
Theory, Application, and 
Implementation of Monte 

Carlo Method in Science and 
Technology

Edited by Pooneh Saidi Bidokhti

Edited by Pooneh Saidi Bidokhti

The Monte Carlo method is a numerical technique to model the probability of 
all possible outcomes in a process that cannot easily be predicted due to the 

interference of random variables. It is a technique used to understand the impact of 
risk, uncertainty, and ambiguity in forecasting models. However, this technique is 

complicated by the amount of computer time required to achieve sufficient precision in 
the simulations and evaluate their accuracy. This book discusses the general principles 

of the Monte Carlo method with an emphasis on techniques to decrease simulation 
time and increase accuracy.

Published in London, UK 

©  2019 IntechOpen 
©  agsandrew / iStock

ISBN 978-1-78985-545-6

Th
eory, A

pplication, and Im
plem

entation of M
onte Carlo M

ethod in Science and Technology





Theory, Application, and 
Implementation of Monte 
Carlo Method in Science 

and Technology
Edited by Pooneh Saidi Bidokhti

Published in London, United Kingdom





Supporting open minds since 2005



Theory, Application, and Implementation of Monte Carlo Method in Science and Technology
http://dx.doi.org/10.5772/intechopen.78141
Edited by Pooneh Saidi Bidokhti

Contributors
Hossam Donya, Baljeet Seniwal, Reem Darwesh, Telma Cristina Ferreira Fonseca, Sherif Sherif, Ivan 
Lima Jr., Pooneh Saidi Bidokhti, Mahdi Sadeghi, Artur Chrobak, Grzegorz Ziółkowska, Dariusz Chrobak, 
Fethi Khelfaoui, Oumelkheir Babahani, Bernt Leira, Sebastian Thons, Arifian Agusta, Gabriela Hoff, 
Bruno Golosio, Elaine Streck, Viviana Fanti

© The Editor(s) and the Author(s) 2019
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2019 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 7th floor, 10 Lower Thames Street, London,  
EC3R 6AF, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology
Edited by Pooneh Saidi Bidokhti
p. cm.
Print ISBN 978-1-78985-545-6
Online ISBN 978-1-78985-546-3
eBook (PDF) ISBN 978-1-83968-152-3



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,500+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

118,000+
International  authors and editors

130M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Dr. Pooneh Saidi earned her PhD in Nuclear Engineering from 
the Science and Research Branch of Azad University, Tehran. 
She also holds two MSc degrees, one in Nuclear Engineering 
and another in Construction Project Management, from Shahid 
Beheshti University, Tehran. She is a Project Management Pro-
fessional certified by the Project Management Institute (PMI). 
Dr. Saidi is a member of the board of directors at Parsikan Iran 

Engineering & Management Consultants. She is a skilled project planner with more 
than 18 years of experience in design and research and development projects. She 
is the author of more than 30 scientific papers and conference communications, 
recipient of the 2012 ICTR-PHE best poster award, and the author of four book 
chapters published by IntechOpen.



Contents

Preface III

Section 1
1Medicine

Chapter 1 3
Monte Carlo Methods for Simulation of Optical Coherence
Tomography of Turbid Media
by Ivan T. Lima Jr and Sherif S. Sherif

Chapter 2 19
Modelling, Simulation and Dosimetry of 103-Pd Eye Plaque
Brachytherapy
by Pooneh Saidi and Mahdi Sadeghi

Chapter 3 39
Prospective Monte Carlo Simulation for Choosing High Efficient
Detectors for Small-Field Dosimetry
by Hossam Donya, Baljeet Seniwal, Reem Darwesh and Telma
C.F. Fonseca

Chapter 4 79
Monte Carlo’s Core and Tests for Application Developers: Geant4
and XRMC Comparison and Validation
by Gabriela Hoff, Bruno Golosio, Elaine E. Streck and Viviana Fanti

Section 2
115Material

Chapter 5 117
How to Use the Monte Carlo Simulation Technique? Application:
A Study of the Gas Phase during Thin Film Deposition
by Fethi Khelfaoui and Oumelkheir Babahani

Chapter 6 139
Application of Local Information Entropy in Cluster Monte Carlo
Algorithms
by Artur Chrobak, Grzegorz Ziółkowski and Dariusz Chrobak

Section 3
155Structure



Contents

Preface XIII

Section 1
1Medicine

Chapter 1 3
Monte Carlo Methods for Simulation of Optical Coherence
Tomography of Turbid Media
by Ivan T. Lima Jr and Sherif S. Sherif

Chapter 2 19
Modelling, Simulation and Dosimetry of 103-Pd Eye Plaque
Brachytherapy
by Pooneh Saidi and Mahdi Sadeghi

Chapter 3 39
Prospective Monte Carlo Simulation for Choosing High Efficient
Detectors for Small-Field Dosimetry
by Hossam Donya, Baljeet Seniwal, Reem Darwesh and Telma
C.F. Fonseca

Chapter 4 79
Monte Carlo’s Core and Tests for Application Developers: Geant4
and XRMC Comparison and Validation
by Gabriela Hoff, Bruno Golosio, Elaine E. Streck and Viviana Fanti

Section 2
115Material

Chapter 5 117
How to Use the Monte Carlo Simulation Technique? Application:
A Study of the Gas Phase during Thin Film Deposition
by Fethi Khelfaoui and Oumelkheir Babahani

Chapter 6 139
Application of Local Information Entropy in Cluster Monte Carlo
Algorithms
by Artur Chrobak, Grzegorz Ziółkowski and Dariusz Chrobak

Section 3
155Structure



Chapter 7 157
Utilization of Digital Twins and Other Numerical Relatives for
Efficient Monte Carlo Simulation in Structural Analysis
by Bernt Johan Leira, Arifian Agusta and Sebastian Thöns

XII

Preface

The Monte Carlo method is a numerical technique to model the probability of all
possible outcomes in a process that cannot easily be predicted due to the interfer-
ence of random variables. It is a technique used to understand the impact of
uncertainty, ambiguity, and risk in forecasting models. This technique, also known
as the Stochastic Simulation Technique, is now an established method used rou-
tinely in a wide variety of disciplines such as industry, nuclear engineering, medi-
cine, economics, and risk analysis. However, this technique is not without
complications, one of which is the amount of computer time required to achieve
sufficient precision in the simulations and evaluate their accuracy. This book is
organized into three sections and presents the general principles of the Monte Carlo
method with an emphasis on techniques to decrease simulation time and increase
accuracy.

Section 1 discusses the major fields of application of the Monte Carlo method in
medicine. It covers a variety of topics, including medical physics, dosimetry, radia-
tion protection, diagnostic radiology, radiotherapy, and nuclear medicine.

Section 2 introduces the theory and application of the Monte Carlo method in
material science. This method is now widely applied in the design of complex
materials and has become a vital tool in the field.

Section 3 provides practical information needed to support simulation and analysis
of structures by numerical models and introduces techniques to reduce the compu-
tation time for even larger and more complex models.

Each section is subdivided into chapters and the implementation of the Monte Carlo
method in each section is illustrated in several examples.

Chapter 1 introduces sampling techniques for a standard Monte Carlo method that
could enable fast simulation of signals from optical coherence tomography (OCT)
imaging systems. The chapter presents a standard Monte Carlo method for simu-
lating OCT signals and sampling implementations that reduce computational time.

Chapter 2 discusses the calculation of the dosimetric parameters of encapsulated
radioactive materials. In this chapter, Monte Carlo simulations are performed to
determine the dosimetric parameters of the Palladium-103 brachytherapy seed. It
also investigates the dose distributions along the central axis of COMS eye plaques
loaded with the seeds. The chapter also examines the effects of plaque backing and
polymeric insert on dose distribution at critical ocular structures.

Chapter 3 reviews the physics of small radiation fields, cavity theory, and the
methodology of small field dosimetry. Different types of commercial dosimeters
used in small field dosimetry are introduced and the importance of accurate small
field dosimetry is discussed. This chapter also focuses on the application and
importance of Monte Carlo techniques used in the field and presents recommenda-
tions of the Code of Practice for dosimetry of small radiation fields.
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Chapter 4 describes the general concepts and basis of Monte Carlo modeling,
introduces some available codes, and discusses the validation and reliability of
Monte Carlo codes. It also examines the limitations on cross-section library and
random number generators. The chapter presents a comparison between two Monte
Carlo codes, XRMC and Geant4, and examines the validation between them.
Experimental data applied to mammography are also presented. Finally, the chapter
discusses the considerations in choosing a Monte Carlo computer toolkit and raises
important issues on validation and reliability tests.

Chapter 5 presents algorithms, techniques, and general rules for Monte Carlo simu-
lation in the plasma-enhanced chemical vapor deposition method. This is currently
the method of choice for producing hydrogenated amorphous silicon thin films,
which are promising materials for flat panel display transistors, solar cells, and
electronic devices. But the reactions during plasma deposition are complex and not
possible to observe directly, hence Monte Carlo simulation is a powerful tool to
study thermodynamic properties.

Chapter 6 introduces the application of local information entropy in cluster Monte
Carlo algorithms. The cluster Monte Carlo methods are very efficient in analysis of
critical phenomena, for example, transformation from a ferromagnetic to a para-
magnetic phase. However, in some conditions below the Curie point, this method
produces incorrect results. To solve this problem, the chapter introduces a new
simulation procedure that is efficient, leading to physically reliable results, espe-
cially for multiphase magnetic composites.

Chapter 7 deals with the analysis of structures. In general, structure analysis
involves large and complex numerical models that require extensive computation
efforts. One way to avoid this problem is to introduce simplified numerical models.
This chapter discusses various types of approximate models and illustrates applica-
tion of response surface techniques for an offshore jacket structure in combination
with the Monte Carlo technique.

This book is an excellent contribution of numerous scientists and researchers from
all around the world. I hope it encourages readers, scientists, and researchers to look
deeper into the Monte Carlo Method and opens up several possibilities for further
novel development.

As an editor, I express heartfelt appreciation to each and every contributing author
and technical reviewer because this book could not have been written without their
effort.

I would like to give very special thanks to IntechOpen for their support in editing
this book, especially Ms. Sara Bacvarova. Her help with the publication process and
friendly and prompt responses to my queries motivated me to work hard during
eight months of preparing this book.

Pooneh Saidi, Ph.D., PMP
Parsikan Iran Engineering and Management Consultants,

Tehran, IRAN
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Chapter 1

Monte Carlo Methods for
Simulation of Optical Coherence
Tomography of Turbid Media
Ivan T. Lima Jr and Sherif S. Sherif

Abstract

We describe two importance sampling techniques for a standard Monte Carlo
(MC) method that could enable fast simulation of signals from optical coherence
tomography (OCT) imaging systems. These OCT signals are generated due to
diffusive reflections from either multilayered or arbitrary shaped, turbid media, for
example, tissue. Such signals typically consist of ballistic and quasi-ballistic
components, of scattered photons inside the medium, in addition to photons that
undergo multiple scattering. We show that MC simulation of these OCT signals
using importance sampling reduces its computation time on a serial processor by up
to three orders of magnitude compared to its corresponding standard implementa-
tion. Therefore, these importance sampling techniques enable practical simulation
of OCT B-scans of turbid media, for example, tissue, using commonly available
workstations.

Keywords: optical coherence tomography, Monte Carlo simulation,
light transport in turbid media, importance sampling

1. Introduction

Optical coherence tomography (OCT) is a non-invasive sub-surface imaging
technique that has experienced significant growth in biomedical applications [1, 2].
OCT systems could be implemented with a low-coherence light source and a
mechanical scanning sub-system (time-domain OCT). More advanced systems use
a low-coherence light source with a spectrometer or a wavelength-swept source
(frequency-domain OCT). OCT has an imaging depth that could reach up to 3 mm,
depending on the optical properties of the tissue, and it also has one to two orders of
magnitude higher resolution than ultrasound imaging. OCT could also produce
images inside the body when it is implemented using optical fiber probes. Unlike
X-ray or gamma-ray imaging, OCT is safe for biological tissues because it utilizes
non-ionizing radiation mainly in the infrared spectrum.

1.1 OCT signal simulation using a Monte Carlo method

The signal obtained by an OCT imaging system consists of ballistic and
quasi-ballistic (Class I diffuse reflectance) photons, in addition to multiply scattered
photons (Class II diffuse reflectance), that are reflected from tissue [3].
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However, multiply scattered photons do not carry practically useful information
about the imaged tissue; therefore, they result in a degradation of the OCT signal
[4]. In addition, it has been shown that Class II diffuse reflectance represents a
fundamental limit related to the imaging depth of OCT in tissue [5]. Therefore, it is
important to account for both Class I and Class II diffusive reflectance in any
practical simulation of OCT signals.

Since it is not practical to simulate light transport in turbid media, for example,
tissue, using electromagnetic waves, especially due to diffusive scattering, a Monte
Carlo (MC) method of simulating light transport in tissue has been typically used
[6–9]. However, the computational cost of this MC-based simulation of OCT sys-
tems could be very high, as the probability of detecting diffusively reflected pho-
tons from tissue is very low [4, 5].

To reduce the computational cost, thereby accelerate, this MC simulation,
importance sampling could be used to speed up simulations by orders of magnitude.
Importance sampling has been applied earlier to optical communications [10, 11],
confocal microscopy [12], atmospheric optics [13], and diffuse optical
tomography [8].

To improve the computational efficiency of the MC-based simulation of OCT
systems [6], Yao and Wang proposed the first importance sampling technique to
simulate OCT signals from a multilayered turbid medium [3]. However, their
method only enabled the simulation of OCT signals from a thin shallow layer in
tissue, as the results obtained from deeper tissue regions were underestimated. In
[14], we, the authors of this chapter, developed another more advanced importance
sampling technique by implementing multiple biased scatterings per photon packet,
and by developing a photon splitting procedure. Our advanced importance sam-
pling resulted in more accurate and computationally efficient simulations of OCT
signals due to ballistic and quasi-ballistic photons. However, it still underestimated
OCT signals due to multiply scattered photons. To enable accurate simulation of
OCT signals due to both Class I and Class II diffusive reflectances, we further
developed our importance sampling technique to accurately and efficiently simulate
diffusive reflectance due to photons that undergo multiple scattering [15]. In this
method, additional biased scatterings were randomly applied, which enabled accu-
rate simulation of both Class I and Class II diffusive reflectances, with a speed-up of
three orders of magnitude compared to the standard MC method.

Our advanced importance sampling techniques above were implemented to
simulate OCT of tissues with planar geometry [6]. To enable simulation of OCT of
arbitrarily shaped turbid media, we used the mesh-based MC method of light
transport in tissue proposed by Fang [16]. This method uses a Plücker coordinate
system to efficiently calculate intersections between paths of light propagation with
interfaces of the object regions that are modeled using tetrahedrons. We combined
this mesh-based MC method with our importance sampling techniques to simulate
OCT signals from tissue with arbitrarily shaped regions. However, since it was still
computationally costly to simulate a full OCT B-scan using this method, we also
developed a parallel implementation of this simulator that exploited the massively
parallel computing capabilities of Graphics Processing Units (GPUs) to accelerate
this simulator by two additional orders of magnitude [17, 18]. This GPU-based
implementation enabled simulation of OCT B-scans of arbitrarily shaped turbid
media in a few minutes using commonly available workstations.

In Section 2 of this chapter, we present a standard MC method for simulating
OCT signals. In Section 3, we present our first importance sampling implementation
that enables the simulation of OCT signals from higher depths inside turbid media.
In Section 4, we present our more advanced importance sampling implementation
that accurately calculates both Class I and Class II diffusive reflectances, and is three
orders of magnitude faster than the standard MC simulation.
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2. Standard MC method for simulating OCT signals

Our implementation of the MC method to simulate OCT signals is based on
Monte Carlo simulation of light transport in multilayered tissues (MCML) [6].
MCML simulates an ensemble of photon packets that are launched as a steady-state
pencil beam, normal to the top surface of the medium. Within the tissue, each such
photon packet undergoes a random walk whose step size is determined by an
exponentially distributed random variable that is parameterized by the interaction
coefficient of this tissue. This interaction coefficient is equal to the sum of the
absorption μa and the scattering μs coefficients of this tissue. The scattering events
that take place at the end of the random steps are characterized by two random
angles that determine the next direction of the photon packet. To account for the
photon packet scattering, given an anisotropy factor, g, of the tissue, MCML uses
the Henyey-Greenstein probability density function that is given by

f HG cos θSð Þð Þ ¼ 1� g2

2 1þ g2 � 2g � cos θSð Þð Þ3=2
, (1)

where θS is the angle between the propagation direction of the photon packet û
before the current scattering and û0 is the direction of the photon packet after the
current scattering. The angle between the previous propagation direction and the
new propagation direction is θS. Therefore, cos(θS) = û �û0. To ensure that the new
propagation direction is statistically correct, the provisional scattering direction û0 is
rotated around û by an angle ϕ, which is randomly selected from a uniform proba-
bility density function with a range from 0 to 2π to generate the propagation
direction û0 after the current scattering. At the end of each scattering event, the
photon packet weight W is reduced according to the step size and the local absorp-
tion coefficient μa. The weight W, which is initially set at 1, is proportional to the
number of photons in the photon packet. The photon packet is either removed with
probability 1/m or is allowed to continue propagating with probability 1�1/m and a
new weight equal to m�W once the weight reaches W th ¼ 10�4. We use the value
m = 10 in this work. This procedure, denoted Russian roulette, is an unbiased
technique to end simulation of photon packets that have a negligibly low contribu-
tion to the Monte Carlo simulation, so that a new photon packet can be initiated
and simulated.

The Class I diffuse reflectance at depth equal to z is obtained by calculating
the mean value of an indicator function I1 that represents a spatial and temporal
filter of Class I diffuse reflectance for all simulated photon packets. The
indicator function I1 of such spatial and temporal filter for the ith photon packet
is defined as

I1 z, ið Þ ¼ 1, ri < dmax, θz,i < θmax, ΔSi � 2zj j< lc
0, othwerise

�
, (2)

where lc is the optical source’s coherence length; ri is the distance to the origin of the
ith reflected photon packet; dmax and θmax are the maximum photon packet collecting
diameter and angle, respectively; θz,i is the angle with the z-axis (normal to the tissue
interface); Δsi is the optical path; and z is the photon packet’s maximum depth.

At any depth, the diffuse reflectance R1 is the expected value of I1 at this depth,
and its standard deviation σR,1 could be estimated by

R1 zð Þ ¼ 1
N

XN
i¼1

I1 z, ið ÞW ið Þ (3)

5

Monte Carlo Methods for Simulation of Optical Coherence Tomography of Turbid Media
DOI: http://dx.doi.org/10.5772/intechopen.89555



However, multiply scattered photons do not carry practically useful information
about the imaged tissue; therefore, they result in a degradation of the OCT signal
[4]. In addition, it has been shown that Class II diffuse reflectance represents a
fundamental limit related to the imaging depth of OCT in tissue [5]. Therefore, it is
important to account for both Class I and Class II diffusive reflectance in any
practical simulation of OCT signals.

Since it is not practical to simulate light transport in turbid media, for example,
tissue, using electromagnetic waves, especially due to diffusive scattering, a Monte
Carlo (MC) method of simulating light transport in tissue has been typically used
[6–9]. However, the computational cost of this MC-based simulation of OCT sys-
tems could be very high, as the probability of detecting diffusively reflected pho-
tons from tissue is very low [4, 5].

To reduce the computational cost, thereby accelerate, this MC simulation,
importance sampling could be used to speed up simulations by orders of magnitude.
Importance sampling has been applied earlier to optical communications [10, 11],
confocal microscopy [12], atmospheric optics [13], and diffuse optical
tomography [8].

To improve the computational efficiency of the MC-based simulation of OCT
systems [6], Yao and Wang proposed the first importance sampling technique to
simulate OCT signals from a multilayered turbid medium [3]. However, their
method only enabled the simulation of OCT signals from a thin shallow layer in
tissue, as the results obtained from deeper tissue regions were underestimated. In
[14], we, the authors of this chapter, developed another more advanced importance
sampling technique by implementing multiple biased scatterings per photon packet,
and by developing a photon splitting procedure. Our advanced importance sam-
pling resulted in more accurate and computationally efficient simulations of OCT
signals due to ballistic and quasi-ballistic photons. However, it still underestimated
OCT signals due to multiply scattered photons. To enable accurate simulation of
OCT signals due to both Class I and Class II diffusive reflectances, we further
developed our importance sampling technique to accurately and efficiently simulate
diffusive reflectance due to photons that undergo multiple scattering [15]. In this
method, additional biased scatterings were randomly applied, which enabled accu-
rate simulation of both Class I and Class II diffusive reflectances, with a speed-up of
three orders of magnitude compared to the standard MC method.

Our advanced importance sampling techniques above were implemented to
simulate OCT of tissues with planar geometry [6]. To enable simulation of OCT of
arbitrarily shaped turbid media, we used the mesh-based MC method of light
transport in tissue proposed by Fang [16]. This method uses a Plücker coordinate
system to efficiently calculate intersections between paths of light propagation with
interfaces of the object regions that are modeled using tetrahedrons. We combined
this mesh-based MC method with our importance sampling techniques to simulate
OCT signals from tissue with arbitrarily shaped regions. However, since it was still
computationally costly to simulate a full OCT B-scan using this method, we also
developed a parallel implementation of this simulator that exploited the massively
parallel computing capabilities of Graphics Processing Units (GPUs) to accelerate
this simulator by two additional orders of magnitude [17, 18]. This GPU-based
implementation enabled simulation of OCT B-scans of arbitrarily shaped turbid
media in a few minutes using commonly available workstations.

In Section 2 of this chapter, we present a standard MC method for simulating
OCT signals. In Section 3, we present our first importance sampling implementation
that enables the simulation of OCT signals from higher depths inside turbid media.
In Section 4, we present our more advanced importance sampling implementation
that accurately calculates both Class I and Class II diffusive reflectances, and is three
orders of magnitude faster than the standard MC simulation.

4

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

2. Standard MC method for simulating OCT signals

Our implementation of the MC method to simulate OCT signals is based on
Monte Carlo simulation of light transport in multilayered tissues (MCML) [6].
MCML simulates an ensemble of photon packets that are launched as a steady-state
pencil beam, normal to the top surface of the medium. Within the tissue, each such
photon packet undergoes a random walk whose step size is determined by an
exponentially distributed random variable that is parameterized by the interaction
coefficient of this tissue. This interaction coefficient is equal to the sum of the
absorption μa and the scattering μs coefficients of this tissue. The scattering events
that take place at the end of the random steps are characterized by two random
angles that determine the next direction of the photon packet. To account for the
photon packet scattering, given an anisotropy factor, g, of the tissue, MCML uses
the Henyey-Greenstein probability density function that is given by

f HG cos θSð Þð Þ ¼ 1� g2

2 1þ g2 � 2g � cos θSð Þð Þ3=2
, (1)

where θS is the angle between the propagation direction of the photon packet û
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m = 10 in this work. This procedure, denoted Russian roulette, is an unbiased
technique to end simulation of photon packets that have a negligibly low contribu-
tion to the Monte Carlo simulation, so that a new photon packet can be initiated
and simulated.

The Class I diffuse reflectance at depth equal to z is obtained by calculating
the mean value of an indicator function I1 that represents a spatial and temporal
filter of Class I diffuse reflectance for all simulated photon packets. The
indicator function I1 of such spatial and temporal filter for the ith photon packet
is defined as

I1 z, ið Þ ¼ 1, ri < dmax, θz,i < θmax, ΔSi � 2zj j< lc
0, othwerise

�
, (2)

where lc is the optical source’s coherence length; ri is the distance to the origin of the
ith reflected photon packet; dmax and θmax are the maximum photon packet collecting
diameter and angle, respectively; θz,i is the angle with the z-axis (normal to the tissue
interface); Δsi is the optical path; and z is the photon packet’s maximum depth.

At any depth, the diffuse reflectance R1 is the expected value of I1 at this depth,
and its standard deviation σR,1 could be estimated by

R1 zð Þ ¼ 1
N

XN
i¼1

I1 z, ið ÞW ið Þ (3)
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and

σ2R,1 zð Þ ¼ 1
N N � 1ð Þ

XN
i¼1

I1 z, ið ÞW ið Þ � R1½ �2 (4)

where N is the number of photons packets used in MC-based simulations.

3. Importance sampling for simulation of Class I OCT signal

Our first importance sampling technique to simulate OCT signals aimed at
increasing the number of photons collected at the detector. This algorithm uses the
same method described in Section 2, where we also use the same square time gating
given by [3].

Since most tissues are highly forward-scattering, their anisotropy factor is close
to 1. Therefore, there is a very small probability that a simulated photon packet at
any given depth in the tissue would undergo scattering in the backward direction
toward the OCT probe. The probability of collecting Class I photons drops rapidly
with depth in the tissue from which the photon is scattered in the backward
direction. To allow faster simulation of Class I photons, we designed an importance
sampling method that biases the direction û0 of a scattered photon toward the tip
of the light-collecting optical fiber, v̂, as the photon packet reaches the depth range
of interest. By defining the origin of a Cartesian coordinate system at the center of
the tip of the light-collecting optical fiber, the bias direction in which this fiber is
located is defined as v̂ ¼ �R= Rj j, where R ¼ xx̂þ y ŷþ zẑ is the position vector of
the scattering location in the tissue.

All photon packets propagating in a direction close to v̂ will contribute to the
simulated Class I diffuse reflectance with a higher probability. Therefore, this bias
direction is more efficient than biasing only in the backward direction, which may
not be consistent with the direction of the light-collecting optical fiber. This choice
of the bias direction is particularly effective for photon packets propagating deep in
the tissue, where such photon packets experience one or more scattering events
before they are diffusively reflected.

3.1 Scattering angle due to first event of backscattering

As the photon packet reaches the depth range targeted, the propagation
direction û0 of the scattered photon packet is biased toward the bias direction v̂, as
opposed to being most likely scattered close to the previous propagation direction û
as in the practical case with anisotropy g close to 1 and different from the bias
toward �û, the opposite of the direction of propagation, as it is done in [3]. To
randomly select the biased angle θB between the new scattering direction û0 and the
biased direction v̂, we use the same probability density function in Eq. (1). How-
ever, the bias coefficient does not have to correspond to the anisotropy factor g.
Therefore, the probability density function of the biased angle is given by

f B cos θBð Þð Þ ¼ 1� a2

2 1þ a2 � 2a � cos θBð Þð Þ3=2
, (5)

where a is a bias coefficient. After randomly sampling a biased angle θB away
from the biased direction v̂, so that cos(θB) = v̂ �û0, the provisional scattering
direction û0 is rotated around v̂ by an angle ϕ, which is randomly selected from a
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uniform probability density function with a range from 0 to 2π to generate the
propagation direction û0 after the current scattering. This procedure ensures a more
accurate model of the light scattering in tissue. The difference in the rotation by ϕ
between the model with importance sampling and the standard model is that the
rotation in the model with importance sampling is done around the biased direction
v̂, while the rotation in the standard model in is done around the direction û prior to
the current scattering. After the first biased scattering, this procedure produces the
new propagation direction û0 of the photon packet. Afterward, the scattered photon
packet is associated with a likelihood ratio as discussed in other applications of this
method [10, 11]. Using our biased angle’s probability density function, the likeli-
hood ratio of the photon packet, Eq. (5), is given by

L cos θBð Þð Þ ¼ f HG cos θSð Þð Þ
f B cos θBð Þð Þ ¼ 1� g2

1� a2
1þ a2 � 2a � cos θBð Þ
1þ g2 � 2g � cos θSð Þ

� �3=2

, (6)

where cos(θS) = û �û0 is determined, after the biased scattering, from the
randomly sampled values of θB and ϕ. The ratio of the probability of the scattering
angle appearing in the biased case with the standard case is the likelihood ratio that
is shown in Eq. (6). In addition to depending on θB, the likelihood ratio also depends
also on θS. Figure 1 shows a schematic drawing of these vectors and the angles used
in this direction biasing procedure. Note that the choice of bias distribution only
affects the speed of convergence of the simulation. Therefore, other biased proba-
bility function could also be used to randomly generate the biased scattering toward
the bias direction v̂.

3.2 Scattering angles of additional events of backscattering

As a photon packet is biased toward the apparent position of the collecting
optical fiber, at any given depth in the tissue, the photon packet becomes more
likely to be collected at the tip of the fiber. However, the photon packet could be
scattered several times after the first backscatter bias before reaching the optical
collection system. These additional scatterings, according to Eq. (1), reduce the
correlation between the biased direction and the event in which the photon packet
is collected. We overcome this reduction in correlation by continuing to bias the

Figure 1.
Schematic representation of vectors and angles used in biasing the scattering direction. Reprinted with
permission from [14] © The Optical Society of America.
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and

σ2R,1 zð Þ ¼ 1
N N � 1ð Þ

XN
i¼1

I1 z, ið ÞW ið Þ � R1½ �2 (4)

where N is the number of photons packets used in MC-based simulations.

3. Importance sampling for simulation of Class I OCT signal
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increasing the number of photons collected at the detector. This algorithm uses the
same method described in Section 2, where we also use the same square time gating
given by [3].

Since most tissues are highly forward-scattering, their anisotropy factor is close
to 1. Therefore, there is a very small probability that a simulated photon packet at
any given depth in the tissue would undergo scattering in the backward direction
toward the OCT probe. The probability of collecting Class I photons drops rapidly
with depth in the tissue from which the photon is scattered in the backward
direction. To allow faster simulation of Class I photons, we designed an importance
sampling method that biases the direction û0 of a scattered photon toward the tip
of the light-collecting optical fiber, v̂, as the photon packet reaches the depth range
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All photon packets propagating in a direction close to v̂ will contribute to the
simulated Class I diffuse reflectance with a higher probability. Therefore, this bias
direction is more efficient than biasing only in the backward direction, which may
not be consistent with the direction of the light-collecting optical fiber. This choice
of the bias direction is particularly effective for photon packets propagating deep in
the tissue, where such photon packets experience one or more scattering events
before they are diffusively reflected.

3.1 Scattering angle due to first event of backscattering

As the photon packet reaches the depth range targeted, the propagation
direction û0 of the scattered photon packet is biased toward the bias direction v̂, as
opposed to being most likely scattered close to the previous propagation direction û
as in the practical case with anisotropy g close to 1 and different from the bias
toward �û, the opposite of the direction of propagation, as it is done in [3]. To
randomly select the biased angle θB between the new scattering direction û0 and the
biased direction v̂, we use the same probability density function in Eq. (1). How-
ever, the bias coefficient does not have to correspond to the anisotropy factor g.
Therefore, the probability density function of the biased angle is given by

f B cos θBð Þð Þ ¼ 1� a2

2 1þ a2 � 2a � cos θBð Þð Þ3=2
, (5)

where a is a bias coefficient. After randomly sampling a biased angle θB away
from the biased direction v̂, so that cos(θB) = v̂ �û0, the provisional scattering
direction û0 is rotated around v̂ by an angle ϕ, which is randomly selected from a
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uniform probability density function with a range from 0 to 2π to generate the
propagation direction û0 after the current scattering. This procedure ensures a more
accurate model of the light scattering in tissue. The difference in the rotation by ϕ
between the model with importance sampling and the standard model is that the
rotation in the model with importance sampling is done around the biased direction
v̂, while the rotation in the standard model in is done around the direction û prior to
the current scattering. After the first biased scattering, this procedure produces the
new propagation direction û0 of the photon packet. Afterward, the scattered photon
packet is associated with a likelihood ratio as discussed in other applications of this
method [10, 11]. Using our biased angle’s probability density function, the likeli-
hood ratio of the photon packet, Eq. (5), is given by
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1� a2
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1þ g2 � 2g � cos θSð Þ
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, (6)

where cos(θS) = û �û0 is determined, after the biased scattering, from the
randomly sampled values of θB and ϕ. The ratio of the probability of the scattering
angle appearing in the biased case with the standard case is the likelihood ratio that
is shown in Eq. (6). In addition to depending on θB, the likelihood ratio also depends
also on θS. Figure 1 shows a schematic drawing of these vectors and the angles used
in this direction biasing procedure. Note that the choice of bias distribution only
affects the speed of convergence of the simulation. Therefore, other biased proba-
bility function could also be used to randomly generate the biased scattering toward
the bias direction v̂.

3.2 Scattering angles of additional events of backscattering

As a photon packet is biased toward the apparent position of the collecting
optical fiber, at any given depth in the tissue, the photon packet becomes more
likely to be collected at the tip of the fiber. However, the photon packet could be
scattered several times after the first backscatter bias before reaching the optical
collection system. These additional scatterings, according to Eq. (1), reduce the
correlation between the biased direction and the event in which the photon packet
is collected. We overcome this reduction in correlation by continuing to bias the
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scattering direction û0 toward the direction v̂, pointing to the apparent position of
the optical collection system, at every scattering point until the photon packet is
removed. These additional biases still use both Eqs. (7) and (8). Since the random
values drawn for the angle between the scattering direction and the biased direction
are independent of each other and are also independent of the previous scattering
events, the overall likelihood ratio of a collected photon packet results from the
multiplication of all the likelihood ratios of all the biased scattering in that particular
simulation.

Once a photon packet experiences the first biased scattering, that photon packet
is biased at all additional scattering points until it is removed from the simulation,
which can occur when the photon packet is removed by Russian roulette, as
described in Section 2, or it leaves the tissue. After simulating N launched photon
packets using importance sampling, the diffuse reflectance R1 and its standard
deviation σR,1 could be calculated with

R1 zð Þ ¼ 1
N

XN
i¼1

I1 z, ið ÞL ið ÞW ið Þ (7)

and

σ2R,1 zð Þ ¼ 1
N N � 1ð Þ

XN
i¼1

I1 z, ið ÞL ið ÞW ið Þ � R1½ �2: (8)

Eqs. (7) and (8) are similar to Eqs. (3) and (4), except that the indicator
function is multiplied by its corresponding likelihood ratio. Using this method, a
significantly larger number of photon packets are scattered from a specific depth
range toward the collecting optical system than the number obtained using a stan-
dard MCML implementation. At the end of this biased simulation, each photon
packet is weighted by its likelihood ratio, which adjusts the contribution of each
packet to the estimation of the Class I diffuse reflectance. The estimated diffuse
reflectance converges toward its true value faster, by several orders of magnitude,
when compared to the standard Monte Carlo method.

3.3 Importance sampling effectiveness and depth of tissue

One drawback of previously existing bias methods, for example, [3, 7, 8] is an
underestimation of the diffuse reflectance beyond the targeted depth range. The
application of the first backward bias reduces the probability that this photon
packet would propagate beyond that portion of the tissue. This would lead to a
statistical bias to this importance sampling method similar to that in the angle
biasing procedure used in [3] and the method used in [7, 8], which limits the
effectiveness of those methods to a thin target layer.

We make sure we obtain correct statistics by splitting the photon packet into
two photon packets before the first biased scattering [14]. The first of these two
photon packets is the one biased toward the collecting optical system. The second
photon packet starts propagating from the location in which the biased backscattering
occurred, where its initial direction calculated by applying the standard procedure
to the previous direction û as shown in Section 3.1. To ensure that there is no
statistical bias associated with the forward-propagating photon packet that was
split, it will be assigned a likelihood ratio L0 ið Þ, which is a complement to the
likelihood of the biased backward scattered photon packet L ið Þ such that L0 ið Þ ¼
1� L ið Þ to this second photon packet. This second photon packet, only generated if
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L ið Þ< 1, also undergoes biased backscattering in the tissue at the end of the next
step, which could result in another photon packet split, and successive additional
biased scatterings toward the tip of the collecting optical fiber until the photon
packet propagates beyond the simulation domain. In cases that we investigated, this
procedure increased the computational time of each photon packet by five times
when compared with a photon packet computed using the standard Monte Carlo
method with the same number of launched photon packets N. The increase in the
computational time of our importance sampling-based implementation, compared
to the standard method with the same number of launched photon packets, depends
on the average value of the mean free path, and on the width of the target depth
range. We note that in our importance sampling implementation, we do not count
split photon packets as additional photon packets when determining the value of N
in Eqs. (7) and (8), as the use of their corresponding likelihood ratios will generate
the correct result. As a photon packet propagates beyond the target region, the
packet will propagate using the standard scattering procedure until it is terminated.
Once this photon packet is terminated, a new photon packet will be simulated from
the OCT probe, as it is the case in the standard MCML. Even though the splitting
procedure implies that the cost of simulating a launched photon with this impor-
tance sampling method is higher than the computational cost of simulating
launched photos using the standard MCML, the computation cost of the Class I
diffuse reflectance in our Monte Carlo simulations with importance sampling
required as little as one-thousandth of the computational cost required by the
standard Monte Carlo method to achieve the same accuracy in the calculated diffuse
reflectance.

3.4 Numerical results

We validate our importance sampling technique for simulation of OCT signals
from multilayered tissue, with different refractive indices and scattering properties,
by comparing its results with those obtained by the standard Monte Carlo method.
As shown in Figure 2, light is emitted by an optical fiber probe that is reflected by
a prism.

The shown optical system has a focusing lens with a numerical aperture (NA)
that allows collecting light at an angle of up to 4° and a diameter of 0.5 mm. Similar
to the setups in [5, 10, 11], we assume a point source that emits in the vertical
direction. Air is present between the center of the probe and the first layer of tissue,
which is placed 2.12 mm from the center of the fiber. We simulate a three-layer
turbid medium with refractive-index mismatch at its interfaces. The first layer,
extending from 2.12 to 2.22 mm from the tip of the fiber, has absorption coefficient
μa = 1.5 cm�1, scattering coefficient μs = 60 cm�1, and refractive index n = 1.

Figure 2.
Schematic representation of a setup to simulate OCT signals. Reprinted with permission from [14]
© The Optical Society of America.
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scattering direction û0 toward the direction v̂, pointing to the apparent position of
the optical collection system, at every scattering point until the photon packet is
removed. These additional biases still use both Eqs. (7) and (8). Since the random
values drawn for the angle between the scattering direction and the biased direction
are independent of each other and are also independent of the previous scattering
events, the overall likelihood ratio of a collected photon packet results from the
multiplication of all the likelihood ratios of all the biased scattering in that particular
simulation.

Once a photon packet experiences the first biased scattering, that photon packet
is biased at all additional scattering points until it is removed from the simulation,
which can occur when the photon packet is removed by Russian roulette, as
described in Section 2, or it leaves the tissue. After simulating N launched photon
packets using importance sampling, the diffuse reflectance R1 and its standard
deviation σR,1 could be calculated with

R1 zð Þ ¼ 1
N

XN
i¼1

I1 z, ið ÞL ið ÞW ið Þ (7)

and

σ2R,1 zð Þ ¼ 1
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XN
i¼1

I1 z, ið ÞL ið ÞW ið Þ � R1½ �2: (8)

Eqs. (7) and (8) are similar to Eqs. (3) and (4), except that the indicator
function is multiplied by its corresponding likelihood ratio. Using this method, a
significantly larger number of photon packets are scattered from a specific depth
range toward the collecting optical system than the number obtained using a stan-
dard MCML implementation. At the end of this biased simulation, each photon
packet is weighted by its likelihood ratio, which adjusts the contribution of each
packet to the estimation of the Class I diffuse reflectance. The estimated diffuse
reflectance converges toward its true value faster, by several orders of magnitude,
when compared to the standard Monte Carlo method.

3.3 Importance sampling effectiveness and depth of tissue

One drawback of previously existing bias methods, for example, [3, 7, 8] is an
underestimation of the diffuse reflectance beyond the targeted depth range. The
application of the first backward bias reduces the probability that this photon
packet would propagate beyond that portion of the tissue. This would lead to a
statistical bias to this importance sampling method similar to that in the angle
biasing procedure used in [3] and the method used in [7, 8], which limits the
effectiveness of those methods to a thin target layer.

We make sure we obtain correct statistics by splitting the photon packet into
two photon packets before the first biased scattering [14]. The first of these two
photon packets is the one biased toward the collecting optical system. The second
photon packet starts propagating from the location in which the biased backscattering
occurred, where its initial direction calculated by applying the standard procedure
to the previous direction û as shown in Section 3.1. To ensure that there is no
statistical bias associated with the forward-propagating photon packet that was
split, it will be assigned a likelihood ratio L0 ið Þ, which is a complement to the
likelihood of the biased backward scattered photon packet L ið Þ such that L0 ið Þ ¼
1� L ið Þ to this second photon packet. This second photon packet, only generated if
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L ið Þ< 1, also undergoes biased backscattering in the tissue at the end of the next
step, which could result in another photon packet split, and successive additional
biased scatterings toward the tip of the collecting optical fiber until the photon
packet propagates beyond the simulation domain. In cases that we investigated, this
procedure increased the computational time of each photon packet by five times
when compared with a photon packet computed using the standard Monte Carlo
method with the same number of launched photon packets N. The increase in the
computational time of our importance sampling-based implementation, compared
to the standard method with the same number of launched photon packets, depends
on the average value of the mean free path, and on the width of the target depth
range. We note that in our importance sampling implementation, we do not count
split photon packets as additional photon packets when determining the value of N
in Eqs. (7) and (8), as the use of their corresponding likelihood ratios will generate
the correct result. As a photon packet propagates beyond the target region, the
packet will propagate using the standard scattering procedure until it is terminated.
Once this photon packet is terminated, a new photon packet will be simulated from
the OCT probe, as it is the case in the standard MCML. Even though the splitting
procedure implies that the cost of simulating a launched photon with this impor-
tance sampling method is higher than the computational cost of simulating
launched photos using the standard MCML, the computation cost of the Class I
diffuse reflectance in our Monte Carlo simulations with importance sampling
required as little as one-thousandth of the computational cost required by the
standard Monte Carlo method to achieve the same accuracy in the calculated diffuse
reflectance.

3.4 Numerical results

We validate our importance sampling technique for simulation of OCT signals
from multilayered tissue, with different refractive indices and scattering properties,
by comparing its results with those obtained by the standard Monte Carlo method.
As shown in Figure 2, light is emitted by an optical fiber probe that is reflected by
a prism.

The shown optical system has a focusing lens with a numerical aperture (NA)
that allows collecting light at an angle of up to 4° and a diameter of 0.5 mm. Similar
to the setups in [5, 10, 11], we assume a point source that emits in the vertical
direction. Air is present between the center of the probe and the first layer of tissue,
which is placed 2.12 mm from the center of the fiber. We simulate a three-layer
turbid medium with refractive-index mismatch at its interfaces. The first layer,
extending from 2.12 to 2.22 mm from the tip of the fiber, has absorption coefficient
μa = 1.5 cm�1, scattering coefficient μs = 60 cm�1, and refractive index n = 1.

Figure 2.
Schematic representation of a setup to simulate OCT signals. Reprinted with permission from [14]
© The Optical Society of America.
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The second layer, extending from 2.32 to 2.42 mm from the tip of the fiber, has the
same absorption and scattering coefficients as the first layer, but its refractive index
is n = 1.33. The third layer, extending from 2.42 to 2.62 mm from the tip of the fiber,
has the following parameters: μa = 1.5 cm�1, μs = 30 cm�1, and n = 1. After the third
layer, the medium was assumed to be air: μa = 0 cm�1, μs = 0 cm�1, and n = 1. The
anisotropy factor was assumed g = 0.9 for the three diffusive layers.

From Figure 3, we note an excellent correspondence between results obtained
with our new importance sampling method and results obtained using MCML, that
is, standard Monte Carlo simulations. However, our results were obtained in
one-thousandth of the time required by the standard method.

4. Importance sampling for simulation of Class I and Class II OCT
signals

In this section, we further improve the importance sampling technique that was
described in Section 3, so we can simulate Class II OCT signals more accurately and
more efficiently [19].

4.1 Scattering angle of first backscattering event

In the MC simulation described in Section 3, we note that the bias function in (5)
produces large values of the likelihood ratio (>>1) when photon packets are
scattered in the then unlikely forward direction. These photon packets contributed
to a slow decrease in the relative variation, which corresponds to relative error, with
the increase in the number of photon packets launched for the calculation of the
OCT signal. Referring to Figure 1, we could reduce this relative variation by choos-
ing a distribution function for the scattering angle that limits it to the backward
direction. This modified distribution is given by:

Figure 3.
Class I diffuse reflectance dependence on the distance from the center of the optical fiber for the simulation whose
schematic is shown in Figure 4. The solid black line represents the result obtained with 2 � 105 photon packets
using the importance sampling technique presented in Section 3. The green long dashed line is the result obtained
with 109 photon packets using standard MCML. The blue dots represent results obtained with 106 photon
packets using MCML. The pink short dashed lines show the confidence interval of the importance sampling
simulations with 2 � 105 photon packets that were estimated using a much larger ensemble of 64 � 105

simulations. Reprinted with permission from [14] © The Optical Society of America.
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f B cos θBð Þð Þ ¼ 1� 1�affiffiffiffiffiffiffiffi
a2þ1

p
� ��1 a 1� að Þ

1þ a2 � 2a cos θBð Þð Þ3=2
, cos θBð Þ∈ 0, 1½ �

0, otherwise

8><
>:

, (9)

where a is the bias coefficient that can be selected between 0 and 1. Once a
biased angle θB is randomly selected, away from the direction of the center of the
OCT probe v̂, where cos θBð Þ ¼ v̂ � û0, the provisional biased scattering direction û0 is
rotated around v̂ by an angle ϕ randomly sampled from a uniform distribution in
the range from 0 to 2π. These parameters are defined in the same manner as those
used in the biased distribution presented in Section 3. The only difference is that the
domain of cos θBð Þ is restricted to a maximum deviation from the biased angle by
90°. This ensures that there would not be packets with very large likelihood ratio
that could reduce the efficiency of our importance sampling. The likelihood ratio of
the photon packet that uses the biased probability density function in Eq. (9) is
given by

L cos θBð Þð Þ ¼ f HG cos θSð Þð Þ
f B cos θBð Þð Þ ¼ 1� g2

2a 1� að Þ 1� 1� affiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
� �

1þ a2 � 2a cos θBð Þ
1þ g2 � 2g cos θSð Þ

� �3=2

,

(10)

where cos θSð Þ ¼ û � û0 . We note that cos θBð Þ is obtained using the probability
density function in Eq. (9), where it is used to obtain the new propagation direction
û0.

To sample angles according to the biased probability density function in (8), one
could use any uniform pseudo-random number generator that would be typically
available in scientific software libraries. For example, if ui is a random number
distributed uniformly between 0 and 1, a random value for cos θBð Þ that satisfies
Eq. (9) with bias coefficient a could be generated with the following conversion
formula

cos θB,i ¼ 1
2a

a2 þ 1� ui
1

1� a
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p

� �2( )
: (11)

This conversion formula was derived using probability theory [20].

4.2 Scattering angles of additional biased backscatterings

A second enhancement that could be made to the importance sampling tech-
nique, described in Section 3, is to bias the additional scatterings toward the center
of the OCT probe v̂ with probability 0 ≤ p ≤ 1. That contrasts with the technique
presented in Section 3, in which p = 1 (all the additional scatterings were biased). An
unbiased scattering is performed in case a bias scattering is not applied in a given
point where scattering takes place. The likelihood ratio associated with this scatter-
ing is calculated according to the formula

L cos θBð Þ ¼ f HG cos θBð Þ
p � f HG cos θBð Þ þ 1� pð Þ � f HG cos θSð Þ : (12)

If the biased function f B cos θBð Þð Þ is selected to sample a random value of
cos θSð Þ, which is an event with probability p, cos θSð Þ ¼ û � û0 is a function of
cos θBð Þ that is statistically sampled from the probability density function in Eq. (9).
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The second layer, extending from 2.32 to 2.42 mm from the tip of the fiber, has the
same absorption and scattering coefficients as the first layer, but its refractive index
is n = 1.33. The third layer, extending from 2.42 to 2.62 mm from the tip of the fiber,
has the following parameters: μa = 1.5 cm�1, μs = 30 cm�1, and n = 1. After the third
layer, the medium was assumed to be air: μa = 0 cm�1, μs = 0 cm�1, and n = 1. The
anisotropy factor was assumed g = 0.9 for the three diffusive layers.

From Figure 3, we note an excellent correspondence between results obtained
with our new importance sampling method and results obtained using MCML, that
is, standard Monte Carlo simulations. However, our results were obtained in
one-thousandth of the time required by the standard method.

4. Importance sampling for simulation of Class I and Class II OCT
signals

In this section, we further improve the importance sampling technique that was
described in Section 3, so we can simulate Class II OCT signals more accurately and
more efficiently [19].

4.1 Scattering angle of first backscattering event

In the MC simulation described in Section 3, we note that the bias function in (5)
produces large values of the likelihood ratio (>>1) when photon packets are
scattered in the then unlikely forward direction. These photon packets contributed
to a slow decrease in the relative variation, which corresponds to relative error, with
the increase in the number of photon packets launched for the calculation of the
OCT signal. Referring to Figure 1, we could reduce this relative variation by choos-
ing a distribution function for the scattering angle that limits it to the backward
direction. This modified distribution is given by:

Figure 3.
Class I diffuse reflectance dependence on the distance from the center of the optical fiber for the simulation whose
schematic is shown in Figure 4. The solid black line represents the result obtained with 2 � 105 photon packets
using the importance sampling technique presented in Section 3. The green long dashed line is the result obtained
with 109 photon packets using standard MCML. The blue dots represent results obtained with 106 photon
packets using MCML. The pink short dashed lines show the confidence interval of the importance sampling
simulations with 2 � 105 photon packets that were estimated using a much larger ensemble of 64 � 105

simulations. Reprinted with permission from [14] © The Optical Society of America.
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f B cos θBð Þð Þ ¼ 1� 1�affiffiffiffiffiffiffiffi
a2þ1

p
� ��1 a 1� að Þ

1þ a2 � 2a cos θBð Þð Þ3=2
, cos θBð Þ∈ 0, 1½ �

0, otherwise

8><
>:

, (9)

where a is the bias coefficient that can be selected between 0 and 1. Once a
biased angle θB is randomly selected, away from the direction of the center of the
OCT probe v̂, where cos θBð Þ ¼ v̂ � û0, the provisional biased scattering direction û0 is
rotated around v̂ by an angle ϕ randomly sampled from a uniform distribution in
the range from 0 to 2π. These parameters are defined in the same manner as those
used in the biased distribution presented in Section 3. The only difference is that the
domain of cos θBð Þ is restricted to a maximum deviation from the biased angle by
90°. This ensures that there would not be packets with very large likelihood ratio
that could reduce the efficiency of our importance sampling. The likelihood ratio of
the photon packet that uses the biased probability density function in Eq. (9) is
given by

L cos θBð Þð Þ ¼ f HG cos θSð Þð Þ
f B cos θBð Þð Þ ¼ 1� g2

2a 1� að Þ 1� 1� affiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
� �

1þ a2 � 2a cos θBð Þ
1þ g2 � 2g cos θSð Þ

� �3=2

,

(10)

where cos θSð Þ ¼ û � û0 . We note that cos θBð Þ is obtained using the probability
density function in Eq. (9), where it is used to obtain the new propagation direction
û0.

To sample angles according to the biased probability density function in (8), one
could use any uniform pseudo-random number generator that would be typically
available in scientific software libraries. For example, if ui is a random number
distributed uniformly between 0 and 1, a random value for cos θBð Þ that satisfies
Eq. (9) with bias coefficient a could be generated with the following conversion
formula

cos θB,i ¼ 1
2a

a2 þ 1� ui
1

1� a
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p

� �2( )
: (11)

This conversion formula was derived using probability theory [20].

4.2 Scattering angles of additional biased backscatterings

A second enhancement that could be made to the importance sampling tech-
nique, described in Section 3, is to bias the additional scatterings toward the center
of the OCT probe v̂ with probability 0 ≤ p ≤ 1. That contrasts with the technique
presented in Section 3, in which p = 1 (all the additional scatterings were biased). An
unbiased scattering is performed in case a bias scattering is not applied in a given
point where scattering takes place. The likelihood ratio associated with this scatter-
ing is calculated according to the formula

L cos θBð Þ ¼ f HG cos θBð Þ
p � f HG cos θBð Þ þ 1� pð Þ � f HG cos θSð Þ : (12)

If the biased function f B cos θBð Þð Þ is selected to sample a random value of
cos θSð Þ, which is an event with probability p, cos θSð Þ ¼ û � û0 is a function of
cos θBð Þ that is statistically sampled from the probability density function in Eq. (9).
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Otherwise, in the case of the complementary event with probability 1 � p, the
unbiased function f HG cos θSð Þð Þ is used to sample a random value of cos θSð Þ and
cos θBð Þ ¼ v̂ � û0 depends on the value of cos θSð Þ. Since the two random angles
associated to each scattering do not depend on the random angles selected in the
previous scatterings, the likelihood ratio of each collected photon packet results
from the multiplication of all the likelihood ratios of all the biased scatterings in that
simulated photon packet.

4.3 Numerical results

We validate our importance sampling technique for simulation of OCT signals
from multilayered tissue, with different refractive indices and scattering properties,
by comparing its results with those obtained by the standard Monte Carlo method.
We consider a tissue model that consists of multiple layers that could be imaged
with an OCT system, as shown schematically in Figure 4. The modeled tissue
extends from 0 to 1 mm, and consists primarily of a turbid layer with absorption
coefficient μa = 1.5 cm�1 and a scattering coefficient μs = 60 cm�1, and also contains
five thin layers with absorption coefficient μa = 3 cm�1 and a scattering coefficient
μs = 120 cm�1. These five thin layers with higher scattering coefficient are located
from 200 to 215 μm, from 365 to 395 μm, from 645 to 660 μm, from 760 to 775 μm,
and from 900 to 915 μm. We assume that this tissue has the same refractive index
n = 1 and an anisotropy factor g = 0.9. We note that our method is robust in the
presence of refractive index mismatch along layer boundaries of the tissue [19]. We
simulate an OCT system where the light is delivered/collected by the tip of an

Figure 4.
Schematic representation of a setup to simulate OCT signals similar to one in Ref. [3]. Reprinted with
permission from [15] © The Optical Society of America.
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optical fiber having a radius of 10 μm and an acceptance angle of 5°. For simplicity,
the light source is assumed to be a one-dimensional light beam propagating along
the vertical direction as in [3, 8], since the purpose of this example is to validate and
demonstrate the effectiveness of our second importance sampling technique when
it is applied to the standard MC simulation.

In Figures 5 and 6, we show results obtained with 108 Monte Carlo photon
packets with importance sampling, which has a computational cost of simulating
about 9 � 108 photon packets using standard Monte Carlo. The computational cost
of applying this importance sampling technique depends on the target depth range,
and on the average photon mean free path in the given tissue. The target depths in
the shown simulations were set from 0 to 1 mm. Therefore, every single photon
scattering that occurs in the depth range from 0 to 1 mm would be biased. We used
a bias coefficient a = 0.925, and an additional bias probability p = 0.5, to run the
Monte Carlo simulations with importance sampling. The results shown in

Figure 5.
The Class I diffusive reflectance (thick solid black curve) and the Class II reflectance (thin solid red curve), as a
function of the tissue depth using the importance sampling technique presented in Section 4 with 108 photon
packets. The pink short dashed and the blue long dashed curves are results of simulating Class I reflectance and
the Class II reflectance using standard Monte Carlo with 1011 photon packets, respectively. Reprinted with
permission from [15] © The Optical Society of America.

Figure 6.
Details of reflectance results shown in Figure 5 for depths between 640 and 680 μm. The error bars shown were
estimated by the same ensemble of simulations. Reprinted with permission from [15] © The Optical Society of
America.
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optical fiber having a radius of 10 μm and an acceptance angle of 5°. For simplicity,
the light source is assumed to be a one-dimensional light beam propagating along
the vertical direction as in [3, 8], since the purpose of this example is to validate and
demonstrate the effectiveness of our second importance sampling technique when
it is applied to the standard MC simulation.
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of applying this importance sampling technique depends on the target depth range,
and on the average photon mean free path in the given tissue. The target depths in
the shown simulations were set from 0 to 1 mm. Therefore, every single photon
scattering that occurs in the depth range from 0 to 1 mm would be biased. We used
a bias coefficient a = 0.925, and an additional bias probability p = 0.5, to run the
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Figure 6.
Details of reflectance results shown in Figure 5 for depths between 640 and 680 μm. The error bars shown were
estimated by the same ensemble of simulations. Reprinted with permission from [15] © The Optical Society of
America.
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Figures 5 and 6 show that our new importance sampling technique reduces the
computational cost for obtaining the Class I diffuse reflectance by approximately
three orders of magnitude when compared to the standard Monte Carlo method.
This algorithm is optimum when the additional bias probability is equal to p = 0.5.
Since only half of the back-scatterings are biased, this choice contributes toward
enabling an optimum number of Class II photons to be collected by the tip of the
optical fiber.

We note that the results obtained with the MCML have confidence intervals that
are noticeably larger than those of the results obtained with importance sampling
shown in Figure 6, even though the standard Monte Carlo simulations have a
computational cost 113 times larger than those obtained with importance sampling.
In Figure 6, we also note that our importance sampling technique reduces the
computational cost of calculating the Class II reflectance by more than two orders of
magnitude.

In Figure 7 we show the relationship between the relative error in calculating
Class I and the Class II reflectances at two different depths: 400 and 670 μm and the
bias coefficient a for p = 0.5. The depths at 400 and 670 μm correspond to tissue
regions near the second and third regions with high local reflectance due to the
higher local scattering coefficient. The relative variation in the results is the ratio
between the square root of the variance, shown in Eq. (4), and the reflectance
in Eq. (3).

We note that Class I reflectance has a minimum relative error at 400 μm with
a = 0.925, but the minimum error at 670 μm occurs at a = 0.95 μm at 670 μm. The
deeper the tissue region, the stronger the required bias because of the increase in the
number of scatterings with the depth. However, as the bias coefficient is increased
toward 1, larger variations in the likelihood ratio lead to an increase in the relative
error. We also note that Class II reflectance has its minimum relative error at
400 μm with a = 0.91, while its minimum relative error at 670 μm increased to only
about a = 0.925 μm. The optimum amount of bias required by the Classs II diffusive
reflectance in both wavelengths is lower than the optimum bias coefficient
observed in the Class I reflectance because the number of ballistic and quasi-ballistic
photons increases with the bias, which leads to a decrease in the number of collected
photon packets that undergo multiple scatterings. Figure 7 also shows that there is a
range for the bias parameter a between 0.9 and 0.95 that enables fast calculation of

Figure 7.
The relative error in calculated reflectance using importance sampling as a function of bias coefficient a.
Reprinted with permission from [15] © The Optical Society of America.

14

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

both Class I and Class II reflectances using our importance sampling-based imple-
mentation.

5. Conclusions

We described two importance sampling techniques for a standard Monte Carlo
(MC) method that could enable fast simulation of signals from optical coherence
tomography (OCT) imaging systems. These OCT signals are generated due to
diffusive reflections from either multilayered or arbitrarily shaped, turbid media,
for example, tissue. Such signals typically consist of ballistic and quasi-ballistic
components, of scattered photons inside the medium, in addition to photons that
undergo multiple scattering. We showed that MC simulation of these OCT signals
using our importance sampling reduced its computation time on a serial processor
by up to three orders of magnitude compared to its corresponding standard imple-
mentation. Therefore, our importance sampling techniques enable practical simu-
lation of OCT B-scans of turbid media, for example, tissue, using commonly
available workstations.
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both Class I and Class II reflectances using our importance sampling-based imple-
mentation.

