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Preface

Foodborne illnesses are a worldwide issue. Many different mycotoxins have been
identified, but the most commonly observed include aflatoxins, ochratoxin A,
patulin, fumonisins, zearalenone, and nivalenol/deoxynivalenol. Mycotoxins can
cause several adverse health effects in living organisms including immunodeficiency
and cancer. This book provides information about foodborne mycotoxins, their
toxicities, new determination methods, prevention strategies, and regulations. It
also describes different food safety strategies, risk assessment, and recent detection
techniques such as biosensors and nanoparticles.

Food safety is increasingly viewed as an essential global public health issue. Many
countries have collaborated with the World Health Organization (WHO) in order
to improve their food safety systems and have updated their national legislation. 
The WHO encourages national authorities to evaluate accurately the levels of
mycotoxins in foodstuff on their market and comply with both national and 
international maximum levels, conditions, and legislation. Governments play
critical roles in protecting the food supply. However, many countries do not have
sufficient equipment to respond to existing and emerging food safety problems. 
In addition, there is limited information available to fully evaluate food safety
problems and issues. In this respect, national experiences and knowledge have to
be shared.

Dr. Suna Sabuncuoglu
Associate Professor,

Faculty of Pharmacy,
Department of Toxicology,

Hacettepe University,
Sıhhiye, Ankara, Turkey
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Chapter 1

Introductory Chapter: Mycotoxins 
and Food Safety
Suna Sabuncuoğlu

1. Introduction

Food-borne illnesses are prevalent in all parts of the world, and the toll in terms 
of human life and suffering is enormous. Contaminated food contributes to 1.5 
billion cases of diarrhea in children each year, resulting in more than 3 million pre-
mature deaths, according to the World Health Organization (WHO). Food safety 
is used as a scientific discipline describing handling, preparation, and storage of 
food in ways that prevent food-borne illness. The occurrence of two or more cases 
of a similar illnesses resulting from the ingestion of a common food is known as a 
food-borne disease outbreak [1, 2].

Food safety issues can have very different political implications. Understanding 
the potential for the application of Multi-Criteria Decision Analysis processes in 
countries with challenges on data availability, limited processes for stakeholder 
input to decision-making, and so on, is an important foundation for the develop-
ment of FAO guidance for food safety decision-making using best available evi-
dence for transparent decision-making [3].

Recent research has increased the awareness of chemical residues and natural 
contaminants in food. At the same time, consumer concerns about food safety have 
also grown. At a national and international level, this has resulted in more stringent 
imposition of new, legislative limits for a range of mycotoxins which can contami-
nate food raw materials and enter the food chain [4].

Mycotoxins are naturally occurring toxins produced by microfungi that are 
capable of causing disease and death in living organisms. The fungi grow on a 
variety of different foodstuffs including cereals, nuts, spices, dried fruits, apples 
and coffee beans, often under warm and humid conditions [5, 6]. It is generally 
known that cereals, peanuts, spices, coffee, and herbal teas can be contaminated 
with mycotoxins. Various cereal and crops have potential fungal attack either in the 
field or during storage [6, 7].

The adverse effect of molds and fungi was known already in ancient times. In 
the Middle Ages, outbreaks of ergotism caused by ergot alkaloids from Claviceps 
purpurea reached epidemic proportions, mutilating and killing many people in 
Europe. Some mycotoxicoses have disappeared due to more rigorous hygiene mea-
sures such as citreoviridin-related malignant acute cardiac beriberi and alimentary 
toxic aleukia. General interest in mycotoxins increased in 1960 when a feed-related 
mycotoxicosis called turkey X disease, which was caused by aflatoxins, appeared in 
farm animals in England. Subsequently, it was found that aflatoxins are hepatocar-
cinogens in animals and humans, and this stimulated research on mycotoxins.

Mycotoxins have attracted worldwide attention because these have been recog-
nized as a major economic problem due to the significant economic losses associ-
ated with their impact on human health, animal productivity, and domestic and 
international trade [7].
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Mycotoxins are produced by fungi such as Aspergillus, Penicillium, Fusarium, 
or Alternaria. These fungi may produce as secondary, metabolites a diverse group 
of chemical substances known as mycotoxins. Several hundred different myco-
toxins have been identified, but the most commonly observed mycotoxins that 
present a concern to human health and livestock include aflatoxins, ochratoxin A, 
patulin, fumonisins, zearalenone, and nivalenol/deoxynivalenol. It is possible to be 
wide year to year fluctuations in the levels of mycotoxins in foods [8]. This can be 
dependent on many factors including adverse conditions favoring fungal invasion 
and growth. Mycotoxicoses, which can occur in both industrialized and developing 
countries, arise when environmental, social, and economic conditions combine 
with meteorological conditions (humidity, temperature) which favor the growth of 
molds. Factors affecting mycotoxin formation are listed below:

• Plant-related factors (type and sensitivity of the plant, other toxic fungal spe-
cies found in the plant, water content of the plant, plant maturity, mechanical 
damage to the plant; for example, damage to the plant by insects and/or birds)

• Environmental factors (temperature and humidity of the environment where 
the plant grows, oxygen source of the environment)

• Conditions during processing, storage conditions after harvest and during 
storage (relative humidity and temperature of the environment) [6, 9]

Mycotoxins are toxic secondary metabolites that are synthesized by various 
types of pathogenic fungi. When they are taken into the organism, they can 
cause latent, acute, or chronic pathological conditions in humans and animals. 
With developing the modern farming, storage and processing practices, the aim 
is to reduce obvious contamination, and much of our concern now focuses on 
chronic effects at low levels of exposure. Thus, several mycotoxins are potent 
animal carcinogens and have been classified by the International Agency for 
Research in Cancer (IARC, 1993) as human carcinogens or potential (probable 
and possible) human carcinogens [2, 7].

Quality procedures and legislation of levels that are toxicologically acceptable 
are needed to minimize the exposure to mycotoxins; these actions are carried out 
in the agricultural practice, storage of products, and control of products intended 
for human or animal consumption [4]. The techniques used for mycotoxin deter-
mination are chromatography, including high-performance liquid chromatography 
(HPLC), thin-layer chromatography (TLC), and gas chromatography–mass spec-
trometry (GC–MS), and enzyme-linked immunosorbent assay (ELISA) techniques. 
Considering the limitations of these techniques, the high cost, lack of sensitivity, 
and need for a skilled technician, there is an urgent need for other accurate, simple, 
and cost-effective techniques [10].

This book will provide updated information about food-borne mycotoxins, their 
toxicities, new determination methods, prevention strategies, and regulations in 
the world.
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Chapter 2

Food Contamination
Anna Abdolshahi and Behdad Shokrollahi Yancheshmeh

Abstract

This chapter discusses food contamination including mycotoxin contamina-
tion problems, biological, chemical, physical, and cross contamination. Food 
contamination challenges are generally referred to the presence of microorganisms 
or derived toxic substances such as mycotoxin in food that make them unsafe 
for human, animals, and crops. The mycotoxins can enter food throughout the 
food supply chain (from farm to fork). In terms of the safety of food, the pres-
ence of mycotoxin is a hazard threatening the consumer of contaminated food. 
Furthermore, it is necessary to know the nature, sources, distribution ways, and 
incidence of mycotoxin contamination in order to protect people and provide 
public health.

Keywords: contamination, biological, food, mycotoxin

1. Introduction

Food contamination refers to the ways that food has been depraved biologi-
cally, physically, or chemically. The contaminant could inter the food uninten-
tionally pending agricultural production, environment, storage, transportation, 
sale and processing. In general, two sources of contamination are outside 
sources and formation in food that refer to primary and secondary contamina-
tion respectively [1]. The main criteria for contamination judgment could be 
potential risk and the effect it has on human health. In this regard, mycotox-
ins and other microbial toxins, toxic elements, radioactive isotopes, nitroso 
compound, polycyclic hydrocarbon aromatic, halogen containing organic 
compounds, pesticides residues, veterinary drug residues, etc., are major critical 
food contaminants [2].

Mycotoxins produced by filamentous microfungi that can cause many diseases 
in vertebrate animals via ingestion, absorbtion (through the skin) and inhala-
tion routes. Mycotoxins have been found in a variety of food commodities due 
to the mycotoxin producer fungus are able to grow on a vast range of foods. The 
most pronounced contamination has been initiated from the agricultural fields 
during several harvesting stages including preharvest, harvest, and postharvest. 
Mycotoxin contaminations finally continue to the consumer table. Poor manage-
ment in all stages not only can lead to rapid deterioration in nutritional value but 
also provides proper condition for fungal growth and also mycotoxin production. 
The most efficient way to control food contaminants is the implementation of Good 
Manufacturing Practices (GMPs) and Hazard Analysis and Critical Control Point 
(HACCP) that will help prevent hazards in life [3]. New approaches are based on 
identification of critical control point in production/processing of food that obtain 
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optimum condition for mycotoxin production. To minimize and control mycotoxins 
in food chain all environmental and climate factors must be assessed.

This chapter will review a summary of food contamination types including 
biological, chemical, physical and cross contamination. We will also discuss 
mycotoxin contamination problems regarding the main stages of food produc-
tion chain.

2. Biological contamination

Biological contamination generally realizes as contamination of food or envi-
ronment with microorganisms and their derivatives such as toxins. In this regard, 
bacteria, viruses, fungi, and parasites are potential contaminants. They are found in 
food, walls, water, air, clothes, etc. The biological contamination also can occur via 
macroscopic organisms including rodents and insects. The biological contaminants 
cause human diseases via three mechanisms including infection, intoxication and 
immunologic responses [4, 5].

2.1 Bacteria

Bacteria are small microorganisms that can grow in an ideal condition. They 
split and multiply so quickly [6]. Harmful bacteria, called pathogen, are recognized 
as hazards in safety of food. Therefore the spread and incidence of them must be 
controlled in food. The common sources for bacterial growth and further distribu-
tion are the air, human body, dust, pets and pests, row food (meat, milk, vegetable, 
etc.), soil, kitchen/factory instruments, food handlers and cloths/hands. The 
extrinsic factors that provide optimum conditions for bacteria to survive include 
food (especially protein), water (water activity), oxygen, temperature, and pH 
level [7]. The control of these factors can result in well preservation of food [8]. 
Table 1 is illustrates major bacteria and their risks.

Major bacteria Risk contamination

Clostridium botulinum Intoxication, even death

Listeria monocytogenes Infection

Salmonella spp. (typhimurium, enteriditis) Infection

Enterohaemorrhagic Escherichia coli Infection

Campylobacter jejuni Infection

Yersinia enterocolitica Infection

Listeria monocytogenes Infection

Bacillus anthracis Infection

Bacillus cereus Intoxication

Staphylococcus aureus Intoxication

Clostridium perfringens Infection

Vibrio spp. (vulnificus, parahaemolyticus) Infection

Brucella abortus, B. suis Infection

Shigella spp. (dysenteriae) Infection

Table 1. 
The major bacteria and their risks.
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2.2 Viruses

Viruses are very tiny organisms that can grow and survive only in a host cell. 
They are able to enter food and water due to poor hygienic conditions. Viruses can 
also be found in people who disrespect hygienic practices [9]. Viruses can only mul-
tiply and grow inside a living cell. They are very resistant to heat, drying, freezing, 
radiation, etc., and are also able to survive for a long time in food or environment. 
Viruses can enter food during processing, transportation through person to person 
contact [10]. The awareness about the importance of viruses as food contaminants 
would result in good hygiene practices done by consumers to minimize the trans-
mission of viral illnesses [2]. Table 2 shows the major viruses and their risk.

2.3 Parasites

Parasite including worms and protozoa can enter food or water. They can also 
infect people through these ways. They need ambient environment and proper hosts 
to survive. Contamination of food occurs by fecal due to poor personal hygiene of 
food handler, improper disposal of human feces, improper sewage treatment and 
utilization of untreated sewage for crop culturing [3, 11]. Table 3 shows major 
Parasites and their risks.

3. Chemical contamination

Chemical contaminations of food are another human concern that involves 
numerous substances such as: agrochemicals, veterinary medicines residues, 
pesticides residues, environmental contaminants, heavy metals, persistent organic 

Major viruses Risk contamination

Hepatitis A virus Fever, abdominal discomfort

Norwalk virus Nausea, vomiting, diarrhea, abdominal pain (gastroenteritis), headache, low-grade fever

Rotavirus Vomiting, watery diarrhea, fever, abdominal pain

Table 2. 
The major viruses and their risk.

Major parasites Risk contamination

Giardia lamblia Diarrhea, abdominal cramps, fatigue, nausea, flatulence (intestinal gas), 
weightloss

Entamoeba histolytica Dysentery (severe, bloody diarrhea)

Ascaris lumbricoides Intestinal, lung infection

Diphyllobothrium latum Attaches to intestinal wall

Cryptosporidia Respiratory, gastrointestinal illness

Trichinella spiralis Intestinal wall, enter the blood (to feed on it) and lymphatic system

Toxoplasma gondii Neurological disorders, particularly schizophrenia, bipolar disorder

Taenia solium Attaches to intestinal wall

Anisakis spp. Anisakiasis

Table 3. 
The major parasites and their risks.



Mycotoxins and Food Safety

6

optimum condition for mycotoxin production. To minimize and control mycotoxins 
in food chain all environmental and climate factors must be assessed.

This chapter will review a summary of food contamination types including 
biological, chemical, physical and cross contamination. We will also discuss 
mycotoxin contamination problems regarding the main stages of food produc-
tion chain.

2. Biological contamination

Biological contamination generally realizes as contamination of food or envi-
ronment with microorganisms and their derivatives such as toxins. In this regard, 
bacteria, viruses, fungi, and parasites are potential contaminants. They are found in 
food, walls, water, air, clothes, etc. The biological contamination also can occur via 
macroscopic organisms including rodents and insects. The biological contaminants 
cause human diseases via three mechanisms including infection, intoxication and 
immunologic responses [4, 5].

2.1 Bacteria

Bacteria are small microorganisms that can grow in an ideal condition. They 
split and multiply so quickly [6]. Harmful bacteria, called pathogen, are recognized 
as hazards in safety of food. Therefore the spread and incidence of them must be 
controlled in food. The common sources for bacterial growth and further distribu-
tion are the air, human body, dust, pets and pests, row food (meat, milk, vegetable, 
etc.), soil, kitchen/factory instruments, food handlers and cloths/hands. The 
extrinsic factors that provide optimum conditions for bacteria to survive include 
food (especially protein), water (water activity), oxygen, temperature, and pH 
level [7]. The control of these factors can result in well preservation of food [8]. 
Table 1 is illustrates major bacteria and their risks.

Major bacteria Risk contamination

Clostridium botulinum Intoxication, even death

Listeria monocytogenes Infection

Salmonella spp. (typhimurium, enteriditis) Infection

Enterohaemorrhagic Escherichia coli Infection

Campylobacter jejuni Infection

Yersinia enterocolitica Infection

Listeria monocytogenes Infection

Bacillus anthracis Infection

Bacillus cereus Intoxication

Staphylococcus aureus Intoxication

Clostridium perfringens Infection

Vibrio spp. (vulnificus, parahaemolyticus) Infection

Brucella abortus, B. suis Infection

Shigella spp. (dysenteriae) Infection

Table 1. 
The major bacteria and their risks.

7

Food Contamination
DOI: http://dx.doi.org/10.5772/intechopen.89802

2.2 Viruses

Viruses are very tiny organisms that can grow and survive only in a host cell. 
They are able to enter food and water due to poor hygienic conditions. Viruses can 
also be found in people who disrespect hygienic practices [9]. Viruses can only mul-
tiply and grow inside a living cell. They are very resistant to heat, drying, freezing, 
radiation, etc., and are also able to survive for a long time in food or environment. 
Viruses can enter food during processing, transportation through person to person 
contact [10]. The awareness about the importance of viruses as food contaminants 
would result in good hygiene practices done by consumers to minimize the trans-
mission of viral illnesses [2]. Table 2 shows the major viruses and their risk.

2.3 Parasites

Parasite including worms and protozoa can enter food or water. They can also 
infect people through these ways. They need ambient environment and proper hosts 
to survive. Contamination of food occurs by fecal due to poor personal hygiene of 
food handler, improper disposal of human feces, improper sewage treatment and 
utilization of untreated sewage for crop culturing [3, 11]. Table 3 shows major 
Parasites and their risks.

3. Chemical contamination

Chemical contaminations of food are another human concern that involves 
numerous substances such as: agrochemicals, veterinary medicines residues, 
pesticides residues, environmental contaminants, heavy metals, persistent organic 

Major viruses Risk contamination

Hepatitis A virus Fever, abdominal discomfort

Norwalk virus Nausea, vomiting, diarrhea, abdominal pain (gastroenteritis), headache, low-grade fever

Rotavirus Vomiting, watery diarrhea, fever, abdominal pain

Table 2. 
The major viruses and their risk.

Major parasites Risk contamination

Giardia lamblia Diarrhea, abdominal cramps, fatigue, nausea, flatulence (intestinal gas), 
weightloss

Entamoeba histolytica Dysentery (severe, bloody diarrhea)

Ascaris lumbricoides Intestinal, lung infection

Diphyllobothrium latum Attaches to intestinal wall

Cryptosporidia Respiratory, gastrointestinal illness

Trichinella spiralis Intestinal wall, enter the blood (to feed on it) and lymphatic system

Toxoplasma gondii Neurological disorders, particularly schizophrenia, bipolar disorder

Taenia solium Attaches to intestinal wall

Anisakis spp. Anisakiasis

Table 3. 
The major parasites and their risks.



Mycotoxins and Food Safety

8

pollutants, and natural toxins; which happen in food during chemical reactions at 
processing such as acrylamide, furan, and heterocyclic amines [12]. Other pro-
cesses leading to the formation of contaminants include fermentation (e.g., ethyl 
carbamate, 3-monochloropropanediol) and disinfection (e.g., trihalomethanes). 
On the other hand, food contact materials are also kinds of chemical sources (e.g., 
formaldehyde, melamine, phthalates, and primary aromatic amines) that are able 
to leach into food. Some chemicals are naturally present in the environment, which 
includes ubiquitous pollutants such as dioxins and heavy metals may be increased 
by anthropogenic activity [13].

Some common sources of chemical contamination are:

• cleaning agents;

• unwashed fruits and vegetables;

• food containers made from non-safe polymers;

• pest control products; and

• chemicals used in equipment maintenance.

4. Physical contamination

Physical contamination refers to food that is contaminated by a foreign object 
during production process stages. Physical contaminants in food could come from 
external sources, (such as metal fragments), or internal sources (such as bone particles 
and pits). They can enter food accidentally during pre- and postharvesting due to poor 
agricultural practices and also in manufacturing, storage, transportation, or retail. 
Some physical contaminants are considered as food safety concerns such as glass. 
Sometimes a physical contaminated food can also be biologically contaminated such 
as the presence of a fingernail. Table 4 provides a summary of common sources of 
physical contaminants in foods [12].

5. Cross contamination

Cross-contamination occurs in food due to the contact of a contaminated 
substance coming from another food via many different ways and various sources 

Sources Contaminants

Field Rocks/stones/sand, asphalt, metals/bullets, concrete particles, bones, wood fragments and 
thorns

Processing Glass, ceramic/chards, metal fragments, staples, blades, clips, needles, keys, screws, 
magnet fragments, washers, bolts, screening, plastics, grease/lubricants, rubber, 
insulation/seal materials, nail polish, jewelry, coins, pieces of gloves, finger cots, bandages, 
cigarette butts, gum, bones, pits, fruit stones, nut and animal shells, medications/tablets/
capsules, wood, pens, and pencils, rodents and insects

Storage and 
distribution

Metal, plastic, and wood fragments, insects and rodents

Table 4. 
Common sources of physical contaminants in foods.
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including: Dirty clothes, Utensils, Coughing, sneezing or even touching the face 
and hair with food, Pests, Flies, cockroaches, mice and rats, Contacting Raw food, 
Garbage and waste materials [12].

6. Mycotoxin contamination problem

Mycotoxins are secondary metabolites that are produced by molds. Mycotoxins 
belong to biological contamination category. The majority of fungi can produce 
mycotoxins yet this potential is species specification [14]. Several adverse effects 
on humans, animals, and crops originate from mycotoxins. The contamination of 
food with mycotoxins is a worldwide concern. Incidence of mycotoxins depends 
on temperature and humidity of a region that is prone to the fungal growth. The 
exposure to mycotoxins could take place by ingestion and or dermal and inhala-
tion ways without involving the producer fungi. In fact these fungal toxins are 
a kind of abiotic hazard originated from biotic ones [15]. The disease caused by 
mycotoxins is mycotoxicoses also resulted in different acute and chronic effects 
[16]. Generally, the contaminants could enter the food unintentionally by agri-
cultural production, environment, storage, transportation, sale and processing. 
Mycotoxins are natural contaminants contribute the food chain. The mycotoxin 
may contaminate the food during several stages of food chain from the soil to the 
plate. As a matter of fact mycotoxin contamination can occur in food by infection 
of crops not only when directly consumed by human but also consumed as feed. 
However ingested mycotoxin could result in its accumulation in body organs that 
enter food/feed through agricultural products, meat, milk or eggs. Various foods 
such as cereals, nuts, spices, fruits and also their products have a potent to be 
contaminated with mycotoxins at high content. Table 5 shows major mycotoxin 
and producer microorganism.

The foods could contaminate with fungal toxins from farm at post- and 
preharvest stages. The implementation of Good Agriculture Practice and Good 
Manufacturing Practice are efficient strategies in preventing of mycotoxin con-
tamination [17]. However, every negligence in this field could provide proper 
condition for fungal growth and proliferation as well as Aspergillus growth and 
aflatoxin production in nuts [18]. Therefore, the condition of production, process-
ing, drying, handling, storage, transportation, and marketing must be controlled. 
It should be considered that further mycotoxin increase is difficult if the food 
products are preserved or stored under preventive conditions for fungal growth 
and mycotoxin production especially regarding water activity and temperature. 
The awareness of all people either producer or consumer about the ways of myco-
toxin entering the food, the main stages of food chain involving in mycotoxin 
contamination, the optimum condition for increase of mycotoxin contamination 
risk and critical control tips in this field are necessary to the prevention of myco-
toxin contamination.

6.1 Agricultural production

Mycotoxins contamination of agricultural commodities can initiate from field 
and obtaining of conditions that conduct the fungal growth. The crops can be 
infected by molds at any line in the field. The production of mycotoxins due to mold 
growth is commonly associated with variation in weather conditions, plant stress, 
and humidity also inadequate feeding conditions [19]. In this regard there are three 
main stages that develop the mycotoxin contamination in food staff from agricul-
tural aspect. These stages include:
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6.2 Preharvest

Mycotoxins can be produced in some natural food products due to the plants 
that are infected by mycotoxigenic species of molds group from farm. Preharvest 
practices include obtaining proper planting conditions such as soil ingredient, field 
qualification, crop rotation, irrigation, insect prevention, and antifungal treatment 
[20]. As a matter of fact the preharvest condition control is the first line of myco-
toxin prevention therefore the implementation of good agricultural practices (GAP) 
is needful. Some important tips for preventing mycotoxins in preharvest stage are 
listed below:

• control of climate;

• control of fertilizer;

• control of insect, rodent, and birds;

• control of weed;

• biological control;

• control of planting date control;

• control of irrigation time;

• prevention of early splitting in nuts; and

• control of water activity and water stress.

6.3 Harvest

Mycotoxin production could intensify by any inconsideration in harvest level. 
The main strategies in harvesting are including utilization of efficient harvesting/
collecting/transportation equipment, attention to harvesting time, control of mois-
ture and full maturity of product, inhibition of crop damages during harvesting. 
The delayed harvest could influence the development of mycotoxin contamination. 

Mycotoxin name Producer microorganism

Aflatoxins A. flavus, A. parasiticus, Aspergillus bombycis, Aspergillus ochraceoroseus, 
Aspergillus nomius, and Aspergillus pseudotamari

Ochratoxins (ochratoxin A) Aspergillus ochraceus, Aspergillus carbonarius, Aspergillus melleus, Aspergillus 
sclerotiorum, Aspergillus sulphureus, Pichia verrucossum

Trichothecenes Fusarium spp.

Zearalenone Fusarium, F. culmorum, F. graminearum, F. sporotrichioides

Fumonisins Fusarium proliferatum, Fusarium verticillioides

Tremorgenic toxins Penicillium

Ergot alkaloids Claviceps

Moniliformin Fusarium species (mainly F. proliferatum)

Table 5. 
The major mycotoxins and producer microorganism.
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The aflatoxin incidence in maize and nuts during delayed harvest were reported in 
many literatures. In the harvest stage it should be avoid contacting the harvested 
crop with the ground in order to prevent further contamination [21]. Some of major 
tips in order to prevention of mycotoxins in harvest stage are listed below:

• control of date of harvest;

• control of the last irrigation;

• control of storage condition;

• control of blending of harvested products;

• control of the contact with soil/ground;

• control of harvest equipment hygiene;

• control of damaging of grain; and

• sorting of defectives.

6.4 Postharvest

Mycotoxin contamination more likely could occur in the postharvest stage 
due to improperly handling. The high humidity during postharvest prone the dry 
seed to absorb moisture followed by increase in water activity that conductive 
to contamination. Also the combination of temperature with moisture results in 
the extent of mycotoxin contamination risk [21, 22]. At the postharvest stage, 
the observation of hygienic in all practices is necessary for safety guarantee of 
food products for example the use of clean transport vehicle free of any fungal 
growth. Consequently some tree nuts with high risk of mycotoxin contamination 
should be transferred to the processing plant as soon as possible after full matu-
rity approximately within 6 h. The time of harvesting strictly have been recom-
mended influence in mycotoxin production. Some crops when left in massive 
volume on the farm for a long time may present high level of mycotoxins. Some 
of important tips in postharvest stage in order to prevention of mycotoxins are 
listed below:

• rapid dehulling of crops (if it is needed);

• rapid drying of crops (if it is needed);

• separation of early splitting grain;

• control of moisture content of product;

• control of time and temperature during processing;

• control of temperature and relative humidity during storage;

• control of hygienic condition in all process;

• control of additional water content of crops after washing;
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• control of packaging condition; and

• control of chemical preservatives.

6.5 Environment and climate

Environmental conditions could increase the susceptibility of crops to infection 
by molds also favor fungal growth consequently mycotoxin production. Wounding 
of crops like tree nuts by birds, mammals, insects, may eventuate significant fungal 
infections. On the other hand, some insects carry mycotoxin (like aflatoxin) produc-
ing fungi associated with mycotoxin contamination in crops. The environmental 
factors affecting this contamination such as variation of seasons, disposal close to 
farm regions and the rates of insect population are all influenced by climate [22, 23]. 
Climate condition may directly influence some agricultural product by developing 
structural changes in crop. In this regard the hull cracking in nuts such as pistachio 
so called “early split” favor the fungal growth species especially Aspergillus spp. The 
rainfall that occurs at harvesting time may accelerate the fungal growth of crops. 
However in some geographical regions the time of high raining and high relative 
humidity of weather should be considered at harvesting and storage time of crops.

6.6 Storage

To avoid further mycotoxin contamination the agricultural product should be 
dried or de hulled immediately. The moisture content of stored food products must 
be lower than critical moisture (15% moisture and preferably to <13%) content 
according to water activity need for fungal growth (generally less than 0.7 at 25°C). 
In this situation the competition of microorganism for water not only prevents 
further growth of fungi but also inhibits the mycotoxin production [24]. Therefore 
in storage stage the main preventive action must be to decrease the moisture content 
and also the temperature. In Storage, any migration of moisture, condensation of 
moisture, and leaks should not occur.

The production of aflatoxin is strongly influenced by water activity of food 
commodities at storage time. On the other hand the infected food commodities 
specially crops and also nuts are able to provide adequate inoculums for incidence 
of the fungus to sound ones during poor storage practices [25]. Storage manage-
ment is essential in preventing fungal proliferation and mycotoxin formation in any 
harvested products.

6.7 Transportation

For many foods may face mycotoxin problems, the transportation conditions 
and time are great factors controlling the increase of mycotoxins content. During 
the transportation, some extrinsic factors like moisture content, relative humidity, 
temperature and hygienic control (cleanliness, insect control, etc.) could directly 
affect the safety of food. It is much emphasized that the transportation of foods 
under high humidity may result in mycotoxins increase. Transportation must be 
done in controlled conditions and any failure in this part may lead to decay of high 
volume of commodities.

6.8 Processing

Since mycotoxins are chemical and thermal resistant, they can be stable during 
heat, physical and chemical processing of food so, the prevention of mycotoxin 
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production in row food is a critical control point in food production chain. In terms 
of food safety it should be considered that most treatment of foods such as roast-
ing, boiling, pasteurization, irradiation, freezing, drying, blanching, exhausting, 
boiling, curing, foaming, frying are not effective on elimination nor reduction of 
mycotoxin in contaminated food [3, 15, 19]. In this regard, it is better that all reduc-
tion or preventive strategies be performed before processing of food. On the other 
hand, these fungal toxins can also enter the human body via contaminated animal 
products (e.g., meat, egg, milk) due to feeding with mycotoxin contaminated feeds.

6.9 Prevention of mycotoxins

According to numerous reports about high occurrence of mycotoxins in foods/
feeds they are a constant concern worldwide. Although the mycotoxin producer 
molds spores are present all over the environment and related toxins can be formed 
on crops during harvest stages, Storage, processing. Also the mold spores are pres-
ent in soil and plant debris able to infect growing agriculture products simply and 
fast at any point of handling. However, mycotoxin contaminations cover most of 
economic costs including the practices of prevention and mitigation, the reduced 
volume of contaminated foods, animal feed contamination and reduction in animal 
performance or health effects. Nowadays management of mycotoxins involves 
all actions of prevention, regulation, control, monitoring, tracing, avoidance, 
decontamination, detoxification and animal treatments. Even at such total manage-
ment there may be levels of mycotoxin in food products unavoidably as a continual 
concern [23].

The most efficient tool for mycotoxin problems is the prevention of mold 
growth in fields especially during postharvest practices. Additionally, environmen-
tal factors can immensely affect the production of mycotoxin by fungal species. 
In terms of predictive proceeding the predictive models have been developed as 
decision supporting systems to plan proper crop protection strategies in fields [25]. 
Innovative detection and diagnostic tools are also available to monitor the occur-
rence of mycotoxigenic fungi in fields and after harvest. When contamination is 
not prevented, several approaches can be employed to help remove mycotoxins 
from the contaminated commodities, including physical, chemical, and biological 
techniques. Detoxification processes should destroy or inactivate mycotoxins, by 
guaranteeing the nutritional value of food. Research is needed to study the fate of 
mycotoxins during decontamination, detoxification, and food processing. A holistic 
approach should be adopted to monitor, prevent, and control mycotoxigenic fungi 
and mycotoxins in food products.
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Chapter 3

Food Safety: The Risk of 
Mycotoxin Contamination in Fish
Constanze Pietsch

Abstract

Mycotoxins are commonly found in animal feeds, and fish feeds are no exception 
to this. The need to feed fish in aquaculture with compounded feeds leads to the 
increasing inclusion of plant-derived feed ingredients that have a higher probability 
of containing mycotoxins. Since fish appear to be quite sensitive to mycotoxins, 
further research on mycotoxin toxicity in fish is recommended. Depending on the 
chemical characteristics of an individual mycotoxin and the biotransformation 
abilities of the different fish species, certain mycotoxins can could be found in the 
edible parts of a fish. Thus, the consumption of fish products increases the potential 
risk of mycotoxin exposure for humans. This chapter reviews the risks associ-
ated with different groups of mycotoxins and makes recommendations on how to 
minimize these risks in the future.

Keywords: fish, aquaculture, mycotoxin toxicity, toxin residues

1. Introduction

Estimating risk requires sufficient knowledge of the frequency with which 
mycotoxins occur and the levels that can be expected. However, sufficiently detailed 
information on the actual levels of contamination in fish feeds is often not available. 
In addition, there is a high degree of variability between mycotoxins due to differences 
in fungal distribution and climatic conditions worldwide. Nevertheless, the following 
sections will summarize our current knowledge of mycotoxin occurrence in feed 
ingredients, fish feeds, and fish tissues in order to compile sufficient evidence to 
prove that some mycotoxins pose a considerable risk for consumers due to their high 
prevalence, incidence, toxicity, and/or stability as they pass into the food chain.

2. Exposure of fish to mycotoxins

Fish production in aquaculture has increased rapidly over the previous decades. 
Consequently, increasing numbers of fish have to be fed in aquaculture, which 
requires an increasing amount of fish feed. Since the global availability of fishmeal, 
which is a major ingredient in fish feed, is limited, cereals are common alternatives. 
Based on recent estimations, it has been determined that fishmeal is still a major 
component in fish feed in Europe [1], despite the fact that its percentage in com-
mercial feeds has decreased over the last decades. The disadvantage of plant-based 
ingredients is that there is a higher probability of them being contaminated with 
mycotoxins. The second most prominent feed ingredient in aquaculture feeds in 
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Europe is wheat flour [1], followed by soybean products. Other feed ingredients are 
often present in fish feeds at average percentages of less than 10%, and these ingre-
dients may also contain considerable amounts of mycotoxins. One example of such 
a problematic feed ingredient may be distillers’ grain with solubles (DDGS) [1, 2].

The most important mycotoxins in feed ingredients in terms of risk to fish and 
consumers, since they are either known to be toxic and/or occur at high concentra-
tions, include aflatoxin B1 (AFB1), deoxynivalenol (DON), nivalenol (NIV), zearale-
none (ZEN), ochratoxin A (OTA), T-2 toxin (T2), fumonisin B1 (FB1), moniliformin 
(MON), enniatins (ENNs), and beauvericin (BEA). Nevertheless, there are a number 
of reasons why mycotoxin contamination levels in feed ingredients can vary widely, 
for example, different fungal species or strains often grow on specific feed ingredients. 
Especially, high OTA levels have been found in corn (up to 1850 μg/kg, [3]), followed 
by wheat (up to 1024 μg/kg, [4]), soybean, and sunflower products (up to 350 and 
240 μg/kg, respectively, [3]). Furthermore, Fusarium mycotoxins can contaminate 
peas and soybeans [5], and FB1 can be found in significant amounts in corn [6].

The occurrence of mycotoxins in feed ingredients is also known to vary as a result 
of climate effects and differences in the distribution of various fungal species and 
strains that have differing abilities to form toxins [7–9]. The problem with mycotoxin 
contamination in feed ingredients is thought to have increased as a result of climate 
changes and the shipping of commodities on a global scale, which has led to the world-
wide distribution of many fungal species, often resulting in higher contamination in 
cereals [9–11]. However, the presence of mycotoxins in feed ingredients does not mean 
that these substances will also be present in compounded animal feeds, since a number 
of mycotoxins have been reported to possess different degrees of stability when ther-
mally processed and extruded [12]. Furthermore, the processing of feed ingredients, 
which includes cleaning, sorting, milling, and the application of thermal processes, 
also influences the mycotoxin load in the final products [13–16]. Nevertheless, the 
extent of the reduction in mycotoxin contamination during these procedures differs 
widely for each mycotoxin [15, 17–20]. Generally, mycotoxins that are most stable 
and widely distributed and, in most cases, occur at high concentrations in certain 
feed ingredients are problematic for fish production. Two mycotoxins that are already 
problematic at relatively low concentrations in fish feeds and will be reviewed in the 
section on fish toxicity are AFB1 and OTA due to their high toxicity.

The most prominent member of the fumonisins in naturally contaminated 
animal feeds is FB1 [21], which often occurs at high concentrations in feed 
ingredients (e.g., [22, 23]). However, since fumonisins are relatively unstable 
and easily affected by feed production processes, they are assumed to be less 
problematic than other mycotoxins. Nonetheless, feed processing may yield 
mycotoxin metabolites, in some cases resulting in increased toxicity [24].

ZEN is a mycotoxin that commonly occurs after crops have been infected have 
been infected with Fusarium species in the field, but this toxin can also develop dur-
ing the storage of the cereals [25, 26]. ZEN contamination appears to be common 
in commercial fish feeds [27, 28], which raises concerns about the effects of chronic 
exposure to this mycotoxin, since besides exhibiting toxic characteristics, it is also a 
potent natural estrogen [29].

The trichothecenes include some very important mycotoxins, such as T-2 toxin, 
DON, and NIV. Recent research has focused on DON since it is known for its high 
prevalence and incidence in feed ingredients and animal feeds in Europe [30]. 
However, Fusarium fungi are also known to produce some less commonly described 
mycotoxins, known as emerging mycotoxins, which include BEA, ENNs, and MON 
[31, 32]. Although ENNs and BEA have been reported to be extremely prevalent in 
cereals [33], there has not been enough detailed research into their presence in feed 
components, compounded animal feeds, or farmed animals that have been exposed 
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to these mycotoxins. The other important Fusarium-related mycotoxin is MON. Up 
to 1.2 mg/kg MON has been detected in feeds for higher vertebrates [34], whereas 
the levels present in commercial fish feeds remain unknown.

As mentioned above, mycotoxin contamination often occurs on crop fields, but 
improper storage of feed ingredients and feeds also contributes to the final toxin 
levels in fish diets. Toxin production depends on the fungi’s ability to produce certain 
chemical compounds as well as environmental factors, such as physical, chemical, 
and biological factors [35]. Accordingly, similar to the aflatoxins, the occurrence 
of OTA seems to be connected to temperature and humidity in the environment 
during growth and harvesting of crops, and the storage of feed ingredients and 
feeds. However, for most investigated fish feeds, low OTA levels have been observed 
[28]. In contrast, recent research has shown that inappropriate storage over a period 
of 6 weeks of a commercial feed for salmonids can lead to the development of 
considerable amounts of OTA (up to 400 μg/kg feed, unpublished results, C. Pietsch).

Although dietary contamination is the main route of exposure for fish in 
aquaculture, mycotoxins may also be introduced to aquatic environments directly. 
For example, levels of 90 μg/L OTA have been reported in waste water originating 
from wine production. Furthermore, ZEN can be found in surface waters and in 
waste-water treatment plants at ng/L levels, which may be environmentally relevant 
due to the estrogenic effects of this mycotoxin [36–38]. Thus, the stability of 
mycotoxins in water may also have an effect on relevant exposure concentrations in 
aquatic environments [39].

When data on contamination levels and incidence in common feed ingredients 
are compiled, there may be significant uncertainties due to the fact that these 
studies use different methodologies for mycotoxin detection and quantification. 
Another problem when compiling data from scientific studies is that several studies 
have not reported accuracy and reliability parameters for their methods, mean-
ing the measured toxin values probably contain uncertainties, since the sample 
preparation and detection procedures differed. Furthermore, actual mycotoxin 
concentrations in feed components, animal feeds, and animal tissues are often 
underestimated, since matrix effects and the problems of detecting masked myco-
toxins, which can often not be detected by routine measurement techniques. Since 
research is continuously improving detection methods for mycotoxins, an increased 
number of comparative studies addressing the advantages and disadvantages of 
detection methods for more commonly and emerging mycotoxins, such as can be 
found in the study by Pascale [40], should be conducted.

Another problem with estimating actual contamination levels in feeds and 
animal tissues is that metabolites of even commonly occurring mycotoxins are often 
not analyzed together with their parent compound, although metabolites may occur 
in significant amounts as has been shown for DON [41]. Furthermore, toxin levels 
in the control diets used in experimental fish studies have often been reported to 
contain no mycotoxins, despite the fact that the necessary toxin analyses were rarely 
performed to provide proof for this assumption. This may lead to an underestima-
tion of the actual toxin levels in both control diets and experimental diets if only 
a restricted number of mycotoxins are measured. As a result, actual mycotoxin 
exposure data for fish contain various uncertainties. Therefore, more complete feed 
contamination databases are required so that risk assessments can be improved.

3. Presence of mycotoxins and their toxicity in fish

If the risk to humans by consuming fish products is to be calculated, the first 
step would be to estimate the uptake and retention of mycotoxins in different fish 
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Europe is wheat flour [1], followed by soybean products. Other feed ingredients are 
often present in fish feeds at average percentages of less than 10%, and these ingre-
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exposure to this mycotoxin, since besides exhibiting toxic characteristics, it is also a 
potent natural estrogen [29].
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components, compounded animal feeds, or farmed animals that have been exposed 
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of 6 weeks of a commercial feed for salmonids can lead to the development of 
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due to the estrogenic effects of this mycotoxin [36–38]. Thus, the stability of 
mycotoxins in water may also have an effect on relevant exposure concentrations in 
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are compiled, there may be significant uncertainties due to the fact that these 
studies use different methodologies for mycotoxin detection and quantification. 
Another problem when compiling data from scientific studies is that several studies 
have not reported accuracy and reliability parameters for their methods, mean-
ing the measured toxin values probably contain uncertainties, since the sample 
preparation and detection procedures differed. Furthermore, actual mycotoxin 
concentrations in feed components, animal feeds, and animal tissues are often 
underestimated, since matrix effects and the problems of detecting masked myco-
toxins, which can often not be detected by routine measurement techniques. Since 
research is continuously improving detection methods for mycotoxins, an increased 
number of comparative studies addressing the advantages and disadvantages of 
detection methods for more commonly and emerging mycotoxins, such as can be 
found in the study by Pascale [40], should be conducted.

Another problem with estimating actual contamination levels in feeds and 
animal tissues is that metabolites of even commonly occurring mycotoxins are often 
not analyzed together with their parent compound, although metabolites may occur 
in significant amounts as has been shown for DON [41]. Furthermore, toxin levels 
in the control diets used in experimental fish studies have often been reported to 
contain no mycotoxins, despite the fact that the necessary toxin analyses were rarely 
performed to provide proof for this assumption. This may lead to an underestima-
tion of the actual toxin levels in both control diets and experimental diets if only 
a restricted number of mycotoxins are measured. As a result, actual mycotoxin 
exposure data for fish contain various uncertainties. Therefore, more complete feed 
contamination databases are required so that risk assessments can be improved.

3. Presence of mycotoxins and their toxicity in fish

If the risk to humans by consuming fish products is to be calculated, the first 
step would be to estimate the uptake and retention of mycotoxins in different fish 
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species and in different parts of the fish (Figure 1). Therefore, the following sections 
will summarize what is known about chemical characteristics in fish bodies and the 
toxicity in the animals resulting from the most important mycotoxins.

