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Preface

In modern materials science, solid-state physics is a multidisciplinary field that
describes the advancements in physics, chemistry, and material engineering. Solid-
state physics deals with the behavior of solid matters in terms of physical metal-
lurgy, quantummechanism, crystallography, and electromagnetism. The concept of
solid-state physics is currently being applied to all electronic parts, which is a boon
for the electronics industry. The parts made up of solid matters are categorized as
crystalline solids and amorphous materials/bulk metallic glasses/non-equilibrium
materials. Solid-state materials exhibit interesting properties: higher strength,
hardness, increased elastic strain limit, and outstanding corrosion and wear resis-
tance. In addition, solid-state materials usually have unique physical, thermal,
magnetic, and electrical properties, which are triggered to apply these materials to
structural or functional applications. Furthermore, these materials possess macro-
scopically homogeneous, isotropic, and superior plastic deformation abilities.
Therefore, to investigate and demonstrate the field of solid-state physics, this book
addresses recent progress in the field of solid-state physics, which includes scientific
works and reviews related to metastable and spintronics materials.

Dr. Subbarayan Sivasankaran
College of Engineering,

Qassim University,
Saudi Arabia

“Spintronics” usually refers to the branch of physics concerned with the manipula-
tion, storage, and transfer of information by means of electron spins in addition to
the electron charge in conventional electronics. It is very important to understand
the principles and equations underlying the physics, transport, and dynamics of
spin in solid-state systems. Major advances in electron spin transport started with
the discovery of room temperature giant magnetoresistance, which paves the way
towards application in spin-based practical devices such as spintronic field-effect
transistors, spin-dependent tunneling diodes, logic gates, quantum computers, etc.
The study of spintronics in semiconductors, metals, and other materials has been
widely explored in its bulk form. The recent emergence of two-dimensional (2D)
materials has been a real boom in the field of spintronics due to the strong spin–
orbit coupling effect. The aim of the “Spintronics” section is to provide recent
development in spintronics in bulk as well as 2D materials aimed at researchers,
professors, post-doctorates, and graduate students in the discipline of physics,
materials science, and nanotechnology and to help them master the overall
knowledge of spintronics.

The section contains three chapters. In Chapter 1, the authors discuss spin—orbit
coupling in an exotic graphene structure and also in biology. They introduce a new
representation of the genetic code in the time series for string and D-brane
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modeling by applying a spinor field to a superspace in time series data. This method
develops supersymmetry for living organisms, which is considered to be one of the
big puzzles of modern biology. Chapter 2 introduces the Ising model and its appli-
cations, and highlights developments in the field of magnetism relevant to the field
of spintronics. In Chapter 3, the authors report the effect of Ni/Mn variation on the
exchange bias properties in Mn-rich Ni50 – xMn37 + xSn13 (0 ≤ x ≤ 4) Heusler
alloys. The exchange bias properties in the above system are the key elements of
new spintronics systems.

I am very pleased to serve as section editor of this book, which contains a wide
variety of studies from different authors. I would like to thank all the authors for
their effort in contributing their research papers.

I would also like to acknowledge the help given by IntechOpen, in particular pub-
lishing manager Lada Bozic for her assistance, patience, and support throughout the
whole process of this book project.

Dr. Pramoda Kumar Nayak
Department of Physics,

IIT Madras,
Chennai, India

This aim of this section is to explain the newly developed numerical and analytical
methods by describing their solutions. Additionally in this section, newly developed
theoretical studies on the solution methods of basic problems for solid mechanics
are included. Solid mechanics problems are discussed in two main groups: solutions
of beam, plate, and shell-type structures under static loading and solutions under
dynamic loading. To make the mathematical problems simpler and more under-
standable, the modeling is performed in terms of plane stress, plane strain, and
axisymmetric and symmetric conditions. The section “Mechanics of Deformable
Bodies” contains three chapters. The section includes the basic scientific knowledge
that is required as well as newly developed analytical solution methods and
numerical solution techniques that have novel commercial application areas in
engineering field.

The first chapter of the section “2D Elastostatic Problems in Parabolic Coordinates”
was prepared by Assoc. Prof. Dr. Natela Zirakashvili and Prof. Dr. I. Vekua. The
researchers explain and discuss the boundary value problems that were considered
in the defined parabolic coordinate system. In the parabolic coordinates, the equi-
librium equations, Hooke’s law, and analytical (exact) solutions of 2D problems of
elasticity were constructed in the homogeneous isotropic body bounded by coordi-
nate lines of the parabolic coordinate system. Analytical solutions were obtained
using the method of separation of variables. The solution was constructed using its
general representation by two harmonic functions. Using MATLAB software,
numerical results and constructed graphs of some boundary value problems were
obtained and presented in detail.

The second chapter, “Boundary element mathematical modelling and boundary
element numerical techniques for optimization of micropolar thermoviscoelastic

XIV

problems in solid deformable bodies,” was prepared by Assoc. Prof. Dr. Mohamed
Abdelsabour Fahmy. The main objective of this chapter was to introduce a new
theory called three-temperature nonlinear generalized micropolar thermoviscoe-
lasticity. Because of strong nonlinearity of simulation and optimization problems
associated with this theory, the numerical solutions for problems related to the
proposed theory are always very difficult and require the development of new
numerical techniques. So, the researcher proposed a new boundary element tech-
nique for simulation and optimization of such problems based on genetic algorithm,
freeform deformation method, and nonuniform rational B-spline curve as the shape
optimization technique.

The third chapter, “Dynamic stiffness method for vibrations of ship structures,” is
by Dr. Xuewen Yin, researcher Kuikui Zhong, researcher Zitian Wei, and Prof. Dr.
Wen-wei Wu. The chapter was prepared by considering the dynamic stiffness
method (DSM) in the solutions of the dynamics of ship structures. A DSM element
accounting for both in-plane and bending vibrations in flat rectangular plates was
developed, which makes it possible for modeling wave conversion across junctions
in built-up plates. In addition, a DSM element for stiffened plates was formulated,
which considers all possible vibrations in plates and beams, i.e. bending, torsion,
and extension motions. The third type of DS plate element was examined in terms
of fluid loading, which was induced by a vibrating plate. Finally, the proposed DSM
method was extended to address vibration transmission in a built-up plate struc-
ture, which demonstrated the great potential of DSM in applications of more
practical and more general engineering fields.

Dr. Ezgi Günay
Associate Professor,
Engineering Faculty,

Mechanical Engineering Department,
Gazi University,
Ankara, Turkey

V
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Chapter 1

Issues in Solid-State Physics
Roberto Raúl Deza

Abstract

In the first sections, we bring into the present context some of our past contri-
butions on the influence of quantum correlations on the formation of tightly bound
solids. We discuss the effects of the overlap between neighbor orbitals in diverse
situations of interest—involving both bulk and surface states—and call the reader’s
attention to an exact tight-binding calculation which allows gauging the errors
introduced by the underlying hypotheses of the usual tight-binding approximation.
We round up this part by reviewing a quantum Monte Carlo method specific for
strongly correlated fermion systems. In the last section, we explore some non-
equilibrium routes to (not necessarily tightly bound) solid state: we discuss spatio-
temporal pattern formation in arrays of FitzHugh-Nagumo (FHN) neurons, akin to
resonant crystal structures.

Keywords: quantum correlations, band structure, tight-binding approach,
neighbor orbital overlap, fermion Monte Carlo, non-equilibrium pattern formation,
spatiotemporal synchronization

1. Introduction

Since childhood, we all have an intuition of what a solid is. However, most
properties we intuitively assign to solids come in a vast range. Diamonds—and
some metals—are hard, and ordinary glasses are brittle; but vulcanized rubber is
neither, and it is a solid too. Perhaps the best characterization is this: at our human
timescales, a solid does not flow. That is why this category includes glasses and ice
(which do flow but at least at geological timescales).

Regarding their structure, a huge class of solids are crystalline. This is so to such
extent that solid state came to be synonymous of crystalline structure, and the more
comprehensive category of condensed matter (which admittedly includes condensed
fluids or liquids) came into fashion. The name crystal was assigned in the late
antiquity to precious and semiprecious stones that outstood for their transparency
and diaphaneity. In fact, the modern meaning of the term as “an almost perfectly
ordered structure” explains easily those properties.1

Many solids we interact with—metals, stones, etc.—are random assemblies of
grains, held together by strong adhesion forces. Like those of sand, quartz, or salt,
those grains are very likely to be themselves crystals (which as said do not imply
they are perfect: they may contain lots of impurities and defects). But there are
two particular aspects of crystals we are concerned with here. The first is that

1 For isolators like these, the bandgap is too large for visible light to be absorbed by creating electron-

hole pairs. Moreover, the absence of charge carriers rules out light scattering. Impurities provide

localized midgap states, which favor two-step electron-hole pair creation by visible light.
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timescales, a solid does not flow. That is why this category includes glasses and ice
(which do flow but at least at geological timescales).

Regarding their structure, a huge class of solids are crystalline. This is so to such
extent that solid state came to be synonymous of crystalline structure, and the more
comprehensive category of condensed matter (which admittedly includes condensed
fluids or liquids) came into fashion. The name crystal was assigned in the late
antiquity to precious and semiprecious stones that outstood for their transparency
and diaphaneity. In fact, the modern meaning of the term as “an almost perfectly
ordered structure” explains easily those properties.1

Many solids we interact with—metals, stones, etc.—are random assemblies of
grains, held together by strong adhesion forces. Like those of sand, quartz, or salt,
those grains are very likely to be themselves crystals (which as said do not imply
they are perfect: they may contain lots of impurities and defects). But there are
two particular aspects of crystals we are concerned with here. The first is that

1 For isolators like these, the bandgap is too large for visible light to be absorbed by creating electron-

hole pairs. Moreover, the absence of charge carriers rules out light scattering. Impurities provide

localized midgap states, which favor two-step electron-hole pair creation by visible light.
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unlike complex systems, which may display emergent structures at each scale
(think, e.g., of mitochondria, cells, tissues, organs, etc.), crystals are very simple:
they are huge assemblies of elementary building blocks (be they atoms, molecules,
nanoclusters, or whatever). The second is that since the building blocks obey
quantum mechanics, crystals inherit the quantum character (despite being them-
selves macroscopic).

As recent experiments have shown, whereas most interactions (but gravity) are
effectively short-ranged, there is no limit for quantum correlations; and this fact
makes them the most important fact to account for in modeling. Quantum correla-
tions manifest themselves in many ways, but the by far dominant one comes from
the indistinguishability of identical particles. Unless the crystal is a monolayer, the
state vector of a system of many indistinguishable particles must be either totally
symmetric or totally antisymmetric (a determinant) under exchange. In the first case,
the particles obey Bose-Einstein statistics and are called bosons. In the second, the
particles obey Fermi-Dirac statistics and are called fermions. The requirement that
the state vector of a system with many fermions be totally antisymmetric is the
celebrated exclusion principle, postulated by Pauli.

At present, there is no question that atoms are distinguishable. They can even be
individually manipulated.2 Since in modeling crystals, it suffices to take atoms as
building blocks (we resolve up to the nanoscale), it does not matter that they are
themselves composed of other indistinguishable particles (i.e., protons and neu-
trons, confined to �10�6 nm) besides electrons. Instead, considering the typical
effective masses of electrons in metals and semiconductors, their thermal lengths at
room temperature can reach the μm, so they are highly delocalized. The following
two sections illustrate two different ways of dealing with Pauli’s exclusion principle
when modeling crystalline solids, corresponding to two radically different ways of
doing quantum mechanics.

Section 2 keeps within the framework of first quantization. It is assumed that
neither electrons (we mean crystal electrons, with effective masses) nor holes can be
either created or destroyed. There is only one electron in the whole crystal, submit-
ted to a potential which is mainly the juxtaposition of shielded Coulomb terms, due
to atomic orbitals located at the crystal’s lattice sites. The way Pauli’s principle is
dealt with is by comparing the one-electron band spectrum with the Fermi level of
an ideal free-electron gas (see Nomenclature). The Fermi level is the chemical
potential of such a gas. The exclusion principle can make it so high that for white
dwarfs and neutron stars, the pressure it generates prevents the system from
becoming a black hole. But the quantum correlation we are concerned with in this
section is not Pauli’s principle but the overlap between atomic orbitals, usually
neglected in simple tight-binding calculations of band structure. The main assump-
tion of the tight-binding approach to band spectra is that atoms in a crystal interact
only very weakly. As a consequence, the electron’s state vector should not differ
very much from that of the plain juxtaposition of atomic orbitals located at the
crystal’s lattice sites. However, neglecting almost all interaction terms and overlap
integrals (atomic states at different lattice sites need not be orthogonal to each
other) may be too drastic an approximation. Thus Section 2 is devoted to a thorough
discussion of the issue.

Instead, the framework of Section 3 is that of second quantization. Again, our
view of the crystal is that of tight-binding (atoms do not lose their identities).

2 Sadly, the generalized disbelief in the mere existence of atoms just one century ago may have

contributed to Ludwig Boltzmann’s suicide.
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Here we are indeed concerned with Pauli’s principle. But we deal with it in the style
of quantum field theory, by allowing at most one electron of each spin projection per
atom. For an electron to move (“hop”) one lattice site, it must be annihilated at its
former host atom and created in its nearest neighbor one. The purpose of this section
is to illustrate an efficient Monte Carlo scheme that implements this strategy to find
the ground state of many-electron systems. Recognizing that electrostatic (Cou-
lomb) interaction between electrons is not a weak effect but is simply overwhelmed
by Pauli’s principle, a popular model of itinerant magnetism (the Hubbard model)
adds to its Hamiltonian a repulsion term whenever an atom hosts two (opposite spin
projection) electrons.

Section 4 explores the boundaries of the concept of solid. Perhaps, it should be
regarded as a metaphor of this concept. We illustrate a non-equilibrium spatiotem-
poral pattern formation process, akin to resonant crystal structures, in arrays of
FitzHugh-Nagumo cells.

2. Band spectra in the tight-binding approach: effects of the overlaps
between neighboring orbitals

2.1 Quantum mechanics in a nutshell

For the benefit of those readers who are unfamiliar with the standard formalism
of quantum mechanics, we review its main facts:

• Dynamical states are vectors: one can account for the wavelike behavior of
quantum objects (e.g., diffraction of single electrons by two slits) by letting
their dynamical state ∣ψi belong to a vector space over the complex numbers.
In few problems (e.g., addition of angular momenta), this vector space is
finite-dimensional. But most problems entail infinite sequences (e.g., energy
spectrum of the hydrogen atom) or even a continuum of values (e.g., in the
measurement of positions and momenta), so the notion of dimension is
replaced by that of completitude (any state can be spanned in suitable “bases”).
By assigning a complex number φjψh i (their “internal product”) to every pair
of dynamical states ∣ψ⟩, ∣φ⟩, the complete vector space is made into a Hilbert
space.

• Probabilistic interpretation: if ∣ψ⟩ ¼ ∑I αIjψ Ii (be aware that the index set I
may be infinite or may even be a patch of Rd), then αIj j2 yields the probability
to find an outcome represented by ∣ψ I⟩, when the system is in state ∣ψ⟩. This
obviously requires normalization: ψ jψh i ¼ 1.

• Dynamical magnitudes are linear operators L, which take a vector into
another vector. For instance, the projector Pφ ≔ ∣φ⟩⟨ψ ∣ projects state ∣ψ⟩ onto
∣φ⟩. Measuring a dynamical magnitude thus means finding one of its
eigenvalues L∣lI⟩ ¼ lI∣lI⟩. Also of interest is the mean (or expectation) value
ψ jLjψh i of L in a generic state ∣ψ⟩. Correspondence with classical physics
imposes that those eigenvalues be real, and thus dynamical magnitudes must
be self-adjoint (Hermitian) operators (Pφ is thus not a dynamical magnitude).

• Unitary evolution: in order to conserve the probabilistic interpretation, the
dynamic evolution of the state is accomplished by a unitary operator. Again,
correspondence with classical physics (already implicit in Schrödinger’s
equation) forces this operator to be exp �iHð Þ.
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• Wave function: a possible “basis” set is that of eigenstates (X∣x⟩ ¼ x∣x⟩) of the
position operator, namely, ∣ψ⟩ ¼ Ð dx ψ xð Þ∣x⟩. The wave function ψ xð Þ plays
here the role of the coefficients αI. In modern notation, ψ xð Þ is written as xjφh i,
so one writes ∣φ⟩ ¼ Ð dx ∣x⟩ xjφh i.

• Orthogonality ( φjψh i ¼ 0): a given eigenvalue l1 of a Hermitian operator L
may have a single eigenstate ∣ l1⟩ (the normalized one out of a dimension-1
subspace over the complex numbers) or more (in this case, it is said to be
degenerate). Eigenstates corresponding to different eigenvalues are automatically
orthogonal.

2.2 Naive tight-binding approach to band theory

As argued in Section 1, the starting point of this approach is to express the
electron’s state vector as a linear combination of atomic orbitals (LCAO) located at
the crystal’s lattice sites (we illustrate the procedure in 1D, but clearly, it can be
extended to any dimension and lattice symmetry). The eigenvalue problem of the
isolated atom centered at xc is Hatom ∣ψatom⟩ ¼ Eatom ∣ψatom⟩, with
Hatom ¼ T þ V x� xcð Þ. We then place a copy ∣i⟩ of ∣ψatom⟩ centered at each lattice
site i (xi ¼ ia) and write the electron’s state in the crystal as LCAO

∣ψcrystal〉 ¼ ∑
i
ci∣ii (1)

(clearly, ci ¼ 〈i∣ψcrystal〉). Now, even though the interatomic distance in the
crystal (the “lattice spacing” a) is usually larger than the range x0 of the atomic
orbitals, the atomic cores do interact, and one should include at least two effects:

• A correction to the isolated atomic level Eatom (we shall call α the corrected
level)

• Electron tunneling between neighboring orbitals (let γ be a gauge of the energy
involved in such a “hopping” process)

It thus makes sense to write up the lattice Hamiltonian in terms of projection
operators as

Hcrystal ¼ α∑
i
jii〈i∣� γ∑

i
jiþ 1i ijþjii iþ 1jh Þ:hð (2)

Two timely comments are:

1. The presence of ∣i⟩⟨iþ 1∣, the adjoint of ∣iþ 1⟩⟨i∣, ensures that Hcrystal be
Hermitian.

2. The minus sign in the second term ensures crystal stability (energy is released
by forming a crystal).

Using Eqs. (1) and (2), the eigenvalue problem Hcrystal ∣ψcrystal⟩ ¼ Ecrystal ∣ψcrystal⟩

for the electron in the crystal reads

½α∑
i
jii〈i∣� γ∑

i
ðjiþ 1i〈i∣þjii〈iþ 1∣Þ�∑

j
cj∣ ji ¼ Ecrystal ∑

j
cj∣ ji: (3)
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Assuming the states ∣i⟩ to be orthogonal to each other, the left-hand side of Eq. (3)
reads ∑i ci∣ii � γ∑i cijiþ 1ð i þ ciþ1∣i⟩). If the number of sites in the crystal is large
enough (usually it is �106), one can greatly simplify the problem by assuming
periodic boundary conditions (PBC). This allows to rearrange the sums (their
indices become dummy), and Eq. (3) reads ∑i Ecrystal � α

� �
ci � γ∑i ci�1þð�

ciþ1Þ�∣ii ¼ 0 . Clearly, the LCAO assumes that the ∣i⟩ are linearly independent (be
they orthogonal or not), so we are left with the system of difference equations:

Ecrystal � α
� �

ci � γ∑
i

ci�1 þ ciþ1ð Þ ¼ 0, i ¼ 1…N � 0: (4)

Again invoking PBC, one tries the form cj ¼ exp ijka with �π, ka≤ π (Bloch
phase factors) and obtains the known cosine spectrum

Ecrystal ¼ α� 2γ cos ka, � π, ka≤ π: (5)

What has been left behind? Much indeed:

• We know that α equals Eatom plus some correction, but we do not know what
the correction is.

• Similarly, we know that γ is the expectation value of the effective potential
Wi ≔ ∑j6¼i V x� xj

� �
felt by an electron at x � ia, due to the presence of other

atoms. We have kept just j ¼ i� 1, but even in this approximation, we do not
know what the correction is.

• To what extent can one assume the states ∣i⟩ to be orthogonal to each other? This
assumption is correct in the absence of interatomic interaction, but not
necessarily when atoms interact.

2.3 Tight-binding band calculation: properly done

Recognizing that Hcrystal ¼ ∑i Hatom
i þWi

� �
and using Eq. (1), Ecrystal turns out

to be [1, 2]

Ecrystal ¼ Eatom þ ∑
i
αi cij j2 þ∑

ij
γijc

∗
i cj

" #�
∑
i
cij j2 þ∑

ij
Sijc ∗i cj

" #
, (6)

where

αi ≔Hii ¼ 〈i∣Wi∣i〉, γij ≔Hij ¼ ijWij ji, Sij ≔ ij ji, j 6¼ i:h�
(7)

The contribution of the Sij (known as overlap integrals) to the band spectrum is
our main concern in this section. But not less interesting are that of the αi terms—
which, as argued, shift the electronic energy in an atom from its isolated value
Eatom, as a collective effect of the other atoms—and that of the γij. The latter can be
regarded as the sum of two contributions, as Vj ≔V x� xj

� �
can be singled out from

Wi. Then whereas the two-center integrals γ 2ð Þ
ij ≔ ijVjj j

��
involve only sites i and j,

the three-center integrals γ 3ð Þ
ij also involve the sum∑l 6¼i, j V x� xlð Þ of the potentials
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of the remaining atoms in the solid. Hence, the γ 3ð Þ
ij can be interpreted as the

collective effect on the overlap between orbitals i and j.
Variation of Eq. (6) with respect to the LCAO coefficients of Eq. (1)—namely,

∂Ecrystal=∂a ∗
j ¼ 0—yields Hij � EcrystalSij

� �
aj ¼ 0,∀j. Assuming PBC, Hij and Sij are

functions only of the interatomic distance na, with n ¼ ∣i� j∣. Again using
an ¼ exp inka with �π, ka≤ π, Eq. (6) yields

Ecrystal ¼ Eatom þ αþ 2∑
n
Hn cos nka

� ��
1þ 2∑

n
Sn cos nka

� �
: (8)

Note however that the number of multicenter integrals to be computed is
immense! Because of that, most tight-binding calculations plainly ignore almost all
the multicenter integrals (keeping only those involving nearest neighbors) and
neglect orbital non-orthogonality. This way, the familiar cosine spectrum is
obtained. Often, multicenter integrals are just regarded as parameters to fit the
results of more sophisticated calculations made by other methods at the highest
symmetry points of the Brillouin zone.

In the following, we compute all the multicenter integrals exactly in the frame-
work of a simple model for the atomic potential. The results help get an intuition on
the effect on band spectrum of neglecting overlap integrals and distant-neighbor
interactions.

2.4 A simple model that yields an exact tight-binding band spectrum

We restrict ourselves to a 1D monoatomic crystal and assume the interatomic
distance a to be larger than the effective range of the screened Coulomb potential
representing the atomic core. In such a situation, we can approximate the latter by a
Dirac δ-function (complete screening up to the scale of the nucleus):

Vcrystal xð Þ ¼ �V0∑nδ x� nað Þ: (9)

The solution to Hatom ∣ψatom⟩ ¼ Eatom ∣ψatom⟩, with Hatom ¼ � ℏ2

2m
d2

dx2
� V0δ xð Þ, is

an exponential function of the form ψatom xð Þ ¼ 〈x ψatomj i ¼ x�
1
2

0 exp � xj j
x0

� �
. Its

range x0 is related to Eatom by�Eatom ¼ ℏ2=2mx20 ¼ mV0=2ℏ2 .
The only two spatial scales involved in this problem are x0 and the lattice spacing

a. The parameter t ¼ a=x0 will thus allow us to follow the formation of energy
bands (k-space picture) as atoms get close together (real-space picture). All the
multicenter integrals can be computed analytically in terms of t. The results are
Sn ¼ 1þ ntð Þ exp �tð Þ, α ¼ 2Eatom exp �tð Þ=sinh t, and
γn ¼ 2Eatom nþ exp �tð Þ=sinh t½ � exp �ntð Þ [3]. We thus get the following closed
expression for λ≔ Ecrystal � Eatom

� �
=Eatom:

λ k; tð Þ ¼ A0 tð Þ þ A1 tð Þ cos ka½ �= 1þ S tð Þ cos ka½ �, � π, ka≤ π, (10)

where A0 ¼ exp �tð Þsinh t= sinh tcosh t� t½ �, A1 ¼ sinh t= sinh tcosh t� t½ �, and
S ¼ tcosh t� sinh t½ �= sinh tcosh t� t½ � [3].

Explicit evaluation of Eq. (10) at the bottom (ka ¼ 0) and top (ka ¼ π) of the
band shows that for t, 4, the cosine spectrum of Eq. (5) underestimates both.
Moreover, the multicenter integrals neglected in the cosine spectrum shift unevenly
the top and bottom of the exact spectrum. Hence, the approximation performs
worse for the top than for the bottom of the band.
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3. Quantum Monte Carlo method for systems with strongly
correlated fermions

3.1 Quantum statistical mechanics in a nutshell

The state vectors dealt with in Section 1 represent pure states. They are the ones
which display the spectacular effects seen in recent experiments. Since in this
section, we will allow creation annihilation of electron states, we must work in the
framework of the grand canonical ensemble.3 When one deals with statistical ensem-
bles of quantum states, the object of interest is the Hermitian operator exp �βHð Þ,
called the density matrix operator (here β≔ kBTð Þ�1 and kB ¼ R=NA are Boltzmann’s
constant).

What drives our interest in the density matrix—namely, the matrix elements
between pure states of exp �βHð Þ—is the fact that it can be used to find the ground
state of many-body systems by stochastic methods. For β large enough, exp �βHð Þ
acts effectively as a projector over the lowest-lying energy eigenstate to which the
initial (trial) state ∣φ⟩ is not definitely orthogonal. Let E be the corresponding
eigenvalue, and consider another trial state ∣χ⟩ over which we will project the result.
Then we may numerically compute E from

exp �ΔβEð Þ ¼ lim
β!∞

⟨ χj exp � β þ Δβð ÞH½ �jφ⟩=⟨ χj exp �ΔβHð Þjφ⟩½ �: (11)

But what is yet more interesting is that in the process, we find a good estimate of
the eigenstate itself, namely, its composition in terms of a known basis.

3.2 Monte Carlo pursuit of the ground state

The first step in this computation is to divide the interval 0; β½ � into L “time”
slices of width Δτ ¼ β=L. Some comments are in order:

a.We take our language from the formal analogy between the density matrix
and the evolution operators.

b.Note that in our case, exp �βHð Þ is not meant to be traced over as it should be
in a thermodynamic calculation: here it must rather be considered as a formal
tool to make sense in the limit β ! ∞.

c.We may call U ¼ exp �ΔτHð Þ the transfer matrix operator.

If we can decompose H into a sum of several terms Hi which (although not
commuting among them) are themselves sums of commuting terms, then for L large
enough, the error of approximating

U ¼ exp �Δτ H1 þ 2ð Þ½ � ¼ exp �Δτ1ð Þ exp �ΔτH2ð Þ exp � Δτð Þ2 H1;H2½ �
n o

¼ U1U2 1� Δτð Þ2 H1;H2½ � þ…
n o

� U1U2

would be at most of order Δτð Þ2. Hence

3 We have already stated that the Fermi level is the chemical potential of an ideal free-electron gas. This

concept is peculiar of the grand canonical ensemble.
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χj exp �βHð Þjφh i � χj U1U2ð ÞLjφ
D E

: (12)

In order to evaluate expression (12), we introduce complete sets of states at each
time slice.

The clue to quantumMonte Carlo simulation of Eq. (11) resides in evaluating the
sums over complete states by importance sampling: in order to do that, observe first
that we can rather arbitrarily decompose

ψ jj U1U2ð ÞLjψ i

D E
¼ SijPij (13)

as the product of a probability times a (complex) number which we will call a
“score.” The probability distribution Pij is at our disposal in order to optimize
numerical convergence, minimize statistical error, etc. It can be shown that the way
to achieve the last goal is by assigning to every matrix element the same score: that
is the basis for the so-called population method. Here the initial (trial) state is
represented by a “population” in which there are ni copies of state ∣ψ i⟩. The latter
corresponds to a definite assignment of occupation numbers both in coordinate and
spin (always belonging to the Hilbert space of the problem, i.e., compatible with the
conserved quantum numbers). To each individual in the population, we apply the
evolution operator, thus obtaining a new state after one time slice. That particular
matrix element can be decomposed as indicated in Eq. (20) (but being now
Sij ¼ S ¼ const). The way in which we implement the Pij is by making as many
copies of that particular resulting state as indicated by 〈ψ j∣ U1U2ð ÞL∣ψ i〉=S. Proceed-
ing this way, we will get a different population after each time slice which we expect
to approach successively to one representing the lowest reachable energy eigenstate.

We have not said anything about the way in which we evaluate the alluded
matrix elements, besides the fact that we resort to the decomposition (20): if, as
we have already assumed, the term Hi can itself be decomposed into mutually
commuting terms, we need only to focus on the Hilbert space of that (much
smaller) system. We can compute exactly the matrix elements of the evolution
operator for that cluster, write them as the product of a probability times a score
(now we can choose the probability distribution to minimize total computing time),
and make transitions among cluster states according to those probabilities,
assigning then the corresponding score to the particular transition.

3.3 The case of fermions

Again within the tight-binding approach to crystalline solids, quantum creation (c†is)
and annihilation (cis) operators determine the existence of electrons with spin projec-
tion σ at site i. For the state vector of the whole set of electrons in the crystal to be
totally antisymmetric under exchange, those operators must anticommute with each
other, unless they refer to the same site and spin projection. In such a case, there can
be at most one electron per site and spin projection, as required by Pauli’s principle.

In the case of the 1D Hubbard model, we chose the following decomposition of
the Hamiltonian, which allows us to consider clusters of only two sites:

H1 ¼ �t∑oddj∑σ c†jþ1σcjσ þ h:c:
� �

¼ �t ∑
oddj

∑
σ
hj, jþ1

H2 ¼ �t∑evenj∑σ c†jþ1σcjσ þ h:c:
� �

¼ �t ∑
evenj

∑
σ
hj, jþ1 (14)
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H3 ¼ �t∑all jnj↑nj↓:

The corresponding matrix elements are then ψ iþ1jU3U2U1jψ i
� �

with U1 ¼Q
oddj exp �Δτhj, jþ1

� �
, U2 ¼

Q
evenj exp �Δτhj, jþ1

� �
, U3 ¼

Q
j exp �Δτ nj↑nj↓

� �
, and

01j exp �Δτhj, jþ1
� �j01� � ¼ 10j exp �Δτhj, jþ1

� �j10� � ¼ coshΔτ,

10j exp �Δτhj, jþ1
� �j01� � ¼ 01j exp �Δτhj, jþ1

� �j10� � ¼ sinhΔτ, (15)

00j exp �Δτhj, jþ1
� �j00� � ¼ 11j exp �Δτhj, jþ1

� �j11� � ¼ 1,

from which we write up the (a priori) transition probabilities. Then, in case
there is only one occupied site in the block, we draw a random number r and
compare it with the a priori transition probability p for the state to remain the same.
In case that r. p, we make a hopping, i.e., exchange empty and occupied states in
the block.

The a priori probabilities can be better chosen if we take into account the
occupation of those same two sites by electrons with the other spin projection, thus
anticipating to the fact that they will penalize doubly occupied sites [4, 5]. This will
certainly improve convergence.

4. Non-equilibrium routes to soft solids

Up to now, we have dealt with crystalline solids. This means that disregarding
the topology4 of the interaction network, we paid attention to the underlying
geometry of the quantum problem. At present, a host of synthetic materials has
outperformed metals at their initial tasks. Some of them still display a varying
degree of crystalline character, but others are not crystalline at all. Vulcanized
rubbers are an example: created by forcing random chemical bonds in a melt
(a “spaghetti dish”), they are inhibited to flow, and, thus, they are amorphous
solids.5 But they exhibit a varying degree of viscoelastic behavior. In the last
decades, the vast discipline of soft condensed matter has incorporated to mainstream
research in solid-state physics, at equal footing with crystalline solids. The scope of
soft condensed matter is very wide. In particular, it considers many non-
equilibrium routes to self-assembled emergent structures. Of huge interest is the
neocortex (not just because understanding the brain’s behavior is one of the “Holy
Grails” of science, but because in doing it we may achieve to master a computa-
tional strategy which is far more efficient than the present one).

We devote this section to the emergence of non-equilibrium routes to spatio-
temporal patterns in an assembly of model “neurons” which keep their essential
trait, namely, excitability. Admittedly, here the interaction network has the topology
of a lattice, but here it is not the underlying geometry that is at stake. What does
matter here is that the boundary condition be compatible with the interaction, a fact
that contributes to the network’s topology.

4 It will be a lattice only if all interactions but nearest neighbor ones are neglected. Note that crystals

may even have a Cayley tree structure, like the so-called “Bethe lattices.”
5 The electronic properties of amorphous solids are also of interest, e.g., in the photovoltaic (PV)

industry.
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D E
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4.1 The non-equilibrium potential (NEP)

It is often hard to tell to what extent an innovation embodies a paradigm shift,
for the high diversity (both in scope and extent) of innovations. The formalism of
quantum mechanics can be regarded as such—with respect to the Newtonian para-
digm—despite the strict correspondence between commutator and Poisson bracket
Lie algebras. Also can Einstein’s three papers in his “annus miraculus” be considered
as such, for they demolished our former conceptions of time, of the nature of
particles and waves, and of a clockwork universe. In 1908, Paul Langevin
supplemented the Newtonian paradigm by letting the forces be of stochastic nature
[6]. It is up to your taste to call this innovation a paradigm shift: it definitely
abolished our clockwork universe conception and opened up a new chapter in the
theory of differential equations. The resulting paradigm is well suited to the current
situation, urged by the challenges of nanoscience (where the “systems” are submit-
ted to strong ambient fluctuations) and favored by the increasing parallelism of
computational architectures (the simulation schemes are essentially local).

The modern approach to continuous-time dynamic flows is of first order.6 Given
an initial state xi of a continuous-time, dissipative, autonomous dynamic flow
_x ¼ f xð Þ, its conditional probability density function (PDF) P x; tjxi;0ð Þ when
submitted to a (Gaussian, centered) white noise ξ tð Þ with variance γ, namely,

_x ¼ f xð Þ þ ξ tð Þ,with  ξ tð Þh i ¼ 0 and  ξ tð Þξ t0ð Þh i ¼ 2γδ t� t0ð Þ (16)

obeys the Fokker-Planck equation (FPE):

∂P x; tjx;0ð Þ þ ∂ J x; tjx;0ð Þ ¼ 0,with J x; tjx;0ð Þ ¼ D 1ð ÞP� ∂x D 2ð Þ xð ÞP
h i

(17)

in terms of the “drift” D 1ð Þ ¼ f xð Þ and “diffusion” D 2ð Þ ¼ γ Kramers-Moyal
coefficients. Being the flow nonautonomous but dissipative, one can expect gener-
ically situations of statistical energy balance in which the PDF becomes stationary,
∂tPst xð Þ ¼ 0, thus independent of the initial state. Then by defining the non-
equilibrium potential Φ xð Þ≔ � Ð xx0 f yð Þdy, it is immediate to find

Pst xð Þ ¼ N x0ð Þ exp �Φ xð Þ=γ½ �: (18)

For n-component dynamic flows, Φ xð Þ is defined as � limγ!0 γ lnPst x; γð Þ [7],
but finding it ceases to be a straightforward matter.7 The purpose of this section is
to illustrate its usefulness when known. It is a Lyapunov function for the deterministic
dynamics, and the barriers for activated processes can be straightforwardly
computed limγ!0 γ ln.

4.2 The FitzHugh-Nagumo model and its NEP

Neurons communicate with each other through “action potentials,” which are
pulsed variations in the polarization of their membranes. The celebrated Hodgkin-
Huxley model of neural physiology was one of the great scientific achievements of
the past century. When the goal is insight, however, it is too cumbersome a model

6 Recall it was Hamilton who first succeeded in casting conservative systems as first-order ones. In so

doing, he put coordinates and momenta on the same footing. Systems are conservative if their phase space
does not contract.
7 A key is to ensure the multidimensional version of D 2ð Þ (a symmetric tensor) to be nonsingular.
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to work with. A caricature of this model which nonetheless stresses its essence is
thus far more desirable in many situations. The FitzHugh-Nagumo model is the
minimal model capable to produce action potentials, and the key to this behavior is
excitability. In its minimal expression, the FHN model reads

_u ¼ f uð Þ � v,

_v ¼ ϵ βu–vð Þ: (19)

The activator field u relaxes very fast and displays autocatalytic dynamics (the
more there is, the more it produces, but in a nonlinear fashion) as needed to produce
an action potential. Its nullcline v ¼ f uð Þ (the locus of _u ¼ 0) is a decreasing
S-shaped (typically cubic) curve. On the other hand, the inhibitor or recovery field v
relaxes very slowly (it mimics the time-dependent conductance of the K+ channels
in the axon membrane), so in the end, it enslaves the dynamics. Parameter ϵ is
usually very large, to account for the large difference in relaxation rates. Calling λ1
and λ2 the eigenvalues of the diffusion tensor, the NEP for the autonomous system
described by Eq. (19) is [8]

Φ u; vð Þ ¼ λ2
�1 βu–vð Þ2 þ λ1ϵð Þ�1 βu2–2

ðu
u0
f xð Þdx

� �2

: (20)

For nonautonomous cases, one can draw consequences from Eq. (20) as far as the
driving is much slower than the involved relaxation times (adiabatic approxima-
tion). In the following, we exploit this advantage.

4.3 Arrays of excitable elements

The result (20) has been employed [9–13] to find the optimal noise variance γ
for arrays of excitable elements to display stochastic resonance synchronized behavior
(see Nomenclature). Here, we briefly illustrate one such a case, where the coupling
is inhibitory (when neuron i fires, neurons i� 1 are less likely to fire) [14]. Inhibi-
tory coupling is central in the dynamics of neocortical pyramidal neurons and
cortical networks, and plays a major role in synchronous neural firing. On the other
hand, inhibitory interneurons are more prone to couple through gap junctions
(diffusive or “electric” coupling) than excitatory ones. In the transition from wake
to anesthetic coma, for instance, diffusive coupling of inhibitor fields helps
explaining the spontaneous emergence of low-frequency oscillations with spatially
and temporally chaotic dynamics.

We consider a ring of N identical excitable FHN cells, with their inhibitor fields
electrically coupled to those of their nearest neighbors. The system is moreover
submitted to a common subthreshold (see Nomenclature) harmonic signal S tð Þ and
independent additive Gaussian white noises in each component and each site, all
with the same variance γ.

Numerical simulation of this stochastic system with increasing γ—for appropri-
ate values of the diffusive coupling E between neighboring inhibitor fields—reveals
the noise-induced phenomena taking place: synchronization with the external signal
of the ring’s activity and (imperfect) spatiotemporal self-organization of the cells.
For an optimal value of γ, a stochastic resonance phenomenon takes place, and the
degree of spatiotemporal self-organization—alternancy between two antiphase states
(APS)—is maximum.

For very low γ, only small-amplitude and highly homogeneous [ui tð Þ ≈ uj tð Þ]
subthreshold oscillations (induced by the adiabatic signal) occur around the S ¼ 0
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4.1 The non-equilibrium potential (NEP)
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h i

(17)

in terms of the “drift” D 1ð Þ ¼ f xð Þ and “diffusion” D 2ð Þ ¼ γ Kramers-Moyal
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Pst xð Þ ¼ N x0ð Þ exp �Φ xð Þ=γ½ �: (18)

For n-component dynamic flows, Φ xð Þ is defined as � limγ!0 γ lnPst x; γð Þ [7],
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6 Recall it was Hamilton who first succeeded in casting conservative systems as first-order ones. In so

doing, he put coordinates and momenta on the same footing. Systems are conservative if their phase space
does not contract.
7 A key is to ensure the multidimensional version of D 2ð Þ (a symmetric tensor) to be nonsingular.
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to work with. A caricature of this model which nonetheless stresses its essence is
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excitability. In its minimal expression, the FHN model reads

_u ¼ f uð Þ � v,

_v ¼ ϵ βu–vð Þ: (19)

The activator field u relaxes very fast and displays autocatalytic dynamics (the
more there is, the more it produces, but in a nonlinear fashion) as needed to produce
an action potential. Its nullcline v ¼ f uð Þ (the locus of _u ¼ 0) is a decreasing
S-shaped (typically cubic) curve. On the other hand, the inhibitor or recovery field v
relaxes very slowly (it mimics the time-dependent conductance of the K+ channels
in the axon membrane), so in the end, it enslaves the dynamics. Parameter ϵ is
usually very large, to account for the large difference in relaxation rates. Calling λ1
and λ2 the eigenvalues of the diffusion tensor, the NEP for the autonomous system
described by Eq. (19) is [8]

Φ u; vð Þ ¼ λ2
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u0
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� �2
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rest state. As γ increases, so does the number of cells that become noise-activated
during roughly half a cycle of the external signal. For γ even higher, the cells’
activity enhances its coherence with the external signal as a consequence of its
coupling-mediated self-organization: as one neuron activates, it usually inhibits its
nearest neighbors. The outcome of this phenomenon is the APS, which partially
arises along the ring during the stage of activation by noise. In this scenario, noise
(together with coupling and signal) plays a constructive role. Nonetheless for γ too
large, the sync becomes eventually degraded.

4.4 Spatiotemporal pattern formation in arrays of FHN neurons

We exploit the knowledge of the NEP in Eq. (20) to attempt an analytical
description of the problem in Section 4.3. The case of perfect spatiotemporal self-
organization would be equivalent to a two-neuron system with variables u1, u2, v1,
and v2 and PBC. This simple model allows the formation of an antiphase state. Since
a NEP cannot be easily found for this system—and with the only purpose of
calculating barrier heights—we further reduce this description by projecting the
dynamics along the corresponding slow manifolds:

ϵβu1,2 � v1,2 þ 2E v2þ v1� v1,2ð Þ ¼ 0: (21)

The projected two-variable system turns out to be gradient, a situation in which
a NEP can always be found. As a consequence of the PBC, the NEP landscape along
the slow manifolds is symmetric with respect to the u1 ¼ u2 line. For E ¼ 0:5 and
maximum signal amplitude, the system has two uniform attractors (both cells
inhibited, both cells activated), two APS (with one cell activated and one inhibited)
with the same value ofΦ u1; u2ð Þ, four saddles, and one maximum. For S ¼ 0 instead,
the uniform attractor with both cells activated has collapsed with the maximum,
and, hence, two saddles have disappeared.

When the value of Φ u1; u2ð Þ at the uniform attractor, either APS and either
corresponding saddle, is plotted as a function of S, one can see the following:

• Near maximum signal, the uniform attractor yields its stability to the APS.
From this value of S on, the NEP barrier for the uniform attractor to decay into
the APS (a noise-activated process) is small enough.

• Way before minimum signal, each APS collapses with its own saddle.

One then understands the picture: as S increases, whatever of the APS is chosen.
As S decreases past the collapse, only the uniform attractor survives. However, the
neuron which was activated before has not recovered completely. Hence in the next
signal cycle, the other APS is more likely to appear.

5. Conclusions

In Sections 2 and 3, we have discussed the influence of quantum correlations on
the formation of tightly bound solids. Section 2 is devoted to the effects of the
overlaps and neglected multicenter integrals on tight-binding band spectra. An
exact calculation in the framework of a simple atomic model has shown that they
shift unevenly the top and bottom of the band spectrum (their effects are more
pronounced at the top). Section 3 introduced a quantum Monte Carlo method
specific for strongly correlated fermion systems. Section 4 addressed the stochastic
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dynamics of a ring of FHN cells—with nearest neighbor electric (diffusive) coupling
between their inhibitor fields—undergoing spatiotemporal pattern formation
induced by noise and coupling. By means of a simple model for which a NEP can
be found, the mechanism whereby the process takes place was investigated
analytically.
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open systems (which can exchange matter and energy
with their environments) to come to equilibrium, not only
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Chapter 2

Lagrangian Quantum Mechanics:
A Fully Relativistic Theory of
Atomic Structure
Richard Oldani

Abstract

A fully relativistic formulation of quantum mechanics is derived by introducing
a Lagrangian density of the fields between the excited and ground states and taking
the action integral. The change in action, or photon, is a four-dimensional localiza-
tion of fields that is defined symmetrically with respect to the field boundaries. Due
to this photon model, we interpret the three mathematical formulations of atomic
structure, matrix mechanics, wave mechanics, and path integrals, as different
mathematical methods of describing the superposed physical components of an
excited state: nucleus, electron, and photon. Recent experiments with slow and
stopped light are shown to support this theoretical interpretation. The derivation of
quantum theory with respect to fields requires new interpretations of the uncer-
tainty principle, correspondence principle, complementarity, and force.

Keywords: quantum mechanics, relativity theory, uncertainty principle,
correspondence principle, complementarity

1. Introduction

Nonrelativistic quantum mechanics is commonly expressed by using a Hamilto-
nian function, with the total energy of an atomic system given by the sum of the
kinetic and potential energies. If the atom is in an excited state the energy resides at
the location of the electron. The electron in an excited state has a potential energy
that is converted into a photon as it decays, so emission is a statistical event that
occurs at a particular point in time. Because photon creation occurs at a single point
in time, the electron must be in two energy states simultaneously. The two states
correspond to a single time, so emission is described by non-covariant means even
though we know that it is Lorentz invariant. Although nonrelativistic methods are
used to describe atomic structure, they are not a necessary requirement of quantum
mechanical formalism. As Dirac stated in the first ever paper on quantum electro-
dynamics, “The theory is nonrelativistic only on account of the time being counted
throughout as a c-number [classically], instead of being treated symmetrically with
the space coordinates” [1]. The use of a continuous time parameter to describe
microscopic phenomena could easily mask the way time functions in atomic struc-
ture. The practice should be closely questioned because time is the least understood
of the variables in quantum mechanics. Furthermore there are grounds to support a
different approach to quantum mechanics using Lagrangian mechanics. It is not
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A fully relativistic formulation of quantum mechanics is derived by introducing
a Lagrangian density of the fields between the excited and ground states and taking
the action integral. The change in action, or photon, is a four-dimensional localiza-
tion of fields that is defined symmetrically with respect to the field boundaries. Due
to this photon model, we interpret the three mathematical formulations of atomic
structure, matrix mechanics, wave mechanics, and path integrals, as different
mathematical methods of describing the superposed physical components of an
excited state: nucleus, electron, and photon. Recent experiments with slow and
stopped light are shown to support this theoretical interpretation. The derivation of
quantum theory with respect to fields requires new interpretations of the uncer-
tainty principle, correspondence principle, complementarity, and force.

Keywords: quantum mechanics, relativity theory, uncertainty principle,
correspondence principle, complementarity

1. Introduction

Nonrelativistic quantum mechanics is commonly expressed by using a Hamilto-
nian function, with the total energy of an atomic system given by the sum of the
kinetic and potential energies. If the atom is in an excited state the energy resides at
the location of the electron. The electron in an excited state has a potential energy
that is converted into a photon as it decays, so emission is a statistical event that
occurs at a particular point in time. Because photon creation occurs at a single point
in time, the electron must be in two energy states simultaneously. The two states
correspond to a single time, so emission is described by non-covariant means even
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dynamics, “The theory is nonrelativistic only on account of the time being counted
throughout as a c-number [classically], instead of being treated symmetrically with
the space coordinates” [1]. The use of a continuous time parameter to describe
microscopic phenomena could easily mask the way time functions in atomic struc-
ture. The practice should be closely questioned because time is the least understood
of the variables in quantum mechanics. Furthermore there are grounds to support a
different approach to quantum mechanics using Lagrangian mechanics. It is not
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only more fundamental than Hamiltonian mechanics, but if we begin with an action
principle by taking the time integral of a Lagrangian, it is in agreement with special
relativity theory.

2. Excitation

We begin an attempt to understand the role of continuous time in quantum
mechanics by describing emission as a sequence of events that are relativistically
correct. Consider a uniform distribution of atomic oscillators immersed in a coher-
ent or partially coherent radiation field with an outer electron that occupies either of
two allowable energy states |1i or |2i. The radiation field is conceived of as classical,
consisting of many oscillating wave train fields superimposed on the oscillators.
The system may be described by a Lagrangian density that is a function of oscillator
fields φr and radiation fields ∂μφ. If Hamilton’s principle is applied macroscopically
to an arbitrary classical region of space-time Ω, we obtain the usual expression:

S Ωð Þ ¼
ð

Ω

L φr, ∂μφ
� �

dΩ (1)

The behavior of the radiation field may be described by a Lagrangian density
microscopically as well. The amplitude of the field at the local level fluctuates
randomly, either reinforcing or canceling, thereby causing the electron to oscillate
with respect to the nucleus. If the fields are of insufficient intensity to raise the
electron from |1i to |2i, the uncertainty relations do not apply and the electron
oscillates without radiating. However, if they are sufficiently intense, the electron
will resonate at the excitation energy emitting a photon with each amplitude of the
wave. When this happens radiation is emitted with double the frequency of the
incident wave (see Figure 1).

Emission by atomic oscillators is referred to as “nonlinear” if excitation is
thought to be quantum mechanical or “spontaneous” if it is thought to be governed
by the macroscopic Maxwell’s equations [2]. The use of microscopic Maxwell’s
equations in a Lagrangian density allows emission to be described by a distribution
of locally superposed fields that includes continuous, statistical, and quantum
mechanical properties in a single model.

Due to the generality of the assumptions, examples of frequency doubling should
be common in nature occurring at many energy levels. This is in fact the case, and it
is most clearly evident when laser light is passed through a crystal [3]. It is also
readily observed using incoherent light in scattering experiments as secondary radi-
ation [4]. On the other hand, when an energy quantum is completely absorbed, an
electron will be expelled due to the photoelectric effect, and no frequency change is
observed. We see in these examples evidence that the Lagrangian provides a versa-
tile model for the description of electromagnetic phenomena.

Figure 1.
Frequency doubling.
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3. Decay

The first appearance of a Lagrangian in quantum mechanics is in a paper by
Dirac. “We ought to consider the classical Lagrangian not as a function of the
coordinates and velocities but rather as a function of the coordinates at time t and
the coordinates at time t+dt” [5]. Rather than specify emission as an event that
occurs at a particular point in time, Dirac is seeking compatibility with relativity
theory by calculating the change in action of the electron over a space-time interval.
That idea resulted in an interpretation of electron transitions as a “sum over histo-
ries” of all possible paths from one diagonalized steady state to another [6].
Although calculations made with the path integral method are accurate, they
include serious theoretical problems resulting from the renormalization methods
used to deal with infinities that have so far prevented a complete theory from being
formulated. At a later point in the same paper, Dirac provides a possible way out
of this difficulty by proposing a complementary description of quantum mechanics
in terms of a “vibrating medium.” The idea begins from a classical vantage point.
“We introduce at each point of space-time a Lagrangian density, which must be a
function of the coordinates and their first derivatives with respect to x, y, z, and t,
corresponding to the Lagrangian in particle theory being a function of coordinates
and velocities. The integral of the Lagrangian density over any (four-dimensional)
region of space-time must then be stationary for all small variations of the coordi-
nates inside the region, provided the coordinates on the boundary remain invari-
ant.” To obtain the quantum analogue, he divided the classical region into a number
of very small subregions; however, the idea was never pursued to completion. We
shall investigate that line of reasoning in more detail by describing fields over a
four-dimensional region of space-time with respect to invariant field boundaries
coincident with the steady states.

The excited states of an atom should be described discretely in time. As Dirac
pointed out, discrete time is symmetric with the spatial coordinates allowing the
emission and absorption of radiation to be described relativistically. A relativistic
formulation is desirable in order to make quantum mechanics compatible with
special relativity theory. To formulate a fully relativistic description of emission, we
begin with a Lagrangian density L ϕi,ϕi,μ

� �
that is a function of the coordinates and

their first derivatives. Then the action integral of the Lagrangian density over a
particular region of space-time must be stationary for all small variations of the
continuous coordinates in the region provided the discrete coordinates on the
boundary remain invariant. Let three-dimensional surfaces R1 and R2 representing
the diagonalized coordinates be erected and then used together with the discrete
time period t2 � t1 as field boundaries to define a region of space-time between |2i
and |1i. Integrating from |2i to |1i yields a relativistic formulation of emission that is
invariant, the same for all observers:

S φi tð Þ½ � ¼
ðR1

R2

ðt1

t2

L φi,φi,μ
� �

d3xdt ¼ h (2)

The end points of the electron’s path are located on equipotential, space-like
surfaces, and the action minimum is not equal to zero as in classical theory, but to
Planck’s constant h. The action S[φi(t)] in (2) is functional, a function of the values
of coordinates on the discrete boundary of the space-time surface R2 which is in turn
a function of the continuous space-time variables of the fields within the surface.
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corresponding to the Lagrangian in particle theory being a function of coordinates
and velocities. The integral of the Lagrangian density over any (four-dimensional)
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ant.” To obtain the quantum analogue, he divided the classical region into a number
of very small subregions; however, the idea was never pursued to completion. We
shall investigate that line of reasoning in more detail by describing fields over a
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pointed out, discrete time is symmetric with the spatial coordinates allowing the
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continuous coordinates in the region provided the discrete coordinates on the
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and |1i. Integrating from |2i to |1i yields a relativistic formulation of emission that is
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The end points of the electron’s path are located on equipotential, space-like
surfaces, and the action minimum is not equal to zero as in classical theory, but to
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Solving for the action, we obtain solutions for localized energy or equivalently,
photon creation; due to a transformation of field:

Eτ ¼ h (3)

Solutions of Equation (3) are determinations of energy and time between exact
four-dimensional field boundaries, so they are also exact. In the case of time
periods, this has been confirmed to the limits of experimental accuracy by atomic
clocks that can operate for many billions of years without significant error [7]. Thus
field energy from a laser is absorbed by the lattice of ytterbium atoms and localized
within a four-dimensional field boundary. The emission and absorption energies E21

and E12 have also long been assumed to be exact by astronomers when employed for
the measurement of distant star composition. Emission and absorption spectra,
together with a red shift, often require billions of years before they are observed,
thereby reflecting the precise role of energy and time in natural phenomena.

From (2), a model of atomic structure may be constructed. The three field
sources present in excited atomic states, electron, proton, and photon, superpose
linearly and are momentarily stabilized in steady states. Although force is an
unnatural concept in quantum mechanics, it may be interpreted with respect to
the field boundaries that separate point sources by a careful consideration of (2).
Thus the force on a bound electron due to the potential is equal to the continu-
ously distributed excitation energy divided by the distance between field bound-
aries. In order for quantum mechanical forces to agree with relativity theory,
we need only require that the action integral be invariant for all potentials both
free and bound.

Whereas the quantum mechanical force of bound states is due to well-defined
field boundaries, the force due to instantaneous exchanges of momentum, such as
occurs in the Compton effect, may be interpreted as a result of the encounter of a
single, exact field boundary (xo,yo,zo,to) with a material point. Wave properties, on
the other hand, occur in free space when field boundaries have no reference point,
so they cannot be observed at all. Thus we interpret complementarity as the differ-
ent ways that fields and its field boundaries interact with matter.

4. Interpretation of mathematical models

4.1 Fully relativistic quantum mechanics

A fully relativistic description of excited atomic states specifies discrete four-
dimensional field boundaries and continuous localized fields between the bound-
aries. Excited atomic states, electron, photon, and nucleus, are interpreted as a
linear superposition of three field sources with respect to their electrostatic and
electromagnetic field components. Recent experiments, referred to by the authors
as “photon capture” and “photon storage,” support the accuracy of this theoretical
interpretation [8]. In these experiments light coherence is converted to atomic
coherence and back again, so the photon in localized form must be present in
excited atomic states from the time energy is absorbed until it is emitted. We
describe the linear properties of atomic structure by introducing a wavelike field
source ε, the localized photon, into our description of excited atomic states. The
modified Hamiltonian is now given by

H ¼ Tþ εþ V (4)
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and the Lagrangian is similarly given by

L ¼ Tþ ε–V (5)

where T represents the bound electron’s energy, ε represents the energy of a
“captured” photon, and V represents the potential energy due to the nucleus/pro-
ton. Each of the three field sources possesses a unique vector field, that is, a field
with definite field geometry that is delimited from the others by field boundaries,
where plus and minus signs indicate the linear superposition of delimited fields.

Eqs. (4) and (5) contain the essence of quantum mechanics as a three-body
problem in real space as opposed to current descriptions based on a two-body
system in abstract space. The use of an abstract space is necessary for nonrelativistic
descriptions of atomic structure since the photon is not treated as an independent
particle. The equations revert to their classical form when the influence of ε is
negligible or equivalently when field boundaries are no longer determinable. To see
whether the model accurately describes atomic structure, we shall compare it to the
existing mathematical models.

4.2 The path integral formulation

From (5), it is postulated that the contribution of two energies is summed and
one is subtracted to give the transition energy. In the path integral formulation,
there are in fact two contributions that are summed, one determined by the paths
and the other by the phase. In Feynman’s words, “The paths contribute equally in
magnitude, but the phase of their contribution is the classical action (in units of ђ)”
[9]. The computation of the total energy is not complete, however, until contribu-
tions to the potential V due to self-energy are subtracted away by renormalizing.
Therefore the mathematical structure of the Lagrangian in nonrelativistic quantum
mechanics indicates the existence of three contributions and is in agreement with
(5). It differs fundamentally from the fully relativistic Lagrangian method described
here in its interpretation of space-time. Eq. (2) treats space and time equivalently as
real parameters for both the integration limits and the region between them. On the
other hand, the path integral formulation uses abstract forms of space and time to
describe the region between the steady states since the paths follow all trajectories
and for all times.

4.3 Matrix mechanics

In quantum mechanics, observables are determined by pairs of states, while in
classical theory they refer to the same state. This is especially evident in matrix
mechanics which describes the atom as a twofold infinite, denumerable array of
virtual oscillators, where observables are vectors in Hilbert space whose magnitude
defines a spectral line intensity, or transition amplitude, and whose direction cor-
responds to either an absorption or an emission. Although the physical model
consists of two ideal particles, the virtual harmonic oscillators, the matrix elements
include three field components: the fields of the two ideal particles and a spectral
line intensity due to photon superpositions. All three components of the modified
Hamiltonian given by Eq. (4) are present but with respect to classical space and
time. In nonrelativistic theory, photons are singularities that correspond to pairs of
states, whereas conformance with relativity theory requires that the photon be
spatially and temporally extended. Fields are localized by exact four-dimensional
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ton. Each of the three field sources possesses a unique vector field, that is, a field
with definite field geometry that is delimited from the others by field boundaries,
where plus and minus signs indicate the linear superposition of delimited fields.
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problem in real space as opposed to current descriptions based on a two-body
system in abstract space. The use of an abstract space is necessary for nonrelativistic
descriptions of atomic structure since the photon is not treated as an independent
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there are in fact two contributions that are summed, one determined by the paths
and the other by the phase. In Feynman’s words, “The paths contribute equally in
magnitude, but the phase of their contribution is the classical action (in units of ђ)”
[9]. The computation of the total energy is not complete, however, until contribu-
tions to the potential V due to self-energy are subtracted away by renormalizing.
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mechanics indicates the existence of three contributions and is in agreement with
(5). It differs fundamentally from the fully relativistic Lagrangian method described
here in its interpretation of space-time. Eq. (2) treats space and time equivalently as
real parameters for both the integration limits and the region between them. On the
other hand, the path integral formulation uses abstract forms of space and time to
describe the region between the steady states since the paths follow all trajectories
and for all times.

4.3 Matrix mechanics

In quantum mechanics, observables are determined by pairs of states, while in
classical theory they refer to the same state. This is especially evident in matrix
mechanics which describes the atom as a twofold infinite, denumerable array of
virtual oscillators, where observables are vectors in Hilbert space whose magnitude
defines a spectral line intensity, or transition amplitude, and whose direction cor-
responds to either an absorption or an emission. Although the physical model
consists of two ideal particles, the virtual harmonic oscillators, the matrix elements
include three field components: the fields of the two ideal particles and a spectral
line intensity due to photon superpositions. All three components of the modified
Hamiltonian given by Eq. (4) are present but with respect to classical space and
time. In nonrelativistic theory, photons are singularities that correspond to pairs of
states, whereas conformance with relativity theory requires that the photon be
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field boundaries separated from each other in space-time, while in nonrelativistic
quantum mechanics, field boundaries do not exist.

Because Heisenberg’s uncertainty relations use a continuous time parameter,
they are only valid when events are defined with respect to specific observers, but
not in general for all observers. When interpreted according to Eq. (2) by a fully
relativistic theory, we conclude that indeterminacy is due to measurements
performed with a non-singular, spatially and temporally extended probe, the pho-
ton. This may be compared to the case in classical mechanics of measurements that
are performed with a coarsely defined standard. In quantum mechanics, the stan-
dard of measurement is the photon, and no matter how high its energy, it cannot be
used to localize a point particle more precisely than its wavelength. On the other
hand, localizations in atomic clocks occur four-dimensionally with respect to both
field boundaries, so they occur without measurable error.

4.4 Wave mechanics

In the wave mechanical interpretation of quantum mechanics, field boundaries
are not specified. Nevertheless fields are a part of wave functions, and field bound-
aries must be included in a fully relativistic theory of electrodynamics. To satisfy

that requirement, we interpret the wave function Ψ r!, t
� �

as combining an electron

or other particle, and a force ε r!, t
� �

, that are separated by field boundaries. A wave

function composed in this manner as a composite of two physical components may
be used to describe the interaction of particles in both bound and free states.
Whereas in classical theory forces are three-dimensional vectors with direction and
magnitude, in a fully relativistic theory they are four-dimensional and symmetric in
the coordinates. They have orientation in space-time, but not direction, with magni-
tude determined by the instantaneous separation of field boundaries according to (1).
Thus force is the continuous application of a discrete form. All interactions of
electrodynamics may be conceived of in this way in terms of fields and their
boundaries.

5. Discussion

Although the wave function contains all that can be known about a particle, the
preceding fully relativistic interpretation of atomic structure indicates the presence
of internal characteristics that are in principle unknown to observers. The field
model, described by (1) and confirmed experimentally by slow or stopped light
phenomena, includes internal processes in its description of the wave function that
are temporarily restricted from external expression due to field boundaries. The
characteristics cannot be accessed because the fields vanish at the field boundaries.
Due to the unobserved processes, quantum theory predicts the occurrence of
instantaneous action-at-a-distance events such as the collapse of the wave function
and other macroscopic phenomena that exist outside of our consciousness. How-
ever, if wave functions are interpreted in a fully relativistic theory, we conclude
that these phenomena are only unusual when interpreted in abstract space with
respect to continuous time parameters.