5. Conclusions

We described two importance sampling techniques for a standard Monte Carlo
(MC) method that could enable fast simulation of signals from optical coherence
tomography (OCT) imaging systems. These OCT signals are generated due to
diffusive reflections from either multilayered or arbitrarily shaped, turbid media,
for example, tissue. Such signals typically consist of ballistic and quasi-ballistic
components, of scattered photons inside the medium, in addition to photons that
undergo multiple scattering. We showed that MC simulation of these OCT signals
using our importance sampling reduced its computation time on a serial processor
by up to three orders of magnitude compared to its corresponding standard imple-
mentation. Therefore, our importance sampling techniques enable practical simu-
lation of OCT B-scans of turbid media, for example, tissue, using commonly
available workstations.
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Chapter 2

Modelling, Simulation and
Dosimetry of 103-Pd Eye Plaque
Brachytherapy
Pooneh Saidi and Mahdi Sadeghi

Abstract

In this study, the dose distribution has been calculated for the Collaborative
Ocular Melanoma Study (COMS) eye plaques at various diameters 10–22 mm,
loaded with the 103-Pd brachytherapy seeds (Model IR06-103Pd). Several Monte
Carlo (MC) simulations have been employed to carry out the gold backing and
Silastic insert effect on dose distribution around the eye plaque. Version 5 of the
Monte Carlo N-particle (MCNP) code has been used to carry out the simulations.
The new palladium seed was modelled in three geometric orientations (ideal,
vertical and diagonal). Results are compared with the calculated data for COMS
eye plaque loaded with Theragenics model 200 and Best model 2335 palladium-103
seeds and model 6711 iodine-125 seeds. The calculated dose rate constant of the
IR06-103Pd seed was found to be 0.692 � 0.020 cGy h�1 U�1. The air kerma
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method is depending on the size and location of the tumour [4, 5]. One of the most
common primary intraocular malignancies is the choroidal. Patients with a
medium-sized choroidal melanoma (between 2.5 and 10 mm in height and <16 mm
basal diameter) are candidates for episcleral plaques [6]. It offers good chances of
conserving the eye, often with at least some useful vision [7, 8]. Compared to
charged particle radiation, the collimating effects of an eye plaque provides better
conformality than possible with protons and essentially zero dose to the brain and
orbit behind the plaque. Different types of eye plaque are used for the treatment of
intraocular tumours, which are most often round, made of gold, silver, or stainless
steel and come in several diameters depending on the tumour size. The Collabora-
tive Ocular Melanoma Study group provided the first standardized methods for
administering ocular brachytherapy treatments for uveal melanoma in 1985, by
the eye plaques, and for the brachytherapy seeds, the dose was calculated using a
point source approximation, and no corrections were made for source anisotropy,
the plaque or insert materials of the plaques and also photon backscatter or
fluorescence photons from the plaque backing. In the early 1990s, the begging of
the investigation of the effect of the plaque backing and material insert (such as
Silastic) on dose distribution and the recommended dosimetry protocol for eye
plaques was issued by the Task Group (TG) 129 report. This report includes the
correction factors/formula for heterogeneous plaque materials (backing and insert
material) [9–12]. Common isotopes used in ocular brachytherapy are 125I, 103-Pd
and 106-Ru. Iodine�125 is currently the most commonly used and well
documented in the literature. Some few centers use palladium-103, observing that
the low gamma emission of 103-Pd, 20 keV, presents less radiation exposure hazard
to personnel [13]. But due to the low energy of the photons from 103-Pd, the effect
of backscatter from plaque backing on dose distribution is expected to be signifi-
cant. Many reports are available concerning the effect of the gold plaque backing
on dose rate [14, 15]. They reported a dose enhancement near the seed due to the
backscatter photons from the gold backing. Chiu-Tsao et al. [16], Thomson et al.
[17] and de la Zerda et al. [12] reported that dose at small distances from the seed
was reduced due to the presence of gold backing. In this work, the Monte Carlo
technique is used to study dose rate distributions around the COMS gold eye
plaques having diameters from 10 to 22 mm and fully loaded with a palladium
seed. The seeds were distributed into Silastic insert inside the 10–22 mm diameter
COMS eye plaques. As reported by the American Association of Physicists in
Medicine (AAPM), TG-43U1 recommendations, before using each new source, the
dosimetric characteristics of the source need to be determined to provide reliable
data for use in treatment planning calculations [18]. As stated by TG-43U1
guidelines, we have calculated the dosimetric parameters of the IR06-103Pd source.
As the internal components of the seed are free to move within the titanium
capsule, their location can vary with seed orientations. In our Monte Carlo
calculations, three geometric models of the seed (ideal, vertical and diagonal) were
also developed. Since the tumour control rate for plaque brachytherapy is high, the
most important issue is the side effects in healthy structures (points of interest)
in the eye region. Doses at points of interest were calculated for selected plaque
positions on the surface of an eye. Further Monte Carlo simulations have been
employed to investigate the effect of plaque gold backing and Silastic inserts on
dose distributions along the central axis of the eye plaque and at critical points in
the eye region. To investigate the effect of the plaque backing and Silastic insert
on dose distributions, four different configurations of plaque were simulated for
the IR06-palladium seed model, namely:

20

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

1. Silastic insert with gold backing

2. Silastic insert with water replacing gold backing

3. Liquid water replacing Silastic, with gold

4.Liquid water replacing Silastic and gold (seeds alone in water)

Finally, dose along the plaque’s central axis and at the critical points are com-
pared with 125-I (6711 model) and 103-Pd (Theragenics model 200) seeds loaded in
COMS eye plaque [17].

2. Materials and methods

In this work, the Monte Carlo calculations have been performed to calculate the
dose distribution around the eye plaque. The Monte Carlo method is a numerical
technique using random numbers and probability to solve problems. It performs an
effort to model nature through direct simulation for any possible results, by a
probability distribution, for any cause that has inherent uncertainty. The name of
this method comes from the casino name in Monaco, because of roulette, a simple
random number generator. Clinical dose calculations are generally carried out with
the patient treated as water equivalent and a dose of 85 Gy prescribed to the tumour
apex. In the calculation the effects from the presence of the plaque backing, insert
and intraocular media are considered [19]. In this work, the dose distributions were
simulated using the MCNP5 Monte Carlo (MC) radiation transport code published
by the Los Alamos National Laboratory, and the MCPLIB04 photon cross-section
library is based on the ENDF/B-VI data [20]. The 103-Pd photon spectrum used in
these simulations was obtained from TG-43U1 table XIII [18]. To calculate absorbed
dose and kerma, the particle fluence and cell-heating tallies, F4 and F6, have been
used, respectively.

2.1 103-Pd source description

The source used in this study is the palladium-103 source model IR06-103Pd seed
which is designed and fabricated in Agricultural, Medical and Industrial Research
School (AMIRS). The production of 103-Pd is carried out via the 103Rh(p,n)103Pd
reaction which is well suited to low-energy cyclotrons. 103-Rh target was irradiated
via cyclotron (IBA-Cyclone30, Belgium) at the AMIRS. The solid targetry system in
this cyclotron is made up of a pure copper backing on which the target materials are
electrodeposited. The target that undergoes bombardments by the proton beam at
the cyclotron production consists of three layers as follows: (I) rhodium layer, (II)
copper layer and (III) copper layer without induced proton beam [21]. All irradia-
tion of the electroplated Rh targets were performed at 200 μA beam current. The
rhodium targets were prepared by the electrodeposition technique. Thus, the elec-
trodeposition experiments were performed in acidic sulphate media using
RhCl3.3H2O, Rh2(SO4)3. The radiochemical processing of the irradiation targets
involved (a) dissolution, (b) radiochemical separation of 103-Pd from the Rh target
solution and (c) recovery of 103-Pd as the final product from the organic phases
[22]. After the chemical separation process, 103-Pd radioactive material is absorbed
uniformly in the resin Amberlite IR-93 resin (20–50 mesh) bead to encapsulate
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inside the titanium capsule. The seed contains five resin beads, each in diameter of
0.6 mm with the compositions of (by weight percent) C, 90%; H, 8%; Pd, 1%; Cl,
0.7%; and N, 0.3%, with the density equal to 1.14 g/cm3. The resin beads are packed
inside a titanium capsule of 4.7 mm length; 0.7 and 0.8 mm internal and external
diameters, respectively; and 0.6 mm thick end caps and with an effective length of
3 mm. 103-Pd radioactive material is absorbed uniformly in the resin bead volume
[23]. Figure 1 shows a schematic diagram of the IR06-103Pd seed. As the resin beads
are free to move within the titanium capsule, their location can vary with seed
orientations. Following the TG-43U1 recommendation for “good practice for Monte
Carlo calculations” [18], mechanical mobility of the internal component of the seed
has been considered in the simulations, and three geometric models (ideal, vertical
and diagonal) of the seed were developed as shown in Figure 1a–c.

2.2 Seed Monte Carlo dosimetry

The IR06-103Pd brachytherapy seed has been simulated in the center of a
spherical water phantom in 15 cm radius with an array of 1 mm thick detector rings.
Detectors were defined at distances of r = 0.25, 0.5, 0.75, 1, 2, 3, 4, 5 and 7 cm, away
from the palladium-103 seed and at polar angles relative to the seed longitudinal axis
from 0 to 90°. The rings were also bounded with two cones (10°) bisecting the
phantom sphere corresponding to points in two-dimensional TG-43U1 dose formal-
ism for ideal orientation and from 0 to 180° for vertical and diagonal orientations,
with 10° increment. A cross section of the detector arrangement is shown in Figure 2.

To calculate the dosimetric parameters of the seed, TG43-U1 formalism has been
used, which are briefly described by Sadeghi et al. [24].

According to TG43-U1 recommendation, the proposed formula for
two-dimensional dose rate is

_D r; θð Þ ¼ SKΛ
G r; θð Þ
G r0; θ0ð Þ g rð ÞF r; θð Þ (1)

Figure 1.
Schematic diagram of the IR06-103Pd seed in (a) ideal, (b) diagonal and (c) vertical orientation.
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where:

_D r; θð Þ is the dose rate in the water at the distance r in cm from the source.
θ is the polar angle specifying the point of interest.
SK is the air kerma strength and the unit is U ¼ cGy cm2h�1.
Λ is the dose rate constant with the unit of cGy h�1U�1.
G r;θð Þ
G r0;θ0ð Þ is the geometry factor; r0 ¼ 1 cm and θ0 ¼ 900 (reference position).
g rð Þ andF r; θð Þ are the radial dose function and the anisotropy function, respectively.
The dose rate constant, Λ, for the seed was calculated as the ratio of the dose to

water at 1 cm from the seed along the transverse axis to the source’s air kerma
strength, SK, at distance r from the source center. The air kerma strength was
calculated using the following equation [18]:

SK ¼ _K δ rð Þr2 (2)

As the energy of the photons from 103-Pd are low, in the Monte Carlo calcula-
tions, all the generated electrons from the photon collisions are absorbed locally, so
it was expected that dose is equal to kerma at all points of interest. The air kerma
rate, _K δ rð Þ, of the seed was determined by calculating the dose in 1 mm thick air-
filled rings in a vacuum. The rings were bounded by 86 and 94° conics and defined
with a radial increment of 5–150 cm along the transverse axis of the source to find
the SK that is independent to distance [14]. The dose distributions were calculated
from the energy deposition averaged over a cell tally F6 in MeV/g/source photon.
For the calculations, the titanium characteristic X-ray production was suppressed
with δ = 5 keV (δ is the energy cut-off) [25]. The radial dose function expresses the
effect of tissue attenuation on photons emitted from seed and defines the dose fall-
off along the seed transverse axis due to the attenuation and scattering of the
photon. g(r) was calculated by the following equation:

gX rð Þ ¼
_D r; θ0ð Þ
_D r0; θ0ð Þ

GL r0; θ0ð Þ
GL r; θ0ð Þ (3)

Dose variations, as the distribution of seed radioactivity, oblique filtration, and
self-absorption in the encapsulating material, are defined by the 2D anisotropy
function as follows:

Figure 2.
Cross section of the detector arrangement for Monte Carlo calculations.
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F r; θð Þ ¼
_D r; θð Þ
_D r; θ0ð Þ

GL r; θ0ð Þ
GL r; θð Þ (4)

The simulations were performed in water with 1 � 109 histories giving statistical
uncertainties of 2.5 and 3.5% at 1 and 5 cm along the long axis and 0.05–0.1% at 1
and 5 cm on the transverse plane. The statistical uncertainty in the air was 1% with
7 � 107 histories. In this study, the Monte Carlo simulation was benchmarked with
the brachytherapy seed model Theragenics 200 [18, 26].

2.3 Eye plaque simulation

To determine the dose rate around the eye plaque, eyeball and eye plaque,
which are loaded with the seeds, are modelled in the center of 20 � 20 � 15 cm3

water phantom. The seeds were distributed in the Silastic insert. The longitudinal
axes of the seeds are perpendicular to the eye phantom central plane.

The total dose is calculated by the following equation [14]:

_d x; y; zð Þ ¼ SP
_d x; y; zð Þ sourceSK

SK
A

� ��1

K

" #
:n (5)

where _d x; y; zð Þ is the dose rate at (x, y, z) position, Sk is the air kerma strength
per history calculated by using Monte Carlo methods, A is the activity (mCi), K is
the photons emitted per unit activity (photons mCi�1) and n is the number of seeds
which are loaded in the eye plaque. The COMS eye plaques which are used in this
study are composed of two parts with diameters ranging from 10 to 22 mm in 2 mm
increments:

a. The gold backing, with the composition of (by weight) 77% gold, 14% silver,
8% 159 copper and 1% palladium and a density of 15.8 g/cm3 [27]

b.The Silastic insert as a seed career with the composition of (by weight) 6.3%
hydrogen, 24.9% carbon, 28.9% oxygen, 39.9% silicon and 0.005% platinum
and a density of 1.12 g/cm3 [15]

The plaque assumed a standard eye diameter of 24.6 mm by considering lens and
homogenized eye materials according to ICRU 46 [28]. The position of the points is
followed by Thomson et al. [17] (Figure 3). The lens is modelled in the homogenized
eye, and to obtain the dose rate, the plaque and eye ball are then modelled at the
center of the spherical water phantom with 30 cm diameter. The plaque backing
and Silastic insert effect on dose rate is obtained by replacing water with gold and
Silastic insert. Central axis depth dose to water was determined using the F6 tally of
MCNP for 0.05 mm radius and 0.01 mm thick cylindrical voxels from the outer
sclera (�1 mm) to 11 mm inside the eye in 0.5 mm steps [2]. For the comparison
doses to interest points (center of the eye, macula, optic disk, proximal sclera,
tumour apex, lacrimal gland and retina opposite the apex) have been determined.
The total dose is calculated following Melhus and Rivard [14] and Thomson et al.
[17] verbatim: “The Monte Carlo simulations provide the dose in a voxel per
history. The dose rate is calculated by dividing this number by the air kerma
strength per history for the relevant seed type and multiplying by the number of seeds
and the air kerma strength per seed. The air kerma strength per seed is chosen in
order to obtain a prescription dose of 85Gy at the tumour apex (5 mm on the central
axis) in 168 hours for 103-Pd. The total dose delivered during treatment is then
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determined by integrating over the treatment time, taking into account the expo-
nential decay of the source”. Also, the photoelectric absorption, fluorescent emission
and Rayleigh and Compton scattering, of characteristic K- and L-shell X-rays, are
all simulated. For variance reduction, the electron and photon transport energy cut-
off in all calculations was selected at 1 and 5 keV, respectively [29]. In the simula-
tion 3.8 � 108 photon histories were simulated, and the statistical uncertainties at 5
and 11 mm (tumour apex) depth of central axis were obtained at 0.7 and 1.1%,
respectively. Statistical uncertainties at the opposite side of the eye exceeded 4%
which has the greatest uncertainty among the points on interest.

3. Results and discussions

3.1 Seed dosimetry benchmarking

In this work, the Monte Carlo simulation was benchmarked with the
Theragenics model 200 source. The comparison between the calculated value of Λ
for the model 200 in this study, 0.685 cGy h�1 U�1, and the previously published
data for the seed [18], 0.686 cGy h�1 U�1 (�0.1% difference), shows the accuracy
of our simulation method. The result has been presented in Table 1. Based on the
calculations, the dose rate constant for the IR06-103Pd source in ideal orientation is
estimated to be 0.692 � 0.020 cGy�h�1�U�1 which is comparable with the other two
commercial sources. Calculated SK per contained activity for model 200 in this work
was 0.722 U mCi�1. The result was compared to 0.721 U mCi�1 for Williamson’s
WAFAC simulation, [26] and Melhus et al. [14] calculations. The values of Λ in
three seed orientations ranged from 0.689 to 0.697 cGy h�1 U�1, with a 0.34%

Figure 3.
Points of interest for eye plaque dosimetry, given in the center of eye reference frame (scale in centimeters) for a
right eye [17]. In the figure a plaque midway between the posterior pole and equator temporal is shown. All
points of interest are indicated (with the exception of the lacrimal gland, which does not lie in the plane shown).
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F r; θð Þ ¼
_D r; θð Þ
_D r; θ0ð Þ

GL r; θ0ð Þ
GL r; θð Þ (4)

The simulations were performed in water with 1 � 109 histories giving statistical
uncertainties of 2.5 and 3.5% at 1 and 5 cm along the long axis and 0.05–0.1% at 1
and 5 cm on the transverse plane. The statistical uncertainty in the air was 1% with
7 � 107 histories. In this study, the Monte Carlo simulation was benchmarked with
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To determine the dose rate around the eye plaque, eyeball and eye plaque,
which are loaded with the seeds, are modelled in the center of 20 � 20 � 15 cm3

water phantom. The seeds were distributed in the Silastic insert. The longitudinal
axes of the seeds are perpendicular to the eye phantom central plane.

The total dose is calculated by the following equation [14]:

_d x; y; zð Þ ¼ SP
_d x; y; zð Þ sourceSK

SK
A

� ��1

K

" #
:n (5)

where _d x; y; zð Þ is the dose rate at (x, y, z) position, Sk is the air kerma strength
per history calculated by using Monte Carlo methods, A is the activity (mCi), K is
the photons emitted per unit activity (photons mCi�1) and n is the number of seeds
which are loaded in the eye plaque. The COMS eye plaques which are used in this
study are composed of two parts with diameters ranging from 10 to 22 mm in 2 mm
increments:

a. The gold backing, with the composition of (by weight) 77% gold, 14% silver,
8% 159 copper and 1% palladium and a density of 15.8 g/cm3 [27]

b.The Silastic insert as a seed career with the composition of (by weight) 6.3%
hydrogen, 24.9% carbon, 28.9% oxygen, 39.9% silicon and 0.005% platinum
and a density of 1.12 g/cm3 [15]

The plaque assumed a standard eye diameter of 24.6 mm by considering lens and
homogenized eye materials according to ICRU 46 [28]. The position of the points is
followed by Thomson et al. [17] (Figure 3). The lens is modelled in the homogenized
eye, and to obtain the dose rate, the plaque and eye ball are then modelled at the
center of the spherical water phantom with 30 cm diameter. The plaque backing
and Silastic insert effect on dose rate is obtained by replacing water with gold and
Silastic insert. Central axis depth dose to water was determined using the F6 tally of
MCNP for 0.05 mm radius and 0.01 mm thick cylindrical voxels from the outer
sclera (�1 mm) to 11 mm inside the eye in 0.5 mm steps [2]. For the comparison
doses to interest points (center of the eye, macula, optic disk, proximal sclera,
tumour apex, lacrimal gland and retina opposite the apex) have been determined.
The total dose is calculated following Melhus and Rivard [14] and Thomson et al.
[17] verbatim: “The Monte Carlo simulations provide the dose in a voxel per
history. The dose rate is calculated by dividing this number by the air kerma
strength per history for the relevant seed type and multiplying by the number of seeds
and the air kerma strength per seed. The air kerma strength per seed is chosen in
order to obtain a prescription dose of 85Gy at the tumour apex (5 mm on the central
axis) in 168 hours for 103-Pd. The total dose delivered during treatment is then
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determined by integrating over the treatment time, taking into account the expo-
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and Rayleigh and Compton scattering, of characteristic K- and L-shell X-rays, are
all simulated. For variance reduction, the electron and photon transport energy cut-
off in all calculations was selected at 1 and 5 keV, respectively [29]. In the simula-
tion 3.8 � 108 photon histories were simulated, and the statistical uncertainties at 5
and 11 mm (tumour apex) depth of central axis were obtained at 0.7 and 1.1%,
respectively. Statistical uncertainties at the opposite side of the eye exceeded 4%
which has the greatest uncertainty among the points on interest.

3. Results and discussions

3.1 Seed dosimetry benchmarking

In this work, the Monte Carlo simulation was benchmarked with the
Theragenics model 200 source. The comparison between the calculated value of Λ
for the model 200 in this study, 0.685 cGy h�1 U�1, and the previously published
data for the seed [18], 0.686 cGy h�1 U�1 (�0.1% difference), shows the accuracy
of our simulation method. The result has been presented in Table 1. Based on the
calculations, the dose rate constant for the IR06-103Pd source in ideal orientation is
estimated to be 0.692 � 0.020 cGy�h�1�U�1 which is comparable with the other two
commercial sources. Calculated SK per contained activity for model 200 in this work
was 0.722 U mCi�1. The result was compared to 0.721 U mCi�1 for Williamson’s
WAFAC simulation, [26] and Melhus et al. [14] calculations. The values of Λ in
three seed orientations ranged from 0.689 to 0.697 cGy h�1 U�1, with a 0.34%
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Points of interest for eye plaque dosimetry, given in the center of eye reference frame (scale in centimeters) for a
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points of interest are indicated (with the exception of the lacrimal gland, which does not lie in the plane shown).
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uncertainty. According to TG-43U1, a standard uncertainty of 3% is acceptable for
Monte Carlo studies. The dose rate constant can be calculated by normalizing to the
SK of the vertical orientation and the source geometry during the NIST calibration.
The values, in this case, are 0.680� 0.020 cGy h�1 U�1,�1.7% lower than the value
in the ideal orientation. This result obtained in this study is comparable with Λ
values obtained for other 103-Pd sources which are presented in TG-43U1 report.
Table 1 shows the calculated dose rate constant for the IR06-103Pd seed and the
measured and calculated values of Λ, for NASI model MED3633, Theragenics model
200 and Best model sources.

The calculated line radial dose function gL(r), of the IR06-
103Pd for ideal orien-

tation, was fit to a fifth-order polynomial function yielding the following
relationship:

gL rð Þ ¼ a0 þ a1rþ a2r2 þ a3r3 þ a4r4 þ a5r5 (6)

where:
a0 = 1.785, a1 = �1.064, a2 = 3.385 � 10–1, a3 = �7.062 � 10–2, a4 = 8.469 � 10–3

and a5 = �4.173 � 10–4 define R2 = 9.999 � 10�1.
Figure 4 presents the radial dos�e function, g(r), for IR06-103Pd seed and three

other commercial sources. Table 2 shows the differences between the results of
this study and AAPM TG-43U1 reference data for model 200. As the differences are
<3%, the agreement between these data sets is acceptable. The radial dose function
values for two other geometric models, vertical and diagonal, were also calculated,
and the disagreement between them varied from <2%. The anisotropy function, F
(r,θ), of the IR06-103Pd seed was calculated in the phantom of water, at radial
distances of r = 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5 and 7 cm relative to the seed center
and polar angle, θ, ranging from 0 to 180° for vertical and diagonal orientations and
0–90° for ideal orientation, in 10° increment with respect to the seed long axis. The
results are shown in Table 3.

Source type Method Medium Λ (cGy h�1 U�1)

IR06-103Pd Monte Carlo simulation (ideal)a Liquid water 0.692 � 0.021

Monte Carlo simulation (diagonal)a Liquid water 0.697 � 0.021

Monte Carlo simulation (vertical)a Liquid water 0.689 � 0.021

MED3633 TLD dosimetryb Solid water 0.688 � 0.05

Monte Carlo simulationc Liquid water 0.677 � 0.02

Theragenics model 200 TLD dosimetryd Solid water 0.650 � 0.08

Monte Carlo simulatione Liquid water 0.686 � 0.03

Monte Carlo simulationa Liquid water 0.685 � 0.02

Best model 2335 TLD dosimetryf Solid water 0.69 � 0.08

Monte Carlo simulationf Liquid water 0.67 � 0.02
aPresent work.
bRef. [33].
cRef. [34].
dRef. [32].
eRef. [26].
fRef. [27].

Table 1.
Monte Carlo calculated dose rate constant, Λ, of the IR06-103Pd and model 200 seeds in comparison with the
measured and calculated values of model MED3633, model 200 and model 2335 seeds.
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Figure 5 shows a comparison between the calculated anisotropy function of the
IR06-103Pd seeds at a distance of 2 cm from the source center in water with the
other published data (in ideal orientation). The values of the anisotropy function for
the new 103-Pd sources agreed with those for the model MED3633, Theragenics
model 200 and Best® double-wall 103-Pd sources [18, 26, 30] are found in 4% in
angles >20°. Due to the thick end caps of the IR06-103Pd source, the differences in
smaller angles can be as large as up to 17%.

3.2 Plaque Monte Carlo simulations

Table 4 shows the calculated central depth dose distribution for COMS eye
plaques loaded with IR06-103Pd seeds in the Silastic insert.

Figure 4.
Comparison of the calculated radial dose function of IR06-103Pd seeds in water versus other available
sources [18, 30].

r (cm) gL(r)

Theragenics 200 Percent difference (%) IR06-103Pd

Ref. [26] Present work

0.5 1.300 1.330 �2 1.333

0.75 1.150 1.170 �2 1.144

1 1.000 1.000 0 1.000

1.5 0.749 0.755 �1 0.756

2 0.555 0.567 �2 0.566

3 0.302 0.305 �1 0.318

4 0.163 0.168 �3 0.168

5 0.089 0.091 �3 0.091

7 0.026 0.027 �2 0.026

Table 2.
Monte Carlo calculations for radial dose function, gL(r), for IR06-

103Pd and model 200 seeds compared to
reference Monte Carlo data.
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values for two other geometric models, vertical and diagonal, were also calculated,
and the disagreement between them varied from <2%. The anisotropy function, F
(r,θ), of the IR06-103Pd seed was calculated in the phantom of water, at radial
distances of r = 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5 and 7 cm relative to the seed center
and polar angle, θ, ranging from 0 to 180° for vertical and diagonal orientations and
0–90° for ideal orientation, in 10° increment with respect to the seed long axis. The
results are shown in Table 3.
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Figure 5 shows a comparison between the calculated anisotropy function of the
IR06-103Pd seeds at a distance of 2 cm from the source center in water with the
other published data (in ideal orientation). The values of the anisotropy function for
the new 103-Pd sources agreed with those for the model MED3633, Theragenics
model 200 and Best® double-wall 103-Pd sources [18, 26, 30] are found in 4% in
angles >20°. Due to the thick end caps of the IR06-103Pd source, the differences in
smaller angles can be as large as up to 17%.

3.2 Plaque Monte Carlo simulations

Table 4 shows the calculated central depth dose distribution for COMS eye
plaques loaded with IR06-103Pd seeds in the Silastic insert.

Figure 4.
Comparison of the calculated radial dose function of IR06-103Pd seeds in water versus other available
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The depth dose distribution has been calculated in 0.5 mm steps between the
outer sclera (�1 mm) to 3 mm and in 1 mm steps from 4 to 10 mm. The dose
distribution is also calculated in water medium to obtain the effect of the Silastic
insert and the plaque backing on central axis dose distribution. In this study, the

a. 2-D anisotropy function, F(r,θ), in ideal seed orientation

r (cm) Θ=

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

0.25 0.053 0.074 0.616 0.854 0.924 0.959 0.979 0.992 0.998 1.000

0.5 0.132 0.165 0.472 0.701 0.845 0.927 0.964 0.985 0.996 1.000

0.75 0.169 0.211 0.480 0.686 0.823 0.912 0.960 0.985 0.997 1.000

1 0.190 0.242 0.491 0.686 0.816 0.903 0.956 0.982 0.996 1.000

1.5 0.229 0.281 0.512 0.692 0.813 0.899 0.952 0.982 0.995 1.000

2 0.265 0.309 0.526 0.696 0.814 0.896 0.950 0.982 0.996 1.000

3 0.294 0.345 0.545 0.705 0.815 0.897 0.949 0.981 0.997 1.000

4 0.319 0.369 0.558 0.709 0.818 0.895 0.948 0.979 0.995 1.000

5 0.337 0.392 0.568 0.715 0.820 0.900 0.948 0.981 0.995 1.000

7 0.405 0.428 0.601 0.730 0.831 0.900 0.948 0.982 1.004 1.000

b. 2-D anisotropy function, F(r,θ), in vertical seed orientation

r (cm) Θ=

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

0.25 1.155 0.471 0.526 0.591 0.568 0.504 0.426 0.351 0.308 1.000

0.5 0.958 0.436 0.485 0.597 0.650 0.672 0.682 0.695 0.720 1.000

0.75 0.931 0.453 0.508 0.631 0.702 0.743 0.775 0.806 0.840 1.000

1 0.907 0.471 0.531 0.656 0.733 0.784 0.823 0.856 0.895 1.000

1.5 0.900 0.497 0.560 0.685 0.767 0.824 0.868 0.905 0.945 1.000

2 0.880 0.514 0.579 0.704 0.786 0.845 0.888 0.928 0.967 1.000

3 0.859 0.541 0.606 0.724 0.810 0.867 0.912 0.952 0.992 1.000

4 0.851 0.557 0.623 0.737 0.817 0.875 0.924 0.961 1.004 1.000

5 0.810 0.577 0.637 0.747 0.826 0.883 0.927 0.968 1.009 1.000

7 0.889 0.610 0.668 0.769 0.846 0.901 0.946 0.977 1.024 1.000

r (cm) 100° 110° 120° 130° 140° 150° 160° 170° 180°

0.25 0.945 0.682 0.877 0.942 0.975 0.993 1.003 1.005 1.002

0.5 0.918 0.652 0.741 0.855 0.933 0.974 0.994 1.003 1.002

0.75 0.887 0.661 0.739 0.837 0.916 0.964 0.989 1.000 1.001

1 0.874 0.673 0.743 0.835 0.908 0.960 0.988 1.000 1.001

1.5 0.856 0.685 0.753 0.837 0.906 0.956 0.985 0.999 1.001

2 0.851 0.696 0.758 0.840 0.905 0.954 0.984 0.998 1.001

3 0.845 0.712 0.768 0.845 0.907 0.954 0.984 0.998 1.001

4 0.842 0.722 0.778 0.848 0.907 0.953 0.983 0.997 1.000

5 0.839 0.733 0.785 0.853 0.909 0.953 0.983 0.996 1.000

7 0.852 0.757 0.805 0.869 0.919 0.963 0.988 1.003 1.004
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required air kerma strength per seed (SK) is calculated to deliver prescription dose
(85 Gy) to the apex of the tumour (5 mm depth) for 168 hours of implant. In
addition, to investigate the effect of different materials constituting the COMS
plaque on dose distributions near the plaque, the ratio of dose in three media
(discussed above) relative to dose in water medium is shown in Figure 6.

3.3 Effect of the gold backing

The effect of 20 mm gold plaque backing on dose distribution along the central
axis is shown in Figure 7, which provides central axis depth dose curve for full
loaded IR06-103Pd, Theragenics 200 and model 2335 seeds with water replacing the
Silastic. This figure demonstrates dose is increased near the plaque; now this well-
known effect is due to L-shell fluorescence photons emitted by atoms in the plaque
backing [27]. Emission photons from palladium seeds with an average energy of
about 21 keV excite the L-shell in gold and silver [31] which are the composition of
the plaque backing. The excitation of these shells results in the emission of fluores-
cence photons, so this event explains why dose increases near the plaque. About

c. 2-D anisotropy function, F(r,θ), in diagonal seed orientation

r (cm) Θ=

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

0.25 1.155 0.471 0.525 0.591 0.567 0.502 0.424 0.352 0.310 1.000

0.5 0.969 0.438 0.485 0.597 0.651 0.673 0.682 0.696 0.723 1.000

0.75 0.941 0.453 0.508 0.631 0.701 0.744 0.775 0.805 0.842 1.000

1 0.918 0.471 0.530 0.657 0.734 0.783 0.822 0.857 0.897 1.000

1.5 0.907 0.497 0.560 0.686 0.767 0.824 0.866 0.906 0.947 1.000

2 0.881 0.515 0.579 0.704 0.786 0.845 0.889 0.930 0.972 1.000

3 0.857 0.540 0.607 0.724 0.806 0.865 0.910 0.953 0.995 1.000

4 0.852 0.556 0.623 0.738 0.817 0.873 0.921 0.962 1.003 1.000

5 0.810 0.577 0.637 0.746 0.825 0.883 0.928 0.969 1.012 1.000

7 0.888 0.610 0.669 0.769 0.846 0.902 0.946 0.979 1.027 1.000

r (cm) 100° 110° 120° 130° 140° 150° 160° 170° 180°

0.25 0.945 0.684 0.879 0.943 0.974 0.993 1.002 1.003 1.004

0.5 0.921 0.652 0.741 0.856 0.935 0.975 0.994 1.002 1.003

0.75 0.889 0.663 0.739 0.837 0.915 0.964 0.989 1.001 1.002

1 0.876 0.673 0.744 0.836 0.910 0.961 0.989 1.000 1.002

1.5 0.860 0.686 0.752 0.837 0.905 0.956 0.985 0.999 1.001

2 0.852 0.697 0.758 0.841 0.905 0.955 0.984 0.999 1.001

3 0.847 0.713 0.769 0.845 0.906 0.954 0.984 0.998 1.002

4 0.843 0.723 0.778 0.848 0.907 0.954 0.983 0.997 1.001

5 0.842 0.733 0.785 0.853 0.908 0.953 0.983 0.996 1.000

7 0.856 0.759 0.806 0.868 0.919 0.963 0.988 1.003 1.005

Table 3.
2-D anisotropy functions for the IR06-103Pd seed calculated by Monte Carlo method for the (a) ideal
orientation, (b) vertical orientation and (c) diagonal orientation.
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The depth dose distribution has been calculated in 0.5 mm steps between the
outer sclera (�1 mm) to 3 mm and in 1 mm steps from 4 to 10 mm. The dose
distribution is also calculated in water medium to obtain the effect of the Silastic
insert and the plaque backing on central axis dose distribution. In this study, the

a. 2-D anisotropy function, F(r,θ), in ideal seed orientation

r (cm) Θ=

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

0.25 0.053 0.074 0.616 0.854 0.924 0.959 0.979 0.992 0.998 1.000

0.5 0.132 0.165 0.472 0.701 0.845 0.927 0.964 0.985 0.996 1.000

0.75 0.169 0.211 0.480 0.686 0.823 0.912 0.960 0.985 0.997 1.000

1 0.190 0.242 0.491 0.686 0.816 0.903 0.956 0.982 0.996 1.000

1.5 0.229 0.281 0.512 0.692 0.813 0.899 0.952 0.982 0.995 1.000

2 0.265 0.309 0.526 0.696 0.814 0.896 0.950 0.982 0.996 1.000

3 0.294 0.345 0.545 0.705 0.815 0.897 0.949 0.981 0.997 1.000

4 0.319 0.369 0.558 0.709 0.818 0.895 0.948 0.979 0.995 1.000

5 0.337 0.392 0.568 0.715 0.820 0.900 0.948 0.981 0.995 1.000

7 0.405 0.428 0.601 0.730 0.831 0.900 0.948 0.982 1.004 1.000

b. 2-D anisotropy function, F(r,θ), in vertical seed orientation

r (cm) Θ=

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

0.25 1.155 0.471 0.526 0.591 0.568 0.504 0.426 0.351 0.308 1.000

0.5 0.958 0.436 0.485 0.597 0.650 0.672 0.682 0.695 0.720 1.000

0.75 0.931 0.453 0.508 0.631 0.702 0.743 0.775 0.806 0.840 1.000

1 0.907 0.471 0.531 0.656 0.733 0.784 0.823 0.856 0.895 1.000

1.5 0.900 0.497 0.560 0.685 0.767 0.824 0.868 0.905 0.945 1.000

2 0.880 0.514 0.579 0.704 0.786 0.845 0.888 0.928 0.967 1.000

3 0.859 0.541 0.606 0.724 0.810 0.867 0.912 0.952 0.992 1.000

4 0.851 0.557 0.623 0.737 0.817 0.875 0.924 0.961 1.004 1.000

5 0.810 0.577 0.637 0.747 0.826 0.883 0.927 0.968 1.009 1.000

7 0.889 0.610 0.668 0.769 0.846 0.901 0.946 0.977 1.024 1.000

r (cm) 100° 110° 120° 130° 140° 150° 160° 170° 180°

0.25 0.945 0.682 0.877 0.942 0.975 0.993 1.003 1.005 1.002

0.5 0.918 0.652 0.741 0.855 0.933 0.974 0.994 1.003 1.002

0.75 0.887 0.661 0.739 0.837 0.916 0.964 0.989 1.000 1.001

1 0.874 0.673 0.743 0.835 0.908 0.960 0.988 1.000 1.001

1.5 0.856 0.685 0.753 0.837 0.906 0.956 0.985 0.999 1.001

2 0.851 0.696 0.758 0.840 0.905 0.954 0.984 0.998 1.001

3 0.845 0.712 0.768 0.845 0.907 0.954 0.984 0.998 1.001

4 0.842 0.722 0.778 0.848 0.907 0.953 0.983 0.997 1.000

5 0.839 0.733 0.785 0.853 0.909 0.953 0.983 0.996 1.000

7 0.852 0.757 0.805 0.869 0.919 0.963 0.988 1.003 1.004
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required air kerma strength per seed (SK) is calculated to deliver prescription dose
(85 Gy) to the apex of the tumour (5 mm depth) for 168 hours of implant. In
addition, to investigate the effect of different materials constituting the COMS
plaque on dose distributions near the plaque, the ratio of dose in three media
(discussed above) relative to dose in water medium is shown in Figure 6.

3.3 Effect of the gold backing

The effect of 20 mm gold plaque backing on dose distribution along the central
axis is shown in Figure 7, which provides central axis depth dose curve for full
loaded IR06-103Pd, Theragenics 200 and model 2335 seeds with water replacing the
Silastic. This figure demonstrates dose is increased near the plaque; now this well-
known effect is due to L-shell fluorescence photons emitted by atoms in the plaque
backing [27]. Emission photons from palladium seeds with an average energy of
about 21 keV excite the L-shell in gold and silver [31] which are the composition of
the plaque backing. The excitation of these shells results in the emission of fluores-
cence photons, so this event explains why dose increases near the plaque. About

c. 2-D anisotropy function, F(r,θ), in diagonal seed orientation

r (cm) Θ=

0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

0.25 1.155 0.471 0.525 0.591 0.567 0.502 0.424 0.352 0.310 1.000

0.5 0.969 0.438 0.485 0.597 0.651 0.673 0.682 0.696 0.723 1.000

0.75 0.941 0.453 0.508 0.631 0.701 0.744 0.775 0.805 0.842 1.000

1 0.918 0.471 0.530 0.657 0.734 0.783 0.822 0.857 0.897 1.000

1.5 0.907 0.497 0.560 0.686 0.767 0.824 0.866 0.906 0.947 1.000

2 0.881 0.515 0.579 0.704 0.786 0.845 0.889 0.930 0.972 1.000

3 0.857 0.540 0.607 0.724 0.806 0.865 0.910 0.953 0.995 1.000

4 0.852 0.556 0.623 0.738 0.817 0.873 0.921 0.962 1.003 1.000

5 0.810 0.577 0.637 0.746 0.825 0.883 0.928 0.969 1.012 1.000

7 0.888 0.610 0.669 0.769 0.846 0.902 0.946 0.979 1.027 1.000

r (cm) 100° 110° 120° 130° 140° 150° 160° 170° 180°

0.25 0.945 0.684 0.879 0.943 0.974 0.993 1.002 1.003 1.004

0.5 0.921 0.652 0.741 0.856 0.935 0.975 0.994 1.002 1.003

0.75 0.889 0.663 0.739 0.837 0.915 0.964 0.989 1.001 1.002

1 0.876 0.673 0.744 0.836 0.910 0.961 0.989 1.000 1.002

1.5 0.860 0.686 0.752 0.837 0.905 0.956 0.985 0.999 1.001

2 0.852 0.697 0.758 0.841 0.905 0.955 0.984 0.999 1.001

3 0.847 0.713 0.769 0.845 0.906 0.954 0.984 0.998 1.002

4 0.843 0.723 0.778 0.848 0.907 0.954 0.983 0.997 1.001

5 0.842 0.733 0.785 0.853 0.908 0.953 0.983 0.996 1.000

7 0.856 0.759 0.806 0.868 0.919 0.963 0.988 1.003 1.005

Table 3.
2-D anisotropy functions for the IR06-103Pd seed calculated by Monte Carlo method for the (a) ideal
orientation, (b) vertical orientation and (c) diagonal orientation.
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0.7% dose enhancement is observed near the plaque which is loaded with
IR06-103Pd seeds, but as the fluorescence photons are absorbed (mean free path is
about 2 mm), after a few millimeters, the dose decreases in the order of 6.5%. In
Thomson et al. [17] work, a dose decrease of about 6–6.3% at the opposite side of
the eye for 103-Pd (Theragenics model 200) seed in gold backing (no Silastic) was
reported. Chiu-Tsao et al. reported a dose decrease of about 10% for 125I (model
6711) seed with 20 mm gold plaque (no Silastic) at 7.6 mm. Since the emitted
photons from the 125I seed have higher energy than those emitted by 103-Pd seed,
more fluorescence photons are observed when 125I source is used. Due to the emis-
sion of fluorescence photons from the plaque backing for all seed and backing
models without any polymer insert, there is a small dose enhancement near the
plaque. The spectrum of fluorescence photons depends on the energy of photons
emitted by the seed and its active length and also depends on the composition of
plaque backing.

3.4 Effect of silastic insert

The central axis doses for the IR06-103Pd seeds in Silastic insert with plaque
backing are shown in Figure 8 relative to the doses for the same seeds in the water
medium. Silastic with an effective atomic number of�10.7 has a greater attenuating
effect than water with an effective atomic number of Zeff (�7.4) [17]. The average
variation in dose distribution due to Silastic insert relative to water is about 17%.
Thomson et al. [27] reported 17% dose reduction for Theragenics model 200103-Pd
seed at a distance of 1 cm in COMS plaque due to the presence of Silastic insert.
Chiu-Tsao et al. [16] calculated a 10% dose reduction at 1 cm for Silastic insert only,
in 20 mm COMS eye plaque for 125I, and 16% for 103-Pd (without gold backing)
relative to water along the central axis; according to their study also, they presented
that the effect of gold+ Silastic combination is comparable with the effect of Silastic
insert only. The reduction of dose for 125I source in Silastic insert is more than
103-Pd source due to its higher energy of emitted photons. The dose reduction for the
gold + Silastic combination relative to water medium as shown in Figures 6 and 8 is

Figure 5.
Comparison of the calculated anisotropy function of the IR06-103Pd seed versus other available sources
at 2 cm [18, 30].
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Central axis depth (mm) a. Gold backing + Silastic

IR06-103Pd seeds

COMS eye plaque diameter (mm)

10 12 14 16 18 20 22

�1 582.3 462.1 411.1 325.7 309.1 297.4 300.3

�0.5 474.1 401.5 375.2 305.5 296.3 232.3 298.5

0 380.7 325.8 302.1 271.5 264.3 212.8 254.7

0.5 312.5 300.0 267.4 250.7 220.2 202.8 222.8

1 302.7 248.6 220.2 243.9 189.2 176.4 196.8

1.5 254.8 220.1 215.3 214.4 180.5 167.8 178.7

2 198.4 190.5 170.0 188.9 168.7 159.8 168.2

2.5 180.8 183.7 162.5 164.3 152.4 140.6 154.6

3 148.9 150.3 130.8 148.2 132.8 122.7 155.2

4 120.3 105.1 110.2 120.4 108.7 100.2 104.5

5 (Apex) 85.0 85.0 85.0 85.0 85.0 85.0 85.0

6 63.7 64.1 72.5 80.0 78.2 69.5 72.4

7 50.0 50.0 52.4 69.2 60.5 58.4 60.1

8 32.4 35.2 35.3 55.4 48.9 55.1 51.2

9 28.4 29.8 34.8 40.5 41.5 38 40.5

10 22.5 24.6 28.9 28.8 33.1 35.5 34.4

SK(U) 10.88 7.11 5.1 5.23 3.52 3.33 3.61

Central axis depth (mm) b. Gold backing + Silastic

103Pd model 200 seeds [14]

COMS eye plaque diameter (mm)

10 12 14 16 18 20 22

�1 640.1 479.9 406.9 279.0 306.2 272.0 310.3

�0.5 547.0 423.8 368.7 277.7 281.2 252.7 278.1

0 452.4 366.5 322.4 259.1 250.6 227.6 242.1

0.5 376.3 313.1 278.8 234.2 221.7 204.6 213.0

1 313.8 268.0 241.9 210.4 198.5 183.8 187.9

1.5 260.6 230.2 211.9 189.1 177.8 166.5 166.2

2 218.2 199.1 185.4 169.0 160.7 151.3 150.4

2.5 183.8 171.0 162.0 151.3 143.9 137.2 136.7

3 155.5 147.1 142.5 134.1 129.9 124.9 123.6

4 113.4 111.0 109.6 107.2 105.5 102.9 102.4

5 (Apex) 85.0 85.0 85.0 85.0 85.0 85.0 85.0

6 64.7 65.8 67.2 68.1 69.8 70.2 70.8

7 49.7 51.8 53.4 54.3 56.8 57.8 58.6

8 39.3 41.3 42.7 44.1 46.6 48.3 48.7

9 31.2 32.7 34.4 36.1 38.1 40.0 40.9

10 25.2 26.1 28.1 29.4 31.9 33.1 34.6

SK(U) 11.057 7.299 4.809 5.062 3.405 3.139 3.738
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0.7% dose enhancement is observed near the plaque which is loaded with
IR06-103Pd seeds, but as the fluorescence photons are absorbed (mean free path is
about 2 mm), after a few millimeters, the dose decreases in the order of 6.5%. In
Thomson et al. [17] work, a dose decrease of about 6–6.3% at the opposite side of
the eye for 103-Pd (Theragenics model 200) seed in gold backing (no Silastic) was
reported. Chiu-Tsao et al. reported a dose decrease of about 10% for 125I (model
6711) seed with 20 mm gold plaque (no Silastic) at 7.6 mm. Since the emitted
photons from the 125I seed have higher energy than those emitted by 103-Pd seed,
more fluorescence photons are observed when 125I source is used. Due to the emis-
sion of fluorescence photons from the plaque backing for all seed and backing
models without any polymer insert, there is a small dose enhancement near the
plaque. The spectrum of fluorescence photons depends on the energy of photons
emitted by the seed and its active length and also depends on the composition of
plaque backing.

3.4 Effect of silastic insert

The central axis doses for the IR06-103Pd seeds in Silastic insert with plaque
backing are shown in Figure 8 relative to the doses for the same seeds in the water
medium. Silastic with an effective atomic number of�10.7 has a greater attenuating
effect than water with an effective atomic number of Zeff (�7.4) [17]. The average
variation in dose distribution due to Silastic insert relative to water is about 17%.
Thomson et al. [27] reported 17% dose reduction for Theragenics model 200103-Pd
seed at a distance of 1 cm in COMS plaque due to the presence of Silastic insert.
Chiu-Tsao et al. [16] calculated a 10% dose reduction at 1 cm for Silastic insert only,
in 20 mm COMS eye plaque for 125I, and 16% for 103-Pd (without gold backing)
relative to water along the central axis; according to their study also, they presented
that the effect of gold+ Silastic combination is comparable with the effect of Silastic
insert only. The reduction of dose for 125I source in Silastic insert is more than
103-Pd source due to its higher energy of emitted photons. The dose reduction for the
gold + Silastic combination relative to water medium as shown in Figures 6 and 8 is

Figure 5.
Comparison of the calculated anisotropy function of the IR06-103Pd seed versus other available sources
at 2 cm [18, 30].
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Central axis depth (mm) a. Gold backing + Silastic

IR06-103Pd seeds

COMS eye plaque diameter (mm)

10 12 14 16 18 20 22

�1 582.3 462.1 411.1 325.7 309.1 297.4 300.3

�0.5 474.1 401.5 375.2 305.5 296.3 232.3 298.5

0 380.7 325.8 302.1 271.5 264.3 212.8 254.7

0.5 312.5 300.0 267.4 250.7 220.2 202.8 222.8

1 302.7 248.6 220.2 243.9 189.2 176.4 196.8

1.5 254.8 220.1 215.3 214.4 180.5 167.8 178.7

2 198.4 190.5 170.0 188.9 168.7 159.8 168.2

2.5 180.8 183.7 162.5 164.3 152.4 140.6 154.6

3 148.9 150.3 130.8 148.2 132.8 122.7 155.2

4 120.3 105.1 110.2 120.4 108.7 100.2 104.5

5 (Apex) 85.0 85.0 85.0 85.0 85.0 85.0 85.0

6 63.7 64.1 72.5 80.0 78.2 69.5 72.4

7 50.0 50.0 52.4 69.2 60.5 58.4 60.1

8 32.4 35.2 35.3 55.4 48.9 55.1 51.2

9 28.4 29.8 34.8 40.5 41.5 38 40.5

10 22.5 24.6 28.9 28.8 33.1 35.5 34.4

SK(U) 10.88 7.11 5.1 5.23 3.52 3.33 3.61

Central axis depth (mm) b. Gold backing + Silastic

103Pd model 200 seeds [14]

COMS eye plaque diameter (mm)

10 12 14 16 18 20 22

�1 640.1 479.9 406.9 279.0 306.2 272.0 310.3

�0.5 547.0 423.8 368.7 277.7 281.2 252.7 278.1

0 452.4 366.5 322.4 259.1 250.6 227.6 242.1

0.5 376.3 313.1 278.8 234.2 221.7 204.6 213.0

1 313.8 268.0 241.9 210.4 198.5 183.8 187.9

1.5 260.6 230.2 211.9 189.1 177.8 166.5 166.2

2 218.2 199.1 185.4 169.0 160.7 151.3 150.4

2.5 183.8 171.0 162.0 151.3 143.9 137.2 136.7

3 155.5 147.1 142.5 134.1 129.9 124.9 123.6

4 113.4 111.0 109.6 107.2 105.5 102.9 102.4

5 (Apex) 85.0 85.0 85.0 85.0 85.0 85.0 85.0

6 64.7 65.8 67.2 68.1 69.8 70.2 70.8

7 49.7 51.8 53.4 54.3 56.8 57.8 58.6

8 39.3 41.3 42.7 44.1 46.6 48.3 48.7

9 31.2 32.7 34.4 36.1 38.1 40.0 40.9

10 25.2 26.1 28.1 29.4 31.9 33.1 34.6

SK(U) 11.057 7.299 4.809 5.062 3.405 3.139 3.738
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about 19% at 1 cm and 17% and at 0.5 cm, and the average dose reduction due to the
presence of gold backing + Silastic insert along the COMS central axis loaded with
the new palladium seeds is about 18%. Thomson et al. have obtained a reduction of
the dose relative to water of 20% for 103-Pd seed at 1 cm in the COMS plaque central
axis; the main reduction is due to the Silastic insert. The comparison shows that the
dose reduction with IR06-103Pd seeds is lower along the central axis of the plaque
with the exception of sclera than the other two palladium seed models, Theragenics
200 and model 2335 loaded in COMS plaque.

3.5 Dose comparison at points of interest

To determine the effect of plaque backing and Silastic insert on dose rate at
points of interest, more Monte Carlo simulations were employed by replacing the
plaque backing and Silastic inserts with water. Table 5 presents the dose (in Gy) at
points of interest for different plaque materials of 20 and 16 mm COMS plaque fully
loaded with IR06-103Pd seeds. To obtain the dose at the points of interest in a water

Central axis depth (mm) c. Gold backing + Silastic/water medium

IR06-103Pd seeds

COMS eye plaque diameter (mm)

10 12 14 16 18 20 22

�1 0.74 0.72 0.71 0.65 0.68 0.66 0.71

�0.5 0.75 0.75 0.73 0.72 0.73 0.72 0.73

0 0.76 0.76 0.76 0.73 0.76 0.73 0.76

0.5 0.78 0.78 0.78 0.77 0.77 0.76 0.77

1 0.80 0.80 0.79 0.79 0.79 0.79 0.78

1.5 0.81 0.81 0.81 0.81 0.8 0.79 0.78

2 0.81 0.81 0.81 0.81 0.81 0.80 0.78

2.5 0.81 0.81 0.81 0.81 0.81 0.80 0.79

3 0.81 0.81 0.81 0.81 0.82 0.80 0.81

4 0.81 0.81 0.81 0.81 0.82 0.80 0.81

5 (Apex) 0.81 0.81 0.81 0.81 0.82 0.81 0.81

6 0.80 0.80 0.81 0.8 0.82 0.81 0.81

7 0.80 0.80 0.81 0.8 0.82 0.81 0.81

8 0.80 0.80 0.81 0.8 0.82 0.81 0.81

9 0.80 0.80 0.81 0.81 0.81 0.83 0.80

10 0.80 0.80 0.81 0.81 0.81 0.83 0.80

SK(U) 8.87 6.12 4 4.13 2.75 2.45 3.07

Table 4.
Central axis dose distributions: (a) in 10–22 mm diameter COMS eye plaques (gold backing + Silastic insert)
loaded with IR06-103Pd seeds, (b) gold backing + Silastic insert loaded with 103Pd model 200 seeds [14]
and (c) the ratio of the central axis dose of the 10–22 mm COMS plaque (gold backing + silastic) to the central
axis dose in water medium loaded with IR06-103Pd seeds.
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medium, the air kerma strength for each seed, (SK), is required to deliver 85 Gy to
the tumour apex in 168 hours. All of the results have been renormalized to deliver
the same dose (85 Gy) to the apex of the tumour. The results are compared with the
dose at the same points when COMS plaque is loaded with Theragenics model 200
and 6711-125I seeds. According to Table 5, dose decreases at the optic disk by�40%
when moving a plaque from nasal to temporal equatorial centers. This is due to the
fact that the optic disk is not centered on the eye anterior-posterior (AP) axis and is
nearer the nasal plaque. For the plaque position between the posterior pole and
equator temporal to the eyeball, the decrease in dose is due to the gold backing, and
Silastic insert related to water medium is about 14% for IR06-103Pd seed and 21%
for the model 200 at the opposite side of the eye [17]. When compared to identical
plaques loaded with model 6711 125I sources, the doses at points of interest are
consistently lower in plaque loaded with any of the 103-Pd models in this study.

Figure 7.
Ratio of the doses along the plaque’s central axis for 20 mm COMS plaque (no Silastic insert) loaded with
IR06-103Pd, model 200 and model 2335 seeds to the doses in water medium.

Figure 6.
Ratio of the doses along the plaque’s central axis for 20 mm COMS plaque fully loaded with IR06-103Pd to the
doses in water medium.
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about 19% at 1 cm and 17% and at 0.5 cm, and the average dose reduction due to the
presence of gold backing + Silastic insert along the COMS central axis loaded with
the new palladium seeds is about 18%. Thomson et al. have obtained a reduction of
the dose relative to water of 20% for 103-Pd seed at 1 cm in the COMS plaque central
axis; the main reduction is due to the Silastic insert. The comparison shows that the
dose reduction with IR06-103Pd seeds is lower along the central axis of the plaque
with the exception of sclera than the other two palladium seed models, Theragenics
200 and model 2335 loaded in COMS plaque.

3.5 Dose comparison at points of interest

To determine the effect of plaque backing and Silastic insert on dose rate at
points of interest, more Monte Carlo simulations were employed by replacing the
plaque backing and Silastic inserts with water. Table 5 presents the dose (in Gy) at
points of interest for different plaque materials of 20 and 16 mm COMS plaque fully
loaded with IR06-103Pd seeds. To obtain the dose at the points of interest in a water

Central axis depth (mm) c. Gold backing + Silastic/water medium

IR06-103Pd seeds

COMS eye plaque diameter (mm)

10 12 14 16 18 20 22

�1 0.74 0.72 0.71 0.65 0.68 0.66 0.71

�0.5 0.75 0.75 0.73 0.72 0.73 0.72 0.73

0 0.76 0.76 0.76 0.73 0.76 0.73 0.76

0.5 0.78 0.78 0.78 0.77 0.77 0.76 0.77

1 0.80 0.80 0.79 0.79 0.79 0.79 0.78

1.5 0.81 0.81 0.81 0.81 0.8 0.79 0.78

2 0.81 0.81 0.81 0.81 0.81 0.80 0.78

2.5 0.81 0.81 0.81 0.81 0.81 0.80 0.79

3 0.81 0.81 0.81 0.81 0.82 0.80 0.81

4 0.81 0.81 0.81 0.81 0.82 0.80 0.81

5 (Apex) 0.81 0.81 0.81 0.81 0.82 0.81 0.81

6 0.80 0.80 0.81 0.8 0.82 0.81 0.81

7 0.80 0.80 0.81 0.8 0.82 0.81 0.81

8 0.80 0.80 0.81 0.8 0.82 0.81 0.81

9 0.80 0.80 0.81 0.81 0.81 0.83 0.80

10 0.80 0.80 0.81 0.81 0.81 0.83 0.80

SK(U) 8.87 6.12 4 4.13 2.75 2.45 3.07

Table 4.
Central axis dose distributions: (a) in 10–22 mm diameter COMS eye plaques (gold backing + Silastic insert)
loaded with IR06-103Pd seeds, (b) gold backing + Silastic insert loaded with 103Pd model 200 seeds [14]
and (c) the ratio of the central axis dose of the 10–22 mm COMS plaque (gold backing + silastic) to the central
axis dose in water medium loaded with IR06-103Pd seeds.
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medium, the air kerma strength for each seed, (SK), is required to deliver 85 Gy to
the tumour apex in 168 hours. All of the results have been renormalized to deliver
the same dose (85 Gy) to the apex of the tumour. The results are compared with the
dose at the same points when COMS plaque is loaded with Theragenics model 200
and 6711-125I seeds. According to Table 5, dose decreases at the optic disk by�40%
when moving a plaque from nasal to temporal equatorial centers. This is due to the
fact that the optic disk is not centered on the eye anterior-posterior (AP) axis and is
nearer the nasal plaque. For the plaque position between the posterior pole and
equator temporal to the eyeball, the decrease in dose is due to the gold backing, and
Silastic insert related to water medium is about 14% for IR06-103Pd seed and 21%
for the model 200 at the opposite side of the eye [17]. When compared to identical
plaques loaded with model 6711 125I sources, the doses at points of interest are
consistently lower in plaque loaded with any of the 103-Pd models in this study.

Figure 7.
Ratio of the doses along the plaque’s central axis for 20 mm COMS plaque (no Silastic insert) loaded with
IR06-103Pd, model 200 and model 2335 seeds to the doses in water medium.

Figure 6.
Ratio of the doses along the plaque’s central axis for 20 mm COMS plaque fully loaded with IR06-103Pd to the
doses in water medium.
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Figure 8.
Ratio of the doses along the plaque’s central axis for 20 mm COMS plaque (gold backing + Silastic insert) fully
loaded with IR06-103Pd, model 200 and model 2335 seeds [17] to the doses in water medium.