DON has a mean lowest-observable effect level (LOEL) in fish of 3541 ± 776 μg/
kg (±SEM; Figure 2), whereas the contamination levels in commercial fish feeds 
range from 0 to 825 μg/kg [27, 28, 41]. Similar to findings in chickens, DON appears 
to be excreted rapidly by carp (Cyprinus carpio), leaving no relevant residues in 
the edible parts [42, 43]. FB1 metabolization also occurs quickly in chicken and the 
remaining values in tissues stay low. However, exact information on the kinetics or 
biotransformation of fumonisins in fish is not available [44, 45]. Due to this and the 
large differences in the toxicity of fumonisins in fish (Figure 2), no exact risk can be 
calculated for farmed fish [1]. Typical disorders in higher vertebrates resulting from 
FB1 exposure have often been linked to the disruption of the sphingolipid metabo-
lism [46], and similar effects have also been observed in fish [47]. Nevertheless, 
a low potential risk has been assumed for most vertebrates, with the exception of 
pigs [45]. Despite the fact that the guidance values for fumonisins in complete fish 
feeds have been set by the European Commission and the US to 10 mg/kg based, 
some countries have chosen to set different guidance levels [48, 49]. Although FB1 
can affect fish at low concentrations, for example in carp (exposed to 500 μg/kg 
[50, 51]), the concentration range of the lowest-observable effects in fish is relatively 
broad, with a mean range of 26,480 ± 7124 μg/kg (±SEM; Figure 2), a level that is not 
achieved for either actual or estimated natural contamination of fish feeds [1, 52].

Previous studies have reported lethal concentrations of OTA that lead to 50% 
mortality (LC50) ranging from 2 to 58 mg/kg body weight in various higher ver-
tebrate species [53, 54]. Fish species appear to be particularly sensitive to OTA, 
and since disposition appears to mainly take place in the kidneys of fish and not in 
muscles [55], this not only affects its toxicity, but is also relevant for food safety. 
High sensitivity to OTA in fish has been demonstrated in several studies. The LC50 
value for OTA in adult seabass (Dicentrarchus labrax L.) was found to be 280 μg/kg 
body weight [56], 360 μg/l for zebrafish (Danio rerio) embryos [57], and 5.53 mg/ kg 

Figure 1. 
Exposure routes and factors influencing mycotoxin retention in fish.
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body weight in rainbow trout (Oncorhynchus mykiss) [58]. However, the route of 
exposure may play a role when comparing these different studies. Furthermore, the 
absorption efficiency in the gut also determines the bioavailability of the myco-
toxins in fish, as has been demonstrated for oral exposure to OTA in common carp 
[59]. If the LOEL for exposure of fish to OTA are summarized (Figure 2), the mean 
range is 1077 ± 566 μg/kg (±SEM), which indicates that the currently recommended 
guidance value for OTA in cereals and cereal products intended for animal feed of 
250 μg/kg does not protect fish from potential damage [48]. This is in stark contrast 
to the guidance level of 20 μg/kg that exists in some non-EU countries [49].

ZEN has a mean toxicity value of 2389 ± 1285 μg/kg (±SEM), based on the LOEL 
calculations for five different fish species shown in Figure 2. Although the number 
of studies reporting effects of ZEN in fish is very limited, they may indicate that 
fish are more sensitive to water-borne ZEN than to dietary ZEN, which is why 
the mean LOEL level, including both, dietary and water-borne exposure for fish, 
shows quite a high standard error of the mean. ZEN concentrations above the LOEL 
levels in water samples have not been reported for aquatic environments [36–38]. 
Although the actual ZEN contamination of commercial fish feeds appears not to 
exceed the current guidance level for this mycotoxin in cereals and cereal products 
in the EU of 2000 μg/kg [27, 48], dietary exposure to this mycotoxin may still 
do harm to farmed fish. The guidance values in other countries that recommend 
maximum ZEN levels of 20–1000 μg/kg have a higher probability of protecting fish 
from damage [49], since the ZEN levels in fish feeds often do not exceed concentra-
tions of 200 μg/kg [27, 60]. Nevertheless, more exact reports on ZEN toxicity in fish 
and the actual contamination levels in commercial fish feeds are needed to support 
these assumptions.

T-2 toxin has a mean toxicity of 3201 ± 1236 μg/kg (±SEM) in fish, based on 
the currently available LOEL for different fish species (Figure 2). This level is 
considerably higher than the actual contamination level found in salmonid fish feed 

Figure 2. 
Variability in mycotoxin toxicity for fish, as shown by the differences in the lowest-observable effect levels 
(LOEL) in different fish species. References: 92 studies for AFB1 [63, 64, 70–149] comprising 21 different fish 
species, 7 studies for OTA [56–58, 94, 150–152] comprising 5 fish species, 15 studies for FB1 [47, 50, 51, 153–165] 
reporting levels for 7 fish species, 12 studies for DON [42, 144, 166–175] yielding information for 5 different fish 
species, 10 studies for ZEN [144, 176–184] reporting LOEL for 5 different species, 10 studies [185–193] reporting 
effects of different levels of T-2 toxins on 4 different fish species, and 3 studies [162, 194, 195] for 3 different 
species exposed to MON.
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species and in different parts of the fish (Figure 1). Therefore, the following sections 
will summarize what is known about chemical characteristics in fish bodies and the 
toxicity in the animals resulting from the most important mycotoxins.

DON has a mean lowest-observable effect level (LOEL) in fish of 3541 ± 776 μg/
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range from 0 to 825 μg/kg [27, 28, 41]. Similar to findings in chickens, DON appears 
to be excreted rapidly by carp (Cyprinus carpio), leaving no relevant residues in 
the edible parts [42, 43]. FB1 metabolization also occurs quickly in chicken and the 
remaining values in tissues stay low. However, exact information on the kinetics or 
biotransformation of fumonisins in fish is not available [44, 45]. Due to this and the 
large differences in the toxicity of fumonisins in fish (Figure 2), no exact risk can be 
calculated for farmed fish [1]. Typical disorders in higher vertebrates resulting from 
FB1 exposure have often been linked to the disruption of the sphingolipid metabo-
lism [46], and similar effects have also been observed in fish [47]. Nevertheless, 
a low potential risk has been assumed for most vertebrates, with the exception of 
pigs [45]. Despite the fact that the guidance values for fumonisins in complete fish 
feeds have been set by the European Commission and the US to 10 mg/kg based, 
some countries have chosen to set different guidance levels [48, 49]. Although FB1 
can affect fish at low concentrations, for example in carp (exposed to 500 μg/kg 
[50, 51]), the concentration range of the lowest-observable effects in fish is relatively 
broad, with a mean range of 26,480 ± 7124 μg/kg (±SEM; Figure 2), a level that is not 
achieved for either actual or estimated natural contamination of fish feeds [1, 52].

Previous studies have reported lethal concentrations of OTA that lead to 50% 
mortality (LC50) ranging from 2 to 58 mg/kg body weight in various higher ver-
tebrate species [53, 54]. Fish species appear to be particularly sensitive to OTA, 
and since disposition appears to mainly take place in the kidneys of fish and not in 
muscles [55], this not only affects its toxicity, but is also relevant for food safety. 
High sensitivity to OTA in fish has been demonstrated in several studies. The LC50 
value for OTA in adult seabass (Dicentrarchus labrax L.) was found to be 280 μg/kg 
body weight [56], 360 μg/l for zebrafish (Danio rerio) embryos [57], and 5.53 mg/ kg 
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body weight in rainbow trout (Oncorhynchus mykiss) [58]. However, the route of 
exposure may play a role when comparing these different studies. Furthermore, the 
absorption efficiency in the gut also determines the bioavailability of the myco-
toxins in fish, as has been demonstrated for oral exposure to OTA in common carp 
[59]. If the LOEL for exposure of fish to OTA are summarized (Figure 2), the mean 
range is 1077 ± 566 μg/kg (±SEM), which indicates that the currently recommended 
guidance value for OTA in cereals and cereal products intended for animal feed of 
250 μg/kg does not protect fish from potential damage [48]. This is in stark contrast 
to the guidance level of 20 μg/kg that exists in some non-EU countries [49].

ZEN has a mean toxicity value of 2389 ± 1285 μg/kg (±SEM), based on the LOEL 
calculations for five different fish species shown in Figure 2. Although the number 
of studies reporting effects of ZEN in fish is very limited, they may indicate that 
fish are more sensitive to water-borne ZEN than to dietary ZEN, which is why 
the mean LOEL level, including both, dietary and water-borne exposure for fish, 
shows quite a high standard error of the mean. ZEN concentrations above the LOEL 
levels in water samples have not been reported for aquatic environments [36–38]. 
Although the actual ZEN contamination of commercial fish feeds appears not to 
exceed the current guidance level for this mycotoxin in cereals and cereal products 
in the EU of 2000 μg/kg [27, 48], dietary exposure to this mycotoxin may still 
do harm to farmed fish. The guidance values in other countries that recommend 
maximum ZEN levels of 20–1000 μg/kg have a higher probability of protecting fish 
from damage [49], since the ZEN levels in fish feeds often do not exceed concentra-
tions of 200 μg/kg [27, 60]. Nevertheless, more exact reports on ZEN toxicity in fish 
and the actual contamination levels in commercial fish feeds are needed to support 
these assumptions.

T-2 toxin has a mean toxicity of 3201 ± 1236 μg/kg (±SEM) in fish, based on 
the currently available LOEL for different fish species (Figure 2). This level is 
considerably higher than the actual contamination level found in salmonid fish feed 
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species exposed to MON.
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in South America [28], and much lower than the guidance levels of 250 mg/kg for 
T-2 toxin set by the European Commission for cereal products in compound feeds 
[61] and individual recommendations in other countries (max. 80–100 mg/kg) for 
T-2 toxin in complete feed and all grains [49]. From these data, it can be assumed 
that fish do not regularly suffer from T-2 toxicity, and there have been no reports of 
accumulation of this mycotoxin in edible parts of the fish.

The situation for AFB1 is, however, quite different. The mean LOEL for fish has 
been calculated to be 1248 ± 275 μg/kg (±SEM) (Figure 2). However, AFB1 appears 
to be readily absorbed by the intestine [62] and a LOEL of less than 1 μg/kg has been 
observed in Nile tilapia (Oreochromis niloticus) and rainbow trout [63, 64], which 
shows that this mycotoxin can be a problem for farmed fish. In commercial fish 
feeds, AFB1 levels are commonly less than 10 μg/kg [65, 66], but may be consider-
ably higher in some cases [67–69]. Critical levels for fish have been estimated to be 
a mean of 4.30 μg/kg in commercial feeds [1], which indicates that farmed fish are 
exposed to a risk from AFB1 intoxication.

Less information is available on the toxicity of ENNs and BEA in fish, but 
from initial experiments it can be assumed that at least some ENN toxins have 
toxic effects on zebrafish embryos (unpublished results, C. Pietsch). However, 
how relevant this toxicity is in comparison to the actual ENN contamination in 
commercial feeds remains unclear. Similar to other emerging mycotoxins, these 
substances have already been detected in the plasma of pigs after exposure to 
ENNs [196], indicating that the uptake of these substances occurs in vertebrates. 
In addition, it has been shown that food processing affects the presence on ENNs 
and BEA in bread [197, 198], and thermal processes, in particular, also appear 
to influence the ENN content in fish tissue [199]. Finally, the presence of high 
ENN and BEA levels in feed ingredients appears to overestimate the actual risk of 
fish feed contamination and the potential effects on farmed fish [1]. Thus, more 
research is needed on the toxicology and the biotransformation of ENNs and BEA 
in vertebrates.

An issue that also makes mycotoxin research difficult is the fact that we do not 
know enough about mycotoxin mixtures and their effects. Natural contamination of 
feed ingredients leads to the occurrence of several mycotoxins at the same time and 
their interactions remain mostly unknown.

4. Fish products and food safety

Exposure assessments are often based on a deterministic approach, which 
obtains the estimated daily intake (EDI) levels by assuming a human body weight 
of 60 kg for an adult. The EDI of each mycotoxin is commonly calculated as μg/kg 
body weight per day for each mycotoxin. Accordingly, the Joint FAO/WHO Expert 
Committee and Food Additives and Scientific Committee on Food have established 
a tolerable weekly intake (TWI) levels for humans for OTA of 120 ng/kg body 
weight and tolerable daily intake (TDI) levels of 250 ng/kg body weight for ZEN, 
100 ng/kg body weight for T-2 and HT-2 toxins together, and 1000 ng/kg body 
weight for DON [200, 201]. For aflatoxins, no tolerable intake levels have been set 
since these toxins are listed as human carcinogens. The tolerable intake levels should 
be compared to the actual contamination levels found in fish products. However, 
the frequency of mycotoxin occurrence in fish products has not been investigated in 
detail. Recent studies indicate that less than 10% of fish and meat food samples are 
contaminated with mycotoxins, with DON contamination occurring in 17% of the 
29 fish samples [202]. In addition, the accuracy of the reports also strongly depends 
on the accuracy and the number of samples that were analyzed.
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Even if fish are exposed to feed-borne mycotoxins, and the resulting effects are 
not great, possible retention of these toxins in edible parts of the fish may pose a risk 
for human consumption. A risk to humans is assumed when the toxin concentrations 
in food exceed the safety limits. For AFB1, this level has been set at 2 μg/kg by the  
European Union for food designated for human consumption [49]. However, the 
exact risk to humans is difficult to predict, since the behavior of the chemicals in 
the fish strongly depends on the chemical structures of the mycotoxins. In addition, 
toxin concentration in the feeds and duration of exposure also play an important role, 
therefore different studies may lead to different results. One example is the absence 
of accumulation of aflatoxin in the musculature of common carp in the study by 
Svobodova and Piskac [136], which contradicts the findings of Akter et al. [91]. The 
AFB1 content in the hepatopancreas of gibel carp (Carassius auratus gibelio) was found 
to be considerably higher than in their muscle tissues (2.4–11.8 μg/kg) after 12 weeks 
of oral exposure [104]. An extrahepatic deposition of AFB1 has also been confirmed 
in trout [62, 203], but the detection of this toxin in kidneys is more relevant from a 
toxicological point of view than from a food safety point of view. The study by Selim 
et al. [121] showed that exposure to 200 μg/kg AFB1 for 2 weeks was sufficient to lead 
to detectable toxin residues in fish musculature (>20 μg/kg AFB1), which increased 
to levels of more than 90 μg/kg AFB1 after 10 weeks of exposure. Furthermore, 
feeding European seabass (Dicentrarchus labrax L.) with 18 μg/kg body weight AFB1 
resulted in toxin concentrations of 2.5 μg/kg AFB1 in the fish musculature after 28 
days of feeding, and even higher levels of 4.25 μg/kg AFB1 after 42 days of exposure 
[94]. Compared to this, oral exposure of lambari fish (Astyanax altiparanae) to AFB1 
increased the body residues after feeding for at least 90 days [204]. In addition, this 
study showed that feeding an AFB1 concentration of 50 μg/kg feed for 120 days also 
resulted in aflatoxin accumulation in muscle and liver tissues that were as high as in 
the feed. In other fish species, residues exceeding the safety limit were detected in the 
liver but not in the fish musculature [89, 104]. From these studies, it can be concluded 
that aflatoxin contamination can be a threat to humans after fish have been fed AFB1 
contaminated diets for certain duration. These values show that consuming fish 
can considerably add to the toxicological burden that can already be expected from 
consuming cereals, for which the daily intake through consumption of cereal-based 
products has been reported to reach levels of up to 7.9 ng/kg body weight [205] and 
3 ng/kg body weight if peanuts are consumed [206]. An interesting finding was 
described in a study using walleye (Sander vitreus) which had been exposed to consid-
erable amounts of AFB1 that had accumulated in their edible parts. The accumulation 
of AFB1 in the musculature may be reversible by feeding mycotoxin-free diets for 2 
weeks [107], which also confirms similar findings in other fish species [104].

Fish muscle did not contain OTA in a Polish study [207]. In seabass 
(Dicentrarchus labrax) and sea bream (Sparus aurata) muscles, only low OTA levels 
have been detected [208]. It has already been reported that contaminated cereals 
and feed ingredients lead to the introduction of OTA into the food chain, posing 
a risk for humans [209]. Consuming fish appears to contribute to the presence of 
OTA in the food chain and also adds to the detectable levels of OTA in humans [2]. 
However, compared to the daily intake through direct consumption of cereal-based 
products that has been reported to be up to 22.2 ng/kg body weight for OTA [205], 
the amount that fish products may contribute to the toxicological burden appears to 
be lower. Nevertheless, this adds to the earlier assumption that naturally contami-
nated feeds also lead to the introduction of this mycotoxin into the food chain which 
may pose a risk to human consumers [210, 211]. The knowledge presented here on 
the presence and toxicity of this toxin in fish supports this assumption. The poten-
tial risk due to OTA exposure is probably caused by the fact that OTA is even more 
stable in the environment than aflatoxins [212, 213].
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in South America [28], and much lower than the guidance levels of 250 mg/kg for 
T-2 toxin set by the European Commission for cereal products in compound feeds 
[61] and individual recommendations in other countries (max. 80–100 mg/kg) for 
T-2 toxin in complete feed and all grains [49]. From these data, it can be assumed 
that fish do not regularly suffer from T-2 toxicity, and there have been no reports of 
accumulation of this mycotoxin in edible parts of the fish.

The situation for AFB1 is, however, quite different. The mean LOEL for fish has 
been calculated to be 1248 ± 275 μg/kg (±SEM) (Figure 2). However, AFB1 appears 
to be readily absorbed by the intestine [62] and a LOEL of less than 1 μg/kg has been 
observed in Nile tilapia (Oreochromis niloticus) and rainbow trout [63, 64], which 
shows that this mycotoxin can be a problem for farmed fish. In commercial fish 
feeds, AFB1 levels are commonly less than 10 μg/kg [65, 66], but may be consider-
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4. Fish products and food safety
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obtains the estimated daily intake (EDI) levels by assuming a human body weight 
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a tolerable weekly intake (TWI) levels for humans for OTA of 120 ng/kg body 
weight and tolerable daily intake (TDI) levels of 250 ng/kg body weight for ZEN, 
100 ng/kg body weight for T-2 and HT-2 toxins together, and 1000 ng/kg body 
weight for DON [200, 201]. For aflatoxins, no tolerable intake levels have been set 
since these toxins are listed as human carcinogens. The tolerable intake levels should 
be compared to the actual contamination levels found in fish products. However, 
the frequency of mycotoxin occurrence in fish products has not been investigated in 
detail. Recent studies indicate that less than 10% of fish and meat food samples are 
contaminated with mycotoxins, with DON contamination occurring in 17% of the 
29 fish samples [202]. In addition, the accuracy of the reports also strongly depends 
on the accuracy and the number of samples that were analyzed.
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Even if fish are exposed to feed-borne mycotoxins, and the resulting effects are 
not great, possible retention of these toxins in edible parts of the fish may pose a risk 
for human consumption. A risk to humans is assumed when the toxin concentrations 
in food exceed the safety limits. For AFB1, this level has been set at 2 μg/kg by the  
European Union for food designated for human consumption [49]. However, the 
exact risk to humans is difficult to predict, since the behavior of the chemicals in 
the fish strongly depends on the chemical structures of the mycotoxins. In addition, 
toxin concentration in the feeds and duration of exposure also play an important role, 
therefore different studies may lead to different results. One example is the absence 
of accumulation of aflatoxin in the musculature of common carp in the study by 
Svobodova and Piskac [136], which contradicts the findings of Akter et al. [91]. The 
AFB1 content in the hepatopancreas of gibel carp (Carassius auratus gibelio) was found 
to be considerably higher than in their muscle tissues (2.4–11.8 μg/kg) after 12 weeks 
of oral exposure [104]. An extrahepatic deposition of AFB1 has also been confirmed 
in trout [62, 203], but the detection of this toxin in kidneys is more relevant from a 
toxicological point of view than from a food safety point of view. The study by Selim 
et al. [121] showed that exposure to 200 μg/kg AFB1 for 2 weeks was sufficient to lead 
to detectable toxin residues in fish musculature (>20 μg/kg AFB1), which increased 
to levels of more than 90 μg/kg AFB1 after 10 weeks of exposure. Furthermore, 
feeding European seabass (Dicentrarchus labrax L.) with 18 μg/kg body weight AFB1 
resulted in toxin concentrations of 2.5 μg/kg AFB1 in the fish musculature after 28 
days of feeding, and even higher levels of 4.25 μg/kg AFB1 after 42 days of exposure 
[94]. Compared to this, oral exposure of lambari fish (Astyanax altiparanae) to AFB1 
increased the body residues after feeding for at least 90 days [204]. In addition, this 
study showed that feeding an AFB1 concentration of 50 μg/kg feed for 120 days also 
resulted in aflatoxin accumulation in muscle and liver tissues that were as high as in 
the feed. In other fish species, residues exceeding the safety limit were detected in the 
liver but not in the fish musculature [89, 104]. From these studies, it can be concluded 
that aflatoxin contamination can be a threat to humans after fish have been fed AFB1 
contaminated diets for certain duration. These values show that consuming fish 
can considerably add to the toxicological burden that can already be expected from 
consuming cereals, for which the daily intake through consumption of cereal-based 
products has been reported to reach levels of up to 7.9 ng/kg body weight [205] and 
3 ng/kg body weight if peanuts are consumed [206]. An interesting finding was 
described in a study using walleye (Sander vitreus) which had been exposed to consid-
erable amounts of AFB1 that had accumulated in their edible parts. The accumulation 
of AFB1 in the musculature may be reversible by feeding mycotoxin-free diets for 2 
weeks [107], which also confirms similar findings in other fish species [104].

Fish muscle did not contain OTA in a Polish study [207]. In seabass 
(Dicentrarchus labrax) and sea bream (Sparus aurata) muscles, only low OTA levels 
have been detected [208]. It has already been reported that contaminated cereals 
and feed ingredients lead to the introduction of OTA into the food chain, posing 
a risk for humans [209]. Consuming fish appears to contribute to the presence of 
OTA in the food chain and also adds to the detectable levels of OTA in humans [2]. 
However, compared to the daily intake through direct consumption of cereal-based 
products that has been reported to be up to 22.2 ng/kg body weight for OTA [205], 
the amount that fish products may contribute to the toxicological burden appears to 
be lower. Nevertheless, this adds to the earlier assumption that naturally contami-
nated feeds also lead to the introduction of this mycotoxin into the food chain which 
may pose a risk to human consumers [210, 211]. The knowledge presented here on 
the presence and toxicity of this toxin in fish supports this assumption. The poten-
tial risk due to OTA exposure is probably caused by the fact that OTA is even more 
stable in the environment than aflatoxins [212, 213].
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In contrast, the presence of fumonisins in fish appears not to be relevant for con-
sumers, since they rarely occur in farmed fish (e.g., in a survey in Switzerland in only 
one fillet sample containing less than 0.06 μg/kg FB1 + FB2, personal communication 
C. Pietsch). In addition, it was not possible to identify a high risk to humans as a result 
of consuming fish products contaminated with other mycotoxins, such as ZEN and 
DON, since no relevant toxin levels could be detected in the musculature of DON- or 
ZEN-treated rainbow trout and common carp [42, 214, 215]. Interestingly, ZEN 
exposure did result in retention in the ovaries of farmed trout [184]. Furthermore, the 
study by Nácher-Mestre et al. [216] found no detectable mycotoxin levels in gilthead 
sea bream or Atlantic salmon (Salmo salar) after 8 months of dietary exposure to 
DON levels of up to 79.2 μg/kg and fumonisins at levels of up to 754 μg/kg. A study 
into fish as food reported mean DON levels of 1.19 μg/kg [202]; and since DON was 
the major mycotoxin in the fish samples analyzed in this study, it was also assumed 
to be the main contributor to the daily human mycotoxin exposure. ZEN retention in 
human breast milk has already been related to consuming meat, fish, dry fruits, and 
spices [217]. However, compared to the presence of Fusarium toxins in cereals, it can 
still be assumed, based on the fact that rapid metabolization takes place in fish, that 
the retention of DON and ZEN in fish is low. Therefore, there can be no assumption 
of a higher risk to humans of consuming these mycotoxins in fish compared to the 
risk of exceeding the toxicological reference values by consuming cereal products 
directly [202, 206, 218].

In the 29 fish samples in the study by Carballo et al. [202], mean ENN A con-
centrations of 0.89 μg/kg were observed. ENNs were also detected in 20% of the 
salmon flesh samples and 10% of rainbow trout samples in the study by Tolosa et al. 
[199], but further processing including cooking or smoking appears to mitigate 
the toxin content [219]. In contrast, fish from Egypt contained predominant 
xerophilic molds with Aspergillus species being the major ones (58.2%), followed 
by Penicillium species (32.7%) in salted products and also in smoke-cured bonga 
shad and African catfish (Ethmalosa fimbriata and Clarias gariepinus) [220, 221]. 
However, a study in Kenya only showed aflatoxins in dried fish, and not in fresh 
ones [222]. Smoked-dried fish from Nigeria may also contain potential mycotoxin 
producing fungi and aflatoxins [223–226]. Similar results from Egyptian smoked 
fish confirmed that the moisture and salt concentrations that occur during food 
processing influence the OTA and AFB1 contents in the fish products, possibly 
exceeding the permissible limits for both mycotoxins [227].

Mycotoxins can also occur in sun-dried fish products, which are typically found 
in tropical and subtropical regions where high temperatures and humidity consid-
erably influence fungal growth and toxin formation. Accordingly, samples of dried 
seafood contained high levels of ZEN and OTA (317.3 and 1.9 μg/kg, respectively). 
Furthermore, low amounts of AFB2 (1.2 μg/kg) were also observed in the muscle of 
crucian carp (Carassius carassius), even after storage for 3 months at room tempera-
ture [228], emphasizing the high stability of aflatoxins.

5. Conclusions

Taken together, mycotoxin contamination in feed ingredients and fish feeds is an 
increasing problem that will have to be addressed by crop farmers, feed producers, 
and researchers. One step that could be taken is to prevent heavily contaminated 
raw materials being introduced into the feed production processes, which would 
lower potential mycotoxin contamination levels. Nevertheless, other mycotoxins 
are still formed during storage, and improved guidelines and recommendations for 
storage of feed ingredients and animal feeds should be published. Since mycotoxins 
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are present in animal feeds, in some cases at toxicological relevant levels, this may 
cause health problems in fish and limit production in aquaculture. More data on 
the presence of mycotoxins in fish would allow better risk assessments for human 
consumers to be carried out. Furthermore, the data sets for some mycotoxins 
indicate that more strict guidance levels are needed for fish feeds to protect 
farm animals from harm and prevent accumulation of potentially problematic 
mycotoxins such as AFB1 and OTA in the food chain.
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Chapter 4

Mycotoxins: The Hidden Danger in 
Foods
Aycan Cinar and Elif Onbaşı

Abstract

Mycotoxins are secondary metabolites synthesized by a variety of fungal species 
such as Aspergillus, Penicillium, Fusarium, and Alternaria. These secondary metabo-
lites are toxic and have a significant impact if they enter the production and food 
chain. Mycotoxins have attracted worldwide attention because of their impact on 
human health, huge economic losses, and domestic and foreign trade. Although 
more than 400 mycotoxins have been identified, most studies have focused on afla-
toxins (AF), ochratoxin A (OTA), Fusarium toxins, fumonisin (FUM), zearalenone 
(ZEA), trichothecenes (TCT), and deoxynivalenol/nivalenol due to food safety and 
economic losses. This chapter will be addressing the type of mycotoxins, its impor-
tance in food industry, preventive measures, and implementation of hazard analysis 
critical control point (HACCP) to control mycotoxin.

Keywords: mycotoxin, aflatoxins, ochratoxin A, Fusarium toxins, fumonisin, 
zearalenone, trichothecenes, deoxynivalenol/nivalenol, food industry, HACCP

1. Introduction

Mycotoxins are secondary toxic metabolites with a wide variety of chemical 
structures synthesized by fungi (mold) [1]. Mycotoxins are thought to be a kind of 
“chemical defense system” to protect mold from insects, microorganisms, nema-
todes, grazing animals, and humans [2]. Molds reproduce by means of spores, and 
their small molecular weight spores are easily disseminated to environment by 
wind. They cannot be affected by the adverse environmental conditions and can 
be present in the latent state for long periods. Moreover, when the environmental 
conditions are appropriate, spores return to vegetative form and can form into new 
mold colonies. Agricultural products can be contaminated with mold in pre-harvest 
via insect and bird damage and harsh weather condition damage such as hail dam-
age. In addition, selected harvesting method is one of the most important reasons 
in contamination of the mold to the products. Improper storage, transport, and 
marketing can also cause the mold growth and synthesis of mycotoxins [3].

Mycotoxin can occur in food and agricultural products via many contamination 
pathways, at any stage of production, processing, transport, and storage (Figure 1) 
[4]. Factors that affect mold growth and mycotoxin production are temperature, 
relative humidity, fungicides and/or fertilizers, interaction between the colonizing 
toxigenic fungal species, type of subtract and nutritional factors, geographical loca-
tion, genetic requirements, and insect infestation [5, 6].

Approximately 400 fungal secondary metabolites are known to be toxic, and 
one quarter of agricultural products have been reported to be contaminated with 
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mycotoxins in the world [5–9]. While a type of mold may form more than one 
mycotoxin, a mycotoxin can be synthesized by many molds. The most common 
types of mold which are known to produce mycotoxins are Aspergillus, Penicillium, 
Fusarium, and Alternaria [10].

According to the result of many studies in poultry and mammals, mycotoxins can be 
carcinogenic, mutagenic, teratogenic, hepatotoxic, nephrotoxic, immunosuppressive, 
and embryotoxic [11]. The phenomenon of toxicity is called mycotoxicosis occurring 
after consumption of mycotoxin-contaminated product by human and animal [12].

Especially cereals, grains, nuts, oilseeds, fruits, dried fruits, vegetables, cocoa 
and coffee beans, wine, beer, herbs, and spices are major mycotoxin vectors since 
they are consumed by a large mass of people and animals [4]. Mycotoxins cause 

Figure 1. 
Factors affecting mycotoxin occurrence in the food and feed chain [7, 8].
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different degrees of toxicity according to exposure time, mycotoxin amount, physi-
ological state, and sensitivity of the organism in humans and animals.

In addition to risk of public health, mycotoxins generate high level of economical 
loses for food industry due to reduced crop yields, lost trade revenues (local and inter-
national), and livestock illnesses [13, 14]. Elimination of mycotoxin is quite though due 
to resistant to physical, chemical, and biological methods; however, some of the mea-
sures described in the following sections may help to prevent mycotoxin. The methods 
used for mycotoxin determination are chromatography such as high-performance liquid 
chromatography (HPLC), thin-layer chromatography (TLC), gas chromatography-
mass spectrometry (GC-MS), and also enzyme-linked immunosorbent assay (ELISA) 
technique and biosensor-based screening methods [15]. Detection is complicated due to 
limitations in analytical methodology [16]. Therefore, prevention of mold contamina-
tion and mycotoxin synthesis is essential for food safety in food industry.

According to the Food and Agricultural Organization (FAO), 77 countries have 
established guidance and regulations on mycotoxin in food and feed to control the 
level of mycotoxin. On the other hand, 13 countries including African countries still 
do not have specific regulation for food safety [4].

2. Importance of mycotoxin in food industry

Ergotism is one of the oldest determined mycotoxicoses (disease) in human 
and results from consumption of the ergot body in rye or other grains infected by 
a parasitic fungus of the genus Claviceps. The history of this disease is based on the 
outbreak of Spartans in 430 BC [17]. The world has been met with mycotoxin term 
after an extraordinary death of nearly 100,000 turkeys in near London, England, in 
1960 due to a peanut (groundnut) meal imported from Brazil, contaminated with 
secondary metabolites from Aspergillus flavus (aflatoxins) [18]. Scientists focused 
on the occurrence and toxicology of mold metabolite that could cause serious health 
and economic losses after this case. Aflatoxin (AF) is the term derived from the 
name of one of the molds that produces it, Aspergillus flavus. Mycotoxins have been 
affecting people since 1960, which is the time of the finding of mycotoxin, and this 
problem still persists worldwide.

Mycotoxins can occur in the food in several ways (Figure 1), but technically 
divided into two groups; first is mold growth as a pathogen plant in field, another 
one is grow on stored. After plant materials are contaminated with mold spores 
from soil and air, they easily contaminate other food source, production area, 
laboratory, and even kitchen of our homes. Certain species of mold are capable of 
mycotoxin synthesis; therefore, each food contaminated with mold always may 
not contain mycotoxins. Nevertheless, moldy products are considered to be risky 
products in terms of mycotoxin.

Mycotoxins appear in almost all kinds of animal feed and products such as 
wheat bran, noug cake, pea hulls, maize grain, milk and meat, and also human food 
such as cereal, fruit and vegetables, spice, etc. [5]. Consuming these foods creates 
serious health risks in human and all animal species. Mycotoxin intake by feed 
or food causes chronic intoxication rather than acute symptoms. Acute toxicity is 
observed in high-dose mycotoxin exposure, and symptoms show a rapid effect such 
as borborygmy, abdominal pain, diarrhea, etc. On the other hand, low-level myco-
toxin exposure in long period causes serious impairments in the liver, kidney, and 
immune system organs and tissues. Therefore, mycotoxin plays a significant role in 
cancer in these organs [2]. Some important mycotoxin health effects are shown in 
Figure 2. Toxic effects on humans and animals of important mycotoxins are shown 
in Table 1 [19].
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Mycotoxins have caused many serious outbreaks worldwide. There was an 
outbreak that occurred in 1967, and 26 people were poisoned because of the 
consumption of moldy rice for up to 3 weeks in Taiwan [21]. An outbreak of 
aflatoxicosis affecting humans, reported in India, led to the death of 100 people 
in 1974 [22]. Another outbreak was reported in India in 1995, affecting 1424 
people due to sorghum and maize contaminated with fumonisin [23]. During 
January–June 2004, an aflatoxicosis outbreak in eastern Kenya resulted in 317 
cases and 125 deaths [24].

Mycotoxin contamination in foods and fodder has been becoming a global concern 
day by day. According to Food and Agricultural Organization (FAO) reports, it is esti-
mated that mycotoxin affects nearly 25% of the world’s crop each year and is causing 
huge agricultural product and industrial losses in billions of dollars [25]. For example, 
estimated annual loss in the United States is approximately $ 0.5–1.5 billion [19]. The 
main effects of mycotoxins on national economies can be thought in five ways:

1. Product yield losses due to toxigenic mold diseases

2. Decrease in commercial value because of contaminated food and feed

3. Human and animal health losses due to harmful impacts associated with 
mycotoxin-contaminated food and fodder consumption

4. Cost of analysis of mycotoxin

5. Strategies to control mycotoxin contamination

Economic impacts are felt by agricultural chain such as manufacturer of plant 
and animal, especially cereal industry, consumers, and briefly all farm-to-fork 
steps.

Figure 2. 
Aflatoxin (AFL), ochratoxin A (OTA), patulin (PAT), fumonisin (FUM), trichothecenes (TCT), and 
zearalenone (ZEA) mycotoxin health effects [20].
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3. Worldwide important mycotoxin in food industry

3.1 Aflatoxins (AF)

Aflatoxins are a group of toxic secondary metabolites of filamentous fungi, 
Aspergillus flavus, A. nomius, and A. parasiticus, and the most important mycotoxins 
in the world for human food and animal feed [26]. On the other hand, recent studies 
have showed that A. nomius, A. sergii, A. bombycis, A. minisclerotigenes, A. parviscler-
otigenus, A. pseudocaelatus, A. pseudotamari, and A. ochraceoroseus also have afla-
toxigenic properties, but the occurrence of these species in nature is low [27]. The 
natural fungal multiplication subsequent to quantity of AF production is affected by 
various factors including environmental conditions (e.g., high temperature, mois-
ture, and relative humidity), the presence of carbon dioxide and oxygen, mechanical 
damages, plant genre, insect infestation and amount of spores, and implementation 
of pesticides and fungicides [28, 29]. Among these, especially temperature and 
relative humidity are the most important effects of the formation and amount of AF 
as A. flavus has shown optimal growth at temperature from 29 to 35°C, maximum 

Mycotoxins Genus/species Major food Toxic effects and diseases

Aflatoxin Aspergillus flavus
A. parasiticus
A. nomius
Penicillium

Cereals, feeds, 
oilseeds and pulp, 
coconut

Carcinogenic, hepatotoxicity, 
teratogenicity, decreasing immune 
systems, affecting the structure of 
DNA, hepatitis, bleeding, kidney 
lesions

Fumonisin Fusarium 
verticillioides
F. culmorum

Cereals, corn Encephalomalacia, pulmonary 
edema, carcinogenic, 
neurotoxicity, liver damage, heart 
failure, esophageal cancer in 
humans

Ochratoxin
OTA

Aspergillus
Penicillium
A. ochraceus
P. nordicum
P. verrucosum

Cereals, herbs, oil 
seeds, figs, beef 
jerky, fruits, and 
wine

Kidney and liver damage, loss 
of appetite, nausea, vomiting, 
suppression of immune system, 
carcinogenic

Patulin Aspergillus terreus
A. clavatus
Penicillium
Penicillium carneum
P. clavigerum
P. griseofulvum

Silage, wheat, 
feeds, apples, 
grapes, peaches, 
pears, apricots, 
olives, cereals

Neural syndromes, brain 
hemorrhage, skin lesions, skin 
cancer, lung, mutagenicity, 
antibacterial effect

Trichothecenes
(T2, DON, DAS, 
HT2)

Fusarium
Cephalosporium
Trichoderma
Fusarium oxysporum

Cereals, feeds, 
silage, legumes, 
fruits, and 
vegetables

Immune suppression,
cytotoxic,
skin necrosis, hemorrhage, 
anemia, granulocytopenia, oral 
epithelial lesions, GIS lesions, 
hematopoietic, alimentary toxic 
aleukia (ATA), hypotension, 
coagulopathy

Zearalenone Fusarium
F. graminearum
F. culmorum

Cereals, corn, 
silage, timothy 
grass, fodder

Carcinogenic, hormonal 
imbalance estrogenic effect, 
reproductive problems, teratogenic

Table 1. 
Name of some important mycotoxin-producing fungi, susceptible foods, and mycotoxin effects on humans and 
animals [19].
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Mycotoxins have caused many serious outbreaks worldwide. There was an 
outbreak that occurred in 1967, and 26 people were poisoned because of the 
consumption of moldy rice for up to 3 weeks in Taiwan [21]. An outbreak of 
aflatoxicosis affecting humans, reported in India, led to the death of 100 people 
in 1974 [22]. Another outbreak was reported in India in 1995, affecting 1424 
people due to sorghum and maize contaminated with fumonisin [23]. During 
January–June 2004, an aflatoxicosis outbreak in eastern Kenya resulted in 317 
cases and 125 deaths [24].

Mycotoxin contamination in foods and fodder has been becoming a global concern 
day by day. According to Food and Agricultural Organization (FAO) reports, it is esti-
mated that mycotoxin affects nearly 25% of the world’s crop each year and is causing 
huge agricultural product and industrial losses in billions of dollars [25]. For example, 
estimated annual loss in the United States is approximately $ 0.5–1.5 billion [19]. The 
main effects of mycotoxins on national economies can be thought in five ways:

1. Product yield losses due to toxigenic mold diseases

2. Decrease in commercial value because of contaminated food and feed

3. Human and animal health losses due to harmful impacts associated with 
mycotoxin-contaminated food and fodder consumption

4. Cost of analysis of mycotoxin

5. Strategies to control mycotoxin contamination

Economic impacts are felt by agricultural chain such as manufacturer of plant 
and animal, especially cereal industry, consumers, and briefly all farm-to-fork 
steps.

Figure 2. 
Aflatoxin (AFL), ochratoxin A (OTA), patulin (PAT), fumonisin (FUM), trichothecenes (TCT), and 
zearalenone (ZEA) mycotoxin health effects [20].
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aflatoxin production at 24° C, and no production at temperatures below 13°C or 
above 42°C and relative humidity below 70% [30]. Heat processing, such as ultra-
high-temperature (UHT) treatment, pasteurization, roasting, and baking, and also 
cold storage do not affect aflatoxin in foods since they are fairly stable and resistant 
[31, 32]. Approximately more than 14 various chemical forms of AF are present in 
nature; however, the most dangerous ones are aflatoxins B1, B2, G1, and G2 [33]. The 
nomenclature of aflatoxins with these letters is based on the color they exhibit under 
ultraviolet radiation (B, blue, and G, green) [34]. Various food products especially 
grown in hot and humid regions of the world are susceptible to fungal invasion and 
aflatoxin production, including groundnuts, maize, various spices, tree nuts, cot-
tonseed, pistachios, copra, wheat, rice, etc. [25]. AFB1 is converted into metabolized 
AFM1 and excreted in milk in both human and lactating animals [35]. The European 
Commission, Codex Alimentarius Commission, Germany, Turkey, Switzerland, 
France, Sweden, Belgium, Argentina, Iran, and Honduras have regulated an accept-
able limit for AFM1 at 50 ng/L for infants, for raw, pasteurized, and UHT milk. On 
the other hand, the United States, Brazil, China, Bulgaria, Czech Republic, Kuwait, 
and Serbia have accepted 500 ng/L level for AFM1 [31]. Aflatoxin contamination 
causes huge economic and critical health problem due to their high toxicity. For 
example, aflatoxin contamination is estimated to cause damages to the corn industry 
in the United States ranging from US $ 52.1 million to US $ 1.68 billion [36]. They are 
carcinogenic, hepatotoxic, and teratogenic, decrease immune systems, poison the 
body through respiratory, and can directly affect the structure of DNA [37]. Of all 
the human health effects associated with aflatoxin exposure, the weight of evidence 
is strongest for aflatoxin-related liver cancer and secondarily of the synergism 
between aflatoxin exposure and chronic HBV infection in liver cancer risk [38]. In 
1974, there was an outbreak of hepatitis due to aflatoxin in India, resulting in an 
estimated 106 deaths [22]. In 2004 the largest outbreak was ever recorded, where 317 
people became ill and 125 people died because of consumption moldy maize which 
early harvested and stored improper harvested condition [39]. In 2013, countries in 
Europe, including Romania, Serbia, and Croatia, reported that nationwide milk was 
contaminated with aflatoxin [40].

