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Preface

Low-frequency acoustic energy released within the Earth’s interior propagates 
through several types of seismic waves categorized by body waves or surface waves. 
The importance of seismic wave research lies not only in our ability to understand 
and predict earthquakes and tsunamis, but it also reveals information on the 
Earth’s composition and features in much the same way as it led to the discovery of 
Mohorovicic’s discontinuity. As our theoretical understanding of the physics behind 
seismic waves has grown, physical and numerical modeling have greatly advanced 
and now augment applied seismology for better prediction and engineering prac-
tices. This has led to some novel applications such as using artificially-induced 
shocks for exploration of the Earth’s subsurface and seismic stimulation for increas-
ing the productivity of oil wells. This book demonstrates the latest techniques and 
advances in seismic wave analysis from the theoretical approach, data acquisition 
and interpretation, to analyses and numerical simulations, as well as research 
applications. The major topics in this book cover the aspects on seismic wave 
propagation, characteristics of their velocities and attenuation, deformation process 
of the Earth’s medium, seismic source process and tectonic dynamics with relating 
observations, as well as propagation modeling of seismic waves.
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Chapter 1

A High-Order Finite Volume
Method for 3D Elastic Modelling
on Unstructured Meshes
Wensheng Zhang

Abstract

In this chapter, a new efficient high-order finite volume method for 3D elastic
modelling on unstructured meshes is developed. The stencil for the high-order
polynomial reconstruction is generated by subdividing the relative coarse
tetrahedrons. The reconstruction on the stencil is performed by using cell-averaged
quantities represented by the hierarchical orthonormal basis functions. Unlike the
traditional high-order finite volume method, the new method has a very local
property like the discontinuous Galerkin method. Furthermore, it can be written as
an inner-split computational scheme which is beneficial to reducing computational
amount. The reconstruction matrix is invertible and remains unchanged for all
tetrahedrons, and thus it can be pre-computed and stored before time evolution.
These special advantages facilitate the parallelization and high-order computations.
The high-order accuracy in time is obtained by the Runge-Kutta method. Numerical
computations including a 3D real model with complex topography demonstrate the
effectiveness and good adaptability to complex topography.

Keywords: numerical solutions, computational seismology, 3D elastic wave,
wave propagation, high-order finite volume method, unstructured meshes

1. Introduction

Wave propagation based on wave equations has important applications in geo-
physics. It is usually used as a powerful tool to detect the structures of reservoir.
Thus solving wave equations efficiently and accurately is always an important
research topic. There are several types of numerical methods to solve wave equa-
tions, for example, the finite difference (FD) method [1, 2], the pseudo-spectral
(PS) method [3, 4], the finite element (FE) method [5–9], the spectral element (SE)
method [10–14], the discontinuous Galerkin (DG) method [15–18], and the finite
volume (FV) method [19–22]. Each numerical method has its own inherent advan-
tages and disadvantages. For example, the FDmethod is efficient and relatively easy
to implement, but the inherent restriction of using regular meshes limits its appli-
cation to complex topography. The FE method has good adaptability to complex
topography, but it has huge computational cost. In this chapter, the FV method is
the key consideration.

In order to simulate wave propagation on unstructured meshes efficiently, the
FV method is a good choice due to its high computational efficiency and good
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adaptability to complex geometry. In this chapter an efficient FV method for 3D
elastic wave simulation on unstructured meshes is developed. It incorporates some
nice features from the DG and FV methods [15–17, 19, 20, 23] and the spectral FV
(SFV) method [24–26]. In our method, the computational domain is first meshed
with relative coarse tetrahedral elements in 3D or triangle elements in 2D. Then,
each element is further divided as a collection of finer subelements to form a stencil.
The high-order polynomial reconstruction is performed on this stencil by using
local cell-averaged values on the finer elements. The resulting reconstruction matrix
on all coarse elements remains unchanged, and it can be pre-computed before time
evolution. Moreover, the method can be written as an inner-split computational
scheme. These two advantages of our method are very beneficial to enhancing the
parallelization and reducing computational cost.

The rest of this chapter is organized as follows. In Section 2, the theory is
described in detail. In Section 3, numerical results are given to illustrate the
effectiveness of our method. Finally, the conclusion is given in Section 4.

2. Theory

2.1 The governing equation

The three-dimensional (3D) elastic wave equation with external sources in
velocity-stress formulation can be written as the following system [1, 15]:

∂σxx
∂t

� λþ 2μð Þ ∂u
∂x

� λ
∂v
∂y

� λ
∂w
∂z

¼ g1,

∂σyy
∂t

� λ
∂u
∂x

� λþ 2μð Þ ∂v
∂y

� λ
∂w
∂z

¼ g2,

∂σzz
∂t

� λ
∂u
∂x

� λ
∂v
∂y

� λþ 2μð Þ ∂w
∂z

¼ g3,

∂σxy
∂t

� μ
∂v
∂x

þ ∂u
∂y

� �
¼ g4,

∂σyz
∂t

� μ
∂v
∂z

þ ∂w
∂y

� �
¼ g5,

∂σxz
∂t

� μ
∂u
∂z

þ ∂w
∂x

� �
¼ g6,

ρ
∂u
∂t

� ∂σxx
∂x

� ∂σxy
∂y

� ∂σxz
∂z

¼ ρg7,

ρ
∂v
∂t

� ∂σxy
∂x

� ∂σyy
∂y

� ∂σyz
∂z

¼ ρg8,

ρ
∂w
∂t

� ∂σxz
∂x

� ∂σyz
∂y

� ∂σzz
∂z

¼ ρg9,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)

where u, v, and w are the wavefield of particle velocities in x, y, and z directions,
respectively; λ and μ are the Lamé coefficients and ρ is the density; gi x; y; z; tð Þ are
the known sources; σxx, σyy, and σzz are the normal stress components while σxy, σxz,
and σyz are the shear stresses. For the convenient of discussion, we rewrite Eq. (1) as
the following compact form:
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∂u
∂t

þ A
∂u
∂x

þ B
∂u
∂y

þ C
∂u
∂z

¼ g, (2)

where g ¼ g1;⋯; g9
� �T,u ¼ σxx; σyy; σzz; σxy; σyz; σxz; u; v;w

� �T, and the matrices
A, B, and C are all 9� 9 matrices and can be obtained obviously [27].

The propagation velocities of the elastic waves are determined by the
eigenvalues si of matrices A, B, and C and are given by

s1 ¼ �vp, s2 ¼ �vs, s3 ¼ �vs, s4 ¼ s5 ¼ s6 ¼ 0, s7 ¼ vs, s8 ¼ vs, s9 ¼ vp,

(3)

where

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
, vs ¼

ffiffiffi
μ

ρ

r
(4)

are the velocities of the compression (P) wave and the shear (S) wave velocities,
respectively.

2.2 The generation of a stencil

Suppose that the 3D computational domain Ω is meshed by NE conforming
tetrahedral elements T mð Þ:

Ω ¼ ⋃
NE

m¼1
T mð Þ: (5)

In practical computations, the integrals in the FV scheme on physical tetrahedral
element T mð Þ are usually changed to be computed on its reference element. Figure 1
shows a physical tetrahedron T mð Þ in the physical system, and x� y� z is
transformed into a reference element TE in the reference system ξ� η� ζ. Let
xi; yi; zi
� �

for i ¼ 1; 2; 3;4 be the coordinates of physical element T mð Þ. The trans-
formations between x� y� z system and ξ� η� ζ system will be given in the final

Figure 1.
The physical element T mð Þ (left) in the physical coordinate system x� y� z is transformed into a reference
element TE (right) in the reference coordinate system ξ� η� ζ.
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subsection of Section 2. For convenience, let x ¼ x; y; zð Þ and ξ ¼ ξ; η; ζð Þ. And
denote the transformation from ξ� η� ζ system to x� y� z system by

x ¼ x T mð Þ; ξ
� �

, (6)

and its corresponding inverse transformation by

ξ ¼ ξ T mð Þ;x
� �

: (7)

The detailed expressions of the transformations (6) and (7) will be given in
Section 2.5.

Inside each TE the solutions of Eq. (2) are approximated numerically by using a
linear combination of polynomial basis functions ϕl ξ; η; ζð Þ and the time-dependent

coefficients ŵ mð Þ
l tð Þ:

u mð Þ ξ; η; ζ; tð Þ ¼ ∑
Np

l¼1
ŵ mð Þ

l tð Þϕl ξ; η; ζð Þ, (8)

where Np is the degree of freedom of a complete polynomial.
In order to construct a high-order polynomial, we need to choose a stencil.

Traditionally, the elements being adjacent to the element T mð Þ are selected to form a
stencil. In [20] three types of stencils, i.e., the central stencil, the primary sector
stencil, and the reverse stencil, are investigated. These stencils usually choose 2N
neighbors for the 3D reconstruction. Here N is the degree of a complete polynomial.
Due to geometrical issues, the reconstruction matrix resulting from these stencils
may be not invertible. This may happen when all elements are aligned in a straight
line [20]. In the following, we propose to partition T mð Þ or in fact its corresponding
reference element TE into finer subelements to form a stencil. The subdivision
algorithm guarantees the number of subelements is greater than the degrees of
freedom of a complete polynomial. Moreover, this algorithm is easy to implement
especially in 3D and for all elements whether they are internal or boundary
elements.

Let Ne be the number of subelements in T mð Þ after subdividing. For a complete
polynomial of degree N in 3D, a reconstruction requires at least Np subelements,
where

Np ¼ N þ 1ð Þ N þ 2ð Þ N þ 3ð Þ=6: (9)

In our algorithm, we guarantee Ne is always greater than Np. As shown in
Figure 2, we divide each edge of the reference element TE into M uniform seg-
ments. Thus we have Ne ≔M3 tetrahedral subelements in TE. Note that a small
subcubic in TE consists of six tetrahedrons. With the transformations of Eqs. (6)
and (7), we denote all subelements in T mð Þ for a fixed m by T m kð Þð Þ for k ¼ 1,⋯, Ne.
In Table 1, the degree of a complete polynomial N and its corresponding degrees of
freedom Np are listed. Correspondingly, the number of M and Ne are also listed in
Table 1. This algorithm for generating the stencil is easily implemented for all
coarse tetrahedrons. Moreover, the reconstruction matrix resulting from this stencil
is always invertible and remains unchanged for all elements T mð Þ for m ¼ 1,⋯, NE.
Note that the reconstruction matrix may be not invertible if all elements are aligned
on a straight line [15]. However, this will not happen here for our algorithm.
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2.3 The high-order polynomial reconstruction

The high-order polynomial is reconstructed in each element T mð Þ or TE. For the
stencil designed above, we have

T mð Þ ¼ ⋃
Ne

k¼1
T m kð Þð Þ, (10)

where k ¼ 1,⋯, Ne is the index for subelements in T mð Þ. The FV method will use
the cell-averaged quantities, i.e.,
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ð
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u mð Þ xð ÞdV, k ¼ 1,⋯, Ne, (11)

to reconstruct a high-order polynomial, where ∣T m kð Þð Þ∣ represents the volume of
the subelement T m kð Þð Þ. The time variable t in u mð Þ is omitted for discussion conve-
nience. The reconstruction requires integral conservation for u mð Þ in each
subelement T m kð Þð Þ, i.e.,

Figure 2.
The stencil obtained by subdividing the reference element TE into M3 ¼ 33 tetrahedral subelements, where
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ð

T m kð Þð Þ
u mð Þ x T mð Þ; ξ

� �� �
dV ¼ ∣T m kð Þð Þ∣u m kð Þð Þ,

∀T m kð Þð Þ ⊂T mð Þ, k ¼ 1,⋯, Ne:

(12)

To solve the reconstruction problem, inspired by the DG method [15–17, 23,
28, 29], we use hierarchical orthogonal basis functions. The basis functions
ϕl ξ; η; ζð Þ of a complete polynomial of degree N (N ¼ 1; 2; 3; 4) in the reference
coordinate system can be found in [27]. We remark that the basis functions are
orthonormal and satisfy the following property:

ð

TE

ϕl ξ; η; ζð Þdξdηdζ ¼

ffiffiffi
6

p

6
, l ¼ 1,

0, l 6¼ 1:

8><
>:

(13)

Transforming equation (12) in the physical coordinate system x� y� z into the
reference coordinate system ξ� η� ζ and noticing Eq. (8), we obtain

∑
Np

l¼1

ð
~T

m kð Þð Þ
ϕl ξ; η; ζð Þdξdηdζ

� �
ŵ mð Þ

l ¼ ∣~T m kð Þð Þ∣u m kð Þð Þ,

∀~T m kð Þð Þ⊂ ~T mð Þ ¼ TE, k ¼ 1,⋯, Ne,

(14)

where ~T mð Þ is in fact the reference element TE and ~T m kð Þð Þ is the transformed
element corresponding to the subelement T m kð Þð Þ.

The integration in Eq. (14) over ~T m kð Þð Þ in ξ system can be computed efficiently
if it is performed over its reference element in a second reference system ~ξ.
Denote the transformation from ~ξ to ξ and its inverse by ξ ¼ ξ ~T m kð Þð Þ;~ξÞ�

and
~ξ ¼ ~ξ ~T m kð Þð Þ; ξÞ�

, respectively. Transforming Eq. (14) into ~ξ system and rewriting
the result as a compact form, we have

Gŵ ¼ u, (15)

where G is the Ne �Np matrix with entries Gkl given by

Gkl ¼ 1
∣TE∣

ð

TE

ϕl ξ ~T
m kð Þð Þ

;~ξ
� �� �

d~ξd~ηd~ζ
� �

, k ¼ 1,⋯, Ne; l ¼ 1,⋯, Np, (16)

and

u≔ u m 1ð Þð Þ; ;u m 2ð Þð Þ;⋯;u m Neð Þð Þ
� �T

, ŵ≔ ŵ mð Þ
1 ; ŵ mð Þ

2 ;⋯; ŵ mð Þ
Np

� �T
: (17)

We need at least Np subelements in the stencil since the reconstructed number
of degrees of freedom is Np. As listed in Table 1, Ne subelements are used to form
the stencil. Note that Ne is definitely larger than Np, which is helpful to improve the
reconstruction robustness [20, 21]. Thus Eq. (15) is an overdetermined problem.
We use the constrained least squared technique to solve it.

From the orthogonality of basis functions and the property of Eq. (13), we
remark that Eq. (15) is subject to the following constraint condition [27]:
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ffiffiffi
6

p
ŵ mð Þ

1 ¼ ∑
Ne

k¼1

u m kð Þð Þ

Ne
: (18)

With the constraint, Eq. (15) is solved by the Lagrange multiplier method
[19, 20, 27]. And the system can be written as

2GTG �RT

R 0

 !
ŵ

λp

 !
¼

2GTu

~Ru

 !
, (19)

where λp is the Lagrangian multiplier and both R and ~R are 1�Ne matrices:

R ¼
ffiffiffi
6

p
;0;⋯;0

� �
, ~R ¼ 1

Ne
;⋯;

1
Ne

� �
: (20)

The coefficient matrix on the left-hand side of Eq. (19) is the so-called recon-
struction matrix [19, 20].

2.4 The spatial discrete formulation

We now derive the semi-discrete finite volume scheme based on Eqs. (2) and
(8). Integrating over each subelement T m kð Þð Þ on both sides of Eq. (2), we have

ð

T m kð Þð Þ

∂u
∂t

dV þ
ð

T m kð Þð Þ
A
∂u
∂x

þ B
∂u
∂y

þ C
∂u
∂z

� �
dV ¼ 0, k ¼ 1,⋯, Ne: (21)

Using Eq. (8) and integration by parts yield

ð

T m kð Þð Þ

∂u
∂t

dV þ
ð

∂T m kð Þð Þ
FhdS ¼ 0, (22)

where dS denotes the infinitesimal element in the face integral and Fh is the
numerical flux, and we adopt the widely used Godunov flux [15, 19, 20, 23]

Fh ¼ 1
2
T A m kð Þð Þ þ jA m kð Þð Þj
� �

T�1∑
Np

l¼1
ŵ mð Þ

l ϕ mð Þ
l

þ 1
2
T A m kð Þð Þ � jA m kð Þð Þj
� �

T�1∑
Np

l¼1
ŵ

mjð Þ
l ϕ

mjð Þ
l ,

(23)

where mj is the index number of coarse tetrahedral element neighboring
subelement T m kð Þð Þ. The notation ∣A m kð Þð Þ∣ denotes applying the absolute value oper-
ator of the eigenvalues given in Eq. (3), i.e.,

∣A m kð Þð Þ∣ ¼ R∣Λ∣R�1, ∣Λ∣ ¼ diag js1j;⋯; js9jð Þ, (24)

where R is the matrix and its columns are made up of the eigenvectors associated
with eigenvalues in Eq. (3), i.e.,
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, ŵ≔ ŵ mð Þ
1 ; ŵ mð Þ
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where mj is the index number of coarse tetrahedral element neighboring
subelement T m kð Þð Þ. The notation ∣A m kð Þð Þ∣ denotes applying the absolute value oper-
ator of the eigenvalues given in Eq. (3), i.e.,

∣A m kð Þð Þ∣ ¼ R∣Λ∣R�1, ∣Λ∣ ¼ diag js1j;⋯; js9jð Þ, (24)
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R ¼

λþ 2μ 0 0 0 0 0 0 0 λþ 2μ

λ 0 0 0 1 0 0 0 λ

λ 0 0 0 0 1 0 0 λ

0 μ 0 0 0 0 0 μ 0

0 0 0 1 0 0 0 0 0

0 0 μ 0 0 0 μ 0 0

vp 0 0 0 0 0 0 0 �vp
0 vs 0 0 0 0 0 �vs 0

0 0 vs 0 0 0 �vs 0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

: (25)

And T is the rotation matrix given by

T ¼

n2x s2x t2x 2nxsx 2sxtx 2nxtx

n2y s2y t2y 2nysy 2syty 2nyty

n2z s2z t2z 2nzsz 2sztz 2nztz

nynx sysx tytx nysx þ nxsy sytx þ sxty nytx þ nxty

nzny szsy tzty nzsy þ nysz szty þ sytz nzty þ nytz

nznx szsx tztx nzsx þ nxsz sztx þ sxtz nztx þ nxtz

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

, (26)

where nx; ny; nz
� �

is the normal vector of the face and sx; sy; sz
� �

and tx; ty; tz
� �

are
the two tangential vectors. T�1 denotes the inverse of T.

Inserting Eqs. (23) into (22) and rewriting the result into a splitting form of easy
computation in the reference system ξ, we have

∂

∂t
u m kð Þð Þ∣T m kð Þð Þ∣þ ∑

4

j¼1
Fh
j ¼ 0 (27)

with

Fh
j ¼ TjA m kð Þð Þ Tj� ��1∣Sj∣ ∑

Np

l¼1
F�, j
l ŵ mð Þ

l , m ¼ mj, (28)

and

Fh
j ¼

1
2
Tj A m kð Þð Þ þ jA m kð Þð Þj
� �

Tj� ��1∣Sj∣∑
Np

l¼1
F�, j
l ŵ mð Þ

þ 1
2
Tj A m kð Þð Þ � jA m kð Þð Þj
� �

Tj� ��1∣Sj∣∑
Np

l¼1
Fþ, i, p
l ŵ

mjð Þ
l , m 6¼ mj,

(29)

where Sj is the area of the j-th j ¼ 1; 2; 3; 4ð Þ face of subelement T m kð Þð Þ. F�, j
l and

Fþ, i, p
l are the left flux matrix and the right state flux matrix, respectively, which are

given by

F�, j
l ¼

ð

∂ TEð Þj
ϕl ξ ~T m jð Þð Þ;~ξ jð Þ χ; τð ÞÞ� �

dχdτ, j ¼ 1; 2; 3;4,
�

(30)
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Fþ, i,p
l ¼

ð

∂ TEð Þj
ϕl ξ ~T m ið Þð Þ;~ξ ið Þ ~χ pð Þ;~τ pð Þ

� �� �� �
dχdτ, i ¼ 1; 2; 3; 4; p ¼ 1; 2; 3:

(31)

where χ and τ are the face parameters. The transformation of the face parame-
ters χ and τ to the face parameters ~χ and ~τ in the neighbor tetrahedron depends on
the orientation of the neighbor face with respect to the local face of the considered
tetrahedron. And the mapping is given in Table 2. For a given tetrahedral mesh
with the known indices i and p, there are only 4 of 12 possible matrices Fþ, i, p per
element [15, 20]. Comparing with the traditional FV method, the method with the
splitting form described above has much less computations of face integrations.
Note that only our proposed FV method can be written as a splitting form. Theo-
retical analysis shows our method can save about half computational time under the
condition of the same number of elements [27].

2.5 The time discretization

Equation (27) is in fact a semi-discrete ordinary differential equation (ODE)
system. In order to solve it formally, we denote the spatial semi-discrete part in
Eq. (27) by a linear operator L. Then Eq. (27) can be written as a concise ODE form:

du
dt

¼ L u; tð Þ: (32)

Traditionally, the classic fourth-order explicit RK (ERK) method

k 1ð Þ ¼ L un; ; tnð Þ,
k 2ð Þ ¼ L un þ 1

2
Δtk 1ð Þ; tn þ 1

2
Δt

� �
,

k 3ð Þ ¼ L un þ 1
2
Δtk 2ð Þ; tn þ 1

2
Δt

� �
,

k 4ð Þ ¼ L un þ Δtk 3ð Þ; tn þ Δt
� �

,

unþ1 ¼ un þ 1
6
Δt k 1ð Þ þ 2k 2ð Þ þ 2k 3ð Þ þ k 4ð Þ
� �

(33)

can be applied to advance u from un to unþ1. Here Δt is the time step. Now we
use the low-storage version of ERK (LSERK) to solve Eq. (32):

u 0ð Þ ¼ un,

k ið Þ ¼ aik i�1ð Þ þ ΔtL p i�1ð Þ; tn þ ciΔt
� �

,

p ið Þ ¼ p i�1ð Þ þ bik ið Þ, i ¼ 1,⋯, 5,

8<
:

u nþ1ð Þ ¼ p 5ð Þ:

(34)

p 1 2 3

~χ τ 1� χ � τ χ

~τ χ τ 1� χ � τ

Table 2.
Transformation of the face parameters χ and τ to the face parameters ~χ and ~τ .

9

A High-Order Finite Volume Method for 3D Elastic Modelling on Unstructured Meshes
DOI: http://dx.doi.org/10.5772/intechopen.86400



R ¼

λþ 2μ 0 0 0 0 0 0 0 λþ 2μ

λ 0 0 0 1 0 0 0 λ

λ 0 0 0 0 1 0 0 λ

0 μ 0 0 0 0 0 μ 0

0 0 0 1 0 0 0 0 0

0 0 μ 0 0 0 μ 0 0

vp 0 0 0 0 0 0 0 �vp
0 vs 0 0 0 0 0 �vs 0

0 0 vs 0 0 0 �vs 0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

: (25)

And T is the rotation matrix given by

T ¼

n2x s2x t2x 2nxsx 2sxtx 2nxtx

n2y s2y t2y 2nysy 2syty 2nyty

n2z s2z t2z 2nzsz 2sztz 2nztz

nynx sysx tytx nysx þ nxsy sytx þ sxty nytx þ nxty

nzny szsy tzty nzsy þ nysz szty þ sytz nzty þ nytz

nznx szsx tztx nzsx þ nxsz sztx þ sxtz nztx þ nxtz

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

, (26)

where nx; ny; nz
� �

is the normal vector of the face and sx; sy; sz
� �

and tx; ty; tz
� �

are
the two tangential vectors. T�1 denotes the inverse of T.

Inserting Eqs. (23) into (22) and rewriting the result into a splitting form of easy
computation in the reference system ξ, we have

∂

∂t
u m kð Þð Þ∣T m kð Þð Þ∣þ ∑

4

j¼1
Fh
j ¼ 0 (27)

with

Fh
j ¼ TjA m kð Þð Þ Tj� ��1∣Sj∣ ∑

Np

l¼1
F�, j
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l ŵ mð Þ

þ 1
2
Tj A m kð Þð Þ � jA m kð Þð Þj
� �

Tj� ��1∣Sj∣∑
Np

l¼1
Fþ, i, p
l ŵ
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l ¼

ð

∂ TEð Þj
ϕl ξ ~T m ið Þð Þ;~ξ ið Þ ~χ pð Þ;~τ pð Þ

� �� �� �
dχdτ, i ¼ 1; 2; 3; 4; p ¼ 1; 2; 3:

(31)

where χ and τ are the face parameters. The transformation of the face parame-
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the orientation of the neighbor face with respect to the local face of the considered
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retical analysis shows our method can save about half computational time under the
condition of the same number of elements [27].

2.5 The time discretization

Equation (27) is in fact a semi-discrete ordinary differential equation (ODE)
system. In order to solve it formally, we denote the spatial semi-discrete part in
Eq. (27) by a linear operator L. Then Eq. (27) can be written as a concise ODE form:

du
dt

¼ L u; tð Þ: (32)

Traditionally, the classic fourth-order explicit RK (ERK) method

k 1ð Þ ¼ L un; ; tnð Þ,
k 2ð Þ ¼ L un þ 1

2
Δtk 1ð Þ; tn þ 1

2
Δt

� �
,

k 3ð Þ ¼ L un þ 1
2
Δtk 2ð Þ; tn þ 1

2
Δt

� �
,

k 4ð Þ ¼ L un þ Δtk 3ð Þ; tn þ Δt
� �

,

unþ1 ¼ un þ 1
6
Δt k 1ð Þ þ 2k 2ð Þ þ 2k 3ð Þ þ k 4ð Þ
� �

(33)

can be applied to advance u from un to unþ1. Here Δt is the time step. Now we
use the low-storage version of ERK (LSERK) to solve Eq. (32):

u 0ð Þ ¼ un,

k ið Þ ¼ aik i�1ð Þ þ ΔtL p i�1ð Þ; tn þ ciΔt
� �

,

p ið Þ ¼ p i�1ð Þ þ bik ið Þ, i ¼ 1,⋯, 5,

8<
:

u nþ1ð Þ ¼ p 5ð Þ:

(34)

p 1 2 3

~χ τ 1� χ � τ χ

~τ χ τ 1� χ � τ

Table 2.
Transformation of the face parameters χ and τ to the face parameters ~χ and ~τ .
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As we can see the LSERK only requires one additional storage level, while ERK
has four. The coefficients required in Eq. (34) are listed in Table 3 [30].

As to the stability condition, it is controlled by the Courant-Friedrichs-Lewy
(CFL) condition [15, 19];

Δt≤
1

2N þ 1
hmin

vp
, (35)

where vp is the P wave velocity and hmin is the minimum diameter of the
circumcircles of tetrahedral elements. This condition is a necessary condition for
discrete stability, and a bit more restrictive form is actually used in numerical
computations.

The absorbing boundary conditions (ABCs) in computations are required as the
computational domain is finite. There are two typical ABCs to be adopted here. One
is flux type ABCs [16, 19]. That is to say, the following numerical flux in Eq. (23) at
all tetrahedral faces that coincide with domain boundary

Fh ¼ 1
2
T A m kð Þð Þ þ jA m kð Þð Þj
� �

T�1 ∑
Np

l¼1
ŵ mð Þ

l ϕ mð Þ
l , (36)

which allows only for outgoing waves and is equivalent to the first order ABCs.
Though the absorbing effects of this method vary the angles of incidence, it is still
effective in many cases [19]. The advantage of this type ABCs is that it merged into
the FVM framework naturally and there is almost no additional computational cost.
Another type is the perfectly matched layer (PML) technique originally developed
by [31], which is very popular in recent more 10 years.

2.6 Coordinate transformation

The transformation between different coordinate systems is frequently used. For
ease of reading, we present the formulations here. Let xi; yi; zi

� �
for i ¼ 1; 2; 3; 4 be

the coordinates of a physical element. The transformation from ξ� η� ζ system to
x� y� z system is defined by

x ¼ x1 þ x2 � x1ð Þξþ x3 � x1ð Þηþ x4 � x1ð Þζ,
y ¼ y1 þ y2 � y1

� �
ξþ y3 � y1

� �
ηþ y4 � y1

� �
ζ,

z ¼ z1 þ z2 � z1ð Þξþ z3 � z1ð Þηþ z4 � z1ð Þζ,

8><
>:

(37)

then the transformation from x� y� z system to ξ� η� ζ system can be solved
for ξ, η and ζ from Eq. (37) by the Cramer ruler, i.e.,

i ai bi ci

1 0 0.1496590219992291 0

2 �0.4178904744998519 0.3792103129996273 0.1496590219992291

3 �1.1921516946426769 0.8229550293869817 0.3704009573642048

4 �1.6977846924715279 0.6994504559491221 0.6222557631344432

5 �1.5141834442571558 0.1530572479681520 0.9582821306746903

Table 3.
Coefficients for the low-storage five-stage fourth-order ERK method.
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ξ ¼ ∣ J1∣
∣ J∣

, η ¼ ∣ J2∣
∣ J∣

, ζ ¼ ∣ J3∣
∣ J∣

, (38)

where

∣ J1∣ ¼
x� x1 x3 � x1 x4 � x1
y� y1 y3 � y1 y4 � y1
z� z1 z3 � z1 z4 � z1

�������

�������
, ∣ J2∣ ¼

x2 � x1 x� x1 x4 � x1
y2 � y1 y� y1 y4 � y1
z2 � z1 z� z1 z4 � z1

�������

�������
, (39)

∣ J3∣ ¼
x2 � x1 x3 � x1 x� x1
y2 � y1 y3 � y1 y� y1
z2 � z1 z3 � z1 z� z1

�������

�������
, ∣ J∣ ¼

x2 � x1 x3 � x1 x4 � x1
y2 � y1 y3 � y1 y4 � y1
z2 � z1 z3 � z1 z4 � z1

�������

�������
: (40)

Note that J is the determinant of the Jacobian matrix of the transformation being
equal to six times the volume of the tetrahedron element T mð Þ.

The coordinate transformation from the second reference coordinate ~ξ � ~η � ~ζ
to ξ� η� ζ system is defined by

ξ ¼ ξ1 þ ξ2 � ξ1ð Þ~ξ þ ξ3 � ξ1ð Þ~η þ ξ4 � ξ1ð Þ~ζ,
η ¼ η1 þ η2 � η1ð Þ~ξ þ η3 � η1ð Þ~η þ η4 � η1ð Þ~ζ,
ζ ¼ ζ1 þ ζ2 � ζ1ð Þ~ξ þ ζ3 � ζ1ð Þ~η þ ζ4 � ζ1ð Þ~ζ, :

8><
>:

(41)

then the transform from ξ� η� ζ system to ~ξ � ~η � ~ζ system can be solved for
~ξ � ~η � ~ζ from Eq. (41) by Cramer ruler similarly. Denote

∣~J ∣ ¼
ξ2 � ξ1 ξ3 � ξ1 ξ4 � ξ1
η2 � η1 η3 � η1 η4 � η1
ζ2 � ζ1 ζ3 � ζ1 ζ4 � ζ1

�������

�������
, (42)

which is the determinant of the Jacobian matrix of the transformation being
equal to six times the volume of the subelement ~T m kð Þð Þ for k ¼ 1,⋯, Ne. In
Eqs. (41) and (42), ξi; ηi; ζið Þ for i ¼ 1; 2; 3; 4, denote the vertex coordinates of
~T m kð Þð Þ in ξ� η� ζ system.

3. Numerical computations

In this section we give three numerical examples to illustrate the performance of
the developed method above. The convergence test of the proposed method can be
found in [27]. Though the method is developed for the 3D case, it can be simplified
to 2D without essential difficulty. The principle is the same. The first example is a
test for a 2D model with uneven topography. The other two examples are for two
3D models.

Example 1. The first example is a two-layered model with the inclined interface
shown in Figure 3a. The range of the model is x∈ �1:6km; 1:6km½ � and
z∈ �1:6km; 1:8km½ �. The surface of the model is uneven to imitate the real topogra-
phy. The vp and vs velocities are 3000 m=s and 2000 m=s in the upper layer and
2400 m=s and 1600 m=s in the lower layer, respectively. The densities ρ are
2200 kg=m3 and 1800 kg=m3 in the upper and lower layer, respectively. Figure 3b
is the coarser triangular meshes for this model. A coarser version of the mesh is
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As we can see the LSERK only requires one additional storage level, while ERK
has four. The coefficients required in Eq. (34) are listed in Table 3 [30].

As to the stability condition, it is controlled by the Courant-Friedrichs-Lewy
(CFL) condition [15, 19];

Δt≤
1

2N þ 1
hmin

vp
, (35)

where vp is the P wave velocity and hmin is the minimum diameter of the
circumcircles of tetrahedral elements. This condition is a necessary condition for
discrete stability, and a bit more restrictive form is actually used in numerical
computations.

The absorbing boundary conditions (ABCs) in computations are required as the
computational domain is finite. There are two typical ABCs to be adopted here. One
is flux type ABCs [16, 19]. That is to say, the following numerical flux in Eq. (23) at
all tetrahedral faces that coincide with domain boundary

Fh ¼ 1
2
T A m kð Þð Þ þ jA m kð Þð Þj
� �

T�1 ∑
Np

l¼1
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shown here as the finest mesh in computations cannot be seen clearly. The
triangular meshes can fit the curve topography very well. Note that none triangular
element crosses the interface. In computations the P4 polynomial reconstruction is
applied. The computational domain is meshed by 113472 coarse elements. Each
coarse element is subdivided into 25 subelements further. So there are 2,836,800
fine elements totally. The time step is Δt ¼ 5� 10�5 s. The source is located at
x; zð Þ ¼ 0;0:2kmð Þ with time history

f tð Þ ¼ �2α t� t0ð Þe�α t�t0ð Þ2 , t0 ¼ 0:08, α ¼ πf 0
� �2, (43)

where f 0 ¼ 20 Hz is the main frequency. In order to simulate point source
excitation, a spatial local distribution function defined by

G xð Þ ¼ exp �7 x� x0k k22=r20
� �

, x� x0k k22 ⩽ r20,

0, x� x0k k22 > r20,

8<
: (44)

is applied, where x0 ¼ x0; y0; z0
� �

are positions of the source center. The source
is added to the u component; that is to say, all source terms except g7 in Eq. (1) are
all zero. Figure 4 is the snapshots of u and v components at propagation time 0:25 s.
Figure 5 is the snapshots of u and v components at propagation time 0:30 s. We can
see the P wave and S wave propagate toward out of the model. The reflected and
transmitted waves due to the tilted physical interface are also very clear. These are
the expected physical phenomena of wave propagation in elastic media.

Figure 3.
A two-layered model with curved surface topography (a) and the triangular meshes (b).

Figure 4.
Snapshots of u component (a) and v component (b) at propagation time 0:25s.
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Example 2. The second example is a cuboid model. The physical size of the
model is x; y; zð Þ∈ 0; 2km½ � � 0; 2km½ � � 0; 1km½ �. The model and its unstructured
tetrahedral meshes are shown in Figure 6. There are totally 836,612 coarse tetrahe-
drons to mesh the model. A coarser mesh is shown as the actual mesh in computa-
tions is too fine to see clearly. Each coarse tetrahedron is subdivided into Ne ¼ 27
subelements as we adopt P3 polynomial reconstruction. The parameters for λ, μ, and
ρ are 109 Pa, 109 Pa, and 1000 kg=m3. The time step in computations is 10�4 s.
The source is located in the center of the model with time history given by

f tð Þ ¼ sin 40πtð Þe�100t2 : (45)

It is applied to the u component. The 3D snapshots of u, v, and w components at
propagation time 0:42 s are shown in Figure 7. From these figures, we can clearly
see two types of waves, i.e., the compressive wave and the shear wave. The splitting
PML in nonconvolutional form is adopted here [32], and the boundary reflections
are absorbed obviously and effectively. The message passing interface (MPI)
parallelization based on spatial domain decomposition is applied. The CPU time for
extrapolation 1000 time steps is about 33, 310 s with 128 processors each with 2.6
GHz main frequency.

Figure 5.
Snapshots of u component (a) and v component (b) at propagation time 0:30s.