Points of interest a. 20 mm COMS

IR06-103Pda

Water
medium

Silastic insert
only

Gold backing
only

Gold
backing + Silastic

Centre of eye 29.08 34.31 30.82 34.37

Macula (equator and p.p) 15.57 17.22 16.55 18.29

Optic disk (temporal) 7.52 8.81 7.98 8.85

Optic disk (nasal) 18.29 21.47 19.42 21.44

Centre of lens (equator and
p.p)

16.21 18.98 17.23 19.00

Sclera 351.81 367.38 374.68 383.73

Apex 85.00 85.00 85.00 85.00

Lacrimal gland (nasal) 4.82 5.59 5.12 5.62

Opposite side 3.39 3.94 3.59 3.95

b. 16 mm COMS

Water medium Gold backing + Silastic

IR06-103Pda Theragenics 200b IR06-103Pda Theragenics 200b 6711-125Ic

Centre of eye 22.52 22.75 17.8 18.3 23.79

Macula (equator and p.p) 10.61 11.43 9.8 8.089 12.82

Optic disk (temporal) 6.32 7.193 5.12 5.35 8.98

Optic disk (nasal) 19.63 21.65 13.67 14.13 21.02

Centre of lens (equator and
p.p)

15.63 16.34 11.83 12.5 17.58

Sclera 297.41 287.92 261.4 211 222.9

Apex 85.00 85.00 68.23 68.7 74.43

Lacrimal gland (nasal) 3.72 — 2.75 3.03 —

Opposite side 3.63 3.77 2.22 2.94 5.55

aPresent work.
bRef. [17].
cRef. [27].

Table 5.
Doses in grey at points of interest for (a) 20 mm (b) 16 mm COMS eye plaque loaded with IR06-103Pd seeds
compared with the doses at the same points for model 200 (103Pd) and model 6711 (125I), in 16 mm
COMS eye plaque. Eye plaque centerd in the midway of equator and posterior pole (equator and p.p) and
centerd on equator temporal and nasal.
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4. Conclusion

In this study, the dosimetry of a new design brachytherapy seed IR06-103Pd was
determined by Monte Carlo using MCNP (version 5). Simulations were considered
in three seed orientations with the result that there are no significant statistical
differences among the orientations (i.e., ideal, vertical and diagonal). The dosimet-
ric parameters of the new seed are presented in TG-43U1 format. These parameters
are in acceptable agreement with those of other commercially available seed
models. Thus, the IR06-103Pd seed is dosimetrically suitable for use in routine
brachytherapy where the other similar seeds are employed. Also in this study, the
dosimetry of IR06-103Pd seed was evaluated in COMS eye plaques and compared to
results for commercially available 103-Pd and 125I seeds in the same plaque
geometries.

The COMS Silastic insert has a significant effect in reducing dose along the
plaque central axis. The presence of gold backing enhances the dose near the plaque
gold surfaces. This effect is due to secondary fluorescence photons arising from the
backing material. Due to the energy of these emissions, the effect is significantly
attenuated at a distance >2 mm. The dose decrease depends on the composition of
the plaque backing material and therefore on the emitted photon spectrum of the
seeds and the fluorescence of the backing material.

The combination of gold backing with the Silastic insert decreases the dose
relative to water by 19% at 1 cm along the plaque central axis.

This study shows that this 19% effect is lower than for either model 200 or 2335
103-Pd seeds. Doses to interest points including the macula, optic disk, lens, sclera
and lacrimal gland have been determined; and also the effects of plaque backing
material and Silastic insert have also been studied at these points. The study affirms
that dose and dose rate at these points of interest in COMS plaques are routinely
lower when using 103-Pd rather than 125-I seeds. The dose to the proximal sclera,
underlying the plaque, is greater using 103-Pd seeds due to lessened penetration than
125-I seeds.
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Figure 8.
Ratio of the doses along the plaque’s central axis for 20 mm COMS plaque (gold backing + Silastic insert) fully
loaded with IR06-103Pd, model 200 and model 2335 seeds [17] to the doses in water medium.
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Chapter 3

Prospective Monte Carlo
Simulation for Choosing High
Efficient Detectors for Small-Field
Dosimetry
Hossam Donya, Baljeet Seniwal, Reem Darwesh and
Telma C.F. Fonseca

Abstract

In this chapter, a detailed study on physics and methodology of small field
dosimetry are reported. It introduces talking about how small radiation fields came
into existence and the importance of accurate small-field dosimetry. In addition, it
discusses small and long cavity theories for evaluating accurate dose response. It
sheds the spot on pencil beam algorithms for evaluating dose response and uses
Monte Carlo (MC) simulation in categorizing primary and scattering components
of the radiotherapeutic photon beam. Moreover, it summarizes all commercial
dosimeters used in small-field dosimetry. It gives good knowledge about detectors
and equipment like ionization chambers for reference dosimetry in small and non-
reference fields and different types of solid-state detector. The importance and
applications of Monte Carlo techniques in small-field dosimetry and radio-
therapeutic treatment methods based on small field are reported. For this purpose,
different commonly used Monte Carlo codes are handled like Electron Gamma
Shower (EGSnrc), Geant4, PENELOPE, and Monte Carlo N-Particle (MCNP). A
review on the recent studies of using Monte Carlo simulation particularly on the
small-field dosimetric studies is also reported. This chapter also discusses the rec-
ommendations of the code of practices (COPs) for dosimetry of small radiation
fields. It mentions all recommendations provided by TRS-483 for accurate beam
data collection and accurate dosimetric measurements. It gives good knowledge to
the user for selecting a suitable dosimeter in small-field dosimetry through
investigation of different practical methods and Monte Carlo simulations.

Keywords: Monte Carlo simulation, radiotherapy physics, small-field dosimetry,
machine-specific reference field, cavity theory, output factors

1. Introduction

In the current state of external photon beam radiation therapy, the “small fields”
are generated by collimating the photon beam, flattened or unflattened. This is done
with the help of collimating system available on medical electron linear accelerators
(linacs), which includes secondary jaws, multi-leaf collimators (MLCs), tertiary
collimators, etc. [1]. The small photon beams differ from traditionally used
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In this chapter, a detailed study on physics and methodology of small field
dosimetry are reported. It introduces talking about how small radiation fields came
into existence and the importance of accurate small-field dosimetry. In addition, it
discusses small and long cavity theories for evaluating accurate dose response. It
sheds the spot on pencil beam algorithms for evaluating dose response and uses
Monte Carlo (MC) simulation in categorizing primary and scattering components
of the radiotherapeutic photon beam. Moreover, it summarizes all commercial
dosimeters used in small-field dosimetry. It gives good knowledge about detectors
and equipment like ionization chambers for reference dosimetry in small and non-
reference fields and different types of solid-state detector. The importance and
applications of Monte Carlo techniques in small-field dosimetry and radio-
therapeutic treatment methods based on small field are reported. For this purpose,
different commonly used Monte Carlo codes are handled like Electron Gamma
Shower (EGSnrc), Geant4, PENELOPE, and Monte Carlo N-Particle (MCNP). A
review on the recent studies of using Monte Carlo simulation particularly on the
small-field dosimetric studies is also reported. This chapter also discusses the rec-
ommendations of the code of practices (COPs) for dosimetry of small radiation
fields. It mentions all recommendations provided by TRS-483 for accurate beam
data collection and accurate dosimetric measurements. It gives good knowledge to
the user for selecting a suitable dosimeter in small-field dosimetry through
investigation of different practical methods and Monte Carlo simulations.

Keywords: Monte Carlo simulation, radiotherapy physics, small-field dosimetry,
machine-specific reference field, cavity theory, output factors

1. Introduction

In the current state of external photon beam radiation therapy, the “small fields”
are generated by collimating the photon beam, flattened or unflattened. This is done
with the help of collimating system available on medical electron linear accelerators
(linacs), which includes secondary jaws, multi-leaf collimators (MLCs), tertiary
collimators, etc. [1]. The small photon beams differ from traditionally used
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radiation fields (4 cm � 4 cm up to 40 cm � 40 cm) in terms of their size. Due to
their small size, the penumbra region generated from the edges of the fields overlap,
resulting in apparent field widening of the fields [2]. As a result the traditional
detectors used for dosimetry become large relative to the size of the field, and this
may lead to unintended errors while performing measurements for small field [3].

The widely accepted Code of Practices (COPs) reported in the Technical Reports
Series No.398 of IAEA have procedures to determine absorbed dose to water from
measurements made with an ionization chamber in photon, electron, proton, and
heavy-ion beams [4–7]. The ionization chambers are used to perform the measure-
ment using the calibration coefficients obtained from primary standard dosimetry
laboratories (PSDL) in terms of absorbed dose to water under reference conditions.
However, these COPs do not consider the conditions deviating from reference
conditions in detail [8].

As a result of technological improvements and introduction to new radiation
therapy techniques, the small static radiation beams are rapidly used, which is
achieved by using standard or add-on MLCs or by the design of the radiation
equipment. Consequently, the uncertainties related to the clinical dosimetry based
on traditionally used COPs have been considerably increasing, and errors related to
dosimetry have been growing larger. The main causes of this increase in the size of
dosimetric errors are that it is not possible to achieve the reference conditions as
recommended by traditional COPs on some radiation equipment and non-
standardization of dose measurement procedures in small and composite radiation
fields. Hence, many accidents have been reported that have occurred due to the use
of recommendations of traditional COPs in dosimetry of small fields [8, 9].

The dosimetry of small fields is quite important. The beam data once configured
during commissioning will be used for treatment in the future, so there should be
high accuracy in the dosimetry of these small fields. To achieve high accuracy in
beam data measurement in small fields and to be able to measure the dose in small
fields with high precision, it is quite important to understand the physical aspects of
the small fields. The measurement of output factors, beam profiles, and depth dose
data is highly influenced by the beam energy, scattering, and field dimensions at
the level of detector. The knowledge of the important characteristics of small fields is
required to measure the dose parameters and to collect data for treatment. Hence, in
2017 a joint working group from the International Atomic Energy Agency (IAEA)
and American Association of Physicists in Medicine (AAPM) proposed a new COP,
Technical Report Series (TRS) No. 483 (Dosimetry of Small Static Fields Used in
External Beam Radiotherapy). [9] This COP provides recommendations related to
the relative and reference dosimetry of small and composite fields. Hence, this chap-
ter discusses the concepts related to the dosimetry of small and composite field sizes.

2. Field size definition

In general, two types of field sizes have been defined by the International
Electrotechnical Commission. The first is called the geometric field size; it is defined
as two-dimensional projection by the source of radiation of the collimator opening
on a plane orthogonal to the central axis of the primary photon beam. The second is
called the irradiation field size; it is defined as the two-dimensional area bounded by
specific isodose lines in a plane orthogonal to the central axis of the radiation beam.
An alternative way to define irradiation field size is by using full width at half
maximum (FWHM) of radiation beam profiles obtained along the lateral direction
(in-line or crossline profiles) at isocenter depth. This FWHM is equal to the opening
of the collimating jaws at the isocenter. Therefore, at isocenter the geometrical and
irradiation fields are in consonance with each other. Hence, this agreement can be
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verified by FWHM measurement of the beam profile along the lateral direction.
However, in the small beam condition due to the partial blockage of primary source
of photon and reduction in the head scatter along the central axis, the output of
radiation is reduced. As a consequence the condition of lateral charged particle
equilibrium (LCPE) is not fulfilled. Hence, due to the reduction in the radiation
output along the central axis, the value of maximum dose also gets reduced, and
agreement between the geometrical and irradiation fields is lost. Figure 1 illustrates
the overlapping of penumbra region with decrease in field size, as it leads to
decrease in output and increase in penumbra width. Hence, the parameters like
FWHM breaks down for small-field sizes [3, 10]. In case of small beams due to the
overlap of penumbra region, the FWHM of the profile gets broader relative to the
collimator settings, and this effect is called apparent field widening.

2.1 Conditions of small beam

2.1.1 Definition of small field

Any radiation beam which fulfills at least one of the following conditions can be
named as small field:

i. The absence of LCPE along the central axis of the radiation field (see
Figure 1).

ii. The partial blockage of the radiation source by the collimating devices along
the central axis (see Figure 2).

iii. The detector size is equal to or larger than the size of the radiation beam (see
Figure 3).

Conditions I and II are related to the size of the radiation beam, whereas condi-
tion III refers to the size of the detector. If all the above mentioned conditions are
fulfilled, then the penumbra region overlaps with the volume of the detector.

Figure 1.
Schematic illustration of the definition of geometrical and irradiation field size using the concept of geometrical
projection and FWHM of radiation beam profile for both broad and small beam conditions: (a) for large
field sizes, where condition of LCPE is fulfilled and radiation source is not blocked, the full width at half
maximum (FWHM) of the lateral dose profiles is equal to the opening of the collimating jaws at the isocenter.
Hence, for large field sizes at isocenter, geometrical field size and irradiation field size are in agreement with
each other; (b) for the field sizes of the order of the range of secondary charged particles, the penumbra region
of opposite jaws. It results in small error in determining the field size from the FWHM of lateral beam profiles;
(c) however, for small field sizes due to the reduction in the radiation output along the central axis, the value of
maximum dose is reduced. Hence, the FWHM of lateral beam profile is pushed outward and agreement
between the geometrical and irradiation fields is lost.
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dosimetric errors are that it is not possible to achieve the reference conditions as
recommended by traditional COPs on some radiation equipment and non-
standardization of dose measurement procedures in small and composite radiation
fields. Hence, many accidents have been reported that have occurred due to the use
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high accuracy in the dosimetry of these small fields. To achieve high accuracy in
beam data measurement in small fields and to be able to measure the dose in small
fields with high precision, it is quite important to understand the physical aspects of
the small fields. The measurement of output factors, beam profiles, and depth dose
data is highly influenced by the beam energy, scattering, and field dimensions at
the level of detector. The knowledge of the important characteristics of small fields is
required to measure the dose parameters and to collect data for treatment. Hence, in
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and American Association of Physicists in Medicine (AAPM) proposed a new COP,
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External Beam Radiotherapy). [9] This COP provides recommendations related to
the relative and reference dosimetry of small and composite fields. Hence, this chap-
ter discusses the concepts related to the dosimetry of small and composite field sizes.

2. Field size definition

In general, two types of field sizes have been defined by the International
Electrotechnical Commission. The first is called the geometric field size; it is defined
as two-dimensional projection by the source of radiation of the collimator opening
on a plane orthogonal to the central axis of the primary photon beam. The second is
called the irradiation field size; it is defined as the two-dimensional area bounded by
specific isodose lines in a plane orthogonal to the central axis of the radiation beam.
An alternative way to define irradiation field size is by using full width at half
maximum (FWHM) of radiation beam profiles obtained along the lateral direction
(in-line or crossline profiles) at isocenter depth. This FWHM is equal to the opening
of the collimating jaws at the isocenter. Therefore, at isocenter the geometrical and
irradiation fields are in consonance with each other. Hence, this agreement can be
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verified by FWHM measurement of the beam profile along the lateral direction.
However, in the small beam condition due to the partial blockage of primary source
of photon and reduction in the head scatter along the central axis, the output of
radiation is reduced. As a consequence the condition of lateral charged particle
equilibrium (LCPE) is not fulfilled. Hence, due to the reduction in the radiation
output along the central axis, the value of maximum dose also gets reduced, and
agreement between the geometrical and irradiation fields is lost. Figure 1 illustrates
the overlapping of penumbra region with decrease in field size, as it leads to
decrease in output and increase in penumbra width. Hence, the parameters like
FWHM breaks down for small-field sizes [3, 10]. In case of small beams due to the
overlap of penumbra region, the FWHM of the profile gets broader relative to the
collimator settings, and this effect is called apparent field widening.

2.1 Conditions of small beam

2.1.1 Definition of small field

Any radiation beam which fulfills at least one of the following conditions can be
named as small field:

i. The absence of LCPE along the central axis of the radiation field (see
Figure 1).

ii. The partial blockage of the radiation source by the collimating devices along
the central axis (see Figure 2).

iii. The detector size is equal to or larger than the size of the radiation beam (see
Figure 3).

Conditions I and II are related to the size of the radiation beam, whereas condi-
tion III refers to the size of the detector. If all the above mentioned conditions are
fulfilled, then the penumbra region overlaps with the volume of the detector.

Figure 1.
Schematic illustration of the definition of geometrical and irradiation field size using the concept of geometrical
projection and FWHM of radiation beam profile for both broad and small beam conditions: (a) for large
field sizes, where condition of LCPE is fulfilled and radiation source is not blocked, the full width at half
maximum (FWHM) of the lateral dose profiles is equal to the opening of the collimating jaws at the isocenter.
Hence, for large field sizes at isocenter, geometrical field size and irradiation field size are in agreement with
each other; (b) for the field sizes of the order of the range of secondary charged particles, the penumbra region
of opposite jaws. It results in small error in determining the field size from the FWHM of lateral beam profiles;
(c) however, for small field sizes due to the reduction in the radiation output along the central axis, the value of
maximum dose is reduced. Hence, the FWHM of lateral beam profile is pushed outward and agreement
between the geometrical and irradiation fields is lost.
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2.1.1.1 Conditions based on field size

For the radiation beams with FWHM lesser than the maximum range of the
secondary electrons, the LCPE is absent. The absence of LCPE makes it difficult to
perform measurements for absorbed dose to water for detectors made of non-water
equivalent material. In order to find a relation between the size of the beam and
the size of the detector for which the LCPE exists, LCPE range (rLCPE) has been
proposed. rLCPE can be defined as the minimum radius of circular photon field for
which the ratio of collisional kerma in water and dose deposited in water is equal
to 1 at the center of the beam. Figure 2 illustrates the concept of LCPE, where the
ratio of collisional kerma in water and dose deposited in water are calculated using
Monte Carlo simulations at a depth of 5 cm along the central axis of the radiation
beam [11].

rLCPE (in cm) can be manifested as a function of beam quality of photon beam,
Tissue Phantom Ratio (TPR), TPR20,10(10):

ð1Þ

In the case of beam quality defined in terms of percentage depth dose at a depth
of 10 cm, %dd(10,10)x, rLCPE can be calculated using the correspondence between
%dd(10,10)x and TPR20,10(10) [12]:

ð2Þ

The second condition related to the partial blockage of the primary radiation
source is illustrated in Figure 3. It is based on the finite size of the extended focal
spot, which can be determined by FWHM measurement of bremsstrahlung spec-
trum emitted by the radiation source. The partial shielding of the radiation source
by the beam modifier, used for the definition of small beam, results in decrement of
radiation output along the central axis of the radiation beam relative to the
unshielded condition. The radiation beams with size equal to or less than the
FWHM of the emission spectra emitted from the source, the effect of partial occlu-
sion of radiation source becomes more dominant. Since the source size is generally

Figure 2.
The ratio of collisional kerma in water and absorbed dose in water at a depth of 5 cm. Source to surface distance
(SSD) of 80 cm is used for Co60 and SSD of 100 cm was used for photon beam. X axis represents the radius of
the beam and the Y axis represents the ratio of the quantities.
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less than 5 mm, as it can be observed from Figure 2, the loss of LCPE also starts for
radiation beams with a radius of 5 mm. Therefore, the partial blockage of radiation
source starts when loss of charge equilibrium starts [1]. The partial blockage of
radiation source results in a decrease in the beam output. Hence, result in the sharp
dose gradient, as a consequence of which the response of the detector is affected.

Therefore, the absence of LCPE and partial blockage of small beams of photon
radiation source is the main cause of the decrease in the radiation output along the
beam axis. This effect gets more dominant with increase in the energy of the
radiation beam and decrease in the density of the medium.

2.1.1.2 Conditions related to detector size

The last condition is related to the size of the detector relative to the size of the
radiation beam. The signal produced by the detector on irradiation is directly
proportional to the average of the deposited dose within the detector’s sensitive
volume. The signal obtained from the detector is responsive to the uniformity of
deposited radiation dose over the sensitive volume of the detector, also known as
volume averaging as illustrated in Figure 4 [13]. Hence, in order to obtain dose

Figure 4.
A schematic representation of volume averaging effect along the central axis of the beam. The Gaussian curve in
black represents the actual beam profile; the measured profile obtained using the detector (5 mm long) is given
represented by dashed line; the dimensions of the detector along the scanning axis is represented by double arrow;
the variation between the measured profile and Gaussian curve is given by dash-dotted line.

Figure 3.
A schematic illustration of the source occlusion effect.

43

Prospective Monte Carlo Simulation for Choosing High Efficient Detectors for Small-Field…
DOI: http://dx.doi.org/10.5772/intechopen.89150



2.1.1.1 Conditions based on field size

For the radiation beams with FWHM lesser than the maximum range of the
secondary electrons, the LCPE is absent. The absence of LCPE makes it difficult to
perform measurements for absorbed dose to water for detectors made of non-water
equivalent material. In order to find a relation between the size of the beam and
the size of the detector for which the LCPE exists, LCPE range (rLCPE) has been
proposed. rLCPE can be defined as the minimum radius of circular photon field for
which the ratio of collisional kerma in water and dose deposited in water is equal
to 1 at the center of the beam. Figure 2 illustrates the concept of LCPE, where the
ratio of collisional kerma in water and dose deposited in water are calculated using
Monte Carlo simulations at a depth of 5 cm along the central axis of the radiation
beam [11].

rLCPE (in cm) can be manifested as a function of beam quality of photon beam,
Tissue Phantom Ratio (TPR), TPR20,10(10):

ð1Þ

In the case of beam quality defined in terms of percentage depth dose at a depth
of 10 cm, %dd(10,10)x, rLCPE can be calculated using the correspondence between
%dd(10,10)x and TPR20,10(10) [12]:

ð2Þ

The second condition related to the partial blockage of the primary radiation
source is illustrated in Figure 3. It is based on the finite size of the extended focal
spot, which can be determined by FWHM measurement of bremsstrahlung spec-
trum emitted by the radiation source. The partial shielding of the radiation source
by the beam modifier, used for the definition of small beam, results in decrement of
radiation output along the central axis of the radiation beam relative to the
unshielded condition. The radiation beams with size equal to or less than the
FWHM of the emission spectra emitted from the source, the effect of partial occlu-
sion of radiation source becomes more dominant. Since the source size is generally

Figure 2.
The ratio of collisional kerma in water and absorbed dose in water at a depth of 5 cm. Source to surface distance
(SSD) of 80 cm is used for Co60 and SSD of 100 cm was used for photon beam. X axis represents the radius of
the beam and the Y axis represents the ratio of the quantities.

42

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

less than 5 mm, as it can be observed from Figure 2, the loss of LCPE also starts for
radiation beams with a radius of 5 mm. Therefore, the partial blockage of radiation
source starts when loss of charge equilibrium starts [1]. The partial blockage of
radiation source results in a decrease in the beam output. Hence, result in the sharp
dose gradient, as a consequence of which the response of the detector is affected.

Therefore, the absence of LCPE and partial blockage of small beams of photon
radiation source is the main cause of the decrease in the radiation output along the
beam axis. This effect gets more dominant with increase in the energy of the
radiation beam and decrease in the density of the medium.

2.1.1.2 Conditions related to detector size

The last condition is related to the size of the detector relative to the size of the
radiation beam. The signal produced by the detector on irradiation is directly
proportional to the average of the deposited dose within the detector’s sensitive
volume. The signal obtained from the detector is responsive to the uniformity of
deposited radiation dose over the sensitive volume of the detector, also known as
volume averaging as illustrated in Figure 4 [13]. Hence, in order to obtain dose
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deposited to the water from the signal produced by the detector, the correction
factor must be used for the volume averaging. It can be defined as a ratio of dose
deposited in water at the point of reference in the nonexistence of the detector to
the average of the dose deposited over the detection volume of the detector in the
nonexistence of the detector. It can be acquired by integrating the three-
dimensional distribution of dose over the detector’s sensitive volume [14–19].

The general expression that can be used in calculation of correction factor for
averaging of the signal over the detector’s sensitive volume is:

ð3Þ

where (x,y) are the positions of the points on the axis orthogonal to the beam
axis, A is the projected area of the detector’s sensitive volume in a plane perpendic-
ular to the central axis of the beam, OAR (x,y) gives the off-axis ratio at position
(x,y), and w(x) is the weighting function that represents extension of cavity of the
air-filled detector along the central axis (z) of the beam in relation to the lateral
coordinates of the beam (x and y).

The volume averaging effect and the disturbance caused by the existence of
detector to the fluence of the charged particles are two main effects observed in
small beam dose measurement. As discussed above, due to the presence of dose
gradients and absence of LCPE, the perturbation effect becomes dominant and
cannot be modeled easily. Along with this, the errors related to the averaging of the
detector signal along its volume become larger. Consequently, the dose gradients
and nonexistence of LCPE make it difficult to perform dosimetric measurements
for small beams.

The radiation fields, having the distance between the edges of the field and outer
surface of the detector volume less than the rLCPE within a medium, satisfy the small
beam condition. In order to prevent such condition and perform dosimetric mea-
surements accurately, the FWHM or the radius of the photon beammust be equal to
the sum of rLCPE and half of the detector’s outer volume.

2.2 The machine-specific reference field (fmsr)

For radiotherapy radiation emitters, where the reference beam size (fref) of
10 cm � 10 cm cannot be obtained, a new concept of machine-specific reference
(msr) field size has been proposed. The dimensions of the msr field (fmsr) should be
as close as possible to that of fref and must be at least equal to the sum of rLCPE and
half of the detector’s outer volume.

3. Detectors and equipment

3.1 Ionization chambers for reference dosimetry in small and non-reference
fields

An ideal air-filled detector to be used for measurement of dose deposited in
water must be equivalent to the water and not perturb the charged particle fluence;
its response must not be affected by dose rate or directional dependence; it must
show good sensitivity, in terms of signal to noise ratio and time taken to obtain the
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signal; the detector signal must be beam energy independent and directly propor-
tional to the dose deposited in water; and it must show minimum fluctuations,
leakage, and no effect of cable irradiation.

The detector size must be such that it fulfills rLCPE criteria. The positioning of
the air-filled detector must be such that the charged particle fluence remains
approximately uniform over the sensitive volume of the detector.

3.1.1 The square equivalent msr field (fmsr) greater than 6 cm � 6 cm

Modern radiotherapy linear accelerators are available in two general models,
that is, with flattening filter (WFF) and flattening filter free (FFF). For WFF
radiation emitters, air-filled detectors with sensitive volume range between 0.3 and
1 cm3, since these detectors are often water resistant and easy to use for in-phantom
measurements have negligible leakage effect and good signal to noise ratio [20]. In
the case of FFF radiation emitters, air-filled detectors with sensitive volume lying in
the range of 0.1–0.3 cm3 are preferred over the commonly used Farmer type air-
filled detectors [21]. In case the Farmer type air-filled detectors is used in FFF
beam, then the beam profiles must be corrected for their non-uniformity; the factor
for correction can be 1.5% for FFF photon beam of 6 MV [22, 23].

3.1.2 The square equivalent msr field (fmsr) less than 6 cm � 6 cm

A comparative study was performed by Le Roy et al. [24] using 24 small volume
air-filled detectors of 8 different types, to study the probability of their use in high-
energy photon beams for reference dosimetry, with beam size ranging down to
2 cm � 2 cm. The authors reported that out of eight different types of air-filled
detectors only three types of chambers were found suitable for small beam dosim-
etry, which includes CC04, CC01 models from IBA, and AISL from Exradin.

In case of very small circular msr fields as that of Gamma Knife machine having
the diameter of the radiation beam 1.6 or 1.8 cm. It is found that these fields exhibit
LCPE, rLCPE was found to be 0.6 cm for 60Co [25]. The chambers fulfilling the
condition of rLCPE in msr fields are suitable for use in these very small circular fields
for reference dosimetry.

The air-filled detectors with sensitive volume less than 0.3 cm3 and air cavity
length of 7 mm are preferred for dosimetric measurements for fmsr less than
6 cm� 6 cm. The criteria used for selection of detector volume and air cavity length
can be demonstrated by relating it with the size of the radiation beam and beam
energy. The detector with air cavity of 7 mm satisfies rLCPE condition for field sizes
down to 4 cm in 10 MV beam, down to 3 cm in 6 MV beam, and down to 2 cm for
Co60 radiation beam.

3.2 Different types of detectors for relative dosimetry in small radiation beams

The concept of relative dosimetry is based on the determination of various
dosimetric beam parameters, such as measurement of dose distribution with depth
along central axis of the beam, lateral beam profiles, etc. as a function of the size of
the radiation beam and its shape. The choice of appropriate detector is based on the
specific type of parameter being measured. Hence, two or more suitable detectors
of different kinds can be used to perform the same measurement to be sure about
the accuracy of measurements.

For the measurements of output factor, volume averaging effect, dependence on
the: size of the radiation beam; beam energy; dose rate; equivalence to water and
overall perturbation are the deciding factors to find the suitable detector for
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deposited to the water from the signal produced by the detector, the correction
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deposited in water at the point of reference in the nonexistence of the detector to
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nonexistence of the detector. It can be acquired by integrating the three-
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The general expression that can be used in calculation of correction factor for
averaging of the signal over the detector’s sensitive volume is:

ð3Þ
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gradients and absence of LCPE, the perturbation effect becomes dominant and
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and nonexistence of LCPE make it difficult to perform dosimetric measurements
for small beams.
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surface of the detector volume less than the rLCPE within a medium, satisfy the small
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For radiotherapy radiation emitters, where the reference beam size (fref) of
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(msr) field size has been proposed. The dimensions of the msr field (fmsr) should be
as close as possible to that of fref and must be at least equal to the sum of rLCPE and
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3.1 Ionization chambers for reference dosimetry in small and non-reference
fields

An ideal air-filled detector to be used for measurement of dose deposited in
water must be equivalent to the water and not perturb the charged particle fluence;
its response must not be affected by dose rate or directional dependence; it must
show good sensitivity, in terms of signal to noise ratio and time taken to obtain the
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signal; the detector signal must be beam energy independent and directly propor-
tional to the dose deposited in water; and it must show minimum fluctuations,
leakage, and no effect of cable irradiation.

The detector size must be such that it fulfills rLCPE criteria. The positioning of
the air-filled detector must be such that the charged particle fluence remains
approximately uniform over the sensitive volume of the detector.

3.1.1 The square equivalent msr field (fmsr) greater than 6 cm � 6 cm

Modern radiotherapy linear accelerators are available in two general models,
that is, with flattening filter (WFF) and flattening filter free (FFF). For WFF
radiation emitters, air-filled detectors with sensitive volume range between 0.3 and
1 cm3, since these detectors are often water resistant and easy to use for in-phantom
measurements have negligible leakage effect and good signal to noise ratio [20]. In
the case of FFF radiation emitters, air-filled detectors with sensitive volume lying in
the range of 0.1–0.3 cm3 are preferred over the commonly used Farmer type air-
filled detectors [21]. In case the Farmer type air-filled detectors is used in FFF
beam, then the beam profiles must be corrected for their non-uniformity; the factor
for correction can be 1.5% for FFF photon beam of 6 MV [22, 23].

3.1.2 The square equivalent msr field (fmsr) less than 6 cm � 6 cm

A comparative study was performed by Le Roy et al. [24] using 24 small volume
air-filled detectors of 8 different types, to study the probability of their use in high-
energy photon beams for reference dosimetry, with beam size ranging down to
2 cm � 2 cm. The authors reported that out of eight different types of air-filled
detectors only three types of chambers were found suitable for small beam dosim-
etry, which includes CC04, CC01 models from IBA, and AISL from Exradin.

In case of very small circular msr fields as that of Gamma Knife machine having
the diameter of the radiation beam 1.6 or 1.8 cm. It is found that these fields exhibit
LCPE, rLCPE was found to be 0.6 cm for 60Co [25]. The chambers fulfilling the
condition of rLCPE in msr fields are suitable for use in these very small circular fields
for reference dosimetry.

The air-filled detectors with sensitive volume less than 0.3 cm3 and air cavity
length of 7 mm are preferred for dosimetric measurements for fmsr less than
6 cm� 6 cm. The criteria used for selection of detector volume and air cavity length
can be demonstrated by relating it with the size of the radiation beam and beam
energy. The detector with air cavity of 7 mm satisfies rLCPE condition for field sizes
down to 4 cm in 10 MV beam, down to 3 cm in 6 MV beam, and down to 2 cm for
Co60 radiation beam.

3.2 Different types of detectors for relative dosimetry in small radiation beams

The concept of relative dosimetry is based on the determination of various
dosimetric beam parameters, such as measurement of dose distribution with depth
along central axis of the beam, lateral beam profiles, etc. as a function of the size of
the radiation beam and its shape. The choice of appropriate detector is based on the
specific type of parameter being measured. Hence, two or more suitable detectors
of different kinds can be used to perform the same measurement to be sure about
the accuracy of measurements.

For the measurements of output factor, volume averaging effect, dependence on
the: size of the radiation beam; beam energy; dose rate; equivalence to water and
overall perturbation are the deciding factors to find the suitable detector for
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measurements. However, in case of beam profile measurements, the detectors with
high spatial resolution, direction-independent response, dose-rate independence,
and suitable volume are preferred. Since the selection of detector with suitable
volume makes it possible to measure penumbra region accurately, uniformity in
directional response may result in accurate measurement of beam profiles; dose rate
independence is also important for accurate measurement of beam profiles. Other-
wise, correction factors are required for each of these effects for accurate measure-
ment. As in the case of dose-rate dependence, correction factor needs to be applied
in case of FFF beams, as these beams have high dose rate per pulse in the center
of the beam in comparison to the edges. Otherwise it may lead to overestimation
in the region of beam with high dose rate.

There is no ideal detector available for relative dosimetry of small beams. A
number of detectors that can be used for relative dosimetry have been described in
literature, and each of these detectors has been discussed briefly below:

• Small air-vented ionization chambers: These detectors are also known as
minichambers or pinpoint chambers. The sensitive volume of these detectors
ranges from 0.001 to 0.3 cm3. These can be used for measurements in radiation
beams with size down to 2 cm � 2 cm [24, 26]. These detectors are dose-rate
independent and have uniform response in all directions and appropriate
response for photons of low energy.

• Micro-ionization chambers: Also known as microchambers. The sensitive
volume of these detectors ranges from 0.002 to 0.01 cm3. These detectors have
small volume averaging effect, and sensitivity is also reduced due to small
sensitive volume.

• Liquid ionization chambers (LICs): These chambers are filled with dielectric
liquids, which results in higher chamber signal per detector volume than air-
filled ionization chambers, due to the higher density of liquid than air. The
chambers are almost water equivalent; hence the chamber perturbation effect
is reduced. However, the chambers are dose-rate dependent because of its large
recombination effect.

• Silicon diodes: The sensitive volume of these detectors is less than 0.2 mm3.
These detectors exhibit angular dependency because of its construction and
material composition and small volume averaging effect. The axis of symmetry
of these detectors must be placed on the central axis of the beam. These
detectors exhibit over-response in the case of low-energy photons due to the
non-water equivalence. For small beam measurement, the use of unshielded
diodes is preferred over the use of shielded diodes, and for field sizes below
1 cm, output correction factors are needed to be applied [26–30]. For very
small beam size measurements, stereotactic diodes can be utilized. The
sensitivity of these detectors depends on the accumulated dose, and they have
limited lifetime. Therefore, time-to-time checking for constancy of relative
response must be performed.

• Diamond detectors: These detectors exhibit high sensitivity, energy
independence, and uniform response in all directions [31]. However, having
dose-rate dependence and substantial pre-irradiation are required. The natural
diamond detectors have been replaced by the artificial chemical vapor
deposition (CVD) diamonds [32–34]. The bias voltage is not required for these
detectors while using them for dosimetric measurements [35, 36]. However,
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due to the difference in mass density relative to water, output correction
factors are required when these detectors are used in field sizes below
1 cm [37].

• Plastic and organic scintillators: In these detectors light is produced in the
scintillator when it is exposed to radiation. These detectors are almost energy
independent, equivalent to water in terms of mass energy coefficient and
electron density, and exhibit linear response for measurement of dose
deposition in water [14, 19, 38–40]. Hence, these detectors can be directly used
to determine the dose deposited. The corrections are needed to be applied for
the production of Cerenkov light in optical fiber, which is used to transport the
signals outside the treatment room. Different methods such as the use of
hollow core fibers or the use of spectral filtration had been proposed to correct
it [41]. Exradin W1 was found to be the only commercially available plastic
scintillator.

• Radiochromic film dosimetry: Radiochromic films are the detectors with superior
dimensional resolution. These are self-developing films and do not need
chemical processing for development [42]. In case of high-energy photon
beams, the radiochromic films are almost equivalent to tissue, resistant to
water, and nearly energy independent [42, 43]. These films can be read with
the help of suitable flatbed scanner. Before reading the films, it must be
calibrated in terms of dose deposited in water, the spatial non-uniformity in
the response of film must be carefully considered, and the response of the
scanner and effect of orientation of film on the signal must be considered and
should be corrected [44]. The radiochromic film can be used for measurements
of lateral beam profiles, penumbra region, and field output factors.

• Thermoluminescent dosimeters (TLDs): TLDs are available in the form of
powder, chips, microchips, rods, and ribbon. The most commonly used TLD
material is LiF:Mg,Ti. In order to determine the dose deposited in water from
the reading of thermoluminescence response, correction factors must be
applied for non-linear relationship with the signal and dose deposited and also
fading of the signal and energy correction. In order to accurately perform
measurements in small beams of photon, careful handling and control of
procedures are required to obtain measurement uncertainty within 2% or
better [19].

• Optically stimulated luminescence detectors (OSLDs): The linearity in response,
dependence on beam energy, and dependence on dose rate are similar to that
of TLDs. OSLDs are generally composed of Al2O3:C and are available in the
form of rods, chips, and nano-dots. The principle used in measurement of dose
is similar to that of TLDs. In OSLD system, laser light is used to eject the energy
trapped as luminescence. They can be used both as passive dosimeters and
online readout system by connecting them with laser-based readout system
and optical fiber.

• Radiophotoluminescent (RPL) dosimeters: These are solid-state dosimeters (SSD)
based on the principle of radiophotoluminescence. They are accumulation type
dosimeters and use silver activated phosphate glass for the measurement to
absorbed dose. RPL dosimeters are generally available in the form of glass rods.
When this silver-activated glass rod is exposed to radiation, it resulted in
formation of stable luminescence centers in silver ions. They can be read using
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measurements. However, in case of beam profile measurements, the detectors with
high spatial resolution, direction-independent response, dose-rate independence,
and suitable volume are preferred. Since the selection of detector with suitable
volume makes it possible to measure penumbra region accurately, uniformity in
directional response may result in accurate measurement of beam profiles; dose rate
independence is also important for accurate measurement of beam profiles. Other-
wise, correction factors are required for each of these effects for accurate measure-
ment. As in the case of dose-rate dependence, correction factor needs to be applied
in case of FFF beams, as these beams have high dose rate per pulse in the center
of the beam in comparison to the edges. Otherwise it may lead to overestimation
in the region of beam with high dose rate.

There is no ideal detector available for relative dosimetry of small beams. A
number of detectors that can be used for relative dosimetry have been described in
literature, and each of these detectors has been discussed briefly below:

• Small air-vented ionization chambers: These detectors are also known as
minichambers or pinpoint chambers. The sensitive volume of these detectors
ranges from 0.001 to 0.3 cm3. These can be used for measurements in radiation
beams with size down to 2 cm � 2 cm [24, 26]. These detectors are dose-rate
independent and have uniform response in all directions and appropriate
response for photons of low energy.

• Micro-ionization chambers: Also known as microchambers. The sensitive
volume of these detectors ranges from 0.002 to 0.01 cm3. These detectors have
small volume averaging effect, and sensitivity is also reduced due to small
sensitive volume.

• Liquid ionization chambers (LICs): These chambers are filled with dielectric
liquids, which results in higher chamber signal per detector volume than air-
filled ionization chambers, due to the higher density of liquid than air. The
chambers are almost water equivalent; hence the chamber perturbation effect
is reduced. However, the chambers are dose-rate dependent because of its large
recombination effect.

• Silicon diodes: The sensitive volume of these detectors is less than 0.2 mm3.
These detectors exhibit angular dependency because of its construction and
material composition and small volume averaging effect. The axis of symmetry
of these detectors must be placed on the central axis of the beam. These
detectors exhibit over-response in the case of low-energy photons due to the
non-water equivalence. For small beam measurement, the use of unshielded
diodes is preferred over the use of shielded diodes, and for field sizes below
1 cm, output correction factors are needed to be applied [26–30]. For very
small beam size measurements, stereotactic diodes can be utilized. The
sensitivity of these detectors depends on the accumulated dose, and they have
limited lifetime. Therefore, time-to-time checking for constancy of relative
response must be performed.

• Diamond detectors: These detectors exhibit high sensitivity, energy
independence, and uniform response in all directions [31]. However, having
dose-rate dependence and substantial pre-irradiation are required. The natural
diamond detectors have been replaced by the artificial chemical vapor
deposition (CVD) diamonds [32–34]. The bias voltage is not required for these
detectors while using them for dosimetric measurements [35, 36]. However,
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due to the difference in mass density relative to water, output correction
factors are required when these detectors are used in field sizes below
1 cm [37].

• Plastic and organic scintillators: In these detectors light is produced in the
scintillator when it is exposed to radiation. These detectors are almost energy
independent, equivalent to water in terms of mass energy coefficient and
electron density, and exhibit linear response for measurement of dose
deposition in water [14, 19, 38–40]. Hence, these detectors can be directly used
to determine the dose deposited. The corrections are needed to be applied for
the production of Cerenkov light in optical fiber, which is used to transport the
signals outside the treatment room. Different methods such as the use of
hollow core fibers or the use of spectral filtration had been proposed to correct
it [41]. Exradin W1 was found to be the only commercially available plastic
scintillator.

• Radiochromic film dosimetry: Radiochromic films are the detectors with superior
dimensional resolution. These are self-developing films and do not need
chemical processing for development [42]. In case of high-energy photon
beams, the radiochromic films are almost equivalent to tissue, resistant to
water, and nearly energy independent [42, 43]. These films can be read with
the help of suitable flatbed scanner. Before reading the films, it must be
calibrated in terms of dose deposited in water, the spatial non-uniformity in
the response of film must be carefully considered, and the response of the
scanner and effect of orientation of film on the signal must be considered and
should be corrected [44]. The radiochromic film can be used for measurements
of lateral beam profiles, penumbra region, and field output factors.

• Thermoluminescent dosimeters (TLDs): TLDs are available in the form of
powder, chips, microchips, rods, and ribbon. The most commonly used TLD
material is LiF:Mg,Ti. In order to determine the dose deposited in water from
the reading of thermoluminescence response, correction factors must be
applied for non-linear relationship with the signal and dose deposited and also
fading of the signal and energy correction. In order to accurately perform
measurements in small beams of photon, careful handling and control of
procedures are required to obtain measurement uncertainty within 2% or
better [19].

• Optically stimulated luminescence detectors (OSLDs): The linearity in response,
dependence on beam energy, and dependence on dose rate are similar to that
of TLDs. OSLDs are generally composed of Al2O3:C and are available in the
form of rods, chips, and nano-dots. The principle used in measurement of dose
is similar to that of TLDs. In OSLD system, laser light is used to eject the energy
trapped as luminescence. They can be used both as passive dosimeters and
online readout system by connecting them with laser-based readout system
and optical fiber.

• Radiophotoluminescent (RPL) dosimeters: These are solid-state dosimeters (SSD)
based on the principle of radiophotoluminescence. They are accumulation type
dosimeters and use silver activated phosphate glass for the measurement to
absorbed dose. RPL dosimeters are generally available in the form of glass rods.
When this silver-activated glass rod is exposed to radiation, it resulted in
formation of stable luminescence centers in silver ions. They can be read using
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the technique of pulsed ultraviolet laser excitation. RPL dosimeters exhibit
linear response, flat energy response in the energy range of keV and MeV, good
reproducibility, good spatial resolution, and negligible fading of signal [45, 46].

• Alanine: Its macroscopic interaction coefficients and density are close to that of
water. The exhibit volume averaging effect because of its large size, low
sensitivity, and high doses of radiation is needed to be delivered to obtain
reproducibility of less than 0.5%.

3.3 Solid-state dosimeters and dose response compensation in external
radiotherapy

This section shed light on describing the dosimetric response of solid-state
dosimeters that are used for the dose measurement of external radiotherapy. Two
approaches are presented for this purpose. The first approach, implementation of
empirical method approach that considers the radiation beam, is separated into two
components: primary and scattered beams. The spectral variation of radio-
therapeutic beam is evaluated by their contribution in the dose to the medium that
contains the region of interest. Solid-state dosimeters of high-density materials have
an over-response issue that is commonly used in large and small fields. Hence,
compensation factor should be calculated based on beam parameters such as
energy, field size, depth, and other irradiation parameters. Dealing with over-
response issue is not an easy task; however, it generates a significant improvement
in accuracy in dose measurements over non-compensated measurements.

The second approach is to implement a compensation method based on a mod-
ified cavity theory. In this method, dose response of solid-state dosimeter is
described considering the local spectrum and monoenergetic response. The local
spectrum could be obtained by convolution method of pencil beam kernels using a
pre-evaluated database that considers different separated types of particles
according to their history of interaction (primary photon and electron and second-
ary photons and electrons). On the other hand, monoenergetic response of solid-
state dosimeter could be calculated using the Monte Carlo simulation using differ-
ent codes like PENELOPE [47, 48]. The accuracy of compensation methods should
be evaluated by comparing simulated data with the corresponding measurements.
This approach could be applied in situations where there is no lateral electron
equilibrium compared to the previous method of compensation. Since the compen-
sation accuracy depends on the local reconstructed spectrum, it is possible to
implement this process in more complex irradiation conditions such as small fields.
However, this method requires specific information such as the field size, beam
quality, and detector position. Yet using two dosimeters whose materials in the
sensitive volume are different can be instead used without considering beam infor-
mation and enough to evaluate over-response correction.

3.3.1 The first approach: primer-released contribution separation

Cunningham [49] proposed a method for separation of primary beam compo-
nent out of beam spectrum through dose calculation technique for irregular fields.
He assumed that dosimeter placement does not introduce any local spectral distur-
bance in the volume of interest and the difference of dose response between solid-
state dosimeter and water depends on the material difference and the ionization
spectrum. The primary component of the spectrum photon beam is dependent on
the design of the collimation system, for example, the primary collimator and
flattening filter [50]. Accordingly, the difference between dosimetric response of
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solid-state dosimeter and water is due to the primary component of the beam that
remains almost invariant for the given beam quality and does not depend on the
volume. On the other hand, the scattered component of the photon beam depends
largely on the volume surrounding it; therefore, it depends on dosimeter depth,
irradiated field size, etc. Hence, it is convenient to calculate the difference of the
response caused by these two components separately and additively combine the
two parts at the end of the calculation. To quantify the response rate provided by
the primary and scattered components, a scattered factor (SF) could be introduced,
defined as follows:

SFw ¼ Dsc
w

Dpr
w

(4)

SFSSD ¼ Dsc
SSD

Dpr
SSD

(5)

where Dsc
w and Dpr

w correspond to the dose contributions in water by primary and
scattered components of photon beam, respectively. A scattered factor of solid-state
dosimeter may be defined in the same manner, as shown in Eq. (5). The scattered
factor is dependent on the field size and depth position of the dosimeter.

The total dose of water Dwð Þ or SSD (DSSD) is the sum of the two
components, primary and scattered. This can be expressed in terms of scatter
factor as follows:

Dw ¼ Dpr
w 1þ SFwð Þ (6)

DSSD ¼ Dpr
SSD 1þ SFSSDð Þ (7)

The response factor (RF) of SSD dose to water ratio is defined as:

RFSSD
w ¼ DSSD

Dw
(8)

Therefore, the dose response of SSD could be corrected and applied to all SSD
measurement by the evaluation of RFSSD

w before the measurement implementation.
Eq. (8) can also be expressed in terms of scattered factor, combining Eqs. (6)
and (7):

RFSSD
w ¼ Dpr

SSD 1þ SFSSDð Þ
Dpr

w 1þ SFwð Þ (9)

In this way, expressing the response factor to fulfill the following objectives: The
ratio between the primary dose of SSD to the dose of water (Dpr

SSD=D
pr
w ) can be

considered relatively stable, because once the charged-particle equilibrium (CPE) is
established, the local spectra of the primary electrons and photons remain invariant
which are independent of irradiation condition variations. Therefore, the RFSSD

w
variation is due to the difference of the scattered component of both water and SSD.
As a result, RFSSD

w depends on the determination of the primary dose ratios and
scattered factors (SFSSD, SFw). However, it could not be easy to evaluate the
primary and scattered doses separately in experiments, especially for high-energetic
photons, because it needs massive buildup of material, which is necessary to achieve
CPE to introduce significant attenuation and wide contribution [51]. Nevertheless,
the response factor could be evaluated in a small field where CPE is still achieved. So
in small-field dosimetry, the evaluated RFSSD

w is close to the Dpr
SSD=D

pr
w since the main
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the technique of pulsed ultraviolet laser excitation. RPL dosimeters exhibit
linear response, flat energy response in the energy range of keV and MeV, good
reproducibility, good spatial resolution, and negligible fading of signal [45, 46].

• Alanine: Its macroscopic interaction coefficients and density are close to that of
water. The exhibit volume averaging effect because of its large size, low
sensitivity, and high doses of radiation is needed to be delivered to obtain
reproducibility of less than 0.5%.

3.3 Solid-state dosimeters and dose response compensation in external
radiotherapy

This section shed light on describing the dosimetric response of solid-state
dosimeters that are used for the dose measurement of external radiotherapy. Two
approaches are presented for this purpose. The first approach, implementation of
empirical method approach that considers the radiation beam, is separated into two
components: primary and scattered beams. The spectral variation of radio-
therapeutic beam is evaluated by their contribution in the dose to the medium that
contains the region of interest. Solid-state dosimeters of high-density materials have
an over-response issue that is commonly used in large and small fields. Hence,
compensation factor should be calculated based on beam parameters such as
energy, field size, depth, and other irradiation parameters. Dealing with over-
response issue is not an easy task; however, it generates a significant improvement
in accuracy in dose measurements over non-compensated measurements.

The second approach is to implement a compensation method based on a mod-
ified cavity theory. In this method, dose response of solid-state dosimeter is
described considering the local spectrum and monoenergetic response. The local
spectrum could be obtained by convolution method of pencil beam kernels using a
pre-evaluated database that considers different separated types of particles
according to their history of interaction (primary photon and electron and second-
ary photons and electrons). On the other hand, monoenergetic response of solid-
state dosimeter could be calculated using the Monte Carlo simulation using differ-
ent codes like PENELOPE [47, 48]. The accuracy of compensation methods should
be evaluated by comparing simulated data with the corresponding measurements.
This approach could be applied in situations where there is no lateral electron
equilibrium compared to the previous method of compensation. Since the compen-
sation accuracy depends on the local reconstructed spectrum, it is possible to
implement this process in more complex irradiation conditions such as small fields.
However, this method requires specific information such as the field size, beam
quality, and detector position. Yet using two dosimeters whose materials in the
sensitive volume are different can be instead used without considering beam infor-
mation and enough to evaluate over-response correction.

3.3.1 The first approach: primer-released contribution separation

Cunningham [49] proposed a method for separation of primary beam compo-
nent out of beam spectrum through dose calculation technique for irregular fields.
He assumed that dosimeter placement does not introduce any local spectral distur-
bance in the volume of interest and the difference of dose response between solid-
state dosimeter and water depends on the material difference and the ionization
spectrum. The primary component of the spectrum photon beam is dependent on
the design of the collimation system, for example, the primary collimator and
flattening filter [50]. Accordingly, the difference between dosimetric response of
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solid-state dosimeter and water is due to the primary component of the beam that
remains almost invariant for the given beam quality and does not depend on the
volume. On the other hand, the scattered component of the photon beam depends
largely on the volume surrounding it; therefore, it depends on dosimeter depth,
irradiated field size, etc. Hence, it is convenient to calculate the difference of the
response caused by these two components separately and additively combine the
two parts at the end of the calculation. To quantify the response rate provided by
the primary and scattered components, a scattered factor (SF) could be introduced,
defined as follows:

SFw ¼ Dsc
w

Dpr
w

(4)

SFSSD ¼ Dsc
SSD

Dpr
SSD

(5)

where Dsc
w and Dpr

w correspond to the dose contributions in water by primary and
scattered components of photon beam, respectively. A scattered factor of solid-state
dosimeter may be defined in the same manner, as shown in Eq. (5). The scattered
factor is dependent on the field size and depth position of the dosimeter.

The total dose of water Dwð Þ or SSD (DSSD) is the sum of the two
components, primary and scattered. This can be expressed in terms of scatter
factor as follows:

Dw ¼ Dpr
w 1þ SFwð Þ (6)

DSSD ¼ Dpr
SSD 1þ SFSSDð Þ (7)

The response factor (RF) of SSD dose to water ratio is defined as:

RFSSD
w ¼ DSSD

Dw
(8)

Therefore, the dose response of SSD could be corrected and applied to all SSD
measurement by the evaluation of RFSSD

w before the measurement implementation.
Eq. (8) can also be expressed in terms of scattered factor, combining Eqs. (6)
and (7):

RFSSD
w ¼ Dpr

SSD 1þ SFSSDð Þ
Dpr

w 1þ SFwð Þ (9)

In this way, expressing the response factor to fulfill the following objectives: The
ratio between the primary dose of SSD to the dose of water (Dpr

SSD=D
pr
w ) can be

considered relatively stable, because once the charged-particle equilibrium (CPE) is
established, the local spectra of the primary electrons and photons remain invariant
which are independent of irradiation condition variations. Therefore, the RFSSD

w
variation is due to the difference of the scattered component of both water and SSD.
As a result, RFSSD

w depends on the determination of the primary dose ratios and
scattered factors (SFSSD, SFw). However, it could not be easy to evaluate the
primary and scattered doses separately in experiments, especially for high-energetic
photons, because it needs massive buildup of material, which is necessary to achieve
CPE to introduce significant attenuation and wide contribution [51]. Nevertheless,
the response factor could be evaluated in a small field where CPE is still achieved. So
in small-field dosimetry, the evaluated RFSSD

w is close to the Dpr
SSD=D

pr
w since the main
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primary contribution component is dominant. Rewriting Eq. (9) for the last condi-
tion of small-field irradiation as reference condition to the following equation:

RFSSD
w ¼ Dref

SSD 1þ γSSDð Þ
Dref

w 1þ γwð Þ (10)

where Dref
SSD=D

ref
w is the dose–response factor of SSD to the water in the reference

condition (small field). γSSD andγw are introduced instead of SFSSD and SFw in
Eq. (9), respectively, and could be written as follows:

γSSD ¼ DSSD

Dref
SSD

� 1 (11)

γw ¼ Dw

Dref
w

� 1 (12)

where DSSD and Dw correspond to the dose response of SSD and water in an
arbitrary requirement. Both factors are used to describe primary component varia-
tion with respect to the scattering component in the reference condition. To calcu-
late the response factor by interpolation or extrapolation, measure both the dose in
water by ionization chamber and in SSD to establish a response factor table. So in
experimental measurement setup as illustrated in Figure 5, choosing small-field
area to be a reference condition that avoids scattering component for dose response
of SSD. PMMA sheets could be arranged around the solid-state dosimeter to estab-
lish homogenous tissue equivalent material. Mentioning that, at least 10 cm thick-
ness of PMMA should be placed below the detector to create a homogeneous
volume for the backscattered radiation. However, the measurement of the dose at a
reference point in water phantom is established by ionization chamber. In small-
field dosimetry beyond the buildup region, the relative difference of dose response
between SSD and ionization chamber in water should be minimum, as low as
possible as the result of the stability of primary component of radiation. Therefore,
it is easy to explore the scattering factors in a large field. On the other hand, the

Figure 5.
Geometrical configuration.
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spectral variation between SSD and ionization chamber is also affected by the depth
of dosimeter. γSSD and γw could be evaluated from representing normalized maxi-
mum dose ratio or percentage depth dose for both dosimeters.

The relationship between γSSD and γw in small-field sizes may be linear due to
the main contribution primary component. But the response factor linearity allows
us to separate two sources that vary the local spectrum at the position of the
detector: The size of the square field (A) and depth (z). Therefore, the response
factor can be modeled by:

RFSSD ¼ 1þ k zð Þ � A� Aref
� �

(13)

where the factor k(z) is a function of depth and Aref corresponds to the size of
the reference field (small-field size). Modeling of k(z) could be established from the
slopes of plotted RFSSD Að Þ against the depth.

The previous characterization method of RFSSD can be applied for a series of
square field sizes with orthogonal collimators. However, in the case of irregular or
circular fields, it must be expressed in terms of an equivalent square field for the
interpolation. The method of equivalent square field is a simple empirical method
for calculating the dose of irregular field size [52]. There are several ways to calcu-
late the equivalent square field according to the literature: Equivalent tables for
rectangular fields [53], sum of the small rectangles [54], and Clarkson integration of
[55, 56]. Sterling’s formula [57] can be used to calculate the equivalent square fields
of the two rectangular fields:

ESQ ¼ 2WL
W þ Lð Þ (14)

where ESQ is the side length of the equivalent square field, W is the width of the
rectangle, and L is the length of the rectangle.

This method of empirical compensation consists primarily of establishing a
response correction factors table by the experimental approach. It is based on the
separation of primary and scattering contribution parts of photons and electrons in
the beam. However, the primary contribution part to the SSD cannot be evaluated
through the measurement in the air as the local spectral variation in the air with
respect to that in the water causes a large SSD response difference. Therefore, an
arbitrary square field should be selected as a reference field for a given energetic
beam. In this reference field, the maximum tissue ratio of SSD is compared with
that measured of water by ionization chamber. Although it is possible to apply this
method of compensation in irregular fields, it is difficult to implement it in more
complex fields such as IMRT or non-rectangular fields, because this method
requires a lot of effort for measuring, adjustments, and approximations that could
be uneasy in more complex fields.

3.3.2 Cavity theory approach

The cavity theory was originally developed to convert the absorbed dose in the
ionization chamber to the absorbed dose in the medium of interest [58]. When the
measurement is performed with a solid-state dosimeter, the material of the detec-
tor, in general, is different from that of the medium in which it is introduced. If we
consider the detector as a cavity introduced into the uniform medium of interest,
the absorbed dose in the detector Ddet is different with respect to the absorbed dose
in the medium at this position in the absence of the detector, Dmed. The main
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primary contribution component is dominant. Rewriting Eq. (9) for the last condi-
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w ¼ Dref
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Dref

w 1þ γwð Þ (10)
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γSSD ¼ DSSD

Dref
SSD

� 1 (11)

γw ¼ Dw

Dref
w

� 1 (12)
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Figure 5.
Geometrical configuration.
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spectral variation between SSD and ionization chamber is also affected by the depth
of dosimeter. γSSD and γw could be evaluated from representing normalized maxi-
mum dose ratio or percentage depth dose for both dosimeters.

The relationship between γSSD and γw in small-field sizes may be linear due to
the main contribution primary component. But the response factor linearity allows
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factor can be modeled by:

RFSSD ¼ 1þ k zð Þ � A� Aref
� �

(13)

where the factor k(z) is a function of depth and Aref corresponds to the size of
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be uneasy in more complex fields.

3.3.2 Cavity theory approach

The cavity theory was originally developed to convert the absorbed dose in the
ionization chamber to the absorbed dose in the medium of interest [58]. When the
measurement is performed with a solid-state dosimeter, the material of the detec-
tor, in general, is different from that of the medium in which it is introduced. If we
consider the detector as a cavity introduced into the uniform medium of interest,
the absorbed dose in the detector Ddet is different with respect to the absorbed dose
in the medium at this position in the absence of the detector, Dmed. The main
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objective of the cavity theory is to determine the response factor RFQ , given by
Eq. (15):

RFQ ¼ Ddet

Dmed

� �

Q
(15)

where Q corresponds to a given beam quality. Figure 6 illustrates the schematic
application of cavity theory to convert detector absorbed dose for a given beam
quality to the dose in the medium of interest by RFQ [59].

There are two possible cavities where RFQ could be derived, the large cavity and
small cavity. The terms “small and large” refer to the size of the cavity relative to
the bearing surfaces of secondary particles, i.e., the electrons and positrons.