3.2 Ochratoxin A

Ochratoxin A (OTA) is a natural mycotoxin produced mainly by fungal type of 
Aspergillus and Penicillium under optimum environmental conditions and storage 
especially tropical and subtropical regions such as Eastern and South Europe, Canada, 
and South America [41, 42]. There are three types of ochratoxins, namely A, B, and 
C. Especially, OTA is known as the most common and important one for public  
and animal health. Although people are exposed to OTA by inhalation or dermal 
contact, various foods are the main source of exposure to OTA including maize, sor-
ghum, wheat, rice, barley, rye, bread, oats, flour, pasta, grapes, infant cereals, apples, 
peaches, strawberries, pears, oranges, figs, mangoes, wine, tomatoes, coffee beans, 
watermelons, nuts, rapeseed, sesame seeds, spice, soybeans, cocoa, peanuts, chick-
peas, milk and milk-based baby formulae, eggs, cheese, yam, potatoes, garlic, onions, 
fish, pork, poultry, jerky, and dried beans [43]. Recently, the presence of OTA has been 
detected in bottled water [44], plant food supplement, and food coloring agent [45]. 
According to the European Commission report, the estimated adult exposure to OTA 
is as follows: 44% cereals, 10% wine, 9% coffee, 7% beer, 5% cacao, 4% dried fruits, 
3% meat, 3% spices, and 15% others [46]. For the first time in 1970, the presence 
of OTA was detected in human blood in Balkans [47]. In the review of Malir et al., 
published data on OTA in human blood samples from healthy persons were compiled, 
and concentrations higher than 1.0 g/L were observed in several countries [48].  
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Huge amount of economic losses occurs resulting from OTA contamination on feed 
and food particularly livestock production. Exposure of OTA causes renal dysfunction 
(suspected in Balkan endemic nephropathy) and also is considered to be teratogenic, 
immunotoxigenic, nephrotoxic, carcinogenic, embryotoxic, hepatotoxic, and espe-
cially nephrotoxic in laboratory and farm animals [43, 49].

3.3 Fusarium toxins

Fusarium toxins are secondary metabolites synthesized by toxigenic molds 
including Fusarium oxysporum, F. culmorum, F. roseum, and F. graminearum [50]. 
Fumonisins (FBs), zearalenone (ZEA), trichothecenes, deoxynivalenol (DON), 
and nivalenol (NIV) are the most common Fusarium mycotoxin groups [51]. 
Recently fusaproliferin (FUS), beauvericin (BEA), enniatins (ENNs), and monili-
formin (MON) are discovered but less studied [52]. Fusarium disease outbreak 
on cereal products such as wheat, barley, and maize causes worldwide economic 
losses due to yield loss and reduced grain quality, for example, losses in the United 
States of $ 1–20 million in a normal year and $31–46 million in a year [53]. Fusarium 
mycotoxin has both acute and chronic toxic effects and been shown to cause a 
wide variety of toxic effects in animals [54]. Spontaneous outbreaks of Fusarium 
mycotoxicosis have been reported in Europe, Asia, Africa, New Zealand, and South 
America. Moreover, chronic intake of these mycotoxins is reported on a regular and 
more widespread basis due to their global occurrence [55]. Fusarium mycotoxin 
limits specified in unprocessed cereals, milling products, and cereal foodstuffs 
are 200–1750 μg/kg for DON, 20–400 μg/kg for ZEN, and 200–4000 μg/kg for 
the sum of B1 + B2 fumonisins (FB1 + FB2 combined) according to the European 
Commission (19 December 2006).

3.3.1 Fumonisin

Fumonisins are generated by various fungal species such as Fusarium verticillioi-
des and F. proliferatum also by A. niger and were discovered in 1988 in South Africa 
[56, 57]. Nowadays 28 types of fumonisin have been identified that are divided 
into four groups, fumonisins A (A1, A2, and A3), fumonisins B (B1, B2, and B3), 
fumonisins C (C4, C3, and C1), and fumonisins P (P1, P2, and P3), but the most 
important group of fumonisins is the B group, which contains fumonisins B1 (FB1), 
B2 (FB2), B3 (FB3) [58].

The International Agency for Research on Cancer (IARC) identified FB1 as 
possibly carcinogenic to humans (group 2B). Recent studies reported that FB1 
causes an increased prevalence of esophageal and liver cancer in humans [59]. 
Furthermore, this mycotoxin has been found to have toxic effects against several 
organs (nervous and cardiovascular systems, liver, lung, kidney) in animals [60]. 
Fumonisins are largely found in corn and corn-based foods and also FB1 in rice, 
beer, sorghum, cowpea seeds, triticale, beans, asparagus, and soybeans [61].

3.3.2 Zearalenone (ZEA)

Zearalenone (ZEA), known as an estrogenic mycotoxin, is a secondary metabo-
lite produced by Fusarium species such as F. graminearum, F. culmorum, F. cerealis, F. 
equiseti, F. crookwellense, and F. semitectum (mainly F. culmorum and F. graminearum) 
[62]. The main contamination source of ZEA is cereal-based foods such as maize, 
sorghum, wheat, rice, barley, oats, and also nuts, soybean, and sesame [63].

Several in vivo studies found that ZEA disrupts hormonal balance due to its 
similarity to naturally occurring estrogens [64]. The mycotoxin has high affinity for 
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estrogen receptors, causing reproduction and fertility disorders in mammals [65]. In 
addition, it is known that progressive exposure to endocrine-modulatory compound 
has been linked with carcinogenesis in human [64]. According to the European Food 
Safety Authority (EFSA) report in 2014, the bioavailability of toxin is up to 80% 
in human and animals such as rats, rabbits, and pigs [66]. Moreover, recent works 
report ZEA is metabolized in the liver and has shown hepatotoxic, immunotoxic, 
carcinogenic, and nephrotoxic effect in animal tests [67–69]. As this mycotoxin 
possesses such consumer health risks, the European Union (EU) has prescribed the 
limits of ZEA (20–350 μg/kg) for various processed and unprocessed cereals [66].

3.3.3 Trichothecenes (TCT)

Trichothecenes are a large group of mycotoxins produced predominantly by 
Fusarium species although produced by other fungal genera such as Trichoderma, 
Trichothecium, Stachybotrys, Verticimonosporium, Cephalosporium, Myrothecium, and 
Cylindrocarpon spp. [70]. More than 200 different trichothecenes and trichothecene 
derivatives have been isolated. Trichothecenes are classified into four types (A–D). 
Type A and type B are the most prevalent type occurring widely in cereals [71, 72]. 
Type A trichothecenes such as T-2 and HT-2 toxins, diacetoxyscirpenol (DAS), 
monoacetoxyscirpenol (MAS), and neosolaniol (NEO) are synthesized mainly by F. 
sporotrichioides and F. langsethiae. On the other hand, type B including deoxyniva-
lenol (DON), the co-contaminants 3- and 15-acetyl DON (3A-DON or 15A-DON), 
and fusarenon-X (FUS-X; synonym 4-acetylnivalenol) are mainly produced by F. 
graminearum and F. culmorum [73]. Moreover, another important type B member, 
nivalenol (NIV), is commonly synthesized by F. poae in cereals [74].

The mechanism of action of trichothecenes is based on the inhibition of 
protein synthesis in eukaryotes. This mycotoxin affects peptidyl transferase 
enzyme binding the 60S ribosomal subunit, thus causing the inhibition of 
protein translation and ribotoxic stress [75]. Also, Pestka reported these groups 
of mycotoxins cause immunosuppression or immune stimulation by affecting the 
leucocytes [76].

The family of trichothecenes has a significant impact on cereal and grain 
production due to health risk for human consumption, livestock feed, or malting 
purposes [77, 78]. According to report from the FDA, economic losses associated 
with mycotoxin ranges from USD 0.5 million to over USD 1.5 billion from aflatoxin 
(corn and peanuts), fumonisin (corn), and deoxynivalenol (wheat) in the United 
States. [72]. Hence, control of these mycotoxins is essential for human and animal 
health and economic reasons.

3.3.3.1 Deoxynivalenol/nivalenol

Deoxynivalenol (DON), known as vomitoxin, is the most commonly detected 
trichothecenes in grains such as wheat, barley, oats, rye, and corn and less often 
in rice, sorghum, and triticale [79]. Even though NIV presence of cereals appears 
generally to be lower than DON [80], it has been reported that the occurrence of 
NIV in of wheat and barley is as prevalent as that of deoxynivalenol (DON) in 
Japan [81]. According to animal toxicity studies, NIV shows higher toxicity than 
DON. The LD50 values for DON and NIV in tests in mice were 78 and 39 mg/kg, 
respectively, and DON and NIV, similarly to other trichothecenes, show inhibitor 
effect on cell metabolism such as protein, DNA, and RNA synthesis [82]. In addi-
tion, these mycotoxins affect cell division and mitochondrial functions [83, 84, 70]. 
Both mycotoxins exhibit major symptoms such as abdominal discomfort, diarrhea, 
vomiting, and inflammation of the throat, weight loss, and anorexia [85].
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The World Health Organization (WHO) reported that trichothecenes shows 
fatal and chronic intoxications on human and livestock and also DON shows terato-
genic, neurotoxigenic, and immunosuppressant effects [86].

According to the conducted BIOMIN World Mycotoxin Survey, DON appeared 
in 81% of livestock feed from 81 countries worldwide followed by fumonisins that 
were detected in 71% of samples. Therefore, DON is reported as the most common 
mycotoxin worldwide (https://www.biomin.net/en/biomin-mycotoxin-survey/).

4. Management of mycotoxin prevention

Food safety is a key component in public health issue, and a mycotoxin is a 
huge food safety risk in developing countries. Prevention is the most important 
and effective way in reducing fungal growth and mycotoxin production to ensure 
food safety. The following steps that explain prevention and control of mycotoxin 
occurrence include good agricultural practices (GAP) in field, control practices of 
harvesting and storage, physical methods (cleaning, milling, etc.), implementa-
tion of biotechnological application, biological control through the use of con-
trolled atmosphere during storage, detoxification/degradation, and fermentation 
techniques.

Pre-harvesting is considered first and one of the most important stages to 
prevent mold growth and mycotoxin synthesis. Several strategies are available for 
the produce of healthy products and reduce the mold formation at pre-harvesting, 
including selection of plants according to the soil structure and production capac-
ity, use of plant which is resistant to fungi and insects, irrigation time, make 
fertilization, use of insecticides to prevent insect damage [87].

Harvesting at the appropriate time periods (low moisture and full maturity) is 
essential for reducing the risk of a mycotoxin contamination since overmaturity 
creates sensitivity to mold growth. Additionally, suitable harvesting equipment and 
procedures should be used, and crops should be dried after maturity to both reduce 
grain moisture to safe levels [88].

The latest technological advances provided new paths in mycotoxin control 
strategies that include the use of a controlled atmosphere with inhibitory or a 
protective effect and use of naturally occurring compounds under different condi-
tions and essential oils with antioxidant properties to decrease fungal growth and 
mycotoxin production in grains during storage [89]. Moreover, these strategies also 
include using regularly cleaned transport vehicles to prevent cross contamination 
of products; monitoring of temperature, humidity, aeration and pest infestation 
periodic during storage [90]; using mold inhibitors (propionic acid) to contami-
nated food and feed; and application of disinfectant such as sodium hypochlorite to 
storage area [91].

Some studies have shown that using physical methods (dehulling, washing, 
sorting, and cleaning of visible moldy seed) reduces different mycotoxin species 
in foods regardless of grain genre [70]. Scudamore and Pascale et al. [92] and Patel 
[93] observed a reduction of T-2 (62%) and HT-2 (53%) and DON (50%) in wheat 
seeds after cleaning. Scudamore and Patel also reported a 32% reduction in fumoni-
sin levels in corn in an industrial enterprise [94]. Moreover, milling is an important 
effect in the reduction of Fusarium mycotoxins in grains especially wet milling of 
maize which has shown to result in the degradation of mycotoxins [95].

One of the best applicable strategies for the prevention of mycotoxin forma-
tion is the cultivation of fungal infestation-resistant plants and improvement of 
the genetic composition to suppress mycotoxin production [96]. The benefits of 
biotechnological applications were observed with Aflasafe. Aflasafe is a biocontrol 
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estrogen receptors, causing reproduction and fertility disorders in mammals [65]. In 
addition, it is known that progressive exposure to endocrine-modulatory compound 
has been linked with carcinogenesis in human [64]. According to the European Food 
Safety Authority (EFSA) report in 2014, the bioavailability of toxin is up to 80% 
in human and animals such as rats, rabbits, and pigs [66]. Moreover, recent works 
report ZEA is metabolized in the liver and has shown hepatotoxic, immunotoxic, 
carcinogenic, and nephrotoxic effect in animal tests [67–69]. As this mycotoxin 
possesses such consumer health risks, the European Union (EU) has prescribed the 
limits of ZEA (20–350 μg/kg) for various processed and unprocessed cereals [66].
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Trichothecenes are a large group of mycotoxins produced predominantly by 
Fusarium species although produced by other fungal genera such as Trichoderma, 
Trichothecium, Stachybotrys, Verticimonosporium, Cephalosporium, Myrothecium, and 
Cylindrocarpon spp. [70]. More than 200 different trichothecenes and trichothecene 
derivatives have been isolated. Trichothecenes are classified into four types (A–D). 
Type A and type B are the most prevalent type occurring widely in cereals [71, 72]. 
Type A trichothecenes such as T-2 and HT-2 toxins, diacetoxyscirpenol (DAS), 
monoacetoxyscirpenol (MAS), and neosolaniol (NEO) are synthesized mainly by F. 
sporotrichioides and F. langsethiae. On the other hand, type B including deoxyniva-
lenol (DON), the co-contaminants 3- and 15-acetyl DON (3A-DON or 15A-DON), 
and fusarenon-X (FUS-X; synonym 4-acetylnivalenol) are mainly produced by F. 
graminearum and F. culmorum [73]. Moreover, another important type B member, 
nivalenol (NIV), is commonly synthesized by F. poae in cereals [74].

The mechanism of action of trichothecenes is based on the inhibition of 
protein synthesis in eukaryotes. This mycotoxin affects peptidyl transferase 
enzyme binding the 60S ribosomal subunit, thus causing the inhibition of 
protein translation and ribotoxic stress [75]. Also, Pestka reported these groups 
of mycotoxins cause immunosuppression or immune stimulation by affecting the 
leucocytes [76].

The family of trichothecenes has a significant impact on cereal and grain 
production due to health risk for human consumption, livestock feed, or malting 
purposes [77, 78]. According to report from the FDA, economic losses associated 
with mycotoxin ranges from USD 0.5 million to over USD 1.5 billion from aflatoxin 
(corn and peanuts), fumonisin (corn), and deoxynivalenol (wheat) in the United 
States. [72]. Hence, control of these mycotoxins is essential for human and animal 
health and economic reasons.

3.3.3.1 Deoxynivalenol/nivalenol

Deoxynivalenol (DON), known as vomitoxin, is the most commonly detected 
trichothecenes in grains such as wheat, barley, oats, rye, and corn and less often 
in rice, sorghum, and triticale [79]. Even though NIV presence of cereals appears 
generally to be lower than DON [80], it has been reported that the occurrence of 
NIV in of wheat and barley is as prevalent as that of deoxynivalenol (DON) in 
Japan [81]. According to animal toxicity studies, NIV shows higher toxicity than 
DON. The LD50 values for DON and NIV in tests in mice were 78 and 39 mg/kg, 
respectively, and DON and NIV, similarly to other trichothecenes, show inhibitor 
effect on cell metabolism such as protein, DNA, and RNA synthesis [82]. In addi-
tion, these mycotoxins affect cell division and mitochondrial functions [83, 84, 70]. 
Both mycotoxins exhibit major symptoms such as abdominal discomfort, diarrhea, 
vomiting, and inflammation of the throat, weight loss, and anorexia [85].
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The World Health Organization (WHO) reported that trichothecenes shows 
fatal and chronic intoxications on human and livestock and also DON shows terato-
genic, neurotoxigenic, and immunosuppressant effects [86].

According to the conducted BIOMIN World Mycotoxin Survey, DON appeared 
in 81% of livestock feed from 81 countries worldwide followed by fumonisins that 
were detected in 71% of samples. Therefore, DON is reported as the most common 
mycotoxin worldwide (https://www.biomin.net/en/biomin-mycotoxin-survey/).

4. Management of mycotoxin prevention

Food safety is a key component in public health issue, and a mycotoxin is a 
huge food safety risk in developing countries. Prevention is the most important 
and effective way in reducing fungal growth and mycotoxin production to ensure 
food safety. The following steps that explain prevention and control of mycotoxin 
occurrence include good agricultural practices (GAP) in field, control practices of 
harvesting and storage, physical methods (cleaning, milling, etc.), implementa-
tion of biotechnological application, biological control through the use of con-
trolled atmosphere during storage, detoxification/degradation, and fermentation 
techniques.

Pre-harvesting is considered first and one of the most important stages to 
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Harvesting at the appropriate time periods (low moisture and full maturity) is 
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include using regularly cleaned transport vehicles to prevent cross contamination 
of products; monitoring of temperature, humidity, aeration and pest infestation 
periodic during storage [90]; using mold inhibitors (propionic acid) to contami-
nated food and feed; and application of disinfectant such as sodium hypochlorite to 
storage area [91].

Some studies have shown that using physical methods (dehulling, washing, 
sorting, and cleaning of visible moldy seed) reduces different mycotoxin species 
in foods regardless of grain genre [70]. Scudamore and Pascale et al. [92] and Patel 
[93] observed a reduction of T-2 (62%) and HT-2 (53%) and DON (50%) in wheat 
seeds after cleaning. Scudamore and Patel also reported a 32% reduction in fumoni-
sin levels in corn in an industrial enterprise [94]. Moreover, milling is an important 
effect in the reduction of Fusarium mycotoxins in grains especially wet milling of 
maize which has shown to result in the degradation of mycotoxins [95].

One of the best applicable strategies for the prevention of mycotoxin forma-
tion is the cultivation of fungal infestation-resistant plants and improvement of 
the genetic composition to suppress mycotoxin production [96]. The benefits of 
biotechnological applications were observed with Aflasafe. Aflasafe is a biocontrol 
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product that includes a blend of four fungal species covered over grains which 
reduce aflatoxigenic fungi that produce AFs in maize and groundnuts (https://
aflasafe.com/).

Mycotoxins are resistant to heat and cannot be completely destroyed under nor-
mal cooking process. On the other hand, mycotoxin reduction has been determined 
after heating, and this may be the result of reactions changing the chemical struc-
ture [70]. Ryu et al. reported heat treatment (at temperature 120–160°C) causes a 
reduction between 66 and 83% of ZEN [97]. Scott and Lawrence also reported a 
reduction of 60–100% of fumonisins with a heat treatment at 190°C (60 min) and 
220°C (25 min).

Biological control of mycotoxins via detoxification/degradation offers a promis-
ing alternative method [98]. Recently the effectiveness of fermentation for the 
reduction and elimination of mycotoxins has also been proven. Studies documented 
in the literature generally show that mycotoxins are reduced by conversion, detoxi-
fication, binding, degradation, and decontamination after food fermentation [99]. 
Modification of the chemical structure of the mycotoxin molecule, removal or detoxi-
fication/inactivation, and adhesion to bacterial cell walls provide a reduced toxicity 
during fermentation [99]. Implementation of these preventive methods cannot solve 
the problem alone; also it must be an integral part of an integrated food safety man-
agement system based on the hazard analysis and critical control point (HACCP).

5. Implementation of HACCP to mycotoxin control

HACCP is a food management system where food safety is addressed through 
the analysis, control, and monitoring of physical, chemical, and biological hazards 
from raw material manufacturing, supply, and handling to production, distribu-
tion, and consumption of the finished product [100]. The National Advisory 
Committee on Microbiological Criteria for Foods (NACMCF) published a guideline 
about HACCP containing seven basic principles, decision tree, and all plans in 1992 
[101]. Implementation of HACCP is an effective strategy for prevention, control, 
and periodic monitoring of mycotoxin in all stages from field to the consumer. 
There are 12 successive steps recommended to implementation of HACCP system. 
Previous HACCP studies can be researched to set up tasks from 1 to 5 that specify 
each food process, and tasks required for mycotoxin control begin at 6 (Principle 1).

1. Establish the HACCP team.

2. Describe the product.

3. Identify the product’s intended use.

4. Draw up the commodity flow diagram.

5. Confirm the flow diagram on-site.

6. Identify and analyze hazard(s) (Principle 1).

7. Determine the critical control points (CCPs) (Principle 2).

8. Establish critical limits for each (CCP) (Principle 3).

9. Establish a monitoring procedure (Principle 4).
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10. Establish corrective action (Principle 5).

11. Verify the HACCP plan (Principle 6).

12. Keep record (Principle 7).

Principle 1: identify and analyze hazard—food safety hazards for HACCP 
programs are divided into three groups: biological (bacteria, viruses, parasites, 
etc.), chemical (cleaning agents, pest control, pesticides, biocides, mycotoxin), 
and physical (glass or metal fragments, jewelry, etc.). Mycotoxins are identified as 
biological hazards because they are secondary metabolites of mold and also identi-
fied as a chemical hazard that appears as residues in food.

Principle 2: determine critical control points (CCPs)—determining CCPs is 
an essential step which is decided using the HACCP decision tree to eliminate or 
prevent a food safety hazard or reduce it to an acceptable level. Dried figs and other 
dried fruits, pistachios and other edible nuts and cereals, and also animal feed such 
as maize, groundnut cake, cottonseed cake, babassu, palm kernel cake, copra cake, 
etc. are susceptible to mycotoxin in planting, harvesting, production, storage, and 
transport according to EC regulations. Mycotoxins can be considered a CCP for 
these products. For example, Aspergillus flavus is a CCP in maize production. It is a 
pathogenic fungus which colonizes in broken kernels in stored maize. High concen-
tration of aflatoxin can cause public health problem, rejection of the final product 
or product recalls, litigation, etc. [102].

Principle 3: establish critical limits—critical limits must be defined and 
verified for each CCP. Mycotoxin acceptable limits can be set by country regulation 
and customer or producer specification which is below of the regulatory mycotoxin 
limit (Table 2).

Principle 4: establish a monitoring system for each CCP—identifying an 
appropriate, sensitive, and rapid monitoring method which applies physical, 
chemical, and biological measurement or observations for each critical control 
point. HPLC, GC, ELISA, OWLS-based biosensors, rapid test kits, etc. are used to 
detect mycotoxin level.

Principle 5: establish a corrective action—Corrective action must be estab-
lished when monitoring result indicates that there is a deviation of target CCP 

Crops and tolerated levels of mycotoxins (μgkg−1)

Country Mycotoxins Rice Maize Spices Fruit juices

Brazil AFB1/AFG1 30 30 30 30

China AFB1 10 20 — —

France FB1 1000 1000 — —

Hungary Total AF
OTA

50
5

50
5

-
-

-
-

Japan AFB1
Patulin

10 10 10 —

The United States Total AF
Patulin

20
-

20
-

20
-

-
50

Turkey AFB1
Patulin

2
-

2
-

5
-

-
-

Table 2. 
Global regulation of mycotoxin contamination in agricultural products [103].
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fication/inactivation, and adhesion to bacterial cell walls provide a reduced toxicity 
during fermentation [99]. Implementation of these preventive methods cannot solve 
the problem alone; also it must be an integral part of an integrated food safety man-
agement system based on the hazard analysis and critical control point (HACCP).
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HACCP is a food management system where food safety is addressed through 
the analysis, control, and monitoring of physical, chemical, and biological hazards 
from raw material manufacturing, supply, and handling to production, distribu-
tion, and consumption of the finished product [100]. The National Advisory 
Committee on Microbiological Criteria for Foods (NACMCF) published a guideline 
about HACCP containing seven basic principles, decision tree, and all plans in 1992 
[101]. Implementation of HACCP is an effective strategy for prevention, control, 
and periodic monitoring of mycotoxin in all stages from field to the consumer. 
There are 12 successive steps recommended to implementation of HACCP system. 
Previous HACCP studies can be researched to set up tasks from 1 to 5 that specify 
each food process, and tasks required for mycotoxin control begin at 6 (Principle 1).

1. Establish the HACCP team.

2. Describe the product.

3. Identify the product’s intended use.

4. Draw up the commodity flow diagram.

5. Confirm the flow diagram on-site.

6. Identify and analyze hazard(s) (Principle 1).
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programs are divided into three groups: biological (bacteria, viruses, parasites, 
etc.), chemical (cleaning agents, pest control, pesticides, biocides, mycotoxin), 
and physical (glass or metal fragments, jewelry, etc.). Mycotoxins are identified as 
biological hazards because they are secondary metabolites of mold and also identi-
fied as a chemical hazard that appears as residues in food.

Principle 2: determine critical control points (CCPs)—determining CCPs is 
an essential step which is decided using the HACCP decision tree to eliminate or 
prevent a food safety hazard or reduce it to an acceptable level. Dried figs and other 
dried fruits, pistachios and other edible nuts and cereals, and also animal feed such 
as maize, groundnut cake, cottonseed cake, babassu, palm kernel cake, copra cake, 
etc. are susceptible to mycotoxin in planting, harvesting, production, storage, and 
transport according to EC regulations. Mycotoxins can be considered a CCP for 
these products. For example, Aspergillus flavus is a CCP in maize production. It is a 
pathogenic fungus which colonizes in broken kernels in stored maize. High concen-
tration of aflatoxin can cause public health problem, rejection of the final product 
or product recalls, litigation, etc. [102].

Principle 3: establish critical limits—critical limits must be defined and 
verified for each CCP. Mycotoxin acceptable limits can be set by country regulation 
and customer or producer specification which is below of the regulatory mycotoxin 
limit (Table 2).

Principle 4: establish a monitoring system for each CCP—identifying an 
appropriate, sensitive, and rapid monitoring method which applies physical, 
chemical, and biological measurement or observations for each critical control 
point. HPLC, GC, ELISA, OWLS-based biosensors, rapid test kits, etc. are used to 
detect mycotoxin level.

Principle 5: establish a corrective action—Corrective action must be estab-
lished when monitoring result indicates that there is a deviation of target CCP 
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value. Taking appropriate corrective actions immediately is essential to producing 
safe food [103]. Corrective actions must ensure that the CCP is taken under control. 
Corrective action sample of maize production is given in Table 3.

Principle 6: establish verification procedures—regularly at the specified 
intervals, it must be verified by checking whether the levels of mycotoxin in 
the final product are within acceptable levels. The following steps are used for 
verification:

• Microbiological and/or chemical tests can be used to confirm which product is 
meeting CCP.

• Asking questions especially to CCP employees.

• Internal or external audit by independent person to check whether HACCP 
system is being implemented.

Principle 7: establish documentation and record keeping—record keeping 
is an evidence of how you identify, monitor, and verify each hazard. HACCP plan, 
flowchart of product, product description, HACCP team, hazard analysis docu-
ments, analysis result sheet, etc. are required for monitoring whether control of 
each hazard is appropriate or not.

6. Conclusion

Mycotoxin is a well-known food safety risk, which is a threat to human and 
livestock health, and has high economic significance in food industry. Recently, the 
food industry has become aware of the new term modified mycotoxins introduced 
by Rychlik et al. (masked mycotoxin) [104]. Food safety risk has risen since masked 
mycotoxins which pose many difficulties including the unknown occurrence/
co-occurrence of these compounds and their toxicological properties. In addition, 
Lorenz et al. reported that the European Food Safety Authority (EFSA) has taken 
into account efforts to address this emerging issue in food safety by developing 
strategies on how to evaluate potential added health risk due to the occurrence of 
modified mycotoxins [104].

Mycotoxigenic molds are difficult to prevent and control due to their widespread 
presence in nature. Prevention of mycotoxin synthesis in all stages of food process-
ing is an essential point for public health and economic reasons. Many practices 
used for prevention of mycotoxin include good agricultural practices (GAP) in 
field, control practices of harvesting and storage, physical methods (cleaning, 
milling, etc.), implementation of biotechnological application, biological control 
through the use of controlled atmosphere during storage, detoxification/degrada-
tion, and fermentation techniques.

Meanwhile a number of techniques for mycotoxin control and management 
prove to be quite costly and/or unenforceable in some cases. On the other hand, 
using fermentation process for appropriate process has been recommended for 
mycotoxin reduction by Adebiyi et al. [99]. In the future, more emphasis should be 
given to nanotechnology and genetic engineering practices in the development of 
durable product types to ensure food safety.

In addition to these applications, food safety management systems such as 
HACCP, GAP, and good manufacturing practices (GMP) should be integrated at all 
stages of production, transport, and storage, in order to minimize contamination 
in food industry. Also fairly new food safety system including threat assessment 
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value. Taking appropriate corrective actions immediately is essential to producing 
safe food [103]. Corrective actions must ensure that the CCP is taken under control. 
Corrective action sample of maize production is given in Table 3.

Principle 6: establish verification procedures—regularly at the specified 
intervals, it must be verified by checking whether the levels of mycotoxin in 
the final product are within acceptable levels. The following steps are used for 
verification:

• Microbiological and/or chemical tests can be used to confirm which product is 
meeting CCP.

• Asking questions especially to CCP employees.

• Internal or external audit by independent person to check whether HACCP 
system is being implemented.

Principle 7: establish documentation and record keeping—record keeping 
is an evidence of how you identify, monitor, and verify each hazard. HACCP plan, 
flowchart of product, product description, HACCP team, hazard analysis docu-
ments, analysis result sheet, etc. are required for monitoring whether control of 
each hazard is appropriate or not.

6. Conclusion

Mycotoxin is a well-known food safety risk, which is a threat to human and 
livestock health, and has high economic significance in food industry. Recently, the 
food industry has become aware of the new term modified mycotoxins introduced 
by Rychlik et al. (masked mycotoxin) [104]. Food safety risk has risen since masked 
mycotoxins which pose many difficulties including the unknown occurrence/
co-occurrence of these compounds and their toxicological properties. In addition, 
Lorenz et al. reported that the European Food Safety Authority (EFSA) has taken 
into account efforts to address this emerging issue in food safety by developing 
strategies on how to evaluate potential added health risk due to the occurrence of 
modified mycotoxins [104].

Mycotoxigenic molds are difficult to prevent and control due to their widespread 
presence in nature. Prevention of mycotoxin synthesis in all stages of food process-
ing is an essential point for public health and economic reasons. Many practices 
used for prevention of mycotoxin include good agricultural practices (GAP) in 
field, control practices of harvesting and storage, physical methods (cleaning, 
milling, etc.), implementation of biotechnological application, biological control 
through the use of controlled atmosphere during storage, detoxification/degrada-
tion, and fermentation techniques.

Meanwhile a number of techniques for mycotoxin control and management 
prove to be quite costly and/or unenforceable in some cases. On the other hand, 
using fermentation process for appropriate process has been recommended for 
mycotoxin reduction by Adebiyi et al. [99]. In the future, more emphasis should be 
given to nanotechnology and genetic engineering practices in the development of 
durable product types to ensure food safety.

In addition to these applications, food safety management systems such as 
HACCP, GAP, and good manufacturing practices (GMP) should be integrated at all 
stages of production, transport, and storage, in order to minimize contamination 
in food industry. Also fairly new food safety system including threat assessment 
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critical control points (TACCP), vulnerability critical control points (VACCP), and 
hazard analysis and risk-based preventive controls (HARPC) should be investigated 
and implemented to ensure an effective control system.
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Chapter 5

Fusarium graminearum Species 
Complex and Trichothecene 
Genotype
Jianhua Wang, Zhiyong Zhao, Xianli Yang, Junhua Yang, 
Andong Gong, Jingya Zhang, Lei Chen and Changyan Zhou

Abstract

The fungal phytopathogen in Fusarium species can cause Fusarium head blight of 
wheat, barley, oats, and other small cereal grain crops worldwide. Most importantly, 
these fungi can produce different kinds of mycoxins, and they are harmful to humans 
and animal health. FAO reported that approximately 25% of the world’s grains were 
contaminated by mycotoxins annually. This chapter will focus on several topics as 
below: (1) composition of Fusarium graminearum species complex; (2) genotype 
determination of Fusarium graminearum species complex strains from different hosts 
and their population structure changes; (3) genetic approaches to genotype determi-
nation in type B-trichothecene producing Fusaria fungi; and (4) some newly identi-
fied trichothecene mycotoxins, their toxicity, and distribution of the producers.

Keywords: Fusarium graminearum species complex, trichothecene, Fusarium 
mycotoxin, trichothecene genotype

1. Introduction

The fungal phytopathogen in Fusarium graminearum species complex 
(FGSC) are the primary etiological agent of Fusarium head blight (FHB) of 
wheat, barley, oats, and other small cereal grain crops worldwide. Besides, the 
Gibberella ear rot (GER) caused by FGSC and the related species F. verticillioides 
is one of the most devastating diseases on maize. FHB and GER are economically 
devastating plant disease that greatly limits grain yield and quality. Warm and 
humid weather conditions at the flowering stage are conducive to disease devel-
opment. During the 1990s, economic losses in cereals (wheat and barley) caused 
by Fusarium were estimated at close to US $3 billion (US $2.5 billion in wheat and 
US $400 million in barley) and US $520 million (US $220 million in wheat and 
US $300 million in barley) in the United States and Canada, respectively [1]. It 
was reported that due to the changes in climatic conditions and in agricultural 
practices, outbreaks of FHB have occurred more frequent and serious in China. 
From 2008 to 2015, serious yield loss of wheat caused by FHB was occurred in 
more than 5 million ha each year.

In addition, infested grain is often contaminated with Fusarium toxins which 
are harmful to human and animal health and pose a serious threat to food or feed 
safety. FHB and GER are among the most destructive and economically important 
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diseases through the world. A survey made by the journal Molecular Plant Pathology 
from the international community, and resulted in the generation of a top 10 fungal 
plant pathogen list with FGSC in fourth place [2].

Up to now, more than 70 Fusarium species have been identified within the 
Fusaria genus. FGSC, F. verticillioides, F. culmorum, F. oxysporum, F. solani,  
F. proliferatum, F. poae, F. equiseti, and F. fujikuroi are the most commonly isolated 
species worldwide on wheat, maize and other plants. The most important thing is 
that, many different kinds of mycotoxins can be produced by these molds, such as 
deoxynivalenol (DON, Figure 1), zearalenone (ZEN, Figure 2), and fumonisin B1 
(FB1, Figure 3) are the most prevalent Fusarium mycotoxins in cereal grains and 
they are very important in food and feed safety. It is clear now that one mold species 
may produce many different kinds of mycotoxins, and the same mycotoxin may be 
produced by several species. For example, FGSC can produce trichothecene and 
zearalenone, while trichothecene can be produced by FGSC, F. culmorum,  
F. poae, and F. equiseti. This chapter mainly focused on the FGSC and summarized 
the genetic methods used for trichothecene genotype determination of the strains.

2. Composition and identification of FGSC strains

Prior to 2000, due to the failure of morphological species recognition to accurately 
assess species limits for the FGSC, the species complex were considered a single 

Figure 2. 
Chemical structure of Zearalenone (ZEN).

Figure 3. 
Chemical structure of Fumonisin B1 (FB1).

Figure 1. 
Chemical structure of Deoxynivalenol (DON).
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cosmopolitan species. Applying the genealogical concordance phylogenetic species 
recognition (GCPSR), FGSC was first divided into seven phylogenetic lineages in 2000 
[3]. Phylogenetic analyses of multilocus genotyping (MLGT) of DNA sequences from 
portions of 13 housing keeping genes, combined with GCPSR and molecular marker 
technologies, it revealed that this morphospecies comprises at least 16 biogeographi-
cally structured, phylogenetically distinct species. After that the species designation 
Fusarium graminearum have been sensu stricto in some conditions. Up to now, 15 of the 
16 species have been formally described, including F. acaciae-mearnsii, F. aethiopicum, 
F. asiaticum, F. austroamericanum, F. boothii, F. brasilicum, F. cortaderiae, F. gerlachii,  
F. graminearum sensu stricto, F. louisianense, F. meridionale, F. mesoamericanum, F.  
nepalense, F. ussurianum, F. vorosii, and one additional species was informally recog-
nized based on genealogical exclusivity and conidial morphology on SNA [4].

Proper species identification is critical to research aimed at improving disease 
and mycoxins control programs. However, it is difficult to discriminate the FGSC 
strains accurately by morphological characters. A partial region of the translation 
elongation factor 1 alpha gene (TEF-1α) was widely used for molecular identifica-
tion of Fusarium genus. Some specific databases were created for Fusarium DNA 
sequence alignment analysis. For example, similarity searches of the obtained 
sequences can be performed with the Pairwise DNA alignments network service of 
the Fusarium MLST database (http://www.westerdijkinstitute.nl/fusarium/), Basic 
Local Alignment Search Tool (BLAST) network service of the Fusarium ID data-
base (http://www.fusariumdb.org/index.php), and NCBI nucleotide database.

3. Mycotoxins produced by FGSC

In addition to yield reduction, the FGSC fungi are also of concern because they 
can produce different kinds of mycotoxins, e.g. zearalenone (Figure 2) and trichot-
hecenes (Figures 4 and 5) in infested grains. Mycotoxin contamination can occur in 
both unprocessed and processed grains, representing a risk for human and animal 
health. Deleterious health effects caused by different mycotoxins include nephropa-
thy, infertility, cancer or death [5].

Up to now, more than 200 trichothecenes have been identified [6]. Due to the 
chemical structure diverse, trichothecenes are divided into four types, namely type 
A (have a single bond at carbon atom 8, C-8), e.g. T-2 toxin (Figure 4), type B (have 
a keto at C-8), type C (have an epoxide at C-7, 8), and type D (have a macrocyclic 
ring between C-4 and C-15). All trichothecenes share a common tricyclic 12, 
13-epoxytrichothec-9-ene, and they are derived from the isoprenoid intermediate 
farnesyl pyrophosphate via a series of biochemical reactions in Fusarium.

Among these mycotoxins, type B trichothecenes (Figure 5) are the most com-
mon detected in cereal grains and their related products. They are distinguished 
from type A by the presence of a keto function at C-8, and include deoxynivalenol 
(DON) and its acetylated forms 3-acetyldeoxynivalenol (3-ADON) and 15-acetyl-
deoxynivalenol (15-ADON), as well as nivalenol (NIV) and its acetylated form 
4-acetylnivalenol (4-ANIV). DON is characterized by the absence of a hydroxyl 

Figure 4. 
Chemical structure of T-2 toxin.
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mon detected in cereal grains and their related products. They are distinguished 
from type A by the presence of a keto function at C-8, and include deoxynivalenol 
(DON) and its acetylated forms 3-acetyldeoxynivalenol (3-ADON) and 15-acetyl-
deoxynivalenol (15-ADON), as well as nivalenol (NIV) and its acetylated form 
4-acetylnivalenol (4-ANIV). DON is characterized by the absence of a hydroxyl 

Figure 4. 
Chemical structure of T-2 toxin.
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function at C-4, whereas NIV is characterized by the presence of a hydroxyl func-
tion at C-4. 3-ADON and 15-ADON are the acetylated forms of DON at C-3 and 
C-15, respectively. Meanwhile, NIV and 4-ANIV can be differed by the absence 
(NIV) and presence (4-ANIV) of an acetyl function at C-4 (Figure 5).

Type B trichothecenes are of the greatest concern in wheat and barley-growing 
regions worldwide, because they can represent a major threat to food and feed 
safety. These toxins are potent inhibitors of protein synthesis and are responsible 
for neurologic, gastrointestinal, immune function and other disorders. Although 
type B trichothecenes differ only slightly from each other in terms of the pattern 
and position of acetylation or hydroxylation, these changes can greatly affect the 
toxicity and the activity of these chemical compounds [7]. For example, DON is 
associated with feed refusal, vomiting and suppressed immune functions, and 
NIV is more toxic to humans and domestic animals than is DON. Determination 
of these trichothecene variations are important because the toxicity of DON and 
NIV may vary according to the eukaryotic organism affected. Minervini et al. [8] 
found that NIV was approximately four times more toxic than DON to human cells. 
Conversely, DON is 10 to 24 times more toxic to plant cells than NIV [9].

Type B trichothecenes are mainly produced by FGSC. Due to the ability of 
FGSC strains that producing different kinds of trichothecenes, three strain-specific 
trichothecene genotypes (chemotypes) were identified in FGSC: the 3-ADON 
genotype produces DON and 3-ADON, the 15-ADON genotype produces DON 
and 15-ADON, and the NIV genotype produces NIV and its acetylated derivatives 
4-ANIV [10].

4. Mycotoxins act as virulence on certain hosts

Evidence is presented to show that trichothecene toxins act as virulence factors 
on certain hosts. Strains carrying a disrupted trichodiene synthase gene Tri5 do not 
produce trichothecenes or their biosynthetic intermediates [11]. Disruption of the 
trichodiene synthase which catalyzes the first step in trichothecene biosynthesis in 
a 15-ADON producer GZ3639 exhibited reduced virulence on seedlings and heads 
of wheat, but wild-type virulence on seedlings of maize. The results indicated that 
trichothecene production contributes to the virulence of FGSC on wheat [12]. Eudes 
et al. [13] confirmed earlier findings that trichothecenes are a principal determinant 

Figure 5. 
Chemical structures of deoxynivalenol (DON), 3-acetyl deoxynivalenol (3-ADON), 15-acetyl deoxynivalenol 
(15-ADON), nivalenol (NIV), and 4-acetyl nivalenol (4-ANIV).
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of F. graminearum aggressiveness on wheat cultivars. More recently, Maier et al. [14] 
investigated the involvement of trichothecenes in the virulence of the pathogen by 
disrupting the Tri5 gene encoding the first committed enzyme trichodiene synthase 
in FGSC strains with 3-ADON, 15-ADON, and NIV genotype, respectively. The 
results demonstrated that disruption mutants can cause disease symptoms on the 
inoculated spikelet but the symptoms cannot spread into other spikelets on wheat. 
And on maize, mutants derived from the NIV genotype strain caused less disease than 
their progenitor strain, while no significant difference compared to the wild-type 
strains were observed on barley [14]. Trichothecenes are therefore also potent phyto-
toxins and act as virulence factors of pathogenic fungi thus facilitate tissue coloniza-
tion on sensitive host plants, e.g. of DON produced by F. graminearum in wheat [15].

Host preference was identified among the FGSC on wheat, maize, barley, and 
rice in certain regions. Several studies suggested that maize played a significant role 
for the presence of the NIV genotype for FGSC. NIV producers were found to be 
more aggressive toward maize compared to DON producers [16]. This can be due to 
the fact that NIV is a virulence factor useful for maize colonization [14], and there-
fore the plant probably represents an ecological niche for hosting the NIV genotype 
strains. A high proportion of NIV producers of FGSC on maize were observed in 
China by our group based on a collection from 59 districts in 19 provinces through-
out China, and NIV producers preferentially to maize [17].

5. Distribution and population changes of FGSC

The species composition and genotype prevalence of FGSC vary widely in 
different regions, which reflecting the level of risk factors in feed/food safety. 
Investigations on Fusarium species isolated from wheat, barley, and maize crops 
have been reported in the last two decades. Dynamic changes of species composi-
tion and chemotype proportion have been found in different agricultural ecosys-
tems worldwide. Prior to 2000, strains from the United States and Canada were 
almost exclusively 15-ADON producers, while they have been increasingly replaced 
by the 3-ADON producers in some major wheat-growing regions, e.g. the frequency 
of the 3-ADON genotype in western Canada increased more than 14-fold between 
1998 and 2004 [18]. Also Schmale et al. [19] analyzed the trichothecene genotypes 
of Gibberella zeae collected from winter wheat fields in the eastern parts of the 
US. They revealed an increasing gradient in 3-ADON distribution from south to 
north and closer to Canada. In some regions, the  
F. graminearum 15-ADON chemotype is being replaced by the 3-ADON chemotype. 
The epidemiology data indicated that 3-ADON chemotype dominates in northern 
Europe, while 15-ADON chemotype dominates in North America, central Europe 
and southern Russia and some parts of Asia.