Figure 6.
A cubic model and its unstructured tetrahedral meshes.
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Example 3. The third example is a real geological model in China. As shown in
Figure 8a, it has a very complex topography. The physical scope of the model is
x∈ 0; 2:0km½ �, y∈ 0; 3:5km½ �, and z∈ 0; 1:1km½ �. The corresponding 3D mesh is
shown in Figure 8b. A coarser version of the mesh is given as the actual mesh in
computations is too fine to see clearly in the figure. The model is meshed with
210,701 relative coarse tetrahedral elements. Each coarse tetrahedron is subdivided
into Ne ¼ 64 subelements as we adopt P4 polynomial reconstruction, and thus there
are 13,484,864 fine elements totally. The time step Δt is 10�4 s. The source is
situated at x0; y0; z0

� � ¼ 750m; 1300m; 300mð Þ with the same time history in
Eq. (45). The media velocities of vp and vs are vp ¼ 3000 m=s and vs ¼ 2000 m=s.
The MPI parallelization based on spatial domain decomposition is applied. The

Figure 7.
The 3D snapshots of u component (a), v component (b), and w component (c) at propagation time 0:42 s in a
cuboid model. The source is located in the center of the model.

Figure 8.
A real 3D model with complex topography. (a) model and (b) unstructured tetrahedral meshes.
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nonconvolutional splitting PML [32] is adopted. The 3D snapshots of u, v, and w
components at propagation time 0:80 s are shown in Figure 9. The CPU time for
extrapolation 10,000 time steps is 100, 449 s with 256 processors each with 2.6
GHz main frequency. From Figure 9, we can see clearly the propagation of P wave
and S wave.

4. Conclusions

A new efficient high-order finite volume method for the 3D elastic wave simu-
lation on unstructured meshes has been developed. It combines the advantages of
the DG method and the traditional FV method. It adapts irregular topography very
well. The reconstruction stencil is generated by refining each coarse tetrahedron
which can be implemented effectively for all tetrahedrons whether they are internal
or boundary elements. The hierarchical orthogonal basis functions are exploited to
perform the high-order polynomial reconstruction on the stencil. The resulting
reconstruction matrix remains unchanged for all tetrahedrons and can be pre-
computed and stored before time evolution. The method preserves a very local
property like the DG method, while it has high computational efficiency like the FV
method. These advantages facilitate 3D large-scale parallel computations. Numeri-
cal computations including a 3D real physical model show its good performance.
The method also can be expected to solve other linear hyperbolic equations without
essential difficulty.

Figure 9.
3D snapshots of u, v, and w components at propagation time 0:80 s in a real 3D model. The results are
obtained by the method in this chapter with P4 reconstruction. (a) u component, (b) v component,
(c) w component.
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A real 3D model with complex topography. (a) model and (b) unstructured tetrahedral meshes.
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nonconvolutional splitting PML [32] is adopted. The 3D snapshots of u, v, and w
components at propagation time 0:80 s are shown in Figure 9. The CPU time for
extrapolation 10,000 time steps is 100, 449 s with 256 processors each with 2.6
GHz main frequency. From Figure 9, we can see clearly the propagation of P wave
and S wave.

4. Conclusions

A new efficient high-order finite volume method for the 3D elastic wave simu-
lation on unstructured meshes has been developed. It combines the advantages of
the DG method and the traditional FV method. It adapts irregular topography very
well. The reconstruction stencil is generated by refining each coarse tetrahedron
which can be implemented effectively for all tetrahedrons whether they are internal
or boundary elements. The hierarchical orthogonal basis functions are exploited to
perform the high-order polynomial reconstruction on the stencil. The resulting
reconstruction matrix remains unchanged for all tetrahedrons and can be pre-
computed and stored before time evolution. The method preserves a very local
property like the DG method, while it has high computational efficiency like the FV
method. These advantages facilitate 3D large-scale parallel computations. Numeri-
cal computations including a 3D real physical model show its good performance.
The method also can be expected to solve other linear hyperbolic equations without
essential difficulty.

Figure 9.
3D snapshots of u, v, and w components at propagation time 0:80 s in a real 3D model. The results are
obtained by the method in this chapter with P4 reconstruction. (a) u component, (b) v component,
(c) w component.
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Chapter 2

Cylindrical Surface Wave:
Revisiting the Classical Biot’s
Problem
Jeremiah Rushchitsky

Abstract

The problem on a surface harmonic elastic wave propagating along the free
surface of cylindrical cavity in the direction of cavity axis is considered. In the case
of isotropic medium, this is the classical Biot’s problem of 1952. First, the Biot
pioneer work is revisited: the analytical part of Biot’s findings is shown in the main
fragments. The features are using two potentials and representation of solution by
Macdonald functions of different indexes. Then the new direct generalization of
Biot’s problem on the case of transversely isotropic medium within the framework
of linear theory of elasticity is proposed. Transition to the transverse isotropy needs
some novelty—necessity of using the more complex representations of displace-
ments through two potentials. Finally, a generalization of Biot’s problem on the case
of isotropic and transversely isotropic media in the framework of linearized theory
of elasticity with allowance for initial stresses is stated. This part repeats briefly
the results of A.N. Guz with co-authors of 1974. The main features are using the
linearized theory of elasticity and one only potential. All three parts are shown as
analytical study up to the level when the numerical methods have to be used.

Keywords: surface harmonic cylindrical wave, classical Biot’s problem,
generalization to the case of transversely isotropic medium

1. Introduction

Note first that the seismic waves include mainly the primary and secondary
body waves and different kinds of surface waves. This chapter is devoted to one
kind of surface waves. The problem is stated as follows: the infinite medium with
cylindrical circular cavity having the symmetry axis Oz and constant radius is
analyzed. An attenuating in depth of medium surface harmonic wave propagates
along the cavity surface in directionOz. In this case, the problem becomes mathe-
matically the axisymmetric one. This problem is solved by Biot in 1952 [1] with
assumption that the medium is isotropic. The context of this chapter includes four
parts. The subchapter 1 “Introduction” is the standard one. The subchapter 2 is
named: “Main Stages of Solving the Classical Biot’s Problem on Surface Wave along
Cylindrical Cavity.” Here, the analytical part of Biot’s findings is shown in the main
fragments. The features are using two potentials and representation of solution by
Macdonald functions of different indexes. The subchapter 3 “Direct Generalization
of Biot’s Problem on the Case of Transversely Isotropic Media within the
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Framework of Linear Theory of Elasticity” contains the new approach to the classi-
cal Biot’s problem and represents the direct generalization of this problem that uses
the Biot’s scheme of analysis. Transition to the case of transverse isotropy needs
some novelty—necessity of using the more complex representations of displace-
ments through two potentials. The subchapter 4 “Genera-lization of Biot’s Problem
on the case of Isotropic and Transversely Isotropic Media within the framework of
Linearized Theory of Elasticity with Allowance for Initial Stresses” repeats briefly
the results of A.N. Guz with co-authors (1974). They considered a generalization of
the Biot’s problem on the case of elastic media with allowance for the initial stresses.
The main features are using the linearized theory of elasticity, one only potential,
and Macdonald function of one index.

2. Main stages of solving the classical Biot’s problem on surface wave
along a cylindrical cavity

2.1 Statement of problem and main equations in potentials

A cylindrical system of coordinates Orϑz is chosen, and a harmonic wave is
considered that has the phase variable σ ¼ k z� vtð Þ, unknown wave number
k ¼ ω=vð Þ, unknown phase velocity v, and arbitrary (but given) frequency ω and
ampitude A. It is supposed that the wave propagates in an infinite medium with
cylindrical cavity of constant radius ro in the direction of vertical coordinate z and
possibly attenuates in the direction of radial coordinate r. In this linear statement
and in assumption that deformations are small, the problem is axisymmetric, and
deformations are described by two displacements ur r; z; tð Þ; uφ r; z; tð Þ ¼ 0

�
and

uz r; z; tð ÞÞ and two Lame equations of the form

C11 � C12

2
Δrzur � 1

r2
ur

� �
þ C11 þ C12

2
ur, r þ 1

r
ur þ uz,z

� �

, r
¼ ρur, tt, (1)

1
2

C11 � C12ð ÞΔrzuz þ 1
2

C11 þ C12ð Þ ur, r þ 1
r
ur þ uz,z

� �

, z
¼ ρuz, tt, (2)

or

λþ 2μð Þ ur, rr þ 1
r
ur,r � 1

r2
ur þ uz,rz

� �
þ μ ur,zz � uz,rzð Þ ¼ ρur, tt (3)

λþ 2μð Þ ur, rz þ 1
r
ur,z þ uz,zz

� �
� μ

1
r
ur,z � uz,rð Þ þ ur, rz � uz,rrð Þ

� �
¼ ρuz, tt: (4)

Further the potentials Φ r; z; tð Þ,Ψ r; z; tð Þ are introduced

ur ¼ Φ, r � Ψ, z, uz ¼ Φ, z þ Ψ, r þ 1=rð ÞΨ: (5)

When Eq. (5) is substituted into Eqs. (3) and (4), then two uncoupled linear
wave equations are obtained:

ΔrzΦ� 1=vLð Þ2Φ, tt ¼ 0, (6)

ΔrzΨ� 1=r2
� �

Ψ� 1=vTð Þ2Ψ, tt ¼ 0: (7)
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Here the standard notations of Laplace operator Δrz and velocities of longitudi-
nal and transverse waves in isotropic elastic medium vL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ 2μð Þ=ρp
, vT ¼ ffiffiffiffiffiffiffiffi

μ=ρ
p

are used.

2.2 Solving the wave equations in the form of Macdonald functions

The solution of Eqs. (6) and (7) is found in the form of harmonic waves in the
direction of vertical coordinate:

Φ r; z; tð Þ ¼ Φ ∗ rð Þei kz�ωtð Þ, Ψ r; z; tð Þ ¼ Ψ ∗ rð Þei kz�ωtð Þ, (8)

Φ r; z; tð Þ ¼ Φ ∗ rð Þ cos k z� vtð Þ, Ψ r; z; tð Þ ¼ Ψ ∗ rð Þ sin k z� vtð Þ:
A substitution of representations (8) into the wave Eqs. (6) and (7) gives the

equations relative to the unknown amplitudes Φ ∗ rð Þ,Ψ ∗ rð Þ
Φ ∗

, rr þ 1=rð ÞΦ ∗
, r � k2 � k2L

� �
Φ ∗ ¼ 0:

Φ ∗
, rr þ 1=rð ÞΦ ∗

, r � k2 1� v=vLð Þ2
� �

Φ ∗ ¼ 0
� �

, (9)

Ψ ∗
, rr � 1=rð ÞΨ ∗

, r � k2 � k2T þ 1=r2
� �� �

Ψ ∗ ¼ 0

Ψ ∗
, rr � 1=rð ÞΨ ∗

, r � k2 1� v=vTð Þ2
h i

þ 1=r2
� �n o

Ψ ∗ ¼ 0
� � (10)

These equations correspond to the Bessel equation for Macdonald functions
Kλ xð Þ (modified Bessel functions of the second kind [2–4])

y″ þ 1=xð Þy0 � 1þ λ2=x2
� �� �

y ¼ 0 (11)

More exactly, Eqs. (9) and (10) have the solutions in the form of Macdonald
functions, if the conditions.

k2 � k2L>0, k
2 � k2T>0 k2 1� v=vLð Þ2

� �
>0; k2 1� v=vTð Þ2

� �
>0

� �
(12)

are fulfilled. According to conditions (12), the wave number of cylindrical wave
must be real, and the wave velocity must be less of the velocities of classical
longitudinal and transverse plane waves.

Further the wave Eqs. (9) and (10) are considered separately. The first equation
is written in the form

Φ ∗
, rr þ 1=rð ÞΦ ∗

, r �m2
LΦ

∗ ¼ 0 mL ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r

(13)

This equation has the solution in the form of Macdonald function:

Φ ∗ rð Þ ¼ AΦK0 mLrð Þ (14)

of zeroth order and unknown argument x ¼ mLr, which includes the unknown
phase velocity of wave.

The second equation can be written in the form

Ψ ∗
, rr � 1=rð ÞΨ ∗

, r � m2
T þ 1=r2

� �� �
Ψ ∗ ¼ 0 mT ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vTð Þ2
� �r

: (15)
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Framework of Linear Theory of Elasticity” contains the new approach to the classi-
cal Biot’s problem and represents the direct generalization of this problem that uses
the Biot’s scheme of analysis. Transition to the case of transverse isotropy needs
some novelty—necessity of using the more complex representations of displace-
ments through two potentials. The subchapter 4 “Genera-lization of Biot’s Problem
on the case of Isotropic and Transversely Isotropic Media within the framework of
Linearized Theory of Elasticity with Allowance for Initial Stresses” repeats briefly
the results of A.N. Guz with co-authors (1974). They considered a generalization of
the Biot’s problem on the case of elastic media with allowance for the initial stresses.
The main features are using the linearized theory of elasticity, one only potential,
and Macdonald function of one index.

2. Main stages of solving the classical Biot’s problem on surface wave
along a cylindrical cavity

2.1 Statement of problem and main equations in potentials

A cylindrical system of coordinates Orϑz is chosen, and a harmonic wave is
considered that has the phase variable σ ¼ k z� vtð Þ, unknown wave number
k ¼ ω=vð Þ, unknown phase velocity v, and arbitrary (but given) frequency ω and
ampitude A. It is supposed that the wave propagates in an infinite medium with
cylindrical cavity of constant radius ro in the direction of vertical coordinate z and
possibly attenuates in the direction of radial coordinate r. In this linear statement
and in assumption that deformations are small, the problem is axisymmetric, and
deformations are described by two displacements ur r; z; tð Þ; uφ r; z; tð Þ ¼ 0

�
and

uz r; z; tð ÞÞ and two Lame equations of the form

C11 � C12

2
Δrzur � 1

r2
ur

� �
þ C11 þ C12

2
ur, r þ 1

r
ur þ uz,z

� �

, r
¼ ρur, tt, (1)

1
2

C11 � C12ð ÞΔrzuz þ 1
2

C11 þ C12ð Þ ur, r þ 1
r
ur þ uz,z

� �

, z
¼ ρuz, tt, (2)

or

λþ 2μð Þ ur, rr þ 1
r
ur,r � 1

r2
ur þ uz,rz

� �
þ μ ur,zz � uz,rzð Þ ¼ ρur, tt (3)

λþ 2μð Þ ur, rz þ 1
r
ur,z þ uz,zz

� �
� μ

1
r
ur,z � uz,rð Þ þ ur, rz � uz,rrð Þ

� �
¼ ρuz, tt: (4)

Further the potentials Φ r; z; tð Þ,Ψ r; z; tð Þ are introduced

ur ¼ Φ, r � Ψ, z, uz ¼ Φ, z þ Ψ, r þ 1=rð ÞΨ: (5)

When Eq. (5) is substituted into Eqs. (3) and (4), then two uncoupled linear
wave equations are obtained:

ΔrzΦ� 1=vLð Þ2Φ, tt ¼ 0, (6)

ΔrzΨ� 1=r2
� �

Ψ� 1=vTð Þ2Ψ, tt ¼ 0: (7)
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Here the standard notations of Laplace operator Δrz and velocities of longitudi-
nal and transverse waves in isotropic elastic medium vL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ 2μð Þ=ρp
, vT ¼ ffiffiffiffiffiffiffiffi

μ=ρ
p

are used.

2.2 Solving the wave equations in the form of Macdonald functions

The solution of Eqs. (6) and (7) is found in the form of harmonic waves in the
direction of vertical coordinate:

Φ r; z; tð Þ ¼ Φ ∗ rð Þei kz�ωtð Þ, Ψ r; z; tð Þ ¼ Ψ ∗ rð Þei kz�ωtð Þ, (8)

Φ r; z; tð Þ ¼ Φ ∗ rð Þ cos k z� vtð Þ, Ψ r; z; tð Þ ¼ Ψ ∗ rð Þ sin k z� vtð Þ:
A substitution of representations (8) into the wave Eqs. (6) and (7) gives the

equations relative to the unknown amplitudes Φ ∗ rð Þ,Ψ ∗ rð Þ
Φ ∗

, rr þ 1=rð ÞΦ ∗
, r � k2 � k2L

� �
Φ ∗ ¼ 0:

Φ ∗
, rr þ 1=rð ÞΦ ∗

, r � k2 1� v=vLð Þ2
� �

Φ ∗ ¼ 0
� �

, (9)

Ψ ∗
, rr � 1=rð ÞΨ ∗

, r � k2 � k2T þ 1=r2
� �� �

Ψ ∗ ¼ 0

Ψ ∗
, rr � 1=rð ÞΨ ∗

, r � k2 1� v=vTð Þ2
h i

þ 1=r2
� �n o

Ψ ∗ ¼ 0
� � (10)

These equations correspond to the Bessel equation for Macdonald functions
Kλ xð Þ (modified Bessel functions of the second kind [2–4])

y″ þ 1=xð Þy0 � 1þ λ2=x2
� �� �

y ¼ 0 (11)

More exactly, Eqs. (9) and (10) have the solutions in the form of Macdonald
functions, if the conditions.

k2 � k2L>0, k
2 � k2T>0 k2 1� v=vLð Þ2

� �
>0; k2 1� v=vTð Þ2

� �
>0

� �
(12)

are fulfilled. According to conditions (12), the wave number of cylindrical wave
must be real, and the wave velocity must be less of the velocities of classical
longitudinal and transverse plane waves.

Further the wave Eqs. (9) and (10) are considered separately. The first equation
is written in the form

Φ ∗
, rr þ 1=rð ÞΦ ∗

, r �m2
LΦ

∗ ¼ 0 mL ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r

(13)

This equation has the solution in the form of Macdonald function:

Φ ∗ rð Þ ¼ AΦK0 mLrð Þ (14)

of zeroth order and unknown argument x ¼ mLr, which includes the unknown
phase velocity of wave.

The second equation can be written in the form

Ψ ∗
, rr � 1=rð ÞΨ ∗

, r � m2
T þ 1=r2

� �� �
Ψ ∗ ¼ 0 mT ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vTð Þ2
� �r

: (15)
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The corresponding solution under conditions (12) is expressed by the

Macdonald function K1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2T

q� �

Ψ ∗ rð Þ ¼ AΨK1 mTrð Þ (16)

of the first order and unknown argument x ¼ mTr, which includes the unknown
wave velocity. The amplitude coefficient AΨ is assumed to be constant and
arbitrary.

Note that the Macdonald functions have the property of attenuation with
increasing arguments which is shown in Figure 1. Therefore, the propagation along
the vertical coordinate z waves (15) and (16) can be considered as the waves with
amplitudes Φ ∗ rð Þ,Ψ ∗ rð Þ, which attenuate with increasing the radial coordinate r.

This means that amplitudes can decrease essentially with increasing the distance
from the surface of cylindrical cavity. In this sense, the waves (15) and (16) are
the surface ones. This forms also the sense of conditions (12). The same conditions
are used in the analysis of classical Rayleigh surface wave which propagates
along the plane surface of isotropic elastic medium [5–9]. But the Rayleigh wave
attenuates as an exponential function when being moved from the free surface,
whereas the cylindrical surface Biot’s wave attenuates as the Macdonald functions.
At that, the arguments in exponential function and Macdonald functions are
identical and depend on the wave velocity.

2.3 Boundary conditions: equations for unknown wave number

The boundary conditions correspond to the absence of stresses on surface r ¼ ro

σrr r ¼ ro; z; tð Þ ¼ 0, σrz r ¼ ro; z; tð Þ ¼ 0: (17)

The stresses

σrr ¼ 2μur,r þ λ ur=rð Þ þ ur, r þ uz,zð Þ, σrz ¼ μ ur,z þ uz,rð Þ (18)

are written through the potentials

σrr ¼ λþ 2μð Þ Φ, rr � Ψ, rzð Þ þ λ 1=rð Þ Φ, r � Ψ, zð Þ þΦ, zz þ Ψ, rz þ 1=rð ÞΨ, zf g, (19)

σrz ¼ μ Φ, rz �Ψ, zzð Þ þΦ, zr þ Ψ, rr þ 1=rð ÞΨ, r � 1=r2
� �

Ψ
� �

: (20)

Then the boundary conditions (17) can be written in the form.

Figure 1.
Plots of the first five Macdonald functions.
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2μ Φ, rr �Ψ, rzð Þ þ λΔΦ½ �r¼ro ¼ 0, μ 2 Φ, rz � Ψ, zzð Þ þ ΔΨ � 1=r2
� �

Ψ
� �

r¼ro
¼ 0 (21)

In the work [1], Biot has used the expressions.
ΔΦ� 1=vLð Þ2Φ, tt ¼ 0, ΔΨ � 1=r2ð ÞΨ� 1=vTð Þ2Ψ, tt ¼ 0 and rewrite Eq. (21) in

such a way Φ, rr � Ψ, rzð Þ þ λ=2μð Þ 1=vLð Þ2Φ, tt

h i
r¼ro

¼ 0,

2 Φ, rz � Ψ, zzð Þ þ 1=vTð Þ2Ψ, tt

h i
r¼ro

¼ 0.

Then the substitution of solutions (14) and (16) into the boundary conditions
(21) gives two homogeneous algebraic equations relative to the unknown constant
amplitude coefficients

1� v=vLð Þ2 � λ

μ
v=vLð Þ2 K0 mLroð Þ

K0 mLroð Þ þ K2 mLroð Þ
� �

AΦ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r

AΨ ¼ 0,

(22)

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r

AΦ þ 2� v=vTð Þ2
� �K1 mTroð Þ

K1 mLroð ÞAΨ ¼ 0: (23)

An analysis of these equations that describe the cylindrical surface wave is very
similar to the analysis that has been carried out by Rayleigh for the classical wave
propagating along the plane surface. Some novelty in analysis of systems (22) and
(23) is consideration of the system relative to quantities K1 mLroð ÞAΦ and
K1 mSroð ÞAΨ

1� v=vLð Þ2
� � K0 mLroð Þ

K1 mLroð Þ þ
1

mLro

� �
� λ

2μ
v=vLð Þ2 K0 mLroð Þ

K1 mLroð Þ
� �

K1 mLroð ÞAΦ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vSð Þ2
� �r

K0 mTroð Þ
K1 mTroð Þ þ

1
mTro

� �
K1 mTroð ÞAΨ ¼ 0,

(24)

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r

K1 mLroð ÞAΦ þ 2� v=vTð Þ2
� �

K1 mTroð ÞAΨ ¼ 0: (25)

Solving of systems (24) and (25) gives two results. First, the solution is found
accurate within one amplitude factor. Second, an equation for determination of
phase velocity of cylindrical surface wave can be obtained in an explicit form.

The work of Biot (1952) has demonstrated some art in handling the Macdonald
functions and has written Eq. (24) through only functions of the zeroth and first
orders. For that, the known formulas

K0
0 xð Þ ¼ �K1 xð Þ, K 0

1 xð Þ ¼ �K″
0 xð Þ,

K″
0 xð Þ þ 1=xð ÞK0

0 xð Þ ¼ K0 xð Þ, K″
0 xð Þ ¼ 1=xð ÞK1 xð Þ þ K0 xð Þ (26)

have been used [3]. As a result, the equation for determination of phase velocity
of cylindrical wave has the form

2� v=vTð Þ2
� �

2� v=vTð Þ2
h iK0 mLroð Þ

K1 mLroð Þ þ
1� v=vLð Þ2
� �

mLro

8<
:

9=
;

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vTð Þ2
� �r

K0 mTroð Þ
K1 mTroð Þ þ

1
mTro

� �
¼ 0:

(27)
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The corresponding solution under conditions (12) is expressed by the

Macdonald function K1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2T

q� �

Ψ ∗ rð Þ ¼ AΨK1 mTrð Þ (16)

of the first order and unknown argument x ¼ mTr, which includes the unknown
wave velocity. The amplitude coefficient AΨ is assumed to be constant and
arbitrary.

Note that the Macdonald functions have the property of attenuation with
increasing arguments which is shown in Figure 1. Therefore, the propagation along
the vertical coordinate z waves (15) and (16) can be considered as the waves with
amplitudes Φ ∗ rð Þ,Ψ ∗ rð Þ, which attenuate with increasing the radial coordinate r.

This means that amplitudes can decrease essentially with increasing the distance
from the surface of cylindrical cavity. In this sense, the waves (15) and (16) are
the surface ones. This forms also the sense of conditions (12). The same conditions
are used in the analysis of classical Rayleigh surface wave which propagates
along the plane surface of isotropic elastic medium [5–9]. But the Rayleigh wave
attenuates as an exponential function when being moved from the free surface,
whereas the cylindrical surface Biot’s wave attenuates as the Macdonald functions.
At that, the arguments in exponential function and Macdonald functions are
identical and depend on the wave velocity.

2.3 Boundary conditions: equations for unknown wave number

The boundary conditions correspond to the absence of stresses on surface r ¼ ro

σrr r ¼ ro; z; tð Þ ¼ 0, σrz r ¼ ro; z; tð Þ ¼ 0: (17)

The stresses

σrr ¼ 2μur,r þ λ ur=rð Þ þ ur, r þ uz,zð Þ, σrz ¼ μ ur,z þ uz,rð Þ (18)

are written through the potentials
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Then the boundary conditions (17) can be written in the form.
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24

Seismic Waves - Probing Earth System

2μ Φ, rr �Ψ, rzð Þ þ λΔΦ½ �r¼ro ¼ 0, μ 2 Φ, rz � Ψ, zzð Þ þ ΔΨ � 1=r2
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h i
r¼ro

¼ 0,
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¼ 0.

Then the substitution of solutions (14) and (16) into the boundary conditions
(21) gives two homogeneous algebraic equations relative to the unknown constant
amplitude coefficients
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An analysis of these equations that describe the cylindrical surface wave is very
similar to the analysis that has been carried out by Rayleigh for the classical wave
propagating along the plane surface. Some novelty in analysis of systems (22) and
(23) is consideration of the system relative to quantities K1 mLroð ÞAΦ and
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1
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� �
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� �
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K1 mLroð ÞAΦ þ 2� v=vTð Þ2
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K1 mTroð ÞAΨ ¼ 0: (25)

Solving of systems (24) and (25) gives two results. First, the solution is found
accurate within one amplitude factor. Second, an equation for determination of
phase velocity of cylindrical surface wave can be obtained in an explicit form.

The work of Biot (1952) has demonstrated some art in handling the Macdonald
functions and has written Eq. (24) through only functions of the zeroth and first
orders. For that, the known formulas

K0
0 xð Þ ¼ �K1 xð Þ, K 0

1 xð Þ ¼ �K″
0 xð Þ,

K″
0 xð Þ þ 1=xð ÞK0

0 xð Þ ¼ K0 xð Þ, K″
0 xð Þ ¼ 1=xð ÞK1 xð Þ þ K0 xð Þ (26)

have been used [3]. As a result, the equation for determination of phase velocity
of cylindrical wave has the form

2� v=vTð Þ2
� �

2� v=vTð Þ2
h iK0 mLroð Þ

K1 mLroð Þ þ
1� v=vLð Þ2
� �

mLro

8<
:

9=
;

� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v=vTð Þ2
� �r

K0 mTroð Þ
K1 mTroð Þ þ

1
mTro

� �
¼ 0:

(27)
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Let us write the corresponding equation for the Rayleigh wave [5–9] as

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vSð Þ2

q
� 2� v=vSð Þ2
h i2

¼ 0: (28)

Thus, a presence of Macdonald functions in Eq. (27) complicates essentially an

analysis of this equation because according to relations mL ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r

,

mS ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vTð Þ2
� �r

these functions have the unknown velocity in argument.

If the cavity radius is not small, then the Macdonald functions can be
represented by the simple formula K0 rð Þ ¼ K1 rð Þ ¼ e�r

ffiffiffiffiffiffiffiffiffiffi
π=2r

p
, and Eq. (27) is

reduced to the Rayleigh Eq. (28).
Strictly speaking, the analytical part of analysis is ended by obtaining Eq. (27).

Further analysis can be continued with the aim of the numerical methods. Biot in
[1] has shown some comments and conclusions based on resources of the 1950s.

A possibility of analytical approach is still saved in the problem on existence of
the appropriate wave velocity. First of all, Eq. (27) depends on the elastic constants,
and this dependence can be shown in the form of dependence on the ratio of
known velocities vL=vTð Þ. If the notation v2=v2T

� � ¼ z is used, then Eq. (27) can be
written in the form

2� z vL=vTð Þ2
� �

2� zð Þ
K0 rok

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z vL=vTð Þ2

q� �

K1 rok
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z vL=vTð Þ2

q� � þ
1� z vL=vTð Þ2
� �

rok
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z vL=vTð Þ2

q

8>><
>>:

9>>=
>>;

� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z vL=vTð Þ2

q K0 rok
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p� �

K1 rok
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p� � þ 1
rok

ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
" #

¼ 0:

(29)

It seems appropriate to recall here the most known ways of proving the existence
of velocity of the classical Rayleigh wave. An initial equation is always Eq. (28).
Two different notations v2=v2T

� � ¼ z and v ¼ 1=θð Þ are used, which generate
two different representations of Eq. (28)

z z3 � 8 z� 1ð Þ z� 2 1� v2T=v
2
L

� �� �� �� � ¼ 0, (30)

2θ2 � 1=v2T
� �� �2 � 4θ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 � 1=v2T

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 � 1=v2L

� �q
¼ 0: (31)

Finding the real root of Eq. (30) is the key step in the analysis of the Rayleigh
wave [5–9] . For more than 100 years of analysis of this wave, many methods of
proving the existence of real velocity of wave were elaborated.

First of all, the sufficiently useful and exact empirical Viktorov’s formula [5].

v=vTð Þ ¼ ffiffiffi
z

p
≈
0:87 þ 1:12υ

1þ υ
υ the Poisson ratioð Þ (32)

should be shown.
Let us show further briefly some phenomenological methods. Note that the

restriction on the Rayleigh wave velocity is already obtained from a statement of the
problem—it is less of the velocity of plane transverse wave. This restriction can be
written in the form z < 1 or θ> 1=cTð Þ.
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Method 1 (graphical method [10, 11]). Eq. (30) is considered as a sum of two
summands Z1 þ Z2 ¼ 0. The first summand Z1 = z3 describes a cubic parabola; the
lower branch of which lies in the first quadrant of the plane zOZ1. The second
summand describes a quadratic parabola Z2 ¼ �8 z� 1ð Þ z� 2 1� c2T=c

2
L

� �� �� �
,

which is concave in the direction of coordinate axis OZ2. Further the ratio
c2T=c

2
L

� � ¼ μ= λþ 2μð Þð Þ can be estimated from below and top 0≤ c2T=c
2
L ≤ 1=2 with

allowance for the shear modulus μ that is positive. These parabolas are intersected
on the interval 0; 1ð Þ. More exactly, one of the roots z ¼ zC of Eq. (30) can be

estimated 0:764≤ z ¼ c=cTð Þ2
� �

≤0:912: Here, the minimal value corresponds to

the case when the parabola is tangent to the abscissa axis, and the maximal value
corresponds to the case when the parabola is moved partially into the fourth quad-
rant. Thus, the velocity of Rayleigh wave is close to the velocity of plane transverse
wave, but always less of its 0.874 ≤ (c/cT) ≤ 0.955.

Method 2 (method of finding the interval, on ends of which the equation pos-
sesses the different by sign values [2, 11]). This method is based on the analysis of
Eq. (30). The value of equation that corresponds to the point cR ¼ cT is positive and
equal to 1. The second point is chosen as cR ¼ εcT, where ε is assumed as the small
quantity (this point is close to 0). When this value is substituted into Eq. (30), then
expression �2ε2 1� c2T=c

2
L

� �� �
is always negative. Hence, at least one root of equa-

tion lies in the interval εcT; cTð Þ.
Method 3 (another method of finding the interval, on ends of which the equation

possesses the different by sign values [5]). This method is based on the analysis of
Eq. (31). The right point is chosen as θ ¼ 1=cTð Þð Þ (similar to method 2). Then
Eq. (31) possesses the positive value. The left point corresponds to θ ! ∞. Further
an expression (31) is expanded into the power series near the point at infinity. This
series starts with the term �2θ2 1=c2T

� �� 1=c2L
� �� �

, which is always negative. So this
equation possesses in the chosen points the different sign values. Thus, at least one
root of the equation lies in the interval 1=cTð Þ;∞ð Þ.

Method 4 (method based on assumption relative to the Poisson ratio [7]). This
assumption consists in the choice of value of Poisson ratio that is often used in the
analysis of seismic waves in Earth’s crust ν ¼ λ= 2 λþ μð Þ½ � ¼ 1=4ð Þ ! λ ¼ μ. Then
cubic Eq. (31) (the zeroth root θ1 ¼ 0 is ignored from a physical considerations) can
be solved exactly, and the roots possess the values θ2 ¼ 4, θ3 ¼ 2þ 2=

ffiffiffi
3

p� �
,

θ4 ¼ 2� 2=
ffiffiffi
3

p� �
. Since the condition θ < 1 has been fulfilled, then the corresponding

root is equal to θ4 ¼ 0:8453.
The main conclusion from the shown above methods is that they really allow to

establish an existence of real root of Rayleigh equation (the real value of velocity of
harmonic Rayleigh wave). They give the positive answer on the question whether
the Rayleigh wave exists. In the case of other surface waves including the cylindrical
wave under consideration, the experience of the classical Rayleigh wave analysis
can be quite useful.

3. Cylindrical wave propagating along the surface of the cylindrical
cavity in the direction of vertical axis: The case of transversal
isotropy of medium

Let us return to the initial statement of problem and consider an infinite medium
with cylindrical circular cavity that has the symmetry axis Oz and radius ro. The
medium is assumed to be the transversely isotropic elastic one. It is assumed further
that the wave is harmonic in time, and attenuating deep into medium wave
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Let us write the corresponding equation for the Rayleigh wave [5–9] as

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vSð Þ2

q
� 2� v=vSð Þ2
h i2

¼ 0: (28)

Thus, a presence of Macdonald functions in Eq. (27) complicates essentially an

analysis of this equation because according to relations mL ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vLð Þ2
� �r

,

mS ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=vTð Þ2
� �r

these functions have the unknown velocity in argument.

If the cavity radius is not small, then the Macdonald functions can be
represented by the simple formula K0 rð Þ ¼ K1 rð Þ ¼ e�r

ffiffiffiffiffiffiffiffiffiffi
π=2r

p
, and Eq. (27) is

reduced to the Rayleigh Eq. (28).
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and this dependence can be shown in the form of dependence on the ratio of
known velocities vL=vTð Þ. If the notation v2=v2T

� � ¼ z is used, then Eq. (27) can be
written in the form

2� z vL=vTð Þ2
� �

2� zð Þ
K0 rok

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z vL=vTð Þ2

q� �

K1 rok
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z vL=vTð Þ2

q� � þ
1� z vL=vTð Þ2
� �

rok
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z vL=vTð Þ2

q

8>><
>>:

9>>=
>>;

� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z vL=vTð Þ2

q K0 rok
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p� �

K1 rok
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p� � þ 1
rok

ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
" #

¼ 0:

(29)

It seems appropriate to recall here the most known ways of proving the existence
of velocity of the classical Rayleigh wave. An initial equation is always Eq. (28).
Two different notations v2=v2T

� � ¼ z and v ¼ 1=θð Þ are used, which generate
two different representations of Eq. (28)
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2
L
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Finding the real root of Eq. (30) is the key step in the analysis of the Rayleigh
wave [5–9] . For more than 100 years of analysis of this wave, many methods of
proving the existence of real velocity of wave were elaborated.

First of all, the sufficiently useful and exact empirical Viktorov’s formula [5].

v=vTð Þ ¼ ffiffiffi
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≈
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1þ υ
υ the Poisson ratioð Þ (32)

should be shown.
Let us show further briefly some phenomenological methods. Note that the

restriction on the Rayleigh wave velocity is already obtained from a statement of the
problem—it is less of the velocity of plane transverse wave. This restriction can be
written in the form z < 1 or θ> 1=cTð Þ.
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Eq. (31) possesses the positive value. The left point corresponds to θ ! ∞. Further
an expression (31) is expanded into the power series near the point at infinity. This
series starts with the term �2θ2 1=c2T
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, which is always negative. So this
equation possesses in the chosen points the different sign values. Thus, at least one
root of the equation lies in the interval 1=cTð Þ;∞ð Þ.