3.3.3 Small cavity theory (SCT)

Small cavity theory is also referred to as Bragg-Gray cavity theory. First, William
Bragg proposed it then Louis Harold Gray completed it [60]. Bragg-Gray proposed
two conditions: (a) Cavity size should be small enough compared to the range of the
charged particles inside the irradiated volume. So that, the fluence of charged
particles and local fluence are not disturbed by the presence of the cavity in the
middle (see Figure 7). (b) The absorbed dose in the cavity is completely deposited
by charged particles which pass through the cavity.

The realization of the first condition ensures that the local influence is invariant,
with or without the existence of this detector is to say Φdet Eð Þ ¼ Φmed Eð Þ. The

Figure 6.
Application of the cavity theory: The detector’s absorbed dose for a given beam quality converted to the dose in
the medium of interest by RFQ [11].
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second condition ensures that the dosimetric contribution from the photon is
negligible. This is a valid condition for high-energy photon beams in most situations
[61]. Under these conditions, Dmed is related to Ddet as:

Ddet

Dmed
¼
Ð Emax

0 Φmed Eð Þ Scol Eð Þ=ρð ÞdetdEÐ Emax

0 Φmed Eð Þ Scol Eð Þ=ρð ÞmeddE
(16)

where scol Eð Þ=ρð Þdet and scol Eð Þ=ρð Þmed are collision stopping power of the detector
and the medium, respectively, and Emax is the maximum energy in the spectrum of
ionization chamber fluence.

Secondary particles (delta rays) are considered prerequisite to assess the dose by
the stopping power that reaches a balance in the cavity. Another way to express this
requirement is that the electron is considered to lose energy in the continuous
slowdown cavity. However, it could generate high-energy secondary electrons by
hard collisions in the cavity. These secondary electrons will come out of the cavity,
and thus the delta ray balance is no longer valid. To take into account the effects of
delta rays in an approximate way, Spencer and Attix proposed an extension of the
cavity of theory [62]. Spencer-Attix theory considered the separation of electron
particles into two parts: The fast electrons with an energy greater than a threshold
(Δ) and slow electrons with energy below the threshold. Slow electrons are consid-
ered to deposit the energy locally inside the cavity, while the fast electrons are
considered completely capable of crossing the cavity. The dose contribution by fast
electrons is estimated by the restricted stopping power, LΔ=ρ Eð Þ. The restricted
stopping power is defined as the stopping power limited to lose energy below the
threshold energy (Δ). The total dose in the cavity can be written as:

D ¼
ðEmax

Δ
Φ Eð Þ LΔ Eð Þ

ρ

� �
dEþ E:T:ð Þ (17)

The first term on the right side of Eq. (17) corresponds to the dose deposited by
fast electrons, and the second term takes into account the dose deposited by slow
electrons, often termed as end track term (ET) suggested by Nahum [63] to esti-
mate the contribution of slow electrons:

Figure 7.
A schematic illustration of small cavity behavior under high energetic photon irradiation.
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second condition ensures that the dosimetric contribution from the photon is
negligible. This is a valid condition for high-energy photon beams in most situations
[61]. Under these conditions, Dmed is related to Ddet as:

Ddet

Dmed
¼
Ð Emax

0 Φmed Eð Þ Scol Eð Þ=ρð ÞdetdEÐ Emax

0 Φmed Eð Þ Scol Eð Þ=ρð ÞmeddE
(16)

where scol Eð Þ=ρð Þdet and scol Eð Þ=ρð Þmed are collision stopping power of the detector
and the medium, respectively, and Emax is the maximum energy in the spectrum of
ionization chamber fluence.

Secondary particles (delta rays) are considered prerequisite to assess the dose by
the stopping power that reaches a balance in the cavity. Another way to express this
requirement is that the electron is considered to lose energy in the continuous
slowdown cavity. However, it could generate high-energy secondary electrons by
hard collisions in the cavity. These secondary electrons will come out of the cavity,
and thus the delta ray balance is no longer valid. To take into account the effects of
delta rays in an approximate way, Spencer and Attix proposed an extension of the
cavity of theory [62]. Spencer-Attix theory considered the separation of electron
particles into two parts: The fast electrons with an energy greater than a threshold
(Δ) and slow electrons with energy below the threshold. Slow electrons are consid-
ered to deposit the energy locally inside the cavity, while the fast electrons are
considered completely capable of crossing the cavity. The dose contribution by fast
electrons is estimated by the restricted stopping power, LΔ=ρ Eð Þ. The restricted
stopping power is defined as the stopping power limited to lose energy below the
threshold energy (Δ). The total dose in the cavity can be written as:

D ¼
ðEmax

Δ
Φ Eð Þ LΔ Eð Þ

ρ

� �
dEþ E:T:ð Þ (17)

The first term on the right side of Eq. (17) corresponds to the dose deposited by
fast electrons, and the second term takes into account the dose deposited by slow
electrons, often termed as end track term (ET) suggested by Nahum [63] to esti-
mate the contribution of slow electrons:

Figure 7.
A schematic illustration of small cavity behavior under high energetic photon irradiation.

53

Prospective Monte Carlo Simulation for Choosing High Efficient Detectors for Small-Field…
DOI: http://dx.doi.org/10.5772/intechopen.89150



E:T: ¼ Φ Δð Þ Scol Δð Þ
ρ

Δ (18)

where Φ Δð Þ is the electron differentiated fluence energy valued at Δ and Scol Δð Þ
ρ is

the nonrestricted stopping power evaluated at Δ. Instead of estimating the dose
ratio in the detector and the medium by Bragg-Gray theory, it can be expressed as:

Ddet

Dmed
¼
Ð Emax

0 Φmed Eð Þ LΔ Eð Þ=ρð ÞdetdEþ Φ Δð Þ Scol Δð Þ=ρð ÞdetΔÐ Emax

0 Φmed Eð Þ LΔ Eð Þ=ρð ÞmeddEþΦ Δð Þ Scol Δð Þ=ρð ÞdetΔ
(19)

Δ is defined as the minimum energy needed for electron to pass through the
cavity of interest. The value of Δ depends on the size and the material of the cavity.
There are many studies based on determining Δ to apply the Spencer-Attix theory to
some ionization chambers where Δ = 10 keV is used [64–66].

3.3.4 Large cavity theory (LCT)

On the other hand, large cavity is opposite to small cavity, whenever the size of
the detector is much larger than the range of the electron that passes through the
cavity. In this case, the range of delta ray is small in large cavity compared to the
size of the cavity (see Figure 8). Hence, electronic equilibrium is established in
most of the cavity size [59]. If the radiation source is a photon, it interacts with the
material in the cavity and hence produces secondary electrons. As these created
electrons are unable to pass through the cavity, the electronic control is established
in the cavity of the detector. It should be noted that the electronic balance is not

Figure 8.
Large cavity of high energetic photon beam deposition in a type of detector.
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achieved in the border regions of the large cavity, due to the difference in the
material around the border. However, the electronic balance is achieved in most of
the cavity and the average absorbed dose in the detector can be determined using
the following equation:

D ¼
ðEmax

0

μen Eð Þ
ρ

� �

det
� Ψ det Eð ÞdE (20)

where μen Eð Þ=ρð Þdet is the mass absorption coefficient of the detector and Ψ det Eð Þ
is energy fluence of photon energy E in the detector.

3.4 Dose model for the SSD crystal in the photon beam

3.4.1 Spectrum convolution calculation

To apply cavity theory, the first step is to obtain the spectrum at the position of
interest. Fluence pencil kernels may be used to calculate the local spectrum in a
homogeneous phantom. This model had been extensively used to calculate the dose
in treatment planning system (TPS) [55, 67–69]. Its idea is to convolute the energy
depositions for each pencil beam energy through wide beam spectrum. The most
interesting approach to pencil beam fluence has been proposed by [47, 70] which
calculated the local spectra via dividing it into high and low energies using small and
large cavity theory approximations, respectively. However, it could be easy to
calculate other physical quantities, such as the fluence spectrum in an irradiated
water phantom as in Figure 9. Eklund and Ahnesjö [28, 70] use fluence pencil
kernel database to evaluate the spectrum. In this database, the fluence pencil kernel
has been defined as the spatial distribution of fluence, resulted from the irradiation
of semi-infinite water slab with point of the monodirectional and monoenergetic
beam in water phantom of infinite thickness. Monte Carlo simulation had a good
feature of interaction for the evaluation of these spectra. As the energy deposited in
the phantom is laterally symmetric, the parameters to describe the fluence pencil
can be reduced to three parameters, as shown in schematic geometry for fluence
pencil kernel acquisition of monoenergetic beam (see Figure 10).

Figure 9.
A schematic geometry for fluence pencil kernel acquisition.
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ρ is
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There are many studies based on determining Δ to apply the Spencer-Attix theory to
some ionization chambers where Δ = 10 keV is used [64–66].

3.3.4 Large cavity theory (LCT)

On the other hand, large cavity is opposite to small cavity, whenever the size of
the detector is much larger than the range of the electron that passes through the
cavity. In this case, the range of delta ray is small in large cavity compared to the
size of the cavity (see Figure 8). Hence, electronic equilibrium is established in
most of the cavity size [59]. If the radiation source is a photon, it interacts with the
material in the cavity and hence produces secondary electrons. As these created
electrons are unable to pass through the cavity, the electronic control is established
in the cavity of the detector. It should be noted that the electronic balance is not

Figure 8.
Large cavity of high energetic photon beam deposition in a type of detector.
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achieved in the border regions of the large cavity, due to the difference in the
material around the border. However, the electronic balance is achieved in most of
the cavity and the average absorbed dose in the detector can be determined using
the following equation:

D ¼
ðEmax

0

μen Eð Þ
ρ

� �

det
� Ψ det Eð ÞdE (20)

where μen Eð Þ=ρð Þdet is the mass absorption coefficient of the detector and Ψ det Eð Þ
is energy fluence of photon energy E in the detector.

3.4 Dose model for the SSD crystal in the photon beam

3.4.1 Spectrum convolution calculation

To apply cavity theory, the first step is to obtain the spectrum at the position of
interest. Fluence pencil kernels may be used to calculate the local spectrum in a
homogeneous phantom. This model had been extensively used to calculate the dose
in treatment planning system (TPS) [55, 67–69]. Its idea is to convolute the energy
depositions for each pencil beam energy through wide beam spectrum. The most
interesting approach to pencil beam fluence has been proposed by [47, 70] which
calculated the local spectra via dividing it into high and low energies using small and
large cavity theory approximations, respectively. However, it could be easy to
calculate other physical quantities, such as the fluence spectrum in an irradiated
water phantom as in Figure 9. Eklund and Ahnesjö [28, 70] use fluence pencil
kernel database to evaluate the spectrum. In this database, the fluence pencil kernel
has been defined as the spatial distribution of fluence, resulted from the irradiation
of semi-infinite water slab with point of the monodirectional and monoenergetic
beam in water phantom of infinite thickness. Monte Carlo simulation had a good
feature of interaction for the evaluation of these spectra. As the energy deposited in
the phantom is laterally symmetric, the parameters to describe the fluence pencil
can be reduced to three parameters, as shown in schematic geometry for fluence
pencil kernel acquisition of monoenergetic beam (see Figure 10).

Figure 9.
A schematic geometry for fluence pencil kernel acquisition.
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Here r is the lateral distance of the axis of irradiation from the position of
interest; z is the depth of the point of interest; E is the energy of monoenergetic
ionization chamber beam. Also, these database separated particles into four catego-
ries, depending on their histories of interaction, as shown in Figure 5:

• The incident photons, without any interaction are primary photons.

• The electrons created in interactions of primary photons are primary electrons.

• All other photons are scattered that are created by primary photon or
secondary electrons such as Rayleigh and Compton effect, bremsstrahlung, and
pair production.

• The electrons created by the scattered photons are scattered electrons.

The first two types of particles (primary photons and electrons) are the main
component of the beam, while the last two are the scattered component. This
separation of particles is only possible with the feature of tracking the particle’s
interaction history in Monte Carlo simulation. To obtain the spectrum of charged
particle fluence ΦE x, y, zð Þ at the point of interest (x, y, and z) at a given irradiation
field size, a convolution integration on energy is applied, as follows:

ΦE x, y, zð Þ ¼
ðEmax

0

ðð
Ψ x0, y0,Eð Þϕ x� x0, y� y0, z,Eð Þdx0dy0dE (21)

where Ψ x0, y0,Eð Þ is the lateral distribution photon energy fluence of the beam
and ϕ x� x0, y� y0, z,Eð Þ is the fluence pencil kernels to position (x, y, z). Note also

Figure 10.
Particles categories as defined in [70].
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that Ψ x0, y0,Eð Þ may vary depending on the dose deposition in the irradiation field,
which is the case of IMRT.

3.5 Response model of SSD

In reality, the response behavior of any dosimeter deviates in two cavity theo-
ries, because the extreme conditions for both theories are never completely filled.
To determine if the dosimeter cavity is large or small, the size of the cavity is
compared with the range of the electrons. If the dosimeter is irradiated with a
polyenergetic beam, the cavity of theories cannot be applied directly due to the
varied response to particles of different energies. In 2004, Yin et al. [30] proposed a
method to treat the primary and scattered components separately by different
cavity theories, assuming that the primary particles satisfy conditions of SCT while
the scattered particles satisfy the LCT. The total dose measured in the Si-diode
dosimeter [30] considered the sum of primary and scattered contributions using
Eq. (22):

Dcav ¼
ðEmax

Δ
Φp

cav Eð Þ � L
cav
Δ Eð Þ
ρ

dEþ Φp
cav Δð Þ � L

cav
Δ Δð Þ
ρ

� Δþ
ðEmax

0
Ψ s

cav Eð Þ � μ
cav
en Eð Þ
ρ

dE

(22)

where Φp
cav Eð Þ is the primary electron fluence and Ψ s

cav Eð Þ is the energy of the

scattered photon fluence. L
cav
Δ Eð Þ
ρ is the restricted stopping power, and μcaven Eð Þ

ρ is the
mass absorption coefficient of material in the cavity. This model proved quite
precisely the dose in water, verified by measurement [27]. Eklund and Ahnesjö [26]
introduced some solution to calculate dose response through the two assumptions:
(1) Ensuring all primary electrons satisfy the SCT condition if the detector size is
rather small. Nevertheless, there are still low-energetic electrons in the spectrum
that cannot pass through the cavity of the dosimeter. (2) The scattered photons are
considered to satisfy the condition of LCT, indicating that CPE is assumed to be
located in the cavity of the dosimeter. The validity of this assumption depends on
the energy of the scattered photon. To solve this situation, Eklund and Ahnesjö [71]
introduced two solutions for the condition of the hypothesis is closer to reality:
Instead of calculating the primary low-energetic electron contribution by LCT, they
calculate the contribution from primary photons in LCT that create low-energetic
primary electrons. From this calculation of the fluence spectra, it is possible to find
the low-energetic primary photons. Therefore, a partitioning of the primary elec-
trons was performed, where the high-energetic primary electrons followed the SCT
and the contribution of low-energy electron primary was calculated using their
father or primary photons. Ideally, the scattered photons should be partitioned in
the same way to treat low component of high energy differently. K(E) correction
had been introduced, which is defined as follows:

K Eð Þ ¼ Dcav
p Eð Þ

Ψ Eð Þ � μcaven Eð Þ
ρ

(23)

where Dcav
p Eð Þ is the dose deposited in the cavity of the detector, by the primary

photons of energy E (or primary electrons) with a fluence of photons Ψ Eð Þ and its
primary electrons. The denominator of this expression represents the collision
kerma of the cavity, which is equivalent to the dose if CPE exists locally. Computing
Dcav

p Eð Þ is only possible by a total particle transport calculation as by Monte Carlo
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that Ψ x0, y0,Eð Þ may vary depending on the dose deposition in the irradiation field,
which is the case of IMRT.

3.5 Response model of SSD

In reality, the response behavior of any dosimeter deviates in two cavity theo-
ries, because the extreme conditions for both theories are never completely filled.
To determine if the dosimeter cavity is large or small, the size of the cavity is
compared with the range of the electrons. If the dosimeter is irradiated with a
polyenergetic beam, the cavity of theories cannot be applied directly due to the
varied response to particles of different energies. In 2004, Yin et al. [30] proposed a
method to treat the primary and scattered components separately by different
cavity theories, assuming that the primary particles satisfy conditions of SCT while
the scattered particles satisfy the LCT. The total dose measured in the Si-diode
dosimeter [30] considered the sum of primary and scattered contributions using
Eq. (22):
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Δ
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cav
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ρ
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cav
Δ Δð Þ
ρ

� Δþ
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cav
en Eð Þ
ρ

dE
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cav Eð Þ is the energy of the
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ρ is the restricted stopping power, and μcaven Eð Þ

ρ is the
mass absorption coefficient of material in the cavity. This model proved quite
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simulation. With the introduction of partitioning primary electron and the approx-
imation, factor CPE K Eð Þ in Eq. (21) gives:
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where Φ EA,Emax½ �p
cav Eð Þ is the fluence of primary electrons produced by the photon

with a higher energy EA and Ψ
0,EA½ �,p
cav Eð Þ is the fluence of primary photons with

smaller energy EA. Applying Eq. (24), one can calculate the water dose, SSD dose,
and response factor of Eq. (19). In order to compare the calculated response factor
with the measured one, it is necessary to normalize the response factor determined
for a reference, which gives:

RFcalc
norm A, rð Þ ¼ RFcalc A, rð Þ

RFcalc Aref , rref
� � (25)

The reference value of field size is square field of 10 cm � 10 cm, and the
reference position from the axis is at a depth of 10 cm in the phantom.

Crop et al. [2] had conducted one of the most detailed studies on the response of
air-filled detectors in small photon beams. Author’s considered the effect of differ-
ent perturbation effects: (a) perturbation caused by differences in the composition
of detector with respect to water (pwall), (b) perturbation caused by replacement of
water by detector (pa,w), (c) effect caused by the existence of central electrode of
the air-filled detectors, and (d) volume averaging effect for two detectors with
different volume. The results of the study are illustrated in Figure 11; it was a
Monte Carlo-based study for 6 MV photon beam considering photon beams down
to 0.8 cm � 0.8 cm. The maximum variation was reported for Pvol and Pa,w.

Figure 11.
Results reported by Crop et al. for different perturbation effects. Maximum deviation was reported for the
volume averaging effect and perturbation caused by replacement of water by detector media.
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In general case of large radiation beam, the value of total perturbation factor is
approximately 0.99. However, for small photon beams, these perturbation factors
become extremely large and no longer remain independent. Hence, Monte Carlo
calculation of perturbation factors must be preferred over the use of SCT. Along
with this, the size of the detector with respect to the source size and incorrect
alignment can result in large values of correction factors. The perturbation caused
by the displacement error in calculation of absorbed dose using Monte Carlo for
PTW 60012 diode is illustrated in Figure 12. Similar results have been reported by
various authors, for the Monte Carlo-based studies for computation of different
perturbation factors [37, 72–77].

4. Energy spectrum and beam quality for small photon beams

4.1 Energy spectrum

The collimating devices utilized to project small photon beams result in blockage
of photon source and scattered component of photon beam generated from the
interaction of primary photon beam with other components of linear accelerator
head, as a consequence of which the low energy photons are removed from the
central axis of the beam. However, there may be probable increase in the amount of
secondary component of beam for off-axis fields. The material composition of
flattening filter is a deciding factor about whether the radiation beam will be
softened or hardened. Along with this, there is a decrement in phantom scatter in
small beams in comparison to the large field sizes. However, the decrement in
phantom scatter is more noticeable than head scatter. Both effects are responsible
for making the photon spectrum hard along the central axis of the beam. As a result
the mass energy coefficient ratio and stopping power ratio of water and material of
the detector are changed. Also in the small beams and the absence of LCPE, the

Figure 12.
Uncertainty observed in absorbed dose determination using PTW 60012 diode, due to uniformly distributed
displacement error of 1 mm in all directions perpendicular to the beam axis.

59

Prospective Monte Carlo Simulation for Choosing High Efficient Detectors for Small-Field…
DOI: http://dx.doi.org/10.5772/intechopen.89150



simulation. With the introduction of partitioning primary electron and the approx-
imation, factor CPE K Eð Þ in Eq. (21) gives:

Dcav ¼
ðEmax

Δ
Φ EA,Emax½ �p

cav Eð Þ � Lcav
Δ Eð Þ
ρ

� �
dEþ Φ EA,Emax½ �,p

cav Δð Þ � Lcav
Δ Δð Þ
ρ

� �
� Δ

þ
ðEmax

0
K Eð Þ Ψ 0,EA½ �,p

cav Eð Þ þ Ψ s
cav Eð Þ

� �
� μcaven Eð Þ

ρ

� �
dE (24)

where Φ EA,Emax½ �p
cav Eð Þ is the fluence of primary electrons produced by the photon

with a higher energy EA and Ψ
0,EA½ �,p
cav Eð Þ is the fluence of primary photons with

smaller energy EA. Applying Eq. (24), one can calculate the water dose, SSD dose,
and response factor of Eq. (19). In order to compare the calculated response factor
with the measured one, it is necessary to normalize the response factor determined
for a reference, which gives:

RFcalc
norm A, rð Þ ¼ RFcalc A, rð Þ

RFcalc Aref , rref
� � (25)

The reference value of field size is square field of 10 cm � 10 cm, and the
reference position from the axis is at a depth of 10 cm in the phantom.

Crop et al. [2] had conducted one of the most detailed studies on the response of
air-filled detectors in small photon beams. Author’s considered the effect of differ-
ent perturbation effects: (a) perturbation caused by differences in the composition
of detector with respect to water (pwall), (b) perturbation caused by replacement of
water by detector (pa,w), (c) effect caused by the existence of central electrode of
the air-filled detectors, and (d) volume averaging effect for two detectors with
different volume. The results of the study are illustrated in Figure 11; it was a
Monte Carlo-based study for 6 MV photon beam considering photon beams down
to 0.8 cm � 0.8 cm. The maximum variation was reported for Pvol and Pa,w.

Figure 11.
Results reported by Crop et al. for different perturbation effects. Maximum deviation was reported for the
volume averaging effect and perturbation caused by replacement of water by detector media.

58

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

In general case of large radiation beam, the value of total perturbation factor is
approximately 0.99. However, for small photon beams, these perturbation factors
become extremely large and no longer remain independent. Hence, Monte Carlo
calculation of perturbation factors must be preferred over the use of SCT. Along
with this, the size of the detector with respect to the source size and incorrect
alignment can result in large values of correction factors. The perturbation caused
by the displacement error in calculation of absorbed dose using Monte Carlo for
PTW 60012 diode is illustrated in Figure 12. Similar results have been reported by
various authors, for the Monte Carlo-based studies for computation of different
perturbation factors [37, 72–77].

4. Energy spectrum and beam quality for small photon beams

4.1 Energy spectrum

The collimating devices utilized to project small photon beams result in blockage
of photon source and scattered component of photon beam generated from the
interaction of primary photon beam with other components of linear accelerator
head, as a consequence of which the low energy photons are removed from the
central axis of the beam. However, there may be probable increase in the amount of
secondary component of beam for off-axis fields. The material composition of
flattening filter is a deciding factor about whether the radiation beam will be
softened or hardened. Along with this, there is a decrement in phantom scatter in
small beams in comparison to the large field sizes. However, the decrement in
phantom scatter is more noticeable than head scatter. Both effects are responsible
for making the photon spectrum hard along the central axis of the beam. As a result
the mass energy coefficient ratio and stopping power ratio of water and material of
the detector are changed. Also in the small beams and the absence of LCPE, the

Figure 12.
Uncertainty observed in absorbed dose determination using PTW 60012 diode, due to uniformly distributed
displacement error of 1 mm in all directions perpendicular to the beam axis.

59

Prospective Monte Carlo Simulation for Choosing High Efficient Detectors for Small-Field…
DOI: http://dx.doi.org/10.5772/intechopen.89150



low-energy electrons reaching the axis of the beam will be reduced. Hence, the
mean electron energy is increased, as a result of which stopping power ratio is also
affected.

However, various Monte Carlo-based studies have revealed that the charged
particle spectrum generated inside water is not much affected by the change in
photon fluence. Hence, the stopping power ratio of water to air does not vary more
than 0.5% at 10 cm of depth for 6 MV photon beam for field sizes ranging from
10 cm � 10 cm to 0.3 cm � 0.3 cm or circular fields of 0.3 cm diameter [78, 79], for
depth ranging up to 30 cm maximum variation of 1% has been reported [70].
However, the response of diode detectors is affected by this hardening of the
photon beam due to the noticeable change in the mass-energy absorption coeffi-
cient ratio of water and silicon. For field sizes ranging from 10 cm � 10 cm to
0.5 cm � 0.5 cm, the variation of 3–4% has been reported in the response of the
unshielded diodes as a result of reduction in phantom scatter [71, 80].

4.2 Beam quality

For reference dosimetry in photon beams of high energy and large field sizes of
beam quality Q using the air-filled detectors calibrated with respect to beam quality
Q0, the radiation quality correction factor is required. There are two methods
defined to account for beam quality [1, 3, 7]. First is the tissue phantom ratio at the
depth of 20 and 10 g/cm2 using water as a medium for 10 cm� 10 cm beam size and
source-to-detector distance (SDD) of 100 cm, TPR20,10(10,10)x [1]. The second
method is based on percentage depth dose at a depth of 10 cm to 10 cm � 10 cm
beam size and source to surface distance of 100 cm, %dd(10,10)x. These beam
quality indices are utilized to calculate .

For some calibration laboratories, it is possible to provide calibration of air-filled
detectors using clinical linear accelerator photon beam from calibration laborato-
ries. This methodology for calibration of measurement equipment is much more
realistic as there are small variations on the absorbed dose to water calibration
factor for radiation equipment of the same kind, as the quality of beam varies
moderately between the modern equipment of the same type. Therefore, it is
possible to use the same radiation beam quality correction factor for similar model
of air-filled detectors and radiation emitting equipment of the same kind. Hence,
the dosimetric measurements on such machines can be performed without correc-
tion for beam quality. This methodology has been applied at some level for Gamma
Knife® (Elekta AB, Stockholm), Cyberknife®, and TomoTherapy® (Accuray Inc.,
Sunnyvale, CA) radiation generators. Also, the components of the clinical linear
accelerators such as secondary jaws and multi-leaf collimators are employed for
having better machine uniformity and accurate small-field size definition [25–27]. It
is important to remember that by the above method of calibration of equipment,
there is no requirement for beam quality correction factors, and even then beam
quality indices are crucial from commissioning and quality check procedure per-
spectives. Since the nominal photon beam energies used for intensity-modulated
radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and stereo-
tactic methods are below 10 MV, and the variation of kQ,Q0 to quality of the beam is
small [1, 2]. A large number of add-ons are utilized in IMRT and stereotactic
radiotherapy treatment methods, which makes it impossible to prepare tables for
beam quality correction factors for each and every combination of radiation emit-
ters, add-ons, and detector types. Hence, kQ,Q0 is not available in all machine/
detector combinations. As a result the beam quality index or beam quality correc-
tion factor is required to relate the beam quality used for the detector calibration
and the beam quality of the user machine. Since, it is sometimes not possible to
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calibrate the detector in beam quality similar to that of user, and hence the values
for all combination of machine/detector are not available. In that case the question
arises, whether it is fine to use TPR20,10(10,10)x or %dd(10,10)x for dose measure-
ments in fields smaller than 10 cm � 10 cm on the same radiation emitter. As
discussed above the stopping power ratio variation with change in field size is small.
Hence, the beam quality indices measured for large photon beams can be utilized
for small beams. The variation of stopping power ratios with beam size and other
perturbation factors can be merged together into an output correction factor.

In the conditions where the conventional beam size of 10 cm � 10 cm, a number
of methods have been proposed to determine the beam quality:

a. A concept of machine-specific reference field (msr), fmsr, has been proposed
by Alfonso et al. [81].

b. Machine-specific beam quality index has been proposed for TomoTherapy
[82]. According to this methodology beam quality index is measured using
similar methods as used for determination of the %dd(10, 10)x in the
conditions achievable in case of TomoTherapy. In this proposed
methodology, authors calculated correction factors for beam quality with the
help of Monte Carlo techniques and compared them with measurements as a
function of conventional index to establish a relation between the machine-
specific beam quality index and the conventional beam quality index [83].

c. In the third method, it is proposed to measure TPR20,10(S), the ratio of dose
deposited at 20 and 10 g/cm2 depths for an S cm � S cm square field size at
source-to-detector distance of 100 cm. The measurement of TPR20,10(S) is
performed on the machine where 10 cm � 10 cm field size is not achievable
for series of square field sizes S, and comparison is made with the
measurements performed using radiation emitter where 10 cm � 10 cm
beam size is achievable; the measurement data is extrapolated [78, 79, 84].
Using this extrapolated data relationship for the beam quality index of
10 cm � 10 cm beam size, TPR20,10(10) and TPR20,10(S) are derived [85].

It was observed by Sauer et al. that the third methodology to measure beam
quality index in nonstandard field sizes is effective for circular or rectangular fields
using the concept of equivalent square field method [79, 85] and for flattening
filter-free beams by surety of correction factor for deficiency in the lateral scatter
because of conical beam profiles. It must be noted that the relation between the
stopping power ratio and beam quality index in case of FFF radiation fields and
WFF beams is not similar [86–89]. The relations to calculate TPR20,10(10) and %dd
(10,10)x can be derived for small beams (S lying between 4 and 12 cm) [90].
Figure 13 illustrated the variation of TPR20,10(S) for beam size of S cm � S cm for
field sizes ranging from 4 cm � 4 cm to 12 cm � 12 cm with energy of photon beam
ranging from 4 and 10 MV [79, 90] (squares representing the measurement data
[79] and curved representing Monte Carlo results [90]).

4.3 Measurement of TPR20,10(10)

The determination of TPR20,10(10) from the measurements obtained for
TPR20,10(S), where S is the equivalent square fmsr, by using the measurement data
in the analytic expression given by Palmans (Eq. (26)) [90]. Figure 14 shows the
experimental set-up to be used for measurement of TPR20,10(S), with source-to-
detector distance of 100 cm and at a depth of 20 g/cm2 and 10 g/cm2.
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TPR20,10(10) for 10 cm � 10 cm can be derived using the following relationship:

ð26Þ

This relation is valid when 4 cm ≤ S ≤ 12 cm, where C = (16.15 ∓ 0.12) � 10�3.

Figure 14.
The experimental set-up to be used for measurement of TPR20,10(S).

Figure 13.
Dependence of TPR20,10(S) on the field size S, for beam size ranging between 4 and 12 cm and photon energies
between 4 and 10 MV.
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4.4 Measurement of %dd(10,10)x

Similar to the determination of TPR20,10(10) from measurements of
TPR20,10(S), the %dd(10,10)x can be determined from the %dd(10) for S cm � S
cm msr field size using the analytic relation provided by Palmans [90]. Figure 15
illustrates the experimental setup for the measurement of %dd(10, S) for S cm � S
cm beam size and measurement depths of maximum dose (zmax) and 10 g/cm2 at a
source-to-surface distance of 100 cm.

Lead foil is not required in the measurements of %dd(10,S) for WFF radiation
beams (below 10 MV). However, the use of lead foil of 1 mm thickness is
recommended for %dd(10,S) measurements in FFF radiation beams; in order to
remove the electron contamination and analytic expression, Eq. (27) is used to
calculate %dd(10,10)Pb. Then %dd(10,10)x can be obtained from %dd(10,10)Pb
using the relation provided by AAPM Task Group report 21.

The %dd(10,10)x can be calculated using the following expression:

ð27Þ

where 4 cm ≤ S ≤ 12 cm and C = (53.4 ∓ 1.1) � 10�3.

5. Determination of absorbed dose

In case of radiation-emitting equipment, where field beam of 10 cm � 10 cm
(fref) can be established, the dose measurement is performed using the

Figure 15.
Measurement setup for %dd(10,S).
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recommendation provided by task group series (TRS) 398 and other equivalent
protocols [1–7]. However, in radiation equipment where fref setting is not
feasible, fmsr is used. The full width at half maximum of fmsr must satisfy small-field
condition.

ð28Þ

5.1 Measurement of absorbed dose in fmsr

5.1.1 Calibration coefficient for fmsr is available

In situations where calibration coefficient in terms of absorbed dose to water
( ) is available for machine-specific reference field (fmsr) and beam
quality similar to that of the user beam (Qmsr), the absorbed dose to water at depth
of reference (zref) in the nonexistence of detector in water can be determined using
the following relation:

ð29Þ

where is the detector reading fmsr beam corrected for influential
quantities, such as temperature, pressure, perturbation factors, etc.

5.1.2 Calibration factor available for fref (10 cm � 10 cm) and beam quality (Q0)
correction factor

In conditions where calibration coefficient ( ) is provided by calibration

laboratory in terms of fref and correction factor quality of beam Q0. The absorbed
dose to water can be calculated using the following relation:
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where is the detector reading reworked for influential quantities and

is the correction factor for difference in beam quality and field size.

5.1.3 Calibration factor available for fref (10 cm � 10 cm) without beam quality (Q0)
correction factor

In the situation where the correction factor for the generic quality of beam,
correcting for the difference in beam quality and effect of difference in field size, is
not provided by the calibration laboratory, the dose deposited can be determined
using the following relation:
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where is the detector reading for fmsr reworked for influential quan-

tities, is the detector calibration factor in terms of absorbed dose to water

in fref beam and Q0 quality of beam, is the correction factor for difference

in detector response of detector in beam quality Q0 in field size fref and response of
detector in beam quality Q in fref beam size, and is the beam quality
correction factor to account for the difference between the response of detector in
beam quality Q, fref beam size and beam quality Qmsr, and beam size of fmsr.

In order to determine the dose deposited in water for FFF radiation beam, the
following relation can be used:

ð32Þ

where is the correction for beam quality for difference in

response of the detector in beam QWFF, beam size fref and response of detector in
quality of beam Q0, and beam size of fref. It can be taken from the international
dosimetry protocols [1, 2, 7], and is the factor of correction for
variation in response of the detector in the FFF and WFF radiation fields. It can be
obtained from Monte Carlo studies. Figure 16 summarizes the different conditions
discussed above for the determination of dose deposited in water.

Figure 16.
Schematic summary of the determination of absorbed dose in case of small beams considering the case of
machine specific reference field according to the formalism given by TRS 483. The arrows and formulas labeled
(1), (2) and (3) refer to Section 6.1.1, 6.1.2 and 6.1.3, respectively.
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5.2 Measurement of field output factors

To measure the dose deposited by clinical radiation beams with respect to the

msr field in Ref. dosimetry, field output factors ( ) are determined.

They are also known as relative dose factors [91] or total scatter factors [1, 56, 79]. It
is defined as the ratio of dose deposited in water by clinical beam (fclin) with the
quality of beam (Qclin) to the dose deposited in water in msr field (fmsr) with quality
of beam Qmsr:

ð33Þ

The output factors are utilized to calculate the dose deposited to water in clinical
beams (fclin) from the dose deposited to water in machine-specific reference beams

(fmsr). can be determined using the detector readings by using the

following relation:

ð34Þ

where is the output correction factor; it can be determined

either by direct measurements or using Monte Carlo techniques.

6. Monte Carlo simulation in small-field dosimetry

Monte Carlo techniques are widely used as an alternative in situations where
measurements are either difficult or are not possible. Many authors have reported
about the possibility of using MC techniques for small-field dosimetry [92–98].
Monte Carlo techniques can be used to calculate the correction factors as discussed
in Section 6 of this chapter. It can also be used as a reference or standard with
respect to different techniques of relative and absolute dose measurements with
acceptable accuracy. With the use of Monte Carlo techniques, the dosimetry in low-
density materials can be understood where it is difficult to perform measurements
due to the presence of non-equilibrium conditions [99–105]. In radiation dosimetry
two approaches are followed for the use of MC techniques. First approach is to
calculate correction factors for the dosimeters to be used for dosimetric measure-
ments. In the second approach, the dosimetric quantities are directly calculated,
which is equivalent to performing measurements in ideal conditions. However, it is
important to verify the MC model against the beam modeling parameters before
using it for radiation dosimetry calculations.

6.1 General purpose of Monte Carlo codes for radiation dosimetry

It is possible to explicitly model the interaction of every particle using Monte
Carlo techniques. The main characteristics of Monte Carlo techniques used for
radiation dosimetry are:
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1.The generation of particles is based on the distribution function used to
describe the radiation source.

2.The random numbers are obtained in the range of (0, 1) using the
pseudorandom number generators.

3.The probability distribution functions are sampled using interaction cross
sections.

4.The step of a particle is defined as the distance between two consecutive
events (collision/scatter).

5.“Scoring” for each and every outcome is performed to calculate quantities,
such as dose deposited in a medium.

6.In order to reduce the statistical uncertainty in the calculation, it is
recommended to perform simulations using a large number of particles
(�1 � 109).

There are various Monte Carlo codes available which can be used in radiation
dosimetry of stereotactic fields. The most commonly used MC codes are Electron
Gamma Shower [106], GEANT4 [107], and the Monte Carlo N-Particle code [108].
Due to highly accurate radiation transport algorithm for electrons and photons and
easy to use BEAM package, EGSnrc is one of the most frequently used Monte Carlo
codes for small-field dosimetry.

6.2 Monte Carlo studies for small-field dosimetry

Heydarian et al. [109] performed a study using diamond detectors, diodes, films,
and EGS4 Monte Carlo code, for field sizes ranging from 7 to 23 mm on Siemens
Mevatron linac. Scielzo et al. [110] investigated the application of Monte Carlo-
based calculation algorithm for treatment planning in stereotactic radiosurgery for
Varian 2100C. Authors reported large difference between the treatment planning
system (TPS) and MC calculation, especially near the inhomogeneous regions.
Verhaegen et al. [92] performed a dosimetric study using the BEAM/EGS4 Monte
Carlo code for 6 MV SRS unit for circular field sizes with diameter ranging from 1.25
to 5 cm at isocenter. The authors reported a good agreement between the measure-
ment and computational results for most of the detectors in terms of cone factor. De
Vlamynck et al. [111] performed clinical dosimetry using Markus parallel plate ion
chamber and diamond detector in 6 MV photon beam of SL 25 (Elekta) linac and
compared the results with Monte Carlo calculations. The depth dose distributions
for measured and calculated data were found in good agreement with each other;
however slight discrepancies were reported for lateral beam profiles. Cheung et al.
[112] verified the accuracy of treatment planning system (Leksell GammaPlan)
using Gafchromic films and Monte Carlo methods for field sizes ranging from 4 to
18 mm on a Gamma Knife unit. Variations up to 10% were observed for Gafchromic
films which were attributed to the energy dependency of films. Westermark et al.
[113] performed a comparative study using diamond detector, liquid ion chamber,
plastic scintillator, silicon diode, and Monte Carlo techniques for small-field sizes
(φ > 4 mm) of 6 and 18 MV photon beams in order to study the response of various
dosimeters. Deng et al. [114] generated a multiple source model by following the
procedure of beam commissioning for Cyberknife unit for Monte Carlo-based
treatment planning. Authors reported largest variation of 9.5% for ionization
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chamber IC-10 and attributed this variation to the volume averaging effect of the
chamber. Paskalev et al. [115] investigated the dose distribution for circular field
(1.5 and 3 mm) for 10 MV photon beam using Varian Clinac-18 and reported
maximum variation of 0.3 mm between the measured and calculated 50% isodose
surface. Tsougos et al. [116] performed a Monte Carlo-based dosimetric study for
in-house developed 6 MV SRT unit and compared it against conventional dosimet-
ric techniques. Francescon et al. [117] investigated total scatter factor for
Cyberknife unit for three different collimator opening diameters ranging from 5 to
10 mm. Comparison was made between the experimental and Monte Carlo results.
Heydarian et al. [118] investigated the dosimetric parameters of a SRS linac using
experimental measurements and Monte Carlo methods and reported good agree-
ment between the Monte Carlo and experimental data. Scott et al. [29] investigated
the effect of source occlusion on output of the linac for small-field sizes and large
focal spot sizes and found that output factors are sensitive to the dimensions of the
electron spot size hitting the target. Sargison et al. [119] proposed a methodology
for measurement and reporting of relative output factors for small fields using both
experimental and Monte Carlo methods. In 2014, Sargison et al. [120] presented
two scientific quantitative definitions of very small-field size and reported that
careful methodology is required for setting of field sizes and placement of detectors
for field sizes less than 12 mm for 6 MV photon beams. In 2019, Francescon et al.
[121] investigated the sensitivity of dosimetric correction factors to interunit varia-
tion and reported variation up to 9% between the measured data corrected using the
recommendations of TRS-483 and Monte Carlo results. Casar et al. [122] provided
detector-specific output correction factors for small-field sizes using the recom-
mendations of TRS-483.

6.3 Monte Carlo codes optimized for radiation therapy and out-of-field doses
for small fields

Considering the ability of Monte Carlo techniques to calculate absorbed dose in
non-equilibrium conditions, it can be an ideal tool for clinical use. However, due to
its lengthy computational sessions, it is difficult to use them in clinic. In the above
section, we discussed about the general purpose of Monte Carlo tools which can
model different types of particles (gamma, electron, positron, etc.) and different
kinds of physics models to simulate the interactions of particles over the large range
of energy of incident particles. The introduction of Monte Carlo-based treatment
planning systems, which uses some approximations and simplification in compari-
son to full Monte Carlo codes, can help to overcome the limitations of contemporary
TPS. In Monte Carlo-based TPS, a part of dose calculation is performed using Monte
Carlo methods, and the remaining part is performed using approximation-based
algorithms [123, 124]. Another option is to use Monte Carlo codes that are opti-
mized specially for radiation therapy applications. TG105 report can provide more
information about the use of Monte Carlo methods for clinical applications [125].
However, it is possible that the highly efficient Monte Carlo codes that can
completely simulate the radiation transport within acceptable timeframe will be still
required. Hence, the use of Monte Carlo methods in small-field dosimetry will
increase the confidence in the accuracy of calculation of dose distributions.

Apart from the difficulty in calculating dose deposited within the field, TPS
algorithms are also not able to calculate the doses out-of-field accurately, since the
measurement data obtained to be used for commissioning of TPS extends only a few
centimeters beyond the edges of the field. Penumbra region is defined as a region of
steep dose fall, where radiation dose falls from 80 to 20% of maximum dose within
the field. The dose protruding beyond the field is not considered in the calculation
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of the dose distribution or its contribution to the procedure of inverse optimization.
Hence, the dose distribution obtained from TPS is expected to be inaccurate in
regions beyond the edges of the primary field. The predictions in low-dose regions
near the primary field by TPS have been shown to be inaccurate as well. Jang et al.
[126] investigated the inaccuracies in dose calculation in low-dose regions for
intensity-modulated radiotherapy (IMRT) and reason behind these inaccurate cal-
culations by comparing their results against Monte Carlo methods. Authors
reported error up to 25% in low-dose regions and found that the inadequate model-
ing of transmission through MLC leaves and leaf scatter in TPS to be the main cause
of error. In the treatments performed using IMRT techniques, doses of 2 Gy per
fraction is delivered over large fractions to deliver a total dose of 60–70 Gy to the
tumor volume. However, stereotactic radiotherapy follows hypofractionated
regime, in which doses of 10–20 Gy per fraction is delivered. Hence, the dose
deposited out-of-field due to each fraction is of concern. Petti et al. [127] investi-
gated the doses outside the treatment field and cause of it for treatment using Cyber
Knife and compared them against the doses obtained using Gamma Knife and IMRT
for similar treatment. The out-of-field doses were found higher by a factor of two to
five for Gamma Knife and by a factor of four for IMRT treatments. According to the
authors, the leakage radiation is the main cause of out-of-field doses. Chuang et al.
[128] investigated for the reduction in out-of-field doses after installation of
shielding upgrade and reported the reduction of 20–50% in out-of-field doses.
Comparison of difference in peripheral doses absorbed using different equipment
for stereotactic treatment was made by Di Betta et al. [129] and used the data for
estimation of risk of stochastic effects. Authors reported that the risk of adverse side
effects for treatment using 5 Gy per fraction due out-of-field doses is negligible.
Lastly, there are relatively fewer studies available on out-of-field doses due to the
small fields. More studies are required on it, which can be helpful to investigate the
effects of out-of-field doses.

7. Conclusion

Considering the importance of accurate small-field dosimetry, this chapter dis-
cusses all important aspects related to it in details. It includes the physics of small
radiation fields, cavity theory, and methodology of small-field dosimetry to under-
stand the response of dosimeters and brief discussion on several dosimeters. It also
discusses the recommendations of COP for dosimetry of small radiation fields.
Moreover, it discusses the small and long cavity theories for computing the accurate
dose response. In addition, pencil beam algorithms as a tool for the dose response
evaluation is reported, and uses of Monte Carlo simulation in categorizing the
primary and scattering components of the radiotherapeutic photon beam are han-
dled. Also this chapter focuses on the application and importance of Monte Carlo
techniques in small-field dosimetry and treatment methods that are based on small
fields, such as stereotactic treatments and IMRT. Available general purpose
Monte Carlo codes used for applications in radiotherapy is also mentioned.
Such Monte Carlo codes have the ability to simulate transport of radiation within a
medium in great details. EGSnrc, Geant4, PENELOPE, and MCNP are some of the
most commonly used Monte Carlo codes for small-field dosimetry studies. Its
accurate algorithm to model the transport of radiation and easy-to-use graphical
user interface of BEAM code of EGSnrc makes it one of the most widely used MC
code. A thorough recent literature review is performed on the small-field dosimetric
studies performed using Monte Carlo codes. The studies on out-of-field doses,
limitation of contemporary treatment planning systems, use of Monte Carlo codes
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optimized specially for their use in radiation therapy simulation, and need of use of
full Monte Carlo for dose calculations are also reviewed. It was concluded that still
more studies on these issues are required in order to investigate the effects related
to inaccurate dosimetry in depth. Hence, it can be concluded from the above
discussion that the user must select a suitable dosimeter and follow the recommen-
dations provided by TRS-483 for accurate beam data collection and accurate
dosimetric measurements.
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optimized specially for their use in radiation therapy simulation, and need of use of
full Monte Carlo for dose calculations are also reviewed. It was concluded that still
more studies on these issues are required in order to investigate the effects related
to inaccurate dosimetry in depth. Hence, it can be concluded from the above
discussion that the user must select a suitable dosimeter and follow the recommen-
dations provided by TRS-483 for accurate beam data collection and accurate
dosimetric measurements.
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Chapter 4

Monte Carlo’s Core and Tests for
Application Developers: Geant4
and XRMC Comparison and
Validation
Gabriela Hoff, Bruno Golosio, Elaine E. Streck
and Viviana Fanti

Abstract

In this chapter, the Monte Carlo (MC) core is presented, particularly its
cross-sectional libraries and random generators. The main idea is to introduce
validation and reliability of MC applications and to explore its limitations. As an
example, a comparison between two MC toolkits, namely XRMC (version 6.5.0–2)
and Geant4 (version 10.02.p02), and a validation between each of them and
experimental data applied to mammography (external dosimetry) are presented.
The simulated quantities compared are exposure, kerma, half-value layer, and
backscattering. Limitations, advantages, and disadvantages of using a general and
specific MC toolkit are commented too.

Keywords: Monte Carlo, mammography, medical physics, XRMC, Geant4

1. Introduction

The Monte Carlo (MC) method history began two centuries before its computa-
tional implementation that happened in the period of World War II (1939–1945).
The MC method conception starts in 1733 with the Probléme de l’aiguille (Needle’s
problem) by Georges-Louis Leclerc, known as the Comte de Buffon [1], which is
enunciated as:

Sur un plancher qui n est formé que de planches égales & parallèles, on jette une
Baguette d’une certaine longueur, & qu’on suppose sans largeur. Quand tombera-t-
elle franchement íùr une seule planche? Leclerc [1], p. 44

or, translated to English:

On the floor formed only of equal boards placed in parallel, one throws a needle of a
certain length which and supposed without width. When will this needle fall on one
specific board?
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backscattering. Limitations, advantages, and disadvantages of using a general and
specific MC toolkit are commented too.

Keywords: Monte Carlo, mammography, medical physics, XRMC, Geant4

1. Introduction

The Monte Carlo (MC) method history began two centuries before its computa-
tional implementation that happened in the period of World War II (1939–1945).
The MC method conception starts in 1733 with the Probléme de l’aiguille (Needle’s
problem) by Georges-Louis Leclerc, known as the Comte de Buffon [1], which is
enunciated as:

Sur un plancher qui n est formé que de planches égales & parallèles, on jette une
Baguette d’une certaine longueur, & qu’on suppose sans largeur. Quand tombera-t-
elle franchement íùr une seule planche? Leclerc [1], p. 44

or, translated to English:

On the floor formed only of equal boards placed in parallel, one throws a needle of a
certain length which and supposed without width. When will this needle fall on one
specific board?
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The first solution proposed by Leclerc [2], in 1777, is considered one of the oldest
geometrical probability solutions. The method basically consists in generating suc-
cessive random samples N that will be tested in a statistical model representing the
statistical probability. To use this method, one needs to satisfy the main condition:
the random variable evaluated must be independent, which means that previous
events of interest may not have (may have the minimum) an influence on the
successive tryings. In the needle case, Leclerc ([2], pp. 100–104), presented a
solution considering the distance D of the limits of each wood board and the
length l of the needle (l < D) taking the probabilities of crossing zero lines and one
line as [3].

p0 ¼ 1� 2rθ and p1 ¼ 2rθ,where r ¼ l
D

and θ ¼ 1
π
:

It seems to be a simple problem, but its solution ensued a sequence of different
mathematical methodologies [3]. For example, in 1812, Laplace, using his theory of
probability and theoretical calculations based on this methodology to determine
an approximation to the π value [3, 4], presented a generalized solution in 3D
space [3–5].

Following the main condition of independence for random variable enunciated
by Leclerc [2], the MC method was proposed as an alternative solution to analytical
mathematics to evaluate the behavior of random samples to predict a statistic
sample distribution or a statistic behavior. This behavior can be assessed by empir-
ical processes of drawing sequences of independent random samples and observing
its behavior [6]. The strategy is simple in concept, but it is time-consuming, being
the first computerized MC simulation developed and implemented by the working
team of John and Klara von Neumann and Nick Metropolis with the advent of the
computers in 1947–1948 [7].

There are different algorithms [8–10] implemented to apply different MC solu-
tions by using different computational tools. Since the objective of this chapter is to
present MC validation and/or reliability for application developers (AD), on a
specific study case, we will not detail the different MC algorithms.

There are several characteristics that can be used to classify MC computational
tools (MCCT); however, based on the objective of this chapter, the available ones
will be classified according to its applicability as general and specific MCCTs. So, in
section 2, the general concepts and MCCT code core (cross-sectional libraries and
pseudorandom generators), including the specific and general MCCTs characteris-
tics and some codes available nowadays, are going to be presented. In section 3, the
validation and reliability of MCCT code concepts and main methods, including its
limitations on the implementations of cross-sectional libraries and random genera-
tors, are going to be discussed. To illustrate this, a case study of validation for
dosimetry in mammography using two MCCT methods for radiation transport
(Geant4 and XRMC) is going to be presented. In the last section, the final consid-
erations on choosing a MCCT and important issues on validation or reliability tests
will be presented.

2. Monte Carlo general concepts and core

The MC method may be used to solve different kinds of problems. It may be
used to solve problems that could also be solved by deterministic calculations, but it
is usually more time-consuming than those and can increase the complexity of the
solution. MC must to be applied, generally, when the change in the model follows a
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“time dependence” and is suitable for a stochastic calculation, which depends on a
sequence of random numbers generated during the simulation. It means that a new
execution of the solution with a new (different) sequence of random numbers for
the same simulation will not give identical results. However, it will return values
that agree with the results obtained from the previous sequence within some “sta-
tistical error” or in a statistical fluctuation range [11].

In a general manner, the problems that are in essence managed by random
phenomena can be solved by applying MC [11, 12]. The main idea of MC method is
to estimate a quantity, based on systems that use random numbers to simulate
random walks [11], with an estimator computed from observed/experimental data
[12]. Considering this idea, the core system of a MCCT is based on a randomized
algorithm (random number generator) to manage probabilities (libraries of sam-
pling distribution) [12]. A MCCT has other tools implemented, but for an AD, the
knowledge of the MC core limitations is essential to estimate the accuracy and
precision of the results.

Taking into account the proposition of MCCT for transport radiation, one may
define core as the computational random number generator (randomized algo-
rithm) and the cross sections for each possible process of interaction (probabilities,
in the case of photons that can be the total attenuation cross sections for each
possible process, or the differential cross sections—if applicable—or the energy
transfer cross sections or the energy absorption cross sections). Let’s think about a
traditional MC simulation as is represented in the following scheme (Figure 1). It is
important to keep in mind that this is a simplified scheme of transport radiation
designed to aid the understanding of the basics of MC processing. Before one starts
to run1 an event2 in a MCCT, one may define the simulation universe (or world),
including the geometry, material composition of the simulated objects, and, if
necessary, the additional information needed for the interaction.

The run starts always with the generation of a primary particle (emitted by the
radiation source), and it finishes when all histories were run. As one may observe in
Figure 1, the system starts the run, after the geometry built and physics definition,
by initializing the counter of the number of histories (VARnh). This variable is
compared to the expected total number of histories (nh), so if the VARnh is equal to
nh, then the termination of run is performed, or if VARnh is smaller than nh, then a
new history is started by generating a new primary particle. In the generation of
primary particle, if the source is defined by an energy distribution and/or position
distribution (linear, planar, or volumetric source) and/or momentum direction
distribution, the random number generator will be evoked (one to each distribution
needed). After the primary particle of the source is generated, the information
about this particle is recorded at the beginning of step (pre-step information).
Following the step execution, the end of the step information will be generated
(post-step information) and tested. The traditional MCCT tests are:

a. Is this particle inside the world? In MC simulation, the geometrical limits to
follow the transport of radiation are the limits described on the geometry by
the larger volume (the world) that will contain the other volumes. Some
MCCTs have no world volume defined; usually if they are specific MC using
variance reduction techniques that force the radiation to interact with the

1 RUN: word used to define the execution of the MC code.
2 EVENT: every interaction that happened to one primary particle or its secondaries until they die or

leave the universe of simulation. It is defined as the collections of steps performed by one particle.
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It seems to be a simple problem, but its solution ensued a sequence of different
mathematical methodologies [3]. For example, in 1812, Laplace, using his theory of
probability and theoretical calculations based on this methodology to determine
an approximation to the π value [3, 4], presented a generalized solution in 3D
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by Leclerc [2], the MC method was proposed as an alternative solution to analytical
mathematics to evaluate the behavior of random samples to predict a statistic
sample distribution or a statistic behavior. This behavior can be assessed by empir-
ical processes of drawing sequences of independent random samples and observing
its behavior [6]. The strategy is simple in concept, but it is time-consuming, being
the first computerized MC simulation developed and implemented by the working
team of John and Klara von Neumann and Nick Metropolis with the advent of the
computers in 1947–1948 [7].

There are different algorithms [8–10] implemented to apply different MC solu-
tions by using different computational tools. Since the objective of this chapter is to
present MC validation and/or reliability for application developers (AD), on a
specific study case, we will not detail the different MC algorithms.

There are several characteristics that can be used to classify MC computational
tools (MCCT); however, based on the objective of this chapter, the available ones
will be classified according to its applicability as general and specific MCCTs. So, in
section 2, the general concepts and MCCT code core (cross-sectional libraries and
pseudorandom generators), including the specific and general MCCTs characteris-
tics and some codes available nowadays, are going to be presented. In section 3, the
validation and reliability of MCCT code concepts and main methods, including its
limitations on the implementations of cross-sectional libraries and random genera-
tors, are going to be discussed. To illustrate this, a case study of validation for
dosimetry in mammography using two MCCT methods for radiation transport
(Geant4 and XRMC) is going to be presented. In the last section, the final consid-
erations on choosing a MCCT and important issues on validation or reliability tests
will be presented.

2. Monte Carlo general concepts and core

The MC method may be used to solve different kinds of problems. It may be
used to solve problems that could also be solved by deterministic calculations, but it
is usually more time-consuming than those and can increase the complexity of the
solution. MC must to be applied, generally, when the change in the model follows a
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“time dependence” and is suitable for a stochastic calculation, which depends on a
sequence of random numbers generated during the simulation. It means that a new
execution of the solution with a new (different) sequence of random numbers for
the same simulation will not give identical results. However, it will return values
that agree with the results obtained from the previous sequence within some “sta-
tistical error” or in a statistical fluctuation range [11].

In a general manner, the problems that are in essence managed by random
phenomena can be solved by applying MC [11, 12]. The main idea of MC method is
to estimate a quantity, based on systems that use random numbers to simulate
random walks [11], with an estimator computed from observed/experimental data
[12]. Considering this idea, the core system of a MCCT is based on a randomized
algorithm (random number generator) to manage probabilities (libraries of sam-
pling distribution) [12]. A MCCT has other tools implemented, but for an AD, the
knowledge of the MC core limitations is essential to estimate the accuracy and
precision of the results.

Taking into account the proposition of MCCT for transport radiation, one may
define core as the computational random number generator (randomized algo-
rithm) and the cross sections for each possible process of interaction (probabilities,
in the case of photons that can be the total attenuation cross sections for each
possible process, or the differential cross sections—if applicable—or the energy
transfer cross sections or the energy absorption cross sections). Let’s think about a
traditional MC simulation as is represented in the following scheme (Figure 1). It is
important to keep in mind that this is a simplified scheme of transport radiation
designed to aid the understanding of the basics of MC processing. Before one starts
to run1 an event2 in a MCCT, one may define the simulation universe (or world),
including the geometry, material composition of the simulated objects, and, if
necessary, the additional information needed for the interaction.

The run starts always with the generation of a primary particle (emitted by the
radiation source), and it finishes when all histories were run. As one may observe in
Figure 1, the system starts the run, after the geometry built and physics definition,
by initializing the counter of the number of histories (VARnh). This variable is
compared to the expected total number of histories (nh), so if the VARnh is equal to
nh, then the termination of run is performed, or if VARnh is smaller than nh, then a
new history is started by generating a new primary particle. In the generation of
primary particle, if the source is defined by an energy distribution and/or position
distribution (linear, planar, or volumetric source) and/or momentum direction
distribution, the random number generator will be evoked (one to each distribution
needed). After the primary particle of the source is generated, the information
about this particle is recorded at the beginning of step (pre-step information).
Following the step execution, the end of the step information will be generated
(post-step information) and tested. The traditional MCCT tests are:

a. Is this particle inside the world? In MC simulation, the geometrical limits to
follow the transport of radiation are the limits described on the geometry by
the larger volume (the world) that will contain the other volumes. Some
MCCTs have no world volume defined; usually if they are specific MC using
variance reduction techniques that force the radiation to interact with the

1 RUN: word used to define the execution of the MC code.
2 EVENT: every interaction that happened to one primary particle or its secondaries until they die or

leave the universe of simulation. It is defined as the collections of steps performed by one particle.
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defined volumes, then the logic is different than the presented in the scheme
in Figure 1.

b. Is this particle alive? In MCCT for transport radiation, there is a minimum
energy to proceed the transportation, so if the particle kinetic energy is
smaller than this minimum energy, then this particle will die, which means in
MCCT all residual energy will be locally deposited and the particle will stop.