The composition of FGSC population appears to be host and location dependent. 
The results by Zhang et al. [20] and Shen et al. [21] indicated that F. asiaticum was the 
predominated in wheat. Among the 97 FGSC assayed from rice (30 strains), maize  
(33 strains), and wheat (34 strains) by Qiu and Shi [22], 73 strains were identified as 
 F. asiaticum and 63 of them were collected from rice or wheat. The remaining 24 
strains belonged to F. graminearum sensu stricto and 23 of them were isolated from 
maize, only 1 strain was collected from wheat. Similarly, FGSC strains were isolated 
from GER samples in South Korea with F. graminearum sensu stricto to be the dominant 
species which account for 75% of the FGSC [23], while F. asiaticum was the dominant 
species (78.5%) on Korean rice and followed by F. graminearum sensu stricto [24].

The distribution of FGSC may correlate with annual temperature. Qu et al. [25] 
reported that temperature affected the geographic distribution of F. graminearum 
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of F. graminearum aggressiveness on wheat cultivars. More recently, Maier et al. [14] 
investigated the involvement of trichothecenes in the virulence of the pathogen by 
disrupting the Tri5 gene encoding the first committed enzyme trichodiene synthase 
in FGSC strains with 3-ADON, 15-ADON, and NIV genotype, respectively. The 
results demonstrated that disruption mutants can cause disease symptoms on the 
inoculated spikelet but the symptoms cannot spread into other spikelets on wheat. 
And on maize, mutants derived from the NIV genotype strain caused less disease than 
their progenitor strain, while no significant difference compared to the wild-type 
strains were observed on barley [14]. Trichothecenes are therefore also potent phyto-
toxins and act as virulence factors of pathogenic fungi thus facilitate tissue coloniza-
tion on sensitive host plants, e.g. of DON produced by F. graminearum in wheat [15].

Host preference was identified among the FGSC on wheat, maize, barley, and 
rice in certain regions. Several studies suggested that maize played a significant role 
for the presence of the NIV genotype for FGSC. NIV producers were found to be 
more aggressive toward maize compared to DON producers [16]. This can be due to 
the fact that NIV is a virulence factor useful for maize colonization [14], and there-
fore the plant probably represents an ecological niche for hosting the NIV genotype 
strains. A high proportion of NIV producers of FGSC on maize were observed in 
China by our group based on a collection from 59 districts in 19 provinces through-
out China, and NIV producers preferentially to maize [17].

5. Distribution and population changes of FGSC

The species composition and genotype prevalence of FGSC vary widely in 
different regions, which reflecting the level of risk factors in feed/food safety. 
Investigations on Fusarium species isolated from wheat, barley, and maize crops 
have been reported in the last two decades. Dynamic changes of species composi-
tion and chemotype proportion have been found in different agricultural ecosys-
tems worldwide. Prior to 2000, strains from the United States and Canada were 
almost exclusively 15-ADON producers, while they have been increasingly replaced 
by the 3-ADON producers in some major wheat-growing regions, e.g. the frequency 
of the 3-ADON genotype in western Canada increased more than 14-fold between 
1998 and 2004 [18]. Also Schmale et al. [19] analyzed the trichothecene genotypes 
of Gibberella zeae collected from winter wheat fields in the eastern parts of the 
US. They revealed an increasing gradient in 3-ADON distribution from south to 
north and closer to Canada. In some regions, the  
F. graminearum 15-ADON chemotype is being replaced by the 3-ADON chemotype. 
The epidemiology data indicated that 3-ADON chemotype dominates in northern 
Europe, while 15-ADON chemotype dominates in North America, central Europe 
and southern Russia and some parts of Asia.

The composition of FGSC population appears to be host and location dependent. 
The results by Zhang et al. [20] and Shen et al. [21] indicated that F. asiaticum was the 
predominated in wheat. Among the 97 FGSC assayed from rice (30 strains), maize  
(33 strains), and wheat (34 strains) by Qiu and Shi [22], 73 strains were identified as 
 F. asiaticum and 63 of them were collected from rice or wheat. The remaining 24 
strains belonged to F. graminearum sensu stricto and 23 of them were isolated from 
maize, only 1 strain was collected from wheat. Similarly, FGSC strains were isolated 
from GER samples in South Korea with F. graminearum sensu stricto to be the dominant 
species which account for 75% of the FGSC [23], while F. asiaticum was the dominant 
species (78.5%) on Korean rice and followed by F. graminearum sensu stricto [24].

The distribution of FGSC may correlate with annual temperature. Qu et al. [25] 
reported that temperature affected the geographic distribution of F. graminearum 
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sensu stricto and F. asiaticum on wheat spikes in China. A comprehensive study on 
FGSC from wheat was conducted by Zhang et al. [20]. They found that the geo-
graphic distribution of FGSC associated with the annual average temperature. The 
cooler temperatures (annual average temperature ≤15°C) appear to favor  
F. graminearum sensu stricto, while the warmer regions (annual average temperature 
≥15°C) appear to favor F. asiaticum. A hypothesis was made that the distribution of 
FGSC members are climate dependent [20].

F. graminearum sensu stricto with the 15-ADON genotype and F. asiaticum with 
either the NIV or the 3-ADON genotype were the dominant causal agents on wheat, 
and the two species dominated the northern and southern regions of China, respec-
tively, which is consistent with earlier studies [20, 26, 27].

However, more recently the study by Zhang et al. [28] indicated that tempera-
ture may not be the only factor in the distribution of FGSC and that other, yet 
unknown factors affected their distribution. To explain genotype distribution in 
different geographic areas, hypotheses based on grain seed shipment, international 
trade, long-distance spore transportation, and environmental favorable conditions 
were proposed.

6. FGSC fitness vary

Phylogenetic analyses of trichothecene gene cluster demonstrated that genotype 
polymorphism is trans-specific and have been maintained by balancing selection on 
the ancestral pathogens, and genotype differences may have a significant impact on 
pathogen fitness [29].

The FGSC strains with different genotype showed different fitness to the eco-
logical environment, such as the hosts, temperature, rotation, and so on. 3-ADON 
producer was more aggressive than 15-ADON population in susceptible wheat, 
and also the 3-ADON isolates exhibit a higher DON production than the 15-ADON 
isolates. Similar conclusions were made by Zhang et al. [28] that F. asiaticum strains 
with 3-ADON chemotype revealed significant advantages over the strains that 
produce NIV in pathogenicity, growth rate, trichothecene accumulation, etc. Their 
data also indicated that the growth of rice may be a key factor for the presence of 
F. asiaticum [28]. Liu et al. [30] compared the fitness of three chemotype Fusarium 
strains, and found that 15ADON producers had the advantage in perithecia forma-
tion and ascospore release, whereas more DON were produced by the 3-ADON 
chemotypes. Qiu and Shi [22] estimated the effect of rice or maize as former crops 
on mycotoxin accumulation in wheat grains, and they concluded that rice-wheat 
rotation favors DON accumulation.

Changes in DON chemotypes distribution were reported for FGSC from 
Canada, USA, and Northern Europe. Recently, Nicolli et al. [31] assessed a range of 
fitness-related traits (perithecia formation, mycelial growth, sporulation and ger-
mination, pathogenicity, and sensitivity to tebuconazole) with 30 strains represen-
tatives of 3ADON-, 15ADON-, and NIV-producers. The pathogenicity assay results 
indicated that strains with the DON chemotypes were generally more aggressive 
than the NIV ones [31].

Phenotypic analyses indicated that F. asiaticum with a 3-ADON genotype 
revealed significant advantages over F. asiaticum that produce NIV in pathogenic-
ity, growth rate, and trichothecene mycotoxin accumulation. It shall be noted that 
a biased gene flow from 3-ADON to NIV producers was identified in F. asiaticum 
from wheat in China [28].

FGSC from wheat-maize rotation regions on wheat spikes and maize stalks 
in Henan province, China, was determined by Hao et al. [32], and significant 
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differences were found in the frequencies of F. graminearum sensu stricto and F. asi-
aticum species within the hosts with F. graminearum sensu stricto to be the dominant. 
Genotype analysis revealed that 15-ADON producers represented 92.7 and 98.5% of 
isolates from wheat and maize, respectively. The three genotypes may affect species 
distribution or population ecology because these mycotoxins are differing in toxic-
ity and bioactivity [7, 29, 33].

7. Genetic genotype determination of FGSC

Traditionally, chemotyping of FGSC strains has been carried out using gas 
chromatography/mass spectroscopy. This method can be time-consuming and 
expensive. The genome sequences of several FGSC strains have been published. The 
trichothecene core gene cluster nucleotide sequences of many strains representatives 
3-ADON, 15-ADON, and NIV genotypes have also been deposited in the GenBank. 
The availability of this information makes it possible to reveal the structural features 
and allowed selection of several primer sets used successfully in PCR experiments for 
the molecular characterization of the various chemotypes. Molecular genetic assays 
allow for high throughput screening of large numbers of field isolates.

Lee et al. [34] sequenced the gene cluster for trichothecene biosynthesis from a 
15-ADON producer (strain H-11) and a NIV producer (strain 88-1), and sequence 
polymorphisms within the Tri7 open reading frame was found between the two 
strains. Alignment analysis suggesting that the Tri7 gene of H-11 carried several 
mutations and an insertion compared to the Tri7 gene from 88-1, and based on the 
sequence difference a PCR-based diagnostic method for differentiating DON and 
NIV producers by polyacrylamide gel electrophoresis was developed.

Lee et al. [35] subsequently sequenced the Tri13 homolog from DON (strain 
H-11) and NIV producers (strain 88-1) and found that the gene differs drastically 
between the two producers, suggesting that the Tri13 gene could be used for genetic 
genotype distinction for DON and NIV producers [35, 36]. They further confirmed 
the roles of the Tri7 and Tri13 genes in trichothecene production, and the results sug-
gested that both the Tri7 and Tri13 genes are nonfunctional in DON producers [35].

The PCR assays to Tri7 and Tri13 genes developed by Lee et al. [34, 35] allowed 
clear differentiation between DON and NIV genotypes. However, they could not be 
used to further classify the DON-producing isolates to 3-ADON or 15-ADON pro-
ducer. Ward et al. [29] examined a 19-kb region of the trichothecene gene cluster 
that sequenced in 39 strains representing 3-ADON, 15-ADON, and NIV genotypes. 
They found that Tri-cluster haplotypes group according to genotype rather than by 
species indicated that 3-ADON, 15-ADON, and NIV genotypes each have a single 
evolutionary origin. Reciprocally monophyletic groups, corresponding to each of 
3-ADON, 15-ADON, and NIV genotypes, were strongly supported in Tri3, Tri11, 
and Tri12 genes trees. Two sets of primers specific to the individual genotypes were 
designed from Tri3 and Tri12 genes. The genotype-specific PCR tests developed 
by Ward et al. [29] provide a rapid and direct genetic method for distinguishing 
among 3-ADON, 15-ADON, and NIV producer, this is the first report differentiated 
these three genotype strains by a PCR method.

The work by Lee et al. [34, 35] and Brown et al. [37] indicated that the genes 
Tri13 and Tri7 from trichothecene biosynthetic cluster are responsible for conver-
sion of DON to NIV (Tri13 gene) and the Tri7 gene product modifies NIV by 
acetylation of C-4 atom hydroxyl to produce 4-ANIV. Based on these results sets of 
positive-negative PCR assays to Tri7 and Tri13 genes for trichothecene determina-
tion of FGSC were developed by Chandler et al. [38], and the assays can accurately 
indicate a DON or NIV genotype in FGSC, F. culmorum and F. cerealis. The assays 
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evolutionary origin. Reciprocally monophyletic groups, corresponding to each of 
3-ADON, 15-ADON, and NIV genotypes, were strongly supported in Tri3, Tri11, 
and Tri12 genes trees. Two sets of primers specific to the individual genotypes were 
designed from Tri3 and Tri12 genes. The genotype-specific PCR tests developed 
by Ward et al. [29] provide a rapid and direct genetic method for distinguishing 
among 3-ADON, 15-ADON, and NIV producer, this is the first report differentiated 
these three genotype strains by a PCR method.

The work by Lee et al. [34, 35] and Brown et al. [37] indicated that the genes 
Tri13 and Tri7 from trichothecene biosynthetic cluster are responsible for conver-
sion of DON to NIV (Tri13 gene) and the Tri7 gene product modifies NIV by 
acetylation of C-4 atom hydroxyl to produce 4-ANIV. Based on these results sets of 
positive-negative PCR assays to Tri7 and Tri13 genes for trichothecene determina-
tion of FGSC were developed by Chandler et al. [38], and the assays can accurately 
indicate a DON or NIV genotype in FGSC, F. culmorum and F. cerealis. The assays 
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were successfully used to screen isolates from different countries and the genotype-
specific assays were able to detect and characterize a wider range of species and 
haplotypes than previous methods.

By comparing the published sequences for Tri13 gene from known DON- and 
NIV- producers, Waalwijk et al. [39] designed a primer pair to discriminate the two 
genotypes which generated a 234 bp fragment in DON-producers and a fragment of 
415 bp in NIV-producers. The Tri13 primer pair was capable and robust to deter-
mine the genotype of strains from F. culmorum.

Based on information reported and deposited by Ward et al. [29], three primer 
sets were designed to the Tri3 gene by Jennings et al. [40] to allow further dif-
ferentiation of the DON genotype into either 3-ADON or 15-ADON. Each isolate 
produces a PCR product with only one of these primer sets but not the other two 
from F. culmorum and FGSC strains [40, 41].

Li et al. [42] found that the intergenic sequences between Tri5 and Tri6 genes 
appear to be mycotoxin genotype-specific, and based on the sequence length 
polymorphism a generic PCR assay was developed to detect a 300 bp fragment of 
DON-genotype strains and a 360 bp fragment of NIV-genotypes from FGSC.

Based on the sequences of FGSC described by Lee et al. [34] and Ward et al. 
[29], a series of PCR assays have been designed to Tri3 and Tri7 by Quarta et al. [43], 
in order to permit specific detection of 3-ADON, 15-ADON, and NIV genotypes, 
respectively. These primers were subjected to a multiplex PCR assay for the identifi-
cation of the different genotypes of Fusarium strains combined with the primer pair 
derived from the Tri5 gene by Bakan et al. [44]. The multiplex PCR was validated on 
FGSC, F. cerealis, F. culmorum strains from different European countries, and suc-
cessfully used to identify the genotype of the Fusarium strain contaminating wheat 
kernels [43, 45].

The possibility to distinguish by a singleplex PCR 3-ADON, 15-ADON, and NIV 
genotypes was not yet resolved until very recently. Wang et al. [46] developed a 
Tri13 based PCR assay and successfully identified the 3-ADON, 15-ADON, and NIV 
genotypes in FGSC from Asia, Europe, and America. Using the primer pair, specific 
amplification products of 644, 583, and 859 bp were obtained from isolates produc-
ing 3-ADON, 15-ADON, and NIV, respectively. All three types of PCR fragments had 
different molecular sizes with a smallest difference of 61 bp can be directly differen-
tiated on an agarose gel. The method should be more reliable than other PCR-based 
assays that show the absence or presence of a PCR fragment since these assays may 
generate false-negative results. This is a rapid, reliable and cost-effective method for 
the determination of 3-ADON, 15-ADON, and NIV genotype strains in FGSC.

Recently Suzuki et al. [47] reported a multiplex PCR assay for simultaneous 
identification of the species and trichothecene genotypes for F. graminearum sensu 
stricto and F. asiaticum based on Tri3 and Tri6 genes. This approach proved success-
ful for Japanese strains [47].

An alternative method based on Tri11 polymorphism was developed by Zhang 
et al. [48] to differentiate 3-ADON, 15-ADON, and NIV genotypes of FGSC strains. 
Similarly, we presented another multiplex assay based on the single nucleotide 
polymorphism of Tri11 gene between strains of different genotype [49]. The assay 
was also validated on plant material.

Recent work by Kulik [50] and Nielsen et al. [51] to detect and quantify FGSC 
genotypes in plants/grains were developed based on TaqMan probe set and SYBR 
green method with Tri12 gene, respectively.

Due to the toxicological differences between DON and NIV, it is important 
to monitor the population and determine the chemotypes of strains present 
in any given geographic region. Mycotoxin producing capability of a certain 
strain could be established both through biochemical and molecular techniques. 
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were successfully used to screen isolates from different countries and the genotype-
specific assays were able to detect and characterize a wider range of species and 
haplotypes than previous methods.

By comparing the published sequences for Tri13 gene from known DON- and 
NIV- producers, Waalwijk et al. [39] designed a primer pair to discriminate the two 
genotypes which generated a 234 bp fragment in DON-producers and a fragment of 
415 bp in NIV-producers. The Tri13 primer pair was capable and robust to deter-
mine the genotype of strains from F. culmorum.

Based on information reported and deposited by Ward et al. [29], three primer 
sets were designed to the Tri3 gene by Jennings et al. [40] to allow further dif-
ferentiation of the DON genotype into either 3-ADON or 15-ADON. Each isolate 
produces a PCR product with only one of these primer sets but not the other two 
from F. culmorum and FGSC strains [40, 41].

Li et al. [42] found that the intergenic sequences between Tri5 and Tri6 genes 
appear to be mycotoxin genotype-specific, and based on the sequence length 
polymorphism a generic PCR assay was developed to detect a 300 bp fragment of 
DON-genotype strains and a 360 bp fragment of NIV-genotypes from FGSC.

Based on the sequences of FGSC described by Lee et al. [34] and Ward et al. 
[29], a series of PCR assays have been designed to Tri3 and Tri7 by Quarta et al. [43], 
in order to permit specific detection of 3-ADON, 15-ADON, and NIV genotypes, 
respectively. These primers were subjected to a multiplex PCR assay for the identifi-
cation of the different genotypes of Fusarium strains combined with the primer pair 
derived from the Tri5 gene by Bakan et al. [44]. The multiplex PCR was validated on 
FGSC, F. cerealis, F. culmorum strains from different European countries, and suc-
cessfully used to identify the genotype of the Fusarium strain contaminating wheat 
kernels [43, 45].

The possibility to distinguish by a singleplex PCR 3-ADON, 15-ADON, and NIV 
genotypes was not yet resolved until very recently. Wang et al. [46] developed a 
Tri13 based PCR assay and successfully identified the 3-ADON, 15-ADON, and NIV 
genotypes in FGSC from Asia, Europe, and America. Using the primer pair, specific 
amplification products of 644, 583, and 859 bp were obtained from isolates produc-
ing 3-ADON, 15-ADON, and NIV, respectively. All three types of PCR fragments had 
different molecular sizes with a smallest difference of 61 bp can be directly differen-
tiated on an agarose gel. The method should be more reliable than other PCR-based 
assays that show the absence or presence of a PCR fragment since these assays may 
generate false-negative results. This is a rapid, reliable and cost-effective method for 
the determination of 3-ADON, 15-ADON, and NIV genotype strains in FGSC.

Recently Suzuki et al. [47] reported a multiplex PCR assay for simultaneous 
identification of the species and trichothecene genotypes for F. graminearum sensu 
stricto and F. asiaticum based on Tri3 and Tri6 genes. This approach proved success-
ful for Japanese strains [47].

An alternative method based on Tri11 polymorphism was developed by Zhang 
et al. [48] to differentiate 3-ADON, 15-ADON, and NIV genotypes of FGSC strains. 
Similarly, we presented another multiplex assay based on the single nucleotide 
polymorphism of Tri11 gene between strains of different genotype [49]. The assay 
was also validated on plant material.

Recent work by Kulik [50] and Nielsen et al. [51] to detect and quantify FGSC 
genotypes in plants/grains were developed based on TaqMan probe set and SYBR 
green method with Tri12 gene, respectively.

Due to the toxicological differences between DON and NIV, it is important 
to monitor the population and determine the chemotypes of strains present 
in any given geographic region. Mycotoxin producing capability of a certain 
strain could be established both through biochemical and molecular techniques. 
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The biochemical approach involves the incubation and extraction of mycotoxins, 
the methods being complicated and time consuming. The molecular techniques are 
based on detection of specific gene by using specific primers. All these molecular 
methods developed for genotype analysis are based on nucleotide diversity of 
trichothecene synthesis genes. Chemotype characterization has been extensively 
used to characterize FGSC for their toxigenic potential [52]. The information about 
the genetic genotyping methods developed so far, such as targeted gene, primer 
name, primer sequence, and amplification fragment sizes are summarized in 
Table 1.

More effective and accuracy genetic methods are needed. We are doing genomic 
sequencing of FGSC strains with different trichothecene genotypes, and we believe 
some new molecular genetic methods will be developed based on the genomic data.

8. Newly identified trichothecene mycotoxins

In addition to the well characterized fungal mycotoxins, plant-derived 
mycotoxin metabolites, masked mycotoxins, have emerged as important co-con-
taminants in cereals [53, 54]. The most commonly detected masked mycotoxin con-
jugates are β-linked glucose-conjugates of trichothecenes, such as DON-3-glucoside 
(Figure 6). The possible hydrolysis of masked mycotoxins back to their toxic 
parents during mammalian digestion raises great concerns. Recently, a new series of 
type-A trichothecene, NX-toxins (Figure 7), produced by FGSC were characterized 
[5]. In vitro translation assays indicated that NX-3 can inhibit protein biosynthesis 
to almost the same extent as DON [5]. Comprehensive work on intestinal hydroly-
sis, absorption, metabolism, and toxicity of newly characterized mycotoxins need 
to be determined (Figure 7).

9. Conclusion

The knowledge about the mycotoxins chemotypes could contribute to a better 
management of fungal infections and breeding of resistance, in order to obtain 
grains of better quality. The results will also contribute to improve our understand-
ing of the ecology and epidemiology of FGSC members, which may be of value for 

Figure 6. 
Chemical structure of deoxynivalenol-3-glucoside (D3G).

Figure 7. 
Chemical structures of NX-2, NX-3, and NX-4.

79

Fusarium graminearum Species Complex and Trichothecene Genotype
DOI: http://dx.doi.org/10.5772/intechopen.89045

Author details

Jianhua Wang1*, Zhiyong Zhao1, Xianli Yang1, Junhua Yang1, Andong Gong2, 
Jingya Zhang1, Lei Chen1 and Changyan Zhou1

1 Institute for Agro-food Standards and Testing Technology, Laboratory of Quality 
and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, 
Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China

2 College of Life and Science, Xinyang Normal University, Xinyang, P. R. China

*Address all correspondence to: jianhuawang163@163.com

improving models for assessing the risk or epidemics and mycotoxin production. 
Genetic genotyping has been proved to be a useful tool for predicting trichothecene 
type produced by FGSC, and future work on the more effective tools for genotype 
determination is needed. The discovery of novel toxic metabolites belonging to 
trichothecenes, such as NX-toxins is also suggesting that the prevalence, distri-
bution, and genetic diversity of FGSC require continuous monitoring. Further 
research on the biosynthesis molecular mechanism of trichothecene, especially the 
novel mycotoxins is needed.

Acknowledgements

The authors acknowledged the financial support from National Natural Science 
Foundation of China (31871896, 31602124, and 31401598), Shanghai Agriculture 
Commission Basic Research Project (Grant number 2014 NO.7-3-7), and Shanghai 
Academy of Agricultural Sciences (Grant number 210ZJ1812).

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



Mycotoxins and Food Safety

78

The biochemical approach involves the incubation and extraction of mycotoxins, 
the methods being complicated and time consuming. The molecular techniques are 
based on detection of specific gene by using specific primers. All these molecular 
methods developed for genotype analysis are based on nucleotide diversity of 
trichothecene synthesis genes. Chemotype characterization has been extensively 
used to characterize FGSC for their toxigenic potential [52]. The information about 
the genetic genotyping methods developed so far, such as targeted gene, primer 
name, primer sequence, and amplification fragment sizes are summarized in 
Table 1.

More effective and accuracy genetic methods are needed. We are doing genomic 
sequencing of FGSC strains with different trichothecene genotypes, and we believe 
some new molecular genetic methods will be developed based on the genomic data.

8. Newly identified trichothecene mycotoxins

In addition to the well characterized fungal mycotoxins, plant-derived 
mycotoxin metabolites, masked mycotoxins, have emerged as important co-con-
taminants in cereals [53, 54]. The most commonly detected masked mycotoxin con-
jugates are β-linked glucose-conjugates of trichothecenes, such as DON-3-glucoside 
(Figure 6). The possible hydrolysis of masked mycotoxins back to their toxic 
parents during mammalian digestion raises great concerns. Recently, a new series of 
type-A trichothecene, NX-toxins (Figure 7), produced by FGSC were characterized 
[5]. In vitro translation assays indicated that NX-3 can inhibit protein biosynthesis 
to almost the same extent as DON [5]. Comprehensive work on intestinal hydroly-
sis, absorption, metabolism, and toxicity of newly characterized mycotoxins need 
to be determined (Figure 7).

9. Conclusion

The knowledge about the mycotoxins chemotypes could contribute to a better 
management of fungal infections and breeding of resistance, in order to obtain 
grains of better quality. The results will also contribute to improve our understand-
ing of the ecology and epidemiology of FGSC members, which may be of value for 

Figure 6. 
Chemical structure of deoxynivalenol-3-glucoside (D3G).

Figure 7. 
Chemical structures of NX-2, NX-3, and NX-4.

79

Fusarium graminearum Species Complex and Trichothecene Genotype
DOI: http://dx.doi.org/10.5772/intechopen.89045

Author details

Jianhua Wang1*, Zhiyong Zhao1, Xianli Yang1, Junhua Yang1, Andong Gong2, 
Jingya Zhang1, Lei Chen1 and Changyan Zhou1

1 Institute for Agro-food Standards and Testing Technology, Laboratory of Quality 
and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, 
Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China

2 College of Life and Science, Xinyang Normal University, Xinyang, P. R. China

*Address all correspondence to: jianhuawang163@163.com

improving models for assessing the risk or epidemics and mycotoxin production. 
Genetic genotyping has been proved to be a useful tool for predicting trichothecene 
type produced by FGSC, and future work on the more effective tools for genotype 
determination is needed. The discovery of novel toxic metabolites belonging to 
trichothecenes, such as NX-toxins is also suggesting that the prevalence, distri-
bution, and genetic diversity of FGSC require continuous monitoring. Further 
research on the biosynthesis molecular mechanism of trichothecene, especially the 
novel mycotoxins is needed.

Acknowledgements

The authors acknowledged the financial support from National Natural Science 
Foundation of China (31871896, 31602124, and 31401598), Shanghai Agriculture 
Commission Basic Research Project (Grant number 2014 NO.7-3-7), and Shanghai 
Academy of Agricultural Sciences (Grant number 210ZJ1812).

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



80

Mycotoxins and Food Safety

[1] Windels CE. Economic and social 
impacts of Fusarium head blight: 
Changing farms and rural communities 
in the Northern Great Plains. 
Phytopathology. 2000;90(1):17-21

[2] Dean R, Van Kan JA, Pretorius ZA, 
Hammond-Kosack KE, Di Pietro A, 
Spanu PD, et al. The top 10 fungal 
pathogens in molecular plant 
pathology. Molecular Plant Pathology. 
2012;13(4):414-430

[3] O’Donnell K, Kistler HC, Tacke BK, 
Casper HH. Gene genealogies reveal 
global phylogeographic structure and 
reproductive isolation among lineages 
of Fusarium graminearum, the fungus 
causing wheat scab. Proceedings of 
the National Academy of Sciences 
of the United States of America. 
2000;97:7905-7910

[4] Aoki T, Ward TJ, Kistler HC, 
O’Donnell K. Systematics, phylogeny 
and trichothecene mycotoxin 
potential of Fusarium head blight 
cereal pathogens. Mycotoxins. 
2012;62(2):91-102

[5] Varga E, Wiesenberger G, 
Hametner C, Ward TJ, Dong Y, 
Schöfbeck D, et al. New tricks of an old 
enemy: Isolates of Fusarium graminearum 
produce a type A trichothecene 
mycotoxin. Environmental 
Microbiology. 2015;17(8): 
2588-2600

[6] Grove JF. The trichothecenes and 
their biosynthesis. Fortschritte der 
Chemie Organischer Naturstoffe. 
2007;88:63-130

[7] Kimura M, Kaneko I, Komiyama M, 
Takatsuki A, Koshino H, Yoneyama K, 
et al. Trichothecene 3-O-acetyltransferase 
protects both the producing organism 
and transformed yeast from related 
mycotoxins. Journal of Biological 
Chemistry. 1998;273:1654-1661

[8] Minervini F, Fornelli F, Flynn KM. 
Toxicity and apoptosis induced by the 
mycotoxins nivalenol, deoxynivalenol 
and fumonisin B1 in a human 
erythroleukemia cell line. Toxicology In 
Vitro. 2004;18(1):21-28

[9] Shimada T, Otani M. Effects of 
Fusarium mycotoxins on the growth 
of shoots and roots at germination 
in some Japanese wheat cultivars. 
Cereal Research Communications. 
1990;18:229-232

[10] Miller JD, Greenhalgh R, Wang YZ, 
Lu M. Trichothecene chemotypes of 
three Fusarium species. Mycologia. 
1991;83(2):121-130

[11] Hohn TM, Desjardins AE. Isolation 
and gene disruption of the Tox5, gene 
encoding trichodiene synthase in 
Gibberella pulicaris. Molecular Plant-
Microbe Interactions. 1992;5:249-256

[12] Proctor RH, Hohn TM, 
McCormick SP. Reduced virulence of 
Gibberella zeae caused by disruption of 
a trichothecene toxin biosynthetic gene. 
Molecular Plant-Microbe Interactions. 
1995;8:593-601

[13] Eudes F, Comeau A, Rioux S, 
Collin J. Impact of trichothecenes on 
Fusarium head blight Fusarium 
graminearum development in 
spring wheat (Triticum aestivum). 
Canadian Journal of Plant Pathology. 
2001;23:318-322

[14] Maier FJ, Miedaner T, Hadeler B, 
Felk A, Salomon S, Lemmens M, et al. 
Involvement of trichothecenes in 
fusarioses of wheat, barley and maize 
evaluated by gene disruption of the 
trichodiene synthase (Tri5) gene 
in three field isolates of different 
chemotype and virulence. Molecular 
Plant Pathology. 2006;7(6):449-461

[15] Jansen C, von Wettstein D, 
Schafer W, Kogel KH, Felk A, Maier FJ. 

References

81

Fusarium graminearum Species Complex and Trichothecene Genotype
DOI: http://dx.doi.org/10.5772/intechopen.89045

Infection patterns in barley and wheat 
spikes inoculated with wild-type and 
trichodiene synthase gene disrupted 
Fusarium graminearum. Proceedings 
of the National Academy of Sciences 
of the United States of America. 
2005;102:16892-16897

[16] Carter JP, Rezanoor HN, Holden D, 
Desjardins AE, Plattner RD, 
Nicholson P. Variation in pathogenicity 
associated with the genetic diversity 
of Fusarium graminearum. European 
Journal of Plant Pathology. 
2002;108:573-583

[17] Ndoye M, Zhang JB, Wang JH, 
Gong AD, Li HP, Qu B, et al. Nivalenol 
and 15-acetyldeoxynivalenol 
chemotypes of Fusarium graminearum 
clade species are prevalent on 
maize throughout China. Journal of 
Phytopathology. 2012;160:519-524

[18] Ward TJ, Clear RM, Rooney AP, 
O’Donnell K, Gaba D, Patrick S, 
et al. An adaptive evolutionary shift 
in Fusarium head blight pathogen 
populations is driving the rapid 
spread of more toxigenic Fusarium 
graminearum in North America. 
Fungal Genetics and Biology. 
2008;45:473-484

[19] Schmale DG, Wood Jones AK, 
Cowger C, Bergstrom GC, Arellano C. 
Trichothecene genotypes of Gibberella 
zeae from winter wheat fields in 
the eastern USA. Plant Pathology. 
2011;60:909-917

[20] Zhang JB, Li HP, Dang FJ, Qu B, 
Xu YB, Zhao CS, et al. Determination 
of the trichothecene mycotoxin 
chemotypes and associated geographical 
distribution and phylogenetic species 
of the Fusarium graminearum clade 
from China. Mycological Research. 
2007;111:967-975

[21] Shen CM, Hu YC, Sun HY, 
Li W, Guo JH, Chen HG. Geographic 
distribution of trichothecene 

chemotypes of the Fusarium 
graminearum species complex in major 
winter wheat production areas of China. 
Plant Disease. 2012;96:1172-1178

[22] Qiu JB, Shi JR. Genetic 
relationships, carbendazim sensitivity 
and mycotoxin production of the 
Fusarium graminearum population from 
maize, wheat and rice in Eastern China. 
Toxins. 2014;6:2291-2309

[23] Lee J, Kim H, Jeon JJ, Kim HS, 
Zeller KA, Carter LL, et al. Population 
structure of and mycotoxin production 
by Fusarium graminearum from 
maize in South Korea. Applied 
and Environmental Microbiology. 
2012;78:2161-2167

[24] Lee J, Chang IY, Kim H, Yun SH, 
Leslie JF, Lee YW. Genetic diversity 
and fitness of Fusarium graminearum 
populations from rice in Korea. Applied 
and Environmental Microbiology. 
2009;75:3289-3295

[25] Qu B, Li HP, Zhang JB, Xu YB, 
Huang T, Wu AB, et al. Geographic 
distribution and genetic diversity of 
Fusarium graminearum and F. asiaticum 
on wheat spikes throughout China. 
Plant Pathology. 2008;57:15-24

[26] Gale LR, Chen LF, Hernick CA, 
Takamura K, Kistler HC. Population 
analysis of Fusarium graminearum 
from wheat fields in eastern China. 
Phytopathology. 2002;92:1315-1322

[27] Yang L, van der Lee T, Yang X, Yu D, 
Waalwijk C. Fusarium populations on 
Chinese barley show a dramatic gradient 
in mycotoxin profiles. Phytopathology. 
2008;98:719-727

[28] Zhang H, Van der Lee T, 
Waalwijk C, Chen W, Xu J, Xu J, et al. 
Population analysis of the Fusarium 
graminearum species complex from 
wheat in China show a shift to 
more aggressive isolates. PLoS One. 
2012;7(2):e31722



80

Mycotoxins and Food Safety

[1] Windels CE. Economic and social 
impacts of Fusarium head blight: 
Changing farms and rural communities 
in the Northern Great Plains. 
Phytopathology. 2000;90(1):17-21

[2] Dean R, Van Kan JA, Pretorius ZA, 
Hammond-Kosack KE, Di Pietro A, 
Spanu PD, et al. The top 10 fungal 
pathogens in molecular plant 
pathology. Molecular Plant Pathology. 
2012;13(4):414-430

[3] O’Donnell K, Kistler HC, Tacke BK, 
Casper HH. Gene genealogies reveal 
global phylogeographic structure and 
reproductive isolation among lineages 
of Fusarium graminearum, the fungus 
causing wheat scab. Proceedings of 
the National Academy of Sciences 
of the United States of America. 
2000;97:7905-7910

[4] Aoki T, Ward TJ, Kistler HC, 
O’Donnell K. Systematics, phylogeny 
and trichothecene mycotoxin 
potential of Fusarium head blight 
cereal pathogens. Mycotoxins. 
2012;62(2):91-102

[5] Varga E, Wiesenberger G, 
Hametner C, Ward TJ, Dong Y, 
Schöfbeck D, et al. New tricks of an old 
enemy: Isolates of Fusarium graminearum 
produce a type A trichothecene 
mycotoxin. Environmental 
Microbiology. 2015;17(8): 
2588-2600

[6] Grove JF. The trichothecenes and 
their biosynthesis. Fortschritte der 
Chemie Organischer Naturstoffe. 
2007;88:63-130

[7] Kimura M, Kaneko I, Komiyama M, 
Takatsuki A, Koshino H, Yoneyama K, 
et al. Trichothecene 3-O-acetyltransferase 
protects both the producing organism 
and transformed yeast from related 
mycotoxins. Journal of Biological 
Chemistry. 1998;273:1654-1661

[8] Minervini F, Fornelli F, Flynn KM. 
Toxicity and apoptosis induced by the 
mycotoxins nivalenol, deoxynivalenol 
and fumonisin B1 in a human 
erythroleukemia cell line. Toxicology In 
Vitro. 2004;18(1):21-28

[9] Shimada T, Otani M. Effects of 
Fusarium mycotoxins on the growth 
of shoots and roots at germination 
in some Japanese wheat cultivars. 
Cereal Research Communications. 
1990;18:229-232

[10] Miller JD, Greenhalgh R, Wang YZ, 
Lu M. Trichothecene chemotypes of 
three Fusarium species. Mycologia. 
1991;83(2):121-130

[11] Hohn TM, Desjardins AE. Isolation 
and gene disruption of the Tox5, gene 
encoding trichodiene synthase in 
Gibberella pulicaris. Molecular Plant-
Microbe Interactions. 1992;5:249-256

[12] Proctor RH, Hohn TM, 
McCormick SP. Reduced virulence of 
Gibberella zeae caused by disruption of 
a trichothecene toxin biosynthetic gene. 
Molecular Plant-Microbe Interactions. 
1995;8:593-601

[13] Eudes F, Comeau A, Rioux S, 
Collin J. Impact of trichothecenes on 
Fusarium head blight Fusarium 
graminearum development in 
spring wheat (Triticum aestivum). 
Canadian Journal of Plant Pathology. 
2001;23:318-322

[14] Maier FJ, Miedaner T, Hadeler B, 
Felk A, Salomon S, Lemmens M, et al. 
Involvement of trichothecenes in 
fusarioses of wheat, barley and maize 
evaluated by gene disruption of the 
trichodiene synthase (Tri5) gene 
in three field isolates of different 
chemotype and virulence. Molecular 
Plant Pathology. 2006;7(6):449-461

[15] Jansen C, von Wettstein D, 
Schafer W, Kogel KH, Felk A, Maier FJ. 