Method 4 (method based on assumption relative to the Poisson ratio [7]). This
assumption consists in the choice of value of Poisson ratio that is often used in the
analysis of seismic waves in Earth’s crust ν ¼ λ= 2 λþ μð Þ½ � ¼ 1=4ð Þ ! λ ¼ μ. Then
cubic Eq. (31) (the zeroth root θ1 ¼ 0 is ignored from a physical considerations) can
be solved exactly, and the roots possess the values θ2 ¼ 4, θ3 ¼ 2þ 2=

ffiffiffi
3
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,

θ4 ¼ 2� 2=
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. Since the condition θ < 1 has been fulfilled, then the corresponding

root is equal to θ4 ¼ 0:8453.
The main conclusion from the shown above methods is that they really allow to

establish an existence of real root of Rayleigh equation (the real value of velocity of
harmonic Rayleigh wave). They give the positive answer on the question whether
the Rayleigh wave exists. In the case of other surface waves including the cylindrical
wave under consideration, the experience of the classical Rayleigh wave analysis
can be quite useful.

3. Cylindrical wave propagating along the surface of the cylindrical
cavity in the direction of vertical axis: The case of transversal
isotropy of medium

Let us return to the initial statement of problem and consider an infinite medium
with cylindrical circular cavity that has the symmetry axis Oz and radius ro. The
medium is assumed to be the transversely isotropic elastic one. It is assumed further
that the wave is harmonic in time, and attenuating deep into medium wave
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propagates in the direction of axis Oz along the cavity surface. Such a problem can
be considered as some generalization of Biot’s [1] problem that is solved in the
assumption of isotropy of medium on the case of transversal isotropy of medium.
Therefore, it seems expedient to recall some facts from the theory of elasticity of
transversally isotropic medium.

3.1 Some information on transversally isotropic medium

Let us consider the case when Ox3 is the axis of symmetry and Ox1x2 is the plane
of isotropy. This symmetry corresponds to the hexagonal crystalline system. The
matrix of elastic properties is characterized by 5 independent elastic constants
C11, C12, C13, C33, C44 and 12 non-zero components [11–13]:

CIK ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1=2ð Þ C11 � C12ð Þ

��������������

��������������

: (33)

Then the constitutive relations σ � ε have the form [12, 14].

σ11 ¼ C11klεkl ¼ C11ε11 þ C12ε22 þ C13ε33,
σ22 ¼ C22klεkl ¼ C12ε11 þ C22ε22 þ C13ε33,
σ33 ¼ C33klεkl ¼ C13ε11 þ C13ε22 þ C33ε33,
σ12 ¼ C11 � C12ð Þε12, σ13 ¼ 2C44ε13, σ23 ¼ 2C44ε23,

(34)

or in notations σ � u [12, 14].

σ11 ¼ C11u1,1 þ C12u2,2 þ C13u3,3, σ22 ¼ C12u1,1 þ C11u2,2 þ C13u3,3,
σ33 ¼ C13u1,1 þ C13u2,2 þ C11u3,3, σ12 ¼ 1=2ð Þ C11 � C12ð Þ u1,2 þ u2,1ð Þ,
σ13 ¼ C44 u1,3 þ u3,1ð Þ, σ23 ¼ 1=2ð ÞC44 u2,3 þ u3,2ð Þ:

(35)

Also, five independent elastic technical constants are often used.
Ex ¼ Ey, Ex ¼ Ey, Ez, Gxy, Gxz ¼ Gyz, υxy, υxz ¼ υyz, Gxy ¼ Ex= 1þ 2υxy

� �
. They are

evaluated through CNM by the following formulas:
The longitudinal Young modulus that corresponds to tension along the

symmetry axis Oz

Ez ¼ C33 � 2 C13ð Þ2= C11 þ C12ð Þ
h i

: (36)

The transverse Young modulus that corresponds to tension in the isotropy
plane Oxy

Ex ¼ C11 � C12ð Þ C11 þ C12ð ÞC33 � 2 C13ð Þ2
h i

= C11C33 þ C13ð Þ2
h i

: (37)

The shear modulus that corresponds to the shear along the isotropy plane Oxy

Gxy ¼ C66 ¼ 1=2ð Þ C11 � C12ð Þ: (38)
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The shear modulus that corresponds to the shear along the symmetry axis Oz

Gxz ¼ C44: (39)

The Poisson ratio that corresponds to the shear along the symmetry axis Oz
under tension in the isotropy plane and characterizes the shortening in this plane

υxz ¼ C13= C11 þ C12ð Þ: (40)

Sometimes, the corresponding Lame moduli are used.

λxy þ 2μxy ¼ C11, λxy ¼ C12, μxy ¼ 1=2ð Þ C11 � C12ð Þ
λxz þ 2μxz ¼ C33, λxz ¼ C13, μxz ¼ C44:

(41)

The Poisson ratio (40) is determined by the known formula of isotropic theory

υxz ¼ λxz=2 λxy þ μxy

� �
.

The Poisson ratio υxy that corresponds to the shear along the symmetry axis Oz
under tension along the isotropy plane is determined also by the classical formula

υxy ¼ λxy= λxy þ μxy

� �
.

The constants C11, C12, C13, C33, C44 are represented through the technical con-
stants E, E0, ν, ν0, G0 by the formulas.

C11 ¼ 1� ν0ð Þ2 E=E0ð Þ
1� ν2 þ 1þ 2νð Þ ν0ð Þ2 E=E0ð ÞE,C12 ¼ v� ν0ð Þ2 E=E0ð Þ

1� ν2 þ 1þ 2νð Þ ν0ð Þ2 E=E0ð ÞE,

C13 ¼ ν0 1� νð Þ
1� ν2 þ 1þ 2νð Þ ν0ð Þ2 E=E0ð ÞE,

C33 ¼ 1� ν2

1� ν2 þ 1þ 2νð Þ ν0ð Þ2 E=E0ð ÞE
0, C44 ¼ G0:

(42)

Let us comment briefly some features of transversally isotropic materials. They
can be divided on the natural and artificial ones. An example of the classical natural
material is the rock. An example of the modern material is a family of fibers
“Kevlar®.” Kevlar® KM2 [15] is characterized by elastic constants
Ex ¼ 1:34GPa, Ez ¼ 84:62GPa, Gxz ¼ 24:40GPa, υxy ¼ 0:24, υxz ¼ 0:60.

An example of composite materials can be four fibrous composites of micro- and
nanolevels, which are described in [15]. The corresponding elastic constants for
some variants of these materials are as follows [15]:

10% of carbon microfibers
Ex ¼ 3:59GPa, Ez ¼ 25:22GPa, Gxz ¼ 1:17GPa, υxy ¼ 0:39, υxz ¼ 0:58.

10% of graphite microwhiskers
Ex ¼ 3:69GPa, Ez ¼ 102:4GPa, Gxz ¼ 1:14GPa, υxy ¼ 0:39, υxz ¼ 0:62.

10% of zig-zag carbon nanotubes
Ex ¼ 3:70GPa, Ez ¼ 67:21GPa, Gxz ¼ 1:14GPa, υxy ¼ 0:39, υxz ¼ 0:62.

10% of chiral carbon nanotubes
Ex ¼ 3:67GPa, Ez ¼ 126:4GPa, Gxz ¼ 1:14GPa, υxy ¼ 0:39, υxz ¼ 0:62.

The shown above values are typical for the transversally isotropic materials, and
therefore they are briefly commented below.

Comment 1. The Young modulus in the direction along the symmetry axis Ez
exceeds essentially the Young modulus in the isotropy plane Ex (from 6 to 34 times
in examples above but can in some cases exceed 100 times).

29

Cylindrical Surface Wave: Revisiting the Classical Biot’s Problem
DOI: http://dx.doi.org/10.5772/intechopen.86910



propagates in the direction of axis Oz along the cavity surface. Such a problem can
be considered as some generalization of Biot’s [1] problem that is solved in the
assumption of isotropy of medium on the case of transversal isotropy of medium.
Therefore, it seems expedient to recall some facts from the theory of elasticity of
transversally isotropic medium.

3.1 Some information on transversally isotropic medium

Let us consider the case when Ox3 is the axis of symmetry and Ox1x2 is the plane
of isotropy. This symmetry corresponds to the hexagonal crystalline system. The
matrix of elastic properties is characterized by 5 independent elastic constants
C11, C12, C13, C33, C44 and 12 non-zero components [11–13]:

CIK ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1=2ð Þ C11 � C12ð Þ

��������������

��������������

: (33)

Then the constitutive relations σ � ε have the form [12, 14].

σ11 ¼ C11klεkl ¼ C11ε11 þ C12ε22 þ C13ε33,
σ22 ¼ C22klεkl ¼ C12ε11 þ C22ε22 þ C13ε33,
σ33 ¼ C33klεkl ¼ C13ε11 þ C13ε22 þ C33ε33,
σ12 ¼ C11 � C12ð Þε12, σ13 ¼ 2C44ε13, σ23 ¼ 2C44ε23,

(34)

or in notations σ � u [12, 14].

σ11 ¼ C11u1,1 þ C12u2,2 þ C13u3,3, σ22 ¼ C12u1,1 þ C11u2,2 þ C13u3,3,
σ33 ¼ C13u1,1 þ C13u2,2 þ C11u3,3, σ12 ¼ 1=2ð Þ C11 � C12ð Þ u1,2 þ u2,1ð Þ,
σ13 ¼ C44 u1,3 þ u3,1ð Þ, σ23 ¼ 1=2ð ÞC44 u2,3 þ u3,2ð Þ:

(35)

Also, five independent elastic technical constants are often used.
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. They are

evaluated through CNM by the following formulas:
The longitudinal Young modulus that corresponds to tension along the

symmetry axis Oz
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h i

: (36)

The transverse Young modulus that corresponds to tension in the isotropy
plane Oxy
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h i
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The shear modulus that corresponds to the shear along the isotropy plane Oxy

Gxy ¼ C66 ¼ 1=2ð Þ C11 � C12ð Þ: (38)

28

Seismic Waves - Probing Earth System

The shear modulus that corresponds to the shear along the symmetry axis Oz

Gxz ¼ C44: (39)

The Poisson ratio that corresponds to the shear along the symmetry axis Oz
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Sometimes, the corresponding Lame moduli are used.
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material is the rock. An example of the modern material is a family of fibers
“Kevlar®.” Kevlar® KM2 [15] is characterized by elastic constants
Ex ¼ 1:34GPa, Ez ¼ 84:62GPa, Gxz ¼ 24:40GPa, υxy ¼ 0:24, υxz ¼ 0:60.

An example of composite materials can be four fibrous composites of micro- and
nanolevels, which are described in [15]. The corresponding elastic constants for
some variants of these materials are as follows [15]:

10% of carbon microfibers
Ex ¼ 3:59GPa, Ez ¼ 25:22GPa, Gxz ¼ 1:17GPa, υxy ¼ 0:39, υxz ¼ 0:58.

10% of graphite microwhiskers
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10% of zig-zag carbon nanotubes
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10% of chiral carbon nanotubes
Ex ¼ 3:67GPa, Ez ¼ 126:4GPa, Gxz ¼ 1:14GPa, υxy ¼ 0:39, υxz ¼ 0:62.

The shown above values are typical for the transversally isotropic materials, and
therefore they are briefly commented below.

Comment 1. The Young modulus in the direction along the symmetry axis Ez
exceeds essentially the Young modulus in the isotropy plane Ex (from 6 to 34 times
in examples above but can in some cases exceed 100 times).
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Comment 2. The Lame moduli λx and λz repeat the relations between Ex and Ez.
Comment 3. The Poisson ratio υxz along the symmetry axis Oz exceeds the

classical red line in 0.5 for values of this ratio.
Comment 4. The shear moduli Gxy and Gxz are differed quite moderately.

3.2 The basic formulas for elastic transversely isotropic medium with axial
symmetry

Let us write the basic formulas for the case of symmetry axis Oz. Then displace-
ments are characterized by two components ur r; z; tð Þ, uz r; z; tð Þ. The motion equa-
tions in stresses have the form.

σrr, r þ σrz, z þ 1=rð Þ σrr � σφφ
� � ¼ 0, σrz, r þ 1=rð Þσφz,φ þ σzz, z þ 1=rð Þσrz ¼ 0: (43)

The substitution of constitutive equations.

σrr ¼ C11ur,r þ C12 1=rð Þur þ C13uz,z, σzz ¼ C13ur, r þ C13 1=rð Þur þ C33uz,z,
σrz ¼ 1=2ð ÞC44 uz,r þ ur,zð Þ, σφz ¼ σrφ ¼ 0

(44)

into the motion Eqs. (43) gives the motion equations in displacements

C11 ur, rr þ 1=rð Þur, r � 1=r2
� �

ur
� �þ C44ur,zz þ C13 þ C44½ �uz,rz ¼ ρur, tt, (45)

C44 uz,rr þ 1=rð Þuz,rð Þ þ C33uz,zz þ C13 þ C44½ � ur, rz þ 1=rð Þur,zð Þ ¼ ρuz, tt: (46)

Note that Eqs. (45) and (46) include only four constants (the constant C12 is not
represented in these equations). This means that displacements and strains are described
by only four constants. But the stress state is already described by all five constants.

3.3 Three classical ways of introducing the potentials in transversely isotropic
elasticity

The basic equations of the theory of transversely isotropic elasticity are fre-
quently analyzed by the use of potentials. The potentials are introduced in theory of
elasticity mainly for static problems. Transition to the dynamic problems is associ-
ated with complications that are sometimes impassable. Because the problem on
waves is related to the dynamic ones, let us show further the possible complications
with introducing the potentials.

Way 1 [12]. It is proposed for the axisymmetric problems of equilibrium (not
motion) and is based on introducing one only potential φ r; zð Þ as the function of
stresses. The formulas for stresses include four unknown parameters a, b, c, d,
which is characteristic for representations in the transversely isotropic elasticity.

σrr ¼ � φ, rr þ b 1=rð Þφ, r þ aφ, zz
� �

, z, σθθ ¼ � bφ, rr þ 1=rð Þφ, r þ aφ, zz
� �

, z, (47)

σzz ¼ � cφ, rr þ c 1=rð Þφ, r þ dφ, zz
� �

, z, σrz ¼ � φ, rr þ 1=rð Þφ, r þ aφ, zz
� �

, r: (48)

The next step consists in substitution of formulas (47) and (48) into the first
equation of equilibrium and the equations that are obtained from the Cauchy
relations and formulas for the strain tensor. This permits to determine the unknown
parameters through the elastic constants represented in the equilibrium equations.
Further, the second equation of equilibrium gives the biharmonic equation for
finding the potentials
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Δs1Δs2φ ¼ 0, (49)

where ΔsNφ ¼ φ, rr þ 1=rð Þφ, r þ 1= sNð Þ2
� �

φ, zz N ¼ 1; 2 are some “complicated”

copies of classical expressions Δφ ¼ φ, rr þ 1=rð Þφ, r þ φ, zz associated with the
Laplace operator. Two constants sN are determined from the algebraic equations

s4 � aþ cð Þ=d½ �s2 þ 1=dð Þ ¼ 0,

s1,3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cð Þ2 � 4d

q

2d

vuut
, s2,4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cð Þ2 � 4d

q

2d

vuut
:

(50)

Thus, a transition from the isotropic case to the transversally isotropic one
complicates the procedure of solving the static problems. Here a necessity of solving
the classical biharmonic equation is changed on necessity of solving some generali-
zation of this equation in the form (49).

Way 2 [12, 16]. This way is also proposed for the static problems. Here, two
potentials are introduced which are linked immediately with displacements

ur ¼ ϕ1, r þ ϕ2, r, uz ¼ k1ϕ1, z þ k2ϕ2, z: (51)

A substitution of representations (51) into equations of equilibrium (45), (46)

C11 ur, rr þ 1=rð Þur, r � 1=r2
� �

ur
� �þ C44ur,zz þ C13 þ C44½ �uz,rz ¼ 0,

C44 uz,rr þ 1=rð Þuz,rð Þ þ C33uz,zz þ C13 þ C44½ � ur,rz þ 1=rð Þur,zð Þ ¼ 0

allows to determine the unknown constants k1, k2. An idea consists in that both
equations must be transformed in identical equations relative to the potentials by
comparing some coefficients

k1 2ð Þ C13 þ C44ð Þ þ C44

C11
¼ kC33

k1 2ð ÞC44 þ C13 þ C44ð Þ ¼ V:

This expression gives the quadratic equation for k1 2ð Þ and V

V2 þ C13 2C44 þ C33ð Þ � C11C33

C11C44
V þ C33

C11
¼ 0: (52)

Note that the simple link VN ¼ 1=sNð Þ exists between constants VN and sN,
which makes the ways 1 and 2 very similar. Then the potentials fulfill the equations

ΔrzNφN ¼ φN,rr þ 1=rð ÞφN,r þ 1= VNð Þ2
� �

φN,zz: (53)

The stresses are expressed through new potentials in such a way

σrr ¼ � C11 � C12ð Þ 1=rð Þ ϕ1, rr þ ϕ2, rr
� �� C44 1þ k1ð Þϕ1, zz þ 1þ k2ð Þϕ2, zz

� �
,

σθθ ¼ � C11 � C12ð Þ 1=rð Þ ϕ1, rr þ ϕ2, rr
� �� C13k1 � C12V1ð Þϕ1, zz þ C13k2 � C12V2ð Þϕ2, zz

� �
,

σzz ¼ C33k1 � C13V1ð Þϕ1, zz þ C33k2 � C13V2ð Þϕ2, zz
� �

,
σrz ¼ C44 1þ k1ð Þϕ1, rz þ 1þ k2ð Þϕ2, rz

� �
:

(54)

Way 3 [1, 16]. This way is proposed for equations of motion, but only for the
isotropic theory of elasticity. It can be used for the static problems of transversely
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Comment 2. The Lame moduli λx and λz repeat the relations between Ex and Ez.
Comment 3. The Poisson ratio υxz along the symmetry axis Oz exceeds the

classical red line in 0.5 for values of this ratio.
Comment 4. The shear moduli Gxy and Gxz are differed quite moderately.

3.2 The basic formulas for elastic transversely isotropic medium with axial
symmetry

Let us write the basic formulas for the case of symmetry axis Oz. Then displace-
ments are characterized by two components ur r; z; tð Þ, uz r; z; tð Þ. The motion equa-
tions in stresses have the form.

σrr, r þ σrz, z þ 1=rð Þ σrr � σφφ
� � ¼ 0, σrz, r þ 1=rð Þσφz,φ þ σzz, z þ 1=rð Þσrz ¼ 0: (43)

The substitution of constitutive equations.

σrr ¼ C11ur,r þ C12 1=rð Þur þ C13uz,z, σzz ¼ C13ur, r þ C13 1=rð Þur þ C33uz,z,
σrz ¼ 1=2ð ÞC44 uz,r þ ur,zð Þ, σφz ¼ σrφ ¼ 0

(44)

into the motion Eqs. (43) gives the motion equations in displacements

C11 ur, rr þ 1=rð Þur, r � 1=r2
� �

ur
� �þ C44ur,zz þ C13 þ C44½ �uz,rz ¼ ρur, tt, (45)

C44 uz,rr þ 1=rð Þuz,rð Þ þ C33uz,zz þ C13 þ C44½ � ur, rz þ 1=rð Þur,zð Þ ¼ ρuz, tt: (46)

Note that Eqs. (45) and (46) include only four constants (the constant C12 is not
represented in these equations). This means that displacements and strains are described
by only four constants. But the stress state is already described by all five constants.

3.3 Three classical ways of introducing the potentials in transversely isotropic
elasticity

The basic equations of the theory of transversely isotropic elasticity are fre-
quently analyzed by the use of potentials. The potentials are introduced in theory of
elasticity mainly for static problems. Transition to the dynamic problems is associ-
ated with complications that are sometimes impassable. Because the problem on
waves is related to the dynamic ones, let us show further the possible complications
with introducing the potentials.

Way 1 [12]. It is proposed for the axisymmetric problems of equilibrium (not
motion) and is based on introducing one only potential φ r; zð Þ as the function of
stresses. The formulas for stresses include four unknown parameters a, b, c, d,
which is characteristic for representations in the transversely isotropic elasticity.

σrr ¼ � φ, rr þ b 1=rð Þφ, r þ aφ, zz
� �

, z, σθθ ¼ � bφ, rr þ 1=rð Þφ, r þ aφ, zz
� �

, z, (47)

σzz ¼ � cφ, rr þ c 1=rð Þφ, r þ dφ, zz
� �

, z, σrz ¼ � φ, rr þ 1=rð Þφ, r þ aφ, zz
� �

, r: (48)

The next step consists in substitution of formulas (47) and (48) into the first
equation of equilibrium and the equations that are obtained from the Cauchy
relations and formulas for the strain tensor. This permits to determine the unknown
parameters through the elastic constants represented in the equilibrium equations.
Further, the second equation of equilibrium gives the biharmonic equation for
finding the potentials
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Δs1Δs2φ ¼ 0, (49)

where ΔsNφ ¼ φ, rr þ 1=rð Þφ, r þ 1= sNð Þ2
� �

φ, zz N ¼ 1; 2 are some “complicated”

copies of classical expressions Δφ ¼ φ, rr þ 1=rð Þφ, r þ φ, zz associated with the
Laplace operator. Two constants sN are determined from the algebraic equations

s4 � aþ cð Þ=d½ �s2 þ 1=dð Þ ¼ 0,

s1,3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cð Þ2 � 4d

q

2d

vuut
, s2,4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cð Þ2 � 4d

q

2d

vuut
:

(50)

Thus, a transition from the isotropic case to the transversally isotropic one
complicates the procedure of solving the static problems. Here a necessity of solving
the classical biharmonic equation is changed on necessity of solving some generali-
zation of this equation in the form (49).

Way 2 [12, 16]. This way is also proposed for the static problems. Here, two
potentials are introduced which are linked immediately with displacements

ur ¼ ϕ1, r þ ϕ2, r, uz ¼ k1ϕ1, z þ k2ϕ2, z: (51)

A substitution of representations (51) into equations of equilibrium (45), (46)

C11 ur, rr þ 1=rð Þur, r � 1=r2
� �

ur
� �þ C44ur,zz þ C13 þ C44½ �uz,rz ¼ 0,

C44 uz,rr þ 1=rð Þuz,rð Þ þ C33uz,zz þ C13 þ C44½ � ur,rz þ 1=rð Þur,zð Þ ¼ 0

allows to determine the unknown constants k1, k2. An idea consists in that both
equations must be transformed in identical equations relative to the potentials by
comparing some coefficients

k1 2ð Þ C13 þ C44ð Þ þ C44

C11
¼ kC33

k1 2ð ÞC44 þ C13 þ C44ð Þ ¼ V:

This expression gives the quadratic equation for k1 2ð Þ and V

V2 þ C13 2C44 þ C33ð Þ � C11C33

C11C44
V þ C33

C11
¼ 0: (52)

Note that the simple link VN ¼ 1=sNð Þ exists between constants VN and sN,
which makes the ways 1 and 2 very similar. Then the potentials fulfill the equations

ΔrzNφN ¼ φN,rr þ 1=rð ÞφN,r þ 1= VNð Þ2
� �

φN,zz: (53)

The stresses are expressed through new potentials in such a way

σrr ¼ � C11 � C12ð Þ 1=rð Þ ϕ1, rr þ ϕ2, rr
� �� C44 1þ k1ð Þϕ1, zz þ 1þ k2ð Þϕ2, zz

� �
,

σθθ ¼ � C11 � C12ð Þ 1=rð Þ ϕ1, rr þ ϕ2, rr
� �� C13k1 � C12V1ð Þϕ1, zz þ C13k2 � C12V2ð Þϕ2, zz

� �
,

σzz ¼ C33k1 � C13V1ð Þϕ1, zz þ C33k2 � C13V2ð Þϕ2, zz
� �

,
σrz ¼ C44 1þ k1ð Þϕ1, rz þ 1þ k2ð Þϕ2, rz

� �
:

(54)

Way 3 [1, 16]. This way is proposed for equations of motion, but only for the
isotropic theory of elasticity. It can be used for the static problems of transversely
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isotropic theory of elasticity. The initial equations here are the equations of motion
(43) without inertial summands

C11 ur,rr þ 1=rð Þur, r � 1=r2
� �

ur
� �þ C44ur,zz þ C13 þ C44½ �uz,rz ¼ 0, (55)

C44 uz,rr þ 1=rð Þuz,rð Þ þ C33uz,zz þ C13 þ C44½ � ur, rz þ 1=rð Þur,zð Þ ¼ 0: (56)

The potentials are introduced like (51), but the representations are complicated
by necessity of introducing two new unknown parameters:

ur ¼ Φ, r � Ψ, z, uz ¼ nΦ, z þmΨ, r þm 1=rð ÞΨ, (57)

A substitution of representations (57) into equations of motion (45) and (46)
gives equations relative to the potentials. Eq. (45) gives two equations:

Φ, rr þ 1=rð ÞΦ, r þ C44 þ n C13 þ C44ð Þ
C11

Φ, zz ¼ 0, (58)

Ψ, rr þ 1=rð ÞΨ, r � 1=r2
� �

Ψþ C44

C11 �m C13 þ C44ð ÞΨ, zz ¼ 0, (59)

whereas Eq. (46) gives three equations:

Φ, rr þ 1=rð ÞΦ, r þ nC33

nC44 þ C13 þ C44ð ÞΦ, zz ¼ 0, (60)

Ψ, rrz þ 1=rð ÞΨ, rz � 1=rð Þ2Ψ, z þ C33m� C13 þ C44ð Þ
C44m

Ψ, zzz ¼ 0, (61)

Ψ, rr þ 1=rð ÞΨ, r � 1=rð Þ2Ψþ C33m� C13 þ C44ð Þ
C44m

Ψ, zz ¼ 0: (62)

The last two equations are identical. Eqs. (58) and (60) and (59) and (62) have
to be identical. This means that the coefficients in these equations have to be
identical. As a result, two equations can be obtained for the determination of
unknown constants n,m.

C44 þ n C13 þ C44ð Þ
C11

¼ nC33

nC44 þ C13 þ C44ð Þ !

n2 � n
C11C33 � C44ð Þ2 � C13 þ C44ð Þ2

C44 C13 þ C44ð Þ þ 1 ¼ 0,

(63)

n1,2 ¼ C11C33 � C44ð Þ2 � C13 þ C44ð Þ2
2C44 C13 þ C44ð Þ

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

C44 C13 þ C44ð Þ
C11C33 � C44ð Þ2 � C13 þ C44ð Þ2
" #2vuut

0
B@

1
CA,

(64)

C44

C11 �m C13 þ C44ð Þ ¼
C33m� C13 þ C44ð Þ

C44m
! m2

þm
C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2

C33 C13 þ C44ð Þ

" #
þ C11

C33
¼ 0:

(65)
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m1,2 ¼ � C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2
2C33 C13 þ C44ð Þ

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

C11

C33

C33 C13 þ C44ð Þ
C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2

" #2vuut
8<
:

9=
;:

(66)

The unknown potentials Φ r; zð Þ and Ψ r; zð Þ have to be determined from the
simple Eqs. (63) and (65) which are the classical Bessel equations of orders 0 and 1
and arguments depending on some rational combination of elastic constants.

Thus, three ways of introduction of potentials in the static problems of trans-
versely isotropic theory of elasticity are shown. The different attempts to transfer
these ways into the dynamic problems meet some troubles—the presence of inertial
summands generates new additional conditions for the unknown constants in rep-
resentations of potentials. Introducing the new constants does not help—the num-
ber of conditions is still more than the number of all constants.

3.4 Solving the problem on the propagation in the direction of vertical axis
surface cylindrical wave for the case of transversal isotropy of medium

Consider now equations of motion (45) and (46) and introduce the potentials by
the formula (57). A substitution of formula (57) into equations of motion gives five
equations relative to the potentials. Eq. (57) gives two equations:

Φ, rr þ 1=rð ÞΦ, r þ C44 þ n C13 þ C44ð Þ
C11

Φ, zz ¼ ρ

C11
Φ, tt, (67)

Ψ, rr þ 1=rð ÞΨ, r � 1=r2
� �

Ψþ C44

C11 �m C13 þ C44ð ÞΨ, zz ¼ ρ

C11 �m C13 þ C44ð ÞΨ, tt:

(68)

Eq. (46) gives three equations:

Φ, rr þ 1=rð ÞΦ, r þ nC33

nC44 þ C13 þ C44ð ÞΦ, zz ¼ nρ
nC44 þ C13 þ C44ð ÞΦ, tt, (69)

Ψ, rrz þ 1=rð ÞΨ, rz � 1=rð Þ2Ψ, z þ C33m� C13 þ C44ð Þ
C44m

Ψ, zzz ¼ ρ

C44
Ψ, ztt, (70)

Ψ, rr þ 1=rð ÞΨ, r � 1=rð Þ2Ψþ C33m� C13 þ C44ð Þ
C44m

Ψ, zz ¼ ρ

C44
Ψ, tt: (71)

Two last equations are identical. Also the equations for potential Φ must be
identical as well as the equations for potential Ψ must be identical. Let us assume
additionally that the problem in hand considering the solution in the form of
harmonic in time cylindrical wave with unknown wave number k and known
frequency ω:

Φ r; z; tð Þ ¼Φ
_

rð Þei kz�ωtð Þ, Ψ r; z; tð Þ ¼Ψ
_

rð Þei kz�ωtð Þ: (72)

Note that characterization of an attenuation of wave depth down functions

Φ
_

rð Þ, Ψ_ rð Þ is unknown. They must be found from equations, which are obtained
by substitution of representations (72) into Eqs. (67) and (71):
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isotropic theory of elasticity. The initial equations here are the equations of motion
(43) without inertial summands

C11 ur,rr þ 1=rð Þur, r � 1=r2
� �

ur
� �þ C44ur,zz þ C13 þ C44½ �uz,rz ¼ 0, (55)

C44 uz,rr þ 1=rð Þuz,rð Þ þ C33uz,zz þ C13 þ C44½ � ur, rz þ 1=rð Þur,zð Þ ¼ 0: (56)

The potentials are introduced like (51), but the representations are complicated
by necessity of introducing two new unknown parameters:

ur ¼ Φ, r � Ψ, z, uz ¼ nΦ, z þmΨ, r þm 1=rð ÞΨ, (57)

A substitution of representations (57) into equations of motion (45) and (46)
gives equations relative to the potentials. Eq. (45) gives two equations:

Φ, rr þ 1=rð ÞΦ, r þ C44 þ n C13 þ C44ð Þ
C11

Φ, zz ¼ 0, (58)

Ψ, rr þ 1=rð ÞΨ, r � 1=r2
� �

Ψþ C44

C11 �m C13 þ C44ð ÞΨ, zz ¼ 0, (59)

whereas Eq. (46) gives three equations:

Φ, rr þ 1=rð ÞΦ, r þ nC33

nC44 þ C13 þ C44ð ÞΦ, zz ¼ 0, (60)

Ψ, rrz þ 1=rð ÞΨ, rz � 1=rð Þ2Ψ, z þ C33m� C13 þ C44ð Þ
C44m

Ψ, zzz ¼ 0, (61)

Ψ, rr þ 1=rð ÞΨ, r � 1=rð Þ2Ψþ C33m� C13 þ C44ð Þ
C44m

Ψ, zz ¼ 0: (62)

The last two equations are identical. Eqs. (58) and (60) and (59) and (62) have
to be identical. This means that the coefficients in these equations have to be
identical. As a result, two equations can be obtained for the determination of
unknown constants n,m.

C44 þ n C13 þ C44ð Þ
C11

¼ nC33

nC44 þ C13 þ C44ð Þ !

n2 � n
C11C33 � C44ð Þ2 � C13 þ C44ð Þ2

C44 C13 þ C44ð Þ þ 1 ¼ 0,

(63)

n1,2 ¼ C11C33 � C44ð Þ2 � C13 þ C44ð Þ2
2C44 C13 þ C44ð Þ

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

C44 C13 þ C44ð Þ
C11C33 � C44ð Þ2 � C13 þ C44ð Þ2
" #2vuut

0
B@

1
CA,

(64)

C44

C11 �m C13 þ C44ð Þ ¼
C33m� C13 þ C44ð Þ

C44m
! m2

þm
C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2

C33 C13 þ C44ð Þ

" #
þ C11

C33
¼ 0:

(65)
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m1,2 ¼ � C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2
2C33 C13 þ C44ð Þ

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

C11

C33

C33 C13 þ C44ð Þ
C44ð Þ2 þ C11C33 þ C13 þ C44ð Þ2

" #2vuut
8<
:

9=
;:

(66)

The unknown potentials Φ r; zð Þ and Ψ r; zð Þ have to be determined from the
simple Eqs. (63) and (65) which are the classical Bessel equations of orders 0 and 1
and arguments depending on some rational combination of elastic constants.

Thus, three ways of introduction of potentials in the static problems of trans-
versely isotropic theory of elasticity are shown. The different attempts to transfer
these ways into the dynamic problems meet some troubles—the presence of inertial
summands generates new additional conditions for the unknown constants in rep-
resentations of potentials. Introducing the new constants does not help—the num-
ber of conditions is still more than the number of all constants.