Figure 1.
Simplified scheme of a traditional Monte Carlo simulation.
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If the particle is alive and inside the world, then it is important to know if this
particle will find a geometrical boundary and/or a different material in its path
during the step. If the answer is no to both pre-defined questions, then the code will
proceed with the step. If the answer is yes, the code will calculate the length until
this boundary and check if the other volume has or does not have a new material,
and the step will proceed until the boundary; after that the residual kinetic energy
of the particle will be recalculated for the next volume material. At the end of the
step, the post-step information is recorded. Then, the VARnh is increased of a unit
and is compared to nh. If VARnh is equal to nh, the termination of run is performed.
If VARnh is smaller than nh, a new step procedure is started by recording the post-
step information of the previous step as initial information of the new one, pro-
ceeding with the verifications and implementations for this new step. It is impor-
tant to note that all secondary particles generated, as product of an interaction, will
be transported following the same procedure starting in Record Pré-Step with the
exception that VARnh will not be incremented and these particles will be followed
until they die or leave the world.

To illustrate the selection of random number, let’s create a hypothesis of a
40 keV photon interacting with a liquid water medium. In this case, the total
attenuation cross section is 0.2683 cm2/g, being composed by coherent scattering
(0.02874 cm2/g), incoherent scattering (0.1827 cm2/g), and photoelectric effect
(0.05680 cm2/g).3 Figure 2 shows the simplified scheme that defines the process of
interaction.

Considering the information in Figure 2, one may see that among the three
possible processes of interaction a probability of approximately 10.71% for coherent
scattering, 68.11% for incoherent scattering, and 21.18% for photoelectric effect.
Then, the normalization of the probabilities for each process between 0 and 1 is
performed, considering the total attenuation cross section as the normalizing factor,

Figure 2.
Scheme of the random generator logic to define a probability of interaction of a 40 keV photon into liquid water
medium.

3 All attenuation cross sections used were from XCOM NIST (https://physics. nist.gov/cgi-bin/Xcom/xc

om3_2).
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and these normalized probabilities are organized in a sequence of real values. The
possible number of values between 0 and 1 depends on the variable type defined in
the MCCT implementation for the random generator number. On the presented
example, the random numbers in the intervals [0; 0.10714) identify coherent scat-
tering [0.10714; 0.78824), incoherent scattering, and [0.78824; 1) photoelectric
effect. It is important to note that the probability of occurrence is proportional to
the quantity of random numbers in the sequence of values. In the case exemplified
in Figure 2, the number 0.0053721 is in the range [0; 0.10714) and defines the
photon transport by coherent effect. If the random number were 0.78824, the
photoelectric effect would be simulated since this value is in the range [0.78824; 1).

During the simulation several processes may need to have a random number
generated such as process of interaction (used in the above example), momentum
direction of the particle, secondary particle momentum and kinetic energy, atomic
effect (if considered in the simulation), probability of Auger effect, and momentum
direction of theAuger electron or auto-absorption of theAuger electron, among others.
After the random definition of some of the abovementioned characteristics, determin-
istic equations are applied to keep the Principle of Energy andMomentum Conserva-
tion. Regarding the core of MCCT, it is important to know, as an AD, themain validity
and limitations of the random number generator and the cross-sectional libraries.

The random number generator may be classified as pseudorandom number
generator (PRNG) or true random number generator (TRNG) [13]. The so-called
PRNG uses a deterministic process to generate a series of outputs from an initial
seed state which means that for the same input “seed” one may have the same
output number [13–15]. As an example one may cite the <cstdlib> head of C++
rand() function. In this case, usually the random number generated is an integer,
and to know the range of possible numbers, it helps the AD to understand the
limitations of the number of histories that can be run without compromising the
randomicity of the simulation [13, 14], the so-called period of random number
generator [16]. Table 1 presents the different range of values generated among the
possible integer variables according to [14].

Based on the value range presented in Table 1, one may see that different possible
variable definitions of the random generator can affect the resolution of the simula-
tion, which means that there is a limit of histories with a proper random behavior for
a PRNG. The PRNG is used in several applications [15], and one advantage of using it
on MCCT is the capability of reproducing the same sequence of pseudorandom
numbers [14] that can be used to validate an application and/or to validate and test
different installations of a MCCT under different environments (evaluating the
accuracy and precision of the simulation in different conditions) [16].

The TRNG uses a non-deterministic source to produce randomness [13], and its
advantage is that TRNG is unpredictable, unbiased, and independent [16]. The

Type Storage size Values range

Short 2 bytes �32,768 to 32,767

Int 2 bytes or 4 bytes �32,768 to 32,767 or �2,147,483,648 to 2,147,483,647

Long 4 bytes �2,147,483,648 to 2,147,483,647

Unsigned short 2 bytes 0 to 65,535

Unsigned integer 2 bytes or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

Unsigned long 4 bytes 0 to 4,294,967,295

Table 1.
Type of integers, storage size, and range of possible values in C++ programming language.
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disadvantage on developing TRNG is that it is implemented in hardware, which
limits the flexibility of this random number generator and since additional verifica-
tion of randomness is required with every change of environment [16]. Because of
the hardware implementation of TRNG, computers without a hardware random
number generator will require a peripheral that will generate a TRNG seed to be
used as incoming data for PRNG [16].

Sometimes, an association of random number generators (PRNG-PRNG and
PRNG-TRNG) is implemented to increase the period of a random generator, but the
randomness of the number generated must be tested and verified. Special care must
to be taken attention on running MCCT in computational grids or clusters to ensure
that every processor will have an independent random seed to start the process. If this
requirement is not kept, inconsistencies in the results may happen turning them
unrealistic and carrying with them statistical tendencies that do not represent the
expected probabilities. Therefore, to guarantee the reliability of results of a MCCT,
the ADmust understand the random number generator and its period and limitations.

Considering the reliability of the MCCT in the example described above, when it
is applied to low-energy radiation transport, the probabilities (e.g., cross-sectional
libraries—total and differential—for photons), the distribution functions, and the
transport models for particles, such as electrons, are indispensable. As a general
rule, it is important to know the processes simulated and if there are one or more
models to be evoked. To validate these characteristics, the MCCT requires a micro-
scopic validation4 that in turn requires experimental data of the cross sections or
distribution functions for different material and energy range. The microscopic
validation is hard work to be performed by an AD; however, one may find the
validation of the data libraries in the literature and/or online libraries [17–27] and on
independent validations published for specific MC codes [21, 28–30].

2.1 General versus specific Monte Carlo toolkit for radiation transport

The MCCT may be classified according to its applicability as general purpose
(GP) [31–33] or specific purpose (SP) [33–35]. It is important to understand that
this classification refers to the possibility of using MCCT in different applications
and not the kind of solution generated by the MCCT. All MCCTs present a general
solution to the study case, when applied to the same particle types, degrees of
freedom, and simulated quantities, taking into account the limitations of the
implemented code and libraries.

Some MCCTs are developed considering the simulation of a wide range of
particles and/or quantities. Usually these MCCTs simulate detailedly the radiation
transport of primary and secondary particles using minimal approximations as
possible. These MCCTs are called general purpose Monte Carlo toolkit (GPMCT),
and they may be applied to solve a wide range of radiation transport problems: large
energy range, different particle types, different geometries, and a large range of
simulated processes. As examples, one may cite Geant4, MCNP, or FLUKA.

The geometry and tracking (Geant4) [36–38] is a MCCT that has a complete
range of functionalities including tracking, geometry, physics models, and hits [36].
It was developed based on object-oriented technology and implemented in C++
programming language. The physics processes available cover a comprehensive
range, including electromagnetic, hadronic, and optical ones with a large set of

4 Microscopic validation: refers to the detailed validation of microscopic quantities (usually the libraries)

used by the MC code to generate the quantitative results. See more information on Section 3.

Verification, validation, comparison, and reliability of Monte Carlo toolkit.
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PRNG uses a deterministic process to generate a series of outputs from an initial
seed state which means that for the same input “seed” one may have the same
output number [13–15]. As an example one may cite the <cstdlib> head of C++
rand() function. In this case, usually the random number generated is an integer,
and to know the range of possible numbers, it helps the AD to understand the
limitations of the number of histories that can be run without compromising the
randomicity of the simulation [13, 14], the so-called period of random number
generator [16]. Table 1 presents the different range of values generated among the
possible integer variables according to [14].

Based on the value range presented in Table 1, one may see that different possible
variable definitions of the random generator can affect the resolution of the simula-
tion, which means that there is a limit of histories with a proper random behavior for
a PRNG. The PRNG is used in several applications [15], and one advantage of using it
on MCCT is the capability of reproducing the same sequence of pseudorandom
numbers [14] that can be used to validate an application and/or to validate and test
different installations of a MCCT under different environments (evaluating the
accuracy and precision of the simulation in different conditions) [16].
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advantage is that TRNG is unpredictable, unbiased, and independent [16]. The
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disadvantage on developing TRNG is that it is implemented in hardware, which
limits the flexibility of this random number generator and since additional verifica-
tion of randomness is required with every change of environment [16]. Because of
the hardware implementation of TRNG, computers without a hardware random
number generator will require a peripheral that will generate a TRNG seed to be
used as incoming data for PRNG [16].

Sometimes, an association of random number generators (PRNG-PRNG and
PRNG-TRNG) is implemented to increase the period of a random generator, but the
randomness of the number generated must be tested and verified. Special care must
to be taken attention on running MCCT in computational grids or clusters to ensure
that every processor will have an independent random seed to start the process. If this
requirement is not kept, inconsistencies in the results may happen turning them
unrealistic and carrying with them statistical tendencies that do not represent the
expected probabilities. Therefore, to guarantee the reliability of results of a MCCT,
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4 Microscopic validation: refers to the detailed validation of microscopic quantities (usually the libraries)

used by the MC code to generate the quantitative results. See more information on Section 3.

Verification, validation, comparison, and reliability of Monte Carlo toolkit.

85

Monte Carlo’s Core and Tests for Application Developers: Geant4 and XRMC Comparison…
DOI: http://dx.doi.org/10.5772/intechopen.88893



materials, chemical elements, and long-lived particles, over a wide energy range
starting from 250 or 990 eV and extending to a few TeV. The extended package
Geant4-DNA adds processes for the modeling of induced biological damage by
ionizing radiation at DNA scale, which transports all particles using a discrete model
[39–42] extending the possibility of transport particles down to a few eV (the range
is different to each particle and process). On Geant4, the AD may access a large
cross-sectional library database, making possible to choose different radiation pro-
cesses and, to each process, to select different transport models. On Geant4, the AD
may implement different variance reduction methods and set different parameters
to transport primary and secondary particles [43] among the more than 35 particles5

allowed [43]. AD may use Geant4 classes to create collections of interactions,
named hits (G4VHit or G4THitsCollection), and/or evoke sensitive detector coun-
ters (G4MultiFunctionalDetector or G4VPrimitiveScorer) and/or implement his/
her own personal class (a new sensitive detector or hit file) [44].

The Monte Carlo N-particle (MCNP6) [45–49] MCCT includes a powerful gen-
eral source, a criticality source, and a surface source. In addition to that, this MCCT
includes both geometry and output counter (named tally) plotters. MCNP is
implemented on GNU Fortran and C/C++ compilers [49] being a continuous-
energy, generalized-geometry, time-dependent, MC radiation-transport code
designed to track many particle types over broad ranges of energies. This MCCT
may simulate neutron, photon, electron, or coupled neutron/photon/electron
transport and heavy ions [49]. It simulates different energy ranges for different
particles: neutron energy range from 10�11 to 20 MeV for most of isotopes and up to
150 MeV for some others, photon energy range from 1 keV up to 100 GeV, and
electron energy range from 1 keV to 1 GeV [50]. It has a rich collection of variance
reduction techniques with an extensive collection of cross-sectional data. In addi-
tion, MCNP contains numerous tallies: surface current and flux, volume flux (track
length), point or ring detectors, particle heating, fission heating, pulse height tally
for energy or charge deposition, mesh tallies, and radiography tallies [46, 49]. This
MCCTmakes it possible to change transport parameters by command lines [46, 50].

The Fluktuierende Kaskade (FLUKA) [51–53] MCCT was implemented and
presents a number of ADs interface routines in Fortran 77. It simulates accurately
the interaction and propagation of radiation in matter of about 60 different parti-
cles,6 including photons and electrons from 100 eV or 1 keV to thousands of TeV,
neutrinos, muons of any energy, hadrons of energies up to 20 TeV and all the
corresponding antiparticles, neutrons down to thermal energies, and heavy ions.
Efficiency on radiation transport has been achieved using a frequent access table
look-up sampling, and accuracy is maximized by systematic use of double precision
variables. It is provided with a large number of available options for an AD and has
been completely restructured introducing dynamical dimensioning. It has the dou-
ble capability to be used in a biased mode as well as a fully analogue code which
means that while it can be used to predict fluctuations, signal coincidences, and
other correlated events, a wide choice of statistical techniques is also available to
investigate punch through or other rare events in connection with attenuations by
many orders of magnitude [52]. FLUKA can generate several output cards: a main
(standard) output file, two scratch files, a file with the last random number seeds,
an error messages file (if any), and any number (including zero) of estimator

5 The Geant4 list of particles and its identifications number may be found at https://www.star.bnl.gov/

public/comp/simu/newsite/gstar/Manual/particle_id.html).
6 The FLUKA list of particles and its identifications number may be found at http://www.fluka.org/c

ontent/manuals/online/5.1.html.
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output files. Generally, the AD may choose between formatted and unformatted
output and may generate a personalized routine for additional outputs [53].

However, someMCCTs are developed to solve problems considering specific par-
ticles or specific geometrical conditions or specific simulated quantities. These MCCTs
are called specific purpose Monte Carlo toolkit (SPMCT) and are usually optimized to
use several approximations and variance reduction techniques. They are developed
considering restrictions on applications, and very specific quantities are simulated. In
general, the SPMCTs are faster than the GPMCTs to solve the same problem. As
examples, one may cite XRMC, ITS TIGER series, PENELOPE, EGS, and ETRAN.

The X-Ray Monte Carlo (XRMC) [54] simulates accurately X-ray imaging and
spectroscopy experiments of heterogeneous samples. This MCCT is implemented in
C++ and is capable of simulating, in detail, complex experiments on generic samples
using different variance reduction techniques by default. It was developed initially
to simulate X-ray fluorescence and photon imaging. XRMC simulates the transport
of photons only and makes it possible to simulate the following quantities: total
fluence and fluence with energy binding and total energy fluence and energy
fluence with energy binning. As output, it may generate a raw file with the trans-
mission image [55], and if energy binning is evoked, the ADmay define the bin size.
On transport possibilities, the AD may define maximum scattering order number,
maximum scattering order as transmission, first-order scattering or fluorescence
emission, and second-order scattering or fluorescence emission or higher order. It
also has the flexibility of activating or inactivating fluorescence [54, 55] process.
The cross-sectional library evoked by XRMC is the xraylib [56], a library for X-ray
matter interactions generally used for XRF applications.

The integrated tiger series (ITS) [57–59], version 6, allows solutions of linear
time-independent coupled electron/photon radiation transport problems. This
MCCT employs accurate cross sections, sampling distributions, and physical models
to describe the production and transport of the electron/photon cascade from 1.0 keV
to 1.0 GeV [58, 59]. The ITS, version 6, was converted to Fortran 90 [59] with C++
links to CAD software. The availability of the source code allows the AD to tailor this
MCCT to specific applications and to extend its capabilities to more complex appli-
cations. Overlaps in CAD geometry may be evaluated and reported in an output file
[58]. The AD may set different parameters by command line like to define the cross
section for different data sets, to deactivate the coherent photon scattering, to
include (or not) binding effects in incoherent photon scattering, and/or to apply (or
not) energy-loss straggling to electrons [59]. The AD may set different output infor-
mation such as the energy and charge deposited in every subzone, the detailed
energy and charge deposited in every subzone, and the geometry-dependent input
settings [58]. ITS’ cross-sectional [58] suite of codes includes a multigroup version
along with the multigroup cross-sectional generator CEPXS and a continuous-energy
(XGEN) cross sections [58, 59]. In ITS, photons below 1 keV are locally absorbed, an
alternative algorithm to electron transport was implemented named Generalized
Boltzmann Fokker-Planck (GBFP), and the full transport capability for photons and
electrons using the Livermore database is under development [58].

The penetration and energy loss of positrons and electron (PENELOPE) [60],
version 2014, MCCT simulates the coupled electron-photon transport as well as
photons, electrons, and positrons. The PENELOPE simulation algorithm is based on
a scattering model combining numerical databases with analytical cross-sectional
models for the different interaction mechanisms being applicable to energies from
few hundred eV up to approximately 1 GeV. Photon transport is simulated by
means of the standard, detailed simulation method. Electron and positron trans-
ports are simulated based on a mixed procedure, which combines a detailed simu-
lation with a condensed one [60–63]. The implementation of the cross-sectional
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libraries considers EPDL7 total cross sections for photoelectric absorption and Ray-
leigh scattering, XCOM8 cross sections for pair production, and SUMGA9 function
for total atomic cross sections and Compton scattering. PENELOPE can simulate the
emission of characteristic X-rays and Auger electrons resulting from vacancies pro-
duced in K, L, M, and N shells by photoelectric absorption, Compton scattering,
triplet production, and electron/positron impact. In PENELOPE 2014, the elastic
collisions of electrons and positrons are simulated, using numerical partial-wave cross
sections for free neutral atoms by elastic scattering of electrons and positrons by
atoms (ELSEPA) program that is a database distributed by ICRU Report 77 (2007)
[60]. The output may be defined using Fortran subroutines, where the AD may get
different quantities such as number of materials that were loaded, mass density of
specific materials, characteristics of the slowing down for charged particles, energy of
the particle at the beginning of the track segment, effective stopping power of soft
energy-loss interactions, and energy lost along the step, among others [61].

The electron gamma shower (EGS) MCCT may be found on different main
versions, EGS5 and EGSnrc. Both versions of EGS are implemented in Mortran3
language, which is a preprocessor for Fortran [64, 65]. The origins of EGS MCCT
are documented in NRC-PIRS-0436 report [66]. The EGS5 simulates the coupled
transport of electrons and photons in an arbitrary geometry for particles with
energies from a few keV up to a several hundred GeV [64] depending on the atomic
numbers of the target materials. The EGSnrc10 (Electron Gamma Shower from
National Research Council) is an extended and improved version of the EGS MCCT,
having specific modeling implementations to electron and photon transport
through matter. It includes the BEAMnrc software component that models beams
traveling through consecutive material components, ranging from a simple slab to
the full treatment head of a radiotherapy linear particle accelerator (linac). EGSnrc
is particularly well-suited for medical physics applications (research and devices
development) being used for medical radiation detection, medical image based on
x-radiation, and dosimetry for a specific volume. However, due to the flexibility of
this MCCT, the AD may use it for different applications such as in industrial linac
beams, X-ray emitters, radiation shielding, and more. The EGSnrc simulates the
radiation transport in homogeneous materials for photons, electrons, and positrons
with energies between 1 keV and 10 GeV. It incorporates significant refinements in
charged particle transport and better low energy cross sections and makes it possi-
ble to define elaborated geometries and particle sources [65].

The electron transport (ETRAN) MCCT transports electrons and photons
through extended media being developed by the National Bureau of Standards. This
MCCT has various versions representing mainly refinements, embellishments, and
different geometrical treatments that share the same basic simulation algorithm
based on random sampling the path of electrons and photons as they travel through
matter. The algorithms and computational tools written at other laboratories, such

7 EPDL: Photon and Electron Interaction Data is available at https://www-nds.iaea.org/epdl97.
8 XCOM: Photon Cross-sectional Database is available at https://www.nist.gov/pml/xcom-photon-cross-
sections-database.
9 Additional information about SUGMA function access SectionB.2 in Appendix B of the PENELOPE-

2014: A Code System for Monte Carlo Simulation of Electron and Photon Transport at https://

www.oecd-nea.org/science/docs/2015/nsc-doc2015-3.pdf
10 The EGSnrc has its official page associate to National Research Council Canada at https://nrc.canada.

ca/en/research-development/products-services/software-applications/egsnrc-software-tool-model-radia

tion-transport.

88

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

as Sandia’s older SANDYL code and their more current series of the TIGER,
CYLTRAN, and ACCEPT codes, together have been called ETRAN model too.

When an AD chooses a MCCT, it is important to consider:

a. The characteristics of the application: type of primary and secondary particles
and their energy range, quantities to be simulated, geometry and material
composition of the simulated universe;

b. The capabilities of the MC code: if the code can handle properly the transport
of primary and (if necessary) secondary particles in the energy range of
interest, if it is possible to simulate the necessary quantities, and if it can
handle the transport simulation in all material compositions expected and
how it simulates the geometry of interest;

c. The limitations of the MC code: transport processes and models simulated in
the energy range of interest (search for microscopic validation of the cross-
sectional libraries published) and how accurate the MCCT is on simulating
the dosimetric quantities and the particle fluxes (search for macroscopic
validation published), being recommended that the AD proceeds his/her own
macroscopic validation;

d. The computational performance: verifying the running time to get an
acceptable statistical fluctuation in the results for the cases of interest and, in
some cases, checking the RAMmemory used to build the virtual universe and
the memory used to save the output files;

Considering those minimal guidelines on choosing a MCCT, there is a good chance
for the AD to not have unresolvable problems during the development of an applica-
tion. Now, if you, as an AD, still have questions about the proper MCCT to choose,
keep in mind the best one is the MCCT able to solve your “problem” (accuracy of the
results) with an adequate statistical fluctuation (precision of the results). In addition
to that, an AD at least should be able to install and to use the MCCT interface, being
aware of the common limitation of it. All these characteristics may be found, usually,
in the manual (user manual and physics process manual).

3. Verification, validation, comparison, and reliability of Monte Carlo
toolkits

To guarantee that one application is realistic, it is important to test it (computa-
tional code) in different ways. There are several known ways to test a computa-
tional code and its parts; however, in this section, the focus is to present the
concepts applied on developed applications for MCCTs such as verification, valida-
tion, comparison, and reliability.

When one is working in an application for MCCT, it is important to understand
the concepts that may guarantee its internal consistency and accuracy. The IEEE
1012–2016 gives a general description of software verification and validation, and
the IEEE 24765–2017 gives a detailed description of these concepts defining these
terms. Verification is defined as a “confirmation by examination and provisions of
objective evidence that specified requirements have been fulfilled” (IEEE 1012–
2016), and lately this concept was detailed as “the process of evaluating a system or
component to determine whether the products of a given development phase satisfy
the conditions imposed at the start of that phase” (IEEE 24765–2017). Validation is
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defined as a “confirmation by examination and provisions of objective evidence that
the particular requirements for a specific intended use are fulfilled” (IEEE 1012–
2016), and lately this concept was detailed as “the process of evaluating a system or
component during or at the end of the development process to determine whether it
satisfies specified requirements” (IEEE 24765–2017). So, one may say that a valida-
tion was performed when this one answers affirmatively the question: “Are we
building the right product?” In the other hand, one may affirm that one is doing a
verification by answering the question: “Are we building the product right?” [67].

According to [68], “Validation involves the system and acceptance testing dur-
ing the test phase, whereas verification involves reviews and audits, software unit
testing, and other techniques to evaluate intermediate work products such as the
software requirements specification, software design description, and individual mod-
ules during earlier project phases.” In MC, the AD does the verification of the
application developed to guarantee that this application is reproducing the system
(or geometry) and general conditions as close as possible to the reality, and the AD
does the validation to guarantee that the MC application (considering the geometry
material, particles if interaction and energy range of the particles) gives realistic
results when compared statistically to experimental data, when a consistent amount
of quantitative experimental data is available. In this context, it is fundamental to
understand the setup and the experimental limitations of the instruments and
measurements used in the experiments to take it into account on the data analyses
to explain observed differences and similarities on the results.

When experimental data is not available, it is possible to use other MCCT or
deterministic models to compare to the MC application results. In this way, one is
performing a comparison between models and not a validation. This comparisonmust
be based on quantitative statistical tests. In this case, to know and understand the
main conceptions involved in the models and databases used, including its limita-
tions and previous validations, it is fundamental to explain the observed differences
and similarities on the results.

A reliability evaluation is recommendable when there are neither experimental
data on specific trustable models nor amount of data to perform a validation or a
comparison. The IEEE 982.1–2005 provides information used as indicators of reli-
ability defining software reliability as “the probability that software does not cause
the failure of a system for a specified time under specified conditions.” In this
context, the software reliability represents an effective measurement of the more
general concept of software quality, using derived quantities and experimental
models that are partially consistent to the application of interest. It is important to
know the systematic errors and map all differences on the contour limitations of the
application and the theory involved in this comparison.

It is possible to combine validation results, comparison between models, and
software reliability to evaluate an application. Additional information about statis-
tical tests and specific recommendations for software verification, validation, reli-
ability, and comparison may be found in international documents. Thus, it is
important to study the international standard regulations/recommendations when
one wants to validate any software, including the MCCTs themselves and applica-
tions developed using them. The standard lists of active documents from IEEE,
International Electrotechnical Commission (IEC), and International Organization
for Standardization (ISO) may be searched online.11 Additional detailed informa-
tion about this subject may be studied at:

11 Search for the active standards was performed at https://standards.ieee.org; https://www.en-standard.

eu and https://www.iso.org/about-us.html.
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• IEEE 730–2014—IEEE Standard for Software Quality Assurance Processes

• IEEE 982.1–2005—IEEE Standard Dictionary of Measures of the Software
Aspects of Dependability

• IEEE 1012–2016—IEEE Standard for System, Software, and Hardware
Verification and Validation (corrigendum 1012–2016/Cor 1–2017)

• IEEE 1016–2009—IEEE Standard for Information Technology-Systems Design
—Software Design Descriptions

• IEEE 12207–2017—ISO/IEC/IEEE International Standard—Systems and
software engineering—Software life cycle processes

• IEEE 14764–2006—ISO/IEC/IEEE International Standard for Software
Engineering—Software Life Cycle Processes—Maintenance

• IEEE 15026–1—Revision-2019—ISO/IEC/IEEE Approved Draft International
Standard—Systems and Software Engineering—Systems and Software
Assurance—Part 1: Concepts and Vocabulary

• IEEE 15026–2-2011—IEEE Standard—Adoption of ISO/IEC 15026–2:2011
Systems and Software Engineering—Systems and Software Assurance—Part 2:
Assurance Case

• IEEE 15026–3-2013—IEEE Standard Adoption of ISO/IEC 15026–3—Systems
and Software Engineering—Systems and Software Assurance—Part 3: System
Integrity Levels

• IEEE 15026–4-2013—IEEE Standard Adoption of ISO/IEC 15026–4—Systems
and Software Engineering—Systems and Software Assurance—Part 4:
Assurance in the Life Cycle

• IEEE 24765–2017—ISO/IEC/IEEE International Standard—Systems and
software engineering—Vocabulary

• IEEE 29119–1-2013—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 1: Concepts and definitions

• IEEE 29119–2-2013—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 2: Test processes

• IEEE 29119–3-2013—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 3: Test documentation

• IEEE 29119–4-2015—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 4: Test techniques

• IEEE 29119–5-2016—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 5: Keyword-Driven Testing

• IEC 61508–0 (2005–2101)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 0: Functional safety

91

Monte Carlo’s Core and Tests for Application Developers: Geant4 and XRMC Comparison…
DOI: http://dx.doi.org/10.5772/intechopen.88893



defined as a “confirmation by examination and provisions of objective evidence that
the particular requirements for a specific intended use are fulfilled” (IEEE 1012–
2016), and lately this concept was detailed as “the process of evaluating a system or
component during or at the end of the development process to determine whether it
satisfies specified requirements” (IEEE 24765–2017). So, one may say that a valida-
tion was performed when this one answers affirmatively the question: “Are we
building the right product?” In the other hand, one may affirm that one is doing a
verification by answering the question: “Are we building the product right?” [67].

According to [68], “Validation involves the system and acceptance testing dur-
ing the test phase, whereas verification involves reviews and audits, software unit
testing, and other techniques to evaluate intermediate work products such as the
software requirements specification, software design description, and individual mod-
ules during earlier project phases.” In MC, the AD does the verification of the
application developed to guarantee that this application is reproducing the system
(or geometry) and general conditions as close as possible to the reality, and the AD
does the validation to guarantee that the MC application (considering the geometry
material, particles if interaction and energy range of the particles) gives realistic
results when compared statistically to experimental data, when a consistent amount
of quantitative experimental data is available. In this context, it is fundamental to
understand the setup and the experimental limitations of the instruments and
measurements used in the experiments to take it into account on the data analyses
to explain observed differences and similarities on the results.

When experimental data is not available, it is possible to use other MCCT or
deterministic models to compare to the MC application results. In this way, one is
performing a comparison between models and not a validation. This comparisonmust
be based on quantitative statistical tests. In this case, to know and understand the
main conceptions involved in the models and databases used, including its limita-
tions and previous validations, it is fundamental to explain the observed differences
and similarities on the results.

A reliability evaluation is recommendable when there are neither experimental
data on specific trustable models nor amount of data to perform a validation or a
comparison. The IEEE 982.1–2005 provides information used as indicators of reli-
ability defining software reliability as “the probability that software does not cause
the failure of a system for a specified time under specified conditions.” In this
context, the software reliability represents an effective measurement of the more
general concept of software quality, using derived quantities and experimental
models that are partially consistent to the application of interest. It is important to
know the systematic errors and map all differences on the contour limitations of the
application and the theory involved in this comparison.

It is possible to combine validation results, comparison between models, and
software reliability to evaluate an application. Additional information about statis-
tical tests and specific recommendations for software verification, validation, reli-
ability, and comparison may be found in international documents. Thus, it is
important to study the international standard regulations/recommendations when
one wants to validate any software, including the MCCTs themselves and applica-
tions developed using them. The standard lists of active documents from IEEE,
International Electrotechnical Commission (IEC), and International Organization
for Standardization (ISO) may be searched online.11 Additional detailed informa-
tion about this subject may be studied at:

11 Search for the active standards was performed at https://standards.ieee.org; https://www.en-standard.

eu and https://www.iso.org/about-us.html.
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• IEEE 982.1–2005—IEEE Standard Dictionary of Measures of the Software
Aspects of Dependability

• IEEE 1012–2016—IEEE Standard for System, Software, and Hardware
Verification and Validation (corrigendum 1012–2016/Cor 1–2017)

• IEEE 1016–2009—IEEE Standard for Information Technology-Systems Design
—Software Design Descriptions

• IEEE 12207–2017—ISO/IEC/IEEE International Standard—Systems and
software engineering—Software life cycle processes
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• IEEE 15026–1—Revision-2019—ISO/IEC/IEEE Approved Draft International
Standard—Systems and Software Engineering—Systems and Software
Assurance—Part 1: Concepts and Vocabulary

• IEEE 15026–2-2011—IEEE Standard—Adoption of ISO/IEC 15026–2:2011
Systems and Software Engineering—Systems and Software Assurance—Part 2:
Assurance Case

• IEEE 15026–3-2013—IEEE Standard Adoption of ISO/IEC 15026–3—Systems
and Software Engineering—Systems and Software Assurance—Part 3: System
Integrity Levels

• IEEE 15026–4-2013—IEEE Standard Adoption of ISO/IEC 15026–4—Systems
and Software Engineering—Systems and Software Assurance—Part 4:
Assurance in the Life Cycle

• IEEE 24765–2017—ISO/IEC/IEEE International Standard—Systems and
software engineering—Vocabulary

• IEEE 29119–1-2013—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 1: Concepts and definitions

• IEEE 29119–2-2013—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 2: Test processes

• IEEE 29119–3-2013—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 3: Test documentation

• IEEE 29119–4-2015—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 4: Test techniques

• IEEE 29119–5-2016—ISO/IEC/IEEE International Standard—Software and
systems engineering—Software testing—Part 5: Keyword-Driven Testing

• IEC 61508–0 (2005–2101)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 0: Functional safety
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• IEC 61508–1 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 1: General requirements

• IEC 61508–2 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 2: Requirements for
electrical/electronic/programmable electronic safety-related systems

• IEC 61508–3 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 3: Software requirements

• IEC 61508–4 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 4: Definitions and
abbreviations

• IEC 61508–5 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 5: Examples of methods
for the determination of safety integrity levels

• IEC 61508–6 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 6: Guidelines on the
application of IEC 61508–2 and IEC 61508–3

• IEC 61508–7 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 7: Overview of
techniques and measures

• IEC 61511–1 (2003–2101)—Functional safety—Safety instrumented systems
for the process industry sector—Part 1: Framework, definitions, system,
hardware and software requirements

• IEC 61511–2 (2003–2007)—Functional safety—Safety instrumented systems
for the process industry sector—Part 2: Guidelines for the application of IEC
61511–1

• IEC 61511–3 (2003–2003)—Functional safety—Safety instrumented systems
for the process industry sector—Part 3: Guidance for the determination of the
required safety integrity levels

• ISO/IEC 25010:2011—Systems and software engineering—Systems and
software Quality Requirements and Evaluation (SQuaRE)—System and
software quality models

There are two ISO documents under development at the moment: the ISO/DTR
11462–3 Guidelines for implementation of statistical process control (SPC)—Part 3:
Reference data sets for SPC software validation and ISO/NP TR 11462–4 Guidelines
for implementation of statistical process control (SPC)—Part 4: Reference data sets
for measurement process analysis software validation.

3.1 Example of application for macroscopic validation, comparison, and
reliability for XRMC and Geant4

On this section a comparison between XRMC version 6.5.0-2 (henceforth called
XRMC) [54, 55] and Geant4 version 10.02.p02 (henceforth called Geant4) [36–38]
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is presented, as well as the validation of both MCCTs using experimental data
collected on three different mammographs. For validation the following measure-
ments were performed: exposure (X), kerma, half-value layer (HVL), inverse
square law (ISL), and backscattering (BS). Limitations, advantages, and disadvan-
tages of using a general and specific MCCT will be commented too. Absolute and
normalized quantities were selected because it is important to know the correction
factor for total number of photons generated per mAs per total irradiated area for
each equipment (this number is characteristic of each X-ray tube and will change
with the time), and the combination of these quantities helps to define the best
approximation for this correction factor in the simulation to get results closer to the
clinical reality.

It is important to inform that each setup had the data collected with calibrated
equipment (electrometers and ionizing chambers) available at their institutions and
performed by the same person that developed the application with both MCCTs.
The simulated geometries are the same used on the data collection. In the following,
a brief description of the measurement equipment and simulated setup is presented:

• Mammomat Inspiration [69, 70] (henceforth called Inspiration)—
measurements were performed with electrometer and ionizing chamber TNT
12000 kit (Fluke) and Al 99% purity filters. SIMULATION: dry air-sensitive
volume of 15 cm3; focal spot as point-source irradiating homogeneously on
circular surface of 2.08 cm of radius; spectra for acceleration voltages 25, 30,
and 35 kVp; track-additional filtration combination Mo-Mo (30 μm) and Mo-
Rh (25 μm); spectra of ripple 0%; target tilt angle of 20o; and a window of
0.8 mm of beryllium (Be). The HVL calculations are based on a source-to-
detector distance of 41.0 cm for different Al thickness filtration; and X data
were collected and simulated to source-to-detector distances 26, 40, 50, and
60 cm.

• Mammomat 3000 [71] (henceforth called M3000)—measurements were
performed with electrometer Victoreen model 660–1 (1315REV) and ionizing
chamber Victoreen model 660-4A (512REV). SIMULATION: dry air-sensitive
volume of 4 cm3; focal spot as point-source irradiating homogeneously on a
circular surface of 10.0 cm2; spectra of ripple 0%; target tilt angle of 22o; a Be
window 0.8 mm thick; track-additional filtration combinations of Mo-Mo
(30 μm), Mo-Rh (25 μm), and W-Rh (50 μm); and spectrum acceleration
voltages of 24 up to 32 kVp, in steps of 2 kVp. The BS was calculated considering
simulators of BR12 epoxy and polymethilmetacrilate, considering a source-to-
detector distance of 60.0 cm and simulator thicknesses of 4, 5, 6, and 8 cm.

• Lorad MIII [72] (henceforth called Lorad)—measurements were performed
with electrometer Modified Keitlhy (model 602) and ionizing chamber for
mammography MPT SN 442. SIMUALTION: dry air-sensitive volume of
6.0 cm3; focal spot as point-source irradiating homogeneously on a rectangular
surface of (18.0 � 24.0) cm2; spectra for acceleration voltages from 26 to
34 kVp, in steps of 2 kVp; track-additional filtration combination of Mo-Mo
(30 μm) and Mo-Rh (25 μm); spectra of ripple 0%; target tilt angulation of 16o;
and a Be window 0.8 mm thick. The X measurements were performed with
compression paddle and by minimizing the BS effects by increasing the
distance between the bucky and the ionizing chamber.

It is important to evaluate all the available possibilities on the MCCT to get a
realistic perspective of the configurations. Because of that, two modes to describe
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programmable electronic safety-related systems—Part 2: Requirements for
electrical/electronic/programmable electronic safety-related systems

• IEC 61508–3 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 3: Software requirements

• IEC 61508–4 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 4: Definitions and
abbreviations

• IEC 61508–5 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 5: Examples of methods
for the determination of safety integrity levels

• IEC 61508–6 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 6: Guidelines on the
application of IEC 61508–2 and IEC 61508–3

• IEC 61508–7 (2010–2104)—Functional safety of electrical/electronic/
programmable electronic safety-related systems—Part 7: Overview of
techniques and measures

• IEC 61511–1 (2003–2101)—Functional safety—Safety instrumented systems
for the process industry sector—Part 1: Framework, definitions, system,
hardware and software requirements

• IEC 61511–2 (2003–2007)—Functional safety—Safety instrumented systems
for the process industry sector—Part 2: Guidelines for the application of IEC
61511–1

• IEC 61511–3 (2003–2003)—Functional safety—Safety instrumented systems
for the process industry sector—Part 3: Guidance for the determination of the
required safety integrity levels

• ISO/IEC 25010:2011—Systems and software engineering—Systems and
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XRMC) [54, 55] and Geant4 version 10.02.p02 (henceforth called Geant4) [36–38]
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is presented, as well as the validation of both MCCTs using experimental data
collected on three different mammographs. For validation the following measure-
ments were performed: exposure (X), kerma, half-value layer (HVL), inverse
square law (ISL), and backscattering (BS). Limitations, advantages, and disadvan-
tages of using a general and specific MCCT will be commented too. Absolute and
normalized quantities were selected because it is important to know the correction
factor for total number of photons generated per mAs per total irradiated area for
each equipment (this number is characteristic of each X-ray tube and will change
with the time), and the combination of these quantities helps to define the best
approximation for this correction factor in the simulation to get results closer to the
clinical reality.

It is important to inform that each setup had the data collected with calibrated
equipment (electrometers and ionizing chambers) available at their institutions and
performed by the same person that developed the application with both MCCTs.
The simulated geometries are the same used on the data collection. In the following,
a brief description of the measurement equipment and simulated setup is presented:

• Mammomat Inspiration [69, 70] (henceforth called Inspiration)—
measurements were performed with electrometer and ionizing chamber TNT
12000 kit (Fluke) and Al 99% purity filters. SIMULATION: dry air-sensitive
volume of 15 cm3; focal spot as point-source irradiating homogeneously on
circular surface of 2.08 cm of radius; spectra for acceleration voltages 25, 30,
and 35 kVp; track-additional filtration combination Mo-Mo (30 μm) and Mo-
Rh (25 μm); spectra of ripple 0%; target tilt angle of 20o; and a window of
0.8 mm of beryllium (Be). The HVL calculations are based on a source-to-
detector distance of 41.0 cm for different Al thickness filtration; and X data
were collected and simulated to source-to-detector distances 26, 40, 50, and
60 cm.

• Mammomat 3000 [71] (henceforth called M3000)—measurements were
performed with electrometer Victoreen model 660–1 (1315REV) and ionizing
chamber Victoreen model 660-4A (512REV). SIMULATION: dry air-sensitive
volume of 4 cm3; focal spot as point-source irradiating homogeneously on a
circular surface of 10.0 cm2; spectra of ripple 0%; target tilt angle of 22o; a Be
window 0.8 mm thick; track-additional filtration combinations of Mo-Mo
(30 μm), Mo-Rh (25 μm), and W-Rh (50 μm); and spectrum acceleration
voltages of 24 up to 32 kVp, in steps of 2 kVp. The BS was calculated considering
simulators of BR12 epoxy and polymethilmetacrilate, considering a source-to-
detector distance of 60.0 cm and simulator thicknesses of 4, 5, 6, and 8 cm.

• Lorad MIII [72] (henceforth called Lorad)—measurements were performed
with electrometer Modified Keitlhy (model 602) and ionizing chamber for
mammography MPT SN 442. SIMUALTION: dry air-sensitive volume of
6.0 cm3; focal spot as point-source irradiating homogeneously on a rectangular
surface of (18.0 � 24.0) cm2; spectra for acceleration voltages from 26 to
34 kVp, in steps of 2 kVp; track-additional filtration combination of Mo-Mo
(30 μm) and Mo-Rh (25 μm); spectra of ripple 0%; target tilt angulation of 16o;
and a Be window 0.8 mm thick. The X measurements were performed with
compression paddle and by minimizing the BS effects by increasing the
distance between the bucky and the ionizing chamber.

It is important to evaluate all the available possibilities on the MCCT to get a
realistic perspective of the configurations. Because of that, two modes to describe
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the transport model were evaluated on XRMC (transmission (T) and with scatter-
ing for dosimetry (D)). In Geant4, the different radiation transport physics models
recommended for low energy photons and electrons (standard-option3 (std),
penelope (pen), and Livermore (liv)) were also evaluated. Since measurements of
the experimental spectra were not possible, different descriptions of the incident
spectra modeled by two different references [73, 74] were explored. When
nonexperimental spectra are used to simulate dosimetric quantities, it is necessary
to take into account the validation of normalized quantities and, if possible, to use
semiempirical correction factors to get accurate values for the average number of
photons per mAs per total irradiated area. There are different ways on doing it, but
the usual are:

i. to use the ratio of the simulated and experimental KERMA to get a correction
factor, generally using primary beam with different kVp and mAs, in the
range of energy of interest, collecting the KERMA with the minimization of
scattering effects or

ii. to use a normalized quantity, for example, normalized HVL, to evaluate the
proximity of the behavior of the simulated and experimental curves and then
use a good of fit (GoF) test on the non-normalized HVL to estimate the best
correction factor to fit the amplitude of the simulated to the experimental
data.

In both cases, the error estimation of the experimental data as well as the
quantification of the statistical fluctuations of the MC method must be taken into
account.

The XRMC does not return the absorbed energy or dose as an output informa-
tion, so to make the comparison of quantities calculated in same conditions possible,
the calculations are based on the incoming spectra on the surface of the sensitive
volume. The Geant4 application was planned to collect the spectra on the surface of
the sensitive volume, and the same calculations applied to XRMC results were used.
On the other hand, for Geant4 validation, the absorbed energy in the sensitive
volume was used. The statistical fluctuations were based in a sequence of 10 runs
with different seeds for each evaluated case, for both MCCTs, and the average and
standard deviation of the data were calculated and used on data analyses.

It is important to compare quantitatively experimental to simulated data for
validation. Several statistical tests usually may be applied generally: Chi-square (χ2),
Anderson-Darling, Kolmogorov-Smirnov, and Walt-Wolfowitz, among others.
However, when one has data with error or statistical fluctuation associated, the χ2

must be applied since it considers this in the nonparametric evaluation between the
statistical populations of interest. Another simple way to start an evaluation of the
results is to generate comparative plots. Figure 3 presents the graphical comparison
of MCCT validations, and Tables 2 and 3 present the χ2 p value for the validation
and the comparison for all simulated conditions and normalized data.

The graphics in Figure 3 present a visual interesting result for the evaluation of
the relative difference between experimental and simulated data taking experi-
mental data as reference. It shows that different systems may be better represented
by different modeled spectra. The Inspiration setup (Figure 3a) shows similar
results for both modeled spectra since all relative differences for median, first and
third quartiles, are between �10 and �2%. A small number of outlier data are
observed in this case. The M3000 (Figure 3b) evaluation clearly presents better
accuracy and precision using spectra from Barnes et al. [74], since it presents all
median data closer to 0% and the lowest data dispersion among the three
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mammographs represented by smallest first and third quartiles (in the range of �3
and 2%). For Lorad (Figure 3c) a better accuracy of the results is visible when
spectrum from Barnes et al. [74] is used specially with Geant4, because all data for
these spectra presented median closer to 0% and the data for catalogued spectra
[73] presented medians between �6 and �3%. However, for this mammograph,
there is no difference on precision when both modeled spectra are used, being
observed that the data between first and third quartiles for Barnes et al. [74] are in
the range of �4 and 8% and for catalogued spectra [73] between �10 and 1%. These
differences between spectra are more evident in Geant4 simulations. All
mammographs presented outliers for the evaluation of the relative differences. In
an evaluation of all mammographs studied, one may observe (Figure 3d) that the
spectrum from [74] was generally more accurate and precise than the spectra from
[73]. In the case of Geant4, the simulated absorbed energy seems to present smaller
dispersion than the calculated data based on spectra at the detector entrance surface
(observe the first and third quartiles in Figure 3d). Even observing this general
tendency on data dispersion, it is not possible to conclude that one calculation
methodology for the dosimetric quantities is better than the other, since this ten-
dency was only observed for one of the three studied mammographs (Figure 3b).

It is important to note that these are qualitative observations valid for the
database (equipment and setups) of this study or similar conditions of energy range
and irradiation geometry. To have a quantitative evaluation, one needs to evaluate
the statistical significance of the results. Table 2 presents the χ2 p value summary to
all evaluated cases considering a significance level of 0.05.

The null hypothesis12 is rejected if p value is smaller than the significance level
(values highlighted in gray in Table 2). When the null hypothesis is rejected, in this

Figure 3.
Relative difference between simulated and experimental data considering normalized data, with outliers, for
different modeled spectra and all studied mammographs: Inspiration (a), M3000 (b), Lorad (c), and all
equipment (d).

12 χ2 test null hypothesis: relationship between experimental and simulated data does not exist, which

means these samples are presenting the same distribution.
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the transport model were evaluated on XRMC (transmission (T) and with scatter-
ing for dosimetry (D)). In Geant4, the different radiation transport physics models
recommended for low energy photons and electrons (standard-option3 (std),
penelope (pen), and Livermore (liv)) were also evaluated. Since measurements of
the experimental spectra were not possible, different descriptions of the incident
spectra modeled by two different references [73, 74] were explored. When
nonexperimental spectra are used to simulate dosimetric quantities, it is necessary
to take into account the validation of normalized quantities and, if possible, to use
semiempirical correction factors to get accurate values for the average number of
photons per mAs per total irradiated area. There are different ways on doing it, but
the usual are:

i. to use the ratio of the simulated and experimental KERMA to get a correction
factor, generally using primary beam with different kVp and mAs, in the
range of energy of interest, collecting the KERMA with the minimization of
scattering effects or

ii. to use a normalized quantity, for example, normalized HVL, to evaluate the
proximity of the behavior of the simulated and experimental curves and then
use a good of fit (GoF) test on the non-normalized HVL to estimate the best
correction factor to fit the amplitude of the simulated to the experimental
data.

In both cases, the error estimation of the experimental data as well as the
quantification of the statistical fluctuations of the MC method must be taken into
account.

The XRMC does not return the absorbed energy or dose as an output informa-
tion, so to make the comparison of quantities calculated in same conditions possible,
the calculations are based on the incoming spectra on the surface of the sensitive
volume. The Geant4 application was planned to collect the spectra on the surface of
the sensitive volume, and the same calculations applied to XRMC results were used.
On the other hand, for Geant4 validation, the absorbed energy in the sensitive
volume was used. The statistical fluctuations were based in a sequence of 10 runs
with different seeds for each evaluated case, for both MCCTs, and the average and
standard deviation of the data were calculated and used on data analyses.

It is important to compare quantitatively experimental to simulated data for
validation. Several statistical tests usually may be applied generally: Chi-square (χ2),
Anderson-Darling, Kolmogorov-Smirnov, and Walt-Wolfowitz, among others.
However, when one has data with error or statistical fluctuation associated, the χ2

must be applied since it considers this in the nonparametric evaluation between the
statistical populations of interest. Another simple way to start an evaluation of the
results is to generate comparative plots. Figure 3 presents the graphical comparison
of MCCT validations, and Tables 2 and 3 present the χ2 p value for the validation
and the comparison for all simulated conditions and normalized data.

The graphics in Figure 3 present a visual interesting result for the evaluation of
the relative difference between experimental and simulated data taking experi-
mental data as reference. It shows that different systems may be better represented
by different modeled spectra. The Inspiration setup (Figure 3a) shows similar
results for both modeled spectra since all relative differences for median, first and
third quartiles, are between �10 and �2%. A small number of outlier data are
observed in this case. The M3000 (Figure 3b) evaluation clearly presents better
accuracy and precision using spectra from Barnes et al. [74], since it presents all
median data closer to 0% and the lowest data dispersion among the three
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mammographs represented by smallest first and third quartiles (in the range of �3
and 2%). For Lorad (Figure 3c) a better accuracy of the results is visible when
spectrum from Barnes et al. [74] is used specially with Geant4, because all data for
these spectra presented median closer to 0% and the data for catalogued spectra
[73] presented medians between �6 and �3%. However, for this mammograph,
there is no difference on precision when both modeled spectra are used, being
observed that the data between first and third quartiles for Barnes et al. [74] are in
the range of �4 and 8% and for catalogued spectra [73] between �10 and 1%. These
differences between spectra are more evident in Geant4 simulations. All
mammographs presented outliers for the evaluation of the relative differences. In
an evaluation of all mammographs studied, one may observe (Figure 3d) that the
spectrum from [74] was generally more accurate and precise than the spectra from
[73]. In the case of Geant4, the simulated absorbed energy seems to present smaller
dispersion than the calculated data based on spectra at the detector entrance surface
(observe the first and third quartiles in Figure 3d). Even observing this general
tendency on data dispersion, it is not possible to conclude that one calculation
methodology for the dosimetric quantities is better than the other, since this ten-
dency was only observed for one of the three studied mammographs (Figure 3b).

It is important to note that these are qualitative observations valid for the
database (equipment and setups) of this study or similar conditions of energy range
and irradiation geometry. To have a quantitative evaluation, one needs to evaluate
the statistical significance of the results. Table 2 presents the χ2 p value summary to
all evaluated cases considering a significance level of 0.05.

The null hypothesis12 is rejected if p value is smaller than the significance level
(values highlighted in gray in Table 2). When the null hypothesis is rejected, in this

Figure 3.
Relative difference between simulated and experimental data considering normalized data, with outliers, for
different modeled spectra and all studied mammographs: Inspiration (a), M3000 (b), Lorad (c), and all
equipment (d).

12 χ2 test null hypothesis: relationship between experimental and simulated data does not exist, which

means these samples are presenting the same distribution.

95

Monte Carlo’s Core and Tests for Application Developers: Geant4 and XRMC Comparison…
DOI: http://dx.doi.org/10.5772/intechopen.88893



T
ra
ns

po
rt

m
od

el
s
an

d
sp

ec
tr
um

id
en

ti
fi
ca
ti
on

In
sp

ir
at
io
n

(H
V
L
)

M
30

00
(B

S)
L
or
ad

(H
V
L
)

A
ll

M
30

00
(M

o3
0M

o)
M
30

00
(M

o2
5R

h)
M
30

00
(W

-
25
R
h)

L
or
ad

(M
o3

0M
o)

L
or
ad

(M
o2

5R
h)

X
R
M
C
_T

–
B
ar
ne

s
0.
30

25
N
A

1.
00

00
0.
99

88
N
A

N
A

N
A

1.
00

00
0.
72
65

X
R
M
C
_T

–
C
at
al
og

ue
0.
06

87
N
A

0.
58
59

0.
31
25

N
A

N
A

N
A

0.
92
58

0.
14

66

X
R
M
C
_D

–
B
ar
ne

s
N
A

1.
00

00
N
A

1.
00

00
1.
00

00
1.
00

00
1.
00

00
N
A

N
A

X
R
M
C
_D

–
C
at
al
og

ue
N
A

1.
00

00
N
A

1.
00

00
1.
00

00
1.
00

00
1.
00

00
N
A

N
A

G
4s
td
–
B
ar
ne

s
0.
24

63
1.
00

00
0.
08

17
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
99

98
<
0.
00

1

G
4s
td
–
B
ar
ne

s–
C
al
c

0.
19
66

1.
00

00
0.
07

85
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
10

49
0.
20

69

G
4s
td
–
C
at
al
og

ue
0.
14

81
1.
00

00
<
0.
00

1
0.
36

36
1.
00

00
1.
00

00
1.
00

00
<
0.
00

1
<
0.
00

1

G
4s
td
–
C
at
al
og

ue
–
C
al
c

0.
07

10
1.
00

00
<
0.
00

1
0.
99

93
1.
00

00
1.
00

00
1.
00

00
0.
18
11

<
0.
00

1

G
4p

en
–
B
ar
ne

s
0.
23
97

1.
00

00
0.
11
13

1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
99

99
<
0.
00

1

G
4p

en
–
B
ar
ne

s–
C
al
c

0.
15
64

1.
00

00
0.
75
87

1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
99

97
0.
05

97

G
4p

en
–
C
at
al
og

ue
0.
35
11

1.
00

00
<
0.
00

1
0.
38

11
1.
00

00
1.
00

00
1.
00

00
<
0.
00

1
<
0.
00

1

G
4p

en
–
C
at
al
og

ue
–
C
al
c

0.
23
83

1.
00

00
0.
01

02
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
38

42
0.
00

18

G
4l
iv
–
B
ar
ne

s
0.
24

94
1.
00

00
0.
97
03

1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
24

05

G
4l
iv
–
B
ar
ne

s–
C
al
c

0.
37
56

1.
00

00
0.
06

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
03

28
0.
39

94

G
4l
iv
–
C
at
al
og

ue
0.
19
10

1.
00

00
0.
02

90
1.
00

00
1.
00

00
1.
00

00
1.
00

00
<
0.
00

1
0.
99

05

G
4l
iv
–
C
at
al
og

ue
-C

al
c

0.
03

31
1.
00

00
0.
68

26
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
14

54
0.
99

93

T
ab

le
2.

χ2
p
va
lu
es

fo
r
th
e
va
lid

at
io
n
fo
r
bo
th

M
C
C
T
s
co
ns
id
er
in
g
no
rm

al
iz
ed

qu
an

tit
ie
s
fo
r
al
l
st
ud

ie
d
ca
se
s.

96

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

test, one may assume that the compared samples are not from the same population
(or are not equal). In Table 2, one may see that, in a general evaluation of HVL, the
data collected in Inspiration rejects the null hypothesis for Geant4, evoking liv
physics list and spectra from Catalogue [73] for data calculated based on the spec-
trum that reaches the detector surface. The M3000 is not presenting any null
hypothesis rejection. Lorad presents three cases of null hypothesis rejection for HVL
values all calculated with Geant4 and the spectra from Catalogue [73]: std physics
list considering both calculation methods used (based on spectra and simulated
absorbed energy) and pen physics list for simulated absorbed energy. The data for
Inspiration and Lorad were collected for different target track-additional filtration
combination, so it makes it possible to evaluate the results considering this specific
setup characteristic. For Lorad it was possible to observe the null hypothesis rejec-
tion for different setups simulated taking into account both target track-additional
filtration combination. Comparing the MCCTs, the XRMC presented better agree-
ment to the experimental dataset. In Geant4, the liv physics list presented the
lowest, and the std physics list presented the largest number of null hypotheses
rejection among the three evaluated Geant4 physics lists. The contingency table
with χ2 statistical test was used to evaluate the independence among the possible
transport models evoked by each MCCT and the best modeled spectra. A χ2 p value
of 0.49136 for the comparison among the different transport models (XRMC,
Geant4-std, Geant4-pen, Geant4-liv) and a χ2 p value of 0.10068 for both modeled
spectra were calculated. Both comparisons presented p values above the signifi-
cance level, showing that not the transport models nor both modeled spectra simu-
lated are not statistically different when normalized data is used (which means
comparing the data independently of the total number of photons emitted per mAs
for the irradiation area).

Table 3 presents the χ2 p value summary comparing the results of XRMC to
Geant4 for all evaluated cases considering a significance level of 0.05. Most of the
cases evaluated (Table 3) present χ2 p values larger than the significance level not
rejecting the null hypothesis. It shows that the simulated data for both MCCTs are
not statistically different. The exception was Lorad HVL for Geant4 liv Catalogue
for absorbed energy calculation due to the track target-additional filtration combi-
nation Mo25Rh. This difference did not affect the evaluation considering all cases
for each transport model. In a complete evaluation of the simulated data produced
by XRMC, the results are statistically compatible (in agreement) to the ones simu-
lated by Geant4 when normalized data are taken into account.

The evaluation same as before was performed with the absolute measurements,
first applying the theoretical correction factor, and then the semiempirical correc-
tion factor was applied to estimate the number of photons emitted per mAs per total
irradiated area. Figure 4 presents the qualitative evaluation for all studied cases and
absolute values considering the theoretical correction factor.

As expected, the relative differences increase when absolute values are com-
pared. This was expected since under this condition the results are dependent of the
number of photons emitted per mAs per total irradiated area, considering each
setup configuration (peak tension, track target-add filtration combination, and
stability of the electrical network associate to the wave rectification of the tube
generator). All mammographs presented outlier data, and, in a general observation,
one may see that Inspiration setup (Figure 4a) presented again a systematic
behavior with median values between 0 and 30% and first and third quartiles
between �10 and 80%. In this case, the simulated data overestimated the experi-
mental data. Compared to the results presented in Figure 3a, it suggests that the
simulated normalization factor is larger than the experimental one, causing this
systematic behavior for normalized HVL to present simulated values that are always
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test, one may assume that the compared samples are not from the same population
(or are not equal). In Table 2, one may see that, in a general evaluation of HVL, the
data collected in Inspiration rejects the null hypothesis for Geant4, evoking liv
physics list and spectra from Catalogue [73] for data calculated based on the spec-
trum that reaches the detector surface. The M3000 is not presenting any null
hypothesis rejection. Lorad presents three cases of null hypothesis rejection for HVL
values all calculated with Geant4 and the spectra from Catalogue [73]: std physics
list considering both calculation methods used (based on spectra and simulated
absorbed energy) and pen physics list for simulated absorbed energy. The data for
Inspiration and Lorad were collected for different target track-additional filtration
combination, so it makes it possible to evaluate the results considering this specific
setup characteristic. For Lorad it was possible to observe the null hypothesis rejec-
tion for different setups simulated taking into account both target track-additional
filtration combination. Comparing the MCCTs, the XRMC presented better agree-
ment to the experimental dataset. In Geant4, the liv physics list presented the
lowest, and the std physics list presented the largest number of null hypotheses
rejection among the three evaluated Geant4 physics lists. The contingency table
with χ2 statistical test was used to evaluate the independence among the possible
transport models evoked by each MCCT and the best modeled spectra. A χ2 p value
of 0.49136 for the comparison among the different transport models (XRMC,
Geant4-std, Geant4-pen, Geant4-liv) and a χ2 p value of 0.10068 for both modeled
spectra were calculated. Both comparisons presented p values above the signifi-
cance level, showing that not the transport models nor both modeled spectra simu-
lated are not statistically different when normalized data is used (which means
comparing the data independently of the total number of photons emitted per mAs
for the irradiation area).

Table 3 presents the χ2 p value summary comparing the results of XRMC to
Geant4 for all evaluated cases considering a significance level of 0.05. Most of the
cases evaluated (Table 3) present χ2 p values larger than the significance level not
rejecting the null hypothesis. It shows that the simulated data for both MCCTs are
not statistically different. The exception was Lorad HVL for Geant4 liv Catalogue
for absorbed energy calculation due to the track target-additional filtration combi-
nation Mo25Rh. This difference did not affect the evaluation considering all cases
for each transport model. In a complete evaluation of the simulated data produced
by XRMC, the results are statistically compatible (in agreement) to the ones simu-
lated by Geant4 when normalized data are taken into account.