References

81

Fusarium graminearum Species Complex and Trichothecene Genotype
DOI: http://dx.doi.org/10.5772/intechopen.89045

Infection patterns in barley and wheat 
spikes inoculated with wild-type and 
trichodiene synthase gene disrupted 
Fusarium graminearum. Proceedings 
of the National Academy of Sciences 
of the United States of America. 
2005;102:16892-16897

[16] Carter JP, Rezanoor HN, Holden D, 
Desjardins AE, Plattner RD, 
Nicholson P. Variation in pathogenicity 
associated with the genetic diversity 
of Fusarium graminearum. European 
Journal of Plant Pathology. 
2002;108:573-583

[17] Ndoye M, Zhang JB, Wang JH, 
Gong AD, Li HP, Qu B, et al. Nivalenol 
and 15-acetyldeoxynivalenol 
chemotypes of Fusarium graminearum 
clade species are prevalent on 
maize throughout China. Journal of 
Phytopathology. 2012;160:519-524

[18] Ward TJ, Clear RM, Rooney AP, 
O’Donnell K, Gaba D, Patrick S, 
et al. An adaptive evolutionary shift 
in Fusarium head blight pathogen 
populations is driving the rapid 
spread of more toxigenic Fusarium 
graminearum in North America. 
Fungal Genetics and Biology. 
2008;45:473-484

[19] Schmale DG, Wood Jones AK, 
Cowger C, Bergstrom GC, Arellano C. 
Trichothecene genotypes of Gibberella 
zeae from winter wheat fields in 
the eastern USA. Plant Pathology. 
2011;60:909-917

[20] Zhang JB, Li HP, Dang FJ, Qu B, 
Xu YB, Zhao CS, et al. Determination 
of the trichothecene mycotoxin 
chemotypes and associated geographical 
distribution and phylogenetic species 
of the Fusarium graminearum clade 
from China. Mycological Research. 
2007;111:967-975

[21] Shen CM, Hu YC, Sun HY, 
Li W, Guo JH, Chen HG. Geographic 
distribution of trichothecene 

chemotypes of the Fusarium 
graminearum species complex in major 
winter wheat production areas of China. 
Plant Disease. 2012;96:1172-1178

[22] Qiu JB, Shi JR. Genetic 
relationships, carbendazim sensitivity 
and mycotoxin production of the 
Fusarium graminearum population from 
maize, wheat and rice in Eastern China. 
Toxins. 2014;6:2291-2309

[23] Lee J, Kim H, Jeon JJ, Kim HS, 
Zeller KA, Carter LL, et al. Population 
structure of and mycotoxin production 
by Fusarium graminearum from 
maize in South Korea. Applied 
and Environmental Microbiology. 
2012;78:2161-2167

[24] Lee J, Chang IY, Kim H, Yun SH, 
Leslie JF, Lee YW. Genetic diversity 
and fitness of Fusarium graminearum 
populations from rice in Korea. Applied 
and Environmental Microbiology. 
2009;75:3289-3295

[25] Qu B, Li HP, Zhang JB, Xu YB, 
Huang T, Wu AB, et al. Geographic 
distribution and genetic diversity of 
Fusarium graminearum and F. asiaticum 
on wheat spikes throughout China. 
Plant Pathology. 2008;57:15-24

[26] Gale LR, Chen LF, Hernick CA, 
Takamura K, Kistler HC. Population 
analysis of Fusarium graminearum 
from wheat fields in eastern China. 
Phytopathology. 2002;92:1315-1322

[27] Yang L, van der Lee T, Yang X, Yu D, 
Waalwijk C. Fusarium populations on 
Chinese barley show a dramatic gradient 
in mycotoxin profiles. Phytopathology. 
2008;98:719-727

[28] Zhang H, Van der Lee T, 
Waalwijk C, Chen W, Xu J, Xu J, et al. 
Population analysis of the Fusarium 
graminearum species complex from 
wheat in China show a shift to 
more aggressive isolates. PLoS One. 
2012;7(2):e31722



Mycotoxins and Food Safety

82

[29] Ward TJ, Bielawski JP, Kistler HC, 
Sullivan E, O’Donnell K. Ancestral 
polymorphism and adaptive evolution 
in the trichothecene mycotoxin gene 
cluster of phytopathogenic Fusarium. 
Proceedings of the National Academy 
of Sciences of the United States of 
America. 2002;99:9278-9283

[30] Liu YY, Sun HY, Li W, Xia YL, 
Deng YY, Zhang AX, et al. Fitness 
of three chemotypes of Fusarium 
graminearum species complex in major 
winter wheat-producing areas of China. 
PLoS One. 2017;12(3):e0174040

[31] Nicolli CP, Machado FJ, 
Spolti P, Del Ponte EM. Fitness traits 
of deoxynivalenol and nivalenol-
producing Fusarium graminearum 
species complex strains from wheat. 
Plant Disease. 2018;102(7):1341-1347

[32] Hao JJ, Xie SN, Sun J, Yang GQ ,  
Liu JZ, Xu F, et al. Analysis of Fusarium 
graminearum species complex from 
wheat–maize rotation regions in 
Henan (China). Plant Disease. 
2017;101:720-725

[33] Alexander NJ, Hohn TM, 
McCormick SP. The TRI11 gene of 
Fusarium sporotrichioides encodes a 
cytochrome P-450 monooxygenase 
required for C-15 hydroxylation in 
trichothecene biosynthesis. Applied 
and Environmental Microbiology. 
1998;64:221-225

[34] Lee T, Oh DW, Kim HS, Lee J, 
Kim YH, Yun SH, et al. Identification 
of deoxynivalenol- and nivalenol-
producing chemotypes of Gibberella 
zeae by using PCR. Applied and 
Environmental Microbiology. 
2001;67:2966-2972

[35] Lee T, Han YK, Kim KH, Yun SH, 
Lee YW. Tri13 and tri7 determine 
deoxynivalenol- and nivalenol-
producing chemotypes of Gibberella 
zeae. Applied and Environmental 
Microbiology. 2002;68:2148-2154

[36] Kim HS, Lee T, Dawlatana M, 
Yun SH, Lee YW. Polymorphism of 
trichothecene biosynthesis genes 
in deoxynivalenol- and nivalenol-
producing Fusarium graminearum 
isolates. Mycological Research. 
2003;107:190-197

[37] Brown DW, McCormick SP, 
Alexander NJ, Proctor RH, Desjardins AE. 
A genetic and biochemical approach 
to study trichothecene diversity in 
Fusarium sporotrichioides and Fusarium 
graminearum. Fungal Genetics and 
Biology. 2001;32(2):121-133

[38] Chandler EA, Simpson DR, 
Thomsett MA, Nicholson P. Development 
of PCR assays to Tri7 and Tri13 
trichothecene biosynthetic genes, 
and characterisation of chemotypes 
of Fusarium graminearum, Fusarium 
culmorum and Fusarium cerealis. 
Physiological and Molecular Plant 
Pathology. 2003;62:355-367

[39] Waalwijk C, Kastelein P, De 
Vries I, Kerenyi Z, Van der Lee T, 
Hesselink T. Major changes in Fusarium 
spp. in wheat in the Netherlands. 
European Journal of Plant Pathology. 
2003;109:743-754

[40] Jennings P, Coates ME, Turner JA, 
Chandler EA, Nicholson P. Determination 
of deoxynivalenol and nivalenol 
chemotypes of Fusarium culmorum 
isolates from England and Wales 
by PCR assay. Plant Pathology. 
2004;53:182-190

[41] Jennings P, Coates ME, Walsh K, 
Turner JA, Nicholson P. Determination 
of deoxynivalenol- and nivalenol-
producing chemotypes of Fusarium 
graminearum isolated from wheat crops 
in England and Wales. Plant Pathology. 
2004;53:643-652

[42] Li HP, Wu AB, Zhao CS, 
Scholten O, Löffler H, Liao YC. 
Development of a generic PCR 
detection of deoxynivalenol- and 

83

Fusarium graminearum Species Complex and Trichothecene Genotype
DOI: http://dx.doi.org/10.5772/intechopen.89045

nivalenol-chemotypes of Fusarium 
graminearum. FEMS Microbiology 
Letters. 2005;243:505-511

[43] Quarta A, Mita G, Haidukowski M, 
Santino A, Mulè G, Visconti A. 
Assessment of trichothecene 
chemotypes of Fusarium culmorum 
occurring in Europe. Food Additives 
and Contaminants. 2005;22:309-315

[44] Bakan B, Giraud-Delville C, 
Pinson L, Richard-Molard D, Fournier E, 
Brygoo Y. Identification by PCR of 
Fusarium culmorum strains producing 
large and small amounts of 
deoxynivalenol. Applied and 
Environmental Microbiology. 
2002;68:5472-5479

[45] Quarta A, Mita G, Haidukowski M, 
Logrieco A, Mulè G, Visconti A. Multiplex 
PCR assay for the identification 
of nivalenol, 3- and 15-acetyl-
deoxynivalenol chemotypes in 
Fusarium. FEMS Microbiology Letters. 
2006;259:7-13

[46] Wang JH, Li HP, Qu B, Zhang JB, 
Huang T, Chen FF, et al. Development 
of a generic PCR detection 
of 3-acetyldeoxy-nivalenol-, 
15-acetyldeoxynivalenol- and nivalenol-
chemotypes of Fusarium graminearum 
clade. International Journal of Molecular 
Sciences. 2008;9:2495-2504

[47] Suzuki F, Koba A, Nakajima T. 
Simultaneous identification of species 
and trichothecene chemotypes of 
Fusarium asiaticum and F. graminearum 
sensu stricto by multiplex PCR. Journal 
of General Plant Pathology. 
2010;76:31-36

[48] Zhang H, Zhang Z, Van der Lee T, 
Chen WQ , Xu J, Xu JS, et al. Population 
genetic analyses of Fusarium asiaticum 
populations from barley suggest a 
recent shift favoring 3-ADON producers 
in Southern China. Phytopathology. 
2010;100:328-336

[49] Wang JH, Zhang JB, Chen FF, 
Li HP, Ndoye M, Liao YC. Amultiplex 
PCR assay for genetic chemotyping of 
toxigenic Fusarium graminearum and 
wheat grains for 3-acetyldeoxynivalenol, 
15-acetyldeoxynivalenol and nivalenol 
mycotoxin. Journal of Food, Agriculture 
and Environment. 2012;10:505-511

[50] Kulik T. Development of TaqMan 
assays for 3ADON, 15ADON and NIV 
Fusarium genotypes based on Tri12 
gene. Cereal Research Communications. 
2011;39:200-214

[51] Nielsen LK, Jensen JD, Rodríguez A, 
Jørgensen LN, Justesen AF. TRI12 based 
quantitative real-time PCR assays 
reveal the distribution of trichothecene 
genotypes of F. graminearum and F. 
culmorum isolates in Danish small grain 
cereals. International Journal of Food 
Microbiology. 2012;157:384-392

[52] Pasquali M, Giraud F, Brochot C, 
Cocco E, Hoffman L, Bohn T. Genetic 
Fusarium chemotyping as a useful tool 
for predicting nivalenol contamination 
in winter wheat. International Journal of 
Food Microbiology. 2010;137:246-253

[53] Berthiller F, Crews C, Dall’Asta C, 
Saeger SD, Haesaert G, Karlovsky P, 
et al. Masked mycotoxins: A review. 
Molecular Nutrition & Food Research. 
2013;57:165-186

[54] Gratz SW. Do plant-bound masked 
mycotoxins contribute to toxicity? 
Toxins. 2017;9:85. DOI: 10.3390/
toxins9030085



Mycotoxins and Food Safety

82

[29] Ward TJ, Bielawski JP, Kistler HC, 
Sullivan E, O’Donnell K. Ancestral 
polymorphism and adaptive evolution 
in the trichothecene mycotoxin gene 
cluster of phytopathogenic Fusarium. 
Proceedings of the National Academy 
of Sciences of the United States of 
America. 2002;99:9278-9283

[30] Liu YY, Sun HY, Li W, Xia YL, 
Deng YY, Zhang AX, et al. Fitness 
of three chemotypes of Fusarium 
graminearum species complex in major 
winter wheat-producing areas of China. 
PLoS One. 2017;12(3):e0174040

[31] Nicolli CP, Machado FJ, 
Spolti P, Del Ponte EM. Fitness traits 
of deoxynivalenol and nivalenol-
producing Fusarium graminearum 
species complex strains from wheat. 
Plant Disease. 2018;102(7):1341-1347

[32] Hao JJ, Xie SN, Sun J, Yang GQ ,  
Liu JZ, Xu F, et al. Analysis of Fusarium 
graminearum species complex from 
wheat–maize rotation regions in 
Henan (China). Plant Disease. 
2017;101:720-725

[33] Alexander NJ, Hohn TM, 
McCormick SP. The TRI11 gene of 
Fusarium sporotrichioides encodes a 
cytochrome P-450 monooxygenase 
required for C-15 hydroxylation in 
trichothecene biosynthesis. Applied 
and Environmental Microbiology. 
1998;64:221-225

[34] Lee T, Oh DW, Kim HS, Lee J, 
Kim YH, Yun SH, et al. Identification 
of deoxynivalenol- and nivalenol-
producing chemotypes of Gibberella 
zeae by using PCR. Applied and 
Environmental Microbiology. 
2001;67:2966-2972

[35] Lee T, Han YK, Kim KH, Yun SH, 
Lee YW. Tri13 and tri7 determine 
deoxynivalenol- and nivalenol-
producing chemotypes of Gibberella 
zeae. Applied and Environmental 
Microbiology. 2002;68:2148-2154

[36] Kim HS, Lee T, Dawlatana M, 
Yun SH, Lee YW. Polymorphism of 
trichothecene biosynthesis genes 
in deoxynivalenol- and nivalenol-
producing Fusarium graminearum 
isolates. Mycological Research. 
2003;107:190-197

[37] Brown DW, McCormick SP, 
Alexander NJ, Proctor RH, Desjardins AE. 
A genetic and biochemical approach 
to study trichothecene diversity in 
Fusarium sporotrichioides and Fusarium 
graminearum. Fungal Genetics and 
Biology. 2001;32(2):121-133

[38] Chandler EA, Simpson DR, 
Thomsett MA, Nicholson P. Development 
of PCR assays to Tri7 and Tri13 
trichothecene biosynthetic genes, 
and characterisation of chemotypes 
of Fusarium graminearum, Fusarium 
culmorum and Fusarium cerealis. 
Physiological and Molecular Plant 
Pathology. 2003;62:355-367

[39] Waalwijk C, Kastelein P, De 
Vries I, Kerenyi Z, Van der Lee T, 
Hesselink T. Major changes in Fusarium 
spp. in wheat in the Netherlands. 
European Journal of Plant Pathology. 
2003;109:743-754

[40] Jennings P, Coates ME, Turner JA, 
Chandler EA, Nicholson P. Determination 
of deoxynivalenol and nivalenol 
chemotypes of Fusarium culmorum 
isolates from England and Wales 
by PCR assay. Plant Pathology. 
2004;53:182-190

[41] Jennings P, Coates ME, Walsh K, 
Turner JA, Nicholson P. Determination 
of deoxynivalenol- and nivalenol-
producing chemotypes of Fusarium 
graminearum isolated from wheat crops 
in England and Wales. Plant Pathology. 
2004;53:643-652

[42] Li HP, Wu AB, Zhao CS, 
Scholten O, Löffler H, Liao YC. 
Development of a generic PCR 
detection of deoxynivalenol- and 

83

Fusarium graminearum Species Complex and Trichothecene Genotype
DOI: http://dx.doi.org/10.5772/intechopen.89045

nivalenol-chemotypes of Fusarium 
graminearum. FEMS Microbiology 
Letters. 2005;243:505-511

[43] Quarta A, Mita G, Haidukowski M, 
Santino A, Mulè G, Visconti A. 
Assessment of trichothecene 
chemotypes of Fusarium culmorum 
occurring in Europe. Food Additives 
and Contaminants. 2005;22:309-315

[44] Bakan B, Giraud-Delville C, 
Pinson L, Richard-Molard D, Fournier E, 
Brygoo Y. Identification by PCR of 
Fusarium culmorum strains producing 
large and small amounts of 
deoxynivalenol. Applied and 
Environmental Microbiology. 
2002;68:5472-5479

[45] Quarta A, Mita G, Haidukowski M, 
Logrieco A, Mulè G, Visconti A. Multiplex 
PCR assay for the identification 
of nivalenol, 3- and 15-acetyl-
deoxynivalenol chemotypes in 
Fusarium. FEMS Microbiology Letters. 
2006;259:7-13

[46] Wang JH, Li HP, Qu B, Zhang JB, 
Huang T, Chen FF, et al. Development 
of a generic PCR detection 
of 3-acetyldeoxy-nivalenol-, 
15-acetyldeoxynivalenol- and nivalenol-
chemotypes of Fusarium graminearum 
clade. International Journal of Molecular 
Sciences. 2008;9:2495-2504

[47] Suzuki F, Koba A, Nakajima T. 
Simultaneous identification of species 
and trichothecene chemotypes of 
Fusarium asiaticum and F. graminearum 
sensu stricto by multiplex PCR. Journal 
of General Plant Pathology. 
2010;76:31-36

[48] Zhang H, Zhang Z, Van der Lee T, 
Chen WQ , Xu J, Xu JS, et al. Population 
genetic analyses of Fusarium asiaticum 
populations from barley suggest a 
recent shift favoring 3-ADON producers 
in Southern China. Phytopathology. 
2010;100:328-336

[49] Wang JH, Zhang JB, Chen FF, 
Li HP, Ndoye M, Liao YC. Amultiplex 
PCR assay for genetic chemotyping of 
toxigenic Fusarium graminearum and 
wheat grains for 3-acetyldeoxynivalenol, 
15-acetyldeoxynivalenol and nivalenol 
mycotoxin. Journal of Food, Agriculture 
and Environment. 2012;10:505-511

[50] Kulik T. Development of TaqMan 
assays for 3ADON, 15ADON and NIV 
Fusarium genotypes based on Tri12 
gene. Cereal Research Communications. 
2011;39:200-214

[51] Nielsen LK, Jensen JD, Rodríguez A, 
Jørgensen LN, Justesen AF. TRI12 based 
quantitative real-time PCR assays 
reveal the distribution of trichothecene 
genotypes of F. graminearum and F. 
culmorum isolates in Danish small grain 
cereals. International Journal of Food 
Microbiology. 2012;157:384-392

[52] Pasquali M, Giraud F, Brochot C, 
Cocco E, Hoffman L, Bohn T. Genetic 
Fusarium chemotyping as a useful tool 
for predicting nivalenol contamination 
in winter wheat. International Journal of 
Food Microbiology. 2010;137:246-253

[53] Berthiller F, Crews C, Dall’Asta C, 
Saeger SD, Haesaert G, Karlovsky P, 
et al. Masked mycotoxins: A review. 
Molecular Nutrition & Food Research. 
2013;57:165-186

[54] Gratz SW. Do plant-bound masked 
mycotoxins contribute to toxicity? 
Toxins. 2017;9:85. DOI: 10.3390/
toxins9030085



85

Chapter 6

Recent Biosensors Technologies for 
Detection of Mycotoxin in Food 
Products
Kobun Rovina, Sulaiman Nurul Shaeera,  
Joseph Merrylin Vonnie and Su Xin Yi

Abstract

Mycotoxins are chemically diverse and capable of inducing a wide diversity of 
acute and chronic symptoms, ranging from feed refusal to rapid death. Accurate 
detection and monitoring of mycotoxins is an essential component of the prevention, 
diagnosis, and remediation of mycotoxin-related issues in livestock and human food. 
Current trends in food analysis are focusing on the application of fast, simple proce-
dure needed, and low-cost biosensor technologies that can detect with high sensitivity 
and selectivity different compounds associated with food safety. This chapter dis-
cussed the recent analytical methods-based biosensor technology for quantification 
of mycotoxins in food products. Mainly focus on the biosensor technology based on 
the immobilization of antibodies onto various nanomaterials such as nanoparticles, 
graphite, carbon nanotubes, and quantum dots. The nanomaterials are able to be 
functionalized with various biomolecules such as enzymes, antibodies, nucleic acids, 
DNA/RNA aptamers, bio- or artificial receptors that make them suitable for detection 
of various substances such as food toxins, bacteria, and other compounds important 
in food analysis. All the nanomaterials provide an effective platform for achieving 
high sensitivity that is similar and, in some cases, even better than conventional 
analytical methods. We believe that future trends will be emphasized on improving 
biosensor properties toward practical application in the food industry.

Keywords: mycotoxin, biosensor, nanomaterials, analytical methods, fungi

1. Introduction

Fungi are an organism that exists either in single-celled or complex multicellular 
organisms. This number of the organism may cause diseases by producing toxic 
substances which known as mycotoxins. Mycotoxins are toxic secondary metabo-
lites of various fungi that significantly impact global food safety and security, from 
toxin exposure, economic loss of crops, or the salability of said crops. They are a 
widespread mixture of contaminants in various agricultural and food products, 
with both acute and chronic toxicological effects on human health [1]. Mycotoxin 
produced mainly by mycelial structure of filamentous fungi or specifically molds 
that may cause a harmful effect to animals as well as humans such as carcinogenic, 
nephrotoxicity, mutagenic, immunosuppressive, estrogenic neurotoxicity, repro-
ductive and developmental toxicity, hepatotoxicity and indigestion [2].
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Abstract

Mycotoxins are chemically diverse and capable of inducing a wide diversity of 
acute and chronic symptoms, ranging from feed refusal to rapid death. Accurate 
detection and monitoring of mycotoxins is an essential component of the prevention, 
diagnosis, and remediation of mycotoxin-related issues in livestock and human food. 
Current trends in food analysis are focusing on the application of fast, simple proce-
dure needed, and low-cost biosensor technologies that can detect with high sensitivity 
and selectivity different compounds associated with food safety. This chapter dis-
cussed the recent analytical methods-based biosensor technology for quantification 
of mycotoxins in food products. Mainly focus on the biosensor technology based on 
the immobilization of antibodies onto various nanomaterials such as nanoparticles, 
graphite, carbon nanotubes, and quantum dots. The nanomaterials are able to be 
functionalized with various biomolecules such as enzymes, antibodies, nucleic acids, 
DNA/RNA aptamers, bio- or artificial receptors that make them suitable for detection 
of various substances such as food toxins, bacteria, and other compounds important 
in food analysis. All the nanomaterials provide an effective platform for achieving 
high sensitivity that is similar and, in some cases, even better than conventional 
analytical methods. We believe that future trends will be emphasized on improving 
biosensor properties toward practical application in the food industry.
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Mycotoxins including aflatoxins (AFs), ochratoxins (OT), trichothecenes, 
zearalenone (ZEN), fumonisins (F), tremorgenic toxins, and ergot alkaloids mostly 
affect the public health and agro-economic significance. Factors affecting the mag-
nitude of toxicity to the living organism are by consuming mycotoxin-contaminated 
foods or feeds, including species, mechanisms/modes of action, metabolism, and 
defense mechanisms [3]. Most of the countries agreed to set the limits of mycotox-
ins present in food because of the effects of the mycotoxins to human health. The 
permitted level is slightly different, which depends on the type of food products. 
The minimum limits for mycotoxins in single ppb (part per billion) and even below 
(0.05 ppb for infant foods) are established in EU, with similar standards in China 
and Japan [4].

Guan et al. [5] reported about 98% of the agricultural commodities, including 
corn, compound animal feeds, silage, cornmeal, puffed corn, wheat, bran, soybean 
meal, rapeseed meal, cottonseed meal and whole cottonseed content various group 
of mycotoxins. Besides, Smith et al. [6] stated that several mycotoxins contaminate 
approximately 48% of 7049 feedstuffs. Thus, it is essential to detect mycotoxins 
in the food industry to address the mycotoxin-related health issues to humans and 
animals effectively.

Conventional techniques such as thin-layer chromatography (TLC), high-
performance liquid chromatography (HPLC) and mass spectrometry have been 
suggested by international organizations as standard approaches to study the occur-
rence of mycotoxins in food products [7]. Besides, enzyme-linked immunosorbent 
assay (ELISA) had been widely used to identify different types of mycotoxins. 
However, it has slight defects of cross-reactivity and possible false-positive or false-
negative outcomes [8]. Also, those techniques usually costly and available in a spe-
cialized research laboratory needs highly personnel trained and laborious. Recently, 
advanced methods used to detect the presence of mycotoxins in food samples, 
which show high sensitivity, low cost, simple operation, and portable on-field 
use [9]. Besides, portable and easy-to-use biosensor devices suitable for express, 
in-field detection of mycotoxins. The development of biosensors for mycotoxins 
has risen sharply in the last decade with a large number of different bio-sensing 
technologies application. Zheng et al. (2006) reported biosensor as rapid methods 
which typically cost-effective, easy to be handled as well as a portable device to be 
used in an interchanging site compared to laboratory analysis.

2. Mycotoxin

Fungal toxins are secondary metabolites, which can cause some diseases in 
living things known as mycoses; meanwhile, dietary exposure to such metabolites 
produces the disease named mycotoxicoses. Mycotoxins are known as secondary 
metabolites, produced from microfungi and able to cause–effect human health as 
well as animals. Mycotoxins are commonly used as antibiotics and growth promo-
tants because of their unique characteristics in pharmacological activity. Most of 
the mycotoxin are found as natural contaminant food, mainly in vegetable and feed. 
Nut, cereals, oilseeds, dried fruits, spices, and food from animal origins for example 
milk, egg, and meat are also may contain mycotoxin either outside or inside the 
product [10, 11]. A mycotoxin is believed no function in the life of a producer cell, 
unlike primary metabolites [12]. There are few types of mycotoxin such as aflatox-
ins (AFs), zearalenone (ZEA), deoxnivalenol (DON), ochratoxin (OTA) and T-2 
toxin (trichothecene mycotoxin) which are a significant threat to the life and health 
of human and live stocks [13]. Mycotoxins are low molecular weight and thermal-
stable secondary metabolite of toxic molds that belong to genera Aspergillus, 
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Penicillium, Alternaria, and Fusarium. These toxins are present in the mycelium 
and spore of the mold. Mycotoxin may become a biological weapon in bioterrorism 
because of its acute and chronic toxicities [14].

3. Types of mycotoxin

The established mycotoxins for agriculture and public health concerns including 
aflatoxins, ochratoxins, zearalenone, T-2 and HT-2 toxin, deoxynivalenol, fumoni-
sins, citrinin, patulin, and ergot alkaloids shown in Figure 1. Aflatoxins B1 and 
M1 (AFT B1 & M1) [15] produced by Aspergillus flavus and A. parasiticus species 
grown on grains and cereals, spices, tree nuts. Aflatoxin B1(AFB1) is one of the 
most carcinogenic substances produced by fungi and results in inevitable contami-
nation of food and feed at deficient concentrations. Four main types of aflatoxin 
naturally contaminate foods which are aflatoxin B1 (AFB1), G1 (AFG1) and their 
dihydroderivatives B2 (AFB2) and G2 (AFG2). Others without additional metabo-
lites known as Aflatoxin M1 and Aflatoxin M2 [16]. AFT M1 being a 4-hydroxylated 
metabolite of AFT B1, is found in cow and sheep milk and milk products. Some 
studied had been identified there is 20 aflatoxins that belongs to a group called 
highly substituted difuranocoumarins. The International Agency for Research on 
Cancer (IARC) had been classified aflatoxin as very toxic compounds in group 1 due 
to evidence that shows the carcinogenicity in human [17].

Ochratoxin A (OTA) produced by Aspergillus ochraceus, A. carbonarius, and 
Penicillium verrucosum is one of the most abundant contaminants in grain and pork 
products, coffee, dried grapes, as well in wine and beer at humidity around 15–19% 

Figure 1. 
Primary groups of mycotoxins in various food products.
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and temperature ≥15°C [18]. OTA is carcinogenic and neurotoxic for humans, and 
immunotoxic for animals [19]. OTA can cause various forms of kidney, liver, and 
brain diseases in both humans and animals, although the trace amount of OTA 
usually is present in food [20].

Zearalenone (ZEN) produced by Fusarium or Giberella species grown on crops 
(maize, barley, oats, wheat, rice, also bread) is a potent estrogen metabolite causing 
infertility in swine and poultry [21].

4. Isolation of a mycotoxin from real samples

4.1 Solid-phase extraction (SPE)

A variation of chromatographic techniques based on small disposable car-
tridges packed with silica gel or bonded phase, which in the stationary phase is 
the basic principle of solid-phase extraction. The sample loaded in one solvent 
under low pressure and rinsed to remove the most of contaminant are moved 
and eluted in another solvent. These cartridges have a high capacity for small 
binding molecules. Different bonding phase such as silica gel, aminopropyl, 
florisil, phenyl, ion exchange materials, anionic and cationic to affinity materi-
als including immunoadsorbents and molecular imprinted polymers (MIPs) are 
available in SPE cartridges [22]. OTA formation occurs in some Spanish sweet, 
which going drying process. C-18 column had been shown successful recovery 
above 90% of OTA, which enables to be isolated from the matrix [23]. Silica gel 
frequently used in SPE because the surface of silica particles is heterogeneous 
with a variety of silanol group which can bind target compound through mul-
tiple electrostatic interactions. Generally, silica gel was used directly or after 
modification, and it is a hydrophobic phase which used in environmental and 
food analysis of toxin, which performed both polar and non-polar solvents. 
Previous research conducted by Leitner et al. [24] showed that the use of C-18 
reverse-phase in the extraction of OTA from wine and offer good result with 
combination with mass spectroscopy.

4.2 Liquid: liquid extraction (LLE)

Liquid–liquid extraction (LLE) or also known as solvent extraction agitating 
different solubility of toxin in the aqueous phase and an immiscible organic phase 
to extract the compound into one solvent and leaving the rest of matrix in others 
phase. A solvent such as hexane and cyclohexane are used to remove non-polar 
contaminant or molecule, for example, lipids, and cholesterol [25]. The common 
goal of LLE is sample clean-up and analyte component pre-concentration. Sample 
clean-up requires high selectivity of partitioning analyte component over potential 
interferents while analyte component pre-concentration require high distribution 
ratio to analyte can be extracted from a large volume of sample too small volume 
of extractant. Two bulk-liquid phases at least which are an aqueous phase that 
contains dissolved sample an organic extractant phase. The variety of condition 
will decide either the agitated mixture become the dispersed phase and another 
continuous phase. The thermodynamic driving force is resulting from the move-
ment of chemical species from one bulk phase to another in two ways either by the 
difference in chemical potential for neutral species or electrochemical for ionic 
species [26]. Lately, Ezekiel et al. [27] used acetonitrile/water/acetic acid 79:20:1, 
(v/v/v) in a 50 mL polypropylene for the metabolites extraction and determination 
of apparent recoveries.
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4.3 Supercritical fluid extraction (SFE)

Supercritical fluid extraction (SFE) had been used for years for industrial-scale 
separation and isolation of variety compound. SFE also has been utilizing in the 
field of food science to isolate not only natural food component but also unnatural 
compound like organic contaminants. SFE was developing and used as an alterna-
tive to extraction using liquid solvents. SFE considered an up-and-coming tech-
nique for the future because supercritical fluids have useful physical properties such 
as high viscosity and high diffusion constant for sample extraction which result 
in faster mass transport than regular and shorter the time for extraction. Using 
compressible gas like carbon dioxide (CO2), the solvation power can be changed by 
altering the density or decrease the pressure to atmospheric pressure [28].

Most common supercritical fluid (SF) used is SC-CO2, which is a suitable sub-
stituent for halogenated solvents. This is because the carbon dioxide is non-toxic, 
non-flammable, not significantly contribute to global warming and might be the 
cheapest solvent except for water. The usage of SFE to extract mycotoxin are very 
limited until recently because of the relative polar nature of mycotoxin and relative 
non-polar nature of food commodities such as nut and nut product. Taylor et al. 
[29] investigated the use of analytical SFE to remove aflatoxin Bi from field inocu-
lated corn samples. Modification using a combination of various pressures “(2000-
15,000 psi), temperatures (40–80°C), the quantity of SC-CO2 (50–500 ml), and 
organic modifiers were used to optimize the extraction method. Optimal conditions 
were 5000 psi at 80°C with 15% modifier (acetonitrile/methanol 2:1) and a liquid 
carbon dioxide volume of 100 ml. The result gained from the extraction was 94.6% 
(RSD 6.2%, n = 5) of aflatoxin Bi could be recovered from ground corn contami-
nated at a level of approximately 500 μg/kg when using these settings.

5. Advanced techniques for detection of mycotoxin based biosensor

The integration of bioreceptors, nanomaterials, and different read-out tech-
niques is capable of accomplishing the rapid, sensitive, and multiplexed detection 
of mycotoxins. In this section, the advanced applications of different read-out 
biosensors, including optical, EC, mass-sensitivity, and surface-enhanced Raman 
spectroscopy biosensors, integrated with the bio-receptors above and nanomateri-
als, are discussed (Figure 2).

5.1 Electrochemical biosensors

A biosensor is an analytical device that incorporating a bio-component or 
bio-receptor such as isolated enzymes, whole cell, tissues, aptamers with a suitable 
transducing system to detect chemical compound [30]. Measurement of the signal 
is generally electrochemical for biological, and this bio-electrochemical serves as 
transduction component in electrochemical biosensors. The biological reaction 
generates change in signal for conductance or impedance, measurable current or 
change accumulation, which can be measured by conductometric, potentiometric, 
or amperometric techniques [31]. The interaction between the target molecule and 
the electrical signal of bio-component produced can be measured.

Electrochemistry has been widely used in various fields, due to their high selec-
tivity and sensitivity, high signal-to-noise ratio, simplicity, miniaturization, low 
cost, robust to liquid samples and more feasible for on-site application [20]. The 
electrochemical technique requires a reference, auxiliary, and a working electrode. 
Two exciting compounds are analyzed using compound biosensors that have interest 
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for nutritional food quality and contaminant such as toxin or pathogen that sup-
posed not to be found in food products [30]. Selection of suitable working electrode 
is a crucial part of successful electrochemical measurement either by modification in 
working electrode materials or traditional metals such as mercury or gold [32].

Due to the widely occurring co-contamination of mycotoxins in raw food 
materials, Lu and Gunasekaran [33] designed and fabricated of an electrochemical 
immunosensor for simultaneous detection of two mycotoxins, fumonisin B1 (FB1) 
and deoxynivalenol (DON), in a single test. A dual-channel three-electrode electro-
chemical sensor pattern was etched on a transparent indium tin oxide (ITO)-coated 
glass via photolithography and was integrated with capillary-driven polydimeth-
ylsiloxane (PDMS) microfluidic channel. The achieved detection limits found 97 
and 35 pg./mL, respectively. Besides, Nieto et al. [34] A third-generation enzymatic 
biosensor were developed to quantify sterigmatocystin (STEH). It was based on 
a glassy carbon electrode modified with a composite of the soybean peroxidase 
enzyme (SPE) and chemically reduced graphene oxide. A third-generation enzy-
matic biosensor to quantify STEH in corn samples spiked with the mycotoxin. The 
biosensor was based on glassy carbon (GC) electrode modified with a composite 
of SPE and chemically reduced graphene oxide (CRGO). The biosensor was also 
used to determine STEH in corn samples inoculated with Aspergillus flavus, which 
is an aflatoxins fungus producer. The biosensor showed a linear response in the 
concentration range from 6.9 × 10−9 to 5.0 × 10−7 mol L−1. The limit of detection was 
2.3 × 10−9 mol L−1 for a signal: noise ratio of 3:1.

5.2 Aptasensor

The aptamer is referred to the Latin word, aptus means “to fit,” which relationship 
between aptamers and their target look like “lock-and-key” theory [35]. Aptamers 
usually single-stranded RNA or DNA, which consist of 2–60 nucleotides, which 
specifically bind to the target, including organic molecules and cells. Aptasensors 
referred to biosensors using aptamers as biorecognition element and aptasensor were 
described in 1996 [36] which had been used in multiple sensing applications.

Figure 2. 
The applications of different read-out biosensors integrated with bioreceptors and nanomaterials.
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Advantages using aptamers are aptamers can provide high stability and affin-
ity. Aptamers also provide simplicity, low cost, and excellent batch-to-batch 
reproducibility. Aptasensor can attract massive attention because of excellent 
binding constant toward most mycotoxins. The critical step in the design of biosen-
sors is immobilization of aptamers because this factor can affect the affinity of 
the aptamer for target and long-term stability for real sample. There are several 
immobilization strategies affect the used for aptasensor development. Firstly, the 
adsorption or π-π interaction between DNA bases aptamer and graphene oxide 
(GO)-modified interfaces [37]. The covalent linkage of the aptamer to the carbox-
ylic acid group that presents on surface or nanomaterial [38] and thiolated binding 
aptamers to CdTe quantum dots (QDs) or Au-based materials [39]. Besides, affinity 
binding based on biotin-streptavidin or other affinity interaction [40, 41] and 
hybridization of partially complementary single-stranded DNA which immobilized 
on surface or nanoparticle [42]. Duan et al. [43] developed multicolor quantum 
dot nanobeads for simultaneous qualitative immunochromatographic detection of 
mycotoxins (ZEN, OTA, and FB1) in corn samples with detection limits reached up 
to 5, 20, and 10 ng/mL within 10 min, respectively.

5.3 Immunosensor

Immunosensors are devices based on the detection of analyte-antibody 
interaction. Three main groups have been developing, which are luminescent or 
colorimetric sensors, surface plasmon resonance, and electrochemical sensors. 
The sensor usually combined with simple methanol–water for the extraction of a 
mycotoxin from food samples. Colorimetric and luminescent are based on the vis-
ible or UV light transformation into an analytical signal [44]. A colorimetric sensor 
developed for AFB1 detection using direct competitive ELISA principle. The color 
was detected and measured with spectrometer by reading absorbance at 620 nm. 
According to Garden and Strachen [45], this method could detect AFB1 as low as 
0.2 ng/mL in artificially contaminated food material as compared to the sensitivity 
of a microtitre plate ELISA.

Surface plasmon resonance (SPR) is an optical phenomenon which used for 
measure changes on the surface of thin metal films (Au or Ag) under condition total 
internal reflection [46]. The sensitivity of SPR sensors and microtiter plate ELISAs 
were compared for detection of AFB1 using same immunoreagents, which are a 
polyclonal antibody and AFB1-BSA conjugate. As a result, the SPR sensor (3.0–
49 ng/mL) is a more sensitive but narrow and linear range of detection compared 
to ELISA (12–25,000 ng/mL) [47]. Electrochemical immunosensor for mycotoxin 
are based on competitive ELISA principle, which electrochemical transducer allows 
detection redox directly [44]. Pemberton et al. [48] in their study, a calibration plot 
AFB1 obtained over the concentration range from 0.15 to 2.5 ng/mL, which give 
detection limit around 0.15 ng/mL in buffer solution.

OTA is small molecules that possess one epitope and no more than one antibody 
can bind due to their small molecular size. This molecule was detected using a com-
petitive assay rather than a sandwich assay format. The competitive assay is based 
on the competition of immobilized antigen and a free antigen for the antibody in 
solution. One of the critical parameters to determine the sensitivity and limit of 
detection (LOD) is antibody concentration. The excessive antibody in solution may 
cause more antigen needed to create a measurable difference in signal. Therefore, 
to increase the binding capacity, protein conjugate such as SPR sensor development 
was used which the OTA either directly conjugated to BSA or PEG. The sensitivity 
increased with decreasing antibody concentration because the PEG-linked surface 
needs less initial antibody concentration for efficient analysis. Pirincci et al. [49] 
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for nutritional food quality and contaminant such as toxin or pathogen that sup-
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Figure 2. 
The applications of different read-out biosensors integrated with bioreceptors and nanomaterials.
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described that the OTA-sensitive QCM sensor was developed by direct immobiliza-
tion of OTA to the sensor surface.

5.4 Molecularly imprinted polymer (MIP)

Molecular imprinted polymer (MIP) is a method which is described as a method 
that highly efficient in producing functional material that able to mimic natural rec-
ognition entities, such as antibodies and biological receptors [50] which equipped 
with particular identification characteristics. In 2009, an electrochemical sensor 
was built by Pardieu et al. [51] for the method of detection. Thus, this method is 
used to recognize a specific element for template molecule detection.

MIP is used in various field of application to recognize biological and chemical 
molecules including amino acids and proteins [52], nucleotide derivatives, pol-
lutants, drugs and foods [53]. Molecularly imprinted polymer method had been 
applied in chromatography for HPLC and GC, Solid phase extraction, Chemical 
sensor systems, catalysis, drug delivery, antibodies, and receptors system [54]. 
The formation of a complex between an analyte and the functional monomer 
determines the Molecularly imprinted polymer. A three-dimensional polymer 
network is formed due to the presence of a significant excess of a cross-linking 
agent [55]. A specific recognition site is formed which complementary in shape, 
size, and chemical functionality to the template molecule as the template being 
removed from the polymer after the polymerization process occurs as shown in the 
figure. The recognition phenomena occur when the intermolecular interactions 
such as hydrogen bonds, dipole–dipole, and ionic interactions between the template 
molecule and the functional groups present in the polymer matrix. This method is 
used due to their high selectivity and affinity for the target molecules. Therefore, 
the recognized polymer will bind to the template molecule only selectively.

The molecularly imprinted materials have excellent physical and chemical 
characteristics. The materials can resist high physical and chemical reaction against 
external degrading factor. Thus, the molecularly imprinted polymer is stable against 
mechanical stress, high temperature, and pressure, resistant against treatment with 
acid, base, or metal ions, and also stable in a wide range of solvents [56]. Sellergren 
firstly reported the application of MIP in solid phase extraction in 1994. Generally, 
the MIP as a sorbent was recognized as an accurate, selective, and sensitive pre-treat-
ment method in detecting trace amounts of chemicals in the matrix. The application 
of MIP in solid phase extraction is used for veterinary residues, pesticides residue, 
illegal drugs, mycotoxins, and persistent organic pollutants had been published.

5.5 Optical biosensors

Biosensors can be divided into different groups, which are electrochemical, optical, 
thermometric, piezoelectric, or magnetic [57]. Somehow, the optical biosensor is the 
most preferred among the other methods. This is because it has powerful analytical 
techniques which have a high specification, sensitivity, small size, and cost-effective-
ness [58, 59]. An optical biosensor is a device which is selective and sensitive that can 
detect deficient levels of chemicals and biological substances and for the measurement 
of molecular interactions in situ and in real time [60].

Optical methods, such as colorimetric, fluorescent, chemiluminescent, and 
surface plasmon resonant strategies, are proper techniques for mycotoxins detec-
tion due to their simplicity, rapidity, reliability, and high sensitivity. An optical 
biosensor is a system which combined various entities in a single system such as 
sampling, a biosensor, a system for replenishing information, and a data analysis 
system which to implement a biological model that provides information for human 
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or machine [57]. The biosensor systems are developed by crucial attributes, which 
are the integration of fluidics, electronics, separation technology, and biological 
sub-systems. An optical biosensor is a compact analytical device, having a biological 
sensing element, integrated or connected to an optical transducer system. In this 
method, the analyte of interest that binds to the complementary optical bio-recog-
nition element is recognized as immobilized on a suitable optical substrate [61]. An 
electronic signal is produced which the magnitude of the frequency is proportional 
that correspond to the concentration of an analyte or a group of analytes, to which 
the element will bind is the objective of optical biosensors [62]. Meanwhile, enzyme, 
substrate, antibody, and nucleic acids are used as the primary biological materials in 
optical biosensor technology [57]. The detection usually relies on an enzyme system 
which converts the analytes to products catalytically and can be oxidized or reduced 
at a working electrode.

Optical biosensing has two general modes, which are label-free and label-
based. For label-free mode, the interaction of the analyzed material with the 
transducer will generate a detectable signal. On the contrary, the use of the label 
and the optical signal then generated by a colorimetric, fluorescent, or lumines-
cent method are involved in label-based sensing [63]. The usage of optical biosen-
sor depends on the different fields of use. This is because it has own requirements 
in term of measuring analysis, required precision of output, the sample concentra-
tion required, the time taken to complete the probe, the time necessary to prepare 
and reuse the biosensor, and the cleaning requirements of the system [57].

In the food industry, this method is used for the direct detection of bacteria in 
products. Optical biosensor used to detect the changes of refractive indices as the 
cell bind to the receptor, which is immobilized on the transducer [49]. The advan-
tages of using optical biosensors are their speed, immunity of signal to electrical or 
magnetic interference. Besides, it is highly sensitive, reproducible, and simple-to-
operate analytical tools. Somehow, some instrumentation involved in this method 
high in cost. Nabok et al. [4] reviewed the recent progress in the development of 
novel optical biosensing technologies for the detection of mycotoxins indirect assay 
with either specific antibodies or aptamers.

5.6 Enzymatic inhibition

There are a variety of enzymes such as cholinesterase, urease, glucose oxidase 
and more that have been applied in an enzymatic inhibition analysis and this 
method is pretty standard [64]. According to Puiu et al. [65], Acetylcholinesterase 
(AChE) is the most commonly used enzyme, and the reason is it is susceptible 
toward mycotoxin which is becoming the preferred method for mycotoxin detec-
tion. This statement is also supported by [66], which stated that biosensors for 
Aflatoxin B1 (a type of mycotoxin) or AFB1, in short, is developed by using AChE 
due to the inhibitory effect of AFB1 to AChE enzymatic activity. Also, the inhibitory 
effect of mycotoxin is a reversible process due to the non-covalently binding nature 
to the enzyme [67]. Soldatkin et al. [68] stated that aflatoxin showed the highest 
sensitivity toward enzymatic inhibition method among the other groups of toxins. 
A past study conducted by Egbunike and Ikegwuonu [69] also suggests that usage 
of cholinesterase in biosensor method as the biological component is usable as AFB1 
detector as aflatoxicosis has been reported to be correlated with a significant reduc-
tion of acetylcholine turnover in rat brain.

Based on the previous research, it is proven that AChE is inhibited by the AFB1 
from binding at the external site, which is located at the active site gorge entrance 
located at the tryptophan residue. The inhibitory effect of the AFB1 can be seen by 
its action where the toxin blocks the entrance to the active site so that the substrate 
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cannot enter to participate to the catalytic site result in the choline unable to exit as 
proposed by the steric blockade model [70]. Based on the observation in the study 
conducted by Hansmann et al. [71], their results lead them to two findings. The first 
observation is the addition of AFB1 in the binding site of the active site did not fulfill 
the description for inhibitory activity, and this suggests that the AFB1 does not slide 
to the catalytic site. As for the second observation, mutation of Trp321 to alanine in 
Dm-AChE put a stop on the inhibitory activity at 10 μM concentration, and AFB1 at 
a concentration of 100 μM does not inhibit Hu-BuChE enzymatic activity. Also, the 
researchers assumed that AFB1 could not enter into the active site due to its relatively 
big size, especially when considering the hydrophilic shell might be further increased 
in size. Due to this condition, aflatoxin is grouped as a ligand which binds on the 
external site of the cholinesterase [72].