The detection events that form the basis of optical theory are due to energy
emissions that occur at singular points in time and are referred to as “photons” due
to their discrete nature. If energy absorption evolves according to Eq. (2), as the
integration of a Lagrangian density over a region of space-time, then excitation is a
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continuous process that results from field superposition during the discrete time
period τ. Therefore in a fully relativistic theory, interference effects are due to the
instantaneous reinforcement and cancelation of superposed photons of the type
described in (2), and the statistical nature of quantum mechanics that is observed in
experiments such as double-slit interference is due to time averages. A fully rela-
tivistic optical theory will account for interference effects as they evolve in real
space and time.

6. Conclusion

It has long been asserted that classical physics is inadequate for describing
quantum mechanical phenomena. Consequently experimental results are explained
by introducing complementarity and the correspondence principle. However, the
problem is not that classical theory is deficient, but it is the insistence on using
singularities in a nonrelativistic theory. If the photon’s fields are singular, wave and
particle properties seem to appear out of nowhere, and experimental results have an
intrinsically defined uncertainty. But if the photon is instead described as a locali-
zation of fields, uncertainty and duality are accounted for by physical characteris-
tics, fields and field boundaries, and complementarity has a classically derived
meaning. A similar explanation is possible for the correspondence principle which
specifies the point where a two-particle classical system must be replaced by a
three-particle quantum mechanical system to explain what is observed. It may seem
to be an acceptable practice to describe particles as singularities propagating and
interacting continuously in time, but in a fully relativistic theory the photon cannot
be singular. Rather it is a four-dimensional localization of fields defined symmetri-
cally in space-time that determines electron behavior in bound states and also in
free space by means of four-dimensional forces.

The mathematical framework surrounding quantum mechanics is precisely the
type of description that is expected when a particle of zero mass is absorbed by a
two-particle system. The particle properties of the photon are overwhelmed by the
other two such that it is impossible to distinguish it independently of them. Some-
times the influence of its continuous properties is more evident (wave mechanics);
at other times its discrete properties are prominent (matrix mechanics); and in path
integral formulations, the exact field boundaries of bound states are manifested.
Each of the three formulations of nonrelativistic quantum mechanics provides a
unique perspective to atomic structure by emphasizing a different physical aspect
of the three field sources. This may be compared to the simpler three-dimensional
practice in architecture of providing three visual perspectives to a building. Each
one provides a partial view, and when taken together they give an improved
understanding of the structure as a whole. The “whole” of quantum mechanics is
given of course by Lagrangian quantum mechanics.

25

Lagrangian Quantum Mechanics: A Fully Relativistic Theory of Atomic Structure
DOI: http://dx.doi.org/10.5772/intechopen.90168



field boundaries separated from each other in space-time, while in nonrelativistic
quantum mechanics, field boundaries do not exist.

Because Heisenberg’s uncertainty relations use a continuous time parameter,
they are only valid when events are defined with respect to specific observers, but
not in general for all observers. When interpreted according to Eq. (2) by a fully
relativistic theory, we conclude that indeterminacy is due to measurements
performed with a non-singular, spatially and temporally extended probe, the pho-
ton. This may be compared to the case in classical mechanics of measurements that
are performed with a coarsely defined standard. In quantum mechanics, the stan-
dard of measurement is the photon, and no matter how high its energy, it cannot be
used to localize a point particle more precisely than its wavelength. On the other
hand, localizations in atomic clocks occur four-dimensionally with respect to both
field boundaries, so they occur without measurable error.

4.4 Wave mechanics

In the wave mechanical interpretation of quantum mechanics, field boundaries
are not specified. Nevertheless fields are a part of wave functions, and field bound-
aries must be included in a fully relativistic theory of electrodynamics. To satisfy

that requirement, we interpret the wave function Ψ r!, t
� �

as combining an electron

or other particle, and a force ε r!, t
� �

, that are separated by field boundaries. A wave

function composed in this manner as a composite of two physical components may
be used to describe the interaction of particles in both bound and free states.
Whereas in classical theory forces are three-dimensional vectors with direction and
magnitude, in a fully relativistic theory they are four-dimensional and symmetric in
the coordinates. They have orientation in space-time, but not direction, with magni-
tude determined by the instantaneous separation of field boundaries according to (1).
Thus force is the continuous application of a discrete form. All interactions of
electrodynamics may be conceived of in this way in terms of fields and their
boundaries.

5. Discussion

Although the wave function contains all that can be known about a particle, the
preceding fully relativistic interpretation of atomic structure indicates the presence
of internal characteristics that are in principle unknown to observers. The field
model, described by (1) and confirmed experimentally by slow or stopped light
phenomena, includes internal processes in its description of the wave function that
are temporarily restricted from external expression due to field boundaries. The
characteristics cannot be accessed because the fields vanish at the field boundaries.
Due to the unobserved processes, quantum theory predicts the occurrence of
instantaneous action-at-a-distance events such as the collapse of the wave function
and other macroscopic phenomena that exist outside of our consciousness. How-
ever, if wave functions are interpreted in a fully relativistic theory, we conclude
that these phenomena are only unusual when interpreted in abstract space with
respect to continuous time parameters.

The detection events that form the basis of optical theory are due to energy
emissions that occur at singular points in time and are referred to as “photons” due
to their discrete nature. If energy absorption evolves according to Eq. (2), as the
integration of a Lagrangian density over a region of space-time, then excitation is a

24

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…

continuous process that results from field superposition during the discrete time
period τ. Therefore in a fully relativistic theory, interference effects are due to the
instantaneous reinforcement and cancelation of superposed photons of the type
described in (2), and the statistical nature of quantum mechanics that is observed in
experiments such as double-slit interference is due to time averages. A fully rela-
tivistic optical theory will account for interference effects as they evolve in real
space and time.

6. Conclusion

It has long been asserted that classical physics is inadequate for describing
quantum mechanical phenomena. Consequently experimental results are explained
by introducing complementarity and the correspondence principle. However, the
problem is not that classical theory is deficient, but it is the insistence on using
singularities in a nonrelativistic theory. If the photon’s fields are singular, wave and
particle properties seem to appear out of nowhere, and experimental results have an
intrinsically defined uncertainty. But if the photon is instead described as a locali-
zation of fields, uncertainty and duality are accounted for by physical characteris-
tics, fields and field boundaries, and complementarity has a classically derived
meaning. A similar explanation is possible for the correspondence principle which
specifies the point where a two-particle classical system must be replaced by a
three-particle quantum mechanical system to explain what is observed. It may seem
to be an acceptable practice to describe particles as singularities propagating and
interacting continuously in time, but in a fully relativistic theory the photon cannot
be singular. Rather it is a four-dimensional localization of fields defined symmetri-
cally in space-time that determines electron behavior in bound states and also in
free space by means of four-dimensional forces.

The mathematical framework surrounding quantum mechanics is precisely the
type of description that is expected when a particle of zero mass is absorbed by a
two-particle system. The particle properties of the photon are overwhelmed by the
other two such that it is impossible to distinguish it independently of them. Some-
times the influence of its continuous properties is more evident (wave mechanics);
at other times its discrete properties are prominent (matrix mechanics); and in path
integral formulations, the exact field boundaries of bound states are manifested.
Each of the three formulations of nonrelativistic quantum mechanics provides a
unique perspective to atomic structure by emphasizing a different physical aspect
of the three field sources. This may be compared to the simpler three-dimensional
practice in architecture of providing three visual perspectives to a building. Each
one provides a partial view, and when taken together they give an improved
understanding of the structure as a whole. The “whole” of quantum mechanics is
given of course by Lagrangian quantum mechanics.
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Chapter 3

Twin Boundary in hcp Crystals:
Quantum and Thermal Behavior
Victor A. Lykah and Eugen S. Syrkin

Abstract

The 180° twin boundary (TB) (stacking fault) is investigated in the hexagonal
close-packed (hcp) light materials. It is shown that atomic symmetry inside the
twin boundary is lower than in hcp phase due to interatomic interaction between
neighbors. In the case of quantum or thermal behavior, for the isosurfaces, an initial
spherical form (in hcp phase) transforms into ellipsoid (in the boundary). We
introduce the isosurface deformation parameter. The self-consistent description is
developed to estimate the parameters of the thermodynamic potential, and the
models of hard spheres and ellipsoids are used. It is shown that the quantum or
thermal behavior of the boundary atoms causes the following effects: (i) the
increase of degree of overlap of the atomic wave functions or trajectories within the
twin boundaries, (ii) the increase of diffusion inside the twin boundaries, and (iii)
the decrease of energy and broadening of the quantum boundary in comparison
with the classical case.

Keywords: solid helium, twin boundary, stacking fault, hard ellipsoids,
quantum diffusion
PACS numbers: 61.72.Mm, 61.72.Nn, 64.75.Gh, 66.30.Ma

1. Introduction

Helium crystals have unique quantum properties and are useful for the investi-
gation of dynamic and kinetic behavior of atomic crystals [1]. In experiments, the
structure phase transition between body-centered cubic (bcc) and hcp phase was
found for both metals and solid 4He [2, 3]. The coherent phase boundary (PB) and
twin boundary (TB) or stacking fault (SF) was investigated theoretically in the
frame of one order parameter (OP) model [4, 5]. The two-OP theory of PB [6, 7]
was developed on the basis of the Burgers mechanism. In work [5] we proposed the
three-OP theory that combines Sanati [6, 7] and Kaschenko [8] treatments; so we
take into account the changes of volume and pressure under the phase transition.
The three-OP and one-OP descriptions of PB and TB are uniquely related. In
different models of coherent bcc-hcp boundary, the local oscillations spectra of OP
in 4He were investigated in [9].

In the experiment [10], a glass formation under deformation of solid helium was
investigated. Usually the deformation of crystals generates the different defects
[11], including stacking faults. In the nuclear magnetic resonance (NMR) experi-
ments [12], the great role of the interface in increasing the quantum diffusion was
found. In work [13] for single hcp crystal 4He, the stacking fault energy was
measured.

29



Chapter 3

Twin Boundary in hcp Crystals:
Quantum and Thermal Behavior
Victor A. Lykah and Eugen S. Syrkin

Abstract

The 180° twin boundary (TB) (stacking fault) is investigated in the hexagonal
close-packed (hcp) light materials. It is shown that atomic symmetry inside the
twin boundary is lower than in hcp phase due to interatomic interaction between
neighbors. In the case of quantum or thermal behavior, for the isosurfaces, an initial
spherical form (in hcp phase) transforms into ellipsoid (in the boundary). We
introduce the isosurface deformation parameter. The self-consistent description is
developed to estimate the parameters of the thermodynamic potential, and the
models of hard spheres and ellipsoids are used. It is shown that the quantum or
thermal behavior of the boundary atoms causes the following effects: (i) the
increase of degree of overlap of the atomic wave functions or trajectories within the
twin boundaries, (ii) the increase of diffusion inside the twin boundaries, and (iii)
the decrease of energy and broadening of the quantum boundary in comparison
with the classical case.

Keywords: solid helium, twin boundary, stacking fault, hard ellipsoids,
quantum diffusion
PACS numbers: 61.72.Mm, 61.72.Nn, 64.75.Gh, 66.30.Ma

1. Introduction

Helium crystals have unique quantum properties and are useful for the investi-
gation of dynamic and kinetic behavior of atomic crystals [1]. In experiments, the
structure phase transition between body-centered cubic (bcc) and hcp phase was
found for both metals and solid 4He [2, 3]. The coherent phase boundary (PB) and
twin boundary (TB) or stacking fault (SF) was investigated theoretically in the
frame of one order parameter (OP) model [4, 5]. The two-OP theory of PB [6, 7]
was developed on the basis of the Burgers mechanism. In work [5] we proposed the
three-OP theory that combines Sanati [6, 7] and Kaschenko [8] treatments; so we
take into account the changes of volume and pressure under the phase transition.
The three-OP and one-OP descriptions of PB and TB are uniquely related. In
different models of coherent bcc-hcp boundary, the local oscillations spectra of OP
in 4He were investigated in [9].

In the experiment [10], a glass formation under deformation of solid helium was
investigated. Usually the deformation of crystals generates the different defects
[11], including stacking faults. In the nuclear magnetic resonance (NMR) experi-
ments [12], the great role of the interface in increasing the quantum diffusion was
found. In work [13] for single hcp crystal 4He, the stacking fault energy was
measured.

29



The present work is devoted to the development of the self-consistent descrip-
tion of quantum behavior of 4He atoms in twin boundary proposed in work [14].
We apply this treatment to quantum and thermal description of twin boundary in
some metals.

2. Model of the twin boundary

In the hcp phase of crystal 4He, we consider the twin boundary under transition
from the close packing layers ABAB … (see Figure 1a,b) to the close packaging
ACAC …. The twin boundary (TB) corresponds to stacking faults (SF). The atomic
plane A creates different positions (potential wells) B and C for neighbor layers (see
Figure 1a,b).

The twin boundary was researched in works [4, 5] where the triple-well
thermodynamic potential was used. Far from the bcc-hcp transition, the double-
well free energy can be applied:

F ξð Þ ¼
Z

α

2
dξ
dz

� �2

þ k4ξ4

4
� k2ξ2

2

" #
dv, (1)

where the integration is over the volume v, square brackets contain the volume
energy density, z is a coordinate in the direction of heterogeneity, α is a dispersion
parameter responsible for the boundary width, and phenomenological parameters
k4, k2 are positive. In hexagonal lattice, ξ is the order parameter which means the
relative displacement of the atomic layers between positions B and C (see Figure 1a,b).
For the homogeneous part of the free energy Eq. (1), the maximum and minima
positions are

Figure 1.
(a, b) The close pack of the atomic layers (0001) ABAB… for hcp phase. Layer A is shown by solid lines, and
layer B is shown by dotted lines. (a) The view perpendicular to the layers. (b) The view along the layers. Points
B and C are atomic equilibrium positions in corresponding layer. (c, d) The change in the close packing of the
atomic ellipsoids inside TB under quantum effects is accounted.
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ξmax ¼ 0; F ξmaxð Þ ¼ 0;

ξmin ¼ �ξ0; F ξminð Þ ¼ �V
k4ξ40
4

; ξ0 ¼
ffiffiffiffiffi
k2
k4

s
:

(2)

where ∣ξ0∣ is the minimum position as displacement between the maximum and
minimum positions (B and C in Figure 1a, b). The difference between the maximum
and minimum energies gives the height h of the potential barrier per unit volume:

h ¼ 1
V

F ξmaxð Þ � F ξminð Þ½ � ¼ k4ξ40
4

¼ k2ξ20
4

: (3)

For further analysis it is convenient to write the free energy Eq. (1) in terms of
ξ0 and h:

F ξð Þ ¼
Z

α

2
dξ
dz

� �2

þ h
ξ40

ξ2 � ξ20
� �2 � h

" #
dv: (4)

The free energy Eq. (4) gives rise to such one-dimensional inhomogeneity as
twin boundary [9, 15] which has shape

ξ ¼ �ξ0tanh
z
lT
; (5)

lT ¼
ffiffiffiffiffi
2α
k2

r
¼ 1

ξ0

ffiffiffiffiffi
2α
k4

r
: (6)

where the boundary center is chosen at z ¼ 0 and lT is the characteristic width of
the boundary. The shear dependence on coordinate Eq. (5) can be substituted into
relation Eq. (4). The surface energy density of the twin boundary is obtained by
further integration:

WT ¼
ffiffiffiffiffiffiffiffiffiffi
2αk32

q

3k4
¼ 4

3
lTh: (7)

It is expressed through parameters α; k2; k4ð Þ of the microscopic double-well
potential or macroscopic parameters lT ; hð Þ. The parameters of the thermodynamic
potential Eq. (1) can be transformed into the microscopic ones:

k21 ¼ 4h1
ξ20

; k41 ¼ 4h1
ξ40

;

h1 ¼ hv1; k21 ¼ k2v1; k41 ¼ k4v1:

(8)

Here h1, k21, and k41 are the barrier height Eq. (3), parameters k2 and k4 Eq. (1)
normalized per unit cell. These equalities are obtained by multiplying h and k2 or k4
to the unit cell volume v1. The characteristic width Eq. (6) lT ≃ 1:5nm was obtained
by molecular dynamic method in [16].

3. Atomic potential in continual description

In hcp lattice, one can find the symmetry axes (along 0z) of third and sixth
orders. In the close-packed layers x; yð Þ, hcp demonstrates isotropic properties of
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macroscopic tensors [11, 17]. The isotropic macroscopic tensors exist at appropriate
relations c=a ¼ ffiffiffi

8
p

=3 of unit cell sizes [1, 11]. Inside the perfect hcp phase, an atom
is in high symmetric (isotropic) potential:

Uis rð Þ ¼ 1
2
kis x2 þ y2 þ z2
� �

: (9)

where kis is isotropic rigidity. The harmonic approximation Eq. (9) is satisfied
better for heavier inert atoms or light metals; however, the helium crystal has
pronouncedly anharmonic atomic potential [18]. Nevertheless in helium crystals,
the harmonic approximation is successfully applied [19, 20].

The isotropic rigidity kis can be divided into two contributions: kis ¼ kp þ kpn,
where kp is rigidity in the plane and kpn is rigidity from the interaction with the
neighbor planes.

Inside the twin boundary, the neighbor layers are shifted from the symmetric
positions, and it causes an anisotropic atomic potential. The previous spherical
potential is broken. Then inside the twin boundary, the initial isotropic atomic
potential transforms into

Uan1 rð Þ ¼ Uis y; zð Þ þ Uan1 xð Þ;

Uis y; zð Þ ¼ 1
2
kis y2 þ z2
� �

; Uan1 xð Þ ¼ Up xð Þ þUpn x; ξð Þ;

Up xð Þ ¼ 1
2
kpx2; Upn x; ξð Þ ¼ k41 ξ� xð Þ4

4
� k21 ξ� xð Þ2

2
:

(10)

where the isotropic potential Eq. (9) splits into two terms. The first term Uan1 xð Þ
is an anisotropic and nonlinear part of the potential in the shift direction Ox. The
second term Uis y; zð Þ is the rest of the isotropic part which is perpendicular to the
shift direction. Further, the potential Uan1 xð Þ is divided too into Up xð Þ, the isotropic
part, and Upn x; ξð Þ, the anisotropic one from the neighbor atomic planes. The last
turn depends on the layer shift ξ and the small deviation x. Therefore, only term
Upn x; ξð Þ changes inside TB which is shown in Figure 2. The analysis (see [14]) of
the term Upn x; ξð Þ allows to write the anisotropic atomic potential Eq. (10) in the
following simple form:

Uan1 r; ξð Þ≃U0 ξð Þ þ c ξð Þxþ 1
2
kb ξð Þx2 þ 1

2
kis y2 þ z2
� �

;

kb ξð Þ ¼ kp þ kpn ξð Þ ¼ kis þ 3k21
ξ2

ξ20
� 1

 !
; kpn ξð Þ ¼ þk21 3

ξ2

ξ20
� 1

 !
:

(11)

Figure 2.
Smooth changed parts of the potential in dependence on the coordinates ξ and x according to Eqs. (10) and
(11): Upn 0; ξð Þ is a lower double-well curve and Uan1 x; ξð Þ is a set of parabolas.
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where kb ξð Þ is rigidity coefficient inside TB, U0 ξð Þ is a varied bottom level, and
c ξð Þx is the linear part. In the limit points ξ ¼ �ξ0, Eq. (11) transforms into isotropic
hcp phase Eq. (9) with kpn ξ0ð Þ ¼ þ2k21. Inside TB ξ ¼ 0, the rigidity takes value
kpn 0ð Þ ¼ �k21. Thus, the rigidity coefficients in phase kisð Þ and in the middle of TB
kb 0ð Þð Þ are represented by the rigidity coefficients inside the plane kp

� �
with two

adjacent k21ð Þ planes:

kis ¼ kp þ kpn ξ0ð Þ ¼ kp þ 2k21; (12)

kb 0ð Þ ¼ kp þ kpn 0ð Þ ¼ kp � k21: (13)

Inside the boundary the potential is considerably softer in direction Ox because
of kb ξð Þ < kis (see Figure 2). The difference in these rigidity coefficients is too high
kis � kb 0ð Þ ¼ 3k21. For further analysis, we need especially the quadric form in
Eq. (11).

The ratio of the rigidity coefficients in the relation Eq. (10) can be related to the
ratio of the elastic modules which are shown in Table 1. The macroscopic tensor
components C11C33 describe the longitudinal deformation along the axes 0x and 0z,
respectively. In solid 4He, the ratio of the elastic modulus C33=C11 ¼ 1:37 gives
anisotropy of the rigidity coefficients kelz=kis in the basal plane and axis 0z. Uniaxial
compression-tension in the basal plane of 0xy corresponds to the elastic modulus of
C11 and atomic rigidity coefficient kis. The shuffle of the basal planes in an arbitrary
direction corresponds to elastic modulus C44 and atomic rigidity coefficients 2k21.
Therefore, we have the following inequality:

2k21
kis

¼ 2k21
kp þ 2k21

≲
C44

C11
: (14)

4. The atomic potential and hard sphere model in hcp phase

The geometry of the hcp lattice is shown in Figure 1a. In the hard sphere model
for the hcp plane A (see Figure 1a,b), the coordinates of atomic centers are

0;�R0;0ð Þ; �R0
ffiffiffi
3

p
;0;0

� �
; (15)

where R0 is the atomic radius, x is a coordinate along the shift direction of the
atomic plane B, z is a coordinate along the direction perpendicular to the atomic
plane, and y is a coordinate along the atomic plane perpendicular to the shift
direction. (0,0,0) is the touch point of the spheres in plane A. Then the sphere

Element C11, GPa C33, GPa C13, GPa C44, GPa

4He [21]a 4:05�10�2 5:54�10�2 1:05�10�2 1:24�10�2

7Li [22]b 14.2 — — 10.7

9Be [23]b 292 349 6 163

24Mg [23]b 59.3 61.5 21.4 16.4

aThe elastic moduli of hcp 4He are found at T � 1K and molar volume 20.97�10�6m3=mo1 [21].
bAt room temperature.

Table 1.
The experimental values of the elastic moduli of some hcp materials in the notation of Voigt Cik following [11].
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better for heavier inert atoms or light metals; however, the helium crystal has
pronouncedly anharmonic atomic potential [18]. Nevertheless in helium crystals,
the harmonic approximation is successfully applied [19, 20].

The isotropic rigidity kis can be divided into two contributions: kis ¼ kp þ kpn,
where kp is rigidity in the plane and kpn is rigidity from the interaction with the
neighbor planes.

Inside the twin boundary, the neighbor layers are shifted from the symmetric
positions, and it causes an anisotropic atomic potential. The previous spherical
potential is broken. Then inside the twin boundary, the initial isotropic atomic
potential transforms into

Uan1 rð Þ ¼ Uis y; zð Þ þ Uan1 xð Þ;

Uis y; zð Þ ¼ 1
2
kis y2 þ z2
� �

; Uan1 xð Þ ¼ Up xð Þ þUpn x; ξð Þ;

Up xð Þ ¼ 1
2
kpx2; Upn x; ξð Þ ¼ k41 ξ� xð Þ4

4
� k21 ξ� xð Þ2

2
:

(10)

where the isotropic potential Eq. (9) splits into two terms. The first term Uan1 xð Þ
is an anisotropic and nonlinear part of the potential in the shift direction Ox. The
second term Uis y; zð Þ is the rest of the isotropic part which is perpendicular to the
shift direction. Further, the potential Uan1 xð Þ is divided too into Up xð Þ, the isotropic
part, and Upn x; ξð Þ, the anisotropic one from the neighbor atomic planes. The last
turn depends on the layer shift ξ and the small deviation x. Therefore, only term
Upn x; ξð Þ changes inside TB which is shown in Figure 2. The analysis (see [14]) of
the term Upn x; ξð Þ allows to write the anisotropic atomic potential Eq. (10) in the
following simple form:

Uan1 r; ξð Þ≃U0 ξð Þ þ c ξð Þxþ 1
2
kb ξð Þx2 þ 1

2
kis y2 þ z2
� �

;

kb ξð Þ ¼ kp þ kpn ξð Þ ¼ kis þ 3k21
ξ2

ξ20
� 1

 !
; kpn ξð Þ ¼ þk21 3

ξ2

ξ20
� 1

 !
:

(11)

Figure 2.
Smooth changed parts of the potential in dependence on the coordinates ξ and x according to Eqs. (10) and
(11): Upn 0; ξð Þ is a lower double-well curve and Uan1 x; ξð Þ is a set of parabolas.
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where kb ξð Þ is rigidity coefficient inside TB, U0 ξð Þ is a varied bottom level, and
c ξð Þx is the linear part. In the limit points ξ ¼ �ξ0, Eq. (11) transforms into isotropic
hcp phase Eq. (9) with kpn ξ0ð Þ ¼ þ2k21. Inside TB ξ ¼ 0, the rigidity takes value
kpn 0ð Þ ¼ �k21. Thus, the rigidity coefficients in phase kisð Þ and in the middle of TB
kb 0ð Þð Þ are represented by the rigidity coefficients inside the plane kp

� �
with two

adjacent k21ð Þ planes:

kis ¼ kp þ kpn ξ0ð Þ ¼ kp þ 2k21; (12)

kb 0ð Þ ¼ kp þ kpn 0ð Þ ¼ kp � k21: (13)

Inside the boundary the potential is considerably softer in direction Ox because
of kb ξð Þ < kis (see Figure 2). The difference in these rigidity coefficients is too high
kis � kb 0ð Þ ¼ 3k21. For further analysis, we need especially the quadric form in
Eq. (11).

The ratio of the rigidity coefficients in the relation Eq. (10) can be related to the
ratio of the elastic modules which are shown in Table 1. The macroscopic tensor
components C11C33 describe the longitudinal deformation along the axes 0x and 0z,
respectively. In solid 4He, the ratio of the elastic modulus C33=C11 ¼ 1:37 gives
anisotropy of the rigidity coefficients kelz=kis in the basal plane and axis 0z. Uniaxial
compression-tension in the basal plane of 0xy corresponds to the elastic modulus of
C11 and atomic rigidity coefficient kis. The shuffle of the basal planes in an arbitrary
direction corresponds to elastic modulus C44 and atomic rigidity coefficients 2k21.
Therefore, we have the following inequality:

2k21
kis

¼ 2k21
kp þ 2k21

≲
C44

C11
: (14)

4. The atomic potential and hard sphere model in hcp phase

The geometry of the hcp lattice is shown in Figure 1a. In the hard sphere model
for the hcp plane A (see Figure 1a,b), the coordinates of atomic centers are

0;�R0;0ð Þ; �R0
ffiffiffi
3

p
;0;0

� �
; (15)

where R0 is the atomic radius, x is a coordinate along the shift direction of the
atomic plane B, z is a coordinate along the direction perpendicular to the atomic
plane, and y is a coordinate along the atomic plane perpendicular to the shift
direction. (0,0,0) is the touch point of the spheres in plane A. Then the sphere

Element C11, GPa C33, GPa C13, GPa C44, GPa

4He [21]a 4:05�10�2 5:54�10�2 1:05�10�2 1:24�10�2

7Li [22]b 14.2 — — 10.7

9Be [23]b 292 349 6 163

24Mg [23]b 59.3 61.5 21.4 16.4

aThe elastic moduli of hcp 4He are found at T � 1K and molar volume 20.97�10�6m3=mo1 [21].
bAt room temperature.

Table 1.
The experimental values of the elastic moduli of some hcp materials in the notation of Voigt Cik following [11].
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centers of the shifting atomic plane B can move over the following four spherical
surfaces:

x2 þ y� R0ð Þ2 þ z2 ¼ 2R0ð Þ2;
x� R0

ffiffiffi
3

p� �2 þ y2 þ z2 ¼ 2R0ð Þ2;
(16)

The equilibrium points for the atom of the shifting neighbor atomic plane B can
be found from the geometry of the system (Eq. (16) at y ¼ 0):

xRe ¼ �R0
1ffiffiffi
3

p ; yRe ¼ 0; zRe ¼ R0

ffiffiffi
8
3

r
: (17)

Signs – and + in xRe describe positions B and C in plane B, respectively. From the
first Eq. (16), the saddle point coordinates for an atom of plane B are

xRs ¼ 0; yRs ¼ 0; zRs ¼ R0
ffiffiffi
3

p
: (18)

For the hard sphere model, the microscopic parameters ξ0, h1 are

ξ0R ¼ ∣xRe∣; h1�R ¼ 1
2
gkis zRs � zReð Þ2 (19)

where h1�R is the potential barrier between B to C position (see Figure 1).
Coefficient g � 1 evaluates the quasielastic energy. In the middle of TB, the neigh-
bor number is 4, which is less than 6 once inside the phase. This is a microscopic
reason for the quasielastic energy behavior.

For the hard sphere model, the substitution of relations (19) into Eqs. (3) and
(8) gives the parameters of the microscopic interatomic potential:

k21�R ¼ 4h1�R

ξ20R
; k41�R ¼ 4h1�R

ξ40R
: (20)

For comparison, Eq. (11) allows us to find the rigidity coefficients in the phase
kis and in the middle of the boundary kb 0ð Þ .

5. Quantum atomic spheres and ellipsoids in hcp phase
and in the twin boundary

Inside the perfect hcp phase, a 4He atom is in highly symmetric potential of
neighbor atoms. In isotropic harmonic approximation [19, 20], the atomic potential
can be presented as [24]

Uis rð Þ ¼ 1
2
mω2r2; λ ¼ mω

ℏ
: (21)

where m, r and λ are mass, radius vector of 4He atom and parameter of the
quantum oscillator. The potential Eq. (12) gives mω2 ¼ kis; λ2 ¼ kism=ℏ2.

The Schrodinger equation splits into three equivalent independent equations
with the constant k2 ¼ k2X þ k2y þ k2z ¼ 2mW=ℏ2 where ki are wave numbers. The

ground state solution [24] has total zero-point energy W0is ¼ 3
2ℏω. In isotropic

harmonic approximation, a distribution of probability density ρ ¼ ψ x; y; zð Þj j2 of
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helium atom has spherical symmetry. Hence, the equation of probability isosurface
(sphere of radius R) is

x2 þ y2 þ z2 ¼ R2; R2 ¼ Nρis

λ
; Npis ¼ ln

ffiffiffiffiffiffiffiffiffi
λ3

ρ2π3

s
: (22)

The probability density at a distance of R0 that equals to the radius of the atom in
the hcp phase (half the distance between the centers of neighboring atoms in the
crystal) is

ρ0 ¼
ffiffiffiffiffi
λ3

π3

s
exp �κ20

� �
; Nρis R0ð Þ � κ20 ¼ R2

0λ: (23)

Here we have introduced the dimensionless parameter κ0 that is important for
further consideration. This parameter is proportional to the atomic radius κ0 � R0

and depends on the isotropic rigidity of the atomic lattice κ0 � λ1=2 � k1=4is . In respect
to a huge change in the volume of solid helium [1], the parameter κ0 can vary widely.

An anisotropic harmonic potential can be written as [24]

Uanis rð Þ ¼ 1
2
m ω2

Xx
2 þ ω2

yy
2 þ ω2

zz
2

� �
;

λX ¼ mωX

ℏ
; λy ¼ mω3

ℏ
; λz ¼ mωz

ℏ
:

(24)

The parameters λi are related to the rigidity coefficients:

λ2X ¼ m
ℏ2 kxel; λ2y ¼

m
ℏ2 kyel; λ2z ¼

m
ℏ2 kzel: (25)

In the hcp phase, an anisotropic harmonic approximation is more adequate.
Then the rigidity coefficients satisfy inequality kxel ¼ kyel ¼ kis < kzel. If we use iso-
tropic harmonic approximation in the hcp phase, then inside of the twin boundary,
an atom 4He is in a uniaxial potential of neighboring atoms of Eq. (13):
kxel ¼ kb ≤ kyel ¼ kzel ¼ kis.

The equation splits also into three independent equations with known solutions
[24]. Inside TB for the ground state, the distribution of the probability density of
the helium atom loses its spherical symmetry. The probability isosurface is ellipsoid
with semiaxes a≥ b≥ c:

a2 ¼ Nρ

λX
; b2 ¼ Nρ

λ0
; c2 ¼ Nρ

λz
; Np ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λXλ0λz
ρ2π3

s
: (26)

Parameter Nρ describes the probability density. If the probability density equals
ρ0 at the atomic radius R0 in the hcp phase Eq. (23), then N ρð Þ takes the following
value:

Nρ0 ¼ κ20 þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λXλ0λz
λ3

r
: (27)

Thus, the relations Eqs. (26) and (27) describe the probability density
isosurfaces to find an atom in the anisotropic case. On appropriate limit λi ¼ λ, these
relations describe the isotropic case.
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Inside the perfect hcp phase, a 4He atom is in highly symmetric potential of
neighbor atoms. In isotropic harmonic approximation [19, 20], the atomic potential
can be presented as [24]
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: (21)

where m, r and λ are mass, radius vector of 4He atom and parameter of the
quantum oscillator. The potential Eq. (12) gives mω2 ¼ kis; λ2 ¼ kism=ℏ2.

The Schrodinger equation splits into three equivalent independent equations
with the constant k2 ¼ k2X þ k2y þ k2z ¼ 2mW=ℏ2 where ki are wave numbers. The

ground state solution [24] has total zero-point energy W0is ¼ 3
2ℏω. In isotropic

harmonic approximation, a distribution of probability density ρ ¼ ψ x; y; zð Þj j2 of
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helium atom has spherical symmetry. Hence, the equation of probability isosurface
(sphere of radius R) is

x2 þ y2 þ z2 ¼ R2; R2 ¼ Nρis

λ
; Npis ¼ ln

ffiffiffiffiffiffiffiffiffi
λ3

ρ2π3

s
: (22)

The probability density at a distance of R0 that equals to the radius of the atom in
the hcp phase (half the distance between the centers of neighboring atoms in the
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λ3
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exp �κ20
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Here we have introduced the dimensionless parameter κ0 that is important for
further consideration. This parameter is proportional to the atomic radius κ0 � R0

and depends on the isotropic rigidity of the atomic lattice κ0 � λ1=2 � k1=4is . In respect
to a huge change in the volume of solid helium [1], the parameter κ0 can vary widely.

An anisotropic harmonic potential can be written as [24]
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m ω2

Xx
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2
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;

λX ¼ mωX

ℏ
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ℏ
; λz ¼ mωz

ℏ
:

(24)

The parameters λi are related to the rigidity coefficients:

λ2X ¼ m
ℏ2 kxel; λ2y ¼

m
ℏ2 kyel; λ2z ¼

m
ℏ2 kzel: (25)

In the hcp phase, an anisotropic harmonic approximation is more adequate.
Then the rigidity coefficients satisfy inequality kxel ¼ kyel ¼ kis < kzel. If we use iso-
tropic harmonic approximation in the hcp phase, then inside of the twin boundary,
an atom 4He is in a uniaxial potential of neighboring atoms of Eq. (13):
kxel ¼ kb ≤ kyel ¼ kzel ¼ kis.

The equation splits also into three independent equations with known solutions
[24]. Inside TB for the ground state, the distribution of the probability density of
the helium atom loses its spherical symmetry. The probability isosurface is ellipsoid
with semiaxes a≥ b≥ c:

a2 ¼ Nρ

λX
; b2 ¼ Nρ

λ0
; c2 ¼ Nρ

λz
; Np ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λXλ0λz
ρ2π3

s
: (26)

Parameter Nρ describes the probability density. If the probability density equals
ρ0 at the atomic radius R0 in the hcp phase Eq. (23), then N ρð Þ takes the following
value:

Nρ0 ¼ κ20 þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λXλ0λz
λ3

r
: (27)

Thus, the relations Eqs. (26) and (27) describe the probability density
isosurfaces to find an atom in the anisotropic case. On appropriate limit λi ¼ λ, these
relations describe the isotropic case.
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6. Classic atomic thermal spheres and ellipsoids in hcp phase
and the twin boundary

Inside the perfect hcp phase, an atom is positioned in highly symmetric potential
of neighbor atoms (see Eq. (9)) and quantum analogue Eq. (21). For any direction,
the average thermal energy of an atom is kBT=2 where kB and T are the Boltzmann
constant and temperature.

In isotropic harmonic approximation Eq. (9), the average thermal energy of an
atom corresponds to the average potential isosurface (sphere of radius R):

x2 þ y2 þ z2 ¼ R2; R2 ¼ kBT
kis

; (28)

The general anisotropic potential has form Eq. (10). In anisotropic harmonic
case, the potential can be written with corresponding rigidity coefficients as (com-
pare with Eq. (24))

Uanis rð Þ ¼ 1
2

k2Xx
2 þ k2yy

2 þ k2zz
2

� �
;

kX ¼ kxel; ky ¼ kyel; kz ¼ kzel:
(29)

Then inside of the twin boundary, an atom is in the uniaxial potential of
neighboring atoms Eq. (13): kxel ¼ kb ≤ kyel ¼ kzel ¼ kis.

The motion equation splits also into three independent equivalent equations.
The equation of the potential isosurface is ellipsoid with semiaxes a≥ b≥ c
(compare with Eq. (26)):

x2

a2
þ y2

b2
þ z2

c2
¼ 1;

a2 ¼ kBT
kX

; b2 ¼ kBT
ky

; c2 ¼ kBT
kz

:

(30)

Thus, the relation Eq. (30) describes the atomic potential isosurfaces in the aniso-
tropic case, i.e., inside TB. In the limit case ki ¼ kis, it corresponds to the isotropic
case, i.e., hcp phase Eq. (28). The thermal potential isosurfaces (ellipsoids) have to be
in order less than the quantum atomic spheres and ellipsoids normalized at R0. We
emphasize that in this section the average thermal motion of atoms was considered.

7. The self-consistent description of the twin boundary

The classic description of TB uses two coefficients of the thermodynamic
potential Eq. (1):

k21 ¼ const; k41 ¼ const; or h1 ¼ const; ξ0 ¼ const: (31)

They can be corresponded to the hard sphere model (see Eqs. (15)–(20)).
The quantum and thermal description of TB is self-consistent, i.e., the param-

eters Eq. (31) are varied as a function of some parameter q that, in its turn, is a
function of these parameters:

h1 ¼ h1 qð Þ; ξ0 ¼ ξ0 qð Þ; q ¼ q h1; ξ0ð Þ: (32)
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Let us introduce the isosurface deformation parameter q as a geometric factor
which describes the deformation of the atomic sphere Eqs. (22) and (28) into the
one-axis ellipsoid Eqs. (26) and (30):

q ¼ 1� c2

a2
� ε2; 0≤ ε2 ≤ 1: (33)

where ε is the eccentricity of the ellipse. Earlier in the paper [14], we introduced
the quantum deformation parameter qq. Here we generalize the parameter qq to the
cases of either quantum or thermal motion of an atom and introduce the isosurface
deformation parameter q.

Now we present the self-consistent scheme of description for the twin boundary.
(0) Zero approximation. An atom is a hard classic sphere Eq. (32) or quantum
isotropic oscillator:

R0 ¼ a ¼ b ¼ c; ρ ¼ ρ0; q ¼ 0: (34)

(1) The first approximation. An atom is considered as a quantum anisotropic
uniaxis oscillator. The potential Eq. (10) has been obtained in zero
approximation. In the general case, the ellipsoid parameters and the isosurface
deformation parameter are described by Eqs. (26), (27), and (33),
respectively. The long ellipsoids axis is oriented along the shift direction 0x:

b1 ¼ c1 < a1; ρ ¼ ρ0; ε2c1 ¼ q1 ¼ 1� c21
a21

>0: (35)

The further variations of parameters Eq. (31) can be obtained in the hard
ellipsoid model. The hard ellipsoids have the isosurfaces with the same probability
density ρ0 as the hard spheres in the hcp phase, and the isosurface deformation
parameter can be obtained. For a vacancy, the nearest neighbors form similar
ellipsoids [25].

(2) The second approximation. An atom is considered as an anisotropic three-
axis oscillator (the isosurface is three-axis ellipsoid). The first approximation
gives the rigidity coefficients of the potential. Different ellipses are formed in
the planes ab and ac, and their eccentricities equal

b2 6¼ c2 < a2; ε2b2 ¼ qb2 ¼ 1� b22
a22

>0; ε2c2 ¼ qc2 ¼ 1� c22
a22

>0: (36)

Now all three axes of the atomic ellipsoid are different. The softest potential and
the longest axis a2 are still oriented along the shift direction. The hard ellipsoid
model Eq. (35) is used to obtain a new local atomic potential and a new ellipsoid
shape.

(i) The third and further ith steps qualitatively replicate the previous steps in the
same way. The second and further steps are more cumbersome and
complicated.

8. Atom as anisotropic harmonic oscillator in the boundary, one axis

In continual description inside the boundary, we have found a change of the
atomic potential Eq. (10) with the corresponding rigidity constants. Therefore,
constants λi in Eq. (25) take the following forms:

37

Twin Boundary in hcp Crystals: Quantum and Thermal Behavior
DOI: http://dx.doi.org/10.5772/intechopen.86909



6. Classic atomic thermal spheres and ellipsoids in hcp phase
and the twin boundary

Inside the perfect hcp phase, an atom is positioned in highly symmetric potential
of neighbor atoms (see Eq. (9)) and quantum analogue Eq. (21). For any direction,
the average thermal energy of an atom is kBT=2 where kB and T are the Boltzmann
constant and temperature.

In isotropic harmonic approximation Eq. (9), the average thermal energy of an
atom corresponds to the average potential isosurface (sphere of radius R):

x2 þ y2 þ z2 ¼ R2; R2 ¼ kBT
kis

; (28)

The general anisotropic potential has form Eq. (10). In anisotropic harmonic
case, the potential can be written with corresponding rigidity coefficients as (com-
pare with Eq. (24))

Uanis rð Þ ¼ 1
2

k2Xx
2 þ k2yy

2 þ k2zz
2

� �
;

kX ¼ kxel; ky ¼ kyel; kz ¼ kzel:
(29)

Then inside of the twin boundary, an atom is in the uniaxial potential of
neighboring atoms Eq. (13): kxel ¼ kb ≤ kyel ¼ kzel ¼ kis.

The motion equation splits also into three independent equivalent equations.
The equation of the potential isosurface is ellipsoid with semiaxes a≥ b≥ c
(compare with Eq. (26)):

x2

a2
þ y2

b2
þ z2

c2
¼ 1;

a2 ¼ kBT
kX

; b2 ¼ kBT
ky

; c2 ¼ kBT
kz

:

(30)

Thus, the relation Eq. (30) describes the atomic potential isosurfaces in the aniso-
tropic case, i.e., inside TB. In the limit case ki ¼ kis, it corresponds to the isotropic
case, i.e., hcp phase Eq. (28). The thermal potential isosurfaces (ellipsoids) have to be
in order less than the quantum atomic spheres and ellipsoids normalized at R0. We
emphasize that in this section the average thermal motion of atoms was considered.

7. The self-consistent description of the twin boundary

The classic description of TB uses two coefficients of the thermodynamic
potential Eq. (1):

k21 ¼ const; k41 ¼ const; or h1 ¼ const; ξ0 ¼ const: (31)

They can be corresponded to the hard sphere model (see Eqs. (15)–(20)).
The quantum and thermal description of TB is self-consistent, i.e., the param-

eters Eq. (31) are varied as a function of some parameter q that, in its turn, is a
function of these parameters:

h1 ¼ h1 qð Þ; ξ0 ¼ ξ0 qð Þ; q ¼ q h1; ξ0ð Þ: (32)

36

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…

Let us introduce the isosurface deformation parameter q as a geometric factor
which describes the deformation of the atomic sphere Eqs. (22) and (28) into the
one-axis ellipsoid Eqs. (26) and (30):

q ¼ 1� c2

a2
� ε2; 0≤ ε2 ≤ 1: (33)

where ε is the eccentricity of the ellipse. Earlier in the paper [14], we introduced
the quantum deformation parameter qq. Here we generalize the parameter qq to the
cases of either quantum or thermal motion of an atom and introduce the isosurface
deformation parameter q.

Now we present the self-consistent scheme of description for the twin boundary.
(0) Zero approximation. An atom is a hard classic sphere Eq. (32) or quantum
isotropic oscillator:

R0 ¼ a ¼ b ¼ c; ρ ¼ ρ0; q ¼ 0: (34)

(1) The first approximation. An atom is considered as a quantum anisotropic
uniaxis oscillator. The potential Eq. (10) has been obtained in zero
approximation. In the general case, the ellipsoid parameters and the isosurface
deformation parameter are described by Eqs. (26), (27), and (33),
respectively. The long ellipsoids axis is oriented along the shift direction 0x:

b1 ¼ c1 < a1; ρ ¼ ρ0; ε2c1 ¼ q1 ¼ 1� c21
a21

>0: (35)

The further variations of parameters Eq. (31) can be obtained in the hard
ellipsoid model. The hard ellipsoids have the isosurfaces with the same probability
density ρ0 as the hard spheres in the hcp phase, and the isosurface deformation
parameter can be obtained. For a vacancy, the nearest neighbors form similar
ellipsoids [25].

(2) The second approximation. An atom is considered as an anisotropic three-
axis oscillator (the isosurface is three-axis ellipsoid). The first approximation
gives the rigidity coefficients of the potential. Different ellipses are formed in
the planes ab and ac, and their eccentricities equal

b2 6¼ c2 < a2; ε2b2 ¼ qb2 ¼ 1� b22
a22

>0; ε2c2 ¼ qc2 ¼ 1� c22
a22

>0: (36)

Now all three axes of the atomic ellipsoid are different. The softest potential and
the longest axis a2 are still oriented along the shift direction. The hard ellipsoid
model Eq. (35) is used to obtain a new local atomic potential and a new ellipsoid
shape.

(i) The third and further ith steps qualitatively replicate the previous steps in the
same way. The second and further steps are more cumbersome and
complicated.

8. Atom as anisotropic harmonic oscillator in the boundary, one axis

In continual description inside the boundary, we have found a change of the
atomic potential Eq. (10) with the corresponding rigidity constants. Therefore,
constants λi in Eq. (25) take the following forms:

37

Twin Boundary in hcp Crystals: Quantum and Thermal Behavior
DOI: http://dx.doi.org/10.5772/intechopen.86909



λX ¼ 1
ħ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ξ2
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Using Eqs. (26) and (27), the atomic isosurface can be described by ellipsoid
with semiaxes:

a21 ¼
Nρ01

λX
; b21 ¼ c21 ¼

Nρ01

λ
; Nρ01 ¼ κ20 þ ln

ffiffiffiffiffi
λX
λ

r
: (38)

For fixed λy, λz ¼ λ and reduced stiffness coefficient λX along axis 0x, the
semiaxes of the ellipsoid change as follows: a1 >R0; b1 ¼ C1 <R0. Then the
isosurface deformation parameter q1 Eq. (35) takes the following dependence on the
order parameter ξ and coordinate

q1 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

k21
kis

1
cosh 2 z=lTð Þ

s
: (39)

We obtain the same result for the thermal excitations; however, instead of
relation Eq. (37), we use the rigidity constants Eq. (30):

kX ¼ kis þ 3k21
ξ2

ξ20
� 1

 !
≤ kis: (40)

In Table 2, evaluations of different parameters are shown according to Table 1
and relation Eqs. (14), (39), (42), and (43); the sources are shown in round
brackets on top of columns.

In He and Mg (see Table 2), the transverse components of the elastic module
C44 are much smaller than the longitudinal ones C11. Accordingly in these materials,
the isosurface deformation parameters in the middle point of TB qmax take relatively
small value.

In Li and Be (see Table 2), the transverse and longitudinal components of the
elastic moduli are closer. Hence, in these materials, the parameters qmax are consid-
erably greater. Moreover in Li, the parameter qmax can reach 1 or even take complex
(imaginary root) values. This indicates a possible instability of Li crystal lattice (see
further consideration). This, seemingly unexpected, result is quite understandable

Element C44
C11

, (Table 1, (14)) 3 k21
kis
, Eq. (14) qmax, Eq. (39) κ20, Eq. (42) Λ, Eq. (43)

4He ≃0:306 ≤0:46 ≃0:27 ≃ 3:77 ≃0:0663a

7Lib ≃0:75 ≤ 1:13 ! 1 ≃ 151:3 ≃0:0017c

9Beb ≃0:558 ≤0:84 ≃0:60 ≃ 127:4 ≃0:0020c

24Mgb ≃0:277 ≤0:41 ≃0:23 ≃ 353:4 ≃0:0007c

aEvaluation of the de Boer parameter Λ ¼ 0:45 for 4He at �1 K [2].
bAt room temperature.
cEvaluation of the de Boer parameter at � 1K (present work).
For all materials the parameters κ20 and Λ are evaluated with the same R0.

Table 2.
Evaluation of the elastic moduli relations, rigidity relations, the isosurface deformation parameter in the middle
point of TB qmax, and the de Boer parameter Λ of some hcp materials.
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if considerably gentle upper parabolas (stronger interaction between the crystal
planes in comparison with in-plane interaction) are taken into account which are
shown in Figure 2.

In the quantum case, we can evaluate the minimal increase of the exchange
integral due to the increase of overlapping wave functions caused by the elliptic
deformations [14]:

ΔI ¼ ΔI0 ¼ 1
cosh 4 z=lTð Þ ;

ΔI0 ¼ 3
16

ffiffiffi
π

p 1

4
ffiffiffiffiffi
κ50

q k21
kis

� �2

exp �κ20
� �

;
(41)

Increasing overlapping volumes ΔV with high probability can be evaluated by
segments of the crossing ellipsoids. Amplitude ΔI0 depends on two parameters κ0
and k21=kis only.

In the basal hcp plane, the exchange integral is varied depending on the quan-
tum deformation parameter q; the wave function tails are the most sensitive, espe-
cially in the overlapping region. Evaluations Eq. (41) take into account only space
changing but not the amplitude one. The amplitude changing can achieve several
orders because of exponential dependence. The exchange integral I uniquely defines
the diffusion coefficient [26]. In the interphase boundaries in solid helium, NMR
experiment [12] shows the quantum diffusion increasing. The interphase and twin
boundaries are similar [5]. So for the quantum diffusion case in TB, the predicted
and the experimentally observed arising values are closely related. Experiments
show thermal diffusion arising at boundaries [11]; the found thermal ellipsoids’
deformation qualitatively explains these facts.

Now we can point out conditions when exchange integral Eq. (41) increases. We
need minimal κ20 Eq. (42) in exponent Eq. (41). The parameter κ0 or λ can be
defined by Eqs. (23) and (37) and analyzed in dependence on different factors. In
[14] using atomic mass ma and evaluation of atomic radius R0, the parameter κ20
value was estimated:

κ20 ≃
1
ℏ
R5=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
πmaE

r
: (42)

where elastic module E ¼ C11 is related to the rigidity coefficient kis ≃ πR0E=2. In
solid 4He, the atomic radius R0 is the soft parameter, especially under low pressure.
So, a high value of exchange integral can be achieved. Compressibility is small in
metals, first of all, in light ones (lithium, beryllium, magnesium). Minimal rigidity
kis gives rise in the exchange integral too. The van der Waals interaction in 4He is
3–4 orders of magnitude less than in metal (see Table 1).

Another way to estimate κ20 is to compare it with de Boer parameter Λ, the
fundamental characteristic of quantum crystal. The de Boer parameter gives the
probability density to find an atom in the site of a neighboring atom (at distance
al ¼ 2R0) [26]:

ρ alð Þ � exp � 1
Λ

� �
¼ exp �λa2l

� �
; κ20 ¼ 1

4Λ
: (43)

The de Boer parameter Λ ¼ 0:45 for 4He [26] gives evaluation κ20 ≃0:59. Pres-
sure growing leads to more difficult tunneling of atoms and different κ20 evaluations
in Eqs. (42) and (43). Using the data in Table 1, for solid 4He we obtain R0 [14],
κ20 ≃ 3:77, and Λ≃0:07 (see Table 2).
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In Table 2, evaluations of different parameters are shown according to Table 1
and relation Eqs. (14), (39), (42), and (43); the sources are shown in round
brackets on top of columns.

In He and Mg (see Table 2), the transverse components of the elastic module
C44 are much smaller than the longitudinal ones C11. Accordingly in these materials,
the isosurface deformation parameters in the middle point of TB qmax take relatively
small value.

In Li and Be (see Table 2), the transverse and longitudinal components of the
elastic moduli are closer. Hence, in these materials, the parameters qmax are consid-
erably greater. Moreover in Li, the parameter qmax can reach 1 or even take complex
(imaginary root) values. This indicates a possible instability of Li crystal lattice (see
further consideration). This, seemingly unexpected, result is quite understandable
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aEvaluation of the de Boer parameter Λ ¼ 0:45 for 4He at �1 K [2].
bAt room temperature.
cEvaluation of the de Boer parameter at � 1K (present work).
For all materials the parameters κ20 and Λ are evaluated with the same R0.
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Evaluation of the elastic moduli relations, rigidity relations, the isosurface deformation parameter in the middle
point of TB qmax, and the de Boer parameter Λ of some hcp materials.
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if considerably gentle upper parabolas (stronger interaction between the crystal
planes in comparison with in-plane interaction) are taken into account which are
shown in Figure 2.

In the quantum case, we can evaluate the minimal increase of the exchange
integral due to the increase of overlapping wave functions caused by the elliptic
deformations [14]:

ΔI ¼ ΔI0 ¼ 1
cosh 4 z=lTð Þ ;
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(41)

Increasing overlapping volumes ΔV with high probability can be evaluated by
segments of the crossing ellipsoids. Amplitude ΔI0 depends on two parameters κ0
and k21=kis only.

In the basal hcp plane, the exchange integral is varied depending on the quan-
tum deformation parameter q; the wave function tails are the most sensitive, espe-
cially in the overlapping region. Evaluations Eq. (41) take into account only space
changing but not the amplitude one. The amplitude changing can achieve several
orders because of exponential dependence. The exchange integral I uniquely defines
the diffusion coefficient [26]. In the interphase boundaries in solid helium, NMR
experiment [12] shows the quantum diffusion increasing. The interphase and twin
boundaries are similar [5]. So for the quantum diffusion case in TB, the predicted
and the experimentally observed arising values are closely related. Experiments
show thermal diffusion arising at boundaries [11]; the found thermal ellipsoids’
deformation qualitatively explains these facts.

Now we can point out conditions when exchange integral Eq. (41) increases. We
need minimal κ20 Eq. (42) in exponent Eq. (41). The parameter κ0 or λ can be
defined by Eqs. (23) and (37) and analyzed in dependence on different factors. In
[14] using atomic mass ma and evaluation of atomic radius R0, the parameter κ20
value was estimated:

κ20 ≃
1
ℏ
R5=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
πmaE
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: (42)

where elastic module E ¼ C11 is related to the rigidity coefficient kis ≃ πR0E=2. In
solid 4He, the atomic radius R0 is the soft parameter, especially under low pressure.
So, a high value of exchange integral can be achieved. Compressibility is small in
metals, first of all, in light ones (lithium, beryllium, magnesium). Minimal rigidity
kis gives rise in the exchange integral too. The van der Waals interaction in 4He is
3–4 orders of magnitude less than in metal (see Table 1).

Another way to estimate κ20 is to compare it with de Boer parameter Λ, the
fundamental characteristic of quantum crystal. The de Boer parameter gives the
probability density to find an atom in the site of a neighboring atom (at distance
al ¼ 2R0) [26]:

ρ alð Þ � exp � 1
Λ

� �
¼ exp �λa2l

� �
; κ20 ¼ 1

4Λ
: (43)

The de Boer parameter Λ ¼ 0:45 for 4He [26] gives evaluation κ20 ≃0:59. Pres-
sure growing leads to more difficult tunneling of atoms and different κ20 evaluations
in Eqs. (42) and (43). Using the data in Table 1, for solid 4He we obtain R0 [14],
κ20 ≃ 3:77, and Λ≃0:07 (see Table 2).
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We can make the following conclusion. The softening of the effective atomic
potential is anisotropic inside the twin boundary which increases the exchange
integral and tunneling probability in the selected shear direction. As a result the
quantum diffusion along the boundary plane increases.

9. The self-consistent correspondence of the potential and the uniaxial
hard ellipsoid model

Inside the twin boundary, the arising anisotropic atomic potential transforms an
atomic probability isosurface from sphere to ellipsoid. Let us introduce the hard
ellipsoid model as analogue of the hard sphere model. Then coefficients’ local values
for the potential can be found inside TB. We suppose that the twin boundary does
not change symmetry and positions of the atomic centers inside a shifting plane. So,
the atomic plane A keeps the atomic centers’ coordinates Eq. (15) under shifting
(see Figure 1c, d). In the shifting neighbor atomic plane B, the atomic isosurface
equation is defined by Eq. (22). Then for the shifting atomic plane B, the atomic
(ellipsoids) center moves over the great ellipsoidal surfaces:

x
2a1

� �2

þ y� R0

2c1

� �2

þ z
2c1

� �2

¼ 1;

x� R0
ffiffiffi
3

p

2a1

� �2

þ y
2c1

� �2

þ z
2c1

� �2

¼ 1;

(44)

where the equilibrium and saddle points for an atom are located. Only four
ellipsoids with centers 0;�R0;0ð Þ and �R0

ffiffiffi
3

p
;0;0

� �
are described. Axis 0x is

directed along the shift (see Figure 1c, d).
Relations Eq. (26), (27), and (35) define the ellipsoid’s semiaxes as function of

R0, q:

a21 ¼
Np

λX
; q1 ¼ 1� λX

λ
;

b21 ¼ c21 ¼ R2
0γ1 q1
� �

; γ1 q1
� � ¼ 1þ 1

κ20
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q1

p
:

(45)

Accounting these relations and condition y ¼ 0 (see Figure 1), we obtain solu-
tion for the equation system Eq. (44) and the equilibrium point coordinates for the
atom of the plane B. So, in the hard ellipsoid model, we find the microscopic
parameters Eqs. (2) and (3) of the atomic potential:

ξ0�1 ¼ ∣x1�e∣ ¼ ξ0
2� 3q
2 1� qð Þ ; h1�1 � 1

2
kis z1�s � z1�eð Þ2 ¼

¼ 3h1�R

3� ffiffiffi
8

p� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ1 qð Þ � 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ1 qð Þ � 1� 1

12
2� 3qð Þ2
1� q

s2
4

3
5
2 (46)

where h1�R is defined in Eq. (19). These results are valid in the range 0≤ q≤ 2=3.
At q1 ! 2=3 we have ξ0�1, h1�1 ! 0 and semiaxis relation a1=c1 ¼ 1=

ffiffiffi
3

p
. At q ¼ 2=3

the hard ellipsoid model needs transition in another state (see [14]). Therefore,
inside TB, the change of the atomic wave function leads to the following change of
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the interaction potential: the equilibrium displacement and the potential barrier
height decrease (see Figure 3). However, the potential barrier height decreases
much faster. The resulting evolution of the potential Eq. (46) is shown in Figure 4.
Then from Eqs. (3) and (46), the coefficients of the potential are

k21�1 ¼ 4h1�1

ξ201
; k41�1 ¼ 4h1�1

ξ401
: (47)

Thus, the coefficients of the potential (1) for the shift in the direction 0x reduce
k21 > k21�1 qð Þ and k41 > k41�1 qð Þ. It means softening of the potential in the direction
of the plane shuffle. The correspondence between the hard ellipsoid model and the
atomic microscopic potential Eqs. (4), (8), and (46) is shown in Figure 3. Elliptical
deformation of the probability isosurface leads to the transformation of the
potential energy of the atom in Eq. (10):

Uan2 rð Þ ¼ Uan2 y; zð Þ þ Up2 xð Þ þUpn2 x; ξð Þ ;

Uan2 y; zð Þ ¼ 1
2
kxe2z2 þ 1

2
kye2y2; Up2 xð Þ ¼ 1

2
kp2x2;

Upn2 x; ξð Þ ¼ k41�1 ξ� xð Þ4
4

� k21�1 ξ� xð Þ2
2

;

(48)

Figure 3.
Comparison of the hard ellipsoids model and the atomic microscopic potential. The red double-well curve shows
the potential as a function of ξ0�1 and h1�1. Small solid red ellipsoids show atomic isosurfaces at κ0. Big dot
black ellipsoids show the cross sections of the surfaces Eq. (44) at y ¼ 0 and quantum parameter values
(a) q = 0, (b) q = 0.2, (c) q = 0.4, and (d) q = 0.6.

Figure 4.
The cross sections of the potential density according to Eqs. (46), (47), and (39). The quantum boundary has
lower potential peak and shorter distance between shallower wells ξ0�1ð Þ as q grows (0, 0.2, 0.4, 0.6). The
barrier in the middle of wall (TB) decreases.
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We can make the following conclusion. The softening of the effective atomic
potential is anisotropic inside the twin boundary which increases the exchange
integral and tunneling probability in the selected shear direction. As a result the
quantum diffusion along the boundary plane increases.

9. The self-consistent correspondence of the potential and the uniaxial
hard ellipsoid model

Inside the twin boundary, the arising anisotropic atomic potential transforms an
atomic probability isosurface from sphere to ellipsoid. Let us introduce the hard
ellipsoid model as analogue of the hard sphere model. Then coefficients’ local values
for the potential can be found inside TB. We suppose that the twin boundary does
not change symmetry and positions of the atomic centers inside a shifting plane. So,
the atomic plane A keeps the atomic centers’ coordinates Eq. (15) under shifting
(see Figure 1c, d). In the shifting neighbor atomic plane B, the atomic isosurface
equation is defined by Eq. (22). Then for the shifting atomic plane B, the atomic
(ellipsoids) center moves over the great ellipsoidal surfaces:
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Accounting these relations and condition y ¼ 0 (see Figure 1), we obtain solu-
tion for the equation system Eq. (44) and the equilibrium point coordinates for the
atom of the plane B. So, in the hard ellipsoid model, we find the microscopic
parameters Eqs. (2) and (3) of the atomic potential:
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where h1�R is defined in Eq. (19). These results are valid in the range 0≤ q≤ 2=3.
At q1 ! 2=3 we have ξ0�1, h1�1 ! 0 and semiaxis relation a1=c1 ¼ 1=

ffiffiffi
3

p
. At q ¼ 2=3

the hard ellipsoid model needs transition in another state (see [14]). Therefore,
inside TB, the change of the atomic wave function leads to the following change of

40

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…

the interaction potential: the equilibrium displacement and the potential barrier
height decrease (see Figure 3). However, the potential barrier height decreases
much faster. The resulting evolution of the potential Eq. (46) is shown in Figure 4.
Then from Eqs. (3) and (46), the coefficients of the potential are

k21�1 ¼ 4h1�1

ξ201
; k41�1 ¼ 4h1�1

ξ401
: (47)

Thus, the coefficients of the potential (1) for the shift in the direction 0x reduce
k21 > k21�1 qð Þ and k41 > k41�1 qð Þ. It means softening of the potential in the direction
of the plane shuffle. The correspondence between the hard ellipsoid model and the
atomic microscopic potential Eqs. (4), (8), and (46) is shown in Figure 3. Elliptical
deformation of the probability isosurface leads to the transformation of the
potential energy of the atom in Eq. (10):

Uan2 rð Þ ¼ Uan2 y; zð Þ þ Up2 xð Þ þUpn2 x; ξð Þ ;

Uan2 y; zð Þ ¼ 1
2
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Figure 3.
Comparison of the hard ellipsoids model and the atomic microscopic potential. The red double-well curve shows
the potential as a function of ξ0�1 and h1�1. Small solid red ellipsoids show atomic isosurfaces at κ0. Big dot
black ellipsoids show the cross sections of the surfaces Eq. (44) at y ¼ 0 and quantum parameter values
(a) q = 0, (b) q = 0.2, (c) q = 0.4, and (d) q = 0.6.

