant correlations were found between the A-allele of the 
rs6795970 gene polymorphism and the increase in the risk of first-degree heart block, 
bundle brunch block, and bifascicular heart block [2].

3.6 HSP 70 gene polymorphisms

Heat shock protein 70 (HSP 70) is localized on 6p21.3 and is located in the class 
III region of the major histocompatibility complex (MHC). This gene is expressed 
in response to heat shock and stress stimulators such as oxidative free radicals 
and toxic metal ions. Some of the HSPs play an important role in controlling 
protein folding, translocation, or degradation and are structurally expressed in 
non-stressed cells. There are three gene modifiers such as HSP 70-1, HSP 70-2, and 
HSP 70-Hom. HSP 70-1 and HSP 70-2 are those that encode an identical protein 
of the heat-inducible HSP 70. HSP 70-Hom is expressed at structurally low levels; 
it encodes a protein non-inducible with heat. There are studies showing that the 
overexpression of heat shock proteins has a cardioprotective role and that genetic 
variants of HSP 70 may reduce the ability of cells to protect against ischemia. The 
genetic polymorphisms in the HSP 70 gene have been found to play an important 
role in various diseases such as Parkinson’s disease, schizophrenia, breast carci-
noma, ischemic stroke, and coronary artery disease. The relationship between HSP 
70 specific genotypes and hypertrophic cardiomyopathy has not been reported so 
far. In a previous study, the modifying role of HSP 70 has been described. In the 
study, it was found that HSP plays a regulatory role in HCM-related inflammatory 
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responses and hemodynamic compensatory mechanisms. HSP genes are genes that 
encode a family of structurally produced proteins in the fulfillment of basic func-
tions, which increase expression in response to various metabolic stimuli. One of 
the most important tasks of these genes is to facilitate the synthesis and folding of 
proteins within the cells. In addition HSP genes play an important role in protein 
binding, secretion, protein degradation, and in the regulation of protein kinases via 
transcription factors. Polymorphisms in the expression of HSP genes are controlled 
by a number of transcription factors, and these factors are called heat shock factors 
(HSF). As a result of the increase and accumulation of HSPs, the protection of the 
stressed cell is increased; thus the cell survival is maintained. Overexpression of 
HSP 70 elicits its cardioprotective property. As a result of the polymorphisms occur-
ring in the HSP 70 gene, the synthesis of HSP 70 protein can be changed [11].

3.6.1 HSP 70-1 (+190G/C) polymorphism

The HSP 70-1 (+190G/C) polymorphism is a silent polymorphism of the initial 
domain translated in the 5′-UTR region of the gene. It has been reported to be a 
significant relationship between this polymorphism and various diseases such as 
Parkinson’s disease, high-altitude illness, and diabetes mellitus. HSP 70 is known as 
a significant stress protein whose production is increased under stress [11].

3.6.2 HSP 70-2 (+1267A/G) polymorphism

The HSP 70-2 (1267A/G) polymorphism is a polymorphism located in the coding 
region of the gene. HSP 70-2 changes the expression of mRNA, and the relation-
ship between this expression and the +1267A/G polymorphism is shown in several 
studies. In a study, G allele of HSP 70-2 (1267A/G) polymorphism was found to be 
an important risk factor in the development of HCM. In a study by Pociot et al., 
it was determined that the differences between individuals in HSP 70 expression 
may be related to different regulatory mechanisms than transcriptional regulation. 
In addition, the HSP 70 polymorphic region affects expression and enzyme activ-
ity of the synonymous gene polymorphism. As a result of changing the timing of 
co-translational folding, the secondary structure of mRNA, stability, substrate, 
or inhibitor binding sites of the brain vary. In a study, there was no change in the 
secondary structures of the A and G alleles of HSP 70-2 mRNA [11].