5.7 Mimotope

Mimotope or also known as peptide-displaying phage or synthetic peptides [73] 
is now one of the most reliable methods that are used to identify epitopes which 
are detected by monoclonal antibodies which are antibodies that made by the same 
immune cell is given that they are clones of one single parent cell. Next, the usage 
of mimotope in mycotoxin detection involves the usage of peptides which are 
identified to be structurally not identical to the original epitope of mycotoxin but 
at least have the properties to mimic the epitope by binding to the antibodies [74]. 
Generally, this method shared instead of the same concept with enzymatic inhibi-
tion, which in this case, the mimotope will be the one that elicits antibody. Also, 
this method is beneficial when the original epitopes (example from a mycotoxin) 
are hard to be isolated and at the same time only available in minimal amount [75]. 
The first assay that using mimotope for detection is being done by Yuan et al. [76], 
where a mimotope is used to identify the mycotoxin deoxynivalenol.

A study has been conducted by Sellrie et al. [74] which aims to describe a 
competitive immunoassay for identification of hapten fluorescein by utilizing a 
monoclonal anti-fluorescein antibody B13-DE1 and a mimotope peptide which 
act by binding to the antibody. Based on their findings, the peptide mimotope was 
conjugated to horseradish peroxidase (HRP) which is then competing for binding 
to monoclonial antibody B13-DE1 with fluorescein. Based on the result, they have 
proven that mimotopes can be used to utilization in simple yet sensitive immune 
assays in order to quantitatively identify and determine substance with low molecu-
lar weights. As for the reliability and reproducibility, the assay was proved by 
validation data and found to be in the range which is described in the literature for 
conventional competitive immunoassays by Wild [77].

6. Advanced techniques for detection of mycotoxin based biosensor

During the last few decades, consumers have become more aware of health 
and food quality, consequently, research on food safety augmented. The variety of 
contaminants in many food products requires the development of high-throughput, 
real-time, and portable detection methods. The evaluation of the different myco-
toxins residues in foodstuffs became an essential factor in guaranteeing the prod-
ucts’ quality. Hence, it is essential to improve the analytical standards to detect and 
quantify the presence of a mycotoxin. The operation procedure should be simplified 
continuously for the convenience of users. The biosensor based nanotechnology 
can be extensively used in food contaminants monitoring and eventually become 
effectively routine analysis tools that could meet numerous challenges.
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ucts’ quality. Hence, it is essential to improve the analytical standards to detect and 
quantify the presence of a mycotoxin. The operation procedure should be simplified 
continuously for the convenience of users. The biosensor based nanotechnology 
can be extensively used in food contaminants monitoring and eventually become 
effectively routine analysis tools that could meet numerous challenges.
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Chapter 7

The Potential Application of 
Nanoparticles on Grains during 
Storage: Part 1 – An Overview 
of Inhibition against Fungi and 
Mycotoxin Biosynthesis
Daniel Nsengumuremyi, Parise Adadi, Gavers K. Oppong, 
Nadezhda V. Barakova and Elena F. Krivoshapkina

Abstract

Cereals and legumes are the major staples across the globe, thus providing nutri-
tion to humans, and their by-products utilized as animal feeds. However, mycotox-
ins synthesized by fungi contaminate these grains on the field during cultivation 
and are transferred to the storage centers. These fungi infect and deteriorate stored 
grains, thereby tampering with food security. Moreover, the deterioration decreases 
nutrient content and alters the physicochemical properties of grains. The current 
conventional methods used to reduce grain contamination are becoming ineffeci-
tive, coupled with the detrimental health effects it has on the consumer and to the 
environment. Herein, we present an overview of the use of nanoparticles (NPs) as 
an alternative and novel method of reducing mycotoxin biosynthesis due to their 
potent biocidal properties. Silver nanoparticles (AgNPs) are considered and have 
shown promising and effective fungicidal properties against important storage 
fungi, and pests hence could be utilized in the agriculture and food sector for a vast 
myriad of applications. These may help to either minimize/eradicate the exposure 
to the mycotoxins and its adverse health effects, hence contributing to the holistic 
growth and development of people.

Keywords: grains, mycotoxins, nanoparticles, biocidal activities, reactive oxygen 
species

1. Introduction

According to [1], microbial contamination of grains has resulted in a decrease 
in its nutritional quality, therefore, negatively affecting the productivity of humans 
(the workforce of a nation). Grains (cereals and legumes) are staple foods and 
widely consumed around the world due to their nutritional value and calories. 
Eating food prepared from contaminated grains could lead to malnutrition  
due to insufficient nutrients in the grains or food poisoning from mycotoxins. 
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The presence of these mycotoxins affects the safety, quality, and functional proper-
ties of grains. Moreover, the organoleptic properties of products made from these 
grains could also be altered because some fungi strains produce potent odors, which 
serve as an antibiotic against other microorganisms [2]. There have been several 
reports regarding microbial contamination of grains [3–5] and the mycotoxins 
produced by some of these organisms potentially pose a health risk to consumers.

The ability of fungi to penetrate grains, reside within the endosperm, and utilize 
nutrients makes conventional methods insufficient to deal with the menace [6]. 
Therefore, the fundamental problem remains unsolved. A convenient and practical 
approach where the nutritional quality, sensorial properties, color, and shelf life of 
the grains remain unchanged is warranted in curbing this menace. Therefore, we 
propose nanoparticles as the ultimate solution to the predicament mentioned above 
since they are known to exert potent biocidal activities against the vast myriad of 
microorganisms [7–17] involves in contaminating grains, hence could be utilized as 
antifungal agents during grain storage.

This chapter summarizes the microbial contamination of grains and the exist-
ing conventional methods employed to curb and or minimize this menace. Also, 
the potential application of silver nanoparticles as an alternative to the traditional 
techniques is discussed.

1.1 The economic importance of grains

Foodgrains could be cereals or legumes (pulses). The world leading cereal grains 
are wheat, barley, rice, maize, oats, rye, millet, and sorghum. Reports show that 
cereals are the dominant crops cultivated globally, with 2500 million tons harvested 
in 2011. The proportion of maize, rice, and wheat harvested is 883; 723; 704 million 
tons, respectively [18, 19]. Cereals are whole, hulled, cracked, rolled, or ground 
forms of products produced from various grains constituting staple foods for many 
localities globally. They contain a substantial amount of starch, a carbohydrate 
that provides dietary energy [20]. Also, cereals are utilized in feeding livestock. 
Huntington [21] reported a starch content of 72% for corn and sorghum, while 57, 
58 and 77% for barley, oat and wheat. Thus could be utilized to feed ruminants due 
to their high energy values. The role of cereal grains in the world food supply cannot 
be undermined as it provides 75% of the calories and protein in the human diet [22]. 
In Russia, folks use cereals in brewing (beer, kvass), production of distillates, and 
food (i.e., sweets, cookies, porridge, among others).

The second most important family of crops are the legumes, used for their 
grains, and as forage [23]. Previous works [24–26] have reported that legume seeds 
contain protein, soluble and insoluble fiber, slowly digested starch, micro- and 
macronutrients, and vitamins, in addition to various bioactive phytochemicals 
such as flavonoids and other antioxidants which are beneficial to human health. 
Legumes complement proteins in cereals and contain 20–45% protein compared 
to 7–17% in cereals [27]. Grain legumes are also utilized in feeding livestock, either 
as a concentrated compound feed (in poultry production) or as whole-crop forage 
(in cattle, sheep, and pig production) [23]. The presence of antinutritional factors 
(ANFs) such as Kunitz trypsin inhibitor (KTI), Bowman-Birk inhibitor, and lectins 
in legumes limits their utilization by humans and in animal husbandry with excep-
tion to ruminants (i.e., cattle, sheep and goat), which can degrade ANFs due to 
the microbial fermentation in their stomach [28]. ANFs can decrease the nutritive 
value of legumes and cause health problems that may be fatal for both humans (if a 
substantial amount is consumed) and animals [29]. Nevertheless, various methods 
have been proposed to decrease the concentration of these ANFs [30–32]. Legumes 
are also utilized in feeding fish, thus limit the need for expensive fishmeal in the 
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pisciculture industry [33–35]. Therefore, the safety and quality of grain legumes 
ought to be screened before utilization to avoid any further complications due to 
ANFs and mycotoxins.

1.2 Sources of fungi contamination of grains

Microorganisms plays vital role in balancing the ecosystem; they aid in the 
digestion of food in humans; are utilized in the production of food (i.e., starter 
culture in brewing, cheese production, among others), and serve as a good source 
of vital enzymes (exogenous enzymes). Nevertheless, these microorganisms could 
cause problems such as food poisoning (due to some mycotoxins they secrete), food 
spoilage, and grain contamination.

The entire production process (sowing, harvesting, postharvest drying, and 
storage) of grains are possible sources of fungi contamination [36]. Dust, water, 
diseased plants, insects, soil, fertilizers, animal excreta, and environmental pollut-
ants are possible origins of fungi cross contamination. The farmer, the processor, 
and the distributor could be a source of microbial contamination as well as con-
taminated farm machinery and unclean storage facilities (silos, etc.). According 
to [37], microbial contamination from the skin, mouth, and nose of food handlers 
could be directly introduce into the food chain. During drying, most farmers step 
on the grains with their Wellington boots, which is a possible route of introducing 
microorganism [38].

The microflora of grains mainly belong to the Alternaria, Fusarium, 
Helminthosporium, and Cladosporium families. Yeasts were isolated from grains; 
however, its load was less compared to mold [4]. Mechanical damage during 
harvesting or processing could serve as a route via which fungi could penetrate 
the endosperm of seeds, reproduce, and secrete mycotoxins (aflatoxins, etc.), 
rendering the food unsafe for human consumption. According to the International 
Commission on Microbiological Specifications for Foods [39], isolated fungi were 
mainly on the surface of the kernel; only a few species occupy the inner parts of the 
seeds due to damage. Birds could introduce fungi on grains by (1) feeding on crops 
in the field. This can introduce gut microbiota to these plants, which could subse-
quently be spread by rainwater. (2) Their feet could also aid to spread microbes by 
landing and picking up fungi spores from a diseased plant/crop to healthy ones. 
Bats, and insects (bees) could also aid the contamination of crops on the field, 
which can spread during harvesting.

According to [40], the primary cause of spoilage in stored grains in developed 
countries is attributed to fungi, because insects and rodents are controlled success-
fully. Factors such as high temperature, humidity, and poor storage conditions cre-
ate a conducive environment for fungi to flourish and synthesize mycotoxins. These 
secondary metabolites can cause diseases in humans and animals. For instance, 
aflatoxins, ochratoxin A, deoxynivalenol, zearalenone, fumonisins, HT-2, and T-2 
are classes of mycotoxins produced by various fungus species [41, 42]. Grapes were 
found to be contaminated with ochratoxin A, thus contaminating any product 
processed from them (juice, wine, vinegar, and dried grapes) [3].

2. Factors promoting microbial growth and mycotoxin production

When deciding whether moisture, temperature, etc., affects the safety of grains, 
other factors should be considered to settle on a scientifically proven conclusion. 
Extrinsic factors (temperature, relative humidity, mechanical injury on seeds dur-
ing harvest or processing, insects, and rodents infestation) are environmental and 
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The presence of these mycotoxins affects the safety, quality, and functional proper-
ties of grains. Moreover, the organoleptic properties of products made from these 
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the grains remain unchanged is warranted in curbing this menace. Therefore, we 
propose nanoparticles as the ultimate solution to the predicament mentioned above 
since they are known to exert potent biocidal activities against the vast myriad of 
microorganisms [7–17] involves in contaminating grains, hence could be utilized as 
antifungal agents during grain storage.

This chapter summarizes the microbial contamination of grains and the exist-
ing conventional methods employed to curb and or minimize this menace. Also, 
the potential application of silver nanoparticles as an alternative to the traditional 
techniques is discussed.
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The second most important family of crops are the legumes, used for their 
grains, and as forage [23]. Previous works [24–26] have reported that legume seeds 
contain protein, soluble and insoluble fiber, slowly digested starch, micro- and 
macronutrients, and vitamins, in addition to various bioactive phytochemicals 
such as flavonoids and other antioxidants which are beneficial to human health. 
Legumes complement proteins in cereals and contain 20–45% protein compared 
to 7–17% in cereals [27]. Grain legumes are also utilized in feeding livestock, either 
as a concentrated compound feed (in poultry production) or as whole-crop forage 
(in cattle, sheep, and pig production) [23]. The presence of antinutritional factors 
(ANFs) such as Kunitz trypsin inhibitor (KTI), Bowman-Birk inhibitor, and lectins 
in legumes limits their utilization by humans and in animal husbandry with excep-
tion to ruminants (i.e., cattle, sheep and goat), which can degrade ANFs due to 
the microbial fermentation in their stomach [28]. ANFs can decrease the nutritive 
value of legumes and cause health problems that may be fatal for both humans (if a 
substantial amount is consumed) and animals [29]. Nevertheless, various methods 
have been proposed to decrease the concentration of these ANFs [30–32]. Legumes 
are also utilized in feeding fish, thus limit the need for expensive fishmeal in the 
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pisciculture industry [33–35]. Therefore, the safety and quality of grain legumes 
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physical factors surrounding the grains whereas those attributed to the characteris-
tics of the grains are intrinsic factors (pH, acidity, nutrient composition, biological 
structure, moisture content/water activity, redox potential, naturally occurring and 
added antimicrobial factors). Details on how these factors contribute to or promote 
microbial contamination of grains are examined below.

2.1 Nutrient content

Every organism requires essential nutrients for growth and maintenance of met-
abolic functions. Hence, the type and concentration of nutrients needed depends on 
the class of microorganism. A source of energy, water, nitrogen, vitamins, minerals, 
and other compounds provide these nutrients. The growth of Aspergillus flavus on 
grains was significantly affected by the concentration of soluble sugars. Low sugar 
levels retarded its growth, whereas concentrations between 3.0 and 6.0% resulted in 
rapid growth, and the subsequent production of aflatoxin B1. Nevertheless, afla-
toxin B1 production was significantly promoted due to the bioavailability of amino 
acids (arginine, glutamic acid, aspartic acid) and zinc in the grains [43]. In a similar 
study, Li et al. [44] reported different concentrations of mycotoxins (aflatoxin 
B1 (AFB), deoxynivalenol (DON), zearalenone (ZEA) and ochratoxin A (OTA)) 
on numerous swine feeds. These outcomes could be attributed to the nutritional 
composition of the feeds. The nutritional requirement of pigs depends on the state 
(gestating, finisher, grower, starter, etc.) hence varied feed rations are given which 
contain different nutrient concentration; as a result influence fungi growth and 
subsequent mycotoxins production. The bioavailability of nutrients in most grains 
would support the growth of a wide range of microorganisms. Although each 
strain of mold has the genetic potential to produce a particular mycotoxin, nutrient 
bioavailability could influence their levels significantly [45].

2.2 Biological structure

Grains have biological structures which prevent the penetration and growth 
of microorganisms. The testa of seeds and shell of nuts are examples of such 
structures. Some physical structures/barriers may exert antimicrobial potential. 
Intact biological structures prevent the entry of microbes, subsequent growth 
and production of mycotoxins in grains. However, these structures are destroyed 
during harvesting, transporting, or processing of the grains. Insect infestation 
could pave way for microbial proliferation of grains [46, 47]. Extract of Peanut 
testa was reported to exhibit pronounced antifungal activities against Penicillium 
sp., A. niger, and Actinomucor sp. The cardinal and purple peanut testa produced 
a significant zone of inhibition at concentrations of 0.8 and 2.0 g/L, respectively. 
It was concluded that the fungicidal potentials of the testa depend on the type 
of peanut [48]. Nevertheless, the environment, variety, type of farming system 
adopted, duration of storage, etc., may affect the fungicidal potency of these 
peanut testae.

The biocidal activities of Dacryodes edulis and Garcinia kola testae have been 
reported [49]. The antimicrobial activities of these testae are associated with the 
presence of phytochemicals (alkaloids, saponins, etc.), and was confirmed in 
experimental studies [50, 51]. The methanolic extract of Simmondsia chinensis testa 
(Link) C.K. Schneid exhibited no fungicidal activities against Candida albicans 
[52], indicating that not every grain testa could inhibit microbial growth.

All the studies mentioned above support the fact that the biological structures 
of the grains may have the potential to prevent microbial proliferation. These 
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claims cannot be guaranteed when the structures covering the seeds are destroyed 
during harvesting or drying. Therefore, care should be taken to minimize the 
destruction of these structures on grains during or after harvest. Busta et al. [53] 
reported that pathogens lack the enzyme necessary to break down the protective 
layers covering grains.

2.3 Moisture content (MC)

The oldest method of preserving food is controlling the MC. It is applicable 
during grain storage since the moisture influences the growth of microorganisms 
and subsequent production of mycotoxins. The water requirement of microbes is 
known as the water activity (aw) of the food or environment and is defined as the 
ratio of the water vapor pressure of the food substrate to the vapor pressure of pure 
water at a constant temperature [47]. The aw of grains describes the degree to which 
water is bound in the grains, its availability to participate in chemical/biochemical 
reactions, and its accessibility to facilitate the growth of microorganisms [53] which 
leads to the synthesis of metabolites.

Cereals have an aw between 0.10 and 0.20 when adequately dried, making it 
difficult for microbes to reproduce. Although the optimum MC for growth and sub-
sequent toxin production for the various aflatoxigenic fungi varies, many achieve 
the best growth and toxin synthesis at an MC of 17.5% [53, 54]. Aspergillus requires 
about 13% moisture or a relative humidity of 65% (aw, of 0.65) for growth and toxin 
synthesis [55].

The highest A. flavus population was observed at aw = 0.95. Aw significantly 
altered the AFB1 produced and the expression of aflR at aw 0.90 and 0.95 respec-
tively. The optimum expression of the nor-1 gene was at aw 0.95 and 0.90, whereas 
deficient expression occurred in the driest treatment (aw 0.85) [56]. Molds were 
unable to germinate when the aw of the grains remained below 0.60. Also, when 
molds are allow to flourish, they could predispose the stored grain to mite and insect 
infestation [3, 57] because mites feeds on molds. Co-culturing A. parasiticus with S. 
lactis and Lactobacillus casei suppressed aflatoxin synthesis [54]. In a similar study, 
Faraj et al. [58] reported a significant reduction in total aflatoxins synthesized when 
fungi (A. niger and Rhizopus oryzae) were co-cultured with a bacterium (Bacillus 
stearothermophilus). Since aflatoxins synthesis was minimal at 40°C and high between 
8°C and 40°C, the authors associated the findings to the temperature differential 
between the strains [59]. However, mycotoxins such as rubratoxins from Penicillium 
purpurogenum, cerulenin from Cephalosporium caerulens, and Acrocylindrium oryzae 
inhibited fungi growth at the same time enhance aflatoxin synthesized [45, 60].

The growth of Trichoderma asperellum (strains PR10, PR11, PR12, and 659-7) 
was reported being sensitive to aw reduction [61]. Therefore, lowering aw could 
inhibit the growth of fungi. According to [62], grains stored for a year, 8–9 months, 
and weeks should have MC about 9%, 13%, and 14%, respectively. A low MC could 
curb problems like molds infestations, discoloration, respiration loss, insect dam-
age, and moisture absorption.

Adequate drying of grains (produce) to lower moisture levels is critical to 
create unfavorable conditions to inhibit microbial and insect proliferation. It is 
recommended to dry harvested produce to safer moisture levels of 10–13%. Low 
moisture help keep grains longer without losing nutrients and other vital bioac-
tive compounds [63, 64]. Water activity in stored grains could increase depending 
on climatic conditions, cellular respiration of microorganisms, or urine from 
rodents. Improper drying, especially during winter or autumn, could also elevate 
aw levels.
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claims cannot be guaranteed when the structures covering the seeds are destroyed 
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destruction of these structures on grains during or after harvest. Busta et al. [53] 
reported that pathogens lack the enzyme necessary to break down the protective 
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difficult for microbes to reproduce. Although the optimum MC for growth and sub-
sequent toxin production for the various aflatoxigenic fungi varies, many achieve 
the best growth and toxin synthesis at an MC of 17.5% [53, 54]. Aspergillus requires 
about 13% moisture or a relative humidity of 65% (aw, of 0.65) for growth and toxin 
synthesis [55].

The highest A. flavus population was observed at aw = 0.95. Aw significantly 
altered the AFB1 produced and the expression of aflR at aw 0.90 and 0.95 respec-
tively. The optimum expression of the nor-1 gene was at aw 0.95 and 0.90, whereas 
deficient expression occurred in the driest treatment (aw 0.85) [56]. Molds were 
unable to germinate when the aw of the grains remained below 0.60. Also, when 
molds are allow to flourish, they could predispose the stored grain to mite and insect 
infestation [3, 57] because mites feeds on molds. Co-culturing A. parasiticus with S. 
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Faraj et al. [58] reported a significant reduction in total aflatoxins synthesized when 
fungi (A. niger and Rhizopus oryzae) were co-cultured with a bacterium (Bacillus 
stearothermophilus). Since aflatoxins synthesis was minimal at 40°C and high between 
8°C and 40°C, the authors associated the findings to the temperature differential 
between the strains [59]. However, mycotoxins such as rubratoxins from Penicillium 
purpurogenum, cerulenin from Cephalosporium caerulens, and Acrocylindrium oryzae 
inhibited fungi growth at the same time enhance aflatoxin synthesized [45, 60].

The growth of Trichoderma asperellum (strains PR10, PR11, PR12, and 659-7) 
was reported being sensitive to aw reduction [61]. Therefore, lowering aw could 
inhibit the growth of fungi. According to [62], grains stored for a year, 8–9 months, 
and weeks should have MC about 9%, 13%, and 14%, respectively. A low MC could 
curb problems like molds infestations, discoloration, respiration loss, insect dam-
age, and moisture absorption.

Adequate drying of grains (produce) to lower moisture levels is critical to 
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recommended to dry harvested produce to safer moisture levels of 10–13%. Low 
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on climatic conditions, cellular respiration of microorganisms, or urine from 
rodents. Improper drying, especially during winter or autumn, could also elevate 
aw levels.
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2.4 pH, acidity and redox potential

For centuries, people have learned to increase the acidity of food either through 
fermentation, or by adding weak acids in the form of preservatives. These techniques 
have proven successful. Organic acids are effective preservatives in their undissociated 
state. pKa is the term used to illustrate the dissociation of an acid. Therefore, lowering 
the pH of grains increases the effectiveness of organic acids as preservatives [39, 53].

Naturally, grains in the field are undried and possess high pH; however,  drying 
decreases the MC and subsequently the aw, thereby reducing the pH. Adadi and 
Obeng [65] reported that the lower the pH value the higher the total acidity (TA), 
which inhibits the growth of microorganisms. The pH of grains could interact with 
other parameters (aw, salt, temperature, redox potential) in the food to inhibit 
microbial growth. The general rule of food microbiology states that pathogens do 
not grow, or grow slowly, at pH below 4.6- but there are exceptions. For instance, at 
pH 4.2, an organism was able to survive and synthesize a mycotoxin [66].

Rice and maize have pH about 6.02 ± 0.01 and 6.53 ± 0.01 during the rainy season 
and 6.20 ± 0.20 and 6.42 ± 0.12, respectively, in the dry season [67]. The season seems 
to influence the aw and the TA, thus altering the pH of the grains. The rainy season is 
defined by continuous rain, resulting in the elevation of the MC of the grains, which 
affects the pH. The pH range of beans (string and lima) is between 4.6 and 6.5 [53].

According to [68], fungi can secrete butyrate, oxalate, maleate, citrate, gluco-
nate, and succinate into their environment, thereby changing the acidity of the 
ecological niche. Sclerotinia sclerotiorum and Botrytis sp. secrete oxalic acid while 
Penicillium spp., and Aspergillus spp., synthesize mainly gluconic and citric acids 
[69–71]. Fungi can grow comfortably in pH above 8.5; however, below pH 2.2, 
their growth was inhibited. Microorganisms can modify the pH of the environ-
ment in which they reside, making it challenging for farmers to control the pH of 
stored grain. A phenomenon like this could lead to significant economic loss due 
to microbial prolifera tion. The synthesis of ochratoxin A was maximized at lower 
pH [72]. Different fungi strains (Trichoderma harzianum, Trichoderma aureoviride, 
and Trichoderma viride) can grow over a broader pH range (from 2.0 to 6.0), with 
optimal growth at pH = 4.0 [73]. Hence, adjusting the pH is a great way of inhibit-
ing the germination of any fungi spores on stored grains.

The redox potential (Eh) of a substance is the ratio of the total oxidizing 
(electron-accepting) power to the whole reducing (electron-donating) energy 
of the material. It is quantified in millivolts (mV) at pH 7.0. Eh correlates to the 
pH of a substrate [47]. Generally, aerobes, facultative anaerobes, and anaerobes 
grow well at Eh between +500 to +300 mV, +300 to −100 mV, and + 100 to less 
than −250 mV, respectively [74]. Some microorganisms require an Eh of less than 
+60 mV for growth; nevertheless, slower growth rates were observed at higher 
Eh values [53]. The Eh values of wheat (whole grain), wheat (germ), and barley 
(ground) is within −320 to −360, −470, and +225, respectively [46]. Oxidants 
such as KMnO4, NaClO4, or Fe2O3 can influence the Eh of a material [75]. The 
growth of Fusarium oxysporum and Rhizoctonia solani were suppressed when 
decomposable organic material was introduced [76, 77]. pH and Eh can impact 
a wide range of fungal physiological  processes (regulation and expression of 
genes) [78–80] thus complicating the storage process. Therefore, controlling the 
Eh and pH of grains is necessary to manipulate fungi growth during storage.

2.5 Temperature

All microorganisms have a defined temperature range within which they can grow 
and synthesize toxins which cause food poisoning. Therefore, understanding the 
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temperatures range, coupled with other intrinsic and extrinsic factors, are crucial to 
selecte the proper storage conditions for grain storage. Temperature has a dramatic 
impact on the growth and lag period of an organism. The growth rates of most micro-
organisms are favored at low temperatures, though there are exceptions. Reaction 
rates for specific enzymes in an organism become slower at lower temperatures. 
Also, low temperatures minimize the fluidity of the cytoplasmic membrane, thus 
interfering with transport mechanisms in the cell [46, 53]. The expression of proteins 
are temperature regulated. A slight change in temperature can influence bacterial 
and archaeal community structure. 16S rRNA genes were altered due to changes in 
temperature [81, 82]. A wide range of temperatures play a vital role in the growth and 
synthesis of toxins in fungi. For instance, Penicillium and Cladosporium were able to 
grow below 20°C whereas the growth of Aspergillus species were inhibited. However, 
at a temperature above 20°C, the growth was maximized [55]. Virulent A. niger has 
optimal growth between 30–35°C [83], thus, rendering stored produce susceptible 
to a toxin secreted by these fungi. The growth rates of Phoma spp. 1, Phoma exigua, 
Mortierella gamsii, and Mortierella sp. 1 was high at 4°C [84]. Warmer (33°C) and 
more humid conditions may increase aflatoxin prevalence. However, the opposite 
scenario is expected in tropics, since most aflatoxigenic fungi will not survive the 
expected 40°C [45, 85].

The knowledge of optimal temperature for microbial growth and mycotoxin 
synthesis gives more accurate assessment of the potential risk to human health [72]. 
Molds can grow over a broader range of temperatures, from below freezing to tem-
peratures over 50°C. For a given substrate, the rate of mold growth decrease with 
decreasing temperature and water availability. Below 17°C grains are susceptible to 
insect infestation; however, mite infestations can occur between 3 and 30°C [86]. 
Degradation of fungi mycotoxins can occur at 40°C [58]. Therefore, keeping the 
temperature of the storage room elevated could be of valuable aid in detoxification 
and probable killing of stored microorganisms.

3. Effects of mycotoxins on human health

Mycotoxins are considered a significant health and economic problem. 
Mycotoxins can find their way to the human body by way of contaminated food, 
skin contact, or inhalation [87, 88]. The most common form of exposure is through 
oral ingestion of contaminated food [89].

The level of exposure and the type of mycotoxins which one is exposed to deter-
mine the nature of adverse effects on the human, either in the form of an allergic 
reaction, infections, or a toxic disease [90]. The seriousness of mycotoxins depends 
on the toxicity of the mycotoxin involved, the age, wellbeing of the exposed indi-
vidual, and the length of exposure [91]. Mycotoxicosis is the disease caused by 
mycotoxins. Mycotoxins such as aflatoxins have been documented causing liver 
cancer [92]. Other serious conditions, such as chronic interstitial nephropathy, 
Balkan endemic nephropathy, and urothelial tumors, as well as testicular cancer in 
men, have also been linked to mycotoxins [93]. Acute diseases, namely abdominal 
pains, headache, dizziness, throat irritation, and nausea, have also been associated 
with mycotoxin exposure in humans [94]. It is, therefore, important to ensure that 
grains are free of mycotoxin contamination.

3.1 Methods of detecting and analyzing mycotoxins

The hazardous effects of mycotoxins on humans and animals had called for the 
development of rapid methods for their detection and quantification in cereals 
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2.4 pH, acidity and redox potential
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fermentation, or by adding weak acids in the form of preservatives. These techniques 
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other parameters (aw, salt, temperature, redox potential) in the food to inhibit 
microbial growth. The general rule of food microbiology states that pathogens do 
not grow, or grow slowly, at pH below 4.6- but there are exceptions. For instance, at 
pH 4.2, an organism was able to survive and synthesize a mycotoxin [66].

Rice and maize have pH about 6.02 ± 0.01 and 6.53 ± 0.01 during the rainy season 
and 6.20 ± 0.20 and 6.42 ± 0.12, respectively, in the dry season [67]. The season seems 
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defined by continuous rain, resulting in the elevation of the MC of the grains, which 
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According to [68], fungi can secrete butyrate, oxalate, maleate, citrate, gluco-
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temperatures range, coupled with other intrinsic and extrinsic factors, are crucial to 
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insect infestation; however, mite infestations can occur between 3 and 30°C [86]. 
Degradation of fungi mycotoxins can occur at 40°C [58]. Therefore, keeping the 
temperature of the storage room elevated could be of valuable aid in detoxification 
and probable killing of stored microorganisms.

3. Effects of mycotoxins on human health

Mycotoxins are considered a significant health and economic problem. 
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on the toxicity of the mycotoxin involved, the age, wellbeing of the exposed indi-
vidual, and the length of exposure [91]. Mycotoxicosis is the disease caused by 
mycotoxins. Mycotoxins such as aflatoxins have been documented causing liver 
cancer [92]. Other serious conditions, such as chronic interstitial nephropathy, 
Balkan endemic nephropathy, and urothelial tumors, as well as testicular cancer in 
men, have also been linked to mycotoxins [93]. Acute diseases, namely abdominal 
pains, headache, dizziness, throat irritation, and nausea, have also been associated 
with mycotoxin exposure in humans [94]. It is, therefore, important to ensure that 
grains are free of mycotoxin contamination.

3.1 Methods of detecting and analyzing mycotoxins

The hazardous effects of mycotoxins on humans and animals had called for the 
development of rapid methods for their detection and quantification in cereals 
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and other foods. However, sampling methods, extraction, and the instrument used 
could alter mycotoxin quantification. In response, Rahmani et al. [95] compiled a 
good comprehensive review to address the challenges mentioned above.

The impact of the sampling on sample preparation and analytical instrument 
contribute to the total variance during the analysis of ochratoxin A (OTA) in 
flour and aflatoxinB1 (AFB1) in oats was recently reported. The authors sug-
gested that increasing sample weight (size) could potentially reduce the high 
heterogeneity encountered [96, 97]. For efficient extraction, methods of detec-
tion and quantification of mycotoxins, the reader(s) are referred to the following 
good sources [95, 98–101].

4.  Some conventional methods of controlling grains microbial 
contamination

Contamination of stored grains by fungi mycotoxins has resulted in economic 
losses of food products, which could have been used to feed the less privileged (i.e., 
refugees, natural disaster victims, etc.). Therefore, preservation of grains during 
storage is necessary to maintain food security. Moreover, with the growing popula-
tion of the world, more food will be required to feed folks. Some conventional 
approaches used in preserving grains are listed in Table 1 besides those described 
below.

4.1 Organic acids (OA)

High-moisture grains are prone to deterioration during storage if moisture exceeds 
14%. For this reason, in the 1970s, chemicals were used to preserve high moisture 
grains. Propionic acid was used alone (applied worldwide) or in combination with 
acetic acid, isobutyric acid. Formaldehyde was mostly used in Europe to inhibit the 
growth of mold and bacteria in outdoor storage of grains. However, when galvanized 
steel equipment are used to store acid treated grains, extreme corrosion occurred. 
Thus, lining the bins with oil was recommended. The combinations of propionic acid 
and sodium benzoate curbed the issue of corrosion, and less harmful compared to pure 
propionic acid [114–116]. Coating the bins with silver nanoparticle protective paints 
[117] could prevent corrosion and exert fungicidal activities.

Reference Methods Limitations

[4, 102, 
103]

Debranning • Not entirely suitable for wheat due to the crease on the wheat kernels.

• Whole-grain demand in the market.

[104–106] Pesticides • High environmental impacts.

• Direct negative impact on human health.

• Increasing resistance against pesticides.

[107–110] Ozone • The cost of treatment can be relatively high due to complex technology.

• Limited to highly vented packages or open-top containers.

[111–113] Irradiation • Can negatively modify the quality and technological properties of 
cereals and cereal products

Modified with permission from ref. 4496530764014 [122].

Table 1. 
Some conventional approaches of grains preservation.
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OA can increase moisture content and penetrate the endosperm, thus alter the 
functionality of the grains [118, 119]. It could also modify the nutritional com-
position of the stored grain, consequently decreasing the quantity and quality of 
nutrients. The combination of organic acids, such as propionic, sorbic, and acetic 
acids, as well as their salts, had antimould activities, which extended the shelf life of 
bakery products [36]. Similarly, calcium propionate (0.003%), potassium sorbate 
(0.03%), and sodium benzoate (0.3%) suppressed the growth and mycotoxin pro-
duction in Eurotium, Aspergillus and Penicillium. However, the author claimed that 
aw and pH contributed to the effectiveness of the compounds and should therefore 
be carefully considered during application [115]. High sorbate concentration altered 
the sensorial properties of food [120]; therefore, the concentration used is crucial to 
maintain grain quality after storage. Propionic acid and its salts exhibited antimi-
crobial effect against Bacillus spp., and was ascribed to their high MW fatty acids 
[120]. Valerio et al. [121] tested the antifungal activities of organic acids synthe-
sized by lactic acid bacteria (LAB) isolated from a semolina ecosystem. The results 
showed that all the acids produce by the LAB had inhibitory effects on the test 
species (Penicillium roqueforti, A. niger, and Endomyces fibuligera). This approach 
could be classified as biopreservation since the metabolites of living organisms were 
used to inhibit the growth of microorganisms on the product.

4.2 Drying

According to [122], drying is the phase of postharvest processing during which 
grains are dried to achieve low MC, thereby guaranteeing safe storage (<0.70 aw). 
The MC of adequately dried grains ranged within 10–14%. Russ and coworkers 
[123] reported that at higher MC, residue of fermentable sugars and other nutrients 
predispose grains to microbial colonization, resulting in rapid deterioration. Thus, 
a productive drying process warrants the reduction of moisture, thereby lowering 
the pH and creating an uninhabitable environment for the germination and prolif-
eration of a microorganism. Dried grains should be allowed to cool before bagging 
because heat generated during drying could cause a warm spot. Earlier works [36] 
reported that warm spot in grains support fungal growth, resulting in contamina-
tion of grain by mycotoxins. Kumar and coworkers [124] reviewed a paper on 
heat convection solar drying systems. Some of the techniques described could be 
employed when drying grains. The low-cost material utilized in manufacturing 
these dryers, coupled with user friendly, make them ideal for large scale drying, even 
for small-scale farmers.

Different drying methods have been described: (1) high temperature or heated 
air-drying; (2) low-temperature air-drying; (3) combined air-drying; (4) dry ration 
and in-storage cooling method (an alternative to in-dryer cooling) [125, 126].

The expensive nature (cost of power) of artificial drying makes it unpopular, 
couple with the technicalities involved. For instance, in Russia, sun drying becomes 
insufficient due to the high MC (i.e., in St Petersburg, Yekaterinburg, etc.); thus, it 
is impossible to achieve uniform drying of grains. In Africa, sun drying is efficient 
and effective since there is almost 13-h of sun during the dry season [127]. Applying 
excessive temperatures (using artificial means) can lead to grains cracking, loss of 
viability, as well as economic losses [122, 128].

4.3 Chlorine and hypochlorite

Chlorine dioxide (ClO2) has biocidal activities due to its oxidizing capacity 
(strong oxidant), and is widely used for decontamination. It is used both in its gas-
eous and aqueous forms to sanitize food and, exert potent biocidal activity against 
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and other foods. However, sampling methods, extraction, and the instrument used 
could alter mycotoxin quantification. In response, Rahmani et al. [95] compiled a 
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tion of the world, more food will be required to feed folks. Some conventional 
approaches used in preserving grains are listed in Table 1 besides those described 
below.
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High-moisture grains are prone to deterioration during storage if moisture exceeds 
14%. For this reason, in the 1970s, chemicals were used to preserve high moisture 
grains. Propionic acid was used alone (applied worldwide) or in combination with 
acetic acid, isobutyric acid. Formaldehyde was mostly used in Europe to inhibit the 
growth of mold and bacteria in outdoor storage of grains. However, when galvanized 
steel equipment are used to store acid treated grains, extreme corrosion occurred. 
Thus, lining the bins with oil was recommended. The combinations of propionic acid 
and sodium benzoate curbed the issue of corrosion, and less harmful compared to pure 
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OA can increase moisture content and penetrate the endosperm, thus alter the 
functionality of the grains [118, 119]. It could also modify the nutritional com-
position of the stored grain, consequently decreasing the quantity and quality of 
nutrients. The combination of organic acids, such as propionic, sorbic, and acetic 
acids, as well as their salts, had antimould activities, which extended the shelf life of 
bakery products [36]. Similarly, calcium propionate (0.003%), potassium sorbate 
(0.03%), and sodium benzoate (0.3%) suppressed the growth and mycotoxin pro-
duction in Eurotium, Aspergillus and Penicillium. However, the author claimed that 
aw and pH contributed to the effectiveness of the compounds and should therefore 
be carefully considered during application [115]. High sorbate concentration altered 
the sensorial properties of food [120]; therefore, the concentration used is crucial to 
maintain grain quality after storage. Propionic acid and its salts exhibited antimi-
crobial effect against Bacillus spp., and was ascribed to their high MW fatty acids 
[120]. Valerio et al. [121] tested the antifungal activities of organic acids synthe-
sized by lactic acid bacteria (LAB) isolated from a semolina ecosystem. The results 
showed that all the acids produce by the LAB had inhibitory effects on the test 
species (Penicillium roqueforti, A. niger, and Endomyces fibuligera). This approach 
could be classified as biopreservation since the metabolites of living organisms were 
used to inhibit the growth of microorganisms on the product.

4.2 Drying

According to [122], drying is the phase of postharvest processing during which 
grains are dried to achieve low MC, thereby guaranteeing safe storage (<0.70 aw). 
The MC of adequately dried grains ranged within 10–14%. Russ and coworkers 
[123] reported that at higher MC, residue of fermentable sugars and other nutrients 
predispose grains to microbial colonization, resulting in rapid deterioration. Thus, 
a productive drying process warrants the reduction of moisture, thereby lowering 
the pH and creating an uninhabitable environment for the germination and prolif-
eration of a microorganism. Dried grains should be allowed to cool before bagging 
because heat generated during drying could cause a warm spot. Earlier works [36] 
reported that warm spot in grains support fungal growth, resulting in contamina-
tion of grain by mycotoxins. Kumar and coworkers [124] reviewed a paper on 
heat convection solar drying systems. Some of the techniques described could be 
employed when drying grains. The low-cost material utilized in manufacturing 
these dryers, coupled with user friendly, make them ideal for large scale drying, even 
for small-scale farmers.

Different drying methods have been described: (1) high temperature or heated 
air-drying; (2) low-temperature air-drying; (3) combined air-drying; (4) dry ration 
and in-storage cooling method (an alternative to in-dryer cooling) [125, 126].

The expensive nature (cost of power) of artificial drying makes it unpopular, 
couple with the technicalities involved. For instance, in Russia, sun drying becomes 
insufficient due to the high MC (i.e., in St Petersburg, Yekaterinburg, etc.); thus, it 
is impossible to achieve uniform drying of grains. In Africa, sun drying is efficient 
and effective since there is almost 13-h of sun during the dry season [127]. Applying 
excessive temperatures (using artificial means) can lead to grains cracking, loss of 
viability, as well as economic losses [122, 128].

4.3 Chlorine and hypochlorite

Chlorine dioxide (ClO2) has biocidal activities due to its oxidizing capacity 
(strong oxidant), and is widely used for decontamination. It is used both in its gas-
eous and aqueous forms to sanitize food and, exert potent biocidal activity against 
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bacteria, yeasts, and molds [129–133]. All bacteria and their spores in a hospital 
room were reported killed/inactivate by ClO2 gas [134].

Poliovirus was found to have been inhibited due to the application of ClO2, 
which interreacted with the viral RNA and damaged the genome’s ability to act as a 
template for RNA synthesis [135]. Aqueous ClO2 was documented to have signifi-
cantly enhanced the inactivation of F. graminearum on wheat at high concentra-
tion, (15 mg/L) compared to lower levels (5 and 10 mg/L) [131]. Inexpensive, less 
corrosive, the ease with which it mixes with air, rapid diffusion, and being easy 
to use are some merits associated with this method. However, it can produce toxic 
by-products and interfere with the flavor compounds in the grains. It also requires 
expensive onsite generation [136–139]. Chlorine solution (0.4%) was ineffective 
against highly contaminated grains [140, 141]. The reason could be the colonies 
were mature and had thicker peptidoglycan, hence, the chlorine could not pen-
etrate the cells to reach the genetic material. Another hypothesis could be that the 
concentration was not enough to destabilize cell and react with the amino acids. 
Sun and collaborators [133] documented that coupling aqueous sanitizer with 
gaseous ClO2 enhanced the decontamination of foodborne and plant pathogens. 
It also improved the safety, quality, and sensory properties of products (fruits 
and vegetables). Nevertheless, higher concentrations may cause bleaching or 
browning.

5. Nanoparticles

The term ‘nano’ is a Greek word for dwarf, and a nanometer (nm) is 1-billionth 
of a meter. Nanotechnology has been in existence for decades now, and not an 
invention of the twentieth century. Nanomaterials and nanoparticles (NPs) are 
materials that have at least one dimension on the nanoscale (1–100 nm) or whose 
basic unit in the three-dimensional space is in this range. NPs have a more compre-
hensive range of applications in food science and technology, drug delivery, bio-
medical engineering, tissue engineering, textile industry, environment, electronics, 
agriculture, etc. [10, 142–145]. Nanoparticles are classified as organic (also known 
as nanocapsules) and inorganic.