Figure 4.
The cross sections of the potential density according to Eqs. (46), (47), and (39). The quantum boundary has
lower potential peak and shorter distance between shallower wells ξ0�1ð Þ as q grows (0, 0.2, 0.4, 0.6). The
barrier in the middle of wall (TB) decreases.
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All terms are changed in the potential Eq. (48) in comparison with Eq. (10).
Isotropy is broken in atomic planes A or B-C due to superposition of the ellipsoids in
the shear direction.

For the classical and quantum cases, the free energy density relation Eq. (4) was
analyzed analytically in [14]. It was shown that the classical and quantum bound-
aries have different properties. In particular, from Figure 5, it is qualitatively clear
why the classical and quantum boundaries have different potential barrier and
energy density. In TB both the width and the height of the barrier decrease to zero,
according to Eqs. (46) and (47) (see Figure 4). In Figure 3, they are shown as
higher smooth curves. Simultaneously the space width of the boundary
lT ¼ 1=ξ0ð Þ ffiffiffiffiffi

2α
p

=k4 grows by Eq. (6). The dependence lT qð Þ causes further widening
of region with q ! qmax and a minimal barrier height.

To estimate the energy of the twin boundary (stacking fault) from Eq. (7), we
must know the following parameters: α, k2, k4 or lT, h.

The characteristic width (half width) of TB Eq. (6) lT ≃ 1:5 nm was obtained by
molecular dynamic method in [16]. We estimate the dispersion parameter α by
comparing the differential equations for the transverse sound and shuffling waves:

ρ ∗ ∂
2ξ

∂t2
� α

∂
2ξ

∂z2
¼ 0;

∂
2U

∂t2
� s2

∂
2U

∂z2
¼ 0; (49)

where ρ ∗ ¼ ρ=2 is the effective density of the oscillating shuffled subsystem,
ρ is the density of helium-4, ξ is the shuffling order parameter, u is macroscopic
displacement, and s ¼ ffiffiffiffiffiffiffiffi

C44
p

=p≃ 255m=s is the transverse sound velocity in the
shuffle direction (Oz axis). The velocities of transverse sound and shuffling wave
have close values. So the dispersion parameter is α≃C44=2 ¼ 6:2 � 106J=m3 where
value of module C44 is given in Table 1.

According to relation Eq. (5), it is possible to estimate the parameter of the
thermodynamic potential k2 ¼ 2α=l2T ≃ 8:27 � 1024J=m5. As follows from Eq. (2) to
evaluate the parameter k4 of the potential, it is necessary to know the maximum
displacement of the atom Eq. (17) ξ0 ¼ R0=

ffiffiffi
3

p
≃ 1:17 � 10�10m. Here atomic radius

is related to atomic volume: Vm=NA ≃ 4=3ð ÞπR3
0. Then

k4 ¼ 2α= ξ0lTð Þ2 ¼ 6:04 � 1044J=m7. So, for the classical model of the twin boundary
(stacking fault), it is possible to estimate bulk density of the barrier height h and the
surface energy density WT according to Eqs. (3) and (7):

h ¼ k2ξ20
4

≃ 2:83 � 104J=m3; WT ¼ 4
3
lTh≃0:057mJ=m2; (50)

Figure 5.
The smooth double-well potential according to Eqs. (10) and (11). Instead of a set of parabolas in Figure 2, we
see only ones at the bottom and the peaks of the potential and their quantum levels. The relationship between the
barriers for the atomic displacement in the classical hc and quantum hq boundaries is hc > hq.
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The surface energy density calculated here for the classical model can be com-
pared with the valueWSFex ¼ 0:07 � 0:02ð ÞmJ=m2 found in the optical experiments
at 0.2 K [13].

Above, we have predicted the local reduction of the barrier height h and a local
increase in the width lT of the boundary in the quantum description of the twin
boundary (stacking fault). In general for the defect, the surface energy density
value WT � lTef hTef in Eq. (50) can be close to the classical case. In different
experiments and theoretical estimates, a wide variation of the values may be caused
by variations of temperatures and pressures.

We have discussed the change of zero vibrations of atoms in the twin boundary
(stacking fault) and the related effects. For 3He we can expect the same order of
magnitude for all parameters of the twin boundary (stacking fault). The qualitative
difference between the pure hcp crystals of isotopes 4He and 3He, apparently,
cannot be obtained in the proposed model.

The difference between quantum statistics of the isotopes should address deeper
and more delicate quantum properties of the defects. We note briefly below only
the most striking manifestation of different statistics and problems arising in this
regard.

10. Discussion and conclusion

The quantum self-consistent treatment to twin boundary (stacking faults), pro-
posed in [14] for solid 4He, is developed here for metals and their quantum and
thermal description. The relation between discrete models of hard spheres and
continuum interatomic potential is used as a sample for a similar relationship in the
case of the hard ellipsoid models. As we move deeper into the defect, the transition
from one model to another is accomplished.

In the hcp phase, the potential of an atom, created by its neighbors, has spherical
symmetry (initial approximation). In the hcp phase, an atom is an isotropic quan-
tum oscillator. In the twin boundary, an atom is an anisotropic quantum oscillator.
It is shown that in the twin boundary, the potential of the atom is softer in the
direction of shuffle of the atomic planes.

The quantum parameter qq and its generalization and the isosurface deformation
parameter q are introduced. These parameters have simple and visual meaning: q
equals to the square of the eccentricity of the cross section of the probability density
ellipsoid (or the thermal ellipsoid). We have shown that parameter q is associated
with de Boer parameter, the fundamental characteristic of quantum crystal, and
anisotropy in the boundary. Evaluations for different materials show that the
isosurface deformation parameter q can achieve values 0:2÷1 (see Table 2). Mean-
while at q ¼ 2=3 the structure instability takes place in the system of the atomic
ellipsoids. From this point of view, the properties of TB in lithium are especially
interesting because the parameter achieves high value q ! 1.

The overlap of the atomic wave functions and the exchange integral value can be
described in terms of the quantum parameter q. Inside the twin boundary, the
quantum diffusion increases which was observed in the phase boundary (see
experiment [12]). The estimation Eq. (50) of the defect energy is in good agreement
with experiment [13]. We have shown that the quantum deformation of atoms
leads to the space broadening of the twin boundary and to its energy decreasing.

In conclusion we note that local oscillations spectra of the order parameter in
different models of coherent bcc-hcp boundary in 4He were investigated in [9]. For
small values of the perturbations, dynamical differential equations (reduced to
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All terms are changed in the potential Eq. (48) in comparison with Eq. (10).
Isotropy is broken in atomic planes A or B-C due to superposition of the ellipsoids in
the shear direction.
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ρ ∗ ∂
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∂
2ξ
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∂
2U

∂t2
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∂
2U

∂z2
¼ 0; (49)

where ρ ∗ ¼ ρ=2 is the effective density of the oscillating shuffled subsystem,
ρ is the density of helium-4, ξ is the shuffling order parameter, u is macroscopic
displacement, and s ¼ ffiffiffiffiffiffiffiffi

C44
p
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ffiffiffi
3

p
≃ 1:17 � 10�10m. Here atomic radius

is related to atomic volume: Vm=NA ≃ 4=3ð ÞπR3
0. Then
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h ¼ k2ξ20
4

≃ 2:83 � 104J=m3; WT ¼ 4
3
lTh≃0:057mJ=m2; (50)

Figure 5.
The smooth double-well potential according to Eqs. (10) and (11). Instead of a set of parabolas in Figure 2, we
see only ones at the bottom and the peaks of the potential and their quantum levels. The relationship between the
barriers for the atomic displacement in the classical hc and quantum hq boundaries is hc > hq.
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at 0.2 K [13].
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experiments and theoretical estimates, a wide variation of the values may be caused
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We have discussed the change of zero vibrations of atoms in the twin boundary
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magnitude for all parameters of the twin boundary (stacking fault). The qualitative
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interesting because the parameter achieves high value q ! 1.
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leads to the space broadening of the twin boundary and to its energy decreasing.

In conclusion we note that local oscillations spectra of the order parameter in
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Schrodinger equations) were obtained and solved. The characteristic frequencies
(energy levels) and shape were found and estimated (see Figure 6). For the ground
state in TB, the local vibration shape can be written as

η0 z ∗ð Þ ¼ A0

cosh 2z ∗ ; z ∗ ¼ z
lT
: (51)

where A0 is an amplitude. For the local vibration ground state (51) and for the
isosurface deformation parameter q Eq. (39), both shapes coincide qualitatively. In
the limit q < < 1, both coincide completely. The local vibration of the order param-
eter describes a correlated motion of the atomic layers in twin boundary. Mean-
while, the quantum and thermal treatments give probabilistic descriptions of the
atomic motion. The results (the found smooth arising of the atomic motion ampli-
tude in TB) give evidence that different probabilistic (quantum and thermal) and
dynamic methods lead to qualitatively identical features of the atomic basic state
inside TB.
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Figure 6.
Local modes of the order parameter at TB [9]. Dash dot line shows the local potential which has local energy
levels 0, 1, and 2 (dash). Solid lines show corresponding local oscillations’ shape dependence on normalized
coordinate z ∗ .
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Abstract

In this chapter, we have explored the potential of oxide semiconductors for 
thermoelectric power generation. Various oxides (Cu2InO4, CuAlO2, and Zn2GeO4) 
were grown on Si substrate by thermal evaporation method using tube furnace. 
After the growth, a representative sample of each oxide was cut into pieces and was 
annealed at various temperatures from 600 to 800°C in oxygen environment for 1 h 
using a programmable furnace. The structure of all annealed sample was verified 
by performing X-ray powder diffraction (XRD) measurements. XRD data sug-
gested that all oxide materials show crystalline behavior at annealing temperature 
800°C. XRD results further confirmed that crystal structure of investigated samples 
improved significantly with annealing because the intensity of oxygen-sensitive 
(0 0 6) plane was found to be increased with annealing temperature. To investigate 
the thermoelectric properties of annealed samples, Seebeck effect and Hall effect 
measurements were performed in the temperature range 25–100°C. It was found 
that the value of Seebeck coefficient and power factor increased as the annealing 
temperature increases. Zn2GeO4 was found to be a potential thermoelectric material 
because it has the highest value of Seebeck coefficient and power factor. This high-
est value is related to the presence of secondary phases in this oxide.

Keywords: oxide semiconductors, thermal evaporation, XRD, Seebeck coefficient, 
power factor

1. Introduction

Energy has a fundamental importance in the human civilization. Conventional 
methods are used for the production of energy use oil, gas, and coal. The reservoirs 
of oil and gas in the world are decreasing, and the burning of oil and gas causes 
a threat to the environment; therefore, people are searching for cheap methods 
for the production of clean energy. These renewable energy production methods 
include photovoltaic, nuclear energy, biogas, wind energy, and thermoelectricity. 
All these methods have their advantages and disadvantages. For example, solar cells 
can produce energy during the daylight and also need high technology for the fab-
rication of solar cells. Nuclear energy production needs nuclear power plants which 
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Abstract

In this chapter, we have explored the potential of oxide semiconductors for 
thermoelectric power generation. Various oxides (Cu2InO4, CuAlO2, and Zn2GeO4) 
were grown on Si substrate by thermal evaporation method using tube furnace. 
After the growth, a representative sample of each oxide was cut into pieces and was 
annealed at various temperatures from 600 to 800°C in oxygen environment for 1 h 
using a programmable furnace. The structure of all annealed sample was verified 
by performing X-ray powder diffraction (XRD) measurements. XRD data sug-
gested that all oxide materials show crystalline behavior at annealing temperature 
800°C. XRD results further confirmed that crystal structure of investigated samples 
improved significantly with annealing because the intensity of oxygen-sensitive 
(0 0 6) plane was found to be increased with annealing temperature. To investigate 
the thermoelectric properties of annealed samples, Seebeck effect and Hall effect 
measurements were performed in the temperature range 25–100°C. It was found 
that the value of Seebeck coefficient and power factor increased as the annealing 
temperature increases. Zn2GeO4 was found to be a potential thermoelectric material 
because it has the highest value of Seebeck coefficient and power factor. This high-
est value is related to the presence of secondary phases in this oxide.

Keywords: oxide semiconductors, thermal evaporation, XRD, Seebeck coefficient, 
power factor

1. Introduction

Energy has a fundamental importance in the human civilization. Conventional 
methods are used for the production of energy use oil, gas, and coal. The reservoirs 
of oil and gas in the world are decreasing, and the burning of oil and gas causes 
a threat to the environment; therefore, people are searching for cheap methods 
for the production of clean energy. These renewable energy production methods 
include photovoltaic, nuclear energy, biogas, wind energy, and thermoelectricity. 
All these methods have their advantages and disadvantages. For example, solar cells 
can produce energy during the daylight and also need high technology for the fab-
rication of solar cells. Nuclear energy production needs nuclear power plants which 
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not only require high cost but also a high risk for the community. Similarly, wind 
energy can only be produced in the strong windy areas. On the other hand, ther-
moelectricity is very cheap and an easy method for the clean energy production. 
Thermoelectricity is based on the very famous Seebeck effect which was invented 
by Seebeck in 1821 and is stated as.

An emf is induced when a temperature difference is created between two metal 
junctions. Thermoelectricity needs only temperature difference between two metals; 
therefore, it is supposed to be the cheapest form of clean energy. It is reported that that 
60% of heat produced during cooking process, in industry and in running vehicles, is 
wasted, but we are able to convert this wasted heat into electricity using thermoelectric 
power generators; we can save huge amount of money. Furthermore, thermoelectricity 
has other advantages over other sources of energy such as it has no moving parts, it is 
environment friendly, no specialized technology is required, and it is less maintenance.

1.1 Physical interpretation

The thermoelectric devices convert thermal energy into electrical energy, and 
the principle is based on the Seebeck effect invented by Seebeck in 1821. It states 
that a voltage is induced between two points of metal/semiconductor having a 
difference of temperature as shown in Figure 1. The charge carriers on the hot side 
can have more energy than the cold side; therefore, they form a potential differ-
ence. Suppose dT is the temperature between hot and cold side of sample, therefore 
according to Seebeck effect.

  dT = SV  (1)

where S is the Seebeck coefficient.
Another term frequently used in thermoelectric is the power factor which is 

defined as.

  Power factor =  S   2  α  (2)

where α is electrical conductivity.
The performance of thermoelectric material strongly depends upon a unit less 

quantity called figure of merit:

  
(3)

Figure 1. 
Schematic diagram of the Seebeck effect.
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This equation shows that for a good thermoelectric material, high Seebeck coef-
ficient, high electrical conductivity, and low thermal conductivity are essential.

The thermoelectric conversion efficiency depends upon a quantity called figure 
of merit and can be written as [1].

  ZT =  S   2  α / σ  (4)

where S is the Seebeck coefficient, α is the electrical conductivity, and σ is the 
thermal conductivity.

The figure of merit for a material to be used for practical power generation 
system should be in the range of 2–3 [2]. But the best reported value of figure of 
merit for oxide semiconductor is not more than 0.1. Figure 2 indicates the history of 
efforts to increase the figure of merit.

Different strategies have been employed to tune and alter the thermoelectric 
properties. The general techniques are as follows [3]:

1. Optimization using doping techniques

2. Substructuring

3. Nanostructuring

4. Compositing

But for the semiconductors the governing parameters includes the following:

1.2 Band gap

Band structure is a very important parameter to tune the thermoelectric properties 
of oxide semiconductors. One of the most important methods of band gap control is 
varying the carrier concentration by doping [4]. But the doping process itself required 
a high technology that increased the cost of thermoelectric devices very high. So if we 
tune the carrier concentration by controlling the density of intrinsic defects, this will 
cut short the cost of the final device. Interestingly, oxide semiconductors have rich the 
chemistry of intrinsic defects. Oxygen vacancy and zinc interstitials act as intrinsic 
shallow donors and form electronic states near the conduction band [5].

Figure 2. 
A brief history of materials used for thermoelectric applications.
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1.3 Mobility

The mobility of carriers in thermoelectric materials has played a vital role in the 
tuning of Seebeck coefficient and power factor. The power factor is strongly depen-
dent on the conductivity which has strong dependence on mobility. Therefore, the 
modulation of mobility to achieve highest value of power factor is necessary. The 
mobility of the carrier can be controlled by the scattering mechanisms. Two scatter-
ing mechanisms, that is, lattice scattering and impurity scattering mechanisms, are 
very important in oxide semiconductors [6].

1.4 Carrier diffusion

Diffusion is a process of movement of particles from hot junction to cold junc-
tion in thermoelectric material. The diffusion of charge carriers has fundamental 
importance to tune the thermoelectric properties of oxide semiconductors. The 
diffusion in compound semiconductors is more complex than in elemental semi-
conductors because of the larger number of possible native point defects that can, 
in principle, mediate self-diffusion [7, 8]. Oxide semiconductors have high density 
of intrinsic defects, which in principal affect the diffusion of charge carriers. 
Therefore, for the effective use of oxide semiconductors for thermoelectric proper-
ties, the control of intrinsic defects has fundamental importance and should be 
studied further. Again, we propose that annealing will be a very effective method of 
studying the diffusion properties of carriers in oxide semiconductors.

1.5 Thermal expansion coefficient

Thermal expansion is critical, as the devices for high-temperature applications 
will be subjected to extreme temperature fluctuations. The CTE of TE materials is 
of critical importance because the shear stress is proportional to the temperature 
gradient, and the larger the heterogeneity in the thermal expansion coefficient of 
a material is, the larger is the shear stress that will result [9]. It is also reported that 
thermal expansion coefficient of semiconductor for low- and high-temperature 
region is almost the same but different for medium temperature. Therefore, a com-
prehensive study on the thermal expansion coefficient is still needed to completely 
understand the mechanism [10].

2. Experimental

In this study, experiment is held under thermal vapor deposition technique 
using single-stage horizontal glass tube furnace. In this experiment, 99.9% pure 
magnesium, Zinc, and Copper powders along with Ge, In, and Al powders are 
used under the ratio 1:1 as source material. This source material is being kept in the 
center of a glass tube in ceramic boat. The silicon substrate is placed at substrate 
holder, and the distance between source and the substrate is about 15 cm. The 
temperature of the furnace is tuned at 950°C for 30 min, whereas the oxygen flow is 
kept constant at 100 sccm. After the growth of thin film, the substrate of silicon is 
divided into different pieces for annealing purpose at different temperatures from 
600 to 800°C for 30 min.

X-ray diffraction has been performed for the structural analysis of grown thin 
film. Raman spectroscopy has been also performed to study the rotational and 
vibrational modes of thin film. Surface morphology is being assessed by the scan-
ning electron microscope (SEM). The most important characterization to calculate 
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Seebeck coefficient has been performed on the homemade Seebeck system which is 
based on the four-probe system. And the thickness of the thin film has been mea-
sured by the filmtronics technique and it is about.

3. Results and discussion

Figure 3(a–c) represents the XRD patterns of Cu2InO4, CuAlO2, and Zn2GeO4 
thin films annealed at different temperature from 600 to 800°C, respectively. The 
XRD graph of Cu2InO4 thin films in Figure 3(a) demonstrated that unannealed and 
low temperature (600°C) would not be able to make the grown material crystalline 
due to low thermal energy for bonding. But as we increased the temperature above 
600°C, the sample is converted into crystalline structure with preferred orientation 
(006) at 2θ = 33.086° [11, 12]. It is also observed that the intensity of this plane is 
increased as we further increase the annealing temperature, which suggested that car-
riers now get enough energy to sit down at a particular position in planes of the crys-
tal. Figure 3(b) shows the XRD graph of CuAlO2. The unannealed sample consists of 
one major phase at 2θ = 32.05 which belongs to CuAlO2 (0 0 6) plane [13]. Annealing 
resulted in the development of new phases at 2θ = 35.4, 42.4, and 48.4 related to CuO 
(1 1 1) and CuAlO2 (1 0 4) and (0 0 9) orientations, respectively. We have observed 
that (0 0 6) plane has the strongest intensity which is oxygen sensitive; therefore, 
enhancement of intensity of this plane with annealing temperature is understandable.

Figure 3(c) shows the XRD pattern of grown and annealed samples of Zn2GeO4 
thin films at various temperatures. The unannealed and annealed samples consist of 
eight diffraction peaks which are related to Zn2GeO4, Si, Au, and ZnO, respectively. 
The diffraction peak at 25.8, 42.9, 44.7, 58.4, 58.9, and 65° are belonging to Zn2GeO4 

Figure 3. 
(a–c) XRD patterns of Cu2InO4, CuAlO2, and Zn2GeO4, respectively.
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which are indexed as (2 2 0), (6 0 0), (0 0 6), (6 3 0), and (7 1 3), respectively [14]. 
The peak which appears at 28.6° and 38.4° is belonging to (1 1 1) plane of Si and Au 
[15, 16], respectively, along with peak of ZnO at 34.6° having (0 0 2) plane [17]. It is 
observed that substrate and pre-deposited gold shows maximum intensity in all the 
samples which is attributed to the thin porous layer deposited over the substrate. 
The XRD data also demonstrated that the sample annealed at 900oC has three addi-
tional peaks at 45.7° and 65° which are related to the secondary phases of Zn2GeO4.

Figure 4(a–c) demonstrated the effect of annealing temperature on the 
Seebeck coefficient of Cu2InO4, CuAlO2, and Zn2GeO4 thin films grown by thermal 
evaporation technique, respectively. All graphs showed that the value of Seebeck 
coefficient increases as the annealing temperature increased. It is also observed that 
the value of Seebeck coefficient also increases as the measurement temperature 
increases from 25 to 100°C. Zn2GeO4 has the highest value of the Seebeck coeffi-
cient (1470 μV/K) as compared to Cu2InO4 and CuAlO2. The observed result can be 
explained as post-growth annealing enhances the density of oxygen atoms and also 
provides more thermal energy to Ge atoms which resulted in the creation of GeO-
based secondary phases. These newly developed secondary phases act as barrier for 
charge carriers at the interface of secondary phases. Due to this barrier, the low-
energy carriers are filtered out at the interface and caused the enhancement in the 
Seebeck coefficient. As other two samples have no secondary, therefore have lower 
value of the Seebeck coefficient as evident by XRD data (Figure 5).

To further probe the effect of annealing temperature on the thermoelectric 
properties of grown oxide semiconductors, we have calculated the power factor 
using the following formula:

  P =  S   2   .  α  (5)

Figure 4. 
(a–c) Effect of annealing temperature on the Seebeck coefficient of Cu2InO4, CuAlO2, and Zn2GeO4, 
respectively.
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where S is Seebeck coefficient and α is electrical conductivity. The power factor 
is enhanced significantly with increasing annealing and measurement temperature 
because both Seebeck coefficient and electrical conductivity increases.

4. Conclusion

This chapter described the effect of annealing temperature on the thermo-
electric properties of oxide semiconductors. All samples were grown by thermal 
evaporation technique using tube furnace under vacuum using similar growth 
conditions. After growth, oxide semiconductors were annealed in oxygen environ-
ment at various temperatures. The reported results have suggested that Zn2GeO4 
has good potential to be used as thermoelectric material because it has the highest 
value of Seebeck coefficient and power factor.

Figure 5. 
(a–c) Effect of annealing temperature on the power factor of CuInO, CuAlO, and ZnGeO thin films grown by 
thermal evaporation, respectively.
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Chapter 5

Insight into Bulk Metallic Glass 
Technology Development 
Trajectory: Mapping from Patent 
Information Analysis
Chih-Yuan Chen

Abstract

Bulk metallic glasses (BMGs) having a completely amorphous structure possess 
many attractive properties, and several groups from academia and industry have 
conducted research to expand their application in the market. Although many 
efforts have focused on investigating scientific issues related to the mechanical and 
chemical properties of these amorphous alloys, very few studies have assessed the 
development trends of these amorphous materials, especially from the viewpoint 
of market application and R&D directions. Therefore, in this chapter, the develop-
ment trajectory of BMG materials is summarized based on data extracted from 
patent bibliometric information. These data were used because the information on 
patent documents obtained from a commercial patent database, World Intellectual 
Property Service (WIPS 2.0), can provide the most comprehensive information 
on valuable R&D activities and market issues. The results summarize advances in 
technology based on various alloy categories and processing routes. Furthermore, 
the research interests are also analyzed according to different countries, companies, 
and research institutions. The patent information provided in this chapter can 
provide a clear direction to assist metallurgist/metallurgy engineers in further 
technology development forecasting and R&D plan management.

Keywords: metastable material, bulk glass metal, bibliometrics, patent analysis, 
technological forecasting

1. Introduction

Discovered by Klement et al. in the early 1960s, amorphous metallic glasses have 
attracted much attention for several decades due to their outstanding properties, 
such as excellent mechanical properties, good corrosion resistance, and unique 
physical and chemical characteristics. These metallic materials are suitable for 
application as a new class of advanced materials [1–3]. However, their tiny size, a 
result of their limited glass-forming ability (GFA), makes it difficult to use BMG 
materials in industry.

Therefore, over the past decades, three main directions have been followed in 
the development of higher-quality BMG materials with better properties. These 
directions are as follows: (1) new compositions of metallic alloys [4–6], (2) novel 
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processing routes [7–11], and (3) potential application fields [12–15]. In efforts to 
achieve new bulk metallic glasses (BMG) with high glass-forming ability (GFA), 
many studies have focused on establishing a relationship between the GFA and 
the chemical compositions of metallic materials. For example, in the Al-based 
metallic system, both types of metal elements, transition metal elements, and rare 
earth metal elements can increase the GFA of Al-based alloys [15, 16]. On the other 
hand, various processing routes, such as melt spinning [7], magnetron sputtering 
[8], pulsed laser quenching [9], and liquid splat-quenching [10] have also been 
developed to overcome the crucial constraint on the size and geometry of metallic 
glass samples. For instance, a high-throughput strategy, named the combinatorial 
approach via co-sputtering, has been developed for producing and characterizing 
substantial compositional libraries at the same time [11]. In addition, several studies 
have also focused on discovering potential fields of application, such as structural 
materials [3], hydrogen storage materials [12], soft magnetic materials [13], and 
biomaterials [14].

Although several research articles concerning metallic glass materials have 
been published, almost no studies have conducted patent analyses of metallic glass 
materials, to the author’s best knowledge. Patent information is useful because it 
contains valuable research results for the researcher, business planner, R&D man-
ager, and policymaker [17–20]. The reason is that a patent application is a costly and 
time-exhausting process; the willingness of the applicant to invest time, money, and 
effort in the process generally indicates that the patent can provide commercial ben-
efits and technical contributions. Therefore, as pointed out by Daniel Gredel et al., 
patent documentation is the most comprehensive of all research resources. Nearly 
70% of the technical information contained in these documents is not available in 
any other type of information source, and it can be used for detailed analysis [21]. 
For instance, patent data can be used to analyze competitors, track the evolution of 
technology, master crucial technologies, and identify the trends and conditions of 
patent development in different markets [22].

In the present research, patent data were analyzed to explore the technological 
development of metallic glass materials. The variations in numerous patents and 
assignees, technology life cycle, and categories of patents for metallic materials were 
studied. Furthermore, the top ten patent assignees and the trends of their patents 
filed, patent families, and patent citations were analyzed. The top five families and 
five most-cited patents are also explored in the present study.

The article is structured as follows. Section 2 presents the study methodology 
and the details of the information analysis. Section 3 presents an analysis of amor-
phous alloys patenting activity and possible explanations for the data. In Section 4, 
the final section, the implications and conclusions are presented.

2. Methodology

2.1 Data extraction procedure

In accordance with the suggestion of the WIPO Guide to Using Patent 
Information, the bibliographic records of patent documents were retrieved from a 
commercial database based on keywords and IPC codes related to amorphous and 
metallic glass alloys [23]. In the present study, we employed patent data to survey 
the development trends of amorphous alloy technology, as well as their technologi-
cal impacts on the metallurgy industry. The patent information was gathered and 
analyzed by the following steps: (1) patent data retrieval, (2) patent data mining, 
and (3) patent data analysis.
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To find the patent information, we modified the search formula as follows: 
[(“amorphous alloy*” OR “metal*glass*” OR “glass*alloy*”)] (step 1). Furthermore, 
the IPC search expression, namely [C*], was also included in the overall retrieval 
process. It should be emphasized that we performed keyword searches for the above 
formula appearing only in an independent claim to ensure that accurate patent 
information was found. Our intention was to exclude any information not involving 
the amorphous material industry. Patent data mining techniques were used in com-
mercial software (WIPS 2.0) to quantify the patent information and analyze patent 
trends (step 2). In the final step, all the collected patent information was developed 
into various indicators and presented in tables or graphs plotted in commercial 
Microsoft software (step 3). Moreover, to avoid incorrect explanations of the 
trends, patents filed in 2016 and 2017 were not included in the present study, since 
most patents are not available before publication (i.e., for 18 months after the patent 
is filed). Therefore, the total number of patents that could be analyzed was 2857.

The commercial patent database WIPS 2.0 was selected for the overall search 
process because it includes full-text patents from 11 patent offices and abstract 
and bibliographic information from 75 countries. This commercial database also 
provides other advantages not included in other databases. For example, full-text 
translations of patents from Asian countries, such as China, Japan, and Korea, are 
provided, which facilitates complete search and analysis.

2.2 Detail of data analysis

The analyzed indicators in the present study mainly included the progress of 
patent documents, percentages of various categories of amorphous alloys in the 
development of metallic alloy technology, patent activity in different countries, 
technology life cycle analysis, evolution of patents filed by different assignees and 
countries, analysis of top ten patent assignees, analysis of technological develop-
ment of the top five patent families, and five most-cited patents. It should be 
emphasized that the numerical indicators analyzed here were based on suggestions 
from the field of quantitative research in science and technology and comments 
from experts in the field of amorphous materials [7, 12, 15].

All evolution indicators were plotted in periods of 5 years from 1971 to 2015. 
Furthermore, assignees’ names were also unified carefully to avoid incorrect 
interpretation during patent-filing trends in different countries and analysis of the 
top 10 assignees. To evaluate the evolution of the amorphous alloys, all IPC codes 
were collected and analyzed as follows: Fe as the major constituent element (C22C 
45/02), Ni or Co as the major constituent element (C22C 45/04), Be as the major 
constituent element (C 45/06), Al as the major constituent element (C22C 45/08), 
and Mo, W, Nb, Ta, Ti, or Zr as the major constituent element (C22C 45/10). We 
further named these classifications as follows: Fe-based alloys, Ni- or Co-based 
alloys, Al-based alloys, and Ti- or Zr-based alloys. However, the Be-based alloys 
were not included in the present analysis due to their rarity (only 8 patents found).

3. Results and discussion

3.1 Amorphous alloy development: evolution of patent application

The evolution of the number of patents and assignees in every decade since the 
1970s is shown in Figures 1 and 2, respectively. Both figures show obvious incre-
ments in the numbers of both patents and assignees after 1990. From subsequent 
analysis, it was found that the first apparent growth in the number of patent 
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applications/assignees was indicated by an increase in the number of patents filed in 
Japan in 1990. The second surge in patent applications/assignees occurred in 2000 
as a consequence of patent filings from China.

The trend of patenting different categories of amorphous alloys is shown in 
Figure 3. Fe-based amorphous alloys had the most active patenting activity in the 

Figure 2. 
Evolution of the number of assignees.

Figure 3. 
Patenting activity for different amorphous alloys.

Figure 1. 
Evolution of the number of patents.
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period of investigation. These Fe-based patents were filed by mostly Japanese cor-
porations and research institutes mainly due to their magnetic properties, which can 
be exploited in the technology fields of electric/magnetic devices, energy storage 
devices, and some semiconductor devices [24, 25]. On the other hand, more than 
Ni-/Co-based and Al-based amorphous alloys, Ti-based and/or Zr-based amorphous 
alloys occupied the second role of patenting activity because these amorphous alloys 
possess superior mechanical properties and biocompatibility and can be widely 
used in the biomedical industry, even though applications in electronic and energy 
conversion devices were also widely found [26, 27].

Figure 4 shows the technology life cycle curve for amorphous alloys in the present 
study. Grasping the technology life cycle curve is critical for researchers and R&D 
managers in assessing further trends in technological development. As pointed out by 
Trappey et al., a typical technology life cycle curve can be divided into four stages:  
(1) introductory, (2) growth, (3) maturity, and (4) decline [28]. In the introductory 
stage, the number of patents and assignees are extremely low because very few corpora-
tions have invested in the field. In the following years, more and more assignees become 
involved in the prospective technology field due to a reduction of uncertainty in the 
market and technology outlook, which also leads to a gradual increase in patent applica-
tions as the life cycle moves into the growth stage. On the other hand, if the number of 
patents and the number of assignees begin to decrease, the stage is classified as techno-
logical maturity. Only a few corporations are willing to invest in such a technology.

Therefore, in the present study, the rapid increase in the numbers of patents and 
assignees after 2000 indicated that the technology had entered the growth stage. 
The average numbers of patents and assignees, respectively, increased from 47 
and 52 in 2000 to 157 and 86 in 2015. The characteristic of this growth stage is the 
absence of technical problems and market uncertainty, which leads to more compa-
nies becoming involved in developing related products for the market. This stage is 
a possible explanation for the surge in patenting in China.

3.2 Amorphous alloy development: analysis by country and assignee nationality

Figure 5 shows the number of patent application in various countries and their 
evolutionary trends. As shown in the figure, China, Japan, the United States, Korea, 
and Europe were the top five patent-filing countries/regions, indicating their potential 
market attraction. For example, the total number of patent applications in China was 

Figure 4. 
Technology life cycle.
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844, which implies the commercial value of bulk metallic glasses in the Chinese mar-
ket. Another interesting event in the same figure is the R&D investment transfer from 
the United States and Japan to China. Discovered in the United States and further 
exploited in Japan, the number of patents related to metallic glass alloys in Japan in the 
last three decades gradually decreased from 233 (1991–2000) to 181 (2001–2010) and 
then to 73 (2011–2015). In contrast, unlike those in other countries, the patents filed in 
China increased by a wide margin, from 35 (1991–2000) to 358 (2001–2010) and then 
444 (2011–2015). The above surge in patent filing in China, often called China’s patent 
boom, occurred not only in amorphous alloy technology but also in other technologi-
cal areas. As pointed out by several research teams, a decrease in the cost of filing a 
patent and the initiation of a subsidy program for patent applications were two major 
causes of the explosion in patent applications in China [29, 30].

Like that in China, patenting behavior in the United States shows a similar trend 
of progressive increases in the numbers of patents filed over the past three decades: 
from 72 (1991–2000) to 140 (2001–2010) and finally to 135 (2011–2015). In Korea 
and Europe, however, the number of patents filed has declined since 2011. The 
explanation of phenomenon is still unclear and will require further study.

3.3 Analysis by top ten patent assignees

Analysis of the patent assignees from the original patent data pool can help 
researchers to understand the technological development strategies and product devel-
opment trajectories of large companies. Therefore, the top ten patent assignees with 
a focus on the development of amorphous alloys are summarized in Table 1. The top 
ten patent assignees were mainly from Japan (7), China (2), and the United States (1). 
Moreover, the assignee from the United States was an academic institution, whereas 
those from Japan and China were mostly corporations and research institutions.

The number of patent families and average number of countries where patents 
were filed are also shown in Table 1. The variation in patent families was related to 
the total number of patents; that is, the patent families increased monotonically in 
conjunction with the number of patent applications. The top assignee, California 
Institute of Technology (CIT), was associated with 633 patent families, which is 
obviously higher than those of the other assignees. The reason for this large dif-
ference in the number of patent families could be attributed to the fact that CIT 
filed its patents in many countries (an average of 7). In contrast, Chinese assignees 
generally filed patents only in their home country, which explains the similarity 
between the number of patents and patent families.

Figure 5. 
Number of patents and its evolution by country.
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Table 1 also presents the average number of citations of each assignee’s patents; 
this number can be used to assess the quality of a patent [31, 32]. A weak relation-
ship was found to exist between the average number of citations and the total num-
ber of patents/patent families. Therefore, a high number of citations indicate that 
more related inventions followed, which usually implies a higher economic value 
of the patent. In addition, patents filed by CIT got the most attention. They had the 
highest number of citations (16.0), which was considerably higher than those of 
other assignees. In contrast, patents owned by China were rarely cited, which could 
be associated with their short filing periods (Table 2).

3.4  Technological development strategy analysis: analysis of the top  
five patent families

The analysis of the top five patent families is shown in Table 3. The first pat-
ent family, US2009236017A1 [33], proposes an apparatus and method comprising 

Assignee
(number of active years)

1981
~1990

1991
~2000

2001
~2010

2011
~2015

Total

California Inst. Techn. (20) - 18 31 43 92

Hitachi Metals LTD. (27) 3 16 32 18 69

BYD Company Limited (9) - - 46 22 68

UNIV. Tohoku (12) - - 51 14 65

Nippon Steel CORP. (22) 5 24 35 3 67

YKK CORP (15) 3 51 8 - 62

ALPS Electric Co. LTD. (15) 11 45 3 - 59

Japan Science & Tech. Corp. (13) - 16 29 - 45

Inst. Metal Res. Chinese Acad. Sc. (14) - 1 14 12 27

JFE Steel KK (10) - 23 - 5 28

Table 2. 
Trend of the patent applications for top ten patent assignees.

Assignee (nationality) Total 
number

of
patents

Patent 
families

Average 
cited times

Average Number of 
application

countries

California Inst. Techn. (US) 96 633 16.0 7

Hitachi Metals LTD (JP) 76 376 4.7 5

BYD Company LTD (CN) 68 134 2.1 2

Univ. Tohoku (JP) 67 221 2.0 3

Nippon Steel Corp. (JP) 67 270 3.5 4

YKK Corp. (JP) 62 252 4.1 4

ALPS Electric Co. LTD (JP) 59 192 3.9 3

Japan Science & Tech Corp. 
(JP)

45 103 6.9 2

Inst. Metal Res. Chinese 
Acad. Sc. (CN)

35 48 1.9 1

JFE Steel KK (JP) 29 93 3.5 3

Table 1. 
Top ten patent assignees.
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844, which implies the commercial value of bulk metallic glasses in the Chinese mar-
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opment trajectories of large companies. Therefore, the top ten patent assignees with 
a focus on the development of amorphous alloys are summarized in Table 1. The top 
ten patent assignees were mainly from Japan (7), China (2), and the United States (1). 
Moreover, the assignee from the United States was an academic institution, whereas 
those from Japan and China were mostly corporations and research institutions.

The number of patent families and average number of countries where patents 
were filed are also shown in Table 1. The variation in patent families was related to 
the total number of patents; that is, the patent families increased monotonically in 
conjunction with the number of patent applications. The top assignee, California 
Institute of Technology (CIT), was associated with 633 patent families, which is 
obviously higher than those of the other assignees. The reason for this large dif-
ference in the number of patent families could be attributed to the fact that CIT 
filed its patents in many countries (an average of 7). In contrast, Chinese assignees 
generally filed patents only in their home country, which explains the similarity 
between the number of patents and patent families.
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uniform heating, rheological softening, and thermoplastic forming of metallic 
glasses rapidly into a net shape using a rapid capacitor discharge forming (RCDF) 
tool. The RCDF method utilizes a discharge of electrical energy stored in a capacitor 
to uniformly and rapidly heat a sample or charge of metallic glass alloy to a prede-
termined “process temperature” between the glass transition temperature of the 
amorphous material and the equilibrium melting point of the alloy on a time scale 
of several milliseconds or less. Once the sample is uniformly heated such that the 
entire sample block has a sufficiently low process viscosity, it may be shaped into 
high-quality amorphous bulk articles by any number of techniques, such as injection 
molding, dynamic forging, stamp forging, and blow molding, in a time frame of 
less than 1 s. The second patent family, US7323071B1 [34], discloses a metallic glass 
coating formed over a metallic substrate. After the formation of the coating, at least 
a portion of the metallic glass can be converted into a crystalline material having a 
nanocrystalline grain size. The third patent family, US5628840 [35], relates to a glassy 
metal alloy consisting essentially of the formula FeaCobNicMdBeSifCg, where “M” is 
at least one member selected from the group consisting of molybdenum, chromium, 
and manganese. The notations “a–g” are in atom percent, “a” ranges from about 30 to 
about 45, “b” ranges from about 4 to about 40, “c” ranges from about 5 to about 45, 
“d” ranges from about 0 to about 3, “e” ranges from about 10 to about 25, “f” ranges 
from about 0 to about 15, and “g” ranges from about 0 to about 2. The alloy can be 
cast by rapid solidification into a ribbon or otherwise formed into a marker that is 
especially suited for use in magneto-mechanically actuated article surveillance sys-
tems. Advantageously, the marker is characterized by relatively linear magnetization 
response in the frequency regime wherein harmonic marker systems operate magnet-
ically. Voltage amplitudes detected for the marker are high, and interference between 
surveillance systems based on mechanical resonance and harmonic re-radiance is 
virtually eliminated. The fourth patent family, US6183568B1 [36], proposes a soft 
magnetic thin microcrystalline film of FeaBbNc (at %) where B is at least one of Zr, Hf, 
Ti, Nb, Ta, V, Mo, and W, and 0 < b ≦ 20 and 0 < c ≦ 22, except for the range of b ≦ 
7.5 and c ≦ 5, show low coercivity Hc of 80–400 Am−1 (1–5 Oe), which is stable upon 
heating at elevated temperature for glass bonding. This film is produced by crystalliz-
ing an amorphous alloy film of a similar composition at 350–650°C to a crystal grain 
size of up to 30 nm to provide uniaxial anisotropy and increased magnetic permeabil-
ity at the higher frequency. It can also provide low magnetostriction of around λs = 0. 
The composite magnetic head is made using this thin film. A diffusion-preventive 
SiO2 layer disposed between the ferrite core, and this thin film in the magnetic head 
prevents an interdiffusion layer and suppresses beats in the output signal. The fifth 

Patent number [reference]/
assignee (nationality)

Title Patent 
Families

US2009236017A1 [33]/Cal. Inst. Tech. (US) Forming of metallic glass by rapid capacitor 
discharge

57

US7323071B1 [34]/Bechtel BWXT Idaho, 
LLC. (US)

Method for forming a hardened surface on 
a substrate

33

US5628840 [35]/Allied Signal INC. (US) Metallic glass alloys for mechanically 
resonant surveillance systems

29

US6183568B1 [36]/Fuji Photo Film  
Co. LTD (JP)

Method for preparing a magnetic thin film 25

US8529712B2 [37]/Cal. Inst.
Tech. (US)

Tough iron-based bulk metallic glass alloys 21

Table 3. 
Top five patent families.
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patent family, US8529712B2 [37], relates to an iron-based bulk metallic glass alloy and 
more particularly to a family of the iron-based phosphor-containing bulk metallic 
glass alloys exhibiting low shear moduli. The independent claim specifies an Fe-based 
metallic glass composition comprising at least Fe, Mo, P, C, and B, where  
Fe comprises an atomic percent of at least 60, Mo comprises an atomic percent of 2–8, 
P comprises an atomic percent of 5–17.5, C comprises an atomic percent of 3–6.5, and 
B comprises an atomic percent of 1–3.5, wherein the composition has a shear modulus 
(G) of less than 60 GPa and a glass transition temperature (Tg) of less than 440° C, 
and the composition is capable of forming a bulk amorphous object having a critical 
thickness of at least 2 mm.

3.5 Technological exploitation analysis: five most-cited patents

In most scientific publications, patents are rarely cited in SCI papers. For 
example, only about 1.5% of US patents are cited in SCI journals [38]. Similarly, in 
most technology fields, most of the prior art cited within patents are also patent 
documents, not scientific papers, which could be a sign of the few connections 
between academia and industry [38, 39]. However, the technological value of 
patents can provide important information to subsequent researchers and thus 
is worthwhile to refer to, especially in the case of patents with a high number of 
citations. Therefore, like a scientific paper, a high number of citations represent 
the high technological value of a patent, which might indicate that high commer-
cial profit can be expected. In the present study, the five most-cited patents were 
extracted from the original patent pool (Table 4), and their technological contents 
are reviewed as follows.

The most-cited patent in Table 4, US5288344, is about beryllium-bearing amor-
phous metallic alloy formed with a low cooling rate [40]. In this patent, the pro-
posed technology suggests an alloy containing beryllium in the range of 5–52 atomic 
percent and at least one early transition metal in the range of 30–75 atomic percent 
and at least one late transition metal in the range of 2–52 atomic percent. A preferred 
group of metallic glass alloys has the formula (Zr1-xTix)a(Cu1-yNiy)bBec. A preferred 
embodiment is a class of alloys which form metallic glass upon cooling below the 
glass transition temperature at a rate of less than 103 K/s, which is far below the nor-
mal cooling rate, 104 to 106 K/s. The second most-cited patent, US5735975, describes 
at least quinary alloys that form metallic glass upon cooling below the glass transi-
tion temperature at a rate of less than 103 K/s [41]. Such alloys comprise zirconium 

Patent number [reference]/ 
assignee (nationality)

Title Times Cited/ 
(Patent family)

US5288344 [40] / Cal. Inst. Tech. 
(US)

Beryllium bearing amorphous metallic 
alloys
by low cooling rates

290 / (12)

US5735975 [41] / Cal. Inst. Tech. (US) Quinary Metallic glass alloys 220 / (7)

US5368659 [42] / Cal. Inst. Tech. (US) Method of forming beryllium bearing 
metallic
glass

204 / (12)

US5618359 [43] / Cal. Inst. Tech. (US) Metallic glass alloys of Zr, Ti, Cu, and 
Ni

169 / (7)

US6325868 [44] / Univ. Yonsei Seoul 
(KR)

Nickel-based amorphous alloy 
compositions

157 / (4)

Table 4. 
Top five patent families.
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and/or hafnium in the range of 45–65 atomic percent, titanium and/or niobium in 
the range of 4–7.5 atomic percent, and aluminum and/or zinc in the range of 5–15 
atomic percent. The balance of the alloy composition comprises copper, iron, cobalt, 
and nickel. The composition is constrained such that the atomic percent of iron 
is less than 10%. Furthermore, the ratio of copper to nickel and/or cobalt is in the 
range of 1:2 to 2:1. Therefore, the alloy glass can be formed at a reduced critical cool-
ing rate without any beryllium addition. The third most-cited patent, US5368659, 
discloses an invention similar to the above most-cited patent; the alloy forms 
metallic glass containing beryllium in a narrower range of 2–47 atomic percent, at 
least one early transition metal in the range of 30–75 atomic percent, and at least 
one late transition metal in the range of 5–62 atomic percent [42]. Furthermore, the 
critical cooling rate to achieve the amorphous structure can be reduced to 1–100 K/s 
or lower. Patent US6325868, the fifth most-cited patent, discloses a nickel-based 
amorphous alloy composition, particularly a quaternary nickel-based amorphous 
alloy containing nickel, zirconium, and titanium as the main constituent elements 
and additive Si or P [44]. The quaternary nickel-zirconium-titanium-phosphorus 
alloy compositions comprise nickel in the range of 50–62 atomic percent, zirconium 
and titanium in the range of 33–46 atomic percent, and phosphorus in the range of 
3–8 atomic percent, represented by the general formula Nid(Zr1−yTiy)ePf. The nickel-
based amorphous alloy compositions have a superior amorphous phase-forming 
ability, and bulk amorphous alloy having a thickness of 1 mm can be produced by 
general casting methods.

4. Conclusion

This study focuses on the analysis of patent data to explore the technological 
developments of metallic glass materials. The primary findings of this study can be 
summarized as follows:

1. Two obvious increments in patent applications occurred in 1990–2000 and 
2000–2015. The former primarily arose from the increased number of patent 
applications filed in Japan. The latter is mainly attributed to patent applica-
tions filed in China.

2. Patents related to iron-based alloys are the main category of metallic glass materi-
als for which patents were applied. The reason is that iron-based metallic materi-
als can be used in several applications, especially in the soft magnetic fields.

3. According to the analysis of the present study, metallic glass materials are in 
the growth stage of the technology life cycle, which implies that increasing 
amounts of resources will be invested in the metallic glass field for the develop-
ment of commercial products.

4. All of the top ten assignees were from the United States, China, and Japan. 
The US assignees were from an academic institution, whereas most of their 
Japanese and Chinese counterparts were from commercial businesses or 
research institutions.

5. Patents field by the California Institute of Technology were cited the most fre-
quently, with an average of 16.0 citations, implying their high technological value.

71

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Insight into Bulk Metallic Glass Technology Development Trajectory: Mapping from Patent…
DOI: http://dx.doi.org/10.5772/intechopen.81733

Author details

Chih-Yuan Chen
Graduate Institute of Intellectual Property, National Taipei University of 
Technology, Taipei, Taiwan

*Address all correspondence to: chen6563@gmail.com

Acknowledgements

This work was performed with financial support from the Ministry of Science 
and Technology of the Republic of China, Taiwan, under Contract MOST 
106-2218-E-027-011-MY3.



Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable...

70

and/or hafnium in the range of 45–65 atomic percent, titanium and/or niobium in 
the range of 4–7.5 atomic percent, and aluminum and/or zinc in the range of 5–15 
atomic percent. The balance of the alloy composition comprises copper, iron, cobalt, 
and nickel. The composition is constrained such that the atomic percent of iron 
is less than 10%. Furthermore, the ratio of copper to nickel and/or cobalt is in the 
range of 1:2 to 2:1. Therefore, the alloy glass can be formed at a reduced critical cool-
ing rate without any beryllium addition. The third most-cited patent, US5368659, 
discloses an invention similar to the above most-cited patent; the alloy forms 
metallic glass containing beryllium in a narrower range of 2–47 atomic percent, at 
least one early transition metal in the range of 30–75 atomic percent, and at least 
one late transition metal in the range of 5–62 atomic percent [42]. Furthermore, the 
critical cooling rate to achieve the amorphous structure can be reduced to 1–100 K/s 
or lower. Patent US6325868, the fifth most-cited patent, discloses a nickel-based 
amorphous alloy composition, particularly a quaternary nickel-based amorphous 
alloy containing nickel, zirconium, and titanium as the main constituent elements 
and additive Si or P [44]. The quaternary nickel-zirconium-titanium-phosphorus 
alloy compositions comprise nickel in the range of 50–62 atomic percent, zirconium 
and titanium in the range of 33–46 atomic percent, and phosphorus in the range of 
3–8 atomic percent, represented by the general formula Nid(Zr1−yTiy)ePf. The nickel-
based amorphous alloy compositions have a superior amorphous phase-forming 
ability, and bulk amorphous alloy having a thickness of 1 mm can be produced by 
general casting methods.

4. Conclusion

This study focuses on the analysis of patent data to explore the technological 
developments of metallic glass materials. The primary findings of this study can be 
summarized as follows:

1. Two obvious increments in patent applications occurred in 1990–2000 and 
2000–2015. The former primarily arose from the increased number of patent 
applications filed in Japan. The latter is mainly attributed to patent applica-
tions filed in China.

2. Patents related to iron-based alloys are the main category of metallic glass materi-
als for which patents were applied. The reason is that iron-based metallic materi-
als can be used in several applications, especially in the soft magnetic fields.

3. According to the analysis of the present study, metallic glass materials are in 
the growth stage of the technology life cycle, which implies that increasing 
amounts of resources will be invested in the metallic glass field for the develop-
ment of commercial products.

4. All of the top ten assignees were from the United States, China, and Japan. 
The US assignees were from an academic institution, whereas most of their 
Japanese and Chinese counterparts were from commercial businesses or 
research institutions.

5. Patents field by the California Institute of Technology were cited the most fre-
quently, with an average of 16.0 citations, implying their high technological value.

71

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Insight into Bulk Metallic Glass Technology Development Trajectory: Mapping from Patent…
DOI: http://dx.doi.org/10.5772/intechopen.81733

Author details

Chih-Yuan Chen
Graduate Institute of Intellectual Property, National Taipei University of 
Technology, Taipei, Taiwan

*Address all correspondence to: chen6563@gmail.com

Acknowledgements

This work was performed with financial support from the Ministry of Science 
and Technology of the Republic of China, Taiwan, under Contract MOST 
106-2218-E-027-011-MY3.



72

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable...

References

[1] Klement W, Willens RH, Duwez 
P. Non-crystalline structure in 
solidified gold-silicon alloys. 
Nature. 1960;187:869-870. DOI: 
10.1038/187869b0

[2] Wang WH. Bulk metallic glasses 
with functional physical properties. 
Advanced Materials. 2009;21:4524-4544. 
DOI: 10.1002/adma.200901053

[3] Kruzic JJ. Bulk metallic glasses 
as structural materials: A review. 
Advanced Engineering Materials. 
2016;18:1308-1331. DOI: 10.1002/
adem.201600066

[4] Ansariniya M, Seifoddini A, 
Hasani S. (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 
bulk metallic glass matrix composite 
produced by partial crystallization: 
The non-isothermal kinetic analysis. 
Journal of Alloys and Compounds. 
2018;763:606-612. DOI: 10.1016/j.
jallcom.2018.05.360

[5] Fan C, Liu CT, Chen G, Chen G, 
Chen D, Yang X, et al. Influence of the 
molten quenching temperature on the 
thermal physical behavior of quenched 
Zr-based metallic glasses. Intermetallics. 
2013;38:19-22. DOI: 10.1016/j.
intermet.2013.02.004

[6] Zhou M, Zhou J, Wei J, Yang M,  
Ma L. Enhanced glass-forming 
ability and mechanical properties of 
Zr65Cu17.5Al7.5Ni10 metallic glass by 
adding Fe. Journal of Non-Crystalline 
Solids. 2017;455:1-5. DOI: 10.1016/j.
jnoncrysol.2016.05.004

[7] Saage G, Roth S, Eckert J, Schultz L.  
Low magnetostriction crystalline 
ribbons prepared by melt–spinning and 
reactive annealing. Materials Science 
and Engineering A. 2004;375-377:1125-
1128. DOI: 10.1016/j.msea.2003.10.284

[8] Nayebossadri S, Smith D, Speight J, 
Book D. Amorphous Zr-based thin films 

fabricated by magnetron sputtering 
for potential application in hydrogen 
purification. Journal of Alloys and 
Compounds. 2015;645:S56-S60. DOI: 
10.1016/j.jallcom.2015.01.230

[9] Jaffari GH, Rumaiz AK, Ni C,  
Yassitepe E, Bah M, Shah SI.  
Observation of metastable phase 
separation and amorphous phase in 
Fe67Co33 alloy thin films synthesized 
by pulsed laser depositions. Current 
Applied Physics. 2015;15:717-721. DOI: 
10.1016/j.cap.2015.03.001

[10] Poon SJ, Dowling TE.  
Superconductivity of the allotropic 
forms of zirconium-based alloys 
obtained by liquid quenching 
on hot substrates. Solid State 
Communications. 1984;50:189-191. 
DOI: 10.1016/0038-1098(84)90937-2

[11] Coddet P, Sanchette F, Rousset JC, 
Rapaud O, Coddet C. On the elastic 
modulus and hardness of co-sputtered 
Zr–Cu–(N) thin metal glass films. 
Surface and Coating Technology. 
2012;206:3567-3571. DOI: 10.1016/j.
surfcoat.2012.02.036

[12] Zhang B, Lv Y, Yuan J, Wu Y. Effects 
of microstructure on the hydrogen 
storage properties of the melt-spun 
Mg-5Ni-3La (at. %) alloys. Journal of 
Alloys and Compounds. 2017;702:126-
131. DOI: 10.1016/j.jallcom.2017.01.221

[13] Wei R, Sun H, Chen C, Tao J, Li F.  
Formation of soft magnetic high 
entropy amorphous alloys composites 
containing in situ solid solution phase. 
Journal of Magnetism and Magnetic 
Materials. 2018;449:63-67. DOI: 
10.1016/j.jmmm.2017.09.065

[14] Li HF, Zheng YF. Recent advances 
in bulk metallic glasses for biomedical 
applications. Acta Biomaterialia. 
2016;36:1-20. DOI: 10.1016/j.
actbio.2016.03.047

73

Insight into Bulk Metallic Glass Technology Development Trajectory: Mapping from Patent…
DOI: http://dx.doi.org/10.5772/intechopen.81733

[15] Chen C-Y, Hsu W-S, Chen S-F. Role 
of Sc on the glass forming ability and 
mechanical properties of Al-Y-Ni-Sc 
bulk metallic glass produced with 
different cooling rates. Materials Science 
and Engineering A. 2018;725:119-126. 
DOI: 10.1016/j.msea.2018.04.003

[16] Chen S-F, Chen C-Y, Lin C-H. 
Insight on the glass-forming ability 
of Al–Y–Ni–Ce bulk metallic glass. 
Journal of Alloys and Compounds. 
2015;637:418-425. DOI: 10.1016/j.
jallcom.2015.02.217

[17] Yang YY, Klose T, Lippy J, Barcelon-
Yang CS, Zhang L. Leveraging text 
analytics in patent analysis to empower 
business decisions—A competitive 
differentiation of kinase assay 
technology platforms by I2E text mining 
software. World Patent Information. 
2014;39:24-34. DOI: 10.1016/j.
wpi.2014.09.002

[18] Kang B, Motohashi K. The role of 
essential patents as knowledge input for 
future R&D. World Patent Information. 
2014;38:33-41. DOI: 10.1016/j.
wpi.2014.05.001

[19] Lee S, Yoon B, Lee C, Park J.  
Business planning based on 
technological capabilities: Patent 
analysis for technology-driven 
roadmapping. Technological Forecasting 
and Social Change. 2009;76:769-786. 
DOI: 10.1016/j.techfore.2009.01.003

[20] Schleich J, Walz R, Ragwitz M.  
Effects of policies on patenting in wind-
power technologies. Energy Policy. 
2017;108:684-695. DOI: 10.1016/j.
enpol.2017.06.043

[21] Gredel D, Kramer M, Bend B.  
Patent-based investment funds as 
innovation intermediaries for SMEs: 
In-depth analysis of reciprocal 
interactions, motives and fallacies. 
Technovation. 2012;32:536-549. DOI: 
10.1016/j.technovation.2011.09.008

[22] Mogee ME. Using patent 
data for technology analysis and 
planning. Research-Technology 
Management. 1991;34:43-49. DOI: 
10.1080/08956308.1991.11670755

[23] WIPO. WIPO Guide to Using Patent 
Information. Geneva: WIPO; 2012

[24] Fujikura M, Yamada T, Sato T.  
Improvement of magnetic properties 
by addition of tin to amorphous 
Fe-Si-B alloys with high iron contents. 
Materials Science and Engineering 
A. 1994;181-182:1351-1354. DOI: 
10.1016/0921-5093(94)90861-3

[25] Kronmüller H, Ignatchenko VA,  
Forkl A. Law of approach to magnetic 
saturation in inhomogeneous 
ferri- and antiferromagnets and in 
amorphous iron-rich Fe-Zr alloys. 
Journal of Magnetism and Magnetic 
Materials. 1993;134:68-74. DOI: 
10.1016/0304-8853(94)90074-4

[26] Liu L, Chan KC, Yu Y, Chen Q. Bio-
activation of Ni-free Zr-based bulk 
metallic glass by surface modification. 
Intermetallics. 2010;18:1978-1982. DOI: 
10.1016/j.intermet.2010.02.039

[27] Lai JJ, Lin YS, Chang CH, Wei TY, 
Huang JC, Liao ZX, et al. Promising 
Ta-Ti-Zr-Si metallic glass coating 
without cytotoxic elements for bio-
implant applications. Applied Surface 
Science. 2018;427:485-495. DOI: 
10.1016/j.apsusc.2017.08.065

[28] Trappey CV, Trappey AJ, Wu CY.  
Clustering patents using non-exhaustive 
overlaps. Journal of Systems Science and 
Systems Engineering. 2010;19:162-181. 
DOI: 10.1007/s11518-010-5134-x

[29] Hu AGZ, Zhang P, Zhao L. China 
as number one? Evidence from China's 
most recent patenting surge. Journal of 
Development Economics. 2017;124:107-
119. DOI: 10.1016/j.jdeveco.2016.09.004

[30] Dang J, Motohashi K. Patent 
statistics: A good indicator for innovation 



72

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable...