3.6.3 HSP 70-Hom (+2437C/T) polymorphism

The HSP 70-Hom (+ 2437C/T) polymorphism is characterized by the Met493Thr 
missense translocation, which affects the substrate specificity and chaperone activ-
ity of HSP 70-Hom. In a study conducted with a Mexican population, a significant 
relationship was found between the +2437 T allele and spondyloarthropathies of 
HSP 70-Hom (+ 2437C/T) gene polymorphism. It is known that nucleotide changes 
in the coding region may influence the peptide binding kinetics and the affinity of 
ATPase activity with HSP 70 proteins. Furthermore, as a result of the nucleotide 
changes that occur in the side regions, the inducibility, expression grade, and stabil-
ity of mRNA can be affected. Overexpression of HSP 70 is a preservative against the 
damaging effects of ischemia. In consequence of excessive expression, the release 
of the creatine kinase of the heart, recovery of high-energy phosphate depots, and 
correction of metabolic acidosis are performed. Protective effects of HSP include 
protein folding, abnormal protein degradation, inhibition of apoptosis, preserva-
tion of the cell skeleton, and improved NO synthesis. Apoptosis, a programmed 
cell death involving the release of cytochrome c, is an important consequence of 

99

Genetic Polymorphisms that Playing Role in Development of Hypertrophic Cardiomyopathy
DOI: http://dx.doi.org/10.5772/intechopen.83473

hypertrophy decompensation. HSP 70 expression and activation of procaspase 9, 
leading to cardiac hypertrophy, can inhibit caspase-mediated apoptosis activity. 
Hence, the expression of HSP proteins is affected by HSP 70 genes and polymor-
phisms in these genes. Thus, the ability to inhibit apoptosis resulting in HCM due 
to cardiac hypertrophy may be affected. In a previous study, the C allele of the HSP 
70-1 gene polymorphism and the G allele of the HSP 70-2 gene polymorphism 
were found to be associated with increased risk of HCM [11]. Primer sequences for 
HSP-70-1 +190G/C, HSP-70-2 −1267A/G, and HSP-70-hom −2437T/C gene poly-
morphisms are presented in Table 4.

3.7 RAAS gene polymorphisms

The renin-angiotensin-aldosterone system (RAAS) can cause ventricular 
hypertrophy through circulating angiotensin. RAAS plays an important role in cell 
proliferation, regulation, and the partial expression of heart hypertrophy, thereby 
developing LVH [3]. It is also known to play a regulatory role in cardiac function, 
blood pressure, and electrolyte homeostasis in the body. Angiotensinogen (AGT), 
renin, angiotensin-converting enzyme (ACE), and angiotensin II receptors of 
RAAS are found in the heart, and these components function more independently 
than circulating RAAS [7]. Angiotensin I is converted to angiotensin II through 
ACE, and angiotensin II is linked to type 1 receptor angiotensin II (AGTR1). 
Angiotensin II has an important role in supporting cell growth and hypertrophy. 
In addition, angiotensin II is converted to aldosterone by aldosterone synthase 
(CYP11B2), and aldosterone supports cardiac fibrosis. Aldosterone plays an impor-
tant mediator role in HCM, among sarcomeric mutations and cardiac phenotypes 
[12]. RAAS activation or receptor function may increase as a result of genetic 
polymorphisms in genes encoding RAAS. In some studies, a significant relation-
ship was found between RAAS gene polymorphisms and increased hypertrophic 
response against HCM. In some studies, RAAS gene polymorphisms have been 
found to be genetic risk factors in the development of LVH, but there are studies 
that have not confirmed this. Childhood HCM is an early onset HCM and it shows 
a rapid progress. Furthermore, a growing heart shows more dependence on RAAS 
than the adult heart. Therefore, it is thought that the growing heart may be more 
sensitive to RAAS gene polymorphisms. Although studies have shown that there 
is a relationship between RAAS and HCM, in some studies with different popula-
tions, the role of RAAS in the change of HCM phenotype is not well-known [7]. It 
is thought that modifier genes that regulate RAAS may alter the responses to drug 
therapies and hence may be effective in the prognosis of HCM patients. RAAS, 
which is known to be associated with hypertrophy in familial HCM, has been 
shown to be more effective in sporadic HCM. Early diagnosis of genetic risk factors 
such as RAAS gene polymorphisms in terms of risk classification and development 

SNPs Forward primer (5′–3′) Reverse primer (5′–3′)

HSP 70-1 
+190G/C

5′-CGCCATGGAGACCAACACCC-3′ 5′-GCGGTTCCCTGCTCTCTGTC-3′

HSP 70-2 
−1267A/G

5′-CATCGACTTCTACACGTCCA-3′ 5′-CAAAGTCCTTGAGTCCCAAC-3′

HSP 70-hom 
−2437T/C

5′-GTCCCTGGGGCTGGAGACG-3′ 5′-GATGATAGGGTTACACATCTGCT-3′

PCR, polymerase chain reaction; SNP, single nucleotide polymorphism.