Organic NPs act as core shells to shield sensitive bioactive ingredient such as 
carotenoids [146] against environmental factors, thereby enhancing their bio-
availability for safer delivery [10, 147]. Nanoprecipitation, emulsion-diffusion, 
double emulsification, emulsion-coacervation, polymer coating, etc. are examples 
of organic NPs [148]. All these techniques are used to prepare the core materials 
(β-carotene, probiotic bacteria, folic acid, omega fatty acid, protease enzymes, 
etc.) for encapsulation. Fluorescent organic NPs have recently been used to develop 
nanosensors [149] which are used to detect contaminants and other foodborne 
pathogens as well as in bioremediation [150].

Inorganic NPs have attracted the attention of researchers in the last two decades 
due to their multiple antimicrobial activities (antifungal or antiviral) coupled with 
the pronouncement from Food Safety Authority that these NPs are safe and do not 
affect humans/consumers in any way [151–153]. Silver, silica, and titanium dioxide 
NPs are the main NPs used in the agri-food industries [154].

5.1 Silver nanoparticles (AgNPs)

Several studies have confirmed the potent biocidal effects of silver nanoparticles 
(AgNPs) towards fungi [155–158]. Due to their peculiar properties (i.e., optical, 
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electrical, and thermal, and biological properties), AgNPs have been used in 
several applications: as biocidal agents; medical device coatings; optical sensors; 
in cosmetics; in the food industry (food products); in diagnostics, orthopedics, 
drug delivery; as anticancer agents and have greatly enhanced the tumor-killing 
effects of anticancer drugs [158–163]. Healthcare products, such as scaffolding, 
burn dressings, water purification systems, and medical devices are manufactured 
using AgNPs [164, 165]. It was reported that 10 μg/mL AgNPs completely inhibited 
the growth of 107 CFU/mL E. coli ATCC 8739 cells in liquid medium. The leakage of 
reducing sugars and proteins forced respiratory chain dehydrogenases into an inac-
tive state, suggesting that AgNPs penetrated the bacterial cell membrane with high 
efficiency and could therefore be used in the manufacturing of drugs used against 
bacterial diseases [158]. AgNPs extracted from Pistacia atlantica were effective 
against important clinical pathogens [166]. AgNPs synthesized (green AgNPs) from 
the leaf of CRCP (medicinal plant) was utilized against multidrug-resistant (MDR) 
P. aeruginosa, S. aureus and CoNS isolates (106 CFU each) from post-surgical wound 
infections. 80 mg/mL AgNPs was reported effective against, S. aureus and CoNS 
isolates but had little effects on P. aeruginosa. However, 100-120 mg/mL AgNPs 
completely inhibited P. aeruginosa [153]. These findings shows that the concentra-
tion of AgNPs utilize is critical therefore should carefully be considered during 
application.

The fungicidal activities of AgNPs are documented in many studies [13, 152, 
160, 167–170]. Six fungal species (Aspergillus fumigatus, Penicillium brevicompactum, 
Cladosporium cladosporoides, Mortierella alpina, Chaetomium globosum, and Stachybotrys 
chartarum) isolated from an indoor environment were used to test the antifungal 
activity of AgNPs. The results revealed that the presence of AgNPs in concentrations 
of 30–200 mg/L significantly inhibited or decreased the growth of all the fungi species 
except Mortierella species, which were insensitive to the AgNPs but instead metabo-
lized the AgNPs for its own benefit (the presence of AgNPs in agar substrates signifi-
cantly enhanced Mortierella growth rate) [152]. AgNPs and a conventional antifungal 
agent, Amphotericin B (for a positive test), were tested against Saccharomyces cerevisiae 
(KCTC 7296), Trichosporon beigelii (KCTC 7707), and Candida albicans (ATCC 
90028). The AgNPs exhibited a minimum inhibition concentration (MIC) value of 
2 μg/mL, similar to the positive control [155]. AgNPs was found to effectively suppress 
growth and AFB1 production in A. parasiticus (Figure 1) [171]. In a similar study, the 
addition of AgNP HA1N, AgNP HA2N, and AgNP EH resulted in 88.2%, 67.7% and 
83.5% reduction of AFB1 synthesized by A. flavus [172]. Also, the fungicidal activity of 
Capsicum annuum L. was recently reported [173]. The active ingredient could be iso-
lated and encapsulated in NPs, which may exhibit potent inhibitory activities against 
storage pest and microorganism.

5.1.1 Mechanistic action of AgNPs biocidal activities 

The potent antimicrobial activity of AgNPs has attracted global attention, hence 
its application in multiple fields (i.e., food industries, medicine, textile industries, 
etc.). However, the exact mechanistic action is still not clear, because the mechanism 
depends on the type of microorganism (i.e., bacteria, fungi, etc.) involved and, 
since different organisms possess different cell structure, the mechanistic action 
differ. Several researchers have tried to understand the antimicrobial effects of 
AgNPs using various model microorganisms, e.g., E. coli [158, 174, 175], P. aeruginosa, 
S. aureus [175], V. cholera [174, 176], S. cerevisiae [177, 178] and S. typhi [174]. Other 
groups [179, 180] have also worked on fungi. Mitochondrial dysfunction predispose 
cells for easier penetration by AgNPs via diffusion and endocytosis. The efficiency of 
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were mature and had thicker peptidoglycan, hence, the chlorine could not pen-
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hensive range of applications in food science and technology, drug delivery, bio-
medical engineering, tissue engineering, textile industry, environment, electronics, 
agriculture, etc. [10, 142–145]. Nanoparticles are classified as organic (also known 
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Organic NPs act as core shells to shield sensitive bioactive ingredient such as 
carotenoids [146] against environmental factors, thereby enhancing their bio-
availability for safer delivery [10, 147]. Nanoprecipitation, emulsion-diffusion, 
double emulsification, emulsion-coacervation, polymer coating, etc. are examples 
of organic NPs [148]. All these techniques are used to prepare the core materials 
(β-carotene, probiotic bacteria, folic acid, omega fatty acid, protease enzymes, 
etc.) for encapsulation. Fluorescent organic NPs have recently been used to develop 
nanosensors [149] which are used to detect contaminants and other foodborne 
pathogens as well as in bioremediation [150].

Inorganic NPs have attracted the attention of researchers in the last two decades 
due to their multiple antimicrobial activities (antifungal or antiviral) coupled with 
the pronouncement from Food Safety Authority that these NPs are safe and do not 
affect humans/consumers in any way [151–153]. Silver, silica, and titanium dioxide 
NPs are the main NPs used in the agri-food industries [154].

5.1 Silver nanoparticles (AgNPs)

Several studies have confirmed the potent biocidal effects of silver nanoparticles 
(AgNPs) towards fungi [155–158]. Due to their peculiar properties (i.e., optical, 

113

The Potential Application of Nanoparticles on Grains during Storage: Part 1 – An Overview…
DOI: http://dx.doi.org/10.5772/intechopen.91005

electrical, and thermal, and biological properties), AgNPs have been used in 
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AgNPs uptake by skin keratinocytes depends on the size, shape, pH, zeta potential, and 
incubation time. Smaller (<5 nm) NPs are more toxic than the larger ones. This could 
be ascribed to the secure attachment and penetration of the smaller NPs compared to 
the larger NPs, which requires larger pores to penetrate, into the cell membrane and 
internalized. AgNPs were able to attach and penetrate cell membrane causing toxic-
ity in Caenorhabditis elegans. Ag0 can interact with molecular oxygen, as well as with 
other redox-active compounds to produce ionic silver, which then further interact with 
environmental factors to yield Ag+ [181–186]. AgNPs ranging from less than 10 nm can 
inhibit E. coli and P. aeruginosa due to their potent biocidal activities [187, 188]. Certain 
viruses were unable to bind to their host cells due to the presence of AgNPs of 1–10 nm, 
thus starving them to death [189]. Concerning shapes, Pal et al. [190] reported that 
triangular AgNPs were found to be effective compared to rod and sphere AgNPs. The 
biocidal efficiency of AgNPs is related to Ag+, which interact with biological macromol-
ecules (proteins, carbohydrates, nucleic acids, and lipids). When AgNPs adhere to the 
surface of the cell, it automatically alters membrane properties, undermining the fluid-
ity of the cell. AgNPs can degrade lipopolysaccharide molecules causing them to accu-
mulate inside membrane by forming “pits”, thereby increasing membrane permeability 
[191]. According to reports Ag+ can inhibit phosphate uptake, resulting in the efflux of 
phosphate, mannitol, succinate, glutamine, and proline from the cell [192–198].

The minimal bactericidal concentration (MBC) of AgNPs on Gram (+) bacteria 
was 32 times higher compared to Gram (−) cells [199]. Thus, the sensitivity of the 
cell wall depends on the class of microorganisms. Research [174] also demonstrated 
that AgNPs can interact with bacterial cell membranes. Furthermore, the AgNPs 
found inside the cells are the same sizes as the ones interacting with the membrane, 
therefore providing more evidence to support the theory that particles that interact 
with the membrane penetrated into the bacteria.

Several studies [176, 200, 201] have reported that the positive charge of AgNPs 
is crucial for its antimicrobial activity through the electrostatic attraction with the 
negatively charged cell membrane of the microorganism.

The permeability of the cell membrane was altered after treatment with AgNPs, 
resulting in the leaking of reducing sugars and proteins which induced respiratory 
chain dehydrogenases into inactive state. The amount of reducing sugars leaked 
after 2 h was 102.5 and 30 μg/mg per bacterial dry weight in the treated and the 
control cells, respectively. While the activity of respiratory chain dehydrogenases 

Figure 1. 
Inhibition of aflatoxin B1 production at different concentration of AgNPs. Modified with permission from 
© Iranian Journal of Medical Sciences [171].
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of positive control increased at 37 ± 2, nearly no change was observed in nega-
tive control cells. Furthermore, the enzymatic activity of cells treated with 5 μg/
mL AgNPs decreased [158]. The survival rate of bacterial species decreased with 
increase in the adsorption of AgNPs. Additionally, the adsorption and toxicity of 
AgNPs on P. aeruginosa, M. luteus, B. subtilis, B. barbaricus, and K. pneumonia was 
optimum at pH 5, NaCl concentration of <0.5 M. A manifestation of less toxicity 
was noticed at pH 9 and NaCl concentration >0.5 M, indicating that the environ-
mental pH under which the microorganism grows plays a crucial role in either 
protecting or exposing it to rapid interaction with the AgNPs [185]. The ability of 
AgNPs to bind, interact, deform, and induce DNA damage was documented [181, 
202–204]. Hackenberg and coworkers [203] used comet assay and chromosomal 
aberration (CA), a method previously recommended by [205], to determine the 
damage AgNPs inflict on DNA. In both methods, maximum damage to human 
mesenchymal stem cells occurred less than an hour after treatment (0.1 μg/mL). 
Circular dichroism spectra analysis of treated calf thymus DNA revealed that 
AgNPs interacted and formed a new complex with the double-helical DNA, then 
induced an alteration of non-planar and change the orientations of DNA bases 
which act as an intercalator, increasing the stability of DNA which in turn increase 
the Tm value of the DNA [202]. A researcher [206] suggested that AgNPs can 
interact with nucleic acids by forming bonds with pyrimidine bases, thus condens-
ing DNA and inhibiting replication. In a recent study, Li et al. [207] showed that 
citrate-AgNPs (C-AgNP20) induced different cytomorphological alterations and 
intracellular distributions in cetacean (bottlenose dolphins (Tursiops truncatus)) 
polymorphonuclear cells (cPMNs) and peripheral blood mononuclear cells 
(cPBMCs). High dose (10 and 50 μg/mL) of C-AgNP20 triggered apoptosis in 
cPMNs and cPBMCs (induced cytotoxicity). Additionally, the functional activities 
of cPMNs (phagocytosis and respiratory burst) and cPBMCs (proliferative activ-
ity) were negatively altered at sub-lethal dose of 0.1 and 1 μg/mL. AgNPs induced 
structural damage to cell wall, intracellular proteins (enzymes), and organelles, 
leading to the disruption or the collapse of metabolic processes, like antioxidant 
defense mechanisms, thereby inhibiting growth [177, 178].

The cellular oxidative stress in microbes was enhanced by increasing the concentra-
tion of Ag (+) ions [206]. Several reports [208–213] have highlighted the potential 
antiviral, antifungal, and antibacterial activities of AgNPs and was ascribed to its 
ability to generate enough reactive oxygen species (ROS), free radicals (i.e., hydrogen 
peroxide (H2O2), superoxide anion (O2−), hydroxyl radical (OH•), hypochlorous acid 
(HOCl)) and singlet oxygen. During mitochondrial oxidative phosphorylation, ROS 
are produced. Moreover, nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase catalyzes series of reactions where molecular oxygen (O2) is reduced to O2•. 
With dismutation and metal-catalyzed Fenton reaction, the O2• is further reduced to 
H2O2 and OH•, respectively [214–216]. Apoptosis and cell membrane damage were 
induced by ROS, leaving the cells incapable of regulating transport through the plasma 
membrane, resulting in cell death [217–220]. A research group [221], evaluated the 
effects of ROS against S. aureus and E. coli. The results showed the inactivation of 
lactate dehydrogenase and protein denaturation in both test organisms. Membranal 
damage allowed influx of calcium, thus inducing intracellular calcium overload, 
further doubling ROS generation and mitochondrial membrane potential variation 
[222]. The overproduction of ROS was reported to have interfered with ATP synthesis, 
leading to DNA damage [223]. Free radicals and ROS (an excessive amount) can inflict 
damage/stress on the mitochondrial membrane, causing necrosis, peroxidation of 
lipids, proteins, and DNA damage [206, 224, 225]. According to [184, 225], elevated 
levels of ROS can stress the endoplasmic reticula and deactivate antioxidant enzymes 
in cells, resulting in genotoxic effects.
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further doubling ROS generation and mitochondrial membrane potential variation 
[222]. The overproduction of ROS was reported to have interfered with ATP synthesis, 
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damage/stress on the mitochondrial membrane, causing necrosis, peroxidation of 
lipids, proteins, and DNA damage [206, 224, 225]. According to [184, 225], elevated 
levels of ROS can stress the endoplasmic reticula and deactivate antioxidant enzymes 
in cells, resulting in genotoxic effects.
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It has been discovered that OH•, interacted with constituents of DNA, which 
led to the breakage of DNA single-strands via the formation of 8-hydroxyl-2′-
deoxyguanosine (8-OHdG) DNA adduct [226, 227]. In vivo studies have shown that 
AgNPs influenced the activity of chicken oxidative stress enzymes [228]. AgNP 
treatment induced a pronounced ROS in P. aeruginosa compared to AgNO3. The 
expression levels of ROS related proteins (PA4133, Hmp, KatA, CcoP2, SodB, CcpA, 
RibC, EtfA, and PiuC) were specifically regulated after exposure to AgNPs in 
concentration and time-related modes. Cells treated with AgNO3 did not show any 
perturbation in intracellular ROS generation at low levels, which supports the exist-
ing theory that oxidative stress is triggered solely by AgNPs at their corresponding 
concentrations [229]. As reported by [220], the biocidal activities of Ag+ could 
also be attributed to its interactions with the thiol-related compounds found in the 
respiratory enzymes of cells, resulting in cell death. A researcher [230] proposed a 
theory using Ag with cellular energy production. Essential proteins of prokaryotes 
and eukaryotes located on the cell exterior and interior (mitochondrial organelles), 
respectively, deactivated after coming in contact with AgNPs. However, the interior 
components (mitochondrial proteins) required higher concentrations and much 
smaller AgNPs before they are rendered inactive, because the cellular membrane 
acted as a diffusion barrier. Moreover, the eukaryotes possessed numerous biologi-
cal energy conservation system due it extensive mitochondria when compared to 
the prokaryotes, thereby predisposing the latter cells to AgNP interaction, hamper-
ing cell respiration, which led to cell death.

6. Conclusions

It is shown from the above studies that all the mentioned microorganisms, 
especially the fungi, are involved in grain contamination and subsequent mycotoxin 
production during storage. Mechanical damage during harvesting or processing 
served as an easy route via which microorganisms penetrated the endosperms of 
seeds, and secrete mycotoxins (aflatoxins, etc.) rendering stored grains unsafe for 
human consumption. The ability of AgNPs to inhibit microbial growth makes them 
a promising candidate for utilization in storing grains to minimize the economic 
losses and food poisoning caused by mycotoxins contamination. Moreover, AgNPs 
inhibited the synthesis of these mycotoxins by switching off molecular pathways 
via which they are produced, thus guaranteeing the safety of stored grains for 
consumption. The utilization of AgNPs could enhance shelf-life, maintain the qual-
ity and nutritional values of grains. This innovative method is safe and do not pose a 
threat to the consumer or the environment.
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Abstract

Mycotoxins are secondary metabolites synthesized by filamentous fungi. They 
are common food contaminants that cause mycotoxicosis in humans and animals. 
Due to the severity of health risk pose by these mycotoxins, many countries have 
enacted strict measures to curb this menace. One promising measure is the use 
of nanoparticles. Herein, we present an overview of the application of titanium 
dioxide, chitosan, ultradisperse humic sapropel suspension, and carbon-based 
nanoparticles, a novel and innovative method of reducing mycotoxin production 
and the subsequent contamination of grains. All nanoparticles considered enhanced 
cell permeability by disrupting the membrane, resulting in the outflow of cellular 
materials. However, concentration, volume, type, and illumination (sunlight) 
influenced the fungicidal potential of NPs.

Keywords: filamentous fungi, mycotoxins, nanoparticles, fungicide, reactive oxygen 
species

1. Introduction

Microorganisms, including fungi, contaminate grains during storage. These 
fungi do not only reduce grain quality, but also produce mycotoxins which pose 
health risks to consumers [1, 2]. According to Kady et al. [3], Aspergillus, Fusarium, 
Penicillium, and Rhizopus are the most common genera in barley, wheat, maize, 
and sorghum. These grains serve as staple food worldwide. Nowadays, nanotech-
nology is advancing in many fields, namely biotechnology, analytical chemistry, 
agriculture, and others. However, its application in crop protection is still in its 
early stages [4, 5].

The biocidal activity of nanoparticles is well documented. Herein, we proposed 
the utilization of nanoparticles to inhibit fungal growth and the production/synthe-
sis of mycotoxins. Therefore, the second part of this chapter aims to discuss other 
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promising nanoparticles (titanium dioxide nanoparticles, chitosan nanoparticles, 
ultradisperse humic sapropel suspension (UDHSS) nanoparticles, and carbon-
based nanoparticles/nanomaterials) of interest which could be applied during grain 
storage. The toxicological aspects, as well as the proposed modes of application are 
discussed.

2. Titanium dioxide nanoparticles

Titanium dioxide (TiO2) nanoparticles (TiO2-NPs), or ultrafine TiO2, are 
particles of TiO2 with diameters 1–100 nm. The TiO2-NPs activity is exciting to 
researchers because of its specific characteristics which include; size, shape, crystal 
structure, surface stability among others [6]. They are among top five NPs used in 
consumer items such as cosmetics, food products, paints, and medicines [7]. TiO2 
received USFDA approval hence regarded as safe. It is widely used as food colorant 
in candies, sweets, chewing gums, etc. Anatase (used in printing inks and pho-
tocatalysts), rutile (used in colorants and sunscreens), and brookite are the three 
primary forms of TiO2-NPs [8–12]. In 1985, Matsunaga et al. [13] first documented 
the antimicrobial activity of TiO2. They observed that microbial cells were dead 
when exposed to a TiO2-Pt catalyst  illuminated with UV light.

The biocidal activity of TiO2 has been reported [14–19]. Table 1 shows the 
fungicidal activity of TiO2-NPs against fungi species known to contaminate grains 
with the mycotoxins they synthesize.

TiO2-NPs have been widely applied as antimicrobial agents in recent years due 
to their unique properties such as resistance to high temperatures, low solubil-
ity, high surface area, cost-effectiveness, hydrophilicity, and strong oxidizing 
 properties [20].

TiO2-incorporated polyethylene (PE) film inhibited growth of E. coli and S. 
aureus. UV light significantly enhanced the biocidal activity within 60 minutes of 
illumination [20]. Several studies [21–26] have documented the biocidal efficacy 
of TiO2 against E. coli, S. aureus, P. aeruginosa, and P. expansum.

The photocatalytic oxidation of surfaces coated with TiO2 and ultraviolet A 
(UVA) was effective against E. coli, P. aeruginosa, S. aureus, and E. faecium than 
the control [27]. A collaborated research [28] assessed the biocidal activity of the 
crude and annealed TiO2-NPs. The results revealed that doped Ag-TiO2 (7%) NPs 
killed 100%, 95%, and 96% of P. aeruginosa, S. aureus, and E. coli, respectively, at 
40 mg/30 mL.

Assessing ecotoxicity of TiO2-NPs against bioluminescent bacterium 
(Aliivibrio fischeri), algae (Pseudokirchneriella subcapitata, Scenedesmus sub-
spicatus, and Chlorella vulgaris), protozoon (Tetrahymena pyriformis), water 
flea (Daphnia magna), and an aquatic macrophyte, Lemna minor [29] revealed 
these organisms showed significant behavioral and physiological changes when 
exposed to low TiO2-NP concentrations (0.1 and 0.05 μg/L), thus demonstrated 
the ability of TiO2-NPs to alter molecular pathways via which these organisms 
obtained vital nutrition for growth and synthesis of compounds (i.e., chloro-
phyll, etc.).

Maneerat and Hayata [26] tested the fungicidal activity of TiO2 photocatalysts 
against P. expansum in the form of TiO2 powder and TiO2 coated on a plastic film. 
Both TiO2-NPs suppressed the conidial germination and growth of the fungi. The 
quantity of TiO2-NPs added correlated with the fungicidal activity.

Nitrogen-doped TiO2 [TiO2 (N)] exhibited potent biocidal activity with regards 
to reducing the number of surviving organisms than carbon-doped TiO2 [TiO2 
(C)]. Therefore, TiO2 (N) NPs can inactivate spores of B. anthracis (hazardous 
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microorganism) under illumination by conventional light sources such as incandes-
cent lamps [30].

2.1 Mechanistic action of TiO2-NPs antimicrobial activity

TiO2-NPs are the photocatalysts used to destroy unwanted organic compounds 
in the air, water, soil, and, more recently, in food [21].

Photocatalysis can be defined as the catalyst-driven acceleration of a light-
induced reaction [49–52]. Homogeneous and heterogeneous photocatalytic 
processes utilize metal complexes (transition metal complexes like iron, copper, 
chromium, etc.) and semiconducting materials such as TiO2, ZnO, SnO2, and CeO2 
as catalysts. In the presence of light and heat, metal complexes become excited and 
form metal ion complexes, in contrast, semiconducting materials become excited 
due to the combination of electronic structures which is characterized by a filled 
valence band, empty conduction band, and light absorption properties, resulting 
in the generation of reactive oxygen species (ROS) or hydroxyl radicals. These 
hydroxyl radicals inflict damage to microbial cells [49–51, 53–55]. The subsequent 
hole in the valence band could further react with H2O in the grains or hydroxide 
ions adsorbed on the surface of TiO2-NPs to generate hydroxyl radicals (OH•), with 
electron in the conduction band reduce O2 to superoxide ions (O2

−) [21]. Gogniat 
and Dukan [56] demonstrated that DNA was denatured by hydroxyl radicals gener-
ated via the Fenton reaction resulting in cell death.

Organism Reference

C. albicans, S. cerevisiae [31]

A. niger AS3315 [32]

F. verticillioides [33]

A. niger spores [34]

A. niger, S. cerevisiae [35]

F. oxysporum f. sp. lycopersici [36]

C. albicans ATCC 10231, F. solani ATCC 36031 [37]

C. albicans [27]

C. famata [38]

C. vini, Hansenula anomala CCY-138-30 [39]

Cladobotryum varium, Trichoderma harzianum, Spicellum roseum [40]

Cladosporium cladospoiroides, Epicoccum nigrum, F. mucor, Penicillium oxalicum, Trichoderma 
asperellum, Pestaotiopsis maculans

[41]

Diaporthe actinidae [25]

Erysiphe cichoracearum, Peronophythora litchii [42]

Molds and yeasts (not specified) [43]

Fusarium spp. (equisetii, oxypartan, anthophilum, verticillioides, solani) [44, 45]

P. citrinum [46, 47]

P. expansum [26]

S. cerevisiae [13, 48]

Modified with permission from Ref 4498160008350.

Table 1. 
Fungicidal activities of TiO2-NPs on mycotoxins-producing fungi
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TiO2-NPs are the photocatalysts used to destroy unwanted organic compounds 
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Photocatalysis can be defined as the catalyst-driven acceleration of a light-
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form metal ion complexes, in contrast, semiconducting materials become excited 
due to the combination of electronic structures which is characterized by a filled 
valence band, empty conduction band, and light absorption properties, resulting 
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hydroxyl radicals inflict damage to microbial cells [49–51, 53–55]. The subsequent 
hole in the valence band could further react with H2O in the grains or hydroxide 
ions adsorbed on the surface of TiO2-NPs to generate hydroxyl radicals (OH•), with 
electron in the conduction band reduce O2 to superoxide ions (O2

−) [21]. Gogniat 
and Dukan [56] demonstrated that DNA was denatured by hydroxyl radicals gener-
ated via the Fenton reaction resulting in cell death.
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Modified with permission from Ref 4498160008350.

Table 1. 
Fungicidal activities of TiO2-NPs on mycotoxins-producing fungi
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Electron paramagnetic resonance (EPR) spectroscopy study confirmed the 
photoproduction of hydroxyl radicals (OH•) from different TiO2. The efficiency of 
hydroxyl radical generation depends on the source/origin of TiO2 [57].

Cells are negatively charged [58] under optimum physiological condition due 
to heparan sulfate proteoglycans [59]. However, disease could trigger the cells to 
synthesize certain compounds which cause cell surface to become positively charge. 
Microbial cell could act as a hole for electron transfer between organism and its 
components [60]. The iron cluster on cell surface, in the periplasmic space, or inside 
the cell (proteins (such as ferritin)), could act as a precursor for iron-catalyzed 
Haber-Weiss reaction, which generates additional hydroxyl radicals in the presence 
of H2O2 and the superoxide ion [61].

Different treatments (photocatalysis, water, TIO2, UV-A) applied to elucidate 
the effects of lipid peroxidation on S. cerevisiae revealed high malondialdehyde 
(MDA) in TiO2 -treated subjects with 2 hours. The results demostrated that TiO2 
was sufficient to damage membrane, thus interfered with permeability of the cell 
which led to the leakage of vital intracellular molecules (Figure 1) [48]. Similarly, 
Draper and Hadley [62] found photocatalysis-induced cell wall damage on S. 
cerevisiae [48]. This may decrease intracellular enzymatic activity as well as leaking 
of amino acids and NH4

+, suggesting a drastic impact on proteins [63].
Cellular respiratory enzymes lost their activity after been exposed to irradi-

ated TiO2 (0.5 mg/mL), and the kinetics correlated with the losses of cell viability. 
Furthermore, when glucose was used instead of succinate as the electron donor, 
similar effects were observed. From this outcome, Li et al. [78] proposed that ROS 
generated from an irradiated TiO2 surface, interacted with the polyunsaturated 
phospholipids in E. coli. Moreover, cell membrane structure was perforated due to 
lipid peroxidation creating a hole for more TiO2-NPs to pass into interior of the cell, 
thus rendering respiratory proteinsinactive and subsequent cell death.

A progressive decrease in esterase activity was observed after exposing  
S. cerevisiae to irradiated TiO2 [63]. Other researchers documented overexpres-
sion and inhibition (expressed at lower levels, including those encoding six 
cbb3-type cytochrome C oxidase subunits, an electron transfer flavoprotein, and 

Figure 1. 
Schematic illustration of the solar photocatalytic process for microbial cell inactivation in the presence of an 
aqueous suspension of TiO2. Modified with permission from ref 4498160008350 [72]. Contact between the cells 
and TiO2-NPs affects membrane permeability; however, this is reversible. The availability of more NPs could 
enhance the damage to cell wall, thus allowing leakage of small molecules such as ions. Damage at this stage 
may be irreversible, and this accompanies cell death. Higher molecular weight components such as proteins 
could further be leaked followed by protrusion of the cytoplasmic membrane into the surrounding medium 
through degraded areas of the peptidoglycan and lysis of the cell. Intracellular components are then degraded 
progressively especially from the point of contact with photocatalyst, followed by complete mineralization.
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two oxidoreductases) of genes associated with energy production and conversion 
processes. TiO2-NPs exerted a stimulating effect on the respiratory chain and the 
electron transfer mechanism of the microorganism [64, 65].

Likewise, Matsunaga et al. [13] observed that incubating TiO2/Pt NPs under 
metal halide lamp irradiation with E. coli, Ch. vulgaris, L. acidophilus, and  
S.  cerevisiae inhibited cell respiration mechanisms and subsequent cell death. 
However, the results were not consistent as Ch. vulgaris had a thick cell wall mainly 
composed of polysaccharides and pectin hence, had comparative advantages 
(protection) over the other microbes. 

Kubacka et al. [65] examined genome/proteome-wide expression profiles of  
P. aeruginosa PAO1 cells treated with TiO2-based nanocomposite films. An increase 
and decrease in the levels of 165 and 151 transcripts were respectively reported in 
cells with TiO2-coated Ethylene vinyl alcohol (EVOH) particles. Few proteins were 
detected at a statistically significant level (p ≤ 0.1) in cells treated with TiO2-coated 
EVOH particles compared to the control. TiO2-UV treatment significantly sup-
pressed (from 5.4- to 15.1-fold) the expression levels of genes essential for cell wall. 
However, 14 genes encoding for lipid metabolism essential for cell membrane were 
over-expressed (from 5.6- to 23.0-fold), unexpectedly, 2 were expressed at a lower 
level (from 5.5- to 7.4-fold). 

In vivo and in vitro studies confirm that hydroxyl radicals inflict damage (break-
age) on DNA strands. The extent of damage was minimized when dimethyl sulfox-
ide, catalase, or mannitol were incorporated in the reaction mixture [66]. However, 
the findings [66] contradicts previous studies [21, 67]. Exposing either purine or 
pyrimidine bases to TiO2 and light from a 100-W Hg lamp resulted in the detec-
tion of NO3

− and NH4
+ ion. However, when native DNA and RNA molecules were 

subject to the same conditions, unknown peroxide species, along with phosphate 
and carbon dioxide, were detected, suggesting the breakage and mineralization of 
sugar-phosphate backbone of DNA and RNA molecules, respectively [68].

Kikuchi et al. [67] demonstrated the role of ROS on photocatalytic bactericidal 
activity. They utilized a porous polytetrafluoroethylene (PTFE) membrane in their 
system to physically separate the E. coli suspension from the TiO2 thin. The results 
showed an impressive photokilling capability of the system with and without 
(control) PTFE - which was attributed to the generated H2O2. A group [69] dem-
onstrated the stimulating effect of TiO2-NPs on lipolytic activity in A. niger. The 
results showed that TiO2-NPs significantly increased lipase biosynthesis (more than 
1.5 times) compared to the control experiment. Treatment with TiO2-NPs (size: 40 
nm, concentration: 10 mg/L) in all culture media, enhanced lipolytic activity by 
78.57% and 57.49% on the 4th and 5th day of cultivation, respectively. This finding 
reaffirms that smaller NPs can penetrate the cell membrane easily than bigger NPs, 
thus easily interact with molecular proteins, resulting in stimulating effects.

Gomes et al. [70] assessed the effects TiO2-NMs (NM103, NM104, and NM105) 
and bulk TiO2 against Enchytraeus crypticus with and without UV radiation. 
Microarray analysis revealed 10431 differentially expressed genes (DEGs) (p < 0.01) 
triggered as a result of exposure to TiO2-NMs under no-UV. All samples under 
UV exposure registered an up-regulation of several transcripts, including caspase 
apoptosis-related cysteine peptidases, a signature of apoptosis activation, whereas 
under darkness the apoptotic signaling pathway was inhibited, suggesting that the 
oxi-radicals generated during the photoactivation of TiO2 might substantially con-
tribute to the apoptotic response and damage to the cell membrane. DNA damage 
was triggered after exposing samples to bulk/nano TiO2 [71]. However, the findings 
of Gomes et al. [70] contradicted the [71] as reported that TiO2-NMs_under no-UV 
impaired DNA repair, while bulk_TiO2 under no-UV activated DNA repair mecha-
nisms, suggesting that size of the TiO2-NPs contributes to biocidal activity.
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(protection) over the other microbes. 

Kubacka et al. [65] examined genome/proteome-wide expression profiles of  
P. aeruginosa PAO1 cells treated with TiO2-based nanocomposite films. An increase 
and decrease in the levels of 165 and 151 transcripts were respectively reported in 
cells with TiO2-coated Ethylene vinyl alcohol (EVOH) particles. Few proteins were 
detected at a statistically significant level (p ≤ 0.1) in cells treated with TiO2-coated 
EVOH particles compared to the control. TiO2-UV treatment significantly sup-
pressed (from 5.4- to 15.1-fold) the expression levels of genes essential for cell wall. 
However, 14 genes encoding for lipid metabolism essential for cell membrane were 
over-expressed (from 5.6- to 23.0-fold), unexpectedly, 2 were expressed at a lower 
level (from 5.5- to 7.4-fold). 

In vivo and in vitro studies confirm that hydroxyl radicals inflict damage (break-
age) on DNA strands. The extent of damage was minimized when dimethyl sulfox-
ide, catalase, or mannitol were incorporated in the reaction mixture [66]. However, 
the findings [66] contradicts previous studies [21, 67]. Exposing either purine or 
pyrimidine bases to TiO2 and light from a 100-W Hg lamp resulted in the detec-
tion of NO3

− and NH4
+ ion. However, when native DNA and RNA molecules were 

subject to the same conditions, unknown peroxide species, along with phosphate 
and carbon dioxide, were detected, suggesting the breakage and mineralization of 
sugar-phosphate backbone of DNA and RNA molecules, respectively [68].

Kikuchi et al. [67] demonstrated the role of ROS on photocatalytic bactericidal 
activity. They utilized a porous polytetrafluoroethylene (PTFE) membrane in their 
system to physically separate the E. coli suspension from the TiO2 thin. The results 
showed an impressive photokilling capability of the system with and without 
(control) PTFE - which was attributed to the generated H2O2. A group [69] dem-
onstrated the stimulating effect of TiO2-NPs on lipolytic activity in A. niger. The 
results showed that TiO2-NPs significantly increased lipase biosynthesis (more than 
1.5 times) compared to the control experiment. Treatment with TiO2-NPs (size: 40 
nm, concentration: 10 mg/L) in all culture media, enhanced lipolytic activity by 
78.57% and 57.49% on the 4th and 5th day of cultivation, respectively. This finding 
reaffirms that smaller NPs can penetrate the cell membrane easily than bigger NPs, 
thus easily interact with molecular proteins, resulting in stimulating effects.

Gomes et al. [70] assessed the effects TiO2-NMs (NM103, NM104, and NM105) 
and bulk TiO2 against Enchytraeus crypticus with and without UV radiation. 
Microarray analysis revealed 10431 differentially expressed genes (DEGs) (p < 0.01) 
triggered as a result of exposure to TiO2-NMs under no-UV. All samples under 
UV exposure registered an up-regulation of several transcripts, including caspase 
apoptosis-related cysteine peptidases, a signature of apoptosis activation, whereas 
under darkness the apoptotic signaling pathway was inhibited, suggesting that the 
oxi-radicals generated during the photoactivation of TiO2 might substantially con-
tribute to the apoptotic response and damage to the cell membrane. DNA damage 
was triggered after exposing samples to bulk/nano TiO2 [71]. However, the findings 
of Gomes et al. [70] contradicted the [71] as reported that TiO2-NMs_under no-UV 
impaired DNA repair, while bulk_TiO2 under no-UV activated DNA repair mecha-
nisms, suggesting that size of the TiO2-NPs contributes to biocidal activity.
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3. Chitosan nanoparticles

Chitin and chitosan have been widely used in the fabrication of polymer scaf-
folds [73]. Chitosan is a linear polysaccharide, a nontoxic biopolymer derived from 
the deacetylation of chitin, and used in many fields, including agriculture, medi-
cine, and in vinification due to its biocidal potential. In agriculture, chitosan is used 
as biopesticide; in medicine, it is used to stop bleeding, wound healing, and as an 
antibacterial agent. Biodegradability, high permeability, nontoxic to humans, and 
cost-effectiveness are the features which make chitosan NPs unique. Chitosan and 
its derivatives have attracted considerable attention due to their biocidal activities 
[74, 75]. Several authors have reported the beneficial application of chitosan and its 
oligosaccharides which includes antitumor [76], neuroprotective [77], antimicro-
bial [78–85], and anti-inflammatory [86] agents. Table 2 summarizes the fungicidal 
activities of chitosan against important agricultural microorganisms contaminating 
stored grains.

Fungal decay on pear fruit was suppressed by the combination of chitosan, 
yeast antagonist Cryptococcus laurentii, and CaCl2. The results showed that mixture 
of chitosan at 0.5% and C. laurentii exerted greater effects compared to chitosan 
or C. laurentii alone. CaCl2 showed little antifungicidal activity; however, it com-
bination with chitosan and C. laurentii led to an effective and stable reduction of 
fungal decay [87], thus minimize or eradicate the menace of postharvest losses. 
Anthracnose in papaya caused by Colletotrichum gloeosporioides was controlled by the 
combination of Burkholderia cepacia, chitosan (0.75%) and CaCl2 [88]. Postharvest 
blue, green, and grey molds affecting apple, oranges, and lemons were effectively 
controlled by mixing glycol chitosan (0.2%) with Candida saitoana [89–91]. Ag/
chitosan-NPs showed significant antifungal activity against A. flavus, A. alternata, 
and R. solani hence could be used during grain storage [92, 93]. The synergistic effect 
(fungicidal activities) of hybrid copper(II) chitosan NPs to inhibit the growth of 
F. graminearum, Verticillium dahlia 57, and F. solani 169 was reported. In both cases, 
the NPs exerted an excellent efficacy in repressing the growth of fungi [94, 95]. 
Other authors reported that certain strains of A. flavus, Cladosporium cladosporioides, 
P. aurantiogriseum, and Torulaspora delbrueckii were resistant to chitosan at levels 
as high as 1% [7, 96]. The application of chitosan (0.025 and 0.05%) was effective 
against Saccharomycodes ludwigii and Saccharomyces exiguous. A rapid reduction in the 
number of yeast colonies was observed 2–4 min after application [97].

According to an earlier report, the effectiveness of the biocidal activity of chi-
tosan depends on the molecular weight, degree of acetylation, and concentration 
[98, 99]. The application of NPs coated with polyethylene glycol (PEG) and natural 
garlic oil against Tribolium castaneum, a vital storage pest showed high efficiency 
over an extended period (8 months) due to the slow and persistent release of 
the active components [100]. The study highlighted the potential application of 
PEG-NPs as capsules to encapsulate various natural bioactive ingredients (i.e., oil 
from Azadirachta indica, extracts of Khaya anthotheca, alkaloid extracts of Piper 
guineense [101], etc.) for controll release and subsequent killing of microorganisms 
and pests during grain storage. Furthermore, [102, 103] extensively reviewed the 
literature on the biocidal activities of natural compounds (i.e., herbs, species, etc.) 
and its potential application in postharvest control.

3.1 Mechanistic action of chitosan nanoparticle antimicrobial activity

According to literature [116, 117], chitosan is composed of polycationic 
copolymers, with glucosamine and N-acetylglucosamine as axillary units, which 
contributes to its antimicrobial activity. The difference in environmental pH, pKa 
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3. Chitosan nanoparticles

Chitin and chitosan have been widely used in the fabrication of polymer scaf-
folds [73]. Chitosan is a linear polysaccharide, a nontoxic biopolymer derived from 
the deacetylation of chitin, and used in many fields, including agriculture, medi-
cine, and in vinification due to its biocidal potential. In agriculture, chitosan is used 
as biopesticide; in medicine, it is used to stop bleeding, wound healing, and as an 
antibacterial agent. Biodegradability, high permeability, nontoxic to humans, and 
cost-effectiveness are the features which make chitosan NPs unique. Chitosan and 
its derivatives have attracted considerable attention due to their biocidal activities 
[74, 75]. Several authors have reported the beneficial application of chitosan and its 
oligosaccharides which includes antitumor [76], neuroprotective [77], antimicro-
bial [78–85], and anti-inflammatory [86] agents. Table 2 summarizes the fungicidal 
activities of chitosan against important agricultural microorganisms contaminating 
stored grains.

Fungal decay on pear fruit was suppressed by the combination of chitosan, 
yeast antagonist Cryptococcus laurentii, and CaCl2. The results showed that mixture 
of chitosan at 0.5% and C. laurentii exerted greater effects compared to chitosan 
or C. laurentii alone. CaCl2 showed little antifungicidal activity; however, it com-
bination with chitosan and C. laurentii led to an effective and stable reduction of 
fungal decay [87], thus minimize or eradicate the menace of postharvest losses. 
Anthracnose in papaya caused by Colletotrichum gloeosporioides was controlled by the 
combination of Burkholderia cepacia, chitosan (0.75%) and CaCl2 [88]. Postharvest 
blue, green, and grey molds affecting apple, oranges, and lemons were effectively 
controlled by mixing glycol chitosan (0.2%) with Candida saitoana [89–91]. Ag/
chitosan-NPs showed significant antifungal activity against A. flavus, A. alternata, 
and R. solani hence could be used during grain storage [92, 93]. The synergistic effect 
(fungicidal activities) of hybrid copper(II) chitosan NPs to inhibit the growth of 
F. graminearum, Verticillium dahlia 57, and F. solani 169 was reported. In both cases, 
the NPs exerted an excellent efficacy in repressing the growth of fungi [94, 95]. 
Other authors reported that certain strains of A. flavus, Cladosporium cladosporioides, 
P. aurantiogriseum, and Torulaspora delbrueckii were resistant to chitosan at levels 
as high as 1% [7, 96]. The application of chitosan (0.025 and 0.05%) was effective 
against Saccharomycodes ludwigii and Saccharomyces exiguous. A rapid reduction in the 
number of yeast colonies was observed 2–4 min after application [97].