References

[1] Klement W, Willens RH, Duwez 
P. Non-crystalline structure in 
solidified gold-silicon alloys. 
Nature. 1960;187:869-870. DOI: 
10.1038/187869b0

[2] Wang WH. Bulk metallic glasses 
with functional physical properties. 
Advanced Materials. 2009;21:4524-4544. 
DOI: 10.1002/adma.200901053

[3] Kruzic JJ. Bulk metallic glasses 
as structural materials: A review. 
Advanced Engineering Materials. 
2016;18:1308-1331. DOI: 10.1002/
adem.201600066

[4] Ansariniya M, Seifoddini A, 
Hasani S. (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 
bulk metallic glass matrix composite 
produced by partial crystallization: 
The non-isothermal kinetic analysis. 
Journal of Alloys and Compounds. 
2018;763:606-612. DOI: 10.1016/j.
jallcom.2018.05.360

[5] Fan C, Liu CT, Chen G, Chen G, 
Chen D, Yang X, et al. Influence of the 
molten quenching temperature on the 
thermal physical behavior of quenched 
Zr-based metallic glasses. Intermetallics. 
2013;38:19-22. DOI: 10.1016/j.
intermet.2013.02.004

[6] Zhou M, Zhou J, Wei J, Yang M,  
Ma L. Enhanced glass-forming 
ability and mechanical properties of 
Zr65Cu17.5Al7.5Ni10 metallic glass by 
adding Fe. Journal of Non-Crystalline 
Solids. 2017;455:1-5. DOI: 10.1016/j.
jnoncrysol.2016.05.004

[7] Saage G, Roth S, Eckert J, Schultz L.  
Low magnetostriction crystalline 
ribbons prepared by melt–spinning and 
reactive annealing. Materials Science 
and Engineering A. 2004;375-377:1125-
1128. DOI: 10.1016/j.msea.2003.10.284

[8] Nayebossadri S, Smith D, Speight J, 
Book D. Amorphous Zr-based thin films 

fabricated by magnetron sputtering 
for potential application in hydrogen 
purification. Journal of Alloys and 
Compounds. 2015;645:S56-S60. DOI: 
10.1016/j.jallcom.2015.01.230

[9] Jaffari GH, Rumaiz AK, Ni C,  
Yassitepe E, Bah M, Shah SI.  
Observation of metastable phase 
separation and amorphous phase in 
Fe67Co33 alloy thin films synthesized 
by pulsed laser depositions. Current 
Applied Physics. 2015;15:717-721. DOI: 
10.1016/j.cap.2015.03.001

[10] Poon SJ, Dowling TE.  
Superconductivity of the allotropic 
forms of zirconium-based alloys 
obtained by liquid quenching 
on hot substrates. Solid State 
Communications. 1984;50:189-191. 
DOI: 10.1016/0038-1098(84)90937-2

[11] Coddet P, Sanchette F, Rousset JC, 
Rapaud O, Coddet C. On the elastic 
modulus and hardness of co-sputtered 
Zr–Cu–(N) thin metal glass films. 
Surface and Coating Technology. 
2012;206:3567-3571. DOI: 10.1016/j.
surfcoat.2012.02.036

[12] Zhang B, Lv Y, Yuan J, Wu Y. Effects 
of microstructure on the hydrogen 
storage properties of the melt-spun 
Mg-5Ni-3La (at. %) alloys. Journal of 
Alloys and Compounds. 2017;702:126-
131. DOI: 10.1016/j.jallcom.2017.01.221

[13] Wei R, Sun H, Chen C, Tao J, Li F.  
Formation of soft magnetic high 
entropy amorphous alloys composites 
containing in situ solid solution phase. 
Journal of Magnetism and Magnetic 
Materials. 2018;449:63-67. DOI: 
10.1016/j.jmmm.2017.09.065

[14] Li HF, Zheng YF. Recent advances 
in bulk metallic glasses for biomedical 
applications. Acta Biomaterialia. 
2016;36:1-20. DOI: 10.1016/j.
actbio.2016.03.047

73

Insight into Bulk Metallic Glass Technology Development Trajectory: Mapping from Patent…
DOI: http://dx.doi.org/10.5772/intechopen.81733

[15] Chen C-Y, Hsu W-S, Chen S-F. Role 
of Sc on the glass forming ability and 
mechanical properties of Al-Y-Ni-Sc 
bulk metallic glass produced with 
different cooling rates. Materials Science 
and Engineering A. 2018;725:119-126. 
DOI: 10.1016/j.msea.2018.04.003

[16] Chen S-F, Chen C-Y, Lin C-H. 
Insight on the glass-forming ability 
of Al–Y–Ni–Ce bulk metallic glass. 
Journal of Alloys and Compounds. 
2015;637:418-425. DOI: 10.1016/j.
jallcom.2015.02.217

[17] Yang YY, Klose T, Lippy J, Barcelon-
Yang CS, Zhang L. Leveraging text 
analytics in patent analysis to empower 
business decisions—A competitive 
differentiation of kinase assay 
technology platforms by I2E text mining 
software. World Patent Information. 
2014;39:24-34. DOI: 10.1016/j.
wpi.2014.09.002

[18] Kang B, Motohashi K. The role of 
essential patents as knowledge input for 
future R&D. World Patent Information. 
2014;38:33-41. DOI: 10.1016/j.
wpi.2014.05.001

[19] Lee S, Yoon B, Lee C, Park J.  
Business planning based on 
technological capabilities: Patent 
analysis for technology-driven 
roadmapping. Technological Forecasting 
and Social Change. 2009;76:769-786. 
DOI: 10.1016/j.techfore.2009.01.003

[20] Schleich J, Walz R, Ragwitz M.  
Effects of policies on patenting in wind-
power technologies. Energy Policy. 
2017;108:684-695. DOI: 10.1016/j.
enpol.2017.06.043

[21] Gredel D, Kramer M, Bend B.  
Patent-based investment funds as 
innovation intermediaries for SMEs: 
In-depth analysis of reciprocal 
interactions, motives and fallacies. 
Technovation. 2012;32:536-549. DOI: 
10.1016/j.technovation.2011.09.008

[22] Mogee ME. Using patent 
data for technology analysis and 
planning. Research-Technology 
Management. 1991;34:43-49. DOI: 
10.1080/08956308.1991.11670755

[23] WIPO. WIPO Guide to Using Patent 
Information. Geneva: WIPO; 2012

[24] Fujikura M, Yamada T, Sato T.  
Improvement of magnetic properties 
by addition of tin to amorphous 
Fe-Si-B alloys with high iron contents. 
Materials Science and Engineering 
A. 1994;181-182:1351-1354. DOI: 
10.1016/0921-5093(94)90861-3

[25] Kronmüller H, Ignatchenko VA,  
Forkl A. Law of approach to magnetic 
saturation in inhomogeneous 
ferri- and antiferromagnets and in 
amorphous iron-rich Fe-Zr alloys. 
Journal of Magnetism and Magnetic 
Materials. 1993;134:68-74. DOI: 
10.1016/0304-8853(94)90074-4

[26] Liu L, Chan KC, Yu Y, Chen Q. Bio-
activation of Ni-free Zr-based bulk 
metallic glass by surface modification. 
Intermetallics. 2010;18:1978-1982. DOI: 
10.1016/j.intermet.2010.02.039

[27] Lai JJ, Lin YS, Chang CH, Wei TY, 
Huang JC, Liao ZX, et al. Promising 
Ta-Ti-Zr-Si metallic glass coating 
without cytotoxic elements for bio-
implant applications. Applied Surface 
Science. 2018;427:485-495. DOI: 
10.1016/j.apsusc.2017.08.065

[28] Trappey CV, Trappey AJ, Wu CY.  
Clustering patents using non-exhaustive 
overlaps. Journal of Systems Science and 
Systems Engineering. 2010;19:162-181. 
DOI: 10.1007/s11518-010-5134-x

[29] Hu AGZ, Zhang P, Zhao L. China 
as number one? Evidence from China's 
most recent patenting surge. Journal of 
Development Economics. 2017;124:107-
119. DOI: 10.1016/j.jdeveco.2016.09.004

[30] Dang J, Motohashi K. Patent 
statistics: A good indicator for innovation 



Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable...

74

in China? Patent subsidy program 
impacts on patent quality. China 
Economic Review. 2015;35:137-155.  
DOI: 10.1016/j.chieco.2015.03.012

[31] Thompson MJ. Measuring patent 
quality: A claim and search report 
approach. World Patent Information. 
2016;45:47-54. DOI: 10.1016/j.
wpi.2016.03.003

[32] Sterzi V. Patent quality and 
ownership: An analysis of UK faculty 
patenting. Research Policy. 2013;42: 
564-576. DOI: 10.1016/j.
respol.2012.07.010

[33] Johnson WL, Demetriou MD, 
Kim CP, Schramm JP. Forming of 
metallic glass by rapid capacitor 
discharge. US Patent: US2009236017A1; 
2009

[34] Branagan DJ. Method for forming 
a hardened surface on a substrate. US 
Patent: US7323071B1; 2008

[35] Hasegawa R. Metallic glass alloys 
for mechanically resonant marker 
surveillance systems. US Patent: 
US5628840; 1997

[36] Nakanishi K, Shimizu O, Yoshida 
S, Katayama M, Isomura T. Method 
for preparing a magnetic thin film. US 
Patent: US6183568B1; 2001

[37] Demetriou MD, Johnson WL. Tough 
iron-based bulk metallic glass alloys. US 
Patent: US8529712B2; 2013

[38] Glänzel W, Meyer M. Patents 
cited in the scientific literature: An 
exploratory study of 'reverse' citation 
relations. Scientometrics. 2003;58: 
415-428. DOI: 10.1023/A:1026248929668

[39] Meyer M. Does science 
push technology? Patents citing 
scientific literature. Research Policy. 
2000;29:409-434. DOI: 10.1016/
S0048-7333(99)00040-2

[40] Peker A, Johnson WL. Beryllium 
bearing amorphous metallic alloys 
formed by low cooling rates. US Patent: 
US5288344; 1994

[41] Lin X, Johnson WL. Quinary 
metallic glass alloys. US Patent: 
US5735975; 1998

[42] Peker A, Johnson WL. Method of 
forming berryllium bearing metallic 
glass. US Patent: US5368659; 1994

[43] Lin X, Peker A, Johnson WL. 
Metallic glass alloys of Zr, Ti, Cu and Ni. 
US Patent: US5618359; 1997

[44] Kim DH, Kim WT, Yi SH, Lee JK, 
Lee MH, Park TG, et al. Nickel-based 
amorphous alloy compositions. US 
Patent: US6325868B1; 2001

Chapter 6

Calculation of the Metastable
Atom Densities in Argon and Neon
Abnormal Glow Discharges
Abdelaziz Bouchikhi

Abstract

In this chapter an investigation of a DC argon and neon abnormal glow dis-
charges with metastable atom density is presented. The values of pressure are
between 133.32 and 330 Pa, and the voltage range is from 250 to 400 V in the case of
argon gas. In the case of neon gas, the pressure has the value of 399.92 Pa (3 Torr)
and the voltage ranges from 300 to 500 V. In the frameworks, an analysis of
abnormal glow discharge characteristics is carried out in the case of input data taken
from the Boltzmann equation in multi term approximation (BMA), and in the case
of input data obtained from BOLISG+ code. As conclusion of these differences of
input data in the same gas the output results are different and it appears in the
cathodic region. The spatiotemporal distributions of electron and ion densities, the
potential and electric field, the mean electron energy and the metastable atom
density are shown. A 1D fluid model is used to solve self-consistently the first three
moments of the Boltzmann’s equation coupled with the Poisson’s equation. Our
results are validated with those obtained by both recent paper and experimental
results.

Keywords: metastable atom density, abnormal glow discharge, fluid model,
input data

1. Introduction

The concern of the amelioration of the plasma reactor is always a domain
important in the development technology, among these fields we find glow dis-
charge. A plasma technology in a gas mixture has been studied by several authors.
Ono et al. [1] have been studied oxygen-nitrogen gas mixture glow discharge
plasma by intervene many chemical reactions in their model. Khomich et al. [2]
have been treated the problem of the atomic deposition in the metal surface modi-
fication by nitrogen-argon mixture glow discharge in abnormal regime. Ponduri
et al. [3] have been analyzed the dissociation of CO2 by dielectric barrier glow
discharge, as a consequence of utilization of CO2 gas a lot of kinds of species
intervene in the phenomena discharge. Baadj et al. have been [4] investigated
Xe-Cl2 gas mixture for the formation of XeCl* exciplex lamp by means of zero-
dimensional model. Li et al. [5] have been studied the plasma jet length in Ne, Ar,
He and Kr in atmospheric pressure when the excimer molecule formatted from
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plasma by intervene many chemical reactions in their model. Khomich et al. [2]
have been treated the problem of the atomic deposition in the metal surface modi-
fication by nitrogen-argon mixture glow discharge in abnormal regime. Ponduri
et al. [3] have been analyzed the dissociation of CO2 by dielectric barrier glow
discharge, as a consequence of utilization of CO2 gas a lot of kinds of species
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dimensional model. Li et al. [5] have been studied the plasma jet length in Ne, Ar,
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metastable state of the atomic gases, and they have been identified three modes
versus of the gas flow rate, its about laminar, transition, and turbulent jet modes.

In this chapter, an research is through concerning the role of neon and argon
metastable atoms in the discharge. Metastable atoms have been considered by
several authors, both theoretically and experimentally. Metastable densities can
experimentally be measured by optical absorption method. In theoretical means, a
poise equation, including different production and loss terms is assembled to com-
pute the metastable densities. Experimental measurements were executed, for
example, for Neon gas in an RF glow discharge by Eckstein et al. [6], for Ar gas in a
microwave boosted glow discharge by Uzelac and Leis [7], and for He gas as a
function of discharge conditions by Browne and Dunn [8]. In the research of Smith
et al. [9] purely relative absorption signals of Argon metastable atoms as a function
of current and pressure were experimented. In the research of Strauss et al. [10] and
Ferreira et al. [11] Argon metastable densities were experimented in a afterglow of a
pulsed discharge and in the Grimm-type glow discharge, respectively, and some
mechanisms for the structure of Argon metastable atoms were recommended.
Argon metastable densities have also been experimented by Ferreira et al. [12], and
by Ferreira and Ricard [13].

A comparison was complete with Argon metastable densities determined from a
coupled-electron-metastable-atom model. Hardy and Sheldon [14] have examined
Argon, Helium and Neon gases. A comparison between calculated and measured
metastable densities was also realized by Kubota et al. [15] for Helium in a RF and
DC glow discharge. Lymberopoulos and Economou [16] have established a com-
bined fluid model for the electrons, Ar metastable atoms, and Ar ions in order to
study the effect of metastable atoms in the discharge. In the works [17–22] rate
constants of a number of collision processes in control of the demolition of meta-
stable atoms were got by combining equilibrium equations with the experimented
time-dependent variation of the metastable densities or by analyzing the reliance of
the decay constants upon pressure. Den Hartog et al. [23, 24] have investigated
Helium gas.

Last-mentioned, Fedoseev and Sukhinin [25] have investigated the influence of
metastable Ar atoms on gas discharge plasma with dust particles. Shumova et al.
[26] have investigated the effect of metastable Ne atoms and dust particles in a
positive column of glow discharge.

The aim of this work is to present, influence of the discharge characteristic in the
case of input data obtained by BOLSIG+ code, and in the case of input data taken
from the Boltzmann equation in multi term approximation (BMA). We note that
both these approaches are widely used. For simulations of positive column of glow
discharge, Vasilyak et al. [27] used the first approach, while Sukhinin et al. [28]
used the second approach. In Section 2, the mathematical model is delineated; it
comprises the boundary and initial conditions as well as the numerical method. In
Section 3, the results are discussed for Ar discharge. In Section 4, the test scheme is
given. In Section 5, Influence of the input data got from BOLSIG+ on the argon
discharge has been shown. In Section 6, the characteristics of the Ne discharge with
input data taken from BOLSIG+ are presented. Finally, the conclusion of the chap-
ter is given in Section 7.

2. Discharge modeling

Our mathematical model builds on the first three moments of the Boltzmann
equation. The Continuity equations and momentum transfer equations of metasta-
ble atom, electrons and positively charged ions. The energy equation is known only
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for electrons, and to give the effect of the electric field on the particles charged, the
Poisson equation is included in the model [29, 30].

The chemical reactions intervene in the discharge are indicated in the Table 1.
After that, the model in the 1D Cartesian geometry, writes by partial differential

equations:
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Here ne, n+, nm, φm, φe and φþ are number densities, densities of transport flux
of the metastable atoms, electrons and ions, respectively. Km

o is the rate coefficient
of electron-impact excitation of ground state atoms, εm ¼ 11:55 eV is the energy loss
of excited atoms, no is the constant background gas density, Kio

m is the rate coeffi-
cient of electron-impact ionization of excited atoms with the energy loss εio � εm

� �
,

Kio
o is the rate coefficient of electron-impact ionization of ground state atoms and

εio ¼ 15:76 eV is the energy loss of ionized atoms, Ko
m is the rate coefficient of de-

excitation of excited atoms by electron collisions. E ¼ �∂V=∂x is the electric field
strength. εo and e are the permittivity of free space and elementary charge, respec-
tively. Kci ¼ 8:1� 10�10 cm3 s�1 [31] is the rate coefficient of chemo-ionization
processes with the energy gain εci ¼ 2εm � εio. τm ¼ 1 μs is the metastable lifetime. εe
is the mean electron energy, φeε is the electron energy flux. V is the electrostatic
potential. Pec is the energy loss per electron due to elastic collision of electrons with
the background gas [32].

Momentum transfer equations for metastable atoms, electrons, ions and electron
energy [33–35] are:

Table 1.
Kinetic scheme of processes.
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φe ¼ �neμeE� ∂Dene
∂x

, (6)

φþ ¼ nþμþE� ∂Dþnþ
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, (7)

φm ¼ �Dm
∂nm
∂x

, (8)

φeε ¼ �neEμeε �
∂neDeε

∂x
(9)

Here μe, μþ, De and D+ are the electron, ion for mobilities and diffusion coeffi-
cients, respectively. Deε and μeε are the diffusivity and mobility of electron energy
transport. The ion mobility has brought from Phelps and Petrović [36] and their ion
diffusivity is computed agree with Einstein’s relation [37]. The coefficients for
electrons [38] in argon as dependences on the mean electron energy are got as of
INP Greifswald for direct evaluation with the results obtained by Becker et al. [30].
Dm is the metastable atom diffusivity someplace noDm ¼ 1:7x1018 cm�1 s�1 [19].

2.1 Boundary and initial conditions

The discharge is affected between two parallel plate electrodes and the radius of
the electrode is presumed to be higher than the electrode gap and the physical
characteristic distributions are approximately uniform along the radial direction.
The grounded electrode has been put at x ¼ 1 cm, play the role as the anode
(Vanode ¼ 0). The powered electrode has been put at x ¼ 0 cm, which initiates the
model discretization, play the role as the cathode (Vcathode ¼ �VDC).

At time t ¼ 0, the metastable atom, electron, and ion densities are supposed
constant and equal to 103 cm�3, and the mean electron energy equal to 1 eV.

Presuming disappearance of the metastable atom density, i.e., nm ¼ 0 has been
arranged at the cathode, whilst a predominant field-driven flux shut to the cathode
the expression ∂Dþnþ=∂x ¼ 0 has been used for the positive ion density ∀t > 0. At
the anode, the metastable atoms and the electron density are supposed to be zero.
The electron flux separating the cathode is calculated by the expression
φe x ¼ 0; tð Þ ¼ �γφþ x ¼ 0; tð Þ ∀t > 0, the mean electron energy is assumed to be 5 eV
at the cathode [36] and the gas temperature is equal to 273 K in the discharge.

2.2 Numerical method

For the metastable atom and Poisson equations a finite difference method has
been employed. The transport equations of the electron energy, electron and ion are
also discretized spatially with the finite difference technique. In this method the
exponential scheme has been employed into account [37, 39–42]. The discretization
of the time terms by the right position of the finite difference technique has been
used. Consequently, every discretized equation is defined as a tridiagonal matrix,
which is solved by Thomas’s algorithm.

3. Results and discussion of argon discharge

In this part, we will analysis the spatiotemporal evolution of the abnormal glow
discharge in the existence of metastable atom density. The gas pressure is 133.32 Pa.
The neutral species density is computed from the temperature and gas pressure
with the ideal gas law. The constant value for the secondary electron yield is 0.06 [36].
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The applied potential at the cathode is �400 V. The uniform subdivision of the
space interval in 250 elements and a time step Δt = 10 ps, have been utilized.

Figure 1 shows the temporal progression of the potential (Figure 1(a)), concen-
tration of electrons (Figure 1(b)), concentration of ions (Figure 1(c)), concentration
of metastable atoms (Figure 1(d)), the electric field (Figure 1(e)) and the mean
electron energy (Figure 1(f)). We remark that the discharge is distinguished by three
zones: the first one busied the time simulation amidst in 10�11 and 9 � 10�6 s, the
second one took the time simulation inter-time of 9 � 10�6 and 3 � 10�5 s, the final
zone busied the time simulation amidst in 3 � 10�5 and 3.6 � 10�5 s.

For the first zone, we comment that the metastable atom, electrons and ion
concentrations are almost identical. Therefore, the net space charge concentration is
unimportant. The electric potential is distinguished by the Laplace form due to the
net space charge concentration that is exist. Consequently, the electric field is
seemingly constant, besides that the mean electron energy is constant.

In the second zone, we remark a pseudo emergence of the cathodic region, this is
characterized by a significance of ion concentration and unimportant of the electron

Figure 1.
Argon spatiotemporal distributions of electric potential (a), electrons volume number (b), ions volume number
(c), metastable atom density (d), electric field (e), and mean electron energy (f) at 400 V.
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concentration. This is explicated by the velocity of the electron species, which speed
a more than the ion species and displaced quickly starting at the cathodic region.
Consequently, the amount (ne-n+) is considerable which influence directly the
electric potential as consequence the important chute that is present. Inevitably, the
electric field is intense. The last earns the electron species an important energy. We
comment that the metastable atom concentration is important. This discharge is
sustained by the secondary emission coefficient as well as the existence of metasta-
ble atom concentration. Sooner than t = 3 � 10�5 s we remark a pseudo emergence
of the negative glow region, where it is typified by the similar electron and ion
concentrations. Consequently the net space charge concentration is slight. Hence,
the electric potential and the electric field are constants. Automatically, the meta-
stable atoms concentration is diminished.

Figure 2.
Metastable atom densities as a function of pressure (a) and as a function of voltage (b) in the stationary state in
Argon gas.
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In the last zone, we remark three dissimilar regions: the anode and the plasma
regions and the cathode region. The anode region is characterized by the ion con-
centration that is less important compared to the electron concentration. In this
zone we remark that the convergence of each physical characteristics of the dis-
charge are reached at the time 3.6 � 10�5 s.

3.1 Influence of the voltage and gas pressure

In this part, we will study the influence of the voltage and gas pressure on the
argon discharge. So, the potential at the cathode is taking of 250 V and we will alter
the gas pressure. For the influence of the applied potential on the discharge, we take
the gas pressure at 133.32 Pa. bulk.

Figure 2(a) shows the metastable atoms concentration plots depending on the
pressure in the study state. The metastable atoms concentration augments with
increasing pressure. For elevated pressure the gas density augments, which the
electron diffusion coefficient turns out to be fewer and the bulk of the plasma rises
which the both sheaths of the anode and cathode turn out to be small. These
circumstances of the charged particle manipulate on the metastable atoms behavior
in the study stated, i.e., the cathodic region is overflowing with the electron and
metastable atom concentrations, which go faster the ion species in the existence of
the electric field.

Figure 2(b) shows the metastable atoms concentration graphs depending on the
potential in the study state. For elevated potential the excitation and ionization
processes increase, and the charged particle turns out to be raised in the stationary
state. Consequently, the metastable atom concentration graphs become growing.

The greatest of the metastable atom concentration varies amidst in 2.47 � 1010

and 6.63 � 1011 cm�3. We judged these results with calculated values established in
the literature [9, 10, 12, 15]. Depending on the discharge circumstances, all these
value varies amidst in 2 � 1010 and 5 � 1013 cm�3. Consequently, our calculated
values something like in the exact range of the size order. We find that the values of

Figure 3.
Comparison between the results obtained by our calculation using a database of BMA for pd = 1 Torr cm and
those given by experimental for pd = 0.5 Torr cm in Argon gas.
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the current densities are 0:137, 0:508 and 0:843 mA/cm2 related to the pressures of
133:32, 250:32 and 330:32 Pa, in that order.

Figure 3 represents the current-voltage properties in the stationary state. The
results attained beginning of the database of BMA evaluated to those obtained by
experimental method [43, 44]. We find that the results get beginning of the data-
base of the BMA are in excellent conformity judgment against to those experimental
results [43, 44].

4. Validity of the model

Figure 4 demonstrates the comparison amidst in our results and those given by
Becker et al. [30] (Figure 4(a)) ion and electron concentrations, (Figure 4(b))
electric field and electric potential, (Figure 4(c)) metastable atom concentration
and (Figure 4(d)) mean electron energy. This figure substantiates the validity of
our 1D code. The main dissimilarity amidst in those given by Becker et al. and our
results are pointing up in the Table 2.

We find that the similar discharge has been studied by Fiala et al. [45], where the
hybrid model has been employed in two dimensional configurations. We find that
the results got by Fiala et al., it was approximately indistinguishable to our results.
In exacting, the maximum of particle concentrations is 1.1 � 109 cm�3 and the
electric field at the cathode is 675 V/cm for applying voltage that is equal to 126.3 V.
Consequently, the hybrid model is equivalent to our fluid model in the presence of
the metastable atom concentrations of these discharge circumstances. Besides our
model identifier both properties of the discharge, the mean electron energy and the
metastable atom concentrations.

5. Influence for input data of argon abnormal glow discharge

In this part, we will show the properties of the argon plasma discharge in the
case of entering data computed by BOLSIG+ software [46]. We remind that the
preceding results are obtained with enter data computed by multiterm estimation of
the Boltzmann equation. We remind again that the preceding results are identical
when are calculated exclusive of the rate coefficients Ko

m and Kio
m. The exclusion is

the metastable atom concentration, which is prejudiced by these coefficients, i.e.,
the stepwise ionization processes is insignificant, evaluated to the both ionization of
the chemo-ionization and ground state atoms processes. Consequentially, we can
calculate the properties of the argon abnormal glow discharge exclusive of Ko

m and
Kio

m coefficients. The secondary electron emission coefficient is 0:06. The applied
voltage at the cathode is �250 V. The gas pressure is 133:32 Pa.

Figure 5 shows the particle density distributions (Figure 5(a)), metastable atom
concentration (Figure 5(b)) and mean electron energy (Figure 5(c)) in the sta-
tionary state. When we compare between the results given by Figures 4 and 5, we
conclude clearly the influence of entering data of BOLSIG+ on the characteristics of
the argon abnormal glow discharge. In exacting the cathodic region illustrated in the
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used in two and multi terms approximations. But, the results are actually dissimilar.

Table 3 gives the main dissimilarity between entering both data of multiterm
approximation and of BOLSIG+.
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Figure 6 shows the comparison amidst of the experimental results [47, 48] and
our results got beginning database of BOLSIG+ code for pd = 2 Torr cm. We remind
that the experimental results [47, 48] are given for the diameter of the electrode
equal to 8 cm and the inter-electrodes spacing equal to 1 cm. We remind again that
the results obtained by Ref. [47] its approximately dissimilar to the results obtained
by Ref. [48] due to the experimental circumstances of the secondary electron
emission coefficient. We remark that our results got from database of BOLSIG+
code are in excellent accord with the experimental results [47].

5.1 Effect of the metastable lifetime on the characteristics of argon
abnormal glow discharge

We remind that the preceding computations are effected through the metastable
lifetime equal to 1 μs [30], we remind that this value has been proposed by Becker
et al. [30]. Figure 7 represents the effect of the metastable lifetime on the curve of
the metastable atom concentration in the study state. For this reason we have used a
value of metastable lifetime equal to 56 s of the theories [49] and an experimental
value equal to 38 s [50]. We remark that the most of the metastable atom concen-
tration augments from 7.76 � 109 to 2.249 � 1011 cm�3. We note that this effect is
noticed just for metastable atom concentration and all characteristic of argon
abnormal glow discharge rest unmoved in the study stated. As a consequence, the
utilization of the experimental or artificial value of the metastable lifetime has an
inconsequential of the abnormal glow discharge characteristics.

6. Characteristics of the neon discharge through entering data
of the BOLSIG+

In this part, we will investigate the characteristics of the neon abnormal glow
discharge through entering data of the BOLSIG+ code. The gas pressure is 3 Torr.
The applied voltage is 300 V. The secondary electron emission coefficient is 0:26
[51]. Additional parameters are declared in the Appendix A. Figure 8 shows the
curves of ion and electron densities (Figure 8(a)), metastable atom concentration

Table 2.
The major differences between our results and those given by Becker et al.
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Figure 5.
Argon spatial distributions of (a) particledensities, (b) metastable atom density, and (c) mean electron energy
in the stationary state for input data of BOLSIG+.
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(Figure 8(b)) and current density (Figure 8(c)) depending of the applied voltage
in the stationary state. We note that the greatest of the metastable atom concentra-
tion is equal to 1.615 � 1011 cm�3. The value of neon current density is 0:1851 mA/
cm2. The electric field at the cathode achieves the value of 1696:08 V/cm. We note

Table 3.
The major differences between input Data of BOLSIG+ and those given by multiterm approximation.

Figure 6.
Comparison between the results obtained by our calculation using database of BOLSIG+ software for pd = 2
Torr cm and those given by experimental for pd = 2 Torr cm in Argon gas.

Figure 7.
Influence of the metastable lifetime on the Argon spatial distribution of metastable atom density in the steady
state.
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Figure 8.
Neon spatial distributions of (a) particle densities, (b) metastable atom density, and (c) current density as a
function of applied potential in the stationary state.
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Figure 8.
Neon spatial distributions of (a) particle densities, (b) metastable atom density, and (c) current density as a
function of applied potential in the stationary state.
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that the most of the mean electron energy is 46:30 eV in the cathodic region. As a
consequence, the fluid model by injecting the metastable atom concentrations is
extremely important for investigating the abnormal glow discharge properties of
several pure gases and mixed gas.

7. Conclusion

In order to study the effect of metastable atom density, a second order fluid
electric model has been used in the case of a DC low-pressure Ar and Ne abnormal
glow discharges. The Poisson equation for the potential and electric field is joined to
the first three moments of the Boltzmann’s conservation equations ignoring inertia
of the charged particles. In the framework of the local energy approximation, the
basic data employed in this chapter are calculated by Becker et al. in the case of
multiterm estimation of Boltzmann equation (BMA) [30] and from BOLSIG+ soft-
ware. The task of metastable atom concentration in the discharge is obvious for
study into side of plasma glow discharge for several pure gases and mixed gas. We
note that the abnormal glow discharge is sustained by secondary electron emission
coefficient and the existence of the metastable atom concentration in this particular
discharge.

A. Appendix A

The drift velocity of positive ion neon gas is: wþ ¼ 11:27E=nð Þ=
1þ 0:01288E=nð Þ0:5 (m/s) [52] where E/N is in Td. The metastable lifetime of neon
gas is equal to 14:73 s [53]. The diffusion coefficient of metastable atoms is
Dm ¼ 150 cm2 s�1 Torr [54]. The energy loss of an excited atom is 16.6 eV. The
Ionization energy of neon gas is equal to 21:56454 eV. The energy loss (Pec) per
electron due to elastic collision of electrons with the background gas is calculated
according to [31, 55]. The rate coefficient of chemo-ionization processes is
Kci ¼ 3:6� 10�10 cm3 s�1 for T = 310 K [56]
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Chapter 7

Application of Spin-Orbit
Coupling in Exotic Graphene
Structures and Biology
Richard Pinčák and Erik Bartoš

Abstract

An important measurable quantity in the carbon nanostructures, including the
nanotubular part of the graphitic wormhole, is the spin-orbit coupling. We will
present in this chapter spin-orbit coupling for the fermions located in exotic
graphene structures as is graphene wormhole and also in biological systems. Con-
sidering this influence, the two-component Dirac equation is changed into the usual
four-component form. As a consequence, the chiral fermions should be detected
close to the wormhole bridge. We will show that the smaller is the radius of the
wormhole bridge, the stronger this effect should be. Finally, we will describe the
role of spinor fields in the time series of genetic code. The reversed transcription
process of the gene expression could be defined by a moduli state space model of
a coupling spinor field between the gene of a viral particle and the host cell. As a
general result, all states of codon can be computed by the Chern-Simons 3-forms.

Keywords: spinor network structure, spin orbit coupling, Chern-Simons fields,
graphene wormhole, genetic code

1. Graphitic wormhole

The investigation of unique chemical and mechanical properties of
nanostructures, e.g., fullerene, graphene, and nanotubes, promises a wide applica-
tion in many technical areas. The electronic properties of the nanostructures are
basically defined by their hexagonal carbon lattice structure and its variations. New
promising results are expected with the preparation of more complicated forms as
a wormhole. The wormhole is usually composed of two different kinds of nano-
structure: two graphene sheets are connected together with the help of a connecting
nanotube [1] (Figure 1). This is achieved by a supply of two sets of six heptagonal
defects onto both sides of the given nanotube. There exists the restrictions on the
form of the nanotube—the chirality must be 6n; 6nð Þ armchair or 6n;0ð Þ zigzag and
a radius of the nanotube is larger than its length.

The metric tensor of the wormhole is given by

gμν ¼ Λ2 r�ð Þ 1 0

0 r2�

� �
, Λ r�ð Þ ¼ a=r�ð Þ2θ a� r�ð Þ þ θ r� � að Þ, (1)
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where θ is the Heaviside step function, r� and rþ are the polar coordinates of
lower and upper graphene sheets, and a ¼ ffiffiffiffiffiffiffiffiffiffi

r�rþ
p

is the radius of the wormhole.

1.1 Electronic structure

We consider the continuum gauge field theory, i.e., at each point of a molecular
surface, we take into account an influence of different gauge fields that enter the
Dirac-like equation for an electron

ivFσμ ∂μ þ Ωμ � iaμ � iaWμ � iAμ

h i
ψ ¼ Eψ , (2)

with σα matrices as the Pauli matrices, the Fermi velocity vF, the spin connection

Ωμ ¼ 1
8
ωαβ
μ σα; σβ
� �

, (3)

and the covariant derivative ∇μ ¼ ∂μ þ Ωμ. The gauge fields aμ, aWμ are caused by
the presence of the defects, and by rotational symmetry, the gauge field Aμ charac-
terizes the possible magnetic field.

In the case of the wormhole with the metric Eq. (1), the effective flux caused
by the presence of the defects is included in the gauge field aμ, and for the particular
polar components, it has the values aφ ¼ 3

2, ar ¼ 0 for two possibilities: the first
corresponds to the chiral vector with the form 6n; 6nð Þ, the second corresponds to
the chiral vector with the form 6n;0ð Þ and n divisible by 3. In the case of chiral
vector of the form 6n;0ð Þ, where n is not divisible by 3, the components of the
gauge field are aφ ¼ 1

2, ar ¼ 0. Regarding that the components of the spin
connection are

Figure 1.
Schematic representation of graphitic wormhole consisting from two graphene sheets connected together with the
help of a nanotube.
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Ωφ ¼ � i
2
σ3 r

Λ0 rð Þ
Λ rð Þ þ 1

� �
, Ωr ¼ 0, (4)

and after the substitution into Eq. (2), we get the equation

ivFσμ ∂μ þΩμ∓i aμ
� �

ψ� ¼ εψ�, (5)

where each sign corresponds to a different Dirac point

�ivF ∂r þ 1
r
i∂θ∓

aφ
r
þ 1
2r

� �
ψ�
B ¼ εψ�

A,

�ivF ∂r � 1
r
i∂θ � aφ

r
þ 1
2r

� �
ψ�
A ¼ εψ�

B

(6)

for r≥ a and

ivF r
a

� �2
∂r � 1

r
i∂θ � aφ

r
� 1
2r

� �
ψ�
B ¼ εψ�

A,

ivF r
a

� �2
∂r þ 1

r
i∂θ∓

aφ
r
� 1
2r

� �
ψ�
A ¼ εψ�

B

(7)

for 0< r≤ a. For r≥ a, the solution is

ψ� ¼
ψ�
A r;φð Þ

ψ�
B r;φð Þ

 !
¼ c1

Jn∓aφ�1=2 krð Þ
�i sgn εJn∓aφþ1=2 krð Þ

 !

þ c2
Yn∓aφ�1=2 krð Þ

�i sgn εYn∓aφþ1=2 krð Þ

 !
,

(8)

where the energy ε ¼ �vFk, Jn xð Þ and Yn xð Þ are the Bessel functions.
The zero modes solve the Dirac equation for zero energy. If one choose the

component ψ�
A of the solution to be equal to zero, one get from (6) and (7)

∂r � 1
r
i∂θ∓

aφ
r
þ 1
2r

� �
ψ�
B ¼ 0 (9)

for r≥ a and

∂r � 1
r
i∂θ � aφ

r
� 1
2r

� �
ψ�
B ¼ 0 (10)

for 0< r≤ a. For ψ�
B and the value aφ ¼ 3

2, the solution is

ψ�
B r;φð Þ � r�n�2einφ (11)

for r≥ a and

ψ�
B r;φð Þ � r�nþ2einφ (12)

for 0< r≤ a. For both cases, it is normalizable only for n ¼ 0, and so this is the
only solution. In a similar way, we can calculate the zero modes for the component
ψþ
B . For the value aφ ¼ 1

2, possible solutions are not strictly normalizable, and the
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zero modes exist only for the case of the connecting nanotube being armchair or
zigzag with the chiral vector 6n;0ð Þ, n divisible by 3. In other cases the zero modes
do not exist.

Recently, in work [2] some peculiarities in the bilayer graphene were analyti-
cally predicted. A possible indication of the wormhole could be found in [3, 4],
where a new type of zero modes is investigated. These zero modes could be the zero
modes studied in this subsection applied to the case of the smallest wormhole.

1.2 Case of massive fermions

Up to now we supposed that the fermions appearing in the Dirac equation have
the zero mass or that the mass is very small in comparison with their energy, but in
[5, 6] it was shown that the Fermi velocity needs to be renormalized due to the
elasticity and deformations in a graphene. In our case of the graphitic wormhole,
including big deformations, the velocity of fermions close to the wormhole bridge
could achieve such values that the relativistic effects can appear or break off the
symmetry [7] and the mass of fermions would be non-negligible. The radius of the
wormhole and its bridge is very small in comparison with the size of the upper and
the lower graphene sheet (Figure 2) and by folding the sheet into a tube they
acquire nonzero effective mass as they move along the tube axis. This change of the
space topology of graphene from 2D to 1D space compactification is similar to the
string theory compactification, and we can imagine a wormhole connecting
nanotubes as 1D object.

To include the mass into the Dirac Eq. (2), one can transform the system of
equations [8] into the differential equation of the second order

∂ξξ � 1
2gξξ

∂ξgξξ þ
~j
2

ffiffiffiffiffiffiffi
gξξ
g3φφ

s
∂ξgφφ �~j2

gξξ
gφφ

þ E2gξξ

 !
uj ¼ 0: (13)

One can suppose cylindrical geometry in order to simplify the equation into

∂ξξ þ E2 �
~j2
R2

� �
uj ¼ 0, (14)

if a radius vector of the point at the surface will have the form

R
!¼ R cosφ;R sinφ; ξð Þ, (15)

Figure 2.
The simplest realization of smallest graphitic wormholes.
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with R as the radius of the cylinder. The solution of this equation has the form

uj ξð Þ ¼ Aekξ þ Be�kξ, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j2
R2 � E2:

s
(16)

A similar form has the dispersion relation associated with the massive 1D Dirac
equation

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � E2

p
, (17)

whereM is the mass of corresponding fermion. It is proven [9] that for a suitable
choice of the parameters, 2D massless case is in analogy with 1D massive case, and
one can rewrite Eq. (13) in the form

∂ξξ � 1
2gξξ

∂ξgξξ þ
~j
2

ffiffiffiffiffiffiffi
gξξ
g3φφ

s
∂ξgφφ �~j2

gξξ
gφφ

þ E2 �M2� �
gξξ

 !
uj ¼ 0, (18)

where M is the mass of the corresponding fermion. For different values of M,
one can find the corrections of local density of states for the graphitic wormhole. It
seems that these massive particles arising in the wormhole nanotubes could create
energy bulks on and near the wormhole bridge which should be experimentally
measured by the STM or Raman spectroscopy [10]. Another possibly identification
of wormhole structure comes from the fact of creation of strain solitons and topo-
logical defects by massive particles on the bridge of bilayer graphene which should
propagate throughout the graphene sheet. These are almost macroscopic effects
and should be caught by the experimental physicists [11].

1.3 Spin-orbit coupling in the wormhole connecting nanotube

An important measurable quantity in carbon nanostructures, which includes a
nanotubular part of a graphitic wormhole, is a spin-orbit coupling (SOC) [12, 13].
If one considers this influence, two-component Dirac equation could be changed
into the usual four-component form, and as a consequence chiral fermions should
be detected close to the wormhole bridge.

One can reflect on two sources of SOC: (1) the interatomic one that preserves
the z-component of a spin and (2) so-called Rashba-type coming from the external
electric field, which conserves the z-component of an angular momentum Jz. In
both cases, the strength of SOC is influenced by the nonzero curvature. In the next
we will be interested in the first source of the SOC.

Considering the SOC we can write the Dirac equation for the nanotube in the
form

Ĥ
FK
A

FK
B

 !
¼ 0 f̂

f̂
† 0

 !
FK
A

FK
B

 !
¼ E

FK
A

FK
B

 !
, (19)

where

FK
A ¼ FK

A,↑

FK
A,↓

 !
, FK

B ¼ FK
B,↑

FK
B,↓

 !
: (20)
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symmetry [7] and the mass of fermions would be non-negligible. The radius of the
wormhole and its bridge is very small in comparison with the size of the upper and
the lower graphene sheet (Figure 2) and by folding the sheet into a tube they
acquire nonzero effective mass as they move along the tube axis. This change of the
space topology of graphene from 2D to 1D space compactification is similar to the
string theory compactification, and we can imagine a wormhole connecting
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To include the mass into the Dirac Eq. (2), one can transform the system of
equations [8] into the differential equation of the second order

∂ξξ � 1
2gξξ

∂ξgξξ þ
~j
2

ffiffiffiffiffiffiffi
gξξ
g3φφ

s
∂ξgφφ �~j2

gξξ
gφφ

þ E2gξξ

 !
uj ¼ 0: (13)

One can suppose cylindrical geometry in order to simplify the equation into

∂ξξ þ E2 �
~j2
R2

� �
uj ¼ 0, (14)

if a radius vector of the point at the surface will have the form

R
!¼ R cosφ;R sinφ; ξð Þ, (15)

Figure 2.
The simplest realization of smallest graphitic wormholes.
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with R as the radius of the cylinder. The solution of this equation has the form

uj ξð Þ ¼ Aekξ þ Be�kξ, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~j2
R2 � E2:

s
(16)

A similar form has the dispersion relation associated with the massive 1D Dirac
equation

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � E2

p
, (17)

whereM is the mass of corresponding fermion. It is proven [9] that for a suitable
choice of the parameters, 2D massless case is in analogy with 1D massive case, and
one can rewrite Eq. (13) in the form

∂ξξ � 1
2gξξ

∂ξgξξ þ
~j
2

ffiffiffiffiffiffiffi
gξξ
g3φφ

s
∂ξgφφ �~j2

gξξ
gφφ

þ E2 �M2� �
gξξ

 !
uj ¼ 0, (18)

where M is the mass of the corresponding fermion. For different values of M,
one can find the corrections of local density of states for the graphitic wormhole. It
seems that these massive particles arising in the wormhole nanotubes could create
energy bulks on and near the wormhole bridge which should be experimentally
measured by the STM or Raman spectroscopy [10]. Another possibly identification
of wormhole structure comes from the fact of creation of strain solitons and topo-
logical defects by massive particles on the bridge of bilayer graphene which should
propagate throughout the graphene sheet. These are almost macroscopic effects
and should be caught by the experimental physicists [11].

1.3 Spin-orbit coupling in the wormhole connecting nanotube

An important measurable quantity in carbon nanostructures, which includes a
nanotubular part of a graphitic wormhole, is a spin-orbit coupling (SOC) [12, 13].
If one considers this influence, two-component Dirac equation could be changed
into the usual four-component form, and as a consequence chiral fermions should
be detected close to the wormhole bridge.

One can reflect on two sources of SOC: (1) the interatomic one that preserves
the z-component of a spin and (2) so-called Rashba-type coming from the external
electric field, which conserves the z-component of an angular momentum Jz. In
both cases, the strength of SOC is influenced by the nonzero curvature. In the next
we will be interested in the first source of the SOC.

Considering the SOC we can write the Dirac equation for the nanotube in the
form

Ĥ
FK
A

FK
B

 !
¼ 0 f̂

f̂
† 0

 !
FK
A

FK
B

 !
¼ E

FK
A

FK
B

 !
, (19)

where

FK
A ¼ FK

A,↑

FK
A,↓

 !
, FK

B ¼ FK
B,↑

FK
B,↓

 !
: (20)
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The expression f̂ has the following form

f̂ ¼ γ k̂x � ik̂y
� �

þ i
δγ0

4R
σ̂x r!
� �

� 2δγp
R

σ̂ y, (21)

where

k̂x ¼ �i
∂

R∂θ
, k̂y ¼ �i

∂

∂y
, σ̂x r!

� �
¼ σ̂x cos θ � σ̂z sin θ: (22)

Next one can take

γ ¼ �
ffiffiffi
3

p

2
aVπ

pp, γ0 ¼ �
ffiffiffi
3

p

2
a Vσ

pp � Vπ
pp

� �
, p ¼ 1� 3γ0

8γ
, (23)

where a is the length of the atomic bond and Vσ
pp, V

π
pp are the hopping integrals

for the σ and π bond, respectively.
For the interatomic source of the SOC, one has

δ ¼ Δ
3επσ

, Δ ¼ i
3ℏ

4m2c2
xlj ∂V

∂x
p̂y �

∂V
∂y

p̂xjyl
� �

(24)

with the difference of energies of the relevant π and σ orbitals

ϵπσ ¼ ϵπ2p � ϵσ2p, (25)

xl, and yl being the local coordinates. By applying the transformation

Ĥ 0 ¼ ÛĤÛ�1, Û ¼
exp iσ̂ y

θ

2

� �
0

0 exp iσ̂y
θ

2

� �

0
BBB@

1
CCCA (26)

the transformed Hamiltonian Ĥ
0
will have the form with two terms, including

the ĤSOC term which corresponds to the spin-orbit coupling

Ĥ
0 ¼ Ĥkin þ ĤSOC, Ĥkin ¼ �iγ ∂yId2⊗ŝy þ 1

R
∂θId2⊗ŝx

� �
, ĤSOC ¼ λyσ̂x⊗ŝy � λxσ̂y⊗ŝx:

(27)

The operators ŝx, y,z are the Pauli matrices, which transform the wave function of
the A sublattice into the wave function of the B sublattice and vice versa.

In our model, the SOC is induced by the curvature, and it is described with the
help of two strength parameters, namely, λx and λy in the form

λx ¼ γ

R
1
2
þ 2δp

� �
, λy ¼ � δγ0

4R
, (28)

for the case of single-wall carbon nanotube with different magnitude. Here,
∣λy∣≪ ∣λx∣ and for R ! 0, both strengths go to infinity. So reminding the previous
results, the chiral massive fermions should be detected around the wormhole
bridge. For more complicated forms as perturbed nanotube in the wormhole center,
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the geometry of the corresponding graphene sheets will be curved, and this brings a
significant change of the physical properties.

1.4 Graphene black hole

The effects connected with the deformation of a graphene and a consequent
change of the distance of the carbon atoms in the layer are described in [14]. It
causes the rotation of the pz orbitals and rehybridization of the π and σ orbitals. The
procedure leads to the creation of the p� n junctions similarly to the case of a
transistor. This effect changes the Fermi level which is rising in the far areas from
the wormhole center. The electron flux is directed from these areas to the middle
where the electric charge is accumulated, and in the case of the deformed worm-
hole, one can speak about so-called graphene black hole. The form of a middle part
of the nanotube plays a big role for this purpose. It cannot be unperturbed because
in such a case the effect of the black hole would be disrupted. It can be ensured only
in the case when the nanotubular neck is tapering in the direction to its center,
because this ensures the decrease of the Fermi level [15]. The related effects which
appear on the nanostructures are also described in [16], where the special
relativistic-like properties of the Beltrami pseudosphere naturally point to quantum
field theory in curved space. In the work the finite temperature local density of
states is predicted that is a realization of the Hawking-Unruh effect. Mentioned
effect of the graphene black hole could eventually disappear in the presence of
external magnetic (electric) field which would cause the transfer of the charge from
one wormhole sheet to another one through a nanotube center. This serves as an
important model for further investigations of the electron flux in the presence of
the defects with the applications in cosmological models.

2. Spinor fields in biological systems

One of the present problems in genetic engineering is the prediction of biological
gene variation and the representation of corresponding genetic code. This issue
emerges in the plotting graphs related to the connection curvature of a docking
processes. The docking process is important in the genes of the protein structure
and could be adopted instead of using a very long alphabet notation as the string
sequence and the comparison of the sequences of docking. From this point of view,
methods of quantum field theory, general relativity, and related tools can be of high
interest. The equilibrium between the supersymmetry and the mirror symmetry of
the left-handed and right-handed DNA, RNA, nucleic and amino acid molecules can
be explained by anti-de Sitter (AdS) correspondence in the Yang-Mills theory and
the Chern-Simon currents in biology as the curvature of the spectrum in genetic
code of the protein curvature.

Today, a genetical structure is studied by standard alphabet codes A, T, C, G,
and U as a sequence of strings for the representation of genetic code for various
organisms without any exact definition of a new time series of genetic code [17] in
contrast to standard time series modeling. With this representation [18], it is very
difficult to calculate the genetic variation [19] and to perform calculations within a
framework of self-consistent mathematical theory [20], namely, in the context of
string theory and M- and G-theories [21, 22].

There are still attempts to perform empirical data analysis of the genetic varia-
tion [23] and to detect the pattern matching over the gene sequence by using
algorithm over a standard alphabet code as their time series representation. It seems
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with the difference of energies of the relevant π and σ orbitals
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, ĤSOC ¼ λyσ̂x⊗ŝy � λxσ̂y⊗ŝx:

(27)

The operators ŝx, y,z are the Pauli matrices, which transform the wave function of
the A sublattice into the wave function of the B sublattice and vice versa.

In our model, the SOC is induced by the curvature, and it is described with the
help of two strength parameters, namely, λx and λy in the form

λx ¼ γ
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, λy ¼ � δγ0
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for the case of single-wall carbon nanotube with different magnitude. Here,
∣λy∣≪ ∣λx∣ and for R ! 0, both strengths go to infinity. So reminding the previous
results, the chiral massive fermions should be detected around the wormhole
bridge. For more complicated forms as perturbed nanotube in the wormhole center,
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the geometry of the corresponding graphene sheets will be curved, and this brings a
significant change of the physical properties.

1.4 Graphene black hole

The effects connected with the deformation of a graphene and a consequent
change of the distance of the carbon atoms in the layer are described in [14]. It
causes the rotation of the pz orbitals and rehybridization of the π and σ orbitals. The
procedure leads to the creation of the p� n junctions similarly to the case of a
transistor. This effect changes the Fermi level which is rising in the far areas from
the wormhole center. The electron flux is directed from these areas to the middle
where the electric charge is accumulated, and in the case of the deformed worm-
hole, one can speak about so-called graphene black hole. The form of a middle part
of the nanotube plays a big role for this purpose. It cannot be unperturbed because
in such a case the effect of the black hole would be disrupted. It can be ensured only
in the case when the nanotubular neck is tapering in the direction to its center,
because this ensures the decrease of the Fermi level [15]. The related effects which
appear on the nanostructures are also described in [16], where the special
relativistic-like properties of the Beltrami pseudosphere naturally point to quantum
field theory in curved space. In the work the finite temperature local density of
states is predicted that is a realization of the Hawking-Unruh effect. Mentioned
effect of the graphene black hole could eventually disappear in the presence of
external magnetic (electric) field which would cause the transfer of the charge from
one wormhole sheet to another one through a nanotube center. This serves as an
important model for further investigations of the electron flux in the presence of
the defects with the applications in cosmological models.

2. Spinor fields in biological systems

One of the present problems in genetic engineering is the prediction of biological
gene variation and the representation of corresponding genetic code. This issue
emerges in the plotting graphs related to the connection curvature of a docking
processes. The docking process is important in the genes of the protein structure
and could be adopted instead of using a very long alphabet notation as the string
sequence and the comparison of the sequences of docking. From this point of view,
methods of quantum field theory, general relativity, and related tools can be of high
interest. The equilibrium between the supersymmetry and the mirror symmetry of
the left-handed and right-handed DNA, RNA, nucleic and amino acid molecules can
be explained by anti-de Sitter (AdS) correspondence in the Yang-Mills theory and
the Chern-Simon currents in biology as the curvature of the spectrum in genetic
code of the protein curvature.

Today, a genetical structure is studied by standard alphabet codes A, T, C, G,
and U as a sequence of strings for the representation of genetic code for various
organisms without any exact definition of a new time series of genetic code [17] in
contrast to standard time series modeling. With this representation [18], it is very
difficult to calculate the genetic variation [19] and to perform calculations within a
framework of self-consistent mathematical theory [20], namely, in the context of
string theory and M- and G-theories [21, 22].

There are still attempts to perform empirical data analysis of the genetic varia-
tion [23] and to detect the pattern matching over the gene sequence by using
algorithm over a standard alphabet code as their time series representation. It seems
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that one main problem in this field is how can we predict the genetic variation and
the gene structure in the viral particle and other organisms, or in the context of new
representation, the question is how we can explain the intuition behind a definition
of new time series data of gene, e.g., involved in the Batalin-Vilkovisky cohomology
of DNA and the viral gene structure. The Chern-Simons current and the anomaly
over a superspace of cell membrane can be applied to diagnose new gene diseases,
the cloning technology or the gene therapy in medicine. Moreover, a presented
method can be improved also in view of describing a useless trash area of DNA,
which is considered as unknown part of human genome.

On the other side, another approach based on the usage of a spinor field in the
Kolmogorov space of the time series data [24] over the genetic code can represent
the gene structure as the ghost and anti-ghost fields of the codon and anticodon.
This can be achieved in the frameworks of supersymmetry [25] and G-theory [22].
Results of the works show that all calculations over the codon can be assumed as a
new superspace of the time series representation of the gene structure [24].

In [26–28], we introduced a new representation of the genetic code in the time
series using a modeling by strings and D-branes. By applying a spinor field to a
superspace in time series data [29], the method allows us to develop supersymmetry
for living organisms. In particular, it is possible to control the anomalies in the codon
and anticodon ghost fields and construct an algebraic approach for the trash DNA.

The “gravitational” analogy of the Chern-Simons currents in a gravitational
physics, emanating from a system of DNA-RNA transcriptions, could have inter-
esting counterparts also in biology. A representation of codons in human genome,
derived from the Chern-Simons currents, can be useful in biology to explain the
source of connections over protein-docking states. In this perspective, adopting
cohomology in biology can be useful as a new modeling tool for plotting genes with
spinor field in time series data. Especially, the junk area of DNA, with repeated
inactive genes, can be represented by the Chern-Simons currents with extended
structures of knot states in a Laurent polynomial of knots.

Further we discuss the role of spinors in the time series of genetic code. We
can denote HP1 as a quaternionic projective space and H0 Xtð Þ as a pointed space
of DNA alphabet sequence with A½ �, T½ �, C½ �, and G½ � as an equivalent class of
A½ �, T½ �, C½ �, G½ �∈H0 Xt,DNAð Þ ≔ Φi Xtð Þ a ghost field with parity two with
H0 Xtð Þ ¼ H0 Xt; ∗ð Þ where ∗ ¼ ∗f g is a pointed space. We define an equivalent
class of DNA–RNA translation processes by using the notation of a master equation
for an interaction between the viral RNA and the host cell DNA by xt; yt

� � ¼
DNA;RNAf g. The whole state space model of the viral replication cycle, embedded

in the host cell, is denoted by Xt,DNA=Yt,RNA ¼ Zt,GENE ¼ H=H ¼ HP1 as a moduli
state space model with the definition of genetic code as an equivalent class of the
map αt : Xt,DNA ! A½ �; T½ �; C½ �; G½ �f g⊂H; the host cell gene alphabet is defined by a
hidden state space Xt with the gene βi

A½ �DNA ≔ e
iπβi
2

h i
þ 0½ �iþ 0½ �jþ 0½ �k,

T½ �DNA ≔ 0½ � þ e
�iπβi

2

h i
iþ 0½ �jþ 0½ �k,

C½ �DNA ≔ 0½ � þ 0½ �iþ eiπβi
� �

jþ 0½ �k,
G½ �DNA ≔ 0½ � þ 0½ �iþ 0½ �jþ ei2πβi

� �
k:

(29)

In the retroviral RNA of the observed state space Yt,RNA is a span by gene αi with
the anti-ghost field Φi,þ Yt,RNAð Þ of viral particle. We define a pair of ghost and anti-
ghost field genes by a middle hidden state in mRNA and ribosomal EPA state in
codon and anticodon state as the ghost and anti-ghost fields in the genetic code. One
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can define a mutual genetic code as passive or dual hidden states s1½ � ∗ ,…, s8½ � ∗ and
active eight states s1½ �,…, s8½ � for the spinor field in the genetic code by

A½ �tRNA ≔ NU½ �mRNA ¼ e
jπαi
2

h i
þ 0½ �iþ 0½ �jþ 0½ �k,

U½ �tRNA ≔ NA½ �mRNA ≔ 0½ � þ e
�jπαi

2

h i
iþ 0½ �jþ 0½ �k,

C½ �tRNA ≔ NG½ �mRNA ≔ 0½ � þ 0½ �iþ ejπαi
� �

jþ 0½ �k,
G½ �tRNA ≔ NC½ �mRNA ≔ 0½ � þ 0½ �iþ 0½ �jþ ej2παi

� �
k:

(30)

The reversed transcription process of the gene expression is defined by a moduli
state space model of a coupling spinor field between the gene of a viral particle and
the host cell (Figure 3)

HP1 ¼ Xt=Yt∍ 1;
e2

π
4niα

e2π4mjβ

� �

m,n¼1;2;3;4
¼ 1;

qjDNA

q ∗ jRNA

� �
¼ qjDNA

q ∗ jRNA
; 1

� �
: (31)

One can define Sp 1ð Þ ! S7 ! HP1 as a Hopf fibration of eight states of the
genetic code s1½ �, s2½ �,… s8½ �∈ S7 ¼ TpM, denoted by s1½ � ∗ , s2½ � ∗ ,… s8½ � ∗ ∈T ∗

p M states
of the genetic code of the space of a viral RNA Xt and a space of host cell DNA, Yt.

If U A½ �α ⊂HP1 is a chart of local coordinate in a manifold of genetic code over
Xt=Yt, where A½ �α is defined over the right-hand isomer genetic code A;T;C;Gf g
(for the simplicity we use a symbol G also for U) with their dual A½ � ∗α , with the
mirror symmetry of a genetic code NA;NT;NC;NGf g. We have a cycle and a
cocycle of an orbifold as a trivialization over the tangent of the living organism
manifold, so-called codon and anticodon U i ∩ U j ∩ Uk. Let M; gð Þ be a living organ-
ism manifold with M ¼ HP1 for a living organism with the Riemannian metric
tensor gij ¼ <T A½ � A½ �α

M, T ∗
A½ �αM> over a tangent manifold and a cotangent manifold

Figure 3.
(a) The site of docking between CCR5 Δ32 co-receptor in host T-cell membrane and V3 loop in HIV viral
gp120. The cell membrane has a mirror symmetry structure of D-brane for outer layer. The anti-D-brane
structure of the cell membrane is an inner layer of phospholipid. (b) The knot 41 model of a short exact sequence
of hidden eight states in genetic code.
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that one main problem in this field is how can we predict the genetic variation and
the gene structure in the viral particle and other organisms, or in the context of new
representation, the question is how we can explain the intuition behind a definition
of new time series data of gene, e.g., involved in the Batalin-Vilkovisky cohomology
of DNA and the viral gene structure. The Chern-Simons current and the anomaly
over a superspace of cell membrane can be applied to diagnose new gene diseases,
the cloning technology or the gene therapy in medicine. Moreover, a presented
method can be improved also in view of describing a useless trash area of DNA,
which is considered as unknown part of human genome.

On the other side, another approach based on the usage of a spinor field in the
Kolmogorov space of the time series data [24] over the genetic code can represent
the gene structure as the ghost and anti-ghost fields of the codon and anticodon.
This can be achieved in the frameworks of supersymmetry [25] and G-theory [22].
Results of the works show that all calculations over the codon can be assumed as a
new superspace of the time series representation of the gene structure [24].
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cohomology in biology can be useful as a new modeling tool for plotting genes with
spinor field in time series data. Especially, the junk area of DNA, with repeated
inactive genes, can be represented by the Chern-Simons currents with extended
structures of knot states in a Laurent polynomial of knots.

Further we discuss the role of spinors in the time series of genetic code. We
can denote HP1 as a quaternionic projective space and H0 Xtð Þ as a pointed space
of DNA alphabet sequence with A½ �, T½ �, C½ �, and G½ � as an equivalent class of
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H0 Xtð Þ ¼ H0 Xt; ∗ð Þ where ∗ ¼ ∗f g is a pointed space. We define an equivalent
class of DNA–RNA translation processes by using the notation of a master equation
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In the retroviral RNA of the observed state space Yt,RNA is a span by gene αi with
the anti-ghost field Φi,þ Yt,RNAð Þ of viral particle. We define a pair of ghost and anti-
ghost field genes by a middle hidden state in mRNA and ribosomal EPA state in
codon and anticodon state as the ghost and anti-ghost fields in the genetic code. One
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can define a mutual genetic code as passive or dual hidden states s1½ � ∗ ,…, s8½ � ∗ and
active eight states s1½ �,…, s8½ � for the spinor field in the genetic code by
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The reversed transcription process of the gene expression is defined by a moduli
state space model of a coupling spinor field between the gene of a viral particle and
the host cell (Figure 3)

HP1 ¼ Xt=Yt∍ 1;
e2

π
4niα

e2π4mjβ

� �

m,n¼1;2;3;4
¼ 1;

qjDNA

q ∗ jRNA

� �
¼ qjDNA

q ∗ jRNA
; 1

� �
: (31)

One can define Sp 1ð Þ ! S7 ! HP1 as a Hopf fibration of eight states of the
genetic code s1½ �, s2½ �,… s8½ �∈ S7 ¼ TpM, denoted by s1½ � ∗ , s2½ � ∗ ,… s8½ � ∗ ∈T ∗

p M states
of the genetic code of the space of a viral RNA Xt and a space of host cell DNA, Yt.