Table 4. 
Primer sequences used in PCR for HSP 70 gene polymorphisms.
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responses and hemodynamic compensatory mechanisms. HSP genes are genes that 
encode a family of structurally produced proteins in the fulfillment of basic func-
tions, which increase expression in response to various metabolic stimuli. One of 
the most important tasks of these genes is to facilitate the synthesis and folding of 
proteins within the cells. In addition HSP genes play an important role in protein 
binding, secretion, protein degradation, and in the regulation of protein kinases via 
transcription factors. Polymorphisms in the expression of HSP genes are controlled 
by a number of transcription factors, and these factors are called heat shock factors 
(HSF). As a result of the increase and accumulation of HSPs, the protection of the 
stressed cell is increased; thus the cell survival is maintained. Overexpression of 
HSP 70 elicits its cardioprotective property. As a result of the polymorphisms occur-
ring in the HSP 70 gene, the synthesis of HSP 70 protein can be changed [11].
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domain translated in the 5′-UTR region of the gene. It has been reported to be a 
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studies. In a study, G allele of HSP 70-2 (1267A/G) polymorphism was found to be 
an important risk factor in the development of HCM. In a study by Pociot et al., 
it was determined that the differences between individuals in HSP 70 expression 
may be related to different regulatory mechanisms than transcriptional regulation. 
In addition, the HSP 70 polymorphic region affects expression and enzyme activ-
ity of the synonymous gene polymorphism. As a result of changing the timing of 
co-translational folding, the secondary structure of mRNA, stability, substrate, 
or inhibitor binding sites of the brain vary. In a study, there was no change in the 
secondary structures of the A and G alleles of HSP 70-2 mRNA [11].
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The HSP 70-Hom (+ 2437C/T) polymorphism is characterized by the Met493Thr 
missense translocation, which affects the substrate specificity and chaperone activ-
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relationship was found between the +2437 T allele and spondyloarthropathies of 
HSP 70-Hom (+ 2437C/T) gene polymorphism. It is known that nucleotide changes 
in the coding region may influence the peptide binding kinetics and the affinity of 
ATPase activity with HSP 70 proteins. Furthermore, as a result of the nucleotide 
changes that occur in the side regions, the inducibility, expression grade, and stabil-
ity of mRNA can be affected. Overexpression of HSP 70 is a preservative against the 
damaging effects of ischemia. In consequence of excessive expression, the release 
of the creatine kinase of the heart, recovery of high-energy phosphate depots, and 
correction of metabolic acidosis are performed. Protective effects of HSP include 
protein folding, abnormal protein degradation, inhibition of apoptosis, preserva-
tion of the cell skeleton, and improved NO synthesis. Apoptosis, a programmed 
cell death involving the release of cytochrome c, is an important consequence of 

99

Genetic Polymorphisms that Playing Role in Development of Hypertrophic Cardiomyopathy
DOI: http://dx.doi.org/10.5772/intechopen.83473

hypertrophy decompensation. HSP 70 expression and activation of procaspase 9, 
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Hence, the expression of HSP proteins is affected by HSP 70 genes and polymor-
phisms in these genes. Thus, the ability to inhibit apoptosis resulting in HCM due 
to cardiac hypertrophy may be affected. In a previous study, the C allele of the HSP 
70-1 gene polymorphism and the G allele of the HSP 70-2 gene polymorphism 
were found to be associated with increased risk of HCM [11]. Primer sequences for 
HSP-70-1 +190G/C, HSP-70-2 −1267A/G, and HSP-70-hom −2437T/C gene poly-
morphisms are presented in Table 4.