According to an earlier report, the effectiveness of the biocidal activity of chi-
tosan depends on the molecular weight, degree of acetylation, and concentration 
[98, 99]. The application of NPs coated with polyethylene glycol (PEG) and natural 
garlic oil against Tribolium castaneum, a vital storage pest showed high efficiency 
over an extended period (8 months) due to the slow and persistent release of 
the active components [100]. The study highlighted the potential application of 
PEG-NPs as capsules to encapsulate various natural bioactive ingredients (i.e., oil 
from Azadirachta indica, extracts of Khaya anthotheca, alkaloid extracts of Piper 
guineense [101], etc.) for controll release and subsequent killing of microorganisms 
and pests during grain storage. Furthermore, [102, 103] extensively reviewed the 
literature on the biocidal activities of natural compounds (i.e., herbs, species, etc.) 
and its potential application in postharvest control.

3.1 Mechanistic action of chitosan nanoparticle antimicrobial activity

According to literature [116, 117], chitosan is composed of polycationic 
copolymers, with glucosamine and N-acetylglucosamine as axillary units, which 
contributes to its antimicrobial activity. The difference in environmental pH, pKa 
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of chitosan and its derivatives creates an electric field for an electrostatic interac-
tion between the polycationic structure and the anionic components of the cell 
(i.e., lipopolysaccharide and cell surface proteins), thus altering cell permeability 
[118–123]. High pH enhance rapid protonation, which increase the positive charge 
density (polycationic activity) of chitosan. A positive correlation was established 
between charge density and the biocidal activity of quaternized chitosan [124–127]. 
The inhibition potential of chitosan could be incapacitated when the charge density 
is reduced [120] due to changes of pH values. A similar outcome was reported by 
Qin et al. [128]. The antimicrobial mechanism was associated with the interac-
tion of the negatively charged cell membranes and the cationic NH3+groups of the 
chitosan derivative, which increase membrane permeability resulting in lysis [129] 
and leakage of macromolecules killing the cells. A carboxyfluorescein (CF)-loaded 
liposome study showed the effectiveness of lower molecular weight (LMW) chi-
tosan on the cell membrane. The results showed that 0.75 μg/μL of LMW chitosan 
triggered moderate (≈7%) leakage of carboxyfluorescein found in the large unila-
mellar vesicles [130]. Similarly, Ing et al. [131] reported that chitosan NPs prepared 
from different concentrations of LMW and high molecular weight (HMW) 
showed efficient inhibitory activity against C. albicans (MICLMW = 0.25–0.86 mg/
mL and MICHMW = 0.6–1.0 mg/mL) and F. solani (MICLMW= 0.86–1.2 mg/mL 
and MICHMW = 0.5–1.2 mg/mL) compared to the solution form (MIC = 3 mg/mL 
for both MWs and species). The authors established a statistical linear relation-
ship between MW and particle size/zeta potential, thus provided an avenue for 
the manipulation of physicochemical properties of NPs to maximize its ability to 
penetrate the cells, trigger leakage of intracellular component, eventually killing the 
fungi and extend safety of the grains.

Researchers [132–135] proposed the fundamental mechanism contributing to 
interaction of negatively charged surface components of fungi and bacteria with the 
positively charged NH3+ groups of glucosamine (chitosan), which alters cell surface, 
and trigger leaking of intracellular substances, resulting in the impairment of vital 
physiological activities thus killing the microorganism. The inability of the second 
amino groups on N-acetylation of chitosan oligomers to donate positive chargere-
sult in the inhibition of its fungistatic activity [136]. Therefore, the contribution of 
NH3+ groups to biocidal activity cannot be ignored and should carefully be consid-
ered to maximize the effects.

The outer membrane (OM), inner core of lipopolysaccharide (LPS) molecules, 
and lipid components of Gram(−) bacteria are composed of anionic groups like 
phosphate and carboxyl, which contribute to the hydrophilic nature of the cell 
wall, thus creatin interaction of charges (electrostatic) with divalent cations. 
The OM protects Gram (−) bacteria cells from macromolecules and hydrophobic 
compounds (antibiotics and toxic drugs), giving Gram(−) bacteria a comparative 
advantage over Gram(+) bacteria. Therefore, breaching the integrity of the OM by 
chitosan could enhance its biocidal activity toward Gram(−) bacteria [137, 138]. 
On the other hand peptidoglycan (PG) and teichoic acid (TA) on the cell wall of 
Gram(+) bacteria have polyanionic group, which facilitates interaction via covalent 
bond with N-acetylmuramic acid in the PG layer, or via glycolipid- which links 
outer leaflet of the cytoplasmic membrane [139]. As documented by Kong et al. 
[120], the poly(glycerol phosphate) anion groups aid the structural stability of cell 
wall in addition to some membrane-bound enzymes.

LMW chitosan showed higher efficiency perforate/penetrate the microbial cell 
compared to HMW chitosan, which interacts with DNA to change the translation 
and transcription profile of genes. Chitosan binds to DNA with accurate precision, 
denying the organism of normal DNA transcription and mRNA synthesis, resulting 
in cell death [140–142].
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of chitosan and its derivatives creates an electric field for an electrostatic interac-
tion between the polycationic structure and the anionic components of the cell 
(i.e., lipopolysaccharide and cell surface proteins), thus altering cell permeability 
[118–123]. High pH enhance rapid protonation, which increase the positive charge 
density (polycationic activity) of chitosan. A positive correlation was established 
between charge density and the biocidal activity of quaternized chitosan [124–127]. 
The inhibition potential of chitosan could be incapacitated when the charge density 
is reduced [120] due to changes of pH values. A similar outcome was reported by 
Qin et al. [128]. The antimicrobial mechanism was associated with the interac-
tion of the negatively charged cell membranes and the cationic NH3+groups of the 
chitosan derivative, which increase membrane permeability resulting in lysis [129] 
and leakage of macromolecules killing the cells. A carboxyfluorescein (CF)-loaded 
liposome study showed the effectiveness of lower molecular weight (LMW) chi-
tosan on the cell membrane. The results showed that 0.75 μg/μL of LMW chitosan 
triggered moderate (≈7%) leakage of carboxyfluorescein found in the large unila-
mellar vesicles [130]. Similarly, Ing et al. [131] reported that chitosan NPs prepared 
from different concentrations of LMW and high molecular weight (HMW) 
showed efficient inhibitory activity against C. albicans (MICLMW = 0.25–0.86 mg/
mL and MICHMW = 0.6–1.0 mg/mL) and F. solani (MICLMW= 0.86–1.2 mg/mL 
and MICHMW = 0.5–1.2 mg/mL) compared to the solution form (MIC = 3 mg/mL 
for both MWs and species). The authors established a statistical linear relation-
ship between MW and particle size/zeta potential, thus provided an avenue for 
the manipulation of physicochemical properties of NPs to maximize its ability to 
penetrate the cells, trigger leakage of intracellular component, eventually killing the 
fungi and extend safety of the grains.

Researchers [132–135] proposed the fundamental mechanism contributing to 
interaction of negatively charged surface components of fungi and bacteria with the 
positively charged NH3+ groups of glucosamine (chitosan), which alters cell surface, 
and trigger leaking of intracellular substances, resulting in the impairment of vital 
physiological activities thus killing the microorganism. The inability of the second 
amino groups on N-acetylation of chitosan oligomers to donate positive chargere-
sult in the inhibition of its fungistatic activity [136]. Therefore, the contribution of 
NH3+ groups to biocidal activity cannot be ignored and should carefully be consid-
ered to maximize the effects.

The outer membrane (OM), inner core of lipopolysaccharide (LPS) molecules, 
and lipid components of Gram(−) bacteria are composed of anionic groups like 
phosphate and carboxyl, which contribute to the hydrophilic nature of the cell 
wall, thus creatin interaction of charges (electrostatic) with divalent cations. 
The OM protects Gram (−) bacteria cells from macromolecules and hydrophobic 
compounds (antibiotics and toxic drugs), giving Gram(−) bacteria a comparative 
advantage over Gram(+) bacteria. Therefore, breaching the integrity of the OM by 
chitosan could enhance its biocidal activity toward Gram(−) bacteria [137, 138]. 
On the other hand peptidoglycan (PG) and teichoic acid (TA) on the cell wall of 
Gram(+) bacteria have polyanionic group, which facilitates interaction via covalent 
bond with N-acetylmuramic acid in the PG layer, or via glycolipid- which links 
outer leaflet of the cytoplasmic membrane [139]. As documented by Kong et al. 
[120], the poly(glycerol phosphate) anion groups aid the structural stability of cell 
wall in addition to some membrane-bound enzymes.

LMW chitosan showed higher efficiency perforate/penetrate the microbial cell 
compared to HMW chitosan, which interacts with DNA to change the translation 
and transcription profile of genes. Chitosan binds to DNA with accurate precision, 
denying the organism of normal DNA transcription and mRNA synthesis, resulting 
in cell death [140–142].
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A decrease in the induction of β-galactosidase was observed when yeast cells 
were exposed to chitosan. A concentration of 0.35 mg/mL chitosan reduced 
β-galactosidase activity by 32%. An increased in concentration (1.25 mg/mL) 
further led to the reduction of enzyme activity. The control experiment did not 
follow the trend. Likewise, the treated cells showed that chitosan greatly influ-
enced protein biosynthesis in the yeast [130]. Previous work [143] documented 
cell sensitivity to chitosan, which altered the deletions of genes involved in 
sphingolipid (e.g., ipt1Δ, skn1Δ, lcb3Δ) and ergosterol (e.g., erg3Δ, erg5Δ) biosyn-
thesis. In 1981, Hadwiger et al. [144] detected chitosan within plant cytoplasm 
and nucleus within 15 min after application, which indicate that chitosan can 
efficiently penetrate the thicker cell wall (the reason for its detection) and 
potentially interfered with DNA transcription and translation. This study sug-
gests that chitosan can easily penetrate microbial cells since plants have a thicker 
cell wall than microbes.

Moreover, looking at the time factor (15 min), it is evident that chitosan can 
quickly interact with fungi and bacteria cellular DNA with subsequent inhibition 
of DNA transcription, as well as RNA and protein synthesis [140, 145, 146], lead-
ing to cell death. Chitosan triggered transcriptional responses when introduced 
to S. cerevisiae strain X2180-1A (MATa SUC2 mal gal2 CUP1). T-Profiler analysis 
showed cis-regulatory motifs apart from the environmental stress response cor-
related positively with expression in the chitosan-treated sample. Cin5p, Crz1p, and 
Rlm1p were the transcription factors associated with identified binding sites. Genes 
participating in cell wall organization, biogenesis, and signal transduction were 
also triggered in the treated sample compared to the control [134]. Some factors 
influencing the antimicrobial activity of chitosan is discussed above; however, Kong 
et al. [120] and Hosseinnejad and Jafari [147] published an excellent reviews on 
these factors.

4.  Ultradisperse humic sapropel suspension (UDHSS) nanoparticles 
(UDHSS-NPs)

Sapropel is benthos found in fresh water, formed under anaerobic condi-
tions from dead organic matter of anhydrobiotic microflora and microfauna. It is 
principally composed of nutrients (i.e., sugars, minerals, lipids, etc.) and organic 
compounds known as humic substances [148–151]. Sapropels and sapropel extracts 
showed antibacterial and antifungal properties in previous studies hence could used 
as an alternate and novel biocidal agent during grain storage. The antimicrobial 
properties of sapropels is attributed to the presence of humic substances [152–156]. 
Sapropel has become a popular raw material for therapeutic applications, produc-
tion of sorbents, organic fertilizers, and food supplements [157]. UDHSS-NPs are 
organic NPs which exhibits potent biocidal activities due to the presence of humic 
substances [148]. Fulvic acids (FAs), humic acids (HAs), mumie, and humin are 
the principal constituents of humic substances (HSs) in sapropels [158–161], and 
are reportedly attribute to their biocidal properties. Many studies [152–155] have 
illustrated the inhibitory effects of sapropel on bacteria (S. aureus, E. coli, etc.) and 
yeasts (Candida, etc.). A micrograph of UDHSS-NPs is shown in Figure 2 however, 
its characteristics were not included in the present study.

In a series of tests performed by Barakova et al. [148], experiments 2 and 3 
exhibited most significant fungicidal effects on A. niger, a species which poses a 
greater threat to grain/food industries due to the potent mycotoxins it produce. 
A report showed that hematite NPs (hematite-HA complexes) significantly 

145

The Potential Application of Nanoparticles on Grains during Storage: Part 2 – An Overview…
DOI: http://dx.doi.org/10.5772/intechopen.93213

inhibited the growth and gene expression of P. putida KT2440. The bactericidal 
activities were ascribed to the oxidative stress induced by generated ROS. It was 
also shown that the physicochemical properties of the NPs (e.g., surface charge 
and size) influenced the efficacy of the hematite-HA complexes [162]. Therefore, 
modification of UDHSS-NPs could improve its biocidal properties.

A group of researchers [163] assessed the fungicidal activity of HAs and FAs 
extracted from soils on phytopathogenic fungal species (Physalospora piricola  
(P.P), Botrytis cinerea (B.C), Rhizoctonia cerealis (R.C), Fusarium graminearum (F.G), 
Phytophthora infestans (P.I), Sclerotinia sclerotiorum (S.S), Rhizoctonia solani (R.S), 
Cercospora arachidicola Hori (C.H), and Bipolaris maydis (B.M)). The results showed 
that HA exhibited above 30% and 50% inhibition against B.C, R.C, F.G, P.I, and P.P, 
respectively. The inhibition exerted by HA on all the species was higher compared 
to FA except for B.C. Correlation analysis further revealed that the inhibition rates 
of HAs decreased significantly with time (years) (p < 0.05) against most tested 
fungi except P.I., whereas FAs showed a negative correlation with cultivation years 
(p < 0.05) against most of the tested fungi except F.G. and S.S.

Recently, Ong et al. [164] documented that HAs (10 mg L−1 HA) altered enzyme 
activity in zebrafish embryo. Physicochemical properties such as size, zeta potential, 
and particle dissolution influenced their actions. It was further shown that coupling 
HAs with NPs enhanced the activity of the composite NPs. The addition of HAs reduced 
the hydrodynamic diameters of all examined NP suspensions except cadmium selenide 
(CdSe) NPs. Ezhkov and colleagues [165] developed NP-sapropel composite with par-
ticle size 45.0–180.0 nm and investigated its effects on treated albino mice. The results 
showed scarring of organ walls and shedding/exfoliation of the superficial epithelial 
cells. Further histological analysis of the oesophagus wall showed a significant thin-
ning of the horny substance and the removal of the stratified epithelium of the mucous 
membranes in areas in contact with the NPs.

Figure 2. 
UDHSS nanoparticles under a scanning electron microscope (SEM).
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A decrease in the induction of β-galactosidase was observed when yeast cells 
were exposed to chitosan. A concentration of 0.35 mg/mL chitosan reduced 
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potentially interfered with DNA transcription and translation. This study sug-
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Moreover, looking at the time factor (15 min), it is evident that chitosan can 
quickly interact with fungi and bacteria cellular DNA with subsequent inhibition 
of DNA transcription, as well as RNA and protein synthesis [140, 145, 146], lead-
ing to cell death. Chitosan triggered transcriptional responses when introduced 
to S. cerevisiae strain X2180-1A (MATa SUC2 mal gal2 CUP1). T-Profiler analysis 
showed cis-regulatory motifs apart from the environmental stress response cor-
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Rlm1p were the transcription factors associated with identified binding sites. Genes 
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properties of sapropels is attributed to the presence of humic substances [152–156]. 
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inhibited the growth and gene expression of P. putida KT2440. The bactericidal 
activities were ascribed to the oxidative stress induced by generated ROS. It was 
also shown that the physicochemical properties of the NPs (e.g., surface charge 
and size) influenced the efficacy of the hematite-HA complexes [162]. Therefore, 
modification of UDHSS-NPs could improve its biocidal properties.

A group of researchers [163] assessed the fungicidal activity of HAs and FAs 
extracted from soils on phytopathogenic fungal species (Physalospora piricola  
(P.P), Botrytis cinerea (B.C), Rhizoctonia cerealis (R.C), Fusarium graminearum (F.G), 
Phytophthora infestans (P.I), Sclerotinia sclerotiorum (S.S), Rhizoctonia solani (R.S), 
Cercospora arachidicola Hori (C.H), and Bipolaris maydis (B.M)). The results showed 
that HA exhibited above 30% and 50% inhibition against B.C, R.C, F.G, P.I, and P.P, 
respectively. The inhibition exerted by HA on all the species was higher compared 
to FA except for B.C. Correlation analysis further revealed that the inhibition rates 
of HAs decreased significantly with time (years) (p < 0.05) against most tested 
fungi except P.I., whereas FAs showed a negative correlation with cultivation years 
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Figure 2. 
UDHSS nanoparticles under a scanning electron microscope (SEM).
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4.1 Mechanistic action of UDHSS-NPs antimicrobial activity

Several studies have described the biological activity of sapropel on enzymes, which 
confirms its antimicrobial activity. Details of these studies are discussed below in a quest 
to put forward a proposed mechanism by which UDHSS-NPs kill microorganisms. 
Environmental factors such as temperature, pH, oxygen, and moisture play a vital role 
in the mechanistic action of UDHSS-NPs. According to Perdue [166], HSs is complex 
mixture containing aliphatic, aromatic carboxyl and hydroxyl functional groups, which 
binds with microbial cells either on grains or in the environment (i.e., water, soil, etc.), 
thus alter the membrane structural intergrity and its functions. According to literature, 
the fungi cell walls share similarities with plant and bacterial and indeed with the 
extracellular matrix material of mammalian cells. The anionic surface, β1,4- and β1,3-
linked polystarch forms a ribbon-like or helical (β1,3-glucan) structures which interacts 
with opposite charges. The cross linking of glycans of in eubacterial walls with peptides 
as well as phenolics and polysaccharides in plats promotes hydrogen bonding [167, 168]. 
Furthermore, the fungal cell wall is uniquely composed of mannoproteins, chitins, α- 
and β-linked glucans which serves many functions including; metabolism, ion exchange 
as well as providing cell rigidity and shape [169]. With the latter interacting with the HS. 
The interactions between HS and microbial cells depend on the lipophilicity and electric 
potential of the HS and cell [170], coupled with the size of the UDHSS-NPs. Microbial 
cells are composed of cations such as H+, Na+, K+, Li2+, Al3+, Ca2+, Cu2+, or Pb2+ which 
interact with UDHSS-NPs thus penetrate the cell. As documented by Lofts et al. [171], 
cation-HS interactions exert control on the reactivity of cation, including its bioavail-
ability for further reaction. Studies have shown the effects of binding metals with HS 
on water and soil ecosystems [172–174]. Natural and artificial HS got attracted to rice 
cells [175], macrophyte of Ceratophyllum demersum, crustaceans—Gammarus pulex, 
and vertebrates—tadpoles of Rana arvalis [176], which support the hypothesis that HS 
is charged and naturally interacts with microorganisms. When HS penetrates or is taken 
up by a cell, the electric potential of the cell is disrupted, denying the cell the ability to 
provide support in terms of rigidity, shape and metabolism, thus creating pores through 
which vital intracellular structures are leaked out.

In an in vivo experiment, Vigneault et al. [177] discovered that Suwannee River 
HA and FA enhanced the release/leakage of the fluorescent probe sulforhodamine-
B (SRB) encapsulated within 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidyl-
choline (POPC) vesicles. With regards to HA, a pH from 7.6 to 5.7 enhanced its 
surfactant-like effect. In conclusion, HS can alter the permeability of microbial 
cell, to create pores via which intracellular components are leaked out, killing the 
microorganism. However, the concentration, functionalisation (acylation), and pH 
of HS could potentially influence the biocidal activity.

According to Almatov and Akhmerov [178], 0.2–0.8 mg/mL mumie activated 
mitochondrial respiration and inhibited cellular succinate-oxidase and NADH-
oxidase activity (mitochondrion). Similarly, mumie triggered the outflow of 
Ca2+ [160]. 

Previous studies [179–181] reported that mumie induced a dose-dependent 
elevation of superoxide dismutase, catalase, and glutathione peroxidase in rats. 
These enzymes are involved in the generation of ROS in an HA-induced antimicro-
bial or biological effects, which killed microorganisms and other grain storage pest.

A small-molecular size humic (LMSH) extracted from the feces of Nicodrilus and 
Allolobophora rosea enhanced the uptake of nitrate by plant roots and the accumulation 
of anions in the leaves. Further molecular analysis showed that LMSH influenced gene 
transcription in roots and long-distance effects in shoots as observed for Mha2 and 
the ZmNrt2.1 gene, respectively [182], which indicate HS can interfere with protein 
synthesis in microbes. FA and HA extracted from a podzol stimulated respiration in 
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rat liver mitochondria at concentrations between 40 and 360 mg/L. Depending on the 
duration of contact with mitochondria, uncoupled oxidative phosphorylation may 
occur subsequently affecting the growth of the microorganism [183].

A product of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine increased 
significantly after treatment with HA, indicating the ability of HA to inflict damage 
on DNA. The endonuclease activity of the viral RNA polymerase was inhibited when 
it came in contact with HA [184]. The concentrations (5, 10, and 15 mgL-1) of HA and 
its organic extract significantly increased luciferase reporter gene activity in H4IIE.
luc cells in a dose-dependent manner, which affected various molecular processes 
[185], thus killing the cell. The addition of HA (300 mg kg−1) to soil stimulated the 
growth of bot laurel plants and rhizospheric bacteria and actinomycetes. However, 
high dose (3000 mg kg−1), exerted an inhibitory effects [186]. The effects of HS on 
the hormone of Caenorhabditis elegans [170, 187], the sex ratio of Xiphophorus helleri 
[188], and the change in biochemical parameters of amphipod [189] were reported. 
These studies reiterate the potential biological effects of HS on microorganisms at the 
molecular level thus making them vulnerably for UDHSS-NPs.

5. Carbon-based nanoparticles/nanomaterials

Recently, carbon-based nanomaterials/particles (CNPs), which include nano-
tubes (i.e., double- or single-walled carbon nanotubes (DWCNT/SWCNTs)), 
fullerenes, and graphene oxide (GO) (Figure 3), have gained attention due to 
their potent biocidal activities. According to literature, the biocidal potency of 
these novel NPs is influenced by their physical/chemical properties, high adsorp-
tive potentials, size, large surface area, and colloidal stability under wide range of 
pH. Increasing the NPs’ surface area led to a decrease in size, with concomitant 
increase in adsorption and absorption (into fungi cell), which improved interaction 
[190–196] with subsequent inhibition of fungal growth.

The mycelia biomass and aflatoxin biosynthesis in A. flavus NRRL 3251 was 
negatively influenced at 10 μg mL−1 of fullerene C60 (fullerols C60(OH)24). The 
effects (growth arrest) was concentration-dependent. However, the antioxidative 
activity of the furrerols declined over time [197]. Hao and colleagues [198] investi-
gated the fungicidal potentials of metal (copper oxide (CuO), ferric oxide (Fe2O3), 
and TiO2NPs) and carbon-based NPs (multiwalled carbon nanotubes, fullerene, 
and reduced graphene oxide) against Botrytis cinerea. The results showed that all the 
six NPs exhibited biocidal activity with 50 mg/L of fullerene showing the strongest 
antifungal effects.

Reduced graphene oxide (rGO) nanosheets inhibited the mycelial growth of A. 
niger, A. oryzae, and F. oxysporum with half maximal inhibitory concentrations (IC50) 
of 500, 500, and 250 μg/mL, respectively. The fungicidal activity as ascribed to the 
sharp edge of the rGO [199] which inflict injury on the cells, resulting in leaking of 
the cell components. Another hypothesis is that the organic functional groups on the 
fungi cell wall chemically interact with the ROS in rGO [200], which halts the uptake 
of nutrient and excretion of waste metabolites eventually killing the fungi.

Among the six carbon nanomaterials (SWCNTs, MWCNTs, GO, rGO, C60, and 
activated carbon (AC)) assessed for their fungicidal activity against pathogenic 
fungi (i.e., F. graminearum and F. poae), SWCNTs (500 μg/mL) exhibited the most 
potent activity, followed by MWCNTs, GO, and rGO respectively. However, the 
other two CNPs (C60 and AC) showed minimal activity, probably due to insufficient 
contact with fungal spores [201]. Conclusively, increasing the concentration of CNPs 
(62.5 < 125 < 250 < 500 μg/mL) increased the fungicidal potency. In a similar study, 
Wang et al. [202] reported that modifying the surface of MWCNTs with ▬OH, 
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rat liver mitochondria at concentrations between 40 and 360 mg/L. Depending on the 
duration of contact with mitochondria, uncoupled oxidative phosphorylation may 
occur subsequently affecting the growth of the microorganism [183].

A product of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine increased 
significantly after treatment with HA, indicating the ability of HA to inflict damage 
on DNA. The endonuclease activity of the viral RNA polymerase was inhibited when 
it came in contact with HA [184]. The concentrations (5, 10, and 15 mgL-1) of HA and 
its organic extract significantly increased luciferase reporter gene activity in H4IIE.
luc cells in a dose-dependent manner, which affected various molecular processes 
[185], thus killing the cell. The addition of HA (300 mg kg−1) to soil stimulated the 
growth of bot laurel plants and rhizospheric bacteria and actinomycetes. However, 
high dose (3000 mg kg−1), exerted an inhibitory effects [186]. The effects of HS on 
the hormone of Caenorhabditis elegans [170, 187], the sex ratio of Xiphophorus helleri 
[188], and the change in biochemical parameters of amphipod [189] were reported. 
These studies reiterate the potential biological effects of HS on microorganisms at the 
molecular level thus making them vulnerably for UDHSS-NPs.

5. Carbon-based nanoparticles/nanomaterials

Recently, carbon-based nanomaterials/particles (CNPs), which include nano-
tubes (i.e., double- or single-walled carbon nanotubes (DWCNT/SWCNTs)), 
fullerenes, and graphene oxide (GO) (Figure 3), have gained attention due to 
their potent biocidal activities. According to literature, the biocidal potency of 
these novel NPs is influenced by their physical/chemical properties, high adsorp-
tive potentials, size, large surface area, and colloidal stability under wide range of 
pH. Increasing the NPs’ surface area led to a decrease in size, with concomitant 
increase in adsorption and absorption (into fungi cell), which improved interaction 
[190–196] with subsequent inhibition of fungal growth.

The mycelia biomass and aflatoxin biosynthesis in A. flavus NRRL 3251 was 
negatively influenced at 10 μg mL−1 of fullerene C60 (fullerols C60(OH)24). The 
effects (growth arrest) was concentration-dependent. However, the antioxidative 
activity of the furrerols declined over time [197]. Hao and colleagues [198] investi-
gated the fungicidal potentials of metal (copper oxide (CuO), ferric oxide (Fe2O3), 
and TiO2NPs) and carbon-based NPs (multiwalled carbon nanotubes, fullerene, 
and reduced graphene oxide) against Botrytis cinerea. The results showed that all the 
six NPs exhibited biocidal activity with 50 mg/L of fullerene showing the strongest 
antifungal effects.

Reduced graphene oxide (rGO) nanosheets inhibited the mycelial growth of A. 
niger, A. oryzae, and F. oxysporum with half maximal inhibitory concentrations (IC50) 
of 500, 500, and 250 μg/mL, respectively. The fungicidal activity as ascribed to the 
sharp edge of the rGO [199] which inflict injury on the cells, resulting in leaking of 
the cell components. Another hypothesis is that the organic functional groups on the 
fungi cell wall chemically interact with the ROS in rGO [200], which halts the uptake 
of nutrient and excretion of waste metabolites eventually killing the fungi.

Among the six carbon nanomaterials (SWCNTs, MWCNTs, GO, rGO, C60, and 
activated carbon (AC)) assessed for their fungicidal activity against pathogenic 
fungi (i.e., F. graminearum and F. poae), SWCNTs (500 μg/mL) exhibited the most 
potent activity, followed by MWCNTs, GO, and rGO respectively. However, the 
other two CNPs (C60 and AC) showed minimal activity, probably due to insufficient 
contact with fungal spores [201]. Conclusively, increasing the concentration of CNPs 
(62.5 < 125 < 250 < 500 μg/mL) increased the fungicidal potency. In a similar study, 
Wang et al. [202] reported that modifying the surface of MWCNTs with ▬OH, 
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▬COOH, and ▬NH2 improved the fungicidal activity (inhibition in spore elongation 
and germination) than the unmodified CNTs. It is hypothesized that modified CNTs 
formed a stable dispersions, which favoured interaction with spores, as a results 
enhanced antifungal activity. The authors observed a reduction in F. graminearum 
spore from 68.5, 54.5, 28.3, 27.4, and 29.5 μm, when 500 μg/mL MWCNTs (control), 
MWCNTs-COOH, MWCNTs-OH, and MWCNTs-NH2 were applied, respectively. 
Moreover, previous works [203, 204] documented that biological activity of nano-
tubes improved upon addition of functionalized aliphatic amide (covalent) and 
polyethylene glycol (PEG) and/or polyoxyethylene(40)nonylphenyl ether (IGPAL) 
(non-covalent) chemical groups [205]. Zare-Zardini et al. [206] conducted a cova-
lent functionalization of MWCNTs with lysine and arginine under radiation. The 
modified MWCNTs exhibited potent biocidal activity against all test fungi (A. niger, 
A. fumigatus, C. albicans, P. chrysogenum, S. cerevisiae, F. culmorum, Microsporum 
canis, Trichophyton mentagrophytes, Trichophyton rubrum, and P. lilacinum) compared 
unmodified MWCNTs. Surprisingly, the fungicidal activity of MWCNTs-arginine 
against all the test fungi was slightly higher than MWCNTs-lysine. The authors 
hypothesized that the positive charge on arginine might have enhanced the binding 
of NPs on the fungal membrane and altered the genetic makeup (DNA). Thus, lysine 
and arginine could be utilized to improve the fungicidal activity of CTNs. Recently, 
Katerine et al. [207] reported the fungicidal activity of cotton fabric silica-silver 
carbon-based hybrid NPs against A. sp., Cladosporium sp. and Chaetomium globosum. 
The fabrics with high number carbon exerted the most increased biocidal activity 
on C. globosum and Aspergillus sp.

5.1 Mechanistic action of CNPs fungicidal activity

The ability of CNPs to interact and integrate into fungi cells determines their 
fungicidal activities. Wang et al. [201] reported the importance of surface contact 

Figure 3. 
Various carbon-based NPs [208].
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of CNPS to their biocidal functionality. A transmission electron microscopy study 
showed CNPs interacted and integrated into spores and form an aggregation. It 
was hypothesized that the van der Waals force in CNTs was strong enough formed 
a bond with spores, as a result, triggered plasmolysis. Similarly, Zare-Zardini 
et al. [206] reported a strong interaction in functionalized CNTs with arginine 
than lysine with fungi membrane. These interactions may result in CNPs been 
internalized into fungi. Transmission electron microscopy (TEM) analysis 
showed direct evidence of nanographene been internalized in Caco-2 cells [209], 
which support the above finding. Moreover, cells treated with CNPs showed 
evidence of plasmolysis [201]. 

 They compared images of healthy and treated (incubation for 3 h with CNPs) 
cell membranes of F. graminearum spores. They observed an intact, slick, compact, 
inerratic, and well-positioned cytoplasm for the untreated cell; however, after treat-
ment the latter cell were transfigured, contracted and gathered. This shows solute 
lost through CNPs point of contact. Interaction of CNPs with fungi’ membrane 
led to a decrease in membrane integrity by the stresses exerted by the electrostatic 
forces between the microbial outer surface and CNTs, resulting in membrane oxida-
tion [210]. CNPs are reported to be a contributing factor to the over-generation of 
ROS, which could trigger fungal cells to enter oxidative stress, causing excessive 
impairment to cellular components and permanent DNA laddering that could 
potentially lead biocidal activity against the cells [211, 212]. In contrast, Saha et al. 
[209] found that all CNPs (C1, C2, C3, C4 C5) assessed did not contribute to ROS 
production in Caco-2 cells. A decrease in ATP was observed. Conclusively, CNTs 
applied was internalized and disrupt the functionality of mitochondria which 
explains the reason for the low ATP observed. However, the treatment did not influ-
ence the production of ROS. 

6. Toxicological aspects of NPs

According to Higashisaka et al. [213], NPs with diameters ≤100 nm are pres-
ently been used in various applications, including food production (e.g., to improve 
texture). An orally ingested NP can cross the gastrointestinal barrier, absorbed into 
the blood, and alter normal physiological functions, thus causing adverse health is 
to consumer(s) [213, 214]. Ezhkov and colleagues reported acute catarrhal inflam-
mation on esophagus, stomach, and duodenum of mice fed with sapropel-NPs at 
a dose of 1.8 g/kg. However, 0.3 g/kg and 1.5 g/kg dose did not manifest any toxic 
effects [165].

A positive correlation was established between residues of Ag-NPs in rat organs 
and the NP suspension applied. NPs migrated from the luminal side to the intestinal 
epithelial cells via endocytosis or transcytosis, which are accumulated in the men-
tioned organs. However, all treated rats were able to excrete the NPs from most organs 
except the brain and testes [214–217]. Cellular uptake of NPs is similar to mechanism 
of the antimicrobial activity as its also depends on size, surface charge, and dispersion 
or aggregation state [218, 219]. Rhodamine B (RhB) labeled carboxymethyl chitosan 
grafted NPs (RhBCMCNP) and chitosan hydrochloride grafted NPs (RhB-CHNP) 
bearing positive or negative charges used as model chitosan to elucidate the effects of 
particle size and surface charge on the cellular uptake of NPs revealed that the surface 
charges were attracted to the macrophages, and could be attributed to the electrostatic 
interactions between particles and phagocytic cells. Besides, different cell lines, 
irrespective particle size, and surface charge difference influence the uptake of NPs 
[219]. Kim et al. [220] detected traces of Ag-NPs in blood, liver and other organs after 
they orally fed rats at a dose of 30, 125, or 500 mg/kg BW/day. A significant (p < 0.05) 
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of CNPS to their biocidal functionality. A transmission electron microscopy study 
showed CNPs interacted and integrated into spores and form an aggregation. It 
was hypothesized that the van der Waals force in CNTs was strong enough formed 
a bond with spores, as a result, triggered plasmolysis. Similarly, Zare-Zardini 
et al. [206] reported a strong interaction in functionalized CNTs with arginine 
than lysine with fungi membrane. These interactions may result in CNPs been 
internalized into fungi. Transmission electron microscopy (TEM) analysis 
showed direct evidence of nanographene been internalized in Caco-2 cells [209], 
which support the above finding. Moreover, cells treated with CNPs showed 
evidence of plasmolysis [201]. 

 They compared images of healthy and treated (incubation for 3 h with CNPs) 
cell membranes of F. graminearum spores. They observed an intact, slick, compact, 
inerratic, and well-positioned cytoplasm for the untreated cell; however, after treat-
ment the latter cell were transfigured, contracted and gathered. This shows solute 
lost through CNPs point of contact. Interaction of CNPs with fungi’ membrane 
led to a decrease in membrane integrity by the stresses exerted by the electrostatic 
forces between the microbial outer surface and CNTs, resulting in membrane oxida-
tion [210]. CNPs are reported to be a contributing factor to the over-generation of 
ROS, which could trigger fungal cells to enter oxidative stress, causing excessive 
impairment to cellular components and permanent DNA laddering that could 
potentially lead biocidal activity against the cells [211, 212]. In contrast, Saha et al. 
[209] found that all CNPs (C1, C2, C3, C4 C5) assessed did not contribute to ROS 
production in Caco-2 cells. A decrease in ATP was observed. Conclusively, CNTs 
applied was internalized and disrupt the functionality of mitochondria which 
explains the reason for the low ATP observed. However, the treatment did not influ-
ence the production of ROS. 

6. Toxicological aspects of NPs

According to Higashisaka et al. [213], NPs with diameters ≤100 nm are pres-
ently been used in various applications, including food production (e.g., to improve 
texture). An orally ingested NP can cross the gastrointestinal barrier, absorbed into 
the blood, and alter normal physiological functions, thus causing adverse health is 
to consumer(s) [213, 214]. Ezhkov and colleagues reported acute catarrhal inflam-
mation on esophagus, stomach, and duodenum of mice fed with sapropel-NPs at 
a dose of 1.8 g/kg. However, 0.3 g/kg and 1.5 g/kg dose did not manifest any toxic 
effects [165].

A positive correlation was established between residues of Ag-NPs in rat organs 
and the NP suspension applied. NPs migrated from the luminal side to the intestinal 
epithelial cells via endocytosis or transcytosis, which are accumulated in the men-
tioned organs. However, all treated rats were able to excrete the NPs from most organs 
except the brain and testes [214–217]. Cellular uptake of NPs is similar to mechanism 
of the antimicrobial activity as its also depends on size, surface charge, and dispersion 
or aggregation state [218, 219]. Rhodamine B (RhB) labeled carboxymethyl chitosan 
grafted NPs (RhBCMCNP) and chitosan hydrochloride grafted NPs (RhB-CHNP) 
bearing positive or negative charges used as model chitosan to elucidate the effects of 
particle size and surface charge on the cellular uptake of NPs revealed that the surface 
charges were attracted to the macrophages, and could be attributed to the electrostatic 
interactions between particles and phagocytic cells. Besides, different cell lines, 
irrespective particle size, and surface charge difference influence the uptake of NPs 
[219]. Kim et al. [220] detected traces of Ag-NPs in blood, liver and other organs after 
they orally fed rats at a dose of 30, 125, or 500 mg/kg BW/day. A significant (p < 0.05) 
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Figure 4. 
Zinc content in selected tissue of the mice (n = 5) after oral administration of ZnO nanoparticles (NPs) 
(300 mg/kg) for 14 consecutive days. Data represent mean±S.E.M. of three animals. *p < 0.05, compared to 
control. Modified with permission from ref 4495441125809.

dose-related decrease in the bodyweight of high-dose male rats at the fourth, fifth, 
and seventh weeks was observed; however, no significant dose-dependent changes in 
the female rats. Further hematological assays showed a significant increase (p < 0.01) 
in cholesterol in the both high-dose male and female rats. A significant increase 
(p < 0.01) in alkine phosphotase (ALP) was also indicated for the high-dose female 
rats. The authors reported no-observed-adverse-effect level (NOAEL) and lowest-
observed-adverse-effect level (LOAEL) as 30 mg/kg BW/day and 125 mg/kg BW/
day, respectively. Treatment with NPs of diameters ranging from 25 to 80 nm at a 
dose of 5000 mg/kg body weight altered the levels of alanine transaminase, aspartate 
transaminase, blood urea nitrogen, and lactate dehydrogenase, along with lesions 
on the liver and kidneys of female mice. Myocardial damage associated with groups 
showing a notable changes in serum LDH and alpha-HBDH levels compared to the 
control experiment. Also, a biodistribution test disclosed that TiO2 was predominantly 
retained in the liver, spleen, kidneys, and lung tissues, indicating TiO2-NPs were trans-
ported via endocytosis to other tissues and organs after their uptake by the gastroin-
testinal tract [221]. Contradictory finding was reported by Warheit et al. [222] where 
no adverse effects were manifested after orally fed rats with TiO2-NPs. However, the 
NOAEL on rats exposed for 90 days was >1000 mg/kg BW/day. In a similar study, 
Sharma et al. [223] divided male Swiss albino mice into three groups (group 1—vehicle 
control (water); group 2—ZnO nanoparticles (300 mg/kg body weight); group 3—
ZnO nanoparticles (50 mg/kg)) and fed them with 50 and 300 mg/kg b.wt. ZnO-NPs 
for 14 consecutive days. ZnO-NPs induced oxidative stress, which damage the DNA 
and apoptosis in the mouse liver. Additionally, elevated levels of ALT and ALP serum 
and subsequent pathological lesions were observed in the treated mice. Lastly, at 
a higher dose (300 mg/kg) of ZnO-NPs, a significant (p < 0.05) induction of lipid 
peroxidation was observed in the liver, brain, and kidney (Figure 4) of the treated 
mice in comparison with the control test. Cho et al. [224] discovered ZnO-NPs had a 
higher absorption efficiency than TiO2-NPs in rats. ZnO-NP concentrations in the liver 
and kidney were significantly higher compared to the control, whereas with TiO2-
NPs, no dramatic increase was detected in the sampled organs. In the feces, very high 
and low concentrations of Ti and Zn were detected, respectively. The concentration 
of ZnO in the spleen and brain was minimally elevated. Similarly, Ti concentrations 
were not drastically increased in urine; in contrast, it was Zn levels, that remarkably 
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changed. Therefore, the absorption of various NPs could be attributed to the higher 
dissolution rate in the acidic gastric fluid; however, this might not be applicable when 
NPs are utilized during grain storage. When a stored grain undergoes sun drying, mill-
ing, etc., the levels of NPs may decrease to a level that could not affect the consumer 
health. Moreover, many NPs have received approval for application in many fields. 
Nevertheless, rigorous studies are warranted to expound on any risks or the safety 
of NPs use in grain storage. According to Zare-Zardini et al. [206], CNPs appeared 
less toxic to humans and animals compared to metal NPs and are therefore the better 
alternative and a novel method for reducing mycotoxin biosynthesis in grains.

7. Proposed methods of applying NPs during grain storage

1. The first method is direct processing of grains with solutions of the required 
concentration of NPs. To achieve this, biocompatible NPs in an aqueous disper-
sion medium with pH values close to neutral should be used.

2. Treatment with aerosols NPs could also be used if the NPs are dispersed evenly 
over the granary or silos. The aerosols to apply should be modified to prevent 
aggregation on grains. Using aerosols saves time and labor since additional 
drying is not required.

3. The use of packages made from NPs during storage, transportation, and sale 
will extend the shelf life of grains. Alternatively, NPs formulated cubes could 
be place in jute bags with grains; however, periodic mixing is required to dis-
tribute the NPs.

4. In our opinion, one of the most inexpensive methods is the use NPs in the 
production of materials for granaries, as well as treating interior and exterior 
surfaces of the storage facilities. 

8. Conclusions

The ability of NPs to suppress the synthesis of mycotoxins in fungi and other 
microorganisms could be a breakthrough to curbe the issue of aflatoxin prevalence 
worldwide. NPs displayed excellent antifungal activity against important fungal 
species which contaminate grains with toxins during storage. The concentration, 
volume, type, and illumination (sunlight) significantly influenced the biostatic 
activity of NPs. Hence, these factors should carefully be considered when applying 
NPs in grain storage. The proposed NPs are environmentally friendly and pose no 
threat to consumer compared to some conventional methods of grain preservation. 
Several ex vivo, in vivo, and in vitro studies supports these claims. Moreover, NPs 
are biocompatible to the human system hence their usage in the food industry. 
Despite safety of NPs guaranteed by international safety organizations such as the 
Food Safety Authority, routine testing is required to understand the impact it has on 
grain nutritional, sensory, and other physicochemical parameters.
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