If U A½ �α ⊂HP1 is a chart of local coordinate in a manifold of genetic code over
Xt=Yt, where A½ �α is defined over the right-hand isomer genetic code A;T;C;Gf g
(for the simplicity we use a symbol G also for U) with their dual A½ � ∗α , with the
mirror symmetry of a genetic code NA;NT;NC;NGf g. We have a cycle and a
cocycle of an orbifold as a trivialization over the tangent of the living organism
manifold, so-called codon and anticodon U i ∩ U j ∩ Uk. Let M; gð Þ be a living organ-
ism manifold with M ¼ HP1 for a living organism with the Riemannian metric
tensor gij ¼ <T A½ � A½ �α

M, T ∗
A½ �αM> over a tangent manifold and a cotangent manifold

Figure 3.
(a) The site of docking between CCR5 Δ32 co-receptor in host T-cell membrane and V3 loop in HIV viral
gp120. The cell membrane has a mirror symmetry structure of D-brane for outer layer. The anti-D-brane
structure of the cell membrane is an inner layer of phospholipid. (b) The knot 41 model of a short exact sequence
of hidden eight states in genetic code.
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T A½ �αM ¼ S7 with gij defined as a tensor behavior field transformation between 64
states in a codon as the distance in a space of the genetic code with i, j ¼ 1; 2; 3,…8.
The active states in genetic code are denoted as s1½ �, s2½ �,⋯ s8½ �, and the hidden states
inside eight states or passive states are denoted as s ∗1

� �
, s ∗1
� �

,⋯ s ∗8
� �

. The dual part of
a genotype s ∗i

� �
is defined by a tangent of a manifold of the genetic code with the

Jacobian J ¼ ffiffiffiffiffigijp , where the metrics is gij ¼ < si, sj
� � ∗>�

. A smallest state in gene is

defined as a pair of a genetic code by a classical notation A� T, C�G with the
coordinates A;Tð Þ, C;Gð Þ. One can define a superstate in a pair of genes as ghost
and anti-ghost fields in the genetic code with the supersymmetry of D-isomer to
L-isomer from the right-hand D-state in the light of the polarization in a nucleic
acid as si½ �jΦi

to a left-hand light L-state of an isomer of a light polarization, denoted
as si½ �j ∗Φþ

i

s1½ � ¼ A½ �; T½ � ∗ð Þ∈TpM, p1½ � ¼ s1½ � ∗ ¼ s11½ � ∗ ¼ A½ �; T½ � ∗ð Þ ∗ ∈T ∗
p M

s2½ � ¼ A½ �; NA½ �ð Þ∈TpM, s2½ � ∗ ¼ A½ �; NA½ �ð Þ ∗ ∈T ∗
p M

s3½ � ¼ C½ �; G½ � ∗ð Þ∈TpM, s3½ � ∗ ¼ C½ �; G½ � ∗ð Þ ∗ ∈T ∗
p M

s4½ � ¼ C½ �; NC½ �ð Þ∈TpM, s4½ � ∗ ¼ C½ �; NC½ �ð Þ ∗ ∈T ∗
p M

s5½ � ¼ T½ �; T½ � ∗ð Þ∈TpM, s5½ � ∗ ¼ T½ �; T½ � ∗ð Þ ∗ ∈T ∗
p M

s6½ � ¼ T½ �; NA½ �ð Þ∈TpM, s6½ � ∗ ¼ T½ �; NA½ �ð Þ ∗ ∈T ∗
p M

s7½ � ¼ G½ �; G½ � ∗ð Þ∈TpM, s7½ � ∗ ¼ G½ �; G½ � ∗ð Þ ∗ ∈TpM

s8½ � ¼ G½ �; NC½ �ð Þ∈TpM, s8½ � ∗ ¼ G½ �; NC½ �ð Þ ∗ ∈TpM

(32)

As known from biochemistry, there exist only s1½ � ¼ A½ �; T½ � ∗ð Þ and
s3½ � ¼ C½ �; G½ � ∗ð Þ observational states of the living organism in nature. However, in
the theory of supersymmetry of S7 Hopf fibration, there exist eight states of the
ghost fields with six hidden states in the mirror symmetry. In each state, an orbifold
of the living organism, other eight states denoted p1–p8 exist. One can define all 64
states with the help of a notation for the Riemann tensor field gij ¼ < si½ �, sj

� � ∗>,
e.g., g11 ¼ < s1½ �, s1½ � ∗>, and we denote a pair of states in a gene as s1½ �; p1

� �� �
. It is a

pair of the genetic code g11 ¼ < A½ �; T½ � ∗ð Þ, A½ �; T ∗½ �ð Þ>; for the case of codon, we
replace T½ � with U½ �. Finally, we have for
g11 ¼ < A½ �, T½ � ∗½ Þ½ �ð �, A½ �; T ∗½ �ð Þ> ¼ < A½ �, A½ �; T ∗½ �ð Þ>ð since the states T ∗½ � are
hidden states, so one has a codon AAU for g11.

If Γk
ij ≔ A½ �k is a connection over a tangent of a manifold of Xt=Yt withM ¼ HP1

of the genetic code k∈ A;T;C;Gf g, one can denote Γk
μν ≔ Fμν as the behavioral

Yang-Mills field with its dual in AdS theory of supersymmetry with ∗Fμν ¼ Fμν. It is
a behavior of a protein folding inducing a curvature between a viral glycoprotein
and a host cell receptor. The behavior of a Yang-Mills field is an interaction field
between the behavior of virus and host cells which can survive by a change of
curvature of the protein during the evolution. It is a connection in the sense of an
evolutional field not in the sense of traditional gravitational field as usual

Γk
ij ¼

1
2
gkl ∂jgjk þ ∂igjk � ∂kgjk
� �

, (33)

where gij ¼ < si½ �, sj
� � ∗>.
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For an equilibrium state of evolution of an organism, we have no change of
covariant derivative for the tensor field g

∇gg ¼ 0: (34)

We can define a Fμν ≔ Aαð Þνμ as a connection on a principle bundle

Sp 1ð Þ ! S7 ! HP1 of a genetic code over a supermanifold of a viral particle A. We
can use an exact sequence of the sheave cohomology OXt with the chart over the
supermanifold defined by homogeneous coordinates of HP1 for viral gene Xt along
the host cell gene OYt , while the virus attachment to the host cell is defined by the
coordinate in sheave OXt=Yt . We apply a supersymmetry AdS theory over a Yang-
Mills field of a behavioral field of the genetic code as a connection over Aαð Þ∈ A½ �f ,
T½ �, C½ �, G½ �g⊂HP1 with the Hopf fibration of viral RNA gene Fμν ≔ Aαð Þμν ¼ Γμ

αν

with an anti self dual field over the gene of the host cell DNA, ∗ Fμν. A current J of
the connection between the fields is defined by the Chern-Pontryagin density for
the interaction of behavioral fields. The current varies from the curvature of
docking between the behavior of the curvature over amino acid k in Xt and its dual
curvature in Yt while docking <Fμν ∗ Fμν>, where < � > is an average or an
expectation operator.

The connection between genes is

Rμ
ναβ ¼ ∂α Aβ

� �μ
ν
� ∂β Aαð Þμν þ Aα;Aβ

� �μ
ν
, (35)

where Rμ
ναβ is the curvature over a tangent space of a genetic code

Aαð Þ∈ A½ �; T½ �; C½ �; G½ �f g⊂HP1 and Aαð Þμν ≔ Γμ
αν ¼ Fμν is the connection of the cou-

pling between two alphabets of two organisms, i.e., from DNA and viral RNA. The
above curvature is also useful in other situations like t-RNA docking with DNA in
interaction between two D-branes of DNA and RNA. In a gauge field theory of
DNA and RNA genetic codes of translation process, it is the group action of Lie-
algebra one form. We have an adjoint representation of the genetic code as a
translation process over the codon and anticodon of t� RNA. One needs to define a
new value to measure the curvature in amino acids of protein structure, not in the
tangent space of a genetic code, and one needs to define a curvature over the
codon and anticodon to represent a curvature of proteins while they are docking.
The new value needs to be unique for all states in the codon and to have a meaning
of curvature of genetic code with connection over manifold of genetic code. To
represent a spectrum of genetic variation as curvature in protein structure while
docking, one can introduce a new quantity, so-called Chern-Simons current
for biology.

One can translate a genetic code in a codon in three steps. The translation
operator of group is given by a behavior matrix in Lie group, a group of
supermanifold of living organism with action in three times. It generates a codon
representation as an adjoint representation over gene expression, and it is a precise
definition of genetic code with parity two of ghost field and anti-ghost field in the
Chern-Simons current for the representation of a gene Ai with the current density
JAi ¼ Ð tnt1 dJAi .

Let a knot serve as a representation of anticodon in t-RNA topological structure
for amino acid μ with Jμ as a representation R of gauge group G of gene geometric
translation as group action of transcription process; then the genetic code is an
average expectation value of Wilson loop operator of coupling between hidden state
of xt and yt twist D-brane and anti-D-brane over superspace of cell membrane, i.e.,
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T A½ �αM ¼ S7 with gij defined as a tensor behavior field transformation between 64
states in a codon as the distance in a space of the genetic code with i, j ¼ 1; 2; 3,…8.
The active states in genetic code are denoted as s1½ �, s2½ �,⋯ s8½ �, and the hidden states
inside eight states or passive states are denoted as s ∗1

� �
, s ∗1
� �

,⋯ s ∗8
� �

. The dual part of
a genotype s ∗i

� �
is defined by a tangent of a manifold of the genetic code with the

Jacobian J ¼ ffiffiffiffiffigijp , where the metrics is gij ¼ < si, sj
� � ∗>�

. A smallest state in gene is

defined as a pair of a genetic code by a classical notation A� T, C�G with the
coordinates A;Tð Þ, C;Gð Þ. One can define a superstate in a pair of genes as ghost
and anti-ghost fields in the genetic code with the supersymmetry of D-isomer to
L-isomer from the right-hand D-state in the light of the polarization in a nucleic
acid as si½ �jΦi

to a left-hand light L-state of an isomer of a light polarization, denoted
as si½ �j ∗Φþ

i

s1½ � ¼ A½ �; T½ � ∗ð Þ∈TpM, p1½ � ¼ s1½ � ∗ ¼ s11½ � ∗ ¼ A½ �; T½ � ∗ð Þ ∗ ∈T ∗
p M

s2½ � ¼ A½ �; NA½ �ð Þ∈TpM, s2½ � ∗ ¼ A½ �; NA½ �ð Þ ∗ ∈T ∗
p M

s3½ � ¼ C½ �; G½ � ∗ð Þ∈TpM, s3½ � ∗ ¼ C½ �; G½ � ∗ð Þ ∗ ∈T ∗
p M

s4½ � ¼ C½ �; NC½ �ð Þ∈TpM, s4½ � ∗ ¼ C½ �; NC½ �ð Þ ∗ ∈T ∗
p M

s5½ � ¼ T½ �; T½ � ∗ð Þ∈TpM, s5½ � ∗ ¼ T½ �; T½ � ∗ð Þ ∗ ∈T ∗
p M

s6½ � ¼ T½ �; NA½ �ð Þ∈TpM, s6½ � ∗ ¼ T½ �; NA½ �ð Þ ∗ ∈T ∗
p M

s7½ � ¼ G½ �; G½ � ∗ð Þ∈TpM, s7½ � ∗ ¼ G½ �; G½ � ∗ð Þ ∗ ∈TpM

s8½ � ¼ G½ �; NC½ �ð Þ∈TpM, s8½ � ∗ ¼ G½ �; NC½ �ð Þ ∗ ∈TpM

(32)

As known from biochemistry, there exist only s1½ � ¼ A½ �; T½ � ∗ð Þ and
s3½ � ¼ C½ �; G½ � ∗ð Þ observational states of the living organism in nature. However, in
the theory of supersymmetry of S7 Hopf fibration, there exist eight states of the
ghost fields with six hidden states in the mirror symmetry. In each state, an orbifold
of the living organism, other eight states denoted p1–p8 exist. One can define all 64
states with the help of a notation for the Riemann tensor field gij ¼ < si½ �, sj

� � ∗>,
e.g., g11 ¼ < s1½ �, s1½ � ∗>, and we denote a pair of states in a gene as s1½ �; p1

� �� �
. It is a

pair of the genetic code g11 ¼ < A½ �; T½ � ∗ð Þ, A½ �; T ∗½ �ð Þ>; for the case of codon, we
replace T½ � with U½ �. Finally, we have for
g11 ¼ < A½ �, T½ � ∗½ Þ½ �ð �, A½ �; T ∗½ �ð Þ> ¼ < A½ �, A½ �; T ∗½ �ð Þ>ð since the states T ∗½ � are
hidden states, so one has a codon AAU for g11.

If Γk
ij ≔ A½ �k is a connection over a tangent of a manifold of Xt=Yt withM ¼ HP1

of the genetic code k∈ A;T;C;Gf g, one can denote Γk
μν ≔ Fμν as the behavioral

Yang-Mills field with its dual in AdS theory of supersymmetry with ∗Fμν ¼ Fμν. It is
a behavior of a protein folding inducing a curvature between a viral glycoprotein
and a host cell receptor. The behavior of a Yang-Mills field is an interaction field
between the behavior of virus and host cells which can survive by a change of
curvature of the protein during the evolution. It is a connection in the sense of an
evolutional field not in the sense of traditional gravitational field as usual

Γk
ij ¼

1
2
gkl ∂jgjk þ ∂igjk � ∂kgjk
� �

, (33)

where gij ¼ < si½ �, sj
� � ∗>.
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For an equilibrium state of evolution of an organism, we have no change of
covariant derivative for the tensor field g

∇gg ¼ 0: (34)

We can define a Fμν ≔ Aαð Þνμ as a connection on a principle bundle

Sp 1ð Þ ! S7 ! HP1 of a genetic code over a supermanifold of a viral particle A. We
can use an exact sequence of the sheave cohomology OXt with the chart over the
supermanifold defined by homogeneous coordinates of HP1 for viral gene Xt along
the host cell gene OYt , while the virus attachment to the host cell is defined by the
coordinate in sheave OXt=Yt . We apply a supersymmetry AdS theory over a Yang-
Mills field of a behavioral field of the genetic code as a connection over Aαð Þ∈ A½ �f ,
T½ �, C½ �, G½ �g⊂HP1 with the Hopf fibration of viral RNA gene Fμν ≔ Aαð Þμν ¼ Γμ

αν

with an anti self dual field over the gene of the host cell DNA, ∗ Fμν. A current J of
the connection between the fields is defined by the Chern-Pontryagin density for
the interaction of behavioral fields. The current varies from the curvature of
docking between the behavior of the curvature over amino acid k in Xt and its dual
curvature in Yt while docking <Fμν ∗ Fμν>, where < � > is an average or an
expectation operator.

The connection between genes is

Rμ
ναβ ¼ ∂α Aβ

� �μ
ν
� ∂β Aαð Þμν þ Aα;Aβ

� �μ
ν
, (35)

where Rμ
ναβ is the curvature over a tangent space of a genetic code

Aαð Þ∈ A½ �; T½ �; C½ �; G½ �f g⊂HP1 and Aαð Þμν ≔ Γμ
αν ¼ Fμν is the connection of the cou-

pling between two alphabets of two organisms, i.e., from DNA and viral RNA. The
above curvature is also useful in other situations like t-RNA docking with DNA in
interaction between two D-branes of DNA and RNA. In a gauge field theory of
DNA and RNA genetic codes of translation process, it is the group action of Lie-
algebra one form. We have an adjoint representation of the genetic code as a
translation process over the codon and anticodon of t� RNA. One needs to define a
new value to measure the curvature in amino acids of protein structure, not in the
tangent space of a genetic code, and one needs to define a curvature over the
codon and anticodon to represent a curvature of proteins while they are docking.
The new value needs to be unique for all states in the codon and to have a meaning
of curvature of genetic code with connection over manifold of genetic code. To
represent a spectrum of genetic variation as curvature in protein structure while
docking, one can introduce a new quantity, so-called Chern-Simons current
for biology.

One can translate a genetic code in a codon in three steps. The translation
operator of group is given by a behavior matrix in Lie group, a group of
supermanifold of living organism with action in three times. It generates a codon
representation as an adjoint representation over gene expression, and it is a precise
definition of genetic code with parity two of ghost field and anti-ghost field in the
Chern-Simons current for the representation of a gene Ai with the current density
JAi ¼ Ð tnt1 dJAi .

Let a knot serve as a representation of anticodon in t-RNA topological structure
for amino acid μ with Jμ as a representation R of gauge group G of gene geometric
translation as group action of transcription process; then the genetic code is an
average expectation value of Wilson loop operator of coupling between hidden state
of xt and yt twist D-brane and anti-D-brane over superspace of cell membrane, i.e.,
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W K;Rð Þ ¼ TrRP exp ∮ KA
� �

: (36)

The above term gives the asymmetric property of chiral molecule of DNA and
RNA, twisted from the left hand to the right hand in a supersymmetry breaking as
knot polynomial related to the connection A. By such a way, we can represent the
genetic code as Laurent polynomials in variable q with integer coefficients, and for
any knot K we have

J K; qð Þ ¼
Xn
i¼1

anqn: (37)

By using the new parameter of knot q

q ¼ e
2π
kþh (38)

one can induce a spinor field for representation of genetic code, where h is the
dual coexter number for group action of supersymmetry of gene expression G. It
might be the source of evolution from the adaptive behavior derived from the
environment. In the next, we set h ¼ 0 in our definition of the Chern-Simons
current for biology for the simpler derivation of formulas.

A Chern-Simons current Jμ for anomaly quantum system of codons can be also
defined as the spectrum of curvature in the genetic code for gene evolution detec-
tion. Under the definition we mean a differential 3-forms in cohomology of spin
fiber S3 over the homotopy class S3;Xt=Yt

� �
in the codon of t-RNA molecule. A path

integral of gene expression is defined by the Chern-Simons theory over knots of
codon and anticodon: it is defined by the interaction between codon Ai and antico-
don between DNA and RNA in the form of integral Ai þ SCS ¼

Ð
DAi exp iSCSð Þ

SCS ¼ k
4π

ð

W
Tr A ∧ dAþ 2

3
A ∧ A ∧ A

� �
(39)

and

J q;KAi ;Ri
� � ¼ <W Ki;Rið Þ>

¼ <TrRiP∮ Ki
A> ¼

Ð
DAi exp iSCSð ÞΠiW Ki;Rið ÞÐ

DAi exp iSCSð Þ :
(40)

The explicit definition of curvature over the connection of genetic code has also
new meaning of the genetic spectrum current Jμ, μ ¼ 1, 2⋯20 of the Chern-Simons
current; it is generated from the representation of Lie group over manifold of a host
cell.

An example of our approach can serve as a case of phenylalanine (Phe), where
UUU and UUC definition is

JPhe ¼ ϵμαβα <
1
2
Aα∂βAγ þ 1

3
AαAβAγ>

¼ ϵμαβα <
1
2

A2ð Þμνd A2ð Þμν þ
1
3

A2ð Þμν A2ð Þμν A2ð Þμν>
(41)

where we explicitly define the differential form of genetic code for Phe by
dA2 ¼ A2A2 � A2A3 ≔ UU �UC, so we have
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AdA ¼ A2 A2A2 � A2A3ð Þ ¼ A2A2A2 � A2A2A3. The minus sign represents a linear
combination of basis for codon. Therefore it follows

JPhe ¼ ϵμαβα <
1
2
Aα∂βAγ þ 1

3
AαAβAγ>

¼
ð
Tr

5
6
U ∧ U ∧ U � 1

2
U ∧ U ∧ C

� �
¼
ð
Tr H3 Mð Þ� �

:

(42)

For a translation in reversed direction of antigen shift and drift in gene evolution
theory, we can use the definition of the group action of reversed direction of time
by the CPT theory for anti-ghost field in field of time series of antibody gene as

xt; yt
� � ¼

ð
Tr H3 Mð Þ� � ¼

X3
i¼1

gi xt=yt
� �

¼ αtyt, g
3xt=yt ! βtxt=αtyt ≃ ϵ ∗t

� � ¼
ð
TrH3 M; g;Fμνð Þ:

(43)

Then a numerical representation for spinor field of curvature in the gene
expression by the Chern-Simons action is defined as follows:

SCS ¼ k
4π

ð
Tr A ∧ dAþ 2

3
A ∧ A ∧ A

� �
(44)

where k ¼ 1; 2; 3…n are

JAmino ¼ Jk ≃
ffiffiffiffiffiffiffiffiffiffiffi
2

kþ 2

r
sin

π

kþ 2
¼
ð
D A½ �SCS : (45)

The derivation of the Chern-Simons current can be done by a simple algorithm
[30], i.e., the Chern-Simons current maps the string of genetic code into numerical
values by explicit formulas. It can be used to plot the time series data directly into
the superspace of gene expression. We transform the alphabet string values, which
cannot be computed in the classical standard definition of genetic code, into the
Chern-Simons current of time series data of genetic code with k ¼ 1; 2; 3,…64 over
spinor field with ground field of real values. We think that the approach is more
suitable for computational programs used in data analyses.

3. Circular Artin braid group representation for spinor field
in genetic code

In each cell division, the telomeres are shortened [31], and total length of DNA is
changing. As the result of shorter biological clock from cell division, the living
things die. In order to understand cell cocycle and division mechanism of telome-
rase aging, one can explain the source of cancer as a source of age acceleration and
its relationship to telomere shortening mechanism. It is a source of braid group
operation [32] so-called self-diffeomorphism in the genetic code. The age accelera-
tion is a relative measurement between the chronical clock and the biological clock
in telomere. Up to now, scientists understand that a telomere and telomerase are the
locations of ancient viruses that rely on DNA in the chromosomes of living organ-
isms. Telomere is composed of the repeated sequence of TTAGGGð Þdt ∗ where
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W K;Rð Þ ¼ TrRP exp ∮ KA
� �

: (36)

The above term gives the asymmetric property of chiral molecule of DNA and
RNA, twisted from the left hand to the right hand in a supersymmetry breaking as
knot polynomial related to the connection A. By such a way, we can represent the
genetic code as Laurent polynomials in variable q with integer coefficients, and for
any knot K we have

J K; qð Þ ¼
Xn
i¼1

anqn: (37)

By using the new parameter of knot q

q ¼ e
2π
kþh (38)

one can induce a spinor field for representation of genetic code, where h is the
dual coexter number for group action of supersymmetry of gene expression G. It
might be the source of evolution from the adaptive behavior derived from the
environment. In the next, we set h ¼ 0 in our definition of the Chern-Simons
current for biology for the simpler derivation of formulas.

A Chern-Simons current Jμ for anomaly quantum system of codons can be also
defined as the spectrum of curvature in the genetic code for gene evolution detec-
tion. Under the definition we mean a differential 3-forms in cohomology of spin
fiber S3 over the homotopy class S3;Xt=Yt

� �
in the codon of t-RNA molecule. A path

integral of gene expression is defined by the Chern-Simons theory over knots of
codon and anticodon: it is defined by the interaction between codon Ai and antico-
don between DNA and RNA in the form of integral Ai þ SCS ¼

Ð
DAi exp iSCSð Þ

SCS ¼ k
4π

ð

W
Tr A ∧ dAþ 2

3
A ∧ A ∧ A

� �
(39)

and

J q;KAi ;Ri
� � ¼ <W Ki;Rið Þ>

¼ <TrRiP∮ Ki
A> ¼

Ð
DAi exp iSCSð ÞΠiW Ki;Rið ÞÐ

DAi exp iSCSð Þ :
(40)

The explicit definition of curvature over the connection of genetic code has also
new meaning of the genetic spectrum current Jμ, μ ¼ 1, 2⋯20 of the Chern-Simons
current; it is generated from the representation of Lie group over manifold of a host
cell.

An example of our approach can serve as a case of phenylalanine (Phe), where
UUU and UUC definition is

JPhe ¼ ϵμαβα <
1
2
Aα∂βAγ þ 1

3
AαAβAγ>

¼ ϵμαβα <
1
2

A2ð Þμνd A2ð Þμν þ
1
3

A2ð Þμν A2ð Þμν A2ð Þμν>
(41)

where we explicitly define the differential form of genetic code for Phe by
dA2 ¼ A2A2 � A2A3 ≔ UU �UC, so we have
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AdA ¼ A2 A2A2 � A2A3ð Þ ¼ A2A2A2 � A2A2A3. The minus sign represents a linear
combination of basis for codon. Therefore it follows

JPhe ¼ ϵμαβα <
1
2
Aα∂βAγ þ 1

3
AαAβAγ>

¼
ð
Tr

5
6
U ∧ U ∧ U � 1

2
U ∧ U ∧ C

� �
¼
ð
Tr H3 Mð Þ� �

:

(42)

For a translation in reversed direction of antigen shift and drift in gene evolution
theory, we can use the definition of the group action of reversed direction of time
by the CPT theory for anti-ghost field in field of time series of antibody gene as

xt; yt
� � ¼

ð
Tr H3 Mð Þ� � ¼

X3
i¼1

gi xt=yt
� �

¼ αtyt, g
3xt=yt ! βtxt=αtyt ≃ ϵ ∗t

� � ¼
ð
TrH3 M; g;Fμνð Þ:

(43)

Then a numerical representation for spinor field of curvature in the gene
expression by the Chern-Simons action is defined as follows:

SCS ¼ k
4π

ð
Tr A ∧ dAþ 2

3
A ∧ A ∧ A

� �
(44)

where k ¼ 1; 2; 3…n are

JAmino ¼ Jk ≃
ffiffiffiffiffiffiffiffiffiffiffi
2

kþ 2

r
sin

π

kþ 2
¼
ð
D A½ �SCS : (45)

The derivation of the Chern-Simons current can be done by a simple algorithm
[30], i.e., the Chern-Simons current maps the string of genetic code into numerical
values by explicit formulas. It can be used to plot the time series data directly into
the superspace of gene expression. We transform the alphabet string values, which
cannot be computed in the classical standard definition of genetic code, into the
Chern-Simons current of time series data of genetic code with k ¼ 1; 2; 3,…64 over
spinor field with ground field of real values. We think that the approach is more
suitable for computational programs used in data analyses.

3. Circular Artin braid group representation for spinor field
in genetic code

In each cell division, the telomeres are shortened [31], and total length of DNA is
changing. As the result of shorter biological clock from cell division, the living
things die. In order to understand cell cocycle and division mechanism of telome-
rase aging, one can explain the source of cancer as a source of age acceleration and
its relationship to telomere shortening mechanism. It is a source of braid group
operation [32] so-called self-diffeomorphism in the genetic code. The age accelera-
tion is a relative measurement between the chronical clock and the biological clock
in telomere. Up to now, scientists understand that a telomere and telomerase are the
locations of ancient viruses that rely on DNA in the chromosomes of living organ-
isms. Telomere is composed of the repeated sequence of TTAGGGð Þdt ∗ where
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1000≤ dt ∗ ≤ 2000. The size of the duplicate sequence at the end of this open
chromosome is amplified by six braids caused by six superspaces in time series data
of organisms. The G alphabet might be suitable to be chosen as hidden time scale in
the biological clock.

Here we assume that all genetic code cannot be completely separated and bio-
logical clock in telomere length is parametrized by a hidden state of the number of
dt ∗ ≔ G½ � alphabet in TTAGGGð Þn¼dt ∗ repeated pattern of the telomere. The ele-
ment is Grothendieck topology over an adjoint cofunctor; it is a self-
diffeomorphism ξ : Bc

3 ! Bc
3. The loop braid generator for Bc

3 is a quaternionic field
in genetic code. We define their explicit forms and their permutations over the
symmetric group by a chosen basis in Clifford algebra as

σD ! 1
2
;
1
2
;� 1

2

� �
, σR ! � 1

2
;
1
2
;
1
2

� �
, σP ! 1

2
;� 1

2
;
1
2

� �
, (46)

and σD ∗ ¼ σ�1
D , σR ∗ ¼ σ�1

R , and σP ∗ ¼ σ�1
P . We have

σD ∗ ! � 1
2
;� 1

2
;
1
2

� �
, σR ∗ ! 1

2
;� 1

2
;� 1

2

� �
, σP ∗ ! � 1

2
;
1
2
;� 1

2

� �
, (47)

therefore one can write eight bases for spinor field in the genetic code in braid
form as follows

σ G½ � ≔ 0;0;0½ �σ�1
R σD ¼ σ�1

R σD,
σ A½ � ≔ 0;0; 1½ �σ�1

R σD ¼ σDσRð Þ σ�1
R σD

� �
,

σ U½ � ≔ 0; 1;0½ �σ�1
R σD ¼ σPσDð Þ σ�1

R σD
� �

,

σ C½ � ≔ 1;0;0½ �σ�1
R σD ¼ σRσPð Þ σ�1

R σD
� �

,

σ NA½ � ≔ 0; 1; 1½ �σ�1
R σD ¼ σRσPð Þ σPσDð Þ σ�1

R σD
� �

,

σ NU½ � ≔ 1; 1;0½ �σ�1
R σD ¼ σDσRð Þ σRσPð Þσ�1

R σD,
σ NC½ � ≔ 1;0; 1½ �σ�1

R σD ¼ σPσDð Þ σDσRð Þ σ�1
R σD

� �
,

σ NG½ � ≔ 1; 1; 1½ �σ�1
R σD ¼ σRσPð Þ σPσDð Þ σDσRð Þ σ�1

R σD
� �

:

(48)

We may also use θ ¼ 2πs with spin quantum number s being an integer for
retrotransposon and half-integer for geneon, so that

eiθ ¼ e2iπs ¼ �1ð Þ2sψ2ψ1: (49)

In a 3-dimensional position space, the geneon and retrotransposon statistics
operators are �1 and þ1, respectively. By the same way, in two-dimensional posi-
tion space, the abelian anyonic statistics operators eiθ are 1-dimensional representa-
tions of eight loop braid elements σ1, σ21, σ

3
1,⋯, σ81 in circular Artin braid group B3

2
acting on the space of wave functions (Figure 4).

3.1 Classification of loop braid group in genetic code

We classify three types of loop braid group operations; it is a representation of
an anyon for protein folding. For two-dimensional representation of D-brane in
loop braid group for the genetic code, we define abelian anyon for biology in (2 + 1)
dimensions, the extra dimensions used to represent the homotopy path of protein
folding.
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The loop braid group, LBBIO
n , for a genetic code has three types of generators,

σ ¼ σD; σR; σPð Þ, ρ ¼ σ A½ �; ; σ U½ �; ; σ C½ �; ; σ G½ �� �
, and τ ¼ σω; ; σim; ; σm

� �
. The generators

σi; ρi ∈B3
2i ¼ 1;⋯; n� 1

� �
and τi ∈Bc

3i ¼ 1;⋯; n
� �

fulfill the relations

τiτj ¼ τjτi, i 6¼ j
τ2i ¼ 1, i ¼ 1,⋯, n

σiτj ¼ τjσi, ∣i� j∣>1
ρiτj ¼ τiρj, ∣i� j∣>1

τiρi ¼ ρiτiþ1, i ¼ 1,⋯, n� 1

τiσi ¼ σiτiþ1, i ¼ 1,⋯, n� 1

τiþ1σi ¼ ρiσ
�1
i ρiτi, i ¼ 1,⋯, n� 1:

(50)

For a group operation of the genotype G and a representation ρ for gene trans-
lation as an anyon, we have ρ : G ! U 1ð Þ ¼ S2 as a representation in ΩBIO

n and in
LBBIO

n . In order to visualize 3D folding structure of the protein structure, we define
three types of loop braid group operations in biology. All loop elements of the
representation of amino acids arose from group operations over the superspace of
time series data. These tree types are a translation, reflection, and rotation, ρType�I,
ρType�II, and ρType�III. For the translation as a string of amino acids, we have the
anyon Type� I for biology,

ρType�I σið ÞρType�I σiþ1ð ÞρType�I σið Þ
¼ ρType�I σiþ1ð ÞρType�I σið ÞρType�I σiþ1ð Þ,

Figure 4.
The left picture shows biological Artin braid element σ1 ∈B2 in complex plane C. There are eight equivalent
classes span by eight orders of σ1. It is a representation of eight states in three genetic codes in codon as braid

element in σ
Aμ½ �
1 ; σ

Aμ½ �
1 ; σ

Aμ½ �
1

� �
∈B3

2. The red color line represents the curvature from the physiology of biological

time series data, and the blue color represents the active and passive behavior field layers. The right picture
shows a member of loop braid group. Three circles S1 represent the sources of closed 3-balls Bc

3, the structure

group of affine transform of 3 behavior fields in genetic code σ
Aμ½ �
i ∈B3

2 action on affine fibre bundle of behavior
field in the genetic code σω

�
, σim

�
, σm

� ∈Bc
3. We have affine group as loop braid group in genetic code by

B3
2⋊Bc

3.
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1000≤ dt ∗ ≤ 2000. The size of the duplicate sequence at the end of this open
chromosome is amplified by six braids caused by six superspaces in time series data
of organisms. The G alphabet might be suitable to be chosen as hidden time scale in
the biological clock.

Here we assume that all genetic code cannot be completely separated and bio-
logical clock in telomere length is parametrized by a hidden state of the number of
dt ∗ ≔ G½ � alphabet in TTAGGGð Þn¼dt ∗ repeated pattern of the telomere. The ele-
ment is Grothendieck topology over an adjoint cofunctor; it is a self-
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3 ! Bc
3. The loop braid generator for Bc
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in genetic code. We define their explicit forms and their permutations over the
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2
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1
2

� �
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and σD ∗ ¼ σ�1
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1
2
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2
;
1
2
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2
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3
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lation as an anyon, we have ρ : G ! U 1ð Þ ¼ S2 as a representation in ΩBIO

n and in
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representation of amino acids arose from group operations over the superspace of
time series data. These tree types are a translation, reflection, and rotation, ρType�I,
ρType�II, and ρType�III. For the translation as a string of amino acids, we have the
anyon Type� I for biology,
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classes span by eight orders of σ1. It is a representation of eight states in three genetic codes in codon as braid
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ρType�I σiþ1ð ÞρType�I σið ÞρType�I σiþ1ð Þ
¼ ρType�I σiþ1ð ÞρType�I σiþ1ð ÞρType�I σið Þ, (51)

ρType�I σið Þ ¼ ρType�I σiþ1ð Þ:

It is isomorphic to the mapping class group of the infinitely punctured disk, a
discrete set of punctures limiting to the boundary of the disk.

By an analogy with the action of the symmetric group by permutations in
various mathematical settings, there exists a natural action of the braid group on n-
tuples of objects or on the n-folded tensor product that involves some twistors. Let
us consider an arbitrary group G, and let X be the set of all n-tuples of elements of G
whose product is the identity element of G. The kernel of the homomorphism
LBBIO

n ! ΩBIO
n is a subgroup of LBBIO

n called pure loop braid group for biology on n
strands and denoted as LPBIO

n . In the pure braid, the beginning and end of each
strand are in the same position. Pure braid groups fit into a short exact sequence

1 ! LFn�1 ! LPBIO
n ! LPBIO

n�1 ! 1: (52)

This sequence splits, and therefore pure braid groups are realized as iterated
semi-direct products of free groups.

The braid group B3 is the universal central extension of the modular group
PSL 2;ℤð Þ, with these sitting as lattices inside the universal covering group. If we
define OD, OR, and OP as active layers over the superspace of DNA, RNA, and
protein, OD ∗ , OR ∗ , and OP ∗ , as passive layers, we can define braid group in genetic
code by a curvature inside DNA, RNA, and protein folding structure. It is a source
of an acceleration of biological clock in the epigenetic code. We let σD, σR, σP, σD ∗ ,

σR ∗ , σP ∗ , and σ Aμ½ � and Aμ

� � ¼ A½ �, U½ �, C½ �, G½ �, NA½ �, NU½ �, NC½ �, NG½ � be a loop
braid group elements in the genetic code. They are the circular Artin braid groups
for the genetic code. One can then define

ΨR ¼ σDσRσD, ΨP ¼ σDσR, ΨP ∗ ¼ σRσDσR: (53)

The braid group operation gives ΨP

σDΨPσD
�1 ¼ σRΨPσR

�1 ¼ ΨP (54)

implying that ΨP is in the center of B3. It is a wave function of protein transition
anyon state. If G ¼ LBBIO

n acts on Xt, we get

σD
∗

i Ψi d1;…; di�1; di; diþ1;…; dnð Þ
¼ Ψi d1;…; di�1; diþ1; d

�1
iþ1didiþ1; diþ2;…; dn

� �
:

(55)

If G ¼ LBBIO
n acts on Yt, we get

σR
∗

i Ψi r1;…; ri�1; ri; riþ1;…; rnð Þ
¼ Ψi r1;…; ri�1; riþ1; r�1

iþ1ririþ1; riþ2;…; rn
� �

:
(56)

If G ¼ LBBIO
n acts on Pt ¼ Xt=Yt, we get

σP
∗

i Ψi p1;…; pi�1; pi; piþ1;…; pn
� �

¼ Ψi p1;…; pi�1; piþ1; p
�1
iþ1pipiþ1; piþ2;…; pn

� �
:

(57)
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Thus the elements di and diþ1 exchange places in DNA strand by an analogy with
genetic variation. If di is twisted by the inner automorphism corresponding to diþ1

at the position i ¼ dt ∗ , the product of the d components remains the identity
element. It may be checked that the braid group relations are satisfied and this
formula indeed defines a group action of LBBIO

n on Xt.

4. Conclusions

The spin-orbit coupling is an important quantity, which is measurable in the
carbon nanostructures, including the graphitic wormhole (or its nanotubular part);
it can also help to identify the wormhole structure in details. SOC in a graphene
could be induced by the nonzero curvature; in the particular case of the wormhole
with negative curvature, the chiral fermions penetrating through the connecting
nanotube in the wormhole structure could be created. The two-component Dirac
equation is changed into the usual four-component form. As a consequence, the
chiral fermions should be detected close to the wormhole bridge; the effect is
stronger if the radius of the wormhole bridge is smaller. Moreover, one can detect
permanently oriented flow when the chiral fermions prefer only one direction of
the massive or massless fermionic current from the upper graphene sheet to the
lower one, depending on the wormhole curvature.

We also describe the role of spinor fields in the time series of genetic code. The
reversed transcription process of the gene expression could be defined by a moduli
state space model of a coupling spinor field between the gene of a viral particle and
the host cell. As a general result, all states of codon can be computed by the Chern-
Simons 3-forms. The Chern-Simons current, coming from ghost and anti-ghost
fields of supersymmetry theory, can be used to define a spectrum of gene expres-
sion in new time series data where a spinor field, as alternative representation of a
gene, is adopted instead of using the alphabet sequence of standard bases A, T, C,
U, and G. Effort is also directed toward the explanation of the adaptive behavior of
immunosystem and to find the source of cancer from the physiology of telomere
malfunction in DNA repairing state. Similar examination of Holo-Hilbert spectral
analysis of the Chern-Simons current in V3 loop genotypes was performed recently
in [33]. A genetic variation in V3 loop genotypes was forecast by using the imaging
generated from tensor correlation network with an autoregressive integrated mov-
ing average model, support spinor model, and convolutional neural network algo-
rithms.

The reported results of the work have promissory perspective for their extension
to interdisciplinary areas as machine learning, econophysics, or biological sciences.
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the host cell. As a general result, all states of codon can be computed by the Chern-
Simons 3-forms. The Chern-Simons current, coming from ghost and anti-ghost
fields of supersymmetry theory, can be used to define a spectrum of gene expres-
sion in new time series data where a spinor field, as alternative representation of a
gene, is adopted instead of using the alphabet sequence of standard bases A, T, C,
U, and G. Effort is also directed toward the explanation of the adaptive behavior of
immunosystem and to find the source of cancer from the physiology of telomere
malfunction in DNA repairing state. Similar examination of Holo-Hilbert spectral
analysis of the Chern-Simons current in V3 loop genotypes was performed recently
in [33]. A genetic variation in V3 loop genotypes was forecast by using the imaging
generated from tensor correlation network with an autoregressive integrated mov-
ing average model, support spinor model, and convolutional neural network algo-
rithms.

The reported results of the work have promissory perspective for their extension
to interdisciplinary areas as machine learning, econophysics, or biological sciences.
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Chapter 8

The Ising Model: Brief
Introduction and Its Application
Satya Pal Singh

Abstract

Though the idea to use numerical techniques, in order to solve complex
three-dimensional problems, has become quite old, computational techniques have
gained immense importance in past few decades because of the advent of new
generation fast and efficient computers and development of algorithms as parallel
computing. Many mathematical problems have no exact solutions. Depending on
the complexity of the equations, one needs to use approximate methods. But there
are problems, which are beyond our limits, and need support of computers. Ernst
Ising published his PhD dissertation in the form of a scientific report in 1925.
He used a string of magnetic moments; spin up (+1/2) and spin down (�1/2), and
applied periodic boundary conditions to prove that magnetic phase transition does
not exist in one dimensions. Lars Onsager, latter, exactly solved the phase transition
problem in two dimensions in 1944. It is going to be a century-old problem now.
A variety of potential applications of Ising model are possible now a days; classified
as Ising universality class models. It has now become possible to solve phase transi-
tion problems in complex three-dimensional geometries. Though the area of
spinotronics still needs more engagements of computational techniques, its limited
use have provided good insights at molecular scale in recent past. This chapter gives
a brief introduction to Ising model and its applications, highlighting the develop-
ments in the field of magnetism relevant to the area of solid state physics.

Keywords: surface-directed phase separation, wetting-dewetting, Monte Carlo
simulation

1. Introduction

Ernst Ising (Figure 1) was born on May 10, 1900, in Loe Koln. He started
schooling in 1907 and obtained his diploma at the gymnasium there in the year 1918.
After brief military training, he studied mathematics and physics at Gottingen
University in the year 1919. After a short gap, he continued his studies and learnt
astronomy apart of other subjects. He got focused to theoretical physics at the sug-
gestion of Professor W. Lenz. He started investigating ferromagnetism under super-
vision of W. Lenz by the end of the year 1922. Ising published short paper in 1925 as
a summary of his doctoral thesis [1, 2]. He exactly calculated partition function for
one-dimensional lattice system of spins. Ising had first proven that no phase transi-
tion to a ferromagnetic ordered state occurs in one dimension at any temperature.

His argument in the favor of his mathematical note was very simple. Suppose, if
one of the spins get flipped at a random position because of thermal agitation, there
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not exist in one dimensions. Lars Onsager, latter, exactly solved the phase transition
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A variety of potential applications of Ising model are possible now a days; classified
as Ising universality class models. It has now become possible to solve phase transi-
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a brief introduction to Ising model and its applications, highlighting the develop-
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Ernst Ising (Figure 1) was born on May 10, 1900, in Loe Koln. He started
schooling in 1907 and obtained his diploma at the gymnasium there in the year 1918.
After brief military training, he studied mathematics and physics at Gottingen
University in the year 1919. After a short gap, he continued his studies and learnt
astronomy apart of other subjects. He got focused to theoretical physics at the sug-
gestion of Professor W. Lenz. He started investigating ferromagnetism under super-
vision of W. Lenz by the end of the year 1922. Ising published short paper in 1925 as
a summary of his doctoral thesis [1, 2]. He exactly calculated partition function for
one-dimensional lattice system of spins. Ising had first proven that no phase transi-
tion to a ferromagnetic ordered state occurs in one dimension at any temperature.

His argument in the favor of his mathematical note was very simple. Suppose, if
one of the spins get flipped at a random position because of thermal agitation, there
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is no force available, which can stop the neighboring spins to flip in the same
direction. And this process will go on and on, and completely ordered state will not
remain stable at a finite temperature. Thus no phase transition will occur at a finite
temperature. Ideally speaking, any ordered state will always remain like a metasta-
ble state at finite temperature and nothing more. Molecular motion seizes at
absolute zero temperature. So, one may expect that no spin fluctuations may occur
at absolute zero temperature. Henceforth, the stable ordered state is a natural
outcome at absolute zero temperature. But, it cannot be said to be a critical tem-
perature in true sense. The existence of phase transition at this temperature has no
physical meaning, because there is no temperature below it. After going through
some approximate calculations, Ising purportedly showed that his model could not
exhibit a phase transition in two and three dimensions, either. Latter, his conclusion
was proven to be erroneous [1, 2] (Figure 2).

Barry Simon has quoted it very well “This model was suggested to Ising by his
thesis advisor, Lenz. Ising solved the one-dimensional model, and on the basis of the
fact that the one-dimensional model had no phase transition; he asserted that there
was no phase transition in any dimension. As we shall see, this is false. It is ironic
that on the basis of an elementary calculation and erroneous conclusion, Ising’s
name has become among the most commonly mentioned in the theoretical
physics literature. But history has had its revenge. Ising’s name, which is correctly
pronounced “E-zing”, is almost universally mispronounced “I-zing”.”

Ising’s paper credited Wilhelm Lenz for his original idea, who had first proposed
it in the year 1920. W. Lenz was Ising’s research supervisor. It has been often
rendered as Lenz-Ising model in many citations. Lenz suggested that dipolar atoms
in crystals are free to rotate in quantized manner. He proposed quantum
treatment of dipole orientations, though in its classical version, Ising considered
only two spin states, i.e., S =�½. Ising discussed his results with Professor Lenz and
Dr. Wolfgang Pauli, who was teaching at Hamburg at that time. Ising’s work was
first cited by famous contemporary scientist Heisenberg. Heisenberg was
first one to realize the failure of Lenz-Ising model. In order to explain ferromagne-
tism, he developed his own theory, using complicated interactions of spins. There

Figure 1.
Ernst (Ernest) Ising (May 10, 1900–May 11, 1998).
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are more scientists in the list, whose contribution to Lenz-Ising model or simply say
Ising model must be cited here, because of their historical relevance. They have
greatly enriched and contributed to this new model. This list includes scientists like
Gorskly (1928), R. H. Fowler (1930), Bragg and Williams (1934), R. Peierls (1936),
J. G. Krikwood (1938), Hens Bethe (1939), Kramers and Wannier (1941), and
Onsager (1942). They further extended Ising model to a new class of problems.

2. Application of Ising model

Ising model has been extensively used for solving a variety of problems [3–18].
Some of the problems are discussed, here, with appropriate examples.

2.1 Phase separation and wetting/dewetting

Ising model was first exploited for investigating spontaneous magnetization in
ferromagnetic film (i.e. magnetization in the absence of external magnetic field).
An example case of Ising model using metropolis algorithm is shown in Figure 3.
Transition temperature depends on the strength of the inter-spin exchange cou-
pling; the dominating term governs the kinetics, when long-range interactions are
introduced in the calculations. Latter, it was used to study phase separation in
binary alloys and liquid-gas phase transitions (i.e., condensation of molecule in one
region of space of the box). Binary alloys constitute of two different atoms. At
temperature T = 0, Zn-Cu alloy; known as brass, gets completely ordered. This state
is said to be β-brass. In β-brass state, each Zn atom is surrounded by eight copper

Figure 2.
Random spin flipping in one-dimensional system.

Figure 3.
Variation in critical temperature vs. next nearest exchange coupling for a bcc lattice (reproduced with
permission from Singh [3]).
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atoms, placed at the corners of the unit cell of the body-centered cubic structure
and vice versa. The occupation of each site can be represented by:

ni ¼
1 if site i is occupied by atom A

0 if site i is occupied by atom B

�
(1)

The interaction energy between A-A, B-B, and A-B type of atoms are represented
by εAA, εBB, and εAB, respectively. Phase separation has been studied vastly, using
Ising model [4–6]. A phase is simply a part of a system, separated from the other
part by the formation of an interface; that essentially means that two components
aggregate and form rich regions of A and B type of molecules with an interface in
between them. The evolution of two distinct phases, when an initial random but
homogeneous mixture is annealed below a definite temperature, is known as phase
separation. Phase separation leads to discontinuity and inhomogeneity in the sys-
tems. This happens because the phase-separated regions are energetically more
stable. Phase separation has been an old problem and has been extended to study
diverse phenomena ranging frommagnetic liquid-liquid phase separation to protein-
protein phase separation in biological systems. This process has also been studied in
the presence of external surfaces having affinity to one type of atom or molecule
(Figure 4a). Both theoretical and experimental methods have been exploited and
have been found in close agreement. Formation of long ridges and circular drops has
been reported numerous occasions using lattice-based Ising model. For example, one
may look into John W. Cahn research paper published in The Journal of Chemical
Physics in the year 1965. The TEM image taken for Vycor, in which one phase had
been leached out and the voids were filled with lead (Figure 4b).

2.2 Lattice-based liquid-gas model

Yang and Lee first coined the term lattice gas in the year 1952. A lattice should
have larger volume (V) than the number of lattice molecules (N), so that some of
the nodes or lattice vertices are left empty (i.e., N < V). No lattice vertex can be
occupied by more than one particle. The interaction potential between two atoms at
lattice sites i and j is given by Eq. (2):

U rijð Þ ¼
�∈ if Si ¼ Sj ¼ 1:0 and rij ¼ 1:0

∞ if rij ¼ 0:0

0 else

8><
>:

(2)

For surface affinity of lower surface to ith liquid molecule, we chose:

V rið Þ ¼ � J0
r ið Þ if Si ¼ 1:0

0 otherwise

8<
: (3)

The occupation number (ni) of a lattice site i is given by:

ni ¼
1 if site i is occupied

0 if site i is un� occupied

�
(4)

One example case is shown in Figure 5. Here, we chose lattice size of
128 � 128 � 48. The fluid-fluid molecule and wall-liquid molecule interactions are
defined, respectively, in Eqs. (2) and (3). In canonical ensemble, the three-
dimensional lattice is swept one by one; by choosing sites regularly with one of its
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nearest neighbor (i.e., i = n and i + 1 = n + 1). Change in energy is calculated during
exchanging of these two sites; the exchange move is accepted, if Exp [�ΔE/kBT] is
found to be greater than or equal to a random number generated between [0, 1]. For
all cases of studies here, ε = 1 and J0 = 12.0, and only the lower surface is functional,
while the upper surface has only hard-sphere interaction with the fluid molecules.
Average number density for liquid-like molecules is taken as 0.25 [16].

Figure 6 shows micrograph of self-aligned liquid columns. The system evolves
from an initial homogeneous mixture of liquid- and gas-like molecules obtained by
annealing the system at high temperature for few thousand MC cycles. Dynamic
Monte Carlo simulation has been used with continuous but random trial move-
ments of the molecules. The lattice-based Ising model using Eqs. (2) and (3) is also
supposed to give same results, at least qualitatively.

2.3 Spin glasses

Crystalline solids possess short- and long-range order along its crystal axes and
maintain its periodicity in three dimensions. Liquids possess only short-range order,
and its molecules have no long-range correlation. Liquid molecules retain only
short-range order. Gases possess neither of the two. These are the three phases, in
which any matter may exist. What are the glasses then? Glasses are solids,

Figure 4.
(a) Surface-directed phase separation and dewetting in conserved binary mixture using two-dimensional
lattices of size 200 � 100 nodes. The conserved components are taken in ratio 70:30 at T = 0.70. Majority
component is attracted by upper and lower substrates, whereas the minority component has repulsive
interaction with the two interfaces. Periodic boundary conditions are applied along X-direction. The
micrograph is taken after completion of 30,000 Monte Carlo cycles using Kawasaki exchange method (the
figure is reproduced with permission from Singh [5]). (b) Shows Transmission Electron Microscope (TEM)
image of unsintered Vycor with one phase replaced by lead (X 200000). Reproduced with permission from
W. G. Schmidt and R. J. Charles, Journal of Applied Physics 35, 2552 (1964); doi: 10.1063/1.1702905.
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nearest neighbor (i.e., i = n and i + 1 = n + 1). Change in energy is calculated during
exchanging of these two sites; the exchange move is accepted, if Exp [�ΔE/kBT] is
found to be greater than or equal to a random number generated between [0, 1]. For
all cases of studies here, ε = 1 and J0 = 12.0, and only the lower surface is functional,
while the upper surface has only hard-sphere interaction with the fluid molecules.
Average number density for liquid-like molecules is taken as 0.25 [16].

Figure 6 shows micrograph of self-aligned liquid columns. The system evolves
from an initial homogeneous mixture of liquid- and gas-like molecules obtained by
annealing the system at high temperature for few thousand MC cycles. Dynamic
Monte Carlo simulation has been used with continuous but random trial move-
ments of the molecules. The lattice-based Ising model using Eqs. (2) and (3) is also
supposed to give same results, at least qualitatively.

2.3 Spin glasses

Crystalline solids possess short- and long-range order along its crystal axes and
maintain its periodicity in three dimensions. Liquids possess only short-range order,
and its molecules have no long-range correlation. Liquid molecules retain only
short-range order. Gases possess neither of the two. These are the three phases, in
which any matter may exist. What are the glasses then? Glasses are solids,

Figure 4.
(a) Surface-directed phase separation and dewetting in conserved binary mixture using two-dimensional
lattices of size 200 � 100 nodes. The conserved components are taken in ratio 70:30 at T = 0.70. Majority
component is attracted by upper and lower substrates, whereas the minority component has repulsive
interaction with the two interfaces. Periodic boundary conditions are applied along X-direction. The
micrograph is taken after completion of 30,000 Monte Carlo cycles using Kawasaki exchange method (the
figure is reproduced with permission from Singh [5]). (b) Shows Transmission Electron Microscope (TEM)
image of unsintered Vycor with one phase replaced by lead (X 200000). Reproduced with permission from
W. G. Schmidt and R. J. Charles, Journal of Applied Physics 35, 2552 (1964); doi: 10.1063/1.1702905.
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possessing no long-range order. Molecules may only locally arrange themselves to
minimize its free energy. If the molecular arrangement is completely random, then
a term “random media” is assigned to that. Glasses are understood as supercooled
liquids. If a liquid is frozen abruptly, so that the molecules do not get sufficient time
to organize themselves, some local order can be retained inside the frozen liquid.
Glasses have one peculiar property. These retain relatively higher entropy even at
quite low temperatures. One example is Mn doped in metals as impurity. Mn atoms
interact with other Mn so (i.e. impurity atom) via RKKY interaction Jij rð Þ � cos 2kFrð Þ

kFrð Þ3 .

Because of the oscillations in it, the interactions remain random. Such spin systems
are classified as spin glasses. There is great deal of frustrations in spin orientations;
so on many occasions, these are also referred as “frustrated spin glasses.”

Lenz-Ising model did not remain limited to above problems only, but it was
extensively used to study liquid mixtures, ternary and quaternary alloys, polymer
and their mixtures, random walk problem, and many others. The important aspect
of Ising model is that a variety of problems (including some problems mentioned
above) can be investigated by the similar kind of modeling and approach all
together. It is no longer necessary to develop a different kind of theory for each type
of cooperative phenomenon. Despite of all the above, it has been ironical that the
inventor of the model, Ernst Ising, gave up the idea on working it, any further
presuming that his model has no physical significance. He realized after two
decades that he had become famous for his model because of the results obtained by
other scientist based on his model, rather by his own work. It has been a queer
sensation that the results of Ising model matched with any experimental data or the
model was bit artificial. As for as the exponents were concerned, they were of
universal nature, and a wide variety of systems have the same Ising exponents. The
experimental evidence in favor of it remained a challenge, for many decades. In the

Figure 5.
Micrograph for box thickness Hz = 48 after completion of 20 K M C cycles (figure is reproduced with permission
from proceedings, Singh [16]).
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year 1974, an alloy was found, which first showed that its magnetic behavior exactly
matched with the Onsager result.

3. Mathematical formulation in one dimension

Various textbooks are available nowadays, which discuss Ising model and its
applications in greater details [19–22]. Here, brief theory of one-dimensional Ising
model is presented. H, Q, and A stands for Hamiltonian, partition function, and
free energy of the system, respectively:

HN Sif g ¼ �J
X
n, n

SiSj � μ B
XN
i¼1

Si (5)

HN Sif g ¼ �J
XN
i ¼ 1

< i, j>

SiSiþ1 � 1
2
μB
XN
i¼1

Si þ Siþ1ð Þ (6)

Figure 6.
Self-assembled channels formed in confined geometry; the system starts with a random mixture of square-well
fluid (A-type) and hard-sphere (B type) particles. The chemically patterned surface has affinity to (A-type)
with interaction range λA-A = 1.5, λA-B = 1.5, λWall-A = 2.0; interaction strengths were taken as εAA = 1.0,
εAB = 0.5, and εWall-A = 3.0. Average number density of the system has been taken as ρ = 0.40. Pore width
H = 4.0 and composition ratio A:B = 50:50 were taken for all cases of studies. The micrograph and density data
were taken after completion of 40 � 105 Monte Carlo cycles (the figure is reproduced with permission from
Singh et al. [14]).
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QN B,Tð Þ ¼ �
X
S1¼�1

… … … ::
X
SN¼�1

eβ
PN

i
JSiSiþ1þ1

2μB SiþSiþ1ð Þf g (7)

Si Pj jSiþ1h i ¼ eβ JSiSiþ1þ1
2μB SiþSiþ1ð Þf g (8)

QN B,Tð Þ ¼
X
Si¼�1

… … … …
X
SN¼�1

S1 Pj jS2h i S2 Pj jS3h i… … … … : SN�1 Pj jSNh i SN Pj jS1h i

(9)

QN B,Tð Þ ¼
X
Si¼�1

X
Siþ1¼�1

eβJSiSiþ1þ1
2μβ SiþSiþ1ð Þ (10)

P ¼
eβ JþμBð Þ e�βJ

e�βJ eβ J�μBð Þ

0
@

1
A (11)

QN B,Tð Þ ¼
X
S¼�1

S PN
�� ��S� � ¼ Trace PN� � ¼ γN1 þ γN2 (12)

eβ JþμBð Þ � γ e�βJ

e�βJ eβ J�μBð Þ � γ

0
@

1
A ¼ 0 (13)

γ2 � 2γeβJ cosh βμBð Þ þ 2 sinh 2βJð Þ ¼ 0 (14)

γ1

γ2

 !
¼ eβJ cosh βμBð Þ þ 2 sinh 2 βJð Þ ¼ 0 (15)

γ1

γ2

 !
¼ eβJ cosh βμBð Þ � e�2βJ þ e2βJ sinh 2 βμBð Þ� �1=2

(16)

γ2 < γ1;
γ2
γ1

� �N

! 0 (17)

lnQN B,Tð Þ ffi Nln γ1 (18)

1
N

lnQN B,Tð Þ ffi ln eβJ cosh βμBð Þ þ e�2βJ þ e2βJ sinh 2 βμBð Þ� �1=2h i
(19)

A B,Tð Þ ¼ NJ �NkBT ln cosh βμBð Þ þ e�4βJ þ sinh 2 βμBð Þ� �1=2h i
(20)

U B,Tð Þ � �kBT2 ∂

∂T
A
kBT

� �
(21)

U B,Tð Þ � �NJ � NμBsinh βμBð Þ
e�4βJ þ sinh 2 βμBð Þ� �1=2

þ 2NJe�4βJ

cosh βμBð Þ þ e�4βJ þ sinh 2 βμBð Þ� �1=2h i
e�4βJ þ sinh 2 βμBð Þ� �1=2

(22)

Some thermodynamic functions are defined as follows:

M B,Tð Þ � � ∂A
∂B

� �

T
¼ Nμ sinh βμBð Þ

e�4βJ þ sinh 2 βμBð Þ� �1=2 (23)
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χ � ∂M
∂B

! χ0 Tð Þ ¼ Nμ2

kBT
e2J=kBT (24)

3.1 Case A: free boundary with zero field

Partition function is given by:

Q 0,Tð Þ ¼
X
S1

… … ::
X
SN�1

eK
PN�1

i¼1
SiSiþ1 (25)

Here, K = β J.
We now define a new variable:

σi ¼ SiSiþ1;Here i ¼ 1, 2, … … ::N � 1 (26)

Then we can assign σ to two values, i.e., �1:

σi ¼
þ1 if Si ¼ Siþ1

�1 if Si ¼ �Siþ1

�
(27)

In order to consider contributions from all possible configurations {S1, S2, S3…
… … SN}, we need to provide the set of numbers {σ1, σ2, σ3… … ..σN-1}; here each Si
can take two values as�1. Configuration in a lattice description means a particular set
of values of all spins; if there are N numbers of vertices, there will be 2N different
configurations as a result of permutation and combination of spins. The space, thus
formed with these configurations, is called configuration space. Here, summing over
σi will give only half value of Q, henceforth, we can write:

Q 0,Tð Þ ¼ 2
X
σ1

… … ::
X
σN�1

eK σ1þσ2þσ3 … … … … ::þσN�1ð Þ (28)

Q 0,Tð Þ ¼ 2
X
σ1

… … ::
X
σN�1

eK σ1þσ2þσ3 … … … … ::þσN�1ð Þ (29)

Q 0,Tð Þ ¼ 2 2coshKð ÞN�1 (30)

3.2 Case B: periodic boundary with zero field

Now, the partition function is given by:

Q 0,Tð Þ ¼
X
S1

… … ::
X
SN�1

eK
PN�1

i¼1
SiSiþ1þKSNS1 (31)

Here, SN+1 = S1

Q 0,Tð Þ ¼
X
S1

… … ::
X
SN�1

eK σ1þσ2þ… … … σN�1ð ÞþKσ1σ2 … … … σN�1 (32)

Since (Si)
2 = 1, we can write S1SN=S1. S2. S2. S3. S3… … … ... SN-1. SN-1. SN

Q 0,Tð Þ ¼ 2
X
σ1

… … ::
X
σN�1

eK σ1þσ2þ… … … σN�1ð ÞX∞
n¼0

Kσ1σ2σ3 … :σN�1

n!

� �n

(33)
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… … ::
X
SN�1

eK σ1þσ2þ… … … σN�1ð ÞþKσ1σ2 … … … σN�1 (32)

Since (Si)
2 = 1, we can write S1SN=S1. S2. S2. S3. S3… … … ... SN-1. SN-1. SN

Q 0,Tð Þ ¼ 2
X
σ1

… … ::
X
σN�1

eK σ1þσ2þ… … … σN�1ð ÞX∞
n¼0

Kσ1σ2σ3 … :σN�1

n!

� �n

(33)
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Here, second part in exponential has been converted into a summation series:

Q 0,Tð Þ ¼ 2
X∞
n¼0

Kn

n!

X
σ

σneKσ
" #N�1

(34)

Q 0,Tð Þ ¼ 2
X∞
n¼0

Kn

n!
eK þ �1ð Þne�K� �N�1

(35)

Q 0,Tð Þ ¼ 2 coshKð ÞN þ 2 sinhKð ÞN (36)

It can be shown that in thermodynamic limit, (i.e. N! ∞), the free energy of the
system converge to a finite value. Readers are left with the exercise. So, periodic
boundary condition, as shown in Figure 7 (invented by Ising), really helps one to get
rid of constructing infinitely large systems. Using appropriate boundary conditions,
one may obtain realistic results using large but finite number of spins.

4. Critical phenomena

A lot of research work has been dedicated to observe system behavior near
critical points [23–27]. The relevant thermodynamic variables exhibit power-law
dependences on the parameter (T � Tc) specifying the distance away from the
critical point. The critical points are marked by the fact that different physical
quantities pertaining to the system pose singularities at the critical point. These
singularities are expressed in terms of power laws of (T � Tc) characterized by
critical exponents. As, for example, magnetization <M > identified as an order
parameter in magnetism, shows dependence on critical temperature (Tc), with
exponent β as follows other exponents are also listed below.

Reduced temperature t � (T � Tc)/Tc.
α: specific heat c (t) � t�α; B � h = 0.
β: spontaneous magnetization M (t) � (�t)β,T ≤ Tc, B � h = 0.
γ: magnetic susceptibility χ = ∂M/∂ℎ,T � |t|�γ, B � h = 0.
δ: critical Isotherm M (h) � |ℎ|1/δ sgn (ℎ), t = 0.
ν: correlation length, ξ � |t|�ν, B � h = 0.
η: correlation function G (r) � r(�d+2�η), t = 0, B � h = 0.

Figure 7.
Representation of periodic boundary conditions in a one-dimensional Ising chain.
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4.1 Scaling hypothesis and renormalization group theory

Kadanoff first suggested that, when a system is near critical temperature, indi-
vidual spins may be grouped into blocks of spins [23]. It is possible because of the
fact that the spin-spin correlation length becomes exceedingly large near Tc and
details of individual spins no longer remain important. In transformed system, each
block plays the role of a single spin. Now, the spin variable associated with a single
block is denoted by symbol σi. σi can take values�1. The new system is composed of
N0 spins (Figure 8).

N0 ¼ l�dN (37)

Lattice constant:

a0 ¼ la (38)

In order to preserve the spatial density of the degrees of freedom of spins in the
system, the spatial distances are rescaled by the factor l.

r0 ¼ l�1r (39)

Now, the partition function can be updated as follows:

Q ¼
X
σif g

e �βHN σif g½ � (40)

This idea was first propounded by Kadanoff, and was later developed byWilson.
This process is also referred as decimation process. A new exchange coupling con-
stant is assigned for interaction between σi. This new construction of lattice does not
alter the free energy of the system, and it remains the same as obtained by the
original method. The rescaling process helps to find relations between various
exponents. More detailed discussion on this topic can be found in standard text-
books of Statistical Mechanics by Patharia, Huang, etc. Since this process involves

Figure 8.
Spin decimation process in a two-dimensional square lattice. A small cluster of 36 spins gets transformed into 9
nodal points.