3.7 RAAS gene polymorphisms

The renin-angiotensin-aldosterone system (RAAS) can cause ventricular 
hypertrophy through circulating angiotensin. RAAS plays an important role in cell 
proliferation, regulation, and the partial expression of heart hypertrophy, thereby 
developing LVH [3]. It is also known to play a regulatory role in cardiac function, 
blood pressure, and electrolyte homeostasis in the body. Angiotensinogen (AGT), 
renin, angiotensin-converting enzyme (ACE), and angiotensin II receptors of 
RAAS are found in the heart, and these components function more independently 
than circulating RAAS [7]. Angiotensin I is converted to angiotensin II through 
ACE, and angiotensin II is linked to type 1 receptor angiotensin II (AGTR1). 
Angiotensin II has an important role in supporting cell growth and hypertrophy. 
In addition, angiotensin II is converted to aldosterone by aldosterone synthase 
(CYP11B2), and aldosterone supports cardiac fibrosis. Aldosterone plays an impor-
tant mediator role in HCM, among sarcomeric mutations and cardiac phenotypes 
[12]. RAAS activation or receptor function may increase as a result of genetic 
polymorphisms in genes encoding RAAS. In some studies, a significant relation-
ship was found between RAAS gene polymorphisms and increased hypertrophic 
response against HCM. In some studies, RAAS gene polymorphisms have been 
found to be genetic risk factors in the development of LVH, but there are studies 
that have not confirmed this. Childhood HCM is an early onset HCM and it shows 
a rapid progress. Furthermore, a growing heart shows more dependence on RAAS 
than the adult heart. Therefore, it is thought that the growing heart may be more 
sensitive to RAAS gene polymorphisms. Although studies have shown that there 
is a relationship between RAAS and HCM, in some studies with different popula-
tions, the role of RAAS in the change of HCM phenotype is not well-known [7]. It 
is thought that modifier genes that regulate RAAS may alter the responses to drug 
therapies and hence may be effective in the prognosis of HCM patients. RAAS, 
which is known to be associated with hypertrophy in familial HCM, has been 
shown to be more effective in sporadic HCM. Early diagnosis of genetic risk factors 
such as RAAS gene polymorphisms in terms of risk classification and development 
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of new strategies for interventions to individual according to this classification are 
very important [13].

3.7.1 ACE gene polymorphisms

ACE increases the synthesis of angiotensin II by inducing cell proliferation, 
migration, and hypertrophy. Angiotensin II develops the proinflammatory 
cytokines and matrix metalloproteinases. Therefore, overexpression of angio-
tensin II is thought to play an important role in cardiomyopathy. ACE, which 
converts angiotensin I to angiotensin II, functions as a growth factor for cardiac 
myocytes. It has been reported to induce the cardiac hypertrophy independent 
of hemodynamic and neurohumoral effects. The ACE gene is localized on 
chromosome 17 (17q23.3) in the human genome. The gene, which is 21 kilobase 
in length, consists of 26 exons. The ACE insertion/deletion (I/D) gene polymor-
phism corresponds to a repetitive sequence of 287 base pairs (Alu) in intron 16. 
DD genotype of ACE (I/D) gene polymorphism was found to be associated with 
increased ACE and angiotensin II levels. This causes increased hypertrophy and 
fibrosis. Phenotypic expression of HCM is also affected as a result of increase 
of angiotensin II levels. Previous studies have shown a significant relationship 
between ACE (I/D) gene polymorphisms and plasma angiotensin II levels. 
ACE (I/D) gene polymorphism has been shown to modulate the phenotype in 
HCM patients. In studies conducted with different populations, contradictory 
results were found in terms of the relationship between ACE (I/D) gene poly-
morphisms and the risk of developing HCM. In a study performed in Japanese 
population by Yamada et al., no significant relationship was found between 
ACE (I/D) gene polymorphism and HCM. In a study by Perkins et al., it was 
determined that the DD genotype of the ACE (I/D) gene polymorphism was 
important in the phenotypic expression of HCM and the ACE tissue levels were 
higher in patients with DD genotype. In another study carried out by Schunkert 
et al., a significant association was found between D allele of the ACE (I/D) 
gene polymorphism and increased LVH in HCM patients. In a study conducted 
by Rai et al., in the Indian population, ACE (I/D) gene polymorphism was found 
to be a genetic risk factor for HCM and dilated cardiomyopathy. In a meta-
analysis study, D allele of ACE (I/D) gene polymorphism has been reported to 
be associated with increased risk of HCM. In patients with HCM that carry the 
DD genotype of the ACE (I/D) gene polymorphism, higher serum ACE levels, 
increased risk of sudden death, and higher severity of hypertrophy are observed 
than other genotypes. Angiotensin II, which shows trophic effects on the heart, 
also plays an important role in the development of myocardial hypertrophy. The 
AGTR1 antagonist has an important role in reducing myocardial hypertrophy, so 
it may be an important treatment option to prevent the sudden cardiac death in 
patients with HCM. It is thought that obtaining different results in the studies 
is due to differences in research design, environmental backgrounds, genetic 
structure, or sample selection criteria in studies. Further genome-wide relation-
ship studies are needed to determine the relationship between the ACE gene and 
HCM [3, 7].