The evaluation same as before was performed with the absolute measurements,
first applying the theoretical correction factor, and then the semiempirical correc-
tion factor was applied to estimate the number of photons emitted per mAs per total
irradiated area. Figure 4 presents the qualitative evaluation for all studied cases and
absolute values considering the theoretical correction factor.

As expected, the relative differences increase when absolute values are com-
pared. This was expected since under this condition the results are dependent of the
number of photons emitted per mAs per total irradiated area, considering each
setup configuration (peak tension, track target-add filtration combination, and
stability of the electrical network associate to the wave rectification of the tube
generator). All mammographs presented outlier data, and, in a general observation,
one may see that Inspiration setup (Figure 4a) presented again a systematic
behavior with median values between 0 and 30% and first and third quartiles
between �10 and 80%. In this case, the simulated data overestimated the experi-
mental data. Compared to the results presented in Figure 3a, it suggests that the
simulated normalization factor is larger than the experimental one, causing this
systematic behavior for normalized HVL to present simulated values that are always
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smaller than experimental ones. M3000 (Figure 4b) presents few cases with out-
liers (Geant4 pen transport model and Barnes et al. spectra [74] and XRMC on T
mode with Catalogue [73]). As was observed on normalized data (Figure 3b), it
presents the best results with median closer to 0% and the first and third quartiles
�10 and 35% for all mammographs and different setups evaluated. Lorad
(Figure 4c) presents absolute values generally smaller than the experimental data
with the median between�14 and 0% and first and third quartiles between�21 and
5% for all evaluated cases. In a general observation of absolute values (Figure 4d),
both spectra presented median differences closer to 0%, probably a compensation
for the positive systematic tendency presented by Inspiration and the negative
systematic tendency presented by Lorad. It shows the importance of evaluating the
whole and parts of the database, grouped by characteristics that may influence the
simulation, to have better understanding of the curve behaviors and systematic
tendencies of the simulated results.

To better evaluate the significance of the findings in Figure 4, it is important to
apply a statistical evaluation. Tables 4 and 5 are presenting χ2 p values for the
validation and the comparison of both MCCTs considering absolute quantities and
all mammographs evaluated, applying the theoretical corrections.

Table 4 is presenting the validation for the mammographs that had at least one p
value larger than 0.001. For this reason, the Inspiration (HVL), Inspiration (HVL
W50Rh), Inspiration (ISL), Inspiration, (ISL Mo30Mo), Inspiration (ISL Mo25Rh),
Inspiration (ISL W50Rh), M3000, M3000 (Mo30Mo), Lorad (Mo-XMo), Lorad
(Mo-XRh), and Lorad are not presented.

Table 5 is presenting the χ2 p values for the comparison of both MCCTs consid-
ering absolute quantities and all options evaluated, applying theoretical correction
factor. It only presented the mammographs that had p values larger than 0.001. For
this reason, Inspiration (HVL), Inspiration (HVL Mo25Rh), Inspiration (HVL
W50Rh, Inspiration (ISL), Inspiration (ISL W50Rh), Inspiration, M3000
(Mo25Rh), M3000 (W50Rh), M3000, and Lorad are not presented.

Figure 4.
Relative difference between simulated and experimental data considering absolute data, with theoretical
correction and showing outliers, for the different modeled spectra and all studied mammographs: Inspiration
(a), M3000 (b), Lorad (c), and all equipment (d).

99

Monte Carlo’s Core and Tests for Application Developers: Geant4 and XRMC Comparison…
DOI: http://dx.doi.org/10.5772/intechopen.88893



T
ra
ns

po
rt

m
od

el
s
an

d
sp

ec
tr
um

id
en

ti
fi
ca
ti
on

In
sp

ir
at
io
n

(H
V
L
)

M
30

00
(B

S)
L
or
ad

(H
V
L
)

A
ll

M
30

00
(M

o3
0M

o)
M
30

00
(M

o2
5R

h)
M
30

00
(W

-
25
R
h)

L
or
ad

(M
o3

0M
o)

L
or
ad

(M
o2

5R
h)

G
4s
td
–
B
ar
ne

s
0.
97
77

1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
99

99

G
4s
td
–
B
ar
ne

s–
C
al
c

0.
91
49

1.
00

00
0.
96

71
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
63

34
0.
99

72

G
4s
td
–
C
at
al
og

ue
0.
21
39

1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
98

08
1.
00

00

G
4s
td
–
C
at
al
og

ue
–
C
al
c

0.
15
95

1.
00

00
0.
99

75
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
92
00

0.
99

74

G
4p

en
–
B
ar
ne

s
0.
86

06
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
99

99

G
4p

en
–
B
ar
ne

s–
C
al
c

0.
79
94

1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
96

37

G
4p

en
–
C
at
al
og

ue
0.
16
60

1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00

G
4p

en
–
C
at
al
og

ue
–
C
al
c

0.
15
72

1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
0.
99

97

G
4l
iv
–
B
ar
ne

s
0.
97
67

1.
00

00
1.
00

00
0.
99

98
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00

G
4l
iv
–
B
ar
ne

s–
C
al
c

0.
68

09
1.
00

00
1.
00

00
0.
99

98
1.
00

00
1.
00

00
1.
00

00
0.
48

28
1.
00

00

G
4l
iv
–
C
at
al
og

ue
0.
70

14
1.
00

00
<
0.
00

1
0.
99

65
1.
00

00
1.
00

00
1.
00

00
1.
00

00
<
0.
00

1

G
4l
iv
–
C
at
al
og

ue
–
C
al
c

0.
69

93
1.
00

00
0.
16
63

1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

00
1.
00

0

T
ab

le
3.

χ2
p
va
lu
es

fo
r
th
e
co
m
pa

ri
so
n
be
tw

ee
n
X
R
M
C

an
d
G
ea
nt
4
(r
ef
er
en
ce
s)

co
ns
id
er
in
g
no
rm

al
iz
ed

qu
an

tit
ie
s
fo
r
al
l
st
ud

ie
d
ca
se
s.

98

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

smaller than experimental ones. M3000 (Figure 4b) presents few cases with out-
liers (Geant4 pen transport model and Barnes et al. spectra [74] and XRMC on T
mode with Catalogue [73]). As was observed on normalized data (Figure 3b), it
presents the best results with median closer to 0% and the first and third quartiles
�10 and 35% for all mammographs and different setups evaluated. Lorad
(Figure 4c) presents absolute values generally smaller than the experimental data
with the median between�14 and 0% and first and third quartiles between�21 and
5% for all evaluated cases. In a general observation of absolute values (Figure 4d),
both spectra presented median differences closer to 0%, probably a compensation
for the positive systematic tendency presented by Inspiration and the negative
systematic tendency presented by Lorad. It shows the importance of evaluating the
whole and parts of the database, grouped by characteristics that may influence the
simulation, to have better understanding of the curve behaviors and systematic
tendencies of the simulated results.

To better evaluate the significance of the findings in Figure 4, it is important to
apply a statistical evaluation. Tables 4 and 5 are presenting χ2 p values for the
validation and the comparison of both MCCTs considering absolute quantities and
all mammographs evaluated, applying the theoretical corrections.

Table 4 is presenting the validation for the mammographs that had at least one p
value larger than 0.001. For this reason, the Inspiration (HVL), Inspiration (HVL
W50Rh), Inspiration (ISL), Inspiration, (ISL Mo30Mo), Inspiration (ISL Mo25Rh),
Inspiration (ISL W50Rh), M3000, M3000 (Mo30Mo), Lorad (Mo-XMo), Lorad
(Mo-XRh), and Lorad are not presented.

Table 5 is presenting the χ2 p values for the comparison of both MCCTs consid-
ering absolute quantities and all options evaluated, applying theoretical correction
factor. It only presented the mammographs that had p values larger than 0.001. For
this reason, Inspiration (HVL), Inspiration (HVL Mo25Rh), Inspiration (HVL
W50Rh, Inspiration (ISL), Inspiration (ISL W50Rh), Inspiration, M3000
(Mo25Rh), M3000 (W50Rh), M3000, and Lorad are not presented.

Figure 4.
Relative difference between simulated and experimental data considering absolute data, with theoretical
correction and showing outliers, for the different modeled spectra and all studied mammographs: Inspiration
(a), M3000 (b), Lorad (c), and all equipment (d).
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Transport models and
spectrum identification

Inspiration (HVL
Mo30Mo)

Inspiration (HVL
Mo25Rh)

M3000
(Mo25Rh)

M3000
(W-50Rh)

XRMC_T–Barnes <0.001 0.1035 <0.001 <0.001

XRMC_T–Catalogue <0.001 <0.001 <0.001 0,0453

XRMC_S–Barnes NA NA <0.001 <0.001

XRMC_S–Catalogue NA NA 0.0028 0.8740

G4std–Barnes 0.1174 <0.001 <0.001 <0.001

G4std–Barnes–Calc 0.1250 <0.001 <0.001 <0.001

G4std–Catalogue <0.001 0.9867 <0.001 <0.001

G4std–Catalogue–Calc <0.001 <0.001 <0.001 <0.001

G4pen–Barnes 0.5026 <0.001 <0.001 <0.001

G4pen–Barnes–Calc 0.7886 <0.001 <0.001 <0.001

G4pen–Catalogue <0.001 0.9854 <0.001 <0.001

G4pen–Catalogue–Calc <0.001 <0.001 <0.001 <0.001

G4liv–Barnes 0.1907 <0.001 <0.001 <0.001

G4liv–Barnes–Calc 0.0224 <0.001 <0.001 <0.001

G4liv–Catalogue <0.001 0.9869 <0.001 <0.001

G4liv–Catalogue–Calc <0.001 <0.001 <0.001 <0.001

Table 4.
χ2 p values for the validation for both MCCTs considering absolute quantities for all studied cases, applying the
theoretical correction factors to define the number of photons emitted per mAs per total irradiated area.

Transport models
and spectrum
identification

Inspiration
(HVL

Mo30Mo)

Inspiration
(ISL

Mo30Mo)

Inspiration
(ISL

Mo25Rh)

M3000
(Mo30Mo)

Lorad
(Mo-
XMo)

Lorad
(Mo-
XRh)

G4std–Barnes 0.9841 0.84732 0.9999 1.000 0.8953 0.05693

G4std–Barnes–Calc 0.0894 0.06821 0.3586 0.5481 0.0249 0.0586

G4std–Catalogue 0.0676 0.0269 0.9685 0.0957 0.6954 0.0568

G4std–Catalogue–Calc 0.05832 0.0384 0.8437 0.7865 0.7864 0.6785

G4pen–Barnes 0.8284 0.0145 0.0725 0.8679 0.0978 0.6604

G4pen–Barnes–Calc 0.6983 0.9421 0.8796 0.5647 0.0413 0.0211

G4pen–Catalogue 0.6753 0.0261 0.2246 0.3540 0.7953 0.7894

G4pen–Catalogue–
Calc

0.9485 0.8475 0.1000 0.0039 0.8796 0.6854

G4liv–Barnes 1.0000 0.6735 0.0516 0.7865 0.9999 1.0000

G4liv–Barnes–Calc 0.0768 0.1276 0.6875 0.5694 0.9574 1.0000

G4liv–Catalogue 0.0107 0.0554 0.1534 0.7865 0.7865 0.3451

G4liv–Catalogue–Calc 0.0544 0.0895 0.5674 0.6352 0.4731 0.8966

Table 5.
χ2 p values for the comparison between XRMC and Geant4 (references) considering absolute quantities for all
studied cases, applying the theoretical correction factors to define the number of photons emitted per mAs per
total irradiated area.
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The χ2 test evaluation presented in Table 5 for absolute values shows a similar
result to the ones presented in Table 3 but with a larger number of cases rejecting
the null hypothesis and presenting lower p values for each of the studied cases
which was expected due to the dependency of the number of photons per mAs for
the total area estimated. Only Inspiration ISL Mo25Rh did not present null hypoth-
esis rejection among all evaluated cases. The increase on null hypothesis rejection,
comparing XRMC to Geant4, is related to the small statistical fluctuation presented
by the MCCTs (between 0.2 and 1.5%) when compared to experimental data.

Based on the p values presented in Table 4, one could conclude that both
MCCTs are not valid for this kind of simulation. However, the p values presented
for normalized data (Tables 2 and 3) show that the tendencies of the normalized
quantities for the simulated data using both MCCTs can be considered statistically
non-different to the experimental data. Besides that, the absolute data comparison
between both MCCTs (Table 4) presented no null hypothesis rejection. In this case,
it is important to verify if the total number of photons defined by the theoretical
correction factor applied to the spectra produced a systematic tendency on the
expected curves. It is important as well to note that the evaluation is consistent
when the normalized data shows no significant difference in the validation process.
The curves used in this study to estimate the semiempirical correction factor were:

• HVL—the curve of KERMA as function of the additional Al filtration thickness
for the same acceleration voltage

• ISL—the tendency of the KERMA as function of the distance between focal
spot and detector surface for the same acceleration voltage

• BS—the tendency of the KERMA as function of the thickness of the scatterer
considering the scatterer (or considering the backscattered radiation) and the
tendency of the KERMA as function of the thickness of the scatterer without
considering the scatterer (or not considering the backscattered radiation)

All cases used to generate the semiempirical correction factor considered the
best GoF test results for the amplitude when applied to the simulated data for one
acceleration voltage and track target-additional filtration combination for a specific
mammograph. The best value for the amplitude in each case was used as semiem-
pirical correction factor to be applied as a multiplication factor on the theoretical
correction factor for the total number of photons per mAs per total irradiated area.

Tables 6 and 7 are presenting the χ2 p values for the validation of both MCCTs
considering absolute quantities and all cases evaluated, applying the semiempirical
correction factors to define the number of photons emitted per mAs per total
irradiated area.

The application of semiempirical correction factors shows a better approxima-
tion for absolute values. When one compares the results corrected by the theoretical
factors (Table 4) to the results corrected by theoretical factors associated to semi-
empirical factors (Table 6), the increase of cases that did not reject the null
hypothesis is visible. With the exception of Geant4 std (Barnes et al. [74]), all the
other cases that rejected the null hypothesis are all from Catalogue [73] which shows
that for absolute values and the semiempirical methodology used to generate the
correction factor; spectrum of Barnes et al. [74] was the one that presented better
agreement to experimental data. In the overall evaluation for each studied case
comparing each MCCT and transport model, three cases simulated using Catalogue
[73] spectra presented χ2 p values below the significance level: Genat4 std and liv for
Calculated absorbed energy and Geant4 pen. All the other χ2 p values are above the
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The χ2 test evaluation presented in Table 5 for absolute values shows a similar
result to the ones presented in Table 3 but with a larger number of cases rejecting
the null hypothesis and presenting lower p values for each of the studied cases
which was expected due to the dependency of the number of photons per mAs for
the total area estimated. Only Inspiration ISL Mo25Rh did not present null hypoth-
esis rejection among all evaluated cases. The increase on null hypothesis rejection,
comparing XRMC to Geant4, is related to the small statistical fluctuation presented
by the MCCTs (between 0.2 and 1.5%) when compared to experimental data.

Based on the p values presented in Table 4, one could conclude that both
MCCTs are not valid for this kind of simulation. However, the p values presented
for normalized data (Tables 2 and 3) show that the tendencies of the normalized
quantities for the simulated data using both MCCTs can be considered statistically
non-different to the experimental data. Besides that, the absolute data comparison
between both MCCTs (Table 4) presented no null hypothesis rejection. In this case,
it is important to verify if the total number of photons defined by the theoretical
correction factor applied to the spectra produced a systematic tendency on the
expected curves. It is important as well to note that the evaluation is consistent
when the normalized data shows no significant difference in the validation process.
The curves used in this study to estimate the semiempirical correction factor were:

• HVL—the curve of KERMA as function of the additional Al filtration thickness
for the same acceleration voltage

• ISL—the tendency of the KERMA as function of the distance between focal
spot and detector surface for the same acceleration voltage

• BS—the tendency of the KERMA as function of the thickness of the scatterer
considering the scatterer (or considering the backscattered radiation) and the
tendency of the KERMA as function of the thickness of the scatterer without
considering the scatterer (or not considering the backscattered radiation)

All cases used to generate the semiempirical correction factor considered the
best GoF test results for the amplitude when applied to the simulated data for one
acceleration voltage and track target-additional filtration combination for a specific
mammograph. The best value for the amplitude in each case was used as semiem-
pirical correction factor to be applied as a multiplication factor on the theoretical
correction factor for the total number of photons per mAs per total irradiated area.

Tables 6 and 7 are presenting the χ2 p values for the validation of both MCCTs
considering absolute quantities and all cases evaluated, applying the semiempirical
correction factors to define the number of photons emitted per mAs per total
irradiated area.

The application of semiempirical correction factors shows a better approxima-
tion for absolute values. When one compares the results corrected by the theoretical
factors (Table 4) to the results corrected by theoretical factors associated to semi-
empirical factors (Table 6), the increase of cases that did not reject the null
hypothesis is visible. With the exception of Geant4 std (Barnes et al. [74]), all the
other cases that rejected the null hypothesis are all from Catalogue [73] which shows
that for absolute values and the semiempirical methodology used to generate the
correction factor; spectrum of Barnes et al. [74] was the one that presented better
agreement to experimental data. In the overall evaluation for each studied case
comparing each MCCT and transport model, three cases simulated using Catalogue
[73] spectra presented χ2 p values below the significance level: Genat4 std and liv for
Calculated absorbed energy and Geant4 pen. All the other χ2 p values are above the
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significance level. To conclude, the validation of absolute values for all studied cases
(column “All” on Table 6), when semiempirical correction factors are applied for
both MCCTs, Geant4 MCCT seems to present more sensitivity to the changes in the
spectra showing significant differences (not agree) from experimental data for
three simulated cases using spectra from Catalogue [73]. This can be due to the
more detailed transport of primary and secondary particles. Considering Barnes
et al.’s [74] spectra, there is no significant difference between experimental and
simulated data considering the results for both MCCTs.

The comparison between both MCCTs after applying the semiempirical correc-
tion factor is presented in Table 7. As was expected there was an increase of the p
values for the absolute value comparison of both MCCTs (Table 7) when compared
to the validation of both MCCTs (Table 6). This is expected since the relative
differences presented between simulated results (XRMC compared to Geant4) are
smaller than the presented between each MCCT and experimental data. It is also
important to note that for the comparison between both MCCTs only differences
among the transport models evoked are significant. However, on a validation there
may be differences associated to minimal discrepancies between experimental and
simulated geometry, discrepancies among the transport models evoked (limitations
of each model) and the repeatability of the X-radiation production and technical
parameters of the mammograph. In the example presented in this section, the
introduction of the modeled primary beam increases one variable to be considered
in this context, increasing the error associated to the estimation of total number of
proton emitted per mAs per total irradiated area. However, when one uses a code or
model available on the X-ray equipment to estimate the dose in a radiological
procedure, this person is using a modeled spectra or an estimated average spectra
for the equipment and needs to pay attention to the limitations of this methodolog-
ical choice.

To compare the results generated by both MCCTs directly, the χ2 Pearson,
Anderson-Darling, and Kolmogorov-Smirnov tests were applied on the simulated
spectra at the entrance surface of the sensitive volume. These spectra were com-
pared, and all of the studied cases presented p values above the significance level.
For χ2 Pearson test, all p values were 1.0000. The cases that presented larger
differences on the validation, such as absolute values for M3000 XRMC and Geant4
based on Catalogue [73] (Tables 8 and 9), presented the lower p values in all
statistical tests performed for the comparison of the MCCT.

Another important characteristic of MCCT to take into account is the running
time. In this example, the XRMC Transmission mode reduced the running time
around 2.5 times compared to Geant4 std physics list, 4 times compared to Geant4
pen physics list and 4.5 compared to Geant4 liv physics list. However, the limita-
tions on simulating the absorbed energy and statistic fluctuations for this XRMC

Transport models and spectrum identification Inspiration M3000 Lorad All

G4std–Barnes 0.9149 0.6566 0.9671 1.0000

G4std–Catalogue 0.1595 0.0521 0.9975 1.0000

G4pen–Barnes 0.7994 0.1182 1.0000 1.0000

G4pen–Catalogue 0.1572 0.0653 0.9975 0.4832

G4liv–Barnes 0.6809 0.1398 0.8765 1.0000

G4liv–Catalogue 0.6993 0.1263 0.1663 1.0000

Table 8.
Anderson-Darling p values for the comparison between XRMC and Geant4 (references) considering the
spectrum at detector entrance surface for all physics lists and studied cases.
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version make the data treatment slower than that used on Geant4 and dependent of
several external tools to perform data analyses that are not needed in Geant4.

When the experimental spectra of the X-ray equipment (in this example for
mammographs) are available, it is better to use the experimental ones and the
correction factors associated to it. However, it is important to keep in mind that it
should be the spectra generated by the X-ray tube that is being used, since each tube
(even the ones with the same characteristics produced by the same manufacturer)
may have a difference on efficiency conversion due to minimal differences in its
manufacturing. Besides that, a periodical verification of the amplitude correction
factor for the number of photons generated per mAs per total irradiated area (or
solid angle) must be applied since the tube wear can affect the conversion efficiency
due to the deposition of atoms of the track-target on the window surface (by
sputtering effect) or by the releasing of atoms from the track-target into the volume
of the tube low pressure air.

4. Final considerations

The objective of this chapter was to present the main concepts of validation and
reliability applied to MC application development to dosimetry and imaging,
presenting a minimal validation that can be performed by MCCT ADs. It is impor-
tant to note, as an AD in MC, that it is always valid to have your own experimental
data to validate the application in the contour limitations of your problem. If
experimental data for validation or modeled data for comparison are not available;
at least a reliability test should be performed to ensure the quality of the results
generated by the MCCT.

On choosing a MCCT, one needs to pay attention to the characteristics of the
application, the capabilities and limitations of the MCCT code, and its computa-
tional performance. Besides that, the best MCCT is the one that the AD knows how
to use (installing, developing applications, and extracting useful data). To do that
the AD needs to have knowledge of a programing language or, at least, to under-
stand the logic of input data in MCCT, to understand the experiment or clinical
reality to be described in the simulation, and to have the notions of the processes
and models of transport significant to the study case.

Regarding the results for the example used in this chapter the evaluation
presented as follows:

• Validation—the statistical evaluation presented no null hypothesis rejection for
XRMC results and presented the rejection of null hypothesis for few Geant4

Transport models and spectrum identification Inspiration M3000 Lorad All

G4std–Barnes 1.0000 0.8671 1.0000 0.9768

G4std–Catalogue 0.9999 0.9975 1.0000 0.9999

G4pen–Barnes 1.0000 1.0000 1.0000 1.000

G4pen–Catalogue 1.0000 1.0000 0.9999 1.0000

G4liv–Barnes 0.9998 0.8765 1.0000 0.9154

G4liv–Catalogue 1.0000 0.1663 1.0000 0.3687

Table 9.
Kolmogorov-Smirnov p values for the comparison between XRMC and Geant4 (references) considering the
spectrum at detector entrance surface for all physics lists and studied cases.
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significance level. To conclude, the validation of absolute values for all studied cases
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pen physics list and 4.5 compared to Geant4 liv physics list. However, the limita-
tions on simulating the absorbed energy and statistic fluctuations for this XRMC
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due to the deposition of atoms of the track-target on the window surface (by
sputtering effect) or by the releasing of atoms from the track-target into the volume
of the tube low pressure air.
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at least a reliability test should be performed to ensure the quality of the results
generated by the MCCT.
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the AD needs to have knowledge of a programing language or, at least, to under-
stand the logic of input data in MCCT, to understand the experiment or clinical
reality to be described in the simulation, and to have the notions of the processes
and models of transport significant to the study case.

Regarding the results for the example used in this chapter the evaluation
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• Validation—the statistical evaluation presented no null hypothesis rejection for
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cases evaluated considering normalized data. The XRMC presented the best
agreement to the experimental data. Considering Geant4 the Livermore was
the best physic list option. For absolute quantities calculated by applying
semiempirical correction factors, all mammographs presented χ2 p value under
the significance level: one value for Inspiration (HVL) and one M3000 (BS)
and few for Lorad (Mo25Rh and Mo30Mo) and Inspiration (ISL). Despite these
particular cases of null hypothesis rejection, the overall evaluation for each
transport model considering all studied cases presented few null hypothesis
rejections for Geant4 MCCT using Catalogue spectra. So, it is recommendable
to use spectra from Barnes et al. that were validated using both MCCTs (XRMC
and Geant4). The use of only the theoretical correction factor for absolute
quantities is not encouraged to perform validation, unless the AD knows pretty
well the total number of photons emitted by the tube for the irradiation
condition. Normalized data may be used associated to theoretical spectra to
understand behaviors and tendencies of dosimetric quantities and to explore
the influence of changes in the data acquisition but not to define absolute
quantities.

• Comparison—the spectra generated at the entrance surface of the detector by
both MCCTs always presented p values above the significance level of 0.05 for
normalized data, showing that for this case the spectra generated by the same
setup were from the same population (equal) within statistical significance.
For absolute quantities calculated by applying semiempirical correction
factors, one p value was under the significance level for Lorad (Mo25Rh) and
one for Inspiration (ISL). Despite of these particular cases of null hypothesis
rejection, the overall evaluation for each transport model considering all the
evaluated cases presented no significant difference between XRMC and Geant4
which is compatible with the internal consistency of the transport models
evoked.

• Reliability—the qualitative reliability evaluation based on graphics makes
possible to observe that the more consistent data occurs for the simulation of
the M3000. The graphics allowed to observe the tendencies when comparing
simulated data to experimental data considering overall data and specific
subgroups. This visual observation shows a consistency with the statistical
tables, presenting sensitivity to help on data classification for a detailed
analysis.

The methods to test a MCCT application are indispensable in the good practice
of computational dosimetry and imaging because they guarantee the quality of the
results, helping on the evaluation of the methodology limitations and making it
possible to improve the trustability of the application and its results transposing
with safety the “computational world” to the “real world.”
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Chapter 5

How to Use the Monte Carlo
Simulation Technique?
Application: A Study of the Gas
Phase during Thin Film Deposition
Fethi Khelfaoui and Oumelkheir Babahani

Abstract

Many physical phenomena can be modeled using Monte Carlo simulation (MCS)
because it is a powerful tool to study thermodynamic properties. MCS can be used to
simulate interactions between several particles or bodies in the presence of local or
external fields. The main idea is to create a high number of different random config-
urations; statistics can be taken according to appropriate algorithms (Metropolis
algorithm). In this chapter, we present basic techniques of MCS as the choice of
potential, reaction rates, simulation cell, random configurations, and algorithms. We
present some principal ideas of MCS used to study particle-particle collisions in the
gas and in plasmas. Other MCS techniques are presented briefly. A numerical appli-
cation is presented for collisions in gas phase during thin film deposition by plasma-
enhanced chemical vapor deposition (PECVD) processes. Parameters and results of
the simulation are studied according to a chosen reactor and mixture.

Keywords: MCS, potential, reaction rates, collisions, thin film deposition

1. Introduction

In statistical physics only a few problems can be solved exactly. For complex
problems, numerical methods can give exact results for problems that could only be
solved in an approximate way. Numerical simulation can be a way to test the theory.
The numerical results can be compared to the experimental results. The numerical
simulation is placed between the fundamental and the experimental treatment; it
has a quasi-experimental character (numerical experience). For problems of statis-
tical physics, the most widely used simulation methods are the Monte Carlo method
and the molecular dynamics method.

The first Monte Carlo simulation (MCS) was proposed by Metropolis et al. in
1953 [1]. The second Monte Carlo simulation was proposed by Wood and Parker in
1957 [2]. The obtained results were in good agreement with the experimental results
of Bridgman [3] and those of Michels et al. [4]. In this method we attribute a series
of initial positions chosen randomly to a system of N particles interacting through a
defined potential. A sequence of particle configurations is generated by giving
successive displacements to particles; we only retain configurations to ensure that
the probability density is that of the chosen.
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Molecular dynamics simulation (MDS) has been first introduced to simulate the
behavior of fluids and solids at the molecular or atomic level. MDS was used for the
first time by Alder and Wainwright in the late 1950s [5, 6] to study the interactions
of hard spheres. The principle is the resolution of equations of motion for a hard
sphere system in a simulation cell. The basic algorithm is Verlet’s algorithm [7].

In this chapter, wewill present techniques of numerical simulations using theMonte
Carlo method.Wewill present an application on the gas phase during plasma-enhanced
chemical vapor deposition (PECVD) of thin films. The application concerns collisions
between particles. Particles are in Brownian motion. Collisions, elastic or inelastic, are
considered to be binary. Non-elastic collisions result in effective chemical reactions.

In Section 2, we cite some MCS and MDS works on PECVD processes. Section 3
presents general rules on numerical simulation methods. Section 4 presents how to
simulate a physical problem using MCS? We present the Metropolis algorithm as a
scheme to trait random configurations and different modules related to elaborate an
MCS code. In Section 5, we apply the MCS on SiH4/H2 gas mixture during a PECVD
process. Finally the conclusion summarizes the contents of the chapter.

2. Simulation works on the PECVD using MCS and MDS

The PECVD is the most widely used technique to produce hydrogenated amor-
phous silicon thin films (a-Si:H) for solar cells and for film transistors and electronic
devices [8, 9]. Reactions during plasma deposition are complex and are not under-
stood completely.

Gorbachev et al. [10–12] have developed amodel that is based on chemical reactions
and different processes in a PECVD reactor. Themodel takes into account the formation
of SinHm oligomers (n≤ 5). It presents a simulation of the growth of the films. Gorba-
chev et al. found that Si2H5 and Si3H7 strongly influence the growth of the film [11].

Valipa et al. [13] calculated the β reactivity of the SiH3 radical on a surface of a
silicon lattice plane during the growth of a-Si:H using MDS. The mechanisms of
physical and chemical interactions of low temperature plasmas with surfaces can be
explored using MDS [14].

For a CH4/H2 mixture, Farouk et al. used the Monte Carlo method (PIC/MC);
they calculated the ionization rate of the plasma and the deposition rate of the thin
layer [15]. Rodgers et al. [16] have developed three-dimensional Monte Carlo sim-
ulations of diamond (100) surface CVD. Other works on MCS are in [17–19].

In our previous works [20–24], we were interested in the study of the gas phase
and the interaction of plasmas with the surface, for SiH4/H2 and CH4/H2 gas mix-
tures during PECVD processes. The used numerical simulation techniques were
MCS and MDS. To complete the studies, we used the fluid model [25].

3. General rules for numerical simulation methods

The starting point of numerical simulation is a physical phenomenon; its pur-
pose is to obtain useful physical results. Between these two points, several steps can
be identified. These steps are general and they are applicable for MCS. The steps can
be summarized as follows:

3.1 Definition of the physical phenomenon and main hypothesis

The physical phenomenon must be defined by the description of the dominant
domain of physics. The main assumptions and simplifying approximations are
necessary to understand the physical phenomenon and the design of the first model.
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3.2 Definition of the mathematical model

Mathematical model requires a mathematical formulation of the problem. It may
be a problem of elements or discrete object or a problem of a continuous medium; it
may be a spatiotemporal problem or frequency problem and may be a deterministic
or probabilistic problem.

It would be interesting to know the mathematical equations that govern the
phenomenon:

• The forces between particles and elements

• The potential interaction

• The determination of a time scale

• The determination of a length scale

• Definition of constant magnitudes of motion and equilibrium magnitudes

• Continuity equations, balance equations, transfer equations, etc.

3.3 Elaboration of simulation code

The MCS technique has been chosen for this work; knowing its basic algorithm
is necessary for elaborating the simulation. This step requires some actions:

• Validation of the model on simple cases

• Simulation calculation on complex phenomena

4. Algorithms and techniques for MCS

The MCS is based on a probabilistic process with a random choice of configura-
tions and samples of the situation of the physical system. The two pedagogical
examples most cited in the literature are the integration of a single variable function
and Ising’s model of spin. In the following subsection, we define the integration of a
single variable function. We introduce the Ising model at the end of Section 4.2.2.

4.1 Integration of function of a single variable

Calculation of the definite integral for a function f(x) of a single variable x on
domain {a, b} has been proposed (Figure 1):

Let:

I ¼
ðb

a

f xð Þdx (1)

Let xi and yi be real random numbers (i = 1, 2,…, N), and let H be a real number
greater than the f(x) for x belonging to the domain {a, b} (or x ∈ {a, b}).

Let r1 and r2 be two random numbers belonging to the domain {0, 1} according
to a uniform distribution law. Generators (e.g., Ran, RANDOM, RANDUM, or
other IMSL mathematical libraries) of random numbers can be used:
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xi ¼ aþ r1 b� að Þ and yi ¼ 0þ r2 H � 0ð Þ (2)

where xi and yi are random numbers (xi ∈ {a, b} and yi ∈ {0, H}).
The Monte Carlo (MC) method is based on a probabilistic process. Let N be the

total number of cases chosen (possible cases). It is necessary to count the number of
favorable cases (or the number of points below the curve y = f(x)); let yi ≤ f(xi)). The
number of favorable cases is Nfav. When N ➔∞, the value I of the integral is [26]:

I ¼ Nfav

N
b� að Þ H � 0:0ð Þ ¼ Nfav

N
b� að ÞH (3)

An example [26] is the calculation of the value π by calculating the integral I
on a quarter circle of unit radius (R = 1.0). The pairs of random numbers (xi, yi)
satisfying the condition: xi

2 + yi
2 ≤ 1. The function f(x) is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
.

We take a = 0.0, b = 1.0, and H = 1.0.
For different values of N, we show that the numerical solution tends to π = 4I.
Although this integral is simple, it shows the strength and simplicity of the

method. The technique can be generalized for the integration of multivariate
functions.

We note that integration by the MC method is based on:

• The choice of random configurations according to a uniform distribution law

• Each configuration chosen is either favorable or unfavorable (the “or” is
exclusive).

4.2 Principle of the MCS model

4.2.1 Calculation algorithm (Metropolis algorithm)

For statistical physics problems, the probabilistic choice of configurations is not
always deterministic; the favorable and unfavorable cases are not exclusive.
According to the Metropolis algorithm [26, 27], the steps of the simulation are:

a. Choice of a simulation cell of adequate shape to the studied phenomena. The
size of the simulation cell is related to a scale of length characteristic of the
forces and interaction potential of the studied phenomenon. This cell may
contain Npc particles (and/or elements).

Figure 1.
The integral of a function f(x).
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b. Choice of an initial configuration that responds to some physical and
thermodynamic properties. The total or internal energy of the system is Ei.

c. Infinitesimal random displacement of a particle (or element of the system)
and calculation of the new internal energy of the system Ef. This displacement
is related to the physical magnitudes: time scale and length scale. The
physical system tends toward a minimization of the internal energy of
the system with some fluctuation. Let ΔE = Ef-Ei the fluctuation.

d. If ΔE ≤ 0; the new configuration is retained (favorable) and the different
averages can be obtained; go to step (c).

e. If ΔE > 0; a random number ε is chosen such that 0 < ε < 1. Let the
probability Pr equal to: Pr = exp. (�ΔE/kBT) (where kB is the Boltzmann
constant and T is the temperature).

f. If ε < Pr, accept the move and in any case go back to step (c) for a new choice
of an infinitesimal displacement (new configuration). Note that if such a
trial move is rejected, the old configuration is again counted in the averaging
with probability Pr.

Figure 2 shows how to choose between the selected configurations. Let ε be a
random number following a uniform law; If ε1 ≤ Pr the configuration is retained,
and if ε2 > Pr the configuration is rejected.

Numerical simulation using the MC method is a very important tool for the
study of static properties. The basic algorithm is based on probability notions.
Understanding of the distribution function and/or interaction potentials is the heart
of the calculation.

4.2.2 Thermodynamic quantities at equilibrium

In equilibrium statistical physics, the system has a certain probability that can be
in any states. The probability of being in a state μ with energy H(μ) is given by the
Boltzmann distribution P(μ):

Pμ ¼ exp �H μð Þ=kBTð Þ
Z

(4)

Figure 2.
Configuration choice according to Metropolis scheme.
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where T is the absolute temperature and kB is called Boltzmann’s constant. It is
conventional to denote the quantity (kBT)

�1 by the symbol β. The normalizing
factor Z, or partition function, is given by:

Z ¼
X
μ

exp �H μð Þ=kBTð Þ ¼
X
μ

exp �βH μð Þð Þ (5)

The average of a quantity Q fora system in equilibrium is:

<Q> ¼
X
μ

QμPμ ¼ 1
Z

X
μ

Qμ exp �βH μð Þð Þ (6)

The internal energy U, is given by:

U ¼ 1
Z

X
μ

H μð Þ exp �βH μð Þð Þ (7)

which can be written in terms of a derivative of the partition function:

U ¼ 1
Z
∂Z
∂β

¼ � ∂ logZ
∂β

(8)

From thermodynamics we have expressions for the specific heat C, the entropy
S, and the Helmholtz free energy F:

C ¼ ∂U
∂T

¼ �kBβ2
∂U
∂β

¼ �kBβ2
∂
2 logZ
∂β2

(9)

or

C ¼ T
∂S
∂T

¼ �β
∂S
∂β

(10)

and

S ¼ �kBβ
∂ logZ
∂β

þ kB logZ (11)

and

F ¼ U � TS ¼ �kB logZ (12)

We can calculate other parameters affecting the system.
The Monte Carlo method is an excellent technique for estimating probabilities,

and we can take advantage of this property in evaluating the results. The simplest and
most popular model of a system of interacting variables in statistical physics is the
Ising model. It consists of spins σi which are confined to the sites of a lattice and
whichmay have only the values (+1) and (�1). These spins interact with their nearest
neighbors on the lattice with interaction constant J; they can interact with an external
magnetic field B coupling to the spins. The Hamiltonian H for this model is [26]:

H ¼ �J
X
i, j

σiσj � B
X
i

σi (13)
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The Ising model has been studied in one and two dimensions to obtain results of
thermal properties, phase transition, and magnetic properties [26–28]. For chosen
values of J and/or B, different steps may be taken for the calculations (simulation
cell, initialization, configurations, boundary conditions, calculation algorithms).
For any configuration, each spin takes the two possible directions. The detail of the
calculation procedure is not the purpose of this chapter.

4.2.3 MCS module designs

4.2.3.1 Simulation cell and initialization

We give a system of N particles (atoms, molecules, ions or particles) placed in a
cell of fixed volume, generally of cubic form. The initial positions may, depending
on the case, be distributed randomly according to a certain law (uniform or other-
wise) or have a given symmetry. In a fluid, a gas, or a plasma, the particles may
have random positions in general; in a solid or surface, with a crystal structure, the
particles take ordered positions. The choice of random initial positions allows great
freedom on the choice of the number of particles in the cell.

At the first step, the particles are given velocities that are generally selected to
have a zero total momentum. If the system is in thermodynamic equilibrium, the
initial velocities will be randomly chosen according to a Maxwell-Boltzmann law. In
the general case, the velocity distribution is according to the problem dealt with. All
other phase properties can be initialized to the particles; the main thing is the
conservation of the total quantities of the system.

4.2.3.2 Potentials of interaction

The particles interact with each other according to chosen interaction potentials.
Since the interaction potentials are specific for each “numerical experiment,” the
main part of the work consists in calculating the interaction energies for each
proposed configuration.

The choice of interaction potentials is directly related to the mathematical for-
mulation of the problem according to the state of the medium: fluid, gas, plasma, or
solid. It can be Lennard-Jones potential, Coulomb potential, Debye potential, Morse
potential, Stillinger-Weber potential, Born-Mayer potential, Moliere potential, or
others.

4.2.3.3 Boundary conditions

In general, two main boundary conditions are used: periodic boundary condi-
tions (PBC) and minimum image convention (MIC) [29].

To minimize the surface effect, periodic boundary conditions (PBC) [30] are
invariably imposed. The simulation cell is reproduced throughout the space to form
an infinite mesh. We can simulate the properties of an infinite system. The particles
that we follow are in the central cell; if a particle crosses a wall with a certain
velocity, its image returns with the same velocity by the opposite wall. Under these
conditions, the number of particles in the central cell, and consequently the density,
is constant. These conditions also allow the conservation of the energy and the
momentum of the system and do not introduce periodic effects (because of the
interaction between particles).

According to the hypotheses and according to the geometry of the problem,
other boundary conditions are proposed [26]. For example, in order to model thin
films, the simulation cells are longitudinal and parallel to the film; one uses PBC in
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�1 by the symbol β. The normalizing
factor Z, or partition function, is given by:

Z ¼
X
μ

exp �H μð Þ=kBTð Þ ¼
X
μ

exp �βH μð Þð Þ (5)

The average of a quantity Q fora system in equilibrium is:

<Q> ¼
X
μ

QμPμ ¼ 1
Z

X
μ

Qμ exp �βH μð Þð Þ (6)

The internal energy U, is given by:

U ¼ 1
Z

X
μ

H μð Þ exp �βH μð Þð Þ (7)

which can be written in terms of a derivative of the partition function:

U ¼ 1
Z
∂Z
∂β

¼ � ∂ logZ
∂β

(8)

From thermodynamics we have expressions for the specific heat C, the entropy
S, and the Helmholtz free energy F:

C ¼ ∂U
∂T

¼ �kBβ2
∂U
∂β

¼ �kBβ2
∂
2 logZ
∂β2

(9)

or

C ¼ T
∂S
∂T

¼ �β
∂S
∂β

(10)

and

S ¼ �kBβ
∂ logZ
∂β

þ kB logZ (11)

and

F ¼ U � TS ¼ �kB logZ (12)

We can calculate other parameters affecting the system.
The Monte Carlo method is an excellent technique for estimating probabilities,

and we can take advantage of this property in evaluating the results. The simplest and
most popular model of a system of interacting variables in statistical physics is the
Ising model. It consists of spins σi which are confined to the sites of a lattice and
whichmay have only the values (+1) and (�1). These spins interact with their nearest
neighbors on the lattice with interaction constant J; they can interact with an external
magnetic field B coupling to the spins. The Hamiltonian H for this model is [26]:

H ¼ �J
X
i, j

σiσj � B
X
i

σi (13)
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The Ising model has been studied in one and two dimensions to obtain results of
thermal properties, phase transition, and magnetic properties [26–28]. For chosen
values of J and/or B, different steps may be taken for the calculations (simulation
cell, initialization, configurations, boundary conditions, calculation algorithms).
For any configuration, each spin takes the two possible directions. The detail of the
calculation procedure is not the purpose of this chapter.

4.2.3 MCS module designs

4.2.3.1 Simulation cell and initialization

We give a system of N particles (atoms, molecules, ions or particles) placed in a
cell of fixed volume, generally of cubic form. The initial positions may, depending
on the case, be distributed randomly according to a certain law (uniform or other-
wise) or have a given symmetry. In a fluid, a gas, or a plasma, the particles may
have random positions in general; in a solid or surface, with a crystal structure, the
particles take ordered positions. The choice of random initial positions allows great
freedom on the choice of the number of particles in the cell.

At the first step, the particles are given velocities that are generally selected to
have a zero total momentum. If the system is in thermodynamic equilibrium, the
initial velocities will be randomly chosen according to a Maxwell-Boltzmann law. In
the general case, the velocity distribution is according to the problem dealt with. All
other phase properties can be initialized to the particles; the main thing is the
conservation of the total quantities of the system.

4.2.3.2 Potentials of interaction

The particles interact with each other according to chosen interaction potentials.
Since the interaction potentials are specific for each “numerical experiment,” the
main part of the work consists in calculating the interaction energies for each
proposed configuration.

The choice of interaction potentials is directly related to the mathematical for-
mulation of the problem according to the state of the medium: fluid, gas, plasma, or
solid. It can be Lennard-Jones potential, Coulomb potential, Debye potential, Morse
potential, Stillinger-Weber potential, Born-Mayer potential, Moliere potential, or
others.

4.2.3.3 Boundary conditions

In general, two main boundary conditions are used: periodic boundary condi-
tions (PBC) and minimum image convention (MIC) [29].

To minimize the surface effect, periodic boundary conditions (PBC) [30] are
invariably imposed. The simulation cell is reproduced throughout the space to form
an infinite mesh. We can simulate the properties of an infinite system. The particles
that we follow are in the central cell; if a particle crosses a wall with a certain
velocity, its image returns with the same velocity by the opposite wall. Under these
conditions, the number of particles in the central cell, and consequently the density,
is constant. These conditions also allow the conservation of the energy and the
momentum of the system and do not introduce periodic effects (because of the
interaction between particles).

According to the hypotheses and according to the geometry of the problem,
other boundary conditions are proposed [26]. For example, in order to model thin
films, the simulation cells are longitudinal and parallel to the film; one uses PBC in
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the directions parallel to the film. In the direction normal to the film, free edge
boundary conditions can be used. In such cases, it may be appropriate to also
include surface fields and surface interactions. In this way, one can study phenom-
ena such as wetting, interface localization-delocalization transitions, surface-
induced ordering and disordering, etc.

The core of the program includes calculating the potential energies of particle
configuration and particle collisions. The interactions and collisions between parti-
cles can be elastic or inelastic; they can be binary or collective. For computation, the
interaction energy of a particle with its neighbors is carried out by refocusing a base
cell on the particle. This particle only interacts with particles in this region. This is
called the “minimal image convention” (MIC) [1].

4.2.3.4 Sampling of random data

Generally, a RANDOM generator of real random numbers ri belonging to the
domain {0, 1} (or ri ∈ {0, 1} is available. This distribution law is uniform.

To have a real random number xi belonging to the domain {a, b} (or xi ∈ a; bf g)
according to a law of uniform distribution, we have:

xi ¼ aþ ri b� að Þ (14)

To have a real random number xi belonging to the domain {a, b} (or xi ∈ {a,b})
according to a formula (or law) of nonuniform distribution f(x), a histogram
technique is used. Let Nm be the number of intervals. If the mesh is regular
(Figure 3):

Δx ¼ b� að Þ=Nm (15)

We define:

f i ¼ f xið Þ for i ¼ 0,…:,m and : xi ¼ aþ i:Δx (16)

We define the sequence:

S0 ¼ 0 and : Siþ1 ¼ Si þ Δx f xið Þ þ f xi�1ð Þð Þ=2 (17)

and the sequence:

rx0 ¼ 0 et rxi ¼ Si=Sm (18)

Hence each real random number ri belongs to the domain {0, 1} (where ri ∈ {0, 1})
(according to the uniform law); this number belongs to the domain {rxj-1, rxj}. It

Figure 3.
Random number selection according to f (x) distribution.
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corresponds to a random value xran of the domain {xj-1, xj}; this number satisfies the
formula (or the law) of nonuniform distribution f(x).

This technique can be generalized for a nonuniform distribution law f(x) with
an irregular mesh Δxi, or with tabular data f(xi) with i = 1,…, m.

The technique can be generalized, too, for a discrete distribution law f(i) with
i = 1,…, m.

In the literature, the reader can find simple algorithms for the choice of random
numbers of some simple functions (Gaussian, etc.).

4.2.3.5 Control of the evolution of the physical system

It is necessary to find some parameters allowing the control of the smooth course
of the evolution of the system. We must look for the constants of movement. For
example for an isolated system, we have the conservation of the total energy and the
quantity of matter.

4.2.3.6 Statistical calculations

By using the numerical simulation, it is possible to calculate many spatiotempo-
ral quantities F(r,t). These quantities can be positions, speeds, kinetic moments,
particle energies, concentrations, transport coefficients, etc. It would then be pos-
sible to calculate all other quantities related to F(r,t).

For the calculation of the averages, one can note the quantities on the space, on
the time or on both. The histogram methods can be used. Static or dynamic distri-
bution functions and spatial or temporal correlation functions can be calculated. It
should be noted that the SMC is much more adequate for static properties because
of the probabilistic choice of configurations.

Any calculated function or parameter F(r,t) can be used for another application
in another calculation program.

4.3 Other large methods of Monte Carlo simulation

In the MCS model discussed extensively in this chapter, it’s more about collisions
between particles. It’s particle-particle MCS or PP-MCS. In many problems of
physics, the general idea is the same, but the applications and proposed models are
numerous.

Other MCS models, named particle-in-cell MCS (PIC-MCS), are based on
particle-cell interactions. In these last models, we also use a probabilistic choice of
configurations and small variations in the state of the system (following the
Metropolis algorithm); the interaction is between the particle with a cell, a mesh, or
a drop. The parameters and variables of the cell, although local and instantaneous,
are macroscopic. These parameters and variables can be thermodynamic, fluid, or
electromagnetic. An example of the model based on PIC-MCS is described by Mattei
et al. [31] for simulation of electromagnetic particle-in-cell collision in inductively
coupled plasmas. Several works can be found in the literature on this same line of
work. Other MCS models using particles may be considered. [32].

For statistical physics problem solving (such as thin film deposition problems),
MCS models use experimental, numerical, or theoretical data from other methods
and models. Models can be improved to hybrid models. In the hybrid models,
connections between two modules can be realized. The first module is MCS; the
second module is fluid, electromagnetic, or other. An example of a three-module
hybrid model is presented by Mao and Bogaerts [33] to study gas mixtures in
PECVD system. The three modules are MCS, fluid, and electromagnetic. The first
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the directions parallel to the film. In the direction normal to the film, free edge
boundary conditions can be used. In such cases, it may be appropriate to also
include surface fields and surface interactions. In this way, one can study phenom-
ena such as wetting, interface localization-delocalization transitions, surface-
induced ordering and disordering, etc.

The core of the program includes calculating the potential energies of particle
configuration and particle collisions. The interactions and collisions between parti-
cles can be elastic or inelastic; they can be binary or collective. For computation, the
interaction energy of a particle with its neighbors is carried out by refocusing a base
cell on the particle. This particle only interacts with particles in this region. This is
called the “minimal image convention” (MIC) [1].

4.2.3.4 Sampling of random data

Generally, a RANDOM generator of real random numbers ri belonging to the
domain {0, 1} (or ri ∈ {0, 1} is available. This distribution law is uniform.

To have a real random number xi belonging to the domain {a, b} (or xi ∈ a; bf g)
according to a law of uniform distribution, we have:

xi ¼ aþ ri b� að Þ (14)

To have a real random number xi belonging to the domain {a, b} (or xi ∈ {a,b})
according to a formula (or law) of nonuniform distribution f(x), a histogram
technique is used. Let Nm be the number of intervals. If the mesh is regular
(Figure 3):

Δx ¼ b� að Þ=Nm (15)

We define:

f i ¼ f xið Þ for i ¼ 0,…:,m and : xi ¼ aþ i:Δx (16)

We define the sequence:

S0 ¼ 0 and : Siþ1 ¼ Si þ Δx f xið Þ þ f xi�1ð Þð Þ=2 (17)

and the sequence:

rx0 ¼ 0 et rxi ¼ Si=Sm (18)

Hence each real random number ri belongs to the domain {0, 1} (where ri ∈ {0, 1})
(according to the uniform law); this number belongs to the domain {rxj-1, rxj}. It

Figure 3.
Random number selection according to f (x) distribution.
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corresponds to a random value xran of the domain {xj-1, xj}; this number satisfies the
formula (or the law) of nonuniform distribution f(x).

This technique can be generalized for a nonuniform distribution law f(x) with
an irregular mesh Δxi, or with tabular data f(xi) with i = 1,…, m.

The technique can be generalized, too, for a discrete distribution law f(i) with
i = 1,…, m.

In the literature, the reader can find simple algorithms for the choice of random
numbers of some simple functions (Gaussian, etc.).

4.2.3.5 Control of the evolution of the physical system

It is necessary to find some parameters allowing the control of the smooth course
of the evolution of the system. We must look for the constants of movement. For
example for an isolated system, we have the conservation of the total energy and the
quantity of matter.

4.2.3.6 Statistical calculations

By using the numerical simulation, it is possible to calculate many spatiotempo-
ral quantities F(r,t). These quantities can be positions, speeds, kinetic moments,
particle energies, concentrations, transport coefficients, etc. It would then be pos-
sible to calculate all other quantities related to F(r,t).

For the calculation of the averages, one can note the quantities on the space, on
the time or on both. The histogram methods can be used. Static or dynamic distri-
bution functions and spatial or temporal correlation functions can be calculated. It
should be noted that the SMC is much more adequate for static properties because
of the probabilistic choice of configurations.

Any calculated function or parameter F(r,t) can be used for another application
in another calculation program.

4.3 Other large methods of Monte Carlo simulation

In the MCS model discussed extensively in this chapter, it’s more about collisions
between particles. It’s particle-particle MCS or PP-MCS. In many problems of
physics, the general idea is the same, but the applications and proposed models are
numerous.

Other MCS models, named particle-in-cell MCS (PIC-MCS), are based on
particle-cell interactions. In these last models, we also use a probabilistic choice of
configurations and small variations in the state of the system (following the
Metropolis algorithm); the interaction is between the particle with a cell, a mesh, or
a drop. The parameters and variables of the cell, although local and instantaneous,
are macroscopic. These parameters and variables can be thermodynamic, fluid, or
electromagnetic. An example of the model based on PIC-MCS is described by Mattei
et al. [31] for simulation of electromagnetic particle-in-cell collision in inductively
coupled plasmas. Several works can be found in the literature on this same line of
work. Other MCS models using particles may be considered. [32].

For statistical physics problem solving (such as thin film deposition problems),
MCS models use experimental, numerical, or theoretical data from other methods
and models. Models can be improved to hybrid models. In the hybrid models,
connections between two modules can be realized. The first module is MCS; the
second module is fluid, electromagnetic, or other. An example of a three-module
hybrid model is presented by Mao and Bogaerts [33] to study gas mixtures in
PECVD system. The three modules are MCS, fluid, and electromagnetic. The first
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module EM calculates the electromagnetic fields by solving Maxwell equations.
These fields are used as inputs in the module MCS, where the electron density,
electron temperature, electron energy distribution function, and electron impact
reaction rates can be computed with a Monte Carlo procedure. Subsequently, the
module fluid calculates densities and fluxes of the various plasma species (i.e.,
heavy particles and electrons) with continuity equations and the electrostatic field
with Poisson’s equation. This electrostatic field is used as input again in the EM. This
cycle is iterated until convergence. The schematic of the hybrid model is given in
Figure 4.

To solve statistical physics problems with evolutions as a function of time,
kinetic models of MCS (kMCS) are used. Using kMCS, Battaile and Srolovitz [17]
described kinetic phenomena of the diffusive motion of a single interstitial atom in
a close-packed metal crystal. The motion of the interstitial atom is usually limited to
two types: vibration of the atom around the center of the interstitial hole in which it
resides and hops to nearest-neighbor interstitial sites. The atom can hop into any of
the nearest-neighbor interstitial sites; it executes a random walk. In an MC simula-
tion of this diffusion process, the new position of the interstitial atom is chosen at
random from a list of the adjacent interstitial sites.

Other CVD and PECVD works on MCS are presented in Ref.s [15, 34–38]. They
show how MCS methods can study properties of gas mixtures and properties of the
growth of thin films.

5. Example of application: Monte Carlo simulation of a gas mixture in
the PECVD

In this section, we present an example of PP-MCS of collisions and reactions in
gas phase of SiH4/H2 mixture used in PECVD process. Some paragraphs have been
treated in previous works [21, 24].

5.1 Description of the physical phenomenon

We use a MCS to study collisions and chemical reactions in gas phase of SiH4/H2

mixture used in the PECVD process. In this phase, important reactions have been
identified that contribute to the production and the consumption of hydrogen (H),
silylene (SiH2), and silyl (SiH3). The hydrogen consumption reactions
SiH4 + H ! SiH3 + H2 and SiH3 + H ! SiH2 + H2 are found to play a central role in
deciding the distribution of hydrogen [39].The plasma chemistry indicates that H
atoms and SiH3 radicals play an important role in the a-Si:H deposition process [40].
Experimentally, it is generally accepted that SiH3 radicals dominate a-Si:H and μc-Si
film growth from SiH4 plasmas in the PECVD; it is the key precursor of a-Si:H
deposition [41]. The proposed MCS allowed to get the ratio SiH2/SiH3 and mean

Figure 4.
Schematic of a hybrid model of three modules used to study gas mixtures in the PECVD [33].
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value of densities of species. It provides information on SiH4 dissociation and on the
production of SiH3, H, SiH2, and Si2H6 and other important parameters.

The plasma in the PECVD reactor is weakly ionized. For our study, the mixture
gas contains 22% of SiH4 and 78% of H2; the pressure is 100 mtorr, the temperature
of the gas ranges from 373 to 723 K, the electron temperature is about 2.5 eV, and
the electron density is 3. 108 cm�3. The process is considered to be stationary. We
take into account electrons and eight neutral species (SiH4, SiH3, SiH2, H, H2, Si2H6,
Si2H5, SiH). Reactions taken into account include seven electron-neutral and 14
neutral-neutral reactions. Table 1 shows the 21 reactions and rate constants Kreac. At
low temperature, the neutrals interact occasionally with each other and move under
the effect of thermal agitation; their velocity distribution function is Maxwell-
Boltzmann distribution. Electrons have the mean velocity with kinetic energy Te.

Let Kcons
reac and Kprod

reac be the rate constants of the consumption and the production
of species A. The chemical reaction for the consumption of A is as:

a � Aþ b � B���!Kcons
reac c � Cþ d �D

And chemical reaction for the production of A is as:

a0 � A0 þ b0 � B0���!Kprod
reac c0 � Aþ d0 �D0

Symbol Reactions Kreac (cm3/s)

R1 SiH4 + e!SiH3 + H+e k1 = 3 � 10�11 [42]

R2 SiH4 + e!SiH2 + 2H + e K2 = 1.5 � 10�10 [42]

R3 SiH4 + e!SiH + H + H2 + e K3 = 9.34 � 10�12 [42]

R4 SiH4 + e!SiH2 + H2 + e K4 = 7.19 � 10�12 [42]

R5 H2 + e!2H + e K5 = 4.49 � 10�12 [42]

R6 Si2H6 + e!SiH3 + SiH2 + H + e K6 = 3.72 � 10�10 [42]

R7 Si2H6 + e!SiH4 + SiH2 +e K7 = 1.1 � 1010� (1.(1./(1. + (0.63 � P)))) [43]

R8 SiH4 + H!SiH3 + H2 K8 = 2.8 � 10�11 � exp.(�1250/T) [44]

R9 SiH4 + SiH2!Si2H6 K9 = 1.1 � 1010 � (1.�(1./(1. + (0.63 � P)))) [43]

R10 SiH3 + SiH3!SiH4 + SiH2 K10 = 0.45 � 1.5 � 10�10 [44]

R11 SiH4 + Si2H5!SiH3 + Si2H6 K11 = 5 � 10�13 [42]

R12 SiH3 + H!SiH2 + H2 K12 = 2 � 10�11 [44]

R13 SiH3 + Si2H6!SiH4 + Si2H5 K13 = 4 � 10�10 � exp. (�2500/T) [44]

R14 SiH2 + H!SiH + H2 k14 = 2 � 10�11 [44]

R15 Si2H6 + H!Si2H5 + H2 K15 = 0.66 � 2.4 � 10�10 � exp. (�1250/T) [43]

R16 Si2H6 + H!SiH4 + SiH3 K16 = 0.34 � 2.4 � 10�10 � exp. (�1250/T) [44]

R17 SiH + H2!SiH3 K17 = 2 � 10�12 [43]

R18 SiH2 + SiH3!Si2H5 K18 = 3.77 � 10�13 [43]

R19 SiH2 + H2!SiH4 K19 = 3 � 10�12 � (1. + (1./1. + (0.03 � P))) [43]

R20 2SiH3!Si2H6 K20 = 0.1 � 1.5 � 10�10 [43]

R21 SiH4 + SiH!Si2H5 K21 = (1.�(1./(1. + (0.33 � P)))) � (6.9 � 10�10) [43]

Table 1.
List of gas phase reactions and corresponding rate constants [24].
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module EM calculates the electromagnetic fields by solving Maxwell equations.
These fields are used as inputs in the module MCS, where the electron density,
electron temperature, electron energy distribution function, and electron impact
reaction rates can be computed with a Monte Carlo procedure. Subsequently, the
module fluid calculates densities and fluxes of the various plasma species (i.e.,
heavy particles and electrons) with continuity equations and the electrostatic field
with Poisson’s equation. This electrostatic field is used as input again in the EM. This
cycle is iterated until convergence. The schematic of the hybrid model is given in
Figure 4.