125

The Ising Model: Brief Introduction and Its Application
DOI: http://dx.doi.org/10.5772/intechopen.90875



Here, second part in exponential has been converted into a summation series:

Q 0,Tð Þ ¼ 2
X∞
n¼0

Kn

n!

X
σ

σneKσ
" #N�1

(34)

Q 0,Tð Þ ¼ 2
X∞
n¼0

Kn

n!
eK þ �1ð Þne�K� �N�1

(35)

Q 0,Tð Þ ¼ 2 coshKð ÞN þ 2 sinhKð ÞN (36)

It can be shown that in thermodynamic limit, (i.e. N! ∞), the free energy of the
system converge to a finite value. Readers are left with the exercise. So, periodic
boundary condition, as shown in Figure 7 (invented by Ising), really helps one to get
rid of constructing infinitely large systems. Using appropriate boundary conditions,
one may obtain realistic results using large but finite number of spins.

4. Critical phenomena

A lot of research work has been dedicated to observe system behavior near
critical points [23–27]. The relevant thermodynamic variables exhibit power-law
dependences on the parameter (T � Tc) specifying the distance away from the
critical point. The critical points are marked by the fact that different physical
quantities pertaining to the system pose singularities at the critical point. These
singularities are expressed in terms of power laws of (T � Tc) characterized by
critical exponents. As, for example, magnetization <M > identified as an order
parameter in magnetism, shows dependence on critical temperature (Tc), with
exponent β as follows other exponents are also listed below.

Reduced temperature t � (T � Tc)/Tc.
α: specific heat c (t) � t�α; B � h = 0.
β: spontaneous magnetization M (t) � (�t)β,T ≤ Tc, B � h = 0.
γ: magnetic susceptibility χ = ∂M/∂ℎ,T � |t|�γ, B � h = 0.
δ: critical Isotherm M (h) � |ℎ|1/δ sgn (ℎ), t = 0.
ν: correlation length, ξ � |t|�ν, B � h = 0.
η: correlation function G (r) � r(�d+2�η), t = 0, B � h = 0.

Figure 7.
Representation of periodic boundary conditions in a one-dimensional Ising chain.

124

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…

4.1 Scaling hypothesis and renormalization group theory

Kadanoff first suggested that, when a system is near critical temperature, indi-
vidual spins may be grouped into blocks of spins [23]. It is possible because of the
fact that the spin-spin correlation length becomes exceedingly large near Tc and
details of individual spins no longer remain important. In transformed system, each
block plays the role of a single spin. Now, the spin variable associated with a single
block is denoted by symbol σi. σi can take values�1. The new system is composed of
N0 spins (Figure 8).

N0 ¼ l�dN (37)

Lattice constant:

a0 ¼ la (38)

In order to preserve the spatial density of the degrees of freedom of spins in the
system, the spatial distances are rescaled by the factor l.

r0 ¼ l�1r (39)

Now, the partition function can be updated as follows:

Q ¼
X
σif g

e �βHN σif g½ � (40)

This idea was first propounded by Kadanoff, and was later developed byWilson.
This process is also referred as decimation process. A new exchange coupling con-
stant is assigned for interaction between σi. This new construction of lattice does not
alter the free energy of the system, and it remains the same as obtained by the
original method. The rescaling process helps to find relations between various
exponents. More detailed discussion on this topic can be found in standard text-
books of Statistical Mechanics by Patharia, Huang, etc. Since this process involves

Figure 8.
Spin decimation process in a two-dimensional square lattice. A small cluster of 36 spins gets transformed into 9
nodal points.

125

The Ising Model: Brief Introduction and Its Application
DOI: http://dx.doi.org/10.5772/intechopen.90875



length transformation or a change of scale, Wilson introduced the concept of
renormalization group theory after removing certain deficiencies in Kadanoff’s
scaling hypothesis. A greater detail of this is omitted here, because that is beyond
the scope of the chapter.

5. Physical realization: simulation results based on Ising model

We now discuss some of the simulation results obtained using Ising model.
Figure 9 shows spontaneous magnetization for a simple cubic crystal (i.e., scc
lattice). As the strength of exchange coupling between spin-up and spin-down (JAB)
decreases, the critical temperature lowers down. Lower values of JAB weaken the
spin flip-flop mechanism; henceforth the system requires further cooling, so that
the spin-spin correlation overcomes the fluctuations. Spontaneous magnetization
occurs in the absence of external magnetic field [28]. The confirmation of sponta-
neous process is further confirmed in Figure 10. Figure 10 is plotted for spin

Figure 9.
Spontaneous magnetization in two-dimensional thin film (this figure is reproduced with permission from Singh [28]).

Figure 10.
Correlation function vs. temperature for a two-dimensional thin film. Spontaneous magnetization is marked by
discontinuity in it (this figure is reproduced with permission from Singh [28]).
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correlation function vs. temperature of the system [28]. The critical temperature is
marked by the presence of discontinuity in it. Above critical temperature, the
magnetization abruptly falls to zero, which is an indication of paramagnetic state.
The critical temperature in ferromagnetic thin film is known as Curie temperature.
We observe similar kind of behavior with antiferromagnetic films, though below
critical point (also known as Neel temperature), the net average magnetization
becomes zero, because opposite spins are energetically favored in this case. The
schematic diagram is shown in Figure 11 [28]. Magnetization vs. external magnetic
field curves are plotted in Figure 12(a)–(d) for different sets of parameters [28].

Simulation results obtained for a magnetically striped system as schematically
shown in Figure 13 are reported in Figures 14–17 [29]. One or two alternate
rectangular regions are created, using external field. Figure 14 shows the gradual
transition at the interface, where a definite value of external field suddenly gets
zero. The spin polarizations in two regions show sharp boundary. The magnetized
film, in presence of magnetic field, induces the magnetic zones in proximity where
its close external field is zero. Micrograph also indicates for spin-spin phase separa-
tion. The corresponding average magnetization vs. temperature and spin correla-
tion function vs. temperature are also plotted in Figures 15 and 16, respectively, but
these studies are done using Monte Carlo simulation with semi-infinite free bound-
ary conditions. It has been observed that these systems have relatively high critical
transition temperatures. Figure 17 shows the magnetization process with two alter-
nate magnetized zones [29].

Low-dimensional magnetic heterostructures play vital role in spinotronics.
Ferromagnets can induce magnetic ordering through a 40-nm-thick amorphous
paramagnetic layer, when placed in its close proximity. One has to reconcile with
long-range magnetic interaction to correctly measure the extent of induced magne-
tization. Readers may go through the Nature Communications article of F. Magnus
et al. published in the year 2016 [17]. The magnetic properties of ferromagnetic
materials with reduced dimensions get altered; when the thickness of a film is

Figure 11.
Schematic representation of ferromagnetic to paramagnetic and antiferromagnetic to paramagnetic transitions.
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reduced below a critical value, the ferromagnetic to paramagnetic transition disap-
pears [18]. Finite-size effects may also weaken or enhance magnetic interactions at
the boundaries, as well as restrict the evolution of spin-spin correlation length.
Extension of these ideas to model magnetic heterostructures, comprising
of multiple magnetic and/or nonmagnetic layers, gives insight into interfacial phe-
nomena. Many current and emerging technologies are based on this central prob-
lem. This may be very useful in understanding and exploring problems as metal-
insulator transition, which is at the core of many state-of-the-art technologies.
Henceforth, computational techniques, especially Ising model, can now be
extended to develop and enrich science, for making new technologies. Though,
its use can be said at the nascent stage, but with the advancement in computer
hardware and efficient algorithms, it’s applications in areas related to spinotronics
appears to be bright.

Figure 13.
(a) The system with one slab of size nx � ny � nz = 50 � 100 � 100 exposed to an external magnetic field.
(b) The system with two alternate slabs of size nx � ny � nz = 50 � 100 � 100 exposed to an external
magnetic field.

Figure 12.
(a) Magnetization vs. external fields at different temperature T = 0.50, 1.0, 1.5, and 2.0. (b) Magnetization
vs. external fields for different exchange couplings J = 0.0, 0.25, 0.50, 0.75, and 1.0. These cases are for
ferromagnetic thin films. (c) Magnetization vs. external fields at different temperature T = 0.50, 1.0, 1.5, and
2.0. (d) Magnetization vs. external fields for different exchange couplings J = 0.0, 0.25, 0.50, 0.75, and 1.0.
These cases are for antiferromagnetic thin films (this figure is reproduced with permission from Singh [28]).

128

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…

Figure 14.
The micrograph of the coexisting phases in the regions of close proximity of the magnetic barrier indicating for
the presence of depletion layer near the barrier.

Figure 15.
Magnetization vs. temperature for magnetically striped system. Only one region experiences the presence of
external magnetic field as illustrated in Figure 12(a). This simulation is done for simple cubic lattice with
semi-infinite free boundary conditions (the figure is reproduced with permission from Singh [29]).

Figure 16.
Spin correlation function vs. temperature for magnetically striped system. Only one region experiences the
presence of external magnetic field as illustrated in Figure 13(a). This simulation is done for simple cubic
lattice with semi-infinite free boundary conditions (the figure is reproduced with permission from Singh [29]).
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Figure 17.
Magnetization vs. temperature for magnetically striped system. Two alternate regions experience the presence of
external magnetic field as illustrated in Figure 12(b). This simulation is done for simple cubic lattice with
semi-infinite free boundary conditions (the figure is reproduced with permission from Singh [29]).
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Abstract

In this chapter the exchange bias (EB) properties of bulk Mn-rich Ni50-xMn37+xSn13 
(0 ≤ x ≤ 4) Heusler alloys has been discussed by changing the Ni-Mn concentration. 
In these alloys the exchange bias field increases with the excess Mn concentration, 
but exchange bias blocking temperature (TEB) decreases from 149 to 9 K. The hyster-
esis loop for Ni46Mn41Sn13 alloy shows a maximum shift of 377 Oe. The exchange bias 
property is strongly influenced by varying Ni-Mn concentration in Ni-Mn-Sn alloys 
then the variation of Mn/Sn. We have observed in these alloys that the TEB would 
show a decreasing value either by changing the Ni or Sn concentration while the Mn 
content is above 37% in Ni-Mn-Sn alloys.

Keywords: exchange bias, anisotropy, antiferromagnetism, ferromagnetism, 
blocking bias temperature, coercive field, exchange bias field

1. Introduction

From the discovery of exchange bias (EB) in CoO particle [1], more work has 
been done on this area both experimentally and theoretically due to its potential 
applications in various fields such as spintronic devices, permanent magnets, 
magnetic recording, read head and giant magnetoresistive sensors, etc. [2–5]. EB 
arises in the presence of applied magnetic field after cooling the materials and it is 
connected with the exchange anisotropy formed at the interface between an anti-
ferromagnetic (AFM) and ferromagnetic (FM) materials. The whole phenomenon 
at low temperature shifts the hysteresis loops along the field axis. This similar kind 
of phenomenon is observed in multilayer films, small oxide particles, nanostruc-
tures and inhomogeneous materials [6–9]. In addition to this, the EB phenomenon 
is also observed in materials which contains spin glass phase [10]. Recently, 
Ni-Mn-X (X = Ga, Sb, In, Sn) Heusler-based alloy systems achieved great atten-
tion due to their immense applications in magnetic refrigeration, magnetic 
actuated devices and spintronic devices [11, 12]. The different composition of 
Ni-Mn-Sn alloy shows a wide physical properties such as magnetic field-induced 
transition, inverse magnetocaloric effect (IMCE), giant magnetoresistance, giant 
Hall effect, giant magnetothermal conductivity, magnetic superelasticity effects, 
exchange bias and shape memory effect [13–17].

The recent observation of EB in the Ni-Mn-based alloys shows an intense inter-
est in the further study of magnetic properties. Due to the different occupations of 
Mn atoms in the Sn sites as well in the Ni sites, the Ni-Mn-Sn alloy will have excess 
content of Mn atom. Hence the EB property is very sensitive to the excess Mn. The 
Ni2MnSn Heusler alloy crystallizes in L21 structure, in which the Ni atoms occupy in 
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the (1/2, 1/2, 1/2) and (0, 0, 0) sites, Mn atoms occupy in the (1/4, 1/4, 1/4) site and 
Sn atoms occupy in the (3/4, 3/4, 3/4) site [18]. In the Mn-rich alloys, the excess Mn 
occupying Ni and Sn sites couples antiferromagnetically to surrounding Mn atoms 
on the regular Mn sites [19]. Also the decrease of Mn-Mn distance may lead to AFM 
exchange between each other in the martensite phase at low temperature. The EB 
behaviour has been studied in Ni-Mn-X (X = Sb, Sn, In) alloys by several authors 
[20–23]; particularly in Ni-Mn-Sn alloy, the EB behaviour has been investigated 
either by varying the Ni/Sn or Mn/Sn concentration [24, 25]. The structural effects, 
magnetic property and magnetic entropy change have been studied by varying 
Ni-Mn concentration in the Ni50-xMn37+xSn13 (0 ≤ x ≤ 4) Heusler alloy system [26]. 
In the Ni50-xMn37+xSn13 alloy system, the cubic austenite phase was stabilized by the 
excess Mn content at room temperature. The martensitic transition temperature 
decreases from 305 to 100 K by increasing the Mn concentration. The exchange bias 
blocking temperature (TEB) was found to decrease drastically from 149 to 9 K with 
increasing Mn concentration. In this work, we have taken up a detailed study on the 
effect of varying Ni-Mn concentration on EB properties in the bulk Ni50-xMn37+xSn13 
alloys. This chapter explains the EB behaviour by varying Ni-Mn concentration in 
Ni-Mn-Sn alloys.

2. Experimental details

The compositions of Ni50-xMn37+xSn13 (x = 0, 1, 2, 3, 4) alloys were prepared by 
arc melting technique under argon atmosphere. To ensure the homogeneity, the 
samples are re-melted four times. These alloys were annealed under high vacuum at 
1175 K for 6 h and then quenched with Ar gas. The magnetic data were taken suing 
the physical property measurement system (PPMS-9 T)—vibrating sample mag-
netometer (VSM) module (Quantum Design, USA). The measurements were taken 
into two different modes which can be referred as ZFC and FC modes. The sample 
was firstly cooled in zero magnetic field, and the data was collected by applying a 
magnetic field of 5 mT during warming in the temperature range of 4–330 K. This 
refers to zero-field cooled (ZFC) mode. In field cooled (FC) mode, the data was 
collected without removing the applied field during cooling in the temperature 
range between 330 and 4 K. Again, the data was recorded upon warming in the 
range of 4–330 K (referred as field warming (FW)). Magnetization as a function of 
magnetic field was recorded up to a field of 5 T in the low temperatures.

3. Exchange bias behaviour of Ni50-xMn37+xSn13 (x = 0, 1, 2, 3, 4) alloys

Figure 1 shows the temperature dependence of magnetization for Ni50-xMn37+xSn13 
(x = 0,1,2,3,4) alloys in an applied magnetic field of 5 mT during zero-field cooling, 
field cooling and field warming conditions. The curve shows several transitions 
with thermal hysteresis which has been observed between FC and FW. This thermal 
hysteresis is the indication of first-order structural transition from austenite to 
martensite phase. The ferromagnetic transition of austenite phase (  T  C  A  ) occurs at 
309 K. The decrease of magnetization below martensite start temperature (Ms) in 
the FC curve indicates the fractional decrease of austenite phase. The ZFC and FC 
curves split into two at low temperatures and show a step kind of behaviour in ZFC 
curve. This specifies that the sample is inhomogeneous magnetically. The transition 
observed at 120 K is referred as the exchange bias blocking temperature (TEB). The 
observed magnetic inhomogeneity and TEB in the sample can be attributed to the 
coexistence of FM and AFM interactions. This kind of antiferromagnetic interaction 
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occurs from the antiferromagnetic coupling between the Mn atoms in the Ni/Sn sites 
and Mn atoms in the Mn sites. The similar exchange bias behaviour is observed in 
further Ni-Mn-X (X = Sb, Sn, In) alloys [20–23]. The presence of AFM interaction in 
this alloy system was verified by neutron diffraction studies [27].

The ZFC and FC hysteresis loops were measured at 5 K to confirm the exchange 
bias in Ni50-xMn37+xSn13 (x = 0, 1, 2, 3, 4) alloys. The ZFC and FC loops were 
measured from −20 kOe to 20 kOe. To measure the FC loop, the sample was cooled 
in a field of 50 kOe and recorded the loop from −20 kOe to 20 kOe. Figure 2 shows 
the ZFC and FC hysteresis loops for Ni50-xMn37+xSn13 (x = 0, 1, 2, 3, 4) alloys. The 
curves from −2 kOe to 2 kOe are shown in the inset in Figure 3 to see the shift 
clearly. For all the samples, it is found that the ZFC curve does not exhibit any 
shift, but the FC curve shifts to the negative field from the origin. This specifies the 
coexistence of AFM-FM interactions in the sample below room temperatures. The 
ZFC loop shows a double-shifted loop and is symmetric around zero point, which 
indicates the existence of FM-AFM coupling. The emergence of double-shifted loop 
indicates that the different regions of AFM magnetic structure couple to the FM 
in opposite directions. The Ni-Mn-X (X = Sb, Sn, In) alloys also show similar EB 
behaviour [20–23].

The temperature dependence of EB was investigated in the temperature range of 
5–140 K for Ni50-xMn37+xSn13 (x = 0, 1, 2, 3, 4) alloys. The temperature interval has 
been taken as 20 K and the typical FC curves for Ni50-xMn37+xSn13 (x = 1) alloy are 
shown in Figure 3. It is clear from Figure 3 that at temperatures of 5 K and 20 K, 
the hysteresis loops significantly shifted to the negative field which point to the 
existence of EB in the sample. With the increase of temperature, the hysteresis loop 
decreases, and finally at 120 K the field shift almost disappears. The temperature 
where the loop is symmetric can be defined as the TEB for this sample. Moreover, the 
temperature 120 K nearly coincides with the TEB observed from the thermomag-
netic data as shown in Figure 2.

Figure 4 shows the values of EB field (HE) and coercivity (HC) evaluated 
from the hysteresis loops at various temperatures for a typical Ni50-xMn37+xSn13 
(x = 1) alloy. The values of EB field and coercivity field are calculated using 
HE = −(H1 + H2)/2 and HC = |H1 − H2|/2, respectively, where H1 and H2 denote the 
negative and positive field at which the magnetization equals zero. It is observed 
from Figure 4 that with increasing temperature the value of HE decreases linearly 
and vanishes around TEB. This validates the EB phenomenon to be real in the 

Figure 1. 
ZFC, FC and FW thermomagnetic curves for Ni49Mn38Sn13 alloy at a field of 5 mT.
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temperatures below TEB. This is because with the increasing temperature, the 
FM-AFM coupling gets weakened. The disappearance of HE is due to the domina-
tion of FM interaction over the AFM interactions. Conversely, HC value increases 
in the beginning with temperature and decreases after reaching a maximum value. 
Due to the pulling of AFM spins by FM, the coercivity below TEB increases. This 
arises due to the fact that anisotropy of AFM decreases with increasing temperature.

The TEB values derived from the thermomagnetic curves (not shown for all 
samples) are plotted with Mn concentration for the alloys in Figure 5. From 
the figure it is seen that with the increase of Mn concentration from 37 to 41% 
in the Ni50-xMn37+xSn13 alloy series, the TEB decreases drastically from 149 to 
9 K. The large fraction of FM phase at low temperature and the weakening of the 

Figure 2. 
Magnetic hysteresis loops obtained in the ZFC and FC mode for Ni50-xMn37+xSn13 (x = 0, 1, 2, 3, 4) alloys at 5 K. 
inset shows the magnified image in low field range for better visibility of loop shift.
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AFM-FM interaction strength were verified by the experimental results which is 
shown in Figure 5, where the increase of Mn concentration increases the satura-
tion magnetization (σs) at 5 K marginally. This indicates that the reduction in 
the FM-AFM interactions occurs due to the increase in Mn content. It can be 
understood that the weakening of the AFM interactions and the competing AFM 
and FM interactions led to the decrease of TEB values. Earlier, M. Khan et al. 
reported the EB properties with varying Mn/Sn concentration in Ni50Mn50-xSnx 
(11 ≤ x ≤ 17) alloys. In his work he reported that the increase of Mn concentra-
tion above 37% decreases the TEB value [25]. Same in Ni50-xMn37+xSn13 alloy series, 
the TEB value was found to decrease with the increase of Mn content since the Mn 

Figure 3. 
FC magnetic hysteresis loops measured at various temperatures for Ni49Mn38Sn13 alloy. Loop shift decreases with 
an increase of temperature.
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tion above 37% decreases the TEB value [25]. Same in Ni50-xMn37+xSn13 alloy series, 
the TEB value was found to decrease with the increase of Mn content since the Mn 

Figure 3. 
FC magnetic hysteresis loops measured at various temperatures for Ni49Mn38Sn13 alloy. Loop shift decreases with 
an increase of temperature.
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content is more than 37% in Ni50-xMn37+xSn13 alloy series. These results indicate 
that the TEB value would decrease either by varying the Sn or Ni content if the Mn 
content is above 37% in Ni-Mn-Sn alloys.

The variation of HE with the increase of Mn concentration is shown in Figure 6 
for Ni50-xMn37+xSn13 alloy series at 5 K (calculated from Figure 3). It is noticed that 
with the increases of Mn concentration from 37 to 41%, the value of HE increases 
linearly from 200 to 377 Oe. M. Khan et al. also observed the similar behaviour 
in Ni-Mn-Sn alloys and found that the HE increases from ~20 to ~183 Oe with an 
increase of Mn from 34 to 39% by varying the Mn/Sn concentration [25]. These two 
results suggest that Ni-Mn variation greatly influences the HE value in contrast to 
Mn/Sn variation. Recently, Xuan et al. reported EB by varying Ni/Sn concentration 
in Ni-Mn-Sn [keeping Mn concentration constant (50%)]. He observed that the 
increase of Sn content decreases the HE field [24]. It indicates that the Mn occupy-
ing Sn and Ni sites plays a major role in modifying the magnetic interactions and 
their strength. It is reported that HE depends on the interface coupling constant 
and saturation magnetization of the FM [28]. In the present Ni50-xMn37+xSn13 alloy 
series, the different magnetic moments and interaction strength arises due to the 

Figure 4. 
Variation of EB field (HE) and coercivity (HC) with temperature for Ni50-xMn37+xSn13 (x = 1) alloy.

Figure 5. 
Variation of TEB and σs with Mn concentration in Ni50-xMn37+xSn13 (x = 0, 1, 2, 3, 4) alloys.
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occupation of excess Mn in the Ni sites and Mn atoms occupies Sn and Ni. Hence 
the increase of HE with increasing Mn could be due to the increase of interaction 
coupling strength of different moments in Ni50-xMn37+xSn13 alloys. In order to 
understand the magnetic moment of different sites and their magnetic interactions 
in the sample, detailed neutron diffraction studies are essential.

4. Conclusion

In this chapter, we have discussed the exchange bias behaviour in Ni50-xMn37+xSn13 
(x = 0, 1, 2, 3, 4) alloys by changing the Ni-Mn concentration. The coexistence of 
AFM and FM exchange interactions is the reason for the EB phenomenon observed 
in this alloy series. The temperature strongly influences the HE and HC. The TEB was 
found to be same for the Mn content more than 37%, even either varying Ni-Mn 
or Mn/Sn. With the increase of Mn concentration from 37 to 41%, the value of HE 
increases linearly from 200 to 377 Oe in Ni50-xMn37+xSn13 alloy series.
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Figure 6. 
Variation of EB field (HE) with Mn concentration for Ni50-xMn37+xSn13 (x = 0, 1, 2, 3, 4) alloys.
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Abstract

The vital role played by porphyrins in cells and their use in therapeutic processes 
are well known. More recently, the technological applications of porphyrins have 
attracted the attention of researchers. Porphyrins have the property of half-metallic 
material, i.e., molecules that can host transition metals making feasible the produc-
tion of spin-polarized electronic states at different channels. Therefore, porphyrins 
and hemeproteins are among the materials that have spin-filtering property to be 
applied in spintronics. Molecular spintronics is an emerging and highly relevant 
field due to their applications to the development of high-capacity information-
storage devices and quantum computers. The catalytic properties of porphyrins and 
related compounds such as the hemeproteins are also applicable in the fabrication of 
micro-/nanomotors (MNMs). In this chapter, we describe the advances and future 
perspectives in the technological applications of porphyrins and related compounds 
in spintronic devices and micro-/nanomotors.

Keywords: porphyrins, cytochrome c, peroxidases, interfaces, advanced materials,  
micro-/nanomotors, micro-/nanorobots, spintronics, semiconductors, 
nanotechnology

1. Introduction

1.1 Porphyrins and hemeproteins

Porphyrins are essential compounds for the metabolism of living organisms. 
Porphyrins result from the substitution of porphine, which is a macrocycle formed 
by four pyrrole rings linked via methine bridges (Figure 1a). The tetrapyrrole 
ring has space for the coordination of a central transition metal ion with the four 
nitrogen atoms of the pyrrole rings to form a metalloporphyrin (Figure 1b) [1]. The 
properties of porphyrins can be modulated by substitutions at the β- and meso-posi-
tions, the central transition metal ions, and the metal ion axial ligands (Figure 1b).  
Another modification of porphyrin ring is the insertion of a carbene in a free-base 
ring to form the N,N’vinyl-bridged porphyrin and the insertion of a carbene into 
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ring has space for the coordination of a central transition metal ion with the four 
nitrogen atoms of the pyrrole rings to form a metalloporphyrin (Figure 1b) [1]. The 
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the metal-nitrogen bond of a metalloporphyrin [2, 3]. Carbenes can also be added 
to the porphyrin ring to form homoporphyrin that is also known as expanded 
porphyrins [4, 5]. The replacement of a nitrogen by C, O, S, Se, and Te results in 
core-modified porphyrins that are a platform for organometallic chemistry [6]. 
Two porphyrins are key groups for the energetic metabolism, oxygen transport, 
and photosynthesis: the iron protoporphyrin IX, the heme group, and chlorophyll 
(Figure 1c and d, respectively).

Metalloporphyrins are found in biological systems as the prosthetic group of 
proteins. Hemeproteins encompass a diversity of proteins associated with the heme 
group (iron protoporphyrin IX) such as respiratory cytochromes (cyt), cytoglobins 
(Cgb), neuroglobins (Ngb), myoglobin (Mb), hemoglobin (Hb), cytochrome P450 
(CYP), cytochrome b5 (cytb5), and others [7, 8]. The biological activity of heme-
proteins is modulated by the microenvironment and iron axial ligands provided by 
the apoprotein. The modulation of heme iron properties by the microenvironment 
of proteins results in the same prosthetic group responding for oxygen transport 
and storage [9], electron transport, NO• trapping, and a variety of catalytic activi-
ties such as redox reactions, hydrogen peroxide cleavage, hydroxylation of aromatic 

Figure 1. 
Porphyrin structure. (a) Porphine; (b) generic structure of a metalloporphyrin with meso- and β-substituents; 
(c) iron protoporphyrin IX in oxyhemoglobin and oxymyoglobin exhibiting the heme iron axial ligands, lateral 
chain of histidine at the fifth coordination position, and molecular oxygen at the sixth coordination position; and 
(d) structure of chlorophyll, a magnesium porphyrin responsible for light harvesting in the photosynthesis process.
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compounds, and others [8]. Figure 1c shows the heme group of hemoglobin with 
histidine imidazole ring as the heme iron axial ligand at the fifth coordination posi-
tion and molecular oxygen coordinated at the sixth coordination position. Other 
important biological metalloporphyrins are chlorophylls (magnesium complexes, 
Figure 1d), the plant pigment responsible for plant light harvesting, and cyanoco-
balamin, a vitamin B12 (cobalt complex, not shown) that participates in the lipid 
metabolism [10]. The remarkable chemical and photophysical properties of porphy-
rins have attracted the interest of researchers worldwide [1]. Biological and tech-
nological applications of porphyrins can involve the use of native hemeproteins, 
metallo-substituted hemeproteins, and the product of the tryptic digestion of horse 
heart cytochrome c, microperoxidases [11–19]. Inspired by nature, researchers have 
synthesized a diversity of nonnatural porphyrins. Theoretical studies of porphyrins 
have also gained relevance [4, 20–23]. Synthesis of porphyrins is principally moti-
vated by improved use in photodynamic therapy, energy, and catalysis [24–26]. The 
catalytic and photochemical properties of porphyrins are dependent on the pres-
ence and type of the central metal ion with axial ligands, the peripheral decoration, 
and microenvironment of the ring [11, 27]. In this regard, Zhang et al. [27] dem-
onstrated that the peripheral decoration of porphyrins with simple electron with-
drawing and donating groups affects the four Gouterman orbitals with a significant 
impact on spectroscopic properties and functions (Figure 2).

For both solar cells and PDT applications, it is essential that the electron promo-
tion to the lowest excited state can be achieved by the absorption of red light. For 
energy, the chirality is also interesting because of the chiral-induced spin selectivity 
(CISS) effect. One example is the generation of hydrogen (H2) from water splitting 
by semiconductors. In a standard water splitting system by a semiconductor, the 

Figure 2. 
Schematic representation of the 18 π electron aromatic ring of a metallated porphyrin with the four nodes of the 
HOMOs and five nodes of the LUMOs (black-dotted lines). The ML values of HOMO and LUMO pairs are 
±4 and ± 5, respectively. The electron density of occupied π MOs is represented by the blue and green shading. 
The red and yellow shading represents the electron density map of the unoccupied π* MOs (molecular orbitals). 
Scheme inspired in the study of Zhang et al. [27].
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sunlight absorption produces the electron hole pair. The water oxidation by holes 
(h+) produces hydroxyl free radicals as intermediates of molecular oxygen evolu-
tion. The formation of hydrogen molecules requires that protons (H+), resulting 
from the combination of hydroxyl radicals as molecular oxygen, accept the electrons 
promoted to the conduction band. However, hydrogen gas production competes 
with the combination of hydroxyl radicals as hydrogen peroxide that is favored by 
spin-antiparallel photogenerated holes. In the absence of a spin filter, the combina-
tion of spin-antiparallel hydroxyl radicals produces singlet molecular oxygen and 
requires an overpotential of 1 eV, since molecular oxygen is a triplet species in the 
fundamental state. Chiral molecules act as a spin filter in the electron transfer favor-
ing the production of spin-parallel hydroxyl free radicals and consequently oxygen 
evolution simultaneously with H2 production [28]. In the literature, the association 
of porphyrins and/or hemeproteins with nanostructures, especially for photody-
namic therapy purposes, is reported [14, 29]. The reason for this association refers 
to an enormous quantity of studies and recent findings involving nanostructure 
properties and manipulation, particularly the potential for drug delivery systems 
[30]. Nanostructured materials have at least one dimension between 1 and 100 nm. 
They usually have different (electronic, mechanic, magnetic, optical, etc.) proper-
ties from the bulk material, which results in multiple potential applications [31].

1.2  General and basic concepts about nanotechnology, nano-/microrobots 
(motors), and spintronics

1.2.1 Spintronic

Spintronic concept raised in the late 1980s refers to the use of spins to informa-
tion transmission and computational operations [32, 33]. Spintronics is an emergent 
technology grounded in the information transmission by electronic charge and 
electron spin [34–39]. Spintronic represents a paradigm break in the field of infor-
mation to combine charge and magnetism in processing and storage. The beginning 
of spintronics is marked by the discovery of giant magnetoresistance (GMR) effect, 
in 1988, which resulted in the award of Nobel Prize in Physics in 2007 to Fert and 
Grunberg [40, 41]. Firstly, spintronic was associated with inorganic oxides, met-
als, and semiconductors because of the dependence of spin-orbit coupling (SOC). 
However, organic molecules have wanted properties such as biocompatibility, 
flexibility, abundance, the possibility of synthesis, low cost [32, 42], and rapidly 
gained interest in the spintronic studies. The potential applications for spintronics, 
particularly for electronic devices, are spin filters, spin diodes, spin transistors, 
spin field-effect transistors, and spin qubits in semiconductor nanostructures [42]. 
Spintronic has some emerging and promising subfields that are current-induced 
torque (CIT), spin Hall effect (SHE), spin caloritronics, silicon spintronics, spin-
tronic aspects of graphene and topological insulators (TIs), and chiral-induced 
spin selectivity effect [32, 34]. The electron spins are degenerate in energy, but the 
level of degeneracy is broken inside the helix because the electron velocity gener-
ates an effective magnetic field that couples with the chiral potential. In a model of 
DNA double helix, the spin-down electrons aligned preferentially parallel to their 
velocity in a right-handed helix, while the same occurred with spin-up electrons 
in the left-handed helix. In an experimental approach, self-assembled monolay-
ers (SAMs) of 3′ thiolated single- and double-strand DNAs (ssDNA and dsDNA, 
respectively) were attached on a clean 200 nm-thick polycrystalline gold film that 
was evaporated on glass slides. Photoelectrons were ejected from the gold film by 
clockwise and counterclockwise circularly polarized light and transmitted through 
ssDNA and dsDNA monolayers. A more intense transport of electrons ejected with 
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a counterclockwise polarized laser in dsDNA was detected, and no spin selectivity 
was detected in ssDNA SAMs. Zwang et al. demonstrated that the spin selectivity 
in DNA is dependent on the supramolecular organization of chiral DNA moieties 
rather than the chirality of the individual monomers, and thus the spin selectivity 
can be switched by a conformational change of the molecules [32, 35–39, 43]. The 
mechanism of CISS effect is believed to be a result of evolution [37], where chiral 
molecules can increase the conductance of electrons with a spin channel while 
decreasing the other one [32, 33, 43]. Mishra et al. [44], in recent studies, demon-
strated a spin-dependent electron transmission through helical structured bacteri-
orhodopsin proteins. The study potentially says that the spin degree of freedom may 
be associated with an important function in electron transport in biological sys-
tems. Einati et al. [45] and Roy et al. [46] have shown that the efficiency of electron 
spin filtering through purple membrane films can be reduced with a green light. So, 
at potential applications of spin filters, it could modulate the efficiency of the filter.

1.2.2 Nanorobots

Nowadays, a new field of study involving nanotechnology is gaining impor-
tance: micro-/nanorobotics. Micro-/nanorobots (MNRs) have autonomous 
motion provided by micro-/nanomotors (MNMs) that are micro-/nanometer-
scale devices powered with the ability to convert chemical, optical, acoustic, 
magnetic, and electrical energies into mechanical energy [47]. MNRs can be 
functionalized to perform complex tasks in a microcosm that constitutes the 
so-called micro-/nanorobots (MNRs) [48]. MNRs have an extensive range of 
potential applications such as remediation, nanofabrication, repair of materials, 
engineering, computing, environment monitoring, and especially in theranostics. 
Drug delivery systems, cell transport, and DNA and RNA insertions are some of 
the most numerous studies [49, 50]. The size of MNRs allows their application 
in minimally invasive diagnosis and treatments [51]. There is a basic classifica-
tion for nanorobots. They can be biological, artificial, or biohybrid [52]. Also, 
they are classified according to the type of propulsion: self-propelled or external 
field-propelled ones. The self-propelled nanorobots convert energy from the 
environment to kinetic energy for independent movement, and it can be done by 
self-electrophoresis, self-thermophoresis, self-diffusiophoresis, and tiny bubbles 
[52]. Among the energy sources that self-propelled MNRs can use, light is highly 
attractive [47]. Light-powered MNMs can obtain energy from an external source 
and surrounding chemicals to get efficient propulsion through a photocatalytic 
process and constitute the photocatalytic micro-/nanomotors (PMNMs). Self-
propelling PMNMs can be controlled in various ways such as chemical concentra-
tion or light intensity [47, 48, 53]. Furthermore, these PMNMs can be operated 
at low levels of optical and chemical energy input, which are highly desired 
scenarios. An important aspect is that the photocatalytic reactions of PMNMs can 
generate the superoxide radicals (O2

−•) that give these devices great potential for 
environmental remediation, especially in the degradation of organic pollutants. 
The Janus model can be used to explain the basic principles that respond to the 
self-propulsion of the photocatalytic MNMs (Figure 3).

The external field-propelled MNRs depend on an external force such as electric 
and magnetic field, light impulses, sonic waves, etc. [52]. The fabrication of MNRs 
can be direct, indirect, or by self-assembly [51]. The techniques used for the MNR 
fabrication are the same for the regular nanoparticles: top-down (lithography and 
scanning probe microscopy) and bottom-up (deposition, a solution with reducing 
agents). The materials used for MNR fabrication could be super magnetic sub-
stances, organic and inorganic compounds, and biological substances [51, 54].
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2. Applications of porphyrins and hemeproteins in spintronics

2.1 Porphyrins and derivatives

Single-molecule spintronic devices have gained crescent interest for the use in 
advanced electronic systems. The question is to find molecular structures which, 
as single molecule, can exhibit the desirable properties of spintronics such as spin 
valve [55–60], spin crossover [61–63], spin filtering [64–66], Kondo effect [67], 
and others. In the literature, porphyrins and derivatives have been described as 
promising candidates for molecular devices, once they have unique electronic 
properties [68]. Theoretical and experimental studies on the charge transport of 
porphyrin-based derivatives have demonstrated desirable physical properties for 
single-molecule spintronic such as current switching, long-range electron tunnel-
ing, current rectifying, and others [55, 69–71]. Several studies have corroborated 
the potential of porphyrin application in spintronics. Self-assembled porphyrin 
nanorods showed the mediated conduction through a UHV-STM image with 
differing HOMO- and LUMO-mediated conductions. The authors demonstrated 
a conductivity by barrier-type tunneling through distances less than 10 nm and 
long-distance conduction occurring only through the LUMO band. The self-
assembled porphyrin nanorods are an efficient rectifying device that converts 
alternating current (AC), i.e., a current that periodically inverts direction, to 
direct current (DC), which moves in a unique direction [72]. In another study, 
the electronic transport of a nanowire composed by porphyrin-ethyne-benzene 
conjugates had its effective conductivity assigned to the coplanar conformation 
of phenyl and porphyrin moieties. The coplanar structure that allows amino or 
nitro substituent at the meta-position of the phenyl bridge that connects the 
π-system can provide higher current ratios of the on/off states. The switch effect 
of meta-substituents in the coplanar conformation disturbs the whole molecule 

Figure 3. 
Self-propelling mechanisms of Janus micromotors. The photocatalytic mechanisms are represented by the 
three first representations. The formation of a concentration gradient of superoxide ions and bubbles results 
from the oxidation of hydrogen peroxide in solution. In the right image, irradiation with infrared light on the 
nanostructured gold layer creates a thermal gradient due to the plasmonic effect. Warming promotes agitation 
of water molecules that generate one-way movement.
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while having only a local impact on the system with a perpendicular conforma-
tion. The nanowires formed by π-conjugated systems have potential for switch 
devices tunable by substituents [69]. Another evidence of porphyrin application 
in electronic devices was reported by Sedghi et al. [71]. Nanowires formed by 
porphyrin molecules linearly oligomerized (oligo-porphyrin wires) can mediate 
temperature-dependent electron transport. The study showed that the system 
conductance has temperature dependence and it suggests a long-range electron 
tunneling [71]. For application in spintronic devices, Cho et al. [73] proposed 
a theoretical organometallic framework formed by one-dimensional infinite 
chromium porphyrin array in which chromium atoms are located in a straight line 
(Figure 4a). The system exhibited spin filter property when the simulations were 
carried out with dimeric form, Cr-PA2, between Au electrodes (Figure 4b).

The fabrication of spin-dependent electronics, the spintronic devices, requires 
the external control of the magnetization of the that behaves like a magnet. In this 
regard, the paramagnetic porphyrin molecule is a promising active building block 
for spintronic devices. Wende et al. [74] studied by experimental and theoretical 
approach paramagnetic iron porphyrin molecules bound on ferromagnetic Ni and 
Co films on Cu(100). The authors investigated the porphyrin structural orientation 
and the magnetic coupling with the substrate. The porphyrin molecules associ-
ated with the substrate Co or Ni were ordered ferromagnetically. In the device, the 
magnetic moment of the porphyrin iron could be rotated in the plane and out of 
the plane by a magnetization reversal of the substrate. In a similar study, Scheybal 
et al. [75] also associated porphyrins with metallic films and studied X-ray magnetic 
circular dichroism (XMCD). In this case, the researchers used manganese (III)-
tetraphenylporphyrin chloride (MnTPPCl) molecules adsorbed by cobalt substrate 

Figure 4. 
Examples of nanowires formed by porphyrins. (a) Theoretical organometallic framework built by one-
dimensional infinite chromium porphyrin array in which chromium atoms are parallel, the M–Pan; (b) 
a dimeric form, Cr–PA3, linked to two Au (111) electrodes PA2 via Au–S bond. Structures of nanodevices 
modified from Cho et al. [73].
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Figure 3. 
Self-propelling mechanisms of Janus micromotors. The photocatalytic mechanisms are represented by the 
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from the oxidation of hydrogen peroxide in solution. In the right image, irradiation with infrared light on the 
nanostructured gold layer creates a thermal gradient due to the plasmonic effect. Warming promotes agitation 
of water molecules that generate one-way movement.
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while having only a local impact on the system with a perpendicular conforma-
tion. The nanowires formed by π-conjugated systems have potential for switch 
devices tunable by substituents [69]. Another evidence of porphyrin application 
in electronic devices was reported by Sedghi et al. [71]. Nanowires formed by 
porphyrin molecules linearly oligomerized (oligo-porphyrin wires) can mediate 
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tetraphenylporphyrin chloride (MnTPPCl) molecules adsorbed by cobalt substrate 

Figure 4. 
Examples of nanowires formed by porphyrins. (a) Theoretical organometallic framework built by one-
dimensional infinite chromium porphyrin array in which chromium atoms are parallel, the M–Pan; (b) 
a dimeric form, Cr–PA3, linked to two Au (111) electrodes PA2 via Au–S bond. Structures of nanodevices 
modified from Cho et al. [73].
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film. The results demonstrated that the film substrate induced a net magnetiza-
tion on the porphyrin. Chen et al. [76] made calculations of conductance in a 
ferrous porphyrin. The study showed that the conductance of the iron porphyrin 
is tuned by mechanical distortion of the porphyrin plane and shifts the coupling 
state from the low spin to excited spin states. These properties of the system are 
interesting for sensing applications. Systems containing molecules with switchable 
spins are promising for the fabrication of materials with spintronic properties. 
Organometallic molecules such as porphyrins can be switched to on and off mag-
netic states when associated with the ferromagnetic substrate. Wäckerlin et al. [77] 
described that cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled 
to nickel thin film (Ni(001)) is switchable from on to off state of Co spin by the 
complexation with NO that is a spin trans effect. NO coordinates with Co2+ leading 
to the formation of a NO-CoTPP nitrosyl complex that is the off state of the Co 
spin. The system is restored to the on state when NO is thermally dissociated from 
the nitrosyl complex. Li et al. reported the construction and magnetic characteriza-
tion of a fully functional system formed by the hybridization of a single magnetic 
porphyrin molecule with graphene nanoribbons. The fusion of the porphyrin core 
into graphene through the formation of new carbon rings at chemically predefined 
positions was demonstrated by scanning tunneling microscopy of high resolution. 
The authors also demonstrated that porphyrin retains the magnetic functionality 
and the magnetic anisotropy is modulated by the structure of the contacts [78]. 
In another study, Lewandowska et al. report a simple and efficient method for the 
fabrication of porphyrin-graphene oxide hybrids. The hybrid system has donor-
acceptor properties and exhibits charge transfer between porphyrin and graphene 
oxide. The non-covalent interaction between the porphyrin and graphene oxide 
changes intensely the magnetic properties. The dramatic change in the magnetic 
properties probably is due to refined tuning of graphene domain magnetism that 
can be promoted by the modulation electron density produced by electron donor or 
electron acceptor substituents [79].

Figure 5. 
Chiral-induced spin selectivity (CISS) effect in cytochrome c. cartoon of the spin-filtered electron transport 
through the chiral a-helix of cytochrome c as reported by Michaeli et al. [82]. Horse heart cytochrome c 
structure was obtained from protein data Bank, code 1HRC.
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2.2 Hemeproteins

The presence of the iron protoporphyrin IX as the prosthetic group of heme-
proteins endows these proteins of electronic and magnetic properties that can be 
applied in spintronics. The hemeproteins have an additional property that is the 
folding in chiral structures. [80]. The chiral structures such as the α-helices present 
in cytochrome c (Figure 5), for instance, can act as spin filters and respond for the 
chiral-induced spin selectivity (CISS) effect. To date, cytochrome c has been the 
unique hemeprotein used for spin filtering [28, 33, 38].

New types of spin-dependent electrochemistry measurements have been applied to 
probe the spin-dependent charge transport properties of nonmagnetic chiral molecules 
such as cytochrome c. Besides cytochrome c, the photosystems that are complexes of 
proteins associated with a non-heme porphyrin, the chlorophyll, also have electron 
transport capacity with spin selectivity [81, 82]. When the measurements were carried 
out with different orientations of the PSI protein complex, the dependence of spin 
polarization with the electron transfer path in photosystem I was proven [81, 82].

3.  Application of porphyrins and hemeproteins in the construction  
and working of micro-/nanorobots

3.1 Porphyrins and derivatives

Several studies have been developed to produce nanodevices containing porphy-
rins with a potential use in MNRs to be applied in theranostics. According to Li et al. 
[83], porphyrins have a diversity of properties applicable to health preservation, 
diagnosis, and treatment. Porphyrins can amplify signals for magnetic resonance 
imaging (MRI), positron emission tomography (PET), infrared fluorescence imag-
ing, and dual modal PET-MRI. Porphyrins have chemical and physical properties 
that allow the application of these compounds in the detection and destruction of 
tumors. Porphyrins can efficiently convert light into electronic excitation of molecu-
lar oxygen to produce singlet oxygen in photodynamic therapy (PDT) or light to heat 
for photothermal therapy (PTT). Therefore, porphyrins have been applied in the 
treatment of solid cancers and ocular vascularization diseases [29]. Also, there are 
some studies about porphyrin-nanoparticle systems employed in dentistry treatment 
[84–87]. These systems can be used in the diagnosis of cancer by acting, for instance, 
as biosensors that exhibit affinity for a single molecule converting biochemical to 
electrical signals, detection of salivary biomarkers of oral tumors, and others  
[85, 88]. The capacity of self-assembly in a range of supramolecular aggregates is 
a crucial property for the application of porphyrins to construct MNRs [29, 89]. 
Ion et al. [89] demonstrated that porphyrins could self-assemble in several types 
of supramolecular aggregates such as linear head to tail, J-aggregates, and fractal 
aggregates with diverse and definite photophysical properties (Figure 6) [89].

The study of Ion et al. showed nanotubes formed by porphyrins and the impor-
tance of this technique for brain aneurysm instrumentation. They used meso-5, 10, 
15, 20-sulfonate-phenyl porphyrin (TPPS4) and observed the formation of orga-
nized nanostructures by ionic self-assembly. Neurons and glial cells incubated with 
porphyrin nanotubes formed interconnected networks featured on the nanotube 
templates. The capacity of TPPS4 to form nanotubes by self-assembly demonstrates 
the potential of this porphyrin in the fabrication of NMRs applied to medicine. MNRs 
must have the capacity to self-propel that could be provided by a diversity of materials 
and mechanisms. Park et al. describe the fabrication of “swimmers”: microstructures 
with autonomous mobility at water/air interface. The particles of porphyrin-based 
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spin. The system is restored to the on state when NO is thermally dissociated from 
the nitrosyl complex. Li et al. reported the construction and magnetic characteriza-
tion of a fully functional system formed by the hybridization of a single magnetic 
porphyrin molecule with graphene nanoribbons. The fusion of the porphyrin core 
into graphene through the formation of new carbon rings at chemically predefined 
positions was demonstrated by scanning tunneling microscopy of high resolution. 
The authors also demonstrated that porphyrin retains the magnetic functionality 
and the magnetic anisotropy is modulated by the structure of the contacts [78]. 
In another study, Lewandowska et al. report a simple and efficient method for the 
fabrication of porphyrin-graphene oxide hybrids. The hybrid system has donor-
acceptor properties and exhibits charge transfer between porphyrin and graphene 
oxide. The non-covalent interaction between the porphyrin and graphene oxide 
changes intensely the magnetic properties. The dramatic change in the magnetic 
properties probably is due to refined tuning of graphene domain magnetism that 
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proteins endows these proteins of electronic and magnetic properties that can be 
applied in spintronics. The hemeproteins have an additional property that is the 
folding in chiral structures. [80]. The chiral structures such as the α-helices present 
in cytochrome c (Figure 5), for instance, can act as spin filters and respond for the 
chiral-induced spin selectivity (CISS) effect. To date, cytochrome c has been the 
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New types of spin-dependent electrochemistry measurements have been applied to 
probe the spin-dependent charge transport properties of nonmagnetic chiral molecules 
such as cytochrome c. Besides cytochrome c, the photosystems that are complexes of 
proteins associated with a non-heme porphyrin, the chlorophyll, also have electron 
transport capacity with spin selectivity [81, 82]. When the measurements were carried 
out with different orientations of the PSI protein complex, the dependence of spin 
polarization with the electron transfer path in photosystem I was proven [81, 82].
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[83], porphyrins have a diversity of properties applicable to health preservation, 
diagnosis, and treatment. Porphyrins can amplify signals for magnetic resonance 
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ing, and dual modal PET-MRI. Porphyrins have chemical and physical properties 
that allow the application of these compounds in the detection and destruction of 
tumors. Porphyrins can efficiently convert light into electronic excitation of molecu-
lar oxygen to produce singlet oxygen in photodynamic therapy (PDT) or light to heat 
for photothermal therapy (PTT). Therefore, porphyrins have been applied in the 
treatment of solid cancers and ocular vascularization diseases [29]. Also, there are 
some studies about porphyrin-nanoparticle systems employed in dentistry treatment 
[84–87]. These systems can be used in the diagnosis of cancer by acting, for instance, 
as biosensors that exhibit affinity for a single molecule converting biochemical to 
electrical signals, detection of salivary biomarkers of oral tumors, and others  
[85, 88]. The capacity of self-assembly in a range of supramolecular aggregates is 
a crucial property for the application of porphyrins to construct MNRs [29, 89]. 
Ion et al. [89] demonstrated that porphyrins could self-assemble in several types 
of supramolecular aggregates such as linear head to tail, J-aggregates, and fractal 
aggregates with diverse and definite photophysical properties (Figure 6) [89].

The study of Ion et al. showed nanotubes formed by porphyrins and the impor-
tance of this technique for brain aneurysm instrumentation. They used meso-5, 10, 
15, 20-sulfonate-phenyl porphyrin (TPPS4) and observed the formation of orga-
nized nanostructures by ionic self-assembly. Neurons and glial cells incubated with 
porphyrin nanotubes formed interconnected networks featured on the nanotube 
templates. The capacity of TPPS4 to form nanotubes by self-assembly demonstrates 
the potential of this porphyrin in the fabrication of NMRs applied to medicine. MNRs 
must have the capacity to self-propel that could be provided by a diversity of materials 
and mechanisms. Park et al. describe the fabrication of “swimmers”: microstructures 
with autonomous mobility at water/air interface. The particles of porphyrin-based 
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metal–organic frameworks (MOFs) were fabricated with hydrophobic meso-tetra 
(4-carboxyphenyl)-porphyrin (H4-TCPP-H2, L) ligands bound to Zr-oxo clusters. 
The H4-TCPP-H2, L responds for the hydrophobic character of the framework [90]. 
Similar MOFs were described in the literature before, once they are efficient in the 
controlled release of surface-active substances proportionating a controlled motion. 
However, usually, the MOFs use high-cost surface-active substances [90]. The MOFs 
fabricated with meso-tetra(4-carboxyphenyl)-porphyrin ligands bound to Zr-oxo 
clusters use much less expensive fuels. The particles have the advantage to be refu-
eled multiple times and attained speeds of ca. 200 mm·s−1. Interestingly, the type of 
fuel, the microstructure, and surface wettability of the MOF surface determine the 
efficiency of motion. In another study, Serrà et al. [91] reported the fabrication of a 
multifunctional nanorobotic platform with magnetic properties to promote the death 
of cancer cells by magnetic and mechanical destruction. A multi-segmented nanowire 
composed by nickel and gold alternating segments was produced by electrodeposition 
of metals inside the nanochannels of a polycarbonate membrane. In sequence, the 
nickel segments were transformed in core-shell Ni/NiO segments by the treatment of 
the nanowire with NaOH 0.5 M for 6 h. The nanowires were treated sequentially with 
zinc protoporphyrin IX and 1,9-nonanedithiol that displaces the porphyrin from the 
gold segments. The nanotubes exhibited ferromagnetism and could be manipulated 
by a magnet. When the bi-functionalized nanotubes attain cells, magnet or photo-
stimulation can induce cell death that is useful for cancer treatments since the effect 
of some medical procedures, like hyperthermia and photodynamic therapy, could be 
improved by application of a rotary magnetic field [91].

3.2 Hemeproteins

Hemeproteins such as hemoglobin (Hb), myoglobin (Mb), horseradish peroxi-
dase (HRP), catalase, and cytochrome c (cyt c) have the prosthetic group, ferrous or 

Figure 6. 
Supramolecular aggregates of meso-5,10,15,20-sulfonate-phenyl porphyrin (TPPS4). (a) The free-base 
monomer of TPPS4, (b) the head-to-tail linear self-assembly of TPPS4, and (c) the J-aggregate of TPPS4.
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ferric protoporphyrin IX (heme group), as the redox center. The heme group makes 
hemeproteins useful for a medical and technological application that involves redox 
reactions. The use of hemeproteins in nanodevices can be impaired by denaturation 
or the orientation of the redox site [92]. However, literature has several examples of 
the use of hemeproteins in nanodevices [93–95]. Hemeproteins can also be used in 
the self-propelling of MNRs. Hemeproteins can act in MNMs by the bubble recoil 
mechanism. Catalase is the best hemeprotein for use in MNMs due to the capacity 
to convert hydrogen peroxide to oxygen generating propulsion bubbles [96]. Pavel 
et al. [97] fabricated nanorods with self-electrophoresis taking advantage of the 
combined catalysis of HRP and cytochrome c as illustrated in Figure 7.

One half of the nanorod was made of polypyrrole (PPy) modified with HRP, 
and the other half was made of gold and decorated with cyt c. [97]. The charge 
separation was promoted by the reaction of cytochrome c with superoxide ion 
(O2

−•) and HRP with H2O2. Ferric cyt c oxidizes O2
−• to O2 and is recycled to the 

oxidized form by transferring one electron through the nanorod to the high valence 
forms of HRP generated by the reaction with hydrogen peroxide (Figure 7) [97]. 
The study published by Pavel et al. demonstrated that the hemeproteins are robust 
enough to maintain the activity even immobilized on solid substrates [97].

4. Conclusions and perspectives

Porphyrins and hemeproteins have been widely studied because of their 
biological roles in energy metabolism and light harvesting in photosynthesis. 
More recently, with the advancement of bioelectronics and micro-/nanorobotics, 
porphyrins and hemoproteins have gained interest because of their specific prop-
erties. Porphyrins have desirable properties for single-molecule spintronic such as 
current switching, long-range electron tunneling, current rectifying, and others. 

Figure 7. 
Proposed bio-electrochemical mechanism behind the enhanced diffusive motion of (HRP)PPy-Au(cyt c) 
nanorods in O2

−•· and H2O2 solutions. Native HRP (PorFe(III)) reduces H2O2 to water and is converted to 
compound I (Por•+Fe(IV) = O), while ferric cyt c (PorFe(III)) is reduced by O2

−•. Ferrous cyt c (PorFe(II)) recycles 
to the ferric form by transferring electrons through the PPy-Au nanorod to HRP compound I (Por•+Fe(IV) = O) 
and compound II (PorFe(IV) = O) that recycles to native HRP. The structures of HRP and cytochrome c were 
obtained from protein data Bank (1HCH and 1HRC, respectively). Mechanism from Pavel el al. [97].
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reactions. The use of hemeproteins in nanodevices can be impaired by denaturation 
or the orientation of the redox site [92]. However, literature has several examples of 
the use of hemeproteins in nanodevices [93–95]. Hemeproteins can also be used in 
the self-propelling of MNRs. Hemeproteins can act in MNMs by the bubble recoil 
mechanism. Catalase is the best hemeprotein for use in MNMs due to the capacity 
to convert hydrogen peroxide to oxygen generating propulsion bubbles [96]. Pavel 
et al. [97] fabricated nanorods with self-electrophoresis taking advantage of the 
combined catalysis of HRP and cytochrome c as illustrated in Figure 7.

One half of the nanorod was made of polypyrrole (PPy) modified with HRP, 
and the other half was made of gold and decorated with cyt c. [97]. The charge 
separation was promoted by the reaction of cytochrome c with superoxide ion 
(O2

−•) and HRP with H2O2. Ferric cyt c oxidizes O2
−• to O2 and is recycled to the 

oxidized form by transferring one electron through the nanorod to the high valence 
forms of HRP generated by the reaction with hydrogen peroxide (Figure 7) [97]. 
The study published by Pavel et al. demonstrated that the hemeproteins are robust 
enough to maintain the activity even immobilized on solid substrates [97].
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porphyrins and hemoproteins have gained interest because of their specific prop-
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−•. Ferrous cyt c (PorFe(II)) recycles 
to the ferric form by transferring electrons through the PPy-Au nanorod to HRP compound I (Por•+Fe(IV) = O) 
and compound II (PorFe(IV) = O) that recycles to native HRP. The structures of HRP and cytochrome c were 
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Regarding the hemoproteins, they combine the presence of a porphyrin (iron 
protoporphyrin IX) as the redox center with the chiral protein structure that acts 
as a spin filter. To date, cytochrome c stands out as the hemoprotein for which the 
capacity to produce CISS effect has already been demonstrated experimentally. 
Porphyrins and hemoproteins also have proven potential for nanorobotic applica-
tion. Porphyrins are particularly useful for nanorobotics applied to medicine 
because of their photochemical properties. Porphyrins also can self-assemble in 
structures such as J-aggregates to form nanotubes. On the other hand, the cata-
lytic properties of hemoproteins are the most relevant factor that makes them 
applicable to self-propulsion in micro-/nanorobotics. The studies and applications 
of porphyrins and hemoproteins in spintronic and nanorobotic are still in their 
early stages, and a wide field of study of these compounds is open to the area of   
bioelectronics. Among the numerous advances that are possible for the field of 
spintronic, special attention has been given to spinterface, that is, the interface 
between a ferromagnetic (FM) metal and an organic semiconductor, in which 
unique hybrid states are formed. The FM metal/molecular interfaces constitute 
an important building block for the future of spintronics. The unique hybrid 
states of spinterfaces influence magnetic properties such as magnetic anisotropy, 
magnetic exchange coupling, interfacial spin polarization, and others. Further, 
the interactions between the FM metal and organic molecules are tunable in such 
a way that the spinterfaces are applicable to multifunctional devices meeting the 
industry tendency of miniaturization using single-molecule devices. The external 
control of spinterface by external signals, especially light because the ultra-fast 
optical transmission, is a promising area for future investigations. An important 
challenge for the design of spintronic devices is the changeable control and switch 
of single molecules adsorbed on the surface of FM materials. Particularly, for 
the metalloporphyrins, an interesting example is the use of axial ligands of the 
porphyrin transition metal center to change the magnetism of the molecular 
component [98]. NO• was able to reversibly switch the spin state of the Co and 
Fe of porphyrins adsorbed on Ni(001) Co substrates, respectively. Similarly, 
NH3 was able to induce the transition of Ni porphyrin on Co substrate from low 
to high spin states [99, 100]. Another emerging field of spintronics is the use of 
antiferromagnets that are affected by spin-polarized currents. Antiferromagnetic 
materials have several advantages for spintronics such as they do not create 
external magnetic fields and only weak interactions occur with each other and the 
antiferromagnets have the characteristic frequencies of switching between their 
states significantly higher than the values obtained for ferromagnets. Further, the 
occurrence of ordering in antiferromagnets it is more frequent and occurs at soft 
conditions than in ferromagnets. Also, these materials can behave as a conduc-
tor for a spin polarization and as an insulator for other spin polarization. The 
antiferromagnets can provide desirable characteristics for spintronics that are 
high speed of operation in terahertz range, performance, easy manipulation, high 
sensitivity, and low energy cost [101].

The field of micro/nanorobotics that also can take advantage of the properties 
of porphyrins and hemeproteins has as the principal challenge for advances as the 
control and powering of the movement. The crescent interest in the application 
of MNR in theranostic poses the additional challenge for the use of biocompatible 
and high-performance materials and fuels. An interesting alternative regarding 
the elimination of toxic fuels is the use of systems having the propulsion powered 
by external field that are fuel-free and allow the remote control of the movement. 
The MNRs with a real potential to operate in vivo are rare now and constitute an 
important area for future investigations that requires multi- and interdisciplinary 
studies [102].
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Chapter 11

2D Elastostatic Problems in
Parabolic Coordinates
Natela Zirakashvili

Abstract

In the present chapter, the boundary value problems are considered in a parabolic
coordinate system. In terms of parabolic coordinates, the equilibrium equation sys-
tem and Hooke’s law are written, and analytical (exact) solutions of 2D problems of
elasticity are constructed in the homogeneous isotropic body bounded by coordinate
lines of the parabolic coordinate system. Analytical solutions are obtained using the
method of separation of variables. The solution is constructed using its general rep-
resentation by two harmonic functions. Using the MATLAB software, numerical
results and constructed graphs of the some boundary value problems are obtained.

Keywords: parabolic coordinates, separation of variables, elasticity, boundary,
value problem, harmonic function

1. Introduction

In order to solve boundary value and boundary-contact problems in the areas
with curvilinear border, it is purposeful to examine such problems in the relevant
curvilinear coordinate system. Namely, the problems for the regions bounded by a
circle or its parts are considered in the polar coordinate system [1–4], while the
problems for the regions bounded by an ellipse or its parts or hyperbola are consid-
ered in the elliptic coordinate system [5–13], and the problems for the regions with
parabolic boundaries are considered in the parabolic coordinate system [14–16].
The problems for the regions bounded by the circles with different centers and
radiuses are considered in the bipolar coordinate system [17–19]. For that purpose,
first the governing differential equations are expressed in terms of the relevant
curvilinear coordinates. Then a number of important problems involving the
relevant curvilinear coordinates are solved.

The chapter consists of five paragraphs.
Many problems are very easily cast in terms of parabolic coordinates. To this

end, first the governing differential equations discussed in present chapter are
expressed in terms of parabolic coordinates; then two concrete (test) problems
involving parabolic coordinates are solved.

The second section, following the Introduction, gives the equilibrium equations
and Hooke’s law written down in the parabolic coordinate system and the setting of
boundary value problems in the parabolic coordinate system.

Section 3 considers the method used to solve internal and external boundary
value problems of elasticity for a homogeneous isotropic body bounded by
parabolic curves.