3.7.2 AGTR1 and AGTR2 gene polymorphisms

LVH is known to be variable in patients with HCM. Angiotensin II plays an 
important role in the change of LVH. AGTR1 A1166C and angiotensin II type 
2 receptor (AGTR2). As a result of A3123C gene polymorphisms, phenotypic 
expression of hypertrophy in HCM is affected. The AGTR1 gene is localized on 
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chromosome 3q21. AGTR1 A1166C gene polymorphism is characterized by adenine 
(A)/cytosine (C) base translocation at position 1166 of the gene. Different results 
have been obtained in studies attempting to explain the relationship between these 
gene polymorphisms and HCM development [12].

3.7.3 CYP11B2 gene polymorphisms

It has been determined that aldosterone, which can be produced locally 
in the heart, is associated with sarcomeric mutations and cardiac phenotype. 
The CYP11B2 −344C/T gene polymorphism is characterized by C/T base 
displacement at the −344 position of the CYP11B2 gene localized on the 8q22 
chromosome. The CYP11B2 gene polymorphism was found to be associated 
with left ventricular mass in human essential hypertension. In a previous study, 
aldosterone was found to modify the phenotypic expression of the mutated gene 
in HCM. A significant relationship between CYP11B2 genotype and cardiac 
hypertrophy has been shown in HCM. It has also been reported that the T allele 
of the CYP11B2 gene polymorphism in patients with essential hypertension 
has been identified as a genetic risk factor for left ventricular mass. In another 
study, a significant association was found between the CYP11B2 −344C/T gene 
polymorphism CC genotype and cardiac hypertrophy among healthy controls 
[14]. Several previous studies have reported that the T allele of the CYP11B2 gene 
polymorphism is associated with increased plasma aldosterone levels. Therefore, 
it is thought to be a significant relationship between T allele of this gene 
 polymorphism and cardiac hypertrophy [12].

3.7.4 AGT gene polymorphisms

AGT released into the circulation is a glycoprotein produced by hepatocytes 
containing 485 amino acids. It is known that AGT is converted into angiotensin 
I by the renin enzyme. The rate in angiotensin production plays a role in the 
regulation of AGT concentration and angiotensin II production. In addition, 
AGT plays an important role in essential hypertension, renal tubular dysgenesis, 
non-familial structural atrial fibrillation, and in LVH via strong myotrophic 
effect. The AGT gene is known to regulate the expression of AGT. AGT M235T 
gene polymorphism is characterized by methionine/threonine base displace-
ment in chromosome 1q42 of the AGT gene [14]. In studies conducted to 
investigate the relationship between AGT M235T gene polymorphism and HCM, 
controversial results were found. Although in some studies significant relation-
ships were determined, in some studies were not found. In a study conducted 
with the Japanese population by Kawaguchi et al., it was determined that TT 
genotype and T allele of the AGT M235T gene polymorphism were genetic risk 
factors for HCM. However, in the same study, no significant relationship was 
found between TT genotype and T allele of this gene polymorphism and familial 
form of HCM. A higher T allele frequency was found in patients with sporadic 
HCM. The TT genotype of the AGT M235T gene polymorphism is thought to 
be a genetic marker for LVH. It was also found to be significant relationship 
between this polymorphism and other cardiovascular diseases such as myocar-
dial infarction, coronary atherosclerosis, and hypertension. In another study 
conducted with the South Indian population, the relationship between T704C 
gene polymorphism and HCM in exon 2 of the AGT gene was investigated. In 
this study, T allele of AGT T704C gene polymorphism was found to be associ-
ated with sporadic HCM. However, it was concluded that this allele is not a 
genetic risk factor for familial HCM. In conclusion, the T allele of the AGT 
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of new strategies for interventions to individual according to this classification are 
very important [13].