3.4 Solving the problem on the propagation in the direction of vertical axis
surface cylindrical wave for the case of transversal isotropy of medium

Consider now equations of motion (45) and (46) and introduce the potentials by
the formula (57). A substitution of formula (57) into equations of motion gives five
equations relative to the potentials. Eq. (57) gives two equations:

Φ, rr þ 1=rð ÞΦ, r þ C44 þ n C13 þ C44ð Þ
C11

Φ, zz ¼ ρ

C11
Φ, tt, (67)

Ψ, rr þ 1=rð ÞΨ, r � 1=r2
� �

Ψþ C44

C11 �m C13 þ C44ð ÞΨ, zz ¼ ρ

C11 �m C13 þ C44ð ÞΨ, tt:

(68)

Eq. (46) gives three equations:

Φ, rr þ 1=rð ÞΦ, r þ nC33

nC44 þ C13 þ C44ð ÞΦ, zz ¼ nρ
nC44 þ C13 þ C44ð ÞΦ, tt, (69)

Ψ, rrz þ 1=rð ÞΨ, rz � 1=rð Þ2Ψ, z þ C33m� C13 þ C44ð Þ
C44m

Ψ, zzz ¼ ρ

C44
Ψ, ztt, (70)

Ψ, rr þ 1=rð ÞΨ, r � 1=rð Þ2Ψþ C33m� C13 þ C44ð Þ
C44m

Ψ, zz ¼ ρ

C44
Ψ, tt: (71)

Two last equations are identical. Also the equations for potential Φ must be
identical as well as the equations for potential Ψ must be identical. Let us assume
additionally that the problem in hand considering the solution in the form of
harmonic in time cylindrical wave with unknown wave number k and known
frequency ω:

Φ r; z; tð Þ ¼Φ
_

rð Þei kz�ωtð Þ, Ψ r; z; tð Þ ¼Ψ
_

rð Þei kz�ωtð Þ: (72)

Note that characterization of an attenuation of wave depth down functions

Φ
_

rð Þ, Ψ_ rð Þ is unknown. They must be found from equations, which are obtained
by substitution of representations (72) into Eqs. (67) and (71):
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Φ
_

, rr þ 1=rð ÞΦ_, r � C44 þ n C13 þ C44ð Þ
C11

k2 � k2L 11ð Þ

� �
Φ
_¼ 0, (73)

kL 11ð Þ ¼ ω=vL 11ð Þ
� �

, vL 11ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C11=ρ

p
,

Φ
_

, rr þ 1=rð ÞΦ_, r � n
nC44 þ C13 þ C44ð Þ C33k

2 � C11k
2
L 11ð Þ

� �
Φ
_¼ 0, (74)

Ψ
_

, rr þ 1=rð ÞΨ_, r � 1=r2
� �

Ψ
_ � C44

C11 �m C13 þ C44ð Þ k2 � k2T 44ð Þ
� �

Ψ
_¼ 0, (75)

kT 44ð Þ ¼ ω=vL 44ð Þ
� �

, vL 44ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=ρ

p
,

Ψ
_

, rr þ 1=rð ÞΨ_, r � 1=rð Þ2 Ψ_ � C33m� C13 þ C44ð Þ
C44m

k2 � k2T 44ð Þ

� �
Ψ
_¼ 0: (76)

As a result, two equations can be obtained that permit to determine the
constants n,m

n2 � 2N1nþN2 ¼ 0, m2 þ 2M1mþM2 ¼ 0, (77)

N� M�ð Þ ¼ N1 M1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 M1ð Þ½ �2 �N2 M2ð Þ

q
, (78)

2N1 ¼
C11C33 � C13 þ C44ð Þ2
h i

k2 � C11 C11 � C44½ �k2L 11ð Þ � C44ð Þ2

C44 C13 þ C44ð Þk2 ,

N2 ¼
C44 � C11k

2
L 11ð Þ

C44k
2 ¼ 0

(79)

2M1 ¼
C44ð Þ2 � C11C33 � C13 þ C44ð Þ2

h i
k2 � C44ð Þ2 � C11C44

h i
k2T 44ð Þ

C13 þ C44ð Þ C33k
2 � C44k

2
T 44ð Þ

� � ,

M2 ¼ C11

C33k
2 � C44k

2
T 44ð Þ

� � k2:
(80)

Note that restriction on the kind of solution (it has to be a wave) allows to unite
two different conditions into one—conditions for equaling coefficients in sum-
mands with the second derivative by time t and vertical coordinate z. In this case,
the number of unknown constants coincides with the number of conditions which
are necessary for the determination of potentials. As a result, the wave attenuation-
transformed potentials can be determined from the equations of Bessel type:

Φ
_

, rr þ 1=rð ÞΦ_, r �M2
L 11ð Þ Φ

_¼ 0, ML 11ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44 þ n C13 þ C44ð Þ

C11
k2 � k2L 11ð Þ

s
,

(81)

Ψ
_

, rr þ 1=rð ÞΨ_, r � 1=r2ð Þ þM2
T 44ð Þ

h i
Ψ
_¼ 0,

MT 44ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C44

C11 �m C13 þ C44ð Þ k2 � k2T 44ð Þ
� �r

,
(82)
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A success in the determination of transformed potentials is accompanied by
a complication of conditions which provide the wave attenuation. They have the
form.

C44 þ n C13 þ C44ð Þ
C11

k2 � k2L 11ð Þ>0,
C33m� C13 þ C44ð Þ

C44m
k2 � k2T 44ð Þ>0: (83)

Let us recall that the similar conditions for the case of isotropic medium
k2 � k2L>0, k

2 � k2T>0 are slightly simpler and coincide with the corresponding
conditions of classical Rayleigh surface wave [5–9, 17]. A complexity of conditions
(83) is increased by the complex form of dependence of constants n,m on the
wave number k.

If the conditions (83) are fulfilled, then the solution of wave equations for
potentials can be written in the form.

Φ
_

rð Þ ¼ A
_

ΦK0 ML 11ð Þr
� �

, Ψ
_

rð Þ ¼ A
_

ΨK1 MT 44ð Þr
� �

: (84)

With allowance for formulas (84), the representations of potentials becomes
more definite

Φ r; z; tð Þ ¼ A
_

ΦK0 ML 11ð Þr
� �

ei kz�ωtð Þ, Ψ r; z; tð Þ ¼ A
_

ΨK1 MT 44ð Þr
� �

ei kz�ωtð Þ: (85)

The formula (85) completes the first analytical part of solving the problem on
cylindrical surface wave.

3.5 Boundary conditions: equations for the unknown wave number

This part of analysis can be treated as the second analytical part. The
boundary conditions have the form identical for all kinds of symmetry of proper-
ties. That is, they have the form (17) or (21). The formulas for stresses depend
already on the symmetry of medium. The expressions for stresses through the
potential reflect the features of introducing the potentials. In this case, they have
the form

σrr ¼ λþ 2μð Þ Φ, rr �Ψ, rzð Þ þ λ
1=rð Þ Φ, r �Ψ, zð Þþ
þnΦ, zz þmΨ, rz þm 1=rð ÞΨ, z

� �
, (86)

σrz ¼ μ Φ, rz �Ψ, zzð Þ þ nΦ, zr þmΨ, rr þm 1=rð ÞΨ, r �m 1=r2
� �

Ψ
� �

: (87)

Further, the representations (86) and (87) should be substituted into the
boundary conditions, and the formulas on differentiation of Macdonald functions
[3] should be taken into account:

dK0 ML 11ð Þrx
� �

=dr
� � ¼ �ML 11ð ÞK1 ML 11ð Þrx

� �
,

d2K0 ML 11ð Þr
� �

=dr2
� � ¼ ML 11ð Þ 1=rð ÞK1 ML 11ð Þr

� �þ ML 11ð Þ
� �2K0 ML 11ð Þr

� �
,

dK1 MT 44ð Þr
� �

=dr
� � ¼ � 1=rð ÞK1 MT 44ð Þr

� ��MT 44ð ÞK0 MT 44ð Þr
� �

:

Then the boundary conditions are transformed into the algebraic equations

relative to quantities K1 ML 11ð Þro
� �

A
_

Φ, K1 MT 44ð Þro
� �

A
_

Ψ
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Φ
_

, rr þ 1=rð ÞΦ_, r � C44 þ n C13 þ C44ð Þ
C11

k2 � k2L 11ð Þ

� �
Φ
_¼ 0, (73)

kL 11ð Þ ¼ ω=vL 11ð Þ
� �

, vL 11ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C11=ρ

p
,

Φ
_

, rr þ 1=rð ÞΦ_, r � n
nC44 þ C13 þ C44ð Þ C33k

2 � C11k
2
L 11ð Þ

� �
Φ
_¼ 0, (74)

Ψ
_

, rr þ 1=rð ÞΨ_, r � 1=r2
� �

Ψ
_ � C44

C11 �m C13 þ C44ð Þ k2 � k2T 44ð Þ
� �

Ψ
_¼ 0, (75)

kT 44ð Þ ¼ ω=vL 44ð Þ
� �

, vL 44ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=ρ

p
,

Ψ
_

, rr þ 1=rð ÞΨ_, r � 1=rð Þ2 Ψ_ � C33m� C13 þ C44ð Þ
C44m

k2 � k2T 44ð Þ

� �
Ψ
_¼ 0: (76)

As a result, two equations can be obtained that permit to determine the
constants n,m

n2 � 2N1nþN2 ¼ 0, m2 þ 2M1mþM2 ¼ 0, (77)

N� M�ð Þ ¼ N1 M1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 M1ð Þ½ �2 �N2 M2ð Þ

q
, (78)

2N1 ¼
C11C33 � C13 þ C44ð Þ2
h i

k2 � C11 C11 � C44½ �k2L 11ð Þ � C44ð Þ2

C44 C13 þ C44ð Þk2 ,

N2 ¼
C44 � C11k

2
L 11ð Þ

C44k
2 ¼ 0

(79)

2M1 ¼
C44ð Þ2 � C11C33 � C13 þ C44ð Þ2

h i
k2 � C44ð Þ2 � C11C44

h i
k2T 44ð Þ

C13 þ C44ð Þ C33k
2 � C44k

2
T 44ð Þ

� � ,

M2 ¼ C11

C33k
2 � C44k

2
T 44ð Þ

� � k2:
(80)

Note that restriction on the kind of solution (it has to be a wave) allows to unite
two different conditions into one—conditions for equaling coefficients in sum-
mands with the second derivative by time t and vertical coordinate z. In this case,
the number of unknown constants coincides with the number of conditions which
are necessary for the determination of potentials. As a result, the wave attenuation-
transformed potentials can be determined from the equations of Bessel type:

Φ
_

, rr þ 1=rð ÞΦ_, r �M2
L 11ð Þ Φ

_¼ 0, ML 11ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44 þ n C13 þ C44ð Þ

C11
k2 � k2L 11ð Þ

s
,

(81)

Ψ
_

, rr þ 1=rð ÞΨ_, r � 1=r2ð Þ þM2
T 44ð Þ

h i
Ψ
_¼ 0,

MT 44ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C44

C11 �m C13 þ C44ð Þ k2 � k2T 44ð Þ
� �r

,
(82)
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A success in the determination of transformed potentials is accompanied by
a complication of conditions which provide the wave attenuation. They have the
form.

C44 þ n C13 þ C44ð Þ
C11

k2 � k2L 11ð Þ>0,
C33m� C13 þ C44ð Þ

C44m
k2 � k2T 44ð Þ>0: (83)

Let us recall that the similar conditions for the case of isotropic medium
k2 � k2L>0, k

2 � k2T>0 are slightly simpler and coincide with the corresponding
conditions of classical Rayleigh surface wave [5–9, 17]. A complexity of conditions
(83) is increased by the complex form of dependence of constants n,m on the
wave number k.

If the conditions (83) are fulfilled, then the solution of wave equations for
potentials can be written in the form.

Φ
_

rð Þ ¼ A
_

ΦK0 ML 11ð Þr
� �

, Ψ
_

rð Þ ¼ A
_

ΨK1 MT 44ð Þr
� �

: (84)

With allowance for formulas (84), the representations of potentials becomes
more definite

Φ r; z; tð Þ ¼ A
_

ΦK0 ML 11ð Þr
� �

ei kz�ωtð Þ, Ψ r; z; tð Þ ¼ A
_

ΨK1 MT 44ð Þr
� �

ei kz�ωtð Þ: (85)

The formula (85) completes the first analytical part of solving the problem on
cylindrical surface wave.

3.5 Boundary conditions: equations for the unknown wave number

This part of analysis can be treated as the second analytical part. The
boundary conditions have the form identical for all kinds of symmetry of proper-
ties. That is, they have the form (17) or (21). The formulas for stresses depend
already on the symmetry of medium. The expressions for stresses through the
potential reflect the features of introducing the potentials. In this case, they have
the form

σrr ¼ λþ 2μð Þ Φ, rr �Ψ, rzð Þ þ λ
1=rð Þ Φ, r �Ψ, zð Þþ
þnΦ, zz þmΨ, rz þm 1=rð ÞΨ, z

� �
, (86)

σrz ¼ μ Φ, rz �Ψ, zzð Þ þ nΦ, zr þmΨ, rr þm 1=rð ÞΨ, r �m 1=r2
� �

Ψ
� �

: (87)

Further, the representations (86) and (87) should be substituted into the
boundary conditions, and the formulas on differentiation of Macdonald functions
[3] should be taken into account:

dK0 ML 11ð Þrx
� �

=dr
� � ¼ �ML 11ð ÞK1 ML 11ð Þrx

� �
,

d2K0 ML 11ð Þr
� �

=dr2
� � ¼ ML 11ð Þ 1=rð ÞK1 ML 11ð Þr

� �þ ML 11ð Þ
� �2K0 ML 11ð Þr

� �
,

dK1 MT 44ð Þr
� �

=dr
� � ¼ � 1=rð ÞK1 MT 44ð Þr

� ��MT 44ð ÞK0 MT 44ð Þr
� �

:

Then the boundary conditions are transformed into the algebraic equations

relative to quantities K1 ML 11ð Þro
� �

A
_

Φ, K1 MT 44ð Þro
� �

A
_

Ψ
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ML 11ð Þ
1
ro
þ v2L
v2T

ML 11ð Þ
� �2�

� v2L � v2T
v2L

nk2

0
BB@

1
CCA

K0 ML 11ð Þro
� �

K1 ML 11ð Þro
� �

2
664

3
775A
_

ΦK1 ML 11ð Þro
� �� ik

v2L � v2T
v2T

�
2 1�mð Þ þ v2T

v2L � v2T

� �
1
ro
þ

þ 1�mð Þ þ v2T
v2L � v2T

� �
MT 44ð Þ

K0 MT 44ð Þro
� �

K1 MT 44ð Þro
� �

2
66664

3
77775
A
_

ΨK1 MT 44ð Þro
� � ¼ 0,

(88)

1þ nð Þik K0 ML 11ð Þro
� �

K1 ML 11ð Þr0
� �K1 ML 11ð Þro

� �
A
_

Φ þ m MT 44ð Þ
� �2 þ k2

h i
K1 MT 44ð Þr
� �

A
_

Ψ ¼ 0:

(89)

When the determinant of linear homogeneous system of Eqs. (88) and (89) is
equaled to zero, then the equations for the unknown wave number can be obtained:

1þ nð Þk2 v
2
L � v2T
v2T

K0 ML 11ð Þro
� �

K1 ML 11ð Þr0
� �

2 1�mð Þ þ v2T
v2L � v2T

� �
1=roð Þ

þ 1�mð Þ þ v2T
v2L � v2T

� �
MT 44ð Þ

K0 MT 44ð Þro
� �

K1 MT 44ð Þro
� �

2
66664

3
77775

� m MT 44ð Þ
� �2 þ k2

h i ML 11ð Þ
1
ro
þ

v2L
v2T

ML 11ð Þ
� �2 � v2L � v2T

v2L
nk2

� �
K0 ML 11ð Þro
� �

K1 ML 11ð Þro
� �

2
6664

3
7775 ¼ 0:

(90)

Note that the sufficiently complex expression relative to the wave number is

hidden coefficients ML 11ð Þ,MT 44ð Þ of Macdonald’s functions
K0 ML 11ð Þroð Þ
K1 ML 11ð Þr0ð Þ,

K0 MT 44ð Þroð Þ
K1 MT 44ð Þroð Þ.

Therefore, the analytical part of analysis is finished on these formulas. Further, the
numerical approaches have to be utilized.

Note also that the simple and convenient condition from analysis of classical
surface Rayleigh wave [6–10, 17], when the wave number depends only on ratio
v2L=v

2
T

� �
, does not exist in the analysis of cylindrical surface wave. Here, the param-

eters ML 11ð Þ,MT 44ð Þ depend on the complicated form on all elastic constants. Of
course, the Macdonald functions can be represented approximately through their
arguments. But only the numerical methods can give the final result—the value of
wave number or phase velocity.

4. Solving the problem on propagating in the direction of symmetry axis
surface wave within the framework of linearized theory of elasticity
with allowance for initial stresses

Note that analysis of cylindrical surface wave in isotropic medium was first
carried out by Biot [1] in 1952 and the transversally isotropic medium with initial
stresses was first carried out by Guz et al. in 1974 [18].
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Let us show below an analysis of the problem in hand that is carried out in
Subchapter “Longitudinal Waves” of Chapter 4 “Waves in Cylindrical Media” of
volume 2 of edition [19]. Here, the cylinder of circular cross-section is considered,
and the longitudinal wave is defined as the wave propagating in the direction of
cylinder axis Oy3. The problem is assumed to be axisymmetric and is described
within the framework of linearized theory of elasticity for bodies with initial
stresses. The cylindrical coordinates r0; θ; y3

� �
are introduced, and displacements are

taken in the form

ur0 ¼ ur0 r0; y3; t
� �

, uθ ¼ 0, uy3 ¼ uy3 r0; y3; t
� �

(91)

The medium is assumed isotropic or transversally isotropic. The main relations
for transversal isotropy are described by independent constant

ω1111,ω1122,ω1133,ω1221,ω1313,ω1331,ω3113,ω3333: (92)

Note that as shown in (92), eight constants are necessary in the linearized
theory, but in the framework of linear theory, they have the form (33), and their
number is five.

Further, the general solutions of basic equations in displacements are utilized.
These equations have the form (3.174) [19]

ωlmαβ ∂
2uα=∂xk∂xβ

� � ¼ ρδmα ∂
2uα=∂τ2

� �
(93)

where only eight independent constants (92) must be taken into account.
The corresponding equations of linear theory of elasticity for the case of

transversally isotropic medium without of initial stresses are written above as
Eqs. (45) and (46).

The general solutions for the case of axial symmetry are expressed through one
potential in the form (4.13) [19]

ur0 ¼ � ∂
2=∂r0∂y3

� �
X0, (94)

u3 ¼ ω0
1111 þ ω0

1313

� ��1
ω0
1111Δ

0
1 þ ω0

3113 ∂
2=∂y23

� �� ρ0 ∂2=∂τ2
� �� �

X0,

Δ0 ¼ ∂
2=∂r02

� �þ 1=r0ð Þ ∂=∂r0ð Þ:

Note that in Section 3 of this chapter, two potentials Φ,Ψ are introduced by
formula (57), which corresponds and generalizes the procedure used in Biot’s
analysis [1].

The longitudinal harmonic wave is described analytically through the potential
in the form (101) [19]

X0 r0; y3; τ
� � ¼ X0

1ð Þ r
0ð Þei ky3�ωτð Þ, (95)

where the unknown amplitude X0
1ð Þ r

0ð Þ has to be determined by substitution of
solution (4.13) [19] into the second Eq. (3.362) [19] (for potential X0). This gives
Eq. (4.16) [19]:

ω0
1111ω

0
1331

� ��
Δ0

1 � k2ξ022
� �

Δ0
1 � k2ξ032

� �

�k2ρ0C2
cp ω0

1111 þ ω0
1331

� �
Δ0

1 � k2 ω0
1111 þ ω0

3113

� �� �þ ρ02C2
cp

o
X0

1ð Þ ¼ 0,
(96)
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MT 44ð Þ

K0 MT 44ð Þro
� �

K1 MT 44ð Þro
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2
66664
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77775
A
_

ΨK1 MT 44ð Þro
� � ¼ 0,

(88)

1þ nð Þik K0 ML 11ð Þro
� �

K1 ML 11ð Þr0
� �K1 ML 11ð Þro

� �
A
_

Φ þ m MT 44ð Þ
� �2 þ k2

h i
K1 MT 44ð Þr
� �

A
_

Ψ ¼ 0:

(89)

When the determinant of linear homogeneous system of Eqs. (88) and (89) is
equaled to zero, then the equations for the unknown wave number can be obtained:

1þ nð Þk2 v
2
L � v2T
v2T

K0 ML 11ð Þro
� �

K1 ML 11ð Þr0
� �

2 1�mð Þ þ v2T
v2L � v2T

� �
1=roð Þ

þ 1�mð Þ þ v2T
v2L � v2T

� �
MT 44ð Þ

K0 MT 44ð Þro
� �

K1 MT 44ð Þro
� �

2
66664

3
77775

� m MT 44ð Þ
� �2 þ k2

h i ML 11ð Þ
1
ro
þ

v2L
v2T

ML 11ð Þ
� �2 � v2L � v2T

v2L
nk2

� �
K0 ML 11ð Þro
� �

K1 ML 11ð Þro
� �

2
6664

3
7775 ¼ 0:

(90)

Note that the sufficiently complex expression relative to the wave number is

hidden coefficients ML 11ð Þ,MT 44ð Þ of Macdonald’s functions
K0 ML 11ð Þroð Þ
K1 ML 11ð Þr0ð Þ,

K0 MT 44ð Þroð Þ
K1 MT 44ð Þroð Þ.

Therefore, the analytical part of analysis is finished on these formulas. Further, the
numerical approaches have to be utilized.

Note also that the simple and convenient condition from analysis of classical
surface Rayleigh wave [6–10, 17], when the wave number depends only on ratio
v2L=v

2
T

� �
, does not exist in the analysis of cylindrical surface wave. Here, the param-

eters ML 11ð Þ,MT 44ð Þ depend on the complicated form on all elastic constants. Of
course, the Macdonald functions can be represented approximately through their
arguments. But only the numerical methods can give the final result—the value of
wave number or phase velocity.

4. Solving the problem on propagating in the direction of symmetry axis
surface wave within the framework of linearized theory of elasticity
with allowance for initial stresses

Note that analysis of cylindrical surface wave in isotropic medium was first
carried out by Biot [1] in 1952 and the transversally isotropic medium with initial
stresses was first carried out by Guz et al. in 1974 [18].
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Let us show below an analysis of the problem in hand that is carried out in
Subchapter “Longitudinal Waves” of Chapter 4 “Waves in Cylindrical Media” of
volume 2 of edition [19]. Here, the cylinder of circular cross-section is considered,
and the longitudinal wave is defined as the wave propagating in the direction of
cylinder axis Oy3. The problem is assumed to be axisymmetric and is described
within the framework of linearized theory of elasticity for bodies with initial
stresses. The cylindrical coordinates r0; θ; y3

� �
are introduced, and displacements are

taken in the form

ur0 ¼ ur0 r0; y3; t
� �

, uθ ¼ 0, uy3 ¼ uy3 r0; y3; t
� �

(91)

The medium is assumed isotropic or transversally isotropic. The main relations
for transversal isotropy are described by independent constant

ω1111,ω1122,ω1133,ω1221,ω1313,ω1331,ω3113,ω3333: (92)

Note that as shown in (92), eight constants are necessary in the linearized
theory, but in the framework of linear theory, they have the form (33), and their
number is five.

Further, the general solutions of basic equations in displacements are utilized.
These equations have the form (3.174) [19]

ωlmαβ ∂
2uα=∂xk∂xβ

� � ¼ ρδmα ∂
2uα=∂τ2

� �
(93)

where only eight independent constants (92) must be taken into account.
The corresponding equations of linear theory of elasticity for the case of

transversally isotropic medium without of initial stresses are written above as
Eqs. (45) and (46).

The general solutions for the case of axial symmetry are expressed through one
potential in the form (4.13) [19]

ur0 ¼ � ∂
2=∂r0∂y3

� �
X0, (94)
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2=∂r02
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Note that in Section 3 of this chapter, two potentials Φ,Ψ are introduced by
formula (57), which corresponds and generalizes the procedure used in Biot’s
analysis [1].

The longitudinal harmonic wave is described analytically through the potential
in the form (101) [19]

X0 r0; y3; τ
� � ¼ X0

1ð Þ r
0ð Þei ky3�ωτð Þ, (95)

where the unknown amplitude X0
1ð Þ r

0ð Þ has to be determined by substitution of
solution (4.13) [19] into the second Eq. (3.362) [19] (for potential X0). This gives
Eq. (4.16) [19]:
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(96)
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The unknown quantities ζ02,3 must be found from the linear algebraic equation of
the fourth degree (4.20) [19].
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þ ω0
1111 þ ω0
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2
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3
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(98)

The solution (95) describes the surface wave, if amplitude X0
1ð Þ r

0ð Þ attenuates
with increasing the radius. This is provided by the condition that quantities ζ02,3 is
unequal and pure imaginary. Then the potential gains the form (4.22) [19].

X0
1ð Þ r

0ð Þ ¼ B10J0 ζ02
�� ��r0� �þ B20K0 ζ02

�� ��r0� �þ B30J0 ζ03
�� ��r0� �þ B40K0 ζ03

�� ��r0� �
, (99)

The shown part of analysis from introducing the potential by formula (94) to
representation of solution by formula (99) inclusive can be compared with analo-
gous part of analysis from Section 3 of this chapter (from introducing the potentials
by formula (57) to the solution in the form of (85)). It is easy to see a difference in
representations (99) and (85): formula (99) uses the Bessel functions and in partic-
ular the Macdonald function of zero index, whereas formula (85) uses (like the
Biot’s solution (14)) the Macdonald functions (16) of the zero and first indexes.

The next part of analysis of cylindrical wave consists in substitution of solution
into boundary conditions of the form (99) [19]

Q 0
r0r0 ¼ 0, Q 0

r03 ¼ 0 when r0 ¼ R0
1, R

0
2: (100)

The case of oscillatory behavior of wave in the direction of radius is considered
with pointing that the case of surface wave is the same type. A substitution of
solution (99) into conditions (4.79) [19] gives the dependence of velocity of surface
wave or its wave number on frequency—a dispersion equation in the form of
determinant of the fourth order in the form (4.26) [19].

det αij
�� �� � Δ ω; kð Þ ¼ 0; i, j ¼ 1, 2, 3,4: (101)

This finishes the analytical part of analysis shown in [19]. It corresponds to the
part of Section 3.5 of this chapter, where the explicit form of dispersive equations is
proposed in the form (90) that includes the Macdonald functions of the zero and first
orders which represent some generalization of dispersion Eq. (27) obtained by Biot.

5. Conclusions

This chapter proposes three fragments of analytical analysis of the cylindrical
surface wave propagating in the vertical direction of circular cylindrical cavity. The
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first fragment shows the analytical part of pioneer work of Biot. It represents the
classicism of mathematical procedures and physical comments of Biot. Properly
speaking, the clear and understandable Rayleigh’s scheme is saved, but it is
complemented by some findings reflecting the features of cylindrical waves. Two
next fragments show the more late development of the Biot’s problem. They are
different by influence of the Biot’s procedure. The approach shown in Section 3 is
more close to the Biot’s analytical scheme, whereas Section 4 proposes as an inde-
pendent scheme that is more close to the Rayleigh scheme. Nevertheless, all frag-
ments testify the mathematical complexity in solving the problem on the cylindrical
surface waves. Thus, revisiting the old Biot’s problem shows that it still generates
new scientific and practical problems.
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Chapter 3

Appearance of Catastrophes and
Plasticity in Porous and Cracked
Media
Boris Sibiryakov

Abstract

This chapter is devoted to study the properties of structured continuum, with
specific surface and characteristic size of structure. This linear dimension means the
absence of automatic transforming difference relations into differential equations.
It is impossible to apply conservation laws at any point of the real structural body,
because any closed points in vicinity of inner surface can represent both solid and
liquid (gas) phases. We need use some representative minimal volume, which
characterized the complicate body at hole. This approach leads to differential equa-
tions of motion of the infinite order. Solutions of them, along usual P and S waves,
contain many waves with abnormally low velocities, which are not bounded
below. It is shown that in such media, weak perturbations can increase or decrease
without limit. The reason of the infinite order of differential equations is many
degrees of freedom in such media. Catastrophes correspond to unstable solutions
equations of motion. Plasticity begins in elastic state like continuous phenomenon,
and there is a finite distance between the sliding lines on the contrary with classic
plasticity, where distances between sliding lines are infinitely small.

Keywords: structure of pore space, porous and cracked media, instability, plasticity

1. Introduction

The main idea of continuous mechanics is that any volume is the representative
one. It means that the integral of loadings, which concentrates on the surface and
bounds mentioned volume, is equal to zero in statics or to inertial forces in dynam-
ics. The evident disagreement that the surface forces and inertial ones apply to
different points (inertial forces apply to center of gravity of volume) overcomes due
to an assumption about infinite small sizes of the mentioned volume. This assump-
tion gives us a possibility to equal the volume forces (divergence of the stress
tensor), which was created by the internal stresses, and the inertial forces,
according to the second Newton law. Mathematical technique is based on the Gauss
theorem about relation between the field flux across surface and divergence of this
field in the volume, which is bounded by closed surface. However, in the structured
bodies, there is a fundamentally different situation. The representative volume
must contain some set of elementary structures. Otherwise, a small volume will
contain only one of the phases, for example, liquid in the pores or the solid skeleton
without liquid, and will not characterize the properties of the structured body. The
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must contain some set of elementary structures. Otherwise, a small volume will
contain only one of the phases, for example, liquid in the pores or the solid skeleton
without liquid, and will not characterize the properties of the structured body. The
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characteristic size of the structure leads to fact that the average distance is between
one of the cracks to another and one pore to another given by the specific surface of
the sample. It is necessary to connect the integral geometric properties of a medium
with physical processes of such bodies deforming. On the contrary with a classic
continuum of Cauchy and Poisson, the new continuum for structured or blocked
media must contain many degrees of freedom. It is evident because elementary
blocks may translate the motion by contact interactions, by rotations, and by group
of particle’s motion. It means that the energy contents not in first derivatives
(strains) only. The potential energy contents in the second derivatives (curvatures)
and other orders of ones. It means that the equation of motion of a blocked medium
should contain many derivatives; in other words, the equation of motion may have
been very high, probably, the infinite order. The static and dynamic processes in the
classic continuum are divided by the Great Wall of China from each other. The
equation of equilibrium never will pass in the equation of motion. However, it is
evident that the dynamic processes often arise very slow and are quasi-static
motions. It would be nice to destroy this mentioned wall by a newly structured
continuum. It would be a good idea to destroy the abovementioned wall by means
of justification of the newly structured continuum. The seismic emission, which
causes due to static loading, maybe not a bad example of such phenomena, which
are existed between statics and dynamics.

2. Equations of motion for structured media

In Figure 1, an element of the volume of structured body is shown, in which l0 is
the average distance between one pore and another. Earlier presented was the result
about the relation between the specific surface and the average length between
cracks and pores. There is a theorem of integral geometry, which relates the specific
surface σ0 and l0, namely [1]

σ0l0 ¼ 4 1� fð Þ (1)

where f is the porosity. Hence, if there is a specific surface of sample, there is
automatically the average range of microstructure l0.

The distinction between classic and structured continuums is clear, see Figure 1.
In the volume, which is inside into surface C, there is equation of equilibrium,
because all forces delete to each other. In the volume, which is inside into surface D,
there is equilibrium, because forces do not compensate to each other (on the one

Figure 1.
Representative element of structured body for granular medium (left) and average distance l0 from one crack to
another (right). On surface C, the equation of equilibrium is complied, and on surface D, it is not satisfied.
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side of grain, we have forces; and on the other part of boundary surface D, we have
no forces).

The idea of creation of the new model of space is as follows: consider some finite
volume of the body (a sphere on a figure with radius l0). Surface forces act on a
sphere of radius l0, while inertial forces applied at the center of the structure. There
is no way for the volume element to tend to zero and to match the points of
application of surface forces and inertial forces, as in the classical continuum.
Therefore, since we must consider the representative finite volume, we have a
problem of different positions of surface and inertial forces.

We need to translate the surface forces to the center of the structure by a special
operator, and after this, it is possible to apply the law of conservation for some
structural image continuum and to act as in a typical classical model of space. The
main feature of this approach is to fill all the space, including the pores and cracks
by field force. Because of it, we have a continuous image of a very complex media
and a possibility to apply the physical laws into an image of the media.

The one-dimensional operator of field translation from point x into point x � l0
is given by the symbolic formula [1]

u x� l0ð Þ ¼ exp l0Dxð Þ (2)

The operator is Dx ¼ ∂

∂x. The difference operator Δ1 xð Þ is a difference between
two translation operators

Δ1 ¼ 1
l0
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This is a first difference for finite distance between two points. The second
difference may be represented as quadrate of the first difference,

Δ2 ¼ u xð Þ sinh
l0
2 Dx
� �2
l0
2

� �2 (4)

The formally expansion in Taylor’s series gives a finite increment of field. This
expansion contains the infinite number of derivatives with different powers of l0.
The factor l0 relates with the specific surface of the sample. The three-dimensional
operator of field’s translation for some cube with length of l0 may be constructed as
follows:

P u xð Þ½ � ¼ u xð Þ
6

cosh
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2
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� �
þ cosh
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2
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þ cosh
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2
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(5)

The analogous operator of translation for some spheres is given by expression

P l0Dx; l0Dy; l0Dz
� � ¼ 1

4π

ð2π

0

ðπ

0

exp l0 DxsinθcosφþDysinθsinφþDzcosθ
� �� �

sinθdθdφ

(6)

Because there is a Poisson formula [2]
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cracks and pores. There is a theorem of integral geometry, which relates the specific
surface σ0 and l0, namely [1]

σ0l0 ¼ 4 1� fð Þ (1)

where f is the porosity. Hence, if there is a specific surface of sample, there is
automatically the average range of microstructure l0.

The distinction between classic and structured continuums is clear, see Figure 1.
In the volume, which is inside into surface C, there is equation of equilibrium,
because all forces delete to each other. In the volume, which is inside into surface D,
there is equilibrium, because forces do not compensate to each other (on the one

Figure 1.
Representative element of structured body for granular medium (left) and average distance l0 from one crack to
another (right). On surface C, the equation of equilibrium is complied, and on surface D, it is not satisfied.
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side of grain, we have forces; and on the other part of boundary surface D, we have
no forces).

The idea of creation of the new model of space is as follows: consider some finite
volume of the body (a sphere on a figure with radius l0). Surface forces act on a
sphere of radius l0, while inertial forces applied at the center of the structure. There
is no way for the volume element to tend to zero and to match the points of
application of surface forces and inertial forces, as in the classical continuum.
Therefore, since we must consider the representative finite volume, we have a
problem of different positions of surface and inertial forces.

We need to translate the surface forces to the center of the structure by a special
operator, and after this, it is possible to apply the law of conservation for some
structural image continuum and to act as in a typical classical model of space. The
main feature of this approach is to fill all the space, including the pores and cracks
by field force. Because of it, we have a continuous image of a very complex media
and a possibility to apply the physical laws into an image of the media.

The one-dimensional operator of field translation from point x into point x � l0
is given by the symbolic formula [1]

u x� l0ð Þ ¼ exp l0Dxð Þ (2)

The operator is Dx ¼ ∂
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The formally expansion in Taylor’s series gives a finite increment of field. This
expansion contains the infinite number of derivatives with different powers of l0.
The factor l0 relates with the specific surface of the sample. The three-dimensional
operator of field’s translation for some cube with length of l0 may be constructed as
follows:
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f αsinθcosφþ βsinθsinφþ γcosθð Þ½ �sinθdθdφ ¼ 2π
ðπ

0

f Rcospð Þsinpdp ¼ 2π
ð1

�1

f Rtð Þdt

(7)

In the formula (7), parameters α, β, and γ are some quantities. However, in
Eqs. (6) and (7), parameters play the role of differential operators. The relation
between quantities and operators is established by Maslov [3]. Hence, P operator
maybe rewritten as follows [4]

P l0Dx; l0Dy; l0Dz
� � ¼ 1

2

ð1

�1

exp l0
ffiffiffiffi
Δ

p
; t

� �
dt ¼

ð1

0

cosh l0
ffiffiffiffi
Δ

p
; t

� �
dt

¼ sinh l0
ffiffiffiffi
Δ

p� �

l0
ffiffiffiffi
Δ

p ¼ Eþ l20
3!
Δþ l40

5!
ΔΔþ…

(8)

In the classic continuum, we apply the impulse conservation law to any
element of the medium. In this situation, we need to fill all pores over space by a
force field. Instead of real stresses, which are changing very fast from one point to
another, we can construct the continual image of real stresses. Namely, we use a
continuous field, which is constructed by the application of the operator P to the
real complicated force field. For this continuous image of real stress, P σikð Þ,we can
apply the impulse conservation law. In the classic continuous model, this operation
is made by nature itself. This model of a continuum requires some mathematical
operations in order to create the continuum medium. Using operator P, we can
write the equation of motion of micro-inhomogeneous body, because for an
average stresses in structure, the law of impulse conservation takes the usual
form, namely [4]

∂

∂xk
P σikð Þ½ � ¼ ρ€ui (9)

In a more detailed form Eq. (9) can be rewritten as follows

∂

∂xk
Eþ l20

3!
Δþ l40

5!
ΔΔþ…

 !
σik

" #
¼ ρ€ui (10)

No wonder that Eq. (9) contains derivatives of the infinite order. This circum-
stance is due to many degrees of freedom for structured bodies. At l0 ! 0, we have
the usual equations of motion for classic continuous model of space.