165



Chapter 11

2D Elastostatic Problems in
Parabolic Coordinates
Natela Zirakashvili

Abstract

In the present chapter, the boundary value problems are considered in a parabolic
coordinate system. In terms of parabolic coordinates, the equilibrium equation sys-
tem and Hooke’s law are written, and analytical (exact) solutions of 2D problems of
elasticity are constructed in the homogeneous isotropic body bounded by coordinate
lines of the parabolic coordinate system. Analytical solutions are obtained using the
method of separation of variables. The solution is constructed using its general rep-
resentation by two harmonic functions. Using the MATLAB software, numerical
results and constructed graphs of the some boundary value problems are obtained.

Keywords: parabolic coordinates, separation of variables, elasticity, boundary,
value problem, harmonic function

1. Introduction

In order to solve boundary value and boundary-contact problems in the areas
with curvilinear border, it is purposeful to examine such problems in the relevant
curvilinear coordinate system. Namely, the problems for the regions bounded by a
circle or its parts are considered in the polar coordinate system [1–4], while the
problems for the regions bounded by an ellipse or its parts or hyperbola are consid-
ered in the elliptic coordinate system [5–13], and the problems for the regions with
parabolic boundaries are considered in the parabolic coordinate system [14–16].
The problems for the regions bounded by the circles with different centers and
radiuses are considered in the bipolar coordinate system [17–19]. For that purpose,
first the governing differential equations are expressed in terms of the relevant
curvilinear coordinates. Then a number of important problems involving the
relevant curvilinear coordinates are solved.

The chapter consists of five paragraphs.
Many problems are very easily cast in terms of parabolic coordinates. To this

end, first the governing differential equations discussed in present chapter are
expressed in terms of parabolic coordinates; then two concrete (test) problems
involving parabolic coordinates are solved.

The second section, following the Introduction, gives the equilibrium equations
and Hooke’s law written down in the parabolic coordinate system and the setting of
boundary value problems in the parabolic coordinate system.

Section 3 considers the method used to solve internal and external boundary
value problems of elasticity for a homogeneous isotropic body bounded by
parabolic curves.
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Section 4 solves the concrete problems, gains the numerical results, and
constructs the relevant graphs.

Section 5 is a conclusion.

2. Problems statement

2.1 Equilibrium equations and Hooke’s law in parabolic coordinates

It is known that elastic equilibrium of an isotropic homogeneous elastic body
free of volume forces is described by the following differential equation [20]:

λþ 2μð Þgrad divU! � μ rot rotU
! ¼ 0 (1)

where λ ¼ Eν= 1þ νð Þ 1� 2νð Þ½ �, μ ¼ E= 2 1� νð Þ½ � are elastic Lamé constants; ν is

the Poisson’s ratio; E is the modulus of elasticity; and U
!

is a displacement vector.
By projecting Eq. (1) onto the tangent lines of the curves of the parabolic

coordinate system (see Appendix A), we obtain the system of equilibrium equations
in the parabolic coordinates.

In the parabolic coordinate system, the equilibrium equations with respect to the
function D, K, u, v and Hooke’s law can be written as [20–22]:

að ÞD,ξ � K,η ¼ 0, cð Þu,ξ þ v,η ¼ κ � 2ð Þ= κμð Þ � h20D,

bð ÞD,η þ K,ξ ¼ 0, dð Þv,ξ � u,η ¼ 1=μ � h20K:
(2)

σηη ¼ h�1
0 λu,ξ þ λþ 2μð Þv,η
� þ λþ μð Þ � μh�2

0

� �
ξuþ ηvð Þ�,

σξξ ¼ h�1
0 λþ 2μð Þu,ξ þ λv,η
� þ λþ μð Þ þ μh�2

0

� �
ξuþ ηvð Þ�,

τξη ¼ μh�1
0 v,ξ þ u,η
� �� h�2

0 ξvþ ηuð Þ� �
,

(3)

where κ ¼ 4 1� νð Þ, u ¼ hu=c2, v ¼ hv=c2, h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

p
, h ¼ hξ ¼ hη ¼

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

p
are Lamé coefficients (see Appendix A), u, v are the components of the

displacement vector U
!

along the tangents of η, ξ curved lines, and c is the scale
factor (see Appendix A). And in the present paper, we take c ¼ 1, κ � 2ð Þ= κμð Þ �D is
the divergence of the displacement vector, K=μ is the rotor component of the
displacement vector; σξξ, σηη and τξη ¼ τηξ are normal and tangential stresses; and
sub-indexes ðÞ,ξ and ðÞ,η denotes partial derivatives with relevant coordinates, for
example, K,ξ ¼ ∂K

∂ξ .

2.2 Boundary conditions

In the parabolic system of coordinates ξ, η �∞< ξ<∞, 0≤ η<∞ð Þ, exact solu-
tions of two-dimensional static boundary value problems of elasticity are
constructed for homogeneous isotropic bodies occupying domains bounded by
coordinate lines of the parabolic coordinate system (see Appendix A).

The elastic body occupies the following domain (see Figures 1 and 2):

að Þ D1 ¼ 0< ξ< ξ1, 0< η< η1f g, bð Þ D ¼ �ξ1 < ξ< ξ1, 0< η< η1f g, (4)

að Þ Ω1 ¼ 0< ξ< ξ1, η1 < η<∞f g, bð Þ Ω ¼ �ξ1 ≤ ξ< ξ1, η1 ≤ η<∞f g: (5)
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Boundary conditions that appear in the chapter have the following form:

for ξ ¼ ξ1 : að Þ σξξ ¼ F1
ið Þ ηð Þ, τξη ¼ F ið Þ

2 ηð Þ or bð Þu ¼ G1
ið Þ ηð Þ, v ¼ G ið Þ

2 ηð Þ,
(6)

for η ¼ η1 : að Þ σηη ¼ Q1
ið Þ ξð Þ, τξη ¼ Q ið Þ

2 ξð Þ or bð Þu ¼ H1
ið Þ ξð Þ, v ¼ H ið Þ

2 ξð Þ,
(7)

for ξ ¼ 0 : að Þv ¼ 0, σξξ ¼ 0 or bð Þu ¼ 0, τξη ¼ 0, (8)

for η ¼ 0 : að Þu ¼ 0, σηη ¼ 0, or bð Þv ¼ 0, τξη ¼ 0, (9)

for ξ1 ! �∞ : σηη ! 0, τξη ! 0, u ! 0, v ! 0: (10)

for η ! ∞ : σηη ! 0, τξη ! 0, u ! 0, v ! 0, (10a)

where Fi,Qi i ¼ 1, 2ð Þ with the first derivative and Gi,Hi with the first and
second derivatives can be decomposed into the trigonometric absolute and uniform
convergent Fourier series.

Figure 1.
(a) D1 ¼ 0< ξ< ξ1, 0< η< η1f g domain bounded by parabolic curve η ¼ η1 and line y = 0 and
(b) D ¼ �ξ1 < ξ< ξ1, 0< η< η1f g domain bounded by parabola η ¼ η1.

Figure 2.
Infinite domain (a) Ω1 ¼ 0< ξ< ξ1, η1 < η<∞f g bounded by parabolic curve η ¼ η1 and line y = 0 and
(b) Ω ¼ �ξ1 < ξ< ξ1, η1 < η<∞f g bounded by parabola η ¼ η1.
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Section 4 solves the concrete problems, gains the numerical results, and
constructs the relevant graphs.

Section 5 is a conclusion.
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factor (see Appendix A). And in the present paper, we take c ¼ 1, κ � 2ð Þ= κμð Þ �D is
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sub-indexes ðÞ,ξ and ðÞ,η denotes partial derivatives with relevant coordinates, for
example, K,ξ ¼ ∂K
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2.2 Boundary conditions

In the parabolic system of coordinates ξ, η �∞< ξ<∞, 0≤ η<∞ð Þ, exact solu-
tions of two-dimensional static boundary value problems of elasticity are
constructed for homogeneous isotropic bodies occupying domains bounded by
coordinate lines of the parabolic coordinate system (see Appendix A).

The elastic body occupies the following domain (see Figures 1 and 2):

að Þ D1 ¼ 0< ξ< ξ1, 0< η< η1f g, bð Þ D ¼ �ξ1 < ξ< ξ1, 0< η< η1f g, (4)
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where Fi,Qi i ¼ 1, 2ð Þ with the first derivative and Gi,Hi with the first and
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Boundary conditions on the linear parts ξ ¼ 0 and η ¼ 0 of the consideration
area enable us to continue the solutions continuously (symmetrically or anti-
symmetrically) in the domain, that is, the mirror reflection of the consideration area
in a relationship y ¼ 0 line (see Figures 1b and 2b).

3. Solution of stated boundary value problems

In this section we will be considered internal and external problems for a homo-
geneous isotropic body bounded by parabolic curves.

3.1 Interior boundary value problems

Let us find the solution of problems (2), (3), (4a) (see Figure 1a), and (7)–(10)
in class C2 Dð Þ (for D area shown in Figure 1b). The solution is presented by two
harmonious φ1 and φ2 functions (see Appendix B). From formulas (B11)–(B13),
after inserting α ¼ η1 and making simple transformations, we will obtain:

u ¼ � η φ1,η � φ2,ξ
� �þ κ � 1ð Þφ� �

ξþ η21
η

φ1,ξ þ φ2,η
� �� κ � 1ð Þφ2

� �
η,

v ¼ η21
η

φ1,η � φ2,ξ
� �þ κ � 1ð Þφ1

� �
ηþ η φ1,ξ þ φ2,η

� �� κ � 1ð Þφ2
� �

ξ;
(11)

D ¼ κμ

h20
φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

, K ¼ κμ

h20
φ1,η � φ2,ξ
� �

ξþ φ1,ξ þ φ2,η
� �

η
� �

,

where

1

h2
φi,ξξ þ φi,ηη
� � ¼ 0, i ¼ 1, 2: (12)

The stress tensor components can be written as

h20
2μ

σηη ¼ � η21
η

φ1,ξξ þ φ2,ξη
� �� κ

2
φ1,η �

κ � 2
2

φ2,ξ

� �
η

þ η φ1,ξη � φ2,ηη
� �þ κ � 2

2
φ1,ξ �

κ

2
φ2,η

� �
ξ

� η21 � η

ξ2 þ η2
φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

, (13)

h20
2μ

τξη ¼ η21
η

φ1,ξη � φ2,ξξ
� �þ κ � 2

2
φ1,ξ �

κ

2
φ2,η

� �
η

þ η φ1,ξξ þ φ2,ξη
� �� κ

2
φ1,η �

κ � 2
2

φ2,ξ

� �
ξ

� η21 � η

ξ2 þ η2
φ1,η � φ2,ξ
� �

ξþ φ1,ξ þ φ2,η
� �

η
� �

,

h20
2μ

σξξ ¼ η21
η

φ1,ξξ þ φ2,ξη
� �� κ � 4

2
φ1,η �

κ þ 2
2

φ2,ξ

� �
η

� η φ1,ξη � φ2,ξξ
� �þ κ þ 2

2
φ1,ξ �

κ � 4
2

φ2,η

� �
ξ

þ η21 � η

ξ2 þ η2
φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

:
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From (12) by the separation of variables method, we obtain (see Appendix A)

φi ¼
X∞
n¼1

φin, i ¼ 1, 2, (14)

where

φ1n ¼¼ A1n cosh nηð Þ cos nξð Þ, φ2n ¼¼ A2n sinh nηð Þ sin nξð Þ

or

φ1n ¼¼ A1n sinh nηð Þ sin nξð Þ, φ2n ¼¼ A2n cosh nηð Þ cos nξð Þ:

For n ¼ 0: φ10 ¼ A10 þ a02ξþþa03ηþ a04ξη, φ20 ¼ A20 þ b02ξþ b03ηþ b04ξη,
where A10, a02, … , b04 are constant coefficients. When n ¼ 0 and 0< ξ< ξ1, then
the terms ξ, η and ξη will not be contained in φ10 and φ20. If the foregoing solutions
are presented in expressions of φ10 and φ20, then it would be impossible on ξ ¼ ξ1 to
satisfy the boundary conditions, and grad φi0 ¼ φi0,ξ þ φi0,η

� �
=h i ¼ 1, 2ð Þ will not

be bounded in the point M 0, 0ð Þ.
Provision. We are introducing the following assumptions:

1.ξ1 is a sufficiently great positive number (see Appendix C).

2.The boundary conditions given on η ¼ η1, i.e., stresses or displacements equal
zero at interval ~ξ1 < ξ< ξ1.

3.When stresses are given on η ¼ η1, the main vector and main moment equal
zero.

It is clear that

D ¼ κ σξξ þ σηη
� �

=4, σξξ ¼ 4D=κ � σηη:

By ultimately opening expressions σηη and τξη (in details), we can demonstrate
that at point M 0, 0ð Þ, σηη and τξη (and naturally, σξξ, too) are determined, i.e., they
are finite.

When at η ¼ η1 u and v are given, then it is expedient to take instead of them as
their equivalent the following expressions:

1

h20
u � η1 þ v � ξð Þ ¼ η1 φ1,ξ þ φ2,η

� �� κ � 1ð Þφ2,

1

h20
u � ξ� v � η1ð Þ ¼ η1 φ1,η � φ2,ξ

� �þ κ � 1ð Þφ1,
(15)

and if at η ¼ η1
h20
2μ σηη and

h20
2μ σξη are given, then instead of them we have to take

their equivalent following expressions:

1
2μ

σηη � η1 � σξη � ξ
� � ¼ �η1 φ1,ξξ þ φ2,ξη

� �� κ

2
φ1,η �

κ � 2
2

φ2,ξ,

1
2μ

σηη � ξþ σξη � η1
� � ¼ η1 φ1,ξη � φ2,ξξ

� �þ κ � 2
2

φ1,ξ �
κ

2
φ2,η:

(16)

Considering the homogeneous boundary conditions of the concrete problem, we
will insert φ1 and φ2 functions selected from the (14) in the right sides of (15) or
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(16), and we will expand the left sides in the Fourier series. In both sides expres-
sions which are with identical combinations of trigonometric functions will equate
to each other and will receive the infinite system of linear algebraic equations to
unknown coefficients A1n and A2n of harmonic functions, with its main matrix
having a block-diagonal form. The dimension of each block is 2� 2, and determi-
nant is not equal to zero, but in infinite the determinant of block strives to the finite
number different to zero.

It is very easy to establish the convergence of (11) and (13) functional series on
the area D ¼ �ξ1 ≤ ξ≤ ξ1, 0≤ η≤ η1f g by construction of the corresponding uniform
convergent numerical majorizing series. So we have the following:

Proposal 1. The functional series corresponding to (11) and (13) are absolute
and uniform by convergent series on the area D ¼ �ξ1 ≤ ξ≤ ξ1, 0≤ η≤ η1f g.

3.2 Exterior boundary value problems

We have to find the solution of problems (2), (3), (5a) (see Figure 2a), (7), (8),
(10), and (100), which belongs to the class C2 Ωð Þ (see region Ω on Figure 2b). The
solution is constructed using its general representation by harmonic functions φ1, φ2
(see Appendix B). From formulas (B11)–(B13), following inserting α ¼ η1 and
simple transformations, we obtain the following expressions:

u ¼ � φ1,ξ þ φ2,η
� �

η1 þ φ1,η � φ2,ξ
� �

ξ
� �

η� η1ð Þ � κ � 1ð Þφ1 þ φ3,η
� �

ξ� κ � 1ð Þφ2 � φ3,ξ
� �

η,

v ¼ φ1,ξ þ φ2,η
� �

ξ� φ1,η � φ2,ξ
� �

η1
� �

η� η1ð Þ þ κ � 1ð Þφ1 þ φ3,η
� �

η� κ � 1ð Þφ2 � φ3,ξ
� �

ξ,

(17)

D ¼ κμ

h20
φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

, K ¼ κμ

h20
φ1,η � φ2,ξ
� �

ξþ φ1,ξ þ φ2,η
� �

η
� �

,

where

1

h2
φi,ξξ þ φi,ηη
� � ¼ 0, i ¼ 1, 2, 3: (18)

The stress tensor components can be written as:

h20
2μ

σηη ¼ φ1,ξξ þ φ2,ξη
� �

η1 þ φ1,ξη � φ2,ξξ
� �

ξ
� �

η� η0ð Þ

þ κ

2
φ1,η þ

κ � 2
2

φ2,ξ � φ3,ξξ

� �
η

þ κ � 2
2

φ1,ξ �
κ

2
φ2,η þ φ3,ξη

� �
ξ

þ η2 � η21
ξ2 þ η2

φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

,

h20
2μ

τξη ¼ φ1,ξξ þ φ2,ξη
� �

ξ� φ1,ξη � φ2,ξξ
� �

η‘1
� �

η� η1ð Þ � κ

2
φ1,η þ

κ � 2
2

φ2,ξ � φ3,ξξ

� �
ξ

þ κ � 2
2

φ1,ξ �
κ

2
φ2,η þ φ3,ξη

� �
ηþ η2 � η21

ξ2 þ η2
φ1,η � φ2,ξ
� �

ξ� φ1,ξ þ φ2,η
� �

η
� �

,

(19)
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h20
2μ

σξξ ¼ � φ1,ξξ þ φ2,ξη
� �

η1 þ φ1,ξη � φ2,ξξ
� �

ξ
� �

η� η0ð Þ

� κ � 4
2

φ1,η þ
κ þ 2
2

φ2,ξ � φ3,ξξ

� �
η� κ þ 2

2
φ1,ξ �

κ � 2
2

φ2,η þ φ3,ξη

� �
ξ

� η2 � η21
ξ2 þ η2

φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

If u and v are given for η ¼ η1, then we take φ3 ¼ 0, and when h20
2μ σηη and

h20
2μ σξη is

given for η ¼ η1, then φ3 ¼ κ�2
2

Ð
φ2dξ.

From (18), by the separation of variables method, we obtain

φi ¼
X∞
n¼1

φin, i ¼ 1, 2, 3, (20)

where

φ1n ¼ B1ne�nη sin nξð Þ, φ2n ¼ B2ne�nη cos nξð Þ, φ3n ¼
κ � 2
2n

B2ne�nη sin nξð Þ

or

φ1n ¼ B1ne�nη cos nξð Þ, φ2n ¼ B2ne�nη sin nξð Þ, φ3n ¼ � κ � 2
2n

B2ne�nη cos nξð Þ:

When n ¼ 0, then φ10 ¼ A10 þ a02ξþ a03ηþ a04ξη, φ20 ¼ A20 þ b02ξþ b03ηþ
b04ξη, where A10, a02, … , b04 are constants. From limited of functions φi0 i ¼ 1, 2ð Þ
in η ! ∞ and satisfying boundary condition for ξ ¼ ξ1, it implies that a02 ¼ 0,
b02 ¼ 0, a03 ¼ 0, b03 ¼ 0, a04 ¼ 0, b04 ¼ 0. Therefore, φ10 ¼ 0, φ20 ¼ A20 or
φ10 ¼ A10, φ20 ¼ 0.

Provision. As in the previous subsection we make the following assumptions:

• ξ1 is a sufficiently large positive number (see Appendix C).

• At η ¼ η1 given boundary conditions, i.e., displacements or stresses on interval
~ξ1 < ξ< ξ1, will equal zero.

• When stresses are given on η ¼ η1, the main vector and main moment will
equal zero.

When u and v are given at η ¼ η1, then instead of them, it is expedient to take
the following expressions as their equivalent:

1

h20 κ � 1ð Þ uξ� vη1ð Þ ¼ φ1, � 1

h20 κ � 1ð Þ uη1 þ vξð Þ ¼ φ2, (21)

and if at η ¼ η1
h20
2μ σηη and

h20
2μ σξη are given, then instead of them we have to take

the following expressions as their equivalent:

1
2μ

σηη � η1 � σξη � ξ
� � ¼ κ

2
φ1,η,

1
2μ

σηη � ξþ σξη � η1
� � ¼ κ � 2

2
φ1,ξ � φ2,η:

(22)
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(16), and we will expand the left sides in the Fourier series. In both sides expres-
sions which are with identical combinations of trigonometric functions will equate
to each other and will receive the infinite system of linear algebraic equations to
unknown coefficients A1n and A2n of harmonic functions, with its main matrix
having a block-diagonal form. The dimension of each block is 2� 2, and determi-
nant is not equal to zero, but in infinite the determinant of block strives to the finite
number different to zero.

It is very easy to establish the convergence of (11) and (13) functional series on
the area D ¼ �ξ1 ≤ ξ≤ ξ1, 0≤ η≤ η1f g by construction of the corresponding uniform
convergent numerical majorizing series. So we have the following:

Proposal 1. The functional series corresponding to (11) and (13) are absolute
and uniform by convergent series on the area D ¼ �ξ1 ≤ ξ≤ ξ1, 0≤ η≤ η1f g.

3.2 Exterior boundary value problems

We have to find the solution of problems (2), (3), (5a) (see Figure 2a), (7), (8),
(10), and (100), which belongs to the class C2 Ωð Þ (see region Ω on Figure 2b). The
solution is constructed using its general representation by harmonic functions φ1, φ2
(see Appendix B). From formulas (B11)–(B13), following inserting α ¼ η1 and
simple transformations, we obtain the following expressions:

u ¼ � φ1,ξ þ φ2,η
� �

η1 þ φ1,η � φ2,ξ
� �

ξ
� �

η� η1ð Þ � κ � 1ð Þφ1 þ φ3,η
� �

ξ� κ � 1ð Þφ2 � φ3,ξ
� �

η,

v ¼ φ1,ξ þ φ2,η
� �

ξ� φ1,η � φ2,ξ
� �

η1
� �

η� η1ð Þ þ κ � 1ð Þφ1 þ φ3,η
� �

η� κ � 1ð Þφ2 � φ3,ξ
� �

ξ,

(17)

D ¼ κμ

h20
φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

, K ¼ κμ

h20
φ1,η � φ2,ξ
� �

ξþ φ1,ξ þ φ2,η
� �

η
� �

,

where

1

h2
φi,ξξ þ φi,ηη
� � ¼ 0, i ¼ 1, 2, 3: (18)

The stress tensor components can be written as:

h20
2μ

σηη ¼ φ1,ξξ þ φ2,ξη
� �

η1 þ φ1,ξη � φ2,ξξ
� �

ξ
� �

η� η0ð Þ

þ κ

2
φ1,η þ

κ � 2
2

φ2,ξ � φ3,ξξ

� �
η

þ κ � 2
2

φ1,ξ �
κ

2
φ2,η þ φ3,ξη

� �
ξ

þ η2 � η21
ξ2 þ η2

φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

,

h20
2μ

τξη ¼ φ1,ξξ þ φ2,ξη
� �

ξ� φ1,ξη � φ2,ξξ
� �

η‘1
� �

η� η1ð Þ � κ

2
φ1,η þ

κ � 2
2

φ2,ξ � φ3,ξξ

� �
ξ

þ κ � 2
2

φ1,ξ �
κ

2
φ2,η þ φ3,ξη

� �
ηþ η2 � η21

ξ2 þ η2
φ1,η � φ2,ξ
� �

ξ� φ1,ξ þ φ2,η
� �

η
� �

,

(19)
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h20
2μ

σξξ ¼ � φ1,ξξ þ φ2,ξη
� �

η1 þ φ1,ξη � φ2,ξξ
� �

ξ
� �

η� η0ð Þ

� κ � 4
2

φ1,η þ
κ þ 2
2

φ2,ξ � φ3,ξξ

� �
η� κ þ 2

2
φ1,ξ �

κ � 2
2

φ2,η þ φ3,ξη

� �
ξ

� η2 � η21
ξ2 þ η2

φ1,η � φ2,ξ
� �

η� φ1,ξ þ φ2,η
� �

ξ
� �

If u and v are given for η ¼ η1, then we take φ3 ¼ 0, and when h20
2μ σηη and

h20
2μ σξη is

given for η ¼ η1, then φ3 ¼ κ�2
2

Ð
φ2dξ.

From (18), by the separation of variables method, we obtain

φi ¼
X∞
n¼1

φin, i ¼ 1, 2, 3, (20)

where

φ1n ¼ B1ne�nη sin nξð Þ, φ2n ¼ B2ne�nη cos nξð Þ, φ3n ¼
κ � 2
2n

B2ne�nη sin nξð Þ

or

φ1n ¼ B1ne�nη cos nξð Þ, φ2n ¼ B2ne�nη sin nξð Þ, φ3n ¼ � κ � 2
2n

B2ne�nη cos nξð Þ:

When n ¼ 0, then φ10 ¼ A10 þ a02ξþ a03ηþ a04ξη, φ20 ¼ A20 þ b02ξþ b03ηþ
b04ξη, where A10, a02, … , b04 are constants. From limited of functions φi0 i ¼ 1, 2ð Þ
in η ! ∞ and satisfying boundary condition for ξ ¼ ξ1, it implies that a02 ¼ 0,
b02 ¼ 0, a03 ¼ 0, b03 ¼ 0, a04 ¼ 0, b04 ¼ 0. Therefore, φ10 ¼ 0, φ20 ¼ A20 or
φ10 ¼ A10, φ20 ¼ 0.

Provision. As in the previous subsection we make the following assumptions:

• ξ1 is a sufficiently large positive number (see Appendix C).

• At η ¼ η1 given boundary conditions, i.e., displacements or stresses on interval
~ξ1 < ξ< ξ1, will equal zero.

• When stresses are given on η ¼ η1, the main vector and main moment will
equal zero.

When u and v are given at η ¼ η1, then instead of them, it is expedient to take
the following expressions as their equivalent:

1

h20 κ � 1ð Þ uξ� vη1ð Þ ¼ φ1, � 1

h20 κ � 1ð Þ uη1 þ vξð Þ ¼ φ2, (21)

and if at η ¼ η1
h20
2μ σηη and

h20
2μ σξη are given, then instead of them we have to take

the following expressions as their equivalent:

1
2μ

σηη � η1 � σξη � ξ
� � ¼ κ

2
φ1,η,

1
2μ

σηη � ξþ σξη � η1
� � ¼ κ � 2

2
φ1,ξ � φ2,η:

(22)
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Just like that in the previous subsection, considering the homogeneous boundary
conditions of the concrete problem, we will insert φ1 and φ2 functions selected from
(20) in Eq. (21) or (22), and we will expand the left sides in the Fourier series. Both
sides of the expressions, which show the identical combinations of trigonometric
functions, will equate to each other and will receive the infinite system of linear
algebraic equations to unknown coefficients A1n and A2n of harmonic functions,
with its main matrix having a block-diagonal form. The dimension of each block is
2� 2, and the determinant does not equate to zero, but in the infinity, the determi-
nant of block tends to the finite number different from zero.

As in the previous subsection, we received the following:
Proposition 2. The functional series corresponding to (17) and (19) are absolute

and a uniformly convergent series on region Ω ¼ �ξ1 ≤ ξ≤ ξ1, η1 ≤ η<∞f g.

4. Test problems

In this section we will be obtained numerical results of internal and external
problems for a homogeneous isotropic body bounded by parabolic curves when
normal stress distribution is applied to the parabolic border.

4.1 Internal problem

We will set and solve the concrete internal boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous
isotropic body in the area Ω1 ¼ 0< ξ< ξ1, 0< η< η1f g (see Figure 1a), which sat-
isfies boundary conditions (7a), (8a), (9a), and (10).

From (14), (8a), and (9a)

φi ¼
X∞
n¼1

φin, i ¼ 1, 2, (23)

where φ1n ¼¼ A1n sinh nηð Þ sin nξð Þ, φ2n ¼¼ A2n cosh nηð Þ cos nξð Þ:
By inserting (23) in (11) and (13), we will receive the following expressions for

the displacements:

u ¼
X∞
n¼1

� nηξ cosh nηð Þ A1n þ A2nð Þ þ κ � 1ð Þξ sinh nηð ÞA1n½ � sin nξð Þf

þ nη21 sinh nηð Þ A1n þ A2nð Þ � κ � 1ð Þη cosh nηð ÞA2n
� �

cos nξð Þ�,

v ¼
X∞
n¼1

nη21 cosh nηð Þ A1n þ A2nð Þ þ κ � 1ð Þη sinh nηð ÞA1n
� �

sin nξð Þ�

þ nηξ sinh nηð Þ A1n þ A2nð Þ � κ � 1ð Þξ cosh nηð ÞA2n½ � cos nξð Þg,

(24)

but for the stresses the following:

h20
2μ

σηη ¼
X∞
n¼1

n2η21 sinh nηð Þ A1n þ A2nð Þ þ nη cosh nηð Þ κ

2
A1n � κ � 2

2
A2n

� �� �
sin nξð Þ

�

þ n2ηξ cosh nηð Þ A1n þ A2nð Þ þ nξ sinh nηð Þ κ � 2
2

A1n � κ

2
A2n

� �� �
cos nξð Þ

� η21 � η2

ξ2 þ η2
nη cosh nηð Þ A1n þ A2nð Þ sin nξð Þ � nξ sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�
,
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h20
2μ

τξη ¼
X∞
n¼1

n2η21 cosh nηð Þ A1n þ A2nð Þ þ nη sinh nηð Þ κ � 2
2

A1n � κ

2
A2n

� �� �
cos nξð Þ

�

� n2ηξ sinh nηð Þ A1n þ A2nð Þ þ nξ cosh nηð Þ κ

2
A1n � κ � 2

2
A2n

� �� �
sin nξð Þ

� η21 � η2

ξ2 þ η2
nξ cosh nηð Þ A1n þ A2nð Þ sin nξð Þ þ nη sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�
,

(25)

h20
2μ

σξξ ¼
X∞
n¼1

� n2η21 sinh nηð Þ A1n þ A2nð Þ þ nη cosh nηð Þ κ � 4
2

A1n � κ þ 2
2

A2n

� �� �
sin nξð Þ

�

� n2ηξ cosh nηð Þ A1n þ A2nð Þ þ nξ sinh nηð Þ κ þ 2
2

A1n � κ � 4
2

A2n

� �� �
cos nξð Þ

þ η21 � η2

ξ2 þ η2
nη cosh nηð Þ A1n þ A2nð Þ sin nξð Þ � nξ sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�
:

We have to solve problem (2), (7a), (8a), and (9a) when Q1 ξð Þ ¼ P and
Q2 ξð Þ ¼ 0, i.e., at η ¼ η1 boundary the normal load 1

2μ σηη ¼ P
h20
is given, but tangent

stress is equal to zero. From (16), and (23), we obtain the following equations:

X∞
n¼1

n2η1 sinh nη1ð Þ A1n þ A2nð Þ � n cosh nη1ð Þ κ

2
A1n � κ � 2

2
A2n

� �� �
sin nξð Þ ¼ Pη1

ξ2 þ η21
,

X∞
n¼1

n2η1 cosh nη1ð Þ A1n þ A2nð Þ þ n sinh nη1ð Þ κ � 2
2

A1n � κ

2
A2n

� �� �
cos nξð Þ ¼ Pξ

ξ2 þ η21
:

From here an infinite system of the linear algebraic equations with unknown A1n
and A2n coefficients is obtained:

n2η1 sinh nη1ð Þ � n
κ

2
cosh nη1ð Þ

� �
A1n

h

þ n2η1 sinh nη1ð Þ þ n
κ � 2
2

cosh nη1ð Þ
� �

A2n

�
¼ ~F1n,

n2η1 cosh nη1ð Þ þ n
κ � 2
2

sinh nη1ð Þ
� �

A1n

�

þ n2η1 cosh nη1ð Þ � n
κ

2
sinh nη1ð Þ

� �
A2n

i
¼ ~F2n, n ¼ 1, 2, …

(26)

where ~F1n and ~F2n are the coefficients of expansion into the Fourier series

f 1 ξð Þ ¼ P∞
n¼1

~F1n sin nξð Þ and f 2 ξð Þ ¼ P∞
n¼1

~F2n cos nξð Þ, respectively, f 1 ξð Þ ¼ Pη1
ξ2þη21

and

f 2 ξð Þ ¼ Pξ
ξ2þη21

functions.

As seen, the main matrix of system (26) has a block-diagonal form, dimension of
each block is 2� 2. Thus, two equations with two A1n and A2n unknown values will
be solved. After solving this system, we find A1n and A2n coefficients, and in putting
them into formulas (24) and (25), we get displacements and stresses at any points
of the body.

Numerical values of displacements and stresses are obtained at the points of the
finite size region bounded by curved lines η ¼ η1 and ξ ¼ ξ1 (see Figure 1a), and
relevant 3D graphs are drafted. The numerical results are obtained for the following
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Just like that in the previous subsection, considering the homogeneous boundary
conditions of the concrete problem, we will insert φ1 and φ2 functions selected from
(20) in Eq. (21) or (22), and we will expand the left sides in the Fourier series. Both
sides of the expressions, which show the identical combinations of trigonometric
functions, will equate to each other and will receive the infinite system of linear
algebraic equations to unknown coefficients A1n and A2n of harmonic functions,
with its main matrix having a block-diagonal form. The dimension of each block is
2� 2, and the determinant does not equate to zero, but in the infinity, the determi-
nant of block tends to the finite number different from zero.

As in the previous subsection, we received the following:
Proposition 2. The functional series corresponding to (17) and (19) are absolute

and a uniformly convergent series on region Ω ¼ �ξ1 ≤ ξ≤ ξ1, η1 ≤ η<∞f g.

4. Test problems

In this section we will be obtained numerical results of internal and external
problems for a homogeneous isotropic body bounded by parabolic curves when
normal stress distribution is applied to the parabolic border.

4.1 Internal problem

We will set and solve the concrete internal boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous
isotropic body in the area Ω1 ¼ 0< ξ< ξ1, 0< η< η1f g (see Figure 1a), which sat-
isfies boundary conditions (7a), (8a), (9a), and (10).

From (14), (8a), and (9a)

φi ¼
X∞
n¼1

φin, i ¼ 1, 2, (23)

where φ1n ¼¼ A1n sinh nηð Þ sin nξð Þ, φ2n ¼¼ A2n cosh nηð Þ cos nξð Þ:
By inserting (23) in (11) and (13), we will receive the following expressions for

the displacements:

u ¼
X∞
n¼1

� nηξ cosh nηð Þ A1n þ A2nð Þ þ κ � 1ð Þξ sinh nηð ÞA1n½ � sin nξð Þf

þ nη21 sinh nηð Þ A1n þ A2nð Þ � κ � 1ð Þη cosh nηð ÞA2n
� �

cos nξð Þ�,

v ¼
X∞
n¼1

nη21 cosh nηð Þ A1n þ A2nð Þ þ κ � 1ð Þη sinh nηð ÞA1n
� �

sin nξð Þ�

þ nηξ sinh nηð Þ A1n þ A2nð Þ � κ � 1ð Þξ cosh nηð ÞA2n½ � cos nξð Þg,

(24)

but for the stresses the following:

h20
2μ

σηη ¼
X∞
n¼1

n2η21 sinh nηð Þ A1n þ A2nð Þ þ nη cosh nηð Þ κ

2
A1n � κ � 2

2
A2n

� �� �
sin nξð Þ

�

þ n2ηξ cosh nηð Þ A1n þ A2nð Þ þ nξ sinh nηð Þ κ � 2
2

A1n � κ

2
A2n

� �� �
cos nξð Þ

� η21 � η2

ξ2 þ η2
nη cosh nηð Þ A1n þ A2nð Þ sin nξð Þ � nξ sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�
,
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h20
2μ

τξη ¼
X∞
n¼1

n2η21 cosh nηð Þ A1n þ A2nð Þ þ nη sinh nηð Þ κ � 2
2

A1n � κ

2
A2n

� �� �
cos nξð Þ

�

� n2ηξ sinh nηð Þ A1n þ A2nð Þ þ nξ cosh nηð Þ κ

2
A1n � κ � 2

2
A2n

� �� �
sin nξð Þ

� η21 � η2

ξ2 þ η2
nξ cosh nηð Þ A1n þ A2nð Þ sin nξð Þ þ nη sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�
,

(25)

h20
2μ

σξξ ¼
X∞
n¼1

� n2η21 sinh nηð Þ A1n þ A2nð Þ þ nη cosh nηð Þ κ � 4
2

A1n � κ þ 2
2

A2n

� �� �
sin nξð Þ

�

� n2ηξ cosh nηð Þ A1n þ A2nð Þ þ nξ sinh nηð Þ κ þ 2
2

A1n � κ � 4
2

A2n

� �� �
cos nξð Þ

þ η21 � η2

ξ2 þ η2
nη cosh nηð Þ A1n þ A2nð Þ sin nξð Þ � nξ sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�
:

We have to solve problem (2), (7a), (8a), and (9a) when Q1 ξð Þ ¼ P and
Q2 ξð Þ ¼ 0, i.e., at η ¼ η1 boundary the normal load 1

2μ σηη ¼ P
h20
is given, but tangent

stress is equal to zero. From (16), and (23), we obtain the following equations:

X∞
n¼1

n2η1 sinh nη1ð Þ A1n þ A2nð Þ � n cosh nη1ð Þ κ

2
A1n � κ � 2

2
A2n

� �� �
sin nξð Þ ¼ Pη1

ξ2 þ η21
,

X∞
n¼1

n2η1 cosh nη1ð Þ A1n þ A2nð Þ þ n sinh nη1ð Þ κ � 2
2

A1n � κ

2
A2n

� �� �
cos nξð Þ ¼ Pξ

ξ2 þ η21
:

From here an infinite system of the linear algebraic equations with unknown A1n
and A2n coefficients is obtained:

n2η1 sinh nη1ð Þ � n
κ

2
cosh nη1ð Þ

� �
A1n

h

þ n2η1 sinh nη1ð Þ þ n
κ � 2
2

cosh nη1ð Þ
� �

A2n

�
¼ ~F1n,

n2η1 cosh nη1ð Þ þ n
κ � 2
2

sinh nη1ð Þ
� �

A1n

�

þ n2η1 cosh nη1ð Þ � n
κ

2
sinh nη1ð Þ

� �
A2n

i
¼ ~F2n, n ¼ 1, 2, …

(26)

where ~F1n and ~F2n are the coefficients of expansion into the Fourier series

f 1 ξð Þ ¼ P∞
n¼1

~F1n sin nξð Þ and f 2 ξð Þ ¼ P∞
n¼1

~F2n cos nξð Þ, respectively, f 1 ξð Þ ¼ Pη1
ξ2þη21

and

f 2 ξð Þ ¼ Pξ
ξ2þη21

functions.

As seen, the main matrix of system (26) has a block-diagonal form, dimension of
each block is 2� 2. Thus, two equations with two A1n and A2n unknown values will
be solved. After solving this system, we find A1n and A2n coefficients, and in putting
them into formulas (24) and (25), we get displacements and stresses at any points
of the body.

Numerical values of displacements and stresses are obtained at the points of the
finite size region bounded by curved lines η ¼ η1 and ξ ¼ ξ1 (see Figure 1a), and
relevant 3D graphs are drafted. The numerical results are obtained for the following
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data: ν ¼ 0:3, E ¼ 2� 106kg=cm2, P ¼ �10kg=cm2, 0:1≤ η1 ≤ 3, ξ1 ¼ 2 ∗ π, ξ1 ¼
4 ∗ π, and ξ1 ¼ 6 ∗ π. Numerical calculations and the visual presentation are made by
MATLAB software.

Figures 3 and 4 show the distribution of stresses and displacements in the region
bounded by curved lines η ¼ η1 and ξ ¼ ξ1k≔ξ1 (see Figure 1a), when (7a), (8a),
and (9a) boundary conditions are valid and normal stress is applied to the parabolic
boundary. Following conditions (8a) and (9a), at points of the linear parts ξ ¼ 0
and η ¼ 0 of consideration area σξξ 0, ηð Þ, σηη ξ, 0ð Þ stresses and u ξ, 0ð Þ, v 0, ηð Þ
displacements equal zero which is seen in Figures 3 and 4.

4.2 External problem

We will set and solve the concrete external boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous

Figure 3.
Distribution of stresses in the region bounded by curved lines η ¼ η1 and ξ ¼ ξ1.

Figure 4.
Distribution of displacements in the region bounded by curved lines η ¼ η1 and ξ ¼ ξ1.
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isotropic body in the region Ω1 ¼ 0< ξ< ξ1, η1 < η<∞f g, which satisfies the fol-
lowing boundary conditions: (7a), (8a), (10), and (100).

From (20) and (8a)

φi ¼
X∞
n¼1

φin, i ¼ 1, 2, 3, (27)

where φ1n ¼ B1ne�nη sin nξð Þ, φ2n ¼ B2ne�nη cos nξð Þ, φ3n ¼ κ�2
2n B2ne�nη sin nξð Þ.

By inserting (27) in (17) and (19), we will obtain the following expressions for
displacements:

u ¼
X∞
n¼0

�ne�nη B1n � B2nð Þη1 cos nξð Þ þ B1n � B2nð Þξ sin nξð Þ½ � η� η1ð Þf

�e�nη κ � 1ð ÞB1n � κ � 2ð ÞB2n½ �ξ sin nξð Þ � κ

2
e�nηB2nη cos nξð Þ

o
,

v ¼
X∞
n¼1

ne�nη B1n � B2nð Þξ cos nξð Þ þ B1n � B2nð Þη1 sin nξð Þ½ � η� η1ð Þf

þe�nη κ � 1ð ÞB1n � κ � 2ð ÞB2n½ �η sin nξð Þ � κ

2
e�nηB2nξ cos nξð Þ

o
,

(28)

and for the stresses, we obtain the following formula:

h20
2μ

σηη ¼
X∞
n¼1

�n2e�nη B1n � B2nð Þη1 sin nξð Þ þ B1n � B2nð Þξ cos nξð Þ½ � η� η1ð Þ�

�ne�nη κ

2
B1nη sin nξð Þ � κ � 2

2
B1n þ B2n

� �
ξ cos nξð Þ

� �

� η2 � η21
ξ2 þ η2

ne�nη B1n � B2nð Þ η sin nξð Þ þ ξ cos nξð Þ½ �
�
,

h20
2μ

τξη ¼
X∞
n¼1

�n2e�nη B1n � B2nð Þξ sin nξð Þ � B1n � B2nð Þη1 cos nξð Þ½ � η� η1ð Þ�

�ne�nη κ

2
B1nξ sin nξð Þ � κ � 2

2
B1n þ B2n

� �
η cos nξð Þ

� �
,

� η2 � η21
ξ2 þ η2

ne�nη B1n � B2nð Þ ξ sin nξð Þ þ η cos nξð Þ½ �
�
,

(29)

h20
2μ

σξξ ¼
X∞
n¼1

n2e�nη B1n � B2nð Þη1 sin nξð Þ þ B1n � B2nð Þξ cos nξð Þ½ � η� η1ð Þ�

þne�nη κ � 4
2

B1n þ 2B2n

� �
η sin nξð Þ þ κ þ 2

2
B1nξ cos nξð Þ

� �

þ η2 � η21
ξ2 þ η2

ne�nη B1n � B2nð Þ η sin nξð Þ þ ξ cos nξð Þ½ �
�
:

Next, we will obtain the numerical results of the following example.
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data: ν ¼ 0:3, E ¼ 2� 106kg=cm2, P ¼ �10kg=cm2, 0:1≤ η1 ≤ 3, ξ1 ¼ 2 ∗ π, ξ1 ¼
4 ∗ π, and ξ1 ¼ 6 ∗ π. Numerical calculations and the visual presentation are made by
MATLAB software.
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and (9a) boundary conditions are valid and normal stress is applied to the parabolic
boundary. Following conditions (8a) and (9a), at points of the linear parts ξ ¼ 0
and η ¼ 0 of consideration area σξξ 0, ηð Þ, σηη ξ, 0ð Þ stresses and u ξ, 0ð Þ, v 0, ηð Þ
displacements equal zero which is seen in Figures 3 and 4.

4.2 External problem

We will set and solve the concrete external boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous
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isotropic body in the region Ω1 ¼ 0< ξ< ξ1, η1 < η<∞f g, which satisfies the fol-
lowing boundary conditions: (7a), (8a), (10), and (100).

From (20) and (8a)

φi ¼
X∞
n¼1

φin, i ¼ 1, 2, 3, (27)

where φ1n ¼ B1ne�nη sin nξð Þ, φ2n ¼ B2ne�nη cos nξð Þ, φ3n ¼ κ�2
2n B2ne�nη sin nξð Þ.

By inserting (27) in (17) and (19), we will obtain the following expressions for
displacements:

u ¼
X∞
n¼0

�ne�nη B1n � B2nð Þη1 cos nξð Þ þ B1n � B2nð Þξ sin nξð Þ½ � η� η1ð Þf

�e�nη κ � 1ð ÞB1n � κ � 2ð ÞB2n½ �ξ sin nξð Þ � κ

2
e�nηB2nη cos nξð Þ

o
,

v ¼
X∞
n¼1

ne�nη B1n � B2nð Þξ cos nξð Þ þ B1n � B2nð Þη1 sin nξð Þ½ � η� η1ð Þf

þe�nη κ � 1ð ÞB1n � κ � 2ð ÞB2n½ �η sin nξð Þ � κ

2
e�nηB2nξ cos nξð Þ

o
,

(28)

and for the stresses, we obtain the following formula:

h20
2μ

σηη ¼
X∞
n¼1

�n2e�nη B1n � B2nð Þη1 sin nξð Þ þ B1n � B2nð Þξ cos nξð Þ½ � η� η1ð Þ�

�ne�nη κ

2
B1nη sin nξð Þ � κ � 2

2
B1n þ B2n

� �
ξ cos nξð Þ

� �

� η2 � η21
ξ2 þ η2

ne�nη B1n � B2nð Þ η sin nξð Þ þ ξ cos nξð Þ½ �
�
,

h20
2μ

τξη ¼
X∞
n¼1

�n2e�nη B1n � B2nð Þξ sin nξð Þ � B1n � B2nð Þη1 cos nξð Þ½ � η� η1ð Þ�

�ne�nη κ

2
B1nξ sin nξð Þ � κ � 2

2
B1n þ B2n

� �
η cos nξð Þ

� �
,

� η2 � η21
ξ2 þ η2

ne�nη B1n � B2nð Þ ξ sin nξð Þ þ η cos nξð Þ½ �
�
,

(29)

h20
2μ

σξξ ¼
X∞
n¼1

n2e�nη B1n � B2nð Þη1 sin nξð Þ þ B1n � B2nð Þξ cos nξð Þ½ � η� η1ð Þ�

þne�nη κ � 4
2

B1n þ 2B2n

� �
η sin nξð Þ þ κ þ 2

2
B1nξ cos nξð Þ

� �

þ η2 � η21
ξ2 þ η2

ne�nη B1n � B2nð Þ η sin nξð Þ þ ξ cos nξð Þ½ �
�
:

Next, we will obtain the numerical results of the following example.
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We have to solve problem (2), (7a), and (8a), when Q1 ξð Þ ¼ P and Q2 ξð Þ ¼ 0,
i.e., at η ¼ η1 boundary the normal load 1

2μ σηη ¼ P
h20
is given, but tangent stress is

equal to zero. From (22) and (27), we obtain the following equations:

X∞
n¼1

ne�nη1
κ

2
B1n sin nξð Þ ¼ � Pη1

ξ2 þ η21
,

X∞
n¼1

ne�nη1
κ � 2
2

B1n þ B2n

� �
cos nξð Þ

¼ Pξ
ξ2 þ η21

:

Consequently, we obtain the infinite system of the linear algebraic equations
with unknown B1n and B2n coefficients:P∞

n¼1
ne�nη1 κ

2B1n sin nξð Þ ¼ �P
∞

n¼1

~P1n sin nξð Þ, P
∞

n¼1
ne�nη1 κ�2

2 B1n þ B2n
� �

cos nξð Þ

¼
X∞
n¼1

~P2n cos nξð Þ,

i.e.,

ne�nη1
κ

2
B1n ¼ �~P1n, ne�nη1

κ � 2
2

B1n þ B2n

� �
¼ ~P2n, n ¼ 1, 2, … : (30)

Hence,

B1n ¼ � 2
κn

enη1~P1n, B2n ¼ enη1

n
~P2n þ κ � 2

κ
~P1n

� �
,

Figure 5.
Stresses and displacements at points M2 ξ1, η1ð Þ for ξ1 ¼ 2 ∗ π, ξ1 ¼ 4 ∗ π, and ξ1 ¼ 6 ∗ π, when 0:01≤ η1 ≤3.
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where ~P1n and ~P2n are the coefficients of expansion into the Fourier series of
functions f 1 ξð Þ ¼ � Pη1

ξ2þη21
and f 2 ξð Þ ¼ Pξ

ξ2þη21
, respectively (f 1 ξð Þ, according to sinuses,

and f 2 ξð Þ, according to cosines).
As it can be seen, the main matrix of system (30) has a block-diagonal form, and

the dimension of each block is 2� 2. Thus, two equations with two B1n and B2n
unknown values will be solved. After solving this system, we find the values of B1n
and B2n coefficients and put them into formulas (28) and (29) to get displacements
and stresses at any points of the body.

Numerical results are obtained for some characteristic points of the body, in
particular, M1 0, η1ð Þ, M2 ξ1, η1ð Þ points (see. Figure 2a), for the following data:
ν ¼ 0:3, E ¼ 2 ∗ 106kg=cm2, P ¼ �10kg=cm2, 0:01≤ η1 ≤ 3, ξ1 ¼ 2 ∗ π, ξ1 ¼ 4 ∗ π,
and ξ1 ¼ 6 ∗ π.

The above-presented graphs (see Figures 5 and 6) show how displacements and
stresses change at some characteristic points of body, namely, at points

M jð Þ
1 0, η jð Þ

1

� �
and M jð Þ

2 ξ1, η
jð Þ

1

� �
j ¼ 1, 2, … , 8ð Þ, when 0:01≤ η1 ≤ 3 (see Figure 7).

From the presented results, we obtain the following:

• At points M jð Þ
1 0, η jð Þ

1

� �
, max utj j< max unj j, vt ¼ vn ¼ 0:

Figure 6.
Tangential stress and normal displacements at points M1 0, η1ð Þ for ξ1 ¼ 2 ∗ π, ξ1 ¼ 4 ∗ π, and ξ1 ¼ 6 ∗ π,
when 0:01≤ η1 ≤ 3.
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We have to solve problem (2), (7a), and (8a), when Q1 ξð Þ ¼ P and Q2 ξð Þ ¼ 0,
i.e., at η ¼ η1 boundary the normal load 1
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is given, but tangent stress is
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where ~P1n and ~P2n are the coefficients of expansion into the Fourier series of
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ξ2þη21
and f 2 ξð Þ ¼ Pξ
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, respectively (f 1 ξð Þ, according to sinuses,

and f 2 ξð Þ, according to cosines).
As it can be seen, the main matrix of system (30) has a block-diagonal form, and

the dimension of each block is 2� 2. Thus, two equations with two B1n and B2n
unknown values will be solved. After solving this system, we find the values of B1n
and B2n coefficients and put them into formulas (28) and (29) to get displacements
and stresses at any points of the body.
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• At points M jð Þ
2 ξ1, η

jð Þ
1

� �
, max σtξξ

���
���> max σnξξ

���
���, max utj j> max unj j,

max vtj j< max vnj j:

• When ξ1 ! ∞, then displacements and stresses tend to zero, that is,
the boundary conditions (10) are satisfied.

• When η1 ! ∞, then displacements and stresses tend to zero, that is, the
boundary conditions (100) are satisfied.

• When η1 ! 0 (in this case there is a crack), then (a) at points M jð Þ
1 0, η jð Þ

1

� �

tangential stresses and normal displacements tend to ∞, but other components
equal to zero. It can be seen from the boundary conditions (8a) (b) at points

M jð Þ
2 ξ1, η

jð Þ
1

� �
that all components of the displacements and stresses tend to ∞.

Here superscript t and n denote the tangential and normal displacement or the
stress, respectively.

5. Conclusion

The main results of this chapter can be formulated as follows:

• The equilibrium equations and Hooke’s law are written in terms of parabolic
coordinates.

• The solution of the equilibrium equations is obtained by the method of
separation of variables. The solution is constructed using its general
representation by harmonic functions.

• In parabolic coordinates, analytical solutions of 2D static boundary value
problems for the elasticity are constructed for homogeneous isotropic finite
and infinite bodies occupying domains bounded by coordinate lines of
parabolic coordinate system.

Figure 7.
Infinite region bounded by parabola marked with points, when obtaining the above-presented numerical results.
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• Two concrete internal and external boundary value problems in stresses are
set and solved.

The bodies bounded by the parabola are common in practice, for example, in
building, mechanical engineering, biology, medicine, etc., the study of the
deformed state of such bodies is topical, and consequently, in my opinion, setting
the problems considered in the chapter and the method of their solution is interest-
ing in a practical view.

Notations

x, y Cartesian coordinates
ξ, η parabolic coordinates
E and v modulus of elasticity and Poisson’s ratio
λ, μ elastic Lamé constants

U
!

u, vð Þ displacement vector

σξξ, σηη, τξη ¼ τηξ normal and tangential stresses

Appendix

A. Some basic formulas in parabolic coordinates

In orthogonal parabolic coordinate system ξ, η(�∞< ξ<∞, 0≤ η<∞, see
Figure A1) [23, 24]; we have

hξ ¼ hη ¼ h ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

q
, x ¼ c ξ2 � η2

� �
=2, y ¼ cξη,

where hξ, hη are Lame's coefficients of the system of parabolic coordinates, c is a
scale coefficient, x, y are the Cartesian coordinates.

The coordinate axes are parabolas

y2 ¼ �2cξ20 x� cξ20=2
� �

, ξ0 ¼ const, y2 ¼ �2cη20 xþ cη20=2
� �

, η0 ¼ const:

Laplace’s equation Δf ¼ 0, where f ¼ f ξ, ηð Þ, in the parabolic coordinates has the
form

f ,ξξ þ f ,ηη
� �

=c2 ξ2 þ η2
� � ¼ 0:

We have to find solution of the equation in following form

f ¼ X ξð Þ � E ηð Þ,

and then by separation of variables, we will receive

1
c2 ξ2 þ η2
� � X}

X
þ E0

E

� �
¼ 0:

From here

X}þmX ¼ 0, E}�mE ¼ 0,
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• At points M jð Þ
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• Two concrete internal and external boundary value problems in stresses are
set and solved.

The bodies bounded by the parabola are common in practice, for example, in
building, mechanical engineering, biology, medicine, etc., the study of the
deformed state of such bodies is topical, and consequently, in my opinion, setting
the problems considered in the chapter and the method of their solution is interest-
ing in a practical view.

Notations

x, y Cartesian coordinates
ξ, η parabolic coordinates
E and v modulus of elasticity and Poisson’s ratio
λ, μ elastic Lamé constants

U
!

u, vð Þ displacement vector

σξξ, σηη, τξη ¼ τηξ normal and tangential stresses

Appendix

A. Some basic formulas in parabolic coordinates

In orthogonal parabolic coordinate system ξ, η(�∞< ξ<∞, 0≤ η<∞, see
Figure A1) [23, 24]; we have

hξ ¼ hη ¼ h ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ η2

q
, x ¼ c ξ2 � η2

� �
=2, y ¼ cξη,

where hξ, hη are Lame's coefficients of the system of parabolic coordinates, c is a
scale coefficient, x, y are the Cartesian coordinates.

The coordinate axes are parabolas

y2 ¼ �2cξ20 x� cξ20=2
� �

, ξ0 ¼ const, y2 ¼ �2cη20 xþ cη20=2
� �

, η0 ¼ const:

Laplace’s equation Δf ¼ 0, where f ¼ f ξ, ηð Þ, in the parabolic coordinates has the
form

f ,ξξ þ f ,ηη
� �

=c2 ξ2 þ η2
� � ¼ 0:

We have to find solution of the equation in following form

f ¼ X ξð Þ � E ηð Þ,

and then by separation of variables, we will receive

1
c2 ξ2 þ η2
� � X}

X
þ E0

E

� �
¼ 0:

From here

X}þmX ¼ 0, E}�mE ¼ 0,
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where m is any constant, their solutions are [25]

X ¼ C1 cos mξð Þ þ C2 sin mξð Þ, E ¼ C3emη þ C4e�mη

¼ C ∗
3 cosh mηð Þ þ C ∗

4 sinh mηð Þ:

So

f ξ, ηð Þ ¼ C3emη þ C4e�mηð Þ C1 cos mξð Þ þ C2 sin mξð Þð Þ
or

f ξ, ηð Þ ¼ C ∗
3 cosh mηð Þ þ C ∗

4 sinh mηð Þ� �
C1 cos mξð Þ þ C2 sin mξð Þð Þ,

B. Solution of system of partial differential equations

We solve the system of partial differential equations (2).
We have introduced φ1 harmonic function, and if we take

að Þ D ¼ κμ

h20
φ1,ηη� φ1,ξξ
� �

, bð ÞK ¼ κμ

h20
φ1,ηξþ φ1,ξη
� �

, (B1)

then Eqs. (2a) and (2b) will be satisfied identically, while Eqs. (2c) and (2d) will
receive the following form:

að Þ u,ξ þ v,η ¼ κ � 2ð Þ φ1,ηη� φ1,ξξ
� �

, bð Þv,ξ � u,η ¼ κ φ1,ηξþ φ1,ξη
� �

, (B2)

að Þ u,ξ þ v,η ¼ κ � 2ð Þ φ1,ηη� φ1,ξξ
� �

, bð Þ v� κφ1ηð Þ,ξ ¼ uþ κφ1ξð Þ,η: (B3)

From equation (B3b) imply that exists such type harmonic function φ, for which
fulfill the following

u ¼ φ,ξ � κφ1ξ, v ¼ φ,η þ κφ1η: (B4)

Considering (B4), from Equation (B3a), the following will be obtained:

h2Δφ ¼ φ,ξξ þ φ,ηη ¼ κφ1 þ κφ1,ξξ� κφ1 � κφ1,ηηþ κ � 2ð Þ φ1,ηη� φ1ξξ
� �

¼ 2 φ1,ξξ� φ1,ηη
� �

: (B5)

Figure A1.
Parabolic coordinate system.
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General solution of the system (B2) can be written in the form u ¼ ψ1, v ¼ ψ2,
where

ψ1,ξ þ ψ2,η ¼ 0, ψ2,ξ � ψ1,η ¼ 0:

The full solution of equation system (B2) is written in the following form:

u ¼ φ,ξ � κφ1ξþ ψ1, v ¼ φ,η þ κφ1ηþ ψ2, (B6)

where φ is the partial solution of the (B5).
If we take κ ¼ const, then

φ ¼ ξ2 � η2

2
φ1,

and (B6) formula will receive the following form:

u ¼ ξ2 � η2

2
φ1,ξ � κ � 1ð Þφ1ξþ ψ1, v ¼ ξ2 � η2

2
φ1,η þ κ � 1ð Þφ1ηþ ψ2:

From here

u ¼ ξ2 � η2

2
φ1,ξ þ ξηφ1,η

� �
� ξηφ1,η � κ � 1ð Þφ1ξþ ψ1,

v ¼ ξ2 � η2

2
φ1,η � ξηφ1,ξ

� �
þ ξηφ1,ξ þ κ � 1ð Þφ1ηþ ψ2:

Without losing the generality, the expression in brackets can be taken as zero,
because we already have in u and v of the solutions Laplacian (we mean ψ1 and ψ2).
Therefore, the solutions of system (2) are given in the following form:

að Þ h20D ¼ κμ φ1,ηη� φ1,ξξ
� �

, bð Þh20K ¼ κμ φ1,ηξþ φ1,ξη
� �

,

cð Þu ¼ �ξηφ1,η � κ � 1ð Þφ1ξþ ψ1, dð Þv ¼ ξηφ1,ξ þ κ � 1ð Þφ1ηþ ψ2:
(B7)

Now we have to write down three versions of ψ1 and ψ2 function representation.
In the first version

ψ1 ¼ φ1,η þ ~φ1,η þ φ2,η, ψ2 ¼ φ1,ξ þ ~φ1,ξ þ φ2,ξ, (B8)

φ1, ~φ1,φ2 are harmonic functions; in addition, φ1, ~φ1 are selected so that at η ¼ α,
where α ¼ η1 or α ¼ η2, the following equations will be satisfied:

�ξηφ1,η � κ � 1ð Þφ1ξþ φ1,η þ ~φ1,η ¼ 0, ξηφ1,ξ þ κ � 1ð Þφ1ξþ φ1,ξ þ ~φ1,ξ ¼ 0,

In the second version

ψ1 ¼ �α
ξ2 � η� αð Þ2

2
φ1,ξ þ ξηφ1,η

 !
þ ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

ψ2 ¼ α ξηφ1,ξ �
ξ2 � η� αð Þ2

2
φ1,η

 !
þ ξ2 � η2

2
φ2,η � ξηφ2,ξ,

(B9)
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General solution of the system (B2) can be written in the form u ¼ ψ1, v ¼ ψ2,
where

ψ1,ξ þ ψ2,η ¼ 0, ψ2,ξ � ψ1,η ¼ 0:

The full solution of equation system (B2) is written in the following form:

u ¼ φ,ξ � κφ1ξþ ψ1, v ¼ φ,η þ κφ1ηþ ψ2, (B6)

where φ is the partial solution of the (B5).
If we take κ ¼ const, then

φ ¼ ξ2 � η2

2
φ1,

and (B6) formula will receive the following form:
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2
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2
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From here
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� �
� ξηφ1,η � κ � 1ð Þφ1ξþ ψ1,
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2
φ1,η � ξηφ1,ξ

� �
þ ξηφ1,ξ þ κ � 1ð Þφ1ηþ ψ2:

Without losing the generality, the expression in brackets can be taken as zero,
because we already have in u and v of the solutions Laplacian (we mean ψ1 and ψ2).
Therefore, the solutions of system (2) are given in the following form:

að Þ h20D ¼ κμ φ1,ηη� φ1,ξξ
� �

, bð Þh20K ¼ κμ φ1,ηξþ φ1,ξη
� �

,

cð Þu ¼ �ξηφ1,η � κ � 1ð Þφ1ξþ ψ1, dð Þv ¼ ξηφ1,ξ þ κ � 1ð Þφ1ηþ ψ2:
(B7)

Now we have to write down three versions of ψ1 and ψ2 function representation.
In the first version

ψ1 ¼ φ1,η þ ~φ1,η þ φ2,η, ψ2 ¼ φ1,ξ þ ~φ1,ξ þ φ2,ξ, (B8)

φ1, ~φ1,φ2 are harmonic functions; in addition, φ1, ~φ1 are selected so that at η ¼ α,
where α ¼ η1 or α ¼ η2, the following equations will be satisfied:

�ξηφ1,η � κ � 1ð Þφ1ξþ φ1,η þ ~φ1,η ¼ 0, ξηφ1,ξ þ κ � 1ð Þφ1ξþ φ1,ξ þ ~φ1,ξ ¼ 0,

In the second version

ψ1 ¼ �α
ξ2 � η� αð Þ2

2
φ1,ξ þ ξηφ1,η

 !
þ ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

ψ2 ¼ α ξηφ1,ξ �
ξ2 � η� αð Þ2

2
φ1,η

 !
þ ξ2 � η2

2
φ2,η � ξηφ2,ξ,

(B9)
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where φ2 is the harmonic function.
In the third version

ψ1 ¼ �α2
ξ2 � η2

2
φ1,ξ þ ξηφ1,η

� �
þ ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

ψ2 ¼ α2 ξηφ1,ξ �
ξ2 � η2

2
φ1,η

� �
þ ξ2 � η2

2
φ2,η � ξηφ2,ξ:

(B10)

Inserting (B8) in (B7c and d), we will get

að Þu ¼ �ξηφ1,η � κ � 1ð Þφ1ξþ φ1,η þ ~φ1,η þ φ2,η,

bð Þv ¼ ξηφξþ κ � 1ð Þφ1ξþ φ1,ξ þ ~φ1,ξ þ φ2,ξ:
(B11)

Inserting (B9) in (B7c and d), we will have

að Þu ¼ �α
ξ2 � η� αð Þ2

2
φ1,ξ þ ξηφ1,η

 !
� ξηφ1,η � κ � 1ð Þφ1ξþ

ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

bð Þv ¼ α ξηφ1,ξ �
ξ2 � η� αð Þ2

2
φ1,η

 !
þ ξηφ1,ξ þ κ � 1ð Þφ1ηþ

ξ2 � η2

2
φ2,η � ξηφ2,ξ:

(B12)

Inserting (B10) in (B7c and d), we will get

að Þu ¼ �α2
ξ2 � η2

2
φ1,ξ þ ξηφ1,η

� �
� ξηφ1,η � κ � 1ð Þφ1ξþ

ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

bð Þv ¼ α2 ξηφ1,ξ �
ξ2 � η2

2
φ1,η

� �
þ ξηφ1,ξ þ κ � 1ð Þφ1ηþ

ξ2 � η2

2
φ2,η � ξηφ2,ξ:

(B13)

C. Finding of ξ1

After the boundary value problem with relevant boundary conditions on
ξ ¼ ξ1 ¼ ξ11 is solved, the following condition is examined: F11=F10 < ε:

ε is a sufficiently small positive number given in advance (ε ¼ 0, 001� 0, 0001).