To solve statistical physics problems with evolutions as a function of time,
kinetic models of MCS (kMCS) are used. Using kMCS, Battaile and Srolovitz [17]
described kinetic phenomena of the diffusive motion of a single interstitial atom in
a close-packed metal crystal. The motion of the interstitial atom is usually limited to
two types: vibration of the atom around the center of the interstitial hole in which it
resides and hops to nearest-neighbor interstitial sites. The atom can hop into any of
the nearest-neighbor interstitial sites; it executes a random walk. In an MC simula-
tion of this diffusion process, the new position of the interstitial atom is chosen at
random from a list of the adjacent interstitial sites.

Other CVD and PECVD works on MCS are presented in Ref.s [15, 34–38]. They
show how MCS methods can study properties of gas mixtures and properties of the
growth of thin films.

5. Example of application: Monte Carlo simulation of a gas mixture in
the PECVD

In this section, we present an example of PP-MCS of collisions and reactions in
gas phase of SiH4/H2 mixture used in PECVD process. Some paragraphs have been
treated in previous works [21, 24].

5.1 Description of the physical phenomenon

We use a MCS to study collisions and chemical reactions in gas phase of SiH4/H2

mixture used in the PECVD process. In this phase, important reactions have been
identified that contribute to the production and the consumption of hydrogen (H),
silylene (SiH2), and silyl (SiH3). The hydrogen consumption reactions
SiH4 + H ! SiH3 + H2 and SiH3 + H ! SiH2 + H2 are found to play a central role in
deciding the distribution of hydrogen [39].The plasma chemistry indicates that H
atoms and SiH3 radicals play an important role in the a-Si:H deposition process [40].
Experimentally, it is generally accepted that SiH3 radicals dominate a-Si:H and μc-Si
film growth from SiH4 plasmas in the PECVD; it is the key precursor of a-Si:H
deposition [41]. The proposed MCS allowed to get the ratio SiH2/SiH3 and mean

Figure 4.
Schematic of a hybrid model of three modules used to study gas mixtures in the PECVD [33].
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value of densities of species. It provides information on SiH4 dissociation and on the
production of SiH3, H, SiH2, and Si2H6 and other important parameters.

The plasma in the PECVD reactor is weakly ionized. For our study, the mixture
gas contains 22% of SiH4 and 78% of H2; the pressure is 100 mtorr, the temperature
of the gas ranges from 373 to 723 K, the electron temperature is about 2.5 eV, and
the electron density is 3. 108 cm�3. The process is considered to be stationary. We
take into account electrons and eight neutral species (SiH4, SiH3, SiH2, H, H2, Si2H6,
Si2H5, SiH). Reactions taken into account include seven electron-neutral and 14
neutral-neutral reactions. Table 1 shows the 21 reactions and rate constants Kreac. At
low temperature, the neutrals interact occasionally with each other and move under
the effect of thermal agitation; their velocity distribution function is Maxwell-
Boltzmann distribution. Electrons have the mean velocity with kinetic energy Te.

Let Kcons
reac and Kprod

reac be the rate constants of the consumption and the production
of species A. The chemical reaction for the consumption of A is as:

a � Aþ b � B���!Kcons
reac c � Cþ d �D

And chemical reaction for the production of A is as:

a0 � A0 þ b0 � B0���!Kprod
reac c0 � Aþ d0 �D0

Symbol Reactions Kreac (cm3/s)

R1 SiH4 + e!SiH3 + H+e k1 = 3 � 10�11 [42]

R2 SiH4 + e!SiH2 + 2H + e K2 = 1.5 � 10�10 [42]

R3 SiH4 + e!SiH + H + H2 + e K3 = 9.34 � 10�12 [42]

R4 SiH4 + e!SiH2 + H2 + e K4 = 7.19 � 10�12 [42]

R5 H2 + e!2H + e K5 = 4.49 � 10�12 [42]

R6 Si2H6 + e!SiH3 + SiH2 + H + e K6 = 3.72 � 10�10 [42]

R7 Si2H6 + e!SiH4 + SiH2 +e K7 = 1.1 � 1010� (1.(1./(1. + (0.63 � P)))) [43]

R8 SiH4 + H!SiH3 + H2 K8 = 2.8 � 10�11 � exp.(�1250/T) [44]

R9 SiH4 + SiH2!Si2H6 K9 = 1.1 � 1010 � (1.�(1./(1. + (0.63 � P)))) [43]

R10 SiH3 + SiH3!SiH4 + SiH2 K10 = 0.45 � 1.5 � 10�10 [44]

R11 SiH4 + Si2H5!SiH3 + Si2H6 K11 = 5 � 10�13 [42]

R12 SiH3 + H!SiH2 + H2 K12 = 2 � 10�11 [44]

R13 SiH3 + Si2H6!SiH4 + Si2H5 K13 = 4 � 10�10 � exp. (�2500/T) [44]

R14 SiH2 + H!SiH + H2 k14 = 2 � 10�11 [44]

R15 Si2H6 + H!Si2H5 + H2 K15 = 0.66 � 2.4 � 10�10 � exp. (�1250/T) [43]

R16 Si2H6 + H!SiH4 + SiH3 K16 = 0.34 � 2.4 � 10�10 � exp. (�1250/T) [44]

R17 SiH + H2!SiH3 K17 = 2 � 10�12 [43]

R18 SiH2 + SiH3!Si2H5 K18 = 3.77 � 10�13 [43]

R19 SiH2 + H2!SiH4 K19 = 3 � 10�12 � (1. + (1./1. + (0.03 � P))) [43]

R20 2SiH3!Si2H6 K20 = 0.1 � 1.5 � 10�10 [43]

R21 SiH4 + SiH!Si2H5 K21 = (1.�(1./(1. + (0.33 � P)))) � (6.9 � 10�10) [43]

Table 1.
List of gas phase reactions and corresponding rate constants [24].
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Rate production and consumption for any species A are taken as:

RA ¼ þ
X

Kprod
reac

Kcons
reac A0; B0ð Þn

a0
A0nb

0
B0 �

X
Kcons

reac
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An
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5.2 Description of Monte Carlo simulation technique

5.2.1 Simulation cell and phase coordinates

The MCS is based on binary collisions at the microscopic level. Elastic collisions
are between all particles, and inelastic collisions (or effective collisions) are those
that result in a chemical reaction. A chemical reaction needs a collision involving at
least two particles (atoms, ions, electrons, or molecules). According to kinetic
theory, gases consist of particles in random motion. These particles are uniformly
distributed in a cell which has a parallelepiped form of sizes Lx, Ly, and Lz
(Figure 5). These particles move in a straight line until they collide with other particles
or the walls of their container. Dimensions and volume of Monte Carlo cell must take
into consideration the mean free path of species.

Let ni be the density of neutral spice i (i = 1,…, 8). The first particle i is randomly
chosen according to a probability of neutral species Prsp,I (nonuniform discrete dis-
tribution) given by:

Prsp, i ¼ niP8
j¼1 nj

(20)

The chosen particle takes randomly three components of space in cell ri(xi, yi, zi)
according to the normal distribution (nonuniform distribution). It takes also
randomly three components of velocity vi (vxi, vyi, vzi) according to
Maxwell-Boltzmann distribution.

Figure 5.
Form of the simulation cell.
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5.2.2 Treatment of elastic and inelastic collisions

Let ni and nj be the densities of species i and j in the gas and Vij the relative
velocity between the two species i and j.

According to the kinetic theory of gases, we have for an incident particle i on a
target particle j the average collision frequency νij as:

υij ¼ Vijnj < σij> (21)

where <sij> is the cross section of the particle j.
The mean free path <λι> of species i is:

< λi> ¼ 1
nj < σij>

(22)

The time between two collisions τij is then:

τij ¼ < λi>
Vij

¼ 1
υij

(23)

For chemical effective reactions (inelastic collisions) between two reactive spe-
cies i and j giving products i’ and j’, the rate constant reaction verifies [45]:

kij ¼ < σij Vij
� � � Vij> (24)

General rules of collision theory are applied:

• The new velocities of the colliding particles are calculated using conservation
of energy and momentum for elastic collisions.

• Conservation of total energy as isolated system.

• Movement of the center of mass and relative motion around the center of mass.

The reader can refer to some fundamental physics books that deal with general
notions of collisions and corresponding parameters [45–48].

The plasma in the PECVD reactor is weakly ionized. At low temperature, parti-
cles interact occasionally with each other and move under the effect of thermal
agitation. In reality, only a small fraction of collisions are effective (result in a
chemical reaction) [21].

In our MCS, after traveling a random walk given by a Gaussian distribution, the
first chosen particle collides with a second particle (molecule, atom, radical, or
electron). The last particle j is randomly chosen according to a (i-j) collision proba-
bility Prcol,j (nonuniform discrete distribution) given by:

Prcol, j ¼
νijP9
k¼1 νik

(25)

where νij is the neutral-neutral or electron-neutral collisional frequency. The colli-
sion theory indicates that the collision between molecules can provide the energy
needed to break the necessary bonds so that new bonds can be formed [49]. Particles must
have sufficient energy to initiate the reaction (activation energy), so the two chosen
particles must have kinetic energy equal to or greater than the barrier energy (Ea) of a
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notions of collisions and corresponding parameters [45–48].
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agitation. In reality, only a small fraction of collisions are effective (result in a
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gas phase reaction. The difference between the kinetic energy of the two particles and
the activation energy define the kind of collision (effective or not effective).

The activation energy is given by:

Ea ¼ �kBTln Kreac=νij
� �

(26)

where the pre-exponential factor is assumed to be the collision frequency factor
and Kreac is the rate constant of the gas phase reaction.

The two colliding particles (e.g., the electron and SiH4 molecule) can interact by
several reactions (R1, R2, R3, and R4 in Table 1); we choose randomly one of gas
phase reactions occurring according to a, nonuniform discrete distribution reaction
probability Prreac (i,j):

Prreac i; jð Þ ¼ Kreac i; jð ÞP
Kreac i; jð Þ (27)

where
P

Kreac i; jð Þ is the sum of all rate constants of possible reactions between i
and j.

All chemical systems go naturally toward states of minimum Gibbs free energy
[21, 24]. A chemical reaction tends to occur in the direction of lower Gibbs free
energy. To determine the direction of the reaction that is taking place, we use the
old and new values of Kreac and the equilibrium constant with reactants and product
concentrations. Each set of binary collisions can be related or converted into time.
As cited in section (a), Table 1 gives gas phase reactions and corresponding rate
constants used in this MCS.

To continue the simulation, after the elastic collision, particle i takes new values
of components velocity and new mean free path; mean free path is taken from a
normal (nonuniform) distribution (Gaussian distribution). If the collision is inelastic,
we have to take a new particle.

From Metropolis algorithm, the scheme of this MCS is as follows:

a. Choices of particle of spice i with random position, velocity, and mean free
path; periodic boundary conditions are used to keep particles in the
elementary cell.

b. Choices of random collision with a spice j.

c. Study of collision type (elastic, inelastic). If the collision is elastic the particle
i move with a new velocity and mean free path, and we return to step (b).
If the collision is inelastic particles i and j give new particles i’ and j’,
according to Metropolis scheme, and we return to step (a) or (b). Periodic
boundary conditions are used to keep particles in the elementary cell.

d. At each step, we can note the different statistics.

5.2.3 The choice of simulation parameters

Once the species are selected for the simulation model, an estimate of species
densities should be made. Following the model of interaction and collisions between
particles (binary, collective, etc.), a first choice of the minimum number Ni of
particles of each species is made. A first estimate of the sizes (Lx, Ly, Lz) of the
elementary cell is made.
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The study of the types of interaction potentials and the calculation of the
approximate values of the force ranges, the kinetic energies, the internal energies,
and the energies of activation make it possible to correct the minimal numbers Ni of
particles and the sizes (Lx, Ly, Lz) of the elementary cell.

Let kp be the number of a species, kp = 1,…, 9. The minimal numbers Qnp(kp)
and the sizes (Lx, Ly, Lz) have to be discussed for statistical calculations.

For numerical programming, according to the programming language used and
according to the size (or the computational capacity) of the computer, it is neces-
sary to find a judicious choice of the tables of integer or real values and which values
would be useful to save all during simulation. Let Ncol,m be the maximum number of
elastic collisions per particle, and let Ncycle be the number of cycles to average the
simulation calculations.

For this MCS, the numerical chosen values are in Table 2.
For radicals (e.g., SiH3), particle numbers Qnp(k) are very small; we take Qnp

(k) = 10. These numbers cannot take value 1 or 0, even if a species k is in trace form
in the gas. The value 0 for a species k means that any other species k’ does not make
a collision with the species k; and the value 1 means that we have no collisions
between particles of the same species in the cell.

Qnp1, Qnp5, and Qnp9 are calculated from the volume of cell, the pressure, the
temperature, and the total number of particles in the cell (Qnp1 = 0.81187824 * 109;
Qnp5 = 0.20296956 * 109; Qnp9 = 131).

5.2.4 Calculation of statistical properties and some results of the calculations

As we have chosen a stationary regime, we must reach the values and properties
at equilibrium. The results of the simulation show this trend. In MCS, averaged
values, distribution functions, autocorrelation functions, and correlation functions
can be calculated. To ensure rapid convergence of calculations, it would be useful to
look for statistically symmetric (or stationary or unsteady) parameters [26, 50].

As an example for our MCS calculation, we have:

• The number of Si2H6, SiH, and Si2H5 particles reaching the surface is negligible.

• Let Ns,i and Ns, H2 be the densities of a species i and H2 reaching the surface.
The ratios Ns,i/Ns, H2 are too small (Table 3).

Cell dimensions and steps for
collisions

Number of species Kp Initial number of particles in
cell

Lx (m) 4.68 10�6 1 Qnp(SiH4) Qnp1

Ly (m) 4.68 10�6 2 Qnp(SiH3) 10

Lz (m) 20.0 10�3 3 Qnp(SiH2) 10

4 Qnp(H) 10

Ncol,m 500 5 Qnp(H2) Qnp5

Ncycle internal cycle 2000 6 Qnp(Si2H6) 10

Ncycle external cycle 200,000 7 Qnp(SiH) 10

8 Qnp(Si2H5) 10

9 Qnp(e) Qnp9

Table 2.
Used quantities and parameters in calculations for the gas temperature Tg = 520 K.
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• Let Ns,i be the density of a species i reaching the surface and Nv,i the density of
same species i in volume. The ratios Ns,i/Nv,i are too small (Table 4); the
surface effect is negligible.

• The reactions begin with the dissociation (consumption) of H2 and SiH4 by R5,
R1, and R2 reactions.

• The production of SiH3 is done by R8, and then there is production of SiH2 by
R12.

• The reaction R2: SiH4 + e ! SiH2 + 2H + e plays the central role in SiH4

dissociation by electron impact [24]. This result is compatible with [39].

• The second important chemical reaction in the SiH4 dissociation is R1:
SiH4 + e ! SiH3 + H + e [24]. This result is compatible with that of Perkins
et al. [51] and that of Doyle et al. [52].

6. Conclusions

MCS is a widely used method in statistical physics to study thermodynamic,
structural, or phase properties. It is based on random and probabilistic processes.
The purpose of this chapter is to present the technique for general use in physics for
the study of thin film deposition problems. The technique can be generalized to
other fields of science: biology, economics, transportation, and social sciences.

We started by presenting general rules for numerical simulation methods.
Metropolis algorithm has been considered as the basic algorithm. After, we
presented the different steps for the realization of a MCS code. We chose the
particle-particle model MCS (PP-MCS) to explain the different steps and proce-
dures to be applied in the deposition of thin layers by PECVD processes. We have
shown that this technique can be generalized to the particle-in-cell MCS (PIC-MCS)
case or kinetic MCS (kMCS), as it can be joined with other modules to give hybrid
models. It is important to know how to choose random configurations from the laws
or probability distributions in the system.

A numerical application is presented for collisions in a SiH4/H2 gas mixture in
the PECVD process. A preliminary work of determination of the chemical reactions
between molecules and radicals is made. A choice of the simulation cell is made, and
the definition of the probabilities of the collisions between peers is made. The
Metropolis algorithm makes it possible to follow the various elastic and inelastic

Type H2 SiH4 H SiH3 SiH2

Ns,i/Ns, H2 1 0.23 1.67 10�4 8.60 10�5 9.86 10�6

Table 3.
Ratios Ns,i/Ns, H2 of particles reaching the surface compared to H2.

Type SiH4 SiH3 SiH2

v, j 6.695 10�6 7.965 10�6 775 10�6

Table 4.
Ratios Ns,i/Nv,i of particles reaching the surface compared to volume.
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collisions; it also makes it possible to make the statistics of the interactions with the
surface. The results are compatible with [39, 51, 52].

Other questions may be asked to account for molecular ions, surface and volume
kinetics, or thin film formation. The techniques and different models of the MCS
(PP-MCS, MCS-PIC, kMCS) allow taking care of these questions.

The interconnection of the MCS with other models (MDS, hybrid model, fluid
model, electromagnetic model, etc.) would allow answering more questions. The
methods can be applied to other specialties than the physical sciences.
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Chapter 6

Application of Local Information
Entropy in Cluster Monte Carlo
Algorithms
Artur Chrobak, Grzegorz Ziółkowski and Dariusz Chrobak

Abstract

The chapter refers to a modification of the so-called adding probability used in
cluster Monte Carlo algorithms. The modification is based on the fact that in real
systems, different properties can influence its clusterization. Finally, an additional
factor related to property disorder was introduced into the adding probability,
which leads to more effective free energy minimization during MC iteration. As a
measure of the disorder, we proposed to use a local information entropy. The
proposed approach was tested and compared with the classical methods, showing
its high efficiency in simulations of multiphase magnetic systems where magnetic
anisotropy was used as the property influencing the system clusterization.

Keywords: Monte Carlo simulations, cluster Monte Carlo methods, magnetic
simulations, entropy methods, ultra-high coercive alloys

1. Introduction

The problem of simulation magnetization processes of multiphase magnetic
materials seems to be important, regarding the tendency for applications of high-
efficient permanent magnets with reduced or without rare earth elements.
Recently, we reported unique hard magnetic properties of Tb-Fe-B-Nb bulk alloys,
i.e., coercive field over 7 T at room temperature, attributed to a specific micro-
structure of dendrite-like Tb2Fe14B grains [1, 2]. In this system, Tb and Fe magnetic
moments are coupled antiferromagnetically, which is responsible for relatively low
magnetic remanence (μ0Mr ≈ 0.3 T) and in consequence |BH|max (about 13 kJ/m

3).
However, the Fe-Nb-B-Tb bulk alloys can be considered as a material with
extremely high resistance to the external magnetic field and can be a source of
magnetic anisotropy in powders as well as bulk spring-exchange composites
containing magnetically soft and ultra-high coercive phases. For this reason, the
ability of simulating of such systems is very useful in the process of examining and
designing of spring-exchange composites in the pre-lab phase.

Monte Carlo (MC) algorithms are now widely used to clarify various physical
phenomena, as well as to investigate their potential application in modern technol-
ogy. Among many simulation methods, the Metropolis MC (MMC) approach [3, 4]
is especially attractive in statistical physics for the determination of system physical
quantities in thermodynamic equilibrium. The MMC algorithm realizes an ergodic
stochastic process, ensuring the fulfillment of the detailed balance condition.
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One of the bright examples of the application of the MMC algorithm is the Ising
model of spins located on the nodes of some lattice. Indeed, using this method one
can study a course of magnetic ordering and its dependence of temperature and
details of interactions between the spins.

The MMC method utilizes the single-spin-flip procedure to change the spin
configuration; however, in many cases (e.g., simulations of magnetization pro-
cesses) a more effective algorithm is needed. The simplest approach relies on the
generation of a cluster of uniformly oriented spins and their subsequent flip to
reach new state of the system. The main question is how to determine the cluster
and how to establish a rule of its acceptance, simultaneously satisfying the detailed
balance condition. Classical approaches, based on the Kasteleyn-Fortuin theorem
[5, 6], were proposed by Swendsen and Wang (SW) [7] as well as by Wolff [8] who
assumed a specific cluster-building procedure controlled by the so-called adding
probability. It is known that the cluster Monte Carlo methods (CMC) are very
efficient in the analysis of critical phenomena, e.g., transformation from ferromag-
netic to paramagnetic phase [9, 10]. In contrast, their application for studying
magnetization processes of systems far below the Curie point produces artificial
results, which can be demonstrated for the systems containing magnetically differ-
ent phases (e.g., hard and soft) as well as geometrical irregularities. The cluster-
building algorithms implemented within SW and Wolf approaches are steered by
the exchange interactions and the system temperature, but they are not sensitive to
other features, potentially affecting the clusterization of spins.

In order to broaden the applications of the CMC methods to simulations of real
magnetic composites, we proposed a new method based on some modification of
the SW/Wolff adding probability and a particular Metropolis-like algorithm,
ensuring the principle of detailed balance [11]. The idea is based on the fact that
some kind of regions of the system, characterized by a local disorder of selected
system property, constitutes natural barriers for the extension of clusters. In the
case of magnetic multiphase composites, spatial distribution of the magnetic
anisotropy can be considered as the property affecting the cluster formation.

In the chapter, the disorder-based CMC algorithm is introduced and discussed in
a context of classical CMC methods. We show that the new simulation procedure is
efficient leading to physically reliable results, especially for multiphase magnetic
composites.

2. Local disorder-based CMC method

Let the considered physical system be characterized by a discrete spectrum of
microscopic energy states (microstates) labeled by Eα. Furthermore, let the system
be in equilibrium with a thermostat having a temperature T. According to basic
principles of statistical mechanics, the probability that the system occupies the state
α is proportional to the Boltzmann factor: exp �βEαð Þ, where β ¼ 1=kBT, kB refers
to the Boltzmann constants. Then, the equilibrium value of some system quantity
(observable) F can be calculated using the following formula [12, 13]:

F ¼ 1
Z

X
α

Fα exp �βEαð Þ, (1)

where Z ¼Pα exp �βEαð Þ is the partition function. The direct use of Eq. (1) is
impractical due to a very large number of states that should be taken into account.
Indeed, even for small systems as, for example, a two-dimensional 10� 10 lattice of
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spins, we get a total of 2100 states—the number that makes the summation occur-
ring in Eq. (1) impossible.

In order to estimate the average ´F, a nonuniform sampling of the system states
can be applied. If αf g denotes a set of indices of M system states selected with the
probability pα, the equilibrium value of the observable F can be modeled [13] by the
estimator:

FS ¼
P

αf gFα exp �βEαð Þp�1
αP

αf g exp �βEαð Þp�1
α

¼ 1
N

X
αf g

Fα, (2)

where probabilities pα were selected to be equal exp �βEαð Þ=Z. All we need is a
method that generates a set of system states with the Boltzmann probabilities pα.
Because the exact value of the partition function Z is unknown, the generation of
the states is usually carried out by the ergodic Markov process. This process pro-
duces a proper chain of states under the assumption that transition probability Wαβ

(from α to β state) is independent of the states preceding α. Moreover, It is also
assumed that the detailed balance condition, pβWβα ¼ pαWαβ, is satisfied when the
system is in a state of equilibrium [12–15].

The transition probability Wαβ can be considered as a product of the selection
probability gαβ and the acceptance ratio (probability)Aαβ. In general, the selection
probabilities can be chosen to a large extent freely, e.g., they can be symmetrical
gαβ ¼ gβα [12]. In that case the acceptance probabilities satisfy the equation:

Aαβ=Aβα ¼ exp �β Eβ � Eα

� �� �
(3)

As an example, let us consider Ising model of N interacting spins placed at the
nodes of a two-dimensional regular. The energy of the system is, then, given by the
formula

E ¼ �J
XN

i 6¼j¼1

sisj (4)

where si ¼ �1 describes the spin state at the ith lattice node and J refers to the
exchange integral. In order to determine the physical properties of our magnetic
system, theMetropolis algorithm can be employed. It relies on the particular choice of
both the selection probability and the acceptance ratio. Having some configuration of
spins, the next one is obtained by the flip of a single spin (single-spin-flip algorithm)
[12, 13]. This procedure results in uniform distribution of the selection probabilities,
i.e., each new state participates in simulations with probability gαβ ¼ 1=N. Then, the
new spin configuration can be accepted or rejected with an acceptance ratio
Aαβ ¼ exp �β Eβ � Eα

� �� �
(for Eβ � Eα >0) andAαβ ¼ 1 (for all other cases).

Although the Metropolis algorithm can be applied to a variety of physical problems,
when applied to magnetic systems, it has disadvantage that relies on a very rapid
increase of the correlation time as well as correlation length near the critical point. As a
result the system contains domains of the same oriented spins and therefore becomes
configurationally frozen. This unexpected behavior (critical slowing down) of the
Metropolis algorithm is the reason for the difficulties in the generation of statistically
independent spin configurations that are needed for the calculation of the estimator FS.

The solution of the critical slowing down problem was proposed by Swendsen-
Wang [7] and later by Wolff [8]. The approach developed by Wolf (cluster-flipping
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results, which can be demonstrated for the systems containing magnetically differ-
ent phases (e.g., hard and soft) as well as geometrical irregularities. The cluster-
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the SW/Wolff adding probability and a particular Metropolis-like algorithm,
ensuring the principle of detailed balance [11]. The idea is based on the fact that
some kind of regions of the system, characterized by a local disorder of selected
system property, constitutes natural barriers for the extension of clusters. In the
case of magnetic multiphase composites, spatial distribution of the magnetic
anisotropy can be considered as the property affecting the cluster formation.

In the chapter, the disorder-based CMC algorithm is introduced and discussed in
a context of classical CMC methods. We show that the new simulation procedure is
efficient leading to physically reliable results, especially for multiphase magnetic
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Let the considered physical system be characterized by a discrete spectrum of
microscopic energy states (microstates) labeled by Eα. Furthermore, let the system
be in equilibrium with a thermostat having a temperature T. According to basic
principles of statistical mechanics, the probability that the system occupies the state
α is proportional to the Boltzmann factor: exp �βEαð Þ, where β ¼ 1=kBT, kB refers
to the Boltzmann constants. Then, the equilibrium value of some system quantity
(observable) F can be calculated using the following formula [12, 13]:

F ¼ 1
Z
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α

Fα exp �βEαð Þ, (1)

where Z ¼Pα exp �βEαð Þ is the partition function. The direct use of Eq. (1) is
impractical due to a very large number of states that should be taken into account.
Indeed, even for small systems as, for example, a two-dimensional 10� 10 lattice of
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spins, we get a total of 2100 states—the number that makes the summation occur-
ring in Eq. (1) impossible.

In order to estimate the average ´F, a nonuniform sampling of the system states
can be applied. If αf g denotes a set of indices of M system states selected with the
probability pα, the equilibrium value of the observable F can be modeled [13] by the
estimator:

FS ¼
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αf gFα exp �βEαð Þp�1
αP

αf g exp �βEαð Þp�1
α

¼ 1
N
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αf g

Fα, (2)

where probabilities pα were selected to be equal exp �βEαð Þ=Z. All we need is a
method that generates a set of system states with the Boltzmann probabilities pα.
Because the exact value of the partition function Z is unknown, the generation of
the states is usually carried out by the ergodic Markov process. This process pro-
duces a proper chain of states under the assumption that transition probability Wαβ

(from α to β state) is independent of the states preceding α. Moreover, It is also
assumed that the detailed balance condition, pβWβα ¼ pαWαβ, is satisfied when the
system is in a state of equilibrium [12–15].

The transition probability Wαβ can be considered as a product of the selection
probability gαβ and the acceptance ratio (probability)Aαβ. In general, the selection
probabilities can be chosen to a large extent freely, e.g., they can be symmetrical
gαβ ¼ gβα [12]. In that case the acceptance probabilities satisfy the equation:

Aαβ=Aβα ¼ exp �β Eβ � Eα
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(3)

As an example, let us consider Ising model of N interacting spins placed at the
nodes of a two-dimensional regular. The energy of the system is, then, given by the
formula

E ¼ �J
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where si ¼ �1 describes the spin state at the ith lattice node and J refers to the
exchange integral. In order to determine the physical properties of our magnetic
system, theMetropolis algorithm can be employed. It relies on the particular choice of
both the selection probability and the acceptance ratio. Having some configuration of
spins, the next one is obtained by the flip of a single spin (single-spin-flip algorithm)
[12, 13]. This procedure results in uniform distribution of the selection probabilities,
i.e., each new state participates in simulations with probability gαβ ¼ 1=N. Then, the
new spin configuration can be accepted or rejected with an acceptance ratio
Aαβ ¼ exp �β Eβ � Eα
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(for Eβ � Eα >0) andAαβ ¼ 1 (for all other cases).

Although the Metropolis algorithm can be applied to a variety of physical problems,
when applied to magnetic systems, it has disadvantage that relies on a very rapid
increase of the correlation time as well as correlation length near the critical point. As a
result the system contains domains of the same oriented spins and therefore becomes
configurationally frozen. This unexpected behavior (critical slowing down) of the
Metropolis algorithm is the reason for the difficulties in the generation of statistically
independent spin configurations that are needed for the calculation of the estimator FS.

The solution of the critical slowing down problem was proposed by Swendsen-
Wang [7] and later by Wolff [8]. The approach developed by Wolf (cluster-flipping
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algorithm) based on the generation of the uniformly oriented spin cluster and its
subsequent flipping [12]. In contrast to single-spin-flip algorithm, this procedure
easily destroys domains of correlated spins and allows the system to walk through
the configuration space. The Wolff algorithm is recognized to be more effective
than the Swendsen-Wang one [16–18]. The selection of a spin cluster starts from
randomly chosen spin to which the neighbors occupying the same spin state are
added with the probability Padd. The cluster grows up until no spin is added to it. It
is a great advantage that the Wolff algorithm is a rejection-free one. Indeed, adding
probability Padd is defined so that the detailed balance condition (with acceptance
ratio equal to one) is met:

Padd ¼ 1� exp �2βJð Þ (5)

Despite the great achievements, theWolff model is not able to correctly simulate
magnetic phenomena that occur far below the critical point in real magnetic mate-
rials, including those that are composed of various magnetic phases as well as those
containing geometrical irregularities. To be more precise, one can consider, as an
example, remagnetization of the system build of two magnetically hard and soft
ferromagnetic spheres coupled by a narrow bridge. Let us assume that in the initial
state, the magnetization of the system is collinear with the direction of the external
magnetic field and then the magnetic field is switched in the opposite direction.
What happens to the system is that the magnetization of the soft sphere will follow
the change of the magnetic, and then the similar behavior of the hard sphere is
expected. Unfortunately, for systems with strong spin-spin coupling, the two-step
behavior of the considered system cannot be modeled using Wolff clusterization
algorithm. Indeed, every attempt to build a cluster within the two-sphere magnetic
system results in that the hard and soft spheres belong to the same cluster indepen-
dently on magnetic anisotropy and geometry of the system. So, even if the two-step
remagnetization process is energetically preferred, the simulated magnetization
curve consists of one step related to the common spin rotation. Taking into account
the problems encountered during modeling the remagnetization of magnetically
inhomogeneous system, we propose a modification of the Wolff algorithm that
relies on an assumption that some regions of the system, characterized by a disorder
of selected system property, can serve barriers for an extension of magnetic clusters.

We began from the introduction a distribution of system property K that can
refer, for example, magnetic anisotropy or some other properties potentially affect-
ing the clusterization of the system. Let us define a sphere V around a node of the
spin lattice—the sphere containing N nodes in total. Furthermore, let the system
property be characterized by a discrete and finite set of values: K1, K2,…, KNK . The
local distribution of the K system property is defined by the numbers
nif g ¼ n1; n2;…; nNKf g, where ni stands for the number of nodes having the value

Ki. The sum overall is ni equals N. Thus, the particular K-state of the sphere V is
defined by the set of numbers nif g. The number of possible realizations of the
K-state denoted by Ω nif g is given by the expression

Ω nif g ¼ N!

n1!n2!…nNK !
(6)

Using the Stirling formula, the previous equation takes the form

ln Ω nif g
� �

≈ �N
XNK

i¼1

piln pi
� �

(7)
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where pi ¼ Ni=N stands for the probability of finding Ki value inside the sphere
V. The expression on the right side of Eq. (7) contains the term called local
information entropy [19]:

Slocnif g ¼ �
XNK

i¼1

piln pi
� �

(8)

So the number of “microstates” corresponding to the K-state is

Ω nif g ≈ exp NSlocnif g
� �

(9)

The probability of particular local distribution nif g of the system property K is
proportional to Ω nif g. If the only one value of K dominates its distribution inside the
sphere V, e.g., N;0;…0f g, the local information entropy achieves the lowest value
Sloc ¼ 0. Other local distribution nif g that involves more than one value of K results
in Sloc >0.

Now we can introduce the perception of local disorder of the K system property
and its measure pK . We will say that the K system property is fully ordered inside
the sphere V if all the nodes inside the sphere have the same value of K. Conse-
quently, one can say that the sphere V exhibits some local disorder of K if more
values of K are distributed inside the sphere. The measure of the local disorder can
be defined by as follows:

pK ¼ exp �Sloc
� �

(10)

which gives pK ¼ 1 if the case of fully ordered system property (Sloc ¼ 0). One
can see that pK decreases when local disorder of K system property increases
(Sloc >0).

We assume that local disorder of K system property decreases the probability of
cluster growth and constitutes barriers for cluster expansion. Thus, one could
expect nonuniform distribution of adding probability P0

add among the system nodes.
In order to derive a reasonable formula for P0

add, we follow an analogy with deriva-
tion of the van der Waals equation. Our “ideal gas” corresponds to the uniform
distribution of adding probability given by Wolff algorithm, while “real gas” refers
to the case when the distribution of adding probability is affected by local disorder
of some system property. In order to still play with Wolf algorithm, an influence of
local disorder should be compensated in some way, e.g., by multiplication P0

add by
p�1
k . Then, assuming that this product satisfies the Wolff’s formula P0

add exp Sloc
� � ¼

1� exp �2βJð Þ, the adding probability that takes into account the impact of local
disorder of some system property can be easily obtained:

P0
add ¼ 1� exp �2βJð Þ½ � exp �αSloc

� �
(11)

The above equation is the clue of our method which expresses the decrease of the
classical adding probability by the disorder-based factor. A set of property, for which
the disorder is determined (by the local information entropy), should be chosen
dependently on a specific application. The α parameter expresses some enhancement
or weakness of the influence of the entropy on the system clusterization. It should be
defined regarding the specific problem (see next paragraphs).
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algorithm) based on the generation of the uniformly oriented spin cluster and its
subsequent flipping [12]. In contrast to single-spin-flip algorithm, this procedure
easily destroys domains of correlated spins and allows the system to walk through
the configuration space. The Wolff algorithm is recognized to be more effective
than the Swendsen-Wang one [16–18]. The selection of a spin cluster starts from
randomly chosen spin to which the neighbors occupying the same spin state are
added with the probability Padd. The cluster grows up until no spin is added to it. It
is a great advantage that the Wolff algorithm is a rejection-free one. Indeed, adding
probability Padd is defined so that the detailed balance condition (with acceptance
ratio equal to one) is met:

Padd ¼ 1� exp �2βJð Þ (5)

Despite the great achievements, theWolff model is not able to correctly simulate
magnetic phenomena that occur far below the critical point in real magnetic mate-
rials, including those that are composed of various magnetic phases as well as those
containing geometrical irregularities. To be more precise, one can consider, as an
example, remagnetization of the system build of two magnetically hard and soft
ferromagnetic spheres coupled by a narrow bridge. Let us assume that in the initial
state, the magnetization of the system is collinear with the direction of the external
magnetic field and then the magnetic field is switched in the opposite direction.
What happens to the system is that the magnetization of the soft sphere will follow
the change of the magnetic, and then the similar behavior of the hard sphere is
expected. Unfortunately, for systems with strong spin-spin coupling, the two-step
behavior of the considered system cannot be modeled using Wolff clusterization
algorithm. Indeed, every attempt to build a cluster within the two-sphere magnetic
system results in that the hard and soft spheres belong to the same cluster indepen-
dently on magnetic anisotropy and geometry of the system. So, even if the two-step
remagnetization process is energetically preferred, the simulated magnetization
curve consists of one step related to the common spin rotation. Taking into account
the problems encountered during modeling the remagnetization of magnetically
inhomogeneous system, we propose a modification of the Wolff algorithm that
relies on an assumption that some regions of the system, characterized by a disorder
of selected system property, can serve barriers for an extension of magnetic clusters.

We began from the introduction a distribution of system property K that can
refer, for example, magnetic anisotropy or some other properties potentially affect-
ing the clusterization of the system. Let us define a sphere V around a node of the
spin lattice—the sphere containing N nodes in total. Furthermore, let the system
property be characterized by a discrete and finite set of values: K1, K2,…, KNK . The
local distribution of the K system property is defined by the numbers
nif g ¼ n1; n2;…; nNKf g, where ni stands for the number of nodes having the value

Ki. The sum overall is ni equals N. Thus, the particular K-state of the sphere V is
defined by the set of numbers nif g. The number of possible realizations of the
K-state denoted by Ω nif g is given by the expression

Ω nif g ¼ N!

n1!n2!…nNK !
(6)

Using the Stirling formula, the previous equation takes the form

ln Ω nif g
� �

≈ �N
XNK

i¼1

piln pi
� �

(7)
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where pi ¼ Ni=N stands for the probability of finding Ki value inside the sphere
V. The expression on the right side of Eq. (7) contains the term called local
information entropy [19]:

Slocnif g ¼ �
XNK

i¼1

piln pi
� �

(8)

So the number of “microstates” corresponding to the K-state is

Ω nif g ≈ exp NSlocnif g
� �

(9)

The probability of particular local distribution nif g of the system property K is
proportional to Ω nif g. If the only one value of K dominates its distribution inside the
sphere V, e.g., N;0;…0f g, the local information entropy achieves the lowest value
Sloc ¼ 0. Other local distribution nif g that involves more than one value of K results
in Sloc >0.

Now we can introduce the perception of local disorder of the K system property
and its measure pK . We will say that the K system property is fully ordered inside
the sphere V if all the nodes inside the sphere have the same value of K. Conse-
quently, one can say that the sphere V exhibits some local disorder of K if more
values of K are distributed inside the sphere. The measure of the local disorder can
be defined by as follows:

pK ¼ exp �Sloc
� �

(10)

which gives pK ¼ 1 if the case of fully ordered system property (Sloc ¼ 0). One
can see that pK decreases when local disorder of K system property increases
(Sloc >0).

We assume that local disorder of K system property decreases the probability of
cluster growth and constitutes barriers for cluster expansion. Thus, one could
expect nonuniform distribution of adding probability P0

add among the system nodes.
In order to derive a reasonable formula for P0

add, we follow an analogy with deriva-
tion of the van der Waals equation. Our “ideal gas” corresponds to the uniform
distribution of adding probability given by Wolff algorithm, while “real gas” refers
to the case when the distribution of adding probability is affected by local disorder
of some system property. In order to still play with Wolf algorithm, an influence of
local disorder should be compensated in some way, e.g., by multiplication P0

add by
p�1
k . Then, assuming that this product satisfies the Wolff’s formula P0

add exp Sloc
� � ¼

1� exp �2βJð Þ, the adding probability that takes into account the impact of local
disorder of some system property can be easily obtained:

P0
add ¼ 1� exp �2βJð Þ½ � exp �αSloc

� �
(11)

The above equation is the clue of our method which expresses the decrease of the
classical adding probability by the disorder-based factor. A set of property, for which
the disorder is determined (by the local information entropy), should be chosen
dependently on a specific application. The α parameter expresses some enhancement
or weakness of the influence of the entropy on the system clusterization. It should be
defined regarding the specific problem (see next paragraphs).
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3. Simulation procedure

The main simulation procedure consists of a series of Monte Carlo steps, and it is
based on the classical Metropolis algorithm applied to the so-called spin continuous
approach. However, the main difference lies in the cluster-building procedure
which is executed with a small probability Pcl, as shown in Figure 1.

First of all, a random node i of the system is chosen, and then it is decided,
regarding the probability Pcl, whether to analyze the selected node or build a cluster,
starting from the node as a seed. In the first case, the algorithm goes to the typical
Metropolis procedure and spin continuous method, i.e., the spin direction is ran-
domly modified by angle �θ, and then the energy difference ΔE between the new
and the old configuration is calculated. The energy of the system is computed in the
frame of the 3D Heisenberg model:

E ¼ �
X
i, j

JijSi � Sj �
X
i

Ki Si � nið Þ2 � gμBμ0
X
i

Hi � Si þD
X
i, j

Si � Sj � 3 Si � eij
� �

Sj � eij
� �

r3ij

(12)

where Jij is the exchange parameter, Si is the spin vector on site i, Ki is the
anisotropy constant (per site), ni is the easy magnetization axis, g is the Lande factor,
μB is the Bohr magneton, μ0 is the vacuum permeability, Hi is the magnetic field on
site i, D is the dipolar constant, eij is the directional versor between the ith and jth
nodes, and rij is the distance between the ith and jth nodes. The change is accepted
with the Metropolis acceptance probability. In the second case, the algorithm is
similar; however, it is necessary to find a cluster around the selected node and, if it
exists, carry out a coherent rotation of all spins belonging to the cluster. The

Figure 1.
Schematic diagram of the used algorithm.
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procedure of the cluster building is the key and important point. We used the Wolff
algorithm but with the modified adding probability P0

add expressed by the formula

P0
add ¼ 1� exp �βEcoupling

� �h i
exp �αSloc

� �
(13)

where Ecoupling is the exchange interaction energy between the neighboring spins.
The local information entropy is computed in the defined sphere around each

node. In general, the choice of properties (used in the entropy calculation) will
depend on the problem being considered; however, for magnetic systems, the
natural limit of cluster growth is the change in the value and direction of magnetic
anisotropy K. Therefore, an optimal feature is a set of three components [Kx, Ky, Kz],
whereby the nonmagnetic nodes do not participate in the entropy calculations.
In addition, at the beginning of each cluster-building procedure, the α coefficient is
drawn that will weaken (α < 1) or strengthen (α > 1) the influence of a local
property disorder on the system clusterization. Moreover, it is recommended that
from time to time (typically about 20% cases), it completely ignores the impact of
disorder and builds a cluster based on the standard Wolff method.

The presented algorithm gives some freedom of the cluster building for which
the thermodynamic balance is fulfilled. Indeed, even if the cluster rotation slightly
disturbs the balance, the remaining single-spin MCM iterations restore it again. The
only condition is that the Pcl and θ values are relatively low (it can be determined
experimentally for cases when the results do not depend on the parameters).

Parameter Description Recommendation and notes

θ The angle at which the direction of the
spin or cluster can be changed in a
single iteration

Note, it affects the energy changes in a single
step. A large θ value will freeze the system, while
the small will make it very loose as well as more
iterations will be needed to obtain the same
change

Pcl Probability of cluster analysis instead
of spin in a single iteration

If many independent clusters in the system are
expected, then the value of the parameter should
be raised to give everyone a chance to be
analyzed. However, high values may destroy the
thermodynamic equilibrium

Srange The range of local information entropy The range of local entropy should be selected
depending on the geometry of the system. The
larger range increases the chance to separation
between the magnetic grains and a small
common area

Niter The number of iterations contained in
one MC step

Typically, we suggest Niter = 3 N where N is the
number of all spins in the system

Nstep The number of MC steps used to
calculate the average spin of the
system <SZ>

We propose Nstep = 400

α Modifier of the impact of local
information entropy

For α < 1 and for α > 1, the Sloc impact will be
depressed and strengthened, respectively. The
best approach is to draw an α value before each
cluster search

PWolff The probability of searching for a
cluster based only on the Wolff
method

In some cases, you can build a cluster ignoring
the impact of local entropy. Typically, we
suggest PWolff = 0.2

Table 1.
A guide of the parameters used in the algorithm.
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3. Simulation procedure

The main simulation procedure consists of a series of Monte Carlo steps, and it is
based on the classical Metropolis algorithm applied to the so-called spin continuous
approach. However, the main difference lies in the cluster-building procedure
which is executed with a small probability Pcl, as shown in Figure 1.

First of all, a random node i of the system is chosen, and then it is decided,
regarding the probability Pcl, whether to analyze the selected node or build a cluster,
starting from the node as a seed. In the first case, the algorithm goes to the typical
Metropolis procedure and spin continuous method, i.e., the spin direction is ran-
domly modified by angle �θ, and then the energy difference ΔE between the new
and the old configuration is calculated. The energy of the system is computed in the
frame of the 3D Heisenberg model:

E ¼ �
X
i, j

JijSi � Sj �
X
i

Ki Si � nið Þ2 � gμBμ0
X
i

Hi � Si þD
X
i, j

Si � Sj � 3 Si � eij
� �

Sj � eij
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r3ij

(12)

where Jij is the exchange parameter, Si is the spin vector on site i, Ki is the
anisotropy constant (per site), ni is the easy magnetization axis, g is the Lande factor,
μB is the Bohr magneton, μ0 is the vacuum permeability, Hi is the magnetic field on
site i, D is the dipolar constant, eij is the directional versor between the ith and jth
nodes, and rij is the distance between the ith and jth nodes. The change is accepted
with the Metropolis acceptance probability. In the second case, the algorithm is
similar; however, it is necessary to find a cluster around the selected node and, if it
exists, carry out a coherent rotation of all spins belonging to the cluster. The

Figure 1.
Schematic diagram of the used algorithm.
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procedure of the cluster building is the key and important point. We used the Wolff
algorithm but with the modified adding probability P0

add expressed by the formula

P0
add ¼ 1� exp �βEcoupling

� �h i
exp �αSloc

� �
(13)

where Ecoupling is the exchange interaction energy between the neighboring spins.
The local information entropy is computed in the defined sphere around each

node. In general, the choice of properties (used in the entropy calculation) will
depend on the problem being considered; however, for magnetic systems, the
natural limit of cluster growth is the change in the value and direction of magnetic
anisotropy K. Therefore, an optimal feature is a set of three components [Kx, Ky, Kz],
whereby the nonmagnetic nodes do not participate in the entropy calculations.
In addition, at the beginning of each cluster-building procedure, the α coefficient is
drawn that will weaken (α < 1) or strengthen (α > 1) the influence of a local
property disorder on the system clusterization. Moreover, it is recommended that
from time to time (typically about 20% cases), it completely ignores the impact of
disorder and builds a cluster based on the standard Wolff method.

The presented algorithm gives some freedom of the cluster building for which
the thermodynamic balance is fulfilled. Indeed, even if the cluster rotation slightly
disturbs the balance, the remaining single-spin MCM iterations restore it again. The
only condition is that the Pcl and θ values are relatively low (it can be determined
experimentally for cases when the results do not depend on the parameters).

Parameter Description Recommendation and notes

θ The angle at which the direction of the
spin or cluster can be changed in a
single iteration

Note, it affects the energy changes in a single
step. A large θ value will freeze the system, while
the small will make it very loose as well as more
iterations will be needed to obtain the same
change

Pcl Probability of cluster analysis instead
of spin in a single iteration

If many independent clusters in the system are
expected, then the value of the parameter should
be raised to give everyone a chance to be
analyzed. However, high values may destroy the
thermodynamic equilibrium

Srange The range of local information entropy The range of local entropy should be selected
depending on the geometry of the system. The
larger range increases the chance to separation
between the magnetic grains and a small
common area

Niter The number of iterations contained in
one MC step

Typically, we suggest Niter = 3 N where N is the
number of all spins in the system

Nstep The number of MC steps used to
calculate the average spin of the
system <SZ>

We propose Nstep = 400

α Modifier of the impact of local
information entropy

For α < 1 and for α > 1, the Sloc impact will be
depressed and strengthened, respectively. The
best approach is to draw an α value before each
cluster search

PWolff The probability of searching for a
cluster based only on the Wolff
method

In some cases, you can build a cluster ignoring
the impact of local entropy. Typically, we
suggest PWolff = 0.2

Table 1.
A guide of the parameters used in the algorithm.

145

Application of Local Information Entropy in Cluster Monte Carlo Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.88627



Finally, one MC step consists of Niter iterations presented in Figure 1, and the Nstep

steps are taken to obtain the magnetization of the system <Sz> (the average spin in
the external field direction).

The most important parameters of the algorithm, their possible values as well as
our recommendations from a practical point of view are summarized in Table 1.

The algorithm can be, in some aspects, paralleled [20–23]. The main limitations
of the parallelization process are due to three reasons. First of all, each step in the
Monte Carlo procedure should be based on the system modified in the previous
step. In particular, the decision to accept the new spin direction depends on the
current direction of the neighboring spins due to the exchange energy. Conse-
quently, a situation in which different threads are testing a new configuration for
the two neighboring spins at the same time should be refused. Similarly, simulta-
neous analysis of the whole cluster and individual spins inside it (as well as spins
interacting with it) is not allowed. The second thing to keep in mind is to ensure
that each state of the system can be selected with the same probability. This means
that none of the actions can interfere with the probability of choosing a spin for
analysis. For example, the spin cannot be temporarily omitted in the draw as well as
the analyzed cluster must always be found in the real time and cannot be taken from
a fixed database. Finally, it should be taken into account that a change of the spin
direction inside a cluster, which is constructed based on the P0

add probability, may
disrupt the thermodynamic balance of the system. Therefore, from the statistical
point of view, after each change of the cluster spins, there should be many iterations
analyzing single spins in the cluster and whole system.

Despite all the above restrictions, there are three time-consuming problems in the
algorithm which can be parallelized: the main MC loop, the calculation of cluster
energy as well as the cluster-building procedure around the chosen spin. Our experi-
ence shows that the parallelization of the algorithm accelerates the computation time

Figure 2.
Comparison of computation time (400 MC steps) for different Pcl, system size, and its magnetic properties.
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more than 10 times (depending on the probability of cluster analysis and the system
size) and maintains the correctness of results. Figure 2 shows a comparison of com-
putation time (needed for 400MC steps) for different Pcl, system size, and its mag-
netic properties. On this graph, the independent quantity is a number of threads
applied for the simulations (HP ProLiant DL580 G7, 4x Intel Xeon 8C X7560
2.27 GHz).

Generally, this aspect of calculations is very complex. Nevertheless, one can
conclude that the parallelization is more effective for the systems with small num-
ber of the cluster-building trials.

4. Application of the method to multiphase magnetic systems

In order to show an efficiency of the disorder-based cluster MC algorithm and its
comparison with the classical Wolff method, the two systems containing magneti-
cally hard and soft phases were analyzed. The 3D system space consists of
50 � 50 � 50 (1,25,000) nodes; the spins are arranged in shapes of joined spheres
with hard and soft magnetic properties. The bonding between the spheres, further
called “bridges,” is different for the two cases, and it equals 1 or 7 nodes, recep-
tively. Figure 3 depicts an example of the system with one-bridge coupling between
the hard and soft spheres. The parameters of the magnetic phases and simulation
procedure are listed in Table 2.

The difference between classical and disorder-based approaches lies in the defi-
nition of adding probability. It can be demonstrated by the cluster-building

Figure 3.
Example of the system with one-bridge coupling between the hard and soft spheres. The graphs on the right show
cross sections (z-x plane) for different y values equal to 10 (a), 25 (b) and 40 (c).
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tively. Figure 3 depicts an example of the system with one-bridge coupling between
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successes when the procedure starts from the same cluster “seed.” Figures 4 and 5
show the comparison for the one- and seven-bridge systems, respectively. The
cluster seed is placed in the center, and the white color is attributed to 100 cluster-
building successes per 100 trials.

As shown, using the classical Wolff algorithm, all spins in the system belong to
the same cluster independently on their magnetic properties. This means that dur-
ing simulations, a possibility of closing the clusters inside the hard or soft phase is
not available. The modification of adding probability causes that the cluster-
building procedure can distinguish the hard and soft phase with relatively high

Parameter Soft phase Hard phase

Exchange coupling J 1.5e–2 eV 1.5e–2 eV

Anisotropy constant K 0 1e–3 eV

Simulation procedure

Dipolar constant D 1.8e–7 eV

Thermal energy kBT 1e–4, 1 e–5, 1e–6 eV

α parameter Random value from 0 to 25

Cluster analysis probability Pcl 10�3

Range of the entropy Srange �3 nodes

Spin change angle θ π/100

System size (in one direction) n 50

Number of iteration in one MC step 3n3 = 3,75,000

Number of MC steps for magnetization averaging 400

Table 2.
Parameters of the analyzed systems and simulation procedure.

Figure 4.
Comparison of the adding probabilities for the one-bridge system.
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Figure 5.
Comparison of the adding probabilities for the seven-bridge system.

Figure 6.
Reverse magnetization curves simulated using the classical Padd and modified P0

add adding probability.
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probability. However, with lower probability, the cluster contains whole spins in
the system (like in the Wolff algorithm) which is related to a random value of the α
parameter. The modification of adding probability causes that the configurations
necessary for modeling of real magnetization processes are available during MC
iterations. In other words, if magnetization processes require separate behavior of
the hard and soft phase, the simulation procedure will test such a possibility.

As a final test, the so-called reverse magnetization curves were simulated using
the classical as well as modified adding probability. Initially, the system was satu-
rated in the field direction (all spins are directed up), and then the field was
switched off. During calculations the field was increased in the opposite direction.
Magnetization, determined as average spin value in the field direction, as a function
of the external magnetic field for all examined cases is shown in Figure 6.

The difference between Padd and P0
add appeared in all studied examples. Note

that for the one-bridge system (relatively low interactions between the hard and

Figure 7.
Spin configurations depicting the reverse magnetization process for the seven-bridge system at kB T = 1e‒4 eV.
Red and blue colors indicate the soft and hard phase, respectively.
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soft phases), the two-step reverse magnetization curve is expected. The first step is
attributed to the spin flip of the soft phase, while the second one related to spin flip
of the hard phase. For the seven-bridge system, the reverse magnetization is differ-
ent due to stronger interphase coupling. However, at temperatures kBT above
1e–6 eV, this process consists of a subsequent change of the “soft” spins and next,
coherent flip of the “hard” spins. Such a scenario is fully confirmed by the spin
configurations depicting the reverse magnetization process for the seven-bridge
system at kBT = 1e–4 eV (see Figure 7).

Regarding the fact that in some cases also for Padd the two-step behavior occurs,
the main question is which curve is physically correct. For this reason, it is worth to
analyze the curves in fields when the soft phase changed spin direction using P0

add in
the cluster-building procedure. It is known that thermal equilibrium is related to a
minimum of the free energy of the system. Comparing the spin configurations for
the Wolff and our modified algorithm, one can state that entropy (as a thermody-
namic function) is higher for the second one, i.e., applying P0

add, which contributes
to a decreasing of the free energy. Therefore, this approach is correct for which the
energy of the system is lower. Figure 8 shows a focus of the interesting region as
well as the energy of the system for the two tested algorithms. In all cases the
application of P0

add results in “faster” (in lower fields) minimization of the system
energy than the procedure based on the classical adding probability.

It is clear that the introduced modification of adding probability results in more
effective finding of the free energy minimum and, therefore, produces physically
reliable results which allows modeling multiphase magnetic systems.

5. Conclusions

As it was shown, in some conditions (low temperature and/or strong exchange
coupling) the classical CMC algorithm can produce incorrect results in the

Figure 8.
Reverse magnetization curve and energy of the system in the fields related to the spin flip of the soft phase.
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application of multiphase magnetic systems. The problem lies in the adding proba-
bility used in the cluster-building procedures. This problem can be overcome by the
proposed modification of Padd accompanied by the specific Metropolis-like algo-
rithm. The key point is to recognize a property that influences the system
clusterization and, next, introduction of the local information entropy of this prop-
erty into the adding probability.

In summary, one can conclude that the method proposed for modeling of mag-
netic systems allows sampling spin configurations practically inaccessible by origi-
nal Wolff clusterization procedure. An interesting future of our method is the
acceleration of the energy minimization process.
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Chapter 7

Utilization of Digital Twins and
Other Numerical Relatives for
Efficient Monte Carlo Simulation
in Structural Analysis
Bernt Johan Leira, Arifian Agusta and Sebastian Thöns

Abstract

Analysis of structures will in general involve large and complex numerical
models, which require extensive computation efforts. These models are frequently
referred to as digital twins. This analysis becomes particularly cumbersome for
cases where a large number of response calculations are repeatedly performed, such
as in the case of Monte Carlo simulation. One way of avoiding this will be to
introduce simplified numerical models, which are no longer twins but some kind of
more distant numerical relative. As an example of such a simplified numerical
representation, a so-called response surface model can be applied in order to over-
come the excessive computational efforts. Such models are also sometimes referred
to as meta-models or cyber-physical models. One possible approach is to use a
response surface model based on first- or second-order polynomials as approximat-
ing functions, with the function parameters being determined based on multivariate
regression analysis techniques. In this chapter, various types of approximate models
are first discussed in connection with a simplistic example. The application of
response surface techniques is subsequently illustrated for a quite complex physics-
based structural model for an offshore jacket structure in combination with Monte
Carlo simulation techniques.

Keywords: digital representation, structural analysis, Monte Carlo simulation,
response surface techniques, structural integrity management

1. Introduction

Analysis of structures will in general involve large and complex numerical
models both with respect to the loading and the structure. This typically implies
extensive computational efforts. For cases where a large number of load and
response calculations are repeatedly performed this becomes particularly cumber-
some, such as in the case of Monte Carlo simulation. In the present paper, applica-
tion of physics-based response surface methods for the purpose of reducing
computation time is illustrated. In Section 2, various types of numerical approxi-
mations are first discussed in connection with a very simple structure. In Section 3 a
complex offshore jacket structure is analyzed by means of response surface tech-
niques for the loading and a physics-based “digital twin” of the structure.
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2. Numerical representations of physical structures

2.1 The (near to) perfect twin based on multi-physics models

In the present text, the concept of a digital twin is understood in the following
sense: A digital twin is a numerical model capable of reproducing the state and
behavior of a unique real asset in real time (or faster), with this model also being
able to represent the performance of the asset for new and artificially generated
conditions (i.e., in connection with extrapolated predictions). As a primary candi-
date for a digital twin, a complete numerical model based on first principles in
terms of multi-physics modeling seems to be most relevant. Such a model will also
be able to represent non-linear features of the structural behavior of the asset.

As an example, a relatively simple structure with pronounced non-linear behav-
ior is considered: Figure 1 shows a structure composed of two truss members. The
structure is subjected to a vertical load R.

If the geometry is assumed to be non-deformed, the relationship between the
vertical load R and the vertical displacement is obtained as:

R ¼ 2EA
l

sin α0ð Þ2 cos α0ð Þr (1)

which for small angles can be approximated by

R ¼ 2EA
l

α20r (2)

where α0 is the slope angle of both truss members.
However, by accounting for changing geometry due to the vertical load, a

different relationship between the vertical load, R, and displacement, r, is obtained.
By consideration of geometric compatibility, equilibrium conditions and a linear
stress-strain relationship, the expression for the load-displacement curve can then
be derived as:

R ¼ 2EA
l

h
r
� 1

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ h� rð Þ2
q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ h2
p

0
B@

1
CAr (3)

where h is the height of the truss and l is half the horizontal span length. E is the
modulus of elasticity for the relevant material and A is the cross-section area of
both truss members. The model uncertainty associated with this relationship is
presently considered to be negligible, such that it can be assumed to represent a

Figure 1.
Truss structure subjected to vertical load R.
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“digital twin” of the structure (implying that, e.g., buckling of the members
themselves is not relevant due to their non-slender characteristics).