3. Fundamental solutions

We can pass to the image space, following Hooke’s law and applying the Fourier
transform along three coordinates, as [5]

ui x; y; zð Þ ¼ 1

2πð Þ3 ∭
∞

�∞
exp i nxxþ nyyþ nzz

� �� �
Ui nx; ny; nz
� �

dn (11)

where n2 ¼ n2x þ n2y þ n2z; dn ¼ dnxdnydnz. The operator P leads to
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Pui x; y; zð Þ ¼ 1

2πð Þ3 ∭
∞

�∞

sinh l0nð Þ
l0n

exp i nxxþ nyyþ nzz
� �� �

Ui nx; ny; nz
� �

dn (12)

This allows us to calculate the Fourier transform for the fundamental solution of
the system Eq. (9):

Gij ¼ 1

μn2 � ρω2 l0n
sin l0nð Þ

δij �
λþ μð Þninj

λþ 2μð Þn2 � ρω2 l0n
sin l0nð Þ

" #
l0n

sin l0nð Þ (13)

At very small values, l0n, the sine and argument ratio approaches unity, and the
Fourier transform becomes an ordinary equation for Green’s tensor in an elastic
continuum. The inverse Fourier transform is obtained by integration of Eq. (13)
which includes simple poles corresponding to P and S waves and a set of simple
poles where the sine in the denominator of Eq. (13) becomes zero. The residuals are
in the simple poles, n2 ¼ k2Sl0n, where k2S is the wave number of both P and Swaves.
At very small l0, the ratio l0n

sin l0nð Þ ! 1 and denominators in Eq. (13) become the
classical equations that define the poles corresponding to compression and shear
waves velocities (Figure 2). Assuming n/ks = m and ksl0 = ε, we obtain the equation
for complex roots that describe waves from a focused source in porous and cracked
solids as

msin εmð Þ ¼ ε (14)

If m = x + iy is assumed to be a complex value, for the real and imaginary parts,
we have the transcendental equations

xsinεxcoshεy� ysinhεycosεx ¼ ε2

ysinεxcoshεyþ xsinhεycosεx ¼ 0 (15)

We can rewrite Eq. (15) in a different form with x* = εx and y* = εy as new
variables

tan x ∗

x ∗ ¼ � tanhy ∗

y ∗
; sin 2x ∗ þ sinh 2y ∗ ¼ ε4

x ∗ 2 þ y ∗ 2
(16)

Figure 2.
Wave number ratio as a function of dimensionless ratio ε = 2πl0/λs. Curves: 1—wave number ratio ks(ω)/
ks(0), i.e., S-wave velocity decreasing with frequency; 2—γ = Vs/Vp increasing with frequency; and 3—wave
number ratio ks(ω)/ks(0) of P waves.
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In the classic continuum, we apply the impulse conservation law to any
element of the medium. In this situation, we need to fill all pores over space by a
force field. Instead of real stresses, which are changing very fast from one point to
another, we can construct the continual image of real stresses. Namely, we use a
continuous field, which is constructed by the application of the operator P to the
real complicated force field. For this continuous image of real stress, P σikð Þ,we can
apply the impulse conservation law. In the classic continuous model, this operation
is made by nature itself. This model of a continuum requires some mathematical
operations in order to create the continuum medium. Using operator P, we can
write the equation of motion of micro-inhomogeneous body, because for an
average stresses in structure, the law of impulse conservation takes the usual
form, namely [4]

∂

∂xk
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In a more detailed form Eq. (9) can be rewritten as follows
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No wonder that Eq. (9) contains derivatives of the infinite order. This circum-
stance is due to many degrees of freedom for structured bodies. At l0 ! 0, we have
the usual equations of motion for classic continuous model of space.

3. Fundamental solutions

We can pass to the image space, following Hooke’s law and applying the Fourier
transform along three coordinates, as [5]
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This allows us to calculate the Fourier transform for the fundamental solution of
the system Eq. (9):
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At very small values, l0n, the sine and argument ratio approaches unity, and the
Fourier transform becomes an ordinary equation for Green’s tensor in an elastic
continuum. The inverse Fourier transform is obtained by integration of Eq. (13)
which includes simple poles corresponding to P and S waves and a set of simple
poles where the sine in the denominator of Eq. (13) becomes zero. The residuals are
in the simple poles, n2 ¼ k2Sl0n, where k2S is the wave number of both P and Swaves.
At very small l0, the ratio l0n

sin l0nð Þ ! 1 and denominators in Eq. (13) become the
classical equations that define the poles corresponding to compression and shear
waves velocities (Figure 2). Assuming n/ks = m and ksl0 = ε, we obtain the equation
for complex roots that describe waves from a focused source in porous and cracked
solids as

msin εmð Þ ¼ ε (14)

If m = x + iy is assumed to be a complex value, for the real and imaginary parts,
we have the transcendental equations

xsinεxcoshεy� ysinhεycosεx ¼ ε2

ysinεxcoshεyþ xsinhεycosεx ¼ 0 (15)

We can rewrite Eq. (15) in a different form with x* = εx and y* = εy as new
variables

tan x ∗

x ∗ ¼ � tanhy ∗

y ∗
; sin 2x ∗ þ sinh 2y ∗ ¼ ε4

x ∗ 2 þ y ∗ 2
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Figure 2.
Wave number ratio as a function of dimensionless ratio ε = 2πl0/λs. Curves: 1—wave number ratio ks(ω)/
ks(0), i.e., S-wave velocity decreasing with frequency; 2—γ = Vs/Vp increasing with frequency; and 3—wave
number ratio ks(ω)/ks(0) of P waves.
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Equation (15) obviously has many real roots corresponding to у = 0. Indeed, at
small ε, Eq. (15) gives the solution m = 1, which corresponds to the ordinary P- or
S-wave velocity. At large values of m, Eq. (15) is satisfied only if εm approaches a
value divisible by n, i.e., at near-zero sine that defines the characteristic anomalous
velocity. The unbounded value of the wave number means that normal P and S
waves coexist with arbitrarily small P and S velocity anomalies. The existence of
these anomalies in a micro-heterogeneous medium has its physical explanation:
energy is stored in strain (first derivatives of displacement) as well as in the curva-
ture of higher derivatives. Therefore, there appear as velocities related to flexural
and torsion waves and to numerous waves associated with oscillation of groups of
particles (blocks) (Figure 3).

The growing of ratio γ = VS/VP causes a very interesting phenomenon, namely an
apparent negative Poisson value, for waves with the length not very small compared
to size of a grain. The growing value of γ = VS/VP means that the Poisson ratio is
decreasing up to negative values [6] (Figure 4).

At the same time, Eqs. (14) and (15) likewise have complex roots. The first
Eq. (15) shows that complex roots arise only at some values of e, which are not so
small, as they satisfy the inequality εx > π/2. Table 1 lists complex roots
corresponding to some relatively small ε. Note that the parameter ε can be
expressed via the linear size-to-wavelength ratio (l0/λs).

Complex roots can mean either damping or unlimited growth of wave ampli-
tude, of course, in the presence of an energy-unbounded source. The minimum
damping (growth) corresponds to (2.0288)�1 or about a half of the normal velocity.
The same process can be expected to cause both excitation and damping in porous
and cracked media, depending on the phase of stationary oscillations.

Figure 3.
The decreasing P-wave velocity (the upper line) and S-wave velocity (the middle curve) and the growth of their
ratio γ = VS/VP (the lower line) due to increasing size of microstructure. The ratio γ = VS/VP more than 0.705
corresponds to the negative Poisson ratio [6]. The vertical scale is the wave velocities (km/s) and a horizontal
scale is the ratio between the size of the microstructure and wavelength.
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4. One-dimensional case: plane wave and instabilities

In one-dimensional case, the Eq. (10) takes more simple expression

u
0 0

Eþ l20
3!
Δþ l40

5!
ΔΔþ…

 !
þ k2Su ¼ 0 (17)

This equation by substitution u ¼ exp ikxð Þ gives us the dispersion equation for
an unknown wave number k, or for unknown wave velocity, which depends on the
size of structure l0 or specific surface of sample σ0:

sin kl0ð Þ
kl0

¼ k2S
k2

(18)

It is evident that by l0 ! 0, the wave number k ! kS, i.e., the wave velocity is
equal to VP or VS, elastic wave velocity. However, if l0 is not a very small value, the
wave velocity decreases up to zero by kl0 ! mπ, if m is the integer number. Hence,
this model describes along with usual seismic waves many waves of very small
velocities, which are not bound below.

Figure 4.
Gregory experimental data. Poison ratio (the vertical axis) versus pressure. Black color corresponds to water
saturated porous shales and gray color corresponds to dry shales with the same porosity. In this case, negative
Poisson ratios are possible.

ε x y

0.2147 2.0288 0.0548

0.2507 2.0645 0.5838

0.2771 2.1064 0.8880

0.3253 2.1560 1.1838

0.3918 2.2157 1.5122

Table 1.
The value epsilon means dimensionless product of structure size into wavenumber of usual S waves in
continuous medium. Value x means the real value of product of structural wavenumber into structure size.
Value y is the imaginary part of it.
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Equation (15) obviously has many real roots corresponding to у = 0. Indeed, at
small ε, Eq. (15) gives the solution m = 1, which corresponds to the ordinary P- or
S-wave velocity. At large values of m, Eq. (15) is satisfied only if εm approaches a
value divisible by n, i.e., at near-zero sine that defines the characteristic anomalous
velocity. The unbounded value of the wave number means that normal P and S
waves coexist with arbitrarily small P and S velocity anomalies. The existence of
these anomalies in a micro-heterogeneous medium has its physical explanation:
energy is stored in strain (first derivatives of displacement) as well as in the curva-
ture of higher derivatives. Therefore, there appear as velocities related to flexural
and torsion waves and to numerous waves associated with oscillation of groups of
particles (blocks) (Figure 3).

The growing of ratio γ = VS/VP causes a very interesting phenomenon, namely an
apparent negative Poisson value, for waves with the length not very small compared
to size of a grain. The growing value of γ = VS/VP means that the Poisson ratio is
decreasing up to negative values [6] (Figure 4).

At the same time, Eqs. (14) and (15) likewise have complex roots. The first
Eq. (15) shows that complex roots arise only at some values of e, which are not so
small, as they satisfy the inequality εx > π/2. Table 1 lists complex roots
corresponding to some relatively small ε. Note that the parameter ε can be
expressed via the linear size-to-wavelength ratio (l0/λs).

Complex roots can mean either damping or unlimited growth of wave ampli-
tude, of course, in the presence of an energy-unbounded source. The minimum
damping (growth) corresponds to (2.0288)�1 or about a half of the normal velocity.
The same process can be expected to cause both excitation and damping in porous
and cracked media, depending on the phase of stationary oscillations.

Figure 3.
The decreasing P-wave velocity (the upper line) and S-wave velocity (the middle curve) and the growth of their
ratio γ = VS/VP (the lower line) due to increasing size of microstructure. The ratio γ = VS/VP more than 0.705
corresponds to the negative Poisson ratio [6]. The vertical scale is the wave velocities (km/s) and a horizontal
scale is the ratio between the size of the microstructure and wavelength.
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4. One-dimensional case: plane wave and instabilities

In one-dimensional case, the Eq. (10) takes more simple expression
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an unknown wave number k, or for unknown wave velocity, which depends on the
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It is evident that by l0 ! 0, the wave number k ! kS, i.e., the wave velocity is
equal to VP or VS, elastic wave velocity. However, if l0 is not a very small value, the
wave velocity decreases up to zero by kl0 ! mπ, if m is the integer number. Hence,
this model describes along with usual seismic waves many waves of very small
velocities, which are not bound below.
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Gregory experimental data. Poison ratio (the vertical axis) versus pressure. Black color corresponds to water
saturated porous shales and gray color corresponds to dry shales with the same porosity. In this case, negative
Poisson ratios are possible.
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47

Appearance of Catastrophes and Plasticity in Porous and Cracked Media
DOI: http://dx.doi.org/10.5772/intechopen.87014



This effect is more for Pwaves than for S ones. Eq. (14) shows that if the Poisson
ratio is measured on samples by velocities VP and VS, their ratio VS/VP grows by
growing l0, and this effect can produce abnormally small Poisson’s ratio, up to
negative volume of it.

It is evident that at kl ¼ mπ, m is the integer number and the value k ! ∞. It
means that there are waves with arbitrary small velocities not bounded below.
Beside it, Eq. (15) has complex roots too, because sin kl0ð Þ may be negative, while
the second term in Eq. (18) contains kS=kð Þ2. Eq. (18) means that the complex roots
do not by small values of x, because the right-hand expression is a negative value. In
order to be complex roots, an evident condition is necessary, i.e., tanx>π=2. The
physical sense of it means that the complex roots are possible, if the wavelength is
four times (or more than four times) more than the size of the structure. These
complex roots mean that amplitude of oscillations may be increasing or decreasing
up to infinity or, may be, to zero. These roots are responsible for catastrophe’s
behavior of structured bodies.

Hence, if there is a source of sufficient energy, even some small oscillations can
produce catastrophes. It is interesting that nonlinear deforming of samples
decreases this effect, because a wave velocity for rocks is decreasing, by growing
amplitude of wave. It means that the wave number is growing by the same fre-
quency in the pure elastic process. In Figure 6, the real roots of dispersion, Eq. (18)
are shown. The vertical axis shows a dimensionless frequency, namely ε, while
horizontal axis shows us the real and imaginary parts of wave numbers. In
Figures 5–7 [7], complex roots as a function of dimensionless frequency ε are
shown. Every point is a position of some root, namely a real part, an imaginary one,
and a dimensionless frequency. The more is the spreading of ε values, the greater is
the number of complex roots.

Figure 5.
The position of complex roots depends on the value ε. The more the value ε, the more numbers of roots. The first
value of ε corresponds to values of first row from Table 1.
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5. Pointing vector and equation of equilibrium for blocked media

The equation of equilibrium for micro-structured media can be written from
Eq. (9) as

Figure 7.
The position of complex roots depends on the value ε. The more the value ε, the more numbers of roots. The third
value of ε corresponds to values of third row from Table 1.

Figure 6.
The position of complex roots depends on the value ε. The more the value ε, the more numbers of roots. The
second value of ε corresponds to values of second row from Table 1.
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∂

∂xk
P σikð Þ½ � ¼ P

∂σik
∂xk

� �
¼ 0;

∂σik
∂xk

¼ P�1 0ð Þ (19)

The inverse operator P�1 0ð Þ contains zero, but not zero only. It contains some
periodic functions and the average value equal to zero. For example, such construc-
tion satisfies to Eq. (19)

P
X

Im exp in
π

l0
k1xþ k2yþ k3zð Þ

� �� �
¼ 0

�
(20)

If n is integer number, k1 ¼ sinθcosφ; k2 ¼ sinθcosφ; k3 ¼ cosθ: Physical sense of it
means that volume forces are equal to zero in average sense, not at any point. Using
mentioned inverse operator, we can write the equilibrium equation for blocked
media in the form

∂σik
∂xk

¼ ϕσ20σ
0
iku

0
k

X∞
n¼1

Im exp in
π

l0
k1xþ k2yþ k3zð Þ

� �� �
(21)

In Eq. (21) σ20 is a quadrat of specific surface; σ
0
iku

0
k ¼ A0

i is the pointing vector of
usual continuous body, and ϕ is a dimensionless constant, which must be obtained.
These values we can put as constants in small structure volume. The integration
with respect to spherical angles gives us a result that the imaginary part of exponent
is zero in average sense, namely

1
4π

ð2π

0

ðπ

0

exp
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� �

sinθdθdφ

ðπ

0

exp ir
nπ
l0

cosp
� �

sinpdp ¼ 1
2

ð1
�1

exp ir
nπ
l0

t
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dt ¼ l0
nπr

sin
rnπ
l0

� �
þ i0 (22)

Partial solution of Eq. (22) is a convolution of Green tensor with right hand of
Eq. (21), that is,

u1i xð Þ ¼ ϕ
1
μ
σ20σ

0
mku

0
k xð ÞIm∭ Γmi x; yð Þ exp ikm xm � ym

� �� �
dVy (23)

Taking into account that the sizes of area much more, than sizes of structure, the
area of integration is the infinite large one. In this case, integral Eq. (13) practically is
the Fourier transform of fundamental solution of usual elastic equilibrium equations

u1ni xð Þ ¼ ϕ
1
μ
σ2σ0mku

0
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nπ

� �2

δmi � 1� γ2
� �

kmki
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� �
(24)

In Eq. (24) the imaginary part of the exponent is used. Hence, the additional
value in average sense is equal to zero. Using relation Eq. (1) σ0l0 ¼ 4 1� fð Þ, we get
a partial solution, which depends on porosity only
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1
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0
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If these indexes coincide, i ¼ m, we get

< u1ni xð Þ> ¼ ϕ
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4 1� fð Þ
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1� 1� γ2

3

� �
exp
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l0

� �
(26)

Take into account that the average value of a quadrat of cosine is < kmki> ¼ δkm
3 .

There is a summation with respect to n, and Ui0 is a Pointing vector for usual
continuous model of the medium. This value is a small one of the second order
compared to usual displacement, because a Pointing vector, divided on the shear
module is order to strain, multiplied to size of structure l0.

Strains. By differentiating of an integral Eq. (23) take into account that the main
part of the field contains in fast changing exponent, not in Green tensor itself, i.е.,

u1i, j xð Þ≈ϕ

μ
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0
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According to Eq. (9) the additional dilatation is

θ nð Þ ¼ ϕ
16γ2

3πμ
1
l0

U0n½ � 1� fð Þ2 1
n
exp i

nπ klxlð Þ
l0

� �
(29)

Let us integrate the normal component of the Pointing vector on the small
sphere with radius r. This integral must be equal to density of potential energy E
(divergence of Pointing vector) namely,

<U0n> ¼ E
σ0

¼ 4 1� fð ÞEl0 (30)

The average value of fast-changing exponent in Eqs. (28) and (29) on spherical
angles is

< exp
1
n

i
nπ klxlð Þ

l0

� �
> ¼ 4 1� fð Þ

πn2

ðnπ
0

sinx
x

dx ¼ 4 1� fð Þ
πn2

Si nπð Þ (31)

The additional dilatation due to randomly oriented volume forces (an average
value of these forces is zero) may be written as

θ ¼ ϕ
16γ2

3πμ
4 1� fð Þ3E

π

X∞
n¼1

Si nπð Þ
n2

(32)

In Eq. (32) the symbol Si nπð Þ means an integral sine of argument nπð Þ. The left
hand in Eq. (32) is an additional expansion or compression, so called as dilatancy. It
depends on the potential energy of the continuous body E, which may contain shear
energy only, but it produces additional expansion or compression. It is a quadrat
effect too.
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In Eq. (32) the symbol Si nπð Þ means an integral sine of argument nπð Þ. The left
hand in Eq. (32) is an additional expansion or compression, so called as dilatancy. It
depends on the potential energy of the continuous body E, which may contain shear
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More strong effect is related with product of high-changing volume force (equal
to zero in average) into displacement. This product in not equal to zero in average,
because it contains a quadrat of high-changing sine, which is equal to number one
third in three dimension space.

En ¼ ϕ
1
μ
σ0mku

0
k xð Þ 4 1� fð Þ

nπ

� �2

δmi � 1� γ2
� �

kmki
� � 1

3
ϕσ20U0i (33)

If indexes coincide, m ¼ i, we get the additional potential energy, due to
fluctuations

En ¼ ϕ2

3 λþ 2μð Þ U2
01 þ U2

02 þU2
03

� �
σ20

4 1� fð Þ
nπ

� �2

(34)

The summation with respect to index n from unit up to infinity gives

E ¼ 8ϕ2

9 λþ 2μð Þ σ
2
0 U2

01 þ U2
02 þU2

03

� �
1� fð Þ2 (35)

In spite of a fact that the Pointing vector is the small value of more high order,
than stresses, the high value σ20 (quadrat of specific surface) in Eq. (35) can produce
not small common effect. The indefinite factor ϕ depends on the real structure of
pore space and macro-stress-strain state. However, in some simple situations, it can
calculate elementary. For example, at rigid pressing of globe by spherical force
(radial displacements are constants), the stress-strain state is a hydrostatic state in
average, but not such state at any point. The compressional energy is proportional
to compress module of skeleton and its volume plus the incompressibility of fluid
and its volume, namely [8–11]

E ¼ λþ 2μ
3

� �
θ21
2

1� fð Þ þ ρc2
θ20
2
f (36)

Indexes unit and zero in Eq. (36) mean solid and liquid parameters. The dilata-
tion of two-phase body gives by the formula

θ ¼ 1� fð Þθ1 þ fθ0; θ0 ¼ θ1 (37)

If we have uniform random distribution of phases, the average energy is

E ¼ E1 1� fð Þ þ E0f (38)

In Eq. (38) f is the porosity and E1 and E0 are the energies of solid and liquid.
The dispersion of random value relates with random volume forces, i.e.,

E1 � E1 1� fð Þ þ E0fð Þ½ �2 1� fð Þ þ f E0 � E1 1� fð Þ þ E0fð Þ½ �2 ¼ E1 � E0ð Þ2f 1� fð Þ
(39)

Equation (39) gives the additional energy for very simple macro-hydrostatic
state in average. This is the additional of interphase acting. It is equal to additional
energy, which is given by Eq. (15). It is reasonable that at unit or zero porosity, an
additional energy is equal to zero. The second result is, if the phase energy is equal,
the mentioned additional one is equal to zero too. Hence, the indefinite factor ϕ2

given by the simple equation is
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1
μ
E1 � E0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1� fð Þ

q
¼ 8ϕ2

9 λþ 2μð Þ σ
2
0 U2

01 þ U2
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03

� �
1� fð Þ2 (40)

6. The arriving of plasticity

In spite of that, the additional average strains is small, does not means, that these
strains are small in the any point of the volume. Equations (28) and (29) show
that on the planes k1x� k2y� k3z ¼ 2l0q (q is an integer number), the exponent is
not a highly changed value, because it is equal to1 or �1.

In plane situation, the role of these planes plays orthogonal lines
k1x� k2y ¼ 2l0q.

Figures 8.
Successive process of strains localization due to decreasing strains inside of quadrats, making orthogonal lines
and increasing them near lines itself.
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The series Eqs. (28) and (29) with respect to n in vicinity of mentioned planes
are divergent (harmonic) series. It means that the field is decreasing inside of
quadrats, making planes, and concentrating in vicinity of planes. Mentioned planes
are analogs of slipping lines (lines of Luders) [12] in classic plasticity of the com-
pressible medium. In practical, the number n in Eqs. (28) and (29) is bounded by
the elastic limit of the second strain invariant. The field of strains is growing into
planes (lines) and decreasing inside of them. This process is called as localization of
strains. This localization begins in elasticity, with contrary of classic plasticity and
elasticity. The other specific feature of this process is the finite distance between
planes (lines). This distance is equal to l0 (the inverse value of specific surface of
sample), while in classic plasticity, this distance is infinitely small. The geological
sense of it is interesting. In order to transform the matter from elasticity to
plasticity, there is no necessary to have the plastic state at any point of the medium.
Plasticity may concentrated near planes, and the other volume can be in elastic
state. Rock may flow comparatively light, if they have pores and cracks. On the
Figure 8 shown successive process of localization of strains due to decreasing field
inside of quadrats, making by orthogonal lines and increasing them near lines itself.

7. Conclusions

1.The model of the structured continuum with specific surface of the blocked
medium or average size of structure, gives us the differential equations of
motion of the infinite order. This model includes collective properties of pore
space like the porosity and specific surface and predicts besides usual elastic
waves many unusual waves with very small velocities.

2.This model predicts the decreasing of the Poisson ratio (up to negative values)
due to finite size of microstructure. The reason for this is the decreasing of
wave velocity with finite specific surface of the rock.

3.The localization of stresses and strains in structured media begins in elastic
state of deforming.

4.The small areas of a stress-strain concentration looks like usual orthogonal
sliding lines in classic plasticity. However, they have a finite effective
thickness, which depends on the average size of the structure and the elastic
strain limit. Besides, there is a finite distance between analogs of sliding lines,
which is equal to the average distance from one pore to another one, or
between cracks.
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The series Eqs. (28) and (29) with respect to n in vicinity of mentioned planes
are divergent (harmonic) series. It means that the field is decreasing inside of
quadrats, making planes, and concentrating in vicinity of planes. Mentioned planes
are analogs of slipping lines (lines of Luders) [12] in classic plasticity of the com-
pressible medium. In practical, the number n in Eqs. (28) and (29) is bounded by
the elastic limit of the second strain invariant. The field of strains is growing into
planes (lines) and decreasing inside of them. This process is called as localization of
strains. This localization begins in elasticity, with contrary of classic plasticity and
elasticity. The other specific feature of this process is the finite distance between
planes (lines). This distance is equal to l0 (the inverse value of specific surface of
sample), while in classic plasticity, this distance is infinitely small. The geological
sense of it is interesting. In order to transform the matter from elasticity to
plasticity, there is no necessary to have the plastic state at any point of the medium.
Plasticity may concentrated near planes, and the other volume can be in elastic
state. Rock may flow comparatively light, if they have pores and cracks. On the
Figure 8 shown successive process of localization of strains due to decreasing field
inside of quadrats, making by orthogonal lines and increasing them near lines itself.

7. Conclusions

1.The model of the structured continuum with specific surface of the blocked
medium or average size of structure, gives us the differential equations of
motion of the infinite order. This model includes collective properties of pore
space like the porosity and specific surface and predicts besides usual elastic
waves many unusual waves with very small velocities.

2.This model predicts the decreasing of the Poisson ratio (up to negative values)
due to finite size of microstructure. The reason for this is the decreasing of
wave velocity with finite specific surface of the rock.

3.The localization of stresses and strains in structured media begins in elastic
state of deforming.

4.The small areas of a stress-strain concentration looks like usual orthogonal
sliding lines in classic plasticity. However, they have a finite effective
thickness, which depends on the average size of the structure and the elastic
strain limit. Besides, there is a finite distance between analogs of sliding lines,
which is equal to the average distance from one pore to another one, or
between cracks.

54

Seismic Waves - Probing Earth System

Author details

Boris Sibiryakov
Trofimuk Institute of Oil and Gas Geology and Geophysics SB RAS,
Novosibirsk State University, Novosibirsk, Russia

*Address all correspondence to: sibiryakovbp@ipgg.sbras.ru

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

55

Appearance of Catastrophes and Plasticity in Porous and Cracked Media
DOI: http://dx.doi.org/10.5772/intechopen.87014



References

[1] Santalo L. Integral Geometry and
Geometrical Probability. 2nd ed.
Cambridge University Press; 2004.
405 p

[2] Gradshteyn IS, Ryzhik IM. Table of
Integrals, Series, and Products. In:
Zwillinger D, Moll V, editors. Academic
Press; 2014. 1184 p

[3] Maslov VP. Operator Methods. Mir.
1976. 559 p

[4] Sibiryakov BP, Prilous BI. The
unusual small wave velocities in
structural bodies and instability of pore
or cracked media by small vibration.
WSEAS Transactions on Applied and
Theoretical Mechanics. 2007;7:139-144

[5] Fokin AG, Shermergor TD. Theory of
propagation of elastic waves in
nonhomogeneous media. Springer Link.
1990;25(5):600-609

[6] Gregory AR. Fluid saturation effect
on dynamic elastic properties of
sedimentary rocks. Geophysics. 1976;41
(5):895-921

[7] Sibiryakov BP, Prilous BI, Kopeykin
AV. The nature of instability of Blocked
Media and Distribution Law of Unstable
States. Physical Mesomechanics. 2013;
16:2:141-151. ISSN: 1029-9599

[8] Biot MA, Willis DJJ. Journal of
Applied Mechanics. 1957;24:594-601

[9] Biot MA. General solution of the
equations of elasticity and consolidation
for a porous material. Journal of Applied
Mechanics. 1941;12:155-164

[10] Gassman F. Uber die Elastizitat
Poroser Medien: Vier. der Natur.
Gesellschaft in Zurich. 1951;96:1-23

[11] Biot MA. Theory of propagation of
the elastic waves in a fluid saturated
porous solid. 1. Low-frequency range.

The Journal of the Acoustical Society of
America. 1956;28:168-178

[12] Kachanov LM. Fundamentals of the
Theory of Plasticity. North-Holland
Publishing Company, 1971. XIII, 482 p

56

Seismic Waves - Probing Earth System

Chapter 4

Efficient Simulation of Fluids
Pierre Thuillier Le Gac, Emmanuelle Darles,
Pierre-Yves Louis and Lilian Aveneau

Abstract

Fluid simulation is based on Navier-Stokes equations. Efficient simulation codes
may rely on the smooth particle hydrodynamic toolbox (SPH), a method that uses
kernel density estimation. Many variants of SPH have been proposed to optimize
the simulation, like implicit incompressible SPH (IISPH) or predictive-corrective
incompressible SPH (PC-ISPH). This chapter recalls the formulation of SPH and
focuses on its effective parallel implementation using the Nvidia common unified
device architecture (CUDA), while message passing interface (MPI) is another
option. The key to effective implementation is a dedicated accelerating structure,
and therefore some well-chosen parallel design patterns are detailed. Using a rough
model of the ocean, this type of simulation can be used directly to simulate a
tsunami resulting from an underwater earthquake.

Keywords: fluid simulation, SPH, CUDA, MPI, Navier-Stokes, tsunami

1. Introduction

Submarine earthquakes may generate tremendous disasters for human, like
what occurred during the Tohoku earthquake in 2011. Even if their seismic waves
may damage buildings and structures when they occur close to the coast, the
tsunami they generally cause are a massive risk for humans. Indeed, the energy
produced by a massive undersea quake is transmitted into the water at high speed
and results in a high wave when it arrives on the coast.

To avoid human losses, tsunami’s simulations can help to inform the govern-
ments and society about the risks before and after a submarine earthquake. This
chapter presents solutions for implementing such simulations. The main objective is
to be able to calculate the propagation of the tsunami wave into the ocean and then
to simulate efficiently its effects when the wave reaches the coast. These kinds of
simulation can be done in two dimensions considering only the profile of the coast
or in three dimensions when all the topography is considered. In both cases, the
simulation must handle how water is affected by the earthquake wave.

Viscosity is the measure depicting how a fluid resists deformations. Even water
is considered having a non-nil viscosity: so, this parameter must be considered
carefully for tsunami simulations. Water simulation relies on Navier-Stokes equa-
tions that describe the motion of a viscous fluid. Unfortunately, Navier-Stokes
equations cannot be solved directly like it is the case for many differential equa-
tions. The only way to obtain a solution at a given time consists of approximating it
through simulation. In practice, two family of methods may be used. The first one
consists in discretizing the simulation space into small parts and to do the
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Fluid simulation is based on Navier-Stokes equations. Efficient simulation codes
may rely on the smooth particle hydrodynamic toolbox (SPH), a method that uses
kernel density estimation. Many variants of SPH have been proposed to optimize
the simulation, like implicit incompressible SPH (IISPH) or predictive-corrective
incompressible SPH (PC-ISPH). This chapter recalls the formulation of SPH and
focuses on its effective parallel implementation using the Nvidia common unified
device architecture (CUDA), while message passing interface (MPI) is another
option. The key to effective implementation is a dedicated accelerating structure,
and therefore some well-chosen parallel design patterns are detailed. Using a rough
model of the ocean, this type of simulation can be used directly to simulate a
tsunami resulting from an underwater earthquake.
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1. Introduction

Submarine earthquakes may generate tremendous disasters for human, like
what occurred during the Tohoku earthquake in 2011. Even if their seismic waves
may damage buildings and structures when they occur close to the coast, the
tsunami they generally cause are a massive risk for humans. Indeed, the energy
produced by a massive undersea quake is transmitted into the water at high speed
and results in a high wave when it arrives on the coast.

To avoid human losses, tsunami’s simulations can help to inform the govern-
ments and society about the risks before and after a submarine earthquake. This
chapter presents solutions for implementing such simulations. The main objective is
to be able to calculate the propagation of the tsunami wave into the ocean and then
to simulate efficiently its effects when the wave reaches the coast. These kinds of
simulation can be done in two dimensions considering only the profile of the coast
or in three dimensions when all the topography is considered. In both cases, the
simulation must handle how water is affected by the earthquake wave.

Viscosity is the measure depicting how a fluid resists deformations. Even water
is considered having a non-nil viscosity: so, this parameter must be considered
carefully for tsunami simulations. Water simulation relies on Navier-Stokes equa-
tions that describe the motion of a viscous fluid. Unfortunately, Navier-Stokes
equations cannot be solved directly like it is the case for many differential equa-
tions. The only way to obtain a solution at a given time consists of approximating it
through simulation. In practice, two family of methods may be used. The first one
consists in discretizing the simulation space into small parts and to do the
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simulation considering fixed cells in this discrete space (mesh approach). Well-
known methods are the finite element, the finite difference, and the finite volume.
A second alternative approach is the smoothed particle hydrodynamics (SPH),
introduced in astrophysics in 1977 [1, 2], which is applied in computer graphics [3],
oceanography, and many other fields. The latter is particularly interesting for tsu-
nami simulation, since the most important part of the simulation is not in the ocean
but rather on the ground. This implies that a part of the fluid will cover the coast.
This heterogeneity makes the mesh-free SPH approach more adapted.

This chapter is organized as follows. Section 2 presents the basics of SPH,
detailing the different involved mathematical expressions and steps and previous
implementations proposed in the literature. Section 3 presents a parallel implemen-
tation of SPH: it recalls the main parallel patterns and how they are used to obtain a
reliable and fast simulation. Before the conclusions, Section 4 presents some results
for a simple case of tsunami.

2. SPH formulation

SPH is a Lagrangian approach, meaning that particles representing tiny parts of
the fluids may move during the simulation. It is based on density estimation applied
to moving particles, leading to an approximation of the Navier-Stokes equations.
This section recalls these equations and presents the basics of SPH.

2.1 Navier-Stokes equations

Navier-Stokes equations model the dynamics of a fluid. They rely on the Newton
second law, stating that the sum of the forces applied on a body equals the product
of its mass by its acceleration (∑F ¼ m � a). In practice, it is a system of two
equations: the mass continuity equation and the momentum equation. The first one
is given by

∂ρ
∂ t

þ ∇ ρuð Þ ¼ 0 (1)

where ρ designs the fluid density, ∇ is the gradient operator, and u is the flow
velocity. The momentum equation is

ρ
∂u
∂t

þ u � ∇u
� �

¼ �∇pþ μ∇2uþ ρg (2)

where �∇ is the divergence operator, ∇2 the Laplacian operator, p the pressure, μ
the dynamic viscosity coefficient, and g the gravity term. The right part of the
momentum equation represents the sum of the forces that the fluid undergoes,
where �∇p is the pressure force, μ∇2u the viscosity force, and ρg the gravitational
force. With the fluid velocity function being unknown, it is not possible to compute
analytically its divergence. Then, the momentum equation is nonlinear.

Nevertheless, some methods allow to calculate an approximation of these two
equations. Most of them regularly discretize the Euclidean space and calculate an
approximation by using the finite difference theorem. The advection term (the left
part of the momentum equation) is approximated placing particles into the grid and
then computing their displacement. In other words, each grid cell contains a given
amount of fluid, and the algorithm calculates the exchanges between adjacent cells.
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Such a solution is quite difficult to use into environment where some large part (like
ocean) and highly detailed parts must be considered together.

Another method to approximate the Navier-Stokes equations is SPH. The
Euclidean space is no more discretized. Instead, it considers some moving particles
representing the fluid and their interactions. Each particle comes with its specific
velocity, pressure, density, and viscosity. Then, the total derivative allows to
approach the advection term (those between parentheses on the left part of the
momentum equation) by a single derivative term du

dt . For a given particle i, the
momentum equation becomes

ρi
dui
dt

� �
¼ �∇pi þ μi∇

2ui þ ρig (3)

Therefore, the acceleration ai of the particle i is given by

ai ¼ dui
dt

¼ �∇pi
ρi

þ μi∇2ui
ρi

þ g (4)

2.2 Introduction to SPH

SPH relies on the kernel density estimation [4]. When we only have some
samples of a given function, we can estimate its value at a new location using a
kernel function W and the following estimation:

f xð Þ ¼ 1
n
∑
n

i¼1
W x� xj
�� ��� �

f xið Þ (5)

The kernel function W must be a unit positive function. In other words, it must
satisfy the two following properties:

∀x∈R,W xð Þ≥0 (6)
ð

R
W xð Þdx ¼ 1 (7)

We denoteWh a kernel function with bounded support 0; h½ �. This simply means
that Wh xð Þ ¼ 0 for all x<0 or x≥ h. This mathematical tool is used to approximate
any scalar field Ai for any particle i:

Ai ¼ ∑
n

j¼1
Aj

mj

ρj
Wh x� xj

�� ��� �
(8)

where mj and ρj are, respectively, the mass and the density of the jth particle.
Useful kernels for liquids are given in [3]. From this simple expression, we can
deduce the estimation of the gradient and the Laplacian of a scalar Ai:

∇Ai ¼ ∑
n

j¼1
Aj

mj

ρj
∇Wh x� xj

�� ��� �
(9)

∇2Ai ¼ ∑
n

j¼1
Aj

mj

ρj
∇2Wh x� xj

�� ��� �
(10)

These formulas allow to calculate the density of any particle, the gradient of the
pressure, and the Laplacian of the velocity to approximate a solution of the Navier-
Stokes equations. For each particle i, the SPH algorithm follows:
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�� ��� �
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• Compute the density ρi:

ρi ¼ ∑
n

j¼1
mjWh x� xj

�� ��� �
(11)

• Compute the pressure pi:

pi ¼ k ρi � ρ0ð Þ (12)

where k is the gas constant and ρ0 is the rest density.