F11 ¼
ðη1

0

σξξ
�� ��þ σηη

�� ��þ τξη
�� ��� �

hdη

2
4

3
5
ξ¼ξ1

, F10 ¼
ðη1

0

σξξ
�� ��þ σηη

�� ��þ τξη
�� ��� �

hdη

2
4

3
5
ξ¼g~ξ1

:

g number will be selected so that on boundary η ¼ η1, point M g~ξ1, η1
� �

should

correspond to the highest value of expression σηη g~ξ1, η1
� �� �2 þ τξη g~ξ1, η1

� �� �2
(when

stresses are given) or to the highest value of expression u g~ξ1, η1
� �� �2 þ v g~ξ1, η1

� �� �2
(when displacements are given).

If condition F11=F10 < ε is not valid forξ1 ¼ ξ11, the same problem will be solved
at the beginning, but ξ1 ¼ ξ12 will be used instead of ξ1 ¼ ξ11. In addition, ξ12 > ξ11.
Then, if condition F12=F10 < ε is not still valid, we will continue with the boundary
problem, where ξ1 ¼ ξ13; besides, ξ13 > ξ12 > ξ11, and we will examine condition
F13=F10 < ε. The process will be over at the kth stage, if condition F1k=F10 < ε is valid.
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Finding such ξ1 ¼ ξ1k, for which F1k=F10 < ε.
Distance l between surfaces ξ ¼ ξ1 and ξ ¼ ~ξ1, which gives the guarantee for

condition F1k=F10 < ε to be valid in the parabolic coordinate system, will be taken
along the axis of the parabola , and the following expression will be obtained:

ξ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=cþ ~ξ

2
1

q
:

By relying on the known solutions of the relevant plain problems of elasticity, it
is purposeful to admit that l=c ¼ 4, 5, 6, … , which allows finding ξ1 from the
relevant equation. Let us note that when l=c ¼ 4, we will denote value ξ1 by ξ11,
when l=c ¼ 5; by ξ12, when l=c ¼ 6; by ξ13, etc. If after selecting ξ1 ¼ ξ1k, inequality
F1k=F10 < ε is valid; in order to check the righteousness of the selection, it is neces-
sary to once again make sure that, together with condition F1k=F10 < ε, condition
ε>F1k=F10 > F1kþ1=F10 >F1kþ2=F10 > … is valid, too.
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where φ2 is the harmonic function.
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ξ2 � η2

2
φ1,η
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φ2,η � ξηφ2,ξ:
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Chapter 12

Boundary Element Mathematical
Modelling and Boundary Element
Numerical Techniques for
Optimization of Micropolar
Thermoviscoelastic Problems in
Solid Deformable Bodies
Mohamed Abdelsabour Fahmy

Abstract

The main objective of this chapter is to introduce a new theory called three-
temperature nonlinear generalized micropolar thermoviscoelasticity. Because of
strong nonlinearity of simulation and optimization problems associated with this
theory, the numerical solutions for problems related with the proposed theory are
always very difficult and require the development of new numerical techniques. So,
we propose a new boundary element technique for simulation and optimization of
such problems based on genetic algorithm (GA), free form deformation (FFD)
method and nonuniform rational B-spline curve (NURBS) as the shape optimiza-
tion technique. In the formulation of the considered problem, the profiles of the
considered objects are determined by FFD method, where the FFD control points
positions are treated as genes, and then the chromosomes profiles are defined with
the genes sequence. The population is founded by a number of individuals (chro-
mosomes), where the objective functions of individuals are determined by the
boundary element method (BEM). The numerical results verify the validity and
accuracy of our proposed technique.

Keywords: boundary element modeling, simulation, optimization,
three-temperature, nonlinear generalized micropolar thermoviscoelasticity,
solid deformable bodies

1. Introduction

The classical thermo-elasticity (CTE) theory which was introduced by Duhamel
[1] and Neumann [2] characterized the strain-temperature gradients equations in
an elastic body, but it has two shortcomings contrary to physical observations: First,
the heat conduction equation of this theory does not include any elastic terms.
Second, the heat conduction equation is of a parabolic type predicting infinite
speeds of thermal waves. Biot [3] developed the classical coupled thermo-elasticity
(CCTE) theory to overcome the first shortcoming in CTE. However, both theories

187



Chapter 12

Boundary Element Mathematical
Modelling and Boundary Element
Numerical Techniques for
Optimization of Micropolar
Thermoviscoelastic Problems in
Solid Deformable Bodies
Mohamed Abdelsabour Fahmy

Abstract

The main objective of this chapter is to introduce a new theory called three-
temperature nonlinear generalized micropolar thermoviscoelasticity. Because of
strong nonlinearity of simulation and optimization problems associated with this
theory, the numerical solutions for problems related with the proposed theory are
always very difficult and require the development of new numerical techniques. So,
we propose a new boundary element technique for simulation and optimization of
such problems based on genetic algorithm (GA), free form deformation (FFD)
method and nonuniform rational B-spline curve (NURBS) as the shape optimiza-
tion technique. In the formulation of the considered problem, the profiles of the
considered objects are determined by FFD method, where the FFD control points
positions are treated as genes, and then the chromosomes profiles are defined with
the genes sequence. The population is founded by a number of individuals (chro-
mosomes), where the objective functions of individuals are determined by the
boundary element method (BEM). The numerical results verify the validity and
accuracy of our proposed technique.

Keywords: boundary element modeling, simulation, optimization,
three-temperature, nonlinear generalized micropolar thermoviscoelasticity,
solid deformable bodies

1. Introduction

The classical thermo-elasticity (CTE) theory which was introduced by Duhamel
[1] and Neumann [2] characterized the strain-temperature gradients equations in
an elastic body, but it has two shortcomings contrary to physical observations: First,
the heat conduction equation of this theory does not include any elastic terms.
Second, the heat conduction equation is of a parabolic type predicting infinite
speeds of thermal waves. Biot [3] developed the classical coupled thermo-elasticity
(CCTE) theory to overcome the first shortcoming in CTE. However, both theories

187



share the second shortcoming. So, several generalized thermoelasticity theories that
predict finite speeds of propagation for heat waves have been developed such as
extended thermo-elasticity (ETE) theory of Lord and Shulman [4], temperature-
rate-dependent thermo-elasticity (TRDTE) theory of Green and Lindsay [5], three
linear generalized thermoelasticity theories (type I, II and III) of Green and Naghdi
[6, 7], low-temperature thermoelasticity (LTTE) model of Hetnarski and Ignaczak
[8], the dual phase-lag (DPL) heat conduction equation of Tzou [9, 10] which has
been developed taking into consideration the phonons-electrons interactions to
obtain dual phase-lag thermoelasticity (DPLTE) [11, 12], and three-phase-lag
thermoelasticity (TPLTE) model of Choudhuri [13] who takes into consideration
the phase-lags of heat flux, temperature gradient and thermal displacement gradi-
ent. Chen and Gurtin [14], introduced the theory of two-temperatures (conductive
temperature and thermodynamic temperature) heat conduction in the context
of elastic bodies, then Youssef [15] extended this theory to generalized
thermoelasticity. Fahmy [16] introduced three-temperature nonlinear generalized
micropolar-magneto-thermoelasticity theory and developed a new boundary ele-
ment technique for Modeling and Simulation of complex problems associated with
this theory. Theory of micropolar elasticity [17, 18] has been developed for studying
the mechanical behavior of polymers and elastomers and applied in many applica-
tions [19–24]. Then, Eringen [25] and Nowacki [26] extended it to micropolar
thermoelasticity, and then implemented in various applications [27–29]. Because of
strong nonlinearity of three-temperatures radiative heat conduction equations, the
numerical solution and simulation of such problems are always difficult and require
the development of new numerical schemes [30, 31]. In comparison with other
numerical methods [32–34], the boundary element method has been successfully
applied and performed for solving various applications [35–60]. The boundary
element technique has been formulated in the context of micropolar
thermoelasticity by Sladek and Sladek [61–63] and Huang and Liang [64]. Through
the current paper, the term three-temperatures introduced for the first time in the
field of nonlinear generalized micropolar thermoviscoelasticity. Recently, evolu-
tionary algorithms [65, 66] have received much attention of researchers. The
genetic algorithm (GA) can deal with the multi-objective and complex shapes
problems. Also, it could reach an optimal solution with highly reduced computa-
tional cost.

The main aim of this article is to introduce a new theory called nonlinear
generalized micropolar thermoviscoelasticity involving three temperatures. Because
of strong nonlinearity, it is very difficult to solve the problems related to this theory
analytically. Therefore, we propose a new boundary element model for simulation
and optimization of three temperatures nonlinear generalized micropolar
thermoviscoelastic problems associated with this theory. The genetic algorithm
(GA) was implemented based on free form deformation (FFD) technique and
nonuniform rational B-spline (NURBS) curve as an optimization technique for the
considered problems. The numerical results demonstrate the validity and accuracy
of our proposed model.

2. Formulation of the problem

The governing equations for three-temperature anisotropic generalized
micropolar thermoviscoelasticity problems can be expressed as [58]

σij,j þ ρFi ¼ ρ€ui (1)
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mij,j þ εijkσjk þ ρMi ¼ Jρ€ωi (2)

where

σij ¼ Cijkl ℵ eδij þ α̌ uj, i � εijkωk
� �� βijTα Cijkl ¼ Cklij ¼ Cjikl; βij ¼ βji

� �
(3)

mij ¼ α ωk,kδij þ αωi, j þ α̿ωj, i (4)

ϵij ¼ εij � εijk rk � ωkð Þ, εij ¼ 1
2

ui,j þ uj,i
� �

, ri ¼ 1
2
εiklul,k (5)

The two-dimension three-temperature (2D-3T) radiative heat conduction
equations can be expressed as [53]

ce
∂Te r, τð Þ

∂τ
� 1
ρ
∇ e∇Te r, τð Þ½ � ¼ �ei Te � Tið Þ �ep Te � Tp

� �
(6)

ci
∂Ti r, τð Þ

∂τ
� 1
ρ
∇ i∇Ti r, τð Þ½ � ¼ ei Te � Tið Þ (7)

4
ρ
cpT3

p
∂Tp r, τð Þ

∂τ
� 1
ρ
∇ p∇Tp r, τð Þ� � ¼ ep Te � Tp

� �
(8)

3. A new mathematical modelling of nonlinear generalized micropolar
thermoviscoelasticity problem

With reference to a Cartesian coordinate system x1, x2, x3ð Þ, we consider an
anisotropic micropolar thermoviscoelastic structure occupies the region R which
bounded by a closed surface S, and Si i ¼ 1, 2, 3, 4ð Þ denotes subsets of S such that
S1 þ S2 ¼ S3 þ S4 ¼ S:

3.1 BEM simulation for temperature field

The 2D-3T radiative heat conduction Eqs. (6)–(8) can be expressed as [53]

∇ α∇Tα r, τð Þ½ � þ r, τð Þ ¼ cαρδ1
∂Tα r, τð Þ

∂τ
(9)

where

 r, τð Þ ¼
�ρ ei Te � Tið Þ–ρ ep Te � Tp

� �
, α ¼ e, δ1 ¼ 1

ρ ei Te � Tið Þ, α ¼ i, δ1 ¼ 1

ρ ep Te � Tp
� �

, α ¼ p, δ1 ¼ 4
ρ
T3
p

8>>><
>>>:

(10)

and

ei ¼ ρeiT�2=3
e ,ep ¼ ρepT�1=2

e ,α ¼ αT5=2
α , α ¼ e, i,p ¼ pT3þ

p (11)

where parameters cα, α α ¼ e, i, pð Þ, , ei, ep are constant inside each
subdomain, but they are discontinuous on the interfaces between subdomains.
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The total energy of unit mass can be described by

P ¼ Pe þ Pi þ Pp, Pe ¼ ceTe, Pi ¼ ciTi, Pp ¼ 1
ρ
cpT4

p (12)

Initial and boundary conditions can be written as

Tα x, y, 0
� � ¼ T0

α x, y
� � ¼ g1 x, τð Þ (13)

α
∂Tα

∂n

����
Γ1

¼ 0, α ¼ e, i, Tp
��
Γ1

¼ g2 x, τð Þ (14)

α
∂Tα

∂n

����
Γ2

¼ 0, α ¼ e, i, p (15)

we use the time-dependent fundamental solution which is a solution of the
following differential equation

D∇2Tα þ ∂T ∗
α

∂n
¼ �δ r� pi

� �
δ τ� rð Þ, D ¼ α

ρc
(16)

In which the points pi are the singularities, where the temperatures are not
defined there. Singular integrals are those whose kernels are not defined at the
singularities on the integration domain R. They are defined by eliminating a small
space including the singularity, and obtaining the limit when this small space tends
to zero [40, 46].

The boundary integral equation corresponding to our considered heat conduc-
tion can be written as in Fahmy [46–48] as follows

CTα ¼ D
α

ðτ
O

ð

S
Tαq ∗ � T ∗

α q
� �

dS dτþ D
α

ðτ
O

ð

R
bT ∗

α dR dτþ
ð

R
Ti
αT

∗
α

��
τ¼0 (17)

which can be expressed in the following form [53].

CTα ¼
ð

S
Tαq ∗ � T ∗

α q
� �

dS�
ð

R

α

D
∂T ∗

α
∂τ

Tα dR (18)

The time derivative of temperature Tα can be approximated as

∂Tα

∂τ
ffi
XN
j¼1

f j rð Þjaj τð Þ: (19)

where fj rð Þ and aj τð Þ are known functions and unknown coefficients,
respectively.

Also, we assume that bTj
α is a solution of

∇2bTj
α ¼ f j (20)

Thus, Eq. (18) results in the following boundary integral equation [53]

C Tα ¼
ð

S
Tαq ∗ � T ∗

α q
� �

dSþ
XN
j¼1

aj τð ÞD�1 CbTj
α �

ð

S
T j
αq

∗ � bq jT ∗
α

h i
dS

� �
(21)

190

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…

where

bq j ¼ �α
∂bTj

α
∂n

(22)

and

aj τð Þ ¼
XN
i¼1

f�1
ji

∂T ri, τð Þ
∂τ

(23)

In which the entries of f�1
ji are the coefficients of F�1 which described in [34].

Ff gji ¼ f j rið Þ (24)

The boundary integral discretization scheme has been applied to (21) with the
use of (23), we get [53]

C _Tα þH Tα ¼ G Q (25)

where Tα and Q are temperature, heat flux vectors and internal heat generation
vectors, respectively.

The diffusion matrix can be defined as

C ¼ � H bTα � G bQ
h i

F�1D�1 (26)

with

bT
n o

ij
¼ bTj

xið Þ (27)

bQ
n o

ij
¼ bqj xið Þ (28)

For solving (25) numerically, we interpolate the functions Tα and q as

Tα ¼ 1� θð ÞTm
α þ θ Tmþ1

α (29)

q ¼ 1� θð Þqm þ θ qmþ1 (30)

where 0≤ θ ¼ τ�τm
τmþ1�τm ≤ 1.

The time derivative of (29) can be expressed as

_Tα ¼ dTα

dθ
dθ
dτ

¼ Tmþ1
α � Tm

α
τmþ1 � τm

¼ Tmþ1
α � Tm

α
Δτm

(31)

By substituting from Eqs. (29)–(31) into Eq. (25), we obtain

C
Δτm

þ θH
� �

Tmþ1
α � θGQmþ1 ¼ C

Δτm
� 1� θð ÞH

� �
Tm
α þ 1� θð ÞGQm (32)

Making use of initial conditions and boundary conditions at Δτm and considering
the previous time step solution as initial values for next step, we get

X ¼  (33)
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The total energy of unit mass can be described by

P ¼ Pe þ Pi þ Pp, Pe ¼ ceTe, Pi ¼ ciTi, Pp ¼ 1
ρ
cpT4

p (12)

Initial and boundary conditions can be written as

Tα x, y, 0
� � ¼ T0

α x, y
� � ¼ g1 x, τð Þ (13)

α
∂Tα

∂n

����
Γ1

¼ 0, α ¼ e, i, Tp
��
Γ1

¼ g2 x, τð Þ (14)

α
∂Tα

∂n

����
Γ2

¼ 0, α ¼ e, i, p (15)

we use the time-dependent fundamental solution which is a solution of the
following differential equation

D∇2Tα þ ∂T ∗
α

∂n
¼ �δ r� pi

� �
δ τ� rð Þ, D ¼ α

ρc
(16)

In which the points pi are the singularities, where the temperatures are not
defined there. Singular integrals are those whose kernels are not defined at the
singularities on the integration domain R. They are defined by eliminating a small
space including the singularity, and obtaining the limit when this small space tends
to zero [40, 46].

The boundary integral equation corresponding to our considered heat conduc-
tion can be written as in Fahmy [46–48] as follows

CTα ¼ D
α

ðτ
O

ð

S
Tαq ∗ � T ∗

α q
� �

dS dτþ D
α

ðτ
O

ð

R
bT ∗

α dR dτþ
ð

R
Ti
αT

∗
α

��
τ¼0 (17)

which can be expressed in the following form [53].

CTα ¼
ð

S
Tαq ∗ � T ∗

α q
� �

dS�
ð

R

α

D
∂T ∗

α
∂τ

Tα dR (18)

The time derivative of temperature Tα can be approximated as

∂Tα

∂τ
ffi
XN
j¼1

f j rð Þjaj τð Þ: (19)

where fj rð Þ and aj τð Þ are known functions and unknown coefficients,
respectively.

Also, we assume that bTj
α is a solution of

∇2bTj
α ¼ f j (20)

Thus, Eq. (18) results in the following boundary integral equation [53]

C Tα ¼
ð

S
Tαq ∗ � T ∗

α q
� �

dSþ
XN
j¼1

aj τð ÞD�1 CbTj
α �

ð

S
T j
αq

∗ � bq jT ∗
α

h i
dS

� �
(21)
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where

bq j ¼ �α
∂bTj

α
∂n

(22)

and

aj τð Þ ¼
XN
i¼1

f�1
ji

∂T ri, τð Þ
∂τ

(23)

In which the entries of f�1
ji are the coefficients of F�1 which described in [34].

Ff gji ¼ f j rið Þ (24)

The boundary integral discretization scheme has been applied to (21) with the
use of (23), we get [53]

C _Tα þH Tα ¼ G Q (25)
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The diffusion matrix can be defined as

C ¼ � H bTα � G bQ
h i

F�1D�1 (26)

with

bT
n o

ij
¼ bTj

xið Þ (27)

bQ
n o

ij
¼ bqj xið Þ (28)

For solving (25) numerically, we interpolate the functions Tα and q as

Tα ¼ 1� θð ÞTm
α þ θ Tmþ1

α (29)

q ¼ 1� θð Þqm þ θ qmþ1 (30)

where 0≤ θ ¼ τ�τm
τmþ1�τm ≤ 1.

The time derivative of (29) can be expressed as

_Tα ¼ dTα

dθ
dθ
dτ

¼ Tmþ1
α � Tm

α
τmþ1 � τm

¼ Tmþ1
α � Tm

α
Δτm

(31)

By substituting from Eqs. (29)–(31) into Eq. (25), we obtain

C
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The Adaptive Smoothing and Prolongation Algebraic Multigrid (aSP-AMG)
method, which uses an adaptive Factorized Sparse Approximate Inverse (aFSAI)
[67] preconditioner as high performance technique that has been implemented
efficiently in Matlab (R2018a) for solving the resulting simultaneous linear alge-
braic systems (33).

3.2 BEM simulation for micropolar thermoviscoelastic fields

According to the weighted residual method, we can write the differential
Eqs. (1) and (2) in the following integral form

ð

R
σij,j þUi
� �

u ∗
i dR ¼ 0 (34)

ð

R
mij,j þ εijkσjk þ Vi
� �

ω ∗
i dR ¼ 0 (35)

where

Ui ¼ ρFi � ρ€ui, Vi ¼ ρ Mi � J€ωið Þ (36)

The boundary conditions are

ui ¼ ui on S1 (37)

λi ¼ σijnj ¼ λi on S2 (38)

ωi ¼ ωi on S3 (39)

μi ¼ mijnj ¼ μi on S4 (40)

By integrating by parts the first term of Eqs. (34) and (35), we obtain

�
ð

R
σiju ∗

i,j dRþ
ð

R
Uiu ∗

i dR ¼ �
ð

S2
λiu ∗

i dS (41)

�
ð

R
mijω ∗

i,j dRþ
ð

R
εijkσjkω ∗

i dRþ
ð

R
Viω ∗

i dR ¼ �
ð

S4
μiω

∗
i dS (42)

On the basis of Huang and Liang [64], we can write

�
ð

R
σij,ju ∗

i dRþ
ð

R
mij,j þ εijkσjk
� �

ω ∗
i dRþ

ð

R
Uiu ∗

i dRþ
ð

R
Viω ∗

i dR

¼
ð

S2
λi � λi
� �

u ∗
i dSþ

ð

S1
ui � uið Þλ ∗

i dSþ
ð

S4
μi � μið Þω ∗

i dSþ
ð

S3
ωi � ωið Þμ ∗

i dS

(43)

By integrating by parts, the left-hand side of (43) can be written as

�
ð

R
σijε ∗ij dR�

ð

R
mij,jω ∗

i,j dRþ
ð

R
Uiu ∗

i dRþ
ð

R
Viω ∗

i dR

¼ �
ð

S2
λi u ∗

i dS�
ð

S1
λiu ∗

i dSþ
ð

S1
ui � uið Þλ ∗

i dS�
ð

S4
μiω

∗
i dS�

ð

S3
μiω

∗
i dS

þ
ð

S3
ωi � ωið Þμ ∗

i dS

(44)
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According to Eringen [68], the elastic and couple stresses can be written in the
following form

σij ¼ ijklεkl,mij ¼ ijklωk,l (45)

where ijkl ¼ klij and ijkl ¼ klij as shown in [68].
Hence, Eq. (44) can be re-expressed as [53]

�
ð

R
σ ∗
ij εij dR�

ð

R
m ∗

ij,jωi,j dRþ
ð

R
Uiu ∗

i dRþ
ð

R
Viω ∗

i dR

¼ �
ð

S2
λi u ∗

i dS�
ð

S1
λiu ∗

i dSþ
ð

S1
ui � uið Þλ ∗

i dS�
ð

S4
μiω

∗
i dS�

ð

S3
μiω

∗
i dS

þ
ð

S3
ωi � ωið Þμ ∗

i dS

(46)

By applying integration by parts again, the left-hand side of (46) can be written
as [53]

ð

R
σ ∗
ij,jui dRþ

ð

R
m ∗

ij,j þ εijkσ ∗
jk

� �
ωi dR ¼ �

ð

S
u ∗
i λi dS�

ð

S
ω ∗
i μi dSþ

ð

S
λ ∗
i ui dS

þ
ð

S
μ ∗
i ωi dS

(47)

The obtained weighting functions for Ui ¼ Δn and Vi ¼ 0 along el were first
used as follows:

σ ∗
lj,j þ Δnel ¼ 0 (48)

m ∗
ij,j þ εijkσ ∗

jk ¼ 0 (49)

According to Dragos [69], the fundamental solutions can be written as

u ∗
i ¼ u ∗

li el,ω
∗
i ¼ ω ∗

li el, λ
∗
i ¼ λ ∗

li el, μ
∗
i ¼ μ ∗

li el, (50)

The obtained weighting functions for Ui ¼ 0 and Vi ¼ Δn along el were next
used as follows:

σ ∗ ∗
ij,j ¼ 0 (51)

m ∗ ∗
lj,j þ εljkσ ∗ ∗

jk þ Δnel ¼ 0 (52)

The fundamental solutions that have been obtained analytically by Dragos [69]
can be written as

u ∗
i ¼ u ∗ ∗

li el,ω ∗
i ¼ ω ∗ ∗

li el, λ ∗
i ¼ λ ∗ ∗

li el, μ ∗
i ¼ μ ∗ ∗

li el, (53)

Using the above two sets of weighting functions into (47) we have

Cn
liu

n
i ¼ �

ð

S
λ ∗
li uidS�

ð

S
μ ∗
li ωidSþ

ð

S
u ∗
li λi dSþ

ð

S
ω ∗
li μi dS (54)

Cn
liω

n
i ¼ �

ð

S
λ ∗ ∗
li uidS�

ð

S
μ ∗ ∗
li ωidSþ

ð

S
u ∗ ∗
li λi dSþ

ð

S
ω ∗ ∗
li μi dS (55)
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S
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i μi dSþ

ð

S
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Thus, we can write

Cnn ¼ �
ð

S
 ∗ dSþ

ð

S
 ∗ dS (56)

where

Cn ¼
C11 C12 0

C21 C22 0

0 0 0

2
64

3
75,   ∗ ¼

u ∗
11 u ∗

12 ω ∗
13

u ∗
21 u ∗

22 ω ∗
23

u ∗ ∗
31 u ∗ ∗

32 ω ∗ ∗
33

2
64

3
75,   ∗ ¼

λ ∗11 λ ∗
12 μ ∗

13

λ ∗
21 λ ∗

22 μ ∗
23

λ ∗ ∗
31 λ ∗ ∗

32 μ ∗ ∗
33

2
64

3
75,

 ¼
u1
u2
ω3

2
64

3
75, ¼

λ1

λ2

μ3

2
64

3
75

In order to solve (56) numerically, we construct the following functions

q ¼ ψ qj, p ¼ ψ pj (57)

substituting above functions into (56) and discretizing the boundary, we obtain

Cnn ¼
XNe

j¼1

�
ð

Γj

 ∗ψ dΓ

" #
j þ

XNe

j¼1

ð

Γj

 ∗ψ dΓ

" #
j (58)

Equation after integration may be expressed as

Cii ¼ �
XNe

j¼1

bij
j þ

XNe

j¼1

bij
j (59)

which can be expressed as

XNe

j¼1

ijj ¼
XNe

j¼1

bij
j (60)

where

ij ¼
bij

if i 6¼ j

bij þ Ci if i ¼ j

8<
: (61)

Thus, we can write the following system of matrix equation as

 ¼  (62)

Hence, we get the following system of linear algebraic equations

  ¼  (63)

4. A new boundary element technique for simulation and optimization
of solid deformable bodies under different loads

In order to solve (63), we apply adaptive smoothing and prolongation algebraic
multigrid (aSP-AMG) based on adaptive Factorized Sparse Approximate Inverse
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(aFSAI) as described in [67] for solving the resulting simultaneous linear algebraic
system (63) in Matlab (R2018a).

B-spline basis functions are used as weights in the same manner as Bézier basis
functions. Spline curves can be expressed in terms of k� order B-spline basis
function. All B-spline basis functions are assumed to have their domain on [0,1].
B-splines basis functions are a more general type of curve than Bezier curves,
where each control point Pi of iþ 1 control points P0, P1, P2, … , Pið Þ is connected
with a basis function Ni,k, the knots are the points that subdivide the domain
[0,1] into knot spans. Also, each B-spline basis function is non-zero on the entire
interval.

The efficiency of our numerical modeling technique has been improved using a
nonuniform rational B-spline curve (NURBS) to decrease the computation time and
model optimized boundary where it reduces the number of control points and pro-
vides the flexibility to design a large variety of shapes.

The considered NURBS can be defined as follows

C tð Þ ¼
Pn

i¼0Ni,o tð ÞϖiPiPn
i¼0Ni,o tð Þϖi

(64)

where Ni,o tð Þ and ϖi are the B-spline basis functions of order o and the weights
of control points Pi, respectively.

The genetic algorithm greatly reduces computing time and computer memory of
achieving an optimum solution, so, it can be used for solving multi-objective prob-
lems without needing to calculate the sensitivities. The profiles of the considered
objects are represented based on the free form deformation (FFD) technique, where
the FFD control points are considered as the genes and then the profiles of chro-
mosomes are defined by the sequence of genes. The population is constructed by
many individuals (chromosomes), where the fitness functions are evaluated by
using the BEM.

Two criteria can be implemented during shape optimization of the solid
bodies [70]

I. The minimum global compliance:

F ¼ 1
2

ð

S

λ � uð Þ dS (65)

II. The minimum boundary equivalent stresses

F ¼
ð

S

σij
σ0

� �n

dS (66)

σij, σ0 and n are equivalent boundary stresses, reference stress and natural num-
ber, respectively, where the greater value of n increases the speed of convergence of
the functional (66). By minimizing the functional (66) σij are closer to σ0.

In order to find the optimal boundary conditions for temperature the following
functional can be applied

F ¼
ð

S

u
u0

� �n

dS (67)
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of control points Pi, respectively.

The genetic algorithm greatly reduces computing time and computer memory of
achieving an optimum solution, so, it can be used for solving multi-objective prob-
lems without needing to calculate the sensitivities. The profiles of the considered
objects are represented based on the free form deformation (FFD) technique, where
the FFD control points are considered as the genes and then the profiles of chro-
mosomes are defined by the sequence of genes. The population is constructed by
many individuals (chromosomes), where the fitness functions are evaluated by
using the BEM.

Two criteria can be implemented during shape optimization of the solid
bodies [70]

I. The minimum global compliance:

F ¼ 1
2

ð

S

λ � uð Þ dS (65)

II. The minimum boundary equivalent stresses

F ¼
ð

S

σij
σ0

� �n

dS (66)

σij, σ0 and n are equivalent boundary stresses, reference stress and natural num-
ber, respectively, where the greater value of n increases the speed of convergence of
the functional (66). By minimizing the functional (66) σij are closer to σ0.

In order to find the optimal boundary conditions for temperature the following
functional can be applied

F ¼
ð

S

u
u0

� �n

dS (67)
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where u and u0 are boundary displacement and reference displacement, respec-
tively. Minimization of the functional (67) reduces displacements on the selected
part of the boundary.

In order to identify unknown inner boundary, we use the following functional

F ¼ δ
XM

k¼1

uk � buk
� �

þ η
XN

l¼1

Tl � bTl� �
(68)

where buk and bTl
are measured displacements and temperatures in boundary

points k and l respectively, uk and Tl are computed displacements and temperatures
in boundary points k and l respectively, δ and η are weight coefficients, and M and
N are numbers of sensors.

5. Numerical examples and discussion of results

For illustration of the theoretical results of our proposed technique from the
preceding sections, two numerical examples are analyzed below. The first example
is the cantilever beam with inferior corner load, the second is the Michell-type
structure, where the material has the following physical data [58]:

The elasticity tensor

Cijkl ¼

60:23 18:67 18:96 �7:69 15:60 �25:28

18:67 21:26 9:36 �3:74 4:21 �8:47

18:96 9:36 47:04 �8:82 15:28 �8:31

�7:69 �3:74 �8:82 10:18 �9:54 5:69

15:60 4:21 15:28 �9:54 21:19 �8:54

�25:28 �8:47 �8:31 5:69 �8:54 20:75

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(69)

p ¼ 25 MPa, and Δt ¼ 0:0006 s.
Example 1. Cantilever beam structure.

Figure 1.
Cantilever beam structure geometry.
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As a practical example, the proposed algorithm is applied on the cantilever beam
with inferior corner load P ¼ 100 N=mm. The geometry of the cantilever beam is
illustrated in Figure 1. The initial boundary mesh of the cantilever beam composed
of 14 quadratic elements is also illustrated in Figure 2. The BEM grid is composed of
76 nodes along x direction and 51 nodes along y direction. These mesh parameters
were obtained after convergence analysis. In the process of optimization, the canti-
lever beam structure optimization results are presented in Figure 3 from initial to
final structure for different iterations.

The present measured boundary element method (BEM) optimization results of
the first example are compared in Figure 4 with measured finite difference method
(FDM) optimization results obtained by Itzá et al. [71] and measured finite element
method (FEM) optimization results obtained using the software package COMSOL
Multiphysics, version 5.4. It is clear from this figure that the BEM results obtained
by the proposed technique are in excellent agreement with the FDM results [71] and
FEM results of the COMSOL Multiphysics.

Table 1 shows that our proposed BEMmodeling of cantilever beam with inferior
corner load drastically reduces the manpower needed for modeling and computer
resources needed for the calculation in comparison with the calculated results based
on the FDM and FEM.

Example 2. Michell-type structure.
As application example, we use a beam with a mid-span load P ¼ 100 N=mmð Þ

(Michell-type structure) as shown in Figure 5. The initial boundary mesh of the
Michell-type structure composed of 40 quadratic discontinuous elements is also

Figure 2.
Initial boundary of the cantilever beam structure.

Figure 3.
Cantilever beam optimization process from initial to final structure for different iterations.
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Figure 4.
Final cantilever beam structure for BEM, FDM and FEM.

Table 1.
Comparison of computer resources needed for FDM, FEM and BEM modeling of cantilever beam structure.
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illustrated in Figure 6. The BEM grid is composed of 76 nodes along x direction,
and 51 nodes along y direction. This grid density was obtained after convergence
analysis.

Figure 7 shows the cantilever beam optimization process from initial to final
structure for different iterations.

The optimization results of the second example obtained with the proposed BEM
are compared in Figure 8 with FDM optimization results [71] and FEM optimiza-
tion results of COMSOL Multiphysics software, version 5.4. It is clear from this
figure that our BEM results obtained by the proposed technique are in excellent
agreement with the FDM and FEM results.

Figure 5.
Michel-type structure geometry.

Figure 6.
Initial boundary of the Michel-type structure.

Figure 7.
Michell-type structure optimization process from initial to final structure for different iterations.
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Table 2 shows that our proposed BEM modeling of Michell-type structure
dramatically reduces the computer resources necessary to calculate our proposed
modeling in comparison with the calculated results based on the FDM and FEM.

Figure 8.
Final Michell-type structure for BEM, FDM and FEM.

Table 2.
Comparison of computer resources needed for FDM, FEM and BEM modeling of Michell-type structure.
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6. Conclusion

In the present paper, we propose a new theory called nonlinear micropolar
thermoviscoelasticity involving three temperatures. A new mathematical modeling
of nonlinear generalized micropolar thermoviscoelasticity problem. A new bound-
ary element technique for simulation and optimization problems of mechanics of
solid deformable bodies is implemented based on genetic algorithm (GA), free form
deformation (FFD) method and nonuniform rational B-spline curve (NURBS) as
the global optimization technique for solving complex simulation and optimization
problems associated with the proposed theory. FFD is an efficient and versatile
parameterization technique for treating shape optimization problems with complex
shapes. It is implemented for simulation and optimization of the shape. In the
formulation of the considered problem, solutions are obtained for specific arbitrary
parameters which are the control points positions in the considered problem, the
profiles of the considered objects are determined by FFD method, where the FFD
control points positions are treated as genes, and then the chromosomes profiles are
defined with the genes sequence. The population is founded by a number of indi-
viduals (chromosomes), where the objective functions of individuals are deter-
mined by the boundary element method (BEM). Due to the large amount of
computer resources required by the FDM and FEM, our proposed BEM model can
be applied to a wide range of simulation and optimization problems related with our
proposed theory. The numerical results demonstrate the validity, accuracy and
efficiency of our proposed technique.

Nomenclature

α, α, α ̿, α̌ micro-polar constants
βij stress–temperature coefficients
δij Kronecker delta i, j ¼ 1, 2ð Þ
δ, η weight coefficients
εij strain tensor
εijk alternate tensor
ϵij micro-strain tensor
λ tractions
ϑ0 viscoelastic relaxation time
ϖ weights of control points
ρ material density
σij force stress tensor
σ0 reference stress
τ time
τ0, τ1, τ2 relaxation times
ωi micro-rotation vector
ℵ ¼ 1þ ϑ0 ∂

∂τ

� �
viscoelastic constant

b internal heat generation vector
c specific heat capacity
Cijkl constant elastic moduli
e ¼ εkk ¼ ϵkk dilatation
lij piezoelectric tensor
Fi mass force vector
J micro-inertia coefficient
 current density vector
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e electron conductive coefficients
i ion conductive coefficients
r phonon conductive coefficients
k, l boundary points
M,N sensors numbers
Mi mass couple vector
mij couple stress tensor
P total energy of unit mass
Pe ¼ ceTe Electron energy
Pi ¼ ciTi Ion energy
Pr ¼ 1

ρ crT
4
r Phonon energy

ℙ values vector of tractions and couple stress
pi singular points
Q heat flux vectors
ℚ values vector of displacements and microrotations
R problem’s boundary
S problem’s domain
Te electron temperature
Ti ion temperature
Tr phonon temperature
u boundary displacement
ui displacement vector
u0 reference displacement
uk computed displacements

buk measured displacements
ei electron-ion energy coefficient
er electron–phonon energy coefficient
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Chapter 13

Dynamic Stiffness Method for
Vibrations of Ship Structures
Xuewen Yin, Kuikui Zhong, Zitian Wei and Wenwei Wu

Abstract

Initiated by the objective to address the dynamics of ship structures other than
conventional finite element method, a dynamic stiffness method (DSM) is proposed
systematically including that for three types of element models. A DSM element
accounting for both in-plane and bending vibrations in flat rectangular plates is devel-
oped, which makes it possible for modeling wave conversion across junctions in built-
up plates. In addition, a DSM element for stiffened plates is formulated, which con-
siders all possible vibrations in plates and beams, i.e., bending, torsion, and extension
motions. The third type of DSMplate element takes fluid loading into account, which is
induced by vibrating plate. Finally, the proposed DSMmethod is extended to address
vibration transmission in a built-up plate structure, which demonstrates the great
potentials of DSM in application to more practical andmore general engineering fields.

Keywords: dynamic stiffness method, FEM, power flow, beam-stiffened, ship
structures

1. Introduction

The vibrational and acoustic characteristics of ship structures are likely to be one
of a number of practical concerns not only to mechanical designers and research
scientists, but sometimes even to military defense officers. The reasons lie in the
following facts. Firstly, excessive vibration levels induced by operating machines or
incident waves can inevitably lead to structural fatigue, failure, or even unexpected
disasters. Besides, onboard vibration and noise are one of the most important
indexes on ship habitability. Too much exposure to such vibrational and noisy
environments can make ship crew members uncomfortable, fatigue, or even
unhealthy, which has been convinced from a lot of experimental data, and even
witnessed from many ship collision accidents. Last but not least, for naval ships,
their vibration and acoustic signals make them as attack targets during war time,
which also challenge the performances of onboard acoustic instruments.

Up to now, many numerical methods are developed and then utilized in
addressing the vibrational and acoustic characteristics of ship structures, which can
be found in numerous literatures. Among them are finite element method (FEM),
boundary element method (BEM), statistical energy method (SEA), and mesh free
methods, etc. Through intense academic efforts from engineers and scientists, and
also due to commercial operations from software developer, most them are coded
into commercial software, and comprehensively influent the way we design our
products almost covering all the engineering fields such as civil engineering, ship
and ocean engineering, chemical engineering, and etc. To some extent, we must
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confess that we, not only engineers, scientists, but product managers, or even
government officers, have underestimate the power of novel numerical methods
and how much they forge the manufacturing process in modern industries.

As for finite element method, it is one of the most successful numerical methods
in high fidelity modeling of the dynamic behaviors of complex structures. To the
best of our knowledge, SAP is the first commercial software. Soon after, other
software like ADINA, ANSYS, ABAQUS, NASTRAN, and DYNTRAN have been
developed and scattered in worldwide universities and industries.

However, like any other numerical methods, FEM has many inherent drawbacks
due to the way it discretizes the structures. For instance, to address the vibrational
responses in high frequencies, the mesh size must be as tiny as 1/6, or less, of the
structural waves so that it can accurately reproduce the dynamics of the structures.
However, such a meshing strategy is not always successful since too much finer
meshes need not only excessive computational costs, but also lead to unexpected
numerical uncertainties.

As for ship structures, the vibration of fluid-loaded plates or shells composes as a
very important part in the studies of many engineering structures [1–3]. One of the
major reasons lies in the fact that the dynamics of these structures depends on the
structures and the fluid simultaneously. The vibrating structures can induce pres-
sure disturbances in their surrounding fluid, and, in return, the resonance frequen-
cies and vibrational responses of the structures can be altered [4, 5].

Recently, dynamic stiffness method (DSM) has won great interests and received
intense studies [6–10] from research and design engineers because it can overcome
the above issues without too much geometrical discretization requirements. Various
DSM elements have been developed for transverse or in-plane vibrations of plates.
In the beginning, more research works were mainly focused on transverse vibra-
tions since bending modes are easily excited, especially in low frequencies. Dozens
of investigator [6–15] made comprehensive contributions on DSM that only
accounts for transverse vibrations of a plate with two opposite edges simply
supported. Later, Bercin and Langley [8, 9] proposed a DSM that incorporates both
in-plane and bending vibrations. It is reasonably expected that all these works are
only applicable to few specified cases due to oversimplified modeling assumptions.
To address the vibrations of more practical engineering structures, Casimir et al. [7]
developed DSM elements for a plate with completely free boundary conditions, in
which Gorman’s superposition method was employed to obtain the exact transverse
displacements. Banerjee and his colleagues [10–12] proposed the dynamic stiffness
matrix for a rectangular plate with arbitrary boundary conditions. Similarly to DSM
for bending plates with arbitrary boundary conditions, the dynamic stiffness matrix
for in-plane vibrations of plates is developed by Ghorbel et al. [15, 16], Nefovska-
Danilovic and Petronijevic [17, 18] in which all the four edges can be prescribed
with any arbitrary conditions by adopting Gorman’s superposition method.

Since the year 2016, Yin and his associates [19–21] have conducted comprehen-
sive studies on developing dynamic stiffness method and its application to the
dynamics of ship structures. Li et al. [19] proposed a dynamic stiffness formulation
accounting for both in-plane and bending vibrations of plates with two opposite
edges simply supported. This method was then employed for modeling vibration
transmission with built-up plate structures [22] and a ship cabin with complex hulls.
To consider the dynamics of stiffened plates, Yin et al. [21] extended Li’s formula-
tions and developed a dynamic stiffness method that considers torsion, bending,
and extension vibrations in beams with eccentric cross-sections.

The main objective of this work is to formulate the vibration analysis of ship
structures based on dynamic stiffness method that accounts for both in-plane and
bending vibrations within plate itself, all possible motions in stiffened beams,
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fluid-loading, respectively. The present paper is organized as follows. In Section 2,
this dynamic stiffness method is briefly summarized, which present the develop-
ment of the three types of models. In Section 3, our proposed method is demon-
strated by investigating the characteristics of representative plate structures.

2. Development of dynamic stiffness formulations

2.1 Model description

Figure 1 shows multiple rectangular plates in global coordinates OXYZ, which
are rigidly joined along their common edges. Each plate has dimension of Lx � Ly

and thickness of h. Its two opposite edges marked by the symbol ‘S-S’ denote simply
supported boundary conditions while the other two edges are arbitrary. In addition,
each plate is reinforced by uniform eccentric beams, and in contact with acoustic
fluid on its one side.

2.2 Development of plate element

Consider a vibrating flat plate in contact with acoustic fluid on its lower side,
which is made of isotropic material with Young’s modulus E, bulk density ρ,
Poisson’s ratio μ, and damping ratio η . Its governing equations for both in-plane and
bending vibrations can be written as,

∂
2u
∂x2

þ a1
∂
2u
∂y2

þ a2
∂
2v

∂x∂y
þmω2

B
u ¼ 0

∂
2v
∂y2

þ a1
∂
2v
∂x2

þ a2
∂
2u

∂x∂y
þmω2

B
v ¼ 0
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8>>>>>><
>>>>>>:

(1)

Figure 1.
A built-up plate structure with beam stiffeners.
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with any arbitrary conditions by adopting Gorman’s superposition method.

Since the year 2016, Yin and his associates [19–21] have conducted comprehen-
sive studies on developing dynamic stiffness method and its application to the
dynamics of ship structures. Li et al. [19] proposed a dynamic stiffness formulation
accounting for both in-plane and bending vibrations of plates with two opposite
edges simply supported. This method was then employed for modeling vibration
transmission with built-up plate structures [22] and a ship cabin with complex hulls.
To consider the dynamics of stiffened plates, Yin et al. [21] extended Li’s formula-
tions and developed a dynamic stiffness method that considers torsion, bending,
and extension vibrations in beams with eccentric cross-sections.

The main objective of this work is to formulate the vibration analysis of ship
structures based on dynamic stiffness method that accounts for both in-plane and
bending vibrations within plate itself, all possible motions in stiffened beams,
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fluid-loading, respectively. The present paper is organized as follows. In Section 2,
this dynamic stiffness method is briefly summarized, which present the develop-
ment of the three types of models. In Section 3, our proposed method is demon-
strated by investigating the characteristics of representative plate structures.

2. Development of dynamic stiffness formulations

2.1 Model description

Figure 1 shows multiple rectangular plates in global coordinates OXYZ, which
are rigidly joined along their common edges. Each plate has dimension of Lx � Ly

and thickness of h. Its two opposite edges marked by the symbol ‘S-S’ denote simply
supported boundary conditions while the other two edges are arbitrary. In addition,
each plate is reinforced by uniform eccentric beams, and in contact with acoustic
fluid on its one side.

2.2 Development of plate element

Consider a vibrating flat plate in contact with acoustic fluid on its lower side,
which is made of isotropic material with Young’s modulus E, bulk density ρ,
Poisson’s ratio μ, and damping ratio η . Its governing equations for both in-plane and
bending vibrations can be written as,

∂
2u
∂x2

þ a1
∂
2u
∂y2

þ a2
∂
2v

∂x∂y
þmω2

B
u ¼ 0

∂
2v
∂y2

þ a1
∂
2v
∂x2

þ a2
∂
2u

∂x∂y
þmω2

B
v ¼ 0

D∇4w�mω2w ¼ �pa x, y, 0ð Þ

8>>>>>><
>>>>>>:

(1)

Figure 1.
A built-up plate structure with beam stiffeners.
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pa is the induced acoustic pressure due to the bending vibration of the plate.
u, v and w are the displacements in x-, y- and z-directions. m and ω are mass per
unit area of the plate and circular frequency, respectively. The parameters a1 and
a2 in Eq. (1) are defined as

a1 ¼ 1� μ

2
, a2 ¼ 1þ μ

2
(2)

The extension rigidity B and flexural rigidity D can be found in Ref. [19].
According to Bercin and Langley [9], the displacements for the plate, which is

simply supported along its two opposite edges, can be expressed as N truncation terms,

u x, yð Þ ¼ PN
n¼1

C1nλ1neλ1nx þ C2nλ2neλ2nx þ C3nkneλ3nx þ C4nkneλ4nx
� �

sin knyð Þ

v x, yð Þ ¼ PN
n¼1

C1nkneλ1nx þ C2nkneλ2nx þ C3nλ3neλ3nx þ C4nλ4neλ4nx
� �

cos knyð Þ

w x, yð Þ ¼ PN
n¼1

cos α1nxð ÞA1n þ sin α1nxð ÞA2n þ cosh α2nxð ÞA3n þ sinh α2nxð ÞA4nð Þ sin knyð Þ

if k2 ≥ kn
2,

:

8>>>>>>>>><
>>>>>>>>>:

(3)

And, if k2 < kn
2, the bending vibrations can be expanded as near-field disturbance,

w x, yð Þ ¼
XN
n¼1

cosh α1nxð ÞA1n þ sinh α1nxð ÞA2n þ cosh α2nxð ÞA3n þ sinh α2nxð ÞA4nð Þ sin knyð Þ

(4)

where k2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρω2=D

p
and kn ¼ nπ=Ly. Cmn,m ¼ 1, 2, 3, 4 and Amn,m ¼ 1, 2, 3, 4

are the unknown constants. Wavenumbers for in-plane and out-of-plane waves
take the following forms:

λ1n,2n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn

2 � kL
2

p
, λ3n,4n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn

2 � kT
2

p

k2 ≥ kn
2, α1n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kn

2
p

, α2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ kn

2
p

k2 < kn
2, α1n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn

2 � k2
p

, α2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn

2 þ k2
p

8>>><
>>>:

(5)

where kL
2 ¼ ρω2 1� μ2ð Þ=E, kT2 ¼ 2ρω2 1þ μð Þ=E.

Accordingly, the transverse shear force Qx perpendicular to xy plane, the bend-
ing moment Mxx, longitudinal force Nxx, and in-plane shear force Nxy along the
plate junctions can be derived as follows,

Qx ¼ �D
∂
3w
∂x3

þ 2� μð Þ ∂
3w

∂x∂y2

� �

Mxx ¼ �D
∂
2w
∂x2

þ μ
∂
2w
∂y2

� �

Nxx ¼ �B
∂u
∂x

þ μ
∂v
∂y

� �

Nxy ¼ �Ba1
∂u
∂y

þ ∂v
∂x

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(6)
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Based on Eqs. (3) and (6), for any nth mode, the generalized displacement
vector qn and force vector Qn are written as,

qn ¼

unjx¼0

vnjx¼0

wjx¼0

θn
��
x¼0

unjx¼Lx

vnjx¼Lx

wnjx¼Lx

θn
��
x¼Lx

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

¼

ÐLy

0

2
Ly

u 0, yð Þ sin knyð Þdy

ÐLy

0

2
Ly

v 0, yð Þ cos knyð Þdy

ÐLy

0

2
Ly

w 0, yð Þ sin knyð Þdy

ÐLy

0

2
Ly

θ 0, yð Þ sin knyð Þdy

ÐLy

0

2
Ly

u Lx, yð Þ sin knyð Þdy

ÐLy

0

2
Ly

v Lx, yð Þ cos knyð Þdy

ÐLy

0

2
Ly

w Lx, yð Þ sin knyð Þdy

ÐLy

0

2
Ly

θ Lx, yð Þ sin knyð Þdy

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

8�1

, (7)

Qn ¼

Nn
��
x¼0

Tn
��
x¼0

Sn
��
x¼0

Mn
��
x¼0

Nn
��
x¼Lx

Tn
��
x¼Lx

Sn
��
x¼Lx

Mn
��
x¼Lx

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼

ÐLy

0

2
Ly

N 0, yð Þ sin knyð Þdy

ÐLy

0

2
Ly

T 0, yð Þ cos knyð Þdy

ÐLy

0

2
Ly

S 0, yð Þ sin knyð Þdy

ÐLy

0

2
Ly

M 0, yð Þ sin knyð Þdy

� Ð
Ly

0

2
Ly

N Lx, yð Þ sin knyð Þdy

� Ð
Ly

0

2
Ly

T Lx, yð Þ cos knyð Þdy

� Ð
Ly

0

2
Ly

S Lx, yð Þ sin knyð Þdy

� Ð
Ly

0

2
Ly

M Lx, yð Þ sin knyð Þdy

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

8�1

(8)

Hence, the relationship between generalized displacements qn and generalized
forces Qn at any nth mode can be developed after simple matrix algorithm, which is
generally known as dynamic stiffness matrix Kn. Once the dynamic stiffness matrix
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are the unknown constants. Wavenumbers for in-plane and out-of-plane waves
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2
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where kL
2 ¼ ρω2 1� μ2ð Þ=E, kT2 ¼ 2ρω2 1þ μð Þ=E.

Accordingly, the transverse shear force Qx perpendicular to xy plane, the bend-
ing moment Mxx, longitudinal force Nxx, and in-plane shear force Nxy along the
plate junctions can be derived as follows,

Qx ¼ �D
∂
3w
∂x3

þ 2� μð Þ ∂
3w

∂x∂y2

� �

Mxx ¼ �D
∂
2w
∂x2

þ μ
∂
2w
∂y2

� �

Nxx ¼ �B
∂u
∂x

þ μ
∂v
∂y

� �

Nxy ¼ �Ba1
∂u
∂y

þ ∂v
∂x

� �
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Based on Eqs. (3) and (6), for any nth mode, the generalized displacement
vector qn and force vector Qn are written as,
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2
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8�1

(8)

Hence, the relationship between generalized displacements qn and generalized
forces Qn at any nth mode can be developed after simple matrix algorithm, which is
generally known as dynamic stiffness matrix Kn. Once the dynamic stiffness matrix
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is obtained, the dynamic responses resulted from excitations can be readily
achieved after solving linear equations like those in conventional finite element
methods [19].

2.3 Development of beam element

As shown in Figure 2, a beam with an eccentric cross section is located with
geometric center O and the shear center G. Based on classical beam theory, the
governing equations for the forced vibrations at line G� G0 are expressed as,

∂
2

∂y2
ErIz

∂
2ur
∂y2

� �
�mrω

2ur þmrω
2zGϕr ¼ Pr

Er
∂
2vr
∂y2

þ ρrω
2vr ¼ Nr

∂
2

∂y2
ErIx

∂
2wr

∂y2

� �
�mrω

2wr �mrω
2xGϕr ¼ Qr

GIt
∂
2ϕr

∂y2
þ I0ω2ϕr �mrω

2xGwr þmrω
2zGur ¼ Tr

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(9)

where ur, vr and wr are the displacements in xr-, yr- and zr-directions, and ϕr is
the rotation about yr axis. Pr, Nr, Qr are the forces acting line G� G0 in xr-, yr- and
zr-directions, and Tr is the torsion moment about yr axis. Ix and Iz are the principle
moments of the beam’s cross-section about xr- and zr-axes. Er and ρr are Young’s
modulus and density of the material. mr is mass per unit length of the beam, i.e.,
ρrAr, where Ar is the cross-sectional area. G and I0 are shear modulus of the
material, polar moment of mass inertia with respect to shear center, respectively,
and It is cross-sectional factor in torsion.

Since the beam is attached to one edge of the plate, its motions are in the similar
forms as that expressed in Eq. (3) and can be readily written as,

Figure 2.
Schematic illustration of a beam: Geometric center G, shear center O; xG and zG are the offset between G and O
in xr-, and zr-directions, respectively.
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ur yr
� � ¼ PN

n¼1
urn sin knyr

� �

vr yr
� � ¼ PN

n¼1
vrn cos knyr

� �

wr yr
� � ¼ PN

n¼1
wrn sin knyr

� �

ϕr yr
� � ¼ PN

n¼1
ϕrn sin knyr

� �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(10)

Substituting Eq. (10) into Eq. (9), and utilizing the orthogonality relationship of
the modes, the vibration motions at the nth mode for the beam can be readily
derived,

ErIzk
4
n �mrω2

� �
urn þmrω2zGϕrn ¼ Prn

�ErAk
2
n þmrω2

� �
vrn ¼ Nrn

ErIxk
4
n �mrω2

� �
wrn �mrω2xGϕrn ¼ Qrn

�GItk
2
n þ I0ω2

� �
ϕrn �mrω2xGwrn þmrω2zGurn ¼ Trn

8>>>><
>>>>:

(11)

Without complex derivation procedure, Eq. (11) can be rewritten in a more
compact matrix form,

Frn ¼ Krn ωð Þqrn, (12)

where the dynamic stiffness matrix has the following expressions:

Krn ¼

ErIzk
4
n �mrω2 0 0 mrω2zG
0 �ErAk

2
n þmrω2 0

0 0 ErIxk
4
n �mrω2 �mrω2xG

mrω2zG 0 �mrω2xG �GItk
2
n þ I0ω2

2
66664

3
77775
:

(13)

2.4 Development of fluid-loaded element: acoustic pressure

The acoustic pressure satisfies the Helmholtz equation,

∂
2

∂x2
þ ∂

2

∂y2
þ ∂

2

∂z2

� �
pa þ k20pa ¼ 0, (14)

where k0 is the acoustic wavenumber. The boundary condition at the interface
between the plate and the fluid is expressed as

∂pa
∂z

� �����
z¼0

¼ ρ0ω
2w, (15)

where ρ0 is the density of the acoustic fluid. Since the acoustic pressure pa has
the following form:

pa x, y, zð Þ ¼ pa
�� �� exp �j kxxþ kyyþ kzz

� �� �
, (16)
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where pa
�� �� is the amplitude of the acoustic pressure, and kx, ky, and kz are

wavenumbers for the acoustic waves. It is ready to obtain the expression for the
acoustic pressure at the plate-fluid interface,

pa x, y, 0ð Þ ¼

jρ0ω2w

k20 � k2b
� �1=2 , if kb < k0 ,

�ρ0ω
2w

k2b � k20
� �1=2 , if kb > k0 :

8>>>><
>>>>:

(17)

It is noted that we have the expression k2b ¼ k2x þ k2y, where kb is the
wavenumbers for the structural waves propagating within the plates. For sake of
brevity, the relationship between the acoustic pressure at the fluid–structure inter-
face and the inertia terms due to the vibration of the plate, which is referred to as
fluid-loading parameter, can be rewritten as,

ε f ¼ pa x, y, 0ð Þ= mω2w½ � ¼

jρ0
m k20 � k2b
� �1=2 , if kb < k0 ,

�ρ0

m k2b � k20
� �1=2 , if kb > k0:

8>>><
>>>:

(18)

2.5 Dynamic responses of built-up plate structures

The dynamic stiffness matrices for the plate and the beam (in Sections 2.2 and
2.3) are expressed in local coordinates, which can be termed as local dynamic
stiffness matrices. With reference to the conventional finite element technique, the
dynamic stiffness matrix for each plate element and each beam element can be
readily assembled into overall global dynamic stiffness matrix. Hence, the dynamic
responses of a built-up structure composed of plates and beams can be solved
through novel numerical methods.

3. Numerical results and discussion

Without loss of generality, we only focus on the vibration transmission in a
built-up plate structure that is reinforced by stiffeners or plates. Numerical
results for the dynamics of plates with beam stiffeners based on our method can
found in [21].

3.1 Transmission modes within a plate stiffened by stiffeners

To demonstrate our method in addressing the vibration transmission within
complex built-up structures, a horizontal plate reinforced by a vertical plate, i.e.,
plate 2 is employed in this subsection. The detailed parameters of the plates are
listed in Table 1. The two opposite long edges of plate 1 is simply supported. One of
the free end of the plate, namely, left edge, is subjected to uniformly distributed
vertical forces of 1 N/m.

Yin et al. [22] identify that there are three representative transmission modes in
a stiffened plate. As the plate structures get more complex, similar phenomena can
be also found, in which a plate is stiffened by 9 identical plates. When the left side
of the plate is enforced with transverse force, three representative transmission
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modes can be clearly identified. In Figure 3(a), only the left local portion of the
plates is excited that implies bending waves cannot propagate effectively forward
due the presence of the stiffening plates. However, in some frequency regimes as
shown in Figure 3(b) and (c), bending waves can pass the stiffening members
freely. As frequency increases, the stiffening members act more like a barrier that
prevent structural waves propagate.

From Figure 3(a)–(d), we can convince that the vibration transmission
modes do exist in even more complex plate structures. In addition, we suggest to
explore the underlying mechanisms, if any, between these transmission modes
and the well-known pass band and stop band since vibration transmission is
probably one of the most important characteristics in complex plate structures,
e.g., ship structures, etc.

E (Gpa) ρ(Kg/m3) μ η Lx(m) Ly(m) h(m)

Plate 1 200 7800 0.3 0.01 6.0 1.0 0.008

Plate 2 200 7800 0.3 0.01 0.5 1.0 0.008

No beam stiffeners are considered in case 1.

Table 1.
Geometry and material parameters of the plates (case 1).

Figure 3.
Representative vibrational transmission modes of a stiffened plate: (a) 270 Hz, (b) 345 Hz, (c) 395 Hz, and
(d) 445 Hz.
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where pa
�� �� is the amplitude of the acoustic pressure, and kx, ky, and kz are
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It is noted that we have the expression k2b ¼ k2x þ k2y, where kb is the
wavenumbers for the structural waves propagating within the plates. For sake of
brevity, the relationship between the acoustic pressure at the fluid–structure inter-
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3.2 Vibrations of a ship hull in contact with water

Figure 4 shows a ship hull that is reinforced by eight beams with dimension
0:02m� 0:02m along the junctions of their neural planes. The ship hull has the
dimension of 6m� 4m� 2:4m and with thickness of 0.008m. The bottom of the ship
hull is in contact with water. About 1 N concentrated force is applied at the middle
point in upper plate and the response gauge is set at middle point in the bottom plate.

Figure 5 shows the curves for the vertical displacement obtained by FEM and
DSM, respectively. The truncation term N is set to 6 in DSM and the mesh size in
the FEM is 0:2m� 0:2m. It is indicated that satisfactory agreement can be found
between the results from DSM and those from FEM, which implies that our pro-
posed method can provide excellent numerical results for ship structures.

4. Conclusion

A DSM is proposed to address the dynamics of ship structures, which include
three types of elements. First, a DSM formulation for both in-plane and bending

Figure 4.
A ship hull reinforced with eight stiffeners.

Figure 5.
Vertical displacement at the middle point in the bottom plate.
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vibrations in flat rectangular plates is developed. Then, a DSM for stiffening beams
is addressed, which accounts for all possible vibrations in plates and beams, i.e.,
bending, torsion, and extension motions. Finally, a DS plate element with fluid
loadings included is formulated. The numerical results for the vibrations for a ship
hull based on the proposed DSM have excellent agreement with those results
obtained from FEM, which demonstrate its potential in addressing the dynamics of
ship structures. In addition, vibration transmission modes of a stiffened plate are
also addressed using this method.
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vibrations in flat rectangular plates is developed. Then, a DSM for stiffening beams
is addressed, which accounts for all possible vibrations in plates and beams, i.e.,
bending, torsion, and extension motions. Finally, a DS plate element with fluid
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ship structures. In addition, vibration transmission modes of a stiffened plate are
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