3.7.1 ACE gene polymorphisms

ACE increases the synthesis of angiotensin II by inducing cell proliferation, 
migration, and hypertrophy. Angiotensin II develops the proinflammatory 
cytokines and matrix metalloproteinases. Therefore, overexpression of angio-
tensin II is thought to play an important role in cardiomyopathy. ACE, which 
converts angiotensin I to angiotensin II, functions as a growth factor for cardiac 
myocytes. It has been reported to induce the cardiac hypertrophy independent 
of hemodynamic and neurohumoral effects. The ACE gene is localized on 
chromosome 17 (17q23.3) in the human genome. The gene, which is 21 kilobase 
in length, consists of 26 exons. The ACE insertion/deletion (I/D) gene polymor-
phism corresponds to a repetitive sequence of 287 base pairs (Alu) in intron 16. 
DD genotype of ACE (I/D) gene polymorphism was found to be associated with 
increased ACE and angiotensin II levels. This causes increased hypertrophy and 
fibrosis. Phenotypic expression of HCM is also affected as a result of increase 
of angiotensin II levels. Previous studies have shown a significant relationship 
between ACE (I/D) gene polymorphisms and plasma angiotensin II levels. 
ACE (I/D) gene polymorphism has been shown to modulate the phenotype in 
HCM patients. In studies conducted with different populations, contradictory 
results were found in terms of the relationship between ACE (I/D) gene poly-
morphisms and the risk of developing HCM. In a study performed in Japanese 
population by Yamada et al., no significant relationship was found between 
ACE (I/D) gene polymorphism and HCM. In a study by Perkins et al., it was 
determined that the DD genotype of the ACE (I/D) gene polymorphism was 
important in the phenotypic expression of HCM and the ACE tissue levels were 
higher in patients with DD genotype. In another study carried out by Schunkert 
et al., a significant association was found between D allele of the ACE (I/D) 
gene polymorphism and increased LVH in HCM patients. In a study conducted 
by Rai et al., in the Indian population, ACE (I/D) gene polymorphism was found 
to be a genetic risk factor for HCM and dilated cardiomyopathy. In a meta-
analysis study, D allele of ACE (I/D) gene polymorphism has been reported to 
be associated with increased risk of HCM. In patients with HCM that carry the 
DD genotype of the ACE (I/D) gene polymorphism, higher serum ACE levels, 
increased risk of sudden death, and higher severity of hypertrophy are observed 
than other genotypes. Angiotensin II, which shows trophic effects on the heart, 
also plays an important role in the development of myocardial hypertrophy. The 
AGTR1 antagonist has an important role in reducing myocardial hypertrophy, so 
it may be an important treatment option to prevent the sudden cardiac death in 
patients with HCM. It is thought that obtaining different results in the studies 
is due to differences in research design, environmental backgrounds, genetic 
structure, or sample selection criteria in studies. Further genome-wide relation-
ship studies are needed to determine the relationship between the ACE gene and 
HCM [3, 7].

3.7.2 AGTR1 and AGTR2 gene polymorphisms

LVH is known to be variable in patients with HCM. Angiotensin II plays an 
important role in the change of LVH. AGTR1 A1166C and angiotensin II type 
2 receptor (AGTR2). As a result of A3123C gene polymorphisms, phenotypic 
expression of hypertrophy in HCM is affected. The AGTR1 gene is localized on 
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chromosome 3q21. AGTR1 A1166C gene polymorphism is characterized by adenine 
(A)/cytosine (C) base translocation at position 1166 of the gene. Different results 
have been obtained in studies attempting to explain the relationship between these 
gene polymorphisms and HCM development [12].

3.7.3 CYP11B2 gene polymorphisms

It has been determined that aldosterone, which can be produced locally 
in the heart, is associated with sarcomeric mutations and cardiac phenotype. 
The CYP11B2 −344C/T gene polymorphism is characterized by C/T base 
displacement at the −344 position of the CYP11B2 gene localized on the 8q22 
chromosome. The CYP11B2 gene polymorphism was found to be associated 
with left ventricular mass in human essential hypertension. In a previous study, 
aldosterone was found to modify the phenotypic expression of the mutated gene 
in HCM. A significant relationship between CYP11B2 genotype and cardiac 
hypertrophy has been shown in HCM. It has also been reported that the T allele 
of the CYP11B2 gene polymorphism in patients with essential hypertension 
has been identified as a genetic risk factor for left ventricular mass. In another 
study, a significant association was found between the CYP11B2 −344C/T gene 
polymorphism CC genotype and cardiac hypertrophy among healthy controls 
[14]. Several previous studies have reported that the T allele of the CYP11B2 gene 
polymorphism is associated with increased plasma aldosterone levels. Therefore, 
it is thought to be a significant relationship between T allele of this gene 
 polymorphism and cardiac hypertrophy [12].