• Compute f i, the sum of the forces at particle i of pressure, viscosity, surface
tension, and gravity:

f pressurei ¼ �∑
n

j¼1
mj

pi þ pj
2ρj

∇Wh xi � xj
�� ��� �

(13)

f viscosityi ¼ μ∑
n

j¼1
mj

uj � ui
ρj

∇2Wh x� xj
�� ��� �

(14)

f surfacei ¼ �σ∇2csi
ni
∣ni∣

(15)

f gravityi ¼ ρig (16)

where σ is the tension coefficient relating to the interface between the fluid and
the exterior (the air), ni is the normal vector to a particle i, and csi is the color field
of the particle i.

• Compute the velocity ui and the new particle position xi using a small
integration time step Δt:

ui ¼ ui þ Δt
f i
ρi

(17)

xi ¼ xi þ Δtui (18)

The SPH simulation uses these formulas to compute the positions of the particles
for a given time length through an iterative procedure. The particles’ interactions
are very important: we use a rather small support (small h value) for the kernel
function in order to limit the number n of neighboring particles. Then, in any good
implementation, one of the key elements is the neighboring handling. Using a
parallel processor, this can be achieved with a low complexity, allowing to reach
short computation times.

2.3 SPH algorithms

SPH method presented in Section 2.2 is quite immediate to implement [3]. Using
a small kernel support, the calculation of the forces that apply to a given particle is
quite fast, since only a few numbers of neighbors have to be considered. Neverthe-
less, the neighborhood needs to be efficiently computed and stored to accelerate the
calculations. This needs to be done for each time step. To do that, a regular grid is
the faster solution. The size of a grid cell is set as the radius of the kernel support.
Then, to find the neighbors of a given particle, it is enough to consider the cells
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surrounding the one containing this particle. In dimension 2 this leads to 9 cells
(including the cell containing the particle) and 27 in dimension 3.

The SPH method described in Section 2.2 has been extended to solve some
accuracy problem with incompressible fluids, for instance, predictive-corrective
incompressible SPH (PC-ISPH), incompressible SPH (ISPH), and implicit incom-
pressible SPH (IISPH) [5–7]. In Ref. [7], comparisons between these three tech-
niques show that IISPH is faster than PC-ISPH and ISPH, mainly since it allows to
use bigger time steps. Hence, this chapter focusses on an implementation of IISPH.
This evolved method is also more complex than classical SPH, and then each time
step uses more calculations (but they are longer, so it is faster still). More precisely,
for each particle it calculates the density ρi and the forces of viscosity, surface
tension, and gravity like in SPH method. It adds the calculation of the advection
velocity, which is the portion of the velocity independent to the pressure exerted by
the other particles:

uadvi ¼ ui þ Δt
mi

f viscosity
i þ f surface

i þ f gravity
i

� �
(19)

The IISPH algorithm calculates the advection factor dii and the advection coef-
ficient aii:

dii ¼ �Δt2 ∑
n

j

mj

ρ2i
Wh xi � xj
� �

(20)

aii ¼ ∑
n

j
mj dii � dji
� �

ΔWh xi � xj
� �

(21)

The IISPH algorithm continues with the calculation of pressure’s forces. It is
done through at least two corrective loops to enforce the minimization of the
difference between the rest density and the sum of the density of all particles. First,
this loop calculates the advection density:

ρadvi ¼ ρi þ Δt∑
n

j
mj uadvi � uadvj

� �
� ΔWh xi � xj

� �
(22)

Second, it calculates the following term per particle that will be used many times
in the next steps:

∑
n

j
dijplj ¼ Δt2 ∑

n

j
�mj

ρ2j
pl
jΔWh xi � xj

� �
(23)

where l is the iteration number of the corrective loop. Notice that for l ¼ 0,
IISPH uses p0i ¼ ωpi, with ω ¼ 0:5.

Then, the IISPH corrective loop continues by computing for each particle the
pressure force thanks to the following expression:

f pressurei ¼ ∑
n

j
�mimj

pi
ρ2i

þ
pj
ρ2j

 !
ΔWh xi � xj

� �
(24)

where pi is the pressure at a particle i:

pi ¼ 1� ωð Þpli þ
ω
aii

ρ0 � ρadvi �∑pli
� �

(25)
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are very important: we use a rather small support (small h value) for the kernel
function in order to limit the number n of neighboring particles. Then, in any good
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short computation times.
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quite fast, since only a few numbers of neighbors have to be considered. Neverthe-
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calculations. This needs to be done for each time step. To do that, a regular grid is
the faster solution. The size of a grid cell is set as the radius of the kernel support.
Then, to find the neighbors of a given particle, it is enough to consider the cells
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surrounding the one containing this particle. In dimension 2 this leads to 9 cells
(including the cell containing the particle) and 27 in dimension 3.

The SPH method described in Section 2.2 has been extended to solve some
accuracy problem with incompressible fluids, for instance, predictive-corrective
incompressible SPH (PC-ISPH), incompressible SPH (ISPH), and implicit incom-
pressible SPH (IISPH) [5–7]. In Ref. [7], comparisons between these three tech-
niques show that IISPH is faster than PC-ISPH and ISPH, mainly since it allows to
use bigger time steps. Hence, this chapter focusses on an implementation of IISPH.
This evolved method is also more complex than classical SPH, and then each time
step uses more calculations (but they are longer, so it is faster still). More precisely,
for each particle it calculates the density ρi and the forces of viscosity, surface
tension, and gravity like in SPH method. It adds the calculation of the advection
velocity, which is the portion of the velocity independent to the pressure exerted by
the other particles:

uadvi ¼ ui þ Δt
mi

f viscosity
i þ f surface

i þ f gravity
i

� �
(19)

The IISPH algorithm calculates the advection factor dii and the advection coef-
ficient aii:

dii ¼ �Δt2 ∑
n

j

mj

ρ2i
Wh xi � xj
� �

(20)

aii ¼ ∑
n

j
mj dii � dji
� �

ΔWh xi � xj
� �

(21)

The IISPH algorithm continues with the calculation of pressure’s forces. It is
done through at least two corrective loops to enforce the minimization of the
difference between the rest density and the sum of the density of all particles. First,
this loop calculates the advection density:

ρadvi ¼ ρi þ Δt∑
n

j
mj uadvi � uadvj

� �
� ΔWh xi � xj

� �
(22)

Second, it calculates the following term per particle that will be used many times
in the next steps:

∑
n

j
dijplj ¼ Δt2 ∑

n

j
�mj

ρ2j
pl
jΔWh xi � xj

� �
(23)

where l is the iteration number of the corrective loop. Notice that for l ¼ 0,
IISPH uses p0i ¼ ωpi, with ω ¼ 0:5.

Then, the IISPH corrective loop continues by computing for each particle the
pressure force thanks to the following expression:

f pressurei ¼ ∑
n

j
�mimj

pi
ρ2i

þ
pj
ρ2j

 !
ΔWh xi � xj

� �
(24)

where pi is the pressure at a particle i:

pi ¼ 1� ωð Þpli þ
ω
aii

ρ0 � ρadvi �∑pli
� �

(25)
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This last term is computed using the displacement factors:

∑pli ¼ ∑
n

j
mj ∑

n

j
dijplj � djjplj � ∑

n

k 6¼i
djkplk

 !
�Wh xi � xj

� �
(26)

All these calculations should be made in parallel to reduce the computation
times, using a tuned implementation, for instance, using message passing interface
(MPI) for high-performance computing (HPC) or using the Nvidia common uni-
fied device architecture (CUDA) on graphics processing unit (GPU) for simpler
computers.

3. Parallel SPH implementation

An efficient SPH implementation relies on parallelism at some level. A fully
parallel solution may become a very efficient solution, as previous works have
shown it. While most of the calculations may be done considering a single particle
into a single core, finding the neighboring particles that play a role in the density,
the pressure, and the external forces needs collaboration between different cores.

Using the texture mechanism available with GPU, working with the neighbors is
quite simple and efficient. Nevertheless, this implies to store all the particles into a
regular grid at each time step during the simulation. This part is somewhere the
most complicated, and the key step for an efficient implementation.

This section first presents the main parallel patterns (MAP, SORT, SCAN, etc.)
and then shows how they can be combined to write a new fast parallel SPH solver.

3.1 Parallel patterns

Writing a parallel algorithm is not as simple as writing a sequential algorithm.
This truism is based on the necessary consideration of the collaborations between
the different processors of a parallel machine: all the processors must work in
concert, and not isolated as in a sequential approach. These collaborative aspects are
the main difficulty. How to make sure all these processors expect when it’s needed
and work to the fullest when no synchronization is required?

Rather than writing a parallel algorithm based on classical sequential patterns,
parallel patterns make it possible to write a parallel algorithm directly, abstracting
the underlying machine. These patterns rely on very simple parallel architecture,
called the parallel random-access memory (PRAM). It assumes a synchronization
between an infinite set of processors and an infinite amount of memory [8].

3.1.1 Simple parallel patterns

Simple parallel patterns do not need synchronization. This means that, using a
GPU or an HPC, they may be run without any difficulties, even with less processors
than needed. The simpler one is the MAP, or transform, that consists in applying a
given function f to an input data to obtain the output. The key of this pattern is
about the localisation of the data: input and output are generally considered as
vectors (or arrays). Then, MAP applied to data at the same index:

Yi ¼ f Xið Þ MAPð Þ (27)

Figure 1 describes this pattern on small arrays.
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In many occasions, it is necessary to write the result at a new location, another
index. When each possible destination index is used once and only once, we obtain
a quite simple parallel pattern called SCATTER. It consists of writing the input data
from location i to the destination location map ið Þ, map being a permutation func-
tion. Figure 2 illustrates this parallel pattern.

In the same spirit, the GATHER parallel pattern writes at index i data coming
from index map ið Þ, using again a permutation function. To differentiate between a
SCATTER and a GATHER, you should remember that at first we read contiguous
data, while in the second, we write at contiguous location. This is resumed with the
following two expressions:

Ymap ið Þ ¼ Xi SCATTERð Þ (28)

Yi ¼ Xmap ið Þ GATHERð Þ (29)

PRAMmodel is very useful to write efficient algorithms on theory. Nevertheless,
at the end these algorithms run on real computers, with a limited amount of
memory and a fixed number of processors. Brent’s theorem links the theoretical
computation time on PRAM model with the one obtained using only p processors:

an algorithm made in O 1ð Þ using m processors will run in O m
p

� �
using only p pro-

cessors. This allows to predict the behavior of (very) simple algorithm on a GPU.

3.1.2 Advanced parallel patterns

In many cases, some degree of collaboration is needed between processors. This
leads to some more complicated parallel patterns. A very common parallel pattern
using such a collaboration is the SORT that sorts data according to a given order. It
is used in previous SPH implementation for building the neighbors’ grid. The SORT
pattern is based on the PARTITION pattern that moves values with respect to a
given predicate. More precisely, for n values Xi and using the predicate Pi ∈ 0; 1½ �,
the PARTITION pattern moves the values Xi for which Pi ¼ 1 at the beginning of
the resulting array, the others at the end (see Figure 3 for a simple example).

Figure 1.
Illustration of the MAP parallel pattern.

Figure 2.
The SCATTER and GATHER patterns move data using a permutation.
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3.1.1 Simple parallel patterns

Simple parallel patterns do not need synchronization. This means that, using a
GPU or an HPC, they may be run without any difficulties, even with less processors
than needed. The simpler one is the MAP, or transform, that consists in applying a
given function f to an input data to obtain the output. The key of this pattern is
about the localisation of the data: input and output are generally considered as
vectors (or arrays). Then, MAP applied to data at the same index:

Yi ¼ f Xið Þ MAPð Þ (27)

Figure 1 describes this pattern on small arrays.
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In many occasions, it is necessary to write the result at a new location, another
index. When each possible destination index is used once and only once, we obtain
a quite simple parallel pattern called SCATTER. It consists of writing the input data
from location i to the destination location map ið Þ, map being a permutation func-
tion. Figure 2 illustrates this parallel pattern.

In the same spirit, the GATHER parallel pattern writes at index i data coming
from index map ið Þ, using again a permutation function. To differentiate between a
SCATTER and a GATHER, you should remember that at first we read contiguous
data, while in the second, we write at contiguous location. This is resumed with the
following two expressions:

Ymap ið Þ ¼ Xi SCATTERð Þ (28)
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PRAMmodel is very useful to write efficient algorithms on theory. Nevertheless,
at the end these algorithms run on real computers, with a limited amount of
memory and a fixed number of processors. Brent’s theorem links the theoretical
computation time on PRAM model with the one obtained using only p processors:
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In many cases, some degree of collaboration is needed between processors. This
leads to some more complicated parallel patterns. A very common parallel pattern
using such a collaboration is the SORT that sorts data according to a given order. It
is used in previous SPH implementation for building the neighbors’ grid. The SORT
pattern is based on the PARTITION pattern that moves values with respect to a
given predicate. More precisely, for n values Xi and using the predicate Pi ∈ 0; 1½ �,
the PARTITION pattern moves the values Xi for which Pi ¼ 1 at the beginning of
the resulting array, the others at the end (see Figure 3 for a simple example).
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The SCATTER and GATHER patterns move data using a permutation.
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These complex patterns are built using a fundamental pattern called SCAN. It
corresponds to a prefix sum of values, according to the following expression:

Yi ¼ ⨁
i

j¼0
Xj INCLUSIVE� SCANð Þ (30)

The fundamental pattern exists in two versions: inclusive and exclusive ones.
The first corresponds to the expression given above, doing a sum-up to the current
output position. The exclusive version omits the current position, doing a sum-up to
i� 1 and using a nil value for Y0 (generally, using 0):

Yi ¼ ⨁
i�1

j¼0
Xi EXCLUSIVE� SCANð Þ (31)

Figure 4 shows that these two versions of SCAN are almost the same, except the
shift between the resulting arrays: the values obtained with inclusive version corre-
spond to the ones obtained with the exclusive version at the same position plus one.

Another pattern of interest into this chapter is the REDUCE that allows to
calculate a single value from an array of values and using any given associative
binary function:

Y ¼ ⨁
n�1

j¼0
Xi REDUCEð Þ (32)

For instance, using X ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10½ � and the classical integer sum as
binary operator, this pattern returns Y ¼ 55, the sum of the 10 first non-nil integers.

These complex patterns have roughly speaking all the same complexity, in

O log nð Þ on a PRAMmachine and O n
p log n

p

� �
using p processors only. Nevertheless,

since they are built using the SCAN, PARTITION and SORT are in practice more
complex and take more time. A fast implementation of the SORT pattern relies on
the radix sort algorithm that loops over the number of digits of the maximum key to
sort, thus having a practical complexity in O 32 log nð Þ with 32-bit integers.

Figure 3.
Illustration of the PARTITION pattern for nine input values; the values with predicate 1 are put at the
beginning of the output, the others at the end.

Figure 4.
Differences between the inclusive and exclusive SCAN patterns.
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The last programming tool this section covers is the atomic operation notion. A
load-modify-write operation cannot be handled in parallel program without cau-
tion. Let us consider two processors doing a “plus one” in parallel at the same time.
The addition is done by the CPU using registers (local memory to the CPU). Hence
the variables to add need to be loaded from the main memory, then added, and then
stored into the main memory. If the two processors do the load-modify-write
operation at the same time exactly on the same variable, then the result is false. If
the processors are not exactly synchronized, the result is certainly false also: to be
correct, the two operations must be done sequentially. Atomic operations provide
this behavior, performing the read-modify-write operation for one and only one
processor at a time.

Obviously, other parallel patterns exist. They are not discussed in this chapter
since they are not used in our SPH implementation.

3.2 Grid building

Previous SPH implementations use the SORT pattern to build the neighbors’ grid
[7, 9, 10]. The first step consists in calculating the grid index of each particle, using
a MAP. Next, the particles are sorted with respect to this index. Then, it is necessary
to compute the number of particles per cell and the starting position of each cell. In
[9], atomic operations are used for these two operations: the minimum for the first
particle into each cell and the addition for the number of particles per cell.

In Ref. [7], authors follow a similar approach with the particle sort with respect
to their cell index but using a MAP to mark the start and the end of each cell with
respect to the sorted cell indices, considering their unicity.

The main problem is that the sorting algorithm takes a large part of the compu-
tation time, near 30% according to [10]. In this chapter, we avoid the full sorting by
combining simple parallel patterns and atomic operations. Our grid building algo-
rithm is summarized in Figure 5.

This algorithm uses the Nvidia Thrust API with some freedom to shorten it. First,
at line 8 the number of particles per grid cell is set to zero. Next, like with previous
methods at line 9, the index of each particle is calculated with a MAP. Using a second
MAP at line 10, the particle cell offset is calculated using an atomic addition. More
precisely, we use the CUDA int. atomicAdd(int*cc, int. a) function that adds a to
the variable *cc and returns the old content of *cc. Since atomic operations are done
in sequence, the number of particles per cell is correctly computed. Moreover, each
particle receives the old counter value, which is 0 for the first atomic operation
execution, 1 for the second, and so on up to m� 1 for the last particle added to the

Figure 5.
Our algorithm to build the neighbors’ grid.
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The last programming tool this section covers is the atomic operation notion. A
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[7, 9, 10]. The first step consists in calculating the grid index of each particle, using
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cell, m being the number of particles added into the cell. These values are used to
scatter all the particles to their local position into the grid, at line 13. But, before to do
that we need to calculate the global grid offset, corresponding to the position of the
first particle of each cell. This is done using an exclusive SCAN at line 11 to
compute the global offset, followed by a MAP at line 12 to calculate each particle
global offset.

In practice, this algorithm can be optimized in many ways. First, the device
vectors can be allocated only once, and not each time the grid is built. Second, the
first two transforms (lines 9 and 10) can be mixed into one. This will limit the
memory loading into device registers, known as a major performance limitation
with GPU. At last, the last transform (line 12) and the scatter (line 13) can be mixed
into a single call again to minimize the memory bandwidth usage. Moreover, the
particles’ data must be split into multiple arrays for efficiency (one array for
position, one for density, one for pressure, etc.) as in [10].

3.3 Main algorithm

The most difficult part of the implementation of the IISPH method is the con-
struction of the neighbors’ grid, as for any non-mesh density kernel method. The
rest of the calculation is rather simple and relies on two parallel models: the MAP for
all the loops on particles and the REDUCE to control the termination of the correc-
tive loop in the calculation of the pressure force.

It is noticeable that the IISPH loop to correct the pressure force runs on the CPU,
because there is no available global synchronization on the GPU. Then, the
REDUCE is used to return a value from the GPU to the CPU, to decide if more
corrections are needed or not. Nevertheless, since this just consists of sending one
real value, it is not a big bottleneck.

Moreover, many calculations use data from the neighbors (pressure, density,
position, etc.). L1 GPU’s memory is used to accelerate these calculations, reducing
the computation time around a third in our experiment. Notice also that the IISPH
corrective loop amortizes the neighbors’ grid building. In our experiments the grid
building now represents less than 10 percent of the full computation time.

4. Experiments

The IISPH is a valid solution to simulate a tsunami [11]. Its main advantage
regarding a discrete method is that it does not need to refine the mesh near the
obstacles, like the coast and the buildings. Moreover, the wave can go everywhere,
including interfering with the beach, buildings, infrastructure, etc.

In this chapter, we illustrate the tsunami simulation using IISPH algorithm
through a rather simple scenario. It contains a short coast ending with a mountain.
We put a building just after the beach. The main difficulty, if either, consists of
generating the solitary wave. A tsunami, for instance, is generated by an earthquake
at long distance. The produced wave runs at 200 meter per second (720 km/h). We
do not need to simulate the propagation of the wave since its epicenter, which is
quite difficult with long distance: it needs very long simulation time to see the wave
reaching the beach, and obviously it needs a huge amount of memory to handle the
sea between the two distant locations. Instead, we simulate the wave into a rather
small space. We can predict the time of arrival to the beach, assuming we know the
exact distance between the beach and the earthquake location.

In [11], authors solve the solitary wave solution of Boussinesq. They calculate
the wave paddle displacement using the equation:
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X tð Þ ¼ Ct� θ
κ

(33)

where C is the wave velocity, t is the time in the simulation frame, κ is the decay
coefficient, and θ is given using Newton’s method by

θlþ1 ¼ θl � θl � κCtþ H
h tan θl

� �

lþ H
h sech

2 θl
� � (34)

More precisely, θ is the solution of the following problem:

X tð Þ ¼ H
κh

tanh κ Ct–X tð Þð Þð Þ (35)

where H and h are the wave height and the water depth, respectively.
While this method works on CPU, it is not well-suited for a CUDA implemen-

tation of the IISSPH, mainly because the number of iterations of the Newton-
Raphson method depends on the input values, and so is not constant per particle.

Hence, in this chapter we use a different but simple technique. The wave is
produced using a piston wave generator. Here, the piston is a huge virtual object
that moves the water to reach the speed of the wave. The length and the speed of
the piston movement are calibrated to obtain the good height and speed of the
tsunami solitary wave.

Figure 6 illustrates such a simple wave simulation, before the tsunami wave
arrives. Figure 7 shows the wave arriving at the building at t ¼ 4 s in the simulation
frame. In Figure 8, at t ¼ 8 s, the building is completely below the ocean that returns

Figure 6.
Tsunami simulation before the solitary wave arrives.

Figure 7.
Tsunami wave reaching the building near the beach.
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reaching the beach, and obviously it needs a huge amount of memory to handle the
sea between the two distant locations. Instead, we simulate the wave into a rather
small space. We can predict the time of arrival to the beach, assuming we know the
exact distance between the beach and the earthquake location.

In [11], authors solve the solitary wave solution of Boussinesq. They calculate
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X tð Þ ¼ Ct� θ
κ

(33)

where C is the wave velocity, t is the time in the simulation frame, κ is the decay
coefficient, and θ is given using Newton’s method by

θlþ1 ¼ θl � θl � κCtþ H
h tan θl

� �

lþ H
h sech

2 θl
� � (34)

More precisely, θ is the solution of the following problem:

X tð Þ ¼ H
κh

tanh κ Ct–X tð Þð Þð Þ (35)

where H and h are the wave height and the water depth, respectively.
While this method works on CPU, it is not well-suited for a CUDA implemen-

tation of the IISSPH, mainly because the number of iterations of the Newton-
Raphson method depends on the input values, and so is not constant per particle.

Hence, in this chapter we use a different but simple technique. The wave is
produced using a piston wave generator. Here, the piston is a huge virtual object
that moves the water to reach the speed of the wave. The length and the speed of
the piston movement are calibrated to obtain the good height and speed of the
tsunami solitary wave.

Figure 6 illustrates such a simple wave simulation, before the tsunami wave
arrives. Figure 7 shows the wave arriving at the building at t ¼ 4 s in the simulation
frame. In Figure 8, at t ¼ 8 s, the building is completely below the ocean that returns

Figure 6.
Tsunami simulation before the solitary wave arrives.

Figure 7.
Tsunami wave reaching the building near the beach.
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into its bed after some more time (see Figures 9 and 10). The building is made with
fixed particles that nevertheless are considered with the moving particles of the fluid.
This allows an interaction between two kinds of particles, and it permits to obtain the
pressure and force applied to the building, for instance, to check if it will resist or not.

5. Conclusions

This chapter focusses on the simulation of a tsunami solitary wave. Such a wave
is mainly produced by submarine earthquake and may provoke vast disasters for

Figure 8.
The tsunami wave engulfed the building and the coast.

Figure 9.
The tsunami wave begins to pull off the coast. With flat coasts, this may take some time.

Figure 10.
After a longer time, the tsunami wave has almost completely disappeared.
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human living near the coasts. Such phenomena also may produce strong degrada-
tion on buildings and structures, in turn inducing human loss as what happened
after the Tohoku earthquake in 2011. To avoid these disasters, it is important to be
able to validate the robustness of structures and buildings near the dangerous coasts
and to inform population after an always unpredictable submarine earthquake.

To achieve these goals, it is necessary to produce robust and fast fluid simulator
software. To simulate a tsunami wave, a good candidate is the SPH method. Since it
does not need the usage of a fix mesh like in discrete techniques, it allows to handle
correctly the wave running on the beach and after. Moreover, it correctly handles
the contact with buildings and structures, allowing to simulate the forces that they
undergo.

This chapter recalls the implicit incompressible SPH method, which is one of the
fastest among the SPH ones. The parallel implementation for GPU is detailed in
depth, with a fast algorithm to build the neighbors’ grid, avoiding the classical
sorting method which is more time-consuming.

At last, this chapter proposes a simple tsunami wave simulation using a piston
wave generator, a simple solution for implementing and providing valuable results.
It can be used to simulate tsunami generated by submarine earthquake occurring in
a pattern of seismic source mechanism when both the location and intensity are
estimated.
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Abstract

Japanese Islands are composed of four plates, with two oceanic plates subduct-
ing beneath the two continental plates. In 2016 the National Research Institute 
for Earth Science and Disaster Resilience (NIED) Seafloor Observation Network 
for Earthquakes and Tsunamis along the Japan Trench (S-net) started seismic 
observation of the offshore Hokkaido to Boso region in the Pacific Ocean, and 
Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) was 
transferred to NIED. We add the NIED S-net and DONET datasets to NIED high-
sensitivity seismograph network (Hi-net) and full range seismograph network 
(F-net) datasets used in the previous study and obtain the three-dimensional 
seismic velocity structure beneath the Pacific Ocean as well as Japanese Islands. 
NIED S-net data dramatically improve the resolution beneath the Pacific Ocean 
at depths of 10–20 km because the seismic stations are located above the earth-
quakes and on the east side of the Japan Trench. We find a NS high-Vp zone at 
depths of 20–30 km. The 2018 Eastern Iburi earthquake occurred below the 
northern part of this high-V zone. The coseismic slip plane of the 2011 Tohoku-
oki earthquake has low Vp/Vs, but its large slip region has high Vp. The broad 
low-Vp/Vs region may play a role in large earthquake occurrence.

Keywords: seismic tomography, failed rift, offshore event, NIED S-net, DONET, 
NIED Hi-net

1. Introduction

The Japanese Islands are mainly composed of the Eurasian (EUR) and the North 
American (NA) plates, and a number of small islands are on the Philippine Sea 
(PHS) and the Pacific (PAC) plates (Figure 1). The PHS and PAC oceanic plates are 
subducting beneath the EUR and the NA plates. A number of earthquakes occurred 
both at the plate interfaces and within the plates.
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1. Introduction

The Japanese Islands are mainly composed of the Eurasian (EUR) and the North 
American (NA) plates, and a number of small islands are on the Philippine Sea 
(PHS) and the Pacific (PAC) plates (Figure 1). The PHS and PAC oceanic plates are 
subducting beneath the EUR and the NA plates. A number of earthquakes occurred 
both at the plate interfaces and within the plates.
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After the Kobe earthquake in January 1995, the Japanese government enacted the 
Special Measure Law on Earthquake Disaster Prevention in July 1995. This was to 
promote a comprehensive national policy on earthquake disaster prevention. Based 
on this goal, the National Research Institute for Earth Science and Disaster Resilience 
(NIED) contracted the deployment of the nationwide high-sensitivity seismograph 
network (Hi-net) [1] since NIED had already accumulated the experience for the 
Tokyo metropolitan deep borehole array and operated the Kanto-Tokai seismic 
network since 1979. NIED operates the Hi-net with approximately 800 stations 
since 2000 [2] and the full range seismograph network (F-net) [3] with approxi-
mately 70 stations composed of broadband seismographs since 1994 [4]. The Japan 
Meteorological Agency (JMA), the national universities, and other institutes operate 
other seismic networks with a total of approximately 600 stations for the detection of 
microseismicity. NIED operates ocean-bottom seismic stations beneath the Sagami 
Bay, while the JMA operates offshore the Tokai and Boso regions. The Earthquake 
Research Institute, University of Tokyo, operates the network offshore Sanriku, and 
the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) operates 
offshore Kushiro and Muroto networks. JAMSTEC started the construction of the 
Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) [5] 
off Kii and Muroto Peninsulas near the Nankai Trough in 2010, and they started 
operation networks offshore Kii (in 2014) and Muroto (in 2016) Peninsulas. NIED 
deployed the Seafloor Observation Network for Earthquakes and Tsunamis along the 
Japan Trench (S-net) [6] after the 2011 offshore Tohoku Earthquake (the Tohoku-oki 
event), which began operating in 2016 [7, 8]. DONET was transferred to NIED from 
April 2016. NIED started the operation of Monitoring of Waves on Land and Seafloor 
(MOWLAS) composed of Hi-net, F-net, S-net, DONET, strong-motion seismograph 
networks (K-NET and KiK-net) [9], and Volcano Observation Network (V-net) [10].

Figure 1. 
Name of plates and location.
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NIED S-net and DONET teams manually pick the arrival time data at the 
oceanic seismic stations after NIED Hi-net team has determined the hypocenters 
using the land stations. We confirm the difference of shallow hypocenters between 
the determination by only NIED Hi-net and that by NIED Hi-net and NIED S-net. 
Stars in Figure 2 show the hypocenters at depths shallower than 20 km beneath 
the PAC plate determined by NIED Hi-net from September 11, 2017, to the end of 
2018. The shallow hypocenters near the main island tend to remain shallow; how-
ever, hypocenters more than 200 km off the coast shifted significantly deeper to 
40–80 km depth when including the S-net arrival time data (Figure 2). Deep events 
determined by NIED Hi-net on the east side of a longitude of 144°E are also shifted 
shallower. This suggests that it is important to include the S-net data for reliable 
hypocenter locations of offshore events.

Three-dimensional (3D) seismic velocity structure beneath the whole Japanese 
Islands has been studied using the vast data of seismic stations within the Japanese 
Islands maintained by NIED, JMA, national universities, and the other national 
and local governmental institutes (e.g., [11–14]). These studies used data obtained 
mainly at land-based seismic stations with a very few seismic stations on the sea 
floor such as Sagami Bay, off Kushiro, Sanriku, Boso, and Tokai regions. Reference 
[14] investigated the structure beneath the PAC plate at depths of 30–50 km using 
events that occurred under the Pacific Ocean (PO) with focal depths determined 
by NIED F-net. However, that study was not able to clarify the shallow structure 
beneath the PO at depths of 0–20 km because of the lack of seismic stations on 
the seafloor of the PO. The seismic ray takeoff angles proceed downward from 
the events to the seismic stations on land, and they do not pass through the shal-
low zone beneath the ocean since the distance from the hypocenter to the seismic 
stations is usually over 150 km. We investigated the 3D seismic velocity structure 
of and around Japanese Islands including the Sea of Japan and PO by the seismic 
tomographic method. We added the arrival time data detected in the S-net, the 
DONET, and the Hi-net datasets, operated by NIED, as well as other datasets, oper-
ated by multiple organizations, after 2016 in addition to the data used in [14]. Then 
we applied the seismic tomography to these datasets.

Figure 2. 
Comparison of hypocenters determined by the NIED (a) Hi-net and (b) Hi-net and S-net. Stars denote 
hypocenters determined at depths shallower than 20 km by only Hi-net in (a) and redetermined by Hi-net and 
S-net in (b).
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2. Data and method

The target region, 20–48°N and 120–148°E, covers the whole Japanese Islands 
from Hokkaido to Okinawa and the seismic stations both Hi-net on land and S-net and 
DONET beneath the ocean. In addition to the arrival time data used by [14], 1,782,425 
P- and 1,528,733 S-wave arrival times from 32,952 earthquakes recorded at approxi-
mately 2000 stations including NIED S-net and DONET from April 2016 to June 2018 
were selected. A total of 7,853,757 P-wave arrival data and 4,604,780 S-wave arrival 
data from 112,631 events are available after merging the new datasets (Figure 3).

We used the seismic tomographic method [15, 16] with spatial velocity correla-
tion and station corrections to the original code by [11]. Grid nodes were placed with 
half of the spatial resolution. We performed smoothing in order to stabilize the solu-
tion for the inverse problem with the LSQR algorithm [17] since arbitrary damping 
matrix with combination of diagonal and smoothing matrices could be assumed.

We placed 3D grid nodes to construct the velocity (slowness) structure with 
the grid spacing shown in Table 1 and adopted the 1D structure used in the routine 
determination of hypocenters at the Hi-net and S-net [18] as the initial velocity 
model (Figure 4). No velocity discontinuities such as Moho discontinuities or the 
plate boundary between the EUR and PAC or PHS plates were assumed in this 
study. This is because there were enough data to estimate the steep velocity gradient 
to represent plate boundaries so that velocity discontinues in the model were not 
necessary [13, 16, 19]. The total number of unknowns, 4,417,505, for P-wave slow-
ness is the same as those for S-wave slowness. We solved the P- and S-wave slowness 
at each grid node from more than 10 associated rays.

First, we inverted the P- and S-wave seismic velocities using the initial hypo-
center location. Second, both hypocenters and 3D seismic velocity structure were 
inverted simultaneously. We included the arrival times from the events beneath 
the ocean before 2015 in addition to the data used by [14]. Focal depths of offshore 
events were determined by NIED F-net or [20] since offshore events determined 
by only NIED Hi-net are not reliable. For these offshore events, only epicenters are 
inverted by the 3D seismic velocity structure, while hypocenter depths are fixed. 

Figure 3. 
Distribution of hypocenters and seismic stations used for seismic tomography.
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We do not fix any condition for the events after 2016 detected by NIED S-net and 
DONET and the events within 50 km of the onshore seismic networks before 2015 
during the inversion.

Residuals are improved to within 0.5 s for P-wave and 0.6 s for S-wave in the 
travel time inversion. In the final iteration, we used 6,356,481 P-wave arrival data 
and 3,534,482 S-wave arrival data to solve for the P-wave slowness at 1,135,165 grid 
nodes and the S-wave slowness at 1,103,525 grid nodes. The inversion reduces RMS 
of the P-wave travel time residual from 0.561 to 0.192 s and that of the S-wave data 
from 0.812 to 0.239 s after 11 iterations.

We conducted a checkerboard resolution test to evaluate the reliability of our solu-
tion [21]. We assumed a ± 5% checkerboard pattern and calculated synthetic travel 
times with random noise of 0 mean and standard deviations of 0.13 and 0.24 s for 
P- and S-waves, respectively. The standard deviations for random noise were derived 
from the average of the estimated uncertainty of the manually picked arrival times. 
The weight of data is inversely proportional to each width of picking error. The damp-
ing factors for the P-wave inversion are twice those for the S-wave inversion, since the 
average standard deviation of P-wave picking errors is almost half of that of S-wave.

Depth Grid interval Resolution/checkerboard pattern

Horizontal Vertical (km) Horizontal Vertical (km)

0–10 0.1° 2.5 0.2° 5

10–40 5 10

40–60 10 20

60–180 15 30

180–300 20 40

300− 25 50

Table 1. 
Grid interval and resolution size.