This highly nonlinear expression in Eq. (3) can be closely approximated by a
third order polynomial as follows, [1]:

R ¼ 2EA
l

α20 1� r
h

� �
1� r

2h

� �
r (4)

By inserting α0 = h/l (also assuming small angles), this can be written as

R ¼ 2EA � α30 1� r
h

� �
1� r

2h

� � r
h

(5)

Both of the R-r (i.e., load and displacement) relationships according to Eqs. (3)
and (5) are shown in Figure 2 for a slope angle of α0 = π/15. It is seen that they can
barely be distinguished from another. (This implies that the third order representa-
tion can also be regarded as a digital twin, although not of the one-egg kind).

Both of the curves are characterized by a very non-linear behavior, where a so-
called snap-through occurs when the two truss members are displaced to a
completely horizontal position. After snap-through has occurred, a second equilib-
rium configuration is obtained for which a further increase of the vertical load can
take place. However, this second equilibrium configuration will in most cases rep-
resent a “failed condition” in the sense that the structure will survive but such that
an unwanted large displacement has taken place (which would, e.g., be the case if
the structure represents a load-carrying roof structure or an arch system).

Up to around one quarter of the maximum load point, the load-displacement
curve is quite close to being linear. Accordingly, if only empirical load-displacement
data points for this interval are available, this would typically lead to the assumption
that the structural behavior is linear for any load level (unless the physical behavior
of the system is taken into consideration). Having available data sets for many
different structures of the same type, it is very unlikely that any of the sets contain
information about the post-snap interval if all the structures are still in operation.

For structures of the present type in cases where also the stress-strain behavior
of the material is nonlinear, numerical solution methods will generally be required
in order to compute the load-displacement curve. This will increase the computa-
tion time significantly, which will be particularly cumbersome in connection with
Monte Carlo simulation procedures where a large number of repeated calculations is
typically required (e.g., of the order of millions and upwards). In any case, simpli-
fied but “adequate” models need to be introduced.

Figure 2.
Load-displacement curves according to Eqs. (3) and (5) α0 = π/15.
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2.2 More distant numerical relatives based on different kinds of simplified
physics-based models

One way of being able to reduce the computation time for even larger and more
complex numerical models, is to introduce a simplified representation which is no
longer a twin but some more distant numerical relative. As an example, a so-called
response surface model can be applied in order to overcome excessive computa-
tional efforts. Such models are frequently also referred to as “meta-models” or
“cyber-physical” models. One possible approach is to use a response surface repre-
sentation based, e.g., on first- or second-order polynomials as approximating func-
tions. The parameters of these functions and their weighting coefficients are then
determined, e.g., based on minimization of the mean square error. The “control
points” for the approximate model are then established based on application of the
physics-based model at just these points (i.e., for given input parameter values). By
a proper selection of control points, the prediction error associated with the entire
range of structural displacement levels can be limited in magnitude.

As examples, we consider approximation of the exact load-displacement rela-
tionship with a quadratic and also an alternative quadratic response surface model.
For the former, the control points are selected as (0, 0); (0.5, 3/16) and (1.0, 0.0),
where 3/16 represents the exact maximum value of the cubic function (but with the
location of the maximum point shifted to an abscissa value of 0.5). For the latter, a
minimummean square error approximation within the interval 0.0–1.0. The first of
these approximations is compared to the “exact physics-based model” in Figure 3.

The error associated with the second order approximations over the range from
r/h = 0 to 1 is seen to be acceptable, while for the less interesting range (within the
present context) from 1 to 2 it is highly inaccurate and of little use.

2.3 Data-driven simplified models

A numerical representation of the load-displacement relationship based on a
data-driven simplified model is next considered. First, it is assumed that 10 data
points in the range from r/h = 0 to 0.15 are available, which is mainly in the weakly
non-linear regime. These are, e.g., obtained during normal operation of the struc-
ture. A measurement noise with a standard deviation of 10% of the measured signal
is also introduced. The extrapolated second order approximation (based on regres-
sion analysis) is shown in Figure 4a together with the data points themselves. It is
seen that the maximum value of the load R is significantly underpredicted by this

Figure 3.
Comparison of second order response surface with exact relationship.
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curve. As a second approximation, the 10 data points (including noise) are next
taken to lie in the range from r/h = 0 to 0.2 (i.e., into the slightly more nonlinear
regime). The corresponding second order approximation is shown in Figure 4b.
The maximum load is somewhat closer to the true value, but still a significant
underprediction is observed.

These results are intended to illustrate the limitations of extrapolations based on
data driven models unless the measurement points are available in the region with
“high nonlinearity.” For structural systems, such data points are generally scarce as
they represent rare events that may even correspond to failure of the structure.

2.4 Comparison of failure probabilities calculated by application of the
different numerical models

By introducing a structural failure criterion for the truss in addition to joint
statistical models for the inherent random variables, the failure probability
corresponding to a given reference period can be computed. Presently, the failure
function is expressed in terms of the maximum allowable load (i.e., Rmax), and the
only random variable is the external extreme environmental load (i.e., Rex) which
follows a Gumbel distribution with a mean value of 0.9 Rmax and a coefficient of
variation of 10% (i.e., a standard deviation of 0.09 Rmax). In the present section, a
comparison is made between structural failure probabilities, which are obtained by
application of the different structural representations that were considered above
(Table 1).

Not unexpectedly, the accuracy of the physics-based representations is signifi-
cantly higher than the data-driven models for the present example. While the cubic
response surface almost corresponds to the twin representation, the data driven

Figure 4.
Measured data points and second order approximations: (a) data range is in the interval from 0 to 0.15 r/h
and (b) data range is from 0 to 0.15 r/h.
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model for the low loading regime could at best be referred to as a more distant
relative (e.g., a half-brother or a cousin).

3. Example of a more complex structural analysis by Monte Carlo
simulation

In the following, an application of a physics-based digital twin model is illus-
trated for the analysis and the structural integrity management optimization of a
specific jacket structure, also in combination with Monte Carlo simulation tech-
niques. The loading is represented by a response surface with the basic environ-
mental parameters as input. The control points are based on physics-based load
models. The structural response is obtained by means of a numerical model, which
is able to account for large deformations and plastic behavior. This implies that the
load-displacement curve is characterized by a maximum value, which is followed by
a rapid decline of load-carrying ability similar to the previous simplified example.

3.1 System modeling and reliability formulation

The failure of a structural system, e.g., offshore jacket platform is often defined
as the total collapse of the structure. The collapse event can be modeled as a series
system of several parallel subsystems as follows [2]:

gFS
…ð Þ ¼ ⋃

N

j¼1
⋂
n

i¼1
gFij

…ð Þ≤0
� �

(6)

where n is the number of components in the system, N is the number of failure
modes, gFij

…ð Þ is the limit state function of component i for failure mode j. The system
failure probability for systems like offshore jacket platforms can be accurately
estimated by considering a single failure mode and expressing the system resistance
R and the system load S in terms of base shear [3, 4]. The system resistance R is the
ultimate capacity base shear, which is a function of system damage state’s matrix D.
The system load S is the base shear load for a given environmental variable E. The
probability of system overload failure for a given system damage state D is calcu-
lated shown in Eq. (7).

P FS,OjD
� � ¼ P R Dð Þ � L Eð Þ≤0½ � (7)

The performance of structural components in the system deteriorates over time
due to, e.g., fatigue damage or corrosion. The system damage state’s matrix D
contains the (fatigue) damage state of each component at time t, i.e.,

Numerical representation Probability of failure

Exact (digital twin) 0.0719

Response surface (physics-based), quadratic 0.0719

Response surface (physics-based), MSE quadratic 0.0671

Data-driven, cubic regression, low loading 1.0000

Data-driven, cubic regression, intermediate loading 0.9102

Table 1.
Failure probabilities corresponding to different numerical representations.
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D ¼ HF1 Y, tð Þ, ::HFi Y, tð Þ, ::HFn Y, tð Þ½ �, where HFi is an indicator function that equals
one if the component i fails (i.e., gFij

Y, tð Þ≤0) and zero if otherwise. Y is a vector of

random variables that influences the fatigue damage (see Chapter 3.2). The total
probability theorem is then utilized to calculate the probability of system failure due
to both overload and fatigue failures as follows:

P FSð Þ ¼
ð

D
P FSjD ¼ gF Y, tð Þ� �

fY y
� �

dy (8)

Following [3], Eq. (8) can be approximated as follows:

P FSð Þ≈P Fintact
S,O

� �
þ
Xn
i¼1

P Fið ÞP FS,OjFi
� �þ

Xn
i¼1

Xn�1

j¼1

P Fi ⋂Fj
� �

P FS,OjFi ⋂Fj
� �þ…

(9)

where P Fintact
S, o

� �
is the system failure probability due to overload in the intact

condition, P Fið Þ is the fatigue failure probability for component i, P FS, ojFi
� �

is the
conditional system failure probability due to overload after fatigue failure occurs
at component i, and P Fi ∩ Fj

� �
is the probability that fatigue failures occurs at

components i and j before the overload failure. Eq. (9) is often referred as annual
probability of system failure in the context of structural integrity management,
where P Fið Þ is defined as the probability of failure at component i given survival up
until year t [5]. As a first approximation, the annual probability of system failure
can be calculated by keeping only the first two terms [5]:

P FSð Þ≈P Fintact
S,O

� �
þ
Xn
i¼1

P Fið ÞP FS,OjFi
� �

(10)

3.2 Response surface

The system load L is a function of environmental variable vector E. In this
work, the wave height H and wave period T are considered as the environmental
random variables, i.e., E = [H,T]. The system load L is expressed as the base shear
for a given combination of wave height and wave period. The response surface
method with quadratic polynomial function is utilized to estimate the system load
as follows [6]:

L H, Tð Þ ¼ a0 þ a1H þ a2T þ a3H2 þ a4T2 þ a5HT (11)

where a0….a5 are the coefficients to be determined. Probabilistic linear regres-
sion analysis is employed to obtain the coefficients and the predictive distribution
of the system load L. The linear model is written as follows:

L ¼ Xβ þ ε (12)

where L is a (1 � m) vector of “responses” (i.e., which here is the load), β is a
(1�m) vector of the regression coefficients (see Eq. (11)), and ε is the 1�m vector
containing the error terms. The error is assumed Normal-distributed with zero
expected value and variance σ2e . X is a m � p design matrix which consists of p
combinations of individual terms (see Eq. (11)) and m number of samples as
follows:
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is able to account for large deformations and plastic behavior. This implies that the
load-displacement curve is characterized by a maximum value, which is followed by
a rapid decline of load-carrying ability similar to the previous simplified example.

3.1 System modeling and reliability formulation

The failure of a structural system, e.g., offshore jacket platform is often defined
as the total collapse of the structure. The collapse event can be modeled as a series
system of several parallel subsystems as follows [2]:

gFS
…ð Þ ¼ ⋃

N

j¼1
⋂
n

i¼1
gFij

…ð Þ≤0
� �

(6)

where n is the number of components in the system, N is the number of failure
modes, gFij

…ð Þ is the limit state function of component i for failure mode j. The system
failure probability for systems like offshore jacket platforms can be accurately
estimated by considering a single failure mode and expressing the system resistance
R and the system load S in terms of base shear [3, 4]. The system resistance R is the
ultimate capacity base shear, which is a function of system damage state’s matrix D.
The system load S is the base shear load for a given environmental variable E. The
probability of system overload failure for a given system damage state D is calcu-
lated shown in Eq. (7).

P FS,OjD
� � ¼ P R Dð Þ � L Eð Þ≤0½ � (7)

The performance of structural components in the system deteriorates over time
due to, e.g., fatigue damage or corrosion. The system damage state’s matrix D
contains the (fatigue) damage state of each component at time t, i.e.,

Numerical representation Probability of failure

Exact (digital twin) 0.0719

Response surface (physics-based), quadratic 0.0719

Response surface (physics-based), MSE quadratic 0.0671

Data-driven, cubic regression, low loading 1.0000

Data-driven, cubic regression, intermediate loading 0.9102

Table 1.
Failure probabilities corresponding to different numerical representations.
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D ¼ HF1 Y, tð Þ, ::HFi Y, tð Þ, ::HFn Y, tð Þ½ �, where HFi is an indicator function that equals
one if the component i fails (i.e., gFij

Y, tð Þ≤0) and zero if otherwise. Y is a vector of

random variables that influences the fatigue damage (see Chapter 3.2). The total
probability theorem is then utilized to calculate the probability of system failure due
to both overload and fatigue failures as follows:

P FSð Þ ¼
ð

D
P FSjD ¼ gF Y, tð Þ� �

fY y
� �

dy (8)

Following [3], Eq. (8) can be approximated as follows:

P FSð Þ≈P Fintact
S,O

� �
þ
Xn
i¼1

P Fið ÞP FS,OjFi
� �þ

Xn
i¼1

Xn�1

j¼1

P Fi ⋂Fj
� �

P FS,OjFi ⋂Fj
� �þ…

(9)

where P Fintact
S, o

� �
is the system failure probability due to overload in the intact

condition, P Fið Þ is the fatigue failure probability for component i, P FS, ojFi
� �

is the
conditional system failure probability due to overload after fatigue failure occurs
at component i, and P Fi ∩ Fj

� �
is the probability that fatigue failures occurs at

components i and j before the overload failure. Eq. (9) is often referred as annual
probability of system failure in the context of structural integrity management,
where P Fið Þ is defined as the probability of failure at component i given survival up
until year t [5]. As a first approximation, the annual probability of system failure
can be calculated by keeping only the first two terms [5]:

P FSð Þ≈P Fintact
S,O

� �
þ
Xn
i¼1

P Fið ÞP FS,OjFi
� �

(10)

3.2 Response surface

The system load L is a function of environmental variable vector E. In this
work, the wave height H and wave period T are considered as the environmental
random variables, i.e., E = [H,T]. The system load L is expressed as the base shear
for a given combination of wave height and wave period. The response surface
method with quadratic polynomial function is utilized to estimate the system load
as follows [6]:

L H, Tð Þ ¼ a0 þ a1H þ a2T þ a3H2 þ a4T2 þ a5HT (11)

where a0….a5 are the coefficients to be determined. Probabilistic linear regres-
sion analysis is employed to obtain the coefficients and the predictive distribution
of the system load L. The linear model is written as follows:

L ¼ Xβ þ ε (12)

where L is a (1 � m) vector of “responses” (i.e., which here is the load), β is a
(1�m) vector of the regression coefficients (see Eq. (11)), and ε is the 1�m vector
containing the error terms. The error is assumed Normal-distributed with zero
expected value and variance σ2e . X is a m � p design matrix which consists of p
combinations of individual terms (see Eq. (11)) and m number of samples as
follows:
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X ¼

1 H1 T1 H2
1 T2

1 H1T1

1 H2 T2 H2
2 T2

2 H2T2

:

:

1 Hm Tm H2
m T2

m HmTm:

2
6666664

3
7777775

(13)

The unconditional predictive distribution is given by the multivariate non-
central Students t-distribution i.e., ~L∣L̂ � tm�p E ~LjL̂� �

,COV ~LjL̂� �� �
with parameters

as given as follows [7]:

E ~LjL̂� � ¼ ~XE β½ � (14)

COV ~LjL̂� � ¼ σ̂2e ~X X̂
T
X̂

� ��1
~X
T þ I

� �
(15)

E β½ � ¼ X̂
T
X̂

� ��1
X̂

T
L̂ (16)

σ̂e ¼ 1
m� r

L̂� X̂E β½ �� �T
L̂� X̂E β½ �� �

and r ¼ rank X̂
� �

(17)

X̂ and L̂ are matrices that contain the pre-computed load points from, e.g., finite
element analysis. ~L is a vector of load predictions from regression analysis for given
~X, which is calculated, e.g., from the samples of wave height and wave period. The
predictive distribution of the load, p ~LjL̂� �

, can be seen as a measure of the model
uncertainty associated with the response surface.

The wave height is assumed to be Weibull distribution. A special type of a
conditional Weibull distribution proposed by Forristal is utilized and written as
follows [8, 9]:

FH∣Hs hjhsð Þ ¼ 1� exp �2:263
h
hs

� �2:126
 !

(18)

where hs is the significant wave height. Probabilistic models for the wave period
are less studied compared to wave height. In the present work, the wave period is
assumed to follow a Lognormal distribution, which is conditional on wave height,
and the parameters are defined as follows:

μT Hð Þ ¼ E lnT½ � ¼ b1 þ b2 0:5Hð Þb3 (19)

σT Hð Þ ¼ Std lnT½ � ¼ c1 þ c2 exp 0:5H � c3ð Þ (20)

where b1; b2; b3 and c1; c2; c3 are the coefficients to be determined. Eqs. (19) and
(20) ensure that the wave period is dependent on the wave height in order to avoid
drawing unrealistic samples of wave height and period (e.g., very large wave
heights with very small wave periods).

3.3 Structural fatigue and reliability updating with monitoring and inspection
information

Fatigue failure occurs if the crack size exceeds a critical crack size, and this can
be modeled by means of a limit state function as follows:
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gFi
Y, tð Þ ¼ δc � δ Y, tð Þ (21)

where δc is the critical crack size and δ(Y,t) is the crack size at time t. Here,
failure of the structure will occur if this failure function becomes negative. The
crack growth is modeled using Paris’ Law as follows:

dδ Nsð Þ=dNs ¼ C ΔKð Þm (22)

where m and C are the empirical model parameters, Ns is the number of stress
cycles, and ΔK is the stress range intensity factor. For through-thickness cracks on
an infinite panel, the solution to Eq. (22) can be written as follows [10]:

δ Y, tð Þ ¼ δ
1�m

2
0 þ 1�m

2

� �
C BSIFBΔSΔSe

ffiffiffi
π

p� �m
νt

� � 1
1�m

2 (23)

where δ0 is the initial crack size, and ν is the annual cycle rate. BSIF and BΔS are
the model uncertainties of the stress intensity factor and for the stress range calcu-
lation, respectively (see e.g., [11]). ΔSe is the so-called equivalent stress range and
calculated as follows:

ΔSe ¼ γ Γ 1þm
λ

� �h i 1
m

(24)

Y is a vector of random variables i.e., Y ¼ δ0;C;BSIF;BΔS; ln γ; λ½ �, where γ and λ
is the scale and shape parameter of the Weibull distributed stress range. The prob-
ability of fatigue failure is calculated as follows:

P Fi tð Þð Þ ¼
ð

gFi Y, tð Þ≤0
fY y
� �

dy (25)

P Fi tð Þð Þ is defined as the probability of annual fatigue failure given survival up
until year t. Statistical dependencies between fatigue hotspots are modeled using
correlation coefficients of the random variables in the Y vector. There are 6
correlation coefficients: ρδ0 ;ρC;ρBSIF

;ρBΔS
;ργ;ρλ. The coefficient ρδ0 represents the

statistical dependencies due to the same fabrication process. ρC indicates the
dependencies due to common material characteristics. ργ and ρλ describe the
statistical dependencies due to the similar loading patterns. ρBSIF

and ρBΔS
depict the

dependencies due to common stress intensity factor and stress range calculation.
Probabilistic models that are able to represent inspection activities in a proper

way are also required. Information regarding structural performance can be
obtained by carrying out inspection or structural monitoring. There are two out-
comes of an inspection: no damage indication (I1) or damage indication (I2). The
objective of inspection modeling is to obtain the marginal probability of indication
(and no indication) followed by an update of the probability of system failure. By
utilizing detection theory, the probability of an indication can be derived from the
noise and signal distributions (see e.g., [9, 12]). Signal and noise characteristics are
typically modeled by means of a Normal distribution (see e.g., [9, 13]). The
updating of component fatigue failure probability is performed by utilizing Bayes’
law. Given no indication after an inspection, the probability of fatigue failure is
updated as given in [14].

Furthermore, models for statistical representation of the structural monitoring
methods are required. Structural health monitoring (SHM) systems can be installed
to monitor specific structural properties such as, e.g., vibration or strain in the

165

Utilization of Digital Twins and Other Numerical Relatives for Efficient Monte Carlo…
DOI: http://dx.doi.org/10.5772/intechopen.89144



X ¼

1 H1 T1 H2
1 T2

1 H1T1

1 H2 T2 H2
2 T2

2 H2T2

:

:

1 Hm Tm H2
m T2

m HmTm:

2
6666664

3
7777775

(13)

The unconditional predictive distribution is given by the multivariate non-
central Students t-distribution i.e., ~L∣L̂ � tm�p E ~LjL̂� �

,COV ~LjL̂� �� �
with parameters

as given as follows [7]:

E ~LjL̂� � ¼ ~XE β½ � (14)

COV ~LjL̂� � ¼ σ̂2e ~X X̂
T
X̂

� ��1
~X
T þ I

� �
(15)

E β½ � ¼ X̂
T
X̂

� ��1
X̂

T
L̂ (16)

σ̂e ¼ 1
m� r

L̂� X̂E β½ �� �T
L̂� X̂E β½ �� �

and r ¼ rank X̂
� �

(17)

X̂ and L̂ are matrices that contain the pre-computed load points from, e.g., finite
element analysis. ~L is a vector of load predictions from regression analysis for given
~X, which is calculated, e.g., from the samples of wave height and wave period. The
predictive distribution of the load, p ~LjL̂� �

, can be seen as a measure of the model
uncertainty associated with the response surface.

The wave height is assumed to be Weibull distribution. A special type of a
conditional Weibull distribution proposed by Forristal is utilized and written as
follows [8, 9]:

FH∣Hs hjhsð Þ ¼ 1� exp �2:263
h
hs

� �2:126
 !

(18)

where hs is the significant wave height. Probabilistic models for the wave period
are less studied compared to wave height. In the present work, the wave period is
assumed to follow a Lognormal distribution, which is conditional on wave height,
and the parameters are defined as follows:

μT Hð Þ ¼ E lnT½ � ¼ b1 þ b2 0:5Hð Þb3 (19)

σT Hð Þ ¼ Std lnT½ � ¼ c1 þ c2 exp 0:5H � c3ð Þ (20)

where b1; b2; b3 and c1; c2; c3 are the coefficients to be determined. Eqs. (19) and
(20) ensure that the wave period is dependent on the wave height in order to avoid
drawing unrealistic samples of wave height and period (e.g., very large wave
heights with very small wave periods).

3.3 Structural fatigue and reliability updating with monitoring and inspection
information

Fatigue failure occurs if the crack size exceeds a critical crack size, and this can
be modeled by means of a limit state function as follows:
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gFi
Y, tð Þ ¼ δc � δ Y, tð Þ (21)

where δc is the critical crack size and δ(Y,t) is the crack size at time t. Here,
failure of the structure will occur if this failure function becomes negative. The
crack growth is modeled using Paris’ Law as follows:

dδ Nsð Þ=dNs ¼ C ΔKð Þm (22)

where m and C are the empirical model parameters, Ns is the number of stress
cycles, and ΔK is the stress range intensity factor. For through-thickness cracks on
an infinite panel, the solution to Eq. (22) can be written as follows [10]:

δ Y, tð Þ ¼ δ
1�m

2
0 þ 1�m

2

� �
C BSIFBΔSΔSe

ffiffiffi
π

p� �m
νt

� � 1
1�m

2 (23)

where δ0 is the initial crack size, and ν is the annual cycle rate. BSIF and BΔS are
the model uncertainties of the stress intensity factor and for the stress range calcu-
lation, respectively (see e.g., [11]). ΔSe is the so-called equivalent stress range and
calculated as follows:

ΔSe ¼ γ Γ 1þm
λ

� �h i 1
m

(24)

Y is a vector of random variables i.e., Y ¼ δ0;C;BSIF;BΔS; ln γ; λ½ �, where γ and λ
is the scale and shape parameter of the Weibull distributed stress range. The prob-
ability of fatigue failure is calculated as follows:

P Fi tð Þð Þ ¼
ð

gFi Y, tð Þ≤0
fY y
� �

dy (25)

P Fi tð Þð Þ is defined as the probability of annual fatigue failure given survival up
until year t. Statistical dependencies between fatigue hotspots are modeled using
correlation coefficients of the random variables in the Y vector. There are 6
correlation coefficients: ρδ0 ;ρC;ρBSIF

;ρBΔS
;ργ;ρλ. The coefficient ρδ0 represents the

statistical dependencies due to the same fabrication process. ρC indicates the
dependencies due to common material characteristics. ργ and ρλ describe the
statistical dependencies due to the similar loading patterns. ρBSIF

and ρBΔS
depict the

dependencies due to common stress intensity factor and stress range calculation.
Probabilistic models that are able to represent inspection activities in a proper

way are also required. Information regarding structural performance can be
obtained by carrying out inspection or structural monitoring. There are two out-
comes of an inspection: no damage indication (I1) or damage indication (I2). The
objective of inspection modeling is to obtain the marginal probability of indication
(and no indication) followed by an update of the probability of system failure. By
utilizing detection theory, the probability of an indication can be derived from the
noise and signal distributions (see e.g., [9, 12]). Signal and noise characteristics are
typically modeled by means of a Normal distribution (see e.g., [9, 13]). The
updating of component fatigue failure probability is performed by utilizing Bayes’
law. Given no indication after an inspection, the probability of fatigue failure is
updated as given in [14].

Furthermore, models for statistical representation of the structural monitoring
methods are required. Structural health monitoring (SHM) systems can be installed
to monitor specific structural properties such as, e.g., vibration or strain in the
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structural system. Information from a SHM can be viewed as one of the possible
realizations of the model uncertainty (see e.g., [15, 16]), which is associated with
the measured property such as, e.g., stress ranges. In the present work, the SHM
modeling proposed by [17] is employed, i.e., three different possible SHM outcomes
are considered: The outcome Z1 corresponds to the case where monitoring indicates
lower stress ranges than expected and indicates that the monitored component has a
high performance. Outcome Z3 indicates that the monitoring component has a low
performance due to higher than expected stress ranges. Outcome Z2 indicates that
the monitored component performs as expected. Calculation of the updated proba-
bility of system failure is carried out as described in [14].

3.4 Quantification of the value of SIM strategies

The quantification of the value of SIM strategies builds upon the Bayesian pre-
posterior decision analysis framework as formulated by Benjamin and Cornell, [18].
A SIM strategy decision problem can be modeled by a decision tree in pre-posterior
form as shown in Figure 5. The information space S consists of available informa-
tion acquirement strategies i (e.g., inspection and monitoring). The outcome space
O comprises the possible outcomes of a given information acquirement strategy i.
The action space A consists of the possible actions that can be taken such as e.g.
repair. The state space θ contains possible states such as, e.g., failure or survival.

The value of SIM strategies is quantified by utilizing the value of information
and action (VOIA) analysis (see [19]). A VOIA analysis consists of a base and an
enhancement scenario. The base scenario is defined as the scenario without any
SHM/inspection and risk-mitigating action such as e.g., repair. There are two states
considered in this system state analysis: the (collapse/no collapse) and the compo-
nent state (failure/no failure). Therefore, the expected cost C0 in the base scenario
is the sum of the expected system E[CFS] and component E[CF,i] failure costs over
the service life TSL:

C0 ¼
Xn
i�1

E CF, i
� � !

þ E CFS½ � (26)

where n is the number of structural components. Procedures for calculation of
E[CFS] and E[CF,i] are described in [14]. The failure probabilities, which are required
in order to calculate these costs, are computed by means of Monte Carlo simulation.

Two different SIM strategies are analyzed as enhancement scenarios. The first
strategy is to perform inspections and repair if required during the service life. The
second strategy is to install the SHM system for 1 year at one component and to
perform inspections and repair if required. For both strategies, a repair action is
performed if the inspection indicates a damage. The expected total cost of the first
strategy is calculated as the sum of expected costs of inspection E[Ci], repair E[CR,i],
system failure E[CFS], and fatigue failure E[CF,i] costs over the service life as follows:

C S1, Að Þ ¼
XNIC

i�1

E CI, i
� �þ E CR, i

� � !
þ

Xn
i�1

E CF, i
� � !

þ E CFS½ � (27)

Figure 5.
Illustration of a decision tree with rectangular modeling decision and ellipses for chance nodes.
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where NIC is the number of inspected components. E[CFS] and E[CF,i] in
Eq. (27) are calculated by considering the updated probability of system and fatigue
failure, respectively. E[CR,i] is the expected repair costs over the service with NIC

repaired components.
The expected total costs for the second strategy is calculated as follows:

C S2, Að Þ ¼ EZ

XNIC

i�1

E CI, i
� �þ E CR, i

� �
 !

þ E CSHM½ � þ
Xn
i�1

E CF, i
� �

 !
þ E CFS½ �

" #

(28)

where E CSHM½ � is the expected SHM costs. Further details are given in [14]. The
VOIA is then calculated as follows:

VOIA ¼ max
S,A

C S,Að Þ � C0 (29)

3.5 Case study

A typical deepwater offshore jacket platform with 25 years of service life and
located at 190 m waterdepth is utilized in the present work (see Figure 6a). The
jacket platform has 200 components and each component is subjected to fatigue
deterioration. In this study, each component is assumed to have exactly one hotspot
for which a trough-thickness crack will result in fatigue failure. The incoming wave
direction is taken as 135° and the 100-year significant wave height HS;100y equals to
24.3 m.

Figure 6.
(a) Deepwater finite element jacket model used in the case study. (b) The response surface of L with the
black crosses signify the training data set. (c) The expected value of the load prediction (blue line) with
95%-confidence interval (black lines) for T = 20.8 s.
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structural system. Information from a SHM can be viewed as one of the possible
realizations of the model uncertainty (see e.g., [15, 16]), which is associated with
the measured property such as, e.g., stress ranges. In the present work, the SHM
modeling proposed by [17] is employed, i.e., three different possible SHM outcomes
are considered: The outcome Z1 corresponds to the case where monitoring indicates
lower stress ranges than expected and indicates that the monitored component has a
high performance. Outcome Z3 indicates that the monitoring component has a low
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the monitored component performs as expected. Calculation of the updated proba-
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in order to calculate these costs, are computed by means of Monte Carlo simulation.
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perform inspections and repair if required. For both strategies, a repair action is
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where NIC is the number of inspected components. E[CFS] and E[CF,i] in
Eq. (27) are calculated by considering the updated probability of system and fatigue
failure, respectively. E[CR,i] is the expected repair costs over the service with NIC

repaired components.
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A typical deepwater offshore jacket platform with 25 years of service life and
located at 190 m waterdepth is utilized in the present work (see Figure 6a). The
jacket platform has 200 components and each component is subjected to fatigue
deterioration. In this study, each component is assumed to have exactly one hotspot
for which a trough-thickness crack will result in fatigue failure. The incoming wave
direction is taken as 135° and the 100-year significant wave height HS;100y equals to
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System failure is defined as the collapse of the jacket platform due to overload
and fatigue deterioration. In this example, it is assumed that only single component
failure is possible before the overload failure and the probability of system failure is
calculated by Eq. (10). The resistance R is the ultimate base shear for given damage
state matrix D and is calculated by performing pushover analysis with software
USFOS [20]. The system load L is approximated by utilizing response surface
analysis outlined in Section 3.2 with 248 pre-computed load points. The samples of
L are drawn from the predictive distribution for a given H and T. The coefficients in
Eq. (19) and (20) are assumed to have the following values (based on a typical
North Sea environment): b = [1.322; 0.8; 0.242] and c = [0.005; 0.09374; 0.32]. The
conditional probability of system collapse (see Eq. (7)) is calculated by utilizing
Monte Carlo simulation with 106 samples. The response surface of the system load L
is shown in Figure 6b with the coefficient of determination R2 = 0.9905. Figure 6c
shows the predictive distribution of L for T = 20.8 s.

The system failure probability in intact condition is 5E�6. The conditional
system failure probabilities for different damaged components and its associated
ultimate base shears are given in Table 2. The components in Table 2 are located on
the jacket’s legs.

3.5.1 Fatigue model

All components are subjected to fatigue deterioration over the service life with
one critical hotspot for each component. The contributions from the fatigue failure
probabilities to the system failure are weighted w.r.t. the conditional system failure
probabilities. Due to the high number of structural components, only the 10 most
critical components with the highest conditional system failure probabilities (see
Table 2) are presently considered. Fatigue failure contributions from other
components are considerably smaller and can hence be neglected. Fatigue failure
probability at time t is calculated by application of Monte Carlo simulation. The
probability is calculated for a period of 1 year, where survival until year t is given.
All fatigue hotspots are modeled with the same probabilistic models, which are
shown in Table 3. BΔS and BSIF are assumed fully correlated between components
following [21]. The other random variables are assumed to have a correlation
coefficient of 0.8 [21].

Damaged component Ultimate base shear (N) P(FS,O|D)

All intact 1.51E+08 5.00E�06

10035 7.05E+07 3.54E�03

10037 7.19E+07 3.16E�03

10038 7.42E+07 2.63E�03

10013 7.98E+07 1.67E�03

10036 8.61E+07 1.01E�03

10039 8.68E+07 9.60E�04

10014 8.71E+07 9.37E�04

10015 8.99E+07 7.55E�04

10016 1.03E+08 2.93E�04

10024 1.06E+08 1.90E�04

Table 2.
Ten highest conditional probabilities of system failure.
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3.5.2 Structural integrity management (SIM)

Two SIM strategies are considered: inspection and repair and inspection with
SHM and repair. For the first strategy, inspections are performed at 3 critical
components 1 year before the annual system failure probability P(FS) is estimated
to exceed the threshold Pth(FS) (i.e., constant threshold approach). The minimum
system failure probability threshold during operation is set equal to 10�4 which
corresponds to target system failure probability recommended by JCSS [15]
for structures with large consequences of failure and large relative cost of safety
measure.

In order to simplify the decision analysis, a repair action is performed only if any
damage is detected by inspections. This decision rule is practical and VoI-optimal,
see [22]. Repaired components are assumed to behave as components with no
damage indication. The probability of indication is derived from the noise and
signal distributions. The noise SR is assumed to follow a Normal distribution with
zero mean and a standard deviation of 0.5. The signal threshold ths is calibrated to
the probability of false indication (PFI) of 0.01. The signal S is also Normal distrib-
uted with the following parameters:

μS tð Þ ¼ 0:8þ 0:1 � δ tð Þ, σS tð Þ ¼ 0:3� 0:01 � δ tð Þ (30)

where δ(t) is the crack size at year t.
In the second SIM strategy, a SHM system for stress range monitoring is installed

1 year before the first inspection is performed, with a monitoring duration of 1 year
(i.e., up to the time of the inspection itself). SHM performance is modeled as
proposed in [17] by utilizing the stress range model uncertainty BΔS. Two thresholds
distinguishing the outcomes Z1 (low stress ranges), Z2 (stress ranges as designed)
and Z3 (high stress ranges) are calibrated to target probabilities of P1

T(Fi) = 1�10�4

and P2
T(Fi) = 1�10�3, respectively. The target reliabilities are selected following [13]

for structures with minor consequences of failure with normal and large relative
cost of safety measure. The time dependent threshold’s calibration is illustrated by
Figure 7. The measurement uncertainty U is assumed Normal distributed with the
expected value of 1.0 and a standard deviation of 0.05. A summary of the probabi-
listic models is shown in Table 4.

Variable Dimension Distribution Expected value St. deviation

TSL year — 25 —

δ0 mm Exponential 0.11 —

δC mm — 8 —

lnC N and mm Normal �29.97 0.5095

m — — 3.0 —

BSIF — Lognormal 1.0 0.1

BΔS — Lognormal 1.0 0.2

lnγ N and mm Normal 2.1 0.22

λ — Normal 0.8 0.08

ν 1/year — 107 —

Table 3.
Summary of the random variables for fatigue modeling.
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shown in Table 3. BΔS and BSIF are assumed fully correlated between components
following [21]. The other random variables are assumed to have a correlation
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3.5.2 Structural integrity management (SIM)

Two SIM strategies are considered: inspection and repair and inspection with
SHM and repair. For the first strategy, inspections are performed at 3 critical
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for structures with large consequences of failure and large relative cost of safety
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In order to simplify the decision analysis, a repair action is performed only if any
damage is detected by inspections. This decision rule is practical and VoI-optimal,
see [22]. Repaired components are assumed to behave as components with no
damage indication. The probability of indication is derived from the noise and
signal distributions. The noise SR is assumed to follow a Normal distribution with
zero mean and a standard deviation of 0.5. The signal threshold ths is calibrated to
the probability of false indication (PFI) of 0.01. The signal S is also Normal distrib-
uted with the following parameters:

μS tð Þ ¼ 0:8þ 0:1 � δ tð Þ, σS tð Þ ¼ 0:3� 0:01 � δ tð Þ (30)

where δ(t) is the crack size at year t.
In the second SIM strategy, a SHM system for stress range monitoring is installed

1 year before the first inspection is performed, with a monitoring duration of 1 year
(i.e., up to the time of the inspection itself). SHM performance is modeled as
proposed in [17] by utilizing the stress range model uncertainty BΔS. Two thresholds
distinguishing the outcomes Z1 (low stress ranges), Z2 (stress ranges as designed)
and Z3 (high stress ranges) are calibrated to target probabilities of P1
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and P2
T(Fi) = 1�10�3, respectively. The target reliabilities are selected following [13]

for structures with minor consequences of failure with normal and large relative
cost of safety measure. The time dependent threshold’s calibration is illustrated by
Figure 7. The measurement uncertainty U is assumed Normal distributed with the
expected value of 1.0 and a standard deviation of 0.05. A summary of the probabi-
listic models is shown in Table 4.
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The costs considered in this case study are consisting of inspection costs CI, SHM
costs CSHM, repair costs CR, system failure costs CFS, and component failure costs
CFi. SHM costs are further divided into investment costs CInv

SHM, installation costs
CInst

SHM, and operational costs Cop
SHM. The cost model used in this example is

shown in Table 5 based on [23, 24].

3.5.3 Results

The annual component and system failure for t = 1....25 years are shown in
Figure 8. The system failure probability for the intact condition is P(FS,O|
D = 0) = 5E�6. The annual system failure probability at the end of service life is
9.5E�5, which is less than the minimum operational threshold, i.e., no SIM
implementations are required to achieve the minimum operational requirement.
However, the decision-maker may wish to increase the structural reliability above
the minimum requirement and presumably enhance the value of SIM. In this work,
three different annual system failure probability thresholds are studied: 6E�5,
7E�5, and 8E�5.

For the inspection-only strategy (S = S1), inspections and repairs are performed
at three components 1 year before the system failure probability threshold Pth(FS) is
predicted to be reached. After each inspection, probabilities of fatigue and system
failure are updated. Figure 9a shows the annual system failure probability for
the inspection-only strategy as a function of time for a specific threshold value.

Figure 7.
Illustration of thresholds calibration for two different SHM installation times for SHM modeling. η1 and η2 are
the thresholds of stress range model uncertainty BΔS associated with PT

1 Fið Þ and PT
2 Fið Þ, respectively. The

integration of the colored regions results in the probabilities of (Z1, Z2, and Z3), which are modeled as three
indication events.

Variable Dimension Distribution Expected value Std. deviation

SR — Normal 0 0.5

S — Normal μS(t) σS(t)

PFI — — 0.01 —

P1
T(Fi) — — 5�10�4 —

P2
T(Fi) — — 5�10�3 —

U — Normal 1.0 0.05

Table 4.
Summary of the random variables for inspection and SHM modeling.
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The first inspection time is at t = 8 years. Increasing the threshold means that the
inspections are performed later during the service life. Because of this, the inspec-
tion frequency during the service life is decreasing with a higher threshold in
exchange of a higher annual system failure probability.

The second SIM strategy (S = S2) is based on installation of a SHM system at one
component to monitor stress ranges for 1 year before the first inspection. There are
three possible outcomes for monitoring based on the component performance.
Figure 9b shows the annual system failure probability with monitoring and inspec-
tions for a system failure probability threshold of 6E-5. Compared to Figure 9a, it is
observed that the outcome of monitoring can influence the future inspection

Type Cost

CI 0.001

CInv
SHM 1.33�10�4/channel

CInst
SHM 1.33�10�4/channel

Cop
SHM 2�10�4/year

CR 0.01

CF,i 1

CFS 100

Table 5.
Cost models used in the case study.

Figure 8.
Annual component and system failure probability over the service life.

Figure 9.
(a) Annual system failure probability with inspections and repairs for one specific threshold, Pth(FS) = 6E�5.
(b) Annual system failure probability with SHM, inspections and repairs for one specific threshold,
Pth(FS) = 6E�5. The inspections and repairs are performed at three components while monitoring is performed
at one component.
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inspections are performed later during the service life. Because of this, the inspec-
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exchange of a higher annual system failure probability.
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component to monitor stress ranges for 1 year before the first inspection. There are
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schedule. The SHM installation time differs depending on the thresholds (see
Table 6). A higher threshold means that the SHM system is installed closer to the
end of service life. With increasing annual system failure probability threshold, the
probability of obtaining low performance outcome (Z3) becomes higher.

The values of information and action (VOIA) of the two SIM strategies are
shown in Figure 10. It is observed that increasing the system failure probability
threshold will reduce the value of information and action. With a higher threshold,
inspection and monitoring are performed later in the service life, which reduces the
benefits due to a higher annual system failure probability during the remaining
service life compared to a lower system failure probability threshold. It is also
observed that the VOIA of the SIM strategy SHM, inspection and repair (S2) is
higher than the inspection-only strategy (S1) for all investigated system failure
probability thresholds. This shows that information from SHM system can enhance
the value of the SIM, i.e., reduce the expected total cost. In this example, the cost of
system failure is dominating the expected total cost over the service life.

4. Summary and conclusions

In the present analysis, physics-based numerical models of the load, structural
behavior and for the integrity management have been utilized in combination with
response surface techniques and Monte Carlo simulation. An application of a
physics-based digital twin model is illustrated for the structural and integrity
management analysis of a specific jacket structure. The loading is represented by a
response surface with the basic environmental parameters as input. The control

SHM outcome Annual system failure probability threshold

6.00E-05
tSHM = 6 years

7.00E-05
tSHM = 8 years

8.00E-05
tSHM = 11 years

High performance Z1ð Þ 0.175 0.0991 0.0497

As-expected performance
Z2ð Þ

0.553 0.5036 0.4084

Low performance Z3ð Þ 0.272 0.3973 0.5419

tSHM is SHM installation time for a given annual system failure probability threshold.

Table 6.
The probability of SHM outcomes for different annual system probability thresholds.

Figure 10.
(a) Expected total costs for base scenario, inspection and repairs strategy (S1), and SHM, inspections, and
repairs (S3). (b) Value of information and action based on SIM strategies for different annual system failure
probability thresholds.
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points are based on physics-based load models. The structural response is obtained
by means of a numerical model, which is able to account for large deformations and
plastic behavior.

A framework has been developed to plan and to optimize the structural integrity
management (SIM) by utilizing the physics-based digital twin model. By extending
the concept of the value of information to a value of information and action analy-
sis, the value of inspection and monitoring information and repair actions is quan-
tified. A novel approach of SHMmodeling introduced by Agusta and Thӧns [17] has
been employed in conjunction with inspection modeling based on a probabilistic
representation of inspections. The optimal SIM strategy leading to the least
expected costs and structural risks is associated to the lowest annual system failure
probability threshold. It is further demonstrated that structural systems with a high
reliability requirement will benefit more from a SHM system implementation.

It is believed that for the present type of analysis, which involves large structural
deformations and structural failure behavior, data-driven models will not be ade-
quate due to an insufficient amount of relevant data. Clearly, this belief is also based
on the assumption that the model uncertainties associated with the physics-based
numerical models can be adequately controlled. This can be achieved by collecting
data from laboratory (destructive) testing and full-scale measurements including
failure records. In this way, data-calibrated and physics-based numerical models
can be developed, rather than relying on data-driven models based on conditions
corresponding to normal operation of the structures.

Acknowledgements

The authors acknowledge the funding received from the Center for Oil and
Gas-DTU/Danish Hydrocarbon Research and Technology Center (DHRTC).
The authors are also grateful to Professor Jørgen Amdahl for his support regarding
the Finite element analysis with USFOS.

Conflict of interest

There is no conflict of interest.

173

Utilization of Digital Twins and Other Numerical Relatives for Efficient Monte Carlo…
DOI: http://dx.doi.org/10.5772/intechopen.89144



schedule. The SHM installation time differs depending on the thresholds (see
Table 6). A higher threshold means that the SHM system is installed closer to the
end of service life. With increasing annual system failure probability threshold, the
probability of obtaining low performance outcome (Z3) becomes higher.

The values of information and action (VOIA) of the two SIM strategies are
shown in Figure 10. It is observed that increasing the system failure probability
threshold will reduce the value of information and action. With a higher threshold,
inspection and monitoring are performed later in the service life, which reduces the
benefits due to a higher annual system failure probability during the remaining
service life compared to a lower system failure probability threshold. It is also
observed that the VOIA of the SIM strategy SHM, inspection and repair (S2) is
higher than the inspection-only strategy (S1) for all investigated system failure
probability thresholds. This shows that information from SHM system can enhance
the value of the SIM, i.e., reduce the expected total cost. In this example, the cost of
system failure is dominating the expected total cost over the service life.

4. Summary and conclusions

In the present analysis, physics-based numerical models of the load, structural
behavior and for the integrity management have been utilized in combination with
response surface techniques and Monte Carlo simulation. An application of a
physics-based digital twin model is illustrated for the structural and integrity
management analysis of a specific jacket structure. The loading is represented by a
response surface with the basic environmental parameters as input. The control

SHM outcome Annual system failure probability threshold

6.00E-05
tSHM = 6 years

7.00E-05
tSHM = 8 years

8.00E-05
tSHM = 11 years

High performance Z1ð Þ 0.175 0.0991 0.0497

As-expected performance
Z2ð Þ

0.553 0.5036 0.4084

Low performance Z3ð Þ 0.272 0.3973 0.5419

tSHM is SHM installation time for a given annual system failure probability threshold.

Table 6.
The probability of SHM outcomes for different annual system probability thresholds.

Figure 10.
(a) Expected total costs for base scenario, inspection and repairs strategy (S1), and SHM, inspections, and
repairs (S3). (b) Value of information and action based on SIM strategies for different annual system failure
probability thresholds.

172

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

points are based on physics-based load models. The structural response is obtained
by means of a numerical model, which is able to account for large deformations and
plastic behavior.

A framework has been developed to plan and to optimize the structural integrity
management (SIM) by utilizing the physics-based digital twin model. By extending
the concept of the value of information to a value of information and action analy-
sis, the value of inspection and monitoring information and repair actions is quan-
tified. A novel approach of SHMmodeling introduced by Agusta and Thӧns [17] has
been employed in conjunction with inspection modeling based on a probabilistic
representation of inspections. The optimal SIM strategy leading to the least
expected costs and structural risks is associated to the lowest annual system failure
probability threshold. It is further demonstrated that structural systems with a high
reliability requirement will benefit more from a SHM system implementation.

It is believed that for the present type of analysis, which involves large structural
deformations and structural failure behavior, data-driven models will not be ade-
quate due to an insufficient amount of relevant data. Clearly, this belief is also based
on the assumption that the model uncertainties associated with the physics-based
numerical models can be adequately controlled. This can be achieved by collecting
data from laboratory (destructive) testing and full-scale measurements including
failure records. In this way, data-calibrated and physics-based numerical models
can be developed, rather than relying on data-driven models based on conditions
corresponding to normal operation of the structures.

Acknowledgements

The authors acknowledge the funding received from the Center for Oil and
Gas-DTU/Danish Hydrocarbon Research and Technology Center (DHRTC).
The authors are also grateful to Professor Jørgen Amdahl for his support regarding
the Finite element analysis with USFOS.

Conflict of interest

There is no conflict of interest.

173

Utilization of Digital Twins and Other Numerical Relatives for Efficient Monte Carlo…
DOI: http://dx.doi.org/10.5772/intechopen.89144



Author details

Bernt Johan Leira1*, Arifian Agusta2 and Sebastian Thöns2,3

1 Department of Marine Technology, NTNU, Trondheim, Norway

2 Department of Civil Engineering, DTU, Lyngby, Denmark

3 Department for Safety of Structures, BAM Federal Institute for Materials Research
and Testing, Berlin, Germany

*Address all correspondence to: bernt.leira@ntnu.no

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

174

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

References

[1] Krenk S, Høgsberg J. Statics and
Mechanics of Structures. Dordrecht:
Springer; 2013

[2] Madsen HO, Krenk S, Lind NC.
Methods of Structural Safety. Mineola,
NY: Dover Publications; 2006

[3] Moan T. Reliability-based
management of inspection,
maintenance and repair of offshore
structures. Structure and Infrastructure
Engineering. 2005;1(1):33-62

[4] Wu Y, Moan T. A structural system
reliability analysis of jacket using an
improved truss model. In: Proceedings
of the 5th ICOSSAR. San Francisco:
ASCE; 1989. pp. 887-894

[5] HSE. Target Levels for Reliability-
Based Assessment of Offshore
Structures during Design and
Operation. London: Offshore
Technology Rep; 2002

[6] Bucher C, Bourgund U. A fast and
efficient response surface approach for
structural reliability problems.
Structural Safety. 1990;7:57-66

[7] Thӧns S, Faber M, Rücker W.
Support structure reliability of offshore
wind turbines utilizing an adaptive
response surface method. In:
Proceedings of the 29th OMAE; ASME.
2010. pp. 407-416

[8] Forristal G. On the statistical
distribution of wave heights in a storm.
Journal of Geophysical Research. 1978;
83(C5):2353-2358

[9] Gandossi L, Annis C. Probability of
Detection Curves: Statistical Best-
Practices. Luxembourg: Publications
Office of the European Union; 2010

[10] Ditlevsen O, Madsen HO. Structural
Reliability Method. Chichester: John
Wiley and Sons Ltd.; 1996

[11] Folsø R, Otto S, Parmentier G.
Reliability-based calibration of fatigue
design guidelines for ship structures.
Marine Structures. 2002;15(6):627-651

[12] Kay SM. Fundamentals of Statistical
Signal Processing: Detection Theory.
New Jersey: Prentice Hall; 1998

[13] Schoefs F, Clément A, Nouy A.
Assessment of roc curves for inspection
of random fields. Structural Safety.
2009;31(5):409-419

[14] Agusta A, Leira BJ, Thӧns S. Value
of information-based structural
integrity management. Journal of
Structural Integrity and Maintenance.
2019

[15] JCSS. Probabilistic Model Code.
JCSS Joint Committe on Structural
Safety; 2006

[16] Thöns S. On the value of monitoring
information for the structural integrity
and risk management. Computer-Aided
Civil and Infrastructure Engineering.
2018;33(1):79-94. DOI: 10.1111/
mice.12332

[17] Agusta A, Thӧns S. Structural
monitoring and inspection modeling for
structural system updating. In:
Proceedings of the 6th International
Symposium on Life-Cycle Civil
Engineering IALCCE. CRC Press; 2018

[18] Benjamin JR, Cornell CA.
Probability, Statistics and Decision for
Civil Engineers. New York: McGraw-
Hill; 1970. ISBN: 070045496

[19] Thöns S, Kapoor M. Value of
information and value of decisions. In:
Proceedings of the 13th International
Conference on Applications of Statistics
and Probability in Civil Engineering.
CRC; 2019

[20] Søreide TH, Amdahl J, Holmås T,
Hellan Ø. USFOS—A computer

175

Utilization of Digital Twins and Other Numerical Relatives for Efficient Monte Carlo…
DOI: http://dx.doi.org/10.5772/intechopen.89144



Author details

Bernt Johan Leira1*, Arifian Agusta2 and Sebastian Thöns2,3

1 Department of Marine Technology, NTNU, Trondheim, Norway

2 Department of Civil Engineering, DTU, Lyngby, Denmark

3 Department for Safety of Structures, BAM Federal Institute for Materials Research
and Testing, Berlin, Germany

*Address all correspondence to: bernt.leira@ntnu.no

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

174

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology

References

[1] Krenk S, Høgsberg J. Statics and
Mechanics of Structures. Dordrecht:
Springer; 2013

[2] Madsen HO, Krenk S, Lind NC.
Methods of Structural Safety. Mineola,
NY: Dover Publications; 2006

[3] Moan T. Reliability-based
management of inspection,
maintenance and repair of offshore
structures. Structure and Infrastructure
Engineering. 2005;1(1):33-62

[4] Wu Y, Moan T. A structural system
reliability analysis of jacket using an
improved truss model. In: Proceedings
of the 5th ICOSSAR. San Francisco:
ASCE; 1989. pp. 887-894

[5] HSE. Target Levels for Reliability-
Based Assessment of Offshore
Structures during Design and
Operation. London: Offshore
Technology Rep; 2002

[6] Bucher C, Bourgund U. A fast and
efficient response surface approach for
structural reliability problems.
Structural Safety. 1990;7:57-66

[7] Thӧns S, Faber M, Rücker W.
Support structure reliability of offshore
wind turbines utilizing an adaptive
response surface method. In:
Proceedings of the 29th OMAE; ASME.
2010. pp. 407-416

[8] Forristal G. On the statistical
distribution of wave heights in a storm.
Journal of Geophysical Research. 1978;
83(C5):2353-2358

[9] Gandossi L, Annis C. Probability of
Detection Curves: Statistical Best-
Practices. Luxembourg: Publications
Office of the European Union; 2010

[10] Ditlevsen O, Madsen HO. Structural
Reliability Method. Chichester: John
Wiley and Sons Ltd.; 1996

[11] Folsø R, Otto S, Parmentier G.
Reliability-based calibration of fatigue
design guidelines for ship structures.
Marine Structures. 2002;15(6):627-651

[12] Kay SM. Fundamentals of Statistical
Signal Processing: Detection Theory.
New Jersey: Prentice Hall; 1998

[13] Schoefs F, Clément A, Nouy A.
Assessment of roc curves for inspection
of random fields. Structural Safety.
2009;31(5):409-419

[14] Agusta A, Leira BJ, Thӧns S. Value
of information-based structural
integrity management. Journal of
Structural Integrity and Maintenance.
2019

[15] JCSS. Probabilistic Model Code.
JCSS Joint Committe on Structural
Safety; 2006

[16] Thöns S. On the value of monitoring
information for the structural integrity
and risk management. Computer-Aided
Civil and Infrastructure Engineering.
2018;33(1):79-94. DOI: 10.1111/
mice.12332

[17] Agusta A, Thӧns S. Structural
monitoring and inspection modeling for
structural system updating. In:
Proceedings of the 6th International
Symposium on Life-Cycle Civil
Engineering IALCCE. CRC Press; 2018

[18] Benjamin JR, Cornell CA.
Probability, Statistics and Decision for
Civil Engineers. New York: McGraw-
Hill; 1970. ISBN: 070045496

[19] Thöns S, Kapoor M. Value of
information and value of decisions. In:
Proceedings of the 13th International
Conference on Applications of Statistics
and Probability in Civil Engineering.
CRC; 2019

[20] Søreide TH, Amdahl J, Holmås T,
Hellan Ø. USFOS—A computer

175

Utilization of Digital Twins and Other Numerical Relatives for Efficient Monte Carlo…
DOI: http://dx.doi.org/10.5772/intechopen.89144



program for progressive collapse
analysis of steel offshore structures. In:
Theory Manual (Report STF71 F88038);
1993. Retrieved from: http://www.usfos.
no/manuals/usfos/theory/documents/
Usfos_Theory_Manual.pdf

[21] Schneider R, Thöns S, Rücker W,
Straub D. Effect of different inspection
strategies on the reliability of Daniels
systems subjected to fatigue. In: Safety,
Reliability, Risk and Life-Cycle
Performance of Structures and
Infrastructures. Proceedings of the 11th
International Conference on Structural
Safety and Reliability, ICOSSAR 2013.
CRC Press/Balkema; 2013.
pp. 2637-2644

[22] Agusta A, Thӧns S, Leira B. Value of
information-based inspection planning
for offshore structures. In: Proceedings
of the 36th OMAE, ASME; 2017

[23] Thӧns S, Faber M, Rücker W.
Optimal design of monitoring systems
for risk reduction and operation
benefits. SRESA's International Journal
of Life Cycle Reliability and Safety
Engineering. 2014;3:1-10

[24] Thӧns S, Schneider R, Faber M.
Quantification of the value of structural
health monitoring information for
fatigue deteriorating structural systems.
In: Proceedings of 12th International
Conference on Applications of Statistics
and Probability in Civil Engineering.
CRC Press; 2015

176

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology



program for progressive collapse
analysis of steel offshore structures. In:
Theory Manual (Report STF71 F88038);
1993. Retrieved from: http://www.usfos.
no/manuals/usfos/theory/documents/
Usfos_Theory_Manual.pdf

[21] Schneider R, Thöns S, Rücker W,
Straub D. Effect of different inspection
strategies on the reliability of Daniels
systems subjected to fatigue. In: Safety,
Reliability, Risk and Life-Cycle
Performance of Structures and
Infrastructures. Proceedings of the 11th
International Conference on Structural
Safety and Reliability, ICOSSAR 2013.
CRC Press/Balkema; 2013.
pp. 2637-2644

[22] Agusta A, Thӧns S, Leira B. Value of
information-based inspection planning
for offshore structures. In: Proceedings
of the 36th OMAE, ASME; 2017

[23] Thӧns S, Faber M, Rücker W.
Optimal design of monitoring systems
for risk reduction and operation
benefits. SRESA's International Journal
of Life Cycle Reliability and Safety
Engineering. 2014;3:1-10

[24] Thӧns S, Schneider R, Faber M.
Quantification of the value of structural
health monitoring information for
fatigue deteriorating structural systems.
In: Proceedings of 12th International
Conference on Applications of Statistics
and Probability in Civil Engineering.
CRC Press; 2015

176

Theory, Application, and Implementation of Monte Carlo Method in Science and Technology



Theory, Application, and 
Implementation of Monte 

Carlo Method in Science and 
Technology

Edited by Pooneh Saidi Bidokhti

Edited by Pooneh Saidi Bidokhti

The Monte Carlo method is a numerical technique to model the probability of 
all possible outcomes in a process that cannot easily be predicted due to the 

interference of random variables. It is a technique used to understand the impact of 
risk, uncertainty, and ambiguity in forecasting models. However, this technique is 

complicated by the amount of computer time required to achieve sufficient precision in 
the simulations and evaluate their accuracy. This book discusses the general principles 

of the Monte Carlo method with an emphasis on techniques to decrease simulation 
time and increase accuracy.

Published in London, UK 

©  2019 IntechOpen 
©  agsandrew / iStock

ISBN 978-1-78985-545-6

Th
eory, A

pplication, and Im
plem

entation of M
onte Carlo M

ethod in Science and Technology

ISBN 978-1-83968-152-3


	Theory, Application, and Implementation of Monte Carlo Method in Science and Technology
	Contents
	Preface
	Section 1 - Medicine
	Chapter 1 - Monte Carlo Methods forSimulation of Optical Coherence Tomography of Turbid Media
	Chapter 2 - Modelling, Simulation and Dosimetry of 103-Pd Eye Plaque Brachytherapy
	Chapter 3 - Prospective Monte Carlo Simulation for Choosing High Efficient Detectors for Small-Field Dosimetry
	Chapter 4 - Monte Carlo’s Core and Tests for Application Developers: Geant4 and XRMC Comparison and Validation
	Section 2 - Material
	Chapter 5 - How to Use the Monte Carlo Simulation Technique?Application: A Study of the Gas Phase during Thin Film Deposition
	Chapter 6 - Application of Local Information Entropy in Cluster Monte Carlo Algorithms
	Section 3 - Structure
	Chapter 7 - Utilization of Digital Twins and Other Numerical Relatives for Efficient Monte Carlo Simulation in Structural Analysis