3.7.4 AGT gene polymorphisms

AGT released into the circulation is a glycoprotein produced by hepatocytes 
containing 485 amino acids. It is known that AGT is converted into angiotensin 
I by the renin enzyme. The rate in angiotensin production plays a role in the 
regulation of AGT concentration and angiotensin II production. In addition, 
AGT plays an important role in essential hypertension, renal tubular dysgenesis, 
non-familial structural atrial fibrillation, and in LVH via strong myotrophic 
effect. The AGT gene is known to regulate the expression of AGT. AGT M235T 
gene polymorphism is characterized by methionine/threonine base displace-
ment in chromosome 1q42 of the AGT gene [14]. In studies conducted to 
investigate the relationship between AGT M235T gene polymorphism and HCM, 
controversial results were found. Although in some studies significant relation-
ships were determined, in some studies were not found. In a study conducted 
with the Japanese population by Kawaguchi et al., it was determined that TT 
genotype and T allele of the AGT M235T gene polymorphism were genetic risk 
factors for HCM. However, in the same study, no significant relationship was 
found between TT genotype and T allele of this gene polymorphism and familial 
form of HCM. A higher T allele frequency was found in patients with sporadic 
HCM. The TT genotype of the AGT M235T gene polymorphism is thought to 
be a genetic marker for LVH. It was also found to be significant relationship 
between this polymorphism and other cardiovascular diseases such as myocar-
dial infarction, coronary atherosclerosis, and hypertension. In another study 
conducted with the South Indian population, the relationship between T704C 
gene polymorphism and HCM in exon 2 of the AGT gene was investigated. In 
this study, T allele of AGT T704C gene polymorphism was found to be associ-
ated with sporadic HCM. However, it was concluded that this allele is not a 
genetic risk factor for familial HCM. In conclusion, the T allele of the AGT 
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T704C gene polymorphism has been reported to be associated with the develop-
ment of sporadic HCM. A larger scale of cohort studies should be performed 
to confirm the relationship between T alleles and HCM development of these 
gene polymorphisms [3]. Primer sequences for RAAS gene polymorphisms are 
presented in Table 5 [15, 16].

4. Conclusions

It is known that genetic and environmental factors play a role in the patho-
genesis of HCM. Numerous studies have been conducted to investigate gene 
polymorphisms playing the role in HCM development. The differences in the 
results of these studies are thought to be stemmed from different race and 
population characteristics and different selection criteria of patient and con-
trol groups in the study. The identification of genes and the polymorphisms 
occurring in these genes that are effective in the development of HCM will 
enable us to have knowledge about disease-related mechanisms in HCM sus-
ceptibility and to develop new drug and treatment strategies in the prevention 
of HCM. Different results can be obtained in studies with different and larger 
populations.
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SNPs Forward primer (5′–3′) Reverse primer (5′–3′)

ACE (I/D) 5′-CTGGAGAGCCACTCCCATCCTTTCT-3′ 5′-GACGTGGCCATCACATTCGTCAGAT-3′

AGTR1 
A1166C

5′-GAAGCCTGCACCATGTTTTGA-3′ 5′-GGCTTTGCTTTGTCTTGTTG-3′

CYP11B2 
−344C/T

5′-CAGGAGGAGACCCCATGTGAC-3′ 5′-CCTCCACCCTGTTCAGCCC-3′

AGT 
M235T

5′-CAGGGTGCTGTCCACACTGGACCCC-3′ 5′-CCGTTTGTGCAGGGCCTGGCTCTCT-3′

AGT 
T704C

5′-CAGGGTGCTGTCCACACTGGACCCC-3′ 5′-CCGTTTGTGCAGGGCCTGGCTCTCT-3′

PCR, polymerase chain reaction; SNP, single nucleotide polymorphism.

Table 5. 
Primer sequences used in PCR for RAAS gene polymorphisms.
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