Figure 4. 
Seismic velocity structures of the initial model and the average of the final 3D model.
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2. Data and method

The target region, 20–48°N and 120–148°E, covers the whole Japanese Islands 
from Hokkaido to Okinawa and the seismic stations both Hi-net on land and S-net and 
DONET beneath the ocean. In addition to the arrival time data used by [14], 1,782,425 
P- and 1,528,733 S-wave arrival times from 32,952 earthquakes recorded at approxi-
mately 2000 stations including NIED S-net and DONET from April 2016 to June 2018 
were selected. A total of 7,853,757 P-wave arrival data and 4,604,780 S-wave arrival 
data from 112,631 events are available after merging the new datasets (Figure 3).

We used the seismic tomographic method [15, 16] with spatial velocity correla-
tion and station corrections to the original code by [11]. Grid nodes were placed with 
half of the spatial resolution. We performed smoothing in order to stabilize the solu-
tion for the inverse problem with the LSQR algorithm [17] since arbitrary damping 
matrix with combination of diagonal and smoothing matrices could be assumed.
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determination of hypocenters at the Hi-net and S-net [18] as the initial velocity 
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inverted simultaneously. We included the arrival times from the events beneath 
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events were determined by NIED F-net or [20] since offshore events determined 
by only NIED Hi-net are not reliable. For these offshore events, only epicenters are 
inverted by the 3D seismic velocity structure, while hypocenter depths are fixed. 

Figure 3. 
Distribution of hypocenters and seismic stations used for seismic tomography.
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We do not fix any condition for the events after 2016 detected by NIED S-net and 
DONET and the events within 50 km of the onshore seismic networks before 2015 
during the inversion.

Residuals are improved to within 0.5 s for P-wave and 0.6 s for S-wave in the 
travel time inversion. In the final iteration, we used 6,356,481 P-wave arrival data 
and 3,534,482 S-wave arrival data to solve for the P-wave slowness at 1,135,165 grid 
nodes and the S-wave slowness at 1,103,525 grid nodes. The inversion reduces RMS 
of the P-wave travel time residual from 0.561 to 0.192 s and that of the S-wave data 
from 0.812 to 0.239 s after 11 iterations.

We conducted a checkerboard resolution test to evaluate the reliability of our solu-
tion [21]. We assumed a ± 5% checkerboard pattern and calculated synthetic travel 
times with random noise of 0 mean and standard deviations of 0.13 and 0.24 s for 
P- and S-waves, respectively. The standard deviations for random noise were derived 
from the average of the estimated uncertainty of the manually picked arrival times. 
The weight of data is inversely proportional to each width of picking error. The damp-
ing factors for the P-wave inversion are twice those for the S-wave inversion, since the 
average standard deviation of P-wave picking errors is almost half of that of S-wave.
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Figure 5. 
Map views of checkerboard resolution test for Vp and Vs. green line surrounds the well-resolved area.

3. Results

3.1 Results of checkerboard resolution test

Figure 5 shows the results of checkerboard resolution test. We calculate the 
recovery rate and stability with surrounding grid nodes in order to confirm well-
resolved area [15]. The resolutions of Vp and Vs at depths of 5–30 km beneath 
main four islands are good. At depths of 40–60 km, resolutions are not good 
along the Sea of Japan coast because there are few deep earthquakes that can be 
used for inversion.
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NIED S-net data increase the resolution at depths of 10–60 km from Honshu 
to the Japan Trench (Figure 5). Reference [14] used the offshore events such as 
aftershocks of the Tohoku-oki earthquake. The presence of a seismic station above 
the events is extremely important for the estimation of velocity structure as well 
as the determination of hypocenters. The resolutions at depths of 0 and 5 km are 
still not good in spite of the use of S-net data because the incident angle to the S-net 
stations are mainly steep and ray paths do not run horizontally because of the lack 
of shallow earthquakes. Resolutions near the triple junction of Japan Trench and 
Sagami Trough where three plates, PAC, PHS, and EUR, meet are good at depths of 
20–30 km. This is an advantage of using NIED S-net.

Beneath the DONET area, the resolution at depths of 10–60 km is good for Vp, 
and those at depths of 5–40 km are good for Vs. The resolved zone extends to the 
Nankai Trough since there is sufficient seismicity in this area.

3.2 Map views at depths

We calculated the average 1D model from the final 3D velocity structure (Figure 4). 
We also showed the perturbation from these average velocities (Figure 6).

At a depth of 5 km, low-Vp and low-Vs regions are located along the PAC coast 
beneath southeastern Hokkaido, northeastern Honshu, most of Kanto, Sagami Bay, 
southern Kinki, and southern Shikoku regions. A low-Vs region extends beneath the 
entire Shikoku and southern Chugoku regions. A low-Vp/Vs region runs along the Ou 
backbone range in northeastern Japan and central Japan. Other regions have high Vp/Vs.

At a depth of 10 km, low-Vp regions extend beneath the active volcanoes in the 
northeastern and central Honshu and Kyushu regions. Low-Vs regions are almost 
the same as those at a depth of 5 km. High-Vp/Vs regions are distributed at central 
Hokkaido and coastal area in northeastern Japan. Low-Vp/Vs covers the other regions.

At a depth of 20 km, low-Vp regions lie beneath volcanoes in Hokkaido, central 
Honshu, and Kyushu. Low-Vs regions extend beneath the volcanoes and back-arc 
side of Honshu. Both low-Vp and low-Vs regions extend from central Kinki to 

Figure 6. 
Map views of Vp and Vs perturbation and Vp/Vs. Colored area is the resolved area. Broken white lines at 
depths of 10 and 20 km denote the median tectonic line.
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Kyushu region across central Shikoku. This low-V zone remains the same as at a 
depth of 5 km. High-Vp/Vs regions cover the Ou backbone range and back-arc side 
of northeastern Honshu.

At a depth of 30 km, low-Vp extends beneath the northeastern Honshu, central 
and southwestern Honshu, and northern Kyushu regions. Low-Vs regions extend 
beneath most of Honshu, Kyushu, and northern Shikoku regions. High-Vp/Vs 
regions cover almost all Japanese Islands except the central Hokkaido.

At a depth of 40 km, low-Vp regions exist beneath the volcanoes in southeast-
ern Hokkaido and northeastern and central Honshu regions. The low-Vp regions 
beneath the volcanoes in the northeastern Japan extend to back-arc side. Low-Vs 
regions are clarified beneath the volcanoes in southeastern Hokkaido and central 
Honshu regions. Low-Vs regions beneath the northeastern Honshu can be found 
east of the volcanic front as are low-Vp regions. Low-Vp/Vs regions cover the central 
mountains across Hokkaido and northeastern and central Honshu.

At a depth of 60 km, low-Vp and low-Vs regions extend beneath the volca-
noes in Honshu and central Honshu. High-Vp and Vs regions extend beneath 
the Kinki, Shikoku, and eastern Kyushu regions where the PHS plates subduct. 
High-Vp/Vs regions are distributed across western Hokkaido, central Honshu, 
and central Shikoku regions.

At a depth of 90 km, low-Vp and low-Vs regions exist beneath the volcanoes 
beneath Hokkaido and Honshu. High-Vp and Vs regions extend to the east of north-
eastern Japan where the PAC plate subducts. High-Vp/Vs regions cover northern and 
southwestern Hokkaido, central Honshu, and central Kyushu regions.

3.3  Velocity structure beneath the Pacific Ocean off northeastern Japan beneath 
the S-net

At a depth of 10 km, a low-Vp and low-Vs zone extends along the coast of the PO 
in the northeastern Honshu. A high-Vp and high-Vs zone exists between the lon-
gitudes of 142 and 143°. East of longitude of 143° (Figure 6A and B), low-Vp, and 
low-Vs zone shows again. Vp/Vs is generally low except in some small regions.

At a depth of 20 km, a high-Vp and high-Vs zone extends along the coast of the 
PO in the northeastern Honshu, in contrast to the structure at a depth of 10 km. 
Low-V zones extend to the east of the high-Vp zone; however, some high-Vp zones 
exist among the low-Vp zones (Figure 6C). High-Vs zones are mixed with minor 
low-Vs zone off the east of northeastern Honshu, extending to a longitude of 143.5° 
(Figure 6D). This pattern can be seen with Vp at a depth of 10 km. Vp/Vs is also 
broadly low, and this pattern of Vp/Vs can be seen when the depth is 10 km except 
in some regions.

At a depth of 30 km, low-Vp zone extends off the east of northeastern Honshu 
between longitudes of 142 and 143.5 and to the region off the southeast of 
Hokkaido. High-Vp zone can be seen along the Japan Trench. Two patches of low-Vs 
zones exist in the east of northeastern Honshu at latitude of 37–40° and longitude of 
142–143° and at latitude of 35–36° and longitude of 141–142°. High-Vp/Vs region is 
bounded by the low-Vp/Vs region, a north–south “stripe” pattern.

At a depth of 40 km, low-Vp and low-Vs zones extend between longitude of 
142–143° and latitudes of 37–41°. These low-Vp and low-Vs zones extend to the west 
of the Hidaka Mountains. High-Vp and high-Vs zones can be seen on the east of the 
low-V zone and reach the east of the Japan Trench. Vp/Vs in this area is moderate 
except for some low-Vp/Vs regions with north–south trend.

At a depth of 60 km, low-Vp and low-Vs zones extend just off the coast of the 
PAC in the northeastern Honshu. High-Vp and high-Vs zones extend broadly on the 
east of the narrow low-V zone. Vp/Vs in this area is high.
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3.4  Velocity structure beneath the Pacific Ocean off Kii and Muroto peninsula 
beneath the DONET

At depths of 20 and 30 km, low-Vp zones extend around the hypocenters of the 
large events with magnitude 6.9 and 7.4 that occurred on September 5, 2004. Low-Vs 
zones partly exist within the low-Vp zone. We cannot resolve the continuous structure 
from Honshu at depths of 5–10 km since the number of events for seismic tomography 
beneath the DONET stations is small. This is because the DONET picked data are basi-
cally added after the Hi-net manual picking. The seismic tomography will be recalcu-
lated when the microearthquake data triggered at DONET stations become available.

3.5 Station corrections

The station corrections for the final model are shown in Figure 7. Red stations 
denote positive O-C travel times. It means that the modeled velocity is too high due to 
thick sediment or low-V materials since the calculated travel time is too small. It also 
depends on the depth of borehole of Hi-net stations. The seismometers of the Hi-net 
stations are typically deployed at depths of around 100–200 m, and low-Vp sediment 
materials are estimated beneath the backbone range and back-arc side of Japan. Large 
station corrections are estimated along the Sea of Japan coast in northeastern Honshu 
since there are thick sediments, while borehole stations are relatively shallow. For Vs, 
there are many blue-colored stations meaning that the velocity model is too slow. Large 
station corrections are also estimated on the Sea of Japan side of northeastern Honshu.

For S-net stations, blue stations can be seen near the coast and the Japan Trench. Red 
stations are shown between them for both Vp and Vs. It suggests that the seismic veloc-
ity model is too slow near the coast and the Japan Trench and too fast between them.

For DONET stations, red stations are shown near the coast and blue stations reside 
off the coast. It means that the modeled seismic velocity is too high near the coast.

3.6 Movement of hypocenters

Figure 8 shows the histogram of the epicentral movement during the itera-
tions. Epicenters determined by NIED F-net and [20] are shifted over 50 km 

Figure 7. 
Station corrections for (a) Vp and (b) Vs.
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Kyushu region across central Shikoku. This low-V zone remains the same as at a 
depth of 5 km. High-Vp/Vs regions cover the Ou backbone range and back-arc side 
of northeastern Honshu.

At a depth of 30 km, low-Vp extends beneath the northeastern Honshu, central 
and southwestern Honshu, and northern Kyushu regions. Low-Vs regions extend 
beneath most of Honshu, Kyushu, and northern Shikoku regions. High-Vp/Vs 
regions cover almost all Japanese Islands except the central Hokkaido.

At a depth of 40 km, low-Vp regions exist beneath the volcanoes in southeast-
ern Hokkaido and northeastern and central Honshu regions. The low-Vp regions 
beneath the volcanoes in the northeastern Japan extend to back-arc side. Low-Vs 
regions are clarified beneath the volcanoes in southeastern Hokkaido and central 
Honshu regions. Low-Vs regions beneath the northeastern Honshu can be found 
east of the volcanic front as are low-Vp regions. Low-Vp/Vs regions cover the central 
mountains across Hokkaido and northeastern and central Honshu.

At a depth of 60 km, low-Vp and low-Vs regions extend beneath the volca-
noes in Honshu and central Honshu. High-Vp and Vs regions extend beneath 
the Kinki, Shikoku, and eastern Kyushu regions where the PHS plates subduct. 
High-Vp/Vs regions are distributed across western Hokkaido, central Honshu, 
and central Shikoku regions.

At a depth of 90 km, low-Vp and low-Vs regions exist beneath the volcanoes 
beneath Hokkaido and Honshu. High-Vp and Vs regions extend to the east of north-
eastern Japan where the PAC plate subducts. High-Vp/Vs regions cover northern and 
southwestern Hokkaido, central Honshu, and central Kyushu regions.

3.3  Velocity structure beneath the Pacific Ocean off northeastern Japan beneath 
the S-net

At a depth of 10 km, a low-Vp and low-Vs zone extends along the coast of the PO 
in the northeastern Honshu. A high-Vp and high-Vs zone exists between the lon-
gitudes of 142 and 143°. East of longitude of 143° (Figure 6A and B), low-Vp, and 
low-Vs zone shows again. Vp/Vs is generally low except in some small regions.

At a depth of 20 km, a high-Vp and high-Vs zone extends along the coast of the 
PO in the northeastern Honshu, in contrast to the structure at a depth of 10 km. 
Low-V zones extend to the east of the high-Vp zone; however, some high-Vp zones 
exist among the low-Vp zones (Figure 6C). High-Vs zones are mixed with minor 
low-Vs zone off the east of northeastern Honshu, extending to a longitude of 143.5° 
(Figure 6D). This pattern can be seen with Vp at a depth of 10 km. Vp/Vs is also 
broadly low, and this pattern of Vp/Vs can be seen when the depth is 10 km except 
in some regions.

At a depth of 30 km, low-Vp zone extends off the east of northeastern Honshu 
between longitudes of 142 and 143.5 and to the region off the southeast of 
Hokkaido. High-Vp zone can be seen along the Japan Trench. Two patches of low-Vs 
zones exist in the east of northeastern Honshu at latitude of 37–40° and longitude of 
142–143° and at latitude of 35–36° and longitude of 141–142°. High-Vp/Vs region is 
bounded by the low-Vp/Vs region, a north–south “stripe” pattern.

At a depth of 40 km, low-Vp and low-Vs zones extend between longitude of 
142–143° and latitudes of 37–41°. These low-Vp and low-Vs zones extend to the west 
of the Hidaka Mountains. High-Vp and high-Vs zones can be seen on the east of the 
low-V zone and reach the east of the Japan Trench. Vp/Vs in this area is moderate 
except for some low-Vp/Vs regions with north–south trend.

At a depth of 60 km, low-Vp and low-Vs zones extend just off the coast of the 
PAC in the northeastern Honshu. High-Vp and high-Vs zones extend broadly on the 
east of the narrow low-V zone. Vp/Vs in this area is high.
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3.4  Velocity structure beneath the Pacific Ocean off Kii and Muroto peninsula 
beneath the DONET

At depths of 20 and 30 km, low-Vp zones extend around the hypocenters of the 
large events with magnitude 6.9 and 7.4 that occurred on September 5, 2004. Low-Vs 
zones partly exist within the low-Vp zone. We cannot resolve the continuous structure 
from Honshu at depths of 5–10 km since the number of events for seismic tomography 
beneath the DONET stations is small. This is because the DONET picked data are basi-
cally added after the Hi-net manual picking. The seismic tomography will be recalcu-
lated when the microearthquake data triggered at DONET stations become available.

3.5 Station corrections

The station corrections for the final model are shown in Figure 7. Red stations 
denote positive O-C travel times. It means that the modeled velocity is too high due to 
thick sediment or low-V materials since the calculated travel time is too small. It also 
depends on the depth of borehole of Hi-net stations. The seismometers of the Hi-net 
stations are typically deployed at depths of around 100–200 m, and low-Vp sediment 
materials are estimated beneath the backbone range and back-arc side of Japan. Large 
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there are many blue-colored stations meaning that the velocity model is too slow. Large 
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stations are shown between them for both Vp and Vs. It suggests that the seismic veloc-
ity model is too slow near the coast and the Japan Trench and too fast between them.

For DONET stations, red stations are shown near the coast and blue stations reside 
off the coast. It means that the modeled seismic velocity is too high near the coast.
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Figure 8 shows the histogram of the epicentral movement during the itera-
tions. Epicenters determined by NIED F-net and [20] are shifted over 50 km 
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after the inversion. Epicenters determined by NIED Hi-net or by NIED Hi-net, 
S-net, and DONET are mainly less than 10 km in spite of 11 iterations of 
inversion.

4. Discussion

4.1 Expanded resolved zone from the previous studies

Ref. [14] also clarified the seismic velocity structure beneath the PO at depths of 
30–50 km; however, that study could not resolve the shallow structure at depths of 
0–20 km since the ray paths, such as head waves, from the oceanic event to the land 
seismic stations pass through the deep zone. The ray paths from the events to NIED 
S-net stations run through the shallow part of the PO. In this study, we can clarify 
the structure at depths of 10–60 km and even east of the Japan Trench at depths of 
20–30 km (Figures 5 and 6). This is a major improvement enabled by including 
NIED S-net data

4.2 Characteristic structure of the NS trending high-V and low-V zone off the 
northeastern Japan

One important feature is the probable Mesozoic rift structure trending NS 
from the coast of Tohoku to the west of Hidaka Collision Zone. The recent 2018 
Hokkaido Eastern Iburi earthquake (M6.7) (Iburi earthquake) occurred at a depth 
of around 32 km, which is much deeper than the usual inland crustal earthquake. 
Unfortunately, the structure beneath the PO between the Honshu and Hokkaido 
islands at a depth of 20 km is not clear; however, a low-Vp zone at a depth of 30 km 
in north–south direction between 142 and 143° (Figure 9) is resolved. Low-Vp 
zones also exist west of the Hidaka Mountains and between the Honshu and 
Hokkaido at the northern extension of this low-V zone, although the high-Vp zone 
parallel to the Japan Trench along the coast of Honshu and Hokkaido invades the 
low-Vp zone. The high-Vp zone is consistent with the large positive Bouguer gravity 
anomaly [22] and large positive aeromagnetic anomaly zones [23]. It implies that 
high-V mantle mafic material is located in the shallow zone. The depth of the Moho 
is also shallow near the coast of northern Honshu [24]. The Iburi earthquake may be 

Figure 8. 
Histogram of the earthquake epicentral movements during the inversion. The initial epicenters are determined 
by (a) NIED Hi-net; (b) NIED Hi-net, S-net, and DONET; (c) NIED F-net; and (d) Ref. [20]. The Hi-net 
system also uses the seismic stations operated by the other organizations.
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related to the reactivation of the rift related to the structure in the upper mantle to 
the lower crust, where it is marked by high-Vp.

4.3 Characteristic structure along the sea of Japan

We clarified the seismic velocity structure beneath the Sea of Japan at depths of 
10–20 km from offshore Hokkaido to Wakasa Bay (Figure 6). The Vp beneath the 
Okushiri and Sado Islands is low at a depth of 10 km; however, Vp beneath the Sea 
of Japan is high at depths of 10–35 km. Vp along the coast of Sea of Japan in western 
Japan gives moderate value. The lithospheric velocity structure in this region is 
strongly affected by the Mid-Tertiary breakup and formation of the Sea of Japan. 
Through the reactivation of the younger compressed tectonic terrain, tsunamigenic 
source faults have been developed. The lithospheric structure provides essential 
information to infer the structure of faults.

4.4 Comparison with the structure obtained by the offshore experiments

Ref. [25] imaged the bending-shaped low-Vp oceanic crust of PAC plate sub-
ducting from the Japan Trench at latitudes of 38–38.5° offshore Miyagi where the 
rupture of large interplate earthquakes propagated. In this study, low-Vp material 
is imaged at depths of 40–50 km bounded by the high-Vp materials with a number 
of earthquakes surrounded with red ellipse in Figure 10. It indicates the subducting 
oceanic crust of the PAC plate

The isovelocity contour of Vp = 7.0 km/s lies around depths of 25–40 km. Active-
source seismic experiments off Sanriku region imaged the same contour lying at depths 
of 20–35 km [25] on the west side of Japan Trench, at depths of 15–30 km at the Japan 
Trench [26], and at depths of 15–25 km in NS direction between Honshu and Japan 
Trench [27]. The seismic velocity model of this study is relatively slower than those 
models derived from seismic experiments. The difference may depend on the initial 
velocity model of the oceanic region being set as the same as the land area in this study. 
The Moho depth becomes shallower with the EUR crust toward the Japan Trench. The 
oceanic crust of the PAC plate has also thinner crust than the EUR island arc crust.

Figure 9. 
Map views of (a) Moho depth, (b) aeromagnetism, (c) Bouguer gravity anomaly, Vp perturbation at depths 
of (d) 20 km and (e) 30 km beneath northern Japan.
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Figure 8. 
Histogram of the earthquake epicentral movements during the inversion. The initial epicenters are determined 
by (a) NIED Hi-net; (b) NIED Hi-net, S-net, and DONET; (c) NIED F-net; and (d) Ref. [20]. The Hi-net 
system also uses the seismic stations operated by the other organizations.
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related to the reactivation of the rift related to the structure in the upper mantle to 
the lower crust, where it is marked by high-Vp.
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Figure 11. 
Vp perturbation on the plane just above the upper boundary of the PAC plate within the overriding EUR plate. 
The plane has strike with S17degW from the point with a longitude of 144.5 and a latitude of 41.0 with dip 
angle of 12 deg. The depth of the upper edge of the plane is 10 km.

4.5  Comparison of velocity structure on the coseismic slip plane of the Tohoku-
oki event

Figure 11 shows the Vp perturbation just above the upper boundary of the PAC 
plate within the overriding EUR plate. The plane with the upper side at surface has 
a dip angle of 15°. Reference [28] also showed the Vp perturbation [29] above the 
upper boundary of the subducting PAC slab and three low-V zone offshore Sanriku, 
Miyagi, and Ibaraki. In our results, we obtain velocity structure in fine scale; how-
ever, we do not estimate the shallow structure along the Japan Trench. We obtain 
the broad low-Vp and low-Vp/Vs zone within the overriding EUR plate between the 
Japan Trench and Honshu. A high-Vp and slightly high-Vp/Vs zone exists on the 

Figure 10. 
Vertical cross section beneath the Pacific Ocean off Miyagi in WNW-ESE direction. Black circle shows the 
relocated hypocenters used for seismic tomography in this study.
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west side of the low-Vp and low-Vp/Vs zone. There are some small high-V zones 
within the low-V zone near the hypocenter of the Tohoku-oki event.

Figure 12 also shows the Vp perturbation and Vp/Vs on the coseismic plane of 
the Tohoku-oki event [30]. We do not obtain the shallow structure along the Japan 
Trench although the extremely large slip of the Tohoku-oki event is estimated 
near the Japan Trench. The western edge of the large slip zone is consistent with 
the high-Vp zone; however, the surrounding region has low-Vp and low-Vp/Vs. 
Low-Vp/Vs material is difficult to deform so that it can generate large elastic waves 
if it fails. Low-Vp/Vs on the coseismic slip region may be one of the reasons for the 
extreme size of the Tohoku-oki event.

5. Conclusion

We conducted the seismic tomography for entire Japanese Islands including 
oceanic area. This is the first tomographic study to use the data from NIED S-net. 
The hypocenters of oceanic events are greatly improved using the S-net data. We 
also obtain the detailed seismic velocity structure beneath the PO at depths of 
10–60 km. Low-Vp and low-Vs zones are revealed between 142 and 143° at a depth 
of 30 km and in western Hokkaido where the Eastern Iburi Earthquake in 2018 
occurred. The lithospheric velocity structure on the coast of Sea of Japan on Honshu 
is strongly affected by the Mid-Tertiary breakup and formation of the Sea of Japan. 
Tsunamigenic source faults have been developed through the reactivation of the 
younger compression. Subducting low-V oceanic crust is imaged within the mantle 
of overriding EUR and subducting oceanic PAC plate. The coseismic slip plane of 
the Tohoku-oki event has low-Vp/Vs; however, the shallow structure along the Japan 
Trench will be improved in the future with increased data. Previous seismic reflec-
tion and refraction studies found the oceanic crust at the uppermost part of the PAC 

Figure 12. 
(a) Vp perturbation and (b) Vp/Vs on the coseismic slip plane [30].
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plate with Vp of approximately 6–7 km/s; however, the seismic tomography with 
NIED S-net clarified the 6–7 km/s Vp zone at depths of 25–40 km. The result may 
depend on the initial velocity model beneath the PO, which was the same initial 
model as the land area in this study. Applying the initial velocity model derived 
from the refraction or reflection seismology would improve the results beneath the 
ocean in the future.
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Chapter 6

Low-Frequency Electromagnetic 
Signals Observed before Strong 
Earthquakes
Igor I. Rokityansky, Valeriia I. Babak and Artem V. Tereshyn

Abstract

We consider two kinds of signals preceding earthquake (EQ ): intensification of 
internal electromagnetic (EM) field – lithosphere emission (LE) and change of the 
Earth interior response function (RF). Several cases of LE before strong EQs were 
reviewed and analyzed, and preliminary portrait of LE precursor was compiled. 
LE can appear several times with lead time month(s), weeks, days, and hours and 
can attain amplitude of several hundreds of nT which not uniformly decreases with 
increasing distance from the source. Typical LE frequency content/maximum is 
0.01–0.5 Hz. Data of 19 Japanese geomagnetic observatories for 20 years preced-
ing the Tohoku EQ on March 11, 2011 were analyzed, and RFs (mainly induction 
vector) were calculated. At six observatories in 2008–2010, anomalous variations 
of RF were separated which can be identified as middle-term precursors. Applying 
the original method developed in Ukraine, a short-term two-month-long precur-
sor of bay-like form was separated by phase data of observatory KNZ in the Boso 
peninsula where electrical conductivity anomaly was also discovered. Hypothetical 
explanation based on tectonic data is advanced: Boso anomaly connects two large-
scale conductors—Pacific seawater and deep magma reservoir beneath a volcanic 
belt. Between two so different conductors, an unstable transition zone sensitive to 
changes of stress before strong EQs can be expected.

Keywords: geomagnetic field, lithosphere emission, conductivity structure, 
induction vector, earthquake precursor

1. Introduction

One of the long lasting challenges for the Earth sciences is earthquake (EQ ) 
prediction. EQ precursors deliver unique information which is necessary for the 
solution of two interconnected fundamental problems—EQ prediction (humani-
tarian practical aspect) and support to the development of EQ theory (scientific 
aspect).

The history of the EQ precursor study goes back to antiquity. But even now 
their study remains purely empirical, and any precursor even recorded with 
perfect instrument can be treated as not related with seismicity (skepticism to 
prediction widely spread now), and it is difficult to prove that it is genuine EQ 
precursor because physics of EQ preparation process is still not well understood. 
The causes of such situation are (1) the complexity of the real Earth and processes 
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in it, (2) the absence of direct information from the place of EQ preparation, 
nucleation, and occurrence in the Earth interior. Nevertheless, consider the 
unique case of the successful EQ prediction—Haicheng prediction.

1.1 Haicheng EQM7.3

The Haicheng EQM7.3 occurred on February 4, 1975 at 19:35 local time in north-
east China. After 1965, activation of seismicity occurred in an area of 120 km to 
SSW from Beijing with several destructive EQsM > 6. After this long-term prediction, 
the Chinese government greatly strengthened EQ study and precursor monitoring 
(telluric currents, well water, animal behavior, and other phenomena related with 
EQ ) attaching to observation experts and also amateurs and scholars. Many precur-
sors were observed in 1973 and 1974 in a large area of 200 × 300 km (middle-term 
precursors) which in December 1974–January 1975 concentrated in a smaller area. In 
January 1975, quiescence of seismicity was observed but anomalies of groundwater, 
telluric currents, radon, tilt, animal behavior, etc. increased till January 23 (short-
term precursors), then slightly decreased, and since February 1 rouse in hundreds 
times. From 16:00, February 3, to 18:30, February 4, 500 EQs with M up to 4.2 
occurred in the area between Yingkou and Haicheng cities. They were interpreted 
as foreshocks of strong EQ. Emergency evacuation was ordered by authorities, and 
law-abiding Chinese left their houses. At 19:36, a devastating EQ struck dozens of 
cities including Haicheng with almost 1 million inhabitants. Thousands of buildings 
collapsed, but hundred thousand lives have been saved by the well-timed prediction. 
Instructive lessons from successful Haicheng prediction are (1) continuous transi-
tion from long−/intermediate-term prediction to short/immediate ones with consis-
tent improvement of expected EQ time, place, and magnitude; (2) close cooperation 
of authorities, scientists, amateurs, and mass media; and (3) the use of all available 
precursors, including “nonscientific” ones as animal behavior [1].

Multiparameter monitoring and strong scientific efforts of the last decades 
reveal some unexpected features of precursors: (1) Long-distance appearance up 
to thousands km from EQ epicenter. (2) Spatial selectivity: EQ precursors can be 
observed in some sensitive zones (usually fault zones) and be not observable in 
vast territories even not far from impending EQ. (3) Spatial–temporal migration of 
precursors: initially it appears in one locality, and then it appears in the next local-
ity, usually with changed parameters. Such features did not find explanation in the 
framework of simple dominant ideas in the middle of the twentieth century about 
geological media. These features evidenced the complexity of geological media, and 
in the second half of the twentieth century, several new concepts have appeared to 
explain new data (Sadovsky MA, Varotsos P, Gufeld IL and many others).

For effective EQ prediction, we need automatic system of monitoring, processing, 
and analysis of all observed precursory parameters, their cross-correlation analysis 
to estimate probability of expected EQ (taking into account all previous global, 
regional, and local analyzes). High-level scientific team must keep contact with 
decision-making authorities for providing public announcement of the EQ prediction 
and plan of emergency measures. Such system needs great funds. Some elements of 
such system are created in few regions (California, China, ex-USSR countries).

1.2 Goal and scope of the chapter

Multitude of EQ precursors is the unique base for EQ prediction. Complexity of 
the earth and poor understanding of seismicity process enforce us to use as many 
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kinds of precursors as possible. Two approaches are perspective for the fishing of 
the precursory signals from geomagnetic data: (1) Direct observation of the litho-
sphere emission (LE) of the internal electromagnetic fields arising in the course of 
EQ preparation and nucleation process and (2) transformation of the time series 
of the observed three components of geomagnetic field into time series of response 
functions of the Earth’s interior conductivity.

In the next sub-section, we review few case stories of the most reliable records of 
ultralow-frequency (ULF) LE.

In Section 2, we shortly outline the rather sophisticated methodology of 
response function (RF) approach referring for details to few monographs [2–5].

In Sections 3 and 4, we apply RF method to the Japanese geomagnetic obser-
vatories data in the attempt to separate the precursors of great Tohoku EQM9 
11.03.2011, wherein obtained quite reliable result on the Boso conductivity anomaly 
and advance its tectonic interpretation.

In Section 5, we discuss the results obtained.
In Section 6, we summarize the results and give the recommendations for the 

improvement of the low-frequency EM precursor study.

1.3 Case stories of LE records before strong EQs

There are many reports on LE registration, in particular before EQs. Consider 
fortunate cases when EM observations turned out to be located in the places where 
LE field was well above magnetotelluric (MT) field+noise background and can be 
easily identified.

1.3.1 Great Alaska EQM9.2 on March 28, 1964

Geomagnetic observatory in the city of Kodiak was located in the distance of 
440 km from the epicenter of the EQ and only in 30 km from the fault zone along 
which displacement occurred. The full field proton magnetometer recorded several 
magnetic disturbances. The strongest one with intensity 100nT appeared 1 h 06 min 
before the EQ [6].

1.3.2 Loma Prieta EQM7.1 on October 18, 1989

One of the most convincing cases of LE precursors was recorded before that EQ 
[7]. The monitoring system of Stanford University (created for traffic noise study) 
operated since October 1987 at the distance of 7 km from the future EQ epicen-
ter. The system included induction coils and special computer which calculated 
half-hourly averages of the magnetic field power spectra in each of nine narrow 
frequency bands covering the overall range 0.01–10 Hz.

During 23 months record was normal with low noise. After September 12, 1989, 
anomalous signal began to appear in two frequency bands: 0.05–0.1 and 0.1–0.2 Hz 
and grew up to 1.5 nT. In October 5, a large increase of amplitude appeared at all fre-
quencies with the strongest one at the lowest frequency 0.01 Hz, where it reached 
30 times the normal level. On the last several days before EQ , anomaly gradually 
diminishes (a quiescence!), and 3 h before the EQ , very large amplitude appeared 
only at periods longer 0.5 Hz, exceptionally large at frequency 0.01 Hz. We must 
emphasize that instrumentation of Stanford University which allowed to get results 
every half an hour is very good for LE monitoring. Unfortunately, it did not con-
tinue the operation for EQ prediction.
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tinue the operation for EQ prediction.
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1.3.3 Caucasus

Kopytenko et al. [8, 9] developed three-component magnetometers for fre-
quency range 0.005–10 Hz. The first instrument started the record 23 days before 
destroying Spitak EQM6.9 at 7.41 UT, on December 7, 1988, in geomagnetic obser-
vatory at Dusheti, 129 km to the north from the EQ epicenter. It recorded intensive 
BLE which started 4 h prior the EQ (Figure 1a, b).

In the time interval November 14, 1988 to March 5, 1989 in frequency range 
0.1–1 Hz 59 unusual noise-like bursts of LE with an amplitude well higher the 
background noise (0.03 nT) and the duration ranging from several minutes to sev-
eral hours (mean duration ≈30 min) were recorded mainly before the strong after-
shocks. Decrease in aftershock activities and BLE activity was quite synchronous.

The next strong event was Racha EQM6.9 at 9.13 UT, on April 29, 1991, occurred 
at the epicentral distance of 90 km from Dusheti where no pronounced BLE were 
recorded. It means that Dusheti is not a sensitive place for the EQs in Racha region 
(effect of spatial selectivity). Kopytenko’s team organized BLE observations in two 
field sites Nik and Oni for June–July 1991—the time of Racha aftershock activities. 
Forty-seven BLE with intensity up to 2 nT and duration ranging from several min-
utes to several hours were observed at both observatories, 23 of them were recorded 
1–4 days before the strong aftershock M6.2 on June 15,1991. Figure 1c presents BLE 
bursts observed before aftershock M4.0. The distance from the epicenter to Oni was 
two times smaller than to Nik, but intensity of LE signal at Nik was considerably 
larger: for H component in 10–20 times, for D in 1.3–2 times, and for Z in 5–7 times. 
It means strong spatial selectivity of the LE signals preceding EQ [10, 11].

Figure 1. 
BLE preceded some EQs in Caucasus [8, 9]. (a) Map of seismoactive region with the sites of observation and 
epicenters (given by stars) of the events discussed in text. (b) Final fragment of BLE record started 4 h before 
Spitak EQ and abruptly terminated 2 h 48 min before it. (c) Several short BLE bursts records during 33 min 
before aftershock M4.0 at field stations Nik and Oni located at the distance 34.6 and 16.9 km from the epicenter 
correspondingly.
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In the conclusion we like to emphasize that magnetometers in described studies 
can register variations in the frequency band of 0.005–10 Hz, but they recorded 
most intensive BLE at the frequencies 0.1–1 Hz that differs from the result in Loma 
Prieta, where the maximum tends to their lowest frequency 0.01 Hz.

1.3.4 Taiwan

The island-wide geomagnetic network consisted of three-component geo-
magnetic observatory LP in the seismically quiet area and seven full field stations 
equipped by proton magnetometers with 0.1 nT sensitivity and sampling rate of 
10 min distributed in areas of high seismicity [12]. Chi-Chi EQM7.6 occurred on 
September 21, 1999, in the middle of Taiwan. Stations LY turned out to be just near 
to surface rupture of the EQ along Chelungpu fault and recorded the strongest 
LE which clearly separated from comparison with records of remote observatory 
LP. LE begun more than a month before the EQ and attained in maximum 200 nT, 
and then its amplitudes gradually weakened, and the disturbance level reduced 
to that of a quiet period almost right after the second strong Chia-Yi EQM6.4 that 
occurred near the southern end of the Chelungpu fault on October 22, 1999 [12].

1.3.5 Greece

In Greece in the early 1980s for the registration of the LE electric components, 
the so-called seismic electric signals (SES) special network was created by Prof. 

Figure 2. 
The SES activity on April 19, 1995, before the Grevena-Kozani EQM6.6 on May 13, 1995, recorded in Greece 
at the IOA observatory at the distance of 80 km from the epicenter with a sampling rate of 1 sample/s: (a) 
3 h record with strong SES activity in 6.30–7.40 time interval, (b) is the 5 min fragment of (a), showing both 
electric and magnetic components in expanded time scale [11]. Amplitudes are given in relative units.
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correspondingly.
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In the conclusion we like to emphasize that magnetometers in described studies 
can register variations in the frequency band of 0.005–10 Hz, but they recorded 
most intensive BLE at the frequencies 0.1–1 Hz that differs from the result in Loma 
Prieta, where the maximum tends to their lowest frequency 0.01 Hz.

1.3.4 Taiwan

The island-wide geomagnetic network consisted of three-component geo-
magnetic observatory LP in the seismically quiet area and seven full field stations 
equipped by proton magnetometers with 0.1 nT sensitivity and sampling rate of 
10 min distributed in areas of high seismicity [12]. Chi-Chi EQM7.6 occurred on 
September 21, 1999, in the middle of Taiwan. Stations LY turned out to be just near 
to surface rupture of the EQ along Chelungpu fault and recorded the strongest 
LE which clearly separated from comparison with records of remote observatory 
LP. LE begun more than a month before the EQ and attained in maximum 200 nT, 
and then its amplitudes gradually weakened, and the disturbance level reduced 
to that of a quiet period almost right after the second strong Chia-Yi EQM6.4 that 
occurred near the southern end of the Chelungpu fault on October 22, 1999 [12].

1.3.5 Greece

In Greece in the early 1980s for the registration of the LE electric components, 
the so-called seismic electric signals (SES) special network was created by Prof. 

Figure 2. 
The SES activity on April 19, 1995, before the Grevena-Kozani EQM6.6 on May 13, 1995, recorded in Greece 
at the IOA observatory at the distance of 80 km from the epicenter with a sampling rate of 1 sample/s: (a) 
3 h record with strong SES activity in 6.30–7.40 time interval, (b) is the 5 min fragment of (a), showing both 
electric and magnetic components in expanded time scale [11]. Amplitudes are given in relative units.
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P. Varotsos [11, 13]. The network consists of 10–15 stations. Each station included 
several (from 6 up to 100) grounded electrical dipoles with the length from 50 m up 
to 20 km that allows to study spatial characteristics of observed field and separate 
SES from MT field and noise. In the course of continuous monitoring for more than 
35 years, Prof. Varotsos and collaborators identified (as the result of a posteriori 
analysis) many SES before the following EQs and studied their regularities [11], for 
example, the selectivity effect: SES can be observed in some sensitive zones and be not 
observable in vast territories even not far from impending EQ. Prof. Varotsos made a 
number of correct EQ predictions registered officially before the event. We show inter-
esting case of joint registration SES and horizontal magnetic components recorded on 
April 19, 1995, 25 days before Grevena-Kozani EQM6.6 on May 13, 1995 (Figure 2). 
Magnetic components look as derivative of electrical impulses that are clearly seen in 
the lower graph (b) with expanded time scale. In the latter years, Prof. Varotsos’ group 
develops deeper insight in the physics of LE: entropy and natural time analysis for 
the better understanding of the EQ preparation process and for the distinguishing LE 
signals from similarly looking variations of MT and noise origin [14, 15].

2. Basic concepts and definitions. Methodology

2.1 Varying geomagnetic field

Varying geomagnetic field B(t) = Bxex + Byey + Bzez (where ex, ey, and ez are 
unit vectors directed to north, east, and downward correspondingly) continuously 
exists in and around the Earth and is recorded nowadays digitally with a time read-
ing interval Δt (1 min or 1 s in our study). All components are functions of time t 
which we skip out for brevity.

2.2 Main sources of observed geomagnetic field

  B (t)  =  B  MT   +  B  noise   +  B  LE  ,  (1)

where BMT = BMText + BMTintn + BMTinta is the magnetotelluric field.
BMText is the external primary magnetic field of the currents in magnetosphere 

and ionosphere of the Earth.
BMTintn is the normal internal secondary magnetic field of the currents 

induced by BMText in the Earth’s interior having a hypothetical “normal” horizon-
tally layered conductivity structure. The horizontal components of BMTintn add 
together with BMText increasing observed horizontal MT-field up to doubling over 
hypothetical ideally conducting Earth. On the contrary, the vertical component of 
BMTintn subtracts from BMText diminishing observed normal vertical MT field up 
to 0 (phase neglected).

Thus, BMTn = BMText + BMTintn has the horizontal component much greater 
than the vertical one and embraces great territory equal to external source field 
dimension.

BMTinta is the anomalous internal secondary field arising on local/regional 
conductivity anomalies as a result of redistribution of the currents responsible for 
BMTintn.

Such subdividing of secondary internal field is rather artificial, but it is used 
in geoelectromagnetic methods: BMTintn in sounding methods, magnetotelluric 
sounding (MTS) and geomagnetic deep sounding (GDS); BMTinta in profiling one, 
magnetic variation profiling (MVP) [2–5].
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Bnoise is the ever-present noise, both man-made and natural.
BLE is the purely internal field of lithosphere emission, it is usually local and 

transient, and the ratio of vertical component to the horizontal one usually differs 
from the same ratio for MT field.

After the conventional processing using Fourier transform, a B(t) record of 
duration t2−t1 is transformed into a superposition of harmonic components with 
periods T1, T2…Tn.

2.3 Response function

Response function is the term widely used in natural sciences and mathemat-
ics. In the geoelectromagnetic studies of electrical conductivity σ (x, y, z) of the 
Earth’s interior [2–4], the RFs are supposed to be some functions derived from the 
Earth’s electromagnetic (EM) data that provides us with a possibility to determine 
the conductivity structure of the Earth. EM RFs are usually frequency/(period T) 
dependent, and then they are complex functions having real (index u) and imagi-
nary (index v) parts. We use two of these functions.

2.3.1 Induction vector

Induction vector C = Aex + Bey (A and B are determined from the linear equa-
tion: Bz = ABx + BBy). Real induction vectors Cu = Auex + Buey possess an important 
property: in the notation of Wiese used here, they are directed away from a good 
conductor.

2.3.2 Anomalous horizontal magnetic variation tensor

Anomalous horizontal magnetic variation tensor [M] is determined 
from the linear system of equations Bx(ri) = MxxBx(r0) + MxyBy(r0) and 
By(ri) = MyxBx(r0) + MyyBy(r0), where r0 and ri are coordinates of base (reference) 
and some other observation place. Tensor [M] reflects the change in geoelectric 
structures between two places (if the source field used is uniform).

2.4 The processing of observed geomagnetic field

The processing of observed geomagnetic field B(t) for the monitoring of 
geodynamic and other environmental processes implies transformation of three 
components of geomagnetic field time series with time reading interval Δt (1 min 
or 1 s in our study) into a variety of time series with temporal resolution Δτ (Δτ»Δt) 
of different RF components: Re and Im and x and y at the set of periods T1, T2…Tn of 
received harmonics (Δt « Ti « Δτ).

2.5 The theory of geoelectromagnetic methods

The theory of geoelectromagnetic methods [2–4] is developed for natural 
source field in the form of vertically incident plane wave (Tikhonov-Cagniard 
(T-C) model), which usually holds for an external source field of magnetosphere-
ionosphere origin (named as magnetotelluric field) for the periods less than 104 s. 
Ideally RF depends only on the Earth’s conductivity distribution which is sensitive 
to the stress variations and therefore to geodynamic processes including the earth-
quake preparation.
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3.  Variations of geomagnetic response functions (mainly induction 
vector) before the 2011 Tohoku earthquake

RFs and their variations, especially in relation with EQs preparation, were 
studied in Japan for many years and were described in many works among which we 
cite only few [16–18]. In the last two decades, the RF approach became less used for 
EQ studies because of strong noise at Japanese observatories. After the catastrophic 
Tohoku EQ on March 11, 2011, near Japan, we analyzed the available geomagnetic 
data to obtain some EQ precursors using the RF method. Some results were pre-
sented in Russian [19–21], which together with the latest results of our study will be 
summarized below.

Data used: We obtained data of 17 Japanese geomagnetic observatories 
(Figure 3, Table 1) for time interval of 12–20 years with temporal reading every 
1 min (and few observatories with 1 s reading). For the conversion of geomagnetic 
field B time series into RF time series, we used the advanced multi-window remote 
reference (rr) robust programs with coherency control [22, 23]. After processing 
we got values of four components of induction vector Au, Bu, Av, Bv for each day for 
five period intervals centered at: 225, 450, 900, 1800, and 3600 s. To reduce the 
great scattering, everyday values were smoothed with moving windows and/or were 
found average or median values for some interval (usually 1 month).

3.1 Results of processing for separation of middle-term precursors

Analyzing large material of processed data for 15 years from 2001 till 2015, we 
found that aperiodic variations (or enhancement of annual variation) of induction 
vectors were observed at periods 225, 450, and 900 s during 3–5 years before the 
Tohoku EQ at stations: HAR, KAK, OTA, KNZ, and TTK, most clearly at period 
450 s presented in Figure 4. We should emphasize that no such aperiodic variations 
were observed at other stations including ESA and MIZ, which are the nearest to the 
EQ epicenter. The best correlation of middle-term anomalies is observed between 
the two most remote (620 km) from each other stations HAR and TTK: at both we 
see strong synchronous variations of induction vectors with maxima in the end of 
2008, the end of 2009, with several maxima in 2010, in the beginning of 2011, and 

Figure 3. 
Map of Japan with real Cu and imaginary Cv induction vectors for the period 450 s at 17 geomagnetic 
observatories by 1 min record data. (a) Mean vectors for the year 2001. Stars present EQs with M > 7.8 since 
2001. Elements of plate tectonics; white arrows represent the directions of plate motions; E. P., Eurasian plate; 
P. P., Pacific plate; P. S. P., Philippine Sea plate; S. T., Sagami trough; dotted line, volcanic front. (b) Mean 
vectors for 2011. Circles present EQs with M ≥ 7. The depth of hypocenters is less than 50 km for all EQs.
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return to the previous level after the Tohoku EQ. We may suppose that these aperi-
odic variations can be the middle-term precursors of the Tohoku EQ. These obser-
vatories are located not at the shortest distance from the EQ , which is in agreement 
with well-known phenomenon of spatial selectivity of EQ precursors known during 
the centuries for hydrological precursors and recently proven for LE registered in 
the form of seismic electric signal [11, 13].

Having 1 min time series, we can analyze only geomagnetic variations with 
period T > 3 min, and the most interesting shorter part of ULF spectra (0.01–
10 Hz), where strongest BLE have been observed [7–9], is left not resolved. So, we 
get 1 s data for observatories KAK, KNZ, ESA, MIZ, and for short time intervals for 
UCU and KYS to analyze RF for periods T > 5 s.

3.2 Boso conductivity anomaly

Processing of records from 18 observatories (16 of them are shown in 
Figure 3 and KYS and UCU in Figure 5) for the determination of horizontal ten-
sors [M] with KAK as the base station yields the absence of noticeable horizontal 
tensor anomalies in ESA, MIZ, HAR, TTK, and MUR but reveals their existence 
in KNZ, UCU, OTA, and KYS (Figure 4a). In KNZ and OTA the enhancement of 
real tensor components Mxx and Myy equals to ≈40% and ≈30% correspondingly 
at periods T < 500 s decreasing at longer periods. This result was supported by 
direct visual measurements described below. At closely located observatories 
KNZ and OTA, the latitudinal (E-W) component of induction vector at period 
450 s and shorter increased (in 2011 comparatively to 2001) in opposite direc-
tions: westward in KNZ and eastward in OTA (see Figure 3b). It means that 
between these two observatories, an additional current (of geodynamic origin) 
appeared in 2011.

Code Station name Geom. lat. Geom. long. Geogr. lat. Geogr. long. Processed years

MMB Memambetsu 35.44 148.24 43.910 144.189 1993–2012

AKA Akaigawa 34.31 151.09 43.072 140.815 2001–2012

YOK Yokohama 32.28 150.43 40.993 141.240 2001–2012

ESA Esashi 30.55 150.09 39.237 141.355 1997–2012

MIZ Mizusawa 30.41 150.21 39.112 141.204 1997–2015

HAR Haramachi 28.90 150.25 37.615 140.953 2001–2015

SIK Shika 28.04 153.96 37.082 136.773 2001–2012

KAK Kakioka 27.47 150.78 36.232 140.186 1956–2015

HAG Hagiwara 26.98 153.47 35.985 137.186 2001–2012

OTA Otaki 26.54 150.63 35.292 140.230 2001–2015

KNZ Kanozan 26.48 150.87 35.256 139.956 1996–2016

YOS Yoshiwa 25.12 157.87 34.476 132.176 2001–2012

TTK Totsukawa 24.83 154.52 33.932 135.802 2001–2015

HTY Hatizyo 24.30 150.75 33.073 139.825 1991–2008

MUR Muroto 24.10 155.99 33.319 134.122 2004–2012

KUJ Kuju 23.65 158.58 33.061 131.260 2001–2015

KNY Kanoya 22.00 158.80 31.424 130.88 1991–2016

Table 1. 
Geomagnetic observatories in Japan used in the study.
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3.2.1 Visual analysis of geomagnetic records

Considering the geomagnetic field synchronous records (Figure 3a), we noticed 
that magnetotelluric field appears synchronously at all observatories, while noise 
appears locally at each one. The stations most contaminated by noise are UCU 
and KNZ which are the nearest to DC railways. But during the after-midnight 
time interval from ≈1:30 to ≈4:30 LT (16:30–19:30 UT) the strong noise from DC 
railways almost disappears.

Direct measurements of the strong MT amplitude variations in each component 
provide a check (not precise but very reliable) of the results obtained by processing. 
So, the enhancement of Bx at KNZ and OTA at approximately 30–40% exists, and it 
can be interpreted only by the electrical conductivity anomaly under the observato-
ries, i.e. under the central part of the Boso peninsula.

3.3 Comparison with geology and tectonic evidence

The relation between Mxx and Myy anomalies in KNZ defines WNW-ESE strike 
of the Boso conductivity anomaly. Geological data [25, 26] presented in Figure 4b–c 

Figure 4. 
Variations of the monthly mean induction vector components at the period of 450 s during 2001–2015 at five 
observatories with significant changes before the Tohoku EQ: HAR, KAK, OTA, KNZ, and TTK. Vertical bars 
present the uncertainty of every monthly mean value. Two strong EQs are shown by vertical lines.
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suggest the existence of anomalous conductor of WNW-ESE strike in Miura Group 
sediments of the Kanto plain at depth 0–4 km. Relations between Mxx and Myy in 
UCU, OTA, and KYS are different as seen in Figure 6a. It means that the direction of 
anomalous currents is also different under each observatory. Calculations show that 
at least 50% of anomalous currents should be located near the surface in the sedi-
ments of the Kanto plain to fit the received data.

On the other hand, the plate tectonic evidences that the Boso anomaly is located 
over the Sagami trough, structure at the depth 15–20 km in the complex junction of 
three lithosphere plates (Figure 3a). Strike of the trough is the same, WNW-ESE, so 
some part of the anomalous conductor can be located in the Sagami trough.

The eastern part of both conductors (shallow sediments and deep trough) has 
contact with seawater, while the western one can contact with a magma reservoir. In 
such a circuit it can be some unstable area(s) with conductivity strongly dependent 
on stress and sensitive to stress changes related with EQs.

Figure 5. 
(a) Synchronous records (1 min data) of 10 Japanese and 1 Kamchatka (PET) geomagnetic observatories 
2 days before the Tohoku earthquake. In the UCU and KNZ observatories records, we see during daytime strong 
noise due to DC electric trains and an absence of this noise during the hours after midnight. Geomagnetic 
activity presented by global 3 h index Кp was as follows: in the 6–9 UT hours time interval Kp = 1+; in 9–12 
UT hours, Kp = 1–; in 12–15 UT hours, Kp = 1; in 15–18 UT hours, Kp = 1–; in 18–21 UT hours, Kp = 1 + . 
(b) Synchronous record (February 24, 2011) (1 s data) of eight Japanese observatories 80 min after midnight 
(15 h UT). Magnetic activity was very low: Kp =0+. DC railway traffic is almost stopped, but the noise-like 
variations were not terminated in the Boso peninsula. Maybe it is a precursory LE which according to [24] 
started on February 22, 2011.
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3.2.1 Visual analysis of geomagnetic records
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(b) Synchronous record (February 24, 2011) (1 s data) of eight Japanese observatories 80 min after midnight 
(15 h UT). Magnetic activity was very low: Kp =0+. DC railway traffic is almost stopped, but the noise-like 
variations were not terminated in the Boso peninsula. Maybe it is a precursory LE which according to [24] 
started on February 22, 2011.
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In Figure 6b, vectors are shown for a period of about an hour (4000 s), at which 
industrial noise is practically absent and vectors adequately reflect the hetero-
geneity of geoelectric structure. In Figure 6c, vectors at the period 25 s are built 
with dominated noise field, which is greater than MT field on four observatories 
considered. Real and imaginary vectors at periods 16, 25, 50, and partly at 200 s 
(Figure 6d) are directed to the source of noises—the nearest railway. To reduce 
influence of the noise, night records and remote reference technique were used 
(Figure 6f). Received corrected vectors appeared still very scattered (Figure 6e) 
and for monitoring of geodynamic processes can be used cautiously. However, vec-
tors averaged over a long period of time can be used for clarifying of the geoelectric 
structure. Corrected real vector in KNZ at the shortest periods directs to north. 

Figure 6. 
RFs and Neogene sediments in the Kanto plain and the Boso peninsula. (a) Frequency characteristics of the 
modulus of horizontal tensor [M] main components at Boso observatories with reference to the base observatory 
KAK. Every curve is a mean value for 7 years (KNZ), 25 days (UCU), 1 year (OTA), and 12 days (KYS). 
Interval of averaging (aver.) with the date and the length of processed realizations (Proc.) is written at every 
graph (they were chosen depending on the interval of available data and their discreteness). (b) Thickness of 
Neogene sediments [25, 26] and induction vectors for period ≈1 h, named observatories with real and imaginary 
vectors—is our processing, the other six real vectors are taken from [16]. (c) Thickness of Miura group deposits 
with “N.8 half graben fills” and induction vectors for T = 25 s obtained from the dominant DC noise and 
directed to the noise source—DC railways given by thin lines for suburb railways and by thick line for magistral 
one. (d) Similar results for another four periods. (e) Results of the same data processing with an attempt to make 
away the impact of the noise by means of either only after-midnight 4 h use or by remote reference technique 
application. (f) Frequency characteristics of induction vector components at KNZ. Dark lines for the wide 
period range are the results of ss (single station) processing of 3-day realizations with sliding reference to middle 
day; light lines, processing of after-midnight 4 h records of the same 20 days from February 18 to March 9, 2011.
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It means that the most conductive part of Boso electrical conductivity anomaly is 
located to south of KNZ, apparently near the southern side of the asymmetric “N.8 
half graben fills” of the Miura Group sediments [26].

Results of the single station and nighttime records processing at KNZ are given in 
Figure 6f. We see that full-day and nighttime results significantly differ from each 
other only for Bu and partly Bv components because a railway is located to the west 
from KNZ and brings the distortions mainly in the eastern component. The northern 
component is less affected by noise at periods 100 s and more that opens the possibil-
ity to use it for separation of EQ precursor that will be used in the next section.

4. Short-term precursor separation

4.1 Introductory remarks

The induction vector derived from very noisy records, practically from noise 
field, has small stable phase. Therefore, if some other magnetic fields, which are 
usually not so stable (let it be a precursor field), are superimposed on the field of 
noise, exactly the phase of induction vector will be the most sensitive component 
for a precursor separation.

Below we apply a new approach developed by Tregubenko [27], who used it 
for processing the data of seismo-prognosis monitoring network in Ukraine. He 
separated precursors before few strongest (M ≈ 4) Crimean EQs occurred during 
15 years, in particular before the Sudak, Crimea EQM3.9 on January 24, 2005 [27]. 
We applied this approach to KNZ, KAK, and ESA 1-s data, but the precursor was 
found only in KNZ. We can explain this by the spatial selectivity of the precursors: 
high sensitivity of KNZ place is quite natural in virtue of Boso electrical conductiv-
ity anomaly located just under KNZ observatory.

4.2 Processing of KNZ data

The processing was made with the use of Varentsov’s [22] program. Coherences 
were used as weight estimates for averaging the results. To minimize the effect 
of noise, the estimates with multiple coherences less than 0.7 were ignored that 
allowed us to obtain minimally shifted estimates of induction vector’s components. 
Maximum anomalous effect before the Tohoku EQ was observed for the phase of 
the induction vector northern component—arg(A) for periods 100–200 s. For the 
longer periods, the anomaly gradually decreases, so that we now present the results 
for T = 100 s. The processing and analysis were made in two steps:

Step 1. A 7-year-long (2005–2011) geomagnetic field time series with every 1 s 
reading was processed for every month as a single unit. Arg(A) time series with 
every month reading were received as in Figure 7a and analyzed by a polynomial 
approximation approach. The most significant first-, second-, and seventh (quasi-
annual)-order polynomials were extracted from the rough data, and we obtained 
Figure 7b which is more perspective for comparison with EQs. But 1-month 
temporal resolution of RF is not sufficient for such an analysis. As for the Tohoku 
EQ precursors, we see a 9-month-long negative anomaly in 2010 approximately 
1 year before the main event.

Step 2. A 2-year-long (2010–2011) 1 s time series were processed for every day as 
single unit. Large scatter of everyday results was reduced by averaging with moving 
window of 5 days long with 1-day shift. From these curves, i.e., arg(A) time series 
with everyday reading, we extracted first-, second-, and seventh (quasi-annual)-
order polynomials determined in step 1. The result is shown by the gray rough curve 
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application. (f) Frequency characteristics of induction vector components at KNZ. Dark lines for the wide 
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day; light lines, processing of after-midnight 4 h records of the same 20 days from February 18 to March 9, 2011.
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It means that the most conductive part of Boso electrical conductivity anomaly is 
located to south of KNZ, apparently near the southern side of the asymmetric “N.8 
half graben fills” of the Miura Group sediments [26].

Results of the single station and nighttime records processing at KNZ are given in 
Figure 6f. We see that full-day and nighttime results significantly differ from each 
other only for Bu and partly Bv components because a railway is located to the west 
from KNZ and brings the distortions mainly in the eastern component. The northern 
component is less affected by noise at periods 100 s and more that opens the possibil-
ity to use it for separation of EQ precursor that will be used in the next section.

4. Short-term precursor separation

4.1 Introductory remarks

The induction vector derived from very noisy records, practically from noise 
field, has small stable phase. Therefore, if some other magnetic fields, which are 
usually not so stable (let it be a precursor field), are superimposed on the field of 
noise, exactly the phase of induction vector will be the most sensitive component 
for a precursor separation.

Below we apply a new approach developed by Tregubenko [27], who used it 
for processing the data of seismo-prognosis monitoring network in Ukraine. He 
separated precursors before few strongest (M ≈ 4) Crimean EQs occurred during 
15 years, in particular before the Sudak, Crimea EQM3.9 on January 24, 2005 [27]. 
We applied this approach to KNZ, KAK, and ESA 1-s data, but the precursor was 
found only in KNZ. We can explain this by the spatial selectivity of the precursors: 
high sensitivity of KNZ place is quite natural in virtue of Boso electrical conductiv-
ity anomaly located just under KNZ observatory.

4.2 Processing of KNZ data

The processing was made with the use of Varentsov’s [22] program. Coherences 
were used as weight estimates for averaging the results. To minimize the effect 
of noise, the estimates with multiple coherences less than 0.7 were ignored that 
allowed us to obtain minimally shifted estimates of induction vector’s components. 
Maximum anomalous effect before the Tohoku EQ was observed for the phase of 
the induction vector northern component—arg(A) for periods 100–200 s. For the 
longer periods, the anomaly gradually decreases, so that we now present the results 
for T = 100 s. The processing and analysis were made in two steps:

Step 1. A 7-year-long (2005–2011) geomagnetic field time series with every 1 s 
reading was processed for every month as a single unit. Arg(A) time series with 
every month reading were received as in Figure 7a and analyzed by a polynomial 
approximation approach. The most significant first-, second-, and seventh (quasi-
annual)-order polynomials were extracted from the rough data, and we obtained 
Figure 7b which is more perspective for comparison with EQs. But 1-month 
temporal resolution of RF is not sufficient for such an analysis. As for the Tohoku 
EQ precursors, we see a 9-month-long negative anomaly in 2010 approximately 
1 year before the main event.

Step 2. A 2-year-long (2010–2011) 1 s time series were processed for every day as 
single unit. Large scatter of everyday results was reduced by averaging with moving 
window of 5 days long with 1-day shift. From these curves, i.e., arg(A) time series 
with everyday reading, we extracted first-, second-, and seventh (quasi-annual)-
order polynomials determined in step 1. The result is shown by the gray rough curve 
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in Figure 8a. The bold solid line is the result of averaging with moving window of 
29 days with 1-day shift to suppress monthly variations arising from the Moon rota-
tion around the Earth (gravity effect) and the Sun rotation around its axis (mag-
netic activity effect). The mean for 7 years 2005–2011 annual variation have been 
subtracted, but we see a residual annual variation in Figure 8a (RF annual variation 
enhancement was recorded at several observatories 2–3 years before Tohoku EQ and 
can be considered as middle-term precursor). So, such a residual annual variation 
was determined once more from 2-year data presented in Figure 8a and subtracted; 
the result is presented in Figure 8b.

4.3 Discussion of short term precursor

The variations of arg(A) given by the bold solid line in Figure 8b are cleaned 
from periodic variations of annual and monthly periods, which make it more 
convenient to identify EQ precursors. Indeed, we see a strong bay-like variation 
that begins almost 2 months before the Tohoku EQ and has approximately 2-month 
duration. This is in good agreement with the finding of Prof. Varotsos’ team 
[14, 15]. In particular, Varotsos et al. showed that the initiation of an SES activity in 
Japan appears almost simultaneously with the minimum of the fluctuations of the 
order parameter of seismicity analyzed in natural time, and such a minimum was 
clearly observed [15] on January 5, 2011, that is, almost 2 months before the Tohoku 
EQ occurrence.

Time of beginning of a bay-like precursory variation and its duration depends 
on the magnitude of an expected EQ. This time is equal to approximately 2 weeks 
for the processed Crimean EQs with magnitude approximately 4 [27] and 2 months 
for Tohoku EQ with magnitude 9 according to our study.

Figure 7. 
Variations of arg(A) for the period T = 100 s at the observatory KNZ during 2005–2011. (a) Monthly values 
of arg(A) are given by dots. The dashed straight line and bold solid line are the first- and second-order 
polynomials, respectively. Thin smooth line is quasi-annual variations obtained as seventh-order polynomial 
approximation. In the upper left corner, the determination of mean annual variation is shown (first- and 
second-order polynomials were excluded). (b) Variations of arg(A) after removal of the first-, second-, and 
seventh (quasi-annual)-order polynomials. Moments of strong EQsM > 5 are indicated by vertical lines with 
given magnitude M (the first number in parentheses is the depth of the hypocenter, and the second one is 
distance from epicenters to the observatory KNZ, both are given in km).

103

Low-Frequency Electromagnetic Signals Observed before Strong Earthquakes
DOI: http://dx.doi.org/10.5772/intechopen.88522

Kopytenko et al. [24] compared nighttime records of KAK and UCU observato-
ries (see Figures 3, 6) in frequency range of 0.33–0.01 Hz for the interval of 21 days 
before the Tohoku EQ , that is, since February 2, 2011 till March 3, 2011. They found 
the appearance of anomalous changes on February 22, 2011 (18 days before EQ ): 
decrease of the correlation coefficients between geomagnetic components of KAK 
and UCU observatories and rise of Bz component in sub-diapason 0.033–0.01 Hz. It 
was interpreted as appearance LE.

Now let us see Figure 5b. It presents nighttime records on February 24, 2011, 
16 days before the Tohoku EQ , in geomagnetically quite interval with rather good 
temporal and amplitude resolution. MT variations in the horizontal components 
are almost the same at all presented observatories distributed at the territory 
2000 km long. In the records of UCU and KNZ (separated by 17 km) we see strong 
varitations with frequencies of 0.002–0.1 Hz and amplitude of 0.2 and 0.5 nT, 
respectively, and even more strong variations in Bz component. All of this is in good 
agreement with the results of [24]. Variations in KNZ and UCU cover approxi-
mately the same frequency diapason as in [24], slightly correlate one with the other, 
and are not observed at other observatories. All signs of LE! But we cannot exclude 
that there are some remainders of the daytime noise from DC traffic. We need sev-
eral more observatories (as SES network in Greece) for more definite conclusions.

5. Discussion of LE features

To use the LE for EQ prediction, one needs to know its lead time, amplitude, 
frequency characteristic, and expected distribution of sensitive places in the Earth 

Figure 8. 
Variations of arg(A) for the period T = 100 s at the observatory KNZ by the data for 2010–2011 years. (a) 
Rough gray curve is the result of everyday processing after moving averaging with window length of 5 days 
with 1-day shift. Bold solid line is the result of averaging with moving window of 29 days (for elimination of 
monthly variation) with 1-day shift. (The first -, second-, and seventh (quasi-annual)-order polynomials 
determined from seven years data and presented in Figure 7a were subtracted). The time of the Tohoku EQ 
on 11.03.2011 is marked by a vertical arrow. (b) The same after the removal of residual annual variation 
determined from 2010-2011 data and given in Figure 8(a) by thin line.
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in Figure 8a. The bold solid line is the result of averaging with moving window of 
29 days with 1-day shift to suppress monthly variations arising from the Moon rota-
tion around the Earth (gravity effect) and the Sun rotation around its axis (mag-
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Kopytenko et al. [24] compared nighttime records of KAK and UCU observato-
ries (see Figures 3, 6) in frequency range of 0.33–0.01 Hz for the interval of 21 days 
before the Tohoku EQ , that is, since February 2, 2011 till March 3, 2011. They found 
the appearance of anomalous changes on February 22, 2011 (18 days before EQ ): 
decrease of the correlation coefficients between geomagnetic components of KAK 
and UCU observatories and rise of Bz component in sub-diapason 0.033–0.01 Hz. It 
was interpreted as appearance LE.

Now let us see Figure 5b. It presents nighttime records on February 24, 2011, 
16 days before the Tohoku EQ , in geomagnetically quite interval with rather good 
temporal and amplitude resolution. MT variations in the horizontal components 
are almost the same at all presented observatories distributed at the territory 
2000 km long. In the records of UCU and KNZ (separated by 17 km) we see strong 
varitations with frequencies of 0.002–0.1 Hz and amplitude of 0.2 and 0.5 nT, 
respectively, and even more strong variations in Bz component. All of this is in good 
agreement with the results of [24]. Variations in KNZ and UCU cover approxi-
mately the same frequency diapason as in [24], slightly correlate one with the other, 
and are not observed at other observatories. All signs of LE! But we cannot exclude 
that there are some remainders of the daytime noise from DC traffic. We need sev-
eral more observatories (as SES network in Greece) for more definite conclusions.

5. Discussion of LE features
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surface. This knowledge can be obtained now only empirically. We can extract the 
necessary properties from the data presented in Section 1.3 supplementing them 
with other published data. An attempt of such extraction is presented in Table 2.

The results depend of the conditions of observation. So, sampling rate of 10 min 
and compressed time scale in [12] describing two EQs in Taiwan exclude frequency 
content estimation. Important parameter – lead time ∆t is properly determined 
only before Loma Prieta EQ when signal-to-noise ratio was large during long time 
that allowed separate three stages of the precursor appearance. Spatial selectivity 
complicates the formulation of the LE spatial regularities. Thus, we are in the very 
beginning of LE phenomenon study and use.

6. Conclusions

We have calculated induction vectors using data from Japanese observatories for 
many years preceding the 2011 Tohoku EQ. In 2008–2010 at six observatories, we 
found anomalous variations of induction vectors, which are regarded as middle-
term EQ precursors. Those observatories are located not at the shortest distances 
from the EQ epicenter, which is in general agreement with the well-known phe-
nomenon of spatial selectivity of EQ precursors. The analysis of horizontal tensors 
reveals a conductivity anomaly under the central part of the Boso peninsula with a 
WNW-ESE strike coinciding both with the Sagami trough strike and well conduct-
ing 3-km-thick sediment strike. A joint analysis of geoelectric and tectonic data 
leads to a preliminary conclusion that the Boso conductivity anomaly connects 
two large-scale conductors: Pacific seawater and a deep magma reservoir beneath a 
volcanic belt. Similar anomaly was found earlier in Kamchatka [21]. Then, applying 
original data analysis with the elimination of annual and monthly variations, we 
separated two-month-long short-term EQ precursor of the Tohoku EQ.

Several cases of lithosphere emission LE before strong EQs were reviewed and 
analyzed, and preliminary portrait of LE precursor was compiled: LE can appear 
several times with lead time a month(s), weeks, days, hours, and minutes and 
can attain amplitude several hundreds of nT which rapidly and not uniformly 
diminishes with moving away from the source. Typical frequency content/maxi-
mum is 0.01–0.5 Hz. As it is widely accepted [5], LE is generated by the process of 

Earthquake ∆r, km ∆t, day or hour A, nT f, Hz A/∆r, nT/km

Alaska M9.2 440 (30) 1 h 100 0.28 (3.3)

Loma Prieta M7.1 7 36 day,
13 day,
3–0 h

1.5,
2,
5

0.01–0.5 0.21
0.29
0.71

Taiwan Chi-Chi M7.6 80 (≈5) >32 day,
10–2 days

200 2.5 (40)

Spitak M6.9 130 4 h 0.1 0.1–1 0.001

Racha aftershock M6.2 ≈50 4–1 days, few h ≈1 0.1–1 0.02

Racha aftershock M4 35 Hours 1 0.1–1 0.029

Greneva-Kozani M6.6 80 25 days ≈1? ≈0.05?

∆r, distance between observatory and EQ epicenter (or nearby displacement fault, given in brackets); ∆t, lead time 
of LE appearance before the EQ; A, LE amplitude; f, frequencies at which LE was recorded or the maximum of LE 
frequency characteristic. Scatter of A/∆r ratio shows strong irregularities in spatial decay of LE.

Table 2. 
Parameters of the observed LE.

105

Low-Frequency Electromagnetic Signals Observed before Strong Earthquakes
DOI: http://dx.doi.org/10.5772/intechopen.88522

microcracks opening in the course of EQ preparation and should be a rather com-
mon phenomenon. It is not quite clear how high-frequency microcrack radiation 
propagates through many kilometers of the Earth’s crust to be recorded at the Earth 
surface. Seemingly, the radiation finds the optimal pathways leading to sensitive 
places on the earth surface where signal can be observed. Then, the search of sensi-
tive spots opens new channel of information for the Earth interior study.

Recommendation on the LE monitoring for the strong EQ prediction

1. Network must allow the gradient measurements, so a minimum of three 
magnetometers must be installed for synchronous records [24].

2. The best but very expensive is the SES monitoring network in Greece. 
Electrical dipoles can be supplemented or replaced by magnetometers. We 
recommended for use the practice of sensitive places search and use [11] and 
the methodology of LE sophisticated analysis developing by Prof. Varotsos’ 
team [14, 15].

3. RF approach is a valuable supplement to LE. It has lower temporal resolution 
but yields additional information on the conductivity variations in the EQ 
preparation zone.
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